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While these experiments were concerned largely with a determination
of 4+, the equivalent voltage of the work function for the removal of a
positive ion from the hot surface, other experiments with positive ions
may be simplified by the use of this ion source.

In conclusion, the author wishes to express his appreciation for the in-
terest shown in this work by the members of the Laboratory staff, and to
Prof. K. T. Compton of Princeton for making the mass spectrograph
analysis possible, and especially to Mr. R. A. Nelson for his careful work
in the construction of the apparatus and assistance in the experimental
work.
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The new Heisenberg-Schr6dinger quantum mechanics enables one to
calculate exactly the diamagnetic and dielectric susceptibilities of hydro-
genic atoms. We shall see that whenever the quantum numbers are
small the numerical values obtained for these susceptibilities are con-
siderably different from those of the old quantum theory, and usually
in more convincing agreement with experiment.

Dielectric Constant of Atomic Hydrogen in the Normal State.-After
application of a field F the energy of a state n is, in general, of the form

Wn = Won + aiF + 1/2a2P+...X (1)

where Won is the energy in the absence of the field. Wallerl and Epstein2
have independently recently shown that in a strong electric field F the
coefficients a, and a2 have the values
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3h2n(ml- M2) n4h6 2
a1 8,2.ieZ a2 512- 4e 17n

-3(ml -M2)2 - 9M2 + 19], (2)

where Ze is the nuclear charge, IA is the mass of an electron, and ml, M2, M3
are quantum numbers which can assume all values from 0 to n - 1. The
principal quantum number n is mr + M2 + M3 + 1. The formula (2)
differs from that of the old quantum theory only in the addition of the
constant + 19 in the bracketed factor of a2, and in the fact that the equa-
torial quantum number m3 is uniformly one unit lower than previously.

Let us suppose that the hydrogen atoms are all in their lowest or normal
state. Then n = 1, and the mr's all vanish, so that by (2) a, = 0. There
is then no first order Stark effect, and if there are N atoms per cc., the di-
electric constant e is given by

e-1 = - 47rNa2 = 9Nh6/327r5Z4e6 3, (3)

as it is easily shown that when a, = 0 the polarization induced in an in-
dividual atom is -a2E, equally well in the new or old mechanics. This
fact has already been utilized by Waller' in an interesting calculation of
the polarization of the inner orbit by the outer electron in excited helium,
and the resulting contribution to the "quantum defect" in the Rydberg
formula. If Z = 1, as in hydrogen, formula (3) gives e = 1.000229 at
0°C. and atmospheric pressure. The old quantum theory would give
e = 1.000051, as a2 is 4.5 times greater in the new than in the old theory
when n- 1. Adequate experimental evidence on the dielectric constant
of monatomic hydrogen is unfortunately not at present available due to
the difficulty of dissociating hydrogen gas into the atomic form.*
At this point the question naturally arises whether the dielectric con-

stant in weak fields may not differ from the value we have given because
the relativity corrections are neglected in (2), whereas actually in very
weak fields in ordinary mechanics the relativity precession may be larger
than the change in frequency produced by the electric field. In the old
quantum theory such a suggestion has been made by Miss Aylesworth.3
However, in the new quantum mechanics the analog of the relativity
precession frequency is the spectroscopic frequency emitted or absorbed
when the azimuthal quantum number changes and the principal quantum
number is unaltered. Such frequencies are not involved in the normal
state of hydrogenic atoms, for this is a singlet level characterized by but
one value of the azimuthal quantum number, and is not even split into
component levels by an electric field. Therefore in the normal state there
is no degeneracy introduced by omitting relativity corrections and external
fields, and we do not need to consider the secular perturbations whose
technique has been developed by Born, Heisenberg and Jordan,4 and by
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Schr6dinger,5 and which are the analog in the new mechanics of the "long-
period terms" of the old theory. Born, Heisenberg and Jordan's deter-
minantal equation (25) (loc. cit.,4 p. 589) is easily seen to reduce to a single
element in the normal state and to be precisely the same as in the absence
of the field. Thus there is no secular change in energy, and the quadratic
Stark effect in the normal state arises entirely from amplitudes associated
with transitions to the higher quantum states n = 2, 3, ..., and also to
hyperbolic orbits of positive energy. This quadratic effect is of the non-
secular type which could be calculated directly from the Kramers' dispersion
formula, or from the perturbation technique for non-degenerate systems
if all the amplitudes were known, and such a computation would, of course,
give the same result as (3). In weak fields the relativity corrections may
materially modify the intensity of individual Stark effect components,
but not their aggregate intensity, either parallel or perpendicular to the
field, as in virtue of this "spectroscopic stability" the quadratic term of
non-secular type is invariant with respect to any perturbations.which pro-
duce energy changes small compared to those involved in the (Lyman)
transitions to states having higher values of the principal quantum number.

