

Garnell alnuarsity Tithrary 3lhara, A8m
\qquad

FROM
Department of Mathematics

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

PLANE AND SOLID

GEOMETRY

WITH

Problems and Applications

BY

H. E. SLAUGHT, Рн.D.

ASSOCIATE PROFESSOR OF MATHEMATICS IN THE UNIVERSITY of chicago

AND
N. J. LENNES, Рh.D.

INSTRUCTOR IN MATHEMATICS IN COLUMBIA UNIVERSITY

3oston

ALLYN AND BACON
I9 I I

COPYRIGHT, 1911.
BY H. E. SLAUGHT
AND N. J. LENNES.
J. S. Oushing Co, - Berwick \& Suith Co. Norwood, Mass., V.S.A.

PREFACE.

In writing this book the authors have been guided by two main purposes:
(a) That pupils may gain by gradual and natural processes the power and the habit of deductive reasoning.
(b) That pupils may learn to know the essential facts of elementary geometry as properties of the space in which they live, and not merely as statements in a book.

The important features by which the Plane Geometry seeks to accomplish these purposes are:

1. The simplification of the first five chapters by the exclusion of many theorems found in current books. These five chapters correspond to the usual five books, and the most important omissions are the formal treatment of the theory of limits, the incommensurable cases, maxima and minima, and numerous other theorems, together with the deduction of complicated algebraic formulæ.

Chapter VI contains a graphic representation of certain important theorems and an informal presentation of incommensurable cases and limits. The treatment of limits is based upon the graph, since the visual or graphic method appeals more directly to the intuition than the usual abstract processes. Chapter VII is devoted to advanced work and to a review of the preceding chapters.
2. The subject has been enriched by including many applications of special interest to pupils. Here an effort has been made to include only such concrete problems as come fairly within
the observation and comprehension of the average pupil. This led to the onission, for example, of problems relating to machinery and technical industries, which might appeal to an exceptional boy, but which are entirely inappropriate for the average student. On the other hand, free use is made of certain sources of problems which may be easily comprehended without extended explanation and which involve varied and simple combinations of geometric forms. Such problems pertain to decoration, ornamental designs, and architectural forms. They are found in tile patterns, parquet floors, linoleums, wall papers, steel ceilings, grill work, ornamental windows, etc., and they furnish a large variety of simple exercises both for geometric construction and proofs and for algebraic computation. They are not of the puzzle type, but require a thorough acquaintance with geometric facts and develop the power to use mathematics.

These problems form an entirely new type of exercises, and while they require more space in the text-book than the more difficult "originals" stated in the usual abstract terms, they excel the latter in interest for the pupil and in helping to train his mathematical common sense. Many of these exercises are simple enough to be solved at sight, and such solution should be encouraged whenever possible. All the designs are taken from photographs or from actual commercial patterns now in use.
3. Persistent effort is made to vitalize the content of the definitions and theorems. It is well known that pupils often study and recite definitions and theorems without really comprehending their meaning. It is sought to check this tendency by giving definitions only when they are to be used, and by immediately verifying both definitions and theorems in concrete cases. The figure on page 4 is the basis for a large momher
 Ex. 1 ; § 34, Exs. 1, 2 ; § 36, La. 3; ss 30. 324.

In this connection special attention is called to the emphasis placed upon those theorems which are of fundamental importance both in the logical chain and in their immediate use in effecting constructions and indirect measurements otherwise difficult or impossible. For example, see the theorems on congruence of triangles, §§ 31-43, the constructions of §§ 44-58, and the theorems on proportional segments, §§ 243-254. Compare especially § 34, Ex. 5, § 244, Ex. 2, and § 254, Exs. 4, 5.
The summaries at the close of the chapters, which are to be made by the pupil himself, will vitalize the theorems as no made-to-order summaries can possibly do.
4. The student is made to approach the formal logic of geometry by natural and gradual processes. He is expected to grow into this new, and to him unusual, way of thinking. The treatment is at the start informal, leading through the congruence theorems directly to concrete applications and geometric constructions. The formal development then follows gradually and is characterized by a judicious guidance of the student, by questions, outlines, and other devices, into an attitude of mental independence and an appreciation of clear reasoning.

There are certain terms whose general meaning in mathematics is inconvenient in some parts of a book like the present. Thus we say that two circles (meaning by circle the curved line) meet in two points, and it is also convenient to say that the base of a certain cylinder is a circle. In such cases the generally accepted mathematical meanings of the terms have been given in the definitions, while notes have been added that different meanings are sometimes to be understood, depending on the context to make the meaning clear. See $\S \S 523,595$. This avoids learning definitions which must be discarded later, and also the clumsiness resulting from a strict adherence to the same meaning throughout. Experience has shown that no confusion whatever results from this, while the resulting simplicity of statement is of considerable importance.

By its arrangement the Plane Geometry is adapted to three different courses:
(a) A minimum course, consisting of Chapters I to VI, without the problems and applications at the end of each chapter. This would provide about as much material, theorems, constructions, and originals as is found in the briefest books now in use.
(b) A medium course, consisting of Chapters I to VI, including a reasonable number', say one half or two thirds, of the applications at the end of each chapter. This would fully cover the college entrance requirements.
(c) An extended course, including Chapter VII, which contains a complete review, together with many additional theorems and a large number of further applications. This would provide ample work for the strongest high schools, and for normal schools in which more mature students are found or more time can be given to the subject.

Chapter VII gives a complete treatment of the incommensurable cases, though not based on the formal theory of limits. It is believed that for high school pupils the notion of a limit is best studied as a process of approximation, and that the best preparation for the later understanding of the theory is by a preliminary study of what is meant by "approaches," such as is given in Chapters III and IV.

The important features by which the Solid Geometry seeks to accomplish the two main purposes stated with reference to the Plane Geometry are :

1. The concepts of three-dimensimal space are made clear by many simple illustrations and exprcises. At best the average pupil comes but slowly and gradually to a full comprehension
 295, 296, etc., will show how the pupil is aided in understanding and appreciating these forms and relations at the outset. In this connection, Chapter XIII on Graphio Representation
is of fundamental importance, since it exhibits to the eye the functional relations among varying geometric forms.
2. Interesting concrete applications are interspersed throughout the text. It is the aim profoundly to impress upon the mind of the pupil the practical significance of certain fundamental theorems in solid geometry. For instance, how many pupils in the ordinary stady of the theorems on the ratios of surfaces and volumes of similar figures realize that there is in them any connection with the possibility of successfully launching a steamship a mile long? See the exercises on pages 390, 391, 444, 445. For illustrations of other interesting and useful applications, see pages $337,344,345,434,435$.
3. The logical structure is made more complete and more prominent than in the Plane Geometry. Solid Geometry is studied by more mature pupils who have been led by gradual stages in the Plane Geometry to a knowledge and appreciation of deductive reasoning. Hence the axioms are stated and applied in strictly scientific form and at the precise points where they are to be used. For instance, see $\S \S 460,462,464$, $538,560,562,593,612$, etc.
Note also the consistent and scientific definitions of all solids, not as bounded portions of space, but as configurations in space, the uniform conception in all higher mathematical usage. See $\S \S 68,70,99,132,149,200,523,525,554,587$, 604, 655.
4. Throughout both parts of this Geometry a consistent scheme has been followed in the presentation of incommensurables and the theory of limits. In Chapters I to VI the idea of "approach" is made clear by many concrete illustrations, and the theorems involving this idea are shown to hold for all possible approximations. In Chapter VII rigorons proofs of these theorems are given and in far simpler terminology than is found in current text-books. This latter method is followed throughout

Chapters VIII to XIII, thus giving a complete and scientific treatment up to that point. In Chapter XIV the theory of limits is presented in such a way as to leave nothing to be unlearned or compromised in later mathematical work. This chapter may be omitted without affecting the logical completeness of the book.

Acknowledgment is due to Miss Mabel Sykes, of Chicago, for the use in the Plane Geometry of a large number of drawings and designs from her extensive collection; also to numerous commercial and manufacturing houses, both in this country and in Europe, through whose courtesy many of the patterns were obtained.

H. E. SLAUGHT. N. J. LENNES.

[^0]
CONTENTS.

Chapter I. Rectilinear Figures.
Introduction
PAGENotation for Points and Lines1
5Angles and their Notation7
Triangles and their Notation 10
Congle Ger
Congle Ger Congruence of Geometric Figures 12
Tests for Congruence of Triangles 14
Construction of Geometric Figures 20
Theorems and Demonstrations 26
Inequalities of Parts of Triangles 32
Theorems on Parallel Lines 35
Applications of Theorems on Parallels 40
Other Theorems on Triangles 43
Determinations of Loci 50
Theorems on Quadrilaterals 54
Polygons 66
Symmetry 68
Methods of Attack 72
Summary of Chapter I 75
Problems and Applications 76
Chapter II. Straight Lines and Circles.
Theorems on the Circle 86
Measurement of Angles 88
Problems and Applications 92
Angles formed by Tangents, Chords, and Secants 95
Summary of Chapter II 106
Problems and Applications 107
Chapter III. Measurement of Straight Line-segments.
Approximate Measurement 112
Ratios of Line-segments 114
Theorems on Proportional Segments 116
page
Similar Polygons 124
Computations by Means of Sines of Angles 136
Problems of Construction 140
Summary of Chapter 111 145
Problems and Applications 146
Chapter IV. Areas of Polygons.
Areas of Rectangles 154
Areas of Polygons 156
Problems of Construction 166
Summary of Chapter IV 169
Problems and Applications 170
Chapter V. Regular Polygons and Circles.
Regular Polygons 176
Problems and Applications 183
Measurement of the Circle 188
Summary of Chapter V 194
Problems and Applications 195
Chapter VI. Variable Geometric Magnitudes.
Graphic Representation 207
Dependence of Variables 215
Limit of a Variable 217
Chapter V1I. Review and Further Applications.
On Definitions and Proofs 20
Loci Considerations 226
Problems and Applications $221 ;$
Further Data concerning Triangles 200
Problems and Applications 233
The Incommensurable Cases 238
Problems and Applications 245
Further Applications of Proportion 2.50
Further Properties of Triangles 250
Problems and Applications 264
Maxima and Minima 268

Chapter VIII. Lines and Planes in Space.

PAGE
Determinations of a Plane 279
Theorems on Perpendiculars 284
Theorems on Parallels 290
Dihedral Angles 296
Polyhedral Angles 304
Suminary of Chapter VIII 306
Problems and Applications 306
Chapter IX. Prisms and Cylinders.
Definitions 310
Theorems on Prisms 312
Volumes of Rectangular Parallelopipeds 317
Volumes of Prisms in General 320
Cylinders. Definitions 324
Measurement of the Surface and Volnme of a Cylinder 328
Problems and Applications 331
Theorems on Projection 333
Projection of a Plane Segment 340
Summary of Chapter IX 343
Problems and Application 344
Chapter X. Pyramids and Cones.
Definitions and Theorems on Pyramids 316
Definitions and Theorems on Cones 358
Measurement of the Surface and Volume of a Cone 362
Summary of Chapter X 368
Problems and Applications 369
Chapter XI. Regular and Similar Polyhedrons.
Regular Polyhedrons 373
Inscription of Regular Polyhedrons 377
Similar Polyhedrons 380
Applications of Similarity 388
Summary of Chapter XI 390
Problems and Applications 390
Chapter XII. The Sphere.
page
Plane Sections of the Sphere 392
Trihedral Angles and Spherical Triangles. 402
Polar Triangles 410
Polyhedral Angles and Spherical Polygons 418
Areas of Spherical Polygons 419
Area and Volume of the Sphere 423
Summary of Chapter XII 433
Problems and Applications 434
Chapter XIII. Variable Geometric Magnitudes.
Graphic Representation 436
Summary of Chapter XIII 443
Problems and Applications 444
Ceapter XIV. Theory of Limits.
General Principles 446
Application of Limits to Geometry 450
Volume of the Sphere 460
Summary of Chapter XIV 463
Index 465

PLANE GEOMETRY.

CHAPTER I.

RECTILINEAR FIGURES.

INTRODUCTION.

1. Elementary geometry is a science which deals with the space in which we live. It begins with the consideration of certain elements of this space which are called points, lines, planes, solids, angles, triangles, etc.

Some of these terms, such as point, line, plane, are here used without being defined in a strictly logical sense. Their meaning is made clear by description and by concrete illustrations like the following.
2. Certain portions of space are occupied by objects which we call physical solids, as, for instance, an ordinary brick. That which separates a solid from the surrounding space is called its surface. This may be rough or smooth. If a surface is smooth and flat, we call it a plane surface.

A pressed brick has six plane surfaces called faces. Two adjoining faces meet in an edge. Three edges meet in a corner.

The brick is bounded by its six faces. Each face is bounded by four edges, and each edge is bounded by two corners.
3. If instead of the brick we think merely of its form and magnitude, we get a notion of a geometrical solid, which bas the three dimensions, length, breadth, and thickness.

The faces of this ideal solid are called planes. These are flat and have length and breadth, but no thickness.

The edges of this solid are called lines. They are straight and have length, but neither breadth nor thickness. The corners of this solid are called points. They have position, but neither length, breadth, nor thickness ; that is, they have no magnitude.
4. It is possible to think of these concepts quite independently of any physical solid. Thus we speak of the line of sight from one point to another; and we say that light travels in a straight line.

The term straight line is doubtless connected with the idea of a stretched string. Of all the lines which may be conceived as passing through two fixed points that one is said to be straight between these points which
 corresponds most nearly to a stretched string.

Likewise a plane may be thonght of as straight or stretched in every direction, so that a straight line passing through any two of its points lies wholly in the plane.
5. If one of two intersecting straight lines turns about their common point as a pivot, the lines will continue to have only one point in common until all at once they will coincide
 throughout their whole length. Hence,

Two straiyht lines cannot have more than one point in common unless they coincille amd are the same line; that is, tuo points determine' a straight line.

This would not be so if the lines had width, as may be seen by examining the figures.

6.

EXERCISES.

1. How does a carpenter use a straight-edge to determine whether a surface is a plane? Do you know of any surface to which this test will apply in one direction hut not in all directious?
2. What tool does a carpenter use in reducing an uneven surface to a plane surface? Why is the tool so named?
3. If two points of a straight line lie in a plane, what can be said of the whole line?
4. How many points of a straight line can lie in a plane if it contains at least one point not in the plane?
5. If two straight lines coincide in more than one point, what can you say of them throughout their whole length? Do you know of any lines other than straight lines of which this must be true?
6. How do the material points and lines made by crayon or pencil differ in magnitude from the ideal points and lines of geometry?
7. A machine has been made which rules 20,000 distinct lines side by side within the space of one inch. Do such lines have width? Are they geometrical lines?
8. Of all the lines, straight or curved, through two points, on which one is the shortest distance measured between the two points? See the figure of § 4.

Hrstorical Note. The Egyptians appear to have heen the first people to accumulate any considerable body of exact geometrical facts. The building of the great pyramids (before 3000 b.c.) required not a little knowledge of geometric relations. They also used geometry in surveying land. Thus it is known that Rameses II (about 1400 в.c.) appointed surveyors to measure the amount of land washed away by the Nile, so that the taxes might be equalized.

The Greeks, however, were the first to study geometry from a logical point of view. Between 600 в.c., when Thales, a Greek from Asia Minor, learned geometry from the Egyptians, and 300 b.c., wheu Euclid, a Greek residing in Alexandria, Egypt, wrote his Elements of Geometry, the crude, practical geometric information of the Egyptians was transformed into a well-nigh perfect logical system.

Euclid's "Elements" contains the essential facts of every textbook on elementary geometry that has been written since his time.

NOTATION FOR POINTS AND LINES.

7. A point is denoted by a capital letter. A straight line is denoted by two capital letters marking two of its points or by one small letter. The word line alone usually means straight line.

Thus, the point A, the line $A B$, or the line l.
8. A straight line is usually understood to be unlimited in length in both directions, while that part of it which lies between two of its points is called a line-segment, or simply a segment. These points are called the end-points of the segment.

Thus, the segment $A B$ or the segment a.
Two segments with the same end-points are coincident.
9. A part of a straight line, called a ray or half-line, may be thought of as generated by a point starting from a fixed position and mov-
 ing indefinitely in one direction. The starting point is called the end-point or origin of the ray.

If A is the origin of a ray and B any other point on it, then it is read the ray $A B$, not the ray $B A$.
10. Two line-segments are said to be added if they are placed end to end so as
 to form a single segment.

Thus, segment $A C=$ segment $A B+$ segment $B C$, or $A C=A B+B C$.
If $A C=A B+B C$, then $A C$ is greater than either $A B$ or $B C$, and this is written $A C>A B$ and $A C>B C$.

A segment may also be subtracted from a greater or from an equal segment.

Thus, if $A C=A B+B C$, then $A B=A C-B C$ and $B C=A C-A B$.

A segment is multiplied by an integer n by taking the sum of n such segments.
. Thus, if $A C$ is the sum of n segments each $A B$, then $A C=n \cdot A B$.
If $A C$ is n times $A B$, then $A C$ may be divided by n.
Thus, $A B=A C \div n$ or $A B=\frac{1}{n}$. $A C$.
11. A broken line is composed of connected line-segments not all lying in the same straight line.

A curved line, or simply a curve, is a line no part of which is straight.

A curved line or a broken line may inclose a portion of a plane, while a straight line cannot.

12. A circle is a plane curve containing all points equally distant from a fixed point in the plane, and no other points.

The fixed point is called the center of the circle. Any line-segiment joining the center to a point on the circle is a radius of the circle.

Any portion of a circle lying between
 two of its points is called an arc.

Evidently all radii of the same circle are equal.
Any combination of points, segments, lines, or curves in a plane is called it plane geometric figure.

Plane Geometry deals with plane geometric figures.
13. EXERCISES,

1. How many end-points has a straight line? How many has a line-segmenti? How many has a ray? Acircle?
2. (an you inclos' a portion of a plane with two line-segments? With three? With four?

ANGLES AND THEIR NOTATION.

14. An angle is a figure formed by two rays proceeding from the same point. The point is the vertex of the angle and the rays are its sides. The angle formed by two rays is
 said to be the angle between them or simply their angle.

Two line-segments having a common end-point also form an angle, namely, the angle of the rays on which the segments lie. An angle is determined entirely by the relative directions of its rays and not by the lengths of the segments laid off on them.
15. An angle is denoted by three letters, one at its vertex and one marking a point on each of its sides. The one at the vertex is.read between the other two, as the angle $C A B$, or the angle $B A C$, not $A B C$. The one letter at the vertex is also used alone to denote an angle in case
 no other angle has the same vertex, as, for instance, the angle A.

In case several angles have the same vertex, a small letter or figure placed within each angle, together with an arc connecting its sides, is a convenient notation. 'The $\operatorname{sign} \angle$ is used for the word angle.

Thus in the figure we have $\angle 1, \angle 2, \angle 3$, read, angle one, angle two, angle three.

16. If two rays lie in the same straight line and extend from the same end-point in opposite directions they are said to form a straight angle. If they extend in the same direc-
 tion, they coincide and form a zero angle.
17. An angle may be thought of as generated by a ray turning about its end-point as a pivot.

Thus $\angle B A C$ is generated by a ray rotating from the position $A B$ to the position $1 C$. The rotating ray is usually conceived as inoving in the direction opposite to the hands of a clock and the sides of the angle should usually be read in this order. Thus $\angle B A C$, not $\angle C A B$.

If the ray continues to rotate until it lies in a direction exactly opposite to its original position, it generates a straight angle, as the straight angle BAC.

If the ray rotates until it reaches its original position, the angle generated is called a perigon, that is, an angle of complete rotation.

The position from which the rotating ray starts is called the origin of the angle. From this point of view two rays from the same point form two angles according as one or the other of the rays is regarded as the origin. In elementary geometry only angles less than or equal to a straight angle are usually considered.

The units of measure for angles are one three-hun-dred-sixtieth of a perigon which is called a degree, one sixtieth of a degree called a minute, and one sixtieth of a minute called a second. These are denoted respectively by the symbols ${ }^{\circ}, 1, \prime$. Thus, an angle of $20^{\circ} 45^{\prime} 30^{\prime \prime}$. A straight angle is therefore an angle of 180° and a perigon is an angle of 360°.
18. Angles are measured by means of an instrument called a protractor, which consists of a semicircular scale with degrees from 0° to 180° marked upon it.

An inexpensive protractor made of cardboard or brass may be had at any stationery store. See the figure of §33.
19. Two angles are said to be equal if they can be made to coincide without changing the form of either.

If a ray is drawn from a point in a straight line so that the two angles thus formed are equal, each angle is called a right angle, and the ray is said to be
 perpendicular to the line.

Thus, if $\angle 1=\angle 2$, each angle is a right angle and $A C$ is then said to be perpendicular to $B D$.

Since the straight angle $B A D$ is composed of $\angle 1$ and $\angle 2$, each of which is a right angle, it appears that a straight angle equals two right angles.

See § 39 for the addition of angles in general.
An acute angle is less than a right angle.
An obtuse angle is greater than a right angle and less than a straight angle.

Acute and obtuse angles are called oblique angles.

A reflex angle is greater than a straight angle and less than a perigon.

One line is oblique to another if the angles between them are oblique.

A ray which divides an angle into two
 equal angles is called its bisector. Thus a perpendicular
 is the bisector of a straight angle.

The angles considered in this book are greater than the zero angle and less than or equal to a straight angle.
20. EXERCISES.

1. Since we can .always place two straight angles so as to make them coincide, what can we say as to whether or not they are equal? What of two right angles?
2. What part of a straight angle is a right angle?
3. Suppose that in the figure the ray $A r$ rotates about the point A from the position $A B$ to the position $A D$. What change takes place in $\angle 1$? What in $\angle 2$? Can there be more than one position of $A C$ for which $\angle 1=\angle 2$? In this way it may be made clear that any angle has one and only one bisector.

4. How many rays perpendicular to $B D$ at the point A can be drawn on the same side of $B D$? Does the answer to this question depend upon the answers to the questions in Ex. 4? How?
5. Pick out three acute angles, three right angles, and three obtnse angles in the fignre on page 4.

TRIANGLES AND THEIR NOTATION.

21. If the points A, B, C do not lie in the same straight line, the figure formed by the three segments, $A B, B C$, and $C A$, is called a triangle.

The segments are the sides of the triangle, and the points are its vertices. The symbol Δ is used for the word triangle.

Each angle of a triangle has one side opposite and two siles adjacent to it.
 Similarly each side of a triangle has one angle oppositt and two angles adjacent to it. The side opposite an angle is often denoted by the corresponding small letter.

Thus, in the figure the side a and the angle A are opposite parts, as are angle B and side b and angle C and side c. The three sides and three angles of a triangle are called the parts of the triangle.

These six parts are considered as lying in order around the figure, as $\angle A$, side $b, \angle C$, side a, etc.

An angle of a triangle is said to be inchuded between its two adjacent sides, and a side is said to be included between the two angles adjacent to it.

Thus, in the thgure the side n is incluted between $\angle B$ and $\angle C$, and $\angle A$ is incladed betwern the sides b and c.
22. A triangle is called equilateral if it has its three sides equal, isosceles if it has at least two sides equal,

scalene if it has no two sides equal, equiangular if it has its three angles equal.

Select each kind from the figures on this page.
23. A triangle is called a right triangle if it has one right angle, an obtuse triangle if it has one obtuse angle, an acute triangle if all its angles are acute.

Select each kind from the figures on this page.
The side of a right triangle opposite the right angle is called the hypotenuse in dis-
 tinction from the other two sides, which are sometimes called its legs.
24. The side of a triangle on which it is supposed to stand is called its base. The angle opposite the base is called the vertex angle. and its vertex is the vertex of the triangle.

The altitude of a triangle is the perpendic-
 ular from the vertex to the base or the base produced. Evidently any side may be taken as the base, and hence a triangle has three different altitudes.

1. Is every equilateral triangle also isosceles? Is every isosceles triangle also equilateral?
2. Is a right triangle ever isosceles? Is an obtuse triangle ever isosceles? Draw figures to illustrate your answers.
3. In the figure on page \pm determine by measuring sides which of the triangles $H N P, L K W, I H N, M T J, K I^{\top} L, O K J, L V W$, are isosceles, which are equilateral, and which are scalene.
4. Determine whether J, K, V of the same figure may be the vertices of a triangle; also whether J, Q, G may be.
5. Pick out ten obtnse triangles in this figure; also ten acute triangles.

CONGRUENCE OF GEOMETRIC FIGURES.

26. In comparing geometric figures it is assumed that they may be moved about at will, sither in the same plane or out of it, without changing their shope or size.
27. Two figures are said to be similar if they have the same shape. This is denoted by the symbol \sim read is similar to.

For a more precise definition see $\S \S 255,255$.
Two figures are said to be equivalent or simply equal if they have the same size or magnitude. This is denoted by the symbol $=$, read is equivalent to or is equal to.

Two figures are said to be congruent if. without changing the sliape or size of either,
 they may be so placed as to coincide throughout. This is denoted by the symbol
 \cong, read is congrupnt to.

In the casp of limesegments and angles, congruence is determined by size alone. Ilamer in these cases we use the symbol $=$ to denote congruence, and read it equals or is equal to.
28. It is clear that if each of two figures is congruent to the same figure they are congruent to each other.

Hence if we make a pattern of a figure, say on tracing paper, and then make a second figure from this pattern, the two figures are congruent to each other.
29. If $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$, the notation of the triangles may be so arranged that $A B=A^{\prime} B^{\prime}$, $B C=B^{\prime} C^{\prime}, C A=C^{\prime} A^{\prime}, \angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$ and $\angle C=\angle O^{\prime}$. In this case $A B$ is said to correspond to $A^{\prime} B^{\prime}, B C$ to $B^{\prime} C^{\prime}, C A$ to $C^{\prime} A^{\prime}$, $\angle A$ to $\angle A^{\prime}$, etc.

Hence, we say that corresponding parts of
 congruent triangles are equal.
30. EXERCISES.

1. Using tracing paper, draw triangles congruent to the triangles $M I N, N H P, O A B, O F E, O K L, U K V, O G L$ on page 4 , and by applying the pattern of each triangle to each of the others determine whether any two are congruent.

2. Find as in $\S 28$ whether any two of three accompanying triangles are congruent, and if so arrange the notation so as to show the corresponding parts.
3. Give examples of figures which are similar, equal, or congruent, different from those in § 27.
4. If two figures are congruent, does it follow that they are equal? Similar?
5. If two figures are similar, does it follow that they are equal? Congruent?
6. If two figures are equal, are they similar? Congruent?

TESTS FOR CONGRUENCE OF TRIANGLES.

31. The method of determining whether two triangles are congruent by making a pattern of one and applying it to the other is often inconvenient or impossible. There are other methods in which it is necessary only to determine whether certain sides and angles are equal.

These methods are based upon three important tests for congruence of triangles.
32. First Test for Congruence of Triangles.

If two triangles have two sides and the included angle of one equal respectively to two sides and the included angle of the other, the triangles are congruent.

This may be shown by the following argument:

Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be two triangles in which $A B=A^{\prime} B^{\prime}$, $A C=A^{\prime} C^{\prime}$, and $\angle A=\angle A^{\prime}$.

We are to show that $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.
Place $\triangle A B C$ upon $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $\angle A$ coincides with $\angle A^{\prime}$, which can be done since it is given that $\angle A=\angle A^{\prime}$.

Then point B will coincide with B^{\prime} and C with C^{\prime}, since it is given that $A B=A^{\prime} B^{\prime}$ and $A^{\prime}{ }^{\prime}=A^{\prime} C^{\prime}$.

Hence, side $B C$ will coincide with $B^{\prime} C^{\prime}(\S)$.
Thus, the two triangles coincide throughout and hence are congruent (\$27).

The process just used is called superposition. It may sometimes be necessary to move a figure out of its plane in order to superpose it upon auother, as in the case of the accompanying triangles.

33. The equality of short line-segments is conveniently tested by means of the dividers or compasses.

Place the divider points on the end-points of one segment $A B$ and then see whether they will also coincide with the end-points of the other segment $A^{\prime} B^{\prime}$. If so, the two segments are equal.

The equality of two angles may be tested by means of the protractor.

Place the protractor on one angle $B O C$ as shown in the figure and read the scale where $O C$ crosses it. Then place the protractor on the other angle $B^{\prime} O^{\prime} C^{\prime}$ and see whether $O^{\prime} C^{\prime \prime}$ crosses the scale at the same point. If so, the two angles are equal.

34.

EXERCISES.

1. Using the protractor determine which pairs of the following angles on page 4 are equal:

$$
H P G, L G W, G W L, A O B, V L W, L V W .
$$

2. By the test of $\S 32$ determine whether, on page 4 ,

$$
\triangle J K U \cong \triangle G W L, \text { also whether } \triangle M I H \cong \Delta K V W
$$

First find whether two sides of one are equal respectively to two sides of the other, and if so compare the inclnded angles.
3. Conld two sides of one triangle be equal respectively to two sides of another and still the triangles not be congruent? Illustrate by constructing two such triangles.
4. Show by the test of $\S 32$ that two right triangles are congruent if the legs of one are equal respectively to the legs of the other. Can this be shown directly by superposition?
5. Find the distance $A B$ when, on account of some obstruction, it cannot be measured directly.

Solution. To some convenient point C measure the distances $A C$ and $B C$. Continuing in the direction $A C$ lay off $C A^{\prime}=A C$, and in the direction $B C$ lay off $C B^{\prime}=B C$. Then $\angle 1=\angle 2$ (see $\S 74$). Test this with the protractor. Show that the length $A B$ is found by measuring $A^{\prime} B^{\prime}$.

35. Second Test for Congruence of Triangles.

If two triangles have two angles and the included side of one equal respectively to two angles and the included side of the other, the triangles are congruent.

This is shown by the following argument :

Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be two triangles in which $\angle A=\angle A^{\prime}$, $\angle B=\angle B^{\prime}$, and $A B=A^{\prime} B^{\prime}$.

We are to show that $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.
Place $\triangle A B C$ upon $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $A B$ coincides with its equal $A^{\prime} B^{\prime}$, making C fall on the same side of $A^{\prime} B^{\prime}$ as C^{\prime}.

Then $A C$ will take the direction of $A^{\prime} C^{\prime}$, since $\angle A=\angle A^{\prime}$, and the point C must fall somewhere on the ray $A^{\prime} C^{\prime}$.

Also $B C$ will take the direction of $B^{\prime} C^{\prime}$ (Why? ${ }^{\prime \prime}$), and hence C must lie on the ray $B^{\prime} C^{\prime}$.

Since the point C lies on both of the rays $A^{\prime} C^{\prime}$ and $B^{\prime} C^{\prime}$, it must lie at their point of intersection $C^{\prime}(\S \overline{)})$. Hence, the triangles coincide and are, therefore, congruent ($§: 27$).

36.

 EXERCISES.1. In the figure of $\$ 35$ is it necessary to move $\triangle A B C$ out of the plane in which the triangles lie? Is it necessary in the figure here given?
2. Show how to measure the height of a true by using the second test for congruence.

Sugarsiros. Lity out a triangle on the ground which is congruent to $\triangle A B C$, using $\$ 3$.
3. By the second tast determine whether $\triangle H_{1} \cong \triangle O$ OK on page 4.
4. I)raw any triangle. Construct another tri-

angle congruent to it. Use § 35 and also § 32 . Use the protractor to construct the angles.
5. Find the distance $A C$, when C is inaccessible.

Let B be a convenient point from which A and C are visible. Lay out a triangle $A B C^{\prime}$ making $\angle 3=\angle 1$ and $\angle 4=\angle 2$. Show that the distance $A C$ may be found by measuring $A \Gamma^{\prime \prime}$.
6. Show how to find the distance between two inaccessible points A and B.

Solution. Suppose that both A and B are visible from C and D. (1) Using the triangle $C D A$, find the length of $A D$ as in Ex. 5 above. (2) Using the triangle $C B D$, find $D B$ in the same manner. (3) Using the triangle $D B A$, find $A B$ as in Ex. $5, \S 34$.
37. The proof of the third test for congruence of triangles involves the following :

The angles opposite the equal sides of an isosceles triangle are equal.

Let $A B C$ be an isosceles triangle having $A C=B C$.

We are to show that $\angle A=\angle B$.
Suppose $C D$ divides $\angle A C B$ so that $\angle 1=\angle 2$.

By means of $\S 32$ show that $\triangle A C D \cong \triangle B C D$.

Then $\angle A=\angle B$ by $\S 29$.
The theorems $\S 35$ and $\S 37$ are due to Thales. It is said he used § 35 in calculating the distance from the shore to a ship at sea.
38. EXERCISE.

On page 4 pick out as many pairs of angles as possible which may be shown to be equal by $\S 37$. Test these by using the protractor.
39. Definitions. Two angles which have a common vertex and a common side are said to be adjacent if neither angle lies within the other.

Thus, $\angle 1$ and $\angle 2$ are adjacent, while $\angle 1$ and $\angle 3$ are not adjacent.
The sum of two angles is the angle formed by the sides not common when the two angles are placed adjacent.

Thus, $\angle 3=\angle 1+\angle 2$.
If $\angle 3=\angle 1+\angle 2$, then we say that $\angle 3$ is greater than either $\angle 1$ or $\angle 2$. This is written $\angle 3>\angle 1$ and $\angle 3>\angle 2$.

An angle may also be subtracted from a greater or equal angle. Thus if $\angle 3=\angle 1+\angle 2$, then $\angle 3-\angle 1=\angle 2$ and $\angle 3-\angle 2=\angle 1$. It is clear that :

If equal angles are added to equal amgles, the sums are equal angles.

Angles may be multiplied or divided by a positive integer as in the case of line-segments. see 10.
40. We may now prove the third test for congruence of triangles, namely:

If two triangles have three sides of one equal respectively to three sides of the other, the triangles are congruent.

Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be two triangles in which $A B=A^{\prime} B^{\prime}$, $B C=B^{\prime} C^{\prime}, C A=C^{\prime} A^{\prime}$.

We are to show that $\triangle A B C^{\prime} \geq \triangle A^{\prime} B^{\prime} C^{\prime \prime}$.

Place $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $A^{\prime} B^{\prime}$ coincides with $A B$ and so that C^{\prime} falls on the side of $A B$ which is opposite C.
(Why is it possible to make $A^{\prime} B^{\prime}$ coincide with $A B$?)
Draw the segment $C C^{\prime}$. From the data given, how can $\S 37$ be used to show that in $\triangle A C C^{\prime} \angle 1=\angle 2$?

Use the same argument to show that $\angle 3=\angle 4$.
But if
$\angle 1=\angle 2$
and
$\angle 3=\angle t$,
then
That is,

$$
\begin{gather*}
\angle 1+\angle 3=\angle 2+\angle 4 . \\
\angle A C B=\angle B C^{\prime} A . \tag{§32}
\end{gather*}
$$

How does it now follow that $\triangle A B C \cong \triangle A B C^{\prime}$?
But $\quad \triangle A B C^{\prime} \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.
Hence, $\quad \triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.
Make an outline of the steps in the above argument, and see that each step is needed in deriving the next.
41. Definition. If one triangle is congruent to another because certain parts of one are equal to the corresponding parts of the other, then these parts are said to determine the triangle. That is, any other triangle constructed with these given parts will be congruent to the given triangle.
42. EXERCISES.

1. In $\S 37$ show that $C D$ is perpendicular to $A B$ and that $A D=D B$. State this fully in words.
2. Using § 40, determine which of the following triangles on page 4 are congruent: OJK, $H N P, O I H, P H G, J K U$.
3. Do two sides determine a triangle? Three sides? Two angles? Three angles? Illustrate by figures.
4. A segment drawn from the vertex of an isosceles triangle to the middle point of the base bisects the vertex angle and is perpendicular to the base.
5. What parts of a triangle have been found sufficient to determine it? In each case how many parts are needed?
6. The three tests for congruence of triangles, §§ 32, 35,40 , lie at the foundation of the mathematics used in land surveying. The fact that certain parts of a triangle determine it shows that it may be possible to compute the other parts when these parts are known. Rules for doing this are found in Chapter III.

CONSTRUCTION OF GEOMETRIC FIGURES.

44. The straight-edge ruler and the compasses are the instruments most commonly used in the construction of geometric figures.

By means of the ruler straight lines are drawn, and the compasses are used in laying off equal line-segments and also in constructing arcs of circles (§12).

Other common instruments are the protractor (§ 33) and the triangular ruler with one square corner or right angle.

The three tests for congruence of two triangles are of constant use in geometrical constructions.
45. Problem. To find a point whose distances from the extremities of a given segment are specified.
Solution. Let $A B$ be the given segment and let it be required to find a
 point C which shall be one inch from each extremity of $A B$.

Set the points of the compasses one inch apart. With Δ as a center draw an are m, and with B as a center draw an arc n meeting the are m in the point c. Then every point in the are m is one inch from 1 and every point in the are n is one inch from $B(\$ 12)$.

Ilence C, which lies on both m and n, is one inch from A and also from B.

1. In the preceding problem is there any other point in the plane besides C which is one inch distant from both A and B ? If so, show how to find it.
2. Could $A B$ be given of such length as to make the construction in § 45 impossible?
3. Is there any condition under which one point only could be found in the above construction? If so, what would be the length of $A B$?
4. Find a point one inch from A and two inches from B and discuss all possibilities as above.
5. Given three segments a, b, c, construct a triangle having its sides equal to these segments. Discuss all possibilities depending upon the relative lengths of the given segments.
6. Problem. To construct an angle equal to a given angle, without using the protractor.

Solution. Given the angle A.
Lay off any distance $A B$ on one of its sides and any distance $A C$ on the other.

Draw the segment $B C$ forming the triangle $A B C$.
As in Ex. 5 above, construct a triangle $A^{\prime} B^{\prime} C^{\prime}$ so that $A^{\prime} B^{\prime}=A B, B^{\prime} C^{\prime}=B C, A^{\prime} C^{\prime}=A C$.

Show that $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ by one of the tests, and hence that $\angle A=\angle A^{\prime}$, being corresponding angles of congruent triangles, § 29 .

In the above construction, would it be wrong to make $A B=A C$? Is it necessary to do so ?
48. Problem. To construct the ray dividing a given angle into two equal angles, that is, to bisect the angle.

Solution. Given the angle A.
To construct the ray bisecting it.
On the sides of the angle lay off segments $A B$ and $A C$ so that $A B=A C$.

With B and C as centers and
 with equal radii construct ares m and n meeting at D.

Draw the segments $C D, B D$, and $A D$.
Now show that one of the tests for congruence is applicable to make $\triangle A C D \cong \triangle A B D$.

Does it follow that $\angle 1=\angle Q$? Why?
49. EXERCISES.

1. Is it necessary in \S to to make $A B=A C$? In this respect compare with the construction in $\S 47$.
2. Is any restriction necessary in choosing the radii for the arcs m and n ? Is it possible to so construct the ares m and n, still using equal radii for both, that the point D shall not lie within the angle $B A C$? In that case does the ray $A D$ bisect $\angle B A C$?
3. By means of $\S 48$ hisect a straight angle. What is the ray called which bisects a straight angle? In this case what restriction is necessary on the radii used for the arcs m and n ?
4. By Ex. 3 construct a perpendicular to a line at a given point in it.
5. Construct a perpendicular to a segment at one end of it without prolonging the segment and withont using the square ruler.

Sugiasition. Let i B be the given segment. Construct a right angle $A^{\prime} B^{\prime} C^{\prime}$ as in Ex. I. 'Then as in § 17 construet $\angle A B C=\angle A^{\prime} B^{\prime} C^{\prime \prime}$.
60. Definition. A line whith is perpenticular to a linesegurnt at its middle point is valled the perpendicular bisector of the segment.
51. Problem. To construct the perpendicular bisector of a given line-segment.

Solotion. Let $A B$ be the given segment.

As in $\S 45$, locate two points, C and D, each of which is equally distant from A and B.

Draw the segment $C D$ meeting $A B$ in o.
Then $C D$ is the required perpendicular bisector of $A B$.
To prove this, show that $\triangle A C D \cong \triangle B C D$.
Hence

$$
\begin{equation*}
\angle 3=\angle 4 \tag{Why?}
\end{equation*}
$$

By what test can it now be shown that

$$
\begin{gather*}
\triangle A O C \cong \triangle B O C ? \\
\angle 1=\angle Q . \tag{Why?}
\end{gather*}
$$

Hence
(Why?) and also $A O=O B$ (Why?).

It has thus been shown that $C D$ is perpendicular to $A B$ and bisects it, as was required.
52. The steps proved in the above argument are:
(a) $\triangle A C D \cong \triangle B C D$.
(b) $\angle 3=\angle 4$.
(c) $\triangle A O C \cong \triangle B O C$. (d) $\angle 1=\angle 2$, and $A O=B O$.

Study this outline with care. What is wanted is the last result (d). Notice that (d) is obtained from (c), (c) from (b), and (b) from (a). Thus each step depends on the one preceding, and would be impossible withont it. To understand clearly the order of the steps in a proof as shown by such an outline is of great importance in mastering it.
53.

EXERCISES.

1. In the construction of $\S 51$, is it necessary to use the same radius in locating the points C and D ?
2. Name the isosceles triangles in the figure §51:(a) if the same radius is used for locating C and $D,(b)$ if different radii are used.
3. Problem. To construct a perpendicular to a given straight line from a given point outside the line.

Solution. Let l be the given line, and P the given point outside it.
With r as a center draw an are cutting the line l in two points, A and B.

With A and B as centers, and with equal radii, draw the arcs m and n intersecting in \because Draw the line $P C$ cutting l in the point D.

Then the line $P C$ is the perpendicular sought.
To prove this, draw the segments $P A, P B, C A, C B$.
Complete the proof by showing that P_{r} is the perpendicular bisector of $A B$, and hence is perpendicular to l from the point P.
55. Problem. To comstrurt a triam!le when two sides and the included amylr are given.

Solution. Let b and c be the given sides, and A the given angle.

As in $\S 47$, construct an angle
 A^{\prime} equal to $\angle A$. On the sitles of $\angle A^{\prime}$ lay off $A^{\prime} B=c^{\prime}$ and $A^{\prime} \prime^{\prime}=b . \quad$ Connect B and \prime^{\prime}.

Then $A^{\prime} B C$ is the required triangle. (Why ?)
56. Problem. Construct a triangle when two angles and the included side are given.

Solution. Let $\angle A$ and $\angle B$ be the given angles, and c the given side.

Construct $\angle A^{\prime}=\angle A$.
On one side of $\angle A^{\prime}$ lay off $A^{\prime} B^{\prime}=c$.

At B^{\prime} construct $\angle A^{\prime} B^{\prime} K$

$\cdots e^{-\cdots}$ equal to $\angle B$.

Let $B^{\prime} K$ meet the other side of $\angle A^{\prime}$ at C.
Then $A^{\prime} B^{\prime} C$ is the required triangle. (Why?)
57.

EXERCISES.

1. If in the preceding problem two different triangles are constructed, each having the required properties, how will these triangles be related? Why?
2. If in the problem of $\S 55$, two different triangles are constructed, each having the required properties, how will these triangles be related? Why?
3. If two triangles are constructed so that the angles of one are equal respectively to the angles of the other, will the triangles necessarily be congruent?
4. If two different triangles are constructed with the same sides, how will they be related? Why?
5. Construct an equilateral triangle. Use $\S 37$ to show that it is also equiangular.
6. We have now seen that the three tests for the congruence of triangles are useful in making indirect measurements of heights and distances when direct measurement is inconvenient or impossible, and also in making numerous geometric constructions. It will be found, as we proceed, that these tests are of increasing usefulness and importance.

THEOREMS AND DEMONSTRATIONS.

59. A geometric proposition is a statement affirming certain properties of geometric figures.

Thus: "Two points determine a straight line" and "The base angles of an isosceles triangle are equal" are geometric propositions.

A proposition is proved or demonstrated when it is shown to follow from other known propositions.

A theorem is a proposition which is to be proved. The argument used in establishing a theorem is called a proof.
60. In every mathematical science some propositions must be left unproved, since every proof depends upon other propositions which in turn require proof. Propositions which for this reason are left unproved are called axioms.

While axioms for geometry may be chosen in many different ways, it is customary to select such simple propositions as are evident on mere statement.
61. Among the axioms thus far used are the following:

Axioms. I. A figure may be moved about in space without changing its shape or size. see $\S \geq 6$.
II. Through two points one and only one straight line can be drawn. See $\$ \S 8,3 \geq$.
III. The shortest distance between two points is measured along the straight lime-segment commeting them.

Thus one side of a triangle is less than the sum of the other two.
IV. If cach of two figures is congruent to the same figure, they are congrucht to each other. See §§ 2s. 40.
V. If a, b, c, d are linc-segments (or angles) such that $a=b$ and $c=d$, the'm $a+c=b+d$ and $a-i=b-d$.

In the latter catse we suppose $a>c, b>d$. Nie $\$ 810,39$.
VI. If a and b are line-segments (or angles) such that $a=b$, then $a \times n=b \times n$ and $a \div n=b \div n$; and if $a>b$, then $a \times n>b \times n$ and $a \div n>b \div n, n$ being a positive integer. See §§ 10, 39.

Nоте. An equality or an inequality may be read from left to right or from right to left. Thus, $a>b$ may also be read $b<a$.

Other axioms are given in $\S \S 82,96,119$, and in Chapter VII.

Certain other simple propositions may be assumed at present without detailed proof. These are called preliminary theorems.

PRELIMINARY THEOREMS.

62. Tuo distinct lines can meet in only one point.

For if they have two points in common, then by Ax. II they are the same line.
63. All straight angles are equal. § 20, Ex. 1.
64. All right angles are equal. See Ax. VI.
65. Every line-segment has one and only one middle point.

See § 51 , where the middle point is found by construction.
66. Every angle has one and only one bisector.

See § 48, where the bisector is constructed.
67. One and only one perpendicular can be drawn to a line through a point whether that point is on the line or not. See § 20, Exs. 4, 5; §49, Ex. 4; §54.
68. The sum of all the angles about a point in a straight line and on one side of it is two right angles.
69. The sum of all the angles about a point in a plane is four right angles.

In $\S \S 68,69$ no side of one angle is to lie inside another.
70. Definitions. Two angles are said to be complementary if their sum is one right angle. Each is then called the complement of the other.

Thus, $\angle a$ and $\angle b$ are complementary angles.
Two angles are said to be supplementary if their sum is two right angles. Each is then said to be the supplement of the other.

Thus, $\angle 1$ and $\angle 2$ are supplementary angles.
Two angles are called vertical angles if the sides of one are prolongations of the sides of the other.

Thus, $\angle 1$ and $\angle 3$ are vertical angles, and also $\angle 2$ and $\angle 4$.
71.

EXERCISES.

1. What is the complement of 45° ? the supplement?
2. If the supplement of an angle is 140°, find its complement.
3. If the complement of an angle is 21°, find its supplement.
4. Find the supplement of the complement of 30°.
5. Find the angle whose supplement is five times its complement.
6. Find the angle whose supplement is n times its complement.
7. Find an angle whose complement plus its supplement is 110°.

8. If in the first figure $\angle b=2 \angle a$, and $\angle c=\angle a+\angle b$, find each angle.
9. If in the second figure $\angle b=\frac{1}{3} \angle a, \angle c=\angle a+\angle b$, and $\angle l=6 \angle a$, find each angle.
10. If in the third figure $\angle b=\angle e, \angle c=\angle a+\angle b, \angle d=2 \angle b$, and $\angle e=\frac{1}{2} \angle d$, find each angle,

PRELIMINARY THEOREMS.

72. Angles which are complements of the same angle or of equal angles are equal.

For they are the remainders when the given equal angles are subtracted from equal right angles. Ax. V.
73. Angles which are supplements of the same angle or of equal angles are equal.

For they are the remainders when the given equal angles are subtracted from equal straight angles.
74. Vertical angles are equal.

They are supplenents of the same angle.
75. If two adjacent angles are supplementary, their exterior sides are in the same straight line.

For the two angles together form a straight angle.
76. If two adjacent angles have their exterior sides in the same straight line, they are supplementary.

For a straight angle is equal to two right angles.
77.

EXERCISES.

1. Prove that if one of the four angles formed by two intersecting straight lines is a right angle, then all are right angles.
2. Show that the rays bisecting two complementary adjacent angles form an angle of 45°.
3. Find the angle formed by the rays bisecting two supplementary adjacent angles. Prove.
4. Find the angle formed by the rays bisecting two vertical angles. Prove.
5. The sum of two adjacent angles is 74°. Find the angle formed by their bisectors.
6. The angle formed by the bisectors of two adjacent angles is $37^{\circ} 18^{\prime}$. Find the sum of the adjacent angles.

ON THE NATURE OF A DEMONSTRATION.

78. A theorem consists of two distinct parts, hypothesis and conclusion.

In a geometrical theorem, the hypothesis specifies certain properties which the figures in question are assumed to possess. The conclusion asserts that certain other properties belong to the figures whenever the assumed properties are present.

The hypothesis and conclusion are often intermingled in a single statement, in which case they should be explicitly separated before making the proof.

For example, in the theorem of $\S 37$, The angles opposite the equal sides of an isosceles triangle are equal, the hypothesis is, "Two sides of a triangle are equal," and the conclusion is, "The angles opposite them are equal."
79. If the hypothesis consists of several parts, these should be tabulated and then checked off as the demonstration proceeds. If the theorem is properly stated, each part of the hypothesis will be used in the proof.

For instance, in the theorem of $\S 32$, the hypothesis is : $A B=A^{\prime} B^{\prime}$, $A C=A^{\prime} C^{\prime}$, and $\angle A=\angle A^{\prime}$; and the conclusion is : $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

It will be found on examining the proof that each part of the hypothesis is needed and used in the course of the demonstration.

If the conclusion conld be proved without using erery part of the hypothesis, then the parts not used should be omitted from the hypothesis in the statement of the theorem.
80. In the proof of a theorem no conclusion should be taken for granted simply from the appearaner of the figure. Each step in a proof should be based upon a tefinition, an axiom, or a theorem previously proved.

It will then follow that the theorem is as certainly true as are the simple, unproved propositions with which we start, and upon which our argment is based.

Historical Note. The Egyptians slowed no knowledge of a logical demonstration, nor did the Arabians, who studied geometry quite extensively. The Greeks developed the process of demonstration to a high state of perfection. They were fully aware, moreover, that certain propositions must be admitted without proof (see §60). Thus Aristotle (384-32? b.c.) says: "Every demonstration must start from undemonstrable principles. Otherwise the steps of a demonstration would be endless." Euclid divided nnproved propositions into two classes: axioms, or "common notions," which are true of all things, such as, "If things are equal to the same thing they are equal to each other"; and postulates, which apply only to geometry, such as, "Two points determine a line." The best usage in modern mathematics is to adopt the one word axiom for both of these, as in $\S 60$.

Much practice is needed in writing demonstrations in full detail. This should be done in the shortest possible sentences, usually giving a separate line to each statement, followed by the definition, axiom, or theorem on which it depends.

For this purpose the following symbols and abbreviations are convenient:
\angle, \mathscr{E}, angle, angles.
Δ, Δ, triangle, triangles.
\square, (s), $\left\{\begin{array}{l}\text { parallelogram, } \\ \text { parallelograms. }\end{array}\right.$
\square, s, rectangle, rectangles.
rt. \angle, rt. $\mathscr{E},\left\{\begin{array}{l}\text { right angle, }, \\ \text { right angles. }\end{array}\right.$
st. \angle, st. $\left\langle\mathrm{E},\left\{\begin{array}{l}\text { straight angle }, \\ \text { straight angles. }\end{array}\right.\right.$
rt. $\Delta, \mathrm{rt} . \Delta,\left\{\begin{array}{l}\text { right triangle, } \\ \text { right triangles. }\end{array}\right.$
\odot, © , circle, circles.
\frown, ${ }_{\mathrm{s}}$, arc, arcs.
$=$, is equal, or equivalent, to.
\sim, is similar to.
\cong, is congruent to.
$>$, is greater than.
$<$, is less than.
\leqq, is less than or equal to.
\geqq, is greater than or equal to.
II, parallel, or is parallel to.
\perp, $\{$ perpendicular, or
is perpendicular to.
Ils, parallels.
Is, perpendiculars.
\therefore, therefore or hence.
ax., axiom.
th., theorem.
def., definition.
cor., corollary.
alt., alternate.
ext., exterior.
int., interior.
hyp., by hypothesis.

INEQUALITIES OF PARTS OF TRIANGLES.

81. Definition. If one side of a triangle is produced, the angle thus formed is called an exterior angle of the triangle.

Thus, $\angle 1$ is an exterior angle of the triangle $A B C$.

82. Axiom VII. If a, b, c are line-segments (or angles) such that $a>b$ and $b \overline{>} c$, or such that $a>b$ and $b>c$, then $a>c$.

The proof of the following theorem is shown in full detail as it should be written by the pupil or given orally, except that the numbers of paragraphs should not be required.
83. Theorem. An exterior angle of a triangle is greater than either of the opposite interior angles.

Given the $\triangle A B C$ with the exterior angle $D B C$ formed by producing the side $A B$.

To prove that $\angle D B C>\angle C$ and also $\angle D B C>\angle A$.
Proof: Let E be the middle point of $B C$.
Find E by the construction for bisecting a line-segment (§ 51).
Draw $A E$ and prolong it, making $E F=A E$, and draw $B F$.
In the two $\triangle A{ }^{\prime} E$ and $F B E$, we have by construction

$$
C E=E B \text { and } A E=E F
$$

Also

$$
\angle C E A=\angle B E F .
$$

(Vertical angles are equal, § 74.)
$\therefore \triangle A C E \cong \triangle F^{\prime} B E$.
(Two triangles which have two sides and the included angle of the one equal respectively to two sides and the included angle of the other are congruent, §32.)

$$
\therefore \angle C=\angle F B E .
$$

(Being angles opposite equal sides in congruent triangles, § 29.)
But
$\angle D B C>\angle F B E$.
(If an angle is the sum of two angles it is greater than either of them, § 39.)

$$
\therefore \angle D B C>\angle C .
$$

(Since $\angle D B C>\angle F B E$ and $\angle F B E=\angle C$, Ax. VII, § 89.)
In order to prove $\angle D B C>\angle A$, prolong $C B$ to some point G.

Then

$$
\angle A B G=\angle D B C .
$$

(Vertical angles are equal, § 74.)
Now bisect $A B$, and in the same manner as before we may prove

$$
\begin{gathered}
\angle A B G>\angle A . \\
\therefore \angle D B C>\angle A .
\end{gathered}
$$

(Since $\angle D B C=\angle A B G$ and $\angle A B G>\angle A$, Ax. VII, § 82.)
For the second part of the proof let H be the middle point of $A B$. Draw $C H$ and prolong it to K, making $C H=H K$.

Let the student draw the figure for the second part of the proof and give it in full.

Hereafter more and more of the details of the proofs will be left for the student to fill in.

When reference is made to a paragraph in the text or when the reason for a step is called for, the complete statement of the definition, axiom, or theorem should be given by the student.
84. Theorem. If two sides of a triangle are unequal, the angles opposite these sides are unequal, the greater angle being opposite the greater side.

Given $\triangle A B C$ in which $A C>B C$.
To prove that $\angle A B C>\angle A$.
Proof: Lay off $C D=C B$ and draw $B D$.
Now give the reasons for the following steps:
(1) $\angle A B C>\angle D B C$.
(2) $\angle D B C=\angle C D B$.
(3) $\angle C D B>\angle A$.
(§ 37)
(土) $\therefore \angle A B C>\angle A$.

85. Theoren. If two angles of a triangle arc unequal, the sides opposite them are unequal, the greater side being opposite the greater angle.

Given $\triangle A B C$ in which $\angle B>\angle A$.
To prove that $b>a$.
Proof: One of the following three statements must be true:
(1) $b=a$,
(2) $b<a$,
(3) $b>a$.

But it cannot be true that $b=a$. for in that case $\quad \angle B=\angle 1$.
contrary to the hypothesis that $\angle B>\angle A$.
And it cannot be true that $b<a$, for in that case

$$
\begin{equation*}
\angle B<\angle A, \tag{今84}
\end{equation*}
$$

contrary to the hypothesis.
Hence it follows that $b>a$.
86. The above argument is called proof by exclusion. Its success depends upon being able to enumerate all the possible cases, and then to exclude all but one of them by showing that each in turn leads to some contradiction.
87.

EXERCISES.

1. The hypotenuse of a right triangle is greater than either leg.
2. Show that not more than two equal line-segments can be drawn from a point to a straight line.

Suggestion. Suppose a third drawn. Then apply $\S \S 37,83,84$.
3. Show by joining the vertex A of the triangle $A B C$ to any point of the side $B C$ that $\angle B+\angle C<2 \mathrm{rt}$. 延. Use § 83 .
4. If two angles of a triangle are equal, the sides opposite them are equal. Use §§ 84, 86 .
5. Either leg of an isosceles triangle is greater than half of the base.
6. Show that an equiangular triangle is equilateral, and conversely.

THEOREMS ON PARALLEL LINES.

88. A straight line which cuts two straight ${ }^{-}$lines is called a transversal. The various angles formed are named as follows:
$\angle 4$ and $\angle 5$ are alternate-interior angles;
 also $\angle 3$ and $\angle 6$.
$\angle 2$ and $\angle 7$ are alternate-exterior angles; also $\angle 1$ and $\angle 8$.
$\angle 1$ and $\angle 5$ are corresponding angles; also $\angle 3$ and $\angle 7$, $\angle 2$ and $\angle 6, \angle 4$ and $\angle 8$.
$\angle 3$ and $\angle 5$ are interior angles on the same side of the transversal; also $\angle 4$ and $\angle 6$.
89. Definition. Two complete lines which lie in the same plane and which do not meet are said to be parallel.

Two line-segments are parallel if they lie on parallel lines.
90. Theorem. If two lines cut by a transversal have equal alternate interior angles, the lines are parallel.

Given the lines l_{1} and l_{2} cut by t so that $\angle 1=\angle 2$.

To prove that $l_{1} \| l_{2}$.
Proof: Suppose the lines l_{1} and l_{2} were to meet on the right of the transversal. Then a triangle would be
 formed of which $\angle 1$ is an exterior angle and $\angle 2$ an opposite interior angle.

This gives an exterior angle of a triangle equal to an opposite interior angle, which is impossible. (Why?)

Repeat this argument, supposing l_{1} and l_{2} to meet on the left side of the transversal.

Hence l_{1} and l_{2} cannot meet and are parallel ($\$ 89$).
91. The type of proof used here is called an indirect proof. It consists in showing that something impossible or contradictory results if the theorem is supposed not true.
92. Theorem. If two lines cut by a transversal have equal corresponding angles, the lines are parallel.

Given the lines l_{1} and l_{2} cut by t so that $\angle 2=\angle 3$.

To prove that $l_{1} \| l_{2}$.
Proof: Quote the authority for each
 of the following steps:

$$
\begin{array}{r}
\angle 3=\angle 2 . \\
\angle B=\angle 1 . \\
\therefore \angle 1=\angle \because . \\
\therefore l_{1} \| l_{2} .
\end{array}
$$

93. Theorem. If two lines cut by a transversal have the sum of the interior angles on one side of the transversal equal to two right angles, the lines are parallel.

Given l_{1} and l_{2} cut by t so that $\angle 4+\angle 2=2 \mathrm{rt}$. S.
To prove that $l_{1} \| l_{2}$.
Proof: $\quad \angle 4$ is supplementary to $\angle 1$ and also to $\angle 2$.
(Why?)

$$
\begin{gathered}
\therefore \angle 1=\angle 2 \\
\therefore l_{1} \| l_{2}
\end{gathered}
$$

(Why ?)
(Why?)
94.

EXERCISES.

1. Show that if each of two lines is perpendicular to the same line, they are parallel to each other.
2. Let $A B C$ be any triangle. Bisect $B C$ at D. Draw $A D$ and prolong it to make $D E=A D$. Draw $C E$. Prove $C E \| A B$.
3. Use Ex. 2 to construct a line through a
 given point parallel to a given line.

Suggestion. Let $A B$ be a segment of the given line and let C be the given point. Draw $C A$ and $C B$ and proceed as in Ex. 2.
95. Exs. 2 and 3 above show that through a point P, not on a line l, at least one line l_{1} can be drawn parallel to l.

It seems reasonable to suppose that no other line l_{2} can be drawn through P parallel to l, although this cannot be proved from the preceding theorems. See $\S 60$.

Hence we assume the following :
96. Axiom VIII. Through a point not on a line only one straight line can be drawn parallel to that line.

Historical Note. This so-called axiom of parallels has attracted more attention than any other proposition in geometry. Until the year 1829 persistent attempts were made by the world's most eminent mathematicians to prove it by means of the other axioms of geometry. In that year, however, a Russian, Lobachersky, showed this to be impossible and hence it must forever remain an axiom uuless some other equivalent proposition is assumed.
97. Theorem. If two parallel lines are cut by a transversal, the alternate interior angles are equal.

Given $l_{1} \| l_{2}$ and cut by t.
To prove that $\angle 1=\angle 2$.
Proof: Suppose $\angle 2$ not equal to $\angle 1$.
Through P draw l_{3}, making $\angle B=\angle 1$.

$$
\therefore l_{3} \| l_{1} . \quad \text { (Why ?) }
$$

But by hypothesis $l_{2} \| l_{1}$ and thus we have through P two lines parallel to l_{1}, which is contrary to Ax. VIII.

Therefore, the supposition that $\angle 2$ is not equal to $\angle 1$ leads to a contradiction, and hence $\angle 1=\angle 2$.
98. Compare this theorem with that of $\S 90$. The hypothesis of either is seen to be the conclusion of the other.

When two theorems are thus related, each is said to be the converse of the other. Other pairs of converse theorems thus far are those in $\S 37$ and Ex. $4, \S 57$: ss 75 and 76 , and $\S \S 8 \pm$ and 85.

The converse of a theorem is never to be taken for granted without proof, since it does not follow that a statement is true because its converse is true.

Thus, it is true that if a triangle is equilateral, it is also isosceles, but the converse, if a triangle is isosceles, it is also equilateral, is not true.
99. Theorem. If two parallel lines are cut by a transversal, the sum of the interior angles on one side of the transversal is two right angles.

Suggestion. Make use of the preceding theorem and give the proof in full.

Of what theorem is this the converse?

100. EXERCISES.

1. State and prove the converse of the theorem in § 92.
2. Prove that if two parallel lines are cut by a transversal the alternate exterior angles are equal. Draw the figure.
3. State and prove the converse of the theorem in Ex. 2.
4. If a straight line is perpendicular to one of two parallel lines, it is perpendicular to the other also.
5. Two straight lines in the same plane parallel to a third line are parallel to each other. Suppose they meet and then use $\S 96$.

6. If $l_{1}\left\|l_{2}\right\| l_{3}$ and if $\angle 1=30^{\circ}$, find the other angles in the first figure.
7. If $l_{1} \| l_{2}$, how are the bisectors of $\angle 1$ and $\angle 3$ related? Of $\angle 3$ and $\angle 4$? Of $\angle 1$ and $\angle 2$? Use § 102 for the last case.
8. If $l_{1} \| l_{2}$, and $A O=O B$, show that $D O=O C$. State this theorem fully and prove it.
9. If $l_{1} \| l_{2}$ and $\angle 2=5 \angle 1$, find $\angle 4$ and $\angle 3$.

10. If two parallel lines are cut by a transversal, the sum of the exterior angles on one side of the transversal is two right angles.
11. State and prove the converse of the preceding theorem.

APPLICATIONS OF THEOREMS ON PARALLELS.

101. Problem. Through a given point to construct a line parallel to a given line.

Given the line l and the point P outside of it.
To construct a line l_{1} through $P \|$ to l.
Construction. Through P draw any line making a convenient angle, as $\angle 1$ with l.

Through P draw the line l_{1}, naking $\angle 2=\angle 1(§ 47)$. Then $l_{1} \| l$.

Proof: Use the theorem, § 92.
Hereafter all constructions should be
 described fully as above, followed by a proof that the construction gives the required figure.
102. Theorem. The sum of the angles of a triangle is equal to two right angles.

Given $\triangle A B C$ with $\angle 1, \angle 2, \angle 3$.
To prove that

$$
\angle 1+\angle 2+\angle 3=2 \operatorname{rt} \angle \Delta
$$

Proof: Prolong $A B$ to some point D.

Through B draw $B E \| A C$.
Then

$$
\angle 5+\angle 4+\angle 3=2 \mathrm{rt}
$$

(Why?)
But

$$
\angle 4=\angle 2 \text { and } \angle 5=\angle 1
$$

(Why?)
Hence, replacing $\angle 5$ and $\angle \pm$ by their equals, $\angle 1$ and $\angle 2$, we have $\angle 1+\angle 2+\angle 3=2$ rt.

Historical Nute. This is one of the famous theorems of geometry. It was known by Pythagoras (500 b.c.), but special cases were known much earlier. The figure used here is the one given by Aristotle and Euclid. As is apparent, the proof depends upon the theorem, §! 9 , and thus indirectly upon Ixiom VIII. The interdependence of these two propositions has been studied extensively during the last two centuries.
103. Theorem. An exterior angle of a triangle is equal to the sum of the two opposite interior angles.

The proof is left to the student. Compare this theorem with that of $\S 83$.
104. Definition. A theorem which follows very easily from another theorem is called a corollary of that theorem. E.g. the theorem in $\S 103$ is a corollary
 of that in § 102 .
105.

EXERCISES.

1. Find each angle of an equiangular triangle.
2. If one angle of an equiangular triangle is bisected, find all the angles in the two triangles thus formed.
3.' If in, a $\triangle A B C, A B=A C$ and $\angle A=\angle B+\angle C$, find each angle.
3. If in the figure $A B=A C$ and $\angle 4=120^{\circ}$, find $\angle 1, \angle 2, \angle 3$.
4. If one acute angle of a right triangle is 30°, what is the other acute angle? If one is $41^{\circ} 23^{\prime}$?
5. If in two right triangles an acute angle of one
 is equal to an acute angle of the other, what can be said of the remaining acute angles. What axiom is involved?
6. If in two right triangles the hypotenuse and an acute angle of one are equal respectively to the hypotenuse and an acute angle of the other, the triangles are congruent. Prove in full.
7. Can a triangle have two right angles? Two obtuse angles? Can the sum of two angles of a triangle be two right angles? What is the sum of the acute angles of a right triangle?
8. If two angles of a triangle are given how can the third be found? If the sum of two angles of one triangle is equal to the sum of two angles of another, how do the third angles compare?
9. Prove the theorem of $\S 102$, using each of the figures in the margin. The first of these figures was
 used by Pythagoras.
10. Definition. An angle viewed from the vertex has a right side and a left side.
11. Theorem. If two angles have their sides respectively parallel, right side to right side, and left side to left side, the angles are equal.
\quad Given $\angle 1$ and $\angle 2$ such that $a \| a^{\prime}$ and $b \| b^{\prime}$. side, the angles are equal.
Given $\angle 1$ and $\angle 2$ such that $a \| a^{\prime}$ and $\boldsymbol{b} \| b^{\prime}$.
To prove that $\angle 1=\angle \ddot{\text {. }}$.
Proof : Produce a and b^{\prime} till they meet, forming $\angle 3$. Complete the proof.

Why do a and b^{\prime} meet when produced?
Make a proof also by producing b and a^{\prime} till they meet.
108. Theorem. If tieo angles have their siles respectively perpenclicular, right side to right silte, and left side to left side, the angles are equal.

Given $\angle 1$ and $\angle 2$ such that $a \perp a^{\prime}$ and $b \perp b^{\prime}$.
To prove that $\angle 1=\angle 2$.
Proof: Produce a and a^{\prime} till they meet in 0 .

Through o draw a line parallel to b.
Now show that $\angle 2=\angle 3$ since each is the complement of $\angle t$. Complete the proof.

109.

EXERCISES.

If two angles have their sides respectively parallel, or perpendicular, right side to loft side,
 and left side to right sith, the angles are supplementary. In each figure $\angle 1=\angle 3$.
(Why?)
Historical. Note. The theorems of \$8 107, 108, 109 are not found in Euclid's Elements.

OTHER THEOREMS ON TRIANGLES.

110. Theorem. If in two right triangles the hypotenuse and one side of one are equal respectively to the hypotenuse and one side of the other, the triangles are congruent.

Given the right $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, having $A B=A^{\prime} B^{\prime}$ and $B C=B^{\prime} C^{\prime}$.

To prove that $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.
Proof: Place the triangles so that $B C$ and $B^{\prime} C^{\prime}$ coincide, and so that A and A^{\prime} are on opposite sides of $B C$.

Then $A C$ and $C A^{\prime}$ lie in a straight line (Why ?), and $\triangle A B A^{\prime}$ isosceles (Why?).

Hence, show that $\angle A=\angle A^{\prime}$ and complete the proof.
111. Corollary. If from a point in a perpendicular to a straight line equal oblique segments are drawn to the line, these cut off equal distances from the foot of the perpendicular, and make equal angles with the perpendicular and with the given line.

Give the proof in full, as of an independent theorem.
112. Theorem. If from a point in a perpendicular to a line oblique segments are drawn, cutting off equal distances from the foot of the perpendicular, these segments are equal, and make equal angles with the perpendicular and with the given line.

Give the proof in full, using $\triangle A B A^{\prime}$ of $\S 110$.
113. Theorem. The perpendicular is shorter than any oblique segment from a point to a line.

Suggestion. Show by $\S 102$ that the angle opposite the oblique segment in the triangle formed is greater than either of the other angles, and then make use of $\S \$ 5$.
114. The distance from a point to a line means the shortest distance, and hence is measured on the perpendicular.
115. Theorem. If from a point in a perpendicular to a line segments are drawn cutting off mequal distances from the foot of the perpendirular, the segments are unequal, that segment being the greater which cuts off the greater distance.

Given $A O \perp B C$ and $O C>O B$.

To prove that $A C>A B$.
Proof: Let $O B^{\prime}=O B$ and draw $A B^{\prime}$.

Then, $\angle O B^{\prime} A<\mathrm{rt}. \angle$, and $\therefore \angle A B^{\prime} C>\mathrm{rt} . \angle$.

Also $\angle O C A<r t . \angle$.
$\therefore A C>A B^{\prime}$.
$\therefore A C>A B$ since $A B^{\prime}=A B$. Give reasons for each step.
116. Theorem. If from a point in a perpendicular to a line unequal segments are draun, these cut off unequal distances from the foot of the perpendicular, the greater segment cutting off the greater distance.

Suggestion. Using the figure of $\$ 115$ and the hypothesis that $A C>A B$, show that two of the following statements are impossible:
(1) $O C=O B$; (3) $O C<O B$; (3) $O C>O B$. See §sti.
117. Theorem. If in two triangles two sides of the one are equal respectively to two sides of the other, but the included angle of the first is greater than the included angle of the second, then the third side of the first is greater than the third side of the second.

Given $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in which $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$ and $\angle B>\angle B^{\prime}$.

To prove that $A C>A^{\prime} C^{\prime}$.
Proof: Place $\triangle A^{\prime} B^{\prime} C^{\prime}$ on $\triangle A B C$ so that $A^{\prime} B^{\prime}$ coincides with its equal $A B$ and C^{\prime} is on the same side of $A B$ as C.

Let $B D$ bisect $\angle C^{\prime} B C$, meeting $A C$ in D. Draw $D C^{\prime}$.
Then
$\triangle B D C^{\prime} \cong \triangle B D C$.
(Why?)
$\therefore D C^{\prime}=D C$ and $A D+D C^{\prime}=A C . \quad$ (Why?)
But $A D+D C^{\prime}>A C^{\prime} . \quad(A x$. III, §61)
$\therefore \quad A C>A C^{\prime} . \quad$ (Ax. VII, § 82)
118. Theorem. If in two triangles two sides of the one are equal to two sides of the other but the third side of the first is greater than the third side of the second, then the included angle of the first is greater than the included angle of the second.

Suggestion. Using the figure of § 117 and the hypothesis that $A C>A^{\prime} C^{\prime}$, show that two of the three following statements are impossible:
(1) $\angle B=\angle B^{\prime}$; (2) $\angle B<\angle B^{\prime}$; (3) $\angle B>\angle B^{\prime}$. See § 86 .
119. Axiom IX. If a, b, c, d are line-segments (or angles) such that $a>b$ and $c=d$ or such that $a>b$ and $c>d$, then $a+c>b+d$. Also if $a>b$ and $c \leqq d$, then $a-c>b-d$, provided $a>c$ and $b>d$. (See §§ 10, 39.)
120. Theorem. The sum of the segments drawn from a point within a triangle to the extremities of one side is less than the sum of the other two sides.

Given the point O within the $\triangle A B C$.
To prove that $A O+0 B<A C+C B$.
Proof :
$A O+O E<A C+C E$.
(Why?)
And $O B<O E+E B$.

$$
\therefore A O+O E+O B<A C+C E+O E+E B . \text { (Ax. IX) }
$$

Subtracting $O E$ from both members,

$$
A O+O B<A \Gamma+r E+E B . \quad(A x . I X)
$$

That is, $A O+O B<A C+C B$.

121:

EXERCISES.

1. Show that any side of a triangle is greater than the difference between the other two sides.
2. Show that the sum of the distances from any point within a triangle to the vertices is greater than one-half the sum of the sides of the triangle.

3. Show that the segment joining the vertex of an isosceles triangle to any point in the base is less than either of the equal sides.
4. Show that any altitude of an equilateral triangle bisects the vertux angle from which it is diawn and also bisects the base.
5. State and prove the converse of the theorem in Ex. 4 .
6. Construct angles of $60^{\circ}, 120^{\circ}$, and 30°.
7. Construct angles of 45° and 185°.

Suggestion. Bisect a right angle and extend one side.
122. Problem. Given two sides of a triangle and an angle opposite one of them, to construct the triangle.

Solution. Let $\angle A$ and the segments a and b be the given parts.
On one side of $\angle A$ lay off $A B=b$, and let the other side be extended to some point K.

With B as a center and a radius equal to a, construct arcs of circles as shown in the figure.

The following cases are possible:
(1) If a equals the perpendicular distance from B to $A K$, the arc will meet $A K$ in but one point, and a right triangle is the solution.
(2) If $a<b$ and greater than the perpendicular, the arc cuts $A K$ in two points, and there are then two triangles containing the given parts, as shown by the dotted lines in the figure.
(3) If $a>b$, the arc will cut $A K$ only once on the right of A, and hence only one triangle will be found.

Repeat this construction, making a separate figure for each case.

Make the construction when $\angle A$ is a right angle. Are all three cases possible then? Make the construction when $\angle A$ is obtuse. What cases are possible then?

EXERCISES.

1. A carpenter bisects an angle A as follows: Lay off $A B=A C^{\prime}$. Place a steel square so that $B D=C D$ as shown in the figure.
 Draw the line $A D$. Is this method correct? Give proof. Would this nethod be correct if the square
 were not right-angled at D ?
2. In the triangle $A B C, A C=B C$. 'I be points D, E, F are so placed that $A D=B D$ and $A F=B E$. Compare $D E$ and $D F$. Prove your conclusion.
3. If in the figure $\angle 2-\angle 1=15^{\circ}$, and $\angle 4=120$, find each angle of the triangle.

4. If in $\triangle A B C, A C=B C$, and if $A C$ is extended to D so that $A C=C D$, prove that $D B$ is perpendicular to $A B$.
5. In $\triangle A B C, C A=C B, A D=B E$. Prove $\triangle A D B \cong \triangle A B E$.
6. In the triangle $K L N, N M$ is perpendicular to $K L$, and $K M=M N=M L$. Prove that $K L N$ is an isosceles right triangle.
7. If in the isosceles $\triangle A B C$ a point D lies in the base, and $\angle 1=\angle 2$, determine whether there is any position for D such that $D E=D F$.
8. If the bisectors $A D$ and $B E$ of the base angles of an isosceles triangle $A B C$ meet in O, what pairs of equal angles are formed? What pairs of equal segments? Of congruent triangles?
9. If the middle points of the silles of an equilateral triangle are connected as shown in the fig. ure, compare the resulting four triaugles.

10. Triangle $A B C$ is equilateral. $A D=B E=C F$. Compare the triangles $D B E, E C F, F A D$.

11. Two railway tracks cross as indicated in the figure. What angles are equal and what pairs of angles are supplementary? State a theorem involved in each case.
12. In a $\triangle A B C$ does the bisector of $\angle A$ also bisect the side $B C$ (1) if $A C=B C$ but $A C<A B$, (2) if $A C=A B$?

13. If in the triangle $A B C, A B=A C$ and if E is any point on $A C$, find D on $A B$ so that

$$
\triangle E C B \cong \triangle C D B
$$

14. If in the figure $A B=A C$, find $\angle 1$ if $\angle A=60^{\circ}$; if $\angle A=40^{\circ}$. Show that whatever the value of $\angle A, \angle 1=\frac{1}{2} \angle A+\mathrm{rt} . \angle$.
15. If in the isosceles triangle $A B C$ the middle point of $A B$ is D and $A F=B E$, find the relation between $\angle 1$ and $\angle 2$.
16. In the figure $A O=O C$ and
 $O D=O B$. How are the segments $A C$ and $D B$ related? How are $A D$ and

17. To cut two converging timbers by a line $A B$ which shall make equal angles with
 them, a carpenter proceeds as follows: Place two squares against the timbers, as shown in the figure, so that $A O=B O$. Show that $A B$ is the required line.

DETERMINATION OF LOCI.

124. Theorem. Every point on the bisector of an angle is equidistant from the sides of the angle.

Given P, any point on the bisector of the angle A, and $P C$ and $P B$ perpendicular to the sides.

To prove that $P C=P B$.
Proof : By the hypothesis

$$
\angle 1=\angle 2
$$

Show that $\angle 3=\angle 4$ and complete the proof.
125. Theorem. If a point is equally distant from the sides of an angle, it lies on the bisector of the angle.

Given an angle A, any point P and the perpendiculars $P B$ and $P C$ equal.

To prove that $P A$ bisects the angle A.
Proof: Give the argument in full to show that $\triangle A B P \cong \triangle A P C$ and thus
 show that $\angle 1=\angle Q$.

Hence $A P$ is the bisector of the angle A.
126. The two preceding theorems enable us to assert the following :
(1) Eupry point in the bisector of an angle is equidistant from its sides.
(2) Furry point equidistant from the sides of an anyle lies in its bisector.

For these reasons the bisector of an angle is called the locus of all points equidistant from its sides.

The word locus means plare or position. It gives the location of all points having a given property.
127. All points in a plane which satisfy some specified condition, as in the case preceding, will in general be restricted to a certain geometric figure.

This figure is called the locus of the points satisfying the required condition, provided:
(1) Every point in the figure possesses the required property.
(2) Every point in the plane which possesses the required property lies in the figure.
128. Theorem. The locus of all points equidistant from the extremities of a given line-segment is the perpendicular bisector of the segment.

Given the perpendicular bisector l meeting the segment $A B$ at D.

To prove that (a) every point in l is equidistant from A and B; (b) every point which is equidistant from \boldsymbol{A} and \boldsymbol{B} lies in l.

Proof: (a) Let P be any point in l. Draw $P A$ and $P B$.

Then

$$
P A=P B
$$

(b) Let P be any point in the plane such that $P A=P B$. Bisect $\angle A P B$ with the line $P D$.
Now show that $\triangle A D P \cong \triangle B P D$.
And hence that $A D=B D$ and $\angle A D P=\angle B D P$.
Hence $P D$ is the perpendicular bisector of $A B$, and since there is only one such, this is the line $l(\S 67)$.

Thus the perpendicular bisector of the segment fulfills the two requirements for the locus in question.

Steps (a) and (b) together show that a point not on the line l is unequally distant from A and B.
129. Problem. To find the locus of all points at a given distance from a given straight line.

Solution. Given the line l and the segment α.
Construct a perpendicular to l at some point A and lay off $A B=a$.

Through B draw $l_{1} \| l$.
Then l_{1} is a part of the locus required.
Proof: (1) To show that any point P in l_{1} is at the distance a from l.

Draw PA and also let fall PK \perp l.

Now $\triangle A B P \cong \triangle A K P$ and $P K=A B=a$. (Why?)
(2) To show that any point P in the plane above l whose distance from l is a lies in l_{1}.

Draw a \perp from P to l, meeting l and l_{1} in K and P^{\prime} respectively. Then by (1) $\kappa P^{\prime}=a . \quad$ But $\kappa P=a$. Hence P and P^{\prime} coincide and P lies on l_{1}.
$\therefore l_{1}$ is a part of the locus sought.
Let the student find another line which is also a part of the locus.
Note. In (1) and (2) above, great care is needed in keeping the hypothesis clearly in mind.
130. EXERCISES.

1. Find the locus of all points in the plane equally distant from two parallel lines.
2. Find the complete locus of all points in the plane equally distant from two intersecting lines.
3. Find the locus of all points in the plane equally distant from a fixed point.
4. Find the locus of all points in the plane equally distant from two fixed points.
5. Theorem. The bisectors of the three angles of a triangle meet in a point.

Given $A D, B E$, and $C F$ bisecting $\angle A, \angle B$, $\angle C$ respectively of the triangle $A B C$.

To prove that $A D, B E$, and $C F$ meet in a common point.

Proof: Let $A D$ and $B E$ meet in some point, as o.

Then O is equidistant from $A B$ and
 AC. Why?

Also O is equidistant from $A B$ and $B C$. (Why ?)
$\therefore O$ is equidistant from $A C$ and $B C$. (Why?)
Then o lies on the bisector of $\angle C$. (Why?)
That is, CF passes through the point o, and thus the three bisectors meet in a common point.
132. Theorem. The three perpendicular bisectors of the sides of a triangle meet in a point.

Given $F H, D G$, and $E K$ perpendicular bisectors of the sides $A B, B C$, and $C A$ of $\triangle A B C$.

To prove that $F H, D G$, and $E K$ meet in a point.

Proof: The proof is exactly similar to that of § 131.
133. EXERCISES.

1. In § 131 how do we know that $A D$ and $B E$ meet?

Sugqestion. Show that $A D$ and $B E$ cannot be parallel.
2. In § 132 how do we know that $F H$ and $G D$ meet?
3. Do the bisectors of the angles always meet inside the triangle?
4. Do the perpendicular bisectors of the sides always meet inside the triangle? Draw figures to illustrate the various cases.

THEOREMS ON QUADRILATERALS.

134. Definitions. If no three of the points A, B, C, D lie in the same straight line, the figure formed by the four segments $A B, B C$, $C D, D A$, is called a quadrilateral.

The segments are the sides of the quadrilateral and the points are its vertices.

Two sides are adjacent if they meet in a vertex, as $A B$ and $B C$. Otherwise they are opposite, as $A B$ and $C D$. Two vertices are adjacent if they lie on the same side, as A and B. Otherwise they are opposite, as A and C.

