ORGANIC CHEMISTRY SECOND EDITION

Frank C. Whitmore

Late Research Professor of Organic Chemistry The Pennsylvania State College

With the Assistance of a Committee of Colleagues

VOLUME TWO

Part III: Aromatic Compounds Part IV: Heterocyclic Compounds Part V: Organophosphorus and Organometallic Compounds

Dover Publications Inc. Mineola, New York

Copyright

Copyright © 1937, 1951 by Mrs. Frank C. Whitmore All rights reserved.

Bibliographical Note

This Dover edition, first published in 1961 and reissued in 2011, is an unabridged and corrected republication of the second edition of the work originally published in 1951 by the D. Van Nostrand Company, Inc., New York.

Library of Congress Cataloging-in-Publication Data

Whitmore, Frank C. (Frank Clifford). 1887–1947.
Organic chemistry / Frank C. Whitmore. — Dover ed. p. cm.
Originally published: 2nd ed. New York : D. Van Nostrand, 1951.
Includes bibliographical references and index.
ISBN-13: 978-0-486-60701-6 (pbk.)
ISBN-10: 0-486-60701-1 (pbk.)
1. Chemistry, Organic. 2. Aliphatic compounds. 3. Alicyclic compounds.
I. Title.

QD251.W5 2011 547—dc23

2011018514

Manufactured in the United States by Courier Corporation 60701101 www.doverpublications.com Copyrighted Materials Copyright © 1937; 1951 Dover Publications Retrieved from www.knovel.com

CONTENTS

VOLUME ONE

PART I. ALIPHATIC COMPOUNDS

I	PAGE
Hydrocarbons	1
Halides	72
Alcohols	102
Ethers	138
Sulfur Compounds	143
Esters of Inorganic Acids	155
Nitro and Nitroso Compounds	159
Amines and Related Compounds	165
Alkyhydrazines and Related Compounds	179
Aldehydes and Ketones	184
Monobasic Acids	237
Derivatives of Acids	280
Polyhydric Alcohols and Related Compounds	302
Alkamines and Diamines	
Hydroxyaldehydes and Hydroxyketones	331
Hydroxyacids	340
Dicarbonyl Compounds	354
Aldehyde and Ketone Acids	
Dibasic Acids	
Polybasic Acids	406
Cyanogen and Related Compounds	407
Miscellaneous Compounds containing a Single Carbon Atom	
Purines and Derivatives	438
Carbohydrates	459
Amino Acids	497
Proteins	516

PART II. ALICYCLIC COMPOUNDS

General Discussion.	523
Cyclopropane	530
Cyclobutane	537
Cyclopentane	544
Cyclohexane	551
Bicyclic Terpenes	
Tricyclic Terpenes.	58 2

CONTENTS

PA	GE
Sesquiterpenes	583
Carotenoids E	588
Cholane Series	590
VOLUME TWO	

PART III. AROMATIC COMPOUNDS

Benzene	597
Homologs of Benzene	611
Unsaturated Benzene Hydrocarbons	616
Aromatic Halogen Compounds	617
Aromatic Sulfonic Acids	6 28
Nitro Compounds of Benzene Hydrocarbons	633
Arylamines	642
Diazonium Salts and Related Compounds.	654
Phenols.	663
Aromatic Alcohols	675
Aromatic Aldehydes	676
Aromatic Ketones	680
Phenolic Alcohols, Aldehydes and Ketones	6 82
Quinones and Related Compounds	685
Aromatic Carboxylic Acids	691
Polynuclear Hydrocarbons and Derivatives	709
Naphthalene and other Condensed Ring Compounds	727

PART IV. HETEROCYCLIC COMPOUNDS

General Discussion	751
5-Membered Rings	753
6-Membered Rings	778
Alkaloids	809

PART V. ORGANOPHOSPHORUS AND ORGANOMETALLIC COMPOUNDS

Aliphatic Compounds	847
Aromatic Compounds	859
Addenda and Comments	865
Index	867

PART III

AROMATIC OR BENZENE SERIES

I. BENZENE

The distinctive properties of the members of this series are peculiarly those of benzene and can best be shown by a detailed discussion of that substance which was first found in a liquid by-product of the preparation of illuminating gas from whale oil¹ and later in coal tar.²

Because of the tremendous amount of work on aromatic compounds and the fact that the latter are obtained from coal tar it might be thought that coal tar and coal are distinctly aromatic in nature. It should be remembered that both coal and coal tar are very complex chemically. In "low temperature" coal tar the amount of aliphatic compounds is considerable.³

Chemistry of Coal.4

Hydrogenation of Coal.⁵

Chemistry of Coal Utilization.⁶

The Constituents of Coal Tar.⁷

Possible New Uses for Coal.⁸

Benzene and its higher homologs, toluene and the xylenes occur in only small amounts in coal tar but can be obtained in larger quantities by scrubbing coal gas or water gas with suitable high boiling oils and by cyclization of aliphatic hydrocarbons.

Aromatic compounds are found in petroleums to a larger extent than is ordinarily realized. Even Pennsylvania petroleum contains a minute amount of toluene. Other petroleums proved to be the main sources of toluene for the Global War. From one Mid-continent petroleum the following aromatic compounds, arranged in order of increasing boiling points, have been isolated :⁹ benzene, toluene, Et-benzene, p-xylene, m-xylene, o-xylene, isopropylbenzene, *n*-propylbenzene, 1-Me-3-Et-benzene, 1-Me-4-Et-benzene, 1.3.5-Me₃-benzene, 1-Me-2-Et-benzene, 1,2,4-Me₃-benzene, 1,2,3-Me₃-benzene, 1,2,3,4-Me₄-benzene, n-Amylbenzene, 1,4-Me₂-2-propyl-benzene, H₄-naphthalene, 1,5-Me₂-2-propylbenzene, 1,3,5-Me₃-2-Et-benzene, naphthalene, phenyl-cyclopentane,

¹ Faraday. Ann. phys. 5, 306 (1825).

- ² Hofmann. Ann. 55, 204 (1845).
- ³ Morgan. J. Soc. Chem. Ind. 51, 67T (1932).
- ⁴ Tropsch. Chem. Revs. 6, 63 (1929).
- Bergius. Z. Ver. deul. Ing. 69, 1313 (1925).
 Storch. "Chemistry of Coal Utilization." John Wiley & Son, New York, 1945.
- "The Constituents of Coal Tar," Longmans, Green & Co., 1924, ⁷ Spielmann.
- ⁸ Howard. Ind. Eng. Chem. 35, 156 (1943).
- ⁹ Rossini. Oil Gas J. 39, No. 27, 158, 159, 219 (1940).

6-Me-H₄-naphthalene, 5-Me-H₄-naphthalene, 2-Me-naphthalene, 1-Me-naphthalene.

Benzene, benzol, C₆H₆, m. 5.4°, b. 80.4°.

Many of the physical properties of benzene indicate a transition point at about $40^{\circ,10}$

A. STRUCTURE OF BENZENE

A combustion analysis and molecular weight determination prove its empirical formula. Comparison of this formula with that of hexane, C_6H_{14} , would indicate benzene to be highly unsaturated. It does not, however, give any reaction with KMnO₄ or with bromine water, ordinary reagents for unsaturated compounds. Practically all of its reactions are those of substitution instead of addition. Thus

$$\begin{split} C_6H_6 + HNO_3 &\rightarrow C_6H_5NO_2 + H_2O \\ & Nitrobenzene \\ C_6H_6 + H_2SO_4 &\rightarrow C_6H_5SO_3H + H_2O \\ & Benzenesulfonic acid \\ C_8H_6 + Hg(OCOCH_3)_2 &\rightarrow C_6H_5HgOCOCH_3 + CH_3CO_2H \\ & Acetoxymercuribenzene \\ C_6H_6 + Cl_2 &\rightarrow C_6H_5Cl + HCl \\ & Chlorobenzene \end{split}$$

The first three of these reactions take place in the aromatic series with an ease which is unknown with aliphatic and alicyclic compounds. Contrary to what might be expected from a C_6 compound, only one of each of these monosubstitution products has ever been obtained. No isomer of any of them can be obtained from benzene. Thus only one monochlorobenzene has ever been made. It is C_6H_5Cl , m. -45° , b. 132.1°. This means either that the six H atoms in benzene are all similarly placed in the molecule so that the same product is obtained no matter which one is replaced or that one H atom is so situated that it is more reactive than the others and is always the first to be replaced. A choice between these theoretical possibilities can be reached by a study of the facts regarding further substitution in the benzene molecule. Thus the continued action of chlorine gives the following reaction:

$$C_6H_5Cl + Cl_2 \rightarrow C_6H_4Cl_2 + HCl$$

The resulting product is a *mixture* which can be separated into *three isomeric* dichlorobenzenes with the following properties.

C6H4Cls	m.	b.	d420	n_D^{*o}
(A)	52.9°	173°	1.458	1.527
(B)	-14.°	179°	1.298	1.549
(C)	-24.8°	1 73°	1.288	1.546

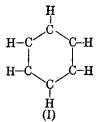
¹⁰ Menzies, Lacoss. Proc. Natl. Acad. Sci. 18, 144 (1932).

Further chlorination is possible.

 $C_6H_4Cl_2 + Cl_2 \rightarrow C_6H_3Cl_3 + HCl$

In this way (A) gives a homogeneous product, a trichlorobenzene which may be called (D). When (B) is further chlorinated it gives a product which can be separated into *two* trichlorobenzenes, one of which is identical with (D), obtained from (A) and a different Cl_3 -benzene which may be called (E). When the third Cl_2 -benzene, (C), is chlorinated, it gives a product which is found to be a mixture of *three* trichlorobenzenes, (D), (E) and a different one which may be called (F). The properties of these trichlorobenzenes are as follows:

$C_8H_3Cl_3$	m.	b.
(<i>D</i>)	17°	213°
(E)	50.8°	219°
(F)	63°	208.5°


The chlorination of each of these Clabenzenes can be continued.

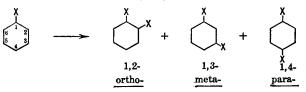
 $C_6H_3Cl_3 + Cl_2 \rightarrow C_6H_2Cl_4 + HCl$

When (F), the trichlorobenzene obtainable only from (C) and not from (A) or (B), is chlorinated, the product is a homogeneous tetrachlorobenzene (G). Chlorination of (E) gives a mixture of (G) and another Cl₄-benzene (H). Similarly (D) gives a mixture of three Cl₄-benzenes, (G), (H) and (I). The properties of these substances are as follows:

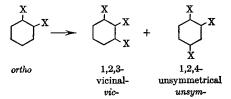
$C_6H_2Cl_4$	m.	b.
(G)	51°	246°
(H)	47°	254°
(I)	137.5°	246°

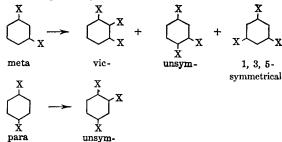
Further chlorination of each of these substances gives only one pentachlorobenzene, C_6HCl_5 , m. 86°, b. 277°, and one hexachlorobenzene, C_6Cl_6 , m. 226°, b. 326°. The only explanation of all of the above facts and of countless other facts about benzene and its derivatives, homologs and analogs is that the six carbon and six hydrogen atoms in the benzene molecule are arranged in a symmetrical ring,¹¹ (I). This conception of the ring nature of benzene was first expressed by Loschmidt (1861)¹² (II).

(II)

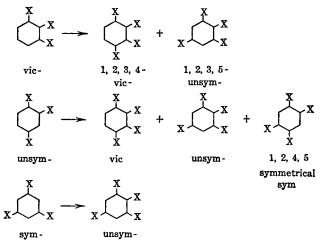

¹¹ Kekulé. Bull soc. chim. [2] 3, 98 (1865). ¹² Anschutz. Ber. 45, 539 (1912).

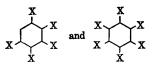
AROMATIC OR BENZENE SERIES


The fourth valence of each carbon in (I) may be neglected for the time-being. In fact, from a practical viewpoint it is nearly always so neglected because it gives evidence of its existence only under the most unusual circumstances. Thus, if benzene were the only carbon compound known, carbon would be believed to have a valence of *three* except under peculiar conditions. The assumption of the *benzene ring* not only explains the above facts but also makes possible the assignment of a structure formula to each of the chlorinated benzenes described above (p. 601). The number of possible substitutions at the corners of a regular hexagon agrees with the number of isomers actually obtained.


If only one substituent is introduced, only one product can be produced.

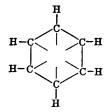
Only three disubstitution products are possible since substitution in the 5 and 6 positions gives the same products as in the 3 and 2 positions respectively.

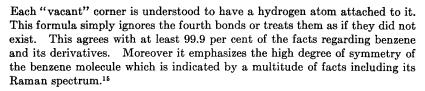

Only two trisubstitution products can be derived from the ortho compound since the placing of the third group in positions 5 or 6 gives the same unsymand vic- products respectively.


600

BENZENE

Thus the unsymmetrical trisubstitution product is obtainable from all three disubstitution products while the symmetrical X_{3} -product comes only from the meta compound and the vicinal X_{3} -product can be derived from both the ortho and meta compounds.


The unsymmetrical tetrasubstitution product is obtainable from all three trisubstitution products. The symmetrical X_4 -product is obtainable only from the unsymmetrical X_3 -product. The vicinal X_4 -product is derivable from the vicinal and the unsymmetrical X_3 -product but not from the symmetrical X_3 -product. It is to be noted that the unsubstituted corners in the X_4 -products are o-, m-, and p- to each other. The only possible penta- and hexasubstitution products containing X are


These are obtainable from all of the X₄-products.

On the basis of the above facts alone, the proper formulas can be assigned to the possible chlorinated benzenes (A) to (I) (p. 598) namely: (A) is $1,4-Cl_2$ -benzene; (B) is $1,2-Cl_2$; (C) is 1,3-; (D) is $1,2,4-Cl_3-$; (E) is $1,2,3-Cl_3$; (F) is $1,3,5-Cl_3$; (G) is $1,2,3,5-Cl_4-$; (H) is $1,2,3,4-Cl_4$; and (I) is $1,2,4,5-Cl_4$ -benzene.

It should be remembered that the details of this elegant demonstration first suggested by Körner were not completed until long after the scientific world had accepted the original guess of Kekulé that the six carbon atoms of benzene form a ring. Meantime a multitude of facts has accumulated, every one of which is consistent with the original guess. Of the many formulas suggested, the *centric formula*^{13,14} has survived best probably because it is least definite as to the fourth "bonds."

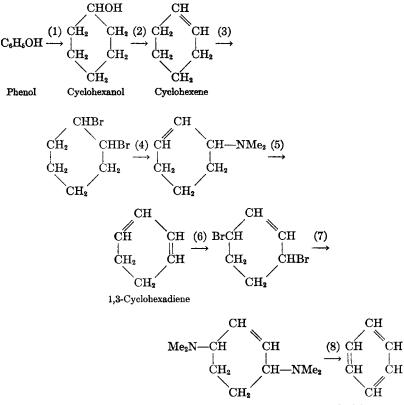
This formula agrees with the *fact* that the fourth bonds of the carbon atoms in benzene and its derivatives are *different* from ordinary single or double bonds. The formula actually used by organic chemists is the simple hexagon.

B. FORMATION OF BENZENE

1. From coal. The thermal decomposition of the organic compounds in soft coal forms benzene and its homologs (toluene, xylenes, etc.) and its analogs (naphthalene, anthracene, etc.). Practically all benzene is obtained by scrubbing the gases from by-product coke plants and illuminating gas plants. Commercial "ninety per cent benzol" is a mixture, 90% of which distills below 100°. "Nitration benzol" boils within one degree of the true boiling point 80.4° (760 mm). Its only impurity is a small amount of thiophene (b.p. 84°). "Molecular weight benzene" is free of thiophene and melts at 5° or higher (true m.p. 5.4°). The small amount of thiophene in commercially pure benzene is removed by taking advantage of its greater reactivity. Thus shaking with several portions of H₂SO₄ converts the thiophene to a sulfonic acid without changing the benzene. Similarly, refluxing with mercuric acetate mercurates the thiophene without reacting with the benzene.

2. From other aromatic compounds. Most aromatic compounds can be converted to benzene by relatively simple reactions. Many of them can be converted to hydroxyl compounds (phenols) which yield benzene on distillation

¹³ Armstrong. J. Chem. Soc. 51, 264 (1887).


¹⁴ Baeyer. Ann. 245, 121 (1888).

¹⁵ Andrews. J. Chem. Phys. 3, 175 (1935).

BENZENE

with zinc dust. Homologs and analogs of benzene such as toluene and naphthalene yield carboxylic acids of benzene on vigorous oxidation. These give benzene on heating with soda lime.

3. By synthesis (Willstätter). The steps are as follows:

1,3,5-Cyclohexatriene

The reactions are carried out as follows:

- (1) Hydrogenation with a nickel catalyst.
- (2) Dehydration by sulfuric acid.
- (3) Addition of bromine.

(4) Treatment of the dibromide with an excess of dimethylamine. The first step is the removal of one HBr to give an *allyl system* with a very reactive halogen, -CH = CH - CHBr -.

(5) and (8) Exhaustive methylation. Addition of methyl iodide, conversion to the quarternary ammonium hydroxide and destructive distillation to yield trimethylamine, water and olefinic compounds. In the case of (8) the last step takes place even at 0° if the pressure is greatly reduced.

(6) Addition of bromine at the ends of the conjugated system.

(7) An addition reaction of 2 Me₂NH with the bromine atoms which are parts of reactive allyl systems to form = CHNMe₂. HBr. An inorganic base or excess Me₂NH removes the HBr.

According to the reactions involved, including the final exhaustive methylation, the product should contain three double bonds arranged in alternate or conjugated form around the 6-carbon ring. The final product is benzene, which seldom shows the presence of double bonds. The intermediate compounds, cyclohexene and cyclohexadiene-1,3, differ entirely from the final product in being highly unsaturated. For instance they react readily with KMnO₄ or bromine water while benzene does not act at all. Thus the introduction of the third "double bond" entirely changes the nature of the molecule. It might be thought that the typical "benzene properties" are entirely due to alternating double and single bonds (Thiele) in a ring. Such is not the case because 1,3,5,7-cyclooctatetraene^{16,17} shows only the properties of a very highly unsaturated compound and none of those shown by benzene. Kekulé had recognized this difficulty about the double bonds in benzene and had also seen that a structure containing a 6-ring and three alternate double bonds should have four disubstitution products, the para, meta, and two ortho compounds differing by having a double bond or a single bond respectively between the adjacent carbons bearing the two substituting groups. In view of the absence of a second ortho compound, Kekulé proposed his hypothesis of the oscillation of the double bonds in benzene.

The centric formula then becomes a phase half-way in the oscillation. The results of modern mechanics and X-ray studies have added quantitative confirmation of Kekulé's guess.^{18, 19} In modern language, the *oscillation* of the conjugated double bonds becomes *resonance*. Evidence for the oscillation or resonance formula is given by the ozonolysis products of *o*-xylene (p. 614).

Benzene structure.²⁰

Reactions of Benzene

1. Heat links benzene rings together with the elimination of hydrogen.

$$2 C_6H_6 \rightarrow H_2 + C_6H_5 - C_6H_5$$

Diphenyl

Smaller amounts of higher products are also formed (p. 709).

- ¹⁶ Willstätter, Waser. Ber. 44, 3423 (1911).
- ¹⁷ Willstätter, Heidelberger. Ber. 46, 517 (1913).
- ¹⁸ Pauling. J. Chem. Phys. 1, 362 (1933).
- ¹⁹ Mack. J. Am. Chem. Soc. 54, 2141 (1932).
- ²⁰ Ahrens. Sammlung Chemische-Technischen Vortrage 1898, 1928.

BENZENE

2. Oxidation.

(a) Ordinary oxidizing agents have no effect on benzene unless the conditions used are vigorous enough to oxidize it to oxides of carbon and water.

(b) Oxidation by air with catalysts like vanadium oxides gives maleic acid.²¹

(c) Ozonation gives a tri-ozonide²² which decomposes with water to give glyoxal and its oxidation products.

(d) Potassium chlorate and sulfuric acid give "trichlorophenomalic acid," (trichloroacetoacrylic acid) which reacts with alkali to give chloroform and a maleate.

 $Cl_3CCOCH = CHCO_2H \rightarrow CHCl_3 + NaO_2CCH = CHCO_2Na$

Benzene has valuable anti-knock properties in motor fuels.

3. Reduction.

(a) Hydriodic acid converts benzene into a mixture of hexahydrobenzene (cyclohexane) and methylcyclopentane.

(b) Catalytic hydrogenation with nickel gives cyclohexane. This reaction takes place less readily than with substituted benzenes.

4. With halogens.

(a) Fluorine reacts violently giving hydrogen fluoride and carbon tetra-fluoride.^{23, 24}

(b) In the cold and in darkness, the other halogens merely dissolve in benzene with practically no action. In sunlight, chlorine and bromine add to benzene to give compounds, $C_6H_6Cl_6$, benzene hexachloride, and $C_6H_6Br_6.^{25}$ They exist in stereomeric forms. These halides are unstable. On heating or in the presence of catalysts like ferric salts, they lose 3 HX readily giving *unsymmetrical* trihalogenated benzenes. Iodine does not react with benzene except in the presence of an oxidizing agent like iodic acid or nitric acid, in which case it gives iodobenzene and *p*-diiodobenzene.^{26, 27}

 $5 C_6H_6 + 2 I_2 + HIO_3 \rightarrow 5 C_6H_5I + 3 H_2O$

The function of the oxidizing agent is to remove the HI which would otherwise reverse the reaction.

(c) Chlorine and bromine react with hot benzene in the presence of a great variety of catalysts such as iodine and ferric halides to give *substitution* products of benzene.

$$C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$$

²¹ Weiss, Downs. Ind. Eng. Chem. 12, 228 (1920).

- ²² Harries. Ann. Rep. Chem. Soc. (London) 1904, 92.
- ²³ Bancroft, Jones. Trans. Am. Electrochem. Soc. (preprint) 55, 1929.
- ²⁴ Bancroft, Wearty. Proc. Natl. Acad. Sci. 17, 183 (1931).
- ²⁵ Smith, Noyes, Haut. J. Am. Chem. Soc. 55, 4444 (1933).

²⁶ Eginger, Goldberg. Ber. 33, 2876 (1900).

²⁷ Datta, Chatterjee. J. Am. Chem. Soc. 39, 435 (1917).

Chlorine with isobutylene gives an analogous *substitution* reaction with the formation of isocrotyl chloride and methallyl chloride but no isobutylene dichloride (p. 97).

The mechanism of substitution in the benzene ring may involve the following steps:

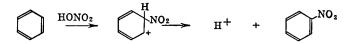
(a) Addition of positive halogen at one end of a double bond, thus leaving the other carbon with only a sextet of electrons. (b) Addition of a negative halogen would satisfy this deficiency but an easier process is the loss of a proton to restore the conjugated system of three double bonds. Compare the mercuration of thiophene (p. 759).

Some dihalogen product is always formed from benzene.

$$C_6H_5Br + Br_2 \rightarrow C_6H_4Br_2 + HBr$$

This is mainly the para compound with small and approximately equal amounts of the ortho and meta compounds.

5. Nitration. Concentrated nitric acid, fuming nitric acid or a mixture of nitric and sulfuric acids converts benzene to nitrobenzene.


$$C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O_3$$

The reaction is strongly exothermic. In the laboratory this gives no trouble but on a large scale it necessitates effective cooling. The process is not reversible.

Isobutylene gives a similar nitration.

$$Me_2C = CH_2 + HNO_3 \rightarrow Me_2C = CHNO_2 + H_2O$$

The nitration of benzene proceeds by the following steps:

The tendency to re-establish the ring conjugation is so great that there is no possibility of the addition of the OH^- to the electronically deficient carbon. Thus a relatively slow bimolecular process is excluded by a very rapid monomolecular process.

Under ordinary conditions the nitration of benzene gives no dinitrated product. Thus the activity of the benzene ring is considerably *lessened* by the introduction of a nitro group. Under vigorous nitration conditions (fuming nitric acid and conc. sulfuric acid) a dinitrobenzene can be obtained.

$$C_6H_5NO_2 + HNO_3 \rightarrow C_6H_4(NO_2)_2 + H_2O$$

This is almost entirely the meta compound with no more than traces of the

606

BENZENE

ortho and para compounds. Even more vigorous nitration (fuming nitric and fuming sulfuric acids) gives 1,3,5-trinitrobenzene.

The ready formation of nitro compounds in the liquid phase by means of conc. nitric acid is typical of aromatic compounds. Aliphatic hydrocarbons can be nitrated successfully in the vapor phase.²⁸

6. Sulfonation. Concentrated sulfuric acid or, more rapidly, fuming sulfuric acid (oleum) forms benzenesulfonic acid.

$$C_6H_6 + H_2SO_4 \rightarrow C_6H_5SO_3H + H_2O$$

The process can be reversed by using superheated steam or by heating the sulfonic acid with concentrated hydrochloric acid. Sulfur trioxide in sulfur dioxide also sulfonates benzene in high yields.²⁹ Under ordinary conditions there is no tendency for the sulfonation of benzene to introduce a second sulfonic acid group. Thus the activity of the benzene ring is lowered also by the presence of a sulfonic acid group. Vigorous sulfonation with oleum introduces a second group.

$\mathrm{C_6H_5SO_3H} + \mathrm{SO_3} \xrightarrow{\mathbf{`H_2SO_4}} \mathrm{C_6H_4(SO_3H)_2}$

The product is a mixture of *meta* and *para* compounds with the former predominating. Probably the meta compound is formed first and then rearranges to the para compound until an equilibrium is attained. The reversibility of the sulfonation process makes this rearrangement possible.

$$\begin{array}{c} C_6H_4(\mathrm{SO}_3\mathrm{H})_2 \,+\, \mathrm{H}_2\mathrm{SO}_4 \rightleftharpoons \mathrm{H}_2\mathrm{S}_2\mathrm{O}_7 \,+\, C_6\mathrm{H}_5\mathrm{SO}_3\mathrm{H} \rightleftharpoons \mathrm{C}_6\mathrm{H}_4(\mathrm{SO}_3\mathrm{H})_2 \,+\, \mathrm{H}_2\mathrm{SO}_4\\ \mathrm{Meta} & \mathrm{Para} \end{array}$$

No ortho-benzenedisulfonic acid has ever been detected among the products. Any such product formed is probably rearranged to the more stable m- or p-forms. When an anhydrous salt of meta-benzenedisulfonic acid is heated with sulfuric acid, a third sulfonic acid group is introduced.

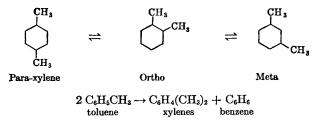
$$\begin{array}{c} C_6H_4(\mathrm{SO}_3\mathrm{K})_2 \,+\, 3 \ \mathrm{H}_2\mathrm{SO}_4 \rightarrow C_6H_3(\mathrm{SO}_3\mathrm{H})_3 \,+\, 2 \ \mathrm{KHSO}_4 \,+\, \mathrm{H}_2\mathrm{O} \\ \mathrm{Meta} & \mathrm{Sym} \end{array}$$

No isomeric benzenetrisulfonic acids have been obtained by direct sulfonation.

7. Friedel and Crafts Reaction.³⁰

(a) Alkyl halides react with benzene in the presence of anhydrous aluminum chloride to give alkylbenzenes. Much less than a molecular amount of

²⁸ Hass et al. Ind. Eng. Chem. 28, 339 (1936).


²⁹ Leiserson, Bost, LeBaron. Ind. Eng. Chem. 40, 508 (1948).

³⁰ "Org. Reactions," Vol. III.

aluminum chloride is sufficient to cause this reaction.

$$\mathbf{C_6H_6} + \mathbf{CH_3Cl} \xrightarrow{\mathbf{AlCl_3}} \mathbf{C_6H_5CH_3} + \mathbf{HCl}$$

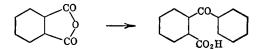
Continued treatment with methyl chloride gives all the possible methylated benzenes ending with hexamethylbenzene. This reaction will not only introduce an alkyl group into the benzene ring, but will cause the transfer of a group from one position to another and even from one molecule to another. Thus the following changes take place in presence of $AlCl_3$.

The reaction with ethyl halides is similar to that of the methyl halides. With *n*-propyl halides the chief product is isopropylbenzene with only a small amount of n-propylbenzene. At 0° n-Bu halides give a mixture of n-Bubenzene and sec-Bu-benzene. At higher temperatures the latter is the sole Isobutyl halides, in which the tendency to rearrangement is always product. great, ordinarily give only t-Bu-benzene even at -18° although the use of mere traces of AlCl₃ gives small amounts of isobutylbenzene along with the t-Bu compound. Isoamyl halides give isoamylbenzene and t-Am-benzene. These rearrangements during the Friedel-Crafts reaction can be explained on the basis of a rearrangement of the halide or of the conversion of the halide to an olefin with the subsequent addition of benzene as H and phenyl according to Markownikoff's Rule. An extreme case of such rearrangement and splitting of the halide has been observed in the furan series.³¹ Thus a tertiary butyl derivative is obtained from n-amyl chloride, n-hexyl bromide and even from *n*-octadecyl bromide.

(b) Olefins react with benzene and anhydrous aluminum chloride to give the same products as those obtained from the corresponding alkyl halides. Thus ethylene gives all the possible ethylated benzenes including hexaethylbenzene. With higher olefins the addition of benzene under the influence of aluminum chloride follows Markownikoff's Rule. Thus, propylene gives isopropylbenzene, the *n*-butylenes give *sec*-butylbenzene and isobutylene gives *t*-butylbenzene.

(c) Acyl halides and acid anhydrides give carbonyl compounds. In such cases a molecular amount of aluminum chloride must be used since it forms

³¹ Gilman, Burtner. J. Am. Chem. Soc. 57, 909 (1935).


very stable addition products with the carbonyl compounds. Typical reactions of this group follow:

Since CO is, in a sense, the anhydride of formic acid it is not surprising that benzene reacts with Ni carbonyl and $AlCl_3$ in the cold to give benzaldehyde. At high temperatures anthracene is the main product.³²

(d) Organic acids work less satisfactorily in the preparation of ketones by the Friedel-Crafts reaction.

The most important of the Friedel-Crafts reactions of benzene is that with phthalic anhydride to make *o*-benzoylbenzoic acid which is readily converted to anthraquinone by sulfuric acid.

The action of benzene itself with $AlCl_3$ and HCl gives a mixture boiling up to 360°. One substance formed is 1-Me-3-Ph-cyclopentane.

(e) Benzene also reacts in the presence of aluminum chloride with oxygen, sulfur and carbon dioxide.

 $\begin{array}{c} 2\operatorname{C_6H_6}+\operatorname{O_2} \xrightarrow{\operatorname{AlCl_3}} 2\operatorname{C_6H_5OH} \\ \operatorname{C_6H_6}+\operatorname{S} \xrightarrow{} \operatorname{C_6H_5SH} \\ \operatorname{Thiophenol} \\ \operatorname{C_6H_6}+\operatorname{CO_2} \xrightarrow{} \operatorname{C_6H_5CO_2H} \\ \operatorname{Benzoic acid} \end{array}$

Such reactions may be rendered important practically by the cheap anhydrous aluminum chloride made available by its use in the cracking of petroleum.

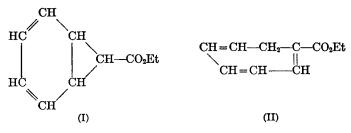
³² Ann. Rep. Chem. Soc. (London) 1904, 88.

8. With alcohols in the presence of dehydrating agents such as P_2O_5 and H_2SO_4 , secondary and tertiary alkyl benzenes are obtained.

n-Butyl alcohol \rightarrow s-Butylbenzene iso-Butyl alcohol \rightarrow t-Butylbenzene

9. With aldehydes in the presence of sulfuric acid, diphenylmethane compounds are obtained.

$$\begin{array}{c} H \\ \downarrow \\ R - C = 0 \rightarrow [RCHOHC_{6}H_{5}] \rightarrow R - CH(C_{6}H_{5})_{2} \end{array}$$


The OH in the intermediate compound is very reactive because of its position alpha to a phenyl group. Formaldehyde gives Ph_2CH_2 and higher products including anthracene.

10. Mercuric acetate mercurates benzene when heated under pressure or on refluxing with an alcoholic solution.³³ In the latter case the EtOH forms ethyl acetate, thus shifting the equilibrium.

$$C_6H_6 + Hg(OCOCH_3)_2 + C_2H_5OH \rightarrow C_6H_5HgOCOCH_3 + CH_3CO_2C_2H_5$$

Phenylmercuric acetate
Acetoxymercuribenzene

Mercuration is as characteristic of aromatic compounds as nitration or sulfonation.

11. Ethyl diazoacetate reacts with benzene at 130° to give the bi-cyclic compound norcaradienecarboxylic ester (I) and its rearrangement product cycloheptatrienecarboxylic ester (II).

12. Metalation. Alkali derivatives of benzene can be made by treating it with alkali alkyls.

 $\mathrm{C_6H_6} + \mathrm{EtK} \rightarrow \mathrm{C_6H_5K} + \mathrm{EtH}$

Some $C_6H_4K_2$ is also formed. Thus the product of the reaction, when treated with CO₂, gives a 33% yield of benzoate, a 14% yield of terephthalate, a trace of phthalate but apparently little or no isophthalate.

³³ Maynard. J. Am. Chem. Soc. 46, 1510 (1924).

HOMOLOGS OF BENZENE

Benzene vapors are very toxic.³⁴ Even small amounts of the vapors breathed over a period deplete the blood in both white and red corpuscles and greatly lower the resistence to infection. The only ordinary commercial solvent which is more dangerous than benzene is Cl_4 -ethane.

II. HOMOLOGS OF BENZENE

A. TOLUENE

Toluene, methylbenzene, phenylmethane, toluol, $C_6H_5CH_3$, m. -92°, b. 110.8°, is obtained after benzene in the distillation of the light oil from scrubbing coal gas.

Preparation. 1. By the Wurtz-Fittig reaction from bromobenzene, methyl iodide and metallic sodium. The yield in the reaction between an aromatic and an aliphatic halide is better than would be expected in view of the three possible products. The first step after the formation of the phenyl radical is probably the formation of sodium phenyl, C_6H_5Na . This reacts readily with the aliphatic halide but not with the aromatic halide. Any ethylene and ethane formed from free methyl radicals is readily separated from the main product because of its lower volatility and higher melting point (71°).

- 2. By the Friedel-Crafts reaction.
- (a) From benzene and methyl chloride.
- (b) From xylenes and benzene

$C_6H_4(CH_3)_2 + C_6H_6 \xrightarrow{AlCl_3} 2 C_6H_5CH_3$

The reactions of toluene resemble those of benzene except that there is a chance for the reaction to take place either in the side chain or in the ring and that the methyl group exerts a directing or orienting influence on groups entering the ring, directing them mainly to the para and ortho positions with only a small amount entering the meta position.

1. Heat. At dull red heat toluene forms dibenzyl (1,2-diphenylethane).

$$2 \text{ } \mathrm{C_6H_5CH_3} \rightarrow \mathrm{C_6H_5CH_2CH_2C_6H_5} + \text{ } \mathrm{H_2}$$

At high temperatures this loses hydrogen to form stilbene (1,2-diphenylethylene). Greater heat gives very complex changes involving such products as benzene, naphthalene, dibenzyl, anthracene, chrysene, benzerythrene, phenanthrene, diphenyl, styrene and traces of methane, acetylene and ditolyl.

2. Oxidation. As with all aromatic hydrocarbons with *side chains*, toluene can be readily oxidized, the side chain alone being changed.

(a) Ordinary oxidizing agents such as dilute nitric acid, potassium permanganate and chromic acid mixture (a dichromate and sulfuric acid) convert

³⁴ Pierce. Chem. and Met. Eng. 49, No. 8, 80 (1942).

the methyl to a carboxyl.

$\begin{array}{c} \mathrm{C_6H_5CH_3} + 3[\mathrm{O}] \rightarrow \mathrm{C_6H_5CO_2H} + \mathrm{H_2O} \\ & \text{Benzoic acid} \end{array}$

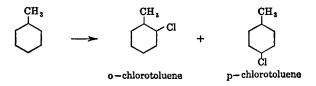
(b) Under special conditions it is possible to oxidize toluene to benzaldehyde, C_6H_5CHO . (1) By controlled air oxidation. (2) By oxidation with manganese dioxide and sulfuric acid. (3) By means of chromyl chloride, $CrO_2Cl_2.^1$

(c) Oxidation with aqueous potassium persulfate gives dibenzyl (1,2diphenylethane) together with benzaldehyde and benzoic acid.

(d) A peculiar oxidation of toluene occurs when it is heated at 200° with sulfur, the main product being stilbene (sym-diphenylethylene).

3. Reduction. The catalytic hydrogenation of toluene is much easier than that of benzene. The product is hexahydrotoluene (methylcyclohexane).

Hydriodic acid at 280° gives methylcyclohexane, dimethylcyclopentane and methylcyclopentane.


4. With halogens there is no tendency to addition as in benzene. Substitution is easier.

(a) Chlorine and bromine react with boiling toluene, especially when exposed to actinic light, to give substitution almost entirely in the methyl group.

$$\begin{array}{c} C_6H_5CH_3 \rightarrow C_6H_5CH_2Cl \rightarrow C_6H_5CHCl_2 \rightarrow C_6H_5CCl_3.\\ \text{Benzyl chloride} \quad \text{Benzal chloride} \quad \text{Benzotrichloride} \end{array}$$

These substances react like aliphatic halides but are much more active because of the benzene ring in the alpha position. Over a 90% yield of benzyl chloride can be obtained from boiling toluene and dry chlorine in the light.

(b) Chlorine and bromine in the presence of halogenation catalysts and in the absence of strong light give mixtures of ortho and para products with no more than a trace of meta product.

The nuclear halogens are very unreactive. Further chlorination of the monochlorotoluenes gives mainly the o,p- or 2,4-dichlorotoluene. Over an 80% yield of ring-chlorinated toluenes can be obtained from toluene and wet chlorine in the dark. Chlorination with antimony pentachloride or iodine as catalyst gives ortho and para products in the ratio 55:45.²

- ¹ Etard. Ann. chim. phys. [5] 22, 218 (1881).
- ² Wertyporoch. Ann. 493, 153 (1932).

The formation and separation of the monochlorotoluenes is typical of ringsubstitution products of toluene in general. The relative proportions of the o- and p-products can be somewhat modified by the conditions used. They are usually easily separated because the para compounds are mainly solids while the ortho compounds are liquids. There is only a slight difference in boiling point between the isomers. The p-compound can be obtained in a high state of purity by freezing it out of the mixture. The mother liquor consists of the o-compound and the small amount of m-compound formed, the liquid being saturated with the p-compound at the temperature of the original freezing. A further separation can be achieved by fractional distillation followed by freezing to remove more of the para compound. o-Chlorotoluene is an important dye-intermediate.

5. Nitration of toluene is far easier than with benzene. It gives mainly oand p-nitrotoluenes with about 4% of the meta compound. The large scale on which toluene is nitrated and the refinements of modern commercial distillation make available this small proportion of meta nitrotoluene. Further nitration gives mainly 2,4-dinitrotoluene. This can then be nitrated to 2,4,6-trinitrotoluene (T.N.T.). It is impossible to introduce a fourth nitro group by direct nitration. In the large scale commercial nitration of toluene with nitric acid (d. 1.475) at 30° the following percentages are obtained, para 37, ortho 59, meta 4.

6. Sulfonation of toluene gives a mixture of o- and p-toluene sulfonic acids. The ortho acid is related to saccharin (p. 697).

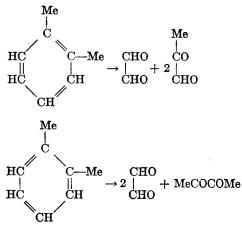
7. Friedel-Crafts reactions. Toluene, treated with anhydrous aluminum chloride, gives a mixture of xylenes and benzene. When treated with alkyl halides, olefins, etc. and AlCl₃, toluene gives para and meta compounds, mainly the latter. Thus toluene with AlCl₃ and isobutyl chloride gives *m*-t-Bu-toluene which can be trinitrated to give a musk substitute.³ When anhydrous FeCl₃ is used in place of AlCl₃ *p*-t-Bu-toluene is the chief product.

Toluene with phthalic anhydride and anhydrous aluminum chloride gives o-(p-toluyl)-benzoic acid which is converted to beta-methylanthraquinone by sulfuric acid.

8. Alcohols and aldehydes condense with toluene in the presence of concentrated sulfuric acid more readily than with benzene. The products contain *para* tolyl groups almost exclusively.

9. Mercuration of toluene in the p- and o-positions takes place when it is refluxed with mercuric acetate. The chief product is p-tolylmercuric acetate (p-acetoxymercuritoluene).

B. HIGHER HOMOLOGS OF BENZENE

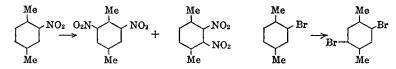

These resemble toluene in properties and reactions.

Dimethylbenzenes, xylenes, $C_6H_4(CH_3)_2$, occur in coal tar, the *m*-isomer forming about 70% of the mixture. Whereas only the *o*-xylene can be sepa-

³ Baur. Ber. 24, 2836 (1891).

rated by fractionation, all three isomers can be separated by means of H_2SO_4 . The cold conc. acid leaves the para compound unchanged. The solution of the sulfonic acids of the ortho and meta xylenes is treated with BaCO₃ and Na₂CO₃ in the usual way to eliminate the excess H_2SO_4 and to form the Na salts. Evaporation causes the o-xylene sulfonate to separate first. After recrystallization, this is hydrolyzed to o-xylene by HCl at 190°. Meta and para xylenes can also be separated by careful recrystallization from pentane at low temperatures.⁴

o-xylene, m. -27° , b. 144°, can be synthesized from o-Br-toluene, MeI and Na. Oxidation by dil. HNO₃ gives o-toluic acid. Chromic acid mixture oxidizes it completely to CO₂ and H₂O. Over a vanadium base catalyst with air at 1000° F. o-xylene is oxidized to phthalic anhydride.⁵ Treatment of o-xylene with 15% ozone gives glyoxal and both methylglyoxal and diacetyl.^{6,7} This might indicate the existence of both Kekulé forms, but should rather be taken as a result of the resonance between them.


m-Xylene, m. -54° , b. 138.8°, is the most readily available xylene. It can also be prepared from mesitylene by oxidizing one methyl to give mesitylenic acid and eliminating CO₂ from the latter. It is not oxidized by boiling 20% nitric acid but is converted to *m*-toluic acid by 30% nitric acid. Chromic acid mixture converts it to isophthalic acid. Chlorination, nitration and sulfonation of *m*-xylene take place readily in the 4-position which is *o*- and *p*to the methyl groups. Thus in presence of Hg salts, 50% nitric acid converts *m*-xylene to a mixture of 4-NO₂-*m*-xylene and 4-NO₂-3-Me-benzoic acid, the latter predominating at higher reaction temperatures.

- ⁶ Chem. Inds. 59, 68 (1946).
- ⁶ Levine, Cole. J. Am. Chem. Soc. 54, 338 (1932).
- ⁷ Wibaut, Haayman. Science 94, 49 (1941).

⁴ McArdle, Mason. C. A. 42, 2988 (1948).

m-Xylene with isobutyl or t-butyl halides or isobutylene in presence of AlCl₃ gives 5-t-Bu-m-xylene in good yield. This, on trinitration, gives an artificial musk. AlCl₃ alone converts m-xylene to a complex mixture of benzene, toluene, p-xylene, mesitylene, pseudocumene, and durene.

p-Xylene, m. 13.2°, b. 138.5°, can be made by the action of Na on MeI and p-Br-toluene or p-Br₂-benzene. It is readily oxidized to p-toluic and terephthalic acids. The dinitration of p-xylene gives mainly the 2,6- and 2,3-compounds, with very little of the 2,5-compound. On the other hand dibromination gives mainly the 2,5-compound.

p-Xylene can be sulfonated by fuming sulfuric acid.

The three xylenes have been isolated from an Oklahoma petroleum.⁸ They constitute about 0.3% of the crude oil.

Ethylbenzene, phenylethane, $C_6H_6CH_2CH_3$, m. -92.8°, b. 136.2°, can be made in a variety of ways: (1) from benzene with an ethyl halide or ethylene in presence of AlCl₃ or HF, (2) from bromobenzene, an ethyl halide and Na and (3) by reduction of styrene, PhCH=CH₂. Halogenation attacks mainly the α -C. Oxidation gives benzoic acid. Many derivatives of ethylbenzene have been made.⁹ It is used in manufacturing styrene for artificial rubber.

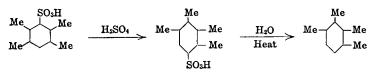
Trimethylbenzenes, $C_6H_3(CH_3)_3$, are contained in small amount in coal tar. Hemimellitene, 1,2,3-Me₃-benzene, b. 176°, Pseudocumene, 1,2,4-Me₃-benzene, m. -57.4°, b. 169.3°, is separated from mesitylene by means of its sparingly soluble sulfonic acid. Its structure is proved by its synthesis from MeI and bromo-p-xylene. Mesitylene, 1,3,5-Me₃-benzene, m. -53°, b. 164.8°, can be made from acetone or methylacetylene by the action of sulfuric acid.

Propylbenzenes, $C_6H_6C_3H_7$, are synthesized by the usual reactions. *n*-Propylbenzene, $C_6H_6CH_2CH_2CH_3$, m. -101.6°, b. 158°, is made by the Wurtz-Fittig reaction but not by the Friedel-Crafts reaction. *Isopropyl*benzene, cumene, $C_6H_6CH(CH_3)_2$, b. 154°, is made from benzene and either propyl chloride in presence of AlCl₃. It is used in improving the performance of aviation fuel.

Benzene is alkylated by cyclopropane with AlCl₃ to n-propylbenzene.¹⁰

Cymene, *p*-methylisopropylbenzene, *p*-cymene, $CH_3C_6H_4CH(CH_3)_2$, m. -73.5° , b. 177°, is found in many essential oils, notably in spruce turpentine from which it can be obtained cheaply. It is also formed by heating camphor

⁸ White, Rose. J. Research Natl. Bur. Standards 9, 711 (1932).


⁹ Cline, Reid. J. Am. Chem. Soc. 49, 3150 (1927).

¹⁰ Grosse, Ipatieff. J. Org. Chem. 2, 447 (1937).

with P_2O_5 . Oxidation gives *p*-toluic acid, *p*-methylacetophenone, *p*-isopropylbenzoic acid (*cumic acid*) or terephthalic acid.¹¹

Polymethylbenzenes. Durene, 1,2,4,5-Me₄-benzene, m. 80°, b. 195°; isodurene, 1,2,3,5-Me₄-benzene, m. -24° , b. 197°; Me_{5} -benzene, m. 53°, b. 230°, and Me_{5} -benzene (mellitene), m. 166°, b. 265°, are obtained by the Friedel-Crafts reaction using mixed xylenes and MeCl.¹²

Prehnitene, 1,2,3,4-Me₄-benzene, m. -4° , b. 204°, cannot be made by the Friedel-Crafts reaction but is obtained by the *Jacobsen reaction*¹³ of cold concentrated sulfuric acid with durene sulfonic acid.

Isodurene undergoes a similar change. Pentamethylbenzene similarly gives hexamethylbenzene and prehnitenesulfonic acid.¹⁴

A good example of steric hindrance to addition reactions is the failure of trihaloacetyl derivatives of durene and isodurene to give the haloform reaction even on boiling with concentrated alkali.¹⁵

All except two of the possible *ethylated* benzenes are known. Their boiling points are as follows: ethylbenzene, 136.1° ; diethylbenzenes, *o*- 184.5° , *m*- 181.5° , *p*- 183° ; triethylbenzenes, *unsym*- 218° , *sym*- 218° ; tetraethylbenzenes, *vic*- 254° , *sym*- 250° (m. 13°); Et₅-benzene, 277° ; Et₅-benzene, 298° (m. 129°).

III. UNSATURATED BENZENE HYDROCARBONS

Styrene, "styrol," cinnamene, phenylethylene, vinylbenzene,

$$C_6H_5CH = CH_2$$
,

b. 146°, is readily obtained by heating cinnamic acid¹ or by the usual methods for introducing a double bond as by elimination of water or HBr from phenylmethylcarbinol, β -phenylethyl alcohol or their bromides. Another method is to add HBr to cinnamic acid and then boil the water solution of the sodium salt of the β -bromohydrocinnamic acid.

$$PhCHBrCH_2CO_2Na \rightarrow NaBr + CO_2 + PhCH = CH_2$$

Styrene is now made commercially by the dehydrogenation of ethylbenzene. A glacial acetic acid solution of H_2SO_4 polymerizes styrene to distyrene, 1,3-

616

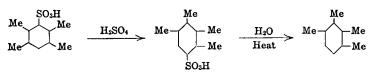
¹¹ Senseman, Stubbs. Ind. Eng. Chem. 24, 1184 (1932).

¹² Smith, Cass. J. Am. Chem. Soc. 54, 1603, 1609 (1932).

¹³ "Org. Reactions," Vol. III.

¹⁴ Smith, Cass. J. Am. Chem. Soc. 57, 1289 (1935).

¹⁶ Gray et al. J. Am. Chem. Soc. 53, 3494 (1936).


¹ "Org. Syntheses."

AROMATIC OR BENZENE SERIES

with P_2O_5 . Oxidation gives *p*-toluic acid, *p*-methylacetophenone, *p*-isopropylbenzoic acid (*cumic acid*) or terephthalic acid.¹¹

Polymethylbenzenes. Durene, 1,2,4,5-Me₄-benzene, m. 80°, b. 195°; isodurene, 1,2,3,5-Me₄-benzene, m. -24° , b. 197°; Me_{5} -benzene, m. 53°, b. 230°, and Me_{5} -benzene (mellitene), m. 166°, b. 265°, are obtained by the Friedel-Crafts reaction using mixed xylenes and MeCl.¹²

Prehnitene, 1,2,3,4-Me₄-benzene, m. -4° , b. 204°, cannot be made by the Friedel-Crafts reaction but is obtained by the *Jacobsen reaction*¹³ of cold concentrated sulfuric acid with durene sulfonic acid.

Isodurene undergoes a similar change. Pentamethylbenzene similarly gives hexamethylbenzene and prehnitenesulfonic acid.¹⁴

A good example of steric hindrance to addition reactions is the failure of trihaloacetyl derivatives of durene and isodurene to give the haloform reaction even on boiling with concentrated alkali.¹⁵

All except two of the possible *ethylated* benzenes are known. Their boiling points are as follows: ethylbenzene, 136.1° ; diethylbenzenes, *o*- 184.5° , *m*- 181.5° , *p*- 183° ; triethylbenzenes, *unsym*- 218° , *sym*- 218° ; tetraethylbenzenes, *vic*- 254° , *sym*- 250° (m. 13°); Et₆-benzene, 277° ; Et₆-benzene, 298° (m. 129°).

III. UNSATURATED BENZENE HYDROCARBONS

Styrene, "styrol," cinnamene, phenylethylene, vinylbenzene,

$C_6H_5CH = CH_2$,

b. 146°, is readily obtained by heating cinnamic acid¹ or by the usual methods for introducing a double bond as by elimination of water or HBr from phenylmethylcarbinol, β -phenylethyl alcohol or their bromides. Another method is to add HBr to cinnamic acid and then boil the water solution of the sodium salt of the β -bromohydrocinnamic acid.

$$PhCHBrCH_2CO_2Na \rightarrow NaBr + CO_2 + PhCH = CH_2$$

Styrene is now made commercially by the dehydrogenation of ethylbenzene. A glacial acetic acid solution of H_2SO_4 polymerizes styrene to distyrene, 1,3-

- ¹² Smith, Cass. J. Am. Chem. Soc. 54, 1603, 1609 (1932).
- ¹³ "Org. Reactions," Vol. III.
- ¹⁴ Smith, Cass. J. Am. Chem. Soc. 57, 1289 (1935).
- ¹⁶ Gray et al. J. Am. Chem. Soc. 53, 3494 (1936).

¹ "Org. Syntheses."

616

¹¹ Senseman, Stubbs. Ind. Eng. Chem. 24, 1184 (1932).

Ph₂-1-butene, b. 311°. On standing or heating, styrene polymerizes readily to solid metastyrene. Hydroquinone inhibits this polymerization.² Styrene adds HBr to give $C_6H_5CH_2CH_2Br$. Nitric acid gives ω -nitrostyrene, PhCH=CHNO₂. This reaction is like that of nitric acid with isobutylene. Styrene is used in preparing polystyrene resins and in manufacturing synthetic rubber.

The activating effect of the phenyl group on the double bond is shown not only by the ready polymerization of styrene but by the fact that the treatment of a solution of ethylene in styrene with bromine results in almost exclusive addition to the latter substance.³ With formaldehyde, styrene gives the following products:⁴ PhCH(CH₂OH)₂, PhCH(CH₂O)₂CH₂.

For diphenylethylenes, etc., see p. 716.

Allylbenzene, $C_6H_5CH_2CH=CH_2$, b. 157°, is made from allyl bromide and a phenyl Grignard reagent in the usual way for 1-olefins. On heating with alcoholic KOH it gives *propenylbenzene*, $C_6H_5CH=CHCH_3$, b. 177° which has been synthesized in many ways including the conversion of ethylphenylcarbinol to its chloride and removal of HCl by alcoholic KOH. The shift of a double bond from the 2-position in relation to a phenyl group to the 1-position is readily achieved in much the same way that a double bond shifts to the $\alpha\beta$ position in relation to a carboxyl group.

1-Phenylbutadiene, $C_6H_5CH = CHCH = CH_2$, has been studied extensively.⁵ It adds exclusively in the 3,4- rather than the 1,4-positions. HOCl and HOBr give PhCH=CHCHOHCH₂X. The presence of Br or NH₂ in the 4-position does not change the mode of addition.

Phenylacetylene, $C_6H_5C \equiv CH$, b. 142°, can be made in a variety of ways, probably best by dropping ω -bromostyrene into fused KOH (OS). It gives the usual acetylene reactions including the formation of metal derivatives and hydration with sulfuric acid to give acetophenone.

IV. AROMATIC HALOGEN COMPOUNDS

A. Addition Compounds

The long exposure of benzene in sunlight to chlorine or to bromine vapor gives the products $C_6H_6X_6$. Although as many as sixteen isomeric benzene hexachlorides are theoretically possible, only five probable strainless forms, two of which are mirror images, are considered likely of existence.

The separation of the five known isomers has been effected through recrystallization. They are alpha m. 158°, beta 309°, gamma 112.5°, delta 138-139°, epsilon 218°. The approximate composition of the hexachloride

² "Org. Syntheses."

Anantakrishnan, Ingold. J. Chem. Soc. 1935, 1396.

⁴ Ann. Rep. Chem. Soc. (London) 1920, 79.

⁶ Muscat et al. J. Am. Chem. Soc. 51, 2496 (1929); 52, 1574 (1930); 53, 252 (1931); 54, 2001 (1932); 56, 1239 (1934).

AROMATIC HALGOEN COMPOUNDS

Ph₂-1-butene, b. 311°. On standing or heating, styrene polymerizes readily to solid metastyrene. Hydroquinone inhibits this polymerization.² Styrene adds HBr to give $C_6H_5CH_2CH_2Br$. Nitric acid gives ω -nitrostyrene, PhCH=CHNO₂. This reaction is like that of nitric acid with isobutylene. Styrene is used in preparing polystyrene resins and in manufacturing synthetic rubber.

The activating effect of the phenyl group on the double bond is shown not only by the ready polymerization of styrene but by the fact that the treatment of a solution of ethylene in styrene with bromine results in almost exclusive addition to the latter substance.³ With formaldehyde, styrene gives the following products:⁴ PhCH(CH₂OH)₂, PhCH(CH₂O)₂CH₂.

For diphenylethylenes, etc., see p. 716.

Allylbenzene, $C_6H_5CH_2CH=CH_2$, b. 157°, is made from allyl bromide and a phenyl Grignard reagent in the usual way for 1-olefins. On heating with alcoholic KOH it gives *propenylbenzene*, $C_6H_5CH=CHCH_3$, b. 177° which has been synthesized in many ways including the conversion of ethylphenylcarbinol to its chloride and removal of HCl by alcoholic KOH. The shift of a double bond from the 2-position in relation to a phenyl group to the 1-position is readily achieved in much the same way that a double bond shifts to the $\alpha\beta$ position in relation to a carboxyl group.

1-Phenylbutadiene, $C_6H_5CH = CHCH = CH_2$, has been studied extensively.⁵ It adds exclusively in the 3,4- rather than the 1,4-positions. HOCl and HOBr give PhCH=CHCHOHCH₂X. The presence of Br or NH₂ in the 4-position does not change the mode of addition.

Phenylacetylene, $C_6H_5C \equiv CH$, b. 142°, can be made in a variety of ways, probably best by dropping ω -bromostyrene into fused KOH (OS). It gives the usual acetylene reactions including the formation of metal derivatives and hydration with sulfuric acid to give acetophenone.

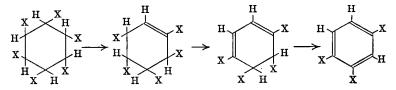
IV. AROMATIC HALOGEN COMPOUNDS

A. Addition Compounds

The long exposure of benzene in sunlight to chlorine or to bromine vapor gives the products $C_6H_6X_6$. Although as many as sixteen isomeric benzene hexachlorides are theoretically possible, only five probable strainless forms, two of which are mirror images, are considered likely of existence.

The separation of the five known isomers has been effected through recrystallization. They are alpha m. 158°, beta 309°, gamma 112.5°, delta 138-139°, epsilon 218°. The approximate composition of the hexachloride

² "Org. Syntheses."

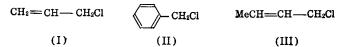

Anantakrishnan, Ingold. J. Chem. Soc. 1935, 1396.

⁴ Ann. Rep. Chem. Soc. (London) 1920, 79.

⁶ Muscat et al. J. Am. Chem. Soc. 51, 2496 (1929); 52, 1574 (1930); 53, 252 (1931); 54, 2001 (1932); 56, 1239 (1934).

mixture is 70% α , 5% β , 12% γ , 7% δ and 5% ϵ . The gamma form, Gammexane, is the active principle of 666 which has outstanding insecticidal properties.^{1,2}

The hexahalides lose 3 HX giving *unsym*-trihalogenbenzenes on treatment with bases. The steps involved may be the following:



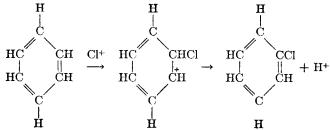
In the first step, no choice is possible because of the symmetry of the molecule. The second step takes place as indicated because of the greater reactivity of the allylic halogen of the system XC=C-CX as compared with that of the system C=CX-CX. Whichever X is removed in the last step, the product is the unsymmetrical trihalide.

B. SUBSTITUTION COMPOUNDS

These are known in great numbers. They fall in two classes depending on whether the halogen is in the side chain or in the ring.

1. Halogen in side chain. These compounds are really arylsubstituted alkyl halides and follow the same regularities as do the parent halides (p. 74) except that a halogen alpha to an aromatic ring, as in benzyl halides, is even more reactive than in the corresponding alkyl halides. A consideration of the formula of benzyl chloride (II) shows it to have an allyl chloride grouping (I).

The analogy is strengthened by the fact that the Grignard reagent of (II) gives rearrangements much as does that of crotyl chloride (III) the entering group going in the *o*- and 3-positions respectively.


o- and p-Hydroxybenzyl halides are peculiar in not being soluble in alkali. Instead they are converted to methylene quinones (p. 690).

2. Halogen in ring. In presence of catalysts or halogen carriers such as iodine or various metal halides including those of iron and aluminum, chlorine and bromine replace H atoms of the benzene ring readily. This replacement probably resembles that which takes place in the action of chlorine on isobutylene to give an unsaturated chloride instead of the expected isobutylene dichloride (p. 40). In each case, after the first Cl has added, it is easier for a

¹ Slade. Chemistry & Industry 23, 314 (1945).

² Haller, Bowen. Agr. Chemicals 11, 15-17 (1947).

proton to be expelled than for the second Cl to add. In the case of benzene this is probably due to the strong tendency to revert to a completely conjugated system.

The function of the halogen carrier may be to favor the addition of a halogen with 6 electrons to the extra electron pair of one of the benzene double bonds. Thus

Iodine does not replace aromatic H because the reverse substitution by HI takes place more readily

$$C_6H_6 + I_2 \rightleftharpoons C_6H_5I + HI$$

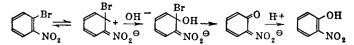
This tendency can be overcome by using an oxidizing agent such as nitric acid which will destroy the HI.³ The true aryl halides are peculiarly inactive with the following exceptions:

(a) They react with metals such as Mg, Na and Cu⁴ to form Grignard reagents and to give coupling reactions, Na being most useful in causing the reaction of an aryl halide with an alkyl halide and Cu to cause the union of two aryl residues. The inactivity of the true aryl halides resembles that of the vinyl halides.

$$\square$$
 -Br CH₂=CHBr

Unlike the vinyl halides, the aryl halides cannot lose HX to give an acetylenic linkage.

(b) At high temperatures and pressures they give certain metatheses. Thus chlorobenzene has to be heated with sodium hydroxide solution to about 300° before it reacts to give phenol.⁵ With ammonia and copper salts it will


³ Datta, Chatterjee. J. Am. Chem. Soc. 39, 435 (1917).

⁴ Ullmann. Ann. Rep. Chem. Soc. (London) 1904, 87.

⁵ Hale. C. A. 21, 249 (1927).

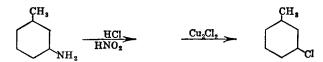
react to give aniline at about 200°.³ Bromobenzene with KCN or cuprous cyanide at 200° gives PhCN.⁶

(c) If a nitro group is in the o- or p-position, the halogen becomes readily reactive with basic reagents such as NaOH and NH₄OH to give nitrophenols and nitroanilines. The point of attack may be the nitro group and the reactions may proceed by addition rather than by true metathesis.

In the action with ammonia, the groups $-NH_2$ and =NH play the same part as -OH and =O.

Preparation. The only compounds of wide importance are the halides of benzene and toluene which will be considered separately (pp. 621, 625).

A. Homologs and substitution products of benzyl halides, $ArCH_2X$. In some cases these can be made directly as in the case of the benzyl halides themselves but usually they are made from the corresponding arylcarbinols which are prepared by the usual reactions.

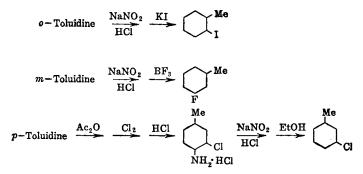

B. True aromatic halides can be made by direct halogenation but the position taken by the halogen is not subject to control. The action of reagents like PCl_{5} does not usually replace phenolic OH by Cl but gives stable and unreactive phosphates. An exception is the case of the nitrophenols in which the OH is readily replaced by Cl.

The best method for the controlled introduction of a halogen is by the diazotization of the proper aryl amine. This preparation is especially important for the fluoro and iodo compounds and in the introduction of halogen atoms into positions not possible by direct substitution. The proper amine is treated with a suitable acid and sodium nitrite or N_2O_3 generated by the action of nitric acid on As_2O_3 .

1. For fluoro compounds the amine is dissolved in fluoroboric acid, a solution of BF_3 gas in hydrofluoric acid obtained by treatment of boric acid with hydrofluoric acid.

$$ArNH_2 + HBF_4 + HNO_2 \rightarrow 2 H_2O + ArN_2BF_4 \longrightarrow ArF + N_2 + BF_3$$

2. Chloro and bromo compounds are made by treating the diazonium halide with the proper cuprous halide and warming. Thus *m*-chlorotoluene can be made from *m*-toluidine.


⁶ Ann. Rep. Chem. Soc. (London) 1920, 77.

An indirect method of achieving the same result is to chlorinate *p*-acetotoluidide, remove the acetyl group, diazotize and remove the diazonium group by reduction with alcohol.

3. Iodo compounds are obtained by simply warming the aryl diazonium chloride with an inorganic iodide.

All of these preparations give tarry by-products and usually some phenols. The halides can be obtained by steam distillation from alkaline solution, the tars and alkali phenolates being nonvolatile with steam.

A few examples of the use of diazotization to prepare aryl halides follow:

Individual Halides of Benzene and its Homologs

Because of the aliphatic nature of their reactions, attention will be turned first to those with halogen in the aliphatic side chain.

Benzyl chloride, $C_6H_6CH_2Cl$, b. 175°, is made by chlorinating boiling toluene in the light, and by chloromethylating benzene.^{7,8} The Cl is very reactive. Thus KCN readily gives phenylacetonitrile, PhCH₂CN. The reactivity of substituted benzyl halides has been extensively studied.⁹ Nitration of benzyl chloride readily gives somewhat over 50 and 30% of the *p*- and *o*-compounds and about 15% *m*-compound. *Benzyl bromide*, b. 198°, is made by direct bromination. *Benzyl iodide*, m. 24°, is readily made by the reaction of benzyl chloride with KI in acetone or methanol. All the benzyl halides, especially the iodide, are lachrymators.

Benzyl chloride is used to make benzaldehyde and to introduce the benzyl group on the nitrogen atom in certain dyes.

The preparation of benzylmagnesium chloride takes place readily to about 95% but at the same time a small amount of di-*p*-tolyl, m. 120°, is formed. This indicates the formation of free radicals.¹⁰ Benzyl magnesium halides

⁷ Ginsburg, Whitmore et al. Ind. Eng. Chem. 38, 478 (1946).

⁸ "Org. Reactions," Vol. I.

⁹ Ann. Rep. Chem. Soc. (London) 1929, 137.

¹⁰ Gilman, Kirby. J. Am. Chem. Soc. 51, 1571 (1929).

give some normal reactions to form benzyl derivatives while in other cases they also give o-tolyl derivatives.¹¹

Certain compounds in which the benzyl group is "negative" are obtained as follows:

 $\begin{array}{c} {\rm HgCl_2} \\ {\rm PhCH_2MgCl} \xrightarrow{} {\rm HgCl_2} \\ \xrightarrow{} ({\rm PhCH_2})_2 {\rm Hg} \xrightarrow{} {\rm Na} \\ \xrightarrow{} {\rm PhCH_2Na} \\ \xrightarrow{} {\rm PhCH_2Nde_4} \\ \end{array}$

The last two compounds are ionized in non-aqueous solvents. Water hydrolyzes them to give toluene.¹²

Further chlorination of benzyl chloride gives benzylidene or benzal chloride, $C_6H_5CHCl_2$, b. 203°, and benzotrichloride, $C_6H_5CCl_3$, b. 213°. As usual with polyhalides, they are less reactive than the monohalide. They can be converted to benzaldehyde and benzoic acid by vigorous hydrolysis.

Benzotrichloride, with suitable reagents such as AgF or HF, gives *benzotri-fluoride*. The oxidation of this substance destroys the benzene ring with formation of F_3CCO_2H thus illustrating the great stability of the C-F linkage. Nitration of benzotrichloride gives mainly the *meta* nitro compound (65%).

Orientation in Benzene Compounds

The different orienting effects of different groups in the benzene ring were early observed. At first it was thought that a compound like toluene gave only ortho and para products when a second group was introduced and that a compound like nitrobenzene gave only meta products. The fact is that all possible products are formed in all cases but groups can be divided into two classes, (1) those which direct an entering group mainly to the ortho or para position and (2) those which direct mainly to the meta position. Another way to regard the difference in these two classes of groups is that the first facilitate substitution in the ortho and para positions while the second hinders substitution in these positions thus allowing the meta position to react. To be effective in allowing meta substitution the change in reactivity has to be perhaps one hundred-fold. Thus, although benzene reacts with chlorine nearly ten times as rapidly as does chlorobenzene, the chlorination of the latter gives mainly o- and p-dichlorobenzenes.¹³

It is a fact that o,p-directing groups speed up substitution whereas m-directing groups make it slower.

Much work has been done and a tremendous amount has been written on orientation in benzene compounds.

The original rule on orientation was that of Crum Brown and Gibson.¹⁴ They stated that the group X will be meta-orienting if the compound HX

¹¹ Gilman et al. Proc. Iowa Acad. Sci. 34, 221 (1927).

¹² Ann. Rep. Chem. Soc. (London) 1917, 117.

¹³ Groggins. "Unit Processes in Org. Chem." 3rd Ed. McGraw Hill, 1947, p. 247.

¹⁴ Crum Brown, Gibson. J. Chem. Soc. 61, 367 (1892).

can be oxidized readily to HOX. Since the following take place readily:

$H(NO_2) \rightarrow HONO_2$	$H(SO_3H) \rightarrow HOSO_3H$
$H(CHO) \rightarrow HOCHO$	$H(CO_2H) \rightarrow HOCO_2H$

the groups NO_2 , SO_3H , CHO and CO_2H should be meta-directing. This agrees with facts such as the formation of 90% *m*-, 8% o- and 1% *p*-dinitrobenzene from the nitration of nitrobenzene at 30°. Since the following changes *do not* take place readily:

$H(Cl) \longrightarrow HOCl$	$H(OH) \longrightarrow HO \longrightarrow OH$
$H(NH_2) \longrightarrow HONH_2$	$H(CH_3) \longrightarrow HOCH_3$

the groups Cl, OH, NH_2 and CH_3 should be ortho-para-directing. This agrees with facts such as the formation of over 90% o- and p-nitrotoluenes in the nitration of toluene.

There are glaring exceptions to any rule on orientation. For instance the mercuration of nitrobenzene gives over 50% o- and about 40% m- and 10% p-products.¹⁵ The bromination of bromobenzene at 500° gives mainly m-dibromobenzene.¹⁶

The meta-directing power of groups has come to be associated with their multiple linkages. Almost the only exception to this relation is the meta-directing effect of the $-CCl_3$ group. This follows the Crum Brown and Gibson Rule, however, inasmuch as

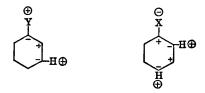
$$H(CCl_3) \rightarrow HOCCl_3 \rightarrow COCl_2$$

takes place readily. The meta directing power of the CCl_3 group is approached by the $CHCl_2$ group. Thus benzal chloride, on nitration, gives o-, m-, and p-compounds in 23, 39 and 43% yields. The nitration of benzyl chloride gives about 15% m-compound as compared with 4% m-compound obtained from toluene.

The relative proportions of *ortho* and *para* products are influenced by conditions and by the nature of the entering group. Thus bromobenzene on chlorination gives nearly as much *ortho* as *para* compound but on sulfonation gives essentially the pure *para* product. A fairly complete list of the orienting effects of groups has been worked out.¹⁷

1. Meta-directing: SO₃H, NO₂, CHO, CO₂H, CO₂R, CONH₂, COR, COCO₂H, CN, CCl₃, NH₃X, NR₃X.

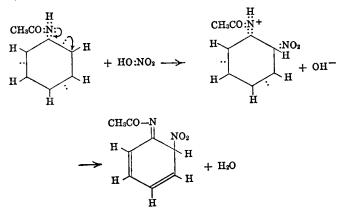
2. Ortho-para-directing: OH, OR, OAc, NH₂, NHR, NR₂, NHAc, N=N, CH₃, CH₂Cl, CH₂ONO₂, CH₂SO₃H, CH₂NH₂, CH₂CN, CH₂CO₂H, CH₂CO₂H, CH=CHCO₂H, CH=CHNO₂, C=CCO₂H, C₆H₆, Na, K.


The polar nature of the atom attached to the benzene ring is probably the

¹⁵ Coffey. J. Chem. Soc. 127, 1029 (1925).

¹⁶ Wibaut, Van Loon. Nature 139, 151 (1937).

¹⁷ Vorlander. Ber. 52B, 263, 283, 308, 309, 311 (1919).


deciding factor in orientation. A positive "pole" directs to the meta position. This effect, sometimes known as the *inductive* or I effect, also slows down the velocity of substitution as compared with that in compounds containing *o-p*-directing groups. The effect of "positive" and "negative" groups on benzene substitution has been expressed as follows.¹⁸

The H atoms marked + are the ones removed on further substitution. The significance of the sign of the "pole" attached to the ring is seen in the action of nitric acid on aniline in concentrated sulfuric acid and on acetanilide. The first gives meta and the second gives ortho and para compounds. The aniline sulfate solution contains the strongly positive group $-NH_3^{\oplus}$ and consequently gives *m*-substitution.

In the case of acetanilide the unbonded pair of electrons on nitrogen probably are drawn into conjugation with the ring giving a resonance form with a free electron pair in the *ortho* carbon atom. To this adds the positive NO_2 group.

Thus,

and the addition product, shown partially in electronic notation, loses water to give a product which, by a tautomeric shift, yields the ortho substitution product. This effect is called a *tautomeric* effect or T effect.¹⁹ An opposite

¹⁸ Fry. J. Am. Chem. Soc. 36, 248, 1035 (1914); 37, 855 (1915).
 ¹⁹ Ingold. Rec. trav. chim. 48, 806 (1929).

effect explains the meta directing effect of such groups as the nitro group.

The shift of the electron pair is indicated by the arrows in the above formula.

The "metalation" of benzene apparently offers an exception to this generalization. Thus phenylpotassium reacts with EtK to give mainly the p-K₂-compound.²⁰

$$C_6H_5K + EtK \rightarrow p-C_6H_4K_2$$

The relation of electrical properties of groups in relation to their orienting power has been extensively studied.²¹

D. INDIVIDUAL AROMATIC HALIDES

Fluorobenzene, C_6H_5F , b. 85°, is made from aniline by diazotization. It is completely inert. The nearness of its boiling point to that of the corresponding hydrogen compound, benzene (80°) is characteristic of fluorine compounds.

Chlorobenzene, phenyl chloride, C_6H_6Cl , b. 132°, is obtained by the chlorination of benzene using various catalysts such as FeCl₃, I₂, etc.²² Since it is an important intermediate for phenol, aniline and the nitrated chlorobenzenes, it is made in large amounts. The yield of chlorobenzene and its by-products varies with the conditions.²³ If 65% of the benzene is chlorinated, the yield of products is about as follows: chlorobenzene 58%, p-Cl₂-benzenes 6%, o-Cl₂-2%, m-Cl₂- less than 1%, 1,2,3-Cl₃- and 1,2,4-Cl₃-benzenes about 0.5% each. The nitration and sulfonation of chlorobenzene take place mainly in the o- and p-positions. Chlorobenzene gives a Grignard reagent on heating with Mg without any solvent.

Bromobenzene, phenyl bromide, C_6H_6Br , b. 157°, is readily made by adding Br_2 to benzene in presence of Fe filings. It is of special value in organic chemistry in the form of the Grignard reagent, C_6H_6MgBr . Similarly it is a source of sodium phenyl for synthetic reactions.²⁴

Iodobenzene, phenyl iodide, C_6H_6I , b. 188°, is best made from benzene, iodine and nitric acid.²⁶ It is chiefly interesting because of the polyvalency of its iodine atom. With dry Cl_2 in anhydrous inert solvents, it gives a yellow

²² Ellis. "Chemistry of Petroleum Derivatives." Reinhold, 1934. p. 755.

²⁰ Gilman, Kirby. J. Am. Chem. Soc. 58, 2074 (1936).

¹¹ Ann. Rep. Chem. Soc. (London) 1926, 129; 1927, 148; 1928, 137; 1930, 130.

²³ Bourion. Compt. rend. 170, 1319 (1920).

²⁴ Morton, Stevens. J. Am. Chem. Soc. 53, 2244 (1931).

²⁵ Datta, Chatterjee. J. Am. Chem. Soc. 39, 435 (1917).

crystalline compound, $C_6H_6ICl_2$, phenyl iodide chloride. Bases change this to iodosobenzene, C_6H_6IO , a yellow substance which explodes at 210° and can form salts with acids. HCl gives the dichloride while HOAc gives a diacetate. On standing or warming, it undergoes disproportionation to give phenyl iodide and iodoxybenzene, $C_6H_6IO_2$. This is a crystalline, neutral compound which explodes at 230°. Iodosobenzene can be made directly from iodobenzene by oxidation with ozone or peracetic acid. Iodoxybenzene can be made from iodosobenzene and Caro's acid, H_2SO_5 , or from iodobenzene and perbenzoic acid. Treatment of iodosobenzene with phenylmagnesium bromide gives diphenyliodonium hydroxide, a strong base.

$$ArIO + ArMgX \rightarrow Ar_2I - OMgX \rightarrow Ar_2I - OH$$

This can also be obtained by treating a mixture of iodoso- and iodoxy-benzene with AgOH. Diphenyliodonium iodide, $Ph_2I.I.m. 176^\circ$, is a salt like Me₄NI. Heat decomposes it to 2 PhI. The nature of these polyvalent compounds of iodine is better expressed electronically than by ordinary bonds. Analogous nitrogen compounds are given for comparison

$$\begin{bmatrix} \mathbf{A}\mathbf{r}: \ddot{\mathbf{I}}: \vec{\mathbf{O}} \\ \vdots \vec{\mathbf{I}} \end{bmatrix}^{\circ} \begin{bmatrix} \mathbf{A}\mathbf{r}: \ddot{\mathbf{I}}: \vec{\mathbf{CI}}: \vec{\mathbf{I}}^{\dagger} \\ \vdots \vec{\mathbf{CI}}: \vec{\mathbf{I}} \end{bmatrix}^{\circ} \begin{bmatrix} \mathbf{A}\mathbf{r} \\ \mathbf{A}\mathbf{r}: \vec{\mathbf{I}}: \vec{\mathbf{O}} \end{bmatrix}^{\circ} \begin{bmatrix} \mathbf{A}\mathbf{r} \\ \mathbf{A}\mathbf{r}: \vec{\mathbf{I}}: \vec{\mathbf{O}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \ddot{\mathbf{O}}: \mathbf{H} \end{bmatrix}^{-} \begin{bmatrix} \ddot{\mathbf{CI}}: \vec{\mathbf{I}} \\ \vdots \vec{\mathbf{O}} \end{bmatrix}^{\circ} \begin{bmatrix} \mathbf{R}: \vec{\mathbf{N}}: \vec{\mathbf{CI}}: \vec{\mathbf{I}} \\ \vec{\mathbf{R}}: \vec{\mathbf{N}}: \vec{\mathbf{CI}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \ddot{\mathbf{CI}}: \vec{\mathbf{I}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \ddot{\mathbf{CI}}: \vec{\mathbf{I}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}}: \vec{\mathbf{I}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vdots \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+} \end{bmatrix}^{+} \end{bmatrix}^{+} \begin{bmatrix} \vec{\mathbf{CI}} \end{bmatrix}^{+}$$

Halides of Benzene Homologs

These resemble phenyl or benzyl halides depending on the position of the halogen in the ring or the side chain. Certain exceptional reactions occur. Thus the fusion of ortho and para chlorotoluenes with NaOH and Cu powder at 315° gives about 25 and 35 per cent *meta* cresol respectively.²⁶ Similar results were obtained with o-Cl-ethylbenzene. Yields as high as 70% *m*-cresol have been obtained from o-Cl-toluene. The normal hydrolysis products are obtained if a copper reactor is used instead of one of iron.

²⁸ Meharg, Allen. J. Am. Chem. Soc. 54, 2920 (1932).

Aromatic Polyhalides

These are obtained by direct halogenation or by diazotization of suitable amines. Further substitution in a phenyl halide takes place almost exclusively in the ortho and para positions. The meta-disubstituted product is formed in very small amounts. Thus chlorination or nitration of chlorobenzene gives mainly o- and p-dichlorobenzene and o- and p-nitrochlorobenzene. Further action gives mainly the unsymmetrical or 1,2,4-trichloro- and chlorodinitrobenzenes. In chlorination, all three possible tetrachlorobenzenes are formed while in nitration the final product is 1,2,4,6-chlorotrinitrobenzene because of the meta-orienting effect of the nitro groups. m-Dihalogenated benzenes are best obtained by alternate reduction and diazotization of m-dinitrobenzene. For instance

p-Dichlorobenzene (Para, Paradow), m. 53°, b. 173°, is obtained as a by-product in the chlorination of benzene. It is extensively used as a moth and caterpillar repellant. It is also an intermediate for making *p*-chlorophenol and hydroquinone. *o-Dichlorobenzene*, m. -17.6°, b. 179°, is a cheap by-product of the para compound because it has to be removed in order to raise the m.p. and prevent the latter from caking. It is used as a high-boiling solvent, for an insecticide and in making *o*-chlorophenol and pyrocatechol. A curious preparation of *o*-Cl₂-benzene is by heating *o*-Br-nitrobenzene with NH₄Cl at 320°.²⁷

The trichlorobenzenes are the sym-, m. 63°, b. 208°, the vic-, m. 53°, b. 219°, and the unsym-, m. 17°, b. 213°. These properties illustrate the effect of symmetry in raising the solidification point and the vapor pressure. The 1,2,4-compound is obtained exclusively by the action of bases with benzene hexachloride. It is also the chief product of the trichlorination of benzene. Hexachlorobenzene, m. 227°, b. 326°, is readily obtained by exhaustive chlorination.

*p***-Dibromobenzene**, m. 87°, b. 219°, is a by-product of the bromination of benzene. It readily gives a Grignard reagent and less readily gives a di-Grignard reagent. The meta compound is obtained by bromination at about 500° .²⁸

Hexaiodobenzene, C₆I₆, m. 350°, is obtained from benzene heated at 180° with I₂ and 60% oleum.²⁹

Arylsubstituted unsaturated halides are known in great numbers. β - or ω -Bromostyrene, C₆H₅CH=CHBr, is readily obtained by boiling cinnamic acid

- ²⁸ Wibaut, Van Loon. Nature 139, 151 (1937).
- ³⁹ Durand, Mancet. Bull. soc. chim. [5] 2, 665 (1935).

²⁷ Ann. Rep. Chem. Soc. (London) 1904, 94.

dibromide with sodium carbonate.

$PhCHBrCHBrCO_2Na \rightarrow NaBr + CO_2 + PhCH = CHBr$

With fused KOH it gives phenylacetylene. With alcoholic KOH the chief product is PhCH = CHOEt.

V. AROMATIC SULFONIC ACIDS

One of the most notable characteristics of aromatic hydrocarbons and their derivatives is the ease with which they can be sulfonated by treatment with concentrated or fuming sulfuric acid or chlorosulfonic acid, $CISO_3H$.

Sulfonic acids are strong acids, intermediate between HCl and H_2SO_4 . Their salts, even those of Ca and Ba, are readily soluble. With water these salts give *hydrotropic solutions* which act as good solvents for materials insoluble in water.¹ Sodium xylenesulfonate and sodium cymenesulfonate are very effective. Substances like nitrobenzene, benzaldehyde, and diphenylamine dissolve readily in these solutions.

Benzenesulfonic acid, $C_6H_8SO_3H$, m. 51°, is readily obtained from benzene and sulfuric acid on heating.

$$C_6H_6 + H_2SO_4 \rightarrow H_2O + C_6H_5SO_3H$$

The C-S linkage is very stable. It can be broken by heating at about 150° with hydrochloric acid or superheated steam or by fusion with strong alkalies.

$$\begin{array}{l} PhSO_3H + H_2O \rightarrow C_6H_6 + H_2SO_4\\ PhSO_3Na + 2 NaOH \rightarrow PhONa + Na_2SO_3 + H_2O \end{array}$$

In one of these processes the phenyl appears to be "negative" and in the other "positive." Another important replacement of the sulfonic acid group gives benzonitrile on fusion with alkali cyanide.

$$PhSO_3Na + NaCN \rightarrow Na_2SO_3 + PhCN$$

Benzenesulfonic acid as a strong acid forms salts. It forms esters with primary alcohols. These, on heating alone, give olefins while heating with excess alcohol gives ethers. Thus aromatic sulfonic acids are useful catalysts for the preparation of olefins and ethers. They have the advantage of not causing charring as does sulfuric acid. Sulfonic esters react fairly smoothly with Grignard reagents to form hydrocarbons.²

$$ArSO_{3}R + R'MgX \rightarrow R - R' + ArSO_{3}MgX$$

If the ester of a halogenated alcohol is so used, this method can be employed to make higher alkyl halides. Thus the carbon chain of an alkyl halide can be increased by three carbons by converting it to the Grignard reagent and heating

¹ McKee. Ind. Eng. Chem. 38, 382 (1946).

² Gilman. J. Am. Chem. Soc. 47, 523 (1925).

AROMATIC OR BENZENE SERIES

dibromide with sodium carbonate.

$PhCHBrCHBrCO_2Na \rightarrow NaBr + CO_2 + PhCH = CHBr$

With fused KOH it gives phenylacetylene. With alcoholic KOH the chief product is PhCH = CHOEt.

V. AROMATIC SULFONIC ACIDS

One of the most notable characteristics of aromatic hydrocarbons and their derivatives is the ease with which they can be sulfonated by treatment with concentrated or fuming sulfuric acid or chlorosulfonic acid, $ClSO_{4}H$.

Sulfonic acids are strong acids, intermediate between HCl and H_2SO_4 . Their salts, even those of Ca and Ba, are readily soluble. With water these salts give *hydrotropic solutions* which act as good solvents for materials insoluble in water.¹ Sodium xylenesulfonate and sodium cymenesulfonate are very effective. Substances like nitrobenzene, benzaldehyde, and diphenylamine dissolve readily in these solutions.

Benzenesulfonic acid, $C_6H_8SO_3H$, m. 51°, is readily obtained from benzene and sulfuric acid on heating.

$$C_6H_6 + H_2SO_4 \rightarrow H_2O + C_6H_5SO_3H$$

The C-S linkage is very stable. It can be broken by heating at about 150° with hydrochloric acid or superheated steam or by fusion with strong alkalies.

$$\begin{array}{l} PhSO_3H + H_2O \rightarrow C_6H_6 + H_2SO_4 \\ PhSO_3Na + 2 \ NaOH \rightarrow PhONa + Na_2SO_3 + H_2O \end{array}$$

In one of these processes the phenyl appears to be "negative" and in the other "positive." Another important replacement of the sulfonic acid group gives benzonitrile on fusion with alkali cyanide.

$$PhSO_3Na + NaCN \rightarrow Na_2SO_3 + PhCN$$

Benzenesulfonic acid as a strong acid forms salts. It forms esters with primary alcohols. These, on heating alone, give olefins while heating with excess alcohol gives ethers. Thus aromatic sulfonic acids are useful catalysts for the preparation of olefins and ethers. They have the advantage of not causing charring as does sulfuric acid. Sulfonic esters react fairly smoothly with Grignard reagents to form hydrocarbons.²

$$ArSO_{3}R + R'MgX \rightarrow R - R' + ArSO_{3}MgX$$

If the ester of a halogenated alcohol is so used, this method can be employed to make higher alkyl halides. Thus the carbon chain of an alkyl halide can be increased by three carbons by converting it to the Grignard reagent and heating

628

¹ McKee. Ind. Eng. Chem. 38, 382 (1946).

² Gilman. J. Am. Chem. Soc. 47, 523 (1925).

with a sulfonic ester of 3-chloropropyl alcohol.³

 $RMgX + ArSO_3(CH_2)_3Cl \rightarrow R(CH_2)_3Cl$

Inorganic acid chlorides such as PCl₅ replace the hydroxyl with chlorine forming benzenesulfonyl chloride, PhSO₂Cl, m. 14.5°, b. 246°.

 $PhSO_{3}H + PCl_{5} \rightarrow PhSO_{2}Cl + POCl_{3} + HCl$

This behaves as an acid chloride. It is only slightly reactive with cold water but reacts in the usual way with hot water, bases and ammonia. The product of the last reaction, *benzenesulfonamide*, m. 150°, is representative of the aromatic sulfonamides which are useful in identifying sulfonic acids because they are easily purified crystalline substances of definite melting points.

The sulfonamides differ from the amides of carboxylic acids in being soluble in alkalies. This solubility is due to the H attached to nitrogen since $PhSO_2NH_2$ and $PhSO_2NHR$ are soluble in alkali while $PhSO_2NR_2$ is not.

r	 г	°۲
:0:	:0:	R
	••	
Ph: S: N:	Ph:S:	N:R
	••	
:0:	:0:	
L ·· .	L ••	

The Hinsberg method of separating primary, secondary and tertiary amines is based on this property (p. 170). The N-chloro-derivatives of the sulfonamides obtained by the action of HOCl have antiseptic properties.

Chloramine T (Tolamine) is the sodium salt of N-chloro-p-toluenesulfonamide obtained from the amide and NaOCl solution (I). Dichloroamine-T is the N-dichloro compound (II). It is used as a water disinfectant. Chloramine B is the sodium salt of N-chlorobenzenesulfonamide. Halozone is the corresponding carboxylic acid obtained by oxidizing p-toluenesulfonamide with chromic acid mixture and treating the product with alkali and chlorine.

$$\begin{bmatrix} \vdots \ddot{O} : & & \vdots \\ C_7 H_7 : S : N : Cl : \\ \vdots \ddot{O} : & & \vdots \\ \vdots \ddot{O} : & & \vdots \end{bmatrix} \begin{bmatrix} \vdots \ddot{O} : & \vdots \\ Na^+ & Tol : S : N : Cl : \\ \vdots \ddot{O} : & \vdots \ddot{O} : \vdots Cl : \\ \vdots \ddot{O} : & \vdots \ddot{O} : \vdots Cl : \\ \vdots & \vdots \ddot{O} : \vdots Cl : \\ \vdots & \vdots & \vdots & \vdots \\ I & II \end{bmatrix}$$

The ortho sulfonic acid of toluene is important as related to saccharin. Toluene on treatment with excess of chlorosulfonic acid gives a considerable amount of o-toluenesulfonyl chloride with the p- and m-compounds as by-products.

³ Rossander. J. Am. Chem. Soc. 50, 1491 (1928).

In this process the chlorosulfonic acid acts both as a sulfonating agent and an acid chloride

$$C_7H_8 \rightarrow C_7H_7SO_3H \rightarrow C_7H_7SO_2Cl$$

The *p*-toluenesulfonyl chloride is an important by-product.

Aryl sulfonyl chlorides on vigorous acid reduction, as with Zn dust and acid, give thiophenols. The acids themselves cannot be thus reduced. The chlorides with neutral or basic reducing agents give sulfinic acids, $ArSO_2H$, or their salts. Thus *p*-toluenesulfonyl chloride with water and zinc dust gives zinc *p*-toluenesulfinate which gives the sodium salt with sodium carbonate solution.⁴

$$2 \operatorname{TolSO_2Cl} + 2 \operatorname{Zn} \rightarrow \operatorname{ZnCl_2} + (\operatorname{TolSO_2}_2 \operatorname{Zn} \rightarrow 2 \operatorname{TolSO_2Na})$$

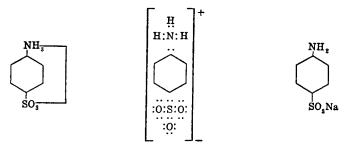
The sulfinic acids are readily oxidized to sulfonic acids. They differ from the latter in being reducible to thiophenols by acid and metals. The sulfinic acid group is replaced by the HgCl group on boiling with HgCl₂ solution.

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ Ph : S : O : \\ \vdots & \vdots & \vdots \\ \vdots & O : \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}^{-} \begin{bmatrix} \vdots & \vdots & \vdots \\ Ph : S : Cl : \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}^{-} \begin{bmatrix} \vdots & \vdots & \vdots \\ Ph : S : Cl : \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}^{-} \begin{bmatrix} Ph : S : \\ Ph : S : \\ \vdots & \vdots \end{bmatrix}^{-}$$

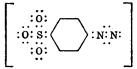
Sulfinic acids can also be prepared from Grignard reagents and SO₂.

Sulfonic acids of the homologs of benzene are known in great numbers. Those containing at least four substituent groups have been extensively studied because of the *Jacobsen reaction*, a peculiar process in which groups like alkyl, halogen or sulfonic acid shift intermolecularly under the influence of concentrated sulfuric acid. The peculiar action of sulfuric acid on durene is an example (p. 616).

Nitration, sulfonation, and halogenation of benzenesulfonic acid give mainly the meta compounds. The o- and p-nitrobenzenesulfonic acids are made by oxidizing the corresponding disulfides with dilute nitric acid.


$$\begin{array}{c} Na_2S_2 \\ O_2NC_6H_4Cl \longrightarrow (O_2NC_6H_4S)_2 \xrightarrow{ HNO_3 } O_2NC_6H_4SO_3H \end{array}$$

Sulfanilic acid, *p*-aminobenzenesulfonic acid, is obtained by "baking" aniline sulfate to about 200°. It exists as an internal salt or "Zwitterion." With strong bases it gives salts but does not do so with acids. This is because of the strongly acid nature of the sulfonic acid group. These relations are


"'Org. Syntheses."

630

shown in the following formulas:

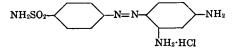
The "bond" between the active groups in the first formula is probably entirely imaginary. The Zwitterion formula better represents the facts. Sulfanilic acid has been used in colorimetric determination of nitrites.⁵ The *m*-isomer, *metanilic acid*, is obtained by reducing the *m*-nitrobenzenesulfonic acid obtained by sulfonating nitrobenzene. Diazobenzenesulfonic acid is a relatively stable diazonium salt.

The o- and p-phenolsulfonic acids are readily obtained by direct sulfonation of phenol. The ortho compound is used as an antiseptic, Aseptol or Sozolic acid. 2,6-Diiodophenol-4-sulfonic acid is Sozoiodol, a substitute for iodoform.

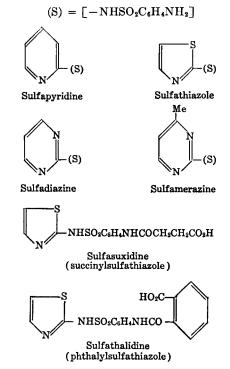
A new cation exchange resin is made by the condensation of phenolsulfonic acids with formaldehyde.

Just as the NH_2 and OH groups activate the *o*- and *p*-H atoms, so do they loosen the sulfonic acid groups in these positions. Thus the sulfonic acids of aniline and phenol are much more readily hydrolyzed than those of benzene. An example of this is the conversion of *o*-phenolsulfonic acid to the *p*-compound by boiling water. This represents the results of two equilibrium reactions rather than a true rearrangement.

$$o$$
-acid + H₂O \rightleftharpoons phenol + H₂SO₄ \rightleftharpoons p-acid + H₂O


The *p*-acid is less readily hydrolyzed and is formed predominantly during sulfonation.

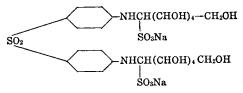
Sulfanilamide, p-aminobenzenesulfonamide, m. 166°, is prepared by reacting acetanilide with chlorsulfonic acid, treating with ammonia to form the sulfonamide, followed by acid hydrolysis of the acetyl group:


⁵ Rider, Mellon. Ind. Eng. Chem., Anal. Ed. 18, 96 (1946).

$$\begin{array}{c} \mathrm{ClSO_3H} & \mathrm{NH_3} \\ \mathrm{MeCONHC_6H_6} & \longrightarrow & \mathrm{MeCONHC_6H_4SO_2Cl} & \longrightarrow \\ & & \mathrm{MeCONHC_6H_4SO_2NH_2} & \xrightarrow{\mathrm{H}} & \mathrm{NH_2C_6H_4SO_2NH_2} \\ & & & \mathrm{H_{2O}} \end{array}$$

Sulfanilamide and some of its derivatives have specific action on streptococci.⁶ The bacterial diseases cured or remedied are streptococci infections, pneumonia, meningitis, gonorrhea, dysentery, paratyphoid and typhoid. Antistreptococci action was first noted in 1932 with Prontosil Red, m. 250°, an azo dye.⁷

Since then more than 2500 derivatives of sulfanilamide have been described. Among the more important are the following:



⁶ Domagk. Deut. med. Wochschr. 61, 250 (1935).

⁷ Mietzsch, Klarer. Ger. patent No. 607,537 (1935); 610,320 (1935).

The curative powers of the sulfanilamides are believed due to their structural similarity to *p*-aminobenzoic acid.^{8,9} The latter is essential in the enzymatic systems of growth and reproduction of many bacteria. Thus the bacteria absorb the sulfa drug as a substitute for *p*-aminobenzoic acid, are unable to multiply, and are destroyed by the normal defenses of the body.

Promin is sodium 4,4'-diaminodiphenylsulfone-N,N'-didextrose sulfonate or

It appears capable of inhibiting the progress of leprosy.¹⁰ It is useful in the treatment of tuberculosis.

VI. NITRO COMPOUNDS OF BENZENE HYDROCARBONS

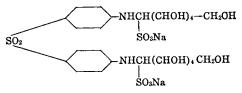
A. TRUE ARYL NITRO COMPOUNDS

These have the $-NO_2$ group attached directly to a benzene ring. Treatment of benzene and especially its homologs with concentrated nitric acid readily gives mononitro derivatives

$$C_6H_6 + HONO_2 \rightarrow H_2O + C_6H_5NO_2$$

The use of mixtures of nitric acid with sulfuric acid, of fuming nitric acid (d. > 1.4) and of mixtures with fuming sulfuric acid increases the intensity of the nitration process. Thus, whereas, concentrated nitric acid will give only the mononitro compound, a mixture with concentrated sulfuric acid will form *m*-dinitrobenzene (with traces of the *o*- and *p*-isomers). Mixtures of the two fuming acids give finally 1,3,5-trinitrobenzene which is resistant to further nitration.

Nitrobenzene, Oil of Mirbane, Essence of Mirbane, $C_6H_5NO_2$, m. 5°, b. 208°, is a very pale yellow liquid of the odor of bitter almonds. It is made by the nitration of benzene with nitrating acid, mixed acid, a mixture of concentrated nitric and sulfuric acid. On a large scale, very careful cooling is necessary because of the exothermic reaction. On the laboratory scale the relation of surface to volume of the small flasks used readily gives the necessary cooling. The value of the parachor for nitro benzene indicates that the nitro group


- ⁹ Bell, Roblin. J. Am. Chem. Soc. 64, 2905 (1942).
- ¹⁰ Faget. U. S. Pub. Health Repts. 58, 1729 (1943).

⁸ Woods. Brit. J. Ex. Path. 21, 74 (1940).

NITRO COMPOUNDS OF BENZENE HYDROCARBONS 633

The curative powers of the sulfanilamides are believed due to their structural similarity to *p*-aminobenzoic acid.^{8,9} The latter is essential in the enzymatic systems of growth and reproduction of many bacteria. Thus the bacteria absorb the sulfa drug as a substitute for *p*-aminobenzoic acid, are unable to multiply, and are destroyed by the normal defenses of the body.

Promin is sodium 4,4'-diaminodiphenylsulfone-N,N'-didextrose sulfonate or

It appears capable of inhibiting the progress of leprosy.¹⁰ It is useful in the treatment of tuberculosis.

VI. NITRO COMPOUNDS OF BENZENE HYDROCARBONS

A. TRUE ARYL NITRO COMPOUNDS

These have the $-NO_2$ group attached directly to a benzene ring. Treatment of benzene and especially its homologs with concentrated nitric acid readily gives mononitro derivatives

$$C_6H_6 + HONO_2 \rightarrow H_2O + C_6H_5NO_2$$

The use of mixtures of nitric acid with sulfuric acid, of fuming nitric acid (d. > 1.4) and of mixtures with fuming sulfuric acid increases the intensity of the nitration process. Thus, whereas, concentrated nitric acid will give only the mononitro compound, a mixture with concentrated sulfuric acid will form *m*-dinitrobenzene (with traces of the *o*- and *p*-isomers). Mixtures of the two fuming acids give finally 1,3,5-trinitrobenzene which is resistant to further nitration.

Nitrobenzene, Oil of Mirbane, Essence of Mirbane, $C_6H_6NO_2$, m. 5°, b. 208°, is a very pale yellow liquid of the odor of bitter almonds. It is made by the nitration of benzene with nitrating acid, mixed acid, a mixture of concentrated nitric and sulfuric acid. On a large scale, very careful cooling is necessary because of the exothermic reaction. On the laboratory scale the relation of surface to volume of the small flasks used readily gives the necessary cooling. The value of the parachor for nitro benzene indicates that the nitro group

⁸ Woods. Brit. J. Ex. Path. 21, 74 (1940).

⁹ Bell, Roblin. J. Am. Chem. Soc. 64, 2905 (1942).

¹⁰ Faget. U. S. Pub. Health Repts, 58, 1729 (1943).

contains only one true double linkage and a coordinate linkage.

$$\begin{array}{ccc} C_6H_5:N::\stackrel{\circ}{} & C_6H_5\stackrel{\bullet}{-}N=0\\ \vdots\\ :O:& & & \downarrow\\ & & O\end{array}$$

Nitrobenzene forms a crystalline "sulfate," $PhNO_2$. H_2SO_4 , m. 11°, which can be crystallized from ether.¹ The formation of such a product may be pictured electronically

It would thus be analogous to the nitric acid compound of a sulfoxide. The C-N linkage in nitrobenzene is very stable. No reaction is known by which it can be split without complete decomposition of the molecule.

Reduction of nitrobenzene gives a variety of products. With acids and active metals, the oxygen atoms are removed and replaced by 2 H to give aniline

$$C_6H_5NO_2 + 6[H] \rightarrow 2H_2O + C_6H_5 - NH_2$$

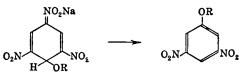
Under other conditions only one O is removed and replaced by 2 H to give phenylhydroxylamine, C_6H_5NHOH , which readily undergoes rearrangement to *p*-aminophenol, HOC₆H₄NH₂. Various alkaline reductions give bimolecular reduction products.

$$\begin{array}{c} C_{6}H_{5}:N::N:C_{6}H_{5},C_{6}H_{5}-N=N-C_{6}H_{5},C_{6}H_{5}-NHNH-C_{6}H_{5}\\ \vdots\\ \vdots\\ \vdots\\ Azoxybenzene & Azobenzene & Hydrazobenzene \\ m. 36^{\circ} & m. 67^{\circ}, b. 297^{\circ} & m. 131^{\circ} \end{array}$$

The older formulas for azoxybenzene, containing the O attached to both N atoms or the O attached by a double bond to one N, are less accurate than the unsymmetrical formula with coordinately linked oxygen. According to this formulation, azoxybenzene is related to the amine oxides.

All three bimolecular reduction products of nitrobenzene give aniline on vigorous acid reduction.

¹ Ann. Rep. Chem. Soc. (London) 1923, 94.

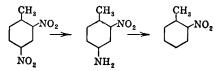

Nitrobenzene gives the *Piria Reaction* when heated with a sulfite and then with mineral acid to give aniline and sulfanilic acid.² This reaction is given by practically all aromatic nitro compounds.

m-Dinitrobenzene, m. 90.8°, b. 303°, is readily obtained by nitrating nitrobenzene. Each of the nitro groups shows the properties of that in nitrobenzene. The H atoms which are o- or o,p- to the two nitro groups are more sensitive to oxidation than those in benzene. Thus potassium ferricyanide converts *m*-dinitrobenzene to 2,6- and 2,4-dinitrophenols. This reactivity of the o,p-H atoms does not extend to ordinary substitution reactions which take place with difficulty and then mainly in the *m*-position.

o-Dinitrobenzene, m. 118°, b. 319°, and p-dinitrobenzene, m. 172°, b. 299°, are formed in only minute amounts by direct nitration. They are prepared from the corresponding nitroanilines by replacing the NH₂ by NO₂ on diazotization and treatment with excess nitrous acid and Cu₂O. A nitro group in the o- or p-position to another nitro group does not exhibit the stable C-Nlinkage found in nitro- and m-dinitrobenzenes. Treatment with alkali or ammonia replaces one of the NO₂ groups by OH or NH₂ respectively. This behavior has been regarded as indicating an alternating polarity in the benzene carbon atoms.³

The activating effect of a nitro group on another nitro group in the o- and pposition but not on one in the *m*-position is similar to the effect on H and
halogen atoms in these positions.

1,3,5-Trinitrobenzene, sym-trinitrobenzene, m. 122°, can be made directly by vigorous nitration of the *m*-dinitro compound with a mixture of fuming nitric and sulfuric acids but is more conveniently prepared from trinitrotoluene.⁴ It resembles the dinitro compound, including the ease of oxidation of the H atoms each of which is o,o,p- to nitro groups. Substitution reactions are unknown, however. While one nitro group does not activate another one in the *m*-position, two such groups have an activating effect on a third, as is shown by the action of sym-trinitrobenzene with sodium alcoholates to give replacement of one NO₂ by alkoxyl. The intermediate product is a highly colored compound probably of quinoid structure.

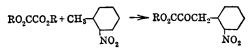

⁹ Hunter. J. Am. Chem. Soc., 53, 1432 (1931).
 ³ Fry. J. Am. Chem. Soc. 36, 248 (1914).
 ⁴ "Org. Syntheses."

Trinitrobenzene forms stable molecular addition products with various aromatic and unsaturated hydrocarbons. These compounds often have melting points higher than either component. Thus the compounds with naphthalene (m. 80°) and with acenaphthene (m. 97°) melt at 152° and 168° respectively. The compound with 2 C₆H₆ melts at 71°.

1,2,4-Trinitrobenzene, asym-trinitrobenzene, m. 57°, is made from dinitroaniline. The 1-NO₂ is readily replaced by OH or NH₂ because of the activating influence of the o- and p-NO₂ groups.

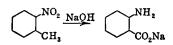
Nitrotoluenes are obtained by nitrating toluene. As is usual, the o- and p-H atoms in toluene are more easily replaced than the H atoms in benzene. Nitration of toluene under mild conditions gives mainly o- and p-NO₂-toluenes with less than 5% m-. The relative proportions of o- and p- depend somewhat on conditions although the o-compound usually predominates. On a large scale, the finished products are obtained in the ratio 61:35.5:3.5 for o-, p- and m-. More vigorous nitration gives 2,4-dinitrotoluene and 2,4,6-trinitrotoluene with only small amounts of isomers.

o-Nitrotoluene, $CH_3C_6H_4NO_2$, m. -10° , n. 218°, is separated from its isomers by means of alternate freezing and distillation, thus taking advantage of its lower freezing and boiling points. It can be freed from traces of the *p*-compound by long boiling with alcoholic NaOH which reduces the latter. On acidification and steam distillation, the pure *o*-compound distills. The pure *o*-compound can also be made from 2,4-dinitrotoluene by partial reduction to convert the *p*-NO₂ group to amino which can be replaced by H by diazotization in presence of alcohol.

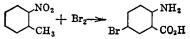


Its chemical properties resemble those of nitrobenzene except that the methyl group may react like that in nitromethane. This is an important example of Vinylogy.

 $CH_3 - NO_2$, $CH_3 - C = C - NO_2$, $CH_3 - C = C - C = C - NO_2$.

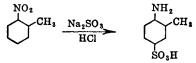

The last grouping is found in *p*-nitrotoluene, in which the methyl hydrogens also show alpha-H reactions.

o-Nitrotoluene reacts with ethyl oxalate and sodium ethylate to give a Claisen or aldol type condensation.



On treatment with alkali, o-nitrotoluene undergoes internal oxidation and

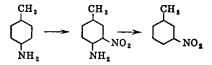
reduction to give o-aminobenzoic acid.



A similar process takes place when bromine is dropped into o-nitrotoluene heated to 170°.

In spite of these internal oxidations of the methyl group it is not as easily converted to carboxyl by ordinary oxidizing agents as in the m- and p-isomers. Thus dilute nitric acid and chromic acid mixture do not give o-nitrobenzoic acid but permanganate does.

o-Nitrotoluene gives a 34% yield of 2-toluidine-5-sulfonic acid by the Piria reaction.



m-Nitrotoluene, m. 16°, b. 230°, is formed in small amounts in the commercial nitration of toluene (4%). In order to improve the quality of the *o*and *p*-compounds it is removed and is available in about 90% purity. The impurities can be eliminated by their reaction with Et oxalate and NaOEt (p. 636). *m*-Nitrotoluene does not react because the groupings

$$CH_3 - C - C = C - NO_2$$

and $CH_3-C=C-C-NO_2$ give no vinylogy effect. The reaction mixture is acidified and steam distilled. The unchanged pure *m*-nitrotoluene distills over leaving the substituted pyruvic esters behind.

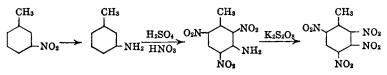
m-Nitrotoluene can be synthesized from *p*-toluidine by nitration and elimination of the NH_2 group. The nitro group enters almost entirely *o*- to the NH_2 group because of its greater orienting influence.

p-Nitrotoluene, m. 51°, b. 234°, is readily separated from the nitration mixture obtained from toluene. Its reactions are like those of the *o*-isomer. The H atoms *o*- to the methyl are *m*- to the nitro group and are consequently more active than the H atoms in nitrobenzene or in *m*-nitrotoluene. Boiling with dilute nitric acid oxidizes the methyl group to form *p*-nitrobenzoic acid.

A similar reaction takes place with the *m*-compound but not with the *o*-compound.

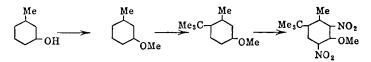
Hot aqueous KOH produces an oxidation-reduction process with p-nitrotoluene which involves two molecules with the possible formation of a 12-member ring.⁵

2,4-Dinitrotoluene, m. 70°, is readily obtained by nitrating toluene or the o- or p-mononitro derivatives. It gives the expected reactions and, in addition, reacts readily with aldehydes, the methyl H atoms behaving as $\alpha - H^{5*}$


$$CH_3C_6H_3(NO_2)_2 + RCHO \rightarrow H_2O + RCH = CHC_6H_3(NO_2)_2$$

The reactivity of the methyl group is like that found in crotonic aldehyde (p. 225).

2,4,6-Trinitrotoluene, T.N.T., Trotyl, Tolite, m. 81.5°, obtained by exhaustive nitration of toluene, is an important high explosive. It is relatively safe because of its difficulty of detonation. In fact it will burn without exploding. Attempts to further nitrate trinitrotoluene give oxidation of the methyl to carboxyl and splitting to give tetranitromethane.^{5b} Oxidation of T.N.T. with chromic acid mixture converts the methyl to carboxyl (OS). The resulting trinitrobenzoic acid loses CO_2 on merely boiling with water and gives sym-trinitrobenzene (OS). The isomers of T.N.T. have been carefully studied because their presence decreases the stability of the explosive. Thus while T.N.T. is stable to moisture, an isomer having two nitro groups ortho to each other would react with moisture to give nitrous acid and a nitrated cresol. The absence of such isomers is assured by careful insistence on the correct melting point for T.N.T.


All six possible trinitrotoluenes have been made.50

2,3,4,6-Tetranitrotoluene has been made as an explosive but has the disadvantage of lower stability both to shock and to the action of water. The fourth nitro group cannot be introduced by nitration but is obtained by oxidizing an amino group with a persulfate. The steps for its preparation follow.

⁶ Ann. Rep. Chem. Soc. (London) 1917, 117.
 ¹⁶ Ann. Rep. Chem. Soc. (London) 1904, 98.
 ¹⁶ ibid. 1914, 99.
 ¹⁶ ibid. 1915. 88.

Artificial musks. Several nitro groups in an aromatic compound containing a tertiary butyl group give an odor resembling natural musk. Toluene or xylene treated with an isobutyl or tertiary butyl halide and aluminum chloride gives considerable amounts of *m-t*-butyl compounds. Three nitro groups can be introduced into these to give toluene musk and xylene musk. Musk Ambrette is made from *m*-cresol.

B. ARYL SUBSTITUTED ALIPHATIC NITRO COMPOUNDS

Phenylnitromethane, ω-nitrotoluene, C₆H₅CH₂NO₂, b. 226°,

 $C_6H_5CH = NO_2H$,

m. 84°, can be made from toluene in several ways.

1. Heating with dilute nitric acid in a sealed tube.

2. Treatment of benzyl chloride with silver nitrite.

3. From benzyl cyanide, an alkyl nitrate and NaOEt. While this appears the most difficult method, it is actually the best. The conversion of toluene to benzyl chloride and the latter to the cyanide gives no trouble

 $C_6H_5CH_2CN + EtONO_2 + EtONa \rightarrow C_6H_5C(CN) = NO_2Na$

Hydrolysis of the nitrile group and elimination of the resulting carboxyl proceed smoothly.

$$C_{6}H_{5}C(CN) = NO_{2}Na \xrightarrow{NaOH} C_{6}H_{5}C(CO_{2}Na) = NO_{2}Na \xrightarrow{acid} CO_{2} + C_{6}H_{5}CH_{2}NO_{2}$$

The structure is proved by reduction to benzylamine, $C_6H_6CH_2NH_2$. The Na compound on heating gives stilbene.⁶

2 PhCH =
$$NO_2Na \rightarrow PhCH = CHPh + 2 NaNO_2$$

Phenylnitromethane is a typical pseudo acid. It dissolves slowly in alkali to give a true salt. Acidification of the salt gives the solid *acinitro* form which is rapidly soluble in bases and gives a conducting solution in water, whereas the liquid form does not. On standing, the solid acinitro form changes to the liquid true nitro compound. The former gives a color with ferric chloride while the latter does not. The structures of the two forms may be represented

⁶ Ann. Rep. Chem. Soc. (London) 1905, 103.

in a variety of ways.⁷

$$ArCH_{2} - N = 0 \rightleftharpoons ArCH = N - OH$$

$$H$$

$$Ar : C : N :: 0 \rightleftharpoons Ar : C :: N : 0 : H$$

$$H : 0 : II : 0 :$$

$$ArCH_{2} - N = 0 \rightleftharpoons ArCH = N - OH$$

$$O$$

Aromatic nitro compounds with unsaturated side chains may be illustrated by the nitrostyrenes.

 ω -Nitrostyrene, C₆H₅CH=CHNO₂, is obtained by the direct action of styrene with nitric acid by a process resembling the action of chlorine with isobutylene (p. 40). *o-Nitrostyrene*, O₂NC₆H₄CH=CH₂, and its isomers are obtained from the corresponding nitrocinnamic acids by adding HBr and hydrolyzing with elimination of CO₂. *o-Nitrophenylacetylene*,

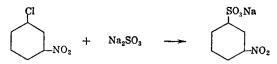
$$O_2NC_6H_4C \equiv CH$$

and its isomers are similarly obtained by adding Br_2 to the cinnamic acid, removing 2 HBr and decarboxylating.

C. NITRO COMPOUNDS OF THE AROMATIC HALIDES

o- and p-Nitro-halogen-benzenes, in a ratio of about 3:7, are obtained by nitrating the phenyl halides. The isomers are readily separated because of the higher melting points and lower solubilities of the p-isomers. The oisomer is obtained in a eutectic mixture with the p-compound. The mixture can be separated by alternate distillation and freezing or recrystallization. Further nitration gives 2,4- and 2,4,6-polynitro compounds. The halogen atoms which are ortho or para to a nitro group readily give metathetical reactions with reagents like bases, ammonia and alkali sulfides to give nitrophenols, nitroanilines and nitrophenyl sulfides and disulfides. This reactivity is in sharp contrast to the usual inactivity of aromatic halides (p. 619). The presence of two or three nitro groups in o- and p-positions further increases the activity of the halogen. Thus 2,4,6-trinitrochlorobenzene acts as an acid chloride and is called *picryl chloride*. Picryl iodide is a stable yellow crystalline product obtainable from the chloride and KI.⁸

2,4-Dinitrochlorobenzene is an important intermediate for various *sulfur* dyes. It is also used in making picric acid, first being hydrolyzed to dinitrophenol which can be easily converted to the trinitro compound.

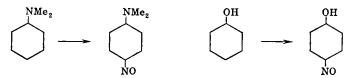

640

⁷ Ann. Rep. Chem. Soc. (London) 1927, 107.

⁸ Hepp. Ann. 215, 361 (1882).

A single nitro group will not render an aromatic halogen atom active enough to react with sodium malonic ester. If the positions o- and p- to the halogen contain *also* a MeCO or CN grouping, then reaction is possible.

m-Nitro-halogen-benzenes may be obtained by the vigorous chlorination or bromination of nitrobenzene. A more convenient method, suitable also for the iodo compound, is the replacement of the amino group in *m*-nitroaniline which is easily made by the partial reduction of *m*-dinitrobenzene or by the nitration of aniline in conc. sulfuric acid. The halogen meta to the nitro group is not activated as is that ortho or para to such a group. An exception is found in the action with alkali sulfite solutions which takes place with the *m*- as well as with the *o*- and *p*-compounds.⁹


D. NITROSO AND HYDROXYLAMINO DERIVATIVES OF AROMATIC Hydrocarbons

Nitrosobenzene, C_6H_5NO , m. 68°, is a colorless crystalline substance which gives green solutions. The solid is a dimer while the colored solutions contain the monomer. Nitrosobenzene is most readily obtained by the oxidation of phenylhydroxylamine, C_6H_5NHOH , by ferric chloride or chromic acid solution. It can also be made by the action of nitrosyl chloride, NOCl, on diphenylmercury. Its structure is indicated by its reduction to aniline and its oxidation to nitrobenzene. It condenses with amines much as carbonyl compounds do but the intermediate addition compound of the aldol type loses water spontaneously to give an azo compound.

 $C_6H_5N = O + H_2NC_6H_5 \rightarrow [C_6H_5N(OH)NHC_6H_5] \rightarrow C_6H_5N = NC_6H_5$

In CS₂ solution it is bimolecular. In such a solution Br_2 or HNO₃ gives *para* substitution.¹⁰ *p*-Bromonitrosobenzene has a more reactive halogen than the Cl in picryl chloride.

Nitroso compounds of aromatic substances containing activating groups like dialkylamino and hydroxyl can be made directly by treatment with nitrous acid.

⁹ Sprung. J. Am. Chem. Soc. 52, 1650 (1930).
 ¹⁰ Ingold. J. Chem. Soc. 1925, 513.

G-Phenylhydroxylamine, or simply phenylhydroxylamine, C₆H₅NHOH, m. 81°, is made from nitrobenzene by neutral reduction either catalytically or by Zn dust and water in presence of a salt like CaCl₂. Oxidation gives nitrosobenzene or azoxybenzene, a product of the action of nitrosobenzene with unchanged material. Fehling's solution oxidizes phenylhydroxylamine. It is a strong base in contrast to aniline. Conc. H₂SO₄ converts it to the sulfate of *p*-aminophenol, the parent substance of the photographic developer Metol. Air and mild oxidizing agents like Fehling's solution convert it to azoxybenzene while chromic acid mixture gives nitrosobenzene.

A test for an aromatic nitro compound is treatment with Zn dust and water to give a phenylhydroxylamine which is capable of reducing Fehling's solution.

VII. ARYLAMINES

A. PHENYL AMINE AND ITS HOMOLOGS

These are known in great numbers and variety and are of the greatest practical and theoretical importance. Those with the NH_2 in the side chain are made by the ordinary aliphatic reactions. The true aromatic amines with the NH_2 attached directly to an aromatic nucleus are made in various ways.

1. By reduction of the corresponding nitro compound. A great variety of reducing agents may be used including active metals and acids, stannous chloride, ammonium sulfide and ferrous hydroxide.

2. By reaction of a chloro compound with NH_3 either alone or with catalysts such as copper salts. Chloro derivatives of aromatic hydrocarbons require temperatures around 200° but the presence of nitro and similar groups lowers the reaction temperature to around 100°.

3. By the reaction of phenols with NH₃ and zinc chloride at about 300°.

4. By Hofmann's amide reaction with a hypohalite or a halogen and a base.

The aromatic primary amines are extraordinarily weak bases. Thus the basic dissociation constants for C₆H₅NH₂, CH₃NH₂ and NH₃ in water solution are about 3×10^{-10} , 5×10^{-4} and 2×10^{-5} respectively.

