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These results suggest that the natural width of a spectral line may be
less than the value to be expected from the classical theory of damping
by radiation.
The subject of width of spectral line is one of considerable importance.

If the lines are really much narrower than 0.12 X-Unit the radiation can-
not come from a damped oscillating electron. The mechanism must be
such as to maintain a pure harmonic oscillation of constant amplitude
until the quantum of energy is completely emitted. Such a train of waves
would need to have a great number of elements and so have considerable
length. An alternate hypothesis would be that a quantum is an entity
(the word "pulse" is avoided) that may be resolved into a train of waves
by the crystal grating. In this case the width of a spectral line would de-
pend on the degree of perfection of the crystal. The quantum theory of
crystal grating action advanced by Duane8 might also give a narrow spec-
tral line, whose width would be a property of the crystal grating and not of
the radiation.
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4Siegbahn and Larsson, Ark. Math., Ast, Eysik., 18, No. 18, 1924.
'Larmor, Ether and Matter, page 229.
4 G. E. M. Jauncey, Phys. Rev., 19, Jan., 1922.
7A. H. Compton, X-Rays and Electrons, p. 56.
S W. Duane, Proc. Nat. Acad. Sci., 9, 158 (1923).
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In stu:dying the very significant statistical.interpretation put on the
quantum mechanics by the "transformation theory" of Dirac' and Jor-
dan,2 the writer at first experienced considerable difficulty in understanding
how the quantum formulas for averages and probabilities merge into the
analogous classical expressions in the region of large quantum numbers
and also, of course, in the limit h = 0. In the present note we shall aim to
trace through the asymptotic connection between the formulas of the
two theories, which does not seem to have been quite adequately elucidated
in existing papers.

In the transformation theory a diagonal element of a matrix which
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represents a function f and whose rows and columns are indexed with re-
spect to a set of variables ak (k = 1, ... s), is interpreted as the average
value of the function f when the a's are specified, and all values of the
variables 1k canonically conjugate to the a's are supposed equally prob-
able. The latter supposition is necessary if accurate values are assigned
to the a's; it is, in fact, a basic axiom of transformation theory that it is.
impossible to give accurate values simultaneously to both coordinates and
their conjugate momenta. If f(p,q) be a matrix function of the dynamical
variables pi, . ., p3, ql, . ., q, its diagonal elements in the a-scheme of in-
dexing are given by the formula

f(p,q) (aa) = J .. Jf (a/q)f(ihb /qq;q) (q/a)dql dq, (1)
where f(ihb /lq; q) is the operator function obtained by replacing Pk by
the operator iha /aqk (k = 1, ... s) in the function f(p, q). Here (q/a)
is the "probability amplitude" or "transformation function" associated
with the passage from the p,q to a,4 system of variables. We use Dirac's
notation in the main, except that we do not designate numerical quantities
by primes, and the reader is referred to his paper if desirous of more back-
ground for the present article. In particular we use Dirac's h, which is
l/27r times the usual Planck's constant 6.55 X 10-27. According to
Pauli, Dirac and Jordan the expression

(q/ao)j2q. dqs (2)

is the probability of a given configuration in the q's when the a's are speci-
fied. Dirac shows that (2) is deducible as a special case of (1) by, in par-
ticular, takingf to be the product of certain of his b-functions. We assume
throughout the paper that the factors in non-commutative products are
so ordered that the matrices representing all real variables are Hermitian.
This permits us to use the relation (a/q) = (q/a) *, where, as is customary in
quantum literature, the asterisk * means the conjugate imaginary. Other-
wise it would be necessary to replace (q/a) 12 by (q/a) (a/q) in (2).

