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‘Therefore, if we have s summations symbols in the 1st set of values, the
general theorem is
| Ia¢h|=2lauvl

whereg = 1,2,...... m
h=m+1,m+2,....... 2m
uw=12........ m—s,r,re,....7s
v =m+1,m+2,...n—I,m—s+1,n+1,....n—1,m—s +

2,....rs—1,mrs + 1,..2m
ST C VR re=m-+1,m+2,......... 2m.

‘The number of determinants in the summation on the right equals ™C..
Hence we see that Kronecker’s Theorem is a special case of the theorem
stated here—the case where s = 1.

1 We wish to express our indebtedness to Professor F. D. Murnaghan for suggesting
the possibility of extending this relation, after reading Professor E. B. Stouffer’s paper
on this subject in these PROCEEDINGS, January, 1926.

2 Murnaghan, F. D., Amer. Math. Monthly, 32, May, 1925 (233-241). Murnaghan,
F. D., Bull. of Amer. Math. Soc., 31, July, 1925 (323-329).
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1. Introduction.—We shall be concerned with the most general do-
mains, or open continua, in space of three dimensions. It will be con-
venient to denote domains, and points in them, by capital letters, and to
denote their boundaries, and points of these boundaries, by corresponding
small letters. We shall consider explicitly only domains, 7', whose boun-
daries, ¢, are bounded point-sets, a restriction which can be removed by
inversions. 4

A function F(p), defined on ¢, is said to be continuous if to every ¢>0,
there corresponds a8 > 0, such that |F(p)—F (q)l < ¢ for any two points
of ¢ whose distance, pg, < 8. By the classical Dirichlet problem, we mean
that of determining a function, U(P), harmonic in T, such that U(P)—>
F(p)as P—>p. If T is not bounded, the additional restriction is placed

on U(P) that it shall vanish at infinity like the potential of bounded
~ charges.

The problem is not always possible. Zaremba! and Lebesgue? have
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exhibited cases in which exceptional boundary points exist, at which
functions having otherwise the properties of solutions cannot approach
the assigned boundary values. But in any case a function U(P), bounded
“and harmonic in 7, can be associated with given continuous boundary
values, F(p), which will approach F(p) at every regular (not exceptional)
boundary point.> Wiener* derived important properties of this function
U(P), which we shall call the sequence solution of the Dirichlet problem.

We shall establish the results of Wiener in a way simpler than has here-
tofore been given, taking as point of departure a generalized function of
Green for T, and shall obtain additional light on the sequence solution.
We shall then give certain theorems on the capacity of point-sets, and show,
in particular, that sets of 0 capacity are the most general at which har-
monic functions can have removable singularities. Finally, we show that
if the exceptional points of ¢ form a set of 0 capacity, the sequence solution
is the only function which is bounded and harmonic in T" and which ap-
proaches F(p) at all regular boundary points.?

2. Green’s Function.—Let [T,] denote a nested set of normal domains
with T as limit; i.e., a set such that the classical Dirichlet problem is
possible for each T, and any continuous boundary values, such that T,
is contained in all the following domains of the set, and such that each point
of T is contained in some T,. Then, by the reasoning of Harnack,® the
functions of Green, G,(P,Q), for the domains, T, and fixed pole, Q, form
a sequence which approaches a limit uniformly in any closed sub-region of
T omitting Q. ‘This limit, G(P,Q), we shall call Green’s function for T,
leaving open the question as to whether it vanishes at all boundary points
or not.

From the manner of its formation, G(P,(Q) is seen to have the following
properties. G(P,Q)—1/PQ is harmonic in T, save for a possible removable
singularity at Q; if T is not bounded, G(P,Q) vanishes regularly at in-
finity; G(Q,P) = G(P,Q).

THEOREM 1. G(P,Q) is independent of the particular set of nested do-
mains, [T,], used in its definition. For, if [T,] denote a second set,
G(P,Q) dominates all the functions of Green for the domains T, and hence
their limit, G’ (P, Q), i.e., G'(P,Q) < G(P,Q). Similarly, G(P,Q) < G'(P,Q),
and the theorem follows.

If T is anormal domain, G(P,Q) —> 0 as P —> p, p being any boundary
point. The converse was first proved by Lichtenstein.® If T is not nor-
mal, there will be boundary points at which G(P,Q) does not approach 0.
We define as regular and exceptional boundary points, those at which
G(P,Q) does, or does not, approach 0, respectively.