Aniline, aminobenzene, phenylamine, $C_6H_5NH_2$, colorless, m. 6°, b. 182°, is typical of the aromatic amines. It was discovered by various workers and appears in the early literature as "Krystallin," "cyanol" ("Kyanol"), and "benzidam." Aniline is prepared commercially in two ways:

1. By reduction of nitrobenzene with iron and water and a small amount of acid. The cycle of changes is probably

 $2 \text{ HCl} + \text{Fe} \rightarrow 2 [H] + \text{FeCl}_2$

 $6 [H] + C_6H_5NO_2 \rightarrow C_6H_5NH_2 + 2 H_2O$

6 $\operatorname{FeCl}_2 + 16 \operatorname{H}_2O + \operatorname{C}_6\operatorname{H}_5\operatorname{NO}_2 \rightarrow \operatorname{C}_6\operatorname{H}_5\operatorname{NH}_2 + 6 \operatorname{Fe}(OH)_3 + 12 \operatorname{HCl}$

The net result is expressed as follows, the HCl behaving in a sense as a catalyst.

2 Fe + 4 H₂O + C₆H₅NO₂ \rightarrow C₆H₅NH₂ + 2 Fe(OH)₃

AROMATIC OR BENZENE SERIES

 \mathfrak{g} -Phenylhydroxylamine, or simply phenylhydroxylamine, C₆H₅NHOH, m. 81°, is made from nitrobenzene by neutral reduction either catalytically or by Zn dust and water in presence of a salt like CaCl₂. Oxidation gives nitrosobenzene or azoxybenzene, a product of the action of nitrosobenzene with unchanged material. Fehling's solution oxidizes phenylhydroxylamine. It is a strong base in contrast to aniline. Conc. H₂SO₄ converts it to the sulfate of *p*-aminophenol, the parent substance of the photographic developer Metol. Air and mild oxidizing agents like Fehling's solution convert it to azoxybenzene while chromic acid mixture gives nitrosobenzene.

A test for an aromatic nitro compound is treatment with Zn dust and water to give a phenylhydroxylamine which is capable of reducing Fehling's solution.

VII. ARYLAMINES

A. PHENYL AMINE AND ITS HOMOLOGS

These are known in great numbers and variety and are of the greatest practical and theoretical importance. Those with the NH_2 in the side chain are made by the ordinary aliphatic reactions. The true aromatic amines with the NH_2 attached directly to an aromatic nucleus are made in various ways.

1. By reduction of the corresponding nitro compound. A great variety of reducing agents may be used including active metals and acids, stannous chloride, ammonium sulfide and ferrous hydroxide.

2. By reaction of a chloro compound with NH_3 either alone or with catalysts such as copper salts. Chloro derivatives of aromatic hydrocarbons require temperatures around 200° but the presence of nitro and similar groups lowers the reaction temperature to around 100°.

3. By the reaction of phenols with NH₃ and zinc chloride at about 300°.

4. By Hofmann's amide reaction with a hypohalite or a halogen and a base.

The aromatic primary amines are extraordinarily weak bases. Thus the basic dissociation constants for C₆H₅NH₂, CH₃NH₂ and NH₃ in water solution are about 3×10^{-10} , 5×10^{-4} and 2×10^{-5} respectively.

Aniline, aminobenzene, phenylamine, $C_6H_6NH_2$, colorless, m. 6°, b. 182°, is typical of the aromatic amines. It was discovered by various workers and appears in the early literature as "Krystallin," "cyanol" ("Kyanol"), and "benzidam." Aniline is prepared commercially in two ways:

1. By reduction of nitrobenzene with iron and water and a small amount of acid. The cycle of changes is probably

 $2 \text{ HCl} + \text{Fe} \rightarrow 2 \text{ [H]} + \text{FeCl}_2$

 $6 [H] + C_6H_5NO_2 \rightarrow C_6H_5NH_2 + 2 H_2O$

 $6 \operatorname{FeCl}_2 + 16 \operatorname{H}_2\operatorname{O} + \operatorname{C}_6\operatorname{H}_5\operatorname{NO}_2 \rightarrow \operatorname{C}_6\operatorname{H}_5\operatorname{NH}_2 + 6 \operatorname{Fe}(\operatorname{OH})_3 + 12 \operatorname{HCl}$

The net result is expressed as follows, the HCl behaving in a sense as a catalyst.

2 Fe + 4 H₂O + C₆H₅NO₂ \rightarrow C₆H₅NH₂ + 2 Fe(OH)₃

642

ARYLAMINES

2. By heating ammonia and chlorobenzene at about 200° with a mixture of cuprous oxide and chloride. The latter is the catalyst and the former prevents the formation of NH₄Cl which tends to reverse the reaction. The net reaction is as follows:

 $2 C_6H_5Cl + 2 NH_3 + Cu_2O \rightarrow 2 C_6H_5NH_2 + Cu_2Cl_2 + H_2O$

Without the Cu₂O the reaction would be

 $C_6H_5Cl + 2 NH_3 \rightleftharpoons C_6H_5NH_2 + NH_4Cl$

The cuprous chloride is treated with enough alkali to change most of it to the oxide and the mixture is used for the next charge. Thus the overall change is

 $C_{6}H_{5}Cl + NH_{3} + NaOH \rightarrow C_{6}H_{5}NH_{2} + NaCl + H_{2}O$

Properties. The properties of aniline are characteristic of aromatic amines in general. It is a weaker base than ammonia. Its salts readily hydrolyze. The temperatures at which it is completely miscible with various hydrocarbons are characteristic of the latter. Thus the C.T.S. (critical solution temperatures) for aniline of the heptanes vary from 66.3° for triethylmethane to 78.8° for diisopropylmethane.¹ The C.T.S. for cycloparaffins are lower than for the open chain compounds, the values for cyclohexane being 31°, for Mecyclohexane 41° and for decahydronaphthalene 34°. The values for olefins are lower than for saturated compounds, 26° for octene-1, 68° for cetene and -20° for cyclohexene. The values for aromatic compounds are too low to be useful.

Reactions. Aniline resembles the aliphatic primary amines in many ways. It forms crystalline salts with strong acids, substituted ammonium salts of chloroauric and chloroplatinic acids, and double salts with $ZnCl_2 HgCl_2$ etc. The H atoms of the NH_2 are replaceable by alkali metals. They are also replaceable by halogens on treatment with hypohalous acids. It adds alkyl halides and can finally be converted to a quaternary ammonium compound. It reacts with aldehydes. With formaldehyde it gives crystalline anhydroformaldehyde-aniline, m. 141° (I). This action is another example of a process which continues until a stable 6-ring can be formed.

¹ Edgar. J. Am. Chem. Soc. 51, 1540 (1929).

AROMATIC OR BENZENE SERIES

With chloroform and alcoholic KOH aniline gives the carbylamine test forming phenyl isocyanide, C_6H_5NC , of characteristic odor. With CS_2 it forms a thiourea, *thiocarbanilide*, which reacts with acids to give *phenyl* mustard oil. These properties are illustrated by the following formulas and equations:

ArNH₃Cl.	$(ArNH_3)_2SO_4.$	(ArNH3)AuCl4.	(ArNH ₃) ₂ PtCl ₄ .
(ArNH ₂) ₂ .HgCl ₂ .	ArNHNa.	ArNHBr.	
ArMeNH ₂ I.	ArMe ₂ NHI.	ArMe₃NI.	
(ArNH)₂CHR.	ArN = CHAr (Se	hiff's bases).	

The latter occur as amorphous polymers.

 $\begin{array}{l} \mathrm{ArNH}_2 + \mathrm{CHCl}_3 + 3 \ \mathrm{KOH} \rightarrow \mathrm{ArNC} + 3 \ \mathrm{KCl} + 3 \ \mathrm{H}_2\mathrm{O} \\ 2 \ \mathrm{ArNH}_2 + \mathrm{CS}_2 \rightarrow (\mathrm{ArNH})_2\mathrm{CS} + \mathrm{H}_2\mathrm{S} \\ (\mathrm{ArNH})_2\mathrm{CS} + \mathrm{HCl} \rightarrow \mathrm{ArNCS} + \mathrm{ArNH}_3\mathrm{Cl} \end{array}$

Aniline reacts with an excess of phosgene to give phenylisocyanate, C₆H₅NCO.

 $PhNH_2 + COCl_2 \rightarrow PhNCO + 2 HCl$

Phenylisocyanate is valuable for the identification of alcohols and primary and secondary amines by converting them to phenyl urethans and substituted ureas of definite melting points.

> PhNCO + ROH \rightarrow PhNHCO₂R PhNCO + RNH₂ \rightarrow PhNHCONHR PhNCO + R₂NH \rightarrow PhNHCONR₂

Naphthylisocyanate, made from naphthylamine, is similarly used. An excess of aniline with phosgene gives sym-diphenylurea.

The presence of an aromatic ring in aniline causes it to *differ from aliphatic amines*:

1. It is much weaker as a base. This is presumably related to the attachment of the NH_2 to an unsaturated system. The salts of aniline are more readily hydrolyzed than those of the aliphatic amines or NH_3 .

2. Its oxidation is much more complex, resulting in azobenzene, aniline black,² *p*-aminophenol, phenols, quinones, and various resinous products. The practically important products are quinone, $O = C_6H_4 = O$, formed by vigorous oxidation and aniline black.

$$C_{6}H_{5}N = (C_{6}H_{4} = N - C_{6}H_{4} - N)_{3} = C_{6}H_{4} = NH,$$

formed under milder conditions.³ Aniline ordinarily darkens rapidly on standing, due to oxidation. This can be retarded if the aniline is entirely free from nitrobenzene and is stored in aluminum containers.

² Ann. Rep. Chem. Soc. (London) 1909, 99.

³ Green. Chem. Zentr. 1914, I, 535.

644

ARYLAMINES

3. Substitution readily takes place in the o- and p-positions. This may take place by an initial attack on the nitrogen atom. Thus bromination probably involves the steps

$C_6H_5NH_2 \rightarrow C_6H_5NHBr \rightarrow BrC_6H_4NH_2$

The migration from N to the ring always takes place in the p- or o-position. No *m*-compound is formed. The migration may be intra- or intermolecular. The ready substitutions include nitration, sulfonation, halogenation and mercuration.

A peculiar type of substitution is involved in the rearrangement of an alkyl group from N to the p- or o-position on heating the hydrochlorides of N-alkyl anilines.

An exception to the usual o- and p-substitution of aniline is its nitration in conc. sulfuric acid solution to give a considerable amount of *meta*-nitroaniline.⁴

4. The most important difference is in its action with nitrous acid. Whereas aliphatic primary amines react with nitrous acid and HCl to give nitrogen and alcohols, chlorides and olefins both without and with rearrangement, the aromatic primary amines give *diazonium salts* which are moderately stable and can be used in a great variety of reactions. This process of *diazotization* is of great practical and theoretical importance.

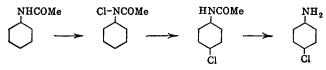
$$ArNH_2 + HCl + HNO_2 \rightarrow ArN_2Cl + 2 H_2O$$

The arylammonium ion apparently reacts with nitrous acid with the elimination of two molecules of water to form an aryldiazonium ion.

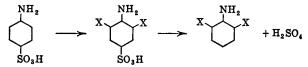
$$[ArNH_3]^+ + HONO \rightarrow 2 H_2O + [ArN \equiv N]^+$$

The latter ion probably has an electronic structure resembling those of the cyanide ion and of carbon monoxide, nitrogen and acetylene (p. 409).

The solution of benzene diazonium chloride is stable while cold.


5. Aniline readily undergoes catalytic hydrogenation to form cyclohexylamine.⁵

Halogenated anilines. The amino group activates the o- and p-H atoms to a high degree. The treatment of aniline with chlorine in presence of water gives oxidation products due to the action of hypochlorous acid. Treatment in solvents, like glacial acetic acid, converts aniline to sym-trichloroaniline. To introduce only one chlorine, it is necessary to lower the activating effect of the amino group by acetylation. Treatment with chlorine then gives pchloroacetanilide with very little of the ortho isomer. The first step is probably the formation of N-chloroacetanilide which rearranges in presence of acid to


⁴ Ann. Rep. Chem. Soc. (London) 1915, 89.

⁶ Ann. Rep. Chem. Soc. (London) 1920, 87.

the *p*-compound. Vigorous hydrolysis of the anilide gives *p*-chloroaniline, m. 71°, b. 231°.

It is also readily obtained by the acid reduction of *p*-nitrochlorobenzene. Its o- and m-isomers are similarly prepared from the nitro compounds. The presence of the halogen decreases the basic properties of the amine. The bromoanilines are obtained similarly. sym-Tribromoaniline, m. 119°, is readily obtained by passing air through bromine and into an aqueous solution of aniline hydrochloride. It can also be made by simply mixing solutions of bromine and aniline hydrochloride. Its great insolubility was utilized in the first method for extracting bromine from sea water for use in Ethyl fluid in gasoline (p. 88). The sea water was treated with amounts of aniline and chlorine corresponding to the bromine content. Insoluble Br3-aniline was precipitated, one pound being obtained from about 2500 gallons of sea water. Now the liberated bromine is simply blown out by means of air and absorbed in a carbonate solution. Monobromoaniline is obtained like the monochloro compound. Triiodoaniline, m. 185°, is made by using iodine monochloride, ICl, much as bromine is used. 2,4-Dihalogenated anilines are made by the halogenation of acetanilide. 2,6-Dihalogenated anilines are made by the careful halogenation of sulfanilic acid followed by the removal of the sulfonic acid group by steam at about 200°.

If excess of halogen is used, the sulfonic acid group is replaced by halogen.

It should be remembered that halogenated anilines are even more dangerously toxic than aniline itself.

Nitroanilines. The direct treatment of aniline with nitric acid results in a complex mixture of mono-, di- and tri-nitro-compounds together with oxidation products. Similar treatment of acetanilide, however, gives mainly the *p*-nitro compound with very little of the *o*-compound. Hydrolysis gives *p*-nitroaniline. Nitration of aniline in concentrated sulfuric acid gives mainly *m*-nitroaniline.

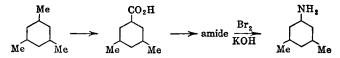
Nitroanilines are better prepared from nitro derivatives than from aniline, the o- and p compounds by treating o- and p-nitrochlorobenzenes with NH₃ and the *m*-compound by partial reduction of *m*-dinitrobenzene.

In the nitroanilines, the amino group has practically completely lost its basic nature. The nitro group has the same effect on the o- and p-positions

ARYLAMINES

as in the chloro compounds. Thus o- and p-nitroanilines can readily be hydrolyzed to the nitrophenols by bases. sym-Trinitroaniline, picramide, $C_6H_2(NH_2)(NO_2)_3$, m. 188°, is readily obtained from the chloro compound and NH₃. Hydrolysis gives picric acid, trinitrophenol. 2,3,4,6-Tetranitroaniline, the explosive T.N.A., is made from *m*-nitroaniline with mixed sulfuric and nitric acids.

o-, m-, and p-Toluidines, aminotoluenes, $CH_3C_6H_4NH_2$, b. 199.8°, 202.9°, and 200.3° respectively,⁶ are obtained by reducing the nitrotoluenes. p-Toluidine melts at 43°, and the three acetyl derivatives, the *acetotoluidides*, melt at 110°, 65° and 153° respectively. The basic properties of the NH₂ group are not greatly changed by the methyl group in the ring. The acetotoluidides can be oxidized to acetaminobenzoic acids.


All six possible xylidines, aminoxylenes or C-dimethylanilines,

(CH₃)₂C₆H₃NH₂,

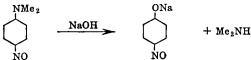
are known. They are obtained from the corresponding nitro compounds. Names, melting points and boiling points are as follows:

(1) 1,2,3-xylidine, v-o-xylidine, liq., 223°; (2) 1,2,4-xylidine, u-o-xylidine, 49°, 226°; (3) 1,3,2-xylidine, v-m-xylidine, liq., 216°; (4) 1,3,4-xylidine, u-m-xylidine, liq., 212°; (5) 1,3,5-xylidine, s-m-xylidine, liq., 220°; 1,4,2-xylidine, p-xylidine, 15°, 213°. The 1,3,4-compound is made by rearranging N-Me₂-aniline by heat.

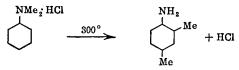
Commercial xylidine contains all the isomers except the 1,3,5-compound, which can be obtained from 1,3,5-xylenol with ammonium chloride and pressure at $350-360^{\circ,7}$ It can also be obtained by the Hofmann reaction on the amide of mesitylenic acid.

Mesidine and pseudocumidine are 2,4,6- and 2,4,5-Me₃-anilines respectively. Higher anilines are tetramethylaniline (isoduridine), m. 64°, b. 260°, and pentamethylaniline, m. 151°, b. 278°.⁸

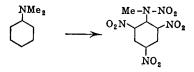
Aromatic primary amines can be identified by means of a great variety of derivatives including the acetyl compounds and the *p*-toluene sulfonates.


B. N-Alkylanilines

These are obtained by treating aniline with alkylating agents. Monomethylaniline and dimethylaniline are made by heating aniline, MeOH and HCl or H_2SO_4 under pressure. They cannot be separated by distillation (boil-


- ⁷ J. Soc. Chem. Ind. 51, 283 (1932).
- ⁸ Limpach. Ber. 21, 648 (1888).

⁶ J. Am. Chem. Soc. 49, 1009 (1927).


ing points 195.7°, 193.5°). The addition of a methyl would be expected to raise the boiling point by increasing the molecular weight but it also lowers the boiling point by increasing the symmetry of the molecule. They can be separated by acetylation of the monomethylaniline and distillation. Separation by acid is not possible because C₆H₅NMeAc dissolves in acid. The introduction of methyl groups decreases the basicity of the nitrogen, the basic ionization constants $\times 10^{-10}$ of PhNH₂, PhNHMe and PhNMe₂ being about 3.5, 2.6 and 2.4. The reactions of mono- and di-methylanilines are those typical of secondary and tertiary amines except that the benzene ring gives the possibility of substitution reactions. As with aniline, substitution by halogen, nitro, sulfonic and similar groups takes place readily in the o- and p-positions. Moreover a nitroso group is readily introduced. Monomethylaniline with nitrous acid gives the expected nitrosamine, PhN(NO)Me. Under the influence of alcoholic HCl, the nitroso group rearranges to the p-position to give $ON - C_{6}H_{4} - NHMe$. When dimethylaniline is treated with nitrous acid, p-nitrosodimethylaniline, m. 85°, results. The NO group can be oxidized to NO_2 or reduced to NH_2 . Moreover the NO group in the *p*-position activates the dimethylamino group so that boiling with bases gives p-nitrosophenol and dimethylamine.

This reaction is useful in making pure higher secondary amines such as dibutylamine from N-di-n-butylaniline. The activity of the p-H in dimethylaniline is also shown by its easy condensation with phosgene to give Michler's ketone, $(Me_2NC_6H_4)_2CO$, an important dye intermediate, and with aromatic aldehydes to give triphenylmethane dyes such as Malachite Green. Further evidence of the activity of the ring is shown in the action of heat on the hydrochlorides of the methylanilines, methyl groups migrating to p- and o-positions. This process is used commercially to make 2,4-xylidine.

Vigorous nitration of dimethylaniline in presence of H_2SO_4 gives N-Me-2,4,6,N-tetranitroaniline, the explosive *Tetryl*.

Diethylaniline, $C_6H_5N(C_2H_6)_2$, b. 216°, prepared from aniline and EtBr, is used for certain rhodamine dyes.

Higher N-alkylanilines are obtained by means of alcohols or alkyl halides. The possibility of rearrangement of the reagents should be kept in mind. The migration of a higher alkyl group to the *p*-position may involve rearrangement within the group. Thus N-isoamylaniline on heating with HCl gives *p*-t-amylaniline hydrochloride, whereas heating with CdSO₄ as a catalyst gives *p*-isoamylaniline.

Benzylaniline, $C_6H_5NHCH_2C_6H_5$, m. 38°, b. 306°, readily obtained from aniline and benzyl chloride, is an important dye intermediate as is also *methylbenzylaniline*, $C_6H_5N(CH_2)CH_2C_6H_5$, m. 9°, b. 306°.

Quaternary ammonium compounds of the type $(ArNR_3)$ X are obtainable if the alkyl groups are not too complex and if the aryl group is not substituted in both ortho positions. Examples of these limitations are the inactivity of sym-Br₃-aniline with MeI and the fact that PhNMeEt reacts readily with MeI but PhNMe₂ reacts very incompletely with EtI. Correspondingly greater difficulties are obtained with larger and with branched groups.

Prostigmin is the dimethylcarbamic ester of 3-hydroxyphenyl-trimethylammonium bromide, useful in the treatment of muscle spasm (NNR).

Phenyltrimethylammonium hydroxide, $(C_6H_5NMe_3)OH$, is a colorless soluble strong base which can be made from its chloride by alcoholic NaOH with the precipitation of NaCl. Heat decomposes it to MeOH and PhNMe₂.

An isomer of monomethylaniline and the toluidines is *benzylamine*, $C_6H_5CH_2NH_2$, b. 185°, which is readily prepared from benzyl chloride and NH₃. The formation of secondary and tertiary amines may be avoided by using acetamide in place of ammonia.

H₂O

$PhCH_2Cl + NH_2COMe \rightarrow PhCH_2NHCOMe \xrightarrow{} PhCH_2NH_2$

It is more basic than its isomers. The N-alkyl derivatives are still more basic. A substance apparently related to benzylamine is $PhCH_2NMe_4$, a red powder obtained by treating Me_4NCl with $PhCH_2Na$, in an attempt to prepare a "pentavalent" nitrogen organic compound. The true nature of this substance is shown by the fact that it is instantly hydrolyzed by cold water to give toluene and Me_4NOH . Thus it is merely a special quaternary ammonium salt in which the benzyl group serves as the negative ion, $(Me_4N)^+(CH_2Ph)^{-.9}$

Benzyl dialkyl amines, $PhCH_2NR_2$, with acetic anhydride give benzyl acetate and R_2NCOMe .

Benzyltrimethylammonium hydroxide, (PhCH₂NMe₃)OH, as would be expected, is a strong base.

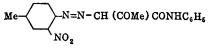
Benzyl cetyl dimethyl ammonium chloride is Triton X-400.

The next homolog, *phenylethylamine*, $C_6H_5CH_2CH_2NH_2$, is formed from *phenylalanine* during the decay of certain proteins. It is also related to physiologically active substances like adrenalin, ephedrin and tyramine.

⁹ Schlenk. Ber. 50, 274 (1917).

Several aminopropyl benzenes have physiological activity (vasoconstrictors). Benzedrine is $PhCH_2CH(NH_2)CH_3$.

C. ACYL ARYLAMINES

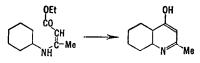

Just as ammonium acetate on heating gives acetamide, so the salts of organic acids and aryl amines readily give acyl derivatives of the amines. The resulting compounds are *anilides*, *toluidides*, *xylidides*, etc. The acetyl derivatives of most arylamines are crystalline solids of definite melting points.

Acetanilide, $C_6H_5NHCOCH_3$, m. 115°, b. 304°, is readily formed by refluxing aniline and acetic acid. In glacial acetic acid, it shows slight basic properties forming a salt with HCl. Acetanilide was formerly used in medicine as "antifebrine." Treatment with P_2S_5 gives thioacetanilide, PhNHCSMe. *Diacetanilide*, PhN(COMe)₂, m. 37°, is formed by vigorous treatment of acetanilide with acetyl chloride or acetic anhydride. Strange to say, o-substituted anilines give diacetyl derivatives with great ease. This is true even of sym-tribromoaniline in which both o-positions are occupied. As will be recalled, this substance has almost no basic properties.

Acetoacetanilide, $CH_3COCH_2CONHC_6H_5$, is readily available from the action of aniline with acetoacetic ester or with the dimer of ketene (acetyl-ketene).

$$MeCOCH = C = O + PhNH_2 \rightarrow PhNHCOCH_2COMe$$

It is an important dye intermediate, giving the stable Hansa Yellows by action with suitable diazonium salts. These are more readily available because of lowered costs of ethyl acetate, sodium and acetoacetic ester on one hand and of acetone, ketene and its dimer on the other.



Hansa Yellow G,

Dehydration of acetoacetanilide gives ring-closure to form γ -Me- α -OH-quinoline.

At lower temperatures aniline gives a derivative of the enol form of acetoacetic ester, PhNHC(Me) = CHCO₂Et, β -phenylaminocrotonic ester. This on heating gives γ -OH- α -Me-quinoline.

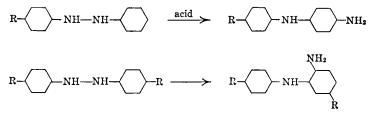
ARYLAMINES

Dibasic acids react with aniline in all possible ways. Thus oxalic acid gives oxanilic acid, PhNHCOCO₂H, m. 150°, and oxanilide, (PhNHCO)₂, m. 252°. Carbonic acid is related to carbanilide, diphenylurea, (PhNH)₂CO, m. 235°, b. 260°, and phenylisocyanate, phenylcarbimide, C_6H_6NCO . The former is obtained by passing phosgene, COCl₂, into excess aniline while the latter is formed by heating aniline hydrochloride and passing in an excess of phosgene. Phenylisocyanate is valuable for the identification of primary and secondary alcohols with which it forms crystalline phenylurethans, PhNHCO₂CH₂R and PhNHCO₂CHRR'. It dehydrates tertiary alcohols with the formation of diphenylurea. Thiocarbanilide, diphenylthiourea, (PhNH)₂CS, m. 154°, a derivative of thiocarbonic acid, is readily made by boiling aniline with CS₂. With HCl it gives phenyl mustard oil, phenylisothiocyanate, PhNCS, b. 222°. This gives crystalline mixed thioureas with primary and secondary amines, PhNHCSNHR, PhNHCSNRR'. α -Naphthylthiourea (ANTU) is a powerful rat poison.

Phenylglycine, $C_6H_5NHCH_2CO_2H$, and related compounds are readily obtained from aniline and α -halogen acids.

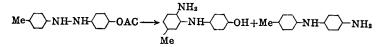
D. DI- AND TRI-ARYL AMINES

Diarylamines are obtained by heating an arylamine with its hydrochloride or that of another amine.


$ArNH_2 + ArNH_3Cl \rightarrow Ar_2NH + NH_4Cl$

Diphenylamine, $(C_6H_6)_2NH$, m. 54°, b. 302°, is an even weaker base than aniline. Its salts are hydrolyzed completely by cold water. As a secondary amine, it gives a nitrosamine, m. 66°, and an acetyl derivative, m. 103°. In sulfuric acid it gives a blue color with a trace of nitrous acid. Its nitrosamine undergoes rearrangement with alcoholic HCl to form *p*-nitrosodiphenylamine, $ON - C_6H_4NHC_6H_6$ (Fischer-Hepp Rearrangement).

Diphenylamine gives N-metal compounds more readily than aniline or ammonia.


Diphenylamine is used in making certain dyes and as a stabilizer for explosives.

Many substituted diphenylamines are available by the semidine rearrangement. This is of two types, the para and the ortho, which can be illustrated as follows.¹⁰

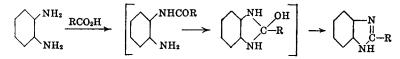
10 Ann. Rep. Chem. Soc. (London) 1922, 97.

A more complex example involving both types follows.

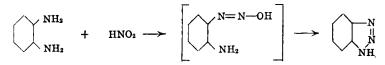
The elimination of the OH group in the latter product is unusual (ibid.).

Triphenylamine, $(C_6H_5)_3N$, m. 127°, is made by dissolving Na in boiling diphenylamine and adding phenyl bromide. Triphenylamine does not react with acids. Evidently the electron pair cannot be combined with a proton.

Ph .. Ph : N : .. Ph

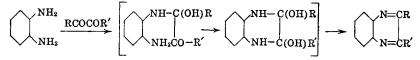

E. ARYL DIAMINES

These are obtained by reduction of suitable dinitro, amino nitro, amino nitroso and amino azo compounds. The o-, m-, and p-compounds can be considered separately.

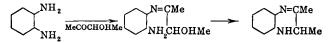

Ortho diamines are best prepared by reducing o-nitroanilines. Thus ophenylene diamine involves the steps chlorobenzene, o-nitrochlorobenzene, o-nitroaniline and o-phenylene diamine. Similarly a toluylene-o-diamine can be made; p-toluidine, p-acet-toluidine, nitro-p-acet-toluidine, nitro-p-toluidine, toluylene-o-diamine.

The o-diamines contain active groups in the 1,4-position to each other and are consequently in a position to form 5- and 6-membered rings with suitable reagents.

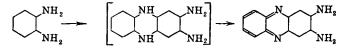
1. With organic acids they give benzimidazoles instead of giving ordinary acyl derivatives. The latter are probably first formed but then undergo ring closure.



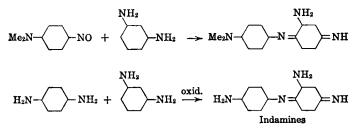
2. Nitrous acid gives azoimino (benzotriazole p. 776) compounds. The diazonium compound formed from one $\rm NH_2$ group reacts with the other to give a 5-ring.



ARYLAMINES


3. With α -diketones and α -ketoalcohols they give *quinoxalines* and dihydroquinoxalines respectively. Again the reaction is undoubtedly initiated at one amino group to produce a product containing active groups in the 1,6position to each other.

Thus glyoxal and o-phenylenediamine give quinoxaline itself. Acetoin gives dimethyldihydroquinoxaline.


4. Careful oxidation, as with FeCl₃, gives diaminophenazines. The p-position to each NH₂ group reacts with an NH₂ from another molecule.

m-Diamines are best prepared by reduction of *m*-dinitro compounds formed by direct nitration. Nitrous acid, even in traces, converts the *m*-diamines to brown dyes. The ease of this reaction is due to the activation of two of the H atoms by the *o*- and p-NH₂ groups.

One of these reacts with a molecule of diazotized amine. Thus, with excess of amine, the product is 3',2,4-triaminoazobenzene. Other examples of the activation of these H atoms is the ready formation of indamines from *m*-diamines with *p*-nitrosodimethylaniline or with *p*-diamines on oxidation.

p-Diamines are made by reduction of a variety of compounds:

1. *p*-Nitroanilines obtained either by nitration of acetanilides or from *p*-nitrochloro derivatives.

2. p-Nitroso derivatives.

3. Amino azo compounds.

$$C_{6}H_{5}N = NC_{6}H_{4}NH_{2} \rightarrow C_{6}H_{5}NH_{2} + H_{2}NC_{6}H_{4}NH_{2}$$

Vigorous oxidation converts p-diamines to quinones. Oxidation of mixtures with m-diamines gives indamines.

VIII. DIAZONIUM SALTS AND RELATED COMPOUNDS

A. DIAZONIUM SALTS

As has been seen, primary aromatic amines can be diazotized with nitrous acid to give moderately stable solutions which lose N_2 only on standing, heating or by action of light. These solutions contain *diazonium salts* to which are assigned the structures

$$\begin{bmatrix} \mathbf{Ar} - \mathbf{N} \equiv \mathbf{N} \end{bmatrix}^{+} \mathbf{Cl}^{-} \qquad \begin{bmatrix} \mathbf{Ar} : \mathbf{N} : \vdots \\ \vdots \\ \mathbf{N} : \end{bmatrix}^{+} \mathbf{Cl}^{-}$$

Water insoluble amines can be diazotized in conc. H_2SO_4 , glacial acetic acid, by conversion with chlorosulfonic acid to soluble sulfamic acids (ArNHSO₃H) and also by reduction of the particle size of the compound.

Reactions of Diazonium Salts

A. Replacement reactions. These involve the formation of nitrogen gas and the replacement of the diazonium group by another univalent group.

1. Replacement by H. Treatment by means of alcohols and other reducing agents such as hypophosphorous acid, alkaline formaldehyde, sodium stannite, hydrazine and the like has been studied in a multitude of cases.¹

An alcohol-benzene solution of sym-Br₃-aniline treated with concentrated sulfuric acid and sodium nitrite gives sym-Br₃-benzene^{1a} (OS).

$$\begin{array}{r} \mathrm{Br_3C_6H_2NH_2 + H_2SO_4 + NaNO_2 + C_2H_5OH \rightarrow} \\ \mathrm{C_6H_3Br_3 + N_2 + CH_3CHO + NaHSO_4 + 2 H_2O} \end{array}$$

In other cases the diazonium group is replaced by OC_2H_5 instead of by H.

2. Replacement by OH. This is the common decomposition of diazonium salts, especially on warming with dilute sulfuric acid.

$$ArN_2X + H_2O \rightarrow ArOH + N_2 + HX$$

3. Replacement by halogen. Treatment with KI or HI usually gives an iodo compound smoothly. Replacement by Cl or Br is usually best achieved

¹ "Org. Reactions," Vol. II, p. 262. ^{1a} "Org. Synthesis." Copyrighted Materials

AROMATIC OR BENZENE SERIES

p-Diamines are made by reduction of a variety of compounds:

1. *p*-Nitroanilines obtained either by nitration of acetanilides or from *p*-nitrochloro derivatives.

2. p-Nitroso derivatives.

3. Amino azo compounds.

$\mathrm{C_6H_5N} = \mathrm{NC_6H_4NH_2} \rightarrow \mathrm{C_6H_5NH_2} + \mathrm{H_2NC_6H_4NH_2}$

Vigorous oxidation converts *p*-diamines to quinones. Oxidation of mixtures with *m*-diamines gives indamines.

VIII. DIAZONIUM SALTS AND RELATED COMPOUNDS

A. DIAZONIUM SALTS

As has been seen, primary aromatic amines can be diazotized with nitrous acid to give moderately stable solutions which lose N_2 only on standing, heating or by action of light. These solutions contain *diazonium salts* to which are assigned the structures

$$\begin{bmatrix} \mathbf{Ar} - \mathbf{N} \equiv \mathbf{N} \end{bmatrix}^{+} \mathbf{Cl}^{-} \qquad \begin{bmatrix} \mathbf{Ar} : \mathbf{N} : \vdots \\ \vdots \\ \mathbf{N} : \end{bmatrix}^{+} \mathbf{Cl}^{-}$$

Water insoluble amines can be diazotized in conc. H_2SO_4 , glacial acetic acid, by conversion with chlorosulfonic acid to soluble sulfamic acids (ArNHSO₃H) and also by reduction of the particle size of the compound.

Reactions of Diazonium Salts

A. Replacement reactions. These involve the formation of nitrogen gas and the replacement of the diazonium group by another univalent group.

1. Replacement by H. Treatment by means of alcohols and other reducing agents such as hypophosphorous acid, alkaline formaldehyde, sodium stannite, hydrazine and the like has been studied in a multitude of cases.¹

An alcohol-benzene solution of sym-Br₃-aniline treated with concentrated sulfuric acid and sodium nitrite gives sym-Br₃-benzene^{1a} (OS).

$$\begin{array}{r} \mathrm{Br_3C_6H_2NH_2 + H_2SO_4 + NaNO_2 + C_2H_5OH \rightarrow} \\ \mathrm{C_6H_3Br_3 + N_2 + CH_3CHO + NaHSO_4 + 2 H_2O} \end{array}$$

In other cases the diazonium group is replaced by OC_2H_5 instead of by H.

2. Replacement by OH. This is the common decomposition of diazonium salts, especially on warming with dilute sulfuric acid.

$$ArN_2X + H_2O \rightarrow ArOH + N_2 + HX$$

3. Replacement by halogen. Treatment with KI or HI usually gives an iodo compound smoothly. Replacement by Cl or Br is usually best achieved

¹ "Org. Reactions," Vol. II, p. 262. ^{1a} "Org. Synthesis."

654

in presence of the proper acid and copper powder (Gattermann) or the proper cuprous halide dissolved in the corresponding acid (Sandmeyer). Heating the diazonium fluoroborate gives replacement by F. Fluorobenzene can be prepared by the use of anhydrous HF in the diazotization of aniline and subsequent decomposition.

4. Replacement by CN. This is a special case of the Sandmeyer-Gattermann reaction taking place with $KCu(CN)_2$.

5. Replacement by aryl residues takes place when a dry diazonium salt is heated with an aromatic hydrocarbon and $AlCl_3$. In the Gomberg reaction^{1b} an aryl diazonium compound reacts with an aryl hydrocarbon under neutral or alkaline conditions with elimination of N to give a diaryl compound.

6. Miscellaneous replacements give aryl thiocyanates, sulfides (diazonium compounds react with sulfides of sodium with *explosive violence*²) sulfinic acids and nitro, fluoro, and mercury compounds. An addition reaction of an aryl diazonium chloride in the presence of acetone and a cupric salt is as follows:

 $ArN_2Cl + CH_2 = CHCN \rightarrow ArCH_2CHClCN + N_2$

B. Reactions which retain the nitrogen atoms.

1. Reduction gives arylhydrazines. In this way phenylhydrazine is prepared.³

 $PhN_2Cl + 2 Na_2SO_3 + 2 H_2O \rightarrow PhNHNH_2. HCl + 2 Na_2SO_4$

2. Alkaline oxidation gives nitramines among other products.

 $ArN_2Cl + 2 NaOH + [O] \rightarrow ArN = NO_2Na + NaCl + H_2O$

3. Active hydrogen compounds of various kinds give coupling reactions in which the *azo group*, -N = N -, appears in the product.

a. Active methylene compounds like acetoacetic ester give azo compounds and the tautomeric arylhydrazones.

$$\begin{array}{c} MeCOCH_{2}CO_{2}R + ArN_{2}Cl \rightarrow MeCOCH(CO_{2}R) - N = N - Ar \\ \downarrow \uparrow \\ MeCOC(CO_{2}R) = N - NH - Ar \end{array}$$

b. Arylamines give diazoamino compounds.

 $ArN_2Cl + ArNH_2 \rightarrow ArN = N - NHAr$

c. Aromatic compounds with highly activated ring H atoms such as phenols, naphthols and N-dialkylanilines couple in the active position

$$ArN_{2}Cl + C_{6}H_{5}NMe_{2} \rightarrow ArN = N - C_{6}H_{4}NMe_{2}$$
$$ArN_{2}Cl + C_{6}H_{5}OH \rightarrow ArN = N - C_{6}H_{4}OH$$

These compounds are typical azo dyes.

^{1b} Gomberg, Bachmann, J. Am. Chem. Soc. 46, 2339 (1924).

² Nawiasky, Ebersole, Werner. Chem. Eng. News. 23, 1247 (1945).

^a "Org. Syntheses."

³^a Bamberger and Landsteiner, Ber. 26, 482-95 (1893).

AROMATIC OR BENZENE SERIES

While simple diazonium salts have to be prepared in solution as used, some of the more complex ones can be prepared as *solid stabilized diazonium compounds (explosive!)* usually as double salts with zinc chloride mixed with drying agents such as aluminum sulfate and also with certain stabilizing agents such as disulfonic acids of naphthalene, particularly the 1,5.

Benzenediazonium perbromide, $C_6H_5N_2BrBr_2$, is a crystalline solid obtained by adding Br_2 and HBr to a diazonium salt. It liberates I_2 from KI. Its constitution may be as follows:

$$\left[Ph: N: N: Br: \right]^{++} 2 Br^{-+}$$

With NH₃ it gives phenylazoimide, the phenyl ester of hydrazoic acid

```
PhN_2Br_3 + 4 NH_3 \rightarrow PhN_3 + 3 NH_4Br
```

The structure of phenylazoimide is written variously.

$$\mathbf{Ph}-\mathbf{N}=\mathbf{N}=\mathbf{N} \qquad \mathbf{Ph}-\mathbf{N} \qquad \mathbf{Ph}: \mathbf{N}: \mathbf{N$$

X-Ray measurements indicate a linear structure.

B. DIAZO COMPOUNDS

Benzene diazonium salts with KOH give a precipitate of *potassium benzene* normal diazotate which can also be prepared from nitrosobenzene and hydroxylamine.

$$PhNO + H_2NOH + KOH \rightarrow PhN = NOK + 2 H_2O$$

It gives the following reactions.

- 1. HCl gives benzene diazonium chloride.
- 2. With alkaline solutions of phenols, it gives azo dyes.
- 3. Alkaline reduction gives phenylhydrazine.
- 4. Oxidation gives potassium benzenediazoate, $PhN = NO_2K$.
- 5. With benzoyl chloride and alkali it gives a benzoyl derivative,

PhN = NOCOPh.

6. Heating with KOH at 130° gives an isomeric isodiazotate which shows reactions 1 to 5 and thus is a stereoisomer rather than a structural isomer.⁴ The isomerism is like that of the oximes. The syn form has been assigned to the normal diazotates which lose N₂ more readily than do the isodiazotates

⁴ Hantzsch. Ber. 38, 2056 (1905).

which are given the anti structure.

The free acids corresponding to these salts are very unstable, either losing N to give phenol or isomerizing to a nitrosamine

 $PhOH + N_2 \leftarrow PhN = N - OH \rightarrow PhNH - N = O$

Diazotized p-nitroaniline with NaOH gives a stable isodiazotate,

O2NC6H4N2ONa,

which is used in making Para Red by acidifying with HCl and coupling with β -naphthol.

Diazosulfonates and cyanides are also known. The latter may occur in three forms one of which is an electrolyte. The forms from diazotized p-anisidine are assigned the structures

C. DIAZOAMINO COMPOUNDS

The following types are possible:

1. $ArN = N - NHAr$	2. $ArN = N - NHAr'$	3. $ArN = N - NRAr$
4. $ArN = N - NHR$	5. $RN = N - NHR$	6. $RN = N - NHR'$

The unsymmetrical types 2,4, and 6 exist in equilibrium with their tautomers having H at the other end of the nitrogen chain. They are pale yellow crystalline neutral compounds of fair stability. Thus *diazoaminobenzene*, PhN = N - NHPh, m. 98°, crystallizes in bright yellow plates or prisms and is moderately stable.⁶

Preparation. 1. From a diazonium salt and an amine. The tautomeric nature of the product from a primary amine is shown by the production of the same product from benzenediazonium chloride and p-toluidine and from p-toluene diazonium chloride and aniline. This character is further shown by the reaction of the product with hot sulfuric acid to give phenol, p-cresol, aniline and p-toluidine.

2. From a primary arylamine and insufficient nitrous acid in absence of excess mineral acid. Under these conditions as soon as a molecule is diazotized it couples with another molecule.

⁶ "Org. Syntheses."

3. From esters of hydrazoic acid and Grignard reagents

$$\operatorname{ArN}_{s} \xrightarrow{\operatorname{ArMgX}} \operatorname{acid} \operatorname{ArN}_{s} \xrightarrow{\operatorname{ArNgX}} \operatorname{ArN}_{s} \xrightarrow{\operatorname{ArMgX}} \operatorname{ArN}_{s} \operatorname{ArN}_{s} \xrightarrow{\operatorname{ArMgX}} \operatorname$$

Alkyl groups can also be used.

Reactions. 1. The imino nitrogen does not form salts with acids. The H is replaceable by metals and by acetyl however.

2. They behave like their components. Thus boiling diazoaminobenzene with sulfuric acid gives N_2 , phenol and aniline while with HBr it gives bromobenzene and aniline. Nitrous acid and HCl convert a diazoamino compound to two molecules of a diazonium chloride.

3. They rearrange to aminoazo compounds under the catalytic influence of an amine salt such as aniline hydrochloride.

$$ArN=N-NH-\longrightarrow ArN=N-NH_{2}$$

If the p-position is occupied and the o-position is open the rearrangement takes place more slowly to that position.

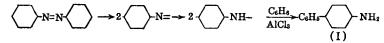
D. AZO, HYDRAZO AND AZOXY COMPOUNDS

It has been seen that the alkaline reduction of nitrobenzene to aniline can be made to go through the steps of azoxybenzene, azobenzene and hydrazobenzene.

Azo compounds, ArN = NAr, ArN = NAr', and ArN = NR are neutral colored substances which are insoluble in water but soluble in organic solvents.

Preparation. 1. By controlled reduction of nitro or azoxy compounds with alkaline reducing agents such as NaOH and Zn dust, sodium amalgam or sodium stannite solution.

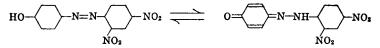
2. By distilling azoxybenzene with Fe.


3. By oxidation of hydrazobenzene or of amino compounds by $KMnO_4$. The reaction is likely to go partly to the azoxy stage.

4. By condensation of an aromatic nitroso compound with an amine.

$$\operatorname{ArNH}_{2} + \operatorname{ArNO} \rightarrow \begin{bmatrix} \operatorname{OH} \\ | \\ \operatorname{ArN} - \operatorname{NHAr} \end{bmatrix} \rightarrow \operatorname{ArN} = \operatorname{NAr}$$

5. Substituted azo compounds containing activating groups such as NH_2 , either free or alkylated, and OH are obtained by coupling aromatic amines or phenols with diazonium salts. These products form the important class of azo dyes.


Reactions. Oxidation gives azoxy compounds while reduction gives hydrazo and amino compounds. A very striking reaction is that of aromatic azo compounds with aromatic hydrocarbons and AlCl₃. The azo compound, under the influence of the AlCl₃, apparently splits into free radicals. The action of benzene and azobenzene to give a 70% yield of *p*-xenylamine (I) may be illustrated as follows:

Azobenzene and diphenyl in this reaction give a fair yield of

C₆H₅C₆H₄C₆H₄NH₂.

Azobenzene, $C_6H_5N = NC_6H_5$, *cis*, m. 71.4°; *trans* (ordinary form), m. 68°, b. 293°, crystallizes in red plates. It is readily obtained by adding the calculated amount of Zn dust to an alcoholic NaOH solution of nitrobenzene.⁷ Certain hydroxyazobenzenes act as quinone monohydrazones while others do not.⁸

The quinone structure is evidenced by the addition of cyclopentadiene according to the Diels-Alder reaction.

Hydrazo compounds, ArNHNHAr, etc. are colorless crystalline compounds which do not form salts with acids. They are readily *produced* by reduction of nitro compounds with zinc dust and alkali, by electrolytic or catalytic reduction.

Reactions. 1. While acids do not form salts the imino-H atoms are replaceable by alkali metals and by acetyl and nitroso groups.

2. Vigorous reduction, as with Na_xHg, gives the amine.

3. Mild oxidizing agents like air or ferric chloride give azo compounds.

4. Heat, or even long standing, results in disproportionation to an azo compound and an amine.

2 ArNHNHAr
$$\rightarrow$$
 ArN = NAr + 2 ArNH₂

As a matter of fact this is a monomolecular reaction and probably involves a primary disproportionation into aniline and ArN =, a nitrogen radical, which dimerizes to azobenzene.⁹

5. Mineral acids cause the benzidine rearrangement which gives diaminodiphenyls.

$$C_{6}H_{5}NHNHC_{6}H_{5} + 2 HCl \longrightarrow ClH \cdot H_{2}N \longrightarrow NH_{2} \cdot HCl$$

Benzidine dihydrochloride

⁷ "Org. Syntheses."

⁸ Lauer, Miller. J. Am. Chem. Soc. 57, 520 (1935).

⁹ Stieglitz, Curme. Ber. 46, 911 (1913).

This change involves the interchange of a group attached to nitrogen and a p-hydrogen analogous to the rearrangement of a nitroso group from N to the p-C. In this case the changes occur twice concurrently for the most part. If the p-position in one ring is blocked, only one change is possible and the *semidine rearrangement* takes place to give amino diphenylamines.

 $p-\text{MeC}_6\text{H}_4\text{NHNHC}_6\text{H}_5 \rightarrow p-\text{MeC}_6\text{H}_4\text{NHC}_6\text{H}_4\text{NH}_2-p.$

Hydrazobenzene, C₆H₅NHNHC₆H₅, m. 131°.¹⁰

Azoxy compounds, ArN = N(O)Ar, ArN = N(O)Ar' and Ar'N = N(O)Ar, are colored crystalline compounds.

Preparation. 1. The symmetrical compounds are best made by reduction of nitro compounds with alcoholic KOH.

2. By careful oxidation of simple or mixed azo compounds.

3. By condensation of a nitroso compound and an arylhydroxylamine. This reaction was the basis of the older erroneous symmetrical formulation of the azoxy grouping.

The unsymmetrical char ster of the azoxy group is shown by the formation of two isomeric azoxy compounds by the oxidation of an unsymmetrical azo compound.¹¹ The formula usually assigned to the azoxy compounds having a "pentavalent" N is probably less accurate than the electronic formula.

$$\begin{array}{ccccccc} \mathbf{Ar} - \mathbf{N} = & \mathbf{N} - \mathbf{Ar} & \mathbf{Ar} : \mathbf{N} :: \mathbf{N} : \mathbf{Ar} & \mathbf{Ar} - \mathbf{N} = & \mathbf{N} - \mathbf{Ar} \\ & & & & & \\ \mathbf{O} & & & & & \mathbf{O} \\ & & & & & \mathbf{O} \end{array}$$

Reactions. 1. Reduction gives azo compounds. 2. Conc. H₂SO₄ causes a rearrangement to a *p*-hydroxyazo compound.

$$ArN = N(O)C_6H_5 \rightarrow ArN = NC_6H_4OH-p$$

Azoxybenzene, $C_6H_5N = N(O)C_6H_5$, m. 36°, pale-yellow crystals, insoluble in organic solvents, is prepared from nitrobenzene and sodium arsenite.¹²

Hydrazines, derivatives of H_2NNH_2 , of all possible types are known. The most important is *phenylhydrazine*, $C_6H_6NHNH_2$, m. 23°, prepared by reduction of benzenediazonium chloride with Na₂SO₃.¹³ It is strongly basic, a powerful reducing agent and toxic. Its sulfate, on treatment with HgO, gives benzenediazonium sulfate. Vigorous reduction converts it to aniline and

¹⁰ "Org. Syntheses."
¹¹ Angeli, Valori. Atti accad. Lincei (1910–1915).
¹² "Org. Syntheses."
¹³ "Org. Syntheses."

Alkylation of the base or its metal derivatives takes place on the ammonia. N next to the phenyl giving unsymmetrical derivatives such as methylphenylhydrazine, $PhMeNNH_2$, which is an important reagent for sugars. The most important reaction of phenylhydrazine is that with ketones and aldehydes and with simple sugars. The crystalline character, ease of purification and definite melting points make the resulting phenylhydrazones and osazones valuable for purposes of isolation and identification. The discovery of phenylhydrazine by Emil Fischer gave him the key with which he later unlocked the problems of the monosaccharides. With carbonyl compounds which do not give crystalline phenylhydrazones, the *p*-substituted phenylhydrazines are valuable. The most important of these are the p-bromo-, p-nitro-, and p-phenyl-compounds. unsym-Diphenylhydrazine, (C6H5)2NNH2, m. 34°, is obtained by reducing the nitroso compound of diphenylamine with Zn and acid. It reacts with carbonyl compounds like phenylhydrazine. 2,4-Dinitrophenylhydrazine is a valuable reagent for carbonyl compounds which give liquid or low-melting derivatives with phenylhydrazine itself.

Completely substituted hydrazines, Ar_2NNAr_2 , are obtained by oxidizing Ar_2NH with PbO₂. On standing, these change to Ar_3N and ArN = NAr. In benzene they give colored solutions presumably containing free ArN radicals.¹⁴

E. Azo Dyes

These contain in addition to the chromophore group, -N=N-, an auxochrome group which is either basic like NH_2 or NMe_2 or acidic like OH. These or other active groups either hold the dye to the fiber in the direct dyeing of silk or wool or to the mordant such as the hydroxides of various heavy metals to give the colored lakes formed in the indirect dyeing of cotton. The structure of an azo dye is readily found by vigorous reduction with Sn and HCl or alkaline sodium hydrosulfite to give two amines which can then be identified.

$$ArN = NArX + 4 [H] \rightarrow ArNH_2 + XArNH_2$$

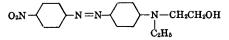
Hydroxyazo compounds are probably tautomeric.

$$C_{6}H_{5}N = NC_{6}H_{4}OH \rightleftharpoons C_{6}H_{5}NH - N = C$$

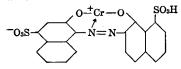
 $CH = CH$
 $CH = CH$

The chrysoidines are a group of yellow to brown dyes including p-aminoazobenzene, Aniline Yellow, and its derivatives. Butter Yellow is the corresponding N-dimethyl compound. These dyes are obtained by coupling a suitable diazonium salt with a suitable aryl amine. If a primary amine is used, the first product is a diazoamino compound which can be rearranged to the

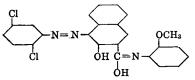
14 Wieland. Ber. 48, 1078 (1915).


AROMATIC OR BENZENE SERIES

desired product by warming with an amine hydrochloride as a catalyst.


$$ArN_{2}Cl + ArNH_{2} \rightarrow ArN_{2}NHAr \rightarrow ArN_{2}ArNH_{2}$$

The aryldiazo group always shifts to the *p*-position if possible. If that is occupied, it shifts more slowly to the *o*-position. Chrysoidine itself, the hydrochloride of 2,4-diaminoazobenzene, is obtained from benzenediazonium chloride and *m*-phenylenediamine. Both NH_2 groups in the latter activate the same H. Bismarck Brown is the hydrochloride of 2,4,3'-triaminoazobenzene obtained by the treatment of 2 mols of *m*-phenylene diamine in acid with 1 mol of nitrous acid. Thus, as soon as an amino group reacts, the resulting diazonium salt couples with another molecule of diamine. Methyl Orange is the Na salt of helianthine, 4-dimethylaminoazobenzene-4'-sulfonic acid, obtained by diazotizing sulfanilic acid and coupling with dimethylaniline. Methyl Red is the Na salt of 4-Me₂N-azobenzene-2'-carboxylic acid, similarly prepared from anthranilic acid and dimethylaniline.¹⁵


A scarlet dispersed dye for cellulose acetate and nylon is made by coupling 4-nitraniline to 2-(N-ethylanilino)ethanol.

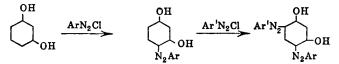
A greenish-blue dye which contains metal in complex union dyes wool from a dilute sulfuric acid bath:

Cotton is dyed fast shades by formation of the color in the fiber by use of **a** diazonium compound and an arylamide of 2-hydroxy-3-naphthoic acid. The following is scarlet:

Bis-azo dyes having two azo groups can be obtained in a variety of ways: 1. A diamine can be treated with an excess of nitrous acid or "tetrazotized" to give two diazonium salt groups in the molecule. These can then be coupled with two molecules of a suitable phenyl- or arylamine. A modification of *Bismarck Brown* is obtained by coupling tetrazotized *m*-phenylenediamine with 2 mols of the diamine.

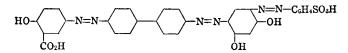
¹⁵ "Org. Syntheses."

PHENOLS


2. An amino derivative of an azo compound can be diazotized and coupled. Sudan III is thus obtained from aminoazobenzene and β -naphthol; it is an oil soluble red.

3. A nitro-amine can be diazotized and coupled, the nitro group reduced with sulfide to amino which in turn can be diazotized and coupled to give an unsymmetrical dye:

$$\begin{array}{c} \operatorname{Ar'H} \\ \operatorname{O_2N}-\operatorname{Ar}-\operatorname{NH_2} \to \operatorname{O_2N}-\operatorname{Ar}-\operatorname{N_2Cl} \xrightarrow{} \operatorname{O_2N}-\operatorname{Ar}-\operatorname{N_2}-\operatorname{Ar'} \to \\ \operatorname{H_2N}-\operatorname{Ar}-\operatorname{N_2}-\operatorname{Ar'} \to \operatorname{ClN_2}-\operatorname{Ar}-\operatorname{N_2Ar'} \xrightarrow{} \operatorname{Ar''H} \\ \end{array}$$


In the above scheme the NO_2 group can be replaced by $NHCOCH_3$ whereby hydrolysis replaces the reduction.

4. A diamine or a dihydric phenol can be coupled with 2 mols of a diazonium salt or successively with one mol of each of two different diazonium salts. This procedure is possible because after one such coupling has taken place a second coupling takes place much more slowly.

If Ar is the radical of m-xylidine and Ar' that of sulfanilic acid the product is Resorcinol Brown.

Tris-azo and tetrakis-azo dyes are obtained by applications of the same principles. Congo Brown G is the product of coupling diazotized sulfanilic acid with the bis-azo dye from benzidine, salicylic acid and resorcinol.

Hessian Brown BB is obtained by coupling 2 mols of diazotized sulfanilic acid with the bis-azo dye from the coupling of tetrazotized benzidine with 2 mols of resorcinol.

"The Aromatic Diazo-Compounds and Their Technical Applications." K. H. Saunders, 1949.

Kirk, Othmer. "Encyclopedia of Chemical Technology," Vol. II, 1948. Chapter on Azo Dyes.

IX. PHENOLS

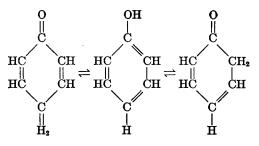
Phenols have at least one hydroxyl group attached directly to the benzene ring. They are characterized by more strongly acidic properties than chose of the alcohols. Practically all phenols have antiseptic properties.

A. MONOHYDRIC PHENOLS

Phenol, carbolic acid, C_6H_6OH , m. 42°, b. 181°, occurs in coal tar along with many homologs (*tar acids*). The pure white crystalline substance turns red due to partial oxidation. A small amount of water dissolves in it to give a liquid. Phenol is soluble in 15 parts of water at room temperature and is readily soluble in alcohol and ether. It is poisonous and gives dangerous burns on the skin. The best treatment is immediate application of a dilute solution of bromine in glycerol which converts the phenol to the very insoluble tribromophenol. Treatment with alcohol is also effective.

Preparation. The methods used to obtain phenol apply to its homologs in general.

1. From coal tar. Extraction by a base followed by acidification, usually by CO_2 in the form of flue gases, gives a mixture of phenols (tar acids) which can be fractionally distilled.


2. Fusion of an alkali sulfonate with alkali gives the phenate and a bisulfite.

3. Heating chlorobenzene and NaOH in presence of diphenyl oxide under pressure gives sodium phenate.¹

4. A diazonium sulfate solution on heating gives a phenol.

5. While the direct oxidation of benzene to phenol has not yet been achieved commercially the Raschig Process virtually accomplishes this. Chlorobenzene is produced by a vapor phase reaction of benzene, HCl and O_2 over a copper catalyst at 230°. Hydrolysis with steam, using a silica gel catalyst, yields phenol and HCl. The HCl is recovered. Oxygen is the only reagent not regenerated.

Reactions. A consideration of the formula of phenol shows several relations of its hydroxyl to the rest of the molecule. It can be regarded as a tertiary alcohol but the acidic properties do not correspond to such a classification since tertiary alcohols are less acidic than primary and secondary alcohols. Moreover tertiary alcohols are hard to oxidize whereas phenols are very sensitive to oxidation. Phenol may also be regarded as a vinyl alcohol and an allyl alcohol. Moreover there is evidence that a tendency to tautomerism also exists in the phenols.

¹ Hale. Ind. Eng. Chem. 20, 114 (1928).

PHENOLS

This process probably involves the addition of H^+ ion at the 2,4, or 6 position followed by the expulsion of H^+ ion from the hydroxyl and a corresponding shift of bonds. The tautomerism of phenol probably accounts for its easy oxidation. It undoubtedly accounts for its easy hydrogenation to hexahydrophenol (cyclohexanol, hexalin).

The reactions of phenol are typical of this class of compounds. They may be divided into three groups: those involving (A) the H of the hydroxyl group, (B) the hydroxyl group itself and (C) the *o*- and *p*-H atoms of the ring.

A. Reactions involving the replacement of the hydroxyl hydrogen.

1. The hydrogen is replaceable by means of strong bases to give phenolates, phenates or phenoxides, ArONa, etc. These are readily hydrolyzed but not to the same extent as the alcoholates. Since phenol is a very weak acid, it is liberated from its salts by CO_2 .

$C_6H_5ONa + CO_2 + H_2O \rightarrow C_6H_5OH + NaHCO_3$

Claisen's alkali, a mixture of KOH, H_2O and CH_3OH , is used to isolate weakly acidic phenols. Phenol forms crystalline compounds with amines which are probably salt-like in nature.

2. Replacement of the H of the hydroxyl group by acid groups gives esters. This process takes place less readily than with primary and secondary alcohols. *Phenyl acetate*, $C_6H_5OCOCH_3$, b. 193°, obtained by heating phenol, acetic anhydride and anhydrous sodium acetate is much more readily hydrolyzed than ordinary acetates. Salts of phenyl hydrogen sulfate such as $C_6H_5OSO_3K$ occur normally in the urine of the herbivora and in that of other animals after ingestion of phenol.

3. Ethers of phenol are readily obtained by treating a phenolate or a phenol in alkaline solution with an alkylating agent such as MeI or Me₂SO₄. Anisole, C₆H₅OCH₃, b. 154° and phenetole, C₆H₅OC₂H₅, b. 170°, are the best known phenyl ethers. Diphenyl ether, diphenyl oxide, (C₆H₅)₂O, m. 28°, b. 259°, is obtained by heating chlorobenzene and NaOH under high pressure (Dow). A mixture with diphenyl forms a valuable high temperature transfer medium (Dowtherm).

4. *Phenolates*, phenates, PhONa, give metathetical reactions with alkyl halides with unusual smoothness apparently because of the great activity of the phenolate ion, PhO⁻.

For the identification of phenols 2,4-dinitrochlorobenzene has been found to be an excellent reagent. The procedure is simple and the ethers formed are highly crystalline, stable solids which are easily purified and possess sharp melting points. The presence of water in the phenol does not interfere. The reagent has the advantage of being quite stable.²

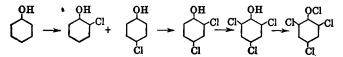
² Bost. J. Am. Chem. Soc. 57, 2368 (1935).

The melting points of the ether derivatives of typical phenols appear in the following table.

Phenol Phenol. o-Cresol. m-Cresol. p-Cresol. Thymol. Guaiacol. α-Naphthol. p-Naphthol. p-Maphthol.	90 74 93.5 67 97 96 122 118	o-Iodophenol	120 112 95 99 75 126 119 136
		-Indopriento:	95
		o-Chiorophenol	99
	97		
α -Naphthol	9 6	<i>p</i> -Chlorophenol	126
β-Naphthol.	122	2,4-Dichlorophenol	119
p-Hydroxydiphenyl	118	2,4,6-Trichlorophenol.	136
Resorcinol	194	o-Bromophenol	89
Eugenol	114	<i>p</i> -Bromophenol	141
Isoeugenol	130	2,4-Dibromophenol.	135
Vanillin	131	2,4,6-Tribromophenol	135
o-Nitrophenol.		<i>p</i> -Iodophenol.	

5. Phenol gives a violet color with dry ferric chloride. Many phenols give characteristic colors with this reagent.

B. Replacement of the hydroxyl group.


1. Reduction or replacement by H is achieved by distillation with zinc dust. This process is valuable in studying the structure of complex phenols.

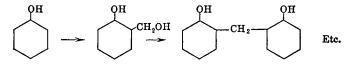
2. The replacement of the OH by halogen on treatment with halides of phosphorus, etc. takes place only to a limited extent, the chief products being esters of phosphorus acids, etc.

3. Replacement of the OH by NH_2 is obtained by heating with the addition compound of NH_3 and zinc chloride or calcium chloride.

C. Reactions of the o- and p-H atoms of the ring.

1. Ordinary substitutions such as halogenation, nitration and sulfonation are very easy. The ease of oxidation is so great, however, that care has to be used to avoid complex oxidation products. Careful chlorination gives trichlorophenol and finally trichlorophenyl hypochlorite.

Phenol can be nitrated by dilute nitric acid in the cold. More vigorous treatment gives tarry oxidation products. Nitrated phenols are better prepared by hydrolysis of the nitrated chlorobenzenes.


2. Coupling with diazonium salts takes place readily, mainly in the para position.

3. A replacement of ring H takes place in the Kolbe synthesis of phenolic acids from phenates and CO_2 .

PHENOLS

4. Similarly the Reimer-Tiemann synthesis of phenolic aldehydes from phenates and chloroform involves an o- or p-H.

5. The most important use of phenol is based on the reactions of its o- and and p-H atoms with formaldehyde to give resins of the bakelite type (amberlite, durez, resinox, etc.). Steps such as the following are involved.

Such reactions can take place at three places in each phenol molecule. The resulting large molecules are too complex to crystallize and consequently form resins.³ Modified phenol formaldehyde resins made by the condensation of sulfonic acids of aromatic OH compounds are useful as ion exchange materials (Amberlite IR-100).

6. Alkylation reactions readily yield alkylphenols. The higher alkyl substituted phenols, wax phenols, are multifunctional oil additives, combining properties of pour-point depressant action, improved viscosity index and antioxidant value. Metaloxy derivatives of such compounds have exceptional antioxidant value for lubricating oils.⁴

7. A special reaction of one of the ortho positions is shown by the conversion of allyl phenyl ether at 200° to *o*-allylphenol. This is a typical case of the Claisen Rearrangement.^{5,6}

8. Various complex reactions, such as oxidation, involve the ring hydrogen atoms. Liebermann's reaction consists of mixing the phenol with concentrated sulfuric acid and adding a little nitrite or a nitrosamine to produce a colored solution which turns blue or green on addition of alkali.

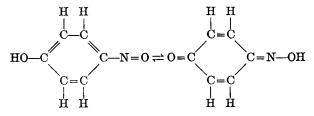
Thiophenol, mercaptobenzene, phenyl mercaptan, phenyl hydrosulfide, C_6H_5SH , b. 172°, is made by acid reduction of benzenesulfonyl chloride or by treating phenol with phosphorus pentasulfide. It has a vile odor. It gives ordinary mercaptan reactions such as the formation of (PhS)₂Hg and PhSHgCl and ready oxidation to (PhS)₂. With benzenediazonium salts it gives Ph₂S.

Substituted Phenols

Many ortho and para compounds are obtained by direct substitution. They can usually be separated by taking advantage of the greater volatility of the ortho compound and the higher melting point of the para compound. The meta compounds are usually made from the corresponding nitro compound by reduction to the amine and diazotization of the latter.

⁵ Tarbell. Chem. Rev. 27, 495 (1940).

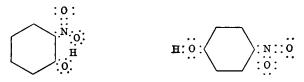
³ Wanscheidt. Ber. 69, 1900 (1936).


⁴Reiff. U. S. Pat. Nos. 2,197,833; 2,253,811 (1940).

[&]quot;'Org. Reactions," II. p. 1.

p-Bromophenol is readily obtained by brominating phenol in a solvent such as CS_2 (OS).^{7a} *p*-Chlorophenol is obtained by the action of *p*-dichlorobenzene with NaOH under pressure. The *o*-compound is prepared similarly. *o*-Bromo- and *o*-iodo-phenol can be obtained by diazotizing the *o*-halogenated aniline or from *o*-chloromercuriphenol. Phenol can be directly iodinated by treatment with iodine and HgO in water suspension. Excess halogen converts phenol to the 2,4,6-trihalogenated products. Aqueous phenol with bromine water gives a precipitate of *sym*-tribromophenol, m. 92°.

2,4-Dichlorophenoxyacetic acid (2,4-D) a derivative of 2,4-dichlorophenol is used to destroy weeds.


p-Nitrosophenol, HOC₆H₄NO, is readily obtained from phenol and nitrous acid, from any p-nitroso-N-dialkylaniline and aqueous alkali, or from the controlled action of hydroxylamine with p-benzoquinone. It is identical with the monoxime of quinone.

It forms colorless needles or greenish plates. It detonates on heating.

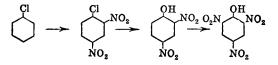
Nitrophenols

Treatment of phenol with cold dilute nitric acid gives a mixture of the oand p-nitrophenols which can be separated by steam distillation, the ortho compound being volatile. This marked difference in volatility is believed to indicate the existence of a chelate ring and the consequent absence of a simple hydroxyl group in the o-compound.

A better method for preparing these substances is by the action of bases on the readily available o- and p-nitrochlorobenzenes (p. 640). The nitro group activates the chlorine in o- or p-position so that high temperatures and pressures are not necessary. The o- and p-nitrophenols form highly colored salts with bases or even alkali carbonates. These salts probably have quinoidal

7ª "Org. Syntheses."

structures.



The systems $HO-C=C-NO_2$ and $HOC=C-C=C-NO_2$ found in o- and p-nitro phenols are not greatly ionized. Moreover, it is highly improbable that a hydrogen migrates along the chain to give an acid $C=NO_2H$. The base simply removes the hydrogen ions and causes the further ionization of the hydroxyl hydrogen. This makes possible an electron shift to form the more stable colored quinoidal ion.

$$\begin{array}{ccc} \mathbf{H} : \overset{\cdots}{\mathbf{O}} : \overset{\cdots}{\mathbf{C}} : \mathbf{N} : : \overset{\cdots}{\mathbf{O}} \to \begin{bmatrix} \vdots \overset{\cdots}{\mathbf{O}} : \overset{\cdots}{\mathbf{C}} : \mathbf{N} : : \overset{\cdots}{\mathbf{O}} \\ \vdots \overset{\cdots}{\mathbf{O}} : & \overset{\cdots}{\mathbf{O}} : \\ \vdots \overset{\cdots}{\mathbf{O}} : & \overset{\cdots}{\mathbf{O}} : \end{bmatrix}^{-} \to \begin{bmatrix} \overset{\cdots}{\mathbf{O}} : \overset{\cdots}{\mathbf{C}} : \overset{\cdots}{\mathbf{O}} : \overset{\cdots}{\mathbf{O}} \\ \vdots \overset{\cdots}{\mathbf{O}} : & \overset{\cdots}{\mathbf{O}} : \\ \vdots \overset{\cdots}{\mathbf{O}} : & \overset{\cdots}{\mathbf{O}} : \end{bmatrix}^{-} \\ \begin{array}{c} \overset{\cdots}{\mathbf{Colorless}} & \overset{\cdots}{\mathbf{Colored}} \end{bmatrix}^{-} \end{array}$$

Acidification supplies H^+ ions to the carbonyl oxygen and reverses the process. In a phenol not containing a nitro group in the *o*- or *p*-position, the removal of H^+ ion by the base leaves merely the phenate ion. The quinoid structure of the salts of the *o*- and *p*-nitrophenols is supported by measurements of the absorption spectra and by the fact that the sodium salts do not react readily with chloroacetic ester to give derivatives of phenoxyacetic acid as do the true phenates, including the sodium compound of *m*-nitrophenol which cannot form a quinoid structure.

The 2,4- and, less readily, the 2,6-dinitrophenols are obtained by further nitration. In presence of sulfuric acid, the nitration can be carried to the final step of *sym*-trinitrophenol or *picric acid*, m. 122°. This substance is a fairly strong acid. When the hydroxyl hydrogen is removed there are three different possible shifts to give a stable quinoidal ion. While it can be made from phenol it is better prepared in the following steps:

Picric acid is an explosive and a dye for silk and wool. The salts of picric acid, even those with the alkali metals, are much more explosive than the acid itself. Consequently picric acid cannot be used as an explosive in shells except with a non-metal liner. It has been largely replaced by safer explosives such as trinitrotoluene, and by better dyes. It retains its use as a treatment for burns. Picric acid forms crystalline compounds with aromatic amines and phenols and even with aromatic hydrocarbons. Treatment of picric acid with PCl_{5} gives *picryl chloride*, *sym*-trinitrochlorobenzene, m. 81°, in which the Cl is activated by all three nitro groups.

Aminophenols

They are made by reduction of nitrophenols. The o- and p-compounds can also be made from the nitrochlorobenzenes and ammonia. They do not form phenates but give salts with strong acids. The free o- and p-bases are readily oxidized while the m- is not. Thus the first two and their derivatives are used as photographic developers.

p-Aminophenol, m. 184°, rodinol, is obtained by the electrolytic reduction of nitrobenzene in sulfuric acid, the first product being β -phenylhydroxylamine which rearranges to the aminophenol. Oxidation converts it to quinone and treatment with chlorine gives quinone chlorimide, $O = C_6H_4 = NCl$. Amidol is a salt of 2,4-diaminophenol. One of the commonest developers is metol, pictol, N-methyl-p-aminophenol, which can be made from hydroquinone and monomethylamine or by heating p-hydroxyphenylglycine in solution in a phenol.

$$HOC_6H_4NHCH_2CO_2H \rightarrow CO_2 + HOC_6H_4NHCH_3$$

m-Aminophenol is best made by the alkali fusion of *m*-aminobenzene-sulfonic acid.

Anisidines, $CH_3OC_6H_4NH_2$, and phenetidines, $C_2H_5OC_6H_4NH_2$, are used in making azo dyes. Two preparations of these substances are given in the following steps:

1. $ClC_6H_4NO_2 \rightarrow ROC_6H_4NO_2 \rightarrow ROC_6H_4NH_2$

2. $ROC_6H_4NH_2 \rightarrow ROC_6H_4N_2Cl \longrightarrow$ $RQC_6H_4N = NC_6H_4OH \rightarrow ROC_6H_4N = NC_6H_4OR \rightarrow 2 ROC_6H_4NH_2$

The second preparation is no longer of practical value.

Aceto-p-phenetidine, phenacetine, EtOC₆H₄NHCOMe, is an antipyretic.

Homologs of Phenol

Many of these are found in coal tar, wood tar, cracked petroleum products, and in certain essential oils. Commercial *cresylic acid* contains a small amount of phenol, the three cresols and considerable amounts of higher phenols including several xylenols. These mixtures of phenol homologs are largely used to make resins with formaldehyde; for this purpose fractions of fairly definite composition are in demand. Various higher *tar acid* fractions are also available; these are used chiefly in disinfectants.

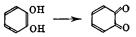
The three cresols, m. 31°, 12°, and 35° are available commercially; they may also be obtained pure by diazotization of the three toluidines. By fractionation of crude coal tar acid mixture o-cresol, b. 191°, is obtained; m-

PHENOLS

and p-cresols b. 203° and 202°, are obtained as a mixture. Pure m-cresol is separated from the mixture through complex with 2,6-lutidine and p-cresol through complex with quinaldine.⁹ A mixture of cresols with various soaps gives a soluble disinfectant, lysol, cresoline, etc. Dinitro-orthocresol is used as a weed killer. Tricresyl phosphate is a lubricating oil additive which reduces abrasion. The corresponding phosphite is an antioxidant. The oand m-cresols can be obtained by heating phosphorus pentoxide with carvacrol and thymol respectively. The six xylenols ("Xenols") have the following melting and boiling points: ortho-xylenols, 1,2,3-, 72°, 217°; 1,2,4-, 65°, 227°; meta-xylenols, 1,3,2-, 49°, 212°; 1,3,4-, 24°, 211°; 1,3,5-, sym-, 63°, 222°; paraxylenol, 1,4,2-, 75°, 211.5°. The 1,2,4-, 1,3,5-, and 1,3,4-xylenols are available commercially (Reilly). The symmetrical Xylenol is most abundant in coal tar acid and is most readily separated.¹⁰ Also available commercially are methylphenol, b. 219°, and p-ethylphenol, b. 218° (Reilly).

Carvacrol is 2-hydroxy-4-isopropyltoluene. It occurs in certain essential oils but is best prepared by heating camphor with iodine. This remarkable change in structure involves the elimination of only two H atoms.

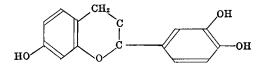
$$C_{10}H_{16}O + I_2 \rightarrow 2 HI + C_{10}H_{14}O$$


Carvacrol when heated with P_2S_5 gives *p*-cymene (*p*-isopropyl-toluene). With P_2O_5 it gives propylene and *o*-cresol.

Thymol is an isomer of carvacrol having the OH in the 3-position. It is readily available from oil of thyme and by alkylation of *m*-cresol. Its reactions are like those of its isomers except that P_2O_5 gives propylene and *m*-cresol. Thymol iodide, $[C_6H_2(CH_3)(C_3H_7)OI]_2$, is used as an antiseptic dusting powder in treating wounds.

B. DIHYDRIC PHENOLS

These resemble the monohydric phenols in most chemical properties. Those with the hydroxyls in the ortho or para position are especially sensitive to oxidation and are valuable reducing agents and serve as developers in photography.


Pyrocatechol, pyrocatechin, brenzcatechin, o-dihydroxybenzene, o- $C_6H_4(OH)_2$, m. 105°, b. 240°, can be made by alkaline fusion of o-phenol sulfonic acid or o-dichlorobenzene. It has also been prepared by the action of HI on its monomethyl ether, guaiacol, found in beechwood tar. It is a powerful reducing agent, precipitating silver even from cold silver nitrate. Cautious oxidation with silver oxide gives orthobenzoquinone.¹¹ It is used as an additive to inhibit deterioration of cracked gasoline.

⁹ Cislak. U. S. Pat. Nos. 2,432,062; 2,432,063 (1947).
 ¹⁰ Kester. Ind. Eng. Chem. 24, 770 (1932).
 ¹¹ Willstätter. Ber. 41, 2580 (1908).

Its alkaline solution absorbs oxygen readily. Ferric chloride gives a green color. Bromination readily introduces 4 Br atoms. The product is oxidized by nitric acid to give dark red tetrabromo-o-benzoquinone.

Catechol, often misused as the name for pyrocatechol, is the compound.

Long chain substituted catechols are the principle toxic constituents of poison ivy and other related plants. The alkyl side chains are unsaturated, contributing to their absorption by the skin, while the catechol nucleus provides the irritant action. The general structure is

in which R may be $C_{15}H_{27}$ (urushiol-poison ivy) $C_{15}H_{29}$ (bhilawanol-marking nut tree), $C_{17}H_{31}$ (laccol-lac trees).¹²

Veratrole, m. 22°, b. 207°, is the dimethyl ether of pyrocatechol.

Creosol, b. 222°, 2-methoxy-4-methylphenol, a homolog of guaiacol, is also found in beechwood tar.

Resorcinol, resorcin, *m*-dihydroxybenzene, m. 119°, b. 276°, is prepared by the potash fusion of both *m*- and *p*-disulfonic acids of benzene. It is also obtained by similar fusion of all three of the bromobenzenesulfonic acids and of *m*-phenolsulfonic acid. It gives a dark violet color with FeCl₃. Although a less vigorous reducer than its *o*- and *p*-isomers it reduces silver nitrate solution on warming and an ammoniacal silver solution even in the cold. On being heated with a solution of sodium bicarbonate, resorcinol gives *beta*-resorcylic acid which, in turn, is readily decarboxylated.¹³ A similar reaction of resorcinol is with sodium bisulfite giving the 4-sulfonic acid, with one of the hydroxyls covered by a sulfate group. Its chief uses are in the preparation of fluorescein by action with phthalic anhydride and of hexylresorcinol. Because of the positions rendered very active by the *op*-hydroxyl groups it is a valuable coupling component of azo dyes. Nitration gives *styphnic acid*, *sym*-trinitroresorcinol, which gives *styphnates* which are used for identification purposes much like picrates.

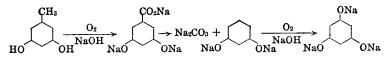
¹² Wasserman. J. Chem. Education 20, 448 (1943). ¹³ "Org. Reactions," Vol. II.

PHENOLS

Orcinol, sym-dihydroxytoluene, (1,3,5), m. 108°, b. 290°, is found in various lichens. With phthalic anhydride it gives no compound analogous to fluorescein.

Hydroquinone, quinol, p-dihydroxybenzene, m. 170°, b. 286°, is prepared by the reduction of quinone, usually with sulfurous acid. Most oxidizing agents first change it to quinhydrone and then to quinone. Its strong reducing properties make it the most valuable photographic developer. Fusion with KOH in presence of air gives 1,2,4-trihydroxybenzene.

C. TRIHYDRIC PHENOLS

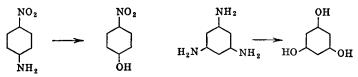

Pyrogallol, pyrogallic acid, 1,2,3-trihydroxybenzene, m. 134°, b. 309°, is made by thermal decarboxylation of gallic acid. It is a powerful reducing agent, especially in alkaline solution, as in its common use for absorbing oxygen in gas analysis. It differs from its symmetrical isomer in not reacting as a ketone with hydroxylamine. Pyrogallol and its derivatives are used as gasolene antioxidants.

Phloroglucinol, sym-trihydroxybenzene, m. 219°, occurs in various natural resins and in the glucoside *phloridzin*. The preparations of phloroglucinol involve a variety of principles.

1. By fusion of benzene-1,3,5-trisulfonic acid with alkali.

2. By similar fusion of resorcinol in presence of air. Thus benzene-mdisulfonic acid can be converted to phloroglucinol in much the way that anthraquinone monosulfonic acid is converted to the dihydroxyl compound, alizarin.

3. A related although apparently remarkable preparation is by the fusion of *orcinol*, $3,5-(OH)_2$ -toluene, with NaOH in presence of air. The following changes probably occur

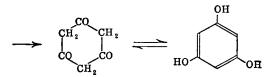


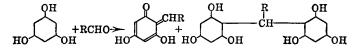
4. sym-Triaminobenzene is hydrolyzed to the trihydroxy compound by merely boiling its hydrochloride with water. The same product is obtained from the corresponding benzoic acid. The steps involved in the preparation of phloroglucinol from commercial trinitrotoluene would be as follows:

T.N.T.
$$\xrightarrow{[O]} C_6H_2(NO_2)_3CO_2H \xrightarrow{[H]} C_6H_2(NH_2)_3CO_2H \xrightarrow{HCl} H_2O$$

 $CO_2 + 3 NH_3 + C_6H_3(OH)_3$

This ready hydrolysis of *negative* groups in the *meta* position to each other is interesting in view of the ready hydrolysis of such groups when *ortho* or *para*


to *positive* groups like the nitro group. Thus the following changes take place readily.


On the other hand the hydrolysis of m-nitroaniline and of p-phenylene diamine is not easy.

5. Acetone and malonyl chloride in presence of $CaCO_3$ form phloroglucinol.¹⁴ In this reaction the carbonyl groups of the acid chloride give an aldol condensation with the α -H atoms of the acetone

 $\begin{array}{l} {\rm ClCOCH_2COCl} + {\rm CH_3COCH_3} \rightarrow \\ {\rm ClCOCH_2C(OH)(Cl)CH_2COCH_3} \rightarrow {\rm ClCOCH_2COCH_2COCH_3} \rightarrow \end{array}$

The tautomeric reactions of phloroglucinol have been studied extensively. It gives ordinary phenolic reactions but also acts as triketocyclohexane. The *trioxime*, $C_6H_6(=NOH)_3$, decomposes at 140°. The condensation with aldehydes¹⁵ involves both forms.

A similar process is responsible for its use in determining pentosans. The latter are converted by HCl to furfural which forms an insoluble compound with phloroglucinol.

Hydroxyquinol, hydroxyhydroquinone, $1,2,4-(OH)_3$ -benzene, can be made by alkaline fusion of hydroquinone in presence of air. Its triacetate is formed by the action of glacial acetic acid with quinone. It does not react with hydroxylamine.

Hexahydroxybenzene, $C_6(OH)_6$, is obtained as the explosive potassium compound from metallic potassium and carbon monoxide. It can be oxidized to a hydrated form of the corresponding tri-quinone, triquinoyl.

¹⁴ Komninos. Bull. soc. chim. 23, 449 (1918).

¹⁵ Ann. Rep. Chem. Soc. (London) 1914, 129.

Copyrighted Materials

AROMATIC ALCOHOLS

X. AROMATIC ALCOHOLS

These compounds have hydroxyl attached to a side chain or aliphatic portion of a mixed aliphatic aromatic compound such as toluene or diphenylmethane. They may be regarded and are often named as aryl derivatives of carbinol. Their reactions are analogous to those of the corresponding classes of aliphatic alcohols. The activity of OH on a carbon attached directly to an aryl group is increased. Similarly, the activity of H in a like position is increased toward oxidation and removal in dehydration. In other words, H and OH when alpha to a benzene ring are unusually active.

Benzyl alcohol, phenylcarbinol, $C_6H_5CH_2OH$, b. 205°, is readily made from benzyl chloride and a base. It is only slightly soluble in water. Substituted benzyl alcohols are obtainable by reduction of the corresponding benzamides with sodium amalgam.

$XC_6H_4CONH_2 + 4 [H] \rightarrow XC_6H_4CH_2OH + NH_3$

Benzhydrol, diphenylcarbinol, $(C_6H_5)_2$ CHOH, m. 69°, b. 299°, is a typical secondary alcohol both in its preparations and its reactions. The presence of the two phenyl groups attached to a single carbon excludes the possibility of rearrangements. Benadryl, the dimethylaminoethyl ether hydrochloride of benzhydrol, $(C_6H_5)_2$ CHOCH₂CH₂N(CH₃)₂. HCl, is an antihistamine agent which relieves the spasm of smooth muscle. It is used for all kinds of allergies and is particularly effective in relieving persons suffering from hay fever.

Triphenylcarbinol, $(C_6H_5)_3$ COH, m. 159°, can be made from diphenylketone and PhMgBr and by the hydrolysis of the corresponding halides. The effect of the three phenyl groups is shown by its preparation by the oxidation of triphenylmethane and by its ready reduction to triphenylmethane by zinc and acetic acid. Some reducing agents like titanous chloride convert the carbinol to triphenylmethyl.

Phenylethyl alcohol, β -phenylethyl alcohol, benzylcarbinol,

C₆H₅CH₂CH₂OH,

b. 221°, occurs in rose oil and is much used in perfumes. It is best prepared by the reduction of ethyl phenylacetate, $PhCH_2CO_2Et$. This process is best carried out by means of absolute alcohol and sodium.^{1,2} Catalytic reduction is likely to cause dehydration of the carbinol because of the activating effect of the phenyl group on the alpha H atoms. Phenylethyl alcohol has also been prepared by the action of phenylmagnesium chloride with ethylene oxide. This is one of the few commercial uses of the Grignard reagent.

Phenylmethylcarbinol, α -phenylethyl alcohol, C₆H₅CHOHCH₃, b. 203°, is best prepared from acetaldehyde and PhMgBr. Since it is readily dehydrated, all traces of acid must be eliminated before its distillation.

¹ Bouveault, Blanc. Compt. rend. 136, 1676 (1903).

² Hansley. Ind. Eng. Chem. 39, 55 (1947).

 ω -Phenylpropyl alcohol, C₆H₅(CH₂)₃OH, b. 235°, is obtained by reducing cinnamyl alcohol, styryl carbinol, "styrone," C₆H₅CH=CHCH₂OH, m. 33°, b. 258°, which occurs as a cinnamic ester (styracin) in storax. Cinnamyl alcohol gives typical allylic rearrangements. Thus treatment with PBr₃ gives both PhCH=CHCH₂Br and PhCHBrCH=CH₂.

XI. AROMATIC ALDEHYDES

The direct attachment of the aldehyde group to an aromatic ring gives substances resembling trimethylacetaldehyde in having no alpha hydrogen and thus giving neither aldol condensations nor polymerizations. On the other hand the carbonyl group is very reactive.

Benzaldehyde, oil of bitter almonds, C_6H_5CHO , b. 179°, is typical of aromatic aldehydes. It occurs as the glucoside, *amygdalin*.

Preparation. 1. It is made starting from toluene by a variety of processes.

a. Benzyl chloride, $C_6H_5CH_2Cl$, is hydrolyzed and oxidized by heating with water and a mild oxidizing agent such as a nitrate of lead or copper. Benzyl chloride can also be converted to benzaldehyde by heating with alkali and the calculated amount of chromate, the aldehyde being distilled out as fast as formed. Hexamine-benzyl chloride when hydrolyzed with boiling water gives benzaldehyde (Sommelet Reaction).¹

b. Benzal chloride, $C_6H_5CHCl_2$, can be hydrolyzed either with acid or lime to give benzaldehyde.

c. Benzoic acid can be converted to benzoyl chloride which can be converted to benzaldehyde by hydrogen in presence of a palladium catalyst.²

$$PhCOCl + H_2 \rightarrow HCl + PhCHO$$

Benzoyl chloride can be converted to its cyanide and then to phenyl glyoxylic acid which loses $\rm CO_2$ on distillation.

 $PhCOCl \rightarrow PhCOCN \rightarrow PhCOCO_2H \rightarrow CO_2 + PhCHO$

These last two methods are specially applicable to complex aldehydes and give a method for going from an aromatic amine through the nitrile and acid to the aldehyde.

d. Etard's reagent, CrO_2Cl_2 , converts an aromatic methyl group to an aldehyde group. The mechanism of this process involves the formation of intermediate compounds such as $C_6H_5CH_3.2$ CrO_2Cl_2 .

2. Benzaldehyde can be made from benzene.

a. By the action of carbon monoxide at high pressure.

b. By the treatment of benzene with CO in presence of HCl and anhydrous aluminum chloride. In this process it may be assumed that formyl chloride, HCOCl, is the active agent.

¹Sommelet. Compt. rend. 157, 852 (1913).

² Rosenmund, Zetsche. Ber. 54B, 425 (1921).

AROMATIC OR BENZENE SERIES

 ω -Phenylpropyl alcohol, C₆H₅(CH₂)₃OH, b. 235°, is obtained by reducing cinnamyl alcohol, styryl carbinol, "styrone," C₆H₅CH=CHCH₂OH, m. 33°, b. 258°, which occurs as a cinnamic ester (styracin) in storax. Cinnamyl alcohol gives typical allylic rearrangements. Thus treatment with PBr₃ gives both PhCH=CHCH₂Br and PhCHBrCH=CH₂.

XI. AROMATIC ALDEHYDES

The direct attachment of the aldehyde group to an aromatic ring gives substances resembling trimethylacetaldehyde in having no alpha hydrogen and thus giving neither aldol condensations nor polymerizations. On the other hand the carbonyl group is very reactive.

Benzaldehyde, oil of bitter almonds, C_6H_5CHO , b. 179°, is typical of aromatic aldehydes. It occurs as the glucoside, *amygdalin*.

Preparation. 1. It is made starting from toluene by a variety of processes.

a. Benzyl chloride, $C_6H_5CH_2Cl$, is hydrolyzed and oxidized by heating with water and a mild oxidizing agent such as a nitrate of lead or copper. Benzyl chloride can also be converted to benzaldehyde by heating with alkali and the calculated amount of chromate, the aldehyde being distilled out as fast as formed. Hexamine-benzyl chloride when hydrolyzed with boiling water gives benzaldehyde (Sommelet Reaction).¹

b. Benzal chloride, $C_6H_5CHCl_2$, can be hydrolyzed either with acid or lime to give benzaldehyde.

c. Benzoic acid can be converted to benzoyl chloride which can be converted to benzaldehyde by hydrogen in presence of a palladium catalyst.²

$$\mathrm{PhCOCl} + \mathrm{H_2} \! \rightarrow \! \mathrm{HCl} + \mathrm{PhCHO}$$

Benzoyl chloride can be converted to its cyanide and then to phenyl glyoxylic acid which loses $\rm CO_2$ on distillation.

$$PhCOCl \rightarrow PhCOCN \rightarrow PhCOCO_2H \rightarrow CO_2 + PhCHO$$

These last two methods are specially applicable to complex aldehydes and give a method for going from an aromatic amine through the nitrile and acid to the aldehyde.

d. Etard's reagent, CrO_2Cl_2 , converts an aromatic methyl group to an aldehyde group. The mechanism of this process involves the formation of intermediate compounds such as $C_6H_5CH_3.2$ CrO_2Cl_2 .

2. Benzaldehyde can be made from benzene.

a. By the action of carbon monoxide at high pressure.

b. By the treatment of benzene with CO in presence of HCl and anhydrous aluminum chloride. In this process it may be assumed that formyl chloride, HCOCl, is the active agent.

¹ Sommelet. Compt. rend. 157, 852 (1913).

² Rosenmund, Zetsche. Ber. 54B, 425 (1921).

AROMATIC ALDEHYDES

c. The Grignard reagent from chloro- or bromo-benzene reacts with an excess of an alkyl formate at low temperature to give benzaldehyde.

$PhMgBr + HCO_2R \rightarrow PhCH(OR)OMgBr \rightarrow ROMgBr + PhCHO$

An alkyl orthoformate similarly gives the acetal of benzaldehyde which can readily be hydrolyzed by dilute acid.

$$PhMgBr + CH(OR)_3 \rightarrow ROMgBr + PhCH(OR)_2$$

The *reactions* of benzaldehydes may be divided into those of (I) the aldehyde hydrogen, (II) the carbonyl group and (III) the benzene nucleus.

I. The H of the aldehyde group has the usual reactivity, being readily oxidized to OH. Thus benzaldehyde which has been exposed to air always contains benzoic acid. The absence of alpha H atoms makes possible reactions not observed in their presence.

a. Chlorine replaces the H to give benzoyl chloride whereas in ordinary aldehydes it gives an alpha chloro aldehyde.

b. Alkalies bring about an oxidation and reduction, the Cannizzaro reaction.³

$2 \text{ PhCHO} + \text{KOH} \rightarrow \text{PhCO}_2\text{K} + \text{PhCH}_2\text{OH}$

If the aldehyde is freed from all but the merest traces of peroxides, the reaction takes place only about 1/25 as rapidly as with the usual "purified" benzaldehyde.⁴

c. A related reaction is that of Tischenko in which a sodium or aluminum alcoholate condenses two molecules to form benzyl benzoate (OS).

$2 \text{ PhCHO} \rightarrow \text{PhCO}_2\text{CH}_2\text{Ph}$

d. Alkali cyanides give the *benzoin condensation* in which the H plays the part of the active H in the aldol condensation.

2 PhCHO \rightarrow PhCHOHCOPh

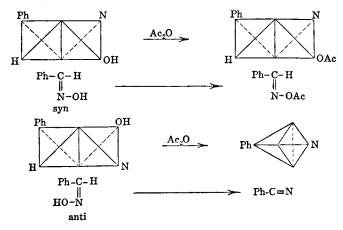
II. A. The carbonyl group gives the usual addition reactions.

a. Reducing agents and catalytic hydrogenation give benzyl alcohol.

b. Hydrocyanic acid gives mandelonitrile, PhCHOHCN.

c. Sodium bisulfite gives a crystalline addition compound which has been shown to be a hydroxy sulfonate, $PhCHOHSO_3Na$.

B. The condensation reactions of the carbonyl group probably take place by way of initial addition.


a. Primary amines first give addition products and then benzal (benzylidene) amines or Schiff's bases.

 $PhCHO + PhNH_2 \rightarrow [PhCHOHNHPh] \rightarrow PhCH = NPh$

³ "Org. Reactions," II, p. 94.

⁴ Kharasch, Foy. J. Am. Chem. Soc. 57, 1510 (1935).

b. Hydroxylamine gives syn or alpha benzaldoxime, m. 35°. Acids convert this to the anti or beta benzaldoxime, m. 125°. The latter reacts with acetic anhydride to give benzonitrile. This reaction was formerly thought to indicate the syn form. The stereochemistry of the oximes has been studied in great detail by means of substituted benzaldehydes.⁵⁻⁷

Obviously the models used are inadequate to show the mechanism by which *trans* elimination takes place.

c. Hydrazine gives benzalazine, PhCH = N - N = CHPh, m. 93°. High temperatures convert it to N₂ and stilbene.

d. Phenyl hydrazine gives benzaldehyde phenyl hydrazone,

$$PhCH = NNHPh$$
,

m. 152°.

e. It gives the aldol condensation with the alpha H of suitable aldehydes and ketones. The influence of the phenyl group on an α -OH causes the spontaneous dehydration of the aldol first formed. Thus benzaldehyde and acetaldehyde in presence of dilute base or a trace of HCl give cinnamic aldehyde readily.

$PhCHO + CH_{3}CHO \rightarrow [PhCHOHCH_{2}CHO] \rightarrow PhCH = CHCHO$

Acetone gives benzalacetone, PhCH = CHCOMe, m. 42°, and dibenzalacetone, $(PhCH = CH)_2CO$, m. 112°. The latter is valuable as an identifying derivative of both acetone and benzaldehyde.

f. A reaction related to the aldol condensation is the *Perkin synthesis* of unsaturated acids from aromatic aldehydes, sodium salts of aliphatic acids and

⁵ Meisenheimer. Ber. 54B, 3206 (1921).

⁶ Ann. Rep. Chem. Soc. (London) 1925, 105; 1926, 126.

⁷ Hauser, Vermillion. J. Am. Chem. Soc. 63, 1224 (1941).

their anhydrides. Thus cinnamic acid is prepared by heating benzaldehyde, anhydrous sodium acetate and acetic anhydride.⁸

 $\begin{array}{l} PhCHO + CH_3CO_2Na + Ac_2O \rightarrow \left[PhCHOHCH_2CO_2Na\right] \rightarrow \\ PhCH = CHCO_2Na + 2 AcOH \end{array}$

Hydrogen which is alpha to a carboxyl group or to a conjugated system containing a carboxyl takes part in this reaction. Thus sodium propionate gives α -methylcinnamic acid while sodium crotonate gives PhCH=CHCH=CHCO₂H (Vinylogy).

g. Aromatic compounds containing active ring H such as dimethylaniline condense with benzaldehyde in presence of zinc chloride. This is an important preparation for triphenylmethane dyes.

PhCHO \rightarrow [PhCHOHC₆H₄NMe₂] \rightarrow PhCH(C₆H₄NMe₂)₂

The failure to obtain the intermediate product is another example of the activity of OH alpha to phenyl.

h. The reaction of benzaldehyde with NH_3 illustrates again the activating effect of an aryl group on an alpha OH. The steps may include the following:

Acids convert hydrobenzamide to a dihydroglyoxaline derivative, amarin, NH-CHPh

PhC = N - CHPh

C. Treatment with PCl_5 gives benzal chloride, $PhCHCl_2$. Once again the absence of alpha H precludes side reactions.

III. Sulfonation and nitration give ring substitution mainly in the meta position.

m-Nitrobenzaldehyde, m. 58°, is obtained with about 20% of the *o*-compound by direct nitration of benzaldehyde. Reduction of its bisulfite compound gives a solution of *m*-aminobenzaldehyde useful in making triphenyl-methane dyes.

o-Nitrobenzaldehyde, m. 40°, and its *p*-isomer, m. 106°, are prepared by the controlled oxidation of o- and *p*-nitrocinnamic acids obtained by direct nitration. o-Nitrobenzaldehyde in sunlight or in presence of alkali undergoes intramolecular oxidation and reduction to give o-nitrosobenzoic acid.⁹

Phenyl acetaldehyde, α -tolualdehyde, C₆H₅CH₂CHO, b. 194°, is best prepared from cinnamic acid by first adding HOCl and then rearranging and decarboxylating the product.

 $\begin{array}{l} PhCH = CHCO_{2}H \rightarrow PhCHOHCHClCO_{2}H \rightarrow \\ [PhCH_{2}C(OH)ClCO_{2}H] \rightarrow [PhCH_{2}COCO_{2}H] \rightarrow PhCH_{2}CHO \end{array}$

⁹ Ciamician, Silber. Ber. 34, 2040 (1901).

⁸ "Org. Reactions," I, p. 210.

Cinnamic aldehyde, $C_6H_5CH = CHCHO$, b. 246°, is readily obtained from cinnamon oil through the bisulfite compound. It is a typical alpha beta unsaturated carbonyl compound. Reducing agents readily saturate the double bond, presumably by a process of 1,4-addition. Further reduction gives Ph(CH₂)₃OH. Treatment with aluminum alkoxides gives cinnamyl alcohol.¹⁰

3 PhCH = CHCHO + Al(OCHMe₂)₃ \rightarrow (PhCH = CHCH₂O)₃Al + 3 Me₂CO

The action of cinnamic aldehyde with bisulfites is characteristic of alpha beta unsaturated aldehydes. Three types of compounds are possible:

- (I) $PhCH = CHCH(OH)SO_3Na$,
- (II) PhCH(SO₃Na)CH₂CH(OH)SO₃Na,

and

(III) PhCH(SO₃Na)CH₂CHO.

(I) is obtained by the action of cold bisulfite solution on the aldehyde. Boiling with water converts (I) to (II) and free aldehyde. (II) can also be made from the aldehyde and an excess of hot conc. bisulfite solution. Boiling (II) with dilute sulfuric acid gives (III). Dry distillation or treatment with hot dilute NaOH solution converts all three to the free aldehyde.

The use of cinnamic aldehyde in aldol condensations gives substances with complex conjugated systems of double bonds. Thus, with acetaldehyde it gives PhCH = CHCH = O.

XII. AROMATIC KETONES

These show typical ketone reactions except to the extent that an aryl group attached directly to a carbonyl group provides no alpha H and offers a greater amount of steric hindrance to certain addition reactions than do simple aliphatic groups.

Acetophenone, methyl phenyl ketone, acetylbenzene, Hypnone,

C₆H₅COCH₃,

m. 20°, b. 202°, is best *prepared* by the Friedel-Crafts reaction from benzene, acetyl chloride and aluminum chloride. Molecular amounts of the latter must be used because it forms a stable addition compound with the product of the reaction. This is generally true of carbonyl compounds.

Reactions. Acetophenone gives typical ketone reactions. It forms an oxime, m. 59°, and a phenylhydrazone, m. 105°. These are not known in stereoisomeric forms. This may be due to the much greater stability of one form because of the wide difference in the phenyl and methyl groups or, more probably, to the possibility of tautomeric change.

$$\begin{array}{c} Ph-C-CH_{3} \\ \parallel \\ N-OH \end{array} \begin{array}{c} Ph-C=CH_{2} \\ \parallel \\ NHOH \end{array} \begin{array}{c} Ph-C-CH_{3} \\ \parallel \\ HO-N \end{array}$$

¹⁰ Meerwein et al. J. Prakt. Chem. 147, 211 (1936).

AROMATIC OR BENZENE SERIES

Cinnamic aldehyde, $C_6H_5CH = CHCHO$, b. 246°, is readily obtained from cinnamon oil through the bisulfite compound. It is a typical alpha beta unsaturated carbonyl compound. Reducing agents readily saturate the double bond, presumably by a process of 1,4-addition. Further reduction gives Ph(CH₂)₄OH. Treatment with aluminum alkoxides gives cinnamyl alcohol.¹⁰

3 PhCH = CHCHO + Al(OCHMe₂)₃ \rightarrow (PhCH = CHCH₂O)₃Al + 3 Me₂CO

The action of cinnamic aldehyde with bisulfites is characteristic of alpha beta unsaturated aldehydes. Three types of compounds are possible:

- (I) $PhCH = CHCH(OH)SO_3Na$,
- (II) PhCH(SO₃Na)CH₂CH(OH)SO₃Na,

and

 $({\rm III}) \quad {\rm PhCH}({\rm SO_3Na}){\rm CH_2CHO}.$

(I) is obtained by the action of cold bisulfite solution on the aldehyde. Boiling with water converts (I) to (II) and free aldehyde. (II) can also be made from the aldehyde and an excess of hot conc. bisulfite solution. Boiling (II) with dilute sulfuric acid gives (III). Dry distillation or treatment with hot dilute NaOH solution converts all three to the free aldehyde.

The use of cinnamic aldehyde in aldol condensations gives substances with complex conjugated systems of double bonds. Thus, with acetaldehyde it gives PhCH = CHCH = O.

XII. AROMATIC KETONES

These show typical ketone reactions except to the extent that an aryl group attached directly to a carbonyl group provides no alpha H and offers a greater amount of steric hindrance to certain addition reactions than do simple aliphatic groups.

Acetophenone, methyl phenyl ketone, acetylbenzene, Hypnone,

C₆H₅COCH₃,

m. 20°, b. 202°, is best *prepared* by the Friedel-Crafts reaction from benzene, acetyl chloride and aluminum chloride. Molecular amounts of the latter must be used because it forms a stable addition compound with the product of the reaction. This is generally true of carbonyl compounds.

Reactions. Acetophenone gives typical ketone reactions. It forms an oxime, m. 59°, and a phenylhydrazone, m. 105°. These are not known in stereoisomeric forms. This may be due to the much greater stability of one form because of the wide difference in the phenyl and methyl groups or, more probably, to the possibility of tautomeric change.

$$\begin{array}{c} Ph-C-CH_{3} \\ \parallel \\ N-OH \end{array} \xrightarrow{Ph-C=CH_{2}} H_{1} \\ HOH \\ HOH \\ HO-N \end{array} \xrightarrow{Ph-C-CH_{3}} H_{1} \\ HO-N \\ HO-$$

¹⁰ Meerwein et al. J. Prakt. Chem. 147, 211 (1936).

Acetophenone is readily reduced and adds HCN in the usual way. The effect of the phenyl group is shown by the failure to form compounds with bisulfites. Halogenation readily gives *phenacyl halides*, PhCOCH₂X. *Phenacyl chloride*, ω -chloroacetophenone, is a widely used relatively harmless lachrymator ("CN") used for controlling mobs and the like. It is best made from chloroacetyl chloride, benzene and aluminum chloride. Tribromoacetophenone reacts with alkali very slowly to give the haloform reaction whereas dibromoacetophenone, NaOBr and NaOH react instantly. Vigorous oxidation converts acetophenone to benzoic acid. Controlled oxidation with cold alkaline KMnO₄ attacks only the methyl group giving PhCOCO₂H, phenylglyoxylic acid (benzoylformic acid).

Reaction of acetophenone with ammonium polysulfide at $200-220^{\circ}$ C. yields phenylacetamide. This is an example of the Willgerodt reaction.¹

The alpha H atoms of acetophenone readily take part in aldol condensations. Thus benzaldehyde and a trace of dilute base give PhCH = CHCOPh, *benzalacetophenone*, *chalcone*, m. 58°. Mild treatment of acetophenone with HCl gives *dypnone*, MePhC = CHCOPh. Longer treatment continues the condensation process to give *sym*-triphenylbenzene. Polyhydroxychalcones are used in the synthesis of flavones.

Treatment of acetophenone with cold fuming nitric acid gives mainly the m-nitro compound with a smaller amount of the o-compound. Warming with conc. nitric acid gives

PhCOC(NO:C(NO)COPh.

Substituted acetophenones have been made in great variety. Direct nitration of acetophenone gives mainly *m*-nitroacetophenone, m. 81° . The chief by-product is the oily *o*-compound but the latter is best prepared by the action of 30% sulfuric acid on the product of *o*-nitrobenzoyl chloride and sodioacetoacetic ester. Both carboxyl and acetyl are removed.

$$O_2NC_6H_4COCH(CO_2R)COCH_3 \rightarrow O_2NC_6H_4COCH_3$$

p-Nitroacetophenone, m. 81°, can be prepared similarly from p-nitrobenzoyl chloride but a better method starts with the nitration of cinnamic acid which readily gives the p-compound

$$O_{2}NC_{6}H_{4}CH = CHCO_{2}H \xrightarrow{Br_{2}} \xrightarrow{HOK} \\ O_{2}NC_{6}H_{4}C \equiv CCO_{2}K \xrightarrow{70\%}_{H_{2}SO_{4}} CO_{2} + O_{2}NC_{6}H_{4}COCH_{3}$$

The last step involves the hydration of the triple bond and the splitting of the resulting keto acid. It is a general process for producing the acetyl group.

 $RC \equiv CCO_2H \rightarrow RCOCH_2CO_2H \rightarrow RCOCH_3$

¹ "Org. Reactions," III. p. 83.

Reduction of the nitroacetophenones with Sn and HCl gives the three *amino-acetophenones*, o-, oil, m-, m. 93°, p-, m. 106°, b. 294°. The p-compound can also be made by heating aniline or acetanilide with an excess of acetic anhydride and zinc chloride. The aminoacetophenones can be diazotized in the usual way.

In some cases substituted acetophenones are made by the Friedel-Crafts reaction of acetyl chloride with a substituted aromatic compound such as chlorobenzene or the phenyl ethers like anisole. This is not possible with compounds containing groups like carboxyl and hydroxyl which react with aluminum chloride. Nitrobenzene does not react and can thus be used as a solvent in the Friedel-Crafts reaction.²

p-Hydroxyacetophenone can be prepared by heating phenyl acetate with AlCl₃. This is the Fries Reaction.³

Benzophenone, diphenyl ketone, $(C_6H_6)_2CO$, m. α -49°, β -26°, b. 306°, is best prepared by the Friedel-Crafts reaction on benzoyl chloride and benzene. It can also be made by oxidizing diphenylmethane. It forms an oxime, m. 140°, and a phenylhydrazone, m. 105°. Reduction gives benzhydrol (I) and benzpinacol (II) m. 186° dec.

$$\begin{array}{c} \mathrm{Ph_2CO} \rightarrow \mathrm{Ph_2CHOH} + \mathrm{Ph_2C(OH)C(OH)Ph_2} \\ \mathrm{I} \end{array} \\ \mathrm{II} \end{array}$$

The formation of the latter, and especially its ready rearrangement on dehydration to give benzpinacolone, Ph_3CCOPh , m. 182°, show the danger of considering too literally the term steric hindrance.

Vinyl phenyl ketone, $CH_2 = CHCOPh$, adds PhMgBr entirely 1,4- to give only PhCH₂CH₂COPh.⁴ A similar result is obtained with propenyl phenyl ketone, MeCH=CHCOPh. By contrast, the isomeric methyl cinnamyl ketone, MeCOCH=CHPh, adds mainly to the carbonyl group giving only about 10% 1,4-addition.

XIII. PHENOLIC ALCOHOLS, ALDEHYDES AND KETONES

Many of these either occur in nature or are readily prepared from natural products. Saligenin and anisyl alcohol are o-hydroxy- and p-methoxybenzyl alcohols. Coniferyl alcohol, obtained from the glucoside coniferin, is

$$3-MeO-4-HO-C_6H_3CH = CHCH_2OH.$$

The o- and p-hydroxybenzyl alcohols are very sensitive to acid, readily undergoing complex condensation reactions. This peculiarity is the basis of resin formation from phenols and formaldehyde (Bakelite). The first step is an aldol-type condensation involving the carbonyl of the formaldehyde and an

² Groggins. "Unit Processes in Organic Synthesis," 3rd Ed. McGraw-Hill, 1947. p. 769. ³ "Org. Reactions," I. p. 342.

⁴ Kohler. Am. Chem. J. 42, 375 (1909).

AROMATIC OR BENZENE SERIES

Reduction of the nitroacetophenones with Sn and HCl gives the three *amino-acetophenones*, o-, oil, m-, m. 93°, p-, m. 106°, b. 294°. The p-compound can also be made by heating aniline or acetanilide with an excess of acetic anhydride and zinc chloride. The aminoacetophenones can be diazotized in the usual way.

In some cases substituted acetophenones are made by the Friedel-Crafts reaction of acetyl chloride with a substituted aromatic compound such as chlorobenzene or the phenyl ethers like anisole. This is not possible with compounds containing groups like carboxyl and hydroxyl which react with aluminum chloride. Nitrobenzene does not react and can thus be used as a solvent in the Friedel-Crafts reaction.²

p-Hydroxyacetophenone can be prepared by heating phenyl acetate with AlCl₃. This is the Fries Reaction.³

Benzophenone, diphenyl ketone, $(C_6H_6)_2CO$, m. α -49°, β -26°, b. 306°, is best prepared by the Friedel-Crafts reaction on benzoyl chloride and benzene. It can also be made by oxidizing diphenylmethane. It forms an oxime, m. 140°, and a phenylhydrazone, m. 105°. Reduction gives benzhydrol (I) and benzpinacol (II) m. 186° dec.

$$\begin{array}{c} \mathrm{Ph_2CO} \rightarrow \mathrm{Ph_2CHOH} + \mathrm{Ph_2C(OH)C(OH)Ph_2} \\ \mathrm{I} \end{array} \\ \mathrm{II} \end{array}$$

The formation of the latter, and especially its ready rearrangement on dehydration to give benzpinacolone, Ph_3CCOPh , m. 182°, show the danger of considering too literally the term steric hindrance.

Vinyl phenyl ketone, $CH_2 = CHCOPh$, adds PhMgBr entirely 1,4- to give only PhCH₂CH₂COPh.⁴ A similar result is obtained with propenyl phenyl ketone, MeCH=CHCOPh. By contrast, the isomeric methyl cinnamyl ketone, MeCOCH=CHPh, adds mainly to the carbonyl group giving only about 10% 1,4-addition.

XIII. PHENOLIC ALCOHOLS, ALDEHYDES AND KETONES

Many of these either occur in nature or are readily prepared from natural products. Saligenin and anisyl alcohol are o-hydroxy- and p-methoxybenzyl alcohols. Coniferyl alcohol, obtained from the glucoside coniferin, is

$$3-MeO-4-HO-C_6H_3CH = CHCH_2OH.$$

The o- and p-hydroxybenzyl alcohols are very sensitive to acid, readily undergoing complex condensation reactions. This peculiarity is the basis of resin formation from phenols and formaldehyde (Bakelite). The first step is an aldol-type condensation involving the carbonyl of the formaldehyde and an

² Groggins. "Unit Processes in Organic Synthesis," 3rd Ed. McGraw-Hill, 1947. p. 769. ³ "Org. Reactions," I. p. 342.

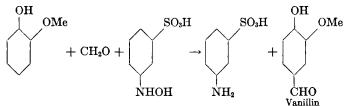
⁴ Kohler. Am. Chem. J. 42, 375 (1909).

H which is o- or p- to the hydroxyl to form a hydroxybenzyl alcohol. o- and p-Aminobenzyl alcohols are even more sensitive to acid. Thus $p-NH_2$ -benzyl alcohol with acid gives $(C_7H_7N)_x$. This product presumably is a long chain polymer HOCH₂C₆H₄NH(CH₂C₆H₄NH)_yCH₂C₆H₄NH₂. A similar product is obtained when attempts are made to prepare p-aminobenzyl halides from the corresponding nitro compounds.

Salicylaldehyde and anisaldehyde are o-OH and p-OMe-benzaldehydes. 3,4-Dihydroxybenzaldehyde is protocatechuic aldehyde while the 3-methyl ether of the latter is vanillin and the 3,4-methylene ether is piperonal.

Derivatives of piperonal, especially piperonyl butoxide, butylcarbityl 6-propylpiperonyl ether, when combined with pyretheum give excellent insecticides¹ (see pyretheum).

Salicylaldehyde is obtained by the Reimer-Tiemann reaction (see below) using carefully controlled conditions. The other aldehydes of this group are made from naturally occurring allyl or propenyl phenol ethers. The former are rearranged to the latter by means of alkali and the $\alpha\beta$ -double bond is broken by oxidation to give an aldehyde group. Anethole,


$$p-MeOC_6H_4CH = CHMe$$

gives anisaldehyde.

Eugenol, 4-OH-3-OMe-C₆H₃CH₂CH = CH₂, gives *isoeugenol* and then vanillin. Acetyl isoeugenol obtained by isomerizing eugenol with a base and acetylating with acetic anhydride is oxidized to vanillin.

 $3-MeO-4-OH-C_{\delta}H_{3}CH_{2}CH=CH_{2} \xrightarrow{KOH} ArCH=CH_CH_{3} \xrightarrow{Ac_{2}O} \xrightarrow{[O]} Vanillin.$

Vanillin is made commercially from the lignin byproducts of the paper industry.² A common preparation of vanillin is from guaiacol in the following steps:

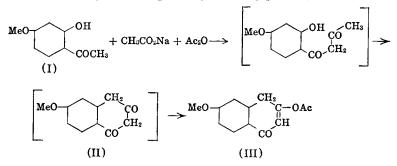


Safrole, 3,4-CH₂O₂C₆H₃CH₂CH = CH₂, through *isosafrole* gives piperonal. The splitting of the methylene group to give protocatechuic aldehyde is not easy. It can be achieved by treatment with cold PCl₅ to change the = CH₂ to = CCl₂. Hydrolysis gives = C = O forming a carbonate which on further hydrolysis gives the free dihydroxy compound.

¹ Mail. Chem. Inds. 61, 218 (1947).

² Howard. Chem. Inds. 48, 724 (1941).

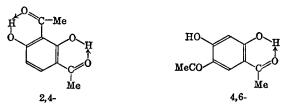
Phenols treated with alkali and chloroform (*Reimer-Tiemann*) are converted to the corresponding o- and p-hydroxyaldehydes.


In the Duff reaction phenols are treated with hexamethylenetetramine in anhydrous glycerol in the presence of glyceroboric acid. Hydrolysis with sulfuric acid produces *o*-hydroxy aldehydes. Similarly phenols react with HCN and HCl in presence of zinc chloride to give formimides which can be hydrolyzed to hydroxy aldehydes (Gattermann). If RCN is used in place of HCN the final product is a ketone. For the HCN process, a convenient method is to treat a suspension of $Zn(CN)_2$ in dry ether with dry HCl and then add the phenolic compound.³

$$\begin{array}{c} \operatorname{Zn}(\operatorname{CN})_2 + 2\operatorname{HCl} \to \operatorname{ZnCl}_2 + 2\operatorname{HCN} \\ \operatorname{C_6H_5OH} + \operatorname{HCN} + \operatorname{HCl} \to \operatorname{HOC_6H_4CH} = \operatorname{NH} \cdot \operatorname{HCl} \xrightarrow{} \\ \operatorname{HOC_6H_4CHO} + \operatorname{NH_4Cl} \end{array}$$

The most important member of this group is vanillin, the active flavoring material of the vanilla bean.

The three hydroxyacetophenones or acetylphenols are known. The pcompound, m. 108°, can be made directly from phenol, acetic anhydride and ZnCl₂. The o-, liquid, and the m-compound, m. 93°, can be made from the nitroacetophenones by reduction with Sn and HCl followed by diazotization. They are also available from the methyl ethers of the corresponding substituted benzoylacetic esters and phenylpropiolic acids.

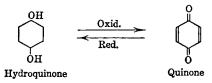

Resacetophenone, acetoresorcinol, $2,4-(OH)_2-C_6H_3COCH_3$, m. 142°, is readily obtained by heating resorcin with acetic acid and zinc chloride. Its monomethyl ether is *peonol*, m. 50°. Peonol (I) gives an interesting modification of the Perkin synthesis to give dehydrodiacetylpeonol (III).

³ Adams, Levine. J. Am. Chem. Soc. 45, 2373 (1923).

Treatment of III with a carbonate gives II, which is tautomeric with the 6-Me ether of $1,3,6-(OH)_3$ -naphthalene.

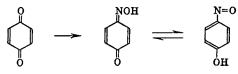
The 2,4- and 4,6-diacetylresorcinols differ widely in properties. The first m. 91° and is volatile with steam while the second m. 182° and is non-volatile with steam. These differences are explained on the basis of chelate rings.

Alternating unsaturation may be necessary for such a stable 6-chelate ring.


Quinacetophenone, C-acetylhydroquinone, $2,5-(OH)_2C_6H_3COCH_3$, m. 202°, is made from hydroquinone, acetic acid and zinc chloride. Similarly prepared, is 4-acetylpyrocatechol, m. 116°.

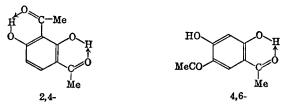
XIV. QUINONES AND RELATED COMPOUNDS

A. BENZOQUINONES


The simple quinones are conjugated diketocyclohexadienes closely related to ortho and para dihydroxy benzene derivatives.

Benzoquinone, quinone, $C_6H_4O_2$, m. 116°, yellow pungent crystals, is readily obtained by oxidizing aniline with chromic acid. Its constitution is shown by its formation by the oxidation of hydroquinone and its easy conversion to the latter by reduction.

Quinhydrone is a crystalline green compound of these two substances in equimolecular proportions. It is the first product of the oxidation and reduction of the two substances.

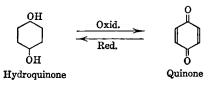

Quinone reacts with 1 mol of hydroxylamine hydrochloride to give a monoxime which is identical with *p*-nitrosophenol.

QUINONES AND RELATED COMPOUNDS

Treatment of III with a carbonate gives II, which is tautomeric with the 6-Me ether of $1,3,6-(OH)_3$ -naphthalene.

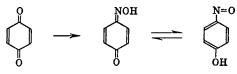
The 2,4- and 4,6-diacetylresorcinols differ widely in properties. The first m. 91° and is volatile with steam while the second m. 182° and is non-volatile with steam. These differences are explained on the basis of chelate rings.

