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PREFACE.

In writing this book the authors have been guided by two

main purposes

:

(a) That pupils may gain by gradual and natural processes

the power and the habit of deductive reasoning.

(b) That pupils may learn to know the essential facts of

elementary geometry as properties of the space in which they

live, and not merely as statements in a book.

The important features by which the Plane Geometry seeks

to accomplish these purposes are

:

1. The simplification of the first five chapters by the exclusion

of many theorems found in current books. These five chapters

correspond to the usual five books, and the most important

omissions are the formal treatment of the theory of limits,

the incommensurable cases, maxima and minima, and numer-

ous other theorems, together with the deduction of complicated

algebraic formulae.

Chapter VI contains a graphic representation of certain im-

portant theorems and an informal presentation of incommen-

surable cases and limits. The treatment of limits is based

upon the graph, since the visual or graphic method appeals

more directly to the intuition than the usual abstract processes.

Chapter VII is devoted to advanced work and to a review of

the preceding chapters.

2. T7ie subject has been enriched by including many applica-

tions of special interest to pupils. Here an effort has been made

to include only such concrete problems as come fairly within
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the observation and comprehension of the average pupil.

This led to the omission, for example, of problems relating

to machinery and technical industries, which might appeal

to an exceptional boy, but which are entirely inappropriate

for the average student. On the other hand, free use is made

of certain sources of problems which may be easily compre-

hended without extended explanation and which involve varied

and simple combinations of geometric forms. Such problems

pertain to decoration, ornamental designs, and architectural

forms. They are found in tile patterns, parquet floors, lino-

leums, wall papers, steel ceilings, grill work, ornamental

windows, etc., and they furnish a large variety of simple

exercises both for geometric construction and proofs and for

algebraic computation. They are not of the puzzle type, but

require a thorough acquaintance with geometric facts and

develop the power. to use mathematics.

These problems form an entirely new type of exercises, and

while they require more space in the text-book than the more

difficult " originals " stated in the usual abstract terms, they

excel the latter in interest for the pupil and in helping to

train his mathematical common sense. Jlany of these exer-

cises are simple enough to be solved at sight, and such solution

should be encouraged whenever possible. All the designs are

taken from photographs or from actual commercial patterns

now in use.

3. Persistent effort is made to vitalize the content of the defini-

tions and theorems. It is well known that pupils often study

and recite definitions and theorems without really comprehend-

ing their meaning. It is sought to check this tendency by

giving definitions only when tlioy are to be used, and by imme-

diately verifying both definitions and theorems in concrete

cases. The figure on page 4 is the basis for a large number
of questions of this type. For example, see § !.'."), E.\.. o

; § 30,

Ex. 1
; § 34, Exs. 1, 2; § 36, Ex. 3; §§ 321.', ;i24.



PREFACE. V

In this connection special attention is called to the emphasis
placed upon those theorems which are of fundamental impor-

tance both in the logical chain and in their immediate use

in effecting constructions and indirect measurements otherwise

difficult or impossible. For example, see the theorems on con-

gruence of triangles, §§ 31-43, the constructions of §§ 44^58,

and the theorems on proportional segments, §§ 243-254. Com-
pare especially § 34, Ex. 6, § 244, Ex. 2, and § 254, Exs. 4, 5.

The summaries at the close of the chapters, which are to be

made by the pupil himself, will vitalize the theorems as no
made-to-order summaries can possibly do.

4. The student is made to approach the formal logic of geometry

by natural and gradual processes. He is expected to grow into

this new, and to him unusual, way of thinking. The treat-

ment is at the start informal, leading through the congruence

theorems directly to concrete applications and geometric con-

structions. The formal development then follows gradually

and is characterized by a judicious guidance of the student,

by questions, outlines, and other devices, into an attitude of

mental independence and an appreciation of clear reasoning.

There are certain terms whose general meaning in mathe-

matics is inconvenient in some parts of a book like the present.

Thus we say that two circles (meaning by circle the curved

line) meet in two points, and it is also convenient to say that

the base of a certain cylinder is a circle. In such cases the

generally accepted mathematical meanings of the terms have

been given in the definitions, while notes have been added that

different meanings are sometimes to be understood, depending

on the context to make the meaning clear. See §§ 623, 695.

This avoids learning definitions which must be discarded later,

and also the clumsiness resulting from a strict adherence to the

same meaning throughout. Experience has shown that no

confusion whatever results from this, while the resulting sim-

plicity of statement is of considerable importance.
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By its arrangement the Plane Geometry is adapted to three

different courses :

(a) A minimuTn course, consisting of Chapters I to VI,

without the problems and applications at the end of each

chapter. This would provide about as much material, theo-

rems, constructions, and originals as is found in the briefest

books now in use.

(6) A medium course, consisting of Chapters I to VI, includ-

ing a reasonable number, say one half or two thirds, of the

applications at the end of each chapter. This would fully

cover the college entrance requirements.

(c) An extended course, including Chapter VII, which eon-

tains a complete review, together with many additional theo-

rems and a large number of further applications. This would

provide ample work for the strongest high schools, and for

normal schools in which more mature students are found or

more time can be given to the subject.

Chapter VII gives a complete treatment of the incommen-
surable cases, though not based on the formal theory of limits.

It is believed that for high school pupils the notion of a limit

is best studied as a process of approximation, and that the best

preparation for the later understanding of the theory is by a
preliminary study of what is meant by " approaches," such as

is given in Chapters III and IV.

The important features by which the Solid Geometry seeks

to accomplish the two main purposes stated with reference to

the Plane Geometry are :

1. The concepts of three-dimensional space are made clear

by many simple iRustratioDS and exercises. At best the average
pupil comes but slowly and gradually to a full comprehension
of space forms and relations. Pages L'SL', L'S.S, L'SG, 2SS. L\S;1,

295, 296, etc., will show how the pupil is aided in understand-
ing and appreciating these forms and relations at the outset.

In this connection, Chapter XIII on Graphic Representation
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is of fundamental importance, since it exhibits to the eye the

functional relations among varying geometric forms.

2. Interesting concrete applications are interspersed throughout

the text. It is the aim profoundly to impress upon the mind

of the pupil the practical significance of certain fundamental

theorems in solid geometry. Eor instance, how many pupils

in the ordinary study of the theorems on the ratios of surfaces

and volumes of similar figures realize that there is in them

any connection with the possibility of successfully launching

a steamship a mile long ? See the exercises on pages 390, 391,

444, 445. For illustrations of other interesting and useful

applications, see pages 337, 344, 345, 434, 435.

3. The logical structure is made more complete and more

prominent than in the Plane Geometry. Solid Geometry is

studied by more mature pupils who have been led by gradual

stages in the Plane Geometry to a knowledge and apprecia-

tion of deductive reasoning. Hence the axioms are stated

and applied in strictly scientific form and at the precise points

where they are to be used. For instance, see §§ 460, 462, 464,

538, 560, 562, 593, 612, etc.

Note also the consistent and scientific definitions of all

solids, not as bounded portions of space, but as configurations

in space, the uniform conception in all higher mathematical

usage. See §§ 68, 70, 99, 132, 149, 200, 523, 525, 554, 587,

604, 655.

4. Throughout both parts of this Geometry a consistent scheme

has been followed in the presentation of incommensurables and

the theory of limits. In Chapters I to VI the idea of "ap-

proach " is made clear by many concrete illustrations, and the

theorems involving this idea are shown to hold for all possible

approximations. In Chapter VII rigorous proofs of these theo-

rems are given and in far simpler terminology than is found in

current text-books. This latter method is followed throughout
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Chapters VIII to XIII, thus giving a complete and scientific

treatment up to that point. In Chapter XIV the theory of

limits is presented in such a way as to leave nothing to be

unlearned or compromised in later mathematical work. This

chapter may be omitted without affecting the logical complete-

ness of the book.

Acknowledgment is due to Miss Mabel Sykes, of Chicago,

for the use in the Plane Geometry of a large number of draw-

ings and designs from her extensive collection ; also to numer-

ous commercial and manufacturing houses, both in this country

and in Europe, through whose courtesy many of the patterns

were obtained.
H. E. SLAUGHT.
N. J. LENNES.

Chicago and New York,
May, 1911.
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PLAICE GEOMETRY.

CHAPTER I.

RECTILINEAR FIGURES.

INTRODUCTION. ,

1. Elementary geometry is a science which deals with the

space in which we live. It begins with the consideration

of certain elements of this space which are called points,

lines, planes, solids, angles, triangles, etc.

Some of these terms, such as point, line, plane, are here

used without being defined in a strictly logical sense.

Their meaning is made clear by description and by con-

crete illustrations like the following.

2. Certain portions of space are occupied by objects

which we call physical solids, as, for instance, an ordinary

brick. That which separates a solid from

the surrounding space is called its surface.

This may be rough or smooth. If a surface

is smooth and flat, we call it a plane surface.

A pressed brick has six plane surfaces called faces. Two
adjoining faces meet in an edge. Three edges meet in a

corner.

The brick is bounded by its six faces. Each face is

bounded by four edges, and each edge is bounded by two

corners.

1



2 PLANE GEOMETRY.

3. If instead of the brick we think merely of its form and

magnitude, we get a notion of a geometrical solid, which

has the three dimensions, length, breadth, and thickness.

The faces of this ideal solid are called planes. These

are flat and have length and breadth, but no thickness.

The edges of this solid are called lines. They are

straight and have length, but neither breadth nor thick-

ness. The corners of this solid are called points. They

have position, but neither length, breadth, nor thickness ;

that is, they have no magnitude.

4. It is possible to think of these concepts quite inde-

pendently of any physical solid. Thus we speak of the

line of sight from one point to another ; and we say that

light travels in a straight line.

The term straight line is doubtless connected with the idea of a

stretched string. Of all the lines which may be con-

ceived as passing through two fixed points that one ^^< y^
is said to be straight between these points which

corresponds most nearly to a stretched string.

Likewise a plane may be thought of as straight or stretched in every

direction, so that a straight line passing through any two of its points

lies wholly in the plane.

5. If one of two intersecting straight lines turns about

their common point as a pivot, the lines

will continue to have only one point in ^.^
common until all at once they will coincide

~~^
throughout their whole length. Hence,

Two strniijlit lines cannot have more than

one point in common unless tlieii coincide and

are the same line; that is, two points determine a straight line.

This would not be so if the lines liad width, as may
be seen by examining the figures.
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6. EXERCISES.

1. How does a carpenter use a straight-edge to determine whether
a surface is a plane? Do you know of any surface to which this test

will apply in one direction but not in all directions ?

2. What tool does a carpenter use in reducing an uneven surface

to a plane surface ? Why is the tool so named ?

3. If two points of a straight line lie in a plane, what can be said

of the whole line ?

4. How many points of a straight line can lie in a plane if it con-

tains at least one point not in the plane ?

5. If two straight lines coincide in more than one point, what can

you say of them throughout their whole length ? Do you know of

any lines other than straight lines of which this must be true ?

6. How do the material points and lines made by crayon or pencil

differ in magnitude from the ideal points and lines of geometry ?

7. A machine has been made which rules 20,000 distinct lines side

by side within the space of one inch. Do such lines have width ? Are

they geometrical lines ?

8. Of all the lines, straight or curved, through two points, on

which one is the shortest distance measured between the two points ?

See the figure of § 4.

Historical Note. The Egyptians appear to have been the first

people to accumulate any considerable body of exact geometrical

facts. The building of the great pyramids (before 3000 b.c.) re-

quired not a little knowledge of geometric relations. They also

used geometry in surveying land. Thus it is known that Eameses II

(about 1400 B.C.) appointed surveyors to measure the amount of land

washed away by the Nile, so that the taxes might be equalized.

The Greeks, however, were the first to study geometry from a logi-

cal point of view. Between 600 b.c, when Thales, a Greek from Asia

Minor, learned geometry from the Egyptians, and 300 b.c, when

Euclid, a Greek residing in Alexandria, Egypt, wrote his Elements of

Geometry, the crude, practical geometric information of the Egyp-

tians was transformed into a well-nigh perfect logical system.

Euclid's " Elements " contains the essential facts of every text-

book on elementary geometry that has been written since his time.
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NOTATION FOR POINTS AND LINES.

7. A point is denoted by a capital letter.

A straight line is denoted by two capital '

letters marking two of its points or by —^ .

—

one small letter. The word line alone
;

usually means straight line.

Thus, the point A, the line AB, or the line I.

8. A straight line is usually understood to be un-

limited in length in both directions, while that part of it

which lies between two of its points is a a B
called a line-segment, or simply a segment.

"

These points are called the end-points of the segment.

Thus, the segment AB or the segment a.

Two segments with the same end-points are coincident.

9. A part of a straight line, called a ray or half-line, may
be thought of as generated by a point ^ ^
starting from a fixed position and mov- ' '

*

ing indefinitely in one direction. The starting point is

called the end-point or origin of the ray.

If A is the origin of a ray and B any other point on it, then it is

read the ray AB, not the ray BA.

10. Two line-segments are said to be

added if they are placed end to end so as 4 £ ?

to form a single segment.

Thus, segment ^C= segmeDt^B + segment BC, otAC=AB+BC.

If AC = AB + BC, then AC is greater than either AB or

BC, and this is written AC > AB and AC > BC.

A segment may also be subtracted from a greater or

from an equal segment.

Thus, itAC = AB + BC, then AB =AC - BCandBC = AC -. AB.
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A segment is multiplied by an integer n by taking the

sum of n such segments.

- Thus, if A C is the sum of n segments each AB, then AC = n AB.

If AG is n times AB, then AC may be divided by w.

Thus, ^S = ^C-Hn or ^B = i.^C.

11. A broken line is composed of

connected line-segments not all lying ^
in the same straight line.

A curved line, or simply a curve, is

a line no part of which is straight.

A curved line or a broken line may
inclose a portion of a plane, while a

straight line cannot.

12. A circle is a plane curve containing all points equally

distant from a fixed point in the plane,

and no other points.

The fixed point is called the center of

the circle. Any line-segment joining

the center to a point on the circle is a

radius of the circle.

Any portion of a circle lying between

two of its points is called an arc.

Evidently all radii of the same circle are equal.

Any combination of points, segments, lines, or curves in

u plane is called a plane geometric figure.

Plane Geometry deals with plane geometric figures.

13. EXERCISES.

1. How many end-points has a straight line? How many has a

line-scgmont? How many lias a ray ? A circle?

2. Can you inclosi' a portion of ,i plane with two line-segments?

With three? With four?
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ANGLES AND THEIR NOTATION.

14. An angle is a figure formed by two rays proceeding

from the same point. The point is the

vertex of the angle and the rays are its

sides. The angle formed by two rays is
^='*™'^—siai"

said to be the angle between them or simply their angle.

Two line-segments having a common end-point also form an angle,

namely, the angle of the rays on which the segments lie. An angle is

determined entirely by the relative directions of its rays and not by
the lengths of the segments laid off on them.

15. An angle is denoted by three letters, one at its

vertex and one marking a point on each of its sides. The
one at the vertex is. read between the other

two, as the angle CAB, or the angle BAG,

not ABC. The one letter at the vertex is

also used alone to denote an angle in case
^'

no other angle has the same vertex, as, for instance, the

angle A.

In case several angles have the same vertex, a small

letter or figure placed within each angle,

together with an arc connecting its

sides, is a convenient notation. The

sign Z. is used for the word angle.

Thus in the figure we have Zl,/i2, Z'd, read,

angle one, angle two, angle three. A

16. If two rays lie in the same straight line and ex-

tend from the same end-point in opposite ^

directions they are said to form a straight |

angle. If they extend in the same direc- S'de
'f

side

tion, they coincide and form a zero angle.
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17. An angle may be thought of as generated by a ray

turning about its end-point as a pivot.

Thus ZBA C is generated by a ray rotating

from the position ABto the position A C. The

rotating ray is usually conceived as moving

in the direction opposite to the hands of a

clock and the sides of the angle should usu-

ally be read in this order. Thus Z BA C, not

/ CAB.

If the ray continues to rotate until ^_^
it lies in a direction exactly opposite —

—

*
•

'

to its original position, it generates a

straight angle,, as the straight angle

BAG.

If the ray rotates until it reaches

its original position, the angle generated is called a peri-

gon, that is, an angle of complete rotation.

The position from which the rotating ray starts is called the origin

of the angle. From this point of view two rays from the same point

form two angles according as one or the other of the rays is regarded as

the origin. In elementary geometry only angles less than or equal to

a straight angle are usually considered.

The units of measure for angles are one three-hnn-

dred-sixtieth of a perigon which is called a degree, one

sixtieth of a degree called a minute, and one sixtieth of a

minute called a second. These are denoted respectively by

the symbols °, ', ". Thus, an angle of 20° 45' 30". A
straight angle is therefore an angle of 180° and a perigon

is an angle of 360°.

18, Angles are measured by means of an instrument

called a protractor, which consists of a semicircular scale

with degrees from 0° to 180° marked upon it.

An inexpensive protractor made of cardboard or brass may be

had at any stationery store. See the figure of § 33.
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19. Two angles are said to be equal if they can be made
to coincide without changing the form of either.

If a ray is drawn from a point in a gc-

straight line so that the two angles thus

formed are equal, each angle is called

a right angle, and the ray is said to be d~
perpendicular to the line.

Thus, if Z 1 = Z 2, each angle is a right angle and ^ C is then said

to be perpendicular to BD.

Since the straight angle BAD is composed of Z 1 and
Z 2, each of which is a right angle, it appears that

a straight angle equals two right angles.

See § 39 for the addition of angles in general.

An acute angle is less than a right angle. ^«.

An obtuse angle is greater than a right

angle and less than a straight angle.

Acute and obtuse angles are called oblique

angles.

A reflex angle is greater than a straight

angle and less than a perigon.

One line is oblique to another if the angles

between them are oblique.

A ray which divides an angle into two

equal angles is called its bisector. Thus a perpendicular

is the bisector of a straight angle.

The angles considered in this book are greater than the zero angle

and less than or equal to a straight angle.

20. EXERCISES.

1. Since we can.always place two straight angles so as to make
them coincide, what can we say as to whether or not they are equal?

What of two right angles?

2. What part of a straight angle is a right angle ?
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3. Suppose that in the figure the ray AC rotates about the

point A from the position AB to the position AD. What change

takes place in Zl? What in Z2? Can there be q
more than one position of ^ C for which Z 1 = Z 2 ?

In this way it may be made clear that any angle

has one and only one bisector. jy -^^ g

4. How many rays perpendicular to BD at the point A can be

drawn on the satne side of BD"! Does the answer to this question

depend upon the answers to the questions in Ex. 4? How?

5. Pick out three acute angles, three right angles, and three obtuse

angles in the figure on page 4.

TRIANGLES AND THEIR NOTATION.

21. If the points A, B, C do not lie in the same straight

line, the figure formed by the three segments, AB, BC, and

CA, is called a triangle.

The segments are the sides of the triangle, and the

points are its vertices. The symbol A is b
used for the word triangle. e^

Each angle of a triangle has one side

opposite and two sides adjacent to it. b

Similarly each side of a triangle has one angle opposite

and two angles adjacent to it. The side opposite an angle

is often denoted by the corresponding small letter.

Thus, in the figure the side a and the angle A are opposite parts, us

are angle B and side h and angle C and side c. The three sides and
three angles of a triangle are called the parts of the triangle.

These six parts are considered as lying in order around the figure,

as Z 4, side b, Z. C, side a, etc.

An angle of a triangle is said to be ind>tiJed between its

two adjacent sides, and a side is said to be included be-

tween the two angles adjacent to it.

Thus, in the llnure thi' side it is included between Z B and Z C, and
Z. A is included l)et\veen the sides b and c.
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22. A triangle is called equilateral if it has its three

sides equal, isosceles if it has at least two sides equal,

scalene if it has no two sides equal, equiangular if it has its

three angles equal.

Select each kind from the figures on this page.

23. A triangle is called a right triangle if it has one

right angle, an obtuse triangle if it has one

obtuse angle, an acute triangle if all its

angles are acute.

Select each kind from the figures on this page.

The side of a right triangle opposite the

right angle is called the hypotenuse in dis-

tinction from the other two sides, which are sometimes

called its legs. /

24. The side of a triangle on which it is supposed to

stand is called its base. The angle opposite the base is

called the vertex angle,

and its vertex is the

vertex of the triangle.

The altitude of a tri-

angle is the perpendic-

ular from the vertex to

the base or the base produced. Evidently any side may

be taken as thebase,.and.hence.a triangle hasthree different

altitudes..

Vertex Vertex

Base Base
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26. EXERCISES.

1. la every equilateral triangle also isosceles? Is every isosceles

triangle also equilateral ?

2. Is a right triangle ever isosceles? Is an obtuse triangle ever

isosceles? Draw figures to illustrate your answers.

3. In the figure on page i determine by measuring sides which of

the triangles HNP, LKW, IHN, MIJ, KVU, OKJ, LVW, are isos-

celes, which are equilateral, and which are scalene.

4. Determine whether /, K, V of the same figure may be the

vertices of a triangle ; also whether /, 0, G may be.

5. Pick out ten obtuse triangles in this figure; also ten acute

triangles.

CONGRUENCE OF GEOMETRIC FIGURES.

26. In comparing geometric figures it is assumed that

thet/ may he moved about at tvill, either in the game plane or

out of it, without changing their shape or size.

27. Two figures are said to be similar if they have the

same shape. This is denoted by the symbol ~, read is

similar to.

For a more precise definition see §§ 255, 2.5fi.

Two figures are said to be equivalent or simply equal if

they have the same size or magnitude.

This is denoted by the symbol =, read is i r

equivalent to or is equal to. I I

Two fig-urets are said to be congruent if.
, ,

without changing the sliape or size of either, I I

^

'

'

they may be so placed as to coincide
| ._| .

throughout. This is denoted by the symbol
^

^, read is congruent to.

In the casi' of linr-scgmonts and angles, congruence is determined

by siz<> alone. Hence in these oases we use tlie symbol = to denote

congruence, and read it equals or is equal to.
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28, It is clear that if each of two figures is congruent to

the same figure they are congruent to each other.

Hence if we make a pattern of a figure, say on tracing

paper, and then make a second figure from this pattern,

the two figures are congruent to each other.

29. If AABC'^AA'b'c', the notation of the triangles

may be so arranged that AB = A'b',

bc=b'c', ca = c'a', za=Za', zb=Zb'
and Ac = Zo'. In this case AB is said to

correspond to a'b', bc to b'c', CA te c'a',

ZAto Za', etc.

Hence, we say that corresponding parts of

congruent triangles are equal.

30. EXERCISES.

1. Using tracing paper, draw triangles congruent to the triangles

MIN, NHP, OAB, OFE, OKL, UKV, OGL on page 4, and by ap-

plying the pattern of each triangle to each of the others determine

whether any two are congruent.

2. Find as in § 28 whether any two of three accompanying triangles

are congruent, and if so arrange the notation so as to show the corre-

sponding parts.

3. Give examples of figures which are similar, equal, or con-

gruent, different from those in § 27.

4. If two figures are congruent, does it follow that they are equal ?

Similar?

5. If two figures are similar, does it follow that they are equal?

Congruent?

6. If two figures are equal, are they similar ? Congruent ?
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TESTS FOR CONGRUENCE OF TRIANGLES.

31. The method of determining whether two triangles

are congruent by making a pattern of one and applying it

to the other is often inconvenient or impossible. There

are other methods in which it is necessary only to determine

whether certain sides and angles are equal.

These methods are based upon three important tests for

congruence of triangles.

32. First Test for Congruence of Triangles.

If tioo triangles have tioo sides and the included angle

of one equal respectively to two sides and the included

angle of the other, the triangles are congruent.

This may be shown by the following argument:

c G'

Let ABC and A'ffC be two triangles in which AB= A'B',

AC = A'C, a.ni ZA = ZA'.

We are to show that AABC^Aa'b'c'.
Place AABO upon AA'b'c' so that Z.A coincides wiiii

Za', which can be done since it is given that Za=Za'.
Then point B will coincide with B' and C with c', since

it is given that AB = A'b' and Ac = A'C.
Hence, side BC will coincide with b'c' (§ ^i).

Thus, the two triangles coincide throughout and hence

are congruent (§ 27).

The process just used is called superxrasition. It /p
may sometimes be necessary to move :i figure out

of its plane in order to superpose it upon another,

as in the case of the accompanying triangles^
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33. The equality of short line-segments is conveniently-

tested by means of the dividers or compasses.

Place the divider points on the end-points of one segment ^B and
then see whether they will also coincide with the end-points of the

other segment A'B'. If so, the two segments are equal.

The equality of two angles may be tested by means of

the protractor.

Place the protractor on one angle BOC as shown in the figure and
read the scale where OC crosses it. Then
place the protractor on the other angle

B'O'C and see whether 0' C" crosses the scale

at the same point. If so, the two angles are

equal. .

34, EXERCISES.

1. Using the protractor determine which pairs of the following

angles on page 4 are equal

:

HPG, LGW, GWL, AOB, VLW, LVW.
2. By the test of § 32 determine whether, on page 4,

/\JKUSAG WL, also whether A MIH^AK VW.

First find whether two sides of one are equal respectively to two

sides of the other, and if so compare the included angles.

3. Could two sides of one triangle be equal respectively to two

sides of another and still the triangles not be congruent ? Illustrate

by constructing two such triangles.

4. Show by the test of § 32 that two right triangles are congruent

it the legs of one are equal respectively to the legs of the other. Can
this be shown directly by superposition ?

5. Find the distance AB when, on account of

some obstruction, it cannot be measured directly.

Solution. To some convenient point C measure

the distances A C and BC. Continuing in the direc-

tion .dC lay off CA' = AC, and in the direction BC
lay off CB' = BC. Then Z 1 = Z 2 (see § 74) . Test

this with the protractor. Show that the length AB
is found by measuring A 'B'.
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35. Second Test for Congruence of Triangles.

If tivo triangles have tioo angles and the included

side of one equal respectively to two angles and the in-

cluded side of the other, the triangles are congruent.

This is shown by tlie following argument

:

C C

A B A' B'

Let ABC and A'B'C be two triangles in which /iA=Z.A',

AB = Z.B, and AB=A'^.

We are to show that A ABC ^A a'b' c' .

Place A ABC upon AA'b'c' so that AB coincides with

its equal A'b' , making C fall on the same side of a'b' as C'.

Then AC will take the direction of A' c' , since AA= Z.A',

and the point C must fall somewhere on the ray a'c'.

Also BC will take the direction of b'& (Why?), and

hence C must lie on the ray B'c'.

Since the point C lies on both of the rays A'cf and b'c',

it must lie at their point of intersection c' (§ 5). Hence,

the triangles coincide and are, therefore, congruent (§ "27).

r

36. EXERCISES.

1. Tn the figure of § '^o is it necessary to move
l\ABC out of the plane in wliicli tlie triangles

lie? Is it necessary in the figure here given ?

2. Show how to measure the height of a tree

by using the second test for congruence.

Su(iGF,s iiiiN. Lay out a triangle on the ground

which is congruent to A ABC, using § '.i'l.

3. By the second test determine whether

A Ofia = A O/A' on page 4.

4. Draw any triangle, (.'oustruct another tri-
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angle congruent to it. Use § 35 and also § 32.

Use the protractor to construct the angles.

5. Find the distanceA C, when C is inaccessible.

Let5 be a convenient point from which A and
C are visible. Lay out a triangle ABC mak-
ing ^ 3 = Z 1 and Z 4 = /^ 2. Show that the dis-

tance A C may be found by measuring A f.

6. Show how to find the distance between two
inaccessible points A and B.

Solution. Suppose that both A and B are

visible from C and D. (1) Using the

triangle CDA, find the length of AD as in

Ex. 5 above. (2) Using the triangle CBD,
find DB in the same manner. (3) Using

the triangle DBA, find AB as in Ex. 5, § 34.

37. The proof of the third test for

congruence of triangles involves the

following

:

The angles opposite the equal sides of an Isosceles tri-

angle are equal.

Let ABC be an isosceles triangle having

AC = BC
We are to show that Z. A = /^ B.

Suppose CD divides /. ACB so that

Z 1 = Z 2.

By means of § 32 show that

Aacd ^Abcd.
Then Z 4 = Z B by § 29.

The theorems § 35 and § 37 are due to Thales. It is said he used

§ 35 in calculating the distance from the shore to a ship at sea.

38. EXERCISE.

On page 4 pick out as many pairs of angles as possible which may

be shown to be equal by § 37. Test these by using the protractor.
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39, Definitions. Two angles which have a

common vertex and a common side are said

to be adjacent if neither angle lies within

the other. 1/ i\

Thus, Z 1 and Z 2 are adjacent, while Z 1 and Z 3 are not adjacent

The sum of two angles is the angle formed by the sides

not common when the two angles are placed adjacent.

Thus, Z3 = Z1 + Z2.

If Z 3 = Z 1 + Z 2, then we say that Z 3 is greater than

either Z 1 or Z 2. This is written Z 3 > Z 1 and Z 3 > Z 2.

An angle may also be subtracted from a greater or equal

angle. ThusifZ3 = Zl + Z 2, then Z3 -Zl = Z2and
Z3-Z2 = Z1. It is clear that :

If equal angles are added to equal angles, the sums are

equal angles.

Angles may be multiplied or divided by a positive in-

teger as in the case of line-segments. See § 10.

40, We may now prove the third test for congruence of

triangles, namely

:

// two triangles have three sides of one equal respec-

tively to three sides of the other, the triangles are con-

gruent.

c'

Let ABC and A'B'C' be two triangles in which AB= A'B',

BC=B'C', CA^CA'.

We are to show that A A nc ^ A a'b'c'.
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Place Aa'b'c' so that a'b' coincides with AB and so

that c' falls on the side of AB which is opposite C.

(Why is it possible to make A 'B' coincide -with AB ?)

Draw the segment OC'. From the data given, how can

§ 37 be used to show that in A ACc' Z 1 = Z 2 ?

Use the same argument to show that Z 3 = Z4.
But if Z 1 = Z 2

and Z 3 = Z 4,

then Z 1 + Z 8 = Z 2 + Z 4. (§39)
That is, Z.ACB = Z BC'A.

How does it now follow that A ABC ^Aabc' ? (§ 32)

But AABC' ^aa'b'c'. (§26)
Hence, A ABC ^Aa'b'c'. (§28)

Make an outline of the steps in the above argument, and see that

each step is needed in deriving the next.

41, Definition. If one triangle is congruent to another

because certain parts of one are equal to the corresponding

parts of the other, then these parts are said to determine

the triangle. That is, any other triangle constructed with

these given parts will be congruent to the given triangle.

42. EXERCISES.

1. In § 37 show that CD is perpendicular to AB and that AD= DB.
State this fully in words.

2. Using § 40, determine which of the following triangles on

page 4 are congruent : OJK, HNP, OIH, PHG, JKU.

3. Do two sides rfeiermine a triangle ? Three sides? Two angles?

Three angles ? Illustrate by figures.

4. A segment drawn from the vertex of an isosceles triangle to the

middle point of the base bisects the vertex angle and is perpendicular

to the base.

5. What parts of a triangle have been found sufficient to determine

it? In each case how many parts are needed?
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43. The three tests for congruence of triangles, §§ 32,

35, 40, lie at the foundation of the mathematics used in

land surveying. The fact that certain parts of a triangle

determine it shows that it may be possible to compute the

other parts when these parts are known. Rules for doing

this are found in Chapter III.

CONSTRUCTION OF GEOMETRIC FIGURES.

44. The straight-edge ruler and the compasses are the

instruments most commonly used in the construction of

geometric figures.

By means of the ruler straight lines are drawn, and the

compasses are used in laying off equal line-segments and

also in constructing arcs of circles (§ 12).

Other common instruments are the protractor (§ 33) and

the triangular ruler with one square corner or right angle.

The three tests for congruence of two triangles are of

constant use in geometrical constructions.

45. Problem. To find a point luliose distances frmn
the extremities of a given seg- \c/n
ment are specified. / \^

Solution. Let AB be the given seg-

ment and let it be required to find a -4 -B
point C which shall be one inch from each extremity of AB.

Set the points of the compasses one inch apart. With
A as 'A center draw an arc m, and with B as a center draw
an arc n meeting the arc m in the point C. Then every

point in the arc m is one inch from .1 and every point in

the arc n is one inch from B (i^ 1'2).

Hence C, which lies on botli m and «, is one inch from A
and also from B.
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46. EXERCISES.

1. In the preceding problem is there any other point in the plane

besides C which is one inch distant from both .4 and B'l If so,

show how to find it.

2. Could AB be given of such length as to make the construction

in § 45 impossible ?

3. Is there any condition under which one point only could be

found in the above construction ? If so, what would be the length of

AB'/

4. Find a point one inch from .4 and two inches from B and dis-

cuss all possibilities as above. •

5. Given three segments a, b, e, construct a triangle having its sides

equal to these segments. Discuss all possibilities depending upon
the relative lengths of the given segments.

47, Problem. To construct an angle equal to a

given angle, unthout using the protractor.

Solution. Given the angle A.

Lay off any distance AB on one of its sides and any dis-

tance AC on the other.

Draw the segment BC forming the triangle ABC.

As in Ex. 5 above, construct a triangle a'b'c' so that

A'b' = AB, b'c' = BC, A'C' = AC.

Show that A ABC ^ A a'b'c' by one of the tests, and

hence that Z A = Z. A', being corresponding angles of con-

gruent triangles, § 29.

In the above construction, would it be wrong to make

AB = AC? Is it necessary to do so

?
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48. Problem. To construct the ray dividing a given

angle into two equal angles, that is, to bisect the angle-

Solution. Given the angle A.

To construct the riiy bisecting it.

On the sides of the angle lay off

segments AB and AC so that

AB = AC.

With B and C as centers and ^ '^

with equal radii construct arcs m and n meeting at D.

Draw the segments CD, BD, and AD.

Now show that one of the tests for congruence is

applicable to make AACD ^ A ABD.

Does it follow that Z 1 = Z 2 ? Why ?

49. EXERCISES.

1. Is it necessary in § 48 to make AB = AC^ In this respect com-

pare with the construction in § 47.

2. Is any restriction necessary in choosing the radii for the ares m
and n ? Ls it possible to so construct the arcs m and n, ^till usiiii;-

equal radii for both, that the point D shall not lie within the angle

BAa In that case does the ray AD bisect ZjB.l C?

3. By means of § 48 bisect a straight angle. \\'hat is the ray called

which bisects a straight angle? In this case what restriction is

necessary on the radii used for the arcs m and n '!

4. By Ex. 3 construct a perpendicular to a line at a given point in it.

5. Construct a perpendicular to a segment at one end of it without

prolonging the segment and without using the square ruler.

SuG(iKsi ION. Let AB be the given segment. Constrnot a right

angle A' I" C^' asm Ex. \. Then as in § 17 construct ZABC— /LA'B'C.

50. Definition. A lino wliich is ptM peiidicular to a line-

segiiiciit at its middle point is called tlii' perpendicular

bisector of the seoinent.
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51. Problem. To construct the perpendicular bisec-

tor of a given line-segment. \U,

Solution. Let AB be the given

segment. ^^ l

As in § 45, locate two points, C \,

and D, each of which is equally

-i'B

distant from A and B. /fP

Draw the segment CD meeting ^B in O.

Then CD is the required perpendicular bisector of AB.

To prove this, show that A ACD ^ A BCD.

Hence Z3 = Z4. (Why?)

By what test can it now be shown that

AAOC^ABOC?
Hence Z 1 = Z 2. (Why ?)

Therefore CO (or CD} is perpendicular to ^B (Why?)
and also AO = OB (Why?).

It has thus been shown that CD is perpendicular to AB
and bisects it, as was required.

52. The steps proved in the above argument are

:

(ay AACD ^A BCD. (6)Z3 = Z4. (o) AAOC^ABOC.
(c?) Z 1 = Z 2, and AO = BO.

Study this outline with care. What is wanted is the last result (rf).

Notice that (d) is obtained from (c), (c) from (6), and (6) from (o).

Thus each step depends on the one preceding, and would be impos-

sible without it. To understand clearly the order of the steps in a

proof as shown by such an outline is of great importance in master-

ing it.

53, EXERCISES.

1. In the construction of § 51, is it necessary to use the same radius

in locating the points C and D ?

2. Name the isosceles triangles in the figure §51: (a) if the same

radius is used for locating C and D, (J) if different radii are used.
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54. Problem. To construct a perpendicular to a

given straight line from a given point outside the line.
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56. Problem. Construct a triangle when tioo

and the included side are given.

Solution. Let /LA and ZS be

the given angles, and c the given

side.

Construct Z.A'=/.A.
On one side of Z a' lay off

A'b' = c.

At b' construct Za'b'k
equal to Zb.

Let b'k meet the other side of ZA' at C.

Then A'b'c is the required triangle. (Why ?)

angles

57. EXERCISES.

1. If in the preceding problem two different triangles are con-

structed, each having the required properties, how will these triangles

be related? Why?

2. If in the problem of § 55, two different triangles are constructed,

each having the required properties, how will these triangles be related ?

Why?

3. If two triangles are constructed so that the angles of one are

equal respectively to the angles of the other, will the triangles neces-

sarily be congruent ?

4. If two different triangles are constructed with the same sides,

how will they be related ? Why ?

5. Construct an equilateral triangle. Use § 37 to show that it is

also equiangular.

58. We have now seen that the three tests for the con-

gruence of triangles are useful in making indirect measure-

ments of heights and distances when direct measurement

is inconvenient or impossible, and also in making numerous

geometric constructions. It will be found, as we proceed,

that these tests are of increasing usefulness and importance.
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THEOREMS AND DEMONSTRATIONS.

59. A geometric proposition is a statement af&rming cer-

tain properties of geometric figures.

Thus : " Two points determine a straight line " and " The base

angles of an isosceles triangle are equal " are geometric propositions.

A proposition is proved or demonstrated when it is shown

to follow from other known propositions.

A theorem is a proposition which is to be proved. The

argument used in establishing a theorem is called a proof.

60. In every mathematical science some propositions

must be left unproved, since every proof depends upon other

propositions which in turn require proof. Propositions

which for this reason are left unproved are called axioms.

While axioms for geometry may be chosen in many dif-

ferent ways, it is customary to select such simple propo-

sitions as are evident on mere statement.

61. Among the axioms thus far used are the following :

Axioms. I. A figure may he moved about in space

without changing its shape or size. See § 26.

II. Through two points one and only one straight line

can be drawn. See §§ 8, 32.

III. The shortest distance between tico points is meas-

ured along the straight linc-segnicnt coyinccting them.

Thus one side of a triangle is less than the sum of tlie other two.

IV. // each of two Jigurcs is congruent to the same

figure, they are congruent to each other. See §§ 2S, 40.

V. // (I, h, c, d are line-segments {or angles) such

that (t = b and c = d, then a +c=b + d and a — c = b — d.

In the latter casi; \vu suppose u >c, i>(/. S^e §§ 10, 39.
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VI. // a and b are line-segments (or angles) such that

a = b, then a xn=:b xn and a-i-n=b-i-n; and if a>b,
then a xn>b xn and a-r-n>b-i-n, n being a positive

integer. See §§ 10, 39.

Note. An equality or an inequality may be read from left to right

or from right to left. Thus, a > 6 may also be read ft < a.

Other axioms are given in §§ 82, 96, 119, and in Chapter

VII.

Certain other simple propositions may be assumed at

present without detailed proof. These are called prelimi-

nary theorems.

PRELIMINARY THEOREMS.

62. Two distinct lines can meet in only one point.

For if they have two points in common, then by Ax. II they are the

same line.

63. All straight angles are equal. § 20, Ex. 1.

64. All right angles are equal. See Ax. VI.

65. Every line-segment has one and only one middle

point.

See § 51, where the middle point is found by construction.

66. Every angle has one and only one bisector.

See § 48, where the bisector is constructed.

67. One and only one perpendicular can be drawn

to a line through a point whether that point is on the line

or not. See § 20, Exs. 4, 5; § 49, Ex. 4; § 54.

68. The sum of all the angles about a point in a

straight line and on one side of it is two right angles.

69. The sum of all the angles about a point in a plane

is four right angles.

In §§ 68, 69 no side of one angle is to lie inside another.
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70. Definitions. Two angles are said

to be complementary if their sum is one

right angle. Each is then called the

complement of the other.

Thus, /. a and /. b are complementary angles.

Two angles are said to be supple-

mentary if their sum is two right

angles. Each is then said to be the

supplement of the other.

Thus, Z 1 and Z 2 are supplementary angles.

Two angles are called vertical

angles if the sides of one are pro-

longations of the sides of the other.

Thus, Z 1 and Z 3 are vertical angles, and also Z 2 and Z 4.

71, EXERCISES.

1. What is the complement of 45°V the supplement?

2. I£ the supplement of an angle is liO", find its complement.

3. If the complement of an angle is 21°, find its supplement.

4. Find the supplement of the complement of 30°.

5. Find the angle whose supplement is five times its complement.

6. Find the angle whose supplement is n times its complement.

7. Find an angle whose complement plus its supplement is 110°.

8. If in the first figure Zb = 2 Za, and Zc = Za + Zb, find each

angle.

9. If in the second figure Zb = ^Za, Zc—Za + Zb, and

Z<t = G Zn, find each angle.

10. If in the third figure Zb= Ze, Zc = Za + Zb, Zd = '2Zb,

and Ze = lZd, find each angle.
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PRELIMINARY THEOREMS.

72. Angles ivhich are complements of the same angle

or of equal angles are equal.

For they are the remainders when the given equal angles are sub-

tracted from equal right angles. Ax. V.

73. Angles tohich are supplements of the same angle

or of equal angles are equal.

For they are the remainders when the given equal angles are sub-

tracted from equal straight angles.

74. Vertical angles are equal.

They are supplements of the same angle.

75. If two adjacent angles are supplementary, their

exterior sides are in the sam,e straight line.

For the two angles together form a straight angle.

76. If two adjacent angles have their exterior sides

in the same straight line, they are supplementary.

For a straight angle is equal to two right angles.

77. EXERCISES.

1. Prove that if one of the four angles formed by two intersecting

straight lines is a right angle, then all are right angles.

2. Show that the rays bisecting two complementary adjacent

angles form an angle of 45°.

3. Find the angle formed by the rays bisecting two supplementary

adjacent angles. Prove.

4. Find the angle formed by the rays bisecting two vertical angles.

Prove.

5. The sum of two adjacent angles is 74°. Find the angle formed

by their bisectors.

6. The angle formed by the bisectors of two adjacent angles is

37° 18'. Find the sum of the adjacent angles.
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ON THE NATURE OF A DEMONSTRATION.

78. A theorem consists of two distinct parts, hypothesis

and conclusion.

In a geometrical theorem, the hypothesis specifies cer-

tain properties which the figures in question are assumed

to possess. The conclusion asserts that certain other prop-

erties belong to the figures whenever the assumed proper-

ties are present.

The hypothesis and conclusion are often intermingled

in a single statement, in which case they should be explic-

itly separated before making the proof.

For example, in the theorem of § 37, The angles opposite Ihe equal

sides of an isosceles triangle are equal, the hypothesis is, " Two sides of

a triangle are equal," and the conclusion is, " The angles opposite

them are equal."

79. If the hypothesis consists of several parts, these

should be tabulated and then checked oS as the demon-

stration proceeds. If the theorem is properly stated, each

part of the hypothesis will be used in the proof.

For instance, in the theorem of § o"2, the hypothesis is : AB — A'B',

AC=A'C',atidZA = /: A'; and the conclusion is: AABC ^ AA'B'C.
It will be found on examining the proof that each part of the

hypothesis is needed and used in the course of the demonstration.

If the conclusion could be proved without using every part of the

hypothesis, then the paits not used should be omitted from the hypothe-

sis in the statement of the theorem.

80. In the proof of a theorem no conclusion should be

taken for granted simply from the apjh'ardnci' of the figure.

Each step in a proof should be based upon a definition, an

axiom, or a theorem previously proved.

It will then follow (hat the theorem is as certainly true

as are the simple, unpi-ovod propositions with which we
start, and upon \\liieli our argument is based.
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Historical Note. The Egyptians showed no knowledge of a

logical demonstration, nor did the Arabians, who studied geometry

quite extensively. The Greeks developed the process of demonstra-

tion to a high state of perfection. They were fully aware, moreover,

that certain propositions must be admitted without proof (see § 60).

Thus Aristotle (384-322 B.C.) says: " Every demonstration must start

from undemonstrable principles. Otherwise the steps of a denjon-

stration would be endless.'' Euclid divided unproved propositions

into two classes : axioms, or " common notions," which are true of all

things, such as, " If things are equal to the same thing they are equal

to each other"; and postulates, which apply only to geometry, such as,

" Two points determine a line." The best usage in modern mathe-

matics is to adopt the one word axiom for both of these, as in § 60.

Much practice is needed in writing demonstrations in

full detail. This should be done in the shortest possi-

ble sentences, usually giving a separate line to each state-

ment, followed by the definition, axiom, or theorem on

which it depends.

For this purpose the following symbols and abbrevia-

tions are convenient:

Z, A, angle, angles.

A, ^, triangle, triangles.

^ ^ J
parallelogram,

'

I parallelograms.

, [s], rectangle, rectangles.

rt.Z,rt.4,|"gJ'*'^"8^
[right angles.

st.Z,st..i,l'*''^^S*'*^°g^^'
[straight angles.

rt.A,rt.A, ["S"*™^^^''
I right triangles.

O, ®, circle, circles.

^^, '^j arc, arcs.

= , is equal, or equivalent, to.

~, is similar to.

^, is congruent to.

>, is greater than.

<, is less than.

^, is less than or equal to.

^, is greater than or equal to.

II, parallel, or is parallel to.

. Tperpendicular, or

I
is perpendicular to.

lis, parallels.

Js, perpendiculars.

.'. , therefore or hence,

ax., axiom,

th., theorem,

def., definition,

cor., corollary,

alt., alternate,

ext., exterior,

int., interior,

hyp., by hypothesis.
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INEQUALITIES OF PARTS OF TRIANGLES.

81. Definition. If one side of a triangle

is produced, the angle thus formed is called

an exterior angle of the triangle.

Thus, .^1 is an exterior angle of the triangle ^BC. A

82. Axiom VII. If a, b, c are line-sefjments (or

angles) such that a>b and h^c,or such that a^b and

b>c, then a>c.

The proof of the following theorem is shown in full

detail as it should be written by the pupil or given orally,

except that the numbers of paragraphs should not be

required.

83. Theorem. An exterior angle of a triangle is

greater than either of the opposite interior angles.

B\

\
o

Given the A ABC with the exterior angle DBC formed by pro-

ducing the side AB.

To prove that Z DBC > Z c and also Z DBC > Z A.

Proof: Let E be the middle point of BC.

Find E by the construction for bisecting a line-segment (§ 51).

Draw AE and prolong it, making EF= AE, and draw BF.

In tlie two AACK luid FBE, we have by ronstruction

CE = EB ami AE = EF.
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Also Z GEA = Z BEF.

(Vertical angles are equal, § 74.)

.-. AACE^AFBE.
(Two triangles which have two sides and the included angle of the

one equal respectively to two sides and the included angle of the other

are congruent, § 32.)
.-. ZC = Z FBE.

(Being angles opposite equal sides in congruent triangles, § 29.)

But Z DBC > Z FBE.

(If an angle is the sum of two angles it is greater than either of

them, §39.)
.-. Zdbc> Z C.

(Since ZDBOZFBE and AFBE = ZC, Ax. VII, § 83.)

In order to prove Z DBC > Z A, prolong CB to some

point G.

Then Z ABG = Z dbc.

(Vertical angles are equal, § 74.)

Now bisect AB, and in the same manner as before we may
prove Zabg>ZA.

.-. Zdbc> Za.

(Since ZDBC = ZABG and Z ABG >Z A, Ax. VII, § 82.)

For the second part of the proof let H be the middle point

of AB. Draw CH and prolong it to K, making Off = HK.

Let the student draw the figure for the second part of

the proof and give it in full.

Hereafter more and more of the details of the proofs will

be left for the student to fill in.

When reference is made to a paragraph in the text or

when the reason for a step is called for, the complete state-

ment of the definition, axiom, or theorem should be given

by the student.
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84. Theorem. If tivo sides of a triangle are un-

equal, the angles opposite these sides are unequal, the

greater angle being opposite the greater side.

Given AjliSC in which AC>BC.

. To prove that Z ABC > /.A.

Proof : Lay off CD= CB and draw BO.

Now give the reasons for the follow-

ing steps:

(1)
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86. The above argument is called proof by exclusion.

Its success depends upon being able to enumerate all the

possible cases, and then to exclude all but one of them by
showing that each in turn leads to some contradiction.

87. EXERCISES.

1. The hypotenuse of a right triangle is greater than either leg.

2. Show that not more than two equal line-segments can be

drawn from a point to a straight line.

Suggestion. Suppose a third drawn. Then apply §§ 37, 83, 84.

3. Show by joining the vertex A of the triangle ABC to any point

of the side BC that ZB + ZC<2 rt.A. Use § 83.

4. If two angles of a triangle are equal, the sides opposite them are

equal. Use §§ 84, 86.

5. Either leg of an isosceles triangle is greater than half of the base.

6. Show that an equiangular triangle is equilateral, and conversely.

THEOREMS ON PARALLEL LINES.

88. A straight line which cuts two straight

"lines is called a transversal. The various

angles formed are named as follows

:

Z 4 and Z 5 are alternate-interior angles

;

also Z3 and Z6.

Z 2 and Z 7 are alternate-exterior angles ; also Z 1 and

Z8.

Z 1 and Z 5 are corresponding angles ; also Z 3 and Z 7,

Z2 andZ6, Z4 and Z 8.

Z 3 and Z 5 are interior angles on the same side of the

transversal; also Z 4 and Z 6.

89. Definition. Two complete lines which lie in the

same plane and which do not meet are said to be parallel.

Two line-segments are parallel if they lie on parallel

lines.
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90. Theorem. // two lines cut by a transversal have

equal alternate interior angles, the lines are parallel.

Given the lines /i and l^ cut by t so that

Z 1 = Z 2.

To prove that Zj II l^.

Proof : Suppose the lines Zj and l^

were to meet on the right of the trans-

versal. Then a triangle would be

formed of which Z 1 is an exterior angle and Z 2 an

opposite interior angle.

This gives an exterior angle of a triangle equal to an

opposite interior angle, which is impossible. (Why ?)

Repeat this argument, supposing l^ and l^ to meet on the

left side of the transversal.

Hence Zj and l^ cannot meet and are parallel (§ 89).

91. The type of proof used here is called an indirect

proof. It consists in showing that something impossible

or contradictory results if tlie theorem is supposed not true.

92. Theorem. If two lines cut by a transversal have

equal corresponding angles, the lines are parallel.

Given the lines 7, and L cut by t so that A
Z2 = Z3. . A^ /.

To prove that 1^ \\ l^.

Proof : Quote the authority for each

of the following steps :

Z :5 = Z 2.

^;! = ^1. (§74^
.-. ^1 =^2. (Ax. IV)

••• h II h- (§90)



RECTILINEAR FIGURES. 37

93. Theorem. // two lines cut by a transversal have

the sum of the interior angles on one side of the trans-

versal equal to two right angles, the lines are parallel.

A

Given /i and fa cut by t so that Z.i + /.2=2rt. A.

To prove that ?j II \.

Proof: Z 4 is supplementary to Z 1 and also to Z 2.

(Why ?)

.-. Z1 = Z2. (Why?)
.-. \\\l^. (Why?)

94, EXERCISES.

1. Show that if each of two lines is perpendicular to the same line, they

are parallel to each other.

2. Let ABC be any triangle. Bisect BC at D. q -g.

Draw AD and prolong it to make DE = AD.
Draw CE. Prove CE II AB.

3. Use Ex. 2 to construct a line througb a A
given point parallel to a given line.

Suggestion. Let AB be a segment of the given line and let C
be the given point. Draw CA and CB and proceed as in Ex. 2.

95. Exs. 2 and 3 above show that through a point P,

not on a line I, at least one line ?j can be drawn parallel to I.

It seems reasonable to suppose that no other line Zg can

be drawn through P parallel to I, al-

though this cannot be proved from the

preceding theorems. See § 60.

Hence we assume the following :
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96. Axiom VIII. Through a 'point not on a line only

one straight line can he drawn 'parallel to that line.

Historical Note. This so-called axiom of parallels has attracted

more attention than any other proposition in geometry. Until the

year 1829 persistent attempts were made by the world's most eminent

mathematicians to prove it by means of the other axioms of geometry.

In that year, however, a Russian, Lobachevsky, showed this to be im-

possible and hence it must forever remain an axiom unless some other

equivalent proposition is assumed.

97. Theorem. // two parallel lines are cut by a

transversal, the alternate Interior angles are equal.

Given /j II l^ and cut by t yf

To prove that Z 1 = Z 2.
"'—r--,f/ z,

Proof : Suppose Z 2 not equal to Z 1. / '

Through P draw ?g, making Z 3 = Z1. —-/—
?,

.-. ZgllV (Why?) /
But by hypothesis l^ \\ l^ and thus we have through P

two lines parallel to ?j, which is contrary to Ax. VIII.

Therefore, the supposition that Z "2 is not equal to Z 1

leads to a contradiction, and hence Z 1 = Z2.

98. Compare this theorem with that of § 90. The hy-

pothesis of either is seen to be the conclusion of the other.

When two theorems are thus related, each is said to be

the converse of the other. Other pairs of converse theo-

rems thus far are those in § -37 and Ex. 4. § 87; §§ 75 and

76, and §§ 84 and 85.

The converse of a theorem is never to be taken for

granted without proof, since it does not follow tluit a state-

ment is true because its converse is true.

Thus, it is true that if a Iriamjle is i i/uilaleral, it is also isosceles, but

the converse, if a triangle is isosceles, it is also equilateral, is not true.
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99. Theorem. If two parallel lines are cut by a
transversal, the sum of the interior angles on one side

of the transversal is two right angles.

Suggestion. JMake use of the preced-

ing theorem and give the proof in full.

Of what theorem is this the converse ?

100, EXERCISES.

1. State and prove the converse of the theorem in § 92.

2. Prove that if two parallel lines are cut by a transversal the
alternate exterior angles are equal. Draw the figure.

3. State and prove the converse of the theorem in Ex. 2.

4. If a straight line is perpendicular to one of two parallel lines, it

is perpendicular to the other also.

5. Two straight lines in the same plane parallel to a third line

are parallel to each other. Suppose they meet and then use § 96.

6/5

^

h

h

D

/
6. If

?i II ^2 II Ig and if Zl = 30°, find the other angles in the first

figure.

7. If Zj II Zg, how are the bisectors of .^1 and Z3 related? Of Z3
andZ4? OfZlandZ2? Use §102 for the last case.

8. If Ij II Z,, and ^ 0= OB, show that DO=OC. V^ '*

State this theorem fully and prove it. a^ '2

9. If ZilU2andZ2 = 5Zl, findZiandZS.
''

10. If two parallel lines are cut by a transversal, the sum of the

exterior angles on one side of the transversal is two right angles.

11. State and prove the converse of the preceding theorem.
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APPLICATIONS OF THEOREMS ON PARALLELS.

101. Problem. Through a given point to construct a

line parallel to a given line.

Given the line / and the point P outside of it.

To construct a line Zj through p || to I.

Construction. Through P draw any line making a con-

venient angle, as Z 1 with I.

Through P draw the line Ip making
Z2 = Z1(§47). Then^ilU.

Proof : Use the theorem, § 92.

Hereafter all constructions should be

described fully as above, followed by a proof that the con-

struction gives the required figure.

102. Theorem. The siim of the angles of a triangle is

equal to two right angles. e
Given A ABC with Z 1, Z 2, Z 3. c \

To prove that V~\ \

U g<\5 D
Proof: Prolong ^B to some point Z). -i B
Through B draw BE II AC.

Then Z5-|-Z4 + Z3=2rtJ. (Wliy?)
But Z 4 = Z 2 and Z 5 = Z 1. C^^''iy ?)

Hence, replacing Z5 and Z-t by their equals. Zl and
Z 2, we have Zl + Z2 + Z3 = 2 rt zi.

Historical Note. This is one of the famous theorems of geome-
try. It was known liy Pytliagoras (500 B.C.). but special oases were
known much earlier. The figure used here is the one given bv
Aristotle and Euclid. As is aiiparent, the proof depends upon the

theorem, § !t7, and thus indirectly upon Axiom VIII. The interdepend-

ence of these two propositions has been studied extensively during

the last two centuries.
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103. Theorem. An exterior angle of a triangle is

equal to the sum of the two opposite interior angles.

The proof is left to the student.

Compare this theorem with that of § 83.

104. Definition. A theorem which
follows very easily from another theo-

rem is called a corollary of that theorem.

U.ff. the theorem in § 103 is a corollary

of that in § 102.

105. EXERCISES,

1. Find each angle of an equiangular triangle.

2. If one angle of an equiangular ti-iangle is bisected, find all the

angles in the two triangles thus formed.

S.'If in.aAABC, AB =^C'and Z^ =ZB + Z C, find each angle.

4. If in the figure AB = AC and Z 4 = 120°, find

Zl, Z2, Z3.

5. If one acute angle of a right triangle is 30°,

what is the other acute angle? If one is 41° 23'?

6. If in two right triangles an acute angle of one ^
is equal to an acute angle of the other, what can be

said of the remaining acute angles. What axiom is involved?

7. If in two right triangles the hypotenuse and an acute angle of one

are equal respectively to the hypotenuse and an acute angle of the other, the

triangles are congruent. Prove in fuU.

8. Can a triangle have two right angles? Two obtuse angles?

Can the sum of two angles of a triangle be two right angles? What
is the sum of the acute angles of a right triangle?

9. If two angles of a triangle are given how can

the third be found? If the sum of two angles of one

triangle is equal to the sum of two angles of another,

how do the third angles compare?

10. Prove the theorem of § 102, using each of the

figures in the margin. The first of these figures was

used by Pythagoras.

A

2\l

C
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106. Definition. An angle viewed from

the vertex has a right side and a left side.

107- Theorem. If two angles have

their sides respectively parallel, right

side to rigid side, and left side to left

side, the angles are equal.

Given ^ 1 and ^ 2 such that a II a' and & II
&'

.

To prove that Z 1 = Z 2.

Proof : Produce a and b' till they meet,

forming Z 3. Complete the proof.

Wliy do a and V meet when produced ?

Make a proof also by producing h and a' till they meet.

108, Theorem. If two angles have their sides re-

spectively perpendicular, right side to right .-ude, aiid

left side to left side, the angles are equal.

Given Z 1 and Z 2 such that aXa' and b ± b'-

To prove that Z 1 = Z2.

Proof : Produce a and a' till they meet in O.

Through O draw a line parallel to b.

Now show that Z 2 = Z 3 since each is

the complement of Z4. Complete the

proof.

-,0/^

109. EXERCISES.

If two angles have their sides respectively

parallel, or perjiendicular, riglit side to left side,

and left side to riylit side, the angles are supple-

mentary. In each figure Z 1 = Z:!. (Why?)

lIiSToKlCAi. NoTK. The theorems of §§107,

108, 109 are not found in Kuelid's Elements.

It

b' /
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OTHER THEOREMS ON TRIANGLES.

110. Theorem. // in two right triangles the hypote-

nuse and one side of one are equal respectively to the

hypotenuse and one side of the other, the triangles are

congruent. b b' b

Given the right A ABC and A'B!C', having AB= A'S and

BC=B'C'.

To prove that A ABC s AA'b'c'.

Proof : Place the triangles so that BC and b'c' coincide,

and so that A and A' are on opposite sides of BC.

Then AC and CA' lie in a straight line (Why ?), and
A aba' isosceles (Why?).

Hence, show that Z A = Z a' and complete the proof.

111. Corollary. Iffrom a point in a perpendicular

to a straight line equal oblique segments are drawn to the

line, these cut off equal distances from the foot of the

perpendicular, and make equal angles with the perpendic-

ular and with the given line.

Give the proof in full, as of an independent theorem.

112, Theorem. If from a point in a perpendicular

to a line oblique segments are drawn, cutting off equal

distances from the foot of the perpendicular, these seg-

ments are equal, and make equal angles with the perpen-

dicular and with the given line.

Give the proof in full, using A ABA' of § 110,
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113. Theorem. The perpendicular is shorter than

any oblique segment from a point to a line.

Suggestion. Show by § 102 that the angle opposite the

oblique segment in the triangle formed is greater, than

either of the other angles, and then make use of § 85.

114. The distance from a point to a line means the

shortest distance, and hence is measured on the perpen-

dicular.

115. Theorem. If from a point in a perpendicular

to a line segments are drawn cutting off vnequal dis-

tances from the foot of the perpendindar, the segments

are unequal, that segment being the greater lohich cuts

off the greater distance.

Given AO ± BC and OC > OB.

To prove that AC > AB.

Proof : Let ob' = OB and

draw Ab'.

Then, Zob' A < rt. Z, and

.-.Z AB'O rt. Z.

Also Z OCA < rt. Z.

.-.aoab'.
•- AC > AB since Ab' = AB. Give reasons for each step.

116. Theorem. // frorn a point in a perpendicular

to a line unequal segments are drawn, these cut off unequal

distances from the foot of the perpendicular, the greater

segment cutting off the greater distance.

Suggestion. Using the figure of § ll.'i and the liypoth-

esis that AC > AB, show that two of the following state-

ments are impossible:

(1) OC = Oli; (-2) oc<OB\ (;5) 0C> OB. See § 8li.
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117. Theorem. // in two triangles two sides of the

one are equal respectively to two sides of the other, but

the included angle of the first is greater than the included

angle of the second, then the third side of the first is

greater than the third side of the second.

Given A ABC and A'BC in which AB=A'&, BC = BC and

To prove that AC > A'c'.

Proof: Place Aa'b'c' on AABC so that a'b' coincides

with its equal AB and C' is on the same side of AB as C.

Let BD bisect Z g'bc, meeting AC in I) . Draw DC'.

Then ABDC' ^ABDC. (Why?)
.-.DC' = DC and AD + DC' = AC. (Why?)

But AD + DC'>AC'. (Ax. Ill, § 61)

AOAC'. (Ax. VII, §82)

118, Theorem. // in two triangles two' sides of the

one are equal to two sides of the other but the third side

of the first is greater than the third side of the second,

then the included angle of the first is greater than the

included angle of the second.

Suggestion. Using the figure of § 117 and the hypothesis

that AOA'c', show that two of the three following

statements are impossible:

(1)ZB = ZB'; (2)Zb<Zb'; (3)ZB>Zb'. See § 86.
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119. Axiom IX. // a, b, c, d are line-segments (or

angles) such that a>b and c = d or such that a>b and

c>d, then a + ob + d. Also if a>b and c^d, then

a —ob — d, provided a>c and b>d. (See §§ 10, 39.)

120. Theorem. The sum of the segments drawn from

a point within a triangle to the extremities of one side is

less than the sum of the other two sides.

c

'BA

Given the point O within the AABC.

To prove that AO + OB <:AC+ CB.

Proof: AO + OE<AC+CE. (Why?)
And OB<OE-[- EB. O^"^^}' ?>

.•. AO + OE^- OB<AC+ CE+OE+ EB. (Ax. IX )

Subtracting OE from both members,

AO + OB<Ar + r'E-\-EB. (Ax. IX)

That is, AO + OB<AC-\-CB.

^
121; EXERCISES.

1. Show that any side of a triangle is greater than the difference

between the other two sides.

2. Show that the sum of the distances from any point

within a triangle to the vertices is greater than one-half

the sum of the sides of the triangle. -' B

3. Show that the segment joining the vertex of an isosceles tri-

angle to any point in the base is less than either of the equal sides.

4. Show that any altitude of an ociiiilateral triangle bisects the

vertex angle from whieh it is drawn and also bisects the base.

5. State and prove the converse of the theorem in Ex. 4.
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6. Construct angles of 60°, 120°, and 30°.

7. Construct angles of 45° and 135°.

Suggestion. Bisect a right angle and extend one side.

122. Problem. Given two sides of a triangle and
an angle opposite one of them, to construct the triangle.

Solution. Let ^ A and the segments a and b be the given parts.

On one side oi Z. A lay off AB = b, and let the other

side be extended to some point K.

With B as a center and a radius equal to a, construct

arcs of circles as shown in the figure.

The following cases are possible :

(1) If a equals the perpendicular distance from B to

AK, the arc will meet AK in but one point, and a right

triangle is the solution.

(2) If a < 5 and greater than the perpendicular, the

arc cuts AK in two points, and there are then two tri-

angles containing the given parts, as shown by the dotted

lines in the figure.

(3) If a > J, the arc will cut AK only once on the

right of A, and hence only one triangle will be found.

Repeat this construction, making a separate figure for

each case.

Make the construction when Z ^ is a right angle. Are

all three cases possible then? Make the construction

when Z A is obtuse. What cases are possible then ?
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123. EXERCISES.

1. A carpenter bisects an angle A as follows:

Lay oS. AB = AC. Place a steel square so that

BD = CD as shown in the figure.

Draw the line A D. Is this method

correct ? Give proof. Would this

method be correct if the square

were not right-angled at Z)?

2. In the triangle ABC, AC = BC. The points

D, E, F are so placed that A D = BD a.ndAF = BE.
Compare DE and DF. Prove your conclusion.

3. If in the figure Z 2 - Z 1 = 15°, and Z 1 = 120,

find each angle of the triangle.

.B

E

4. If in A.^BC, AC = BC, and ii AC is extended to D so that

AC =^ CD, prove that DB is perpendicular to AB.

5. In A ABC, CA = CB, AD = BE. Prove A ADB ^ A ABE.

6. In the triangle KLN, NM is perpendicular to KL, and

KM = MN = ML. Prove that KLN is an isosceles

right triangle.

7. If in the isosceles /\ ABC a point D lies in

the base, and Z 1 = Z 2, determine whether there is

any position for D such that DE = DF.

8. If the bisectors AD and BE of the base

angles of an isosceles triangle ABC meet in 0,

what pairs of equal angles are formed? What
pairs of equal segments ? Of congruent triangles?

9. If the middle points of the sides of an equi-

lateral triangle are connected iis .shown in the fig-

ure, compare the resulting four triangles.
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10. Triangle ABC is equilateral. AD = BE
Compare the triangles DBE, ECF, FAD.

CF.

AD B
11. Two railway tracks cross as indicated in the

figure. What angles are equal and what pairs of

angles are supplementary? State a theorem involved

in each case.

G

12. In a, A ABC does the bisector oi ZA also

bisect the side BC (1) if AC = BC hat AC <AB,
{2)UAC = AB? ^

13. If in the triangle ^-SC, ^5 = ^C and if B
is any point on A C, find D on AB so that

A ECB s A CDB.

14. 11 in the figure AB = AC, find Zl if

ZA = 60°; a ZA = 40°. Show that whatever the

B value of ZA, Zl = \ZA+xt.Z.

15. If in the isosceles triangle ^BC
the middle point of AB is D and

AF = BE, find the relation between

ZlandZ 2.

16. In the figure AO = OC and

OD = OB. How are the segments A C and DB
related? How are AD and

CB related? Prove.

17. To cut two converging

timbers by a line AB which

shall make equal angles with A
them, a carpenter proceeds as

follows : Place two squares against the tim-

bers, as shown in the figure, so that AO = BO.

Show that AB is the required line.
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DETERMINATION OF LOCI.

124. Theorem. Every point on the bisector of an

angle is equidistant from the sides of the angle.

Given P, any point on the bisector of the ^
angle A, and PC and PB perpendicular to

the sides.

To prove that PC = PB. a<

Proof : By the hypothesis

Z1 = Z2. c-

Show that Z 3 = Z4 and complete the proof.

125. Theorem. If a point is equally distant from the

sides of an angle, it lies on the bisector of the angle.

Given an angle A, any point P and the per- 75/
pendiculars PB and PC equal. ^^ .

To prove that PA bisects the angle A. ^^:^- V
Proof : Give the argument in full to ' ^"^~~~-,.,,^^^ /

show that A^BP^A^PC and thus
^""7^

show that Z 1 = Z 2.

Hence AP is the bisector of the angle A.

126. The two preceding theorems enable us to assert

the following

:

(1) Every point in the bisector of an angle is equidistant

from, its sides.

(2) Eeerji point equidistant from the sides of an a)iit!e Jie.<

in its bisector.

For these reasons the bisector of an angle is called the

locus of all points equidistant from its sides.

The word locux means place ov ponition. It givos the location of all

points having a given propeity.
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127. All points in a plane which satisfy some specified

condition, as in the case preceding, will in general be

restricted to a certain geometric figure.

This figure is called the locus of the points satisfying the

required condition, provided:

(1) Every point in the figure possesses the required prop-

erty.

(2) Every point in the plane which possesses the required

property lies in the figure.

128. Theorem. The locus of all points equidistant

from the extremities of a given line-segment is the per-

pendicular bisector of the segment.

Given the perpendicular bisector / meeting

the segment AB at D.

To prove that (a) every point in I is /

equidistant from A and B; (J) every /
point which is equidistant from A and B /

lies in I. L
, A

Proof : (a) Let P be any point in I.

Draw PA and PB.

Then PA = FB. (§ 112)

(J) Let P be any point in the plane such that PA = PB.

Bisect Z APB with the line PB.

Now show that /\AT)P ^ABPB.
And hence that AD = BD and ZADP = Zbdp.

Hence PB is the perpendicular bisector of AB, and since

there is only one such, this is the line I (§ 67).

Thus the perpendicular bisector of the segment fulfills

the two requirements for the locus in question.

Steps (a) and (J) together show that a point not on the

line I is unequally distant from A and B.

\
\
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129. Problem. To find the locus of all points at a

given distance from a given straight line.

Solution. Given the line / and the segment a.

Construct a perpendicular to I at some point A and lay

off AB = a. „
Through B draw Zj II I.

Then ?j is a part of the locus required. b p
^

Proof: (1) To show that any point P
in Zj is at the distance a from I.

Draw PA and also let fall PK± I.

Now AABP ^Aakp and PE = AB = a. (NVliy ?)

(2) To show that any point P in the plane above I whose

distance from Z is a lies in Zj.

Draw a ± from P to I, meeting I and Zj in K and P' re-

spectively. Then by (1) KP' = a. But KP = a. Hence

P and P' coincide and P lies on Zj.

.•. Zj is a part of the locus sought.

Let the student find another line which is also a part of

the locus.