Let us now suppose that the a's and ,B's are a set of variables which make
the energy a diagonal matrix. We do this merely for concreteness, as in
most problems the transformation of interest is one governed by the
Hamiltonian function, and some further remarks on the general case,
to which the proof still applies, are given at the end of the paper. Under
the present supposition (q/a) is identical with a Schroedinger wave func-
tion y6(qi, . ., q,; al, . . ., a3, t) and satisfies his equation

[H(iha /lq; q) + iha /lt](q/a) = 0 (3)

where H(p; q) is the Hamiltonian function. In dealing with problems
connected with a definite stationary state it is often convenient to choose
the a's and ,B's to be a set of action and angle variables; the arguments
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ak entering in (q/a) are then, except for a factor h, merely a set of quantum
numbers. This restriction, however, is unnecessary and in many prob-
lems, especially the aperiodic affairs involved in the collisions of electrons
with atoms, it is impossible to use exclusively true action and angle vari-
ables. In an isolated atom with one electron in a definite state, equation (3)
.can be regarded as determining a statistical charge density representing
the average over all phases, and the interpretation of I(qla)12 as an elec-
tron density (though not necessarily in a purely statistical sense) was
proposed by Schroedinger and others even before the advent of trans-
formation theory.

Let us now seek the classical analogs of the preceding formulas. It has
been abundantly emphasized in the literature3'4'5 that the analog of the
wave equation (3) is the Hamilton-Jacobi equation

H(bS/aq; q) + aS/at = 0. (4)

Let S(ql, .q..qs; al, ... aS, t) + C be a "complete integral" of (4) involving
s independent arbitrary constants a,, ..., a, besides the trivial additive
constant C. Then the equations

Pk = bS/lqk, 1k = ?S/Iak, (k = 1, ..., s) (5)

define a canonical transformation from the p,q system to a set of new
variables a,, . ., a,; Iii, . . ., fs. By this transformation a functionf(p; q)
of the original variables is converted into a function F(a; ,) of the new
ones. Let us suppose that for given a's all values of the ,B's are equally
probable so that probability is proportional to the volume in the ,-space.
Like the usual assumptions concerning "weight" in statistical mechanics,
this is a statistical hypothesis not included in the classical analytical dy-
namics by itself. The average value of f(p; q) = F(a; j3) for given a's
is then

Af. . fF(a; #)d*. * .di3$. (6)

Let us change the variables of integration from the ,'s to the q's. The
integrand then is expressed in terms of the q's and a's and by (5) the ex-
pression (6) thus becomes

Af .ff(bS/aq; q) Adql dq, (7)

where A is the functional determinant

A =(Bl.... ,s 2(8)
6(qlp ... ., qs) laqkbcjl

of the transformation from the ,B's to the q's with the a's kept fast. With
our statistical assumption the probability that the system will be in a
given configuration dql ..... dq, is clearly
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Ad#,l. . d3s = A Adql ... dqs. (9)

The constant A is determined by the requirement that the total probability
be unity so that

1/A = A....dq.* dqs. (10)

For the correspondence principle to be valid, equation (1) must pass into
(7) and (2) into (9) in the limiting case of very large quantum numbers
(or, more generally, large values of the variables ak). This is equivalent
to letting h approach zero, as in either case the ratios h/ak vanish in the
limit. It is well known that for small values of the h/ak, a first approxima-
tion to the wave or transformation function (q/a) is CeS/ih, where C is a
c.onstant and S is the classical action function satisfying (4). This ap-
proximation is, however, not adequate to yield the correspondence prin-
ciple, for it is easily shown that with only this approximation equations (1)
and (2) approach expressions analogous to (7) and (9) except for the im-
portant difference that the functional determinant A is wanting. It is,
however, proved below that a second approximation is

(q/l) = A7IAeS/ih (11)

where the constant A has the value (10). From this it follows immediately
that (1) and (2) do indeed merge asymptotically into (7) and (9) for it is
readily seen (cf. Eq. (13) below) that

f(iha /lq; q) (Ale s/ih) = AieS/ihf(6S/1q; q) + ...

where the dots denote terms which vanish in the limit h = 0, and where
f(6S/1q; q) means the function obtained by replacing the operators
iha /lqk by the expressions JS/lqk-
The essential contribution of the present paper is the proposition that

(q/a) when calculated to the second approximation, always contains the
factor Al involving the functional determinant (8). This degree of
approximation is, in fact, a very necessary one, for it is needed to get the
terms in (q/a) which do not vanish in the limit h = 0. Solutions through
the second approximation have already been given by Wentzel, Brillouin
and Kramers for the special case of a particle vibrating in one dimension,
and careful examination of these solutions show that they do contain a
factor which is proportional to A2 though not expressed directly in this
form (e.g., Kramers' factor is written y_1/4 where y = 2m(W - V)). The
significance and proof of the universal presence of this factor do not appear
to have previously been given.