THEOREM I1. The definition of regular and excepiional points is inde-
pendent of the position of the pole, Q. Let Q and Q' be two points of T,
and let R be a region consisting of a domain containing Q and Q’, together
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with its boundary, 7, and lying in 7. Let m be the positive minimum of
G(P,Q’) onr, and M the maximum of 1/PQ on r. As G,(P,Q) < 1/PQ,
it follows that G,(P,Q) < (M/m)G(P,Q’) on r, and since this inequality
holds on ¢,, the boundary of T, it holds also throughout T,—R. Hence
the limiting form of this inequality, G(P,Q) < (M/m)G(P,Q’) holds in
T—R, and G(P,Q) must approach 0 at any boundary point at which
G(P,Q") does.

The above reasoning, with the inequality given, leads at once to

Lemma I.  Let Q be confined to a closed sub-region, R, of T. Then

(a) as P approaches a regular boundary point, G(P,Q) —> 0 uniformly
as to Q, and , -

(b) if p is exceptional, but such that for fixed Q' a sequence [Pl with p
as limit point extists for which G(Pp,Q") —> 0, G(P1,Q) —> 0, uniformly as
to Q,as P—>p.7

3. The Sequence Solution.—The sequence solution is derived from any
given continuous boundary values, F(p), just as was Green’s function for
the boundary values 1/PQ. To F(p) there correspond infinitely many
functions, continuous in T" + ¢, and coinciding with F(p) on ¢t. Let F(P)
be such a function. “Then, to each of an infinite sequence of nested normal
domains, [T,], there corresponds a function, %,(P), harmonic in T,,
and coinciding with F(P) on £,. Wiener’s theorem is that the sequence
[#,(P)] approaches a limit, U(P), uniformly in any closed sub-region of
T, and that U(P) is independent of the particular extension of F(p) to the
points of T, and of the set [T,] employed. -In calling U(P) the sequence so-
lution of the Dirichlet problem for T" and F(p), we are, of course, using
the word solution in an extended sense, for a strict solution is not always
possible.

We turn now to a study of the sequence solution, starting with the case
in which F(p) are the boundary values of a polynomial, F(P), in the car-
tesian coordinates of the point P of T. We also assume first that T is
bounded. The Laplacian of F(P) is again a polynomial,

V2E(P) = f(P). (1)
‘We form the function i

(P) = tim 9, (), 6, (P) = - [ [[JQGCP.QIV, (2)
. | /.

n—>

In case T, fails to have Jordan content, the integral above is to be under-
stood as the limit of the integral over a set of nested domains with content,
and with T, as limit. As f(P) is a polynominal, and as G(P,Q) < 1/PQ,

the sequence [¢,(P)] is seen to be uniformly convergent in any closed sub-
" region of T, and its limit, ¢(P) to be independent of the particular set
[T,] used.
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THEOREM III. The function U(P) = F(P) 4+ ¢(P) is bounded and
harmonic in T, and approaches the boundary values F(p) at every regular
boundary point.

U(P) is obviously bounded. If, in the integral for ¢,(P), G(P,Q) be
written 1/PQ + g(P,Q), the Laplacian of the first integral thus arising is
well known to be —4xf(P), while that of the second is 0. Hence V 2¢,,(P)
= —f(P), and so V%(P) = —f(P) because the sequence [¢,4,(P)—
¢,(P)] is, for fixed 7, uniformly convergent in T,, and its terms are har-
monicin T,. Thus,asV2$(P) = —f(P),and V2F(P) = f(P),VU(P) = 0.

It remains to show that U(P) —> F(p), that is, that ¢(P)—>0, as
P —> p, aregular boundary point. Since ¢(P) is independent of [T, ], we
may assume the boundary of each T, to be interior to all following do-
mains of the set. Then, for any fixed #, and any ¢ > 0, thereis a § > 0,
such that when Pp < 8, G(P,Q) < efor allQ in T,. Hence, by lemma I,
if M is the upper limit of f(P) in T, and if B is the volume of a cube con-
taining 7,

MB

|6, (P) | = )

for Pp < 8. On the other hand, for positive integral m,

| $n4m(P) — ¢u(P) | = = / S/ GPQave = - / [f P 5o

Tn+m—Tu Tnem—Tn

and the last integral, extended over a region of given volume is least when
the region is a sphere with P as center. Hence

2/’
Jown®) — 0P| s X (27, @

where V is the inner content of T less the volume of T,. For large #,
V, and therefore I Sntm(P) — ¢(P) [ , is arbitrarily small, independently
of m and P. Then, with # fixed, the right-hand member of (3) may be
made arbitrarily small by sufficiently restricting Pp, and hence the same is
true for ¢,,4.,(P), independently of m. The same is, therefore, true of ¢(P),
that is, ¢(P) —> 0 as P —> p.