Alternating unsaturation may be necessary for such a stable 6-chelate ring.

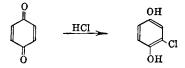

Quinacetophenone, C-acetylhydroquinone, $2,5-(OH)_2C_6H_3COCH_3$, m. 202°, is made from hydroquinone, acetic acid and zinc chloride. Similarly prepared, is 4-acetylpyrocatechol, m. 116°.

XIV. QUINONES AND RELATED COMPOUNDS

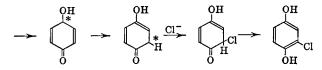
A. BENZOQUINONES


The simple quinones are conjugated diketocyclohexadienes closely related to ortho and para dihydroxy benzene derivatives.

Benzoquinone, quinone, $C_6H_4O_2$, m. 116°, yellow pungent crystals, is readily obtained by oxidizing aniline with chromic acid. Its constitution is shown by its formation by the oxidation of hydroquinone and its easy conversion to the latter by reduction.


Quinhydrone is a crystalline green compound of these two substances in equimolecular proportions. It is the first product of the oxidation and reduction of the two substances.

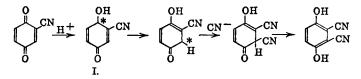
Quinone reacts with 1 mol of hydroxylamine hydrochloride to give a monoxime which is identical with p-nitrosophenol.



The change to the latter may be regarded as involving the addition of a hydrogen ion to the carbonyl oxygen with the expulsion of one from the NOH group.

Quinone can give either addition or substitution reactions with halogens depending on conditions. It adds halogen acids in a peculiar way to give mono-halogen hydroquinones.

This process probably involves two 1:3 shifts as follows (the * indicating a C with only 6 electrons):

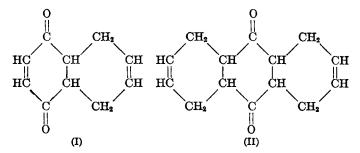


The first of these corresponds to the older conception of 1,4-addition and the second to enolization. The last step gives the completely conjugated benzene derivative. The action of HBr is more complex, the products being quin-hydrone, a reduction product of quinone and both mono- and dibromohydro-quinones.

Quinone reacts with aniline in hot alcoholic solution to give 2,5-dianilinoquinone and hydroquinone. Apparently a molecule of aniline adds to give 2-anilinohydroquinone much as HCl adds to quinone. This is then oxidized by a molecule of quinone which is thus reduced to hydroquinone. The resulting 2-anilinoquinone can then add another molecule of aniline to give 2,5dianilinohydroquinone which is oxidized to the final product. There is no evidence of any addition to give a 2,3- or a 2,6-product. Primary alcohols react with quinone in presence of $ZnCl_2$ to give 2,5-dialkoxyquinones and hydroquinone. Changes of this type indicate that quinone is a stronger oxidizing agent than substituted quinones. Another addition of this type is that of benzene sulfinic acid to give phenyl-2,5-dihydroxyphenyl sulfone.

The one reaction in which two molecules add *unsymmetrically* to quinone is the action of a cyanide and a mineral acid in which the products are 2,3dicyanohydroquinone and hydroquinone. The first part of the process may be the formation of cyanohydroquinone in the same way that HCl adds to quinone. Oxidation of this by quinone would give hydroquinone and cyanoquinone. The latter might be expected to add HCN to form the 2,5-dicyano derivative. Apparently the course of the reaction is as follows (* indicating

a carbon with only 6 electrons)


By analogy to other addition reactions of quinone the intermediate (I) might have been expected to undergo the allylic shift with carbons 5 and 6 with the entry of the second CN at 5. This apparently is prevented by the strong tendency to form a *double bond alpha beta to the CN group* in (I).

Quinone undergoes internal oxidation and reduction when treated with acetic anhydride and sulfuric acid, giving the acetate of hydroxyhydroquinone.

$$C_6H_4O_2 + 2 Ac_2O \rightarrow C_6H_3(OAc)_3 + AcOH$$

This peculiar change is merely an addition analogous to that of HCl to quinone, followed by the formation of the stable triacetate.

The formula of benzoquinone indicates it to be an alpha beta unsaturated ketone. This is confirmed by its participation in the Diels-Alder reaction with conjugated dienes. Thus it reacts with butadiene to give 5,8,9,10-H₄-1,4-naphthoquinone (I) and 1,4,5,8,11,12,13,14-H₆-anthraquinone (II).

With cyclopentadiene, quinone gives similar products having endomethylene groups, $-CH_2$ – connecting the 5,8-positions in (I) and the 1,4- and 5,8-positions in (II).

Chloranil, tetrachloroquinone, $C_6Cl_4O_2$, m. 290° (sealed tube), is formed by chlorinating quinone but is better prepared from *p*-nitroaniline by chlorination, reduction to dichloro-*p*-phenylene diamine and then simultaneous chlorination and oxidation by potassium chlorate and HCl. A still cheaper method for large scale manufacture is the oxidation of trichlorophenol with chromic acid. It forms yellow crystals which readily sublime. It is used commercially as an oxidizing agent in the preparation of dyes such as methyl violet. It oxidizes halogen acids to the halogens with the formation of Cl₄-hydroquinone. It is stable to strong oxidizing agents such as aqua regia, nitric acid and concentrated sulfuric acid. In contrast to its stability to acid reagents, is its ready reactivity with various alkaline reagents. The usual result is the replacement of the 2- and 5-Cl atoms. The ease of replacement of the Cl atoms recalls the reactivity of acid chlorides. Dilute KOH gives *potassium chloranilate*, $C_6Cl_2O_2(OK)_2$. H₂O, dark red needles. An even more surprising change is the action of NaNO₂ solution to give sodium nitranilate, $C_6(NO_2)_2O_2(ONa)_2$. Both the Na and K salts are only sparingly soluble. Aniline and sodium phenolate react with chloranil with the replacement of two Cl atoms by PhNH and PhO groups respectively. Dilute KHSO₃ replaces two Cl by 2 SO₃K groups and reduces the quinone to a hydroquinone. Conc. K₂SO₃ gives insoluble *potassium thiochronate*, $C_6(OH)(OSO_3K)(SO_3K)_4.4 H_2O$. Heating this with 2 KOH gives *potassium euthiochronate*, $C_6(SO_3K)_2O_2(OK)_2$ and 3 KHSO₃.

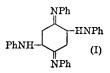
Aqueous ammonia replaces two Cl in chloranil by NH_2 and OH giving $C_6Cl_2(NH_2)(OH)O_2$ while alcoholic NH_3 gives $C_6Cl_2(NH_2)_2O_2$, chloranilamide.

Ortho-Benzoquinone, 1,2-diketocyclohexadiene-3,5, $C_6H_4O_2$, is obtained by oxidation of an ether solution of pyrocatechol with Ag_2O_1 The corresponding Cl_4 - and Br_4 -compounds are readily obtainable by halogenating pyrocatechol and oxidizing the products with nitric acid. Orthoquinones are red.

B. N-Analogs of Quinones

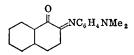
Compounds in which = N -takes the place of one or both = O groups are known in great variety. These include:

1. Chloroimides containing the = NCl group and formed by the oxidation by hypochlorite of suitable amino compounds. Thus *p*-aminophenol hydrochloride gives quinone chloroimide, $O = C_6H_4 = NCl$ while *p*-phenylenediamine hydrochloride gives the dichloroimide, $ClN = C_6H_4 = NCl$. The = NCl group is readily reduced to $-NH_2$ or hydrolyzed to = O.


2. Quinone diimide, $HN = C_6H_4 = NH$, is obtained as bright yellow crystals which explode on heating and can be reduced to *p*-phenylenediamine or hydrolyzed to quinone.

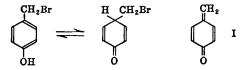
3. Quinone monoxime, $O = C_6H_4 = NOH$, has already been mentioned as the stable tautomeric form of *p*-nitrosophenol just as MeCOCH = NOH is related to MeCOCH₂NO. In both cases the -N = O group tends to take a hydrogen ion and become = NOH, thus causing the expulsion of H⁺ from another part of the molecule. Quinone dioxime, HON = $C_6H_4 = NOH$, dec. 240°, is best made from "*p*-nitrosophenol" and hydroxylamine hydrochloride. It gives a syn- and an anti-diacetate, m. 147° and 190° dec.

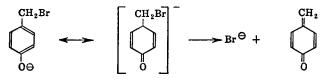
¹ Willstätter, Pfannenstiel. Ber. 37, 4744 (1904).


4. Quinone monoanil, $O = C_6H_4 = NC_6H_5$, m. 97°, red crystals and quinone dianil, $C_6H_5N = C_6H_4 = NC_6H_5$, m. 180°, are obtained by oxidizing p-OH-diphenylamine and diphenyl-p-phenylenediamine, $C_6H_4(NHC_6H_5)_2$.

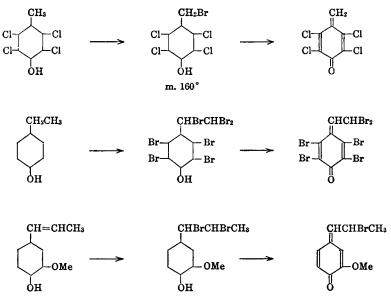
Azophenin (I), the dianil of 2,5-dianilinoquinone, is obtained by a variety of processes including the action of heat on a mixture of p-nitrosodiphenylamine, aniline and aniline hydrochloride.

It is also formed by the action of aniline with quinone dianil. The fact that neither the mono- nor the di-anil can be made from quinone and aniline indicates the ease with which aniline adds 1:4 to the system O=C-C=C rather than 1:2 to the carbonyl group.

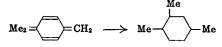

Indamines and indophenols are dyes related to the quinone anils. Phenylene Blue is made by oxidizing a mixture of aniline and p-phenylene diamine. The dye is the hydrochloride of $NH_2C_6H_4N=C_6H_4=NH$. Other indamine dyes are Bindschedler's Green and Toluylene Blue. p-Nitrosodimethylaniline can be substituted for the p-diamine in the preparation of indamines. Indophenols are similarly made by oxidizing a mixture of a phenol or a naphthol with a p-diamine or p-nitrosodimethylaniline. Indophenol Blue is made from the latter and α -naphthol. It has the structure


C. PSEUDOPHENOLS, METHYLENE QUINONES AND SEMIBENZENES

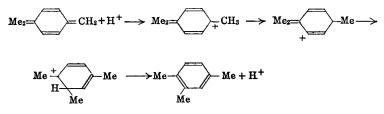
A phenol having an o- or p-side chain with a halogen alpha to the ring behaves abnormally with bases. Instead of dissolving to give a phenolate the halogen is removed and a methylene quinone is obtained. Many such *pseudo phenols* have been studied.² Most of these have been very complex but the principles involved may be illustrated by the unknown p-hydroxybenzyl bromide. They show well the difference between the older conservative conception that a structure formula was purely a "reaction" formula and did not necessarily indicate the actual structure of the molecule and the more modern conviction of the literal truth of most structural formulas. As the ordinary formula for a substance like p-OH-benzyl bromide would not explain


²Auwers, Zincke. For references see Richter-Anschütz. "The Chemistry of Carbon Compounds," Vol. III. Elsevier Publishing Co., New York, 1946. its insolubility in alkali, a quinoidal or pseudophenol structure was proposed.

The first formula corresponds to the formation of an acetate in the ordinary way while the second gives a ready interpretation of the formation of the methylene quinone (I) by the action of alkali. It is more probable that the substance has the true phenol formula and that the presence of the halogen alpha to the ring makes possible the formation of the methylene quinone from the phenolate ion formed by the action of the base.



The net result is that a normal reaction, started in one part of the molecule, causes a change in another reactive part of the molecule before the first change has reached its ordinary conclusion. Some of the "pseudophenols" and related methylene quinones which have been prepared follow:



The methylene quinones usually undergo condensation to very complex products.

The **semibenzenes** resemble the quinones in many ways. A trace of acid transforms these to the isomeric aromatic compounds.³

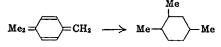
This is a combination of an allylic shift and a pinacolone rearrangement caused by the addition of a proton

A more complex reaction but one involving the same types of change is the formation of pentamethylbenzene by the action of a trace of acid on 1,1,2,6-Me₄-4-methylene-cyclohexadiene-2,5.

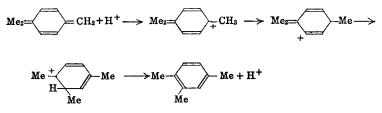
XV. AROMATIC CARBOXYLIC ACIDS

These are known in great variety. In general they resemble the aliphatic acids in chemical properties. Those having the carboxyl attached directly to the aromatic ring have no alpha H and so resemble more closely the trisubstituted acetic acids. Like them they are usually solids. The most characteristic preparation of such acids is by the oxidation of side chains which removes all of the latter except the carbon attached to the ring. The product is stable to oxidation unless it contains some strongly o,p-orienting group such as OH or NH₂. When the carboxyl is attached to a side chain the properties are more nearly like those of the analogous aliphatic acids. Aromatic acids are known with practically all types of substituents in the nucleus or side chains. In general, the carboxyl derivatives of the aromatic series are slightly stronger acids than those of the aliphatic series.

A. BENZOIC ACID AND ITS DERIVATIVES


Benzoic acid, carboxybenzene, benzene carboxylic acid, $C_6H_5CO_2H$, m. 121°, b. 250°, is found in many natural gums and balsams. It occurs characteristically in the urine of the herbivora as hippuric acid, PhCONHCH₂CO₂H. The preparation and reactions of benzoic acid are typical of acids having the carboxyl attached directly to the aromatic nucleus.

³ Ann Rep. Chem. Soc. (London) 1922, 96.


AROMATIC CARBOXYLIC ACIDS

The methylene quinones usually undergo condensation to very complex products.

The semibenzenes resemble the quinones in many ways. A trace of acid transforms these to the isomeric aromatic compounds.³

This is a combination of an allylic shift and a pinacolone rearrangement caused by the addition of a proton

A more complex reaction but one involving the same types of change is the formation of pentamethylbenzene by the action of a trace of acid on 1,1,2,6-Me₄-4-methylene-cyclohexadiene-2,5.

XV. AROMATIC CARBOXYLIC ACIDS

These are known in great variety. In general they resemble the aliphatic acids in chemical properties. Those having the carboxyl attached directly to the aromatic ring have no alpha H and so resemble more closely the trisubstituted acetic acids. Like them they are usually solids. The most characteristic preparation of such acids is by the oxidation of side chains which removes all of the latter except the carbon attached to the ring. The product is stable to oxidation unless it contains some strongly o,p-orienting group such as OH or NH₂. When the carboxyl is attached to a side chain the properties are more nearly like those of the analogous aliphatic acids. Aromatic acids are known with practically all types of substituents in the nucleus or side chains. In general, the carboxyl derivatives of the aromatic series are slightly stronger acids than those of the aliphatic series.

A. BENZOIC ACID AND ITS DERIVATIVES

Benzoic acid, carboxybenzene, benzene carboxylic acid, $C_6H_5CO_2H$, m. 121°, b. 250°, is found in many natural gums and balsams. It occurs characteristically in the urine of the herbivora as hippuric acid, PhCONHCH₂CO₂H. The preparation and reactions of benzoic acid are typical of acids having the carboxyl attached directly to the aromatic nucleus.

³ Ann Rep. Chem. Soc. (London) 1922, 96.

691

Preparation. 1. The most typical method is by the conversion of the methyl group of toluene to carboxyl by direct or indirect oxidation. This preparation is possible because of the stability of the benzene ring to any but the most vigorous oxidation.

a. Toluene can be oxidized to benzoic acid by refluxing with dilute nitric acid, chromic acid mixture, or alkaline permanganate. The process is slow because of the insolubility of the toluene in the aqueous reagents and its relative inactivity. The most commonly used oxidant is chromic acid which can be regenerated electrolytically from the chromic salts formed.

 $PhCH_3 + Na_2Cr_2O_7 + 4 H_2SO_4 \rightarrow PhCO_2H + Na_2SO_4 + Cr_2(SO_4)_3 + 5 H_2O_2$

b. When benzaldehyde is made from benzyl chloride by hydrolysis and oxidation or by the hydrolysis of benzal chloride, benzoic acid is always obtained as a by-product which can be separated by distillation and by washing with bicarbonate solution.

c. Benzotrichloride, $C_6H_5CCl_3$, obtained by chlorinating boiling toluene without a catalyst, can be hydrolyzed to benzoic acid

$$C_6H_5CCl_3 + 2 H_2O \rightarrow 3 HCl + C_6H_5CO_2H$$

Formerly this process offered the difficulty due to the presence of a small but toxic impurity of p-chlorobenzoic acid which rendered the product unsuitable for use as a food preservative in the common use of "one tenth of one percent of benzoate of soda." This difficulty is overcome by purifying the benzotrichloride by careful fractional distillation.

2. An increasingly important preparation is by the catalytic decarboxylation of phthalic anhydride.¹

3. The hydrolysis of benzonitrile, C_6H_5CN , which can be obtained in a variety of ways.

 $C_6H_5CN + 2 H_2O \rightarrow C_6H_5CO_2H + NH_3$

In general, aromatic nitriles are much more difficult to hydrolyze than their aliphatic analogs. In some cases the hydrolysis proceeds to the acid amide and then stops. Treatment with concentrated sulfuric acid, with a mixture of concentrated sulfuric acid and glacial acetic acid or with sulfuric acid and sodium nitrite, will usually complete the process.

4. Phenylmagnesium halides with CO_2 give benzoic acid. A similar method involves the action of CO_2 on phenyl bromide and sodium or the action of sodium on a mixture of phenyl bromide and ethyl chlorocarbonate. Treatment of benzene with ethylpotassium (EtK) and then with CO_2 gives benzoic and terephthalic acids.²

5. The Friedel-Crafts reaction between benzene and phosgene or carbamic chloride in presence of $AlCl_3$ gives benzoyl chloride or benzamide which can be hydrolyzed to the acid.

¹ Conover. U. S. Patent No. 2,063,365 (1937).

² Gilman, Kirby. J. Am. Chem. Soc. 58, 2074 (1936).

The *reactions* of benzoic acid can be divided into those of the carboxyl group and of the benzene ring.

I. Carboxyl reactions.

a. Salts are formed in the usual way. Sodium benzoate is used as a food preservative. Calcium benzoate crystallizes with 3 H_2O in glistening prisms. The addition of 2% calcium benzoate to greases made from fatty acid soaps increases their water resistance. Sodium benzoate solution, with halogens, gives mixtures of o-, m-, and p-halogen-benzoic acids. Silver benzoate with iodine gives CO₂, phenyl benzoate and AgI. In presence of benzene, the organic products are iodobenzene (31%) and phenyl benzoate (32%). The Ag salt of p-toluic acid similarly gives 18% iodobenzene and 52% phenyl toluate.³

b. Esters are best prepared by refluxing benzoic acid in the required alcohol with a trace of HCl gas or conc. H₂SO₄. The Me, Et and *n*-Pr esters b. 199.6°, 212.6° and 231°. Higher aliphatic esters, when distilled at atmospheric pressure, decompose to benzoic acid and the olefin. Benzyl benzoate, m. 21°, b. 324°, used as an antispasmodic and miticide, is usually prepared from benzaldehyde by the catalytic action of sodium benzylate, PhCH₂ONa, or Al(OEt)₃.⁴ Another preparation is from dry sodium benzoate and benzoyl chloride. This reaction is catalyzed by a small amount of tertiary amines. Aromatic esters are less reactive than aliphatic esters in hydrolysis and ammonolysis. This is not surprising as they are "tertiary" acids. Thus the reactivity of Et₃CCO₂Et would probably be even less than that of C₆H₅CO₂Et.

Benzoyl chloride, C₆H₅COCl, b. 198°, can be made in the usual ways. Commercially it is made by the partial hydrolysis of benzotrichloride. It is made in large amounts for the preparation of benzoyl peroxide. It is less reactive than ordinary aliphatic acyl halides. Benzoylation of OH and NH₂ compounds is usually carried out by the *Schotten-Baumann* method of using benzoyl chloride and a *base*.

$ROH + PhCOCl + NaOH \rightarrow PhCO_2R + NaCl + H_2O$

Benzoyl bromide, b. 219°, can be made by PBr₃ and benzoic acid. Benzoyl iodide, m. 3°, b. 135° (25 mm), is best made by passing HI gas through benzoyl chloride until no more HCl is displaced. It is very reactive. Benzoyl fluoride, b. 155°, is formed from the chloride and KHF₂. Benzoyl cyanide, C_6H_5COCN , m. 33°, b. 206°, is formed by distilling the chloride with CuCN⁵ or by the successive action of nitrous acid and acetic anhydride on acetophenone.

$$\frac{\text{HNO}_2}{\text{PhCOCH}_3} \xrightarrow{\text{HNO}_2} \text{PhCOCH} = \text{NOH} \xrightarrow{\text{Ac}_2\text{O}} \text{PhCOCN}.$$

³ Birckenbach, Meisenheimer. Ber. 69B, 723 (1936).

4 "Org. Syntheses."

⁵ "Org. Syntheses."

It behaves like an acyl halide rather than a keto nitrile. With NH_3 , aniline, diethylzinc and Zn and HCl it gives benzamide, benzanilide, phenyl ethyl ketone and benzaldehyde. With metallic sodium it gives a polymer, m. 95°, which reacts with NaOH to give sodium benzoate, NaCN and NH_3 . Only with cold fuming HCl does it react like a nitrile to give benzoylformic acid, PhCOCO₂H.

Benzoic anhydride, $(C_6H_5CO)_2O$, m. 42°, b. 360°, is prepared by heating benzoyl chloride with anhydrous oxalic acid. Its reactions are like those of acetic anhydride.

Benzoyl peroxide, (Lucidol) $(C_6H_5CO)_2O_2$, m. 108°, made by benzoyl chloride and sodium peroxide, is relatively stable. It is used as a bleaching agent for wheat flour. *Perbenzoic acid*, HO-O-COC₆H₆, is obtained from the peroxide.⁶

$$(PhCO)_2O_2 + EtONa \rightarrow PhCO_2Et + PhCO_3Na$$

Its chloroform solution is an oxidizing agent.⁷

Benzamide, $C_6H_5CONH_2$, m. 130°, b. 290°, is readily made from benzoyl chloride and ammonium carbonate. Silver compounds are known of the forms PhCONHAg, orange, and PhC(OAg)NH, colorless.

Benzanilide, C_6H_5 CONH C_6H_5 , m. 161°, b. 119° (10 mm), is made by heating benzoic acid and aniline (OS).

Benzoylhydrazine, benzhydrazide, $C_6H_5CONHNH_2$, m. 112°, is easily made from hydrazine and ethyl benzoate.

Benzazide, benzoyl azoimide, $C_6H_5CON_3$, m. 30°, is formed from the hydrazide by nitrous acid. It is explosive on heating alone. When heated with water, it gives N₂, PhNHCO₂H (unstable) and (PhNH)₂CO. With alcohol it gives PhNHCO₂R. These are Curtius rearrangements (p. 186) in which the intermediate isocyanate has added a molecule of solvent. With NaOEt it gives NaN₃ and Et benzoate.

Benzonitrile, phenyl cyanide, C6H5CN, b. 191°, is obtained from

a. Benzamide with PCl_5 or P_2O_5 .

- b. Sodium benzene sulfonate fused with NaCN.
- c. Benzene diazonium chloride and cuprous cyanide (Sandmeyer).
- d. Benzoic acid distilled with NH₄SCN.

Its reactions are typical nitrile reactions. Thus with HCl, NH_3 and amines, and H_2O it gives benzimino chloride, amidines and benzamide respectively. Reduction gives benzyl amine and hydrolysis gives benzoic acid. Ammonium sulfide gives thiobenzamide, $C_6H_5CSNH_2$, m. 116°.

B. SUBSTITUTED BENZOIC ACIDS

These are known in great number. Some of the meta derivatives can be made by direct substitution. The three isomers of a monosubstituted benzoic acid can often be made in three general ways:

⁶ "Org. Syntheses." ⁷ ibid. 1. By oxidation of a substituted toluene by means of dilute nitric acid which converts the methyl to carboxyl.

2. By diazotizing an aminobenzoic acid and introducing the desired group.

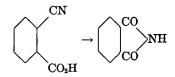
3. By diazotizing a substituted aniline, replacing the diazonium group by CN, and hydrolyzing the resulting nitrile.

The halogen benzoic acids illustrate the first two methods and a few special ones in addition. The four o-halogenbenzoic acids are usually obtained by diazotizing anthranilic acid (prepared from naphthalene) and replacing the diazonium group by treatment with HF, Cu_2Cl_2 , Cu_2Br_2 or KI. o-Iodobenzoic acid, m. 162°, is of special interest because of its ready conversion by treatment with chlorine in CHCl₃ solution and then with water to o-iodosobenzoic acid, $C_6H_4(IO)CO_2H$, m. 244° dec., which is converted by alkaline permanganate to o-iodoxybenzoic acid, $C_6H_4(IO_2)CO_2H$, which explodes at 233°. If o-iodobenzoic acid is needed in large amounts it will probably be made from phthalic anhydride through anhydro-o-hydroxymercuribenzoic acid.⁸

$$C_{6}H_{4}(CO)_{2}O \xrightarrow{\text{HgCl}_{2} \text{ heat}} \longrightarrow \\ CO_{2} + C_{6}H_{4}(HgO)CO \xrightarrow{\text{NaCl}} HgCl_{2} + C_{6}H_{4}ICO_{2}Na$$

A remarkable formation of o-halogenbenzoic acids is by the action of alcoholic KCN at 200°, on the *meta*-nitrohalogen benzenes.⁹

The four *m*-halogenbenzoic acids can be made by diazotizing *m*-aminobenzoic acid obtained by reducing the nitro compound formed by the direct nitration of benzoic acid. *m*-Chlorobenzoic acid can be made by direct chlorination by heating benzoic acid, MnO_2 and conc. HCl at 150°. *m*-Bromobenzoic acid is obtained by heating benzoic acid, bromine and water at 150°. *m*-Iodobenzoic acid can be made by heating benzoic acid with KIO₃ and H₂SO₄ or by heating silver benzoate with iodine at 150°. The difficulty of these direct halogenations of benzoic acid well illustrates the fact that *meta directing groups make substitution in the benzene ring more difficult*.


The *m*-halogenbenzoic acids can also be made by the action of alcoholic KCN at 200° on the *para*-nitrohalogen benzenes.¹⁰

While the four *p*-halogenbenzoic acids can be made by diazotization of *p*-aminobenzoic acid prepared from the *p*-NO₂-compound obtained by oxidizing *p*-NO₂-toluene, it is better to make them by oxidizing with dil. nitric acid the *p*-halogentoluenes prepared either by direct halogenation or by diazotizing *p*-toluidine. *p*-Iodobenzoic acid has been made by the action of iodine on *p*-chloromercuribenzoic acid.¹¹

"Org. Syntheses."
 Richter. Ber. 4, 21 (1871).
 Richter. Ber. 4, 21 (1871).
 "Org. Syntheses."

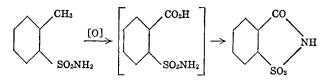
Polyhalogenbenzoic acids are available. Thus 2,4-dibromobenzoic acid, m. 167°, is obtained by oxidizing 2,4-Br₂-toluene with nitric acid while 2,4,6-Br₃-benzoic acid, m. 187°, is made by brominating *m*-aminobenzoic acid and then removing the NH₂ group by diazotization. Pentabromobenzoic acid, m. 252°, is made by heating with Br₂ at 200°, 3,4,5-Br₃-benzoic acid, m. 239°, obtained by carefully brominating *p*-aminobenzoic acid and replacing the NH₂ by diazotization.

The three cyanobenzoic acids, $C_6H_4(CN)CO_2H$, are made by diazotizing the aminobenzoic acids and treating with $Cu_2(CN)_2$ made from KCN and $CuSO_4$. The o-acid melts about 180°, changing to phthalimide.

Of the three *nitrobenzoic acids*, the *m*-acid is available by direct nitration of benzoic acid with fuming nitric acid. About 20 and 2% of the *o*- and *p*-acids are formed at the same time. The *o*- and *p*-acids are best prepared by oxidizing *o*- and *p*-nitrotoluenes with permanganate or dilute nitric acid. With *m*-nitrotoluene commercially available, the *m*-acid could perhaps be made more cheaply by oxidizing it than by nitrating benzoic acid.

Di- and tri-nitrobenzoic acids are available by the standard reactions. 3,5-Dinitrobenzoic acid, m. 205°, is easily made by nitrating benzoic acid with a mixture of fuming nitric acid and sulfuric acid. This acid is valuable in identifying primary and secondary alcohols because of the relatively high melting points of its esters. 2,4-Dinitrobenzoic acid, m. 183°, and 2,4,6trinitrobenzoic acid, m. 228°, are made by oxidizing the corresponding nitrotoluenes with chromic acid mixture.¹²

Sulfobenzoic Acids, Sulfonic Acids of Benzoic Acid


The **m-acid** is obtainable by direct sulfonation of benzoic acid with fuming sulfuric acid. The acid sodium salt is relatively insoluble in NaCl solution.

o-Sulfobenzoic acid is important because its imide is saccharin, large amounts of which are made to be used as a sweetening agent in place of carbohydrates. A solution of one part in three thousand of water is about as sweet as a one percent sucrose solution. The steps for its preparation follow:

Toluene is treated with chlorosulfonic acid to give a mixture of o- and p-toluene sulfonyl chlorides. The latter is a solid and most of it can be separated readily from the liquid o-compound. The latter is carefully purified

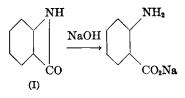
12 "Org. Syntheses."

and then converted to the amide. This is oxidized with chromic acid. The resulting acid forms the internal benzosulfimide, *saccharin*.

The hydrolysis of saccharin with HCl gives acid ammonium o-sulfobenzoate¹³ which, with SOCl₂, gives the anhydride¹⁴ which can be converted to the free acid or used to make sulfonephthaleins just as phthalic anhydride is used.

p-Sulfobenzoic acid, m. 200° dec., is made by sulfonating toluene and oxidizing the product with chromic acid mixture or permanganate. It is purified as the acid barium salt and then converted to the free acid by the calculated amount of H_2SO_4 .

Aminobenzoic Acids


They are obtained by reducing the nitro compounds with such reagents as zinc and acid, ammonium sulfide, and alkaline ferrous hydroxide. Their reduction in alkaline solution is very easy because of the solubilizing effect of the carboxyl group. The aminobenzoic acids, as amphoteric substances, are soluble in either acid or basic solution.

$$\begin{array}{c} OH \ominus & H^{\oplus} \\ H_{2}NC_{6}H_{4}CO_{2} \ominus & \bigoplus {}^{\oplus}H_{3}NC_{6}H_{4}CO_{2} \ominus & \longrightarrow {}^{\oplus}H_{3}NC_{6}H_{4}CO_{2}H \end{array}$$

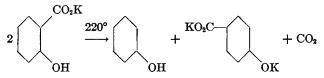
Diazotization gives internal diazonium salts, ${}^{\oplus}N_2C_6H_4CO_2{}^{\ominus}$, similar to those formed by the aminosulfonic acids. The NH₂-benzoic acids give the reactions of both their reactive groups including ready substitution o- and p- to the NH₂ group. When the carboxyl is o- or p- to the NH₂, it may be replaced during such a change. Thus the careful bromination of p-NH₂-benzoic acid gives the 2,6-Br₂ compound but vigorous treatment with an excess of Br₂ gives CO₂ and Br₃-aniline.

Anthranilic acid, o-aminobenzoic acid, m. 145°, is best made by the Hofmann reaction through the action of hypochlorite and alkali on phthalimide. It is the starting point for the preparation of indigo using naphthalene as the ultimate raw material. When diazotized and coupled with Me₂-aniline it gives the indicator Methyl Red.¹⁵ The anhydride or inner amide, *anthranil* (I), is obtained by reducing o-NO₂-benzaldehyde with Sn and acetic acid. With

¹³ ibid. ¹⁴ ibid. ¹⁵ "Org. Syntheses." NaOH it gives Na anthranilate.

Methyl anthranilate is used in perfumes.

p-Aminobenzoic acid is important because its esters have local anesthetic properties. Anesthesin, Butesin, Novocaine (Procaine), and Butyn are salts of its ethyl, n-butyl, β -diethylaminoethyl, and γ -di-n-butylaminopropyl esters.


Phenolic Acids

These have the properties of a phenol and a substituted benzoic acid. Thus with NaOH they give di-sodium salts but with carbonates they give mono-sodium salts, only the carboxyl reacting. The positions o- and p- to the hydrozyl have the usual reactivity toward substituting reagents. If the carboxyl is on one of these positions it also may be displaced. Thus treatment of salicylic acid with excess bromine water gives CO_2 and Br_3 -phenylhypobromite.

Salicylic acid, o-hydroxybenzoic acid, m. 155°, is prepared by heating Na phenate with CO_2 under pressure at 130° (Kolbe) if K phenate is used below 150° the same result is obtained but at higher temperatures the *p*-compound results

 $C_6H_5ONa + CO_2 \rightarrow C_6H_5OCO_2Na \rightarrow C_6H_4(OH)CO_2Na$

The mechanism of the reaction is indicated by the fact that K salicylate at 220° gives phenol and the di-K salt of *p*-OH-benzoic acid.

Salicylic acid and its compounds have antiseptic properties. The ubiquitous drug, Aspirin, is acetylsalicylic acid.

Methyl salicylate, $C_6H_4(OH)CO_2CH_3$, b. 223°, is artificial oil of wintergreen.

Phenyl salicylate, $C_6H_4(OH)CO_2C_6H_5$, m. 43°, is used as *Salol* in medicine. Because of its stability to acid, it passes unchanged through the stomach and undergoes alkaline hydrolysis in the intestine to give phenol and Na salicylate. It is prepared from salicylic acid, phenol and POCl₃. It is used in sun-tan creams.

698

m-Hydroxybenzoic acid, m. 201°, is made by alkali fusion of sodium *m*-sulfobenzoate or by diazotization of *m*-aminobenzoic acid or its methyl ester. The reactions of the NH_2 and CO_2H groups are independent of each other. The carboxyl is not easily removed as it is when *o*- and *p*- to the OH group.

p-Hydroxybenzoic acid, m. 213°, is made by the action of CO under pressure on K phenoxide at 200° or by the action of carbon tetrachloride on phenol in presence of NaOH (Reimer, Tiemann). Its reactions are typical of its two reactive groups. Its methyl ether is *anisic acid*, $CH_3OC_6H_4CO_2H$, m. 184°, b. 280°.

Protocatechuic acid, 3,4-dihydroxybenzoic acid, m. 199°, is obtained by the alkaline fusion of various natural resins which probably contain depsides of this acid. It is obtained along with *pyrocatechuic acid*, 2,3-(OH)₂-benzoic acid, m. 204°, when pyrocatechol is heated with ammonium carbonate. Its 3-Me ether is *vanillic acid*, m. 207°, which is formed by oxidizing the related aldehyde, vanillin. Its dimethyl ether is *veratric acid*, m. 181°, while its 3,4-methylene ether is *piperonylic acid*, m. 228°, which is related to piperic acid. Capsaicin is a vanillyl amide,¹⁶

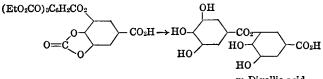
$Me_2CHCH = CH(CH_2)_4CONHCH_2C_6H_3(OH)OMe.$

Gentisic acid, 2,5-dihydroxybenzoic acid, m. 197°, is made by heating hydroquinone and KHCO₃ solution at 130°. Heating resorcinol with ammonium carbonate gives mainly β -resorcylic acid, 2,4-(OH)₂-benzoic acid, m. 213°, with a smaller amount of the 2,6-acid, φ -resorcylic acid, m. 167° dec. α -Resorcylic acid, 3,5-(OH)₂-benzoic acid, m. 237°, is made by fusing disulfobenzoic acid with KOH. It is more stable than its isomers which have the carboxyl σ - or p-to hydroxyl. The local anesthetic, orthoform, is the methyl ester of 3-amino-4-hydroxybenzoic acid.

Gallic acid, 3,4,5-trihydroxybenzoic acid, m. 220° dec., occurs in nut galls, in tea, and as glucosides in tannins. It is obtained by hydrolysis of nut galls and certain tannins. On heating, it gives CO₂ and pyrogallol. Its chief use is in ink. Propyl gallate is a non-injurious food antioxidant of high activity. Its reactions have been extensively studied because of its relation to the These are esters formed from two or more molecules of the natural depsides. same or different phenolic acids. Thus the simplest di-depside is p-hydroxybenzoyl-p-hydroxybenzoic acid, HOC₆H₄CO₂C₆H₄CO₂H, m. 261°. The secret of success in these studies is the protection of the hydroxyl groups so that they will not interfere with the reactions of the carboxyl groups. At first this was done by acetylation but later it was more successfully achieved by means of the carbethoxy group, $-CO_2Et$, introduced by means of chloroformic ester. The superiority of the latter group is due to its easier removal. Whereas the acetyl group can be removed only by vigorous treatment with HCl, the carbethoxy group can be removed by mild treatment with alcoholic ammonia. A means of protecting two adjacent hydroxyls is the action of phosgene which

¹⁶ Ann. Rep. Chem. Soc. (London) 1923, 98.

forms a carbonate. *m-Digallic acid, m-galloyl-gallic acid, m. 285° can be made by the following steps which show its structure:*


1. Gallic acid is treated with NaOH and ClCO₂Et to give

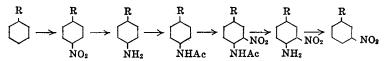
 $(EtO_2CO)_3C_6H_2CO_2H$

which can then be converted to the acid chloride by cold PCl₅.

2. Gallic acid, NaOH, and $COCl_2$ give a carbonate involving the 3- and 4-hydroxyls but leaving the 5-OH free.

3. The acid chloride can be condensed with the free OH. The protecting groups can then be removed by treatment with alcoholic NH_3 without breaking the phenol ester linkage.

m-Digallic acid


If the pentamethyl ether of this acid is converted to the acid chloride which is then condensed with glucose it is possible to obtain a methylated pentadigalloyl glucose which is identical with a methyl *tannin* obtained by methylating Chinese tannin with diazomethane.

The technique of Bergmann (p. 513) for protecting a group by the action of $PhCH_2OCOCl$ and removal of the protecting group by mild hydrogenation could undoubtedly be used in depside studies.

Simpler depsides occur in various lichens. For instance *lecanoric acid* is the di-depside of *orsellinic acid*, 4,6-dihydroxy-o-toluic acid, m. 176°. *Evernic acid*, m. 169°, is the monomethyl ether of this di-depside.

Alkyl Benzoic Acids

The three toluic acids or methylbenzoic acids can be made by oxidation of the three xylenes with dilute nitric acid. In the case of the *p*-compound, *p*-cymene is more available than *p*-xylene and the oxidation removes mainly the isopropyl group because of the point of attack presented by its tertiary H. The toluic acids can also be made from the nitriles obtained by diazotizing the three toluidines and applying the Sandmeyer reaction. Higher alkylated benzoic acids can be made through the steps: hydrocarbon, nitro compound, amine, nitrile, acid. This gives only the o- and p-series. The *m*-series is harder to make.

This can then be converted to the amine, nitrile and acid of the *m*-series.

The six possible xylic acids or dimethylbenzoic acids are known. Hemellitic acid, 2,3-Me₂-benzoic acid, 2,3-xylic acid, m. 144°, is made by oxidizing hemimellitene with dilute nitric acid. 3,4-Xylic acid, m. 166°, can be made by oxidizing pseudocumene (along with smaller amounts of the 2,4-acid) or from the nitrile obtained by fusing a cyanide with a salt of o-xylene-4-sulfonic acid. 2,6-Xylic acid, m. 116°, is made by fusing a salt of the difficultly obtainable m-xylene-2-sulfonic acid with a formate. 2,4-Xylic acid, m. 126°, is the most readily available of these acids. Probably the best preparation is by the action of phosgene and AlCl₃ on m-xylene. Mesitylenic acid. 3,5-xylic acid, m. 166°, is made by oxidizing mesitylene with dilute nitric acid. 2,5-Xylic acid, isoxylic acid, m. 132°, is made from the amide obtained from p-xylene, NH₂COCl and AlCl₃ in CS₂ solution.

The six possible trimethylbenzoic acids are made by oxidation of the three tetramethylbenzenes with dilute nitric acid. Prehnitene gives mainly prehnitylic acid, 2,3,4-Me₃-benzoic acid, m. 167°. From its mother liquors is obtained the isomeric 2,3,6-Me₃-benzoic acid, m. 106°. Durene can give only one acid of this series, durylic acid (cumylic acid), 2,4,5-Me₃-benzoic acid, m. 150°. Isodurene gives the three possible monobasic acids in nearly equal amounts. When the barium salts are crystallized the first to separate is that of α -isodurylic acid, 3,4,5-Me₃-benzoic acid, m. 215°. The acids are liberated from the mother liquors and are crystallized from ligroin. The first to separate is β -isodurylic acid, 2,4,6-Me₃-benzoic acid, m. 152°. From the mother liquors is obtained γ -isodurylic acid, 2,3,5-Me₃-benzoic acid, m. 127°.

The three possible tetramethylbenzoic acids have been made. The 2,3,4,5-Me₄-acid, m. 165° is made by oxidizing Me₅-benzene. The 2,3,4,6-acid, m. 140°, is made by oxidizing the corresponding methyl ketone obtained from isodurene, acetyl chloride and AlCl₃ in CS₂, at low temperature. The 2,3,5,6-acid, m. 179°, is similarly made from phosgene and durene.

The complex relationships of symmetry and melting points are well illustrated by the polymethylbenzoic acids.

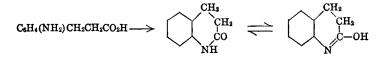
C. ARYL-SUBSTITUTED ALIPHATIC ACIDS

These are known in nearly as large numbers as the substituted benzoic acids. Because they usually have one or two alpha H atoms and may have reactive groups both in the side chain and the ring, their chemistry is very complex.

Phenylacetic acid, α -toluic acid, $C_6H_5CH_2CO_2H$, m. 77°, b. 265°, is available from benzyl cyanide, $C_6H_5CH_2CN$, b. 232°, which is readily formed from benzyl chloride and a cyanide. The expected substitution products involving the α - and aryl hydrogens are known. They give the normal reactions. An exception is o-amino-phenylacetic acid which cannot exist in the free form but

becomes oxindole, m. 120°.

$$C_{e}H_{1}(NH_{2})CH_{2}CO_{2}H \longrightarrow CH_{2}CO_{2}H$$


This is another example of the ease of ring closure when two mutually reactive groups are in the 1,5-position. *Phenylacetamide*, $C_6H_5CH_2CONH_2$, may be prepared from benzoyl chloride by the *Arndt-Eistert synthesis*.¹⁷

$$\begin{array}{c} C_{6}H_{5}COCl \xrightarrow{CH_{2}N_{2}} \\ C_{6}H_{5}COCl \xrightarrow{C_{6}H_{5}COCHN_{2}} \xrightarrow{NH_{3}, EtOH} \\ C_{6}H_{5}COCHN_{2} \xrightarrow{NH_{3}, EtOH} \\ Ag_{2}O \end{array}$$

A convenient preparation from acetophenone is by the Willgerodt reaction.¹⁸

$$C_6H_5COCH_3 \xrightarrow{(NH_4)_2S_x} C_6H_5CH_2CONH_2$$

 \mathfrak{g} -Phenylpropionic acid, hydrocinnamic acid, $C_{\mathfrak{g}}H_{\mathfrak{g}}CH_{2}CH_{2}CO_{2}H$, m. 48°, b. 280°, is obtained by the easy reduction of cinnamic acid either by nascent or catalytic hydrogen. Its α -amino derivative is phenylalanine, a protein decomposition product. When the NH₂ group is in the *o*-position, the free acid changes spontaneously to *hydrocarbostyril*, a dihydroquinoline derivative.

 α -Phenylpropionic acid, hydratropic acid, C₆H₅CH(CH₃)CO₂H, b. 265°, is obtained by reducing atropic acid formed by dehydrating tropic acid.

Since phenyl halides do not react with substances like Na-malonic ester, phenylethylmalonic ester, $C_6H_5(Et)C(CO_2R)_2$, the intermediate for the important soporific Luminal cannot be made from malonic ester. Several methods have been devised for its preparation.

1. Phenylacetic and oxalic esters are condensed and the phenyloxaloacetic ester is decomposed by heat.

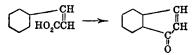
$$EtO_{2}C(Ph)CH_{2} + EtOCOCO_{2}Et \rightarrow EtO_{2}C(Ph)CHCOCO_{2}Et \rightarrow CO + PhCH(CO_{2}Et)_{2}$$

Treatment with Na and EtBr gives the desired product although the yield is not good.

¹⁷ "Org. Reactions." ¹⁸ *ibid.* 2. Benzylcyanide with sodamide in ether gives a sodium derivative which reacts with ethyl carbonate.¹⁹

 $\begin{array}{c} PhCH_{2}CN \xrightarrow{ NaNH_{2} } Et_{2}CO_{3} \\ \hline \end{array} PhCH_{1}CN)CO_{2}Et \xrightarrow{ HCl} PhCH_{1}(CO_{2}Et)_{2}, etc. \end{array}$

3. Benzyl cyanide can be ethylated by Na and EtBr.²⁰


$$\begin{array}{c} \operatorname{PhCH_2CN} \xrightarrow{\operatorname{Na}} \operatorname{PhEtCHCN} \xrightarrow{\operatorname{Na}} \\ \xrightarrow{\operatorname{ClCO_2Me}} \\ \operatorname{PhEtC(CN)CO_2Me} \xrightarrow{\operatorname{HCl}} \operatorname{PhEtC(CO_2Me)_2} \end{array}$$

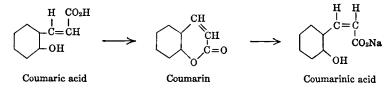
The phenylethylacetonitrile does not condense with ethyl carbonate.

Cinnamic acid, $trans-\beta$ -phenylacrylic acid, $C_8H_5CH=CHCO_2H$, m. 133°, b. 300°, occurs in natural balsams and resins and can be readily prepared by the Perkin reaction by heating benzaldehyde, sodium acetate and acetic anhydride. It gives the reactions of an alpha beta unsaturated acid and of a benzene compound. Nitration gives o- and p-nitro compounds. Fusion with KOH gives acetic and benzoic acids.

Allocinnamic acid, the *cis*-form, m. 68°, is prepared in a variety of ways but most readily by the catalytic reduction of phenylpropiolic acid. It exists in polymorphic forms as various isocinnamic acids, m. 59°, 38°, 80°, and possibly 131°.

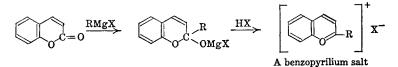
Two a-bromocinnamic acids, m. 120° and 131°, are obtained from cinnamic acid dibromide. Two β -bromocinnamic acids, m. 135° and 159°, are obtained by adding HBr to phenyl propiolic acid. The *cis* forms yield indenones with sulfuric acid.

o-Aminocinnamic acid, obtained by the reduction of the o-NO₂ acid from the direct nitration of allocinnamic acid, spontaneously changes to carbostyril, α -OH-quinoline, an example of the ease of 6-ring closure. This change also indicates the *cis* nature of the acid. The stereoisomeric o-NH₂-cinnamic acid does not change to a ring compound but gives ordinary cinnamic acid when its NH₂ group is replaced by H.²¹


¹⁹ Nelson, Cretcher. J. Am. Chem. Soc. 50, 2758 (1928).

²¹ Stoermer, Heymann. Ber. 45, 3099 (1912).

²⁰ Rising, Tsoh-Wu Zee. J. Am. Chem. Soc. 50, 1208 (1928).


AROMATIC OR BENZENE SERIES

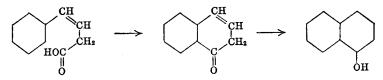
trans-o-Hydroxycinnamic acid, coumaric acid, is made by diazotizing the o-NH₂-acid or by the Perkin synthesis from salicylaldehyde. Vigorous dehydration with acetic anhydride gives coumarin, m. 67°, b. 290°, an inner anhydride. This dissolves in NaOH to give the salt of coumarinic acid the cis-o-OH-cinnamic acid.

Coumarin is an important natural and artificial perfume and flavoring material. It is used with vanillin in artificial vanilla extract and in fixing odors in perfumes.

Coumarin, with Grignard reagents, gives a peculiar type of pseudo base.

Caffeic acid, $3,4-(OH)_2$ -cinnamic acid, m. 220°, occurs in plant products, notably in coffee as *chlorogenic acid*, a di-depside in which it is esterified with the 3-OH of quinic acid. The 3-Me-ether of caffeic acid is *ferulic acid*, m. 168°, while the 4-Me-ether is *hesperitinic acid*, or isoferulic acid, m. 228°. Umbellic acid, $2,4-(OH)_2$ -cinnamic acid, readily changes to umbelliferone, m. 224°, a hydroxycoumarin. Aesculetin, daphnetin, scopoletin, limettin, and fraxetin are coumarins related respectively to the following cinnamic acids, $3,4-(OH)_2$ -, $2,3,4-(OH)_3$ -, 3-MeO-4-OH-, $2,4-(MeO)_2$ -, $2,3,4-(OH)_3$ -5-MeO-.

Piperic acid (I), m. 217°, b. 220° dec., as the piperidide *piperine*, is the chief constituent of pepper. Its synthesis from piperonal well illustrates the value of the aldol condensation and its modifications. The first step is a condensation with acetaldehyde and the second with Na acetate and Ac_2O .


$$CH_2O_2C_6H_3CHO \longrightarrow CH_2O_2C_6H_3CH = CHCHO \longrightarrow O - CH = CHCH = CHCO_2H$$

 $H_2C = O - (I)$

Atropic acid, α -phenylacrylic acid, $CH_2 = C(C_6H_5)CO_2H$, m. 107°, b. 267° dec., is made by dehydrating tropic acid. Fusion with KOH gives formic and phenylacetic acids.

β-Benzalpropionic acid, γ -phenylisocrotonic acid, γ -phenylvinylacetic acid, $C_{6}H_{6}CH=CH-CH_{2}CO_{2}H$, m. 86°, b. 302°, is readily obtained by a modified Perkin reaction using benzaldehyde, Na succinate and Ac₂O at 110°. The steps are probably as follows:

$$\begin{array}{cccc} PhCHO + CH_2CO_2Na & PhCHOH--CH--CO_2Na \\ & & & & | & \rightarrow \\ CH_2CO_2Na & & CH_2CO_2Na & \rightarrow \\ & & & PhCH--CHCO_2Na & PhCH=CH--CH_2CO_2Na \\ & & & & | & & \rightarrow \\ & & & & OCOCH_2 & & \rightarrow \\ & & & & & (I) \end{array}$$

Phenylparaconic acid, m. 99°, corresponding to (I) is a byproduct. Further heating converts it to the unsaturated acid. The latter on refluxing for some time gives α -naphthol.

Phenylpropiolic acid, $C_6H_5C \equiv CCO_2H$, m. 137°, is made by eliminating 2 HBr from cinnamic acid dibromide or its ester. With H_2O at 120° it gives CO_2 and $PhC \equiv CH$ while with sulfuric acid it gives $PhCOCH_2CO_2H$.

Aryl Substituted Aliphatic Hydroxy and Keto Acids

Mandelic acid, phenylglycollic acid, $C_6H_5CHOHCO_2H$, m. 118°, occurs in amygdalin and is made from benzaldehyde cyanohydrin (mandelonitrile), dec. 170°.

Phthalide, m. 73°, b. 290°, is the inner ester of o-hydroxymethyl-benzoic acid obtained by the reduction of phthalic anhydride or phthalyl chloride with Zn and HCl.

Tropic acid, α -phenyl- β -hydroxypropionic acid, HOCH₂CH(C₆H₅)CO₂H, m. 118°, obtained by the hydrolysis of its tropine ester, atropine, has been synthesized by reducing the condensation product of ethyl phenylacetate and ethyl formate.

 $\begin{array}{l} {\rm PhCH_2CO_2Et} \ + \ {\rm HCO_2Et} \ \rightarrow \ {\rm HCOCHPhCO_2Et} \ \rightarrow \\ {\rm HOCH} = {\rm CPhCO_2Et} \ \rightarrow \ {\rm HOCH_2CHPhCO_2Et} \end{array}$

Atrolactic acid, α -phenyl- α -hydroxypropionic acid, m. 93°.

Benzoylformic acid, phenylglyoxylic acid, $C_6H_5COCO_2H$, is a typical ketonic acid obtained by hydrolyzing benzoyl cyanide with cold conc. HCl.²²

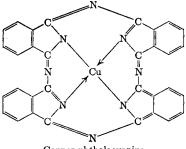
²² Oakwood, Weisgerber. Org. Syntheses 24, 16 (1944).

Benzoylacetic acid, $C_6H_6COCH_2CO_2H$, m. 103°, is obtained as its ester like acetoacetic ester by the condensation of Et benzoate and Et acetate by means of NaOEt. It and its ester resemble the other beta keto acids and their esters.

D. DIBASIC AROMATIC ACIDS

These have been made in great number and variety. Their properties depend on the position of the two carboxyl groups in relation to the aromatic ring, the side chain, if any, and to each other.

Phthalic acid, benzene-o-dicarboxylic acid, $C_6H_4(CO_2H)_2$, m. 213°, is formed by the oxidation of any benzene derivative having only two carbon substituents, these being in the ortho position. Naphthalene can be oxidized to phthalic acid in a variety of ways, including the famous method of oxidizing with concentrated sulfuric acid in presence of mercuric sulfate, supposedly discovered by the accidental breaking of a thermometer during a sulfonation experiment. Sodium amalgam converts it to di-, tetra- and hexahydrophthalic acids which are known in all the theoretically possible stereoisomeric forms.


Phthalic anhydride, m. 130°, b. 284°, is made cheaply in large quantities by the catalytic oxidation of naphthalene vapor with air under carefully controlled conditions. In addition to the ordinary reactions of an acid anhydride, it reacts with the p-H of phenols. The formation of phenolphthalein (I) is typical

$$C_{6}H_{4}(CO)_{2}O \rightarrow \begin{bmatrix} COC_{6}H_{4}OH \\ C_{6}H_{4} \end{bmatrix} \rightarrow \begin{bmatrix} C(OH)(C_{6}H_{4}OH)_{2} \\ C_{6}H_{4} \end{bmatrix} \rightarrow C_{6}H_{4} & O \end{bmatrix} \rightarrow C_{6}H_{4} & O \qquad (I)$$

Similarly fluorescein is made from resorcinol. With aromatic hydrocarbons, phthalic anhydride condenses readily in presence of $AlCl_3$ to give substituted *o*-benzoylbenzoic acids which are important intermediates for making anthraquinones.

Phthalic anhydride reacts with alcoholic NH_3 to give ammonium phthalamate, $NH_2COC_6H_4CO_2NH_4$. Treatment of this substance or the free acid with hypohalites gives anthranilic acid. Phthalic anhydride can be catalytically decarboxylated to benzoic acid (p. 692).

Phthalic anhydride also reacts with copper salts and urea to give copper phthalocyanine which is a blue pigment of extreme stability. Exhaustive chlorination of copper phthalocyanine gives a bright green, very stable pigment.

Copper phthalocyanine

Normal and acid esters of phthalic acid are known. The former are obtained in the usual way from the acid or anhydride and excess of alcohol refluxed with a small amount of HCl or H_2SO_4 . These esters are stable and very high boiling. They are extremely important as plasticizers. The dibutyl and di-2-ethylhexyl esters are used in place of mercury in high vacuum pumps of the vapor diffusion type. The latter ester has vapor pressures considerably less than the corresponding ones for mercury. The acid esters are obtained by the direct action of the anhydride and an alcohol. These are still acids and form salts. The salts with optically active bases like brucine can be used for separating d- and l- forms of optically active alcohols (p. 115).

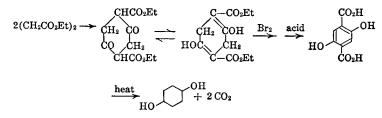
Nitration and sulfonation of phthalic anhydride give the 3- and 4-nitroand 3- and 4-sulfo-phthalic acids. The 3- and 4-isomers can be separated by differences in solubility, the former being less soluble. 3- and 4-aminophthalic acids can exist only as certain complex salts and as esters. Both free acids spontaneously lose CO_2 and give m-aminobenzoic acid. This is an unusual example of the activating effect of NH_2 on the o- and p-positions. Luminol is the hydrazide of 3-aminophthalic acid.

Heating the mercuric salt of phthalic acid gives CO_2 and anhydro-ohydroxymercuribenzoic acid.²³ Similarly 3-nitrophthalic acid gives the 2-mercuri-3-NO₂-benzoic acid derivative (OS) in which the 2-Hg can be replaced by halogen to give 2-halogen-3-NO₂-benzoic acids.

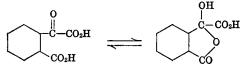
Phthalimide, $C_5H_4(CO)_2NH$, m. 238°, is made by passing NH_3 gas over hot phthalic anhydride. Its potassium compound is readily formed by adding conc. KOH to alcoholic phthalimide. It is the intermediate for the *Gabriel* synthesis of primary amines. Potassium 3-nitrophthalimide is a convenient reagent for the identification of organic halogen compounds.

23 "Org Syntheses."

Phthalyl chloride exists in both the symmetrical form, C₆H₄(COCl)₂, m.


 CCl_2

16°, and the unsymmetrical form, C_6H_4 O, m. 89°.


Phthalic anhydride and PCl_5 give the first which is converted to the second by heating with pure $AlCl_3.^{24}$ Apparently the $AlCl_3$ forms a more stable compound with the carbonyl group of the *unsym*-form than with either carbonyl of the true acid chloride form.

Isophthalic acid, benzene-1,3-dicarboxylic acid, m. 330°, is made by oxidizing *m*-xylene. It forms no anhydride. Its barium salt is readily soluble while those of the *o*- and *p*-phthalic acids are difficultly soluble. Its methyl ester melts at 68°. Uvitic acid, toluene-3,5-dicarboxylic acid, m. 290°, is obtained by oxidizing mesitylene.

Terephthalic acid, benzene-1,4-dicarboxylic acid, sublimes without melting. It is made by oxidizing p-toluic acid or p-cymene from spruce turpentine. Its Me and Et esters melt at 140° and 44° respectively. The theoretically possible stereoisomers of the di-, tetra- and hexahydroterephthalic acids have been made. Succinylosuccinic ester, obtained by the action of NaOEt on ethyl succinate, is a derivative of dihydroterephthalic acid.

Phthalonic acid, *o*-carboxybenzoylformic acid, is a good example of ringchain tautomerism.²⁵ For instance it gives two dimethyl derivatives, only one of which gives a semicarbazone.

E. POLYBASIC AROMATIC ACIDS

All the theoretically possible acids are known.

Benzenetricarboxylic acids. Hemimellitic acid, the 1,2,3-acid, m. 203° dec., is made by permanganate oxidation of acenaphthene. On heating the

²⁴ "Org. Syntheses."

25 Ann. Rep. Chem. Soc. (London) 1927, 114.

708

Hg salt, the 2-carboxyl is lost to give anhydro-2-hydroxymercuri-isophthalic acid. The Hg can be replaced by halogen to give 2-derivatives of isophthalic acid. Trimellitic acid, the 1,2,4-acid, m. 216° dec., is made by oxidizing abietic acid or colophony (rosin) with dilute nitric acid. The isopropyl group and the aliphatic part of the molecule are oxidized leaving three carboxyl groups. Trimesic acid, 1,3,5-, m. 350°, is available by a great variety of reactions including the oxidation of mesitylene, the hydrolysis of the nitrile from sym-benzenetrisulfonates and NaCN, and the hydrolysis of the ester from the action of NaOEt on ethyl formate and acetate. This is another example of successive aldol condensations which finally lead to a stable unreactive product.

$\begin{array}{l} \mathrm{HCO_2Et} + \mathrm{CH_3CO_2Et} \rightarrow \mathrm{HCOCH_2CO_2Et} \\ 2 \ \mathrm{HCOCH_2CO_2Et} \rightarrow \mathrm{EtO_2CCH_2CHOHCH(CO_2Et)CHO} \rightarrow \\ \mathrm{EtO_2CCH_2CHOHCH(CO_2Et)CHOHCH(CO_2Et)CHO} \end{array}$

The active carbonyl group is now in the 1,6-position to an α -H. Their reaction closes the ring. The loss of $3 H_2O$ from the secondary OH groups and the adjacent H atoms which are α - to carbethoxyl groups gives sym-C₆H₃(CO₂Et)₃. In trimesic acid, the carboxyl groups have little influence on each other.

Benzene tetracarboxylic acids are obtained by oxidizing the Me₄-benzenes. The melting points given are taken in sealed tubes as heat causes anhydride formation with greater or less ease. *Prehnitic acid*, 1,2,3,5-, m. 237°; *mellophanic acid*, 1,2,3,4-, m. 238°, Me₄ ester, m. 130°; *pyromellitic acid*, 1,2,4,5, m. 270°, Me₄ ester, m. 141°.

Benzene pentacarboxylic acid, m. 230°, is made by cold permanganate oxidation of pentamethylbenzene. *Mellitic acid*, benzene hexacarboxylic acid, $C_6(CO_2H)_6$, m. 288°, occurs as its aluminum salt in honey stone, brown coal and peat. It can be made from this salt or by oxidizing Me₆-benzene with cold permanganate. It is also formed in the oxidation of graphite and willow charcoal with nitric acid. Heat removes one or more carboxyl groups. Powdered coal in aqueous alkali reacts with oxygen at 200-300° and 500-1200 psi to convert about 50% of the carbon to mellitic acids, largely tri- and tetracarboxylic.²⁶

XVI. HYDROCARBONS WITH TWO OR MORE SEPARATE BENZENE NUCLEI AND THEIR DERIVATIVES

A. DIPHENYL AND ITS DERIVATIVES

Diphenyl, biphenyl, phenylbenzene, $C_6H_5C_6H_5$, m. 71°, b. 255°, is made commercially by heating benzene to a high temperature with the elimination of H₂. The by-products include *p*- and *m*-diphenylbenzenes, *sym*-triphenyl-

28 Franke, Kiebler. Chem. Ind. 58, 580 (1946).

Copyright © 1937; 1951 Dover Publications Retrieved from www.knovel.com

HYDROCARBONS

Hg salt, the 2-carboxyl is lost to give anhydro-2-hydroxymercuri-isophthalic acid. The Hg can be replaced by halogen to give 2-derivatives of isophthalic acid. Trimellitic acid, the 1,2,4-acid, m. 216° dec., is made by oxidizing abietic acid or colophony (rosin) with dilute nitric acid. The isopropyl group and the aliphatic part of the molecule are oxidized leaving three carboxyl groups. Trimesic acid, 1,3,5-, m. 350°, is available by a great variety of reactions including the oxidation of mesitylene, the hydrolysis of the nitrile from sym-benzenetrisulfonates and NaCN, and the hydrolysis of the ester from the action of NaOEt on ethyl formate and acetate. This is another example of successive aldol condensations which finally lead to a stable unreactive product.

$$\begin{split} \text{HCO}_2\text{Et} &+ \text{CH}_3\text{CO}_2\text{Et} \rightarrow \text{HCOCH}_2\text{CO}_2\text{Et} \\ & 2 \text{ HCOCH}_2\text{CO}_2\text{Et} \rightarrow \text{EtO}_2\text{CCH}_2\text{CHOHCH}(\text{CO}_2\text{Et})\text{CHO} \rightarrow \\ & \text{EtO}_2\text{CCH}_2\text{CHOHCH}(\text{CO}_2\text{Et})\text{CHOHCH}(\text{CO}_2\text{Et})\text{CHO} \end{split}$$

The active carbonyl group is now in the 1,6-position to an α -H. Their reaction closes the ring. The loss of $3 H_2O$ from the secondary OH groups and the adjacent H atoms which are α - to carbethoxyl groups gives sym-C₆H₃(CO₂Et)₃. In trimesic acid, the carboxyl groups have little influence on each other.

Benzene tetracarboxylic acids are obtained by oxidizing the Me₄-benzenes. The melting points given are taken in sealed tubes as heat causes anhydride formation with greater or less ease. *Prehnitic acid*, 1,2,3,5-, m. 237°; *mellophanic acid*, 1,2,3,4-, m. 238°, Me₄ ester, m. 130°; *pyromellitic acid*, 1,2,4,5, m. 270°, Me₄ ester, m. 141°.

Benzene pentacarboxylic acid, m. 230°, is made by cold permanganate oxidation of pentamethylbenzene. *Mellitic acid*, benzene hexacarboxylic acid, $C_6(CO_2H)_6$, m. 288°, occurs as its aluminum salt in honey stone, brown coal and peat. It can be made from this salt or by oxidizing Me₆-benzene with cold permanganate. It is also formed in the oxidation of graphite and willow charcoal with nitric acid. Heat removes one or more carboxyl groups. Powdered coal in aqueous alkali reacts with oxygen at 200-300° and 500-1200 psi to convert about 50% of the carbon to mellitic acids, largely tri- and tetracarboxylic.²⁶

XVI. HYDROCARBONS WITH TWO OR MORE SEPARATE BENZENE NUCLEI AND THEIR DERIVATIVES

A. DIPHENYL AND ITS DERIVATIVES

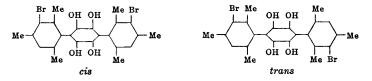
Diphenyl, biphenyl, phenylbenzene, $C_6H_5C_6H_5$, m. 71°, b. 255°, is made commercially by heating benzene to a high temperature with the elimination of H₂. The by-products include *p*- and *m*-diphenylbenzenes, *sym*-triphenyl-

²⁶ Franke, Kiebler. Chem. Ind. 58, 580 (1946).

709

benzene, 4,4'-diphenyl-diphenyl, and a little triphenylene (1,2,3,4-dibenzo-naphthalene).¹

In the laboratory, diphenyl is obtained by passing benzene vapor through hot iron tubes (Berthelot). Commercially the heating is made more effective by using melted lead containing various catalysts.


Diphenyl can also be made in the following ways, among others:

2 PhBr + 2 Na \rightarrow Ph-Ph (Fittig) 2 PhI + 2 Cu \rightarrow Ph-Ph + Cu₂I₂ (Ullmann) 2 PhMgBr + 2 CuCl₂ \rightarrow Ph-Ph + MgBr₂ + MgCl₂ + Cu₂Cl₂

An ether solution of $FeCl_3$ gives a 90% yield of diphenyl from PhMgBr. Because of its stability, diphenyl is used as a high temperature heat transfer medium, as in Dowtherm, a eutectic mixture of diphenyl and diphenyl oxide.

Great numbers of derivatives of diphenyl have been studied because of (1) its cheapness as an intermediate and (2) the peculiar isomerism of many of its o,o'-substitution products. Although these contain no asymmetric carbon, certain of them were early resolved into optical isomers. A simple example of such a resolvable substance is 6-NO_2 -diphenyl-2,2'-dicarboxylic acid. At first it was believed that the isomerism indicated the existence of the two phenyl groups in two parallel planes. The isomerism is actually due to a restricted rotation about the 1,1'-bond in compounds in which the substituents in the 2,2', 6,6' positions are large enough to prevent free rotation.² The work of Adams and his co-workers has shown this hypothesis to be correct. A typical preparation of a resolvable diphenyl derivative is that of 6,6'-dinitro-diphenyl-2,2'-dicarboxylic acid from the action of Cu on 2-iodo-3-nitrobenzoic acid obtained from the mercuration product of 3-nitrophthalic acid.

In terphenyl compounds having the middle ring completely substituted a peculiar type of *cis-trans* isomerism is possible.³ Complete ortho substitution by suitable groups in the end rings restricts rotation and makes isomerism possible as in the following pair of compounds

The *interference* of the Me and OH groups in the *o*-positions prevents free rotation and tends to hold the end rings in a plane at right angles to that of the middle ring.

¹ Bachman. J. Am. Chem. Soc. 49, 2089 (1927).

² Turner, Kenyon, Mills. Ann. Rep. Chem. Soc. (London) 1926, 119.

³ Adams, Shidneck. J. Am. Chem. Soc. 53, 2203 (1931).

HYDROCARBONS

Two chief methods are available for making unsymmetrical biaryls.⁴ These may be illustrated by the following examples:

$$BrC_6H_4N_2Cl + C_6H_6 + NaOH \rightarrow BrC_6H_4C_6H_5$$

and

$$BrC_6H_4N(NO)COCH_3 + C_6H_6 \rightarrow BrC_6H_4C_6H_5 + N_2 + CH_3CO_2H_3$$

Many higher analogs of diphenyl are known. For instance, sexiphenyl, $C_6H_5(C_6H_4)_4C_6H_5$, has been made as follows:

$$2 \text{ PhN} = \text{NPh} + \text{Ph} - \text{Ph} \xrightarrow{\text{HCl}} 2 \text{ Ph} - \text{C}_{6}\text{H}_{4}\text{C}_{6}\text{H}_{4}\text{NH}_{2} \rightarrow 2 \text{ ArI} \xrightarrow{\text{Ag}} \text{Ar} - \text{Ar}$$

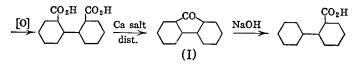
Diphenyl can be halogenated, nitrated and sulfonated in the usual way. Substitution takes place first in the 4- and 4'-positions and then in the positions ortho to the bond between the phenyl groups.

Derivatives of Diphenyl

The univalent group, $C_6H_5-C_6H_4-$ is called *xenyl*. All the ordinary derivatives are known. Their chemistry closely parallels that of the phenyl compounds.

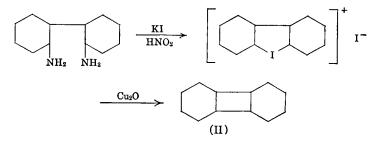
4-Aminodiphenyl, p-xenylamine, $C_6H_6C_6H_4NH_2$, can be made by nitration and reduction from diphenyl in the usual way or by the Friedel-Crafts reaction on azobenzene and benzene.

Benzidine, 4,4'-diaminodiphenyl, m. 128°, b. 400°, is obtained by the action of acids on hydrazobenzene. It forms a sparingly soluble sulfate which may be used in the determination of sulfur.⁵ It and related substances such as *tolidine*, 3,3'-Me₂-benzidine, m. 128°, and *dianisidine*, 3,3'-(MeO)₂-benzidine, m. 138°, made from o-nitrotoluene and o-nitrophenol, are useful in making complex azo dyes. Benzidine is a dangerous carcinogenic compound causing malignant tumors in the bladder. Contact with the skin must be avoided. *Diphenyline*, 2,4'-diaminodiphenyl, m. 45°, is obtained in small amounts in the preparation of benzidine. Its sulfate is soluble as contrasted with that of benzidine. $N-Me_4$ -benzidine, Me₂NC₆H₄C₆H₄NMe₂, is formed by the action of 1 mol of dimethylaniline hydrochloride with 1 mol of NaNO₂.


Diphenic acid, diphenyl-2,2'-dicarboxylic acid, m. 229°, is readily prepared by the oxidation of phenanthrene. It readily forms diphenic anhydride, m. 217°. Distillation of its calcium salt gives *fluorenone* (I).

The other carboxylic acids of diphenyl are made by the usual processes for aromatic acids. The three monobasic acids are o-, m-, and p-phenylbenzoic acids, m. 114°, 162°, and 219°. The ortho acid can best be made by fusing

^{4 &}quot;Org. Reactions," II. p. 224.


⁵ Platner. Ind. Eng. Chem., Anal Ed. 18, 334 (1946).

fluorenone with a base. The preparation from phenanthrene takes the following steps:

The chemistry and stereochemistry of diphenyls.^{6,7}

Diphenylene, $(C_6H_4)_2$, (II) has been made from 1,1'-diaminodiphenyl by the following series of reactions:⁸

Its nature is shown by molecular weight, oxidation to phthalic acid, and hydrogenation to diphenyl.

p-Diphenylbenzene, $C_6H_5C_6H_4C_6H_5$, m. 215°, is obtained among other products from *p*-Br₂-benzene, bromobenzene and Na. *sym*-Triphenylbenzene, $C_6H_3(C_6H_5)_3$, m. 170°, can be made by the action of HCl gas on acetophenone.

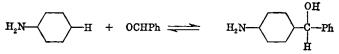
B. DIPHENYLMETHANE

 $(C_6H_6)_2CH_2$, m. 26°, b. 262°, is made from benzyl chloride, benzene and AlCl₃. It can similarly be made from benzene and CH_2Cl_2 , and by the action of sulfuric acid on a mixture of benzene and methylal, $H_2C(OMe)_2$, or benzene and benzyl alcohol. The methylene H atoms are highly reactive as would be expected from their being α - to two phenyl groups. Replacement by bromine is easy. The resulting monobromide is hydrolyzed to benzhydrol,

$(C_6H_5)_2CHOH,$

m. 69°, b. 299°. When benzhydrol is substituted in the para position by o,p-orienting groups such as NH₂, NMe₂, OH, OMe, etc., substituting reagents such as bromine, nitric acid, nitrous acid, etc. cause a splitting at the carbinol

⁶ Chem. Rev. 12, 261 (1933).


⁷ Ann. Rep. Chem. Soc. (London) 1933, 255.

⁸ Lothrop. J. Am. Chem. Soc. 63, 1187 (1941).

group.9-11

$\frac{Br_2}{PhCHOHC_6H_4NH_2} \longrightarrow PhCHO + C_6H_2Br_3NH_2$

This change can be regarded as the removal of a product of the reversal of an aldol condensation by which the benzhydrol could be formed from benzaldehyde and the amine or phenol.

The dye intermediate, Michler's hydrol, is $p_{,p'}$ -(Me₂N)₂-benzhydrol.

 $p_{,p}'$ -Diaminodiphenylmethane, (H₂NC₆H₄)₂CH₂, and its N-Me₄ derivative are readily obtained from formaldehyde with aniline or Me₂-aniline. In the first case intermediate steps can be distinguished.

$$PhNH_2 + H_2CO \rightarrow PhN = CH_2 \xrightarrow{PhNH_2} (H_2NC_6H_4)_2CH_2$$
$$\xrightarrow{PhNH_3Cl} PhNH_3Cl$$

Diamides are formed readily on heating with monobasic aliphatic acids. They have been suggested as derivatives for identification.¹²

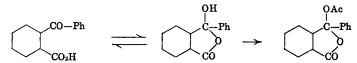
Diphenylmethane-o-carboxylic acids are important intermediates in making anthraquinones. o-Benzylbenzoic acid, m. 114°, is readily obtained by Na_xHg reduction of o-benzoylbenzoic acid. Sulfuric acid readily closes a 6-ring to form anthrone which gives anthraquinone on oxidation. 2,2'-Dihydroxy-5,5'-dichlorodiphenylmethane, DDM, is an important mildew-proofing agent.

Oxidation of diphenylmethane gives benzophenone, $(C_6H_5)_2CO$, b. 305°, which exists in polymorphic forms m. 48°, 26°, and 51°. It is better prepared from the hydrolysis of Ph₂CCl₂ prepared from benzene, CCl₄ and AlCl₃.¹³ Its oxime melts at 142°.¹⁴ The reactions of benzophenone and its substitution products are those which would be expected of a ketone with no α -H. Thus it is split by sodamide.

$$Ph_2CO + NaNH_2 \rightarrow PhCONH_2 + C_6H_6$$

Unsymmetrically substituted benzophenones may form isomeric oximes. Thus anisylphenyl ketone gives two oximes, one of which on Beckmann rearrangement with PCl_5 or AcCl gives PhCONHAn and the other AnCONHPh. These can be identified by hydrolysis to benzoic acid and anisidine and to

⁹ Clarke. J. Am. Chem. Soc. 33, 1135 (1911).
 ¹⁰ Esselen. J. Am. Chem. Soc. 36, 308 (1914).
 ¹¹ Kohler. J. Am. Chem. Soc. 38, 1205 (1916).
 ¹² Ralston. J. Am. Chem. Soc. 61, 1604 (1939).
 ¹³ "Org. Syntheses."
 ¹⁴ ibid.


anisic acid and aniline respectively.

Regardless of the mechanism of the process, the net change can be regarded as an interchange of the OH with the group *trans* to it.¹⁵

Michler's ketone, an important dye intermediate, is made by phosgene and dimethylaniline. No $AlCl_3$ is needed.

$$2 \text{ PhNMe}_2 + \text{COCl}_2 \rightarrow \text{CO}(\text{C}_6\text{H}_4\text{NMe}_2)_2$$

Benzophenone carboxylic acids can be made by oxidizing the homologs of benzophenone. The o-compound, o-benzoylbenzoic acid, m. 127°, is readily available as an intermediate in anthraquinone manufacture from benzene, phthalic anhydride and AlCl₃. As a gamma keto acid it exists in equilibrium with a lactone-hemiacetal form as is evidenced by its acetylation.

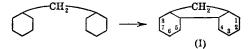
Reduction by $Na_{x}Hg$ changes benzoylbenzoic acids to benzylbenzoic acids. The most important reaction of *o*-benzoylbenzoic acid is its easy ring closure with $H_{2}SO_{4}$ or $P_{2}O_{5}$ at 180° to give anthraquinone.¹⁶

1,1-Diphenylethane, $(C_6H_5)_2CHCH_3$, b. 286°, is made from paraldehyde, benzene and H₂SO₄ or from benzene, a cuprous chloride catalyst and acetylene (Nieuwland). 1,1-Diphenylethylene, $(C_6H_5)_2C=CH_2$, b. 277°, is made from PhMgBr and ethyl acetate.¹⁷ It polymerizes very readily in the presence of acids. It reacts with metallic potassium to give a compound which with water or acid gives 1,1,4,4-tetraphenylbutane.¹⁸ This reaction is entirely like the bimolecular reduction of a carbonyl compound to give a pinacol. Electronically

The potassium first adds to give a "free radical," two of which unite.

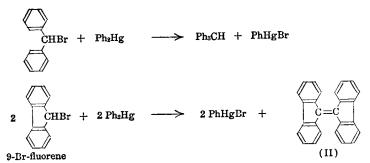
¹⁵ Ann. Rep. Chem. Soc. (London) 1922, 95.
 ¹⁶ Gleason. J. Am. Chem. Soc. 51, 310 (1929).
 ¹⁷ "Org. Syntheses."
 ¹⁸ Schlenk. Ber. 47, 473 (1914).

Benzilic acid, diphenylglycollic acid, $(C_6H_5)_2C(OH)CO_2H$, m. 150°, is obtained by the action of benzil and a base. The oxidation of benzoin to benzil and the rearrangement of the latter can be carried out in one operation.¹⁹


3 PhCHOHCOPh + NaBrO₃ + 3 NaOH
$$\rightarrow$$

3 Ph₂C(OH)CO₂Na + NaBr + 3 H₂O

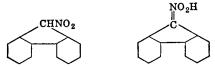
Benzilic acid is readily reduced to diphenylacetic acid, $(C_6H_5)_2CHCO_2H$, m. 145°, by HI formed by red P, I₂ in glacial acetic acid.²⁰ The hydrochloride of the diethylaminoethyl ester of diphenylacetic acid,


(C₆H₅)₂CHCO₂CH₂CH₂NEt₂. HCl

is used for anesthesia of the lower intestinal tract.

Related to diphenylmethane and to diphenyl is *fluorene* (I), diphenylenemethane, m. 116°, b. 295°, found in coal tar and formed from diphenylmethane by passage through a red hot Fe tube.

It is readily oxidized to fluorenone, diphenylene ketone, m. 84°, which can be educed to *fluorenyl alcohol*, 9-fluorenol, m. 153°. Fusion of the ketone with KOH gives diphenyl-2-carboxylic acid. 9-Bromofluorene shows a marked contrast to the analogous diphenylbromomethane. While the latter reacts with alcoholic KOH and with diphenylmercury to give metatheses producing diphenylmethyl ethyl ether and triphenylmethane, the former with both reagents gives bis-diphenyleneethylene (II), red crystals, m. 188°.



Thus this bromide acts as a bromide of a dibenzocyclopentadiene rather than a phenylated methyl bromide. The red hydrocarbon is also formed by the action of PbO₂ on fluorene at 330°. Fluorene with SeO₂ gives only 5% fluorenone

¹⁹ "Org. Syntheses." ²⁰ "Org. Syntheses." whereas diphenylmethane under identical conditions gives 87% benzophenone.²¹ With hypochlorite solution, fluorene gives a small yield of fluorenone.²²

Certain Grignard reagents have been found to react with bidiphenyleneethylene to give the corresponding substituted ethanes. This is the first time a Grignard reagent has been successfully added to an olefin.²³

Phenanthraquinone, with alkali, gives the benzilic acid rearrangement to give *diphenyleneglycolic acid*, (9-hydroxyfluorene-9-carboxylic acid), m. 162°. 9-Nitrofluorene has been prepared in the true and acinitro forms from fluorene, ethyl nitrite and KOEt.²⁴

C. DIBENZYL AND ITS DERIVATIVES

Dibenzyl, 1,2-diphenylethane, $C_6H_5CH_2CH_2C_6H_5$, m. 53°, b. 284°, is best made by ethylene chloride, benzene and AlCl₃. It can be oxidized catalytically to benzaldehyde. *Stilbene*, trans-1,2-diphenylethylene, $C_6H_5CH = CHC_6H_5$, m. 125°, b. 307°, can be made in a variety of ways including the action of toluene on PbO at a red heat and by the action of benzylmagnesium chloride with benzaldehyde. The alcohol first formed is dehydrated with great ease because both the OH and H are α - to phenyl. *Isostilbene*, b. 143° (20 mm) is the *cis* form.

Diethylstilbestrol, stilbestrol, m. 171°, is a completely synthetic estrogen which has the action of estrone and is claimed to be capable of replacing the natural hormone in every way (NNR 436). It is several times as potent as estrone.

In *hexestrol* (NNR 442), which has similar physiological action, the double bond is absent.

Stilbene dibromide, $C_6H_5CHBrCHBrC_6H_5$, m. 237°, reacts with alcoholic KOH to give first bromostilbene and then *tolan*, diphenylacetylene, $C_6H_5C \equiv CC_6H_5$, m. 62°, b. 300°. With some reagents, which might be expected to give replacement of the Br atoms, stilbene dibromide instead gives

- ²² Schiessler. J. Am. Chem. Soc. 70, 3958 (1948).
- ²³ Fuson, Porter. J. Am. Chem. Soc. 70, 895 (1948).
- ²⁴ Ann. Rep. Chem. Soc. (London) 1908, 91.

716

²¹ Postovskii. Ber. 68B, 852 (1935).

up bromine. Thus with KSH it gives stilbene. Similarly with di-*p*-tolylmercury it gives stilbene and tolyl bromide. With silver acetate, stilbene dibromide gives two isomeric diacetates which on hydrolysis form *hydrobenzoin* and *isohydrobenzoin*, the *meso* and *racemic* forms respectively of 1,2-Ph₂glycol, $C_6H_5CHOHCHOHC_6H_5$, m. 138° and 119°. The latter has been resolved by manual sorting of the enantiomorphic crystals.²⁵ Tolan on reduction gives *sym*-diphenylethane. Oxidation with SeO₂ gives a 35% yield of benzil.²⁶ Benzoin, phenylbenzoylcarbinol, $C_6H_5CHOHCOC_6H_5$, m. 134°, is made from benzaldehyde and NaCN solution.²⁷ Its great ease of reduction is probably due to an enediol form, PhC(OH)=C(OH)Ph. It has been suggested as a qualitative reagent for Zn⁺⁺, with which a green fluorescence is produced.²⁸

Benzil, dibenzoyl, $C_6H_6COCOC_6H_5$, yellow crystals, m. 95°, is obtained by oxidizing benzoin with nitric acid or with an alkaline copper solution.²⁹

Reduction of benzil gives all the theoretically possible compounds, namely, benzoin, PhCOCHOHPh, hydrobenzoin, PhCHOHCHOHPh, desoxybenzoin, PhCH₂COPh, diphenylethane, etc. The last two products are obtained by reduction with HI. The ready production of benzoin is not an indication that one carbonyl group is unusually susceptible to reduction. The mechanism of the process is indicated by the action of alkali metals or of the equivalent $(MgI_2 + Mg)$ combination.³⁰

$$\begin{array}{c} PhC=O \quad PhC-OMgI \\ | \quad \rightarrow \quad || \quad \rightarrow \quad || \\ PhC=O \quad PhC-OMgI \quad \rightarrow \quad || \\ PhC-OH \quad \rightarrow \quad || \\ PhC=O \quad PhC=O \end{array}$$

Thus the reaction is initiated by a 1,4-addition to the system, O = C - C = 0.

Heating benzil with alcoholic KOH gives the *benzilic acid rearrangement* to form potassium benzilate, $Ph_2C(OH)CO_2K$. The conversion of benzoin to benzil and then to benzilic acid can be combined by heating the former with NaBrO₃ + NaOH.³¹

Ammonium cyanide (NaCN + NH₄Cl) splits benzil to give benzamide and benzaldehyde cyanohydrin.

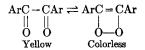
Benzil monoxime exists in two forms, α -, m. 134°, β -, m. 113°. The following are the configurations

²⁵ Erlenmeyer. Ber. 30, 1531 (1897).

²⁶ Postovskii. Ber. 68B, 852 (1935).

27 "Org. Syntheses."

²⁸ White. Ind. Eng. Chem., Anal. Ed. 15, 599 (1943).


³¹ "Org. Syntheses."

^{29 &}quot;Org. Syntheses."

³⁰ Gomberg. J. Am. Chem. Soc. 49, 2584 (1927).

These are based on a variety of evidence including the formation of metallic derivatives of the α -form, the greater volatility of the β -form (due to a chelate ring),³² and the formation of the benzoyl derivative of the β -oxime from triphenylisoxazole and O₃.^{33,34} Three forms of *benzildioxime* are definitely known: α -, m. 237°, β -, m. 207°, γ -, m. 163°.^{35,36} A δ -form has been reported but not confirmed.^{37,38}

Various substituted benzils have been prepared in colorless as well as in the ordinary yellow forms.^{39,40} The colorless forms react only slowly with 1,2-diamines while the yellow forms react rapidly to give quinoxalines. The condition may be a peculiar bond tautomerism

Desoxybenzoin, phenyl benzyl ketone, $C_6H_6COCH_2C_6H_5$, m. 55°, is best made from benzene, phenylacetyl chloride and AlCl₃.⁴¹ PhCOCHPh is the *desyl group*. The CH₂ group in desoxybenzoin shows the same reactions as that group in 1,3-dicarbonyl compounds such as malonic and acetoacetic esters. Thus it gives a sodium compound and condenses with aldehydes in presence of catalysts such as piperidine (Knoevenagel) and adds to the conjugated system in $\alpha\beta$ -unsaturated carbonyl compounds.⁴²

D. TRIPHENYLMETHANE AND ITS DERIVATIVES

Triphenylmethane compounds are readily formed. Just as one phenyl group activates an α -carbon group, so two phenyl groups on the same carbon have an even more pronounced effect on α -groups. This may be illustrated by the stepwise action of CCl₄ with benzene in presence of AlCl₃

 $\mathrm{CCl}_4 \rightarrow \mathrm{Ph}\mathrm{CCl}_3 \rightarrow \mathrm{Ph}_2\mathrm{CCl}_2 \rightarrow \mathrm{Ph}_3\mathrm{CCl}$

Each chloride is much more reactive than the preceding one. The last chloride forms a very stable compound with $AlCl_3$ (p. 719). The introduction of another phenyl group is not possible by any ordinary process. A similar result is found with benzaldehyde and benzene in presence of acid condensing agents.

$PhCHO \rightarrow PhCHOHPh \rightarrow Ph_{3}CH$

³² Sidgwick. J. Chem. Soc. 127, 907 (1925).

³³ Meisenheimer. Ber. 54B, 3195 (1921).

³⁴ Ann. Rep. Chem. Soc. (London) 1922, 8; 1925, 106; 1926, 127.

³⁵ ibid. 1921, 88; 1922, 95; 1924, 111.

³⁶ Ponzio. Gazz. chim. ital. 62, 415 (1932).

³⁷ Atack. J. Chem. Soc. 119, 1175 (1921).

³⁸ Meisenheimer. Ber. 57B, 276 (1924).

³⁹ Irvine. Proc. Chem. Soc. 23, 62 (1907).

⁴⁰ Ann. Rep. Chem. Soc. (London) 1922, 109.

^{41 &}quot;Org. Syntheses."

⁴² Ionescu. Bull. soc. chim. 51, 171 (1932).

Groups like OH, NH₂ NR₂, etc. which activate p-H make such triphenylmethane condensations even easier.

Triphenylmethane, tritane, $(C_6H_5)_3$ CH, m. 93°, b. 360°, can be made from CHCl₃ and benzene by the Friedel-Crafts reaction but is better made from carbon tetrachloride.⁴³ The reaction mixture is decomposed with ether.

$$Ph_3CCl.AlCl_3 + Et_2O \rightarrow Ph_3CH + EtCl + MeCHO + AlCl_3$$

The tertiary H is easily replaced by halogen, by OH by means of oxidizing agents, and by metallic potassium on heating. In contrast to this reactivity of the tertiary H is the conversion by cold fuming nitric acid to the trinitro compound, $HC(C_6H_4NO_2)_3$, m. 207°. Reduction gives the *p*-triamino compound, paraleucaniline which, on oxidation, gives pararosaniline. Oxidation of the trinitro compound with chromic acid gives the corresponding carbinol.

A peculiar formation of tritane which shows the inadequacy of the simpler conception of steric hindrance is by the action of sodium diphenylmethyl with diphenyl sulfoxide.

Triphenylchloromethane, trityl chloride, $(C_6H_5)_3CCl$, m. 112°, b. 310°, is readily prepared from triphenylcarbinol. It gives the reactions of a tertiary chloride. In addition, it reacts on boiling with alcohol to give triphenylmethyl ethyl ether. The ease of introducing the *trityl* group in place of a primary alcoholic hydroxyl is utilized in making trityl derivatives of carbohydrates. Introduction of one such group in place of the H of the terminal $-CH_2OH$ often gives a fairly high melting solid. The process is carried on in cold pyridine solution.

Trityl chloride forms a very stable compound with AlCl₃ which is interesting electronically.

$$\begin{array}{c} Ph & : Ci: \\ \vdots & \vdots & \vdots \\ Ph: C: Ci: Ci: Ai: Ci: \\ Ph & : Ci: \\ Ph & : Ci: \\ \end{array}$$

This compound is the main product of the action of CCl₄ with benzene and AlCl₃. It reacts with ether to give triphenylmethane.⁴⁴

Trityl chloride acts like an inorganic chloride with silver nitrate and conc. H_2SO_4 to give AgCl and HCl gas respectively. Tritylmagnesium chloride can be obtained in excellent yields under carefully controlled conditions.⁴⁵

Trityl bromide, $(C_6H_\delta)_3CBr$, m. 152°, is best made by the action of bromine on Ph₃CH.

Triphenylcarbinol, trityl alcohol, $(C_6H_5)_3COH$, m. 159°, is readily available from benzophenone and PhMgBr. It is a typical tertiary alcohol except that

⁴³ "Org. Syntheses."

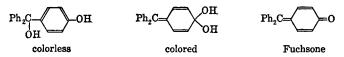
44 ibid.

⁴⁶ Gilman, Zoellner. J. Am. Chem. Soc. 51, 3493 (1929).

of course, olefin formation is not possible. Dehydration readily gives the ether. The reactivity of the OH is seen from the ready reaction with formic acid to give tritane and CO_2 .

Triphenylmethylamine, tritylamine, $(C_6H_6)_3CNH_2$, m. 105° is made from NH₃ and a trityl halide. The NH₂ is easily removed by hydrolysis. Boiling with alcohol replaces it by OEt.

Triphenylmethyl, $(C_6H_8)_3C-,^{46}$ is obtained by the action of metals on trityl halides in absence of air or by reducing agents like vanadous chloride⁴⁷ with the halides or the carbinol. It absorbs oxygen to give a peroxide, $Ph_3C-O-O-CPh_3$. The *free radical* exists in equilibrium with hexaphenylethane.


$$2 \operatorname{Ph_{3}C} \rightleftharpoons \operatorname{Ph_{3}C} - \operatorname{CPh_{3}}$$

Electronically, the free radical is neutral but unstable because it has an odd electron.

Ph .. Ph : C· .. Ph

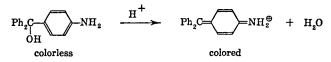
Since 1900 a tremendous mass of information has been developed about *tervalent* carbon and *free radicals* as illustrated by triphenylmethyl and related substances. ("Atomic and Free Radical Reactions," Steacie, ACS Monograph, Reinhold, N.Y.C., 1946.)

Hydroxytriarylcarbinols present a type of tautomerism which is of the utmost importance in the triphenylmethane dyes. Thus p-hydroxytriphenylcarbinol can be obtained in a yellow form, m. 140°, which loses water readily to give fuchsone or in a colorless form, m. 159°, which loses water only slowly.⁴⁸

Bases turn the colorless form red at once. The OH^- ion removes the H^+ from the phenolic hydroxyl. This causes a shift of electrons in the 6-atom chain to liberate the tertiary hydroxyl.

$$\begin{array}{c} \underbrace{OH^{-}}_{\text{H}_{2}O} + :C:C::C::C::O:\Theta \rightleftharpoons :C::C:C::C:O\\ \text{Colorless}} ::\Theta \rightleftharpoons :C::C:C::C::C:O\\ \underset{\text{Red}}{:O:} + OH^{\ominus}\\ \end{array}$$

⁴⁶ Gomberg. J. Am. Chem. Soc. 22, 757 (1900).


⁴⁷ Conant, Sloan. J. Am. Chem. Soc. 45, 2466 (1923).

⁴⁸ Anderson, Gomberg. J. Am. Chem. Soc. 50, 203 (1928).

720

 H^+ ions add to the : C: O system to give : C: O : H thus reversing the change. This series of changes shows that the hydroxytrityl alcohol, in common with the related acid tritane dyes, is a pseudo acid.

p-Aminotriphenylcarbinol is a colorless compound which turns red with acids. The difference in the two compounds is that between the benzenoid and quinoid structures.

The colored compounds are salts of *fuchsonimine*. The electronic shift in the 6-atom chain is entirely analogous to that in the corresponding phenolic compound except that in this case the change is initiated by H^+ instead of by OH⁻. The tertiary hydroxyl is removed by the H^+ ion and the electron shift follows

$$\stackrel{\mathrm{H^+}}{\longrightarrow} \operatorname{H_2O} + : \stackrel{\mathrm{C}}{\underset{\ast}{\mathrm{C}}} : \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{C}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{H}}{\underset{\mathrm{C}}{\mathrm{::}}} \stackrel{\mathrm{H}}{\underset{\mathrm{H}}{\mathrm{:}}} \stackrel{\mathrm{H}}{\underset{\mathrm{H}}} \stackrel{\mathrm{H}}}{\underset{\mathrm{H}}} \stackrel{\mathrm{H}}}{\underset{\mathrm{H}} \stackrel{\mathrm{H}}} \stackrel{\mathrm{H}}{\underset{\mathrm{H}}} \stackrel{\mathrm{H}}{\underset{\mathrm{H}}} \stackrel{\mathrm{H}}}{\underset{\mathrm{H}}} \stackrel{\mathrm{H}}} \stackrel{\mathrm{H}} \stackrel{\mathrm{H}} \stackrel{\mathrm{H}}}{\underset{\mathrm{H}}} \stackrel{\mathrm{H}}} \stackrel{\mathrm{H}} \stackrel{\mathrm{H}} \stackrel{\mathrm{H}}} \stackrel{\mathrm{H}} \stackrel{\mathrm{H}} \stackrel{\mathrm{H}} \stackrel{\mathrm{H}}} \stackrel{\mathrm{H}} \stackrel$$

Hydroxyl ions reverse the change by adding to the C^* . Thus aminotrityl alcohol and the related basic tritane dyes are *pseudo-bases*.

E. TRIPHENYLMETHANE DYES

The colored compounds of the monohydroxy- and monoaminotriphenylcarbinols are not useful as dyes because they contain no *auxochrome groups*. This lack can be overcome by additional acidic or basic groups such as OH, NH_2 , NMe_2 etc. These not only fix the dye to the mordant or the fiber but modify its shade as well.

The dyes are closely related to colorless tritane derivatives. These are called *leuco-compounds*. Oxidation converts them to the corresponding tertiary alcohols which readily change from the colorless benzenoid forms to the quinoid dyes. These colorless alcohols are *pseudo acids* or *pseudo bases* because with bases or acids they give salts of different structure from the parent substances.

The triphenylmethane dyes fall in two main groups, the acid and the basic types.

1. Acid dyes. These contain a *quinone* grouping with additional acid groups. They are used with mordants to give colored *lakes*.

a. Aurins are related to hydroxytriphenylmethane.

b. Phthaleins have a carboxyl or sulfonic acid group in one of the rings ortho to the methane carbon.

2. Basic dyes. These contain a *quinonimine* grouping with additional basic groups. These dye silk and wool directly.

a. Malachite green and related dyes have two of the phenyl groups substituted with basic groups.

b. Rosaniline or magenta dyes have basic groups in all three phenyls.

Aurin Dyes.

These are hydroxy derivatives of fuchsone (p. 720).

Benzaurin, *p*-hydroxyfuchsone, is made by condensing benzaldehyde with phenol and oxidizing the leuco compound (I).

Aurin, pararosolic acid, is the corresponding dihydroxy compound. It can be made in a variety of ways, the commonest of which is the heating of phenol with oxalic acid and H_2SO_4

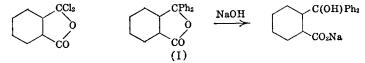
$$\begin{array}{c} 3 \text{ } \text{C}_6\text{H}_5\text{OH} + \text{H}_2\text{C}_2\text{O}_4 \rightarrow \\ \text{CO}_2 + 2 \text{ } \text{H}_2\text{O} + \text{CH}(\text{C}_6\text{H}_4\text{OH})_3 \rightarrow (\text{HOC}_6\text{H}_4)_2\text{C} = \text{C}_6\text{H}_4 = \text{O} \\ \text{Leucaurin} \\ \text{Aurin} \end{array}$$

The first step may be an aldol condensation involving a p-H and "nascent" carbon monoxide or, more probably, a similar condensation with one carbonyl group of the oxalic acid.

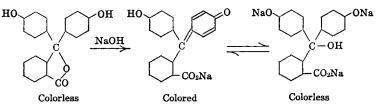
$$\begin{array}{c} O \\ C \longrightarrow OH + C_6H_6OH \longrightarrow \begin{bmatrix} (HO)_2C \longrightarrow C_6H_4OH \\ | \\ CO_2H \end{bmatrix} \longrightarrow \begin{array}{c} CO_2 + H_2O + HOC_6H_4CHO \\ | \\ CO_2H \end{bmatrix}$$

Corallin yellow is sodium aurin. Heating aurin with water under pressure gives phenol and $4,4'-(OH)_{2}$ -benzophenone, a reversal of the aldol condensation.

Rosolic acid is aurin with a methyl o- to one hydroxyl. It was discovered by the oxidation of a mixture of phenol and o- and p-cresols, the methyl of the latter forming the methane carbon. A common oxidizing mixture is arsenic acid dissolved in sulfuric acid.


Chrome violet is the sodium salt of aurin-tricarboxylic acid obtained from salicylic acid, formaldehyde, NaNO₂ and H_2SO_4 .⁴⁹ The corresponding NH₄ salt is *aluminon*, a delicate colorimetric reagent for aluminum in presence of elements which usually interfere in its detection.^{50, 51}

The reduction of the aurins gives the leuco compounds, hydroxytritanes.

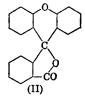

⁴⁹ "Org. Syntheses."
 ⁵⁰ Winter, Thrun, Bird. J. Am. Chem. Soc. 51, 2721 (1929).
 ⁵¹ Yoe. J. Am. Chem. Soc. 54, 1022 (1932).

Phthalein or Eosin Dyes.

The parent substance is tritane-o-carboxylic acid, $Ph_2CHC_6H_4CO_2H$, m. 162°, which can be made by reducing *phthalophenone*, m. 115°, the lactone of the corresponding tertiary carbinol. Phthalophenone (I) is made from phthalyl chloride and benzene in presence of AlCl₃. The symmetrical chloride is converted to the unsymmetrical by the action of the AlCl₃.⁵²

Phenolphthalein is the corresponding di-*p*-OH compound formed by condensing phthalic anhydride with phenol in presence of sulfuric acid, oxalic acid or tannic chloride. It is colorless but gives characteristic purple-red salts with bases. With excess of strong conc. base it becomes colorless again.

The change is due to OH^- as illustrated with *p*-hydroxytritane (p. 720).

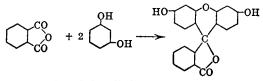

Concentrated sulfuric acid turns phenolphthalein red, probably through the formation of an oxonium salt.

Phenolphthalein gives an oxime, m. 212°, a diacetyl compound, m. 143°, and colorless and red alkyl derivatives. With Zn dust and a base, it is reduced to *phenolphthalin* (the leuco compound), the alkaline solution of which is colorless but is readily oxidized to a red solution of a phenolphthalein salt.

The laxative properties of phenolphthalein are increased by the presence of anthraquinone derivatives in the yellow material.

Salts of phenolphthalein.53

Fluoran (II) is a by-product of the preparation of phenolphthalein. It forms oxonium salts.



⁵² "Org. Syntheses."

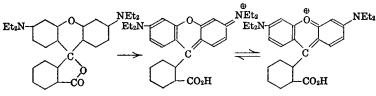
53 Dehn. J. Am. Chem. Soc. 54, 2947 (1932).

Phenolsulfonephthalein, Phenol Red, is obtained from sulfobenzoic anhydride⁵⁴ and phenol. Its chemistry is like that of phenolphthalein except that it is colored even when acid. It thus exists as the quinoid free acid instead of the benzenoid lactone. Its tetrabromo compound, *Bromophenol Blue*, exists in a colorless lactoid form as well as the blue quinoid form.

Fluorescein, dihydroxyfluoran, resorcinolphthalein, is formed from phthalic anhydride and resorcinol heated at 200°.

The fluorescent properties of the alkaline solutions of fluorescein and related dyes derived from m-dihydroxy benzenes may be related to the following interchange

This change consists merely in the removal of H^+ from the phenolic hydroxyl and its addition to the carbonyl oxygen of the quinoid system with the resulting shift of electrons along the 11-atom system terminated by the 2 oxygen atoms. Uranine is the Na salt.


Fluorescence, Ahr. 1906, 102 pp.

Four Br atoms can be introduced into the positions ortho to the hydroxyls of fluorescein. The K or the Na salt of this compound is Eosin. Halogenated phthalic anhydrides can be used to give fluoresceins. Thus a variety of dyes containing up to 8 atoms of halogen can be prepared. Such dyes include Erythrosin, Rose Bengal, Phloxin, etc.

Mercurochrome is the sodium salt of hydroxymercuridibromofluorescein. Since the Hg is ortho to a phenolic OH it is readily removed by acid.

Gallein is tetrahydroxyfluoran obtained from pyrogallol and phthalic anhydride.

Rhodamines are fluoran derivatives having two R_2N groups in place of the hydroxyls of fluorescein. *Rhodamine* B is typical as a chloride with a combination of quinoid and oxonium groupings.

⁵⁴ "Org. Syntheses."

Diaminotritane Dyes Related to Malachite Green.

*p***-Diaminotriphenylmethane** is made from benzaldehyde and an aniline salt in presence of $ZnCl_2$ or HCl. Oxidation of this leuco compound and formation of the chloride gives a dye, *Döbner's Violet*. Its chemistry is entirely analogous to that of the aurin dyes, the C = NH group taking the place of the C = O group of the quinoid system. In the case of the amino compounds, salts are formed with acids by the production of an ion containing the $C = NH_2^+$ or $C = NR_2^+$ grouping.

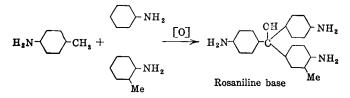
 $\begin{array}{c} \mathrm{PhCHO} + 2 \operatorname{C}_6\mathrm{H}_5\mathrm{NH}_2 \rightarrow \\ \mathrm{PhCH}(\mathrm{C}_6\mathrm{H}_4\mathrm{NH}_2)_2 \rightarrow \mathrm{PhC}(\mathrm{OH})(\mathrm{C}_6\mathrm{H}_4\mathrm{NH}_2)_2 \rightarrow \\ \mathrm{Leuco\ base} & \mathrm{Color\ base} \\ & & & \mathrm{Color\ base} \\ & & & & \mathrm{C}_6\mathrm{H}_4\mathrm{NH}_2 \\ & & & & & \mathrm{PhC}=\mathrm{C}_6\mathrm{H}_4=\mathrm{NH} \xrightarrow{} \mathrm{PhC}=\mathrm{C}_6\mathrm{H}_4=\mathrm{NH}_2^\oplus\mathrm{Cl} \oplus \\ & & & & \mathrm{Dye} \end{array}$

The change from color base to dye by H^+ ions and the reverse change by OH^- ions is as illustrated by *p*-aminotritane (p. 720).

The corresponding N-tetramethyl derivative is *Malachite Green*, prepared by heating benzaldehyde with dimethylaniline and $ZnCl_2$ or H_2SO_4 and oxidizing the resulting leuco compound and converting it to the chloride. It is used as a double compound with $ZnCl_2$ or oxalic acid. *Brilliant Green* is the corresponding tetraethyl compound. *Acid Green* is a sulfonic acid of the analogous compound from benzaldehyde and ethylbenzylaniline.

The *leuco* base of Malachite Green is a *colorless* crystalline compound, m. 94°. Oxidation with PbO_2 gives the *colorless* tertiary carbinol, m. 132°. This dissolves in cold acid to give a *colorless* solution. Only on heating is the green dye formed.

$$= C - C_6 H_4 NMe_2. HCl \rightarrow = C = C_6 H_4 = NMe_2Cl + H_2O$$


$$OH$$

$$Colorless Green$$

The colorless salt is the ordinary amine hydrochloride while the green quinoid salt is the salt of the stable cation obtained by rearrangement of the pseudo base, the tertiary carbinol.

Triaminotritane Dyes Related to Rosaniline.

These were the original "aniline dyes" obtained by oxidizing crude aniline with arsenic acid. The *p*-toluidine in the mixture supplied the tritane carbon for union by condensation with *p*-H in the aniline and *o*-toluidine present. The result was *fuchsine* or *magenta*, a salt of rosaniline, *p*-triaminodiphenyl-*m*tolylmethane. This was originally obtained as *Mauve* or *Mauvein* by Perkin in 1856 as the first artificial dye. He obtained it in an attempt to make quinine by the action of chromic acid on crude aniline.

The chief improvement in the original process has been the use of milder oxidizing agents, notably nitrobenzene and nitrotoluenes. "Aniline for Red" is crude aniline containing toluidines and consequently suitable for making magenta. Reduction of the color base converts the C(OH) to CH giving leucaniline. Treatment of the color base with HCl gives the dye which contains the quinoid grouping

Diazotization can be used to convert rosaniline to rosolic acid.

A solution of fuchsine is decolorized by sulfurous acid with formation of a rather unstable addition product. Addition of an aldehyde causes the transfer of the sulfurous acid to the latter with the regeneration of the violet-red color of the dye (Schiff's Reagent for aldehydes).

Parafuchsine, (I), is the hydrochloride of *pararosaniline*, the quinonimine form of tri-*p*-aminophenylcarbinol, obtained by oxidizing a mixture of *p*-toluidine and aniline. Nitrobenzene or nitrotoluene can be used as the oxidizing agent.

$$\begin{array}{r} 2 \ C_{6}H_{6}NO_{2} + 4 \ C_{6}H_{5}NH_{2} + 3 \ CH_{3}C_{6}H_{4}NH_{2} + 3 \ HCl \rightarrow \\ & 4 \ H_{2}O + 3 \ (H_{2}NC_{6}H_{4})_{2}C = C_{6}H_{4} = NH. \ HCl \\ & (I) \end{array}$$

Pararosaniline and rosaniline can also be made by oxidizing mixtures of *p*-diaminodiphenylmethane and aniline and *o*-toluidine respectively.

Methyl violets are N-methylated rosaniline dyes made by methylating the dyes or by preparing them from Me_2N -compounds in place of aniline and the toluidines. Michler's Ketone, Michler's Hydrol and the related di-*p*-dimethyl-aminophenylmethane are valuable in making these dyes. Crystal Violet is the hydrochloride of the hexamethyl compound,

$$(Me_2NC_6H_4)_2C = C_6H_4 = NMe_2 \oplus Cl \Theta.$$

The methyl chloride addition product is Methyl Green or Light Green. Ethyl Green is the corresponding EtCl addition product. Methyl Violet is Me_{5-} pararosaniline hydrochloride formed by oxidizing dimethylaniline with cupric chloride. One of the six methyl groups in three molecules of the Me_{2-} aniline

supplies the methane carbon of the dye. It is probably the most important tritane dye.

Phenylated rosanilines shift in color to violet and then blue. Triphenyl fuchsine, Aniline Blue, Diphenylamine Blue, Spirit Blue, is obtained in a variety of ways including the action of diphenylamine with oxalic acid or formaldehyde. Sulfonic acids of the rosanilines are water-soluble dyes such as Water Blue and Patent Blue.

("Colour Index," F. M. Rowe, Society of Dyers and Colourists.) ("Synthetic Dyestuffs," Thorpe and Linstead. Giffin & Co. Ltd.)

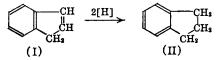
Tetraphenylmethane, $C(C_6H_5)_4$, m. 285°, b. 431°, can be made from trityl chloride and phenylmagnesium bromide in about 5% yield or by the following steps from the action of phenylhydrazine and trityl bromide.⁵⁶

 $\rightarrow \mathrm{Ph_{3}CNHNHPh} \xrightarrow{\mathrm{Air}} \mathrm{Ph_{3}CN} = \mathrm{NPh} \xrightarrow{\mathrm{130^{\circ}}} \mathrm{N_{2}} + \mathrm{Ph_{4}C}$

The attempt to prepare the analogous completely phenylated ethane led to the discovery of triphenylmethyl by Gomberg and the opening up of the whole chapter of free radical chemistry. The great stability of tetraphenylmethane is noteworthy.

Phenylated ethanes. All possible ones have been prepared. The hexa compound dissociates into free radicals at 20°.

Tetraphenylethylene, $(C_6H_5)_2C = C(C_6H_5)_2$, m. 221°, b. 425°, is readily obtained from benzophenone dichloride heated with zinc or with diphenylmethane. It adds H_2^{56} and Cl_2 normally but does not add HX or bromine. With the latter it gives 9,10-diphenylphenanthrene in 25% yield.⁵⁷


XVII. AROMATIC COMPOUNDS WITH CONDENSED RINGS

The simplest of these is indene, a fusion of a benzene and a cyclopentadiene ring.

Indene (I), b. 180°, is obtained from coal tar. It adds bromine readily to give a dibromide. Mild oxidation gives homophthalic acid

o-C₆H₄(COOH)CH₂COOH,

while oxidation with nitric acid gives phthalic acid. Sulfuric acid gives a polymer. Treatment with Na and alcohol gives hydrindene (II), b. 177°. The reduction of the C=C by this means is made possible by the presence of the benzene ring.

⁵⁶ Gomberg. Ber. 30, 2043 (1897).

⁵⁶ Zartman, Adkins. J. Am. Chem. Soc. 54, 1668 (1932).

⁵⁷ Schoepfle, Ryan. J. Am. Chem. Soc. 54, 3687 (1932).

AROMATIC COMPOUNDS WITH CONDENSED RINGS 727

supplies the methane carbon of the dye. It is probably the most important tritane dye.

Phenylated rosanilines shift in color to violet and then blue. *Triphenyl* fuchsine, Aniline Blue, Diphenylamine Blue, Spirit Blue, is obtained in a variety of ways including the action of diphenylamine with oxalic acid or formaldehyde. Sulfonic acids of the rosanilines are water-soluble dyes such as Water Blue and Patent Blue.

("Colour Index," F. M. Rowe, Society of Dyers and Colourists.) ("Synthetic Dyestuffs," Thorpe and Linstead. Giffin & Co. Ltd.)

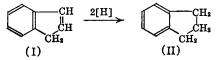
Tetraphenylmethane, $C(C_6H_6)_4$, m. 285°, b. 431°, can be made from trityl chloride and phenylmagnesium bromide in about 5% yield or by the following steps from the action of phenylhydrazine and trityl bromide.⁵⁵

 $\rightarrow \mathrm{Ph_3CNHNHPh} \xrightarrow{\mathrm{Air}} \mathrm{Ph_3CN} = \mathrm{NPh} \xrightarrow{\mathrm{130^\circ}} \mathrm{N_2} + \mathrm{Ph_4C}$

The attempt to prepare the analogous completely phenylated ethane led to the discovery of triphenylmethyl by Gomberg and the opening up of the whole chapter of free radical chemistry. The great stability of tetraphenylmethane is noteworthy.

Phenylated ethanes. All possible ones have been prepared. The hexa compound dissociates into free radicals at 20°.

Tetraphenylethylene, $(C_6H_5)_2C = C(C_6H_5)_2$, m. 221°, b. 425°, is readily obtained from benzophenone dichloride heated with zinc or with diphenylmethane. It adds H_2^{56} and Cl_2 normally but does not add HX or bromine. With the latter it gives 9,10-diphenylphenanthrene in 25% yield.⁵⁷

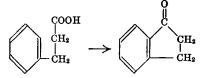

XVII. AROMATIC COMPOUNDS WITH CONDENSED RINGS

The simplest of these is indene, a fusion of a benzene and a cyclopentadiene ring.

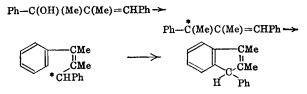
Indene (I), b. 180°, is obtained from coal tar. It adds bromine readily to give a dibromide. Mild oxidation gives homophthalic acid

o-C6H4(COOH)CH2COOH,

while oxidation with nitric acid gives phthalic acid. Sulfuric acid gives a polymer. Treatment with Na and alcohol gives hydrindene (II), b. 177°. The reduction of the C=C by this means is made possible by the presence of the benzene ring.


⁵⁶ Gomberg. Ber. 30, 2043 (1897).

⁵⁶ Zartman, Adkins. J. Am. Chem. Soc. 54, 1668 (1932).


⁵⁷ Schoepfle, Ryan. J. Am. Chem. Soc. 54, 3687 (1932).

Catalytic hydrogenation at high pressure with copper chromite catalyst also gives hydrindene.

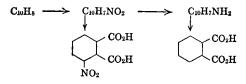
One of the most prolific synthetic methods for *hydrindone-1* and substituted compounds is the intramolecular acylation of cyclic compounds having suitable side chains. A typical example is the conversion of β -phenylpropionic acid to hydrindone-1.

Literally hundreds of such ring closures have been achieved.¹ (Cf. pp. 729-30.) The formation of substituted indenes is very easy from substances containing the grouping $Ph-CR=CR-C(OH)R_2$ in which R may be alkyl, aryl or H. Often a rearrangement takes place before the ring closure. Thus the product of the action of MeMgX with benzalpropiophenone readily gives 1-Ph-2,3-Me₂-indene with acids.

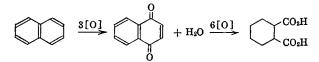
A. NAPHTHALENE AND ITS DERIVATIVES

Just as an open chain of at least six carbon atoms tends to form a sixmembered ring under suitable conditions, a compound with at least ten carbon atoms may form a substance having two six-membered rings, two of the carbons forming part of both rings.

Naphthalene, $C_{10}H_8$, m. 80°, b. 218°, is the largest single constituent of coal tar, occurring up to 6% in it. The structure of naphthalene involves the same uncertainty as to the fourth valence of carbon as is presented by benzene.

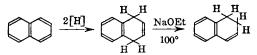

Much study has been given to the problem.²⁻⁴ Usually the non-committal double hexagon formula is used. The presence of a benzene ring with two

- ³ Fieser. J. Am. Chem. Soc. 57, 1459 (1935).
- ⁴ Fries. Ber. 69B, 715 (1936).


¹ Johnson. "Org. Reactions," II, p. 114.

² Kohlrausch. Ber. 68B, 893 (1935).

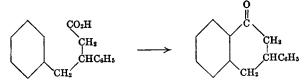
carbons in the *o*-position is shown by the ready oxidation of naphthalene to *o*-phthalic acid. That the other ring is either a benzene ring or can become one is indicated by the following changes.



Thus, in one case the part not containing the N substituent was oxidized leaving the other part as a benzene ring while in the other case the part containing the N group was destroyed leaving the unsubstituted part also as a benzene ring. Naphthalene forms a yellow crystalline compound with picric acid, m. 149°. Naphthalene is more readily oxidized than benzene. The first step in the oxidation can be achieved by CrO_3 in acetic acid to give α -naphthoquinone. Further oxidation gives phthalic acid.

Air oxidation gives phthalic anhydride which is used to make plastics and as an important intermediate for the production of xanthene and vat dyes.

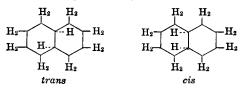
Naphthalene is more easily hydrogenated than benzene. Addition of Na to an alcoholic solution of naphthalene gives 1,4-dihydronaphthalene, m. 25°, b. 212°, a result of 1,4-addition. Heating with NaOEt at 100° gives the 1,2-compound.



The 1,4-compound is a typical benzene with an unsaturated side chain. One mol of Br₂ adds readily to give a dibromide, m. 74°, which easily loses 2 HBr to give naphthalene again. Cautious oxidation converts 1,4-H₂-naphthalene to *o*-phenylenediacetic acid, $C_6H_4(CH_2CO_2H)_2$, m. 150. More vigorous oxidation gives phthalic acid. In the same way careful oxidation of the 1,2-H₂ naphthalene gives $o-C_6H_4(CO_2H)CH_2CH_2CO_2H$. It is not possible to go beyond the dihydro stage with Na and an alcohol. Thus this peculiar hydrogenation in the case of naphthalene is possible only because the ends of a conjugated system are both α - to a benzene ring.

Hydrogenation with a nickel catalyst gives 1,2,3,4-tetrahydronaphthalene, tetralin, m. -30° , b. 207°, an important cheap solvent. This substance

contains a true benzene ring with four alicyclic CH_2 groups forming another ring attached in the *o*-positions. Oxidation gives phthalic acid. Bromine substitutes in the alicyclic ring. The monobromide and dibromide lose 1 and 2 HBr giving dihydronaphthalene and naphthalene readily. These processes take place so easily that a good way to convert bromine to HBr is to drop it into an excess of boiling tetralin. The aromatic ring of tetralin can be nitrated and sulfonated. Thus the monosodium sulfonate is "Alkanol"-S, a wetting agent. Tetralin is easily oxidized by air to α -tetralone,⁵ but the intramolecular acylation of cyclic compounds having suitable side chains leads to many substituted α -tetralones.


An example is the cyclization of β , γ -diphenylbutyric acid to 3-phenyl 1-tetralone.⁶

Thus the usefulness of this prolific synthetic process is again illustrated (see page 728).

 β -Tetralone is made by the addition of Na to an alcoholic solution of β -methoxynaphthalene.