Before passing to the proof of (11) it is well to mention that (3) and (4)
are the general wave and Hamilton-Jacobi equations, in which the time is
included in the solutions rather that the perhaps commoner equations
from which the time is eliminated by substituting the energy constant
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W for the operator -ih? /lt in (3) and for -bS/lt in (4). We use the equa-
tions inclusive of t for two reasons. In the first place they are more
general, as Dirac' shows probability amplitudes can be calculated from
(3) even in non-conservative systems, where the energy no longer has a
constant value W. Thus our proof includes the case that t enters ex-
plicitly in H, even though our notation does not list t among its arguments.
When t does so enter, H ceases to be a diagonal matrix, but meaning is
still given to the transformation defined by (3) or (4) by interpreting the
a's and ,B's as constants of integration, especially in Dirac's sense of
values of variables at a specified time. In the second place by working
with the equations inclusive of t, the manipulation of some of the func-
tional determinants involved in the proof (especially near Eq. 18) is some-
what simplified even in the conservative case, as the formulas exhibit a
certain amount of symmetry between t and the other variables. In con-
servative systems the solutions of (3) and (4) take the form

(q/a) = ((ql, ... qs;ajj . . as)eiWi/h, S = S(ql, ., qs; cal, o.,(X)- Wt, (12)

where (p and S do not involve t. In such systems we are interested in a
definite energy, and so it is necessary to use one solution (12) rather than
the general solution of (3) which is a linear combination of solutions each
corresponding to a different W. (Developments in such combinations,
however, are often useful in the non-conservative case.) With a definite
W the distinction between (q/a) and sp is trivial, for then |(q/a)12 equals
IwI2 and hence it is immaterial if we replaced (q/a) by so and (a/q) by so*
in (1) or (2).

Proof of Equation (11).-The first step is to establish the following lemma:
If f(ih? /bq; q) be any function of the operators ihb lbqk and variables
qk (k = 1, . ., s) which has Hermitian symmetry, and if S and G be any
two functions of the q's not involving the constant h, then

f (ih aa; q) (GeS/ih) = eS/ih {Gf (,s; q)

+ ih E1 (\fk aG + G fk)+..(13)
k=1 bqk 2 bqk

where the neglected terms are proportional to second and higher powers of
h, and where fk is an abbreviation for the derivative bf/a(6S/Sqk) of
f(bS/aq; q) with respect to the argument aS/lqk.
We shall prove (13) in an inductive fashion somewhat similar to Born,

Heisenberg and Jordan's6 way of proving their formulas for the differentia-
tion of matrices. We shall show that if (13) holds for two functions f =
u andf = v, it holds likewise forf = u + v andf = uv + vu. Since (13)
obviously holds for f = qj and f = ih; /bq, this suffices to establish that
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(13) holds for the most general functionf constructed by repeated additions
and Hermitian-ordered multiplications. For f = u + v the proof is
trivial. To give the proof forf = uv + vu we first takef = v in (13) and
have

v(GeS/ih) - eS/ih [Gv + ikE (v?.G/l,qk + !GbV/dqk)] (14)

where we have for brevity omitted to write in the arguments of v, but use
bold-face type to distinguish operator from algebraic functions. Next
again apply (13), this time takingf equal to u andG equal to the entire part
of (14) in square brackets. This gives, discarding terms in h2,

uv(GeS/ih) = esi{ Guv + ihk(uVkaGC/qk + 1 uG6v4/lqk

+u;Vw/Jqk + 2s/8Yk+ 2 k/-qk)l

The right-hand side is not quite symmetric in u and v, but if we add to this
the analogous expression for vu(Ges/ih), we find on collecting terms and
noting that (uv)' = uv + us*, the desired result