If p is an exceptional boundary point, but one for which a sequence
|P.], as described in lemma I (b), exists, then by the same reasoning,
¢(P,) —> Qas P,—> p. Thus the sequence solution approaches the given
boundary values on certain sequences of points even at exceptional points,
provided these sequences of points exist. And they do exist, save at cer-
tain boundary points at which possible discontinuities of the solution are
removable (p. 404).

We have assumed, in the proof of theorem III, that T was bounded.
If this is not the case, but ¢ is bounded, say, by a sphere with center O and
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radius R, we proceed as follows, still assuming that F(p) are the boundary
values of a polynomial, Fi(P). We form a function, H(P), as follows:
whenr =0P < R,H(P) =1; whenr 2 2R, H(P) = 0,andwhen R <7 <
2R, H(P) is a polynomial of degree 5 in 7, so chosen that H(P) and its first
two derivatives with respect to 7 are continuous. The continuous ex-
tension of F(p) to the points of T is then F(P) = F(P)H(P). 'Then
V*F(P) is bounded, and identically 0 for » = 2R. The integrals are then
again taken over bounded domains.

THEOREM IV. The function U(P) of the preceding theorem is the sequence
solution of the Dirichlet problem for T and F(p). This will follow at once if
it is clear that G,(P,Q) may replace G(P,Q) in the formula (2) without
changing the limit, for then ¢,(P) + F(P) is exactly the sequence function
#,(P). ‘The replacement in question, however, does not affect the limit,
because of the uniform convergence of [G,(P,Q)] to G(P,Q) in any closed
sub-region of T, and of the fact that G,(P,Q) < G(P,Q) < 1/PQ. Thusthe
sequence solution exists, and is independent of [T,], and approaches the
given boundary values in the ways described above, all on the assumption
of polynomial boundary values—a restriction which we now remove.

Let F(p) be any continuous function, and let F(P) be a function, con-
tinuous in T + ¢, and coinciding with F(p) on ¢. Let F'(P) be a poly-
nomial which differs from F(P) in T + ¢ by less than ¢ and let u,(P)
and u,(P) be the sequence functions for the same set [T,] and with the
values F(P) and F'(P) on t,. Then u,(P) — ¢ < u,(P) < u,(P) + ¢
in T,. As [u,(P)] approaches a limit, U’(P), uniformly in any closed
sub-region, R, of T, for all great enough #, and all P in R, U'(P)—2¢ =
u,(P) £ U'(P) + 2. And as there is a relation of this form for every
positive ¢, [#,(P)] approaches a limit, U(P), uniformly in R. Further-
" more, the limiting forms of the last inequalities show that the upper and
lower limits of U(P) at each regular boundary point lie between F(p) —3e
and F(p) + 3e. But as these limits are independent of ¢ they coincide
and U(p) —> F(p). The situation is similar in the case of sequence
approach at certain exceptional points.

Finally, the sequence solution is independent of the continuous extension
of F(p) to the points of T. If F(P) and K(P) are two such extensions, and
[4,(P)] and [v,(P)] the corresponding sequences, the sequence [%,(P) —
v,(P)] whose terms coincide with F(P)—K(P) on ¢, approaches 0 uni-
formly, since F(P)—K(P) approaches 0 uniformly at the points of ¢.
Hence the sequence solutions U (P) and V(P) corresponding to F(P) and
K (P) coincide.

If, in the above use of approximating polynomials, T is not bounded, we
may take any continuous extension, F(P), of the given boundary values,
and, using the function H(P), previously' established, approximate to
F(P)H(P) by a polynomial in the portion of T within a sphere about O
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of radius 2R. Instead of this polynomial, we then use its product by H(P)
for r < 2R and 0 for r = 2R.

4. The Capacity of Point-Sets.—It is possible, as Wiener® has shown,
to extend the notion of the capacity of a conductor to any bounded point-
set. We shall give his definition, in slightly modified form, and give some
properties and applications of capacity.