Ordinarily the catalytic hydrogenation of naphthalene stops at the H₄ stage. More vigorous treatment gives *decahydronaphthalene*, *decalin*, bicyclo-(4.4.0)decane, *cis*, b. 193°, d. 0.895; *trans*, b. 185°, d. 0.870. Pt black gives mainly the *cis* form while Ni gives mainly the *trans* form.⁵⁶

Synthetic decalin derivatives are usually *trans* while the natural di-cyclic sesquiterpenes are usually related to the *cis* form.⁷ Decalin cannot be nitrated or sulfonated. Oxidation gives deep seated changes ending in CO₂ and H₂O. Naphthalene can also *add* Cl₂ or 2 Cl₂ more readily than can benzene. Dry chlorine gas acts on solid naphthalene to give *naphthalene tetrachloride*, C₁₀H₃Cl₄, m. 182°. Bases convert it to a mixture of dichloronaphthalenes. In dimethylether naphthalene adds sodium.⁸

6ª Ann. Rep. Chem. Soc. (London) 1924, 92.

^{*}Scott. J. Am. Chem. Soc. 58, 2442 (1936).

⁶ Ann. Rep. Chem. Soc. (London) 1937, 236.

⁶ Johnson. "Org. Reactions," II, p. 114.

⁷ Ann. Rep. Chem. Soc. (London) 1932, 153.

Naphthalene gives all the substitution reactions of which benzene is capable. In general it resembles toluene in ease of substitution. Whereas benzene gives only one monosubstitution product naphthalene can give two. The 1,4,5, and 8 positions are like each other as are the 2,3,6, and 7 positions but the two sets of four are different from each other. The first four are called α as they are in that position to the other ring while the other four are β -. Considering one ring of naphthalene as the ring in which substitution is to take place, it is found to have side chains -CH = CH - much like the side chain in cinnamic acid which gives only o- and p-substitution. Thus it is not surprising that the direct introduction of a group into naphthalene takes place in one of the α -positions which are ortho to the side chain rather than in a β -position which is meta. Some exceptions are the sulfonation of naphthalene at high temperatures and the Friedel-Crafts reaction both of which give β -substitution.

Of disubstituted naphthalenes, ten isomers are possible when the groups are alike and fourteen when they are different. The 1:8-position is the peri position and resembles the o-position in making possible anhydride formation and other changes involving the formation of 5- and 6-membered rings including carbons 1,9, and 8.

The methylnaphthalenes are obtained from coal tar and some cyclization processes in the petroleum industry. α -Methylnaphthalene, m. - 22°, b. 243°, can be made from α -bromonaphthalene, MeI and Na (Wurtz-Fittig), or more easily by the chloromethylation of naphthalene with formaldehyde and HCl followed by H₂ reduction of the α -chloromethylnaphthalene.⁹ No satisfactory synthesis has been devised for β -methylnaphthalene m. 35°, b. 245°. However it has been made by the Friedel-Crafts reaction.¹⁰ The reason for the failure of β -Br-naphthalene and MeI to give the β -Me-compound is probably due to too great a difference in the reactivity of the two halides. Thus β -Brnaphthalene, ethyl bromide and Na give β -ethyl-naphthalene, b. 251°. The failure of the Friedel-Crafts reaction may be from a similar reason. Naphthalene alone acts readily with AlCl₃ to form dinaphthyls and other compounds. With ethyl chloride and AlCl₃ it gives β -Et-naphthalene. Methylnaphthalenes are used as a standard high knocking fuel for Diesel engines.

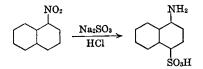
Other alkylated naphthalenes are made from the alcohol, naphthalene and either $AlCl_3$, BF_3 or HF as catalysts.¹¹

Agathalene is 1,2,5-trimethylnaphthalene. Sapotalene is the 1,2,6-compound. Because of their relation to the terpenes, all the possible trimethylnaphthalenes have been synthesized.¹² 1,2,5,6-Tetramethylnaphthalene is made by the dehydrogenation of pentacyclic triterpenes.¹³ 1-Methyl-7-

⁹ "Org. Reactions," I, p. 70.

¹⁰ Tchéou, Young. C. A. 31, 6646 (1937).

¹¹ "Org. Reactions," III. p. 1.


¹² Ruzicka. Helv. Chim. Acta 15, 140 (1932).

¹³ Ann. Rep. Chem. Soc. (London) 1937, 329.

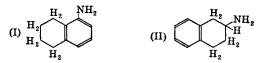
ethylnaphthalene has been made from artemisin.¹⁴ Cadalene, 1,6-dimethyl-4isopropylnaphthalene, and *eùdalene*, 1-methyl-7-isopropylnaphthalene, are related to the terpenes.

All ten possible dichloronaphthalenes have been made. In most cases they have been obtained by replacing NH₂ by Cl or H and SO₂Cl by Cl in suitable naphthalene intermediates of the dye industry. The melting points of the isomers follow: 1,2-, 37°; 1,3-, 61°; 1,4-, 68°; 1,5-, 107°; 1,6-, 49°; 1,7-, 64°; 1,8-, 88°; 2,3-, 120°; 2,6-, 136°; 2,7-, 114°. They well illustrate the complex relations of constitution and melting points. The chlorination of naphthalene gives nearly pure α -chloronaphthalene, b. 259°. About 5% of the β -compound, m. 57°, b. 266°, is also formed and can be separated by suitable crystallization.¹⁵ It is best obtained from β -naphthylamine through diazotization. Further chlorination gives polychloro compounds, first oils and then waxes (Halowax). When free of HCl these waxes have valuable dielectric properties.

 α -Nitronaphthalene, C₁₀H₇NO₂, m. 57°, b. 304°, is readily obtained by direct nitration which gives a mixture of about 94% α - and 6% β -nitronaphthalene.¹⁶ The β -isomer can easily be removed by recrystallization from alcohol, or by sweating.¹⁷ It gives the usual reactions of nitro compounds. In addition, it reacts with PCl₅ to give α -chloronaphthalene. In this reaction nitronaphthalenes differ from nitrobenzene. α -Nitronaphthalene gives naphthionic acid by the Piria reaction.

Further nitration gives 1,5- and 1,8-(NO₂)₂-naphthalene, m. 217° and 173°. 1,3-(NO₂)₂-Naphthalene, m. 145°, is made by acetylating α -naphthylamine, dinitrating, hydrolyzing and treating a sulfuric acid solution of the resulting 2,4-(NO₂)₂-naphthylamine with ethyl nitrite to replace the NH₂ by H. β -Nitronaphthalene, m. 77°, b. 165° (15 mm.), is readily obtained indirectly by treating diazotized β -naphthylamine with NaNO₂ and cuprous oxide. It can also be obtained in low yields by the direct nitration of naphthalene.

 α -Naphthylamine, C₁₀H₇NH₂, m. 50°, b. 301°, is made by reducing the nitro compound. Its reactions are like those of aniline. Commercial α -naphthylamine has a very vile odor. It is easily phenylated by heating with excess aniline to *phenyl-\alpha-naphthylamine*, an important rubber antioxidant. The catalysts in this phenylation are sulfanilic acid, ZnCl₂, and even traces of HCl. NH₃ is formed.


14 ibid. 1932, 156.

- ¹⁶ Fierz-David. Helv. Chim. Acta 26, 99 (1943).
- ¹⁷ Wieland, Gubelmann. U. S. Patent No. 1,836,211.

¹⁵ Britton. U. S. Patent No. 1,917,822 (1933).

 β -Naphthylamine, m. 112°, b. 294°, is made from β -naphthol through the Bucherer reaction by heating with NH₃ and ammonium bisulfite. The replacement of OH by NH₂ is easier than in the benzene series. In fact, naphthols and naphthylamines, especially as their sulfonic acids, are interconvertible by the Bucherer reaction by treatment with ammonium sulfite and with sodium bisulfite respectively.¹⁸ β -Naphthylamine differs from the α compound in being odorless and more stable to oxidation. It is a very dangerous carcinogenic compound causing malignant tumors in the bladder. Breathing the vapors and contact with the skin must be avoided as the introduction of even traces into the system may produce serious tumors which sometimes do not appear until years after the exposure.

The two naphthylamines behave quite differently with Na and an alcohol. The α -compound adds 4 H on the ring not containing the NH₂ group to give *ar-tetrahydro-\alpha-naphthylamine*, b. 273°, (I), so-called because it is an aromatic amine capable of diazotization and other typical aromatic amine reactions. It resembles aniline closely, including its weak basic properties. The β compound adds 4 H mainly on the ring containing the NH₂ to give *ac-tetrahydro-\beta-naphthylamine*, b. 246°, (II), so-called because it is a typical alicylic amine. Instead of giving a diazonium salt it gives a stable nitrite which melts at 140° and decomposes at 190° to N₂, H₂O, and dihydronaphthalene. It is a strong enough base to absorb CO₂.

ac-H₄- α -naphthylamine, b. 243°, and ar-H₄- β -naphthylamine, b. 274°, have also been made, the first indirectly and the latter as a by-product of the *ac*-compound.

The naphthylamines give practically the same reactions as does aniline. Bromination and nitration of the acetnaphthalides proceed as with acetanilide. The α -compound is substituted in the 4-position ("p-") while the β -compound is substituted in the 1-position ("o-"). Heating α -naphthylamine sulfate gives the normal aniline rearrangement (see page 742). Direct sulfonation of β naphthylamine gives a mixture of 2-naphthylamine-6,8-disulfonic acid (Amino G) and 2-naphthylamine-1,5,7-trisulfonic acid.

The sulfonation of naphthalene is easier than that of benzene and always gives a mixture of isomers. Concentrated acid at 40-80° gives a mixture of about 96% α - and 4% β -sulfonic acid. The separation is easily made by means of the Ca or Ba salts, those of the α -acid being more soluble. The sulfonic acid group is more readily replaced in fusion reactions than with benzenesulfonic acid. For instance, the sulfonyl chlorides on fusion with

¹⁸ "Org. Reactions, I, p. 105.

PCl₅ have the SO₂Cl group replaced by Cl. The α -acid when heated with conc. sulfuric acid gives the β -acid. The equilibrium mixture at 155-160° contains about 85%, β - and 15% α -sulfonic acid which is the mixture obtained by sulforating naphthalene with conc. sulfuric acid at $155-160^{\circ.19}$ This is the usual process since the α -substitution products of naphthalene are available by a variety of processes whereas the β -compounds are practically all made through the β -sulfonic acid. The conversion of the α - to the β -acid is not a true rearrangement but rather a result of hydrolysis, the β -acid being less readily hydrolyzed.

$$2 \operatorname{C}_{10}\operatorname{H}_{8} + 2 \operatorname{H}_{2}\operatorname{SO}_{4} \xrightarrow{40^{\circ}} \alpha \operatorname{-} \operatorname{C}_{10}\operatorname{H}_{7}\operatorname{SO}_{3}\operatorname{H} + \beta \operatorname{-} \operatorname{C}_{10}\operatorname{H}_{7}\operatorname{SO}_{3}\operatorname{H} + 2 \operatorname{H}_{2}\operatorname{O} \\ 15\% \qquad 85\% \\ \alpha \operatorname{-} \operatorname{C}_{10}\operatorname{H}_{7}\operatorname{SO}_{3}\operatorname{H} + \operatorname{H}_{2}\operatorname{O} \rightleftharpoons \operatorname{H}_{2}\operatorname{SO}_{4} + \operatorname{C}_{10}\operatorname{H}_{8} \rightleftharpoons \beta \operatorname{-} \operatorname{C}_{10}\operatorname{H}_{7}\operatorname{SO}_{3}\operatorname{H} + \operatorname{H}_{2}\operatorname{O}$$

Four *naphthalenedisulfonic acids* are readily available. Sulfonation with oleum at 40° gives a mixture containing about 70% of the 1,5- and about 20-25% of the 1,6- with some of the 2,7-disulfonic acid.20 Sulfonation with sulfuric acid at 165° and then adding oleum at 165° gives a mixture containing about 24% 2,6- and about 65% of the 2,7- with some 1,6-disulfonic acid.21 Five other disulfonic acids of naphthalene have been made. The only missing member of the ten theoretically possible isomers is the 2,3-acid.

Of the fourteen possible naphthalenetrisulfonic acids, the 1,3,6- and 1,3,7acids are obtained by direct sulfonation of naphthalene which is the first step in the manufacture of H Acid. The 1,3,5-, 1,4,5-, and 2,3,6-acids are made indirectly.

Of the twenty-two theoretically possible *tetrasulfonic acids* of naphthalene, the 1,3,5,7- and 1,3,6,8-acids are known.

The appearance of a sulfonic acid group in the 1-position in most of the polyacids indicates the high activity of the α -position even after several groups have entered the molecule. The predominance of β -groups is because of the greater stability of the β -sulfonic acids under the necessarily drastic conditions required to introduce several groups. The wetting agent, Nekal, or "Aquarex" BBX, is isopropylated naphthalene β -sodium sulfonate, made by treating the β -sulfonic acid with isopropyl alcohol. Daxad 11, a dispersing agent, is naphthalene β -sulfonic acid treated with formaldehyde. The action of naphthalene sulfonic acids with formaldehyde gives various complex synthetic tanning materials (syntans, Leukanol, etc.).

Six nitronaphthalene sulfonic acids are obtainable by nitrating the sulfonic acids of naphthalene, the α -acid giving the 1,4-, 1,5-, and 1,8-acids and the β -acid giving the 1,3-, 1,6-, and 1,7-acids, the NO₂ group being 1- in each case. The 1,2-acid is not formed, apparently, because the meta-directing influence of the sulfonic acid group overbalances the reactivity of an α -position ortho to it.

¹⁹ "Org. Reactions," III, p. 156. ²⁰ "Org. Reactions," III, p. 158.

²¹ Fierz-David. Helv. Chim. Acta 6, 1133 (1923).

Six nitronaphthalene disulfonic acids are obtained by nitration of the following disulfonic acids to give the indicated products, the NO_2 group being numbered first:

The last product is remarkable as involving the entrance of a group other than SO_3H into a beta position. Evidently the *meta*-effect of the sulfonic acid group partly counterbalances the reactivity of the α -positions. Of course, the 1,5-disulfonic acid necessitates the entrance of a nitro group either para to the sulfonic acid (in an α -position) or meta (in a β -position).

1-Nitronaphthalene-3,6,8-trisulfonic acid is made by the nitration of 1,3,6naphthalene trisulfonic acid, the second step in the manufacture of H acid.

1,8-Dinitronaphthalene-3-sulfonic acid is obtained by nitrating 1-nitronaphthalene-6-sulfonic acid. The dinitration of naphthalene-2,7- and -1,5disulfonic acids illustrates the principles of orientation in naphthalene compounds. In the first case two α -positions are meta to the two sulfonic groups. The result is 1,8-dinitronaphthalene-3,6-disulfonic acid, the parent substance of the important intermediate, H acid. In the second case one nitro group occupies an α -position para to the sulfonic acid group and the other takes the β -position meta to the other group, the product being 1,6-dinitronaphthalene-4,8-disulfonic acid.

Naphthylamine monosulfonic acids are known corresponding to 13 of the 14 possible isomers, the missing one being the 2,3-acid. Six of them can be made by reducing the nitro acids. The 1,2-acid can be made by heating Na naphthionate to 250°. The most important of these acids are the Cleve's acids. α-naphthylamine-6-and-7-monosulfonic acids, Peri acid, α-naphthylamine-8-sulfonic, and Laurent's acid, α -naphthylamine-5-sulfonic acid. The less important is Broenner's acid, 2,6-. Naphthionic acid α -naphthylamine-4sulfonic acid is easily made by baking the amine sulfate. Thus the HSO₃ group takes the para position just as in the baking of aniline sulfate to give sulfanilic acid. The naphthylamine disulfonic acids are made by reducing the nitro compounds and by sulfonating the naphthylamines. The important α -naphthylamine derivatives are the 3.8- (Epsilon acid) and the 4.8-disulfonic acids. The β -naphthylamine compounds in order of importance are the 5,7-, (Amino J), the 6,8-, (Amino G), and the 4,8-disulfonic acids. Amino G and J are important dye intermediates. The important trisulfonic acids are α naphthylamine-3,6,8-trisulfonic acid, Koch acid, made by reducing the corresponding nitro compound (third step in the manufacture of H acid) and β -naphthylamine-1,5,7-trisulfonic acid which is easily hydrolyzed in dilute H₂SO₄ to Amino J. There are no amino tetrasulfonic acids known probably because the two known acids do not nitrate.

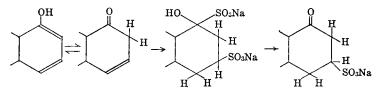
Both naphthols, C10H7OH, are found in coal tar and can be made by fusion

of the naphthalene sulfonates with NaOH. α -Naphthol, m. 96°, b. 288°, and β -naphthol, m. 122°, b. 294°, resemble the phenols but have their OH groups more readily replaceable by treatment with NH₃ and PCl₅. Pure α -naphthol free from any trace of the β -compound can be made by heating α -naphthol, mine with dil. H₂SO₄ in an autoclave. ar-Tetrahydro- α -naphthol, m. 69°, b. 263°, can be made by diazotizing the corresponding amine or from the action of Na and alcohol on α -naphthol, or simply hydrogenating α -naphthol with a nickel catalyst. The corresponding ac-compound is a liquid made by hydrogenating α -naphthol with a copper chromite catalyst. β -Naphthol with amyl alcohol and Na gives mainly $ac-H_4$ - β -naphthol, b. 262° with a smaller amount of the ar-compound, m. 59°, b. 276°. In both cases the ar-compounds are true phenols and the ac-compounds true alcohols. Both naphthols are oxidized to dinaphthols by FeCl₃. β -Naphthyl methyl ether, nerolin,

C₁₀H₇OCH₃,

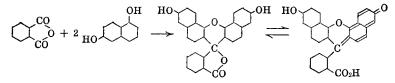
m. 72°, b. 274°, is a perfume material.

The naphthols give nitroso compounds with nitrous acid. As with phenol, these are really mono-oximes of quinones. α -Naphthol gives mainly the 2-oxime of β -naphthoquinone, m. 164° dec., with a lesser amount of the 4-oxime of α -naphthoquinone, m. 152°. Nitroso- β -naphthol, m. 109°, the 1-oxime of β -naphthoquinone, is used in determining Fe and Co because it does not give precipitates with Al, Cr, Mn and Ni.


The nitration of α - and β -naphthol gives respectively the 4- and 1-nitrocompounds. 2,4-Dinitro- α -naphthol is Martius Yellow or Naphthalene Yellow while its 7-sulfonic acid obtained from α -naphthol-2,4,7-trisulfonic acid and nitric acid is Naphthol Yellow S or Fast Yellow. It cannot be made by sulfonating the dinitro compound.

The direct sulfonation of α -naphthol under various conditions gives the 2and 4- (Nevile-Winther acid) sulfonic acids, the 2,4- and 4,7-disulfonic acids, and the 2,4,7-trisulfonic acid. The latter loses the 4-group on treatment with sodium amalgam and acid to give the 2,7-disulfonic acid. The Nevile-Winther's acid is also easily made by the Bucherer reaction on naphthionic acid. The 5-sulfonic acid and the 3,6-disulfonic acid of α -naphthol are obtained by the action of NaOH at high temperature on naphthalene-1,5disulfonic and 1,3,6-trisulfonic acids respectively. Many other α -naphthol sulfonic acids have been made by diazotizing the corresponding NH₂ acids. Thus the 1,8-acid is obtained. It readily gives an anhydride 1,8-naphtholsulfone, "naphsultone," m. 154°, b. 360°. With cold fuming sulfuric acid this compound gives α -naphthol-2,4,8-trisulfonic acid. With nitric acid, this gives 2,4-dinitro- α -naphthol-8-sulfonic acid. The direct sulfonation of β -naphthol gives the 6-sulfonic acid (Schaeffer's acid)²², the 8-sulfonic acid (Crocein acid), the 1-sulfonic acid, the 3,6-disulfonic acid (R acid) and the 6,8-disulfonic acid (G acid).

²² Engel. J. Am. Chem. Soc. 52, 2835 (1930).


Phenyl β -naphthylamine is an important rubber antioxidant. It is made by heating β -naphthol with an excess of aniline and a small amount of ZnCl_2 as a catalyst.

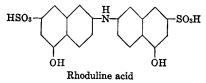
The tautomerism of naphthols is shown by the action of NaHSO₃ with 1,5and 2,7-(OH)₂-naphthalenes.²³ The α -compound adds 2 NaHSO₃. Boiling with water removes 1 NaHSO₃ and gives sodium 5-OH-1-ketotetrahydronaphthalene-3-sulfonate.

The β -compound adds only 1 NaHSO₃. This can be converted by NH₃ and heat to 2-NH₂-7-OH-naphthalene.

1,6-Dihydroxynaphthalene gives a fluorescein with phthalic anhydride.²⁴ The colorless and colored forms are as follows:

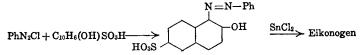
Even the free acid exists in the colored quinoid form when free of solvent.

Chromotropic acid, 1,8-(OH)₂-naphthalene-3,6-disulfonic acid, is obtained by diazotizing Koch acid to replace the NH_2 by OH. The 8-SO₃H is then replaced by OH by a regular caustic fusion.

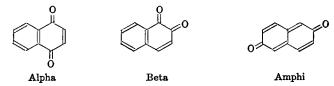

Aminonaphthols are like the amino phenols in preparation and properties. The commonest are the 1,4-; 1,8-; 2,1-; and 2,7-compounds, the OH being numbered first. Various mono and disulfonic acids of the aminonaphthols are important dye intermediates. The most important of these is *H* acid, 8-amino- α -naphthol-3,6-disulfonic acid which is made by the caustic fusion of Koch acid (fourth step in the manufacture of H acid) replacing the 8-sulfonic acid group by OH. Other important dye intermediates are Gamma acid, 1-OH-7-NH₂-3-SO₃H-, *J* acid, 1-OH-6-NH₂-3-SO₃H-, Chicago acid, 8-OH-1-NH₂-2,4(SO₃H)₂-, and the 2-OH-1-NH₂-4-SO₃H acid. The last acid is made by treating nitroso β -naphthol with NaHSO₃.

Phenyl J acid, 1-OH-6-NHC₆H₅-3-SO₃H, is made by heating J acid with an excess of aniline and sodium bisulfite. Here the Bucherer reaction is used to introduce the $-NHC_6H_5$ group. Similarly in the presence of even traces of

²³ Ann. Rep. Chem. Soc. (London) 1922, 108.

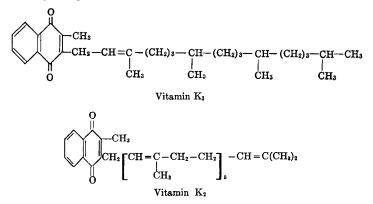

²⁴ Koenigs. Ann. Rep. Chem. Soc. (London) 1914, 114.

sodium bisulfite J acid forms di-J acid or Rhoduline acid by the loss of ammonia.



Phenyl J acid and Rhoduline acid are dye intermediates.

An important photographic developer is sodium 1-amino-2-naphthol-6sulfonate, *Eikonogen*. One method of preparation is from Schaeffer's acid and benzene diazonium chloride.



Naphthoquinones. Three are known, the α - or 1,4- the β - or 1,2- and the *amphi*- or 2,6-naphthoquinones. They are yellow or red crystalline compounds resembling the benzoquinones.

They are made by oxidizing the corresponding amino hydroxy or dihydroxy compounds. They are readily reduced to the dihydroxy compounds.

The α -naphthoquinones occur in nature as vitamin K₁ and K₂.

Vitamin K_1 was isolated from alfalfa and K_2 from sardine meal.^{26–27} K_1 has been synthesized and compared with the natural product. During the intensive investigation of 1,4-naphthoquinones for antibleeding activity, *Menadione*, 2-methyl-1,4-naphthoquinone,

Menadione

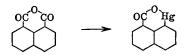
was found to have about twice the activity of the natural vitamin K_2 . It is easily made by the chromic anhydride oxidation of 2-methylnaphthalene²⁸ and is used in medicine in place of the more expensive natural product. The hydroquinone as well as the hydroquinone diacetate of Menadione are very active and are used in medicine.

Several hydroxy- α -naphthoquinones occur in nature. Lawsone and juglone are the 2- and 5-compounds respectively. Plumbagin is the 5-OH-2-Mecompound. Naphthazarine is the 5,6-(OH)₂-compound. Lapachol²⁹ is related to naphthoquinone.³⁰ β -Naphthoquinone-4-sulfonic acid is used to estimate amino acid nitrogen in blood.³¹ An example of an amphi-naphthoquinoid compound is the fluorescein from phthalic anhydride and 1,6-(OH)₂-naphthalene (p. 737).

Naphthalenecarboxylic Acids

 α - and β -Naphthoic acids, m. 161° and 184°, are made by the usual methods. β -Hydroxy naphthoic acid, 2-hydroxy-3-naphthoic acid, is made by the action of CO₂ on sodium β -naphtholate. Many insoluble colored pigments are made by coupling diazo compounds to β -hydroxy naphthoic acid. The anilide, p-toluide, etc. are also important dye intermediates.

 α - and β -Naphthalene acetic acid are prepared by the Willgerodt reaction and the Kindler modification of the Willgerodt Reaction.³² α -Naphthalene acetic acid is an important growth promoting plant hormone.


The best known of the dibasic acids is *naphthalic acid*, the peri acid, naphthalene-1,8-dicarboxylic acid, m. 270°, made by oxidizing acenaphthene.

- ²⁷ Almquist, Doisy, Fieser. J. Am. Chem. Soc. 61, 2557 (1939).
- ²⁸ Fieser. J. Biol. Chem. 133, 391 (1940).
- 29 Hooker. J. Am. Chem. Soc. 58, 1190 (1936).
- ³⁰ Fieser. J. Am. Chem. Soc. 58, 572 (1936).
- ³¹ Folin. J. Biol. Chem. 51, 377 (1922).
- ³² "Org. Reactions," III, p. 83.

²⁵ Dam et al. Helv. Chim. Acta 22, 310 (1939).

²⁶ Doisy et al. J. Am. Chem. Soc. 61, 1295 (1939).

It behaves like phthalic acid in many ways. It forms a cyclic anhydride and imide and reacts with mercuric acetate with replacement of one carboxyl by HOHg- which forms an inner salt with the other carboxyl.

3-Nitronaphthalic acid can be obtained by direct nitration of the anhydride in cold conc. H_2SO_4 by the calculated amount of KNO_3 . It is to be observed that this is the nitration of a naphthalene compound in the *beta* position. The 4-nitro-compound is obtained by oxidizing 4- NO_2 -acenaphthene.

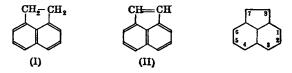
Naphthalene-1,2-dicarboxylic acid, m. 178° dec., can be made by heating Na naphthionate in refluxing naphthalene to give the 1,2-isomer, diazotizing and replacing the NH₂ by Cl, fusing the 1-Cl-2-SO₃Na-compound with potassium ferrocyanide in presence of copper to give the 1,2-(CN)₂-naphthalene and hydrolyzing the latter with KOH. The 1,4-dicarboxylic acid, m. 240°+, can be made similarly from naphthionic acid. The 2,3-dicarboxylic acid, m. 235° dec., is made from diethylnaphth-2,3-indandione, $C_{10}H_{0}(CO)_{2}CEt_{2}$, prepared by the Friedel-Crafts reaction on naphthalene and diethylmalonyl chloride. It is colorless and less soluble than the yellow 1,2-compound which is formed in small amounts. Treatment with KOH opens the indandione ring and oxidation with nitric acid converts the resulting Et_{2} -acetyl-naphthoic acid to the 2,3-dibasic acid. These dibasic acids resemble phthalic acid in forming anhydrides and in having the carboxyl readily replaceable by Hg. This is also true of their nitro derivatives. Replacement of the Hg by H, halogen and other groups gives many synthetic possibilities.

1,4,5-Naphthalenetricarboxylic acid is readily made by oxidizing an acyl derivative of acenaphthene. Its anhydride melts at 274°. Treatment of this with MeOH and H_2SO_4 gives the monomethyl ester, m. 222°, without changing the anhydride grouping.

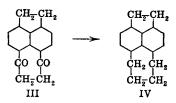
1,4,5,8-Naphthalenetetracarboxylic acid is obtained by oxidizing *peri*succinoylacenaphthene.³³ It gives a diimide which forms a characteristic yellow Na salt.

 $\alpha\alpha$ -, $\beta\beta$ -, and $\alpha\beta$ -dinaphthyls, (C₁₀H₇)₂, are known. The first two melt at 160° and 187°. They can be obtained in good yield by the action of ethereal FeCl₃ solution on the naphthyl Grignard reagents.

³³ Fieser. J. Am. Chem. Soc. 54, 4347 (1932).


Compounds with More Than Two Condensed Rings

Perylene is a di-naphthylene many derivatives of which have been made.

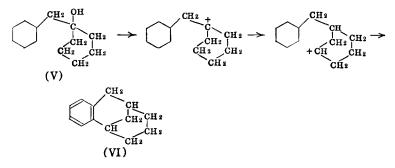

B. ACENAPHTHENE AND RELATED COMPOUNDS

Acenaphthene, (I), m. 95°, b. 277°, found in coal tar, is a naphthalene with a bridge of two CH₂ groups in the *peri* position. At red heat it loses 2 H to form acenaphthylene (II), m. 93°. The latter has been isolated from the solid products of the pyrolysis of natural gas³⁴

The fact that II is bright yellow while I is colorless illustrates the effect of an accumulation of conjugated double linkages. Oxidation of acenaphthene gives acenaphthoquinone which is really not a quinone but a 7,8-diketo compound. Further oxidation gives naphthalic acid and then hemimellitic acid.

The reactivity of the 3- and 4-positions in acenaphthene is shown by the condensation with succinic anhydride to give a seven-membered ring in *peri*-succinoylacenaphthene (III), m. 208°, and the corresponding hydrocarbon, *peri*-tetramethyleneacenaphthene (IV), m. 138°.³⁵

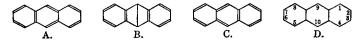
The reduction is by the Wolff-Kishner procedure using hydrazine hydrate and NaOEt at 160°.


A tetralin derivative with a 3-C bridge across the meta positions in the *ac*ring is obtained by dehydrating 1-benzylcyclohexanol (V).³⁶ Its formation is another example of the shift of a reactive spot in a molecule to a position

²⁴ Campbell. J. Am. Chem. Soc. 58, 1051 (1936).

³⁵ Fieser. J. Am. Chem. Soc. 54, 4347 (1932).

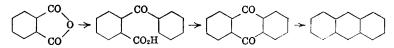
³⁸ Cook. J. Chem. Soc. 1936, 62.


which makes possible the closure of a 6-ring.

(VI) is 2,3-benzo-(1.3.3)-bicyclo-2-nonene.

C. Anthracene

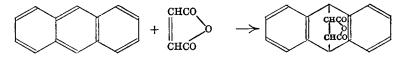
Anthracene is found in coal tar up to about one per cent. It is readily separated in a fraction containing carbazole and phenanthrene. Distillation with KOH retains the first as its nonvolatile N-K derivative. Phenanthrene can be removed by CS_2 from the distillate.


No one of the formulas A, B, and C expresses completely the peculiar properties of anthracene but all of them taken together seem to do so. This is probably a perfect case of *resonance* between several electronic formulas.³⁷ Anthracene is so peculiar that it is worthwhile to give various syntheses which have a bearing on its structure and properties.

1. Benzyl chloride heated with water at 200° gives it, dibenzyl and other products 4 $PhCH_2Cl \rightarrow C_{14}H_{10} + PhCH_2CH_2Ph + 4$ HCl. Probably the first product is 9,10-dihydroanthracene which readily loses its two extra H atoms.

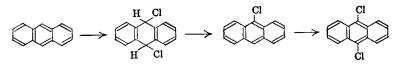
2. *o*-Bromobenzyl bromide with Na gives H_2 -anthracene which is changed to anthracene on mild oxidation.

3. o-Tolyl phenyl ketone heated with zinc dust gives anthracene.


4. Phthalic anhydride and benzene with AlCl₃ give *o*-benzoylbenzoic acid. Treatment with P_2O_5 or sulfuric acid at 180° gives anthraquinone which on distillation with Zn dust forms anthracene.

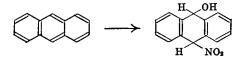
³⁷ Pauling. J. Chem. Phys. 4, 673 (1936).

5. The formation of anthracene from acetylene tetrabromide, benzene and $AlCl_3$ has been used as evidence for the existence of a para bond in the middle ring. It should be remembered, however, that $AlCl_3$ is very effective in breaking bonds and establishing new ones.


Properties. Anthracene, C14H10, m. 215°, b. 342°, forms colorless crystals which have a remarkable blue fluorescence. This probably depends on the excitation of a transformation between forms A and C possibly through B. Reduction readily gives 9,10-dihydroanthracene, m. 107°, in which the end rings are definitely like benzene. It is not fluorescent. High temperatures or treatment with oxidizing agents removes the 9,10-H atoms. The easy addition and removal of 2 H in positions 9,10 is reminiscent of the corresponding processes with quinone. Hence form B is called the quinone form. Addition takes place at 9,10- rather than at 1,4 in A or at 5,8 in B because the 9,10positions are alpha to a true benzene ring in both cases. The best argument for the existence of a conjugated system between 9 and 10 as in A and C rather than of a para bond as in B is the fact that anthracene acts as the conjugated diene in the Diels-Alder reaction with maleic anhydride giving a bridge in the 9,10 position to form a new six-membered ring in the usual way.

Further hydrogenation of $H_{2^{-}}$ anthracene gives $C_{14}H_{16}$ and $C_{14}H_{24}$. Mild oxidation also attacks the 9,10-positions giving anthraquinone.

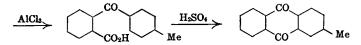
Sunlight converts a solution of anthracene to the less soluble *para-anthracene*, $(C_{14}H_{10})_2$, m. 244°, which is more stable in many ways than anthracene. It is relatively difficult to oxidize it to anthraquinone. On melting, it reverts to anthracene.


Derivatives of Anthracene. Three mono-substitution products are possible, the α -(1,4,5 or 8), the β -(2,3,6 or 7) and the γ -(9, or 10). The structures of such products are determined by oxidation, a γ -derivative giving anthraquinone, and the α - and β -derivatives giving the corresponding α - and β -substituted anthraquinones and then 3- and 4-substituted phthalic acids respectively unless the nature of the group is such as to favor the destruction of the ring to which it is attached (OH, NH₂). Anthracene adds Cl₂ in the 9,10-position. Bases remove 1 HCl giving 9-Cl-anthracene. Further chlorination gives the 9,10-Cl₂-compound.

Bromination in CS₂, solution gives 9,10-Br₂-anthracene, m. 221°. Alcoholic KOH reduces it to anthracene with the formation of MeCHO. Anthracene with pure Br₂ gives dibromoanthracene tetrabromide, m. 180° dec., which changes on heating to tribromoanthracene, m. 169°, and on treatment with alcoholic KOH to Br₁-anthracene, m. 254°. That 2 Br in each of these last compounds occupy the 9,10-positions is shown by their conversion respectively to monobromo and dibromoanthraquinone.

Cautious sulfonation, avoiding oxidation to anthraquinone, gives α - and β -anthracenesulfonic acids, the former predominating. It and its salts are more soluble than the β -compounds. Anthracenedisulfonic acids are also available.

All attempts at the *nitration* of anthracene result in its oxidation to anthraquinone. The first step in the process may be the addition of nitric acid to the 9,10-system to give "anthracene nitrate," m. 127° dec.

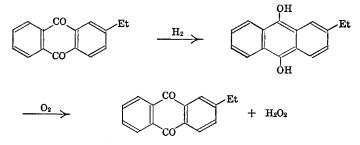


Hydroxyanthracenes. The α - and β -anthrols, m. 153° and dec. 200° respectively, are obtained from the sulfonic acids by alkaline fusion. 9-Hydroxy- and 9,10-dihydroxyanthracenes are obtained from anthraquinone.

Anthraquinone, 9,10-diketo-9,10-dihydroanthracene, $C_{14}H_8O_2$, m. 285°, b. 380°, occurs repeatedly in anthracene chemistry because of the ease of its formation and its great stability. Commercially it is made in large amounts as a dye intermediate.

1. By oxidizing anthracene with chromic acid or catalytically by air.

2. From phthalic anhydrides.²⁸ This method has been used for making a great variety of substituted anthraquinones from suitably substituted phthalic anhydrides and aromatic hydrocarbons. Thus β -Me-anthraquinone is readily obtained from toluene and phthalic anhydride.


Sometimes the ring closure of the substituted o-benzoylbenzoic acid is difficult. It can then be reduced to the corresponding benzylbenzoic acid in which the ring can be closed more readily. The resulting anthrone can then be oxidized to the desired anthraquinone.

3. A preparation which indicates its ketonic nature is by the distillation of calcium phthalate.


³⁸ Gleason. J. Am. Chem. Soc. 51, 310 (1929).

Anthraquinone can be split by fusion with alkali to give two molecules of a benzoate. This is like the splitting of benzophenone by NaOH to give benzene and Na benzoate.

 β -Et-anthraquinone has been suggested for use in a novel synthesis of hydrogen peroxide:

Reduction of anthraquinone by HI gives anthracene and its 9,10-H₂compound. Treatment with Sn and HCl in glacial acetic acid reduces one CO to CH₂ to give *anthrone* (I), 9-keto-9, 10-H₂-anthracene, m. 155^{.39} It can also be obtained from *o*-benzylbenzoic acid and H₂SO₄ at 80°. Anthrone dissolves in hot dilute bases. Acidification precipitates the enol form anthranol (II), γ -OH-anthracene, 9-OH-anthracene, m. 120°. This gives a yellow solution in glacial acetic acid. Boiling gives colorless anthrone.

Solutions of (II) are fluorescent while those of (I) are not. Bromination of (I) followed by hydrolysis gives *oxyanthranol* (III), m. 167°, which is converted almost completely by alcoholic HCl to $9,10-(OH)_2$ -anthracene, *anthrahydro-quinol* (IV), m. 180°, which can also be made by reducing anthraquinone with Zn and NaOH or by heating anthracene in HOAc with PbO₂.

As would be expected, (IV) gives fluorescent solutions while (III) does not. (IV) is readily oxidized, even by air, to anthraquinone.

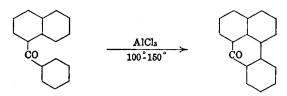
```
39 "Org. Syntheses."
```

Monohalogen anthraquinones are not obtainable by direct halogenation. The β -compounds can be made from phenyl halides and phthalic anhydride.

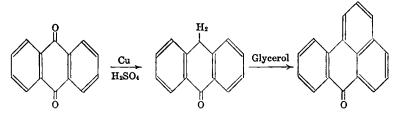
Two dibromoanthraquinones, m. 245° and 275° , are obtainable, one by direct bromination at 160° and the other by the oxidation of Br₄-anthracene.

Nitration of anthraquinone gives mono- and di-nitro-derivatives, m. 230° and 260°.

Sulfonation is difficult, requiring 40% oleum at 160°. The product is anthraquinone- β -sulfonic acid, with the 2,6- and 2,7-disulfonic acids and about 5% of the α -acid. Mercuric sulfate catalyzes the formation of the α -acid and makes sulfonation possible under milder conditions. The by-products are then the 1,5- and 1,8-disulfonic acids. The sulfonic acid group is readily hydrolyzed from the α -position of anthraquinone. Alkaline fusion of the sulfonic acids is accompanied by air oxidation to give an extra hydroxyl group. This ease of oxidation is utilized in preparing alizarin, 1,2-dihydroxyanthraquinone, m. 289°, by fusing anthraquinone-\beta-sulfonic acid with alkali and the calculated amount of chlorate. Alizarin occurs in madder root as the glucoside, ruberythric acid, C₂₆H₂₈O₁₄. Its alkaline solution is used with mordants to give colored lakes, Al and Sn giving red, Ca blue, and Fe violet black. Anthrarubin is the anthranol obtained by reducing alizarin. Many other dihydroxyanthraquinones are known. The most important are the following: (1,3-) xanthopurpurin, m. 264°, (1,4-) quinizarin, m. 195°, (1,5-) anthrarufin, rufol m. 265°, dec., (1,8-) chrysazin, chrysazol, m. 225° dec., (2,3-) hystazin, hystazarin, m. 280°, (2,6-) anthraflavinic acid, m. 330°+, (2,7-) isoanthraflavinic acid, m. 330°+.


Many important dyes are related to alizarin and are similarly used with mordants to form insoluble lakes. The following are polyhydroxy derivatives of anthraquinone: (1,2,3-) anthragallol, Anthracene Brown, (1,2,4-) purpurin, (1,2,6-) flavopurpurin, (1,2,7-) anthrapurpurin, (1,2,6,8-) Alizarin Bordeaux B, (1,2,3,5,6,7-) Anthracene Brown SW, (1,2,4,5,6,8-) Anthracene Blue WR. Many more complex alizarin dyes, especially those containing sulfonic acid groups, are known. Certain dyes are identified by the alizarin name without being related to it. Thus Alizarin Yellow C is gallacetophenone, 2,3,4-(OH)₃acetophenone, obtained from pyrogallol and acetic acid, Alizarin Yellow A is 2,3,4-(OH)₃-benzophenone, Alizarin Black S or naphthazarin is 3,4-(OH)₂- α naphthoquinone, and Alizarin Green G and B are oxazin dyes formed from sulfonic acids of β -naphthoquinone and aminonaphthols.

Tectoquinone is β -Me-anthraquinone. Rubiadin is 2-Me-1,3-(OH)₂-anthraquinone and munjistin is the same with Me oxidized to carboxyl.


Das Anthracen und die Anthrachinone, J. Houben, 890 pp., Thieme, Leipzig 1929.

Benzanthrone, m. 170°, can be made by heating α -benzoylnaphthalene

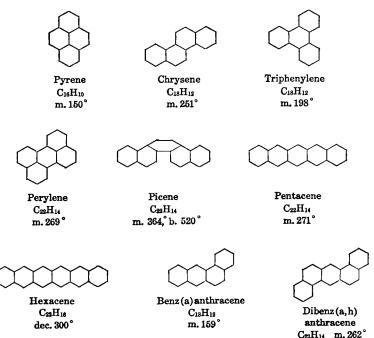
with AlCl₃.

Benzanthrone is also prepared by heating a reduction product of anthraquinone with sulfuric acid and glycerol.⁴⁰

It is an important intermediate for vat dyes.

D. PHENANTHRENE

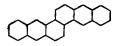
Phenanthrene, $C_{14}H_{10}$, m. 99°, b. 340°, an isomer of anthracene, occurs with that substance in coal tar. It is a diphenyl with the 2,2'-positions bridged by a -CH = CH - group thus forming three condensed benzene rings.

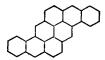

Like anthracene it gives fluorescent solutions. It is more difficult to oxidize and to reduce than anthracene. The first product of hydrogenation with copper chromite catalyst is 9,10-dihydrophenanthrene, m. 35° . Oxidation with chromic acid yields phenanthrene quinone, 9,10-diketo-9,10-dihydrophenanthrene, m. 206. Further oxidation of the latter with hydrogen peroxide in acetic acid solution gives diphenic acid, diphenyl-2,2'-dicarboxylic acid, m. 229° . The quinone can be reduced with sulfurous acid to phenanthraquinol, 9,10-(OH)₂-phenanthrene.

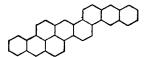
Bromination of phenanthrene yields 9,10-dibromophenanthrene; in the presence of a catalyst such as ferric bromide, however, 9-bromophenanthrene, m. 63°, is produced in good yield.⁴¹ The latter readily forms a Grignard reagent with magnesium, carbonation of which gives the 9-carboxylic acid, m. 252°. Reaction with conc. sulfuric acid at 60° yields a mixture of the 2-,

⁴⁰ "Org. Syntheses," II. ⁴¹ Price. J. Am. Chem. Soc. 58, 1838 (1936). 3- and 9- monosulfonic acids, together with a trace of the 1-isomer, illustrating the reactivity of the beta positions. Disulfonic acids are also formed. At 120°, conc. sulfuric acid gives mainly the 2- and 3-phenanthrene sulfonic acids. Fusion of the latter with KOH yields the corresponding phenanthrols. Acetylation with acetyl chloride and AlCl₃ in nitrobenzene solution results in the formation of 2- and 3-acetophenanthrene in 1:4 ratio. With oxalyl chloride, phenanthrene produces primarily the 3-carboxylic acid, m. 269°, Me ester, m. 95°, with smaller amounts of the 2-carboxylic acid, m. 258°, Me ester, m. 96°, and still less of the 9-carboxylic acid, m. 252°, Me ester, m. 115°.⁴²

Phenanthrene assumes added importance because of its relation to such widely diverse and essential groups of substances as the sterols, bile acids, morphine and sex hormones. (Phenanthrene and its Derivatives. Fieser, A.C.S. Monograph, 1936.)


More complex hydrocarbons having condensed benzene nuclei are known in large numbers. Some of these come from coal-tar, others from the stupp-fat obtained in the working up of mercury ores at Idria and many more by synthetic methods which have been stimulated by the discovery of carcinogenic hydrocarbons (Cook).


^a Mosettig. J. Am. Chem. Soc. 54, 3328 (1932).


Dibenzanthracene- $\alpha\gamma$ Dibenz (a, c) anthracene $C_{22}H_{M}$ m. 202°

Dibenzochrysene (bk) Dibenzo (b,k) chrysene CasH₁₅ m. 400°

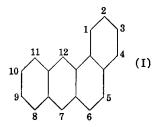
Pyranthrene C₃₀H₁₆ sublimes

Dinaphthoperylene (3,2,1-od,lm) Dinaphtho (1,2,3-od,1',2',3'-lm) perylene CaH18 subl. 400°

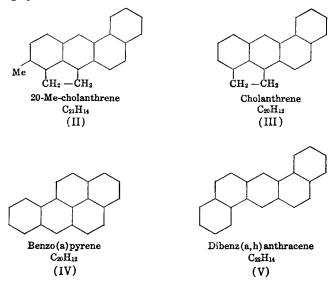
Coronene C₂₄H₁₂ m. 430° (Scholl 1932)

Dinaphthocoronene dinaphtho (abc, jkl) coronene CmeHis subl. 500°

Anthanthrene C22H12 m. 262°


C₁₇H₁₂ m. 188,° b. 413°

Everest, "Higher Coal-Tar Hydrocarbons," Longmans, Green and Co., 1927. Clar, "Aromatische Kohlenwasserstoffe," Edwards Brothers, Inc., 1944.


AROMATIC OR BENZENE SERIES

E. CARCINOGENIC HYDROCARBONS

Certain polynuclear aromatic hydrocarbons have specific action in producing cancer in animals.⁴³⁻⁴⁵ With few exceptions, e.g., benzo(c)phenanthrene, they are all derivatives of benz(a)anthracene:

Only those derivatives having substituents at the 7, 8, or 12 positions are strong carcinogens, as tested with mice. Several of the most potent cancerproducing hydrocarbons are listed:

In order of decreasing carcogenicity, these are II > III > IV > V. Benzo(a)pyrene (IV) was isolated originally from coal tar and shown to be the active carcinogen in that substance.

⁴³ Kennaway. Brit. Med. J. 1930, 1044; Biochem. J. 24, 497 (1930).

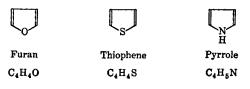
- "Cook. J. Chem. Soc. 1930, 1087.
- ⁴⁶ Fieser. J. Am. Chem. Soc. 59, 2561 (1937).

PART IV

HETEROCYCLIC COMPOUNDS

Heterocyclic compounds have one or more atoms of elements other than carbon as members of their ring structures. The commonest element so occurring is nitrogen. Next to it comes oxygen and then sulfur. Many other elements are less commonly found as members of rings.

I. CLASSIFICATION


The heterocyclic compounds fall in two main classes.

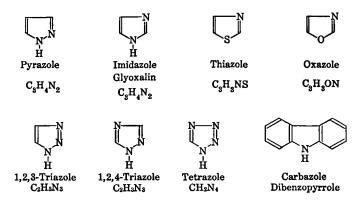
1. Those resembling the alicyclic compounds, in which the properties of the atoms and groups involved are much as they would be in an open chain structure.

2. Those containing a conjugation of unsaturated groups or atoms which give an effect like that in benzene. Such compounds as pyridine, pyrrole, thiophene and furan show many aromatic properties which are destroyed on partial or complete hydrogenation much as happens with benzene.

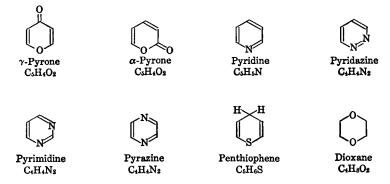
Many heterocyclic compounds have condensed rings, that is, pairs of rings having two atoms in common. Sometimes both rings are heterocyclic but very often one is a benzene ring.

The most important 5-membered *heterocyclic systems* are listed below. In each case an angle represents a CH group

The positions in the above compounds and their derivatives are numbered counter-clockwise with the hetero atom as 1-.

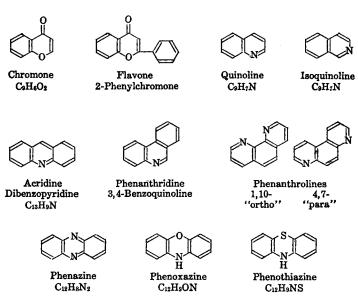


Indole


Coumarone C₂H₆O

Benzothiophene C_8H_6S

In each of these 5-membered rings there are three points of unsaturation, the two double bonds and an atom capable of an -onium valence. These are conjugated as in benzene. This conjugation obscures the individual unsaturation much as in benzene. Thus the double bonds in these compounds have about the same inactivity as those in benzene. Moreover, the "unsaturation" of the hetero-atom has largely disappeared. Thus pyrrole is a very weak base. Thiophene fails to give the addition compounds with substances like MeI and HgCl₂ which are characteristic of open chain sulfides. This failure is not due to the presence of the isolated double bonds, for vinyl sulfide readily gives the compound $(CH_2=CH)_2S.HgCl_2$. In accordance with these analogies to benzene, all these heterocyclic compounds show aromatic properties in varying degrees.¹


Among the important 6-membered heterocyclic systems are the following:

¹Gilman, Towne. Rec. trav. Chim. 51, 1054 (1932).

Copyrighted Materials Copyright © 1937; 1951 Dover Publications Retrieved from www.knovel.com

FIVE-MEMBERED RINGS

An inspection of these heterocyclic formulas shows that some have the characteristic conjugated unsaturation of benzene while others have that of quinone and still others have neither. The analogy of acridine and phenazine to anthracene is confirmed by the reactions of these substances.

In the naming of the heterocyclic compounds, the -ole ending is used to designate a five-membered ring, the -ine ending, a six-membered ring, and the presence of nitrogen, sulfur or oxygen in the ring by the abbreviations -az-, -thi-, -ox- respectively. Many compounds which were named before these conventions were generally accepted, do not conform. In numbering the positions in heterocyclic compounds, the hetero atom is usually No. 1 even though substitution on it may be impossible. Exceptions are carbazole in which the N is No. 9 and the analogs of anthracene in which the atoms of the middle ring are No. 9 and No. 10.

II. FIVE-MEMBERED RINGS

A. FURAN AND DERIVATIVES CH = CHFuran, furfurane, CH = CH O, b. 32°, is obtained in various thermal de-CH = CH

compositions as in wood distillation. It is readily prepared by heating furan-

HETEROCYCLIC COMPOUNDS

2-carboxylic acid,¹ or by the catalytic cracking of furfural (du Pont). It is stable to sodium and sodium hydroxide but is resinified by strong acids. Gaseous chlorination at 50° under conditions which permit the rapid removal of HCl gives 2-chloro-furan.² The diene character of furan is shown by the addition of maleic anhydride.³ It is converted into *tetrahydrofuran*, C₄H₂O, b. 66°, by catalytic reduction. Tetrahydrofuran shows the properties of a cyclic ether. It is converted into tetramethylene chlorohydrin with dilute hydrochloric acid, into 1,4-dichlorobutane with concentrated hydrochloric acid, into 1,4-butanediol diacetate with acetic anhydride and into butadiene upon dehydration. At 0° it can be chlorinated to 2,3-dichloro-tetrahydrofuran which reacts with Grignard reagents to give 2-alkyl-3-chlorotetrahydrofuran. These compounds may be converted to alcohols of the type

2,5-Dihydrofuran,
$$\bigcup_{CH-CH_2}^{CH-CH_2}$$
 O, b. 67°, is made by heating erythritol with

HO - C - C - C = C - R 4

formic acid, a process analogous to the production of allyl alcohol from glycerol.

2-Methylfuran, sylvane,

$$CH = CMe$$

 O , b. 65°, and 2,5-Me₂-furan,
 $CH = CH$
 $CH = CMe$
 O ,
 $CH = CMe$

b. 94°, are contained in wood tar and in the products from distilling sucrose with kine. The former can be made by copper chromite catalyzed reduction of furfural⁵ (cf. furfural). Sylvane is hydrolytically reduced over nickel on Celite at 150° to 1,4-pentanediol.⁶ 2,5-Dimethylfuran can also be made from acetonylacetone with ZnCl_2 or P_2O_5 (C and C). This change may be regarded as a simple dehydration of the dienol. Dilute HCl at 270° changes Me₂-furan to acetonylacetone.⁷

¹ "Org. Syntheses."

- ² Cass, Capelin. C. A. 42, 7340 (1948).
- * Woodward, Baur. J. Am. Chem. Soc. 70, 1161 (1948).
- ⁴ Normant. Ind. Parfum. 3, 156 (1948).
- ⁵ Hixon et al. Ind. Eng. Chem. 40, 502 (1948).
- ⁶ Schnilpp et al., J. Am. Chem. Soc. 69, 672 (1947).

" "Org. Syntheses."

CH = C - CHO**Furfural**, furfurol, furol, α -furaldehyde, α -furfuraldehyde, Ó $\dot{C}H = C\dot{H}$

b. 162°, is obtained by the action of mineral acids on pentoses and pentosans which occur in large amounts in vegetable products such as oat hulls, cornstalks, corn cobs, bran and the like. Commercially it is made in large amounts by the action of sulfuric acid with oat hulls (Quaker Oats Company).⁸ The chemical industry based on furfural is of tremendous importance. Among the many products available from furfural are: 1,4-butandiol, dihydropyran, tetrahydropyran, 1,5-pentandiol, 2-methylfuran, cyclopentanones, adipic acid and Nylon⁹ (cf. adipic acid). Thus furfural is converted to 2-methylfuran in 95% yields over a special Cu Cr Ca catalyst at 200-225°.¹⁰ With nickel and hydrogen at temperatures below 100° it is converted to 2-methyltetrahydrofuran, while above 100° it rearranges to 2-pentanone.¹¹ It is used as a selective solvent for petroleum refining. The aldehyde reactions of furfural are almost exactly like those of benzaldehyde. Thus KCN gives furoin,

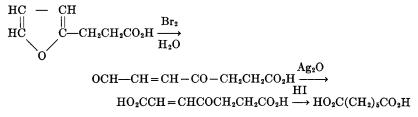
C₄H₃O.CHOHCO.C₄H₃O,

m. 135°, analogous to benzoin. From a mixture of benzaldehyde and furfural KCN gives benzfuroin, C₄H₃O. CHOHCO. C₆H₅, m. 139°. These on oxidation give furil, (C₄H₃O.CO)₂, m. 162°, and benzfuril, C₄H₃O.COCOC₆H₅, m. 41°. Furil with alkali gives furilic acid, difurylglycollic acid, (C4H3O)2C(OH)CO2H, which decomposes below 100°. Ammonia gives furfuramide, (C4H3O.CH)3N2, m. 117°, which is converted by alkalis or heat to the isomeric furfurin, m. 116°, corresponding to hydrobenzamide and amarin.

Tetrahydrofurfuryl alcohol, C5H10O2, b. 177°, is formed by the nickel catalyzed reduction of furfural. Its higher esters such as the oleate are used as plasticizers for polyvinyl chloride. By use of a copper-chromium oxide catalyst, the reduction of furfural can be controlled to give *furfuryl* alcohol, C₅H₆O₂, b. 170°.12

Furylacrylic acid, trans C₄H₃O. CH = CHCO₂H, m. 141°, (ICI) is made by the Perkin reaction from furfural, NaOAc and Ac_2O at 170°. This and the allo or cis form, m. 103°, are obtained by heating furalmalonic acid,

$C_4H_3O.CH = C(CO_2H)_2$


m. 205° dec. obtained by warming furfural, malonic acid and HOAc. Reduction of furylacrylic acid readily gives β -furylpropionic acid. This with Br₂ water followed by oxidation with Ag₂O gives furonic acid, a keto unsaturated

- ⁹ Cass. Chem. Ind. 60, 612 (1948).
- ¹⁰ Holdren. C. A. 42, 8214 (1948).

⁸ Dunlop. Ind. Eng. Chem. 40, 204 (1948).

 ¹¹ Wilson. J. Am. Chem. Soc. 70, 1313 (1948).
 ¹² Wojcik. Ind. Eng. Chem. 40, 210 (1948).

dibasic acid which is reduced by HI to pimelic acid.¹⁸

The first step consists in 1,4-addition of bromine, followed by hydrolysis to give the 1,4-keto-aldehyde. Furylacrylic acid with alcoholic HCl gives acetone diacetic ester, CO(CH₂CH₂CO₂Et)₂.¹⁴

Furfural, through the Perkin reaction with *n*-butyric anhydride and salts, gives α -ethyl- β -furylacrylic acid incorrectly called furylangelic acid.¹⁵

Furoic acid, pyromucic acid, furan-2-carboxylic acid,

m. 133°, was originally made by heating mucic acid but is now prepared from the readily available furfural either by cautious oxidation or by the Cannizzaro reaction. While many of its reactions resemble those of benzoic acid it differs in being readily oxidized, for instance, by permanganate. With dry bromine it gives a tetrabromide, m. 160° dec., which with alcoholic KOH gives 3,4- and 3,5-dibromofuroic acids, m. 192° and 168°. Mono- and tri-bromofuroic acids have also been made. 5-Bromo-furoic ester gives a remarkable reaction with AlCl₃ and alkyl halide. Thus n-AmCl, n-Hex-Br and n-octadecyl bromide all give the same product, ethyl 4-tert-bu-5-Br-2-furoate.16 A yield of 46% was obtained from the C_{18} bromide.

$$C_{18}H_{st}Br + Br O CO_{2}Et \longrightarrow Br O CO_{2}Et$$

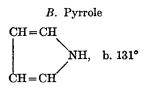
Substitution reactions such as nitration, bromination and sulfonation are usually successful only on substituted furans in which a group such as carboxyl or carbethoxy reduces the tendency to tar formation. The great ease of substitution in the Friedel-Crafts reaction is such that benzene can often be used as the solvent. The diene character of furan is shown by the addition of maleic anhydride (Diels and Alder).

756

¹³ Baeyer. Ber. 10, 1358 (1877).

¹⁴ Marckwald. Ber. 20, 2811 (1887).

 ¹⁹ Carter. J. Am. Chem. Soc. 50, 2299 (1928).
 ¹⁶ Gilman, Burtner. J. Am. Chem. Soc. 57, 909 (1935).


The semicarbazone of 5-nitro-2-furfural dehyde, Furacin,¹⁷ is an effective surface antiseptic.

Maleic anhydride (I) may be regarded as the quinone of furan. This relation is indicated by its formation of colored addition compounds with phenols, amines, etc. similar to those formed by quinone (II).

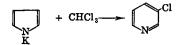
The oxidation of 5-hydroxymethylfurfural is in part responsible for the browning of fruits.¹⁸

Orientation in the furan series has been studied intensively.¹⁹

This is found in coal tar and the oil from the preparation of bone black. It is best obtained from this bone oil. Succinimide on distillation with zinc dust gives pyrrole (p. 382). It does not form salts with acids. With ethereal HCl in the cold it gives a trimer, $(C_4H_6N)_8$. HCl;²⁰ in cold aqueous acid a polymeric amorphous material, "pyrrole red," is formed.

The imino H of pyrrole is replaceable by metals, alkyl and acyl radicals. At pH of 1, all five hydrogens of pyrrole undergo deuterium exchange; at a pH of 2 or greater only the imino hydrogen is exchanged. Pyrrole can be purified by heating with solid KOH and distilling the other bases from the residue of the solid potassium compound. NaOH does not act on it and even metallic Na acts very slowly. Pyrrole can be synthesized by heating ammonium mucate with glycerol at 200° and by heating furoic acid with $ZnCl_2-2 NH_3$ and CaO. An interesting preparation is by passing diethyl amine through a redhot tube. With hydroxylamine, the pyrrole ring opens and forms the dioxime of succinic dialdehyde, $HON = CH(CH_2)_2CH = NOH$.

Treatment of potassium pyrrole with alkyl and acyl halides gives both Nand C-(α) substitution products. Pyrrole reacts in many cases like phenol. Thus with HCN and HCl 2-pyrrole aldehyde is formed in a reaction comparable to the Gattermann aldehyde synthesis. It couples with diazonium salts in the alpha position to give azo dyes and reacts with formaldehyde and

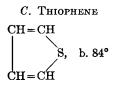

¹⁷ Dodds. J. Pharmacol. 86, 311 (1946).

¹⁸ MacKinney et al. J. Am. Chem. Soc. 70, 3577 (1948).

¹⁹ Gilman. Chem. Rev. 11, 327 (1932).

²⁰ Ann. Rep. Chem. Soc. (London) 1927, 159.

diethylamine in a Mannich condensation to give 2,5-di(diethylaminomethyl)pyrrole. A peculiar change occurs with chloroform and KOH to give 3chloropyridine by a ring enlargement.


It is interesting that benzotrichloride and pyrrole give 3-phenylpyridine in an analogous reaction. Iodine and a base give *tetraiodopyrrole*, iodole, dec. 150°, which has been used as an antiseptic of the iodoform type.

Pyrrole with zinc and acetic acid gives dihydropyrrole or *pyrroline*, b. 91°. Further reduction with HI gives tetrahydropyrrole or *pyrrolidine*, b. 86°. The effect of conjugation in masking the basic properties of the N in pyrrole is shown by the fact that its H_{2^-} and H_4 -derivatives are strong bases.

Pyrrolidine is best prepared by the catalytic hydrogenation of pyrrole. The central unit in the coloring matters of hemoglobin and chlorophyll is a giant, sixteen-membered, planar ring in which four pyrrole nuclei are joined through carbon atoms.

Polyvinylpyrrolodine, Periston, a blood plasma substitute, is obtained from the action of acetylene and ammonia with butyrolactone.

This occurs with benzene (b. 80.5°) in coal tar. It can be removed from benzene by repeated shakings with conc. sulfuric acid which sulfonates the thiophene more easily than it does the benzene. It can also be removed by refluxing with mercuric acetate which mercurates the thiophene with great ease and the benzene slowly, if at all, under these conditions. Thiophene is made on a laboratory scale by heating sodium succinate with $P_2S_3^{21}$ It is now available in any required amount from the reaction of *n*-butane with sulfur

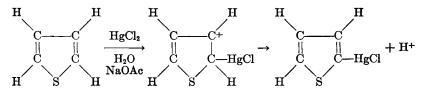
²¹ "Org. Syntheses."

at $600^{\circ.22}$ The reaction products include *n*-butenes, butadiene, and thiophene. By recycling the unchanged butane and other products boiling below thiophene, the latter can be obtained in 50% yields. *n*-Pentane and isopentane give 2-methylthiophene and 3-methylthiophene respectively under similar conditions.

Thiophene undergoes nitration, halogenation, sulfonation, alkylation, acylation, chloromethylation, and mercuration in the alpha position. These reactions take place with greater ease than with benzene and milder conditions are necessary to avoid side reactions. In addition to these reactions which are characteristic of benzene itself, thiophene reacts with formaldehyde and ammonia in a Mannich-type reaction, yielding 2-aminomethylthiophene and di-(2-thenyl)amine,²³ and condenses with formaldehyde under mildly acidic conditions to give resins.²⁴

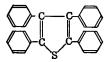
Contrary to the behavior of most C-Hg compounds, α -chloromercurithiophene reacts metathetically with acetyl chloride to give α -acetylthiophene, acetthienone.

The behavior of $\alpha \alpha'$ -disubstituted thiophenes with mercuric chloride and sodium acetate throws light on the mechanism of mercuration and the effect of ring conjugation. The first product analyzes for an addition product of one molecule each of thiophene, basic mercuric chloride and mercuric chloride. Boiling with alcohol gives HgCl₂ and a 3-ClHg-compound. The steps are probably as follows:



²⁹ Rosmussen et al. Ind. Eng. Chem. 38, 376 (1946).
 ²⁹ Hartough et al. J. Am. Chem. Soc. 70, 1146 (1948).

²⁴ Caesar, Sachanen. Ind. Eng. Chem. 40, 922 (1948).

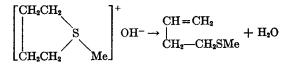

HETEROCYCLIC COMPOUNDS

The S atom in A is incapable of forming an addition compound with $HgCl_2$ because its unsaturation is inactivated by conjugation with the two double bonds. As soon as a molecule of B has formed, its sulfur no longer is conjugated as part of the cyclic unsaturation and can add a molecule of mercuric chloride. Long boiling removes H_2O from C giving D in which the S is again part of the ring conjugation and so incapable of holding the $HgCl_2$. With thiophene itself, the process probably takes place much like the action of chlorine with isobutylene (p. 40).

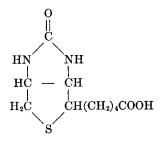
The ⁺ indicates a carbon with only 6 electrons. If Cl⁻ or OH⁻ should add to this carbon the S could then add HgCl₂ to give a stable product. The loss of the α -H as a proton or H⁺ ion with regeneration of the conjugated unsaturation makes the process seem one of simple substitution. In the case of the 2,5-disubstituted thiophenes, such as A, the less active β -H is not expelled quickly enough to prevent the two bimolecular processes which produce B and C.

Whereas open chain and saturated cyclic sulfides are easily oxidized to sulfones the sulfur in thiophene and its ordinary homologs is not attacked by oxidizing agents unless the ring is broken. A notable exception is the ready formation of a sulfone by the action of H_2O_2 on *tetraphenylthiophene*, thionessal, m. 184°, formed by the action of sulfur on stilbene.

It would seem that the double bonds in the thiophene ring have become conjugated with those of the four phenyl groups to such an extent that they leave the unsaturation of the sulfur free for action with the H_2O_2 .

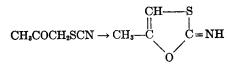

The chemistry of thiophene and its homologs has been studied extensively. The physical properties of these substances closely resemble those of the corresponding benzene compounds. Apparently the grouping C-S-C is very nearly equivalent to $C-C=C-C.^{25}$

Tetrahydrothiophene, tetramethylene sulfide, $(CH_2)_4S$, b. 118°, is readily made from $Br(CH_2)_4Br$ and Na_2S . It acts as an ordinary sulfide giving a


²⁵ Erlenmeyer, Leo. Helv. Chim. Acta 16, 1381 (1933).

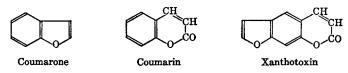
760

sulfone, and addition products with MeI, $HgCl_2$, etc. Treatment of the sulfonium iodide with a base and heat opens the ring as in the exhaustive methylation of cyclic amines.



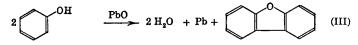
Biotin, vitamin H, coenzyme R, is a tetrahydrothiophene derivative.

It was originally isolated from egg yolk and subsequently from milk, yeast, and liver. Biotin is a growth factor for yeast and its deficiency causes a dermatitis in rats. Its role in human nutrition is not yet fully known. A factor in egg white, avidin, inactivates biotin either in vivo or in vitro and thus an egg whiterich diet causes the symptoms of a biotin deficiency even in the presence of an abundance of the vitamin. The structure of biotin was deduced by brilliant degradative studies²⁶ and its structure was confirmed by its total synthesis.²⁷ The analog of biotin in which the sulfur is replaced with oxygen, oxybiotin, shows approximately one-half of the microbiological activity of biotin itself.²⁸ The thiophene analog of biotin, 2,3,4,5-tetradehydrobiotin, has been made, but shows none of the activity of biotin.²⁹ Synthetic biotin is now produced in quantity (Merck).


A substance related to both furan and thiophene is α -methylrhodim obtained from thiocyanoacetone and NH₃.³⁰

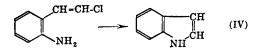
26 du Vigneaud et al. J. Biol. Chem. 146, 495 (1942).

- ²⁷ Harris et al. J. Am. Chem. Soc. 67, 2096 (1945).
- ²⁸ Hofmann. J. Am. Chem. Soc. 67, 1459 (1945).
- ²⁹ Cheney, Piening. J. Am. Chem. Soc. 67, 731 (1945).
- ³⁰ Ann. Rep. Chem. Soc. (London) 1919, 105.


Coumarone, benzofuran, b. 170°, occurs in coal-tar and has been synthesized in various ways. Many coumarone derivatives occur in plants. Thus *xanthotoxin* is a combination of coumarone and coumarin structures.³¹

3-Phenyl-2-benzofuranone (II) is made by heating mandelic acid and phenol. Alkylation with β -diethylaminoethyl chloride gives the antispasmatic amethone (I) 3- β -diethylaminoethyl-3-phenyl-2-benzofuranone hydrochloride.

Diphenylene oxide, dibenzofuran (III), m. 82°, b. 283°, is made by heating phenol with PbO.

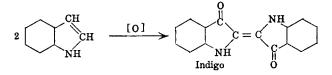


Because of the occurrence of the dibenzofuran grouping in morphine many of its derivatives have been prepared.^{32, 33}

Benzothiophene, m. 31°, b. 221°, resembles naphthalene much as thiophene resembles benzene.

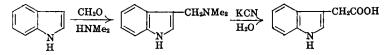
D. INDOLE AND ITS DERIVATIVES

Indole, benzopyrrole, (IV), m. 52°, is of great importance as the parent substance of indigo. It has been synthesized in many ways, one of the simplest of which is the action of NaOEt on o-amino- ω -chlorostyrene.³⁴


³¹ Späth. Monatsh. 69, 75 (1936).

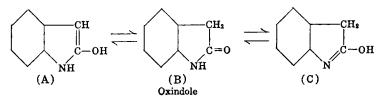
²² Mosettig, Robinson. J. Am. Chem. Soc. 57, 2186 (1935); 58, 688 (1936); 61, 1148 (1939).

²³ Gilman. J. Am. Chem. Soc. 61, 951, 1365 (1939).


" "Org. Syntheses."

Like pyrrole, it is very feebly basic and can have its imino H replaced by alkyl, acyl and K. Direct oxidation gives indigo in small yields.

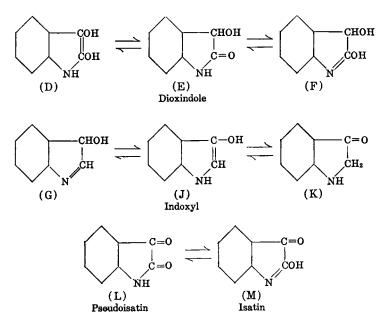
This is a bimolecular oxidation analogous to the bimolecular reductions which give pinacols from ketones.


Indole condenses with formaldehyde and dimethylamine to give gramine, 3-dimethylaminomethyl-indole, which reacts with potassium cyanide under hydrolytic conditions to give indol-3-acetic acid.³⁵

Gramine and related heterocyclic compounds also undergo alkylation in the malonic ester synthesis.³⁶

bumen, the precursor being the amino acid tryptophan. It has an overpowering fecal odor and is used in minute amounts in perfumes.

Indole-3-acetic acid has been identified as the plant growth-hormone, hetero-auxin,³⁷ and probably acts by intensifying the photosynthetic activity. Many analogous substances have been tested for their growth-promoting activity.³⁸ Oxygen derivatives of indole are widely known.



³⁶ Snyder, Pilgrim. J. Am. Chem. Soc. 70, 3770 (1948).

³⁶ Albertson. J. Am. Chem. Soc. 70, 669 (1948).

³⁷ Kögl et al. Z. physiol. Chem. 214, 241; 216, 31 (1933); 225, 215; 228, 90 (1934).

³⁸ Ann. Rep. Chem. Soc. (London) 1935, 425.

Whereas indole is not soluble in acids, oxindole (form A), dioxindole (form D) and indoxyl are soluble. Oxindole (form C), dioxindole (form F) and indoxyl (form J) are also soluble in bases while isatin is soluble only in bases. Forms B, E and L are ordinary acid amide forms while forms C, F and M are tautomeric acidic forms of the amides in which the grouping C = NPh plays the part of the C=O of a carboxyl group. The solubility of indoxyl in bases is surprising. Apparently the grouping C=C in the aromatic pyrrole ring acts like the C=O in a carbonyl group. This is the same as saying that the hydroxyl is phenolic in nature. Form G of indoxyl is readily subject to hydrolysis to give an amino hydroxyaldehyde which probably accounts for the great instability of indoxyl. The presence of OH in forms A, D and J apparently interferes with the conjugation of the nitrogen unsaturation in the pyrrole ring and thus restores its basic properties.

Oxindole, 2-hydroxyindole, (A, B, C, p. 763), m. 120°, the lactam of *o*-aminophenylacetic acid, is made by reducing *o*-nitrophenylacetic acid or dioxindole. It can be easily oxidized to dioxindole. This easy oxidation is due to the enol form A which can be changed to form E by the addition of a positive hydroxyl at the 3-position and the expulsion of H⁺ from the 2-OH. As has been noted above, oxindole is amphoteric.

Indoxyl, 3-hydroxyindole, (G, J, K, p. 764), m. 85°, while isomeric with oxindole differs radically from it in being very unstable. It is readily oxidized

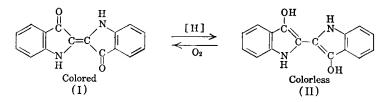
to indigo by air in basic solution and by ferric chloride in acid solution. Derivatives of both J and K are known. *Indoxylic acid*, 3-hydroxyindole-2-carboxylic acid, subl. 123°, can be obtained as the ethyl ester by reducing ethyl o-NO₂-phenylpropiolate, the amino group adding internally to the triple bond.

The acid loses CO_2 to give indoxyl which is readily oxidized to indigo. Indoxylic acid is also formed by the alkali fusion of phenylglycine-o-carboxylic acid. Since this latter compound is readily available from chloroacetic acid and anthranilic acid, this is the basis of one of the successful commercial syntheses of indigo.

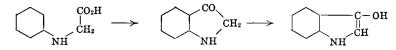
Dioxindole, 2,3-dihydroxyindole, (D, E, F, p. 764), m. 180° can be made by reducing isatin. Further reduction gives oxindole. It is also formed by oxidizing oxindole. The reactive groups in the oxidation-reduction series of isatin \rightleftharpoons dioxindole \rightleftharpoons oxindole are

$$\begin{array}{c} -\mathbf{C}=\mathbf{0} \\ | \\ -\mathbf{C}=\mathbf{0} \end{array} \xrightarrow{} -\mathbf{C}-\mathbf{OH} \xrightarrow{} -\mathbf{C}-\mathbf{OH} \\ -\mathbf{C}=\mathbf{0} \xrightarrow{} -\mathbf{C}-\mathbf{OH} \xrightarrow{} -\mathbf{C}-\mathbf{OH} \end{array}$$

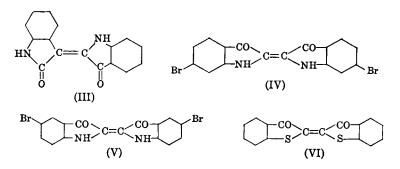
Isatin, diketodihydroindole, m. 201°, exists in form M (p. 764). It is readily made by oxidizing indigo, oxindole, dioxindole or indoxyl. Reduction gives dioxindole and then oxindole rather than the isomeric indoxyl. Isatin has been synthesized in many ways. Treatment with PCl_5 gives *isatin* CO


chloride, C_6H_4 —N=C—Cl, m. 180° dec. O-Ethers of isatin and N-alkyl derivatives of pseudoisatin (L, p. 764) are known.

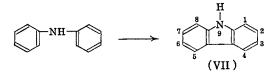
E. INDIGO AND RELATED COMPOUNDS


Indigo (I) is the oldest known dye and is still one of the most important. The indigo plant contains the colorless glucoside, *indican*, which on hydrolysis (enzymatic) breaks down into glucose and indoxyl. This is immediately oxidized by air to the very insoluble indigo dye. Indigo is changed by reduction to the alkali-soluble *indigo white* (II). This was originally accomplished in "fermentation vats" by bacterial action, but is now accomplished with sodium hydrosulfite, Na₂S₂O₄, or sodium formaldehyde sulfoxylate,

NaSO₂CH₂OH.


The indigo white (leuco-compound) is oxidized back to the insoluble indigo by air. These reactions are the basis of the process of vat dyeing whereby the insoluble dye is fixed within the fiber. X-ray diffraction shows that the dye molecule has the symmetrical *trans* structure.

Mono- and disulfonic acids of indigo are readily formed. The Na salt of the latter is *indigo carmine*. Many syntheses of indigo have been developed. The most important of these is the *phenylglycine process* which involves the fusion with NaNH₂ and NaOH of phenylglycine made from aniline and chloroacetic acid. The product is indoxyl which is oxidized to indigo by air.



Many dyes involving modifications of the indigo molecule are known. Indirubin (III) is made by alkaline condensation of isatin and indoxyl, the 3-carbon of the former becoming attached to the 2-carbon of the latter. Imperial purple, royal purple, or Tyrian purple was obtained from a species of Mediterranean shellfish. It has been shown to be a dibromo indigo (IV), which along with thyroxine and the recently discovered antibiotics, chloromycetin, geodin, and erdin, is one of the few naturally occurring organic compounds containing non-ionic halogen. The direct bromination of indigo gives (V). Thioindigo has S in place of the NH groups in indigo (VI).

F. CARBAZOLE (VII), m. 245°, b. 355°

This is dibenzopyrrole or the 2,2'-imide of diphenyl. It occurs in coal tar. It can be made by heating diphenylamine in a red hot tube.

The conjugation of the nitrogen with the two benzene rings increases the stability of the compound, decreases the ability of the N to unite with H⁺ and increases its tendency to lose H⁺. Its formation of a K compound with KOH is used in separating it from crude anthracene. Oxidation of carbazole gives a variety of products.³⁹ Silver oxide gives N-N-dicarbazyl, a colorless compound which gives colored solutions containing considerable amounts of the bivalent nitrogen free radical.⁴⁰ Nitration gives 1- and 3-nitro compounds. A partly hydrogenated carbazole grouping is found in strychnine. The carbazole ring system is present in some of the fastest blue vat dyes which in many cases have replaced the indigos. *Hydrone Blue*, one of the most important of these, is made by condensing carbazole with nitrosophenol in sulfuric acid and submitting the product to a sulfur melt.

N-Vinylcarbazole is prepared from carbazole and acetylene and polymerizes to a highly effective heat-resistant and insulating polymer, Polectron, Luvican, which resembles mica especially in its dielectric properties.⁴¹

G. PYRAZOLE AND RELATED COMPOUNDS

CH = CH Pyrazole, NH, m. 70°, b. 188°, is a stable weak base. As in the CH = N

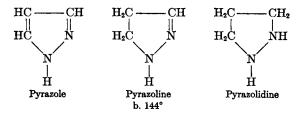
case of pyrrole and its analogs, the unsaturation of the nitrogen is masked by the ring conjugation. It has aromatic properties as shown by its nitration to give 4-nitropyrazole, m. 162°, b. 323°. Pyrazole can be made from diazomethane and acetylene in cold ether solution. This involves a peculiar addition of a 1,3-type if ordinary formulas are used.

$$\begin{array}{c} CH_2 = \overset{-}{N} = \overset{-}{N} & \xrightarrow{CH_2 - N} = \overset{-}{N} & \xrightarrow{CH} = \overset{-}{N-NH} \\ HC = CH & \xrightarrow{HC} = CH & \xrightarrow{HC} = CH \end{array}$$

It can also be made from pyrazole-3,4,5-tricarboxylic ester prepared either by

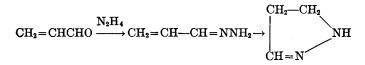
²⁹ Ann. Rep. Chem. Soc. (London) 1921, 126.
 ⁴⁰ Branch, Smith. J. Am. Chem. Soc. 42, 2405 (1920).
 ⁴¹ Busse et al. Ind. Eng. Chem. 40, 2271 (1948).

addition of diazoacetic ester to acetylenedicarboxylic ester,


$$RO_{2}CC \equiv CCO_{2}R + N_{2}CHCO_{2}R \rightarrow RO_{2}CC = CCO_{2}R$$

$$RO_{2}CC = N-NH$$
Et ester m. 91°

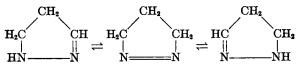
or by the action of Br_2 on the corresponding pyrazoline ester obtained by heating diazoacetic ester alone


The action of Br_2 in producing a double bond is typical of a dihydroaromatic compound. The ester is hydrolyzed to *pyrazole-3,4,5-tricarboxylic acid*, m. 233°, which on higher heating gives pyrazole. The aromatic nature of the pyrazole ring is further shown by the production of this acid by the permanganate oxidation of 3,4,5-Me₃-pyrazole, the three methyl groups being oxidized to carboxyl groups without changing the nucleus.

The hydrogenation products of pyrazole are no longer aromatic but show basic properties.

Pyrazolines are obtainable by a variety of reactions including:

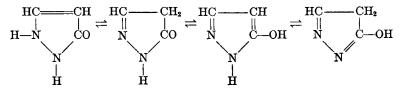
1. The action of hydrazine or one of its derivatives with an $\alpha\beta$ -unsaturated aldehyde or ketone. Thus acrolein and hydrazine give *pyrazoline*.



The last step consists in the usual ring closure when an active H is in the 1,5-relation to a double bond.

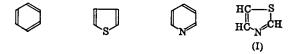
2. The addition of aliphatic diazo compounds to $\alpha\beta$ -unsaturated esters. The 3,5-dicarboxylic ester, Me ester, m. 94°, is formed from diazoacetic ester and acrylic ester while the 4,5-dicarboxylic ester, Me ester, m. 97°, is formed from diazomethane and maleic or fumaric ester. The former process shows that the N adds to the α -carbon.

$$\begin{array}{c} \operatorname{RO}_2\operatorname{CCH}=\operatorname{N}\equiv\operatorname{N} & \operatorname{RO}_2\operatorname{C--CH}-\operatorname{N}=\operatorname{N} & \operatorname{RO}_2\operatorname{CC}=\operatorname{N--NH} \\ & & & & & & & \\ \operatorname{CH}_2=\operatorname{CHCO}_2\operatorname{R} & & & & & & \\ \operatorname{CH}_2-\operatorname{--CHCO}_2\operatorname{R} & & & & & \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO}_2\operatorname{CC}=\operatorname{N--NH} \\ & & & & & \\ \operatorname{CH}_2-\operatorname{--CHCO}_2\operatorname{R} \end{array}$$

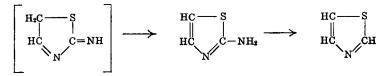

The 3- and 5-positions in pyrazolines are identical, because of the peculiar tautomerism which is possible.

Many pyrazoline derivatives lose N_2 on heating to form cyclopropane derivatives.

Pyrazolone, 3-ketopyrazoline, m. 165°, is made from Na formylacetic ester, hydrazine sulfate and NaOH.


The CH₂ group can be alkylated like that in 1,3-diketones, the CH = N group evidently playing the part of C=O or C=N. The CH₂ also forms an isonitroso compound, C=NOH, with nitrous acid. Pyrazolone is amphoteric, being soluble in acids and also in bases.

The first form is evidently responsible for the basic properties. The enol form is a hydroxyl derivative of pyrazole, an aromatic compound, and so has phenolic properties. 1-Phenyl-3-methylpyrazolone, m. 127°, is made from phenylhydrazine and ethyl acetoacetate. Methylation gives 1-phenyl-2,3dimethylpyrazolone or antipyrine, m. 113°, an important febrifuge. Pyramidon,


Aminopyrine, 1-phenyl-2,3-dimethyl-4-dimethylaminopyrazolone is a stronger and longer lasting antipyretic and has important analgesic properties. It has been the cause of fatal agranulocytosis. It is made by the nitration, reduction, and methylation of antipyrine.

Thiazole (I) b. 117°, closely resembles pyridine in much the way that thiophene resembles benzene.

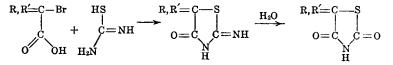
In each case the S plays the same part as -CH = CH - in determining physical and chemical properties. It is made by heating with alcohol the diazonium salt of 2-aminothiazole, m. 90°, obtained from chloroacetaldehyde and thiourea.

 $\begin{array}{c} \mathrm{SH} \\ \downarrow \\ \mathrm{ClCH_2CHO} + \mathrm{H_2NC(SH)} = \mathrm{NH} \rightarrow \mathrm{ClCH_2CH} = \mathrm{NC} = \mathrm{NH} \rightarrow \end{array}$

In actual practice, α,β -dichloroethyl ether, which decomposes into chloroacetaldehyde and ethanol *in situ*, is used instead of the unstable and lachrymatory chloroacetaldehyde. Chloroacetone and thiourea give 2-amino-5methylthiazole.⁴²

The sulfanilamide derivative sulfathiazole,⁴³ N¹-(2-thiazolyl)sulfanilamide (I), is one of the most important of the sulfa drugs. It is obtained from 2-aminothiazole by reaction with *p*-acetylaminobenzenesulfonyl chloride followed by hydrolysis of the acetyl group. The N²-succinyl derivative is known as sulfasuxidine. Promizole⁴⁴ (II), a thiazole analog of p,p'-diamino-diphenylsulfone, has shown limited success in the treatment of leprosy.

⁴² "Org. Syntheses."

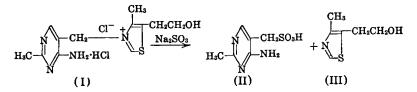

43 Northey. Chem. Rev. 27, 85 (1940).

"Bambas. J. Am. Chem. Soc. 67, 671 (1945).

770

2-Mercaptobenzothiazole (*Captax*) is an important rubber accelerator made from aniline, carbon disulfide, and sulfur.

Thiazolidones are made by heating a mixture of thiourea, an α -bromoacid and sodium acetate in alcohol or dioxane. The intermediate imine readily hydrolyzes.⁴⁵



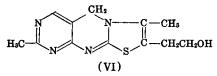
The product has the same fundamental structural unit, R, R' = C - CO - NH -, as the corresponding barbiturates, hydantoins, etc., and shows the same hypnotic properties.⁴⁶

Vitamin B_1 , thiamine, aneurin, (I), the component of the vitamin B complex whose deficiency is responsible for beriberi, was first isolated in a pure crystalline state from rice polishings in which it is present to the extent of about 1 gram per 100 pounds. The degradation reaction which proved to be the key to the elucidation of its structure was the remarkable cleavage with sodium bisulfite at room temperature into two approximately equal parts.

$$\begin{array}{c} C_{12}H_{18}N_4OSCl_2 + Na_2SO_3 \rightarrow C_6H_9N_3O_3S + C_6H_9NOS + 2 NaCl \\ I & II & III \end{array}$$

The first of these products (II) was proven to be a pyrimidine sulfonic acid. The second (III) was shown to be a thiazole derivative by its oxidation to 4-methylthiazole-5-carboxylic acid. The degradation reaction was interpreted as follows.

The correctness of this formulation was shown by its total synthesis and the identity of the natural and synthetic products.⁴⁷ The pyrimidine and thiazole portions of the molecule were prepared separately from aliphatic components


- ⁴⁶ Shonle. J. Org. Chem. 3, 193 (1938).
- ⁴⁷ Williams et al. J. Am. Chem. Soc. 57, 229, 517, 536, 1093, 1856 (1935).

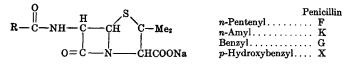
⁴⁵ Jones et al. J. Chem. Soc. 1946, 91.

as indicated in the following equations.

The final step is the reaction of the bromomethylpyrimidine (V) with the thiazole (IV) to give the bromide derivative of the vitamin. Synthetic thiamine is now available in any required amount. In the form of its pyrophosphoric acid ester, thiamine functions as a co-carboxylase. It is probably essential in the fermentation process for the conversion of pyruvic acid to acetaldehyde and carbon dioxide. Oxidizing agents such as potassium ferricyanide convert thiamine into thiochrome (VI), a yellow pigment which shows a strong blue fluorescence, the intensity of which is used as the basis for the chemical assay of the vitamin.

Several analogs of thiamine have been prepared. The thiamine molecule is very specific, however, and only in one case where an ethyl group replaces the 2-methyl group in the pyrimidine ring has the analog retained any vitamin activity.⁴⁸ *Pyrithiamine*, in which an analogous pyridine portion replaced the thiazole moiety of thiamine molecule,⁴⁹ was found to be antagonistic to the true vitamin.⁵⁰

The discovery and development of the antibiotic *penicillin* which is obtained commercially from the mold *Penicillin chrysogenum* has revolutionized chemotherapy. Its structure has been worked on by a large number of


"Wooley, White. J. Biol. Chem. 149, 285 (1943).

772

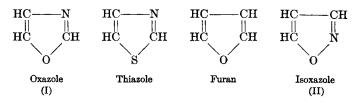
⁴⁸ Stein, Sampson, Cline, Stevens. J. Am. Chem. Soc. 63, 2059 (1941).

⁵⁰ Roblin. Chem. Rev. (1946).

American and British workers in a cooperative effort and is generally accepted as the following thiazolidine with fused β -lactam ring.

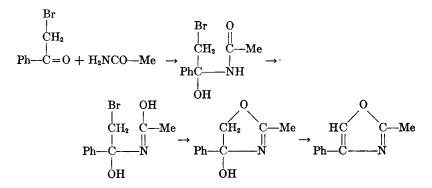
The nature of the R group determines the type of penicillin. The biosynthesis of the different types can be controlled to a certain extent; thus the addition of phenylacetamide to the nutrient media on which the mold grows, increases the production of penicillin G greatly. Penicillin in a moist state and especially under acid conditions is rapidly inactivated as a result of the cleavage of the β -lactam ring. The β -lactam ring has also been the limiting factor in the synthetic studies. Very small amounts of penicillin have been prepared synthetically but by a method which does not conclusively confirm the above structure.

Imidazole, glyoxaline, (A, B, C), m. 90°, b. 256°, is made from glyoxal, formaldehyde and NH_3 .


It can exist in the tautomeric forms A, B, and C, derivatives of all three forms of which are known. Imidazole is strongly basic but acetyl chloride and acetic anhydride have no action on it. MeI and alkali give *1-methylglyoxaline*, b. 199°. The methyl derivatives of imidazole, pyrazole, and pyrrole show interesting differences in volatility. The boiling points are as follows:

I	midazo	le 256°	P	yrazo	le 188°	H	yrrol	e 131°
N-Me	"	199°	N-Me	"	127°	N-Me	"	11 3°
5-Me	"	263°	5-M e	"	205°	2-Me	"	1 48°
2-Me	"	267°				3-Me	"	143°

In the case of imidazole and pyrazole, a methyl attached to C raises the b.p. $7-17^{\circ}$ while in pyrrole the increase is $17-22^{\circ}$. On the other hand a methyl group attached to N in imidazole and pyrazole *lowers* the b.p. 57° and 61°

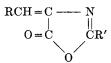

respectively whereas in pyrrole it lowers it only 13°. These differences are explainable in a large part by association which is possible in the compounds which contain two nitrogen atoms in the ring and have a hydrogen atom on one of these.

Hydrobenzamide on heating above 360° loses hydrogen with the formation of *lophine*, 2,4,5-triphenylimidazole. This is probably formed through the intermediate *amarin*, 2,4,5-triphenyldihydroimidazole.

H. OXAZOLES AND RELATED COMPOUNDS

Oxazole (I), corresponding to thiazole and furan, is known only in certain derivatives containing aromatic groups. 2-Methyl-4-phenyloxazole, m. 45°, b. 242°, is readily made by heating acetamide and bromoacetophenone at 130°.

The stability of the oxazole ring is shown by the fact that it is not broken when the phenyl group is nitrated and the nitro group is reduced to amino. On the other hand boiling with water decomposes it to form acetic acid and probably diphenyldihydropyrazine. 2,5-Diaryloxazoles are obtained from aromatic aldehydes and their cyanohydrins in presence of ethereal HCl. 2,5-Diphenyloxazole, m. 74°, b. 360°+, is thus made from benzaldehyde. The reaction involves two peculiar steps, the addition of the aldehyde H to the C of the CN group and an unusual tautomeric shift which makes possible the

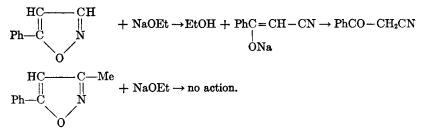

ring closure.

$PhCH(OH)CN + PhCHO \rightarrow PhCH(OH)CH = N-CO-Ph \rightarrow$

$$\begin{array}{ccc} PhC = CH - N = C - Ph \rightarrow & CH - N \\ | & | & || \\ OH & OH & Ph - C - O - C - Ph \end{array}$$

4,5-Diphenyloxazole, m. 44°, is obtained from benzoin, KCN and H₂SO₄.

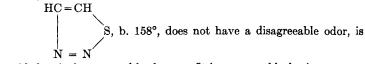
Azlactones, obtained by a modification of the Perkin reaction using aldehydes and alpha acylamino acids, contain the 5-oxazolone ring and are important intermediates in the synthesis of α -amino acids.⁵¹


Isoxazoles have been studied extensively. Isoxazole, (II), b. 95°, is made from propargylic aldehyde and hydroxylamine. The oxime, having an active H in the 1,5-relation to a triple bond, undergoes ring closure.

 $\begin{array}{c} C - CH = N & HC - CH = N \\ ||| & | \rightarrow || & | \\ CH & HO & HC - O \\ (II) \end{array}$

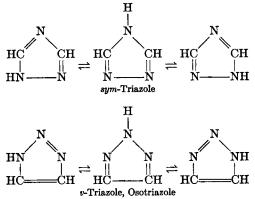
NaOEt opens the ring to give NaOCH=CH-C=N. The monoximes of β -ketoaldehydes and β -diketones give 5- and 3,5-substituted isoxazoles.

$$\begin{array}{c|c} PhCOCH_2CH = NOH \rightarrow PhC = CHCH \rightarrow Ph-C = CHCH \\ | & || & | & || \\ OH HON & O----N \end{array}$$


When the 3-position is free, the ring is readily split by bases as in the case of isoxazole itself. If the 3-position is occupied, the ring is stable to bases.

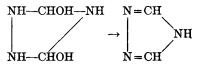
The 3-H evidently makes possible an unusual tautomeric change to give the α -cyanoketone which is removed by the alkali as an enolate.

^{a1} "Org. Reactions," III.


Thiodiazole,

stable to acids but is decomposed by bases. It is very weakly basic.

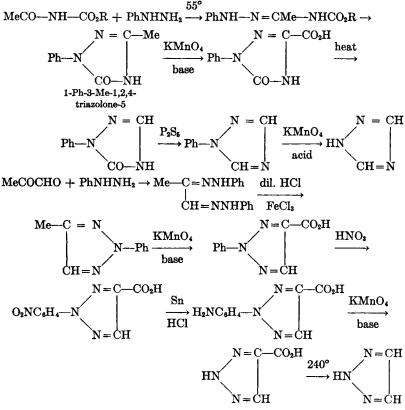
I. TRIAZOLES


Two types are known, each of which may exist in three tautomeric forms as shown.

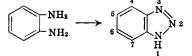
The two changes are probably bimolecular involving a trace of H⁺ ion.

sym-Triazole, 1,2,4-triazole, m. 121°, b. 260°, can be made from formamide and formyl hydrazide at 260°

$$HCO-NHNH_2 + HCO-NH_2 \rightarrow HCO-NHNH-CHOH-NH_2 - HCO-NH_2 - HCO-NH_2$$

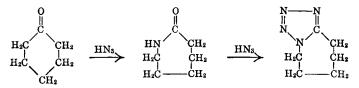

v-Triazole, osotriazole, 1,2,3-triazole, b. 206°, can be made from acetylene and hydrazoic acid.

$$HN = \stackrel{+}{N} \equiv \bar{N} \qquad HN - N = N$$
$$\rightarrow \qquad \downarrow \qquad \downarrow$$
$$HC \equiv CH \qquad HC = CH$$


The name osotriazole is derived from the synthesis of these compounds from

776

the osazones of 1,2-dicarbonyl compounds. Boiling copper sulfate solution converts the sugar osazones (p. 480) to osatriazole derivatives.⁵² The chemistry of the triazoles, especially the stability of the conjugated rings, is shown by the following changes:


Benztriazoles are formed by the action of nitrous acid on orthodiamines.

All the experimental evidence indicates the complete equivalence of the 5 and 6 positions. This is explainable on the basis of an extremely facile tautomerism as shown for v-triazole.

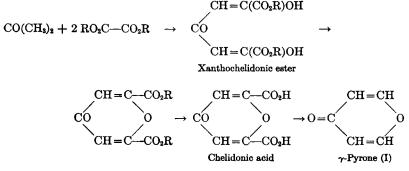
⁵² Haskins, Hann, Hudson. J. Am. Chem. Soc. 68, 1766 (1946).

Tetrazoles. Pentamethylene tetrazole, *metrazole*, *cardiazole*, is made by the action of excess hydrazoic acid on cyclohexanone in sulfuric acid.⁵³ The probable intermediate, ϵ -aminocaprolactam, is formed by a rearrangement analogous to the Beckmann rearrangement of oximes.

The product is a cardiac stimulant and is used in shock therapy of schizophrenia.

III. SIX-MEMBERED HETEROCYCLIC RINGS

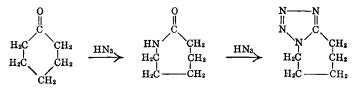
These fall into two groups, the saturated rings which show no properties different from their aliphatic analogs, and the unsaturated rings, especially those with ring conjugation resembling that of benzene and related compounds. Among the former are glutaric anhydride, δ -valerolactone, piperidine


CH₂(CH₂CH₂)₂NH,

and morpholine, O(CH₂CH₂)₂NH.

A. Pyrones

Although tetrahydropyrane and dihydropyrane are well known, pyrane itself is known only in the form of its derivatives, the pyrones.


 γ -Pyrone, (I) m. 32°, b. 315°, is made by heating its dicarboxylic acid, *chelidonic acid*, m. 262° dec., which is synthesized from acetone and ethyl oxalate in presence of NaOEt.¹

⁴³ Wolff. "Org. Reactions," III. ¹ "Org. Syntheses."

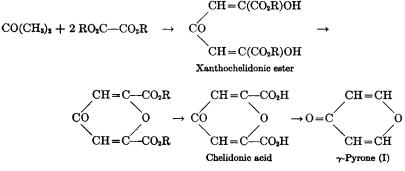
HETEROCYCLIC COMPOUNDS

Tetrazoles. Pentamethylene tetrazole, *metrazole*, *cardiazole*, is made by the action of excess hydrazoic acid on cyclohexanone in sulfuric acid.⁵³ The probable intermediate, ϵ -aminocaprolactam, is formed by a rearrangement analogous to the Beckmann rearrangement of oximes.

The product is a cardiac stimulant and is used in shock therapy of schizophrenia.

III. SIX-MEMBERED HETEROCYCLIC RINGS

These fall into two groups, the saturated rings which show no properties different from their aliphatic analogs, and the unsaturated rings, especially those with ring conjugation resembling that of benzene and related compounds. Among the former are glutaric anhydride, δ -valerolactone, piperidine

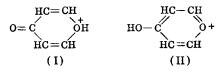

CH₂(CH₂CH₂)₂NH,

and morpholine, O(CH₂CH₂)₂NH.

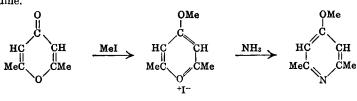
A. Pyrones

Although tetrahydropyrane and dihydropyrane are well known, pyrane itself is known only in the form of its derivatives, the pyrones.

 γ -Pyrone, (I) m. 32°, b. 315°, is made by heating its dicarboxylic acid, *chelidonic acid*, m. 262° dec., which is synthesized from acetone and ethyl oxalate in presence of NaOEt.¹

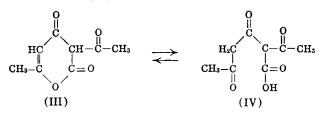

⁵³ Wolff. "Org. Reactions," III. ¹ "Org. Syntheses."

778

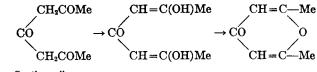

The γ -pyrones form definite crystalline salts with acids. These were the first definitely established *oxonium salts*. These salts are analogous to ammonium salts.

$$(Me_3NH)+Cl^- \qquad (C_5H_4O_2H)+Cl^-$$

The proton can become attached to either the ring oxygen atom as in (I) or the carbonyl oxygen as in (II).

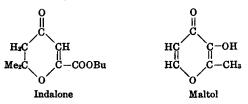


 α, α' -Dimethyl- γ -pyrone reacts with methyl iodide giving an addition compound which on treatment with ammonia forms α, α' -dimethyl- γ -methoxy pyridine.

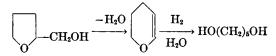


The oxonium compounds must therefore have the structure represented by formula II. The greater stability of the acid salts of the γ -pyrones results from the resonance between the equivalent Kekulé-like structures.

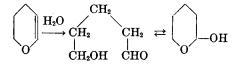
Dehydroacetic acid, Dehydranone² (C and C), III, is the lactone of α,γ -diacetyl-acetoacetic acid (IV).


 $\alpha \alpha'$ -Dimethyl- γ -pyrone, m. 132°, b. 250°, is made by heating diacetylacetone obtained from phosgene and Cu acetoacetic ester.

² "Org. Syntheses."


The same product is formed by heating dehydroacetic acid (III) with HCl. In this reaction the lactone ring is opened to IV which then decarboxylates to diacetylacetone.

Indalone, α, α' -dimethyl- α' -carbobutoxy-dihydro- γ -pyrone (USI), the condensation product from dibutyl oxalate and mesityl oxide with sodium methylate, is an effective insect repellent.



Maltol, 3-hydroxy-2-methyl-4-pyrone, m. 159°, is present in the bark of the larch and in pine needles. It is obtained from hardwood tars and tar oils, and also from the alkali degradation of streptomycin. The brilliant purple color it gives with ferric chloride forms the basis for a convenient test for this antibiotic. Its lower homolog, pyromeconic acid, 3-hydroxy-4-pyrone, is obtained from the decarboxylation of meconic acid, 2,6-dicarboxy-3-hydroxy-4-pyrone, which is present in opium.

Dihydropyran, b. 86°, is formed by passing tetrahydrofurfuryl alcohol over aluminum oxide at 150–350°.² It is hydrogenated in anhydrous media to tetrahydropyrane and with copper chromite in aqueous solution to pentamethylene glycol.^{2a} Mild hydrolysis gives δ -hydroxyvaleraldehyde which is

in equilibrium with its cyclic hemiacetal.^{2b} This constitutes a simple model

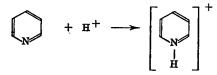
of the ring system in the pyranose sugars. It is a valuable intermediate for many pentamethylene derivatives. Dihydropyran adds bromine to give 2,3-Br₂-tetrahydropyrane, hydrogen bromide to give 2-Br-tetrahydropyrane,²⁰ and methanol with H⁺ to give 2-methoxytetrahydropyrane. 2-Br-Tetrahydropyrane couples with Grignard reagents to give 2-alkyl-tetrahydropyranes.

²⁸ Brenner and Starky. C. A. 42, 5466 (1948).

^{2b} Schniepp and Geller. J. Am. Chem. Soc. 68, 1646 (1946).

²⁰ Paul. Compt. rend. 198, 375 (1934).

Patulin, clavicin, an antibiotic obtained from Penicillium patulin, is a dihydropyran derivative.²⁴



Patulin

B. Pyridine and Its Derivatives

Pyridine, C_6H_6N , b. 115.3°, m. -42°, occurs in coal tar in a mixture with its homologs. It has a disagreeable odor, particularly in the crude state, which makes it valuable as a constituent of mixtures for denaturing alcohol. In contrast to benzene, pyridine is completely miscible with water. It possesses unique solvent properties, combining the characteristics of an aromatic, hydrophyllic, and basic substance. Pyridine can be successfully dried only by standing over BaO. The mixture should not be boiled.

The conjugated system of three double bonds gives the ring aromatic properties and the stability characteristic of such rings. Since the salt forming ability of the N is not involved in the ring unsaturation as it is in pyrrole and related substances, pyridine is a base and forms pyridinium ions, but its basic strength ($K_b = 2.3 \times 10^{-9}$) is very much less than that of the saturated compound piperidine ($K_b = 1.6 \times 10^{-3}$).

Pyridine is even more stable to oxidation than is benzene. Its homologs are oxidized to pyridine carboxylic acids.

Lauryl pyridinium chloride is a cationic detergent which is effective both as a cleaning agent and a germicide. Ceepryn, cetyl pyridinium chloride, m. 83°, is reported to be the most effective of the alkyl pyridinium halides as an antiseptic. The Karl Fischer reagent, a solution of SO₂, MeOH, and I₂ in pyridine, is the most effective reagent for the determination of moisture in an organic solvent. The dark color of this solution is destroyed by water. The reagent is standardized against pure water or a standard solution of water in some organic solvent. The primary reaction is:

 $I_2 + SO_2 + 3 C_5H_5N + H_2O \rightarrow 2 C_5H_5N \cdot HI + C_5H_5N \cdot SO_3$

^{2d} Woodward and Singh. J. Am. Chem. Soc. 72, 1428 (1950).

Nitration, halogenation, and sulfonation reactions of pyridine are very difficult. When such substitution does occur, the nitro-, halo- or sulfonic acid group enters the beta position. This is presumably because the reagent, instead of attacking one of the double bonds as in benzene, attaches itself to the highly reactive nitrogen and forms a relatively stable compound without substitution. For instance, pyridine reacts with fuming sulfuric acid to give pyridinium sulfate which only sulfonates with excess fuming sulfuric acid above 300°. On the other hand, pyridine is aminated with sodium amide in liquid ammonia to give 2-aminopyridine.³

The number of isomers of substituted pyridines corresponds to its ring structure. Thus there are three mono- and six di-substitution products. With the N as 1, the 2 and 6 positions are called *alpha*, the 3 and 5 *beta* and the 4 gamma. In the same way that benzene derivatives show a difference in reactivity between the o- and p-derivatives on one hand and the m-derivatives on the other, the α - and γ -derivatives of pyridine show marked similarties to each other but differ markedly from the β -derivatives.

Many of the substitution reactions of pyridine and pyridine derivatives show great similarity to the reactions of nitrobenzene or the corresponding substituted nitrobenzene. For example, neither pyridine nor nitrobenzene is substituted in the Friedel-Crafts reaction and both *p*-chloronitrobenzene and 4-chloropyridine react with ammonia, the first to give *p*-nitroaniline, and the second to give 4-aminopyridine.

Reactions of Pyridine

A. Those of the N atom.

1. H^+ ions unite with it to give pyridinium ions. Concentrated nitric and sulfuric acids merely form salts without any substituting action even at fairly elevated temperatures.

2. Methyl iodide and many other alkyl halides react to form N-alkyl pyridinium ions, and halide ions.

3. Halogens add in the cold to pyridine to form stable perhalides, $C_{\delta}H_{\delta}NX_2$, and these give stable salts with HX, $C_{\delta}H_{\delta}NX_2 \cdot HX$.

B. Reactions of the ring.

1. Oxidation is fairly difficult and pyridine may even be used as solvent for certain oxidations.

2. Reduction is very easy. Alcohol and Na, catalytic hydrogenation, or electrolytic reduction give hexahydropyridine, *piperidine*.

3. Hydrolysis of the reaction mixture from sodium and pyridine at 80° gives a mixture of bipyridyls in which the γ,γ -isomer predominates.

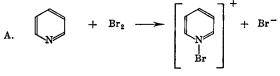
4. Nitration goes only with difficulty, typical conditions being the addition of KNO_3 to a solution of pyridine in fuming sulfuric acid at 300° (15% yield).

³ "Org. Reactions," I.

The polyalkyl homologues of pyridine are somewhat easier to nitrate.⁴ Nitrogen dioxide (NO₂), however, at 120° gives a 10% yield of beta-NO₂-pyridine.⁵ 2-Nitro pyridine is obtained from 2-aminopyridine by oxidation with hydrogen peroxide.6

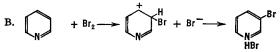
5. Sulfonation with fuming sulfuric acid in the presence of mercuric sulfate gives pyridine-beta-sulfonic acid.⁷ This is like the sulfonation of aniline in concentrated sulfuric acid solution to give the *m*-acid. The sulfonic acid group can be replaced by OH or CN by the usual fusion reactions.

6. Chlorine and water simply give the hypochlorite of pyridine. In presence of bases, chlorine destroys the ring with the formation of N_2 , CHCl₃ etc.

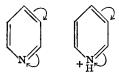

Vapor phase halogenation of pyridine has been studied extensively.^{8,9} Bromination at 300° gives a mixture of 3-bromo- and 3,5-dibromo-pyridine. but at 500° the orientation is changed and 2-bromo- and 2,6-dibromopyridine are formed. The reaction presumably changes from that of an attack by positive bromine at 300° to that of attack by bromine atoms at 500°. A fair yield of 3-bromopyridine may be had by heating pyridine perbromide hydrochloride to 200°.¹⁰ The vapor phase chlorination of pyridine at 270° gives a mixture of 2-chloropyridine, 2,6-dichloropyridine, and 3,5-dichloropyridine.¹¹

7. Heating with NaNH₂ gives 2-amino- and 2,6-diaminopyridine along with a trace of 4-amino pyridine.¹²

Halogenated pyridines. As has been seen, the activity of the N atom in combining with halogen interferes with the halogenation of the ring. The situation can best be shown electronically. The N and the C = C unsaturation may be shown as follows:


•	•		••
::C:N	ч :: С :	:C::C: ≓	:C:C:
••	••	•• ••	•• ••
н	H	нн	нн

The bromine reacts with the nitrogen unsaturation in pyridine at ordinary temperatures as shown in A.



- ⁴ Plazek. Ber. 72B, 577 (1939).
- ⁵ Shorigin, Topchiev. Ber. 69B, 1874 (1936).
 ⁶ Kirpal, Böhm. Ber. 67B, 767 (1931).
- ⁷ McElvain, Goese. J. Am. Chem. Soc. 65, 2233 (1943).
- ⁸ Wibaut et al. Rec. trav. chim. 51, 940 (1932); 58, 994 (1939); 60, 22 (1941); 64, 55 (1945).
- ⁹ McElvain, Goese. J. Am. Chem. Soc. 65, 2227 (1943).
- ¹⁰ Englent, McElvain. J. Am. Chem. Soc. 51, 863 (1929).
- ¹¹ Wibaut, Nicolai. Rec. trav. chim. 58, 709 (1939).
- ¹² Leffler. "Org. Reactions," I.

Only at temperatures of 300° does the bromine react with the C=C unsaturation.

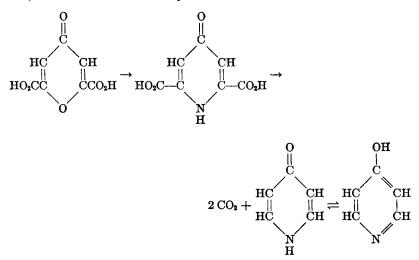
Substitution occurs at the beta position because of the electron attraction of the ring nitrogen which leaves a residual positive character to the α - and γ - carbon atoms. This is greatly increased in acid solution in which pyridine exists as the pyridinium ion.

 α - and γ -Chloropyridines, b. 168° and 148°, are best made from PCl₅ or POCl₃ and the corresponding hydroxypyridines. The chlorine resembles that in the *o*- and *p*-chloro-nitrobenzenes in being replaceable by OH, NH₂, OR, SH, etc.

 β -Chloropyridine, b. 149°, is obtained by the remarkable action of pyrrole potassium with CHCl₃, CCl₄, chloral, etc. (p. 758), or by the conventional Sandmeyer diazo reaction on 3-aminopyridine. The -Cl is not ordinarily replaced. Reduction with Na_xHg or Zn and HCl gives 3-chloropiperidine whereas the reduction of the 2- and 4-isomers removes the Cl, giving mainly piperidine.

Pyridine-3-sulfonic acid is obtained by sulfonation at 330-350°. It shows the expected properties, including amphoteric reactions, and replacement of the sulfonic group on potassium cyanide fusion to give 3-cyanopyridine.

Hydroxypyridines

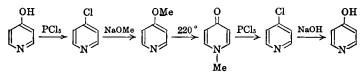

Only 3-hydroxypyridine and its derivatives are typically phenolic. Although 2-, 3-, and 4-hydroxypyridines all give colors with ferric chloride, the coloration with the 2- and 4-isomers is very weak. The 2-, 3-, and 4-hydroxypyridines are readily nitrated in contrast to pyridine itself, giving 2-hydroxy-5-nitro-, 3-hydroxy-2-nitro- and 4-hydroxy-3-nitro-pyridine respectively. 3-Hydroxypyridine, m. 128°, is best formed by the alkali fusion of the 3pyridine sulfonic acid. 2-Hydroxypyridine, m. 107°, b. 281°, is best obtained from 2-aminopyridine by treatment with nitrous acid. A unique synthesis starts with quinoline.

It probably exists mainly as α -pyridone, 2-keto-1,2-dihydropyridine. This is indicated by the very similar ultraviolet absorption spectra of 2-hydroxypyridine and N-methyl-2-pyridone in neutral solution, but the greatly different absorption spectra of 2-methoxypyridine. The ready change to this keto form is due to the tendency of the N to unite with H⁺ ion and is a good illustration of the bimolecular nature of tautomerization.

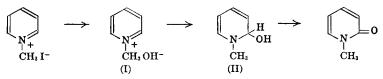
$$\left(\bigwedge_{M} OH^{+} H^{+} \rightleftharpoons \left[\left(\bigwedge_{M} OH^{+} OH^{+} H^{+} + \left(\bigwedge_{M} OH^{+} OH^{+} H^{+} \right) \right]_{H} \right]$$

Treatment with MeI and a base gives 1-Me- α -pyridone, b. 250°. This reacts with PCl₅ to give 2-Cl-pyridine, with the elimination of methyl chloride. γ -Hydroxypyridine, γ -pyridone, m. 148°, b. 350°+, is made by heating *chelidamic acid*, 4-hydroxypyridine-2,6-dicarboxylic acid, pyridone-2,6-dicarboxylic acid, m. 220° dec. which is readily obtained from NH₃ and chelidonic acid.¹³

As in the case of α -hydroxypyridine, γ -hydroxypyridine probably exists in neutral solution primarily as the pyridone. It is impossible for 3-hydroxypyridine to assume the pyridone structure just as it is impossible to have a *meta*-quinone.


4-Hydroxypyridine may also be prepared in fair yield from pyridine via pyridylpyridinium chloride hydrochloride¹⁴ by the very interesting reaction in

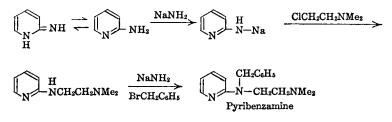
¹³ "Org. Syntheses." ¹⁴ Koenigs, Greiner. Ber. 64B, 1049 (1931). which one pyridine ring is opened at the nitrogen atom giving glutaconic dialdehyde as a by-product.



Several non-toxic, soluble, iodinated derivatives of pyridones are relatively opaque to X-rays and have therefore found use for intravenous urography. Diodone is the N-(β -carboxymethyl) derivative of 3,5-diiodo-4-pyridone. Neoselectan B (Iodoxyl, Neoiopax) is the sodium salt of 1-methyl-3,5-diiodo-4-pyridone-2,6-dicarboxylic acid.

N-Methyl-\gamma-pyridone, a low melting solid, is obtained by treating γ -pyridone with methyl iodide in basic solution. It may also be prepared by rearrangement at 220° of γ -methoxypyridine, b. 191°, obtained from γ -chloropyridine and sodium methylate by heating to 220°.

N-Methyl-a-pyridone, m. 30°, b. 250°, may be obtained in a similar way by the rearrangement of 2-methoxypyridine or more directly by the potassium ferricyanide oxidation of pyridine methiodide in basic solution.¹⁵


The equilibrium between the pyridinium hydroxide (I) and the carbinol base (II) greatly favors the former.¹⁶ The action of PCl_5 with pyridone is much like that with acetone in which the chief product is $MeCCl = CH_2$ or with N-substituted amides such as benzanilide in which the product has the imidochloride structure, $C_6H_5CCl = N - C_6H_5$. In each case, the reaction may be due to the "enol" form or to the loss of HCl from a dichloride. In the case of the N-Me-pyridone, a mechanism like the latter process is indicated.

Aminopyridines, α - m. 56°, b. 204°; β - m. 64°, b. 252°; γ - m. 158°, can all be made by the Hofmann reaction on the amides of the acids which are readily

¹⁶ "Org. Syntheses."
¹⁶ Aston. J. Am. Chem. Soc. 53, 1448 (1931).

obtained by the oxidation of the respective methylpyridines (picolines). This is the method of choice for the laboratory preparation of the β - and γ -isomers but α -aminopyridine is prepared commercially by the reaction of sodium amide on pyridine.¹⁷ With excess sodium amide at higher temperatures, 2,6-diaminopyridine is the main product.¹⁸ Although the amino group in α -aminopyridine cannot be diazotized in the usual manner, it can be replaced by halogen in good yield by a modified procedure in which pyridine perbromide hydrobromide is treated with sodium nitrite in HBr solution.^{19,20} β -Aminopyridine shows all of the reactions of an aromatic amine.

Sulfapyridine, 2-(p-aminobenzenesulfonamido)-pyridine, is made by reactions completely analogous to the preparation of sulfathiazole. α -Aminopyridine is also the intermediate in the synthesis of the antihistamine drug *Pyribenzamine*²¹ used in the treatment of allergic conditions. The 2-NH₂pyridine is first treated with sodium amide in order to prevent substitution on the ring nitrogen atom via the imino form.

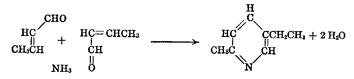
 $2,6-(NH_2)_2$ -pyridine couples with phenyldiazonium chloride to give an azo dye $2,6-(NH_2)_2$ -3-phenylazopyridine, *Pyridium*, which is used as an urinary antiseptic.

Pyridine homologs can be obtained in great variety from coal tar and bone oil. Picolines, methylpyridines, α -, b. 129°; β -, b. 144°; γ -, b. 145°, resemble pyridine in general; all are commercially available. The α -isomer can be separated from the other pyridine bases by efficient fractionation, but β picoline, γ -picoline, and 2,6-Me₂-picoline, 2,6-lutidine, b. 144.5°, all boil within one degree. They are successfully separated by azeotropic distillation with water.^{22,23} α -Picoline is formed in small yield (6%) when acetaldehydeammonia is heated with acetaldehyde.²⁴ Presumably crotonaldehyde or its

¹⁹ Craige. J. Am. Chem. Soc. 56, 231 (1933).

- ²¹ Hutterer et al. J. Am. Chem. Soc. 68, 1999 (1946).
- ²² Cislak, Karnatz. C. A. 41, 2447 (1947).
- ²³ Cislak, Karnatz. Brit. Patent No. 580,048, Aug. 26, 1946.
- ²⁴ Frank et al. J. Am. Chem. Soc. 68, 1368 (1946).

¹⁷ "Org. Reactions," I.


¹⁸ Shreve et al. Ind. Eng. Chem. 32, 173 (1940).