(uv + vu) (Ges/ih) - es/ { 2Guv+2ihE [(uv)kbG /bqk +-2G,. (UV)k/lqk

'Let us now, following Brillouin,4 Wentzel3 and Eckart,5 seek to build
up a solution of the wave equation (3) as a power series in h, taking (qla)
= e(S+S1h+52h + .)/ih. We denote the first exponent by S rather than So for
reasons that appear later. To the approximation which we desire, S2 and
higher terms may be disregarded. If we denote e-is5 by G, the assumed
solution takes the form

(q/a) = GeS/ih. (15)

We can now substitute (15) in (3) and apply (13), taking f = H. If
we then equate to zero the part of the resulting equation which is inde-
pendent of h, we see that S satisfies an equation identical with (4) and thus
agrees with the classical action function. As a second approximation
we equate to zero the part of the resulting equation which is proportional
to h, and this yields a partial differential equation

Ek (H' q/k + ! GCHk/ iqk +CG/8t =O (16)

for determining C. Now, by definition, a complete integral S(q, a, t) of
(4) reduces the left-hand side of (4) identically to zero and, consequently,
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the derivatives of the left side of (4) with respect to each of the a's must
vanish. Therefore, we have the identities

EkHk 2s/-a2Iqt = ( = 1, .. s) (17)

since H involves the a's only through the arguments aS/Iqk and since
Hkmeans the derivative ofH with respect to aS/Iiqk.
We shall first solve (16) for the special case of a conservative system with

one degree of freedom, as here the algebra is somewhat simpler than in the
general case. In a conservative system (q/a) involves t only in the ex-
ponential fashion (12) and we may without essential loss of generality
suppose that in (15) the time factor is incorporated entirely in eS/ih rather
than in G, so that aS/at = -W, )G/lt = 0. This supposition means
only that we use in our first approximation the same energy as that appro-
priate to the final solution. Furthermore, with only one degree of freedom
the subscripts are uinnecessary and the functional determinant (8) reduces
to the single term 62S/bq6a. Thus (17) becomes H'A = dW/da and
substitution of this in (16) gives

AaGlbq - 1 GA/aq = 0
2

as dW/da is independent of q. This equation integrates immediately into
G = AlAi which is just the desired result, as we later show that the
constant of integration has the value given by (10).

Passing now to the general case, the solution of the s simultaneous linear
equations (17) for the Hk is

1 b(,Bl, OSs) 1
A 6(ql, . ., qk-I, t, qk+l, - ., qs)

Here we have used the definitions of the ,B's and A given in (5) and (8).
Thus the Hk are expressible as quotients of functional determinants.
If we now change the dependent variable in (16) from G to 0 by the sub-
stitution

G = Ai0 (19)

we find that (16) reduces to

EHkbalaqk =-at (20)

as many terms cancel in virtue of (18) and the mathematical identity7

kff ,qk. (l, os+qk-1vtiqk+labsq) . t

for any s functions 6,8, . ......,w-ofs + 1 vaxiables ql,............I qs,t.
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Equation (20) is clearly satisfied by taking 0 equal to a constant C.
This, however, is not the most general solution. Instead a "complete in-
tegral" of (20) is

0 = C + Ejc-S/ba, (21)