Note. In (1) and (2) above, great cave is needed in keeping the

hypothesis clearly in mind.

130. EXERCISES.

1. Find the locus of all points in the plane equally distant from

two parallel lines.

2. Find the complete locus of all points in the plane equally dis-

tant from two intersecting lines.

3. Find the locus of all points in the plane equally distant from a

fixed point.

4. Find the locus of all points in the plauf equally distant from

two fixed points.
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131. Theorem. The bisectors of the three angles of a

triangle meet in a point.

Given AD, BE, and CF bisecting ^A, ZB,
Z C respectively of the triangle ABC.

To prove that AD, be, and CF meet in

a common point.

Proof : Let AD and BE meet in some
point, as O.

Then o is equidistant from AB and

AC. Why ?

Also O is equidistant from AB and BC. (Why ?)

.-. is equidistant from AC and BG. (Why ?)

Then o lies on the bisector of Z C. (Why ?)

That is, CF passes through the point o, and thus the

three bisectors meet in a common point.

132. Theorem. The three perpendicular bisectors of

the sides of a triangle meet in a

point.

Given FH, DG, and EK perpendicular

bisectors of the sides AB, BC, and CA of

A ABC.
To prove that FH, DO, and EK

meet in a point.

Proof : The proof is exactly similar to that of 131.

133, EXERCISES.

1. In § 131 how do we know that AD and BE meet?

Suggestion. Show that AD and BE cannot be parallel.

2. In § 132 how do we know that FH and GD meet ?

3. Do the bisectors of the angles always meet inside the triangle ?

4. Do the perpendicular bisectors of the sides always meet inside

the triangle ? Draw figures to illustrate the various cases.
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D

THEOREMS ON QUADRILATERALS.

134. Definitioas. If no three of the points

A, B, C, D lie in the same straight line, the

figure formed by the four segments AJi, BC,

CD, DA, is called a quadrilateral.

The segments are the sides of the quadrilateral and the

points are its vertices.

Two sides are adjacent if they meet in a vertex, as AB and

BC. Otherwise they are opposite, as AB and CD. Two
vertices are adjacent if they lie on the same side, as A and

B. Otherwise they are opposite, as A and C.

A diagonal of a quadrilateral is a segment joining

two opposite vertices, as .40

and BD.

Quadrilaterals which have

a reentrant angle, such as

Zbcd, and those in which

two sides intersect, such as AB and CD, are not considered

here.

Rhomboid Rhombus Rectansle Miuare

135. A parallelogram is a quadrilateral in which both

pairs of opposite sides are parallel.

A rhomboid is a parallelogram whose angles are oblique.

A rhombus is an equilateral rlioniboid.

A rectangle is a parallelogram whose angles are right

angles. A square is an equilateral roi'tangle.

The side on which a parallelogram is supposed to stand is

called its lower base, and the side opposite is its upper base.
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136. A trapezoid is a quadrilateral having only one pair

of opposite sides parallel.

An isosceles trapezoid is one in which

the two non-parallel sides are equal.

In a trapezoid the two parallel sides

are the upper and lower bases.

137. The altitude of a parallelogram or a trapezoid is the

perpendicular distance between its bases, and its diameter

is the segment joining the middle points of the other sides.

138. EXERCISES.

1. Name each of the following quadrilaterals on page 4 : IHPN,
IHGO, AEDB, COED, JMPG, USED, KLWV,JIBC. To deter-

mine whether opposite sides of these figures are parallel, use the pro-

tractor for measuring the necessary angles.

2. Is every rectangle a parallelogram ? Is the converse true?

3. Is every rectangle a square ? Is the converse true ?

139. Theoeem. Opposite sides of a parallelogram are

equal. jy g

A B

Given ABCD, a parallelogram; that is, AB II CD and AD II BC-

To prove that AB = CD and BC = AD.

Proof : Draw the diagonal AC.

Prove A ABC ^ A ^CJDand compare corresponding sides.

What determines which are corresponding sides?

140. EXERCISES.

1. Show that a diagonal of a parallelogram divides it into two

congruent triangles.

2. Give the proof in § 139, using the diagonal BD.
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141. Theorem. The diagonals of a parallelogram bi-

sect each other. q c

A B

GivenO ABCD with its diagonals meeting at the point O-

To prove that oc= OA and OB = OB.

Proof : In the triangles AOB and COD, determine whether

sufficient parts are equal to make them congruent, and if

so compare corresponding parts. Give all the details of

the proof.

Can the proof be given by using the ^AOD and BOC! If so,

give it.

142. Theorem. // a quadrilateral has both pairs of

opposite sides equal, the figure is a parallelogram.

D G

A B

Given a quadrilateral ABCD in which AS = CD and AD = BC

To prove that AB II CD and AD II BC.

Proof : Draw the diagonal AC.

In the A ABC and ADC determine whether any test for

congruence applies, and if so compare corresponding angles.

143. EXERCISES.

1. By use of tlip last theorem the question of Ex. 1, § 1:>S. can be

answered by measurini; sides instead of angles. Verify the results

by this process.

2. \Vhich two of the theorems §§ lof», Itl, 1 1'J are converse?

State in detail the hypothesis and conclusion of eaeh.
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144. Theorem. If a quadrilateral has one pair of

opposite sides equal and parallel, the figure is a parallel-

ogram, p ^
'^^^n 7

2'-,./

A B

Given. (State all the items given in the hypothesis.)

To prove. (State what needs to be proved in order to

show that ABCD is a parallelogram.)

Proof : From the data given prove that

A ABC ^ A EDO.

Use corresponding angles of these congruent triangles to

show that the other two opposite sides are parallel.

Hence show that the figure is a parallelogram.

Write out this demonstration in full.

Could the theorem be proved equally well by drawing

the other diagonal ? If so, draw it and give the proof.

145. EXERCISES.

1. Prove that if the diagonals of a quadrilateral bisect each other

it is a parallelogram. What is the converse of this proposition?

2. Show that if two intersecting line-segments bisect each other,

the lines joining their extremities are parallel.

3. The parallel lines ?j and I2 are cut by a trans-

versal AB. AC a:nd AD bisect Z2 and /^l respec-

tively. Prove that A CBA and DBA are isosceles.

Compare the segments CB and BD.

4. If in an isosceles right triangle ABC the

bisectors' of the acute angles meet at 0, find how

many degrees in the Z 1 thus formed.
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146. Theorem. // the two diagonals of a 'parallelo-

gram are equal, the figure is a rectangle.

D

Given O ABCD with AC = BD.

To prove that Z 1 = Z 2 = Z 3 = Z 4 = rt. Z.

Proof : Show that A ABD ^AABC
.-. Zl = Z3.

But Z 1 + ^ 3 = 2 rt. A.

.-. Z 1 = Z 3 = rt. Z.

In like manner prove that Z 2 = Z 4 = rt. Z.

Hence the figure is a rectangle (§ 135).

(Why ?)

(Why ?;

(Why?)

147. EXERCISES.

1. State and prove the converse of the theorem, § 146.

2. Show that a diameter of a parallelogram passes through the in-

tersection of its diagonals. See § 1:57. .

Suggestion. Show that it bisects each diagonal.

3. Prove that the diagonals of a square are perpendicular to each

other.

4. Prove that the diagonals of a rhombus are perpendicular to

each other.

5. Does the same proof apply to Exs. 3 and 4?

6. Are the diagonals of a square equal ? Is this ti-ue of a rhom-

bus? Prove each answer correct.

7. Uo the diagonals of a square bisect each other? Is this true of

a rhombus? Of a trapezoid?

8. SIkuv that if two adjacent angles of a parallelogram are equal,

the figure is a rectangle.
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148. Theorem. Two parallelograms having an angle

and the two adjacent sides of one equal respectively to an
angle and the two adjacent sides of the other are con-

gruent.
^ ^ ^, ^,

A B A' B'

. Given [S ABCD and A'^C'D^ such that AB = A'^, AD = A'If

a.n&/LA = A'.

To prove that O ABCD ^ O a'b'g'd'.

Proof: Apply EJ ABCD to O a'b'c'd' so as to make
Z.A coincide with ^A\ AB falling on a'b', and AD on

A>D'.

Then BC takes the direction b'g', since AB = Z.b',

being supplements of the equal angles A and A'. (Why ?)

G falls on c', since BC = b'c', being segments equal to

the equal segments AD and a'd'. (Why ?)

Hence CD coincides with g'd'. (Why ?)

Therefore O ABCD ^ O a'b'g'd', since they coincide

throughout.

149. EXERCISES.

1. Are two parallelograms congruent if they have a side and two
adjacent angles of the one equal respectively to a side and two adja-

cent angles of the other ? Draw figures to illustrate your answer.

2. Are two parallelograms congruent if they have four sides of one

equal to four sides of the other? Show why, and draw figures to

illustrate.

3. Compare the theorem of § 148 and Exs. 1 and 2 preceding with

the tests for congruence of triangles.

4. Prove that the opposite angles of a parallelogram are equal.

5. State and prove the converse of Ex. 4,



60 PLANE GEOMETRY.

OTHER THEOREMS APPLYING PAEALLELS

150. Theorem. // a line bisects one side of a triangle

and is parallel to the base, then it bisects the other side

and the included segment is equal c

to one half the base.

Given a line / II AB in A ABC such y^ ^ ^

that AD = DC.

To prove that be = EC and jt

DE=^AB.
Proof : Draw EF through E parallel to CA.

Now show that AFED is a parallelogram,

and that Adec^Afbe,
from which CE= EB, DE= FB, DE= AF,

and AB = af+fb = -2de,

or I)E=-^AB.

State the reasons for each step.

*

151. Theorem. A segment connecting the middle points

of two sides of a triangle is parallel to the third side and

equal to one half of it.

Given A ABC and the segment DE such that AD = DC and

CE = EB. See figure in § 150.

To prove that DE II AB and DE = \ AB.

Proof: Since each of the sides AC and BC has but one

middle point (§ 65), it follows that there is but one seg-

ment DE bisecting both these sides. But by § 150 a certain

segment paniUel to the base fulfills this condition.

Hence, DE is parallel to the base AB.

Then, DE = ^AB as in § 150.
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152. Theorem. // a segment is parallel to the bases of

a trapezoid and bisects one of the non-parallel sides, then

it bisects the other also and is equal to one half the sum

of the bases. d ^c

E/
"O

A B

Given the trapezoid ABCD in which AE=ED and EFWAB.

To prove that BF= FC and EF= ^{AB + DC').

Proof : Draw the diagonal AC meeting EF in o.

In A 4CZ), 40 = OC and ^0 = 1 DC. (Why?)
In A ABC, BF= FC and OF=^A B. (Why ?)

Adding, E0+ OF= EF= ^(^AB + DC). (§ 61, V)
Prove this theorem also by drawing the diagonal BD.

State a similar theorem for a parallelogram and make a

proof for that case which is simpler than the above.

153. Theorem. If a segment connects the middle points

of the two non-parallel sides of a trapezoid, it is parallel

to the bases and equal to one half their sum.

Proof : The argument is similar to that in § 151. Give

it in full.

154. EXERCISES.

1. Does a theorem similar to that of § 153 hold for a parallelogram ?

If so, state it and give a simpler proof in this case.

2. If in the figure DE, FO, HI, etc., are parallel to AC and if FE,

HO, JI, etc., are parallel to BC, find the sum of

BD, DE, EF, FG, GH, etc. How, if at all,

does the length of AB enter into the solution?

Suggestion. Produce GF, IH, KJ, to

meet BC, forming ZI7. Then show that

BD + EF + GH, etc., = BC, and similarly

ED + (3F + IH, etc., = AC aTk'
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155. Theorem. // a series of 'parallel lines intercept

equal segments on one transversal, they intercept equal

segments on every transversal.

Given the parallel lines /i, i,j /g, l^, cutting the transversal fi

sotheitAB = BC=CD.

To prove that on the transversal t^ EF= fg = gh.

Proof : The figure ACGE is a parallelogram or a trapezoid

according as t^ II t^ or not.

In either case BF, which bisects AC, also bisects EG

(§ 1^2)- .-. EF=FG.

Similarly, in the figure DHFB, FG = GH.

.-. EF= F0= GH.

156. Theorem. The three altitudes of a triangle vieet

in a point. p ,a'

Outline of Proof: Through each vertex of the given

trianij^le ABC draw a line parallel to the opposite side,

forming a triangle A'B'cf.
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Show that ACA'b, and ab'cb are parallelograms, and
hence that b'c = ab = ca'. That is, C is the middle

point of A'b'.

In the same manner show that A and B are the middle

points of b'c' and a'c' respectively. Also show that the

altitudes of A ABC are the perpendicular bisectors of the

sides of A a' b'c', and therefore' meet in a point (§132).

157. Definition. A segment connecting a vertex of a

triangle with the middle point of the opposite side is called

a median of the triangle.

158. Theorem. The three medians of a triangle meet

in a point which is two thirds the distance from each ver-

tex to the middle point of its opposite side.

o

A H B

Given AABC with medians BD and AE meeting in O.

To prove that the median from c also passes through o,

and that AO = ^AE, -BO = | BD, and CO = | CH.

Outline of Proof : Taking F and G, the middle points of

OB and OA respectively, use §§ 151 and 144 to show that

the figure GFED is a parallelogram, and hence that

DO = 0F= FB and EO = 0G= GA.

That is, O trisects AE and BD.

In the same way we find that AE and CH meet in a

point o' which trisects each of them.

Hence O and o' are the same point. Therefore the

three medians meet in a point which trisects each of them.
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159. EXERCISES.

1. If one angle of a parallelogram is 120", how many degrees in

each of the other angles ?

2. If the angles adjacent to one base of a trapezoid are equal,

then those adjacent to the other base are equal.

3. If the angles adjacent to either base of a trapezoid are equal,

then the non-parallel sides are equal and the trapezoid is isosceles.

4. In an isosceles trapezoid the angles adjacent to either base are

equal.

5. Divide a segment ^B into three equal parts. ^
Suggestion. From A draw a segment A C,

and on it lay off three equal segments, AD, DE, ^'

JSF(§33).

Draw FB and construct EO and DH each parallel to FB. Prove

AH = HG = GB.

6. To cut braces for a roof, as shown in the figure,

a carpenter needs to know the angle DBC when the

angle DAB is given, it being given that AB = AD.
Show how to find this angle. (See § 123, Ex. U.)

7. If each of the perpendicular bisectors of the

sides of a triangle passes through the opposite vertex, what kind of a

triangle is it ? If it is given that two of the perpendicular bisectors of

sides pass through the opposite vertices, what kind of a triangle is it ?

If only one?

8. Find the locus of the middle points of the segments joining a

vertex of a triangle to all points on the ojiposite side.

9. Given a line I and a point P not in the line. Find the locus of

the middle points of all segments drawn from P to /.

10. The length of the sides of a triangle are 12, 14, 16. Four new
triangles are formed by comieoting- middle points of the sides of this

triangle. What is the sum of the sides of these four triangles ?

11. Draw any segment PA nioeting a line Mn .1

.

p \ ^

Lay off AB on I. AVith P and Ji as centers and with T yv

AB and AP as radii respectively, strike arcs meet- /

ing in C. Draw PC, and prove it parallel to /. a b^"
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12. If the side of a triangle is bisected by the perpendicular upon
it from the opposite vertex, the triangle is isosceles.

13. State and prove the converse of this theorem.

14. If in a right triangle the hypotenuse is twice as

long as one side, then one acute angle is 60° and the

other 30".

Suggestion. Let D be the middle point of AB.
Use Ex. 12 and the hypothesis to show that AAC'D is

equilateral.

Prove the converse by drawing CD so as to make /.BCD = /.B.

15. A stairway leading from a floor to one 12 feet above it is con-

structed with steps 8 inches high and 10 inches

wide. What is the length of the carpet re-

quired to cover the stairway, allowing 10 inches

for the last step, which is on a level with the

upper floor.

16. A stairway inclined 45° to. the horizon-

tal leads to a floor 15 feet above the first.

What .is the length of the carpet required to

cover it if each step is 10 inches high ? If each

is 12 inches? If each is 9 inches?

Can this problem be solved without know-

ing the height of the steps? Is it necessary to

know that the steps are of the same height?

17. If the vertex angle of an isosceles triangle is 60°, show that

it is equilateral.

18. By successively constructing angles of 60° divide the perigon

about a point into six equal angles. (This is possible because

360 -T- 6 = 60.) With as a center construct a circle cutting the sides

of these angles in points A, B, C, D, E, F. Draw the segments AB,

BC, etc. Show by Ex. 17 that each of the six triangles thus formed

is equilateral. Show also that ABCDEF is equiangular and equi-

lateral, that is, AB = BC, etc., and AABC = Z BCD, etc.
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POLYGONS.

160. Definitions. A polygon is a figure formed by a

series of segments, AB, BC, CD, etc., leading back to the

starting point A.

The segments are the sides of the polygon and the points

A, B, C, D, etc., are its vertices. The angles A, B, c, D,

etc., are the angles of the polygon.

E
Convex. Equiangular. Equilateral. Regular.

A polygon is convex if no side when produced enters it.

Otherwise it is concave.

Only convex polygons are here considered.

A polygon is equiangular if all its angles are equal and

equilateral if all its sides are equal.

A polygon is regular if it is both equiangular and equi-

lateral.

A segment connecting two non-adjacent vertices is a

diagonal of the polygon.

The perimeter of a polygon is the sum of its sides.

161. Theorem. The sum of the angles of a polygon

having n sides is (2 u — 4) right angles.

Proof : Connect one vertex with each

of the other non-adjacent vertices, thus

forming a set of triangles. Evidently

the sum of the angles of tliese triangles

equals the sum of the angles of the

polygon.
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Now show that if the polygon has n sides there are

(n — 2) triangles. The sum of the angles of one triangle

is 2 rt. A. Hence, the sum of the angles of all the tri-

angles, that is, the sum of the angles of the polygon, is

2(m - 2) = (2 jz - 4) rt. A.

162. Theorem. The sum of the exterior angles of a

polygon, formed by producing the sides in succession, is

four right angles.

Outline of Proof : The sum of both exterior and interior

angles is 2 «, rt. A. (Why ?)

The sum of the interior angles is (2 n — 4) rt. A. (Why ?)

Hence, the sum of the exterior angles is 4 rt. A. (Why ?)

Write out the proof in detail, using the figure.

163. EXERCISES.

1. What is the sum of the angles of a polygon of 3 sides? of 4

sides? of 5 sides? of 6 sides? of 10 sides? of 18 sides?

2. Find each angle of a regular polygon of 3 sides, 4 sides, 5 sides,

6 sides, 8 sides, 14 sides, n sides.

3. Construct a regular triangle, thus obtaining an angle of 60°.

4. Construct a regular quadrilateral. "What is its common name?

5. Prove that a regular hexagon ABCDEF may be constructed as

follows : Let A be any point on a circle with center 0. With A as

center and OA as radius describe arcs meeting the circle in B and in

'F. With B as center and the same radius describe an arc meeting

the circle in C, and so for points to i3»and E. See § 159, Ex. 18.
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-A

SYMMETRY.

164. Two points A and A' are said to be symmetric

points with respect to a line Z if ^ is the per-

pendicular bisector of the segment AA'

.

A figure is symmetric with respect to an

axis I if for every point P in the figure

there is also a point P' in the figure such

that P and P' are symmetric points with

respect to I. This is called axial symmetry.

Two separate figures may have an axis of

symmetry between them.

165. Theorem. Two figures which are symmetric

with respect to a line are congruent. i

Given two figures F and P symmetric

with respect to a line /.

To Prove that f^f'.

Proof: This is evident, since, by

folding figure F over on the line I

as an axis, every point in F will fall upon a corresponding

point in f' (Why ?).

166. Corollary. If points A and A'

and also B and B' are symmetric with re-

spect to a line I, then the segments AB b< ^ i^-

and A'B' are symmetric with respect to I.

167. EXERCISES

1. How many axes of symmeti'v has a square? A rectangle? A
rhombus? An isosceles trapezoid?

2. If a diagonal of a rectangle is an axis of symmetry, what kind

of a rectangle is it?
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3. If a triangle has an axis of symmetry, what kind of

a triangle is it? Assume that the axis passes through

one vertex.

4. If a triangle has two axes of symmetry, what kind

of a triangle is it? ''

\

5. How many axes of symmetry has an equilateral triangle?

6. How many axes of symmetry has a

regular pentagon (five-sided figure) ?

7. How many axes of symmetry has a

regular hexagon ?

8. Show that one figure of § 40 has an

axis of symmetry. State this as a theorem.

168. Problem. Given a polygon P and a line I not

meeting it, to construct a polygon P' such that P and

P' shall be symmetric with respect to I.

Solution. Let A, B, C, D, E be the vertices of the given

polygon P, and / the given line.

Construct A', b', c', 1)', e' symmetric respectively to A,

B, C, B, E with respect to the line I.

Then the polygon P' formed by joining the points A',

b', c', d', e', a' in succession is symmetric to P.

Proof : Give the proof in full.

Figures having an axis of symmetry are very common

in all kinds of decoration and architectural construction.
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169. Two points A and A' are symmetric with respect

to a point O if the segment AA' is bisected by o.

A figure is symmetric with respect to a

point if for every point P of the figure

there is a point P' also in the figure such that P and p'

are symmetric with respect to O.

Such a figure is said to have central sym- m

metry with respect to the point. The point [\~~,o,'''

is called the center of symmetry. A circle

has central symmetry.

Two separate figures may have a center of symmetry

between them.

170. EXERCISES.

1. Prove that if A and A' and also B and K' are symmetric with

respect to a point O, tlien the segments AB and A'B' are symmetric

with respect to 0.

2. Prove that if the triangles. IBC and A'B'C are symmetiic with

respect to a point 0, then they are congruent.

171. Problem. Given a polygon P and a point

outside of it, to construct a polygon f symmetric to P
with respect to 0.

Solution. Construct points symmetric to the vertices

of P. Connect these points, forming the polygon p\ and
prove this is the poly^fon sought.
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172. Theorem. 7/ a figure has two axes of symmetry
at right angles to each other, their point of intersection

is a center of symmetry of the figure.

Outline of Proof : It is to be shown that for every point

P in the figure, a point p" also in the figure can be found
such that PO= P"o and POP" is a

straight line. Draw PP' X I, p'p"

± I', P"p"' ± I and connect the p/_

points P"' and P.

Now use the hypothesis that I ± V,

and each an axis of symmetry, to

show that pp'p"p'" is a rectangle

of which dd" and d'd'" are the

diameters. Hence o, the inter-

section of DD" and d'd"', bisects the diagonal PP", making
p" symmetric to P with respect to o, § 147, Ex. 2. Give
the proof in full.

173. EXERCISES.

1. Has a square a center of symmetry? has a rectangle?

2. If a parallelogram has a center of symmetry, does it follow that

it is a rectangle ?

3. Has a trapezoid a center of symmetry? has an isosceles

trapezoid ?

4. If two non-parallel straight lines are symmetric with respect

to a line /, show that they meet this line in the same point and make
equal angles with it. (Any point on the axis of symmetry is regarded

as being symmetric to itself with respect to the axis.)

5. If segments AB undA'B' are symmetric with respect to a point

O, they are equal and parallel.

6. Has a regular pentagon a center of symmetry ? See figure of

Ex. 6, § 167.

7. Has a regular hexagon a center of symmetry ? Ex. 7, § 167.

8. Has an equilateral triangle a center of symmetry?
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METHODS OF ATTACK.

174. No general rule can be given for proving theorems

or for solving problems.

In the case of theorems the following suggestions may
be helpful.

(1) Distinguish carefully the items of the hypothesis and

of the conclusion.

It is best to tabulate these as suggested in § 79.

( 2) Construct with care the figure described in the hy-

pothesis.

The figure should be as general as the terms of the hypothesis per-

mit. Thus if a triangle is called for Imt no special triangle is men-

tioned, then a scalene triangle should be drawn. Otherwise some

particular form or appearance of the figure may lead to unwarranted

conclusions.

(3) Study the hypothesis with care and determine whether

any auxiliary lines may assist in deducing the properties

required by the conclusion.

Study the theorems previously proved in this respect. A careful

review of these proofs will lead to some insight as to liow they were

evolved.

175. Direct Proof. The majority of theorem.'? are proved

by passing directly from the hj'pothesis to the conclusion

by a series of logical steps. 'I'liis is called direct proof.

It is often helpful in disivrering a direct proof to trace

it backward from tlie conclusion.

Thus, we may observe that the oonolusion C follow.-s if st^itement

B is true, and that B follows if .V is true. If tlieu we can show thai X
is true, it follows that B and C are true and the theorem is proved.

Having thus discovered a proof, wc may then start from
the beginning and follow it directly throuijh.

As an example consider the following theorem:
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The segments connecting the middle points of the opposite

sides of any quadrilateral bisect

each other.

Given segments AB and CD connect-

ing the middle points of the quadrilat-

eral PQRS.

To prove that AB and CD bisect each other.

Proof : Draw the diagonals PR and SQ and the segments AD, DB,
BC, CA.
Now AB and CJ) bisect each other if ADBC is aO, andADBC is

aO if AD II CB and ^C II DB.
But AD II CB since each is II SQ. See § 151.

And ACWDB since each is II PJi.

Hence ADBC is a0.and AB and CD bisect each other.

Notice that the auxiliary lines PR and SQ divide the

figure into triangles and this suggests the use of § 151.

176. Indirect Proof. In case a direct proof is not easily

found, it is often possible to make a proof by assuming

that the theorem is not true and showing that this leads to

a conclusion known to be false.

As an example consider the follow-

ing theorem :

A convex polygon cannot have more

than three acute angles.

Proof: Assume that such a polygon

may have four acute angles, as ^ 1, Z2, Z3, Z4.

Extend the sides forming the exterior angles 5, 6, 7, 8.

Since Zl + Z5 =2 rt. .J, Z2 + Z.6 = 2 rt. A, etc., and since /^l,

Z2, ZS, Zi are all acute by hypothesis, it follows that Z5, Z6, Z7, Z8

are all obtuse, and hence Z5 + Z6 + Z7+ .^8>4rt. A.

But this cannot be true since the sum of all the exterior angles Ta

exactly 4 rt. ^ by § 162.

Hence the assumption that Zl, Z2, ZS, Z4: are all acute is false.

That is, a convex polygon cannot have more than three acute angles.
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The proof by the method of exclusion (§ 86) involves

the indirect process in showing that all but one of the pos-

sible suppositions is false.

177, The solution of a problem often involves the same

kind of analysis as that suggested for the discovery of a

direct proof (§ 175).

For instance, consider the following problem

:

To draw a line parallel to the base of a triangle such that

the segment included between the sides shall equal the sum of

the segments of the sides between the parallel and the base.

Given the A^ISC.

To find a point P through which to draw DE WAB
aothat DP+ PE = AD + EB. dX jP.\ )7

Construction. Draw the bisectors of ^ ^ and B
A

meeting in point P.

Then P is the point required.

Proof : / 1 = Z 3 since DE II AB, and Z 1 = Z 2 since BP bisects Z£.

. . Z 3 = Z 2 and P£ = BE. (Why ?)

Likewise in ^ADP, AD =DP.
Hence DP+PE = AD+BE. (Ax. Y.)

Or DE = AD + BE.
This construction is discovered by observing that a point P must be

found such that PE = BE and PD = AD. This will be true if

Z 3 = Z 2 and this follows if Z 1 = Z 2, while at the same time Z6 = Z5
and Z 4 = Z 5. Hence the bisectors of the base angles will determine

the point P.

Having thus discovered the process, the construction and proof are

made directly.

178. In general the most effective help is a ready knowl-

edge of the facts of geometry alrctuhj discovered., and skill

in applying these will come with priietice. It is important

for this purpose that summaries like the following be made

by the student and memorized:
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179. (a) Two triangles are congruent if they have:

(1) Two sides and the included angle of the one equal to

the corresponding parts of the other.

(2) Two angles and the included side of the one equal to

the corresponding parts of the other.

(3) Three sides of the one equal respectively to three sides

of the other.

In the case of right triangles :

(4) The hypotenuse and one side of one equal to the corre-

sponding parts of the other.

(5) Two segments are proved equal if:

(1) They are homologous sides of congruent triangles.

(2) They are legs of an isosceles triangle.

(3) They are opposite sides of a parallelogram.

(4) They are radii of the same circle.

SUMMARY OF CHAPTER I.

1. Make a summary of ways in which two angles may be shown to

be equal.

2. Make a summary of ways in which lines are proved parallel.

3. What conditions are sufficient to prove that a quadrilateral is a

parallelogram ?

4. Make a list of problems of construction thus far given.

5. Make a list of definitions thus far given. Which of the figures

defined are found on page 4 ?

6. Tabulate all theorems on

(a) bisectors of angles and segments,

(5) perpendicular lines,

(c) polygons in general,

(d) symmetry.

7. What are some of the more important applications thus far

given of the theorems in Chapter I ?
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>»:«

Border, Parquet
Flooring.

PROBLEMS AND APPLICATIONS.

1. Divide each side of an equilateral triangle

into three equal parts (§ 1.59, 5), and draw lines

through the division points as shown in the figure.

Prove (a) The six small triangles are equilateral

and congruent to each other. (First prove them

equiangular.)

(A) The two large triangles are congruent.

(c) The inner figure is a regular hexagon.

2. Let Z, and Iz be parallel lines, with A E per-

pendicular to both. Lay off segments AB, BC,

CD, . . . and EF, FG, GH, . . . each equal to

AE. Connect these points as shown in the figure.

Tile Floor Border. Parquet Floor Border.

Prove (a) EKA, EFK,AKB,BLC, etc.. are congruent right isosceles

triangles.

(J) FLBK. etc., are squares.

Bisect AB, BC, ... EF, FG ... and join points by lines parallel

to EB and ^irrespectively. Xotice that the resulting figure forms

the basis for the floor border to the right.

3. Let Zj h be parallel lines, with .1/.V perpendicular to both.

Through F, the middle point of MN, draw lines KE and AG, each

making an angle of 30° with ^1/.V.

riiniiiet Floor Boi-der.

Prove FE = AFhy showing A I XF 5; A FE.l/.

Also prove KF = FG and that ^ FKA and FEG are equilateral.
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rTVTTT
TTTTTl
fTTTTT

Tile Flooring.

Lay off segments AB, BO, ED, DP, KJ, etc., each equal to AK.
Connect points as shown in the figure.

Prove A SCO ^ A CPD ^AAFK, etc.

Prove that ABCDEF and JKFGHl are regiilar hexagons.

4. A network of congruent equilateral tri-

angles is constructed in a rectangle ABCD as

shown in the figure.

(a) How many of these triangles meet in a

common vertex?

(J) Does this number of equilateral triangles

exactly cover the whole plane aboutthe vertices?

Why?
(c) Do the triangles that meet in one point

form a regular hexagon ?

(rf) At what angle to the horizontal lines

are the oblique lines that form sides of the

triangles ? e.g. what is the angle DCK ?

(e) Compare the lengths of CK and AK
(see § 159, Ex. 14).

To construct this network when a side a of

the triangles is given, proceed as follows : From the vertex ^ of a

right angle lay off segments equal to a along one side AK. With one

of these division points K as center and with a radius equal to twice

AK strike an arc meeting the side AC nt C. Draw CD parallel to

AB and lay oif segments on it equal to a. Connect these points as

shown in the figure, and through the intersection points draw the

horizontal lines, thus fixing the division points on ^ C and BD.
Prove that the resulting triangles are equilateral and congruent to

each other.

Suggestion. Use in order the converse of § 159, Ex. 14 ; § 144, and

the fact that a diagonal divides a parallelogram into two congruent

triangles.

Notice how this construction is studied. The figure is first sup-

posed constructed and its properties tabulated. Some of these (c) and

(d) are then used in making the construction. This method is of

very general application in problems of construction.

Note. This is the method by which a designer would construct a

network of congruent regular triangles.
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5. Construct a network of triangles as in Ex. 4, using pencil and

then ink in parts of the lines, making a set of regular hexagons as

shown in the figure.

How many such hexagons meet in a point? WiU this number

exactly cover the plane about the point? Why?

-
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10. In the figure the octagons are equi-

angular.

(a) Will two such octagons and a square

completely cover the plane about a point ? Why ?

(6) At what angles do the slanting sides of

the octagons meet the horizontal line ?

Find all the angles of the two small white ^ „.. _

trapezoids to the right.

(c) Could a pattern of this type be constructed by using regular

octagons ?

11. Equilateral triangles and regular hexagons have thus far been

found to make a complete pavement. What other regular polygons

can be used to make a complete pavement?

12. If three regular pentagons (five-sided polygons) meet in a

common vertex, will they completely cover the plane about that

point? If not, by how great an angle will they fail to do so?

13. If four regular pentagons be placqd about a point, by how
great an angle will they overlap?

14. If three regular seven-sided polygons are placed about a point,

by how great an angle will they overlap? If two, by how many
degrees will they fail to cover the plane ?

In Exs. 12, 13, 14 it is understood that, so far as possible, the poly-

gons are so placed that no part of one of them lies within another;

that is, they are not to overlap.

15. Answer questions like those in Ex. 14 for regular polygons of

8, 9, and 10 sides. Can any regular polygon of more than six sides be

used to form a complete pavement ?

Note that the larger the number of sides of a regular polygon the

larger is each angle.

16. A carpenter divides a board into strips of equal width as fol-

lows : Suppose five strips are desired. Place a steel square in two

positions, as indicated in the figure, at such

angles that the distance in inches diagonally J^^'s^^^s^zizi

across the board shall be some multiple of five r^----^<Xi5"-^TB--\

(in the figure this distance is 15 inches). Mark v ^
the points and connect them as shown in the figure. Prove that these

lines divide the board into equal strips.
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i
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20. ABCDisa. square, AE = BF = CG = DH and A G, CE, BH,
and DF are drawn as shown in the figure.

Prove that

:

(a) AG\\EC?indiBH\\FD.

(6) Triangles HwA, ExB, etc., are

congruent.

(c) The four trapezoids A Exw, etc.,

are congruent.

(d) xyzw is a square.

D N M C

A B

^m
Parquet Flooring.

21. In the square ABCD, AF = AG = HB = BK, etc., and the

figure is completed as shown.

(a) Pick out all isosceles triangles. Prove.

(A) Pick out all congruent triangles. Prove.

(c) Has this figure one or more axes of symmetry?

D M

A F G B

Linoleum Pattern.

22. On the sides of the square ABCD points E, F, G, H, . . .

are taken, so that AE = AF = GB = BH = etc.

The middle points of EF, GH, KL and MN are connected, form-

ing the quadrilateral PRST.
Prove that

:

(a) ^ C is the perpendicular bisector of EF and KL.
(V) FGRP is an isosceles trapezoid.

(c) PRT and RST are congruent right triangles.

(d) PRST is a square.
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23. On the sides of a square ABCD points G, /f,

E, F, P, etc., are taken, so that GA = AH = EB
=BF=PC, etc. On the diagonals AC and BD
points K, L, M, N, are laid ofi so that OK = OL
-0M= ON.

(a) Prove that GAHN= EBFK, etc.

(6) Prove that HERON = FPLOK.

Suggestion. Superpose one figure on the

other.

24. The bisectors of the angles of a rhomboid

form a rectangle; those of a rectangle form a

square.

w
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29. The bisectors of the four interior angles

formed by a transversal cutting two parallel lines

form a rectangle.

\/



CHAPTER II.

STRAIGHT LINES AND CIRCLES.

'Outdde Faint

180. A circle (§ 12) divides the plane into

two parts such that any point which does not

lie on the circle lies within it or outside it.

181. A line-segment joining any two points

on a circle is called a chord. A chord

which passes through the center is a

diameter.

182. If a chord is extended in one or

both directions, it cuts the circle and is

called a secant.

183. A tangent is a straight line which touches a circle

in one point but does not cut it. An
indefinite straight line through a point

outside a circle is a secant, a tangent,

or does not meet the circle.

184. The portion of a circle included

between any two of its points is called

an arc (§ 12). An arc AB is denoted

by the symbol AB.

A circle is divided into two arcs by any

two of its points. If tlieso arcs are equal,

each is :i semicircle. Otlierwise one is called

the major arc and the <itlier the minor arc.

l!nlrss (itlii'vwisd iiidiratcd .1 />' iiiciins the minor

arc. In case of aiiiliifjuity a tliivd Idtrr may ho used, a> arc AmR.
HI
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An arc is said to be subtended by the .,»45l^<;

chord which joins its end-points. Evi-
dently every chord of a circle subtends two
arcs. Unless otherwise indicated the arc

subtended by a chord means the minor arc.

185. An angle formed by two radii is

called a central angle. An angle formed
by two chords drawn from the same point

on the circle is called an inscribed angle.

If the sides of an angle meet a circle the

arc or arcs which lie within the angle are

called intercepted arcs.

If the vertex of the angle is within or on
the circle there is only one intercepted arc ;

if it is outside the circle there are two inter-

cepted arcs, as AB and CD in the figure.

186. If a circle is partly inside and
partly outside another circle, then they cut

each other.

If two circles meet in one and only one

point, they are said to be tangent.

Arcs of two circles are tangent to each other if

the complete circles of which they form a part are

tangent to each other.

187. Two circles which can be made to coincide are said

to be equal.

The word congruent is unnecessary here, since all circles are similar.

188. EXERCISES.

1. Does the word circle as used in this book (§ 12) mean a curved

line or the part of the plane inclosed by that line?

2. In how many points can a straight line cut a circle ?

3. In how many points can two circles cut each other ?
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PRELIMINARY THEOREMS ON THE CIRCLE.

189. Radii or diameters of the same circle or of equal

circles are equal.

190. // the radii or diameters of two circles are eqvxil,

the circles are equal.

191. A diameter of a circle is double the radium.

192. A point lies within, outside, or on a circle, accord-

ing as its distance from the center is less than, greater

than, or equal to the radius.

193. If an unlimited straight line contains a point

within a circle, then it cuts the circle in two points.

194. // two circles intersect once, they intersect again.

See figure, § 186.

195. // a straight line is tangent to each

of two circles at the same point, then the

circles do not intersect, but are tangent to

each other at this point. See § 186.

196. If two arcs of the same circle or equal circles can

be so placed that their end-points coincide and also their

centers, then the arcs coincide throughout or else form

a complete circle.

197' If in two circles an arc of one can be made to

coincide with an arc of the other, the circles arc equal.

198. A circle is conveniently referred to by indicating

its center and radius.

Thus, O OA means the circle ichnse center is O and raditts OA.

When no ambiguity arises, the lettir at the center alone may be

used to denote the circle. Tlius, O C menus the circle whose center is C.
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199. Theorem. In the same circle or in equal circles

equal central angles intercept equal arcs.

Given the equal circles C and C and /^C= Z. C-

To prove that AB = J^B>.

Proof : Place O C on O c' so that C falls on c', and

Z c coincides with Z Cf.

Then A falls on A' and B on b'. (§ 189)

Hence AB = Jab'. (§ 196)

200. Theorem. In the same circle or in equal circles

equal arcs are intercepted by equal central angles.

Given O C = O C, AB= A^. (See figure, § 199.)

To prove that Zc= Zc'.

Proof : Since AB = A'B', the equal circles can be made to

coincide in such manner that the arcs will also coincide.

That is, A will fall on A', B on b', and c on c'. Hence

Z C coincides with Z c'.

201. EXERCISES.

1. Show that in the same circle or in equal circles equal arcs

subtend equal chords, and conversely.

2. Can two intersecting circles have the same center?

3. From a point on a circle construct two equal chords.

4. Show that the bisector of the angle formed by the chords in

Ex. 3 passes through the center of the circle.
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202. Measurement of Angles. If the perigon at the cen-

ter of a circle be divided by radii into 360 equal angles,

these radii will divide the circle into 360 equal arcs accord-

ing to the theorem, § 199. Hence, vi^e speak of an arc

of 1°, 2°, 8°, etc., and similarly for minutes and seconds.

For this reason a central angle is said to be measured by

the arc which it intercepts, meaning that a given central

angle contains a number of unit angles equal to the number

of unit arcs in the intercepted arc.

203. Definitions. A quadrant is an arc of 90°.

A semicircle is an arc of 180°. A right angle is, there-

fore, measured by a quadrant and a straight angle is meas-

ured by a semicircle.

A sector is a figure formed by two

radii and their intercepted arc.

Thus, the sector BC^l is formed by the radii

CB,CA, a.ndB2.

204. EXERCISES.

1. Show how to bisect an arc, using §§ 48, 199.

Divide an arc into four equal parts. Into eight equal parts.

2. Show that in the same circle or in equal circles two sectors hav-

ing equal angles are congruent.

3. Show that if two sectors in the same circle or in equal circles

have equal arcs, the sectors are congruent.

4. How many degrees in the arc which measiu-es a right angle?

a straight angle? half a right angle? three fourths of a straight an-

gle? two thirds of a right angle? two thirds of a straight angle?

5. Show that the dianiet<=r is the longest chord of a circle.

6. Show that the two arcs into which the extroniitifs of a diameter

di\ idi' a circle are i'i|iial; that is, each is a semicircle.

.Sri;(ii>Ti(iN. Fold the figure over on the diameter.

7. Show that by bisecting the angles between two perpendicular

diameters, a eiiele is divideil into eight eipial parts.
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205. Theorem. A diameter perpendicular to a chord

bisects the chord and also its subtended arc.

Given the diameter EF± AB at D.

To prove that AD = DB and AF= BF.

Proof : Draw the radii CA and CB.

If it can be shown that A ACD ^ A BCD, then

(1) 4D= BD (Why?), and (2) Zacd^Zbcd (Why?);

(3)i>=i> (Why?).

206. Theorem. A line perpendicular to a radius at

its extremity is tangent to the circle.

Given AB ± CD at D.

To prove that AB is tangent to the circle ; that is, does

not meet it in any other point than D.

Proof : Let E be any point of AB other than D.

Draw segment CE. Then CE > CD (Why?).

Hence E is outside the circle (§ 192).

That is, every point of AB except D is outside the circle,

and hence AB is tangent to the circle (§ 183).
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207. Theorem. If a line is tangent to a circle, it is

perpendicular to the radium drawn to the point of tan-

gency.

A D E B

Given O CD with a line AB tangent to the circle at D.

To prove that AB ± CD at D.

Proof: If CD is not-L^B, then some other line, as CE,

mustbeX^iJ (§ 67), thus making ,CE< CD (Why?).

The point E would then lie within the circle (§ 192 ), and

the line AB would meet the circle in two points ( § 193).

But this contradicts the hypothesis that AB is tani^ent

to the circle.

Hence no other line than CD can be perpendicular to AB
from C, and as one such line exists, it must be CD.

208. EXERCISES.

1. What type of proof is used in the preceding paragraph ?

2. How are the two theorems immediately preceding related to

each other.

3. Show that there is only one tangent to a circle at a given point

on it, and that the perpendicular from the center upon the tangent

meets it at the point of contact.

4. A perpendicular to a tangent at the point of tangency passes

through the center of the circle.

5. The periiondicular bisector of any chord passes through the

center of the circle.

6. Two taiit;ciits at tlio extivniities of a diameter are parallel.

7. A diaiiK'tcr lii.soi'ts all chords parallel to the tangents at its

extremities, and also bisects the central angle subtended by each chord.



STRAIGHT LINES AND CIRCLES. 91

8. A diameter bisecting a chord (or its subtended arc) is perpendicular

to the chord.

9. The mid-points of parallel chords all lie on a diameter.

10. A tangent to a circle at the mid-point of any arc is parallel to

the chord of the arc.

209. Theorem. If two circles meet on the line joining

their centers, they are tangent to each other at this point.

Given © CB and C'B meeting in a point B on the line CC.

To prove that © CB and c'b are tangent to each other

at B.

Proof : (1) When each circle is outside the other.

Let D be ani/ point on Oc'b other than B.

Draw CD and do.

Then CD + c'd > CB + c'b. (Why ?)

But c'b =^ c'd.

.-. CD > CB. (Ax. IX, § 119)

.•. D is outside of © CB.

(2) When O CB is inside of O c'b.

Let D be any point on O CB other than B.

Draw CD and c'd.

Then c'c +CD> c'd. (Why ?)

But c'c + CD = c'c + CB = c'b. (Why ?)

.-. C'B > C'D. (Ax. VII, § 82)

.-. D is within c'b.

Therefore O c'b and O CB have only one point in com-

mon and hence are tangent to each other (§ 186).
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PROBLEMS AND APPLICATIONS.

1. If the distance between the centers of two circles is equal to the

sum of their radii, how are the circles related? Construct and prove.

2. If the distance between the centers of two circles is equal to the

difference of their radii, how are the circles related ? Construct and

prove ?

3. If the distance from the center of a circle to a straight line is

equal to the radius, how is the line related to the circle ? Consti-uct

and prove.

4. Given two circles having the same center, construct a circle

tangent to each of them. Can more than one such circle be con-

structed? '\^^hat is the locus of the centers of all such circles?

5. Prove the converse of the theorem in § 209.

6. The straight line joining the centers of two intersecting circles

bisects their common chord at right angles.

7. A line tangent to each of two equal

circles is either parallel to the segment join-

ing their centers or else it bisects this seg-

ment.

8. In the figure AD = DB. Semicircles

are constructed on AD, DB, and AB as di-

ameters. "Which semicircles are tangent to

each other?

9. In the figure ,1, B, C, D are the vertices of a

square. Show how to construct the entire figure.

What semicircles are tangent to each other ?

This ciiiislriicliim occurs froiiuciitly in

(li'.sinns for tilt' flooriiii;'. Si'c aocoinpaiiyiug

figure. This is from a Roman inosaic.

w I: "^' \-- %J
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10. Given two parallel lines BE and AD, to con-

struct arcs -which shall be tangent to each other and

one of which shall be tangent to BE at B and the

other tangent to AD a,t A.

Solution. Draw AB and bisect this segment at

C; construct ± bisectors oi AC and BC. From A
and B draw Js to AD and BE respectively, thus

locating the points O and 0'.

Prove that O and 0' are the centers of the required

arcs.

Suggestion. Show that 0, C, and 0' lie in a

straight line and use the theorem of § 209.

This construction occurs in archi-

tectural designs and in many other

applications. In the accompanying

designs pick out all the arcs that

are tangent to each other and also

the points of tangency.
c„

Scroll Work.

11. On the sides of the equilateral triangle ABC as diameters,

semicircles are drawn, as AEFB. Also with A, B, C as centers and

AB s,s radius arcs are drawn,

as AB, ^.
(a) Prove that the arcs

AEFB, BDEC, and CFDA
meet in pairs at the middle

points D, E, F of the sides of

the triangle.

Sdggestiox. If the mid-

dle points of the sides of an

equilateral triangle are joined,

what kind of triangles are formed ?

(h) What arcs in this figure are tangent to each other?

(c) Has the figure one or more axes of symmetry ?

This figure and the two following occur frequently in

church windows and other decorative designs.

Fourth Presbyterian Church, Chicago.
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12. Construct the design shown in the figure.

SuGGKSTiON. Divide the diameter AB into six equal parts and
construct the three semicircles.

On DC and DC as bases construct equilateral

triangles with vertices O and 0'.

With radius equal to CB and centers O and
0' construct circles. AC' S C B

(a) Prove that O is tangent to each of the three semicircles.

Likewise O 0'.

(6) Erect a, ± to AB a,t D and prove (D O and 0' tangent to it.

(c) Prove circles with centers at and 0' tangent to each other.

(d) Has this figure one or more axes of symmetry?

13. In the figure AB, CD and OD are bisected, and O'O" II AB
through E. DO' = DO" = I DB. Circles are

constructed as shown in the figure.

(a) If ^iJ is 4 feet, what is the radius of

each circle ?

(b) Prove that O O is tangent to O 0' and

also to O 0".

Suggestion. Show that 00' is the sum of the radii of the two
circles.

(c) Is O 0' tangent to the arc A CB and also to the line AB ?

((f) Has this figure one or more axes of symmetry?

14. ABCD is a square. Arcs are constructed with A. B, C, D as

centers and with radii each equal to one half the side of the square

The lines AC, BD, MN, and RS are

drawn, and the points E, F, G, H are

connected as shown in the figure.

The arc SN is extended to P, forming

a semicircle. The line LP meets i'.V in

K, and BK meets MN in 0'.

(a) Prove that EF6^H is a square. ' V '"-. \

(6) Prove that &> KLO' and KPB are

mutually equiangular and each isosceles.

(c) I'liivc that O O'K is tangent to FG and to N.V.

(d) How many axes of symmetry has the figure inside the square?

(e) Show that QO'K is tangent to />.V by drawing O'C and fold-

ing the figure over on the axis of symmetry MN.



STRAIGHT LINES AND CIRCLES. 95

210. Theorem. An angle inscribed in a circle is

measured by one half the intercepted arc.

Given Z DBA inscribed in O CB.

To prove that Z. DBA is measured by J AD.

Show that Z 2 = 1 Z 1.

Proof : (1) if one side, as BD, is a diameter.

Draw the radius CA.

But Z 1 is measured by AD (§ 202).

Hence Z 2 is measured by ^ AD.

(2) j^ the center C lies within the angle.

Draw the diameter BE.

Now Z DBA = Z 1 + Z 2.

Complete the proof.

(3) if the center C lies outside the angle.

Draw BE and use the equation Z DBA = Z 1 — Z 2.

211, It follows from § 210 that if in equal circles two

inscribed angles intercept equal arcs, they are equal ; and

conversely, that if equal angles are inscribed in equal

circles, they intercept equal arcs.

212. EXERCISES.

1. If the sides of two angles BAD and BA'D pass through the

points B and Z) on a circle, and if the vertex A is on the minor are

BD and A' is on the major arc BD, find the sum of the two angles.

2. In Ex. 1 if the points B and D remain fixed while the vertex A
of the angle is made to move along the minor arc of the circle, what

can be said of the angle A 1 What if it moves along the major arc?
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213. Theorem. The locus of the vertices of all right

triangles on a given hypotenuse is a circle whose diame-

ter is the given hypotenuse.

Outline of Proof : Let AB be the

given hypotenuse.

(1) If P is any point on the circle

whose diameter is AB, Z APB = rt. Z.

(Why ?)

(2) If Ap'b is any right triangle with AB as hypote-

nuse, then AC=CB = CP'. (See Ex. 27, p. 82. _)

State the proof in full.

214. PROBLEMS ON LOCI.

Find the following loci

:

1. The centers of all circles of fixed radius tangent to a fixed line.

2. The centers of all circles tangent to two parallel lines.

3. The centers of all circles tangent to both sides of an angle.

4. The centers of all circles tangent to a given line at a given

point. Is the given point a part of this locus ?

5. The vertices of all triangles \\ hich have a

common base and equal altitudes.

6. The middle points of all chords through a

fixed point on a circle. Use Ex.

8, § 208, and then § 213.

7. The points of intersection

of the diasicjnals of trapezoids

formed by the sides of an isosceles triangle and lines

parallel to its base.

8. Two vertices of a triangle slide along two
parallel lines, ^^'hat is the locus of the third vertex if the triangle is

fixc'il in size and shape?

9. .IB( 'D is a parall('li\t;raiii all of whose sides are of fixed lens:th.

The side A B is fixed in position. Find the locus of the middle points

of the remaining three sides.
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10. Prove that in the same circle or in equal circles equal chords are
equally distant from the center.

Suggestion. MB = ND. Why? Then prove
A B3IC = A CND.

11. State and prove the converse of the theorem
in the preceding exercise. (What parts of A BMC
and CND are now known ?)

12. Find the locus of the middle points of all

chords of equal length in the same circle.

13. Find the locus of the middle point of a segment AB of fixed

length which moves so that its end-points slide along the sides of a
right angle. (Use Ex. 27, p. 82.)

14. Find the locus of the points of contact of two varying circles

tangent to each other, and each tangent to a

given line at a given point.

Suggestion. A and B are the fixed points, \ \\:---'i~.:-f'

and P one point of contact of the circles. Draw
the common tangent PB.
and DB = DP.

Prove AD = DP

That is,Hence, D is the middle point of AB and DP is constant,

the locus is a circle of which AB is a diameter.

15. Find the locus of the centers of all circles tangent to a fixed

circle at a fixed point P. Is the fixed point P a part of this locus?

Is the center of the fixed circle a part of it?

16. Find the locus of the centers of all circles of the same radius

which are tangent to a fixed circle.

Under vphat conditions will this locus include the fixed circle itself?

The center of this fixed circle ?

Will the locus ever contain a circle within the fixed circle?

Under what conditions will the locus consist

of two circles, each outside the fixed circle ?

Under what condition does the locus consist

of only one circle?

17. In making core-boxes, pattern makers

use a square as indicated in the figure to test

whether or not the core is a true semicircle. Is

this method correct? Prove.
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215. Theorem. The arcs intercepted by two parallel

chords or by a tangent and a chord parallel to it are

equal.

Given AB \\ DE and LK II MN.

To prove that AI) = BE and LB = KB.

Proof : (1) Draw chord BE.

Compare Z 1 and Z 2, and hence show

that ^ = BE. (Why ?)

(2) Draw the radius CB to the point of tangency.

Then CB ± mn and CB -L LK. (Why?)
Prove A LCS s A KCS, and hence that LB = BK. (§ 199)

216. .EXERCISES.

1. Prove that a tangent at the vertex of an inscribed angle forms

equal angles with the two sides, if these are equal chords.

2. If the vertices of a quadrilateral lie on a circle, any two of its

opposite angles are supplementary.

3. If two chords of a circle are perpendicular to each other, find

the sum of each pair of opposite arcs into which they divide the circle.

4. If the vertices of a trapezoid lie on a circle,

its diagonals are equal.

5. Two circles intersect at C and D. Diame-

ters CA and CB are drawn. Prove that ^4, Fi. B
lie on a straight line.

Suggestion. Prove that /L A /" ' = Z. CDB - rt. Z.
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217. Theorem. An angle formed by two intersecting

chords is measured by one half the sum of the arcs inter-

cepted by the angle itself and its vertical angle.

Given Z 1 formed by the chords AB and DE.

To prove that Zl is measured by J (^AE+ BD}.

Proof : Through A draw the chord AF || ED.

Compare Z 1 and Z 3.

Compare AE and DF, also AE+ BD and BD + DF.

How is Z 3 measured ?

Hence, how is Z 1 measured ?

218. EXERCISES.

1. A chord AB is divided into

three equal parts, AC, CD, and

DB. OA, OC, OD, and OB are

drawn. Compare the angles 4 OC,

COD, and DOB.

2. The accompanying table

refers to the figure in § 217. Fill

out blank spaces.

3. In a circle C with a diameter

AB a chord AD is drawn, and a

radius CE || A D. Prove that arcs

DE and EB are equal.

4. The vertices of a square ABCD all lie on a circle. E is any

point on the arc AB. Prove that EC and ED divide the AZigleAEB

into three equal parts.

Zl
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219, Theorem. An angle formed by a tangent and

a chord drawn from the point of tangency is measured

by one half the intercepted arc.

Given Z. 1 formed by tangent BD and chord BA.

To prove that Z 1 is measured by J BA.

Proof : Draw a chord EF II BH intersecting BA in Q.

Compare Z 1 and Z 2, also EB and BF.

How is Z 2 measured ?

Hence, how is Z 1 measured ?

Give the proof in full.

220. Definitions. A segment of a circle, or a circle-seg-

ment, is a figure formed by a chord and the arc which it

subtends. For each chord there are two y^^^^Sc^

circle-segments corresponding to the two

arcs which it subtends.

If a chord is a diameter the two circle-

segments are equal.

An angle is said to be inscribed in an arc if its vert^i-x

lies on the arc and its siiU's meet the arc in

its end-points.

Such an angle is also said to be inscribed

in the cirule-segraent formed by the arc and

its chord.

E.g. Zl is inscribed in tlie aiv APR ov iu the segment .iPB.
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221. EXERCISES.

1. Show that an angle inscribed in a semicircle is a right angle.

. 2. If the sides of a right angle pass through the extremities of a

diameter, show that its vertex lies on the circle.

3. If a triangular ruler il/iVO, right-angled at O, is moved about in

the plane so that two fixed points, A and B, lie always

on the sides MO and NO respectively, what path

does the point O trace?

4. Draw two concentric circles, having different

radii, and show that all chords of the outer circle

which are tangent to the inner circle are equal.

5. In an equilateral triangle construct three equal circles, each

tangent to the two other circles and to two sides

of the triangle.

Suggestion. Construct the altitudes of the

triangle and bisect angles as shown in the figure.

Complete the construction and prove that the

figure has the required properties.

(«) Has the figure consisting of the triangle

and the three circles one or more axes of symmetry?

(i) Has it a center of symmetry?

6. Within a given circle construct three equal circles, each tangent

to the other two and to the given circle.

Suggestion. Trisect the circle at D, E, c
and F by making angles at the center each /:\

equal to 120° Draw tangents at D, E, and

F, and prove that A ^5C is equilateral.

Construct the altitudes and prove that they

meet the sides of the triangle at the points of

tangency of the given circle with the sides of

ABC, and also that they pass through the

center of the given circle.

Bisect angles as shown in the figure and prove that the centers of

the required circles are thus obtained.

(o) Has the figure consisting of the four circles one or more axes

of symmetry?

(6) Has it a center of symmetry?
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222. Theorem. The angle formed by two secants,

two tangents, or a tangent and a secant, meeting outside

a circle, is measured by one half the difference of the

intercepted arcs.

Outline of Proof : In each case the given angle is equal

to Z 1, and the arc which measures Z 1 is the difference

between two arcs, one of which is the larger of the two

intercepted arcs and the other is equal to the smaller.

E"'or instance, in the first figure,

FH=zDF— £h = DF— be.

Give the proof in detail for each figure.

223. EXERCISES.

1. If (in left figure, § 222) ZA = 17° and £B = 25", find DF.

2. If ZA = 37° (in middle figure), find the arcs into which the

points B and E divide the circle.

3. With a given radius construct a circle passing through a given

point. How many such circles can be drawn ? What is the locus of

the centers of all such circles ?

4. Draw a circle passing through two given fixed points. How
many such circles are there? What is the locus of the centers of all

such circles?

5. Construct a circle having a given radius and passing through

two given points. How many such circles can be drawn? Is this

construction ever impossible? Under what conditions is only one

such cii'cle possible?
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224. Problem. To construct a circle through three

fixed points not all in the same straight line.

Given three points A, B, C not in the same straight line.

To construct a circle passing through them.

Construction. Let the student give the construction and
proof in full. (See §132.)

225. Definition. The circle OA in § 224 is said to be

circumscribed about the triangle ABG and the triangle is

said to be inscribed in the circle.

226. EXERCISES.

1. In the construction of § 224 why do DM and EN meet ?

2. Why cannot a circle be drawn through three points all lying in

the same straight line ? Make a figure to illustrate this.

3. Show that an angle inscribed in an arc is greater than or less

than a right angle according as the arc in which it is inscribed is less

than or greater than a semicircle.

4. Prove that the bisectors of the angles of an equilateral triangle

pass through the center of the circumscribed circle.

5. Draw a circle tangent to two fixed lines. How many such

circles are there ? What is the locus of their centers '! Is the point

of intersection part of this locus? Discuss fully.

6. Show that not more than one circle can be drawn through three

given points, and hence that two circles which coincide in three

points coincide throughout.
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227. Problem. To construct a circle tangent to each

of three lines, no two of which are parallel and not all

of which pass through the same point.

Given the lines h, h, Is-

To construct a circle tangent to each of these lines.

Construction. Since no two of the lines are II, let 1^ and

^2 meet in A, l^ and Zj in B, and l^ and l^ in D, where A, B,

and D are distinct points.

Draw the bisectors oi ZA and Z B and let them meet

in point C.

Then C is the center of the required circle. (See § 131.)

Give the proof in full.

228. Definitions. The circle in the construction of § 227

is said to be inscribed in the triangle ABD.

Three or more lines which all pass through the same point

are called concurrent. Hence the lines /j. 1^. l^ are not con-

current.

229. EXERCISES.

1. Why is the construction of § 227 impossible if l^ I:, and /a are

concurrent ?

2. If two of the lines are parallel to each other, show that the con-

struction is possible. How many tangent circles can be constructed

in this case? Draw a iigure and give the construction and proof in

full.

3. Is the construction possible wliou all three lines are parallel?

Why?
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4. If two sides of the triangle are produced, as AB and AD in the

figure of § 227, construct a circle tangent to the side BD and to the

prolongations of the sides AB and AD.
This is called an escribed circle of the triangle.

5. How many circles can be constructed tangent to each of three

straight lines if they are not concurrent and no two of them are

parallel?

6. Draw a triangle and construct its inscribed and circumscribed

circles and its three escribed circles.

230. PiiOBLEM. From a given 'point outside a circle

to draw a tangent to the circle.

, rn,

-^bx. /
'n

Given O CA and an outside point P.

To consttuct a tangent from P to the circle.

Construction. Draw CP. On CP as a diameter con-

struct a circle, cutting the given circle in the points

A and B.

Draw the lines PA and PB.

Then PA and PB are both tangents.

Give the proof.

231, EXERCISES.

1. If in the figure of § 230 the point P is made to move towards

the circle along the line PC until it finally reaches the circle, while

PA and PB remain tangent to the circle, describe the motion of the

points A and B and also of the lines PA and PB. How does this

agree with the fact that through a point on the circle there is only

one tangent to the circle ?
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2. Can a tangent be drawn to a circle from a point inside the

circle ? Why ?

3. Show that the line connecting a point outside a circle with the

center bisects the angle formed by the tangents from that point.

4. Why are not more than two tangents possible from a given

point to a circle ?

5. The two tangents which can be drawn to a circle from an ex-

terior point are equal.

6. In a right triangle the hypotenuse plus the diameter of the

inscribed circle is equal to the sum of the two legs of the triangle.

7. If an isosceles triangle inscribed in a circle has each of its base

angles double the vertex angle, and if tangents to the circle are

drawn through the vertices, find the angles of the resulting triangle.

8. If the angles of a triangle ABC inscribed in a circle are G4°,

72°, and 44'^, find the angles of the triangle formed by the tangents to

the circle at the points A , B, and C.

SUMMARY OF CHAPTER H.

1. Make a list of all the definitions involving the circle.

2. State the theorems on the measurement of angles by inter-

cepted arcs.

3. State the theorems involving equality of chords, central

angles, and intercepted arcs.

4. State the theorems on the tangency of straight lines and

circles.

5. State the theorems involving the tangency of two circles.

6. Make a list, to supplement that in the summary of Chaptei- I,

of ways in which two angles or two line-segments may be proved equal.

7. State the ways in which two arcs of the same or equal circles

may be proved equal.

8. State the problems of construction given in Chapter II.

9. Explain what is meant by saying that a central angle is meas-

ured liy its intercepted arc.

10. State some of the important applications of Chapter II.

(Return to this question aftei- studying those which follow.)
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'2 -1

'

PROBLEMS AND APPLICATIONS.

1. Given two roads of different width at right angles to each

other, to connect them by a road whose sides are

arcs of circles tangent to the sides of the roads.

(a) Make the construction shown in the figure and

prove that it has the required properties.

(6) Is this construction possible when the given

roads are not at right angles to each other ? Illustrate.

(c) Can the curve be made long or short at will ?

(d) Make the construction if the given roads have the same width

2. Two circles C an(\ C" are tangent at the

point D. AB is a, segment through D termi-

nating in the circles. Prove that the radii

CA and C'B are parallel.

3. Through a point on the bisector of an

angle to construct a circle tangent to both

sides of the angle.

Construction. Through the given point

P draw EP ±to AP. Lay ofl ED = EP and

at D construct DC J- ^7) meeting the line AP
in C. Then C is the center of the required

circle and CD is its radius.

Proof : Draw PD and prove that ADEP
is isosceles and hence also APD.C.

Is it possible to construct another circle having the properties

required? If so, construct it.

This construction is

used in the accompany-

ing design in which the

shape is determined by

fixing the point P in ad-

vance.

Such designs are of

frequent occurrence in decorative work such as the steel

ceiling panel given here.
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B

4. In an isosceles triangle construct three circles

as shown in the figure.

Suggestion. First construct the inscribed

circle with center C). Let the bisector oi /.A meet a
this circle in a point P- Then use Ex. .3.

5. The angles formed by a chord and a tangent are equal respec-

tively to the angles inscribed in the arcs into which the end-points of

the chord divide the circle.

6. If a triangle whose angles are 48°, 56°, and 7f!' is circumscribed

about a circle, find the number of degrees in the arcs into which the

points of tangenoy divide the circle.

7. Divide each side of an equilateral triangle into three equal

parts (Ex. 5, § 159) and connect points as shown in the figure.

Prove that DEFGHK is a regular hexagon.

8. If a circle is inscribed in the triangle of Ex. 7,

prove that all sides of the hexagon are tangent to the

circle.

Suggestion. Show that the perpendicular bisec-

tors of the segments HK, KD, DE meet in a point

equidistant from these segments. _

9. "Within a given square construct four equal

circles so that each circle is tangent to one side of

the square and to two of the circles.

Suggestion. First construct the diagonals of

the square.

10. In the figure,

A BCD is a rectangle D F
with AD = i AB. E
and F are the middle

points of AB and CD
respectively.

Scniicirrles are con-

structed with E and F
as centers and J.I/? as

a radius, etc.

A K B
Fan vaulting from (ilouoislor Oatlioiir;il, EngUind.
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(a) Prove that these quadrant arcs are tangent to each other in

pairs and also to the semicircles.

(6) Lines are drawn tangent to the arcs at the points where these

are met by the diagonals of the squares AEFD and BCFE. Prove
that these lines form squares KLMN and X YZ W.

(c) Construct the small circles within each of these squares.

The above design occurs in fan-vaulted ceilings.

The gothic or pointed arch plaj'S a conspicuous part in

modern architecture, and examples of it may be found in al-

most any city. Its most common use is in church windows.

The figure represents a so-called equilat-

eral gothic arch. The arcs AG and BG are

drawn from B and A as centers respectively,

and with AB as a radius.

The segment ^B is called the span of the

arch, and the point G its apex.

11. In the figure AD = DB. ABC, ADE, and DBF are equi-

lateral gothic arches.

(a) Construct the

circle with center O
tangent to the four

arcs as shown.

Suggestion. Take

X so that DX = XB.
With centers A and B
and radius AX draw
arcs meeting at O.

Complete the con-

struction and prove that the figure has the required properties.

(J) Prove that DE and DF are tangent to each other. Also BF
and BC, and AE and A C.

(c) What axis of symmetry has this figure ?

12. A triangle ABC whose angles are 45°, 80°, and 55° is inscribed

in a circle. Find the angles of the triangle formed by the tangents

at A, B, and C.

Door, Union Park Church, Chicago.
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13. Inscribe a circle in an equilateral gothic arch ABC.

Suggestions. Construct CD Xto AB and ex-

tend it to P, making DP = AB. From P con-

struct a tangent to A C at L.

(a) Prove that A BDP s A BLP and hence

PL = BD.

(b) A OLP = ABDO and hence OD = OL.

Then OD is the required circle. See § 209.

Notice that this figure is symmetrical with re-

spect to the line PD, and hence if the circle is proved tangent to A C,

we know at once that it is tangent to BC.

14. In the figure ABC is an equilateral

gothic arch with a circle inscribed, as in Ex. 13.

(a) Construct the two equilateral arches GHE
and HKF, as shown in the figure.

Construction. Draw BK and AG±AB.
With a radius equal to OD + DB, and with O
as center draw arcs meeting BK and AG in K
and G respectively. Draw GK, construct the

arches and show that each is tangent to the circle.

(i) Do the points E and F lie on the circle ?

Suggestion. Suppose KF to be drawn, and ^ --

compare Z HKF with /HKO by comparing the

sides HK and KF and also GK and KO.

15. Construct an arc passing through a given

point B, and tangent to a given line AD at a

given point D.

16. In the figure ABC is an

equilateral arch. BK is \ of BD.

KBF and AHE are equal equi-

lateral arches. Arcs KQ and HQ
are tangent to arcs KF and HE
respectively.

(a) Find by construction the center O of the circle tangent to ,1 (',

Jl( ',
KJ'\ and HE, and give proof.

From Lincoln Cathedral, England.
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(V) Find by construction the centers of the arcs KQ and HQ.
How is this problem related to Ex. 15 ?

17. Two circles are tangent to each other in-

ternally. Find the locus of the centers of all circles

tangent to both externally.

18. Two circles are tangent to each other ex-

ternally. Find the locus of the centers of all circles f

tangent to both, but external to one and internal to '

the other.

19. Two equal circles are tangent to each other

externally. Find the locus of the centers of all

circles tangent to both.

20. AD'B is an angle whose vertex is outside

the circle and whose sides meet the circle in the

points A and B, while A ADB is an inscribed

angle intercepting the arc AB. Prove that

Z.ADB~^ Z AD'B, provided each of the segments

D'A and D'B cuts the circle at a second point.

21. Through two given points A and B con-

struct a circle tangent to a given line which is

perpendicular to the line AB.
Is this construction possible if the given line

passes through either of the points A or Bt If it

meets AB between these points?

22. In kicking a goal after a touchdown in the

game of football, the ball is brought back into

the field at right angles to the line marking

the end of the field. The distance between the

goal posts being given, and also the point at

which the touchdown is made, find by a geo-

metrical construction how far back into the

field the ball must be brought in order that

the goal posts may subtend the greatest pos-

sible angle.



CHAPTER III.

THE MEASUREMENT OP STRAIGHT LINE-
SEGMENTS.

232. A straight line-segment is said to be exactly meas-

ured when we find how many times it contains a certain

other segment which is taken as a unit. The number thus

found is called the numerical measure, or the length of

the segment.

E.g. a line-segment is 9 in. long if a segment 1 in. long can be

laid off on it 9 times in succession.

Thus, 9 is the numerical measure, or the length of the segment,

when 1 in. is taken as a unit.

233. In selecting a unit of measure it may happen that

it is not contained an integral number of times in the seg-

ment to be measured.

Thus, in measuring a line-segment the meter is often a convenient

unit. Suppose it has been applied five times to the segment AB and

that the last time the end falls on .Ij, A^B being less than one meter.

Then, taking a decimeter (one tenth of a

meter) as a new unit, suppose this is contained ., 5 5 3"

three times in AJi with a remainder A.,B less -^i -^-*

than a decimeter.

Finally, using as a unit a centimeter (one tenth of a decimeter), sup-

pose this is contained exactly six times in ,1„B.