A diagonal of a quadrilateral is a segment joining two opposite vertices, as $A C$ and $B D$.

Quadrilaterals which have a reëntrant angle, such as $\angle B C D$, and those in which
 two sides intersect, such as $A B$ and $C D$, are not considered here.

Rhomboid

Rhombus

Rectangle

Square
135. I parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

A rhomboid is a parallelogram whose angles are oblique. A rhombus is an equilaterol thomboid.

A rectangle is a parallelogram whose angles are right angles. A square is an equilateral rectingle.

The side on which a parallelogram is supposed to stand is called its lower base, and the side opposite is its upper base.
136. A trapezoid is a quadrilateral having only one pair of opposite sides parallel.

An isosceles trapezoid is one in which the two non-parallel sides are equal.

In a trapezoid the two parallel sides
 are the upper and lower bases.
137. The altitude of a parallelogram or a trapezoid is the perpendicular distance between its bases, and its diameter is the segment joining the middle points of the other sides.

138.

 EXERCISES.1. Name each of the following quadrilaterals on page 4: IHPN, IHGO, AEDB, COED, JMPG, RSED, KLWV,JIBC. To determine whether opposite sides of these figures are parallel, use the protractor for measuring the necessary angles.
2. Is every rectangle a parallelogram? Is the converse true?
3. Is every rectangle a square? Is the converse true?
4. Theorem. Opposite sides of a parallelogram are equal.

Given $A B C D$, a parallelogram; that is, $A B \| C D$ and $A D \| B C$.
To prove that $A B=C D$ and $B C=A D$.
Proof: Draw the diagonal $A C$.
Prove $\triangle A B C \cong \triangle A C D$ and compare corresponding sides.
What determines which are corresponding sides?
140.

EXERCISES.

1. Show that a diagonal of a parallelogram divides it into two congruent triangles.
2. Give the proof in § 139 , using the diagonal $B D$.
3. Theorem. The diagonals of a parallelogram bisect each other.

Given $\square A B C D$ with its diagonals meeting at the point O.
To prove that $O C=O A$ and $O B=O D$.
Proof: In the triangles $A O B$ and $C O D$, determine whether sufficient parts are equal to make them congruent, and if so compare corresponding parts. Give all the details of the proof.

Can the proof be given by using the $A A O D$ and $B O C^{\circ}$? If so, give it.
142. Theorem. If a quadrilateral has both pairs of opposite sides equal, the figure is a parallelogram.

Given a quadrilateral $A B C D$ in which $A B=C D$ and $A D=B C$.
To prove that $A B \| C D$ and $A D \| B C$.
Proof: Draw the diagonal $A C$.
In the \& $A B C$ and $A D C$ determine whether any test for congruence applies, and if so compare corresponding angles.
143. EXERCISES.

1. By use of the last theorem the question of Ex. 1, 尽 1:n. can be answered by measuring sides instead of angles. Verify the results by this process.
2. Which two of the theorms $\leqslant \mathbb{S} 1: 30,141,14$? are converse? State in detail the hypothesis and conclusion of each.
3. Theorem. If a quadrilateral has one pair of opposite sides equal and parallel, the figure is a parallelogram.

Given. (State all the items given in the hypothesis.)
To prove. (State what needs to be proved in order to show that $A B C D$ is a parallelogram.)

Proof: From the data given prove that

$$
\triangle A B C \cong \triangle B D C
$$

Use corresponding angles of these congruent triangles to show that the other two opposite sides are parallel.

Hence show that the figure is a parallelogram.
Write out this demonstration in full.
Could the theorem be proved equally well by drawing the other diagonal? If so, draw it and give the proof.
145. EXERCISES.

1. Prove that if the diagonals of a quadrilateral bisect each other it is a parallelogram. What is the converse of this proposition?
2. Show that if two intersecting line-segments bisect each other, the lines joining their extremities are parallel.
3. The parallel lines l_{1} and l_{2} are cut by a transversal $A B$. $A C$ and $A D$ bisect $\angle 2$ and $\angle 1$ respectively. Prove that $\triangle C B A$ and $D B A$ are isosceles. Compare the segments $C B$ and $B D$.

4. If in an isosceles right triangle $A B C$ the bisectors' of the acute angles meet at O, find how many degrees in the $\angle 1$ thus formed.

5. Theorem. If the two diagonals of a parallelogram are equal, the figure is a rectangle.

Given $\square A B C D$ with $A C=B D$.
To prove that $\angle 1=\angle 2=\angle 3=\angle t=\mathrm{rt} . \angle$.
Proof: Show that $\triangle A B D \cong \triangle A B C$.

$$
\begin{aligned}
\therefore \angle 1=\angle 3 . & \text { (Why ?) } \\
\angle 1+\angle 3=2 \text { rt. } \angle \mathrm{S} & \text { (Why?) } \\
\therefore \angle 1=\angle 3=\text { rt. } \angle . & \text { (Why?) }
\end{aligned}
$$

But $\quad \begin{aligned} & \angle 1+\angle 3=2 \mathrm{rt} . \angle \mathrm{s} . \\ & \therefore \angle 1=\angle 3=\mathrm{rt} . \angle .\end{aligned}$
In like manner prove that $\angle ?=\angle 4=\mathrm{rt} . \angle$.
Hence the figure is a rectangle ($\$ 185$).
147.

EXERCISES.

1. State and prove the converse of the theorem, $\S 146$.
2. Show that a diameter of a parallelogram passes through the intersection of its diagonals. See § 137 .

Suggestion. Show that it bisects each diagonal.
3. Prove that the diagonals of a square are perpendicular to each other.
4. Prove that the diagonals of a rhombus are perpendicular to each other.
5. Does the same proof apply to Exs. 3 and 4 ?
6. Are the diagonals of a square equal? Is this true of a rhombus? Prove each inswer correct.
7. Do the diagonals of a syuare bisect each other? Is this true of a rhombus? Of a trapezoil?
8. Show that if two aljucent augles of a parallelogram are equal, the figure is a rectangle.
148. Theorem. Two parallelograms having an angle and the two adjacent sides of one equal respectively to an angle and the two adjacent sides of the other are congruent.

Given $]^{\square} A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ such that $A B=A^{\prime} B^{\prime}, A D=A^{\prime} D^{\prime}$ and $\angle A=A^{\prime}$.

To prove that $\square A B C D \cong \square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
Proof: Apply $\square A B C D$ to $\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ so as to make $\angle A$ coincide with $\angle A^{\prime}, A B$ falling on $A^{\prime} B^{\prime}$, and $A D$ on $A^{\prime} D^{\prime}$.

Then $B C$ takes the direction $B^{\prime} C^{\prime}$, since $\angle B=\angle B^{\prime}$, being supplements of the equal angles A and A^{\prime}. (Why?)
C falls on C^{\prime}, since $B C=B^{\prime} C^{\prime}$, being segments equal to the equal segments $A D$ and $A^{\prime} D^{\prime}$. (Why?)

Hence $C D$ coincides with $C^{\prime} D^{\prime}$. (Why?)
Therefore $\square A B C D \cong \square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, since they coincide throughout.
149. EXERCISES.

1. Are two parallelograms congruent if they have a side and two adjacent angles of the one equal respectively to a side and two adjacent angles of the other? Draw figures to illustrate your answer.
2. Are two parallelograms congruent if they bave four sides of one equal to four sides of the other? Show why, and draw figures to illustrate.
3. Compare the theorem of $\S 148$ and Exs. 1 and 2 preceding with the tests for congruence of triangles.
4. Prove that the opposite angles of a parallelogram are equal.
5. State and prove the converse of Ex. 4.

OTHER THEOREMS APPLYING PARALLELS

150. Theorem. If a line bisects one side of a triangle and is parallel to the base, then it bisects the other side and the included segment is equal to one half the base.

Given a line $l \| A B$ in $\triangle A B C$ such that $A D=D C$.

To prove that $B E=E C$ and
 $D E=\frac{1}{2} A B$.

Proof: Draw $E F$ through E parallel to $C A$.
Now show that $A F E D$ is a parallelogram,
and that
from which
and $\quad A B=A F+F B=\geq D E$,
or

$$
\triangle D E C \cong \triangle F B E
$$

$$
C E=E B, D E=F B, D E=A F
$$

$$
A B=A F+F B=2 D E,
$$

$$
D E=\frac{1}{2} A B
$$

State the reasons for each step.
151. Theorem. A segment connecting the middle points of two sides of a triangle is parallel to the third side and equal to one half of it.

Given $\triangle A B C$ and the segment $D E$ such that $A D=D C$ and $C E=E B$. See figure in $\$ 150$.

To prove that $D E \| A B$ and $D E=\frac{1}{2} A B$.
Proof: Since each of the sides $A C^{(}$and $B C$ has but one middle point ($\$ 65$), it follows that there is but one segment $D E$ bisecting both these siles. But by $\$ 150$ a certain segment pibullel to the base fulfills this condition.

Hence, $D E$ is parallel to the base $A B$.
'Then, $D E=\frac{1}{2} A B$ as in $\$ 150$.
152. Theorem. If a segment is parallel to the bases of a trapezoid and bisects one of the non-parallel sides, then it bisects the other also and is equal to one half the sum of the bases.

Given the trapezoid $A B C D$ in which $A E=E D$ and $E F \| A B$.
To prove that $B F=F C$ and $E F=\frac{1}{2}(A B+D C)$.
Proof: Draw the diagonal $A C$ meeting $E F$ in o.
In $\triangle A C D, A O=O C$ and $E O=\frac{1}{2} D C$.
In $\triangle A B C, B F=F C$ and $O F=\frac{1}{2} A B$.
(Why?)
Adding, $E O+O F=E F=\frac{1}{2}(A B+D C)$.
Prove this theorem also by drawing the diagonal $B D$.
State a similar theorem for a parallelogram and make a proof for that case which is simpler than the above.
153. Theorem. If a segment connects the middle points of the two non-parallel sides of a trapezoid, it is parallel to the bases and equal to one half their sum.

Proof: The argument is similar to that in § 151. Give it in full.
154.

EXERCISES.

1. Does a theorem similar to that of $\S 153$ hold for a parallelogram? If so, state it and give a simpler proof in this case.
2. If in the figure $D E, F G, H I$, etc., are parallel to $A C$ and if $F E$, $H(\bar{x}, J I$, etc., are parallel to $B C$, find the sum of $B D, D E, E F, F G, G H$, etc. How, if at all, does the length of $A B$ enter into the solntion?

Suggestion. Produce $G F, I H, K J$, to meet $B C$, forming [s. Then show that $B D+E F+G H$, etc.,$=B C$, and similarly $E D+G F+I H$, etc. $=A C$.

155. Theorem. If a series of parallel lines intercept equal segments on one transversal, they intercept equal segments on every transversal.

Given the parallel lines $l_{1}, l_{3}, l_{3}, l_{4}$, cutting the transversal t_{1} so that $A B=B C=C D$.

To prove that on the transversal $t_{2} E F=F G=G H$.
Proof: The figure $A C G E$ is a parallelogram or a trapezoid according as $t_{1} l t_{2}$ or not.

In either case $B F$, which bisects $A C$, also bisects $E G$ (§ 152).

$$
\therefore E F=F G .
$$

Similarly, in the figure $D H F B, F G=G H$.

$$
\therefore E F=F G=G H
$$

156. Theorem. The three altitudes of a triangle meet in a point.

Outline of Proof: Through each vertex of the given triaugle $A B C$ draw a line parallel to the opposite side, forming a triangle $A^{\prime} B^{\prime} C^{\prime}$.

Show that $A C A^{\prime} B$, and $A B^{\prime} C B$ are parallelograms, and hence that $B^{\prime} C=A B=C A^{\prime}$. That is, C is the middle point of $A^{\prime} B^{\prime}$.

In the same manner show that A and B are the middle points of $B^{\prime} C^{\prime}$ and $A^{\prime} C^{\prime}$ respectively. Also show that the altitudes of $\triangle A B C$ are the perpendicular bisectors of the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$, and therefore' meet in a point (§132).
157. Definition. A segment connecting a vertex of a triangle with the middle point of the opposite side is called a median of the triangle.
158. Theorem. The three medians of a triangle meet in a point which is two thirds the distance from each vertex to the middle point of its opposite side.

Given $\triangle A B C$ with medians $B D$ and $A E$ meeting in O.
To prove that the median from C also passes through O, and that $A O=\frac{2}{3} A E, B O=\frac{2}{3} B D$, and $C O=\frac{2}{3} C H$.

Outline of Proof: Taking F and G, the middle points of $O B$ and $O A$ respectively, use $\S \S 151$ and 144 to show that the figure $G F E D$ is a parallelogram, and hence that

$$
D O=O F=F B \text { and } E O=O G=G A .
$$

That is, O trisects $A E$ and $B D$.
In the same way we find that $A E$ and $C H$ meet in a point O^{\prime} which trisects each of them.

Hence O and o^{\prime} are the same point. Therefore the three medians meet in a point which trisects each of them.

1. If one angle of a parallelogram is 120°, how many degrees in each of the other angles?
2. If the angles adjacent to one base of a trapezoid are equal, then those adjacent to the other base are equal.
3. If the angles adjacent to either base of a trapezoid are equal, then the non-parallel sides are equal and the trapezoid is isosceles.
4. In an isosceles trapezoid the angles adjacent to either base are equal.
5. Divide a segment $A B$ into three equal parts.

Suggestion. From A draw a segment $A C$, and on it lay off three equal segments, $A D, D E$,
 EF (§ 33).

Draw $F B$ and construct $E G$ and $D H$ each parallel to $F B$. Prove $A H=H G=G B$.
6. To cut braces for a roof, as shown in the figure, a carpenter needs to know the angle $D B C^{\prime}$ when the angle $D A B$ is given, it being given that $A B=A D$. Show how to find this angle. (See § 123, Ex. 14.)

7. If each of the perpendicular bisectors of the sides of a triangle passes through the opposite vertex, what kind of a triangle is it? If it is given that two of the perpendicular bisectors of sides pass through the opposite vertices, what kind of a triangle is it? If only one?
8. Find the locus of the middle points of the segments joining a vertex of a triangle to all points on the opposite side.
9. Given a line l and a point P not in the line. Find the locus of the middle points of all segments drawn from P to l.
10. The length of the sides of a triangle are $12,14,16$. Four new triangles are formed by connecting middle points of the sides of this triangle. What is the sum of the sides of these four triangles?
11. Draw any segment PA meeting a line l in A. Lay off $A B$ on l. With P and B as centers and with $A B$ and $A P$ as radii respectively, strike ares meeting in C. Draw $P C$, and prove it parullel to l.

12. If the side of a triangle is bisected by the perpendicular upon it from the opposite vertex, the triangle is isposceles.
13. State and prove the converse of this theorem.
14. If in a right triangle the hypotenuse is twice as long as one side, then one acute angle is 60° and the other 30°.

Suggestion. Let D be the middle point of $A B$. Use Ex. 12 and the hypothesis to show that $\triangle A C D$ is equilateral.

Prove the converse by drawing $C D$ so as to make $\angle B C D=\angle B$.
15. A stairway leading from a floor to one 12 feet above it is constructed with steps 8 inches high and 10 inches wide. What is the length of the carpet required to cover the stairway, allowing 10 inches for the last step, which is on a level with the upper floor.
16. A stairway inclined 45° to the horizontal leads to a floor 15 feet above the first. What is the length of the carpet required to cover it if each step is 10 inches high? If each is 12 inches? If each is 9 inches?

Can this problem be solved without knowing the height of the steps? Is it necessary to know that the steps are of the same height?

17. If the vertex angle of an isosceles triangle is 60°, show that it is equilateral.
18. By successively constructing angles of 60° divide the perigon about a point O into six equal angles. (This is possible because $360 \div 6=60$.) With O as a center construct a circle cutting the sides of these angles in points A, B, C, D, E, F. Draw the segments $A B$, $B C$, etc. Show by Ex. 17 that each of the six triangles thus formed is equilateral. Show also that $A B C D E F$ is equiangular and equilateral, that is, $A B=B C$, etc., and $\angle A B C=\angle B C D$, etc.

POLYGONS.

160. Definitions. A polygon is a figure formed by a series of segments, $A B, B C, C D$, etc., leading back to the starting point A.

The segments are the sides of the polygon and the points A, B, C, D, etc., are its vertices. The angles A, B, C, D, etc., are the angles of the polygon.

Convex.

Concave.

Equiangular.

Equilateral.

Regular.

A polygon is convex if no side when produced enters it. Otherwise it is concave.

Only convex polygons are here considered.
A polygon is equiangular if all its angles are equal and equilateral if all its sides are equal.

A polygon is regular if it is both equiangular and equilateral.

A segment connecting two non-adjacent vertices is a diagonal of the polygon.

The perimeter of a polygon is the sum of its sides.
161. Theorem. The sum of the angles of a polygon having n sides is $(2 n-4)$ right angles.

Proof: Connect one vertex with each of the other non-adjacent vertices, thus forming a set of triangles. Evidently the sum of the angles of these triangles equals the sum of the angles of the polygon.

Now show that if the polygon has n sides there are ($n-2$) triangles. The sum of the angles of one triangle is 2 rt . ©. Hence, the sum of the angles of all the triangles, that is, the sum of the angles of the polygon, is

$$
2(n-2)=(2 n-4) \text { rt. } 6 .
$$

162. Theorem. The sum of the exterior angles of a polygon, formed by producing the sides in succession, is four right angles.

Outline of Proof: The sum of both exterior and interior angles is $2 n \mathrm{rt}$. L. (Why?)

The sum of the interior angles is $(2 \dot{n}-4) \mathrm{rt} . \measuredangle$. (Why?)
Hence, the sum of the exterior angles is 4 rt . ©. (Why?)
Write out the proof in detail, using the figure.
163. EXERCISES.

1. What is the sum of the angles of a polygon of 3 sides? of 4 sides? of 5 sides? of 6 sides? of 10 sides? of 18 sides?
2. Find each angle of a regular polygon of 3 sides, 4 sides, 5 sides, 6 sides, 8 sides, 14 sides, n sides.
3. Construct a regular triangle, thus obtaining an angle of 60°.
4. Construct a regular quadrilateral. What is its common name?
5. Prove that a regular hexagon $A B C D E F$ may be constructed as follows: Let A be any point on a circle with center O. With A as center and $O A$ as radius describe arcs meeting the circle in B and in $-F$. With B as center and the same radius describe an arc meeting the circle in C, and so for points to D mand E. See $\S 159$, Ex. 18.

SYMMETRY.

164. Two points A and A^{\prime} are said to be symmetric points with respect to a line l if l is the perpendicular bisector of the segment $A A^{\prime}$.

A figure is symmetric with respect to an axis l if for every point P in the figure
 there is also a point P^{\prime} in the figure such that P and P^{\prime} are symmetric points with respect to l. This is called axial symmetry. Two separate figures may have an axis of symmetry between them.

165. Theorem. Two figures which are symmetric with respect to a line are congruent.

Given two figures F and F^{\prime} symmetric with respect to a line l.

To Prove that $F \cong F^{\prime}$.
Proof: This is evident, since, by folding figure F over on the line l
 as an axis, every point in F will fall upon a corresponding point in F^{\prime} (Why?).
166. Corollary. If points A and A^{\prime} and also B and B^{\prime} are symmetric with respect to a line l, then the segments $A B$ and $A^{\prime} B^{\prime}$ are symmetric with respect to l.

167.

EXERCISES

1. How many axes of symmetry has a square? A rectangle? A rhombus? An isosceles trapezoid?
2. If a diagonal of a rectangle is an axis of symmetry, what kind of a rectangle is it?
3. If a triangle has an axis of symmetry, what kind of a triangle is it? Assume that the axis passes through one vertex.
4. If a triangle has two axes of symmetry, what kind of a triangle is it?

5. How many axes of symmetry has an equilateral triangle?
6. How many axes of symmetry has a regular pentagon (five-sided figure)?
7. How many axes of symmetry has a regular hexagon?

8. Show that one figure of $\S 40$ has an axis of symmetry. State this as a theorem.
9. Problem. Given a polygon P and a line l not meeting it, to construct a polygon P^{\prime} such that P and P^{\prime} shall be symmetric with respect to l.

Solution. Let A, B, C, D, E be the vertices of the given polygon P, and l the given line.

Construct $A^{\prime}, B^{\prime}, C^{\prime}, \nu^{\prime}, E^{\prime}$ symmetric respectively to A, B, C, D, E with respect to the line l.

Then the polygon P^{\prime} formed by joining the points A^{\prime}, $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, A^{\prime}$ in succession is symmetric to P.

Proof: Give the proof in full.
Figures having an axis of symmetry are very common in all kinds of decoration and architectural construction.
169. Two points A and A^{\prime} are symmetric with respect to a point O if the segment $A A^{\prime}$ is bisected by O.

A figure is symmetric with respect to a point O if for every point P of the figure
 there is a point P^{\prime} also in the figure such that P and P^{\prime} are symmetric with respect to 0 .

Such a figure is said to have central symmetry with respect to the point. The point is called the center of symmetry. A circle has central symmetry.

Two separate figures may have a center of symmetry between them.
170. EXERCISES.

1. Prove that if A and A^{\prime} and also B and B^{\prime} are symmetric with respect to a point O, then the segments $A B$ and $A^{\prime} B^{\prime}$ are symmetric with respect to O.
2. Prove that if the triangles $I B C$ and $f^{\prime} B^{\prime} C^{\prime}$ are symmetric with respect to a point O, then they are congruent.
3. Problem. Given a polygon P and a point O outside of it, to construct a polygon P^{\prime} symmetric to P with respect to 0 .

Soldtion. Construct points symmetric to the vertices of P. Connect these points, forming the polygon P^{\prime}, and prove this is the polygon sought.
172. Theorem. If a figure has two axes of symmetry at right angles to each other, their point of intersection is a center of symmetry of the figure.

Outline of Proof: It is to be shown that for every point P in the figure, a point $P^{\prime \prime}$ also in the figure can be found such that $P O=P^{\prime \prime} O$ and $P O P^{\prime \prime}$ is a straight line. Draw $P P^{\prime} \perp l, P^{\prime} P^{\prime \prime}$ $\perp l^{\prime}, P^{\prime \prime} P^{\prime \prime \prime} \perp l$ and connect the points $P^{\prime \prime \prime}$ and P.

Now use the hypothesis that $l \perp l^{\prime}$, and each an axis of symmetry, to show that $P P^{\prime} P^{\prime \prime} P^{\prime \prime \prime}$ is a rectangle of which $D D^{\prime \prime}$ and $D^{\prime} D^{\prime \prime \prime}$ are the diameters. Hence o, the inter-
 section of $D D^{\prime \prime}$ and $D^{\prime} D^{\prime \prime \prime}$, bisects the diagonal $P P^{\prime \prime}$, making $P^{\prime \prime}$ symmetric to P with respect to $O, \S 147$, Ex. 2. Give the proof in full.

173.

EXERCISES.

1. Has a square a center of symmetry? has a rectangle?
2. If a parallelogram has a center of symmetry, does it follow that it is a rectangle?
3. Has a trapezoid a center of symmetry? has an isosceles trapezoid?
4. If two non-parallel straight lines are symmetric with respect to a line l, show that they meet this line in the same point and make equal angles with it. (Any point on the axis of symmetry is regarded as being symmetric to itself with respect to the axis.)
5. If segments $A B$ and $A^{\prime} B^{\prime}$ are symmetric with respect to a point O, they are equal and parallel.
6. Has a regular pentagon a center of symmetry? See figure of Ex. 6, § 167.
7. Has a regnlar hexagon a center of symmetry? Ex. 7, § 167.
8. Has an equilateral triangle a center of symmetry?

METHODS OF ATTACK.

174. No general rule can be given for proving theorems or for solving problems.

In the case of theorems the following suggestions may be helpful.
(1) Distinguish carefully the items of the hypothesis anul of the conclusion.

It is best to tabulate these as suggested in § 79.
(2) Construct with care the figure described in the hypothesis.

The figure should be as general as the terms of the hypothesis permit. Thus if a triangle is called for hut no special triangle is mentioned, then a scalene triangle should be drawn. Otherwise some particular form or appearance of the figure may lead to unwarranted conclusions.
(3) Study the hypothesis with care and determine whether any ruxiliary lines may assist in deduring the properties required by the conclusion.

Study the theorems previously proved in this respect. A careful review of these proofs will lead to some iusight as to how thes nere evolved.
175. Direct Proof. The majority of theorems are proved by passing directly from the hypothesis to the conclusion by a series of logical steps. 'This is callell direct proof.

It is often helpful in disrovering a direct proof to trace it backward from the conclusion.

Thus, we may observe that the conelusion (' follows if statement B is true, and that B follows if.λ is true. If then we ean shom that A is true, it follows that IB and C 'are true and the theorem is proved.

Ilaving thus discovered a proof, we may then start from the beginning and follow it directly through.

As an example consider the following theorem:

The segments connecting the middle points of the opposite sides of any quadrilateral bisect each other.

Given segments $A B$ and $C D$ connecting the middle points of the quadrilateral PQRS.

To prove that $A B$ and $C D$ bisect each other.
Proof: Draw the diagonals $P R$ and $S Q$ and the segments $A D, D B$, $B C, C A$.

Now $A B$ and $C D$ bisect each other if $A D B C$ is a \square, and $A D B C$ is a \square if $A D \| C B$ and $A C \| D B$.

But $A D \| C B$ since each is II $S Q$. See $\S 151$.
And $A C \| D B$ since each is $\| P R$.
Hence $A D B C$ is a \square and $A B$ and $C D$ bisect each other.
Notice that the auxiliary lines $P R$ and $S Q$ divide the figure into triangles and this suggests the use of $\S 151$.
176. Indirect Proof. In case a direct proof is not easily found, it is often possible to make a proof by assuming that the theorem is not true and showing that this leads to a conclusion known to be false.

As an example consider the following theorem :

A convex polygon cannot have more than three acute angles.

Proof: Assume that such a polygon
 may have four acute angles, as $\angle 1, \angle 2, \angle 3, \angle 4$.

Extend the sides forming the exterior angles 5, 6, 7, 8 .
Since $\angle 1+\angle 5=2 \mathrm{rt} . \not \subset, \angle 2+\angle 6=2 \mathrm{rt}$. \mathbb{E}, etc., and since $\angle 1$, $\angle 2, \angle 3, \angle 4$ are all acute by hypothesis, it follows that $\angle 5, \angle 6, \angle 7, \angle 8$ are all obtuse, and hence $\angle 5+\angle 6+\angle 7+\angle 8>4 \mathrm{rt}$. \angle. .

But this cannot be true since the sum of all the exterior angles is exactly 4 rt . L by $\S 162$.

Hence the assumption that $\angle 1, \angle 2, \angle 3, \angle 4$ are all acute is false. That is, a convex polygon canuot have more than three acute angles.

The proof by the method of exclusion (§86) involves the indirect process in showing that all but one of the possible suppositions is false.
177. The solution of a problem often involves the same kind of analysis as that suggested for the discovery of a direct proof (§ 175).

For instance, consider the following problem:
To draw a line parallel to the base of a triangle such that the segment included between the sides shall equal the sum of the segments of the sides between the parallel and the base.

Given the $\triangle A B C$.

To find a point P through which to draw $D E \| A B$ so that $D P+P E=A D+E B$.

Construction. Draw the bisectors of $\triangle A$ and B meeting in point P.

Then P is the point required.
Proof: $\angle 1=\angle 3$ since $D E \| A B$, and $\angle 1=\angle 2$ since $B P$ bisects $\angle B$.
$\therefore \angle 3=\angle 2$ and $P E=B E$. (Why?)
Likewise in $\triangle A D P, A D=D P$.
Hence $D P+P E=A D+B E$. (Ax. Y.)
Or $D E=A D+B E$.
This construction is discovered by observing that a point P must be found such that $P E=B E$ and $P D=A D$. This will be true if $\angle 3=\angle 2$ and this follows if $\angle 1=\angle 2$, while at the same time $\angle 6=\angle 5$ and $\angle 4=\angle 5$. Hence the bisectors of the base angles will determine the point P.

Having thus discovered the process, the construction and proof are made directly.
178. In general the most effective help is a ready knowledge of the facts of geometry alrectly discomered, and skill in applying these will come with prowtice. It is important for this purpose that summaries like the following be made by the student and memorized:
179. (a) Two triangles are congruent if they have:
(1) Two sides and the included angle of the one equal to the corresponding parts of the other.
(2) Two angles and the included side of the one equal to the corresponding parts of the other.
(3) Three sides of the one equal respectively to three sides of the other.

In the case of right triangles :
(4) The hypotenuse and one side of one equal to the corresponding parts of the other.
(b) Two segments are proved equal if:
(1) They are homologous sides of congruent triangles.
(2) They are legs of an isosceles triangle.
(3) They are opposite sides of a parallelogram.
(4) They are radii of the same circle.

SUMMARY OF CHAPTER I.

1. Make a summary of ways in which two angles may be shown to be equal.
2. Make a summary of ways in which lines are proved parallel.
3. What conditions are sufficient to prove that a quadrilateral is a parallelogram?
4. Make a list of problems of construction thus far given.
5. Make a list of definitions thus far given. Which of the figures defined are found on page 4 ?
6. Tabulate all theorems on
(a) bisectors of angles and segments,
(b) perpendicular lines,
(c) polygons in general,
(d) symmetry.
7. What are some of the more important applications thus far given of the theorems in Chapter I?

Border, Parquet Flooring.

PROBLEMS AND APPLICATIONS.

1. Divide each side of an equilateral triangle into three equal parts ($\$ 159,5$), and draw lines through the division points as shown in the figure.

Prove (a) The six small triangles are equilateral and congruent to each other. (First prove them equiangular.)
(b) The two large triangles are congruent.
(c) The inner figure is a regular hexagon.
2. Let l_{1} aud l_{2} be parallel lines, with $A E$ perpendicular to both. Lay off segments $A B, B C$, (' D, \ldots and $E F, F G, G H, \ldots$ each equal to $A E$. Connect these points as shown in the figure.

Prove (a) EKA, EFK, AKB,BLC, etc., are congruent right isosceles triangles.
(b) $F L B K$, etc., are squares.

Bisect $A B, B C, \ldots E F, F G \ldots$ and join points by lines parallel to $E B$ and $A F$ respectively. Notice that the resulting figure forms the basis for the floor border to the right.
3. Let $l_{1} l_{2}$ be parallel lines, with $M N^{\top}$ perpendicular to both. Through F, the middle point of $M N$, draw lines $K E$ and $A G$, each making an angle of 30° with $M N$.

I'irquet Floor Border.
Prove $F E=1 F$ hy showing $\triangle .1 N F \equiv \triangle F E M$.
Also prove $A F=F^{\prime} G$ and that $\triangle F K i f$ and $F E G$ are equilateral.

Lay off segments $A B, B O, E D, D P, K J$, etc., each equal to $A K$. Connect points as shown in the figure.

Prove $\triangle B C O \cong \triangle C P D \cong \triangle A F K$, etc.
Prove that $A B C D E F$ and $J K F G H 1$ are regular hexagons.
4. A network of congruent equilateral triangles is constructed in a rectangle $A B C D$ as shown in the figure.
(a) How many of these triangles meet iu a common vertex?
(b) Does this number of equilateral triangles exactly cover the whole plane about the vertices? Why?
(c) Do the triangles that meet in one point form a regular hexagon?
(d) At what angle to the horizontal lines are the oblique lines that form sides of the triangles? e.g. what is the angle $D C K$?
(e) Compare the lengths of $C K$ and $A K$ (see § 159, Ex. 14).

Tile Flooring.

To construct this network when a side α of the triangles is given, proceed as follows: From the vertex A of a right angle lay off segments equal to a along one side $A K$. With one of these division points K as center and with a radius equal to twice $A K$ strike an arc meeting the side $A C$ at C. Draw $C D$ parallel to $A B$ and lay off segments on it equal to a. Connect these points as shown in the figure, and through the intersection points draw the horizontal lines, thus fixing the division points on $A C$ and $B D$.

Prove that the resulting triangles are equilateral and congruent to each other.

Suggestion. Use in order the converse of § 159, Ex. 14; §144, and the fact that a diagonal divides a parallelogram into two congruent triangles.

Notice how this construction is studied. The figure is first supposed constructed and its properties tabulated. Some of these (c) and (d) are then used in making the construction. This method is of very general application in problems of construction.

Note. This is the method by which a designer would construct a network of congruent regular triangles.
5. Construct a network of triangles as in Ex. 4, using pencil and then ink in parts of the lines, making a set of regular hexagons as shown in the figure.

How many such hexagons meet in a point? Will this number exactly cover the plane about the point? Why?

6. Point out how the figure constructed under Ex. 5 may be made the basis for the two tile floor patterns here given.
7. Given a rhombus whose acute angles are 60°. Show how to cut off two triangles so the resulting figure shall be a regular hexagon. What fraction of the whole rhombus is thus cut off? What fraction of the pattern is black?

8. In a parallelogram, prove :
(a) The diameters divide it into four congruent parallelograms.
(b) The segments joining the midpoints of the sides in order form a parallelogram, and the four triangles thus cut off may be pieced together to form another parallelogram congruent to the one first formed.
(c) The diameters and diagonals all meet in a point.

Suggestion. Prove that a diameter bisects a diagonal. Do these propositions hold for a square? What part of each of the three large

'Tile Border. squares in the adjoining figure is white?
9. The octagons (eight-sided polygons) in the figure are equiangular and the small quadrilaterals are squares.

Find the angles of the irregular hexagons. If the octagons were regular, would the hexagons be equiangular? equilateral? regular?

Tile l'attera.
10. In the figure the octagons are equiangular.
(a) Will two such octagons and a square completely cover the plane about a point? Why?
(b) At what angles do the slanting sides of the octagons ineet the horizontal line?

Find all the angles of the two small white trapezoids to the right.

Tile Pattern.
(c) Could a pattern of this type be constructed by using regular octagons?
11. Equilateral triangles and regular hexagons have thus far been found to make a complete pavement. What other regular polygons can be used to make a complete pavement?
12. If three regular pentagons (five-sided polygons) meet in a common vertex, will they completely cover the plane about that point? If not, by how great an angle will they fail to do so?
13. If four regular pentagons be placed about a point, by how great an angle will they overlap?
14. If three regular seven-sided polygons are placed about a point, by how great an angle will they overlap? If two, by how many degrees will they fail to cover the plane?

In Exs. 12, 13, 14 it is understood that, so far as possible, the polygons are so placed that no part of one of them lies within another; that is, they are not to overlap.
15. Answer questions like those in Ex. 14 for regular polygons of 8,9 , and 10 sides. Can any regular polygon of more than six sides be used to form a complete pavement?

Note that the larger the number of sides of a regular polygon the larger is each angle.
16. A carpenter divides a board into strips of equal width as follows: Suppose five strips are desired. Place a steel square in two positions, as indicated in the figure, at such angles that the distance in inches diagonally across the board shall be some multiple of five (in the figure this distance is 15 inches). Mark
 the points and connect them as shown in the figure. Prove that these lines divide the board into equal strips.
(The black and white figures on this page are parquet floor patterns.)
17. Given an isosceles right triangle $A B C$ with the altitude $C O$ upon the hypotenuse.
(a) Show how to draw $x y \| A \cdot$ such that $x y=C y$.

Suggestion. Bisect $\angle O C .1$ and let the bisector meet $A B$ in x.

Draw $x y \| C$. Prove $\triangle x y C$ isosceles.
(b) Prove $x y C A$ an isosceles trapezoid.
(c) Draw $y z \| O B$ and prove $y z=y x$.

Suggestion. Prove $\triangle C y z$ isosceles.
(d) Prove that $x y C A$ and $x y z B$ are congruent
 trapezoids.
18. $A B r^{\prime} D$ is a square. Lines are drawn as shown in the figure so that $\angle 1=\angle 2=\angle 3=\angle 4$.
(a) Prove $\triangle A B y \cong \triangle B C z \cong \triangle C D w \cong \triangle D A x$.
(b) Prove each of these triangles a right triangle.
(c) Prove that $x y z w$ is a square.

(d) If $\angle 1=45^{\circ}$, what can be said of the figure xyzw?

This and the following design are of Arabic origin.

19. On the sides of a square $A B C D$ the points E, F, G, H are laid off so that $.1 E=B F=C G=D H . \quad A x$ and $\approx C, B y$ and $c D$ are in the diagonals of the square and $E y, F z, G w$, and $H x$ are parallel to these.

Prove that:
(a) $1 x H, E y B$, etc., are congruent right isosceles triangles.
(b) AEys, $B F^{\prime} z y$ etc., are congruent parall dograms.
(c) $x y z w$ is a scpuare.
(d) If $A B=n$, find how long . $1 E$ should be taken in order that $x y$ shatl equal $1: I$; also equal to one half $E B$.
20. $A B C D$ is a square, $A E=B F=C G=D H$ and $A G, C E, B H$, and $D F$ are drawn as shown in the figure.

Prove that:
(a) $A G \| E C$ and $B H \| F D$.
(b) Triangles $H w A, E x B$, etc., are congruent.
(c) The four trapezoids $A E x w$, etc., are congruent.

(d) $x y z w$ is a square.

Parquet Flooring.
21. In the square $A B C D, A F=A G=H B=B K$, etc., and the figure is completed as shown.
(a) Pick out all isosceles triangles. Prove.
(b) Pick out all congruent triangles. Prove.
(c) Has this figure one or more axes of symmetry?

Linoleum Pattern.
22. On the sides of the square $A B C D$ points E, F, G, H, \ldots are taken, so that $A E=A F=G B=B H=$ etc.

The middle points of $E F, G H, K L$ and $M N$ are connected, forming the quadrilateral $P R S T$.

Prove that:
(a) $A C$ is the perpendicular bisector of $E F$ and $K L$.
(b) $F G R P$ is an isosceles trapezoid.
(c) $P R T$ and $R S T$ are congruent right triangles.
(d) PRST is a square.
23. On the sides of a square $A B C D$ points G, H, E, F, P, etc., are taken, so that $G A=A H=E B$ $=B F=P C$, etc. On the diagonals $A C$ and $B D$ points K, L, M, N, are laid off so that $O K=O L$ $=O M=O N$.
(a) Prove that GAHN $\cong E B F K$, etc.

(b) Prove that $H E K O N \cong F P L O K$.

Suggestion. Superpose ode figure on the other. form a rectangle; those of a rectangle form a square.

24. The bisectors of the angles of a rhomboid
25. In the figure $A B C D E F$ is a regular hexagon. $A B H G, B C L K$, etc., are squares.
(a) What kind of triangles are $B H K, C L M$, etc.? Prove.
(b) Is the dodecagon (twelve-sided polygon)

Parquet Flooring.
 HKLMN. . . regular? Prove.
(c) How many axes of symmetry has this dodecagon?
(d) Has it a center of symmetry?
(e) Are the points S, F, B, K collinear? (That is, do they lie in the same straight line?)

Tile Pattern.
26. If from any two points P and Q in the base of an isosceles triangle parallels to the other sides are drawn, two parallelograms are formed whose perimeters are equal.

27. The middle point of the hypotenuse of a right triangle is equidistant from the three vertices. (This is a very important theorem.)
28. State and prove the converse of the theorem in Ex. 27.

29. The bisectors of the four interior angles formed by a transversal cutting two parallel lines form a rectangle.

30. The sum of the perpendiculars from a point in the base of an isosceles triangle to the sides is equal to the altitude from the vertex of either base angle on the side opposite.

31. Find the locus of the middle points of all segments joining the center of a parallelogram to points on the sides. (See § 159, Ex. 8.)

32. In the parallelogram $A B C D$ points E and F are the middle points of $A B$ and $C D$ respectively. Show that $A F$ and $C E$ divide $B D$ into three equal segments.

33. The sum of the perpendiculars to the sides of an equilateral triangle from a point P within is the same for all such points P (i.e., the sum is a constant).

Suggestion. Prove the sum equal to an altitude of
 the triangle.
34. In any triangle the sum of two sides is greater than twice the median on the third side.

35. $A B C D$ is a square, and $E F G H$ a rectangle. Does it follow that $\triangle A E H \cong \triangle F C G$ and $\triangle E B F \cong \triangle H D G ?$ Prove.

36. If a median of a triangle is equal to half the base, the vertex angle is a right angle.
37. State and prove the converse of the theorem in Ex. 36.

CHAPTER II.

STRAIGHT LINES AND CIRCLES.

180. A circle (§ 12) divides the plane into two parts such that any point which does not lie on the circle lies within it or outside it.
181. A line-segment joining any two points
 on a circle is called a chord. A chord which passes through the center is a diameter.
182. If a chord is extended in one or both directions, it cuts the circle and is called a secant.

183. A tangent is a straight line which touches a circle in one point but does not cut it. An indefinite straight line through a point outside a circle is a secant, a tangent, or does not meet the circle.
184. The portion of a circle included between any two of its points is called an arc ($\S 12$). An arc $A B$ is denoted by the symbol $\overparen{A B}$.

A circle is diviled into two ares by any two of its points. If these ares are equal, earla is a semicircle. Otherwise one is called the major arc ancl the other the minor arc.

Inless ohterwise indientert. Th means the minor
 are. In case of ambiruity a third hethem me used, as are $A m R$.

An are is said to be subtended by the chord which joins its end-points. Evidently every chord of a circle subtends two arcs. Unless otherwise indicated the are subtended by a chord means the minor arc.
185. An angle formed by two radii is called a central angle. An angle formed by two chords drawn from the same point on the circle is called an inscribed angle.

If the sides of an angle meet a circle the are or arcs which lie within the angle are called intercepted arcs.

If the vertex of the angle is within or on the circle there is only one intercepted are ; if it is outside the circle there are two intercepted arcs, as $\overparen{A B}$ and $\overparen{C D}$ in the figure.

PRELIMINARY THEOREMS ON THE CIRCLE.

189. Radii or diameters of the same circle or of equal circles are equal.
190. If the radii or diameters of two circles are equal, the circles are equal.
191. A diameter of a circle is double the radius.
192. A point lies within, outside, or on a circle, according as its distance from the center is less than, greater than, or equal to the radius.
193. If an unlimited straight line contains a point within a circle, then it cuts the circle in two points.
194. If two circles intersect once, they intersect again. See figure, § 186.
195. If a straight line is tangent to each of two circles at the same point, then the circles do not intersect, but are tangent to each other at this point. See § 186.

196. If two arcs of the same circle or equal circles can be so placed that their end-points coincide and also their centers, then the arcs coincide throughout or else form a complete circle.
197. If in two circles an arc of one can be made to coincide with an arc of the other, the crircles are equal.
198. A circle is conveniently referred to by indicating its center and radius.

Thus, $\odot O A$ means the circle whase center is O and radius $O A$.
When no ambiguity arises, the letter at the center aloue may be used to denote the circle. Thus, $\odot C$ means the circle tchose center is C,
199. Theorem. In the same circle or in equal circles equal central angles intercept equal arcs.

Given the equal circles C and C^{\prime} and $\angle C=\angle C^{\prime}$.
To prove that $\widehat{A B}=\widehat{A_{B}}$.
Proof: Place $\odot C$ on $\odot c^{\prime}$ so that C falls on c^{\prime}, and $\angle C$ coincides with $\angle C^{\prime}$.

Then A falls on A^{\prime} and B on B^{\prime}. (§ 189)
Hence $\overparen{A B}=\overparen{A^{\prime} B^{\prime}}$.
200. Theorem. In the same circle or in equal circles equal arcs are intercepted by equal central angles.

Given $\odot C=\odot C, \overparen{A B}=\overparen{A^{\prime} B}$. (See figure, § 199.)
To prove that $\angle C=\angle C^{\prime}$.
Proof: Since $\overparen{A B}=\overparen{A^{\prime} B}$, the equal circles can be made to coincide in such manner that the ares will also coincide.

That is, A will fall on A^{\prime}, B on B^{\prime}, and C on C^{\prime}. Hence $\angle C$ coincides with $\angle C^{\prime}$.
201. EXERCISES.

1. Show that in the same circle or in equal circles equal arcs subtend equal chords, and conversely.
2. Can two intersectiug circles have the same center?
3. From a point on a circle construct two equal chords.
4. Show that the bisector of the angle formed by the chords in Ex. 3 passes through the center of the circle.
5. Measurement of Angles. If the perigon at the center of a circle be divided by radii into 360 equal angles, these radii will divide the circle into 360 equal ares according to the theorem, § 199. Hence, we speak of an arc of $1^{\circ}, 2^{\circ}, 3^{\circ}$, etc., and similarly for minutes and seconds.

For this reason a central angle is said to be measured by the arc which it intercepts, meaning that a given central angle contains a number of unit angles equal to the number of unit arcs in the intercepted are.
203. Definitions. A quadrant is an arc of 90°.

A semicircle is an are of 180°. A right angle is, therefore, measured by a quadrant and a straight angle is measured by a semicircle.

A sector is a figure formed by two radii and their intercepted arc.

Thus, the sector BC.1 is formed by the radii $C B, C A$, and $B A$.
204.

EXERCISES

1. Show how to bisect an arc, using $\S \S 48,199$.

Divide an arc into four equal parts. Into eight equal parts.
2. Show that in the same circle or in equal circles two sectors having equal angles are congruent.
3. Show that if two sectors in the same circle or in equal circles have equal ares, the sectors are congruent.
4. How many degrees in the are which measures a right angle? a straight angle? half a right angle? three fourths of a straisht angle? two thirds of a right angle? two thirds of a straight angle?
5. Show that the diameter is the longest chord of a cirele.
6. Show that the two ares into which the extremities of a dianeter divilu a circle are erpall ; that is, each is a semicircle.

Sricisotion. Fold the figure orer on the diameter.
7. Show that hy bisecting the angles between two perpendicular diameters, a cirele is divited into cight equal parts.
205. Theorem. A diameter perpendicular to a chord bisects the chord and also its subtended arc.

Given the diameter $E F \perp A B$ at D.
To prove that $A D=D B$ and $\overparen{A F}=\overparen{B F}$.
Proof: Draw the radii $C A$ and $C B$.
If it can be shown that $\triangle A C D \cong \triangle B C D$, then
(1) $A D=B D$ (Why?), and (2) $\angle A C D=\angle B C D$ (Why?);
(3) $\overparen{A F}=\overparen{B F}$ (Why?).
206. Theorem. A line perpendicular to a radius at its extremity is tangent to the circle.

Given $A B \perp C D$ at D.
To prove that $A B$ is tangent to the circle; that is, does not meet it in any other point than D.

Proof: Let E be any point of $A B$ other than D.
Draw segment $C E$. Then $C E>C D$ (Why?).
Hence E is outside the circle ($\S 192$).
That is, every point of $A B$ except D is outside the circle, and hence $A B$ is tangent to the circle ($\S 183$).
207. Theorem. If a line is tangent to a circle, it is perpendicular to the radius drawn to the point of tangency.

Given $\odot C D$ with a line $A B$ tangent to the circle at D.
To prove that $A B \perp C D$ at D.
Proof: If $C D$ is not $\perp A B$, then some other line, as $C E$, must be $\perp A B$ ($\S 67$), thus making, $C E<C D$ (Why?).

The point E would then lie within the circle ($\$ 19.2$), and the line $A B$ would meet the circle in two points ($\$ 193$).

But this contradicts the hypothesis that $A B$ is tangent to the circle.

Hence no other line than $C D$ can be perpendicular to $A B$ from C, and as one such line exists, it must be $C D$.
208. EXERCISES.

1. What type of proof is used in the preceding paragraph?
2. How are the two theorems immediately preceding related to each other.
3. Show that there is only one tangent to a circle at a given point un it, and that the perpendicular from the center apon the tangent meets it at the point of contact.
4. A perpendicular to a tangent at the point of tangeuer passes through the center of the circle.
5. The perpendicular bisentor of any chord passes through the center of the circle.
6. Two tanguts at the extremities of a diameter are parallel.
7. A dianutor hisects all chords parallel to the tangents at its extremities, and also bisects the central angle subtended by each chord.
8. A diameter bisecting a chord (or its subtended arc) is perpendicular to the chord.
9. The mid-points of parallel chords all lie on a diameter.
10. A tangent to a circle at the mid-point of any arc is parallel to the chord of the arc.
11. Theorem. If two circles meet on the line joining their centers, they are tangent to each other at this point.

Given (5) $C B$ and $C^{\prime} B$ meeting in a point B on the line $C^{\prime} C$.

To prove that (5) $C B$ and $C^{\prime} B$ are tangent to each other at B.

Proof: (1) When each circle is outside the other.
Let D be any point on $\odot C^{\prime} \boldsymbol{B}$ other than \boldsymbol{B}.
Draw $C D$ and $C^{\prime} D$.
Then

$$
\begin{equation*}
C D+C^{\prime} D>C B+C^{\prime} B \tag{Why?}
\end{equation*}
$$

But

$$
C^{\prime} B=C^{\prime} D
$$

$$
\begin{equation*}
\therefore C D>C B . \tag{Ax.IX,§119}
\end{equation*}
$$

$\therefore D$ is outside of $\odot C B$.
(2) When $\odot C B$ is inside of $\odot C^{\prime} \boldsymbol{B}$.

Let D be any point on $\odot C B$ other than B.
Draw $C D$ and $C^{\prime} D$.
Then

$$
\begin{equation*}
C^{\prime} C+C D>C^{\prime} D \tag{Why?}
\end{equation*}
$$

But $\quad C^{\prime} C+C D=C^{\prime} C+C B=C^{\prime} B$. (Why?) $\therefore C^{\prime} B>C^{\prime} D$.
(Ax.VII, §82)
$\therefore D$ is within $\odot C^{\prime} B$.
Therefore $\odot C^{\prime} B$ and $\odot C B$ have only one point in common and hence are tangent to each other ($\$ 186$).

PROBLEMS AND APPLICATIONS.

1. If the distance between the centers of two circles is equal to the sum of their radii, how are the circles related? Construct and prove.
2. If the distance between the centers of two circles is equal to the difference of their radii, how are the circles related? Construct and prove?
3. If the distance from the center of a circle to a straight line is equal to the radius, how is the line related to the circle? Construct and prove.
4. Given two circles having the same center, construct a circle tangent to each of them. Can more than one such circle be constructed? What is the locus of the centers of all such circles?
5. Prove the converse of the theorem in $\S 209$.
6. The straight line joining the centers of two intersecting circles bisects their common chord at right angles.
7. A line tangent to each of two equal circles is either parallel to the segment joining their centers or else it bisects this segment.

8. In the figure $A D=D B$. Semicircles are constructed on $A D, D B$, and $A B$ as diameters. Which semicircles are tangent to each other?

9. In the figure $.1, B, C, D$ are the rertices of a square. Show how to construct the entire figure. What semicircles are tangent to each other?
'This eonstruetion secors frembently in fresigns for tile flooring. Sur acompanying figure. This is lrom a Roman mosaic.

10. Given two parallel lines $B E$ and $A D$, to construct arcs which shall he tangent to each other and one of which shall be tangent to $B E$ at B and the other tangent to $A D$ at A.

Solution. Draw $A B$ and bisect this segment at C; construct \perp bisectors of $A C$ and $B C$. From A and B draw ts to $A D$ and $B E$ respectively, thus locating the points O and O^{\prime}.

Prove that O and O^{\prime} are the centers of the required arcs.

Suggestion. Show that O, C, and O^{\prime} lie in a
 straight line and use the theorem of § 209.

This construction occurs in architectural designs and in many other applications. In the accompanying designs pick out all the arcs that are tangent to each other and also the points of tangency.

Scroll Work.
11. On the sides of the equilateral triangle $A B C$ as diameters, semicircles are drawn, as $A E F B$. Also with A, B, C as centers and $A B$ as radius ares are drawn, as $\overparen{A B}, \overparen{B C}$.
(a) Prove that the arcs $A E F B, B D E C$, and $C F D A$ meet in pairs at the middle points D, E, F of the sides of the triangle.

Suggestion. If the middle points of the sides of an

Fourth Presbyterian Church, Chicago. equilateral triangle are joined, what kind of triangles are formed?
(b) What arcs in this figure are tangent to each other?
(c) Has the figure one or more axes of symmetry?

This figure and the two following occur frequently in church windows and other decorative designs.
12. Construct the design shown in the figure.

Suggention. Divide the diameter $A B$ into six equal parts and construct the three semicircles.

On $D C$ and $D C^{\prime}$ as bases construct equilateral triangles with vertices O and O^{\prime}.

With radius equal to $C B$ and centers O and O^{\prime} construct circles.

(a) Prove that $\odot O$ is tangent to each of the three semicircles. Likewise © O^{\prime}.
(b) Erect a \perp to $A B$ at D and prove (c) O and O^{\prime} tangent to it.
(c) Prove circles with centers at O and O^{\prime} tangent to each other.
(d) Has this figure one or more axes of symmetry?
13. In the figure $A B, C D$ and $O D$ are bisected, and $O^{\prime} O^{\prime \prime} \| A B$ through $E . \quad D O^{\prime}=D O^{\prime \prime}=\frac{3}{4} D B$. Circles are constructed as shown in the figure.
(a) If $A B$ is 4 feet, what is the radius of each circle?
(b) Prove that $\odot O$ is tangent to $\odot O^{\prime}$ and also to $\odot O^{\prime \prime}$.

Suggestion. Show that $O O^{\prime}$ is the sum of the radii of the tro circles.
(c) Is $\odot O^{\prime}$ tangent to the arc $A C B$ and also to the line $A B$?
(d) Has this figure one or more axes of symmetry?
14. $A B C D$ is a square. Arcs are constructed with $-\mathcal{A}, B, C, D$ as centers and with radii each equal to one half the side of the square The lines $A C, B D, M N$, and $R S$ are drawn, and the points E, F, G, H are connected as shown in the figure.

The arc $S N$ is extended to P, forming a semicircle. The line $L P$ meets $\overparen{S N}$ in K, and $B K$ meets $M N$ in O^{\prime}.
(a) Prove that $E F G H$ is a square.
(b) Prove that $\& K L O^{\prime}$ and $K P B$ are
 mutually equiangular and each isosceles.
(c) Prow that $\odot O^{\prime} K$ is tangent to $F G$ and to $\bar{s} \overline{\mathrm{~N}}$.
(d) How many axes of symmetry has the figure inside the square?
(e) Show that $\odot O^{\prime \prime} K$ is tangent to liN by drawing $O^{\prime} C$ and folding the figure over on the axis of symmetry M.N.
210. Theorem. An angle inscribed in a circle is measured by one half the intercepted arc.

Given $\angle D B A$ inscribed in $\odot C B$.
To prove that $\angle D B A$ is measured by $\frac{1}{2} \overparen{A D}$.
Proof: (1) If one side, as BD, is a diameter.
Draw the radius $C A$. Show that $\angle 2=\frac{1}{2} \angle 1$.
But $\angle 1$ is measured by $\overparen{A D}(\S 202)$.
Hence $\angle 2$ is measured by $\frac{1}{2} \overparen{A D}$.
(2) If the center C lies within the angle.

Draw the diameter $B E$.
Now $\angle D B A=\angle 1+\angle 2$.
Complete the proof.
(3) If the center C lies outside the angle.

Draw $B E$ and use the equation $\angle D B A=\angle 1-\angle 2$.
211. It follows from § 210 that if in equal circles two inscribed angles intercept equal ares, they are equal; and conversely, that if equal angles are inscribed in equal circles, they intercept equal arcs.
212.

EXERCISES.

1. If the sides of two angles $B A D$ and $B A^{\prime} D$ pass through the points B and D on a circle, and if the vertex A is on the minor arc $B D$ and A^{\prime} is on the major arc $B D$, find the sum of the two angles.
2. In Ex. 1 if the points B and D remain fixed while the vertex A of the angle is made to move along the minor arc of the circle, what can be said of the angle A ? What if it moves along the major arc?
3. Theorem. The locus of the vertices of all right triangles on a given hypotenuse is a circle whose diameter is the given hypotenuse.

Outline of Proof: Let $A B$ be the given hypotenuse.
(1) If P is any point on the circle whose diameter is $A B, \angle A P B=\mathrm{rt} . \angle$. (Why ?)

(2) If $A P^{\prime} B$ is any right triangle with $A B$ as hypotenuse, then $A C=C B=C P^{\prime}$. (See Ex. 27, p. 8..)

State the proof in full.

214.

PROBLEMS ON LOCL.
Find the following loci:

1. The centers of all circles of fixed radius tangent to a fixed line.
2. The centers of all circles tangent to two parallel lines.
3. The centers of all circles tangent to both sides of an angle.
4. The centers of all circles tangent to a given line at a given point. Is the given point a part of this locus?
5. The vertices of all triangles which have a common base and equal altitudes.
6. The middle points of all chords through a fixed point on a circle. Use Ex.
 $8, \S 208$, and then $\S 213$.
7. The points of intersection
 of the diogonals of trapezoids formed by the sides of an isosceles triangle and lines larallel to its hase.
8. Two vertices of a triangle slide along two purallel lines. What is the locus of the third vertex if the triangle is fixm in size and slape?
9. $1 B^{\prime} D$ is a larallelogran all of whose sides are of fixed length. The side $A B$ is fixel in position. Find the locus of the middle points of the remaining thee sides.
10. Prove that in the same circle or in equal circles equal chords are equally distant from the center.

Suggestion. $M B=N D$. Why? Then prove $\triangle B M C \equiv \triangle C N D$.
11. State and prove the converse of the theorem in the preceding exercise. (What parts of $\triangle B M C$ and $C N D$ are now known?)

12. Find the locus of the middle points of all chords of equal length in the same circle.
13. Find the locus of the middle point of a segment $A B$ of fixed length which moves so that its end-points slide along the sides of a right angle. (Use Ex. 27, p. 82.)
14. Find the locus of the points of contact of two varying circles tangent to each other, and each tangent to a given line at a given point.

Suggestion. A and B are the fixed points, and P one point of contact of the circles. Draw the common tangent $P D$. Prove $A D=D P$
 and $D B=D P$.

Hence, D is the middle point of $A B$ and $D P$ is constant. That is, the locus is a circle of which $A B$ is a diameter.
15. Find the locus of the centers of all circles tangent to a fixed circle at a fixed point P. Is the fixed point P a part of this locus? Is the center of the fixed circle a part of it?
16. Find the locus of the centers of all circles of the same radius which are tangent to a fixed circle.

Under what conditions will this locus include the fixed circle itself? The center of this fixed circle?

Will the locus ever contain a circle within the fixed circle?
Under what conditions will the locus consist of two circles, each outside the fixed circle?

Under what condition does the locus consist of only one circle?
17. In making core-boxes, pattern makers use a square as indicated in the figure to test whether or not the core is a true semicircle. Is
 this method correct? Prove.
215. Theorem. The arcs intercepted by two parallel chords or by a tangent and a chord parallel to it are equal.

Given $A B \| D E$ and $L K \| M N$.
To prove that $\widehat{A D}=\widehat{B E}$ and $\overparen{L R}=\widehat{K R}$.
Proof: (1) Draw chord $D B$.
Compare $\angle 1$ and $\angle 2$, and hence show that $\overparen{A D}=\overparen{B E}$.
(2) Draw the radius $C R$ to the point of tangency. Then $C R \perp M N$ and $C R \perp L K$. (Why?)

Prove $\triangle L C S \cong \triangle K C S$, and hence that $\widehat{L R}=\overparen{R K} .(\S 199)$

216.

.EXERCISES.

1. Prove that a tangent at the vertex of an inscribed angle forms equal angles with the two sides, if these are equal chords.
2. If the vertices of a quadrilateral lie on a circle, any two of its opposite angles are supplementary.
3. If two chords of a circle are perpendicular to each other, find the sum of each pair of opposite ares into which they divide the circle.
4. If the vertices of a trapezoid lie on a circle, its diagonals are equal.
5. Two circles intersect at C and D. Diameters $C A$ and $C B$ are drawn. Prove that A, D, B lie on a straight line.

Suggestion. Prove that $\angle A A^{\prime}=\angle C D B=\mathrm{rt} . \angle$.
217. Theorem. An angle formed by two intersecting chords is measured by one half the sum of the arcs intercepted by the angle itself and its vertical angle.

Given $\angle 1$ formed by the chords $A B$ and $D E$.
To prove that $\angle 1$ is measured by $\frac{1}{2}(\overparen{A E}+\overparen{B D})$.
Proof : Through A draw the chord $A F \| E D$.
Compare $\angle 1$ and $\angle 3$.
Compare $\overparen{A E}$ and $\overparen{D F}$, also $\overparen{A E}+\overparen{B D}$ and $\overparen{B D}+\overparen{D F}$.
How is $\angle 3$ measured?
Hence, how is $\angle 1$ measured?
218. EXERCISES.

1. A chord $A B$ is divided into three equal parts, $A C, C D$, and $D B$. $O A, O C, O D$, and $O B$ are drawn. Compare the angles $A O C$, $C O D$, and DOB.
2. The accompanying table refers to the figure in §217. Fill out blank spaces.
3. In a circle C with a diameter $A B$ a chord $A D$ is drawn, and a radius $C E \| A D$. Prove that arcs $D E$ and $E B$ are equal.

$\angle 1$	$\overparen{A E}$	$\overparen{B D}$	$\overparen{E B}$	$\overparen{A n D}$
35°	40°		80°	
48°	50°			216°
40°		50°	60°	
60°		54°		190°
		45°	90°	180°
	34°		108°	164°

4. The vertices of a square $A B C D$ all lie on a circle. E is any point on the arc $A B$. Prove that $E C$ and $E D$ divide the angle $A E B$ into three equal parts.
5. Theorem. An angle formed by a tangent and a chord drawn from the point of tangency is measured by one half the intercepted arc.

Given $\angle 1$ formed by tangent $B D$ and chord $B A$.
To prove that $\angle 1$ is measured by $\frac{1}{2} \overparen{B A}$.
Proof: Draw a chord $E F \| B D$ intersecting $B A$ in Q.
Compare $\angle 1$ and $\angle 2$, also $\widehat{E B}$ and $\widehat{B F}$.
How is $\angle 2$ measured?
Hence, how is $\angle 1$ measured?
Give the proof in full.
220. Definitions. A segment of a circle, or a circle-segment, is a figure formed by a chord and the are which it subtends. For each chord there are two circle-segments correspouding to the two ares which it subtends.

If a chord is a diameter the two circlesegments are equal.

An angle is said to be inscribed in an arc if its vertex lies on the are and its sides meet the are in its end-points.

Such an angle is also said to lee inseribed in the circle-segment formed by the are and its choret.

E.g. $\angle 1$ is inscribed in the arr $A P B$ or in the segment $A I B$.

221.

EXERCISES.

1. Show that an angle inscribed in a semicircle is a right angle.
2. If the sides of a right angle pass through the extremities of a diameter, show that its vertex lies on the circle.
3. If a triangular ruler $M N O$, right-angled at O, is moved about in the plane so that two fixed points, A and B, lie always on the sides $I I O$ and NO respectively, what path does the point O trace?
4. Draw two concentric circles, having different radii, and show that all chords of the outer circle
 which are tangent to the inner circle are equal.
5. In an equilateral triangle construct three equal circles, each tangent to the two other circles and to two sides of the triangle.

Suggestron. Construct the altitudes of the triangle and bisect angles as shown in the figure. Complete the construction and prove that the figure has the required properties.
(a) Has the figure consisting of the triangle
 and the three circles one or more axes of symmetry?
(b) Has it a center of symmetry?
6. Within a given circle construct three equal circles, each tangent to the other two and to the given circle.

Suggestion. Trisect the circle at D, E, and F by making angles at the center each equal to 120°. Draw tangents at D, E, and F, and prove that $\triangle A B C$ is equilateral.

Construct the altitudes and prove that they meet the sides of the triangle at the points of tangency of the given circle with the sides of $A B C$, and also that they pass through the
 center of the given circle.

Bisect angles as shown in the figure and prove that the centers of the required circles are thus obtained.
(a) Has the figure consisting of the four circles one or more axes of symmetry?
(b) Has it a center of symmetry?
222. Theorem. The angle formed by two secants, two tangents, or a tangent and a secant, meeting outside a circle, is measured by one half the difference of the intercepted arcs.

Outline of Proof: In each case the given angle is equal to $\angle 1$, and the arc which measures $\angle 1$ is the difference between two arcs, one of which is the larger of the two intercepted arcs and the other is equal to the smaller. For instance, in the first figure,

$$
\overparen{F H}=\overparen{D F}-\overparen{D H}=\overparen{D F}-\overparen{B E} .
$$

Give the proof in detail for each figure.

223.

EXERCISES.

1. If (in left figure, $\S 222$) $\angle A=17^{\circ}$ and $\widehat{E B}=25^{\circ}$, find $\widehat{D F}$.
2. If $\angle A=37^{\circ}$ (in middle figure), find the arcs into which the points B and E divide the circle.
3. With a given radius construct a circle passing through a given point. How many such circles can be drawn? What is the locus of the centers of all such circles?
4. Draw a circle passing through two given fixed points. How many such circles are there? What is the locus of the centers of all such circles?
5. Construct a circle having a given radius and passing through two given points. How many such circles can he drawn? Is this construction aver impossible? Under what conditions is only one such circle possible?
6. Problem. To construct a circle through three fixed points not all in the same straight line.

Given three points A, B, C not in the same straight line.
To construct a circle passing through them.
Construction. Let the student give the construction and proof in full. (See § 132.)
225. Definition. The circle $O A$ in $\S 224$ is said to be circumscribed about the triangle $A B C$ and the triangle is said to be inscribed in the circle.
226. EXERCISES.

1. In the construction of $\S 224$ why do $D M$ and $E N$ meet?
2. Why cannot a circle be drawn throngh three points all lying in the same straight line? Make a figure to illustrate this.
3. Show that an angle inscribed in an arc is greater than or less than a right angle according as the are in which it is inscribed is less than or greater than a semicircle.
4. Prove that the bisectors of the angles of an equilateral triangle pass through the center of the circumscribed circle.
5. Draw a circle tangent to two fixed lines. How many such circles are there? What is the locus of their centers? Is the point of iatersection part of this locus? Discuss fully.
6. Show that not more than one circle can be drawn through three given points, and hence that two circles which coincide in three points coincide throughout.
7. Problem. To construct a circle tangent to each of three lines, no two of which are parallel and not all of which pass through the same point.

Given the lines l_{1}, l_{2}, l_{3}.
To construct a circle tangent to each of these lines.
Construction. Since no two of the lines are $\|$, let l_{1} and l_{2} meet in A, l_{2} and l_{3} in B, and l_{8} and l_{1} in D, where A, B, and D are distinct points.

Draw the bisectors of $\angle A$ and $\angle B$ and let them meet in point C.

Then C is the center of the required circle. (See § 131.) Give the proof in full.
228. Definitions. The circle in the construction of $\S 27$ is said to be inscribed in the triangle $A B D$.

Three or more lines which all pass through the same point are called concurrent. Hence the lines l_{1}, l_{2}, l_{3} are not concurrent.
229.

EXERCISES.

1. Why is the construction of $\S \xlongequal[2]{ } 0$ impossible if l_{1}, l_{2}, and l_{3} are concurrent?
2. If two of the lines are parallel to each other, show that the construction is possible. How many tangent circles can be constructed in this case? Draw a figure and give the construction and proof iu full.
3. Is the construction possible when all three lints are parablel? Why?
4. If two sides of the triangle are produced, as $A B$ and $A D$ in the figure of $\S 227$, constrnct a circle tangent to the side $B D$ and to the prolongations of the sides $A B$ and $A D$.

This is called an escribed circle of the triangle.
5. How many circles can be constructed tangent to each of three straight lines if they are not concurrent and no two of them are parallel?
6. Draw a triangle and construct its inscribed and circumscribed circles and its three escribed circles.
230. Problem. From a given point outside a circle to draw a tangent to the circle.

Given $\odot \boldsymbol{C A}$ and an outside point \boldsymbol{P}.
To construct a tangent from P to the circle.
Construction. Draw $C P$. On $C P$ as a diameter construct a circle, cutting the given circle in the points A and B.

Draw the lines $P A$ and $P B$.
Then $P A$ and $P B$ are both tangents.
Give the proof.

231.

EXERCISES.

1. If in the figure of $\S 230$ the point P is made to move towards the circle along the line $P C$ until it finally reaches the circle, while $P A$ and $P B$ remain tangent to the circle, describe the motion of the points A and B and also of the lines $P A$ and $P B$. How does this agree with the fact that through a point on the circle there is ouly one tangent to the circle?
2. Can a tangent be drawn to a circle from a point inside the circle? Why?
3. Show that the line connecting a point outside a circle with the center bisects the angle formed by the tangents from that point.
4. Why are not more than two tangents possible from a given point to a circle?
5. The two tangents which can be drawn to a circle from an exterior point are equal.
6. In a right triangle the hypotenuse plus the diameter of the inscribed circle is equal to the snm of the two legs of the triangle.
7. If an isosceles triangle inscribed in a circle has each of its base angles double the vertex angle, and if tangents to the circle are drawn through the vertices, find the angles of the resulting triangle.
8. If the angles of a triangle $A B C$ inscribed in a circle are 54°, 72°, and 44°, find the angles of the triangle formed by the tangents to the circle at the points A, B, and C.

SUMMARY OF CHAPTER II.

1. Make a list of all the definitions involving the circle.
2. State the theorems on the measurement of angles by intercepted arcs.
3. State the theorems involving equality of chords, central angles, and intercepted arcs.
4. State the theorems on the tangency of straight lines and circles.
5. State the theorems involving the tangency of two circles.
6. Make a list, to supplement that in the summary of Chapter I, of ways in which two angles or two line-segments may be proved equal.
7. State the ways in which two ares of the same or equal circles may be proved equal.
8. State the problems of construction given in Chapter II.
9. Explain what is meant by sayiug that a central angle is measured lyy its intercepted arc.
10. State some of the important applications of Chapter II. (Return to this question after stulying those which follow.)

PROBLEMS AND APPLICATIONS.

1. Given two roads of different width at right angles to each other, to connect them by a road whose sides are arcs of circles tangent to the sides of the roads.
(a) Make the construction shown in the figure and prove that it has the required properties.
(b) Is this construction possible when the given roads are not at right angles to each other? Illustrate.

(c) Can the curve be made long or short at will?
(d) Make the construction if the given roads have the same width.
2. Two circles C and C^{\prime} are tangent at the point $D . \quad A B$ is a segment through D terminating in the circles. Prove that the radii $C A$ and $C^{\prime \prime} B$ are parallel.
3. Through a polnt on the bisector of an
 angle to construct a circle tangent to both sides of the angle.

Construction. Through the given point P draw $E P \perp$ to $A P$. Lay off $E D=E P$ and at D construct $D C \perp A D$ meeting the line $A P$ in C. Then C is the center of the required circle and $C D$ is its radius.

Proof: Draw $P D$ and prove that $\triangle D E P$
 is isosceles and hence also $\triangle P D C$.

Is it possible to construct another circle having the properties required? If so, construct it.

This construction is used in the accompanying design in which the shape is determined by fixing the point P in advance.

Such designs are of frequent occurrence in decorative work such as the steel ceiling panel given here.
4. In an isosceles triangle construct three circles as shown in the figure.

Suggestion. First construct the inscribed circle with center O. Let the bisector of $\angle A$ meet
 this circle in a point P. Then use Ex. 3.
5. The angles formed by a chord and a tangent are equal respectively to the angles inscribed in the arcs into which the end-points of the chord divide the circle.
6. If a triangle whose angles are $48^{\circ}, 56^{\circ}$, and 76° is circumscribed about a circle, find the number of degrees in the arcs into which the points of tangency divide the circle.
7. Divide each side of an equilateral triangle into three equal parts (Ex. 5, § 159) and connect points as shown in the figure.

Prove that DEFGHK is a regular hexagon.
8. If a circle is inscribed in the triangle of Ex. 7, prove that all sides of the hexagon are tangent to the circle.

Suggestion. Show that the perpendicular bisectors of the segments $H K, K D, D E$ meet in a point
 equidistant from these segments.
9. Within a given square construct four equal circles so that each circle is tangent to one side of the square and to two of the circles.

Suggestion. First construct the diagonals of the square.
10. In the figure,
 $A B C^{\prime} D$ is a rectangle with $A D=\frac{1}{2} A B . \quad E$ and F are the middle points of $A B$ and ('D respectively.
smmicirles are constructed with E and F as centers and $\frac{1}{2} \| E$ as a radius, etc.

Fan vaulting from Ciloucester Cathedral, England.
(a) Prove that these quadrant arcs are tangent to each other in pairs and also to the semicircles.
(b) Lines are drawn tangent to the arcs at the points where these are met by the diagouals of the squares $A E F D$ and $B C F E$. Prove that these lines form squares $K L M N$ and $X Y Z W$.
(c) Construct the small circles within each of these squares.

The above design occurs in fan-vaulted ceilings.
The gothic or pointed arch plays a conspicuous part in modern architecture, and examples of it may be found in almost any city. Its most common use is in church windows.

The figure represents a so-called equilateral gothic arch. The arcs $A C$ and $B C$ are drawn from B and A as centers respectively, and with $A B$ as a radius.

The segment $A B$ is called the span of the arch, and the point C its apex.
11. In the figure $A D=D B . A B C, A D E$, and $D B F$ are equilateral gothic arches.
(a) Construct the circle with center O tangent to the four arcs as shown.

Suggestion. Take X so that $D X=X B$. With centers A and B and radius $A X$ draw arcs meeting at O.

Complete the con-

Door, Union Park Church, Chicago. struction and prove that the figure has the required properties.
(b) Prove that $\overparen{D E}$ and $\overparen{D F}$ are tangent to each other. Also $\overparen{B F}$ and $\overparen{B C}$, and $\overparen{A E}$ and $\overparen{A C}$.
(c) What axis of symmetry has this figure?
12. A triangle $A B C$ whose angles are $45^{\circ}, 80^{\circ}$, and 55° is inscribed in a circle. Find the angles of the triangle formed by the tangents at A, B, and C.
13. Inscribe a circle in an equilateral gothic arch $A B C$.

Suggestions. Construct $C D \perp$ to $A B$ and extend it to P, making $D P=A B$. From P construct a tangent to $\overparen{A C}$ at L.
(a) Prove that $\triangle B D P \cong \triangle B L P$ and hence $P L=B D$.
(b) $\triangle O L P \cong \triangle B D O$ and hence $O D=O L$.

Then $\odot O D$ is the required circle. See $\S 209$.

Notice that this figure is symmetrical with respect to the line $P D$, and hence if the circle is proved tangent to $\overparen{C C}$, we know at once that it is taugent to $\widehat{B C}$.
14. In the figure $A B C$ is an equilateral gothic arch with a circle inscribed, as in Ex. 13.
(a) Construct the two equilateral arches $G H E$ and $H K F$, as shown in the figure.

Construction. Draw $B K$ and $A G \perp A B$. With a radins equal to $O D+D B$, and with O as center draw arcs meeting $B K$ and $A G$ in K and G respectively. Draw $G K$, construct the arches and show that each is tangent to the circle.

(b) Do the points E and F lie on the circle?

Suggestion. Suppose $K F$ to be drawn, and compare $\angle H K F$ with $\angle H K O$ by comparing the sides $H K$ and $K F$ and also $G K$ and $K O$.
15. Construct an arc passing through a given point B, and tangent to a given line $A D$ at a
 given point D.
16. In the figure $A B C$ is an equilateral arch. $B K$ is $\frac{5}{6}$ of $B D$. $K B F$ and $A H E$ are equal equilateral arches. Ares $K \ell$ and $H Q$ are tangent to arcs $K F$ and $H E$ respectively.

From Lincoln Cathedral, England.
(a) Find by construction the center O of the circle taugent to . $\overparen{A C}$, $\widehat{B r}, \widehat{K F}$, and $\overparen{H E}$, and give proof.
(b) Find by construction the centers of the arcs $K Q$ and $H Q$. How is this problem related to Ex. 15?
17. Two circles are tangent to each other internally. Find the locus of the centers of all circles tangent to both externally.

18. Two circles are tangent to each other externally. Find the locus of the centers of all circles tangent to both, but external to one and internal to the other.

19. Two equal circles are tangent to each other externally. Find the locus of the centers of all circles tangent to both.
20. $A D^{\prime} B$ is an angle whose vertex is outside the circle and whose sides meet the circle in the points A and B, while $\angle A D B$ is an inscribed
 angle intercepting the arc $A B$. Prove that $\angle A D B>\angle A D^{\prime} B$, provided each of the segments $D^{\prime} A$ and $D^{\prime} B$ outs the circle at a second point.
21. Through two given points A and B construct a circle tangent to a given line which is perpendicular to the line $A B$.

Is this construction possible if the given line passes through either of the points A or B ? If it meets $A B$ between these points?
22. In kicking a goal after a touchdown in the game of football, the ball is brought back into the field at right angles to the line marking the end of the field. The distance hetween the goal posts being given, and also the point at which the touchdown is made, find by a geometrical construction how far back into the field the ball must be brought in order that the goal posts may subtend the greatest possible angle.

CHAPTER III.

THE MEASUREMENT OF STRAIGHT LINESEGMENTS.

232. A straight line-segment is said to be exactly measured when we find how many times it contains a certain other segment which is taken as a unit. The number thus found is called the numerical measure, or the length of the segment.
E.g. a line-segment is 9 in . long if a segment 1 in . long can be laid off on it 9 times in succession.

Thus, 9 is the numerical measure, or the length of the segment, when 1 in . is taken as a unit.
233. In selecting a unit of measure it may happen that it is not contained an integral number of times in the segment to be measured.

Thus, in measuring a line-segment the meter is often a conrenient unit. Suppose it has been applied five times to the segment $A B$ and that the last time the end falls on $A_{1}, A_{1} B$ being less than one meter.

Then, taking a decimeter (one tenth of a meter) as a new unit, suppose this is contained three times in $-1_{1} B$ with a remainder $A{ }_{2} B$ less
 than a decimeter.

Finally, using as a unit a centimeter (one tenth of a decimeter), suppose this is contained exactly six times in $A_{g} B$.

Then, the length of $A B$ is meters, 3 decimeters, and 6 centimeters, or 5.36 meters.

The process of m"isuring considered here is ideal. In practice we cannot say that a given semment is contained cxuctly an integral number of times in another segment. Sen § 235.
234. It may also happen that, in continuing this ideal process of measuring as just described, no subdivided unit cau be found which exactly measures the last interval, that is, such that the final division point falls exactly on B.
E.g. it is known that in a square whose sides are each one unit the diagonal is $\sqrt{2}$, and that this cannot be exactly expressed as an integer or a fraction whose numerator and denominator are both integers.

By the ordinary process of extracting square root we find $\sqrt{2}=1.4142 \cdots$, each added decimal making a nearer approximation. But this process never
 terminates.

Hence, in attempting to measure the diagonal of a square whose side is one meter, we find 1 meter, 4 decimeters, 1 centimeter, 4 millimeters, etc., or 1.414 meters approximately.

It should be noticed, however, that 1.415 is greater than the diagonal and hence the approximation given is correct within one millimeter.
235. Evidently any line-segment can be measured either exactly or to a degree of approximation, depending upon the fineness of the instruments and the skill of the operator. The word measure is commonly used to include both exact and approximate measurement.

For practical purposes, a line-segment is measured as soon as the last remainder is smaller than the smallest unit available. It should be noticed that all practical measurements are in reality only approximations, since it is quite impossible to say that a given distance is, for instance, exactly 25 ft . It may be a fraction of an inch more or less.
E.g. in the above example 1.414 meters gives the length of the diagonal for practical purposes if the millimeter is the smallest unit available. The error in this case is less than one millimeter.
236. Definition. Two straight line-segments are commensurable if they have a common unit of measure. Otherwise they are incommensurable.
E.g. two line-segments whose lengths are exactly 5.27 and 3.42 meters respectively have one centimeter as a common unit of measnre, it being contained 527 times in the first segment and 342 times in the second.

But the side and the diagonal of a square have no common unit of measure.

In the example of $\S 234$, the millimeter is contained 1000 times in the side and 1414 times in the diagonal, plus a remainder less than one millimeter. A similar statement holds for any unit of measure, however small.
237. For the purposes of practical measurement any two line-segments may be considered as commensurable. but for theoretical purposes it is necessary to take account of incommensurable segments also.

The theorems in this chapter are here proved for commensurable segments only. They are proved for incommensurable segments also in Chapter VII.

RATIOS OF LINE-SEGMENTS.

238. The ratio of two commensurable line-segments is the quotient of their numerical measures taken with respect to the same unit.
E.g. if two segments are respectively 3 ft . and 4 ft . in length, the ratio of the first segment to the second is $\frac{\frac{3}{4}}{4}$ and the ratio of the second to the first is
239. The ratio of two commensuralle segments is the same, no matter what common unit of measure is used.
E.g. two segments whose numerical measures are 3 and 4 if one foot is the common unit, have 36 and 18 as their numerical measures if one inch is the common unit. But the ratio is the same in both cases, namely: 1 = $=$.
240. The approximate ratio of two incommensurable linesegments is the quotient of their approximate numerical measures. It will be seen that this approximate ratio depends upon the length of the smallest measuring unit available, and that the approximation can be made as close as we please by taking the measuring unit small enough.
E.g. an approximate ratio of the side of a square to its diagonal is $\frac{1}{1.41}=\frac{100}{141}$. Another and closer approximation is $\frac{1}{1.414}=\frac{1000}{1414}$. In this case the numerical measure of one of the segments is exact.

An approximate ratio of $\sqrt{2}$ to $\sqrt{3}$, in which neither has an exact measure, is $\frac{1.41}{1.73}=\frac{141}{173}$. Another is $\frac{1.414}{1.732}=\frac{1414}{1732}$.
241. It should be clearly understood that the numerical measure of a line-segment is a number, as is also the ratio of two such segments. Hence they are subject to the same laws of operation as other arithmetic numbers.

For example, the following are axioms pertaining to such numbers:
(1) Numbers which are equal to the same number are equal to each other.
(2) If equal numbers are added to or subtracted from equal numbers, the results are equal numbers.
(3) If equal numbers are multiplied by or divided by equal numbers, the results are equal numbers.

It is understood, however, that all the numbers here considered are positive. For a more complete consideration of axioms pertaining to numbers, see Chapter I of the Advanced Course of the authors' High School Algebra.
242. A proportion is an equality, each member of which is a ratio. Four numbers, a, b, c, and d, are said to be in proportion, in the order given, if the ratios $\frac{a}{b}$ and $\frac{c}{d}$ are equal. In this case a and c are called the antecedents and b and d the consequents. Also a and d are called the extremes and b and c the means.

The proportion $\frac{a}{b}=\frac{c}{d}$ is sometimes written $a: b=c: d$, and in either case may be read a is to b as c is to d.

If D and E are points on the sides of the triangle $A B C$, and if m, n, p, and q, the numerical measures respectively of $A D, D B, A E$, and $E C$, are such that $\frac{m}{\mu}=\frac{p}{q}$. then the points D and E are said to divide the sides $A B$ and $A C$ proportionally, that is, in the same ratio. For convenience it is common to let $A D, D B, A E$, and $E C$ stand for
 the numerical measures of these segments, and thus to write the above proportion, $\frac{A D}{D B}=\frac{A E}{E C}$ or $A D: D B=A E: E C$.