where the cj are constants, for substitution of a typical term of (21) re-
duces (20) to an expression differing from (17) only by a constant factor.
Now by (19) the term proportional to cj in (21) simply adds to (15) very
approximately the change cjihb( ,IeS/ih)/baj which results in (15) if
a, is altered by a small amount ihcj/C in a solution originally of the form
(q/a) = CAieS/i . Such terms can clearly be made to disappear by
assigning proper original values to the a's, for the effect of these terms is
equivalent to changing slightly the constants of integration in the solution
of (4). Thus we may always take c; = 0, provided we start with a classical
solution having the proper values of the a's. The discussion of what values
of the a's should be used is beyond the scope of the present paper, as this
problem has been considered by others. If the quantum dynamical sys-
tem is one which has a "discrete" rather than entirely continuous matrix
spectrum; i.e., if the classical motion is recurrent, the exponent in the
factor eS/li will be multiple-valued, as the action S does not revert to its
original value after a cycle. Consequently, the wave function will meet
the necessary requirement of single-valuedness only if the a's are given
certain particular values or "Eigenwerte." Wentzel3 and Brillouin4
have shown that in multiply periodic systems in which the variables can be
separated in (4) the constants in S should as a first approximation be so
chosen that the Sommerfeld phase integrals taken over a cycle are integral
multiples nk of Planck's constant. Kramers,8 however, has shown that
because of the singularities at the classical libration limits it is a much
better approximation and more rigorous procedure to start with a classical
motion in which these integrals equal nk + times Planck's constant,
thus giving "half quanta." A classical solution with half quantum num-
bers is entirely adequate for our purpose of asymptotic comparison of the
two theories.
The preceding paragraph shows that we may, without essential loss of

generality, discard all the terms except 0 = C in (21) so that by (15) and
(19) the wave function has the desired form (11), if now we denote the
constant factor by AI rather than C. To complete the proof of the corre-
spondence principle it only remains to show that A has the value (10).
Now, the wave function is normalized by the relation'

f.* fJI(q/a)j2dql ... .dqs = 1. (22)

The integral in (22) is to be taken over the entire q-space, whereas the
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classical integral (10) is to be taken only between the limits of libration-
of the classical motion, which is precisely the region in which S is real.
Let us, however, divide the domain of integration in (22) into two parts,
I and II, in which S is respectively real and imaginary. The integral over
I is then identical with (10), as in I we have by (11) (q/a) 12 = AA. It
can be shown that beyond the classical limits it is always possible to take
the exponent S/ih as a negative real number; Kramers8 shows this is true
even though the ordinary series developments fail at the libration limits.
With a positive exponent, of course, the integral would not converge and
we should not have an "Eigenfunktion." With the negative exponent,
however, the integrand has a factor e-2151/h and so drops off rapidly beyond
the classical limits. The sharpness of dropping off increases as h ap-
proaches zero, and in the limit h = 0 the entire contribution to (22)
comes from the region I, thus giving the desired result (10).

In many dynamical problems the Hamiltonian function involves only
even powers of the p's. An approximate solution of (3-12) more general
than (11) is then clearly ,o = AI(Ales/ih + BieS/ih) where A and
B are constants. Equation (13) shows that then (1) goes over asymptoti-
cally into an expression identical with (7) except that now A is replaced
'by A+B, for "cross product" terms involving the product A BI have a
rapidly fluctuating factor e'2S/ih and so vanish to a high approximation
when integrated over the entire q-space. It is these "cross product"
terms which give so many problems their "wave nature" in quantum
mechanics; As h approaches zero the wave-length becomes shorter and
shorter, so that even a small element (2) will contain so many waves that
the fluctuating part may be omitted. It is easily seen that the normaliza-
tion now requires that l/(A + B) equal the integral in (10), so that the
correspondence principle still applies.

In equation (22) we have assumed that the a's assume discrete values
in the quantum theory. The extension to the case where they assume
continuous values occasions no difficulty if one uses the Dirac 8-functions
to specify a distribution of the a's about some point.
Non-Diagonal Elements of Heisenberg Matrices.-In the transformation