Then, the length of AB is fi meters, 3 decimeters, and 6 centi-

meters, or ."5.36 meters.

The ]irocess of mcusuring- considered here is ideal. Tn practice we
cannot say tli;it a given segment is contained cxaclli/ an int^>gral

number of times in another segment. Sec § 12;!5.

112
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234. It may also happen that, in continuing this ideal

process of measuring as just described, no subdivided

unit can be found which exactly measures the last interval,

that is, such that the final division point falls exactly

on B.

E.g. it is known that in a square whose sides are each one unit

the diagonal is V2, and that this cannot be exactly expressed as an

integer or a fraction whose numerator and denomi-

nator are both integers.

By the ordinary process of extracting square root

we find v'2 = 1.4142 •••, each added decimal mak-

ing a nearer approximation. But this process never

terminates.

Hence, in attempting to measure the diagonal of a square whose

side is one meter, we find 1 meter, 4 decimeters, 1 centimeter, 4 milli-

meters, etc., or 1.414 meters approximately.

It should be noticed, however, that 1.415 is greater than the di-

agonal and hence the approximation given is correct within one

millimeter.

235. Evidently any line-segment can be measured either

exactly or to a degree of approximation, depending upon

the fineness of the instruments and the skill of the opera-

tor. The word measure is commonly used to include

both exact and approximate measurement.

For practical purposes, a line-segment is measured as

soon as the last remainder is smaller than the smallest

unit available. It should be noticed that all practical

measurements are in reality only approximations, since it

is quite impossible to say that a given distance is, for in-

stance, exactly 25 ft. It may be a fraction of an inch

more or less.

E.g. in the above example 1.414 meters gives the length of the

diagonal for practical purposes if the millimeter is the smallest unit

available. The error in this case is less than one millimeter.
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236. Definition. Two straight line-segments are com-

mensurable if they have a common unit of measure. Other-

wise they are incommensurable.

E.g. two line-segments whose lengths are exactly 5.27 and .3.42

meters respectively have one centimeter as a common unit of meas-

ure, it being contained .527 times in the first segment and 342 times

in the second.

But the side and the diagonal of a square have no common unit of

measure.

In the example of § 234, the millimeter is contained 1000 times in

the side and 1414 times in the diagonal, plus a remainder less than

one millimeter. A similar statement holds for any unit of measure,

however small.

237. For the purposes of practical measurement any two

line-segments may he considered as commensurahle. but for

theoretical purposes it is necessary to take account of in-

commensurable segments also.

The theorems in this chapter are here proved for com-

mensurable segments only. They are proved for incom-

mensurable segments also in Chapter VII.

RATIOS OF LINE-SEGMENTS.

238. The ratio of two commensurable line-segments is the

quotient of their numerical measures taken %vith respect to

the same unit.

E.g. if two spgrnonts are respectively •' ft. and 4 ft. in length, the

ratio of the first segment to the second is \ and the ratio of the

second to the first is \.

239. The ratio of two commensunihle segments is the

same., no matter what common unit of mea.suro is used.

E.g. two segments whose numerical measures are :> and 4 if one

foot is the common unit, have 36 and 18 as their numerical measures

if one inch is the common unit. Hut the ratio is the same in both

caacs, namely : J8 = J-



MEASUREMENT OF LINE-SEGMENTS. 115

240. The approximate ratio of two incommensurable line-

segments is the quotient of their approximate numerical

measures. It will be seen that this approximate ratio

depends upon the length of the smallest measuring unit

available, and that the approximation can be made as

close as we please by taking the measuring unit small

enough.

E.g. an approximate ratio of the side of a square to its diagonal

is —— = Another and closer approximation is =
. In

1.41 141
^^

1.414 1414

this case the numerical measure of one of the segments is exact.

An approximate ratio of V^ to VS, in which neither has an exact

. 1.41 141 . ,, . 1.414 1414
measure, is =— . Another is = .

1.73 173 1.732 1732

241. It should be clearly understood that the numerical

measure of a line-segment is a number, as is also the ratio

of two such segments. Hence they are subject to the

same laws of operation as other arithmetic numbers.

For example, the following are axioms pertaining to

such numbers

:

(1) Numbers which are equal to the same number are

equal to each other.

(2) If equal numbers are added to or subtracted from

equal numbers, the results are equal numbers.

(3) If equal numbers are multiplied by or divided by

equal numbers, the results are equal numbers.

It is understood, however, that all the numbers here

considered are positive. For a more complete con-

sideration of axioms pertaining to numbers, see Chapter

I of the Advanced Course of the authors' High School

Algebra.
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242. A proportion is an equality, each member of which

is a ratio. Four numbers, a, J, c, and d, are said to be in

proportion, in the order given, if the ratios — and — are
a

equal. In this case a and c are called the antecedents

and b and d tlie consequents. Also a and d are called

the extremes and b and c the means.

The proportion - = -- is sometimes written a :b = c : d,
b a

and in either case may be read a is to b as c is to d.

If D and E are points on the sides of the triangle ABC,

and if m, w, p, and q, the numerical measures respectively

of Al), BB, AE, and EC, are such that — = 2,

". .^
then the points D and E are said to divide

the sides AB and AC proportionally, that is,

in the same ratio. For convenience it is

common to let AD, DB, AE, and EC stand for

the numerical measures of these segments, and thus to

AD AE
write the above proportion, — =— or AD : DB= AE:EC.

DB EC

THEOREMS ON PROPORTIONAL SEGMENTS.

243. Theorem. // a line is parallel to one side of a

triangle and cuts the other two sides, then it divides these

sides in the same ratio.

Given A ABC in which DE II BC. A

To prove that '— = '—
^.

DB EC ^
Proof : Choose some common measure

of AD and DB, as AK. Suppose it is eon-

tained 3 times in .ID and 5 times in DB. B
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Then AD
DB (1)

Through the points of division on AD and DB draw lines

parallel to BC, cutting AE and EC. By § 155 these paral-

lels divide AE into three equal parts and EC into five

equal parts. Hence, ^^
=1- (2)

§241

EC

from (1) and (2)^ = ^.
DB EC

For a proof in case AD and DB are incommensurable, see § 410.

244. EXERCISES.

1. If DEWBC in i\ABC, compute the segments

left blank from those given in the following table

:

AD



(5)

118 PLANE GEOMETRY.

245. Theorem. If four numbers m, n, p, q are such

that — = ^, then it follows that:
n q

(1)^ = 2. (2)™ = ^.

m p VI
(3)

m + n ^p + q ^^^
m-n _p-q

n q n q
m + n _ p+ q

m — n p— q

Given - = ^- (a)
n g

To prove (1) divide the members of 1 = 1 by those of

To prove (2) multiply each member of (a) by —

To prove (3) add 1 to each member of (a) and reduce

each side to a common denominator.

To prove (4) subtract 1 from each member of (a) and

reduce each side to a common denominator.

To prove (5) divide the members of (3) by the members

of (4).

Write out these proofs in full, giving the reason for

each step, and read off the results as applied to the figure.

For example, show that (3) gives, when applied

to the figure,

AB^AC „^
^

DB EC

A

B C

246. The results in the above theorem are sometimes

named as follows

:

The proportion {a') is said to be tnken by inversion in

(1), by alternation in ('2), by composition in (3), by division

in (4;, by composition and division in (^5).
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247.

1. If — =^, prove that
n q

above figure that

EXERCISES.

= —"— , aud hence show in them + n p + q

AD^AE
AB AC'

2. If in the figure on page 118 DEWBC, compute the segments
indicated by blanks in the accompanying table.

3. If 1L = P,
n q
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248. Theorem. // a line divides two sides of a tri-

angle in the same ratio, it is parallel to the third side.

Given the points D and E on the sides of the A ABC such

.. ^ AD AE
that — =—

.

DB EC

To prove that DE II BC.

Proof : Suppose DE' is drawn paral-

lel to BC. It is proposed to prove that

the point e' coincides with E.

AB AC
Since BE' II BC, we have— =

AB e'c

AC_

EC
But by (3), § 245, ^ :

' ^ ^^ BB
Now use the proof of Ex. 5, § 247, to show that

e'c = EC, and hence that e' and E coincide, so that

BE II BC. Give the proof in full detail.

249. EXERCISES.

1. Show by § 24S that the line joining the middle points of two

sides of a triangle is parallel to the third side. Compare § 151.

2. Show by § '243 that the line which bisects one side of a triangle

and is parallel to a second side bisects the third side.

3. If in the A ABC a segment f'l/ connects the

vertex to any point y of the base, find tlie locus of

the point x on this segment such that Cx : Cy is

the same for all points y.

4. A BCD is a O whose diagonals meet in 0.

If ^ is a point on any side of the O, find the loons

of a point X on the si'j;nuMit Oy such that Oy : xy

is the sanif for (\i'iy snch point y.

5. Find the locus of the points of intersection

of the nicdiiLiis of all triangles having the same
base and e(iual altitudes. (Isc §§ ITiS, 2KS.)
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250. Theorem. The bisector of an angle of a triangle

divides the opposite side into segments whose ratio is the

same as that of the adjacent sides.

Given CD bisecting Z C in A ABC.

To prove that ^ = fi^.

DB BC
Proof : Through B draw BE II BC.

Prolong ^c to meet BE at E.

q,."'<J

In A ABE ^ = ^. (Why?)
DB CE

Now show that A BCE is isosceles, and hence that BC
may be substituted for CE in the above proportion. Com-
plete the proof.

251. EXERCISES.

1. Fill in the blank spaces in the table, if in the figure of § 250
CD is the bisector of Z A CB.

AC



122 PLANE GEOMETHY.

252. Definition. A segment is said to be divided exter-

nally by any point which lies on the line of the segment but

not on the segment itself.

E.g. point C divides the segment AB externally, the parts being

A C and CB, while point B divides the segment A C in-
. „ ~

ternally, the parts being AB and BC. ' " •

253. Theorem. A line which bisects an exterior

angle of a triangle divides the opposite side externally

into two segments whose ratio is the same cls that of the

adjacent sides of the triangle.

A "

Given CD, the bisector of the exterior angle at C of the triangle

ABC.
„ ,, . AB AC
To prove that — =—

.

BB BC

Proof : Through B draw BE II DC.

InA^CO AD^AC^
(Why?)

BD EC ^ J y

Now show that A EBC is isosceles, and hence that

EC = BC.

Complete the proof.

254, EXERCISES.

1. Draw a trian^li' with an acute exterior angle bisected. Using
different lettering from that in § '2'i'.\. prove the tlieorem again.

2. Ciinipare the prodfs in §§ L'.")() and ^M. Give the proof in § 253

for a figure in which . 1
'

' < BC.
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3. Fill in the blank spaces in the table below if

CD is the bisector of the exterior angle BCK.

AC
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SIMILAR POLYGONS.

255. Two polygons, in which the angles of the one are

equal respectively to the angles of the other, taken in

order, are said to be mutually equiangular.

The angles of the two polygons are thus arranged in

pairs of equal angles, which are called corresponding

angles.

Two sides, one of each polygon, included between cor-

responding angles, are called corresponding sides.

256. Two polygons are similar if (1 ) they are mutually

equiangular and if (2) their pairs of corresponding sides

are proportional.

Two pohgons may hare property (1) but not (2). For example, a

rectangle and a square. Or they may have property (2) and not (1).

For example, a square and a rhombus.

Hence any proof that two polygons are similar must show that

both (1) and (2) hold concerning them.

In the case of triangles it will be proved that either property speci-

fied in the definition of similar polygons is sufficient to make them
similar.

257. Theorem. If tico triangles arc mutually equi-

angular, they are similar.

Given A ABC and ABC, in which ZA = /:a,ZB=ZB',
and ZC=.:C'.
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namely that = —
•^ Al al r>//-.' ryl aI

To prove that the other property of similarity holds,

AB _ BG _ CA

A'B'
^ B'C'~ C'A'

Proof: Place Aa'b'c' on A ABC with Z. A' upon its

equal Z A, and b'c' taking the position DE.

Now show that DE II BC and hence — = ^^

that is,

AD AE
AB AG
a'b' a'g'

In like manner, placing Z b' upon Z B,

AB BC
show that

^'s' b'g'

Hence, i_^ = .^ = ^. (Why ?)
A'B b'c' C'a' ^ '

Give the full details of this proof.

258. EXERCISES.

1. To measure indirectly the distance from an accessible point A
to an inaccessible point B.

• Suggestion. Construct j4 2) ± the line of sight Ij ,,--'' ^

from A to B, and ED X AD. Let C be the point B-'='-^^

(yn AD which lies in line with E and B.

Now show that M\EDC and BAC are mutually equiangular and

hence similar. What segments need to be measured in order to com-

pute AB ? Give full details of proof.

2. Prove that two right triangles are similar if they have an acute

angle of one equal to an acute angle of the other.

3. Two isosceles triangles are similar if they have the vertical

angle of one equal to the vertical angle of the other.

4. Two triangles which have the sides of one respectively parallel

or perpendicular to the sides of the other are similar.

5. Show by similar triangles that the segment joining the mid-

points of two sides of a triangle is equal to one half the third side.
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259. Theorem. If two triangles have an angle of one

equal to an angle of the other and the pairs of adjacent

sides in the same ratio, the triangles are similar.

Given A ABC and A'BfC in which Z.A = ZA' and.
AB
A'B

AC
A'
a'

To prove that A4BC~A4'S'C''.

Proof: Place AA'b'c' upon A ABC with Z.A' on ZA,
b'c' taking the position.!)J?.

Then,
AB^AC

(Why?)
AD AE V J y

and hence, DE || BC. (Whj- ?)

Now show that A ADE and ABC are mutually equian-

gular and hence similar.

260. Theorem. If two tri-

angles have their pairs of

corresponding sides in the

same ratio, they are similar.

Given A ABC and A'SfC in

7,, . . . AB BC CA
t- which—,—; = ——; = , - •

A'Bf BC CA'

To prove that Aabc ^
A^'ij'c', tliatis, toproveZvl = Z a', Zb= Z b',Z c= Zc'.
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Proof : Lay off on AB and AC respectively AD = a'b'

and AE = a'c', and draw BE.

Now prove, as in § 259, that AADE^^AABC,

and hence, that :d^ = i^

.

(U
DE BG -^

But, ^ = i^. (Why?) (2)
B'c' BG

Hence, since AD = A'b', it follows from (1) and (2) that

DE= b'c', as in Ex. 5, § 247.

Now show that AA'b'g'^A ADE,

and hence, that AA'b'g' ~ AABG.

Make an outline of the steps in this proof and show how each is

needed for the one that follows.

261. EXERCISES.

1. Given a triangle whose sides are 2, 3, 4. Construct a triangle

having its angles equal respectively to those of the given triangle and

having a side 10 corresponding to the given side 2.

2. If each of two triangles is similar to a third triangle, they are

similar to each other.

3. If in a right triangle a perpendicular be drawn from the vertex

of the right angle to the hypotenuse, show that each of the triangles

thus formed is similar to the given tri-

angle, and hence that they are similar to

each other.

4. In the figure of Ex. 3, make a table

showing which angles are equal and which

pairs of sides are corresponding in the fol-

lowing pairs of triangles: ACD and ACB, CDB and ACB, ACD
and CDB.

5. On a given segment as a side show how to construct a triangle

similar to a given equilateral triangle.
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262. Theorem. The square on the hypotenuse of a

right triangle is equal to the sum of the squares on the

other two sides.

Given A ABC with a right angle at C. Call the lengths of the

sides opposite A A. B, C, respectively, a, b, c.

To prove that <?= d?--\-h'^.

'^XQQii : Let the perpendicular p divide the hypotenuse

into tlie two parts m and n so that c ^= m + n.

From Aacd and ACB show that — = — (1)
c

From A CDB and ACB show that - = -• (2)

From (1) mc = W' (.3)

and from (2) we = a^ (Why?). (4)

From (3) and (4) (m + ny = cfi + IP' (Why ?).

That is, c • c = c^ = a^ + ^^•

For another proof of tliis theorem see § 319.

Historical Note. The proof given .ibove is supposed to be

that given by Pythagoras, who first discovered the theorem.

263. EXERCISES.

1. The radius of a circle is 8. What is the distance from the

center to a chord whose lengtli is 6 ?

2. In the same circle, what is the length of a chord whose liistance

from tlie center is 5?

3. Fiiiil Ihi' diagonal of a square whose side is ."i ; whose side is a.

4. W'liiit. is the side of a square whose diagonal is 8? whose diagonal

is <l ?
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5. The hypotenuse of a right isosceles triangle is 12 inches. Find
the lengths of its sides.

6. The diagonals of a rhombus are 14 and 10 inches respectively.

Find the length of its sides. (See § 147, Ex. 4.)

7. The square on the hypotenuse of a right triangle is equal to four

times the square on the median to the hypotenuse.

8. What is the radius of a circle if a chord 12 inches long is 9

inches from the centre?

9. Find the altitude of an equilateral triangle whose side is 8;

whose side is a.

10. If the altitude of an equilateral triangle is h, find its side.

(Use the formula obtained under Ex. 9.)

11. Find the altitude of a triangle whose sides are 6, 8, and 10.

12. The oval in the figure is a design used in the construction of

sewers. It is constructed as follows

:

In the OA let CD, the perpendicular

bisector of AB, meet the arc AO'B at 0'.

Arcs AM and BN are drawn with the

same radius AB and with centers B and

A respectively.

The lines BO' and A 0' meet these arcs

in M and N respectively.

The arc MDN has the center 0' and

radius O'M.

,{a) Is arc ACB tangent to AM and

BN at A and B respectively? Why?
(i) Is arc MDN tangent to Ail and

iSV" at M and N respectively ? Why ?

(c) li AB = ?, feet, find BO', and hence, O'M, and finally CD.

That is, if the sewer is 8 feet wide, what is its depth?

(rf) If the width of the sewer is a feet, show that its depth is

I
(4 - V2). .

(e) If the depth of the sewer is d feet, show that its width is

<f (4 + V2)

7

(
/) Compute to two places of decimals the width of a sewer whose

depth is 12 feet.
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264. Theorem. // in two right triangles the hypote-

nuse of the one equals the hypotenuse of the other, and if

the sides a, b and a', V are such that a > a', then b < V.

Proof : Let c be the length of the hypotenuse in each.

Then a2 + J2 = c2 and a'2+J'2=c2. (Why?)
•. a^ + h^-. ' + J'2. (Why?)

and a2 _ a'2 = 6'2 _ J2. (-yVhy ?)

Since a>a', the left member of the

last equation is positive, and hence the

right member is also positive, that is, b<b'.

265. Theorem. In the same circle or in equal circles,

of two unequal chords, the greater is nearer the center.

Given ® OA and O'A' in which OA = ffA' and AB>A'Bf.

To prove that AB is nearer the center than A'b' .

Proof: Draw the -Is 6 and V and the radii c and c'

.

Then a and a' are halves of AB and A' b' respectively.

Now complete the proof, using § 264.

266. Theorem. State and prove the converse of the

theorem in § 265, using the same figure.

267. Definitions. A continued proportiod is a series of

equal ratios connected by signs of equality.

a c e Q

The perimeter of a polygon is the sum of its sides.
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268. Theorem. In a continued proportion, the sum

of the antecedents and the sum of the consequents form a

ratio equal to any one of the given ratios.

n c & Q
Given the continued proportion - = -= -=-•

b d f h

To prove that

Proof : Let

a + c \- e+ g a

b + d+f+h^b'
a

b
= '-

Then, -^ = r, j = r, |=r.

Hence, a = br, c = dr, e =fr, g = hr,

and a + c + e + g = br+dr +fr + hr = (b + d +f+ h)r,

or
g + c+e+g' ^ a

b+d+f+h \
Give all reasons in full.

269. Theoeem. The perimeters of two similar poly-

gons are in the same ratio as any two corresponding

sides. A — ^ f

Proof : By definition of similar polygons

AB BC CD DE EA
a'b' b'c' c'b' d'e' e'a'

Complete the proof.
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270. Theorem. // the diagonals drawn from one

vertex in each of two polygons divide them into the same

number of triangles, similar each to each and similarly

placed, then the two polygons are similar.

Given the diagonals drawn from the vertices A and A' in the

polygons P and P', forming the same number of triangles in each,

such that A / ~ A /', AII~ £\ir, A in ~ A HI'.

To prove that P ~ p'

.

Outline of Proof : (1) Use the hypothesis to show that

Z. A = /- a', Zb = Z b', Z c=Z c', etc.

(2) Show that
AB
A'B'

BC
''

B'C'

CD

C'D'
, etc.

Notice that the proportion —— = follows from
b'c' c'd'

nc AC
A'C

CD
'

C'D'
OVhy?)

Give the proof in detail.

271. Theorem. Sidtc the converse of the preceding

theorem, and gJve the proof in fill detail.

Mako an outline of all t/ie strpx in the proofs of these

two tlieoreins.
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272, Theorem. If through a fixed point within a
circle any number of chords are drawn, the product of the

segments of one chord is equal to the product of the seg-

ments of any other.

Given O C with any two chords AB and DE intersecting in P.

To prove that AP pb = EP PD.

Proof : Draw EB and DA.

Then, Z 1 = Z 2 and Z 3 = Z 4. (Why?)
Hence, A EPB ~ A PDA. (Why?)
Which are corresponding angles, and which are corre-

sponding sides?

Show that ^=IR.
EP PA

Complete the proof.

It follows from this theorem that if a chord AB is made
to swing around the fixed point P, the product AP PB
does not change, that is, it is constant.

273. EXERCISES.

1. Which chord through a point is bisected by the diameter through

that point? Why?

2. Through a given point within a circle which chord is the short-

est? Why?

3. The product AP PB is the area of the rectangle whose base

and altitude are the segments of AB. (See § 307.)

Note that this area is constant as the chord swings about the point

P as a pivot.
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274. Definition. If a secant of a circle is drawn from a

point P without it, meeting the circle in the points A and

B, then PB is called the whole secant and PA the external

segment, provided A lies between B and P.

275. Theorem. If from a fixed point outside a cir-

cle any number of secants are drawn, the 'product of one

whole secant and its external segment is the same as that

of any whole secant and its external segment.

<p

Given secants PB and PE drawn from a point P.

To prove that PA • pb = PD • pe.

Proof : In the figure show that A PDB ~ A PAE.

Complete the proof.

276. EXERCISES.

1. A point P is 8 inches from the center of a circle whose radius

is 4. Any secant is drawn from P, cutting the circle. Find the

product of the whole secant and its external segment.

2. From the same point without a circle two secants are drawn.

If one whole secant and its external segment are 14 and 5 respec-

tively and the other external segment is 7, find the other whole

secant.

3. Two chords intersect within a circle. The segments of one are

m and n and one segment of the other is p. Find the remaining

segment.
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277. Theokem. If a tangent and a secant meet out-

side a circle, the square on the tangent is equal to the

prodv£t of the whole secant and

its external segment.

Proof : Show that / / ^^
A APD ~ A BPD and hence that

PB : PD = PD : PA. b\

Complete the proof.

278. EXERCISES.

1. If a square is constructed on PD as a side, and a rectangle with

PB as base and PA as altitude, compare their areas as the secant

revolves about P as a pivot.

2. Show that the theorem in § 277 may be obtained as a direct

consequence of that in § 275 by supposing one secant to swing about

P as a pivot till it becomes a tangent.

3. A point P is 10 inches from the center of a circle whose radius

is 6 inches. Find the length of the tangent from P to the- circle.

4. The length of a tangent from P to a circle is 7 inches, and the

external segment of a secant is 4 inches. Find the length of the

whole secant.

5. What theorems are included in the following statement :

" From a point P in a plane a line is drawn cutting a circle in A and B.

Then the product PA PB is the same for all such lines " f

6. In a circle of radius 10 a point P divides a chord into two seg-

ments 4 and 6. How far from the center is P?

Suggestion. Use Ex. 5.

7. In two similar polygons two corresponding sides are 3 and 7.

If the perimeter of the first polygon is 45j what is the perimeter of

the second?

8. The perimeters of two similar polygons are 32 and 84. A side

of the first is 11. What is the corresponding side of the second

polygon?
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279. Definitions. In a right triangle ABC, right-angled

at C, the ratio — is called the sine of Z A
AB

and is written sin A.

If any other point b' be taken on the

hypotenuse or the hypotenuse extended,

and a perpendicular b'c' be let fall to AC.

c'b' CB

AB
then

AB'
(Why?)

Likewise in A AB"c", in which AB" = 1 unit, we have

C"B" 'I'n"C"B

AB" 1

Hence, in a right triangle whose hypotenuse is unity,

the length of the side opposite an acute angle is the sine of that

angle.

280, Theorem. The ratio of the sides opposite tiro

acute angles of a triangle is equal to the ratio of the

sines of 'these angles.

Given A ABC with Z A and Z. B both acute angles.

™ ,, , sin A a
To prove that = -.

sin B b

Proof: Draw the perpendicular/).

Then sin A = ' and sin 2} = -^

.

a

Hence,
sin A

.
7' ^ /' =,

"

h 'a h
Src § 241, (;i ).

sin B

NoTK. Tlir ilt'liiiitidir^i ul' § I'Tn and the theorem of § Ll'^0 are

given here for acute angles only. In trit;ononiotrv. wlioie the subject

is studied in full de(ail, tliev are extended to apply to any angles

whalever. OLlier ratios called cosines, tangents, ete., are also

intriHlnccd.
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281. The theorem of § 280 is of great importance in

finding certain parts of a triangle when other parts are

known. By careful measurement (and in other ways)

tables may be constructed giving the sine of any angle.

282. EXERCISES.

1. By means of a protractor construct angles of 10°, 20°, 30°, 40°,

50°, 60°, 70°, 80°, and measure the sine of each angle, and so construct

a table of these sines.

If one decimeter is used as a unit for the hypotenuse,

then the length of the side opposite Z A, expressed in

terms of decimeters, is the sine of the angle A.

Notice that the values of tlie sines are the same no matter -what

unit is used, but in general the larger the unit the more accurately is

the sine determined.

By means of the table just constructed solve the follow-

ing problems, using the notation of the figure

:

2. Given ZA= 30°, B = 80°, 6=12, find a, c. B

a sin A c^
Solution. By the theorem, § 280,

b sin B
Substituting the values b = 12, and sin A = sin 30°, A b=i2 c

sin B = sin 80° from the table, we find a. In the same manner find c.

3. Given a=16,ZA = 60°, Z C = 70°, find ZB, h, c.

4. A lighthouse L is observed from a ship S

to be due northeast. After sailing north 9 miles

to S', the lighthouse is observed to be 35° south

of east. Find the distance from the ship to the

lighthouse at each point of observation. Use § 280.

5. A ladder 25 feet long rests with one end on

the ground at a point 12 feet from a wall. At

what angle does the ladder meet the ground.

6. If two sides and the included angle of a

triangle are known, can the 'remaining parts be

found by means of §280?
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283. In land surveying on an extensive scale, processes

similar to that used on the preceding page are constantly

employed in finding the sides of triangles.

To begin with, a level piece of ground is selected and a

line AB measured with great care. ^

Then a point C is selected, and Z.ABG \ ~~---^^c,''''/ >o

and /.BAC measured very accurately

with an instrument. Sides AC and

BG may now be computed by means ^ d

of the theorem, § 280, and a table of sines (see page

opposite). By measuring Z BAC and Z ACT), CD may be

computed. By this process, called triangulating, it is

possible to survey over a large territory without directly

measuring any line except the first.

284. The saving of labor afPorded by this indirect method

of measuring is very great, and especially so in a rough

and mountainous country, since measuring the straight

line distance from one mountain peak to another by means

of a measuring chain is impossible.

In practice, tables of logarithms are used and the sines

are carried out to a larger number of decimal places, but

the general process is that used on the preceding page.

285. EXERCISES.

Using the table on the next page, solve the following examples;

1. Given A = 53", B = 65°, a = 11. .'"i. Find ft, c, and /. C.

2. Given B = til
, C = 71°, a = 19.8. Find ft, c, and ZA.

3. Given A = 6.5°, a = 14, ft = 1L>. Find ZB.ZC, and c.

Solution, ^^i^ = - or sin B = sin .1 n * = .91 x ~ = .78.
Sin A a u 14

From the table we find that sin 51' =.78. Hence B = 51°. ZC
and c may now be found as before.
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4. Given A =71°, a = 19.5, b = 17. Find ^B, ^C, and c. As be-

From thefore, sin £ = sin .4 X - = sin 71° x :.95x— = .828.
19.5a 19.5

table -we find sin 55° = .82 and sin 56° = .83. But sin B is nearer .83

than .82, and hence B = 56° is the nearest approximation using a

degree as the smallest unit.

Angle
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PROBLEMS OF CONSTRUCTION.

288. Instruments. In addition to the ruler, compagseg,

and protractor described in § 44, tlie parallel ruler is

convenient for drawing lines through given points parallel

to given lines without each time making the construction

of § 101.

Description. R and R' are two rulers of equal length and width.

AB and CD are arms of equal length pivoted at
^

the points A. B, C, and D, making AC = BD. \ T
Why do the rulers, when thus constructed, i -l- •/

i t;'

remain parallel as they are spread ?

289. Segments of equal length can be laid off with

great accuracy on a line-segment b}' means of the com-

passes. The following construction makes use of the

compasses and parallel ruler.

290. Problem. To divide a given line-segment into

any number of equal parts.

Construction. Proceed as in § I.V.), Ex. 5, using the

parallel ruler to draw the parallel lines.

Clive the construction and proof in full.

Historical Note. The idea of similarity of geometric figures, or

"sameness of shape," is one of early origin, as is also the simple

theory of proportion. It was probably used by Pytliagoras to prove

the famous tlieorem known by liis name. (Si'e § Jli'J.) But the dis-

covery by him of Uie iueoinnuMisurable ease (§ 'i^iH) showed that tliis

theory was iua(lei]uale for llie rienrous proof of all theorems on simi-

lar figures. It remaineil for Kuiloxus, the teadier of Plato, to perfect

a rigorous tliemy of ratio and proportion.
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Euclid, following his predecessors, deals with ratios of magnitudes

in general as well as of numbers. Later writers have frequently in-

sisted that ratios in general are not numbers. But nothing is gained

by this procedure, since they possess all the properties of numbers. Iq

this book a ratio is treated simply as the quotient of two numbers.

See §§ 238-242.

291. Problem. Given three line-segments m, n, p, to

construct a fourth segment q such that — = - ; that is, to

n q

find a fourth proportional to m, n, and p.

Construction. Draw two indefi-

nite straight lines, Ax and A>/ mak-

ing a convenient angle.

On Ay lay off AB ==m, BC= n. ^^
On Ax lay off AT>=f. Draw BD. ^ P o e

Through C draw GE II BD. Then BE=q is the required

segment.

Give the proof in detail.

292. EXERCISES.

1. Apply the method of § 290 to bisect a given line-segment, and

compare this with the method of § 5L

2. Divide a line 7| inches long into 11 equal parts by the method

of § 290, and compare with the process of measuring by means of an

ordinary ruler giving inches and sixteenths.

3. Using the same segments as in § 291, construct a segment q

such that - = -; also such that - = -.

p q Pi
4. Using the same segments as in the preceding, construct a seg-

ment q such that £- = -; also such that £ = '".

m q n q

What is q called in each case ?

5. If the given segments m,n,p are respectively 3f inches, 5^^ inches,

45 inches, compute such that — = •£. Also construct j as in § 291
,, n q

and compare results.
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293. Definitions. If three numbers a, m, and h are such

that a : m = m : b, then m is the mean proportional between

a and b, and b is the third proportional to a and m.

294. Pkoblem. To construct a mean proportional be-

tween- two given segments m and n.

A

Construction. On an indefinite line xy lay off AB = m
and BC = n. On AC as a diameter construct a semicircle.

At B erect a perpendicular to AC meeting the semicircle

in D. Then BB =p is the required segment.

Proof. Draw AD and CD and prove

Complete the proof.

295. EXERCISES.

1. Sliow that in § 277 DP is a mean proportional between PB
andP.4.

2. If in tiie above problem m = 3, and h = 5 show that the con-

struction gives n/TT).

3. Show how to construct a segment p = V5, also /) = \ 3, ;) = \'2,

by means of the above process.

4. Show how to construct a square equal in area to a given

rectangle.

5. Show how to construct on a given base a rectangle equal in

area to a given square.

Suppose AB = m is the given base and BD =p a side of the given
,

square, the two segments being placed at right angles as in the ligure

above. The problem is then to find on the line .IB the center of a

circle which passes through tlie points A and 7^. To do this connect .1

and I) and construct a jierpendicular bisector of this segment meeting

AC in a point which is tlic cmitcr of the i-equired circle. BC = n is

then the required side of the rectangle since m • it =p'^.
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296. Pkoblem. To divide a line-segment into three

parts proportional to three given segments m, n, p.

A D E B

Construction. Let AB be the given segment. Con-

struct Ax and on it lay off m, n, p as shown in the figure.

Complete the figure and give proof in full.

297. EXERCISES.

1. Divide a line-segment 5 inches long into three parts proportional

to 2, 3, and 4.

2. Divide a segment 11 inches long into parts proportional to 3, 5,

7, and 9.

First compute the lengths of the required segments, then construct

them and measure the segments obtained. Compare the results.

Which method is more convenient ? Which is more accurate ?

3. Divide a segment 9 inches long into two parts proportional to 1

and V2.

Also compute the required segments. Which is more convenient ?

More accurate ?

4. Divide a segment whose length is Vll into two parts propor-

tional to V2 and VS.

First construct the segments whose lengths are y/2, Vs, and vTT.

Also compute the required segments.

5. Divide a given line-segment into parts proportional to two given

segments m and n, (a) if the division point falls on the segment; (6)

if the division point falls on the segment produced. See § 252.

6. A triangle is inscribed in another by joining the middle points

of the sides.

(a) What is the ratio of the perimeters of the original and the

inscribed triangles?

(6) Is the inscribed triangle similar to the original?
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298. Problem. On a given line-segment as a side

construct a triangle similar to a given triangle.

Construction. Let ABC be the given triangle and a'b'

tlie given segment, and let it correspond to AB of the

given triangle.

Construct Z 2 = Z 1 and Z 4 = Z -3 and produce the sides

till they meet in c'. Then A'b'c' is the required tri-

angle (AVhy?).

299. EXERCISES.

1. In tlie problem of § 298 construct on A'B' a triangle similar to

ABC such that A'B' and BC are corresponding sides.

2. Show that on a given segment three different triangles may be

constructed similar to a given triangle.

3. Solve the problem of § "-'08 by making Z2 = Zl and construct-

ing A'C so that ——-=
I, ,,

• Give the solution and proof in full.
A'B' ^l'f_

4. On a given segment as a side construct a polygon similar to a

' given polygon, liy first dividing the given polygon intcj triangles and

then constructing triangles in order similar to these. Apply § 'JTO.

5. On a given segment construct a polygon similar to a given

polygon in a manner analogous to (he methoil used in Kx. 3 for con-

structing a triangle similar to a given triangle.

6. ABC is a right triangle with the hypotenuse AB. and

CDXAB. Prove AC a mean proportional between A FS and AD
and likewise ' 'II a mean proportional between AB and DB.

7. Use the thiMirem of § 277 to construct a square equal in area to

that of a given rec^lanuli'.

8. The tangents to two intersecting cireles from any point in their

common chord picMlneed are eqnab L'se J 277.
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9. In the figure ^D and BE are tangents at the

extremities of a diameter. H BD and AE meet in a

point C on the circle prove that AB is a mean pro-

portional between AD and BE.

10. The greatest distance to a chord 8 inches long

from a point on its intercepted arc (minor arc) is 2

inches. Find the diameter of the circle. Use § 272.

11. At the extremities of a chord AB tangents

are drawn. From a point in the arc AB perpen-

diculars PC, PD, PF are drawn to the chord and

the tangents. Prove that PC is a mean propor-

tional between PD and PF.

Suggestion. Draw segments AP and BP and

prove A ^PF~ A iJCP and AAPC-^BPD. Then

AP^FP_ . AP ^PC
PB PC ™ PB PD

SUMMARY OF CHAPTER III.

1. Make a list of the definitions in Chapter III.

2. Make a list of the theorems on proportional segments involving

triangles. /

3. State the various conditions which make triangles similar.

4. State the conclusions "which can be drawn when it is known

that two triangles are similar.

5. State the theorems on proportional segments involving poly-

gons.

6. State the theorems on proportional segments involving straight

lines and circles.

7. State in the form of theorems the various ways in which a

proportion may be taken so as to leave the four terms still in

proportion.

8. Under what conditions is a segment a mean proportional be-

tween two given segments. For instance, see § 277.

9. Make a list of the problems of construction in Chapter III.

10. State some important applications of the theorems on propor-

tion. (Return to this question after studying those which follow.)
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PROBLEMS AND APPLICATIONS.

1. The middle points of adjacent sides of a

square are joined.

(a) Prove that the inscribed figure is a square.

(J) What is the ratio of the inscribed and the

original squares.

(c) If a side of the original square is a, find a

side of the inscribed square.

(d) If a side of the inscribed square is J, find a

side of the original square.

2. Two strips intersect at right angles.

(a) If the width of each strip is 3 inches, what

is the largest square which can be placed on them

so that its sides will pass through the corner

points as shown in the figure? (The corners

will bisect the sides of the square.)

(i) What is the side of this square if the

width of each strip is n ?

(c) Find the side of the square if the width

of one strip is 3 and that of the other 5.

(rf) Find the side of the square if the width

of one strip is a and that of the other 6.

3. In the figure ABCD is a square and

EFCH is a regular octagon.

(a) Show that .1 E, EF, FB are proportional

to 1, \/2, 1. (Assume AE = 1 and find XE.)

A F 1 J- \ -I \'^
(b) If . I B = f7, show that -ii- = ^ ^ = —= •

(c) Find Z FEX. Seo § 163, Ex. 2.

Id) Show that A = A F, and hence that

the regular octagon may be constructed as

shown in the figure.

(e) Show that AAOE = 2-2\° by § 21i), and

use this to make another proof that EI-'dH

is a regular ()cla,i;on.

4. Find lh(^ area of a square whose diagonal

is rf.

Tile Pattern.
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5. If a side of a regular octagon is a, find its area,

6. A floor is tiled withi regular white-

octagons and black squares as shown in

the design. A\'hat per cent (approxi-

mately) of the floor is black?

7. Divide a circle into eight equal parts

and join alternate division points.

(a) Prove that LMNPQ is a regular

octagon.

Cut Glass Design.

(5) If the diameter of the circle is a, show that LE = 2(\/2 — 1),

Suggestion. Find HE and then use Ex. 3, {d).

8. Problem. Inscribe a square in a given semicircle.

Construction. Let AB be the diameter of the

given semicircle. At B construct a perpendicular to

AB, making BD= AB. Connect D with the center C,

meeting the circle at E. Let fall EF perpendicular

to AB. Then EF is a side of the required square.

Complete the figure and make the proof by showing

that EF=2 CF.

9. Pboblem. Inscribe a square in a given triangle.

Construction. Let ABC be the given tri-

angle. Draw CD parallel to AB, making CD =
CO. Complete the square CDEO.
Draw DA meeting CB in F. Draw

FG II AB, GH II CO, and FK II CO. Then

FGHK'^ CDEO and hence is the required square.
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Touch down "o'' !»''»

10. The sides of a triangle are 13, 17, 19. Find the lengths of the

segmeuts into which the angle bisectors divide the opposite sides.

11. The angles of a triangle are 30"^, W, 90'^- Find the lengths of

the segments into which the angle bisectors divide the opposite sides

if the hypotenuse is 10.

12. Prove that the perpendicular bisectors of all the sides of a

polygon inscribed in a circle meet in a point.

13. An equilateral polygon inscribed in a

circle is equiangular.

14. The goal posts on a football field are 1 8J

feet apart. If in making a touchdown the ball

crosses the goal line 25 ft. from the nearest

goal post, how far back should it be carried so

that the goal posts shall subtend the gi'eate^t

possible angle from the place where the ball is

placed? See Ex. 22, page 111, and § 277.

15. Solve the preceding problem if the touchdown is made a feet

from the nearest goal post, and thus obtain a formula by means of

which the distance may be computed in any case.

16. A triangle has a fixed base and a constant

vertex angle. Show that the locus of the vertex .^-'- ^\

consists of two arcs whose end-points are the ex- ,• - ^ y
I

y'^
\

tremities of the base. See Ex. 2(1. page 111. I /.\\
\

Xote that the locus also includes an arc on the \ x "^
'

tVi
*B

opposite side of AP, from the one shown in tlie '

figure.

Tt follows that if two points .-1 and B subtend the same angle from

P and from Q, then a circle may be passed through

A,B,P, Q.

17. In the figure, A. B, F lie in the same
straight line, as do also />, ( ', F. and /i 1 = Z2.

((0 If /JF = M, (F= !), nn.l DC = 12, find AH.
(h) IE A/l = 1(10, AF = 'JM). CF = iW. find IX'-

N(i ri-,. l!y holding a small object, say a pencil,

at linn's lenj;(,li, and sighting aeross the ends of

it, we iiiiiy ileli'nnine ap|iroxiiiiately whether two
given (ilijeets subtend the same angle.

A
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18. Not having any instruments, an engineer proceeds as follows

to obtain approximately the distance from an accessible point B to an
inaccessible point A . Walking from B along

j^

the line AB he takes 50 steps to F. Then he

walks in a convenient direction 50 steps to C,

and notes thatA andB subtend a certain angle.

He then proceeds along the same straight

line until he reaches a point D at which A
and B again subtend the same angle as at C.

He then concludes that DC = AB. Is this

conclusion correct? Give proof.

19. If the height of a building is known, show how the method of

Ex. 18 can be used to determine the height of a flagstaff on it.

20. A building is 1.30 feet high, and a flagstaff on the top of it is

60 ft. high ; 130 feet from the base of the building in a horizontal

plane, the flagstaff subtends a certain angle. How far from the build-

ing along the same line is there another point at which the staff sub-

tends the same angle? At what distance does it subtend the same

angle as it does at 300 feet?

21. If the diagonals of an isosceles trapezoid are drawn, what similar

triangles are produced?

22. Find the locus of points at a fixed distance from a given tri-

angle, always measuring to the nearest point on it.

23. The line bisecting the bases of any trapezoid

passes through the point of intersection of its

diagonals.

Suggestion. Let E bisect DC, and draw EO
meeting AB in F. Prove AF = FB.

24. If two triangles have equal bases on one of two parallel lines,

and their vertices on the other, then the sides of these triangles intercept

equal segments on a line parallel to these and lying between them.

25. A segment bisecting the two bases of a

trapezoid bisects every segment joining its other

two sides and parallel to the bases.

(ProveSF = HG and FK= KH, using Ex. 24.) - « -

26. In a triangle lines are drawn parallel to oue side, forming trap-

ezoids. Find the locus of the intersection points of their diagonals.

eO^
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27. In the figure D, E, F are the middle points of the sides of an

equilateral AABi' Arcs are constructed with centers A, B, C as

shown in the figure.

(a) Prove that these arcs are tangent in pairs at

the points D, E, F.

(b) Construct a circle tangent to the three arcs.

(c) What axes of symmetry has this figure?

28. In the figure ABC is an equilateral triangle.

Arcs AB, BC, and CA are constructed with C, A,

and B as centers. AF, BE, CD are altitudes of

the triangle.

Prove O OG tangent to Ah, bT\ and 'T3

.

29. In the equilateral triangle ABC, JB, BC,
and CA are constructed as in the preceding ex-

ample. DE, EF, FF) are constructed as in

Ex. 27. The figure is completed making ADE,
F)FB, and EEC similar to A BC.

(a) Construct a circle tangent to a7), Si^, and
EA as shown in the figure.

(h) Construct a circle tangent to ^1), £P,
and Pi:.

30. In the figure A CB is a semicircle. Arcs
DE and DF are constructed with B and ^-1 as

centers. If AD - 4 feet, find the radius of O OC.

Solution. Show that the value of r is derived
from the equation (4 + r)^ = (4 — r)^ + 4-.

31. Construct the accompanying design. Notice that the points
A

,
B, if, N, F, E divide the circle into six equal arcs. See Ex. .5,

From Boynton Cathedral, Englaud.
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The

§ 163. The arcs A 0, OB, etc., and the circle with center 0', are

constructed as in Ex. 28. The small circle with center at Q is con-

structed as in the preceding example.

32. ABC is an equilateral arch and AEB is a semicircle,

(a) If AB (the span of the arch) is 10 feet, _ G
find the radius of the small circle tangent to

the semicircle and the arcs of the arch.

(&) Find the radius OE of the circle if AB = s.

(e) If OS = 2, find ^B.

33. The accompanying design consists of three A
semicircles and three circles related as shown in the figure.

(a) If AB = 12, find OQ by using the triangle OSB.

method is similar to that used in Ex. 30.

(b) Using the right triangle DRO', find

O'x. Notice that in order to have the circles

with the centers and 0' tangent to each

other the sum of their radii must be equal

to RD.
(c) If AB = s show that 0Q=^ and

6

O'x = — , and construct the figure.
12

^

34. Upon a given segment AB construct

the design shown in the figure. Notice that

it consists of the two preceding figures put

together. Compare the radii of the circles

in this design.

A E H B
Ospedale Maggiore, Milan.

35. Between two parallel lines construct

semicircles and circles as shown in the figure.

Solution. Suppose the construction made. Let HE = r, and

OQ = r'. Using the triangle EHO, show that r' = - and then con-

struct the figure.
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36. Between two parallel lines construct circles and equilateral

arches as shown in the figure.

Hint.

Hence

That is,

The Doge's Palace, Venice.

4Q = 2Pff and AH=iPH.
HQ' =APH'~'2PH' = 5PH'.

PH :HQ = 1: VS. (Why ?)

Now divide A C into two segments proportional to 1 and Vb, and

so construct the figure.

C

37. ABC is an equilateral arch. AD=lil;. AF=EB=^AB.
Semicircles are constructed with E and F as centers, and radius FB.

(n) Jf AB = s, find OH and construct the figure.

Solution. Let OH
F0 = - + r.

3

Then BO -. Fi5=-, Z)F=-,
3 6

From A ODB, OD^ = Olf ~ inf = (n - r)- - i^Y

.

(\)

From A <)I>F, fVT' =?//•'-- /;/.'- = f
-I*-
+ r]" - [i]''. (1>)

From (1) and ('J) (s -^ i-y --
(^'LJ

= (t+ i^ -(^t^.

Hence, sliow that r =
J^

s.

( 'onstrnct the liguri^

(/-) If in the precfdinj; 0//= 4 fwt. find .1/.' and .-IF.
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38. Between two parallel lines construct

cii-cles and semicircles having equal radii as

shown in the figure.

Prove that the ratio— =— , RLK being
HQ RS ^

an equilateral triangle and KS = SL.

Divide CA in the ratio of .Si : RS. k's'^'I'

39. Through a fixed point on a circle chords are drawn and each

extended to twice its length. Find the locus of the end-points of

these segments. Compare Ex. 6, § 2U.

40. If a quadrilateral is circumscribed about a circle, show that

the sums of its pairs of opposite sides are equal.

41. On a diameter produced of a given circle, find a point from

which the tangents to the circle are of a given length. Solve this

problem by construction, and also algebraically.

42. Compare the perimeters of equilateral triangles circumscribed

about and inscribed in the same circle.

43. In a given square construct semicircles each tangent to two

sides of the square and terminating on the diameters of the square.

Construction. Connect E and F two ex- O O
tremities oi diameters and on EF as a diame-

ter construct a semicircle with center at 0'.

Draw O'H perpendicular to ^i? meeting the

arc in H. Draw OH meeting AB in K. Draw
KO" perpendicular to AB meeting the diagonal

AC in 0". Then 0" is the center of the re-

quired circle.

I FE. ^Ye need to prove that 0"K =

O'lL

Proof. Draw C'L

[\00'E
noil

A 00"L, and hence ^ =

Also A 00'H

'

00"
_

OQi
'

0"L ^ 0"K
O'E ~ O'H

'

But 01E = O'H, and hence 0"L= 0"K.

O'E

0"K
O'H'

0"L.

(Why?) (1)

From (1) and (2) ^ =
;

(2)

(Why?)

This figure occurs in designs for steel ceilings.



CHAPTER IV.

AEBAS OP POLYGONS.

AREAS OF RECTANGLES.

300. Heretofore certain properties of plane figures have

been studied, such as congruence and similarity, but no

attempt lias been made to measure the extent of surface

inclosed by such figures. For this purpose we first con-

sider the rectangle.

301. The surface inclosed by a rectangle is said to be

exactly measured when we find how many times some

unit square is contained in it.

E.g. if the base of a rectangle is five units

long and its altitude three units, its surface con-

tains a square one unit on a side iifteeu times.

302. The number of times which a unit square is con-

tained in the surface of a rectangle is called the numerical

measure of the surface, or its area.

We distinguish three cases.

303. Case 1. If the sides of the gi\en rectangle are in-

tegral 'iiiiilli/ilc.'i of the sides of the unit square, then the

area of the. ri'claugle is determined by finding into how
man}' unit squares it can be divided.

Thus if the siili's (if a rectangle are m and n units respectively, then

it can be divided inln m rows of unit sniiares, each row containing «

squares. Hence the area of such a rectaui;le is m x h unit squares, that

is, in this ease,
^^^^ ^ ^^^^ ^ altitude. (1)

164
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o ::::xi;: + ::::::;:±::^ffr; J:::

84 cm.

304, Case 2. If the sides of the rectangle are not inte-

gral multiples of the side of the chosen unit square, but

if the side of this square can be divided into equal parts

such that the sides of the rectangle are integral multiples

of one of these parts, then the area of the rectangle may
be expressed integrally in terms of this smaller unit square,

and fractionally in terms of the original unit.

For example, if the base is 3.4 deci-

meters and the altitude 2.6 decimeters,

then the rectangle cannot be exactly di-

vided into square decimeters, but it can

be exactly divided into square centi-

meters. Each row contains 3i centi-

meters and there are 26 such rows.

Hence, the area is 31 x 26 = 884

small squares or 8.84 square decimeters.

But 3.4 X 2.6 = 8.84. Hence, in this case also,

area = base x altitude. (2)

305. Case 3. If a rectangle is such that there exists no

common measure whatever of its base and altitude, then

there is no surface unit in terms of which its area can be

exactly expressed. But by choosing a unit sufficiently

small we may determine the area of a rectangle which

differs as little as we please from the given rectangle.

E.g. if the base is 5 inches and the altitude is v'5 inches, then the

rectangle cannot be exactly divided into equal squares, however small.

But since v'5 = 2.2361. ••, if we take as a unit of area a square

whose side is one one-thousandth of an inch, then the rectangle whose

base is 5 inches and whose altitude is 2.236 inches can be exactly meas-

ured as in cases 1 and 2, and its area is 5 x 2.236 = 11.18 square inches.

The small strip by which this rectangle differs from the given rec-

tangle is less than .0002 of an inch in width, and its area is less than

5 X .0002 = .001 of a square inch.

By expressing Vb to further places of decimals and thus using

smaller units of area, successive rectangles may be found which differ

less and less from the given rectangle.
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306. An area thus obtained is called an approximate

area of the rectangle.

For practical purposes the surface of a rectangle is

measured as soon as the width of the remaining strip is

less than the width of the smallest unit square available.

From the foregoing considerations we are led to the

following preliminary theorem

:

307. Theorem. The area of a rectangle is equal to

the product of its base and altitude.

308. The argument used above shows that the theorem

(§ 307) holds for all rectangles used in the process of

approximation, and hence it applies to all practical meas-

urements of the areas of rectangles.

AREAS OF POLYGONS.

309. From the formula for rectangles,

area = base x altitude,

we deduce the areas of other rectilinear figures by means

of the principle :

Two rectilinear figures are equivalent (that is, have the

same area) if they are congruent, or if they can be divided

into parts which are congruent in pairs.

E.g. the two figures here shown are equiv- / iv /

alent siiiip AT and Til are congruent respec- "^ "I/' /ii'

/

tively to II and IV. ~ ' L.—J

It can be shown that for any two given rectilinear figures, eillier it

is ]i(>ssible to divide them into parts which ;ire congruent in pairs, or

inic of the figures incloses a greater ;ire;i than the other. Hence the

lesl s|>iTified is suffioient for all rectilineal' figures.

The s\ inbol = joining two polygons luoaiis I'tjiiiralent

ov f(jU(il in iirra.
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310. Theorem. The area of a parallelogram is equal

to the product of its base and altitude.

D E G F

in

Given the parallelogram ABCD whose base is AB and whose
altitude is AE.

To prove that area ABCD = AB x AE.

Proof : Draw BF ± to DC produced, forming the rec-

tangle ABFE, whose base is AB and altitude AE.
Then area ABFE= AB x AE (Why ?).

If now we prove A I ^ A II, then the parallelogram is

composed of parts I and III which are congruent respec-

tively to parts II and III of the rectangle, and hence the

parallelogram and rectangle are equal in area. Give this

proof in full.

311. EXERCISES.

1. In the figure CF is perpendicular to AB and AE to CB.
Prove that AB x CF = BC y. AE.
Suggestion. (Show that A.4££ ~AC£F.)
It follows that the same result is obtained if either

of two adjacent sides of a parallelogram is taken

as the base. ^ ^ -^

2. Construct the figure described in Ex. 1 in such manner that

the point E falls on BC extended and prove the theorem in that case.

In the following Zj and l^ are parallel lines.

3. Two parallelograms have equal bases lying on Zj and l^. Show
that they are equivalent.

4. One base of a parallelogram is fixed on Zj and the other moves

along l.^. Does the area change ?
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312. Theorem. The area of a triangle is equal to

one half the product of its base and altitude.

Given the A ABC whose altitude

upon the side AB is CD.

To prove that the area of

AABC=
I
{AB X CD).

Proof : Let be the middle

point of AC. Complete the

parallelogram ABFG.

Prove that A CGH ^ A BFH, and hence show that A ABC
and O ABFG have equal areas.

Hence the area of A ABC = ED x AB.

Hence the required area is i (^AB x CD).

But ED = ^ CD.

313. EXERCISES.

1. Prove the theorem of § 312 us-

ing the accompanying figure.

2. Prove this theorem also liy draw-

ing a figure in which the given triangle

is one half of a parallelogram.

3. If the middle points of two A B D
adjacent sides of a parallelogram are joined, a triangle is formed

whose area is equal to one eighth of the area of the parallelogram.

In the following exercises /, and l^ are parallel lines.

4. Show that two triaiit;les are equivalent if their vertices lie in

/j and their equal bases in /j.

5. A triangle has a fixed base in L,. If its vertex moves along /j,

what can you say of its area?

6. If the base of a trianult' is tixcd and if its vertex moves so as to

preserve the area constant, wliat is the locus of the vertex?

7. A line is drawn from a vertex of a triangle to the middle point

of the opposite side. Cumpare the areas of the triangles thus formed.

If a scgiiicnt i.s drawn from tlii> \i>rtt>x to the point P in the base

AB, show that the areas of the triangles are in the ratio AP:PB.
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314. Theorem. The area of a trapezoid is equal to

one half the sum of its bases multiplied by its altitude.

Proof : Draw a diagonal, thus

forming two triangles having a

common altitude. Form the ex-

pression for the sum of the areas

of these triangles. ^ ^

Give the proof in detail.

315. Theorem. The square erected on the sum of two

line-segments as a side is equal to the sum of the squares

erected on the two segments separately, plus twice the rec-

tangle whose base is one segment and whose altitude is the

other segment.

Proof : Let a and h represent the numerical

measures of the two line-segments. Then, the

square erected upon the segment a+ h may be

subdivided as shown in the figure, giving

Give the construction and jDroof in full.

316, EXERCISES.

1. Show by a figure that

(a + b + cy = a^ + b^ + c^ + 2 ab + 2 ac + 2 be.

2. If ABC is any triangle and AD, BE, and CF are its altitudes,

show that^ = ^, and M = -i^.
BE BC CF AC

Hence show that

AD X CB = BE X CA = CFx AB.

3. The side AB of O ABCD is fixed. What
is the locus of the points C and D if CD moves so as

to leave the area of the parallelogram fixed ?
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317. Theorem. The square erected on the difference

of two line-segments as a side is equal to the sum of the

squares erected on the two segments

separately, minus twice the rectangle

whose base is one of the segments and

whose altitude is the other.

Proof : Use the figure to show that

(a _ J)2 = a2 + j2 _ 2 ab.

Give the construction and proof in detail.

. &*[ /,A ,1 1
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319. Theorem. The area of the square described on

the hypotenuse of a right triangle is equal to the sum of

the areas of the squares described on the other two sides.

Given the right triangle ABC, and the squares I, II, and III con-

structed as shown in the figure.

To prove that D I = D II + D III.

Proof : Complete the rectangle ABCE.
Construct AGFH^AACE.
Draw EH and produce AE to meet the line FH at K.

Prove that (a) AAEC^Ahek.
(5) AEHG is a parallelogram whose base AE and alti-

tude HK are each equal to a side of D III.

(e) ECFH a parallelogram whose base EC and altitude

EK are each equal to a side of DII.

But these two parallelograms together are equivalent

to DI (Why?).

The student should give the proof iu detail, making an outline of

the steps and showing how each step is needed for the next. For ex-

ample, why is it necessary to prove AHEK^AAEC.
Compare the various proofs of this theorem that are given in this

book. The method of counting squares shown on the opposite page

is applicable to all cases where the two sides are commensurable.
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Historical Note. The theorem of § 319 is one of the most impor-

tant in all mathematics. It is now fairly certain that the general

theorem was first stated and proved by Pythagoras, though the story

that he sacrificed 100 oxen to the gods on the occasion may be ques-

tioned. Special cases of the theorem were known to the Egyptians

as early as 2000 B.C., e.g. that a triangle whose sides are 3, 4, 5 is

right-angled.

In this connection the Pythagoreans also discovered the irrational

number, that is, that there are numbers such as V2 which cannot be

expressed exactly as integers or as ordinary fractions.

320. EXERCISES.

1. The bases of a trapezoid are 8 and 12 inches, and its altitude is

8 inches. Find its area.

2. The bases of a trapezoid are 16 and 20 inches, respectively, and

the area of the smaller of its component triangles is •'iO square inches.

Find the area of the trapezoid. See the figure in § \r,2.

3. State in words the geometric theorem indicated in each of the

following, and draw a figure to illustrate each case

:

(a) h{a +h) = ah + hh.

(h) (a + by + (a-by = 2 (a^ + 52).

(c) (a + by~(a~by = 4ab.

4. Show that the rectangle whose base is a -f 5 and whose altitude

is a — b has the same perimeter as the square whose side is a. By
means of Ex. 2, § 318, compare their areas.

5. If two triangles have the same base but their vertices are on

opposite sides of it, and if the segment joining their vertices is bi-

sected by the common base, extended if necessary, then the two
triangles are equivalent.

6. State and prove the converse of the theorem in the preceding

exercise.

7. The bases of a parallelogram lie on the parallel lines /, and /,.

A triangle whose base is equal to that of the parallelogram has its

vertex in /, and its base in I.,. Compare their areas.

8. Prove that all triangles having the same vertex and equal bases

lying in the same straight line are equal in area.
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321. Theorem. The areas of similar triangles are in

the same ratio as the squares of any two corresponding

sides, or as the squares of any two corresponding altitudes.

A ~C^D A' C'~D''

Given A ABC and A'ffC, with altitudes BD and B'D'.

To prove that

areaA^BC
~" " " "

AB BC CA BD

a.Tea.AA'B'c' A'b'^ b'c' c'a'" b'd''

Proof:

But

Hence

AC BDarea A ^^C _ \(AC y. BD)
area Aa'b'c' ~ ^(a'c' x b'd') a'c' " b'd'

AC BD

area A ABC
B'D'

Ic"

area AA'B'C' A'C'

BD

Why?

Why?

Give the proof for each of the other pairs of corre-

sponding sides.

322. EXERCISE.

Verify the preceding theorem by counting triangles in the accom-

panying figure.
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323. Theorem. The areas of two similar polygons

are in the same ratio as the squares of any two corre-

sponding sides or any two corresponding diagonals.

E E'

Outline of Proof: Let I, II, • -, I', 11', ••• stand for the

areas of pairs of similar triangles.

I ^11 _III ^IV
1' 11' 111' IV'

'

I +11 4.111 + IV ^ I

1'

-2

Show (1)

(2)

(3)
a'b'c'd'e'f'

Give the proof in detail.

1' + 11' + 111' + IV'

ABCDEF _ I

~1'

(§ ^"1-)

(By §321.)

(By § 2t;8.)

AB BC

B^C'

324. EXERCISES.

1. Verify the above theorem by counting the number of equal

hexagons into which these

two similar hexagons are

divided, and also taking the

s( J I Hire of the length of one

side in e:irh, using a sidt' of a

small hexagon as a unit.

2. A certain triangular

field containing 2 aiTcn is 10

ruils Idiif;' 1111 one .side. Find

the area of a similar triangular Held whose corresponding side is 50 rods.
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3. The areas of two similar triangular flower beds are 24 square

feet and 36 square feet respectively. If a side of one bed is S feet, find

the corresponding side of the other.

4. If similar polygons are constructed on the three sides of a right

triangle, show that the one described on the hypotenuse is equivalent

to the sum of the other two.

Suggestions. Let a, h, c represent the two legs and hypotenuse of

the triangle and A,B,C the areas of the corresponding polygons. Then
A a" , B h^— =— and — = —

.

C c^ C c^

Hence -—^— =——— = — = 1 or A + B = C. Give all reasons in
C c2 c2

full.

5. Find a line-segment such that the equilateral triangle described

upon it has four times the area of the equilateral triangle whose side

is 3 inches long.

6. Show that the square on the altitude of an equilateral triangle

is three fourths the square on a side.

7. If in a right triangle a perpendicular is let fall from the vertex

of the right angle to the hypotenuse, show that the areas of the two

triangles thus formed are in the same ratio as the adjacent segments

of the hypotenuse, and also as the squares of the adjacent sides of the

triangle.

8. Draw a line from a vertex of a triangle to a point in the oppo-

site side which shall divide the triangle into two triangles whose ratio

is 2 : 5. Also 2 : 1.

9. Divide a parallelogram into three equivalent parts by lines

drawn from one vertex. Use the last construction in Ex. 8.

10. The sides of two equilateral triangles are 8 and 6 respectively.

Find the side of an equilateral triangle whose area shall be equivalent

to their sum. Use the result in Ex. 4.

11. State and solve a problem like the preceding for the difference

of the areas.

12. Corresponding sides of two similar triangles are a and b.

Find the side of a third triangle similar to these whose area is equal

to the sum of their areas.

13. Likewise for any two similar polygons.
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CONSTRUCTIONS.

The theorems of this chapter lead to numerous construc-

tions of practical importance.

325. Problem. To construct a square equivalent to

the sum of two or more given squares.

Construction. In the case of two given squares, con-

struct a right triangle whose legs are sides of the two
given squares. How is the desired square obtained ?

In the case of three given squares, use the square result-

ing from the iirst construction together with the third

square, and so on.

Give the construction and proof in full.

326. Problem. To construct a square equivalent to

a given rectangle.

Construction. If the base and altitude of the rectangle

are h and a respectively, we seek the side s of a square

such that s^— ah ; that is, we seek a mean proportional

between a and h. See Ex. 4, § 295.

Give the construction and proof in full here.

327. Problem. To construct a square equivalent to a

given triangle.

Construction. Show how to modify the preceding con-

struction to suit this case.

328, EXERCISES.

Show how to construct each of the following :

1. A square equivalent to the difference of two given squares.

2. A square equivalent to the sum of two given rectangles.

3. A square equivalent to tlie sum of two given triangles.

4. A square equivalent to the difference of two given rectangles,

also to the difference of two given triangles.
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329. Problem. To construct a triangle equivalent to

a given polygon. c

PA EG
Given the polygon ABODE.

To construct the triangle PCO equivalent to ABODE.

Construction. Cut off A ABC by the segment AC.

Through B draw BP II AC to meet EA extended at P.

Draw CP.

In a similar manner draw CO.

Then PCO is the required triangle.

Proof : PCDE= ABODE since AAPG=AABC (Why?).

Further, PCDE has one less vertex tjian ABCDE.

But A PCO = PCDE since A ECD = A ECO (Why?).

Hence, A PCO is equivalent to the given polygon.

330. Problem. To construct a rectangle on a given

base and equivalent to a given parallelogram.

Construction. Let b and h be the base j,'

and altitude of the given parallelogram, b'

the base of the required rectangle, and x

the unknown altitude.

Then we are to determine x so that

h'x = bh, that is, b' : b = h : x.

Hence, x is the fourth proportional to b', h, and h.

(See § 291.) Construct this fourth proportional, showing

the complete solution.

This construction is attributed to Pythagoras. It represents a

much higher achievement than the discovery of the Pythagorean

proposition itself.
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331. EXERCISES.

1. Show how to modify the last construction in case the given

figure is a triangle. Give the construction.

2. Construct a rectangle on a given base equivalent to a given

irregular quadrilateral.

3. Construct a rectangle on a given base equivalent to an irregu-

lar hexagon.

4. On a side of a regular hexagon as a base construct a rectangle

equivalent to the hexagon.

5. Construct a parallelogram on a given base equivalent to a given

triangle. Is there more than one solution?

6. Construct a square whose area shall be three times that of

a given square ; five times ; one half the area ; one fifth.

7. Construct an isosceles triangle, with a given altitude h, equiva-

lent to a given triangle.

8. Draw a line parallel to the base of a triangle and cutting two

of its sides. How will the resulting triangle and trapezoid compare

in area,

(a) If each of the two sides of the triangle is bisected?

(6) If each of the two sides of the triangle is three times the

length of the corresponding side of the trapezoid ?

9. Construct a triangle whose base and altitude are equal and

whose area is e(|ual to that of a given triangle.

10. In a parallelogram A BCD, any point E on the diagonal BD is

joined to .4 and ('. Prove that A JUCA and BEt' are equivalent, and

also that &> /^A'. I and !)/•:(
' are equivalent.

11. The sides of a triangle are 0, S. 9. A line parallel to the

longest side divides the triangle into a tra]iezoid and a triangle of

equal areas. Find tlie ratio in which the line divides the two sides.

12. Draw a line ]iarallel to the base of any triangle, and cutting two
of its sides. How do tlie altitudes of (he resulting triangle and trape-

zoid comjiMie,

(ii) If they are ecpial in area?

(i) ir the area of tlie triangle is Wiree times that of the trapezoid?
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13. Through a point on a side of a triangle draw

a line dividing it into two equivalent parts.

Solution. Let P be the given point. Draw the

median BD. Draw BE II PD and draw PE. This is

the required line. Prove.

Suggestion. Is^tice that ADPE = ADPB by-

Ex. 4, § 313, and hence that AEOD = ABOP.

14. Through a given point on a triangle draw a line which divides

it into two figures whose areas are in the ratio ^.

15. Inscribe a circle in a triangle, touching its

sides in the points D, E, F. With the vertices

as centers, construct circles passing through these

points in pairs. Show that each of these latter

cii'cles is tangent to the other two.

SUMMARY OP CHAPTER IV.

1. State what is meant by the area of a rectangle. Give the

formula.

2. Give formulas for areas of parallelograms and triangles.

3. How is the formula for the area of a trapezoid obtained ?

4. What theorems of this chapter can be stated algebraically, as

(a + 6)2 = a2 + 2o6 + b^

5. State the theorem on the ratio of the areas of two similar tri-

angles; two similar polygons. Give examples.

6. Tabulate the problems of construction given in this chapter.

7. If two rectangles have the same base, how does the ratio of

their areas compare with the ratio of their altitudes?

8. If two triangles have equal altitudes, how does the ratio of their

areas compare with the ratio of their bases?

9. State all theorems of this chapter proved by means of the

Pythagorean proposition.

10. State some of the more important applications of the theorems

in this chapter. Return to this question after studying the succeeding

list of problems.
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PROBLEMS AND APPLICATIONS.

1. Find the area of a square whose diagonal is 6 inches.

2. Find the area of a square whose diagonal is d inches.

3. ABCD is a square placed at the crossing of two strips of equal

width, as shown in the figure. The small black

square has two vertices on the sides of the horizontal

strip and two on the sides of the vertical strip.

(a) Find the area of each square when the width

of the strips is 4 inches.

(V) Compare the area of the black square and

the white border surrounding it.

(c) Can squares be placed as in the figure in case the strips are of

unequal width? In the two following questions let the small square

be drawn with two vertices on the sides of the horizontal strip and

one diagonal parallel to these sides.

(d) If the horizontal strip is 4 inches wide, what must be the

width of the vertical strip in order that the large square may have

twice the area of the small one ?

Hint. The diagonal of the small square is 4 inches.

(e) If the horizontal strip is a inches wide, what must be the

width of the vertical strip in order that the area of the black square

shall be - the area of the larger square ?

4. Prove that the area of a rhombus is one half the product of its

diagonals.

5. Prove that the area of an isosceles right triangle is equal to

the square on the altitude let fall upon the hypotenuse.

6. If the diagonals of a quadrilateral intersect at right angles,

prove that the sum of the squares on one pair of opposite sides is

equal to the sum of the squares on the other two sides.

7. Inscribe a square in a semicircle and in a quadrant of the

same circle. Compare their areas. See Ex. 8, pai;e 14".

8. In the triangle ABC, CD is au altitude. E is

any point on CI). If /'/•> is one half CD. compare the

area of the triangle AllB and tlie sum of the areas of

the triangles .1 /if and BEC. Also compare these areas

if DE is one nih of DC.
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21. Construct two lines parallel to the base of a triangle so that
the resulting two trapezoids and the triangle shall have equal areas.

J5-J^—_.i__c

22. In each of the accompanying de-

signs for tile flooring find what fraction

of the space between the lines AB and
CD is occupied by tUes of each color.

Study each design with care to

see that the character of the figure

determines the relative sizes of the

various pieces of tile.

23. ABCD is a square. Points E, F, O, • are so taken that

AE = AF= GB = BH=-. .

{a) li AB=Qs.ndiAF=l, find the sum of the

areas of the four triangles EFO, GHO, KLO,
MNO.

(h) Find the sum of these areas if AB = a and
AF=h.

(c) \i AB = Q and if the sum of the areas of

the triangles is 9 square inches, find AF.

(d) li AB = a and if the sum of the areas of the triangles is — , find
n

AF. Interpret the two results.

24. Show how to construct a square whose area is n times the area

of a given square.