^{20 &}quot;Org. Syntheses."

equivalent is first formed.

$$\begin{array}{c} \mathrm{CH_3CH}=\mathrm{CHCHO}\,+\,\mathrm{H_2NCHOHCH_3}\rightarrow\\ \mathrm{CH_3CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{NCHOHCH_3}\rightarrow & \begin{array}{c} \mathrm{CH}-\mathrm{CH_2}-\mathrm{CHCH_3}\\ || & |\\ \mathrm{CH}-\mathrm{CH}=\mathrm{N} \end{array}$$

The intermediate dihydropicoline is dehydrogenated to α -picoline, excess acetaldehyde acting as the hydrogen acceptor. The major product in this reaction is 2-methyl-5-ethylpyridine, *aldehyde collidine* (50-70%). This must be formed by the condensation of two moles of crotonaldehyde or their equivalent, with ammonia. This amounts to a Diels-Alder type condensation with subsequent rearrangement of the unsaturation to give the completely conjugated pyridine system.

 β -*Picoline* is obtained by various reactions.

1. Dry distillation of strychnine and certain other alkaloids with lime.

2. Reaction of acrolein and ammonia over a catalyst at elevated temperatures.

3. From glycerol in the presence of ammonium phosphate and P_2O_5 . This reaction is probably equivalent to the process whereby β -picoline is formed in the dry distillation of bones.

4. From trimethylenediamine hydrochloride. An 8-membered ring may form first and then undergo ring-narrowing as happens in the change of cyclohexane to methylcyclopentane or the ring may close in the 1,6-position by the following steps;

 $2 \text{ NH}_{2}(\text{CH}_{2})_{3}\text{NH}_{2} \xrightarrow{\text{HCl}} \text{CINH}_{3}(\text{CH}_{2})_{3}\text{NH}(\text{CH}_{2})_{3}\text{NH}_{3}\text{Cl} \xrightarrow{\text{HCl}}$ $CH_{2} \xrightarrow{\text{CH}_{2} \xrightarrow{\text{CH}_{2}}} CH_{2} \xrightarrow{\text{CH}_{2}} CH_{2} \xrightarrow{\text{$

The methyl group of α - and γ -picoline differs from that of the β -isomer by giving α -H reactions in condensing with aldehydes and ketones. Thus the

788

grouping $N = C - CH_3$ resembles $O = C - CH_3$. The stability given by the pyridine ring makes possible reactions which could not take place with this grouping in simpler compounds. Thus α -picoline and formaldehyde at 150° undergo an aldol-type condensation to give first 2-(β -hydroxyethyl)-pyridine which readily dehydrates to the commercially available 2-vinylpyridine. This product is remarkable not only because it shows properties comparable to styrene in polymerization with butadiene, but also because it shows the addition reactions characteristic of an α,β -unsaturated substance such as acrylonitrile. α -Picoline reacts with sodium amide to liberate ammonia and give α -picolyl sodium. This can be carbonated to α -(2-pyridyl)-acetic acid or treated with alkyl halides to give a variety of picoline homologs such as 2-*n*amylpyridine and 2-*n*-hexylpyridine (Reilly Tar) in good yield.

 α - and γ -Picolines are also formed by rearrangement when pyridinemethiodide is heated to 300°. This is closely analogous to the formation of o- and p-toluidines from N-Me-anilines. α - and γ -Ethylpyridines, b. 148° and 166°, are similarly prepared. When pyridinium compounds with higher alkyl halides are decomposed, rearrangements may occur within the alkyl group. Thus the *n*-propyl iodide compound gives isopropylpyridines. α -*n*-Propylpyridine, *conyrine*, is obtained by dehydrogenating its hexahydroderivative, the alkaloid *coniine*. It is synthesized from 1-(2-pyridyl)-2-propanol, made from α -picoline and acetaldehyde.²⁶

Dimethylpyridines, lutidines: 2,3-, b. 161°; 2,4-, b. 158°; 2,5-, b. 156°; 2,6-, b. 144°; 3,4-, b. 179°, are found in coal tar and bone oil. 2,6-Lutidine is synthesized by decarboxylation of 3,5-dicarboxy-2,6-dimethylpyridine, obtained by the Hantzsch synthesis.²⁶ Trimethylpyridines, collidines, are known. The 2,4,6- or sym-collidine, b. 172°, is made from acetoacetic ester and aldehyde-ammonia or from acetamide and acetone at 250°. In both cases the aldol condensation produces molecules capable of 1,6-ring closure. The second case gives a pyridine directly without any dehydrogenation. The mesityl oxide formed from the acetone reacts with the acetamide in the simplest possible way.

$$(CH_3)_2C = CH - CO - CH_3 \rightarrow CH_3 - CH_3 -$$

The final ring closure is a cyclic aldol condensation involving H which is α - to the conjugated system C=C-C=N instead of merely α - to C=O.

2,4-Lutidine and 2,4,6-collidine are useful in the identification of aminoacids.

²⁵ "Org. Syntheses." ²⁶ ibid. Pyridine carboxylic acids are made in general by:

1. Oxidation of alkylpyridines. In some cases more complex side chains are removed leaving one or more carboxyl groups. Thus nicotine and quinoline give nicotinic and quinolinic acids respectively.

2. By partial decarboxylation of dibasic acids. The ease of decarboxylation decreases in the order α -, γ -, and β -. This is the same order as the decreasing dissociation constants.

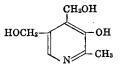
The monobasic acids are picolinic, α -, m. 135°, nicotinic, β - m. 231°, and isonicotinic, γ - m. 309° (sealed tube).

All six possible pyridine dicarboxylic acids are known: quinolinic, 2,3- m. 190°, lutidinic, 2,4- m. 235°, dipicolinic, 2,6- m. 226°, isocinchomeronic, 2,5- m. 236°, dinicotinic, 3,5- m. 323°, and cinchomeronic, 3,4- m. 266°.

Vinylpyridines, the 2- and the 4-vinylpyridines, are best made from 2-picoline, and 4-picoline, the 3-vinylpyridine, may be prepared from 3-acetylpyridine. The 2-vinylpyridine (Reilly) is commercially important in the synthesis of special elastomers.²⁷ 2-Vinylpyridine reacts with ammonium hydroxide and sulfur to give 2-pyridine acetamide.²⁸ beta-(2-Pyridyl)-ethyl sulfonic acid and beta-(4-pyridyl)-ethyl sulfonic acid are made in high yields by the action of sodium bisulfite on 2- and 4-vinylpyridine.²⁹

Nicotinic acid, Niacin, was recognized in 1937 as a member of the vitamin B complex (Elvehjem). Either the acid or its amide, niacinamide, will cure human pellagra. Nicotinic acid functions in metabolism as a portion of coenzymes I and II (diphosphopyridine nucleotide and triphosphopyridine nucleotide) promoting cellular oxidation through a reversible oxidation-reduction system. Presumably this is accomplished as indicated in the following equation by addition of hydrogen to give a dihydropyridine derivative. The probable structure for R is -ribose-OPO₂H-OPO₂H-O-ribose-adenine.

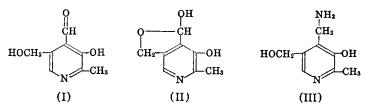
Coramine, nikethamide, N,N-diethylnicotinamide, is a powerful central nervous system stimulant with properties similar to metrazole. It is used as an antidote for an overdose of a central nervous system depressant such as the barbiturates.


Pyroxidine, *adermine*, *vitamin* B_6 , is another member of the water-soluble Bcomplex. Its deficiency is responsible for a dermatitis in rats. A phosphoric acid ester has been prepared from pyridoxine which has all of the activity of

²⁷ Frank et al. Ind. Eng. Chem. 40, 879 (1948).

²⁸ Pattison, Carmack. J. Am. Chem. Soc. 68, 2033 (1946).

²⁹ Doering, Weil. J. Am. Chem. Soc. 69, 2461 (1947).


natural codecarboxylase. Its role in human nutrition has not yet been clarified. The structure of pyridoxine has been established by synthesis³⁰ as 2-methyl-3-hydroxy-4,5-di-(hydroxymethyl)-pyridine.

Recent work³¹ has shown that there are associated with pyridoxine two distinct pyridoxine-like substances which have high growth promoting properties for certain bacteria. It was deduced by microbiological experiments that these substances were an aldehyde (named *pyridoxal*) and an amine (*pyridoxamine*) which were interconvertible by a transamination reaction as indicated in the following equation where glutamic acid acts as the source for the transfer of the amine group.

Pyridoxal + Glutamic Acid \rightarrow Pyridoxamine + α -Ketoglutaric Acid

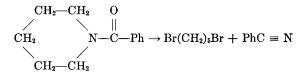
It has been confirmed by synthesis³² that pyridoxal is the oxidation product of pyridoxine in which the aldehyde group is in the 4 position (I). The aldehyde may have the inner hemi-acetal structure (II). Pyridoxamine is the corresponding amine (III).

Hydrogenated Pyridines

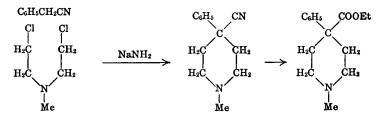
The di-, tetra-, and hexa-hydro compounds of pyridine and its derivatives are known. They all readily revert to pyridine. Their dehydrogenation is extraordinarily easy as compared with that of hydro-benzene derivatives.

Piperidine, hexahydropyridine, pentamethyleneimine, $(CH_2)_5NH$, b. 106°, is a strong base made by reducing pyridine in a variety of ways. Piperidine occurs in the alkaloid of pepper, *piperine*, which is the piperidide of piperic acid. Large scale manufacture is by the nickel catalyzed hydrogenation of pyridine. Substituted piperidines are most frequently made by reduction of the corresponding pyridine compound using platinum catalyst in acid solution.

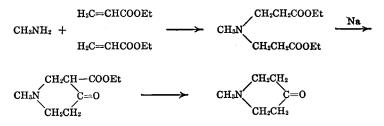
³⁰ Harris, Folkers. J. Am. Chem. Soc. 61, 1245 (1939).


³¹ Snell. J. Am. Chem. Soc. 66, 2082 (1944).

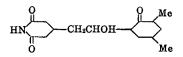
³² Harris, Heyl, Folkers. J. Am. Chem. Soc. 66, 2088 (1944).


Piperidine gives the reactions of a secondary aliphatic amine. Exhaustive methylation gives first $CH_2 = CH(CH_2)_3NMe_2$ and then

$$CH_{3}CH = CHCH = CH_{2}$$

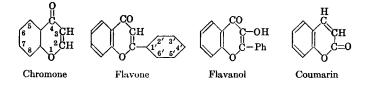

the latter being a rearrangement product of the expected 1,4-diene. Piperidine is a source of pentamethylene compounds (v. Braun). The benzoyl compound is treated with PBr_5 and distilled.^{32a}

Demerol, 1-Me-4-Ph-4-COOEt-piperidine, is a potent analgesic which resembles morphine both in this respect and also in its addiction properties. It is prepared by an interesting and general ring synthesis.³³

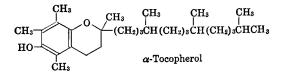

Piperidones are formed by a Dieckmann condensation of a suitable basic ester (or nitrile) which is readily obtained from acrylic ester (or nitrile) by the addition to a secondary amine.³⁴

Actidione, C15H23NO4, an antibiotic from Streptomyces griseus, is a 4-substituted

³² Leonard, Nommensen. J. Am. Chem. Soc. 71, 1809 (1949).
 ³³ Eisleb. Ber. 74, 1433 (1941).
 ³⁴ McElvain, Kuettel. J. Am. Chem. Soc. 53, 2692 (1931).


glutarimide derivative.35

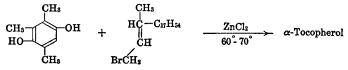
It is active against yeast and other fungi and has been used to control powdery mildew in concentrations as low as 5 parts per million.


C. Chromone and Derivatives

Chromone, benzpyrone, m. 59°, and flavone, 2-phenylbenzpyrone, m. 97°, are parent substances of many natural vegetable colors and dyes. Coumarin is the isomer of chromone related to α -pyrone.

1. Related to chromane. Chromane, the parent compound of the series, is made from PhONa and $Br(CH_2)_3Br$ or $Cl(CH_2)_3OH$. First an ether is formed and then the ring is closed by heating with $ZnCl_2$.

Vitamin E, the tocopherols, are food factors necessary to normal reproduction in young rats and mice. They do not seem to be required food factors for sheep, goats and rabbits and their role in human nutrition is still unknown. Vitamin E is a mixture, of which α -tocopherol is the most potent constituent.

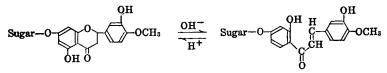


 β - and γ -Tocopherol differ only in having two methyl groups in the benzene ring in the 5,8- and 7,8-positions respectively. The synthesis of α -tocopherol³⁶ was accomplished by condensing 2,3,5-trimethylhydroquinone and phytyl bromide, prepared from the naturally occurring alcohol, phytol, which is

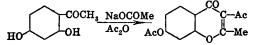
³⁵ Kornfield et al. J. Am. Chem. Soc. 71, 150 (1949).

³⁶ Karrer et al. Helv. Chim. Acta 21, 520, 820, 939 (1938).

obtained from the saponification of chlorophyll.

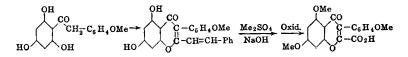

Many other related compounds show vitamin E activity.³⁷

2. Related to flavone. Chrysin, $5,7-(OH)_2$ -flavone and luteolin, $5,7,3',4'-(OH)_4$ -flavone.


A general method of synthesis for many flavones is from polyhydroxychalcones obtained from suitably substituted benzaldehydes and acetophenones by the Claisen reaction. One OH must be ortho to the CO so as to make possible the closing of the pyrone ring. The synthesis of chrysin would involve the following steps:

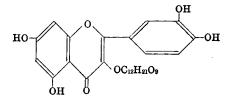
Hesperidine, the glucoside of hesperitin, $5,7,3'-(OH)_3-4'-OMe-2,3-H_2-flavone$, is found in lemon peel, citrus fruit, and red pepper; it has been synthesized. An equilibrium exists between hesperidine and its corresponding chalcone, the chalcone being favored in alkaline media and the flavanone in acid.^{37a}

Hydroxyacetophenones can take part in a Perkin type reaction with acid anhydrides and Na salts of aliphatic and aromatic acids to give chromones and flavones respectively. With aliphatic acids an acyl group appears in the 3-position but not with the aromatic acids³⁸



2-Me-3-acetyl-7-acetoxychromone

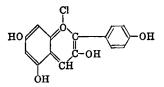
⁸⁷ Smith. Chem. Rev. 27, 287 (1940).
 ⁸⁷ Warner, Webb. Science 96, 302 (1942).
 ³⁸ Wittig et al. Ann. 446, 155 (1925).


Similarly resacctophenone, with sodium anisate and anisic anhydride, gives 7-OH-4'-MeO-flavone, pratol.

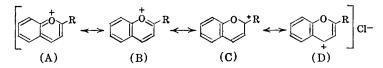
3. Related to flavanol (3-OH-flavone). If suitable ω -methoxyacetophenones are used, the products have MeO- in the 3-position and on demethylation give *flavanols*. The following naturally occurring substances have been made in this way: galingin, 5,7-(OH)₂-; datiscetin, 5,7,2'-(OH)₃-; kaempherol, 5,7,4'-(OH)₃-; fisetin, 7,3',4'-(OH)₃-; quercitin, 5,7,3',4'-(OH)₄-; morin, 5,7,2',4'-(OH)₄-; quercetazetin, 5,6,7,3',4'-(OH)₅-; gossypetin, 5,7,8,3',4'-(OH)₅-; myricetin, 5,7,3',4',5'-(OH)₅-flavanol. A further modification of the Perkin reaction is used to give isoflavones (3-phenylchromones, p. 793). A polyhydroxyphenyl benzyl ketone, having OH ortho to the CO, is heated with Na cinnamate and cinnamic anhydride. The methylene group supplies the α -H atoms while the cinnamic compounds supply the carbonyl group.

Decarboxylation and demethylation give $5,7,4'-(OH)_3$ -3-phenylchromone, $5,7,4'-(OH)_3$ -isoflavone, genista.

Rutin, m. 214° dec., is the closely related 3-rhamnoglucoside of quercetin.


It is found widely distributed in plants and occurs most abundantly in green buckwheat. Both hesperidin and rutin have been shown to have a beneficial effect on abnormally fragile capillaries. Rutin is available in substantial quantity for the treatment of capillary fragility associated with hypertension.^{39,40}

Anthocyanidins are related to the *flavanes* and are obtained by hydrolysis of the glucosidic *anthocyanins* of plant coloring matters. There has been much controversy concerning the structure of these benzopyrylium salts. They were originally considered exclusively oxonium salts as indicated in the follow-

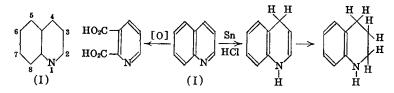

³⁹ Chem. Ind. 59, 74 (1948).

⁴⁰ Couch, Lindauer. Proc. Soc. Exptl. Biol. Med. 55, 228 (1944).

ing structure of *pelargonidin chloride*, the simplest of the anthocyanidins.

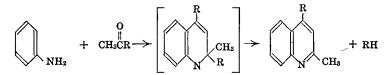
The chlorine is ionic. Recent evidence indicates a resonating ion with contributions from the various electronic structures A, B, C, and D.

Cyanidin chloride and delphinidin chloride are the $3',4'-(OH)_{2}$ - and 3',4',5' (OH)₃-compounds corresponding to pelargonidin. *Oenidin (syringidin) chloride* is the 3',5'-dimethyl ether of delphinidin chloride. *Myrtillidin chloride* is a mixture of the last two chlorides.


Coumarin itself is made from o-hydroxycinnamic acid (p. 703). Many coumarin derivatives are found in nature; two of the simpler are umbelliferone, 7-hydroxycoumarin, and esculetin, 6,7-dihydroxy-coumarin. 3,3'-Methylenebis-(4-hydroxycoumarin) is found in sweet clover and spoiling hay. Cattle feeding on it develop the "sweet clover disease" which is characterized by a progressive diminution of the clotting ability of the blood.⁴¹ It is used as an anticoagulant having the opposite effect of vitamin K to which it is antagonistic.

Quinoline and Related Compounds

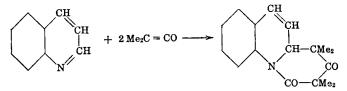
Quinoline, C_9H_7N , (I) b. 239°, occurs in coal-tar and bone-oil, is obtained by alkaline decomposition of certain alkaloids and can be synthesized in a great variety of ways from aniline and from aniline derivatives. Substituted quinoline compounds show the properties expected of a benzene or pyridine derivative depending upon whether the substituent is in the benzene or pyridine portion of the molecule. In line with the fact that nitration and sulfonation of pyridine are much more difficult than benzene, these reactions introduce a nitro or sulfonic acid group into the benzene portion (positions 6 and 8). On the other hand, amination of quinoline with sodium amide gives 2-aminoquinoline. The pyridine ring is more readily reduced but the benzene


⁴¹ Link et al. J. Am. Chem. Soc. 65, 2285 (1943).

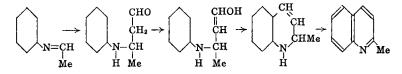
ring is the more readily oxidized.

Seven mono-substituted quinolines are possible because of its unsymmetrical structure. The positions numbered 2 to 8 are also known as α , β -, γ -, a-(ana-), p-, m-, and o-. The position of side chains is determined by oxidation to carboxylic acids or by synthesis.

The most important synthesis of quinoline is that of Skraup which employs aniline and glycerol heated with sulfuric acid and an oxidizing agent like nitrobenzene or arsenic acid.⁴² The process probably involves the formation of acrolein or its equivalent from the glycerol, subsequent reaction with aniline to give the Schiff's base of the 1,4-addition product, ring closure with loss of the second molecule of aniline, and oxidation of the resulting dihydroquinoline by the nitrobenzene (or other oxidizing agent such as arsenic pentoxide) to quinoline. Acrolein may be used directly in the reaction.⁴³ Crotonaldehyde gives α -methylquinoline. Almost any substituted aniline can be used in the Skraup synthesis. A remarkable quinoline synthesis is the formation of 2,4-dialkylquinoline from the heating (180–200°) of aniline hydrochloride with a ketone.

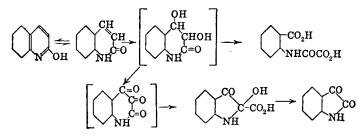


The tendency for formation of the conjugated quinoline structure is so great that a hydrocarbon is formed by the elimination of the larger group from the α -position of the intermediate dihydroquinoline.


Quinolinium salts are analogous to pyridinium salts. Quinoline is readily reduced to *dihydroquinoline*, m. 161°, by metals and acids. The process is readily continued to give *tetrahydroquinoline*, b. 245°. Its N-ethyl derivative is *cairolin*, a febrifuge. Further reduction involving the benzene ring to give decahydroquinoline, m. 48°, b. 204°, is possible only by vigorous hydrogenation with HI or catalysts.

```
42 "Org. Syntheses."
43 Yale, Bernstein. J. Am. Chem. Soc. 70, 254 (1948).
```

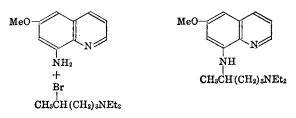
Quinoline forms a remarkable compound with 2 mols of dimethyl ketene.



The most important methylquinoline is the α - or 2-isomer, quinaldine, b. 246°, which occurs in coal-tar and can be synthesized by heating aniline and paraldehyde with HCl. The ethylidineaniline first formed undergoes an aldol condensation with another molecule of aldehyde. Enolization, ring closure and air-oxidation give the quinaldine.

Quinaldine shows the reactions noted with α - and γ -Me-pyridines, the H atoms of the Me group having α -H properties and consequently giving condensation reactions with aldehydes, ketones and other active carbonyl compounds. Thus phthalic anhydride gives *Quinoline Yellow*, C₉H₆NCH(CO)₂C₆H₄, the disulfonic acid of which is *Quinoline Yellow* S. CrO₃ and H₂SO₄ convert quinaldine to quinoline- α -carboxylic acid while permanganate gives pyridine-2,3,6-tricarboxylic acid. The cyanine dyes are obtained from quinaldine and similar substances. An extraordinary number of derivatives of the cyanine dyes have been studied as sensitizers for photographic emulsions.⁴⁴

Carbostyril, 2-hydroxyquinoline, m. 200°, is obtained from *o*-aminocinnamic acid and 50% H₂SO₄. It has phenolic properties. Oxidation with alkaline KMnO₄ gives isatin and oxalylanthranilic acid.

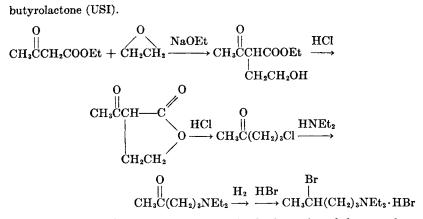

⁴⁴ Brooker et al. J. Am. Chem. Soc. 67, 1896 (1945).

8-Hydroxyquinoline, oxyquinoline, is prepared by the Skraup reaction on o-aminophenol. It forms characteristic complexes with various metallic ions and its insoluble copper salt is a valuable fungicide for impregnation of fabrics, leather, etc. The sulfonic acid salt, $(C_9H_{10}N)_2H_2SO_4$, Chinosol, is a bactericidal agent.⁴⁵

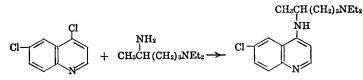
All seven quinoline moncarboxylic acids are known. The 2-acid, quinaldinic acid, m. 156°, and the 4-acid, cinchoninic acid, m. 254°, are made by oxidizing quinaldine and cinchonine. The 3-acid, m. 275°, is obtained by a remarkable series of reactions starting with the condensation of aniline with nbutyraldehyde in presence of HCl to give 2-Pr-3-Et-quinoline, b. 293°. This reaction is exactly analogous to the formation of quinaldine from aniline and paraldehyde. Oxidation attacks the 2-group first, giving 3-Et-quinoline, b. 267°, which gives the 3-acid on oxidation. The 7-acid, m. 247°, is made by oxidizing 7-Me-quinoline obtained by the Skraup synthesis from m-toluidine and mnitrotoluene. The 5-, 6-, and 8-acids, m. 320° +, 292° , and 187° , can be made by the Skraup synthesis using amino- and nitrobenzoic acids with glycerol and sulfuric acid.

Quinic acid, 6-methoxyquinoline-4-carboxylic acid, m. 280°, is obtained by oxidizing quinine. Acridinic acid, quinoline-2,3-dicarboxylic acid, from the oxidation of acridine, loses CO_2 at 130° to give quinoline-3-carboxylic acid.

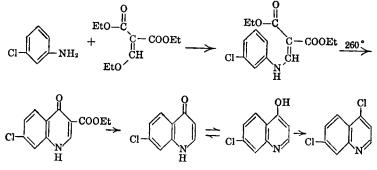
Plasmochin, pamaquin, the first of the synthetic antimalarial drugs, is made by the reaction of $1-NEt_2-4-Br$ -pentane, *Noval Bromide*, on $8-NH_2-6-MeO$ quinoline.



By using 1-isopropylamino-5-Cl-pentane instead of Noval Bromide, pentaquine,⁴⁶ SN 13276, a compound which is more active and less toxic than Plasmochin is obtained. 8-NH₂-6-MeO-quinoline is obtained by reduction of the nitro compound which is formed in the Skraup reaction on 2-NO₂-MeO-aniline.⁴⁷ The aliphatic aminohalide is obtained from acetoacetic ester via α -acetyl-

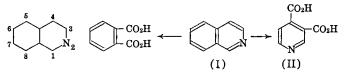

⁴⁵ Benignus. Ind. Eng. Chem. 40, 1426 (1948).

⁴⁶ Drake et al. J. Am. Chem. Soc. 68, 1529 (1946).


⁴⁷ "Org. Syntheses."

A certain amount of rearrangement occurs in the formation of the secondary bromide. This is minimized by the use of thionyl bromide.⁴⁸ Reductive amination of 1-NEt₂-4-pentanone, *Noval Ketone*, gives 1-NEt₂-4-NH₂-pentanone, *Noval Diamine*. This is used in the synthesis of *chloroquine* (SN 7618).

 $4,7-\text{Cl}_2$ -quinoline is made by the condensation of ethoxymethylenemalonic ester, *EMME*, with *m*-Cl-aniline followed by ring closure upon heating to 260° in boiling diphenyl ether, hydrolyzing, decarboxylating, and treating with POCl₃.⁴⁹

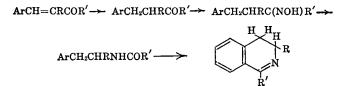

⁴⁸ Elderfield et al. J. Am. Chem. Soc. 68, 1516, 1579 (1946).
 ⁴⁹ Price, Roberts. J. Am. Chem. Soc. 68, 1204 (1946).

800

This reaction is adaptable to the preparation of a great variety of quinoline compounds. In the reaction of the 4,7-Cl₂-quinoline with the aliphatic diamine, only the 4-Cl is replaced since it is reactive, just as is 2- or 4-Cl-pyridine while the 7-Cl is inert just as in chlorobenzene.

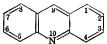
Nupercaine is the β -diethylaminoethyl amide of 2-butoxyquinoline-4-carboxylic acid. It is a local anesthetic and has found special use in spinal anesthesia. Cincophen or Atophan, 2-phenylquinoline-4-carboxylic acid, is an analgesic and antipyretic with action similar to the salicylates. It has been used in the treatment of rheumatic fever and gout but is known to cause liver damage. Chinosol, 8-OH-quinoline, is an analytical reagent for several metal ions and is commonly used for the determination of magnesium. It is also an antiseptic. Iodination and sulfonation gives 8-OH-7-I-5-SO₃H-quinoline, Chinofon or Yatren, which is also an antiseptic and is used in the treatment of ameobic dysentery. Treatment with iodine chloride gives 5-Cl-7-I-8-OHquinoline, Vioform.

Isoquinoline, (I) m. 24°, b. 240°, is $\beta\gamma$ -benzopyridine while quinoline is $\alpha\beta$ -benzopyridine. Its structure is proved by its oxidation to give phthalic acid and cinchomeronic acid (II).



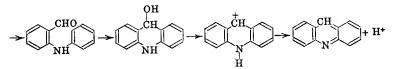
It is best separated from crude quinoline from coal tar by alternate crystallization of the sulfates and fractional distillation of the bases.

The N-acyl derivatives of β -arylethylamines undergo ring closure to give 3,4-dihydro-isoquinolines.

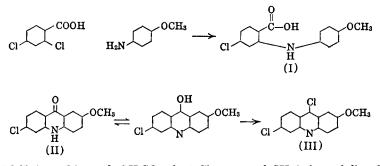


A method of making a variety of such acylamines starts with the unsaturated ketones readily obtained by condensing an aromatic aldehyde and a ketone.

These reactions are of great importance in alkaloid syntheses.

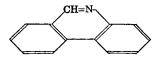

Acridine, m. 108° , b. 346° , 2,3,5,6-dibenzopyridine, occurs in crude anthracene from coal tar. It shows analogies to pyridine and to anthracene. The evidence for a para bond in the middle ring is about like that for one in anthracene.

A different numbering system is employed in the British literature. It can be oxidized to quinoline-2,3-dicarboxylic acid and to pyridine-2,3,5,6-tetracarboxylic acid. It has been synthesized in a variety of ways including:

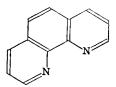

1. The action of formyldiphenylamine with ZnCl₂. This has been assumed to indicate a para bond.

2. The action of Cu and Na_2CO_3 on a mixture of iodobenzene and *o*-aminobenzaldehyde. The steps involved may be the following:

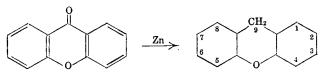
The removal of the OH group leaves the C^+ with only six electrons which induces an allylic shift to give a pyridine ring. Acridine is a tertiary base, weaker than quinoline. It gives *acridinium compounds*. Its dihydro derivative, m. 169°, is not basic. In structure, the latter is related to diphenylamine.


3. The method of Ullmann. An N-phenylanthranilic acid derivative such as I is treated with H_2SO_4 . An internal cyclic dehydration takes place with the formation of an acridine, in this case 2-MeO-6-Cl-9-acridone (II).

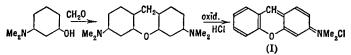
If POCl₃ is used instead of H_2SO_4 , the 9-Cl compound, III, is formed directly. Atabrine, Atebrin, mepacrine, quinacrine, 2-Meo-6-Cl-9-(δ -diethylamino- α -methylbutylamino)acridine, the antimalarial drug, is formed by the reaction of III with 1-diethylamino-4-aminopentane.


Aminoacridines are used as dyes and antiseptics; metaphenylene diamine and formaldehyde react in the presence of $ZnCl_2$ to give 3,6- $(NH_2)_2$ -acridine, the monohydrogen sulfate of which is *Proflavin*. The quaternary methochloride derivative is *Acriflavin*. Acridine Yellow, 2,8- $(NH_2)_2$ -3,7-Me₂-acridine hydrochloride, is obtained in an analogous manner; *m*-aminodimethylaniline similarly gives *Acridine Orange*. By using benzaldehyde in place of formaldehyde, the 9-phenyl derivatives, *Benzoflavine* and *Acridine Orange R Extra*, respectively, are obtained.

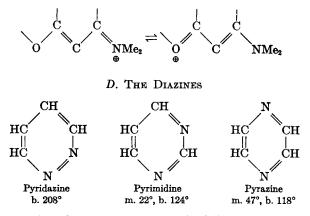
Phenanthridine bears the same relation to phenanthrene that acridine does


to anthracene. It occurs in coal tar and can be made by heating formaminodiphenyl, benzylidene aniline or N-Me-carbazole. The tendency to form the conjugated pyridine ring is notable.

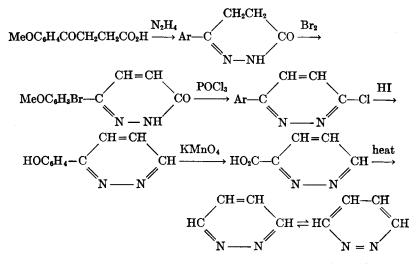
1,10-Phenanthroline, ortho-phenanthroline, m. 117°, is prepared by heating



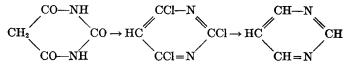
either 8-aminoquinoline or o-phenylenediamine with glycerol, nitrobenzene, and sulfuric acid.⁵⁰ It is used as an oxidation-reduction indicator.


Xanthone, dibenzo- γ -pyrone, 9-ketoxanthene, m. 174°, b. 355°, is obtained by heating salicylic acid with acetic anhydride. Distillation with zinc dust gives the parent substance *xanthene*, m. 100°, b. 315°.

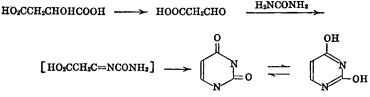
Treatment of xanthone with NaOH and Zn gives xanthydrol, the 9-OH compound. *Euxanthone*, 1,7-dihydroxyxanthone, occurs as a glucoside in mango leaves. *Pyronine*, formorhodamine, (I), is made from formaldehyde and *m*dimethylaminophenol.



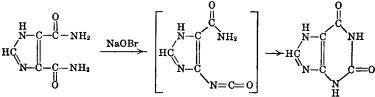
⁵⁰ Smith, Getz. Chem. Rev. 16, 113 (1935).


It is in equilibrium with the corresponding oxonium salt

The preparation of *pyridazine* involves the following steps starting with anisole, succinic anhydride and AlCl₃ to give β -*p*-anisoylpropionic acid.

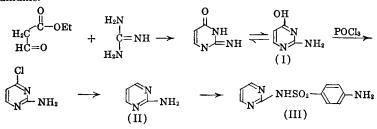


Many of these reactions serve to emphasize the analogy of pyridazine to pyridine and to illustrate its aromatic nature. Its surprisingly high boiling point is like those of pyrazole (188°) and imidazole (256°) rather than those of its isomers. Benzopyridiazines, such as *phthalhydrazide*, 1,4-dihydroxy-phthalazine, are made by the reaction of phthalic acid or its derivatives with hydrazine.


Pyrimidine is the parent member of a very large group of compounds including the barbiturates (page 434), the purines (pg. 438-44), and other natural products. It can be made by the action of zinc dust and water on the 2,4,6-Cl₃-derivative obtained from barbituric acid and POCl₃.

Pyrimidine itself is very difficult to obtain in contrast to pyridine and quinoline. Uracil, 2,4-dihydroxypyrimidine, is obtained as one of the hydrolytic cleavage products of the nucleic acids, and is formed by treating a fuming sulfuric acid solution of urea with malic acid. The malic acid acts like a typical α -OH acid, losing CO and H₂O to form an aldehyde, formylacetic acid, which then reacts with the urea.

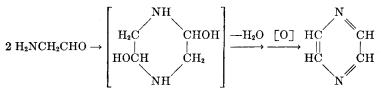
Thiouracil, 2-thio-4-hydroxypyrimidine, which is made in the same manner with the substitution of thiourea for urea, decreases the metabolic rate in humans and is used in the treatment of hyperthyroidism. 6-n-Propylthiouracil is a superior drug in thyroid therapy since the incidence of agranulocytosis is materially less. Various fused ring derivatives of uracil have been formed via the Hofmann rearrangement of ortho dicarboxyamides. Thus methyl glyoxaline-4,5-dicarboxyamine (I) gives the purine derivative xanthine (II).



This is a general reaction and has been used for the synthesis of purine nucleosides. 51

2-Aminopyrimidine (II), which is used for the synthesis of sulfadiazine (III), is prepared from isocytosine (I), 2-amino-4-hydroxypyrimidine. Isocytosine may be made as indicated for uracil by substitution of guanidine for

⁵¹ Baxter, McKean, Spring. *P. Chem. Soc.* 1948, 523.


urea, but it is made commercially by condensing formylacetic ester with guanidine.

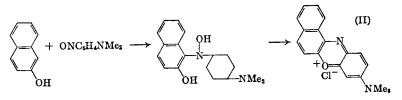
By using acetoacetic ester instead of formyl acetic ester in the same series of reactions 51a, 2-amino-6-methylpyrimidine and *sulfamerazine* are formed.

Quinazoline derivatives, benzopyrimidines, are readily obtained from anthranilic acid and related compounds. 2,4-Dihydroxyquinazoline, benzoylene urea, is prepared from anthranilic acid and urea or potassium cyanate.^{51b}

Pyrazine can be made from its carboxylic acids and by oxidation of aminoacetaldehyde with $HgCl_2$ and a base.

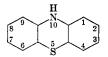
The last step is like that of the oxidation of dihydro derivatives of acridine and anthracene. Quinoxaline on oxidation gives *pyrazine-2,3-dicarboxylic acid*. This can be either totally or partially decarboxylated to pyrazine or pyrazine-2-carboxylic acid. This latter compound can be converted through the amide and a Hofmann degradation into 2-aminopyrazine, the intermediate in the synthesis of *sulfapyrazine*.

Piperazine, diethylenediimine, hexahydropyrazine, m. 104°, b. 145°, is made from ethylene dichloride and ammonia.

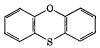

Quinoxaline, 2,3-benzopyrazine, m. 30° , b. 226° , can be made from *o*-phenylene diamine and glyoxal. *Phenazine*, (I) 2,3,5,6-dibenzpyrazine, m. 171°, is obtained as yellow crystals by heating nitrobenzene, aniline and NaOH at 140° or by oxidizing the colorless dihydro compound obtained by heating pyrocatechol and *o*-phenylenediamine.

$$C_{\mathfrak{s}}H_{\mathfrak{s}}(OH)_{2} + (H_{2}N)_{2}C_{\mathfrak{s}}H_{\mathfrak{s}} \longrightarrow \bigcup_{NH} \xrightarrow{[O]} \bigcup_{N} (I)$$

Phenazine dyes contain OH or NH₂ groups.


^{51a} Organic Syntheses. ^{51b} Organic Syntheses. Phenoxazine, C₁₂H₉ON, m. 156° Can be regarded as the

parent substance of the leuco bases of the *phenoxazine dyes* such as *Meldola's* Blue (II) obtained from β -naphthol and p-nitrosodimethylaniline.

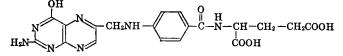

The Cl is, of course, ionic and the oxonium salt is in equilibrium with the corresponding ammonium salt (p. 804).

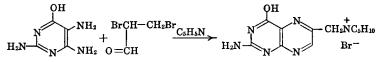
Phenothiazine, m. 185°, is a valuable anthelminic.



It is formed by the fusion of diphenylamine with sulfur. The dye *methylene* blue, $3,7-(NMe_2)_2$ -phenothiazine chloride, is the best known derivative.

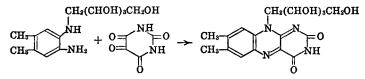
Phenothioxin, b. 180° (10 mm.), m. 55°, is the oxygen, sulfur analog of phenothiazine.


Several fused heterocyclic ring systems are of special interest. Pyrimidopyrazines ⁵² constitute the nucleus of pterin coloring materials that form the pigments of certain butterfly wings, and are also found in the scales of certain fish, the hypodermis of crab, in various insects, and in the vitamin, folic acid. A fused benzopyrazino-pyrimidine forms the alloxazine nucleus which is found in lumiflavin, lumichrome and riboflavin.


Folic acid, vitamin B_c , norite eluate factor, liver *L. casei* factor, is a vitamin found in green foliage, yeast, liver, *etc.* It is necessary for growth of

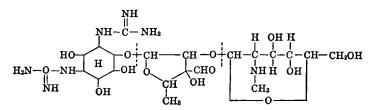
52 Gates. Chem. Rev. 41, 63 (1947).

certain bacteria and yeast and is also necessary for normal growth and hemoglobin formation in chicks. It is successfully used to treat certain forms of anemia in man. It gives three substances on degradation, 2-amino-4-hvdroxvpteridine-6-carboxylic acid, p-aminobenzoic acid, and glutamic acid. These are joined as shown in the formulas.53



The pteridine portion of the molecule has been synthesized by the following condensation.

The treatment of this product with p-aminobenzoyl- L(-)-glutamic acid gives folic acid. Adequate quantities of the synthetic vitamin are commercially available.


Riboflavin, vitamin B₂, lactoflavin, 6,7-dimethyl-9-D-ribityl-isoalloxazine, is a water-soluble substance found in milk whey and is responsible for the yellow-green fluorescence of the latter. It is obtained in substantial quantity as the by-product in certain fermentations and is also produced synthetically. Riboflavin is necessary in the human diet to prevent certain conditions including kerititis and corneal vascularization. In the form of its phosphoric acid ester, it serves as a coenzyme important in cell respiration. Riboflavin has been synthesized by the condensation of alloxan with 4,5-dimethyl-2-aminophenylribamine.54

The alloxan may be replaced by its equivalent, 5,5-dichlorobarbituric acid.55 The difficulties in the commercial adaptation of this synthesis have been in obtaining sufficiently large quantities of relatively pure o-xylene and of ribose. Riboflavin is very sensitive to sunlight, being converted quantitatively into lumichrome, 6,7-dimethylalloxazine, in neutral solution and primarily into lumiflavin, 6,7,9-trimethylisoalloxazine, in alkaline solution.

- ⁵³ SybbaRow et al. J. Am. Chem. Soc. 70, 14 (1948).
- ⁴⁴ Kuhn, Weygard. Ber. 68, 1282 (1935).
 ⁵⁵ Tishler et al. J. Am. Chem. Soc. 67, 2165 (1945).

Streptomycin, $C_{21}H_{39}O_{12}N_7$, is an antibiotic extracted from the culture broths of Actinomyces griseus, which shows strong bactericidal power, especially against Gram-negative bacilli. Degradation studies have shown that it is split into three fragments, designated streptidine, streptanose, and N-methyl-Lglucosamine. The results of intensive study indicate that these units are joined as shown in the following molecular formula. Hydrolysis at the dotted lines gives the indicated fragments.

It has not been synthesized. It is noteworthy that the sugar unit belongs to the L family, the unnatural form. In a similar manner, the β,β -dimethylcysteine obtained from the antibiotic penicillin belongs to the unnatural D series of amino acids.

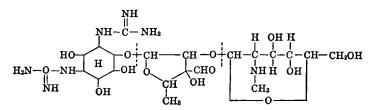
Alkaloids

Originally all nitrogenous compounds related to plants were classed as alkaloids. The group has been gradually limited as more information has become available as to the structure of the individual compounds. The alkaloids are mainly complex basic compounds which occur in plants as salts with organic hydroxy acids such as malic, citric, tannic and quinic acids. Isolation of alkaloids is often accomplished by means of extraction with immiscible solvents, crystallization of salts, chromatographic adsorption or ion exchange media.

Simple alkaloids such as coniine and nicotine contain only C, H and N and are volatile. The majority also contain oxygen and are crystalline. Most of them are tertiary amines. All are optically active.

The alkaloids are apparently built up by relatively simple reactions involving α -H atoms, carbonyl, amino and hydroxyl groups, including ring formation.⁵⁶

Alkaloids give precipitates with reagents such as phosphomolybdic acid, potassium mercuric iodide solution, KI_3 solution and tannin. Much knowledge on the structure of individual alkaloids has been achieved by a great variety of processes including the following:—


1. Acetylation to give the number of hydroxyl groups.

⁵⁶ Robinson. J. Chem. Soc. 111, 876 (1917). Ann. Rep. Chem. Soc. (London) 1917, 135; 1919, 155.

Copyrighted Materials

SIX-MEMBERED HETEROCYCLIC RINGS

Streptomycin, $C_{21}H_{39}O_{12}N_7$, is an antibiotic extracted from the culture broths of Actinomyces griseus, which shows strong bactericidal power, especially against Gram-negative bacilli. Degradation studies have shown that it is split into three fragments, designated streptidine, streptanose, and N-methyl-Lglucosamine. The results of intensive study indicate that these units are joined as shown in the following molecular formula. Hydrolysis at the dotted lines gives the indicated fragments.

It has not been synthesized. It is noteworthy that the sugar unit belongs to the L family, the unnatural form. In a similar manner, the β,β -dimethylcysteine obtained from the antibiotic penicillin belongs to the unnatural D series of amino acids.

Alkaloids

Originally all nitrogenous compounds related to plants were classed as alkaloids. The group has been gradually limited as more information has become available as to the structure of the individual compounds. The alkaloids are mainly complex basic compounds which occur in plants as salts with organic hydroxy acids such as malic, citric, tannic and quinic acids. Isolation of alkaloids is often accomplished by means of extraction with immiscible solvents, crystallization of salts, chromatographic adsorption or ion exchange media.

Simple alkaloids such as coniine and nicotine contain only C, H and N and are volatile. The majority also contain oxygen and are crystalline. Most of them are tertiary amines. All are optically active.

The alkaloids are apparently built up by relatively simple reactions involving α -H atoms, carbonyl, amino and hydroxyl groups, including ring formation.⁵⁶

Alkaloids give precipitates with reagents such as phosphomolybdic acid, potassium mercuric iodide solution, KI_3 solution and tannin. Much knowledge on the structure of individual alkaloids has been achieved by a great variety of processes including the following:—

1. Acetylation to give the number of hydroxyl groups.

⁵⁶ Robinson. J. Chem. Soc. 111, 876 (1917). Ann. Rep. Chem. Soc. (London) 1917, 135; 1919, 155.

809

2. Suitable treatment with HI to give the number of *methoxyl* groups $(\text{Zeisel})^{s_7}$ and NMe groups.

3. Determination of $-NH_2$ and =NH groups.

4. Hydrolysis.

5. Oxidation or dehydrogenation as by Se.

6. Exhaustive methylation.

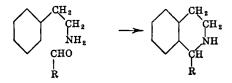
7. Degradation to more stable substances by heating with alkalies or with zinc dust.

8. Ultraviolet and infrared absorption spectra.

Formulas and physical properties of the alkaloids, Lange's Handbook; classification, Thorpe's Dictionary; chemistry, Henry, "The Plant Alkaloids;" analytical methods, Allen, "Commercial Organic Analysis," vol. 7; Manske and Holmes, "The Alkaloids."

The simpler alkaloids consist of one ring or of two rings attached as in diphenyl. In a few cases the N is external to the ring but usually it forms part of a ring as in pyrrole and pyridine.

A. DERIVATIVES OF ARYL SUBSTITUTED AMINES


The simplest alkaloid of this type is *damascenine*, a derivative of anthranilic acid.^{58, 59}

A benzyl amine derivative is *capsaicin*, the active principle of paprika. It is the vanillyl amide of a decylenic acid,

 $4-(OH)-3(OMe)-C_6H_3CH_2NHCO(CH_2)_4CH=CHCHMe_2.$

 β -Phenylethylamine derivatives occur as such in important alkaloids and serve as building units for the numerous isoquinoline alkaloids.

⁵⁷ Niederl, Niederl. "Organic Quantitative Microanalysis." John Wiley and Sons Inc., 1942, p. 239.

⁵⁸ Ewins. J. Chem. Soc. 101, 544 (1912).

⁵⁹ Kaufmann, Rothlin. Ber. 49, 578 (1916).

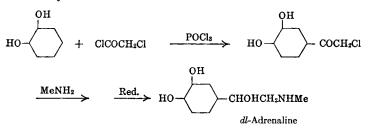
The mold *penicillium notatum* can utilize β -phenylethylamine to synthesize the potent antibiotic *penicillin*.

Tyramine, β -p-hydroxyphenylethylamine, HOC₆H₄CH₂CH₂NH₂, m. 161°, occurs in ergot and is formed in the putrefaction of proteins by decarboxylation of tyrosine. It has been synthesized. *Hordenine* (anhaline), m. 118°, is its NMe₂ derivative. *Mescaline* is 3,4,5-trimethoxyphenylethylamine,

$$(MeO)_{3}C_{6}H_{2}CH_{2}CH_{2}NH_{2}.$$

 α -Fagarine is believed to belong to this group but its exact structure is in doubt.⁶⁰

Ephedrine has been used medicinally for 5000 years. The naturally occuring levo form is the most active physiologically. An ingenious synthesis of the optically active base starts with the fermentation of sugar in the presence of benzaldehyde to give levo-phenylacetylcarbinol. The active ketoalcohol is then condensed with methylamine and reduced.


$$C_{6}H_{5}CHOHCOCH_{3} + MeNH_{2} \xrightarrow{H_{2}} C_{6}H_{6}CHOHCH(NHMe)CH_{3}$$

Ephedrine

Pseudoephedrine, m. 118°, differs from its stereoisomer in the configuration of the α -carbon. Isomerization of *l*-ephedrine by acids gives an equilibrium mixture with *d*-pseudoephedrine.

Propadrine is nor-ephedrine. It is made synthetically as follows from propiophenone.

$$C_{6}H_{5}COCH_{2}Me \xrightarrow{\text{RONO}} C_{6}H_{5}COCMe \xrightarrow{\text{H}_{2}} C_{6}H_{5}CHOHCHNH_{2}Me$$
$$\parallel \\ NOH$$

Adrenaline, epinephrine, from the suprarenal glands, was the first hormone to be isolated. It has been synthesized as follows, starting with pyrocatechol and chloroacetyl chloride.

d-Tartaric acid is used to separate the d- and l-forms. The latter is the natural form and is some twenty times as effective in raising the blood pressure. The

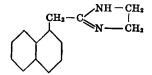
60 Surrey. J. Am. Chem. Soc. 70, 2887 (1948).

d-form is racemized by heating with acid and the resulting dl-mixture is further separated.

Many derivatives of β -phenylethylamine have been synthesized and a number are used in medicine. They usually increase the blood pressure and stimulate the sympathetic nervous system. In this series is found one of the best known correlations of the effect of chemical structure on physiological activity.

Benzedrine, 1-phenyl-2-aminopropane, is prepared from phenylacetone by the Leuckart reaction.

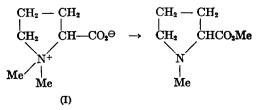
$$\begin{array}{c} C_{6}H_{5}CH_{2}COCH_{3} \xrightarrow[]{\text{Or }HCONH_{4}} \\ or \ HCONH_{2} \\ & \downarrow \\ NHCHO \end{array} \xrightarrow[]{\text{HCl}} C_{6}H_{5}CH_{2}CHCH_{3} \xrightarrow[]{\text{HCl}} C_{6}H_{5}CH_{2}CHCH_{3} \\ & \downarrow \\ NHCHO \\ & NH_{2} \end{array}$$


Neosynephrine, m-HOC₆H₄CHOHCH₂NHCH₃, is prepared by a modification of the adrenaline synthesis.

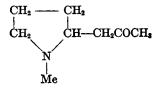
Cobefrine, (nor-homo-adrenaline), $3,4-(HO)_2C_6H_3-CHOHCHNH_2CH_3$, is synthesized by the method used for propadrine.

Vonedrine is synthesized from 2-phenylpropylchloride and methylamine.

$$\begin{array}{c} C_6H_5CHCH_2Cl+MeNH_2 \rightarrow C_6H_5CHCH_2NHMe \\ | \\ CH_3 \\ \end{array}$$

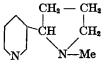

The presence of the β -methyl group is significant in that it is similar pharmacologically to a hydroxyl group. The characteristic effects of β -phenylethylamine derivatives are retained in *Privine*, 2-(1-naphthylmethyl)-2-imidazoline,

and occur also in Tuamine, 2-aminoheptane.

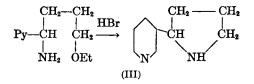

B. DERIVATIVES OF PYRROLE

Stachydrine (I), m. 235°, is the betaine of hygric acid, N-methylpyrrolidine- α -carboxylic acid. Distillation gives the methyl ester.

Betonicine, dec. 244°, and *turicine*, m. 249°, are stereoisomers of 4-OH-stachydrine.


Hygrine, $C_8H_{15}ON$, is N-Me- α -pyrrolidylacetone

Oxidation gives hygric acid.


Cuscohygrine, $C_{13}H_{24}ON_2$, occurs with hygrine but is readily separated by means of its difficultly soluble nitrate. It is a symmetrically disubstituted acetone containing two N-Me- α -pyrrolidyl groups instead of one as in hygrine.

Nicotine, $C_{10}H_{14}N_2$, the chief alkaloid of tobacco, is α -(β -pyridyl)-N-Mepyrrolidine, (II), b. 247°. Suitable oxidative degradations give pyridine- β carboxylic acid (nicotinic acid) and N-Me-pyrrolidine- α -carboxylic acid, (hygric acid).

(II)

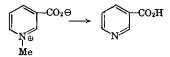
Of several nicotine syntheses only one will be given. This is from pyridine through its β -sulfonic acid and β -cyano compound.⁶¹ The latter is converted by EtO(CH₂)₃MgBr to a ketone which is changed to its oxime. Reduction and ring closure give nornicotine (III) which is methylated to give *r*-nicotine.

Myosmine is (III) with two less H in the pyrrolidine ring.⁶²

Carpaine, $C_{14}H_{25}O_2N$, is a pyrrolidine with an α -side chain of 10 carbons including a lactone grouping. Oxidation gives suberic acid.

⁴¹ Craig. J. Am. Chem. Soc. 55, 2854 (1933).

⁶² Späth, Wenush, Zajic. Ber. 69B, 393 (1936).

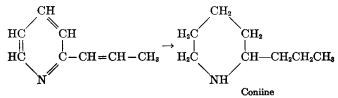

C. IMIDAZOLE DERIVATIVES

The fundamental grouping in *pilocarpine* (IV), $C_{11}H_{16}N_2O_2$, m. 34°, is shown by distillation with Zn dust to form 1-Me- and 1,5-Me₂-imidazole. Oxidation gives homopilopic (V) and pilopic acids (VI)

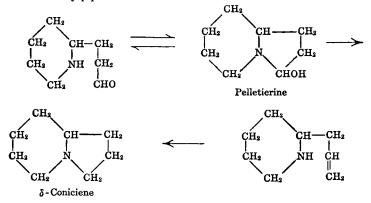
Pilocarpine has been synthesized.⁶³

D. DERIVATIVES OF PYRIDINE AND PIPERIDINE

Trigonelline is the betaine of pyridine- β -carboxylic acid. It is cleaved by heating with pyridine hydrochloride.

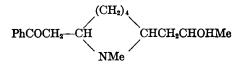


Ricinine of the castor bean is N-Me-3-cyano-4-methoxy-2-pyridone.64,65


Poison hemlock contains various alkaloids including coniine, its N-Me derivative, γ -coniceine, δ -coniceine, conhydrine and pseudoconhydrine.

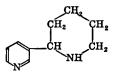
Coniine is α -n-propylpiperidine, b. 167°. Reduction by HI at high temperature gives *n*-octane and oxidation gives pyridine- α -carboxylic acid. The synthesis is easy by the action of Na and alcohol on α -propenylpyridine obtained from α -Me-pyridine and MeCHO.

⁶⁵ Preobrashenski et al. Ber. 66B, 1187 (1933); 69B, 1835 (1936).
 ⁶⁴ Späth, Koller. Ber. 56B, 880 (1923).
 ⁶⁵ Ann. Rep. Chem. Soc. (London) 1923, 153.


The ready reduction of even the side chain is a good example of the activating effect of the N. Heating with zinc dust gives α -propylpyridine or conyrine. Synthetic *dl*-coniine can be resolved by means of *d*-tartaric acid. γ -Coniceine, b. 174°, is $\Delta 2$ -2-propyl-tetrahydropyridine. δ -Coniceine (I) is a fusion of a piperidine and a pyrrolidine ring.^{66, 67} It can be regarded as the reduction product of the cyclic form of the aldehyde pelletierine or the cyclization product of an allylpiperidine.

Conhydrine has an α -hydroxyl group in the side chain of coniine whereas *pseudoconhydrine* is 5-OH-coniine.

Pelletierine and isopelletierine have $-CH_2CH_2CHO$ and $-CH_2COCH_3$ respectively in place of the propyl group of coniine. Since pelletierine does not react with nitrous acid it is believed to exist in a cyclic form.⁶⁸ *Pseudopelletierine* (p. 824) has a $-CH_2COCH_2$ – bridge between the α -positions of N-Me-piperidine and thus contains a fusion of a piperidine and a γ -piperidone ring.

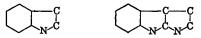

Lobeline (lobelidine) is an N-Me-piperidine substituted in one α -position by PhCOCH₂- and in the other by PhCHOHCH₂-. Related are *lobelanine* and *lobelanidine* which have respectively 2 PhCOCH₂- and 2 PhCHOHCH₂in the α -positions. The corresponding *nor*-compounds contain a free NH group.⁶⁹ Lobinine is related to these alkaloids but has a 7-membered ring.⁷⁰

⁶⁶ Chattaway, Wünsch. J. Chem. Soc. 95, 129 (1909).
 ⁶⁷ Ann. Rep. Chem. Soc. (London) 1909, 102.
 ⁶⁸ Ann. Rep. Chem. Soc. (London) 1918, 109.
 ⁶⁹ ibid. 1929, 169.
 ⁷⁰ Ann. Rep. Chem. Soc. (London) 1931, 165.

The betel nut (areca-nut) contains guvacine, $1,2,5,6-H_4$ -pyridine-3-carboxylic acid, m. 293°, arecaine or arecaidine, its NMe compound, m. 232°, and their methyl esters, guvacoline and arecoline respectively.

Anabasine is β -(α -piperidyl)-pyridine.⁷¹

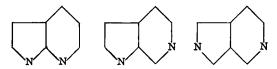
Piperine, m. 128°, the piperidide of piperic acid, occurs in pepper, 3,4- $(CH_2O_2)C_6H_3CH = CHCH = CHCONC_6H_{10}$. Other pungent materials such as *capsaicin*, *spilanthol* and *pellitorine* have also been shown to be substituted amides of unsaturated acids.⁷²


E. COMPLEX ALKALOIDS

These contain condensed or fused ring systems. In some, the N appears in only one ring, while in others it functions as part of two or three heterocyclic rings. The following formal (not preparative) relationships are of interest.

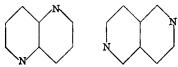
I. Nitrogen in one ring.

1. Rings with 2 C atoms in common.


a. Benzene and pyrrole give indole and isoindole. Strychnine and brucine are related to the former. A benzene ring and two pyrrolidine rings form the parent substance of eserine.

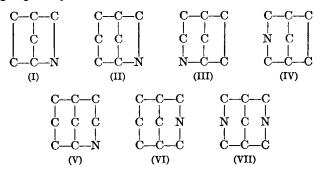
b. Benzene and pyridine give quinoline and isoquinoline. The former is found in the cinchona alkaloids and to the latter are related many important groups of alkaloids including the anhalonium group, papaverine, narcotine, berberine and even morphine.

c. A pyrrole and a pyridine ring may be fused with 2 C atoms in common in six ways. The following three fusions are found in calycanthine.



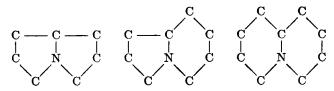
⁷¹ Orekhov. Ber. 67B, 1606 (1934). ⁷² Ann. Rep. Chem. Soc. (London) 1930, 202.

The former is found in harman (I), the parent substance of harmine and harmaline.



d. The following two fusions of two pyridine rings are also found in calycanthine.

There are four other possible fusions of two such rings.


2. Rings with 3 C atoms in common. Using 5- and 6-membered rings the following might be possible.

Only (I) involves any considerable strain. In (V) and (VI) there is no strain. System (V) as related to morphine and thebaine is called *mornuclidine*. In (VII) two pyridine rings have the γ - and both β -carbons in common. This grouping is found in sparteine, cytisine and anagyrine.

II. Nitrogen common to two or three rings.

1. Fusion with N and 1 C common to both rings.

HETEROCYCLIC COMPOUNDS

The first is pyrrolizidine which occurs in retronecine, the nitrogenous part of a number of senecio alkaloids. The second is found in δ -coniceine, lycorine, calycanthine and some of the erythrina alkaloids. Related to the last grouping are lupinine, berberine, corydaline, sparteine, and julolidine. The first involves considerable strain and the last none at all. The fusion of *two* N-rings in similar ways gives the combinations found in vasicine and in rutaecarpine and evodiamine respectively.

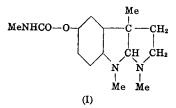
2. Fusion with N and 2 C common to both rings. This can happen in two ways, the N having either two or three of its valences involved in ring formation.

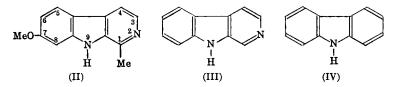
a. Two valences of N in ring combination.

Again, a condensation of two pyrrolidine rings is apparently impossible but a combination of a pyrrolidine and a piperidine ring involves little strain and gives such important alkaloids as atropine and cocaine. Two piperidine rings can be fused without any strain giving the parent substance of pseudopelle-tierine.

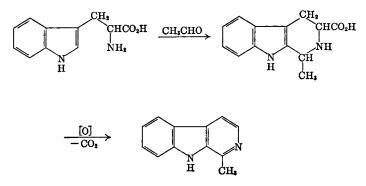
b. Three valences of N in ring combination. None of the possibilities is found in known alkaloids. The N in such a system would be under serious strain.

3. Fusion with N and 3 C common to two rings.

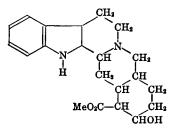

In the *quinuclidine* portion of such important alkaloids as cinchonine and quinine the N forms part of three condensed piperidine rings which have it and the γ -C in common. This structure is entirely strainless.

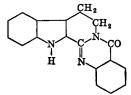

F. Alkaloids Containing Pyrrole Rings Fused with Other Rings

The strychnine alkaloids belong to this class since they are related to indole. Because of their importance they will be considered separately.


Physostigmine, eserine, $C_{15}H_{21}O_2N_3$ (I), contains a pyrrolidine ring condensed with dihydroindole. It is the N-Me-carbamate of the phenol, *eseroline*, and it has been synthesized.⁷³

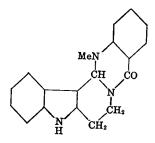
Harmine (II) is related to a carbazole (IV) with the 2-CH replaced by N.⁷⁴


The parent substance is β -carboline or 2,9-pyrindole (III). Harmaline is 3,4-dihydroharmine. Harman, 1-Me- β -carboline, is conveniently made by condensing *dl*-tryptophan with acetaldehyde and oxidizing the product.⁷⁶

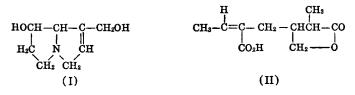

⁷³ Julian, Pikl, Boggess. J. Am. Chem. Soc. 56, 1797 (1934).
 ⁷⁴ Kermack, Perkin, Robinson. J. Chem. Soc. 121, 1872 (1922).
 ⁷⁵ Snyder et al. J. Am. Chem. Soc. 70, 222 (1948).

Tetrahydroharman can be prepared readily from acetaldehyde and 3- β -aminoethylindole at room temperature at pH 5-7.^{76,77}

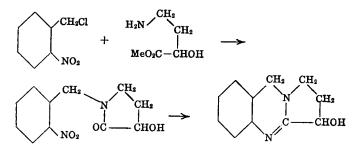
Yohimbine, $C_{21}H_{26}O_3N_2$, is related to harmine and probably has the following structure.⁷⁸



Rutaecarpine combines a pyrrole, a pyridine and a pyrimidine ring with two benzene rings.


Hydrolysis gives anthranilic acid and 1-keto-1,2,3,4-H₄-carboline. The latter has been synthesized.⁷⁹

Evodiamine is similarly related to N-Me-anthranilic acid and 3,9-pyrindole⁸⁰ (cf. III, p. 819).

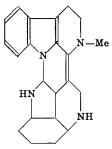

⁷⁶ Hahn, Ludewig. Ber. 67B, 2031 (1934).
⁷⁷ Ann. Rep. Chem. Soc. (London) 1934, 267.
⁷⁸ Witkop. Ann. 554, 83 (1943).
⁷⁹ Ann. Rep. Chem. Soc. (London) 1927, 161.
⁸⁰ ibid. 1921, 142.

Retronecine, $C_8H_{13}O_2N(I)$, is the basic portion of *senecionine* in which it is esterified with senecic acid, probably (II).

Other senecio alkaloids are esters of retronecine or related pyrrolizidine bases and a variety of acids believed to be derived from monoterpenes.⁸¹

Vasicine, peganine, $C_{11}H_{12}ON_2$, contains a benzpyrimidine nucleus fused through C_2 and N_3 with a pyrrolidine ring. It has been synthesized from *o*-nitrobenzyl chloride and methyl 4-amino-2-hydroxybutyrate. Reduction of the nitro group was accompanied by ring closure.⁸²

Erythrina alkaloids³³ have fused isoquinoline and indole systems. The parent ring structure is common to erythramine, erythraline and erythratine.

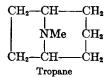


Calycanthine, C22H26N4,84,85 is believed to have the following formula in-

⁸¹ Ann. Rev. Biochem. 1942 (1944).

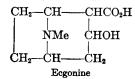
- 82 Späth, Kuffner, Platzer. Ber. 68, 699 (1935).
- 83 Folkers, Koniuszy, Shavel. J. Am. Chem. Soc. 64, 2146 (1942).
- ⁸⁴ Manske, Marion. Can. J. Research 17B, 293 (1939).
- ⁸⁵ Chen, Powell, Chen. J. Am. Pharm. Assoc. 31, 513 (1942).

volving seven rings.

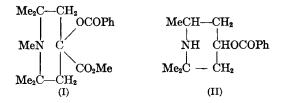

These include two benzene, two pyrrole, and three pyridine rings, all except one of which are partially or completely hydrogenated. Considering adjacent fused pairs of rings, the formula contains nine combinations including two indoles, one quinoline, two combinations of fused pyridine rings, three fusions of a pyridine and a pyrrole ring and a combination in which one N and one C serve in common in a pyridine and a pyrrole ring (pp. 817–818).

Gelsemine, $C_{20}H_{22}O_2N_2$, belongs to this group since it can be degraded to skatole and a base $C_{11}H_{11}N$ which is probably a dimethylisoquinoline.⁸⁶

Aspidospermine, $C_{22}H_{30}O_2N_2$, is a new type of indole alkaloid which can be degraded to an alkyl indole and 3,5-dimethyl-3-ethylpyridine.⁸⁷

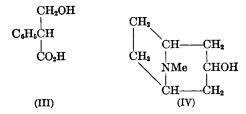

G. Tropine Alkaloids

These contain fused pyrrolidine and piperidine rings with the N serving as a bridge across a 7-C ring. They can also be regarded as piperidine derivatives with a $-CH_2CH_2$ -bridge between the alpha positions.


Tropine is the γ – OH derivative of tropane.

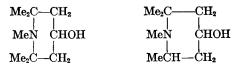
Coca leaves contain cocaine, cinnamoyl cocaine, benzoyl ecgonin, and α and β -truxilline, all related to ecgonine (tropine carboxylic acid) and also tropacocaine, the benzoic ester of pseudotropine.

⁸⁶ Witkop. J. Am. Chem. Soc. **70**, 1424 (1948). ⁸⁷ ibid. **70**, 3712 (1948). In cocaine the carboxyl group of ecgonine is methylated and the hydroxyl group is benzoylated. Because of its value as a local anesthetic and in the hope of producing a substitute which is not habit-forming, many modifications of the cocaine molecule have been made. α -Cocaine, which has no anesthetic action, is made from tropinone by the cyanohydrin synthesis and thus has the -OCOPh and $-\text{CO}_2\text{Me}$ groups both on the γ -C of the piperidine ring. Putting other alkyl groups in place of methyl in cocaine has little effect on its action. Very few acids besides benzoic acid give anesthetic compounds when esterified with ecgonine.


Alpha Eucaine (I) and Beta Eucaine (II) are made from triacetoneamine and from diacetoneamine respectively.

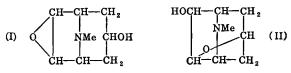
Useful substitutes for cocaine in local anesthesia are the *p*-aminobenzoates of the alkamines such as novocaine (procaine) and Butyn.

Cinnamoyl cocaine has the cinnamoyl group in place of the benzoyl group in cocaine. α - and β -Truxilline are esters of ecgonine methyl ester with α and β -truxillic acids.

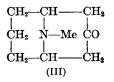

Atropine, m. 115°, is the ester of *dl-tropic acid*, α -phenylhydracrylic acid, m. 118°, (III) and tropine (IV).

Tropine (IV), m. 63°, b. 233°, and *pseudotropine*, m. 108°, b. 241°, are stereoisomers, differing in the configuration of the OH group. Both are optically inactive.

Tropinone is the ketone corresponding to (IV). It has been synthesized from succinic dialdehyde, acetone dicarboxylic ester and methylamine, a remarkable example of ring closure. *Tropeines* are esters of tropine. Certain of these have mydriatic action (dilation of pupil of the eye) similar to that of atropine. *Homatropine* and *pseudoatropine* are synthetic tropine esters of mandelic acid and atrolactic acid respectively. Hyoscyamine, m. 108°, is the tropine ester of *l*-tropic acid.


Substitutes for atropine have been made not only from tropine but from synthetic substances containing somewhat similar groupings. Thus the mandelic esters of the following two substances have mydriatic action, the second combination being used as *Euphthalmine*.

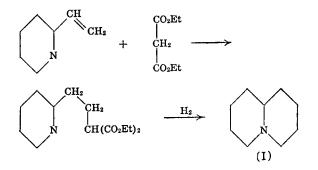
The first is made by methylating and reducing triacetoneamine while the second is made by similar processes on the condensation product of acetaldehyde and diacetoneamine.


$$\begin{array}{c} \mathrm{MeCHO} + \mathrm{H_{2}N} - \!\!\!\!\!-\!\!\mathrm{CMe_{2}} - \!\!\!\!-\!\!\mathrm{CH_{2}CO} - \!\!\!\!-\!\!\mathrm{CH_{3}} \rightarrow \\ \mathrm{MeCHOH} - \!\!\!\!-\!\!\!\mathrm{NH} - \!\!\!\!-\!\!\mathrm{CMe_{2}} - \!\!\!\!-\!\!\!\mathrm{CH_{2}COCH_{3}} \rightarrow \mathrm{MeCH} - \!\!\!\!-\!\!\!\mathrm{NH} - \!\!\!\!-\!\!\!\mathrm{CMe_{2}} \\ & \downarrow \\ \mathrm{CH_{2}} - \!\!\!-\!\!\!\mathrm{CO} - \!\!\!-\!\!\mathrm{CH_{2}} \end{array}$$

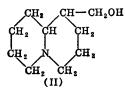
Scopolamine, hyoscine, is the tropic ester of *scopine*, (I) a tropine molecule with an epoxy group between the two β -positions of the pyrrolidine ring. On treatment with acids, bases or heat, this rearranges to *scopoline* (II) which has an oxygen bridge between the γ -position of the piperidine ring and a β -position in the pyrrolidine ring thus forming a tetrahydrofuran ring.⁸⁸

H. Alkaloids Containing a Fusion of Two Piperidine Rings

Pseudopelletierine (III), N-methylgranatonine, may be regarded as a cyclooctanone ring with a symmetrical N-Me bridge or as a fused structure combining an N-Me-piperidine and an N-Me- γ -piperidone, the N-Me and the two α -C atoms being common to both rings.



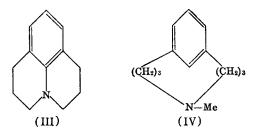
88 Ann. Rep. Chem. Soc. (London) 1922, 160.


It has been synthesized by condensing glutaric dialdehyde, acetonedicarboxylic ester and methylamine at 25° in a solution buffered to pH 7.⁸⁹ Isopelletierine, instead of having a $-CH_2COCH_2$ – bridge across the α -positions of an N-Me piperidine, simply has the group $-CH_2COCH_3$ in one α -position of piperidine and is thus related closely to coniine.

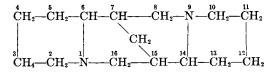
I. LUPINE ALKALOIDS

These contain two piperidine rings with the N and one α -C in common. The parent substance, *norlupinane* (quinolizidine) (I), can be made by hydrogenation of diethyl β -(2-pyridyl)-ethylmalonate, prepared by the Michael addition of 2-vinylpyridine to diethyl malonate.⁹⁰

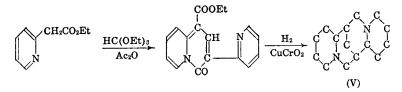
Lupinine (II), m. 69°, has not been synthesized.


Julolidine (III) can be synthesized from tetrahydroquinoline and trimethylene chlorobromide.^{90a} It forms a MeCl compound which can be reduced by NaHg with opening of the bond between the N and the benzene ring to give a compound containing a 10-membered ring across the meta

⁸⁹ Schöpf, Lehmann. Ann. 518, 1 (1935).

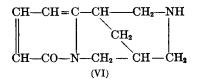

⁹⁰ Boekelheide, Rothchild. J. Am. Chem. Soc. 69, 3149 (1947).

90% Organic Syntheses.


positions in a benzene ring (IV).91,92

Sparteine and related alkaloids contain the lupinane system (II).³³⁻⁹⁸ Sparteine, $C_{15}H_{26}N_2$, (V), consists of a four-ring system each half of which contains a lupinane grouping. The middle of the system contains two piperidine rings with the γ - and both β -carbons in common.

Sparteine has been synthesized in two steps from ethyl-2-pyridylacetate.⁹⁹



Lupanine, $C_{15}H_{24}ON_2$, is 2-ketosparteine and anagyrine, $C_{15}H_{20}ON_2$, is 2-keto-3,4,5,6-tetradehydrosparteine. Catalytic reduction of anagyrine gives lupanine while further reduction gives sparteine. Monolupine, $C_{16}H_{22}ON_2$, and rhombinine are identical with anagyrine.¹⁰⁰ Cytisine, $C_{11}H_{14}ON_2$

- ⁹¹ v. Braun, Heider, Wyczatkowska. Ber. 51, 1215 (1918).
- ⁹² v. Braun, Neumann. Ber. 52, 2015 (1919).
- 93 Ing. J. Chem. Soc. 1933, 504.
- ⁹⁴ Clemo, Raper. J. Chem. Soc. 1933, 644.
- 95 Winterfeld, Rauch. Arch. Pharm. 272, 273 (1934).
- ⁹⁸ Ann. Rep. Chem. Soc. (London) 1934, 279.
- 97 Robinson. Biol. Rev. 1935, 498.
- 98 Couch. J. Am. Chem. Soc. 58, 688 (1936).
- 99 Leonard, Beyler. J. Am. Chem. Soc. 70, 2298 (1948).
- ¹⁰⁰ Marion, Ouelett. J. Am. Chem. Soc. 70, 3076 (1948).

826

(VI),¹⁰¹⁻¹⁰³ differs from anagyrine by not having carbons 10-13.

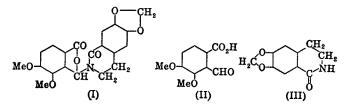
Matrine is related to cytisine.


J. Berberine Alkaloids

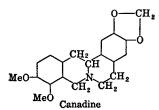
These contain the lupinane system (p. 825, I) fused with two benzene rings, one in linear and the other in angular combination. The skeleton is as follows:

They can also be regarded as di-isoquinoline combinations in which the N is common to both isoquinoline groups and one carbon serves as C_1 and C_3 respectively in the two systems. The corresponding *paraberberine* compounds in which the four rings are linearly combined do not occur in nature and are very difficultly prepared.¹⁰⁴

Berberine, $C_{20}H_{19}O_6N$, m. 145°, shows a peculiar tautomerism found also in cryptopine and protopine. Since it contains the grouping O-C-N-C it can also react in an aldehyde form. It moreover acts as a quaternary ammonium compound. These relations are shown in the following formulas for berberine

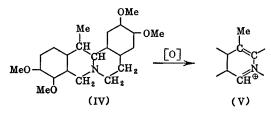


Mild oxidation converts the CHOH to CO giving oxyberberine. Another product involves the breaking of the double bond to give a carboxyl and a ketone. The former gives a lactone with the OH forming *berberal* (I). This on


¹⁰¹ Ing. J. Chem. Soc. 1932, 2778.

- 102 Ann. Rep. Chem. Soc. (London) 1933, 235.
- ¹⁰³ Späth, Galinovsky. Ber. 69, 761 (1936).
- 104 Ann. Rep. Chem. Soc. (London) 1926, 170.

hydrolysis gives pseudo-opianic acid (II) and noroxyhydrastinine (III)



Protoberberine is the berberine molecule without substituents in the aromatic rings. *Coptisine* is 2,3,9,10-bismethylenedioxyprotoberberine.¹⁰⁵ *Palmatine* similarly has four -OMe groups.¹⁰⁶ *Canadine*, C₂₀H₂₁O₄N, can be made by reductio: of berberine and is called tetrahydroberberine. It contains no double bond or hydroxyl in the lupinane system. Oxidation gives berberine.

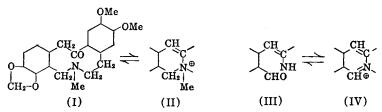
Capaurimine has the same skeleton as canadine but has 2 HO and 3 MeO groups.¹⁰⁷

Isocorypalmine, sinactine and H_4 -berberrubine are related to canadine.¹⁰⁸ Corydaline, $C_{22}H_{27}NO_4$, (IV) is structurally related to canadine but has 2 MeO groups in place of the O_2CH_2 grouping and has a Me in the 7-position of the lupinane system (N=1). Mild oxidation gives *dehydrocorydaline*, $C_{22}H_{25}NO_5$, (V) corresponding to berberine.

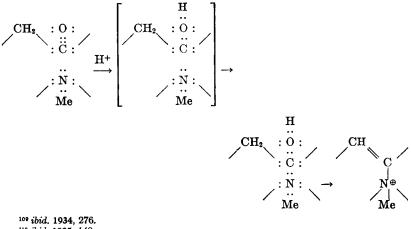
Oxidation of corydaline gives *hemipinic* and *metahemipinic* acids, 3,4- and 4,5dimethoxyphthalic acids respectively, and corydaldine, 1-keto- $6,7(MeO)_2$ -

828

 ¹⁰⁵ ibid. 1926, 167.
 ¹⁰⁶ ibid. 1927, 168; 1929, 178.
 ¹⁰⁷ Manske. J. Am. Chem. Soc. 69, 1800 (1947).
 ¹⁰⁸ Ann. Rep. Chem. Soc. (London) 1928, 192; 1931, 173.


1,2,3,4-H₄-isoquinoline.¹⁰⁹ Corybulbine, $C_{21}H_{25}O_4N$, isocorybulbine, $C_{21}H_{25}O_4N$, and bulbocapnine, $C_{20}H_{19}O_4N$, are related to corydaline.¹¹⁰

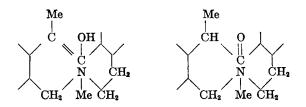
Emetine, $C_{29}H_{40}O_4N$, is believed to have the corydaline system fused with isoquinoline. It may be prepared by methylation of *cephaeline*, $C_{28}H_{38}O_4N$, with phenyltrimethylammonium hydroxide.


K. CRYPTOPINE ALKALOIDS

These contain a 10-membered ring such as would be obtained by breaking the bond between N and C in the middle of the lupinane section of the berberine molecule.¹¹¹

Cryptopine, $C_{21}H_{23}NO_5$, m. 219°, has formula (I) while *protopine*, $C_{20}H_{19}NO_5$, m. 208°, differs from it only in having a methylene ether grouping in place of the two MeO groups. Acids cause ring closure to give salts of (II). This change is entirely analogous to the conversion of the aldehyde form of berberine (III) to a salt of (IV).

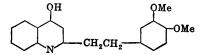
The mechanism of the action of H^+ ion is readily illustrated electronically. The addition of the proton to the oxygen of the carbonyl group leaves its



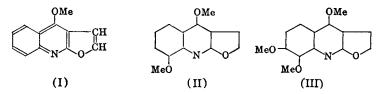
¹¹⁰ ibid. 1925, 149.

¹¹¹ Ann. Rep. Chem. Soc. (London) 1926, 168.

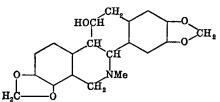
HETEROCYCLIC COMPOUNDS


carbon with only 6 electrons. Since this carbon can readily approach the N in space it shares the open electron pair of the latter forming a new C-N linkage and leaving the N as a positive quaternary ammonium ion. Corycavidine is like cryptopine but with the O_2CH_2 and two OMe in opposite rings and a Me on the carbon between the ring and the CO group. Corycavine and corycavamine are enol and keto forms of a similar homolog of protopine. The central portions of their molecules have the following structures:

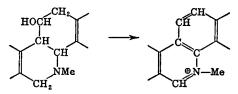
L. QUINOLINE ALKALOIDS


A few simple derivatives have been found in natural products such as angostura bark which gives 2-*n*-amylquinoline, the corresponding 4-methoxy compound and even small amounts of quinoline and 2-Me-quinoline as well as the N-Me-2-keto-dihydro compound.¹¹²

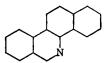
Galipoline contains a homoveratryl group attached in the 2-position of 4-HO-quinoline.


The methyl ether is galipine and cusparine has OCH_2O in place of the *o*-methoxyl groups.

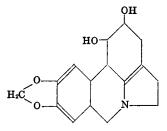
Dictamine (I) contains a quinoline condensed with a furan ring. γ -Fagarine (II) and skimmianine (III) are methoxyl derivatives.



112 Ann. Rep. Chem. Soc. (London) 1930, 190.

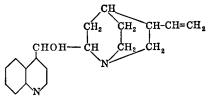

Chelidonine is related to both quinoline and isoquinoline since it contains a phenanthridine skeleton.¹¹³

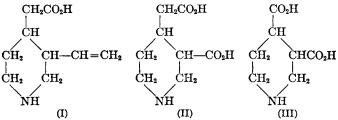
Sanguinarine is the quaternary base related to it. The change in the central portion of the molecule is as follows:



Distillation with Zn dust converts them to α -naphthaphenanthridine

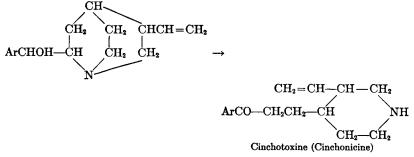
Homochelidonine and chelerythrine are a similarly related pair having two OMe groups in the isoquinoline ring in place of the O_2CH_2 group.


Lycorine is a phenanthridine nucleus fused with a pyrrole ring.¹¹⁴

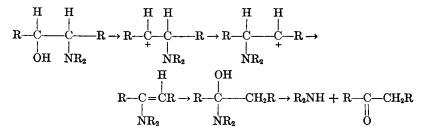

M. Cinchona Alkaloids

These are the most important quinoline alkaloids although their properties are more dependent on the *quinuclidine* part of the molecule, a fusion of three piperidine rings, than on the quinoline portion.

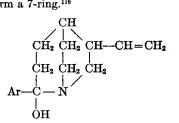
¹¹³ Ann. Rep. Chem. Soc. (London) 1931, 168. ¹¹⁴ Kondo, Ikeda. Ber. **73B**, 867 (1940). Cinchonine, $C_{19}H_{22}N_2O$, m. 264°, consists of a secondary alcohol group, -CHOH, attached to the 4-position of quinoline and the 2-position of 5-vinylquinuclidine.



Mild oxidation converts the CHOH to CO to form *cinchoninone*. Oxidation with chromic acid gives cinchoninic acid (quinoline-4-carboxylic acid) and *meroquinene* (I) which on further oxidation gives *cincholoiponic acid* (II), then loiponic acid (III) and finally *cinchomeronic acid* (pyridine-3,4-dicarboxylic acid).


The quinuclidine part of the molecule can also be removed by treating cinchoninone with amyl nitrite to form cinchoninic acid and the oxime of 5-vinyl-2-quinuclidone. The same product is obtained from cinchonine and from quinine.¹¹⁵ It is really an amide of an hydroxamic acid and is hydrolyzed readily to give meroquinene (I).

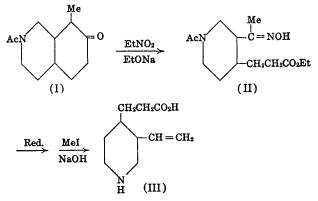
Heating cinchonine with acid causes a splitting between the N and C_2 of the quinuclidine group.


¹¹⁵ Ann. Rep. Chem. Soc. (London) 1910, 136,

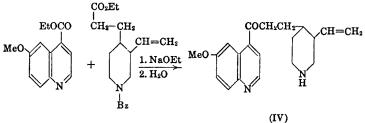
This breaking of the HO-C-C-N grouping to give O=C-C+HN fragments is characteristic. It probably goes by the same mechanism as the pinacolone rearrangement, the N shifting instead of the CH_3 .

Cinchonidine, m. 207°, is a stereoisomer of cinchonine differing in the configuration of the α -C in the quinuclidine group and perhaps in the carbinol grouping.

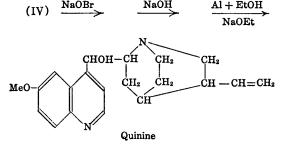
Hydrocinchonine, m. 277°, and hydrocinchonidine, m. 229°, occur with cinchonine and are readily prepared by catalytic reduction in which the vinyl group is changed to ethyl. *hetero-Cinchonine* is the result of the transfer of the linkage of C_2 from the quinuclidine N to the carbinol C with the widening of one piperidine to form a 7-ring.¹¹⁶


This change is like that which gives cinchotoxine except that the primary shift is that of a C instead of N.

Quinine, $C_{20}H_{24}O_2N_2$, m. 177°, is 6-methoxycinchonine. Oxidation converts the CHOH to CO giving quininone, the vinyl group to carboxyl, giving quitenine. Further oxidation of the ketone or treatment with nitrous acid and hydrolysis gives meroquinene (I) (p. 832) and quininic acid, 6-methoxy-4quinoline carboxylic acid.

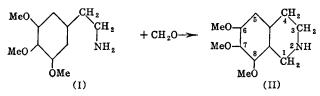

Treatment of quinine with acid opens one of the piperidine rings in the quinuclidine part of the molecule and forms *quinotoxine* entirely analogous to cinchotoxine.

The total synthesis of quinine has been accomplished.¹¹⁷ 7-OH-isoquinoline was converted by the Mannich reaction and reduction to the 8-Me-derivative.


¹¹⁶ *ibid.* 1934, 273. ¹¹⁷ Woodward, Doering. J. Am. Chem. Soc. 67, 860 (1945). Hydrogenation and oxidation of the N-acetyl derivative gave N-acetyl-7-keto-8-Me-decahydroisoquinoline (I). $EtNO_2$ and EtONa converted the latter to a derivative of dihydrohomomeroquinene (II) which by reduction and the Hofmann degradation gave homomeroquinene (III).

This was esterified and the benzoyl derivative was condensed with 6-MeO-4-carbethoxyquinoline. Hydrolysis of the benzoyl group gave quinotoxine (IV).

The latter had been converted to quinine.¹¹⁸



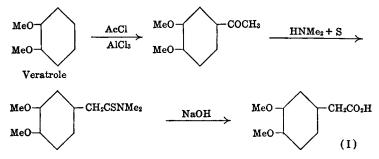
¹¹⁸ Rabe, Kinder. Ber. 51, 466 (1918).

Quinidine, m. 171°, hydroquinine, m. 172°, and hydroquinidine, m. 167°, are related to quinine as are the corresponding compounds to cinchonine (p. 832). Cupreine, m. 202°, is 6-hydroxycinchonine. Methylation converts it to quinine. Hydrocupreine is best made by demethylating hydroquinine with HCl at 150°. From it are prepared ethers, homologs of hydroquinine which are valuable disinfectants. Optoquin, the ethyl ether, has specificity for the pneumococcus. The HOCH₂CH₂- ether is as effective and safer. Eucupine and Vuzine are the isoamyl and sec-octyl ethers.

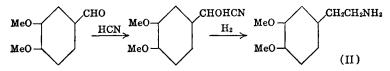
N. Isoquinoline Alkaloids

The simplest type is obtainable by condensing aldehydes with hydroxy derivatives of β -phenylethyl amines, the aldehyde carbon forming C₁ of the isoquinoline. The first step is the ordinary addition of an amine to a carbonyl compound. The next is 1,6-ring closure involving the H para to the activating OH or OMe group. Thus mescaline (I) and formaldehyde react readily to give O-Me-anhalamine (II).

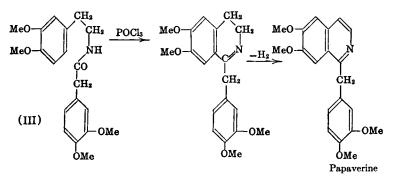
Pellotine Me ether can be made by methylating the product of ring closure of acetyl mescaline.¹¹⁹ Some of the important simple *tetrahydroisoquinolines* follow:


Name	Substituents, Position					
	1-	2 (N)-	6-	7-	8-	
Norsalsoline	Me		ОН	ОН		
Salsoline	Me		OH	OMe		
Carnegine	Me	Me	OMe	OMe		
Pellotine	Me	Me	OMe	OMe	OH	
Anhalonidine	Me		OMe	OMe	OH	
Anhalamine			OMe	OMe	OH	
Anhalidine		Me	OMe	OMe	OH	
Anhalonine	Me		OMe	0CH2O		
Lophophorine	Me	Me	OMe	$O - CH_2 - O$		

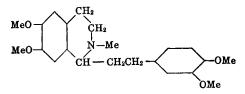
O. PAPAVERINE ALKALOIDS


These have a benzyl group attached to the 1-position of isoquinoline. **Papaverine**, $C_{20}H_{21}O_4N_2$, m. 147°, 1-(3',4'-dimethoxybenzyl)-6,7-dimethoxy-

¹¹⁹ Ann. Rep. Chem. Soc. (London) 1922, 162.


isoquinoline, and its 1,2- and 3,4-dihydro and 1,2,3,4-tetrahydroderivatives have been synthesized in a variety of ways. One of the best starts with veratrole and veratraldehyde.¹²⁰ *Homoveratric* acid (I) was prepared by means of the Willgerodt reaction.

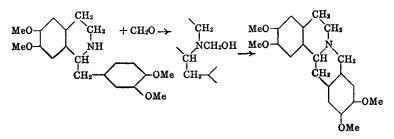
Homoveratrylamine (II) was made from veratraldehyde.


The salt of (I) and (II) on heating yielded the amide (III). Ring closure with $POCl_3$ gave dihydropapaverine which was dehydrogenated.

Papaveraldine has the CH₂ of papaverine oxidized to CO. Thus it is a 1-benzoylisoquinoline derivative. Pavine is 1,2-H₂-papaverine. Laudanosine, m. 89°, is N-Me-1,2,3,4-H₄-papaverine. Laudanine (laudanidine, tritopine), m. 166° is dl-laudanosine with the 3'-OH unmethylated. Laudanidine is its *l*-form.

¹²⁰ Kindler, Peschke. Arch. Pharm. 272, 236 (1934).

Homolaudanosine is like laudanosine but has $-CH_2CH_2$ between the rings instead of CH_2^{121}



Removal of the methyls from the MeO groups gives homolaudanosoline.

Coclaurine has 7,4'-(OH)₂-6-MeO instead of the 4 MeO groups in H₄papaverine and an N-Me group. Combination of two molecules by ether linkages in various ways gives oxycanthine, trilobine, bebeerine and related alkaloids.¹²²

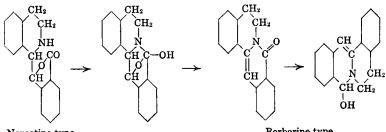
Codamine is laudanosine with a free 7-OH group.¹²³

The relation of papaverine alkaloids to those of the berberine type may be shown by the action of formaldehyde with H_4 -papaverine to give norpseudo-corydaline.

P. PHTHALIDE ISOQUINOLINE ALKALOIDS, NARCOTINE ALKALOIDS

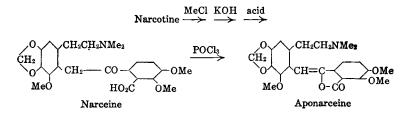
These have a phthalide grouping attached to C_1 of isoquinoline in place of the benzyl group of papaverine.

Papaverine type


¹²¹ Ann. Rep. Chem. Soc. (London) 1934, 276.
 ¹²² ibid. 1942, 204.
 ¹²³ ibid. 1926, 165.

Narcotine, C₂₂H₂₃O₇N, m. 176°, one of the abundant opium alkaloids, is related to laudanosine but has a methylene ether grouping in place of the 6,7-(MeO)₂ and has an additional OMe in the 8-position and a lactone ring between the 2'-position and the benzyl carbon. Its hydrolysis at 140°, and its oxidation and reduction indicate its constitution.

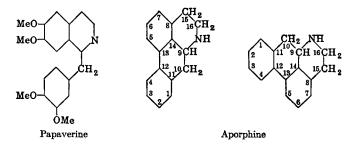
Cotarnine gives open chain compounds with hydroxylamine, acetone, etc., and ring compounds with HCl, HCN, etc. Gnoscopine, dl-narcotine, has been made by the condensation of meconin and cotarnine.


Meconin, m. 101°, is 5,6-dimethoxyphthalide or the lactone of 2-hydroxymethyl-5.6-dimethoxybenzoic acid. The relation of the narcotine and berberine types of alkaloids is shown schematically as follows:

Narcotine type

Berberine type

Narceine, C23H27NO8.3H2O, m. 171°, is made by the action of alkalies on the MeCl compound of narcotine. The -O-C-C-N grouping is broken at the C-N linkage as in the splitting of ephedrine (p. 811) and in the conversion of the cinchona alkaloids to toxines (p. 832). Narceine with $POCl_3$ gives aponarceine



Hydrastine, $C_{21}H_{21}NO_6$, m. 132°, differs structurally from narcotine only in not having the 8-MeO group. It is not found in opium and differs from narcotine in being even less narcotic. Its oxidation gives opianic acid and *hydrastinine*, m. 117°, which is cotarnine without the 8-MeO group.¹²⁴

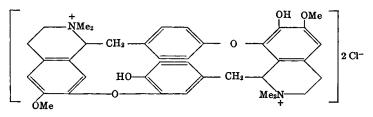
Other phthalide isoquinoline alkaloids related to narcotine are adlumine and bicuculline and the free hydroxy acid of the latter, bicucine.¹²⁵

Q. Aporphine Alkaloids

The parent substance, aporphine, a phenanthrene isoquinoline type, is closely related to tetrahydropapaverine.¹²⁶

The relation to morphine is also close, C_{16} being attached through a bridge to C_{13} in the latter substance. The relation is shown by the ready conversion of morphine to apomorphine on boiling with dilute HCl (p. 840). This type of change is apparently very easy as many plants produce aporphine alkaloids whereas fewer produce the morphine and papaverine types. The aporphines contain combinations of hydroxy, methoxyl and methylenedioxy groups.

¹²⁴ Ann. Rep. Chem. Soc. (London) 1931, 166.
 ¹³⁵ Manske. Can. J. Research 8, 142, 404 (1933).
 ¹²⁶ Ann. Rep. Chem. Soc. 1924, 136; 1927, 173.

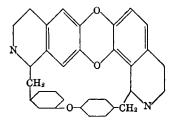

A king allalaid	Position of groups			
Aporphine alkaloid —	-он	-OMe	-0CH±0-	
Apomorphine	3,4-			
Morphothebaine	4,6-	3-		
Isothebaine	4-	3,5-	5,6-	
Pukateine	4-			
Laureline		3-	5,6-	
Boldine	2,6-	3,5-	,	
Corytuberine	4,5-	3,6-		
Laurepukine (?)	5,6		3,4-	
Actinodaphnine (Domesticine)	2-	3-	5,6	
Dicentrine (Isodomesticine)	3-	2-	5,6	
Epidicentrine		5,6-	2,3-	
Bulbocapnine	4-	3-	5,6-	
Isocorydine	4-	3,5,6-	, í	
Corydine	5-	3,4,6-		
Glaucine		2,3,5,6-		

Some of the more important follow: (all have N-Me)

Laurotetanine has a free NH group, being 2-OH-3,5,6-(OMe)₃-aporphine.

R. BIS-BENZYLISOQUINOLINE ALKALOIDS

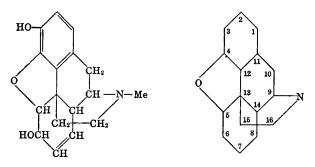
These involve combinations of two molecules of the papaverine type by means of ether linkages in large strainless rings.¹²⁷ The curare alkaloids belong to this group. *d-Tubocurarine chloride* is an example in which the N's are quaternary.¹²⁸ It is used in anesthesia to give muscular relaxation.



Bebeerine, chondocurine and related alkaloids have similar skeletons with the N's tertiary.

Trilobine, isotriloline and menisarine have two benzylisoquinoline groups

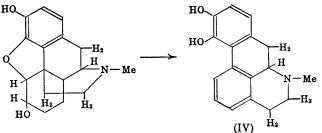
¹²⁷ Ann. Rep. Chem. Soc. (London) 1933, 242.
 ¹²⁸ King. Chemistry & Industry, 739 (1935).


joined in a different way. They differ from each other in MeO substituents.

In berbamine, oxycanthine and phaeanthine the isoquinoline groups are joined by one O-bridge, while in dauricine only the benzyl groups are connected.

S. MORPHINE AND RELATED ALKALOIDS

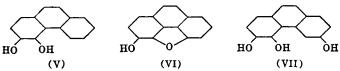
Morphine, $C_{17}H_{19}NO_3$, m. 253°, is the most important of about 25 alkaloids found in opium. The relation of the N to the rest of the molecule is less simple than in the other alkaloids. The accepted structure¹²⁹ as ordinarily written emphasizes its relation to a partially hydrogenated phenanthrene


While such a formula appears awkward in two dimensions, scale models show that the $-CH_2CH_2NMe-$ bridge between the 9- and 13-positions in the phenanthrene nucleus is without strain. The molecule thus consists of the fusion of the following five rings, benzene, cyclohexane, cyclohexene, tetrahydrofuran, and piperidine. Other ways to consider the molecule are as an isoquinoline system fused with a naphthalene system across positions 9 and 13 (I) or as a mornuclidine system fused with two benzene rings in the 11,12- and 13,14-positions (II). The carbons of the supplementary rings are represented

129 Ann. Rep. Chem. Soc. (London) 1926, 173.

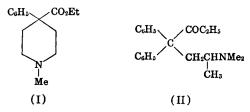
15 C 12 16 Ċ 110 14 C 13 16 10 Ċ Ń 9Ċ 14 ۱'n (II) (I) HOCH 6 ŻСН 5ĊH 13 Ċ 8ĈH HO 14 HC 15CH₂ 12 16 CH₂ HC2 11Ċ 9ĊH 1CH 10 CH₂ N-Me (III)

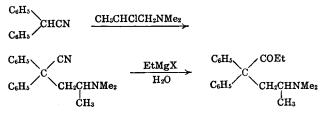
Morphine contains five asymmetric carbon atoms 6,5,13,14 and 9 which are attached in succession in an unbranched chain. This relation is shown in (III).¹³⁰


Among the many conversions of morphine, one of the easiest to produce is its conversion to *apomorphine* (IV) on warming with acids. This consists in dehydration at positions 5 and 6 with formation of a new benzene ring and the consequent shift of the N bridge from the quaternary C_{13} to C_8 thus forming a different isoquinoline ring. On scale models this change is seen to be an entirely simple shift.

¹³⁰ Emde. Naturwissenschaften 18, 539 (1930).

by their numbers.

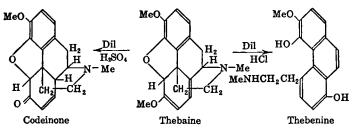

Distillation of morphine with Zn dust gives phenanthrene. The position of the oxygen atoms is shown by conversion to the phenanthrene derivatives, the 3-Me ethers of morphol (V), morphenol (VI), and 3,4,6-trihydroxyphenanthrene (VII)


The C-C-N bridge is readily removed by any change which makes the middle ring aromatic. As shown by models the mornuclidine system can exist only because of the polyplanar nature of the cyclohexane ring. As soon as the latter is flattened by becoming aromatic, the meta bridge from C_9 to C_{13} becomes impossible.

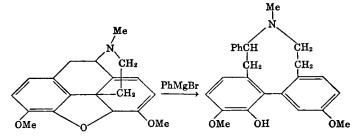
Codeine, m. 155°, is the 3-methyl ether of morphine. It is prepared by heating the morphine salt of phenyltrimethylammonium hydroxide. *Di*-hydromorphinone and dihydrocodeinone are the corresponding ketones at C-6. The latter undergoes an unusual nuclear methylation and opening of the O-bridge by reaction with MeMgI. The product is an intermediate for the preparation of methyldihydromorphinone (Metopon).¹³¹ Morphine and the above mentioned derivatives are used as analgesics. Those having free phenolic groups are more potent than the corresponding Me-ethers.

Demerol (I) and **Methadon** (Amidone) (II) are synthetic compounds having analgesic action.

The latter is prepared from diphenylacetonitrile. Introduction of the sidechain involves an interesting rearrangement.



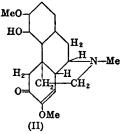
¹³¹ Small, Fitch, Smith. J. Am. Chem. Soc. 58, 1457 (1936).


a-Isomorphine, m. 247° is an epimer of morphine differing only in the configuration of the CHOH. It gives *isocodeine*, m. 172°. Both codeine and isocodeine on oxidation give the ketone, *codeinone*, m. 187°. G-Isomorphine, m. 183°, and γ -isomorphine, m. 278° are epimers with the alcoholic hydroxyl on C₈ instead of C₆. They give allopseudo-codeine, liq. and pseudocodeine, m. 181° both of which form pseudocodeinone, m. 174°, on oxidation.

Ethyl morphine, Dionine, is next to codeine in importance in the United States as a morphine derivative. Diacetyl morphine, Heroin, is prohibited in the United States but is still produced elsewhere.

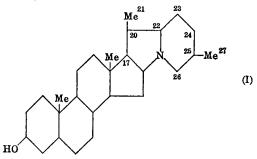
Thebaine, $C_{19}H_{21}NO_8$, m. 193°, is the methyl ether of the enol form of codeinone as shown by its conversion to that substance and MeOH by action of dilute sulfuric acid. In general, its conversions correspond to those of morphine except that dilute HCl gives *thebenine*, a phenanthrene derivative in which the OH has shifted from C_6 to C_8 and the C-C-N bridge has broken loose and been attached as a methylaminoethyl group to C_6 .

The action of Grignard reagents on thebaine leads to a remarkable change. It has been shown by Small¹³² that the product occurs in two pairs of stereoisomeric forms and that C-9 is asymmetric. The reaction with PhMgBr is believed by Robinson¹³³ to involve addition at C-9 and the O-bridge resulting in breaking of the 9–14 bond, opening of the O-bridge and aromatization of the ring having 2 double bonds.

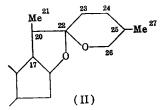


The resulting phenyldihydrothebaine exists in two pairs of stereoisomeric

¹³² Small, Sargent, Bralley. J. Org. Chem. 12, 839 (1947).
 ¹³³ Robinson. Nature 160, 815 (1947); Proc. Roy. Soc. (London) B135, v (1947).


molecular forms because of the restricted rotation of the biphenyl rings. The isomers of each pair are interconvertible by inversion of the optical center at C-9.

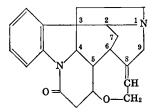
Sinomenine is related to morphine and thebaine and probably has the formula



T. Other Alkoloids

Solanidine, $C_{27}H_{43}ON$, contains the cyclopentanohydrophenanthrene nucleus which is characteristic of so many biologically important substances such as the sterols, bile acids, sex hormones, heart aglucones, toad poisons and the like. It has been assigned formula (I) combining this nucleus and an octahydropyrrocoline system.¹³⁴ It will be seen that the number of carbon

atoms attached at C-17 is the same as in cholesterol. The arrangement of the nitrogenous part retains the cholesterol chain as it is retained in tigogenin (II).



124 Prelog, Szpilfogel. Helv. Chim. Acta 25, 1306 (1942).

This formula (I) has been proven by a partial synthesis of the saturated compound from sarsasapogenin.¹³⁶

The veratrine alkaloids jervine, subijervine, germine and cevine are C_{27} compounds and are related to solanidine and the sterols. On dehydrogenation they give 2-ethyl-5-methylpyridine but differ in that they do not yield the Diels' hydrocarbon.

Strychnine, $C_{21}H_{22}O_2N_2$, contains groupings not found in other classes of alkaloids. An enormous amount of study has lead to the proposal of various formulae. The following is considered as best representing its structure.¹³⁶

Neostrychnine differs only in having the double bond shifted to 8–9, and *pseudostrychnine* is 2-hydroxystrychnine. α - and β -Colubrines are methoxy derivatives while **brucine** is dimethoxy strychnine. Vomicine is less closely related to strychnine.

¹³⁵ Bio. Rev. 1946, 186.
 ¹³⁶ Woodward, Brehm. J. Am. Chem. Soc. 70, 2107 (1948).

PART V

ORGANOPHOSPHORUS AND ORGANOMETALLIC COMPOUNDS I. ALIPHATIC COMPOUNDS

A. ALKYL COMPOUNDS OF MEMBERS OF THE PHOSPHORUS FAMILY

Alkyl compounds of phosphorus resemble those of nitrogen in many ways but differ in being less basic and more subject to oxidation, properties which would be predicted from a comparison of the parent substances ammonia and phosphine, PH_3 , the latter being very weakly basic and highly inflammable. There are primary, secondary, and tertiary phosphines and quaternary phosphonium compounds. Each additional alkyl group increases the basic properties from the primary phosphines RPH_2 whose hydrochlorides are decomposed by water to R_4POH which is a strong base comparable with R_4NOH and KOH.

The action of phosphine with alkyl halides does not give primary and secondary phosphines but gives directly the tertiary and quaternary compounds. This is because of the rapidly increasing basicity accompanying the introduction of the alkyl groups, the ease of addition of RX being strongly in the order $R_3P > R_2PH > RPH_2 > PH_3$. Treatment of the resulting mixture with alkali and distillation gives the volatile tertiary phosphine leaving the stable phosphonium salt in solution.

Phosphonium iodide, PH_4I , heated with an alkyl halide and zinc oxide, gives a mixture of primary and secondary phosphines. These can be converted to their hydrochlorides of which R_2PH_2Cl is stable in water while RPH_3Cl is hydrolyzed completely to RPH_2 by cold water.

Tertiary phosphines can be made from Grignard reagents or dialkyl zinc compounds and PCl₃.

Phosphorus, heated with alkyl iodides at 180°, gives a mixture of polyiodides from which the quaternary phosphonium iodide can be prepared by treatment with hydrogen sulfides.¹ The reaction resembles the dismutation which takes place when phosphorus is heated with water under pressure

$$8 P + 12 H_2O \rightarrow 5 PH_3 + 3 H_3PO_4$$

2 P + 7 RI \rightarrow R₄PI₃ + R₃PI₄

Of the two organic products, the first is changed by H_2S solution to R_4PI and the latter to the phosphine oxide, R_3PO which is more soluble than the phosphonium compound.

¹ Masson. J. Am. Chem. Soc. 55, 139 (1889).

Phosphine with formaldehyde and HCl gives crystalline tetrahydroxymethylphosphonium chloride $(HOCH_2)_4PCl.^2$

The boiling points of the methyl- and ethyl phosphines (°C.) are -14, 25, 41 and 25, 85, 128 respectively.

Oxidation of primary phosphines gives monoalkylphosphonic acids, RPO(OH)₂, (phosphinsäure), analogous to arsonic and sulfonic acids. Related monoalkylphosphinous acids RPHO(OH) are obtained by the action of water with an alkylphosphine dichloride, RPCl₂, obtainable from dialkylmercury and PCl₃. The latter acids resemble phosphorous acid in being disproportionated by heat.

 $4 \text{ H}_3\text{PO}_3 \rightarrow \text{PH}_3 + 3 \text{ H}_3\text{PO}_4$ $3 \text{ RPHO}_2\text{H} \rightarrow \text{RPH}_2 + 2 \text{ RPO}_3\text{H}_2$

MePO₃H₂, m. 105°.

Secondary phosphines on oxidation give dialkylphosphinic acids, R_2PO_2H . Me_2PO_2H , m. 76°.

Tertiary phosphines give phosphine oxides, R_3PO , which differ from the corresponding nitrogen compounds in stability to heat and reducing agents. Thus they are formed when quaternary phosphonium hydroxides are heated

$R_4POH \rightarrow R_3PO + RH$

This is in marked contrast to the behavior of R₄NOH. Triethylphosphine undergoes autoxidation in air much as phosphorus does. Thus a substance which can be oxidized but which does not ordinarily react rapidly with oxygen gas undergoes rapid oxidation in the presence of such a substance. Probably a peroxide is first formed. Thus the process involved in the oxidation of indigo white by air in presence of Et_aP are probably as follows:

 $Et_3P \rightarrow Et_3PO_2 \rightarrow Indigo \ blue + Et_3PO.$

Characteristically, half of the oxygen goes to the readily oxidizable substance and half to the less readily oxidizable substance, the "acceptor." Me₃PO, m. 138°, b. 215°.

Tertiary phosphines react exothermally with sulfur giving R_3PS . They also add halogens to form R_3PX_2 . R_3P also reacts violently with CS_2 .

Et₃PS, m. 94°. Et₃PSe, m. 112°. Et₃P.CS₂, m. 95°.

Alkyl compounds of arsenic. These differ from the corresponding nitrogen compounds even more than do those of phosphorus. The primary, secondary and tertiary arsines have practically no basic properties. Like the phosphines they are readily oxidized. The quaternary compounds resemble those of nitrogen. The hydroxides are strong bases.

The arsines are prepared very differently from the amines. Thus the best preparations for *methylarsine*, MeAsH₂, b. $+2^{\circ}$ are:

² Ann. Rep. Chem. Soc. (London) 1922, 67.

1. By reduction of methylarsenic dichloride, b. 133°, obtained from HgMe₂ and AsCl₃.

2. By reduction of sodium methylarsonate, MeAsO₃Na₂, prepared from MeI and sodium arsenite. A barely alkaline solution of As₂O₃ in NaOH is used in this reaction. NaI is formed and the methyl carbon with only six electrons attaches itself to the free electron pair of the arsenite ion.³ This is similar to the action of a sulfite to give a sulfonate with an alkyl halide. Sodium methylarsenate is used medicinally as Arrhenal. n-Propylarsonic acid is used in determining small amounts of zirconium in steel.⁴

Like all arsenic compounds, especially the volatile ones, methylarsine is poisonous.

Dimethylarsine, cacodyl hydride, Me₂AsH, b. 37° is an extremely poisonous, spontaneously inflammable liquid of terrible odor. The corresponding oxide, cacodyl oxide, (Me₂As)₂O, is obtained by heating As₂O₃ and potassium acetate.^{5,6} Many compounds of the cacodyl radical ($Me_2As -$) have been studied. Its chloride, with zinc, gives cacodyl, Me₂AsAsMe₂, b. 170°, spontaneously inflammable. It reacts with limited amounts of oxygen, sulfur and halogens to give cacodyl compounds. With MeI it gives cacodyl iodide and tetramethylarsonium iodide. Cacodylic acid is dimethylarsinic acid, Me₂AsO₂H.

Trimethylarsine, Me₃As, b. 53°, is the poisonous volatile material formed by biological methylation of arsenic compounds in wall-papers containing either arsenical pigments or "aniline dyes" at a time when the oxidation step in their preparation was by means of arsenic $acid^{7}$ (p. 848).

Tertiary arsines are made from AsCl₃ with Grignard reagents or alkyl zinc compounds.

The arsines are readily oxidized to arsonic acids, RAsO₃H₂, arsinic acids, RR'AsO₂H, and arsine oxides, RR'R"AsO. The acids can be reduced by H_2SO_3 to the trivalent form of arsenic and converted to the related sodium salts which react with alkyl halides in the same way as sodium arsenite. The final product is the tertiary arsine oxide.

The arsines readily unite with oxygen, sulfur and halogens to give pentavalent compounds. When the pentavalent chlorides $R_n AsCl_{5-n}$ (n=1 to 4)are heated, RCl separates leaving $R_{n-1}AsCl_{4-n}$. This, with chlorine, gives $R_{n-1}AsCl_{6-n}$, etc., until all alkyl groups are removed and $AsCl_3$ is left. This is a remarkable difference from the behavior of nitrogen compounds. Another important difference is the reaction of the arsines with arsenic chloride.

$R_3As + AsCl_3 \rightarrow R_2AsCl and RAsCl_2$

Methyldichloroarsine, CH₃AsCl₂, was used as a war gas. It was ineffective compared with mustard gas. It can be prepared according to the last equation

³ "Org. Reactions," II, p. 431.

⁴ Geist. Ind. Eng. Chem., Anal. Ed. 9, 169 (1937). ⁵ Cadet. Mém. Math. phys. 3, 363 (1760).

⁶ Bunsen. Ann. 46, 1 (1843).

⁷ Challenger. Chemistry & Industry 54, 657 (1935).

or by the action of SO_2 and HCl on MeAsO₃Na₂ obtained from sodium arsenite and Me₂SO₄ or MeCl.

A penta-alkyl compound of arsenic can be made, $Me_{5}As$, from zinc dimethyl and $Me_{4}AsI$. It is a volatile liquid.

The war gas, Lewisite, is chlorovinyldichloroarsine.

$$ClCH = CHAsCl_2.$$

When prepared from AsCl₃ and acetylene, much of the secondary and tertiary arsines are obtained. These can be changed to Lewisite by heating with AsCl₃.

Organic Arsenical Compounds, Raiziss and Gavron, A.C.S. Monograph, Chemical Catalog Company, New York, 1923.

Alkyl compounds of antimony, Stibines. In these, the increasing metallic nature of antimony makes marked changes from the amines. $SbCl_3$ with zinc alkyls gives *trialkylstibines*. They are spontaneously inflammable liquids. With halogens, oxygen and sulfur they form R_3SbX_2 , R_3SbO and R_3SbS . A remarkable reaction is that with HCl which generates hydrogen as though a free metal were involved.

$$R_3Sb + 2 HCl \rightarrow H_2 + R_3SbCl_2$$

Just as a free metal discharges hydrogen ions by means of its valence electrons the antimony, when attached to three alkyl groups acquires metallic properties in the sense that its free electron pair acts like a free metal.

$$\begin{array}{ccc} \operatorname{Ca}: & + & 2\operatorname{H}: \operatorname{Cl}: \to \operatorname{Ca}^{++} + 2\operatorname{Cl}^{-} + \operatorname{H}: \operatorname{H} \\ & \vdots \\ \operatorname{R}: \operatorname{Sb}: + & 2\operatorname{H}: \operatorname{Cl}: \to \left[\begin{array}{c} \operatorname{R} & \vdots \\ \operatorname{R}: \operatorname{Sb}: \operatorname{Cl}: \vdots \\ \operatorname{R} & \vdots \end{array} \right]^{+} + \operatorname{Cl}^{-} + \operatorname{H}: \operatorname{H} \\ & \vdots \\ \operatorname{R} & \vdots \end{array}$$

Another example of the metallic tendencies of antimony is the existence of salts such as R_3SbSO_4 .

Me₃Sb, b. 81°. Et₃Sb, b, 159°. Me₅Sb, b. 100°.

Alkyl iodides add to tertiary stibines giving quaternary stibinium compounds of properties like the corresponding ammonium compounds. The hydroxide, R₄SbOH, is also a strong base.

Organic Derivatives of Antimony, Christiansen, A.C.S. Monograph, Chemical Catalog Company, New York, 1925.

Alkyl compounds of bismuth. These behave as metallo-organic compounds in contrast to the compounds of N, P, As and Sb. They are prepared from $BiCl_3$ and Grignard reagents. The bismuth trialkyls react with acids to give bismuth salts and hydrocarbons.

$$Me_3Bi + 3 HCl \rightarrow BiCl_3 + 3 CH_4$$

850

With halogens and sulfur they show no tendency to form pentavalent compounds but suffer the usual splitting of the C-metal linkage.

$$\begin{array}{l} \mathrm{Me_{3}Bi} + 3 \ \mathrm{I_{2}} \rightarrow \mathrm{BiI_{3}} + 3 \ \mathrm{MeI} \\ \mathrm{2 \ Me_{3}Bi} + 6 \ \mathrm{S} \rightarrow \mathrm{Bi}_{2}\mathrm{S}_{3} + 3 \ \mathrm{Me}_{2}\mathrm{S} \end{array}$$

No quaternary compounds are formed.

Me₃Bi, b. 110°. It explodes when heated in air.

B. METAL ALKYLS

Alkyls of the alkali metals are obtained from the metals and mercury alkyls in the absence of air.⁸ Sodium added to dimethylzinc precipitates metallic zinc. While the zinc compound does not act with CO_2 the resulting product gives sodium acetate.

$$MeNa + CO_2 \rightarrow MeCO_2Na$$

The alkali alkyls are generally non-volatile solids, insoluble in inert organic solvents. Their solutions in diethylzinc conduct electricity.9 These properties are in sharp contrast to those of substances like the volatile, soluble, non-conducting arsines. One type of substance is polar and the other is nonpolar.10

Lithium alkyls are best prepared in a pentane solvent from Li and RCl or RBr in N₂ atmosphere.^{11, 12} Unlike the RNa and RK compounds, the lithium alkyls are soluble in organic solvents and conduct poorly in diethylzinc. They are useful in certain synthetic processes in which Grignard reagents fail.

Sodium ethyl reacts with ether to give NaOEt, ethane and ethylene.¹³ This reaction introduces complications into Wurtz reactions run in ether solution since RNa is probably an intermediate.

NaEt when heated below 150° gives ethane, ethylene, hydrogen and sodium acetylide. NaMe gives CH₄, sodium and Na₂C₂.¹⁴

Organo-alkali compounds.^{15, 17}

Organo-metals.¹⁶

Alkyl derivatives of magnesium. The Grignard reagent, RMgX, is the most important reagent ever introduced into organic chemistry.¹⁸ It is formed from the alkyl halides with metallic magnesium, usually in the presence

⁹ Hein. Z. anorg. allgem. Chem. 141, 161 (1924).

- ¹⁰ Carothers. J. Am. Chem. Soc. 51, 588 (1929).
- ¹¹ Ziegler. Ann. 479, 135 (1930).
- ¹² Gilman. J. Am. Chem. Soc. 54, 1957 (1932); 62, 2327 (1940).
- 13 Ann. Rep. Chem. Soc. (London) 1923, 58.
- ¹⁴ Carothers, Coffman. J. Am. Chem. Soc. 52, 1254 (1930).
 ¹⁵ Wooster. Chem. Rev. 1932, II, 1 (1928).
- ¹⁶ Ahrens. Sammlung Chemische-Technischen Vortrage 1927, 320.
- ¹⁷ Schlenk, Bergmann. Ann. 463, 1: 464, 1.
- ¹⁸ Grignard. Compt. rend. 130, 1322 (1900).

⁸ Schlenk. Ann. 463, 1 (1928).

of anhydrous ethyl ether but other solvents such as higher ethers,¹⁹ tertiary amines and even hydrocarbons may be used. In special cases no solvent is used. In the solution obtained there is an equilibrium

$$2 \operatorname{RMgX} \rightleftharpoons \operatorname{R}_2\operatorname{Mg} + \operatorname{MgX}_2$$
.

Of the three substances only R₂Mg is soluble in dioxan.²⁰

The nature of the oxonium complex of the Grignard reagent with ether has never been settled. It has been proved *not* to be of the type originally proposed

MgX Et₂O by Grignard.²¹

Grignard reagents can be prepared from alkyl halides of all classes.²² No rearrangements take place in the action of alkyl halides with magnesium. However, Grignard reagents derived from allylic systems often give rearrangement products in their reactions.²³

The Grignard reagent has several types of reactions.

1. With compounds having hydrogen attached to a non-metal other than carbon (*active H compounds*) it gives hydrocarbons and a compound having -MgX in place of the H.

$$RMgX + HOH \rightarrow RH + HOMgX$$

In this reaction it is acting as a very sensitive hydrocarbo base. Ammonia, primary and secondary amines and all acids give compounds of the types NH_2MgX , RNHMgX, R_2NMgX and Q-MgX(HQ as acid). Even H attached to C acts in the grouping $-C \equiv CH$ to give $-C \equiv CMgX$ which is a true Grignard reagent usable in the usual syntheses.