THEOREMS ON PROPORTIONAL SEGMENTS.

243. Theorem. If a line is parallel to one side of a triangle and cuts the other two sides, then it divides these sides in the same ratio.

Given $\triangle A B C$ in which $D E \| B C$.
To prove that $\frac{A D}{D B}=\frac{A E}{E C}$.
Proof: Choose some common measure of $A D$ and $D B$, as $A K$. Suppose it is contained 3 times in $1 D$ and 5 times in $D B$.

Then

$$
\begin{equation*}
\frac{A D}{D B}=\frac{8}{5} . \tag{1}
\end{equation*}
$$

Through the points of division on $A D$ and $D B$ draw lines parallel to $B C$, cutting $A E$ and $E C$. By $\S 155$ these parallels divide $A E$ into three equal parts and $E C$ into five equal parts. Hence,

$$
\begin{equation*}
\frac{A E}{E C}=\frac{3}{5} . \tag{2}
\end{equation*}
$$

\therefore from (1) and (2) $\frac{A D}{D B}=\frac{A E}{E C}$.
For a proof in case $A D$ and $D B$ are incommensurable, see § 410 .

244.

EXERCISES.

1. If $D E \| B C$ in $\triangle A B C$, compute the segments left blank front those given in the following table:

$A D$	$D B$	$A E$	$E C$	$A B$	$A C$
20	24	15			-
4	56		42		-
	102	12	408		-
25		18	342		

2. B is a point visible from A but inaccessible. Required to compute the distance from A to B.

Suggestion. Select some accessible point C from which A and B are both visible. Through E, a point near A and on the line of sight from A to C, draw $E D \| C B$ and meeting the line of sight from A to B at D.

Now $A E, E C$, and $A D$ can be measured. Then
 $D B$ and hence $A B$ can be computed by $\S 243$.

Note. The advantage of this method over that in $\S 34$, Ex. 5 , is that here a small triangle $A E D$ is made to do the service, which was there performed by another triangle the same size as $A B C$.
245. Theorem. If four numbers m, n, p, q are such that $\frac{m}{n}=\frac{p}{q}$, then it follows that:
(1) $\frac{n}{m}=\frac{q}{p}$.
(2) $\frac{m}{p}=\frac{n}{q}$.
(3) $\frac{m+n}{n}=\frac{p+q}{q}$.
(4) $\frac{m-n}{n}=\frac{p-q}{q}$.
(5) $\frac{m+n}{m-n}=\frac{p+q}{p-q}$.
Given

$$
\begin{equation*}
\frac{m}{n}=\frac{p}{q} . \tag{a}
\end{equation*}
$$

To prove (1) divide the members of $1=1$ by those of (a).

To prove (2) multiply each member of (a) by $\frac{n}{p}$.
To prove (3) add 1 to each member of (a) and reduce each side to a common denominator.

To prove (4) subtract 1 from each member of (a) and reduce each side to a common denominator.

To prove (5) divide the members of (3) by the members of (4).

Write out these proofs in full, giving the reason for each step, and read off the results as applied to the figure.

For example, show that (3) gives, when applied to the figure,

$$
\frac{A B}{D B}=\frac{A C}{E C} .
$$

246. The results in the above theorem are sometimes named as follows :

The proportion (") is said to be takell by inversion in (1), by alternation in (2), by composition in (3), by division in (4), by composition and division in (5).

1. If $\frac{m}{n}=\frac{p}{q}$, prove that $\frac{m}{m+n}=\frac{p}{p+q}$, and hence show in the above figure that

$$
\frac{A D}{A B}=\frac{A E}{A C}
$$

2. If in the figure on page $118 D E \| B C$, compute the segments indicated by blanks in the accompanying table.
3. If $\frac{m}{n}=\frac{p}{q}$,
show that $\frac{m+p}{p}=\frac{n+q}{q}$.
4. If $\frac{m}{n}=\frac{p}{q}$,
show that $\frac{m+p}{n+q}=\frac{m}{n}$.
5. If $\frac{m}{x}=\frac{p}{q}$ and $\frac{m}{y}=\frac{p}{q}$, show that $x=y$.
6. If $\frac{m}{x}=\frac{m}{y}$, show that $x=y$.
7. State Exs. 4, 5, and 6 in words.

A ${ }^{\text {d }}$	A B	$D B$	$1 E$	$A{ }^{\prime}$	$E C$
8	12		6		
6	10			16	
6	9				7
12		10	10		
10		8		18	
10		7			14
240			200	380	
160			140		20
120				100	50
	35	21	14		
	40	15		30	
	500	200			400
	90		40	70	
	20		30		8
	800			360	300
		27	30	48	
		30	20		50
		27		560	48

8. A triangle is formed by a chord and the tangents to the circle at its extremities. Prove that the triangle is isosceles.
9. A triangle with angles A, B, C is circumscribed about a circle. Find the angles of the triangle formed by the chords joining the points of tangency.
10. Theorem. If a line divides two sides of a triangle in the same ratio, it is parallel to the third side.

Given the points D and E on the sides of the $\triangle A B C$ such that $\frac{A D}{D B}=\frac{A E}{E C}$.

To prove that $D E \| B C$.
Proof: Suppose $D E^{\prime}$ is drawn parallel to $B C$. It is proposed to prove that the point E^{\prime} coincides with E.

Since $D E^{\prime} \| B C$, we have $\frac{A B}{A D}=\frac{A C}{E^{\prime} C}$.

But by (3), § $2+5, \frac{A B}{D B}=\frac{A C}{E C}$.
Now use the proof of Ex. 5, § 247 , to show that $E^{\prime} C=E C$, and hence that E^{\prime} and E coincide, so that $D E \| B C$. Give the proof in full detail.
249. EXERCISES.

1. Show by $\S 248$ that the line joining the middle points of two sides of a triangle is parallel to the third side. Compare § 151.
2. Show by $£ 24: 3$ that the line whiclı bisects one side of a triangle and is parallel to a second side bisects the third side.
3. If in the $\triangle A B C$ a segment $(!/$ connects the vertex to any point y of the base, find the locus of the point x on this serment such that $C x: C y$ is the same for all points y.
4. $1 B r^{\prime} D$ is a \square whose diagomals meet in O. If y is a point on any sisle of the \square, find the locns of a point x on the segment $O y$ such that $O y: x y$ is the same for "以ry such point y.
5. Find the lorus of the points of intersection of the modians of all triangles having the same
 base and equal altitudes. ((su $\$ \$ 1 . \sin , 2.15$.
6. Theorem. The bisector of an angle of a triangle divides the opposite side into segments whose ratio is the same as that of the adjacent sides.

Given $C D$ bisecting $\angle C$ in $\triangle A B C$.
To prove that $\frac{A D}{D B}=\frac{A C}{B C}$.
Proof: Through B draw $B E \| D C$. Prolong $A C$ to meet $B E$ at E.

In $\triangle A B E \quad \frac{A D}{D B}=\frac{A C}{C E}$. (Why?)

Now show that $\triangle B C E$ is isosceles, and hence that $B C$ may be substituted for $C E$ in the above proportion. Complete the proof.

251, EXERCISES.

1. Fill in the blank spaces in the table, if in the figure of $\S 250$ $C D$ is the bisector of $\angle A C B$.

$A C$	$C B$	$A D$	$D B$	$A B$
8	10	6		
20	16		12	
35	17			40
3		2	1	
7		9		12
$12 \frac{1}{2}$			8	16
	$\frac{364}{54}$	200	480	
	$\frac{65}{}$		105	
	24.5		18.3	32.6

252. Definition. A segment is said to be divided externally by any point which lies on the line of the segment but not on the segment itself.
E.g. point C divides the segment $A B$ externally, the parts being $A C$ and $C B$, while point B divides the segment $A C$ internally, the parts being $A B$ and $B C$.

253. Theorem. A line which bisects an exterior angle of a triangle divides the opposite side externally into two segments whose ratio is the same as that of the adjacent sides of the triangle.

Given $C D$, the bisector of the exterior angle at C of the triangle $A B C$.

To prove that $\quad \frac{A D}{B D}=\frac{A C}{B C}$.
Proof: Through B draw $B E \| D C$.
In $\triangle A C D$

$$
\begin{equation*}
\frac{A D}{B D}=\frac{A C}{E C} . \tag{Why?}
\end{equation*}
$$

Now show that $\triangle E B C$ is isosceles, and hence that

$$
E C^{\prime}=B C .
$$

Complete the proof.
254.

EXERCISES.

1. Draw a triangle with an acute extorior angle bisected. Using different lettering from that in $\S \underline{2}-3$, prove the theorem again.
 for a figure in which . $1 l^{\prime}<B C$.
2. Fill in the blank spaces in the table below if $C D$ is the bisector of the exterior angle $B C K$.

$A C$	$C B$	$A D$	$D B$	AB
7	4	9		
14.3	9.6		18	
164	48			144
13.7		84	60	
32		60		25
56			80	40
	4.8	12.5	6	
-	550	600		400
	350		200	300

4. To measure indirectly the distance from an accessible point A to an inaccessible point B by meaus of $\S 253$.

Suggestion. Through C, a point where A and B are both visible, draw $C K$ making $\angle 1=\angle 2$. Produce $K C$ to a point D on the line $B A$ extended.

What lines must now be measured in order to compute $A B$?
5. What methods have been used so far for the indirect measurement of the distance from an accessible to an inaccessible point? Compare these
(a) As to the simplicity of the theory involved.
(b) As to the simplicity and ease of the direct measurements required.
6. Divide a given line-segment in a given ratio withont constructing a line parallel to another.
7. Similarly divide a given line-segment externally in a given ratio.
8. Solve Ex. $3, \S 249$, if x is on $C y$ extended.
9. Solve Ex. $4, \S 249$, if x is on ($y y$ extended.

SIMILAR POLYGONS.

255. 'Two polygons, in which the angles of the one are equal respectively to the angles of the other, taken in order, are said to be mutually equiangular.

The angles of the two polygons are thus arranged in pairs of equal angles, which are called corresponding angles.

Two sides, one of each polygon, included between corresponding angles, are called corresponding sides.
256. Two polygons are similar if (1) they are mutually equiangular and if (2) their pairs of corresponding sides are proportional.

Two polygons may hare property (1) but not (2). For example, a rectangle and a square. Or they may have property (2) and not (1). For example, a square and a rhombus.

Hence any proof that two polygons are similar must show that both (1) and (2) hold concerning them.

In the case of triangles it will be proved that either property specified in the definition of similar polygons is sufficient to make them similar.
257. Theorem. If two triangles are mutually equiangular, they are similar.

Given 今 $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, in which $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$, and $\angle C=. C^{\prime}$.

To prove that the other property of similarity holds, namely that $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C A}{C^{\prime} A^{\prime}}$.

Proof: Place $\triangle A^{\prime} B^{\prime} C^{\prime}$ on $\triangle A B C$ with $\angle A^{\prime}$ upon its equal $\angle A$, and $B^{\prime} C^{\prime}$ taking the position $D E$.

Now show that $D E \| B C$ and hence $\frac{A B}{A D}=\frac{A C}{A E}$,
that is,

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}
$$

In like manner, placing $\angle B^{\prime}$ upon $\angle B$,
show that

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}
$$

Hence,

$$
\begin{equation*}
\frac{A B}{A^{\prime} B}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C A}{C^{\prime} A^{\prime}} \tag{Why?}
\end{equation*}
$$

Give the full details of this proof.
258.

EXERCISES.

1. To measure indirectly the distance from an accessible point A to an inaccessible point B.

Suggestion. Construct $A D \perp$ the line of sight from A to B, and $E D \perp A D$. Let C be the point $E=-\frac{C}{D}$ on $A D$ which lies in line with E and B.
Now show that $E D C$ and $B A C$ are mutually equiangular and hence similar. What segments need to be measured in order to compute $A B$? Give full details of proof.
2. Prove that two right triangles are similar if they have an acute angle of one equal to an acute angle of the other.
3. Two isosceles triangles are similar if they have the vertical angle of one equal to the vertical angle of the other.
4. Two triangles which have the sides of one respectively parallel or perpendicular to the sides of the other are similar.
5. Show by similar triangles that the segment joining the midpoints of two sides of a triangle is equal to one half the third side.
259. Theorem. If two triangles have an angle of one equal to an angle of the other and the pairs of adjacent sides in the same ratio, the triangles are similar.

Given $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in which $\angle A=\angle A^{\prime}$ and $\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}$.
To prove that $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$.
Proof: Place $\triangle A^{\prime} B^{\prime} C^{\prime}$ upon $\triangle A B C$ with $\angle A^{\prime}$ on $\angle A$, $B^{\prime} C^{\prime}$ taking the position, $D E$.

Then,

$$
\begin{equation*}
\frac{A B}{A D}=\frac{A C}{A E} \tag{Why?}
\end{equation*}
$$

and hence,
$D E \| B C$.
(Why?)
Now show that $\triangle A D E$ and $A B C$ are mutually equiangular and hence similar.

260. Theorem. If two triangles have their pairs of corresponding sides in the same ratio, they are similar.

Given $\triangle A B C$ and $A^{\prime} B^{\prime} C$ in which $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{C}}=\frac{C A}{C^{\prime} A^{\prime}}$,

To prove that $\triangle A B C \sim$ $\triangle A^{\prime} B^{\prime} C^{\prime}$, that is, to prove $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \angle C=\angle C^{\prime}$.

Proof : Lay off on $A B$ and $A C$ respectively $A D=A^{\prime} B^{\prime}$ and $A E=A^{\prime} C^{\prime}$, and draw $D E$.

Now prove, as in § 259 , that $\triangle A D E \sim \triangle A B C$,
and hence, that $\quad \frac{A D}{D E}=\frac{A B}{B C}$.
But,

$$
\begin{equation*}
\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}=\frac{A B}{B C} . \quad \text { Why?) } \tag{1}
\end{equation*}
$$

Hence, since $A D=A^{\prime} B^{\prime}$, it follows from (1) and (2) that $D E=B^{\prime} C^{\prime}$, as in Ex. 5, § 247.

Now show that $\triangle A^{\prime} B^{\prime} C^{\prime} \cong \triangle A D E$,
and hence, that $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$.
Make an outline of the steps in this proof and show how each is needed for the one that follows.
261. EXERCISES.

1. Given a triangle whose sides are $2,3,4$. Construct a triangle having its angles equal respectively to those of the given triangle and having a side 10 corresponding to the given side 2.
2. If each of two triangles is similar to a third triangle, they are similar to each other.
3. If in a right triangle a perpendicnlar be drawn from the vertex of the right angle to the hypotenuse, show that each of the triangles thas formed is similar to the given triangle, and hence that they are similar to each other.
4. In the figure of Ex. 3, make a table showing which angles are equal and which pairs of sides are corresponding in the fol-
 lowing pairs of triangles: $A C D$ and $A C B, C D B$ and $A C B, A C D$ and $C D B$.
5. On a given segment as a side show how to construct a triangle similar to a given equilateral triangle.
6. Tineonem. The square on the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides.

Given $\triangle A B C$ with a right angle at C. Call the lengths of the sides opposite $\measuredangle A, B, C$, respectively, a, b, c.

To prove that $c^{2}=a^{2}+b^{2}$.
Proof: Let the perpendicular p divide the hypotenuse into the two parts m and n so that $c=m+n$.

From $\triangle A C D$ and $A C B$ show that $\frac{m}{b}=\frac{b}{c}$.
From $\triangle C D B$ and $A C B$ show that $\frac{n}{a}=\frac{a}{c}$.
From (1) $m c=b^{2}$
and from (\because) $n c=a^{2} \quad$ (Why?).
From (3) and (t) $(m+u) \cdot=a^{2}+b^{2} \quad\left(W^{+} y_{?} ?\right)$.
That is, $c \cdot c=c^{2}=a^{2}+b^{2}$.
For another proof of this theorem see $\$ 319$.
Historical Note. The proof given ahore is supposed to be that given by Pythagoras, who first discovered the theorem.
263.

EXERCISES.

1. The radius of a circle is s. What is the distance from the center to a chord whose length is 6 ?
2. In the same circle, what is the length of a chord whose listance from the center is 5 ?
3. Find the diagonal of a square whose side is \bar{i} : whose side is a.
4. What is the sidm of a square whose diagomal is s ? whose diagonal is d ?
5. The hypotenuse of a right isosceles triangle is 12 inches. Find the lengths of its sides.
6. The diagonals of a rhombus are 14 and 10 inches respectively. Find the length of its sides. (See § 147, Ex. 4.)
7. The square on the hypotenuse of a right triangle is equal to four times the square on the median to the hypotenuse.
8. What is the radius of a circle if a chord 12 inches long is 9 inches from the centre?
9. Find the altitude of an equilateral triangle whose side is 8 ; whose side is a.
10. If the altitude of an equilateral triangle is h, find its side. (Use the formula obtained under Ex. 9.)
11. Find the altitude of a triangle whose sides are 6,8 , and 10 .
12. The oval in the figure is a design used in the construction of sewers. It is constructed as follows: In the $\odot O A$ let $C D$, the perpendicular bisector of $A B$, meet the arc $A O^{\prime} B$ at O^{\prime}. Ares $A M$ and $B N$ are drawn with the same radius $A B$ and with centers B and A respectively.

The lines $B O^{\prime}$ and $A O^{\prime}$ meet these arcs in M and N respectively.

The are $M D N$ has the center O^{\prime} and radius $O^{\prime} M$.
(a) Is arc $A C B$ tangent to $\widehat{A M} I$ and $\overparen{B N}$ at A and B respectively? Why?
(b) Is are $M D N$ tangent to $A M$ and
 $\widehat{B N}$ at M and N respectively? Why?
(c) If $A B=8$ feet, find $B O^{\prime}$, and hence, $O^{\prime} M$, and finally $C D$. That is, if the sewer is 8 feet wide, what is its depth?
(d) If the width of the sewer is a feet, show that its depth is $\frac{a}{2}(4-\sqrt{2})$.
(e) If the depth of the sewer is d feet, show that its width is $\frac{d(4+\sqrt{2})}{7}$.
(f) Compute to two places of decimals the width of a sewer whose depth is 12 feet.
264. Theorem. If in two right triangles the hypotenuse of the one equals the hypotenuse of the other, and if the sides a, b and a^{\prime}, b^{\prime} are such that $a>a^{\prime}$, then $b<b^{\prime}$.

Proof: Let c be the length of the hypotenuse in each.
Then $a^{2}+b^{2}=c^{2}$ and $a^{\prime 2}+b^{\prime 2}=c^{2}$.
(Why?)
$\therefore a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$.
(Why?)
and $a^{2}-a^{\prime 2}=b^{\prime 2}-b^{2}$.
(Why?)
Since $a>a^{\prime}$, the left member of the last equation is positive, and hence the
 right member is also positive, that is, $b<b^{\prime}$.
265. Theorem. In the same circle or in equal circles, of two unequal chords, the greater is nearer the center.

Given (s) $O A$ and $O^{\prime} A^{\prime}$ in which $O A=O^{\prime} A^{\prime}$ and $A B>A^{\prime} B^{\prime}$.
To prove that $A B$ is nearer the center than $A^{\prime} B^{\prime}$.
Proof: Draw the 这 b and b^{\prime} and the radii c and c^{\prime}.
Then a and a^{\prime} are halves of $A B$ and $A^{\prime} B^{\prime}$ respectively. Now complete the proof, using § 264 .
266. Theorem. State and prove the converse of the theorem in §265, using the same figure.
267. Definitions. A continued proportion is a series of equal ratios connected by signs of equality.

$$
\text { E.g. } \frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{\bar{h}} \text {. }
$$

The perimeter of a polygon is the sum of its sides.
268. Theorem. In a continued proportion, the sum of the antecedents and the sum of the consequents form a ratio equal to any one of the given ratios.

Given the continued proportion $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{h}$.
To prove that $\quad \frac{a+c+e+g}{b+d+f+h}=\frac{a}{b}$.
Proof: Let $\frac{a}{b}=r$.

Then,

$$
\frac{c}{d}=r, \frac{e}{f}=r, \frac{g}{\bar{h}}=r .
$$

Hence,

$$
a=b r, \quad c=d r, e=f r, g=h r,
$$

$$
\text { and } a+c+e+g=b r+d r+f r+h r=(b+d+f+h) r \text {, }
$$

or

$$
\frac{a+c+e+g}{b+d+f+h}=r=\frac{a}{b} .
$$

Give all reasons in full.
269. Theorem. The perimeters of two similar polygons are in the same ratio as any two corresponding sides.

Proof: By definition of similar polygons

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}=\frac{D E}{D^{\prime} E^{\prime}}=\frac{E A}{E^{\prime} A^{\prime}}
$$

Complete the proof.
270. Theorem. If the diagonals drawn from one vertex in each of two polygons divide them into the same number of triangles, similar each to each and similarly placed, then the two polygons are similar.

Given the diagonals drawn from the vertices A and A^{\prime} in the polygons P and P^{\prime}, forming the same number of triangles in each, such that $\quad \triangle I \sim \triangle I^{\prime}, \triangle I I \sim \Delta I I^{\prime}, \Delta I I \sim \sim \triangle I I^{\prime}$.

To prove that $P \sim P^{\prime}$.
Outline of Proof: (1) Use the hypothesis to show that

$$
\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \angle C=\angle C^{\prime} \text {, etc. }
$$

(2) Show that $\quad \frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}$, etc.

Notice that the proportion $\frac{B C}{B^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}$ follows from

$$
\begin{equation*}
\frac{B C^{\prime}}{B^{\prime} C^{\prime}}=\frac{A^{\prime}}{A^{\prime} C^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}} . \tag{Why?}
\end{equation*}
$$

Give the proof in detail.
271. Theorem. Stute the converse of the preceding theorem, and aixe the poof in fall detail.

Make an outline of all the steps in the proofs of these two theorems.
272. Theorem. If through a fixed point within a circle any number of chords are drawn, the product of the segments of one chord is equal to the product of the segments of any other.

Given $\odot C$ with any two chords $A B$ and $D E$ intersecting in P.
To prove that $A P \quad P B=E P \cdot P D$.
Proof : Draw $E B$ and $D A$.
Then,
$\angle 1=\angle 2$ and $\angle 3=\angle 4$.
(Why?)
Hence,

$$
\triangle E P B \sim \triangle P D A .
$$

(Why?)
Which are corresponding angles, and which are corresponding sides?

Show that

$$
\frac{B P}{E P}=\frac{P D}{P A} .
$$

Complete the proof.
It follows from this theorem that if a chord $A B$ is made to swing around the fixed point P, the product $A P \cdot P B$ does not change, that is, it is constant.
273. EXERCISES.

1. Which chord throngh a point is bisected by the diameter through that point? Why?
2. Through a given point within a circle which chord is the shortest? Why?
3. The product $A P \cdot P B$ is the area of the rectangle whose base and altitude are the segments of $A B$. (See §307.)

Note that this area is constant as the chord swings about the point P as a pivot.
274. Definition. If a secant of a circle is drawn from a point P without it, meeting the circle in the points A and B, then $P B$ is called the whole secant and $P A$ the external segment, provided A lies between B and P.
275. Theorem. If from a fixed point outside a circle any number of secants are drawn, the product of one whole secant and its external segment is the same as that of any whole secant and its external segment.

Given secants $P B$ and $P E$ drawn from a point P.
To prove that $P A \cdot P B=P D \cdot P E$.
Proof: In the figure show that $\triangle P D B \sim \triangle P A E$.
Complete the proof.
276.

EXERCISES.

1. A point P is 8 inches from the center of a circle whose radius is 4. Any secant is drawn from P, cutting the circle. Find the product of the whole secant and its external segment.
2. From the same point without a circle two secants are drawn. If one whole secant and its external segment are 14 and 5 respectively and the other external segment is 7, find the other whole secant.
3. Two chords intersect within a circle. The segments of one are m and n and one segment of the other is p. Find the remaining segment.
4. Theorem. If a tangent and a secant meet outside a circle, the square on the tangent is equal to the product of the whole secant and its external segment.

Proof: Show that $\triangle A P D \sim \triangle B P D$ and hence that $P B: P D=P D: P A$.

Complete the proof.

278. EXERCISES.

1. If a square is constructed on $P D$ as a side, and a rectangle with $P B$ as base and $P A$ as altitude, compare their areas as the secant revolves about P as a pivot.
2. Show that the theorem in § 277 may be obtained as a direct consequence of that in § 275 by supposing one secaut to swing about P as a pivot till it becomes a tangent.
3. A point P is 10 inches from the center of a circle whose radius is 6 inches. Find the length of the tangent from P to the circle.
4. The length of a tangent from P to a circle is 7 inches, and the external segment of a secant is 4 inches. Find the length of the whole secant.
5. What theorems are included in the following statement: " From a point P in a plane a line is drawn cutting a circle in A and B. Then the product $P A \cdot P B$ is the same for all such lines"?
6. In a circle of radius 10 a point P divides a chord into two segments 4 and 6. How far from the center is P ?

Suggestion. Use Ex. 5.
7. In two similar polygons two corresponding sides are 3 and 7. If the perimeter of the first polygon is 45 , what is the perimeter of the second?
8. The perimeters of two similar polygons are 32 and 84 . A side of the first is 11 . What is the corresponding side of the second polygon?
279. Definitions. In a right triangle $A B C$, right-angled at C, the ratio $\frac{C B}{A B}$ is called the sine of $\angle A$ and is written $\sin A$.

If any other point B^{\prime} be taken on the hypotenuse or the hypotenuse extended, and a perpendicular $B^{\prime} C^{\prime}$ be let fall to $A C^{\prime}$.
 then $\frac{C^{\prime} B^{\prime}}{A B^{\prime}}=\frac{C B}{A B}$. (Why?)

Likewise in $\triangle A B^{\prime \prime} C^{\prime \prime}$, in which $A B^{\prime \prime}=1$ unit, we have $\frac{C^{\prime \prime} B^{\prime \prime}}{A B^{\prime \prime}}=\frac{C^{\prime \prime} B^{\prime \prime}}{1}=C^{\prime \prime} B^{\prime \prime}=\sin A$.

Hence, in a right triangle whose hypotenuse is unity, the length of the side opposite an acute angle is the sine of that angle.
280. Theorem. The ratio of the sides opposite two acute angles of a triangle is equal to the ratio of the sines of these angles.

Given $\triangle A B C$ with $\angle A$ and $\angle B$ both acute angles.
To prove that $\frac{\sin A}{\sin B}=\frac{a}{b}$.
Proof: Draw the perpendicular p.
Then $\sin A=\frac{p}{b}$ and $\sin B={ }_{a}^{p}$.

Hence, $\frac{\sin A}{\sin B}=\frac{l^{\prime}}{b} \div \frac{P}{a}=\frac{\prime}{b}$. Sus : 241 , (3).
 given bure for acute angles only. In trigomometry. where the subject is studictl in full detail, they are extended to apply to any angles whatever. Olher ratios called cosines, tangents, ete, are also intronlued.
281. The theorem of § 280 is of great importance in finding certain parts of a triangle when other parts are known. By careful measurement (and in other ways) tables may be constructed giving the sine of any angle.

282.

 EXERCISES.1. By means of a protractor construct angles of $10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}$, $50^{\circ}, 60^{\circ}, 70^{\circ}, 80^{\circ}$, and measure the sine of each angle, and so construct a table of these sines.

If one decimeter is used as a unit for the hypotenuse, then the length of the side opposite $\angle A$, expressed in terms of clecimeters, is the sine of the angle A.

Notice that the values of the sines are the same no matter what unit is used, but in general the larger the unit the more accurately is the sine determined.

By means of the table just constructed solve the following problems, using the notation of the figure:
2. Given $\angle A=30^{\circ}, B=80^{\circ}, b=12$, find a, c.

Solution. By the theorem, $\S 280, \frac{a}{b}=\frac{\sin A}{\sin B}$. Substituting the values $b=12$, and $\sin A=\sin 30^{\circ}$,
 $\sin B=\sin 80^{\circ}$ from the table, we find a. In the same manner find c.
3. Given $a=16, \angle A=60^{\circ}, \angle C=70^{\circ}$, find $\angle B, b, c$.
4. A lighthouse L is observed from a ship S to be due northeast. After sailing north 9 miles to S^{\prime}, the lighthouse is observed to be 35° south of east. Find the distance from the ship to the lighthouse at each point of observation. Use $\S 280$.
5. A ladder 25 feet long rests with one end on the ground at a point 12 feet from a wall. At what angle does the ladder meet the ground.
6. If two sides and the included angle of a triangle are known, can the'remaining parts be found by means of $\S 280$?

283. In land surveying on an extensive scale, processes similar to that used on the preceding page are constantly employed in finding the sides of triangles.

To begin with, a level piece of ground is selected and a line $A B$ measured with great care. Then a point C is selected, and $\angle A B C$ and $\angle B A C$ measured very accurately with an instrument. Sides $A C$ and $B C$ may now be computed by means
 of the theorem, $\S 280$, and a table of sines (see page opposite). By measuring $\angle D A C$ and $\angle A C D, C D$ may be computed. By this process, called triangulating, it is possible to survey over a large territory without directly measuring any line except the first.
284. The saving of labor afforded by this indirect method of measuring is very great, and especially so in a rough and mountainous country, since measuring the straight line distance from one mountain peak to another by means of a measuring chain is impossible.

In practice, tables of logarithms are used and the sines are carried out to a larger number of decimal places, but the general process is that used on the preceding page.
285. EXERCISES.

Using the table on the next page, solve the following examples:

1. Given $A=53^{\circ}, B=65^{\circ}, a=11.5$. Find b, c, and $\angle C$.
2. Given $B=19, C^{\prime}=71^{\circ}, a=19.3$. Find b, c, and $\angle A$.
3. Given $A=65^{\circ}, a=14, b=12$. Find $\angle B, \angle C$, and c.

Solution. $\frac{\operatorname{Sin} B}{\operatorname{Sin} A}=\frac{b}{a}$ or $\sin B=\sin .1, \frac{b}{a}=.91 \times \frac{10}{14}=.78$.
From the table we find that $\sin 51^{\circ}=.78$. Hence $B=51^{\circ} . \angle C$ and c may now be found as before.
4. Given $A=71^{\circ}, a=19.5, b=17$. Find $\angle B, \angle C$, and c. As before, $\sin B=\sin A \times \frac{b}{a}=\sin 71^{\circ} \times \frac{17}{19.5}=.95 \times \frac{17}{19.5}=.828$. From the table we find $\sin 55^{\circ}=.82$ and $\sin 56^{\circ}=.83$. But $\sin B$ is nearer .83 than .82, and hence $B=56^{\circ}$ is the nearest approximation using a degree as the smallest unit.

Angle	Sin	Angle	\sin	Angle	Sin	Angle	Sin	Angle	Sin	Angle	Sin
0°	0	15°	.26	30°	.50	45°	.71	60°	.87	75°	. .97
1°	.02	16°	.28	31°	.52	46°	.72	61°	.87	76°	.97
2°	.03	17°	.29	32°	.53	47°	.73	62°	.88	77°	.97
3°	.05	18°	.31	33°	.54	48°	.74	63°	.89	78°	.98
4°	.07	19°	.33	34°	.56	49°	.75	64°	.90	79°	.98
5°	.09	20°	.34	35°	.57	50°	.77	65°	.91	80°	.98
6°	.10	21°	.36	36°	.59	51°	.78	66°	.91	81°	.99
7°	.12	22°	.37	37°	.60	52°	.79	67°	.92	82°	.99
8°	.14	23°	.39	38°	.62	53°	.80	68°	.93	83°	.99
9°	.16	24°	.41	39°	.63	54°	.81	69°	.93	84°	.99
10°	.17	25°	.42	40°	.64	55°	.82	70°	.94	85°	1.
11°	.19	26°	.44	41°	.66	56°	.83	71°	.95	86°	1.
12°	.21	27°	.45	42°	.67	57°	.84	72°	.95	87°	1.
13°	.22	28°	.47	43°	.68	58°	.85	73°	.96	88°	1.
14°	.24	29°	.48	44°	.69	59°	.86	74°	.96	89°	1.

286. Definition. An object $A B$ is said to subtend an angle $A P B$ from a point P if the lines $P A$ and $P B$ are supposed to be drawn from P to the extremities of the object.

287.

EXERCISES.

1. A building known to be 150 feet high is seen to subtend an augle of 20°. How far is the observer from the building if he is standing on a level with its base?
2. Show how to find the distance from an accessible to an inaccesible point by means of $\S 280$ and the table of sines.
3. A flagstaff is 125 feet tall. How far from it must one be in order that the flagstaff shall subtend an angle of 25° ?

PROBLEMS OF CONSTRUCTION.

288. Instruments. In addition to the ruler, compasses, and protractor described in $\S 4 t$, the parallel ruler is convenient for drawing lines through given points parallel to given lines without each time making the construction of $\S 101$.

Description. R and R^{\prime} are two rulers of equal length and width. $A B$ and (D are arms of equal length pivoted at the points A, B, C, and D, making $A C^{+}=B D$.

Why do the rulers, when thus constructed,
 remain parallel as they are spread?
289. Segments of equal length can be laid off with great accuracy on a line-segment by means of the compasses. The following construction makes use of the compasses and parallel ruler.
290. Problem. To divide a given line-segment into any number of equal parts.

Construction. Proceed as in 51.99 Ex. 5, using the parallel ruler to draw the parallel lines.

Give the construction and proof in full.
Historical Note. The idea of similarity of geometric figures, or "sameness of shap"," is one of early origin, as is also the simple theory of proportion. It was probably used by Py thagoras to prove the famons throrm known hy his man. (Ser siol) But the discovery by him of the inemmonsumble case (S.s.at) showed that this theory was inaleguath for the rigurons proof of all theorems on similar figures. It remained for Endexns, the teacher of Ilato, to perfect a rigorous thery of ratio and proportion.

Enclid, following his predecessors, deals with ratios of magnitudes in general as well as of numbers. Later writers have frequently insisted that ratios in general are not numbers. But nothing is gained by this procedure, since they possess all the properties of numbers. In this book a ratio is treated simply as the quotient of two numbers. See §§ 238-242.
291. Problem. Given three line-segments m, n, p, to construct a fourth segment q such that $\frac{m}{n}=\frac{p}{q}$; that is, to find a fourth proportional to m, n, and p.

Construction. Draw two indefinite straight lines, $A x$ and $A y$ making a convenient angle.

On $A y$ lay off $A B=m, B C=n$. On $A x$ lay off $A D=p$. Draw $B D$.
 Through C draw $C E \| B D$. Then $D E=q$ is the required segment.

Give the proof in detail.
292.

EXERCISES.

1. Apply the method of $\S 290$ to bisect a given line-segment, and compare this with the method of $\S 51$.
2. Divide a line $7 \frac{3}{4}$ inches long into 11 equal parts by the method of $\S 290$, and compare with the process of measuring by means of an ordinary ruler giving inches and sixteenths.
3. Using the same segments as in § 291, construct a segment q such that $\frac{m}{p}=\frac{n}{q}$; also such that $\frac{n}{p}=\frac{m}{q}$.
4. Using the same segments as in the preceding, construct a segment q such that $\frac{p}{m}=\frac{n}{q}$; also such that $\frac{p}{n}=\frac{m}{q}$.

What is q called in each case?
5. If the given segments n, n, p are respectively $3 \frac{3}{8}$ inches, $5 \frac{5}{\frac{5}{16}}$ inches, $4 \frac{5}{8}$ inches, compute q such that $\frac{m}{n}=\frac{p}{q}$. Also construct q as in $\S 291$ and compare results.
293. Definitions. If three numbers a, m, and b are such that $a: m=m: b$, then m is the mean proportional between a and b, and b is the third proportional to a and m.
294. Problem. To construct a mean proportional between two given segments m and n.

Construction. On an indefinite line $x y$ lay off $A B=m$ and $B C=n . \quad$ On $A C$ as a diameter construct a semicircle.

At B erect a perpendicular to $A C$ meeting the semicircle in D. Then $B D=p$ is the required segment.

Proof. Draw $A D$ and $C D$ and prove

$$
\triangle A B D \sim \triangle C B D
$$

Complete the proof.
295.

EXERCISES.

1. Show that in $\S 277 D P$ is a mean proportional between $P B$ and $P A$.
2. If in the above problem $m=3$, and $n=5$ show that the construction gives $\sqrt{15}$.
3. Show how to construct a segment $p=\sqrt{\overline{5}}$, also $p=\sqrt{3}, p=\sqrt{2}$, by means of the above process.
4. Show how to construct a square equal in area to a given rectangle.
5. Show how to construct on a given lase a rectangle equal in area to a given square.

Suppose $A B=m$ is the given base and $B D=p$ a side of the given, square, the two segments being placed at right angles as in the figure above. The problem is then to find on the line $1 B$ the center of a circle which passes through the points A and D. To do this counect A and I and construct a prependicular bisector of this segment meeting $A{ }^{\prime}$ in a point which is the center of the required circle. $B C=n$ is then the required side of the rectangle since $m \cdot n=p^{2}$.
296. Problem. To divide a line-segment into three parts proportional to three given segments m, n, p.

Construction. Let $A B$ be the given segment. Construct $A x$ and on it lay off m, n, p as shown in the figure. Complete the figure and give proof in full.

297.

EXERCISES.

1. Divide a line-segment 5 inches long into three parts proportional to 2,3 , and 4 .
2. Divide a segment 11 inches long into parts proportional to 3,5 , 7 , and 9.

First compute the lengths of the required segments, then construct them and measure the segments obtained. Compare the results. Which method is more convenient? Which is more accurate?
3. Divide a segment 9 inches long into two parts proportional to 1 and $\sqrt{2}$.

Also compute the required segments. Which is more convenient? More accurate?
4. Divide a segment whose length is $\sqrt{11}$ into two parts proportional to $\sqrt{2}$ and $\sqrt{5}$.

First construct the segments whose lengths are $\sqrt{2}, \sqrt{5}$, and $\sqrt{11}$. Also compute the required segments.
5. Divide a given line-segment into parts proportional to two given segments m and n, (a) if the division point falls on the segment; (b) if the division point falls on the segment produced. See § 252 .
6. A triangle is inscribed in another by joining the middle points of the sides.
(a) What is the ratio of the perimeters of the original and the inscribed triangles?
(b) Is the inscribed triangle similar to the original?
298. Problem. On a given line-segment as a side construct a triangle similar to a given triangle.

Construction. Let $A B C$ be the given triangle and $A^{\prime} B^{\prime}$ the given segment, and let it correspond t" $A B$ of the given triangle.

Construct $\angle 2=\angle 1$ and $\angle t=\angle 3$ and produce the sides till they neet in C^{\prime}. Then $A^{\prime} B^{\prime} C^{\prime}$ is the required triangle (Why?).
299.

EXERCISES

1. In the problem of $\S 298$ construct on $A^{\prime} B^{\prime}$ a triangle similar to $A B C$ such that $A^{\prime} B^{\prime}$ and $B C^{\prime}$ are corresponding sides.
2. Show that on a given segment three different triangles may be constructed similar to a given triangle.
3. Solve the problem of $\S 298$ ly making $\angle 2=\angle 1$ and constructing $A^{\prime} C^{\prime \prime}$ so that $\frac{A B}{A^{\prime} B^{\prime}}=\frac{A^{\prime} C}{\Lambda^{\prime} C^{\prime \prime}}$. Give the solution and proof in full.
4. On a given segment as a side construct a polygon similar to a given polygon, by first dividing the given polygon inti triangles and then constructing triangles in order similar to these. Apply § 270.
5. On a given segment construct a polygon similar to a given polygon in a manner amalogous to the methorl used in Ex. 3 for constructing a triangle similar to a given triangle.
6. $1 B C$ is a right triangle with the lyppoteunse $A B$. and $C D \perp A B$. Prove $A C$ a mean proportional between $A B$ and A D and likewise ('/3 a mean proportional between $A B$ and $D B$.
7. Use the $1 . h r o r r m$ of $\S 2 \pi 7$ to construct a square equall in area to that of a given reclangle.
8. The tanguls to two intersecting cireles from any point in their

9. In the figure $A D$ and $B E$ are tangents at the extremities of a diameter. If $B D$ and $A E$ meet in a point C on the circle prove that $A B$ is a mean proportional between $A D$ and $B E$.
10. The greatest distance to a chord 8 inches long from a point on its intercepted are (minor arc) is 2 inches. Find the diameter of the circle. Use § 272.
11. At the extremities of a chord $A B$ tangents are drawn. From a point in the arc $A B$ perpendiculars $P C, P D, P F$ are drawn to the chord and the tangents. Prove that $P C$ is a mean proportional between $P D$ and $P F$.

Suggestion. Draw segments $A P$ and $B P$ and prove $\triangle A P F \dot{\sim} \triangle B C P$ and $\triangle A P C \sim B P D$. Then

$$
\frac{A P}{P B}=\frac{F P}{P C} \text { and } \frac{A P}{P B}=\frac{P C}{P D}
$$

SUMMARY OF CHAPTER III.

1. Make a list of the definitions in Chapter III.
2. Make a list of the theorems on proportional segments involving triangles.
3. State the various conditions which make triangles similar.
4. State the conclusions which can be drawn when it is known that two triangles are similar.
5. State the theorems on proportional segments involving polygons.
6. State the theorems on proportional segments involving straight lines and circles.
\%. State in the form of theorems the various ways in which a proportion may be taken so as to leave the four terms still in proportion.
7. Under what conditions is a segment a mean proportional between two given segments. For instance, see § 27π.
8. Make a list of the problems of construction in Chapter III.
9. State some important applications of the theorems on proportion. (Return to this question after studying those which follow.)

PROBLEMS AND APPLICATIONS.

1. The middle points of adjacent sides of a square are joined.
(a) Prove that the inscribed figure is a square.
(b) What is the ratio of the inscribed and the original squares.
(c) If a side of the original square is a, find a side of the inscribed square.
(d) If a side of the inscribed square is b, find a side of the original square.
2. Two strips intersect at right angles.
(a) If the width of each strip is 3 inches, what is the largest square which can be placed on them so that its sides will pass through the corner points as shown in the figure? (The corners will bisect the sides of the square.)
(b) What is the side of this square if the width of each strip is a ?
(c) Find the side of the square if the width of one strip is 3 and that of the other 5 .
(d) Find the side of the square if the width of one strip is a and that of the other b.
3. In the figure $-A C D$ is a square and $E F C H \ldots$ is a regular octagon.
(a) Show that $A E, E F, F B$ are proportional to $1, \sqrt{2}, 1$. (Assume $A E=1$ and find $N E$.)
(b) If $A B=a$, show that $\frac{A F}{a}=\frac{1+\sqrt{2}}{\frac{2}{2}+\sqrt{2}}=\frac{\sqrt{2}}{2}$.
(c) Find $\angle F E N$. Sor § 163, Ex. 2.
(d) Show that f $O=A F$, and hence that the regular octagon may be constructed as shown in the figure.
(e) Now that $\angle .1 O E=221^{\circ}$ by $\S 219$, and use this to make another proof that EF'iH ... is a regular ortacon.
4. Find thre area of a square whose diagonal is d.

Tile Pattern.

Tile Pattern.

5. If a side of a regular octagon is a, find its area.
6. A floor is tiled with regular whiteoctagons and black squares as shown in the design. What per cent (approximately) of the floor is black?
7. Divide a circle into eight equal parts and join alternate division points.
(a) Prove that $L M N P Q \ldots$ is a regular octagon.

Cut Glass Design.
(b) If the diameter of the circle is a, show that $L E=\frac{a}{2}(\sqrt{2}-1)$.

Suggestion. Find $H E$ and then use Ex. 3, (d).
8. Problem. Inscribe a square in a given semicircle.

Construction. Let $A B$ be the diameter of the given semicircle. At B construct a perpendicular to $A B$, making $B D=A B$. Connect D with the center C, meeting the circle at E. Let fall $E F$ perpendicular to $A B$. Then $E F$ is a side of the required square. Complete the figure and make the proof by showing that $E F=2 C F$.
9. Problem. Inscribe a square in a given triangle.

Construction. Let $A B C$ be the given tri-
angle. Draw $C D$ parallel to $A B$, making $C D=$ CO. Complete the square $C D E O$.

Draw DA meeting $C B$ in F. Draw $F G\|A B, G H\| C O$, and $F K \| C O$. Then
 $F G H K \sim C D E O$ and hence is the required square.
10. The sides of a triangle are $13,17,19$. Find the lengtiss of the segments into which the angle bisectors divide the opposite sides.
11. The angles of a triangle are $30^{\circ}, 60^{\circ}, 90^{\circ}$. Find the lengths of the segments into which the angle bisectors divide the opposite sides if the hypotenuse is 10 .
12. Prove that the perpendicular bisectors of all the sides of a polygon inscribed in a circle meet in a point.
13. An equilateral polygon inscribed in a circle is equiangular.
14. The goal posts on a football field are 18 feet apart. If in making a touchdown the ball crosses the goal line 25 ft . from the nearest, goal post, how far back should it be carried so that the goal posts shall subtend the greatert possible angle from the place where the ball is
 placed? See Ex. 22, page 111, and $\S 277$.
15. Solve the preceding problem if the touchdown is made a feet from the nearest goal post, and thus obtain a formula by means of which the distance may be computed in any case.
16. A triangle has a fixed base and a constant vertex angle. Show that the locus of the rertex consists of two ares whose end-points are the extremities of the base. Ser Ex. -3), page 111.

Nute that the locus also includes an arc on the opposite side of $1 P$ from the one shown in the
 figure.

It follows that if two points A and B subtend the same angle from P and from Q, then a circle may be passed through A, B, P, Q.
17. In the figure, A, B, F lie in the same straight lius, as do also l, (', F, and $\angle 1=\angle \because$.
((1) If $B F=8, \prime^{\prime} F=0$, and $/ \prime^{\prime}=12$, fiud $.1 / 2$.

Note. liy holding a small ohject, say a pencil, at arn's longell, and sighting anoss the ends of it, we may dommine apmoximately whether two
 given whjecta subtend the same angle.
18. Not having any instruments, an engineer proceeds as follows to obtain approximately the distance from an accessible point B to an inaccessible point A. Walking from B along the line $A B$ he takes 50 steps to F. Then he walks in a convenient direction 50 steps to C, and notes that A and B subtend a certain angle. He then proceeds along the same straight line until he reaches a point D at which A and B again subtend the same angle as at C. He then concludes that $D C=A B$. Is this
 conclusion correct? Give proof.
19. If the height of a building is known, show how the method of Ex. 18 can be used to determine the height of a flagstaff on it.
20. A building is 130 feet high, and a flagstaff on the top of it is 60 ft . high; 130 feet from the base of the building in a horizontal plane, the flagstaff subtends a certain angle. How far from the building along the same line is there another point at which the staff subtends the same angle? At what distance does it subtend the same angle as it does at 300 feet?
21. If the diagonals of an isosceles trapezoid are drawn, wbat similar triangles are produced?
22. Find the locus of points at a fixed distance from a given triangle, always measuring to the mearest point on it.
23. The line bisecting the bases of any trapezoid passes throngh the point of intersection of its diagonals.

Suggestion. Let E bisect $D C$, and draw $E O$
 meeting $A B$ in F. Prove $A F=F B$.
24. If two triangles have equal bases on one of two parallel lines, and their vertices on the other, then the sides of these triangles intercept equal segments on a line parallel to these and lying between them.
25. A segment bisecting the two bases of a trapezoid bisects every segment joining its other two sides and parallel to the bases.
(Prove $E F=H G$ and $F K=K H$, using Ex. 24.)

26. In a triangle lines are drawn parallel to oue side, forming trapezoids. Find the locus of the intersection points of their diagonals.
27. In the figure D, E, F are the middle points of the sides of an equilateral $\triangle A B C^{\prime}$ Arcs are constructed with centers A, B, C as shown in the figure.
(a) Prove that these arcs are tangent in pairs at the points D, E, F.
(b) Construct a circle tangent to the three arcs.
(c) What axes of symmetry has this figure?
28. In the figure $A B f^{\prime}$ is an equilateral triangle.
 Arcs $A B, B C$, and $C A$ are constructed with C^{\prime}, A, and B as centers. $A F, B E, C D$ are altitudes of the triangle.

Prove $\odot O G$ tangent to $\widehat{A B}, \widehat{B C}$, and \overparen{T}.
29. In the equilateral triangle $A B r^{\prime}, \overparen{A B}, \overparen{B C}$, and $\overparen{C A}$ are constructed as in the preceding example. $\widehat{D E}, \overparen{E F}, \overparen{F D}$ are constructed as in
 Ex. 27. The figure is completed making $A D E$, $D F B$, and $E F C$ similar to $A B C$.
(a) Construct a circle tangent to $\overparen{A D}, \overparen{D E}$, and $\widehat{E . I}$ as shown in the figure.
(b) Construct a circle tangent to $\widehat{E D}, \widehat{D F}$, and $\overparen{F E}$.
30. In the figure $A C B$ is a semicircle. Arcs
 $D E$ and $D F$ are constructed with B and A as centers. If $A D=4$ feet, find the radius of $\odot O C$.

Solution. Show that the value of r is derived from the equation $(4+r)^{2}=(4-r)^{2}+4^{2}$.

31. Construct the accompanying design. Notice that the points A, B, M, N, F, E divide the circle into six equal arcs. Sep Ex. s,

From Boynton Cathedral, England.
§163. The arcs $A O, O B$, etc., and the circle with center O^{\prime}, are constructed as in Ex. 28. The small circle with center at Q is constructed as in the preceding example.
32. $A B C$ is an equilateral arch and $A E B$ is a semicircle.
(a) If $A B$ (the span of the arch) is 10 feet, find the radius of the small circle tangent to the semicircle and the arcs of the arch.
(b) Find the radius $O E$ of the circle if $A B=s$.
(c) If $O E=2$, find $A B$.
33. The accompanying design consists of three
 semicircles and three circles related as shown in the figure.
(a) If $A B=12$, find $O Q$ by using the triangle $O S D$. The method is similar to that used in Ex. 30.
(b) Using the right triangle $D R O^{\prime}$, find $O^{\prime} x$. Notice that in order to have the circles with the centers O and O^{\prime} tangent to each other the sum of their radii must be equal to $R D$.

(c) If $A B=s$ show that $O Q=\frac{s}{6}$ aud $O^{\prime} x=\frac{s}{12}$, and construct the figure.
34. Upon a given segment $A B$ construct the design shown in the figure. Notice that it consists of the two preceding figures put together. Compare the radii of the circles
 in this design.

Ospedale Maggiore, Milan.
35. Between two parallel lines construct semicircles and circles as shown in the figure.

Solution. Suppose the construction made. Let $H E=r$, and $O Q=r^{\prime}$. Using the triangle $E H O$, show that $r^{\prime}=\frac{r}{4}$ and then construct the figure.
36. Between two parallel lines construct circles and equilateral arches as shown in the figure.

The Doge's Palace, Venice.
Hint.
$A Q=2 P H$ and $A H=3 P H$.
Hence

$$
\overline{H Q}^{2}=\overline{3 P H}^{2}-\overline{2 P H}^{2}=5 \overline{P H}^{2} .
$$

That is,

$$
P H: H Q=1: \sqrt{5} .
$$

Now divide $A C$ into two segments proportional to 1 and $\sqrt{5}$, and so construct the figure.

37. $A B C$ is an equilateral arch. $A D=H A, A F=E B=\frac{2}{3} A B$. Semicircles are constructed with E and F as centers, and radius $F B$.
(a) If $A B=s$, find $O H$ and construct the figure.

Sulution. Let $O H=r$. Then $B O=x-r, F B=\frac{s}{3}, D F=\frac{s}{6}$, $F O=\frac{s}{3}+r$.

From $\triangle O D B, \quad \overline{O D}^{2}=\left(1 i^{2}-\bar{D} \bar{i}^{2}=(n-r)^{2}-\left(\frac{s}{\underline{I}}\right)^{2}\right.$.

From (1) and $(\because) \quad(s-r)^{2}-\left(\frac{s}{2}\right)^{2}=\left(\frac{s}{3}+r\right)^{2}-\left(\frac{s}{6}\right)^{2}$.
Hence, nlow that $\quad r=f \mathrm{~s}$.
Construct the figure.
(b) If in the precoding $O H=1$ fent, find $A l$, and $A F$.
38. Between two parallel lines construct circles and semicircles having equal radii as shown in the figure.

Prove that the ratio $\frac{P H}{H Q}=\frac{S L}{R S}, R L K$ being an equilateral triangle and $K S=S L$. Divide CA in the ratio of $S L: R S$.

39. Through a fixed point on a circle chords are drawn and each extended to twice its length. Find the locus of the end-points of these segments. Compare Ex. 6, § 214.
40. If a quadcilateral is circuinseribed about a circle, show that the sums of its pairs of opposite sides are equal.
41. On a diameter produced of a given circle, find a point from which the tangents to the circle are of a given length. Solve this problem by construction, and also algebraically.
42. Compare the perimeters of equilateral triangles circumscribed about and inscribed in the same circle.
43. In a given square construct semicircles each tangeut to two sides of the square and terminating on the diameters of the square.

Construction. Connect E and F two extremities of diameters and ou $E F$ as a diameter construct a semicircle with center at O^{\prime}. Draw $O^{\prime} H$ perpendicular to $A B$ meeting the arc in H. Draw $O H$ meeting $A B$ in K. Draw $K O^{\prime \prime}$ perpendicular to $A B$ meeting the diagonal $A C$ in $O^{\prime \prime}$. Then $O^{\prime \prime}$ is the center of the required circle.

Proof. Draw $O^{\prime \prime} L \| F E$. We need to prove that $O^{\prime \prime} K=O^{\prime \prime} L$.

$$
\begin{equation*}
\triangle O O^{\prime} E \sim \triangle O O^{\prime \prime} L, \text { aud hence } \frac{O O^{\prime \prime}}{O O^{\prime \prime}}=\frac{O^{\prime \prime} L}{O^{\prime} E} .(\text { Why? }) \tag{1}
\end{equation*}
$$

Also $\triangle O O^{\prime} H \sim \triangle O O^{\prime \prime} K$, and hence $\frac{O O^{\prime \prime}}{O O^{\prime}}=\frac{O^{\prime \prime} K}{O^{\prime} H}$.
From (1) and (2) $\quad \frac{O^{\prime \prime} L}{O^{\prime} E}=\frac{O^{\prime \prime} K}{O^{\prime} H}$.
But $O^{\prime} E=O^{\prime} H$, and hence $O^{\prime \prime} L=O^{\prime \prime} K$.
This figure occurs in designs for steel ceilings.

CHAPTER IV.

AREAS OF POLYGONS.

AREAS OF RECTANGLES.
300. Heretofore certain properties of plane figures have been studied, such as conyruence and similarity, but no attempt has been made to measure the extent of surface inclosed by such figures. For this purpose we first consider the rectangle.
301. The surface inclosed by a rectangle is said to be exactly measured when we find how many times some unit square is contained in it.
E.g. if the base of a rectangle is five units long and its altitude three units, its surface contains a square one unit on a side fifteen times.

302. The number of times which a unit square is contained in the surface of a rectangle is called the numerical measure of the surface, or its area.

We distinguish three cases.
303. Case 1. If the silles of the given rectingle are $i n-$ tryral multiples of the sides of the unit symare, then the area of the rectangle is determined by finding into how many unit squares it can be diviled.

Thus if the sides of a rectanglo are m and n mits respectively, then it can be divilded into, m rows of unit sinatres, wach row containing n squares. Wence the area of such a rectangle is $m \times n$ unit squares, that is, in this casi",

$$
\begin{equation*}
\text { area }=\text { base } \text { altitude } . \tag{1}
\end{equation*}
$$

304. Case 2. If the sides of the rectangle are not integral multiples of the side of the chosen unit square, but if the side of this square can be divided into equal parts such that the sides of the rectangle are integral multiples of one of these parts, then the area of the rectangle may be expressed integrally in terms of this smaller unit square, and fractionally in terms of the original unit.

For example, if the base is 3.4 decimeters and the altitude 2.6 decimeters, then the rectangle cannot be exactly divided into square decimeters, but it can be exactly divided into square centimeters. Each row contains 34 centimeters and there are 26 such rows.

Hence, the area is $34 \times 26=884$ small squares or 8.84 square decimeters.

But $3.4 \times 2.6=8.84$. Hence, in this case also,

$$
\begin{equation*}
\text { area }=\text { base } \times \text { altitude } . \tag{2}
\end{equation*}
$$

305. Case 3. If a rectangle is such that there exists no common measure whatever of its base and altitude, then there is no surface unit in terms of which its area can be exactly expressed. But by choosing a unit sufficiently small we may determine the area of a rectangle which differs as little as we please from the given rectangle.
$E . g$. if the base is 5 inches and the altitude is $\sqrt{5}$ inches, then the rectangle cannot be exactly divided into equal squares, however small.

But since $\sqrt{5}=2.2361 \cdots$, if we take as a unit of area a square whose side is one one-thousandth of an inch, then the rectangle whose base is 5 inches and whose altitude is 2.236 inches can be exactly measured as in cases 1 and 2 , and its area is $5 \times 2.236=11.18$ square inches.

The small strip by which this rectangle differs from the given rectangle is less than .0002 of an inch in width, and its area is less than $5 \times .0002=.001$ of \cdot a square inch.

By expressing $\sqrt{5}$ to further places of decimals and thus using smaller units of area, successive rectangles may be found which differ less and less from the given rectangle.
306. An area thus obtained is called an approximate area of the rectangle.

For practical purpuses the surface of a rectangle is measured as soon as the width of the remaining strip is less than the width of the smallest unit square available.

From the foregoing considerations we are led to the following preliminary theorem:
307. Theorem. The area of a rectangle is equal to the product of its base and altitude.
308. The argument used above shows that the theorem ($\S 307$) holds for all rectangles used in the process of approximation, and hence it applies to all practical measurements of the areas of rectangles.

AREAS OF POLYGONS.

309. From the formula for rectangles,

$$
\text { area }=\text { base } \times \text { altitude },
$$

we deduce the areas of other rectilinear figures by means of the principle:

Two rectilinear figures are equivalent (that is, have the same area) if they are congruent, or if they can be divided into parts which are congruent in pairs.
E.g. the two figures here shown are equivalent sime A and III are congruent respec. tively to II and IY.

It can be shown that for any two given rectilinear figures. either it is pusisble wis divide them into parts which are congruent in pairs, or thu of the figures incloses a greater area than the other. Hence the tesis spurified is sufficiont for all rectilinear figures.

The symbol $=$ joining two polyinons means equivalent ar equal in trea.
310. Theorem. The area of a parallelogram is equal to the product of its base and altitude.

Given the parallelogram $A B C D$ whose base is $A B$ and whose altitude is $A E$.

To prove that area $A B C D=A B \times A E$.
Proof: Draw $B F \perp$ to $D C$ produced, forming the rectangle $A B F E$, whose base is $A B$ and altitude $A E$.

Then area $A B F E=A B \times A E$ (Why?).
If now we prove $\triangle \mathrm{I} \cong \triangle I I$, then the parallelogram is composed of parts I and III which are congruent respectively to parts II and III of the rectangle, and hence the parallelogram and rectangle are equal in area. Give this proof in full.
311.

EXERCISES.

1. In the figure $C F$ is perpendicular to $A B$ and $A E$ to $C B$. Prove that $A B \times C F=B C \times A E$.

SugGestion. (Show that $\triangle A B E \sim \triangle C B F$.)
It follows that the same result is obtained if either of two adjacent sides of a parallelogram is taken as the base.

2. Construct the figure described in Ex. 1 in such mamer that the point E falls on $B C$ extended and prove the theorem in that case.

In the following l_{1} and l_{2} are parallel lines.
3. Two parallelograms have equal bases lying on l_{1} and l_{2}. Show that they are equivalent.
4. One base of a parallelogram is fixed on l_{1} and the other moves along l_{2}. Does the area change ?
312. Theorem. The area of a triangle is equal to one half the product of its base and altitude.

Given the $\triangle A B C$ whose altitude upon the side $A B$ is $C D$.

To prove that the area of $\triangle A B C=\frac{1}{2}(A B \times C D)$.
Proof : Let G be the middle point of $A C$. Complete the parallelogram $A B F G$.

Prove that $\triangle C G H \cong \triangle B F H$, and hence show that $\triangle A B C$ and $\square A B F G$ have equal areas.

Hence the area of $\triangle A B C=E D \times A B$. But $E D=\frac{1}{2} C D$.
Hence the required area is $\frac{1}{2}(A B \times C D)$.
313.

EXERCISES.

1. Prove the theorem of $\S 312$ using the accompanying figure.
2. Prove this theorem also ly drawing a figure in which the given triangle is one half of a parallelogram.
3. If the middle points of two
 adjacent sides of a parallelogram are joined, a triangle is formed whose area is equal to one eighth of the area of the parallelogram.

In the following exercises l_{1} and l_{2} are parallel lines.
4. Show that two triangles are equivalent if their vertices lie in l_{2} and their equal bases in l_{1}.
5. A triangle has a fixed base in $l_{. y}$. If its vertex moves along l_{10} what ean you say of its area?
6. If the base of a triangle is fixul and if its vertex moves so as to preserve the area coustant, what is the locus of the vertex?
7. A line is drawn from a vertex of a triangle to the middle point of the opposite sile. C'ompare the areas of the triangles thas formed.

If a sugnent is drawn from the vertex to the point P in the base $A B$, show that the areas of the triangles are in the ratio $A P: P B$.
314. Theorem. The area of a trapezoid is equal to one half the sum of its bases multiplied by its altitude.

Proof: Draw a diagonal, thus forming two triangles having a common altitude. Form the expression for the sum of the areas of these triangles.

Give the proof in detail.
315. Theorem. The square erected on the sum of two line-segments as a side is equal to the sum of the squares erected on the two segments separately, plus twice the rectangle whose base is one segment and whose altitude is the other segment.

Proof: Let a and b represent the numerical measures of the two line-segments. Then, the square erected upon the segment $a+b$ may be subdivided as shown in the figure, giving

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} .
$$

Give the construction and proof in full.
316. EXERCISES.

1. Show by a figure that $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c$.
2. If $A B C$ is any triangle and $A D, B E$, and $C F$ are its altitudes, show that $\frac{A D}{B E}=\frac{A C}{B C}$, and $\frac{B E}{C F}=\frac{A B}{A C}$.

Hence show that

$$
A D \times C B=B E \times C A=C F \times A B
$$

3. The side $A B$ of $\square A B C D$ is fixed. What is the locus of the points C and D if $C D$ moves so as
 to leave the area of the parallelogram fixed?
4. Theorem. The square erected on the difference of two line-segments as a side is equal to the sum of the squares erected on the two segments separately, minus twice the rectangle whose base is one of the segments and whose altitude is the other.

Proof: Use the figure to show that

$$
(a-b)^{2}=a^{2}+b^{2}-2 a b .
$$

Give the construction and proof in detail.

318.

EXERCISES.

1. Show by a figure that

$$
(a-b)(a-c)=a^{2}+b c-a b-a c
$$

2. Likewise, show that $(a+b)(a-b)=a^{2}-b^{2}$.
3. Nhow by counting squares in the accompanying figure that in case of an isosceles right triangle the square coustructed on the hypotenuse is equal
 in area to the sum of the squares on the two legs.
4. In case the triangle is scalene, show by counting squares aud congruent parts of squares that the square constructed on the hypotenuse is equal in area to the sum of the squares on the other two sides.
5. Using the third figure, show that the same therrm holds for any right triangle.
llint. Call the legs of the given triangle a and b. Descrilu the construction of the anxiliary lines and give the proof in full.

This theorem is poned again in the mat paragraph and was alson prowd in § 2tio. The proof junt givelu is dow to Bhatisuma
 (lumil 111] a.d.), who constructed the figure and simply said "Behold!"
319. Theorem. The area of the square described on the hypotenuse of a right triangle is equal to the sum of the areas of the squares described on the other two sides.

Given the right triangle $A B C$, and the squares I, II, and III constructed as shown in the figure.

To prove that $\square I=\square I I+\square I I I$.
Proof: Complete the rectangle $A B C E$.
Construct $\triangle G F H \cong \triangle A C E$.
Draw $E H$ and produce $A E$ to meet the line $F H$ at π.
Prove that (a) $\triangle A E C \cong \triangle H E K$.
(b) $A E H G$ is a parallelogram whose base $A E$ and altitude $H K$ are each equal to a side of \square III.
(c) ECFH a parallelogram whose base $E C$ and altitude $E K$ are each equal to a side of $\square I I$.

But these two parallelograms together are equivalent to \square I (Why?).

The student should give the proof in detail, making an outline of the steps and showing how each step is needed for the next. For example, why is it necessary to prove $\triangle H E K \cong \triangle A E C$.

Compare the various proofs of this theorem that are given in this book. The method of counting squares shown on the opposite page is applicable to all cases where the two sides are commensurable.

Historical Note. The theorem of $\S 319$ is one of the most important in all mathematics. It is now fairly certain that the general theorem was first stated and proved by Pythagoras, though the story that he sacrificed 100 oxen to the gods on the occasion may be questioned. Special cases of the theorem were known to the Egyptians as early as 2000 b.c., e.g. that a triangle whose sides are $3,4,5$ is right-angled.

In this connection the Pythagoreans also discovered the irrational number, that is, that there are numbers such as $\sqrt{2}$ which cannot be expressed exactly as integers or as ordinary fractions.

320.

EXERCISES.

1. The bases of a trapezoid are 8 and 12 inches, and its altitude is 8 inches. Find its area.
2. The bases of a trapezoid are 16 and 20 inches, respectively, and the area of the smaller of its component triangles is s 0 square inches. Find the area of the trapezoid. See the figure in $\S 15$.
3. State in words the geometric theorem indicated in each of the following, and draw a figure to illustrate each case:

$$
\begin{aligned}
& \text { (a) } \quad h(a+b)=a h+b h . \\
& \text { (b) }(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right) . \\
& \text { (c) }(a+b)^{2}-(a-b)^{2}=4 a b .
\end{aligned}
$$

4. Show that the rectangle whose base is $a+b$ and whose altitude is $a-b$ has the same perimeter as the square whose side is a. By means of Ex. 2, § 318, compare their areas.
5. If two triangles have the same base but their rertices are on opposite sides of it, and if the segment joining their rertices is bisected by the common base, extended if necessary, then the two triangles are equivalent.
6. State and prove the converse of the theorem in the preceding exercise.
7. The bases of a parallelogram lie on the parallel lines l_{1} and l_{g}. A triangle whose base is equal to that of the parallelogram has its vertex in $/ 1$ and its base in $/ \underline{2}$. Compare their areas.
8. Prove that all triangles having the same vertex and equal bases lying in the same straight line are cipual in area.
9. Theorem. The areas of similar triangles are in the same ratio as the squares of any two corresponding sides, or as the squares of any two corresponding altitudes.

Given $\mathbb{B} A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, with altitudes $B D$ and $B^{\prime} D^{\prime}$.
To prove that

Proof:

$$
\frac{\text { area } \triangle A B C}{\text { area } \triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{\frac{1}{2}(A C \times B D)}{\frac{1}{2}\left(A^{\prime} C^{\prime} \times B^{\prime} D^{\prime}\right)}=\frac{A C}{A^{\prime} C^{\prime}} \times \frac{B D}{B^{\prime} D^{\prime}} .
$$

But

$$
\frac{A C}{A^{\prime} C^{\prime}}=\frac{B D}{B^{\prime} D^{\prime}} .
$$

Why?

Hence

$$
\frac{\text { area } \triangle A B C}{\text { area } \triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{\overrightarrow{A C}^{2}}{\frac{A^{\prime} C^{\prime 2}}{}}=\frac{\overline{B D}^{2}}{\overline{B^{\prime} D^{\prime}}} .
$$

Why?
Give the proof for each of the other pairs of corresponding sides.

322.

EXERCISE.

Yerify the preceding theorem by counting triangles in the accompanying figure.

323. Theorem. The areas of two similar polygons are in the same ratio as the squares of amy two corresponding sides or any two corresponding diagonals.

Outline of Proof: Let I, II, $\cdots, \mathrm{I}^{\prime}, \mathbf{H}^{\prime}, \ldots$ stand for the areas of pairs of similar triangles.

Show
(1) $\frac{\mathrm{I}}{\mathrm{I}^{\prime}}=\frac{\mathrm{II}}{\mathrm{II}^{\prime}}=\frac{\mathrm{III}}{\mathrm{III}^{\prime}}=\frac{\mathrm{IV}}{\mathrm{IV}^{\prime}}$.
(By § 321.)

$$
\begin{equation*}
\frac{I+I I+I I I+I V}{I^{\prime}+I I^{\prime}+I I^{\prime}+I V^{\prime}}=\frac{I}{I^{\prime}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{A B C D E F^{\prime}}{{A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}}^{\prime}}=\frac{\mathrm{I}}{\mathrm{I}^{\prime}}=\frac{\overline{A B}^{2}}{A^{\prime} B^{\prime}}=\frac{\overline{B C}^{2}}{\overline{B^{\prime} C^{\prime 2}}}=\cdots \tag{By§268.}
\end{equation*}
$$

Give the proof in detail.

324.

EXERCISES.

1. Verify the above theorem by counting the number of equal hexagons into which these two similar hexagons are divided, and also taking the sulare of the length of one side in earh, using at sile of a small hexagon as a unit.
2. A certain triangular field containing 2 arres is 10 rods lomg om one side. Find
 the ar'a of a similar triangular fiell whose corresponding side is 50 rods.
3. The areas of two similar triangular flower beds are 24 square feet and 36 square feet respectively. If a side of one bed is 8 feet, find the corresponding side of the other.
4. If similar polygons are constructed on the three sides of a right triangle, show that the one described on the hypotenuse is equivalent to the sum of the other two.

Suggestions. Let a, b, c represent the two legs and hypotenuse of the triangle and A, B, C the areas of the corresponding polygons. Then $\frac{A}{C}=\frac{a^{2}}{c^{2}}$ and $\frac{B}{C}=\frac{b^{2}}{c^{2}}$.

Hence $\frac{A+B}{C}=\frac{a^{2}+b^{2}}{c^{2}}=\frac{c^{2}}{c^{2}}=1$ or $A+B=C^{\prime}$. Give all reasons in full.
5. Find a line-segment such that the equilateral triangle described upon it has four times the area of the equilateral triangle whose side is 3 inches long.
6. Show that the square on the altitude of an equilateral triangle is three fourths the square on a side.
7. If in a right triangle a perpendicular is let fall from the vertex of the right angle to the hypotenuse, show that the areas of the two triangles thus formed are in the same ratio as the adjacent segments of the hypotenuse, and also as the squares of the adjacent sides of the triangle.
8. Draw a line from a vertex of a triangle to a point in the opposite side which shall divide the triangle into two triangles whose ratio is $2: 5$. Also $2: 1$.
9. Divide a parallelogram into three equivalent parts by lines drawn from one vertex. Use the last construction in Ex. 8.
10. The sides of two equilateral triangles are 8 and 6 respectively. Find the side of an equilateral triangle whose area shall be equivalent to their sum. Use the result in Ex. 4.
11. State and solve a problem like the preceding for the difference of the areas.
12. Corresponding sides of two sinilar triangles are a and b. Find the side of a third triangle similar to these whose area is equal to the sum of their areas.
13. Likewise for any two similar polygons.

CONSTRUCTIONS.

The theorems of this chapter lead to numerous constructions of practical importance.
325. Problem. To construct a square equivalent to the sum of two or more given squares.

Construction. In the case of two given squares, construct a right triangle whose legs are sides of the two given squares. How is the desired square obtained?

In the case of three given squares, use the square resulting from the first construction together with the third square, and so on.

Give the construction and proof in full.
326. Problem. To construct a square equivalent to a given rectangle.

Construction. If the base and altitude of the rectangle are b and a respectively, we seek the side s of a square such that $s^{2}=a b$; that is, we seek a mean proportional between a and b. See Ex. 4, § 295 .

Give the construction and proof in full here.
327. Problem. To construct a square equivalent to a given triangle.

Construction. Show how to modify the preceding construction to suit this case.

Show how to construct each of the following :

1. A square equivalent to the difference of two given squares.
2. A square equivalent to the sum of two given rectangles.
3. A square equivalent to the sum of two given triangles.
4. A square equivalent to the difference of two given rectangles, also to the difference of two given triangles.
5. Problem. To construct a triangle equivalent to a given polygon.

Given the polygon $A B C D E$.
To construct the triangle $P C O$ equivalent to $A B C D E$.
Construction. Cut off $\triangle A B C$ by the segment $A C$.
Through B draw $B P \| A C$ to meet $E A$ extended at P.
Draw CP.
In a similar manner draw co.
Then $P C O$ is the required triangle.
Proof : $P C D E=A B C D E$ since $\triangle A P C=\triangle A B C$ (Why?). Further, $P C D E$ has one less vertex than $A B C D E$.
But $\triangle P C O=P C D E$ since $\triangle E C D=\triangle E C O$ (Why?).
Hence, $\triangle P C O$ is equivalent to the given polygon.
330. Problem. To construct a rectangle on a given base and equivalent to a given parallelogram.

Construction. Let b and h be the base and altitude of the given parallelogram, b^{\prime} the base of the required rectangle, and x the unknown altitude.

Then we are to determine x so that
 $b^{\prime} \cdot x=b h$, that is, $b^{\prime}: b=h: x$.

Hence, x is the fourth proportional to b^{\prime}, b, and h. (See §291.) Construct this fourth proportional, showing the complete solution.

This construction is attributed to Pythagoras. It represents a much higher achievement than the discovery of the Pythagorean proposition itself.

EXERCISES.

1. Show how to modify the last construction in case the given figure is a triangle. Give the construction.
2. Construct a rectangle on a given base equivalent to a given irregular quadrilateral.
3. Construct a rectangle on a given base equivalent to an irregu-, lar hexagon.
4. On a side of a regular hexagon as a base construct a rectangle equivalent to the hexagon.
5. Construct a parallelogram on a given base equivalent to a given triangle. Is there more than one solution?
6. Construct a square whose area shall be three times that of a given square; five times: one half the area; one fifth.
7. Construct an isosceles triangle, with a given altitude h, equivalent to a given triangle.
8. Draw a line parallel to the base of a triangle and cutting two of its sides. How will the resulting triangle and trapezoid compare in area,
(a) If each of the two sides of the triangle is bisected?
(b) If each of the two sides of the triangle is three times the length of the corresponding side of the trapezoid?
9. Construct a triangle whose base and altitude are equal and whose area is erfual to that of a given triangle.
10. In a parallelomriun $A B C D$, any point E on the diagonal $B D$ is joined to A and ($:$ Prove that \& $l: E \cdot A$ and $B E C^{\prime}$ are equivalent, and also that © $D E, 1$ and $D E \prime \prime$ are equivalent.
11. The sides of a triangle are 6, 8.9. A line parallel to the longest side divides the triangle into a trapezoid and a triangle of equal arcas. Find the ratio in which the line divides the two sides.
12. Draw a liue braballel to tha base of :my triangle and cutting tro of its sidles. llow do the allitude's of the resulting triangle and trapezoid comparre,
(1) If they are eflual in area?
(b) If the area of the triangle is three times that of the trapezoid?
13. Through a point ou a side of a triangle draw a line dividing it into two equivalent parts.

Solution. Let P be the given point. Draw the median $B D$. Draw $B E \| P D$ and draw $P E$. This is the required line. Prove.

Suggestion. Notice that $\triangle D P E=\triangle D P B$ by
 Ex. 4, §313, and hence that $\triangle E O D=\triangle B O P$.
14. Through a given point on a triangle draw a line which divides it into two figures whose areas are in the ratio $\frac{1}{8}$.
15. Inscribe a circle in a triangle, touching its sides in the points D, E, F. With the vertices as centers, coustruct circles passing through these points in pairs. Show that each of these latter circles is tangent to the other two.

SUMMARY OF CHAPTER IV.

1. State what is meant by the area of a rectangle. Give the formula.
2. Give formulas for areas of parallelograms and triangles.
3. How is the formula for the area of a trapezoid obtained?
4. What theorems of this chapter can be stated algebraically, as $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
5. State the theorem on the ratio of the areas of two similar triangles; two similar polygons. Give examples.
6. Tabulate the problems of coustruction given in this chapter.
7. If two rectangles have the same base, how does the ratio of their areas compare with the ratio of their altitudes?
8. If two triangles have equal altitudes, how does the ratio of their areas compare with the ratio of their bases?
9. State all theorems of this chapter proved by means of the Pythagorean proposition.
10. State some of the more important applications of the theorems in this chapter. Return to this questiou after studying the succeeding list of problems.

PROBLEMS AND APPLICATIONS.

1. Find the area of a square whose diagonal is 6 inches.
2. Find the area of a square whose diagonal is d inches.
3. $A B C D$ is a square placed at the crossing of two strips of equal width, as shown in the figure. The small black square has two vertices on the sides of the borizontal strip and two on the sides of the vertical strip.
(a) Find the area of each square when the width of the strips is 4 inches.
(b) Compare the area of the black square and the white border surrounding it.
(c) Can squares be placed as in the figure in case the strips are of unequal width? In the two following questions let the small square be drawn with two vertices on the sides of the horizontal strip and one diagonal parallel to these sides.
(d) If the horizontal strip is 4 inches wide, what must be the width of the vertical strip in order that the large square may have twice the area of the small one?

Hint. The diagonal of the small square is 4 inches.
(e) If the horizontal strip is a inches wide, what must be the width of the vertical strip in order that the area of the black square shall be $\frac{1}{n}$ the area of the larger square?
4. Prove that the area of a rhombus is one half the product of its diagonals.
5. Prove that the area of an isosceles right triangle is equal to the square on the altitude let fall upon the hypotenuse.
6. If the diagouals of a quadrilateral intersect at right angles. prove that the sum of the squares on one pair of opposite sides is equal to the sum of the squares on the other two sides.
7. Inscribe a square in a semicirele and in a quadrant of the same circle. Compure their areas. See Ex. 8, 1:ige 1 ± 7.
8. In the triangle $A B C,(C)$ is au altitude. E is any point on ($(\%$. If $W E$ is one half $(C I$, compare the area of the triangle $I L B B$ and the sum of the areas of the triangles $A E C^{\circ}$ and $B E C$. Also compare these areas if $D E$ is one nth of $D C$.

9. $A B C D$ is a square, and E, F, G, H are the middle points of its sides. On $E F$, points N and Q are taken so that $P N=P Q$. Similarly $K L=K M$, also $K L=N P$, and so on.
(a) Prove that $A M O L$ is a rhombus.
(b) If $A B=6$ inches and if $K M=M E$, find the sum of the areas of the four rhombuses $A M O L$, $B Q O N$, etc.

(c) If $H E=8$ inches, what is the area of the whole square?
(d) What part of $K E$ must $K M$ be in order that the sum of the rhombuses shall be $\frac{1}{3}$ the area of the square?
(e) If $A B=a$, find $K M$ so that the sum of the rhombuses shall be $\frac{1}{n}$ the area of the square.

Parquet Flooring.
(f) Prove that L, O, R lie in the same straight line.
10. $A B C D$ is a square and E, F, G, H are the middle points of its sides. $S N=P K=Q L=R M$.
(a) If $A B=6$ inches and if $P K=1$ inch, find the sum of the areas of the triangles $E H N, E F K$, $F G L$, and GHM.
(b) If $A B=6$, find $P K$ so that the sum of the four triangles $E F K$, etc., shall be one fifth of the whole square.
(c) If $A B=6$ and if the points E, K, Q lie in a straight line, find the sum of the areas of these triangles.
(d) If $A B=a$ and if $P K=$ one nth of $P O$, find the sum of the areas of the triangles.
(e) If $A B=a$, find $P K$ so that the sum of the triangles shall be one m th of the whole square. What will be the length of $P K$ in case the tri-

Parquet Flooring. angles occupy one half of the whole square?
11. The sides of two equilateral triangles are a and b respectively. Find the side of an equilateral triangle whose area is equal to the sum of their areas.
12. Construct a triangle similar to a given triangle and having 16 times the area.
13. The middle points of the sides of a quadrilateral are connected. Show that the area of the parallelogram so formed is half the area of the quadrilateral.
14. $I B C D$ is a square. Each side is divided into four equal parts and the construction completed as shown in the figure.
(a) Prove that QNOH, KLOE, etc., are parallelograms.
(b) What part of the area of the square is occupied by these four parallelograms?

(c) What part of the area of the square is nccupied by the four triangles $N E O, L G O, P F O$, and MHO?
(d) If $A B=6$, find the lengths of $K O$ and QP.
(e) Find the ratio of the segments $K O$ and $Q P$. Does this ratio depend upon the length of $A B$?

Parquet Flooring.
(f) In the parquet floor design what fraction is made of the dark wood? Does this dejend upon the size of the original square?
15. On a given line-segment $A B$ as a hypotenuse construct a right triangle such that the altitude upon the hypotenuse shall meet it at a given point D.
16. If $A B C$ is a right triangle and $C D \perp A B$,
prove that

$$
\frac{\bar{\Gamma}^{2}}{\sqrt{1}^{2}}=\frac{A D}{D B}
$$

17. By means of Exs. 15 and 16 construct two segments $H K^{\circ}$ and L, H such that the ratio of the sinares on these segments shall equal a given ratio.
18. Divide a given segment into two segments such that the areas of the sumares constructed upon them shall be in a given ratio.
19. () In a given segment $1 B$ find a point D such that $\frac{\sqrt{B^{2}}}{A D^{2}}=2$.
20. ('onstruct a line paralle] to the hase of a triangle such that the resulting triangle and trapezoid shall be equivalent.
21. Construct two lines parallel to the base of a triangle so that the resulting two trapezoids and the triangle shall have equal areas.

22. In each of the accompanying designs for tile flooring find what fraction of the space between the lines $A B$ and $C D$ is occupied by tiles of each color.

Study each design with care to see that the character of the figure determines the relative sizes of the
 various pieces of tile.
23. $A B C D$ is a square. Points E, F, G, \ldots are so taken that $A E=A F=G B=B H=\cdots$.
(a) If $A B=6$ and $A F=1$, find the sum of the areas of the four triangles $E F O, G H O, K L O$, MNO.
(b) Find the sum of these areas if $A B=a$ and $A F=k$.
(c) If $A B=6$ and if the sum of the areas of
 the triangles is 9 square inches, find $A F$.
(d) If $A B=a$ and if the sum of the areas of the triangles is $\frac{a^{2}}{n}$, find $A F$. Interpret the two results.
24. Show how to construct a square whose area is n times the area of a given square.
25. Construct a triangle similar to a given triangle and equivalent to n times its area.
26. Construct a hexagon similar to a given hexagon and equivalent to n times its area.
27. Show how to construct a polygon similar to a given polygon and equivalent to n times its area.
28. The alternate middle points of the sides of a regular hexagon are joined as shown in the figure.
(a) Are the triangles thus formed equilateral? Prove.
(b) Is the star regular (i.e. are its six acute angles equal and its sides equal)?
(c) Compare the three segments into which each triangle divides the sides of the other.
(d) Is the inner hexagon regular? Prove. See Ex. 1, p. 76.