25. Construct a triangle similar to a given triangle and equivalent

to n times its area.

26. Construct a hexagon similar to a given hexagon and equivalent

to n times its area.

27. Show how to construct a polygon similar to a given polygon

and equivalent to n times its area.

Q B
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28. The alternate middle points of the sides of a regular hexagon
are joined as shown in the figure.

(a) Are the triangles thus formed equilateral? Prove.

(h) Is the star regular (i.e. are its six acute angles equal and its

sides equal) ?

(c) Compare the three segments into 'which each triangle divides

the sides of the other.

(rf) Is the inner hexagon regular? Prove. See Ex. 1, p. 76.

Tile Pattern.

(e) If AB = 8 in., find the area of the large hexagon, the star, and
the small hexagon.

29. A border is to be constructed about

a given square with an area equal to one

half that of the square.

(a) By geometrical construction find the

outer side of the border if the side of the

square is given'.

(6) If an outer side of the border is 21

in., find a side of the square, its area being

two thirds that of the border.

30. A border is constructed about a

given regular octagon, sueli that its area is

equal to that of the octagon.

('/) If a side of the given octagon is a

given segment All, find by geometrical

construction a si'unient equ;il to an outer

side of the border.

(i) If a side of the given octagon

is 1(1 ill., find an outer side of tlie

Ij'Jidei. Ceiling Pattern.

Ceiling Pattern.
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Find

to the

31. The accompanying design is based on
a set of squares such as ABCD. The small

triangles are equal isosceles right triangles

constructed as shown.

(a) Are the vertical and the horizontal

sides of the octagons equal?

(6) Are the octagons regular?

(c) If a side of one of the squares is 6, find

the area of one of the octagons.

(d) What fraction of the whole tile design

is occupied by the light-colored, tiles? Does
this depend upon the size of the original

squares ?

32. Given two lines at right angles to each

other. Find the locus of all points such that

the sum of the squares of the distances from the lines is 25.

33. Given two concentric circles whose radii are r and r'

the length of a chord of the greater which is tangent

smaller.

34. If two equal circles of radius r intersect so that each passes

through the center of the other, find the length of the common
chord.

35. The square on the hypotenuse of a right triangle is four times

the square on the altitude upon the hypotenuse. Prove it isosceles.

36. In a right triangle the hypotenuse is 10 feet and the difference

between the other sides is 2 feet. Find the sides.
,

37. Two equal circles are tangent to each other and each circle is

tangent to one of two lines perpendicular to each other. Find the

locus of the points of tangency of the two circles.

Suggestion. Note that the point of tangency bisects their line of

centers and that the centers move along lines at right angles to each

other.

38. The square on a diagonal of a rectangle is equal to half the

sum of the squares on the diagonals of the squares constructed on

two adjacent sides of the rectangle.

39. Show that the diagonals of a trapezoid form with the non-

parallel sides two triangles having equal areas.



CHAPTER V.

EBGULAR POLYGONS AND CIRCLES.

REGULAR POLYGONS.

332. A regular polygon is one which is both equilateral

and equiangular.

According to this definition, determine whether each of

the following polygons is regular or not and state why

:

An equilateral triangle, an equiangular triangle, a rectangle, a

square, a rhombus. Draw a figure to illustrate each. Make a triangle

which fulfills neither condition of the definition, also a quadrilateral.

333. The general problem of constructing a regular

polygon depends upon the division of a circle into as many
equal parts as the polygon has sides.

The problem of dividing the circle into equal parts can

be solved in some cases by the methods of elementary

geometry, and some of these methods will be considered

in this chapter. In most cases this problem cannot be

solved by elementary methods.

E.g. the circle may be divided into 2, •'^. 4, 5, 6, S. 10, 12, l.i, equal

parts, but not into 7, 9, 11, 13, 11, equal parts.

If a circle has already been divided into a certain num-
ber of equal jiarts, it may then be divided into twice, four

times, eight times, etc., that number of parts by repeated

bisection of the arcs. (See § 204, Ex. 1.)

The division of the circle into equal parts depends upon
the theorem (§!'.•'.>) that c(iual central angles intercept

170
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equal arcs on the circle, and hence it involves the subdi-

vision of angles into equal parts.

The following exercises depend upon principles already

familiar.

With each solution give the reasons in full for each step.

All constructions are to be made with ruler and com-

passes only.

334. EXERCISES.

1. Divide a given angle or arc into four equal parts.

2. Divide a given angle or arc into eight equal parts.

3. If an angle or arc is already divided into a certain number of

equal parts, show how to divide it into twice that number of equal

parts.

4. Divide a circle into four equal parts.

5. Divide a circle into eight equal parts.

6. If a circle is already divided into a certain number of equal

parts, show how to divide it into twice that number of equal parts.

7. Divide a circle into six equal parts.

Suggestion. Construct at the center an angle of 60°.

8. Draw the chords connecting in order the four division points

in Ex. 4, and show that the figure is a regular quadrilateral.

9. Draw the tangents at the four division points in Ex. 4, and

show that a regular quadrilateral is formed.

10. Draw the chords connecting in order the division points in

Ex. 7, and show that a regular hexagon is formed. Prove that the

side of the hexagon is equal to the radius of the circle.

11. Draw chords connecting alternate division points in Ex. 7, and

show that a regular triangle is formed.

12. Construct tangents to the circle at alternate division points in

Ex. 7, and show that a regular triangle is formed.

13. Draw tangents to the circle at the division points in Ex. 7, and

show that a regular hexagon is formed.

NoTB. See also the construction of regular polygons of 3, 4, and

6 sides, § 163, Exs. 3, 4, 5.



178 PLANE GEOMETRY.

335. Theorem. If a circle is divided into any nvm-

ber of equal arcs, the chords joining the division points,

taken in order, form a regular polygon.

Proof : Show (1) that the chords are equal ; (2) that

the angles are inscribed in equal arcs and hence are equal.

336. Theorem. If a circle is divided into any num-

her of equal parts, the tangents at the pjoints of divi-

sion, take?! in order, form a regular polygon.

A N B

Given the O OA divided into equal arcs by the points M, N, P, etc.,

with tangents drawn at these points forming the polygon ABCDEF.

To prove that ABCDEF is a regular polygon.

Analysis of Proof : (1) To prove that ^B = BC= CD, etc.

We know that BP = BN (Why ?).

Hence, if we can show that AN = yB and BP = PC. then

it will follow that AB = BC.

To prove AN = NB, it must be shown tliatZl = Z 2,

and this is done by showing that Z 1 and Z 2 are halves of

the equal angles NOM and NOP.

This necessitates proving A Aox ^ A .lo.v.

Now state the proof in full.

(2) To prove Zabc = Z iscD = Z cm:, etc.

From the triangles proved cougnient under (1") show
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that ^MAO = Z OAN = Z NBO = Z OBP; and hence,

Z Jlf^O+ Z O^IV^ = Z.NBO + Z O^P, or Z i^^B = Z ^Ba.
In like manner it is proved that Z.ABC = Z BCD, etc.

Hence the polygon is equilateral and also equiangular,

and hence regular.

337. Theorem. If a polygon is regular, a circle may
he circumscribed about it.

A B

Given a regular polygon ABCDE.

To prove that a'point can be found such that

OA = OB = OC = 0D= OE.

Outline of Proof : Bisect A A and B and let the bisectors

meet in some point o. Then o is the center sought.

For we have (1) OA = OB, Why ?

(2) AaoB^ BOC. .-. 0A= OC.

(3) AboC^ ACOjD. .-. ob=od.
(4) Now prove OC = OE.

.-. OA = OB = OC = OD = OE.

Prove each step, showing how it depends upon the pre-

ceding.

338. EXERCISES.

1. Find the locus of the vertices of all regular polygons of the

same number of sides which can be circumscribed about the same
circle.
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2. Find the locus of the middle jioints of the sides of all regular poly-

gonsof the same number of sides which are in,sciibed in the same circle.

3. Is an equilateral circumscribed polygon regular? Prove.

4. Is an equiangular circumscribed polygon regular? Prove.

339, Theorem. // a polygon is regular, a circle may
he inscribed In it.

Given the regular polygon ABODE.

To prove that a point O ni;iy be found such that the per-

pendiculars OM, ON, OP, OQ, OR,

are equal.

Outline of Proof : Determine a

point O as in the proof of the pre-

ceding theorem. Then A AOB,

BOO, etc., are equal isosceles trian-

gles, and their altitudes are equal.

Hence O is the required point.

Give proof in full.

340. Theorem. An equilateral ^polygon inscribed in

a circle is regular.

Suggestion for Proof : Use the fact that equal chords

subtend equal arcs, and apply § 335.

341. EXERCISE.

Show that the inscribed and circumscribed circles of a regular

polygon have the same center.

342. Definitions. The center of a regular polygon is the

common center of its inscrihod and circumscribed circles.

The radius of a regular polygon is the distance from the

center to one of its vertices.

Tlie apothem of a regular polygon is the perpendicular

distance from its center to a sitU'.
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343. Theorem. The area of a regular polygon is

equal to half the product of its apothem and perimeter.

Suggestion for Proof : A regular polygon is divided

by its radii into a series of congruent triangles, the area

of each of which is one half the product of the apothem
and a side of the polygon.

Complete the proof.

344. Theorem. The area of any polygon circum-

scribed about a circle is equal to one half the product of

the perimeter of the polygon and the radius of the circle.

The proof is left to the student.

345. EXERCISES.

1. Is every equiangular polygon inscribed in a circle regular?

Prove.

2. Show that the radius of a regular polygon bisects the angle at

the vertex to which it is drawn.

3. Show that the perimeter of a regular polygon of a given num-
ber of sides is less than that of one having twice the number of sides,

both being inscribed in the same circle.

4. Show that the perimeter of a regular polygon is greater than

that of one having twice the number of sides, both being circum-

scribed about the same circle.

5. Compare the areas of the two polygons in Ex. 3.

6. Compare the areas of the two polygons in Ex. 4.

7. Sliow that the area of a square inscribed in a circle of radius

r is 2 r'^. How does this compare with the area of the circum-

scribed square.

8. Compute the apothem and area of a regular inscribed hexagon

if the radius of the circle is r ; also of the regular circumscribed

hexagon.

9. A regular triahgle is inscribed in a circle of radius 10. Find

the apothem and a side of the triangle.
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346. Theorem. Two regular polygons of the same

number of sides are similar.

Outline of Proof: (1) Show that all pairs of corre-

sponding angles are equal.

(2) Show that the ratios of pairs of corresponding sides

are equal. Hence the polygons are similar (Why?).

347. Theorem. The perimeters of two regular poly-

gons having the same number of sides are in the same

ratio as their radii or their apothems.

Outline of Proof : Show (1) that each triangle formed

by a side and two radii in one polygon is similar to the

corresponding triangle in the other polygon.
A'Q 7* ft

C2') That —r-, = -7 = -;, where AB and A'B' are the two^
A'B' r' a'

sides, r and r' the corresponding radii and a and a' the

corresponding apothems. And so for the remaining pairs

of triangles.

That ^^ + BO+c^-f - ^AB_ r a^,

A'b' + b'c' + CD' + • a'b' r' a'

Draw the figure and give the proof in full.

348. Theorem. The areas of two regular polygons

of the same number of sidc'^ are in the same ratio as the

squares of the corresponding radii or apothems.

Outline of Proof : Divide the polygons into pairs of

corresponding triangles as in the preceding proof.

CI) Show that —- = -r;, = —5, and so for each pair of

triangles.

(2) Hence
A T + A 11 + A 111+ ... _,-_.'
AI' + AII'+A iir+ -

Draw figure and give the pruof in full.

r
'2
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PROBLEMS AND APPLICATIONS.

1. Find the ratio of the perimeters of squares inscribed in and
circumscribed about the same circle.

2. Find the ratio of the perimeters of regular hexagons inscribed

in and circumscribed about the same circle.

3. Find the ratio between the perimeters of regular triangles

inscribed in and circumscribed about the same circle.

4. Find the ratio of the areas of regular triangles in scribed in and

circumscribed about the same circle. Also find the ratio of the areas

of such squares and of such hexagons.

5. The perimeter of a regular hexagon inscribed in a circle is

24 inches. Find the perimeter of a regular hexagon circumscribed

about a circle of twice the diameter.

6. The area of a regular triangle circumscribed about a circle is

64 square inches. What is the area of a regular triangle inscribed in

a circle of one third the radius?

7. The area of a regular hexagon inscribed in a circle is 48 square

inches. What is the area of a regular hexagon circumscribed about

a circle whose diameter is If times that of the first?

8. A chord AB bisects the radius perpendicular to it. Find the

central angle subtended by the chord. State the result as a theorem.

9. State and prove the converse of the theorem in Ex. 8.

10. Find the area of a regular triangle inscribed in a circle whose

radius is 6 inches.

11. Find the area of a regular triangle inscribed in a circle whose

radius is r inches.

12. One of the acute angles of a right triangle is 60° and the side

adjacent to this angle is r inches long. Find the remaining sides of

the triangle.

13. A regular triangle is circumscribed about a

circle of radius r. Find its area.

Suggestion. First find DC in the figure.

14. A regular triangle of area 36 square inches is

inscribed in a circle. Find the radius of the circle.
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15. Find the radius of a circle if the area, of its regular inscribed

triangle is a.

16. Find the radius of the circle if the area of the regular circum-

scribed triangle is a.

17. Find the radius of a circle if the difference between the

perimeters of the regular inscribed and circumscribed triangles is

12 iuches.

18. Find the radius of a circle if the difference of the perimeters

of the reguUir inscribed and circumscribed hexagons is 10 inches.

19. If the area of a circumscribed square is L'.j square inches greater

than that of an inscribed square, what is the diameter of the circle?

20. Find the radius of a circle if the difference between the areas

of the inscribed and circumscribed regular triangles is l'.j square

inches.

21. Find the radius of a circle if the difference between the areas of

the regular inscribed and circumscribed hexagons is 25 square inches.

22. The difference between the areas of the squares circumscribed

about two circles is 50 S(iuare inches and the differ-

ence of their diameters is 4 inches. Find each

diameter.

23. If the inscribed and escribed circles O and
0' of an equilateral triangle are constructed as

shown in the figure, find the ratio of their radii.

Does this ratio depend upon the size of the triangle ?

24. (iiyeii a triangle ABC and a segment a,

show how to construct a segment 1>E II AB and

equal to the segment a, such that the points D and

7? shall lie on the siil(^s ( 'A and CB respectively or

on these sides extended.

25. A triangular plot of ground ABC is to be

laid out as a triangular flower bed witli a walk of

uniform widl-li extending around it.

(a) I'rove that the flower bed is similar to the

original triauLjIe.

{h) Show that tlic corners of the flower bed lie on

the bisectors of the angles of the original triangle.

/:

±
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AB^
(f) Fiud a segment S so that —~ = 2 and construct A'B' equal

to S and parallel to AB, the points A' and B' lying on the bisectors

of the angles A and B respectively. See Exs. 16-19, page 172.

{d) Draw A'C" II AC and £'C'' II BC.
Prove that the area of the flower bed A'B'C, as thus constructed,

is equal to the area of the walk.

(e) Construct the figure for the flower bed so that its area is five

times that of the walk.

26. Given a rectangular plot of ground. Is it always possible to

lay off on it a walk of uniform width running around it so that the

plot inside the walk shall be similar to the original figure? Prove.

27. Is the construction proposed in Ex. 26 always possible in the

case of a square ? of a rhombus ? Prove.

28. If a side of a regular hexagon circumscribed about a circle is

a, find tlie radius of the circle.

29. On a regular hexagonal plot of ground whose side is 12 feet a

walk of uniform width is to be laid off around it. Find by algebraic

computation the width of the walk if it is to occupy one half the

whole plot.

30. Find by geometric construction the width of the walk in

Ex. 29.

31. Show that the figure inside the walk in Ex. 29 is a regular

hexagon;

32. Given a segment AB, find three points C, D, E on it so that,

AC'' ^1 Air ^ 1 ^^^^ AM. = ^

AB^ 4' Jb''
2'

Xfc'' 4

33. A regular hexagon ABCDEF is to he divided into four pieces

of equal area by segments drawn parallel to its

sides forming hexagons as shown in the figure. If

AB= 24: feet, find a side of each of the other hexa^

gons and also the apothem of each.

34. "Without computing algebraically the apo-

them or sides of the inner hexagons in Ex. 33,

show how to construct the figure geometrically.

See Ex. 6, § 331. Also Ex. 18, page 172. Use § 348.
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35. In a given hexagonal polygon whose side is a find in terms of

(I and n the width of a walk around it which wiU occupy one nth of

the area of the whole polygon.

36. By means of hexagons similar to those in Ex. 33, divide a

given regular hexagon into three parts such that the outside part is

J the whole area and the next | of the whole area.

37. Compute the sides and the apothein of the two hexagons con-

structed in Ex. 36 if the side of the given hexagon is 12 inches.

38. In the adjoining pattern find two regular hexagons whose areas

are in the ratio 1 : 4 and show that this agrees with

theorem, § 348.

39. If a polygon is circumscribed about a circle,

show that the bisectors of all its angles meet in a

point.

40. Given any polygon circumscribed about a circle,

di-aw segments parallel to each of its sides and

at the same distance from each side. Show
that these segments form a polygon similar to

the first.

41. If the bisectors of all the angles of a

polygon meet in a point prove that a circle may
be inscribed in it (tangent to all its sides).

What is the relation of the theorems in

Exs. 39 and 41?

42. Given a polygonal plot of gi-ound (boundarj^ is a polygon)

such that a path of equal width on it around the border leaves a

polygonal plot similar to the first. Prove that a circle may be in-

scribed in the polygon wh^fh forms the boundary of either plot.

43. In the figure, A BCF) is a square and EFGHKLMXis a regular

octagon.

(.() If KF = I inches, find AB. d
(b) If AB = 12 inches, find EF.
(c) If KF = a, find AB.

(d) If ^B = s, find FF.

(/') If AB = s, find the apothem.

(/) M AB = s, find (he radius of the octagon.
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44. Find the ratio between the areas of regular octagons inscribed

in and circumscribed about the same circle.

45. (a) The apothem of a regular octagon is 10 feet. Find the

width of a uniform strip laid off around it which occupies \ its area.

(6) Show how to construct this strip geometrically without first

computing its width. Prove that the inside figure is a regular

octagon.

46. A regular octagon ABCDEFGH is to be divided into four

parts of equal area by means of octagons as shown in the figure.

(a) If AB = 12 inches find a side of each octagon.

(h) Show how to construct the figure without first computing the

sides.

(c) Show how to construct such a figure if the four parts I, II, III,

IV, are to be in any required ratios.

(d) Measure the sides of the two

inner parts of the ceiling pattern and

hence find the ratio of their areas.

A ^ B

47. The middle points, A,B, C, D,

of alternate sides of a regular octagon

are joined as shown in the figure.

AH is, perpendicular ia AE and equal

to ili. BG, CK, and DL are con-

structed in the same manner.

(a) Prove that ABCD and HGKL
are squares.

(b) Find the areas of ABCD and HGKL, if EF= 10 inches.

(c) What fraction of the whole octagon is occupied by the square

HGKL.
See the accompanying tile border.
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MEASUREMENT OF THE CIRCLE.

349. If in a circle a regular polygon is inscribed, its

perimeter may be measured.

For example, the perimeter

of a regular inscribed hexa-

gon is 6 r if r is the radius of

the circle. St-o § o'ii, Ex. 10.

If the number of sides

of the inscribed polygon be doubled, the resulting perimeter

may be measured or completed in terms of r. See § 357.

If again tlie number of sides be doubled, the resulting

perimeter may be computed in terms of r, and so on.

In a similar manner a regular polygon, say a hexagon,

may be circumscribed about a circle and its perimeter-

expressed in terms of r.

If the number of sides of the

circumscribed polygon be doubled,

its perimeter may again be com-

puted, and so on as often as

desired.

350. By continuing either of these processes it is evident

that the inscribed or the circumscribed polygon may be

made to lie as close to the circle as we please.

351. The word Ie?igth has thus far been used in connec-

tion with straight line-segments only. Thus, the perime-

ter of any polygon is the snm of the lengths of its sides.

352. We now assume tliat a circle has a definite length

and that tliis can be approximated as nearly as we please

by taking the perimeters of the successive inscribed or cir-

cumscM'iliod polj'gons.

The lengtli of a circle is often called its perimeter or

circumference.
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It is evident that approximate nfeasurement is the only kind possible

in the case of the circle, since no straight line unit of measure, how-

ever small, can be made to coincide with an arc of a circle.

353. Comparison of the Lengths of Two Circles. In each

of two circles, O and o', let regular polygons of 6, 12, 24,

48, 96, 192, etc., sides be inscribed. Call the perimeters of

the polygons in O 0, Pg, P^2i -^24' ^^c., and those in © o',

p'g, p'j2, P'241 etc. Let the radii of the circles be -B and

r' respectively.

Then by the theorem of § 347, we have

iL = 5} = Zi2 = £24= etc.,
7?' p' p' p'-"

-^^S '12 -^24

however great the number of sides of the inscribed poly-

gons. Show that the same relations hold if polygons are

circumscribed about the circle.

From these considerations we are led to the following

:

354. . Preliminary Theorem. The lengths of two

circles are in the same ratio as their radii.

355. Hence, if C and c' are the circumferences of two

circles, R and r' their radii, and D and d' their diameters,

we have £ = ^ =^ ; and, also ^ = ^ • (See § 245)
c' r' d' d d'

Hence, the ratio of the circumference to the diameter in

one circle is the same as this ratio in any other circle.

356. This constant ratio is denoted by the Greek letter tt,

pronounced pi.

The argument used above shows that a theorem like

that of § 354 holds for every pair of poU^gons used in the

approximation process, and hence it is established for all

purposes of practical measurement or computation.
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357. Problem. To compute the approximate value

Solution. Suppose a regular polygon of n sides is in-

scribed in a circle whose radius is r and let one of the sides

AB be called s„.

We first obtain in terms of S„ the length AC, or S^n, of a

side of a regular polygon of "2 n sides inscribed in the

same circle.

Let AB be a side of the first polygon. Bisect AB at C

and draw AC and BC. Then AC is a side of a regular

inscribed polygon of 2w sides (Why ').

Then in the figure

( S,„y =IP = (1 ASy+P = (i S„y+ W. (Why (1)

But h-KDE = h{1r—h') = ADy.DB = I^, (Why/)

or AD^ = ils;f=h('lr-h)

Solving equation (2) for h, we hiive

h = •lr±xAr'-

Taking only the negative sign, since // < r, and squaring,

we have, h^ = "Ir^ — r ^' 4 r" — n,,'-* — \
^„'-.

or, ¥ +Q ^S'= •- '" - rv 4 *•- - .s,;-.

Hence, from (1), S^^ = 2 r^ — r \ i r- ~ s^.
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and s^^ = V2r2-rV4r2-s„2.

Since, by § 355, the value of "ir is the same for all circles,

we take a circle whose radius is 1.

In this case s^„ = V2 _ V4^^^. (3)

If the first polygon is a regular hexagon, then -Sg = 1.

Hence, 8^^ = ^2-VT^ = 0.51763809.

Denoting the perimeter of a regular inscribed polygon

of n sides by P„, we have,

P12 = 12(0.51768809)= 6.21165708.

In the formula (3) let n = 12.

Then s^^ = V2 _ V4 - (0.51768809)2 = 0.26105238.

Hence, P^^ = 24(0.26108238) = 6.26525722.

Computing S^g, P^g, etc., in a similar manner, we have.

5,2 = V2 - V4 - 1 = .51763809. .-. P^ = 6.21165708.

5^2^ = V2 - VJ^:^ (.51763809)2 ^ .26105238. .-. P^^ = 6.26525722.

S^ = V2 - V4: - (.26105238)2 = .13080626. .-. P^ = 6.27870041.

5<,g = V2 - V4 - (.13080626)2 = .06543817. . . Pgj = 6.28206396.

S,g2 = V2 - Vd - (.06543817)2 = .03272346. .-. Pjgj = 6.28290510.

S384 = V2 - V4 - (.03272346)2 = .01636228. .-. P^g^ = 6.28311.544.

Sjus = V2 - v'4 - (.01636228)2 = .00818126. .-. P,^ = 6.28316941.

358. The Length of the Circle. By continuing this process

it is found that the first five figures in the decimal remain

unchanged. Hence 6.28317 is an approximation to the

circumference of a circle whose radius is 1.
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359. By a process similar to the preceding, if circum-

scribed polygons of !, 8, 16, etc., sides are used, the follow-

ing results are obtained:

NUMHEE OF SlIiFH
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361. The area of the circle. In § 359 the area of each

circumscribed polygon is half the product of the perimeter

and the apothem, which in this case is the radius of the

circle. The area inclosed by the circle is called the area

of the circle. That is, for every such polygon, A=lP- R,

or area equals one half perimeter times radius.

We now assume that a circle has a definite area which

can be approximated as closely as we please by taking

the areas of the successive circumscribed polygons.

362. Since the perimeters of the circumscribed polygons

can be made to approximate the length of the circle as

nearly as we please, and since c = 2 ttt* we have,

area of circle = | • 2 irr . r = ur^-

The degree of accuracy to which this formula leads

depends entirely upon the accuracy with which tt is

determined.

The old problem of squaring the circle, that is, finding the side of a

square whose area equals that of a given circle, involves therefore

determining the value of ir. Much time and labor have been expended

upon this in the hope that this value could be exactly constructed by

means of the ruler and compasses, but it is now known that this is

impossible.

363. Since the area of a circle is tt t^, if we have two

given circles whose radii are r and r' and whose diameters

are d and d', then the ratio of their areas A and A' is

A irr^ r^ d? +t, 4.

Theorem. The areas of two circles are in the same

ratio as the squares of their radii, or of their diameters.



194 PLANE GEOMETRY.

364. The area of a sector bears the same ratio to the area

of the circle as the angle of the sector does to the perigon.

E.g. the area of the sector whose arc is a quadrant is one fourth of

the area of the circle, that is, ^— . The area of a semicircle is -—

.

i 2

Find the area of a sector whose angle is 60^ ; 30° ; 45' ; 72'.

365. The area of a segment of a circle is known if that of

the sector having the same arc, and of the central triangle

on the same chord, can be determined.

Show that the areas of segments of a circle whose arcs are respec-

tively 90° and 60° are

!r«f_^= = ^\,_2) and E^^ -^ V3 = ^^2. - 3^3).424^^ 64 12^ ^

The accompanying figure shows a circle cut into sectors by a 5erip=:

of radii. Each sector ap-

proximates the shape of /i (\ /
'i ,'\ / \ i\ i\ j\ /, /\ ,'

, ,", ; ,

a triangle, whose altitude / \' \/ \/ w' \/ \( \! \! v "" \'' \'' >

is the radius of the circle,

and whose base is an arc of the circle. Since the sum of the areas

of these triangles is the product of the altitude and the sum of the

bases, we obtain a verification of the theorem that the area of a circle

is one half the product of the circumference and radius.

SUMMARY OF CHAPTER V.

1. ]\Iake a list of the definitions pertaining to regular polygons.

2. Statfl the theorems concerning regular polygons inscribed in or

circumscribed about a circle.

3. State the theorems involving similar regidar polygons.

4. Give an outline of the discussion concerning tlio value of - and
its use in approximating the length and area of the oirclo.

5. 'What are some of llu> move important applications of the theo-

rems in ('lia]itiT V ? (Kctuvn to this question after studying the A\>-

plications which follow.)
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12. Find the ratio between the area of a square inscribed in a circle

and another circumscribed about a circle having B Cr C
3 times the radius.

13. Find the ratio of the area of a regular

hexagon inscribed in a circle to that of another

circumscribed about a circle having a radius \ as

great.

14. AB< ' I> is a square whose side is a and the -^ ^
points .1, B, C, D, are the centers of the arcs HE, EF, etc.

(a) Find the area of the figure formed by the arcs

FLE, EKH, HNG, GMF.
(b) Find the area of the figure formed by the arcs

ELF and EQF.

SrG(;ESTiijN. Find the difference between the

areas of a circle and its inscribed .square.

(c) Find the area of the figure formed by the arcs

EK,1<.L, and LE.

15. If the sides of the rectangle A BCD are 8 and 12 inches, resi

tively, find the radii of the circles..

(a) What fraction of the area of the rectangle

lies within only one circle?

(&) Prove that at each vertex of a square two

circles are tangent to a diagonal of the square.

16. Two concentric circles are such that one

divides the area of the other into two equal parts.

(a) Find the ratio of the radii of the circles.

(J) (liven the outer circle, construct the inner one.

17. Construct three circles concentric with a circle

of radius r, which shall divide its area into four equal parts.

18. Prove that six circles of e(|Lial radii can be constructed each
tan;;ent to two of the others and to a yiven circle.

(a) Show that :i circle can be constructed around
the six circles tanj^ciil to each of lliem.

(b) What fraction of the area of tlie last circle is

occii|iieil by llie sevi'n ciri'les within it?

19. .1 O/; is acentral auLjli' oljl(t\ Find the area

bounded by the cluu-d ,1/.' and ill if the radius of the circle is 3,
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20. ABC is an equilateral gothic arch. (See page 109.)

area inclosed by the segment AB and the arcs AC and
BC, iiAB^S feet.

Suggestion. Find the area of the sector with center

A, arc BC, and radii AB and AC, and add to this the

area of the circle-segment whose chord is A C.

21. ABC is an equilateral triangle and A, B, and C
are the centers of the arcs. Show that the area of the

figure formed by the arcs is three times the area of one

of the sectors minus twice the area of the A ABC.

22. In the figure ABC is an equilateral triangle

and D, E, and F are the mid-

dle points of its sides. Arcs

are constructed as shown.

(a) If ^^=6 feet, find the

area inclosed by CE, El , Ft'.

{b) Find the area inclosed

by i£, E(:, and f^.

(c) Find the area inclosed

by i5>, f^, and EB.

23. In the figure ABC is an equi-

lateral arch and O is constructed on

AB as a diameter. AH and BK are

perpendicular to AB.
(a) Construct the equilateral arches

HED and DFK tangent to the circle

as shown in the figure.

Suggestion. OH = OA + DH.
(h) Prove that the vertices E and F

lie on the circle.

Suggestion. What kind of a triangle is HOKt
In the following let AB — 8 feet.

(c) Find the area bounded by the arcs DF, FE, and ED.
(d) Find the area of the rectangle ABKH.
(e) Find the area bounded by AH and the arcs HE and EA.

(f) Find the area bounded by the upper semicircle AB and the

arcs AC and BC.

(g) Find all the areas required in (c) ••• (/) if AB — a.

From the Union Park Church, Chicago.

C

H D K
From the First Presbyterian

Church, Chicago.
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24. In the figure, yliSC-DEF is a regular hexagon. jB is the center

of the arc ALC, D the center of ( HE, and F the center of EKA.
li AB = 16 inches, find H
(a) The circumference and area of the circle,

(6) The area bounded by the arc ALC and the

segments AB and BC,

(c) The area bounded by Ky\, AL and LK, „v

(rf) The area bounded by JTc, CUE and EK'a .

(c) Find the areas required in (o)-(rf) if AB = a inches.

25. ABC is a regular octagon. Arcs are con-

structed with the vertices as centers as in the figure.

If AB = 10 inches, find the area inclosed by the

whole figure. Also ii AB = a.

26. ABCDEFGH is a regular octagon. Semi-

circles are constructed with the sides as diameters.

(a) If AB = 10 inches, find the area of the whole
figure. Also hi AB = a.

(J) Complete the drawing in the outline figure to

make the steel ceiling pattern here shown.

27. In the figure A CB, AFD, DEB, and ECF are

semicircles. EF is tangent to two semicu-cles.

(a) Prove that the semicircles AFD, FCE, and
DEB are equal, D being given the middle point of AB.

If ^B = 48 inches, find:

(ft) The area bounded by AC, FT and FA,
(c) The area bounded by FD and DE, and the ,

line-segment FE, ^ jj"^—r
(d) The area bounded by .4 F, FCE, EB, and the line-segment AB.
(e) Find the areas required iu (h)-{rl) if .1 R = a.

28. (a) If a side of the regular

hexagon in the figure is a, find the

area inclosed by the arcs (including

the area of the hexagon).

(J) Show that a circle may be cii-

cumscribed about the \vlioli> figuro.

IMP
(c) Find the area inside this circle and out.side the figure in (o).
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MISCELLANEOUS PROBLEMS AND APPLICATIONS.

1. Given a rhombus, two of whose angles are 60°, to divide it

into a regular hexagon and two equilateral tri-

angles. See Ex. 7, page 78.

2. M'hat fraction of the accompanying design for

tile flooring is made up of the black tiles? Show
how to construct this design by marking of£ points

along the border and drawing parallel lines.

3. In the accompanying design for a parquet border two strips of

wood appear to be intertwined.

(a) If the border is 8 inches wide and 3

feet 4 inches long, find the area of one of

these strips, including the part which ap-

pears to be obscured by the other strip.

(b) If the figure consists of squares, find

the angle at which the strips meet the sides. Use the table on page 139.

(c) If the width of the border is a and its length b, find the com-

bined area of these strips.

Compare the total area of the obscured part of these strips with the

sum of the areas of the small triangles along the edge of the border.

4. A solid board fence 5 feet in vertical height running due

north and south is to be built across a valley, 8 rods

connecting two points of the same elevation.

Find the number of square feet in the fence if

the horizontal distance is 80 rods.

5. Are the data given in the preceding problem sufficient to solve

it if the fence required is to be an ordinary four-

board fence,' each board 6 inches wide ?

6. Two circles are tangent internally at a point

A. Chords AB and AC oi the larger circle are

drawn meeting the smaller circle in D and E
respectively. Prove that BC and DE are parallel.

7. Two circles, radii r and r', are tangent internally. Find the

length of a chord of the larger circle tangent to the smaller if

:

(a) The chord is parallel to the line of centers,

(b) The chord is perpendicular to the line of centers,

(c) Meets the larger circle at the same point as the line of centers.
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8. Givi'ii a straight line and two points A and B on the same

side of it. Find a point <
' on the line such that the sum of the seg-

ments A I
' and BC shall be the least possible.

Solution. In the figure let B' be symmetric to B with

respect to the line. Draw AB' meeting the line in C.

Then C is the required point. For let C be any other

point on the line. Then A f' + (•'B>AC + CB.

The proof depends upon § 128 and Ax. Til, § 61. Give I

,

',

it in full detail. I

''

9. If in the figure preceding, A L> is perpendicular

to the line, prove that A ADC '^ A (BE a,nd hence -— =
.^ BE CE

10. If in Ex. 8, DE = a, AD = h, BE = c, find CD and CE.

11. Two towns, A and B, ai-e 10 and 6 miles respectively from a river

and A is 12 miles farther up the rivei- thau B. A
pumping station is to be built which shall serve

both towns. AVhere must it be located so that the

total length of water main to the two towns shall

be the least possible ?

12. 'I'wij factories are situated on the same side

of a railway at different distances from it. A spur

is to be built to each factory and these are to join the railway at the

same point. State just what measurements umst be made and how
to locate the point where these spurs should join the main line in order

to permit the shortest length of road to be built.

13. Two equal circles of radius ?• intersect su

that their common chord is equal to ;. Find the

area of the figure which lies witliin both circles.

14. In the accompanying design for i>ak and

mahogany parquet flooring the large squares ;ue

inches and the small black ones '2\ inches un a

side. 'What fraction of the whole is the ma-
hogany (the black squares) ?

15. Construct oireles on the three sides of a

right triangle as diameters. Conqiare tlie area

ii! the circle eonstrucli'd on the hypotenuse with the sum of the areas

of the other two. I'mve.

!

B BXJ



REGULAR POLYGONS AND CIRCLES. 201

16. In the accompanying design for grill work

:

(a) Find the angles ABC, BAD, and ^GC.

(5) If the radius of each circle is r, find the distance AF.
(c) What fraction of the area of the parallelogram GBCE lies

within one circle only?

(rf) If the radius of each circle is r, find the distance between two
horizontal lines.

(e) Construct the whole figure.

Suggestions. (1) Find AF and lay off points on AB.

(2) Find ZBAD and construct it.

(3) Through the points of division on AB draw lines parallel to

AD.
(4) From A along AD lay off segments equal to AF and through

these division points construct lines parallel to AB.

(5) Along DC lay off segments equal to AF. Connect points as

shown in the figure.

(/) From the construction of the figure does it foUow that

ZDAB = ZEGC1

17. Prove that the sum of three altitudes of a triangle is less than

its perimeter.

18. In the accompanying design for grill work, the arcs are con-

structed from the vertices of tlie equilateral triangles as centers.

(a) Prove that two arcs are tangent to

each other at each vertex of a triangle.

(b) Find the area bounded by the arcs

AB,BC, CD, DA.
(c) Find the ratio between the area in (6)

and the area of the triangle DBC.
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19. The character of the accompanying design for a window is

obvious from the figure. Denote the radius of the large circle by R,

of the semicircles by /J', and of the small circles

by r.

(a) If iJ = 8 feet find R' and ,

.

(i) Find R' and r in terms of it.

(c) What fraction of the area of the large circle

lies within the four small circles?

(d) What fraction of the area of the large circle lies outside the

four semicircles ?

(e) If i? = 10, find the area inclosed within

the four small circles.

20. In the accompanying design for a stained

glass window

:

(a) What part of the square A'B'C'D' lies

within ABCD'I

(5) If A'B' = 4 feet, find the sum of the areas

of the semicircles.

(c) Find the area inclosed by the line-seg-

ments FB', B'E and the arcs FB and BE, if

EB' is 1^ feet.

((/) Find the areas required in (6) and (c) if

A'B' = a.

21. The accompanying design for tile flooring consists of regular

octagons and squares. The design can be constructed by drawing

parallel lines as shown in the figure.

(o) If a side of the octagon AB is given, find BC, DE, and EF
by construction.

Find the ratio of any two of these seg-

ments.

(A) li AB = a, findBC.

(c) li AB = a find the area of the square

XJ/zw.

(rf) At what angles do the oblique lines

meet the horizontal?

(e) Ciiiisl.iucl. the figure by layiiii;' off llu'

required ]i(iintsoii the sides, drawini;- parallel lines in pencil, inking in

the sides of the nclagoiis and I'rasiug llie remainder of the lines.
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D
T_T_T_T_-i
X_X_X_^.

T T T X
X X X X^
^XIX^

X^r
XI3vH3

22. This design for tile flooring is constructed

by first making a network of squares and then

drawing horizontal lines cutting of£ equal tri-

angles from the squares.

(a) At what angle to the base of the design

are the oblique lines ?

(b) If each of the small squares is 6 inches on
a side, find EF and HL.

(c) Find EF and HL if the side of a small square is a.

(rf) What fraction of the whole area is occupied by the black
triangles?

23. Five parallel lines are drawn at uni-

form distances apart, as shown in the figure.

(a) If these lines are 4 inches apart, find the

width of the strip from which the squares

are made, so that their outer vertices shall

just touch ?j and Zz, and the corresponding

inner vertices shall touch Zg and l^.

(b) What part of the area between l^ and

Zg would be occupied by a series of such squares

arranged as shown in the figure ?

24. ABC is an equilateral triangle. AO and BO
bisect its base angles. OD and OE are drawn parallel to

CA and CB, respectively. Show that AD = DE =EB.

25. If one base of a trapezoid is twice the other, then

each diagonal divides the other into two segments which

are in the ratio 1 : 2.

26. If one base of a trapezoid is n times the other, show that each

diagonal divides the other into two segments which are in the ratio

l:n.

27. Prove that if an angle of a parallelogram is bisected, and the bi-

sector extended to meet an opposite side, an isosceles triangle is formed.

Is there any exception to this proposition ? Are two isosceles

triangles formed in any case ?

28. Prove that two circles cannot bisect each other.

29. Find the locus of all points from which a, given line-segment

subtends a constant angle.
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30. In the figure, equilateral arches are constructed on the base AB,

and on its subdivisions into halves, fourths, and eighths.

C

... ^..
^

From Lincoln Cathedral, England.

(a) Show how to construct the circle O tangent to the arcs as shown

in the figure.

Suggestion. The point is determined by drawing arcs from A
and B as centers with BF as a radius (Why?).

(i) Show how to complete the construction of the figure.

(c) If AB = 12 feet, find the radii of the circles O, 0', 0".

(d) Find these radii if AB = s (span of the arch).

(e) What part of the area of the arch ABC is occupied by the arch

ADE? by the arch AFS"} by ALK'l

(f) The sum of the areas of the seven circles is what part of the

area of the whole arch?

(g) The sum of the areas of the two equal circles O* and O" is

what part of the area of the circle O?

31. The accompanying church window design

consists of the equilateral arch ABC and the six

smaller equal equilateral arches.

(a) If . I B = 8 feet, find the area bounded by tlie

arcs AfCl. GE, ED, DM.
(J) If . I B = 8 feet, find tlie area bounded bv the

arcs AC. CE, ICD, 7). I.

(c) Find the areas required under (a) and (6) if AB = <i.
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32. In the figure, ABC is an equilateral arch.

-D, E, and F, the middle points of the sides of the

triangle ABC, are centers of the arcs AE, KL,
BF, and SR; CF and MR; EC and LM re-

spectively.

(a) Prove that the arc with center D and radius

DA passes through the point E.

(b) Prove that arcs with centers D and F, and tangent to the seg-

ment A C, meet on the segment BE.
(c) If AB = a, find KS.
(d) Can we find the area bounded by the segment AB and the arcs

BF, FC, CE, and EA when AB is given ? If so, find this area when
AB = a.

(e) Can we find the area bounded by KS and the arcs SR, RM,
ML, LK, when AB is given ? If so, find this area when AB = 6 feet.

33. Prove that the altitude of an equilateral triangle is three times

the radius of its inscribed circle.

34. The accompanying grill design is

based on a network of congruent equilateral

triangles. Arcs are constructed with ver-

tices of the triangles as centers.

(a) If AB = 6 inches, find the area

bounded by CQ, QP, PT, fs, SR, RC.
(b) Has the figure consisting of these arcs a center of symmetry?

How many axes of symmetry has it?

(c) Find the area required under (a) if AB = a.

(d) JiAB = 4: inches, find the area bounded by CD, DE, EF, FG,

(^, ^, etc.

(e) Has the figure consisting of these arcs a center of symmetry?

How many axes of symmetry has it?

(/) Find the area required under (d) if AB = a,

35. Two circles intersect in the points A and B. Through A a

line is drawn, meeting the two circles

in C and D respectively, and through

B one is drawn meeting the circles

in E and F respectively. Prove that

CE and DF are parallel.
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36. Prove that if the points D and F coincide in the

preceding example the tangent at D is parallel to CE.

37. Two circles are tangent internally at ^. Prove

that all chords of the larger circle through A are di-

vided proportionally by the smaller circle.

38. Chords are drawn through a fixed point on a cii'cle. Find the

locus of points which divide them into a fixed ratio.

39. Squares are inscribed in a circle, a semicircle, and a quadrant

of the same circle. Compare their areas.

40. In a given circle two diameters are drawn at right angles to

each other. On the radii thus formed as diameters semicircles are

constructed. Show that the four figures thus formed are congruent.

41. Let C be any point on the diameter AB of a circle.

(a) Compare the length of the arc ADB with the sum of the

lengths of the arcs AEC and CFB.
(b) Show that if .12? = o CB, then the area inclosed by the arcs

BFC, CEA, ADB, is one third the area of the circle.

(c) Show that if AB = m. CB, then the area inclosed by these

arcs is one mth of the area of the circle.

42. By means of arcs constructed as shown in the third figure

divide the area of a circle into any given number ci

of equal parts. Make the construction. \-~^

43. Two sides AB and BC of a triangle are ex- T\~\
tended their own lengths to B' and ( '' respectively.

J-
—-^——-s'

Cdiripare the areas of the triangles ABC and
BB'C. ^•

44. The three sides of a triangle ABC are ex-

tended to ,1', B', ( •' as shown in tlie ligure. Com-
pare the areas of the trianf;les .1 HC ;ind ATl'C' :

(n) if /;«' = . I B, CC = lie, and ,1 .4' = CA
;

(b) a BB' = 1. AB,cr' = = m B<\and AA' = ,k.CA.



CHAPTER VI.

VARIABLE GEOMETRIC MAGNITUDES.

GRAPHIC REPRESENTATION.

366, It is often useful to think of a geometric figure as

continuously varying in size and shape.

E.g. if a rectangle has a fixed base, say 10 inches long, but an al-

titude which varies continuously from 3 inches to 5 inches, then the

area varies continuously from 3 • 10 = 30 to 5 10 = 50 square inches.

We may even think of the altitude as starting at zero inches and

increasing continuously, in which case the area starts at zero and in-

creases continuously.

From this point of view many theorems may be repre-

sented graphically. The graph has the advantage of ex-

hibiting the theorem for all cases at once.

For a description of graphic representation see Chapter V of the

authors' High School Algebra, Elementary Course.

367. If in the figure ACW BD and OA and OB are commen-

surable, and if — =— , then O, C, and D lie in a straight

,.
"^ OB BD

line.

For suppose D not in a line with OC. Pro-

duce OC and BD to meet at K.

OA ^AC
OB BK
OA^AC
OB BD
BD = BK.

Then

But by hypothesis

Hence, (Why?)

Therefore D coincides with K, and 0, C and D are in a straight

line.

207
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368. Theorem. The areas of two rectangles having

equal bases are in the same ratio a^ their altitudes.

Graphic Representation. For rectangles with commensurable bases

and altitudes we have

Area = base x altitude. (§303)

Consider rectangles each with a base equal to 6, altitudes h^, h^, hg,

etc., each commensurable with 6, and areas A^, A^ Ag, etc.

Af _ bh-, _ h,

We exhibit graphically the special case where b = 10. Let one

horizontal space represent one unit of altitude and one vertical space

ten units of area.

Thus, the point P^ has the ordinate ^ = 10 vertical units (repre-

senting 100 units of area) and the abscissa ^2 = 10 horizontal units.

Similarly locate Pi and Pg whose abscissas are hi and hs and ordi-

nates Ai and A2-

Using equation (1) and § 367, show that 0, P^, Pi, Pa lie in the

same straight line.

Then, — _— _-, ^ = **2 = ^,etc.
A,^ bh.^ h, A^ bhg h^

(1)
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If we suppose that while the base of the rectangle re-

mains fixed, the altitude varies continuously through all

values from \ = 10 to h^= 1Q = 2 y. 10, then it must take

among other values the value 10 V2.
Using 10 a/2 as an abscissa, the question is, whether

CD is the area ordinate corresponding to it.

This area ordinate is not less than CD and commen-
surable with the base, for in that case the altitude would
be less than 10 V2, and for the same reason it is not

greater than CD and commensurable with the base.

But we can find line-segments less than 10 V2 or greater

than 10 V2 and as near to 10 v'2 as we please.

Hence we conclude that the area ordinate for the

rectangle whose altitude is 10 V2 is CD, that is, the point C
lies in the line OP^-

In like manner, the point determined by any other ab-

scissa incommensurable with the base is shown to lie on

the line OP^-

Since the abscissa and ordinate of any point on OP are

equal, we have for any altitude,

A_^'h_^

^1 h
369. The preceding theorem may also be stated

:

The area of a rectangle with a fixed base varies

directly as its altitude.

This means that if ^ and h are the varying area and altitude re-

spectively, and if Ai and hi are the area and altitude at any given

instant, then

— =: — or ^ = —1 • h OT A = Jch, where k is the Jixed ratio —-.

A\ hi hx hi

The graph representing the relations of two variables

when one varies directly as the other is always a straight line.
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370. EXERCISES.

1. Make a graph to show that the ari'ii of two rectangles having

equal altitudes are in the same ratio as their bases.

2. .Sl]<i\v by a graph that the area of a triangle having a fixed alti-

tude varies as the base, and having a fixed base varies as the altitude.

3. Represent graphically the relation between two line-segments

both of which begin at zero, and one of which increases three times

as fast as the other. Five times as fast. One half as fast.

4. If areas be represented by the length of a line-segment as in

5 •>GS, which question in Ex. -3 applies to the altitude and area of a

parallelogram having a fixed base and varying altitude ? Which
applies to a triangle having a fixed base and varying altitude?

371. TnEOREir. The area of a rectangle is equal to

the product of its base and altitude.

Proof : Using the graphic representations of §§ 368,

370, Ex. 1, we have for all cases,

A^ a T Ao b—2 = - and —i—-.

Hence —^ = ^-2 x
^

''•2

3 _
A.2

ah ,

Rut ^j is the unit of urcn. Hence

ah represents the numerical measure of

Ar. liy the area unit.

^, 1 A^

1

-4, b

That is, Ari'it = husr x attitude.

372, Problem. Make a graphic representation of

the theorem: Thr jiiri))irt(rs (f similar j)oIygons are

in tJic sajne nitio as (tny tiro correspondimj sides.

SoLirioN. First (•(iiisIiUm- tlio ."Special ease of equilat-

eral triaiiLi'les. On (lie hurizuntal axis lay off the lengths

of one side of several siuih triangles, and on the vertical
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axis lay off the lengths of the cor-

responding perimeters. Show that

the points so obtained lie in a straight

line.

373. EXERCISES.

1. In the manner above graph the rela-

tion between the perimeters and sides of

squares. Of regular pentagons. Of regu-

lar hexagons. Of rhombuses.

2. If a side of a given regular polygon is

a and its perimeter p, graph the relation of

the perimeters and corresponding sides of

polygons similar to the given polygon.
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375. Problem. To represent graphically the rela-

tion hetiueen the area and side of a square as the side

variety continiiondy.
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(2) If five horizontal spaces are taken for one unit of

length of side and one vertical space for one unit of area,

then the points Pj', P^', P3', etc., are found and the less

steep curve is the result.

The student should locate many more points between those here

shown and see that a smooth curve can be drawn through them all in

each case.

The graph of the relation between two variables, one of which

varies as the square of the other, is always similar to the one here

given.

376. The area of a square is said to vary as the square

of one of its sides, that is, A = s^-

For example, the theorem : The areas of two similar polygons are in

the same ratio as the squares of any two corresponding sides, means that

if a given side of a polygon is made to vary continuously while the

polygon remains similar to itself, the area of the polygon varies con-

tinuously as the square of the side.

377. EXERCISES.

1. From the last graph find approximately the areas of squares

whose sides are 3.4 ; 5.25 ; 6.35.

2. Find approximately from the graph the side of a square whose

area is 28 square units ; 21 square units ; 41.5 square units.

3. Construct a graph showing the relation between the areas and

sides of equilateral triangles.

4. Given a polygon with area A and a side a. Construct a graph

showing the relation between the areas and the sides corresponding

to a in polygons similar to the one given.

5. From the graph constructed in Ex. 3, fi.nd the area of an equi-

lateral triangle whose sides are 4. Also of one whose sides are 6.

Compute these areas and compare results.

6. Construct a graph showing the relation between a side and the

area of a regular hexagon. By means of it find the area of a regular

hexagon whose side? we 6. Compare with the computed area.
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378. Pkoblem. To construct a graph showing the

rcldtion hctwecn the rai^ius and the circumference of a

circle, (ind between the radius and area of a circle, as

the radius varies continumisl/j.

SoLUTi(_)X. Taking ten horizontal spaces to represent

one unit of length of radius, and one vertical space for one

unit of circumference in one graph and one unit of area

in the other, we find the results as shown in the figure.

50

45

-§30

U
3
12S

i
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379. EXERCISES.

1. From the graph find approximately the circumference of a

circle whose radius is 2.7, also of one whose radius is 3.4.

2. Find the radius of a circle whose circumference is 17, also of

one whose circumference is 23.

3. Find the areas of circles whose radii are 1.9, 2.8, 3.6.

4. Find the radii of circles whose areas are 13.5, 25.5, 37, 45.

5. How does the circumference of a circle vary with respect to the

radius?

6. How does the area of a circle vary with respect to the radius ?

7. Find the radius of that circle whose area in square units equals

its circumference in linear units.

DEPENDENCE OP VARIABLES.

380. In the preceding pages we have considered certain

areas or perimeters of polygons as varying through a

series of values. For example, if a rectangle has a fixed

base and varying altitude, then the area also varies de-

pending on the altitudes. The fixed base is called a con-

stant, while the altitude and area are called variables.

The altitude Avhich we think of as varying at our pleas-

ure is called the independent variable, while the area,

being dejDendent upon the altitude, is called the dependent

variable.

381. The dependent variable is sometimes called a func-

tion of the independent variable, meaning that the two

are connected by a definite relation such that for any

definite value of the independent variable, the dependent

variable also has a definite value.

Thus, in A = s'^ (§ 376), A is a function of s, since giving s any

definite value also assigns a definite value to A

.

Similarly, C is a function of r in C = 2 ttt, and ^ is a function of

r m A = Trr^.
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382, EXERCISES.

Justify each of the following statements, remembering that a

variable y varies directly as another variable x ii y = kx, and directly

as the square oi x ii y — kx^, where k is some constant. Find k in each

case.

1. The area of a rectangle with constant base varies directly as

its altitude. Find the value of k.

Suggestion. By § 368, — = — or A =—> . h. Hence A = kh.
Ai Aj A|

In this case k =—^ — b, the constant base. See also § 369.

2. The area of a square varies directly as the square of its side.

Suggestion. Since A = s^ and A, = s.'-, we have ^— =— or

A=^-s^. That is, ,4 = ts^ where /t =^ = 1. See § 370.

3. An angle inscribed in a circle varies directly as the intercepted

arc. Show that in this case A; = |.

4. A central angle in a circle varies as the intercepted arc. Show
that in this case k = 1.

5. In the figure of § 37i, show that DE varies directly as CD if

DE moves, remaining parallel to AB.

6. An angle formed by two chords intersecting within a circle

varies directly as the sum of the two arcs intercepted by the angle

and its vertical angle.

7. An angle formed by two secants intersecting outside a circle

varies directly as the difference of the two intercepted arcs.

8. If a polygon varies so as to remain similar to a fixed polygon,

then its perimeter varies directly as any one of its sides. Show that

p
k = —1, where P, and «, are the perimeter and side of the fixed

«i

jKilyH'im.

9. Ill the preceding', the area of the polygon varies directly as the

square of any one of its sides.

10. The circumference of a eirele varies diivotly as the radius,

and its area varies directly as the square of its radius.
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ai. Plot y = kxiork = 1, -J, 3, 4.

12. Plot y = kx^ for k = 1, i, 3, 4.

Notice that the graphs in Ex. 11 are all straight lines, while those

in Ex. 12 are curves which rise more and more rapidly as the inde-

pendent variable increases. See also § 378.

LIMIT OF A VARIABLE.

383. If a regular polygon (§ 357) is inscribed in a circle

of fixed radius, and if the number of sides of the polygon

be continually increased, for instance by repeatedly

doubling the number, then the apothem, perimeter, and

area are all variables depending upon the number of sides.

That is, each of these is a function of the number of sides.

Now the greater the number of sides the more nearly

does the apothem equal the radius in length. Indeed, it

is evident that the difference between the apothem and

the radius will ultimately become less than any fixed

number, however small. Hence we say that the apothem

approaches the radius as a limit as the number of sides

increases indefinitely.

384. Similarly by § 352 the perimeters of the polygons

considered in the preceding paragraph may be made as

nearly equal to the circumference as we please by making

the number of sides sufficiently great.

Hence we define the circumference of a circle as the

limit of the perimeter of a regular inscribed polygon as

the number of sides increases indefinitely.

It also follows from § 353 that the circumference of a

circle may be defined as the limit of the perimeter of a

circumscribed polygon as the number of sides is increased.

Likewise we may define the area of a circle as the limit

of the area of the inscribed or the circumscribed polygon

as the number of sides increases indefinitely. See § 361.
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385. The notion of a limit may be used to define the

length of a line-segment which is incommensurable with

a given unit segment.

Thus, the diagonal d of a square whose side is unity \s d = y/2.

Hence d may be defined as the limit of the variable line-segment whose

successive lengths are 1, 1.4, l.il, 1.414r---. See §§ iyi, '_'4U.

In like manner, the length of any line-segment, whether

commensurable or incommensurable with the unit seg-

ment, may be defined in terms of a limit.

Thus, if a variable segment is increased by successively adding to it

one half the length previously added, tlien the segment will approach

a limit. If the initial length is 1, then the successive additions are \,

Ji i> A' -3^) 6tc., and the successive lengths are 1, 1\, 1|, 1|, \\l, \\\,

etc. Evidently this segment approaches the limit 2.

Hence 2 may be defined as the limit of the variable segment,

whose successive lengths are 1, IJ, 1|, 1 J, etc., as the number of suc-

cessive additions is increased indefinitely.

386. A useful definition of a tangent to a circle, or to

any other smooth curve, may be given in terms of a limit.

Let a secant cut the curve in a fixed point A and a

variable point B, and let the point B
move along the curve and approach

coincidence with A, thus making the

secant continually vary its direction.

Then tlie tangent is defined to be

the limiting position of the secant as

B approaches A indefinitely.

This definition of a tangent is used in all higher mathematical

work. It includes the definition given in the case of the circle in § 183.

387. Till! funcdonal relation holwofn variables and the

idea of a limit as illustrated above are two of the most im-

portant e(ine(']its in all matliemat ies. The whole subject is

much too ilifiiciilt for rigorous consideration in this course.
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388. EXERCISES.

1. Find the limit of a variable line-segment whose initial length

is 6 inches, and which varies by successive additions each equal to

one half the preceding.

2. Find the limit of a variable line-segment whose initial length

is 1 and whose successive additions are .3, .03, .003, etc.

3. Construct a right triangle whose sides are 1 and 2. By approxi-

mating a square root, find five successive lengths of a segment which
approaches the length of the hypotenuse as ^ limit.

4. If one tangent to a circle is fixed and another is made to m6ve
so that their intersection jioint approaches the circle, what is the

limiting position of the moving tangent? What is the limit of the

measure of the angle formed by the tangents ?

5. The arc AB of 74° is the greater of the two ares intercepted be-

tween two secants meeting at C outside the circle. The points A andB
remain fixed while C moves up to the circle. AVhat is the limit of the

angle formed by the secants ? The limit of the measure of their angle ?

6. If in the preceding the secants meet within the circle, what is

the limit of their angle and also of the measure of this angle ?

7. If in Ex. 5 one secant and the intersection point remain fixed,

while the other secant approaches the limiting position of a tangent

at the point A, find the limit of the measure of the included angle.

8. If in Ex. 6 one secant and the point of intersection remain

fixed while the other secant swings so as to make the included angle

approach a straight angle, find the limit of the measure of the angle.

9. If in Exs. 5 and 6 the moving point crosses the circle, state the

theorem on the measurement of the angle in question so as to apply

equally well whether the point is inside or outside the circle.

10. A fixed segment AB is divided into equal parts, and equilateral

triangles are constructed on each

part as a base, as ABEC, CGD,
DHA. Then each base is divided

into equal parts and equilateral tri-

angles are constructed on these parts

as bases. What is the limit of the

sum of the perimeters of these triangles as the number of them is

increased indefinitely? What is the limit of the sum of their areas?



CHAPTER VII.

REVIEW AND FURTHER APPLICATIONS.

ON DEFINITIONS AND PROOFS.

389. A definition is a statement that a certain word or

phrase is to be used in place of a more complicated

expression.

Thus the word "triangle "is used instead of "thp figure formed

by three segments oonueotiug three non-coUinear points."

In geometry we may distinguish two classes of words:

(a) Technical words representing geometric concepts

such as line, plane, polygon, circle, etc.

(6) Words of ordinary speech not included in the iirst

class.

The meaning of words in the second class is taken for

granted without any definition whatever. It is not

possible to define t'l'ery word of the first class, for every

definition brings in new technical terms which in turn

require definition.

Thus, one of the many definitions of "point" is "that which

separates one part of a line from the adjoining part."

In this definition the technical terms "separate," "line," "adjoin-

ing" are used. If we Iry to di'tine these, still other therms are brought

in which need to be defined, and so on. The only escape is defining

in a circle, which is not permitted in a logical science.

Since it is thus t'\ idont that some terms must be used

willuuit being defined, it is best to state which ones are

left undefined.

220
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390. In this book point, straight line, or simply line,

plane, size and shape of figures are not defined. Nor do

we define the expression, a point is between two other

points, or a point lies on a segment.

Descriptions of some of these terms which do not, how-

ever, constitute definitions in the logical sense are given

in §§ 1-5.

Other technical terms are defined by means of these

simple undefined words with which we start.

Thus, " a segment is that part of a line which lies between two of

its points " is a definition of segment in terms of the three undefined

words, point, line, and between.

391. A geometric proposition consists of an affirmation

that a geometric figure has some property not explicitly

specified in its definition.

A proposition is said to be proved if it is shown to fol-

low from other propositions which are admitted to be

true. Hence every geometric proposition demands for its

proof certain other propositions.

392. It is obvious, therefore, that certain propositions

must be admitted without proof. Such unproved propo-

sitions are called axioms.

In order that a set of axioms for geometry shall be

complete it must be possible to prove tkat every theorem

of geometry follows from them. The set of axioms used

in this text is not complete.

For instance, it is assumed without formal statement that if A, B,

C, are three points on a segment we cannot have at the same time B
between A and C and C between A and B ; that the diagonals of a

convex quadrilateral intersect each other ; that a ray drawn from the

vertex of an angle and included between its sides intersects every

segment determined by two points, one on each side of the angle.

In like manner many other tacit assumptions are made.
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393. In a complete logical treatment every uudefined

term must occur in one or more axioms, since all knowl-

edge of this term in a logical sense comes from the axioms

in which it is found. In this text not every undefined

term occurs in an axiom, for instance, the word between.

The axioms are, of course, based on our apace intuition,

or on our experience with the space in which we live. It

is interesting to notice, however, that the axioms tran-

scend that experience both as to exactness and extent. For

instance, we have had no experience with endless lines,

and hence we cannot know directly from experience

whether or not there are complete lines which have no

point in common. See §§ 89, 96.

394. Proofs are of two kinds, direct and indirect. A
direct proof starts with the hypothesis and leads step by

step to the conclusion.

An indirect proof starts with the hypothesis and with

the assumption tliat the conclusion does not hold, and

shows that this leads to a contradiction with some known
proposition. Or it starts simply with the assumption

that the conclusion does not hold and shows that this

leads to a contradiction with the hypothesis. This kind

of proof is based upon the logical assumption that a

proposition must.either be true or not true. The proof

consists in showing- that if the proposition were not true,

impossible consequences would follow. Hence the only

remaining possibility is that it must be true.

395. Every proposition in geometry refers to some

figure. See § 12. The essential characteristic of a figure

is its description in words and not the drawing that repre-

sents it. I'^ach drawing represents just one figure from

a ehiss of figures lU'lined by the description. Thus we say
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"let ABCB be a convex quadrilateral," and we construct

a particular quadrilateral. We must then take care that

all we say about it applies to any figure whatever so long

as it is a convex quadrilateral. The logic of the proof

must be entirely independent of the appearance of the

constructed figure.

The description of the figure must contain all the con-

ditions given by the hypothesis.

A good way to show that the description of the figure is what really

enters into the proof, is to let one pupil describe the figure in words

and each of the others draw a figure of his own to correspond to that

description. The proof must then be such as to apply to every one of

these figures though there may not be two of them'exactly alike.

396, EXERCISES.

1. Every word in the language is defined in the dictionary. How
is this possible in view of what has been said about the impossibility

of defining every word ?

2. Can we determine experimentally whether or not the space in

which we live satisfies the parallel line axiom (§ 96) ?

3. Can we determine experimentally whether or not there can be

more than one straight line through two given points?

4. Which theorems of Chapter I are found by direct proof and

which by indirect proof ?

5. If two triangles have two angles of the one equal to two angles

of the other, and also any pair of corresponding sides equal, the

triangles are congruent.

6. If two triangles have two sides of the one equal to two sides of

the other, and also any pair of corresponding angles equal, the triangles

are congruent in all cases except one. Discuss the various cases

according as the given equal angles are greater than, equal to, or less

than a right angle, and are, or are not, included between the equal

sides, and thus discover the exceptional case.

7. State a theorem on the congruence of right triangles which is

included in the preceding theorem.
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8. What theorems of Chapter I on parallel lines can be proved

without the parallel line axiom?

9. Wliat theorems of Chajiter I on parallelograms can be proved

without the parallel line axiom ?

10. >\'hat regular figures of the same kind can be used to exactly

cover the plane about a point used as a vertex ?

11. A\'hat combinations of the same or different regular figures can

be used to exactly cover the plane about a point used as a vertex ?

12. Suppose it has been proved that the base angles of an isosceles

triangle are equal but that the converse has not been proved.

On this basis can it be decided whether or not the base angles are

equal by simply measuring the sides ?

Can it be decided on the same basis whether or not the sides are

equal by simply measuring the base angles? Discuss fully.

13. The sum of the three medians of a triangle is less than the sum
of the sides. See Ex. 34, p. 83.

14. The sum of the three altitudes of a triangle is less than the

sum of the sides.

15. A triangle is isosceles (1) if an altitude and an angle-bisector

coincide, (2) if an altitude and a median coincide, (3) if a median

and an angle-bisector coincide.

16. If two sides of a triangle are unequal, the medians upon these

sides are unequal and also the altitudes.

17. An isosceles triangle has two equal altitudes,

two equal medians, and two equal angle-bisectors.

18. ABCD is a square and the points E, F, G, H,

are so taken that AE = AH = CF = CO. Prove

that EFGH is a rectangle of constant perimeter,

whatever the length of AE.

19. Tlie liispctors of the exterior angles of

a parallekijjrara form a rectangle the sum of

the diagonals of which is the same as the

sum of the sides of the parallelogram.

20. I'ldvi' that the perpendicular bisectors

of the sides of ! iinlyumi iiiscrilied in a circle

meet in a jioiiit. Use this tlieorein to show

that the statcnient is true of any triangle.



BEVIEW AND FURTHER APPLICATIONS. 225

21. The bisectors of the exterior angles of any quadrilateral form
a quadrilateral whose- opposite angles are supplementary.

Definition. In a polygon of n sides there

are n angles and hence 2 n parts. Parts a,

Z ^, J, Z B, etc., are said to be consecutive if

a lies on a side oi /.A,h lies on the other

side of Z^, and also on a side of Zb, etc.

22. Is the following proposition true? If in two polygons each

of n sides 2n — 3 consecutive parts of- one are equal respectively to

2 n — 3 consecutive parts of the other, the polygons are congruent.

Suggestion. Try to prove this proposition for » = 3, then for

re = 4, and finally for the general polygon.

23. What theorems on the congruence of triangles are included in

the preceding proposition ?

A proposition may be proved not true by giving one ex-

ample in which it does not hold.

24. Is the following proposition true? If in two polygons each of

n sides 2 n — 3 parts of one are equal respectively to 2 re — 3 correspond-

ing parts of the other, the polygons are congruent provided at least

one of the equal parts is a side.

25. Given three parallel lines, to construct an equilateral triangle

whose vertices shall lie on these lines.

Solution. I^et P be any point on the

middle line Zj. Draw PC and PA, making

an angle of 60° with l^. Through the points

A, P, C construct a circle meeting l^ in B.

Then ABC is the required triangle.

Suggestion for Proof. Compai'e A
BPA and ECA also A BPC and BAC.

26. Show how to modify the construction of the preceding example

so as to make ABC similar to any given triangle.

27. If tangents are drawn to a circle at the extremities of a

diameter and if another line tangent to the circle at P meets these

two tangents in ^ and -B respectively, show that AP PB = r^,

where r is the radius of the circle.
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LOCI CONSIDERATIONS.

397. Two methods are available to show that a certain

geometric figure is the locus of points satisfying a given

condition.

First method :

Prove (a) Every point satisfying the condition lies on Ihefgure.

(h) ]'^ eery point on the figure satisfies the condition.

Second method

:

Prove (a') every point not on the figure fails to saiisfy the condition.

(b') Every point on the figure satisfies the condition.

The first of the methods is more direct and usuall}' more

simple. See § 127.

The second is likely to lead to proofs that are not

general.

PROBLEMS AND APPLICATIOHS.

1. AB is n fixed segment connecting two parallel lines and per-

pendicular to each of them. Find the locus of the ^
vertices of all isoscclr.s triaiiffles whose common
base is AB. Is the middle point of AB a part of --^^

—

this locus V -

_:6._c

A

A
2. If in Ex. 1 AB is allowed to move always

remaining perpendicular to the given lines, and if .4BC is ony tri-

angle remaining fixed in shape, find the locus of the
,

point C. -T-t
—- —

3. Find the locus of the centers of all parallelo-

grams which have the same base and equal altitudes.

4. Find the locus of the centers of parallelograms

obtained by cutting two parallel lines by parallel seeant line<.

5. Find the locus of the vertices of all triangles which have the

same l)as(' and equal areas.

6. Find thi' locus of a point whose distances from two intersect-

ing lines are in a fixed ratio.

Note tliat the whole figure is symmetrical with respect to the

bi.seelur of each pair of veilieal angles formed liy the two given lines.
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7. Find the locus of a point such that the difference of the

squares of its distances from two fixed points is a constant.

Note that the locus must be symmetrical with
respect to the perpendicular bisector of the segment
connecting the two given points A and B.

Show that in the figure AP - PB = AC - CB . A'^ -^^B
8. The lines l^ and l^ meet at right angles in a

point A, O is any fixed point on Zj. Through O draw a line meet-

ing /j in B. P is a varying point on this
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12. The iigure ABCD is a square. A E = BF = CG = DH, and

Ey, Fz, Gw, Hx are so drawn that z:l = Z2 = Z3 = Z4.

(a) Find AEi/F, Fz<J, etc. jD g c

Suggestion. Through B draw a line parallel to

Fz and make use of the A thus formed.

(A) Prove EBFy ^ i^CGz = GBHw S 7/yIiix.

(c) What kind of figure is xyzwf Prove.

See the accompanying design.

13. In a square ABCD diagonals and diameters

are drawn as shown in the figure. (A line connect-

ing the middle points of opposite sides of a quadri-

lateral is a diameter.) The points K, L, jY are laid

off so that .1/.V= MK = ML. The small triangles
Parquet Pattern,

on the other sides are constructed congruent to KLN. Through the

vertices of the triangles lines EF, FG, etc., are drawn parallel to the

sides of the given square.

Tile Pattern.

Prove that (a) AKNE, LBFN, etc., are congruent parallelograms

and hence that EF, FG, etc., meet in points on the diagonals. (See

Ex. 6, § 12.3.)