Let B be any bounded point-set, and let B’ be the set consisting of B
and its limit points. B’ may bound a number of domains, bat a part of
B’, which we denote by ¢, will bound a domain, T, extending to infinity.
Consider the sequence solution, v(P), of the Dirichlet problem for T and
the boundary values 1 on ¢&. We call v(P) the conductor potential of the
set B. ‘The capacity of B is then the total charge of which v(P) is the po-

. . 1 ov
tential, or the Gauss integral, o f f s dS, extended over any smooth

surface containing B in its interior, # being the normal to this surface,
directed inward.

TueoreEM V. If A is a part of B, the capacity of A is less than,.or equal to,
that of B. ‘The continuous extension of the boundary values may be taken
as 1 itself, and the nested regions, [S,] and [T,], used in constructing the
conductor potentials w(P) and v(P) of A and B, respectively, may be so
chosen that S, is always a part of T,. Then, on ¢, ©,(P) = 1, while.
w,(P) < 1. Hence v(P)—w(P) is never negative. If v(P)—w(P) van-
ishes at any point of T, it vanishes identically, and the capacities of A
and B are then equal. Otherwise, let R denote an equipotential surface
2(P)—w(P) = C, C being small enough to insure this surface being the

smooth boundary of a simply connected domain. On R, b—z; [v(P) —w(P)]

cannot be negative, since if it were, 9(P) —w(P) would exceed C at some
point outside R. Hence the Gauss integral over R cannot be negative,
and the capacity of A is, therefore, less than, or equal to, that of B.

THEOREM V1. Let T denote the infinite domain bounded by a part of
B and 1its limit points, and [T ,] a nested set of normal domains with T as
limit. Then the capacities of the boundaries, t,, of T,, converge, decreasing
monotonely, to the capacity of B. This follows from theorem V, and the
uniform convergence in any closed sub-region of T of the sequence [v,(P)]
defining the conductor potential of B, together with the uniform con-
vergence of the sequence of normal derivatives of v,(P) to the correspond-
ing derivatives of v(P).

Lemma I1. If B is a bounded set of capacity ¢ >0, the value of the conduc-
tor potential of B at a point, P, of T, is subject to the inequalities
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where p’ and p'’ are the points of B’ (B and its limit points) farthest from,
and nearest to P, respectively. Because of theorem VI, and the independence
of the sequence solution, »(P), of the nested set, [T,], it will suffice if the
lemma is proved on the assumption that B consists of a finite number of
surfaces with continuous principal curvatures. Then v(P) is the potential
of a continuous distribution of a charge, ¢, on B, and v(P) is decreased by
concentrating the charge at the point of B farthest from P, and increased
by concentrating it at the nearest point.

CoROLLARY. If B is a bounded set of capacity 0, its conductor potential
vanishes identically in T. For B is enclosable in the boundary, ¢,, of a
normal domain, T, the capacity of ¢, being arbitrarily small. -Thus the
conductor potential of B is dominated at P by an arbitrarily small number,
that is, it is O.

5. Removable Singularities of Harmonic Functions.—A function which
is bounded and harmonic in the neighborhood of a point, or of an arc of
a smooth curve, can be so defined at such points as to be harmonic there
also. ‘That is, such points or arcs can be the seat only of removable singu-
larities. A complete generalization of this fact is possible by means of
the notion of capacity.

THeEOREM VII. Let T be any domain, and let B be any part of its boun-
dary with the following properties: (a) the set T' = T + B is still a domain,
and (b) the capacity of B is 0. Then any bounded function, harmonic in
T, may be so defined on B as to be harmonic in T'.®* 'To show this, we first
establish the following lemma.

LeEmMMA III. Let o be the surface of a sphere, and F(p) a function of p
on o, bounded, and continuous except at the points of a set, s, of capacity 0.
Then there exists a function, U(P), harmonic and bounded within o, and ap-
proaching the boundary values F(p) at all points where this function is con-
tinuous. We assume 0 £ F(p) < 1. 'The proof can then be extended to
the more general case by a linear transformation. We assume also that
s is closed. Its capacity is not affected by adding its limit points. By
theorem VI, for every positive integer 7, there exists a finite number of
smooth surfaces containing s in their interior, and of capacity less than
1/n. Within these surfaces, a finite number of smooth curves can be drawn
on ¢, bounding a domain, s,, on ¢, which contains s, and whose capacity
is less than 1/n, by theorem V. Furthermore, these domains s, can be
chosen so that each includes all the following.