The mathematical detail of the rather technical proof that this invariance follows
from the spectroscopic stability characteristic of the new quantum mechanics will be
deferred until a later paper. We may simply mention that in summing the polariza-
tion given by the Kramers' dispersion formula over the various fine-structure levels (or
in averaging p2 over the various quantized orientations in the calculation of diamagne-
tism given below) we are led to an expression of the type form

2k 2Z q(kl) q(lk)

where q(kl) is a matrix element, and where we sum k over all the component states of
one multiple level and I over all the states of another. The essence of the proof consists
in showing this sum invariant under a contact transformation of the type involved in
reducing the secular part of the perturbative potential to a diagonal element. In the
case of spacial degeneracy such a transformation corresponds to changing the axis of
quantization. Born, Heisenberg and Jordan,4 prove the invariance of the sum in case
only the k or I level is multiple, but the extension to the case where they are both mul-
tiple occasions no difficulty. This invariance led the writer to predict in a recent
note to Nature6 that there would be no variation of the dielectric or diamagnetic sus-
ceptibility with pressure or field strength.

Thus despite the relativity corrections the dielectric constant has the
same value 1.000229 in strong and weak fields. Similarly e will be un-
changed by other disturbances. We have not, for instance, mentioned
the internal spins of the electron, but they respond to magnetic rather
than electric fields. The "spin electron corrections" are thus mathe-
matically coordinate with the numerically comparable relativity correc-
tions, and without influence on the dielectric constant for the same reason.
Furthermore, questions of spacial quantization do not enter, as the spectro-
scopic stability argument alluded to above shows that the dielectric con-

664 PROC. N. A. S.



PHYSICS: J. H. VAN VLECK

stant has the same value with random orientations as with the particular
orientations allowed by the quantum conditions.

Dielectric Constant of Excited Hydrogen Atoms.-If the hydrogenic atoms
are all in one particular excited state; i.e., all have some given value of
n # 1, the part of the dielectric constant which is independent of the
temperature may be determined from (2) by averaging over all the various
allowed integral values of mi, M2, m3 which are consistent with the given
n. Each value of mi3 3 0 is to be counted twice because of the possibility
of both left- and right-handed rotations about the axis of the field. Because
of the relativity corrections which in weak fields introduce small frequencies
in the denominator except when n = 1, the numerical magnitude of a2
will be much greater than (2) when the field is very weak. It may, how-
ever, be proved that our average value of a2 is invariant of the field strength,
and can be calculated from (2) even in weak fields. The proof consists
in noting that the non-secular part of a2 is invariant in virtue of the general
spectroscopic stability argument alluded to above, while the secular
part can be shown invariant by using the same method as that employed
by Heisenberg and Jordan in proving the permanence of g-sums in the
anomalous Zeeman effect (see especially the paragraph containing equation
17 on p. 269 of their article in Zeits. f. Physik, 37, 269). In addition to the
term proportional to a2, there will be another term in the dielectric con-
stant arising from the fact that the Boltzmann temperature factor has
different magnitudes for different component states. This second term
is important only if the field is strong enough to produce a linear Stark
effect. The complete dielectric constant is thus readily found to be

47rNa2- Nh6(15n6 + 21n4) + 3Nh4(n4- n2)f(F)
kT 12875Z4e6p&3 32w3Z2e2JA2kT

where f(F) equals unity in strong fields, but vanishes in weak fields, in
which always a, = 0.