(J) Al'.FE^BCGF.
{() EFGJI is a square.

((/) A'.V and QP lie on the same straii;lit

line,

14. 'Pile figure \B(^I> i.s a square. J'Q

and A'.s' an' iliaiiu'lirs. The jioints /,'. /', C.

IT, ••. are so taUen that A E ~ BF - l:(7

= lie = .... Also O.V = OK = 0L= 0.\L
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FURTHER DATA CONCERNING CIRCLES.

398. In Chapter II numerous theorems were proved

concerning the equality of arcs, angles, chords, etc.

The three following theorems involve inequalities of

these elements. The student should construct figures in

each case and give the proof in full.

399. Theorem. Li the same circle or in equal circles,

of two unequal angles at the center the greater is sub-

tended by the greater arc ; and of two unequal arcs the

greater subtends the greater angle at the center.

The proof is made by superposition.

400. Theorem. In the same circle or in equal circles,

of two unequal minor arcs the greater is subtended by

the greater chord; and of ttoo unequal chords the

greater subtends the greater minor arc.

The proof depends upon the theorem of § 117.

401. THEOREjr. In the same circle or in equal circles,

of tioo unequal angles at the center, both less than

straight angles, the greater is subtended by the greater

chord; and of two unequal chords the greater subtends

the greater angle at the center.

402. Problem. On a

given line-segment as a

chord to construct an arc

of a circle in ivhich a

ginen angle may be in-

scribed.
\C

Construction. Let K be the given angle and AB the given
segment.
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It is required to construct a circle in which AB shall be
a chord and such that an angle inscribed in the arc AMB
shall be equal to the given angle K.

At A construct an angle BAG equal to Z K.

If now a circle were passed through A and B so as to

be tangent to ^c at A, then one half the arc AB would
be the measure of the angle BAG. See § 219.

Then any angle inscribed in the arc AMB as Z.APB
would be equal to Zbag=Zk.
Hence the problem is to find the center of a circle tan-

gent to AG at A and passing through A and B.

Let the student complete the construction and proof.

403. EXERCISES.

1. Prove that the problem of § 402 may be solved as follows:

With A, any point on one side of the angle K, as center and AB as

radius strike an arc meeting the other side of the angle at B. Cir-

cumscribe a circle about the triangle ABK.
2. Show that from any point within or outside a circle two equal

line-segments can be drawn to meet the. circle and that these make
equal angles with the line joining the given point to the center.

3. Show that if two opposite angles of any quadrilateral are sup-

plementary, it can be inscribed in a circle.

Suggestion. Let ABCD be the quadri- p
lateral in which /LA +ZC = 2 rt. d. y—JPxX

Pass a circle through B, C, and D. To prove / /ji ^s^ri
that A lies also on the circle, and not at some / /7/ \

inside or outside point as A' or A".
V?- '/ '^l' 1/

(1) Show that Z .4
' > Z .1 and /.A" </.A. je/X^^-^f^y^

See §§ 217, 222. j^^^^U^:^
(2) Hence AA'-VAC>1xt.A if A' is

/.-'''-^

within the circle and Z .4 " -)- Z C< 2 rt. ^ if ^ "
A''

is outside the circle, both of which are contrary to the hypothesis.

Hence the fourth vertex must lie on the circle.

Show that the condition that the polygon is convex follows from

the hypothesis.
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404. Problem. 2o draw a common tangent to two

circles which lie wholly outside of each other.

Construction. Let the given circles be and C of which

the radius of the first is the greater.

Required to draw a tangent common to both circles.

Draw an auxiliaiy circle with center o and radius

equal to the difference of the two given radii in one figure

and equal to the sum of these radii in the other figure.

In each case draw a tangent to this auxiliary circle

from o', thus fixing the point D. See § 230.

Draw the radius OB, thus fixing the point P.

Draw o'p' II DP, thus fixing the point P'.

Then PP' is the required tangent.

Proof: Show that, in each case, PP'o'd is a rectangle,

thus making PP' perpendicular to the radii OP and o'p',

that is, tangent to eacli circle.

Definition. A common tangent to two circles is called

direct if it does not cross the segment connecting the

centers, and transverse if it does cross it.

405. EXERCISES.

1. Describe the relative positions of two circles if they have tvco

direct common tangents. Also if they have only one.

2. Describe the positions of two circles if they have two transverse

common tangents ; one ; none.



BEVIEW AND FURTHER APPLICATIONS. 233

PROBLEMS AND APPLICATIONS.

1. Find the locus of the middle points of all chords of a circle

drawn through a fixed point within it. _

2. The sides AD and BC of the square ABCD
are each divided into four equal parts and a circle

inscribed in the square. Lines are drawn as shown
in the figure. Show that EFGHKL is a regular

hexagon.

This is the construction by means of ^

which a regular hexagonal tile is cut from a square tile.

3. In the preceding example what fraction of the area of the square

is covered by the hexagon.

4. A circle of constant radius passes

through a fixed point A. A line tangent to

it at the point P remains parallel to a fixed

line BD. Find the locus of P.

Suggestion. In the figure prove ./ICPC
a parallelogram. Show that the locus consists

of two circles.

5. The same as the preceding except that

the circle of constant radius remains tangent

to a fixed circle instead of passing through a

fixed point.

Suggestion. On that diameter of the fixed

circle which is perpendicular to the fixed line

lay onAC = C'P. Prove A C'PC a parallelo-

gram. Show that the locus consists of two

circles.

6. In the square ABCD, AM = OB -. BU = VC, etc. The point

E is the intei'section of the segments MV and TU, F is the inter-

section of OR and TU, G is the intersection of OW
and US, etc. "When these segments are partially

erased, we have the figure.

(a) Prove that TMEN, OUGF, etc., are squares.

(J) What kind of a figure is MOFE ? Prove,

(c) How many axes of symmetry has the figure

NEFGH ••. ? Has it a center of symmetry?

w a
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-E F \/HK

7. ABCD is a square the mid-points of whose sides are joined.

On its diagonals points E, K, P, T are taken so that AE = BK = CP
= DT. The construction is then completed as

shown in the figure. (F6' and MN lie in the same

straight line.)

(a) Prove that E, K, P, T are the vertices of a

square.

(J) If AB = 6 find AE so that the area of the

square EKPT shall be half that of the square

ABCD.
(c) If AB = 6, and if CP = PS, find the area

of the figure EFGHKI.M . Also find the area

of the trapezoid BKLR.
(d) If CP = I CS, find the area of the inside

figure and also of BKLR.

(e) What fraction of CS must CP be in order

that the inside figure shall be half the square ?

(/) If the inside figure is J of the square and if AB = 8 inches,

find CP.

8. In the figure ABCD is a square. Each

of its sides is divided into three equal parts

by the points E, F, G, H, . The points E,

X, Y, H; F, A', W, M; etc., lie in straight lines.

(a) If AB = 6 inches, find the area of that

part of the figure which lies outside the shaded

band.

( h) If AB = 6 inches, and if the width of

the shaded band is } inch, find the area of the

band.

(c) If ,1 /} = S inches and XP = ' inch, find

the area of that part of the figure which lies

inside the band.

(d) If ,l/; = 8 inches, what must be the

width cif the liaiul in order that it shall oeenpy

10% of I lie area cil' the whole design?

(c) If A I! = a inches find the width of the baud if it occupies ti

|ici- cent ol' the area of the whole ilesien.

"^

J 1_ Si^.

^"^

Parquet Flooring.
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9. By means of the accompanying figure

find the area of a regular dodecagon whose sides

are 6 inches. Notice that the dodecagon con-

sists of the regular hexagon in the center, the six

equilateral triangles, and the six squares.

Note how this figure enters into the accom-

panying tile design.

10. Find an expression for the area of a regu-

lar dodecagon whose sides are a.

11. Find the apothera of a regular dodecagon

by dividing its area by half the perimeter. Also

find it by finding the apothem of the hexagon

and then adding a to this. Compare results.

12. Find the radius of a circle circumscribed

dodecagon whose side is a.

13. If the accompanying design for par-

quet border is 10 inches wide, find the

width of the strips from which the small

squares are made. Also find this result if

the width of the border is a.

14. In the figure of the preceding

example find the dimensions of the small

triangles along the two edges if the width

of the border is a inches.

15. Show that the figure given below may
be used as the basis for the design shown

beside it. (See Ex. 7, p. 147.)

16. If an outside of each of the two

squares shown in the figure is 6 inches, find

the width of the strips of which they are

made in order that each shall fit closely

into the corner of the other?

Suggestion. Find the altitude on

EM in A UEM above if 45 = 6

inches.

This is a common Arabic

ornament.

about a regular
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17. In the figure ABCfJ is a square. On
each side a triangle, two of whose side.s are

parallel to the diagonals of the square, is so

constructed that the points E, F, and G lie in

the same straight line.

(a) Prove that the triangles are right isos-

celes triangles.

(6) What part of the square lies within

the triangles ?

(c) If AB = a, find AE so that the tri-

angles shall occupy — of the area of the square,
n

See the accompanying tile pattern.

18. ABCD is a square and the small fig-

ures in the corners are squares.

(a) Show that if the lines intersect as

shown in the figure A E must be J of A B.

(6) \i AB = % inches find the areas of the

squares A'B'C'D' and XYZW.

19. In the tile design show that the figure

within the square is the same as that of Ex.

18. What part of the large square is occupied

by each shaded part ?

20. ABCD is a square. AE = FB =
BK = LC= rp = QD=DR = .S.l.

(a) li AB = n and ii AE = b, find the sum
of the areas of the four shaded rectangles.

(h) If .IS = 8 inches, find ,12? so that the

sum of these rectangles shall be ^ of the whole

square. Interpret the two solutions.

(c) If AB = a inches, find AE so that the

sum of tlie rectangles shall be - of the square.
n

21. ((j) Show that in the accompanying de-

sign for tile llooriiig the sizo of any ono piece

ilrtfrmines the size of every piece in (lie figure.

(/;) What fraction of the figure is occupied by

eacli colurV

m. M

D
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22. This tile floor design is

based on the plane figure and

this in turn is based on the

figure of Ex. 17 where

AB
6

What part of the whole design

AE = -
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THE INCOMMENSURABLE CASES.

406. We have seen, in § 2o4, that there are segments

which are incommensurable ; that is, which have no com-

mon unit of measure,— for instance, the side and the

diagonal of a square.

For practical purposes the lengths of such segments are

approximated to any desired degree of accuracy, and their

ratios are understood to be the ratios of these approximate

numerical measures. See §§ 23b-240.

All theorems involving the ratios of incommensurable

segments, and the lengths and areas of circles, have thus

far been proved only for such approximations, and these

are quite sufficient for any refinements of measurement

which it is possible to make.

But for theoretical purposes it is important to consider

these incommensurable cases further, just as in algebra we
not only approximate such roots as Vi. V3, V5, etc., but

we also deal with these surds as exact numbers.

For instance, in such an operation as

(VS + V2)( V3 - V;j)= 3 - '2 = 1.

While the length of the diagonal of a unit square cannot

be expressed as an integer or as a rational fraction, that is,

the quotient of two integers, we nevertheless think of such

a segment as having a di-Jinite length, or what is the same

thing, a definite ratio with the unit segment forming the

side of the sqnare.

E.g. If d is the diagonal of the square whose side is 1, then

(/2 = 1 + 1 or (/ = V2. Xow suppose %'2 = ", a fraction in it,s lowest

fcrms. Then 2=—, a fraction also in its lowest terms. But a

fiacttion in its lowest terms cannot be equal to 2. Hence \ 2 is

ueitliei- an inteyfr nor the quotient of two integers.
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407. The following axiom and that of § 409 ure funda-

mental in the consideration of incommensurable line-seg-

ments.

Axiom X. Every line-segment ab has a definite length,

which is greater than ac if a lies between A and B.

The length of a line-segment is in every case a number,

which is rational (an integer or the quotient of two inte-

gers) in case the segment is commensurable with the unit

segment, but which otherwise is irrational. Under the

operations of arithmetic these irrational numbers obey the

same laws as the rational numbers.

The length of a line-segment is often called its numeri-

cal measure.

408. The exact ratio, or simply the ratio, of two line-

segments is the quotient of their numerical measures,

whether these are rational or irrational. That is, every

such ratio is a number.

It is obvious that a segment may be constructed whose

length is any given rational number. We have- also seen

how to construct with ruler and compasses segments whose

lengths are certain irrational numbers, such as V2, V3,

V5, etc. See Ex. 3, § 295.

409. We now assume the following

Axiom XI. For any giveii number K there exists a

line segment whose length is K.

This does not imply that it is possible by means of the

ruler and compasses to construct a segment whose length is

any given irrational number. For instance, we cannot

thus construct a segment whose length is V2.

We now prove the fundamental theorem on the propor-

tionality of sides of triangles.
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410. Theorem. A line parallel to the base of a tri-

angle, and meeting the other two sides, divides these ^i/les

propiirtionalhj.
G

Given A ABC with DE 1 1 AB- /\

rr CD CE / VTo prove — =— v/ \g
CA cB jy-—

Y

Proof : Whether cd and CA are / ^
commensurable or not, we know Ijy

SS 407, 408 that— and— are definite numbers. We prove
^'' CA CB

that these numbers cannot be different.

p. , CD ^ CE
h irst, suppose — <

CA CB
CTi f^W

Take F between c and E so that — = •— Ax. XI (1)
CA CB

Divide CB into equal parts, each less than EF. Then
at least one of the division points, as G, lies between

E and F. Draw GH II AB.

Since CG and CB are commensurable, we have, by § 243,

CH^CG o^

CA Cb'

Dividing- (1) by (2"), we have — = -—-. But this can-
en CG

not be true, since CD > rfl" and CF < CG.

—
• cannot be less tlian —-

CA CB

Secondlv, prnve in the same manner that — cannot be
" CE .

'^•'

greater tliau — ^. Hence, since the one is neither less than

nor i^n-ealer than tlie otlier, tliese ratios must be equal.

Tlio following treatment of im-ommensurable ares and

angles is exaelly similar to the above.

Hence —• cannot be less than —-. Whv ?
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411. Axiom XII. Any given arc ab has a definite

ratio ivith a unit arc, which is greater than that of an
arc AC, if c lies on the arc ab.

412. Axiom XIII. A7iy given angle abc has a defi-

nite ratio ivith a unit angle, which is greater than

that of ABD if BD lies within the angle abc

413. Theorem. In the same or equal circles the

ratio of two central angles is the same as the ratio of
their intercepted arcs.

E

Outline of Proof : We show that in the figure j—
arc AB "^

can neither be less than nor greater than .

arc CD
Z AOB arc AB

Suppose ;— < .

Z CO'd arc CD

1 hen take ^ so that p- = . (1)
Z CO'd arc CD

Divide arc CD into equal parts each less than arc EB.

Lay off this unit arc successively on AB reaching a point

F between E and B. Then arcs AF and CD are commen-

surable and by a proof exactly similar to that of § 243,

making use of § 199, we can show that

Zy40-F __ arc AF ^n-^

/.CO'd arc CD'

Complete the proof as in § 410.
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414. Axiom XIV. Any given rectangle with base b

and altitude a has a definite area which is greater than

that of another rectangle luith base V and altitude a'

if a>a' and b>b' or if a> a' and b > V.

415, Theorem. The area of a rectangle is the j^/'od-

uct of its base and altitude.

A. B

Proof : Denote the base and altitude by b and a, respec-

tively, and the area by A.

Suppose A < ab, and let a' be a number such that A = a'b.

Lay off BE= a'.

Consider first the case where b is commensurable with

the unit segment and a is not.

Divide the unit suyment into equal parts each less than

CE and lay off one of these parts successively on BC reach-

ing a point F between E and ('.

Denote the length of BF by a", and draw FF' II AB.

Tlien by § 307 the area of ABFF' i.s a"b.

By hypothesis A = a'b, but a'b < a"b since a' < a"

.

Hence A < <('7). (1)

But by Ax. XIV ,1 > a"b. (2^

Hence the assumption that A <ab cannot hold.

In tlic same maiiiior pi'o\c' (liat tlie .l>rt^ cannot hold.

Tli(^ prodf in cast! both sides are inoomnu'nsurable with

tlu^ unit se,t,nnont is now oxarlly like the above and is left

to the student.
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416. Axiom XV. A circle has a definite length and
incloses a definite area which are greater than those of
any inscribed polygon and less than those of any cir-

cumscribed polygon.

417. Theoeeji. For a given circle and for any
number K, hoivever small, it is possible to inscribe and
to circumscribe similar polygons such

that their perimeters or their areas

shall differ by less than K.

Proof : First, Let p and p' be the

perimeters of two similar polygons, the

first circumscribed and the second in-

scribed, and let a and a' be their apothems.

Then P=^, py P-P'
p' a' p' a'

Hence p -p' =pi .'LZ^.

§245

Now a— a' can be taken as small as we like.

Hence p • —j-~ can be made as small as we please; that

is, p —p' can be made smaller than any given number K.

Second, letting P and p' be the areas of the circum-

scribed and inscribed polygons respectively, we have
P a2— = —^, and the proof proceeds exactly as before.

418. Since the length c of the circle is greater than p'

and less than p, it follows that C is thus made to differ

from either p or p' by less than K.

And since the area A of the circle is greater than p'

and less than P, it follows that A is made to differ from

either P or p' by less than K.
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419. Theorem. The lengths of two circles are in the

same ratio as their radii.

Proof: Let c and t/ be the lengths of two circles whose

centers are O and & and whose radii are r and r'.

C TWe shall prove that — = — by showing that— is neither

less than nor greater than —

.

r

First, suppose that —< — or c<(^ —:.
i: r r

T
And let c differ from c' • -r by some number K.

r' '

Now circumscribe a regular polygon P about O O with

perimeter^ such 'that

p<c'-^. (1)

This is possible since p can be made to differ from c by

less than K (§ 418).

Also circumscribe a polygon P' similar to P about O o'

with perimeter p'.

Then -^ = -7, or » = »'--7.
p' r Jr Jr jj

?*'

But jo' >c' and hence ^>c' •—. (2)

C T
Hence the supposition that -7 < — leads to the contra-

diction expressed in (1) and (2) and is untenable.

Now prove in same way that -y> — is untenable.

420. Theorem. The arco^ of tiro cirrh s are in the

savic mill) ax the squares of their radii.

I'sing §§ :ltS and 418, the proof is exactly similar to

that (if the jireceding tlieiuein.
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PROBLEMS AND APPLICATIONS.

1. A billiard ball is placed at a point P on a billiard table. In
what direction must it be shot in order to return to the same point

after hitting all four sides ?

(The angle at which the ball is reflected from a

side is equal to the angle at which it meets the side,

that is, Zl = /.-I, and Z3 = Z4.)

Suggestion, (a) Show that the opposite sides of the quadrilateral

aloug which the ball travels are parallel.

Qi) If the ball is started parallel to a diagonal of the table, show
that it will return to the starting point.

2. Show that in the preceding problem the length of the path

traveled by the ball is equal to the sum of the diagonals of the table.

3. Find the direction in which a billiard ball must be shot from

a given point on the table so as to

strike another ball at a given point

after first striking one side of the

table.

Suggestion. ConstructBS _L to

that side of the table which the ball

is to strike and make ED — BE.

4. The same as the preceding problem except that the cue ball is

to strike two sides of the table before striking the other ball.

Suggestion. B'E' = E'D', D'H = HF.

5. Solve Ex. 4, if the cue ball is to strike three sides before strik-

ing the other ball,— also if it is to strike all four sides.

6. In the figure ABCDEF is a regular hexagon.

Prove that: (a) AD, BE, and CF meet in a point.

(6) ABCO i&a. rhombus,

(c) The inner circle with center at and the

arcs with centers &\, A,B, C, etc., have equal radii.

(rf) The straight line connecting A and C is

tangent to the inner circle and to the arc with

center at B.

(e) The centers of two of the small circles lie

on the line connecting A and C.

r-^F

E.^

i'---—-'B

(y) Find by construction the centers of the small circles.
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7. In the figure EG and FH are diameters of the square ABCD.
On the diagonals, points K, U, V, W
are laid off so that AK = BU= CV
= DW. Also LM = NP = RS = etc.

EN and SF are in the same straight

line, and so on around the figure.

Prove that

:

((() A' t/TI-F is a square.

(6) AKME and ENUB are equal

trapezoids.

(c) L, O, 2' lie in a straight line.

(rf) The four heavy six-sided figures

are congruent.

D



BEVIEW AND FURTHER APPLICATIONS. 247

12. In the parquet floor design given with Ex. 10, the darker parts

are parallelograms constructed as under Ex. 11. What part of the

area is of white wood ?

13. In the figure ABCD and A'B'C'D' are equal squares, placed as

shown. Lines are drawn through A', B', C, and D' parallel to AB,
BC, CD, and DA, forming a quadrilateral EFGH.

(a) Prove EFGH a

square.

(b) What part of

the large square is

inclosed by the out-

side heavy figure?

(e) If AB = a, find

the area of the inside

heavy figure.
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18. A', B', C, are the middle points of the sides of the equilateral

triangle ABC. The sides of the triangle A'B'C are trisected and

segments drawn as shown in the figure.

From C'luireb of Or San iiiehele.

If AB = a.

(a) Pi-ove A 'B"C" an equilateral triangle.

(6) Find the area of A"B"C" and of the dotted hexagon,

(c) Find the area of the triangle GFC and of the trapezoid

DEB"A".

A P From Westminster Abbey.

19. In the figure ARC is an equilateral triangle. On the equal

bases P.\f, MD, DE equilateral arches are constructed, two of them

tangent to thi» sides qf the triangle at L and ,V respectively. Circles

0' and 0" an' eacli tanj;ent to a side of the triangle and to two of

the arches. Circle is tangent to circles (>' and 0" and to both

sides of the triannle.

(a) \i AB = II, find /)/•:.

.SiKjGESTioN. In I he right triangle DEL one acut«> angle is 60''.
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(b) Find the ratio r:r',r being the base DE of the arch and H the
radius of the circle 0'.

Suggestion. GD = 2 DL, GO' = 2 r', and O'D = V(r+r'y-r^=
y/2 n-i + r'K

(e) By what fraction of a will the circles 0' and 0" fail to touch
each other?

20. In the figure CD ^ DA = AG = GB, and DE = EA = AF=
FG. Semicircles are constructed on the diameters CB, CG, CD, DG,
DB, GB. HG = KD = CE. Arcs GL and DM have centers H and
K respectively.

^ fi S—p—i

—

^—

i

' Jr From Church of Or SanK L D E A F C B H Michele.

Circles are constructed tangent to the various arcs as shown in the

figure. Thus O 0" is tangent to semicircles on the diameters CB, CG,
and DB. O 0' is tangent to the semicircles on the diameters CG and
DB and to the arc DM. Let CB = a.

(a) Find the areas of each of the six semicircles.

(6) Find the radius r".

SuGGESTiox. EA, EP and AN are known.

(c) Find the radius r'.

Suggestion. Enumerate the known parts In A EDO' and FDO'.

(rf) Find r and r^n

(e) Having determined the radii of the various circles, show how
to construct the whole figure.

(/) What fraction of the area of the whole figure is occupied by

the six circles ?

21. Prove that two segments drawn from vertices of a triangle to

points on the opposite sides cannot bisect each other.
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FURTHER APPLICATIONS OF PROPORTION.

421. Definition. A segment is said to be divided in

extreme and mean ratio by a point on it, provided the ratio

of the whole segment to the larger part ^ OB
equals the ratio of the larger part to

the smaller.

E.g. the segment AB is divided in extreme and mean ratio by the

point C 11 = ——

.

^ A a CB

422. Problem. To divide a given line-segment in

extreine and iiwan ratio.

Solution. At one extremity B ^--^

erect BO\.AB and make BO = \ ^ ,--''
;

•^ 71-'

AB. Draw OA. ,'-'
I

On OA take OB = OB and with ,--''
I

^ as a center and AB as a radius a c B

draw the arc DC. Then C is the required point of division.

Proof : Let a be the length of AB. Then OB = -

.

Hence ao^ = Jff' + ^2 = a2 + £ = 2 ^2, or ^0 = ^ ^ 57

Then AC = AD = Ao - BO = -^ V5 - ^ =0 (^ ^' - l)'

and BC = AB — AG = a —
'l^

TVo — 1
j
= -^ Ts — ^ ^j.

I R \0
Substituting these values in

'— and
'— , and simplifying,

'^ AC CB ^ ' °

WO have _
V5 - 1 3 - % ,V

By rutidiializing donominators these fractions are shown

to be equal, and licme — = -—
AC CB
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423, Problem. To construct with ruler and com'

passes angles of 36° and 72°.

Solution. On a given segment AB, determine a point

such that^ = :^. (See 5 422.)
AC RC -^

Using BB = AC zs a base and AB as one leg, construct

the isosceles triangle ABB.
Then Zl = 72° and Z4 = 36°.

Proof : Draw BG.

Then A ABB ~ A BBC, (§ 259)

AB BD J / 1 .

since — =— andZ 1 is common. _
BB BG A C

Hence A ABB and BBC are both isosceles (Why ?),

and Z 1 = Z 2, Z 3 = Z 4.

Also Z2 = Z3 + Z4 = 2Z4=Z1. (Why?)

Thus in A ABB each base angle is double Z4,

making Z4 = | of 2 rt. Z = 36°, (Why?)

and Z 1 = 2 Z 4 = 72°.

424, EXERCISES.

1. Inscribe a regular decagon in a circle.
/^ ^V^

Suggestion. Construct the central angle
j n'-^ i-^

A OB = 36°, thus determining the sjde AB of the V J
decagon. N^ y'

2. Inscribe a regular pentagon in a circle.

Suggestion. Join alternate vertices of a decagon, or construct a

central angle equal to 72°-

3. Inscribe a regular polygon of fifteen sides in a circle.

Suggestion. Since } — jV = -h> i* follows that the arc subtended

by one side of a hexagon minus that subtended by one side of a deca-

gon is the one which subtends one side of a polygon of fifteen sides.
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4. The radius of an inscribed regular polygon is a mean propor-

tional between its apothem and the radius of a similar circumscribed

polygon.

5. A circular pond is surrounded by a gravel walk, such that the

area of the walk is equal to the area of the pond. What is the ratio

of the radius of the pond to the width of the walk?

6. If a, b, c are three line-segments such as - = - show that - equalshe c

the ratio of the area of any triangle described on a as a base to the

similar triangle described on J as a base.

425. Definitions. A line-segment AB is said to be

divided internally in a given ratio — by a point G lying on

the segment, if— = — • See § 252.

A line-segment is said to be divided externally in a

given ratio - by a point c' lying c b r"

ACf T
"""^""^

on AB produced, if = -•

C'b 8

A line-segment AB is said to be divided harmonically if

the points O and c', lying respectively on AB and on AB
A r* A r^'

produced, are such that — =
CB c'b

426. EXERCISES.

1. Show that if AB is divided harmonically by C and C, then

CC is divided harmonically by A and B.

2. Show that the base of any triangle is cut harmonically by the

bisectors of the internal and external vertex angles.

3. Show how to divide a line-segment externally in extreme and

mean ratio, that is, in the figure below, so that ^^-^ = -^-i .

C'A C'B
Suggestion. In the figure of § 422 produee BA to a ix>int C

such that C'A = vl -(- OU. ..

Then use the method there A B

used, to show that -'— and —^ each reduces to ^-^J-
C. 1 CB 2
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427. Theorem. If an angle of one triangle is equal

to an angle of another, their areas are in the same ratio

as the products of the sides including the equal angles.

A B A' B' A
Given A ABC and A'^C in which /:LA=AA'.

To prove that ^^^^ ^^'^^

Proof

:

Then

Hence,

aa'b'g' a'b'-a'c'

Place aa'b'g' so that Z.A' coincides with Z.A.

AABC=^h-AB and AA'B'c' = ^h''A'B'.

AABC _ Ih AB _ h AB

Now show that

aa'b'g'

h

ih'-

AC
a'b' h' a'b'

h' A'G'

and hence that
AABC __ AC ^ AB _ AB- AC
aa'b'g' ~ a' c' a'b'~~ a'b' -a'c''

428. Theokem. The square on the bisector of an

angle of a triangle is equal to the

product of the tioo adjacent sides

minus the product of the segments of

the opposite side.

Outline of proof: Produce the bisec-

tor of the given angle to meet the cir-

cumscribed circle.

Since Abdc~Aaeg AC • bc= gd • GE. (1)

But GD- CE= CDQOB + BE') = CD^ + CD • DE (2)

and CD-I)E= AD-DB. (Why?) (3)

Using (1), (2), and (3), complete the proof.
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429. THEOitEjr. The product of tivo sides of a tri-

angle is equal to the product of the altitude from the

vertex in luhich these sides meet and the diameter of the

circmnscrihed circle.

Outline of Proof : Using the figure,

show from the similar triangles ACD
and EBC that

AC-BC= CE- CD.

430, EXERCISES.

1. The areas of two parallelograms having aa angle of the one

equal to an angle of the other are in the same ratio as the product of

the sides including the equal angles.

2. Three semicircles of equal diameter

are arranged as shown in the figure.

(a) li AD = a, find the area bounded

by the arcs AB, BEC, and CA.

(h) If the area just found is 2 square

feet, find.lZ).

3. Prove that the bisectors of the angles of any

quadrilateral form a quadrilateral whose opposite

angles are supiilementary.

SuddESTioN. Show that Z3 + Zi + Z5 + ^Q
= 2 rt. A, and hence that Z 1 + Z 2 = 2 rt. ^.

4. On each of two sides of a given triangle ABC as chords con-

struct arcs in which an angle of 120° may be inscribed. If these arcs

meet in a point inside the triangle, show that the three sides of the

triangle subtend the same angle from the point 0.

5. If Z 1 + Z 2 + Z :? = t rt. A, sliow liow to find a point within

a given triangle AIW so that ZAOB = Zl, ZBOC = Z-2, and
ZCOA = z:i.
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6. Given any two segments AB and CD and any two angles a and

6, find a point suoli that ZAOB — Aa and Z COD = Ah. Discuss

the various possible cases and the number of points in each case.

7. If Z A OB is a central angle of a circle and if ZCDE is inscribed

in an arc of the same circle and if Z 4 OB = Z CDE -.

the chords AB and CE are equal.

431. Definition. A set of lines which

all pass through a common point is called

a pencil of lines, and the point is called

the center of the pencil.

4 rt. A, then

432. EXERCISES.

CA
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433. Theorem. If corresponding vertices of tioo

polygons lie on the same lines of a pencil and if they

cut off proportional dis-

tances on these lines from
the center, then the poly-

gons are similar.

Prove the theorem first for

triangles.

OB OC OA J OA OB OC
Given. —: =—7 =—7 and —

-

ni3' r\n' n a' n a'

i

OA' OA" OB" OC"

To prove that A ABC, A'b'c', a"b"c" are similar.

Prove the theorem for polygons of any number of

sides.

434. Definition. Any two figures are said to have a

center of similitude O, if for any two points P^ and P^ the

lines P^O and P^O meet the other figure in points P'j and

p'o such that

p\o P'^O

Then P\ and P'j are said to correspond to the points

Pj and Pj.

Thus in the figure of § 433 o is called the center of

similitude of the two polygons.

Any two figures which have a center of similitude are

similar.

This affords a ready means of constructing a figure

similar to a given figure and having some other required

property that is sufficient to determine it.

Definition. The ratio of any two corresponding sides of

similar polygons is called their ratio of similitude.
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435. EXERCISES.

1. Construct a polygon similar to a given polygon such that they

shall have a given ratio of similitude.

Suggestion. Let ABCDEF be the given polygon and — the
n

given ratio of similitude. Select any convenient point O, such that

OA = m. Draw lines OA, OB, etc. On OA lay off OA', n units.

Lay oS points B', C, etc., so that

OA ^ OB ^ PC ^ OP ^ OE ^ OF
OA' OB' OC OD' OB' OP'

Prove that A'B'C'D'E'F' is the required polygon.

2. Show how the preceding may be used to enlarge or reduce a

map to any required size.

Suggestion. Arrange apparatus as under Ex. 4, §432.

3. In the figure ABCD is a parallelogram whose sides are of con-

stant length. The point A is fixed, while

the remainder of the figure is free to move.

Show that the points P and P' trace out

similar figures and that their ratio of simili-

tude is •

AD+ CP
This shows the essential parts of an in-

strument called the pantograph, which is much used by engravers to

transfer figures and to increase or decrease their size. The point P
is made to trace out the figure which is to be copied. Hence P' traces

a figure similar to it. The scale or ratio of similitude is regulated by

adjusting the length of CP.

4. Construct a triangle having given two angles and the median a

from one specified angle.

Solution. Construct any triangle ABC having the required

angles and construct a median AD. Prolong DA to D', making

AD' =a. Extend BA and CA and through D' draw B'C'WBC,
making A AB'C. Prove that this is the required

triangle. (Notice that^ is the center of similitude.) y\
5. Liscribe a square in a given triangle using

the figure given here. Compare this method with

that given on page 147.
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6. Construct a circle through a given point tangent to two given-

straight lines.

Solution. Let a and h be the given lines and P the given point.

Construct any circle tangent to a and

0. Draw AP meeting the circle O in

C and D. Draw CO and OD and

through P draw lines parallel to these

meeting the bisector of the angle

formed by a and b in O' and 0". Prove

that and 0" are centers of the re-

quired circles. Observe that A is a

center of similitude.

This method is used to construct a railway curve through a fixed

point connecting two straight stretches of road.

7. On a line find a point which is equidistant from a given point

and a given line.

The following is another instance of the use of this very important

device in constructing figures that resist other methods of attack.

It consists essentially in first constructing a figure similar to the one

required and then constructing one similar to this and of the proper size.

From Westminster Abbey.

8. Given a circle with radius OE. Construct within it the design

shown in the figure. That is, the inner semicircles have as diameters

the sides of a res'ular sixteen-sided polygon. Each of the small circles

is tangent to two semicircles. The outer nres have their centers on the

given circle and each is tangent to two small circles. All these arcs

and circles have equal radii.
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Solution. Construct an angle equal to one sixteenth of a peri-

gon. Through any point D' in the bisector of this angle draw a seg-

ment EF perpendicular to the bisector

and terminated by the sides of the angle.

On EF as a diameter construct a semi-

circle. Make B'D' = EF = B'A' = D'C
= C'A' and construct the small figure.

Now draw radii of the given circle dividing it into sixteen equal

parts and bisect one of the central angles by a radius OA. Construct

Z BAB = Z D'A'B'. Then ^ JS is twice the radius of the required arcs

and circles. The whole figure may now be constructed.

9. Given any three non-collinear points A', B', C, to construct an

equilateral triangle such that A', B', C shall lie on the sides of the

triangle, one point on each side.

Suggestion. Through one of the points as A' draw a line such

that B' and C lie on the same side of it.

10. Given an equilateral triangle j4i?C, to construct a triangle sim-

ilar to a given triangle A'B'C with its vertices on the sides of ABC.

Suggestion. Construct an equilateral triangle such that A',B', C
lie on its sides. Then construct a figure similar to this and of the

required size.

11. lip andp' are similar polygons inscribed in and circumscribed

about the same circle, and if 2 s is a side of the circumscribed polygon

p', show that the difference of the areas of p and p' is equal to the

area of a polygon similar to these and having a radius s.

Suggestion. Let the areas of the polygons whose radii are r, r',

and s be A, A', A". Prove that

A< and
A' r'

Complete the proof.

12. Two circles are tangent at A. A
secant through A meets the circles at B and

C respectively. Prove that the tangents

at B and C are parallel to each other.

13. Prove that the segments joining one vertex of a regular poly-

gon of n sides to the remaining vertices divide the angle at that vertex

into n-2 equal parts.
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FURTHER PROPERTIES OF TRIANGLES.

436. Definition. A segment AB is said to be projected

upon a line I if perpendiculars from A and B are drawn

to I. If these meet I in points C and D, then CD is the pro-

jection of AB upon I.

437. Theorem. The square of a side opposite an

acute a7igle of a triangle is equal to the sum of the

squares of the other two sides minus twice the product of

one of these sides and the projection of the other upon it.

c c

c m
Outline of Proof : In either figure let Z 5 be the given

acute angle, and in each case BH is the projection of BC
upon AB. Call this projection m.

We are to prove that J^ = a^ + e^ — 2 cm.

In the left figure, J2 = A^ + (e - mf. (1)

In the right figure, V^ = h^. + (m — c)^. (2)

In either case }? = c? — m^. (3)

Substitute (3) in (1) or in (2), and complete the proof.

Modify each figure so as to draw the projection of AB upon BC
and call this n. Then give the proof to show that Ifi = a^ + c"^ — 2 an.

438. EXERCISE.

1. The area of a polygon may be found by drawing its longest

diagonal and letting fall perpendiculars upon this

diagonal from each of the remaining vertices.

Draw a figure like the one in the margin, only

on a much larger scale, measiiro the necessary

lines, compute the areas of the various parts

(see § 314), and thus find its total ai'ea.
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439. Theorem. 27ie square of the side opposite an

ohtuse angle of a triangle is equal to the sum of the

squares of the other two sides plies twice the product of
otie of these sides and the projection of the other upon it.

A C B D
Outline of Proof : Let Z B be the given obtuse angle and

BD the projection of BC upon AB. Call this projection m.

As in the preceding theorem show that

Also modify the figure so as to show the projection of

AB on BC and call this n. Then show that

62 = a2 + c2 + 2 an.

440. Theorem. The sum of the squares of two sides of

any triangle is equal to tioice the square ^

of half the third side plus twice the

square of the median drawn to that side, a d b

Suggestion. Make use of the two preceding theorems.

441. EXERCISES.

1. Compute the medians of a triangle in terms of the sides.

2. Show that the difference of the squares of two sides of a tri-

angle is equal to twice the product of the third side and the projection

of the median upon that side.

3. The base of a triangle is 40 feet and the altitude is 30 feet.

Find the area of the triangle cut off by a line parallel to the base and

10 feet from the vertex.
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442. Problem. To express the area of a triangle in

terms of its three sides.

a

or

Solution. The area of A ABC =\AB y. CD = I ho.

It is first necessary to express h in terms of a, b, c.

We have b^= a^+ c^-2cm, (^Vhy '

m =

Also h?= a? — m^. (Why ')

Hence A2= ,2_/^«^+'^^-^7^ 4 aV- f.^ + .^ - /. ,^

V lie y 4c2

^ (2 ac + a^ + c^ - ^-)(2 ac - a^ - r^ + ^2)

_ f(a + cf - h'^'] \b'i -(a- f)2]

4c-2

^ (ffl + c+ ^)(^? + c - b)(b + a ~ c){b - a + c)

4 (-2

Now call a + b + c= 2s, or a + c — b = '2 s — '2 b.

Then a + c- i= :2(s - J)

b + a— (•= 2{s-c)

b + c— a = 2{s— (i).

Hence h^ = ^^1^(^^l^ir^^lil:^.

or ^= ~ Va(« — (iX* — ^Xs — <•)
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\ 12Then -hc = -c-- ^s{s - a)(s - J)(s - c).

Hence area of A ABC = Vs{s — a^a — &)(« — c).

443. Problem. To express the area of a triangle in

terms of the three sides and the radius of the circum-

scribed circle. ^ -^^ c

In the figure CE= 2r, where r is the radius of the cir-

cumscribed circle.

Then

But



264 PLANE GEOMETRY.

PROBLEMS AND APPLICATIONS.

1. Given a regular dodecagon (twelve-sided polygon) with radius

/ . Connect alternate vertices.

(a) Prove that the resulting figure is a regular hexagon.

(6) Find the apothem of the hexagon.

(c) Find the area oi each of the triangles formed by joining the

alternate vertices of the dodecagon.

2. Find the area of a regular dodecagon of radius r.

3. Find the side of a regular dodecagon of radius r.

4. Find the apothem of a regular dodecagon of radius r,

(a) by means of Exs. 2 and 3 and § 343.

(6) by means of Ex. 3 and § 319.

5. Given the side 8 of a regular dodecagon. Find the apothem.

Also find the apothem if the side is s. See Exs. 9-12, page 2'i'j.

6. Given a circle of radius 6

:

(a) Find the area of a regular hexagon circumscribed about it.

(b) Find the area of a regular octagon inscribed in it, also of one

circumscribed about it.

7. Using the formula obtained in Ex. 5, find the side of a regu-

lar dodecagon whose apothem is b.

8. Find the radius of a circle circumscribed about a dodecagon

whose apothem is b.

9. Find the difference between the radii of the regular dodecagons

inscribed in and circumscribed about a circle of radius 10 inches.

10. Solve Ex. 9 if the radius of the circle is r.

11. What is the radius of a circle if the difference between the

areas of the inscribed and circumscribed regular dodecagons is 12

square inches ?

12. AVhat is the radius of a circle if the difference between the

areas of the inscribed and circumscribed regular hexagons is 8 square

inches? See Ex. 11, page 259.

13. A regular hexagon and a retjular dodecagon have equal sides.

Find these sides if the area of the dodecagon is six square inches more

than twice the area of the hexagon.

14. Solve Ex. 13 if tlie area of the dodecagon exceeds twice the

area of the hexagon by b square inches.
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15. Is there any common length of side for which the area of a

regular dodecagon is twice that of a regular hexagon 1 Three times ?

Four times? Prove your answer.

16. Solve a problem similar to that of Ex. 15 if the side of the

dodecagon is twice that of the hexagon.

17. The nineteen small circles in the accompanying figure are of

the same size. The centers of the twelve outer circles lie on a circle

with center at O, as do the six circles between these and the inner-

most one. The centers of these small circles divide the large circles

on which they lie into equal arcs.

If r is the radius of the small circles, then OB = 2J r, BD = 2^ r,

mADG=\\r.
(a) Find AB and CD in terms of r.

(A) FindZJB.

(c) What part of the circle OG is contained within the nineteen

small circles ?

(d) If the radius of the large circle is 36 inches, find the radii of

the small circles so that they ^hall occupy half its area.

(e) If the radius of the large circle is r inches, find the radii of

the small circles so they shall occupy one half the area of the large

circle.

(/) Under (rf) how far apart will the outer twelve centers be?

The inner six ?

(^) Under (e) how far apart will the outer twelve centers be?

The inner six ?

In Exs. (/) and {g) it is understood that the distances are meas-

ured along straight lines.
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From First Congregational
Church, Chicago.

18. In the figure ABC is an equilateral triangle. A, B, C are the

centers of the arcs BC. CA,&nd. AB. Semicircles are constructed on

the diameters AB, BC, CA. Let .15 = a. (See Ex. 11, p. 93.)

Circles are constructed tangent to the various arcs as in the figure.

(a) Find the radius r".

Suggestion. Find in order BM, ^rN, BN, HO", BO"
(h) Find the radius )'.

Suggestion. BX is known from the solution of (a).

BN = B0' + r' and BO' = 2 KO'. Hence KO' = ^^"^ ~ '"'

•

KB = iV3.B0' = i V3 (£iV - r') and HO' = "-r'.

But HO''-^HK^+KO'\ (^^^y + KO'-' (1)

Substituting for HO', KB and KO' in (1) we may solve for r'.

(c) Find the radius r.

Suggestion. Use A BLO and HLO and proceed as under (b).

(d) Using the radii thus found, sho\v how to construct the figure.

(e) What fraction of the whole area is contained in the circles?

19. yl BCZ) is a parallelogram with fixed liase and altitude. Find

the locus of the intersection points of the bisectors of its interior

base angles. p
20. Find the locus of a point P

such that the sum of the sqiuires

of its distances from two fixed

points is constant.

SiKiciESTioN. By § I m, . I
/'" + /'//' :^ 2 A C" + 2 ~CP'.

Solve for ( 7'.
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21. Find the locus of a point P such that the ratio of its distances

from two fixed points is equal to the constant ratio m : n.

Suggestions; Let A- and

B be the fixed points. On the

line AB there are two points

P' and P" on the locus, i.e.

AP'i : P"B = AP' -.P'B^m-.n.

Let P be any other point on

the locus.

Then AP:BP = AP': P'B = AP" : P"B.
Show by the converses of §§ 250, 253 that PP' bisects /.APB and

PP'i bisects Z BPK, and hence P'P and P"P form a right angle.

22. Find the locus of a

point P from which two circles

subtend the same angle.

Suggestion. C and C are

the centers of the given circles.

Prove APDC-^APD'C and

PC ^ r'

PC r

'

23. The points ABCD are collinear. Find the locus of a point

P from which the segments AB and CD subtend the same angle.

Suggestions. The &.ABP, ACP, BDP, axiA ^
CDP have a common altitude, and hence their

areas are to each other as their bases. Also A j4BP
and CDP have equal vertex angles, whence by

§ 427 their areas are to each other as the products

of the sides forming these angles. Similarly for A A CP and BDP.
AP-PB _AB . AP-PC _AC

cd^'^'^bT^pd-'bd

hence that

B C

Hence CP.PD CD " BP-PD
From these equations show that AP : PD is a constant ratio.

24. ABC is a fixed isosceles triangle. With P
center C and radius less than AC, construct a

circle, and from A and B draw tangents to it meet-

ing in P. Find the locus of P. A\/\)\P
Suggestions, (a) Show that part of the locus

is the straight line PP'- (ft) Show that Z 1 =Z 2

and hence that Z AP"B is constant.
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maxima and minima.

445. Definitions. Of all geometric figures fulfilling

certain conditions it often happens that some one is

greater than any other, in which case it is called a maxi-

mum. Or it may happen that some one is less than any

other, in which case it is called a minimum.

E.g. of all chords of a circle the diameter is the maximum, and of

all segments drawn to a line from a point outside it the perpendicular

is the minimum.

In the following theorems and exercises the terms

maximum and minimum are used as above defined.

However, a geometric figure is often thought of as con-

tinuously varying in size, in which case it is said to have

a maximum at any position where it may cease to increase

and begin to decrease, whether or not this is the greatest

of all its possible values. Likewise it is said to have a

minimum at any position where it may cease to decrease

and begin to increase.

E.g. if in the figure a perpen-

dicular from a point in the curve to

the sta-aight line be moved continu-

ously parallel to itself, the length of

this perpendicular vfill have maxima at ^4, C, and E, and minima at

B, D, and F.

Certain simple cases of maxima and minima problems

have already been given. Some of these will be recalled

in the following exercises.

446. EXERCISES.

1. If from a point within a circle, not the center, a line-segment

be drawn to meet the firclo, show that this soginent is a maximum
when it passes thmugh tlu> ceutor and a miuinium wlien, if produced

in the opposite direction, it would pass tln-ougli the center.
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2. Show that of all chords through a given point within a circle,

not the center, the diameter is a maximum and the chord perpendicu-

lar to the diameter is a minimum.

3. Of all line-segments which may be drawn from a point outside

a circle to meet the circle, that is a maximum which meets it after

passing through the center, and that is a minimum which, if pro-

duced, would pass through the center,

4. Show that if a square and a rectangle have equal perimeters,

the square has the greater area.

Suggestion. If s is the side of the square and a and 6 are the

altitude and base of the rectangle respectively, then 2J + 2a = 4sor

_ & + a
* r-

Hence ,2^
''^ + a^ +2ah _ (h'^ -2ah + b^) + i^ah _ {h - aY

, ^^_
4 4 4

That is, s^ is greater than ab by '——^ •

5. Use the preceding exercise to find that point in a given line-

segment which divides it into two such parts that their product is a

maximum.

6. Find the point in a given line-segment such that the sum of

•the squares on the two parts into which it divides the segment is a

minimum.

Suggestion. If a and 5 are the two parts and h the length of the

segment, then
„ + j = i- ^nd a^ + 2 a6 4- 5^ = F,

or, a-^ + h^ = k^-2 ah.

Hence, o^ +6^ is least when 2 ah is greatest. Now apply Ex. 5.

7. In the preceding exercise show that a^ + b^

increases as 6 grows smaller, that is, as the point of

division approaches one end. When is this sum a

maximum ?

8. Two points A and B, on opposite sides of a

straight stream of uniform width, are to be con-

nected by a road and a bridge crossing the stream

at right angles. Find by construction the location

of the bridge so as to make the total path from A
to -B a minimum.
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447, Theorem. Of all triwigh's having equalperim-

eters and ihe ^a;nie base, the isosceles triangle has the

maximum area.

A E B

Given A ABC isosceles and having the same perimeter as A ABD.

To prove that area A ABO area A ABD.

Outline of proof: Draw ce A. AB. Construct AAFB
having its altitude FE the same as that of A ABD. Pro-

long AF making FG = AF. Draw GB and GD. The ob-

ject is to prove that EF, the altitude of A ABD, is less than

EC, the altitude of A ABC.

(1) Show that A .1 FB, FBG, and GBD are all isosceles, for

which purpose it must be shown tliat GB J.AB and FD II AB.

Then AD + DB = AD+ 1)G>AG.

Or AF+FB<AD + DB.

But AD+ DB= AC+CB.
Hence, AF+FB<AC+(B.
(2) Show that AF<A<\

and hence that EF<E('-

(3) Use the last step to slunv that

area A AJli' > area A AltD.

Give all the steps and i-easons in full.

448. CoROLTiAifV. 0/ 1(11 tri(in)jl(s having iJic same

arr/i, and sf((ii(lln(/ (»i the saiiir Ixise. that ic/iieh is

isosceles has the least j)ei'i»ieter.
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449. Theorem. Of all polygons having the same

perimeter and the same number of sides, the one loith

maxim,um area is equilatetal.

E

Given ABCDEF the maximum of polygons having a given perim-

eter and the same number of sides.

To prove that AB = BC = CD = DE = EF= FA.

Suggestion. Show that every A, such as FDE, is isos-

celes by use of the preceding tlieorem.

450. Theorem. Of all polygons having the same

area and the same number of sides, the regidar polygon

has the viinimum pterhneter.

Given polygons A and B with same number of sides .and equal

area, A being regular and B not.

To prove tliat the perimeter of A is less than that of B.

Outline of Proof : Construct a regular polygon c having

the same number of sides and same perimeter as B.

Then, area of B < area of C, or area of ^ < area of C.

But A and C are both regular and have the same num-

ber of sides. Hence the perimeter of A is less than that

pf C. That is, perimeter of ^ < perimeter of B.
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451. Theorem. The polygon with maximum area

which can be formed by a series of line-segments

of given lengths, starting and ending on a gixen line,

is that one whose vertices all lie on a semicircle con-

structed on the intercepted part of the given line as a

diameter.

Given the line-segments AB, BC, CD, DE and EF meeting the

line RS at A and F so as to form the polygon ABCDEF with maxi-

mum area.

To prove that B, C, Z), and E lie on the semicircle whose

diameter is AE.

Proof : Suppose any vertex as Z) does not lie on this

semicircle. Join D to F and to A. Then Z ADF is not a

right angle, else it would be inscribable in a semicircle

(§ 213). .

If now the extremities A and F be moved in or out on

the line US, keeping AD and DF unchanged in length, till

Z ADF becomes a right angle, then A ADF will be increasid

in area (Ex. 3, § 456), while the rest of the polj-gon is

unchanged in area. This would increase the total area of

the polygon ABCDEF, which is contrary to tlie hypothesis

that this is the polygon with maximum area. Hence the

vertex D must lie on the semirirrle.

In the same manner it can lie jiroved tliat eiich vertex

lies on the semicircle.
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452. Theorem. Of all polygons with the same num-

her of sides equal in pairs and taken in the same order,

the one with maximum area is that one which can be

inscribed in a circle.

Given a polygon ABCDE inscribed in a circle and A'BC'D'Ef

not inscribable but with sides respectively equal to those of

ABCDE.

To prove that ABCI>e>a'b'c'd'e'.

Proof: In the first figure draw the diameter DK and

draw AK and BK.

On a'b' construct Aa'b'k^ Aabk and draw d'k'.

The circle whose diameter is d'k' cannot pass through

all the points a', b', c', and E', else the polygon would be

inscribed contrary to hypothesis.

If either A' or E' is not on this circle, then

AKBE>A'k'b'e'. (Why?) (1)

Likewise if either b' or c' is not on the circle, then

KBCB>k'b'c'd'. (Why?) (2)

In any case, adding (1) and (2),

AKBCDE> A'k'b'c'b'e'.
'

(3)

By construction, A AEB ^ A a'k'b'. (4)

From (3) and (4), ABCDE > a'b'c'd'e'.
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453. Theorem. Of all regular polygons having

((jnal perimeters, that which has the greatest number

of sides is the maximum.

F

Given T a regular triangle and S a square having the same

perimeter.

To prove that s> T.

Proof : Take any point E in AB. Draw CE and on CE
construct A CEF ^ A AEC.

Then polygon BCFE has a perimeter equal to that of T

and the same area, and has the same number of sides as >.

Hence, s > BCFE. (§ 449)

That is, s > T.

In like manner it can be shown that a regular polygon

of five sides is greater than a square of equal perimeter,

and so on for any number of sides.

454, EXERCISE

Of the three medians of a sialeiie

triaiii;le that one is the shortest which is

chawu to the longest side.

Sii(i(3ESTi(i.N. If vlC'<ZJC, to show-

that BF> , I /<;. .1 D
In AA'ix anil BDC. A /).= DB and DC is common.
But AC< Ii( '. Ilf niM. Z 1 < Z •_' ( Why ').

Now usi! &iAI)0 unci UDO to sliow that /l'(>>.^0 and hence that

BF>AE.
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455. Theorem. Of all regular polygons having a
given area, that one which has the greatest number of
sides has the least perimeter.

Given regular polygons P and Q such that P = Q while Q has the

greater number of sides.

To prove that perimeter of Q < perimeter of P.

Proof : Construct a regular polygon R having the same
number of sides as P and the same perimeter as Q.

Then r <q. (§453)
But P = Q. (By hypothesis)

Hence R < P.

Therefore, perimeter of B < perimeter of P. (§ 323)

But R was constructed with a perimeter equal to that of Q
Hence perimeter of Q < perimeter of P.
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SOLID GEOMETRY.

CHAPTER VIII.

LINES AND PLANES IN SPACE.

456. A figure in plane geometry is restricted so that all

its points lie in the same plane. Such figures are called

two-dimensional figures.

A straight line is a one-dimensional figure, and a point is of zero

dimension.

457. A three-dimensional figure is a combination of

points, lines, and surfaces not all parts of which lie in the

same plane.

E.g. the six surfaces of the walls, floor, and ceiling of the school-

room form a three-dimensional figure. This figure is not the room itself.

The room is the space inclosed by the figure.

458. Solid geometry treats of the properties of three-

dimensional figures.

DETERMINATION OF A PLANE.

459. Since we are to consider points and lines not all

lying in the same plane, it is of first importance to be able

to distinguish one plane from another.

This is all the more important, since three-dimensional figures have

to be represented by pencil or crayon drawings on the plane of the

paper or blackboard. Models of paper, wire, etc., may be constructed

by the pupils.

279
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460. Axiom XVI. If two points of a straight line

lie in a plane, the whole line lies in the plane.

Since a line is endless, it follows from this axiom that a plane is

unlimited in all its directions.

461. While two points determine a line, it is obvious that

tliis is not sufficient to determine a plane.

E.g. suppose a plane L contains the points

A and B which determine the line AB. If

the plane L be revolved about the line AB
as an axis, it may occupy indefinitely many
positions, as L, j\I, N, but there is only one

position in which it contains a third given

point C outside of the line AB.

462. Axiom XVII. TJirough tlirre poi^its not all in the

same straight line one and only one plane can he passed.

463. Theorem. A plane is determined hy (1) a line

and a p)oint not in that line, (2) two intersecting lines,

(3) two parallel lilies.

r
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Therefore one and only one plane is determined by a

line and a point not on that line.

(2) Let /i and L be two intersecting lines.

Take A the intersection of l^ and l^, and B and C any

other points, one on l^ and the other on l^.

Then A, B, and C determine a plane M in which both Zj and

^2 lie, since A and B lie on Zj and A and c on Zg (Ax. XVI).
Now M is the only plane in which both Zj and l^ lie, for

any other three points E, F, G, on Zj and l^ (not all in the

same line) determine the same plane M, since they all lie

in it.

Hence, two intersecting lines determine a plane.

(3) Let /i and 4 be two parallel lines.

By definition Zj and Zj lie in a plane M.

Now M is the only plane in which both Zj and l^ lie, for

any three points A, B, C, on Zj and Zj (not all on the same

line) determine this plane M, since they all lie in it.

Hence, two parallel lines determine a plane.

464. Axiom XVIII. If two planes have a point in

common, then they have at least another point in common.

465. Theorem. Two intersecting planes have a

straight line in common, and no points in common

outside of this line.

Proof : If two planes intersect, they must have at least

two points in common (Ax. XVIII).

But these two points determine a straight line which

lies wholly in each plane (Ax. XVI).

Hence, there is a straight line common to the two planes.

Now prove that these two planes can have no point in

common outside of this line unless the planes are identical.
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466. EXERCISES.

The diagram on this page represents a three-dimensional figure in

the shape of an ordinary box. In this figure the points A, K, B do

not determine a plane, since they all lie on the same straight line,

while A, (', E do not lie in a, straight line, and hence determine a

plane.

1. In this figure pick out twelve sets of three points each which

do not determine planes, and also twelve sets which do determine

planes.

M, G

2. Describe the relation to the three-dimensional figure of each

plane determined in Ex. 1. Thus, the plane jr.Yl' cuts off the lower

right-hand corner at the back.

3. Kcail each of tlie six bounding plnnes in this figure, using vari-

ous different sets of points or lines. Thus, the fiiee ABFE is deter-

mined by tlie points B, L, K, or by ,1 aiul the line PX. or bv lines .1 B
and EF.
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4. Describe the position of each of the following planes in the

figure: AEC, ACF, BCE, HCA, ADG, BDF, HEC.

5. Pick out six planes, each determined by two parallel lines in

the fig'ure.

6. Decide whether each of the six planes in Ex. 5 may also be

determined by two intersecting lines of the figure ; by a line and a

point outside of it.

7. Using the point Z, pick out six planes, each determined by

it and two other points of the figure, as .-1 ZD, A ZB, etc.

8. Using the schoolroom or a room at home, imagine all the planes

constructed which are involved in the forego-

ing questions. Do the same, using a small box

or paper model.

9. Does a stool with three legs always stand

firmly on a flat floor? One with four legs?

Give reasons. On what condition does a stool

with four legs stand firmly on a flat floor?

10. In the figure the point D is supposed not

to lie in the same plane as ABC. Hence, does C lie

in the plane of ABD'l Does B lie in the plane of

ACDf

11. How many planes are determined by four

points which do not all lie in the same plane?

12. How many planes are determined by four

lines which all meet in a point, but no three of which

lie in the same plane ?

13. What is the locus of all points common to two intersecting

planes ?

467. The demonstrations and constructions of solid

geometry consist largely in applying the theorems already

known in plane geometry to figures lying in various

planes determined by points and lines in space, as illus-

trated in the preceding exercises.

The next following problems are typical in this respect.
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THEOREMS ON PERPENDICULARS.

468. Definitions. A line is said to be perpendicular to a

plane if it is perpendicular to every line of the plane pass-

ing through the point in which it meets the plane. In

this case the plane is also perpendicular to the line. The
point in which the perpendicular meets the plane is the

foot of the perpendicular.

Note. It is obvious that at a point in

a line there may be many lines in space which

are perpendicular to it. For instance, if AP
is X BC, rotate AP about BC as an axis,

keeping ZPAC = ZPAB. Then AP re-

mains X BC in every one of its positions.

Thus, in some wheels all spokes are per-

pendicular to the axle.

469. A line or plane is said to be constructed whenever

the points which determine it are constructed.

470. Problem. Through a given point to construct

a plane perpendicular to a given

line.

Given : the line / and the point P.

To construct a plane through P
perpendicular to I.

Construction, (a) Let p be on

the given line I. Through P construct two lines J^ and

^2, each perpendicular to I. Then tlie plane determined

by ?j and l^ is the required plane.

Proof : Connect u and c, any two points different from
P on /, and /^ respectively.

Thr(iui,rh P draw any line l^ mectiui;^ BC in D.

On I lay nil PE = PF and complete the figure as shown.
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Now prove (1) A ebc ^ A fbc, (2) Z EBD = Z FBD,

(3) A EBD ^ A FBD, (4) A EPD^A FPD, (5) Z EPD =
i?'PD. Hence, PB ± ^.

This proof holds for every such line l^ except the line

through P parallel to BC. In this case we can select an-

other point C' on \ so that Zg shall not be parallel to BC'.

Since PD is any line through P in the plane of l^ and l^,

it follows by definition that the plane determined by l^

and Zg is perpendicular to I.

(6) If the point P is not on the line I, draw a line from

P perpendicular to I at some point Q, and then as above

construct a plane through Q perpendicular to I.

471. EXERCISE.

Prove that through a point there is not more than one plane per-

pendicular to a given line.

472- Problem. At a point in a plane to construct a

line perpendicular to the plane.

Given : the point P in the plane M.

To construct a line perpendicu-

lar to M at P.

Construction. Let \ be any line

in M through P.

Pass a plane N through P X Zj

(§ ^70).

Let plane iVcut plane Jf in l^ (§ 465).

In plane N erect PA -L l^.

Then PA is the perpendicular required.

Proof : Show that PA is ± to both l^ and l^ and hence to

their plane, that is, to the plane Jf.
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473. EXERCISES.

1. At a point in a plane only one line can be erected perpendicu-

lar to the plane.

I'kciof. Suppose a second perpendicular is possible. Then we shall

have two lines as li and h perpendicular to .1/ at P. Let the plane of

li and h intersect M in a line U. Then li and h are both X to h and

lie in the same plane with it, which is impossible.

2. Take two pieces of cardboard in one of which a line is drawn

at random, and in the other a line is drawn perpendicular to an edge.

Place them so as to illustrate the construction in § 47u'.

474. Problem. Fro7n a point outside a jylane to con-

struct a line perpcndiculrir to the plane-

Given : the plane M and the point P outside it.

To construct a line from Pj_M.

Construction. Let I be any

line in plane M.

From P draw PA ± 1, and in

plane M draw AK A. / at .4.

Finally, draw PO ± AK.

Then PO is tlie required line

perpendicular to M.

Proof : Through O in M draw any other line OB lueet-

Prolong PO to p', making OP' = OP, and connect points

as sliown in tln> figure.

Tlien linr / J. plane PAP'. (Why?)
Now sliiiw tliat (1) 7M=/''.l, (-J) A vlP« ^ A.4P'B,

(;i) A )iOl' ^- A BOP'.

Hence, PO±.i/. (Why?)

p'
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475. EXERCISES.

1. Only one perpendicular to a plane can be drawn from a point

outside the plane.

Suggestion. Show that the hypothesis of two perpendiculars from

an outside point to a plane leads to a contradiction.

2. A perpendicular is the shortest distance from a point to a plane.

3. A line cannot be perpendicular to each of two intersecting

planes.

Suggestions. (1) If a line / is perpendicular to the planesM and N
at the pointsA and B, and C is

a point in their intersection,

then h. ABC would contain ^<~~
two right angles. (2) If I is oV^^
perpendicular to M and TV at \
a point P in their intersec-

tion, pass a plane through I, meeting M and A'^ in /, and l^.

4. A line which is perpendicular to each of two lines at their point

of intersection is perpendicular to their plane. See § 470.

5. All perpendiculars to a line at a point in it lie in the same

plane, namely, the plane determined by any two of them.

The following are theorems proved in the preceding con-

structions and exercises.

476. Theorem. Through any given ])oint there is

one and only one 'plane perjyendicidar to a given line.

477. Theorem. Through any givenpoint there is one

and only one line perpendicular to a given plane.

478. Theorem. All lines perpendicular to a line at a

point lie in one and the same plane.

479. Theorem. A line perpendicular to each of two

intersecting lines is perpendicular to their plane.

480. Theorem. The shortest distance from a point

to a plane is the perpendicular to the plane.
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481, EXERCISES.

1. Show how a carpenter could use the theorem of § 479 to stand

a post perpendicular to the floor, by use of two ordinary steel squares.

2. If a steel square be made to rotate about one of its edges as an

axis, what kind of surface does the other edge describe?

3. In making long timbers perpendicular to each other, a car-

penter may use simply a measuring rod, such as a ten-foot pole.

Show how to make a timber perpendicular to the floor by this

process.

4. Show how a back-stop on a ball field can be adjusted perpen-

dicular to the line through sec-

ond base and the home plate. | -^ s^ bok

What theorems of solid geometry
.^.f^i'lf ,''^ ^\

are used? ; ly* ; / \^
5. If a plane is perpendicular y ^ Wo'ie'X x'ioi

to a line-segment PF' at its middle ' X ,,-''

point, prove : (1) Every point in l"Baee

the plane is equally distant from

P and J"
; (2) every point equally distant from P and P' lies in

this plane. What is the locus of all points in space equidistant from

P and P' ? See § 127.

6. Given the points ^1 and B not in a plane ^f Find the locus

of all points in Af equidistant from .4 and B.

Suggestion. All such points must lie in the plane M and also in

the plane which is the perpendicular bisector of the segment .-15.

Is there any position of the points A and B for which there is no

such locus? For which the locus contains the whole plane .1/?

7. On a line find a point equidistant from two given points not on

the line.

Is there any position of the points for wliich there is no such point

on the line? For which all points on the line satisfy tliis condition?

8. Find the locus of all points in space equidistant from the

three vei-tices of a triangle.

9. Find the locus of all points in a given plane equidistant from
the verl iees of a triangle not in the plane.

Is there, any position of the triangle for which this loons contains

more than one point? No point?
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10. Ask and answer questions similar to the two preceding, using

the vertices of a square instead of a triangle ; the vertices of a rec-

tangle ; of any pol3'gon which can be inscribed in a circle.

11. Find the locus of all points in apace equidistant from the

points of a circle and also of all points in a plane equidistant from the

points of a circle not in that plane. Discuss as in Ex. 9.

12. Find the locus of all points equidistant from two given points

A and B, and also equidistant from two points C and D. Discuss.

13. In geometry of two dimensions, how many lines may be per-

pendicular to a given line at a given point? In geometry of three

dimensions?

14. In how many points can a straight line cut a plane ? In how
many points may it cut a curved surface, such as a stovepipe? In

how many points can a straight line cut a circle? In how many
points can a plane cut a circle, the plane being distinct from the.

plane of the circle?

15. State and prove a theorem of solid geome-

try corresponding to the theorem in the Plane

Geometry, comparing the lengths of oblique seg-

ments cutting off equal distances from the foot

of a perpendicular.

Also state and prove the converse.

State and prove a theorem comparing the

lengths of segments cutting off unequal distances. See §§ 112, 115,

and 116.

16. Find the locus of all points in a plane which are equally dis-

tant from a given point outside the plane. If a perpendicular be

drawn to the plane from this point, how is its foot related to this

locus?

17. If in the figure PZ)± plane M, and

DC ±AB any line of the plane, prove that

PC±AB.
Suggestion. Lay off CA = CB, and

compare triangles.

18. If in the same figure PD ± M, and

PC X AB any line of the plane, prove that

DCXAB.
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THEOREMS ON PARALLELS.

482. Theorem. If two linc>s arc perpendicular to

the same plane, they .are parallel.

CoNVKKSELY. If One of two parallel linen ii pe/pen-

dkidar to a plane, the other is also.

Given: (i) AB and CD each J. to

the plane M.

To prove that AB II CB.

Proof : Draw BD and make
DE±DB.
Take points A and E so that

BA = DE, and draw AB, AE, and

BE.

Now prove (1) A ABB ^ A BBE. (:2 ) A ABE ^ A ABE.

Hence, Z ABE is a right angle, and BC, DA, and BB all

lie in the same plane. (\V]i\ ')

Therefore CB and AB are in the same plane and perpen-

dicular to the same line BD. • (Wliy'')

Henee, AB
||
CD.

Given : (2) AB II CD and CD ± M.

To prove th;it AB ± M.

Proof: If AB is not -L M. suppose A' B -L .v. Then
A'b II CI). But through B there is only one line II CB.

Henee, a'b and AB coincide.

I!ut A'B was taken ± .V. Hence. AB ± M.

Ilis loiMc M. NdiK. The aliove pi'oof for the dii-eot case is the one

nivi'ii liy ICiK'liil. iMaiiy proofs have been given, but this seems the

most elegant.

483, ('()H(iT,i,,\KY. Iiro lines in sp<n'r. tacJi parallel

to //ic same line, arc parallel to each ot/icr.



LiyES AND PLANES IN SPACE. 291

Suggestions. Let l^ II Ig and l^ II ^3. To prove ?j II l^.

Take a plane M J_ l^ and finish the proof.

484. Definitions. Two planes which do not meet are

said to be parallel.

A straight line and a plane which do not meet are said

to be parallel.

485. Theorem. If each of two planes is perpen-

dicular to the same line, they are parallel.

Conversely. If one of two parallel pla^ies is per-

pendicular to a line, the other is also.

Given : (1) M± AB and N J_ AB.

To prove that M II N.

Proof : Suppose M and N to meet in

some point P, and show that this leads

to a contradiction.

Given : (2) JIf II i\r and ilf ± AB.

To prove that N ± AB.

Proof : Through AB pass a plane cutting M in BB and

iV in AC, and also a second plane cutting M in BF and N in

AE.

Then BD II AC, for if they could meet, then M and N
would meet, which is contrary to the h3'pothesis.

Likewise BF II AE.

Complete the proof, showing that AB ± AC, and AB 1. AE,

and hence AB -L JV^.

486. Corollary. If a plane intersects two parallel

planes, the lines of intersection are parallel.
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487. Theorem. If a straight line is parallel to a

(jiiicii plane, it is parallel to the intersection of amj

plane through it ivith the gioen plane.

SuGGESTK).N. If l^ is the given line, and 1% the intersection of the

plane through /j with the given plane, show that /j and ij lis ii the

same plane and cannot meet.

488. Corollary. If n line ontside a plane is jyarnl-

lel to some line in theplane, then the first line is parallel

to the plane.

489. Theorem. If two intersecting lines hi one plane

are parallel, respectively, to tioo intersecting lines in

another plane, then the tvjo planes are parallel, and the

corresponding angles formed hi/ the lines are equal.

/^f^A

—
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and ACC'a' are ZU, for then BB' = CC' = AA' and BB' II

AA' II CC'.

Now reverse the order of these steps and give the proof

in full, with all the reasons.