Tile Pattern.
(e) If $A B=6$ in., find the area of the large hexagon, the star, and the small hexagon.
29. A border is to be constructed about a given square with an area equal to one half that of the square.
(a) By geometrical construction find the outer side of the border if the side of the square is given:
(b) If an outer side of the border is 24 in., find a side of the square, its area being two thirds that of the border.

Ceiling Pattern.

Ceiling Pattern.
31. The accompanying design is based on a set of squares such as $A B C D$. The small triangles are equal isosceles right triangles constructed as shown.
(a) Are the vertical and the horizontal sides of the octagons equal?
(b) Are the octagons regular?

(c) If a side of one of the squares is 6 , find the area of one of the octagons.
(d) What fraction of the whole tile design is occupied by the light-colored.tiles? Does this depend upon the size of the original squares?
32. Given two lines at right angles to each
 other. Find the locus of all points such that the sum of the squares of the distances from the lines is 25 .
33. Given two concentric circles whose radii are r and r^{\prime}. Find the length of a chord of the greater which is tangent to the smaller.
34. If two equal circles of radius r intersect so that each passes through the center of the other, find the length of the common chord.
35. The square on the hypotenuse of a right triangle is four times the square on the altitude upon the hypotenuse. Prove it isosceles.
36. In a right triangle the hypotenuse is 10 feet and the difference between the other sides is 2 feet. Find the sides.
37. Two equal circles are tangent to each other and each circle is tangent to one of two lines perpendicular to each other. Find the locus of the points of tangency of the two circles.

Suggestion. Note that the point of tangency bisects their line of centers and that the centers move along lines at right angles to each other.
38. The square on a diagonal of a rectangle is equal to half the sum of the squares on the diagonals of the squares constructed on two adjacent sides of the rectangle.
39. Show that the diagonals of a trapezoid form with the nonparallel sides two triangles having equal areas.

CHAPTER V.

REGULAR POLYGONS AND CIRCLES.

REGULAR POLYGONS.

332. A regular polygon is one which is both equilateral and equiangular.

According to this definition, determine whether each of the following polygons is regular or not and state why:

An equilateral triangle, an equiangular triangle, a rectangle, a square, a rhombus. Draw a figure to illustrate each. Nake a triangle which fulfills neither condition of the definition, also a quadrilateral.
333. The general problem of constructing a regular polygon depends upon the division of a circle into as many equal parts as the polygon has sides.

The problem of dividing the circle into equal parts can be solved in some cases by the methods of elementary geometry, and some of these methods will be considered in this chapter. In most cases this problem cannot be solved by elementiry methods.
E.g. the circle may be divided into $2,3,4,5,6,8,10,12,15$, equal parts, but not into 7, $9,11,13,14$, equal parts.

If a circle has alrealy been divided into a certain number of equal parts, it may then be divided into twice, four times, eight times, etc., that number of parts by repeated bisection of the arcs. (以ue § 204, Ex. 1.)

The division of the circle into equal parts depends upon the theorem ($\S 19!$) that cipual central angles intercept
equal arcs on the circle, and hence it involves the subdivision of angles into equal parts.

The following exercises depend upon principles already familiar.

With each solution give the reasons in full for each step.
All constructions are to be made with ruler and compasses only.
334.

EXERCISES.

1. Divide a given angle or arc into four equal parts.
2. Divide a given angle or are into eight equal parts.
3. If an angle or arc is already divided into a certain number of equal parts, show how to divide it into twice that number of equal parts.
4. Divide a circle into four equal parts.
5. Divide a circle into eight equal parts.
6. If a circle is already divided into a certain number of equal parts, show how to divide it into twice that number of equal parts.
7. Divide a circle into six equal parts.

Suggestion. Construct at the center an angle of 60°.
8. Draw the chords connecting in order the four division points in Ex. 4, and show that the figure is a regular quadrilateral.
9. Draw the tangents at the four division points in Ex. 4, and show that a regular quadrilateral is formed.
10. Draw the chords connecting in order the division points in Ex. 7, and show that a regular hexagon is formed. Prove that the side of the hexagon is equal to the radius of the circle.
11. Draw chords connecting alternate division points in Ex. 7, and show that a regular triangle is formed.
12. Construct tangents to the circle at alternate division points in Ex. 7, and show that a regular triangle is formed.
13. Draw tangents to the circle at the division points in Ex. 7, and show that a regular hexagon is formed.

Note. See also the construction of regular polygons of 3,4 , and 6 sides, $\S 163$, Exs. 3, 4, 5.
335. Theorem. If a circle is divided into any number of equal arcs, the chords joining the division points, taken in order, form a regular polygon.

Proof: Show (1) that the chords are equal; (2) that the angles are inscribed in equal arcs and hence are equal.
336. Theorem. If a circle is divited into any number of equal parts, the tangents at the points of division, taken in order, form a regntar polygon.

Given the $\odot O A$ divided into equal arcs by the points M, N, P, etc., with tangents drawn at these points forming the polygon $A B C D E F$.

To prove that $A B C D E F$ is a regular polygon.
Analysis of Proof: (1) To prove that $A B=B C=C D$, etc. We know that $B P=B N$ (Why?).
Hence, if we can show that $A V=N B$ and $B P=P C$, then it will follow that $A B=B C$.

To prove $A N=N B$, it must be shown that $\angle 1=\angle$, and this is done by showing that $\angle 1$ and $\angle 2$ are balres of the equal angles $N O M$ and $N O P$.

This necessitates proving $\triangle A O N \cong \triangle A O M$.
Now state the proof in full.
(2) To prove $\angle A B C=\angle B C D=\angle C D E$, itc.

From the triangles proved congruent under (1) show
that $\angle M A O=\angle O A N=\angle N B O=\angle O B P ;$ and hence, $\angle M A O+\angle O A N=\angle N B O+\angle O B P$, or $\angle F A B=\angle A B C$.

In like manner it is proved that $\angle A B C=\angle B C D$, etc.
Hence the polygon is equilateral and also equiangular, and hence regular.
337. Theorem. If a polygon is regular, a circle may be circumscribed about it.

Given a regular polygon $A B C D E$.
To prove that a point O can be found such that

$$
O A=O B=O C=O D=O E .
$$

Outline of Proof: Bisect $\triangle A$ and B and let the bisectors meet in some point O. Then O is the center sought.

For we have
(1) $O A=O B$,

Why?
(2) $\triangle A O B \cong B O C . \quad \therefore O A=O C$.
(3) $\triangle B O C \cong \triangle C O D . \quad \therefore O B=O D$.
(4) Now prove $O C=O E$.
$\therefore O A=O B=O C=O D=O E$.
Prove each step, showing how it depends upon the preceding.

338.

EXERCISES.

1. Find the locus of the vertices of all regular polygons of the same number of sides which can be circumscribed about the same circle.
2. Find the locus of the middle prints of the sides of all regular polygons of the same number of sides which are inscribed in the same circle.
3. Is an equilateral circumscribed polygon regular? Prove.
4. Is an equiangular circumscribed polygon regular? Prove.
5. Theorem. If a polygon is regular, a circle may be inscribed in it.

Given the regular polygon $A B C D E$.
To prove that a point O maty be found such that the perpendiculars $O M, O N, O P, O Q, O R$, are equal.

Outline of Proof: Determine a point O as in the proof of the preceding theorem. Then $\triangle A O B$, $B O C$, etc., are equal isosceles triangles, and their altitudes are equal. Hence O is the required point.

Give proof in full.

340. Theorem. An equilateral polygon inscribed in a circle is regulur.

Suggestion for Proof: Use the fact that equal chords subtend equal ares, and apply § 335.
341. EXERCISE.

Show that the inscribed and circumscribed circles of a regular polygon have the same ceuter.
342. Definitions. The center of a regular polygon is the common center of its inseribed and circumscribed eireles.

The radius of a regular polygon is the distance from the center to one of its vertices.

The apothem of a regular polygon is the perpendiculiur distance from its center to a side.
343. Theorem. The area of a regular polygon is equal to half the product of its apothem and perimeter.

Suggestion for Proof: A regular polygon is divided by its radii into a series of congruent triangles, the area of each of which is one half the product of the apothem and a side of the polygon.

Complete the proof.
344. Theorem. The area of any polygon circumscribed about a circle is equal to one half the product of the perimeter of the polygon and the radius of the circle.

The proof is left to the student.
345.

EXERCISES.

1. Is every equiangular polygou inscribed in a circle regular? Prove.
2. Show that the radius of a regular polygon bisects the angle at the vertex to which it is drawn.
3. Show that the perimeter of a regular polygon of a given number of sides is less than that of one having twice the number of sides, both being inscribed in the same circle.
4. Show that the perimeter of a regular polygon is greater than that of one having twice the number of sides, both being circumscribed about the same circle.
5. Compare the areas of the two polygons in Ex. 3.
6. Compare the areas of the two polygons in Ex. 4.
7. Show that the area of a square inscribed in a circle of radius r is $2 r^{2}$. How does this compare with the area of the circumscribed square.
8. Compute the apothem and area of a regular inscribed hexagon if the radius of the circle is r; also of the regular circumscribed hexagon.
9. A regular triangle is inscribed in a circle of radius 10 . Find the apothem and a side of the triangle.
10. Theorem. Two regular polygons of the same number of sides are similar.

Outline of Proof: (1) Show that all pairs of corresponding angles are equal.
(2) Show that the ratios of pairs of corresponding sides are equal. Hence the polygons are similar (Why?).
347. Theorem. The perimeters of two regular polygons having the same number of sides are in the same ratio as their radii or their apothems.

Outline of Proof: Show (1) that each triangle formed by a side and two radii in one polygon is similar to the corresponding triangle in the other polygon.
(2) That $\frac{A B}{A^{\prime} B^{\prime}}=\frac{r}{r^{\prime}}=\frac{a}{a^{\prime}}$, where $A B$ and $A^{\prime} B^{\prime}$ are the two sides, r and r^{\prime} the corresponding radii and a and a^{\prime} the corresponding apothems. And so for the remaining pairs of triangles.
(3) That $\frac{A B+B C+C D+\cdots}{A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} D^{\prime}+\cdots}=\frac{A B}{A^{\prime} B^{\prime}}=\frac{r}{r^{\prime}}=\frac{a}{a^{\prime}}$.

Draw the figure and give the proof in full.
348. Theorem. The areas of tuo regular polygons of the same number of sides are in the same ratio as the squares of the corresponding radii or apothems.

Outline of Proof: Divide the polygons into pairs of corresponding triangles as in the preceding proof.
(1) Show that $\frac{\Delta \mathrm{I}}{\Delta \mathrm{I}^{\prime}}=\frac{r^{2}}{r^{\prime 2}}=\frac{a^{2}}{a^{\prime 2}}$, and so for each pair of triangles.
(2) Hence $\frac{\Delta \mathrm{I}+\Delta \mathrm{II}+\Delta I I I+\cdots}{\Delta \mathrm{I}^{\prime}+\Delta I I^{\prime}+\Delta I I I^{\prime}+\cdots}=\frac{r^{2}}{r^{\prime 2}}=\frac{a^{2}}{a^{\prime 2}}$.

Draw figure and give the proof in full.

PROBLEMS AND APPLICATIONS.

1. Find the ratio of the perimeters of squares inscribed in and circumscribed about the same circle.
2. Find the ratio of the perimeters of regular hexagons inscribed in and circumscribed about the same circle.
3. Find the ratio between the perimeters of regular triangles inscribed in and circumscribed about the same circle.
4. Find the ratio of the areas of regular triangles inscribed in and circumscribed about the same circle. Also find the ratio of the areas of such squares and of such hexagons.
5. The perimeter of a regular hexagon inscribed in a circle is 24 inches. Find the perimeter of a regular hexagon circumscribed about a circle of twice the diameter.
6. The area of a regular triangle circumscrihed about a circle is 64 square inches. What is the area of a regular triangle inscribed in a circle of one third the radius?
7. The area of a regular hexagon inscribed in a circle is 48 square inches. What is the area of a regular hexagon circumscribed about a circle whose diameter is $1 \frac{3}{4}$ times that of the first?
8. A chord $A B$ bisects the radius perpendicular to it. Find the central angle subtended by the chord. State the result as a theorem.
9. State and prove the converse of the theorem in Ex. 8.
10. Find the area of a regular triangle inscribed in a circle whose radius is 6 inches.
11. Find the area of a regular triangle inscribed in a circle whose radius is r inches.
12. One of the acute angles of a right triangle is 60° and the side adjacent to this angle is r inches long. Find the remaining sides of the triangle.

13. A regular triangle is circumscribed about a circle of radius r. Find its area.

Suggestion. First find $D C$ in the figure.
14. A regular triangle of area 36 square inches is inscribed in a circle. Find the radius of the circle.
15. Find the radius of a circle if the area of its regular inscribed triangle is a.
16. Find the radius of the circle if the area of the regular circumscribed triangle is a.
17. Find the radius of a circle if the difference between the perineters of the regular inscribed and circumscribed triangles is 12 inches.
18. Find the radius of a circle if the difference of the perimeters of the regular inscribed and circumscribed hexagons is 10 inches.
19. If the area of a circumscribed square is 2.5 square inches greater than that of an inscribed square, what is the diameter of the circle?
20. Find the radius of a circle if the difference between the areas of the inscribed and circumscribed regular triangles is 3.5 square inches.
21. Find the radius of a circle if the difference between the areas of the regnlar inscribed and circumscribed hexagons is $こ \overline{5}$ square inches.
22. The differeuce between the areas of the squares circumscribed about two circles is 50 square inches and the difference of their diameters is 4 inches. Find each diameter.
23. If the inscribed and escribed circles O and O^{\prime} of the equilateral triangle are constructed as shown in the figure, find the ratio of their radii. Does this ratio depend upon the size of the triangle?
24. Given a triangle $A B C$ and a segment a, show how to construct a segment $l \perp E \| A B$ and equal to the segment a, such that the points: D and E shall lie on the sidmes' A and (' B respectively or on these sides extended.
25. A triangular plot of gromed $I B C$ is to be laid out as a triangular flower lod with a walk of uniform wild extending around it.
(a) l'mon that the flower locd is similar to the original triangle.
(b) Show that the comere of the fluwer bed lie on the lisectors of the angles of the original triangle.

(c) Fiud a segment S so that $\frac{\overline{A B}^{2}}{S^{2}}=2$ and construct $A^{\prime} B^{\prime}$ equal to S and parallel to $A B$, the points A^{\prime} and B^{\prime} lyiug on the bisectors of the angles A and B respectively. See Exs. 16-19, page 172.
(d) Draw $A^{\prime} C^{\prime \prime} \| A C$ and $B^{\prime} C^{\prime \prime} \| B C$.

Prove that the area of the flower bed $A^{\prime} B^{\prime} C^{\prime}$, as thus constructed, is equal to the area of the walk.
(e) Construct the figure for the flower bed so that its area is five times that of the walk.
26. Given a rectangular plot of ground. Is it always possible to lay off on it a walk of uniform width ranuing around it so that the plot inside the walk shall be similar to the original figure? Prove.
27. Is the coustruction proposed in Ex. 26 always possible in the case of a square? of a rhombus? Prove.
28. If a side of a regular hexagon circumscribed about a circle is a, find the radius of the circle.
29. On a regnlar hexagonal plot of ground whose side is 12 feet a walk of uniform width is to be laid off aronnd it. Find by algebraic computation the width of the walk if it is to occupy one half the whole plot.
30. Find by geometric construction the width of the walk in Ex. 29.
31. Show that the figure inside the walk in Ex. 29 is a regular hexagon.
32. Given a segment $A B$, find three points C, D, E on it'so that,

$$
\frac{\overline{A C}^{2}}{\overline{A B}^{2}}=\frac{1}{4}, \frac{\overline{A D}^{2}}{\overline{A B}^{2}}=\frac{1}{2}, \text { and } \frac{\overline{A E}^{2}}{{\overline{A B^{2}}}^{2}}=\frac{3}{4} .
$$

33. A regular hexagon $A B C D E F$ is to be divided into four pieces of equal area by segments drawn parallel to its sides forming hexagons as shown in the figure. If $A B=24$ feet, find a side of each of the other hexagons and also the apothem of each.
34. Without compnting algebraically the apothem or sides of the inner hexagons in Ex. 33, show how to construct the figure geometrically.
 See Ex. 6, § 331. Also Ex. 18, page 172. Use § 348.
35. In a given hexagonal polygon whose side is a find in terms of a and n the width of a walk around it which will occupy one nth of the area of the whole polygon.
36. By means of hexagons similar to those in Ex. 33, divide a given regular hexagon into three parts such that the outside part is $\frac{1}{4}$ the whole area and the next $\frac{1}{2}$ of the whole area.
37. Compute the sides and the apothem of the two hexagons constructed in Ex. 36 if the side of the given hexagon is 12 inches.
38. In the adjoining pattern find two regular hexagons whose areas are in the ratio 1:4 and show that this agrees with theorem, § 348.
39. If a polygon is circumscribed about a circle, show that the bisectors of all its angles meet in a point.

40. Given any polygon circumscribed about a circle. Within it draw segments parallel to each of its sides and at the same distance from each side. Show that these segments form a polygon similar to the first.
41. If the bisectors of all the angles of a polygon meet in a point prove that a circle may be inscrilhed in it (tangent to all its sides).

What is the relation of the theorems in Exs. 39 and 41 ?

42. Given a polygonal plot of ground (boundary is a polsgon) such that a path of equal width on it around the border leares a polygonal plot similar to the first. Prore tliat a circle may be inscribed in the polygon which forms the boundary of either plot.
43. In the figure, $A B C I$ is a square and $E F G H K L M J$ is a regular octagon.
(1) If $E F=4$ inches, find $A B$.
(b) If $A B=12$ inches, find $E F$.
(c) If $L F=a$, find $I B$.
(d) If $A B=s$, find $L \prime F$.
(p) If $A B=s$, find the ipothem.

(f) If $A B=s$, find the raulius of the octagon.
44. Find the ratio between the areas of regular octagons inscribed in and circumscribed about the same circle.
45. (a) The apothem of a regular octagon is 10 feet. Find the width of a uniform strip laid off around it which occupies $\frac{1}{4}$ its area.
(b) Show how to construct this strip geometrically without first computing its width. Prove that the inside figure is a regular octagon.
46. A regular octagon $A B C D E F G H$ is to be divided into four parts of equal area by means of octagons as shown in the figure.
(a) If $A B=12$ inches find a side of each octagon.
(b) Show how to construct the figure without first computing the sides.
(c) Show how to construct such a figure if the four parts I, II, III, IV, are to be in any required ratios.
(d) Measure the sides of the two inner parts of the ceiling pattern and hence find the ratio of their areas.

47. The middle points, A, B, C, D, of alternate sides of a regular octagon are joined as shown in the figure. $A H$ is perpendicular to $A E$ and equal to it. $B G, C K$, aud $D L$ are constructed in the same manner.
(a) Prove that $A B C D$ and $H G K L$
 are squares.
(b) Find the areas of $A B C D$ and $H G K L$, if $E F=10$ inches.
(c) What fraction of the whole octagon is occupied by the square HGKL.

See the accompanying tile border.

MEASUREMENT OF THE CIRCLE.

349. If in a circle a regular polygon is inscribed, its perimeter may be measured.

For example, the perimeter of a regular inscribed hexagon is $6 r$ if r is the radius of the circle. Sue §334, Ex. 10.

If the number of sides
 of the inscribed polygon be doubled, the resulting perimeter may be measured or computed in terms of r. See §357.

If again the number of sides be doublerl, the resulting perimeter may be computed in terms of r, and so on.

In a similar manner a regular polygon, say a hexagon, may be circumscribed about a circle and its perimeter. expressed in terms of r.

If the number of sides of the circumscribed polygon be doubled, it.s perimeter may again be computed, and so on as often as desired.

350. By continuing either of these processes it is evident that the inscribed or the circumscribed polygon may be made to lie as close to the circle as we please.
351. The word length has thus far been used in connection with straight line-segments only. Thus, the perimeter of any polygon is the sum of the lengths of its siles.
352. We now assume that a circle has a definite length and that this can be approximated as nearly as we please by taking the perimeters of the successive inscribed or circumseribed polygons.

The length of a circle is often called its perimeter or circumference.

It is evident that approximate measurement is the only kind possible in the case of the circle, since no straight line noit of measure, however small, can be made to coincide with an arc of a circle.
353. Comparison of the Lengths of Two Circles. In each of two circles, O and o^{\prime}, let regular polygons of $6,12,24$, $48,96,192$, etc., sides be inscribed. Call the perimeters of the polygons in $\odot o, P_{6}, P_{12}, P_{24}$, etc., and those in $\odot o^{\prime}$, $P_{6}^{\prime}, P_{12}^{\prime}, P_{24}^{\prime}$, etc. Let the radii of the circles be R and R^{\prime} respectively.

Then by the theorem of $\S 347$, we have

$$
\frac{R}{R^{\prime}}=\frac{P_{\mathrm{6}}}{P_{6}^{\prime}}=\frac{P_{12}}{P_{12}^{\prime}}=\frac{P_{24}}{P_{24}^{\prime}}=\text { etc. }
$$

however great the number of sides of the inscribed polygons. Show that the same relations hold if polygons are circumscribed about the circle.

From these considerations we are led to the following :
354. Preliminary Theorem. The lengths of two circles are in the same ratio as their radir.
355. Hence, if C and C^{\prime} are the circumferences of two circles, \boldsymbol{R} and R^{\prime} their radii, and D and D^{\prime} their diameters, we have $\frac{C}{C^{\prime}}=\frac{R}{R^{\prime}}=\frac{D}{D^{\prime}}$; and, also $\frac{C}{D}=\frac{C^{\prime}}{D^{\prime}}$.

Hence, the ratio of the circumference to the diameter in one circle is the same as this ratio in any other circle.
356. This constant ratio is denoted by the Greek letter π, pronounced pi.

The argument used above shows that a theorem like that of $\S 354$ holds for every pair of polygons used in the approximation process, and hence it is established for all purposes of practical measurement or computation.
357. Problem. To compute the approximate value of π.

Solution. Suppose a regular polygon of n sides is inscribed in a circle whose radius is r and let one of the sides $A B$ be called S_{n}.

We first obtain in terms of S_{n} the length $A C$, or $S_{2 n}$, of a side of a regular polygon of $2 n$ sides inscribed in the same circle.

Let $A B$ be a side of the first polygon. Bisect $\widehat{A B}$ at C and draw $A C$ and $B C$. Then $A C$ is a side of a regular inseribed polygon of $2 n$ sides (Why ").

Then in the figure

$$
\begin{equation*}
\left(S_{2^{n}}\right)^{2}={\overline{A r^{\prime}}}^{2}=\left(\frac{1}{2} A B\right)^{2}+h^{2}=\left(\frac{1}{2} S_{n}\right)^{2}+h^{2} .\left(W^{+} h y^{?}\right) \tag{1}
\end{equation*}
$$

But $h \times D E=h(2 r-h)=A D \times D B=A D^{2}$, (Why?)
or

$$
\begin{equation*}
\overline{A D}^{2}=\left(\frac{1}{2} S_{n}\right)^{2}=h(2 r-h) . \tag{2}
\end{equation*}
$$

Solving equation (2) for h, we have

$$
h=\frac{\ddot{\partial} r \pm \sqrt{r^{2}-r_{u}^{2}}}{\ddot{z}} .
$$

Taking only the negative sign, since $h<r$, and squaring, we have,

$$
h^{2}=\ddot{2} r^{2}-r \sqrt{4 r^{2}-s_{n}^{3}}-1+n_{n}^{2} .
$$

or,

$$
h^{2}+\left(\frac{1}{2} s_{u}\right)^{2}=2 r^{2}-r v+r^{2}-s_{u}^{2} .
$$

Hence, from (1), $s_{2 n}{ }^{2}=\underline{2} r^{2}-r, ~ \sqrt{2}-s_{n}{ }^{2}$.
and

$$
s_{2 n}=\sqrt{2 r^{2}-r \sqrt{4 r^{2}-S_{n}^{2}}} .
$$

Since, by $\S 355$, the value of π is the same for all circles, we take a circle whose radius is 1 .

In this case $\quad S_{2 n}=\sqrt{2-\sqrt{4-S_{n}}{ }^{2}}$.
If the first polygon is a regular hexagon, then $s_{6}=1$.
Hence, $\quad S_{12}=\sqrt{2-\sqrt{4-1}}=0.51763809$.
Denoting the perimeter of a regular inscribed polygon of n sides by P_{n}, we have,

$$
P_{12}=12(0.51763809)=6.21165708
$$

In the formula (3) let $n=12$.
Then $S_{24}=\sqrt{2-\sqrt{4-(0.51763809)^{2}}}=0.26105238$.
Hence, $P_{24}=24(0.26108238)=6.26525722$.
Computing S_{48}, P_{48}, etc., in a similar manner, we have,

$$
\begin{aligned}
& S_{12}=\sqrt{2-\sqrt{4-1}}=.51763809 . \therefore P_{12}=6.21165708 . \\
& S_{24}=\sqrt{2-\sqrt{4-(.51763809)^{2}}}=.26105238 . \therefore P_{24}=6.26525722 . \\
& S_{48}=\sqrt{2-\sqrt{4-(.26105238)^{2}}}=.13080626 . \therefore P_{48}=6.27870041 . \\
& S_{96}=\sqrt{2-\sqrt{4-(.13080626)^{2}}}=.06543817 . . . P_{96}=6.28206396 . \\
& S_{192}=\sqrt{2-\sqrt{4-(.06543817)^{2}}}=.03272346 . \therefore P_{192}=6.28290510 . \\
& S_{384}=\sqrt{2-\sqrt{4-(.03272346)^{2}}}=.01636228 . \therefore P_{384}=6.28311544 . \\
& S_{768}=\sqrt{2-\sqrt{4-(.01636228)^{2}}}=.00818126 . \therefore P_{768}=6.28316941 .
\end{aligned}
$$

358. The Length of the Circle. By continuing this process it is found that the first five figures in the decimal remain unchanged. Hence 6.28317 is an approximation to the circumference of a circle whose radius is 1 .
359. By a process similar to the preceding, if circumscribed polygons of $4,8,16$, etc., sides are used, the following results are obtained:

Number of $\mathrm{Sil}_{\text {inem }}$	1evgitie of Eacit Side	Perineter
4	2.000000	8.0000010
8	0.8254	6.627118
16	(1).3T以 ${ }^{\text {a }}$	(6.3f. 3196
32	$0.19 \% 94$	6.3034 .50
ft	$0.095 \cdot 2.8$	6.2092:3
128	1.1190078	6.29448
206	0.024544	(i.2.3.3.000
$51:$	0.01202	6.25924
$10-1$	$0.0061: 16$	6.20320 .5
2048	0.00301098	(i:2.3190

360. Since the diameter is 2 , the ratio of the circumference to the diameter is

$$
\frac{(1.25317}{2}=3.14159, \text { or } \frac{6.28319}{2}=3.14159
$$

according as the inscribed or circumscribed polygons are used.

That is, these approximations of π agree to five decimal places.

If so great accuracy is not required, we may use a smaller number of lecimal places; such as, 3.1415, 3.14. or $3 \frac{1}{9}$.

Since $\frac{C}{D}=\pi$, it follows that $(*=\pi D=: \pi R$.
That is, the circumference is $\because \pi$ times the radius.
361. The area of the circle. In § 359 the area of each circumscribed polygon is half the product of the perimeter and the apothem, which in this case is the radius of the circle. The area inclosed by the circle is called the area of the circle. That is, for every such polygon, $A=\frac{1}{2} P \cdot R$, or area equals one half perimeter times radius.

We now assume that a circle has a definite area which can be approximated as closely as we please by taking the areas of the successive circumscribed polygons.
362. Since the perimeters of the circumscribed polygons can be made to approximate the length of the circle as nearly as we please, and since $C=2 \pi r$ we have,

$$
\text { area of circle }=\frac{1}{2} \cdot 2 \pi r \cdot r=\pi r^{2} .
$$

The degree of accuracy to which this formula leads depends entirely upon the accuracy with which π is determined.

The old problem of squaring the circle, that is, finding the side of a square whose area equals that of a given circle, involves therefore determining the value of $\boldsymbol{\pi}$. Much time and labor have been expended upon this in the hope that this value conld be exactly constructed by means of the ruler and compasses, but it is now known that this is impossible.
363. Since the area of a circle is πr^{2}, if we have two given circles whose radii are r and r^{\prime} and whose diameters are d and d^{\prime}, then the ratio of their areas A and A^{\prime} is

$$
\frac{A}{A^{\prime}}=\frac{\pi r^{2}}{\pi r^{\prime 2}}=\frac{r^{2}}{r^{12}}=\frac{d^{2}}{d^{2}} ; \text { that is, }
$$

Theorem. The areas of two circles are in the same ratio as the squares of their radii, or of their diameters.
364. The area of a sector bears the same ratio to the area of the circle as the angle of the sector does to the perigon.
$E . g$. the area of the sector whose arc is a quadrant is one fourth of the area of the circle, that is, $\frac{\pi R^{2}}{4}$. The area of a semicircle is $\frac{\pi R^{2}}{2}$.

Find the area of a sector whose angle is $60^{\circ} ; 30^{\circ} ; 45^{\circ} ; 72^{\circ}$.
365. The area of a segment of a circle is known if that of the sector having the same arc, and of the central triangle on the same chord, can be determined.

Show that the areas of segments of a circle whose arcs are respectively 90° and 60° are

$$
\frac{\pi R^{2}}{4}-\frac{R^{2}}{2}=\frac{R^{2}}{4}(\pi-2) \text { and } \frac{\pi R^{2}}{6}-\frac{R^{2}}{4} \sqrt{3}=\frac{R^{2}}{12}(2 \pi-3 \sqrt{3}) .
$$

The accompanying figure shows a circle cut into sectors by a serips of radii. Each sector approximates the shape of a triangle, whose altitude is the radius of the circle,
 and whose base is an arc of the circle. Since the sum of the areas of these triangles is the product of the altitude and the sum of the bases, we obtain a verification of the theorem that the area of a circle is one half the product of the circumference and radius.

SUMMARY OF CHAPTER V.

1. Make a list of the definitions pertaining to regnlar polrgons.
2. State the theorems concerning regular polygous inscribed in or circumscribed about a circle.
3. State the theorems involving similar regular polygous.
4. Give an outline of the discussion concerning the value of π and its use in approximating the length and area of the circle.
5. What are some of the more impertant applications of the theorems in Chaphr V'? (limurn to this question after studying the applications which follow.)

PROBLEMS AND APPLICATIONS ON CHAPTER V.

Note. In the following problems, unless otherwise specified, use the value $\pi=3 \frac{1}{7}$, which differs from 3.1416 by about $1^{1} \delta$ of one per cent.

1. The diameter of a circle is 8 inches. Find the circumference and area.
2. The circumference of a circle is 10 feet. Find its radius and area.
3. The area of a circle is 24 square inches. Find its radius and circumference.
4. Centers of circles are arranged at equal distances on a network of lines at right angles to each other as shown in the figure. If $r=\frac{1}{8} A B$, what part of the whole area is inclosed by the circles?

Suggestion. Consider what part of the square $A B C D$ lies within the circles.
5. If in Ex. 4 the radius of each circle is 3 inches,
 how far apart must the centers be in order that one half the area shall lie within the circles?
6. If the radius of each circle is r, how far apart must the centers be located in order that $\frac{1}{n}$ of the
 whole area may lie within the circles?
7. If the circles occupy $\frac{1}{n}$ of the area, and if the centers are d inches apart, find the radii.
8. A square is inscribed in a circle. Find the ratio between the areas of the square and the circle.
9. A square is circumscribed about a circle. Find the ratio between their areas.

Do the ratios required in Exs. 8 and 9 depend upon the radins of the circle?
10. Find the ratio between the area of a circle and its regular inscribed hexagon.
i1. Find the ratio between the area of a circle and its regular circunscribed hexagon.

Do the ratios required in Exs. 10 and 11 depend upon the radius of the circle?
12. Find the ratio between the area of a square inscribed in a circle and another circumscribed about a circle having 3 times the radius.
13. Find the ratio of the area of a regular hexagon inscribed in a circle to that of another circumscribed about a circle having a radius $\frac{1}{4}$ as great.
14. $A B\left(^{\prime} I\right)$ is a square whose side is a and the
 points A, B, C^{\prime}, D, are the centers of the arcs $H E, E F$, etc.
(a) Find the area of the figure formed by the arcs FLE, EKH, HNG, GiMF.
(b) Find the area of the figure formed by the arcs ELF and EQF.

Sugliestrun. Find the difference between the areas of a circle and its inscribed square.
(c) Find the area of the figure formed by the ares
 $E K, K L$, and $L E$.
15. If the sides of the rectangle $I B^{\prime} D$ are 8 and 12 inches, respectively, find the radii of the circles..
(a) What fraction of the area of the rectangle lies within only one circle?
(b) Pove that at each vertex of a square two circless are tangent to a diagonal of the square.

16. Two concentric circles are such that one divides the area of the other into two equal parts.
(a) Find the ratio of the radii of the circles.
(b) Given the outer circle, constrnct the inner one.
17. Construct three circles concentric with a circle
 of radins r, which shall divile its area into four equal parts.
18. Prove that six circles of etpual radii can be constructed each tangent to two of the others and to a given circle.
(a) Show that a cirele can be comstructed around the six circles tangent weach of them.
(b) What fraction of the atera of the last circle is wecupioed ly the seven cirches within it?
19. $I 01$ is a central atugle of bion. Find the area
 lounded by the clumd $1 / 2$ and $1 / 3$ if the matins of the circle is 3.
20. $A B C$ is an equilateral gothic arch. (See page 109.) Find the area inclosed by the segment $A B$ and the arcs $A C$ and $B C$, if $A B=3$ feet.

Suggestion. Find the area of the sector with center A, arc $B C$, and radii $A B$ and $A C$, and add to this the area of the circlesegment whose chord is $A C$.

21. $A B C$ is an equilateral triangle and A, B, and C are the centers of the arcs. Show that the area of the figure formed by the arcs is three times the area of one of the sectors minus twice the area of the $\triangle A B C$.
22. In the figure $A B C$ is an equilateral triangle
 and D, E, and F are the middle points of its sides. Arcs are constructed as shown.
(a) If $A B=6$ feet, find the area inclosed by $\overparen{C E}, \overparen{E F}, \overparen{F C}$.
(b) Find the area inclosed by $\overparen{A E}, \overparen{E C}$, and \overparen{A}.
(c) Find the area inclosed

From the Union Park Church, Chicago. by $\overparen{D F}, \overparen{F E}$, and $\widehat{E D}$.
23. In the figure $A B C$ is an equilateral arch and $\odot O$ is constructed on $A B$ as a diameter. $A H$ and $B K$ are perpendicular to $A B$.
(a) Construct the equilateral arches $H E D$ and $D F K$ tangent to the circle as shown in the figure.

Suggestion. $O H=O A+D H$.
(b) Prove that the vertices E and F lie on the circle.

Suggestion. What kind of a triangle is HOK?
In the following let $A B=8$ feet.
(c) Find the area bounded by the arcs $D F, F E$, and $E D$.
(d) Find the area of the rectangle $A B K H$.
(e) Find the area bounded by $A H$ and the arcs $H E$ and $E A$.
(f) Find the area bounded by the upper semicircle $A B$ and the $\operatorname{arcs} A C$ and $B C$.
(g) Find all the areas required in (c) $\cdots(f)$ if $A B=a$.
24. In the figure, $A B C D E F$ is a regular hexagon. B is the center of the arc $A L r^{\prime}, D$ the center of ' $H E$, and F the center of $E K A$.

If $A B=16$ inches, find
(a) The circumference and area of the circle,
(b) The area bounded by the arc $A L C$ and the segments $A B$ and $B C$,
(c) The area bounded by $\overparen{K .1}, \overparen{A L}$ and $\overparen{L K}$,
(d) The area bounded by $\sqrt{L} C, C T I E$ and $E \overparen{K} A$.

(e) Find the areas required in (o) $-(d)$ if $A B=a$ inches.
25. $A B C \ldots$ is a regular octagon. Arcs are constructed with the vertices as centers as in the figure.

If $A B=10$ inches, find the area inclosed by the whole figure. Also if $A B=a$.
26. $A B C D E F G H$ is a regular octagon. Semicircles are constructed with the sides as diameters.
(a) If $A B=10$ inches, find the area of the whole figure. Also if $A B=a$.
(b) Complete the drawing in the outline figure to
 make the steel ceiling pattern here shown.
27. In the figure $A C B, A F D, D E B$, and $E C^{\prime} F$ are semicircles. $E F$ is tangent to two semicircles.
(a) Prove that the semicircles $A F D, F C E$, and $D E B$ are equal, D being given the middle point of $A B$.

If $A B=48$ inches, find:
(b) The area bounded by $\widehat{A C}, \widehat{F C}$ and $\widehat{F A}$,
(c) The area bounded by $\overparen{F D}$ and $\overparen{D E}$, and the line-segment $F E$,

(d) The area bounded by $t \widehat{F}, \overparen{F C E}, \overparen{E B}$, and the line-segment $A B$.
(e) Find the areas required in $(b)-(d)$ if $I B=a$.
28. (a) If a side of the regular hexagon in the figure is a, find the area inclosed by the arcs (including the area of the hexagon).
(b) Show that a circle may be ciircumscribed about the whold figure.

(c) Find the area inside this circle aul outside the figure in (a).

MISCELLANEOUS PROBLEMS AND APPLICATIONS.

1. Given a rhombus, two of whose angles are 60°, to divide it into a regular hexagon and two equilateral triangles. See Ex. 7, page 78.
2. What fraction of the accompanying design for tile flooring is made up of the black tiles? Show how to construct this design by marking off points along the border and drawing parallel lines.

3. In the accompanying design for a parquet border two strips of wood appear to be intertwined.
(a) If the border is 8 inches wide and 3 feet 4 inches long, find the area of one of these strips, including the part which appears to be obscured by the other strip.
(b) If the figure consists of squares, find
 the angle at which the strips meet the sides. Use the table on page 139.
(c) If the width of the border is a and its length b, find the combined area of these strips.

Compare the total area of the obscured part of these strips with the sum of the areas of the small triangles along the edge of the border.
4. A solid board fence 5 feet in vertical height running due north and south is to be built across a valley, connecting two points of the same elevation. Find the number of square feet in the fence if the horizontal distance is 80 rods. 80 rods
5. Are the data given in the preceding problem sufficient to solve it if the fence required is to be an ordinary fourboard fence, each board 6 inches wide?
6. Two circles are tangent internally at a point A. Chords $A B$ and $A C$ of the larger circle are drawn meeting the smaller circle in D and E respectively. Prove that $B C$ and $D E$ are parallel.

7. Two circles, radii r and r^{\prime}, are tangent internally. Find the length of a chord of the larger circle tangent to the smaller if:
(a) The chord is parallel to the line of centers,
(b) The chord is perpendicular to the line of centers,
(c) Meets the larger circle at the same point as the line of centers.
8. Rivell a straight line and two points I and B on the same side of it. Find a point '' on the line such that the sum of the segments $A \prime^{\prime}$ and $B C$ 'shall be the least possible.

Solution. In the figure let B^{\prime} be symmetric to B with respect to the line. Draw $A B^{\prime}$ meeting the line in (\therefore Then C is the required point. For let $C^{\prime \prime}$ be any other point on the line. Then $A f^{\prime \prime}+\prime^{\prime \prime} B>A A^{\prime}+{ }^{\prime \prime} B$. The proof depends upon § 128 and Ax. III, § 61. Give it in full detail.

9. If in the figure preceding, $A L$ is perpendicular to the line, prove that $\triangle A D C^{\prime} \sim \triangle I^{\prime} B E$ and hence $\frac{A D}{B E}=\frac{D C^{\prime}}{C E}$.
10. If in Ex. $8, D E=a, A D=b, B E=c$, find (' D) and $C E$.
11. Two towns, A and B, are 10 and 6 miles respectively from a river and A is 12 miles farther up the river than B. A pumping station is to be built which shall serve both towns. Where must it be located so that the total length of water main to the two towns shall be the least possible?
12. 'Twn factories are situated on the same sile of a railway at different distances from it. A spur
 is to be built to each factory and these are to join the railway at the same point. State just what measurements must be made and how to locate the point where these spurs should join the main line in order to permit the shortest length of road to he built.
13. Two equal circles of radius r intersect su that their common chord is equal to r. Find the area of the figure which lies within both circles.

14. In the accompanying design for mak and mahogany parquet flooring the large sumber ane 6 inches and the small back ones $2!$ inches on a side. What fraction of the whole is the mahogany (the black squares)?
15. Construct circles on the three sides uf a
 right triangle as diameters. C'ompare the area ul the circlu constrincter on the lyprotenuse with the sum of the areas of the other two. Prowe.
16. In the accompanying design for grill work:
(a) Find the angles $A B C, B A D$, and $A G C$.

(b) If the radius of each circle is r, find the distance $A F$.
(c) What fraction of the area of the parallelogram $G B C E$ lies within one circle only?
(d) If the radius of each circle is r, find the distance between two horizontal lines.
(e) Construct the whole figure.

Suggestions. (1) Find $A F$ and lay off points on $A B$.
(2) Find $\angle B A D$ and construct it.
(3) Through the points of division on $A B$ draw lines parallel to $A D$.
(4) From A along $A D$ lay off segments equal to $A F$ and through these division points construct lines parallel to $A B$.
(5) Along $D C$ lay off segments equal to $A F$. Connect points as shown in the figure.
(f) From the construction of the figure does it follow that

$$
\angle D A B=\angle E G C ?
$$

17. Prove that the sum of three altitudes of a triangle is less than its perimeter.
18. In the accompanying design for grill work, the arcs are constructed from the vertices of the equilateral triangles as centers.
(a) Prove that two arcs are tangent to each other at each vertex of a triangle.
(b) Find the area bounded by the arcs $A B, B C, C D, D A$.
(c) Find the ratio between the area in (b) and the area of the triangle $D B C$.

19. The character of the accompanying design for a window is obvious from the figure. Denote the radius of the large circle by R, of the semicircles by R^{\prime}, and of the small circles by r.
(a) If $R=\delta$ feet find R^{\prime} and τ
(b) Find R^{\prime} and r in terms of R.
(c) What fraction of the area of the large circle lies within the four small circles?

(d) What fraction of the area of the large circle lies outside the four semicircles?
(e) If $R=10$, find the area inclosed within the four small circles.
20. In the accompanying design for a stained glass window :
(a) What part of the square $1^{\prime} B^{\prime} C^{\prime} D^{\prime}$ lies within $A B C D$?

(b) If $A^{\prime} B^{\prime}=4$ feet, find the sum of the areas of the semicircles.
(c) Find the area inclosed by the line-segments $F B^{\prime}, B^{\prime} E$ and the arcs $F B$ and $B E$, if $E B^{\prime}$ is $1_{\frac{1}{2}}$ feet.
(d) Find the areas required in (b) and (c) if $A^{\prime} B^{\prime}=a$.
21. The accompanying design for tile flooring consists of regular octagons and squares. The design can be constructed by drawing parallel lines as shown in the figure.
(a) If a side of the octagon $A B$ is given, find $B C, D E$, and $E F$ by construction.

Find the ratio of any two of these segments.
(b) If $A B=a$, find $B C$.
(c) If $A B=a$ find the area of the square $x y z w$.
(d) At what angles do the oblique lines meet the horizontal?
(e) Comstant the figure by laying off the
 required pmintson the sides, drawing parallel lines in pencil, inking iu the sides of de wetagoms and masing the remainder of the lines.
22. This design for tile flooring is constructed by first making a network of squares and then drawing horizontal lines cutting off equal triangles from the squares.
(a) At what angle to the base of the design are the oblique lines?
(b) If each of the small squares is 6 inches on a side, find $E F$ and $H L$.

(c) Find $E F$ and $H L$ if the side of a small square is a.
(d) What fraction of the whole area is occupied by the black triangles?
23. Five parallel lines are drawn at uniform distances apart, as shown in the figure.
(a) If these lines are 4 inches apart, find the width of the strip from which the squares
 are made, so that their outer vertices shall just touch l_{1} and l_{2}, and the corresponding inner vertices shall touch l_{3} and l_{4}
(b) What part of the area between l_{1} and
 l_{2} would be occupied by a series of such squares arranged as shown in the figure?
24. $A B C$ is an equilateral triangle. $A O$ and $B O$ bisect its base angles. $O D$ and $O E$ are drawn parallel to $C A$ and $C B$, respectively. Show that $A D=D E=E B$.
25. If one base of a trapezoid is twice the other, then each diagonal divides the other into two segments which
 are in the ratio 1:2.
26. İf one base of a trapezoid is n times the other, show that each diagonal divides the other into two segments which are in the ratio $1: n$.
27. Prove that if an angle of a parallelogram is bisected, and the bisector extended to meet an opposite side, an isosceles triangle is formed.

Is there any exception to this proposition? Are two isosceles triangles formed in any case?
28. Prove that two circles cannot bisect each other.
29. Find the locus of all points from which a given line-segment subtends a constant angle.
30. In the figure, equilateral arches are constructed on the base $A B$, and on its subdivisions into halves, fourths, and eighths.

From Lincoln Cathedral, England.
(a) Show how to construct the circle O tangent to the arcs as shown in the figure.

Suggestion. The point O is determined by drawing arcs from A and B as centers with $B F$ as a radius (Why?).
(b) Show how to complete the construction of the figure.
(c) If $A B=12$ feet, find the radii of the circles $O, O^{\prime}, O^{\prime \prime}$.
(d) Find these radii if $A B=s$ (span of the arch).
(e) What part of the area of the arch $A B C$ is occupied by the arch $A D E$? by the arch $A F S$? by $A L K$?
(f) The sum of the areas of the seven circles is what part of the area of the whole arch?
(g) The sum of the areas of the two equal circles O^{\prime} and $O^{\prime \prime \prime}$ is what part of the area of the circle O ?
31. The accompanying church window design consists of the equilateral arch $A B C$ and the six smaller equal equilateral arches.
(a) If $A B=8$ feet, find the area bounded by the $\operatorname{arcs} M(i, G E, E I, I) M$.
(b) If $1 B=8$ feet, find the area bounded by the arcs $A\left({ }^{\prime}\right.$. ' $^{\prime} E, E \prime$), D.I.

(c) Find the areas required under (a) and (b) if $A B=a$.
32. In the figure, $A B C$ is an equilateral arch. D, E, and F, the middle points of the sides of the triangle $A B C$, are centers of the arcs $A E, K L$, $B F$, and $S R$; $C F$ and $M R ; E C$ and $L M$ respectively.
(a) Prove that the arc with center D and radius $D A$ passes through the point E.

(b) Prove that arcs with centers D and F, and tangent to the segment $A C$, meet on the segment $B E$.
(c) If $A B=a$, find $K S$.
(d) Can we find the area bounded by the segment $A B$ and the arcs $B F, F C, C E$, and $E A$ when $A B$ is given? If so, find this area when $A B=a$.
(e) Can we find the area bounded by $K S$ and the arcs $S R, R M$, $M L, L K$, when $A B$ is given? If so, find this area when $A B=6$ feet.
33. Prove that the altitude of an equilateral triangle is three times the radius of its inscribed circle.
34. The accompanying grill design is based on a network of congruent equilateral triangles. Ares are constructed with vertices of the triangles as centers.
(a) If $A B=6$ inches, find the area bounded by $\overparen{C Q}, \overparen{Q P}, \overparen{P T}, \overparen{T S}, \overparen{S R}, \overparen{R C}$.

(b) Has the figure consisting of these arcs a center of symmetry? How many axes of symmetry has it?
(c) Find the area required under (a) if $A B=a$.
(d) If $A B=4$ inches, find the area bounded by $\overparen{C D}, \overparen{D E}, \overparen{E F}, \overparen{F G}$, $\widehat{G H}, \overparen{H K}$, etc.
(e) Has the figure consisting of these arcs a center of symmetry? How many axes of symmetry has it?
(f) Find the area required under (d) if $A B=a$.
35. Two circles intersect in the points A and B. Through A a line is drawn, meeting the two circles in C and D respectively, and through B one is drawn meeting the circles in E and F respectively. Prove that $C E$ and $D F$ are parallel.

36. Prove that if the points D and F coincide in the preceding example the tangent at D is parallel to $C E$.
37. Two circles are tangent internally at A. Prove that all chords of the larger circle through A are divided proportionally by the smaller circle.

38. Chords are drawn through a fixed point on a circle. Find the locus of points which divide them into a fixed ratio.
39. Squares are inscribed in a circle, a semicircle, and a quadrant of the same circle. Compare their areas.

40. In a given circle two diameters are drawn at right angles to each other. On the radii thus formed as diameters semicircles are constructed. Show that the four figures thes formed are congruent.
41. Let C be any point on the diameter $A B$ of a circle.
(a) Compare the length of the arc $A D B$ with the sum of the lengths of the ares $I E C$ and $C F B$.
(b) Show that if $A B=3 C B$, then the area inclosed by the arcs $B F C, C E A, A D B$, is one third the area of the circle.
(c) Show that if $A B=m \cdot C B$, then the area inclosed by these arcs is one m th of the area of the circle.
42. By means of arcs constructed as shown in the third figure divide the area of a circle into any given number C^{\prime}. of equal parts. Make the construction.
43. Two sides $A B$ and $B C$ of a triangle are extended their own lengths to B^{\prime} and (${ }^{\prime \prime}$ respectively. Compare the areas of the triangles $A B C$ and $B B^{\prime} C^{\prime \prime}$.
44. The three silus of a triangle $A B C$ are extended to $A^{\prime \prime}, B^{\prime}, c^{\prime \prime}$ as shown in the figure. Com-

(a) if $I B B^{\prime}=I B, C C^{\prime}=-P C^{r}$, and $A A^{\prime}=C A$;
(b) if $B B^{\prime}=l \cdot A B, C^{\prime \prime}=m \cdot B C^{r}$, and $A \cdot A^{\prime}=n \cdot C \cdot \mathrm{I}$.

CHAPTER VI.

VARIABLE GEOMETRIC MAGNITUDES.

GRAPHIC REPRESENTATION.

366. It is often useful to think of a geometric figure as continuously varying in size and shape.
E.g. if a rectangle has a fixed base, say 10 inches long, bnt an altitude which varies continuously from 3 inches to 5 inches, then the area varies continuously from $3 \cdot 10=30$ to $5 \cdot 10=50$ square inches.

We may even think of the altitude as starting at zero inches and increasing continuously, in which case the area starts at zero and increases continuously.

From this point of view many theorems may be represented graphically. The graph has the advantage of exhibiting the theorem for all cases at once.

For a description of graphic representation see Chapter V of the authors' High School Algebra, Elementary Course.
367. If in the figure $A C \| B D$ and $O A$ and $O B$ are commensurable, and if $\frac{O A}{O B}=\frac{A C}{B D}$, then O, C, and D lie in a straight line.

For suppose D not in a line with $O C$. Produce $O C$ and $B D$ to ineet at K.

Then

$$
\frac{O A}{O B}=\frac{A C}{B K} .
$$

But by hypothesis $\frac{O A}{O B}=\frac{A C}{B D}$
Hence,
$B D=B K . \quad$ (Why?)

Therefore D coincides with K, and O, C and D are in a straight line.
368. Theorem. The areas of two rectangles having equal bases are in the same ratio as their altitudes.

Graphic Representation. For rectangles with commensurable bases and altitudes we have

$$
\text { Area }=\text { base } \times \text { altitude. }
$$

Consider rectangles each with a base equal to b, altitudes h_{1}, h_{2}, h_{3}, etc., each commensurable with b, and areas A_{1}, A_{2}, A_{3}, etc.

Then,

$$
\begin{equation*}
\frac{A_{1}}{A_{2}}=\frac{b h_{1}}{b h_{2}}=\frac{h_{1}}{h_{2}}, \quad \frac{A_{2}}{A_{\mathrm{a}}}=\frac{b h_{2}}{b h_{3}}=\frac{h_{2}}{h_{3}}, \text { etc. } \tag{1}
\end{equation*}
$$

We exhibit graphically the special case where $b=10$. Let one horizontal space represent one unit of altitude and one vertical space ten units of area.

Thus, the point P_{2} has the ordinate $A=10$ vertical units (representing 100 units of area) and the abscissa $h_{2}=10$ horizontal units.

Similarly locate P_{1} and P_{3} whose abscissas are h_{1} and h_{8} and ordinates A_{1} and A_{2}.

Using equation (1) and $\S 367$, show that O, P_{1}, P_{2}, P_{3} iie in the same straight line.

If we suppose that while the base of the rectangle remains fixed, the altitude varies continuously through all values from $h_{2}=10$ to $h_{3}=20=2 \times 10$, then it must take among other values the value $10 \sqrt{2}$.

Using $10 \sqrt{2}$ as an abscissa, the question is, whether $C D$ is the area ordinate corresponding to it.

This area ordinate is not less than $C D$ and commensurable with the base, for in that case the altitude would be less than $10 \sqrt{2}$, and for the same reason it is not greater than $C D$ and commensurable with the base.

But we can find line-segments less than $10 \sqrt{2}$ or greater than $10 \sqrt{2}$ and as near to $10 \sqrt{2}$ as we please.

Hence we conclude that the area ordinate for the rectangle whose altitude is $10 \sqrt{2}$ is $C D$, that is, the point C lies in the line $O P_{2}$.

In like manner, the point determined by any other abscissa incommensurable with the base is shown to lie on the line $O P_{2}$.

Since the abscissa and ordinate of auy point on $O P$ are equal, we have for any altitude,

$$
\frac{A}{A_{1}}=\frac{h}{h_{1}} .
$$

369. The preceding theorem may also be stated:

The area of a rectangle with a fixed base varies directly as its altitude.

This means that if A and h are the varying area and altitude respectively, and if A_{1} and h_{1} are the area and altitude at any given instant, then

$$
\frac{A}{A_{1}}=\frac{h}{h_{1}} \text { or } A=\frac{A_{1}}{h_{1}} \cdot h \text { or } A=k h, \text { where } k \text { is the fixed ratio } \frac{A_{1}}{h_{1}} .
$$

The graph representing the relations of two variables when one varies directly as the other is always a straight line.

EXERCISES.

1. Make a graph to show that the area of two rectangles having equal altitudes are in the same ratio as their bases.
2. Show by a graph that the area of a triangle having a fixed altitude varies as the base, and having a fixed base varies as the altitude.
3. Represent graphically the relation between two line-segments both of which begin at zero, and one of which increases three times as fast as the other. Five times as fast. One half as fast.
4. If areas be represented by the length of a line-segment as in shas, which question in Ex. 3 applies to the altitude and area of a parallelogram having a fixed base and varying altitude? Which applies to a triangle having a fixed base and varying altitude?
5. Theorem. The ared of a rectangle is equal to the product of its base and altitude.

Proof: Using the graphic representations of $\S \S 368$. 370, Ex. 1, we have for all cases,

$$
\frac{A_{2}}{A_{1}}=\frac{a}{1} \text { and } \frac{A_{3}}{A_{2}}=\frac{b}{1}
$$

Hence $\quad \frac{A_{3}}{A_{1}}=\frac{A_{2}}{I_{1}} \times \frac{A_{3}}{A_{2}}=\frac{a}{1} \times \frac{b}{1}=a b$.
But A_{1} is the unit of area. Hence $a b$ represents the numerical measure of
 A_{3} ly the area unit.

That is, \quad Arct $=$ buse \times altitude .
372. Problem. Make a graphic representation of the theorem: The primutis of similar polygons are in the swme rution us ceny troo comresponding sides.
sole tron. First mosider the sperial case of equilatmal trimgles. On the herizomal axis lay off the lengths of one side of several such triangles, and on the vertical
axis lay off the lengths of the corresponding perimeters. Show that the points so obtained lie in a straight line.

373. EXERCISES.

1. In the manner above graph the relation between the perimeters and sides of squares. Of regular pentagons. Of regular hexagons. Of rhombuses.
2. If a side of a given regular polygon is a and its perimeter p, graph the relation of the perimeters and corresponding sides of polygons similar to the given polygon.

3. Theorem. If a line is parallel to one side of a triangle and cuts the other two sides, then it divides these two sides in the same ratio.

Graphic representation:
Lay off CA along the horizontal axis and $C B$ along the vertical axis, thus locating the A point P_{1}.

In like manner find P_{2} with the coördinates $C D$ and $C E$. If $C D$ and $C A$ are commensurable, we know that

$$
\frac{C D}{C A}=\frac{C E}{C B} .
$$

Hence O, P_{2} and P_{1} are collinear. If $C D^{\prime}$ and $C A$ are incommensur-
 able, show, as in $\S 368$, that the corresponding point P^{\prime} lies on the line $O P_{1}$, and hence, as in that case, also

$$
\frac{C D^{\prime}}{C A}=\frac{C E^{\prime}}{C B}
$$

375. Problem. To represent graphically the relation between the area and side of a square as the side varies contimuonsty.

Solution. On the horizontal axis lay off the segments equal to various values of the side s, and on the rertical axis lay off segments equal to the corresponding areas A.
(1) If one horizontal space represents one unit of length of side, and one vertical space one unit of area, then the points P_{1}, P_{2}, P_{3}, ete., are fomid to lie on the steep curve.
(2) If five horizontal spaces are taken for one unit of length of side and one vertical space for one unit of area, then the points $P_{1}{ }^{\prime}, P_{2}{ }^{\prime}, P_{3}{ }^{\prime}$, etc., are found and the less steep curve is the result.

The student should locate many more points between those here shown aud see that a smooth curve can be drawn through them all in each case.

The graph of the relation between two variables, one of which varies as the square of the other, is always similar to the one here given.
376. The area of a square is said to vary as the square of one of its sides, that is, $A=s^{2}$.

For example, the theorem: The areas of two similar polygons are in the same ratio as the squares of any two corresponding sides, means that if a given side of a polygon is made to vary continuously while the polygon remains similar to itself, the area of the polygon varies continuously as the square of the side.

377.

EXERCISES.

1. From the last graph find approximately the areas of squares whose sides are $3.4 ; 5.25 ; 6.35$.
2. Find approximately from the graph the side of a square whose area is 28 square units; 21 square units; 41.5 square units.
3. Construct a graph showing the relation between the areas and sides of equilateral triangles.
4. Given a polygon with area A and a side a. Construct a graph showing the relation between the areas and the sides corresponding to a in polygons similar to the one given.
5. From the graph constructed in Ex. 3, find the area of an equilateral triangle whose sides are 4. Also of one whose sides are 6. Compute these areas and compare results.
6. Construct a graph showing the relation between a side and the area of a regular hexagon. By means of it find the area of a regular hexagon whose sides are 6 . Compare with the computed area.
7. Problem. To construct a groph showing the rotution between the ratius and the circumference of a circle, and between the radius and area of a circle, as the rulius varies continuously.

Solution. Taking ten horizontal spaces to represent one unit of length of radius, and one vertical space for one unit of circumference in one graph and one unit of area in the other, we find the results as shown in the figure.

1. From the graph find approximately the circumference of a circle whose radius is 2.7 , also of one whose radius is 3.4.
2. Find the radius of a circle whose circumference is 17 , also of one whose circumference is 23 .
3. Find the areas of circles whose radii are 1.9, 2.8, 3.6.
4. Find the radii of circles whose areas are 13.5, 25.5, 37, 45.
5. How does the circumference of a circle vary with respect to the radius?
6. How does the area of a circle vary with respect to the radius?
7. Find the radius of that circle whose area in square units equals its circumference in linear units.

DEPENDENCE OF VARIABLES.

380. In the preceding pages we have considered certain areas or perimeters of polygons as varying through a series of values. For example, if a rectangle has a fixed base and varying altitude, then the area also varies depending on the altitudes. The fixed base is called a constant, while the altitude and area are called variables.

The altitude which we think of as varying at our pleasure is called the independent variable, while the area, being dependent apon the altitude, is called the dependent variable.
381. The dependent variable is sometimes called a function of the independent variable, meaning that the two are connected by a definite relation such that for any definite value of the independent variable, the dependent variable also has a definite value.

Thus, in $A=s^{2}(\S 376), A$ is a function of s, since giving s any defnite value also assigns a definite value to A.

Similarly, C is a functiou of r in $C=2 \pi r$, and A is a function of r in $A=\pi r^{2}$.
382.

EXERCISES.

Justify each of the following statements, remembering that a variable y varies directly as another variable x if $y=k x$, and directly as the square of x if $y=k x^{2}$, where k is some constant. Find k in each case.

1. The area of a rectangle with constant base varies directly as its altitude. Find the value of k.

Suggestion. By $\S 368, \frac{A}{A_{1}}=\frac{h}{h_{1}}$ or $A=\frac{A_{1}}{h_{1}} \cdot h$. Hence $A=k h$. In this case $k=\frac{A_{1}}{h_{1}}=b$, the constant base. See also § 369 .
2. The area of a square varies directly as the square of its side.

Suggestion. Since $A=s^{2}$ and $A_{1}=s_{1}$, we have $\frac{A}{A_{1}}=\frac{s^{2}}{s_{1}{ }^{2}}$ or $A=\frac{A_{1}}{s_{1}{ }^{2}} \cdot s^{2}$. That is, $A=k s^{2}$ where $k=\frac{A_{1}}{s_{1}{ }^{2}}=1$. See $§ 376$.
3. An angle inscribed in a circle varies directly as the intercepted arc. Show that in this case $k=\frac{1}{2}$.
4. A central angle in a circle varies as the intercepted arc. Show that in this case $k=1$.
5. In the figure of $\S 374$, show that $D E$ raries directly as $C D$ if $D E$ moves, remaining parallel to $A B$.
6. An angle formed by two chords intersecting within a circle varies directly as the sum of the two arcs intercepted by the angle and its vertical angle.
7. An angle formed ly two secants intersecting outside a circle varies directly as the difference of the two intercepted arcs.
8. If a polygon varies so as to remain similar to a fixed polygon, then its perimeter varies directly as ally one of its sides. Show that $k=\frac{P_{1}}{s_{1}}$, where P_{1} and s_{1} are the perimeter and side of the fixed plyynn.
9. In the preceding, the area of the polygron varies lirectly as the square of any oue of its sides.
10. The circumference of a circle varies directly as the radius, and its areat varies directly as the square of its radius.
11. Plot $y=k x$ for $k=1, \frac{1}{2}, 3,4$.
12. Plot $y=k x^{2}$ for $k=1, \frac{1}{2}, 3,4$.

Notice that the graphs in Ex. 11 are all straight lines, while those in Ex. 12 are curves which rise more and more rapidly as the independent variable increases. See also § 378 .

LIMIT OF A VARIABLE.

383. If a regular polygon ($\S 357$) is inscribed in a circle of fixed radius, and if the number of sides of the polygon be continually increased, for instance by repeatedly doubling the number, then the apothem, perimeter, and area are all variables depending upon the number of sides. That is, each of these is a function of the number of sides.

Now the greater the number of sides the more nearly does the apothem equal the radius in length. Indeed, it is evident that the difference between the apothem and the radius will ultimately become less thian any fixed number, however small. Hence we say that the apothem approaches the radius as a limit as the number of sides increases indefinitely.

384, Similarly by § 352 the perimeters of the polygons considered in the preceding paragraph may be made as nearly equal to the circumference as we please by making the number of sides sufficiently great.

Hence we define the circumference of a circle as the limit of the perimeter of a regular inscribed polygon as the number of sides increases indefinitely.

It also follows from $\S 353$ that the circumference of a circle may be defined as the limit of the perimeter of a circumscribed polygon as the number of sides is increased.

Likewise we may define the area of a circle as the limit of the area of the inscribed or the circumscribed polygon as the number of sides increases indefinitely. See §361.
385. The notion of a limit may be used to define the length of a line-segment which is incommensurable with a given unit segment.

Thus, the diagonal d of a square whose side is unity is $d=\sqrt{2}$. Hence d may be defined as the limit of the variable line-segment whose successive leng'ths are $1,1.4,1.41,1.414 \cdots$. Sew §§ 2'j 4,240 .

In like manner, the length of any line-segment, whether commensurable or incommensurable with the unit segment, may be defined in terms of a limit.

Thns, if a variable segment is increased by successively adding to it one half the length previously added, then the segment will approach a limit. If the initial length is l, then the successive additions are $\frac{1}{2}$, $\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{3}$, etc., and the successive lengths are $1,1 \frac{1}{2}, 1 \frac{1}{3}, 1 \frac{7}{8}, 1 \frac{1}{16}, 1 \frac{3}{3} \frac{1}{2}$, etc. Evidently this segment approaches the limit ¿.

Hence 2 may be defined as the limit of the variable segroent, whose successive lengths are $1,1 \frac{1}{2}, 1 \frac{8}{4}, 1 \frac{4}{8}$, etc., as the number of successive additions is increased indefinitely.
386. A useful definition of a tangent to a circle, or to any other smooth curve, may be given in terms of a limit.

Let a secant cut the curve in a fixed point A and a variable point B, and let the point B move along the curve and approach coincidence with A, thus making the secant continually vary its direction.

Then the tangent is defined to be the limiting position of the secant as B approwhes A indefinitely.

This definition of a tangent is used in all higher mathematical work. It includes the definition given in the case of the circle in s 183.
387. The functional redation botween variables and the idea of a limitas illustrated above are two of the most important concrpts in all mathomatios. 'The whole subject is much tou dillinult for rigorous cousideration in this course.

EXERCISES.

1. Find the limit of a variable line-segment whose initial length is 6 inches, and which varies by successive additions each equal to one half the preceding.
2. Find the limit of a variable line-segment whose initial length is 1 and whose successive additions are $.3, .03, .003$, etc.
3. Construct a right triangle whose sides are 1 and 2. By approximating a square root, find five successive lengths of a segment which approaches the length of the hypotenuse as a limit.
4. If one tangent to a circle is fixed and another is made to move so that their intersection point approaches the circle, what is the limiting position of the moving tangent? What is the limit of the measure of the angle formed by the tangents?
5. The arc $A B$ of 74° is the greater of the two arcs intercepted between two secants meeting at C outside the circle. The points A and B remain fixed while C moves up to the circle. What is the limit of the angle formed by the secants? The limit of the measure of their angle?
6. If in the preceding the secants meet within the circle, what is the limit of their angle and also of the measure of this angle?
7. If in Ex. 5 one secant and the intersection point remain fixed, while the other secant approaches the limiting position of a tangent at the point A, find the limit of the measure of the included angle.
8. If in Ex. 6 one secant and the point of intersection remain fixed while the other secant swings so as to make the included angle approach a straight angle, find the limit of the measure of the angle.
9. If in Exs. 5 and 6 the moving point crosses the circle, state the theorem on the measurement of the angle in question so as to apply equally well whether the point is inside or outside the circle.
10. A fixed segment $A B$ is divided into equal parts, and equilateral triangles are constructed on each part as a base, as $\mathbb{A} B E C, C G D$, $D H A$. Then each base is divided into equal parts and equilateral triangles are constructed on these parts as bases. What is the limit of the
 sum of the perimeters of these triangles as the number of them is increased indefinitely? What is the limit of the sum of their areas?

CHAPTER VII.

REVIEW AND FURTHER APPLICATIONS.
 ON DEFINITIONS AND PROOFS.

389. A definition is a statement that a certain word or phrase is to be used in place of a more complicated expression.

Thus the word "triangle" is used instead of "the figure formed by three segments connecting three non-collinear points."

In geometry we may distinguish two classes of words:
(a) Technical words representing geometric concepts such as line, plane, 1 mlygon, circle, etc.
(b) Words of ordinary speech not included in the first class.

The meaning of words in the second class is taken for granted without any definition whatever. It is not possible to define every word of the tirst class, for every definition brings in new technical terms which in turn require definition.

Thus, one of the many definitions of "point" is "that which separates one part of a line from the adjoining part."

In this llofinition thre technical terms "separate," "lime," "adjoining" are nod. If we try to define these. still other terms are brought in which need to be defined, and soon. The only eseape is defining in a circle, which is not primitted in a logical sielence.

Gince it is thus evirlent that some terms manst be used withont being defined, it is best to state which ones are left undefined.
390. In this book point, straight line, or simply line, plane, size and shape of figures are not defined. Nor do we define the expression, a point is between two other points, or a point lies on a segment.

Descriptions of some of these terms which do not, however, constitute definitions in the logical sense are given in §§ $1-5$.

Other technical terms are defined by means of these simple undefined words with which we start.

Thus, "a segment is that part of a line which lies between two of its points" is a definition of segment in terms of the three undefined words, point, line, and between.
391. A geometric proposition consists of an affirmation that a geometric figure has some property not explicitly specified in its definition.

A proposition is said to be proved if it is shown to follow from other propositions which are admitted to be true. Hence every geometric proposition demands for its proof certain other propositions.
392. It is obvious, therefore, that certain propositions must be admitted without proof. Such unproved propositions are called axioms.

In order that a set of axioms for geometry shall be complete it must be possible to prove that every theorem of geometry follows from them. The set of axioms used in this text is not complete.

For instance, it is assumed without formal statement that if A, B, C, are three points on a segment we cannot have at the same time B between A and C and C between A and B; that the diagonals of a convex quadrilateral intersect each other; that a ray drawn from the vertex of an angle and included between its sides intersects every segment determined by two points, one on each side of the angle. In like manner many other tacit assumptions are made.
393. In a complete logical treatment every undefined term must occur in one or more axioms, since all knowledge of this term in a logical sense comes from the axioms in which it is found. In this text not every undefined term occurs in an axiom, for instance, the word between.

The axioms are, of course, based on our space intuition, or on our experience with the space in which we live. It is interesting to notice, however, that the axioms transcend that experience both as to exactness and extent. For instance, we have had no experience with endless lines, and hence we cannot know directly from experience whether or not there are complete lines which have no point in common. See $\S \S 89,96$.
394. Proofs are of two kinds, direct and indirect. A direct proof starts with the hypothesis and leads step by step to the conclusion.

An indirect proof starts with the hypothesis and with the assumption that the conclusion does not hold, and shows that this leads to a contradiction with some known proposition. Or it starts simply with the assumption that the conclusion does not hold and shows that this leads to a contradiction with the hypothesis. This kind of proof is based upon the logical assumption that a proposition must.either be true or not true. The proof consists in showing that if the proposition were not true. impossible consequences would follow. Hence the only remaining possibility is that it must be true.
395. livery proposition in geonctry refers to some figure. see $\$ 12$. The essential characteristic of a figure is its description in words and not the drating that represents it. lath drawing represents just one figure from a class of figures delined hy the deseription. Thus we say
"let $A B C D$ be a convex quadrilateral," and we construct a particular quadrilateral. We must then take care that all we say about it applies to any figure whatever so long as it is a convex quadrilateral. The logic of the proof must be entirely independent of the appearance of the constructed figure.

The description of the figure must contain all the conditions given by the hypothesis.

A good way to show that the description of the figure is what really enters into the proof, is to let one pupil describe the figure in words and each of the others draw a figure of his own to correspond to that description. The proof must then be such as to apply to every one of these figures though there may not be two of them"exactly alike.
396.

EXERCISES.

1. Every word in the language is defined in the dictionary. How is this possible in view of what has been said about the impossibility of defining every word?
2. Can we determiue experimentally whether or not the space in which we live satisfies the parallel line axion (§96)?
3. Can we determine experimentally whether or not there can be more than one straight line through two given points?
4. Which theorems of Chapter I are found by direct proof and which by indirect proof?
5. If two triangles have two angles of the one equal to two angles of the other, and also any pair of corresponding sides equal, the triangles are congruent.
6. If two triangles have two sides of the one equal to two sides of the other, and also any pair of corresponding angles equal, the triangles are congruent in all cases except one. Discuss the various cases according as the given equal angles are greater than, equal to, or less than a right angle, and are, or are not, included between the equal sides, and thus discover the exceptional case.
7. State a theorem on the congruence of right triangles which is included in the preceding theorem.
8. What theorems of Chapter I on parallel lines can be proved without the parallel line axiom?
9. What theorems of Chayter I on parallelograms can be proved without the parallel line axiom?
10. What regular figures of the same kind can be used to exactly cover the plane about a point used as a vertex?
11. What combinations of the same or different regular figures can be used to exactly cover the plane about a point used as a vertex?
12. Suppose it has been proved that the base angles of an isosceles triangle are equal but that the converse has not been proved.

On this basis can it be dccided whether or not the base angles are equal by simply measuring the sides?

Can it be decided on the same basis whether or not the sides are equal by simply measuring the base angles? Discuss fnlly.
13. The sum of the three medians of a triangle is less than the sum of the sides. See Ex. 34, p. 83.
14. The sum of the three altitudes of a triangle is less than the sum of the sides.
15. A triangle is isosceles (1) if an altitude and an angle-bisector coincide, (2) if an altitude and a median coincide, (3) if a median and an angle-bisector coincide.
16. If two sides of a triangle are unequal, the medians upon these sides are unequal and also the altitudes.
17. An isosceles triangle has two equal altitudes, two equal medians, aud two equal angle-bisectors.
18. $A B C D$ is a square and the points E, F, G, H, are so taken that $A E=A H=C F=C G$. Prove that $E F G H$ is a rectangle of constant perimeter, whatever the length of $A E$.

19. The hispetors of the exterior angles of a parallelonram form a rectangle the sum of the liagmals of which is the same as the sum of the sides of the parallelogram.
20. Prow that the perpendicular bisectors of the sides of a pulysun inseribed in a circle meet in a point. L'se this theorem to show
 that the statument is true of any triangle.
21. The bisectors of the exterior angles of any quadrilateral form a quadrilateral whose-opposite angles are supplementary.

Definition. In a polygon of n sides there are n angles and hence $2 n$ parts. Parts a, $\angle A, b, \angle B$, etc., are said to be consecutive if a lies on a side of $\angle A, b$ lies on the other side of $\angle A$, and also on a side of $\angle B$, etc.

22. Is the following proposition true? If in two polygons each of n sides $2 n-3$ consecutive parts of one are equal respectively to $2 n-3$ consecutive parts of the other, the polygous are congruent.

Suggestion. Try to prove this proposition for $n=3$, then for $n=4$, and finally for the general polygon.
23. What theorems on the congruence of triangles are included in the preceding proposition?

A proposition may be proved not true by giving one example in which it does not hold.
24. Is the following proposition true? If in two polygons each of n sides $2 n-3$ parts of one are equal respectively to $2 n-3$ corresponding parts of the other, the polygons are congruent provided at least one of the equal parts is a side.
25. Given three parallel lines, to construct an equilateral triangle whose vertices shall lie on these lines.

Solution. Let P be any point on the middle line l_{2}. Draw $P C$ and $P A$, making an angle of 60° with l_{2}. Through the points A, P, C construct a circle meeting l_{2} in B. Then $A B C$ is the required triangle.

Suggestion for Proof. Compare \&
 $B P A$ and $B C A$ also $\& B P C$ and $B A C$.
26. Show how to modify the construction of the preceding example so as to make $A B C$ similar to any given triangle.
27. If tangents are drawn to a circle at the extremities of a diameter and if another line tangent to the circle at P meets these two tangents in A and B respectively, show that $A P \quad P B=r^{2}$, where r is the radius of the circle.

LOCI CONSIDERATIONS.

397. Two methods are available to show that a certain geometric figure is the locus of points satisfying a given condition.

First method :
Prove (a) Every point satisfying the condition lies on the figure.
(b) Jicery point on the figure satisfies the couldtion.

Second method:
Prove (a^{\prime}) every point not on the figure fails to satisfy the condition.
(b^{\prime}) Every point on the figure satisfies the condition.
The first of the methods is more direct and usually more simple. See § 127.

The second is likely to lead to proofs that are not general.

PROBLEMS AND APPLICATIONS.

1. $A B$ is a fixed segment connecting two parallel lines and perpendicular to each of them. Find the locus of the vertices of all isoserdes triangles whose common base is $A B$. Is the middle point of $A B$ a part of this locus?
2. If in Ex. $1 A B$ is allowed to move always remaining propendicular to the given lines, and if $A B C$ is any triangle renaining fixed in slape, find the locus of the point C.
3. Find the locus of the centers of all parallelograms which have the same lase and equal altitudes.
4. Find the locus of the centers of parallelograms
 olitainell hy cutting two parallel lines by paralled seteant lines.
5. Find the locus of the vertices of all triangles which have the same hasi and equal arras.
6. Find the locus of a point whose distances from two intersecting lines are in a fixed ratio.

Note that the whole figure is symmetrical with respect to the bistector of each pair of vertical angles formed hy the two given lines.
7. Find the locus of a point such that the difference of the squares of its distances from two fixed points is a constant.

Note that the locus must be symmetrical with respect to the perpendicular bisector of the segment connecting the two given points A and B.

Show that in the figure $\overline{A P}^{2}-\overline{P B}^{2}=\overline{A C}^{2}-\overline{C B}^{2}$.
8. The lines l_{1} and l_{2} meet at right angles in a point A. O is any fixed point on l_{2}. Through O draw a line meeting l_{1} in $B . \quad P$ is a varying point on this line such that $O B \cdot O P$ is fixed. Find the locus of P as the line swings about O as a pivot.

Suggestion. Draw $P D \perp$ to $B P$. Show that $B O \cdot O P=A O \cdot O D$. Hence we obtain a set of right triangles whose
 common hypotenuse is $O D$. Find the locus of the vertex P.
9. Find the locus of all points the sum of whose distances from two intersecting lines is equal to a fixed segment a.

Suggestion. If $A B$ and $C B$ are the given lines, investigate points on the base $A C$ of the isosceles triangle $A B C$ in case the perpendicular from C on $A B$ is equal to a.
10. The figure $A B C D E F$ is a regular hexagon. $A G, B H$, etc., are equal segments bisecting the
 angles A, B, etc.
(a) Prove $G H \| A B$.
(b) Prove that the inner figure is a regular hexagon.

Suggestion. Show $A B H G$ congruent to the other similar parts by superposition.

(c) Find how many degrees in $\angle A G H$ and $\angle B H G$, as needed by a carpenter in making a hexagonal frame.
11. The figure $A B C D$ is a parallelogram. The points E, F, G, H are taken so that $A E=C G$ and $A H=C F$.

Prove $\triangle F C G \cong \triangle A E H$ and $\triangle E O H \cong \triangle F O G$.
This figure is found in an old Roman pavement in Sussex, England.

12. The figure $A B C D$ is a square., $1 E=B F=C G=D H$, and $E y, F z, G w, H x$ are so drawn that $\angle 1=\angle \ddot{\prime}=\angle 3=\angle 4$.
(a) Find $\measuredangle E y F, F \%$, etc.

Suggestion. Through B draw a line parallel to $F z$ and make use of the Δ thas formed.
(b) Prove $E B F y \cong F C G z \cong G D H w \cong H_{A} \& E x$.
(c) What kind of figure is $x y z w$? Prove.

See the accompanying design.
13. In a square $A B C D$ diagonals and diameters are drawn as shown in the figure. (A line connecting the middle points of opposite sides of a quadrilateral is a diameter.) The points K, L, N^{\top} are laid off so that $M N=M K=M L$. The small triangles

Parquet Pattern. on the other sides are constructed congruent to KLN. Through the vertices of the triangles lines $E F, F G$, etc., are drawn parallel to the sides of the giveu square.

Tile Pattern.
Prove that (a) AKNE, $I B F N$, etc., are congruent parallelograms and hence that $E F, F G$, ete., meet in points on the diagonals. (see Ex. 6, § 123.)
(b) AIFEE $\cong B C G F$.
(c) EFGII is a square.
(d) $K N$ and $Q P$ lie on the same straight line.
14. The figure $1 B C^{\prime} 7$) is a square $P^{\prime}(Q$
 $I I, \ldots$ are so takn that $1 E=B F=P B$ $=I^{\prime}=\cdots$ Also $O N=O K=O L=O M$.

(a) Prove that $\triangle E N F \cong \triangle G K H$.
(b) Prove that TMONEA $\cong F N O K G B$.
(c) How many axes of symmetry has the figure TAENFBGKH ...?
(d) Has this figure a center of symmetry?

See the four squares in the accompanying
 design.
15. A cross-over track is constructed as shown in the figure. The rails of the curved track are tangent to those of the main line at A, B, F and G. The curves are tangent to each other at D and E. The ares $G E$ and $B D$ have equal radii as have the $\operatorname{arcs} A E$ and $D F . C_{1}$ is the center of the $\operatorname{arcs} G E$ and $F D$ and C_{2} is the center of the $\operatorname{arcs} B D$ and $A E$.
(a) Prove that $C_{2} H C_{1}$ is a right triangle.
(b) If the distance between the tracks is b feet and the distance between the rails in each track (the gauge) is a feet, show that

$$
(2 x+3 a+2 b)^{2}=y^{2}+(2 x+2 a+b)^{2} .
$$

Since a and b are given, this equation may be solved for x in terms of y or for y in terms of x.

Hence if the distance $A K$ is known, we may use this equation to compute the radii of the arcs used in constructing the figure.

On the other hand, if the radii of the arcs are known, we may compute the distance $A K$.

This is a very common problem in railway construction. The construction is also used in laying out a curved street to connect two parallel streets.
16. If in the preceding problem $a=4$ feet $8 \frac{3}{4}$ inches, $b=9$ feet, and $A K=200$ feet (an actual case), find the radii of the arcs.

Using the same values for a and b as in the preceding example, find $A K$ if $C_{1} E=300$ feet.

FURTHER DATA CONCERNING CIRCLES.

398. In Chapter II numerous theorems were proved concerning the equality of arcs, angles, chords, etc.

The three following theorems involve inequalities of these elements. The student should construct figures in each case and give the proof in full.
399. Theorem. In the same circle or in equal circles, of two unequal angles at the center the greater is subtended by the greater arc; and of two unequal arcs the greater subtends the greater angle at the center.

The proof is made by superposition.
400. Theorem. In the same circle or in equal circles, of two unequal minor arcs the greater is subtended by the greater chord; and of two mequal chords the greater subtends the greater minor arc.

The proof depends upon the theorem of § 117.
401. Theorem. In the same circle or in equal circles, of twoo unequal angles at the center, both less than straight angles, the greater is subtended by the greater chord; and of two unequal chords the greater subtends the greater angle at the center.
402. Problem. On a given line-segment as a chord to construct an arc of a circle in which a given angle may be inscribed.

Construction. Let K be the given angle and $A B$ the given segment.

It is required to construct a circle in which $A B$ shall be a chord and such that an angle inscribed in the arc $A M B$ shall be equal to the given angle \boldsymbol{K}.