theory the primary emphasis is on the diagonal elements, but it is only a
small extension of the previous work to prove the asymptotic identity of
the non-diagonal elements of the original Heisenberg matrices with classical
Fourier coefficients in multiply periodic systems. We have only to take
(a/q) and (qla) in (1) to refer to different wave functions or stationary
states, which we may designate by primes and double primes, and must
further specialize the a's and 3l's to be respectively action and angle vari-
ables, as the Heisenberg matrices are indexed with respect to quantum
numbers. Equations (11) and (13) show that with this modification formula
(1) approaches asymptotically an expression identical with (7) except for
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insertion of a factor e(S"-S')/Ih in the integrand, for to our degree of ap-
proximation we may take A' = A' and hence by (10) A' = A' if the
ratios (a - a')/ak are small. Now this exponential factor is precisely
the factor eZ-iXTk which must be inserted to give the classical formulas,
obtained by term-by-term integration, for the Fourier coefficients of an
expansion in the O's. This follows inasmuch as for large quantum num-
bers 5"-S' is approximately E(bS/lak)(k-ak) and by (5) 3k =
?S/Iak; further a" -I4 = Tkh where the Tk are integers since the action
variables ak are integral (or more accurately half-integral) multiples of h.
We must by all means mention that the asymptotic connection of the

Heisenberg matrices with Fourier components has also been proved very
elegantly by Eckart5 with another method. He considered the particular
case of one degree, of freedom and f = q, but his method is readily gen-
eralized. The functional determinant factor did not come to light in his
work as his method involves only the ratios of the wave functions, making
determination of the second approximation unnecessary.

Extension to the Case WhereH Does Not Denote the Hamiltonian Function.
-In the previous work we have interpretedH in (3) to be the Hamiltonian
function, but our proof of the correspondence principle is clearly appli-
cable to the still more general type of transformation determined by (3)
in which H is any function of the p's and q's and in which we wish to trans-
form to a set of variables a,,3 which make the function H (no longer
necessarily the energy) a diagonal matrix; i.e., a function W only of the
a's. In the general case the variable t need not have 'the physical signifi-
cance of the time and can be regarded as simply a mathematical auxiliary
useful in throwing the functional determinants into a symmetrical form.
Such a formal auxiliary will not enter inH and so starting originally with so
as the probability amplitude we may regard t as simply a parameter in-
troduced in the exponential fashion (12). Of the transformations in which
H does not denote the Hamiltonian function, we may note two interesting
special cases:

(1) Point transformation. Here Jordan9 has already derived a rigorous
solution which contains the factor At.

(2) Case where ak = Pk (k = 1, ..., s). HereH reduces to Eih? lbqk,
and the first approximation so = e2qk"a/J is also a rigorous solution, which
incidentally Jordan2 takes as one of the axioms in his postulational formu-
lation of quantum mechanics. The functional determinant now reduces
to unity, as indeed it must since the second and higher approximations are
unnecessary. The correspondence principle thus follows directly without
even the second approximation, and I am indebted to Dr. J. R. Oppen-
heimer for calling my attention to this simple result. He further remarks
that all problems of calculating statistical averages in quantum mechanics
can be reduced to this case (2), for by proper canonical transformations
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any matrix f can be expressed as a function of the variables a,, instead of
p, q, just as in classical theory we can use (6) as well as (7). The corre-
spondence principle then follows from the asymptotic agreement of classi-
cal and quantum canonical transformations. It seems, nevertheless, of
interest to have proved the correspondence principle as directly as possible
without appeal to iterated transformations.
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1. Correction.-In an earlier paper* I found the anode behaving in a
way indistinguishable from the cathode. Many repetitions of the ex-
periment since have shown that this is not the case. What probably hap-
pened was a spontaneous change of the polarity of the electrical machine
for which I was unprepared. Hence the cathode behavior was inad-
vertently measured twice. The correct graphs are given in the following
paragraphs.

2. Apparatus.-This is essentially the same as before, consisting of the
electrodes E E' (about 2 cm. in diameter) of the spark gap x of a small
electrostatic machine. The quill tube from E' leads to the interferometer
U-tube beyond U, for measuring the pressure of the electric wind (s, roughly
in 10-6 atm.). The electrode E is provided with a micrometer screw db
carrying the needle n, whose extrusion y beyond the electrode is thus
measurable. P and P' are insulated posts and c a constriction of the
pipe a, carrying the electrode E and the nut e of the screw. A similar
arrangement for the cathode is also provided (not shown).

3. Moist and Dry Eiectrodes.-Observations made in the dark with elec-
trodes moistened, for instance, with glycerine, recorded very marked
differences of behavior. There is not room to describe these here further
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