490. Corollary. If tioo angles in space have their

sides respectiveli/ parallel, the angles are either equal or

supplementary.

State this in full detail as in §§ 106-108 and show how it applies

to the above figure.

491. EXERCISES.

1. Show that parallel line-segments included between parallel

planes are equal, and hence that parallel planes are everywhere

equally distant.

2. Find the locus of all points at a given distance from a given

plane ; also of all points equally distant from two parallel planes.

3. Show how to determine a plane parallel to a given plane and

at a given distance from it. How would you place three shelves

parallel to each other and a foot apart?

4. Show that two straight lines in space may not meet and yet

not be parallel.

5. Show that through any given line a, plane may be passed

parallel to any other given line in space.

SuGGESTiox. If li and l^ are the given lines, through any point

in /,, draw l^ II l^, and show that the plane determined by Zj and l^ is

the required plane II l^.

6. Through a given point pass a plane parallel to each of two

given lines in space.

Suggestion. Through the given point pass lines II to each of the

given lines, then use § 488.

7. Show that through a point outside a plane any number of

lines can be drawn parallel to the plane. How are all these parallels

situated ?

8. Find the locus of all lines through a fixed point parallel to a

fixed plane.
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492. Theorem. If two straight lines are cut by three

parallel planes, the iaterceptad segments on one line are

in the same ratio as the corresponding segments on the

other.

Given : the lines AB and CD cut by the planes M, N, and P,

_ .-, . AE CG
To prove that— = —

.

EB OD

Proof : Connect the points A and D, and let the plane

determined by .ID and I'D cut the planes M and .v in AC
and FG respective]}-. And let the plane of AB and AD
cut N and P in EF and BD res[iectively.

Now show that ACWFG and ^Fli BD, and hence complete

the proof, giving all the reasons.

493. Corollary. Parallel plaiics ivhich intercept

equal s^qniciits on iiii// fraiisrersal line intercept equal

segments on creri/ transccrsid line.

494. EXERCISES.

1. Show how Ici find all the |«iiiits on the floor of the schoolroora

which ;iic equally ilislaut from one of the lower corners of the win-

dow sill and one of the upiier cornel's of the opposite door.

2. Tf tile spiu'es lielweeii four shelves are .">, s. and 1(1 inches re-

speelively, and a shiulinj; rod iuterseeting them has a 7-inch segment

betwi'en the first two shelves, find the other two segments of the rod.
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3. If -we attempt to stand up a ten-foot pole in a room eight feet

high, find the locus of the foot of the pole on the floor when the top

is kept at a fixed point on the ceiling.

4. Show that, if three line-segments not in the same plane are

equal and parallel, the triangles formed by joining their extremities, as

in the figure of § 489, are congruent, and their planes are parallel.

5. Given a plane M and a point P not in M. Find the locus of

the middle points of all segments connecting P with points in M.

6. Given a plane 31 and a point P not in M. Find the locus of

a point which divides in a given ratio each segment connecting P with

a point in M : (a) if the segments are divided internally; (b) if

they are divided externally.

7. The locus required in Ex. 6 consists of two planes, each parallel

to the given plane M. Are these two planes equally distant from M?
8. Show that a plane containing one only of two parallel lines is

parallel to the other.

9. If in two intersecting planes a line of one is parallel to a line

of the other, then each of these lines is parallel to the line of intersec-

tion of the planes.

10. Show that three lines which are not concurrent must all lie in

the same plane, if each intersects the other two.

11. Show that three planes, each of which intersects the other

two, have a point in common unless their three lines of intersection

are parallel.

Suggestion. Suppose two of the intersection lines are not parallel,

and meet in some point 0. Then show that the other line of inter-

section passes through 0, and hence that O is the point common to all

three planes.

12. Given two intersecting planes M and N. Find the locus of

all points in M at a given distance from N.

13. Given two non-intersecting lines Zj and l^. Find the locus of

all lines meeting /j and parallel to l^.

14. Prove that the middle points of the sides of any quadrilateral

in space are the vertices of a parallelogram.

Suggestion. Use the fact that a line bisecting two sides of a tri-

angle is parallel to the third side. Note that the four vertices of a

quadrilateral in space do not necessarily all lie in the same plane.
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DIHEDRAL ANGLES.

495. Definitions. The part of a plane on one side of a

line in it is called a half-plane. The line is called the

edge of the half-plane. Two half-planes meeting in a

common edge form a dihedral angle. The common edge

is the edge of the angle and the half-planes are its faces.

Lines in the faces of a dihedral angle perpendicular to

its edge at a common point form a plane a.^.

angle, which is called the plane angle of the

dihedral angle.

Thus, in the figure, the half-planes il/ and N
have the common edge AB, and form the dihedral

angle M-AB-N, read by naming the two faces

and the edge. The Z ('DE, whose sides are CD X
AB \\i N and ED ±AB in M is the plane angle of

the dihedral angle M-AB-N.

496. By § 489 all plane angles of a dihe-

dral angle are equal to each other.

A dihedral angle may be thought of as

generated by the rotation of a half-plane

about its edge. The magnitude of the

angle depends solely upon the amount of

rotation.

497. Two dihedral angles are equal when they can be so

placed that their faces coincide.

498. Theorem. Ttoo diliedral angles are equal if

tliclr plane angles ((re equal, a.

Given: the dihedral angles M-
AB-N and M'-A'B'-N' in which the i).

plane A CDE and CD'E' are equal.

To prove tlial

M-AIi N = m'-A'h'-n'.

Proof : Place the I'qual . CDE and c'd'e' in coincidence.

^^>.v,_^
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Then the edges AB and A'b' must also coincide, since

they are both perpendicular to the plane CDE at the point

D (§ 477).

Face Mthen coincides with m', since its determining lines,

AB and DE, coincide respectively with those of m', namely,

a'b' and d'e'.

Likewise, face N coincides with n'.

Hence, M-AB-n = m'-a'b'-c' since their faces have been

made to coincide (§ 497).

499. Theorem. State and prove the converse of the

preceding theorem.

500. Definitions. It follows from §§ 498 and 499 that

the plane angle of a dihedral angle may be regarded as

its measure.

A dihedral angle is right, acute, or obtuse according as

its plane fcgle is right, acute, or obtuse.

Two dihedral angles are adjacent,

vertical, supplementary, or comple-

mentary, according as their corre-

sponding plane angles, with acommon
vertex, are adjacent, vertical, supple-

mentary, or complementary.

In the figure pick out all the dihedral

angles and describe them and their relations, (1) if Z CDE is acute,

(2) if Z. CDE is a right angle.

501. EXERCISES.

1. State theorems on dihedral angles corresponding to those on

plane angles in §§ 64, 68, 69, 72-76.

2. State theorems concerning two planes cut by a transversal plane

corresponding to those on lines in §§ 90, 92, 93, 97, 99.

Note that in Exs. 1 and 2 the proofs are exactly analogous to those

in the Plane Geometry.
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502. Definition. Two planes are perpendicular to each

other if their dihedral angle is a right angle.

503. Theoreji. If a line is perpendicular to a plane,

every plane containing this line is perpendicular to the

plane.

h/

Given : a line / X plane N at P,

To prove that a plane M containing I is A_ N.

Proof : Let ?j be the intersection of N and M. In .v

draw ?2 -L Zj at P.

Then

Hence,

I ±
?i, /^ ± ?i,

and ?2 -L ?• (Why '')

M±y. CWhv?)

504. EXERCISES.

1. Show that the above theorem is equivalent to the following:

If a plane is perpendicular to a line lying in another plane, then the

first plane is perpendicular to the second.

2. Name all the dihedral angles in the accom-

panying figure.

3. Find the locus of all points equidistant

from two given ])arallel planes and also equi-

distant friim two given points.

4. Find thi' locus of all points at a given dis-

tance from a given jilane and equidistant from two given points.

Diacu.ss Exs. 3 and 1 for the various cnsos possible.

5. IIow can the theorem of § .'>(>:! bo used to erect a plane perpen-

dicular t(i ,1 given plane?
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505. Theorem. If two planes m and n are mutually

perpendicular, and if p is any point in m, then a line

through p perpendicular to n lies wholly in m and is

perpendicular to the line of intersection of m and n.

/m

p

h/o

Given : plane M J. plane N, and P any point in M. Let /i be the

intersection of M and iVand let / be a line through P1.N.

To prove that I lies wholly in M and that I J_ Zj.

Proof : (1) Let P be any point in M outside of /j.

Suppose I does not lie wholly in M.

Then through P draw a line V in the plane M perpen-

dicular to Zj at O. Through O draw line l^\a N 1. ly Then

Zg and V form a right angle (§ 502). Hence ?' -L iV (§ 479).

But from P there can be but one perpendicular to N.

Hence, I coincides with V , and we have I lying wholly

in M and 1 1. \.

(2) Let the point P be in the intersection Zj.

The proof is similar to case (1). Give it in full.

506. EXERCISES.

1. Show that if in the figure of § 505, MXN and Z is a line in M
such that I X h, then I X N.

2. Through a given point, on or outside of a given plane, how
many planes can be constructed perpendicular to the given plane ?
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507. Theorem. If a plane is perpendicular to each

of two planes, it is perpendicular to their line of inter-

section.

Given : Q 1 M and Q^N and / the intersection of M and N,

To prove that Q ± I.

Proof: From a point P common to M and N draw a line

Then V lies wholly in both M and N. (Why ?)

Hence, V and I are the same line.

That is, 11. (), ov Q A. I.

508. EXERCISES.

1. Any plane ± to the edge of a dihedral angle is J. to each of its

faces.

2. If three lines are X to each other at a common point, tlien each

is A- to the plane of the other tw o.

3. Through a given line in space pass a plane -L to a given plane.

IIow many such planes can be constructed?

.SuiKiESTioN. From some point in the given line draw a line ± to

tlie given plane. Then use § ."lU:).

4. What is the answer to the question in Ex. 3 in ease the given

line is perpendicular to the given plane?

5. Throiii;]i :i given point in spaee pass a plane J. to eaeh of two
given planes. How many ,sueh can bo passed?

Sr(i(iKs 1 iiiN. Consider tlie relation of the required plane to the

inter.sectidn of the two given planes.

6. What is the answer to the qnestion in Kx. ."> in case the given

[loint is on the line of interseetion of the given planes?
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509. Definition. A plane through the edge of a dihedral

angle bisects the angle if it forms equal angles with the

faces of that angle.

510. Theorem. The locus of all points in space

equally distantfrom the faces of a dihedral angle is the

half-plane bisecting the angle.

A
Given : the half-plane P bisecting the dihedral Z M-AB-N.

To prove : (1) that any point £ in P is equally dis-

tant from M and N, and (2) that any point which is

equally distant from M and N lies in P.

Outline of proof : (1) Draw EG A.M and ED ± N. Then

the plane CED cuts ii/, N, and P in OG, OD, and OE re-

spectively and is J- to both M and N. (Why ?)

Then Z EOD is the measure of P-AB-N and Z EOC is

the measure of P-AB-M. (Why?)
Now use A EOG and EOD to show that EC= ED.

(2) Take E any point such that EG= ED, and let p' be

the plane through AB containing E. Now argue as in

§ 125, to show that Z EOD= Z EOC, and hence that p' is

the same plane as the bisector plane P.

Give the proof in full.

511. Corollary. If from any point within a dihe-

dral angle perpendiculars are drnivn to the faces, the

angle between the perpendiculars is the supplement of

the dihedral angle.
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512, Definition. The projection of a point on a plane is

the foot of the perpendicular from the point to the plane.

The projection of any figure on a plane is the locus of

the projections of all points of the figure on the plane.

513. Theorem. Tlie projection of any straight line

on a plane is a straight line in that plane.

^ B
A

D

Outline of proof: Pass a plane through the given line

andJ_ to the given plane. Is this always possible ? (Why?)
Now show that the intersection of these two planes con-

tains the projection of every point of the given line upon

the given plane.

514. Theoreji. The acute angleformed hy a straight

line ivith its oivn projeetion on a plane /> the least angle

lohich it makes with any line in that plane.

Outline of proof: Let BC l>e tlie projection of AB, and

let BB be any other line in 3/ through B.

Lay off BD = BC and draw AD.

In the A ABD and ABC show that /^ ABD > Z ABC.

515. Definition. The angle between a plane and a line

oblique to it is understood to mean tlie ariite any;le furmed

by the line and its projci^lion upon the plane.
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516, Problem. To construct a commonperpendicular
to two non-parallel lines in space.

_ C 7

Given : 1^ and 4 two non-parallel lines, and also non-intersecting.

To construct a line BC perpendicular to each of them.

Construction : Through A, any point in l^, draw l^ II ly

Let M be the plane determined by Zg and l^.

Through Zj pass a plane P ± Jf and meeting M in l^.

At B the intersection of l^ and l^, in the plane P, erect

BO ± M.

Then BC is the required perpendicular.

Proof : Give the proof in full.

517. EXERCISES.

1. If a line is J- to a plane, its projection on that plane is a point.

2. If a line-segment is
II
to a plane, show that its projection is a

segment equal to the given segment.

3. If a line-segment is oblique to a plane, show that ^its projection

is less than the given segment.

4. If a line-segment 6 in. long makes an angle of 30° with a plane,

find the length of its projection on the plane. If it makes an angle

of 45°
; an angle of 60°.

5. If two parallel lines meet a plane, they make equal angles with

it. (Why?) Is the converse true?

6. If a line cuts two parallel planes, it makes equal angles with

them. (Why?) Is the converse true?

7. If two parallel line-segments are oblique to a plane, their pro-

jections on the plane are in the same ratio as the given segments.
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POLYHEDRAL ANGLES.

518. Definitions. Given a convex polj'gon and a point P
not in its plane. If a half-line I witli end point fixed at P
moves so that it always touches the poly^-^iin and is made

to traverse it completely, it is said to generate a convex

polyhedral angle.

The fixed point is the vertex of the polyhedral angle,

and the- rays through the ver-

tices of the polygon are the edges

of the polyhedral angle.

Any two consecutive edges de-

termine a plane, and the portion

of such a plane included between

these edges is called a face of the

polyhedral angle.

The plane angles at the vertex

are called the face angles of the polyhedral angle. A poly-

hedral angle having three faces is called a trihedral angle.

519. Theorem. If two trihedral anijlcs hace the three

face angles of the one equal rcspectiiuhj to the three

face angles of the other, the dihedral angles eipposite the

equal face angles are equed.

Given : the trihedral angles P and P'. in which Z a .
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To prove lliat the pairs of dihedral angles are equal whose
edges are PA and p'a', PB and p'b', PC and p'c'.

Proof : Let p and p' be cut by the planes ABC and

a'b'c', making PA = PB = PC = p' A' = p'b' = P'c'.

On the edges PA and p'a' lay off AF= a'f', and through

F and f' pass planes J. to PA and p'a' respectively.

Let the first plane cut ^C in some point E, and AB in

some point Z), and likewise the second plane cut A'c' and

a'b' in corresponding points E' and n'.

Why must there be such intersection points? Must
they be between A and C, A and B, A' and c', J.' and b'

respectively ?

Then ^ DFE and d'f'e' are the measures of the dihedral

angles whose edges are AP and A'p', and these are to be

proved equal to each other.

Now use the pairs of face triangles APB, a'p'b', etc., to

show that A ABC ^ A a'b'c'. Then show in order

(1) aadf^aa'd'f'. (2) aaef^aa'e'f'.
(3) A AVE ^ A a'b' E'. (4) ADFE ^Ad'f'e'.

In like manner the other pairs of dihedral angles may be

proved equal to each other.

520. Two polyhedral angles are congruent if they can be

so placed that their vertices and edges coincide.

A polyhedral angle is read by naming the vertex and one letter in

each edge, as P-ABCDE, or by the vertex alone where no ambiguity

would arise.

521. Corollary. If tioo trihedral angles have their

face angles equal each to each and arranged in the same

order, they are congruent.

For by the theorem their dihedral angles are equal each to each,

and if the equal faces are arranged in the same order, the trihedral

angles may be made to coincide throughout.
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SUMMARY OF CHAPTER VIU.

1. Describe the various ways of determining a plane.

2. State the axioms used in this chapter.

3. State the definitions and theorems on perpendicular lines and

planes.

4. State the definitions and theorems on parallel lines and planes.

5. Name some applications in connection with perpendiculars

and parallels which have impressed you.

6. State some facts in regard to perpendiculars and parallels in

the plane which do not hold in space.

7. Give the definitiong and theorems on dihedral angles.

8. What theorems on perpendicular planes are proved in connec-

tion with dihedral angles?

9. Give the definitions and theorems on projections used in this

chapter.

10. Give the definitions and theorems on polyhedral angles thii<

far used.

11. Make a list of all the loci problems in this chapter.

12. Study the following collection of problems and applications,

and then make a collection of those which impiess you as most inter-

esting or useful. Include in this list any applications in the chapter.

PROBLEMS AND APPLICATIONS.

1. A Christmas tree is made to stand cm a cross-shaped ba^f. If

the tree is perpendicular to each piece of the cross is it j^rpeiidicular

(o tlie floor?

2. If the projections on a plane of a number of points outside the

plane lie in the same straii^ht line, do the points tlieniselves neces-

sarily lie in a straight line?

3. If A ,
/.', and C do not lie in the same line, and if their projections

on a plane .1/ do lie in a straight line, what is the relation of the

planes .I/and AliCl

4. Is it possililo to project, a circle upon a plane so that the projec-

t ion shall l>e a, straight line-segment? If so, how must the circle and
tlie plane be related ?
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5. How many planes may be made to pass through a given point

parallel to a given line ? Discuss the mutual relations of all such planes.

6. Through a point P construct a line meeting each of two lines

l^ and Zj.

Suggestion. Let M and N be the planes determined by P and /j

and by P and l^. Is this construction always possible ?

7. Given a plane M and lines /,, l^-

Construct a line perpendicular toM and

meeting both Z, and l^.

Suggestion. Project l^ and Z2 on M.

8. A line ? is parallel to a plane M,

and lines Zj and I2 in i1/ are not parallel

to I. Show that the shortest distance

between I and Z, is equal to the shortest

distance between I and l^.

9. Prove that the planes bisecting

the dihedral angles of a trihedral angle

meet in a line.

10. Find the locus of all points equidistant from the planes deter-

mined by the faces of a trihedral angle.

11. Find the locus of all points equi-

distant from the edges of a trihedral

angle.

Suggestion. On the edges lay off

PA = PB = PC. Let O be equidistant

from A, B, and C. Then any point Q
in PO is equidistant from the edges.

12. Planes determined by the edges

of a trihedral angle and the bisectors of

the opposite face angles meet in a line.

Suggestion. If, in the figure of Ex. 9, PA = PB = PC, and if

PE, PF, PG bisect the face angles, then E, F, G are the middle

points of the sides of the triangle A BC. Now apply the theorem that

the medians of a triangle meet in a point.

13. Planes perpendicular to the faces of a trihedral angle and

bisecting its face angles meet in a line.
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IP'B

14. Show how to locate a point which is at a distance of 2 feet

from each face of a trihedral angle.

Suggestion. Puss a plane parallel to each face of the trihedral

angle and at a distance of 2 feet from it.

15. Show how to locate a point which is 2 feet from one face of a

trihedral angle, 3 feet from the second, and 4 feet

from the third.

16. Find the locu.s of a point in space such that

the difference of the squares of its distances from t

two fixed points is constant.

Suggestion. First solve the problem in the plane, obtaining as the

required locus the line PP'. Then rotate the figure about the line AB
as an axis. See page 227, Ex. 7.

17. Find the locus of all points in a, plane

at which lines from a fixed point P not in the

plane meet the plane at equal angles.

18. Find the locus of all points which are at

the same fixed distance from each of two inter-

secting planes.

Son'TioN. Pass a plane perpendicular to the intersection of the

two given planes, making the plane cross

section shown in the figure. Draw the

bisector of Z AOB and a line at the re-

quired distance a from OA and parallel p^
to it.

Then P is at the distance a from each

of the lines OA and OB. In the same

manner three other such points, P^tP^- Pr,^

are constructed.

Now let this figure move through space iiarallil to itself, the point

O moving along the intersection of the given planrs. The points

P, /',, /'.„ P, will tlius move along titiaight lines whii-h constitute the

required locus.

19. Find the locus of points 3 feet from one of two intersecting

plain's and (i feet from tlie other.

20. It is reijiiii-ed that a series of eleetrie lights sliall be 7 feet

above tlic floor of a romn and 3 (eil frcun the walls. Find the locus

of all points at which such lights may be placed.
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21. Find the locus of all points in space equally distant from each

of two intersecting straight lines.

22. Find the locus of all points in space equally distant from two
parallel lines.

23. Given two points A and B on the same side of a plane M.
Determine a point P in M such that AP + PB shall be a minimum.

Suggestion. Pass a plane through A and B perpendicular to M,
and proceed as in Ex. 8, page 200.

24. Show that if the edge of a dihedral angle is cut by two parallel

planes, the sections which they make with the faces form equal angles.

25. Show that if all edges of a trihedral angle are out by each of a

series of parallel planes, the intersections form a series of similar tri-

angles.

26. Find the locus of the intersection points of the medians of the

ti'iangles obtained in Ex. 25. Also of the altitudes.

27. If three planes are so related that the segments intercepted on

any transversal line are in the same ratio as the

segments intercepted on any other transversal / ^ M

I

then the planes are parallel.

Suggestion. Let M, N, Q be the three / ^':^Ag^c/ nJKI^planes. From A any point in M draw three

lines, not in the same plane, meeting N in A', ^^—^c" QJ
B', C, and Q in A", B", C"- Use the hypothe-

sis to show that A'B' II A"B" and C'B' II C'B". Hence Q II N.

Similarly show that M II N.

28. A segment AB of fixed length is free to move so that its end-

points lie in two fixed parallel planes. Find the locus of a point C on

^B if ^ C is of fixed length.

29. If the projections of a set of points on each of two planes not

parallel to each other lie in straight lines, show that the points them-

selves lie in a straight line.

30. If l\ and Z2 are not parallel and non-intersecting, show that

there is only one plane through h parallel to l^.

31. Show that if two lines are not parallel and do not lie in the

same plane, they have only one common perpendicular, and that the

shortest distance between the lines is measured along this perpen-

dicular.



CHAPTER IX.

PRISMS AND CYLINDERS.

522. Definitions. Any portion of a plane entirely bounded

by line-segments or curves is called a plane-segment.

E.g. the portion of the plane M inclosed by the __ ,

triangle ABC is the plane-segment ABC. / /^\ „/

If the boundary is composed entirely of ^ '

straight line-segments, the inclosed portion is called a

polygonal plane-segment.

523. A polyhedron is a three-dimensional figure formed

by polygonal plane-segments which entirely inclose a

portion of space.

The line-segments which are common to two

polygons are tlie edges of the polyliedron.

The plane-segments inclosed by the edges

are the faces, and the intersections of the edges

are the vertices of the polyliedron. .V pol}--

hedron is convex if every section of it made by a plane is

a convex jiolygon.

Note. The word polyhedron, as here defined, means the surface

inclosing a portion of space and not tliat portion of space itself.

However, it is sometimes eoiiveuient to use the v, old pol i/hedron when

referring to the inclosed space. Thus, we speak of dividing a poly-

hedron into oilier iiolyheclnms when, strictly, we mean that smaller

polylieilroiis are constructed which divide into parts the space inclosed

in the given polyhedron.

In the same manner the word poli/i/mi is sometimes used to indicate

the plane-segment lioinuled by it. and the word aiii/le to indicat*? the

part of the plaue within il.

310
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Thus, a face of a polyhedron is sometimes called a polygon, and the

face of a polyhedral angle is sometimes called an angle.

In all cases the context will clearly indicate what is meant.

524, Definitions. Given a convex polygon and a straight

line not in its plane. If the straight

line move so as to remain parallel to

itself while it always touches the /

polygon and is made to traverse it '/

completely, the line is said to generate

a closed prismatic surface.

The moving line is the generator of

the surface, and the guiding polygon

the directrix. Tlie generator in any

one of its positions is an element of

the surface.

A cross section of a prismatic surface is made b}- any plane

cutting all its elements.

\

525. A prism is that '

part of a closed prismatic

surface included between

two parallel cross sections,

together with the inter- ^
_cepted plane-segments.

"

The parallel plane-segments are the bases of the prism,

and the portion of the prismatic surface between the

bases is called the lateral surface of the prism.

The lateral surface is composed of par-

allelograms (why ?), and these are called

the lateral faces of the prism. The sides of

these parallelograms, not common to the

bases, are the lateral edges of the prism.

A right section of a prism is made by

a plane cutting each of its lateral edges, extended if neces-

sary, and perpendicular to them.
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526. Prisms are classified according to the form of their

right sections, as triangular, quadrangular, pentagonal, hex-

agonal, etc. A regular prism is one whose right section

is a regular polygon.

A prism is a right prism if its lateral edges are perpen-

dicular to its bases ; otherwise it is oblique.

The altitude of a prism is the perpendicular distance

between its bases. The altitude of a right prism is equal

to its edge.

The lateral area of a prism is the sum of the areas of its

lateral faces.

The total area is the sum of its lateral area and the area

of its bases.

THEOREMS ON PRISMS.

527. Theorem. The cross sections of aprimn made

hy parallel planes are congruent polygorn.

Given a prism cut by two parallel planes forming the polygons

ABCDE and A'B'CUfE'.

To prove that abcde ^ a'b' c'd' Ef

.

Outline of proof: (1) Show that ab = a'b\ BC=B'd,
etc., by proving that ABB' a' , BCC'b', etc., are ^.

(2) Show that Zaiu'= Za'b'c', Z. BCD= Z b'c'b\ etc.

(3) Hence, show that ABODE and a'b'c'd'e' can be

made to coincide.
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528. Theorem. JTie lateral area of a prism is'equal

to the product of a lateral edge and the perimeter of a

right section.

Suggestion. Show that the lateral edges are mutually-

equal and that the area of each face is the product of a

lateral edge and one side of the right-section polygon.

Complete the proof.

Note. The form of statement in this theorem is the usual

abbreviation for the more precise form

:

The lateral area of a prism is equal to the product of the numerical

measures of a lateral edge and the perimeter of a right section.

Similar abbreviations are used throughout this text.

529. Corollary. The lateral area of a right prism

is equal to the product of its altitude and the per-

iineter of its base.

530. Definitions. A polyhedron which is a part of a

prism cut off by a plane meeting all the lateral edges,

but not parallel to the base, is called a trun-

cated prism.

Two polyhedrons are said to be added when

they are placed so that a face of one coincides

with a face of the other, but otherwise each

lies outside the other.
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531. Theorem. Tioo iirisms are congruent if three

faces having a rowvian vertex in flu; one eire eemgruent

respectireh/ to three faces haeing a eovivcon vertex in

the other, and sinularlg placed.

l'

F, K'

B G B' C

Given the three faces meeting at B in prism P congruent re-

spectively to the three faces meeting at B in prism P, and

similarly placed.

To prove tliat P can be made to coincide with P'

.

Outline of proof: Trihedral angles B and b' are con-

gruent. (\Miy?)

Now apply the two prisms, making B coincide with b',

and thus show in detail that

:

(1) The lower bases coincide.

(2) The lateral faces at B and b' coincide.

(3 ) The upper bases coincide.

(4) All the lateral faces coincide.

Hence P and P' cnincide throughout.

532. Corollary. Tiro right prisms arc congruent

if they have eongrnent bases and cepial attitude.

533, ( "oi;oLi,Ai!Y. Two truncated prisms are con-

gruent if the faces forming a trihedral angle of (oie are

et/n(d resjn'ctiri'Ii/ to the eorresj)onding faces of the ot/ier.
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534. Definitions. A parallelopipecl is a

prism whose bases, as well as lateral faces,

are parallelograms.

A rectangular parallelopiped has all its

faces rectangles.

A cube is a parallelopiped whose faces

are all squares.

535. Theorem. Any two opjjositefaces

of a parallelojxiped are piarallel and con-

gruent.

r

Suggestions. Consider the opposite faces ABFE and

DCGH.

(1) Show that the sides of the angles ABF and BCG
are parallel, and hence the planes determined by them are

parallel.

(2) Show that these faces are congruent.

In like manner argue about any other pair of opposite

faces.

536. EXERCISES.

1. Can a parallelopiped be a i-ight prism without being a, rectan-

gular parallelopiped ? Illustrate.

2. Show that in a rectangular parallelopiped each edge is perpen-

dicular to all the other edges meeting it.

3. Is it possible to construct a prism which has no right section

according to the definition of § 525?



316 SOLID GEOMETRY.

4. Show that any section of a parallelo- B R
piped made by a plane cutting four parallel

edges is a parallelogram.

5. A section made by a plane passed

through two diagonally opposite edges of a

parallelopiped is a parallelogram.

E.g. the section through DH and BF
in the figure of Ex. 4.

6. Sliow that any two of the four diagonals of a parallelopiped

bisect each other.

E.g. AG and CE in the figure. Make
use of the preceding example.

7. Show that the diagonals of a rec-

tangular parallelopiped are all equal to

each other.

8. Show that the sljuare on the diag-

onal of a rectangular parallelopiped is equal

to the sum of the squares on the sides

meeting at a vertex from which it is drawn.

E.g. in the figure of Ex. 6,

.

W' =AC^ + CG' = AB^ + BC^ + CG^-

9. Find the ratio of the diagonal to one edge of a cube.

10. Find the edge of a cube whose diagonal is 14 inches. Find

the diagonal of a cube whose edge is 16 inches.

11. Find a diagonal of a rectangular parallelopiped whose edges

are 6, 8, and 10 inches respectively.

12. Are the diagonals of a cube perpendicular to each other?

13. Tf two diagonals of a rectangular parallelopiped meet at right

angles, and if two of its faces are squares, find the ratio of the sides of

the remaining faces.

14. If two .congruent right prisms whose bases are equilateral tri-

angles are placed logctlier so as to form one prism whose base is a

parallclunraMi, comjiare the lateral area of the prism so formed with

the sum of the lateral areas of the original prisms.

15. A riglit prism whose bases are regular hexagons is divided into

six prisms whose liases are equilateral triangles. Compare the lateral

area of the original prism with the sum of the lateral areas of the

resulting prisms.
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16. If the perimeter of a right section of a prism is 24 inches and

its altitude 6 inches, what is the smallest possible lateral area? What
can be said about the largest possible area of such a prism ?

17. Any section of a prism made by a plane parallel to a lateral

edge is a parallelogram.

18. Show that for every prism there is at least one set of parallel

planes each of which cuts the prism in a rectangular section. See

suggestions Ex. 7, p. 327.

VOLUMES OF RECTANGULAR PARALLELOPIPEDS.

537. Thus far certain properties of prisms have been

studied, but no attempt has been made to measure the

space inclosed by such a solid. For this purpose we con-

sider first a rectangular parallelopiped.

538. Definition. In case each edge of a rectangular par-

allelopiped is commensurable with a unit segment, the

number of times which a unit cube is contained in it is

the numerical measure or the volume of the parallelopiped.

539. In the case just described in the

definition, the volume is easily com-

puted.

E.g. if in the figure one edge ^C is 4 units,

and an adjoining edge AB is 3 units, then a

cube as AK, whose edge is one unit, may be

laid ofE 4 times along AC and a tier of 3 • 4= 12

such cubes will adjoin the face AD, while 5

such tiers will exactly fill the space within the solid. That is,

5 • 3 • 4= 60 is the number of cubic units in the solid.

Again, if the given dimensions are 3.4,. 2.6, 4.5 decimeters re-

spectively, then unit cubes, with edge one decimeter, cannot be made

to fill exactly the space inclosed by the figure, but cubes with edge

each one centimeter will do so, giving 34, 26, and 45 respectively along

the three edges of the solid.

Hence the volume is

34 . 26 45 = 39,780 cubic centimeters, or 39,78 cubic decimeters.
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540. Axiom XIX. Anij rrrtangular parallelopiped in-

closes a flcfiiiitc volume which is greater than that

of another, provided no dimension of the first is less

fh.rni the rori'espond/nr/ dimension of the second, and

at least one dimension is greater.

541. Theorem. The volume of any rectangidar par-

allelopiped is equal to the product of the numerical

measures of its linear dimensions.

Proof: Case 1. If each, dimension is commensurable with

the unit segment.

This is tiie case treated in § 539.

A a B

T'ase 2. If tiro dimensions are commensurable with the

unit sei/ment and the third is not.

\>y Axiom XIX the parallelopiped has a definite volume r.

Suppose tills is not equal to abc and that r< abc.

Let c' lie a number such that V = abc' . Then c'<c.

On BD lay off BH = c'

.

Divide the unit set^'inent intii equal parts, each less than

IID, and lay oFf oni^ of these ])arts sueeessivoly on BD,

reaehing a point A'hi'tweeu //and D. Oenole the leng-th

t)[ BK hy '•"and pass a plane through K parallel to ABE.
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By Case 1 the volume of the parallelopiped AL is aho".

By hypothesis, F= abo\ but abo' < abo", since c' < c".

Hence, F< aSc". (1)

But by Ax. XIX, V > abo". (2)

Hence, the assumption that V < abo cannot hold.

In the same manner show that V > abo cannot hold.

Hence, we have V = abo.

Case 3. If one dimension is commensurable with the

unit segment and two are not.

Case 4. If all three dimensions are incommensurable

with the unit segment.

The proofs in these cases are similar to .he above.

Thus, in Case 3, when b and o are both incommensu-

rable with the unit segment, we obtain tlie parallelopiped

AL, two of whose dimensions a and c" are commensu-

rable with the unit. Hence, by Case 2, its volume is abo".

Then the argument is identical with that given before.

Hence, in all cases V= abc.

542. Corollary 1. The volume of a rectangular

parallelopiped is equal to the product of the numerical

measures of its base and altitude.

643. Corollary 2. If tioo rectangularparallelopipeds

have tioo dimensions respectively equal to each other,

their volumes are in the same ratio as their third di-

mensions ; and if they have one dimension the same in

each, their volumes are in the same ratio as the products

of their other two difmensions.

For if V and V are the volumes, and a, b, c and a', V, c' the dimen-

, , F n -b c a -c , , , ,
F o • 6 . , ,

sions, then —, =——-

—

- = —-db—b andc = c'; or —,=
,

if c = c'.

I' a • b' c' a' V a'-b'
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VOLUMES OF PRISMS IN GENERAL.

544. From the formula for rectangular parallelepipeds,

Volume = length x width x altitude, or V= abc

we deduce the volumes of prisms in general by means of

the principle

:

Two polyhedrons are equal (that is, have the same
volume) if they are congruent, or if they can be divided

into parts which are congruent in pairs.

The sign = between two polyhedrons means that they

are equal in volume. The word equivalent is sometimes

used to mean equal in volume.

545. Theorem. The volume of an oblique prism is

equal to that of a right prism having for its base a

right section of the oblique prism and for its altitude a

lateral edge of the oblique prism.

Given the oblique prism AD', with

FGHJK a right section, and F'G'S'fK'

a right section of the prism extended

80 that the edge AA' = KK'.

To prove that the oblique prism

ad' has the same volume as the

right prism KH'.

Outline of proof: Show that

(1) a^cde^a'b'c'd'e'
;

(2) ABFK ^ A'b'f'k' ;

(3) KAKJ ^K'a'k'j'.

Ilcneo, liy § 5;5'5 AH and a'ii' are cungruent

Now the f^ivcn prism AD' = AB + Kn'
and the right prism KII' = A'u' + KD'.

Honce, AD' = KU' . ( W hy ?

)

(§ o30)
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546. Theorem. TTie volume of any parallelopiped is

equal to the product of its base and altitude.

Given the oblique parallelopiped AK, with base b and alt. h.

To prove that its volume is equal to 5 • A.

Proof : Considering face AL as the base of prism AK, pro-

duce the four edges parallel to AB, and lay off a'b' = AB.

Through A' and b' erect planes -L to Ab', thus cutting

off the right prism A'k' with a'l' as one base.

Now considering c'l' as the base of prism a'k', produce

the four edges U to c'b' and lay off c/'b" = c'b'.

At c" and b" erect planes X to c'b", cutting off the right

prism a"k", which is a rectangular parallelopiped.

Then show that (1) h = h' = h"; (2) b = b' = h"

;

(3) prisms AE, a'k', A"k" are equal (§ 545).

But prism a"k" = b" • h". (Why?) Hence, prism

AK=b- h.

Write out this proof in full.
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549. CoEOLLARV 2. Any tivo prisms of equal alti-

tudes have the same volumes if their bases are equal.

550. CoKOLLARY 3. I%e volumes of tioo prisms have

the same ratio as their altitudes if their bases are equal;

and the same ratio as the areas of their bases if their

altitudes are equal.

551. EXERCISES.

1. The proposition that the volume of any prism is equal to the

product of its base and altitude is of great importance. "What theo-

rems of this chapter were used directly or indirectly in proving it ?

2. If the base of a prism is 36 square inches and its altitude 12

inches, what is its volume?

3. If the perimeter of the base of a prism and the length of a

lateral edge are knovfn, is the lateral area thereby determined ?

4. If the area of the base and the length of an edge are known,
can the volume be found ?

5. What dimensions of a prism must be known in order to deter-

mine its lateral area by means of the theorems of this chapter? What
dimensions must be known to determine its volume ?

6. Parallel sections of a closed prismatic surface are congruent

polygons. Prove.

7. Find the edge of a cube if its total area is equal numerically

to its volume, an inch being used as a unit.

8. A side of the base of a regular right hexagonal prism is 3

inches. Find its altitude if its volume is 54'v/3 cubic inches. What
is the total area of this prism?

9. A side of one base of a regular right triangular prism is equal

to the altitude of the prism. Find the length of the side if the total

surface is numerically equal to the volume.

10. Solve the preceding problem in case the prism is a regular

right hexagonal prism.

11. The volume of a regular right prism is equal to the lateral

area multiplied by half the apothem of the base. Prove.
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of which is

^3-

CYLINDERS.

552. Definitions. A surface no segment

plane is called a curved surface.

E.g. the surface of an eggshell or of a stovepipe is a curved surface.

A closed plane curve is one which can be traced continu-

ously by a point moving in a plane

so as to return to its original posi-

tion without crossing its path.

A convex closed curve is one

which can be cut by a straight line in only two points.

553. If a straight line moves so as to

remain parallel to itself, while it always

touches a closed convex curve and is

made to traverse it completely, the line

is said to generate a closed convex cylin-

drical surface. The moving line is the

generator, and the guiding curve the di-

rectrix. The generator in any one of

its positions is an element of the surface.

A cross section of a cylindrical sur-

face is made by a plane cutting all its elements.

554. A cylinder is that part of a closed cylindrical sur-

face included between two parallel cross

sections, together with the plane-segments

thus intercepted. The plane-segments are

the bases of the t'ylinder, and the part of

the cylindrical surface between the bases

is tho lateral surface.

The portion of the generating line in any

position which is included between the bases is an element

of tho cylinder. The altitude of a cylinder is the perpen-

dicular distance between its bases.
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A right section of a cylinder is made by a plane cutting

each of its elements at right angles.

A circular cylinder is one whose right section is a circle.

The radius of a circular cylinder is the radius of its

right section.

A cylinder whose bases and right sections are circles is

called a right circular cylinder. A right circular cylinder

is called a cylinder of revolutions, since it

may be generated by revolving a rectangle

about one of its sides as an axis. The side

opposite the axis generates the lateral sur-

face, and the sides adjacent to the axis

generate the bases.

555. Theorem. If a plane contains an element of a

cylinder and meets it in one other point, then it contains

another element also, and the section is a parallelogram,.

Given the cylinder AC and a plane containing the element AD
and one other point as B.

To prove that it contains another element BC and that

ABCD is a parallelogram.

Proof : Through B pass a line BC II AD.

Then BC is an element of the cylinder. (Why ?)

Also BC lies in the plane ABD.

Now show that ABCD is a parallelogram.

What is the section ABCD if AC is a right cylinder?
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556. Definition. If a plane contains an element of a

cylinder and no other point of it, the plane is said to be

tangent to the cylinder, and the element is called the ele-

ment of contact.

557. Theorem. The bases of a cylinder are con-

gruent plane-segments.

Given a cylinder with the bases b and 6'.

To prove that b ^b'.

Proof : Take any three points A, B, C in the rim of the

base b and draw the elements at these points, meeting the

base b' in C, E, F.

Show that A ABC^ A DEF.

Now, while the elements AD and BE remain fixed, con-

ceive CF to generate the cylinder.

Evidently A ABC ^ A DEF in every position of CF.

Hence, if base b' is applied to base b with these triangles

coinciding in one position, they will coincide in every

position corresponding to the moving generator.

That is, b ^ b'.

558, EXERCISES.

1. Sliijw t]ial right sections cif any cylinder are congruent, and

any section iiarallel to the base is congruent to the base.
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2. If two intersecting planes are each tangent to a cylinder,

show that their line of intersection is parallel to an element of the

cylinder and also parallel to the plane containing the two elements

of contact.

3. What is the locus of all points at a perpendicular distance of

2 feet from a given line ?

4. If the section of a cylinder made by every plane parallel to an

element of it is a rectangle, what kind of cylinder is it ?

5. If the radius r of a right circular cylinder Is equal to its alti-

tude, find the distance from the center of the base to a plane whose

intersection with the cylinder is a square.

6. Roll a sheet of paper so as to form a circular cylinder, that

is, one whose right section is a circle. Now determine by inspection

the shape of the base if the paper is cut so as to let the cylinder stand

in an oblique position. Also deform the cylinder so as to make the

oblique base circular, and ,then determine the shape of the right

section.

7. Show that for every cylinder there is at least one set of parallel

planes which cut the cylinder in rectangular sections.

Suggestion. Project an element on the plane of the base, and

draw lines in the base at right angles to this projection. Through

these lines pass planes parallel to an element.

8. Is a polygon circumscribed about a convex closed curve neces-

sarily a convex polygon ? See § 160.

9. Is a polygon inscribed in a convex closed curve necessarily

convex? (Note that a broken line AB, BC,

CD, DE, EA which cuts itself ag shown in the

figure is not here regarded as a polygon.) The

answers to Exs. 8 and 9 limit the polygons to

be used under Ax. XX to convex polygons.

Hence it is not necessary to state in that

axiom that these polygons must be convex.

10. If polygons other than convex are permitted, is it possible to

construct one within a convex closed curve whose perimeter is greater

than the length of the curve ? Can such polygons be inscribed in the

curve?
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MEASUREMENT OF THE SURFACE AND VOLUME OF A CYLINDER.

559, Thus far in geometry the word area has been used

in connection with plane-segments only. In some cases

the computation of an area has been possible by an

approximation process only, as in the case of some rec-

tangles and of tlie circle.

In the case of any curved surface it is evident that ap-

proximate measurement is the only kind possible in terms

of a plane area unit, since no such unit, however small,

can be made to coincide with a segment of a curved sur-

face.

Theorems concerning the surface and the volume of a

cylinder are based upon the following definitions and as-

sumptions :

560, Axiom XX. Any convex closed curve has a defi-

nite length and incloses a definite area, ichich are

less rcHpcrfively than the jjcrimeter and area of any

circumscribed polygon and greater than tliose of any

inscribed polygon.

Also the perimeter and area of either the inscribed

or the circumscribed i^olygon may be made to difer

from those of the curve by as little as ice please by

taking all the sides sufficiently small.

561, Definitions. A prism is said to be inscribed in

a cylinder if its lateral edges are elements of the cylin-

der, and their bases lie in the same

planes.

A prism is said to be circumscribed

about a cylinder if its lateral f^ucs are

all tangent to the lyliiuk'r, and their

bases lie in the same planes.
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562 Axiom XXI. The lateral surface of a convex

cylinder has a definite area, and the cylinder incloses a

definite volume, lohich are less respectively than those

of any circumscribed prism, and greater than those of
any inscribed prism.

563. Theorem. The lateral area of a convex cylin-

der is equal to the product of an element and the

perimeter of a right section.

Given a convex cylinder of which L is the lateral area, e an ele-

ment, and p tjie perimeter of a right section.

To prove that L = ep.

Proof : It will be shown that i can be neither greater

than nor less than ep.

First, suppose L < ep.

Let L=eK. Then^<j9. (1)

Now inscribe a cylinder the perimeter p' of whose

right section is greater than K. This is possible by § 560.

Then ep' > eK. (2)

Hence, ep' is greater than the supposed value eK of L.

But this is impossible, since ep' is the area of an in-

scribed prism (§ 562).

Hence, the supposition L < ep leads to a contradiction.

Secondly, the supposition that L > ep may be shown to

be impossible by using a circumscribed prism.

Hence, we have L = ep.

564. Corollary. If r is the radius of any circidar

cylinder, and e is an element, then i = 2 nre.

In the case of a right circular cylinder e = h, the altitude,

and we have i = 2 Trrh.
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565. Definition. Two right circular cylinders are simi-

lar if they are generated by similar rectangles revolving

about corresponding sides.

566. Theorem. The lateral areas or the entire areas

of two similar right circular cylinders are in the same

ratio as the squares of their altitudes or as the squares

of the radii of their bases.

Suggestion. If h and h' are the altitudes, r and r' the

radii, L and i' the lateral areas, and A and A' the total

areas, we are to show that

-^ = i- =^ = ^
L' A' r'2 h"^'

Make use of the following, giving each in detail.

(2) i = 2 TrrA, (2) ^ = 2 7rr(r + K),

h
. HTld I ^ I ^ — ^

h'
(3) - = 77, and (4) -yf-r,--r h' r + w

r

h'

567. Theorem. The volume of an;/ convex cylinder

is equal to the product of its altitude and the area of its

base, or to the product of an clement and the area of its

right section.

Suggestions. (1) If h is tho altitude and b the base,

sliow hy an argument similar to that of § 563, that T', the

volume, can be neither greater nor less than bh.
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(2) If e is an element and c the area of a right section,

give a similar argument to show that F = eo, using § 545.

Give all the steps in full.

568, Corollary. If a cylinder has a right circu-

lar section whose radius is r^ and an element e, then

V=->rrU

If a cylinder has a circular base of radius r^, and an

altitude h, then V = ^rlh.

In the case of a right circular cylinder, n = r-i and h =e. Hence,

the two formulas become identical.

569. Theorem. The volumes of two similar right

circidar cylinders are in the same ratio as the cubes of the

radii of their bases or as the cubes of their altitudes.

Give the proof in full, using suggestions similar to those

given in § 566.

PROBLEMS AND APPLICATIONS.

1. What dimensions of a cylinder must be known in order that its

lateral area may be computed? State fully for different kinds of

cylinders.

2. What dimensions of a cylinder must be known in order that its

volume may be computed ?

3. If the base of a cylinder is a circle with radius 5 inches, find

its volume if the altitude is 8 inches.

4. If the lateral surface of a cylinder and the length of an element

are known, can the perimeter of a right section be found? If the

lateral area is 400 tt, and an element 15, find the perimeter of a right

section.

5. The diameter of a right circular cylinder is 8, and the diagonal

of the largest rectangle which can be cut from it is 16. Find its

altitude.

6. The volume of a right circular cylinder is 128 7r cubic inches

and its altitude is equal to its diameter. Find the altitude and the

diameter.
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7. If the diameter of a right circular cylinder is equal to its alti-

tude, deterinitie the diameter so that the total area of the cylinder is

equal numerically to its volume.

8. Find the diameter of a right circular cylinder if the total area

of the inscribed regular triangular prism is equal numerically to the

volume of the cylinder, the diameter of the cylinder being equal to

its altitude.

9. In the preceding find the diameter of the cylinder if the volume

of the prism is equal numerically to the total area of the cylinder.

10. Solve a problem like Ex. 8 if a regular hexagonal prism is

used instead of a triangular prism.

11. Solve a problem like Ex. 9 if a regular hexagonal prism is

used instead of a triangular prism.

12. A rectangle whose sides are a and b is turned about the side a

as an axis and then about the side b. Find the ratio of the volumes

of the tv^o cylinders thus developed.

13. Compare the total surfaces of the two figures developed in

Ex. 12.

14. Find the diameter of a right circular cylinder if its lateral

area is equal numerically to its volume. Does the result depend

upon the altitude of the cylinder?

15. If the altitude of a right circular cylinder is equal to its

diameter, find the ratio of the numerical values of its total area and
its volume. Does this depend on the radius?

16. A regular octagonal prism is inscribed in a right circular

cylinder whose altitude is equal to the diameter. Find the difference

liutween the volumes of the cylinder and the prism, if a side of the

octagon is i inches.

17. A cylindrical tank S feet in diameter, partly filled with water,

is lying on its side. If the greatest di'p(h of the water is 6 feet,

what fraction of the volume of the tank is

filled with water?

18. In the pri'ci'dini;- problem find the

fraction of the volume nccnineil l)y water if

the width of the toi> <ir the wati'r along a

right cross section of the lank is 4 feet.
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THEOREMS ON PROJECTION.

570. The projection of a line-segment on a given line was
defined in § 512. The length of the projection will now be

computed in terms of the given line-segment.

571. Definitions. The acute angle between a line-seg-

ment and a given line on which it is projected is called

the projection angle. b
L

F G P

E.g. A AFC or its equal ZBAE found by drawing A E II CD.

If I is the length of a line-segment and^ the length of

its projection, then the ratio -2 is called

the cosine of the projection angle.

E.g. in the figure, -2 = cosine Z. BAE.

572. In any right triangle ABC, either

acute angle, as Z. A, is the projection angle between the

hypotenuse and the side adjacent to the angle.

Hence the cosine of an acute angle of a right triangle

is the ratio of the adjacent side to the hypotenuse.

We have already defined the sine of an acute angle of a

right triangle as the ratio of the opposite side to the hypote-

nuse. See § 279.

We now define the tangent of an acute angle of a right

triangle as the ratio of the opposite side to the adjacent side.

Using the common abbreviations, sin, cos, and tan, we

have in the figure :

a . h , . a
sm .4 = -, cos A = -. tan A = --ceo
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673, The sine, cosine, and tangent are of great impor-

tance in many computations. By careful measurement

(and in other ways) 'their values may be computed for

any acute angle, and a table formed, like that on page 885.

E.g. if in the figure of § 572 Z^ =35° (measured with a protractor),

we may measure AC, AB, and BC, and thus compute the ratios

-, -, and -
, and find the values of sin 35", cos 35°, tan 35°.

c c h

^Vith an ordinary ruler it will not usually be possible to make
these measurements with sufficient accuracy to obtain more than one

decimal place.

Draw an angle of 35°, and make the measurements and computa-

tions, using an hypotenuse of various lengths (the longer the better),

and show that the results do not depend upon the length of hypote-

nuse chosen.

574. KXERCISES.

1. Using a protractor, construct angles of 10°, 30°, 50°, 70°, and by
measurement determine the sine, cosine, and tangent of each.

2. Prove that the cosine of any given

angle is the same, no matter what point is

taken in either side from which to let fall

the perpendicular to the other side. Prove

the same for the tangent. -^"^
O^C' B B

3. Show that if the hypotenuse be taken one decimeter in length,

then the length of the side adjacent, measured in decimeters, is the

cosine of the angle, and the length of the side opposite is the sine of

the angle.

4. Show that if the side adjacent be taken one decimeter in

length, the length of the side opposite, measured in decimeters, is the

tangent of the angle.

5. AVithout any direct measurement, show how to compute the
three ratios for each of the angles, 30". 45'\ 60°.

Suggestion. Rfake use of the fact that if one acute angle in a
right triangle is 30", the side oiiposite it is one half the hypotenuse.

6. As the angle is made smaller and smaller, what are the values
approached by tlu' sine, cosine, and tangent?
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7. As the angle is made more and more nearly 90°, what are the

values approached by the sine and cosine ? Discuss this case for the

tangent.

Table op Sines, Cosines, and Tangents.

Ang.
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575. Theorem. The leiujth of Ihe projection of a

liiic-.scgmoit iqjon a (jivca line is eqnnl to the lenritli of

the lina-seg'ment mnltipUed by the cosine of the jjrojec-

tion angle.

Given the projection p of the

line-segment / on the line CD,

with the projection angle A.

To prove that p = I cos A.

Proof : By definition we

have ^= cos A.
I

Hence, p = 1 cos A.

576. EXERCISES.

1. Find the cosines of the angles 35° 30', .54° 15'. 15° 45".

Suggestion. The cosine of 3.5° -W lies between cos 35' and co? 36".

We assume that it lies halfway between these numbers. T\\\< as-

sumption, while not quite correct, is very nearly so for small differences

of angles, as in this case, where the total difference is only one degree.

From the table cos 35° = .SIO, cos 36° = .snO.

The number midway between these is .814, which we take as the

cosine of 3.5° 30'.

This process is called interpolation. A similar process is used for

sines and tangents.

2. Find the tangents of the angles 2^ i20'. 47° 45', 63° 10'.

3. Find the angle whose tangent is 1.74.

Solution. From the table we have tan Ii0' = 1.73 and tan 61°= l.~^0.

IIi'iicc, the required angle must lie between 60'' and 61°. Moreover,

the number 1.71 is iirie seventh Ihe way from 1.73 to I.SO. Ilenoe, we

assume the angle to lie one sexenth the way from lii* to 61°, which

gives 60° -f ^ X 1° = 60°-|-!l' nearly. The required angle is 60° !V.

4. Find the angles whose sines are .27ri ; .674: .137.

5. Find the angles whose cosines are .1110
; .0!U ; .135.
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6. Find the angles whose tangents are .781 ; 1.41 ; 3.64.

Notice that as an angle increases, its sine and tangent

both increase, but its cosine decreases.

7. At what angle with the horizontal must

the base of a right circular cylinder be tilted to

make it "just topple over if its diameter is 6 feet

and its altitude 8 feet?

Suggestion, The center of gravitj' is at the

middle point C of the axis of the cylinder. The
base must be tilted so that the line AC becomes

vertical.

8. The Leaning Tower of Pisa is 179 feet high

and 31 feet in diameter. It now leans so that a

plumb line from the top on the lower side reaches

the ground 14 feet from the base.

At what angle is its side now inclined from

the vertical ? At what angle would its side have

to incline from the vertical before it would topple

over?

9. A four-inch hole is cut in a board, and a ball 8 in. in diameter

is made to rest on it. At what angle

must the board be held so that the ball

will just roll out of the hole '/

Suggestion. The board must be

held so that the line OA becomes ver-

tical ; that is, the board must be tipped

at an angle equal to ZBOA.

10. Using a ball 8 inches in diameter, what must be the radius of

the hole in the board of the preceding problem so that the ball shall

just roll out when the board is inclined

at an angle of 45° to the horizontal?

11. If the figure ABCD-H is a cube,

find each of the following angles: /.ECA,
/.AEC.

Check the results found by using the

fact that the sum of the angles of a tri-

angle is 180".

E
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577, Theorem. The altitude of an oblique prism or

cylinder is equal to an element midtiplied by the cosine

of the angle betiveen the plane of the base and that of a

right section. ^ -^

Given the oblique cylinder with base h and right section c, and

let BE be a perpendicular between the bases.

Consider the plane determined by BE and the element

AB.

This plane is ± to the plane of 6 and also to the plane

ofc. (Why?)
Hence, it is J- to the line of iatersection of the planes of

h and c. (Why?)
Let this plane cut the planes of h and c in GD and FD

respectively, D being the point in their line of intersection.

Then Z B is the measure of the dihedral angle between

the planes of h and c. (Why ?)

To prove that BE = AB cos B.

Proof : We have BE = AB cos Z ABE. (Why ?)

But Zd = Zabe. (.wiiy'O

Hence, BE = AB cos D.

The argument is similar for any oblique prism.

578. Corollary. The diluulral angle between the

planes if t])e lutxe und a right section of an oblique

cylinder or prism- is equal to the angle between an

clement and the altitude.
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579. EXERCISES.

1. Giveu a line-segment 10 inches long. Find the length of its

projection on a plane if the projection angle is 20°. If the angle is

30°, 45°, 60°, 90°, 0°.

2. A kite string forms an angle of 40° with the ground. The
distance from the end of the string to a point directly beneath the

kite is 200 ft. Find the length of the string and the perpendicular

height of the kite.

3. The altitude of an oblique prism is 15 inches. Find the length

of an element if it makes an angle of 45° with the perpendicular

between the bases.

4. A right section of a cylinder makes an angle of 20° with the

plane of the base. Find the ratio between the altitude and an element.

5. Show that the theorem of § 577 holds for the special case of a

right prism or cylinder.

6. Prove that by joining the

middle points of six edges of a cube,

as shown in the figure, a regular

hexagon is formed.

7. Prove that in the preceding

example the plane of the regular

hexagon, KLMNOP, is perpendicu-

lar to the diagonal DF.

8. How large a cube will be re-

quired from which to cut a stopper

for a hexagonal spout, each of whose

sides is 4 inches ? ^

9. In the figure find the angle KQH.

Suggestion. Let a be a side of the cube. Compute KH, KQ, and

HQ in terms a. Note that Z QKH = rt. Z.

10. Find the area of the projection of the hexagon KLMNOP on

the face BCGF. Note that this projection equals the whole square

less ANCO + A KEL. See § 580.

11. Find the area of the hexagon in terms of the side a of the cube.

12. By means of the theorem of § 581 and the results in Exs. 10

and 11 find the dihedral angle formed by the planes BCG and MOK.
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PROJECTION OF A PLANE-SEGMENT.

580. Definition. If from each point in the boundary of

a plane-segment a perpendicular is drawn to a given plane,

the locus of the feet of these perpendiculars will bound a

portion of the plane, which is called the projection of the

plane-segment on the given plane.

E.g. the plane-segment A'B'C in the

plane N is the projection of the plane-

segment ABC from the plane J/ upon N.

The angle of projection is the angle

between the planes M and N. \/'-''''^

581. Theorem. Hie area of the projection of a

plane-segvient on a plane is equal to the area of the

plane-segment multiplied by the cosine of the projection

angle. ,——r-r—-^ b
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Then c is the projection of b upon the given plane, and
•^ 1 = ^ 2 is the projection angle.

We are to show that c — h cos Z 1.

We know that

But

Hence,

That is.

F = ee = hh.

h = e cos Z 2.

ee = he cos Z 2.

e = J cos Z 2 =

(Why?)

J cos Z 1.

Note. The foregoing theorem may be proved directly in case the

plane-segment is a rectangle with one side

parallel to the line of intersection of the two
planes. In the figure let S be the given rec-

tangle and S' its projection, with AB II to the

line of intersection of the planes in which S
and .5' lie, and Z 1 the angle between them.

Then i' = AB BC
and S' = A'B' B'C.

But AB = A'B'

and BE = B'C. (Why?)

But BE = BC- cos Zl
(Why?)

and S'= A'B' -B'C z=AB-BC cos Zl.

That is, S'- = 5 cos Z 1.

In the case of any plane-segment, rectangles may be inscribed in it

in this position and their number increased indefinitely, so that their

sum will approach more and more nearly to the area of the plane-

segment, and in this way it may be shown to any desired degree of

approximation that the projection of a plane-segment equals the given

plane-segment multiplied by the cosine of the projection angle.

582. An important special case of the theorem of § 581

is the area of the figure obtained by projecting a circle

upon a plane not parallel to the plane of the circle.

Definition: The figure obtained by projecting a circle

upon a plane not parallel to the plane of the circle, nor at

right angles to it, is called an ellipse.
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583. Area of the Ellipse. — In the figure two planes, M
and m\ meet in a line PQ. The circle o in 3f has a diameter

AB II pq and a diameter CI) ± Pq.

In projecting the whole figure upon the plane m' the

diameter AB projects into its equal a'b', while CD projects

into C'd' so that c'd'=CD cos Z 1.

By theorem § 581 the area of the ellipse equals the area

of the circle multiplied by cos Z 1.

Hence, vr^ • cos Z 1 is the area of the ellipse.

Butrcos Zl = o'c' and r= o's'. (§575)
Hence, the area of the ellipse is tt • o'c' x o'b'.

The segments A' b' and C'd' are called respectively the

major and minor axes of the ellipse, and o'b' and o'c' the

semimajor and the semiminor axes. These latter are usu-

ally denoted by a and J.

Hence, the area of the ellipse is -n-ab.

Note that when a ;nul b are equal, the ellipse becomes a circle, and
this fonniilii reihices to mi' as it should.

It niuy 1h' 111' interest to note that the problem of finding the length

of the I'Uipse is very much n\ore difficult, and can be solved only by

means of higher mathenudics.
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584. The figure of § 583 may also be regarded as repre-

senting a cylindrical surface of which the ellipse with
center o' is a right section.

It is also true that if we start with a circular cylinder,

that is, one whose right section c is a circle, then every

oblique section of it, as c', is an ellipse.

The minor axis of such an

ellipse will be the diameter /^^-._/__-^
2 r of the circle, and the / J I

major axis 2 r -5- cos Z. 1. / / /

Thus, if a circular cylinder of
A!^

"~~7-- N/
diameter 6 in. is cut by a plane / ^>il.£_-/^--^_^^

making an angle of SO'' with the / -/-,, / ^^~~"~>.,^

right section p, then the section c' \Zy~ e'~Z^ Lj_::s:«.

thus made is an ellipse whose axes

are 6 in. and 6 -^ cos 30= = 6 -^ .866 = 6.93 in. nearly.

Hence, the area of this elliptical section is

TTob = 3.14 X 6.93 x 6 = 130.56 sq. in.

SUMMARY OF CHAPTER IX.

1. Make a list of the definitions on prisms and also a list of those

on cylinders and compare them.

2. Make a list of the theorems on prisms and also of those on
cylinders and compare them.

3. State the axioms of this chapter and note that they all refer

to areas and volumes which involve curved surfaces. Compare these

with the axioms on the circle in Plane Geometry.

4. Make a list of all the formulas given by the theorems and

corollaries of this chapter.

5. Make an outline of the definitions and theorems concerning pro-

jections of lines and surfaces.

6. Explain how the area of an ellipse is obtained either by project-

ing it into a circle or by projecting a circle into it.

7. Make a list of the applications in this chapter which have

appealed to you as interesting or practical or both. Return to this

question, after studying the problems and applications which follow.
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PROBLEMS AND APPLICATIONS.

1. Given a right circular cylinder the radius of whose base is

6 inches. Find the area of an oblique cross section inclined at an

angle of 45° to the plane of the base.

2. Given an oblique circular cylinder the radius of whose right

section is 10 inches. Find the area of the base if it is inclined at an

angle of 60° to the right section.

3. If an oblique circular cylinder has an altitude h, an element e,

radius of right section r, and ^A the inclination of the base to the

right section, express the volume in two ways and show that these are

equivalent.

4. A six-inch stovepipe has a 45° elbow, that is,

it turns at right angles. (The angle CAB is called

the elbow angle.) Find the area of the cross section B
at AB. Likewise if it has a 60° elbow angle.

5. At what angle must the damper in a circular

stovepipe be turned in order to obstruct just half the

right cross sectional area of the pipe?

SuGGESTiox. The damper must be turned through an angle ^ueh

that the area of the projection of the damper upon a right cross section

is equal to half that cross section.

6. The comparatively low temperature of the earth's surface near

the pole, even in summer, when the sun does not set for months, is due
largely to the obliqueness with which tlie sun's rays strike the earth.

Tluit is, a given amount of sunlight is spread over a larger area than

in lower latitudes.

Thus, if in the figure D'C is a horizontal line, and D'D the direc-

linn of the sun's rays, then a beam of light whose right cross section

is A BCD is spread over the rectangle

A'BCD'. In other words, a patch

of ground A'BCD' receives only as

much sunlight as a patch the size of

ABCD receives when tlie sun's ravs

strike it vertically.

Aiv.i AliCD = a.rv:i AliCD'cosZl,
or

area A'BCD'-- arcn.lBC/^x —i

cos Z 1
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Hence, each unit of area in A'BCD' receives cos Z 1 times as much
light as a unit in ABCD.

Hence, to^ compare the heat-producing power of sunlight in any
latitude with that at the place where the sun's rays fall vertically, we
need to know how the projection angle, Z 1, is related to the difference

in latitude of the two places.

7. If Z 1 = 30°, compare the amount of heat received by a unit of

area in ABCD and A'BCD'.

8. What must Z 1 be in order that a unit of ar^a in A'BCD'
shall receive only J as much light as a unit in ABCDl

9. The figure represents a cross section of the earth with an indi-

cation of the direction of the rays of light as they strike it at the

summer solstice "when they are vertical at A, the ti'opic of Cancer. B
represents the latitude of Chicago, Cthe polar circle, and P the north

pole. The angles PDE,
CGF, BKH represent the

projection angle, Z. 1, for

the various latitudes.

Prove that Z PDE =
ZPOK, ZCGF = ZCOK,
ZBKH = ZBOK.

That is, Z 1 for each place

is the latitude of that place

minus the latitude of the

place where the sun's rays are vertical.

10. Find the relative amount of sunlight received by a unit of

area at the tropic of Cancer and at the north pole at the time of the

summer solstice.

Suggestion. The required ratio is = =
.

cos Z 1 cos .661° .399

11. Find the ratio between the amount of light received by a unit

of the earth's area at Chicago and at the tropic of Cancer at the

time of the summer solstice.

12. Find the same ratio for the polar circle and the tropic of

Cancer at the spring equinox, when the sun is vertical over the

equator.

13. Find the same ratio for the equator and Chicago at the winter

solstice when the sun is vertical at latitude 23J° south.



CHAPTER X.

PYRAMIDS AND CONES.

585. Definitions. Given a convex polygon and a fixed

point not in its plane. If a line through the

fixed point moves so as always to touch the

polygon and is made to traverse it completely,

the line is said to generate a convex pyramidal

surface.

The moving line is the generator of the sur-

face, and in any of its positions it is an element

of the surface. The guiding polygon is the

directrix, and the fixed point the vertex. A
pyramidal surface has two parts, called nappes, on op-

posite sides of the fixed' point. Compare definitions in

§ 603.

A polyhedral angle is a pyramidal surface of

oue nappe. See § 518.

586. That part of a pyramidal surface

included between the fixed point and a

plane cutting all its elements, together

with tlie intuioepleil segment of the

piano, is I'allod a pyramid.

The iiiti'icepted plaiio-segment is the base of tlie pyra-
mid, and the part of the pyramidal surface between the
base and the voilex is the lateral surface.

346
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The lateral surface is composed of triangles

having a common vertex at the vertex of

the pyramid, and having as bases the sides /
of the polygonal base. The sides common / ,

to two such triangles are the edges of the \ /

pyramid. * ^
Pyramids are classified, according to the shape of the

base, as triangular, quadrangular, pentagonal, etc.

A pyramid having a triangular base has, in all, four

faces, and is called a tetrahedron. In this case every face

is a triangle, and any one may be taken as the base.

The altitude of a pyramid is the perpendicular distance

from the vertex to the base.

A regular right pyramid, or simply a regular pyramid, is

one whose base is a regular polygon such that the perpen-

dicular from the vertex upon it meets it at the center.

EXERCISE. Show that the faces of a regular right pyramid are

congruent isosceles triangles, and hence have equal altitudes.

The slant height of a regular right pyramid is the alti-

tude of any one of its triangular faces. p

587. Theorem. Hie lateral area of /// '\\
a regular right pyramid is equal to /J '\A \
one half the product of its slant height .L-f't \~\n
and the perimeter of the base. k\1__\/

B C

Suggestion. Calling L the lateral area, s = KP the slant

height, and p = AB + BC + CD + DE + EA, the perimeter,

show that

Z = J sp.
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588. Theorem. If a pyramid is cut by a plane

parallel to the bane r

(1) The edges and the altitude are divided in the

same ratio.

(2) The polygonal section is similar to the hai^e.

(3) The areas of this section and of the base are in

the same ratio as the squares of their perpendicular

distances from the vertex.

Outline of proof : Given ABODE W a'b'c'd'e'.

PM' PA' PB'
(1) To prove that —^— = —^— = , etc.. pass another

PM PA PB
plane through P parallel to the base and then use § 492.

(2) To prove that ABCDE ^ a'b'c' d'e'. we show that

Z A = Z a', Z b = Z b', etc., and also ii-L = i^-!-, etc.
AB BC

(3) C'iiUing the area of the cross section b' and that of

PM
the hasc 6, we are to prove that — =

^ PM'
,1

and for this

we need to show tliat
Ali 1>A PM

(ii\e all the steps in detail.
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589. Corollary. If two pyramids have equal alti-

tudes and bases of equal areas lying in the same plane,

the sections made by a plane parallel to the plane of
the bases have equal areas.

Suggestion. If t and t' are the areas of the section's and
b and b' those of the bases, show by the theorem that

t t'

7 = — , and hence that t = t' ilb = b'.
b b

590. EXERCISES.

1. What is the slant height of a regular right pyramid if its

lateral area is 160 sq. in. and the perimeter of its base is 20 in.?

2. What is the perimeter of the base of a regular right pyramid
if its lateral area is 250 sq. in. and its slant height is 17 in.?

3. How could you find the lateral area of a regular right pyramid?
Of any irregular pyramid? What measurements would be necessary

in each case ? Why are fewer measurements needed in the case of a

regular right pyramid?

4. The base of a regular right pyramid is a regular hexagon

whose side is 8 ft. Find the lateral area if the altitude of the pyra-

mid is 6 ft.

5. The lateral area of a regular right hexagonal pyramid is 48

sq. ft. and the slant height is 12 ft. Find the altitude of the pyramid.

6. The base of a regular right pyramid is a square whose side is

16 ft., and the altitude of the pyramid is 6 ft. B^ind the lateral area.

7. A pyramid with altitude 8 and a base whose area is 36 is cut by

a plane parallel to the base so that the area of the section is 18 sq. in.

Find the distance from the base to the cutting plane.

8. If the altitude of a pyramid is h, how far from the base must a

plane parallel to it be drawn so that the area of its cross section

shall be half that of the base of the pyramid ?

9. In a regular rig^t pyramid a plane parallel to the base cuts it

so as to make a section whose area is one half that of the base. Find

the ratio between the lateral area of the pyramid and that of the small

pyramid cut off by the plane.
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591. Definition. A triangular pyramid is cut by a series

of planes parallel to the base, including one through the

vertex and also the

one in which the base

lies.

Through the lines

of intersection of

these planes with one

of the faces, planes

are constructed par- a
allel to the opposite

edge, thus forming

a set of prisms all lying within the pyramid, as a', h\ e',

in pyramid p', or a set lying partly outside the pyramid,

as a, 6, c, d in pyramid P.

The inner prisms thus constructed are called a set of

inscribed prisms, and the other a set of circumscribed

prisms.