At A construct an angle $B A C$ equal to $\angle K$.
If now a circle were passed through A and B so as to be tangent to $A C$ at A, then one half the are $A B$ would be the measure of the angle BAC. See § 219.

Then any angle inscribed in the arc $A M B$ as $\angle A P B$ would be equal to $\angle B A C=\angle E$.

Hence the problem is to find the center of a circle tangent to $A C$ at A and passing through A and B.

Let the student complete the construction and proof.
403. EXERCISES.

1. Prove that the problem of $\S 402$ may be solved as follows: With A, any point on one side of the angle K, as center and $A B$ as radius strike an are meeting the other side of the angle at B. Circumscribe a circle about the triangle $A B K$.
2. Show that from any point within or outside a circle two equal line-segments can be drawn to meet the circle and that these make equal angles with the line joining the given point to the center.
3. Show that if two opposite angles of any quadrilateral are supplementary, it can be inscribed in a circle.

Suggestion. Let $A B C D$ be the quadrilateral in which $\angle A+\angle C=2 \mathrm{rt}$. \angle.

Pass a circle through B, C, and D. To prove that A lies also on the circle, and not at some inside or outside point as A^{\prime} or $A^{\prime \prime}$.
(1) Show that $\angle A^{\prime}>\angle A$ and $\angle A^{\prime \prime}<\angle A$. See §§ 217, 222.
(2) Hence $\angle A^{\prime}+\angle C>2$ r.t. $\angle 8$ if A^{\prime} is within the circle and $\angle A^{\prime \prime}+\angle C<2 \mathrm{rt}$. \& if $A^{\prime \prime}$
 is outside the circle, both of which are contrary to the hypothesis. Hence the fourth vertex must lie on the circle.

Show that the condition that the polygon is convex follows from the hypothesis.
404. Problem. To draw a common tangent to two circles which lie wholly outside of each other.

Construction. Let the given circles be O and O^{\prime} of which the radius of the first is the greater.

Required to draw a tangent common to both circles.
Draw an auxiliary circle with center 0 and radius equal to the difference of the two given radii in one figure and equal to the sum of these radii in the other figure.

In each case draw a tangent to this auxiliary circle from o^{\prime}, thus fixing the point D. See $§ 230$.

Draw the radius $O D$, thus fixing the point P.
Draw $O^{\prime} P^{\prime} \| D P$, thus fixing the point P^{\prime}.
Then $P P^{\prime}$ is the required tangent.
Proof: Show that, in each case, $P P^{\prime} O^{\prime} D$ is a rectangle, thus making $P P^{\prime}$ perpendicular to the radii $O P$ and $O^{\prime} P^{\prime}$, that is, tangent to each circle.

Definition. A common tangent to two circles is called direct if it does not cross the segment connecting the centers, and transverse if it does cross it.
405.

EXERCISES.

1. Describe the relative positions of two circles if they have two direct common tangents. Also if they have only one.
2. Describe the positions of two eircles if they have two transverse common tangents; one; none.

PROBLEMS AND APPLICATIONS.

1. Find the locus of the middle points of all chords of a circle drawn through a fixed point within it.
2. The sides $A D$ and $B C$ of the square $A B C D$ are each divided into four equal parts and a circle inscribed in the square. Lines are drawn as shown in the figure. Show that EFGHKL is a regular hexagon.

This is the construction by means of
 which a regular hexagonal tile is cut from a square tile.
3. In the preceding example what fraction of the area of the square is covered by the hexagon.
4. A circle of constant radius passes through a fixed point A. A line tangent to it at the point P remains parallel to a fixed line $B D$. Find the locus of P.

Suggestion. In the figure prove $A C^{\prime} P C$ a parallelogram. Show that the locus consists
 of two circles.
5. The same as the preceding except that the circle of constant radius remains tangent to a fixed circle instead of passing through a fixed point.

Suggestion. On that diameter of the fixed circle which is perpendicular to the fixed line lay off $A C=C^{\prime} P$. Prove $A C^{\prime} P C$ a parallelogram. Show that the locus consists of two circles.

6. In the square $A B C D, A M=O B=B U=V C$, etc. The point E is the intersection of the segments $M V$ and $T U, F$ is the intersection of $O R$ and $T U, G$ is the intersection of $O] V$ and $U S$, etc. When these segments are partially erased, we have the figure.
(a) Prove that TMEN, OUGF, etc., are squares.
(b) What kind of a figure is $M O F E$? Prove.
(c) How many axes of symmetry has the figure $N E F G H \ldots$ Has it a center of symmetry?

7. $A B C D$ is a square the mid-points of whose sides are joined. On its diagonals points E, K, P, T are taken so that $A E=B K=C P$ $=D T$. The construction is then completed as shown in the figure. ($F G$ and $M N$ lie in the same straight line.)
(a) Prove that E, K, P, T are the vertices of a square.
(b) If $A B=6$ find $A E$ so that the area of the square $E K P T$ shall be half that of the square
 $A B^{\prime} D$.
(c) If $A B=6$, and if $C P=P S$, find the area of the figure $E F G H K T .1 H \ldots$. Also find the area of the trapezoid $B K L R$.
(l) If $C P=\frac{y_{3}}{3} C S$, find the area of the inside figure and also of $B K L R$.
(e) What fraction of CS must $C P$ be in order that the inside figure shall be half the square?

From the Alhambra.
(f) If the inside figure is $\frac{1}{4}$ of the square and if $A B=8$ inches, find $C P$.
8. In the figure $A B C D$ is a square. Each of its sides is divided into three equal parts by the points E, F, G, H, \cdots. The points E, $X, Y, H ; F, X, W, M$; etc., lie in straight lines.
(a) If $A B=6$ inches, find the area of that part of the figure which lies outside the shaded band.
(b) If $A B=6$ inches, and if the width of

Parquet Flooring. width of the hand in order that it shal
10% of 1 lu" area of the whole design?
(e) If $1 l=a$ inches find the width of the band if it occupies n prement of the arra of the whele desigu.
9. By means of the accompanying figure find the area of a regular dodecagon whose sides are 6 inches. Notice that tbe dodecagon consists of the regular hexagon in the center, the six equilateral triangles, and the six squares.

Note how this figure enters into the accompanying tile design.
10. Find an expression for the area of a regular dodecagon whose sides are a.
11. Find the apothem of a regular dodecagon by dividing its area by half the perimeter. Also find it by finding the apothem of the hexagon and then adding a to this. Compare results.

12. Find the radius of a circle circumscribed about a regular dodecagon whose side is a.
13. If the accontpanying design for parquet border is 10 inches wide, find the width of the strips from which the small squares are made. Also find this result if the width of the border is a.
14. In the figure of the preceding example find the dimensions of the small triangles along the two edges if the width
 of the border is a inches.
15. Show that the figure given below may be used as the basis for the design shown beside it. (See Ex. 7, p. 147.)
16. If an outside of each of the two squares shown in the figure is 6 inches, find the width of the strips of which they are made in order that each shall fit closely into the corner of the other?

Suggestion. Find the altitude on $E M$ in $\triangle U E M$ above if $A B=6$ inches.

This is a common Arabic ornament.

17. In the figure $A B C D$ is a square. $O n$ each side a triangle, two of whose sides are parallel to the diagonals of the square, is so constructed that the points E, F, and G lie in the same straight line.
(a) Prove that the triangles are right isosceles triangles.

(b) What part of the square lies within the triangles?
(c) If $A B=a$, find $A E$ so that the triangles shall occupy $\frac{1}{n}$ of the area of the square.

See the accompanying tile pattern.
18. $A B C D$ is a square and the small figures in the corners are squares.
(a) Show that if the lines intersect as shown in the figure $A E$ must be $\frac{1}{4}$ of $A B$.
(b) If $A B=6$ inches find the areas of the squares $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $X Y Z W$.
19. In the tile design show that the figure within the square is the same as that of Ex. 18. What part of the large square is occupied by each shaded part?
20. $A B C D$ is a square. $1 E=F B=$ $B K=L C=r P=Q D=D R=S .1$.
(a) If $A B=a$ and if $A E=b$, find the sum of the areas of the four shaded rectangles.
(b) If $I B=8$ inches, find $I E$ so that the sum of these rectangles shall be $\frac{1}{6}$ of the whole square. Interpret the two solutions.
(c) If $A B=a$ inches, find $A E$ so that the sum of the rectangles shall be $\frac{1}{n}$ of the square.
21. (a) Show that in the accompanying design for till flowring the sizo of any une piece dotermines the size of every piece in the figure.
(b) What fraction of the figure is occupied by
 each color?
22. This tile floor design is based on the plane figure and this in turn is based on the figure of Ex. 17 where

$$
A E=\frac{A B}{6} .
$$

What part of the whole design
 is occupied by tiles of the various colors?
23. $A B C D$ is a square. Lines are drawn parallel to the sides and intersecting as shown in the figure.
(a) Show how the sides of the square must be divided in order to make the lines intersect
 as they do.
(b) If $A B=6$ inches, find the areas of the squares $S X Z Q$ and $R T Y P$.
(c) Find these areas if $A B=a$.
(d) Show that the outline figure is the basis of the tile design here given.

24. $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are equal squares. rounded by strips of equal width.
(a) If $A B=a$, find $A F, F E$, and $E B$.
(b) Find the width of the strips if their outer edge passes through the points A, B, C, D, when $A B=8$ inches. Also when $A B=a$.
(c) If $A B=a$, find $A^{\prime} H$ and hence $K L$.
(d) If the width of the strip is 1 inch, find $K L$ 。

(e) If the width of the strip is b, find $K L$.
(f) If $K L=c$, find the width of the strip.

When the width of the parquet floor border shown in the figure is given, (f) is the problem one needs to solve to know how wide a dark strip
 to use. Compare Ex. 16, page 235.

THE INCOMMENSURABLE CASES.

406. We have seen, in $\oint 2: 3 t$, that there are segments which are incommensurable; that is, which have no common unit of measure, - for instance, the side and the diagonal of a square.

For practical purposes the lengths of such segments are approximated to any desired degree of accuracy, and their ratios are understood to be the ratios of these approximate numerical measures. See $\S \S$ 238-ワ40.

All theorems iuvolving the ratios of incommensurable segments, and the lengths and areas of circles, have thus far been proved only for such approximations, and these are quite sufficient for any refinements of measurement which it is possible to make.

But for theoretical purposes it is important to consider these incommensurable cases further, just as in algebra we not only approximate such roots as $\sqrt{2}, ~ \sqrt{3}, \sqrt{5}$, etc., but we also deal with these surds as exact numbers.

For instance, in such an operation as

$$
\left(\sqrt{3}+\sqrt{\frac{3}{2}}\right)(\sqrt{3}-\sqrt{2})=3-2=1
$$

While the length of the diagonal of a mnit square cannot be expressed as an integer or as a rational fraction, that is, the quotient of two integers, we nevertheless think of such a segment as laving a definite length, or what is the same thing, a definit, ratio with the unit segment forming the side of the square.
E.g. If d is the diagonal of the square whose side is 1 , then $d^{2}=1+1$ or $d=\sqrt{\overline{3}}$. Now suppose $\Sigma^{\sqrt{2}}=\frac{a}{b}$, a fraction in its lowest frems. Thun $2=\frac{a^{2}}{b^{2}}$, a fraction also in its lowest terms. But a frathinn in its lowest terms camot be equal to 2 . Hence $\mathfrak{2}$. is ueither an interger nor the quotient of two integers.
407. The following axiom and that of $\S 409$ are fundamental in the consideration of incommensurable line-segments.

Axiom X. Every line-segment AB has a definite length, which is greater than $A C$ if C lies between A and B.

The length of a line-segment is in every case a number, which is rational (an integer or the quotient of two integers) in case the segment is commensurable with the unit segment, but which otherwise is irrational. Under the operations of arithmetic these irrational numbers obey the same laws as the rational numbers.

The length of a line-segment is often called its numerical measure.
408. The exact ratio, or simply the ratio, of two linesegments is the quotient of their numerical measures, whether these are rational or irrational. That is, every such ratio is a number.

It is obvious that a segment may be constructed whose length is any given rational number. We have also seen how to construct with ruler and compasses segments whose lengths are certain irrational numbers, such as $\sqrt{2}, \sqrt{3}$, $\sqrt{5}$, etc. See Ex. 3, § 295.
409. We now assume the following

Axiom XI. For any given number \bar{K} there exists a line segment whose length is \boldsymbol{K}.

This does not imply that it is possible by means of the ruler and compasses to construct a segment whose length is any given irrational number. For instance, we cannot thus construct a segment whose length is $\sqrt[3]{2}$.

We now prove the fundamental theorem on the proportionality of sides of triangles.
410. Theorem. A line parallel to the base of a triangle, and meeting the other two sides, divides these silles propurtionally.

Given $\triangle A B C$ with $D E \| A B$.
To prove $\quad \frac{C D}{C A}=\frac{C E}{C B}$.
Proof: Whether $r^{\prime} D$ and $C A$ are commensurable or not, we know by
 $\S \S 407,408$ that $\frac{C D}{C A}$ and $\frac{C E}{C B}$ are definite numbers. We prove that these numbers cannot be different.

First, suppose $\frac{C D}{C A}<\frac{C E}{C B}$.
Take F between C and E so that $\frac{C D}{C A}=\frac{C F}{C B}$. Ax. XI (1)
Divide $C B$ into equal parts, each less than $E F$. Then at least one of the division points, as G, lies between E and F. Draw $G H \| A B$.

Since $C G$ and $C B$ are commensurable, we have, by § 243 ,

$$
\frac{C H}{C A}=\frac{C G}{C B} .
$$

Diviling (1) by (2), we have $\frac{C D}{C_{H}}=\frac{C F}{C \cdot(}$. But this cannot be true, since $(I)>C H$ and $C F<C G$.

Hence $\frac{C D}{C A}$ cannot be less than $\frac{V^{\prime} E}{C B}$.
Seconily, $]^{r o v e}$ in the same manner that $\frac{C D}{C, 1}$ cannot be greater thatn $\frac{r^{\prime} E}{C^{\prime} H}$. Innce, since the ont is neither less than nor greater than the other, these ratins must be equal.
'The following treatment of incommensurable ares and angles is "xarlly similar to the above.
411. Axiom XII. Any given are $A B$ has a definite ratio with a unit arc, which is greater than that of an arc AC, if C lies on the arc AB.
412. Axiom XIII. Any given angle ABC has a definite ratio with a unit angle, which is greater than that of $A B D$ if $B D$ lies within the angle $A B C$.
413. Theorem. In the same or equal circles the ratio of two central angles is the same as the ratio of their intercepted arcs.

Outline of Proof: We show that in the figure $\frac{\angle A O B}{\angle C O^{\prime} D}$ can neither be less than nor greater than $\frac{\operatorname{arc} A B}{\operatorname{arc} C D}$.

Suppose

$$
\begin{equation*}
\frac{\angle A O B}{\angle C O^{\prime} D}<\frac{\operatorname{arc} A B}{\operatorname{arc} C D} . \tag{1}
\end{equation*}
$$

Then take E so that $\frac{\angle A O B}{\angle C O^{\prime} D}=\frac{\operatorname{arc} A E}{\operatorname{arc} C D}$.
Divide are $C D$ into equal parts each less than are $E B$. Lay off this unit are successively on $A B$ reaching a point F between E and B. Then arcs $A F$ and $C D$ are commensurable and by a proof exactly similar to that of § 243, making use of § 199, we can show that

$$
\begin{equation*}
\frac{\angle A O F}{\angle C O^{\prime} D}=\frac{\operatorname{arc} A F}{\operatorname{arc} C D} . \tag{2}
\end{equation*}
$$

Complete the proof as in $\S 410$.
414. Axiom XIV. Any given rectangle with base b and altitude a has a definite area which is greater than that of another rectangle with base b^{\prime} and altitude a^{\prime} if $a \geqq a^{\prime}$ and $b>b^{\prime}$ or if $a>a^{\prime}$ and $b \geqq b^{\prime}$.
415. Tineorem. The area of a rectangle is the product of its base and altitude.

Proof: Denote the base and altitude by b and a, respectively, and the area by \boldsymbol{A}.

Suppose $A<a b$, and let a^{\prime} be a number such that $A=a^{\prime} b$. Lay off $B E=a^{\prime}$.

Consider first the case where b is commensurable with the unit segment and a is not.

Divide the unit segment into equal parts each less than $C E$ and lay off one of these parts successively on $B C$ reaching a point F between E and c.

Denote the length of $B F$ by $a^{\prime \prime}$, and draw $F F^{\prime} \| A B$.
Then by § 307 the area of $A B F F^{\prime}$ is $a^{\prime \prime} b$.
By hypothesis $A=a^{\prime} b$, but $a^{\prime} b<a^{\prime \prime} b$ since $a^{\prime}<a^{\prime \prime}$.
Hence

$$
\begin{equation*}
A<a^{\prime \prime} b . \tag{1}
\end{equation*}
$$

But by Ax. XIV $\quad \rightarrow>a^{\prime \prime} b$.
Hence the assumption that $A<a b$ camnot hold.
In the same manner prove that the $A>a b$ camot hold.
The proof in case both siles are incommensurable with the wit segment is now exactly like the above and is left to the student.
416. Axiom XV. A circle has a definite length and

- incloses a definite area which are greater than those of any inscribed polygon and less than those of any circumscribed polygon.

417. Theorem. For a gicen circle and for any number κ, however small, it is possible to inscribe and to circumscribe similar polygons such that their perimeters or their areas shall differ by less than π.
Proof: First, Let p and p^{\prime} be the perimeters of two similar polygons, the first circumscribed and the second in-
 scribed, and let a and a^{\prime} be their apothems.

Then

$$
\frac{p}{p^{\prime}}=\frac{a}{a^{\prime}}, \text { or } \frac{p-p^{\prime}}{p^{\prime}}=\frac{a-a^{\prime}}{a^{\prime}} .
$$

Hence

$$
p-p^{\prime}=p^{\prime} \cdot \frac{a-a^{\prime}}{a^{\prime}} .
$$

Now $a-a^{\prime}$ can be taken as small as we like.
Hence $p \cdot \frac{a-a^{\prime}}{a^{\prime}}$ can be made as small as we please; that is, $p-p^{\prime}$ can be made smaller than any given number k.

Second, letting P and P^{\prime} be the areas of the circumscribed and inscribed polygons respectively, we have $\frac{P}{P^{\prime}}=\frac{a^{2}}{a^{\prime 2}}$, and the proof proceeds exactly as before.
418. Since the length C of the circle is greater than p^{\prime} and less than p, it follows that C is thus made to differ from either p or p^{\prime} by less than K.

And since the area A of the circle is greater than P^{\prime} and less than P, it follows that A is made to differ from either P or P^{\prime} by less than K.
419. Theorem. The lengths of two circles are in the same ratio as their radii.

Proof: Let c and c^{\prime} be the lengths of two circles whose centers are O and O^{\prime} and whose radii are r and r^{\prime}.

We shall prove that $\frac{c}{c^{\prime}}=\frac{r}{r^{\prime}}$ by showing that $\frac{c}{c^{\prime}}$ is ueither less than nor greater than $\frac{r}{r^{\prime}}$.

First, suppose that $\frac{c}{c^{\prime}}<\frac{r}{r^{\prime}}$ or $c<e^{\prime} \cdot \frac{r}{r^{\prime}}$.
And let c differ from $c^{\prime} \cdot \frac{r}{r^{\prime}}$ by some number K.
Now circumscribe a regular polygon P about $\odot o$ with perimeter p such that

$$
\begin{equation*}
p<c^{\prime} \cdot \frac{r}{r^{\prime}} \tag{1}
\end{equation*}
$$

This is possible since p can be made to differ from e by less than $K(\S 418)$.

Also circumscribe a polygon P^{\prime} similar to P about $\odot o^{\prime}$ with perimeter p^{\prime}.

Then

$$
\frac{p}{p^{\prime}}=\frac{r}{r^{\prime}}, \text { or } p=p^{\prime} \cdot \frac{r}{r^{\prime}} .
$$

But $p^{\prime}>c^{\prime}$ and hence $p>c^{\prime} \cdot \frac{r^{\prime}}{r}$.
Hence the supposition that $\frac{c}{c^{\prime}}<\frac{r}{r^{\prime}}$ leads to the contradiction expressed in (1) and (\because) and is untenable.

Now prove in same way that $\frac{c}{c^{\prime}}>\frac{r}{r^{\prime}}$ is untenable.
420. Theorem. The arcas of tho cirdts are in the same ration as the squmes of their ratio.
 that of the preceding theorem.

PROBLEMS AND APPLICATIONS.

1. A billiard ball is placed at a point P on a billiard table. In what direction must it be shot in order to return to the same point after hitting all four sides?
(The angle at which the ball is reflected from a side is equal to the angle at which it meets the side, that is, $\angle 1=\angle 2$, and $\angle 3=\angle 4$.)

Suggestion. (a) Show that the opposite sides of the quadrilateral aloug which the ball travels are parallel.
(l) If the ball is started parallel to a diagonal of the table, show that it will return to the starting point.
2. Show that in the preceding problem the length of the path traveled liy the ball is equal to the sum of the diagonals of the table.
3. Find the direction in which a billiard ball must be shot from a given point on the table so as to strike another ball at a given point after first striking one side of the table.

Suggestion. Construct $B E \perp$ to that side of the table which the ball is to strike and make $E D=B E$.

4. The same as the preceding problem except that the cue ball is to strike two sides of the table before striking the other ball.

Suggestion. $\quad B^{\prime} E^{\prime}=E^{\prime} D^{\prime}, D^{\prime} H=H F$.
5. Solve Ex. 4, if the cue ball is to strike three sides before striking the other ball, - also if it is to strike all four sides.
6. In the figure $A B C D E F$ is a regular hexagon.

Prove that: (a) $A D, B E$, and $C F$ meet in a point.
(b) $A B C O$ is a rhombus.
(c) The inner circle with center at O and the arcs with centers at A, B, C, etc., have equal radii.
(d) The straight line connecting A and C is tangent to the inner circle and to the arc with center at B.
(e) The centers of two of the small circles lie
 on the line connecting A and C.
(f) Find by construction the centers of the small circles.
7. In the figure $E G$ and $F H$ are diameters of the square $A B C D$. On the diagonals, points K, U, V, W are laid off so that $A K=B U=C 1^{+}$ $=D W$. Also $L M=N P=R S=$ etc. $E N$ and $S F$ are in the same straight line, and so on around the figure. Prove tlat:
(i) $K U I^{\prime} W$ is a square.
(b) $A K M E$ and $E N U B$ are equal trapezoids.
(c) L, O, T lie in a straight line.
(d) The four heavy six-sided figures are congruent.
(e) If $A B=a, A K=\frac{A O}{6}$ and $M L=$ $K L$, find the areas of the figures $K U \mathrm{I}^{\prime} \mathrm{I}^{\top}$, AKME, LOPNEM.
(f) Find the areas required under

(e) if $A K=\frac{4 O}{n}$ and $L M=m \cdot L K$.

(g) If $.1 K^{*}=\frac{A O}{i j}$, what is the length of $M L L$ if the four heary figures occupy half the square $I B C D$?
8. Find a side of a regular octagon of radins r. See Ex. 3, p. 146.
9. Find the area of a regular octagon of radius r.
10. In the figure $A B C D{ }^{\cdots}$ is a regular octagon inscribed in a circle of radins . . Find the area of the triangle $A B C$.

Sutigestion. Find first the altitude on A(' in the $\triangle .10 O^{\prime}$ and thus the altitucle of $\triangle .1 B C^{\circ}$
11. In the same figure the lines ' '// and A/'are drawn meeting at K. Prove that 1 BCK is a parallelogram and find its area if the radius of the circle is r.
12. In the parquet floor design given with Ex. 10, the darker parts are parallelograms constructed as under Ex. 11. What part of the area is of white wood?
13. In the figure $A B C D$ and $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime}$ are equal squares, placed as shown. Lines are drawn through $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} parallel to $A B$, $B C, C D$, and $D A$, forming a quadrilateral $E F G H$.
(a) Prove EFGH a square.
(b) What part of the large square is inclosed by the outside heavy figure?
(c) If $A B=a$, find the area of the inside heavy figure.

14. The design opposite consists of white figures constructed like the inner figure preceding, together with the remaining black figures. What part of the figure is white?
15. Show that the altitude of an equilateral triangle with side s is $\frac{s}{2} \sqrt{3}$.

Design from the Alhambra.
16. If the angles of a triangle are $30^{\circ}, 60^{\circ}, 90^{\circ}$, and if the side opposite the 60° angle is r, show that the other sides are $\frac{r}{3} \sqrt{3}$ and $\frac{2 r}{3} \sqrt{3}$. See $\S 159$, Ex. 14.
17. Three equal circles of radius 2 are inscribed in a circle as shown in the figure. Find the radius of the large circle.

Suggestion. The center O of the large circle is at the intersection of the altitudes of the equilateral triangle $O^{\prime} O^{\prime \prime} O^{\prime \prime \prime}$. (Why?)

Hence $O^{\prime} O D$ is a triangle with angles $30^{\circ}, 60^{\circ}$; 90° as in Ex. 16.

Solve this problem for any radius r of the small circles. Ans. $R=r+\frac{2 r}{3} \sqrt{3}$.

18. $A^{\prime}, B^{\prime}, C^{\prime}$, are the middle points of the sides of the equilateral triangle $A B C$. The sides of the triangle $A^{\prime} B^{\prime} C^{\prime \prime}$ are trisected and segments drawn as shown in the figure.

From Chureh of Or San Michele.
If $A B=a$.
(a) Prove $A^{\prime} B^{\prime \prime} C^{\prime \prime}$ an equilateral triangle.
(b) Find the area of $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ and of the dotted hexagon.
(c) Find the area of the triangle GFC and of the trapezoid $D E B^{\prime \prime} A^{\prime \prime}$.

From Westminster Abbey.
19. In the figure $A B C$ is an equilateral triangle. On the equal bases $P M, M D, D E$ equilateral arches are constructed. two of them tangent to thr silles of the triangle at L and N respectively. ('ircles O^{\prime} and $O^{\prime \prime}$ arp each tanment to a side of the triangle and to two of the arohes. Cireld O is tangent to eircles O^{\prime} and $O^{\prime \prime}$ and to both sides of the trianyle.
(a) If $\mid B=1$, find $I E$.

Suggestion. ln the right triangle $D B L$ one ache angle is 60°.
(b) Find the ratio $r: r^{\prime}, r$ being the base $D E$ of the arch and r^{\prime} the radius of the circle O^{\prime}.

Suggestion. $G D=2 D L, G O^{\prime}=2 r^{\prime}$, and $O^{\prime} D=\sqrt{\left(r+r^{\prime}\right)^{2}-r^{2}}=$ $\sqrt{2 r r^{\prime}+r^{\prime 2}}$.
(c) By what fraction of a will the circles O^{\prime} and $O^{\prime \prime}$ fail to touch each other?
20. In the figure $C D=D A=A G=G B$, and $D E=E A=A F=$ $F G$. Semicircles are constructed on the diameters $C B, C G, C D, D G$, $D B, G B . \quad H G=K D=C E$. Arcs $G L$ and $D M$ have centers H and K respectively.

Circles are constructed tangent to the various arcs as shown in the figure. Thus $\odot O^{\prime \prime}$ is tangent to semicircles on the diameters $C B, C G$, and $D B . \odot O^{\prime}$ is tangent to the semicircles on the diameters $C G$ and $D B$ and to the arc $D M$. Let $C B=a$.
(a) Find the areas of each of the six semicircles.
(b) Find the radius $r^{\prime \prime}$.

Suggestion. $E A, E P$ and $A N$ are known.
(c) Find the radius r^{\prime}.

Suggestion. Enumerate the known parts in $\triangle E D O^{\prime}$ and $F D O^{\prime}$.
(d) Find r and $r^{I V}$.
(e) Having determined the radii of the various circles, show how to construct the whole figure.
(f) What fraction of the area of the whole figure is occupied by the six circles?
21. Prove that two segments drawn from vertices of a triangle to points on the opposite sides cannot bisect each other.

FURTHER APPLICATIONS OF PROPORTION.

421. Definition. A segment is said to be divided in extreme and mean ratio by a point on it, provided the ratio of the whole segment to the larger part equals the ratio of the larger part to the smaller.
E.g. the segment $A B$ is divided in extreme and mean ratio by the point C if $\frac{A B}{A C}=\frac{A C}{C B}$.
422. Problem. To divide a given line-segment in extreme and mean ratio.

Solution. At one extremity B erect $B O \perp A B$ and make $B O=\frac{1}{2}$ $A B$. Draw oA.

On $O A$ take $O D=O B$ and with A as a center and $A D$ as a radius
 draw the are $D C$. Then C is the required point of division.

Proof: Let a be the length of $A B$. Then $O B=\frac{a}{a}$. Hence $\overline{A O}^{2}=\overline{A B}^{2}+\overline{O B}^{2}=a^{2}+\frac{a^{2}}{4}=\frac{\overline{5}}{4} a^{2}$, or $A O=\frac{a}{\beth}, ~ \overline{\overline{0}}$.
Then $\quad A C=A D=.1 O-D O=\frac{a}{2} \sqrt{5}-\frac{a}{2}=\frac{a}{2}(\sqrt{\overline{3}}-1)$,
and

$$
B C=A B-A C=a-\frac{a}{2}(\sqrt{\bar{j}}-1)=\frac{a}{2}(3-\sqrt{\bar{j}}) .
$$

Substituting these values in $\frac{A B}{A C}$ and $\frac{A C}{C B}$, and simplifying, we have $\quad \frac{2}{\sqrt{5}-1}: \operatorname{mi} \frac{\overline{5}-1}{3-\sqrt{5}}$

By ratiomalizing denominators these fractions are shown to be equal, and hame $\frac{A B}{A C^{\prime}}=\frac{A A^{\prime}}{C B}$.
423. Problem. To construct with ruler and compasses angles of 36° and 72°.

Solution. On a given segment $A B$, determine a point C such that $\frac{A B}{A C}=\frac{A C}{B C} . \quad($ See $\S 422$.

Using $B D=A C$ as a base and $A B$ as one leg, construct the isosceles triangle $A B D$.
Then $\angle 1=72^{\circ}$ and $\angle 4=36^{\circ}$.
Proof: Draw DC.
Then $\triangle A B D \sim \triangle D B C$,
since $\frac{A B}{B D}=\frac{B D}{B C}$ and $\angle 1$ is common.

Hence $\triangle A B D$ and $B D C$ are both isosceles (Why?),
and

$$
\angle 1=\angle 2, \angle 3=\angle 4 .
$$

Also $\quad \angle 2=\angle 3+\angle 4=2 \angle 4=\angle 1$. (Why?)
Thus in $\triangle A B D$ each base angle is double $\angle 4$, making
$\angle 4=\frac{1}{5}$ of $2 \mathrm{rt}. \measuredangle \boxed{\circ}=36^{\circ}$,
(Why?)
and
$\angle 1=2 \angle 4=72^{\circ}$.
424. EXERCISES.

1. Inscribe a regular decagon in a circle.

Suggestion. Construct the central angle $A O B=36^{\circ}$, thus determining the side $A B$ of the decagon.

2. Inscribe a regular pentagon in a circle.

Suggestion. Join alternate vertices of a decagon, or construct a central angle equal to 72°.
3. Inseribe a regular polygon of fifteen sides in a circle.

Suggestion. Since $\frac{1}{6}-\frac{1}{10}=\frac{1}{13}$, it follows that the arc subtended by one side of a hexagon minus that subtended by one side of a decagon is the one which subtends one side of a polygon of fifteen sides.
4. The radius of an inscribed regular polygon is a mean proportional between its apothem and the radius of a similar circumscribed polygon.
5. A circular pond is surrounded by a gravel walk, such that the area of the walk is equal to the area of the pond. What is the ratio of the radius of the pond to the width of the walk?
6. If a, b, c are three line-segments such as $\frac{a}{b}=\frac{b}{c}$ show that $\frac{a}{c}$ equals the ratio of the area of any triangle described on a as a base to the similar triangle described on b as a base.
425. Definitions. A line-segment $A B$ is said to be divided internally in a given ratio $\frac{m}{n}$ by a point C lying on the segment, if $\frac{A C}{C B}=\frac{m}{n}$. See $§ 252$.

A line-segment is said to be divided externally in a given ratio $\frac{r}{8}$ by a point C^{\prime} lying on $A B$ produced, if $\frac{A C^{\prime}}{C^{\prime} B}=\frac{\boldsymbol{r}}{\boldsymbol{s}}$.

A line-segment $A B$ is said to be divided harmonically if the points C and C^{\prime}, lying respectively on $A B$ and on $A B$ produced, are such that $\frac{A C}{C B}=\frac{A C^{\prime}}{C^{\prime} B}$.
426. EXERCISES.

1. Show that if $A B$ is divided harmonically by C and $C^{\prime \prime}$, then $C C^{\prime}$ is divided harmonically by A and B.
2. Show that the base of any triangle is cut harmonically by the bisectors of the internal and external vertex angles.
3. Show how to divide a line-segment externally in extreme and mean ratio, that is, in the figure below, so that $\frac{A B}{C^{\prime \prime} A}=\frac{C^{\prime} A}{C^{\prime} B}$.

Suggestion. In the figure of $\$ 422$ produce $B . t$ th a point C^{\prime} such that $C^{\prime} A=10+O D$. Then use the method there used, to show that $\frac{A B}{C^{\prime} 11}$ and $\frac{C^{\prime} A}{C^{\prime \prime} B}$ eachreduces to $\frac{\frac{2}{2}-1}{2}$.
427. Theorem. If an angle of one triangle is equal to an angle of another, their areas are in the same ratio as the products of the sides including the equal angles.

Given $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in which $\angle A=\angle A^{\prime}$.
To prove that $\quad \frac{\triangle A B C}{\triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{A B \cdot A C}{A^{\prime} B^{\prime} \cdot A^{\prime} C^{\prime}}$.
Proof: Place $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $\angle A^{\prime}$ coincides with $\angle A$. Then $\quad \triangle A B C=\frac{1}{2} h \cdot A B$ and $\triangle A^{\prime} B^{\prime} C^{\prime}=\frac{1}{2} h^{\prime} \cdot A^{\prime} B^{\prime}$.
Hence, $\quad \frac{\triangle A B C}{\triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{\frac{1}{2} h A B}{\frac{1}{2} h^{\prime} \cdot A^{\prime} B^{\prime}}=\frac{h}{h^{\prime}} \cdot \frac{A B}{A^{\prime} B^{\prime}}$.
Now show that $\frac{h}{h^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}$,
and hence that $\frac{\triangle A B C}{\triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}} \cdot \frac{A B}{A^{\prime} B^{\prime}}=\frac{A B \cdot A C}{A^{\prime} B^{\prime} \cdot A^{\prime} C^{\prime}}$.
428. Theorem. The square on the bisector of an angle of a triangle is equal to the product of the two adjacent sides minus the product of the segments of the opposite side.

Outline of proof: Produce the bisector of the given angle to meet the cir-
 cumscribed circle.

Since $\quad \triangle B D C \sim \triangle A E C \quad A C \cdot B C=C D \cdot C E$.
But $C D \cdot C E=C D(C D+D E)=\overline{C D}^{2}+C D \cdot D E$
and

$$
\begin{equation*}
C D \cdot D E=A D \cdot D B . \quad(\text { Why?) } \tag{2}
\end{equation*}
$$

Using (1), (2), and (3), complete the proof.
429. Theolem. The product of two sides of a triangle is equal to the product of the altitude from the vertex in which these sides meet and the diameter of the circumseribed circle.

Outline of Proof: Using the figure, show from the similar triangles $A C D$ and $E B C$ that

$$
A C \cdot B C=C E \cdot C D
$$

430.

EXERCISES.

1. The areas of two parallelograms having an angle of the one equal to an angle of the other are in the same ratio as the product of the sides iucluding the equal angles.
2. Three semicircles of equal diameter are arranged as shown in the figure.
(a) If $A D=a$, find the area bounded by the ares $A B, B E C$, and $C .1$.
(b) If the area just fonnd is 2 square
 feet, find $1 D$.
3. Prove that the bisectors of the angles of any quadrilateral form a quadrilateral whose opposite angles are supplementary.

Suticiestion. Show that $\angle 3+\angle 4+\angle 5+\angle 6$ $=2 \mathrm{rt} . \triangle$, and hence that $\angle 1+\angle 2=? \mathrm{rt}$. $₫$.

4. On each of two sides of a given triangle $A B C$ as chords constrnct arcs in which an angle of 120° may be inscribed. If these arcs meet in a print O inside the triangle, show that the three sides of the triangle subtend the samo ingle from the point O.
5. If $\angle 1+\angle 2+\angle 3=4 \mathrm{rt}$. Δ, show how to find a point O within a given triangle $A B C^{\circ}$ so that $\angle A O B=\angle 1, \angle B O C=\angle 2$, and $\angle C O A=\angle B$.
6. Given any two segments $A B$ and $C D$ and any two angles a and b, find a point O such that $\angle A O B=\angle a$ and $\angle C O D=\angle b$. Discuss the various possible cases and the number of points O in each case.
7. If $\angle A O B$ is a central angle of a circle and if $\angle C D E$ is inscribed in an arc of the same circle and if $\angle A O B=\angle C D E=\frac{4}{3} \mathrm{rt}$. $\angle s$, then the chords $A B$ and $C E$ are equal.
431. Definition. A set of lines which all pass through a common point is called a pencil of lines, and the point is called the center of the pencil.

432.

EXERCISES.

1. The lines of a pencil intercept proportional segments on parallel transversals.

Given three lines meeting in O cut by three parallel transversals.

To prove that the corresponding segments are proportional, that is, to show that

$$
\frac{A B}{B C}=\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime \prime}}=\frac{A^{\prime \prime} B^{\prime \prime}}{B^{\prime \prime} C^{\prime \prime}} .
$$

2. If two polygons are symmetrical with respect to a point, they are congruent. (See § 170, Ex. 2.)
3. Any two figures symmetrical with respect to a point are congruent.

Suggestion. About the point O as a pivot swing one of the figures through a straight angle. Then any point P^{\prime} of the right-side figure will fall on its symmetrical point P of the left-side figure.
4. By means of the theorem in the preceding example show how to make an accurate copy of a map.

Suggestion. Fasten the map to be copied on a drawing board. A long graduated ruler is made to swing freely about a fixed point O, and by means of it construct a figure symmetrical to the map with respect to the point O. How are the distances from O measured off?
433. Tileorem. If corresponding vertices of two polygons lie on the same lines of a pencil and if they cut off proportional distances on these lines from the center, then the polygons are similar.

Prove the theorem first for
 triangles.

Given. $\frac{O B}{O B^{\prime}}=\frac{O C}{O C^{\prime}}=\frac{O A}{O A^{\prime}}$ and $\frac{O A}{O A^{\prime \prime}}=\frac{O B}{O B^{\prime \prime}}=\frac{O C}{O C^{\prime \prime}}$.
To prove that $\triangle A B C, A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are similar.
Prove the theorem for polygons of any number of sides.
434. Definition. Any two figures are said to bave a center of similitude O, if for any two points P_{1} and P_{2} the lines $P_{1} O$ and $P_{2} O$ meet the other figure in points P_{1}^{\prime} and P_{2}^{\prime} such that

$$
\frac{P_{1} O}{P_{1}^{\prime} O}=\frac{P_{2} O}{P_{2}^{\prime} O} .
$$

Then P_{1}^{\prime} and P_{2}^{\prime} are said to correspond to the points P_{1} and P_{2}.

Thus in the figure of $\S 433 o$ is called the center of similitude of the two polygons.

Any two figures which have a center of similitude are similar.

This affords a ready means of constructing a figure similar to a given figure and having some other required property that is sufficient to determine it.

Definition. The ratio of any two eorresponding sides of similar polygons is called their ratio of similitude.
435.

EXERCISES.

1. Construct a polygon similar to a given polygon such that they shall have a given ratio of similitude.
Suggestion. Let $A B C D E F$ be the given polygon and $\frac{m}{n}$ the given ratio of similitude. Select any convenient point O, such that $O A=m$. Draw lines $O A, O B$, etc. On $O A$ lay off $O A^{\prime}, n$ units. Lay off points B^{\prime}, C^{\prime}, etc., so that

$$
\frac{O A}{O A^{\prime}}=\frac{O B}{O B^{\prime}}=\frac{O C}{O C^{\prime}}=\frac{O D}{O D^{\prime}}=\frac{O E}{O E^{\prime}}=\frac{O F}{O F^{\prime}} .
$$

Prove that $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ is the required polygon.
2. Show how the preceding may be used to enlarge or reduce a map to any required size.

Suggestion. Arrange apparatus as under Ex. 4, §432.
3. In the figure $A B C D$ is a parallelogram whose sides are of constant length. The point A is fixed, while the remainder of the figure is free to move. Show that the points P and P^{\prime} trace out similar figures and that their ratio of similitude is $\frac{A D}{A D+C P}$.

This shows the essential parts of an instrument called the pantograph, which is much used by engravers to transfer figures and to increase or decrease their size. The point P is made to trace out the figure which is to be copied. Hence P^{\prime} traces a figure similar to it. The scale or ratio of similitude is regulated by adjusting the length of $C P$.
4. Construct a triangle having given two angles and the median a from one specified angle.

Solution. Construct any triangle $A B C$ having the required angles and construct a median $A D$. Prolong $D A$ to D^{\prime}, making $A D^{\prime}=a$. Extend $B A$ and $C A$ and through D^{\prime} draw $B^{\prime} C^{\prime} \| B C$, making $\triangle A B^{\prime} C^{\prime}$. Prove that this is the required triangle. (Notice that A is the center of similitude.)
5. Inscribe a square in a given triangle using the figure given here. Compare this method with
 that given on page 147.
6. Construct a circle through a given point tangent to two given* straight lines.

Solution. Let a and b be the given lines and P the given point. Construct any circle O tangent to a and o. Draw $I P$ meeting the circle O in C and D. Draw $C O$ and $O D$ and through P draw lines parallel to these meeting the bisector of the angle formed by a and b in O^{\prime} and $O^{\prime \prime}$. Prove that O and O^{H} are centers of the required circles. Observe that A is a center of similitude.

This method is used to construct a railway curve through a fixed point connecting two straight stretches of road.
7. On a line find a point which is equidistant from a given point and a given line.

The following is another instance of the use of this very important device in constructing figures that resist other methods of attack. It consists essentially in first constructing a figure similar to the one required and then constructing one similar to this and of the proper size.

From Westininster Abbey.
8. Given a circle with radius $O E$. Construct within it the design shown in the figure. That is, the inner semicircles hare as diameters the sides of a regular sixteen-sided polygon. Wach of the small circles is tangent to two semicircles. The outer arcs have their centers on the given circle and each is tangent to two small circles. All these ares and circles have equal radii.

Solution. Construct an angle equal to one sixteenth of a perigon. Through any point D^{\prime} in the bisector of this angle draw a segment $E F$ perpendicular to the bisector and terminated by the sides of the angle. On $E F$ as a diameter construct a semicircle. Make $B^{\prime} D^{\prime}=E F=B^{\prime} A^{\prime}=D^{\prime} C^{\prime}$ $=C^{\prime} A^{\prime}$ and construct the small figure.

Now draw radii of the given circle dividing it into sixteen equal parts and bisect one of the central angles by a radius OA. Construct $\angle D A B=\angle D^{\prime} A^{\prime} B^{\prime}$. Then $A B$ is twice the radius of the required arcs and circles. The whole figure may now be constructed.
9. Given auy three non-collinear points $A^{\prime}, B^{\prime}, C^{\prime}$, to construct an equilateral triangle such that $A^{\prime}, B^{\prime}, C^{\prime}$ shall lie on the sides of the triangle, one point on each side.

Suggestion. Through one of the points as A^{\prime} draw a line such that B^{\prime} and C^{\prime} lie on the same side of it.
10. Given an equilateral triangle $A B C$, to construct a triangle similar to a given triangle $A^{\prime} B^{\prime} C^{\prime}$ with its vertices on the sides of $A B C$.

Suggestion. Construct an equilateral triangle such that $A^{\prime}, B^{\prime}, C^{\prime}$ lie on its sides. Then construct a figure similar to this and of the required size.
11. If p and p^{\prime} are similar polygons inscribed in and circumscribed about the same circle, and if $2 s$ is a side of the circumscribed polygon p^{\prime}, show that the difference of the areas of p and p^{r} is equal to the area of a polygon similar to these and having a radius s.

Suggestion. Let the areas of the polygons whose radii are r, r^{\prime}, and s be $A, A^{\prime}, A^{\prime \prime}$. Prove that

$$
\frac{A^{\prime}-A}{A^{\prime}}=\frac{r^{\prime 2}-r^{2}}{r^{\prime 2}} \text { and } \frac{A^{\prime \prime}}{A^{\prime}}=\frac{s^{2}}{r^{\prime 2}}=\frac{r^{\prime 2}-r^{\prime 2}}{r^{\prime 2}} .
$$

Complete the proof.
12. Two circles are tangent at A. A secant through A meets the circles at B and C respectively. Prove that the tangents at B and C are parallel to each other.

13. Prove that the segments joining one vertex of a regular polygon of n sides to the remaining vertices divide the angle at that vertex into $n-2$ equal parts.

FURTHER PROPERTIES OF TRIANGLES.

436. Definition. A segment $A B$ is said to be projected upon a line l if perpendiculars from A and B are drawn to l. If these meet l in points C and D, then $C D$ is the projection of $A B$ upon l.
437. Theorem. The square of a side opposite an acute angle of a triangle is equal to the sum of the squares of the other two sides minus twice the product of one of these sides and the projection of the other upon it.

Gutline of Proof: In either figure let $\angle B$ be the given acute angle, and in each case $B D$ is the projection of $B C$ upon $A B$. Call this projection m.

We are to prove that $b^{2}=a^{2}+c^{2}-2 \mathrm{~cm}$.
In the left figure, $b^{2}=h^{2}+(c-m)^{2}$.
In the right figure, $b^{2}=h^{2}+(m-c)^{2}$.
In either case $h^{2}=a^{2}-m^{2}$.
Substitute (3) in (1) or in (2), and complete the proof.
Modify each figure so as to draw the projection of $A B$ upon $B C$ and call this n. Then give the proof to show that $b^{2}=a^{2}+c^{2}-2 a n$.
438. EXERCISE.

1. The area of a polygon may be found by drawing its longest diagonal and letting fall perpendiculars upon this diagonal from each of the remaining vertices.

Draw a fignre like the one in the margin, only on a much larger scale, measure the necessary lines, compute the areas of the various parts (see §314), and thus find its total area.

439. Theorem. The square of the side opposite an obtuse angle of a triangle is equal to the sum of the squares of the other two sides plus twice the product of one of these sides and the projection of the other upon it.

Outline of Proof: Let $\angle B$ be the given obtuse angle and $B D$ the projection of $B C$ upon $A B$. Call this projection m. As in the preceding theorem show that

$$
b^{2}=a^{2}+c^{2}+2 c m .
$$

Also modify the figure so as to show the projection of $A B$ on $B C$ and call this n. Then show that

$$
b^{2}=a^{2}+c^{2}+2 a n .
$$

440. Theorem. The sum of the squares of two sides of any triangle is equal to twice the square of half the third side plus twice the square of the median drawn to that side.

Suggestion. Make use of the two preceding theorems.
441. exercises.

1. Compute the medians of a triangle in terms of the sides.
2. Show that the difference of the squares of two sides of a triangle is equal to twice the product of the third side and the projection of the median upon that side.
3. The base of a triangle is 40 feet and the altitude is 30 feet. Find the area of the triangle cut off by a line parallel to the base and 10 feet from the vertex.
4. Problem. To express the area of a triangle in terms of its three sides.

Solution. The area of $\triangle A B C=\frac{1}{2} A B \times C D=\frac{1}{2} h c$.
It is first necessary to express h in terms of a, b, c.
We have

$$
\begin{equation*}
b^{2}=a^{2}+c^{2}-2 c m, \tag{Why?}
\end{equation*}
$$

or

$$
m=\frac{a^{2}+c^{2}-b^{2}}{2 c} .
$$

Also

$$
\begin{equation*}
h^{2}=a^{2}-m^{2} . \tag{}
\end{equation*}
$$

Hence $\quad h^{2}=a^{2}-\left(\frac{a^{2}+c^{2}-b^{2}}{2 c}\right)^{2}=\frac{4 a^{2} c^{2}-\left(a^{2}+c^{2}-b^{2}\right)^{2}}{4 c^{2}}$

$$
\begin{aligned}
& =\frac{\left(2 a c+a^{2}+c^{2}-b^{2}\right)\left(2 a c-a^{2}-r^{2}+b^{2}\right)}{4 c^{2}} \\
& =\frac{\left[(a+c)^{2}-b^{2}\right]\left[b^{2}-(a-c)^{2}\right]}{4 c^{2}} \\
& =\frac{(a+c+b)(a+c-b)(b+a-c)(b-a+c)}{4 c^{2}} .
\end{aligned}
$$

Now call $a+b+c=28, \quad$ or $a+c-b=-2-\because b$.
Then

$$
\begin{aligned}
& a+c-b=2(s-b) \\
& b+a-c=?(s-c) \\
& b+c-a=?(s-a) .
\end{aligned}
$$

Hence

$$
h^{2}=\frac{\because(s \cdot-2}{-(s-b) \cdot 0(s-c) \cdot 2(s-a)}+
$$

or

$$
h=\frac{a}{a} \sqrt{s(s-a)(s-b)(s-(c) .}
$$

Then $\quad \frac{1}{2} h c=\frac{1}{2} c \cdot \frac{2}{c} \sqrt{s(s-a)(s-b)(s-c)}$.
Hence area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$.
443. Problem. To express the area of a triangle in terms of the three sides and the radius of the circumscribed circle.

In the figure $C E=2 r$, where r is the radius of the circumscribed circle.

Then

$$
\begin{equation*}
a b=2 r \cdot h . \tag{§429}
\end{equation*}
$$

But

$$
h=\frac{2}{c} \sqrt{s(s-a)(s-b)(s-c)} .
$$

Hence,

$$
a b=\frac{4 r}{c} \sqrt{s(s-a)(s-b)(s-c)},
$$

or

$$
\frac{a b c}{4 r}=\sqrt{s(s-a)(s-b)(s-c)} .
$$

But area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$.
Hence,

$$
\text { area of } \triangle A B C=\frac{a b c}{4 r} \text {. }
$$

444. EXERCISES.
445. Compute the areas of the triangles whose sides are (1) 7,9 , 12 ; (2) $11,9,7$; (3) $3,4,5$.
446. Express the radius of the circumscribed circle of a triangle in terms of the three sides.
447. Find the area of an equilateral triangle whose side is a by $\S 443$, and also without this theorem, and compare results.

PROBLEMS AND APPLICATIONS.

1. Given a regular dodecagon (twelve-sided polygon) with radius r. Connect alternate vertices.
(a) Prove that the resulting figure is a regular hexagon.
(b) Find the apothem of the hexagon.
(c) Find the area of each of the triangles formed by joining the alternate vertices of the dodecagon.
2. Find the area of a regular dodecagon of radius r.
3. Find the side of a regular dodecagon of radius r.
4. Find the apothem of a regular dodecagon of radius r,
(a) by means of Exs. 2 and 3 and $\S 343$.
(b) by means of Ex. 3 and $\S 319$.
5. Given the side 8 of a regular dodecagon. Find the apothem. Also find the apothem if the side is s. See Exs. 9-12, page 2.3.J.
6. Given a circle of radius 6 :
(a) Find the area of a regular hexagon circumscribed about it.
(b) Find the area of a regular octagon inscribed in it, also of one circumscribed about it.
7. Using the formula obtained in Ex. 5, find the side of a regular dodecagon whose apothem is b.
8. Find the radius of a circle circumscribed about a dodecagon whose apothem is b.
9. Find the difference between the radii of the regular dodecagons inscribed in and circumscribed about a circle of radius 10 inches.
10. Solve Ex. 9 if the radius of the circle is r.
11. What is the radius of a circle if the difference between the areas of the inscribed and circumscribed regular dodecagons is 12 square inches?
12. What is the radius of a circle if the difference betmeen the areas of the inscribed and circumscribed regular hexagons is s square inches? See Ex. 11, page 259.
13. A regular hexagon and a regular dodecagon have equal sides. Find these sides if the area of the dodecagon is six square inches more than twice the area of the hexagon.
14. Sulve Ex. 13 if the area of the dodecagon exceeds twice the area of the hexagon by b square inches.
15. Is there any common length of side for which the area of a regular dodecagon is twice that of a regular hexagon? Three times? Four times? Prove your answer.
16. Solve a problem similar to that of Ex. 15 if the side of the dodecagon is twice that of the hexagon.
17. The nineteen small circles in the accompanying figure are of the same size. The centers of the twelve outer circles lie on a circle

with center at O, as do the six circles between these and the innermost one. The centers of these small circles divide the large circles on which they lie into equal arcs.

If r is the radius of the small circles, then $O B=2 \frac{1}{2} r, B D=2 \frac{1}{2} r$, and $D G=1 \frac{1}{2} r$.
(a) Find $A B$ and $C D$ in terms of r.
(b) Find $D E$.
(c) What part of the circle $O G$ is contained within the nineteen small circles?
(d) If the radius of the large circle is 36 inches, find the radii of the small circles so that they shall occupy half its area.
(e) If the radius of the large circle is r inches, find the radii of the small circles so they shall occupy one half the area of the large circle.
(f) Under (d) how far apart will the outer twelve centers he? The inner six?
(g) Under (e) how far apart will the outer twelve centers be? The inner six?

In Exs. (f) and (g) it is understood that the distances are measured along straight lines.

18. In the figure $A B C$ is an equilateral triangle. A, B, G are the centers of the arcs $B C \cdot C A$, and $A B$. Semicircles are constructed on the diameters $A B, B C, C A$. Let $I B=a$. (See Ex. 11, p. 93.)

Circles are constructed tangent to the various arcs as in the figure.
(a) Find the radius $r^{\prime \prime}$.

Suggestion. Find in order $B M, M N, B N, H O^{\prime \prime}, B O^{\prime \prime}$
(b) Find the radius r^{\prime}.

Suggestion. $B N^{\top}$ is known from the solution of (a).

$$
\begin{gathered}
B N=B O^{\prime}+r^{\prime} \text { and } B O^{\prime}=2 k O^{\prime} . \text { Hence } K O^{\prime}=\frac{B N^{\prime}-r^{\prime}}{2} . \\
\quad k B=\frac{1}{2} \sqrt{3} \cdot B O^{\prime}=\frac{1}{2} \sqrt{3}\left(B N^{r}-r^{\prime}\right) \text { and } H O^{\prime}=\frac{a}{2}-r^{\prime} .
\end{gathered}
$$

But

$$
\begin{equation*}
{\overline{H O^{\prime}}}^{2}=\overline{H K}^{2}+{\overline{K O^{\prime}}}^{2}=\left(\frac{a}{2}-K B\right)^{2}+{\overline{K O^{\prime}}}^{2} . \tag{1}
\end{equation*}
$$

Substituting for $H O^{\prime}, K B$ and $K O^{\prime}$ in (1) we may solve for r^{\prime}.
(c) Find the radius r.

Suggestion. Use \& $B L O$ and $H L O$ and proceed as under (b).
(d) Using the radii thus found, show how to coustruct the figure.
(e) What fraction of the whole area is contained in the circles?
19. $A B C D$ is a parallelogram with fixed hase and altitude. Find the locus of the intersection points of the bisectors of its interior base angles.
20. Find the locus of a point P such that the sum of the squares of its distances from two fixed points is constant.

Sumaertion. By § $111,1 P^{2}+P^{\prime} b^{2}=2.1 C^{2}+2 \overline{C P}^{2}$.
Solve for ' 1 '.
21. Find the locus of a point P such that the ratio of its distances from two fixed points is equal to the constant ratio $m: n$.

Suggestions: Let A. and B be the fixed points. On the line $A B$ there are two points P^{\prime} and $P^{\prime \prime}$ on the locus, i.e. $A P^{\prime \prime}: P^{\prime \prime} B=A P^{\prime}: P^{\prime} B=m: n$.

Let P be any other point on the locus.

Then $A P: B P=A P^{\prime}: P^{\prime} B=A P^{\prime \prime}: P^{\prime \prime} B$.
Show by the converses of $\S \S 250,253$ that $P P^{\prime}$ bisects $\angle A P B$ and $P P^{\prime \prime}$ bisects $\angle B P K$, and hence $P^{\prime} P$ and $P^{\prime \prime} P$ form a right angle.
22. Find the locus of a point P from which two circles subtend the same angle.

Suggestion. C and C^{\prime} are the centers of the given circles. Prove $\triangle P D C \sim \triangle P D^{\prime} C^{\jmath}$ and hence that $\frac{P C^{\prime}}{P C}=\frac{r^{\prime}}{2}$.

23. The points $A B C D$ are collinear. Find the locus of a point P from which the segments $A B$ and $C D$ subtend the same angle.

Suggestions. The \& $A B P, A C P, B D P$, and $C D P$ have a common altitude, and hence their areas are to each other as their bases. Also \& $A B P$ and $C D P$ have equal vertex angles, whence by
 § 427 their areas are to each other as the products of the sides forming these angles. Similarly for $\triangle A C P$ and $B D P$.

Hence

$$
\frac{A P \cdot P B}{C P \cdot P D}=\frac{A B}{C D} \text { and } \frac{A P \cdot P C}{B P \cdot P D}=\frac{A C}{B D} .
$$

From these equations show that $A P: P D$ is a constant ratio.
24. $A B C$ is a fixed isosceles triangle. With center C and radius less than $A C$, construct a circle, and from A and B draw tangents to it meeting in P. Find the locus of P.

Suggestions. (a) Show that part of the locus is the straight line $P P^{\prime}$. (i) Show that $\angle 1=\angle 2$ and hence that $\angle A P^{\prime \prime} B$ is constant.

MAXIMA AND MINIMA.

445. Definitions. Of all geometric figures fulfilling certain conditions it often happens that some one is greater than any other, in which case it is called a maximum. Or it may happen that some one is less than any other, in which case it is called a minimum.
E.g. of all chords of a circle the diameter is the maximum, and of all segments drawn to a line from a point outside it the perpendicular is the minimum.

In the following theorems and exercises the terms maximum and minimum are used as above defined. However, a geometric figure is often thought of as continuously varying in size, in which case it is said to have a maximum at any position where it may cease to increase and begin to decrease, whether or not this is the greatest of all its possible values. Likewise it is saill to have a minimum at any position where it may cease to decrease and begin to increase.
E.g. if in the figure a perpendicular from a point in the curve to the straight line be moved continuously parallel to itself, the length of
 this perpendicular will have maxima at A, C and E, and minima at B, D, and F.
('ertain simple cases of maxima and minima problems have already been given. Some of these will be recalled in the following exercises.

446.

 EXERCISES.1. If from a point within a circle, not the center, a liue-segment be drawn to meet the cirele, show that this segment is a maximum when it passes through the center and a minimum when, if produced in the opposite direction, it would pass through the center.
2. Show that of all chords through a given point within a circle, not the center, the diameter is a maximum and the chord perpendicular to the diameter is a minimum.
3. Of all line-segments which may be drawn from a point outside a circle to meet the circle, that is a maximum which meets it after passing through the center, and that is a minimum which, if produced, would pass through the center.
4. Show that if a square and a rectangle have equal perimeters, the square has the greater area.

Suggestion. If s is the side of the square and a and b are the altitude and base of the rectangle respectively, then $2 b+2 a=4 s$ or $s=\frac{b+a}{2}$.

Hence $s^{2}=\frac{b^{2}+a^{2}+2 a b}{4}=\frac{\left(b^{2}-2 a b+b^{2}\right)+4 a b}{4}=\frac{(b-a)^{2}}{4}+a b$.
That is, s^{2} is greater than $a b$ by $\frac{(b-a)^{2}}{4}$.
5. Use the preceding exercise to find that point in a given linesegment which divides it into two such parts that their product is a maximum.
6. Find the point in a given line-segment such that the sum of - the squares on the two parts into which it divides the segment is a minimum.

Suggestron. If a and b are the two parts and k the length of the segment, then $a+b=k$ and $a^{2}+2 a b+b^{2}=k^{2}$,
or,

$$
a^{2}+b^{2}=k^{2}-2 a b .
$$

Hence, $a^{2}+b^{2}$ is least when $2 a b$ is greatest. Now apply Ex. 5.
7. In the preceding exercise show that $a^{2}+b^{2}$ increases as b grows smaller, that is, as the point of division approaches one end. When is this sum a maximum?
8. Two points A and B, on opposite sides of a straight stream of uniform width, are to be connected by a road and a bridge crossing the stream at right angles. Find by construction the location of the bridge so as to make the total path from A
 to B a minimum.
447. Theorem. Of all tricunfles having equal perimeters and the srme base, the isosceles triangle has the maximum ared.

Given $\triangle A B C$ isosceles and having the same perimeter as $\triangle A B D$.
To prove that area $\triangle A B C>$ area $\triangle A B D$.
Outline of proof: Draw $C E \perp A B$. Construct $\triangle A F B$ having its altitude $F E$ the same as that of $\triangle A B D$. Prolong $A F$ making $F G=A F$. Draw $G B$ and $G D$. The object is to prove that $E F$, the altitude of $\triangle A B D$, is less than $E C$, the altitude of $\triangle A B C$.
(1) Show that \& $A F B, F B G$, and $G B D$ are all isosceles, for which purpose it must be shown tlat $G B \perp A B$ and $F D \| A B$.

Then
Or $\quad A F+F B<A D+D B$.

$$
A F+F B<A D+D B
$$

But
Hence,
(2) Show that $A F<A C^{\prime}$, and hence that

$$
A D+D B=A D+\cdots H_{i}>A G
$$

(3) Use the last step to slow that

$$
\text { area } \triangle A B C>\text { area } \triangle A B D \text {. }
$$

Give all the steps and reasoms in full.
448. Corollabis. Of all trimmbles having the seme arere aml strmilin! om the same buse', that which is isusceles has the least perimeter.
449. Theorem. Of all polygons having the same perimeter and the same number of sides, the one with maximum area is equilateral.

Given $A B C D E F$ the maximum of polygons having a given perimeter and the same number of sides.

To prove that $A B=B C=C D=D E=E F=F A$.
Suggestion. Show that every \triangle, such as $F D E$, is isosceles by use of the preceding theorem.
450. Theorem. Of all polygons having the same area and the same number of sides, the regular polygon has the minimum perimeter.

Given polygons A and B with same number of sides and equal area, A being regular and B not.

To prove that the perimeter of A is less than that of B.
Outline of Proof: Construct a regular polygon C having the same number of sides and same perimeter as B.

Then, area of $B<$ area of C, or area of $A<$ area of C.
But A and C are both regular and have the same number of sides. 'Hence the perimeter of A is less than that of C. That is, perimeter of $A<$ perimeter of B.
451. Theorem. The polygon with maximum area which can be formed by a series of line-segments of given lengths, starting and ending on a gicen line, is that one whose vertices all lie on a semicircle constructed on the intercepted part of the given line as a diameter.

Given the line-segments $A B, B C, C D, D E$ and $E F$ meeting the line $R S$ at A and F so as to form the polygon $A B C D E F$ with maximum area.

To prove that B, C, D, and E lie on the semicircle whose diameter is $A F$.

Proof: Suppose any vertex as D does not lie on this semicircle. Join D to F and to A. Then $\angle A D F$ is not a right angle, else it would be inscribable in a semicircle (§213).

If now the extremities A and F be moved in or out on the line πS, keeping $A D$ and $D F$ unchanged in length, till $\angle A D F$ becomes a right angle, then $\triangle A D F$ will be increased in area (Ex. 3, §456), while the rest of the polygon is unchanged in area. This would increase the total area of the polygon $A B C D E F$, which is contrary to the hypothesis that this is the polygon with maximum area. Hence the vertex D must lie on the semicircle.

In the same manner it can he proved that ench vertex lies on the semicircle.
452. Theorem. Of all polygons with the same number of sides equal in pairs and taken in the same order, the one with maximum area is that one which can be inscribed in a circle.

Given a polygon $A B C D E$ inscribed in a circle and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ not inscribable but with sides respectively equal to those of ABCDE.

To prove that $A B C D E>A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.
Proof: In the first figure draw the diameter $D K$ and draw $A K$ and $B K$.

On $A^{\prime} B^{\prime}$ construct $\triangle A^{\prime} B^{\prime} K \cong \triangle A B K$ and draw $D^{\prime} K^{\prime}$.
The circle whose diameter is $D^{\prime} K^{\prime}$ cannot pass through all the points $A^{\prime}, B^{\prime}, C^{\prime}$, and E^{\prime}, else the polygon would be inscribed contrary to hypothesis.

If either A^{\prime} or E^{\prime} is not on this circle, then

$$
\begin{equation*}
A K D E>A^{\prime} K^{\prime} D^{\prime} E^{\prime} . \quad \text { (Why?) } \tag{1}
\end{equation*}
$$

Likewise if either B^{\prime} or C^{\prime} is not on the circle, then

$$
K B C D>K^{\prime} B^{\prime} C^{\prime} D^{\prime} . \quad \text { (Why?) }
$$

In any case, adding (1) and (2),

$$
\begin{equation*}
A K B C D E>A^{\prime} K^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} . \tag{3}
\end{equation*}
$$

By construction, $\triangle A K B \cong \triangle A^{\prime} R^{\prime} B^{\prime}$.
From (3) and (4), $A B C D E>A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ 。
453. Theorem. Of all regular polygons having "qual perimeters, that which has the greatest number of sides is the maximum.

Given T a regular triangle and S a square having the same perimeter.

To prove that $s>T$.
Proof: Take any point E in $A B$. Draw $C E$ and on $C E$ construct $\triangle C E F \cong \triangle A E C$.

Then polygon $B C F E$ has a perimeter equal to that of T and the same area, and has the same number of sides as \therefore. Hence, $S>B C F E$.
(449)
That is, $S>T$.
In like manner it can be shown that a regular polygon of five sides is greater than a square of equal perimeter. and so on for any number of sides.

454.

EXERCISE

Of the three medians of a salene triangle that one is the shortest which is drawn to the longest side.
sumeston. If $A C<B C$, to show that $B F>A E$.

In $B . I I \prime$ and $B D C$, $A D=D B$ and $D C$ is common.
But A ' $<B$ ' $^{\prime}$. Henco $\angle 1<\angle$! (Why '?).
Now use $A P O$ and $B D O$ to slow that $P O>A O$ and hence that $B F>A E$.
455. Theorem. Of all regular polygons having a given area, that one which has the greatest number of sides has the least perimeter.

Given regular polygons \mathbf{P} and \mathbf{Q} such that $\mathbf{P}=\mathbf{Q}$ while \mathbf{Q} has the greater number of sides.

To prove that perimeter of $Q<$ perimeter of P.
Proof: Construct a regular polygon R having the same number of sides as P and the same perimeter as Q.
Then

$$
\begin{aligned}
& R<Q . \\
& P=Q . \\
& R<P .
\end{aligned}
$$

$$
(\S 453)
$$

But
(By hypothesis)
Hence
Therefore, perimeter of $R<$ perimeter of P.
But R was constructed with a perimeter equal to that of Q Hence perimeter of $Q<$ perimeter of P.

Missing Page

Missing Page

SOLID GEOMETRY.

CHAPTER VIII.

LINES AND PLANES IN SPACE.

456. A figure in plane geometry is restricted so that all its points lie in the same plane. Such figures are called two-dimensional figures.

A straight line is a one-dimensional figure, and a point is of zero dimension.
457. A three-dimensional figure is a combination of points, lines, and surfaces not all parts of which lie in the same plane.
E.g. the six surfaces of the walls, floor, and ceiling of the schoolroom form a three-dimensional figure. This figure is not the room itself. The room is the space inclosed by the figure.
458. Solid geometry treats of the properties of threedimensional figures.

determination of a plane.

459. Since we are to consider points and lines not all lying in the same plane, it is of first importance to be able to distinguish one plane from another.

This is all the more important, since three-dimensional figures have to be represented by pencil or crayon drawings on the plane of the paper or blackboard. Models of paper, wire, etc., may be constructed by the pupils.
460. Axiom XVI. If two points of a straight line lie in a plane, the whole line lies in the plane.

Since a line is endless, it follows from this axiom that a plane is unlimited in all its directions.
461. While two points determine a line, it is obvious that this is not sufficient to determine a plane.
E.g. suppose a plane L contains the points A and B which determine the line $A B$. If the plane L be revolved about the line $A B$ as an axis, it may occupy indefinitely many positions, as L, M, N, but there is only one position in which it contains a third given point C outside of the line $A B$.

462. Axiom XVII. Through theref points not all in the same straight line one and only one plate can be passed.
463. Theorem. A plane is determined by (1) a line and a point not in that line, (2) two intersectiny lines, (3) two parallel lines.

(1)

(2)

(3)

Proof: (1) Let l be the given line and P the point outside.
Take any two points A and B un l. 'Then A, B, and P determine a plane, which we call M (dx. XVII).

Take any otlere two points (C and D on l. Then C. D, and P determine a plathe, which we eall N (Ax. XVIl).

By Ax. XVI, N contains the points A and B. Hence N is the plane daterminel by A. B, and P, since it contains these points. 'That is, N is the same plane as M.

Therefore one and only one plane is determined by a line and a point not on that line.
(2) Let l_{1} and l_{2} be two intersecting lines.

Take A the intersection of l_{1} and l_{2}, and B and C any other points, one on l_{1} and the other on l_{2}.

Then A, B, and C determine a plane M in which both l_{1} and l_{2} lie, since A and B lie on l_{1} and A and C on l_{2} (Ax. XVI).

Now M is the only plane in which both l_{1} and l_{2} lie, for any other three points E, F, G, on l_{1} and l_{2} (not all in the same line) determine the same plane M, since they all lie in it.

Hence, two intersecting lines determine a plane.
(3) Let l_{1} and l_{2} be two parallel lines.

By definition l_{1} and l_{2} lie in a plane M.
Now M is the only plane in which both l_{1} and l_{2} lie, for any three points A, B, C, on l_{1} and l_{2} (not all on the same line) determine this plane M, since they all lie in it.

Hence, two parallel lines determine a plane.
464. Axiom XVIII. If two planes have a point in common, then they have at least another point in common.
465. Theorem. Two intersecting planes have a straight line in common, and no points in common outside of this line.

Proof: If two planes intersect, they must have at least two points in common (Ax. XVIII).

But these two points determine a straight line which lies wholly in each plane (Ax. XVI).

Hence, there is a straight line common to the two planes.
Now prove that these two planes can have no point in common outside of this line unless the planes are identical.

The diagram on this page represents a three-dimensional figure in the shape of an ordinary box. In this figure the points A, K, B do not determine a plane, since they all lie on the same straight line, while A, r^{\prime}, E do not lie in a straight line, and hence determine a plane.

1. In this figure pick out twelve sets of three points each which do not determine planes, and also twelve sets which do determine planes.

2. Describe the relation to the threedimensional figure of each plane determined in Ex. 1. Thus, the plane H'NY' cuts off the lower right-hand corner at the back.
3. Rand and of the six bounding planes in this figure, using rarious different sets of points or lines. Thus, the face $A B F E$ is determined by the points B, L, K, or by I and the line P. or by lines.$i B$ and $E F$.
4. Describe the position of each of the following planes in the figure : $A E C, A C F, B C E, H C A, A D G, B D F, H E C$.
5. Pick out six planes, each determined by two parallel lines in the figure.
6. Decide whether each of the six planes in Ex. 5 may also be determined by two intersecting lines of the figure; by a line and a point outside of it.
7. Using the point Z, pick out six planes, each determined by it and two other points of the figure, as $A Z D, A Z B$, etc.
8. Using the schoolroom or a room at home, imagine all the planes constructed which are involved in the foregoing questions. Do the same, using a small box or paper model.
9. Does a stool with three legs always stand firmly on a flat floor? One with four legs? Give reasons. On what condition does a stool with four legs stand firmly on a flat floor?
10. In the figure the point D is supposed not
 to lie in the same plane as $A B C$. Hence, does C lie in the plane of $A B D$? Does B lie in the plane of $A C D$?
11. How many planes are determined by four points which do not all lie in the same plane?
12. How many planes are determined by fonr lines which all meet in a point, but no three of which lie in the same plane?

13. What is the locus of all points common to two intersecting planes?
14. The demonstrations and constructions of solid geometry consist largely in applying the theorems already known in plane geometry to figures lying in various planes determined by points and lines in space, as illnstrated in the preceding exercises.

The next following problems are typical in this respect.

THEOREMS ON PERPENDICULARS.

468. Definitions. A line is said to be perpendicular to a plane if it is perpendicular to every line of the plane passing through the point in which it meets the plane. In this case the plane is also perpendicular to the line. The point in which the perpendicular meets the plane is the foot of the perpendicular.

Note. It is obvious that at a point in a line there may be many lines in space which are perpendicular to it. For instance, if $A P$ is $\perp B C$, rotate $A P$ about $B C$ as an axis, keeping $\angle P A C=\angle P A B$. Then $A P$ remains $\perp B C$ in every one of its positions.

Thus, in some wheels all spokes are perpendicular to the axle.

469. A line or plane is said to be constructed whenever the points which determine it are constructed.
470. Problem. Through a gisen point to construct a plane perpendicular to a given line.

Given : the line l and the point P.
To construct a plane through P perpendicular to l.

Construction. (a) Let P be on
 the given line l. Through P construet two lines l_{1} and l_{2}, each perpendicular to l. Then the plane determined by l_{1} and l_{2} is the required plane.

Proof : Connect B and c, any two points different from P on l_{1} and l_{2} respectively.
'Thromigh P draw any line l_{8} meeting $B C$ in D.
On l lay off $P E=P F$ and complete the figure as shown.

Now prove (1) $\triangle E B C \cong \triangle F B C$, (2) $\angle E B D=\angle F B D$, (3) $\triangle E B D \cong \triangle F B D$, (t) $\triangle E P D \cong \triangle F P D$, (5) $\angle E P D=$ $F P D$. Hence, $P D \perp l$.

This proof holds for every such line l_{3} except the line through P parallel to $B C$. In this case we can select another point C^{\prime} on l_{2} so that l_{3} shall not be parallel to $B C^{\prime}$.

Since $P D$ is any line through P in the plane of l_{1} and l_{2}, it follows by definition that the plane determined by l_{1} and l_{2} is perpendicular to l.
(b) If the point P is not on the line l, draw a line from P perpendicular to l at some point Q, and then as above construct a plane through Q perpendicular to l.
471. EXERCISE.
Prove that through a point there is not more than one plane perpendicular to a given line.
472. Problem. At a point in a plane to construct a line perpendicular to the plane.

Given : the point P in the plane M.
To construct a line perpendicular to M at P.

Construction. Let l_{1} be any line in M through P.

Pass a plane N through $P \perp l_{1}$
 (§ 470).

Let plane N cut plane M in $l_{2}(\S 465)$.
In plane N erect $P A \perp l_{2}$.
Then $P A$ is the perpendicular required.
Proof: Show that PA is \perp to both l_{1} and l_{2} and hence to their plane, that is, to the plane M.

1. At a point in a plane only one line can be erected perpendicular to the plane.

Pronf. Suppose a second perpendicular is possible. Then we shall have two lines as l_{1} and l_{2} perpendicular to V at P. Let the plane of l_{1} and l_{2} intersect M in a line l_{3}. Then l_{1} and l_{2} are both \perp to l_{3} and lie in the same plane with it, which is impossible.
2. Take two pieces of cardboard in one of which a line is drawn at random, and in the other a line is drawn perpendicular to an edge. Place them so as to illustrate the construction in $\S 4 i \because$.
474. Problem. From a point outside a plane to construet a line perpendicular to the plane.

Given: the plane M and the point P outside it.
To construct a line from $P \perp M$.
Construction. Let l be any line in plane M.

From P draw $P A \perp l$, and in plane M draw $A K \perp /$ at A.

Finally, draw $P O \perp A K$. Then $P O$ is the required line perpendicular to M.

\dot{p}^{\prime}

Proof: Through O in M draw ary other line $O B$ meeting l.

Prolong $P(1)$ to P^{\prime}, making $O P^{\prime}=O P$, and comnect points as shown in the figure.
'Then limu $1 \perp$ plane $P A P^{\prime}$. (Why?)
Now shmw that (1) $r^{\prime} A=I^{\prime} 1,(2) \quad \triangle A P B \geqslant \triangle A P^{\prime} B$, (3) $\triangle B O P^{\prime} \div \triangle B O P^{\prime}$.

Hence, PO $1 . \quad$ (Why?)
475.

EXERCISES.

1. Only one perpendicular to a plane can be drawn from a point outside the plane.

Suggestion. Show that the hypothesis of two perpendiculars from an outside point to a plane leads to a contradiction.
2. A perpendicular is the shortest distance from a point to a plane.
3. A line cannot be perpendicular to each of two intersecting planes.

Suggestions. (1) If a line l is perpendicular to the planes M and N at the points A and B, and C is a point in their intersection, then $\triangle A B C$ would contain two right angles. (2) If l is perpendicular to M and N at
 a point P in their intersection, pass a plane through l, meeting M and N in l_{1} and l_{2}.
4. A line which is perpendicular to each of two lines at their point of intersection is perpendicular to their plane. See § 470.
5. All perpendiculars to a line at a point in it lie in the same plane, namely, the plane determined by any two of them.

The following are theorems proved in the preceding constructions and exercises.
476. Theorem. Through any given point there is one and only one plane perpendieular to a given line.
477. Theorem. Through any given point there is one and only one line perpendicular to a given plane.
478. Theorem. All lines perpendicular to a line at a point lie in one and the same plane.
479. Theorem. A line perpendicular to each of two intersecting lines is perpendicular to their plane.
480. Theorem. The shortest distance from a point to a plane is the perpendicular to the plane.
481.

EXERCISES.

1. Show how a carpenter could use the theorem of $\S 479$ to stand a post perpendicular to the floor, by use of two ordinary steel squares.
2. If a steel square be made to rotate abont one of its edges as an axis, what kind of surface does the other edge describe?
3. In making long timbers perpendicular to each other, a carpenter may use sinıply a measuring rod, such as a ten-foot pole. Show how to make a timber perpendicular to the floor by this process.
4. Show how a back-stop on a ball field can be adjusted perpendicnlar to the line through second base and the home plate. What theorems of solid geometry are used?
5. If a plane is perpendicular to a line-segment $P P^{\prime}$ at its middle point, prove: (1) Every point in
 the plane is equally distaut from P and P^{\prime}; (2) every point equally distant from P and P^{\prime} lies in this plane. What is the locus of all points in space equidistant from P and P^{\prime} ? See § 127.
6. (riven the points A and B not in a plane M. Find the locus of all points in M equidistant from A and B.

Siggestion. All such points must lie in the plane M and also in the plane which is the perpendicular bisector of the segment $A B$.

Is there any position of the points A and B for which there is no such locus? For which the locus contains the whole plane . M ?
7. On a line find a point equidistant from two given points not on the line.

Is there any position of the points for which there is no such point on the line? For which all points on the line satisfy this condition?
8. Find the locus of all points in space equidistant from the three vertices of a triangle.
9. Find the locus of all points in a given plave equidistant from the vertices of a triangle not in the plane.

Is there any position of the trinugle for which this locus contains more than one point? No point?
10. Ask and answer questions similar to the two preceding, using the vertices of a square instead of a triangle; the vertices of a rectangle; of any polygon which can be inscribed in a circle.
11. Find the locus of all points in space equidistant from the points of a circle and also of all points in a plane equidistant from the points of a circle not in that plane. Discuss as in Ex. 9.
12. Find the locus of all points equidistant from two given points A and B, and also equidistant from two points C and D. Discuss.
13. In geometry of two dimensions, how many lines may be perpendicular to a given line at a given point? In geometry of three dimensions?
14. In how many points can a straight line cut a plane? In how many points may it cut a curved surface, such as a stovepipe? In how many points can a straight line cut a circle? In how many points can a plane cut a circle, the plane being distinct from the plane of the circle?
15. State and prove a theorem of solid geometry corresponding to the theorem in the Plane Geometry, comparing the lengths of oblique segments cutting off equal distances from the foot of a perpendicular.

Also state and prove the converse.
State and prove a theorem comparing the
 lengths of segments cutting off unequal distances. See §§ 112, 115, and 116.
16. Find the locus of all points in a plane which are equally distant from a given point outside the plaue. If a perpendicular be drawn to the plane from this point, how is its foot related to this locus?
17. If in the figure $P D \perp$ plane M, and $D C \perp A B$ any line of the plane, prove that $P C \perp A B$.

Suggestion. Lay off $C A=C B$, and compare triangles.
18. If in the same figure $P D \perp M$, and $P C \perp A B$ any line of the plane, prove that $D C \perp A B$.

THEOREMS ON PARALLELS.

482. Theorem. If low lines a'r perpendicular to the same plrme, they .are prarallel.

Conversely. If one of tho prarallel lines is perpendicular to a plane, the other is also.

Given: (1) $A B$ and $C D$ each \perp to the plane M.

To prove that $A B \| C D$.
Proof: Draw $B D$ and make $D E \perp D B$.

Take points A and E so that $B A=D E$, and draw $A D, A E$, and
 $B E$.

Now prove (1) $\triangle A B D \cong \triangle B D E$. ($\because) \triangle A D E \cong \triangle A B E$.
Hente, $\angle A D E$ is a right angle, ancl $D C, D A$, and $D B$ all lie in the same plane. (${ }^{1} h_{1} y^{*}$)

Therefore $C D$ and $A B$ are in the same plane and perpendicular to the same line $B D$. (Why ?)
Hence,
$A B \|(D)$.
Given: (2) $A B \| C D$ and $C D \perp M$.
To prove that $A B \perp M$.
Proof: If $A B$ is not $\perp M$, suppose $A^{\prime} B \perp M$. Then $A^{\prime} B \| I^{\prime} I n$. But through B there is only une line $\| C D$.

Hentere, $A^{\prime} B$ and $A B$ exincide.
But $A^{\prime} B$ was taken \perp M. Heneer $A B \perp M$.
Itasobir: $:$ Nors. The above proof for the direct case is the one siven by Fuclial. Miny proofs have leen given, but this seems the most crecrant.
 to the sume line, ari permellel to serle where.

Suggestions. Let $l_{1} \| l_{3}$ and $l_{2} \| l_{3}$. To prove $l_{1} \| l_{2}$. Take a plane $M \perp l_{3}$ and finish the proof.
484. Definitions. Two planes which do not meet are said to be parallel.

A straight line and a plane which do not meet are said to be parallel.
485. Theorem. If each of two planes is perpendicular to the same line, they are parallel.

Conversely. If one of two parallel planes is perpendicular to a line, the other is also.