Diamagnetic Susceptibility.-By a fundamental formula developed by
Pauli,7 the diamagnetic susceptibility per gram mol. is

XM - -(e2L/4Mc2)Z p2 (4)

where L is the Avogadro-Loschmidt number. We note by p, z, so the
cylindrical coordinates of an electron, with the magnetic field H as the
z-direction. The summation in (4) extends over all the electrons in the atom
or molecule. Equation (4) differs by a factor 2 from the original Langevin-
Weber formula, as noted by Glaser8 and Barnett,9 and is much more satis-
factory since Pauli assumes real electronic motions rather than hypo-
thetical particles which can rotate only in one particular plane. The im-
pression is usually conveyed that Larmor's theorem is basic to the deriva-
tion of (4), as it was so stated in Pauli's original paper. In reality the
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assumption of Larmor's theorem is unnecessary, as (4) can be deduced
from the very general dynamical principle that in a magnetic field the
generalized momentum pq, conjugate to sp must be defined10 as
P = Jp22 - (Hep2/2c) in order to preserve the Hamiltonian form of the
equations of motion. The diamagnetic moment is simply a correction
term resulting from the fact that the magnetic moment of an electron
about the axis of the field is proportional to the ordinary angular momen-
tum jp2O rather than to the generalized momentuni p, given above which
is canonically conjugate with respect to p. For let M be the axial com-
ponent of the part of the magnetic moment of an individual atom or mole-
cule which arises from the orbital angular momentum of the electrons.
Then M = -1/2 2:ep2 o/c as -e/2,c is the ordinarv ratio of orbital mag-
netic moment to angular momentum. If we make the substitution
P = + (Hep2/2c) then

M = - (e/2,.uc)2p,, - (e2/4,c2)p2H.

The first term is simply the contribution of the orbital angular momentum
of the electrons to the paramagnetic moment. The second term gives
our equation (4) on multiplying by the Avogadro number and averag-
ing over all atoms or molecules.
From this general mode of derivation it is seen that Pauli's formula can

be applied to molecules as well as atoms, since on account of the factor
l/,we may neglect the contribution of the heavy nuclei to the diamagnetic
moment. Furthermore the advent of the spin electron does not destroy the
applicability of (4). There is, to be sure, a distinction between the ordi-
nary definition of the angular momentum associated with the internal
spins and the Hamiltonian definition in a magnetic field (a distinction
similar to the orbital one described above, but with an internal dimension
entering in place of p, etc.); nevertheless the resulting contribution to the
diamagnetism is a mere nothing since the internal radius of the electron
is extremely small. It is, of course, to be understood that the internal
spin may give a large contribution to paramagnetism. It is, in fact,
responsible for all the paramagnetism of normal hydrogen atoms, but we
are concerned with the diamagnetic effects which always remain as residuals
even in compounds (such as H2) where the paramagnetic effects of indi-
vidual electrons neutralize each other. To summarize, equation (4) applies
far more generally than Larmor's theorem, but the literature is never-
theless honeycombed with misleading statements and formulas. We
may note in particular a recent paper by Tartakowsky1' which attempts
to introduce the Lande g-factor into diamagnetism. This procedure
appears erroneous to the writer because the general argument given above
shows (4) holds even with anomalous precessions due to internal spins.
The method of deriving (4) shows that it will continue to hold in the new
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quantum mechanics, as no non-commutative multiplications are involved.
There is, however, the following marked superiority of the new dynamics.
In the old quantum theory we could replace the average of p2 = X2 + y2
over all atoms by two-thirds the time average of r2 = x2 + y2 + Z2 for a
single atom only if we assume a random spacial distribution of orbits,
which makes the mean squares of x, y, z equal by symmetry; with spacial
quantization the results would be different, as emphasized by Debye.'2
The spectroscopic stability characteristic of the new quantum mechanics
(see a preceding paragraph in fine print) shows that we may replace p2
by 2/8 r2 not only when there is random orientation, but also when there is
spacial quantization relative to the axis of the magnetic field, or even
relative to any other axis of reference. This explains why recent experi-
menters find no "Glaser effect" (variation of susceptibility with pressure).
It is indeed most comforting that in the new theory we can always write
(4) in the form