592. Axiom XXII. A pi/ramid has a definite volume

which is less than the comhined volume of any set of

circumscribed prisms and greater than that of any

set of inscribed prisms.

593. EXERCISES.

1. In the figure above prove that prisms d and c' are equal in

volume. Also that c = V, etc.

2. If the area of the base of pyramid P is V2 sq. in., vrhat is the

altitude of prism a if its volume is 1 cu. in.? If its volume is -j^ cu. iu.?

3. If the altitude of the pyramid in the preceding exercise is 16 in.,

into at least how many equal parts must it be divided if the volume
of prism a is to he less than 1 cu. in.? less fflian .01 ou. in.? Is it

possible to divide the altitude of the pyramid int<i a sufficiently large

number of equal parts to make the volume of prism a as small as we
like?
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594. Theorem. If tioo triangular pyramids have

equal altitudes and bases of equal areas, their volumes

are equal.

B B'

Given the prisms P and P, in which PM= P'M, and the bases

ABC and A'^C' have equal areas.

To prove that P and p' have equal volumes.

Proof : Divide PM and p'm' into the same number of

equal parts, and using these division points, construct a

set of circumscribed prisms for P and a set of inscribed

prisms for p'.

Then a' = h, b' = c, c' = d. (See § 549.)

Denote a + b + c+dhj V and a' + b' + c' by f'.

Then 7' = a. (Why?) (1)

If P differs at all in volume from p', let P be the greater,

and let the difference be some fixed number, K, so that

P-p' = K. (2)

But from (1) P — p' <a, since P<V and p' > r'.

Now a can be made less than K by taking the divisions

on PM small enough.

Hence, P — P'<K. (3)

Thus (3) contradicts (2), and hence the supposition

that P and p' differ in volume is impossible.
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595, Theorem. The volume of a triangularpyramid

is one third of the product of its base and allUnde.

Given the triangular pyramid E-ABC. Let h. b, and V be the

numerical measures respectively of the altitude EM, the base ABC,

and the volume.

To prove that v = lbh.

Proof: Construct on the base ABC a triangular prism

with altitude h and lateral edge i:B.

This prism may be cut into three pyramids, as shown

in the figure to the right, by the plane sections through

DEC and AEC. See Note, § 528.

The pyramids E-ABC and C-DEFhdve the same volume

(§594).

Likewise the pyramids E-ACD and E-CFD have the same

volume
(
§ 594).

But C-l>EF and E-CFD are only different notations for

tlie same pyramid.

Hence, E-ABC = C-DFF= E-ACD.

'r\\',i[ is, E-Aiu^ is one third of the prism,

]}iit the volume of prism = bh. ( Wliv?)

Hence, T' = volume of pyramid =
,^ hh.

State in detail tlie reasons for eaeli step.
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596. Theorem. The volmne of any jjyramid is one

third of the product pf its base and altitude.

A B
Given the pyramid P-ABCDE. Let V, b, and h be the numeri-

cal measures respectively of the volume, base, and altitude.

To prove that r=lbh.
Proof: By means of the diagonal planes PAC and PAD,

divide the given pyramid into three triangular pyramids.

Complete the proof.

597. Corollaries. 1. The volumes of any two

pyramids having the ' same or equal altitudes are in

the same ratio as the areas of their bases.

2. The volumes of any tioo ^jyraviids having the

same or equal bases are in the sam,e ratio as their

altitudes.

5.98. EXERCISES.

1. The altitude of a certain pyramid is 14 in. and its volume is

380 ou. in. Find the area of its base.

2. The area of the base of a pyramid is 48 sq. ft. and its volume

260 cu. ft. Find its altitude.

3. Find the locus of the vertices of pyramids having the same

base and equal volumes.

4. A diagonal of the square base of a regular right pyramid is

TV'S in. and its volume 147 cu. in. Find its altitude and lateral area.
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5. A flower bed is in the form of a regular right pyramid, with a

square base 5 ft. on a side. The altitude is 2 ft. Find the number
of cubic feet of soil in its construction.

6. A tent is to be made in the form of a right pyramid, with a

regular hexagonal base. If the altitude is fixed at 15 ft., what must
be the side of the base in order that the tent may inclose o'A) cu. ft.

of space ?

7. Two marble ornaments of equal altitudes are pyramidal in

form. One has a square base 2 in. on a side and the other a regular

hexagonal base 1 in. on a side. Compare their volumes.

8. Two monuments having bases of equal areas are pyramidal in

shape, one being 15 ft. high and the other 18 ft. Compare their

volumes.

9. If the base and the volume of a pyramid are known, is it possi-

ble to determine its lateral area ?

10. Given a pyramid with rectangular base. By how much is its

volume multiplied if the length and width of the base and also the

altitude are each multiplied by 2; by 3; by any number n?

11. Given a pyramid with altitude 10 and a regular hexagonal

base, each of whose sides is 5. By how much is its volume multiplied

if each side of the base and also the altitude is multiplied by 2 ; by 3

;

by 4 ; by any number n?

For a general statement of the law exemplified in these exercises,

see § 650.

/

599. Definitions. The figure formed b}-

the base of a pyramid, any cross section, and

tlae portion of the lateral faces included be- /

tween these planes, is called a truncated

pyramid. If ihe cross seeliun is parallel to

the base, the figure is called a frustum of a pyramid, and
this section is the upper base.

The altitude of a frustum is the perpendicular distance

between its bases. The slant height of the frustum of a

regular right pyramid is the common altitude of its

trapezoidal faces.
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600. Theorem. The volume of a frustum of a

pyramid is equal to the coinhined volume of three

pyramids ivhose common altitude is the same as that

of the frustum, and whose bases are the upper and

lower bases of the frustum and the mean proportional

between these bases.

p

\

A B

Given the frustum AC with lower base b, upper base b', and

altitude h. Let h' be the altitude PM of the completed pyramid

P-ABCDE. Then V&6' is the mean proportional between b and

V.

To prove that the volume of AC' is

V=lh\h + h' + ^W-\.

Proof: The altitude of the pyramid P-A'b'c'd'e' is

h' -h.

Hence,
,^
=^.' .(§^88)

from which h'= —= —• (1)
V6-V6'

Now V is the difference between the pyramids whose

altitudes are A' and h' — h.

Hence, F= f 6A' - J J' (A' - A),

or, rearranging, V = ^b'h + ^ h'(b — *')• (2)

Substituting (1) in (2), r=^h[h + b' + y/W}.

Show all the details.
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601. Theorem. Tlie volumes of two tetrahedrons,

having a trilicilral aiujle of the one congruent to a

trihedral angle of the oilier, are in the same ratio as the

products of the edges ivhich meet in the vertices of these

angles.

o

Given the tetrahedrons P-ABC and P'-A'&C whose volumes

are V and V and in which Tri. Z i'= Tri. ZP'.

To prove that
PA PB PC

p'a' p'b' p'c'

Proof : Place p'-A'b'c' so that Tri. Z p' coincides with

Tri. Z pi.

Let CM and c'm' be the altitudes of P-ABC and P-A'b'c'

from the vertices C and c' upon the plane PA It.

Let AN and ^'iV^'be the altitudes of the A PAB and PA'b'.

„, V _ ^CM area PAB Of PB A

X

r' ~ I C' m' avea, pa' b' c'm' PB' A'y'

„ CM PC , ^.Y PA
Now prove ——

-,

= —; and —r- = -.•

^
c'm' Pc' A'y' PA'

Hence, substituting in (1),

(1)

we have
PC- PB PA

v' p'd p'b' p'a'

Give all the steps and reasons in detail.
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602. EXERCISES.

1. Show that the lateral faces of a frustum of a regular pyramid

are congruent isosceles trapezoids. Hence find the area of its lateral

surface in terms of the slant height and the perimeters of the bases.

2. Show that sections of a pyramid made by two planes parallel

to the base are similar polygons whose areas are in the same ratio as

the squares of the distances from the vertex.

3. Show that any two pyramids standing on the same base, or on

equal bases in the same plane, have the same volume if their vertices

coincide or lie in a plane parallel to the base.

4. Show that the volumes of two pyramids have the same ratio as

the areas of their bases if they have equal altitudes, and the same

ratio as their altitudes if they have equal bases.

5. A frustum of a pyramid is cut from a pyramid the perimeter

of whose base is 60 inches and whose altitude is 15 inches. What is

the altitude of the frustum, if the perimeter of its upper base is 40

inches ?

Does the result depend upon the number of sides of the pyramid ?

6. Solve the preceding problem if the perimeter of the upper base

of the frustum is one nth that of the lower base. Does this result

depend upon the number of sides of the pyramid ?

7. The area of the base of a pyramid is 180 square inches and its

altitude is 20 inches. Cut from it a frustum, the area of whose

upper base is 45 square inches ; also one the area of whose upper base

is one nth of 180 square inches. Do these results depend upon the

number of sides of the pyramid?

8. Two triangular pyramids have equal trihedral angles at the

vertex. The lateral edges of one pyramid are 14, 16, and 18, and

those of the other 7, 8, and 9. Find the ratio between their volumes.

Are the data given sufficient to find the volume of each pyramid ?

9. If two triangular pyramids have equal trihedral angles at the

vertex and if the lateral edges of one are a, b, and c, and two lateral

edges of the others are ",' and h', find the third lateral edge of the

second pyramid so that their volumes shall be equal.

10. The slant height of a frustum of a regular pyramid is 10

inches and the apothems of its bases 8 and 6 inches respectively.

Find its altitude.
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CONES.

603, Definition. Given a closed convex

curve and a fixed point not in its plane. If C"

a line through the fixed point moves so as

always to touch the curve and is made to

traverse it completely, it is said to generate

a convex conical surface.

The moving line is called the generator

of the surface, and in any particular posi-

tion it is an element of the surface.

The fixed curve is called the directrix,

and the fixed point the vertex.

A conical surface consists of two parts,

called nappes, on opposite sides of the fixed

point.

604, That part of a convex conical sur-

face included between its vertex and a

plane cutting all its elements, together

with the intercepted portion of the plane,

is called a cone.

The intercepted part of the plane is the base of the

cone, and the curved surface is its lateral surface.

The altitude of a cone is the perpen-

dicular distance from the vertex to the plane

of the base.

A circular cone is one which has a cir-

cular cro.ss section such that the pei-pen- .

(liruhir upon it from the vertex meets it at

the center. If the base is such a rii-cli>. the •-

cone is tlien called a right circular cone. Otherwise, it

is an oblique circular cone.
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A right circular cone may be generated
by rotating a right triangle

PMB about one of its legs,

PM, as an axis. The hypot-

enuse PB generates the con-

ical surface, and the other ^(

leg, MB, generates the base. jT
The generator of a right circular cone in

any position is called the slant height.

605. Theorem. If a plane contains an element of
a cone and meets it in one other point, then it contains

another element also, and the section is a triangle.

Let a plane contain the element PD of the cone P-ABC, and

also one other point B.

To prove that this plane contains another element PB,

and that the section is a triangle PBD.

Suggestion. Connect P and B. This segment lies in

the conical surface. (Why ?) Complete the proof by
showing that BB lies in the base of the cone. Compare
this proof with that of § 555.

606. Definition. If a plane contains an element of a

cone and no other point of the cone, the plane is tangent to

the cone, and the element is called the element of contact.
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607, Theorem. If the base of a cone is circular, every

plane section parallel to the base is also circular.

B- c

Given a cone with a circular base AD.

To prove that the || section EH is also circular.

Proof : Draw the straight line from P to the center 31

of the base, and let it meet the section EB in the point O.

Let F and G be any two points on the perimeter of the

section EH.

Pass planes containing PM through the points F and G,

and let them cut the base in MB and MC respectively.

Now in the A PMB and PMC prove tliat 0F= OG.

Hence^ as F and G, ani/ two points on the perimeter of

this section, are equally distant from O, this shows tiiat

EH is a circle whose center is 0.

608. Corollary. Tf a cane has a circular base, the

areas of two paiydlrl cro.<!s sfcfions are in the skuk ratio

as the .square.^ <f tliclr perpvmUvular disiitiins from the

vertex and also as the squares of the distanees of their

codersfmill the verte.v..

Suggestion. I'se the figure of § (ill", and let PQ be the

altitude of the cone. Tlieii show tliat

Ari'a^l^ _ .1//)'" _ PM' _ ;•(.'-

Area Ell (,//- p,;- /.;,-
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609. EXERCISES.

1. Into how many parts do the two nappes of a conical surface or

of a pyramidal surface divide the remaining points of space ?

2. If in constructing a conical surface a polygon is used as a

directrix instead of a closed convex curve, what kind of surface is

obtained ?

3. Why is it specified in the definition of the convex conical sur-

face that the vertex must not lie in the same plane as the directrix ?

4. How many cones may be cut from a conical surface if they are

to have no point in common except the vertex?

5. If a triangle which is not a right triangle is made to revolve

about one of its sides, does it generate a cone?

6. Can every circular cone be developed by revolving a right angled

triangle about one of its sides ?

7. If a cone has a circular base, the line from the vertex to the

center passes through the center of every plane section parallel to the

base.

8. If a cone has a circular base, the plane determined by a tangent

to the base and the element at the point of tangency is a tangent plane

to the cone.

9. Through a point outside a cone with a circular base, how
many planes are there which are tangent to the cone?

10. The diameter of the circular base of a cone is 8 in. and the

altitude of the cone 9 in. A plane parallel to the base cuts the cone

in a section whose diameter is 3 in. Find the distance from the

vertex of the cone to this plane.

11. If the area of the circular base of a cone is 16 tt sq. in. and its

altitude 6 in., find the distance from the vertex to a plane, parallel to

tlie base, which outs the cone in a section with area Stt sq. in.

12. The area of the circular base of a cone is h sq. in. and its

altitude h in. Find the distance from the base to a plane parallel to

it, which cuts off a cone the area of whose base is one rath that of the

.

base of the original cone.

13. Compare the exercises on the cone thus far studied with those

on the pyramid given on pages 354, 3.57. Note that a pyramid can be

made to approximate very closely to a cone by making its number of

faces very large.
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MEASUREMENT OF THE SURFACE AND VOLUME OF A CONE.

610. Definitions. A pyramid is said to be inscribed in a

cone if its lateral edges are

elements of the cone, and

the bases of the cone ami

the pyramid lie in the same

plane, as in Fig. 1.

A pyramid is said to be

circumscribed about a cone

if its lateral faces are all

tangent to the cone, and the bases of the cone and the

pyramid lie in the same plane, as in Fig. 2.

611. Theorem. In a right circular cone a. p>/ramid

may be inscribed whose slant height differs from the

slant height of the cone by less than any given fixed

number.

Proof : Let d be the given fixed number. From plane

geometry we know that a regular polygon may be inscribed

in the base of the cone whose apothem differs from the

radius of the base by less than d. Let tliis regular poly-

gon be the base of an inscribed pyramid. Then the slant

height of this pyi-amid differs from that of the cone by less

than d, since the difference of two sides of a triangle is less

than the third side.

612. Axiom XXIII. The latend surface of a convcv

cone has a dcjiiiite area, aiid the eo)ie incloses a definite

vohntie, ir/iich are less resj)ectireh/ than those of any
eireiDuserilied j)i/rainid and greater than those of any
inscribed j)i/rainiil.
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613. Theorem. The area of the lateral surface of a

right circular cone is equal to one half the product of
its slant height and the circumference of its base.

Given a right circular cone of which s is the slant height, c is

the circumference of the base, and L the lateral area.

To prove that L = |- sc.

Proof : Suppose that L > |- sc. Then L = \ sK (1)

where K>c.

Circumscribe about the cone a pyramid the perimeter of

whose base is p, such that p<K. (Why is this possible ?)

Hence, \^P<-k *^- (2)

That is, (2) contradicts (1) because of § 612.

Next suppose L<\ sc. Then i = | sk' (3)

where k'<c.

Let — k' = d. By § 352, a polygon may be inscribed

in the base of the cone whose perimeter p differs from c

by as little as we please, and by § 611 a pyramid may be

inscribed in the cone whose slant height «' differs from the

slant height s of the cone by as little as we please. Hence

a pyramid may be inscribed such that |- s'p differs from

J sc by less than d.

That is ls'p>lsK. (4)

But (4) contradicts (3) because of § 612.

Since therefore L is neither less than nor greater than

^ sc, it must be equal to ^ sc.

614, Corollary. If r is the radius of the base of

a right circular cone and s the slant height, then

L = 1 • 2 irrS = irrS.
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615, Definition. Two right circular cones are similar if

they are generated by two similar right triangles revolving

about corresponding sides.

616. Theorem. The lateral areas or the entire areas

of tioo similar right circular cones are in the same ratio

as the squares of their altitudes, their slant heights, or

the radii of their bases.

Give all the

Given the cones P and P', with altitudes h, h', slant heights s, s',

radii of bases r, r*, lateral areas L, L', and entire areas A, A'.

To prove that

A = ^ = Z = i^ = Zi
A' L' A'2 8'2 /2'

Proof: See the suggestions under § 566.

steps.

617. EXERCISES.

1. The lateral area of a cone is ;Ui si]uare inclios. M'hat is the

lateral area of a similar cone whcisc altitude is | that of the given

cone?

2. The total .area of one of two similar cones is three times that of

the other. Compare their altitmles ami also their radii.

3. The sum of tlie total areas of two similar cones is 144 square

inches. Find the area of each cone if one is
1

J times as high .is the

other.



PYRAMIDS AND CONES. 365

4. Prove that if in two tetrahedrons three faces of one are congru-

ent respectively to three faces of the other and similarly placed about

a vertex, the tetrahedrons are congruent.

5. Prove that if in two tetrahedrons two faces and the included

dihedral angle are congruent and similarly placed, the tetrahedrons

are congruent.

6. A pedestal for a monument is in the shape of a frustum of a

regular hexagonal pyi-amid, the radius of the upper base being 4 ft.,

that of the lower base 6 ft., and the altitude of the frustum 8 ft.

Find its volume, slant height, and lateral surface.

7. Find the volume of a frustum of a pyramid the areas of whose

bases are 25 sq. in. and 18 sq. in. and whose altitude is 6 in.

8. The area of the lower base of a frustum is 42 sq. ft., its alti-

tude 8 ft., and volume 200 cu. ft. Find the area of the upper base.

9. The area of the base of a pyramid is 480 sq. ft. and its altitude

30 ft. Find the volume of the frustum remaining after a pyramid

with altitude 10 ft. has been cut off by a plane parallel to the base.

10. The area of the base of a pyramid is 250 sq. in. If a plane

section of the pyramid parallel to the base and at a distance of 5 in.

from it has an area of 175 sq. in., find the altitude of the pyramid.

11. The sides of the base of a triangular pyramid are 6 ft., 8 ft.,

10 ft., and its volume 96 cu. ft. Find its altitude.

12. What part of the volume of a cube is a frustum of a pyramid

cut from a pyramid whose base is one face of the cube and whose

vertex lies in the opposite face, if the altitude of the frustum is one

half the edge of the cube ?

13. Find the dihedral angle at the base of a regular pyramid if

the altitude is one half the slant height. p
14. A right triangular prism is cut by a plane

not parallel to the base, but such that its inter-

section DE is parallel to the base segment AB.

Show that the volume of the part thus cut ofE

is one third the product of the sum of the three

vertical edges and the area of the base.

Suggestion. Draw plane DEK II ABC.

15. Find the volume of a truncated triangular prism, the area of

whose base is 25 square inches and whose lateral edges are 8, 7, 8.
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618. Theorem. The lateral area of a frustum of

a right circular cone is equal to one half of the sum

of the circumferences of the bases multiplied by the

slant height. p

Given the frustum ABCD, with slant height s and radii r and

Let L represent its lateral area.

To prove that L = 1(2 ttt + 2 7rr')« = 7rs(r + r').

Proof : Complete the cone, and let PC = s'.

Then i = ^ [2 Trr (s + «') - 2 Trr's']

= irrs + TTs' (r — r').

But
8 + 8'

, from which s' = -

r 8'

Substituting s' from ( 2 ) in (1),

L ==irrs -j- 7r/8 = 7rs(r + r').

(1)

619. Corollary. The lateral area of a frustum

of a right circular cone /.s equal to the circmnference if

n si'cfion midivaji between the bases multiplied by the

slant height.

Suggestion. From the theorem

L = 7r8(r +'•') = 2 7r^+-^ S.

r -i~ r'Now show that -^— is the radius of the section mid-

way between the two bases.
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620. EXERCISES.

1. The lateral surface of a right circular cone is 75 sq. ft. Find
the altitude if the radius of the base is 4 ft.

2. A circular chimney 100 ft. high is in the form of a frustum of

a right cone whose lower base is 10 ft. in diameter and upper base

8 ft. Find the lateral surface.

3. The lateral area of a frustum of a right circular cone is 60 ir

sq. in., the radii of the two bases are 6 in. and 4 in. Find the slant

height of the frustum.

4. Find the altitude of the frustum in the preceding example, and

also the altitude of the cone from whieh it is cut.

5. A frustum of a right circular cone has an altitude one half

that of the cone from which it is cut. If its slant height is 8 ft. and

lateral area 64 ir sq. ft., find the diameters of its bases.

6. Find the altitude of the frustum of the cone in the preceding

example ; also the lateral area of the cone from which it was cut.

621. Theorem. The volume of any convex cone is

equal to one third the product of its hose and altitude.

Suggestion. Let h be the altitude, h the area of the

base, and V the volume.

Show that V cannot be different from ^ bh by an argu-

ment similar to that of § 563, making use of § 596.

622, CoEOLLART. If a cone has a circular base of

radius r and altitude h, then v=^'7Tr^h.
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623. Theorem. The volume of

the frustum of a convex cone is

equal to the combined volumes of

three cones whose common altitude

is the cdtitude of the frustum and

tvhose bases are the upper and

loioer bases of the frustum and a

mean proportional between these

bases.

Suggestion. The proof is ex-

actly like that of § 600.

Note. Observe that the two preceding theorems apply to any con-

vex coue because the altitude h is constant. The actual computation

is practicable only when the areas of the bases can be found, as in the

case of the circle or ellipse.

SUMMARY OF CHAPTER X.

1. Make a list of definitions on pyramids and also one on cones and

compare them.

2. l\Iake a list of theorems on p^Tamids and also one on cones and

compare them.

3. What axioms have been used in this chapter ? Compare these

with the axioms in Chapter IX.

4. Make a list of all the formulas given by the theorems of this

chapter and compare them with the correspondiug formulas in Chap-

ter IX.

5. ^^'hat theorems on cylinders have no corresponding theorems

for cones?

6. Show that a frustum of a cone becomes more and more nearly

identical with a cylinder if the yertox of the cone is removed farther

and farther from the base.

7. Make a list of the applications in this chapter which have im-

pressed you afi inteivsling or practical or both. Return to this ques-

tion ayain after studying the problems aiul applications which follow.
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PROBLEMS AND APPLICATIONS.

1. Show that the volume of a right triangular prism is equal to

one half the product of the area of one face and the distance from the

opposite edge to that face.

2. A mound of earth in the shape shown in the figure has a rec-

tangular base 16 yards long and 8 yards wide.

Its perpendicular height is 5 yards, and the

length on top is 8 yards. Find the number
of cubic yards of earth in the mound.

Suggestion. If from each end a pyramid i 8 i

with a base 8 yd. by 4 yd. is removed, the remaining part is a tri-

angular prism.

3. Given a figure in geoeral shape the same as the preceding, with a

rectangular base of length 24 ft. and width 6 ft. Find its volume and

lateral area if the dihedral angles around the base are each 45°.

4. The accompanying figure represents a solid whose base is a

rectangle 50 units long and 40 units wide. Its height is 12 units and

its top a rectangle 20 units by 10 units. Find its volume.

Suggestion. Divide the solid as indicated

in the figure. ISTotice that this is not a frus-

tum of a pyramid.

5. In a figure like the foregoing, how can

we determine whether or not it represents the

frustum of a pyramid?

6. Show how to pass a plane through a

tetrahedron so that the section shall be a

parallelogram.

Suggestion. Pass a plane parallel to each

of two opposite edges. See Ex. 6, page 293.
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7. If the middle points of four edges of a tetrahedron, no three

of which meet at the same vertex, are joined, a parallelogram is

formed. Prove.

G A^

8. If through any point P in a diagonal of a parallelopiped planes

KN and RM are drawn parallel to two faces, show that the parallele-

pipeds DQ and LN thus formed have equal volumes.

9. Find the volume and area of a figure formed by revolving an

equilateral triangle about an altitude, the sides of the triangle being s.

10. Find the area and volume of the figure developed by an

equilateral triangle with sides i if it is revolved

about one of its sides.

11. Find the area and volume of the figure

developed by revolving a square whose side is s

about one of its diagonals.

12. Through one vertex of an equilateral tri-

angle with sides s draw a line / perpendicular to

the altitude upon the opposite side. Find the vol-

ume and area of the figure developed by revohing

the triangle about the line /.

13. Through a vertex of a square with sides s

draw a line I perpendicular to the

diagonal through that vertex. Find

the ai-ea and volume of the figure

developed by turning the square

around the line I.

14. In a regular hexagon with sides .<t draw a

line / bisecting two opposite" sides. Find the area

and volunie of tlio figure developed by turning the

hexagon about I as ;iu axis.
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15. Solve a problem like the preceding, using a regular octagon

instead of a hexagon.

16. If several planes are tangent to the same
cone, find one point common to them all.

17. Find the locus of all lines which make a

given angle with a given line at a given point

in it.

18. Find the locus of all lines which make a

given angle with a given plane at a given point.

19. One angle of a right triangle is 30°. Find
the ratios between the surfaces of the solids developed by revolving

this triangle around each of its three sides.

20. Find the ratios between the volumes of the solids developed in

the preceding example.

21. Find the total area and the volume of a regular tetrahedron

each of whose edges is e. (See § 625.)

22. If the numerical values of the volume and of the total area of

a regular tetrahedron are equal, what is the length of its edge?

23. Find the length of an edge of a regular tetrahedron if its

volume is numerically equal to the square of an edge.

24. Cut a pyramid of altitude h by means of a plane parallel to

the base so that the perimeter of the section shall be half that of the

base. Also cut it so that the perimeter of the section shall be J

that of the base.

25. Cut a right circular cone by 3 planes, each parallel to the base,

so that the perimeters of the sections shall be -2, -F
, ^^ p being

the perimeter of the base. Find the distances from the vertex to the

planes.

26. Cut a right circular cone of altitude i by a plane parallel to

the base so that the area of the section shall b«> half that of the base.

Find the distance from the vertex to the plane.

27. Show that the lateral area of the small cone cut off in the

preceding example is one half the lateral area of the original cone.

28. Cut a pyramid of altitude h hy n planes, each parallel to the

j4 2 a B a
base, so that the areas of the sections shall be -, -,

, ...,

n + ln + ln + 1
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(n - \)A
~~j— , A being the area of the base. Show that the distances

from the vertex to the planes are /< \i , A-v—=— , h\—'-— ,
•.

'» + l ^(1 + 1 ^n + 1

29. Cut a cone with altitude h by a plane parallel to the base .so

that the volume of the frustum formed shall equal half that of the

colli'. Find the distance from the vertex of the cone to the plane.

30. Cut a cone of altitude h by n planes, each parallel to the base,

so that the frustums formed and the one pyramid cut off at the top

shall all have equal volumes.

31. An equilateral triangle ABC is swung
around the line DE as an axis, D and E being

middle points of the sides of the triangle. Find

the volume of the figure thus developed by the

trapezoid ABED if AB = a.

32. Find the total surface of the figure in

the preceding example.

33. In a right circular cone, with altitude h,

and r the radius of its base, a cylinder is inscribed

as shown in the figure. Find the radius OF of

the cylinder if the area of the ring bounded by

the circles OF and OA is equal to the lateral

area of the small cone cut off by the upper base

of the cylinder.

34. The same as the preceding, except that the lateral area of the

small cone is to equal the lateral area of the cylinder.

35. Find the dihedral angles of a regular tetrahedron.



CHAPTER XI.

REGULAR AND SIMILAR POLYHEDRONS.

REGULAR POLYHEDRONS.

624. Definitions. A polyhedron is said to be regular if

its polyhedral angles are all congruent and its faces are

congruent regular polygons.

Certain regu-625. Construction of regular polyhedrons

lar polyhedrons are very simple of

construction, as indicated below.

(1) The regular tetrahedron. At
the center E of an equilateral tri-

angle ABC erect a perpendicular to

the plane of the triangle. On this

take a point 2) so that AD = AC.

Now prove that the four triangles,

ABC, ACD, ABB, BCD, are regular and

congruent, and that the four trihedral

angles are congruent.

Suggestion. AE= BE= CE.

(2) The regular hexahedron or cube.

At the vertices of a given square erect

perpendiculars to its plane equal in

length to the sides, and join their up-

per extremities as shown in the figure.

Show that six equal and congruent squares are formed

and also eight congruent trihedral angles.

373
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(5) The regular icosahedron, having

for faces twenty equilateral triangles.

The geometric constructions for (4)

and (5) are not so simple as for the others.

However, cardboard models of all five

may be made by cutting out the figures,

as shown herewith, and folding them along the dotted

lines. They may be held in shape by means of gum paper

stuck over the joints.

626. The number of regular polyhedrons. It will now
be shown that there are not more than these five regular

polyhedrons.

There must be at least three faces meeting at each

vertex. If these are regular triangles, there may be three,

as in the tetrahedron, or four, as in the octahedron, or

Jive, as in the icosahedron ; hut there cannot be six, for in

that case the sum of the angles about a vertex would be

360°, and it is readily seen that this sum cannot be as

great as 360°. For a proof of this fact, see § 726.

If the faces are squares, there may be three about a

vertex, as in the cube, but there cannot be four, for in that

case the sum of the face angles at a vertex would be 360°.

If the faces are regular pentagons, there may be three

about a vertex, making the sum of the face angles

3 108° = 324°, b2d there cannot be four, for then the sum

would be greater than 360°. See § 726.

Regular polygons of more than five sides cannot form

the faces of a regular polyhedron, for the sum of the face

angles at a vertex would in any such case be more than

360°. Show why this is so.

Hence, there cannot be more regular convex polyhedrons

than those exhibited above.
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627, Theorem. If v l.i the number of vertices of a

convex j^ohjluidron, e its number of edges, and f its

number offaces, then e + 2 = v +f.

This is called Euler's Theorem. The proof is too dif-

ficult for an elementary textbook such as this. The

proofs given in the current texts are not conclusive.

628. EXERCISES. '

1. Verify the above theorem bj' counting the number of edges,

faces, and vertices in each of the regular figures given in § 625.

2. The following is a form of proof of this theorem which is often

given

:

Denote the number of vertices, edges, and faces of a polyhedron

by V, E, and F, respectively. To prove E + 2 = V + F.

Proof: Taking the single face ABCD, the number of edges equals

the number of vertices, oi E = V. If another face be annexed, three

new edges and two new vertices are added. Hence the number of

edges gains one on the number of vertices, as E= V + \. If still

another face be added, two new edges and one new vertex are added.

Hence E = V + 2.

With each new face that is annexed the number of edges gains one on

the number of vertices, till but one face is lacking.

The last face increases neither the number of edges nor vertices.

Hence, etc.

Show by putting together the faces of a cube in a certain order

that the statement in italics need not be true, and hence that the

proof is not conclusive.

629. Theorem. The sttm of the face angles of any

eu)ii'i'.f poli/hcdron Is e/jiial to four times as mani/ right

(i/igles, less eicjlit, as tJie poh/hedron has rertiees.

The proof de[)en(l.s on the preceding theorem and is

not given licre.

630. EXERCISE.

Verify this theorem by uu exaniiiuition of the regular polyhedrons.
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nfSCRIPTION OF REGULAR POLYHEDRONS.

631. Problem. To find a point equally distant

from the four vertices of any tetrahedron.

Given the tetrahedron P-ABC.

To find a point o equidistant from P, A, B, c.

Construction. At D, the middle point of BC, construct a

plane perpendicular to BC.

The plane will contain the point E, the center of the

circle circumscribed about A PBC, and also the similar

point ii' in A ABC. (Why '?)

In the plane DEF draw EG ± ED and FS ± FD.

Then EG and FH cannot be parallel (why ?), and hence

meet in some point 0.

Also EG -L to plane PBC and FH -L plane ABC. (Why ?)

Proof : Now show that is equidistant from P, A, B, C.

632. Definitions. The locus of all points in space equi-

distant from a given fixed point is a surface called a

sphere. The fixed point is the center of the sphere, and

a line-segment from the center to the surface is called a

radius.

A polyhedron is inscribed in a sphere if all its vertices

lie in the sphere.

The sphere is also said to be circumscribed about the

polyhedron.
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633. EXERCISES.

1. In the construction of § 631 show that is the only point equi-

distant from P, A, B, and C.

2. Show that the planes perpendicular to each of the six edges of

the tetrahedron at their middle points meet in the point 0.

3. Does the construction of § 931 depend upon the tetrahedron

being regular ? Cau a sphere be circumscribed about any tetrahedron ?

4. Is there any limitation on the relative position of four points in

order that a sphere may be passed through them?

634. Four points not all lying in the same plane are said

to determine a sphere.

Any other point, taken at random, will not, in general,

lie on a sphere determined by four given points.

Hence, while any tetrahedron may be inscribed in a

sphere, a polyhedron, in general, cannot.

However, any regular polyhedron may be inscribed in a

sphere.

635. Problem. To inscribe a cube in a sphere.

H a

E

K

"•--
\i

\

/D
LKx\

Suggestion. Show that all the diagonals meet in a com-

mon point O which is equally distant from all the vertices.

< )r show that a perpendicular to one face at its center L
meets the ojiposite face at its center K and is perpendic-

ular to this face also, and that the middle point O of KL is

the point required.
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636. Problem. To inscribe an octahedron in a sphere.

Suggestion. Making use of the con-

struction, § 625 (3), show that o is the

point equidistant from A, B, C, D, E, F.

Give all the steps in full.

Note. The dodecahedron and icosahedron

may each be inscribed in ,a sphere, but the

proof in these cases is much more complicated.

637. EXERCISES.

1. If in the figure of § 631 the tetrahedron is regular, show that

OE = OF.

2. If in Ex. 1 a sphere is described with center and radiu.s OE,

would it touch the face PBC at any other point than E'l (Why?)
Would any part of the surface lie on the opposite side of ABC from

? (Why ?) Is the same true of each of the other faces 'I

Such a sphere is said to be inscribed in the tetrahedron

and the faces are said to be tangent to the sphere. See

§ 669.

3. In the figure of § 635, show that the point is equidistant from

the six faces of the cube and hence that a sphere may be inscribed.

4. In the figure of § 636 show that the point is equidistant

from the eight faces and hence that a sphere may be inscribed.

The preceding exercises show that a sphere may be

inscribed in three of the regular polyhedrons, and the

center in each case is the same as that of the circumscribed

sphere. This is true also of the other two regular poly-

hedrons, but the proof is not so simple as in these cases.

In the case of the tetrahedron a sphere maj"- be inscribed

whether it is regular or not; but if it is not regular, the

center is not the same as that of the circumscribed sphere.



380 SOLID GEOMETRY.

SIMILAR POLYHEDRONS.

638. Definitions. Two polyhedrons are similar if they

have the same number of faces similar each to each and

similarly placed, and have their corresponding polyhedral

angles congruent.

Any two parts which are similarly placed are called

corresponding parts, as corresponding faces, edges, vertices.

639, Theorem. Two tetrahedrons are similar if

three faces of one are similar resjyectively to three faces

of the other, and are similarly placed.

^ B'

Given the tetrahedrons P-ABC and P-A'ffC having

A APB~ A A'PE, A APC~ A A'P'C, and A BPC ~ A SP'C.

To prove p-abc~p'-a'b'c' .

Proof : (1) Show that A ^sr-~ A .1 'b' c'.

(li) Show that trihedral A P and p' are congruent.

Likewise Z A ^ Z A', Z B ^ Z b\ Z C ^ Z c'-

Hence, by definition, the

polyhedrons are similar.

640. EXERCISES.

1. If the Iwii pri.sms in the fig-

ure iii-p similar, iiiinie tlic pairs of

corresponding jiiirls. I^iliow iso for

two similar ])vranuils.
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2. Show that a plane parallel to the base of a pj'ramid cuts ofi a

pyramid similar to the given pyramid.

Suggestion. Use the principles of similar triangles and § 521 to

show that all the requirements of the definition (§ 638) are fulfilled.

3. Does a plane parallel to the base of the prism cut ofi a prism

similar to the given prism ? Prove.

4. Show that two tetrahedrons are similar if they have a dihedral

angle in one equal to a dihedral angle in the other and the including

faces similar each to each and similarly placed.

5. Show that the total areas of two similar tetrahedrons are in the

same ratio as the squares of any two corresponding edges.

6. Show that if each of two polyhedrons is similar to a third they

are similar to each other.

641, Theorem. The volumes of tioo similar tetra-

hedrons are in the same ratio as the cubes of their

corresponding edges.

Given P-ABC'^P'-A'B'C', with volumes 7 and V.

To prove that
r PA^

p'a73

Proof: We have ^= f^'^^]^^, ,
(§601)

f' p'a! p'b' p'c'

Now use the properties of similar triangles to complete

the proof. Use the figure of § 639.

642. EXERCISES.

1. Two similar tetrahedral mounds have a pair of corresponding

dimensions 3 ft. and 4 ft. If one mound contains 40 cu. ft. of earth,

how much does the other contain ?

2. The edges of a tetrahedron are 3, 4, 5, 6, 7, and 10. Find the

edges of a similar tetrahedron containing 64 times the volume.

3. Find what fraction of the altitude of a tetrahedron must be cut

off by a plane parallel to the base, measuring from the vertex, in

order that the new pyramid thus detached may have one third of the

original volume.
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643. Definitions. Two figures are said to have a center

of similitude 0, if for any two points A and B of the one

the lines AO and BO meet the other in two points, A' and

b' , called corresponding points, such that

AO ^BO
a'o b'o

See figures under §§ 180-194.

644. Theorem. Amj tioo figures lohich have a center

of similitude are similar.

Proof : (1) Two triangles.

0.1 _ OB _ DC
OA'

~
OB'

"
OC'

Given

Let the student prove that A abc~Aa'b'c'.
In case the triangles do not lie in the same plane, use

§ 489 to show that the corresponding A are equal.

(2) Two polygons.

Given OA
OA'

OB
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(3) Two tetrahedrons.

With the same hypothesis as before, we must prove

A PAB~p'A'b', a pbc~A p'b'c', etc., and then use

§639.

(4) Any two polyhedrons.

(a) Prove corresponding polygonal faces similar to

each other.

(6) Prove corresponding polyhedral angles equal to

each other.

The last step requires not only equal face angles about

the vertex, as in the case of the tetrahedron, but also equal

dihedral angles. Note that two dihedral angles are equal

if their faces are parallel right face to right face and left

face to left face. (Why?)

(5) Consider any two figures whatsoever having a center

of similitude.

(a) Take any three points A, B, C in one figure and

the three corresponding points A', b', c' in the other.

Then AB and A'b', AC and A'c', etc., are called corre-

sponding linear dimensions, and the triangles ABC and

A'b'c' are corresponding triangles.

(J) It is clear that any two corresponding linear dimen-

sions have the same ratio as any other two, and that any

two corresponding triangles are similar.

In this sense the two figures are said to be similar.
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645. Definition. The ratio of similitude of two similar

figures is the common ratio of their corresponding linear

dimensions. This ratio is the same as the distance ratio

of corresponding points from the center of similitude.

646. Theorem. Two similar triangles may he so

placed as to have a center of similitude.

t')b'

A

Given the similar triangles T and T, in which

A'B' ^A'c ^sa
AB AC BC

'

To prove that they may be placed so as to have a center

of similitude.

Proof : From any point O draw OA, OB, OC.

On these rays take ^j, Bj, c^ so that

OA^ _ OBj _ OCi _ a'b'

OA OB OC AB

Now show the following :

(1) A Tj ~ A T, and hence A Tj ~ A r'.

C-^) ATj^Ar'.

For this show that ,ljBj = a' B' by means of the

.• A,B, O.I, , a'b' OA,
equations —i—i = i and = - -1-

AB OA AB OA
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Likewise A^C-^ = a'g' and b^C.^=b'c'.

(3) Finally,

where M and M^ are any two corresponding points what-

ever.

Hence O is the required center of similitude.

647. Theorem. Two similar tetrahedrons may he

so placed as to have a center of similitude.

Given the similar tetrahedrons T and T'.

To prove that they can be placed so as to have a center

of similitude.

Proof : With o as a center of similitude, construct Tj,

making oA ^ OB ^ ^^^ ^ AB
OA^ OB-i

' A'b''

Now show as in § 646 that Tj ^ t', and hence that t'

can be placed in the position T^ so as to have with T the

center of similitude O.

Give all the steps in detail.

648. Theorem. Any two similar polyhedrons m,ay

be placed so as to have a center of similitude.

Suggestion. The argument is precisely similar to that

of § 647. Give it in full.
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649. In the figures for the preceding theorems the center

of similitude has been taken between the two figures or

beyond them both. Tlie center may be taken equally well

within them, as in the following illustrations : *

In the case of similar convex polyhedrons with the

center of similitude thus placed, the faces are the bases of

pyramids whose vertices are all at the

center of similitude.

If, further, the polygonal faces be

divided into triangles by drax^'ing their

diagonals, these triangles become the

bases of tetrahedrons, all of whose ver-

tices are at the center of similitude.

Moreover, each inner tetrahedron is

similar to its corresponding outer tetrahedron. (Why ')

The volumes of the two similar polyhedrons are thus

composed of the sums of sets of similar tetrahedrons.

650. Theorem. Tlte volumes of any t)co similai'

pohilicdronx hare the name ratio as the cubes of their

eorrcspundiiKj e(/(/es.

Proof : Place the polyhedrons wliose volumes are ]' and

V' so as U> ha\ ( tlirir crntors of similitude within them as

in the figures of § VA'.K
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Call the volumes of the similar tetrahedrons Tj, T^, T^, ••,

and Tj', T^', Tg', ••-, and let AB and a'b' be two corre-

sponding edges.

Then we have

=^0=^ =^=^=-. (Why?)

And ^1 + ^2+^3+ - =J1 = j^. (Why?)

But ^1 + ^2 + ^3 = T^and r/ + t^' + T^' = r'.

Hence, —
- = .

651. CoKOLLAKT. The volumes of any two similar

solids are in the same ratio as the cubes of any two

corresponding linear dimensions.

This proposition may be rendered evident by noticing that any two
similar three-dimensional figures may be built up to any degree of

approximation by means of pairs of similar tetrahedrons similarly

placed. The proposition then holds of any two corresponding figures

used in the approximations.

Note that the ratio of similitude of two similar figures may be

obtained from the ratio of any pair of corresponding linear dimensions.

552, EXERCISES.

1. If two coal bins are of the same shape and one is twice as long

as the other, what is the ratio of their cubical contents ?

2. What is the ratio of the lengths of the two bins in the preced-

ing example if one holds twice as much coal as the other ?

3. Two water tanks are of the same shape. Find the ratio of

their capacities if their ratio of similitude is |.

4. In the preceding what must be the ratio of similitude in order

that the ratio of their capacities shall be |^ ?
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APPLICATIONS OF SIMILARITY.

653. The theorem that any two figures which have a

center of similitude are similar is the geometric basis of

many mechanical contrivances for enlarging or reducing

both plane and solid figures ; that is, for constructing

figures similar to given figures

and having a given ratio of

similitude vpith them.

The essential property of all

such contrivances is that one

point O is kept fixed, while

two points A and B are allowed

to move so that 0, A, and B
always remain in a straight

B'

line, and so that the ratio — remains the same. See
OB

§§ 432-435.

In the first figure O is a fixed point. Segments OD, CB,

and the sides of the parallelogram ACED are of fixed length.

Prove that if B is once so taken on the line EC as to be

in the line OA, the points O, A, and B will always remain

collinear, and that— remains r
OB 2^

a fixed ratio. \S. /^^^\
In the second figure is shown ^^C j<

an ordinary pantograph used X/^ \\ y^ <\

for copying and at the same ^- f%-=(^ --- /^^a
time for reducing or enlarg- "^n^ ^ r /

ing maps, designs, etc. The ^^^ \ f
lengths of the various segments

are adjustable, as shown, thus obtaining any desired scale.

Tlie same contrivance may bo used for copying fignies

in Sface and at the same time reducing or enlarging them.
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654. Now consider any two similar figures whatever so

placed as to have a center of similitude o. We have seen

that if points AB and A'b' are corresponding points of the

two figures, then the ratio of the corresponding linear

dimensions AB and a'b' is equal to the ratio of similitude

— of the two figures.
n
Also if A, B, c, D and A', b', c', d' are corresponding

points, then A ABC and A'b'c', and the tetrahedrons ABCD
and a'b'c'd' are similar, and we have

Area ABC nfi , vol. ABCD m^

Aiea. a'b'c' w2 yoLa'b'c'd' n^

The points A,B, cand^', b' , c' determine two planes, each

of which intercepts a certain plane figure in the solid figure

to which the points belong. These two plane figures we
call corresponding cross sections.

We assume without full argument that :
—

Theorem. (1) Tlie ratio of the areas of any pair

of corresponding cross sections or any pair of corre-

sponding surfaces of similar figures is equal to the

square of their ratio of similitude, and

(2) The ratio of the volumes of any two similar fig-

ures is equal to the cube of their ratio of similitude.
"

Thus the ratio of the radii or of the diameters of two spheres is

their ratio of similitude ; likewise the ratio of the lengths or of the

diametei-s of two shells used in gunnery, or the ratio of the heights of

two men of similar build.

The fact that the ratio of the areas of corresponding

surfaces of similar solids is equal to the square of their

ratio of similitude, while the ratio of their volumes equals

the cube of this ratio is one of the most important and

far-reaching conclusions of geometry.
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SUMMARY OF CHAPTER XI.

1. Describe the five regular solids according to the form and

number of their faces. Why can there not be more than these five ?

2. Compare the relation of the regular solids to the sphere with

that of regular polygons in the plane to the circle.

3. Review the process of construction of the tetrahedron, cube, and

octahedron.

4. Form all five regular polyhedrons by cardboard models as

indicated in § 625.

5. Make a list of the definitions concerning similar polyhedrons.

6. Make a list of the theorems concerning similar polyhedrons.

7. Explain the relation of two figures which have a center of

similitude.

8. What theorem of this chapter is referred to as of unusual im-

portance in the problems and applications?

9. State the applications of this chapter which appeal to you as

especially interesting or useful. Return to this question, after study-

ing those which follow.

PROBLEMS AND APPLICATIONS.

1. If it is known that a steel wire of radius r will carry a certain

weight w, how great a weight will a wire of the same material carry

if its radius is 2 r ?

Suggestion. The tensile strengths of wires are in the same ratio

as their cross-section areas.

2. Find the ratio of the diameters of two wires of the same mate-

rial if one is capable of carrying twice the load of the other; three

times the load.

3. In a laboratory experiment a heavy iron ball is suspended by a

steel wire. In suspending another ball of twice the diameter a wire

of twice the radius of the first one is used. Is this perfootly safe if it

is known that the first wire will just safely cany the ball suspended

from it? Discuss fvilly.

4. In two schoolrooms of the same sliape (similar figures) but of

different sizn, thi' sanii' proportion of tlie fioor space is occupied by

desks. Which contains the larger amount of air for each pupil?
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5. It Ls decided to erect a school building exactly like another

already built, except that every linear dimension is 'to be increased

by ten per cent ; that is, each room is to be ten per cent longer,

wider, and higher, and so for all parts of the building. If the air in

the ventilating flues flows with the same velocity in the two build-

ings, in which will the air in a room be entirely renewed the more

quickly?

Suggestion. Note that the ratio of the amount of air discharged

by two flues under such conditions is equal to the ratio of their cross-

section areas.

6. If the shells used in guns are similar in shape, find the ratio of

the total surface areas of an eight-inch and a twelve-inch shell.

7. Find the ratio of the weights of the shells in the preceding

problem, weights being in the same ratio as the volumes.

8. If a man 5 ft. 9 in. tall weighs 165 lb., what should be the

weight of a man 6 ft. 1 in. tall, supposing them to be similar in

shape ?

9. What is the diameter of a gun which fires a shell weighing

twice as much as a shell fired from an eight-inch gun, supposing the

shells to be similar bodies?

10. The ocean liner Mauretania is 790 feet in length. What must

be the length of a ship having twice her tonnage, supposing the boats

to be similar in shape ?

11. The steamship Lusitania is 790 feet long, with a tonnage of

32,500, and the Olympic is 882 feet long, with a tonnage of 45,000. Are

these vessels similar in shape? If not, which has the greater capacity

in proportion to its length ? •

12. Supposing two trees to be similar in shape, what is the diame-

ter of a tree whose volume is three times that of one whose diameter

is 2 feet? What is the diameter if the volume is 5 times that of

the given tree? What if it is n times that of the given tree?

13. Two balloons of similar shape are so related that the total

surface area of one is 5 times that of the other. Find the ratio of

their volumes.

See page 444 for further applications.



CHAPTER XII.

THE SPHERE.

PLANE SECTIONS OF THE SPHERE.

655. Definitions. A sphere consists of all points in space

which are equally distant from a fixed point, and of these

points only. The fixed point is called the center of the

sphere. (See § 632.)

A sphere divides space into two parts such that any

point which does not lie on the sphere lies within it or

outside it.

The sphere may be developed by revolving a circle

about a diameter as a fixed axis.

A line-segment joining any two

points on a sphere and passing through

its center is a diameter. A segment

joining the center to any point on the

sphere is a radius.

If the distance from a point to the

center of the sphere is less than the

radius, the point is within the sphere,

and if greater than the radius it is out-

side the sphere.

A sphere may be designated by a single let-

ter at its center, or more explicitly by naming
its center and radius.

Thus the sphere C means the sphere who.^e center is C, and the

sphere CA is the sphere whose center is C and whose radius is CA

.

Two spheres are said to be equal if they have equal

radii.

892
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656. Theorem. All radii of the same sphere or of

equal spheres are equal. All diameters of the same

sphere or of equal spheres are equal.

These statements follow directly from the definitions.

657. EXERCISES.

1. How does the definition of a sphere differ from that of a circle ?

State each in terms of a locus.

2. If two spheres have the same center, show that they are either

equal or one lies entirely inside the other.

3. In how many points can a straight line meet a sphere V

4. Does every line through an interior point of a sphere meet it?

In how many points ?

658. Theorem. A section of a sjjhere made by a

plane is a circle.

Given a sphere with center C cut by the plane M.

To prove that the points common to the sphere and the

plane form a circle.

Proof : From the center C draw CA perpendicular to

the plane M.

Let B and D be any two points common to the plane

and the sphere. Complete the figure, and prove AB = AD.

Hence, any two points common to the plane and the

sphere are equidistant from A.

How must this proof be modified in case the plane M
passes through the center of the sphere ?
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659. Definitions. A circle is said to be on a sphere if all

its points lie on the sphere.

The line perpendicular to the plane

of a circle at its center is called the

axis of the circle.

The points in which the axis of a

circle on a sphere meets the sphere are

called the poles of the circle.

If the plane of a circle on a sphere passes through the

center of the sphere, it is called a great circle of the sphere,

and if not, it is called a small circle.

660. Theorem. (1) Hie axis of nny circle on a

sphere passes through the renter of the sphere.

(2) The center of a great circle is the center of the

sphere.

(3) All rjrerit circles are eq^ial and bisect each other.

(4) Three paints on a sphere determine a circle on the

sphere.

(5) TJirnni/h tiro giren j)oints on a sphere there is

one anel onhj one great circle nnless tJiese paints are at

opposite ends of a dianuti'r.

(6) Ererji great circle bisects a sphere.

The proofs of these statcuu'iits fallow easily from the

definitions. Let the student gi\o the proofs in detail.
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661, Definition. The distance between two points on a

sphere is tlie distance measured between these points along

the minor arc of the great circle through thera.

662. Theorem. All points of a circle on a sphere

are equidistant from either pole of the circle.

Given P a pole of the circle whose center is A, and let B and D
be any two points on this circle.

To prove that the great circle arcs PB and PB are equal.

Suggestion. Let G be the center of the sphere.

Prove that Z.ACB = Z ACB.

Hence, chord PB = chord PD and PB = PD.

Extend the radius PC to meet the sphere in P'

.

Prove that P' is also equidistant from any two points of

the given circle.

663. Definition. The common distance from the pole of

a circle to all points on it is called the polar distance of tlie

circle. One fourth of a great circle is a quadrant.

664. CoEOLLART 1. The polar distance of a great

circle is a quadrant.

665. Corollary 2. If a point p is at a quadrant's

distance from each of tivo points not at the extremities

of the same diameter, it is the pole of the great circle

through these points.
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666. It follows from the preceding

theorem that, if a spherical blackboard
y^

is at hand, circles may be constructed If~i
on it by means of crayon and string the

same as on a plane blackboard. Like-

wise, curve-legged compasses may be

used.

657_ EXERCISES.

1. How many small circles can be passed through two points on a

sphere ? How many great circles ? Show why.

2. If two points are at the extremities of the same diameter of a

sphere, how many great circles can be passed through these points ?

3. AVhat great circles on the earth's surface pass through both

poles? If a great circle passes through one pole, must it pass through

the other ?

4. If P is at a quadrant's distance from each of two points A and

B, and if these points are at opposite ends of the same diameter, is P
the pole of any circle through .1 and Bl Of how many circles?

5. If .4 and B are at opposite ends of a diameter, can a small

circle be passed through them ?

6. If two circles on a sphere have the same poles, prove that their

planes are parallel.

7. What is the locus of all points on a sphere at a quadrant's dis-

tance from a given point?

8. What is the locus of all points on a sphere at any fixed distance

from a given point on the sphere? What is the greatest such dis-

tance possible? Discuss fully.

9. If two planes cutting a sphere are parallel, compare the posi-

tions of the poles of the circles thus formed.

10. Find the locus of the centers of a set of circles on a sphere

formed by a set of parallel planes eulting it.

11. AB is a fixed diameter of a sphere. .\ plane containing; AR
is made to revolve about it as an axis. Find the locus of the poles of

the great circles on the sjihere made by this revolving plane. How
are the points .1 ami B related to this locus?
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668. Theorem. ^ two planes cutting a sphere are

equidistantfrom the center, the circles thus formed are

equal; and conversely,

If two planes cut a sphere in equal circles, the planes

are equidistant from the center.

Suggestion. In the figure show that '(1) if GA = CA',

then AB =a'b', and (2) if AB= a'b',

then CA = CA' .

669. Definitions. A plane which

meets a sphere in only one point is

tangent to the sphere.

Two spheres are tangent to each other if they have only

one point in common.

A line is tangent to a sphere if it contains one and

only one point of the sphere.

670. EXERCISES.

1. If a plane has more than one point in common with a sphere,

must it have a circle in common with the sphere ?

2. If a plane is tangent to a sphere, how many lines in the plane

are tangent to the sphere ?

3. Can two spheres be tangent to each other and still one be in-

aide the other 1
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671. Theorem. A plajie tangent to a sphere is

perpendicular to the radius from the point oftarirjency ;

and conversely,

A plane perpendicular to a radius at its extremity

h tangent to the spliere.

Given a sphere C with plane M tangent to it at A.

To prove that CA is perpendicular to the plane il.

Proof : (1) It is only necessary to prove that CA is per-

pendicular to every line in M through A. (Why?)
Draw any such line AB.

The plane BAG cuts the sphere in a circle. Prove that

AB is tangent to this circle, and hence perpendicular to AC.

(2) To prove the converse, note that c.i is the shortest

distance from C to the plane 3/. (Why'?") And hence

that every point of M except A is exterior to the sphere.

Hence, JIf is a tangent plane. (Why?)

672. Definition. A sphere is saitl to be inscribed in a

polyhedron if every face of tlie polyhedron is tangent to

the sphere. The polyhedron is also said to be circumscribed

about the sphere.

673. TiiEORKM. ^4 sphere may he inscribed in any

ietrdhcdron.

The proof is left to the student. See § G37,
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674. EXERCISES.

1. How many planes may be tangent to a sphere at one point on

the sphere ? How many lines ?

2. Through a given point exterior to a sphere construct a line

tangent to the sphere.

Suggestion. Let be the center of the sphere and P the given

exterior point. Pass any plane M through P and O. In the plane

J/ consti'uct a line through P tangent to the great circle in which M
cuts the sphere.

3. How many lines tangent to a sphere can be constructed from a

point outside the sphere?

4. Through a given point exterior to a sphere construct a plane

tangent to the sphere.

Sdggestion. As in Ex. 2 construct a line through the given point

tangent to the sphere. Through the point of tangency of this line

pass a plane tangent to the sphere.

5. How many planes can be passed through a given exterior point

tangent to the sphere ?

6. How many planes tangent to a sphere can be passed through

two given points A and B outside a sphere ? Discuss fully if the line

AB (1) meets the sphere in two points
; (2) is tangent to the sphere

;

(3) does not meet the sphere.

675. Theorem. The intersection of tivo spheres is

a circle.

Proof: The two intersecting

spheres may be developed by

rotating about a fixed axis CC'

two intersecting circles with

centers C and c'.

Let A and B be the two points common to both circles.

Then BA±CC'. (Why?)
As the figure rotates about the line CC', AB remains

fixed in length and perpendicular to CC'.

Hence, B traces out a circle. See § 478,
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676. Problem.

material sphere.

SOLID GEOMETRY.

To find the diameter of a given

With any point P of the sphere as a pole, construct any

circle, and on this circle select any three points A, B, C.

Using a pair of compasses, measure the straight line-

segments AB, BC, CA, and construct the triangle a'b'c'

congruent to ABC.

Let b'd' be the radius of the circle circumscribed about

A'B'C'.

If PP' is the axis of the circle ABC on the sphere and,

BD the radius of this circle, then BB = b'd'.

Measure PB by means of the compasses.

Then PBP' is a right triangle, with BD perpendicular

to its hypotenuse PP'.

PB and BD being known, we may now compute PD from

the right triangle PBD and then compute PP' from the

similar triangles PBZ» and PP'T), finding PD: PB = PB : PP'

or PD X PP' = PB^. See P2x. 3, § 1)6.

The segment PP' may also be found by ijeometric con-

struction ; namely, draw a triangle congruent to p'bp.

Show how to do this when BP aud BD are known.
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677, EXERCISES.

1. How many points are necessary to determine a sphere ? See

§632.

2. If the center of a sphere is given, how many points on the

sphere are required to determine it?

3. If a plane M is tangent to a sphere at a point A, show that

the plane of every great circle of the sphere through A is perpendicular

to Af.

4. Show that the line of centers of two intersecting spheres meets
the spheres in the poles of their common circle.

5. Find the locus of the centers of all spheres tangent to a given

plane at a given point.

6. Find the locus of the centers of all spheres tangent to a given

line at a given point.

7. Find the locus of the centers of all spheres of given radius

tangent to a fixed plane.

8. Find the locus of the centers of all spheres of given radius

tangent to a fixed line.

9. Find the locus of the centers of all spheres tangent to two
given intersecting planes.

10. Find the locus of the centers of all spheres tangent to all faces

of a trihedral angle.

11. Show that two spheres are tangent if they meet on their line

of centers. Distinguish two cases. Compare § 209.

12. State and prove the converse of the preceding proposition.

13. In plane geometry how many cii'cles can be drawn through a

given point tangent to a given line at a given point ?

14. If a given sphere is tangent to a given plane iW" at a given

point A, how many points on the sphere are required to determine it?

Suggestion. Suppose one point P given. Pass a plane through

P JL to plane M a,t A. Is there only one such plane? Discuss fully.

15. Describe the set of all lines in space whose distances from the

center of a sphere are all equal to the radius of the sphere.

16. Describe the set of all planes whose distances from the center

of a sphere are all equal to the radius of the sphere.
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TRIHEDRAL ANGLES AND SPHERICAL TRIANGLES.

678. Definitions. When two curves meet, they are said

to form an angle ; namely, the angle made by the tangents

to the curves at their common point.

Any two planes through the center of a sphere cut out

two great circles which intersect in two points and form

four spherical angles about each of these points. Two of

these angles with a common vertex are either adjacent or

vertical in the same sense as the angles formed by two in-

tersecting straight lines.

A spherical angle is acute, right, or obtuse according to

the form of the angle between the tangents to its sides

(arcs) at their common point.

Any two circles on a sphere which meet, whether great

circles or not, form angles according to the above defini-

tion.

Only angles formed by great circles are considered in

this book and the expression spherical angle will be under-

stood to refer to such angles. (Jnly angles greater than

zero and not greater than two right angles are considered.

A spherical angle may be denoted by a single letter or by three

letters, as in the case of a plane angle.

679. TFiEOREjr. A sjjhcrical anr/Ic

is iiiensurcd hi/ dii (trc of the ijrcat

circle lohose pole Is the vertex of the

intercepted(UiijJe find tvliieh is

the. sides of the d/ii/Ie.

%

Suggestion. Show that AB meas-

ures the dihedral angle formed by the planes PAC
PliC and that Z«cM = ZrPS.

md
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680. Definitions. The section of a sphere made by a

convex trihedral angle, whose vertex is at the center of

the sphere, is called a spherical triangle. -^

The face angles of the trihedral angle /\ \
are measured by the sides (arcs) of the / \ "\^
spherical triangle, and its dihedral / \c_ \^
angles are equal to the angles of the I y^^-"^'"^

spherical triangle.
^""^^

Since each face angle of a trihedral angle is less than two right

angles, it follows that each side of a spherical triangle is less than
a semicircle.

681. EXERCISES.

1. Show that a spherical angle is equal to the plane angle of the

dihedral angle formed by the planes of the great circles whose arcs

are the sides of the spherical angle. See figure under § 679.

2. Prove that vertical spherical angles are equal.

3. Prove that the sum of the spherical angles about a point is four

right angles.

4. At what angle does a meridian on the earth's surface intersect

the equator?

5. Denote by P the North Pole on the earth's surface. Consider

any two meridians forming an angle of one degree at P and meeting

the equator in points A and B, respectively. What is the sum of the

angles of the spherical triangle PAB ? Compare with the sum of

the angles of a plane triangle.

6. Is it possible to construct a spherical triangle each of whose

angles is a right angle?

Suggestion. Consider two meridians forming a right angle at P.

Such a triangle is called a trirectangular triangle.

7. In a trirectangular spherical triangle what is the length of each

side in terms of degrees ?

The question as to whether or not the sum of the angles of a

spherical triangle is ever equal to two right angles is answered in

§712.
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682. Theorem. TTie sum of two face angles of a

trihedral angle is greater than the third face angle.

c

Proof : Connect points A and D on two sides.

Suppose not all three face angles are equal and that

Z ACD > Z ACB.

Construct CE in the face J.CD, making Z ACE= Z ACB.

Lay off CB = CE and draw AB and BD.

Now show that (1) AB = AH, (2 ) AD < AB + BD,

(8 ) ED < BD, (4) Z ECD < Z BCD.

Hence, Z ACD < Z ACB + Z BCD.

683. Corollary 1. The sum of tioos ide^ of n spheri-

cal triangle is grrnter thmi the third side.

684. Corollary 2. The sum (f the three sides of a

spherical tria)ujlr is less than a gnat circle.

Proof: aca' +aisa'= a great circle,

But AC < aca' and .IB < ABA',

and BC < Ba' + ca' liy Corollary 1.

Hence, AC + CH + BA < a yruat cirole.

685. CoKoi.LAiiv ?K Sliife and prove the fhenn ids on

triliedrtd angles corresponding to Corollaries 1 and 2.
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686. Theorem. Tlie shortest distance on a sphere be-

tiveen two of its points is measured along the minor

arc of a great circle passing through these points.

Proof: Let A and B be any two
points on a sphere, AB the minor arc

of a great circle through them, and
ABCB any other curve on the sphere

connecting A and B with points c and
B on it in the order ADCB. Neither

C nor B is on the arc AB.

Draw tlie great circle arcs AB, AC, BC, and CB. Then

by § 683 AC+ CB > ab and AB + DC> AC.

Hence, AB -i- BC + CB > AB.

Continuing in this manner, we obtain a succession of

paths, each longer than the preceding. But by this process

we get closer and closer to the length of the curve ACB.

Hence, it must be greater than that of AB.

687. Definitions. Two trihedral angles are symmetrical

one to the other if the face angles and the dihedral angles

of one are equal respectively to the face angles and the

dihedral angles

of the other, but

arranged in the

opposite order.

Similarly, two

spherical trian-

gles are sym-

metrical one to

the other if the sides and the angles of one are equal

respectively to the sides and the angles of the other, but

arranged in the opposite order.
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688. Theorem. If the radii drawn from the ver-

tices of a sjjherieal trlavfjle are extended, theij meet

the sphere in the vertices of a triangle synarietrlcal to

the given triangle.

The proof is left to the student.

689. Corollary. State and prove the e(>ri't><p<>nd-

ing tJteorent uri trihedral angles.

690. Theorem. Tivo trlJiedral angles having their

vertices at the center of tJie same or of rijiial spjtrrrs

intercept congruent sjjherlcal triangles If the frlhedrcd

angles ((re congruent, and sgrnnietrlc(d spJterlccd tri-

angles if they are si/nunetrlcrd.

o-

^
1

Tliis is an iunnediatc^ consequence of §§ t'iSO, iIST.

691, (.^.(>i;ollai;y. //'//( twa sj)herlcal trlaiKjlcs three

sides (f one are e(/U(d resjxctlreh/ fo three sides <f the

(ither, and arr(in(/ed in the same ordtr. the trlion/hs are

citiK/ruenf. See § ulll.
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692. Theorem. If the face angles of one trihedral

angle are equal respectively to the face angles of another,

but arranged in the opposite order, the trihedral angles

are symmetrical.

Proof : By § 519 the dihedral angles of one are equal

respectively to those of the other. Now verify that these

parts are arranged in the opposite order.

693. CoEOLLART 1. If hi tivo sphcricol triangles the

three sides of one are equal to three sides of the other,

hut arranged in the opposite order, the triangles are

symmetrical.

694. Definition. A spherical triangle is isosceles if two

sides are equal.

695. Corollary 2. The angles ^,
op)posite the equal sides of an isos- /'\ \
celes spherical triangle are equal. / / I \

Suggestion. Let AG and Bc be the ^4;---/-

—

\:::::^,^0

equal sides. Draw CD to the middle ^^^ ^"

point of AB.

696. Corollary 3. If tioo isosceles spherical tri-

angles are symmetrical, they are congruent, and con-

versely.

697. Theorem. If two trihedral angles are sym-

metrical to the same trihedral angle, they are congruent.

Suggestion. Show that the corresponding parts must

be arranged in the same order.

698. Corollary. State and prove the correspond-

ing theorem for sjjherical triangles.
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699. Theorem. Tioo spherical triangles having two

sides and the included angle of one equal respectively to

two sides and the included angle of the other are con-

gruent, if the given parts are arranged in the same

order, and symmetrical, if they are arranged in the op-

posite order.

Proof: If the given parts are arranged in the same

order, the proof may be made by superposition exactly as

in § 32.

If the given parts are arranged in the opposite order,

proceed as follows

:

Denote the given triangles by f^ and f.,. Construct a

spherical triangle t^ symmetrical to ty Then by § 698

^2 and fg are congruent. Hence, if t^ is symmetrical to t^,

it must be symmetrical to t^.

700. Corollary. State and prove the correspond-

ing theorem for trihedral angles.

701. EXERCISES.

1. Compare fully the theorems on the congruence of plane tri-

angles and of trihedral angles. Is there any theorem iu either case

for wliich ther<' is no corresponding theorem in the other?

2. ('oMii)iire in the same manner the tlieorems on the congruence

of plane triangles and of spherical triangles.

3. Compare in the same manner the theorems on the congruence

of triliedral angles and of s]ilierical triangles.
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702. Theorem. The locus of all points on a sphere

equidistant from two fixed points on the sphere is a

great circle bisecting at right angles the great circle arc

connecting the two given points.

Proof: Let C be the middle point of AB.

(a) If AP = BP prove that A ACP and BCP are sym-

metrical, and hence, Z ACP = Z BCP = rt. /.. -

(J) If /.ACP= ZbcP, prove that AP = BP.

Why are steps (a) and (6) both needed ?

703. EXERCISES.

1. It two face angles of a trihedral angle are equal, the opposite

dihedral angles are equal.

2. If two face angles of a trihedral angle are equal, it is congruent

to its symmetrical trihedral angle.

3. Show how to find a pole of the circle through three given points

on the sphere.

Suggestion. Let the given points be A, B, C. By § 662 the

pole of the circle is equidistant from A, B, and C. Connect A
and B by an arc of a great circle and construct another arc of a great

circle bisecting AB perpendicularly. Similarly construct a perpen-

dicular bisector of BC. The points in which these two arcs meet will

be the poles of the circle through A , B, and C.

State this argument in full detail.
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POLAR TRIANGLES

704, Definition. With the ver-

tices A, B, C of a spherical tri-

angle as poles, construct three

great circles. E:irli of these

circles meets each of the others

in two points, thus forming eiglit

spherical triangles, as shown

in the figure, namely, a'b'c',

a'b'f, b'c'd, c'a'e, a'ef, b'df,

C'de, and DEF.

There is one and only one of these, namely, A
that A and A' are on the same side of

bU?, B and b' on the same side of A'c'

.

and C and c' on the same side of

A^.
The triangle A'b'c' as thus de-

scribed is the polar triangle of ABC.

'b'c', such

705. EXERCISES.

1. In the figure the parts of the great ciicles which are supposed

to be on the front side of the figure are given in solid lines while the

parts on the back side are dotted. Study tlie figure with care and

state which triangles are entirely on the front side, which are entirely

on the back side of the sphere, and which are partly on the front side

and partly on the rear side of the sphere.

2. Show that the points .(' and D cannot be on the same >ide of

the cii-cle through B' (
".

StinoKsTiDN. Can the two extremities of a diameter lie in the

same hemisphei-e?

3. If .1 is a pole of the great circle through B'C and if A' is on

the same side of this circle as .1, show that .1 and .1' are less than

one quadrant's distance apart..
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706. Theorem. If a'b'c' is the polar triangle of
ABC, then ABC is the polar triangle of a'b'c'.