Given: (1) $M \perp A B$ and $N \perp A B$.
To prove that $M \| N$.
Proof: Suppose M and N to meet in some point P, and show that this leads to a contradiction.

Given: (2) $M \| N$ and $M \perp A B$.

To prove that $N \perp A B$.
Proof: Through $A B$ pass a plane cutting M in $B D$ and N in $A C$, and also a second plane cutting M in $B F$ and N in AE.

Then $B D \| A C$, for if they could meet, then M and N would meet, which is contrary to the hypothesis.

Likewise $B F{ }^{\|} A E$.
Complete the proof, showing that $A B \perp A C$, and $A B \perp A E$, and hence $A B \perp N$.
486. Corollary. If a plane intersects two parallel planes, the lines of intersection are parallel.
487. Theorem. If a straight line is parallel to a given plane, it is parallel to the intersection of any plane through it with the given plane.
suggestur. If l_{1} is the given line, and l_{2} the intersection of the plane through l_{1} with the given plane, show that l_{1} and l_{2} lie in the same plane and cannot meet.
488. Corollary. If a lime outside a plone is parallel to some line in the plane, then the first line is parallel to the plane.
489. Theorem. If two intersecting lines in ome plome are parallel, respectively, to two intersecting lines in another plome, then the two planes are parallel, and the corresponding angles formed by the lines are equal.

Given: the planes M and N in which $A B \| A^{\prime} B^{\prime}$, and $A C \| A^{\prime} C^{\prime}$.
To prove that $M \| N$ and $\angle 1=\angle 2$.
Outline of proof: (1) To prove $M \|$.
If M and N could meet, let l be their line of intersection. Then neither $A B$ nor $A C$ can meet l since each is $\|$ hy §48. Hence $A B \| l$ and $A C \| l$, which is impossible. (Why?)
(2) To prow $\angle 1=\angle 2$, study the following analysis:

Lay off $A B=A^{\prime} B^{\prime}, A C=A^{\prime} C^{\prime}$, and draw $B C^{\prime}, B^{\prime} C^{\prime}, A .1^{\prime}$, $B B^{\prime}$, and $A^{\prime \prime} '^{\prime}$

Then $\angle 1=\angle \Xi$ if $\triangle A B r^{\prime} \geq \triangle A^{\prime} B^{\prime} C^{\prime}$, which is true if $B r^{\prime}=B^{\prime} C^{\prime}$. But $B C^{\prime}=B^{\prime} C^{\prime \prime}$ if $B C C^{\prime} B^{\prime}$ is a \square, which is so if $B B^{\prime}=C C^{\prime}$ and $B B^{\prime} \| C C^{\prime}$. This last is true if $A B B^{\prime} A^{\prime}$
and $A C C^{\prime} A^{\prime}$ are [s], for then $B B^{\prime}=C C^{\prime}=A A^{\prime}$ and $B B^{\prime} \|$ $A A^{\prime} H C C^{\prime}$.

Now reverse the order of these steps and give the proof in full, with all the reasons.
490. Corollary. If two angles in space have their sides respectively parallel, the angles are either equal or supplementary.

State this in full detail as in §§ 106-108 and show how it applies to the above figure.
491.

EXERCISES.

1. Show that parallel line-segments included between parallel planes are equal, and hence that parallel planes are everywhere equally distant.
2. Find the locus of all points at a given distance from a given plane; also of all points equally distant from two parallel planes.
3. Show how to determine a plane parallel to a given plane and at a given distance from it. How would you place three shelves parallel to each other and a foot apart?
4. Show that two straight lines in space may not meet and yet not be parallel.
5. Show that through any given line a plane may be passed parallel to any other given line in space.

Suggestion. If l_{1} and l_{2} are the given lines, through any point in l_{1}, draw $l_{3} \| l_{2}$, and show that the plane determined by l_{1} and l_{3} is the required plane \|f l_{2}.
6. Through a given point pass a plane parallel to each of two given lines iu space.

Sugestion. Through the given point pass lines $l l$ to each of the given lines, then use § 488.
7. Show that through a point outside a plane any number of lines can be drawn parallel to the plane. How are all these parallels situated?
8. Find the locus of all lines through a fixed point parallel to a fixed plane.
492. Theorem. If too straight lines are cut by three parallel planes, the interceptod segments on one line are in the same ratio as the correspondiny segments on the other.

Given: the lines $A B$ and $C D$ cut by the planes M, N, and P,
To prove that $\frac{A E}{E B}=\frac{C G}{G D}$.
Proof: Connect the points A and D, and let the plane determined by $A D$ and ${ }^{\prime} D$ cut the planes M and V in $A C$ and $F G$ respectively. And let the plane of $A B$ and $A D$ cut N and P in $E F$ and $B D$ respectively.

Now show that $A \subset \| F G$ aml $E F \| B D$, and hence complete the proof, giving all the reasons.
493. Corollary. Parallel planes which intercept equal serfments: on atmy tramsorsal line intercept equal segments on every transeressel line.
494. EXERCISES.

1. Show how tur find all the puints on the floor of the schoolroom which are equally distmit from onm of the lower corners of the window sill and one of the "pure corners of the opposite door.
 spertively, aml a shating ment intersenting them has a 7 -inch segment butwern the first two whelves, find the other tho segments of the rod.
2. If we attempt to stand up a ten-foot pole in a room eight feet high, find the locus of the foot of the pole on the floor when the top is kept at a fixed point on the ceiling.
3. Show that, if three line-segments not in the same plane are equal and parallel, the triangles formed by joining their extremities, as in the figure of $\S 489$, are congruent, and their planes are parallel.
4. Given a plane M and a point P not in M. Find the locus of the middle points of all segments connecting P with points in M.
5. Given a plane M and a point P not in M. Find the locus of a point which divides in a given ratio each segment connecting P with a point in M : (a) if the segments are divided internally; (b) if they are divided externally.
6. The locus required in Ex. 6 consists of two planes, each paralle] to the given plane M. Are these two planes equally distant from M ?
7. Show that a plane containing one only of two parallel lines is parallel to the other.
8. If in two intersecting planes a line of one is parallel to a line of the other, then each of these lines is parallel to the line of intersection of the planes.
9. Show that three lines which are uot concurrent must all lie in the same plane, if each intersects the other two.
10. Show that three planes, each of which intersects the other two, have a point in common unless their three lines of intersection are parallel.

Suggestion. Suppose two of the intersection lines are not parallel, and meet in some point O. Then show that the other line of intersection passes through O, and hence that O is the point common to all three plaues.
12. Given two intersecting planes M and N. Find the locus of all points in M at a given distance from N.
13. Given two non-intersecting lines l_{1} and l_{2}. Find the locus of all lines meeting l_{1} and parallel to l_{2}.
14. Prove that the middle points of the sides of any quadrilateral in space are the vertices of a parallelogram.

Suggestion. Use the fact that a line bisecting two sides of a triangle is parallel to the third side. Note that the four vertices of a quadrilateral in space do not necessarily all lie in the same plane.

DIHEDRAL ANGLES.

495. Definitions. The part of a plane on one side of a line in it is called a half-plane. The line is called the edge of the half-plane. Two half-planes meeting in a common edge form a dihedral angle. The common edge is the edge of the angle and the half-planes are its faces.

Lines in the faces of a dihedral angle perpendicular to its edge at a common point form a plane angle, which is called the plane angle of the dihedral angle.

Thus, in the figure, the half-planes M and N have the common edge $A B$, and form the dihedral angle $M-A B-N$, read by naming the two faces and the edge. The $\angle '^{\prime} D E$, whose sides are $C D \perp$ $A B$ in N and $E D \perp A B$ in M is the plane angle of the dihedral angle $M-A B-N$.
496. By § 489 all plane angles of a dihedral angle are equal to each other.

A dihedral angle may be thought of as generated by the rotation of a hulf-plane about its edge. The magnitude of the angle depends solely upon the amount of rotation.

497. Two dihedral angles are equal when they can be so placed that their faces coincicle.
498. Theorem. Tivo miluetral angles are equal if their plane anules are rqual.

Given: the dihedral angles M $A B-N$ and $M^{\prime}-A^{\prime} B^{\prime}-N^{N}$ in which the plane $\triangle C D E$ and $C^{\prime} D^{\prime} E^{\prime}$ are equal.

To prove that

$$
M-A B \quad V=M^{\prime}-A^{\prime} i^{\prime}-N^{\prime}
$$

Proof: Place the equal. ($D D E$ and $C^{\prime} D^{\prime} E^{\prime}$ in coincidence.

Then the edges $A B$ and $A^{\prime} B^{\prime}$ must also coincide, since they are both perpendicular to the plane $C D E$ at the point D (§ 477).

Face M then coincides with M^{\prime}, since its determining lines, $A B$ and $D E$, coincide respectively with those of M^{\prime}, namely, $A^{\prime} B^{\prime}$ and $D^{\prime} E^{\prime}$.

Likewise, face N coincides with N^{\prime}.
Hence, $M-A B-N=M^{\prime}-A^{\prime} B^{\prime}-C^{\prime}$ since their faces have been made to coincide (§ 497).
499. Theorem. State and prove the converse of the preceding theorem.
500. Definitions. It follows from $\S \S 498$ and 499 that the plane angle of a dihedral angle may be regarded as its measure.

A dihedral angle is right, acute, or obtuse according as its plane fngle is right, acute, or obtuse.

Two dihedral angles are adjacent, vertical, supplementary, or complementary, according as their corresponding plane angles, with a common vertex, are adjacent, vertical, supplementary, or complementary.

In the figure pick out all the dihedral
 angles and describe them and their relations, (1) if $\angle C D E$ is acute, (2) if $\angle C D E$ is a right angle.
501.

EXERCISES.

1. State theorems on dihedral angles corresponding to those on plane angles in §§ 64, 68, 69, 72-76.
2. State theorems concerning two planes cut by a transversal plane corresponding to those on lines in $\S \S 90,92,93,97,99$.

Note that in Exs. 1 and 2 the proofs are exactly analogous to those in the Plane Geometry.
502. Definition. Two planes are perpendicular to each other if their dihedral angle is a right angle.
503. Theorem. If a line is perpendiculrer to " plane, every plane containing this line is perpendicular to the plane.

Given: a line $l \perp$ plane N at P,
To prove that a plane M containing l is $\perp N$.
Proof: Let l_{1} be the intersection of N and M. In N draw $l_{2} \perp l_{1}$ at P.

Then
$l \perp l_{1}, l_{2} \perp l_{1}$, and $l_{2} \perp l$.
(Why?)
Hence, $\quad M \perp v$.
504.

EXERCISES.

1. Show that the above theorem is equivalent to the following: If a plane is perpendicular to a line lying in another plane, then the first plane is perpendicular to the second.
2. Name all the dihedral angles in the accompanying figure.
3. Find the locus of all points equidistant from two given parallel planes and also equidistant from twe given points.
4. Find the locus of all points at a given dis-
 tance from a givel plane and equidistant from two given pointin.

Discuss Exs, 3 and 1 for the varions cases possible.
5. How wan the theorem of $\$ 0.3$ lo used to erect a plane perpendicular ta a given plane?
505. Theorem. If two planes M and N are mutually perpendicular, and if P is any point in M, then a line through P perpendicular to N lies wholly in M and is perpendicular to the line of intersection of M and N.

Given: plane $M \perp$ plane N, and P any point in M. Let l_{1} be the intersection of M and N and let l be a line through $P \perp N$.

To prove that l lies wholly in M and that $l \perp l_{1}$.
Proof: (1) Let P be any point in M outside of l_{1}.
Suppose l does not lie wholly in M.
Then through P draw a line l^{\prime} in the plane M perpendicular to l_{1} at o. Through o draw line l_{2} in $N \perp l_{1}$. Then l_{2} and l^{\prime} form a right angle (§502). Hence $l^{\prime} \perp N(\S 479)$.

But from P there can be but one perpendicular to N.
Hence, l coincides with l^{\prime}, and we have l lying wholly in M and $l \perp l_{1}$.
(2) Let the point P be in the intersection l_{1}.

The proof is similar to case (1). Give it in full.
506.

EXERCISES.

1. Show that if in the figure of $\S 505, M \perp N$ and l is a line in M such that $l \perp l_{1}$, then $l \perp N$.
2. Through a given point, on or outside of a given plane, how many planes can be constructed perpendicular to the given plane?
3. Theorem. If a plane is perpendicular to each of two planes, it is perpendicular to their line of intersection.

Given: $Q \perp M$ and $Q \perp N$ and l the intersection of M and N,
To prove that $Q \perp l$.
Proof: From a point P common to M and N draw a line $l^{\prime} \perp Q$.

Then l^{\prime} lies wholly in both M and N. (Why?)
Hence, l^{\prime} and l are the same line.
That is, $l \perp($ or $Q \perp l$.
508.

EXERCISES.

1. Any plane \perp to the edge of a dihedral angle is \perp to each of its faces.
2. If three lines are \perp to each other at a common point, then each is \perp to the plane of the other two.
3. Throngh a given line in space pass a plane \perp to a given plane. How many such plants can be constructed?

Gugestun. From some point in the given line draw a line \perp to the given plane. Then use § 503.
4. What is the answer to the question in Ex. 3 in case the given line is perpendicular to the givel plane?
5. Through : given planes. How many such can he passid?

Sreabsturs. Consider the relation of the required plane to the intersection of the two given planes.
6. What is the answer to the question in Ex. In in case the given print is on the line of intersection of the given planes?
509. Definition. A plane through the edge of a dihedral angle bisects the angle if it forms equal angles with the faces of that angle.
510. Theorem. The locus of all points in space equally distant from the faces of a dihedral angle is the half-plane bisecting the angle.

Given: the half-plane P bisecting the dihedral $\angle M-A B-N$.
To prove: (1) that any point E in P is equally distant from M and N, and (2) that any point which is equally distant from M and N lies in P.

Outline of proof: (1) Draw $E C \perp M$ and $E D \perp N$. Then the plane $C E D$ cuts M, N, and P in $O C, O D$, and $O E$ respectively and is \perp to both M and N. (Why?)

Then $\angle E O D$ is the measure of $P-A B-N$ and $\angle E O C$ is the measure of $P-A B-M$. (Why?)

Now use © $E O C$ and $E O D$ to show that $E C=E D$.
(2) Take E any point such that $E C=E D$, and let P^{\prime} be the plane through $A B$ containing E. Now argue as in $\S 125$, to show that $\angle E O D=\angle E O C$, and hence that P^{\prime} is the same plane as the bisector plane P.

Give the proof in full.
511. Corollary. If from any point within a dihedral angle perpendiculars are drawn to the faces, the angle between the perpendiculars is the supplement of the dihedral angle.
512. Definition. The projection of a point on a plane is the foot of the perpendicular from the point to the plane.

The projection of any figure on a plane is the locus of the projections of all points of the figure on the plane.
513. Theorem. The projection of amy straight line on a plane is a straight line in that plane.

Outline of proof: Pass a plane through the given line and \perp to the given plane. Is this always possible? (Why? ?) Now show that the intersection of these two planes contains the projection of every point of the given line upon the given plane.
514. Theoren. The acute angle formed by a straight line with its own projection on a plane is the lowst angle which it makes with any line in that plane.

Outline of proof: Let $B C$ be the projeetion of $A B$, and let $B D$ be any other line in M through B.

Lay off $B D=B C$ and draw $A D$.
In the $\triangle A B D$ and $A B C$ show that $\angle A B D>\angle A B C$.
515. Definition. The angle between a plane and a line oblique to it is monderstood to mean the acute angle formed by the line and its projection upon the plane.
516. Problem. To construct a common perpendicular to two non-parallel lines in space.

Given : l_{1} and l_{2}, two non-parallel lines, and also non-intersecting. To construct a line $B C$ perpendicular to each of them.
Construction: Through A, any point in l_{2}, diaw $l_{3} \| l_{1}$. Let M be the plane determined by l_{2} and l_{3}.
Through l_{1} pass a plane $P \perp M$ and meeting M in l_{4}.
At B the intersection of l_{2} and l_{4}, in the plane P, erect $B C \perp M$.
'Then $B C$ is the required perpendicular.
Proof: Give the proof in full.
517. EXERCISES.

1. If a line is \perp to a plane, its projection on that plane is a point.
2. If a line-segment is $\|$ to a plane, show that its projection is a segment equal to the given segment.
3. If a line-segment is oblique to a plane, show that its projection is less than the given segment.
4. If a line-segment 6 in . long makes an angle of 30° with a plane, find the length of its projection on the plane. If it makes an angle of 45°; an angle of 60°.
5. If two parallel lines meet a plane, they make equal angles with it. (Why?) Is the converse true?
6. If a line cnts two parallel planes, it makes equal angles with them. (Why?) Is the converse true?
7. If two parallel line-segments are oblique to a plane, their projections on the plane are in the same ratio as the given segments.

POLYHEDRAL ANGLES.

518. Definitions. Given a convex polygon and a point P not in its plane. If a half-line l with end point fixed at P moves so that it always touches the polyon and is made to traverse it completely, it is said to generate a convex polyhedral angle.

The fixed point is the vertex of the polyhedral angle, and the rays through the vertices of the polygon are the edges of the polyhedral angle.

Any two consecutive edges determine a plane, and the portion of such a plane included between these edges is called a face of the polyhedral angle.
The plane angles at the vertex
 are called the face angles of the polyhedral angle. A polyhedral angle having three faces is called a trihedral angle.
519. Theorem. If two triledird anyles have the three face amples of the one equal respectioly to the three face angles of the other, the dihedral angles "pposite the equal face anyles are equal.

Given: the trihedral angles P and P^{\prime}, in which $-a=\angle a^{\prime}$, $\angle b=\angle b^{\prime}, \angle c=\angle c^{\prime}$.

To prove that the pairs of dihedral angles are equal whose edges are $P A$ and $P^{\prime} A^{\prime}, P B$ and $P^{\prime} B^{\prime}, P C$ and $P^{\prime} C^{\prime}$.

Proof: Let P and P^{\prime} be cut by the planes $A B C^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime}$, making $P A=P R=P C=P^{\prime} A^{\prime}=P^{\prime} B^{\prime}=P^{\prime} C^{\prime}$.

On the edges $P A$ and $P^{\prime} A^{\prime}$ lay off $A F=A_{1}^{\prime} F^{\prime}$, and through F and F^{\prime} pass planes \perp to $P A$ and $P^{\prime} A^{\prime}$ respectively.

Let the first plane cut $A C$ in some point E, and $A B$ in some point D, and likewise the second plane cut $A^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime}$ in corresponding points E^{\prime} and D^{\prime}.

Why must there be such intersection points? Must they be between A and C, A and B, A^{\prime} and C^{\prime}, A^{\prime} and B^{\prime} respectively?

Then $\triangle D F E$ and $D^{\prime} F^{\prime} E^{\prime}$ are the measures of the dihedral angles whose edges are $A P$ and $A^{\prime} P^{\prime}$, and these are to be proved equal to each other.

Now use the pairs of face triangles $A P B, A^{\prime} P^{\prime} B^{\prime}$, etc., to show that $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$. Then show in order
(1) $\triangle A D F \cong \triangle A^{\prime} D^{\prime} F^{\prime}$.
(2) $\triangle A E F \cong \triangle A^{\prime} E^{\prime} F^{\prime}$.
(3) $\triangle A D E \cong \triangle A^{\prime} D^{\prime} E^{\prime}$.
(t) $\triangle D F E \cong \triangle D^{\prime} F^{\prime} E^{\prime}$.

In like manner the other pairs of dihedral angles may be proved equal to each other.
520. Two polyhedral angles are congruent if they can be so placed that their vertices and edges coincide.

A polyhedral angle is read by naming the vertex and one letter in each edge, as $P-A B C D E$, or by the vertex alone where no ambiguity would arise.
521. Corollary. If two trihedral angles have their face angles equal each to each and arranged in the same order, they are congruent.

For by the theorem their dihedral angles are equal each to each, and if the equal faces are arranged in the same order, the trihedral angles may be made to coincide throughout.

SUMMARY OF CHAPTER VII.

1. Describe the various ways of determining a plane.
2. State the axioms used in this chapter.
3. State the definitions and theorems on perpendicular lines and planes.
4. State the definitions and theorems on parallel lines and planes.
5. Name some applications in connection with perpendiculars and parallels which have impressed you.
6. State some facts in regard to perpendiculars and parallels in the plane which do not huld in space.
7. Give the definitions and theorems on dibedral angles.
8. What theorems on perpendicular planes are proved in connection with dibedral angles?
9. Give the definitions and theorems on projections used in this chapter.
10. Give the definitions and theorems on polyhedral angles thus far used.
11. Make a list of all the loci problems in this chapter.
12. Study the following collection of problems and applications, and then make a collection of those which impress you as most interesting or useful. Include in this list any applications in the chapter.

PROBLEMS AND APPLICATIONS.

1. A Christmas tree is made to stand ou a cruss-shaped base. If the tree is perpendicular to each piece of the cross is it lerpendicular to the floor?
2. If the projpetions on a plane of a number of pointsoutside the plane lie in the same straipht lime, do the pints themselves uecessarily lie in a straight line?
3. If A, I, and C do not lie in the same line, and if their projections on a plane I/ do lie in a straight line, what is the relation of the planes $M: 1$ inl $A B C$?
4. Is it possihle to priject a circhern a plane su that the projecfion shall tw in straight linn-siegment? If so, how must the circle aud the plame he relatod?
5. How many planes may be made to pass through a given point parallel to a given line? Discuss the mutual relations of all such planes.
6. Through a point P construct a line meeting each of two lines l_{1} and l_{2}.

Suggestion. Let M and N be the planes deternined by P and l_{1} and by P and l_{2}. Is this construction always possible?
7. Given a plane M and lines l_{1}, l_{2}. Construct a line perpendicular to M and meeting both l_{1} and l_{2}.

Suggestion. Project l_{1} and l_{2} on M.
8. A line l is parallel to a plane M, and lines l_{1} and l_{2} in M are not parallel to l. Show that the shortest distance between l and l_{1} is equal to the shortest distance between l and l_{2}.
9. Prove that the planes bisecting the dihedral angles of a trihedral angle meet in a line.

10. Find the locus of all points equidistant from the planes determined by the faces of a trihedral angle.
11. Find the locus of all points equidistant from the edges of a trihedral angle.

Suggestion. On the edges lay off $P A=P B=P C$. Let O be equidistant from A, B, and C. Then any point Q in $P O$ is equidistant from the edges.
12. Planes determined by the edges of a trihedral angle and the bisectors of the opposite face angles meet in a line.

Suggestion. If, in the figure of Ex. $9, P A=P B=P C$, and if $P E, P F, P G$ bisect the face angles, then E, F, G are the iniddle points of the sides of the triangle $A B C$. Now apply the theorem that the medians of a triangle meet in a point.
13. Planes perpendicular to the faces of a trihedral angle and bisecting its face angles meet in a line.
14. Show how to locate a point which is at a distance of 2 feet from each face of a trihedral angle.

Suggestion. lass a plane parallel to each face of the trihedral angle and at a distance of 2 feet from it.
15. Show how to locate a point which is 2 feet from one face of a trihedral angle, 3 feet from the second, and 4 feet from the third.
16. Find the locus of a point in space such that the difference of the squares of its distances from two fixed points is constant.

Suggestion. First solve the problem in the plane, obtaining as the required locus the line $P P^{\prime}$. Then rotate the figure about the line $A B$ as all axis. See page 227, Ex. 7.
17. Find the locus of all points in a plane at which lines from a fixed point P not in the plane meet the plane at equal angles.
18. Find the locus of all points which are at the same fixed distance from each of two intersecting planes.

Solvtion. Pass a plane perpendicular to the intersection of the two given planes, making the plane cross section shown in the figure. Draw the bisector of $\angle 1 O B$ and a line at the required distance a from $O .1$ and parallel to it.

Then P is at the distance a from each of the lines $O .1$ and $O B$. In the same manner three other such points, P_{1}, P_{2}, P_{3},
 are constructed.

Now let this figure move through space larallell to itself, the point O moving along the intersection of the given plans. The points $P, I_{1}, I_{2}^{\prime}, P_{3}$ will thus move along straight lines which constitute the required locus.
19. Find the locus of points 3 feet from one of two intersecting planes and 6 feet from the other.
20. It is requimed that a series of elnetric lights shall be 7 feet above the floor of a rom and 3 feot from the walls. Find the locus of all points at which such lights may be placed.
21. Find the locus of all points in space equally distant from each of two intersecting straight lines.
22. Find the locus of all points in space equally distant from two parallel lines.
23. Given two points A and B on the same side of a plane M. Determine a point P in M such that $A P+P B$ shall be a minimum.

Suggestion. Pass a plane through A and B perpendicular to M, and proceed as in Ex. 8, page 200.
24. Show that if the edge of a dihedral angle is cut by two parallel planes, the sections which they make with the faces form equal angles.
25. Show that if all edges of a trihedral angle are cut by each of a series of parallel planes, the intersections form a series of similar triangles.
26. Find the locus of the intersection points of the medians of the triangles obtained in Ex. 25. Also of the altitudes.
27. If three planes are so related that the segments intercepted on any transversal line are in the same ratio as the segments intercepted on any other transversal then the planes are parallel.

Suggestion. Let M, N, Q be the three planes. From A any point in M draw three lines, not in the same plane, meeting N in A^{\prime}, B^{\prime}, C^{\prime}, and Q in $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$. Use the hypothe-
 sis to show that $A^{\prime} B^{\prime} \| A^{\prime \prime} B^{\prime \prime}$ and $C^{\prime} B^{\prime} \| C^{\prime \prime} B^{\prime \prime}$. Hence $Q \| N$. Similarly show that $M \| N$.
28. A segment $A B$ of fixed length is free to move so that its endpoints lie in two fixed parallel planes. Find the locus of a point C on $A B$ if $A C$ is of fixed length.
29. If the projections of a set of points on each of two planes not parallel to each other lie in straight lines, show that the points themselves lie in a straight line.
30. If l_{1} and l_{2} are not parallel and non-intersecting, show that there is only one plane through l_{1} parallel to l_{2}.
31. Show that if two lines are not parallel and do not lie in the same plane, they have only one common perpendicular, and that the shortest distance between the lines is measured along this perpendicular.

(MAPTER IX.

PRISMS AND CYLINDERS.

522. Definitions. Any portion of a plane entirely bounded by line-segments or curves is called a plane-segment.
E.g. the portion of the plane λI inclosed by the triangle $A B C$ is the plane-segment $A B C$.

If the boundary is composed entirely of
 straight line-segments, the inclosed portion is called a polygonal plane-segment.
523. A polyhedron is a three-dimensional figure formed by polygonal plane-segments which entirely inclose a portion of space.

The line-segments which are common to two polygons are the edges of the pulyhedron.

The plame-segments inclosed by the edges are the faces, and the intersections of the edgres are the vertices of the polyhedron. A poly-
 hedron is convex if every section of it mate by a plane is a convex pelygon.

Note. The word polyhedron, as here defined, means the surface inelosing a portion of space and not that portion of space itself. Howerer, it is sometimes convenient to use the word polyhedron when referring to the inclosed space. Thus, we speak of dividing a polyhedron into wher polyhorms when, strietly, we mean that snaller polyheclrons are construeted which divide into parts the space inclosed in the given polyherlron.

In the sume manner the word polyyon is sometimes used to indicate the plane-segment fommulol ly it, and the word angle to indicate the part of the plane within it.

Thus, a face of a polyhedron is sometimes called a polygon, and the face of a polyhedral angle is sometimes called an angle.

In all cases the context will clearly indicate what is meant.
524. Definitions. Given a convex polygon and a straight line not in its plane. If the straight line move so as to remain parallel to itself while it always touches the polygon and is made to traverse it completely, the line is said to generate a closed prismatic surface.

The moving line is the generator of the surface, and the guiding polygon the directrix. The generator in any one of its positions is an element of
 the surface.

A cross section of a prismatic surface is made by any plane cutting all its elements.
525. A prism is that part of a closed prismatic surface included between two parallel cross sections, together with the inter.cepted plane-segments.

The parallel plane-segments are the bases of the prism, and the portion of the prismatic surface between the bases is called the lateral surface of the prism.

The lateral surface is composed of parallelograms (why?), and these are called the lateral faces of the prism. The sides of these parallelograms, not common to the bases, are the lateral edges of the prism.

A right section of a prism is made by
 a plane cutting each of its lateral edges, extended if necessary, and perpendicular to them.
526. Prisms are classified according to the form of their right sections, as triangular, quadrangular, pentagonal, hexagonal, etc. A regular prism is one whose right section is a regular polygon.

A prism is a right prism if its lateral edges are perpendicular to its bases; otherwise it is oblique.

The altitude of a prism is the perpendicular distance between its bases. The altitude of a right prism is equal to its edge.

The lateral area of a prism is the sum of the areas of its lateral faces.

The total area is the sum of its lateral area and the area of its bases.

THEOREMS ON PRISMS.

527. Theorem. The cross sections of a prism made by parallel planes are congruent polygons.

Given a prism cut by two parallel planes forming the polygons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.

To prove that $A B C D E \cong A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.
Outline of proof : (1) Show that $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$, etc., by proving that $A B B^{\prime} A^{\prime}, B C C^{\prime} B^{\prime}$, etc., are s.
(2) Show that $\angle A B^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime}, \angle B C D=\angle B^{\prime} C^{\prime} D^{\prime}$, etc.
(3) Hence, show that $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ can be made to coincide.
528. Theorem. The lateral area of a prism is equal to the product of a lateral edge and the perimeter of a right section.

Suggestion. Show that the lateral edges are mutually equal and that the area of each face is the product of a lateral edge and one side of the right-section polygon.

Complete the proof.
Note. The form of statement in this theorem is the usual abbreviation for the more precise form:

The Iateral area of a prism is equal to the product of the numerical measures of a lateral edge and the perimeter of a right section.

Similar abbreviations are used throughout this text.
529. Corollary. The lateral area of a right prism is equal to the product of its altitude and the perimeter of its base.
530. Definitions. A polyhedron which is a part of a prism cut off by a plane meeting all the lateral edges, but not parallel to the base, is called a truncated prism.

Two polyhedrons are said to be added when they are placed so that a face of one coincides with a face of the other, but otherwise each lies outside the other.

531. Theorem. Tion prisms are congruent if three faces haviny a common rcrtas: in the we are congruent respectincl!, to threr faces heriay a rommon vertex in the other, curd similurly placed.

Given the three faces meeting at B in prism P congruent respectively to the three faces meeting at B^{\prime} in prism P^{\prime}, and similarly placed.

To prove that P can be made to coincide with P^{\prime}.
Outline of proof: Trihedral angles B and B^{\prime} are congruent. (IVhy?)

Now apply the two prisms, making B coincide with \boldsymbol{B}^{\prime}, and thus show in detail that:
(1) The lower bases coincide.
(2) The lateral faces at B and B^{\prime} coincide.
(3) The upper bases coincide.
(4) All the lateral faces coincide.

Hence P ind P^{\prime} mincide throughout.
532. Corollary. Tiro right prisms are congruent if thry hrowe romifruent betsiss ancl equal altitude.
533. ('omolanis. Then trmmoted prisms are eom!fment if the faces farming "t trikislial anyli of ome are regual resperetimly to the compespomelime dienes of the other.
534. Definitions. A parallelopiped is a prism whose bases, as well as lateral faces, are parallelograms.

A rectangular parallelopiped has all its faces rectangles.

A cube is a parallelopiped whose faces are all squares.
535. Theorem. Any two opposite faces
a paralletopiped are parallel and con-
535. Theorem. Any two opposite faces
of a paralletopiped ure paralled and congruent.

Suggestions. Consider the opposite faces $A B F E$ and DCGH.
(1) Show that the sides of the angles $A B F$ and $D C G$ are parallel, and hence the planes determined by them are parallel.
(2) Show that these faces are congruent.

In like manner argue about any other pair of opposite faces.
536. EXERCISES.

1. Can a parallelopiped be a right prism without being a rectangular parallelopiped? Illustrate.
2. Show that in a rectangular parallelopiped each edge is perpeudicular to all the other edges meeting it.
3. Is it possible to construct a prism which has no right section according to the definition of § 525 ?
4. Show that any section of a parallelopiped made by a plane cutting four parallel edges is a parallelogram.
5. A section made by a plane passed through two diagonally opposite edges of a parallelopiped is a parallelogram.
$E . g$. the section through $D H$ and $B F$ in the figure of Ex. 4.

6. Show that any two of the four diagonals of a parallelopiped bisect each other.
E.g. $A G$ and $C E$ in the figure. Make use of the preceding example.
7. Show that the diagonals of a rectangular parallelopiped are all equal to each other.
8. Show that the square on the diagonal of a rectangular parallelopiped is equal to the sum of the squares on the sides
 meeting at a vertex from which it is drawn.
E.g. in the figure of Ex. $6, \overline{A G}^{2}=\overline{A C}^{2}+\overline{C G}^{2}=\overline{A B}^{2}+\overline{B C}^{2}+\overline{C G}^{2}$.
9. Find the ratio of the diagonal to one edge of a cube.
10. Find the edge of a cube whose diagonal is 14 inches. Find the diagonal of a cube whose edge is 16 inches.
11. Find a diagonal of a rectangular parallelopiped whose edges are 6,8 , and 10 inches respectively.
12. Are the diagonals of a cube perpendicular to each other?
13. If two diagonals of a rectangular parallelopiped meet at right angles, and if two of its faces are squares, find the ratio of the sides of the remaining faces.
14. If two congruent right prisms whose bases are equilateral triangles are placed together so as to form one prisin whose base is a parallologram, compare the lateral area of the prism so formed with the sum of the lateral areas of the original prisms.
15. A right prism whose bases are regular hexagons is divided into six prisms whose bases are equilateral triangles. Compare the lateral area of the original prism with the sum of the lateral areas of the resulting prisms.
16. If the perimeter of a right section of a prism is 24 inches and its altitude 6 inches, what is the smallest possible lateral area? What can be said about the largest possible area of such a prisin?
17. Any section of a prism made by a plane parallel to a lateral edge is a parallelogram.
18. Show that for every prism there is at least one set of parallel planes each of which cuts the prism in a rectangular section. See suggestions Ex. 7, p. 327.

VOLUMES OF RECTANGULAR PARALLELOPIPEDS.

537. Thus far certain properties of prisms laave been studied, but no attempt has been made to measure the space inclosed by such a solid. For this purpose we consider first a rectangular parallelopiped.
538. Definition. In case each edge of a rectangular parallelopiped is commensurable with a unit segment, the number of times which a unit cube is contained in it is the numerical measure or the volume of the parallelopiped.
539. In the case just described in the definition, the volume is easily computed.
E.g. if in the figure one edge $A C$ is 4 units, and an adjoining edge $A B$ is 3 units, then a onbe as $A K$, whose edge is one nnit, may be laid off 4 times along $A C$ and a tier of $3 \cdot 4=12$ such cubes will adjoin the face $A D$, while 5
 such tiers will exactly fill the space within the solid. That is, $5 \cdot 3 \cdot 4=60$ is the number of cubic units in the solid.

Again, if the given dimensions are 3.4, 2.6, 4.5 decimeters respectively, tben unit cubes, with edge one decimeter, cannot be made to fill exactly the space inclosed by the figure, but cnbes with edge each one centimeter will do so, giving 34,26 , and 45 respectively along the three edges of the solid.

Hence the volume is
$34 \cdot 26 \cdot 45=39,780$ cubic centimeters, or 39.78 cubic decimeters.
540. Axiom XIX. Any pertangular parallelopiped incloses a defiuite volume which is greater than that of another, provided no dimension of the first is less thon the rorresponding dimension of the serond, aud at least one dimension is greater.
541. Theorem. The volume of cmy rectengular parallclopiped is equal to the product of the numerical measures of its limerr dimensions.

Proof: Case 1. If each dimension is commensurable with the unit segment.

This is the ease treated in $\S 539$.

CASE 2 . If two dimensions are commensurable with the wit seyment and the third is not.

By Axiom XIX the parallelopiped has a definite volume r.
Suppose this is not equal to abe and that $V^{\circ}<a b c$.
Let c^{\prime} be a number sueh that $V^{r}=a b e^{\prime}$. Then $c^{\prime}<e^{2}$. () 1 BD lay off $B H=c^{\prime}$.

Divide the unit sersment into equal parts, each less than HD, and hy off whe of these parts sucessively on $B D$, rewhing a point K betwown $I I$ and D. Denote the length of $B K$ by ${ }^{\prime \prime}$ and pass a plane throngh k paralled to ABE.

By Case 1 the volume of the parallelopiped $A L$ is $a b c^{\prime \prime}$. By hypothesis, $V=a b c^{\prime}$, but $a b c^{\prime}<a b c^{\prime \prime}$, since $c^{\prime}<c^{\prime \prime}$. Hence, $V<a b c^{\prime \prime}$.
But by Ax. XIX, $v>a b c^{\prime \prime}$.
Hence, the assumption that $V<a b c$ cannot hold.
In the same manner show that $V>a b c$ cannot hold.
Hence, we have $V=a b c$.
Case 3. If one dimension is commensurable with the unit segment and two are not.

Case t. If all three dimensions are incommensurable with the unit segment.

The proofs in these cases are similar to he above.
Thus, in Case 3 , when b and c are both incommensurable with the unit segment, we obtain the parallelopiped $A L$, two of whose dimensions a and $c^{\prime \prime}$ are commensurable with the unit. Hence, by Case 2, its volume is $a b c^{\prime \prime}$. Then the argument is identical with that given before.

Hence, in all cases $V=a b c$.
542. Corollary 1. The volume of a rectangular parallelopiped is equal to the product of the numerical measures of its base and altitude.
543. Corollary 2. If two rectangular parallelopipeds have two dimensions respectively equal to each other, their volumes are in the same ratio as their third dimensions ; and if they have one dimension the same in each, their volumes are in the same ratio as the products of their other two dimensions.

For if V and $V^{\prime \prime}$ are the volumes, and a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ the dimensions, then $\frac{V}{V^{\prime}}=\frac{a \cdot b \cdot c}{a^{\prime} \cdot b^{\prime} \cdot c^{\prime}}=\frac{a}{a^{\prime}}$ if $b=b^{\prime}$ and $c=c^{\prime}$; or $\frac{V}{V^{\prime}}=\frac{a \cdot b}{a^{\prime} \cdot b^{\prime}}$ if $c=c^{\prime}$.

VOLUMES OF PRISMS IN GENERAL.

544. From the formula for rectangular parallelopipeds, Volume $=$ length \times width \times altitude, or $V=a b c$ we deduce the volumes of prisms in general by means of the principle:

Two polyhedrons are equal (that is, have the same volume) if they are congruent, or if they can be divided into parts which are congruent in pairs.

The sign = between two polyhedrons means that they are equal in volume. The word equivalent is sometimes used to mean equal in volume.
545. Theorem. The volume of an oblique prism is equal to that of a right prism having for its base a right section of the oblique prism and for its altitude a lateral edge of the oblique prism.

Given the oblique prism $A D^{\prime}$, with FGHJK a right section, and $F^{\prime} G^{\prime} H^{\prime} J^{\prime} K^{\prime}$ a right section of the prism extended so that the edge $A A^{\prime}=K K^{\prime}$.

To prove that the oblique prism $A D^{\prime}$ has the same volume as the right prism $K H^{\prime}$.

Outline of proof: Show that

(1) $A B C D E \cong A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$;
(2) $A B F h^{-} \supseteq A^{\prime} B^{\prime} F^{\prime} K^{\prime}$;
(3) $E .1 K J \cong E^{\prime} 1^{\prime}{K^{\prime}}^{\prime} J^{\prime}$.

Hence, hy § 53:3 $A H$ and $A^{\prime} H^{\prime}$ are congruent.
Now the given prism $A D^{\prime}=.1 H+\pi D^{\prime}$
and the right prism $\quad K I^{\prime}=A^{\prime} u^{\prime}+K D^{\prime}$.
Hence, $A D^{\prime}=K H^{\prime}$. (Why?)
546. Theorem. The volume of any parallelopiped is equal to the product of its base and altitude.

Given the oblique parallelopiped $A K$, with base b and alt. h.
To prove that its volume is equal to $b \cdot h$.
Proof: Considering face $A L$ as the base of prism $A K$, produce the four edges parallel to $A B$, and lay off $A^{\prime} \cdot B^{\prime}=A B$.

Through A^{\prime} and B^{\prime} erect planes \perp to $A B^{\prime}$, thus cutting off the right prism $A^{\prime} K^{\prime}$ with $A^{\prime} L^{\prime}$ as one base.

Now considering $C^{\prime} L^{\prime}$ as the base of prism $A^{\prime} K^{\prime}$, produce the four edges $\|$ to $C^{\prime} B^{\prime}$ and lay off $C^{\prime \prime} B^{\prime \prime}=C^{\prime} B^{\prime}$.

At $C^{\prime \prime}$ and $B^{\prime \prime}$ erect planes \perp to $C^{\prime} B^{\prime \prime}$, cutting off the right prism $A^{\prime \prime} K^{\prime \prime}$, which is a rectangular parallelopiped.

Then show that
(1) $h=h^{\prime}=h^{\prime \prime}$;
(2) $b=b^{\prime}=b^{\prime \prime}$; (3) prisms $A K, A^{\prime} K^{\prime}, A^{\prime \prime} K^{\prime \prime}$ are equal (§545).

But prism $A^{\prime \prime} K^{\prime \prime}=b^{\prime \prime} \cdot h^{\prime \prime}$. (Why?) Hence, prism $A K=b . h$.

Write out this proof in full.
547. Theorem. The roluine of a triangular prism is equal to the product of its base and altitude.

Given the triangular prism whose base is $A B C$.

To prove that the volume of this prism is equal to the area of $\triangle A B C$ multiplied by the altitude h, that is, by the perpendicular distance between $A B C^{\prime}$ and $E F G$.

Proof: Complete the (S) $A B C D$ and $E F G H$ and draw $D H$. Now
 show that CDHG and $A D H E$ are $[5$, and hence that $B H$ is a parallelopiped.

Let $K L M O$ be a right section of $B H$, and let $K M$ be the line in which the plane $A C G E$ cuts the plane $\pi L M O$.

Now (1) KLMO is a \square. Hence, $\triangle K L M \cong \triangle K M O$.
(2)) Volume of prism $A B C-F=$ area $\triangle K L M$ times $B F$.
(3) Volume of prism $B H=$ area \square KLMO times $B F$.
(4) Hence, prism $A B C-F=\frac{1}{2}$ prism $B H$.
(5) But prism $B H=h \times$ area of $\square A B \prime^{\prime} D$.
(ti) Hence, prism $A B C-F=h \times \frac{1}{2}$ area of $\square A B C D$ $=h \times$ area of $\triangle A B C$.

Therefore prism $A B C-F$ is equal to the product of its base and altitude. (iive reasons fur each step.
548. Corollary 1. The mhume' of any prism is squal to the product of its base rend altitude.

For ally prism can lu divided into triangular prisms by plaues passing throush one edge and cawh of the wher non-adjarent edges.

549. Corollary 2. Ainy two prisms of equal altitudes have the same volumes if their bases are equal.
550. Corollary 3. The volumes of two prisms have the same ratio as their altitudes if their bases are equal; and the same ratio as the areas of their bases if their altitudes are equal.
551.

EXERCISES.

1. The proposition that the volume of any prism is equal to the product of its base and altitude is of great importance. What theorems of this chapter were used directly or indirectly in proving it?
2. If the base of a prism is 36 square inches and its altitude 12 inches, what is its volume?
3. If the perimeter of the base of a prism aud the length of a lateral edge are known, is the lateral area thereby determined ?
4. If the area of the base and the length of an edge are known, can the volume be found?
5. What dimensions of a prism must be known in order to determine its lateral area by means of the theorems of this chapter? What dimensions must be known to determine its volume?
6. Parallel sections of a closed prismatic surface are congruent polygons. Prove.
7. Find the edge of a cube if its total area is equal numerically to its volume, an inch being used as a unit.
8. A side of the base of a regular right hexagonal prism is 3 inches. Find its altitude if its volume is $54 \sqrt{3}$ cubic inches. What is the total area of this prism?
9. A side of one base of a regular right triangular prism is equal to the altitude of the prism. Find the length of the side if the total surface is numerically equal to the volume.
10. Solve the preceding problem in case the prism is a regular right hexagonal prism.
11. The volume of a regular right prism is equal to the lateral area multiplied by half the apothem of the base. Prove.

CYLINDERS.

552. Definitions. A surface no segment of which is plane is called a curved surface.
E.g. the surface of an eggshell or of a stovepipe is a curved surface.

A closed plane curve is one which can be traced continuously by a point moving in a plane so as to return to its original position without crossing its path.

A convex closed curve is one which can be cut by a straight line in only two points.
553. If a straight line moves so as to remain parallel to itself, while it always touches a closed convex curve and is made to traverse it completely, the line is said to generate a closed convex cylindrical surface. The moving line is the generator, and the guiding curve the directrix. The generator in any one of its positions is an element of the surface.

A cross section of a cylindrical sur-
 face is made by a plane cutting all its elements.
554. A cylinder is that part of a closed cylindrical surface included between two parallel cross sections, together with the plane-segments thus intercepted. The plane-segments are the bases of the cylinder, and the part of the rylindrical surface between the bases is the lateral surface.

The portion of the generating line in any
 position which is included between the bases is an element of the cylinder. The altitude of a eylincler is the perpendicular distance betwern its bases.

A right section of a cylinder is made by a plane cutting each of its elements at right angles.

A circular cylinder is one whose right section is a circle.
The radius of a circular cylinder is the radius of its right section.

A cylinder whose bases and right sections are circles is called a right circular cylinder. A right circular cylinder is called a cylinder of revolutions, since it may be generated by revolving a rectangle about one of its sides as an axis. The side opposite the axis generates the lateral surface, and the sides adjacent to the axis generate the bases.

555. Theorem. If a plane contains an element of a cylinder and meets it in one other point, then it contains another element also, and the section is a parallelogram.

Given the cylinder $A C$ and a plane containing the element $A D$ and one other point as B.

To prove that it contains another element $B C$ and that $A B C D$ is a parallelogram.

Proof: Through B pass a line $B C \| A D$.
Then $B C$ is an element of the cylinder. (Why?)
Also $B C$ lies in the plane $\boldsymbol{A B D}$.
Now show that $A B C D$ is a parallelogram.
What is the section $A B C D$ if $A C$ is a right cylinder?
556. Definition. If a plane contains an element of a cylinder and no other point of it, the plane is said to be tangent to the cylinder, and the element is called the element of contact.
557. Theorem. The bases of a cylinder are congruent plane-segments.

Given a cylinder with the bases b and b^{\prime}.
To prove that $b \cong b^{\prime}$.
Proof : Take any three points A, B, C in the rim of the base b and draw the elements at these points, meeting the base b^{\prime} in D, E, F.

Show that $\triangle A B C \cong \triangle D E F$.
Now, while the elements $A D$ and $B E$ remain fixed, conceive $C F$ to generate the cylinder.

Evidently $\triangle A B C \cong \triangle D E F$ in every position of $C F$.
Hence, if base b^{\prime} is applied to base b with these triangles coinciding in one position, they will coincide in every position corresponding to the moving generator.

That is, $b \cong b^{\prime}$.
558. EXERCISES

1. Shum that right sections of any cylinder are congruent, and any section parallel to the base is congruent to the base.
2. If two intersecting planes are each tangent to a cylinder, show that their line of intersection is parallel to an element of the cylinder and also parallel to the plane containing the two elements of contact.
3. What is the locus of all points at a perpendicular distance of 2 feet from a given line?
4. If the section of a cylinder made by every plane parallel to an element of it is a rectangle, what kind of cylinder is it?
5. If the radius r of a right circular cylinder is equal to its altitude, find the distance from the center of the base to a plane whose intersection with the cylinder is a square.
6. Roll a sheet of paper so as to form a circular cylinder, that is, one whose right section is a circle. Now determine by inspection the shape of the base if the paper is cut so as to let the cylinder stand in an oblique position. Also deform the cylinder so as to make the oblique base circular, and, then determine the shape of the right section.
7. Show that for every cylinder there is at least one set of parallel planes which cat the cylinder in rectangular sections.

Suggestion. Project an element on the plane of the base, and draw lines in the base at right angles to this projection. Through these lines pass planes parallel to an element.
8. Is a polygon circumscribed about a convex closed curve necessarily a convex polygon? See § 160.
9. Is a polygon inscribed in a convex closed curve necessarily convex? (Note that a broken line $A B, B C$, $C D, D E, E A$ which cuts itself as shown in the figure is not here regarded as a polygon.) The answers to Exs. 8 and 9 limit the polygons to be used under Ax. XX to convex polygons. Hence it is not necessary to state in that
 axion that these polygons must be convex.
10. If polygons other than convex are permitted, is it possible to construct one within a convex closed curve whose perinieter is greater than the length of the curve? Can such polygons be inscribed in the curve?

MEASUREMENT OF THE SURFACE AND VOLUME OF A CYLINDER.
559. Thus far in geometry the word area has been used in connection with plane-segments only. In some eases the computation of an area has been possible by an approximation process only, as in the case of some rectangles and of the circle.

In the case of any curved surface it is evident that approximate measurement is the only kincl possible in terms of a plane area unit, since no such unit, however small. can be made to coincide with a segment of a curved surface.

Theorems concerning the surface and the rolume of a cylinder are based upon the following definitions and assumptions:
560. Axiom XX. Any convex closed curve has a detinite length and incloses a definite area, which are less respertively than the perimeter and area of amy circumscribed polygon and greater than those of any inscribed polygon.

Also the perimeter and ared of either the inseribed or the circmmsmibed polygon may be made to difter from those of the curve by as little ws we please by taking all the sides sufficiently smull.
561. Definitions. A prism is said to be inscribed in a cylinder if its lateral edges are elements of the cylinder, and their bases lie in the same planes.

A Irism is said to be circumscribed about a cylinder if its lateral ficus are all tangent to the cylimer, and their bases lic in the same planes.

562 Axiom XXI. The lateral surface of a convex cylinder has a definite area, and the cylinder incloses a definite volume, which are less respectively than those of any circumscribed prism and greater than those of any inscribed prism.
563. Theorem. The lateral area of a convex cylinder is equal to the product of an element and the perimeter of a right section.

Given a convex cylinder of which L is the lateral area, e an element, and p the perimeter of a right section.

To prove that $\quad L=e p$.
Proof: It will be shown that L can be neither greater than nor less than $e p$.

First, suppose

$$
\begin{align*}
& L<e p . \\
& L=e \pi . \quad \text { Then } \pi<p . \tag{1}
\end{align*}
$$

Let
Now inscribe a cylinder the perimeter p^{\prime} of whose right section is greater than κ. This is possible by $\S 560$.

Then

$$
\begin{equation*}
e p^{\prime}>e \boldsymbol{K} \tag{2}
\end{equation*}
$$

Hence, $e p^{\prime}$ is greater than the supposed value $e k$ of L.
But this is impossible, since $e p^{\prime}$ is the area of an inscribed prism (§562).

Hence, the supposition $L<e p$ leads to a contradiction.
Secondly, the supposition that $L>e p$ may be shown to be impossible by using a circumscribed prism.

Hence, we have

$$
L=e p .
$$

564. Corollary. If r is the radius of any circular cylinder, and e is an element, then $L=2 \pi r e$.

In the case of a right circular cylinder $e=h$, the altitude. and we bave

$$
L=\Omega \pi r h .
$$

565. Definition. Two right circular cylinders are similar if they are generated by similar rectangles revolving about corresponding sides.
566. Theorem. The lateral areas or the entire areas of two similar right circular cylinders are in the same ratio as the squares of their altitudes or as the squares of the radii of their bases.

Suggestion. If h and h^{\prime} are the altitudes, r and r^{\prime} the radii, L and L^{\prime} the lateral areas, and A and A^{\prime} the total areas, we are to show that

$$
\frac{L}{L^{\prime}}=\frac{A}{A^{\prime}}=\frac{r^{2}}{r^{\prime 2}}=\frac{h^{2}}{h^{\prime 2}} .
$$

Make use of the following, giving each in detail.

$$
\begin{aligned}
& \text { (2) } L=2 \pi r h, \quad \text { (2) } A=2 \pi r(r+h), \\
& \text { (3) } \frac{r}{r^{\prime}}=\frac{h}{h^{\prime}} \text {, and (4) } \frac{r+h}{r^{\prime}+h^{\prime}}=\frac{r}{r^{\prime}}=\frac{h}{h^{\prime}} .
\end{aligned}
$$

567. Theorem. The volume of any convex cylinder: is equal to the product of its altitude and the area of its base, or to the product of an clement and the area of its: right section.

Suggestions. (1) If h is the altitude and b the base, slow hy an argument similar to that of $\$ 563$, that r, the volume, can be neither greater nor less than $b h$.
(2) If e is an element and c the area of a right section, give a similar argument to show that $V=e c$, using § 545.

Give all the steps in full.
568. Corollary. If a cylinder has a right circular section whose radius is r_{1} and an element e, then $V=\pi r_{1}^{2} e$.

If a cylinder has a circular base of radius r_{2}, and an altitude h, then $\boldsymbol{V}=\pi \dot{r}_{2}^{2} h$.

In the case of a right circular cylinder, $r_{1}=r_{2}$ and $h=e$. Hence, the two formulas become identical.
569. Theorem. The volumes of two similar right circular cylinders are in the same ratio as the cubes of the radii of their bases or as the cubes of their altitudes.

Give the proof in full, using suggestions similar to those given in § 566.

PROBLEMS AND APPLICATIONS.

1. What dimensions of a cylinder must be known in order that its lateral area may be computed? State fully for different kinds of cylinders.
2. What dimensions of a cylinder must be known in order that its volume may be computed?
3. If the base of a cylinder is a circle with radius 5 inches, find its volume if the altitude is 8 inches.
4. If the lateral surface of a cylinder and the length of an element are known, can the perimeter of a right section be found? If the lateral area is 400π, and an element 15 , find the perimeter of a right section.
5. The diameter of a right circular cylinder is 8 , and the diagonal of the largest rectangle which can be cut from it is 16 . Find its altitude.
6. The volume of a right circular cylinder is 128π cubic inches and its altitude is equal to its diameter. Find the altitude and the diameter.
7. If the dianneter of a right circular cylinder is equal to its altitude, determine the diameter so that the total area of the cylinder is equal numerically to its volume.
8. Find the diameter of a right circular cylinder if the total area of the inscribed regular triangular prism is equal numerically to the volume of the cylinder, the dianneter of the cylinder being equal to its altitude.
9. In the preceding find the diameter of the cylinder if the volume of the prism is equal numerically to the total area of the cylinder.
10. Solve a problem like Ex. 8 if a regular hexagoual prism is used instead of a triangular prism.
11. Solve a problem like Ex. 9 if a regular hexagonal prism is used instead of a triangular prism.
12. A rectangle whose sides are a and b is turned about the side a as an axis and then about the side b. Find the ratio of the volumes of the two cylinders thus developed.
13. Compare the total surfaces of the two figures developed in Ex. 12.
14. Find the diameter of a right circular cylinder if its lateral area is equal numerically to its volume. Does the result depend upon the altitude of the cylinder?
15. If the altitude of a right circular cylinder is equal to its diameter, find the ratio of the numerical values of its total area and its volume. Does this depend on the radius?
16. A regular octagonal prism is inscribed in a right circular cylinder whose altitude is equal to the diameter. Find the difference letween the volumes of the cylinder and the prism, if a side of the wetarun is 4 inches.
17. A cylindrical tank $\&$ feet in diameter, partly filled with water. is lying on its side. If the greatest whth of the water is 6 feet, what fraction of the volume of the tank is filled with water?
18. In the precoding problem find the fraction of the rolume wecrapied liy water if the width of the top of the water aloug a right cross section of the tauk is 4 feet.

THEOREMS ON PROJECTION.

570. The projection of a line-segment on a given line was defined in $\S 512$. The length of the projection will now be computed in terms of the given line-segment.
571. Definitions. The acute angle between a line-segment and a given line on which it is projected is called the projection angle.

$E . g . \angle A F C$ or its equal $\angle B A E$ found by drawing $A E \| C D$.
If l is the length of a line-segment and p the length of its projection, then the ratio $\frac{p}{l}$ is called the cosine of the projection angle.
$E . g$. in the figure, $\frac{p}{l}=$ cosine $\angle B A E$.
572. In any right triangle $A B C$, either
 acute angle, as $\angle A$, is the projection angle between the hypotenuse and the side adjacent to the angle.

Hence the cosine of an acute angle of a right triangle is the ratio of the adjacent side to the hypotenuse.

We have already defined the sine of an acute angle of a right triangle as the ratio of the opposite side to the hypotenuse. See § 279 .

We now define the tangent of an acute angle of a right triangle as the ratio of the opposite side to the adjacent side.

Using the common abbreviations, sin, cos, and tan, we have in the figure :

$$
\sin A=\frac{a}{c}, \cos A=\frac{b}{c}, \tan A=\frac{a}{b}
$$

673. The sine, cosine, and tangent are of great importance in many computations. By careful measurement (and in other ways) their values may be computed for any acute angle, and a table formed, like that on page 335.
$E . g$. if in the figure of $\S 572 \angle A=35^{\circ}$ (measured with a protractor), we may measure $A C, A B$, and $B C$, and thus compute the ratios $\frac{a}{c}, \frac{b}{c}$, and $\frac{a}{b}$, and find the values of $\sin 35^{\circ}, \cos 35^{\circ}, \tan 35^{\circ}$.

With an ordinary ruler it will not usually be possible to make these measurements with sufficient accuracy to obtain more than one decimal place.

Draw an angle of 35°, and make the measurements and computations, using an hypotenuse of various lengths (the longer the better), and show that the results do not depend upon the length of hypotenuse chosen.
574.

EXERCISES.

1. Using a protractor, construct angles of $10^{\circ}, 30^{\circ}, 50^{\circ}, 70^{\circ}$, and by measurement determine the sine, cosine, and tangent of each.
2. Prove that the cosine of any given angle is the same, no matter what point is taken in either side from which to let fall the perpendicular to the other side. Prove the same for the tangent.

3. Show that if the hypotenuse be taken one decimeter in length, then the length of the side adjacent, measured in decimeters, is the cosine of the angle, and the length of the side opposite is the sine of the angle.
4. Show that if the side adjacent be taken one decimeter in length, the length of the side opposite, measured in decimeters, is the tangent of the angle.
5. Without any direct measurement, show how to compute the three ratios for each of the angles, 30°. 4ぶ, 60°.

Suggestion. Make use of the fact that if one acute angle in a right triangle is 30°, the side opposite it is one half the hypotenuse.
6. As the angle is made smaller and smaller, what are the values approached by the sine, cosine, and tangent?
7. As the angle is made more and more nearly 90°, what are the values approached by the sine and cosine? Discuss this case for the tangent.

Tanle of Sines, Cosines, and Tangents.

Ang.	Sin	Cos	Tan	Ang.	Sin	Cos	Tan	Ang.	Sin	Cos	Tan
0°	0	1	0	31°	. 515	. 857	. 601	61°	. 875	. 485	1.80
1°	. 017	1.000	. 017	32°	. 530	. 848	. 625	62°	. 883	. 469	1.88
2°	. 034	. 999	. 035	33°	. 545	. 839	. 649	63°	. 891	. 454	1.96
3°	. 052	. 999	. 052	34°	. 559	. 829	. 675	64°	. 899	. 438	2.05
4°	. 070	. 998	. 070	35°	. 574	. 819	. 700	65°	. 906	. 423	2.14
$5{ }^{\circ}$. 087	. 996	. 087	36°	. 588	. 809	. 727	66°	. 914	. 407	2.25
8°	. 105	. 095	. 105	37°	. 602	. 799	. 754	67°	. 921	. 391	2.36
7°	. 122	. 993	. 123	38°	. 616	. 788	. 781	68°	. 927	. 375	2.48
8°	. 139	. 990	. 141	39°	. 629	. 777	. 810	69°	. 934	. 358	2.61
9°	. 156	. 988	. 158	40^{n}	. 643	. 766	. 839	70°	. 940	. 342	2.75
10°	. 174	. 985	. 176	41°	. 656	. 755	. 869	71°	. 946	. 326	2.90
11°	. 191	. 982	. 194	42°	. 669	. 743	. 900	72°	. 951	. 309	3.08
12°	. 208	. 978	. 213	43°	. 682	. 731	. 983	73°	. 956	. 292	3.27
13°	. 225	. 974	. 231	44°	. 695	. 719	. 966	74°	. 961	. 276	3.49
14°	. 242	. 970	. 249	45°	. 707	. 707	1.00	75°	. 966	. 259	3.73
15°	. 259	. 966	. 268	46°	. 719	. 695	1.04	76°	. 970	. 242	4.01
16°	. 276	. 961	. 287	47°	. 731	. 682	1.07	77°	. 974	. 225	4.33
17°	. 292	. 956	. 306	48°	. 743	. 669	1.11	78°	. 978	. 208	4.70
18°	. 309	. 951	. 325	49°	. 755	. 656	1.15	79°	. 982	. 191	5.14
19°	. 326	. 946	. 344	50°	. 766	. 643	1.19	80°	. 985	. 174	5.67
20°	. 342	. 5.0	. 364	51°	. 777	. 629	1.23	81°	. 988	. 156	6.31
21°	. 358	. 934	. 384	52°	. 788	. 616	1.28	82°	. 990	. 139	7.12
22°	. 375	. 927	. 404	53°	. 799	. 602	1.33	83°	. 993	. 122	8.14
23°	. 391	. 921	. 424	54°	. 809	. 588	1.38	84°	. 995	. 105	9.51
24°	. 407	. 914	. 445	55°	. 819	. 574	1.43	85°	. 996	. 087	11.43
25°	. 423	. 906	. 466	56°	. 829	. 559	1.48	86°	. 988	. 070	14.30
26°	. 438	. 899	. 488	57°	. 839	. 545	1.54	87°	. 999	. 052	19.08
$27^{\text {n }}$. 454	. 891	. 510	58°	. 848	. 530	1.60	88°	. 999	. 035	28.64
28°	. 469	. 883	. 532	59°	. 857	. 515	1.66	89°	1.000	. 017	57.29
29°	. 485	. 875	. 554	60°	. 866	. 500	1.73	90°	1.000	0	
30°	. 500	. 866	. 577								

575. Theorem. The lentfth of the projection of a lime-segment upon a tiven. liur is equal to the length of the line-segment multiplied by the cosine of the projection angle.

Given the projection p of the line-segment l on the line $C D$, with the projection angle A.

To prove that $p=l \cos A$.
Proof: By definition we have $\frac{p}{l}=\cos A$.

Hence, $p=l \cos A$.
576.

EXERCISES.

1. Find the cosines of the angles $35^{\circ} 30^{\prime}, 54^{\circ} 15^{\prime}, 15^{\circ} 45^{\prime}$.

Suggestion. The cosine of $35^{\circ} 30^{\prime}$ lies between $\cos 35^{\circ}$ and $\cos 36^{\circ}$. We assume that it lies halfway between these numbers. This assumption, while not quite correct, is very nearly su for small differences of angles, as in this case, where the total difference is only one degree. From the table $\cos 35^{\circ}=.519, \cos 36^{\circ}=. \sin$.

The number midway between these is .814 , which we take as the cosine of $3.5^{\circ} 30^{\prime}$.

This process is called interpolation. A similar process is used for sines and tangents.
2. Find the tangents of the angles $2.5^{2} 20^{\prime}, 40^{\circ} 45^{\circ}, 63^{\circ} 40^{\circ}$.
3. Find the angle whose tangent is 1.74 .

Solutins. From the table we have tan $60=1.78$ and $\tan 61^{\circ}=1$. in). Itwer, the required angle must lie botween titw and 61°. Norewer, the number 1.71 is one sevonth the wiy from 1.83 to 1 sin. Hence, we assume the angle to lie one sevonth the way from to to B°, which sives $60^{\circ}+\frac{1}{8} \times 1^{\circ}=60^{\circ}+!^{\prime}$ nearly. The rempired angle is $60^{\circ} 9^{\prime}$.

6. Find the angles whose tangents are .781; 1.41; 3.64.

Notice that as an angle increases, its sine and tangent both increase, but its cosine decreases.
7. At what angle with the horizontal must the base of a right circular cylinder he tilted to make it just topple over if its diameter is 6 feet and its altitude 8 feet?

Suggestion. The center of gravity is at the middle point C of the axis of the cylinder. The base must be tilted so that the line $A C$ becomes vertical.
8. The Leaning Tower of Pisa is 179 feet high and 31 feet in diameter. It now leans so that a plumb line from the top on the lower side reaches the ground 14 feet from the base.

At what angle is its side now inclined from the vertical? At what angle would its side have to incline from the vertical before it would topple over?

9. A four-inch hole is cut in a board, and a ball 8 in . in diameter is made to rest on it. At what angle must the board be held so that the ball will just roll out of the hole?

Suggestion. The board must be held so that the line $O A$ becomes vertical ; that is, the board must be tipped
 at an angle equal to $\angle B O A$.
10. Using a ball 8 inches in diameter, what must be the radius of the hole in the board of the preceding problem so that the ball shall just roll out when the board is inclined at an angle of 45° to the horizontal?
11. If the figure $A B C D-H$ is a cube, find each of the following angles: $\angle E C A$, $\angle A E C$.

Check the results found by using the fact that the sum of the angles of a triangle is 180°.

577. Theorem. The altitude of an oblique prism or cylinder is equal to an element multiplied by the cosine of the angle between the plane of the base and that of a right section.

Given the oblique cylinder with base b and right section c, and let $B E$ be a perpendicular between the bases.

Consider the plane determined by $B E$ and the element $A B$.

This plane is \perp to the plane of b and also to the plane of c. (Why?)

Hence, it is \perp to the line of intersection of the planes of b and c. (Why?)

Let this plane cut the planes of b and c in $G D$ and $F D$ respectively, D being the point in their line of intersection.

Then $\angle D$ is the measure of the dihedral angle between the planes of b and c. (Why?)

To prove that $\quad B E=A B \cdot \cos D$.
Proof: We have $\quad B E=A B \cdot \cos \angle A B E$. (Why?)
But

$$
\begin{equation*}
\angle D=\angle A B E . \tag{Why?}
\end{equation*}
$$

Hence,

$$
B E=A B \cdot \cos D
$$

The argument is similar for any oblique prism.
578. Corollary. The Mihedral amgle between the plemess of the betsis emel at righte sertion of an oblique roplinder or prism is equel to the angle betucen an clomont and the altitude.

1. Given a line-segment 10 inches long. Find the length of its projection on a plane if the projection angle is 20°. If the angle is $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 0^{\circ}$.
2. A kite string forms an angle of 40° with the ground. The distance from the end of the string to a point directly beneath the kite is 200 ft . Find the length of the string and the perpendicular height of the kite.
3. The altitude of an oblique prism is 15 inches. Find the length of an element if it makes an angle of 45° with the perpendicular between the bases.
4. A right section of a cylinder makes an angle of 20° with the plane of the base. Find the ratio between the altitude and an element.
5. Show that the theorem of $\S 577$ holds for the special case of a right prism or cylinder.
6. Prove that by joining the middle points of six edges of a cube, as shown in the figure, a regular hexagon is formed.
7. Prove that in the preceding example the plane of the regular hexagon, KLMNOP, is perpendicular to the diagonal $D F$.
8. How large a cube will be required from which to cut a stopper for a hexagonal spout, each of whose
 sides is 4 inches?
9. In the figure find the angle $K Q H$.

Suggestion. Let a be a side of the cube. Compute $K H, K Q$, and $H Q$ in terms a. Note that $\angle Q K^{\prime} H=$ r.t. \angle.
10. Find the area of the projection of the hexagon $K L M N O P$ on the face $B C G F$. Note that this projection equals the whole square less $\triangle N C O+\triangle K E L$. See § 580 .
11. Find the area of the hexagon in terms of the side a of the cube.
12. By means of the theorem of $\S 581$ and the results in Exs. 10 and 11 find the dihedral angle formed by the planes $B C G$ and $M O K$.

PROJECTION OF A PLANE-SEGMENT.

580. Definition. If from each point in the boundary of a plane-segment a perpendicular is drawn to a given plan", the locus of the feet of these perpendiculars will bound a portion of the plane, which is called the projection of the plane-segment on the given plane.
E.g. the plane-segment $A^{\prime} B^{\prime} C^{\prime}$ in the plane N is the projection of the planesegment $A B C$ from the plane M upon N.

The angle of projection is the angle between the planes M and N.

581. Theorem. The area of the projection of a plane-segment on a plane is equal to the area of the plane-segment multiplied by the cosine of the projection angle.

Proof: Let the boundary of the given plane-segment b be any convex polygon or closed curve.

Using this polygon or curve as a directrix and a line perpendicular to the given plane as a generator, develop a prismatic or cylindrical surface. The given plane will cut this surface in a right section whose area we denote by c.

Now cut the surface by a plane parallel to b, forming the lower base b of a prism or cylinder whose altitude is h, edge e, and volume V.

Then c is the projection of b upon the given plane, and $\angle 1=\angle 2$ is the projection angle.

We are to show that $c=b \cos \angle 1$.
We know that

$$
\nabla=c e=b h .
$$

(Why ?)
But
$h=e \cos \angle 2$.
Hence,

$$
c e=b e \cos \angle 2 .
$$

That is,

$$
c=b \cos \angle 2=b \cos \angle 1 .
$$

Nore. The foregoing theorem may be proved directly in case the plane-segment is a rectangle with one side parallel to the line of intersection of the two planes. In the figure let S be the given rectangle and S^{\prime} its projection, with $A B \|$ to the line of intersection of the planes in which S and S^{\prime} lie, and $\angle 1$ the angle between then.

Then

$$
S=A B \cdot B C
$$

and

$$
S^{\prime}=A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime}
$$

But

$$
A B=A^{\prime} B^{\prime}
$$

and
But

$$
B E=B^{\prime} C^{\prime}
$$

$$
B E=B C \cdot \cos \angle 1
$$

and

$$
S^{\prime}=A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime}=A B \cdot B C \cos \angle 1
$$

$$
S^{\prime}=S \cos \angle 1
$$

In the case of any plane-segment, rectangles may be inscribed in it in this position and their number increased indefinitely, so that their sum will approach more and more nearly to the area of the planesegment, and in this way it may be shown to any desired degree of approximation that the projection of a plane-segment equals the given plane-segment multiplied by the cosine of the projection angle.
582. An important special case of the theorem of $\S 581$ is the area of the figure obtained by projecting a circle upon a plane not parallel to the plane of the circle.

Definition: The figure obtained by projecting a circle upon a plane not parallel to the plane of the circle, nor at right angles to it, is called an ellipse.
583. Area of the Ellipse. - In the figure two planes, M and M^{\prime}, meet in a line $P Q$. The circle O in M has a diameter $A B \| P Q$ and a diameter $C D \perp P Q$.

In projecting the whole figure upon the plane \boldsymbol{M}^{\prime} the diameter $A B$ projects into its equal $\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime}$, while $C D$ projects into $C^{\prime} D^{\prime}$ so that $C^{\prime} D^{\prime}=C D \cos \angle 1$.

By theorem § 581 the area of the ellipse equals the area of the circle multiplied by $\cos \angle 1$.

Hence, $\pi r^{2} \cdot \cos \angle 1$ is the area of the ellipse.
But $r \cos \angle 1=o^{\prime} c^{\prime}$ and $r=o^{\prime} B^{\prime}$.
Hence, the area of the ellipse is $\pi \cdot o^{\prime} C^{\prime} \times O^{\prime} B^{\prime}$.
The segments $A^{\prime} B^{\prime}$ and $C^{\prime} D^{\prime}$ are called respectively the major and minor axes of the ellipse, and $o^{\prime} B^{\prime}$ and $o^{\prime} C^{\prime}$ the semimajor and the semiminor axes. These latter are usually denoted by a and b.

Hence, the area of the ellipse is $\pi a b$.
Note that when $a: 1$ ul b are eflual, the ellipse becomes a circle, and this formula reduces to πu^{3} as it should.

It may lo of interest to mote that the problem of finding the length of the rllipse is very much more diffenti, and can be solved only by means of higher mathematics.
584. The figure of $\S 583$ may also be regarded as representing a cylindrical surface of which the ellipse with center O^{\prime} is a right section.

It is also true that if we start with a circular cylinder, that is, one whose right section c is a circle, then every oblique section of it, as c^{\prime}, is an ellipse.

The minor axis of such an ellipse will be the diameter $2 r$ of the circle, and the major axis $2 r \div \cos \angle 1$.

Thas, if a circular cylinder of diameter 6 in . is cut by a plane making an angle of 30° with the right section ρ, then the section c^{\prime} thus made is an ellipse whose axes
 are 6 in . and $6 \div \cos 30^{\circ}=6 \div .866=6.93$ in. nearly.

Hence, the area of this elliptical section is

$$
\pi a b=3.14 \times 6.93 \times 6=130.56 \mathrm{sq} . \mathrm{in} .
$$

SUMMARY OF CHAPTER IX.

1. Make a list of the definitions on prisms and also a list of those on cylinders and compare them.
2. Make a list of the theorems on prisms and also of those on cylinders and compare them.
3. State the axioms of this chapter and note that they all refer to areas and volumes which involve curved surfaces. Compare these with the axioms on the circle in Plane Geometry.
4. Make a list of all the formulas given by the theorems and corollaries of this chapter.
5. Make an outline of the definitions and theorems concerning projections of lines and surfaces.
6. Explain how the area of an ellipse is obtained either by projecting it into a circle or by projecting a circle into it.
7. Make a list of the applications in this chapter which have appealed to you as interesting or practical or both. Return to this question, after studying the problems and applications which follow.

PROBLEMS AND APPLICATIONS.

1. Given a right circular cylinder the radius of whose base is 6 inches. Find the area of an oblique cross section inclined at an angle of 45° to the plane of the base.
2. Given an oblique circular cylinder the radius of whose right section is 10 inches. Find the area of the base if it is inclined at an angle of 60° to the right section.
3. If an oblique circular cylinder has an altitude h, an element e, radius of right section r, and $\angle A$ the inclination of the base to the right section, express the volume in two ways and show that these are equivalent.
4. A six-inch stovepipe has a 45° elbow, that is, it turns at right angles. (The angle $C A B$ is called the elbow angle.) Find the area of the cross section at $A B$. Likewise if it has a 60° elbow angle.
5. At what angle must the damper in a circular stovepipe be turned in order to obstruct just lialf the
 right cross sectional area of the pipe?

Suggestion. The damper must be turned throngh an angle such that the area of the projection of the damper upon a right cross section is equal to half that cress section.
6. The comparatively low temperature of the earth's surface near the pole, even in summer, when the sun does not set for months, is due largely to the obliqueness with which the sun's rays strike the earth. Thit is, a given amount of sunlight is spread orer a larger area than in lower latitudes.

Thus, if in the figure $D^{\prime} C$ is a horizontal line, and $D^{\prime} D$ the direc. tion of the sun's rays, then a beam of light whose right cross section is $A B C D$ is spread over the rectangle $H^{\prime} B C D^{\prime}$. In other words, a patch of ground $A^{\prime} B C D^{\prime}$ receives only as much sunlight as a patch the size of I $B C D$ receives when the sum's rats strike it vertically.

Amia $A B C^{\prime} D=$ areal $1^{\prime} B C D D^{\prime}(0) \angle 1$, or
urea $A^{\prime} B C D^{\prime}=$ an: $1 B C^{\prime} D \times \frac{1}{\cos \angle 1}$.

Hence, each unit of area in $A^{\prime} B C D^{\prime}$ receives $\cos \angle 1$ times as much light as a unit in $A B C D$.

Hence, to compare the heat-producing power of sunlight in any latitude with that at the place where the sun's rays fall vertically, we need to know how the projection angle, $\angle 1$, is related to the difference in latitude of the two places.
7. If $\angle 1=30^{\circ}$, compare the amount of heat received by a unit of area in $A B C D$ and $A^{\prime} B C D^{\prime}$.
8. What must $\angle 1$ be in order that a unit of area in $A^{\prime} B C D^{\prime}$ shall receive only $\frac{1}{5}$ as much light as a unit in $A B C D$?
9. The figure represents a cross section of the earth with an indication of the direction of the rays of light as they strike it at the summer solstice when they are vertical at A, the tropic of Cancer. B represents the latitude of Chicago, C the polar circle, and P the north pole. The angles $P D E$, $C G F, B K H$ represent the projection angle, $\angle 1$, for the various latitudes.

Prove that $\angle P D E=$ $\angle P O K, \angle C G F=\angle C O K$, $\angle B K H=\angle B O K$.

That is, $\angle 1$ for each place is the latitude of that place minus the latitude of the
 place where the sun's rays are vertical.
10. Find the relative amount of sunlight received by a unit of area at the tropic of Cancer and at the north pole at the time of the summer solstice.

Suggestion. The required ratio is $\frac{1}{\cos \angle 1}=\frac{1}{\cos .66 \frac{1}{2}^{\circ}}=\frac{1}{.399}$.
11. Find the ratio between the amount of light received by a unit of the earth's area at Chicago and at the tropic of Caucer at the time of the summer solstice.
12. Find the same ratio for the polar circle and the tropic of Cancer at the spring equinox, when the sun is vertical over the equator.
13. Find the same ratio for the equator and Chicago at the winter solstice when the sun is vertical at latitude $23 \frac{1}{2}^{\circ}$ south.

CHAPTER X.

PYRAMIDS AND CONES.

585. Definitions. Given a convex polygon and a fixed point not in its plane. If a line through the fixed point moves so as always to touch the polygon and is made to traverse it completely. the line is said to generate a convex pyramidal surface.

The moving line is the generator of the surface, and in any of its positions it is an element of the surface. The guiding polygon is the directrix, and the fixed point the vertex. A
 pyramidal surface has two parts, called nappes, on opposite sides of the fixed' point. Compare definitions in § 603.

A polyhedral angle is a pyramidal surface of one nappe. See §518.
586. That part of a pyramidal surface included between the fixed point and a plane cutting all its elements. together with the intercepted segment of the plante, is called a pyramid.

'The intereepted plane-segment is the base of the prratmid, and the part of the pyramidal surface between the base and the vertex is the lateral surface.

The lateral surface is composed of triangles having a common vertex at the vertex of the pyramid, and having as bases the sides of the polygonal base. The sides common to two such triangles are the edges of the pyramid.

Pyramids are classified, according to the shape of the base, as triangular, quadrangular, pentagonal, etc.

A pyramid having a triangular base has, in all, four faces, and is called a tetrahedron. In this case every face is a triangle, and any one may be taken as the base.

The altitude of a pyramid is the perpendicular distance from the vertex to the base.

A regular right pyramid, or simply a regular pyramid, is one whose base is a regular polygon such that the perpendicular from the vertex upon it meets it at the center.

EXERCISE. Show that the faces of a regular right pyramid are congruent isosceles triangles, and hence have equal altitudes.

The slant height of a regular right pyramid is the altitude of any one of its triangular faces.
587. Theorem. The lateral area of a regular right pyramid is equal to one half the product of its slant height and the perimeter of the base.

Suggestion. Calling L the lateral area, $s=K P$ the slant height, and $p=A B+B C+C D+D E+E A$, the perimeter, show that

$$
L_{1}=\frac{1}{2} s p .
$$

588. Theorem. If a pyramid is cut by a plane parallel to the base:"
(1) The edges and the altitude are divided in the same ratio.
(2) The polygonal section is similar to the bise.
(3) The areas of this section and of the base are in the same ratio as the squares of their perpendicular distances from the vertex.

Outline of proof: Given $A B C D E \| A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.
(1) To prove that $\frac{P M^{\prime}}{P M}=\frac{P-\mathrm{A}^{\prime}}{P A}=\frac{P B^{\prime}}{P B}$, etc.. pass another plane through P parallel to the base and then use 5492.
(\because) To prove that $A B C D E \sim A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$. we show that $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$, etc., and also $\frac{A^{\prime} B^{\prime}}{A B}=\frac{B^{\prime} C^{\prime}}{B C}$, etc.
(3) Calling the area of the cross section b^{\prime} and that of the lase b, we are to prove that $\frac{b^{\prime}}{b}=\frac{P M I^{2}}{P M^{2}}$, ant for this we need to show that $\frac{A^{\prime} B^{\prime}}{A B}=\frac{P^{\prime} \cdot I^{\prime}}{P^{\prime},-1}=\frac{P^{P} M^{\prime}}{P M}$.
(Vive all the steps in detail.
589. Corollary. If two pyramids have equal altitudes and bases of equal areas lying in the same plane, the sections made by a plane parallel to the plane of the bases have equal areas.

Suggestion. If t and t^{\prime} are the areas of the section's and b and b^{\prime} those of the bases, show by the theorem that $\frac{t}{b}=\frac{t^{\prime}}{b^{\prime}}$, and hence that $t=t^{\prime}$ if $b=b^{\prime}$.
590.

Exercises.

1. What is the slant height of a regular right pyramid if its lateral area is 160 sq . in. and the perimeter of its base is 20 in .?
2. What is the perimeter of the base of a regular right pyramid if its lateral area is 250 sq . in. and its slant height is 17 in .?
3. How could you find the lateral area of a regular right pyramid? Of any irregular pyramid? What measurements would he necessary in each case? Why are fewer measurements needed in the case of a regular right pyrainid?
4. The base of a regular right pyramid is a regular hexagon whose side is 8 ft . Find the lateral area if the altitude of the pyramid is 6 ft .
5. The lateral area of a regular right hexagonal pyramid is 48 sq. ft . and the slant height is 12 ft . Find the altitude of the pyramid.
6. The base of a regular right pyramid is a square whose side is 16 ft ., and the altitude of the pyramid is 6 ft . Find the lateral area.
7. A pyramid with altitude 8 and a base whose area is 36 is cut by a plane parallel to the base so that the area of the section is 18 sq . in. Find the distance from the base to the cutting plane.
8. If the altitude of a pyramid is h, how far from the base must a plane parallel to it be drawn so that the area of its cross section shall be half that of the base of the pyramid?
9. In a regular right pyramid a plane parallel to the base cuts it so as to make a section whose area is one half that of the base. Find the ratio between the lateral area of the pyramid and that of the small pyramid cut off by the plane.
10. Definition. A triangular pyramid is cut by a series of planes parallel to the base, including one through the vertex and also the one in which the base lies.

Through the lines of intersection of these planes with one of the faces, planes are constructed parallel to the opposite edge, thus forming
 a set of prisms all lying within the pyramid, as $a^{\prime}, b^{\prime}, c^{\prime}$, in pyramid P^{\prime}, or a set lying partly outside the pyramid, as a, b, c, d in pyramid P.

The inner prisms thus constructed are called a set of inscribed prisms, and the other a set of circumscribed prisms.
592. Axiom XXII. A pyramid has a definite rolume which is less than the combined volume of any set of circumscribed prisms and greater than that of any set of inscribed prisms.
593.