If we define F/'(p) = Oon s,, and F'(p) = F(p) elsewhere on o, the dis-
continuities of F'(p) are limited to a finite number of smooth curves, so
that Poisson’s integral defines a function %,(P), harmonic within ¢, and
approaching the boundary values F'(p) save on the curves bounding s,.
The sequence [#,(P)] is never decreasing, and so approaches a harmonic
limit, U(P), uniformly in any closed region within ¢. The bounds of
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U(P) areclearly0and 1. Itremains to show that U(P)—>F(p) as P—>p,
a point of continuity of F(p). Let R be any closed region of space con-
taining no point of s. Then, given ¢ > O, n can be taken so large that the
conductor potential, v,(P), of s,, is less than ¢ in R, by theorem VI.
But on o—s,, #yym(P)—u,(P) = 0, for any positive integer m, and this
difference never exceeds 1. Hence —9,(P) = sy m(P)—2u,(P) £ v,(P)
on ¢, and hence also in its interior.’® Hence the sequence [%,(P)] con-
verges uniformly in the closed region consisting of the points of R within
or on ¢, and as the terms of the sequence have the required boundary values
there, so does their limit. ‘

Returning now to the theorem, let Q be any point of B. Since 7' is a
domain, Q is the center of some sphere, o, lying entirely in 77. Let V(P)
be any function, bounded and harmonic in 7. ‘Then its values on ¢ de-
fine a function F(p) satisfying the conditions of the lemma, by theorem V.
If U(P) be the function, harmonic in ¢, determined by these values F(p)
in accordance with the lemma, V(P)— U(P) is bounded within and on o,
is harmonic within ¢ except possibly at the points of B, and has the boun-
dary values O on o except at the points of B. If the bound of the absolute
value of V(P)— U(P) is M, this difference, and its negative, is dominated
by the conductor potential of any set of surfaces, £,, enclosing B. Hence,
as the capacity of B is O, V(P)— U(P) = 0 throughout the interior of &
except on B. Hence if V(P) is defined on the portion of B within ¢ as equal
to U(P), it will be harmonic within ¢. Thus V(P) may be so defined at
all points of B as to be harmonic in 7.

TueoreEM VIII. Conversely, if B has the property (a) of theorem VII,
and if any function bounded and harmonic in T can have only removable
singularities at the points of B, then B has capacity 0. For the conductor
potential of B is bounded and harmonic in T, and so has only removable
singularities. When properly defined on B, it is harmonic everywhere,
and vanishes at infinity, and so vanishes identically. Hence the capacity
of BisO0.

From theorem VTII, it follows that boundary sets of the type B can have
no influence on the classical Dirichlet problem. They are called improper
sets by Bouligand, who defines them as sets of points at which lim G(P,Q) >
0. It is not obvious that the concepts are equivalent, so we give a proof.

LemMA IV. The conductor potential of any set of positive capacity has
1 as upper limit. For if its upper limit were M < 1, then, v(P) denoting this
conductor potential, ¥(P)/M would be dominated by all the terms of the
sequence [v,(P)] whose limit defines v(P), and we should have v»(P)=
9(P)/M, a contradiction.

Now let b be the set of points at which lim G(P,Q) > 0. Theset T’ =
T + b is an open continuum, since the points of b are limit points of T,
and since if a point of b were not an interior point of 7”, it would have to
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be the limit of a set of points at which lim G(P,Q) = 0 and so could not
itself be a point at which &7 G(P,Q) > 0. We wish to prove that b has
capacity 0. Let A be a point of b, and ¢ a sphere with center at 4 and
lying in T’. ‘Then, within and on o, G(P,Q) has a positive lower bound,
m. Otherwise there would be in this closed region a point at which lim
G(P,Q) = 0, i.e., a point not in 7’. Let s denote the set of points of b
in ¢, with their limit points. Then s has capacity 0. Otherwise, the con-
ductor potential of s would have the upper limit 1. Now on a sphere ¢/,
of radius 7 and center Q, lying in T, this conductor potential, v(P), has a
maximum, M < 1, so that 1 (1 —v(P)

r\ 1-M
than, or equal to 1/7 on ¢’, and never negative. It therefore dominates the
sequence functions G,(P,Q) in T—¢’, and hence also G(P,Q). But it has
the lower limit 0 in o, whereas that of G(P,Q) ism > 0. Thus the assump-
tion that the capacity of s is positive has led to a contradiction.