XM = -(e2L/6.c2)Z r2 = -2.85-1010Z r2 (5)
where it is clearly to be understood that the bar in (5) denotes a time
average for an individual atom (or molecule) whereas in (4) the bar
denotes an average over the different allowed orientations. We have tacitly
supposed that all the atoms or molecules of the diamagnetic material have
the same time average of r2. This condition is clearly fulfilled by hydro-
genic atoms in the normal state and also is satisfied by most other
free atoms and approximately by molecules which are not unduly elastic.
The excitation of states with different mean values of r2 may, however,
possibly be the explanation of the temperature variation of the diamagne-
tism of certain solid elements.
The time average of r2 will be different for a hydrogenic atom in the

new mechanics than in the old, and one of the main aims of the present
paper is to communicate the new value. The requisite average value,
which is, of course, a diagonal element of the matrix r2, is readily calculated
by methods due to Waller' (especially his Eqs. 35-37). We thus find

= aon [15/2 n2 - 3/2k(k + 1) + 1/2] (6)
where ao equals h2/4r2jpZe2, the radius of a one-quantum orbit in the old
theory, and where the azimuthal quantum number k assumes the values
0,1, ..., n - 1. The old quantum theory would give

a2n2 [5/2 n2 - 3/2k'2]

where k' is one unit larger than the new k.
For hydrogen atoms in the normal state we have Z = 1, n = 1, k = 0 and

equations (5, 6) then give XM = -2.42 X 10-6, a value three times that
given by the old quantum theory. The diamagnetic susceptibility, 2.93 X
106 is deduced for atomic hydrogen by Pascal" from experimental data
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on organic compounds. He assumes that their susceptibilities are the sum
of those of the constituent atoms plus a constant characteristic of the
type of chemical bond. Pascal's value is over 250% higher than that given
by the old theory (assuming the field too weak for spacial quantization),
but only 22% higher than that given by the new. This must be regarded
as a decisive confirmation of the new mechanics at the expense of the old.
The 22% discrepancy is not surprising since atomic susceptibilities clearly
cannot be calculated accurately by applying the method of mixtures to
molecular data.

Application to Helium and Molecular Hydrogen.-Since direct measure-
ments have apparently to date been prevented by the difficulty of obtain-
ing pure monatomic hydrogen, perhaps the best experimental method of
testing the theoretical susceptibilities is by the data for helium and molecu-
lar hydrogen. We shall assume that each helium atom or hydrogen
molecule has the same susceptibility, energy, etc., as two hydrogenic atoms
in the state n = 1 and with the effective nuclear charge Z. The theoreti-
cal energy, dielectric constant and diamagnetic susceptibility are then,
respectively,'4 W = 27.1.Z2 volts, e = 1 + 0.000458Z-4, XM = -4.84 X
10-6Z-2. The experimental values are: for He, W = 78.8, e = 1.0000693,
XM = -1.88 X 10 6;for H2, W = 31.3, e = 1.000273, XM = -3.94 X 10-6.
On equating the theoretical and experimental values of W, e and XM,
respectively, we have three independent estimates of the effective nuclear
charge, and the good agreement between the three is a confirmation of the
theory. The results are given in the following table:

ErzcrT'm NucaAR CHARGJ3 Z
PROM UNURGY DIEJACTRIC CONSTANT DIAMAGNETISM

He Z = 1.71 (1.71) Z = 1.603 (1.10) Z = 1.607 (0.93 16)
H2 Z = 1.08 (1.08) Z = 1.14 (0.78) Z = 1.11 (0.64 15)