The action of methyl Grignard reagent in a high boiling ether is used as a quantitative test for active hydrogen compounds (-OH, -NH, -SH etc.) by measuring the methane evolved.²⁴

2. With multiple linkages between carbon and another element it adds with the MgX on the other element and the alkyl group on the carbon.

$$=C=O + RMgX \rightarrow = C(R)OMgX \rightarrow = C(R)OH$$

The last step is one of hydrolysis to form the organic compound and magnesium hydroxide. The latter is dissolved by acid or by ammonium salts

¹⁹ Marvel. J. Am. Chem. Soc. 50, 2810 (1928).

²⁰ Schlenk. Ber. 64, 734 (1931).

²¹ Thorpe, Kamm. J. Am. Chem. Soc. 36, 1022 (1914).

²² Gilman. J. Am. Chem. Soc. 51, 1576 (1929).

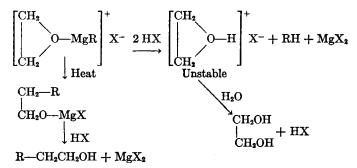
²³ Young. J. Am. Chem. Soc. 68, 1472 (1946).

²⁴ Kohler. J. Am. Chem. Soc. 52, 3736 (1930).

if the organic product is sensitive to acids.

$$=C=S \rightarrow =C(R)SMgX \rightarrow =C(R)SH$$
$$-C\equiv N + RMgX \rightarrow -C(R) = NMgX \rightarrow -C(R) = NH \rightarrow -C(R) = 0$$

Besides the normal reactions with esters to produce ketones and *t*-alcohols, Grignard reagents also react to remove the hydrogens of the carboxy and alkoxy portion of certain type esters.²⁵


3. With elements such as the halogens, oxygen and sulfur, Grignard reagents form alkyl halides, alcohols and mercaptans.

$$2 \operatorname{RMgX} + O_2 \rightarrow \operatorname{RX} + \operatorname{MgO} + \operatorname{ROMgX} \rightarrow \operatorname{ROH}$$

These reactions have not been adequately studied.²⁶ Hydrogen peroxide (30%) gives alcohols.

4. With halides such as PCl_3 and $HgCl_2$, to introduce alkyl groups in place of halogen atoms.

5. With ethylene oxides. The first product is an oxonium salt which, when treated with water or acid, gives RH and the glycol related to the oxide. If the first addition product is heated to about 150° (danger of explosion), it changes to RCH₂CH₂OMgX:

6. With alkyl halides to give hydrocarbons.

 $RX + R'MgX \rightarrow MgX_2 + RR'$

The yields are poor, especially so, with tertiary halides. A better modification involves the use of alkyl esters of aromatic sulfonic acids.

 $Tol-SO_3R + R'MgX \rightarrow RR' + Tol-SO_3MgX$

Esters of aliphatic sulfonic acids give sulfones

 $RSO_3R' + R''MgX \rightarrow RR''SO_2 + R'OMgX$

²⁵ Hauser. J. Am. Chem. Soc. 70, 606 (1948).

²⁶ Goebel, Marvel. J. Am. Chem. Soc. 55, 1693 (1933).

Allyl halides react well with Grignard reagents to give 1-olefins. 7. Silver bromide produces a peculiar coupling to give hydrocarbon, R-R.²⁷

 $2 RMgBr + 2 AgBr \rightarrow R - R + 2 MgBr_2 + 2 Ag$

8. The Grignard reagent is said to act "abnormally" with carbonyl compounds in three ways, by acting as a reducing agent, by acting as a base in causing enolization and condensation. These reactions appear when the normal reactions are cut down by branching of the chain in the carbonyl compound or the reagent or both.

a. Reduction. A good example is the conversion of Me_3CCOCl to Me_3CCH_2OH by the action of t-BuMgCl.²⁸ The aldehyde is an intermediate.

b. Enolization. The recovery of an unchanged carbonyl compound after treatment with a Grignard reagent was first taken as indicating the inactivity of the former but was later recognized as due to the formation of an enolate -C = COMgX which gives back the original carbonyl compound on acidification. Recognition of this process resulted in much work on the measurement of the "degree of enolization" of carbonyl compounds by treatment with MeMgX and measurement of the evolved CH₄.²⁹ Contrary to the earlier conception, the amount of enolization depends on the branching of both the carbonyl compound and the reagent. Thus diisopropyl ketone with MeMgBr gives 95% addition with no detectable enolization, 78% reduction to diisopropyl-carbinol and 8% addition to form the t-alcohol; and with neopentylmagnesium chloride it gives 90% enolization, 4% addition and no reduction.³⁰

c. Condensation. A good example is the action of acetone with iso-BuMgBr (p. 214).

9. Grignard Reagents give a characteristic color with iodine and Michler's ketone. $^{\rm s1,\, s2}$

Magnesium in Organic Chemistry.³³

Grignard reagent.⁸⁴

Alkyl compounds of beryllium and calcium resembling the Grignard reagent have been prepared.³⁵

Alkyl compounds of zinc are typical metallo-organic compounds.³⁶ They are completely decomposed by all compounds containing hydrogen attached to elements other than singly or doubly linked carbon. Thus they react with

- ²⁸ Whitmore. J. Am. Chem. Soc. 63, 643 (1941).
- 29 Smith, Guss. J. Am. Chem. Soc. 59, 804 (1937).
- ³⁰ Whitmore, George. J. Am. Chem. Soc. 64, 1239 (1942).
- ⁸¹ Gilman, Schulze. J. Am. Chem. Soc. 47, 2002 (1925).
- ²² Gilman, Heck. J. Am. Chem. Soc. 52, 4949 (1930).
- ⁸³ "Magnesium in Organic Chemistry." Cortot, 1925.
- ²⁴ Grignard reagent. Ahrens Sammlung Chemische-Technischen Vortrage 1905, 89; 1908, 90.
- ³⁶ Gilman. J. Am. Chem. Soc. 49, 2904 (1927),
- ³⁶ Frankland. Ann. 71, 213 (1849).

²⁷ Gardner. J. Am. Chem. Soc. 51, 3375 (1929).

ALIPHATIC COMPOUNDS

active hydrogen compounds such as water, ammonia, acids, and acetylene.

$$R_2Zn + HQ \rightarrow RH + RZnQ \rightarrow RH + ZnQ_2$$

The dialkylzincs are spontaneously inflammable liquids which must be handled in a CO₂ atmosphere. The alkylzinc halides are salt-like materials which give the dialkylzinc compounds on heating. A zinc copper alloy reacts with alkyl iodides to give RZnI. Distillation gives R_2Zn and ZnI_2 .³⁷

Historically, the dialkylzincs are very important. Their ability to react with carbonyl groups made available many new types of compounds.

 $RCHO + R_2'Zn \rightarrow RR'CHOZnR' \rightarrow RR'CHOH$

At present their most important use is in replacing a halogen by an alkyl group when the result cannot be achieved in any other way. Thus:

 $Me_3CCl + R_2Zn \rightarrow Me_3CR.^{38}$

For this purpose they are better than Grignard reagents although the yields are still poor.

The zinc compounds are sometimes useful in making ketones from acid chlorides since they react only slowly with the products whereas Grignard reagents act rapidly with ketones.

Dialkylzinc compounds react readily only with tertiary halides and with acid halides. Other types of halides are not sufficiently reactive to give the full yield.

Zinc diethyl in ether solution is a poor conductor but can be electrolyzed to give zinc at the cathode and ethyl radicals at the anode.³⁹

Me₂Zn, b. 46°, Et₂Zn, b. 118°.

Organocadmium compounds are much used in the synthesis of ketones and deserve mention. $^{40}\,$

Alkyl compounds of mercury. These show properties of both the nonmetallic and metallic derivatives of organic compounds. They are not attacked by water but are split by acids. The dialkyl mercury compounds, R_2Hg , are poisonous liquids. The organomercuric salts, RHgX, are crystalline solids.

General methods of preparation.

1. Sodium amalgam with alkyl bromides in presence of a catalyst such as ethyl acetate, gives R_2Hg .

2. Grignard reagents, with mercuric or mercurous halides, give RHgX or R_2Hg depending on the proportions used.

Reactions: 1. Mercury dialkyls react with mercuric salts.

 $R_2Hg + HgX_2 \rightarrow 2 RHgX$

³⁷ Noller. J. Am. Chem. Soc. 51, 594 (1929).

³⁸ ibid.

³⁹ Rodebush. J. Am. Chem. Soc. 51, 638 (1929).

40 Cason. Chem. Rev. 40, 15 (1947).

ORGANOPHOSPHORUS COMPOUNDS

2. Alkylmercuric salts can be converted to dialkyl mercury compounds by treatment with a Grignard reagent or with any reagent which removes mercuric ions from solution more completely than does NaOH

 $\begin{array}{l} \mathrm{RHgCl} + \mathrm{RMgCl} \rightarrow \mathrm{R}_{2}\mathrm{Hg} + \mathrm{MgCl}_{2} \\ \mathrm{2} \ \mathrm{RHgCl} + 4 \ \mathrm{NaCN} \rightarrow \mathrm{R}_{2}\mathrm{Hg} + \mathrm{Na}_{2}\mathrm{Hg}(\mathrm{CN})_{4} + 2 \ \mathrm{NaCl} \end{array}$

3. Both types of mercury compound react with acids, especially halogen acids, with splitting of the C-Hg linkage and formation of a hydrocarbon.

 $R_2Hg \rightarrow RH + RHgCl \rightarrow RH + HgCl_2$

In common with other organometallic compounds, these alkyl compounds of mercury are thus *hydrocarbo bases*⁴¹ in the same sense that NaOH and NaNH₂ are aquo and ammono bases respectively.

4. The C-Hg linkage is split by halogens.

 $R_2Hg + X_2 \rightarrow RX + RHgX \rightarrow RX + HgX_2$

This method is of preparative value as in the case of bromides and iodides of neopentyl and pinacolyl (pp. 75–6) which cannot be made by other methods.

5. It might be expected that alkyl mercury compounds would react with alkyl halides to give HgX_2 and higher paraffins. This is not possible. Either there is no reaction or the C-Hg compound merely removes HX from the halide, thus acting as a hydrocarbo base.

Me₂Hg, b. 95°. MeHgI, m. 143°. Et₂Hg, b. 160°. EtHgCl, m. 193°.

Methylmercuric iodide can be made from MeI and Hg in sunlight. The change is catalyzed by mercurous iodide.

Ethylmercuric chloride is important industrially as a fungicide in treating seeds, lumber, etc. It is used in high dilution either in solution or in dusting powders. It is made from $HgCl_2$ and lead tetraethyl.

Alkylmercuric hydroxides, RHgOH, contrary to older reports, are very They can be prepared from RHgCl by alcoholic KOH which weak bases. precipitates KCl. The impression that MeHgOH was a strong base came from the fact that it liberates NH_3 from ammonium salts and has a caustic effect on the skin. It is actually a weaker base than aniline. It forms an insoluble carbonate and a soluble bicarbonate. Boiling either with water expels CO_2 completely leaving the free base. An aqueous solution of the base reacts quantitatively with NaCl solution precipitating RHgCl and leaving NaOH in the solution. Thus NaCl can be causticized by this peculiar base in the same way that sodium carbonate is converted to NaOH by lime. The compounds, RHgOH, are unique in being weak, soluble, stable bases. All other weak bases are either insoluble or unstable.

Mercuric salts react with olefins and acetylenes.

⁴¹ Jones. J. Am. Chem. Soc. 40, 1257 (1918).

It is possible to attach several mercury atoms to a carbon. Thus the organic compound containing the smallest percentage of carbon is the iodide of ethane hexamercarbide, $(IHg)_3CC(HgI)_3$.

Organic Compounds of Mercury, Whitmore, A.C.S. Monograph, Chemical Catalog Company, New York, 1921.

Alkyl compounds of boron are made from Grignard or zinc compounds with BCl₃ and with boric acid esters such as $(MeO)_3B$. Trimethylborane is a gas, and BEt₃ boils at 95°. They are spontaneously inflammable and are decomposed by acids to give hydrocarbons. Alkyl boric acids, R₂BOH and RB(OH)₂, are obtained by replacing part of the chlorine atoms in BCl₃ and hydrolyzing the products. They thus have properties of both metal and non-metal alkyl compounds.

Aluminum trialkyls can be made from RMgX and AlCl₃ or from the mercury alkyls with metallic aluminum. Aluminum powder with ethyl iodide gives Et_2AlI and $EtAlI_2$, b. 120° and 160°. Both are spontaneously inflammable and are decomposed by water as are the trialkyl compounds.

Me₃Al, b. 130°.

Gallium triethyl, b. 142°, is made from gallium and HgEt₂. It is spontaneously inflammable.⁴² GaMe₃, b. 55.7°, is prepared from the chloride and Me₂Zn. The solid even at -76° catches fire spontaneously.⁴³

Thallium triethyl, b. 51° (1.5 mm.), is obtained from lithium ethyl and thallous chloride.⁴⁴

Alkyl compounds of silicon are made like those of bismuth or boron. A more recent method involves the action of organic halides on silicon in the presence of a copper or silver catalyst at elevated temperatures.⁴⁵

The "silicones" or organopolysiloxanes are by far the most important class of organosilicon compounds. These consist of an arrangement of alternate silicon and oxygen atoms in which the silicon atoms are linked to organic groups. They are prepared by the hydrolysis of organochlorosilanes, $RSiCl_3$, R_2SiCl_2 and R_3SiCl . In the form of fluids, greases and resins, these new polymers are important because of their remarkable heat stability, low rate of viscosity change with temperature, water-repellent properties, chemical inertness, and excellent electrical properties for insulation.

The chemical behavior of organosilicon monomers containing functional groups attached to carbon is of special interest because the introduction of the silicon atom leaves the compounds as true organic substances in many respects. An interesting example is the occurrence of a typical "neopentyl" rearrangement on treatment of silico-neopentyl chloride, Me₃SiCH₂Cl, with aluminum

⁴² Dennis. J. Am. Chem. Soc. 54, 182 (1932).

⁴³ Kraus. J. Am. Chem. Soc. 55, 3547 (1933).

⁴⁴ Birch. J. Am. Chem. Soc. 56, 1132 (1934).

⁴⁵ Rochow. J. Am. Chem. Soc. 67, 963 (1945).

chloride to give Me₂EtSiCl.⁴⁶ Me₄Si, b. 26°. Me₃SiCl, b. 57°. Me₃SiOH, b. 97°. Me₃SiOSiMe₃, b. 100°. Me₃SiCH₂Cl, b. 97°.

Germanium alkyls have been made and studied extensively.^{47–49} Et₄Ge, b. 163.5°, d. 0.99, pleasant odor.

Alkyl compounds of tin have been extensively studied. They are made from alkyl iodides with alloys of tin with sodium or zinc. Mixed compounds $R_n SnI_{4-n}$ are obtainable.

Treatment of the alkyl tin compounds with halogen acids or halogens replaces alkyl groups by halogens forming paraffins or alkyl halides. They do not act with water.

Me₃SnCl with Na gives Me₆-stanno-ethane, Me₃Sn-SnMe₃, which dissociates into free radicals in solution. Dimethyltin, made from Me₂SnCl₂ and Na, readily unites with oxygen to form Me₂SnO.

Me₄Sn, b. 78°, Me₃SnI, b. 170°, Me₂SnI₂, m. 30°, b. 228°.

Et₄Sn, b. 181°. Et₃SnSnEt₃, b. 270°.

Asymmetric tin compounds of the type MeEtPrSnI have been obtained in optically active forms.⁵⁰

Alkyl compounds of lead have been studied very extensively especially in recent years because of the interest in lead tetraethyl as an anti-knock for gasoline. The lead tetra-alkyls resemble the mercury dialkyls in general properties and reactions.

The lead dialkyls are unstable. Lead chloride heated with a Grignard reagent gives the tetra-alkyl.

2 PbCl₂ + 4 RMgCl
$$\rightarrow$$
 R₄Pb + 4 MgCl₂ + Pb

Free methyl and ethyl radicals were first prepared by heating the lead alkyls.⁵¹ Their half life is about 0.006 sec. Higher alkyl radicals decompose even more rapidly into olefins and methyl or ethyl radicals. The free radicals attack metallic mercury forming Me₂Hg which can be identified as MeHgBr.⁵²

Lead tetraethyl is made commercially by heating ethyl chloride under pressure with sodium lead alloy. The amount produced per year is of the order of a quarter of a billion pounds.

Many simple and mixed lead tetra-alkyls have been prepared.53

Mixed compounds R_nPbCl_{4-n} and diplumbic compounds R_3PbPbR_3 are known. Trivalent and bivalent lead alkyls have been prepared.

Me₃PbOH is a strong base.

Organic Compounds of Lead. Calingaert, Rev. 1925, 43-84.

⁴⁶ Whitmore, Sommer, Gold. J. Am. Chem. Soc. 69, 1976 (1947).

⁴⁷ Dennis. J. Phys. Chem. 30, 1055 (1926).

- 49 Rochow. J. Am. Chem. Soc. 69, 1729 (1947).
- ⁵⁰ Pope, Peachey. Proc. Roy. Soc. (London) 1900, 16, 42, 116.
- ⁵¹ Paneth. Ber. 62, 1335 (1929).
- ⁵² Rice. J. Am. Chem. Soc. 54, 3529 (1932).
- ⁵³ Grüttner. Ber. 51, 1293 (1918).

⁴⁸ Kraus. J. Am. Chem. Soc. 54, 1635 (1932).

Copyrighted Materials

AROMATIC COMPOUNDS

The metallo-organic compounds of Cu, Ag, Au, Cr, Th, Fe, Pt etc. are available.

II. AROMATIC COMPOUNDS

A. AROMATIC COMPOUNDS OF MEMBERS OF THE PHOSPHORUS FAMILY

Many such compounds are known. In formulas they resemble the compounds of nitrogen. In general they can be made by treating the inorganic halides with aromatic mercury compounds.¹ Thus

 $PCl_3 + Ph_2Hg \rightarrow PhPCl_2 + PhHgCl$

Because of their use in the treatment of protozoal diseases such as syphilis and African sleeping sickness, the aromatic compounds of arsenic have been studied most extensively.

The most important aromatic compounds of arsenic are the arsonic acids (arsinic acids), $ArAsO_3H_2$. These are most generally prepared from a diazotized amine and sodium arsenite (Bart Reaction).²

 $ArN_2Cl + Na_2HAsO_3 \rightarrow ArAsO_3HNa + NaCl + N_2$

The process resembles the formation of a sulfonate from sodium sulfite and an alkyl halide (p. 152). In each case a "carbonium ion" adds to the free electron pair in the -ite ion.

Another preparation is by the combined oxidation and hydrolysis of an aryldichloroarsine by chlorine water

 $ArAsCl_2 + Cl_2 + 3 H_2O \rightarrow ArAsO_3H_2 + 4 HCl$

If an activating group such as OH or NH_2 is present, direct arsonation with sirupy arsenic acid is possible (Bechamp Reaction).³

 $HOC_6H_5 + H_3AsO_4 \rightarrow H_2O + HOC_6H_4AsO_3H_2$

The reaction requires a higher temperature than does nitration. This causes a greater amount of oxidation by the arsenic acid to give various complex colored oxidation products of the phenol or the amine. Thus the arsonation of aniline gives only about a 15% yield of *arsanilic acid.*⁴

The arsonic acids can be dehydrated to give anhydrides, ArAsO₂, analogous to the nitro compounds. The relation may be shown electronically:

¹ Michaelis. Ann. 293, 196, 248, 257, 291, 303, 313 (1896).

- ² "Org. Reactions," II, p. 417.
- ³ "Org. Reactions," II, p. 428.

"'Org. Syntheses."

859

The inability of the nitrogen to assume a hydrated form corresponding to the arsonic acids is probably due to the smallness of its kernel as compared with that of arsenic and corresponds to the non-existence of orthonitric acid, H_3NO_4 .

The aryl arsonic acids are crystalline solids.

The arsonic acid group is attached firmly to the aromatic nucleus and can be removed only by heating with HI.

The aryl arsonic acids give soluble alkali and insoluble heavy metal salts.

Reduction converts the arsonic acids to *arsenoxides*, ArAsO, corresponding to nitroso compounds, to arseno compounds, ArAs=AsAr, analogous to azo compounds, and to primary arsines, ArAsH₂, related to aniline as AsH₃ is to NH₃.

Arsanilic acid, p-aminophenyl arsonic acid, $H_2NC_6H_4AsO_3H_2$, readily obtained by the direct arsonation of aniline (OS) shows all the properties of an aromatic amine and an arsonic acid. Its sodium salt is *Atoxyl* formerly used in protozoal diseases but abandoned because of its toxicity, especially to the optic nerve.

Phenolarsonic acid, p-hydroxyphenylarsonic acid, HOC₆H₄AsO₃H₂, from the direct arsonation of phenol,⁵ is the main intermediate for Salvarsan.

Tryparsamide, N-phenylglycineamide-4-arsonic acid,

H₂NCOCH₂NHC₆H₄AsO₃H₂,

made from arsanilic acid and chloroacetamide⁶ is valuable in African sleeping sickness and has been proposed for use in paresis.

Arsenobenzene, $C_6H_5As = AsC_6H_5$, m. 196°, pale yellow crystals, can be made from phenylarsine and phenylarsenoxide or by the reduction of phenylarsonic acid.

The arseno group is much less stable than the azo group. Thus heat converts arsenobenzene to triphenylarsine, $(C_6H_6)_3As$, and arsenic. Chlorine, oxygen and sulfur break the As—As bond to give ArAsCl₂, ArAsO and ArAsS.

Substituted arsenobenzenes containing hydroxyl or amino groups or combinations of them are less toxic than the arsonic acids and have replaced them in therapy.

When an arsonic acid containing a nitro group is reduced, either or both groups may be attacked depending on the reducing agent used.

1. Both groups can be reduced completely by an active metal and a strong acid to give aminoarylarsines such as $H_2NC_6H_4AsH_2$.

2. The nitro group can be reduced to amino and the arsonic acid group to arsenoxide by sulfurous acid with catalysts like HI, $SOCl_2$ etc. to give amino-arsenoxides, $H_2NC_6H_4AsO$.

3. The nitro group can be reduced by ferrous hydroxide without changing the arsonic acid group to give $H_2NC_6H_4AsO_3H_2$.

⁶ Conant. J. Am. Chem. Soc. 41, 431 (1919).

860

⁶ Jacobs. J. Am. Chem. Soc. 41, 1587 (1919).

4. The arsonic acid group can be reduced to give an arseno compound without changing the nitro group by means of phosphorous acid, H_3PO_3 , or hypophosphorous acid, H_3PO_2 .

5. The most important reduction gives the aminoarseno compounds. This is best given by sodium hydrosulfite, $Na_2S_2O_4$.

Salvarsan, Arsphenamine, "606," Kharsivan, Arsenobillon, 3,3'-diamino-4,4'-dihydroxyarsenobenzene hydrochloride,⁷ was the first important arsenical drug and is still made and used in large amounts. Several preparations are known. *p*-Hydroxyphenylarsonic acid, obtained by direct arsonation of phenol or by diazotization of arsanilic acid, is nitrated ortho to the hydroxyl group. Reduction of this product with sodium hydrosulfite gives the base of salvarsan. Salvarsan is kept free from air because of its ready conversion to the more toxic arsenoxide. It is probable that the latter is the actual therapeutic agent in the body since salvarsan does not kill protozoa *in vitro* whereas the arsenoxide does. The latter has been introduced into therapy as Mapharsen, 3-amino-4-hydroxyphenylarsenoxide.

Neosalvarsan, neoarsphenamine, "914," is the sodium salt of the formaldehyde sulfoxylate of salvarsan base. The grouping $-NHCH_2OSONa$ renders it soluble in water to give a neutral solution whereas salvarsan gives a strongly acid solution which has to be exactly neutralized just before its use. Many modifications of the salvarsan structure have been prepared and tested.

Compounds have been prepared containing arsenic as a member of a heterocyclic ring. The best known of these is 10-chloro-5,10-dihydrophenarsazine, Adamsite, "DM," obtained from diphenylamine and AsCl₃. It was prepared during World War I as a toxic sternutatory.

"Organic Arsenical Compounds." Raiziss and Gavron. A.C.S. Monograph No. 15.

Organic compounds of antimony have been prepared in great numbers by reactions much like those used for arsenicals.

"Organic Derivatives of Antimony." Christiansen, A.C.S. Monograph No. 24.

B. AROMATIC COMPOUNDS OF MERCURY AND OTHER METALS

These have been studied in great variety. Mercury derivatives especially are known for every type of aromatic hydrocarbon and their derivatives.

Mercury diphenyl, diphenylmercury, $(C_6H_5)_2Hg$, m. 121°, is typical of the aromatic *mercuri-bis* compounds in which both valences of mercury are attached to carbon.

Preparation. 1. From bromobenzene and dilute sodium amalgam in presence of catalysts such as ethyl acetate.

2. From mercuric chloride or phenylmercuric chloride and excess phenylmagnesium bromide.

⁷ Ehrlich, Bertheim. Ber. 45, 763 (1912).

3. From phenylmercuric halides and various reagents which remove mercuric ions from solution more completely than does a base. The reaction

$2 \operatorname{ArHgX} \rightleftharpoons \operatorname{Ar_2Hg} + \operatorname{HgX}_2$

usually goes to the left. Removal of Hg ions causes it to go to the right. Alkali sulfides give insoluble HgS and leave diphenylmercury. Iodides, thiosulfates and similar compounds give stable complex ions of mercury. Alkaline reducing agents such as sodium stannite, copper and pyridine, and hydrazine⁸ give metallic mercury and the diarylmercury.

4. From the double salt of benzenediazonium chloride and HgCl_2 heated with copper.⁹

2 PhN₂Cl. HgCl₂ + 6 Cu
$$\rightarrow$$
 Ph₂Hg + Hg + 2 N₂ + 6 CuCl

This is the most general preparation of aromatic mercuri-bis compounds and gives substances otherwise not readily available. Thus di- β -naphthylmercury is easily made from β -naphthylamine.¹⁰

Reactions. 1. Diphenylmercury is stable to water, alcohols, ammonia, hydrogen sulfide and other active hydrogen compounds which decompose C-Mg linkages.

2. With strong acids, the C-Hg linkages are split stepwise, the first one being much more easily split than the second.

$$\frac{\mathrm{HX}}{\mathrm{Ph_2Hg}} \xrightarrow{\mathrm{HX}} \mathrm{C_6H_6} + \mathrm{PhHgX} \xrightarrow{\mathrm{HX}} \mathrm{HgX_2} + \mathrm{C_6H_6}$$

3. Halogens also break the C-Hg linkages stepwise

$$\label{eq:ph2Hg} \begin{array}{c} X_2 \\ \operatorname{Ph2Hg} \xrightarrow{X_2} \\ \end{array} \\ \operatorname{PhX} + \\ \operatorname{PhHgX} \xrightarrow{X_2} \\ \operatorname{HgX}_2 + \\ \operatorname{PhX} \end{array}$$

In this respect thiocyanogen, (SCN)₂, acts like a halogen.¹¹

4. Active metals replace the mercury. In this way phenyl compounds of Na, Mg, Zn, Cd, Al and Bi have been obtained.

5. Halides of non-metals such as boron, silicon, phosphorus, arsenic and antimony react with mercury diphenyl to give phenyl compounds of the nonmetal. One or more of the halogen atoms are replaced by phenyl, depending on conditions.

6. Mercuric salts give a reaction characteristic of mercuri-bis compounds to form the half organic mercury derivatives

$$Ar_{2}Hg + HgX_{2} \rightarrow 2 ArHgX$$

7. Reactions which might be expected but which fail are ones analogous to certain Grignard reactions. Thus there is no action with carbonyl compounds

⁸ Gilman. Rec. trav. chem. 55, 563 (1936).

⁹ Nesmejanov. Ber. 62B, 1018 (1929).

¹⁰ "Org. Syntheses."

¹¹ Söderbäck. Ann. 419, 217 (1919).

and no metathesis with alkyl halides. In the latter case the organic mercury compound acts at high temperature as a hydrocarbo base.¹²

$$Me_2CHCH_2Br + Ph_2Hg \rightarrow PhHgBr + C_6H_6 + Me_2C = CH_2$$

Phenylmercuric salts are obtainable in a variety of ways:

1. By direct mercuration of benzene by mercuric acetate in alcohol solution.

$$C_6H_6 + Hg(OAc)_2 \rightarrow C_6H_5HgOAc + HOAc$$

Mercuration is a general process and follows the same course as bromination but is less vigorous than the latter process. Treatment of the phenylmercuric acetate with halide solutions gives phenylmercuric halides.

2. From benzenesulfinic acid and mercuric chloride.

$$PhSO_2H + HgCl_2 \rightarrow PhHgCl + SO_2 + HCl$$

This gives a very general process for introducing mercury into a specific position in an aromatic nucleus. The process can start with a known amine and go to the sulfinic acid by diazotization or can start with a known sulfonic acid and go through the sulfonyl chloride to the sulfinic acid. The most readily available aromatic mercurial is p-tolylmercuric chloride made in this way from the by-product, p-toluenesulfonyl chloride, of saccharin manufacture.¹³

3. By diazotization of aniline through the double salt with mercuric chloride.¹⁴

4. By the action of mercuric salts on various substances such as phenylmagnesium bromide, phenylboric acid, $PhB(OH)_2$, or phenylarsenoxide, PhAsO.

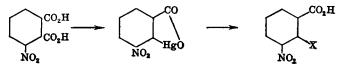
The *reactions* of the phenylmercuric salts resemble those of diphenylmercury.

Mercury derivatives of aromatic compounds containing activating groups such as hydroxyl and amino are readily available by direct mercuration in positions para and ortho to these groups. Just as the NH_2 and OH groups render the *o*- and *p*-H atoms more readily replaceable they weaken a C-Hgbond in the *o*- or *p*-position. Such compounds react more readily with acids than do phenylmercuric derivatives.

The ease of mercuration of such compounds can be illustrated by phenol. Thus if dry mercuric acetate is added to an excess of hot phenol the chief products are o- and p-acetoxymercuriphenol and 2,4-di-acetoxymercuriphenol. When the mixture is poured into hot water, the first two and the excess of phenol dissolve. Thus the more highly mercurated products can be removed by filtration while hot. Treatment of the filtrate with hot NaCl solution precipitates p-chloromercuriphenol. Another filtration while hot gives a

¹² Jones. J. Am. Chem. Soc. 40, 1257 (1918),

13 "Org. Syntheses."


¹⁴ Nesmejanov. Ber. 62B, 1010 (1929),

filtrate which deposits o-chloromercuriphenol in a high state of purity on cooling.¹⁶ The careful treatment of this compound with 1 mol of halogen or thiocyanogen gives the corresponding o-substituted phenol very satisfactorily.¹⁶

Mercury derivatives of aromatic compounds containing meta-directing substituents can also be obtained by direct mercuration. Usually a mixture of all possible compounds is obtained with the ortho predominating. Consequently an indirect method of preparation is usually employed to obtain a pure product. Thus the three mercuribenzoic acids are best obtained respectively by oxidation of p-chloromercuritoluene,¹⁷ from diazotized m-aminobenzoic acid and from phthalic anhydride by heating with mercuric acetate to give anhydro-o-hydroxymercuribenzoic acid.¹⁸

$$C_6H_4(CO)_2O \rightarrow C_6H_4(CO_2Na)_2 \rightarrow C_6H_4(CO_2)_2Hg \rightarrow CO_2 + Hgg$$

This reaction is general for aromatic dibasic acids which form internal anhydrides. In the case of 3-nitrophthalic acid, the 2-carboxyl is eliminated exclusively.¹⁹ This gives a method of making such substances as 2-bromo-3-nitrobenzoic acid which would not otherwise be available.²⁰ The corresponding iodo compound has been invaluable in preparing ortho substituted diphenyls by the action of Cu.

Merthiolate, sodium ethylmercuri thiosalicylate, and Metaphen, the anhydride of 4-nitro-3-hydroxy-mercuri ortho cresol, are finding wide use as germicides (NRR, 144-146, 1946).

Organic Compounds of Mercury. Whitmore, A.C.S. Monograph No. 3, 1921.

"Org. Syntheses."
 ibid.
 ibid.
 ibid.
 ibid.
 ibid.
 ibid.
 ibid.

ADDENDA AND COMMENTS

Addition reactions are probably the most important processes in organic chemistry. A typical organic reaction may be said to consist of a primary addition followed by further addition or by a splitting to give the final products.

A carbon atom with only six electrons or an open sextet (C*) represents a reactive system which may be responsible for many of the peculiar rearrangements of organic chemistry (Whitmore 1932-). It should be noted that such a system is not formed by any simple process of ionization but is a result of some more complex change usually preceded by an addition reaction. A good example is the formation of an oxonium salt from an alcohol and its decomposition to give H_2O and other products.

$$\mathbf{R}: \overset{\circ}{\mathbf{O}}: \mathbf{H} + \mathbf{H}: \overset{\circ}{\mathbf{X}}: \rightarrow \begin{bmatrix} \mathbf{R}: \overset{\circ}{\mathbf{O}}: \mathbf{H} \end{bmatrix}^{+} + \begin{bmatrix} : \overset{\circ}{\mathbf{X}}: \end{bmatrix}^{-} \rightarrow \mathbf{H}_{2}\mathbf{O} + \mathbf{R}_{2}$$

The resulting electronically deficient fragment can then undergo a variety of changes including olefin formation, rearrangement and reaction with negative ions in the solution.

The carbonyl group is the most important single group in organic chemistry. This is related to its extraordinary ability to add a great variety of groups. Still very much of a mystery is its participation in condensations of the aldol type.

Catalysis is of increasing importance in organic chemistry. It is not recognized sufficiently in this book. Nature with her catalytic reactions taking place at ordinary temperature is far ahead of the organic chemist in this field.

The term condensation covers a multitude of reactions in which organic molecules unite either by direct addition or by direct addition followed by the elimination of a simple molecule like water or alcohol.

The importance of conjugation and conjugated systems is increasingly recognized.

The Diels-Alder reaction still remains the only important new general reaction developed in over a decade.

Dismutation or disproportionation is an old process which has now achieved general recognition. In its commonest form it consists of mutual oxidation and reduction by two similar molecules or groups which exist in an intermediate stage of oxidation, making possible action either as oxidizer or reducer. A classical example is that of the Cannizzaro reaction in which one molecule of benzaldehyde acts as a reducing agent and is oxidized to a benzoate and another molecule of benzaldehyde acts as an oxidizing agent and is reduced to benzyl alcohol.

The importance of the Grignard reagent in organic chemistry is indicated by the two pages which it occupies in the Index.

General processes such as decarboxylation, dehydration, dehydrogenation, hydrogenation and hydrolysis can best be studied by reference to their occurrence in widely varying types of organic molecules.

The study of a subject like isomerism can well be supplemented by reference to Gilman's large two-volume advanced treatise, "Organic Chemistry" (1938).

The importance of oxidation as a general tool in organic chemistry is only partly indicated by the half page devoted to it in the Index.

The increasing importance of plant and animal products of known structure is only inadequately mirrored by their treatment in this volume.

Reduction is an even more universal process of organic chemistry than is oxidation. Its control has also been more thoroughly mastered.

Of course, a book of this limited scope cannot do more than touch on the important field of resins. A multitude of details will be found in works like Ellis "Synthetic Resins and Their Plastics."

There is a difference of opinion concerning the phenomenon of resonance. Some workers feel that it is a phenomenon of the utmost importance while others rather doubt its existence. Certainly there are many properties of conjugated systems which cannot be expressed by our ordinary single and multiple bonds. If these are not properly expressed in terms of the present conception of resonance, a more adequate conception will have to be developed because the phenomena certainly exist.

The closing of rings and their properties is of the widest significance.

The problem of the splitting of a C-C linkage is more important than the space devoted to it would indicate. Unfortunately, the facts are relatively meagre and widely scattered. It is, of course, intimately related to the problem of molecular rearrangements which necessarily involve the splitting of such a linkage and the formation of a new C-C linkage.

The important subject of tautomerism is covered rather extensively. The probability that it is an intermolecular rather than an intramolecular process is emphasized.

Copyrighted Materials Copyright © 1937; 1951 Dover Publications Retrieved from www.knovel.com

INDEX

Index Terms

<u>Links</u>

This comprehensive index covers both volumes of the work. Volume One contains pages 1 through 596 and Volume Two contains pages 597 through 866.

A

a-, Ana-position

α -, Alpha position or angle of rotation			
of plane polarized light			
$[\alpha]$, Specific rotation			
Abietic acid	586	709	
Abrodil	153		
Absolute ethanol	108		
Ac, acetyl, CH ₃ CO (not acetate gp.)			
Ac alicylic			
ACC, American Cyanamid Co.	417		
Accelerator	188		
Acenaphthene	636	708	739
	741		
Acenaphthoquinone	741		

<u>Links</u>

Acenaphthylene	741	
Acetal	199	
Acetaldehyde	194	
aldol condo of	251	680
as a hydrogen acceptor	788	
condensation to acetadol	55	
with tryptophan	819	
conv. to 3,5-demethyl-4-carbethoxy	/-	
5-cyclohexenone	370	
to ethyl lactate	341	
formn. from <i>n</i> -butane	18	
from citral	228	
from diethylhydroxylamine	182	
from polypeptides	515	
from propane	17	
from propylene	38	
from pyruvic acid	366	772
ox. to glyoxal	354	
prepn. from acetylene and water	67	
from ethanol	109	
from ethylene	35	
from ethylene glycol	304	
from ethylene oxide	310	

<u>Links</u>

Acetaldehyde (Cont.)		
from ethylidene halides	87	
reac. with allylene	70	
with <i>t</i> -butylmagnesium chloride	42	
with crotonaldehyde	227	
with ethylmagnesium halide	115	
with formisobutyraldol	335	
with malonic ester	259	395
with phosphorous pentachloride	87	
with phosphorous tribromide	87	
with <i>a</i> -picoline	789	
with propionaldehyde	227	
use in prepn. of alanine	503	
of cinnamic aldehyde	678	
of 1,3-butandiol	308	
of 2-ethyl-l-butanol	125	
of euphthalmine	824	
of hexyl alcohols	124	
of methylacetonylcarbinol	338	
of methylisobutylcarbinol	127	
of 2-pentanol	122	
of phenylmethylcarbinol	675	
of <i>a</i> -picoline	787	
of piperine	704	

Links

Acetaldehyde-ammonia (Cont.)			
of a-propenylpyridine	814		
of tetrahydroharman	820		
of trional	151		
Acetaldehyde-ammonia	787		
Acetaldehyde cyanohydrin, lactonitrile	417		
Acetaldehyde diacetate	200	292	
Acetaldehyde nitrophenylhydrazone	202		
Acetaldehyde phenylhydrazone	202		
Acetaldol	55	308	332
	334		
Acetaldoxime, acetaldehyde oxime	165	236	
Acetals	199		
cyclic	199		
prepn. from acetylene and alcohols	68		
from acetone	212		
from acrolein	226		
from chloral	206		
from orthoformates and			
Grignards	422		
from pyruvic aldehydes	362		
from succinic acid	365		
stability to acids	476		

Links

Acetamide	297		
comparison with higher acid amides	298		
prepn. from ammonium acetate	245	650	
reac. with <i>n</i> -propyl Grignard reagent	219		
with bromoacetophenone	774		
with mesityl oxide	789		
titration of in glacial acetic acid	246		
use in prepn. of 2,4,6			
-trimethylpyridine	789		
Acetamidine	301		
Acetamidoketone	500		
Acetaminoacids	498		
Acetaminobenzoic acids	647		
Acetanilide	631	650	
Acetates	35	63	110
	275	362	
Acetate silk	496		
Acetic acid	242		
comparison with acid amides	294		
conv. to acetone	208		
to methyl propyl ketone	218		
formn. from acetamide	298		
from acetone	217		
from acetyl cyanide	365		

<u>Links</u>

Acetic acid (Cont.)			
from 2-butanol	116		
from <i>t</i> -butyl alcohol and			
acid chlorides	116		
from β -butylene glycol	308		
from diacetyl	357		
from isopropyl alcohol	112		
from malonic acid	378		
from methyl ethyl ketone	217		
from pyruvic acid	366		
from tartaric acid	401		
in cartilage	481		
prepn. of	35	109	195
	242	367	
reac, with acetylene	67	200	
with chlorine	274		
with diethylhydroxylamine	182		
with ketene	234		
use as a catalyst	37		
use as a solvent	41	650	
use in identification of acid amides	299		
use in prepn. of acetates	283		
of acetins	318		
of acetic anhydride	292		

<u>Links</u>

Acetic acid (Cont.)		
of anhydrides	292	
of furalmalonic acid	755	
of glacial acetic acid	292	
of pyrroline	758	
of N-substituted formamide	297	
use in reduction of esters	285	
Acetic acid glacial	243	246
Acetic acid, ortho	246	
Acetic acids, substituted	378	
Acetic anhydride	292	
formn. from sodium acetate	245	
prepn. from ethylene	35	
from ethylidene diacetate	200	
from ketene	234	
of	292	
reac. with acetanilide	650	
with aldehydes (Perkin)	246	
with amino acids	500	
with benzyl dialkyl amines	649	
with calcium carbide	244	
with cellulose	491	
with citronellal	563	
with 2,4-dimethyl-2-pentene	25	

<u>Links</u>

Acetic anhydride (Cont.)	
with ethylene glycol (explosive)	305
with D-glucose oxime	469
with hydrogen peroxide	246
with methylated sugars	479
with olefins	231
with tetrahydrofuran	754
with tetramethylethylene	44
with trimethylethylene	42
with truxillic acid	541
with wood	496
similarity to thioacetic acid	301
use in cond.	704
use in dehydration of aldoximes	414
use in reaction of aldehydes and	
malonic ester	388
use in oxidation of diisobutylene	46
use in Perkin Synthesis	679
use in prepn. of acetates	284
of acetamide	297
of acetyl peroxide	293
of β -benzal-propionic acid	705
of furylacrylic acid	755
of methylisobutylcarbinol	127

Links

Acetic anhydride (Cont.)			
of N-substituted formamide	297		
of tetranitromethane	163		
of thiohydrantoins	501		
of xanthone	803		
Acetic esters	352	405	
Acetimido chloride	298		
Acetin	317		
Acetnaphthalides	733		
Acetoacetanilide	233	650	
Acetoacetic acid	308	339	352
	366	405	
Acetoacetic acid esters	367		
Acetoacetic ester	367		
Addition to unsat. Carbonyl			
compounds	224		
beryllium compound of	369		
chelate ring structure	368		
conv. to acetonylacetone	360		
to calcium salt	368		
to levulinic acid	372		
condensation	198	524	547
copper compound of	368		
enol and keto forms	366		

<u>Links</u>

Acetoacetic ester (Cont.)	
Michael reaction	373
prototropy of	368
pyrolysis of	371
reac. with acid halides	371
with aldehyde-ammonia	371
with aldehydes	370
with alkali metals	367
with amidines	371
with aniline	650
with aromatic amines	371
with chloroacetone	360
with diazonium salts	655
with hydroxylamine	371
with phenols	371
with phenylhydrazine	371
with phenylmethylhydrazine	371
with phosphorus pentachloride	371
with quinones	371
with ureas	371
reduction of	344
Reformatzky reaction	287
splitting of	242
stability of	366

Links

799
279
532
441
806
789
367
216
387
373
524
369
345
779
361
126
221
347
125
221
222
338
221

Links

Acetoacetic ester synthesis (Cont.)			
of 2-methyl-1-pentanol	125		
of methyl propyl ketone	122	219	
of methylsuccinic acid	384		
of Noval alcohol	327		
of pimelic acid	385		
of succinic acid half aldehyde	365		
scope of	369		
Acetobromoamide			
N-bromoacetoamide	298		
Acetobromo-D-galaotose	492		
Acetobromoglucose	479		
γ-Acetobutyric acid	373		
Acetoin, acetylmethylcarbinol	307	337	356
	653		
Acetol, acetylcarbinol	306	333	335
Acetolysis	495		
Acetone	208		
aldol condensation with chloroform	342		
condensation by isobutyl magnesium			
bromide	854		
with citral	565		
with ethyl acetate	358		
with malonyl chloride	674		

Links

Acetone	(Cont.)	
	(= =)	

conversion to diisopropyl ketone	222
to δ-keto-capronitrile	417
to hydroxyisobutyric acid	342
to hydroxyisovaleric acid	344
to ketene	232
to pyruvic aldehyde	362
distillation	302
formn. from acetoacetic acid	366
from acetone dicarboxylic acid	405
from allene	54
from 1,3-butandiol	308
from <i>n</i> -butane	18
from tert-butyl alcohol	117
from calcium acetate	244
from calcium salts of acids	218
from citric acid	407
from β -halogen propylene	97
from isopentane	20
from α -propylene chlorohydrin	314
Haloform reaction	91
prepn. from acetylene and water	67
from allylene and water	70
from isopropyl alcohol	112

<u>Links</u>

Acetone (Cont.)			
from propylene	38		
occurrence in urine	366		
oil	549		
react. with amalgamated magnesium	43		
with benzaldehyde	338		
with <i>n</i> -butylmagnesium bromide	21		
with <i>n</i> -butyraldehyde	21	222	
with chloroform	91		
with citral	231		
with cotarnine	838		
with diazomethane	183		
with diethyl oxalate	219		
with ethyl acetate	285		
with ethylene glycol	305		
with ethyl oxalate	778		
with glucose	480		
with isopropyl Grignard reagent	43		
with phosphorus pentachloride	20	88	371
with sodium hydroxide			
and bromine	91		
reduction to isopropyl alcohol	112		
semicarbazone formation of	221		

<u>Links</u>

Acetone (Cont.)			
use as a solvent for crystallization			
of <i>n</i> -octane	24		
use in prepn. of β -acetyl ethyl			
alcohol	337		
of acrylic esters	261		
of diacetone alcohol	338		
of dinitroneopentane	164		
of methylacetonylcarbinol	338		
of neopentylcarbinol	126		
of tertiary alcohols	128		
of 2,4,6-trimethylpyridine	789		
Acetone carboxylic acid, acetoacetic			
acid			
Acetone chloroform	342		
Acetone cyanohydrin	261	342	417
Acetone diacetic ester	756		
Acetone dibromide	89		
Acetone dicarboxylic acid	393	405	407
Acetone dicarboxylic ester	823	825	
Acetone dichloride	20	70	216
Acetone dihalides	88	89	
Acetone diiodide	89		

Links

Acetone-D-mannosan	492		
Acetone vapor	210		
Acetonitrile	413		
condensation to a pyrimidine	416		
formn. from acetylene	68		
from ethylamine	178		
from olefins and ammonia	414		
prepn. from acetamide	298		
reac. with <i>n</i> -propyl Grignard reagent	219		
use as a catalyst in Wurtz reaction	23		
in prepn. of di- and triacetamide	298		
Acetonylacetone	337	360	754
Acetonylcarbinol, β -acetyl ethyl alcohol	337		
Acetophenanthrenes	748		
Aceto-p-phenetidine	670		
Acetophenone, methyl phenyl ketone	617	680	693
	712		
Acetophenones, substituted	681		
Acetoresorcinol, resacetophenone	684		
<i>p</i> -Acetotoluidide	621		
Acetotoluidides	647		
Acetoxime	236		
Acetoxymercuribenzene	598		
Acetoxymercuriphenols	863		

<u>Links</u>

Acetoxymercuritoluene, Tolylmercuric		
acetate		
Acetthienone, α -acetylthiophene	759	
Aceturic acid	503	
Acetylacetone	358	
addition to unsat carbonyl		
compounds	224	
compounds with metals	359	
conversion to triketopentane	361	
keto and enol forms	358	
prepn. from acetone	212	285
from ethyl acetate	358	
reac. with triketopentane	362	
with guanidine	359	
with phenylhydrazine	358	
Acetylamino, see also acetamino		
Acetylamino acid chlorides	500	
<i>p</i> -Acetylaminobenzenesulfonyl chloride	770	
Acetylated bromo sugars	479	
Acetylated cotton, cellulose acetate	293	
Acetylated cyanide in Wohl degradation	469	
Acetylated monoses	480	
Acetylated oxime in Wohl degradation	461	

Links

Acetylation, see also acetic anhydride

acetyl chloride ketene	
by acetic acid	244
of o-benzoylbenzoic acid	714
of 2,4-dimethyl-2-pentene	25
of isobutylene	40
of monomethylaniline	648
of oximes	235
of oxime of glyceraldehyde	461
of <i>n</i> -pentane	19
of phenanthrene	748
of phenyl iodide	626
of ricinoleic acid	353
of tetramethylethylene	44
of trimethylethylene	42
of wood	496
use of acetic anhydride	292
of Acetyl chloride	291
of acetyl sulfuric acid	293
in determination of hydroxyl	
gps. in alkaloids	809
Acetyl-benzene acetophenone	
Acetyl bromide	291

<u>Links</u>

a-Acetylbutyrolactone	800	
Acetylcarbinol, acetol	333	335
Acetyl chloride	291	
conversion to glyoxalic acid derive.	364	
to pyruvic acid	365	
formn. from acetic acid	245	
in Beckmann rearrangement	713	
reac. with acetanilide	650	
with alylene	70	
with α -chloromercurithiophene	759	
with trans-1, 2-		
cyclobutanedicarboxylic acid	539	
with Grignard reagents	222	
with isobutylene	40	
with mesaconic acid	392	
with <i>n</i> -pentane	19	
with phosphorous pentachloride	92	
with tetramethylethylene	44	
use in prepn. of acetamide	297	
of acetates	284	
of anhydrides	292	
of 1,2-cyclopropanedicarboxylic		
acid anhydrides	533	

<u>Links</u>

Acetyl chloride (Cont.)	
of maleic anhydride	388
of methyldiethylcarbinol	128
Acetylcholine	328
Acetyl cyanide	365
6-Acetyl-5,6-dihydro-2-methyl-	
1,4-pyran	228
Acetylene	65
addn. to.	74
complex with methyl ether	139
conv. to acetaldehyde	194
to ethylidene diacetate	200
effect of heat	68
electronic struct. of	409
explosive mixtures with air	66
hydration	67
formn. from allylene halides and	
sodium ethoxide	100
from cyclobutene	537
from ethylidene and ethylene	
halides and alcoholic potash	88
from haloforms with zinc or silver	65
from hydrocarbons	65
from methane	14

<u>Links</u>

65

Acetylene (Cont.)	
from propylene	38
from sodium fumarate and maleate	65
from thermal dec. of organic	
material	65
occur. in illuminating gas	65
partial hydrogenation	30
polymerization	68
prepn. from arc process	30
from calcium carbide	65
from ethylene bromide	65
from natural gas	65
from vinyl halides with alkali	95
reac. with acetic acid	67
with alcohols	68
with amines	69
with ammonia	68
with ammoniacal cuprous solution	68
with ammoniacal silver solutions	68
with aromatic compounds	68
with arsenious chloride	68
with benzene	68
with carbon monoxide	
and alcohols	70

<u>Links</u>

with carbon monoxide and water	70	
with chlorine	93	100
with chlorine and bromine	67	
with chlorine water	70	
with diazomethane	184	
with formaldehyde	55	
with Grignard reagents	69	
with halogen acids	67	95
with halogens	69	
with hydrogen cyanide	417	
with hydrogen	66	
with hydrogen bromide	87	
with hydrogen cyanide	67	412
with hydrogen iodide	87	
with iodine	67	69
with ketones	69	
with mercaptans	69	
with nitric acid	69	
with nitrogen	68	
with oleum	67	
with organic acids	67	
with organomercuric halides	69	
with oxygen	66	

<u>Links</u>

Acetylene (Cont.)			
with potassium	69		
with sodium	69		
with sulfur	68		
with sulfuric acid	68		
with zinc alkyls	855		
reduction with chromous chloride	66		
use in prepn. of anhydrides	292		
of butynediol	313		
of 1,1-diphenyl-ethane	714		
of Lewisite	880		
of methionic acid	153		
of Periston	758		
of propargyl alcohol	137		
of pyrazole	767		
of tetranitromethane	164		
of vinyl esters	286		
Acetylene carboxylic acid, propiolic acid			
Acetylene black	66		
Acetylene dibromide	67		
Acetylene dicarboxylic acid	272	391	397
	168		
Acetylene dihalides 1,2-			

dihalogen ethenes

<u>Index Terms</u>	<u>Links</u>		
Acetylene diiodide	67		
Acetylenes	64	101	202
Acetylenes, dialkylated	71		
Acetylenes, substituted	90		
Acetylene tetrachloride			
sym-tetrachloroethane			
Acetylene tetrachloride	67	100	
Acetylenic acids	271	372	374
Acetylenic alcohols	137		
Acetylenic aldehydes	228		
Acetylenic compounds	852		
Acetylenic ketones	231		
β -Acetyl ethyl alcohol	337		
Acetyl fluoride	291		
Acetyl glycine, see aceturic acid	503		
Acetylglycylglycine	500		
C-Acetylhydroquinone see			
quinacetophenone	685		
Acetylidene dichloride 1,1-			
dichloroethene			
Acetylides	68	397	
Acetyl iodide	291		
Acetyl isoeugenol	683		
Acetylketene	367	650	

Links

N-Acetyl-7-keto-8-methyl-			
decahydroisoquinoline	834		
Acetyl mescaline	835		
Acetylmethylcarbinol, acetoin	337		
Acetyl nitrate	293		
2-Acetylpentane	19		
Acetyl peroxide	293		
Acetylphenols see			
hydroxyacetophenones	684		
Acetyl phenylhydrazine	233		
β -Acetylpropionic acid, levulinic acid			
3-Acetylpyridine	790		
4-Acetylpyrocatechol	685		
Acetyl sulfuric acid	293		
α-Acetylthiophene	759		
Acid amides	168	294	414
	417		
Acid amidines	300		
Acid, amino, see amino acid			
Acid ammonium-o-sulfobenzoate	697		
Acid anhydrides	292		
reac. with aldehydes	200		
with amines	171		
with α -amino acids	499		

<u>Links</u>

Acid anhydrides (Cont.)		
with ethanol	110	
use in prepn. of chromones	794	
of flavones	794	
Acid azides	168	513
Acid catalysts	131	
Acid chlorides		
addition to isocyanides	419	
formn. from phosgene	428	
prepn. from amino acids	498	
reac. with amines	171	
with <i>t</i> -butyl alcohol	116	
with diasomethane	183	527
with ethanol	110	
with formaldehyde	192	
with levulinic acid	372	
with methanol	105	
with oxalic acid	377	
with tertiary amines	173	
use in prepn, of cyclobutylcarbinol	537	
of cyelobutyl methyl ketone	539	
of ketones	855	
of peptides	513	
Acid chloride of an ester acid	373	

<u>Links</u>

Acid esters of sulfuric acid	158
Acid Green	725
Acid halides	288
carbamic acid chloride	430
cony. to ketenes	232
phthalyl chloride	723
reac. with acetoacetic ester	371
with α -amino acids	499
with dialkylzines	855
with urethans	429
use in splitting ethers	140
Acid nitriles, cyanides alkyl	413
Acids, see under individual members	
Acids	
addn, to nitriles	415
conv. to ketenes	232
prepn. from acetoacetic esters	367
by Arndt-Eistert Syn.	183
from carbon monoxide	
and alcholates	422
from carbon monoxide	
and alcohols	422
reae. with ammonia	417
with diazomethane	183

<u>Links</u>

370		
110		
852		
855		
570		
415		
257		
271	372	374
705		
497		
691		
706		
414		
566		
375	524	532
5	519	
275	279	
561		
499		
340		
352		
498	503	
	 110 852 855 570 415 257 271 705 497 691 706 414 566 375 5 275 561 499 340 352 	110 852 855 570 415 257 271 372 705 497 691 706 414 566 375 524 5 519 275 279 561 499 340 352

Links

Acids, acetylenic (Cont.)			
keto, hydrated	535		
monohydroxy	340		
olefinic	257		
oxalic	723		
polybasic	406		
polybasic, aromatic	708		
unsaturated	198	257	274
	380	504	
unsaturated, hydroxy	352		
Acinitro form	160	639	
Aconitic acid	406		
Acridine	753	799	802
Acridine orange	803		
Acridine Orange R Extra	803		
Acridine yellow	803		
Acridinic acid	799		
Acridinium cpds	802		
Acrifla vin	803		
Acrolein	225		
conv. to α -hydroxyvinylacetic acid	352		
to propiolic acid	272		
dehydration product of glycerol	318		
formn, of	135		

<u>Links</u>

Acrolein (Cont.)		
from <i>n</i> -butane	18	
from β -hydroxypropionaldehyde	333	
oxidation of	257	
reac. with aniline	797	
with butadiene	58	554
with Grignard reagent	54	
with hydrochloric acid	277	
with malonic acid	268	
with methyl Grignard	97	
use in prepn. of β -hydroxypropional-		
dehyde	333	
of β -picoline	788	
of pyrazoline	768	
of quinoline	797	
Acrolein dibromide	355	
α -Acrose D,L-Fructose		
β -Acrose, sorbose		
Acrylate	52	
Acrylic acid	257	
Conv. to hydracrylic acid	343	
to propiolic acid	272	
formn. of	135	276
from acrolein	226	

<u>Links</u>

Acrylic acid (Cont.)		
from ethylene	35	
from hydracrylic acid	343	
from methylenemalonic ester	388	
from propiolic acid	272	
polymerization	258	
prepn. from acetylene	70	
from α,β -dibromopropionic acid	277	
properties of	272	
reac. with alcohols	258	
with ammonia	258	
with chlorine	277	
with hydrogen cyanide	258	
Acrylic aldehyde acrolein		
Acrylic esters		
in hydraulic fluids	258	
in lubricants	258	
with malonic ester	258	
prepn. of	70	412
reac. with cyclopentadiene	576	
with diazoacetic ester	769	
with diazomethane	258	
use in prepn. of 1,2-		
dicarboxylic acids	533	

<u>Links</u>

350

564 392

863

Acryloids, RH	258	
Acrylonitrile	417	
copolymerization with 1,3-butadiene	58	
formn. from hydrogen cyanide	412	
from olefins and ammonia	414	
prepn. from acetylene and		
hydrogen cyanide	67	
from ethylene	36	
reac. with crotononitrilc	417	
with mesityl oxide	417	
with various classes of cpds.	417	
Actidione	792	
Actinodaphnine	840	
Actinomyces griseus	809	
Activation		
by benzene ring	675	
by carbonyl group	214	
by COCCO gp.	367	
by double bond	225	
by methyl gpo in ring closure	387	
by methyl gpo in tautomerism	394	
by trifiuoromethyl gp.	366	
effect on arsonation	859	
of aromatic cpds., by amino gp.	707	

Links

Activation (Cont.)			
by hydroxyl gp.	863		
of COCH ₂ X gp.	360		
of double bond	389		
of halogen by double bond	137		
by nitro gp.	670		
of hydroxyl and amino gps.			
in arsonation	859		
of hydrogen atoms	653		
of methyl gpo in diketones	361		
of nitro gp.	635		
of ring closure by conjugation	394		
of ring closure by nethyl gps.	406		
of ring closure by gem-dimethyl gp.	404		
Active amyl alcohol secondary butyl			
carbinol			
Active amyl alcohol			
derivation of optical activity	118		
formn.during fermentation			
of isoleucine	118		
oxidation of	248		
use in prepn. of active amyl halides	83		
Active amyl halides	83		
Active hydrogen cpds.	498	852	855

<u>Links</u>

Active metals	862	
Active valeric acid	248	
Activity of halides in malonic ester syn.	379	
Acyl, see also acetyl etc.		
Acylamines	801	
Acylamino acids	775	
Acyl-anilides	86	
Acyl arylamines	650	652
N-Acyl-β-arylethylamines	801	
Acylation, see also acetylation	499	730
Acyl halides	231	288
Acyloins	223	
dehydrogenation of	358	
from carbon monoxide and Grignard		
reagents	422	
method of prepn.	337	
from esters	285	
of acetoin	337	
Acyl peroxide	52	
Adamantane	592	
Adamsite	861	
Addition		
in presence of peroxides	126	
of acid chlorides to isocyanides	419	

Links

173		
415		
373		
429		
171		
77		
214		
397		
100		
277		
409		
546		
409		
91		
91		
220	716	852
190		
391		
87		
419		
620		
	415 373 429 171 77 214 397 100 277 409 546 409 91 91 91 220 190 391 87 419	415 373 429 171 77 214 397 100 277 409 546 409 91 91 91 220 716 190 391 87 419

<u>Links</u>

Addition (Cont.)		
of hexachlorocyclopentadiene		
to cyclo-pentadiene	546	
of hydrogen bromide to butenes	39	
of hydrogen chloride to isocyanides	419	
of hydrogen cyanide to acetylene	412	417
to aldehydes and ketones	412	
to carbonyl gp.	349	
to mesityl oxide	373	
to α , β -unsaturated cpds.	412	
of hydgrogen sulfide to nitriles	415	
of hydroxylamine to pyrrole	355	
of maleic anhydride to furan	754	756
of methyl iodide to hydrazine	180	
of proton to olefinic linkage	346	
of water to acrylic acid	343	
to isocyanides	419	
to nitriles	415	
of sodium bisulfite to acetone	213	
to aldehydes	201	
of sodium cyanoacetic esters to		
glutaconic esters	396	
of 2-vinylpyridine to acrylonitrile	789	
rate of, in semicarbasone formation	221	

<u>Links</u>

Addition reactions of acrolein	226
of benzaldehyde	677
of carbonyl gp.	184
of chloromethyl esters	192
of dihydropyran	780
of olefins	74
general	864
Addition to acetylene	69
to acetophenone	681
to anthracene	743
to crotonic acid table	260
to fulminic acid	423
to ketene	233
to olefinic acids, rate of	260
to olefinic double bond, electronic	
conception of	27
to propylene	37
to triple bond electronic	
conception of	64
to unsat. aldehydes and ketones	224
to α , β -unsat. carbonyl cpds.	380
mechanism of	380
to vinyl methyl ketone	228
use in formn. of 10-hydroxy	

Links

Addition to acetylene (Cont.)	
stearic acid	267
in free radical polymerization	52
1,3-Addition	767
1,4-Addition	56
of cinnamic aldehyde	680
of hydrochloric acid to acrolein	277
to α -chloroacrylic acid	279
to vinylacetylene	72
of hydrogen to isoprene	60
of sodium to a diketone	286
to 1,3-butadiene	320
to α -diketones	717
to propiolic acid	272
to unsaturated esters	287
1,6-Addition	268
3,4-Addition	617
Adenine	444
Adenine nucleoside	488
Adermine pyroxidine	
Adhesives	138
Adipic acid	385
conv. to hexamethylene diamine	385
formn. from petroselic acid	267

Links

Adipic acid (Cont.)			
from saccharic acids	404		
from tariric acid	273		
prepn. from cyclohexane	553		
from cyclohexanol	385	558	
from furfural	385		
from tetrahydrofuran	313	385	
reac. with ammonia	385		
ring closure of	386		
use in prepn. of cyclopentane	544		
of cyclopentanone	547		
of Nylon	329	385	521
Adipic acid, dimethyl	544		
Adipic acid anhydride	387		
Adipic acid anilides	387		
Adipic acid ester chloride	374		
Adipic acids, methyl	549		
Adipic diamide	385		
Adipic ester	387	547	
Adipone, see cyclopentanone	547		
Adiponitrile	385		
Adlumine	839		
Adonitol	324	470	

<u>Index Terms</u>	<u>Links</u>		
Adrenal cortex	375		
Adrenalin	649	811	
Adrenal substances	596		
Aesculetin	704		
African sleeping sickness	859		
Agaraeinic acid	407		
Agathalene	731		
Agathic acid	587		
Air, see oxidation			
Air-oxidation	798		
Airplane engine fuel	615		
Aji	506		
Ajinomoto	506		
Alanine	502	509	512
	518		
Alantolactone	585		
Alanylaminoisobutyric acid	515		
Alanylleucine	514		
Alanylproline	515		
Albuminoides, see scleroproteins	519		
Albuminoses, see proteoses	520		
Albumins	512	518	520
Alcohol, denatured	109		

<u>Links</u>

Alcoholates alkoxides			
conv. to carbonates	426		
to ether	138	140	
to orthocarbonates	425		
dismutation of aldehydes	198		
formn. from ethers	140	142	
Guerbet reac, of	111	124	127
hydrolysis of	665		
Meerwein reac. of	110		
of ethanol	110		
of methanol	105		
of phenols	665		
reac. with carbon monoxide	242	422	
with carbon oxysulfide	455		
with carbon tetrachloride	425		
with chloropicrin	425		
with trinitrobenzene	635		
reduction of aldehydes	136	199	
use as catalyst in alcoholysis	281		
use in acetoacetic ester synthesis	251		
in aldol cond.	282		
in alkylation of oximes	236		
in Claisen cond	212	221	366
in Michael reac.	224		

Links

Alcoholates alkoxides (Cont.)			
in prepn. of aldehydes	204		
of barbiturates	432		
of ethyl acetoacetate	366		
of thiocarbamic acid derivs.	458		
in reac. of unsaturated ketones	231		
in Tischenko reac.	677		
xanthates	44		
Alcoholates, aluminum	105	110	198
Alcoholic ammonia	699		
Alcoholic hydrogen chloride	756		
Alcoholic potassium hydroxide	409	756	
Alcohol of crystallization	105		
Alcohols see individual members	102		
conv. to carbonates	426		
to urethans	429		
dehydration of	525		
(see dehydration)			
formn. from alkyl halides and			
aqueous bases	77		
from Oxo process	421		
identification of	161	433	
prepn. from acetals	199		
from aldehydes	199		

Links

Alcohols see individual members (Cont.)			
from alkyl halides, methanol, and			
potassium formate	80		
from Grignard reagents	190	853	
reac. with acetylene	68		
with aluminum alkoxides	110		
with butyrolactone	345		
with chloroform and sodium	91		
with ethylene cyanohydrin	343		
with formaldehyde and amines	190		
with formimido chloride	423		
with imidohalides	415		
with ketene dimer	233		
with oxalic acid	377		
with phosgene	427		
with pyruvic aldehyde	362		
with triphenylchloromethane	719		
use in prepn. of primary halides	74		
uses	109		
Alcohols, secondary	201	547	
Alcohols, tertiary	76	213	426
	853		
Alcohols, acetylenic	137		
alicyclic	525		

<u>Links</u>

Alcohols, acetylenic (Cont.)		
aromatic	675	
cyclohexyl	558	
dihydric (glycols)	302	
ethynyl dialkyl	69	
higher	131	
olefinic	133	
phenolic	682	
polyhydric	302	
trihydric	315	
Alcoholysis		
in Henry reaction	315	
in syn. of phenylethylmalonic ester	379	
of Acetol	335	
of acetone cyanohydrin	213	
of β -hydroxypropionitrile	257	
of cyanides to esters	285	
of carbonates	426	
of esters	281	
of ethylene cyanohydrin	343	
of formates	80	281
Aldehyde acetals	422	
Aldehyde acids	364	
Aldehyde acids and ketone acids	364	

<u>Links</u>

Aldehyde-ammonia	200	371	788
Aldehyde, half	515		
Aldehydes	184		
aromatic	676		
condensation with picolines	788		
with quinaldine	798		
formn. from hydroxyacid amides	343		
from Oxo process	421		
from nitriles	415		
from polypeptides	514		
from primary amines	172		
identification of	562		
oxidation with selenium dioxide	363		
phenolic	682		
reac. with acetoacetic ester	370		
with acylamino acids	775		
with cyanohydrins	774		
with diazomethane	183		
with Hippuric acid	503		
with hydrogen cyanide	412		
with malonic ester	388		
saturated	185		
tautomers	134		
unsaturated	224		

Links

Aldehydes (Cont.)		
use in Knoevenagel reaction	380	
use in prepn. of 1-acetylenes	70	
of mercaptals	145	
of fulvenes	545	
of <i>a</i> -amino nitriles	498	
Aldehydo-glyoxaline	511	
Aldehydo-indole	510	
Aldehydo-1-chloro-l-		
methoxy-D-galactose	483	
Aldehydo-esters	348	
Aldehydo-galactose penta-acetate	474	
Aldohexoses	472	
Aldoketenes, see ketenes	232	
Aldol, 3-butanolal acetaldol	344	
Aldol condensation, cf.		
Claisen condensation		
Perkin reaction, etc.		
during Grignard reactions		
with ketones	220	
in formin alicyclic cpds.	524	
intramolecular	361	564
mixed, of aldehydes and ketones	197	
of acetaldehyde	196	251

<u>Links</u>

Aldol condensation, cf.		
Claisen condensation		
Perkin reaction, etc. (Cont.)		
of acetaldehyde and formaldehyde	197	
of acetaldehyde and propionaldehyde	119	227
of acetates	284	
of acetone	210	338
of acetone and chloroform	91	342
of acetone and malonyl chloride	674	
of acetone and nitrous acid	214	
of acetophenone	681	
of aldol	253	
of benzaldehyde	678	
of butanal	253	
of 3-butanon-al	363	
of <i>n</i> -butyraldehyde and crotonic		
aldehyde	130	
of butyrolactone	345	
of cinnamic aldehyde	680	
of citral and acetone	231	565
of crotonaldehyde	227	
of diacetyl	357	
of 1,7-diketones	361	
of esters	285	

Links

Aldol condensation, cf.			
Claisen condensation			
Perkin reaction, etc. (Cont.)			
of ethyl acetate	285		
of ethylidineaniline	798		
of ethyl succinate	381		
of formaldehyde	187		
of formaldehyde and acetylene	313		
of glycolic aldehyde	331		
of isobutyraldehyde	203		
of ketones and hydroxyacid amides	343		
of malonic acid or esters	380		
of β -methylcrotonaldehyde	227		
of methylethylactaldehyde	204		
of methyl ethyl ketone	218		
of methyl isopropyl ketone	220		
of nitriles	416		
of oxalic acid and phenol	722		
of <i>a</i> -picoline and formaldehyde	789		
of propionaldehyde	227		
of pyruvic acid	266		
of unsaturated carbonyl compounds	225		
of water and aurin	722		
reversal of	713		

This page has been reformatted by Knovel to provide easier navigation.

722

Links

789		
704		
709		
789		
380		
351		
351	467	
351	469	484
463		
414		
551		
551		
350		
58		
490		
	 704 709 789 380 351 351 351 351 463 414 551 551 350 58 	704 709 789 380 351 351 351 467 351 463 414 551 551 350 58

<u>Index Terms</u>

Links

Alginic acid	375	
Algins of seaweed	374	
Aliphatic compounds	1	
Alicyclic compounds	532	
formation of	524	
individual	530	
isomerism of	527	
hydrocarbons	523	
rearrangements	525	
unsaturated	530	
Aliphatic acids		
aryl substituted	701	
identification of	296	
monobasic	237	
Aliphatic sulfonic esters	853	
Aliphatic sulfur compounds	143	
Alizarin	522	746
Alizarin Black S	746	
Alizarin Bordeaux B	746	
Alizarin Greens	746	
Alizarin Yellow A	746	
Alizarin Yellow C	746	
Alkali alkyl sulfites	159	

Links

Alkali fusion			
formn., of chromotropic acid	737		
of "H" acid	737		
of carbohydrates	376		
of castor oil soap	386		
of methanol	105		
of naphthalene sulfonic acids	733		
of sodium ricinoleate	353		
Alkali metal alkyls	851		
Alkaline copper solution	717		
Alkaline ferrous hydroxide	697		
Alkali sulfides	862		
Alkaloids	521	540	809
aporphine	839		
bis-benzylisoquinoline	840		
berberine	827		
cinchona	831		
coniine	789		
containing pyrrole rings fused			
with other rings	819		
cryptopine	829		
damascenine	810		
determination of structure	809		
general discussion	809		

<u>Links</u>

in pepper	791
in poison hemlock	814
isoquinoline	835
lupine	825
morphine type	841
narcotine	837
narceine	835
occur of β -phenylethylamine	
derivs. in	810
papaverine	835
phthalide isoquinoline	837
potassium triiodide soln.	809
precipitation by	
phosphomolybdic acid	809
by potassium mercuric	
iodide soln.	809
quinoline	830
qunoline type	831
tannin soln.	809
"Alkanol"-S	730
Alkamines	326
Alkanes, paraffins	26
Alkanethiols mercaptans	
Alkenes olefins	

Links

Alkenylsuccinic anhydrides	384	
Alkenynes	72	
Alkines acetylenes		
Alkoxides, see alcoholates		
Alkosides	381	
Alkoxyaeids	110	
Alkoxylamine O-alkylhydroxylamine		
Alkyd resins	318	
Alkyl, R-, C _n H _{2n+1} , see individual		
members, Methyl Ethyl		
Propyl (Isopropyl), Amyl		
(Isoamyl), Hexyl, Heptyl		
Octyl, Nonyl, Decyl		
Undecyl, etc.		
Alkyl acetates	80	
N-Alkyl acid amides	171	
N-Alkylanilines	169	647
Alkylated naphthalenes	731	
Alkylation		
in prepn. of diisoprypyl ketone	222	
of hexamethylaeetone	223	
of gasoline	26	
mechanism	50	
methylation	835	

<u>Links</u>

Alkylation (Cont.)			
of acetoacetic ester	219	250	
of acetone	215		
of alkoxylamines	182		
of amines	171		
of amino acids	499		
of <i>o</i> -amino-ω-chlorostyrene	762		
of benzene	607	615	716
with ethylene	34		
with phenylacetyl .chloride	718		
with carbon tetrachloride	718		
of 2-butene	23		
of diethyl ketone	221		
of dyes	726		
of hydrazines	180		
of hydroxylamine	182		
of isobutylene	19	41	
of isobutyric esters	250		
of nornicotine	813		
of nitriles	416		
of olefins	18		
of oxalylacetone	219		
of oximes	182	236	
of phenol	667		

<u>Links</u>

Alkylation (Cont.)				
of 3-phenyl-2-benzofuranone	762			
of phenylhydrazine	661			
of phorphorus cpds.	847			
of trimethylethylene	23	43		
with alkyl carbonates	426			
with dialkylzincs	855			
Alkyl azides, alkyl azimides	184			
Alkyl azimides, alkyl azides				
Alkyl azoxy compounds	184			
Alkyl benzenes	607	610		
Alkyl beryllium compounds	854			
Alkyl boranes	857			
Alkyl boric acids	857			
Alkyl bromides	80	855		
Alkyl calcium compounds	854			
Alkyl carbonates	276			
Alkyl chlorides	74	80	173	
Alkyl compounds of mercury	855			
Alkyl compounds of silicon	857			
Alkyl compounds of phosphorus	847			
Alkyl cyanides	413	677		
Alkyl cyclohexenylmalonic ester	380			
Alkyl fluorides	81			

<u>Links</u>

	1.40	
Alkyldisulfides	148	
Alkylenes olefins		
Alkyl formate	677	
Alkyl formamides	419	
Alkyl halides	72	92
conv. to acyl-anilides	86	
to alcohols (for identification)	86	
to alkylmercuric halides		
(for identification)	86	
effect of heat	76	
formn. from tin alkyls	858	
hydrolysis	76	
identification of	86	
prepn. of	73	
from Grignard reagent	853	
of halides containing one less		
carbon atom	80	
containing one more carbon atom	79	
containing two more carbon atoms	79	
containing three more carbon atoms	s 80	
properties	73	
reduction of	12	
reactions	76	
with acetone	215	

<u>Links</u>

Alkyl halides	(Cont.)
---------------	---------

with acetoacetic ester	219	
with alcoholic bases	30	77
with aqueous bases	77	
with alkali sulfite	152	
with aluminum chloride	81	
with amines	171	
with ammonia	77	167
with bases	76	
with cyanides	78	
with disodium acetylide	71	
with disodium cyanimide	169	
with Grignard reagents	853	
and mercuric chloride	22	
with hexamethylenetetramine	169	
with hydriodic acid	76	
with hydrogen bromide		
and peroxides	96	
with hydrogen iodide	96	
with magnesium	78	
with mercury alkyls	856	
with metals and acid	76	
with organometallic compounds	81	
with phosphine	847	

<u>Links</u>

Alkyl halides (Cont.)		
with α -picolyl sodium	789	
with potassium formate		
and methanol	80	
with potassium 3-		
nitrophthalimide	86	
with pyridine	782	
with reducing agents	76	
with silver nitrite	80	
with silver salts of acids	80	
with silver sulfite	152	
with sodioesters	78	
with sodium	16	77
with sodium acetate	80	
with sodium amalgam	76	78
with sodium and alcohol	76	
with zinc	78	
use in prepn. of alkyl sulfides	146	
of Grignard reagents	851	852
of hyponitrous esters	164	
of lithium alkyls	851	
of mercaptans	144	
of phosphines	847	

Links

Alkyl halides (Cont.)	
of dialkylzincs	855
Wurtz reac. with	23
Alkylhydrazines	179
Alkylhydrazones	180
Alkylhydroxylamines, O- and N-	182
Alkylhypochlorites	157
Alkylhyponitrites	164
Alkylidene, R-CH group	
see acetylidene	
oenanthylidene, etc	
Alkylidenemalonic esters	388
Alkylimido chlorides	419
Alkylimino carbonyl halides	419
Alkyl indole	822
Alkyl iodides	
prepn. from alkyl chlorides	80
from alkyl bromides	81
reac. with cupric bromide	81
with fluorides	81
with mercuric chlorides	81
with potassium phthalimide	169
with sulfur	148
with sodium azide	184

Links

Alkyl iodides (Cont.)			
with phosphorus	847		
use in prepn. of tin alkyls	858		
of alkylzinc halides	855		
of isocyanides	418		
of quaternary stibonium cpds	850		
Alkyl isocyanates	167		
Alkyl isocyanides, carbylamines	418		
S-Alkyl isothiourea	152		
Alkyl magnesium halides			
Grignard reagents			
Alkyl malonic esters	380		
Alkyl mercaptans, identification of	145		
Alkyl mercuric acetylides	86		
Alkylmercuric halides	86		
Alkylmercuric hydroxides	856		
Alkylmercuric salts	856		
Alkyl nitrites	80	157	182
N-Alkyl-3-nitrophthalimide	86		
Alkyl orthoformate	677		
Alkyl paraconic acids	264		
Alkyl peroxides	52		
Alkylphenols	667		
Alkyl phosphates	157		

Links

Alkyl phosphites	157		
Alkylphosphine dichloride	848		
Alkylphthalimides	86		
Alkylpyridines	790		
Alkyl pyridinium halides	781		
Alkyl sulfates	184	215	
Alkyl sulfides	146	508	
Alkyl sulfinic acids	154		
Alkyl sulfones	150		
Alkyl sulfonic acids	151		
Alkyl sulfonyl chlorides	2	152	155
Alkyl sulfoxides	148		
Alkyl sulfuric acids	158		
Alkyl sulfuric acid salt	144		
Alkyl thiosulfonic acids	154		
Alkyl ureas	433		
Alkyl vinyl ethers	45		
Alkyl zinc iodide	855		
Alkynes, acetylenes			
Allantoin	438		
Allene	54		
conv. to allylene	70		
formn. from isobutylene	40		
from itaconic acid salts	54		

<u>Links</u>

Allene (Cont.)			
prepn. from 2,3-dichloropropene	54		
reac. with alcoholic potassium			
hydroxide	54		
with bromine	54		
with hypochlorous acid	54		
with sodium	54		
with sulfuric acid	54		
polymerization of	54		
Allocholanic acid, isocholanic acid			
Allocholesterol	593		
Allocinnamic acid	703		
Allo-isoleucine	504		
Allomucic acid	484	559	
Allonal	436		
Allonic acid	351		
Allo-ocimene	570		
Allophanates	428		
Allophanic acid	433		
Allo-pregnandiol	596		
Allopseudo-codeine	844		
D-Allose	484	486	
Alloxan	436	437	405
	441	808	

<u>Links</u>

Alloxan -6-oxime, isovioluric acid			
Alloxantin	437	438	
Alloxazine	807		
D-Allulose	486		
Allurate	436		
Allylacetic acid	264	347	
Allyl alcohol			
conv. to propiolic acid	272		
formn. from <i>n</i> -butane	18		
from cyclopropylamine	531		
from glycerol	240		
oxidation of	257		
prepn. from allyl chloride	96	135	
from glycerol	95	135	318
	376		
reactions of	135		
use in prepn. of glycerol	315		
Allylamine	179		
Allylbenzene	617		
Allyl bromide	39	97	264
	617		
Allylcarbinol	136		
Allyl carbonate	287		

Links

Allyl chloride			
mechanism of prepn.			
from propylene and			
chlorine	96		
polymerization	96		
prepn. from propylene and chlorine	37	38	96
reac. with chlorine	54		
with methyl Grignard reagent	39		
with sodamide	96		
use in prepn. of allyl alcohol	135		
of α -propylene chlorohydrin	314		
of glycerol	315		
of 1,3,5-hexatriene	64		
Allyl cyanide	259	262	418
Allyl chloroformate	287		
Allylene, methylacetylene			
Allylene	70	100	272
Allylene halides	100		
Allyl esters	52	531	
Allyl Grignard reagents	97		
Allyl halide, cyclic	547		
Allyl halides	89	95	97
	854		

<u>Links</u>

Allylic rearrangement, see also			
rearrangements molecular			
rearrangements, double bond	d		
shift	56	63	99
	136	676	
Allylic shift	61	95	97
	691	802	
Allylic systems	852		
Allyl iodide	95	97	319
	355		
Allyl isothiocyanate, mustard oil	179	454	
Allylmagnesium bromide	97	262	
Allyl maleate	258		
Allymers	135		
Allyl mustard oil, allyl isothiocyanate			
Allyl phenol ethers	683		
Allyl phenols	683		
Allyl phenyl ethers	667		
Allylpiperidine	815		
Allyl sulfide	148		
Almonds	408		
Alox	27		
Alpha effect see aldol condensation			

Alpha effect, see aldol condensation

Vinyology, etc.

<u>Index Terms</u>	<u>Links</u>		
Alternating polarity, in benzene	635		
Altro-methylose	472		
Altronic acid	351		
Altrose	325	484	486
Alumina, aluminum oxide			
Alumina	110	128	131
	140		
Aluminon	722		
Aluminum			
colorimetric reagent for	722		
reac. with acetylacetone	359		
with ethanol	110		
with methanol	105		
use in bromination of propylene	37		
use in prepn. of aluminum trialkyls	857		
Aluminum alkoxides	110		
Aluminum alcoholates (alkoxides)	198		
Aluminum alkyls	857		
Aluminum amalgam	334		
Aluminum bromide	18	19	80
Aluminum carbide	13		
Aluminum chloride			
complex with methyl ether	139		
with triphenylchloromethane	719		

<u>Links</u>

Aluminum chloride (Cont.)		
in addn. of hydrogen chloride		
to ethylene	32	
in alkylation of hrdrocarbons	51	
in copolymerization of isoprene and		
isobutylene	41	
in Friedel-Crafts reac. of toluene	613	
of phosgene	428	
of benzene	607	
and succinic acid deriv.	382	
in prepn. of 2-acetylpentane	19	
of alkylated naphthalenes	731	
of aluminum trialkyls	857	
of β - <i>p</i> -anisoylpropionic acid	804	
of anthracene	742	
of o-benzoylbenzoic acids	706	742
of dibenzyl	716	
of diphenylmethane	712	
of ethylbenzenes	34	
of ethyl isopropyl ketone	19	
of Paraflow, Santapour	10	95
of phthalophenone	723	
of unsym-phthalyl chloride	708	
of <i>n</i> -propylbenzene	615	

<u>Links</u>

Aluminum chloride (Cont.)			
of pyridazine	804		
of triphenylmethane and cpds.	718		
of <i>p</i> -xenylamine	659		
of 2,4-xylic acid	701		
in reac. with alkyl halides	81		
with aromatic azo cpds.	658		
with carbon monoxide	19		
with highly chlorinated			
hydrocarbons	10	95	
with <i>n</i> -pentane	19		
in rearrangement of silico-neopentyl			
chloride	857		
stability of cyclopentane to	544		
Aluminum ethoxide	110		
Aluminum ethylate	199	283	
Aluminum isopropoxide	136	199	207
Aluminum oxide alumina			
use in conv. of esters	414		
use in dehydration of <i>n</i> -butanol	39		
of ethanol	30		
of 3-methylcyclopentanol	545		
of propanol	36		
use in dehydrogenation of isobutane	18		

Links

Aluminum oxide alumina (Cont.)			
use in isomerization of <i>n</i> -butane	18		
of cyclohexane	527		
of methylenecyclobutane	538		
use in prepn. of dihydropyran	780		
of hydrogen cyanide	16		
of propylene and butylene	525		
Aluminum powder	857		
Aluminum stearate	254		
Aluminum sulfate	285	656	
Aluminum trialkyls	857		
Aluminum trimethyl	857		
Am, <i>n</i> -amyl, CH ₃ (CH ₂) ₄ -			
Amalic acid, tetramethylalloxantin			
Amanita	328		
Amaryllidaceae	595		
Amarin	774		
Amber	381		
Amberlite	329	667	
Ambrettolic acid	352		
Ambrettolide	348	352	
Amethone	762		
Amides, see also acid amides	170	235	428
Amides, of carbonic acid	429		

<u>Index Terms</u>	<u>Links</u>		
Amidines	371	447	694
Amidol	670		
Amido linkage	511		
Amidone	843		
Amination	782	796	
Amine oxides	173		
Amine salts	166		
Amines	165		
conv. to cyanides	414		
to thiocarbamates	459		
formn. from aliphatic nitro cpds.	161		
from alkyl halides and ammonia	77		
from nitriles	415		
reac. with acetoacetic ester	370	371	
with acetylene	69		
with acetylenic acids	272		
with alkyl halides	77		
with α -bromopropionic ester	387		
with butyrolactone	345		
with chloroformic esters	428	429	
with diacetosuccinic ester	370		
with Grignard reagent	852		
with phosgene	428		

Links

Amines (Cont.)		
use in Knoevenagel reaction	380	
use in prepn. of arsonic acids	859	
use in reac. of aldehydes and		
malonic esters	388	
Amines, alicyclic	525	
aliphatic	166	525
alkyl	165	
aryl substituted, derivs. of	810	
unsaturated	178	
Amines, primary	167	
carbylamine reac. of	419	
carbylamine test for	419	
prepn. of	167	235
reac. with acetaldehyde	201	
with benzaldehyde	677	
with chloroform	91	
with nitrous acid	166	
use in prepn. of hydrazines	180	
Amines, primary and secondary		
reac. with formaldehyde		
and alcohols	190	
with vinyl methyl ketone	228	

Links

Amines, secondary	169	
prepn. of	201	648
conv. to dialkylhydrazines	181	
Amines, separation of	170	
Amines, tertiary	170	852
Amines, tests for	171	
Amino-acetaldehyde	806	
Aminoacetic acid, see glycine	502	
Amino acids	497	
classification of	502	
identification by 2,4,6-collidine	789	
by 2,4-lutidine	789	
interconversion with ketonic acids	370	
reac. with chloroformic esters	428	
separation and identification of	511	
stereochemistry of	501	514
table of percentages in proteins	512	
use as accelerators in aldol cond.	196	
α -Amino acids	498	
conv. to aldehydes	205	
prepn. from azlactones	775	
Strecker synthesis from aldehydes	201	
β -Amino acids	504	
γ - and δ -Amino acids	504	

<u>Links</u>

Aminoacetophenones	682		
Aminoacridines	803		
Amino alcohols	162	169	
Aminoarseno compounds	861		
Aminoarsonic acids	860		
Aminoarsenoxides	860		
Aminoarylarsines	860		
Aminoazo compounds	658		
5-Aminobarbituric acid, uramil	436		
o-Aminobenzaldehyde	802		
Aminobenzene, aniline			
p-Aminobenzenesulfonic acid			
sulfanilic acid			
<i>m</i> -Aminobenzenesulfonic acid	670		
2-(p-Aminobenzenesulfonamide)-			
pyridine, sulfapyridine			
p-Aminobenzenesulfonamide			
sulfanilamide			
o-Aminobenzoic acid, anthranilic acid			
<i>m</i> -Aminobenzoic acid	699	864	
o-Aminobenzoic acid	637		
<i>p</i> -Aminobenzoic acid	633	695	698
	808		
Aminobenzoic acids	696	799	

Links

808		
	504	507
	504	507
504		
778		
505		
762		
703	798	
370		
408		
803		
359		
711		
660		
500		
331		
317		
820		
509		
331		
429		
	505 762 703 370 408 803 359 711 660 500 331 317 820 509 331	503 504 504 778 505 762 703 798 370 408 803 359 711 660 500 331 317 820 509 331

<u>Links</u>

Amino G acid	736		
α -Aminoglutaric acid, see glutamic acid	506		
Amino group, activating effect of	707	712	
determination of	810		
orientation of	623		
protection of	500	502	513
replacement of	732		
Aminoguanidine	447	505	
α -Amino- δ -guanidylvaleric acid, see			
arginine	505		
Aminohalides	799		
2-Aminoheptane, see triamine	812		
Aminoheptoic acid	504		
Aminoheptylic acid	504		
Aminohydroxyaldehyde	764		
α -Amino- β -hydroxybutyric acid			
see threonine	507		
Amino hydroxynaphthalenes	737		
Amino hydroxyphenylarsenoxide	861		
α -Amino- β - p -hydroxyphenylpropionic			
acid, see tyrosine	509		
α -Amino- β -hydroxypropionic acid			
see serine	506		

Links

2-Amino-4-hydroxypteridine	
-6-carboxylic	
acid	808
2-Amino-6-hydroxypurine, see guanine	
2-Amino-4-hydroxypyrimidine	
see isocyto-sine	
α -Amino- β -4-imidazolylpropoinic acid	
see histidine	510
α -Amino- β -3-indolylpropionic acid	
see tryp- tophan	510
Aminoisobutyrylglycine	515
α -Aminoisocaproic acid, see leucine	503
α -Aminoisovaleric acid, see valine	503
Amino J, see naphthylamine	
disulfonic acids	
DL- β -Aminolactic aldehyde dimethyl	
acetal	461
3-Amino- <i>p</i> -menthane, menthylamine	
α -Amino- γ -mercaptobutyric acid	
see homocysteine	508
α -Amino- β -mercaptopropionic acid	
see cysteine	507
8-Amino-6-methoxyquinoline	799
Aminomethyl group, orientation of	623

Links

α -Amino- γ -methylmercaptobutyric			
acid, see methionine	508		
2-Amino-6-methylpyrimidine	806		
2-Amino-5-methylthiazole	770		
2-Aminomethylthiophene	759		
α -Amino- β -methylveleric acid, see			
isoleucine	503		
Aminonaphtholdisulfonic acids	737		
Amino naphthols	737		
Aminonitriles	210	498	
β -Aminonorcamphane	576		
Aminophenols	9	634	644
	670	799	
<i>p</i> -Aminophenol sulfate	642		
Aminophenyl acetic acid	701	764	
<i>p</i> -Aminophenyl arsonic acid			
arsanilic acid			
α -Amino- β -phenylpropionic acid, see			
phenylalanine	509		
Aminophthalic acids	707		
Aminophylline	444		
Aminopolypeptidase	515		
α -Aminopropionic acid, see alanine	503	509	

Links

bis-[a-Aminopropionic acid]-			
β -disulfide, see cystine	508		
Aminopropyl benzenes	650		
6-Amino purine, adenine			
2-Aminopyrazine	806		
Aminopyridines	482	782	786
2-Aminopyrimidine	805		
Aminopyrine, see pyramidon			
Aminoquaternary ammonium compound	179		
Aminoquinolines	796	803	
Aminosuccinic acid, see aspartic acid	506		
Amino sugars	488		
Aminosulfonic acids	697		
α-Amino-β-4-(2,6,3',5'-tetraiodo-4'-			
hydroxydiphenyloxidyl)-			
propionic acid, see thyroxine	510		
2-Aminothiazole	770		
Aminotoluenes	647		
<i>p</i> -Aminotriphenylcarbinol	721		
Aminotrityl alcohol	721		
Aminotyrosine	509		
Aminouracil	442		
Amino-urizole	432		
α -Amino-N-valeric acid, see norvaline	503		

<u>Links</u>

γ-Amino-γ-valerolactone	372
Aminoxylenes, see xylidines	
Ammelide	452
Ammeline	452
Ammonia	
action on furil	755
addn. to unsat. carbonyl systems	224
comparison with phosphine	847
complex with methyl ether	139
conv. to ammonium carbamate	429
to ammonium cyanide	411
to formamide	412
to hydrogen cyanide	412
to sodium cyanide	411
to urea	430
from degradation of polypeptides	514
from reac. of pyrrole and	
hydroxylamine	355
reac. with acetaldehyde	200
with acetoacetic esters	370
with acetone	214
with acetylene	68
with acetylenic acids	272
with acids	417

<u>Links</u>

Ammonia (Cont.)		
with acids and esters	414	
with adipic acid	385	
with alkyl carbonates	430	
with alkyl chloroformates	430	
with alkyl halides	12	77
with 1,3-butadiene	57	
with butyrolactone	345	
with carbamyl chloride	430	
with chloroacetic acid	274	
with chloroform	409	
with chloroformic esters	428	429
with chloropicrin	164	447
with 4-chlorophyridine	782	
with cyanamide	447	
with cyanogen chloride	447	
with diacetosuccinic ester	370	
with formaldehyde and thiophene	759	
with formic esters	296	
with D-gluconic anhydride	476	
with glyoxal	354	773
with Grignard reagent	852	
with α -halogen acids	498	
with imidohalides	415	

<u>Index Terms</u>

<u>Links</u>

Ammonia	(Cont.)

with levulinic acid esters	372	
with methyl ethyl ketone	218	
with naphthalene	736	
with olefins	414	
with orthocarbonates	447	
with phosgene	428	430
with pyruvic aldehyde	362	
with succinidaldehyde	356	
with thiocyanoacetone	761	
with trytophan	510	
with urethans	430	
with zinc alkyls	855	
solubility of acid amides	294	
use in Bucherer reaction	733	
use in formn. of 2-amino-7-hydroxy-		
naphthalene	737	
of α, α' -dimethyl- γ -		
methoxy pyridine	779	
use in prepn. of acetamide	297	
of acid amides	289	
of 2-aminopyridine	782	
of chelidamic acid	785	
of dipeptides	513	

Links

Ammonia (Cont.)	
of dithiocarbamic acid	458
of glycine	502
of α -hydroxy- β -amino-	
propionic acid	507
of monoethanolamine	326
of murexide	438
of Periston	758
of phthalimide	707
of β -picoline	788
of piperazine	806
of threonine	507
use in reduction	76
use in xanthoproteic reaction	510
Ammoniacal cuprous solution	68
Ammoniacal silver nitrate	355
Ammoniacal silver solution	
reac. with acetaldol	334
with acetylene	68
with glycolic aldehyde	332
with hydroxy ketones	338
with β -hydroxypropionaldehyde	333
reduction by formaldehyde	186
Ammoniacal zinc solution	477

<u>Index Terms</u>	<u>Links</u>		
Ammonia system	165	171	
Ammonium acetate	245	297	650
Ammonium amalgam	176		
Ammonium bisulfite	164	733	
Ammonium carbamate	429	430	452
Ammonium carbonate	429	452	694
	699		
Ammonium chloride			
as catalyst in acetal formn.	199		
reac. with aldehydes	498	502	
with phosgene	428	430	
with α -pinene	572		
use in prepn. of α -amino nitriles	498		
of carbamic acid chloride	430		
of glycine	502		
of 1,3,5-xylidine	647		
Ammonium cyanate	445		
Ammonium cyanide	411	717	
Ammonium dithiocarbamate	457		
Ammonium formate	296	409	
Ammonium hydroxide	298	790	
Ammonium ions, complex	175	182	
Ammonium lactate	341		
Ammonium molybdate	398		

Links

757		
447		
408		
788		
706		
176		
412		
402		
779		
148		
166		
807		
458		
430		
171		
438		
856		
852		
213		
520		
200	445	697
402		
	 447 408 788 706 176 412 402 779 148 166 807 458 430 171 438 856 852 213 520 200 	447 408 788 706 176 412 402 779 148 166 807 458 430 171 438 856 852 213 520 200 445

<u>Index Terms</u>	<u>Links</u>		
Ammonium thiocyanate	445	447	453
	501		
Ammonium urate	440		
Ammonocarbonous acid	409		
Ammonolysis	281	447	620
Amphi-naphthoquinones	738		
Amphoteric properties	497	517	
Amphoterism	769		
Amygdalin	408	460	676
	705		
Amyl, see also isoamyl, neopentyl			
Amyl acetamide	236		
Amyl acetate	119	285	
<i>n</i> -Amyl alcohol	83	117	204
	248		
<i>t</i> -Amyl alcohol	85	90	123
	219		
Amyl alcohols	73	117	503
2-sec-Amyl allylbarbituric acid	436		
<i>t</i> -Amyl amine	169		
<i>p-t</i> -Amylaniline hydrochloride	649		
Amylbenzenes	608		
<i>n</i> -Amyl bromide	41		
t-Amylcarbinol	125		

<u>Index Terms</u>	<u>Links</u>		
t-Amyl chloride	74		
Amyl chlorides	414		
Amylenes	38	41	59
	142		
Amylene dichlorides	90		
Amylene hydrate, t-amyl alcohol			
Amylene oxide ring	467		
Amyl ethers	141		
t-Amyl Grignard reagent	252		
Amyl halides	71	75	83
Amyl magnesium bromide	348		
Amyl mercaptan	470		
Amyl nitrite	157	832	
Amylodextrins	494		
Amylose	494		
Amyl phenols	42		
Amyl phenylhydrazine	483		
2- <i>n</i> -Amylpyridine	789		
2-n-Amylquinoline	830		
Amyrenes	587		
Amytal	436		
ana-	797		
Anabasine	816		
Anaerobic bacteria	13		

<u>Index Terms</u>	<u>Links</u>		
Anagrine	817		
Anagyrine	826		
Analgesics	792	801	843
Analysis for vitamin B_1	772		
Analysis of dienes	57		
Androsterone	596		
Anesthesia	530	801	
Anesthesin	698		
Anesthetics			
chloroform	91		
ether	141		
ethyl chloride	82		
novocaine	823		
nupercaine (local)	801		
prepn. from p-Aminobenzoic acid	698		
tribromoethanol	207		
tubocurarine chloride	830		
vinyl ether	133	143	
Anethole	683		
Aneurin, vitamin B ₁			
Angelic acid	39	264	
Angelica lactone	373		
Angeli hydroxamic acid test	463		

<u>Links</u>

364

Angeli-Rimini reaction	190	206
	461	
Angostura bark	830	
Angustione	563	
Anhaline, hordenine		
Anhalonium group	816	
Anhydrides		
cond, with benzaldehyde	679	
conv. to ketenes	232	
formn. from dibasic acids	387	
from levulinic acid	373	
hydrolysis of	387	
inner	704	
of arsonic acids	859	
of cyclobutane dicarboxylic acids	539	
of cyclohexyl derive.	567	
of cyclopentane carboxylic acids	549	
of cyclopropane dicarboxylic acids	533	
of 1-methyl-bicyclobutane-		
2-3,4-tricar-boxylic acid	536	
reac. with nitriles	415	
sulfobenzoic	724	

Links

517		
513		
643		
695	707	864
709		
326		
407		
108	110	
541	543	
650		
642		
859		
733		
643		
863		
714		
620		
687		
634	635	642
645		
	 513 643 695 709 326 407 108 541 650 642 859 733 643 863 714 620 687 634 	513 643 695 707 709 326 407 108 110 541 543 650 642 859 733 643 863 714 620 687 634 635

<u>Links</u>

Aniline aminobenzene		
phenylamine (Cont.)		
oxidation of	644	725
reac. with acrolein	797	
with anhydrides and polymeric		
anhydrides	387	
with carbon dioxide and sulfur	771	
with chloranil	688	
with chromic acid	726	
with ketene dimer	233	
with β -naphthol	737	
with phosgene	644	
with quinone	686	
with oxalic acid	651	
solution of <i>n</i> -alkanes in	1	
use in prepn. of arsanilic acid	859	
of <i>p</i> , <i>p</i> '-diamino-diphenylmethane	713	
of <i>p</i> -diamino-triphenylmethane	725	
of α -methyl-quinoline	798	
of phenazine	806	
of phenyl-isocyanate	450	
of 2-propyl-3-ethyl-quinoline	799	
of quinoline	797	
of sulfanilic acid	630	

Links

Aniline black	644		
Aniline Blue, triphenyl fuchsine			
Aniline dyes, triamino tritane dyes	849		
"Aniline for Red,"	726		
Aniline hydrochloride	646	797	
Aniline rearrangement	733		
Anilines, o-substituted	650		
Aniline yellow	661		
2-Anilinohydroquinone	686		
Anisaldehyde	683		
Anisic acid	699	714	
Anisic anhydride	795		
Anisidine	670	713	
Anisole	665	804	
Anisoylpropionic acid	804		
Anisyl alcohol	682		
Anisylphenyl ketone oxime	713		
Anthanthrene	749		
Anthelminic	807		
Anthocyanidins	795		
Anthracene	40	391	742
Anthracene Blue WR	746		
Anthracene Brown SW	746		
Anthracenedisulfonic acids	744	746	

Links

Anthracene nitrate	744		
Anthracenesulfonic acids	744		
Anthraflavinic acid	746		
Anthragallol, Anthracene Brown	746		
Anthrohydroquinol	745		
Anthranil	697		
Anthranilic acid	697		
diazotization of	695		
from hydrolysis of rutaecarpine	820		
from phthalic anhydride	706		
use in prepn. of damascenine	810		
of quinazoline	806		
of 2,4-dihydroxyquinazoline	806		
Anthranol, γ -hydroxy-anthracene	745		
Anthrapurpurin	746		
Anthraquinone	609	713	723
	742	752	
Anthraquinonedisulfonic acids	746		
Anthraquinonesulfonic acids	673	746	
Anthrarubin	746		
Anthrarufin, rufol	746		
Anthrols	744		
Anthrone	417	713	745

<u>Index Terms</u>	<u>Links</u>		
Antibiotics	501	781	792
	809	811	
Anticoagulant	796		
Anti-diacetate	688		
Antifebrine, acetanilide	650		
Anti-fouling paints	408		
Antifreezes	106	306	316
Antihistamine agent	675		
Antihistamine drug	787		
Anti-knock compounds			
formaldehyde derive	192		
iron carbonyl	422		
isopropyl ether	141		
lead tetraethyl	24	858	
methylnaphthalene	10		
unsaturated cpds.	9		
Anti-malarials	369	799	802
Antimony	850	861	
Antimony fluoride	275		
Antimony pentachloride	81	612	
Antimony trichloride	589	850	
Antioxidants	170	226	509
	732	737	
Antipyretic	670	801	

Links

Antipyrine, I-phenyl,3-		
dimethylpyrazolone		
Antiseptics		
aminoacridine	803	
ceepryn	781	
chinosol	801	
furacin	757	
hemitol	407	
idole	758	
hexamethylenetetramine	188	
phenols	663	
pyridium	787	
salicylic acid	698	
thymol	671	
Antispasmodic	693	762
ANTU, α -naphthylthiourea	651	
Apiin	470	
Apiobiose	489	
Apionic acid	470	
Apiose	470	489
Apiose-p-bromophenylosazone	470	
Apocamphor, fenchocamphorone	581	
Apocamphoric acid	550	581
Apomorphine	839	842

<u>Index Terms</u>	<u>Links</u>		
Aponarceine	839		
Aporphine	839		
Aporphine alkaloids	839		
Agnarex BBX Nekal			
Ar, aryl, C_6H_5 -, etc.			
Ar, aromatic			
Arabans	469		
D-Arabic acid	464		
Arabinose, L-arabinose	375	403	469
	481	489	
D-Arabinose	325	476	
L-Arabinose <i>p</i> -bromophenylhydrazone	469		
L-Arabinose phenylosazone	469		
Arabitols	325	468	
Arabonic acids	351	464	469
Arasan	459		
Arecaidine, see arecaine	816		
Areca-nut, betel nut	816		
Arecoline	816		
Arginine	498	504	505
	511	517	
Argol	399		
Arndt-Eistert synthesis	183	291	702
Arnells	417		

<u>Links</u>

Aromatic amines, primary	654	
Aromatic compounds	597	
Cond. with acetone	217	
formn. from propylene	38	
in hydrocarbon cracking	26	
reac. with acetylene	68	
Aromatic compounds of mercury and		
other metals	861	
Aromatic compounds of phosphorus	859	
Aromatic compounds with condensed		
rings	731	749
Aromatic compounds with paraffinic		
side chains	73	
Aromatic halogen compounds	617	
Aromatic ketones	680	
Aromatic nucleus	600	
Aromatic polyhalides	627	
Aromatic properties, of heterocyclic		
compounds	751	
Aromatic series	597	
Aromatic substituents in amino acids	509	
Aromatic sulfonamides	629	
Aromatic sulfonic acids, also see		
sulfonic acids	628	

<u>Index Terms</u>	<u>Links</u>		
Aromatic sulfonic esters	853		
Arrhenal, sodium methylarsonate	849		
Arrow poisons	552	591	594
Arsanilic acid	859		
Arsenic	848	859	
Arsenic acid	722	725	797
	849	859	
Arsenic-arsenic bond	860		
Arsenical drugs	860		
Arsenical pigments	849		
Arsenic chloride	849		
Arsenic compounds	849		
Arsenic pentoxide	797		
Arsenic trichloride	849	861	
Arsenic trioxide	849		
Arsenious acid	216	306	
Arsenious chloride	68		
Arsenite ion	849		
Arsenobenzene	860		
Arsenobillon	861		
Arseno group	860		
Arsenoxides	860		
Arsines	849	860	

849

Arsine oxides

<u>Index Terms</u>

Links

Arsinic acids	849	
Arsonation	859	
Arsonic acids arsinic acids	849	859
Arsphenamine	861	
Artemesia ketone	231	
Artemisin	585	732
Artichokes	485	
Artificial fats	255	
Artificial fibers	495	
Artificial musks	639	
Artificial petroleum	11	
Artificial resins	135	
Artificial silk	284	293
Artificial waxes	286	
Arylamines	642	661
Aryl arsonic acids	860	
Aryl diamines	652	
Aryldichloroarsines	859	
Aryl fluoro compounds	655	
Aryl halides	619	621
Arylhydrazines	655	
Arylhydrazones	655	
Arylhydroxylamine	660	
Aryl mercury compounds	655	

<u>Links</u>

	(22	(= =	
Aryl nitro compounds	633	655	
Aryl substituted aliphatic			
nitro compounds	639		
Aryl substituted unsaturated halides	627		
Aryl sulfides	655		
Aryl sulfinic acids	655		
Aryl sulfonic acids	655		
Aryl sulfonyl chlorides	630		
Aryl thiocyanates	655		
Asbestos	140		
Ascorbic acid	375		
Aseptol	631		
Asparagin	506		
Asparagus	506		
Asparagyltyrosine	515		
Aspartic acid	506	512	515
	517		
Asphalt	10		
Aspidospermine	822		
Aspirin	698		
Association			
of acetoacetic ester	368		
of acids	237		
of alcohols	104		

<u>Links</u>

Association (Cont.)			
of dihydroxyacetone	462		
of formamide	297		
of nitrogen heterocyclics	773		
Asymmetric carbon			
formn. of	349	351	
in tartaric acids	400		
Walden Inversion on	398		
in sym-dimethylsuccinic acids	384		
Asymmetric synthesis	125	349	482
Asymmetric tin compounds	858		
Assymmetry	359	397	513
	533		
Atebrin atabrine			
Atabrine	802		
Atlantone	585		
Atophan cincophen			
Atoxyl	860		
Atrolactic acid	705	824	
Atropic acid	704		
Atropine	705	818	823
Aurin	722		
Aurin dyes	721		
Aurothicaly and and thicaly and			

Aurothioglucose gold thioglucose

<u>Index Terms</u>	<u>Links</u>		
Autoxidation	227	848	
Auxin A and B	545		
Auxochrome group	661	721	
Avertin, tribromoethanol			
Avidin	761		
Avirol	132		
Avitone	152		
Avocado pear	487		
Azelaic acid	266	270	273
	350	386	
Azelaic acid aldehyde	206	266	
Azeotropic distillation	787		
Azeotropic mixtures	103	112	229
Azides, azoimides	299	514	
Azido alkanes, alkyl azides			
Azlactones	775		
Azlactone synthesis	499	511	
Azobenzene	634	644	658
	711		
Azo compounds	658	633	
Azo group	655		
Azo dyes	655	661	
coupling component	672		
from anisidines and phenetidines	670		

<u>Links</u>

Azo dyes (Cont.)			
from aromatic cpds., with activated			
ring hydrogens	655		
from benzidine derivs.	711		
from 2,6-diaminopyridine	787		
from diazonium salts	658		
from potassium benzene			
normal diazotate	656		
from tyrosine	509		
in discharge printing	192		
Azoimino compounds	652		
Azomethane	181		
Azomethylene, diazomethane			
Azophenin	689		
Azoxybenzene	634	658	660
Azoxy compounds	220	660	
Azulmic acid	408		
В			
Bacillus acidi levolactici	341		
Bacteria	247	351	505
Bactericidal action	255		
Bakelite	192	682	

<u>Index Terms</u>	<u>Links</u>		
Baking powder	402	405	
Balbiano's acid	406	535	
Ballistite	317		
Banana oil, amyl acetate			
Barbier-Wieland degradation	286		
Barbital, diethylbarbituric acid	435		
Barbituric acid	380	434	443
	805		
Barium acetate	223		
Barium chlorate	34	309	
Barium cyanide	67		
Barium ethylate	110		
Barium hydroxide	503		
Barium oxide	781		
Barium peroxide	293		
Barium salt of methanedisulfonic acids	67		
Barley	519		
Bart reaction	859		
Bases, cyclic	234		
optically active	115	359	707
quarternary, see tetraalky-			
lammonium etc.			
tertiary	261		
weak, soluble, stable	856		

Links

Basic beryllium acetate	244		
Basic ferric acetate	244		
Basic salts	243		
Basicity of alkyl phosphines	847		
of arsines	848		
Bayer Strain theory	264	523	
Bayer and Fischer synthesis	443		
Bebeerine	837	840	
Bechamp reaction	859		
Beckamine	432		
Beckmann rearrangement	235	353	713
	778		
Beechwood tar	761		
Beeswax	47	132	286
Beetle	432		
Beet molasses	493		
Beet pulp	375		
Behenic acid	223		
Behenolic acid	273	279	
Behrend and Roosen synthesis	441		
Beilstein test	73		
Benadryl	675		
Benzalacetone	678		
Benzalacetophenone, chalcone	535	681	

<u>Index Terms</u>	<u>Links</u>		
Benzalanlines	677		
Benzalazine	678		
Benzal chloride	612	623	676
	679		
Benzaldehyde	676	681	
condo with dimethylaniline	679		
with levulinic acid	373		
with phenol	722		
with pinacolone	222		
formn. from benzochlorides	622		
from dibenzyl	716		
from toluene	612		
from benzoyl cyanide	694		
nitration and sulfonation	679		
oxidation of	692		
prepn. of	609	621	
reac. with acetone	338		
with acrylonitrile	418		
with ammonia	679		
with benzylmagnesium chloride	716		
with crotonic anhydride	261		
with cyclohexanone	561		
with ethylene glycol	305		
with hydrazine	432		

Links

Benzaldehyde (Cont.)			
with mandelonitrile	774		
with primary amines	171		
with sodium cyanide	717		
use in prepn. of acridine dyes	803		
of benzhydrol	713		
of benzyl benzoate	693		
of β -benzal-propionic acid	705		
of p'-diaminotriphenyl-methane	725		
of malachite green	725		
use in sugar fermentation	811		
Benzaldehyde acetal	677		
Benzaldehyde cyanohydrin	705	717	
Benzaldehyde phenyl hydrazone	678		
Benzaldoximes, alpha, beta syn anti	678		
Benzalpinacolone	222		
Benzalpropionic acid	705		
Benzamide	250	675	692
	694	717	
reac. of von Braun	532		
Benzamido-unsaturated acids	503		
Benzanilide	694		
Benz(a)anthracene	748	750	
Benzanthrone	746	747	

<u>Index Terms</u>	<u>Links</u>		
Benzaurin	722		
Benzazide	694		
Benzedrine	162	650	812
Benzene	545	597	
alkylation	218	615	718
chlorination of	598		
comparison with purine	439		
conv. to succinic acid	381		
formn. from acetylene	68		
from aromatic epds.	602		
from coal	602		
from isobutylene	40		
from methane	13		
from <i>m</i> -xylene	615		
Friedel-Crafts reac with			
carbon monoxide	409		
with hydrogen cyanide	409		
halogenation of	598	605	
halogen cpds. of	605		
mercuration of	610	863	
metalation of	610		
nitration of	606		
orientation of entering gps.	622		
oxidation of	388	605	

<u>Links</u>

Benzene (Cont.)			
prepn. from toluene	613		
prop. of, cetane number	25		
reacs. of	604		
with acetylene	68		
with chlorine	730		
with ethylene and aluminum			
chloride	34		
with ethylene chloride and			
aluminum chloride	716		
with oleic acid	267		
with succinic acid	382		
reduction of	526	605	
structure of	598	599	728
substitution	606	622	
also see chlorination			
nitration, sulfonation etc.			
sulfonation of	607		
toxicity of	611		
use in drying 96% ethanol	108		
use in Grignard reac	311		
use in prepn. of 4-aminodiphenyl	711		
of benzaldehyde	676		
of benzoic acid	692		

Links

Benzene (Cont.)			
of o-benzoylbenzoic acid	714		
of 1,1-diphenylethane	714		
of diphenylmethane	712		
of phthalophenone	723		
Benzene carboxylic acid	691		
see benzoic acid			
Benzene cpds.	622		
Benzene diazonium chloride	355	660	694
	738	862	
Benzene diazonium perbromide	656		
Benzene diazonium sulfate	660		
Benzene diazonium sulfonate	509		
Benzene-1,3-dicarboxylic acid			
isophthalic acid			
Benzene-1,4-dicarboxylic acid			
terephthalic acid			
Benzene-o-dicarboxylic acid			
phthalic acid			
Benzene disulfonic acid	607		
Benzene halides	620		
Benzene hexabromide	605		
Benzene hexacarboxylic acid			
mellitic acid			

<u>Index Terms</u>	<u>Links</u>		
Benzene hexachlorides	605	617	
Benzene homologs	611	626	
Benzene hydrocarbons unsaturated	616		
Benzene pentacarboxylic acid	709		
Benzene rings	816	820	822
Benzene sulfinic acid	686	863	
Benzene sulfonamide	629		
Benzene sulfonic acid			
formn. from cyclohexane	553		
prepn. of	598	607	628
	696		
use as catalyst in dehydration			
of ethanol	30		
Benzenesulfonyl chloride	629	667	
Benzene tetracarboxylic acids	709		
1,2,3,4-Benzenetetracarboxylic acid			
mellaphanic acid			
1,2,3,5-Benzenetetracarboxylic acid			
prehnitic acid			
1,2,4,5-Benzenetetracarboxylic acid			
pyromellitic acid			
1,3,5-Benzenetricarboxylic acid			
trimesic acid			

Links

1,2,4-Benzenetricarboxylic acid			
trimellitic acid			
Benzenetricarboxylic acid	708		
Benzene-1,3,5-tricarboxylic ester	364		
Benzene triozonide	605		
Benzenetrisulfonic acid	607	673	
Benzerythrene	611		
Benzfuril	755		
Benzfuroin	755		
Benzhydrazide	694		
Benzhydrol	675	682	712
Benzidam, aniline	642		
Benzidine	663	711	
Benzidine rearrangement	659		
Benzidine sulfate	711		
Benzil	541	714	717
Benzil dioximes	718		
Benzilic acid	715	717	
Benzilic acid rearrangement	438	549	563
	716	717	
Benzil monoximes	717		
Benzils, substituted	718		
Benzimidazole	351	439	652
Benzimidazole rule	351		

Links

Benzimino chloride	694
Benzine	7
2,3-benzo-(1.3.3)-bicyclo-2-nonene	742
Benzoflavine	803
Benzofuran	762
Benzoic acid	691
conv. to benzonitrile	694
formn. from benzene	609
from ethylbenzene	615
from oximes	713
from polybenzyl halides	622
prepn. from toluene	612
sulfonation of	696
use in prepn. of acetylglycine	503
of α -eucaine and β -eucaine	823
2,4,5-benzoic acid durylic acid	
Benzoic acids alkyl	700
amino	697
dimethyl, see xylic acids	
substituted	694
tetramethyl	701
trimethyl	701
Benzoic anhydride	694
Benzoic esters	693

<u>Index Terms</u>	<u>Links</u>		
Benzoin	715	717	
Benzoin condensation	677		
Benzonitrile	678	692	694
Benzophenone	609	682	713
	716	719	
Benzophenone carboxylic acids	714		
Benzophenone dichloride	727		
Benzophenone oxime	713		
Benzophenone phenylhydrazone	682		
2,3-benzopyrazine, see quinoxaline	806		
Benzo(a)pyrene	750		
Benzopyridiazines	804		
Benzopyridines, quinoline isoquinoline			
Benzopyrilium salts	704		
Benzopyrimidines, see quinazoline			
derivs	806		
Benzopyrrole, see indole			
3,4-Benzoquinoline, see phenanthridine			
Benzoquinone			
from aniline	685		
from hydroquinone	685		
in Diels-Alder synthesis	58	555	
reac. with isoprene	60		
o-Benzoquinone	671	688	

<u>Index Terms</u>	<u>Links</u>		
Benzosulfimide	697		
Benzothiophene	751	762	
Benzotriazole	652		
Benzotrichloride	275	612	622
	692		
Benzotrifluoride	275	622	
Benzoylacetic acid	706		
Benzoylacetic esters	684		
Benzoylation	172	823	
Benzoyl azimide, see benzazide	694		
Benzoylbenzoic acid	609	706	713
Benzoyl bromide	693		
Benzoyl chloride	503	609	656
	677	692	
Benzoyl cyanide	693		
Benzoyl ecgonin	822		
Benzoylene urea, see 2,4-dihydroxy-			
quinazo-line			
Benzoyl fluoride	692	693	
Benzoylformic acid	681	694	705
Benzoyl glycine, see hippuric acid	503		
Benzoylhydrazine	694		
Benzoyl iodide	693		

<u>Index Terms</u>	<u>Links</u>		
Benzoyl peroxide	64	250	270
	694		
Benzoyl piperidine	504		
Benzoyl pyruvic acid	359		
Benzpinacol	682		
Benzpinacolone	682		
Benzpyrimidine nucleus	821		
Benzpyrone, see chromone	793		
Benzyl acetate	649		
Benzyl alcohol	513	675	677
	712		
Benzylamine	639	649	810
Benzylaniline	649		
Benzyl benzoate	693		
Benzylbenzoic acid	713	714	
Benzyl bromide	621		
Benzylcarbinol	675		
Benzylcetyl dimethyl ammonium			
chloride	649		
Benzyl chloride	618	621	
nitration of	623		
prepn. from toluene	612	639	
reac. with malonic ester	378		

<u>Links</u>

Benzyl chloride (Cont.)			
use in prepn. of benzyl alcohol	675		
of benzaldehyde	676		
of diphenylmethane	712		
Benzyl compounds	622		
Benzyl cyanide	379	639	
Benzylcyclohexanol	741		
Benzyl dialkyl amines	649		
Benzyl group in alkaloids	835		
Benzylidene amines, benzal amines			
Benzylidene aniline	803		
Benzylidene chloride	622		
Benzyl iodide	621		
Benzylmagnesium chloride	621	716	
Benzyl malonic ester	378		
Benzyl sulfonyl chloride	173		
Benzyl trichloroacetate	276		
Benzyltrimethylammonium hydroxide	649		
Benzyl urethanes	514		
Berbamine	841		
Berberal	827		
Berberine	816	818	827
	829		
Berberine type alkaloids	838		