It is now possible to remove from the boundary of T" a portion of b,
contained in s but containing all the points of b in a sphere about 4, so as still
to leave an open continuum in place of 7. The set removed, being a part
of 5, has capacity 0. Theorem VII then shows that any function, har-
monic and bounded in T may be so defined on this portion of b as to be
harmonic at A. But as A was any point of b, the harmonic function may
be defined at all points of b so as to be harmonic in 7V = T + b. Hence
by theorem VIII, b is of capacity 0, and so of the type of the set B.

Conversely, if P is any point of a set of type B, l#m G(P,Q) > 0at P.
For, after the definition of G(P,Q) on B has been properly made, G(P,Q)
is harmonic at P, and so continuous and positive:

We close with a uniqueness theorem.

THEOREM IX. If the exceptional boundary points of T form a set of ca-
pacity 0, there is one and only one function, U(P), bounded and harmonic
in T, which approaches preassigned comtinuous boundary values, F(p), at
every regular boundary point. One such function is the sequence solution.
If there were two, their difference, V(P), would be bounded and harmonic
in T, and approach O at every regular boundary point. If M is a bound
for IV(P)I, —V(P)/M and V(P)/M are dominated by the .conductor
potential of any set including the exceptional points of ¢, and so, by a now
familiar argument, vanish.!
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Dirichlet problem at the Christmas meeting of the American Mathematical Society,
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THE EVIDENCE FOR CHANGES IN THE RATE OF ROTATION
OFTHEEARTHAND THEIR GEOPHYSICAL CONSEQUENCES

By ErRNEST W. BROWN
YALE OBSERVATORY, NEW HAVEN

Read before the Academy April 26, 1926

This paper is a summary of one which will shortly appear in the Trans-
actions of the Yale Observatory and, in fact, constitutes the Introduction
toit. The work was undertaken as a fresh attempt to see whether further
light could be thrown on the question of the constancy of the earth’s rate
of rotation, that is, of our measure of time. The chief evidence for changes
of this character is derived from observations of the moon. I am not here.
mainly concerned with the secular changes due to tidal friction, but with the
considerable fluctuations which are exhibited in the difference between the
observed and calculated longitude of the moon when all known causes of
variation have been eliminated. The numerous investigations into ancient
eclipses culminating in the results of Fotheringham and the work of Taylor
and Jeffries on Tidal Friction in shallow seas are in substantial agreement
as to the amount of the frictional effect so that it may be regarded as
known. The tabular place of the moon due to gravitational theory is
therefore first corrected for this effect, the fluctuations referred to being
the differences between this corrected theory and observation.
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A CORRECTION

Dr. F. Vasilesco has been kind enough to call my attention to an error
in my paper “On the Classical Dirichlet Problem for General Domains,”’
which appeared in these PROCEEDINGS, 12, pp. 397-406 (June, 1926).

Theorem VIII, on page 404, as there stated, is wrong. It becomes
correct if the conclusion is changed to read then the portion of B in any
closed region in T' has the capacity O.

Theorem VII is correct; moreover, it can be generalized so that it re-
mains the full converse of theorem VIII as corrected. The whole treat-
ment, from theorem VII on p. 403 to the last paragraph on p. 405, can
be made satisfactory by changing the property (b) of sets B to read the
portion of B in any closed region T’ has the capacity O.

Dr. Vasilesco writes me that he has treated the matter under considera-
tion in a more general form in a paper “Sur les Singularités des Fonctions
harmoniques’ which will appear in the Journal des Mathématiques pures
et appliqueés (volume consacré au cinquantenaire scientific de M. E.
Picard). It, therefore, seems unnecessary to elaborate further the above
correction. OLIvER D. KELLOGG

Erratum.—Mr. Darcy W. Thompson, of Edinburgh, kindly calls atten-
tion to the fact that in the quotation from Newton, page 684, these Pro-
CEEDINGS, 13, 1927, 3 lines from the end the words ‘“‘except with accelera-
tive force, they are as the diameters” should read ‘‘except with accelera-
tive forces which are as the diameters.” Eb.