The values of Z which would have been obtained had the susceptibilities
been calculated with the old quantum theory are included in parenthesis
after the new values. The results obtained with the new theory are obviously
vastly more consistent and reasonable than those writh the old, and this gratifying
fact must be added to the many other successes of the Heisenberg-Schr6dinger
mechanics. Exact agreement between the various estimates of Z is not
to be expected, since introduction of a screening constant is clearly but
a crude representation of the interplay between the two electrons. The
closer agreement of Z calculated from the dielectric constant with that
calculated from diamagnetism than with that calculated from energy is
to be expected, as W, XM and e are all quadratic in the amplitudes but
involve the frequencies to the powers +2, 0 and -1, respectively, and so
any divergence of frequencies from hydrogenic values will cause more
spread between values of Z calculated from e and W than from e and XM.
It is thus tempting to calculate diamagnetic susceptibilities with the
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values of Z deduced from dielectric constants. The values 1.88 X 10-'
and 3.74 X 10-6 are then obtained for the diamagnetic susceptibilities
of He and Hs, respectively, in remarkably close agreement with the experi-
mental values 1.88 X 10-6 and 3.94 X 10-6 quoted above. The dis-
crepancy may, however, be greater than apparent at first sight because
the experimental values of XM which we employ may be in error, especially
in H2. We have assumed Hector and Wills' values,16 which are the only
reliable data at present available for He, and which in the case of HZ
reassuringly agree within 2 per cent with an independent determination
by Son6.17 On the other hand tentative measurements by Lehrer18 on
hydrogen, which he states may be inaccurate, give XM = -5.1 X 10-'
which requires Z = 0.98, while an even greater diamagnetic susceptibility
for H2 is reported in a preliminary communication by Hammar.19 The
low value of Z required by the newer measurements on hydrogen is possibly
an argument against them.
We shall not attempt in the present paper to extend the numerical cal-

culation of susceptibilities to atoms or molecules with more than two
electrons. Such computations of dielectric constants would show a certain
amount of resemblance to those of J. H. Jones20 in the old quantum theory.
The results would perhaps be less significant than those for H2 and He
because the difference between the new and old mechanics is less for large
quantum numbers and also because complicated atoms approximate less
closely to hydrogenic conditions.

* Note Added in Proof. Last month's issue of these PRocEEDINGs, 12, 639, contains
an experimental determination of the dielectric constant of atomic hydrogen by R. M.
Langer, who finds e - 1 to have half the value for molecular hydrogen. This gives
e = 1.000136 for atomic hydrogen, which does not agree with the theoretical value
1.000229 within his tentative estimate 40.000034 of the experimental error. The
directness and unambiguity with which the quantum mechanics give e = 1.000229
suggest that the error in the very difficult experiment undertaken by Dr. Langer is
larger than his estimate, possibly due to a smaller concentration of atomic hydrogen
than ordinarily anticipated. Dr. Langer also includes an interesting second paper (Ibid.,
12, 644) in which he endeavors to calculate the dielectric constant of atomic hydrogen.
with the new quantum mechanics by summing the various terms in the Kramers' dis-
persion formula. The theoretical value e = 1.000338 which he obtains appears to the
writer clearly erroneous because it assumes that all of the dispersion comes from the
absorption band beyond the head of this series. Hence the Kramers' dispersion formula
should be integrated over the continuous spectrum as well as summed over the mono-
chromatic part, but this would be a more laborious way of getting the same result as
obtained above directly from the quadratic Stark effect.
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ON THE EQUILIBRIUM BETWEEN RADIATION AND MATTER
By RICHARD C. TOLMAN
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1. Introduction.-The theories of stellar evolution of Eddington, Jeans
and Russell apparently necessitate the transformation of matter into radia-
tion in order to account for t,he great life span of the sun and other stars.
Such a process, however, immediately implies the existence of the reverse
change of radiation into matter, and thus leads to the possibility of an
equilibrium between these two forms of energy under suitable conditions
of concentration and temperature.
By applying the laws of thermodynamics to an equilibrium mixture of

radiation and matter Stern' has attacked this problem in a very stimu-
lating and original manner, and derived an expression for the concentration
of perfect gas which would be in equilibrium with radiation at any given
temperature. He obtains the surprising result that, even at a temperature
of one hundred million degrees, only one electron per cubic centimeter
could be present at equilibrium. For a mixture containing equal numbers
of electrons and protons, such as would presumably have to form from
radiation in order to maintain electrical neutrality, the equilibrium con-
centrations would be even enormously lower. This result seems somewhat
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