^_JProof : It is required to prove (1) that A' is the pole of

BC, b' the pole of AC, and c' the pole of AB, and also (2)
that A and A' lie on tiie same side of BC, B and B' on
the same side of AC, and C and c' on the same side of AB.

(1) To prove that a' is the pole of BC we need only to

show that a' is at a quadrant's distance from two points

in BC. Wliy ?

Now a' is at a quadrant's distance from B because B is

the pole of a'c. a' is also at a quadrant's distance from

C because C is the pole of a'b'. Hence, A' is the pole of

BC.

Similarly, b' is the pole of AC and c' the pole of AB.

(2) To show that A and A' lie on the same side of the

circle BC, we note that since A is the pole of the circle b'c'

and A lies on the same side of this circle with A', then A
and a' are at less than a quadrant's distance. Herice, it

follows that if A' is at a quadrant's distance from BC, A
and a' must be on the same side of BC.

In like manner we show that B and b' lie on the same

side of AC, and C and c' on the same side of AB.

707. Definition. If ABC and a'b'c' are polar triangles,

and if ^ is a pole of B^, then Z A and b'c' are said to be

corresponding parts.

708. EXERCISES.

1. In the two polar triangles ABC and A'B'C name all pairs of

corresponding parts.

2. Is there any spherical triangle such that its polar triangle is

identical with the given triangle ?

3. If one side of a spherical triangle is greater than a quadrant show

that it is cut by two circles in the construction of its polar triangle.
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709. Theorem. The sum of the measures of an

angle of a spherical triangle and the corresponding arc

of its polar triangle is 180°.

Given the polar triangles ABC and A'EIC Denote the meas-

ures in degrees of the angles by A, B, C, and of the correspond-

ing sides by a', b', c', •••.

To prove that ^+ a' = 180°

B + b' = lSO°

c+c' =180°

= 180°

B' + b=180°

c' + c = 180°

Proof: Extend (if necessary) arcs A' b' and A'c' till they

meet the great circle BC in points D and E, respectively.

Then arc BE is the measure of Z A'.

Also BE =20°, and DC=20°. (Why')
But BE+ BC= BC + ED= a + A'.

Hence, a' + a = 180°.

Complete the proof for the other cases.

710, Corollary. If two spJieriad triangles are con-

gruent or si/minetric(tl, their polar trianghs arc con-

gruent or symmetrical.

711, EXERCISES.

I

1. Does the above proof apply to the secoijd figure ?

2. If two angles of a splioiioal triangle are equal, it is isosceles.

SuiiOKSTiON. I'si' § 7lti), § (i'.l5, and .igain § "Oil.
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3. State and prove the theorem on trihedral angles corresponding

to the preceding. c

4. If two angles of a spherical triangle are

unequal, the sides opposite them are unequal,

the greater side being opposite the greater

angle. B
Suggestion. In the triangle ABC let ZB>ZA. Draw BD,

making Z ABD = ZA.

Then, AB = BD, and BD + DC > BC.

Hence, show that AC > BC.

5. State and prove a theorem on trihedral angles corresponding to

the preceding.

712, Theorem. The sum of the angles of a spheri-

cal triangle is less than six right angles and greater than

two right angles. a

a

Given the spherical triangle ABC.

To prove that (1) ZA + ZB + Zc<6vt. angles.

(2) Z A+ Z B +Zc> 2 vt. angles.

Proof: Construct the polar triangle a'b'c', with sides

a', h', c'.

(1) By § 709 Z 4 + Z B + Z c+ a' + 6'+ c'= 6 rt. angles.

Since a' + h' + c' is greater than zero, it follows that

ZA+ZB + Zc<&vt. angles.

(2) Using § 684, show that ZA-\-Zb + Zc> 2rt. A.

713. Corollary. State and prove the theorem on

trihedral angles which corresponds to the preceding

.
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714. Problem. On a given sphere to construct a

spherical triangle ivhen its sides are given.

Solution. Let o be the given sphere, and a, b, c the arcs

of the required triangle, and let .l.l' be any diameter of

the sphere. With ^ as a pole, construct circles DBE and

FCG whose polar distances from A are c and b respectively.

With B as a pole, construct a circle HCK, whose polar

distance from B is a. Tiien construct the three great

circle arcs, AB, BC, CA. ABC h the required triangle.

715. BXERCISES.

1. What restrictions if any is it necessary to impose upon the three

given sides of the triangle in § 714? (§§ lis:!. (iS|.)

2. In plane gednietry two congruent triangles may l^e constructed

upon the same hase and on the same side of it. Is a corresponding

construction possible on the sphere?

3. If in the aliove construction each of two sides of the required

triangle is very great, that is, nearly a scnucircle. show fron\ the con-

struction that tlie third side must be very small.

4. If line side of the proposed triaiinle in §714 were equ.al to or

greatej' than 1st)', wh^- wouhl that nuike the construction impossible?
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716. Problem. To construct a spherical triangle

when its three angles are given.

Solution. Let the three given angles be A, B, C, and let

a',b',c' be arcs such that a' +Za = 180°, J' + Zb= 180°,

c' + Z c = 180°. Then the triangle whose arcs are a', b', c'

will be the polar triangle of the required triangle. This

latter triangle A'b'c' may be constructed by the method
of § 714. Then construct the polar triangle of A'b'c',

which will be the required triangle.

Give reasons in full for each step.

717. Problem. To construct a trihedral angle tchen

its face angles are given.

Solution. Construct the corresponding spherical triangle

by the method of §714.

Give the construction in full and prove each step.

718. Problem. To condiuct a trihedral angle when

its dihedral angles are given.

Solution. Construct the corresponding spherical tri-

angle by the method of § 716.

Give reasons in full for each step.

719. EXERCISES.

1. If two spherical triangles having angles respectively equal are

constructed on the same sphere, how are these triangles related? Prove.

2. If two trihedral angles with face angles respectively equal are

constructed as in § 717, how are they related? Prove.

3. If two trihedral angles each with the same dihedral angles are

constructed as in §718, how are the trihedral angles related? Prove.

4. What restrictions if any must be placed upon the given angles

A, 5, C in § 716? Compare Ex. 1, §715.

5. What restrictions if any are needed in Exs. 2 and 3 ?
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720. Theorem. Two spherical triangles having tivo

angles and the included side of one equal reHpectively to

two angles and the included side of the other are con-

gruent, if the given equal parts arc arranged in the

same order, and symmetricaJ, if arranged in the oppo-

site order.

Proof: By §§ 709 and 699 the polar triangles of the given

triangles are congruent or symmetrical. Hence, by § 710,

the given triangles themselves are congruent or symmet-

rical.

721. Corollary. >Stnte and prove the theorem on

trihedral angles which corresponds to the preceding.

722. Theorem. Two spherical triangles having the

angles of one equal respecti velii to the angles of the

other are congruent, if the equcd angles

are arranged in the same order, and

sj/mmctrical, if they are arranged in

the opposite order.

Proof: By §§709, 691, and 693 the

polar triangles of the given triangles

are equal or symmetrical. Hence, by

§ 710, the given triangles themselves are equal or sym-
metrical.

723. Corollary. jState and prove the theorem on

trihedral angles ivhich (orrcsj)(})ids to the preceding.

724. Is there a tlieorem on piano triangles correspond-

ing t(i that of § 7'22/
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725. EXERCISES.

1. If the sides of a spherical triangle are 60°, 80°, 120°, find the

angles of its polar triangle.

2. If the angles of a spherical triangle are 72°, 104°, 88°, find the

sides of the polar triangle.

3. If a triangle is isosceles, prove that its polar triangle is isosceles.

4. If each side of a spherical triangle is a quadrant, describe its

polar triangle.

5. In case each side of spherical triangle ABCis a quadrant, show

that the eight triangles formed by drawing the great circles whose

poles are A, B, and C are all congruent.

6. Show that for any triangle the construction of the polar triangle

gives four pairs of symmetrical triangles.

7. If a triangle ABC is isosceles, show that of the eight triangles

of Ex. 5 there are four pairs of congruent triangles.

8. If the triangle ABC is not isosceles, show that of the pairs of

triangles proved congruent in Ex. 7 none are now congruent.

9. If the angles of a spherical triangle are 70°, 80°, and 110°

respectively, find the sides of each of the eight triangles formed by the

polar construction.

10. Is it possible to construct a spherical triangle whose angles

are50°, 60°, 120°?

11. Is it possible to construct a spherical triangle whose angles

are 60°, 120°, 150° ?

Suggestion. Consider the polar triangle of such triangle.

12. Consider the questions on trihedi-al angles corresponding to the

two preceding.

13. If the sides of a spherical triangle are 75°, 95°, and 115° re-

spectively, find the angles of each triangle formed by the polar

construction.

14. How can the theorem of § 712 be used to prove that a side of

a spherical triangle cannot be as great as a semicii-cle?
_

15. If it is given that a spherical triangle is equilateral, can we

infer from the theorems thus far proved that its polar triangle is

equilateral ?
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POLYHEDRAL ANGLES AND SPHERICAL POLYGONS.

726, Theorem. The suvi of the face angles of any

convex polyhedral angle is less than four right angles.

p

Proof : Let ABODE be a polygonal section of the given

polyhedral angle. The number of triangles thus formed

having P for a vertex is equal to the number of face angles

of the polyhedral angle.

Let o be any point in the base, and draw OA, OB, oc, etc.

Then Z pbA + Z PBC > ZABC, and Z PCB + Z PCD >
Z BCD, and so on. (Why?)

But the sum of the A of the A OAB, OBC, etc., is equal

to the sum of the A of the A PAB, PBC, etc.

Hence, Z APB + Z BPC + < Z A0B + Zb0C-\ .

But the sum of tlie A about O is four right angles.

Therefore, the sum of the face angles of the polyhedral

angle is less than four right angles.

727. Definition. The section of a sphere made by a

convex polyhedral angle whose \ ertex is the center of

the sphere is called a spherical polygon.

Since a plane may be passed through

the vertex of a polyliedral angle sueh

that the polyhedral angle lies entirely

on one side of it, it follows that a

spherical polygon lies within one hemi-

sphere.
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728. Corollary. State and prove the theorem on

spherical polygons ivhich corresponds to that of § 726.

729. Theorem. The sum of the angles of a spherical

polygon of n sides is greater than 2{n—2) right angles

and less than 2 n right angles.

Proof : Divide the polygon into n — 2 triangles.

Hence, by § 712 the sum of the angles is greater than

2(w — 2) right angles.

Since the polygon has n angles, and since each angle is

less than two right angles, it follows that their sum is less

than 2 n right angles.

730. Corollary. State and prove the theorem on

polyhedral angles ivhich corresponds to the p)Teceding.

AREAS OF SPHERICAL POLYGONS.

731. Definitions. A spherical polygon divides a sphere

into two parts, an exterior and an interior, so that every

path on the sphere passing from one to the other must

cross the polygon.

We have seen (§ 727) that any spherical polygon lies

within one hemisphere. The interior is that one of the two

parts which lies entirely within this hemisphere.

Two spherical polygons are said to inclose equal areas

or to be equal if they are congruent, or if they can be

divided into polygonal surfaces which are congruent in

pairs.

The terms spherical triangle, spherical polygon, are sometimes

used to refer to the part of the sphere inclosed by these figures. The

context will always indicate clearly in which sense they are used.
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732. Theorem. Tuxj symmetrical spherical tri-

angles are equal.

Proof : Let ABC and a'b'c' be the given triangles.

Extend the radii OA, OB, or to meet the sphere in A^,

Bj, Oj, thus forming a triangle symmetrical to A ABC

(§ 688), and hence congruent to A a'b'c' (§ 698).

Let P be a pole of the circle through a. b, c. Extend

PO to meet the sphere in Py Draw pa, pb, PC, and Pj^j.

PjBj, and PiCy

Suppose that P lies within Aabc.
Now prove that A PAB ^ A P^A^B^ A PAC ^ A P^i^Cy

A PBC ^ PjBjCi. Note that these triangles are isosceles.

Hence, show that AABf = A A-^B^C^ and therefore

A ABC= A a'b'c'.

733. Definitions. A lune is a figure formed b}- two

great semicircles having the same end-points. The angle

between these semicircles is the angle of the lune.

A birectangular spherical triangle is one having two

right angles.

If one angle of a birectangular triangle is 1°, the triangle

incloses one of 720 equal parts of the sphere. The area
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inclosed by such a triangle is called a spherical degree and

is used as a unit of measure of areas inclosed by spherical

polygons.

In a similar manner we define a spherical minute and a

spherical second.

734. Theorem. Tlie area inclosed by a lune in terms

of spherical degrees is twice the angle of the lune.

735. Definition. The number of spherical degrees by

which the sum of the angles of a spherical triangle exceeds

180° is called the spherical excess of the triangle.

736. Theorem. The area of a spherical triangle in

terms of spherical degrees is equal to its spherical

excess.

Proof : We are to show that area

AAIiC = ZA + AB+ZC-lSO°.
Consider the lunes ACDB, CAEB,

BCFA.

We have

A ABC + AbCD = ACBB = 2 Z ^.

A ABC + ABAE = CAEB = 2 Z C.

A ABC + A GFA = BCEA = 2 Z B.

Hence, adding, 3 A ABC + A BCD,

BAE, CFA = 2(^ZA+Zb + Zc-).

Now A BCD and AEF are symmetrical and have equal

areas.

Hence,

2 A ABC+ A ABC, AEF, BAF, CFA = 2(Z A + Z B +Z C).

But A ABC, AEF, BAF, CFA together constitute a hemi-

sphere or 360 spherical degrees.

Hence, 2 A ABC + 360° = 2 (Z a + Z B + Z c).

Solving, A ABC = ZA + /LB+ZC- 180°.
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737. Definition. The spherical excess of a spherical

polygon is the sum of its angles less (n — 2)180°, where n

is the number of sides of the polygon.

738. Theorem. The area of a .yjherical polygon

in terms of -yjJierical de/jrees la equal to its spherical

excess.

Proof : Join one vertex of the polygon to each non-

adjacent vertex, thus forming w — 2 spherical triangles.

Now prove that the sum of the spherical excesses of

these triangles is the spherical excess of the polygon and

thus complete the proof.

739. EXERCISES.

1. AVIiat is the area in spherical degrees of a birectangular tri-

angle one of whose angles is .54"? If one angle is 7!'' oO' ; loij- : 14'

;

:3lJ" V

2. What is the area inclosed hy a lune whose angle is 4.") ? Note

that the lune may lie divided into two birectangular triangles. What
is the third angle of each ?

3. Between what limits is the sum of the angle-i of a spherical

polygon of eight side.s?

4. Tf the sum of the angles of a spherical polygon is 11 right

angles, what is known about the number of its sidi's?

5. If the sum of the angles of a spherical ]>olyg'on is 14 right

ani;li's, what is known about the munber of its sides?

6. The sides of a spherical polygon are 8.')', Il.'i , lilt . I'iud the

area of each of the eight triani;les formed by the polar construction

fnim this triani;l('.

7. 'I'lic aira of a sjiherical triangle is 71 spherical degrees. One
angle is 1()."i'- ()!' the other two angles one is twice the other. Find

all the angles of the triangle.
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AREA AND VOLUME OF THE SPHERE.

740. In §§ 731-738 we discussed the areas inclosed by
spherical polygons iu terms of a unit directly applicable to

the sphere, namely, the spherical degree.

We now consider the area of the sphere in terms of a

plane Unit of measure. It is clear that such measurement
can be approximate only, since no plane segment however
small will coincide with the spherical surface. Similarly,

if the cube is used as the unit of volume, the measurement

of the volume inclosed by a sphere must be approximate,

since no set of cubes however small can be made exactl)' to

coincide with a sphere.

The two following theorems are needed:

741. Theorem. The lateral area of a

frustum of a right circular cone /'* ecjual

to the altitude of tlie frustum multij)Ued

Jjy the length of a circle ivhose radius is

the perpendicular distance froon a jjoint

in the axis of the frustum to the middle point of an

element.

Given AA' an element of the frustum whose middle point is £',

CC the axis of the frustum, BD± CC and EB1.AA'.

To prove that the lateral area is equal to 2 tt • EB • CC'.

Proof: Bj- § 619, the lateral area is 2 7r • BD • AA'.

Hence, we must show that EB CC' = BD AA'.

To do tills, draw A'f± .IC and show that A AFA' ~A edb.

742. CoEOLLART. The lateral area of a cone is equal

to its altitude times the length of a circle whose radius

is the perpendlcida?' from a point in the axis to the

middle point of an element.
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743. Theorem. Given a fixed line through the ver-

tex of a triangle, but not crossing it. The volume

swept out by the triangle as it rotates about the fixed

line as on axla is equal to the numerical measure of the

area generated by the side opposite the fixed vertex

multiplied by one third the altitude upon that side.

i>v

Fig

Given A ABC with vertex A in the fixed line /.

Case 1. When one side as AB lies in line I. (Fig. 1.)

Draw AD ± BC, or BC produced, and CE±AB.
Then Vol. ABC= Vol. AEC+ Vol. BEc

= '^^vi-r-AB. (Why;')

But CB^ AB=CE CE- AB = CK liV AD. ( Wliy ')

And by § (11:5, tr CE BC is the area swopt out by BC.

Henee, \'ol. ABC = ^ AD • (area generated by lie).

Case 2. Wfien neither AB nor AC liett in line I. (Fig. 2.)

Produce CB to meet I in F and thaw .iD and CE as before.
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N

Then Vol. ABC = Vol. AFC — Vol. AFB.

By Case 1 Vol. AFC = ^ AD (area generated by FC),

and Vol. 4FB = J ^D • (area generated by FSy.

Hence, Vol. ABC = ^ AD (area generated by FC — FB'),

or Vol. ABC = ^ AD (area generated by BC}.

Let the student give the proof when the triangle is of other forms,

e.g. in Case 1 when AD falls loithin the triangle, and in Case 2 when

BC is parallel to I.

744. Area of the sphere. About a circle circumscribe a

polygon as follows : Construct two diameters AB and CD

at right angles to each other and divide each quadrant

into an even number of parts by points, as D, E, F. At

each alternate division point,

beginning with the first point

D, draw a tangent.

There results a regular poly-

gon with vertices on the diam-

eters AB and CD.

If now we construct another

polygon in the same manner

by dividing each quadrant into

twice as many arcs, it will like-

wise have two vertices on each

of the diameters AB and CD, and this may be repeated at

pleasure.

Now inscribe a polygon similar to the one just circum-

scribed by joining the points C and E, E and A, and so on.

If now the whole figure is made to revolve about

AB as an axis, the circle generates a sphere, and the

circumscribed and inscribed polygons generate sets of

circumscribed and inscribed cones and frustums of cones.

We assume the following

:
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745. Axiom XXIV. A sphere hds a dfp'nite area and

wrloscs a definite volume loluch are less respectively

titan the volume and the surface of amj eircumserihed

jhjnrc and (jreatcr than those of an if inscribed convex

fiijnrc.

746. Theorem. Tlie area of a sphere is 4 Trr.

Proof : Denote liy r the radiu.s of the circle which gener-

ates the spliere. That is, in the figure, r = 0F= 0D= OG.
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As this process is repeated indefinitely, the vertices

which lie on the line AB may be made to approach as near

as we please to A and B, and hence the total surface gen-

erated approaches as near as we please to

4 = 2 Trr • AB = 4 TTJ^.

We now prove that A cannot differ from 4 irr^.

(a) Suppose ^ > 4 tt?^, and let ^ = 4 '7rr^-\-d. (1)

Let k be the difference between m'n' and AB.

Then the area of the circumscribed figure is

2 Trr (2 r + A;) = 4 -n-r^ + 2 irrh.

Since k can be made as small as we please, 2 irrk can

be made smaller than d.

Hence, by Axiom XXIV, the area > 4 7rr^ + d, which

contradicts the hypothesis (1).

Therefore the area cannot be greater than 4 ttj^.

(b~) In the inscribed figure let OF' be the apothem.

Then by § 741 and an argument like that used above,

we find that the area of the inscribed figure is

217 AB of' = 4:7rr OF'.

By continuing to double the number of sides, OF' may

be made to approach as nearly as we please to OF = r.

Suppose that A <\ irr^ and let ^ = 4 irr^ — d'. (2)

Let k' be the difference between r and OF'

.

Then the area of the inscribed figure is

4 irr of" = 4 7rr(r — k') = 4 ttv^ — 4 irrk'.

Since k' can be made as small as we please, ^Trrk' can

be made less than d'. Hence there is some inscribed fig-

ure whose area is greater than iirr^ — d'. Hence by

Axiom XXIV, ^ > 4 ttt^— d', which contradicts (2).

Therefore the area cannot be less than 4 irr^. Since the

area is neither less nor greater than 4 Trr\ it is therefore

equal to 4 ttj^.
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lil. Theorem. Jlie volume of a sphere is f tt?^.

Proof : From § 743 tlie volume of the figures formed by-

rotating tlie triangles oia and OHN about AB as an axis

IS ~ (area generated by IH and BN).

N



THE SPHERE. 429

The sphere is covered with a network of small spher-

ical quadrilaterals. If these are taken

small enough, they may be regarded as

approximately plane surfaces.

On this supposition we have a set of

pyramids with a common altitude r and

the sum of their bases approximately

equal to the area of the sphere.

Hence, their combined volume is Jr x (area of sphere)

or |- r • 4 7rr^. That is, the volume is | irr^.

It is clear that, by making these quadrilaterals suffi-

ciently small, this result may be approximated as nearly as

we please.

749. EXERCISES.

1. The surface of a polyhedron circumscribed about a sphere of

radius 4 inches is 420 square inches. Find its vohime.

2. The volume of a polyhedron circumscribed about a sphere of

radius 3.5 inches is 450 cubic inches. Find its surface.

3. Given a sphere of radius 6 inches, is there any upper limit to

the volume of its circumscribed polyhedrons ? That is, can polyhe-

drons be circumscribed having a volume as large as we please?

4. On the same sphere is there any lower limit to the volume of

its circumscribed polyhedrons ?

5. Show that the areas of two spheres are in the same ratio as

the squares of their Tadii or of their diameters.

6. Show that the volumes of two spheres are in the same ratio as

the cubes of their radii or of their diameters.

7. Find the area of a sphere whose radius is 8 inches.

8. Find the volume of a sphere whose radius is 10 feet.

9. If the area of a sphere is 227 sq. ft., find its radius.

10. If the volume of a sphere is 335 cu. in., find its radius.

11. If the volumes of two spheres are 27 cu. in. and 729 cu. in.,

compare their radii.
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750. Definition. That part of a sphere included between

two parallel planes cutting it is called a zone. The per-

pendicular distance between the planes is the altitude of

the zone.

The figure formed by a zone, together with the circular

plane-segments cut out by the sphere, is called a spheri-

cal segment, and the circular plane-segments are its bases.

If one of the cutting planes is tangent to the sphere,

then the spherical segment and the corresponding zone

are said to have but one base. The altitude is the perpen-

dicular distance from the base to the tangent plane.

If one nappe of a convex conical surface

has its vertex at the center of a sphere, the

portion cut off by the sphere, together with

the intercepted part of the spherical surface,

is called a spherical cone.

If two spherical cones have the same

axis, one lying within the other, the figure

formed by their two lateral surfaces, to-

gether with the part of the sphere inter-

cepted between tliem, is called a spherical

sector.

If the two cones are right circular cones,

they intercept circles on the sphere, and tlie

zone thus included is called the base of tlie

spherical sector.

If the accompanying!; figure he revolved aliout i^Uas

an axis, then any arc, as (ID or .1//), generates a zone,

thr former with two bases, the latter with one.

The figure MDF or FDGE generates a spherical segment, the

former with one liasr, the latter with two.

The figure CI L or CBL generates a splierical cone, CL being tlie

common axis.

'J'lie figure ('/>'.
I generates a spherical sector.

(

y.

F

M

^'
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751. Area of a zone. An argument precisely like that

of § 746 shows that the area of a zone is

A = 2 irrft

where h is the altitude of the zone.

That is, instead of AB, the diameter in case of the

sphere, we should have the sum of the altitudes of the

frustums circumscribed about the zone equal to A, the alti-

tude of the zone.

752. Volume of a spherical cone. An argument pre-

cisely like that of § 747 shows that the volume of a

spherical cone is v—'' A

where A is the area of the zone cut out of the sphere by

the cone. Hence, if h is the altitude of this zone, we have

3 3

In like manner the volume of a spherical sector is

753_ EXERCISES.

1. The radius of a sphere is 6 and the altitude of a zone is 5.

Find the area of the sphere and of the zone.

2. The area of a zone is 36 tt and its altitude i. Find the radius

of the sphere.

3. If the radius of a sphere is r, find the perpendicular distance

from a point A to the plane of a given great

circle if the distance on the sphere from A to ,_ "^'"XA
the great circle is 35°. r l^j_-^r--*?0

gg,„

4. Solve the preceding problem if the dis- {::'_'. .il^ ."1~J)

tance on the sphere from A to the given great

circle is 23^°. Also if the distance is 66|°.

(Use the tables, page 335.)
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754, Problem. To find the volume of a spherical

segment.

Solution. Let r be the radius of

the sphere, and r^ and r,^ the radii of

the bases of the segment, a the altitude

of the zone, and let the segment be

generated by revolving the figure ACDB
about ^O as an axis.

ZTTWe have Vol. generated by ODB = "^r^a. §752

Vol. generated by OAB =—r^(a-\-d~). (Why?)
o

Hence,

From

w^e obtain

Vol. generated by OCB = "^r^d.

=
I

[2 r-'a + r^a + d{r^ - r^")]

.

'fi=r^ -\- 6^ and r^ = r^^ + (a + (f)^

d:
fn — ^1 — a

(Why?)

(1)

(2)

Substituting this value of d in r~ = r^ + d^,

we gret r^ = -^

—

—^

—

1

—

'— '— '-

4 a-
(3)

Substituting (2) and (3) in (1) and reducing, we have

ira
(n^ + r.=) + ^ 0^ = ? (irrr+ ^r.?) + ^ irf^

2 -' 6 2

Hence, we have the result

:

TriEoiiEM. The voluDie of a spherical seijine)it is

nnmerieallti equal to the sum of the areas of its bases

multiplied hij half its altitude, plus the volume of a

sphere mheisc diameter is equal to the altitude of the

seipment.
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SUMMARY OP CHAPTER XTI.

1. Collect the theorems involving plane sections of the sphere.

2. Collect the definitions involving plane sections of the sphere.

3. State some of the principal exercises and problems connected
with plane sections of the sphere.

4. Collect the definitions on trihedral angles and spherical tri-

angles.

5. Arrange in parallel columns the pairs of theorems on trihedral

angles and spherical triangles, which are proved without the use of

polar triangles.

6. Collect the definitions on polar triangles.

7. Collect the theorems on polar triangles.

8. Continue the lists started in Ex. 5, adding the theorems proved
by means of polar triangles.

9. Make a list of the definitions involving polyhedral angles and
spherical polygons.

10. Collect the theorems involving polyhedral angles and spherical

polygons.

11. Collect the theorems on the areas of spherical triangles and
polygons.

12. Give the definitions and axioms pertaining to the area and
volume of the sphere.

13. State all the theorems pertaining to the area and volume of

the sphere.

14. Give the definitions and theorems pertaining to spherical

figures, such as zones, cones, sectors, segments.

15. Collect all the mensuration formulas in this chapter.

16. Collect all the mensuration formulas of Solid Geometry.

17. Which of these formulas are illustrations of the general

theorem that the surfaces of similar solids are in the same ratio

as the squares of their corresponding linear dimensions? Which
ones are special instances of the theorem that the volumes of

sinnilar solids are in the same ratio as the cubes of corresponding

linear dimensions?

18. Describe some of the most important applications in this

chapter. Return to this question after studying the following list.
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PROBLEMS AND APPLICATIONS.

1. What part of the earth's surface lies in the torrid zone? What
part in the teinju'ratc- zones? A\'hat part in the frigid zones? The

parallels '±1Y north and south of the equator are the boundaries of

the torrid zone, and the parallels 07 ^' north and south are the

boundaries of the frigid zones.

2. Fuid to four places of decimals the area of a sphere circum-

scribed about a cube wliosp edge is (J. Xi> square root is to be

approximated in the process, and the value of tt is taken 3.1-116.

3. Can the volume of the sphere in the preceding exercise be

approximated without finding a square root? Find tlie volume.

4. Find the area of a sphere circumscribed about a rectangular

paraUelopiped whose sides are a, b, and c.

5. Find the volume of the sphere in the preceding example.

6. ^V fixed sphere with center lias its center on another sphere

with center 0'. Show that the area of the part of 0' which lies

within is equal to the area of a great circle

of the sphere O, provided the radius of the

sphere is not greater than the diameter of 0'

.

Su(:(iESTioN". Let the figure represent a

cross section through the centers of the two

spheres. Connect with .4 and B. Then

OA"^ =0B X OD. But OD is the altitude of the zone of W. which

lies within 0, and OB is the diameter of the sphere 0'. Hence, the

area of the zone is tt BO x OD = ir OA'-.

7. (iiviMi a solid sphere of radius 12 inches. A cylindrical hole

is liiired through it so that tli(> axis of the cylinder passes througli the

center of the sphere. What area of the sphere is removed if the

diameter of the hole is 1 inches?

8. Find the volume removed from tlie sphere by the process

described in the precedini;' exercise.

9. Through a sphere of i-adiiis r a liole of radius ;, iS bored so

that the axis of the eylhnler cut cuit passes through the center of

the sphoe. Find the volume o! the splieiv which remains.
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10. A cylindrical ppst 6 in. in diameter is surmounted by a part

of a sphere 10 in. in diameter, as shown in the figure.

Find the surface and the volume of the part of the

sphere used.

11. A cylindrical post 5 ft. long and 4 in. in

diameter is turned so as to leave on it a part of a

sphere 7 in. in diameter and having its center in the

axis of the post. Find the volume of the whole post.

12. Find the volume of a spherical shell 1 inch

thick if its outer diameter is 8 inches.

13. What is the diameter of a spherical shell an inch thick whose

volume is half that inclosed within a sphere of the same diameter V

14. Compare the volumes and areas of a sphere and the circum-

scribed cylinder.

15. In a sphere of radius r inscribe a cylinder whose altitude is

equal to its diameter. Compare its volume and area with those of

the sphere.

16. In a sphere inscribe a cylinder whose altitude is n times its

diameter. Compare its area and volume with those of the sphere.

17. Compute the length of the diagonal of a cube in terms of its

side, and also the length of the side in terms of half the diagonal.

18. Express the volume of a cube inscribed in a sphere in terms

of the radius of the sphere.

19. Three spheres each of radius r are placed on a plane so that

each is tangent to the other two. A fourth sphere of radius r is

placed on top of them. Find the distance from the plane to the top

of the upper sphere.

20. Find the vertical distance from the

floor to the top of a triangular pile of spher-

ical cannon balls, each of radius 5 inches,

if there are 3 layers in the pile.

21. Solve a problem like the preceding

if there are 16 layers in the pile, each shot

of radius r.

22. Solve a problem like the preceding

for a square pile of shot of 12 layers.

23. Solve Exercises 21 and 22 if there are n layers in each pile.



CHAPTER XIII.

VARIABLE GEOMETRIC MAGNITUDES.

GRAPHIC REPRESENTATION.

755. It is often useful to think of a geometric figure as

continuously varying in size, or in shape, or both.

E.g. if a parallelepiped has a fixed base, say 24 square inches, but

an altitude which varies continuously from 3 inches to .5 inches, then

the volume varies continuously from .3 • 24 =72 to 5 24 = 120 cubic

inches.

We may even think of the altitude as starting at zero inches and
increasing continuously, in which case the volume also starts at zero.

From this point of view many theorems may be repre-

sented graphically. The graph has the advantage of ex-

hibiting the theorem at once for all its particular oases.

For a description of graphic representation, see Chapter V of the

authors' High School Algebra, Elementary Course.

756. Theokem. The volumes of two jyarallelopipeds

having equal bases are in the same ratio as their

altitudes.

Graphic Representation. By § 541 we have

Volume = base X altitude.

Consider parallelopipeds each with a base whose area is ,4, and with

altitudes h.\, h^, hs, and corresponding volumes T'l. T'.., I'j.

Then J:i=iL^ = *i, H^-Ah^h^etc. (1)

Consider the case where .1 =10. Let one horizontal space repre-

sent one unit of altilude, and one verlieal spaee ten units of volume.
Thus, the point P, lias the ordinate 1' = 10 vortieal units (repre-

senting 100 unitsof \ohiino), ami the abscissa ^2= 10 horizontal unit.s.

430
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Similarly, locate the points Pi and Pg.

Using equations (1), show that 0, Pi, P^, Ps lie in a straight line.
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758. Problem. To represeid fjrapliicnl.hj the rela-

tion hefineen the area and the edge of a cube a-s the edge

varies continuoushj.
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If one vertical space represents one unit of area, then

the points Pj, P^, P3, etc., lie on the steep curve.

The student should locate many more points between

those here shown, and see that a smooth curve can be

drawn through them all.

759. The graph of the relation between two variables,

one of which varies as the square of the other, is always

similar to the one just given.

The lowest curve represents the relation between the

side of a square and its area, and the third curve rep-

resents the relation between the edge of a regular tetra-

hedron and its total surface.

In each of these cases the area is said to vary as the

square of the side of the figure. These are special cases

of the theorem, § 654, that the surfaces of similar figures

are in the same ratio as the squares of their corresponding

near dimensions. This theorem may also be stated

:

The areas of similar figures vary as the squares of

their linear dimensions.

760. EXERCISES.

1. From the gi-aph find approximately the area of a regular tetra^

hedron whose side is 2.5; one whose side is 3.7; 4.3.

2. Find approximately from the graph the edges of cubes whose

total areas are 25 square units ; 40 square units ; 56 square units.

3. Find approximately from the graph the edges of regular tetra-

hedrons whose total areas are 42 square inches; 17 square inches;

55 square inches.

4. Construct a graph showing the relation between the edge aud

the total area of a regular octahedron.
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761. Problem. To construet a graph shoiving the

relation hetivern the edge of a cube and its volume.
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Solution. Taking ten horizontal spaces to represent one

unit of length of side of the cube and one vertical unit to

represent one unit of volume, construct the middle graph

shown on the page opposite.

762. The lower graph represents the relation between

the length e of the edge of a regular tetrahedron and its

volume V; and the iipper graph represents the relation

between the radius and the volume of a sphere.

In each of these cases the volume is said to vary as the

cube of the given linear dimension.

These are special cases of the theorem, § 654, that the

volumes of similar solids are in the same ratio as the

cube of their ratio of similitude.

This theorem may now be stated:

The volumes of similar solids vary as the cubes of

their linear dimensions.

763. EXERCISES.

1. From the graph read off appi-oximately the cubes of 1.3; 2.4;

3.7.

2. From the same graph read off approximately the cube roots of

17; 46; 54; 86.

3. Find approximately by means of the graph the volume of a

sphere whose radius is 1.5 ; 2.3 ; 2.7.

4. What is the radius of a sphere whose volume is 26; 52; 71;

80?

5. Construct a graph giving the relation .between the volume and

the length of a side of regular octahedrons.

6. By means of the graph just constructed find the volume of a

regular octahedron whose side is 1.3; 2.7; 3.6.

7. From the graph constructed under Ex. 5 read off approximately

the lengths of an edge of a regular octahedron whose volume is 18

;

also of one whose volume is 46.
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220 :nT-
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764. The graph on the opposite page exliibits the varia-

tion of the area and the volume of the cube. We notice

that for small values of e the numerical value of the area

is greater than that of the volume. For e = 6 these

values are equal, and for e greater than 6, the numerical

value of the volume is greater than that of the area.

This is an instance of the general fact that if a solid

figure increases in size but remains similar to its first form,

then after a certain point its volume increases more rapidly

than its area or the area of any cross section.

765. The fact that one variable y varies as the square

or the cube of another variable x is expressed algebraically

by the equations y = kaP' and y = Ici?, respectively, where

A is a constant number to be determined in any particular

case.

If the value of Tc is known, the relations represented by

these equations may be shown by a graph like those on

the preceding pages.

The equation y = kx^ may be plotted by multiplying

the ordinate of each point of the graph V= e^ (see page

opposite) by the value of k.

SUMMARY OF CHAPTER XHI.

1. Give a brief summary of the graphic representation process in

general and in particular, as applied to geometrical figures.

2. Make a list of the theorems which are represented graphically

in this chapter.

3. Show in what respects such a representation has advantages over

the algebraic representation.

4. State as formulas the important laws of variation for geometric

magnitudes discussed in this chapter.

5. Make a collection of important applications given in this chap-

ter, including those which occur in the following set.
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PROBLEMS AND APPLICATIONS.

1. Assuming that the weights of schoolboys vary as the cubes of

their heights, construct a graph representing the relation between their

heights and weights, if a boy 5 feet 8 inches tall weighs 130 pounds.

Suggestion. If w represents the number of pounds in weight

and h the number of feet in height, ir — kh^. From w = 130, when
h = 5|, we have /c = .71i. For the purpose of the graph, k = .7 is

accurate enough. Hence, we obtain the required graph by multiply-

ing each ordinate of the graph of V = e^ by .7.

2. From the graph constructed in the preceding example find the

weight of a boy 5 feet tall ; one 5 feet 4 inches ; one 5 feet 6 inches.

Compare with the weights of boys in your class.

3. If a man 6 feet tall weighs 18.') pounds, construct a graph rep-

resenting the weights of men of similar build and of various differ-

ent heights.

4. If steamships are of the same shape, their tonnages vary as the

cubes of their lengths. The Mauretania is 790 feet long, with a net

tonnage of 32,500. Construct a graph representing the tonnage of

ships of the same shape, and of various different lengths.

Other ships which at one time or another have held ocean records

are: the Deutschland, length GSii ft. and tonnage 16,.")00: the Kaiser

Wilhelm der (7 ;».<,«', length 64,s ft. and tonnage 14,:)iiii: the Lucania,

length OJ.) ft. and tonnage 13,000 (nearly) ; and the Etruria, length

iVJO ft. and tonnage 8000. By means of this graph decide whether
or not these boats have greater or less tonnage than the ^^aurel(lnill

as compared with their lengths.

XoTE. The following more general problems further ilUistiate the

wide range of aii]ilicali()n of the fundanieiital theorem that the sur-

faces and the volumes of similar solids vary respectively as the squares

and the eubes of tlieii- ooirespcmding linear dimensions. These prob-

li'ms need not be solved by means of graphs.

5. Raindro]iH as tliey start to fall are extremely small. In the

course of their deseiMit a great many unilo to form larger and larger

drops. If 1000 such drops unite inio one, what is tlie ratio of the sur-

face of the largo drop to the sum of the surfaces of the small drops?
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6. Consider two machines simil&,r in shape and of heights Aj and
^2- Since the tensile strength of corresponding parts varies as the

areas of their cross sections, it follows that the tensile strengths of

corresponding parts are in the ratio h^ : h^. But the total volumes
of the machines vary as the cubes of the heights ; that is, the total

weights are in the ratio li-^ : h^. Does this fact offer any hindrance

to the building of machines indefinitely large?

7. The strength of a muscle varies as its cross-section area, which
in turn varies as the square of the height or length of an animal,

while the weight of the animal varies as the cube of its height or

length. Use these facts to explain the greater agility of small ani-

mals. For example, compare the rabbit and the elephant.

8. Assuming the velocities the same, the amounts of water flow-

ing through pipes vary directly as their cross-section areas. How
many pipes, each 4 in. in diameter, will carry as much water as one

pipe 72 in. in diameter ?

9. What must be the diameter of a cylindrical conduit which

will carry enough water to supply ten circular intakes each eight feet

in diameter?

10. A water reservoir, including its feed pipes, is replaced by

another, each of whose linear dimensions is twice the corresponding

dimension of the first. If the velocity of the water in the feed pipes

of the new system is the same as that in the old, wiU it take more or

less time to fill the new reservoir than it did the old? What is the

ratio of the new time to the old ?

11. If two engine plants are exactly similar in shape, but each

linear dimension in one is three times the corresponding dimension

of the other, and if the steam in the feed pipes flows with the same

velocity in both, compare the speeds of the engines.

12. If two men, one 5 ft. 6 in. and the other 6 ft. 2 in. in height,

are similar in structure in every respect, how much faster must the

blood flow in the larger person in order that the body tissues of both

shall be supplied equally well ?

Suggestion. Xote that the amount of tissue to be supplied varies

as the cube of the height, while the cross-section area of the arteries

varies as the square of the height.



THAPTER XIV.

THEORY OF LIMITS,

GENERAL PRINCIPLES.

766. In the Plane Geometry it was found that there are

segments which have no common unit of measure, that is.

which are incommensurable, and that the ratro of the

lengths of two .such segments could be expressed only

approximately by means of integers and ordinary frac-

tions. Other incommensurables occurred in dealing with

the length of the circle and the area inclosed by it.

In Chapters III, IV, and V we confined ourselves to an

informal first treatment of these incommensurable ratios,

tacitly assuming their existence and computing them ap-

proximately. In Chapter \'II their existence was explicitly

assumed, and certain theorems proved rigorously on the

basis of these assumptions. In the Solid Geometry the

areas and volumes of the cjdinder, cone, and sphere have

been treated accordinq- to this latter method.

767, In returning to this subject once more we fix our

attention on the incommensurable ratios themselves, and

the method of determining them, rather than on the

process of approach and the practical computation liased

on it. We have already used symbols such as \- to

represent the ratio of the lengths of incommensurable

segments.

In general, the ratio between any two incommensurable

giM)metric niaqiutudes of the same kind may be represented

by wlial is called an irrational number: that is. a number
which is ticithcr dii iiitci/cr nor it ijiiotii'iit of tivo iiiti-gerit.

I III
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768. The following method for determining irrational

numbers is, for simplicity, applied first to the integer 1.

Throughout this discussion the words " point on a line
"

and " number " will be used interchangeably.

In a straight line mark a certain point (zero), and one unit to

the right of it mark another point 1.

Also lay off points such that their ^- ^ % l

distances from are ^, f, |, \\, .
If this sequence of points is carried ever so far, it -will never reach

the point 1. If, however, we select a point k to the left of 1, no matter

how^ near it, we may always go far enough along this sequence to

reach points between k and 1.

769. The point 1 has two definite relations to this

sequence.

(a) Every point of the sequence is to the left of 1.

(h) For any fixed point k to the left of 1 there are

points of the sequence between k and 1.

770. We now note that 1 is the only point on the whole

line such that both (a) and (6) are true of it. For every

point to the right of 1 (a) is true, but (6) is not. For

every point to the left of 1 (6) is true, but (a) is not.

It follows therefore that, while the points of the

sequence merely approach the point 1, the sequence, taken

as a whole, serves to determine that point just as definitely

as if the numeral 1 itself were used to indicate the point.

771. The sequence 3, 2\, 2^, 2^, • is a decreasing

sequence, and the number 2 sustains relations to it similar

to those described above. That is,

{a') Every point of the sequence is to the right of 2.

(&') For every point k to the right of 2 there are

points of the sequence hetween K and 2.
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772. Definitions. An endless sequence of the sort just

described is called an infinite sequence.

Not every infinite sequence serves to single out a defi-

nite point in the manner shown above. Thus the sequence

1, 2, 3,4, ... fails to do so, because its terms grow large

beyond all bound. Such sequences are said to be un-

bounded, while the sequence |, |, |, ... is bounded.

Again, the sequence 1, 2, 1, 2, 1, ... fails to single out

a definite point. This sequence is said to be oscillating,

since its terms increase, then decrease, then increase,

etc., M'hile ^, |, ^, ... is non-oscillating.

773. The number 1 is said to be the least upper bound of

the sequence |, f, |, That is, 1 is the smallegt num-

ber beyond which the sequence does not go. 1 is also said

to be the limit of the sequence.

Similarly, 2 is the greatest lower bound or the limit of

the sequence 2|, 2|, 2^, ... ; that is, - is the greategt

number such that the sequence contains no number less

than it.

774. Axiom XXV. Every hounded increasing sequence

has a least uj)pcr hound, and every hounded decreasing

sequence has a grcnkst lower hound.

This axiom may also be stated :

Every hounded increat>ing or decreasing sequence

has a limit.

This axiom simply means that every such sequence

singles out a definite number in the manner stated.

Thus, if we attempt to approximate the square root of 2, we obtain

a sequence 1,1.4, l.tl, 1.111, 1.4142..., having for its limit a dejinile

number rejiresented by \"J, which corresponds to the length of tlie

diagonal of a square whose side is unity.
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775. If two sequences ctj, a^, ag, ... and ij, b^, ig, ... are

equal term by term, that is, if aj = Sj, a^ = ij' *$ = ^3) • • •

then they are one and the same sequence and hence by

Ax. XXV they determine the same number.

The same number may be defined by two different

sequences.

Thus each of the sequences, J, J, |, ... and |, f , f, ..., has 1 as its limit.

We notice, however, that no matter what definite num-
ber we select in either of these sequences, there is a number

in the other greater than it.

776. Theorem. Two increasing bounded sequences

define the same number as their limit if neither sequence

contains a number greater than every number of the

other.

Let aj, a^. a^i ^^^ ^v ^2' ^3' ••• denote two infinite

sequences, with limits A and B, such that there is no a

gi'eater than every b, and no b greater than every a.

To prove that A = B.

Proof : Suppose that A is not equal to B and that A is

less than B. Then there must be numbers of the sequence

5 J, ^2, bg, ••• greater than A, since by § 769 there are num-

bers of bp §2' ^31 •• greater than any fixed number whatever

which is less than B, which contradicts the hypothesis of

the theorem. ,

In like manner we show that B is not less than A.

Hence A = B.

777. Theorem. Tioo decreasing sequences define the

same number as their limit if neither sequence contains

a number less than every number of the other.
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APPLICATION OP LIMITS TO GEOMETRY.

778. Problem. On a given segment ab to lay off a

seqninice of points B^, B^, B^, of loliich B is the limit,

such that each of the segments AB^, AB.^, ab.^, is

commensurable with a given segment CD.

c rm
I

1 1

—

A B
•

' 1 tr^
Solution. Using Wj, an exact divisor of CD, as a unit

of measure, lay off on AB a segment AB-^, such that the

remainder B^B is less than my Then CD and AB^ are com-

mensurable.

Using a unit m^, likewise a divisor of CD, and less than

BjB, lay off AB,^ such that B^B is less than m.^ Then
AB^ > ABy and CD and AB^ are commensurable.

Continuing in this manner, using as units of measure

segments Wg, m^, •••, each an exact divisor of CD and each

less than Bj B, B^ B, respectively, we obtain a sequence

of segments AB^ AB^, AB^, •••. each greater than the pre-

ceding and each commensurable with CD.

If tlie units Wj, m^, wig, •• are so selected that they

approach zero as a limit, it follows that B is the limit of

the sequence B^ B^, Bg, ••.

If a different sequence of divisors of CD, as »ii', m-i. m^' ••, is used,

•we obtain a sequence Bi', BJ , B/ •.., likewise satisfying the conditions

of the problem.

We note in regard tu any two such sec|uenoes B,, 5-., Bs, .--and

•Bi', B2', B3', •• determined as aliove, tliat they are both increasii)g and
that each is sueh that no jioint of it is to the riglit of erery point of the

other.

llenee, by § 770 any two such seiiueiiees have the same limit B.
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779. If two arcs, AB and CD, of the same circle or of

equal circles are given, then, in the same manner as above,

points JBj, Bj' ^31 •• ™3'y ^6 constructed on arc AB, forming

a sequence whose limit is B, such that the arc CD is com-

mensurable with every arc of the sequence AB^, AB^,

AB^ •.
B..B, p

AG
780. Definitions. If B^, B^, Bg, • is a sequence of points

on the segment AB having the limit B, then the segment

AB is said to be the limit of the segments AB.^, AB^, AB^, .
781- The ratio of two commensurable segments has been

defined as the quotient of their numerical lengths.

The ratio of two incommensurable segments has not been

explicitly defined, but it is now possible to do so in terms

of the limit of a sequence.

Consider two incommensurable segments AB and CD.

Let ftp a^, ttg, be the lengths of the segments each com-

mensurable with CD, forming a sequence whose limit is the

segment AB, and let b be the length of the segment CD.

Then ^, ^, ^, ••• is an increasing bounded sequence
b b b

having a limit which we call R.

If aj', a^', ag', •• are the lengths of another sequence of

a ' a ' a '

segments whose limit is AB, the sequence -J-,
-f-, -f-,
b

is another increasing bounded sequence with limit r'.

By § 776 we now know that B = r'.

This number R is defined as the ratio of the segments

AB and CD.
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782. The application of the theory of limits to geometry

consists chiefly in showing that two numbers are equal

because they are the limit of the same sequence, or of

sequences having the property stated in the theorem of

§ 776. In the following paragraphs the applications are

made to the chief cases both in plane and in solid geome-

try.

783. Theokem. In the same circle or in equal circles

the ratio of tioo central angles is the same as the ratio

of their intercepted arcs.

B2B1

Proof : In case the arcs are commensurable the proof

is obvious. See § 413.

If the arcs AB and CD are not commensurable, let ABy
AB^y ABg, • be a sequence of arcs whose limit is AB, each

arc being commensurable with the arc CD.

AB^ AB^ AB,

Cd' Cd' CD

by definition, is the ratio of the ares AB and CD.

Then the sequence has a limit R which.

Similarly the sequence 1,

Z COD
Z AOB, Z AOB,

COD Z COD Z COD
has a limit R' which, by definition, is the ratio of Z AOB
and Z COD.

AB^ _ ZAOB., AB^ Z AOBo
CD Z COD ' CD

Since
Z COD

'

these two sequences are identical and lionce defint

same limit. Therefore it follows that r=r'.

the
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784. Theorem. A line parallel to the base of a tri-

angle, and meeting the other two sides, divides them in

the same ratio.

Given the A ABC with DE II BC and a
cutting AB and AC.

To prove that ^ = ^.
^B AC

T. , s

Proof: Consider the case when d^

AD and AB are incommensurable. ^/

Let z»j, iJj, Dg • • • be a sequence on

AB whose limit is D. Through _-„

these points draw parallels to BC,

meeting AC in ^j, E^., E^, .
Then E is the limit of the sequence E^, E^, E^, •.

For suppose it is not, and that there is a point K on AE
such that there is no point of E-^, E^, E^, between K and

E. Then draw a line parallel to BC through K, meeting

AB in H.

But there are points of the sequence D^, n^, Kg, between

H and D, and hence points of the sequence Ej, i'g, E^, •• be-

tween K and E, which shows that E is the limit of E-y, E^,

£g, •••.

N AD^_AEj^ Ali^_AE^ AD^ _ AE^

AB~ Ac' AB~ AC' AB ~ Ac'

Hence, the two sequences,

AD, AD„ ADg , AE, AE, AE^

AB AB AB AC AC AC

are identical and define the same limit

;

^^- , , AB AE
that IS, — =

AB AC
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785. Definitions. If a^, a^, ag, •• is a sequence with limit

a, then ka^, ka^, ka^, is a sequence with limit ka.

If aj, ag, ttg, and ij, b^, b^, are two sequences -with

limits a and b respectively, then ab is the limit of the

sequence a^Sj, a^^, agig, •••.

Similarly if aj, a^, ag, ••, by b^, ig, ••• and Cj, Cg, Cg, ••• are

sequences with limits a, J, c, then aSe is the limit of the

sequence a^b^Cy «2^2'^2' ^s^a'^s'
"•

For a complete treatment it would be necessary to show that these

definitions of multiplication of irrational numbers are consistent with

the rest of arithmetic and also that these new sequences are such as

to determine definite limits. That, however, is beyond the scope of

this book.

If the sides of a rectangle are incommensurable with

the unit segment, we define its area as follows

:

Let flj, a^, ag, ••• be a sequence of rational numbers whose

limit is the altitude a, and let Jj, b^, Jg, ••• be a sequence

whose limit is the base b.

Then the area of the rectangle is the limit of the sequence

OjJj, a^Jg, a^bg,

b, l\b.

But by definition the limit of o^b^ a.^b^, a^b^, • is the

product ab. Hence wc lia\eT-

786. Theorem. The ana of a rectangle is the

product of its base and altitude.

787. Definition. In a circle inscribe a sequence Pj, Pj,

Pg, ••• of regulai- polygons, each having twice the num-
ber of sides of the one preceding it.
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Let the perimeters of these polygons be p-^, p^, p^,

and their areas A-^, A^, A^, ••. Then
the length o of the circle is the

limit of the sequence p^ p^, p^,

and its area A is the limit of Ap A^,

jij, •••.

The sequence of polygons thus

inscribed is called an approximating

sequence of polygons.

That these sequences are increasing and bounded is obvious from

the figure.

788. Theorem. TJie lengths of two circles are in the

same ratio as their radii, and their areas are in the same

ratio as the squares of their radii.

Proof : Let the radii of the circles whose centers are o

and o' be r and r'. Denote — by k. Then r' = kr.

Inscribe in O an approximating sequence of polygons

with perimeters Pi, p^^ ^3, ••• and areas ^^ A^, A^, . In

0' inscribe a sequence of similar polygons. By §§ 347,

348, the perimeters of the latter are kp-^, kp^, kp^, ••• and

their areas are k^A^, k^A^, k^A^, •••.

By § 785, if the limit of jOj, p^, p^, •• is c and the limit

of ^j, A^, Ag, is A, then the limits of kpj^, kp^, kp^, ,
and k^A-^, k^A^, k^A^, ••• are ko and Pa, respectively.

That is, the ratio of the lengths of the circles is

— = k = —, and the ratio of their areas is =. ^2_ —
c r A r'^

If regular circumscribed polygons are used, we obtain decreasing

sequences both for the perimeters and the areas. That the limits of

these sequences are identical with those obtained above is a direct

consequence. See § 417.
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789. Definition. If the three concurrent edges a, h, c of

a rectangular parallelepiped are incommensurable with

the unit segment, the volume in-

closed is defined as follows

:

Let «!, a^, ag, ••• be a sequence of

rational numbers whose limit is the

side a. Let 6^,521^31 ••• and Cj, CgiCg, •,

be similar sequences whose limits are

respectively the dimensions b and c.

Then the volume is the limit of

the sequences ajijCi, a,'}><f^-, ^a^sCg, •••

But the limit of this sequence is by definition the

product of the limits of the three sequences ((p a^. ag, •,

^1' ^2' ^3' ' '^i' "^2' "3' ' '^'^ *^'^-

Hence, we have—
790. Theorem. The volume inclosed by a rectan-

gular parallelopiped is equcd to the product of if^ three

concurrent edges.

791. Definition. In a triangular pyramid inscribe and

circumscribe prisms

as shown in the fig-

ure. See § .591 for

description of the

construction.

Denote the sum of

the volumes of the

inscribed prisms by ^

Using as altitudes one half the altitudes of the fii-st set

of prisms, inscribe a second set the svim of whose volumes

IS 1" Cdntinuiiio' in tl lis manner, we obtain a sequence

of sets of prisms with volumes I'j, V„. I'g, •••. The limit T
of tliiw sequence we define as the volume of the pyramid.
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If circumscribed prisms are used, we get a decreasing sequence of

volumes F/, Fj', Fj', ••• with limit V. That these two limits are

identical follows from the fact that the sum of the volumes of the

circumscribed prisms exceeds that of the inscribed prisms by exactly

the volume of the lowest circumscribed prism (see § 594), and this

may be made as small as we please.

792. EXERCISE.

1. Prove that the definition of § 789 gives the same volume for the

rectangular parallelepiped, no matter what sequences of segments are

used, provided their limits are the segments a, b, c.

A proof that the definition of § 791 gives the same volume for the

triangular pyramid no matter into how many equal parts the altitude

is first divided is rather too complicated to be attempted here. It

may be proved by showing that if the altitude is divided into n and

also into m equal parts, then if n > m, the set of n — 1 prisms will be

greater than the set of m — 1 prisms.

793. Theorem. Tioo pyramids loith the same alti-

tudes and equal bases inclose equal volumes.

Proof: Divide the two equal altitudes into the same

number of equal parts and construct inscribed prisms as

in § 591.

Since corresponding sets of prisms have equal volumes,

it follows that the volumes of the pyramids are the limits

of the same sequence, and hence identical.

794. Convex curves. Without specifically defining a

convex closed curve (see § 552), we assume that in such a

curve it is possible to inscribe a sequence of polygons

Pj, Pg, P3, •••, having perimeters j»j, p^, p^, ••• and areas

A^, A^, Ag, with limits p and A respectively, and to cir-

cumscribe a sequence of polygons P/, Pg', P3', •••, having

perimeters p-^', p^^p^i •• ^nd areas a{^ a^, A^ ,
• with

limits p' and A' respectively, such that p = p' and A = A'.

These limits p and A we now define as the perimeter and

the area respectively of the curve.
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795. Definition. Given any cylinder with a convex

right cross section and an element e. In this cross section

inscribe a sequence Pj, Pg, P3, •••of polygons, as in § 787,

with perimeters Jh^ Pt Ps^ '" ^^^ areas A^, A^, A^, ••-, thus

defining the perimeter p and the area A of the cross

section.

Consider a set of prisms inscribed in this cylinder, of

which Pj, Pg, Pg, •• are right cross sections.

Then the areas and the volumes of these prisms are

respectively jOj«, ^2^' /"s^i ^^'^ ^i^> -^2^' ^3*' "•

The lateral area and the volume of the cylinder are now
defined as the limits of these sequences. But these limits

are by § 785 equal to pe and Ae respectively.

Hence, we have—
796. Theorem. The lateral area of a cylinder is

the product of an element, and tJie perimeter of a right

section and its volume w the product of an element and

the area of a right section.

797. EXERCISES.

1. Give examples other than those given in the text of infinite

sequences which do not determine definite numbers.

2. Give two distinct sequences wliieh determine the number '2.

Show that the theorem of § 776 applies and proves that these se-

quences determine the same number.

3. (live two decreasing sequences each of which determines tlie

number :!. Apply § 777 to show that these sequences determine the

same number.

4. State fully the rclaliou between abounded increasing sequence

and the number determined by it. .Slate also the relations between
a bounded decreasing sequenoo and tlio number determined by it.

5. State fully wliat is meant by "a limit of a sequence" both for

increasing and decreasing sequences.
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6. Given two incommensurable segments ^£ and CZ>. Lay off on

the line AB a decreasing sequence of segments, eacli of which is com-

mensurable with CD, such that the limit of the sequence is the seg-

ment AB.

7. If ai, 02, as, •• is an increasing sequence defining the number

4, prove that 3 ai, 3 aa, 3 as, ••• defines the number 3 x 4 = 12.

Note that in case the sequence oi, ai,, as, ••• defines an irrational

number, we should not be able to prove the corresponding proposition

without first defining what is meant by the product of a rational and

an irrational number. But such definition would in that case be the

proposition itself. See § 785.

8. If a\, 02, as, and bi, hi, Js, •• are increasing sequences defin-

ing the numbers 3 and 5, show that the sequence ai6i, 0262, aebs, • de-

fines the number 15.

In case these sequences defined irrational numbers, could a cor-

responding proposition be proved?

9. In the same manner as in § 781 define the ratio of two incom-

mensurable arcs.

10. Show as above that the ratio so obtained is independent of the

sequence of units of measurement used, so long as the limit of this

sequence is zero.

11. Treat the ratio of two incommensurable angles in a manner
similar to the treatment of arcs in the two preceding exercises.

12. Define the lateral area of a cylinder by means of circumscribed

prisms, and show that this definition leads to the same result as that

given in § 795.

13. Prove as above that the volume of any convex cylinder is equal

to the product of its altitude and area of its base.

14. Prove that the lateral area of a right circular cone is equal to

half the product of the slant height and the perimeter of its base.

15. Prove that the volume of any convex cone is equal to one third

the prodnct of its altitude and the area of its base.

Suggestion. The treatment required in the last three exercises is

a very close paraphrase of the definitions and proof given in § 789.

Observe that we cannot begin to make a proof until we have defined

the subject matter of the theorem. That is, we must first define the

areas and volumes in question.
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VOLUME OF THE SPHERE.

798. Through two points P and Q of a sphere pass a

great circle forming' a hemisphere with center O.
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Draw segments o'm and o'n. Let the planes through

C and B cut a'A' in c' and b' and o'Jtf in H and jk:.

Now form the cylinder o'g'b whose axis is o'o' and

whose radius is C'h. Likewise form c'b'k.

Let Vi denote the sum of the volumes of o'c'd' and

c'b'e' minus the sum of the volumes O'c's and c'b'k.

In a similar manner, using the planes which divide OA

and hence o'a' into six equal parts, we form another set of

five cylinders, the sum of whose volumes minus that of the

smaller inside cylinders we denote by V^'.

Continuing in this manner, we obtain a sequence of vol-

umes Fj', V^', Fg', ••• whose limit v' we define as the volume

of the given figure F.

We now prove that F^ = Fj', V^ = V^', ••

Denote OA by r, and note that o'b' = b'k.

(1) Yo\.jfB^E' - Vol. C'B'K = ttC'b' (Ve'"^ - F?) =
jrC'B'(r^-¥B'^). _ _

(2) Vol. CBE^-ttCB BE^ = -n-CB (r^ — OE^), since BE^ =
r2 _^^
But OB = o'b' and CB = c'b'.

Hence, Vol. CBE= Vol. c'b'e' -Vol. c'b'k.

Similarly we show that

Vol. OCD = Vol. o'c'd' —Vol. o'c'n.

Hence, Fj = Fj'. In like manner v^ = V^', Fg = Fg', ••-.

Hence, F = v', since they are the limits of the same

sequences.

But the volume of the cylinder o'a'm is tt?^ and of the

cone whose volume was subtracted, — r^- That is, the vol-

9 2 TT

ume of F is—^ r^, and hence that of the hemisphere is -— r^.

3 o

Hence, we have—
800. Theorem. ITie volume of the sphere is f ttt^.



462 aOLID GEOMETRY.

801. -Note that the above proof consists essentially in

showing that the area of the circle BE is equal to that of

the ring between the circles b'e' and b'k, and that the

area of the circle CD is equal to that of the ring between

c'd' and c'h and so on.

Indeed this theorem and also that of § 594 are special

cases of what is known as

Cavalieri's Theorem. If two solid figures are re-

garded as resting on the same plane b, and if in every

plane parallel to b the sections of the tioo figures have

equal areas, the figures have equal volumes.

The proof of this more general theorem is more difficult than any

thus far given, inasmuch as it involves sequences which oscillate : that

is, which are neither constantly increasing nor constantly decreasing.

THE AREA OF THE SPHERE.

802. About a sphere of radius r construct a sequence of

circumscribed polyhedrons such that the largest face in

each polyhedron becomes as small as we please when we
proceed along the sequence. Let «j, s^, 83, •• be the total

surfaces of these polyhedrons. This forms a decreasing

sequence with limit S which we define as the surface of the

sphere.

The volumes of these polyhedrons will be -Sj, -s.,. -s^, •.000
Then the volume V of the sphere is defined as the limit

of this sequence of volumes.

Hence, by § 785, r = ^ s. But by § 700, r = f 77?^.

Then s = - ~ tt?^ = i -n-r^.

r 'S

Hence, we have—
803. Theorem. The area of the sphere is 4 7rr*.
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This argument is incomplete in that two distinct defi-

nitions have been given of the volume of the sphere,

namely, as the limit of an increasing sequence of volumes
of inscribed cylinders and also as the limit of a decreasing

sequence of volume of circumscribed polyhedrons. But
it has not been proved that these two definitions are equiva-

lent ; that is, that they lead to the same formula for the

volume of the sphere.

The treatment of the area and volume of the sphere

in most of the current textbooks on geometry is open

to a similar objection. Usually two distinct definitions

are used for the area of the sphere, namely, as a limit of

the areas of circumscribed frustums of cones and also as the

limit of the surfaces of circumscribed polyhedrons.

The argument used in §§ 740-748 is not subject to any

such objection.

SUMMARY OF CHAPTER XIV.

1. Explain the separate stages of treatment of incommensurables

and of limits as given in this book, including both the Plane and Solid

Geometry.

2. Give an outline of the introduction to this final treatment by

means of sequences.

3. Make a list of the definitions, principles, and theorems upon

which the treatment of sequences is based.

4. Explain fully the way in which the principles of sequences are

applied to geometric theorems. Illustrate by line-segments and arcs.

5. Make a list of the theorems which are proved here by the

theory of limits, using the sequence process.

6. State in some detail how this process is used in case of the area

and volume of the sphere.

7. Give all the mensuration formulas proved in this chapter.

8. Review the entire list of mensuration formulas for both Plane

and Solid Geometry.
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Perimeter, of a circle . .'Cc'

of a polygon lui. 2'i7

Perpendicular . 19

bisector of a segment . . 50

line to a plane . . . .5iis

plane to a line . . .'x.^

plane to a plane . . . .592

n (pi), computation of . . :!,51

Plane, determiuation of 4<;.i

proji-'ctions uinui 5.'^')

-segment 522

surf;ifi' . ... 1.

2

Plane angle of :i dihe<lral angle 495

Plato putfi' 140
Point . . . . 1.3
Polar, Uistniu-cs . . . y\^\,\

Iriaiislc . 701

Poles of a circle im9
Polygonal plani'-sogmcnts ,522

Polygons
. iwi

regular . . ;i;V2
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Polygons, similar . ... 256

symmetrical . . . 687

Polyhedral angles . . . 518, 726

congruent ... . 520

edges of . . 518

faces of . . . . 518

symmetrical 687

Polyhedrons, added ... 530

congruent . . . . . 544
equal, equivalent . ... 544

inscribed . . . 631, 672

regular ... . 624, 625

similar 638

Practical measurement . 235, 306

Preliminary theorems,
62-69, 72-76, 189-198, 307

Prismatic surface, directrix of 524

generator of 524

Prisms, definition of

hexagonal . .

lateral edges of . .

oblique . . .

Problems of construction
Projection .

of a figure . . ...
of a point

of a line-segment .

of a plane-segment ...
Projection angle
Proof . . .

by exclusion .

direct, indirect . . 91,

Proportion ....
Proportional division

Proposition, geometric

Protractor . .

Pyramid, definition of

triangular

Pyramidal surface
directrix of

525

526

525

. 526

44,140
. 436

. . 512

. . 512

. 570

. . 580

. 571

59, 391, 292

. 86

175, 176, 394

242

element of

nappes of . .

vertex of

Pythagoras .

Quadrant . .

Quadrilaterals

Radius, of circle 12

of a circular cylinder .... 554

242

59

18, 33

586

. 586

. 585

. 585

. . 585

. . 585

... 585

. pages 40, 130,

140, 162, 167

. . 203, 663

. . . 134^137

624,

Badius, of a regular polygon
Ratio . . ... 238,

commensurable .

incommensurable
of similitude

Ray
Rectangle .

Reflex angle . .

Regular, polygon
polyhedrons . .

prisms . .

pyramids . .

tetrahedrons
Rhomboid, rhombus
Right, angle . . .

cone ...
cylinder . . .

prism
pyramid ....
section .

triangle

Scalene triangle
Secant . .

limiting position of

Second, of angle .

of arc . .

Section, of a prismatic surface

of a sphere . .

Sector of a circle .

Segment, altitude of

bases of

of a circle . •

of a line

spherical . .

Semicircle ...
Sequence, approximating
bounded ....
decreasing

525,

469

. 342

242,408

. 781

781

. 645

9

. 135

. 19

. 160

625, 626

526

. 586

. 625

. 135

19

. 604

554

526

. 586

554, 604
. 23

22

182

386

17

202

524

658

203

750

750

220

mcreasing
infinite .

limit of .

non-oscillating

oscillating .

unbounded . .

Sides of an angle
Similar figures

.

Similarity, applications of

Sine of an angle
Slant height, of frustum

750

184

786

772

771

768

772

772

. 772

, 772

. 772

14,106

27, 256, 638

653

279

604
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Slant height, of pyramid . . 586

of right cone ... . G04

Small circle on a sphere . . (>.">!)

Solids, congruent ..KO, 731

equal . HH
equivalent .... . . 544

geometrical ... . 458

Solution of problems . . 177, 17H

Sphere, area of . 744-741), mi
determination of . . . CM
diameter of ... . 655

great circle of 659

inscribed KM, 672

points within, without . 655

radius of 6.'i2, 655

small circle of ... 6.';!i

Spherical, angle 678

degree, minute, second . 73:i

excess 7.15, 737

731

. 7:15,

. 727,

.75U,

polygons
sector ...
tri;ingle 6H0

Square . ... . 135

Subtended, angle .... 286

arc . . 184

Subtraction, of angles .39

of line-segments 10

Sum of angles 39

Superposition .... page 14

Surface, conical . 603

curved 552, 659

cylindrical .... . 553

definition of 2

lateral 554

prismatic 524

spherical i'*^^^^

Symbols of abbreviation . . 80

Symmetrical, spherical triangles 687

triliedral angles . .... 687

Syrometry 164-173

problems involving, pages 81,

82, 93, 94, 101, 109, 150, 2l)."i.

229, 233, etc.

with respect to a point lU:!

Tangent, of an iicntc ans;li' .572

circles . . . 186

to a circle . 183

to two circles . . . 403, 404

to u cone 606

Tangent, to a cylinder . . 5.56

to a sphere 6(j9

Technical words 3S9

Tests for congruence . 32, 35, 40

Tetrahedron, circumscribed . 637

inscribed 586, 631, 6:12

regular .... . . 625

Thales pages 3, 17

Theorem, definition of . 59

Theory of limits . . Chapter Xl\'

Third proportional . .
2!i3

Transversal ... . . . 8S

Transverse tangent . . . 403

Trapezoid . . 136

Triangle . 21-24, 41, 157. 225,

228, etc.

5:10

599

. 389

60, 391

Trtincated,
pyramid

prism

Undefined words .

Unproved propositions

Variables . . , Chapters VI
dependence of

limit of . ...
Variation, continuous . .

Vertex, of a cciiie . . .

of a polyhedral angle . .

of a pyramid . .

of a spluTiral angle

Vertex angle of a trians'

Vertical angles . . .

Vertices, of a polyhedron
of a polygon

of a quadrilateral

of a triangle .

Volume, as a limit of asequeno

of a cylinder .

of a prism . .

of a sphere

of spherical i-ono

of spherical sector .

of spherical segment

Whole secant

Zone, altitude of .

bases of

<il' one base . .

xm
384

366

603

518

5.S0

562

740,

24

70

160

l.U

21

7s,'»

-'M

..4li

7',W

274

7.50

7.50

7,50