EXERCISES.

1. In the figure above prove that prisms d and c^{\prime} are equal in volume. Also that $c=b^{\prime}$, etc.
2. If the area of the base of pyramid P is 12 sq. in., what is the altitude of prism a if its volume is 1 cu .in.? If its vohme is $\frac{1}{16} \mathrm{cu}$. in.?
3. If the altitude of the promid in the preceding exercise is 16 in , into at least how many equal parts must it be divided if the volume of prism a is to be less than 1 cu . in.? less than 01 cn . in.? Is it possible to divide the altitude of the pyramid into a sufficiently large number of equal parts to make the volume of prism a as small as we like?
4. Theorem. If two triangular pyramids have equal altitudes and bases of equal areas, their volumes are equal.

Given the prisms P and P^{\prime}, in which $P M=P^{\prime} M^{\prime}$, and the bases $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ have equal areas.

To prove that P and P^{\prime} have equal volumes.
Proof: Divide $P M$ and $P^{\prime} M^{\prime}$ into the same number of equal parts, and using these division points, construct a set of circumscribed prisms for P and a set of inscribed prisms for P^{\prime}.

Then

$$
\begin{equation*}
a^{\prime}=b, \quad b^{\prime}=c, c^{\prime}=d \tag{See§549.}
\end{equation*}
$$

Denote $a+b+c+d$ by ∇ and $a^{\prime}+b^{\prime}+c^{\prime}$ by ∇^{\prime}.
Then

$$
\begin{equation*}
V-\nabla^{\prime}=a . \quad(W h y ?) \tag{1}
\end{equation*}
$$

If P differs at all in volume from P^{\prime}, let P be the greater, and let the difference be some fixed number, K, so that

$$
\begin{equation*}
P-P^{\prime}=K \tag{2}
\end{equation*}
$$

But from (1) $P-P^{\prime}<a$, since $P<V$ and $P^{\prime}>V^{\prime}$.
Now a can be made less than K by taking the divisions on $P M$ small enough.

Hence,

$$
\begin{equation*}
P-P^{\prime}<K \tag{3}
\end{equation*}
$$

Thus (3) contradicts (2), and hence the supposition that P and P^{\prime} differ in volume is impossible.
595. Theorem. The volume of a triangular pyramid is one third of the product of its base and altitude.

Given the triangular pyramid $E-A B C$. Let h, b, and V be the numerical measures respectively of the altitude $E M$, the base $A B C$, and the volume.

To prove that $\quad V=\frac{1}{3} b h$.
Proof: Construct on the base $A B C^{+}$a triangular prism with altitude h and lateral edge $E B$.

This prism may be cut into three pyramids, as shoirn in the figure to the right, by the plane sections through $D E C$ and $A E C$. See Note, § 523.

The pyramids $E-A B C$ and $C-D E F$ have the same volume (§594).

Likewise the pyramids $E-A C D$ and $E-C F D$ have the same volume ($§ 594$).

But ($-D E F$ and $E-C F D$ are only different motations for the same pyramid.

Hence,

$$
E-A B C=C-D E F=E-. H C D
$$

That is, $E-A B C^{\prime}$ is one third of the prism.
But the volume of prism $=b h$.
llener, $\mathrm{r}=$ volume of pyramid $=\frac{1}{3} h h$.
State in detail the reasons fur cach step.
596. Theorem. The volume of any pyramid is one third of the product of its base and altitude.

Given the pyramid $P-A B C D E$. Let V, b, and h be the numerical measures respectively of the volume, base, and altitude.

To prove that

$$
V=\frac{1}{3} b h .
$$

Proof: By means of the diagonal planes $P A C$ and $P A D$, divide the given pyramid into three triangular pyramids.

Complete the proof.
597. Corollaries. 1. The volumes of any two pyramids having the'same or equal altitudes are in the same ratio as the areas of their bases.
2. The volumes of any two pyramids having the same or equal bases are in the same ratio as their altitudes.
598.

EXERCISES.

1. The altitude of a certain pyramid is 14 in . and its volume is 380 cu. in. Find the area of its base.
2. The area of the base of a pyramid is 48 sq. ft . and its volume $260 \mathrm{cu} . \mathrm{ft}$. Find its altitude.
3. Find the locus of the vertices of pyramids having the same base and equal volumes.
4. A diagonal of the square base of a regnlar right pyramid is $7 \sqrt{2} \mathrm{in}$. and its volume $147 \mathrm{cu} . \mathrm{in}$. Find its altitude aud lateral area.
5. A flower bed is in the form of a regular right pyramid, with a square base 5 ft . on a side. The altitude is 2 ft . Find the number of cubic feet of soil in its construction.
6. A tent is to be made in the form of a right pyramid, with a regular hexagonal base. If the altitude is fixed at 15 ft ., what inust be the side of the base in order that the tent may inclose $3.50 \mathrm{cu} . \mathrm{ft}$. of space?
7. Two marble ornaments of equal altitudes are pyramidal in form. One has a square base 2 in . on a side and the other a regular hexagonal base 1 in . on a side. Compare their volumes.
8. Two monuments having bases of equal areas are pyramidal in shape, one being 15 ft . high and the other 18 ft . Compare their volumes.
9. If the base and the volume of a pyramid are known, is it possible to determine its lateral area?
10. Given a pyramid with rectangular base. By how much is its volume multiplied if the length and width of the base and also the altitude are each multiplied by' 2 ; by 3 ; by any number n ?
11. Giveu a pyramid with altitude 10 and a regular hexagonal base, each of whose sides is 5 . By how much is its volume multiplied if each side of the base and also the altitude is multiplied by 2 ; by 3 ; by 4 ; by any number n ?

For a general statement of the law exemplified in these exercises. see § 650 .
599. Definitions. The figure formed by the base of a pyramid, any cross section, and the portion of the lateral faces included between these planes, is called a truncated pyramid. If the cross section is parallel to the base, the figure is called a frustum of a pyramid, and this section is the upper base.

The altitude of a frustum is the perpendicular distance between its bases. The slant height of the frustum of a regular right pyramid is the common altitude of its trapezoidal fates.
600. Theorem. The volume of a frustum of a pyramid is equal to the combined volume of three pyramids whose common altitude is the same as that of the frustum, and whose bases are the upper and lower bases of the frustum and the mean proportional between these bases.

Given the frustum $A C^{\prime}$ with lower base b, upper base b^{\prime}, and altitude h. Let h^{\prime} be the altitude $P M$ of the completed pyramid $P-A B C D E$. Then $\sqrt{b b^{\prime}}$ is the mean proportional between b and b^{\prime}.

To prove that the volume of $A C^{\prime}$ is

$$
\boldsymbol{V}=\frac{1}{3} h\left[b+b^{\prime}+\sqrt{b b^{\prime}}\right] .
$$

Proof: The altitude of the pyramid $P-A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ is $h^{\prime}-h$.

Hence,

$$
\frac{b}{b^{\prime}}=\frac{h^{\prime 2}}{\left(h^{\prime}-\hbar\right)^{2}}
$$

from which

$$
\begin{equation*}
h^{\prime}=\frac{h \sqrt{b}}{\sqrt{\bar{b}}-\sqrt{b^{\prime}}} \tag{1}
\end{equation*}
$$

Now V is the difference between the pyramids whose altitudes are h^{\prime} and $h^{\prime}-h$.

Hence,

$$
V=\frac{1}{3} b h^{\prime}-\frac{1}{3} b^{\prime}\left(h^{\prime}-h\right)
$$

or, rearranging,

$$
\begin{equation*}
V=\frac{1}{3} b^{\prime} h+\frac{1}{3} h^{\prime}\left(b-b^{\prime}\right) \tag{2}
\end{equation*}
$$

Substituting (1) in (2), $\quad V=\frac{1}{3} h\left[b+b^{\prime}+\sqrt{b b^{\prime}}\right]$.
Show all the details.
601. Theorem. The volumes of two tetrahedrons, haring a tribertral curgle of the one congruent to a trituctral angle of the "ther, are in the same ratio as the products of the edyes which meet in the vertices of these angles.

Given the tetrahedrons $P-A B C$ and $P^{\prime}-A^{\prime} B^{\prime} C^{\prime}$ whose volumes are V and V and in which Tri. $\angle P=$ Tri. $\angle P P^{\prime}$.

To prove that $\frac{V}{\mathrm{~J}^{\prime \prime}}=\frac{P A \cdot P B \cdot P C}{P^{\prime} A^{\prime} \cdot P^{\prime} B^{\prime} \cdot P^{\prime} C^{\prime}}$.
Proof : Place $P^{\prime}-A^{\prime} B^{\prime} C^{\prime}$ so that Tri. $\angle P^{\prime}$ coincides with Tri. $\angle P^{\prime}$.

Let $C M$ and $C^{\prime} M^{\prime}$ be the altitudes of $P-A B C$ and $P-A^{\prime} B^{\prime} C^{\prime}$ from the vertices C and C^{\prime} upon the plane $P A B$.

Let $A N$ and $A^{\prime} N^{\prime}$ be the altitudes of the $\triangle P A B$ and $P-A^{\prime} B^{\prime}$.
Then $\frac{V}{V^{\prime}}=\frac{\frac{1}{3} C M \cdot \operatorname{area} P A B}{\frac{1}{3} C^{\prime} M^{\prime} \cdot \operatorname{area} P A^{\prime} B^{\prime}}=\frac{C M P B A A^{\prime}}{C^{\prime} M M^{\prime} P B^{\prime}-A^{\prime} N^{\prime}}$.
Now prove $\frac{{ }^{\prime} M}{C^{\prime} M^{\prime}}=\frac{P C}{P C^{\prime}}$ and $\frac{A V^{\prime}}{A^{\prime} Y^{\prime}}=\frac{P \cdot A}{P A^{\prime}}$.
Hence, substituting in (1),
we have

$$
\frac{V^{r}}{V^{\prime \prime}}=\frac{P C \cdot P B \cdot P A}{P^{\prime} C^{\prime} \cdot P^{\prime}} \frac{B \cdot B^{\prime} \cdot P^{\prime} A^{\prime}}{}
$$

Give all the steps and reasons in detail.

EXERCISES.

1. Show that the lateral faces of a frustum of a regular pyramid are congruent isosceles trapezoids. Hence find the area of its lateral surface in terms of the slant height and the perimeters of the bases.
2. Show that sections of a pyramid made by two planes parallel to the base are similar polygons whose areas are in the same ratio as the squares of the distances from the vertex.
3. Show that any two pyramids standing on the same base, or on equal bases in the same plane, bave the same volume if their vertices coincide or lie in a plane parallel to the base.
4. Show that the volumes of two pyramids have the same ratio as the areas of their bases if they have equal altitudes, and the same ratio as their altitudes if they have equal bases.
5. A frustum of a pyramid is cut from a pyramid the perimeter of whose base is 60 inches and whose altitude is 15 inches. What is the altitude of the frustum, if the perimeter of its upper base is 40 inches?

Does the result depend upon the number of sides of the pyramid?
6. Solve the preceding problem if the perimeter of the upper base of the frustum is one nth that of the lower base. Does this result depend upon the number of sides of the pyramid?
7. The area of the base of a pyramid is 180 square inches and its altitude is 20 inches. Cut from it a frustum, the area of whose upper base is 45 square inches; also one the area of whose upper base is one nth of 180 square inches. Do these results depend upon the number of sides of the pyramid?
8. Two triangular pyramids have equal trihedral angles at the vertex. The lateral edges of one pyramid are 14,16 , and 18 , and those of the other 7,8 , and 9 . Find the ratio between their volumes. Are the data given sufficient to find the volume of each pyramid?
9. If two triangular pyramids have equal trihedral angles at the vertex and if the lateral edges of one are a, b, and c, and two lateral edges of the others are a^{\prime} and b^{\prime}, find the third lateral edge of the second pyramid so that their volumes sball be equal.
10. The slant height of a frustum of a regular pyramid is 10 inches and the apothems of its bases 8 and 6 inches respectively. Find its altitude.

CONES.
603. Definition. Given a closed convex
 and the fixed point the vertex.

A conical surface consists of two parts, called nappes, on opposite sides of the fixed point.
604. That part of a convex conical surface included between its vertex and a plane cutting all its elements, together with the intercepted portion of the plane,
 is called a cone.

The intercepted part of the plane is the base of the cone, and the curved surface is its lateral surface.
'The altitude of a cone is the perpendicular distance from the vertex to the plane of the base.

A circular cone is one which has a circular cross section such that the prerpendirular upon it from the vertex meets it at the center. If the base is such a circle. the
 cone is then called a right circular cone. ()therwise, it is an oblique circular cone.

A right circular cone may be generated by rotating a right triangle $P M B$ about one of its legs, $P M$, as an axis. The hypotenuse $P B$ generates the conical surface, and the other leg, $M B$, generates the base.

The generator of a right circular cone in any position is called the slant height.

605. Theorem. If a plane contains an element of a cone and meets it in one other point, then it contains another clement also, and the section is a triangle.

Let a plane contain the element $P D$ of the cone $P-A B C$, and also one other point B.

To prove that this plane contains another element $P B$, and that the section is a triangle $P B D$.

Suggestion. Connect P and B. This segment lies in the conical surface. (Why?) Complete the proof by showing that $B D$ lies in the base of the cone. Compare this proof with that of $\S 555$.
606. Definition. If a plane contains an element of a cone and no other point of the cone, the plane is tangent to the cone, and the element is called the element of contact.
607. Theorem. If the base of a cone is circular, every plane section parallel to the base is also circular.

Given a cone with a circular base $A D$.
To prove that the $\|\|$ section $E H$ is also circular.
Proof: Draw the straight line from P to the center M of the base, and let it meet the section $E Z$ in the point O. Let F and G be any two points on the perimeter of the section $E H$.

Pass planes containing $P M$ through the points F and G, and let them cut the base in $M B$ and $M C$ respectively.

Now in the $\triangle P M B$ and $P M C$ prose that $O F=O G$.
Hence, as F and G, any two points on the perimeter of this section, are equally distant from O, this shows that $E H$ is a circle whose center is O.
608. Corollary. If a come has a circular base, the areas of two parellel eross sections are in the wome ratio as the stuntie's of their perpenticular distenemes from the vertere ant also as the squares of the elistames of the ir centers firom the vertex.

Suggestion. The the figure of \mathfrak{F} (inT, and let $P Q$ be the altitude of the eone. 'Then show that

$$
\frac{\text { Area AD }}{\text { Area EH }}=\frac{M H^{2}}{0 H^{2}}=\frac{\overline{P M}^{2}}{P_{0}^{2}}=\frac{P Q^{2}}{P h^{2}}
$$

1. Into how many parts do the two nappes of a conical surface or of a pyramidal surface divide the remaining points of space?
2. If in constructing a conical surface a polygon is used as a directrix instead of a closed convex curve, what kind of surface is obtained?
3. Why is it specified in the definition of the convex conical surface that the vertex must not lie in the same plane as the directrix?
4. How many cones may be cut from a conical surface if they are to have no point in common except the vertex?
5. If a triangle which is not a right triangle is made to revolve abont one of its sides, does it generate a cone?
6. Can every circular cone be developed by revolving a right angled triangle about one of its sides?
7. If a cone has a circular base, the line from the vertex to the center passes through the center of every plane section parallel to the base.
8. If a cone has a circular base, the plane determined by a tangent to the base and the element at the point of tangency is a tangent plane to the cone.
9. Through a point outside a cone with a circular base, how many planes are there which are tangent to the cone?
10. The diameter of the circular base of a cone is 8 in . and the altitude of the cone 9 in . A plane parallel to the base cuts the cone in a section whose diameter is 3 in . Find the distance from the vertex of the cone to this plane.
11. If the area of the circular base of a cone is 16π sq. in. and its altitude 6 in., find the distance from the vertex to a plane, parallel to the base, which cuts the cone in a section with area $9 \pi \mathrm{sq}$. in.
12. The area of the circular base of a cone is $b \mathrm{sq}$. in. and its altitude h in. Find the distance from the base to a plane parallel to it, which cuts off a cone the area of whose base is one nth that of the base of the original cone.
13. Compare the exercises on the cone thus far studied with those on the pyramid given on pages 354,357 . Note that a pyramid can be made to approximate very closely to a cone by making its number of faces very large.

MEASUREMENT OF THE SURFACE AND VOLUME OF A CONE.

610. Definitions. A lyramid is said to be inscribed in a cone if its lateral edges are elements of the cone, and the bases of the cone and the pyramid lie in the same plane, as in Fig. 1.

A pyramid is said to be circumscribed about a cone if its lateral faces are all

(1)

(2) tangent to the cone, and the bases of the cone and the pyramid lie in the same plane, as in Fig. 2.
611. Theorem. In a right circular cone a puramid may be inscribed whose slant height differs from the slant height of the cone by less than any given fixed number.

Proof: Let d be the given fixed number. From plane geometry we know that a regular polygon may be inscribed in the base of the cone whose apothem differs from the radius of the base by less than d. Let this regular polygon be the base of an inscribed pyramid. Then the slant height of this pyramid differs from that of the cone by less than d, since the difference of two sides of a triangle is less than the third side.
612. Axiom XXIII. The laterell surface of a comeex cone has "dertinitr area. aml the come incloses a detinite rolume, which are less respectively than those of any circomssriberd p!yremid and greater than thense of any inscribed p!pamid.
613. Theorem. The area of the lateral surface of a right circular cone is equal to one half the product of its slant height and the circumference of its base.

Given a right circular cone of which s is the slant height, c is the circumference of the base, and L the lateral area.

To prove that

$$
\begin{aligned}
& L=\frac{1}{2} s c . \\
& L>\frac{1}{2} s . \\
& K>c .
\end{aligned}
$$

Proof: Suppose that $L>\frac{1}{2} s c$. Then $L=\frac{1}{2} s K$ where

Circumscribe about the cone a pyramid the perimeter of whose base is p, such that $p<K$. (Why is this possible?)

Hence,

$$
\begin{equation*}
\frac{1}{2} s p<\frac{1}{2} s K . \tag{2}
\end{equation*}
$$

That is, (2) contradicts (1) because of $\S 612$.
Next suppose
$L<\frac{1}{2} s c$. Then $L=\frac{1}{2} s K^{\prime}$
where
$K^{\prime}<c$.
Let $c-K^{\prime}=d . \quad$ By § 352, a polygon may be inscribed in the base of the cone whose perimeter p differs from c by as little as we please, and by § 611 a pyramid may be inscribed in the cone whose slant height s^{\prime} differs from the slant height s of the cone by as little as we please. Hence a pyramid may be inscribed such that $\frac{1}{2} s^{\prime} p$ differs from $\frac{1}{2} s c$ by less than d.

That is

$$
\begin{equation*}
\frac{1}{2} s^{\prime} p>\frac{1}{2} s K . \tag{4}
\end{equation*}
$$

But (4) contradicts (3) because of § 612.
Since therefore L is neither less than nor greater than $\frac{1}{2} s c$, it must be equal to $\frac{1}{2} s c$.
614. Corollary. If r is the radius of the base of a right circular cone and s the slant height, then

$$
L=\frac{1}{2} \cdot 2 \pi r S=\pi r S .
$$

615. Definition. Two right circular cones are similar if they are generated by two similar right triangles revolving about corresponding sides.
616. Theorem. The lateral areas or the entire ereas of two similar right circular cones are in the same ratio as the squares of their altitudes, their slant heights, or the radii of their bases.

Given the cones P and P^{\prime}, with altitudes h, h^{\prime}, slant heights s, s^{\prime}, radii of bases r, r^{\prime}, lateral areas L, L^{\prime}, and entire areas A, A^{\prime}.

To prove that

$$
\frac{A}{A^{\prime}}=\frac{L}{L^{\prime}}=\frac{h^{2}}{h^{\prime 2}}=\frac{s^{2}}{s^{\prime 2}}=\frac{r^{2}}{r^{\prime 2}} .
$$

Proof: See the suggestions under $\$ 566$. Give all the steps.
617. EXERCISES.

1. The lateral area of a cone is 30 siquare inclues. What is the lateral area of a similar cone whose altitude is 8 that of the given cone?
2. The total area of one of two simitar comes is three times that of the other. Compare their altitudes and also their radii.
3. The sum of the total areas of two similar cones is 144 square inches. Find the area of each come if one is 19 times as high as the otherr.
4. Prove that if in two tetrahedrons three faces of one are congruent respectively to three faces of the other and similarly placed about a vertex, the tetrahedrons are congruent.
5. Prove that if in two tetrahedrons two faces and the included dihedral angle are congruent and similarly placed, the tetrahedrons are congruent.
6. A pedestal for a monument is in the shape of a frustum of a regular hexagonal pyramid, the radius of the upper base being 4 ft ., that of the lower base 6 ft ., and the altitude of the frustum 8 ft . Find its volume, slant height, and lateral surface.
7. Find the volume of a frustum of a pyramid the areas of whose bases are 25 sq . in. and 18 sq . in. and whose altitude is 6 in .
8. The area of the lower base of a frustum is 42 sq. ft., its altitude 8 ft ., and volume $200 \mathrm{cu} . \mathrm{ft}$. Find the area of the upper base.
9. The area of the base of a pyramid is 480 sq . ft . and its altitude 30 ft . Find the volume of the frustum remaining after a pyramid with altitude 10 ft . has been cut off by a plane parallel to the base.
10. The area of the base of a pyramid is 250 sq . in. If a plane section of the pyramid parallel to the base and at a distance of 5 in . from it has an area of 175 sq. in., find the altitude of the pyramid.
11. The sides of the base of a triangular pyramid are 6 ft ., 8 ft ., 10 ft ., and its volume $96 \mathrm{cu} . \mathrm{ft}$. Find its altitude.
12. What part of the volume of a cube is a frustum of a pyramid cut from a pyramid whose base is one face of the cube and whose vertex lies in the opposite face, if the altitude of the frustum is one half the edge of the cube?
13. Find the dihedral angle at the base of a regular pyramid if the altitude is one half the slant height.
14. A right triangular prism is cut by a plane not parallel to the base, but such that its intersection $D E$ is parallel to the base segment $A B$. Show that the volume of the part thus cut off is one third the product of the sum of the three vertical edges and the area of the base.

Suggestion. Draw plane $D E K \| A B C$.

15. Find the volume of a truncated triangular prism, the area of whose base is 25 square inches and whose lateral edges are $8,7,8$.
618. Theorem. The lateral area of a frustum of a right circular cone is equal to one half of the sum of the circumferences of the bases multiplied by the slant height.

Given the frustum $A B C D$, with slant height s and radii r and
Let L represent its lateral area.
To prove that $L=\frac{1}{2}\left(2 \pi r+2 \pi r^{\prime}\right) s=\pi s\left(r+r^{\prime}\right)$.
Proof: Complete the cone, and let $P C=s^{\prime}$.
Then

$$
\begin{align*}
L & =\frac{1}{2}\left[2 \pi r\left(s+s^{\prime}\right)-2 \pi r^{\prime} s^{\prime}\right] \\
& =\pi r s+\pi s^{\prime}\left(r-r^{\prime}\right) \tag{1}
\end{align*}
$$

But $\quad \frac{r}{r^{\prime}}=\frac{s+s^{\prime}}{s^{\prime}}$, from which $s^{\prime}=\frac{r^{\prime} \times}{r-r^{\prime}}$.
Substituting s^{\prime} from (2) in (1),

$$
L=\pi r s+\pi r^{\prime} s=\pi s\left(r+r^{\prime}\right)
$$

619. Corollary. The lateral area of a frustum of a right circular cone is equal to the circumference of a sertion midway between the bases multiplied by the slant height.

Suggestion. From the theorem

$$
L=\pi s\left(r+r^{\prime}\right)=\ddot{\square} \pi \frac{\left(r+r^{\prime}\right)}{\because} 8
$$

Now show that $\frac{r+r^{\prime}}{2}$ is the radius of the section midway between the two bases.

1. The lateral surface of a right circular cone is 75 sq. ft . Find the altitude if the radius of the base is 4 ft .
2. A circular chimney 100 ft . high is in the form of a frustum of a right cone whose lower base is 10 ft . in diameter and upper base 8 ft . Find the lateral surface.
3. The lateral area of a frustum of a right circular cone is 60π sq. in., the radii of the two bases are 6 in. and 4 in. Find the slant beight of the frustum.
4. Find the altitude of the frustum in the preceding example, and also the altitude of the cone from whish it is cut.
5. A frustum of a right circular cone has an altitude one half that of the cone from which it is cut. If its slant height is 8 ft . and lateral area 64π sq. ft ., find the diameters of its bases.
6. Find the altitude of the frustum of the cone in the preceding example; also the lateral area of the cone from which it was cut.
7. Theorem. The volume of any convex cone is equal to one third the product of its base and altitude.

Suggestion. Let h be the altitude, b the area of the base, and V the volume.

Show that V cannot be different from $\frac{1}{3} b h$ by an argument similar to that of $\S 563$, making use of $\S 596$.
622. Corollary. If a cone has a circular base of radius r and altitude h, then $v=\frac{1}{3} \pi r^{2} h$.
623. Theorem. The volume of the frustum of a convex cone is equal to the combined volumes of three cones whose common altitude is the altitude of the frustum and whose bases are the upper and lower bases of the frustum and a mean proportional between these bases.

Suggestion. The proof is ex-
 actly like that of $\S 600$.

Note. Observe that the two preceding theorems apply to any convex cone because the altitude h is constant. The actual computation is practicable only when the areas of the bases ean be found, as in the case of the cirele or ellipse.

SUMMARY OF CHAPTER X.

1. Make a list of definitions on pyramids and also one on cones and compare them.
2. Make a list of theorems on prramids and also one on eones and compare them.
3. What axioms have been used in this chapter? Compare these with the axioms in Chapter IX.
4. Make a list of all the formulas given lor theorems of this chapter and compare them with the eorresponding formulas in Chapter IX.
5. What theorems on eylinders have no corresponding theorems for cones?
6. Show that a frustum of a cone becomes more and more nearly identical with a celinder if the vertex of the cone is remored farther and farther from the base.
7. Make a list of the applications in this chapter which have impressed you as interesting or practical or hoth. Return to this question ayain after studying the problems and applications which follow.

PROBLEMS AND APPLICATIONS.

1. Show that the volume of a right triangular prism is equal to one half the product of the area of one face and the distance from the opposite edge to that face.
2. A mound of earth in the shape shown in the figure has a rectangular base 16 yards long and 8 yards wide. Its perpendicular height is 5 yards, and the leugth on top is 8 yards. Find the number of cubic yards of earth in the mound.

Suggestion. If from each end a pyramid
 with a base 8 yd . by 4 yd . is removed, the remaining part is a triangular prism.
3. Given a figure in general shape the same as the preceding, with a rectangular base of length 24 ft . and width 6 ft . Find its volnme and lateral area if the dihedral angles around the base are each 45°.
4. The accompanying figure represents a solid whose base is a

rectangle 50 units long and 40 units wide. Its height is 12 units and its top a rectangle 20 units by 10 units. Find its volume.

Suggestion. Divide the solid as indicated in the figure. Notice that this is not a frustum of a pyramid.
5. In a figure like the foregoing, how can we determine whether or not it represents the frustum of a pyramid?
6. Show how to pass a plane through a tetrahedron so that the section shall be a parallelogram.

Suggestion. Pass a plane parallel to each of two opposite edges. See Ex. 6, page 293.

7. If the middle points of four edges of a tetrahedron, no three of which meet at the same vertex, are joined, a parallelogram is formed. Prove.

8. If through any point P in a diagonal of a parallelopiped planes $K N$ and $R . M$ are drawu parallel to two faces, show that the parallelopipeds $D Q$ and $L N$ thus formed have equal volumes.
9. Find the volume and area of a firure formed by revolving an equilateral triangle about an altitude, the sides of the triangle being s.
10. Find the area and volume of the figure developed by an equilateral triangle with sides s if it is revolved about one of its sides.
11. Find the area and volume of the figure developed by revolving a square whose side is s about one of its diagonals.
12. Through one vertex of an equilateral triangle with sides s draw a line l perpendicular to the altitude upon the opposite side. Find the volume and area of the figure developed by revolving the triangle about the line l.
13. Through a vertex of a square with sides s draw a line l perpendicular to the
 diagonal through that vertex. Find the area and volume of the figure developed hy turning the square around the line l.
14. In a regular hexagon with sides s draw a line l bisecting two oplosite sides. Find the area and volume of the figure developed by turning the hexagon about l as an axis.
15. Solve a problem like the preceding, using a regular octagon instead of a hexagon.
16. If several planes are tangent to the same cone, find one point common to them all.
17. Find the locus of all lines which make a given angle with a given line at a given point in it.
18. Find the locus of all lines which make a given angle with a given plane at a given point.
19. One angle of a right triangle is 30°. Find
 the ratios between the surfaces of the solids developed by revolving this triangle around each of its three sides.
20. Find the ratios between the volumes of the solids developed in the preceding example.
21. Find the total area and the volume of a regular tetrahedron each of whose edges is e. (See § 625.)
22. If the numerical values of the volume and of the total area of a regular tetrahedron are equal, what is the length of its edge?
23. Find the length of an edge of a regular tetrahedron if its volume is numerically equal to the square of an edge.
24. Cut a pyramid of altitude h by means of a plane parallel to the base so that the perimeter of the section shall be half that of the base. Also cut it so that the perimeter of the section shall be $\frac{1}{3}$ that of the base.
25. Cut a right circular cone by 3 planes, each parallel to the base, so that the perimeters of the sections shall be $\frac{p}{4}, \frac{2 p}{4}, \frac{3 p}{4}, p$ being the perimeter of the base. Find the distances from the vertex to the planes.
26. Cut a right circular cone of altitude h by a plane parallel to the base so that the area of the section shall be half that of the base. Find the distance from the vertex to the plane.
27. Show that the lateral area of the small cone cut off in the preceding example is one half the lateral area of the original cone.
28. Cut a pyramid of altitude h by n planes, each parallel to the base, so that the areas of the sections shall be $\frac{A}{n+1}, \frac{2 A}{n+1}, \frac{3 A}{n+1}, \ldots$,
$\frac{(n-1) A}{n+1}, A$ being the area of the base. Show that the distances from the vertex to the planes are $h \sqrt{\frac{1}{n+1}}, h \sqrt{\frac{!}{n+1}}, h \sqrt{\frac{3}{n+1}}, \cdots$
29. Cut a cone with altitude h by a plane parallel to the base so that the volume of the frustum formed shall equal half that of the conr. Find the distance from the vertex of the cone to the plane.
30. Cut a cone of allitude h by n planes, each parallel to the base, so that the frustums formed and the one pyramid cut off at the top shall all have equal volumes.
31. An equilateral triangle $A B C$ is swung around the line $D E$ as an axis, D and E being middle points of the sides of the triangle. Find the volume of the figure thus developed by the trapezoid $A B E D$ if $A B=a$.
32. Finit the total surface of the figure in
 the preceding example.
33. In a right circular cone, with altitude h, and r the radius of its base, a cylinder is inscribed as shown in the figure. Find the radius $O F$ of the cylinder if the area of the ring bounded by the circles $O F$ and $O A$ is equal to the lateral area of the small cone cut off by the upper base
 of the cylinder.
34. The same as the preceding, except that the lateral area of the small cone is to equal the lateral area of the cylinder.
35. Find the dihedral angles of a regular tetrahedron.

CHAPTER XI.

REGULAR AND SIMILAR POLYHEDRONS.

REGULAR POLYHEDRONS.

624. Definitions. A polyhedron is said to be regular if its polyhedral angles are all congruent and its faces are congruent regular polygons.
625. Construction of regular polyhedrons. Certain regular polyhedrons are very simple of construction, as indicated below.
(1) The regular tetrahedron. At the center E of an equilateral triangle $A B C$ erect a perpendicular to the plane of the triangle. On this take a point D so that $A D=A C$.

Now prove that the four triangles, $A B C, A C D, A B D, B C D$, are regular and congruent, and that the four trihedral angles are congruent.

Suggestion. $\quad A E=B E=C E$.
(2) The regular hexahedron or cube. At the vertices of a given square erect perpendiculars to its plane equal in
 length to the sides, and join their up-
 per extremities as shown in the figure.

Show that six equal and congruent squares are formed and also eight congruent trihedral angles.
(3) The regular octahedron. Through the center O of a square $A B C D$ draw a perpendicular to the plane of the square.

On this take points E and F such that $A F=A E=A B$. Join E and F to each of the four vertices, A, B, C, D.

Now prove that the eight faces are congruent regular triangles, and that the six polyhedral angles are congruent.

There are two other regular polyhedrons, namely :
(4) The regular dodecahedron, having
 for faces twelve regular pentagons, and

DODECAHEDRON

ICOSAHEDRON

(5) The regular icosahedron, having for faces twenty equilateral triangles.

The geometric constructions for (4) and (5) are not so simple as for the others.

However, cardboard models of all five may be made by cutting out the figures,
 as shown herewith, and folding them along the dotted lines. They may be held in shape by means of gum paper stuck over the joints.
626. The number of regular polyhedrons. It will now be shown that there are not more than these five regular polyhedrons.

There must be at least three faces meeting at each vertex. If these are regular triangles, there may be three, as in the tetrahedron, or four, as in the octahedron, or five, as in the icosahedron; but there cannot be six, for in that case the sum of the angles about a vertex would be 360°, and it is readily seen that this sum cannot be as great as 360°. For a proof of this fact, see § 726 .

If the faces are squares, there may be three about a vertex, as in the cube, but there cannot be four, for in that case the sum of the face angles at a vertex would be 360°.

If the faces are regular pentagons, there may be three about a vertex, making the sum of the face angles $3 \cdot 108^{\circ}=324^{\circ}$, but there cannot be four, for then the sum would be greater than 360°. See § 726 .

Regular polygons of more than five sides cannot form the faces of a regular polyhedron, for the sum of the face angles at a vertex would in any such case be more than 360°. Show why this is so.

Hence, there cannot be more regular convex polyhedrons than those exhibited above.
627. Tifeorem. If v is the number of vertices of a convex polyherlron, e its number of edges, and f its number of faces, then $e+2=v+f$.

This is called Euler's Theorem. The proof is too difficult for an elementary textbook such as this. The proofs given in the current texts are not conclusive.
628.

EXERCISES.

1. Verify the above theorem by counting the number of edges, faces, and vertices in each of the regular figures given in $\S 625$.
2. The following is a form of proof of this theorem which is often given:

Denote the number of vertices, edges, and faces of a polyhedron by V, E, and F, respectively. To prove $E+2=\Gamma^{\Gamma}+F$.

Proof: Taking the single face $A B C D$, the number of edges equals the number of vertices, or $E=V$. If another face be annexed, three new edges and two new vertices are added. Hence the number of edges gains one on the number of vertices, as $E=I^{r}+1$. If still another face be added, two new edges and one new vertex are added. Hence $E=V+2$.

With each new face that is annexed the number of edges gains one on the number of vertices, till bul one face is lacking.

The last face increases neither the number of edges nor vertices. Hence, etc.

Show by putting together the faces of a cube in a certain order that the statement in italics need not be true, and hence that the proof is not conclnsive.
629. Theorem. The sum of the face angles of any romeres prlyhedron is equal to four times as many right tumgles, less eight, as: the polyheitron hus vertieses.

The proof depends on the preceding theorem and is not given here.
630.

EXERCISE.

Verify this theorem ly an examination of the regular polybedrons.

INSCRIPTION OF REGULAR POLYHEDRONS.

631. Problem. To find a point equally distant from the four vertices of any tetrahedron.

Given the tetrahedron $P-A B C$.
To find a point O equidistant from P, A, B, C.
Construction. At D, the middle point of $B C$, construct a plane perpendicular to $B C$.

The plane will contain the point E, the center of the circle circumscribed about $\triangle P B C$, and also the similar point F in $\triangle A B C$. (Why?)

In the plane $D E F$ draw $E G \perp E D$ and $F H \perp F D$.
Then $E G$ and $F H$ cannot be parallel (why?), and hence meet in some point 0 .

Also $E G \perp$ to plane $P B C$ and $F H \perp$ plane $A B C$. (Why?)
Proof: Now show that O is equidistant from P, A, B, C.
632. Definitions. The locus of all points in space equidistant from a given fixed point is a surface called a sphere. The fixed point is the center of the sphere, and a line-segment from the center to the surface is called a radius.

A polyhedron is inscribed in a sphere if all its vertices lie in the sphere.

The sphere is also said to be circumscribed about the polyhedron.

1. In the construction of $\S 631$ show that O is the only point equidistant from P, A, B, and C.
2. Show that the planes perpendicular to each of the six edges of the tetrahedron at their middle points meet in the point O.
3. Does the construction of $\S 631$ depend upon the tetrahedron being regular? Cau a sphere be circumscribed about any tetrahedron?
4. Is there any limitation on the relative position of four points in order that a sphere may be passed through them?
5. Four points not all lying in the same plane are said to determine a sphere.

Any other point, taken at random, will not, in general, lie on a sphere determined by four given points.

Hence, while any tetrahedron may be inscribed in a sphere, a polyhedron, in general, cannot.

However, any regular polyhedron may be inscribed in a sphere.
635. Problem. To inscribe a cube in a sphere.

Suggestion. Show that all the diagonals meet in a common point O which is equally distant from all the vertices.
()r show that a perpendicular to one face at its center L meets the onposite face at its crenter K and is perpendicular to this face also, and that the middle point O of $K L$ is the point requirul.
636. Problem. To inscribe an octahedron in a sphere.

Suggestion. Making use of the construction, $\S 625$ (3), show that O is the point equidistant from A, B, C, D, E, F.

Give all the steps in full.
Note. The dodecahedron and icosahedron may each be inscribed in a sphere, but the proof in these cases is much more complicated.

637.

EXERCISES.

1. If in the figure of $\$ 631$ the tetrahedron is regular, show that $O E=O F$.
2. If in Ex. 1 a sphere is described with center O and radius $O E$, would it touch the face $P B C$ at any other point than E ? (Why?) Would any part of the surface lie on the opposite side of $A B C$ from O ? (Why ?) Is the same true of each of the other faces?

Such a sphere is said to be inscribed in the tetrahedron and the faces are said to be tangent to the sphere. See § 669.
3. In the figure of $\S 635$, show that the point O is equidistant from the six faces of the cube and hence that a sphere may be inscribed.
4. In the figure of $\S 636$ show that the point O is equidistant from the eight faces and hence that a sphere may be iuscribed.

The preceding exercises show that a sphere may be inscribed in three of the regular polyhedrons, and the center in each case is the same as that of the circumscribed sphere. This is true also of the other two regular polyhedrons, but the proof is not so simple as in these cases. In the case of the tetrahedron a sphere may be inscribed whether it is regular or not; but if it is not regular, the center is not the same as that of the circumscribed sphere.

SIMILAR POLYHEDRONS.

638. Definitions. Two polyhedrons are similar if they have the same number of faces similar each to each and similarly placed, and have their corresponding polyhedral angles congruent.

Any two parts which are similarly placed are called corresponding parts, as corresponding faces, edges, vertices.
639. Theorem. Two tetrahedrons are similai if three faces of one are similar respectively to three faces of the other, and are similarly placed.

Given the tetrahedrons $P-A B C$ and $P^{\prime}-A^{\prime} B^{\prime} C^{\prime}$ having $\triangle A P B \sim \triangle A^{\prime} P^{\prime} B^{\prime}, \triangle A P C \sim \triangle A^{\prime} P^{\prime} C^{\prime}, \quad$ and $\triangle B P C \sim \triangle B^{\prime} P^{\prime} C^{\prime}$.

To prove $P-A B C \sim P^{\prime}-A^{\prime} B^{\prime} C^{\prime}$.

Proof: (1) Show that $\triangle A B C^{\prime} \sim \triangle A^{\prime} B^{\prime} C^{\prime}$.
(i) Show that trihedral $\triangle P$ and P^{\prime} are congruent.

Likewise $\angle A \cong \angle A^{\prime}, \angle B \cong \angle B^{\prime}, \angle C \cong \angle C^{\prime}$.
Hence, by definition, the polyhedrons are similar.
640. EXERCISES.

1. If the two prisus in the figure are similar, name the pairs of corresponding parls. Likewise for two similar pyranids.

2. Show that a plane parallel to the base of a pyramid cuts off a pyramid similar to the given pyramid.

Suggestion. Use the principles of similar triangles and § 521 to show that all the requirements of the definition ($\$ 638$) are fulfilled.
3. Does a plane parallel to the base of the prism cut off a prism similar to the given prism? Prove.
4. Show that two tetrahedrons are similar if they have a dibedral angle in one equal to a dihedral angle in the other and the including faces similar each to each and similarly placed.
5. Show that the total areas of two similar tetrahedrons are in the same ratio as the squares of any two corresponding edges.
6. Show that if each of two polyhedrons is similar to a third they are similar to each other.
641. Theorem. The volumes of two similar tetrahedrons are in the same ratio as the cubes of their corresponding edges.

Given $P-A B C \sim P^{\prime}-A^{\prime} B^{\prime} C^{\prime}$, with volumes V and V^{\prime}.
To prove that $\quad \frac{V^{r}}{V^{\prime}}=\frac{\overline{P A}^{3}}{{\overline{P^{\prime} A^{\prime}}}^{3}}$.
Proof: We have $\frac{\boldsymbol{V}}{\boldsymbol{V}^{\prime}}=\frac{\boldsymbol{P A} \cdot \boldsymbol{P B} \cdot \boldsymbol{P C}}{\boldsymbol{P}^{\prime} \boldsymbol{A}^{\prime} \cdot \boldsymbol{P}^{\prime} \boldsymbol{B}^{\prime} \cdot \boldsymbol{P}^{\prime} C^{\prime}} \cdot \quad$ ($\$ 601$)
Now use the properties of similar triangles to complete the proof. Use the figure of $\S 639$.
642.

EXERCISES.

1. Two similar tetrahedral mounds have a pair of corresponding dimensions 3 ft . and 4 ft . If one mound contains 40 cu . ft . of earth, how much does the other contain?
2. The edges of a tetrahedron are $3,4,5,6,7$, and 10 . Find the edges of a similar tetrahedron containing 64 times the volume.
3. Find what fraction of the altitude of a tetrahedron must be cut off by a plane parallel to the base, measuring from the vertex, in order that the new pyramid thus detached may have one third of the original volume.
4. Definitions. Two figures are said to have a center of similitude O, if for any two points A and B of the one the lines $A O$ and $B O$ meet the other in two points, A^{\prime} and B^{\prime}, called corresponding points, such that

$$
\frac{A O}{A^{\prime} O}=\frac{B O}{B^{\prime} O} .
$$

See figures under $\S \S$ 189-194.
644. Theorem. Any two figures which have a center of similitude are similar.

Proof: (1) Tero triangles.
Given

$$
\frac{O .1}{O A^{\prime}}=\frac{O B}{O B^{\prime}}=\frac{O C}{O C^{\prime}} .
$$

Let the student prove that $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$.
In case the triangles do not lie in the same plane, use $\S 489$ to show that the corresponding δ are equal.
(2) Two polygons.

Given

$$
\frac{O A}{O A^{\prime}}=\frac{O B}{O B^{\prime}}=\frac{O C}{O C^{\prime}} \text {, etc. }
$$

Give the proof both for polysuns in the same plane and not in the same plane.
(3) Two tetrahedrons.

With the same hypothesis as before, we must prove $\triangle P A B \sim P^{\prime} A^{\prime} B^{\prime}, \triangle P B C \sim \triangle P^{\prime} B^{\prime} C^{\prime}$, etc., and then use § 639 .
(4) Any two polyhedrons.
(a) Prove corresponding polygonal faces similar to each other.
(b) Prove corresponding polyhedral angles equal to each other.

The last step requires not only equal face angles about the vertex, as in the case of the tetrahedron, but also equal dihedral angles. Note that two dihedral angles are equal if their faces are parallel right face to right face and left face to left face. (Why?)
(5) Consider any two figures whatsoever having a center of similitude.
(a) Take any three points A, B, C in one figure and the three corresponding points $A^{\prime}, B^{\prime}, C^{\prime}$ in the other.

Then $A B$ and $A^{\prime} B^{\prime}, A C$ and $A^{\prime} C^{\prime}$, etc., are called corresponding linear dimensions, and the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are corresponding triangles.
(b) It is clear that any two corresponding linear dimensions have the same ratio as any other two, and that any two corresponding triangles are similar.

In this sense the two figures are said to be similar.
645. Definition. The ratio of similitude of two similar figures is the common ratio of their corresponding linear dimensions. This ratio is the same as the distance ratio of corresponding points from the center of similitude.
646. Treorem. Two similar triangles may be so placed as to have a center of similitude.

Given the similar triangles T and T^{\prime}, in which

$$
\frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C}
$$

To prove that they may be placed so as to have a center of similitude.

Proof : From any point O draw $O A, O B, O C$.
On these rays take A_{1}, B_{1}, C_{1} so that

$$
\frac{O A_{1}}{O A}=\frac{O B_{1}}{O B}=\frac{O C_{1}}{O C}=\frac{A^{\prime} B^{\prime}}{A B} .
$$

Now show the following : $\Delta T_{1} \sim \Delta T$, and hence $\Delta T_{1} \sim \Delta T^{\prime}$.
(2)

$$
\begin{equation*}
\Delta T_{1} \supseteq \Delta T^{\prime} \tag{1}
\end{equation*}
$$

For this show that $A_{1} B_{1}=.1^{\prime} B^{\prime}$ by means of the equations $\frac{A_{1} B_{1}}{A B}=\frac{O \cdot 1_{1}}{0.1}$ and $\frac{A^{\prime} B B^{\prime}}{A B}=\frac{O \cdot 1_{1}}{O A}$.

Likewise $A_{1} C_{1}=A^{\prime} C^{\prime}$ and $B_{1} C_{1}=B^{\prime} C^{\prime}$.
(3) Finally, $\quad \frac{O M_{1}}{O M}=\frac{O A_{1}}{O A}$,
where M and M_{1} are any two corresponding points whatever.

Hence O is the required center of similitude.
647. Theorem. Two similar tetrahedrons may be so placed as to have a center of similitude.

Given the similar tetrahedrons T and T^{\prime}.
To prove that they can be placed so as to have a center of similitude.

Proof : With O as a center of similitude, construct T_{1}, making

$$
\frac{O A}{O A_{1}}=\frac{O B}{O B_{1}}=\text { etc. }=\frac{A B}{A^{\prime} B^{\prime}} .
$$

Now show as in $\S 646$ that $T_{1} \cong T^{\prime}$, and hence that T^{\prime} can be placed in the position T_{1} so as to have with T the center of similitude O.

Give all the steps in detail.
648. Theorem. Any two similar polyhedrons may be placed so as to have a center of similitude.

Suggestion. The argument is precisely similar to that of $\S 647$. Give it in full.
649. In the figures for the preceding theorems the center of similitude has been taken between the two figures or beyond them both. The center may be taken equally well within them, as in the following illustrations:

In the case of similar convex polyhedrons with the center of similitude thus placed, the faces are the bases of pyramids whose vertices are all at the center of similitude.

If, further, the polygonal faces be divided into triangles by drawing their diagonals, these triangles become the bases of tetrahedrons, all of whose vertices are at the center of similitude.

Moreover, each inner tetrahedron is
 similar to its corresponding outer tetrahedron. (Why?)

The volumes of the two similar polyhedrons are thus composed of the sums of sets of similar tetrahedrons.
650. Tieferem. The molumes of any two similar polyhtedroms have the same ratio as the cubes of their correspometing celyes.

Proof: l'ane the polyhedrons whose volumes are I and V^{\prime} so as to have their eenters of similitude within them as in the figures ol' $\S(64!)$.

Call the volumes of the similar tetrahedrons $T_{1}, T_{2}, T_{3}, \cdots$, and $T_{1}{ }^{\prime}, T_{2}{ }^{\prime}, T_{3}{ }^{\prime}, \cdots$, and let $A B$ and $A^{\prime} B^{\prime}$ be two corresponding edges.

Then we have

And

$$
\frac{\overline{A B}^{3}}{\overline{A^{\prime} B^{\prime 3}}}=\frac{T_{1}}{T_{1}^{\prime}}=\frac{T_{2}}{T_{2}^{\prime}}=\frac{T_{3}}{T_{3}^{\prime}}=\cdots \quad(\text { Why } ?)
$$

$$
\frac{T_{1}+T_{2}+T_{3}+\cdots}{T_{1}^{\prime}+T_{2}^{\prime}+T_{3}^{\prime}+\cdots}=\frac{T_{1}}{T_{1}^{\prime}}=\frac{\overline{A B^{3}}}{\overline{A^{\prime} B^{\prime 3}}} . \quad(\mathrm{Why} ?)
$$

But

$$
T_{1}+T_{2}+T_{3} \cdots=V \text { and } T_{1}^{\prime}+T_{2}^{\prime}+T_{3}^{\prime} \cdots=V^{\prime} .
$$

Hence,

$$
\frac{V}{V^{\prime}}=\frac{\overline{A B}^{3}}{\overline{A^{\prime} B^{\prime}}} .
$$

651. Corollary. The volumes of any two similar solids are in the same ratio as the cubes of any two corresponding linear dimensions.

This proposition may be rendered evident by noticing that any two similar three-dimensional figures may be built up to any degree of approximation by means of pairs of similar tetrahedrons similarly placed. The proposition then holds of any two corresponding figures used in the approximations.

Note that the ratio of similitude of two similar figures may be obtained from the ratio of any pair of corresponding linear dimensions.

EXERCISES.

1. If two coal bins are of the same shape and one is twice as long as the other, what is the ratio of their cubical contents?
2. What is the ratio of the lengths of the two bins in the preceding example if one holds twice as much coal as the other?
3. Two water tanks are of the same shape. Find the ratio of their capacities if their ratio of similitude is $\frac{2}{5}$.
4. In the preceding what must be the ratio of similitude in order that the ratio of their capacities shall be $\frac{3}{7}$?

APPLICATIONS OF SIMILARITY.

653. The theorem that any two figures which have a center of similitude are similar is the geometric basis of many mechanical contrivances for enlarging or reducing both plane and solid figures; that is, for constructing figures similar to given figures and having a given ratio of similitude with them.

The essential property of all such contrivances is that one point O is kept fixed, while two points A and B are allowed to move so that O, A, and B always remain in a straight
 line, and so that the ratio $\frac{O A}{O B}$ remains the same. See §§ 432-435.

In the first figure O is a fixed point. Segments $O D, C B$, and the sides of the parallelogram $A C E D$ are of fixed length.

Prove that if B is once so taken on the line $E C$ as to be in the line $O A$, the points O, A, and B will always remain collinear, and that $\frac{O A}{O B}$ remains a fixed ratio.

In the second figure is shown an ordinary pantograph used for copying and at the same time for reducing or enlarging maps, designs, etc. The lengths of the various segments are adjustable, as shown, thus obtaining any desired scale.

The same contrivance may he used for copring figures in space and at the same time reducing or enlarging them.

654. Now consider any two similar figures whatever so placed as to have a center of similitude o. We have seen that if points $A B$ and $A^{\prime} B^{\prime}$ are corresponding points of the two figures, then the ratio of the corresponding linear dimensions $A B$ and $A^{\prime} B^{\prime}$ is equal to the ratio of similitude $\frac{m}{n}$ of the two figures.

Also if A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are corresponding points, then $\mathbb{B} A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, and the tetrahedrons $A B C D$ and $\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} C^{\prime} D^{\prime}$ are similar, and we have

$$
\frac{\text { Area } A B C}{\text { Area } A^{\prime} \boldsymbol{B}^{\prime} C^{\prime}}=\frac{m^{2}}{n^{2}} \text { and } \frac{\text { vol. } A B C D}{\text { vol. } A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=\frac{m^{3}}{n^{3}} .
$$

The points A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ determine two planes, each of which intercepts a certain plane figure in the solid figure to which the points belong. These two plane figures we call corresponding cross sections.

We assume without full argument that:-
Theorem. (1) The ratio of the areas of any pair of corresponding cross sections or any pair of corresponding surfaces of similar figures is equal to the square of their ratio of similitude, and
(2) The ratio of the volumes of any two similar figures is equal to the cube of their ratio of similitude.

Thus the ratio of the radii or of the diameters of two spheres is their ratio of similitude; likewise the ratio of the lengths or of the diameters of two shells used in gunnery, or the ratio of the heights of two men of similar build.

The fact that the ratio of the areas of corresponding surfaces of similar solids is equal to the square of their ratio of similitude, while the ratio of their volumes equals the cube of this ratio is one of the most important and far-reaching conclusions of geometry.

SUMMARY OF CHAPTER XI.

1. Describe the five regular solids according to the form and number of their faces. Why can there not be more than these five?
2. Compare the relation of the regular solids to the sphere with that of regular polygons in the plane to the circle.
3. Review the process of construction of the tetrahedron, cube, and octahedron.
4. Form all five regular polyhedrons by cardboard models as indicated in $\S 625$.
5. Make a list of the definitions concerning similar polyhedrons.
6. Make a list of the theorems concerning similar polyhedrons.
7. Explain the relation of two figures which have a center of similitude.
8. What theorem of this chapter is referred to as of unusual importance in the problems and applications?
9. State the applications of this chapter which appeal to Tou as especially interesting or useful. Return to this question, after studying those which follow.

PROBLEMS AND APPLICATIONS.

1. If it is known that a steel wire of radius r will carry a certain weight w, how great a weight will a wire of the same material carry if its radius is $2 r$?

Suggestion. The tensile strengths of wires are in the same ratio as their cross-section areas.
2. Find the ratio of the diameters of two wires of the same material if one is capable of carrying twice the load of the other; three times the load.
3. In a laboratory experiment a heary iron ball is suspended by a steel wire. In suspending another ball of twice the diameter a wire of twice the radius of the first one is used. Is this perfectly safe if it je known that the first wire will just salely carly the ball suspended from it? liscuss fully.
4. In two schoolroons of the same sliape (similar figures) but of different size, the stma proportion of the floor space is occupied by desks. Which contains the larger amount of air for each pupil?
5. It is decided to erect a school building exactly like another already built, except that every linear dimension is to be increased by ten per cent; that is, each room is to be ten per cent longer, wider, and higher, and so for all parts of the building. If the air in the ventilating flues flows with the same velocity in the two buildings, in which will the air in a room be entirely renewed the more quickly?

Suggestion. Note that the ratio of the amount of air discharged by two flues under such conditions is equal to the ratio of their crosssection areas.
6. If the shells used in guns are similar in shape, find the ratio of the total surface areas of an eight-inch and a twelve-inch shell.
7. Find the ratio of the weights of the shells in the preceding problem, weights being in the same ratio as the volumes.
8. If a man 5 ft .9 in . tall weighs 165 lb ., what should be the weight of a man 6 ft .1 in . tall, supposing them to be similar in shape?
9. What is the diameter of a gun which fires a shell weighing twice as much as a shell fired from an eight-inch gun, supposing the shells to be similar bodies?
10. The ocean liner Mauretania is 790 feet in length. What must be the length of a ship having twice her tonnage, supposing the boats to be similar in shape?
11. The steamship Lusitania is 790 feet long, with a tonnage of 32,500 , and the Olympic is 882 feet long, with a tonnage of 45,000 . Are these vessels similar in shape? If not, which has the greater capacity in proportion to its length?
12. Supposing two trees to be similar in shape, what is the diameter of a tree whose volume is three times that of one whose diameter is 2 feet? What is the diameter if the volume is 5 times that of the given tree? What if it is n times that of the given tree?
13. Two balloons of similar shape are so related that the total surface area of one is 5 times that of the other. Find the ratio of their volumes.

See page 444 for further applications.

CHAPTER XII.

THE SPHERE.

PLANE SECTIONS OF THE SPHERE.

655. Definitions. A sphere consists of all points in space which are equally distant from a fixed point, and of these points only. The fixed point is called the center of the sphere. (See § 632.)

A sphere divides space into two parts such that any point which does not lie on the sphere lies within it or outside it.

The sphere may be developed by revolving a circle about a diameter as a fixed axis.

A line-segment joining any two points on a sphere and passing through its center is a diameter. A segment joining the center to any point on the sphere is a radius.

If the distance from a point to the center of the sphere is less than the radius, the point is within the sphere, and if greater than the radius it is outside the sphere.

A sphere may be designated by a single letter at its center, or nore explicitly ly naming its center and radius.

Thus the sphere (' means the sphere whose center is C. and the sphere $C A$ is the sphere whose ceuter is C and whose radius is C.A.

Two spheres are said to the equal if they have equal radii.
656. Theorem. All radii of the same sphere or of equal spheres are equal. All diameters of the same sphere or of equal spheres are equal.

These statements follow directly from the definitions.
657. EXERCISES.

1. How does the definition of a sphere differ from that of a circle? State each in terms of a locus.
2. If two spheres have the same center, show that they are either equal or one lies entirely inside the other.
3. In how many points can a straight line meet a sphere?
4. Does every line through an interior point of a sphere meet it? In how many points?
5. Theorem. A section of a sphere made by a plane is a circle.

Given a sphere with center C cut by the plane M.
To prove that the points common to the sphere and the plane form a circle.

Proof: From the center C draw $C A$ perpendicular to the plane M.

Let B and D be any two points common to the plane and the sphere. Complete the figure, and prove $A B=A D$.

Hence, any two points common to the plane and the sphere are equidistant from A.

How must this proof be modified in case the plane M passes through the center of the sphere?
659. Definitions. A circle is said to be on a sphere if all its points lie on the sphere.

The line perpendicular to the plane of a circle at its center is called the axis of the circle.

The points in which the axis of a circle on a sphere meets the sphere are called the poles of the circle.

If the plane of a circle on a sphere passes through the center of the sphere, it is called a great circle of the sphere, and if not, it is called a small circle.
660. Theorem. (1) The axis of amy circle on a sphere passes through the center of the splure.

(2) The renter of a great circle is the center of the sphere.
(3) All great ripeles are equal and hisert each other.
(4) Three points on a sphere determine a circle on the sphere.
(i) Throme!le tero !fien proints on a sphere there is one cemel only one !freat rivele malres these points abe at "ppensiter emels of " dicemetrer.
(6) Every !frett cirde hisests a sphere.

The proofs of these statemonts follow easily from the definitions. Let the student give the proofs in detail.
661. Definition. The distance between two points on a sphere is the distance measured between these points along the minor are of the great circle through them.
662. Theorem. All points of a circle on a sphere are equidistant from either pole of the circle.

Given P a pole of the circle whose center is A, and let B and D be any two points on this circle.

To prove that the great circle arcs $P B$ and $P D$ are equal. Suggestion. Let C be the center of the sphere.
Prove that $\angle A C B=\angle A C D$.
Hence, chord $P B=\operatorname{chord} P D$ and $\overparen{P B}=\overparen{P D}$.
Extend the radius $P C$ to meet the sphere in P^{\prime}.
Prove that P^{\prime} is also equidistant from any two points of the given circle.
663. Definition. The common distance from the pole of a circle to all points on it is called the polar distance of the circle. One fourth of a great circle is a quadrant.
664. Corollary 1. The polar distance of a great circle is a quadrant.
665. Corollary 2. If a point P is at a quadrant's distance from each of two points not at the extremities of the same diameter, it is the pole of the great circle through these points.
666. It follows from the preceding theorem that, if a spherical blackboard is at hand, circles may be constructed on it by means of crayon and string the same as on a plane blackboard. Likewise, curve-legged compasses may lue used.

667.

EXERCISES.

1. How many small circles can be passed through two points on a sphere? How many great circles? Show why.
2. If two points are at the extremities of the same diameter of a sphere, how many great circles can be passed through these points?
3. What great circles on the earth's surface pass through both poles? If a great circle passes through one pole, must it pass through the other?
4. If P is at a quadrant's distance from each of two points A and B, and if these points are at opposite ends of the same diameter, is P the pole of any circle through A and B ? Of how many circles?
5. If A and B are at opposite ends of a diameter, can a small circte be passed through them?
6. If two circles on a sphere have the same poles, prove that their planes are parallel.
7. What is the locus of all points on a sphere at a quadrant's distance from a given point?
8. What is the locus of all points on a sphere at any fixed distance from a given point on the sphere: What is the greatest such distance possible? Discuss fully.
9. If two planes cutting a sphere are parallel, compare the positions of the poles of the circles thus furmed.
10. Find the locus of the centers of a set of circles on a sphere formed by a set of parathel planes cutting it.
11. $A B$ is a fixed diameter of a splute. I plane containing $A B$ is male to revolve about it as an axis. Find the locus of the poles of the great circles on the sphare made lyy this revolving plaue. How are the points A and B related to this locus?
12. Theorem. If two planes cutting a sphere are equidistant from the center, the circles thus formed are equal; and conversely,

If two planes cut a sphere in equal circles, the planes are equidistant from the center.

Suggestion. In the figure show that '(1) if $C A=C A^{\prime}$, then $A B=A^{\prime} B^{\prime}$, and (2) if $A B=A^{\prime} B^{\prime}$, then $C A=C A^{\prime}$.
669. Definitions. A plane which meets a sphere in only one point is tangent to the sphere.

Two spheres are tangent to each other if they have only one point in common.

A line is tangent to a sphere if it contains one and only one point of the sphere.
670. EXERCISES.

1. If a plane has more than one point in common with a sphere, must it have a circle in common with the sphere?
2. If a plane is tangent to a sphere, how many lines in the plane are tangent to the sphere?
3. Can two spheres be tangent to each other and still one be inside the other?
4. Theorem. A plane tangent to a sphere is perpendicular to the radius from the point of tangency; and conversely,

A plane perpendicmitr to a radius at its extremity is tangent to the sphere.

Given a sphere C with plane M tangent to it at A.
To prove that CA is perpendicular to the plane M.
Proof : (1) It is only necessary to prove that $C A$ is perpendicular to every line in M through A. ($W l_{1 y}$?)

Draw any such line $A B$.
The plane $B A C$ cuts the sphere in a circle. Prove that $A B$ is tangent to this circle, and hence perpendicular to $A C$.
(2) To prove the converse, note that $r .1$ is the shortest distance from C to the plane $M . \quad(W h y ?)$ And hence that every point of M except A is exterior to the sphere.

Hence, M is a tangent plane. ($11 h^{*}$?)
672. Definition. A sphere is said to be inscribed in a polyhedron if every face of the polyhedron is tangent to the sphere. The polyhedron is also sail to be circumscribed about the sphere.
673. Tineorem. A sphere may be inseribed in any tetrahedron.

The proof is left to the student. See $\$ 637$.

1. How many planes may be tangent to a sphere at one point on the sphere? How many lines?
2. Through a given point exterior to a sphere construct a line taugent to the sphere.

Suggestion. Let O be the center of the sphere and P the given exterior point. Pass any plane M through P and O. In the plane M construct a line through P tangent to the great circle in which M cuts the sphere.
3. How many lines tangent to a sphere can be constructed from a point outside the sphere?
4. Through a given point exterior to a sphere construct a plane tangent to the sphere.

Suggestion. As in Ex. 2 construct a line through the given point tangent to the sphere. Through the point of tangency of this line pass a plane tangent to the sphere.
5. How many planes can be passed through a given exterior point tangent to the sphere?
6. How many planes tangent to a sphere can be passed through two given points A and B outside a sphere? Discuss fully if the line $A B$ (1) meets the sphere in two points; (2) is tangent to the sphere; (3) does not meet the sphere.
675. Theorem. The intersection of two spheres is a circle.

Proof: The two intersecting spheres may be developed by rotating about a fixed axis $C C^{\prime}$ two intersecting circles with centers C and C^{\prime}.

Let A and B be the two points common to both circles. Then $B A \perp C C^{\prime}$. (Why?)

As the figure rotates about the line $C C^{\prime}, A B$ remains fixed in length and perpendicular to $C C^{\prime}$.

Hence, B traces out a circle. See $\S 478$,
676. Problem. To find the diameter of a given material sphere.

With any point P of the sphere as a pole, construct any circle, and on this circle select any three points A, B, C.

Using a pair of compasses, measure the straight linesegments $A B, B C, C A$, and construct the triangle $A^{\prime} B^{\prime} C^{\prime}$ congruent to $A B C$.

Let $\boldsymbol{B}^{\prime} \boldsymbol{D}^{\prime}$ be the radius of the circle circumscribed about $A^{\prime} B^{\prime} C^{\prime}$.

If $P P^{\prime}$ is the axis of the circle $A B C$ on the sphere and. $B D$ the radius of this circle, then $B D=B^{\prime} D^{\prime}$.

Measure $P B$ by means of the compasses.
Then $P B P^{\prime}$ is a right triangle, with $B D$ perpendicular to its hypotenuse $P P^{\prime}$.
$P B$ and $B D$ being known, we may now compute $P D$ from the right triangle $P B D$ and then compute $P P^{\prime}$ from the similar triangles $P B D$ and $P P^{\prime} D$, finding $P D: P B=P B: P P^{\prime}$ or $P D \times P P^{\prime}=\overline{P B}^{2}$. Sw Ex B, § 66 .

The segment $P P^{\prime}$ may also be found by geometric construction; namely, draw a triangle congruent to $P^{\prime} B P$.

Show how to do this when $B P$ and $B D$ are known.

EXERCISES.

1. How many points are necessary to determine a sphere? See § 632.
2. If the center of a sphere is given, how many points on the sphere are required to determine it?
3. If a plane M is tangent to a sphere at a point A, show that the plane of every great circle of the sphere through A is perpendicular to M.
4. Show that the line of centers of two intersecting spheres meets the spheres in the poles of their common circle.
5. Find the locus of the centers of all spheres tangent to a given plane at a given point.
6. Find the locus of the centers of all spheres tangent to a given line at a given point.
7. Find the locus of the centers of all spheres of given radius taugent to a fixed plane.
8. Find the locus of the centers of all spheres of given radius tangent to a fixed line.
9. Find the locns of the centers of all spheres tangent to two given intersecting planes.
10. Find the locus of the centers of all spheres tangent to all faces of a trihedral angle.
11. Show that two spheres are tangent if they meet on their line of centers. Distinguish two cases. Compare § 209.
12. State and prove the converse of the preceding proposition.
13. In plane geometry how many circles can be drawn through a given point tangent to a given line at a given point?
14. If a given sphere is tangent to a given plane M at a given point A, how many points on the sphere are required to determine it?

Suggestion. Suppose one point P given. Pass a plane through $P \perp$ to plane M at A. Is there only one such plane? Discuss fully.
15. Describe the set of all lines in space whose distances from the center of a sphere are all equal to the radius of the sphere.
16. Describe the set of all planes whose distances from the center of a sphere are all equal to the radius of the sphere.

TRIHEDRAL ANGLES AND SPHERICAL TR1ANGLES.

678. Definitions. When two curves meet, they are said to form an angle; namely, the angle made by the tangents to the curves at their common point.

Any two planes through the center of a sphere cut out two great circles which intersect in two points and form four spherical angles about each of these points. Two of these angles with a common vertex are either adjacent or vertical in the same sense as the angles formed by two intersecting straight lines.

A spherical angle is acute, right, or obtuse according to the form of the angle between the tangents to its sides (arcs) at their common point.

Any two circles on a sphere which meet, whether great circles or not, form angles according to the above definition.

Only angles formed by great circles are considered in this book and the expression spherical angle will be understood to refer to such angles. (Only angles greater than zero and not gieater than two right angles are considered.

A spherical angle may be denoted by a single letter or by three letters, as in the case of a plane angle.
679. Theorem. A splecrical anyle is merasured by all are of the great rime wherse pole is the certex of the (myle ant which is interectpted by the sitles of the angle.

Suggestion. Show that $\overparen{A B}$ meas-
 ures tho dihedral angle formed by the planes PAC and $P B C$ and that $\angle B C A=\angle T P R$.
680. Definitions. The section of a sphere made by a convex trihedral angle, whose vertex is at the center of the sphere, is called a spherical triangle.

The face angles of the trihedral angle are measured by the sides (arcs) of the spherical triangle, and its dihedral angles are equal to the angles of the spherical triangle.

Since each face angle of a trihedral angle is less than two right angles, it follows that each side of a spherical triangle is less than a semicircle.
681.

EXERCISES.

1. Show that a spherical angle is equal to the plane angle of the dihedral angle formed by the planes of the great circles whose arcs are the sides of the spherical angle. See figure under §679.
2. Prove that vertical spherical angles are equal.
3. Prove that the sum of the spherical angles about a point is four right angles.
4. At what angle does a meridian on the earth's surface intersect the equator?
5. Denote by P the North Pole on the earth's surface. Consider any two meridians forming an angle of one degree at P and meeting the equator in points A and B, respectively. What is the sum of the angles of the spherical triangle $P A B$? Compare with the sum of the angles of a plane triangle.
6. Is it possible to construct a spherical triangle each of whose angles is a right angle?

Suggestion. Consider two meridians forming a right angle at P. Such a triangle is called a trirectangular triangle.
7. In a trirectangular spherical triangle what is the length of each side in terms of degrees?

The question as to whether or not the sum of the angles of a spherical triangle is ever equal to two right angles is answered in § 712.
682. Theorem. The sum of two face angles of a trihedral angle is greater than the third face angle.

Proof: Connect points A and D on two sides.
Suppose not all three face angles are equal and that $\angle A C D>\angle A C B$.

Construct $C E$ in the face $A C D$, making $\angle A C E=\angle A C B$.
Lay off $C B=C E$ and draw $A B$ and $B D$.
Now show that (1) $A B=A E$, (-) $A D<A B+B D$, (?) $E D<B D$, (4) $\angle E C D<\angle B C D$.

Hence, $\angle A C D<\angle A C B+\angle B C D$.
683. Corollary 1. The sum of two sides of a spherical triangle is groater thrm the third sille.
684. Corollary '. The sum of the three sides of a spherical triangle is less than a great circle.

Proof: $\overparen{A A^{\prime} A^{\prime}}+\overparen{A B .1^{\prime}}=$ a great circle. But $\overparen{A C}<\overparen{1 C \cdot 1}$, and $\overparen{A B}<\widehat{A B A}$, and $\overparen{B C}<\overparen{B A}+r^{\prime} \cdot \Lambda^{\prime}$ hy (orollary 1 . Hence, $\overparen{A C}+\overparen{A B}+\overparen{B A}<$ a great circle.

 trikedral amples comrespometing to ('orollarios 1 and 2.
686. Theorem. The shortest distance on a sphere between two of its points is measured along the minor arc of a great circle passing through these points.

Proof: Let A and B be any two points on a sphere, $A B$ the minor are of a great circle through them, and $A D C B$ any other curve on the sphere connecting A and B with points C and D on it in the order $A D C B$. Neither C nor D is on the arc $A B$.

Draw the great circle arcs $A D, A C, D C$, and $C B$. Then by $\S 683 \widehat{A C}+\overparen{C B}>\overparen{A B}$ and $\widehat{A D}+\overparen{D C}>\overparen{A C}$.

Hence, $\overparen{A D}+\overparen{D C}+\overparen{C B}>\overparen{A B}$.
Continuing in this manner, we obtain a succession of paths, each longer than the preceding. But by this process we get closer and closer to the length of the curve $A C B$.

Hence, it must be greater than that of $\overparen{A B}$.
687. Definitions. Two trihedral angles are symmetrical one to the other if the face angles and the dihedral angles of one are equal respectively to the face angles and the dihedral angles of the other, but arranged in the opposite order.

Similarly, two spherical triangles are symmetrical one to
 the other if the sides and the angles of one are equal respectively to the sides and the angles of the other, but arranged in the opposite order.
688. Theorem. If the radii drawn from the vertices of a spherical triangle are extendod, they meet the sphere in the vertices of a triangle symmetrical to the given triangle.

The proof is left to the student.
689. Corollary. State and prove the currespmutiny theorem on trihetiral angles.
690. Theorem. Tuo trilhedral angles having their vertices at the center of the same or of "rintel spherex intereept, congruent spherical trianyles if the trikedral angles are comyruent, aml symmetrical spherical triangles if they are symmetrical.

This is an immediate emsequence of $\$ \mathbf{S}$ tiso. nisi.
 sites of oure are equal respertively to three sides of the
 romyrurnt. See § ol I.
692. Theorem. If the face angles of one trihedral angle are equal respectively to the face angles of another, but arranged in the opposite order, the trihedral angles are symmetrical.

Proof: By §519 the dihedral angles of one are equal respectively to those of the other. Now verify that these parts are arranged in the opposite order.
693. Corollary 1. If in two spherical triangles the three sides of one are equal to three sides of the other, but arranged in the opposite order, the triangles are symmetrical.
694. Definition. A spherical triangle is isosceles if two sides are equal.
695. Corollary 2. The angles opposite the equal sides of an isosceles spherical triangle are equal.

Suggestion. Let $A C$ and $B C$ be the equal sides. Draw $\overparen{C D}$ to the middle
 point of $\overparen{A B}$.
696. Corollary 3. If two isosceles spherical triangles are symmetrical, they are congruent, and conversely.
697. Theorem. If two trihedral angles are symmetrical to the same trihedral angle, they are congruent.

Suggestion. Show that the corresponding parts must be arranged in the same order.
698. Corollary. State and prove the corresponding theorem for spherical triangles.
699. Theorem. Two spherical triangles having two sides and the included angle of one equal respecticely to two sides and the included angle of the other are congruent, if the given parts are arranged in the same order, and symmetrical, if they are arronged in the opposite order.

Proof: If the given parts are arranged in the same order, the proof may be made by superposition exactly as in § 32 .

If the given parts are arranged in the opposite order, proceed as follows:

Denote the given triangles by t_{1} and t_{2}. Construct a spherical triangle t_{3} symmetrical to t_{1}. Then by § 698 t_{2} and t_{3} are congruent. Hence, if t_{1} is symmetrical to t_{3}, it must be symmetrical to t_{2}.
700. Corollary. State aml prove the corresponding theorem for trihedral angle:s.
701. EXERCISES.

1. C'mpare fully the theorems on the congruence of plane triangles and of trihedral angles. Is there any theorem in either case for which thrm is no corresponding theorem in the other?
2. ('ompare in the sume manner the theorems on the congruence of plane triangles and of spherieal triangles.
3. Compare in the sime manner the theorems on the congruence of triledral angles and af wherical triangles.

702, Theorem. The locus of all points on a sphere equidistant from two fixed points on the sphere is a great circle bisecting at right angles the great circle arc connecting the two given points.

Proof: Let C be the middle point of $\overparen{A B}$.
(a) If $\overparen{A P}=\overparen{B P}$ prove that $\triangle A C P$ and $B C P$ are symmetrical, and hence, $\angle A C P=\angle B C P=\mathrm{rt} . \angle$. •
(b) If $\angle A C P=\angle B C P$, prove that $\overparen{A P}=\overparen{B P}$.

Why are steps (a) and (b) both needed?
703.

EXERCISES.

1. If two face angles of a trihedral angle are equal, the opposite dihedral angles are equal.
2. If two face angles of a trihedral angle are equal, it is congruent to its symmetrical trihedral angle.
3. Show how to find a pole of the circle through three given points on the sphere.

Suggestion. Let the given points be A, B, C. By § 662 the pole of the circle is equidistant from A, B, and C. Connect A and B by an arc of a great circle and construct another arc of a great circle bisecting $\overparen{A B}$ perpendicularly. Similarly construct a perpendicular bisector of $\overparen{B C}$. The points in which these two ares meet will be the poles of the circle through A, B, and C.

State this argument in full detail.

POLAR TRIANGLES.

704, Definition. With the vertices A, B, C of a spherical triangle as poles, construct three great circles. Eiull of these circles meets each of the others in two points, thus forming eight spherical triangles, as shown in the figure, namely, $A^{\prime} B^{\prime} C^{\prime}$, $A^{\prime} B^{\prime} F, B^{\prime} C^{\prime} D, C^{\prime} A^{\prime} E, A^{\prime} E F, B^{\prime} D F^{\prime}$,
 $C^{\prime} D E$, and $D E F$.

There is one and only one of these, namely, $A^{\prime} B^{\prime} C^{\prime}$, such that A and A^{\prime} are on the same side of $\widehat{B^{\prime} C^{\prime}}, B$ and B^{\prime} on the same side of $\widetilde{A^{\prime} C^{\prime}}$. and C and O on the same side of $\overparen{A^{\prime} B^{\prime}}$.

The triangle $A^{\prime} B^{\prime} C^{\prime \prime}$ as thus described is the polar triangle of $A B C$.

705.

 EXERCISES.1. In the figure the parts of the great circles which are supposed to be on the front side of the figure are given in solid lines while the parts on the back side are dotted. stuly the figure with care and state which triangles are entirely on the front side, which are entirely on the back side of the sphere, and which are partly on the front side and partly on the rear side of the sphere.
2. Nhow that the points A^{\prime} and D cannot be on the same sile uf the circle through $J^{\prime \prime}{ }^{\prime \prime}$.
sucgestron. Can the two extremities of a diameter lie in the same hemisphere?
3. If A is a pole of the great circle through $B^{\prime} C^{\prime}$ and if A^{\prime} is on the same silde of this rircle as A, show that I and I 'are less than one quadrant's distance ipurt.
4. Theorem. If $A^{\prime} B^{\prime} C^{\prime}$ is the polar triangle of $A B C$, then $A B C$ is the polar triangle of $A^{\prime} B^{\prime} C^{\prime}$.

Proof: It is required to prove (1) that A^{\prime} is the pole of $\overparen{B C}, B^{\prime}$ the pole of $\overparen{A C}$, and C^{\prime} the pole of $\overparen{A B}$, and also (2) that A and A^{\prime} lie on the same side of $\widehat{B C}, B$ and B^{\prime} on the same side of $\overparen{A C}$, and C and C^{\prime} on the same side of $\overparen{A B}$.
(1) To prove that A^{\prime} is the pole of $\overparen{B C}$ we need only to show that A^{\prime} is at a quadrant's distance from two points in $\overparen{B C}$. Why?

Now A^{\prime} is at a quadrant's distance from B because B is the pole of $\widetilde{A^{\prime} C^{\prime}} . \quad A^{\prime}$ is also at a quadrant's distance from C because C is the pole of $\widetilde{A^{\prime} B^{\prime}}$. Hence, A^{\prime} is the pole of $\overparen{B C}$.

Similarly, B^{\prime} is the pole of $\overparen{A C}$ and C^{\prime} the pole of $\overparen{A B}$.
(2) To show that A and A^{\prime} lie on the same side of the circle $B C$, we note that since A is the pole of the circle $B^{\prime} C^{\prime}$ and A lies on the same side of this circle with A^{\prime}, then A and A^{\prime} are at less than a quadrant's distance. Hence, it follows that if A^{\prime} is at a quadrant's distance from $B C, A$ and A^{\prime} must be on the same side of $B C$.

In like manner we show that B and B^{\prime} lie on the same side of $A C$, and C and C^{\prime} on the same side of $A B$.
707. Definition. If $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are polar triangles, and if \boldsymbol{A} is a pole of $\boldsymbol{B}^{\prime} C^{\prime}$, then $\angle A$ and $\widehat{\boldsymbol{B}^{\prime} C^{\prime}}$ are said to be corresponding parts.
708.

EXERCISES.

1. In the two polar triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ name all pairs of corresponding parts.
2. Is there any spherical triangle such that its polar triangle is identical with the given triangle?
3. If one side of a spherical triangle is greater than a quadrant show that it is cut by two circles in the construction of its polar triangle.
4. Theorem. The sum of the measures of an angle of a spherical triangle and the corresponding arc of its polar triangle is 180°.

Given the polar triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. Denote the measures in degrees of the angles by A, B, C, \cdots and of the corresponding sides by $a^{\prime}, b^{\prime}, c^{\prime}, \cdots$.

To prove that

$$
\begin{array}{cc}
A+a^{\prime}=180^{\circ} & A^{\prime}+a=180^{\circ} \\
B+b^{\prime}=180^{\circ} & B^{\prime}+b=180^{\circ} \\
C+c^{\prime}=180^{\circ} & c^{\prime}+c=180^{\circ}
\end{array}
$$

Proof: Extend (if necessary) arcs $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$ till they meet the great circle $B r^{\prime}$ in points D and E, respectively. Then are $D E$ is the measure of $\angle A^{\prime}$.

Also $\overparen{B E}=90^{\circ}$, and $\overparen{D C}=90^{\circ}$. (Why ${ }^{\circ}$)
But $\overparen{B E}+\overparen{D C}=\overparen{B r^{\prime}}+\overparen{E D}=a+A^{\prime}$.
Hence, $A^{\prime}+a=180^{\circ}$.
Complete the proof for the other cases.
710. Corollary. If two spheried triangles are congruent or symmetricul, their polar triangles are congruent or symmetrical.
711.
exercises.

1. Does the above proof apply to the second figure?
2. If two angles of a spherical triangle are equal, it is isosceles.

3. State and prove the theorem on trihedral angles corresponding to the preceding.
4. If two angles of a spherical triangle are unequal, the sides opposite them are unequal, the greater side being opposite the greater angle.

Suggestion. In the triangle $A B C$ let $\angle B>\angle A$. Draw $\overparen{B D}$, making $\angle A B D=\angle A$.

Then,

$$
\overparen{A D}=\overparen{B D}, \text { and } \overparen{B D}+\overparen{D C}>\overparen{B C}
$$

Hence, show that

$$
\overparen{A C}>\overparen{B C}
$$

5. State and prove a theorem on trihedral angles corresponding to the preceding.
6. Theorem. The sum of the angles of a spherical triangle is less than six right angles and greater than two right angles.

Given the spherical triangle $A B C$.
To prove that (1) $\angle A+\angle B+\angle C<6 \mathrm{rt}$. angles.
(2) $\angle A+\angle B+\angle C>2$ rt. angles.

Proof: Construct the polar triangle $A^{\prime} B^{\prime} C^{\prime}$, with sides $a^{\prime}, b^{\prime}, c^{\prime}$.
(1) By $\S 709 \angle A+\angle B+\angle C+a^{\prime}+b^{\prime}+c^{\prime}=6 \mathrm{rt}$. angles. Since $a^{\prime}+b^{\prime}+c^{\prime}$ is greater than zero, it follows that $\angle A+\angle B+\angle C<6 \mathrm{rt}$. angles.
(2) Using § $68 \pm$, show that $\angle A+\angle B+\angle C>2$ rt. \triangle.
713. Corollary. State and prove the theorem on trihedral angles which corresponds to the preceding.
714. Problem. On a given sphere to construct a spherical triangle when its sides are given.

Solution. Let o be the given sphere, and a, b, c the ares of the required triangle, and let $A A^{\prime}$ be any diameter of the sphere. With A as a pole, construct circles $D B E$ and FCG whose polar distances from A are c and b respectively.

With B as a pole, construct a circle $H C h$, whose polar distance from B is a. Then comstruct the three great circle arcs, $A B, B C, C A . \quad 1 B^{\prime}$ is the required triangle.
715. exercises.