Links

Bergmann, method of protection	513	700	
Bergmann degradation of proteins	514		
Bergmann reagent benzyloxyformyl			
chloride	514		
Bernsteinsäure, succinic acid			
Berthelot reaction	710		
Beryllium, alkyl cpds. of	359	369	854
Beta-fission	34		
Betaine	408	499	503
	504	510	
Betel nut	816		
Betonicine	813		
Betulines	587		
Biaryls	711		
Bicarbonates	356	429	856
Bicucine	839		
Bicuculline	839		
Bicyclic terpenes	567		
Bicyclobutane	536		
Bicyclo compounds	536		
Bicyclo(4.4.0)decane decalin			
Bicyclo(2.2.2)octane	399	573	
Bidiphenyleneethylene	716		

<u>Index Terms</u>

Links

Bile	328	509	
Bile acids	591	592	
Bilineurine, chlorine	327		
Biloidanic acid, norsolanellic acid			
Bimolecular mechanism of tautomerism	409		
Bimolecular reduction	195	634	
Bindschedler's Green	689		
Biological processes	336	370	402
	465		
Bionic acids	492		
Biotin	385	761	
Biphenyl diphenyl			
Biphenyl isocyanate	133		
Bipyridyls	782		
Birotation mutarotation			
Bisabolene	583		
Bis-azo dyes	662		
Bis-benzylisoquinoline alkaloids	840		
1,2-bis-β-hydroxyethoxyethane			
triethylene glycol			
Bismarck Brown	662		
2,3,9,10-bismethylenedioxy			
protoberberine, coptisine			

Links

Bis [(N-α-methylhydrazino)4-phenyl]-			
me-thane di(p - α -methylhy-			
drazinophenyl)-methane			
Bismuth	850		
Bismuth alkyls	850		
Bismuth nitrate	319		
Bismuth trialkyls	850		
Bismuth trichloride	850		
Bisnorcholanic acid	591		
Bisulfite	190		
also see sodium bisulfite			
Biuret	431	433	521
Biuret test	521		
Bivalent carbon	419	423	
Bixin	590		
Bleaching agent	90	157	164
	191		
Blood, absorbent for	496		
ergothioneine in	511		
D-glucose in	473		
hemocyanin in	519		
lysine in	505		
proteides in	517		
Blood fibrin	503		

Links

Blood pigments	520	
Blown oils, drying oils		
Blue print paper	407	410
Blutlaugensaltz, potassium ferrocyanide	410	
Body flluids	518	
Boiled oils, drying oils	271	
Boiling point comparisons		
of acetoacetic ester forms	368	
of acids	272	
of alcohols and aldehydes	368	
of aliphatic nitro opds.		
and alkyl nitrites	159	
of aliphatic ethers versus alcohols	138	
of amines	167	
of alkyl amines	165	
of alkyl sulfides	146	
of 1,1- and 1,2- di-t-Butylethylenes	47	
of 1,2-di- <i>t</i> -butylethylene and		
cis-2-octene	47	
of decanes	24	
of 1,1-dineopentylethylene and	1	2
dine- opentylethylene	47	
of glycerol and triethylin	315	318
of heterocyclic cpds.	773	

Links

Boiling point comparisons			
of acetoacetic ester			
forms (Cont.)			
of mercaptans	143		
of methylamines	176		
of 3-methyl-2-butene isomers	42		
of nitrites and nitrates	157		
of o-and p-nitrophenols	668		
of <i>n</i> -octane and 2,2,4,4-			
tetramethylpentane	24		
of octanes and octenes	29		
of octenes, branched	46		
of olefins depending on position of			
double bond	28		
of olefins with the corresponding			
hydro-carbons	28		
of oxygenated materials	388		
of phosphites and phosphates	157		
of unsaturated acids	272		
of xylidines	647		
Bonds see linkages ethylenic acetylenic			
coordinate, etc.			
Bone oil	787	789	796
Boord synthesis	44	64	137

<u>Index Terms</u>	<u>Links</u>		
Borax	158	317	
Boric acid	158	305	342
	406	474	
Boric acid esters	158	317	857
Boric anhydride	426		
Borneo camphor	576		
Borneol	525	576	
Borneol glucuronic acid	374		
Bornyl chloride	527	576	
Bornyl iodide	576		
Bornylene	525	573	582
Boron	857		
Boron chloride	199		
Boron trichloride	857		
Boron trifluoride	41	106	235
	246	731	
Bottle gas, pyrofax	17		
Bouveault and Blanc reduction	254	279	500
Brake fluids	308		
Branching, as influencing reac, or			
prop. of aldehyde addition to			
sodium bisulfite	201		
of aldehydes in aldol cond.	197		
of aldehydes and ketones	185		

Links

Branching, as influencing reac, or			
prop. of aldehyde addition to			
sodium bisulfite (Cont.)			
of alkylation reac. of nitriles	416		
of bisulfite formn.	213		
of boiling points of amines	165		
of Grignard reac.	129		
of α -hydroxy acid conv. to ketones	194		
of ketone reacs.	219		
of methyl isopropyl ketone	220		
of olefin formn	138	141	
of oxidation of isobutyl alcohol	203		
of oxime formn.	235		
Brassilic acid	267	273	386
von Braun's epimer reagent	482		
von Braun reaction	80		
Brenzcatechin	671		
Bright stock	7		
Brilliant Green	725		
Broenner's acid naphthylamine monosul-			
fonic acids	735		
Brom, see bromo			
Bromal	207		

Links

Brominating agents	88	93	232
	298	562	
Bromination, in syn. of cyclopropane			
derivs	535		
in synthesis of truxillic acid	541		
of allene	54		
of allylic bromide	54		
of aniline	645		
of anthracene	744		
of anthrone	745		
of benzene	627		
of bromobenzene	623		
of 1,3-butadiene	56		
of butenes	39		
of ethylene	31		
of furoic acid	756		
of indigo	766		
of isobutylene	40		
of isoprene	59		
of 1-methyl-bicyclobutan,3,4-			
tricarboxylic acid	536		
of methyl ethyl ketone	218	356	
of methyl isopropyl ketone	220		
of o-nitrotoluene	637		

Links

Bromination, in syn. of cyclopropane			
derivs (Cont.)			
of phenanthrene	747		
of pyridine	783		
of <i>p</i> -xylene	615		
Bromine			
addn. to acetylene dicarboxylic acid	397		
to unsaturated acids	260		
to vinylacetic acid	262		
from sea water	88	646	648
reac. with acetylene	67		
with aldehydes	202		
with amines	414		
with barbituric acid	435		
with <i>t</i> -butyl alcohol	116		
with camphoric acid	550		
with cyclobutane-			
carboxylic acid	539		
with cyclopentane	544		
with cyclopropane	530		
with cyclopropane			
carboxylic acid	533		
with ethane	16		
with ethers	140		

Links

Bromine (Cont.)

with ethylene dimalonic ester	540	
with 1,4-dihydronaphthalene	729	
with dihydropyran	780	
with dipropargyl	72	
with hydroxyacid amides	343	
with indene	727	
with isoprene	60	
with isopropyl alcohol	112	
with methane	15	
with neopentylmercuric chloride	84	
with paraffins	73	
with propane-1,1,3,3-		
tetracarboxylic ester	534	
with pyridine	783	
with tetralin	730	
with 1,3-trimethylene		
dimalonie ester	549	
use in prepn.		
of dihydroxytartaric acid	406	
of isodialuric acid	442	
of pyrazole	768	
Bromine chloride reac. with ethylene	31	88
Bromoacetaldehydes	202	331

Links

N-Bromoacetamide	298		
Bromoacetic acid	274		
Bromoacetic acid esters	275		
Bromoacetophenone	774		
Bromoacetyl bromide	246		
α -Bromo acid amides	205		
α-Bromoacids	771		
α-Bromoacrylic acid	277		
Bromoallyl bromide	273		
C-Bromoamines	179		
Bromoanilines	646		
Bromobenzene, phenyl bromide	625		
bromination of	623		
prepn. from benzene	625		
reactions	611	615	620
use in prepn. of mercury diphenyl	861		
Bromobenzenesulfonic acid	672		
Bromobenzoic acid	695		
Bromobutadiene	57		
Bromobutane	22	39	
Bromobutenes	71	307	
4-Bromobutyl-diethylamine	178		
Bromobutyric acid	260	533	
α -Bromo- <i>n</i> -butyric ester	259		

Links

Bromobutyronitrile	532		
Bromocamphors	580		
Bromocamphoric acid	550		
←-Bromocaproic acid	347		
Bromocinnamic acids	703		
1-Bromo compounds	74		
α -Bromocyclobutanecarboxylic			
acid amide	539		
1-Bromo-3, 3-dimethylbutane	76		
1-Bromo-2, 3-dimethyl-2-butene	63		
3-Bromo-2, 2-dimethyl-butyric acid	278		
1-Bromo-2, 3-dimethylpentane	22		
Bromoethyl methyl ether	32		
9-Bromofluorene	715		
Bromoform	87	90	91
Bromohexenes	63		
β -Bromohydrocinnamic acid	616		
α -Bromo-s-hydroxy propionic acid	277		
α -Bromoisobutyric acid	261		
α -Bromoisobutyric ester	287	385	
α-Bromoisovalerylurea	433		
α -Bromo ketones	216		
Bromo maleic ester	534		
Bromomalonic acid	397		

Links

393	499	
59	60	
731		
627		
864		
236		
264		
387		
747		
724		
668		
661		
276	502	
344	384	387
178		
385		
783		
716		
232		
617	627	
614		
479		
780		
93		
	59 731 627 864 236 264 387 747 724 668 661 276 344 178 385 783 716 232 617 614 479 780	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Links

Bromoundecoate	256		
ω-Bromoundecylenic ester	256		
Bromo- <i>p</i> -xylene	615		
Bromural	433		
Brucine			
reac. with hydrogen	22		
related to indole	816		
struct. of	846		
use in resolution of optical isomers	22	248	
of racemic amino acids	502		
of optically active alcohols	707		
of optically active salts	359		
Brucine dextro-sec-butyl phthalate	22		
Brucine levo-sec-butyl phthalate	22		
Brucine salts	509	533	550
Bu, <i>n</i> -Butyl-, CH ₃ (CH ₂) ₃ —			
B.T.U., British Thermal Units	14		
Bucherer reaction	733	736	737
Buchocamphor	564		
Buckwheat	795		
Bufagins	594		
Bufotalin	594		
Bufotenins	594		
Bufotoxins	505	594	

<u>Index Terms</u>	<u>Links</u>	
Bulbocapnine	829	
Buna-N	58	417
Buna-S	58	66
1,2-Butadiene, methyl allene		
1,3-Butadiene	55	
action with benzoquinone	687	
conv. to 4-vinylcycIohexene	556	
effect of heat	99	
formn. from butynediol	55	
from cyclobutene	537	
from 1,2-dibromobutane	71	
from ethylene	35	
from pyrrolidine	175	
from tetrahydrofuran	754	
formn. of peroxides of	59	
occurrence in and separation from		
petroleum cracked gases	55	
polymerization with 2-vinylpyridine	789	
prepn. from butane	18	
from β -butylene glycol	308	
from diacetate of 2,3-butylene		
glycol	55	
from ethylene	36	
prop boiling point	55	

<u>Links</u>

1,3-Butadiene (Cont.)		
reac. with acetylene		
dicarboxylic acid	397	
with acrolein	58	554
with acrylonitrile	58	
with ammonia	57	
with benzoquinone	58	
with bromine	56	94
with chlorine	55	89
with cuprous chloride	55	
with cyanogen	408	
with diazomethane	57	
with 3,6-endomethylene-		
1,2,3,6-tetra-		
hydrophthalic anhydride	58	
with halogen acids	97	
with hydrogen	60	
with hydrogen chloride	57	
with iodine monochloride	57	
with maleic anhydride	57	391
with styrene	58	
with sulfur dioxide	57	
use in free radical polymerization	52	
use in prepn. of 1,4-butandiol	308	

<u>Index Terms</u>

<u>Links</u>

Butadiene, dimethyl	549	
Butadiene substituted polymerization	63	
Butadiyne diacetylene		
Butalyde <i>n</i> -butyraldehyde		
Butanal, butyraldehyde	253	
Butanal acid, succinic acid half aldehyde		
Butane diacid, succinic acid		
Butandial succindialdehyde		
1,3-Butandiol	308	
1,4-Butandiol diacetate	754	
1,4-Butandiol tetramethylene glycol	308	
2,3-Butandiol, β -butylene glycol	217	307
Butandione diacetyl		
Butanes	17	537
<i>n</i> -Butane		
formn. from butyl halide	23	
from <i>n</i> -octane	24	
from di-triethylmethyl peroxide	294	
isomerization of	18	51
oxidation of	186	302
non-catalytic	18	
pyrolysis of	17	
reac. in electric discharge	18	

<u>Links</u>

<i>n</i> -Butane (<i>Cont</i> .)		
reac. with chlorine	18	94
with sulfur	18	
with sulfur dioxide and chlorine	18	
use as a standard fuel	18	
use in prepn. of thiophene	758	
Butane derivatives	525	
Butanesulfonyl chloride	18	
<i>i</i> -1,2,3,4-Butanetetrol erythritol		
Butanoic acid, n-butyric acid	247	
Butanol, normal butyl alcohol		
1-Butanol, normal butyl alcohol	112	
conversion to dibutyl ether	141	
dehydration of	39	
fermentation product of glycerol	319	
of corn starch	208	
in Roka process	222	
occur. in fusel oil	113	
prepn. by Fischer-Tropsch synthesis	113	
prepn. from crotonaldehyde	227	
from ethylene	35	
use in prepn. of <i>n</i> -butyl halides	82	
of <i>n</i> -butyric acid	247	

Links

2-Butanol, sec-butyl alcohol	114	
conv. to 1-2,3-dimethylpentane	22	
to octylenes	47	50
esterification	115	
oxidation of	116	
prepn. by hydration of <i>n</i> -butylenes	108	114
prop specific rotation	22	115
pryolysis of	76	
reac. with fused alkalies	116	
with hydrogen bromide	22	
with phthalic anhydride	22	
resolution	22	115
use in prepn. of sec-butyl halides	82	
4-Butanolal	335	
1,4-Butanolide butyrolactone		
1-Butanol-2-one, propionylcarbinol	336	
4-Butanolne-2-one,β-acetyl		
ethyl alcohol	337	
3-Butanon-al	363	
Butanone, methyl ethyl ketone		
3-Butanone acid, acetoacetic acid		
1,2,3-Butantriol	319	
2-Butenal crotonaldehyde		

Links

3-Butenal, vinylacetaldehyde	
1-Butene	
conv. to 2-butanol	39
hydroxy-n-valeric acid	344
formn. from <i>n</i> -butane	18
from <i>n</i> -butyl chloride	76
from sec-butyl chloride	76
from butyl halide	23
from ethylene	35
from isobutyl alcohol	39
occur cracked gases	39
prepn. from allyl bromide	39
from 1-butanol	39
reac. with hydrogen bromide	39
2-Butene	
codimer with isobutylene	23
conv. to 2-butanol	39
formn. from <i>n</i> -butane	18
from 1-butanol	39
from butyl chlorides	76
from β -iodo- α -methyl-	
butyric acid	265
occur cracked gases	39

<u>Links</u>

2-Butene (Cont.)		
prop stereoisomerism	39	
reac. with <i>t</i> -butyl carbonium ion	50	
with isobutane	23	
cis-2-Butenediacid, maleic acid		
trans-Butenediacid, fumaric acid		
1-Butene-1-ol-3-one	363	
3-Butene-2-loic acid α-		
hydroxyvinylacetic acid		
Cis-2-Butenoic acid isocrotonic acid		
2-Butenoic acids, β-methyl-		
acrylic acids		
Δ^3 -Butenoic acid, see vinylacetic acid	262	
1-Buten-3-ol, see methylvinylcarbinol		
1-Butenl-4-ol, see allyl carbinol		
2-Buten-1-ol, crotyl alcohol		
Butenyne, vinyl acetylene		
Butesin, see anesthesia	699	
Butlerow's acids	254	
Butter	247	
Butter yellow	661	
tert-Butyl acetamide	295	
tert-Butyl acetate	75	116
<i>n</i> -Butylacetic acid, caproic acid	250	

<u>Links</u>

Butylacetic acids	252	
<i>n</i> -Butylacetoacetic ester, ethyl <i>n</i> -	252	
butylacetoacetate	250	
tert-Butylacetylene	71	
Butyl alcohols	18	112
<i>n</i> -Butyl alcohol, see also J-butanol	112	
sec-Butyl alcohol, see also 2-butanol	114	
tert-Butyl alcohol	116	
conv. to diisobutylenes	46	
to isobutyraldehyde	203	
formn. from isobutane	19	
from isobutylene	40	
from methanol synthesis	132	
oxidation of	117	
prepn. from isobutylene	39	116
reac. with acids and acid chlorides	116	
with alkalies	116	
with bromine	116	
with sec-butyl alcohol	47	50
with hydrogen chloride	76	
with hydrogen peroxide	117	
with metals	116	
use in prepn. of 1-nitroisobutylene	164	
<i>n</i> -Butylallenes	55	

Index Terms	<u>Links</u>		
Butyl amines	168	172	417
Butyl benzenes	608		
sec-Butyl 2-bromo-allylbarbituric acid	436		
Butyl bromides	22	39	114
	250		
n-Butylcarbinol normal amyl alcohol			
t-Butylcarbinol, neopentyl alcohol			
sec-Butyl carbinol, also see active			
amyl alcohol	41	118	
Butyl carbitol	36	311	
Butylcarbityl 6-propylpiperonyl ether	683		
Butyl cellosolve	311		
Butylchloral	55	202	207
Butyl chlorides			
conv. to cyclopropane.	530		
to neopentane	20		
prepn. from <i>t</i> -butyl alcohol	116		
from isobutane chlorination	18		
pyrolysis to butenes	76		
reac. with ethylene	85		
Butyl cyanides, valeronitriles	117	249	
Butylenes, also see butenes, isobutylene	39		
α -Butylene, 1-butene			
P. Dutulana 2 hutana			

 β -Butylene 2-butene

<u>Links</u>

γ-Butylene, isobutylene			
Butylene, direct hydration	108		
formn. from <i>n</i> -butane	18		
from ethylene	35		
from hydrocarbon			
cracking process	26		
from isobutyl alcohol	39	114	
from propylene	38		
hydration with sulfuric acid	114		
reac. with benzene	608		
with sulfur dioxide	40		
Butylene derivatives	525		
1,3-Butylene glycol	55	334	
2,3-Butylene glycol	55	337	356
α-Butylene glycol	307		
β -Butylene glycol	195	307	
Butylene oxide ring	467	478	
<i>t</i> -Butyl esters	116		
<i>n</i> -Butyl ether	141		
β -t-Butylethyl halide neopentylcarbinyl			
halide			
Butylethylene			
intermediate in prepn.			
of neopentylcarbinol	126		

Links

Butylethylene (Cont.)			
prepn. of	42	44	55
	456		
reac. with acid catalysts	44		
with hydrogen bromide	44	75	
with hydrogen chloride	75	85	
with hydrogen iodide	76		
use in prepn. of pinacolyl halides	128		
Butylethylene bromide	126		
t-Butyl Grignard reagent	220	222	248
	422		
<i>n</i> -Butylmagnesium bromide	21		
<i>n</i> -Butylmagnesium chloride	117		
sec-Butyl magnesium chloride	119		
t-Butylmagnesium chloride	24	42	120
	854		
<i>n</i> -Butyl undecylenic amide	266		
Butyraldehyde	203		
conv. to α -ethyl- β -propylacrolein	228		
prepn. from ethylene	36		
rate of acetal formn	199		
reac. with acetone	222		
use in prepn. of 3-hexanol	127		

<u>Links</u>

Butyraldehyde (Cont.)			
of hexyl alcohols	125		
of 2-pentanol	122		
of 2-propyl-ethyl-quinoline	799		
Butyl halides	71	82	83
	116		
t-Butyl isobutyl ketone	249		
Butyl mercaptans	145		
t-Butyl peroxide	294		
Butyl rubber	41		
Butyl sulfide	146		
t-Butylsulfonic acid	19	151	
Butyl sulfoxide	148		
<i>t</i> -Butyl toluene	613		
<i>n</i> -Butyltoluene sulfonate	25		
5- <i>t</i> -Butyl- <i>m</i> -xylene	615		
Butyn	823		
Butyn-2-al		70	
1-Butyne, ethylacetylene	70		
2-Butyne, crotonylene	71		
Butynediacid, acetylene			
dicarboxylic acid	397		
Butynediol	55	313	

<u>Links</u>

2-Butynoic acid, tetrolic acid	
Butyrchloral	279
Butyric acid	247
cony. to hydroxybutyric acid	342
to methyl <i>n</i> -propyl ketone	218
fermentation product of glycerol	319
formn. from butanes	162
oxidation of	344
prepn. from crotonic acid	259
<i>n</i> -Butyric anhydride	756
Butyrolactole	335.
Butyrolactone	
prepn. from ethylene chlorohydrin	345
from glutaric acid	385
from - γ -hydroxybutryic acid	345
from tetrahydrofuran and copper	313
from vinyl acetic acid	262
use in prepn. of γ -halogen	
<i>n</i> -butyric acids	278
of Periston	758
Butyrolactone dichloride	382
Butyronitrile, propyl cyanide	414
Butyrone, dipropyl ketone	
Butyryl chloride	128

This page has been reformatted by Knovel to provide easier navigation.

417

<u>Links</u>

С

C ⁺ , C* carbon with 6 electrons.			
See carbonium ions			
Cabbage leaves	489		
Cacodyl	849		
Cacodyl chloride	849		
Cacodyl hydride, dimethylarsine	849		
Cacodylic acid, dimethylarsinic acid	849		
Cacodyl iodide	849		
Cacodyl oxide	849		
Cadalene	584	732	
C and C Carbide and Carbon			
Chemicals Corp New York			
Cadaverine, pentamethylene diamine	505		
Cadinene	583		
Cadmium alkyls	374		
Caffeic acid	704		
Caffeidin	441		
Caffeine	434	438	441
	444	503	
Cairolin	797		
Calciferol, vitamin D ₂	593		
Calcium acetate	208		

<u>Index Terms</u>	<u>Links</u>		
Calcium acetoacetic ester	368		
Calcium, alkyl compounds of	854		
Calcium benzoate	693		
Calcium carbide	65	244	368
	411	452	
Calcium carbonate	340		
Calcium chloride	104	109	199
Calcium chloride-methanol complex	104		
Calcium cyanamide	411	412	430
	452		
Calcium ferrocyanide	410		
Calcium hypochlorite	157		
Calcium isobutyrate	248		
Calcium isovalerate	248		
Calcium levulinate	373		
Calcium oxalate	376	378	
Calcium oxide	23	87	108
Calcium propionate	247		
Calcium saccharates, calcium sucrates			
Calcium sucrates	490		
Calcium tartrate	402		
Calorene	35		
Calycanthine	816	821	
Camphane	567	573	

<u>Index Terms</u>	<u>Links</u>		
Camphanic acid	580		
Camphene	525	574	576
	581		
Camphene hydrate	574		
Camphene hydrochloride	574		
Camphenic acid	575	581	
Camphenilanic aldehyde	575		
Camphenilene	575		
Camphenilol	575	577	
Camphenilone	575		
Camphenonic acid	581		
Campholenic acid	580		
Campholide	550		
α -Campholytic acid	551		
Camphors	544	550	579
	615		
conv. to carvacrol	671		
oxidation to $\alpha\beta\beta$ -			
trimethylketoglutaric acid	406		
prepn. from pinene	570		
reac. of hydrazone with			
mercuric oxide	582		
use in celluloid	496		
β -Camphor, epicamphor			

<u>Index Terms</u>	<u>Links</u>		
Camphorene	585		
Camphor homologs	581		
Camphoric acid	406	535	544
	550	580	
Camphoric anhydride	544	550	
Camphoronic acid	580		
Camphorquinone 3-ketocamphor	579		
Camphor sulfonic acids	54	580	
Canadine	828		
Cane sugar, sucrose			
Cannizzaro reaction dismutation			
of formaldehyde	187		
in formn. of aldehyde resins	198		
of furoic acid	756		
in prepn. of pentaglycerol	319		
of benzaldehyde	677		
of formisobutyraldol	335		
of α -hydroxyisobutyraldehyde	333		
of isobutyraldehyde	203		
of trimethylacetaldehyde	205		
with glyoxal	354		
Cantharidin	567		
Caoutchouc	59	61	364
Capaurimine	828		

<u>Index Terms</u>	<u>Links</u>		
Caperatic acid	407		
Capric acid, <i>n</i> -decanoic acid	253		
Caprine, see norleucine	504		
Caproamide	124		
Caproic acid	250	270	319
	561		
Caprolactone	373		
Capryl alcohol 2-octanol	130	251	273
	353		
Caprylic acid, n-octanoic acid	252		
Caprylic aldehyde	205		
Capsaicin	265	699	810
	816		
Captax	771		
Carane	567	568	
Carbaloxylation	426		
Carbarnates, alkyl (urethans)	429		
Carbamic acid, see aminoformio acid	429		
Carbamic acid chloride see carbamyl			
chloride	430		
Carbamic chloride	692		
Carbamide, see urea	429		
Carbamidine, see guanidine	447		
5-Carbamidohydantoin allantoin			

<u>Index Terms</u>	<u>Links</u>		
Carbamino acids	501		
Carbamyl chloride carbamic			
acid chloride	428		
Carbanilide	651		
Carbanion	196		
Carbazole, dibenzopyrrole	752	767	819
Carbethoxy group	699		
n-Carbethoxy-imidodicarboxylates	428		
Carbinol methanol			
Carbitol	36	311	
Carbobenzoxy group	513		
Carbohydrates	459		
classification of	460		
fermentation to lactic acid	341		
oxidation to oxalic acid	376		
photosynthesis of	427		
reac. with acetone	213		
with triphenylchloromethane	719		
similarity to oxetone	347		
Carbolic acid	664		
β -Carboline	819		
Carbomethylene ketene			
Carbona	93		
Carbon-Arsenic bond	860.		

<u>Links</u>

Carbonates, see sodium potassium etc.			
Carbonates	426	428	480
Carbonates, alkyl	430		
Carbonation	248	252	789
Carbon black	10	30	
Carbon dioxide	427		
addn. of ammonia	427		
of Grignard reagents	427		
of sodium alcoholates	427		
of sodium-carbon cpds.	427		
of sodium mercaptides	427		
cony. to ammonitnn carbamate	429		
to carbon monoxide	420		
to oxalic acid	376		
to urea	430		
formn. from acetoacetic acid	366		
from carbon monoxide	420		
from decalin	730		
from α -hydroxyvinylacetic acid	352		
from malonic acid	378		
from methane	14		
from methylmalonic acid	381		
from pyruvic acid	366		
from a substituted malonic acid	22		

<u>Links</u>

Carbon dioxide (Cont.)	
from tartaric acid	401
from tartronic acid	397
from unstable aldol	380
photosynthesis using isomeric	
carbon	490
prepn. during fermentation	107
reac. with allylene	70
with t-amyl Grignard reagent	252
with aniline and sulfur	771
with calcium hydride	13
with cyclopentyl Grignard reagent	549
with disodium acetylide	397
with Grignard reagent	242
with hydrogen in silent electric	
discharge	240
with isoamyl Grignard reagent	251
with magnesium and trimethylene	
bromide	386
with tetrahydro- β -naphthylamine	733
use in Grignard reac.	131
use in prepn. of pentamethylethanol	130
Carbon disulfide	457
reac, with alcohols	457

<u>Links</u>

with amines	171	
with ammonia	446	
with chlorine	457	
with ethylenediamine	459	
with hydrogen sulfide	13	
with sodium pinacolate	44	
with sulfur monochloride	92	
with water	457	
use in prepn. of dithiocarbamic acid	458	
of mustard oils	453	
Carbonic acid	426	651
Carbonic anhydride, see carbon dioxide		
Carbonitriles, see cyanides alkyl	413	
Carbonium ions, see also mechanism		
molecular rearrangement etc.		
formn. from isobutyl alcohol	83	
in acridine synthesis	802	
in 1,4-addn	56	
in addn. to olefins	313	346
to sodium arsonite	859	
in addn. of mercury salts to olefins	34	
in allylic shifts	97	
in esterification and hydrolysis	121	

<u>Index Terms</u>

<u>Links</u>

Carbonium ions, see also mechanism		
molecular rearrangement etc.		
formn. From		
isobutyl alcohol (Cont.)		
in formn. of potassium		
alkylsulfonates	152	
in isoprene polymerization	61	
in polymerization and alkylation	48	
in reac. of amines	172	
of guanidine	448	
of olefins	32	43
of pinenes	571	
of terpenes	577	
in rearrangements	84	
Carbon-mercury bonds	856	862
Carbon monoxide	420	
conv. to ethyl acrylate	421	
to formic acid	240	
to glycolic acid	340	
to metal carbonyls	421	
to methyl formate	412	
to phosgene	427	
electronic struct. of	409	
formn. from methane	14	

<u>Links</u>

Carbon monoxide (Cont.)		
from trimethylacetic acid	249	
Friedel-Crafts reac. with benzene	409	
from complex cyanides	411	
from oxalic acid	376	
from pyruvic acid	366	
from tartaric acid	401	
in prepn. of methanol	420	
nascent, aldol cond. with phenol	722	
oxidation to carbon dioxide	420	
prepn. from carbon dioxide	420	
from formic acid	241	420
from methane	420	
reac. with acetylene	70	
with alcohols	422	
with calcium hydride	13	
with diolefins	549	
with ethanol	246	
with Grignard reagents	422	
with hydrogen	420	
with hydrogen chloride	422	
with isoprene	60	
with methanol	242	

<u>Links</u>

29	
132	421
19	
421	
422	
420	
44	455
234	378
720	
93	
427	
15	
94	
92	
92	
457	
	 132 19 421 422 422 242 420 44 234 720 93 427 15 94 92 92 92

<u>Links</u>

Carbon tatrachlarida (Cant)			
Carbon tetrachloride (Cont.)			
reac. with alcoholates	425		
with alcoholic potassium			
hydroxide	92		
with aluminum iodide	93		
with ammonia	447		
with antimony trifluoride	92		
with benzene	718		
with iron	90		
with sulfuric acid, fuming	92		
use as a medicine	93		
use as a solvent	41	93	
use in fire extinguishers	92		
use in prepn. Of β-chloropyridine	784		
Carbon tetrafluoride	92	605	
Carbon tetrahalides	93		
Carbon tetraiodide	93	425	
Carbonyls	48	340	
Carbonyl chloride phosgene	427		
Carbonyl compounds	344	798	854
Carbonyl compounds, unsaturated	535		
Carbonyl group, see aldehydes			
and ketones	184	535	549
	855		

<u>Index Terms</u>	<u>Links</u>		
Carbostyril	703	798	
Carbowax	35		
Carboxyamino acids	517		
Carboxybenzene, see benzoic acid	691		
o-Carboxybenzoylformic acid, see			
phthalonic acid	708		
Carboxylation	748		
Carboxyl group	697	698	709
Carboxylic acids	238	711	754
Carboxylic esters	238		
Carboxylpolvpeptidase	515		
Carboxyl reactions	693		
β -Carboxy- γ -methylbutyrolactone			
see methylparaconic acid			
Carboxymethyl cellulose	274	496	
<i>n</i> -(β-Carboxymethyl)3,5 diiodo-4-			
pyridone, see diodone	786		
1-Carboxy-l-propyne, see			
methylpropiolic acid			
Carbromal	433		
Carbylamine	91		

418

644

Carbylamine reaction of primary amines 419

Carbylamines, isocyanides

Carbylamine test

<u>Index Terms</u>	<u>Links</u>		
Carbylsulfate	33	153	
Carcinogenic compounds	711	733	748
	750		
Cardiac aglucones	594		
Cardiac stimulant, metrazole	778		
Cardiazole, metrazole			
Carenes	535	557	568
Carnauba wax	132	286	
Carnaubyl alcohol	132		
Carone	535	564	568
Caronic acid	535		
Caro's acid	165	348	561
	626		
Carotenes	589		
Carotenoids	72	588	
Carpaine	813		
Carvacrol	552	564	671
Carvenone	568		
Carvomenthol	559		
Carvomenthone	563		
Carvone	552	557	559
	564		
Carvotanacetone	568		
Caryophyllene	540		

<u>Index Terms</u>	<u>Links</u>		
Caryophyllenic acid	540		
Casein	192	503	506
	512	519	
Casinghead gas	17		
Cassava starch	271		
Castor bean	814		
Castor oil	21	130	265
	310	353	
Castalysis, of furfural reacs. with nickel	755		
of mutarotation	473		
in decomposition of acetaldehyde	202		
in dehydration of <i>n</i> -propyl alcohol	202		
in hydrogenation of ethylene	31		
in isomerization of cyclopropane	530		
in oxidation of cysteine	580		
in reacs of alicyclic ring cpds.	525		
in reduction of pyridine	782		
of quinoline	797		
in thermal decomposition of acids	208		
stability of cyclopentane to	544		
Catalysts, acetyl peroxide	293		
alfin type	58		
copper chromite in hydrogenation	728	736	
copper-bismuth-silica	55		

<u>Links</u>

Catalysts, acetyl peroxide (Cont.)	
copper and silver	857
ethyl acetate	861
ferric chloride	740
for acetal formn.	199
for alcoholysis	343
for free radical polymerizations	52
for oxidation of crotonaldehyde	388
of methyl group in acetaldehyde	354
for reduction of esters	285
glass catalyst for enolization	358
in addns. to acetaldehyde	201
in conv. of ethanol to acetone	209
in decomposition of acids	204
in dehydration of aldol	227
in dehydration of <i>n</i> -amyl alcohol	204
in Fischer-Tropsch synthesis	421
in hydration of acetylene	194
in prepn. of mercury alkyls	855
in reac.of β -naphthol and aniline	737
in reduction of nitro arsonic acids	860
in Rosenmund reduction	206
in synthesis of phosgene	427
mercurous iodide	856

Links

Catalysts, acetyl peroxide (Cont.)		
nickel in hydrogenation	729	736
palladium for reduction		
of acid halides	290	
peroxides for polymerization	58	
protons from	122	
silica gel in esterification	283	
silver in prepn. of ethylene oxide	310	
sodium ethylate in addn. reac.	380	
sulfuric acid in prepn. of anhydrides	293	
Catalytic decarboxylation	692	
Catalytic oxidation		
of naphthalene vapor	706	
Cataphoresis	518	
Catasil	38	
Catechol, pyrocatechol	672	
Caterpillar repellent	627	
Cation exchange resin	631	
Cedrene	585	
Ceepryn	781	
Celanese	123	287
Celite	754	
Cellobiotol	326	

<u>Index Terms</u>	<u>Links</u>		
Cellobiose	473	482	489
	491		
epi-Cellobiose	482		
Cellobiose octa-acetate	495		
Cellohexaose	495		
Cellose, cellobiose			
Cellosize	36	496	
Cellosolve	35	311	
Cellotetraose	495		
Cellotriose	495		
Cells and cell tissues	513	517	519
Celluloid	496	579	
Cellulose	495		
conv. to formic acid	241		
to oxalic acid	376		
D-glueose in	473		
hydrolysis of	108	495	
introd. of cyanoethyl group	417		
pyrolysis of	475		
reac. with acetic anhydride	491		
solubility of	495		
Cellulose acetate	284	662	
Cellulose acetobutyrate	496		
Cellulose diacetate	496		

<u>Index Terms</u>

<u>Links</u>

Cellulose dinitrate	496		
Cellulose dipropionate	496		
Cellulose propionate	293		
Cephaeline	829		
Cephalin	317	326	
Cerebronic acid	342		
Cerebrosides	482		
Cerelose	475		
Ceresin	10		
Ceric sulfate	203		
Cerotene	47		
Cerotic acid	239		
Ceryl alcohol	132		
Ceryl cerotate	132	286	
Cetane	10		
Cetane number	25		
Cetene	10	47	643
Cetoleic acid	268		
Cetyl alcohol, ethal	132		
Cetyl palmitate	286		
Cetyl pyridinium chloride, see ceepryn	781		
Cetyl sodium sulfate	132		
Cevine	846		
Cevitamic acid	375		

Links

Chain lengthening	183	
"Chain" reaction	24	
Chalcone, see benzalacetophenone	681	
Charcoal willow	709	
Chaulmoogric acid	547	551
Chelate rings, see also coordinate links	685	
Chelate rings, in acetylacetone	358	
in carotenoids	590	
in dicinnamalacetone	231	
in relation to volatility	668	685
in trifluoracetoacetic acid	366	
of acetoacetic ester	368	
of.β-benzil monoxime	718	
of diacetylresorcinols	685	
of salts of acetylacetone	359	
Chelerythrine	831	
Chelidamic acid	785	
Chelidonic acid	778	785
Chelidonine	831	
Chemigum	417	
Chenodeoxycholic acid	591	
Cherry gum	469	
Chicago acid	737	
Chin-, quin-		

<u>Index Terms</u>	<u>Links</u>		
Chinaldine, quinaldine			
Chinese wax	47	132	286
Chinese wood oil	271		
Chinofon	801		
Chinosol	799	801	
Chinovose, quinovose	472		
Chitin	481	488	
Chitosamine, glucosamine	488		
Chlor-, chloro-			
Chloral	110	206	305
	784		
Chloral hydrate	185	206	275
	302		
Chloralide	207	279	
Chloramine-B	629		
Chloramine-T	629		
Chloranil	687	688	
Chloranilamide	688		
Chlordane	546		
Chlorella	490		
Chloretone, trichloro-t-butylalcohol	211		
Chlorex, β , β '-dichloroethyl ether	142		
Chlorides	74		
Chlorination, alpha	276		

<u>Links</u>

Chlorination, exhaustive	707		
Chlorination, of acetic acid	274		
of acetic anhydride	293		
of acetophenone	681		
of <i>p</i> -acetotoluidide	621		
of acetylene	93		
of acids	276		
of aldehydes	289		
of allyl chloride	54		
of benzene	598	617	625
of butadiene	56		
of <i>n</i> -butane	18		
of <i>n</i> -butyl chloride	83		
of chlorobenzene	622	627	
of β-chloropropanoic acid	277		
of diisobutylenes	46		
of dioxan	313		
of esters	276	287	
of ethers	140		
of ethylene	31		
of ethylene chloride	92		
of ethylidene chloride	92		
of furan	754		
of gas obtained in cracking process	30		

<u>Links</u>

Chlorination, of acetic acid (Cont.)		
of <i>n</i> -heptane	21	86
of isoamyl chloride	59	
of isobutane	18	
of isobutylene	40	98
of isopentane	41	
of methane	92	
of mixed <i>n</i> -pentane and isopentane	20	
of mustard gas	147	
of naphthalene	732	
of neohexane	85	
of neopentane	20	75
of paraffins	19	
of paraffin wax	26	
of pentanes	20	
of perchloroethane	94	
of phenol	666	
of propane	89	315
of propanoic acid	277	
of propylene	37	96
of propyline	37	
of pyridine	783	
of succinimide	382	
of tetrahydrofuran	754	

<u>Links</u>

Chlorination, of acetic acid (Cont.)		
of <i>m</i> -xylene	614	
rates of <i>p</i> -, <i>sec</i> -, and <i>tert</i> -hydrogens 19)		
reac. with propane	315	
with selenium monochloride	33	
with sulfuryl chloride	288	
Chlorine		
addn. to anthracene	743	
to carbon monoxide	409	
to hydrogen cyanide	409	
reac. with acetylene	67	
with alcohol	206	
with aldehydes	202	206
with alkanes	2	
with benzene	730	
with <i>n</i> -butane and sulfur dioxide	18	
with carbon monoxide	427	
with cyclopropane	530	
with ethane	16	
with ethanol	110	
with ethers	140	
with hydrocarbons	73	
with isopentane	73	
with methane	15	73

<u>Links</u>

Chlorine (Cont.)			
with naphthalene	730		
with neohexane	75		
with neopentane	75		
with paraffins	94		
with <i>n</i> -pentane	73		
with propane	17		
with pyridine	783		
replacement of, in pyridine ring	784		
use in prepn. of allyl chloride	135		
of pyridine hypochlorite	783		
use in sulfochlorination of alkanes	26		
use in synthesis of chlordane	546		
Chlorine water	70	859	
Chloroacetaldehyde	307	336	770
Chloroacetaldehyde acetal	365		
Chloroacetamide	860		
Chloroacetanilide	645		
Chloroacetic acid	101	274	340
	378	502	
Chloroacetic ester	212		
Chloroacetone	360	770	
w-Chloroacetophenone	681		
Chloroacetyl chloride	293	513	811

Links

l-Chloro-2-acetyl cyclohexane	554	
Chloroacetyl glycine	513	
Chloroacetyl-o-nitroaniline	515	
α-Chloroacrylic acids	277	279
1-Chloro-aldehydo-n-galactose		
hexaacetate	483	
γ-Chloroallyl chloride	101	
Chloroamine	169	
N-ChIoro amino acids	205	
<i>m</i> -Chloroaniline	646	800
Chloroanthracene	743	
Chloroaurates	174	
Chloroauric acid	171	643
Chlorobenzene, phenylchloride	625	
hydrolysis of	666	
nitration of	625	
prepn. from benzene	598	
reacs. of	619	
reac. with ammonia	643	
with chloral	207	
sulfonation of	625	
use in prepn. of diphenyl ether	665	
of phenol	619	
of o-phenylene diamine	652	

<u>Links</u>

N-Chlorobenzene sulfonamide	629	
<i>m</i> -Chlorobenzoic acid	695	
l-Chloro-2-bromoethane, ethylene		
chlorobromide		
l-Chloro-2,3-butadiene	72	
2-Chloro-1,3-butadiene, chloroprene		
Chlorobutanol, chlorotone		
Chlorobutanes	18	
Chlorobutenes	57	97
β-Chlorobutyric acid	260	
Chlorocarbonic acid, chloroformic acid		
Chlorocrotonic acids	279	
α-Chlorocrotonaldehyde	207	
β-Chlorocrotonic ester	371	
Chlorocyanogen, cyanogen chloride	414	
Chlorocyclopentene	545	547
Chlorodifluoromethane	90	
10-Chloro-5,10-dihydrophenarsazine	861	
Chlorodimethylbutanes	85	
1-Chloro-2,3-epoxypropane		
epichlorohydr.n		
β-Chloroethane sulfonyl chloride	87	
Chloroethanoic acid		
monochloroacetic acid		

<u>Links</u>

2-Chloroethanol, ethylene chlorohydrin	313	
β -Chloroethyl alcohol, ethylene		
chlorohydrin	313	
o-Chloro-ethylbenzene	626	
Chloroethyl vinyl ether	258	
Chloroform, aldol cond with acetone	342	
conv. to orthoformates	422	
formn. from methane	15	
from trichloroacetic acid		
and esters	275	276
in carbylamine reac.	419	
prepn. from acetone	90	
from carbon tetrachloride	90	92
from ethanol	90	
reac. with acetone	91	211
with alcohol and sodium	91	
with alcoholic potassium		
hydroxide	91	
with alkaline arsenite solution	87	
with ammonia	409	
with malonic ester	393	
with methyl ethyl ketone	91	
with 1-olefins	91	
with phenols	667	

Links

Chloroform, aldol cond		
with acetone (Cont.)		
with primary amines	91	172
with pyrrole	758	
with sodium hydroxide	240	
with tetrachloroethylene	95	
solvent for ozonolysis	364	
use as an anesthetic	91	
use in prepn. of β-chloropyridine	784	
Chloroformates, alkyl	430	
Chloroformic-acid, chlorocarbonic acid	274	428
Chloroformic esters	426	699
Chlorofumaric acid	391	
Chloro-furan	754	
Chlorogenic acid caffeic acid		
Chloroheptanes	21	86
Chlorohexanes	85	
Chlorohydrins	344	538
2-Chloro-1-hydroxy-2-propene	54	
1-Chloro-3-hydroxypropanone	54	
Chloroimides	688	
l-Chloro-2-iodoethylene	100	
5-Chloro-7-iodo-8-hydroxyquinoline		

see vio-form

Links

Chloroiodomethane sulfonic acid	153		
l-Chloro-2-iodosoethylene	100		
l-Chloro-2-iodoxyethylene	100		
α-Chloroieocrotonic acids	279	352	
Chloroisocrotonic ester	261		
Chloromaleic acid	391		
Chloromaleic anhydride	57		
Chloromercuribenzoic acid	695		
Chloromercuriphenols	668	863	
Chloromercurithiophene	759		
Chloromercuritoluene	864		
Chloromethanoic acid			
chloroformic acid			
Chloromethylation	193	621	731
Chloromethylbutanes	41	118	
Chloromethyl esters	192		
Chloromethyl ether	142		
Chloromethyl ethyl ketone	336		
Chloro-methylmercaptoethane	508		
Chloromethylnaphthalene	731		
Chloronaphthalenes	732		
1-Chloro-1-nitrosoethane	165		
Chloropentanes	117	122	124
Chlorophenol	627	668	

<u>Index Terms</u>	<u>Links</u>		
Chlorophyll	137	186	794
Chloropicrin	164	425	447
3-Chloropiperidine	784		
Chloroplatinates	174		
Chloroplatinic acid	171	643	
Chloroprene	72	99	
1-Chloro-2,3-propandiol,α-glycerol			
monochlo- rohydrin			
1-Chloropropanes	17		
2-Chloropropanoic acid,.α-chloro-			
propionic acid			
1-Chloro-2-propanol, α-propylene			
chlorohydrin	37	314	
2-Chloro-1-propanol,β-propylene			
chlorohydrin	314		
3-Chloro-1-propanol, trimethylene			
chlorohydrin	278	315	
1-Chloro-1-propene	279		
Chloropropionic acids	276	277	
β-Chloropropionyl chloride	229		
3-Chloropropyl alcohol	629		
γ -Chloropropyl- <i>p</i> -toluenesulfonate	80		
Chloropyridines	758	782	
Chloroquine	800		

<u>Index Terms</u>	<u>Links</u>		
Chlorosuccinic acid	398	506	
Chlorosulfonic acid	33	152	631
	654		
Chlorotoluenes	612	620	626
N-Chloro-p-toluenesulfonamide	629		
Chlorotrinitrobenzene	627		
γ-Chloro-γ-valerolactone	372		
Chlorovinyl dichloroarsine	68	850	
Cholaic acid	591		
Cholane	590		
Cholane series	590		
Cholanic acid, cholaic acid	591		
Cholanthrene	750		
Choleic acids	591		
Cholestane	592		
Cholestanols	592		
Cholesterol	591	592	
Cholic acid	591		
Choline	317	327	505
	509		
Choline aldehyde hydrate	328		
Choloidanic acid	591		
Chondocurine	840		
Chondroitic acid	481		

<u>Index Terms</u>	<u>Links</u>		
Chromane	793		
Chromatographic adsorption	809		
Chrome violet	722		
Chromic acid	2	361	697
	726	832	
Chromic anhydride	739		
Chromium trioxide	729	798	
Chromone	753	793	
Chromophore groups	354	520	661
Chromoproteides	519		
Chromotropic acid	737		
Chromous chloride	66		
Chromyl chloride	575		
Chrysazin, chrysazol, 1,8-			
dihydroxy anthraquinone	746		
Chrysene	592	748	
Chrysin	794		
Chrysofluorene	749		
Chrysoidines	661		
Chuyu	506		
Cincholoiponic acid	832		
Cinchomeronic acid	801	832	
Cinchona alkaloids	816	831	
Cinchonicine cinchotoxine			

Links

Cinchonidine	833	
Cinchonine	832	
decomposition of	393	
quinuclidine portion of	818	
use in prepn. of cinchoninic acid	799	
use in resolution of malic acid	398	
of racemic acid	399	
of tartaric acids	401	
Cinchoninic acid	799	832
Cinchoninone	832	
Cinchotoxine	832	
Cincophen	801	
Cineoles	61	559
Cinerins I and II	548	
Cinnamaldehyde	305	
Cinnamalmalonic ester	269	
Cinnamene, styrene		
Cinnamic acid	703	
nitration of	681	
reac. of	616	
substitution products of	731	
use in prepn. of phenyl acetaldehyde	679	
of truxillic acids	540	
Cinnamic acid dibromide	627	

Links

Cinnamic aldehyde	678	680
Cinnamic anhydride	795	
Cinnamon oil	680	
Cinnamoyl cocaine	822	823
Cinnamyl alcohol	676	680
Cis-trans isomers, citraconic and		
mesaconic acids	392	
of alicyclic cpds.	527	
of 2-butene	76	
of cyclopentandiol	547	
of cyclopentane polycarboxylic acids	549	
of 1,4-dibromo-2-butene	320	
of dicarboxylic acids	533	539
of 1,2-dichloroethane	100	
of 1,3-dichloro-2,4-hexadiene	101	
of di-cyclopentadiene	546	
of dipeptide	516	
of disulfoxides	150	
of glutaconic acids	393	
of oximes	235	
of piperylene	63	
maleic and fumaric acids	388	
Citraconic acid	392	
Citraconic anhydride	392	407

<u>Index Terms</u>	<u>Links</u>		
Citral	228	231	269
	565		
Citramalic acid	399		
Citric acid	392	405	
Citric acid triethyl ester	407		
Citronellal	137	228	559
	563		
Citrulline	505		
Citrus fruit	794		
Claisen's alkali	665		
Claisen condensation	238		
of esters	284		
of ethyl acetate	250		
of ethyl isobutyrate	248		
of ethyl succinate	381		
of a formic ester and acetone	363		
of ketones with esters	212		
of o-nitrotoluene with ethyl oxalate			
and sodium ethylate	636		
reversal of	367		
use in prepn. of ethyl 'acetoacetate	366		
of ketonic acids and esters	372		
of polyhydroxychalcones	794		
use of tritylsodium in	372		

Links

Claisen rearrangement	667		
Clavicin, patulin	781		
Cleavage, general	864		
of arsenic-arsenic bond	860		
of carbon-arsenic bond	860		
of carbon-mercury bond	862		
of methyl-n-propylacetoacetic ester	251		
of α,β -olefinic acids	253		
of trigonelline	814		
of trihalogenated acetone	242		
Clemmensen reduction	210	256	
Clupanodonic acid	271		
Clupeine	505	518	
Cluytinic acid	239		
CMC carboxymethylcellulose			
CN, chloroacetophenone	681		
Coagulation of proteins	518		
Coal	11	602	709
Coal tar	545	597	613
	664	762	
source of acenaphthene	741		
of acridine	802		
of anthracene	742		
of carbazole	767		

Links

Coal tar	r (Cont.)			
(of dimethylpyridines	78	39	
(of indene	72	27	
(of isoquinoline	80)1	
(of methylquinoline	79	98	
(of naphthalene	72	28	
(of phenanthridine	80)3	
(of pyridine	78	31	
(of pyridine homologs	78	37	
(of qunioline	79	96	
(of thiophene	75	58	
(of trimethybenzenes	61	5	
Cobalt		42	570	736
Cobalt t	trifluoride	ç	94	
Cobefri	ne	81	2	
Coca al	kaloids	54	40	
Cocaine	2	81	8 822	
Coca le	aves	82	22	
Coclaur	rine	83	37	
Cocoa		44	14	
Cocoan	ut oil	13	30 253	1
Cocosit	ol	55	59	
Codami	ine	83	37	
Codeine	8	84	43	

<u>Index Terms</u>

Links

Cadainana	844	
Codeinone		
Coenzyme R, biotin	761	
Coenzymes	790	808
Coffee	444	
Colamine, mono-ethanolamine	327	
Collagen	519	
Collidines, trimethylpyridines	789	
Colloidal	516	
Colophony	709	
Color, see dyes, chromophore		
auxochrome		
Color		
by Angeli-Rimini reac.	190	
from diphenylamine	651	
in α -ketoaldehydes	363	
in Schiff's test	191	
Liebermann's reac.	667	
of acenaphthene	741	
of acenaphthene and acenaphthylene	741	
of aliphatic nitroso cpds.	165	
of <i>p</i> -aminotriphenylcarbinol	721	
of anthracene	742	
of azoxybenzene	660	
of carotenoids	588	

<u>Links</u>

Color (Cont.)	
of dibenzalcyclohexanone	561
of bis-diphenylenethylene	715
of ferric chloride and	
hydroxamic acids	236
of fulvenes	545
of glyoxal	354
of hydrazines in solution	661
of hydroxytriarylcarbinols	720
of ketoaldehydes	363
of ketoketones	234
of leuco base of Malachite Green	725
of naphthoquinones	738
of nitrophenol salts	668
of phenolphthalein	723
of phenols and ferric chloride	666
of phenolsulfonephthalein	724
of pseudo nitroles	161
of quinhydrone	685
of quinoid struct.	635
shown by double bonds and tetranitro-	
methane	163
Color test for formaldehyde	193
Colubrines	846

Links

Complexes, see also coordination, boric	
acid complexes, etc.	
Complexes, in esterification	122
of boric acid with dihydroxy maleic acid	406
of quanidine with hydrogen ions	447
of iron cyanides	410
of metals with tartaric acid	402
of oxalic acid	377
of sodium nitroprusside	413
Compounds with single carbon atom	419
Condensations, see also Aldol	
Claisen etc.	
by Grignard reagents	854
Diels-Alder type	788
in Grignard synthesis	129
in prepn. of folic acid	808
of gnoscopine	838
of isoquinoline alkaloids	835
in quinine synthesis	834
Michael	287
of acenaphthene and succinic	
anhydride	741
of acetaldehyde and diacetoneamine	824
of acetoacetic ester, internal	370

This page has been reformatted by Knovel to provide easier navigation.

387

<u>Links</u>

Condensations, see also Aldol	
Claisen etc. (Cont.)	
of acetone	210
with aromatic cpds.	217
with ethyl acetate	358
with ethyl oxalate	778
with a formic ester	363
of acetylacetone with <i>p</i> -	
nitrosodimethylaniline	361
of alcohols with toluene	613
of aldehydes with aliphatic	
nitro cpds.	164
with hippuric acid	498
with toluene	613
of aliphatic nitro cpds, with	
formaldehyde	162
of amines in Knoevenagel reac.	380
of benzaldehyde	677
with phenol	222
of benzyl cyanide with ethyl	
carbonate	379
of <i>n</i> -butyraldehyde with acetone	21
of capryl alcohol to di- and tri-	
capryl alcohols	130

<u>Links</u>

Condensations, see also Aldol	
Claisen etc. (Cont.)	
of cyclohexanone and malonic ester	380
of diacetyl	357
of dibutyl oxalate and mesityl oxide	780
of diketones	361
of dimethylaniline with phosgene	648
of esters with sodium ethylate	405
of.ethoxymethylenemalonic	
ester.with <i>m</i> -chloraniline	800
of ethyl acetate with sodium ethylate	366
of ethyl succinate	381
of formaldehyde in plants	186
of formaldehyde to formose	471
of formaldehyde with acetone	211
with phosphine	189
with urea	192
of formic and acetic esters	364
of guanidine and formylacetic ester	806
of a hydrazone, intra-molecular	358
of indole, formaldehyde	
dimethylamine	763
of isatin and indoxyl	766

<u>Links</u>

Condensations, see also Aldol	
Claisen etc. (Cont.)	
of ketones with cyanoacetic acid	481
of methylamine with levo-	
phenylacetyl-carbinol	811
of nitriles	416
of nitrogen bases and acetaldehyde	200
of oxalic ester to decapentaene	396
of phenolsulfonic acids and	
formaldehyde	631
of phthalic anhydride with phenol	723
of picolines with aldehydes	
and ketones	788
of pinacolone with benzaldehyde	222
of propionaldehyde	202
of quinaldine	798
of thiophene with formaldehyde	759
of <i>dl</i> -tryptophan and acetaldehyde	819
of urea and malonic ester	380
use of zinc chloride in Gattermann	
synthesis	423
Condensed ring systems	816
Conductivity	518

Links

Configurations, assignment of	118	400
effect on properties of saccharic acids	404	
of D-arobinose	470	
of aldopentoses	467	470
of aldotetroses	463	
of D-glucoheptonic lactones	351	
of glyceric acids	348	
of D-glyceric aldehyde	350	462
of α - and β -heptonic acids	351	
of hexoses	472	
of lactic acids	341	348
of D-lyxose	470	
of 1-methyl-bicyclobutan-2,3,4,-		
tricarboxylic acids	536	
of monoses	462	
of rhamnose	471	
of tartaric acids	400	
of tetroses	464	
of truxillic acids	541	
prediction of	351	
standard for assignment of	118	397
use of symbols	118	403
Congo brown G	663	
Conhydrine	814	

<u>Index Terms</u>	<u>Links</u>		
Coniceines	814	818	
Coniferin	682		
Coniferyl alcohol	682		
Coniine	789	809	814
	825		
Conjungation, alpha effect	225		
Conv. from unconjugated systems	63	64	
effect of in thiophene derivs.	759		
in aldehydes and ketones	224		
in carotenoids	590		
in cyclopentadiene and derivs.	545		
in dibenzalcyclohexanone	561		
in Diels-Alder synthesis	225		
in diolefins	54	63	617
in heterocyclic cpds	752		
Conjugation, in nitro olefins	164		
in purines	439		
in pyridines	781	788	
in pyrimidines	416		
in quinoline struct.	797		
in quinoxaline	355		
in stabilizing benzene rings	606	619	
in unsaturated amines	179		

<u>Links</u>

Conjugation, in nitro olefins (Cont.)		
in vinylacrylic acid	268	
mechanism for addition to		
a conjugated system	224	
and vinylogy	225	227
Constant boiling mixtures		
see azeotropes		
Conyrine, α-propylpyridine	815	
Coordinate linkages, effect on		
Dielectric constant	153	
in acetoacetic ester	368	
in acid dimers	237	
in acids, etc.	156	
in aliphatic nitro cpds.	159	
in beryllium cpds.	360	
in methanol-boron trifluoride cpd.	106	
in nitrates	157	
in oxonium cpds.	129	
in phosphates	157	
in sulfoxides	149	
in triethyl amine-boron fluoride cpds.	176	
in formn. of hydroxamic acid	162	

<u>Links</u>

Coordination compounds, acetylacetone	358
methyl ether with boron trifluoride	139
nickel cpd. of dimethyl glyoxime	357
oxalates	377
Coordination number, in ferro- and	
ferriccyanides	410
Coordination theory, applic.	
to ammonium cpds	167
Copaene	583
Copaiba balsam	585
Co-polymerization, see also	
polymerization	417
Copper, action on 2-iodo-3-	
nitrobenzoic acid	710
as catalyst in dehydration	204
in oxidation of cysteine	508
in prepn. of alkyl silicon cpds.	857
cpd. of acetoacetic ester	369
in Gattermann reac. With	
diazonium salts	655
reac. with acetylacetone	359
salt of glycine	502
spectrophotometric detr. of	378

<u>Links</u>

Copper, action on 2-iodo-3-		
nitrobenzoic acid (Cont.)		
use in prepn. of acridine	802	
of diarylmercury cpds	862	
of diphenylmercury	862	
Copper alkyl phthalates	145	
Copper chromite		
catalyst for reduction of acetals	199	
of dihydropyran	780	
of esters	131	
of ethyl, diethyl acetate	125	
of furfuryl	754	755
of lignin-containing materials	558	
of palmitic and stearic acids	254	
Copper maleate isomerization		
to fumarate	389	
Copper phthalocyanine	706	
Coprostanol, coprosterol, pseudo-		
cholestanol	591	593
Coprosterol coprostanol		
Coptisine	828	
Corallin yellow	722	
Coramine	790	
Cori ester	478	

<u>Index Terms</u>	<u>Links</u>		
Corn	519		
Corn oil	270		
Corn sugar	475		
Corn syrup	475		
Coronene	749		
Corrosion inhibitors	170		
Cortisone	596		
Corybulbine	829		
Corycavamine	830		
Corycavidine	830		
Corycavine	830		
Corydaldine	828		
Corydaline	818	828	
Cotarnine	838		
Cotton	132	495	662
Cottonseed hull bran	468		
Cottonseed meal	493		
Cottonseed oil	5	28	270
Coumaric acid, trans-o-hydroxy-			
cinnamic acid	704		
Coumarinic acid	704		
Coumarins	371	704	762
	793	796	
Coumarones, benzofurans	371	751	762

Links

Coupling reactions			
of aromatic halides	619		
of diazonium salts	655	661	666
	787		
of Grignard reagents	854		
of pyridines	787		
use in prepn. of chrysoidines	661		
of dyes	661		
Cracking, of acetate of pinacolyl alcohol	55		
of cottonseed oil	28		
of diacetate of 2,3-butylene glycol	55		
of ethane	30		
of higher hydrocarbons	26		
of lactic ester	342		
of <i>dl</i> -limonene	59		
of methacrylate polymers	53		
of petroleum fractions	28	36	
of propane	30		
Cream of tartar	399		
Creatine	448	503	505
Creatine phosphoric acid	505		
Creatinine	434	448	506
Cresols	544	549	670
	722		

<u>Index Terms</u>	<u>Links</u>		
<i>m</i> -Cresols	441	626	639
o-Cresols	670		
<i>p</i> -Cresols	657	671	
Cresoline	671		
Cresylic acid	9	670	
Critical solution temperature	1	643	
Crocein acid	736		
Crocetin	397	589	
Croconic acid	549		
Crotonaldehyde crotonic aldehyde	225		
formn. in aldol cond.	197		
oxidation to crotonic acid	259		
prepn. from acetaldol	334		
from acetylene	68		
from paraldol	334		
reac. with acetic acid	113		
with ethylene glycol	305		
with malonic acid	265	269	
reduction of	113	203	
use in prepn. of 1,2,3-butantriol	319		
of <i>n</i> -hexyl alcohol	124		
of α -methylquinoline	797		
Crotonic acid, β-methyl-acrylic acid	259	272	
Crotonic aldehyde, crotonaldehyde			

<u>Index Terms</u>	<u>Links</u>		
Crotonic anhydride	261		
β-Crotonolactone	232		
Crotononitrile	417		
Crotonyl alcohol, crotyl alcohol			
Crotonylene	71		
Crotyl alcohol	97	136	227
Crotyl bromide	97		
Crotyl chloride	618		
Crotyl halides	97		
Crum, Brown and Gibson rule	622		
Crustacea	481		
Cryptomeradol, machilol	584		
Cryptopine	827	829	
Crystallization	309	401	
Crystallization inhibitor	10		
Crystal violet	726		
C.S.C., Commercial Solvents Corp.			
New York City			
C.S.T., C.T.S., Critical Solution			
Temperature			
Cumene	615		
Cumic acid, p-isopropylbenzoic acid	616		
Cumylic acid, durylic acid	701		
Cuprene	68		

<u>Index Terms</u>	<u>Links</u>		
Cupreine	835		
Cupric bromide	81		
Cupric chloride	15	726	
Cupric cyanide	407		
Cupric hydroxide	316		
Cuproacetoacetic ester	779		
Cuprous acetylides	68		
Cuprous chloride	19	55	222
	713		
Cuprous compounds	500		
Cuprous cyanide, formn. of	407		
reac. with alkyl halides	79		
with halides	414		
use in anti-fouling paints	407		
use in prepn. of acyl cyanides	290		
of allyl cyanide	418		
of benzoyl cyanide	693		
of phenyl cyanide	620		
Cuprous methylacetylide	72		
Cuprous oxide	402	643	732
Curtius rearrangement	168	299	451
	694		
Cuscohygrine	813		
Cusparine	830		

<u>Index Terms</u>	<u>Links</u>		
Cutting oils	308		
Cyamelide	430	449	
Cyameluric acid	448		
Cyanalkines, pyrimidines	416		
Cyanamide	433	445	447
	452		
Cyanamidedicarboxylates	428		
Cyanic acid	134	430	433
	443	448	
Cyanides, alkyl	169	413	419
Cyanides, inorganic	407	539	
Cyanides, tertiary	416		
Cyanidin chloride	796		
Cyanine dyes	798		
Cyanoacetic acid	418		
Cyanoacetic ester	198	224	269
	444		
Cyanobenzoic acids	696		
Cyanocarbonic esters	377		
l-Cyanocyclobutane-1,2-			
dicarboxylic ester	387		
Cyanoesters	426		
Cyanoethyl group	417		
Cyanogen	376	407	

Links

Cyanogen and inorganic cyanides	407		
Cyanogen and its derivatives	407		
Cyanogen bromide	147	173	451
Cyanogen chloride	412	447	451
Cyanogen iodide	451		
Cyanoguanidine, dicyandiamide	447		
Cyanohydrins	213		
conv. to hydroxyvaleric acids	342		
from hydrogen cyanide	201	412	
in α -amino acid synthesis	498		
reac. with aldehydes	774		
Cyanohydrin of acetaldehyde	341		
Cyanohydrin synthesis of new			
asymmetric carbon	350		
of aldonic acids	351		
of citric acid	407		
of α-cocaine	823		
of D-gulonic acid	468		
of higher monosaccharoses	487		
of α -hydroxyvinylacetic acid	352		
of D-idonic acid	468		
of D-manuoheptonic acid	482		
of trihydroxyisobutyric acid	350		
L-xylose in	483		

Links

Cyanohydroquinone	686		
"Cyanol" ("Kyanol"), aniline	642		
γ-Cyanopropionic acid	415		
Cyanopyridines	408	784	813
Cyanoquinone	686		
Cyanuric acid	428	448	451
Cyanuric chloride	451		
Cyclic compounds	347	523	
Cyclic ketones	386		
Cyclic quaternary compounds	178		
Cyclic sesquiterpenes	583		
Cyclization	61	341	731
	815		
Cyclobarbital	436		
Cyclobutadiene	537		
Cyelobutandiones	539		
Cyclobutane	537		
Cyclobutane amide	537		
Cyclobutane carboxylic acids	537	539	
Cyclobutane carboxylic esters	537		
Cyclobutane compounds	385	537	
Cyclobutane-1,2-dicarboxylic acid	387		
Cyclobutane dicarboxylic anhydride	539		

<u>Links</u>

Cyclobutan-1,3-dicarboxylic-2,4-		
diacetic acids	543	
Cyclobutanol	526	537
Cyclobutanone	531	539
Cyclobutene	537	
Cyclobutylamine	537	
Cyclobutyl bromide	526	
Cyclobutyl carbinol	526	537
Cyclobutyl methyl ketone	539	
Cyclo compounds, see also		
cyclolactoles, Lactones, etc.		
α-Cyclogeranic acid	270	
Cyclogeraniol	61	
Cyclogeraniolenes	554	
Cycloheptadiene	527	
Cycloheptane	526	
Cycloheptanone	527	
1,3,5-Cycloheptatriene	175	
Cycloheptatrienecarboxylic ester	610	
Cycloheptyl iodide	526	
Cyclohexadienes	391	555
Cyclohexandiols	558	

Links

Cyclohexane, hexahydrobenzene	553		
alkylation of olefins	51		
change in ring size	526		
C.T.S. of	643		
isomerization of	544		
occurrence of	523		
"seat" and "boat" forms of	527		
Cyclohexane derivatives	551		
Cyclohexane carboxylic acids	283	566	
Cyclohexanhexone hexaketocyclohexane			
Cyclohexanol	385	547	558
Cyclohexanone	527	558	561
	778		
Cyclohexantriols	558		
Cyclohexene	545	554	643
Cyclohexen-dione	563		
Cyclohexylamine	645		
Cyclohexylidene acetic acid	529		
Cyelohexyl iodide	526		
Cyclonite, trimethylenetrinitriamine			
RDX	189		
1,3,5-Cycloheptatriene	175		
Cycloheptatrienecarboxylic ester	610		
Cycloheptyl iodide	526		

Links

Cyclohexadienes	391	555	
Cyclohexandiols	558		
Cyclohexane, hexahydrobenzene	553		
alkylation of olefins	51		
change in ring size	526		
C.T.S. of	643		
isomerization of	544		
occurrence of	523		
"seat" and 'boat" forms of	527		
Cyclohexane derivatives	551		
Cyclohexane carboxylic acids	283	566	
Cyclohexanhexone			
hexaketocyclohexane			
Cyclohexanol	385	547	558
Cyclohexanone	527	558	561
	778		
Cyclohexantriols	558		
Cyclohexene	545	554	643
Cyclohexen-dione	563		
Cyclohexylamine	645		
Cyclohexylidene acetic acid	529		
Cyclohexyl iodide	526		
Cyclonite, trimethylenetrinitriamine			
RDX	189		

Links

~			
Cyclooctadienes	99		
Cyclo paraffins, alicyclic compounds	523		
Cyclopentadecanone	348		
Cyclopentadiene	545		
comparison with purine	439		
introduction of cyanoethyl group	417		
reaction with acrylic ester	576		
with maleic anhydride	58	391	
with quinone	687		
Cyclopentandiol	547		
Cyclopentane	523	544	547
Cyclopentane carboxylic acids	549		
Cyclopentane compounds	544		
Cyclopentanol	544	547	
Cyclopenanones	60	385	538
	544	574	
Cyclopentanones, methylated	549		
Cyclopentanone carboxylic esters	387	544	
Cyclopentanpentone see Pentaketo-			
cyclopentane	549		
Cyclopentene	51	356	537
	545		
Cyclopentene compounds	544		

Links

Cuelementenenes	548	609	
Cyclopentenones		009	
Cyclopentyl alcohol, see cyclopentanol	547		
Cyclopentyl bromide	526		
Cyclopentylcarbinol xanthate	545		
Cyclopentyl Grignard reagent	549		
Cyclopolyolefins	68		
Cyclopropane	89	310	530
	533		
Cyclopropane carboxylic acids	527	532	
Cyclopropane compounds	84	530	769
Cyclopropane homologs	530		
Cyclopropane ring	532	535	
Cyclopropanone	462	530	531
Cyclopropanone hemiacetal	531		
Cyclopropanone hydrate	531		
Cyclopropene	531		
Cyclopropyl alcohol	316	530	
Cyclopropyl amine	531		
Cyclopropylcarbinol	526	532	537
Cyclopropyl chloride	530		
Cyclopropyl cyanide	532		
Cycloversion process	9		

Links

Cymene, p-cymene, p-		
methylisopropylbenzene	615	
from carvacrol	671	
from citral	228	
from α -pinene dibromide	572	
hydrogenation to <i>p</i> -menthane	553	
oxidation of	616	708
prepn. from camphor	580	
struct. of	557	
Cymogene	7	
Cypreine	518	
Cysteic acid	508	
Cysteine	503	507
Cystine	508	
compared to methionine	509	
formn. from cysteine	507	
in animal body	517	
in hemoglobin	520	
in insulin	506	
in proteins	512	
Cystine compounds	514	
Cytisine	817	826

<u>Links</u>

D

D-, designation referring to configuration	462		
d, density			
D- and L-	118		
2,4-D	274		
Dahlia roots	485		
Damascenine	810		
Daphnetin, see aesculetin			
Datiscetin	795		
Daturic acid, margaric acid	255		
Dauricine	841		
Daxad	11	734	
DD	101		
DDM	713		
DDT	207		
Decahydronaphthalene, decalin	643		
Decahydroquinoline	797		
Decalin	730		
Decamethylene bromide	90		
<i>n</i> -Decane	1	23	25
Decanes	26		
<i>n</i> -Decanoic acid	253	310	
Decapentaene-1,10-dicarboxylic acid	396		

<u>Links</u>

Decarboxylation, of acetic			
and butyric acids	218		
of acetic and <i>n</i> -valeric acids	221		
of acetoacetic acids	219		
of acetoacetic ester deriv.	360		
of acetylene dicarboxylic acid	272		
of acids by soda lime	367		
of acridinic acid	799		
of adipic acids	544		
of alkylidenemalonic esters	388		
of amino acids	504	509	511
of calcium salt of teresantalic acid	582		
of citric acid	392		
of 1-cyanocyclobutane-1,2-			
dicarboxylic			
ester	387		
of cyclobutane carboxylic acids	539		
of cyclopropane carboxylic acids	533		
of dehydroacetic acid	780		
of 3,5-dicarboxy-2,6-			
dimethylpyridine	789		
of 3-ethylquinoline-2-			
carboxylic acid	799		
of hexuronic acids	375		

<u>Links</u>

223
765
545
378
780
388
381
383
864
220
806
768
790
365
397
811
811
800
374
795
640
265

<u>Links</u>

Decomposition, see also pyrolysis	
decarboxylation, etc	
of acetoacetic acid	366
of alkyl boranes by acids	857
of aluminum alkyls	857
of arsenobenzene	860
of α,β -dichloroethyl ether	770
of dihydroxymaleic acid	406
of dimethylhydrazine	181
of fats	225
of glycidic esters	212
of nitroglycerin	405
of oxazole ring	774
of ozonides of olefinic cpds.	206
of quaternary ammonium	
hydroxides	175
of tartaric acid	401
of zinc alkyls	854
Decoses	487
1-Decyne	71
Degradation by Beckmann	
rearrangement	235
in detn. of struct. of alkaloids	810
of amides	205

Links

Degradation by Beckmann		
rearrangement (Cont.)		
of aspidospermine	822	
of calycanthine	822	
of folic acid	808	
of D-gluconic acid	468	
of hydroxy acids	194	
of morphine and alkaloids	327	
of nicotine	813	
of pilocarpine	814	
of polypeptides	513	
of streptomycin	780	809
of D-xylose	468	
Degree of enolization	854	
Dehydranone, dehydroacetic acid		
Dehydrated castor oil	270	
Dehydrating agents	225	
Dehydration, and rearrangement		
of alcohols	525	
comparison of hydroxy acids	342	
formn. of anhydrides of hydroxy		
pentenoic acids	352	
of 5-ring	343	
of acetoacetanilide	650	

<u>Links</u>

Dehydration, and rearrangement			
of alcohols (Cont.)			
of acetamide	297		
of acetonylacetone	754		
of acid amides	414		
of aldol	202	226	
of aldoximes to cyanides	414		
of amides	289		
of amino acids	500		
of ammonium formate	409		
of <i>t</i> -amyl alcohol	123		
of <i>t</i> -amylcarbinol	126		
of arsonic acids	859		
of 1-benzylcyclohexanol	741		
of borneol	576		
of 1-butanol	39		
of <i>t</i> -butyl alcohol	39	116	
of sec-butylcarbinol	41		
of 1,3-butyleneglycol	55		
of butyrolactone aldol	346		
of C ₆ and higher <i>t</i> -alcohols	128		
of cyclobutylcarbinol	537		
of cylopentandiol-1	2	547	
of diacetone alcohol	127	211	229

<u>Links</u>

Dehydration, and rearrangement			
of alcohols (Cont.)			
of diglycolic acid	340		
of 2,2-dimethyl-3-butanol	44		
of dimethyl-s-butylcarbinol	46		
of dimethylisopropylcarbinol	43		
of ethanol	30	110	
of ether	140		
of 2-ethyl-1-butanol	125		
of ethylene glycol	304		
of formamide	297	409	412
of formic acid	241	411	420
of glycerol	225	318	
of heptyl alcohols	44		
of hydracrylic acid	343		
of β -hydroxy carbonyl cpds.	197		
of 2-(β -hydroxyethyl)-pyridine	789		
of hydroxyvaleric acids	342		
of isoamyl alcohol	41		
of isobutyl alcohol	39	114	
of isopropyl alcohol	112		
of lactic acid	341		
of levulinic acid	373		
of methanol-ammonia mixture	176		

Links

Dehydration, and rearrangement			
of alcohols (Cont.)			
of 2-methyl-2-hexanol	22		
of morphine	842		
of octyl alcohols	130		
of oxalic acid	376		
of pentamethylethanol	45		
of 1-pentanol	41		
of phenylbenzylcarbinol	716		
of pinacolyl alcohol	42	44	128
of propanol containing			
radioactive carbon	36		
of succindialdehyde	356		
of tertiary alcohols related to allene	54		
of tetrahydrofuran	754		
of tetramethylene glycol	308		
of triphenylcarbinol	719		
of triptanol	22		
in prepn. of an acridine	802		
of methyl cyclopentenes	545		
with acetic anhydride	293		
Dehydroabietic acid	587		
Dehydroacetic acid	232	371	779
Dehydrocorticosterone	596		

<u>Links</u>

Dehydrocorydaline	828	
Dehydrodiacetylpeonol	684	
Dehydrogenation, of acyloins	358	
of aldehyde hydrate	195	
of alkaloids	810	
of <i>n</i> -amyl alcohol	204	
of <i>n</i> -butane	18	
of 2-butanol	217	
of coniine	789	
of dihydropapaverine	836	
of ethane	30	
of ethanol	109	284
of ethylbenzene	616	
of hydrogenated pyridines	791	
of isobutyl alcohol	203	
of isopentane	59	
of isopropyl alcohol	112	
of methanol	104	185
of neopentyl alcohol	204	
of pentacyclic triterpenes	731	
of <i>n</i> -propyl alcohol	202	
of resin acids	586	
of sesquiterpenes	584	
of triterpene	587	

Links

Dehydrogenation, of acyloins (Cont.)		
of veratrine alkaloids	846	
with selenium	552	
with sulfur	522	
Dehydrogeranic acid	270	
Dehydro-undecylenic acid	273	
Dehydrohalogenation		
of acetoacetic ester cpd.	371	
of acid halides	232	
of chloro-fumaric and maleic acids	391	
of α -bromoisobutyric acid	261	
of bromo-fumaric and -maleic acids	397	
of ethyl-a-bromoisobutyrate	380	
of ethylene halides	30	
of <i>t</i> -halides	416	
of 2-methyl-3-chlorobutane	59	
Delphiniden chloride	796	
Delvinal	436	
Demerol	792	843
Demethylation	795	
Denatured alcohol	781	
Deoxy see desoxy		
Deoxybilianic acid	591	
Deoxycholic acid	591	

<u>Index Terms</u>	<u>Links</u>		
Depilatory	146		
Depolymerization	196	334	495
	699	554	495
Depsides			
Dermatitis	761		
Desenex	266		
Desoxy benzoin	717		
Desoxycorticosterone	596		
1-Desoxy-D-galactitol	326		
1-DesoxY-D-glucitol	326		
1-Desoxy-keto-D-galaheptulose			
pentacetate	488		
Desoxymesityl oxide	229		
D-2-desoxy-ribose, thyminose	470		
1-desoxy-L-sorbitol, 1-desoxy-			
D-gluoitol			
Desyl group	718		
Detergents			
dialkylaminomethylphenols	170		
laurylpyridimium chloride	781		
sodium alkyl sulfonates	26		
sodium lauryl sulfate, etc.	132		
from alkenylsuccinic anhydride	384		
from bisulfite derivs.	225		

<u>Links</u>

Detergents (Cont.)		
from CMC	496	
from oxo process	421	
from ricinoleic acid	353	
from sodium sulfosuccinic acid	391	
Detonators	423	
Dextrins	494	
Dextro-, d-		
Dextropimaric acid	587	
Dextrose, D-glucose	473	
Diabetes mellitus	473	
Diabetics	255	
Diacetamide	298	
Diacetanilide	650	
Diacetone alcohol, conv. to mesityl		
oxide	229	
prepn. from acetone	210	338
from propylene	38	
use in prepn. of mesityl oxide	338	
of methylisobutylcarbinol	127	
of 4-methyl-l,3-pentadiene	63	
of 2-methyl-2,4-pentandiol	308	
Diacetoneamine	214	823
Diacetonemannose	482	

<u>Index Terms</u>

<u>Links</u>

Diacetosuccinic ester	369	
2,4-di-acetoxymercuriphenol	863	
Diacetyl butandione		
Diacetyl	307	356
α , γ -Diacetyl-acetoacetic acid	779	
Diacetylacetone, heptantrione	362	779
Diacetyl dioxime	357	
Diacetylene, butadiyne	72	
Diacetylenedicarboxylic acid	272	
Diacetyl monoxime	356	432
Diacetyl morphine	844	
Diacetyl peroxide	360	
2,4-Diacetylresorcinols	685	
Diacetyltartaric anhydride	234	
Diacidamides	415	
Dial	436	
Dialanylcystine	508	
Dialanylcystine anhydride	508	
Dialdan	334	
Dialdehydes	354	
2,5-Dialkoxyquinones	686	
Dialkylaminomethylphenols	170	
N-dialkylanilines	655	
Dialkylhydrazines	181	

Index Terms	<u>Links</u>		
Dialkylmagnesium	852		
Dialkylmercury	848		
Dialkylphosphinic acids	848		
2,4-Dialkylquinoline	797		
Dialkyl sufates	158		
Dialkyl sulfites	82		
Dialkylzincs	81	855	
Diallyl	64	97	355
Diallyl tetrabromide	72		
Diallylbarbituric acid	436		
Dialuric acid	436		
Diamines	329	502	549
	652	663	
Diaminoacids	518		
2,4-Diaminoazobenzene hydrochloride			
see chrysoidine	662		
1,4-Diaminobutane, tetramethylene			
diamine, see putrescine	502		
α, \leftarrow Diaminocaproic acid, see lysine	505		
3,3'-Diamino-4,4'-			
dihydroxyarsenobenzene			
hydrochloride, see salvarsan	861		
Diaminodihydroxysuberic acid	507		

Links

2,8-Diamino-3,7-dimethylacridine see		
acridine yellow		
4,4'-Diaminodiphenyl, benzidine	711	
2,4'-Diaminodiphenyl, diphenyline		
<i>p</i> -Diaminodiphenylmethane	713	726
Diamino-diphenyls	659	712
1,2-Diaminoethane, see ethylene diamin	e	
2,4-Diaminophenol	670	
2,6-Diamino-3-phenylazopyridine	787	
1,3-Diaminopropane see trimethylene		
diamine		
2,6-Diaminopyridine	783	787
Diaminotrihydroxydodecanoic acid	507	
<i>p</i> -Diaminotriphenylmethane	725	
Diaminotritane dyes	725	
α,δ -Diaminovaleric acid, see ornithine	268	504
di-t-Amyl, see 3,3,4,4-tetramethylhexand	e	
2,5-Dianilinoquinone	686	
Dianisidine	711	
Diarylamines	651	
Diarylmercury compounds	862	
2,5-Diaryloxazoles	774	
Diastase	491	
Diazines	804	

<u>Links</u>

Diazoacetic ester	258	533	768
Diazoaminobenzene	657		
Diazoamino compounds	655	658	
Diazobenzene sulfonic acid	631		
Diazo compounds	52	769	
Diazocyanides	657		
Diazo esters	499		
Diazoethane	184		
Diazo ketones	183		
Diazomethane	183		
conv. to methyl cyanide	412		
prepn. from nitroso-N-methyl			
urethan	429		
reac. with acid halides	291		
with 1,3-butadiene	57		
with ketene	531		
with maleic or fumaric ester	769		
with pyrolysis	29		
with thiourea	446		
similarity to diazo esters	499		
use in methylation of peptides	514		
use in prepn. of cycloheptanone	527		
of cyclopropane derivs.	535		
of pyrazole	767		

<u>Links</u>

Diazomethane (Cont.)			
of N-methyl deriv.			
of cyanuric acid	448		
of methyl esters	285		
Diazonium chloride	658		
Diazonium compounds	355	655	
Diazonium fluoroborate	655		
Diazonium group, reacs. of	654		
Diazonium halides	620		
Diazonium salts	645	654	661
	663	862	
Diazoparaffins	183		
Diazosulfonates	657		
Diazotization	645		
of <i>m</i> -ammobenzoic acid	699		
of α -amino sulfonic acids	736		
of aniline	625	655	863
of aromatic primary amines	645		
of arsanilic acid	861		
of aryl amines	620		
of Koch acid	737		
of β -naphthylamine	732		
of nitroanilines	635		
of rosaniline	726		

Links

Diazotization (Cont.)			
of 1,2-sodium naphthionate	740		
use of aromatic nitro cpds. in	627		
use in prepn. of aromatic polyhalides	627		
of arsonic acids	859		
of aryl halides	621		
of β -chloronaphthalene	732		
of coumaric acid	704		
of <i>ar</i> -tetrahydro-α-naphthol	736		
Dibasic acids	348	361	375
	566		
Dibasic acids hydroxy	397		
Dibasic acids saturated	375		
Dibasic acids unsaturated	388		
Dibasic ketonic acids	405		
Dibenzalacetone	217	678	
Dibenzalcyclohexanone	561		
Dibenz(a,h)anthracene	748		
Dibenzochrysenes	749		
Dibenzofuran, diphenylene oxide			
1,2,3,4-Dibenzonaphthalene triphenylene			
2,3,5,6-Dibenzopyrazine see phenazine	806		
Dibenzopyridine acridine			
Dibenzo-y-pyrone, xanthone	803		

Links

Dibenzopyrrole carbazole			
Dibenzyl	611	716	742
Dibenzylcellulose	496		
Dibenzyl malonic ester	378		
Dibromoacetylene	101		
Dibromo adipic acid esters	387	539	549
9–10-Dibromoanthracene	744		
Dibromoanthracene tetrabromide	744		
Dibromoanthraquinones	746		
Dibromobenzenes	615	627	
2,4-Dibromobenzoic acid	696		
Dibromobutanes	71	307	549
Dibromobutenes	56		
Dibromobutyric acids	274	393	
2,3-Dibromo-2,3-dimethylbutane	43		
Dibromodinitromethane	162		
Dibromoethanes	67	381	
1,1-Dibromoethene	100		
Dibromofumaric acid	397		
Dibromoglutaric ester	534		
Dibromoketones	347		
Dibromomalonic acid	405		
Dibromomalonyl bromide	234		
1,4-Dibromo-2-methyl-butene	59		

Links

Dibromomethylcyclopropane	538	
1,2-Dibromo-2-methylpropane	116	
9–10-Dibromophenanthrene	747	
Dibromopropane	534	
Dibromopropionic acids	272	277
Dibromopropionic esters	507	533
Dibromopyridines	783	
Dibromosuccinic acid	391	397
Dibromosuccinic esters	534	
2,3-Dibromotetrahydropyrane	780	
2,4-Dibromotoluene	696	
"Di-sec-butyl alcohol,"	116	
Di- <i>n</i> -butylamine	648	
Di-t-butyl carbonate	426	
Dibutylcyclopentene	545	
Di- <i>t</i> -butylethylene	47	
Di- <i>n</i> -butyl ketone	209	248
Dibutyl oxalate	780	
Di-t-butyl peroxide	117	
Di-capryl alcohol	130	
N-N-Dicarbazyl	767	
Dicarbethoxycyclopropane	533	
1,4-Dicarbethoxy-2,5-diketocyclohexane	381	
Dicarbonyl compounds	354	

Links

Dicarboxyamides	805		
3,5-Dicarboxy-2,6-dimethylpyridine	789		
2,6-Dicarboxy-hydroxy-pyrone			
meconic acid			
1,1'-Dicarboxyl-1,1'-dichloroethyl ether	101		
Dicetylacetic acid	256		
Dicetyl carbonate	426		
Dichloroacetaldehyde	70		
Dichloroacetic acid	275	364	
Dichloroacetic ester	363		
sym-Dichloroacetone	407		
Dichloroacetylene	101		
Dichloroamine-T	629		
2-Dichloroamine-2-chloromethylpropane	40		
9,10-Dichloroanthracene	743		
5,5-Dichlorobarbituric acid	808		
Dichlorobenzenes	598	622	627
	668		
2,3-Dichlorobutadiene	99		
Dichlorobutanes	70	83	385
	754		
Dichlorobutenes	56	100	
2,3-Dichloro-butyric acid	279		
2,6-Dichlorocamphane	580		

Links

1,5-Dichloro-1,5-cyclooctadiene	99		
Dichlorocyclopropane	532		
4,4'-Dichlorodibutyl ether	386		
Dichlorodiethyl ethers	9	133	328
	345		
β , β' -Dichlorodiethylsulfide mustard gas	5		
Dichlorodifluoromethane	90	92	
Dichlorodinitromethane	101	162	
Dichlorodioxan	313	354	
1,1-dichloroethane	100	202	
Dichloroethenes, dichloroethylenes	100		
Dichloroethyl ethers	35	142	770
β , β' -Dichloroethyl sulfide	147		
1,3-Dichloro-2,4-hexadiene	101		
1,1-Dichloro-hydroxypropionic acid	101		
2,6-Dichloro-8-hydroxy purine	443		
Dichloroimide	688		
β , β' -Dichloroisopropyl ether	38		
N,N-Dichloromethylamine	177		
Dichloronaphthalenes	730	732	
Dichloro oxalic esters	377		
2,4-Dichlorophenoxyacetic acid	668		
Dichloro- <i>p</i> -phenylene diamine	687		

<u>Links</u>

Dichloropropanes	101	
2,2-Dichloropropane, acetone dichloride		
Dichloropropanoic acids	277	
1,3-Dichloropropanone	54	
Dichloropropenes	54	88
Dichloropropionic acids	277	
Dichloropyridines	783	
Dichloroquinolines	800	
2,3-Dichloro-tetrahydrofuran	313	754
Dicinnamalacetone	231	
Dictamine	830	
Dicyandiamide	447	452
3,5-Dicyano-3-cyanoethyl-pentene	417	
2,3-Dicyanohydroquinone	686	
1,2-Dicyanonaphthalene	740	
Dicyclopentadiene	456	
Di-depside	704	
3,7-Di(dimethylamino)-		
phenothiazine chlo ride		
see methylene blue		
Didimethylaminophenylmethane	726	
Dieckmann condensation	792	
Dielectric constant	153	163

<u>Index Terms</u>

<u>Links</u>

397	
135	
96	
556	
57	
97	
555	
546	576
225	
566	756
546	
659	
391	
687	
269	
232	
554	
788	
269	
	135 96 556 57 97 555 546 225 546 225 566 546 659 391 687 269 232 554 788

<u>Index Terms</u>	<u>Links</u>		
Dienes, see also diolefins	63	97	225
Diethanolamine	36	326	328
Diethylacetaldehyde	218		
Diethylacetic acid	252	283	
Diethylacetyl chloride	289		
Deithylacetylnaphthoic acid	740		
Diethylamine	190	311	757
1-Diethylamino-4-aminopentane	802		
1-Diethylamino-4-aminopentanone	800		
β -Diethylaminoethanol	311		
β -Diethylaminoethyl amide of 2-			
butoxyquinoline-4-carboxylic			
acid, see nupercaine			
β -Diethylaminoethyl bromide	327	369	
β -Diethylaminoethyl chloride	369	762	
Diethylaminoethyl ester			
of diphenylacetic acid	715		
1-Diethylamino-4-pentanone	800		
Diethylaniline	649		
Diethylbarbituric acid	435		
Diethylcarbincarbinol, 2-ethyl-1-butanol			
Diethylcarbinol, 3-pentanol			
Diethylcarbonate	329		
unsym-Diethyl dithiocarbonate	457		

Index Terms	<u>Links</u>		
Diethylene diamine	329		
Diethylenediimine, see piperazine			
Diethylene glycol	35	303	311
Diethylene glycol ethers	36		
Diethylene oxide, 1,4-dioxan	304	310	313
Diethylene triamine	35		
N,N-diethylethanolamine	36		
Diethyl ether, see also ethyl ether	110	139	
3,4-Diethyl,4-hexandiol	123		
Diethylisoamylcarbinol	131		
Diethyl ketone	123	220	294
Diethylmaleic acid	393		
Diethyl malonic ester	379		
Diethylmalonyl chloride	740		
Diethylmercaptoglucose	479		
Diethylmercury	181	857	
Diethylnaphthindandiones	740		
N,N-Diethylnicotinamide, coramine			
Diethyl oxalate	170	219	
Diethyl oxaloacetate	407		
5-Diethyl-N-2-pentanone	369		
Diethyl β -(2-pyridyl)-ethylmalonate	825		
Diethylstilbestrol	716		
Diethyl sulfate	82		

Links

Diethyl tartrate	402	
Diformin	317	
Difructose anhydride	495	
Difurylglycolic acid, furilic acid		
<i>m</i> -Digallic acid	700	
Digitalis glycosides	472	
Digitonine	587	
Digitoxigenin	594	
Digitoxose	460	472
2,3-Diglucosidofructose, melezitose		
Diglycerol	318	
Diglycolic acid	340	
Diglycolic anhydride	340	
Digoxigenin	594	
Dihalides, see also dichlorides, etc.	87	
Dihalides, of acetylene	100	
of anilines	646	
of benzene	627	
use in formn. of alicyclid cpds.	524	
use in prepn. of cyclopropane		
homologs	530	534
Dihalo acetylene	69	
Dihalogen ethenes	100	
Dihydric phenol	663	

Links

Dihydroabietic acids	587		
Dihydroacridine	802		
9,10-Dihydroanthracene	742	743	745
2,5-Dihydrobenzoic acid, gentisic acid			
Dihydrocodeinone	843		
Dihydrocrocetin	589		
1,4-Dihydro-2,3-dibromonaphthalene	729		
2,5-Dihydrofuran	754		
Dihydroglyoxaline	679		
3,4-Dihydroharmine harmaline			
Dihydroindole	819		
Dihydro-isoquinolines	801		
Dihydromorphinone	843		
Dihydronaphthalenes	729	733	
1,2-Dihydropapaverine pavine			
3,6-Dihydrophthalic acid	397		
Dihydropyran	780	781	
Dihydropyridines	371		
Dihydropyrrole pyrroline			
Dihydroquinoline	797		
Dihydroresorcinols	562		
Dihydrotagatone 2,6-dimethyl-7-			
octen-4-one			
C,C-Dihydrotetrazines	184		

<u>Links</u>

Dihydroxyacetic acid, glyoxalic acid			
Dihydroxyacetone	318	350	460
	462		
Dihydroxyacetone oxime	462		
9,10-Dihydroxyanthracene	744		
3,4-Dihydroxybenzaldehyde, see			
protocatech-uic aldehyde	683		
<i>p</i> -Dihydroxybenzene see hydroquinone	671		
3,4-Dihydroxybenzoic acid			
protocatechuic acid			
2,3-Dihydroxy-benzoic acid			
pyrocatechuic acid			
3,5-Dihydroxy-benzoic acid			
α -resorcylic acid			
2,4-Dihydroxy-benzoic acid			
β -resorcylic acid			
α,γ -Dihydroxybutyric acid	477		
α , γ -Dihydroxycaproic aldehyde	339		
3,4-Dihydroxy-cinnamic acid			
caffeic acid			
2,4-Dihydroxy-cinnamic acid			
umbellic acid			
6,7-Dihydroxy-coumarin, esculetin			
1,1-Dihydroxycyclopropane	462		

<u>Links</u>

1,1-Dihydroxy-2,2-ethanedisulfonic acid	67	
	07	
β , β' -Dihydroxyethyl ether diethylene		
glycol		
5,7-Dihydroxy flavanol galingin		
5,7-Dihydroxyflavone, see chrysin		
Dihydroxyfluorane fluorescein		
2,3-Dihydroxyindole dioxindole		
Dihydroxymaleic acid	331	406
2,4-Dihydroxy-6-methylpyrimidine		
methyluracil		
Di-hydroxymethyl-tetrahydropyrone	211	
Dihydroxynapththalenes	737	
1,8-Dihydroxy-naphthalene-3,6-		
disulfonic acid, see		
chromotropic acid	737	
Dihydroxyoleic acid	353	
3,12-Dihydroxypalmitic acid	349	
Dihydroxyphenylalanine	509	
1,1-Di(hydroxyphenyl)ethane	68	
1,4-Dihydroxyphthalazine, see		
phthalhydrazide		
1,3-Dihydroxypropane, see		
trimethylene glycol		
2,6-Dihydroxypurine, xanthine	445	

<u>Links</u>

2,4-Dihydroxypyrimidine, uracil	398		
2,4-Dihydroxyquinazoline	806		
9,10-Dihydroxystearic acid	266	349	
Dihydroxysuccinic acid, see tartaric acid			
Dihydroxytartaric acid	405		
sym-Dihydroxytoluene, see orcinol	673		
4,6-dihydroxy-o-toluic acid, see			
orsellinic acid			
1,7-Dihydroxyxanthone, see euxanthone			
Diiodoacetylene	69	101	
3,5-Diiodo-4-(3,5-diiodo-4-			
hydroxyphenoxy)-			
phenylalanine, see thyroxine	510		
Diiodo ethyl ether	34		
2,6-Diiodophenol-sulfonic acid	631		
2,8-Diiodopurine	443		
3,5-Diiodotyrosine, see iodogorgoic acid	510		
Diisobutenes	48		
Diisobutenyl	60	64	
Diisobutyl	248		
Diisobutylcarbinol	230		
Diisobutylenes	24	45	98
	117	131	
Diisobutyl ketone	223	229	

<u>Links</u>

Diisocrotyl	64		
Di-isonitrosoacetone	364		
Diisopropenyl, see methylisoprene			
Diisopropyl, 2,3-dimethylbutane	20		
Diisopropyl alcohol	112		
Diisopropylamine	170		
Diisopropyl carbinol	85	129	854
Diisopropyl ether	111		
1,1-Diisopropylethylene	47		
Diisopropyl ketone, isobutyrone	25	221	854
Diisopropylmethane	643		
Di-isopropyl sulfate	159		
Di-J acid, rhoduline acid			
Diketocyclohexadienes, see ortho-			
benzoquin-one	685		
Diketodihydroindole, see isatin			
Diketones	356	562	717
β -Diketone monoximes	775		
Diketopiperazone	500	513	
2,4-Diketotetrahydro-imidazole			
hydantoin	433		
Dilantin	434		
Dimedon, dimethyldihydroresorcinol			

<u>Links</u>

539

Dimers, of acetaldol	334
of acetoin	337
of aliphatic nitroso cpds.	165
of butadiene	556
of cinnamaldeienmalonic acid	540
of cracked gases	26
of cyanamide	452
of cyclopentadiene	546
of formisobutyraldol	334
of fulvenes	545
of glycolic aldehyde	331
of glyceraldehyde and	
dihydroxyacetone	462
of 2,5-hexanedion-ol	339
of ketenes	232
of lactic aldehyde	332
of methylcyclopentadienes	547
of propylene oxides	335
of vinyl methyl ketone	228
Dimesylcellulose	496
3,3-Dimethoxy-benzidine, dianisidine	
1-(3',4'-dimethoxybenzyl)-6,7-dimethoxy-	
isoquinoline papaverine	

isoquinoline, papaverine

<u>Links</u>

3,4-Dimethoxyphthalic acid			
hemipinic acid			
4,5-Dimethoxyphthalic acid			
metahemipinic acid			
5,6-Dimethoxyphthalide meconin			
Dimethoxy strychnine	846		
Dimethylacetaldehyde isobutyraldehyde			
N,N-Dimethylacetamide	294		
Dimethylacetic acid, isobutyric acid	247		
Dimethylacetonylcarbinol, diacetone			
alcohol	338		
Dimethylacetylene, crotonylene			
α,β -Dimethylacrolein, tiglic aldehyde			
β , β -Dimethylacrolein, β -methyl-			
crotonaldehyde			
Dimethylacrylic acids	263	342	
Dimethyladipic acids, geronic acid	544	589	
sym-Dimethylallene	55		
6,7-Dimethylalloxazine, lumichrome			
Dimethylallyl halides	99		
Dimethylamine	176	510	763
4-Dimethylaminoazobenzene-4'			
sulfonic acid, see helianthine			
methyl orange	662		

Links

3-Dimethylaminomethylindole			
see gramine	510	763	
5-Dimethylamino-1-pentene	179		
<i>m</i> -Dimethylaminophenol	803		
4,5-Dimethyl-aminophenylribamine	808		
2,4-Dimethyl-aminopyrimidine	416		
Dimethyl-t-amylcarbinol	131		
Dimethylaniline			
condo with benzaldehyde	679		
in formn. of <i>t</i> -esters	290		
of methyl ether	138		
in prepn. of diaminodiphenylmethane	713		
of Malachite Green	725		
of Michler's ketone	428	648	714
nitration of	648		
reac. with phosgene	428		
with nitrous acid	648		
Dimethylaniline hydrochloride	711		
C-Dimethylanilines xylidines			
Dimethylarsine	849		
Dimethylarsinic acid	849		
4-Dimethyl-N-azobenzene-2'-carboxylic			
acid, see methyl red			
Dimethylbenzenes	613		

Links

3,3'-Dimethyl-benzidine, tolidine	711		
2,3-Dimethyl-benzoic acid hemellitic acid	ł		
Dimethylbenzoic acids, xylic acids			
3-3-Dimethyl-bromobutane	44		
α, α -Dimethyl-, β -bromobutyric acid	274		
2-3-Dimethyl-bromopentane	22		
2,3-Dimethyl-1,3-butadiene			
methylisoprene	60	308	549
2,3-Dimethyl-2,3-butandiol, pinacol	308		
2,3-Dimethylbutane, neohexane			
diisopropyl, etc	19	23	
2,2-Dimethylbutanoic acid			
dimethylethylacetic acid	252		
2,3-Dimethylbutanoic acid, methy-			
lisopropylacetic acid	252		
3,3-Dimethylbutanoic acid, <i>t</i> -butylacetic			
acid	252		
2,2-Dimethylbutan-1-ol, <i>t</i> -amylcarbinol	20		
2,2-Dimethyl-3-butanol			
pinacolyl alcohol	44		
2,3-Dimethyl-2-butanol dimethyliso-			
propylcarbinol	126		
2,3-Dimethyl-butanol	132		

Links

3,3-Dimethyl-1-butanol		
neopentylcarbinol	126	
3,3-Dimethyl-butanone, methyl <i>t</i> -butyl		
ketone		
2,3-Dimethyl-butene, tetramethylethylene	44	
3,3-Dimethyl-butene <i>t</i> -butylethylene	44	
Dimethyl-n-butylcarbinol, 2-methyl-2-		
hexanol		
Dimethyl-sec-butylcarbinol	46	
Dimethylcarbamic ester	649	
3,5-Dimethyl-carbethoxy-cyclohexenone	370	
Dimethylcarbinol, isopropyl alcohol		
α, α' -Dimethyl- α' -carbobutoxy-		
dihydro-y-pyrone, indalone		
2,2-Dimethyl-6-carbobutoxy-2,3-		
dihydro-1,4-pyrone	229	
α, γ -Dimethylcrotonic aldehyde	227	
Dimethylcyclobutane	528	530
Dimethylcyclobutane carboxylic acids	539	
Dimethylcycloheptanol	526	
Dimethylcyclohexane	523	
Dimethylcyclohexanol	544	
1,5-Dimethyl-5-cyclohexenylbarbiturie		

acid, evipal

<u>Links</u>

Dimethylcyclopentane	523	526
Dimethylcyclopentane carboxylic acids	550	
Dimethylcyclopentanone	544	549
Dimethylcyclopropanes	78	530
Dimethylcyclopropane carboxylic acids	535	
Dimethylcyclopentylacetic acid	550	
Dimethyldiacetylene	72	
2,4-Dimethyl-3,3-dichloropentane	55	
9,10-Dimethyldihydroanthracene	68	
2,5-Dimethyl-2,3-dihydrofuran	339	
Dimethyldihydroresorcinol	562	
2,5-Dimethyl-2,5-dihydroxy-3,6-		
diacetonyl-dioxan	339	
N-(3,3-Dimethyl-2,4-		
dihydroxybutyryl)-		
β -aminopropionic acid		
see pantothenic acid	509	
1,3-Dimethyl-2,6-dioxypurine		
theophylline		
3,7-Dimethyl-2,6-dioxypurine		
theobromine		
2,11-Dimethyldodecane	25	
Dimethylenemethane, see allene		
Dimethyl ether, see methyl ether	104	730

<u>Links</u>

3',5' Dimethyl ether of delphinidin			
chloride, see oenidin			
Dimethylethylacetic acid	252		
Dimethylethylcarbinol, t-amyl alcohol	131		
Dimethylethylchlorosilane	858		
sym-Dimethylethylene,2-butene			
unsym-Dimethylethylene, isobutylene			
Dimethylethylmethane, isopentane			
3,5-Dimethyl-3-ethylpyridine	822		
2,5-Dimethylfuran	754		
α, α' -Dimethylglutaconic acids	395		
α, α -Dimethylglutaconic anhydride	395		
α, α -Dimethylglutaconic esters	395		
Dimethylglutaric acids	539		
Dimethyl glyoxime, diacetyl dioxime	218	308	
gem-Dimethyl groups, in ring closure	539		
2,6-Dimethyl-2,5-heptadien			
-4-one, phorone			
3,4-Dimethyl-1-heptanol			
tripropyl alcohol			
4,6-Dimethyl-2-heptanol			
triisopropyl alcohol			
Dimethylhexanes	3	23	29
2,4-Dimethyl-1-hexanol	132		

Links

Dimethyl hexenes	29	46	
2,3-Dimethyl-2-hexen-4-one	230		
Di(p-a-methylhydrazinophenyl)methane	482		
α,β -Dimethyl- β -hydroxyvaleric acid	344		
1,5-Dimethylimidazole	814		
Dimethylisobutyl carbinol	213		
Dimethylisobutylcarbinyl chloride	85		
Dimethylisopropylacetic acid	223		
Dimethylisopropylcarbinol	43	128	
1,6-Dimethyl-4-isopropylnaphthalene			
cadalene			
2,4-Dimethyl-3-isopropyl-1,3-pentadiene	64		
Dimethylisoquinoline	822		
Dimethyl ketene	798		
β -Dimethylketoglutaric acid	406		
Dimethyl ketol acetoin	337		
Dimethylmaleic acid	393		
Dimethylmaleic anhydride	393		
Dimethylmalonic acid	335		
Dimethylmalonic ester	379	381	
Dimethyl mercury	12	849	858
$\alpha.\alpha'$ -Dimethyl- γ -methoxy pyridine	779		
Dimethylneopentylcarbinol	131		
Dimethylnitroamine	177		

<u>Links</u>

2,8-Dimethyl-4-nonene	422		
-	422		
3,7-Dimethyl-2,6-octadienal, citral			
3,7-Dimethyl-2,6-octadienoic acid			
geranic acid			
4,5-Dimethyl-4,5-octandiol	122		
3,7-Dimethyl-2,4-6-octatrienal	227		
3,7-Diemthyl-2,4,6-octatrienoic acid			
dehydrogeranic acid			
3,7-Diemthyl or 6-octenal, citronellal			
2,6-Diemthyl-octenne	231		
Dimethyl oxalate	104	377	
Dimethylparabanic acid	434		
Dimethylpentanes	18	21	
4,4-Dimethyl-3,5-pentanediol	335		
2,4-Dimethyl-3-pentanol			
diisopropylcarbinol			
Dimethylpentanols	22	45	130
	132		
Dimethylpentenes	22	25	45
	422		
2,2-Dimethyl-2-pentanol	45		
3,4-Dimethyl-3-penten-2-one	42	231	
1,7-Dimethylphenanthrene	587		
Dimethylphosphinic acid	848		

<u>Links</u>

2,2-dimethyl-propanal			
trimethylacetaldehyde			
2,2-Dimethyl-l,3-propandiol			
pentaglycol	307		
2,2-Dimethyl-l,3-propandiol	203		
2,2-Dimethylpropane, neopentane			
Dimethylpropanol, neopentyl alcohol			
2,2-Dimethylpropanolal			
formisobutyraldol			
2,2-Dimethylpropionic acid			
trimethylacetic acid	249		
Dimethyl-n-propylcarbinol, 2-methyl-2-			
pentanol			
Dimethylpyridines	789		
Dimethyl pyrone	362	779	
Di-(N-methylpyrrodyl)acetone			
see cuscohy- grine			
6,7-Dimethyl-9-D-ribityl-isoalloxazone			
see riboflavin	808		
Dimethylsuccinic acids	380	384	
Dimethyl sulfate	81	104	285
	477	850	
Dimethyltartaric acid	366		
Dimethyl telluronium diiodide	155		

Links

Dimethyl tin	858		
Dimethyl tin dichloride	858		
Dimethyl tin oxide	858		
N ,N-Dimethyltyramine, see hordenine	509		
2,6-Dimethyl-2,6,8-undecatrien-10-one			
pseudionone			
1,3-Dimethyl urea	444		
2,3-Dimethylvaleric acid	22		
Dimethylvinylcarbinol	59	99	
Dimethylzine	20	24	851
Dinaphthocoronene, dinaphtho(abc,jkl)			
coronene	749		
Dinaphthoperylene(3,2, 1-cd,lm)			
dinaphtho-(1,2,3-			
cd,1',2',3'-lm) perylene	749		
Dinaphthyls	731	740	
Di-β-naphthylmercury	862		
Dineopentylacetic acid	254		
1,1-Dineopentylethylene	47	49	
Dinitroaniline	636		
Dinitroanthraquinone	746		
Dinitrobenzenes	606	623	633
	635	641	
3,5-Dinitrobenzoates	132		

Links

Dinitrobenzoic acid	696		
2,4-Dinitrochlorobenzene	145	640	665
6,6'-Dinitro-diphenyl-2,2'-			
dicarboxylic acid	710		
Dinitroethane	163		
Dinitromethane	162		
Dinitronaphthalenes	732		
Dinitronaphthalenedisulfonic acids	735		
2,4-Dinitro-α-naphthol	736		
Dinitronaphtholsulfonic acids	736		
Dinitroneopentane	164		
Dinitro-orthocresol	671		
Dinitroparaffins	164		
Dinitrophenols	635	640	669
2,4-Dinitrophenylhydrazine	232	661	
Dinitropropane	163		
2,4-Dinitrotoluene	638		
Diodone	786		
Diolefinic acids	268		
Diolefins dienes	54	64	391
Dilin	310		
Dionine	844		
Dioscoreaceae	595		
Diosgenin	595		

Links

Dioxan, formn. in ethylene oxide prepn.	310		
prepn. from ethylene	36		
from ethylene glycol	304	313	
struct. of	752		
solvent for dialkyl magnesium	852		
Dioxindol	765		
Dioxolanes, cyclic acetals			
Dioxolanes	188	212	
Di-pentaerythritol	323		
Dipentene, dl-limonene	59	570	
Dipeptidase	515		
Dipeptides	513		
Diphenic acid	711	747	
Diphenic anhydride	711		
Diphenyl	659	709	864
Diphenylacetonitrile	843		
Diphenylacetylene tolan			
Diphenylamine	651		
reac. with oxalic acid			
or formaldehyde	727		
pyrolysis to carbazole	767		
use in prepn. of Adamsite	861		
of phenothiazine	807		
of triphenylamine	652		

<u>Links</u>

Diphenylamine blue, triphenyl fuchsine			
Diphenylbenzenes	709	712	
Diphenylbromomethane	715		
Diphenylcarbinol	675		
Diphenyl carbonate	428		
Diphenyl-2-carboxylic acid	715		
Diphenylcyclobutane carboxylic acids	540		
Diphenyl-2,2'-dicarboxylic acid			
diphenic acid			
Diphenyldicarboxylic acids	540		
Diphenyldihydropyrazine	774		
4,4'-Diphenyi-diphenyl	710		
Diphenylene	712		
bis-Diphenylene ethylene	715		
Diphenyleneglycolic acid	716		
Diphenylene ketone fluorenone			
Diphenylene oxide	762		
1,2-Diphenylethane dibenzyl			
Diphenylethanes	68	714	717
Diphenyl ether	665	800	
1,1-Diphenylethylene	714		
trans-1,2-Diphenylethylene stilbene			
1,2-Diphenylglycol hydrobenzoin			
Diphenylglycolic acid, benzilic acid			

<u>Links</u>

5,5-Diphenylhydantoin	434		
Diphenylhydrazine	9	661	
Diphenyline	711		
Diphenyliodonium hydroxide	626		
Diphenyliodonium iodide	626		
Diphenyl ketone, see benzophenone	675	682	
Diphenylmercury	715	861	
Diphenylmethane	610	682	712
	715		
Diphenylmethane-o-carboxylic acid	713		
Diphenylmethane-dimethyl-			
dihydrazine, di			
(<i>p</i> -α-methylhydrazinophenyl)-			
methane			
Diphenyloxazole	774		
Diphenyl oxide	710		
9,10-Diphenylphenanthrene	727		
Diphenyl-p-phenylenediamine	689		
4,4-Diphenylsemicarbazide	232		
sym-Diphenylsuccinic acids	384		
Diphenyl sulfoxide	719		
Diphenylthiourea thiocarbanilide			
Diphenylurea	651		

Links

Diphosphopyridine nucleotide			
coenzyme I			
Dipolar ions, see Zwitter-ions	500	518	
Dipropargyl, hexadiyne	72		
Dipropenyl glycol	227	305	
Dipropylamine	165		
Di-n-propylbarbituric acid	436		
Dipropyl ketone	218	222	
5,5-Dipyrazoline	57		
Disaccharides	475	488	
Disinfectants			
chloroform	91		
cresols	671		
formaldehyde	104	188	193
hexamethylene tetramine	188		
hydrocupreine derivs.	835		
hydroquinine homologs	835		
in Cannizzaro reac.	865		
of acetaldehyde	283	337	
of acyloins	337		
of aldehydes	198	334	
of alkyl phosphinous acid	848		
of formaldehyde	187		
of free radicals	53		

Links

Disinfectants (Cont.)			
of glyoxalic acid	364		
of Grignard complex	312		
of hydroazo cpds.	659		
ofiodosobenzene	626		
of phosphorous acid	848		
of pyruvic aldehyde	362		
of the silver cpd. of dinitroethane	163		
on heating formates	186		
with dichloroacetic acid	275		
Disodium acetylide	71	397	
Disodium cyanamide	169		
Disproportionation, see dismutation			
Dissociation	246	858	
Distex process	3		
Distyrene formation	616		
α, α' -Disubstituted thiophenes	759		
Disulfides	144	148	508
Disulfone	148		
Disulfonic acids	735		
Disulfoxides	148		
Diterpene carboxylic acid	585		
Diterpenes	585		
Dithane	459		

Links

Di-(2-thenyl)amine	759	
1,4-Dithian disulfoxide	150	
Dithioacetic acid	302	
Dithiobiuret	446	
Dithiocarbamic acid	171	458
Dithiocarbonates	459	
Dithiocarbonic acid	455	
1,4-Dithiocyano-2-methyl-2-butene	60	
Dithio-oxamide	378	
Di-p-tolyl	621	
Di-p-tolylmercury	717	
Di-triethylmethyl peroxide	294	
Ditriptene, 2,2,3,5,5,6,6-		
heptamethylheptane		
3,5-Ditritylxylofuranose	468	
Divinyl, 1,3-butadiene		
Divinylacetylene	68	72
Divinyl glycol	226	
<i>dl-,</i> racemic		
Djenkolic acid	508	
"DM,"	861	
DMP	170	
Döbner's violet	725	

<u>Links</u>

Docosenoic acid, erucic acid and		
brassilic acid		
Docosynoic acid, behenolic acid		
<i>n</i> -Dodecane	1	
n-Dodecanoic acid, lauric acid	253	
1-Dodecanol, lauryl alcohol		
Dodeca-2,4,6,8,10-pentaene-		
1, 12-diacid, decapentaene	396	
2-Dodecenal	228	
Dodecylenes	47	50
Dodecyl thiocyanate	453	
Dodecyne	71	
<i>n</i> -Dotriacontane	1	
Double bond addn. to, in unsaturated		
car-bonyl cpds.	225	
conjugated in unsaturated		
carbonyl cpds.	224	
cumulative in ketene, reac. of	225	
discussion of	27	
in pyridine	781	
parachor	155	
reac. with nitrogen tetroxide	164	
with tetranitromethane	163	
semicyclic	558	

<u>Index Terms</u>	<u>Links</u>		
Double bond shift	41	63	95
	617		
Down the series, see Ruff, Wiermann			
Wohl, etc.	80	132	286
	295	299	
Dowtherm, see diphenyl	665	710	
Dreft	132	254	
Drugs			
antihistamines	787		
arsenic derivs.	859		
aspirin	698		
atoxyl	860		
benadryl	675		
benzyl benzoate	693		
coramine	790		
Demerol	792		
Optoquin	835		
Pentaquine	799		
phenyl salicylate	698		
Plasmochin	799		
prostigmin	649		
salvarsans	861		
tryparsamide	860		
Dry distillation	788		

<u>Index Terms</u>	<u>Links</u>		
Drying oils	271	324	384
Duff reaction	684		
Dulcitol	85	325	483
Duo-Sol process	17		
Duprene, neoprene			
Durene	615	630	
Durene sulfonic acid	616		
Durez	667		
Durylic acid	701		
Dye intermediates	714	737	
Dyes, aminoacridines	803		
aurin	722		
azo	661		
bis-azo	662		
bleaching agent with	191		
chromone as parent substance of	793		
cyanine	798		
eosin	723		
erythrosin	724		
fluorescein	737		
from acetoacetic ester	367	371	
from aryl <i>m</i> -diamines	653		
from formaldehyde			
and aromatic cpds.	193		

<u>Links</u>

Dyes, aminoacridines (Cont.)	
gallein	724
Mercurochrome	724
methylene blue	807
Michler's ketone	714
phenol sulfone phthalein	724
phenoxazine	807
phloxin	724
phthalein	723
prepn., use of benzyl chloride	621
rhodamines	724
rose bengal	724
tetrakis-azo	663
triphenylmethane	721
tris-azo	663
uranine	724
Dynamite	317
Dynax	103
Dypnone	681

E

Earthwax ozokerite	10
Ecgonine	822

<u>Index Terms</u>	<u>Links</u>		
Edeleanu process	9		
Edestin	503	508	512
	517	521	
Edible fats	256	509	
Egg white	761		
Egg yolk	518	761	
<i>n</i> -Eicosane	1	25	
Eikonogen	738		
Ekasalt	397		
Elaeostearic acid, oleomargaric acid	271		
Elaidic acid	267	273	
Elastin	519		
Elastomers, synthetic rubber			
Elastomers	147	384	790
Electric discharge	527		
Electrical fields	150	153	
Electrolylic oxidation	360		
Electrolysis, in formn. of tetra-alkyl			
ammoniums	176		
in Kolbe's synthesis	386		
in liquid hydrogen fluoride	94		
of ethyl potassium glutarate	386		
of oxalic acid	340	364	
of potassium butyrate	247		

<u>Links</u>

Electrolysis, in formn. of tetra-alkyl			
Ammoniums (Cont.)			
of salts of itaconic acid	54		
of sodium acetate	16	245	
of sodium isobutyrate	247		
of sodium isovalerate	248		
of sodium methylmalonic ester	384		
of sodium succinate	30		
of zinc diethyl	855		
Electrolytic reduction	782		
Electron-free, see free radicals			
Electronic conceptions			
of acetylene struct.	409		
of 1,4-addn. in unsaturated			
carbonyl cpds.	224		
of addn. reac.	37	56	380
	864		
of alcohol oxidation	151		
of aldol condensation	196		
of alkyl azides	184		
of alkyl stilbine reacs.	850		
of alkylation of acetone	215		
of alkylation mechanism	50		
of amine oxides	173		

<u>Index Terms</u>

<u>Links</u>

Electronic conceptions		
of acetylene struct. (Cont.)		
of ammonium ion	176	
of ammonium halides	167	
of ammonium salts	166	
of <i>p</i> -aminotriphenylcarbinol		
with acid	721	
of beta-fission	34	
of bisulfite addn. products	191	
of boric acid esters	158	
of carbon monoxide struct.	409	420
of carbonyl group	184	
of change from nitrite to nitro cpd.	160	
of chlorination of ethylene	31	
of conv. of cyclopropylamine		
to allyl alcohol	531	
of conv. of pentaerythrityl bromide		
to cyclopentanone	538	
of coordination cpds.	139	
of cyanide ion	418	
of dehydration of arsonic acids	859	
of diazomethane	183	
of 1,1-diphenylethane reac.	714	
of double bond	27	

<u>Links</u>

Electronic conceptions	
of acetylene struct. (Cont.)	
of electronic shifts in hydroxyt-	
riarylcarbinols	720
of enolization of acetone	216
of esterification mechanism	121
of ethylene-halogen reac.	32
of formn. of ethyl nitrolic acid from	
dinitroethane	163
of formn. of oxetone	346
of potassium alkylsulfonates	152
of free radical polymerization	52
of halogenation of the pyridine ring	783
of hydrogen cyanide struct.	409
of hydrogen halides	121
of hydrogenation of ethylene	31
of mercaptan oxidation	151
of nitrites	157
of nitro group	159
of nitrogen struct.	409
of nitroso cpds.	165
of olefin formn. from tetraalkyl	
ammonium hydroxides	173
of olefin polymerization	48

<u>Links</u>

829

Electronic conceptions

of acetylene struct. (Cont.)			
of olefin rearrangements	43		
of oxonium ion	121		
of pelargonidin chloride	796		
of prototrophy	368		
of prepn. of pyronine	804		
of pyridine reacs.	784		
of a quaternary bromide	179		
of ring closure	538	741	
of sulfinic acids	154		
of sulfonium cpds.	148		
of sulfoxides	149		
of tautomerism	134		
of trityl chloride-aluminum			
chloride cpd.	719		
of various cpds.	156		
of vinyl sulfonic acid	154		
general discussion	864		
Elemolic acid, triterpenic acid	587		
Eleomargaric acid, elaeostearic acid	271		
Elimination of hydrogen bromide	705		
Emetine	829		

Links

170	353
478	492
502	
173	
324	
502	
459	
359	
543	
321	
528	
322	
461	
377	
397	
248	
529	
529	
148	
	478 502 173 324 502 459 359 543 321 528 322 461 377 397 248 529 529

Links

Enantiomorphs, mirror-			
image relation (Cont.)			
of tartaric acids	399		
of tetrahydroxyadipic acids	403		
of trihydroxyglutaric acids	402		
of 1,1,2-trimethylcyclopropanes	529		
of truxillic acids	541		
of truxinic acids	543		
Endocamphene	575		
Endomethylene groups	546	687	
1,4-Endomethylene-∆6,7-			
octohydronaphthal-Ene-			
2,3-dicarboxylic anhydride	58		
3,6-Endomethylene-1,2,3,6-tetrahydro-			
phthallic anhydride	58		
Enediol forms	475	549	
"Engine knock,"	8		
Enol esters	200	371	
Enolization, bimolecular nature of	238	477	798
	854		
Enols	134		
in Grignard reacs. with ketones	220		
in halogenation of acetone	216		

<u>Links</u>

Enols (Cont.)		
mechanism releasing		
positive bromine	563	
of acetoacetic ester	367	
of acetone	215	
of a diketone	565	
of cyclohexanone	561	
of glycolic aldehyde	332	
of hydroxymethyleneacetone	282	
of methyl ethyl ketone	217	
oxidation with selenium dioxide	195	
reac. with bromine	202	
reac. with tetranitromethane	163	
Enzymes, formn. of metaproteins by	519	
myrosin	454	
proteolytic type	520	
reacs. with peptides	516	
relation to optical activity	501	
resistance of scleroproteins		
(albuminoids) to	519	
study of	513	515
urease in soybeans and jackbeans	431	
use in conv. of amino acids to		
valerie acids	249	

<u>Links</u>

Enzymes, formn. of metaproteins			
by (Cont.)			
use in hydrolysis of disaccharides	489		
of starch	494		
of proteins	498	517	
use in prepn. of α -amino acids	498		
use in prod. of ethyl alcohol	427		
use in studying proteins	515		
use in synthesis of sucrose	490		
Eosin	724		
Ephedrine	649	811	
Epicamphor, β -camphor	581		
Ephichlorohydrin	316	530	
Epiethylin	316		
Epimerization	471		
Epimers	350	403	465
	468	844	
Epinephrine, adrenaline			
L-epirhamnose, isorhamnose			
E. P. Lubricants, extreme			
pressure lubricants	27		
3,4-Epoxy-1-butene	313		
2,5-Epoxyhexane	64		
2,3-Epoxy-1-propanol glycidol			

<u>Index Terms</u>	<u>Links</u>		
Epoxy sugars	476		
Epsilon acid, naphthylamine			
disulfonic acids			
Equilenin	596		
Eremiphilone	585		
Erepsin	515	520	
Ergosterol	593		
Ergot	511	811	
Ergothioneine	511		
Erodiamine	818	820	
Erucic acid	223	267	273
	365		
Erucylacetic acid nervonic acid			
Erncyl alcohol	268		
Erythraline	821		
Erythratine	821		
Erythramine	821		
Erythrene, 1,3-butadiene			
Erythrina alkaloids	818	821	
Erythrite erythritol			
Erythritol	56	319	464
	754		
Erythrol nitrate, erythrityl tetranitrate	323		
Erythronic acids	349	465	

Index Terms	<u>Links</u>		
Erythrose	464		
Erythrosin	724		
Erythrulose	465		
Esculetin	796		
Eserine, physostigmine	816		
Eseroline	819		
Esterification, in quinine synthesis	834		
mechanism of	120	145	280
of acetic acid	244		
of formic acid	241		
of glycerol	316		
of lactic ester	341		
of 1,4,5-naphthalenetricarboxylic			
anhydride	740		
of resin acids	587		
of ricinoleic acid	353		
of senecic acid	821		
of sodium cyanoacetate	378		
of trimethylacetie acid	249		
rate of reaction	283		
Esters	280		
ammonolysis of	281	414	
α-bromo	344		

This page has been reformatted by Knovel to provide easier navigation.