1. What restrictions if any is it necessulry to impose upon the three

2. In plane gmonetry two congruent triangles may he constructed upon the same lase and on the same sille of it. Is a corresponding construction possible on the sphere?
3. If in the atove coustruction each of two sides of the required triangle is very groat, that is, menly a sombirele, show from the construction that the third wite must he fory small.
4. If chu side of the propused triangle in sith were egual to ar greated than lick, why "und that make the construction impossible?
5. Problem. To construct a spherical triangle when its three angles are given.

Solution. Let the three given angles be A, B, C, and let $a^{\prime}, b^{\prime}, c^{\prime}$ be arcs such that $a^{\prime}+\angle A=180^{\circ}, b^{\prime}+\angle B=180^{\circ}$, $c^{\prime}+\angle C=180^{\circ}$. Then the triangle whose arcs are $a^{\prime}, b^{\prime}, c^{\prime}$ will be the polar triangle of the required triangle. This latter triangle $A^{\prime} B^{\prime} C^{\prime}$ may be constructed by the method of $\S 714$. Then construct the polar triangle of $A^{\prime} B^{\prime} C^{\prime}$, which will be the required triangle.

Give reasons in full for each step.
717. Problem. To construct a trihedral angle when its face angles are given.

Solution. Construct the corresponding spherical triangle by the method of § 714 .

Give the construction in full and prove each step.
718. Problem. To construct a trihedral angle when its dihedral angles are given.

Solution. Construct the corresponding spherical triangle by the method of $\S 716$.

Give reasons in full for each step.

719.

 exercises.1. If two spherical triangles having angles respectively equal are constructed on the same sphere, how are these triangles related? Prove.
2. If two trihedral angles with face angles respectively equal are constructed as in §717, how are they related? Prove.
3. If two trihedral angles each with the same dihedral angles are constructed as in $\S 718$, how are the tribedral angles related? Prove.
4. What restrictions if any must be placed upon the given angles A, B, C in $\S 716$? Compare Ex. $1, \S 715$.
5. What restrictions if ally are needed in Exs. 2 and 3 ?
6. Theorem. Two spherieal triangles hating two angles and the included side of one equal respectively to two angles and the included side of the other are congruent, if the given equal ports are arromgerl in the same order, and symmetrical, if arranged in the opposite order.

Proof: By $\S \S 709$ and 699 the polar triangles of the given triangles are congruent or symmetrical. Hence, by § 710 , the given triangles themselves are congruent or symmetrical.
721. Corollary. State and proce the theorem on trihedral angles which eorresponds to the preceding.
722. Theorem. Two spherical triangles haring the angles of one equal respecticely to the angles of the other are congruent, if the squal anyles are arranged in the same order, and symmetrical, if they are arranged in the opposite order.

Proof: By $\S \S 709,691$, and 693 the polar triangles of the given triangles are equal or symmetrical. Hence, hy
 § 710, the given triangles themselves are equal or symmetrical.
723. Corollary. State and prove the theorem on trinedral amples which correspumbs to the preceding.
724. Is there a theorem on plane triangles corresponding lu that of § 722:

1. If the sides of a spherical triangle are $60^{\circ}, 80^{\circ}, 120^{\circ}$, find the angles of its polar triangle.
2. If the angles of a spherical triangle are $72^{\circ}, 104^{\circ}, 88^{\circ}$, find the sides of the polar triangle.
3. If a triangle is isosceles, prove that its polar triangle is isosceles.
4. If each side of a spherical triangle is a quadrant, describe its polar triangle.
5. In case each side of spherical triangle $A B C$ is a quadrant, show that the eight triangles formed by drawing the great circles whose poles are A, B, and C are all congruent.
6. Show that for any triangle the construction of the polar triangle gives four pairs of symmetrical triangles.
7. If a triangle $A B C$ is isosceles, show that of the eight triangles of Ex. 5 there are four pairs of congruent triangles.
8. If the triangle $A B C$ is not isosceles, show that of the pairs of triangles proved congruent in Ex. 7 none are now congruent.
9. If the angles of a spherical triangle are $70^{\circ}, 80^{\circ}$, and 110° respectively, find the sides of each of the eight triangles formed by the polar construction.
10. Is it possible to construct a spherical triangle whose angles are $50^{\circ}, 60^{\circ}, 120^{\circ}$?
11. Is it possible to construct a spherical triangle whose angles are $60^{\circ}, 120^{\circ}, 150^{\circ}$?

Suggestion. Consider the polar triangle of such triangle.
12. Consider the questions on trihedral angles corresponding to the two preceding.
13. If the sides of a spherical triangle are $75^{\circ}, 95^{\circ}$, and 115° respectively, find the angles of each triangle formed by the polar construction.
14. How can the theorem of $\S 712$ be used to prove that a side of a spherical triangle cannot be as great as a semicircle?
15. If it is given that a spherical triangle is equilateral, can we infer from the theorems thus far proved that its polar triangle is equilateral?

POLYHEDRAL ANGLES AND SPHERICAL POLYGONS

726. Theorem. The sum of the face angles of any concex polyhedral angle is less than four right angles.

Proof: Let $A B C D E$ be a polygonal section of the given polyhedral angle. The number of triangles thus formed having P for a vertex is equal to the number of face angles of the polyhedral angle.

Let O be any point in the base, and draw $O A, O B, O C$, etc.
Then $\angle P B A+\angle P B C>\angle A B C$, and $\angle P C B+\angle P C D>$ $\angle B C D$, and so on. (Why?)

But the sum of the $L s$ of the $O A B, O B C$, ete., is equal to the sum of the $L s$ of the $\triangle P A B, P B C$, ete.

Hence, $\angle A P B+\angle B P C+\cdots<\angle A O B+\angle B O C+\cdots$.
But the sum of the $\angle s$ about O is four right angles.
Therefore, the sum of the face angles of the polyhedral angle is less than four right angles.
727. Definition. The section of a sphere made by a convex polyhedral angle whose vertex is the center of the sphere is called a spherical polygon.

Since a plane may be passed through the vertex of a polyhedral angle such that the polyhedral angle lies entirely on one side of it, it follows that a spherical polygon lies within one hemisphere.

728. Corollary. State and prove the theorem on spherical polygons which corresponds to that of § 726 .
729. Theorem. The sum of the angles of a spherical polygon of n sides is greater than $2(n-2)$ right angles and less than 2 n right angles.

Proof: Divide the polygon into $n-2$ triangles.
Hence, by § 712 the sum of the angles is greater than $2(n-2)$ right angles.

Since the polygon has n angles, and since each angle is less than two right angles, it follows that their sum is less than $2 n$ right angles.
730. Corollary. State and prove the theorem on polyhedral angles which corresponds to the preceding.

AREAS OF SPHERICAL POLYGONS.

731. Definitions. A spherical polygon divides a sphere into two parts, an exterior and an interior, so that every path on the sphere passing from one to the other must cross the polygon.

We have seen (§ 727) that any spherical polygon lies within one hemisphere. The interior is that one of the two parts which lies entirely within this hemisphere.

Two spherical polygons are said to inclose equal areas or to be equal if they are congruent, or if they can be divided into polygonal surfaces which are congruent in pairs.

The terms spherical triangle, spherical polygon, are sometimes used to refer to the part of the sphere inclosed by these figures. The context will always indicate clearly in which sense they are used.
732. Theorem. Two symmetrical spherical triangles are equal.

Proof: Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be the given triangles.
Extend the radii $O A, O B$, $O C$ to meet the sphere in A_{1}, B_{1}, C_{1}, thus forming a triangle symmetrical to $\triangle A B C$ ($\S 688$), and hence congruent to $\triangle \boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \mathbf{C}^{\prime}(\S 698)$.

Let P be a pole of the circle through A, B, C. Extend $P O$ to meet the sphere in P_{1}. Draw $\overparen{P .1}, \overparen{P B}, \overparen{P C}$, and $\overparen{P_{1} A_{1}}$. $\overparen{P_{1} B_{1}}$, and $\overparen{P_{1} C_{1}}$.

Suppose that P lies within $\triangle A B C$.
Now prove that $\triangle P A B \cong \triangle P_{1} A_{1} B_{1}, \triangle P A C \cong \triangle P_{1} A_{1} C_{1}$, $\triangle P B C \cong P_{1} B_{1} C_{1}$. Note that these triangles are isosceles.

Hence, slow that $\triangle A B C^{\prime}=\triangle A_{1} B_{1} C_{1}$, and therefore $\triangle A B C=\triangle A^{\prime} B^{\prime} C^{\prime \prime}$.
733. Definitions. A lune is a figure formed by two great semicircles having the same end-points. The angle between these semicircles is the angle of the lune.

A birectangular spherical triangle is one having two right angles.

If one angle of a birectingular triangle is 1°, the triangle incloses one of 720 equal parts of the sphere. The area
inclosed by such a triangle is called a spherical degree and is used as a unit of measure of areas inclosed by spherical polygons.

In a similar manner we define a spherical minute and a spherical second.
734. Theorem. The area inclosed by a lune in terms of spherical degrees is twice the angle of the lune.
735. Definition. The number of spherical degrees by which the sum of the angles of a spherical triangle exceeds 180° is called the spherical excess of the triangle.
736. Theorem. The area of a spherical triangle in terms of spherical degrees is equal to its spherical excess.

Proof: We are to show that area $\triangle A B C=\angle A+\angle B+\angle C-180^{\circ}$.

Consider the lunes $A C D B, C A E B$, BCFA.

We have
$\triangle A B C+\triangle B C D=A C D B=2 \angle A$.
$\triangle A B C+\triangle B A E=C A E B=2 \angle C$.
$\triangle A B C+\triangle C F A=B C F A=2 \angle B$.

Hence, adding, $3 \triangle A B C+\triangle B C D$, $B A E, C F A=2\left(\angle A+\angle B+\angle C^{\prime}\right)$.

Now $\triangle B C D$ and $A E F$ are symmetrical and have equal areas.

Hence,
$2 \triangle A B C+\triangle A B C, A E F, B A F, C F A=2(\angle A+\angle B+\angle C)$.
But $\triangle A B C, A E F, B A F, C F A$ together constitute a hemisphere or 360 spherical degrees.

Hence, $2 \triangle A B C+360^{\circ}=2(\angle A+\angle B+\angle C)$.
Solving,
$\triangle A B C=\angle A+\angle B+\angle C-180^{\circ}$.
737. Definition. The spherical excess of a spherical polygon is the sum of its angles less $(n-2) 180^{\circ}$, where n is the number of sides of the polygon.
738. Theorem. The area of a spherical polygon in terms of spherical deyperes is rqued to its splerical excess.

Proof: Join one vertex of the polygon to each nonadjacent vertex, thus forming $n-2$ spherical triangles.

Now prove that the sum of the spherical excesses of these triangles is the spherical excess of the polygon and thus complete the proof.
739.

EXERCISES.

1. What is the area in spherical degrees of a birectangular triangle one of whose angles is 55 $4^{\prime \prime}$? If one angle is $7: y^{-3}: 30^{\prime} ; 1015^{*} ; 14^{\prime}$; $36^{\prime \prime}$?
2. What is the area inclosed ly a lune whose angle is 4π ? Note that the lune may he divided into two birectangular triangles. What is the third angle of each?
3. Between what limits is the sum of the angles of a spherical polygon of right vides?
4. If the sum of the angles of a spherical polsgon is 11 right angles, what is known ahout the number of its sides?
5. If the sum of the angles of a stherical polygon is 14 right auples, what is known abont the number of its sides?
6. The sides of a spherical polygon ale sio, ari. 110 . Find the arra of each of the right triangles formed ly the polar construction from this triangle.
7. 'The area of' a sherical trianghe is 71 spherical degrees. One angle is 10.5 . Of the wher two angles one is twiee the other. Find all the angles of the triangle.

AREA AND VOLUME OF THE SPHERE.

740. In $\S \S 731-738$ we discussed the areas inclosed by splierical polygons in terms of a unit directly applicable to the sphere, namely, the spherical degree.

We now consider the area of the sphere in terms of a plane unit of measure. It is clear that such measurement can be approximate only, since no plane segment however small will coincide with the spherical surface. Similarly, if the cube is used as the unit of volume, the measurement of the volume inclosed by a sphere must be approximate, since no set of cubes however small can be made exactly to coincide with a sphere.

The two following theorems are needed:
741. Theorem. The latoral area of a fiustum of a right circular rone is equal to the altitude of the frustum wultiplied by the length of a circle whose radius is the perpendicular distance from a point
 in the axis of the frustum to the middle point of an element.

Given $A A^{\prime}$ an element of the frustum whose middle point is B^{1}, $C C^{\prime}$ the axis of the frustum, $B D \perp C C^{\prime}$ and $E B \perp A A^{\prime}$.

To prove that the lateral area is equal to $2 \pi \cdot E B \cdot C C^{\prime}$.
Proof: By §619, the lateral area is $2 \pi \cdot B D \cdot A A^{\prime}$.
Hence, we must show that $E B \cdot C C^{\prime}=B D \cdot A A^{\prime}$.
To do this, draw $A^{\prime} F \perp A C$ and show that $\triangle A F A^{\prime} \sim \triangle E D B$.
742. Coriollary. The lateral area of a cone is equal to its altitude times the length of a circle whose radius is the perpendicular from a point in the axis to the mitdale point of an element.
743. Theorem. Given a fixed line through the vertex of a triangle, but not crossing it. The volume swept out by the triangle as it rotates about the fixed line as an axis is equal to the numerical measure of the area generated by the side opposite the fixed vertex multiplied by one third the altitude upon that side.

Given $\triangle A B C$ with vertex A in the fixed line l.

Case 1. When one sicte as ab lies in line l. (Fig. 1.)
Draw $A D \perp B C$, or $B C^{\prime}$ produced, and $C E \perp A B$.
Then Yol. $A B C=$ Vol. $A E A^{\prime}+$ Yol. $B E{ }^{\prime}$

$$
=\frac{\pi}{3}\left(E^{2} \cdot A B . \quad(W h y \cdot)\right.
$$

But $\overline{C^{\prime}} E^{2} \cdot A B=C E \cdot C E \cdot A B=\left({ }^{\prime} E \cdot B^{*} A D . \quad\left(W h y^{*} ?\right)\right.$ And by § $61 \%, \pi \cdot(C E \cdot B C$ is the areat swept out ly $B C$. Hence, $\mathrm{V}^{\prime} \mathrm{ol} . A B C=\frac{1}{3} . A D$ (area grenerated by $B C$).
Case 2. When meither $A b$ mur Ac lies in line l. (Fig. $\stackrel{\rightharpoonup}{ }$.)
Produce $C B$ to meet l in F and draw $A D$ and $C E$ as before.

Then
Vol. $A B C=$ Vol. $A F C-$ Vol. $A F B$.
By Case 1 Vol. $A F C=\frac{1}{3} A D \cdot$ (area generated by $F C$), and Vol. $A F B=\frac{1}{3} A D \cdot($ area generated by $F B)$.
Hence, Vol. $A B C=\frac{1}{3} A D \cdot$ (area generated by $F C-F B$), or Vol. $A B C=\frac{1}{3} A D \cdot($ area generated by $B C)$.
Let the student give the proof when the triangle is of other forms, e.g. in Case 1 when $A D$ falls within the triangle, and in Case 2 when $B C$ is parallel to l.
744. Area of the sphere. About a circle circumscribe a polygon as follows: Construct two diameters $A B$ and $C D$ at right angles to each other and divide each quadrant into an even number of parts by points, as D, E, F. At each alternate division point, beginning with the first point D, draw a tangent.

There results a regular polygon with vertices on the diameters $A B$ and $C D$.

If now we construct another polygon in the same manner by dividing each quadrant into twice as many arcs, it will likewise have two vertices on each
 of the diameters $A B$ and $C D$, and this may be repeated at pleasure.

Now inscribe a polygon similar to the one just circumscribed by joining the points C and E, E and A, and so on.

If now the whole figure is made to revolve about $A B$ as an axis, the circle generates a sphere, and the circumscribed and inscribed polygons generate sets of circumscribed and inscribed cones and frustums of cones.

We assume the following:
745. Axiom XXIV. A sphere hris a detinite area and incloses a lefuite rolume which are less respecticely thren the whume and the surfore of an! rircumscribed figitre and greater than those of an!! inscribed contex figntre.
746. Theorem. The area of a splecre is $4 \pi r^{2}$.

Proof: Denote ly r the ralius of the circle which generates the sphere. That is, in the figure, $r=O F=O D=O E$.

Then by § 741 the lateral areas of the frustums whose axes are $O L$ and $O K$ are $\because \pi r \cdot O L$ and $\because \pi r \cdot O K$ and by $\S 7 t 2$ the lateral areas of the cones whose ares are $L v$ and $\hbar M$ are respectively $\because \pi r \quad L \stackrel{y}{2}$ and $\geqslant r \cdot K M$.

Hence, the total surface of the whole ciremms ribed figure is
or

$$
\begin{aligned}
& 2 \pi r \cdot M K+2 \pi r \quad \kappa O+2 \pi r \cdot O L+\because \pi r \quad L N . \\
& 2 \pi r(M K+\pi O+O L+L Y)=\because \pi r \cdot M N .
\end{aligned}
$$

If now a puly strueted, in a manner similar to the above we obtain amother *imumseribed figure whas area is $\because \pi r \cdot M^{\prime} N^{\prime}$ where M^{\prime} and N^{\prime} are the two vertices on the line $A B$.

As this process is repeated indefinitely, the vertices which lie on the line $\boldsymbol{A B}$ may be made to approach as near as we please to A and B, and hence the total surface generated approaches as near as we please to

$$
A=2 \pi r \cdot A B= \pm \pi r^{2}
$$

We now prove that A cannot differ from $4 \pi r^{2}$.
(a) Suppose $A>4 \pi r^{2}$, and let $A=4 \pi r^{2}+d$.

Let k be the difference between $M^{\prime} N^{\prime}$ and $A B$.
Then the area of the circumscribed figure is

$$
2 \pi r(2 r+k)=4 \pi r^{2}+2 \pi r k .
$$

Since k can be made as small as we please, $2 \pi r k$ can be made smaller than d.

Hence, by Axiom XXIV , the area $>4 \pi r^{2}+d$, which contradicts the hypothesis (1).

Therefore the area cannot be greater than $4 \pi r^{2}$.
(b) In the inscribed figure let $O F^{\prime}$ be the apothem.

Then by $\S 741$ and an argument like that used above, we find that the area of the inscribed figure is

$$
2 \pi \cdot A B \cdot O F^{\prime}=4 \pi r \cdot O F^{\prime} .
$$

By continning to double the number of sides, $O F^{\prime}$ may be made to approach as nearly as we please to $O F=r$.

Suppose that $A<4 \pi r^{2}$ and let $A= \pm \pi r^{2}-d^{\prime}$.
Let k^{\prime} be the difference between r and $o F^{\prime}$.
Then the area of the inscribed fignre is

$$
4 \pi r \cdot o F^{\prime}=4 \pi r\left(r-k^{\prime}\right)=4 \pi r^{2}-4 \pi r k^{\prime}
$$

Since k^{\prime} can be made as small as we please, $4 \pi r k^{\prime}$ can be made less than d^{\prime}. Hence there is some inscribed figure whose area is greater than $4 \pi r^{2}-d^{\prime}$. Hence by Axiom XXIV, $A>4 \pi r^{2}-d^{\prime}$, which contradicts (2).

Therefore the area cannot be less than $4 \pi r^{2}$. Since the area is neither less nor greater than $4 \pi r^{2}$, it is therefore equal to $4 \pi r^{2}$.
747. Theorem. The volume of a sphere is $\frac{4}{3} \pi r^{3}$.

Proof: From § 743 the volume of the figures formed by rotating the triangles $O I H$ and $O H N$ about $A B$ as an axis is

$$
\frac{r}{3}(\text { area generated by } I H \text { and } H N)
$$

That is, the volume of the whole circumscribed figure is equal to the surface of the figure multiplied by $\frac{r}{3}$

Now suppose the volume of the sphere not equal to $\frac{4}{3} \pi r^{3}$, but equal to $\frac{4}{3} \pi r^{3}+d$.

Since by the argument of $\S 746$ we can obtain a circumscribed figure whose surface is as near as we please to $4 \pi r^{2}$, it follows that one can be found whose volume is less than $\frac{\sigma_{3}}{3} \pi r^{3}+d$ 。

Hence, the volume cannot be greater thian $\frac{4}{3} \pi r^{3}$.
In a similar manner, using the inscribed figures, show that the volume cannot be less than $\frac{⿱_{3}}{3} \pi r^{3}$.
748. The volume of a sphere by inspection. The fact that the volume of a sphere is egual to its area multiplied by one third its radius may be inferred directly from the accompanying figure.

The sphere is covered with a network of small spherical quadrilaterals. If these are taken small enough, they may be regarded as approximately plane surfaces.

On this supposition we have a set of pyramids with a common altitude r and the sum of their bases approximately equal to the area of the sphere.

Hence, their combined volume is $\frac{1}{3} r \times$ (area of sphere) or $\frac{1}{3} r \cdot 4 \pi r^{2}$. That is, the volume is $\frac{4}{3} \pi r^{3}$.

It is clear that, by making these quadrilaterals sufficiently small, this result may be approximated as nearly as we please.

749.

EXERCISES.

1. The surface of a polyhedron circumscribed about a sphere of radius 4 inches is 420 square inches. Find its volume.
2. The volume of a polyhedron circumscribed about a sphere of radius 3.5 inches is 450 cubic inches. Find its surface.
3. Given a sphere of radius 6 inches, is there any upper limit to the volume of its circumscribed polyhedrons? That is, can polyhedrons be circumscribed having a volume as large as we please?
4. On the same sphere is there any lower limit to the volume of its circumscribed polyhedrons?
5. Show that the areas of two spheres are in the same ratio as the squares of their sadii or of their diameters.
6. Show that the volumes of two spheres are in the same ratio as the cubes of their radii or of their diameters.
7. Find the area of a sphere whose radius is 8 inches.
8. Find the volume of a sphere whose radius is 10 feet.
9. If the area of a sphere is 227 sq . ft., find its radius.
10. If the volume of a sphere is 335 cu . in., find its radius.
11. If the volumes of two spheres are 27 cu . in. and $729 \mathrm{cu} . \mathrm{in}$., compare their radii.
12. Definition. That part of a sphere included between two parallel planes cutting it is called a zone. The perpendicular distance between the planes is the altitude of the zone.

The figure formed by a zone, together with the circular plane-segments cut out by the sphere, is called a spherical segment, and the circular plane-segments are its bases.

If one of the cutting planes is tangent to the sphere, then the spherical segment and the corresponding zone are said to have but one base. The altitude is the perpendicular distance from the base to the tangent plane.

If one nappe of a convex conical surface has its vertex at the center of a sphere, the portion cut off by the sphere, together with the intercepted part of the spherical surface, is called a spherical cone.

If two spherical cones have the same
 axis, one lying within the other, the figure formed by their two lateral surfaces, together with the part of the sphere intercepted between them, is called a spherical
 sector.

If the two cones are right circular cones, they intercept circles on the sphere, and the zone thus included is called the base of the spherical sector.

If the accompanying figure be revolved about L I/ as an axis, then any arc, as (iD or MI), generates a zone. the former with two lases, the latter with one.

The figure $M D F$ or $F D G E$ generatus a spherical segment, the former with on" hase, the latter with two.

The figure ($A L$ or ' $B L$ generates a sherical cone, $C L$ being the common axis.
'The figur ('bil gemerates a spherical sector.
751. Area of a zone. An argument precisely like that of $\S 746$ shows that the area of a zone is

$$
A=2 \pi r h
$$

where h is the altitude of the zone.
That is, instead of $A B$, the diameter in case of the sphere, we should have the sum of the altitudes of the frustums circumscribed about the zone equal to h, the altitude of the zone.
752. Volume of a spherical cone. An argument precisely like that of $\S 747$ shows that the volume of a spherical cone is

$$
V=\frac{r}{3} \cdot A
$$

where \boldsymbol{A} is the area of the zone cut out of the sphere by the cone. Hence, if h is the altitude of this zone, we have

$$
V=\frac{r}{3} \cdot 2 \pi r h=\frac{2 \pi}{3} r^{2} h .
$$

In like manner the volume of a spherical sector is

$$
V=\frac{2 \pi}{3} r^{2} h .
$$

753.

EXERCISES.

1. The radius of a sphere is 6 and the altitude of a zone is 5 . Find the area of the sphere and of the zone.
2. The area of a zone is 36π and its altitude 4. Find the radius of the sphere.
3. If the radius of a sphere is r, find the perpendicular distance from a point A to the plane of a given great circle if the distance on the sphere from A to the great circle is 35°.
4. Solve the preceding problem if the distance on the sphere from A to the given great circle is $23 \frac{1}{2}^{\circ}$. Also if the distance is $66 \frac{1}{2}^{\circ}$. (Use the tables, page 335.)

5. Problem. To fiud the volume of a spherical segment.

Solution. Let r be the radius of the sphere, and r_{1} and r_{2} the radii of the bases of the segment, a the altitude of the zone, and let the segment be generated by revolving the figure $A C D B$ about $A O$ as an axis.

We have Vol. generated by $O D B=\frac{2 \pi}{3} r^{2} a$.
Vol. generated by $O A B=\frac{\pi}{3} r_{1}{ }^{2}(a+d)$. (Why ${ }^{\prime}$)
Vol. generated by $O C D=\frac{\pi}{3} r_{2}^{2}$. . (Why?)
Hence, $\quad V=\frac{2 \pi}{3} r^{2} a+\frac{\pi}{3} r_{1}{ }^{2}(a+d)-\frac{\pi}{3} r_{2}{ }^{2} d$

$$
\begin{equation*}
=\frac{\pi}{3}\left[\because r^{2} a+r_{1}^{2} a+d\left(r_{1}^{2}-r_{2}^{2}\right)\right] . \tag{1}
\end{equation*}
$$

From

$$
r^{2}=r_{2}^{2}+d^{2} \text { and } r^{2}=r_{1}^{2}+(a+d)^{2}
$$

we obtain

$$
\begin{equation*}
d=\frac{r_{2}^{2}-r_{1}^{2}-a^{2}}{2 a} \tag{2}
\end{equation*}
$$

Substituting this value of l in $r^{2}=r_{2}^{2}+d^{2}$,
we get $r^{2}=\frac{r_{2}{ }^{4}+r_{1}{ }^{4}+\alpha^{4}-2 r_{1}{ }^{2} r_{2}{ }^{2}+2 a^{2} r_{2}{ }^{2}+2 a^{2} r_{1}{ }^{2}}{4 a^{2}}$.
Substituting (2) and (3) in (1) and reducing, we have

$$
V=\frac{\pi a}{2}\left(r_{1}^{2}+r_{2}^{2}\right)+\frac{\pi}{6} a^{3}=\frac{a}{2}\left(\pi r_{1}^{2}+\pi r_{2}^{2}\right)+\frac{4}{3} \pi\left(\frac{a}{2}\right)^{3} .
$$

Hence, we have the result:
Theonem. The volume of a spherical segment is mumoricall!! equal to the sum of the aroas of its bases multiplied by half its altitule, plus the volume of a sphere mhose diameter is equal to the altitude of the segment.

SUMMARY OF CHAPTER XII.

1. Collect the theorems involving plane sections of the sphere.
2. Collect the definitions involving plane sections of the sphere.
3. State some of the principal exercises and problems connected with plane sections of the sphere.
4. Collect the definitions on trihedral angles and spherical triangles.
5. Arrange in parallel columns the pairs of theorems on trihedral angles and spherical triangles, which are proved without the use of polar triangles.
6. Collect the definitions on polar triangles.
7. Collect the theorems on polar triangles.
8. Continue the lists started in Ex. 5, adding the theorems proved . by means of polar triangles.
9. Make a list of the definitions involving polyhedral angles and spherical polygons.
10. Collect the theorems involving polyhedral angles and spherical polygons.
11. Collect the theorems on the areas of spherical triangles and polygons.
12. Give the definitions and axioms pertaining to the area and volume of the sphere.
13. State all the theorems pertaining to the area and volume of the sphere.
14. Give the definitions and theorems pertaining to spherical figures, such as zones, cones, sectors, segments.
15. Collect all the mensuration formulas in this chapter.
16. Collect all the mensuration formulas of Solid Geometry.
17. Which of these formulas are illustrations of the general theorem that the surfaces of similar solids are in the same ratio as the squares of their corresponding linear dimensions? Which ones are special instances of the theorem that the volumes of similar solids are in the same ratio as the cubes of corresponding linear dimensions?
18. Describe some of the most important applications in this chapter. Return to this question after studying the following list.

PROBLEMS AND APPLICATIONS.

1. What part of the rarth's surface lies in the torrid zone? What part in the tempurate zones? What part in the frigid zones? The parallels $\because \because l_{2}^{\prime}$ north and sonth of the equator are the boundaries of the torrid zone, and the parallels $19 \overbrace{4}^{10}$ north and south are the boundaries of the frigid zones.
2. Find to four places of decimals the area of a sphere circumscribed about a cube whose edge is' 6 . Nor square root is to be approximated in the process, and the value of π is taken $3.1+16$.
3. Can the volume of the sphere in the prededing exercise be approximated without finding a square root? Finl the volume.
4. Find the area of a sphere circumscribed about a rectangular parallelopiped whose sides are a, b, and c.
5. Find the volume of the sphere in the preceding example.
6. I fixed sphere with center O has its center on another swhere with center O^{\prime}. Show that the area of the part of U^{\prime} which lirs within O is equal to the area of a great circle of the sphere O, provided the radius of the sphere O is not greater than the diameter of O^{\prime}.

Subifestux. Let the figure represent a cross section through the conters of the two spheres. Connect O with A and B. Then
 $\overline{O A}{ }^{2}=O B \times O D$. But $O D$ is the altitude of the zone of $\left(U^{\prime}\right.$. which lies within O, and $O B$ is the diameter of the sphere O^{\prime}. Hence. the area of the zone is $\pi B O \times O D=\pi \overline{O A}^{2}$.
7. Given a solid sphere of radius 12 inches. A cylindrical hole is. burd through it so that the axis of the eylinter passes through the center of the sphere. What area of the sphere is removed if the diameter of the hole is 1 inches?
8. Find the volume removel from the sphere by the process described in the preceding exercise.
9. 'Through as where of radius r a hole of radius r_{1} is loored so that the axis of the cylindur wht gusses through the center of the sphere. Find the volmon of the sphare which remains.
10. A cylindrical post 6 in . in diameter is surmounted by a part of a sphere 10 in . in diameter, as shown in the figure. Find the surface and the volume of the part of the sphere used.
11. A cylindrical post 5 ft . long and 4 in . in diameter is turned so as to leave on it a part of a sphere 7 in . in diameter and having its center in the axis of the post. Find the volume of the whole post.
12. Find the volume of a spherical shell 1 inch thick if its outer diameter is 8 inches.

13. What is the diameter of a spherical shell an inch thick whose volume is half that inclosed within a sphere of the same dianeter?
14. Compare the volumes and areas of a sphere and the circumscribed cylinder.
15. In a sphere of radius r inscrihe a cylinder whose altitude is equal to its diameter. Compare its volume and area with those of the sphere.
16. In a sphere inscribe a cylinder whose altitude is n times its diameter. Compare its area and volume with those of the sphere.
17. Compute the length of the diagonal of a cube in terms of its side, and also the length of the side in terms of half the diagonal.
18. Express the volume of a cube inscribed in a sphere in terms of the radius of the sphere.
19. Three spheres each of radius r are placed on a plane so that each is tangent to the other two. A fourth sphere of radius r is placed on top of them. Find the distance from the plaue to the top of the upper sphere.
20. Find the vertical distance from the floor to the top of a triangular pile of spherical cannon balls, each of radius 5 inches, if there are 3 layers in the pile.
21. Solve a problem like the preceding if there are 16 layers in the pile, each shot of radius r.
22. Solve a problem like the preceding for a square pile of shot of 12 layers.

23. Solve Exercises 21 and 22 if there are n layers in each pile.

CHAPTER XIII.

VARIABLE GEOMETRIC MAGNITUDES.

GRAPHIC REPRESENTATION.

755. It is often useful to think of a geometric figure as continuously varying in size, or in shape, or both.
E.g. if a parallelopiped has a fixed base, say 24 square inches, but an altitude which varies continuously from 3 inches to 5 inches, then the volume varies continuously from $3 \cdot 24=72$ to $5 \cdot 24=120$ cubic inches.

We may even think of the altitude as starting at zero inches and increasing continuously, in which case the volume also starts, at zero.

From this point of view many theorems may be représented graphically. The graph has the advantage of exhibiting the theorem at once for all its particular cases.

For a description of graphic representation, see Chapter V of the authors' High School Algebra, Elementary Course.
756. Theorem. The volumes of two parallelopipeds having equal bases are in the same ratio as their altitudes.

Graphic Representation. By §54I we have

$$
\text { Volume }=\text { base } \times \text { altitude } .
$$

Consider parallelopipeds each with a base whose area is 1 , and with altitudes h_{1}, h_{2}, h_{3}, and corresponding volumes Γ_{1}, V_{5}, V_{3}.

Then

$$
\begin{equation*}
\frac{\Gamma_{1}}{V_{2}}=\frac{A h_{1}}{I h_{2}}=\frac{h_{1}}{h_{2}}, \frac{\Gamma_{2}}{\Gamma_{3}}=\frac{. t h_{2}}{A h_{8}}=\frac{h_{2}}{h_{3}} \text {, te. } \tag{I}
\end{equation*}
$$

Consider the case whern $1=10$. Let one horizontal space represent one unit of altitude, and one vertion space ten units of volume.

Thus, the $\mathrm{l}^{\text {wint }} P_{2}$ has the ordinatu $V^{r}=10$ vertieal units (representing 100 units of volnme), atme the absinsa $h_{2}=10$ horizontal units.

Similarly, locate the points P_{1} and P_{8}.
Using equations (1), show that O, P_{1}, P_{2}, P_{8} lie in a straight line.

If we suppose that while the base of the parallelopiped remains fixed, the altitude varies continuously through all values from $h_{2}=10$ to $h_{3}=20=2 \times 10$, then the volume varies continuously from $10 \times 10=100$ to $10 \times 20=200$.

Using any altitude as an abscissa and the corresponding volume as an ordinate, show, as in § 368, that the point so determined lies on the line $O P_{2} P_{3}$.
757. The preceding theorem may also be stated:

The volume of a parallelopiped with a fixed base varies directly as its altitude.

This means that if V^{\cdot} and h are the varying volume and altitude, and Γ_{1} and h_{1} the volume and altitude at any given instant, then
$\frac{V}{V_{1}}=\frac{h}{h_{1}}$ or $V=\frac{V_{1}}{h_{1}} \quad h$, or $V=k h$, where k is the fixed ratio $\frac{V_{1}}{h_{1}}$.
The graph representing the relation of two variables when one varies directly as the other is a straight line.
758. Problem. To represent graplically the relatiom hetween the wrea and the edge of a rube as the edge caries contimuocsily.

Solution. On the horizontal a is lisy off serments equal for the varinus values of the engeres and on the wertical axis lay uff semments whal the the corresponding areas 1.

If one vertical space represents one unit of area, then the points P_{1}, P_{2}, P_{3}, etc., lie on the steep curve.

The student should locate many more points between those here shown, and see that a smooth curve can be drawn through them all.
759. The graph of the relation between two variables, one of which varies as the square of the other, is always similar to the one just given.

The lowest curve represents the relation between the side of a square and its area, and the third curve represents the relation between the edge of a regular tetrahedron and its total surface.

In each of these cases the area is said to vary as the square of the side of the figure. These are special cases of the theorem, $\S 654$, that the surfaces of similar figures are in the same ratio as the squares of their corresponding near dimensions. This theorem may also be stated:

The areas of similar figures vary as the squares of their linear dimensions.
760.

EXERCISES.

1. From the graph find approximately the area of a regular tetrabedron whose side is 2.5 ; one whose side is 3.7 ; 4.3.
2. Find approximately from the graph the edges of cubes whose total areas are 25 square units; 40 square units; 56 square units.
3. Find approximately from the graph the cdges of regular tetrahedrons whose total areas are 42 square inches; 17 square inches; 55 square inches.
4. Construct a graph showing the relation between the edge aud the total area of a regular octahedron.
5. Problem. To construct a graph showing the relation betwern the edge of a cmbe and its volume.

Solution. Taking ten horizontal spaces to represent one unit of length of side of the cube and one vertical unit to represent one unit of volume, construct the middle graph shown on the page opposite.
762. The lower graph represents the relation between the length e of the edge of a regular tetrahedron and its volume V; and the upper graph represents the relation between the radius and the volume of a sphere.

In each of these cases the volume is said to vary as the cube of the given linear dimension.

These are special cases of the theorem, $\S 654$, that the volumes of similar solids are in the same ratio as the cube of their ratio of similitude.

This theorem may now be stated:
The volumes of similar solids vary as the cubes of their linear dimensions.

763.

EXERCISES.

1. From the graph read off approximately the cubes of $1.3 ; 2.4$; 3.7.
2. From the same graph read off approximately the cube roots of 17; 46; 54; 86.
3. Find approximately by means of the graph the volnme of a sphere whose radius is $1.5 ; 2.3 ; 2.7$.
4. What is the radius of a sphere whose volume is $26 ; 52 ; 71$; 80 ?
5. Construct a graph giving the relation between the volume and the length of a side of regular octahedrons.
6. By means of the graph just constructed find the volume of a regular octahedron whose side is $1.3 ; 2.7 ; 3.6$.
7. From the graph constructed under Ex. 5 read off approximately the lengths of an edge of a regular octahedron whose volume is 18 ; also of one whose volume is 46 .

8. The graph on the opposite page exliibits the variation of the area and the volume of the cube. We notice that for small values of e the numerical value of the area is greater than that of the volume. For $e=6$ these values are equal, and for e greater than 6 , the numerical value of the volume is greater than that of the area.

This is an instance of the general fact that if a solid figure increases in size but remains similar to its first form, then after a certain point its volume increases more rapidly than its area or the area of any cross section.
765. The fact that one variable y varies as the square or the cube of another variable x is expressed algebraically by the equations $y=k x^{2}$ and $y=k x^{3}$, respectively, where k is a constant number to be determined in any particular case.

If the value of k is known, the relations represented by these equations may be shown by a graph like those on the preceding pages.

The equation $y=k x^{3}$ may be plotted by multiplying the ordinate of each point of the graph $V=e^{3}$ (see page opposite) by the value of k.

SUMMARY OF CHAPTER XIII.

1. Give a brief summary of the graphic representation process in general and in particular, as applied to geometrical figures.
2. Make a list of the theorems which are represented graphically in this chapter.
3. Show in what respects such a representation has advantages over the algebraic representation.
4. State as formulas the important laws of variation for geometric magnitudes discussed in this chapter.
5. Make a collection of important applications given in this chapter, including those which occur in the following set.

PROBLEMS AND APPLICATIONS.

1. Assuming that the weights of schoolboys vary as the cubes of their heights, construct a graph representing the relation between their heights and weights, if a boy 5 feet 8 inches tall weighs 130 pounds.

Suggestion. If w represents the number of pounds in weight and h the nnmber of feet in height, $w=k \cdot h^{3}$. From $w=130$, when $h=\pi \frac{2}{3}$, we have $k=.714$. For the purpose of the graph, $k=.7$ is accurate enough. Hence, we obtain the retuired graph by multiplying each ordinate of the graph of $V=\epsilon^{3}$ by .7 .
2. From the graph constructed in the preceding example find the weight of a boy 5 feet tall; one 5 feet 4 inches; one 5 feet 6 inches. Compare with the weights of boys in yonr class.
3. If a man 6 feet tall weighs 18.5 pounds, construct a graph representing the weights of men of similar build and of various different heights.
4. If steamships are of the same shape, their tonnages rary as the cubes of their lengths. The Mauretania is 790 feet long, with a net tonnage of 32,500 . Construct a graph representing the tonnage of ships of the same shape, and of various different lengths.

Other ships which at one time or another have held ocean records are: the Deutschland, length fislift. and tunage 16, inn: the Kuistr IFilhelm der Grosse, length 64 st . and tonnage 14.301: the Lucania, length fies ft. and tonnage 13,000 (nearly) : and the Etruria, length mo ft. and tomage 8000. By means of this graph decide whether or not these boats have greater or less tomage than the Mauretanias as compared with their lengths.

Nute. The following more general problems further illustrate the wide range of armication of the fundamenal theorem that the surfaces and the volumes of similar solids vary respectively as the squares and the cubes of their componding linear dimensions. These problums neal not be solved ly meaus of graphs.
5. Raindrops an they start to fall are extremely small. In the course of their dsesent a great many mite to form larger and larger drops. If 1000 such drops unito into one what is the ratio of the surface of the large drop to the sum of the surfices of the small drops?
6. Consider two machines similar in shape and of heights h_{1} and h_{2}. Since the tensile strength of corresponding parts varies as the areas of their cross sections, it follows that the tensile strengths of corresponding parts are in the ratio $h_{1}{ }^{2}: h_{2}{ }^{2}$. But the total volumes of the machines vary as the cubes of the heights; that is, the total weights are in the ratio $h_{1}{ }^{8}: h_{2}{ }^{8}$. Does this fact offer any hindrance to the building of machines indefinitely large?
7. The strength of a muscle varies as its cross-section area, which in turn varies as the square of the height or length of an animal, while the weight of the animal varies as the cube of its height or length. Use these facts to explain the greater agility of small animals. For example, compare the rabbit and the elephant.
8. Assuming the velocities the same, the amounts of water flowing through pipes vary directly as their cross-section areas. How many pipes, each 4 in . in diameter, will carry as much water as one pipe 72 in. in diameter?
9. What must be the diameter of a cylindrical conduit which will carry enough water to supply ten circular intakes each eight feet in diameter?
10. A water reservoir, including its feed pipes, is replaced by another, each of whose linear dimensions is twice the corresponding dimension of the first. If the velocity of the water in the feed pipes of the new system is the same as that in the old, will it take more or less time to fill the new reservoir than it did the old? What is the ratio of the new time to the old?
11. If two engine plants are exactly similar in shape, but each linear dimension in one is three times the corresponding dimension of the other, and if the steam in the feed pipes flows with the same velocity in both, compare the speeds of the engines.
12. If two men, one 5 ft .6 in . and the other 6 ft .2 in . in height, are similar in structure in every respect, how much faster must the blood flow in the larger person in order that the body tissues of both shall be supplied equally well?

Suggestion. Note that the amount of tissue to be supplied varies as the cube of the height, while the cross-section area of the arteries varies as the square of the height.

(:HAPTER XIV.

THEORY OF LIMITS.

GENERAL PRINCIPLES.

766. In the Plane Geometry it was found that there are segments which have no common unit of measure, that is, which are incommensurable, and that the ratio of the lengths of two such segments could be expressed only approximately by means of integers and ordinary fractions. Other incommensurables occurred in dealing with the length of the circle and the area inclosed by it.

In Chapters III, IV, and V we confined ourselves to an informal first treatment of these incommensurable ratios, tacitly assuming their existence and computing them approximately. In Chapster V'II their existence was explicitly assumed, and certain theorems proved rigorously on the basis of these assumptions. In the Solid Geometry the areas and volumes of the cylinder, cone, and sphere have been treated according to this latter method.
767. In returning to this subject once more we fix our attention on the incommensurable ratios themselves, and the methor of determining them, rather than on the process of approach and the practical computation hised on it. We have alrealy used symbols such as var to represent the ratio of the lengths of inconmensurable segments.

In general, the ratio between any two incommensurable seometric mangitudes of the same kind may le represented by what is called inl irrational number: that is, a number which is mithry all interfre nor" quotient of two integers.
768. The following method for determining irrational numbers is, for simplicity, applied first to the integer 1.

Throughout this discussion the words "point on a line" and "number" will be used interchangeably.

In a straight line mark a certain point 0 (zero), and one unit to the right of it mark another point 1. Also lay off points such that their $5 \quad 3 / 8.8$ distances from 0 are $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{1}{16}, \ldots$.

If this sequence of points is carried ever so far, it will never reach the point 1. If, however, we select a point k to the left of 1 , no matter how near it, we may always go far enough along this sequence to reach points between k and 1 .
769. The point 1 has two definite relations to this sequence.
(a) Every point of the sequence is to the left of 1.
(b) For any fixed point K to the left of 1 there are points of the sequence between K and 1 .
770. We now note that 1 is the only point on the whole line such that both (a) and (b) are true of it. For every point to the right of $1(a)$ is true, but (b) is not. For every point to the left of $1(b)$ is true, but (a) is not.

It follows therefore that, while the points of the sequence merely approach the point 1 , the sequence, taken as a whole, serves to determine that point just as definitely as if the numeral 1 itself were used to indicate the point.
771. The sequence $3,2 \frac{1}{2}, 2 \frac{1}{4}, 2 \frac{1}{8}, \ldots$ is a decreasing sequence, and the number 2 sustains relations to it similar to those described above. That is,
(a^{\prime}) Every point of the sequence is to the right of 2.
(b^{\prime}) For every point K to the right of 2 there are points of the sequence between K and 2 .
772. Definitions. An endless sequence of the sort just described is called an infinite sequence.

Not every infinite sequence serves to single out a definite point in the manner shown above. Thus the sequence $1,2,3,4, \ldots$ fails to do so, because its terms grow large beyond all bound. Such sequences are said to be unbounded, while the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots$ is bounded.

Again, the sequence $1,2,1,2,1, \ldots$ fails to single out a definite point. This sequence is said to be oscillating, since its terms increase, then decrease, then increase, etc., while $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots$ is non-oscillating.
773. The number 1 is said to be the least upper bound of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots$. That is, 1 is the smallest number beyond which the sequence does not go. 1 is also said to be the limit of the sequence.

Similarly, 2 is the greatest lower bound or the limit of the sequence $2 \frac{1}{2}, 2 \frac{1}{4}, 2 \frac{1}{8}, \ldots$; that is, 2 is the greatest number such that the sequence contains no number less than it.
774. Axiom XXV. Every bounded increasing sequence has a least upper borm, and every bounded decreasing sequence has a !reatest lower bound.

This axiom may also be stated:
Ever!y bounded increasing or decreasing sequence has a limit.

This axiom simply means that every such sequence singles out a definite number in the maner stated.

Thus, if we attempt to approximate the square root of ?, we obtain a sequence $1,1.4,1.41,1.411,1.4142 \ldots$, having for its limit a definite number rejresented by $V^{\prime 2}$, which corresponds to the length of the diagonal of a square whose side is unity.
775. If two sequences $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are equal term by term, that is, if $a_{1}=b_{1}, a_{2}=b_{2}, a_{3}=b_{3}, \ldots$ then they are one and the same sequence and hence by Ax. XXV they determine the same number.

The same number may be defined by two different sequences.

Thus each of the sequences, $\frac{1}{2}, \frac{8}{3}, \frac{{ }_{3}}{8}, \ldots$ and $\frac{2}{3}, \frac{4}{5}, \frac{6}{7}, \ldots$, has 1 as its limit.
We notice, however, that no matter what definite number we select in either of these sequences, there is a number in the other greater than it.
776. Theorem. Two increasing bounded sequences define the same number as their limit if neither sequence contains a number greater than every number of the other.

Let $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ denote two infinite sequences, with limits A and B, such that there is no a greater than every b, and no b greater than every a.

To prove that $A=B$.
Proof: Suppose that A is not equal to B and that A is less than \boldsymbol{B}. Then there must be numbers of the sequence $b_{1}, b_{2}, b_{3}, \cdots$ greater than A, since by $\S 769$ there are numbers of $b_{1}, b_{2}, b_{3}, \cdots$ greater than any fixed number whatever which is less than B, which contradicts the hypothesis of the theorem.

In like manner we show that B is not less than A. Hence $A=B$.
777. Theorem. Two decreasing sequences'define the same number as their limit if neither sequence contains a number less than every number of the other.

APPLICATION OF LIMITS TO GEOMETRY.

778. Problem. On a given segment $A B$ to lay off a sequence of points B_{1}, B_{2}, B_{3}, of which B is the limit, surh that each of the segments $A B_{1}, A B_{2}, A B_{3}, \cdots$ is commensurable with a given segment CD.

Solution. Using m_{1}, an exact divisor of $C D$, as a unit of measure, lay off on $A B$ a segment $A B_{1}$, such that the remainder $B_{1} B$ is less than m_{1}. Then $C D$ and $A B_{1}$ are commensurable.

Using a unit m_{2}, likewise a divisor of $C D$, and less than $B_{1} B$, lay off $A B_{2}$ such that $B_{2} B$ is less than m_{2}. Then $A B_{2}>A B_{1}$, and $C D$ and $A B_{2}$ are commensurable.

Continuing in this manner, using as units of measure segments m_{3}, m_{4}, \cdots, each an exact divisor of $C D$ and each less than $B_{3} B, B_{4} B, \cdots$ respectively, we obtain a sequence of segments $A B_{1}, A B_{2}, A B_{3}, \cdots$. each greater than the preceding and each commensurable with ('D.

If the units $m_{1}, m_{2}, m_{3}, \cdots$ are so selected that they approach zero as a limit, it follows that B is the limit of the sequence $B_{1}, B_{2}, B_{3}, \cdots$.

If a different sequence of divisors of (' D, as m_{1} ', m_{3} ', $m_{3}{ }^{\prime} \cdots$, is used, we obtain a sequeuce $B_{1}{ }^{\prime}, B_{a^{\prime}}, B_{3^{\prime}} \ldots$, likewise satisfying the conditions of the problem.

We note in regard to any two such sequences $B_{1}, B_{n}, B_{3}, \ldots$ and $B_{1}{ }^{\prime}, B_{2}{ }^{\prime}, B_{3}{ }^{\prime}, \ldots$ determined as alrove. that they are both increasing and that each is sumblat no point of it is to the right of every point of the other.

Hence, by § 776 any two such serquences have the same limit B.
779. If two arcs, $A B$ and $C D$, of the same circle or of equal circles are given, then, in the same manuer as above, points $B_{1}, B_{2}, B_{3}, \cdots$ may be constructed on arc $A B$, forming a sequence whose limit is B, such that the arc $C D$ is commensurable with every arc of the sequence $A B_{1}, A B_{2}$, $A B_{3} \cdots$.

780. Definitions. If $B_{1}, B_{2}, B_{3}, \cdots$ is a sequence of points on the segment $A B$ having the limit B, then the segment $A B$ is said to be the limit of the segments $A B_{1}, A B_{2}, A B_{3}, \cdots$.
781. The ratio of two commensurable segments has been defined as the quotient of their numerical lengths.

The ratio of two incommensurable segments has not been explicitly defined, but it is now possible to do so in terms of the limit of a sequence.

Consider two incommensurable segments $A B$ and $C D$. Let $a_{1}, a_{2}, a_{3}, \cdots$ be the lengths of the segments each commensurable with $C D$, forming a sequence whose limit is the segment $A B$, and let b be the length of the segment $C D$.

Then $\frac{a_{1}}{b}, \frac{a_{2}}{b}, \frac{a_{3}}{b}, \ldots$ is an increasing bounded sequence having a limit which we call R.

If $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, a_{3}{ }^{\prime}, \ldots$ are the lengths of another sequence of segments whose limit is $A B$, the sequence $\frac{a_{1}{ }^{\prime}}{b}, \frac{a_{2}^{\prime}}{b}, \frac{a_{3}{ }^{\prime}}{b}, \ldots$ is another increasing bounded sequence with limit R^{\prime}.

By § 776 we now know that $R=R^{\prime}$.
This number R is defined as the ratio of the segments $A B$ and $C D$.
782. The application of the theory of limits to geometry consists chiefly in showing that two numbers are equal because they are the limit of the same sequence, or of sequences having the property stated in the theorem of $\S 776$. In the following paragraphs the applications are made to the chief cases both in plane and in solid geometry.
783. Theorem. In the same circle or in equal circles the ratio of two central angles is the same as the ratio of their intercepted arcs.

Proof: In case the arcs are commensurable the proof is obvious. See § 413.

If the arcs $A B$ and $C D$ are not commensurable, let $A B_{1}$, $A B_{2}, A B_{3}, \cdots$ be a sequence of arcs whose limit is $A B$, each arc being commensurable with the arc $C D$.

Then the sequence $\frac{A B_{1}}{C D}, \frac{A B_{2}}{C D} \cdot \frac{A B_{3}}{C D}, \cdots$ has a limit R which, by definition, is the ratio of the ares $A B$ and $C D$.

Similarly the sequence $\frac{\angle A O B_{1}}{\angle C O D}, \frac{\angle A O B_{3}}{\angle C O D}, \frac{\angle A O B_{3}}{\angle C O D} . \cdots$ has a limit R^{\prime} which, by definition, is the ratio of $\angle A O B$ and $\angle C O D$.

Since

$$
\frac{A B_{1}}{{ }^{\prime} D}=\frac{\angle A O B_{1}}{\angle C O D}, \frac{A B_{3}}{C D}=\frac{\angle A O B_{2}}{\angle C O D}, \cdots
$$

these two sequences are identical and hence define the same limit. Therefore it follows that $R=R^{\prime}$.
784. Theorem. A line parallel to the base of a triangle, and meeting the other two sides, divides them in the same ratio.

Given the $\triangle A B C$ with $D E \| B C$ and cutting $A B$ and $A C$.

To prove that $\frac{A D}{A B}=\frac{A E}{A C}$.
Proof: Consider the case when $A D$ and $A B$ are incommensurable.

Let $D_{1}, D_{2}, D_{3} \cdots$ be a sequence on $A B$ whose limit is D. Through
 these points draw parallels to $B C$, meeting $A C$ in $E_{1}, E_{2}, E_{3}, \cdots$.

Then E is the limit of the sequence $E_{1}, E_{2}, E_{3}, \cdots$.
For suppose it is not, and that there is a point K on $A E$ such that there is no point of $E_{1}, E_{2}, E_{3}, \cdots$ between K and E. Then draw a line parallel to $B C$ through K, meeting $A B$ in H.

But there are points of the sequence D_{1}, D_{2}, D_{3}, between H and D, and hence points of the sequence $E_{1}, E_{2}, E_{3}, \cdots b e$ tween K and E, which shows that E is the limit of E_{1}, E_{2}, E_{3}, \cdots.

Now $\frac{A D_{1}}{A B}=\frac{A E_{1}}{A C}, \frac{A D_{2}}{A B}=\frac{A E_{2}}{A C}, \frac{A D_{3}}{A B}=\frac{A E_{3}}{A C}, \cdots$.
Heuce, the two sequences,

$$
\frac{A D_{1}}{A B}, \frac{A D_{2}}{A B}, \frac{A D_{3}}{A B}, \cdots \text { and } \frac{A E_{1}}{A C}, \frac{A E_{2}}{A C}, \frac{A E_{3}}{A C}, \cdots
$$

are identical and define the same limit;
that is,

$$
\frac{A D}{A B}=\frac{A E}{A C}
$$

785. Definitions. If $a_{1}, a_{2}, a_{3}, \cdots$ is a sequence with limit a, then $k a_{1}, k a_{2}, k a_{3}, \cdots$ is a sequence with limit $k a$.

If $a_{1}, a_{2}, a_{3}, \cdots$ and $b_{1}, b_{2}, b_{3}, \cdots$ are two sequences with limits a and b respectively, then $a b$ is the limit of the sequence $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}, \cdots$.

Similarly if $a_{1}, a_{2}, a_{3}, \ldots, b_{1}, b_{2}, b_{3}, \ldots$ and $c_{1}, c_{2}, c_{3}, \ldots$ are sequences with limits a, b, c, then $a b c$ is the limit of the sequence $a_{1} b_{1} c_{1}, a_{2} b_{2} c_{2}, a_{3} b_{3} c_{3}, \cdots$.

For a complete treatment it would be necessary to show that these definitions of multiplication of irrational numbers are consistent with the rest of arithmetic and also that these new sequences are such as to determine definite limits. That, however, is beyond the scope of this book.

If the sides of a rectangle are incommensurable with the unit segment, we define its area as follows:

Let $a_{1}, a_{2}, a_{3}, \cdots$ be a sequence of rational numbers whose limit is the altitude a, and let $b_{1}, b_{2}, b_{3}, \ldots$ be a sequence whose limit is the base b.

Then the area of the rectangle is the limit of the sequence

But by definition the limit of $a_{1} b_{1}, c_{2} b_{2}, a_{3} b_{3}, \ldots$ is the product $a b$. Hence we have -
786. Theorem. The arta of a rectangle is the product of its base and altitude.
787. Definition. In a circle inscribe a sequence P_{1}, P_{2}, P_{3}, \cdots of regular polygons, each having twice the number of sides of the one preceding it.

Let the perimeters of these polygons be $p_{1}, p_{2}, p_{3}, \ldots$ and their areas $A_{1}, A_{2}, A_{3}, \cdots$. Then the length c of the circle is the limit of the sequence $p_{1}, p_{2}, p_{3}, \ldots$ and its area A is the limit of A_{1}, A_{2}, A_{3}, \cdots.

The sequence of polygons thus inscribed is called an approximating sequence of polygons.

That these sequences are increasing and bounded is obvious from the figure.
788. Theorem. The lengths of two circles are in the same ratio as their radii, and their areas are in the same ratio as the squares of their radii.

Proof : Let the radii of the circles whose centers are o and o^{\prime} be r and r^{\prime}. Denote $\frac{r^{\prime}}{r}$ by k. Then $r^{\prime}=k r$.

Inscribe in O an approximating sequence of polygons with perimeters $p_{1}, p_{2}, p_{3}, \cdots$ and areas $A_{1}, A_{2}, A_{3}, \cdots$. In o^{\prime} inscribe a sequence of similar polygons. By §§ 347, 348 , the perimeters of the latter are $k p_{1}, k p_{2}, k p_{3}, \cdots$ and their areas are $k^{2} A_{1}, k^{2} A_{2}, k^{2} A_{3}, \cdots$.

By $\S 785$, if the limit of $p_{1}, p_{2}, p_{3}, \cdots$ is c and the limit of $A_{1}, A_{2}, A_{3}, \cdots$ is A, then the limits of $k p_{1}, k p_{2}, k p_{3}, \cdots$, and $k^{2} A_{1}, k^{2} A_{2}, k^{2} A_{3}, \cdots$ are $k c$ and $k^{2} A$, respectively.

That is, the ratio of the lengths of the circles is $\frac{k c}{c}=k=\frac{r^{\prime}}{r}$, and the ratio of their areas is $\frac{k^{2} A}{A}=k^{2}=\frac{r^{\prime 2}}{r^{2}}$.

If regular circumscribed polygons are used, we obtain decreasing sequences both for the perimeters and the areas. That the limits of these sequences are identical with those obtained above is a direct consequence. See § 417.
789. Definition. If the three concurrent edges a, b, c of a rectangular parallelopiped are incommensurable with the unit segment, the volume inclosed is defined as follows :

Let $a_{1}, \alpha_{2}, \alpha_{3}, \cdots$ be a sequence of rational numbers whose limit is the side a. Let $b_{1}, b_{2}, b_{3}, \cdots$ and $c_{1}, c_{2}, c_{3}, \cdots$, be similar sequences whose limits are respectively the dimensions b and c.

Then the volume is the limit of the sequences $a_{1} b_{1} c_{1}, a_{2} b_{2} c_{2}, a_{3} b_{3} c_{3}, \cdots$.

But the limit of this sequence is by definition the product of the limits of the three sequences $a_{1}, a_{2}, a_{3}, \cdots$, $b_{1}, b_{2}, b_{3}, \cdots, c_{1}, c_{2}, c_{3}, \cdots$, or $a b c$.

Hence, we have -
790. Theorem. The volume inclosed by a rectangular parallelopiped is equal to the product of its three concurrent edges.
791. Definition. In a triangular pyramid inseribe and circumseribe prisms as shown in the figure. See § 591 for description of the construction.

Denote the sum of the volumes of the inscribed prisms by r_{1}.

Using as altitudes one half the altitudes of the first set of prisms, inscribe a second set the sum of whose volumes is r_{2}. Comtiming in this mamer, we obtain a sequence of sets of prisms with volumes $r_{1}, r_{2}, r_{3}, \cdots$. The limit r^{r} of this sequence we define as the volume of the pyramid.

If circumscribed prisms are used, we get a decreasing sequence of volumes $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, \cdots$ with limit V^{\prime}. That these two limits are identical follows from the fact that the sum of the volumes of the circumscribed prisms exceeds that of the inscribed prisms by exactly the volume of the lowest circumscribed prism (see §594), and this may be made as small as we please.

792.

EXERCISE.

1. Prove that the definition of $\S 789$ gives the same volume for the rectangular parallelopiped, no matter what sequences of segments are used, provided their limits are the segments a, b, c.

A proof that the definition of $\S 791$ gives the same volume for the triangular pyramid no matter into how many equal parts the altitude is first divided is rather too complicated to he attempted here. It may be proved by showing that if the altitude is divided into n and also into m equal parts, then if $n>m$, the set of $n-1$ prisms will be greater than the set of $m-1$ prisms.
793. Theorem. Two pyramids with the same altitudes and equal bases inclose equal volumes.

Proof: Divide the two equal altitudes into the same number of equal parts and construct inscribed prisms as in § 591.

Since corresponding sets of prisms have equal volumes, it follows that the volumes of the pyramids are the limits of the same sequence, and hence identical.
794. Convex curves. Without specifically defining a convex closed curve (see § 552), we assume that in such a curve it is possible to inscribe a sequence of polygons $P_{1}, P_{2}, P_{3}, \cdots$, having perimeters $p_{1}, p_{2}, p_{3}, \cdots$ and areas $A_{1}, A_{2}, A_{3}, \cdots$ with limits p and A respectively, and to circumscribe a sequence of polygons $P_{1}{ }^{\prime}, P_{2}{ }^{\prime}, P_{3}{ }^{\prime}, \cdots$, having perimeters $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, p_{3}{ }^{\prime}, \cdots$ and areas $A_{1}{ }^{\prime}, A_{2}{ }^{\prime}, A_{3}{ }^{\prime}, \ldots$ with limits p^{\prime} and A^{\prime} respectively, such that $p=p^{\prime}$ and $A=A^{\prime}$.

These limits p and \boldsymbol{A} we now define as the perimeter and the area respectively of the curve.
795. Definition. Given any cylinder with a convex right cross section and an element e. In this cross section inscribe a sequence $P_{1}, P_{2}, P_{3}, \cdots$ of polygons, as in $\S 787$, with perimeters $p_{1}, p_{2}, p_{3}, \cdots$ and areas $A_{1}, A_{2}, A_{3}, \cdots$, thus defining the perimeter p and the area A of the cross section.

Consider a set of prisms inscribed in this cylinder, of which $P_{1}, P_{2}, P_{3}, \cdots$ are right cross sections.

Then the areas and the volumes of these prisms are respectively $p_{1} e, p_{2} e, p_{3} e, \cdots$ and $A_{1} e, A_{2} e, A_{3} e, \cdots$.

The lateral area and the volume of the cylinder are now defined as the limits of these sequences. But these limits are by $\S 785$ equal to pe and Ae respectively.

Hence, we have -
796. Theorem. The lateral area of a cylinder is the product of an element, and the perimeter of a right section and its volume is the product of an element and the area of a right section.
797. EXERCISES.

1. Give examples other than those given in the test of infinite sequences which do not determine definite numbers.
2. Give two distinct sequences which determine the number ?. Show that the theorem of § 566 applies and proves that these sequences determine the same number.
3. Give two decreasing sequences each of which determines the number 3. Apply § 777 to show that these siquences determine the same number.
4. State fully the relation betwern a bounded increasing sequence and the number determined by it. slate also the relations between a bounded decreasing sonnow and the number determined by it.
5. State fully what is meant ly "a limit of a strptence" both for increasing and decreasing sequences.
6. Given two incommensurable segments $A B$ and $C D$. Lay off on the line $A B$ a decreasing sequence of segments, each of which is commensurable with $C D$, such that the limit of the sequence is the segment $A B$.
7. If $a_{1}, a_{2}, a_{3}, \ldots$ is an increasing sequence defining the number 4 , prove that $3 a_{1}, 3 a_{2}, 3 a_{3}, \cdots$ defines the number $3 \times 4=12$.

Note that in case the sequence $a_{1}, a_{2}, a_{3}, \ldots$ defines an irrational number, we should not be able to prove the corresponding proposition without first defuing what is meant by the product of a rational and an irrational number. But such definition would in that case be the proposition itself. See § 785 .
8. If $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are increasing sequences defining the numbers 3 and 5 , show that the sequence $a_{1} b_{1}, a_{2} b_{2}, a_{8} b_{3}, \cdots$ defines the number 15.

In case these sequences defined irrational numbers, could a corresponding proposition be proved?
9. In the same manner as in $\S 781$ define the ratio of two incommensurable arcs.
10. Show as above that the ratio so obtained is independent of the sequence of units of measurement used, so long as the limit of this sequence is zero.
11. Treat the ratio of two incommensurable angles in a manner similar to the treatment of arcs in the two preceding exercises.
12. Define the lateral area of a cylinder by means of circumscribed prisms, and show that this definition leads to the same result as that given in § 795.
13. Prove as above that the volume of any convex cylinder is equal to the product of its altitude and area of its base.
14. Prove that the lateral area of a right circular cone is equal to half the product of the slant height and the perimeter of its base.
15. Prove that the volume of any convex cone is equal to one third the product of its altitude and the area of its base.

Suggestion. The treatment required in the last three exercises is a very close paraphrase of the definitions and proof given in § 789. Observe that we cannot begin to make a proof until we have defined the subject matter of the theorem. That is, we must first define the areas and volumes in question.

VOLUME OF THE SPHERE.

798. Through two points P and Q of a sphere pass a great circle forming a hemisphere with center O.

Divide $O A$, the radius perpendicular to the plane of the great circle, into the equal parts $O C, C B$, and $B A$. Through C and B pass planes parallel to the plane of $P O Q$, meeting the circle in points D and E, respectively.

Construct right circular cylinders with axes $O C$ and $C B$ and radii $C D$ and $B E$. Denote by Γ_{1} the sum of the volumes of these cylinders.

Now divide the radius $O A$ into six equal parts and construct five cylinders in the same manner as above. Let the sum of these volumes be r_{2}.
('ontinuing in this manner, each time dividing $O A$ into twice as many equal parts as in the preceding, we obtain a sequence of sets of cylinders and a corresponding sequence $r_{1}, r_{2}, r_{3}, \cdots$ of volume.
W^{\top} e now define the volume inclosed by the hemisphere as the limit of the sequence $\mathrm{V}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \cdots$.
799. Construct a right circular eylincler with its base in the plane of $P O Q$ and altitude $O^{\prime} A^{\prime}=O A$.

In note by F the figure formed by the lower base of the eylinder, its lateral surface and the lateral surface of the cone whose lase is the upere base of the cylinder and whose vertex is at O^{\prime}.

Draw segments $O^{\prime} M$ and $O^{\prime} N$. Let the planes through C and B cut $O^{\prime} A^{\prime}$ in C^{\prime} and B^{\prime} and $o^{\prime} M$ in B and π.

Now form the cylinder $O^{\prime} C^{\prime} H$ whose axis is $O^{\prime} C^{\prime}$ and whose radius is $C^{\prime} H$. Likewise form $C^{\prime} B^{\prime} K$.

Let σ_{1}^{\prime} denote the sum of the volumes of $o^{\prime} C^{\prime} D^{\prime}$ and $C^{\prime} B^{\prime} E^{\prime}$ minus the sum of the volumes $O^{\prime} C^{\prime} H$ and $C^{\prime} B^{\prime} \pi$.

In a similar manner, using the planes which divide $O A$ and hence $O^{\prime} A^{\prime}$ into six equal parts, we form another set of five cylinders, the sum of whose volumes minus that of the smaller inside cylinders we denote by $V_{2}{ }^{\prime}$.

Continuing in this manner, we obtain a sequence of volumes $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}{ }^{\prime}, \ldots$ whose limit V^{\prime} we define as the volume of the given figure F.

We now prove that $\nabla_{1}=\nabla_{1}^{\prime}, \nabla_{2}=\nabla_{2}^{\prime}, \ldots$.
Denote $O A$ by r, and note that $0^{\prime} B^{\prime}=B^{\prime} K$.
(1) Vol. $C^{\prime} B^{\prime} E^{\prime}-\mathrm{Vol} . C^{\prime} B^{\prime} K=\pi C^{\prime} B^{\prime}\left(\overline{B^{\prime} E^{\prime}}-\overline{B^{\prime} K^{2}}\right)=$ $\pi C^{\prime} B^{\prime}\left(r^{2}-{\overline{O^{\prime} B^{\prime}}}^{2}\right)$.
(2) Vol. $C B E=\pi C B \cdot \overline{B E}^{2}=\pi C B\left(r^{2}-\overline{O B}^{2}\right)$, since $\overrightarrow{B E}^{2}=$ $r^{2}-\overline{O B}^{2}$.

But $O B=O^{\prime} B^{\prime}$ and $C B=C^{\prime} B^{\prime}$.
Hence, Vol. $C B E=$ Vol. $C^{\prime} B^{\prime} E^{\prime}-$ Vol. $C^{\prime} B^{\prime}$ K.
Similarly we show that

$$
\text { Vol. } O C D=\text { Vol. } o^{\prime} C^{\prime} D^{\prime}-\text { Vol. } o^{\prime} C^{\prime} H .
$$

Hence, $V_{1}=V_{1}{ }^{\prime}$. In like manner $V_{2}=V_{2}{ }^{\prime}, V_{3}=V_{3}{ }^{\prime}, \cdots$.
Hence, $V=V^{\prime}$, since they are the limits of the same sequences.

But the volume of the cylinder $o^{\prime} A^{\prime} M$ is πr^{3} and of the cone whose volume was subtracted, $\frac{\pi}{3} r^{3}$. That is, the volume of F is $\frac{2 \pi}{3} r^{3}$, and hence that of the hemisphere is $\frac{2 \pi}{3} r^{3}$.

Hence, we have -
800. Theorem. The volume of the sphere is $\frac{4}{3} \pi r^{3}$.
801. Note that the above proof consists essentially in showing that the area of the circle $B E$ is equal to that of the ring between the circles $B^{\prime} E^{\prime}$ and $B^{\prime} K$, and that the area of the circle $C D$ is equal to that of the ring between $C^{\prime} D^{\prime}$ and $C^{\prime} H$ and so on.

Indeed this theorem and also that of $\S 594$ are special cases of what is known as

Cavalieri's Theorem. If two solid figures are regarded as resting on the same plane b, and if in every plane parallel to b the sections of the two figures have equal areas, the figures have equal volumes.

The proof of this more general theorem is more difficult than any thus far given, inasmuch as it involves sequences which oscillate: that is, which are neither constantly increasing nor constantly decreasing.

THE AREA OF THE SPHERE.

802. About a sphere of radius r construct a sequence of circumscribed polyhedrons such that the largest face in each polyhedron becomes as small as we please when we proceed along the sequence. Let $s_{1}, s_{2}, s_{3}, \cdots$ be the total surfaces of these polyhedrons. This forms a decreasing sequence with limit s which we define as the surface of the sphere.

The volumes of these polyhedrons will be $\frac{r}{3} s_{1}, \frac{r}{3} s_{2}, \frac{r}{3} s_{3}, \cdots$.
Then the volume v of the sphere is defined as the limit of this sequence of volumes.

Hence, by $\S 785, V=\frac{r}{3} s$. But by $\S 700, r=\frac{8}{3} \pi r^{3}$.
Then

$$
s=\frac{3}{r} \cdot \frac{4}{3} \pi r^{s}=4 \pi r^{2} .
$$

H'nce, we have -
803. Theorem. The area of the sphere is $4 \pi r^{2}$.

This argument is incomplete in that two distinct definitions have been given of the volume of the sphere, namely, as the limit of an increasing sequence of volumes of inscribed cylinders and also as the limit of a decreasing sequence of volume of circumscribed polyhedrons. But it has not been proved that these two definitions are equivalent; that is, that they lead to the same formula for the volume of the sphere.

The treatment of the area and volume of the sphere in most of the current textbooks on geometry is open to a similar objection. Usually two distinct definitions are used for the area of the sphere, namely, as a limit of the areas of circumscribed frustums of cones and also as the limit of the surfaces of circumscribed polyhedrons.

The argument used in §§ $740-748$ is not subject to any such objection.

SUMMARY OF CHAPTER XIV.

1. Explain the separate stages of treatment of incommensurables and of limits as given in this book, including both the Plane and Solid Geometry.
2. Give an outline of the introduction to this final treatment by means of sequences.
3. Make a list of the definitions, principles, and theorems upon which the treatment of sequences is based.
4. Explain fully the way in which the principles of sequences are applied to geometric theorems. Illustrate by line-segments and arcs.
5. Make a list of the theorems which are proved here by the theory of limits, using the sequence process.
6. State in some detail how this process is used in case of the area and volume of the sphere.
7. Give all the mensuration formulas proved in this chapter.
8. Review the entire list of mensuration formulas for both Plane and Solid Geometry.

INDEX.

(References are to sections unless otherwise stated.)

AbbreviationsAddition, of anglesof line-segmentsAdjacent, parts of a polygonparts of a triaugle8021
Alternate, exterior angles 88
interior angles 88
Alternation 246
Altitude, of a cone 604
of a cylinder 555
of a frustum 599
of a parallelogram 137
of a prism 526
of a pyramid 586
of a spherical segment 750
of a trapezoid 137
of a triangle 24
of a zone 750
Analysie, of proof 175
of problems 177
Angle, aculte, oblique, obtuse,reflex, right19
between two curves 678
dihedral 495
exterior of a triangle 81
face 518
of projection 571, 580
polyhedral. 518
reëntrant 134
spherical 678
straight, zero, perigon 16, 17
trihedral 518
Angles, adjacent 39
complementary 70
multiplication and division of 39
supplementary 70
vertical 70
Antecedents 242
Apothem of a regular poly- gon 342
Approach 767
Approximate area
Approximate measurement 235,305
Approximate ratio 340
Arc of a circle 1:2, 184
Arc of a spherical triangle 680
Area, approximate 306
of a circle 361, 416
of a cone 612
of a cylinder 562, 563, 795
of a polygon 309
of a prism 528
of a pyramid 587
of a rectangle . . 300-307, 414, 785
of a sector of a circle 364
of a segment of a circle 365
of a sphere. $740,745,746,802$, 803
of a spherical polygon 738
of a spherical triangle 736
of a surface 302
of a zone 751
lateral 526
total 526
Aristotle page 31
Axial symmetry 164
Axioms . 60, 61, 82, 96, 119, 392,$407,409,411,412,416,460,462$,$464,560,562,592,612,745,774$
on numbers 241
Axis, in a graph . 368, Chapter XIVof a circle659
of symmetry 164
Base, of a cone 604
of a cylinder 554
of a parallelogram 135
of a prism 525
of a pyramid 586
of a spherical sector 750
of a spherical segment 750
of a trapezoid 136
of a triangle 24
Bhâskara 318

Compoeition, and division . . 246
Concave polygon 160Concurrent lines28
ane, debnition of601
right circular 604Congruent, polyhedral angles0
Sphal polyo6
Consequents -42Construction, of figures4
or regular polygons
Converse theorems 18Corollary104cross-sectionsfint
part of ponsions707
parts of polygons - $\cdot 6$parto of triangles29
Coaine of an angle nis.Curved line11
-ures.$\therefore 1$
of revolution $\therefore 4$
of 553
Decagon 424
Derree of an angle
17
Demonstration 59, 7! , 50. 311$\rightarrow 3$
Dependence of variables :2illDiameter, of a circle1×1
of : parallelogram. 1.4Dihedral angles.$4!$
adjacentinl?
complementary 500
Dihedral angles, measure of 500
Faces, of a prism 525
supplementary 500
vertical 500
Direct proof 175, 399
Direct tangent to two circles 403
Discussion of a construction $1: 2$
Distance, between two points in aplane61
between two points on a spbere 661
from a point to a line 114
from a point to a plane 475
Dividers 33
Division, of line-segments 10
external, internal 425
in extreme and mean ratio 421
of augles 39
of the circle 333
Dodecagon pages 82,235
Dodecohedron 625, 636
Edge, lateral 525
of a dihedral angle 495
of a polyhedral angle. 518
of a polybedron 523
Flement, of a cone 603
of a cylinder 554
of a prismatic surface 524
Fllipse, area of 583
definition of 582
End-point, of a segment 8, 13
of a ray 9
Equal, equivalent 27
solids 54
Equiangular fignres 22, 160
mutually 255
Equilateral flguree 22, 160
Equivalent solids 544
Euclid pages $3,31,40,141$
Eudoxus page 140
Euler's theorem 627
Exterior, angle of a triangle 81
angles of parallel lines 88
External, division 252, 425
segment of a secant 274
Extreme and mean ratio 421
Extremes 242
Faces, of a dihedral angle 495
of a polyhedral angle 518
of a polyhedron 523
of a pyramid 586
Flgure in space 458
Figures, geometric 12
Fourth proportional 291
Frustum 599
Generator, of a conical surface 603
of a cylindrical surface 553
of a pyramidal surface 585
of a spberical surface 744
Geometric proposition 59
Geometric solid. 3
Geometry 1
Gothic arch, pages 109, 151, 197, 204Graphic representation,
Cbapters VI, XIII
Great circle, axis of 659
pole of 663
Half-plane 495
Harmonic division 425
Hexagon, regnlar, pages 65, 67, $76,78,82,108,174,177$, etc.Historical notes, pages 3, 31,$38,40,42,128,140,162,167,193,290$
Hypotenuse 23
Hypothesis 78
Incommensurables, 236, 240$305,368,541,766,767$
Icosahedron 625,636
Indirect proof $91,176,394$
Inscribed, angle in an are 220
angle iu a circle 185
augle in a segment 220
circle in a triangle 228
cone 610
cylinder 561
prism 561, 592
pyramid 610
sphere 632, 633, 634, 672
triangle in a circle 225
Intercepted arc 185
Interior angles 88
Internal division 252, 425
Inversion 246
Irrational, uumber 762
ratio 762

(References are to sections unless otherwise stated.)
Polygons, similar 256
symmetrical 687
Polyhedral angles 518, 726
congruent 520
edges of 518
faces of 518
symmetrical 687
Polyhedrons, added 530
congruent 44
equal, equivalent 544
inscribed 631, 672
regular 624, 625
similar 638
Practical measurement . 235, 306Preliminary theorems,62-69, 72-76, 189-198, 307
Prismatic surface, directrix of 524
generator of 524
Prisms, definition of 525
hexagonal 526
lateral edges of 525
oblique 526
Problems of construction 44, 140
Projection 436
of a figure 512
of a point 512
of a line-segment 570
of a plane-segment 580
Projection angle 571
Proof 59, 391, 292
by exclusion 86
direct, indirect 91, 175, 176, 394
Proportion 242
Proportional division 242
Proposition, geometric 59
Protractor 18, 33
Pyramid, definition of 586
triangular 586
Pyramidal surface 585
directrix of 585
element of 585
nappes of 585
vertex of 585
Pythagoras . . pages 40,130, $140,162,167$
Quadrant 203, 663
Quadrllaterals 134-137
Radius, of circle 12
of a circular cylinder 554
Radius, of a regular polygon 342
Ratio 408
commensurable 781
incommensurable 781
of similitude 645
Ray 9
Rectangle 135
Reflex angle 19
Regular, polygon 160
polyhedrons 626
prisms 526
pyramids 586
tetrahedrons 625
Rhomboid, rhombus 135
Right, angle 19
cone 604
cylinder 554
prism 526
pyramid 586
section 525, 554, 604
triangle 23
Scalene triangle 22
Secant 182
limiting position of 386
Second, of angle 17
of arc 202
Section, of a prismatic surface 524
of a sphere 658
Sector of a circle 203
Segment, altitude of 750
bases of 750
of a circle 220
of a line 8
spherical 750
Semicircle 184
Sequence, approximating 786
bounded 772
decreasing 771
increasing 768
infinite 772
limit of 772
non-oscillating 772
oscillating 772
unbounded 772
Sides of an angle 14, 106
Similar figures. 27, 256, 638
Similarity, applications of 653
Sine of an angle 279
Slant height, of frustum 604

lant height, of pyramid . . 586 of right cone 604	Tangent, to a cylinder . . to a sphere
Small clrcle on a sphere . . bios	Technical words 3 !
Solids, congruent .520,731	Tests for congruence . 32, 35,40
equal 54	Tetrahedron, circumscribed . (j, 1
equivalent 544	inscribed 586, 631, $3 \mathrm{3} / 2$
geometrical 458	regular AR,
Solution of problems . . 177, 17x	Thales pages 3,17
Sphere, area of . $744-746,80{ }^{\text {a }}$	Theorem, definition of . 5 !
determination of . . . 633	Theory of limits . .Chapter XIV'
diameter of 655	Third proportional . .
great circle of 659	Transversal is
inscribed $0: 37$, ti72	Transverse tangent . . . 403
points within, without . . 655	Trapezoid 136
radius of 632, , 6.5	Triaugle . $21-24,41$,
small circle of . . . 659	.
Spherical, angle - 678	Truncated, prism . . 3id
degree, minute, second . . 733	pyramid . 599
excess $7: 3 \mathrm{i}, 737$	
polygons727, 731	Undeflned words 389
sector750, 75	Unproved propositions 60,391
triangle biko	Unproved propositions 60,301
Square 135	Variables . . Chapters VI, XIII
Subtended, angle $\left.\begin{array}{l}\text { are . . } \\ \text { ari }\end{array}\right]$	dependence of
Subtraction, of angles 39	limit of .
of line-segments 10	
Sum of angles 39	
Superposition page 14	id
Surface, conical $\quad .603$	of a shoric:al :mgle . . this
curved 552, 559	Vertex angle of atriangli. -t
eylindrical 553 definition of	Vertical angles. .
$\begin{array}{ll}\text { dateral } & . \\ \text { lation }\end{array}$	Vertices, of a polyhedrou 523
prismatic 524	of a polygon 11in
spherical fin\%	of in quadrilateral . $1: 4$
Symbols of abbreviation . . 80	of a triangle . . . -1
Symmetrical, spherical triaugles tisi	Volume. as a limit of a sequencra
tribedral aumbe's. isis	of a cylinder . 560.3 , in, 34
Symmetry 164-17:3	of il prism itl ift
problems iuvolving, pages 81.	of a sphere $\quad 7 t 0.74 \overline{7},-34$
K2, 93, ! $4,101,104,150,205$,	of sphericalcone - $\overline{-i}$
	of sphurical sector . - $\overline{0} \mathrm{~S}$
with respect to a point (i):	of spherical sequment ${ }^{\text {a }}$
Tangent, of an :10nte nugk 5.8	Whole secant . ${ }^{-1}$
ireless. . . 1sti	
to a circle 183	Zone, altitude of 750
to two circles . . . 463, 404	bisis of . . Tio
o a cone 600	,f one hase

[^0]: Chicago and New Yore, May, 1911.