426

carbaloxylation of

<u>Links</u>

Esters (Cont.)		
cond. of	364	405
conv. to ketenes	232	
conv. of lactic ester to acrylate	341	
decomposition to olefins	693	
formn. of aldehydoesters	348	
of methyl	183	
from Grignard reagents	426	
from oxidation of <i>n</i> -pentanol	204	
of acetoacetic acid	367	
of aliphatic acids	280	
of arsenious and arsenic acids	158	
of benzoic acid	693	
of formic acid	280	422
of glycerol-1,3-dibromohydrin	531	
of halogenated acid	287	
of hydracrylic acid	343	
of hypochlorous acid	157	
of β -hydroxyacids	344	
of γ-hydroxyacids	345	
of δ -hydroxyacids and higher		
homologs	347	
of inorganic acids	155	
of nitric acid	156	

<u>Links</u>

Esters (Cont.)		
of nitrous acid	157	
of oxalic acid	377	
of phosphorous acids	157	
of pyrrolizidine bases	821	
of retronecine	821	
of silicic acid	158	
of sulfuric acid	158	
of sulfurous acid	159	
prepn. from alkyl halides and silver		
salts of acids	80	
prepn. of acetates	283	
unsaturated, use in prepn. of		
ω-hydroxyacids	348	
of pyrazolines	769	
use in formn. of acyloin	358	
of allylesters	531	
Estriol	596	
Estrogen	716	
Estrone, theelin	595	716
Et, ethyl, CH ₃ CH ₂ —		
Etard's reagent	676	
Ethal, cetyl alcohol		
Ethanal, acetaldehyde	139	

Links

Ethanal acid, glyoxalic acid		
Ethandial, glyoxal		
1,2-Ethandiol, ethylene glycol	303	
Ethane	13	16
formn. from <i>n</i> -butane	18	
from cotton seed oil	5	
from di-triethylmethyl peroxide	294	
from ethylene	35	
from sodium acetate	245	
from sodium ethyl	851	
from sodium propionate	16	
from methane	14	
from propylene	38	
hydrogenolysis of	2	17
oxidation of	16	30
pyrolysis of	16	30
reac. in silent electric discharge	17	
reac. with bromine	16	
with chlorine	16	94
Ethane diacid, oxalic acid		
Ethane dicarboxylic acid succinic acid		
Ethane hexamercarbide	857	
Ethanol, see ethyl alcohol	106	
Ethanol, anti-freeze	306	

<u>Links</u>

azeotropic mixture with water	107	
comparison with acid amides	294	
conv. to acetone	208	
dehydration	30	
dehydrogenation	109	
density	108	
oxidation	109	354
photochemical reac. with acetone	217	
prepn. by direct hydration		
of ethylene	108	
by Fischer-Tropsch synthesis	108	
by hydration of ethylene	107	108
by hydrolysis of cellulose	108	
prepn. from ethylene	35	
from glucose fermentation	106	
reacs. of	109	
reac. with acids	110	
with acid anhydrides	110	
with acid chlorides	110	
with alumina	110	
with aluminum	110	
with calcium chloride	109	
with carbon monoxide	246	
with chlorine	110	

<u>Links</u>

Ethanol, anti-freeze (Cont.)	
with fused alkalies	110
with halide acids	110
with iodine and a base	111
with metals	110
with nitric acid	109
with phosphorous halides	110
with sulfuric acid	110
with sulfur trioxide	110
use in prepn. of anhydrous ethanol	110
of ethyl acetate	283
of ethyl bromide	82
of ethyl formate	280
Ethanolal, glycolic aldehyde	
Ethanolamine	500
Ethanoltrimethylammonium	
hydroxide choline	
Ethanthiol ethyl mercaptan	
Ethene, ethylene	
Ethenylglycolic acid, α-	
hydroxyvinylacetic acid	
Ether, diethyl ether	

Links

Ethers, aliphatic	138		
as catalyst in the addn. of			
halogen acids to ethylene	32		
formn. from alkyl halides and			
alcoholic bases	77		
from diazomethane and phenols	183		
in oxonium complex	852		
of inositols	559		
reac. with sodium ethyl	851		
use as solvent in Grignard reaction	21		
in modified Wurtz reaction	22		
Ether acids	352		
Ether acid esters	352		
Ethide	164		
Ethine acetylene			
Ethionic acid	33	110	153
Ethocel, ethyl cellulose			
β -Ethoxyacrolein diethyl acetal	448		
Ethoxybutenes	71		
Ethoxymethylenemalonic ester	388	800	
Ethyl acetate, aldol cond. of	285		
catalyst in prepn. of mercury alkyls	855		
of mercury diphenyl	861		
cond. to acetoacetic ester	366		

Links

Ethyl acetate, aldol cond. of (Cont.)			
cond. with acetone	358		
prepn. from acetaldehyde	198		
from ethanol	109	284	
prepn., commercial	283		
reac. with diethyl ketone	221		
Reformatzky reac.	287		
use in prepn. of acetamide	297		
of 1,1-diphenylethylene	714		
of methyldiethylcarbinol	128		
Ethylacetic acid, <i>n</i> -butyric acid	247		
Ethyl acetoacetate, acetoacetic ester	36	233	769
Ethylacetylene 1-butyne	70	307	
Ethyl acrylate	421		
Ethyl acrylic acids	263	268	
Ethyl alcohol, ethanol, "alcohol,"			
grain alcohol, spirits of wine			
methyl carbinol			
Ethyl alcohol	106		
conv. to acetal	199		
to ethyl ether	139		
formn. of fulminate	423		
formn. from <i>n</i> -butane	18		
oxidation to acetaldehyde	194		

Links

Ethyl alcohol (Cont.)			
prepn. from acetaldehyde	195		
from ethylene	33		
reac. with allene	54		
with triphenylchloromethane	719		
use in prepn. of 1,3-butadiene	55		
use in reduction of pyridine	782		
Ethyl alcohol, absolute	108		
Ethyl allene	55		
Ethyl aluminum iodides	857		
Ethyl amines	128	294	
Ethylamine acetate	182		
Ethyl aminomalonate	434		
Ethyl 2-amylbarbituric acid	436		
Ethyl arsenate	158		
Ethyl arsenite	158		
Ethylbenzene, phenylethane	269	615	
Ethyl borate	158		
Ethyl bromide	36	82	219
	379	731	
Ethyl bromoacetate	287	372	407
Ethyl α-bromoisobutyrate	380		
Ethyl α-bromopropionate	344		
2-Ethylbutanoic acid, diethylacetic acid	252		

Links

2-Ethyl-1-butanol	85	125	
2-Ethyl-1-butene	125		
Ethylbutylacetaldehyde	218		
Ethyl <i>n</i> -butylacetoacetate	250		
Ethyl <i>n</i> -butylbarbituric acid	436		
Ethyl <i>t</i> -butyl ether	75	142	
Ethyl <i>n</i> -butyrate	128		
2-Ethylbutyric acid	36		
Ethyl caproate	124		
Ethylcarbinol, normal propyl alcohol	111		
Ethyl carbonate	219	242	379
	426	433	
Ethyl cellulose	496		
Ethyl chloride	36	82	731
	858		
2-Ethyl-1-chlorobutane	85		
Ethyl chloroformate, ethyl			
chlorocarbonate	428	692	
Ethyl-β-chloroisovalerate	384		
Ethyl citronellol	228		
Ethylcyclobutane	529		
Ethylcyclohexane	523		
Ethyl Δ^1 -cyclohexenylbarbituric acid	436		
Ethylcyclopentane	523		

<u>Links</u>

36

Ethyldecyldodecylacetic acid	249	
Ethyl diazoacetate	610	
Ethyl diethylacetate	125	
Ethyl-2,3-dimethylvalerate	22	
Ethyl disulfide	148	
Ethylene, ethene	29	
absorption by silver nitrate solution	33	
burning	34	
formn. from <i>n</i> -butane	18	
from di-triethylmethyl peroxide	294	
from ethylamine	178	
from ethane	16	
from methane	14	
from methanol	104	
from propane	17	
from propylene	38	
from sodium ethyl	851	
from sodium propionate	16	
from waste hydrocarbon gases	30	
formn., in the hydrocarbon cracking		
process	26	
hydration	107	
oxidation of	34	
polymerization of	35	

<u>Links</u>

Ethylene, ethene (Cont.)		
prepn. from acetylene	30	66
from ethane	30	
from ethanol	30	110
from ethylene glycol	305	
from ethylene halide	30	
from ethyl halides	30	
from propane	30	
from sodium succinate	30	
pyrolysis of	35	
reac. with aqueous alkalies	35	
with benzene and aluminum		
chloride	34	
with bromine	31	
with bromine and methanol	32	
with bromine chloride	88	
with <i>t</i> -butyl chloride	85	
with carbon dioxide	35	257
with diazomethane	184	
with halogens	31	87
with halogen acids	32	
with halogen and aqueous salt		
solution	32	
with hydrogen	16	31

<u>Links</u>

Ethylene, ethene (Cont.)		
with hydrogen bromide	82	
with hydrogen chloride	32	82
with iodine	31	88
with iodine bromide	31	
with iodine chloride	31	88
with isobutane	21	
with isobutylene	19	
with mercuric salts	33	
with nitric acid	33	
with oleum	33	
with ozone	34	
with selenium monochloride	33	
with selenium oxychloride	33	
with sulfur chlorides	33	
with sulfuric acid	33	38
with sulfur trioxide	33	
with water and halogens	32	
resonance forms of	27	
use in formn. of carbyl sulfate	153	
of ethyl ether	139	
use in prepn. of β -chloropropionic		
acid	277	
of $\beta\beta$ '-dichloroethyl sulfide	147	

Links

Ethylene, ethene (Cont.)	
of ethylene chlorohydrin	313
of ethylene oxide	310
of ethyl sulfate	159
use in ripening fruit	36
use in welding and cutting metals	35
Ethylene acetic acid	532
Ethylene bromide, ethylene dibromide	
prepn. from acetylene and hydrogen	
bromide	67
from vinyl bromide and hydrogen	
bromide in the presence	
of peroxides	95
reac. with alcoholic potassium iodide	30
with alcoholic potassium	
hydroxide	65
with zinc	88
use in prepn. of 1,1-dicarboxylic acid	
of cyclopropane	533
of methyl γ-hydroxypropyl	
ketone	338
use with tetraethyl lead	88
Ethylene bromohydrin	311
Ethylene bromoiodide	88

This page has been reformatted by Knovel to provide easier navigation.

314

Links

Ethylene bromonitrate	32		
Ethylene chloride, ethylene dichloride			
conv. to succinic acid	381		
formn. from production of ethylene			
chlorohydrin	87	314	
prepn. from ethylene	35		
reac. with bases	88		
with benzene and aluminum			
chloride	716		
with chlorine	92		
with sodium cyanide	87		
with sodium polysulfide	87		
with sulfur trioxide	87		
use in prepn. of 1-chloro-2-			
methylmercapto-ethane	509		
of thiokol	147		
Ethylene chlorobromide	31	88	
Ethylene chlorohydrin occur. with			
ethylene dichloride	329		
prepn. from ethylene	35	303	313
reac. with sodium cyanide	257		
use in fruit ripening	36		
use in prepn. of alkamines	327		
of $\beta\beta'$ -dichloroethyl sulfide	147		

Links

Ethylene chlorohydrin occur. with			
ethylene dichloride (Cont.)			
of ethylene glycol	303		
of ethylene oxide	310		
of mercaptoethanol	146		
use in prepn. of taurine	328		
of vinyl sulfonic acid	153		
Ethylene chloroiodide	88		
Ethylene cyanohydrin	311	314	343
	412	417	
Ethylene diamine	35	88	267
	329	444	
Ethylene dibromide see ethylene			
bromide	178	361	532
Ethylene dichloride	29	31	36
	329	806	
Ethylene dicyanide, succinonitrile			
Ethylene dicyanide	87		
Ethylene dihalides	95		
Ethylene dimalonic ester	533	540	
Ethylene glycol, also see Glycol	303		
explosion with acetic anhydride	293		
formn. from acetone	217		
from bromoethylamine	179		

<u>Links</u>

Ethylene glycol, also see Glycol (Cont.))	
oxidation to glyoxal	354	
prepn. from ethylene	34	
from ethylene oxide	311	
reac. with acetone	212	
with formaldehyde	188	
with trichloroacetic acid	276	
theoretical oxidation series	303	
toxic nature of	378	
use as solvent in prepn. of amines	167	
use in prepn. of terylene	305	
Ethylene glycol ether	35	
Ethylene glycol dinitrate	36	
Ethylene glycol monoacetate	311	
Ethylene glycol monoethyl		
ether cellosolve	311	
Ethylene halides	87	
Ethylene imine	179	331
Ethylene iodide	30	88
Ethylene iodohydrin	34	314
Ethylene lactic acid hydracrylic acid		
Ethylene malonic acid	533	

Links

Ethylene oxide	310		
prepn. from β -chloroethane sulfonyl			
chloride	87		
from ethylene	34	303	
from phenylethyl alcohol	675		
prop. similar to propylene oxide	312		
reac. similar to trimethylene oxide	312		
reac. with cellulose	496		
with Grignard reagents	79	311	853
with hydrogen cyanide	257	412	
with <i>n</i> -propylmagnesium			
chloride	117		
table of commercial products	311		
use in prepn. of alkamines	327		
of choline	327		
of dioxan	312		
of <i>n</i> -hexyl alcohol	124		
of monoethanolamine	326		
rearrangement of	212		
Ethylene sulfate	159		
Ethylenetetracarboxylic acid	393		
Ethylene urea	329		
Ethyl esters	110		
Ethyl ether	35	139	852

<u>Links</u>

Ethyl ether of hydrocupreine, optoquin			
Ethylethylene 1-butene			
Ethyl fluid	88	646	
Ethyl formate	70	123	126
	280		
α -Ethyl- β -furylacrylic acid	756		
Ethyl gas	8		
Ethyl glucosides	475	478	
Ethyl green	726		
Ethyl Grignard reagent	220	422	
2-Ethyl-1, 3-hexandiol	35		
2-Ethylhexanoic acid	253		
2-Ethyl-1-hexanol	35	130	
2-Ethylhexoic acid	36		
Ethyl <i>n</i> -hexylbarbituric acid	436		
2-Ethylhexylphthalate	36		
Ethyl hydrogen peroxide	142		
Ethyl hydrogen sulfate	108		
Ethyl hydroxymethyl ketone			
propionylcarbinol	336		
Ethyl hypochlorite	157		
Ethylidene acetone	338		
Ethylidien bromide	87		
Ethylidene chloride 1 1-dichloroethane			

Ethylidene chloride 1,1-dichloroethane

Index Terms	<u>Links</u>		
Ethylidene chloride	87	92	
Ethylidene diacetate, acetaldehyde			
diacetate	67	200	
Ethylidene halides	67	87	95
	381		
Ethylidene iodide	87		
Ethylidenesuccinic anhydride			
homoitaconic anhydride			
Ethylidineaniline	798		
Ethyl imidodicarboxylate	429		
Ethyl indoxylate	765		
Ethyl iodide	82	160	857
Ethyl isoamylbarbituric acid	436		
Ethyl isobutyrate	281	298	
Ethyl isocyanate	450		
Ethyl isopropenylether	54		
Ethylisopropylbarbituric acid	436		
Ethylisopropylcarbinol	127		
Ethyl isopropyl ether	141		
Ethyl isopropyl ketone	19	127	221
Ethyl isothiocyanate	454		
Ethyl ketol, propionylcarbinol	336		
Ethyl lactate	201	341	
Ethyl laurate	285		

Links

Ethyl magnesium chloride	530		
Ethylmagnesium halide	115		
Ethylmaleic acid	393		
Ethylmaleic anhydride			
homocitraconic an-hydride			
Ethyl malonate, malonic ester			
Ethyl malonic ester	379		
Ethyl mercaptan, ethanthiol	82	145	
Ethyl mercuric chloride	856		
Ethyl methacrylate	213		
Ethyl 1-methyl-butenylbarbituric acid	436		
Ethyl methyl-sec-butylacetate	22		
S-Ethyl O-methyl monothioacetal of			
D-galactose	483		
2-Ethyl-5-methylpyridine	846		
Ethyl morphine	844		
β -Ethylnaphthalene	731		
Ethyl nitrate	156		
Ethyl nitrite	157	181	220
	716	732	
Ethyl nitrolic acid	163		
Ethyl-o-nitrophenylpropiolate	765		
3-Ethyl-3-octadecanol	133		
Ethyl oleate	266		

<u>Index Terms</u>	<u>Links</u>		
Ethyl orthocarbonate	164	425	
Ethyl orthoformate	91	282	388
Ethyl orthosilicate	36	158	
Ethyl oxalate	221	263	287
	636	778	
Ethyl palmitate	132		
Ethyl paraconic acid	265		
3-Ethylpentene	22		
Ethyl peroxide	142		
<i>p</i> -Ethylphenol	671		
Ethyl phenylacetate	675		
Ethyl phenylbarbituric acid	436		
Ethylphenylcarbinol	617		
Ethyl phosphate	157		
Ethyl phosphines	848		
Ethylpotassium	692		
Ethyl propionate	129		
α -Ethyl- β -propylacrolein	228		
Ethylpropylcarbinol, 3-hexanol			
Ethyl <i>n</i> -propyl ether	141		
Ethyl <i>n</i> -propyl ketone	127	221	
α -Ethyl pyridine	789		
Ethyl-2-pyridylacetate	826		
3-Ethylquinoline	799		

Links

3-Ethylquinoline-2-carboxylic acid	799		
Ethyl radicals	855	858	
Ethyl sebacate	25		
Ethyl succinate	308	381	
Ethyl sulfate	35	140	159
Ethyl sulfide	146		
Ethyl sulfone	150		
o-Ethylthiocarbamate	457		
Ethyl thiocyanate	453		
Ethyl trimesate	352		
Ethyl valerate, ethyl valerianate	117		
Ethyne, acetylene			
Etiobilanic acid	591		
Etiocholanic acid	591		
a-Eucaine	823		
β-Eucaine	214	823	
Eucarvone	564		
Eucupine	835		
Eudalene, eudaline	584		
Eudalene, 1-methyl-7-			
isopropylnaphthalene	584	732	
β-Eudesmol	583		
Eugenol	683		
Euphthalmine	824		

Links

Euxanthone	803
Evernic acid	700
Evipal	436
Exhaustive methylation, general	
discussion	175
in detn. struct. of alkaloids	810
in prepn. of cyclobutane	537
of betaines	504
of β -methylpyrrolidene	59
of piperidiene	63
reac. of alkyl halides and ammonia	77
Explosives	
acetic anhydride reacs	293
acetone, in manuf.of	208
acetylene reacs.	66
acetylenic	397
acetylides	68
acetyl nitrate	293
acetyl peroxide	293
alkyl azides	184
benzazide	694
butadiene peroxides	59
cyclonite	189

<u>Links</u>

Explosives (Cont.)

diozonide of phorone	364		
ethylene glycol and acetic anhydride	293		
fulminates	423		
Grignard reagent and ethylene oxide	311		
iodosobenzene	626		
mercury fulminate	423		
nitrocellulose	496		
nitrogen chloride	432		
nitroglycerine	317		
nitrosophenol	668		
oxonium cpds.	311	853	
ozonides	48	364	
paraffin reacs.	2		
pentaerythritol tetranitrate	324		
peroxides	142		
PETN	324	613	638
picric acid	669		
potassium and carbon monoxide	674		
RDX, cyclonite	189		
tetracene	448		
tetranitroaniline	647		
tetranitrotoluene	638		
tetryl	648		

<u>Links</u>

Explosives (Cont.)

TNT	324	638
trimethylbismuth	851	
trimethylenetrinitramine	188	
urea used as stabilizer	432	
vinylacetylene resin	72	

F

F-12, dichlorodifluoromethane	90	92
Fagarines	811	830
Farnesol	584	588
Fast yellow, α -naphth-2,4,7-		
trisulfonic acid	737	
Fats	225	317
Fatty acids, see acids, fatty	237	
Febrifuge	769	797
Fehling's solution, composition of	402	
fails with β -		
hydroxypropionaldehyde	333	
reac. with alkylhydroxylamines	182	
with glycolic aldehyde	332	459
with glyoxal	355	
with hydroxy ketones	338	

Links

Fehling's solution	
composition of (Cont.)	
with lactose	492
with levulinic aldehyde	364
with methylhydrazine	181
with tetramethylglucose	478
reduction by formaldehyde	186
by D-fructose	485
by gentiobiose	492
by maltose	491
by mannosaccharic acid	404
by polysaccharides	488
by turanose	491
use in oxidation of β -phenylhy-	
droxylamine	642
β -Fenchenes	575
Fenchocamphorone, apocamphor	581
Fenchol	453
Fenchone	581
Fenchyl alcohol	575
Fermentation	
in formn. of actone and	
<i>n</i> -butyl alcohol	208
of 2,5-butylene glycol	55

<u>Links</u>

Fermentation (Cont.)		
of riboflavin	808	
mechanism of prepn.		
of <i>n</i> -butyl alcohol	113	
mechanism of reac.	107	
of carbohydrates	247	
of dihydroxyacetone	463	
of fructose	485	
of galactose	483	
of glucose	351	356
of glutanic acid	506	
of glyceraldehyde	461	
of leucine	503	
of pyruvic acid	366	772
of starch	208	
of sugar	811	
of tartaric acid	381	
use in prepn. of <i>n</i> -butyl alcohol	113	
of ethanol	106	
of lactic acid	341	
Ferric acetate	464	471
Ferric ammonium citrate	407	410
Ferric bromide	37	

<u>Links</u>

Ferric chloride	
color with acinitro form	
of phenylnitro-methane	639
with amines	501
with glutaconic anhydride	394
with hydroxamic acids	300
with hydroxypyridines	784
with phenols	666
with pyrocatechol	672
with resorcinol	672
reac. with acetoacetic ester	366
with hydroxamic acids	172
with naphthyl Grignard reagents	740
with naphthols	736
use in Angeli-Rimini reac.	190
in ether formn.	140
use in oxidation of o-diamines	653
of hydrazo cpds.	659
of indoxyl	765
of methyl acetyl carbinol	356
use in prepn. of <i>o-t</i> -butyltoluene	613
of cyclopropyl alcohol	530
of diphenyl	710

Links

Ferric chloride (Cont.)			
use in test for formaldehyde	194		
for streptomycin	780		
Ferric hydroxide	402		
Ferric salts	376		
Ferrous hydroxide	860		
Ferrous sulfate	437		
Ferulic acid	704		
Fibers	521		
Fibrin	505		
Fibroin	502	512	519
Filaments	521		
Fischer-Hepp rearrangement	651		
Fischer-Tropsch synthesis	420		
of <i>n</i> -butanol	113		
of ethanol	108		
of higher alcohols	132		
of liquid fuels	11		
of methanol	103		
of <i>n</i> -propyl alcohol	111		
Fisetin	795		
Fittig reaction, see Wurtz-Fittig reaction			
Flavanes	795		
Flavanols	795		

Links

Flavones	681	753	793
Flavopurpurin, 1,2,6,-trihydroxy-			
anthraquinone	746		
Flavoring material	704		
Flexol plasticizers	35		
"Fluld catalyst" processes	9		
Fluoran	723		
Fluoranthrene, idryl	749		
Fluorene	715		
9-Fluorenol, fluorenyl alcohol			
Fluorenone	711	715	
Fluorescein	672	706	724
	739		
Fluorenyl alcohol	715		
Fluorescence	808		
Fluorine	15	73	605
	715		
Fluorobenzene	625	655	
Fluorocarbons	94		
Fluorochlorobromomethane	91		
Fluoroform	90		
Foamite fire extinguishers	256		
Folic acid	807		

<u>Links</u>

Formaldehyde	185
cond. of	471
cond. to inostiol	558
cond. with aliphatic nitro cpds.	162
with indole	763
with phenolsulfonic acid	631
with thiophene	759
conv. to glycolic acid	340
to hydroxyisobutyric acid ester	344
to methylenedimalonic ester	385
to propiolactone	343
formn. by oxidation of <i>n</i> -butane	18
of ethane	16
of ethylene	34
of methane	14
of propylene	38
formn. from azomethane	181
from calcium <i>n</i> -valerate	204
from dinitroethane	163
from triketopentane	362
hydrated form of	302
in photosynthesis	427
polymerization to fructose	486
prepn. from methanol	104

<u>Links</u>

Formaldehyde (Cont.)		
prepn. of pentaglycerol	319	
reacs. of	610	
reac. with acetone	211	
with Acetylene	69	
with α -amino acids	499	
with ammonia	773	
with aniline	643	
with butylmagnesium chlorides	117	119
with cellulose	496	
with citric acid	407	
with cyclohexanone	561	
with diphenylamine	59	727
with mescaline	835	
with tetrahydro-papaverine	837	
with isobutyraldehyde	203	
with β -naphthalene sulfonic acid	734	
with napinene	572	
with phenol	667	
with phosphine	848	
with α -picoline	789	
with pyruvic aldehyde	382	
with salicylic acid	722	
with thiopnene	759	

<u>Links</u>

Formaldehyde (Cont.)	
with trichloroethylene	101
with urea	432
use in formn. of methylamines	177
use in prepn. of β -acetyl	
ethyl alcohol	337
of amberlite	329
of butynediol	313
of 3,6-diaminoacridine	803
of <i>p</i> , <i>p</i> '-diamino-diphenylmethane	713
of ethylene glycol	303
of formisobutyraldol	334
of <i>n</i> -hexyl alcohol	124
of isohexyl alcohol	125
of o-methylanhalamine	835
of 3-methyl-1, 3-butandiol	308
of α -methylnaphthalene	731
of neopentyl alcohol	120
of pentaglycol	307
of propargyl alcohol	137
of pyronine	803
of resins	670
of skatyldimethylamine	510

This page has been reformatted by Knovel to provide easier navigation.

682

Links

Formaldehyde (Cont.)			
of a trimer of methy-			
leneaminoacetonitrile	502		
use in synthesis of 3-methyl-			
1-pentanol	125		
use in Zelan process	298		
Formaldehyde cyanohydrin glyconitrile	417		
Formaldehyde derivatives	194		
Formaldehyde sulfoxylates	191		
Formaldoxime	236		
Formalin	186	193	
Formals	187		
Formamide	240	296	409
	412	776	
Formamides, alkyl	419		
Formamidoxime	433		
Formaminodiphenyl	803		
Formamidine disulfide	445		
Formates	105	186	204
	376	705	
Formic acid, methanoic acid	240		
conv. to carbon monoxide	420		
formn. from atropic acid	704		
from cyanogen	408		

Links

Formic acid, methanoic acid (Cont.)			
from cyanogen	408		
from formamides	419		
from glucosan	476		
from hydrogen cyanide	412		
from isopropyl alcohol	112		
from lactic acid	194	342	
from methanol	104		
from orthoformates	422		
from oxalic acid	376		
from tartaric acid	401		
from vinylacrylic acid	268		
oxidation with nitrous acid	297		
reac. with erythritol	754		
with triphenylcarbinol	720		
use in dehydration of glycerol	318		
use in prepn. of allyl alcohol	135		
of methyl formate	280		
use in silage	256		
Formic anhydride	292		
Formic esters	220	422	506
Formimides	684		
Formimido chloride	423		
Formimido esters	423		

Index Terms	<u>Links</u>		
Formimido ethers	423		
Formisobutyraldol	334		
Formol titration	189	499	
Formopon, Rongalite C	191	.,,,	
Formorhodamine, pyronine			
Formose, DL-fructose	471		
Formylacetic acid, malonic acid			
half aldehyde	364	805	
Formylacetic ester	806		
Formyl chloride	291	409	422
	676		
Formyldiphenylamine	802		
Formyl hydrazide	776		
Fortical	496		
Fraxetin, see esculetin			
Free electron pair	859		
Free radicals, ethyl	60	858	
Methyl	858		
methylene	29		
pentaphenylcyclopentadienyl	547		
triphenylmethyl	720	727	
from azo cpds.	658		
from dihalides	89		
from hexamethyl-stanno-ethane	858		

Links

Free radicals, ethyl (Cont.)			
from hydrazines	661		
•			
from lead alkyls	858		
in electrolysis of sodium acetete	245		
in formn. of 1,1,4,4-			
tetraphenylbutane	714		
in the hydrocarbon cracking process	26		
in polymerization	52		
in reduction of aldehydes	195		
in Wurtz reac.	23		
reacs. of	78	858	
Free radical polymerization	52		
Friedel-Crafts reaction, of acetylene			
and benzene	68		
of benzene	218	716	718
of methyl furoate	250		
of naphthalene	731		
of acid halides and aromatic			
hydrocarbons	290		
with carbamic acid chloride	430		
with formyl chloride	423		
with phthalic anhydride	609		
with succinic acid	382		
use in prepn. of acetophenone	680		

<u>Links</u>

711		
744		
747		
692		
682		
740		
723		
511		
682		
90	92	
476	480	484
489		
490		
375		
374		
	 744 747 692 682 740 723 511 682 90 476 489 490 	744 747 692 682 740 723 511 682 90 92 476 480 489 490 375

Links

Fuchsine	191	725	
Fuchsone	720		
Fuchsonimine, salts of	721		
L-Fucitol, 1-desoxy-D-galactitol			
Fucose	472		
Fulminic acid	423		
Fulvenes	545		
Fumarates	391		
Fumaric acid	388	398	
Fumaric ester	534		
Fumigants	81	164	312
	412		
Fungi	493	793	
Fungicides	459	799	856
Furacin	757		
α -Furaldehyde, furfural			
Furalmalonic acid	755		
Furan	753		
addn. of maleic anhydride	754		
comparison with benzene	751		
conv. to adipic acid	385		
formn. from acetonylacetone	360		
from succindialdehyde	356		
formn. by thermal decomposition	753		

Links

Furan (Cont.)			
prepn. from furfural	754		
from the 2-carboxylic acid	754		
prop.	754		
reac. with maleic anhydride	391	566	
reduction of	754		
substitution reacs. in	756		
use in Diels-Alder reac.	555		
Furan-2-carboxylic acid, furoic acid			
Furan- α -carboxylic acid, pyromucic acid			
Furan derivatives	370		
Furanose	475		
Furanose ring	467	472	490
Furfural			
conv. to adipic acid	385		
to 2-heptene-4-one-1,7-diacid	107		
	406		
cracking of	406 754		
cracking of C.S.T. of hydrocarbons			
e	754		
C.S.T. of hydrocarbons	754 1		
C.S.T. of hydrocarbons formn. from hexuronic acids	754 1 375		
C.S.T. of hydrocarbons formn. from hexuronic acids from pentoses	754 1 375 466		
C.S.T. of hydrocarbons formn. from hexuronic acids from pentoses hydrogenation of	754 1 375 466 755		

Links

Furfural (Cont.)			
from pentosans	755		
from pentoses	755		
from vegetable products	755		
prop.	1		
reac. with <i>n</i> -butyric anhydride	756		
with potassium cyanide	755		
reduction	754		
use as solvent	9	55	755
in fruit ripening	36		
α -Furfuraldehyde, furfural			
Furfuramide	755		
Furfurane, furan			
Furfurin	755		
Furfurol, furfural			
Furfuryl alcohol	755		
Furil	755		
Furilic acid	755		
Furoic acid	756		
Furoin	755		
Furol, furfural			
Furonic acid	406	755	
Furylacrylic acid	406	755	
β -Furylpropionic acid	755		

<u>Index Terms</u>	<u>Links</u>		
Fusarium mold	468		
Fused ring systems	816		
Fusel oil	107	111	113
	118	501	
Fusion	410	735	783
		807	
see alkaline, cyanide			
formate, etc.			
G			
Gabriel phthalimide synthesis	169	274	329
	498	707	
G acid	736		
Galactans	482		
L-Galacto-methylose, L-fucose			
Galactonic acid	351	404	483
	488		
D-Galactose	404	482	487
	489	492	
D-Galactose diethyl mercaptal			
pentaacetate	483		
D-Galactose methylphenylhydrozone	483		

Links

4- β -D-Galactosido- α -D-fructose			
lactulose			
$6-\alpha$ -Galactosido- α -glucose, melibiose			
4 - β -D-Galactosido-D-glucose, lactose			
Galacturonic acid	374		
Galingin	795		
Galipine	830		
Galipoline	830		
Gallacetophenone	746		
Gallein	724		
Gallic acid	699		
Gallium	857		
Gallium chloride	857		
Gallium triethyl	857		
Gallium trimethyl	857		
<i>m</i> -Galloyl-gallic acid, <i>m</i> -digallic acid			
Galtose	487		
Gamma acid	737		
Gammexane	618		
Gardinol, S. L. S., Dreft, etc.	132		
Gasoline	7	26	59
	671	858	
Gattermann synthesis	423	655	684
	740		

<u>Index Terms</u>	<u>Links</u>		
Gattermann Aldehyde Synthesis	757		
Gelatin	502	505	511
	518		
Gelsemine	822		
Gem-, two groups, on same carbon			
Geneva nomenclature	19		
Genista	795		
Gentianose	492		
Gentiobiose	489	492	
Gentisic acid	699		
Geometric isomerism	235	320	388
	566		
see also cis-trans and			
syn-anti			
Geon	95		
Geranial, citral			
Geranic acid	269		
Geraniol	61	136	160
	270		
Geraniolene	554		
Germanium alkyls	858		
Germanium tetraethyl	858		
Germicide	170	781	864
Germine	846		

<u>Index Terms</u>	<u>Links</u>		
Geronic acid, α , α -dimethyladipic acid	374		
Gilsonite	10		
Ginnol	132		
Gitogenin	595		
Gliadin	506	510	512
	517	521	
Gliadins, see prolamines	518		
Globin	503	512	519
Globulins	512	518	
animal	512	518	
vegetable	512	518	
Glucic acid	365		
α and β -D-Glucofuranose	474		
α -D-Glucoheptonic lactones	351		
D-Glucol	480		
D-Gluco-methylose, quinovose			
Gluconic acid	351	476	481
	492		
D-Gluconic anhydride	476		
Gluconic lactone	481		
Glucoproteids	519		
α-Glucopyran	474		
α and β , D-Glucopyranose	475		
D-Glucopyranose-1-phosphate	478		

Links

3-α-D-Glucopyranosido-D-fructose			
turanose			
1-α-D-Glucopyranosyl-β-D-			
fructofuranoside sucrose			
6-α-D-Glucopyranosyl-D-glucopyranose	491		
4-D-Glucopyranosyl-α-D-			
glucopyranoside maltose			
Gluco-rhamnose	489		
Glucosaccharic acid, D-saccharic acid	404		
Glucosamine	481	488	519
Glucosan	475		
Glucose	473		
conv. to gluconic acid	351		
to mannose	333		
to methyl glucoside	478		
to saccharic acid	404		
fermn. to ethanol	106		
formn. from indican	765		
reac. with acetone	480		
with methylphenylhydrazine	480		
α-Glucose	473		
β -Glucose	473		
γ-Glucose	474		

<u>Links</u>

D-Glucose	473		
conv. to D-fructose	485		
to D-glucoheptonic lactones	351		
from licoses	489		
from cellulose	495		
from D-fructose	485		
from lactose	429		
from mannotriose	493		
L-Glucose	481		
D-Glucose derivatives	477		
D-Glucose phenylhydrozone	480		
Glucosephosphate	481	490	
Glucosides, glycosides	477	491	794
	803		
Glucosidic anthocyanins	795		
2-Glucosido-fructofuranose, sucrose	489		
2-Glucosido- β -fructose, sucrose			
2-[α -D-Glucosido(1,5)]- β -D-			
fructose(2,5) sucrose			
Glucosido-glucoses	493		
4- β -Glucosido- β -glucose, cellobiose			
6 - β -Glucosido-glucose, gentiobiose			
4- α -Glucosido- β -glucose, maltose			
4-Glucosido-mannose	489		

<u>Index Terms</u>	<u>Links</u>		
D-Glucosone	485		
Glucuronic acid	374	481	519
Glue	502	519	
Gluta	506		
Glutaconic acids	136	393	
Glutaconic ester	394	396	
Glutaconic dialdehyde	786		
Glutamic acid	506		
conv. to succinic acid	506		
from folic acid	808		
identification of as terminal acid in			
polypeptides	515		
in chick nutrition	498		
in insulin	506		
in proteins	517		
reac. with yeast	506		
table, percentages in proteins	512		
use in transamination	791		
Glutamine	506		
Glutamylcysteinylglycine			
see glutathione	513		
Glutamylglutamic acid	514		
Glutamyltyrosine	514		

<u>Index Terms</u>	<u>Links</u>		
Glutaric acid	385	538	582
Glutaric anhydride	385		
Glutaric dialdehyde	356	825	
Glutarimide	793		
Glutathione	508	513	
Glutelins	519		
Gluten	506		
Glutenin	518		
D-Glutose	477		
Glycal	480		
Glyceraldehyde, glyceric aldehyde			
Glyceraldehydes	318	341	349
	400		
Glyceraldehyde oxime	461		
Glyceric acid	226	319	348
	397	506	
Glyceric acid acetal	476		
Glyceric acid homologs	349		
Glyceric aldehyde glyceraldehyde	186	226	350
	461		
Glycerides	253	270	353
Glycerin glycerol			
Glyceroboric acid	684		

<u>Links</u>

Glycerol	315		
anti-freeze	306		
component of cephalin	326		
conv. to dihydroxyacetone	462		
to tricarballylic acid	406		
dehydration of	225		
esterification products of	316		
fermn. to trimethylene glycol	307		
formn. from allyl alcohol	135		
from fermn. mixture residue	107		
hydrolysis product of lecithin	317		
modified glyptals with			
ricinoleic acid	353		
oxidation	318	348	461
prepn. in soap manufacture	315		
prepn. by fermn. of glucose	315		
by hydrogenolysis of glucose	315		
prepn. from allyl alcohol	315		
from allyl chloride	96		
from propylene	38		
reac. analagous to erythritol	320		
reac. with acetone	212		
with oxalic acid	376		
with zinc dust	36		

Links

Glycerol (Cont.)			
use in acetal formn.	199		
use in prepn. of allyl alcohol	135		
of diglycerol	318		
of 1,10-phenanthroline	803		
of β -picoline	788		
of pyrrole	757		
of quinoline	797		
of quinoline carboxylic acids	799		
use as solvent in prepn. of amines	167		
Glycerol dibromohydrin	531		
Glycerol dichlorohydrin	317		
Glycerol halohydrins	135		
Glycerol α -methyl ether	318		
β -Glycerol monochlorohydrin	316		
Glycerol tribromohydrin	137		
Glycerol trichlorohydrin	316		
Glycerol trinitrate, nitroglycerine			
Glycerose	318	463	486
Glyceryl bromide	92		
Glyceryl chloride	92		
Glyceryl ricinoleate, castor oil	21	253	
Glyceryl triethyl ether, triethylin			
Glyceryl tristearate	317		

Links

Glycide alcohol, glycidol			
Glycidic ester, see ethylene			
oxidic esters	204	206	212
Glycidol	316		
Glycidyl ethyl ether, epiethelin			
Glycine	502		
copper salts of	502		
in chick nutrition	498		
in formn. of ornithine	505		
in protein	517		
in prepn. of glycylglycine	513		
prepn. from chloroacetic acid	502		
from methyleneamino			
acetonitrile	502		
from proteins	502		
reac. with barium hydroxide	502		
with formaldehyde	189		
relation to bile acids	591		
stereochemisty	501		
table	512		
use in prepn. of glycocyamine	448		
of hydantoic acid	433		
Glycinyl group	499		
Glycocholic acid	591		

<u>Index Terms</u>	<u>Links</u>	
Glycocoll, see glycine	502	
Glycocyamine	448	505
Glycogen	341	495
Glycol, ethylene glycol	303	
formn. from lactones	347	
from pyrethronic acid	536	
introd. of cyanoethyl group	417	
occur. in acetal formn.	199	
prepn. from dibasic esters	90	
from formaldehyde and olefins	193	
from Grignard reagents	853	
reac. with boric acid	158	
with pyruvic aldehyde	362	
Glycol chlorohydrins, ethylene chlorohydri	in 313	
Glycol dinitrate	305	318
Glycolic acid	340	
anhydrides of	340	
conv. to glycolic anhydride	341	
elec. reduction of oxalic acid	376	
formn. from ethanol and nitric acid	109	
from glyoxal	354	
from glyoxalic acid	364	
prepn. by electrolysis of oxalic acid	340	

This page has been reformatted by Knovel to provide easier navigation.

340

by oxidation of glycol

Links

Glycolic acid (Cont.)		
prepn. from carbon monoxide	340	
from chloroacetic acid	340	
from ethylene glycol	304	
from formaldehyde	340	
from glycolic aldehyde	331	
from glyoxalic acid	364	
from potassium carbonyl	340	
Glycolic aldehyde, discussion of struct.	460	
formn. from dihydroxymaleic acid	331	406
from formaldehyde in plants	186	
identification reacs.	332	
poly to fructose	486	
prepn. from bromoacetaldehyde	331	
from ethylene glycol	304	
reacs. of	459	
Glycolic anhydride	341	
Glycolide	341	397
Glycolose, glycolic aldehyde		
Glycols, also see individual members	302	
conv. to butadiene	55	
to chlorohydrin	315	
to dioxan	313	
to dioxolanes	199	305

Links

Glycols, also see individual	
members (Cont.)	
to ketones	223
to tetrahydrofurans	312
dehydration of	55
formn. from acetoin	337
from acetone	217
from acrolein	226
from aldehydes	195
from crotonaldehyde	227
from esters	90
from ethylene oxide	311
from fermentation	326
from ketoalcohols	338
from lactones	347
reac. with acetone	212
with boric acid	158
with chloral	206
with ethylene oxide	311
Glycoluric acid, hydantoic acid	
Glycolylurea, hydantoin	433
Glyconitrile, glycolonitrile	417
Glycoproteids, see glucoproteids	519

<u>Index Terms</u>	<u>Links</u>		
Glycosides, glucoside	339	454	460
	471	482	
Glycuronic acid, D-glucuronic acid			
Glycylarginine	514		
Glycylglycine	513		
Glycyl group	515		
Glycylsarcosine	515		
Glyoxal	354		
conv. to glycollic acid	354		
formn. of osazone of	332		
formn. from acetaldehyde	354		
from ethanol and nitric acid	109		
from glycol	354		
from ozonization of benzene	605		
from ozonization of o-xylene	614		
hydrated form	319		
prepn. from acetaldehyde	195		
from dichlorodioxan	354		
from ethylene	36		
from ethylene oxide	304		
reac. with ammonia	354	773	
with phenylenediamine	354		
with phenylhydrazine	354		
use in prepn. of quinoxaline	653	806	

<u>Index Terms</u>	<u>Links</u>		
Glyoxalic acid	364	376	
Glyoxaline, imidazole	354	357	752
	773		
Glyoxal trimer	355		
Glyoxylic acid	109	303	476
	510		
Glyptal resins	256	319	353
Gnoscopine	838		
Gold	413		
Gold thioglucose	480		
Gomberg reaction	655		
Gossypetin	795		
Gossyphyl alcohol	132		
Gp., group or radical			
Grain alcohol, ethanol			
Gramicidin	501		
Gramine	510	763	
Gram negative bacilli	809		
Grape sugar, D-glucose			
Graphite	709		
Greases	254	693	
Green acids	152		

<u>Links</u>

Greek letters: alpha, α ; beta, β ;			
gamma, γ ; delta, Δ , δ ;			
epsilon, ε ; zeta, ζ ; eta, η ;			
theta, θ ; mu, μ ; pi, π ;			
psi, ψ ; omega, ω			
Grignard mechanisms	117	201	
Grignard preparation			
of acetylenic alcohols	137		
of acetylenic aldehydes	228		
ketones	231		
of acyloins	337		
of alcohols, primary	853		
tertiary	128	131	853
of alkyl boranes	857		
ketols	336		
sulfides	146		
sulfinic acids	154		
of allylbenzene	617		
of aluminum trialkyls	857		
of amines	169		
tertiary	170		
tertiary, halogenated	178		
of <i>t</i> -amyl alcohol	123		
of <i>t</i> -amylcarbinol	126		

Links

Grignard preparation of acetylenic alcohols (Cont.) of arsines, tertiary 849 of benzaldehyde 677 of bismuth alkyls 850 of cyanides 414 of cyclopentane monocarboxylic acid 549 of diazoamino cpds. 658 of *sym*-dimethylallene 55 of diphenyl 710 of ethers 142 of ethyl citronellol 228 of ethyl isopropyl ketone 221 of ethylisopropylcarbinol 127 of glycols 853 of hexamethylacetone 223 of 2-hexanol 126 of *n*-hexyl alcohol 124 of isohexyl alcohol 125 of ketones 853 of mercaptans 144 of mercury alkals 855 of mercury dialkyls 856 of mercury diphenyl 861

This page has been reformatted by Knovel to provide easier navigation.

853

Links

221		
127		
123		
219		
124	128	
219		
120	854	
169		
854		
45		
855		
130		
122		
847		
272		
853		
858		
204		
117	213	852
344		
852		
	127 123 219 124 219 120 169 854 45 855 130 122 847 272 853 858 204 117 344	127 123 219 124 128 219 120 854 169 854 45 855 130 122 847 272 853 858 204 117 213 344

<u>Index Terms</u>	<u>Links</u>		
Grignard reaction with acetaldehyde	42	115	122
	201		
with acetone	43	116	123
	128	213	
with acetonitrile	219		
with acetylenes	69	71	228
	852		
with acetyl chloride	221		
with acid chlorides	120	222	232
	290		
with acids	852		
with acrolein	54	136	226
with active hydrogen cpds.	852		
with acyl halides	290		
with alcohols	127	852	
with allyl halides	39	854	
with alkyl halides	853		
with alkyl nitrites	182		
with amines	171	178	852
with amino aldehydes	328		
with ammonia	852		
with arsenic chloride	849		
with benzaldehyde	716		
with benzalpropiophenone	728		

Links

Grignard reaction with		
acetaldehyde (Cont.)		
with benzophenone	719	
with bidiphenyleneethylene	716	
with bismuth chloride	850	
with boron chloride	857	
with <i>n</i> -butyltoluene sulfonate	25	
with butyraldehyde	122	
with camphenilone	574	
with camphor	577	
with carbon dioxide	242	580
with carbon disulfide	302	
with carbon monoxide	422	
with carbon oxysulfide	455	
with carbon suboxide	378	
with carbonyl cpds.		
see also aldehydes		
esters, ketones, etc.	220	852
with carvone	557	
with cloroacetaldehyde	336	
with γ -chloroallyl chloride	101	
with chloroamine	169	
with chlorocyanogen	414	
with γ -chloropropyl-toluenesulfonate	80	

<u>Links</u>

Grignard reaction with			
acetaldehyde (Cont.)			
with conjugated cpds.	223	228	233
	798		
with coumarin	704		
with crotonaldehyde	136		
with cupric chloride	710		
with cyanides, see nitriles			
with cyanohydrins	337		
with cyclic ketones	557	574	577
with cyclohexanone-4-			
carboxylic ester	560		
with dibasic esters	25	310	
with <i>p</i> -dibromobenzene	627		
with α , β -dibromoether	45		
with 2,3-dichloro-tetrahydrofuran	754		
with dihydrocodeinone	843		
with diketones	860		
with diphenylketone	675		
with epichlorohydrin	316		
with esters	286	853	
with ethyl acetate	128	714	
with ethyl butyrate	128		
with ethyl carbonate	242	426	

Links

Grignard reaction with			
acetaldehyde (<i>Cont.</i>)			
with ethyl chloroformate	428		
with ethyl formate	673		
with ethyl isovalerate	213		
with ethyl propionate	123		
with ethylene oxide	79	117	
	124	311	853
with fenchone	577		
with formaldehyde	119	124	190
with formates	122	125	204
	281	677	
with formic ester	281		
with halides	22	81	853
with halo ethers	200		
with halogens	853		
with hydrazoic acid esters	658		
with hydrogen peroxide	853		
with isobutyraldehyde	203		
with isobutyric ester	43		
with isocyanates	450		
with isopropyl ketone	43		
with ketene	232	233	
with 2-keto- <i>p</i> -6, 8-menthadiene	557		

<u>Links</u>

Grignard reaction with		
acetaldehyde (Cont.)		
with ketones	21	
with lead chloride	858	
with mercaptans	852	
with mercuric chloride	853	
with mercury halides	855	
with methyl aldehydodecanoate	348	
with methyl cinnamyl ketone	682	
with methyl ethyl ketone	123	
with methyl isopropyl ketone	43	129
with Michler's ketone	854	
with monochloromethyl ether	79	
with nitriles	416	
with orthoformates	281	422
with orthoformic ester	228	
with oxygen	853	
with phenyl azide (azoimide)	658	
with phenyl isocyanate	86	
with phosphorus trichloride	853	
with propenyl phenyl ketone	682	
with propionaldehyde	115	
with silver bromide	24	854
with sulfonic esters	628	853

Links

Grignard reaction with			
acetaldehyde (Cont.)			
with sulfur	853		
with sulfur dioxide	152	154	
with sulfuryl chloride	154		
with thebaine	844		
with totyl sulfonates	86		
with triethyl orthoformate	199		
with trimethylacetaldehyde	205		
with trimethyl acetyl chloride	120		
with trimethylene oxide	124		
with vinyl methyl ketone	229		
with vinyl phenyl ketone	682		
Grignard reagents			
abnormal reac. with carbonyl epds.	854		
acetylenic	69	228	231
as hydrocarbo base	852		
color test for	854		
commercial uses	228	675	
comparison with alkyl zinc halides	373		
with zinc cpds.	361	855	
cond of			
coupling of	545	854	
enolization of	854		

<u>Links</u>

Grignard reagents (Cont.)		
formn. of pseudo base with	704	
hydrolysis of	12	852
of allylic systems	852	
of α -bromocamphor	580	
oxonium complex of	852	
prepn. from alkyl halides	78	851
from aryl halides	619	
prepn. of allylmagnesium bromide	97	
of neopentylmagnesium chloride	84	
of phenylmagnesium chloride	625	
of tritylmagnesium chloride	719	
reacs. of	852	
rearrangements of	618	852
reduction by	126	854
splitting of β -diketones	360	
use in Barbier-Wieland degradation	286	
in drying ether	141	
Grignard-Wurtz reactions, combined	386	
Guaiacol	671	683
Guanidine	447	
comparison with urea derives.	431	
conyv. to sulfadiazine	365	
formn. from chloropicrin	164	

<u>Links</u>

Guanidine (Cont.)			
in polypeptides	514		
prepn. from cyanamide	453		
reac. with acetylacetone	359		
with nitrous acid	448		
use in prepn. of 2-aminopyrimidine	448		
of isocytosine	805		
of proline	505		
Guanidineacetic acid, glycocyamine			
Guanidinedicarboxylates	428		
Guanidine hydrochloride	447		
Guanidinium nitrate	447		
Guanidyl group protection	514		
Guanine	444		
Guano	440		
1-Guanyl-4-			
nitrosoaminoguanyltetrazene			
tetracene			
Guanylurea	448		
Guerbet condensation	112		
L-Gulo-methylitol 1-desoxy-D-glucitol			
Gulo-methylose	472		
Gulonic acids	351	468	483
Gulose	483		

<u>Index Terms</u>	<u>Links</u>

469
585
816
816
587

H

H acid

8-amino-α-naphthyl-3			
6-disulfonic acid	735	737	
Hair	519		
Halide acids	104	110	116
	192		
Halides, dehydrobromination of	380		
prepn. and reac.	74		
reac. with dialkyl zincs	855		
with ethyl chloroformate	428		
with sodium acetoacetic ester	369		
with sodium derive.			
of acetylacetone	358		
with sodium glutaconic ester	394		
with sodium malonic ester	378		

Links

Halides, dehydrobromination of (Cont.)			
with urethans	429		
use in malonic ester synthesis	379		
use in prepn. of silicon derivs.	857		
Halides, alkyl	414		
Halides of non-metals	862		
Halide solutions	863		
Haller and Bauer method	249		
2-Halo-2,3-dimethylbutane	75		
Halo ethers	192		
Haloform reaction	90	111	207
	216	222	
Haloforms	90	417	
Haloform test	104		
Halogen	369		
Halogen acids, see also individual			
halogen acids			
addn. to olefins	74		
reac. with aceytlene	67		
with allyl halides	96		
with butyrolactone	345		
with isopropylethylene	84		
with tin alkyls	858		

Links

Halogen acids, see also individual		
halogen acids (Cont.)		
removal from		
alkyl halides by		
mercury alkyls		856
α -Halogen acids	276	342
β -Halogen acids	274	
γ-Halogen acids	274	
β-Halogen anthraquinones	746	
Halogen benzoic acids	695	
Halogenated acids	273	274
Halogenated aliphatic acids	273	
C-Halogenated amines	178	
Halogenated anilines	645	
Halogenated butyric acids	278	
Halogenation, N-bromoacetamide		
as brominating agent	298	
of acetaldehyde	202	206
of acetaldoxime	236	
of acetic acid	246	
of acetone	216	
of amines	627	
of <i>t</i> -amyl alcohol	219	
of benzenesulfonic acid	630	

Links

Halogenation, N-bromoacetamide		
as brominating agent (Cont.)		
of <i>t</i> -butyl alcohol	203	
of ethyl alcohol	206	
of nitrobenzene	641	
of phenols	666	
of propionic acid	246	
of pyridine	782	
of sulfanilic acid	646	
of triphenyl methane	719	
of toluenes	612	
with dihalodinitromethanes	162	
1-Halogen-1-butene	98	
4-Halogen-l-butene	98	
α -Halogencycloketones	527	
Halogen derivatives of the paraffins	72	
α -Halogen ethers	200	
α -Halogenpropionic acid	381	
Halogen propylenes	97	
Halogens, addn. to isocyanides	419	
in cleavage of carbon-mercury bond	856	
reac. with acetoacetic ester	369	
with acetylene	69	
with arsines	849	

This page has been reformatted by Knovel to provide easier navigation.

862

Links

Halogens, addn. to isocyanides (Cont.)		
with cacodyl	849		
with ethylene	87		
with Grignard reagent	853		
with pyridine	782		
with tin alkyls	858		
with trialkylstibines	850		
<i>p</i> -Halogentoluenes	695		
β -Halogen valerie acid	344		
Halohydrins	32		
1-Halo-1-olefins	101		
Halowax	732		
Halozone	629		
Hamameli tannin	484		
Hamamelose	484		
Hansa Yellows	650		
Hantzsch synthesis	789		
Harmaline	817	819	
Harman	817	819	
Harmine	817	819	820
Hazards			
acetic anhydride reacs.	293		
acetylene	66		
acetylides	68		

<u>Links</u>

Hazards (Cont.)	
acetyl nitrate	293
acetyl peroxide	293
Adamsite	861
aldol cond.	197
alkyl azides	184
alkylmercuric halides	86
alkyl sulfonyl chloride prepn.	152
aluminum trialkyls	857
aniline	646
barbituric acid derives.	435
benzazide	694
benzoic acid, impurity in	692
boron trialkyls	857
butadiene peroxides	59
cacodyl	849
carbon monoxide	422
carbonyl chloride	427
carbylamines	413
catechols, substituted	672
dialkylmercury cpds. (poisons)	855
dialkyl zincs	855
diazonium cpds.	655
dichlorofluoromethane	90

This page has been reformatted by Knovel to provide easier navigation.

418

<u>Links</u>

Hazards (Cont.)			
dihalo-acetylenes	101		
dimethyl arsine	849		
dimethyl sulfate	81	104	285
dioxane	313		
ethylene glycol	306		
ethylene imine	331		
formaldehyde	193		
fuminates	423		
gallium triethyl	857		
Grignard reagents	853		
halo-acetylenes	99		
halogenated aniline	646		
hydrogen cyanide	408	412	
hypochlorous acid esters	157		
iodosobenzene	626		
lead tetraethyl	858		
Lewisite	850		
mercury dialkyls	78	855	
mercury dimethyl	12	181	
mercury fulminate	423		
methyl bromide	81		
methyl chloride	81		
methyl dichloroarsine	849		

<u>Links</u>

Hazards (Cont.)			
methylnitroamine salts	177		
methyl sulfate	158		
β -naphthylamine	733		
nitric acid esters	156		
nitrogen chloride	432		
nitrosophenol	668		
oxalic acid	378		
oxonium cpds.	311	853	
ozonization	48		
pentachloroethane	94		
peroxides in ether	140		
phenol	664		
phenylhydrazine	660		
phosgene	91	93	427
picric acid		669	
potassium and carbon monoxide	674		
postassium salt of dinitromethane	162		
selenium cpds.	155		
silver fulminate	423		
sodium fluoroacetate	275		
tellurium cpds.	155		
tetrachloroethane	93		
tetranitroaniline	647		

Links

Hazards (Cont.)			
tetranitrotoluene	638		
tetryl	648		
trialkylstibines	850		
trimethyl arsine	849		
trimethylbismuth	851		
trinitromethane	163		
TNT	638		
vinylacetylene resin	72		
xanthic acid	455		
zinc dialkyls	78		
Hecogenin	595		
Hederagenine	587		
Helenin	585		
Helianthine	662		
Heller's test	521		
Hell-Volhard-Zelinsky reaction	246	276	287
Helmitol	407		
Hematin	519		
Hemelletic acid	701		
Hemiacetals, cyclic	463	467	
formn. of	199	461	
internal	350		
of cyclopropanone	531		

Links

335		
780		
338		
339		
496		
188		
615		
708	741	
212		
828		
519		
503	508	517
518		
314		
95		
25		
1		
165		
326		
205		
272		
21	353	
252		
	780 338 339 496 188 615 708 212 828 519 503 518 314 95 25 1 165 326 205 272 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Links

199		
312		
21		
47		
24		
21		
27		
21		
21	205	
1	21	25
28		
21	86	
20		
46		
463		
361		
21		
252		
361		
24	28	38
45		
406		
	 312 21 47 24 21 27 21 21 21 21 28 21 20 46 463 361 21 252 361 24 45 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

<u>Links</u>

2-Heptene-4-1,7-diacid	406	
Heptonic acids	351	
Heptoses	487	
Heptyl alcohols	129	205
Heptylenes	44	
Heptyl sulfoxide	148	
<i>n</i> -Heptylic acid, <i>n</i> -heptanoic acid	252	
n-Heptylmagnesium bromide	25	
1-Heptyne, oenanthylidene	71	
Heroin	844	
Hesperidine	794	
Hesperitin	794	
Hesperitinic acid	704	
Hessian Brown BB	663	
Hetero-auxin, indole-3-acetic acid	510	
Hetero-cinchonine	833	
Heterocyclic compounds	751	
Heterocyclic systems	751	
Heterocyclic ring containing arsenic	861	
Heteros	475	
Heterosides	460	
Hevea latex	58	
Hexacene	748	
Hexachlorobenzene	599	627

Links

Hexachlorobutadiene	94	
Hexachlorocyclopentadiene	95	546
Hexachloroethane	92	94
<i>n</i> -Hexacontane	25	
<i>n</i> -Hexacosane	1	
<i>n</i> -Hexadecane	1	25
Hexadecanoic acid, palmitic acid	254	
1-Hexadecanol, cetyl alcohol		
Hexadienal	227	
1,5-Hexadiene diallyl		
2,4-Hexadiene	63	
2,4-Hexadienoic acid, sarbic acid		
1,5-Hexadiyne, dipropargyl		
2,4-Hexadiyne, dimethyldiacetylene		
Hexaethylbenzene	608	
Hexaethyl disilicate	158	
Hexahydrobenzene cyclohexane		
Hexahydrobenzoic acid		
Cyclohexanemenocarboxylic		
acid		
Hexahydrophenol, see cyclohexanol	665	
Hexahydropyrazine, see piperazine		
Hexahydropyridine, (pentamethylene		
imine).piperidine		

Index Terms	<u>Links</u>		
Hexahydroxybenzene	675		
Hexahydroxybenzene			
potassium salts of	421		
Hexaiodobenzene	627		
Hexaketocyclohexane	549	563	
Hexalin, see cyclohexanol	665		
Hexamethylacetone, pivolane	223		
Hexamethylbenzene	608	616	
Hexamethylene, see cyclohexane			
Hexamethylene diamine	330	385	521
Hexamethylenetetramine, urotropin	169	188	407
	684		
Hexamethylethane	24		
Hexamethyl-stanno-ethane	858		
Hexamine-benzyl chloride	676		
2,5-Hexandione, acetonylacetone			
1,6-Hexanediol	386		
2,5-Hexanedion-3-ol	339		
Hexanes	1	20	23
	41	205	
Hexanoic acid caproic acid	250		
1-Hexanol, <i>n</i> -hexyl alcohol	124		
2-Hexanol	126	221	
3-Hexanol	127		

Links

5-Hexanol-2-one	338	
6-Hexanol-2-one	338	
2-Hexanone, methyl <i>n</i> -butyl ketone		
3-Hexanone, ethyl <i>n</i> -propyl ketone		
Hexaphenylethane	720	
1,1,1,6,6,6-Hexaphenyl-3-methyl-		
3-hexene	60	
1,3,5-Hexatriene	64	96
Hexenes, hexylenes	35	125
Hexenoic acids		
see also hydrosorbic acid		
and isohydrosorbic acid	258	265
3-Hexen-2-one	229	
Hexestrol	716	
Hexobarbital, evipal	436	
Hexogen trimethylenetrinitramine		
Hexonic acids	351	
Hexose phosphates	490	
Hexoses	186	472
Hexuronic acids	375	
Hexyl alcohols	124	
Hexyl amine	165	
Hexylenes	38	42
Hexyl halides	85	

<u>Links</u>

<i>n</i> -Hexylic acid, caproic acid	250		
sec-Hexyl iodide	85		
2- <i>n</i> -Hexylpyridine	789		
Hexylresorcinol	250	672	
α-Hexyltrimethyleneimine	343		
3-Hexynoic acid	269		
Hinsberg method of separating amines	170	629	
Hippuric acid	498	503	510
	691		
Hippuric esters	506		
Histamine	511		
Histidine	497	510	512
	517	520	
Histidine, betaine of	511		
Histones	512	518	
Hofmann degradation of			
amides, see Hofmann			
rearrangement			
Hofmann rearrangement	168	295	
isocyanates as intermediates	451		
of adipamide	330		
of amides	168	295	417
of α -bromo acid amides	205		
of ortho dicarboxyamides	805		

Links

Hofmann rearrangement (Cont.)	
of hydroxyacid amides	343
of saccharic diamide	404
of $\alpha\beta$ -unsaturated acid amides	179
reac. of urea	431
use in prepn. of amino pyridines	786
of 2-amino pyrazine	806
of anthranilic acid	697
of arylamines	642
of cyclobutanone	539
of cyclobutylamine	537
of cyclopropylamine	531
of 1,3,5-xylidine	647
use in quinine syntheses	834
Holosides, polysaccharides	
Holosides	460
Homatropine	823
Homo, a homolog, usually	
the next higher	383
Homocamphor	581
Homocamphoric acid	550
Homocaronic acid	535
Homochelidonine	831
Homocitraconic anhydride	383

<u>Index Terms</u>

Links

Homocysteine	508	509
Homocystine	508	
Homoitaconic anhydride	383	
Homolaudanosine	837	
Homolaudanosoline	837	
Homomeroquinene	834	
Homophthalic acid	727	
Homopilopic acid	814	
Homoterpenylic acid	561	
Homoveratric acid	836	
Homoveratrylamine	836	
Honey	484	
Hordein	519	
Hordenine	509	811
Hormones		
adrenaline, epinephrine	811	
auxin A and B	545	
hetero-auxin	510	
hexesterol	716	
insulin	508	
sex	595	
stilbestrol	716	
Horn	519	
Houdry catalytic cracking process	9	

<u>Links</u>

H.T.H., high test hypochlorite	157	
Hudson's lactone rule	471	474
Hycar OR	417	
Hydantoic acid	433	
Hydantoin-3-acetic acid	434	
Hydantoins	433	501
Hydnocapric acid	551	
Hydracrylic acid	257	343
Hydracrylic acid esters	343	
Hydracrylic aldehyde	226	
Hydracrylic aldehyde, β -		
hydroxypropional-dehyde		
Hydracrylonitrile, ethylene cyanohydrin	417	
Hydrastine	839	
Hydrastinine	839	
Hydrate	130	
Hydrated carbonyl group	531	535
Hydration, of acetylenes	71	194
of an acetylenic acid	372	
of acids	238	
of carbonyl gp.	462	
of ethylene	107	
of hexene	85	
of isobutylene	116	

<u>Links</u>

Hydration, of acetylenes (Cont.)		
of maleic acid	397	
of methallyl alcohol	203	
of α -methylcamphene	577	
of oleic acid	348	
of propylene	111	
of terpenes	560	
of trichloroethylene	101	
of trimethylethylene	123	
of triple bond	681	
of turpentine	561	
of vinylacetylene	228	
of vinyl linkage	345	
Hydratropic acid α -phenylpropionic		
acid		
Hydrazides	299	514
Hydrazine		
formn. from azoxy cpd.	220	
from ethyl nitrosoisopropyl ketone	222	
from urea	432	
prepn from guanidine	447	
prepn. of pyrazoline	768	
reac. with benzaldehyde	678	
with 3-butanon-al	363	

Links

Hydrazine (Cont.)			
with esters and acid halides	299		
use in prepn. of amines	169		
of benzalazine	678		
of diarylmercury cpds	862		
of phthalhydrazide	804		
of semicarbazide	450		
Hydrazines, alkyl	179		
Hydrazines, substituted	177	179	429
	660		
Hydrazine sulfate	206	432	769
Hydrazine, tetraaryl	661		
Hydrazobenzene	634	658	660
	711		
Hydrazo compounds	659		
Hydrazoic acid	299	778	
Hydrazones	168	184	358
	498		
Hydrindene	727		
Hydrindone-1	728		
Hydriodic acid, hydrogen iodide			
Hydroabietyl alcohol	587		
Hydrobenzarrride	679	774	

Links

Hydrobenzoin	717		
Hydrobromic acid, hydrogen bromide			
Hydrocarbo bases	852	856	863
Hydrocarbons, alicyclic	523		
Aliphatic	1		
from Fischer-Tropsch synthesis	421		
formn. from alkyl halides and			
organo-metallic cpds	81		
from bismuth trialkyls	850		
from boranes	857		
from carbonyl cpds.	206		
from mercury alkyls	856		
from oxonium salts of Grignard			
reagents	853		
from sulfonic esters and			
Grignard reagents	628		
prepn. from alkyl halides and sodium	77		
from Grignard reagents	852		
reac. with bromine with ferric			
chloride	94		
with chlorine	73		
use in prepn. of Grignard reagent	852		
Hydrocarbostyril	702		
Hydrochloric acid, hydrogen chloride			

Links

Hydrochlorides of amino acids	497	499	500
Hydrocinchonidine	833		
Hydrocinchonine	833		
Hydrocinnamic acid, β -			
phenylpropionic acid			
Hydrocotarnine	838		
Hydrocupreine	835		
Hydrocyanic acid, hydrogen cyanide			
Hydroferrocyanic acid	521		
Hydrofluoric acid, hydrogen fluoride			
Hydrogen acceptor	788		
Hydrogenated pyridines	791		
Hydrogenation, catalyzed with nickel	791		
Hydrogenation, of acetals	199		
of acetylene	30		
of acid chlorides	356		
of aconitic acid	406		
of adipic ester	386		
of adipodinitrile	385		
of aniline	645		
of aromatic cpds.	552		
of bioses	326		
of carbon	13		
of 3- and 4-carbon ring cpds.	525		

<u>Links</u>

Hydrogenation, of acetals (Cont.)		
of coal	11	
of co-dimer of isobutylene		
and 2-butene	23	
of cyclobutene	537	
of diacetone alcohol	127	
of 9,10-dihydroanthracene	743	
of dihydropyran	780	
of diisobutylenes	24	46
of ethylene	16	31
of ethyl palmitate	132	51
of fats and oils	254	
of furfural	234 755	
	205	
of heptaldehyde of indene		
	728	
of lycopene	26	
of methyl butyl ketone	126	
of methyl hexenes	22	
of naphthalene	729	
of α -naphthol	736	
of nitriles	416	
of oleic acid	266	
of phenol	558	603
of phorone	229	

Links

Undragonation of anotals (Cout)			
Hydrogenation, of acetals (Cont.)			
of products from the hydrocarbon			
cracking process	26		
of pyridine	782	791	
of pyrrole	758		
of quinoline	797		
of ricinoleic acid	267	353	
of sodium lactate	384		
of stearolic acid	273		
of sulfur cpds.	143		
of tetrolic acid	272		
of triptene	23		
of undecylenic	253		
of α,β -unsaturated ketones	230		
of urethanes	514		
rate of hydrogenation of isomeric			
pentenes	42		
use in removal of sulfur cpds.			
from petrozeum products	148		
use in synthesis of quinine	834		
Hydrogen bonding, see also chelation	121	289	774
Hydrogen bromide, hydrobromic acid			
addn. to unsaturated carbonyl			
systems	224		

<u>Links</u>

Hydrogen bromide, hydrobromic	
acid (Cont.)	
to unsymmetrical olefins	37
prepn. from tetralin	730
reac. with alcohols	75
with allyl halides	89
with cyclopropane	530
with cyclopropanecarboxylic	
acid	533
with cyclopropylcarbinol	526
with cyclopropyl methyl ketone	532
with ethyl <i>a</i> -bromoacetoacetate	372
with 2-butanol	22
with isobutyl alcohol	114
with dihydropyran	780
with 2,4-hexadiene	63
with methylisoprene	63
with 1-olefins	74
with isoprene	59
stability of cyclobutanedicarboxylic	
acids, to	539
use in proving existence	
of cyclopropane ring	535
Hydrogen sec-butyl phthalate	22

<u>Links</u>

712
409
423
409
419
517
527
423
549
542
365
74
57
19
838
430
780
183
85
835
74

<u>Links</u>

Hydrogen chloride, hydrochloric	
acid (Cont.)	
with pyrrole	757
with pyruvic acid	366
with tetrahydrofuran	754
with vinylacetylene	72
use as reagent in Beckmann	
rearrangement	
use in chlorination of methane	15
use in chloromethylation	731
use in cony. of cyanogen to oxamide	376
of sugars to levulinic acid	372
use in decarboxylation	375
use in esterification of sodium	
cyanoacetate	378
use in formn. of trans-cyclobutan-	
1,2-dicar- boxylic acid	539
of oxazoles	343
use in hydrolysis	705
use in hydrolysis of cellulose	108
of diacetyl monoxime	356
of saccharin	697
use in prepn. of bornyl chloride	527
of <i>p</i> -diaminotriphenylmethane	725

Links

Hydrogen chloride, hydrochloric			
acid (Cont.)			
of 3-methylcyclopentene	545		
of methyldichloroarsine	850		
of α -methylquinoline	798		
of 2-propyl-3-ethylquinoline	799		
of tetrahydroxymethyl			
phosphonium chloride	848		
Hydrogen cyanide, hydrocyanic acid	408		
addn. to vinyl methyl ketone	228		
to aldehydes and ketones	412		
to acetylene	412	417	
to acetophenone	681		
conv. to formimido chloride	423		
detection of	412		
formn. from acetyl cyanide	365		
from acetylene and nitrogen	68		
from calcium cyanide	412		
from complex cyanides	411		
from hydrolysis of cyanogen	408		
Friedel-Crafts, reac. with benzene	409		
hydrolysis of	240	408	412
poisonous nature of	408		

Links

Hydrogen cyanide, hydrocyanic			
acid (Cont.)			
prepn. from ammonia and			
chloroform	409		
from ammonium formate	409		
from formamide	297	412	
from methane and ammonia	1	5	412
from methane and nitrogen	16		
reac. with acetaldehyde	201		
with acetylene	67		
with cotarnine	838		
with ethylene oxide	412		
with ketones	213		
with methyl ethyl ketone	218		
reduction to methylamine	412		
struct. of	409		
struct. of salts of	412		
tautomeric nature of	408		
trimer of	408		
use as fumigant	412		
use in formn. of 2-pyrrole aldehyde	757		
use in prepn. of acrylic esters	412		
Hydrogen fluoride, hydrofluoric acid	15	19	32
	731		

<u>Links</u>

Hydrogen halides, see also individual		
halogen acids	75	76
	415	
Hydrogen iodide, hydriodic acid		
reac, with alkyl halides	76	
with cyclobutane carboxylic acid	539	
with mannitol and dulcitol	85	
stability of cyclobutane to	537	
use in cleavage of aryl arsonic acids	860	
use in detn. of alkaloid struct.	810	
use in isomerization of cyclohexane		
and cycloheptane	526	
use in prepn. of <i>n</i> -valeric acid	539	
use in reduction of benzene	526	
of benzil	717	
of coal by Berthelot	11	
of coniine	814	
of β -furylpropionic acid	756	
of 2-heptenene-1,7-diacid	406	
of D-malic acid	398	
of nitro arsonic acids	860	
of pyrroline	758	
of quinoline	797	
of saccharic acids	404	

Links

Hydrogen iodide, hydriodic acid (Cont.)	
of tartaric acid	400
of toluene	612
of undecanoic acid	25
Hydrogen ion	782
Hydrogen peroxide electronic struct. of	182
reac. with acetic anhydride	246
with tert-amines	173
with <i>t</i> -butyl alcohol	117
with Grignard reagents	853
with rhamnonic acid	471
with sodium acetoacetic ester	371
synthesis, through use of β -ethyl-	
anthra-quinone	745
use in hydrolysis of nitriles	415
use in oxidation of sec-amines	173
of butyric acid	344
of malic acid	405
of oleic and elaidic acids	349
of tartaric acid	406
of thiourea	446
use in prepn. of 2-nitropyridine	783
of peroxides	294
use in Ruff degradation	464

<u>Links</u>

23

Hydrogen selenide	192	
Hydrogen sulfide, addn. to nitriles	415	
reac. with acetaldehyde	200	
with carbon disulfide	13	
with formaldehyde	192	
with formamides	419	
with propylene	38	
use in prepn. of mercaptans	144	
Hydrogenolysis		
of glucose	315	
of paraffins	2	
of tetrahydrofurfuryl alcohol	308	
of 2,2,3-trimethylpentane	2	
Hydrolysis, involving dismutation	164	
mechanism of	121	
of acetaldehyde diacetate	200	
of acetoacetic esters	367	
of acetone chloroform	342	
of acetone cyanohydrin	342	
of acetyl cyanide	365	
of acid halides	288	
of acid sulfates	39	
of aliphatic esters	280	
of alkyl azoxy cpds.	184	

<u>Links</u>

Hydrolysis, involving	
dismutation (Cont.)	
of alkyl boron halides	857
alkyl halides	76
of alkylidenemalonic esters	388
of alkylimino carbonyl halides	419
of alkyl isocyanates	167
of N-alkyl phthalimide	169
of alloxan	405
of aluminum carbide	13
of amides	236
of ammonia	442
of anhydrides	387
of aromatic nitriles	709
of aryldichloroarsines	859
of benzotrichloride	622
of benzoyl cyanide	705
of benzylidene	622
of bioses	489
of bromo-methyl ethyl ketone	356
of cellulose	495
of N-chloroacetanilide	646
of chloroacetic acid	340
of o-chloro-toluene	626

<u>Links</u>

Hydrolysis, involving		
dismutation (Cont.)		
of cyanamide to urea	430	
of cyanides	415	
of 1-Cyanocyclobutane-1,2-		
dicarboxylie ester	387	
of cyanogen	376	408
of cyanohydrins	201	213
of dialkyl cyanamides	170	
of dialkyl sulfites	153	
of diacetyl monoxime	356	
of diazoketones	183	
of dichloroacetic acid	364	
of dichlorodioxan	354	
of 1,2-dicyanonaphthalene	740	
of dihalides	89	
of dihydropyran	780	
of diozonide of phorone	364	
of ethyl carbonate	426	
of ethylene cyanohydrin	343	
of ethylidene halides	87	
of formals	188	
of formamide	297	
of fulminic acid	423	

<u>Links</u>

Hydrolysis, involving		
dismutation (Cont.)		
of glucosidic anthocyanins	795	
of glutaconic ester	394	
of glycogen	495	
of Grignard reagent	12	
of Grignard reagent addn. product	852	
of guanidine	447	
of hemicelluloses	496	
of hydantoic acid	433	
of hydrogen cyanide	408	411
of imide	340	
of imidohalides	415	
of imines	771	
of imino acids	205	
of imino-oxazolidines	327	
of isobutylene bromide	203	
of isonitrosoacetone	215	
of lecithin	317	
of mesityl oxide cyanohydrin	37:3	
of 2-methyl-4-bromo-butene	59	
of methylcyanide	242	
of methylene malonic acid	388	
of narcotine	838	

<u>Links</u>

Hydrolysis, involving			
dismutation (Cont.)			
of nitrile cond products	416		
of nitrile gp.	639		
of nitroanilines	647		
of l-nitroisobutylene	164		
of nucleic acids	805		
of organochlorosilanes	857		
of orthoformates	422		
of oximes	235		
of oxime of 5-vinyl-2-quinuclidine	832		
of polysaccharides	488		
of potassium carbonyl	340		
of proteins and related substances	497	502	511
	513	517	
of pyruvic acid amide	365		
of raffinose	493		
of reac. mixture from sodium and			
pyridine	782		
of rutaecarpine	820		
of sodium cyanoacetate	378		
of starch	475	494	
of streptomycin	809		

<u>Index Terms</u>

<u>Links</u>

Hydrolysis, involving		
dismutation (Cont.)		
of succinimide	382	
of sulfonic acids	631	
of C ₆ H ₅ CH ₂ N(CH ₃) ₄	4	649
of trichlorethylene	274	
of trimethylethylene dibromide	123	204
of trimethylene dihalides	219	
of δ -valerolactone	347	
of vinyl ether	194	
of wood	468	
rate of hydrolysis comparisons	283	
use in detn. of struct. of alkaloids	810	
use in formn. of amino J	735	
use in prepn. of alkyl boric acids	857	
of 4,7-dichloroquinoline	800	
of ketoacids	374	
of meroquinene	833	
of polybasic aromatic acids	709	
of quininic acid	833	
of triketopentane	361	
of triphenylmethylamine	720	
use in quinine synthesis	834	

Links

Hydrolysis, involving	
dismutation (Cont.)	
use of hydrogen chloride under	
pressure for	169
with hydronium ion as catalyst	282
Hydrolytic cleavage	805
Hydromelonic acid	448
Hydrone blue	767
Hydronium ion hydrogen ion	282
Hydrophthalic acids	706
Hydroquinidine	835
Hydroquinine	835
Hydroquinone	673
as anti-oxidant for acrolein	226
conv. to hydrocupreine	835
to quinone	552
formn	686
mono-halogen deriv.	686
oxidation of	685
polymerization inhibitor	617
tautomer of quinone	437
use in prepn. of developers	670
of gentisic acid	699
Hydrosorbic acid	265

This page has been reformatted by Knovel to provide easier navigation.

269

<u>Index Terms</u>	<u>Links</u>		
Hydroterephthalic acids	708		
Hydrotropic solutions	628		
Hydroxamic acids	162	172	190
	236		
Hydroxyacetaldehyde, glycolic aldehyde			
Hydroxyacetic acid, glycolic acid			
Hydroxyacetone, acetol	335		
Hydroxyacetophenones	478	682	684
	794		
α -Hydroxy acid amides	343		
α -Hydroxy acids	274	340	
complex with boric acid	342		
conv. to aldehyde or ketone		194	205
to oxazoles	343		
prepn. from cyanohydrins	201		
reac. with sulfuric acid	405		
Hydroxy acids	343		
Hydroxy acids, cyclohexyl	566		
β -Hydroxyacrylic acid	352		
β -Hydroxy acrylic ester	364		
Hydroxy aldehyde acids	374		
Hydroxy aldehydes	331	684	
Hydroxy aliphatic amino acids	506		

<u>Links</u>

1-Hydroxy-6-amino-naphthalene-3-			
sulfonic acid, J. acid	737		
1-Hydroxy-7-amino-naphthalene-3-			
sulfonic acid, Gamma acid	737		
2-Hydroxy-l-amino-naphthalene			
sulfonic acid	737		
8-Hydroxy-l-amino-naphthalene-2,4-			
disul-fonic acid			
Chicago acid	737		
α -Hydroxy- β -Aminopropionic acid see			
iso-serine	507		
Hydroxyanthracenes, α - and β -anthrols	744		
Hydroxy arginine	511		
Hydroxyazobenzenes	659		
Hydroxyazo compounds	660		
<i>m</i> -Hydroxybenzoic acid	699		
o-Hydroxybenzoic acid, salicyclic acid			
<i>p</i> -Hydroxybenzoic acid	698	699	
p-I-Iydroxybenzyl bromide	689		
Hydroxybenzyl halides	618		
<i>p</i> -Hydroxybenzoyl- <i>p</i> -			
hydroxybenzoic acid	699		
β -Hydroxybutyraldehyde acetaldol			
Hydroxybutyric acids	334	342	344

Links

←Hydroxycaproic acid	347
6-Hydroxycinchonine cupreine	
trans-o-Hydroxycinnamic acid	704
o-Hydroxycinnamic acid	796
5-Hydroxy coniine, pseudoconhydrine	
Hydroxycoumarin	704
7-Hydroxycoumarin umbelliferone	
w-Hydroxydecanoic acid	348
Hydroxy dibasic acids	397
<i>p</i> -Hydroxydiphenylamine	689
β -Hydroxyethane sulfonic acid	110
β -Hydroxyethylamine, mono-	
ethanolamine	
2-(β -Hydroxyethyl)-pyridine	789
β -Hydroxyethylsulfonic acid	
isothionic acid	
3-Hydroxyflavone flavanol	
<i>p</i> -Hydroxyfuchsone benzaurin	
Hydroxy fumaric acid oxaloacetic acid	405
Hydroxyglutamic acid	507
Hydroxyl group, activity of	675
Hydroxyl group, protection of	244
7-Hydroxyheptoic acid	350

<u>Links</u>

11-Hydroxyhexadecanoic acid			
jalapinolic acid			
16-Hydroxy-7-hexadecenoic acid			
ambrettolic acid			
Hydroxyhydroquinone see			
hydroxyquinol	674		
Hydroxyhydroquinone acetate	687		
3-Hydroxyindole-2-carboxylic acid			
indoxylic acid			
2-Hydroxyindole oxindole			
3-Hydroxyindole indoxyl			
8-Hydroxy-7-iodoquinoline-5-			
sulfonic acid, see chinofon			
α -Hydroxyisobutyraldehyde	333		
α -Hydroxyisobutyric acid	213	285	342
β -Hydroxyisobutyric acid	344		
α -Hydroxyisobutyric esters	261		
β -Hydroxyisocrotonic acid	352		
α -Hydroxyisohexoio acid	342		
2-Hydroxy-4-isopropyltoluene			
see carvacrol	671		
Hydroxy isoquinoline	833		
β -Hydroxyisovaleric acid	344		
Hydroxy ketones	335		

Links

5-Hydroxy-l-ketotetrahydronaphthalene-		
3-sulfonate	737	
Hydroxy lactones	468	
gem-Hydroxyl groups	462	
Hydroxylamine, action on benzaldehyde	678	
reac. with acetaldehyde	200	
with acetoacetic ester	371	
with acetone	214	
with <i>p</i> -benzoquinone	668	
with 3-butanon-al	363	
with carbonyl cpds.	234	
with cotarnine	838	
with methyl ethyl ketone	357	
with nitrobenzene and		
potassium hydroxide	656	
with propargylic aldehyde	775	
with pyrrole	355	757
use in detection of β -butylene glycol	308	
use in prepn. of formamidoxime	433	
of hydroxamic acids	300	
of violuric acid	436	
Hydroxylamine hydrochloride	685	
Hydroxylamines	172	
Hydroxylamine sulfate	162	247
Hydroxylamines	172	247

<u>Links</u>

Hydroxyl derivatives of higher acids	347	
Hydroxylysine	507	
Hydroxy maleic acid oxaloacetic acid	405	
Hydroxymalonic acid tartronic acid		
2-Hydroxy- <i>p</i> -menthane carvomenthol		
7-Hydroxy-4'-methoxyflavone pratol		
α -Hydroxy- α -methylbutyric acid	264	
Hydroxymethyleneacetic ester	364	
Hydroxymethylenemethyl ketones	364	
5-Hydroxymethylfurfural	472	
3-Hydroxymethylpentane		
2-ethyl-l-butanol		
3-Hydroxy-2-methyl-4-pyrone maltol		
α -Hydroxy- α -methylsuccinic acid		
citramalic acid		
Hydroxy monobasic aliphatic acids	340	
2-Hydroxy-3-naphthoic acid	662	739
Hydroxy-α-naphthoquinones	739	
Hydroxynitriles	417	
2-Hydroxy-5-nitropyridine	784	
3-Hydroxy-2-nitropyridine	784	
4-Hydroxy-3-nitropyridine	784	
w-Hydroxynonylic aldehyde	335	
Hydroxyoleic acid	286	353

<u>Links</u>

3-Hydroxypelargonic acid	353		
γ -Hydroxy or 4-pentenoic acids	352		
p-Hydroxyphenylalanine, see tyrosine	509		
1-Hydroxy-6-phenylamino-naphthalene-			
3-sulfonic acid, phenyl J acid	737		
<i>p</i> -Hydroxyphenylarsonic acid			
phenolarsonic acid			
<i>p</i> -Hydroxyphenylarsonic acid	861		
β - <i>p</i> -Hydroxyphenylethylamine			
see tyramine	509		
<i>p</i> -Hydroxyphenylglycine	670		
Hydroxypivalic acid	335		
Hydroxyproline	502	511	512
α-Hydroxypropionaldehyde			
lactic aldehyde			
β -Hydroxypropionaldehyde	333		
α -Hydroxypropionic acid, lactic acid			
β -Hydroxypropionic acid			
hydracrylic acid			
β -Hydroxypropionic acid	257	307	
β -Hydroxypropionitrile	257		
6-Hydroxypurine hypoxanthine			
Hydroxypyridines	784		

Links

511		
674		
674		
830		
799	801	
588		
813		
267	348	353
846		
217		
720		
407		
287		
720		
722		
352		
442		
	 674 674 830 799 588 813 267 846 217 720 407 287 720 722 352 	674 674 830 799 801 588 813 267 348 846 217 720 407 287 720 722 352

Links

δ -Hydroxyvaleraldehyde	780		
Hydroxyvaleric acids	342	344	347
Hydroxyvaline	507		
α -Hydroxyvinylacetic acid	352		
Hygric acid see N-methylpyrrolidine-a-			
car- boxylic acid			
Hygric acid	813		
Hygric acid, betaine of, see stachydrine			
Hygrine	813		
Hyocholanic acid, isocholanic acid	592		
Hyodeoxycholic acid	591		
Hyoscine scopolamine			
Hyoscyamine	824		
Hyperconjugation	63		
Hyperthyroidism	805		
Hypnone	680		
Hypochlorite	716		
Hypochlorous acid, addn. reac.	268		
addn. to acrylic acid	258		
to fumaric acid	391		
to maleic acid	391		
to mesityl oxide	229		
formn. from N-succinchlorimide	382		
reac. with tert-amines	173		

<u>Links</u>

Hypochlorous acid, addn. reac. (Cont.)		
with propylene	37	
use in prepn. of chlorohydrins	313	
use in reduction of arsonic acids	861	
Hypohalites	417	642
Hypohalous acids	135	643
Hyponitrous esters	164	
Hypophorine	510	
Hypoxanthine	444	
Hystazin, hystazarin	746	

I

<i>i-, iso-,</i> inactive (meso-)		
"I" (inductive) effect	624	
Identification, also see		
individual groups		
and types of compounds		
Identification, of alcohols	132	429
of alkyl halides	86	
of amines	173	
of dibasic acids	387	
of dienes	57	

Links

Identification, of alcohols (Cont.)			
of diolefins	391		
of mercaptans	145		
of nitriles	417		
Iditol	325	487	
Idonic acid	351	468	483
Idosaccharic acids	404		
Idoses	404	483	
Idryl	749		
Ikohol, isopropyl alcohol			
Illuminating gas	29		
Imidazole, glyoxalin	752		
comparison with purine	439		
formn. from diacetyl	357		
prepn. from glyoxal	354	773	
prop.	804		
Imidazole derivatives	773	814	
2-Imidazolone-4-carboxylic acid	402		
β -4-Imidazolylalanine, see histidine	510		
Imides	428		
Imidodicarboxylates	428		
Imidoethers	415		
Imidohalides	415		
Imines, cyclic	501	511	771

Links

Imino diacetic acid	502		
Imino ethers, see imido ethers	300		
Iminoformyl chloride	409		
Iminourea guanidine			
Imperial purple	766		
Indalone	780		
Indamines	653	689	
Indene	417	439	727
Indican	765		
Indicators	723	803	
Indigo, bromination of	766		
occur. of	522		
prepn. from aniline	274		
from ethylene chlorohydrin	314		
from indole	763		
from indoxyl	765		
from naphthalene	697		
from phenylglycine	766		
reduction to indigo white	765		
Indigo carmine	766		
Indigo sulfonic acids	766		
Indigo white	476	765	848
Indirubin	766		

ms	Terms
----	-------

<u>Links</u>

Indole	439	510	751
	762	819	
Indole-3-acetic acid, see hetero-auxin	510	763	
Indole alkaloid	822		
Indole ring system	816	821	
β -Indolylalanine, see tryptophan	510		
Indophenol blue	689		
Indophenols	689		
Indoxyl	764		
Indoxylic acid	765		
Inductive "I" effect	624		
Indur (resin from formaldehyde			
and phenol)	192		
Infrared absorption spectra see			
also Raman spectrum	810		
Inner salts	500		
Inositol, hexahydroxycyclohexane	558		
Insecticides, chlordane	546		
chlorex	142		
ethide	164		
666 (Gammexane)	618		
N-isobutylundecyleneamide	299		
pyretheum	548	683	
toxaphene	575		

<u>Index Terms</u>	<u>Links</u>		
Insect repellents	780		
Insulin	503	506	508
Intarvin	255		
Intermolecular shift	630		
Internal association	462		
Internal compensation	468	470	
Internal oxidation	637		
Inulin	484	495	
Invert sugar	485	489	
Iodides	74		
Iodination	801		
Iodine, addn. to olefins	38		
as chlorination catalyst	612		
as dehydrating catalyst	22	128	227
in proteins	517		
polyvalent prop. In			
unsaturated iodides	100		
reac. with acetylene	67		
with camphor	580		
with diazomethane	183		
with ethylene	88		
with glutaric acids	385		
with hydroxyisobutyric acid	342		
with methane	15		

<u>Links</u>

Iodine, addn. to olefins (Cont.)			
with neopentylmercuric chloride	84		
with paraffins	73		
use in color reac.			
of Grignard reagents	854		
use in prepn. of 1-pentadecanol	132		
of Karl Fischer reagent	781		
use in reduction of benzilic acid	715		
use in separation of cis-trans			
isomers of piperylene	63		
Iodine bromide	31		
Iodine chloride	31	89	801
Iodine monochloride	38	57	88
	646		
Iodoacetic acid	274		
α -Iodoacetoacetic ester	369		
Iodobenzene	605	625	693
	802		
Iodobenzoic acids	695		
Iodochlorobutenes	57		
1-Iodo-2-chloropropane	89		
Iodoethyl alkyl ethers	34		
Iodoform	87	91	111
	216		

Links

Iodoform test	91	
Iodogorgoic acid	510	
Iodole, tetraiodopyrrole	758	
β -Iodo- α -methylbutyric acids	265	
Iodomethylmagnesium iodide	29	
2-Iodo-3-nitrobenzoic acid	710	864
Iodo-phenols	668	
Iodosobenzene	626	
Iodosobeneoic acids	695	
Iodostarin	279	
Iodotrichloromethane	93	
Iodoxybenzene	626	
Iodoxybenzoic acid	695	
Iodoxyl, neoselectan B		
Ion exchange media	667	809
Ionization		
of alcohols	102	
of alkyl halides	77	
of double bond	27	
of halides	84	
Ionization constants of dibasic acids	388	
Ionones	231	565
Ipral	436	

Links

catalyst in oxidation	508		
in Fischer-Tropsch reac.	421		
determination of	736		
in hemoglobin	520		
in proteins	517		
use in reduction of carbon			
tetrachloride	90		
Iron carbonyls	422		
Iron chloride	199		
Iron sulfates	194		
Irones	565		
Isatin	765	798	
Isatin chloride	765		
Isethionic acid β -hydroxyethane			
sulfonic acid	33	139	153
iso-, meaning of prefix	19		
Isoagathic acid	587		
Isoamyl alcohol, see also amyl alcohol	41	83	119
	132	503	
sec-Isoamyl alcohol see			
methylisopropyl carbinol			
N-Isoamylaniline	649		

<u>Index Terms</u>	<u>Links</u>	
Terrorial alterial	50	
Isoamyl chloride	59	
Isoamyl Grignard reagent	251	422
Isoamyl halides	74	83
Isoamyl sulfonic acid	151	
Isoanthraflavinic acid 2,7-		
dihydroxyanthra-quinone	746	
Isobarbituric acid 5-hydroxy uracil	443	
Isoborneol	453	576
Isobutane	17	21
	41	51
Isobutanesulfonyl chloride	19	
Isobutyl, see also butyl		
Isobutyl acetate	75	
Isobutylacetic acid, isocaproic acid	251	
Isobutyl alcohol	113	
dehydration	39	114
esterification of	283	
formn. in methanol synthesis	132	
formn. from fusel oil	113	
from prepn. of methanol	114	
from valine	113	503
identification of fermn.		

23

from synthetic 113

Links

Isobutyl alcohol (Cont.)		
mechanism of reac.		
with phosphorous tri-		
bromide	114	
oxidation of	203	247
reac. with alkalies	114	
with hydrogen bromide	114	
with phosphorous tribromide	114	
rearrangements	114	
use in prepn. of isobutyl halides	82	
Isobutylallene	55	
Isobutyl allylbarbituric acid	436	
Isobutylamine	189	261
Isobutyl bromide	75	251
Isobutylcarbinol, isoamyl alcohol		
Isobutyl chloride	18	
Isobutyldiisoamylcarbinol	131	
Isobutylene, alkylation mechanism	51	
copolymerization with isoprene	41	
occur. of	39	
formn. from <i>t</i> -butyl alcohol	39	116
from isobutane	18	
from isobutyl alcohol	39	114
from neopentane	20	

Links

Isobutylene, alkylation			
mechanism (Cont.)			
from sodium isovalerate	248		
hydration of	116		
hydrogenation of	23		
polymerization mechanism	41	48	
pyrolysis of	40		
prepn. from isobutane	18		
prop. of	39		
reac. with acetyl chloride	40		
with aqueous potassium triiodide	40		
with bromine	40		
with chlorine	40	98	
with hydrogen bromide	39		
with isobutane	19	41	
with nitrogen trichloride	40		
with sulfuric acid	39		
with thioglycolic acid	41		
use in prepn. of diisobutylenes	46		
of 3-methyl-1,3-butandiol	308		
of 1,1,3-trimethylcyclopentane	544		
Isobutylene dibromide	40	89	384
Isobutylene dicyanide	384		
Isobutylene glycol	217	308	

Links

Isobutylene oxide	40		
Isobutylene polymers see di-			
isobutylenes, tri-isobutylenes			
Isobutyl halides	82		
Isobutylidene chloride	98		
Isobutyl iodide	23	75	
Isobutylmagnesium bromide	854		
N-Isobutyl undecyleneamide	299		
Isobutyraldehyde	203		
condo of	198		
condo with methyl ethyl ketone	218		
cony. to isobutyric acid	247		
formn. from isobutylene dibromide	89		
from isocrotyl chloride and acids	98		
from isopentane	20		
introd. of cyanoethyl gp.	417		
prepn. from isobutylene glycol	308		
from unsaturated ethers	98		
use in prepn			
of ethylisopropylcarbinol	127		
of formisobutyraldol	3:34		
of methylisopropylcarbinol	123		
of pentaglycol	307		
Isobutyric acid	117	247	278

Links

Isobutyric esters	250		
Isobutyrone, diisopropyl ketone			
Isobutyronitrile, isopropyl cyanide	221		
Isocamphane	582		
Isocampholic acid	551		
Isocamphor, isopinolone	581		
Isocaproic acid	251	265	
Isocholanic acid	592		
Isocodeine	844		
Isocorybulbine	829		
Isocorypalmine	828		
Isocrotonic acid, β -methyl-acrylic acid			
lsocrotonic acid	261	272	279
Isocrotyl bromide	98		
Isocrotyl chloride	98		
Isocyanates	180	419	428
	501		
Isocyanic acid	429	448	
Isocyanides	172	414	418
Isocyanuric acid (esters)	451		
Isocytosine	805		
Isodextropimaric acid	587		
Isodialdin	334		
Isodialuric acid	442		

<u>Links</u>

56		
616		
701		
515	517	
515		
268		
683		
582		
582		
576		
795		
374		
125		
717		
265		
816		
544		
544		
118	498	503
	 701 515 515 268 683 582 582 576 795 374 125 717 265 816 544 544 	616 701 515 268 683 582 576 795 374 125 717 265 816 544

<u>Links</u>

Isoline	270	
Isolinolenic acid	271	
Isomaltose	491	
Isomerism isomers isomerisation		
see also cis-trans, double		
bond shift geometric, optical		
activity rearrangement shift		
stereo-, syn-anti etc.		
Isomerism, of alicyclic cpds.	527	
of acetylenes	71	
of allyl cyanide	418	
of o-aminocinnamic acid	703	
of <i>n</i> -butane	18	
of <i>n</i> -butene	51	
of <i>t</i> -butylethylene	44	
of citraconic acid	392	
of cyanoethyl gp.	417	
of cyclohexane	51	544
of dimethylcyclopentanes	544	
of diphenyl substitution products	710	
of <i>l</i> -ephedrine	811	
of glutaconic acids	393	
of the hydroterephthalic acids	708	

Links

Isomerism, of alicyclic cpds. (Cont.)	
of lactic aldehyde	333
of maleic acid	389
of mesaconic acid	392
of methylbutenes	41
of olefins	27
of oximes	235
of α -pinene	570
of propenal	36
of terphenyl cpds.	710
of trimethylcyclohexanol	544
of trimethylcyclopentanes	544
of truxillic acid	540
of truxinic acids	540
Isomorphines	844
Isonicotinic acid	790
Isonitriles, isocyanides	418
Isonitrosoacetone	214
Isonitrosobarbituric acid, violuric acid	
Isonitroso compounds, aliphatic	165
"Isooctane" 2,2,4-trimethylpentane	
Iso-oleic acid	267
Isopelletierine	815

This page has been reformatted by Knovel to provide easier navigation.

825

<u>Links</u>		
10		
19		
20	41	73
83	94	
759		
59		
210	561	
614	708	
59		
556		
546		
61		
59		
59		
59		
59		
59		
59		
59		
60		
59		
60	549	
60		
59	99	
	 19 20 83 759 59 210 614 59 556 546 61 59 60 60 60 	$\begin{array}{ccccccc} 19 \\ 20 & 41 \\ 83 & 94 \\ 759 \\ 59 \\ 210 & 561 \\ 614 & 708 \\ 59 \\ 556 \\ 546 \\ 61 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 5$

<u>Links</u>

Isoprene (Cont.)		
with isobutylene	41	
with maleic anhydride	57	391
with sodium thiocyanate	60	
with sulfur dioxide	60	
with sulfuric acid	61	
reduction of	60	
relationship to sesquiterpenes	583	
use in prepn. of 3,4-		
dimethylcyclopenta none	549	
of 3-methylcyclopentanone	549	
Isoprene alcohol dimethylvinylcarbinol		
"Isopropanol", isopropyl alcohol		
Isopropylacetate	38	
Isopropylacetic acid, isovaleric acid	248	
Isopropyl acetoacetic ester	369	
Isopropyl alcohol	111	
azeotropic mixtures	112	
dehydration	112	
dehydrogenation	112	
esterification	112	
formn. in methanol synthesis	132	
formn. from acetone	209	215
from n-butane	18	

Links

Isopropyl alcohol (Cont.)			
oxidation of	112		
prepn. from acetone	112	217	
from propylene	38	108	111
reac. of	112		
reac. with acetone	217		
with alkalies	112		
with bromine	112		
with metals	112		
with β -naphthalene sulfonic acid	734		
use in formn. of ethers	112		
use in prepn. of isopropyl chloride	82		
of methylisobutylcarbinol	127		
of propylene	36		
Isopropylallene	55		
Isopropyl allylbarbituric acid	436		
Isopropyl 2-bromo-allylbarbituric acid	436		
1-Isopropylamino-chloropentane	799		
Isopropyl benzene	615		
<i>p</i> -Isopropylbenzoic acid	616		
Isopropyl bromide	82	112	
Isopropyl-t-butylcarbinol	130		
Isopropyl <i>t</i> -butyl ether	142		
Isopropyl butyrate	247		

Links

Isopropylcarbinol, isobutyl alcohol			
Isopropyl chloride	82		
Isopropyl ether	38	141	
Isopropylethylene 3-methyl-1-butene			
Isopropylethylene	41	60	74
	84	119	
Isopropyl Grignard reagent	422		
Isopropyl hydrogen sulfate	111		
Isopropyl iodide	82	319	
Isopropyl isobutyrate	247		
Isopropyl lithium	25		
Isopropyl mercaptan	38		
Isopropylmercuric bromide	71		
Isopropylmercuric heptynide	71		
Isopropylnaphthalene β -sodium			
sulfonate, Nekal			
Isopropylpyridines	789		
Isopulegone	563		
Isoquinoline	753	801	816
	829		
Isoquinoline alkaloids	810	835	
Isoquinoline ring	821		
Isorhamnose, quinovose	472		
Isorhamnose ethyl mercaptal	471		

Index Terms

<u>Links</u>

Isorhodeose, quinovose	472		
Isosafrole	683		
Isoserine	507		
Isostilbene	716		
Isosuccinio acid methylmalonic acid			
Isothiocyanic acid	134	453	
Isothujone	568		
Isotopes	121	144	
Isotopic carbon	427		
Isotrehalose	488	493	
Isotrilobine	840		
Isoureas	433		
Isouretine	433		
Isovaleraldehyde	204		
conv. to β -methylcrotonaldehyde	227		
formn. from calcium isovalerate	248		
from isopentane	20		
use in identification	515		
use in prepn.			
of methylisobutylcarbinol	127		
Isovalerianic acid, isovaleric acid	248		
Isovaleric acid	248	344	470
Isovioluric acid	436		
Isoxazoles	775		

<u>Links</u>

Isoxazole-α-carboxylic acid	69	
Isoximes	235	
Iso-xylic acids	701	
Isuret	433	
Isozingiberene	583	
Itaconic acid	54	392
Itaconic acid derivatives	381	
Itaconic anhydride	407	
Ivory nut	482	

J

J acid	737	
Jack beans	431	
Jacobsen reaction	616	630
Jalapinolic acid	348	
Japanic acid	386	
Japan camphor	579	
Japan wax	386	
Jeffrey pine	21	
Jerusalem artichoke	485	
Jervine	846	
Juglone	739	
Julolidine	818	825

<u>Links</u>

Juniperic acid Juniper oil, mainly α -pinene	348		
K			
Kaempherol	795		
Kalkstickstoff	170	452	
Kaolin	30		
Karl Fischer reagent	781		
Kekulé forms of benzene	604	616	
Kel-F	101		
Kelp	246		
Kephalin cephalin			
Keratin	503	512	519
Kerosine	8		
Ketenes	225	232	
comparison with cyclobutandiones	539		
conv. to propiolactone	343		
cyclohexyl	561		
formn. from acetic acid	245		
prepn. from acetone	210		
from methylene	29		
reac. with diazomethane	531		

This page has been reformatted by Knovel to provide easier navigation.

531

with methanol

<u>Links</u>

Ketenes (Cont.)		
with water	531	
use in prepn. of acetates	284	
of acetic anhydride	292	
of acetic acid chloride	291	
of cyclobutanone	531	
of esters	367	
Keto acids	365	416
Ketoaldehydes	362	
β -Ketoaldehyde monoximes	775	
β -Ketobutyric acid, acetoacetic acid		
3-Ketocamphor	580	
δ -Ketocaproic acid, γ -acetobutyric acid		
δ -Keto-capronitrile	417	
2-Keto-1,2-dihydropyridine, α-pyridone	785	
l-Keto-6,7-dimethoxy-1,2,3,4-		
tetrahydro-isoquinoline		
corydaldine		
Keto-enol forms, see also tautomerism	133	
β -Keto esters	224	426
α -Ketoglutaric acid	406	791
ε-Ketoheptoic acid	374	
2-Ketohexoses	484	
5-Ketohydantoin oxalylurea		

<u>Links</u>

Ketoketenes ketenes			
Ketomalic acid, dihydroxymaleic acid	406		
Ketones	184		
camphor	579		
carbaloxylation of	426		
condo with ethyl succinate	381		
condo with quinaldine	798		
conv. to ketenes	232		
to unsaturated nitriles	418		
cyclic	524	526	545
	547		
formn. from acetoacetic esters	367		
from aldehydes and			
diazomethane	183		
from dibasic acids	386		
from fatty acids	244		
from Grignard reagents			
and nitriles	416		
from phosgene	428		
introd. of cyanoethyl gp.	417		
phenolic	682		
prepn. from acid chlorides and			
zinc alkyls	855		
from Grignard reagents	853		

Links

Ketones (Cont.)			
prepn. using organocadmium cpds.	855		
reac. with acetylene	69		
with amides	343		
with diacetyl peroxide	360		
with hydrogen cyanide	412		
with methyl iodide	82		
tautomers of	134		
terpenic	579		
unsaturated	224	801	
use in formn. of mercaptols	145		
of phthalophenone	723		
use in Knoevenagel reac.	380		
use in prepn. of 2,4-dialkylquinoline	797		
of dinitroparaffins	164		
use of zinc alkyls in prepn. of	855		
Ketonic acid	370	372	419
Ketonization	214	233	
4-Keto-9,11,13-octadecatrienoic acid			
Licanic acid			
Keto propionic acid, pyruvic acid			
3-Ketopyrazoline, pyrazolone			
2-Ketosparteine, lupanine			
10-Ketostearic acid	273	374	

<u>Links</u>

1-Keto-1,2,3,4-tetrahydrocarboline	820		
2-Keto-3,4,5,6-tetradehydrosparteine			
anagyrine			
Ketotetrose	465		
γ-Ketovaleraldehyde, levulinic aldehyde			
γ -Ketovaleric acid, levulinic, acid	347		
9-Ketoxanthene, xanthone	803		
Ketoximes, oximes			
Ketoximes	172		
Kharsivan, salvarsan	861		
Kiliani synthesis	482		
Kindler reaction	739		
Kinetic No. 12 dichlorodifluoromethane			
Knallsäure, fulminic acid			
Knock	24	47	
Knoevenagel reaction	253	259	370
	380		
Koch acid, naphthylamine			
trisulfonic acids			
Koch acid	737		
Kogasin process	421		
Kolbe synthesis	386	666	698
Kondakoff's rule	98		
Koresin	68		

<u>Index Terms</u>

<u>Links</u>

Koroseal	95
K. O. S.	123
Kromax	146
Kryptogenin	595
Krystallin, aniline	
Kyanol, aniline	

L

L-, designation referring		
to configuration	462	
Labile H in glutaconic esters	394	
Lacceric acid	239	
Lacceryl alcohol	132	
Lachrymators, benzyl halides	621	
chloroacetophenone	681	
cyanogen chloride	412	
methyl vinyl ketone	229	
monohalogen acetones	216	
nitroethylene	164	
Lacquers	496	
Lactams	504	
Lactarinic acid	267	374

<u>Links</u>

Lactic acids	341	366	477
configurations, relationship	349		
conv. of threonine to	507		
conv. to lactide	341		
fermn. product of glycerol	319		
formn. from propylene glycol	306		
from pyruvic aldehyde	362		
prepn. by alcoholysis	285		
by fermn.	341		
prepn. from acetol	336		
reac. with acids	342		
with sulfuric acid	194		
with thionyl chloride	276		
use in prepn. of α -chloro- or			
iodiopropionic acid	276		
Lactic aldehyde	306	332	
Lactic aldehyde diethyl acetal	332		
Lactides	205	286	341
	401		
Lactitol	326		
Lactobionic acid	492		
Lactoflavin riboflavin			

Links

Lactoid forms, see also carbohydrates			
hydroxy carbonyl cpds			
dicarbonyl cpds carbonyl			
acids, etc.	725		
Lactoles, lactols	335	463	468
Lactol ring	466	477	
Lactones			
campholide	550		
ester reac. of	347		
from $-\gamma$ -amino acids	504		
from gluconic acid	351		
from D-glucose	351		
from - γ -and δ -halogen acids	274		
from - γ -and δ -hydroxy acids	286		
from levulinic acid	373		
from succinic acid	365		
in cardiac aglucones	594		
intermediates in ring closure	356		
of aldonic acids	351		
of an unsaturated acid	348		
of Balbiano's acid	535		
of cyclohexenyl deriv.	566		
of hydracrylic acid	343		
of hydroxycamphenilic acid	575		

Links

Lactones (Cont.)			
of hydroxy-pentenoic acids	352		
of levulinic acid	372		
of D-mannosaccharic acid	404		
of tetronic acids	350		
of trimethylketoglutaric acid	406		
use in formn. of			
alkylcyclopentanones	548		
Lactones, hemiacetal form	714		
Lactones, hydroxy	347		
Lactonic acids	383	404	
Lactonitrile	417		
Lactoses	473	482	489
	492		
Lactose octa-acetate	492		
Lactulose	492		
Lactylurea	434		
Lakes	721	746	
Lapachol	739		
Larch bark	780		
Laudanidine laudanine			
Laudanine	836		
Laudanosines	836		
Laurates, electrolysis of	245		

<u>Index Terms</u>	<u>Links</u>		
Laureline	840		
Laurent's acid, naphthylamine			
monosulfonic acids			
Laurepukine	840		
Lauric acid	253	267	273
	417		
Laurolene	545		
Laurolenic acid	545	550	
Lauronitrile, undecyl cyanide	417		
Laurotetanine	840		
Lauryl alcohol	131		
Lauryl pyridinium chloride	781		
Lawson	739		
Laxatives	402	407	723
Leaching	410		
Lead	364		
Lead alkyls	858		
Lead chloride	858		
Lead dialkyls	858		
Lead dioxide	205	715	725
Lead formate	241		
Lead nitrate	453		
Lead oleate	267		
Lead oxide	450	716	762

<u>Index Terms</u>	<u>Links</u>		
Lead tetracetate	309		
Lead tetraethyl	82	856	858
Lead thiocyanate	454		
Leather	410		
Leavan levan			
Lecanoric acid	700		
Lecithins	317	327	519
Lecithoproteids	519		
Lemon peel	794		
Leprocidal activity	566		
Lethanes	453		
Leucaniline	726		
Leucaurin	722		
Leucine	119	497	503
	512		
Leuckart reaction	812		
Leuco bases	807		
Leuco-compounds	721		
Leuconic acid, see			
pentaketocyclopentane	549		
Leucosin	518		
Leucylalanine	515		
Leukanol	734		
Levan	495		

Links

Levoglucosan	475		
Levopimaric acid	586		
Levulinic acid	372		
anhydrides of	352		
formn. from hexoses	472		
lactones of	352		
reduction to hydroxy valerie acid	347		
to valerie acid	248		
use in synthesis of fenchone	581		
Levulinic acid esters	372		
Levulinic aldehyde	364		
Levulose D-fructose			
Levulose	372		
Lewisite, chlorovinyl dichloroarsine			
Lewisite	850		
Licanic acid	271		
Lichens	700		
Lichocholic acid	591		
Liebermann reaction	173	667	
Ligaments	519		
Light	155	157	161
Light Green, methyl green			
Lignin	558		
Lignin byproducts	683		

Index Terms	<u>Links</u>		
Lignite	256		
Ligroin	7		
Liliaceae	595		
Lime	788		
Lime-nitrogen	452		
Limetlin	704		
Limettin, see aesuletin			
Limonene	59	557	
Linalool	61	136	138
Linear polymers	387		
Lindages As-As	860		
C—C	216	250	
C=C see olefins double			
bond shift, etc.			
C—F	275	622	
C—Hg	412	856	862
C—Mg see Grignard reagents	862		
C—N, see amines amides etc.	144	159	166
	634		
C=N	201	234	297
C—O, see alcohols, ethers, etc.	120	144	166
	201	204	216
C=O see carbonyl cpds. aldehydes			
ketones, etc	184		

Links

Lindages As-As (Cont.)			
C—S, see mercaptans, sulfides etc.	144	153	191
	201	631	866
N—N	180	222	
N=O	173		
O—Na, see alcoholates, etc.	380		
O—O, see peroxides, etc.	143		
R—O, see C—O alcohols, etc.	145		
R—S	145		
K—O	152		
S=O	148	152	173
S—S	143		
peptides	515		
Linolenic acid	270		
Linolic acid, linoleic acid	270		
Linseed oil	270		
Lipins	317		
Lipoproteins	519		
Liquid petrolatum	10		
Lithia water	440		
Lithium	851		
Lithium alkyls	851		
Lithium aluminum hydride	285	427	
Lithium ethyl	857		

Links

Lithium nitrate	40	
Lithium oleate	267	
lithium ricinoleate	353	
Liver	761	
Liver L. casei factor, folic acid		
Liver starch glycogen		
Lobelanine	815	
Lobelanidine	815	
Lobeline	815	
Lobinine	815	
Lobry de Bruyn equilibrium	477	
Loiponic acid	832	
Lophine	774	
Lorol	131	
Lorol thiocyanate	453	
Lossen reaction	168	
Low temperature tar	5	
Lubricants	353	
Lubricating oil additive	671	
Lucidol Corpn Buffalo, N. Y		
Lucite	213	
Lumarith	496	
Lumichrome	807	
Lumiflavin	807	

This page has been reformatted by Knovel to provide easier navigation.

258

Next Page

<u>Index Terms</u>	<u>Links</u>		
Luminal	436	702	707
Lumisterol	593		
Lupanine	826		
Lupinine	818	825	
Lutein xanthophyll			
Luteolin	794		
Lutidines dimethylpyridines			
Lutidines	671	789	
Luvican	767		
Lycopin lycopene			
Lycopene	26	72	588
	590		
Lycorine	818	831	
Lysine	330	497	505
	512	517	
Lysol	671		
Lysyl aspartic acid	514		
Lysyl glutamic acid	514		
Lysylglycine	514		
Lysyl histidine	514		
Lyxonic acid	351		
Lyxose	325	403	468