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We see that Euclidean space admits the law of uniform translation of
a rigid system relative to another. The moving system undergoes
contraction in the direction of motion. This result is, apparently, the
only solution of the equations (21).
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In this paper it will be shown that, in space of two dimensions, every
two points that do not belong.to a given continuous curve may be joined
by a simple continuous arc that does not disconnect that curve. First,.
certain auxiliary theorems will be established or, in certain cases, stated
without proof.
THEOREM 1. If M is a continuous curve there do not exist two distinct

bounded complmentary domains of M with the same outeri boundary.
Theorem 1 may be proved with the aid of propositions, concerning the

outer boundary of one domain with respect to another, given in footnote 4,
on page 475, of my paper Concerning the Separation of Point Sets by
Curves.2
THsOREM 2. If a and b are distinct bounded complementary domains of

the continuous curveM and the boundaries of a and b have a point P in common
then P belongs either to the outer boundary of a or to the outer boundary of b.
Theorem 2 may be proved with the aid of theorem 1.
THE,oREM 3. If J1 and J2 are simple closed curves enclosing the point

O and each of the mutually exclusive arcs A1B1 and A2B2 has one end-point
on J1 and the other. one on J2 but no point, except its end-points, in common
either with J1 or with J2 then the point set J1 + J2 + A BA + A2B2 contains
a simple closed curve that encloses 0 and contains either A1B1 or A2B2.
Theorem 3 may be proved with the aid of propositions established in

my paper "On the Foundations of Plane Analysis Situs."3
THEoREM 4. If D1 dnd D2 are distinct complementary domains of a

continuous curve and B1 and B2 are their respective boundaries and B is the
boundary of a complementary domain of the point set D1 + D2 + B1 + B2
then the three point sets B, B1 and B2 do not have more than two points in
common.
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THZORZM 5. If M is a continuous curve and.K is the set of all points
X such that X is common to the boundaries B1 and B2 of two distinct comple-
mentary domains DI and D2 of M and is on the boundary of some comple-
mentary domain of -the point set D1 + D + B1 + B2 then K is countable.
Theorem 5 ma9 be easily established with the aid of theorem 4 and the

fact that no continuum has more than a countable number of comple-
mentary domains.
TH]oR1M 6. If D is a bounded complementary domain of a continuous

curve M and J is the outer boundary of D and I is the set of all those points
ofM that lie within J, then (1) no point of I belongs to a simple closed curve
that lies in M and encloses a point of J, (2) if T is a maximal connected sub-
set of I, J contains only one limit point of T.

Part (1) of the conclusion of theorem 6 may be proved with the use of
certain propositions established in my paper "On the Foundations of Plane
Analysis Situs."I Part (2) may be proved with the help of similar con-
siderations together with theotem 1 of R. L. Wilder's paper "Concerning
Continuous Curves."4
THBOREM 7. If the point 0 lies in a bounded complementary domain of

the continuous curve M and K is the point set obtained by adding together all
simple closed curves that lie in M and enclose 0, theft K is closed.

Proof. Suppose P is a limit point of K. Then if P does not belong
to K it is a limit point either of N or of N2 where N is the sum of the set
G of all simple closed curves that lie in M and enclose both 0 and P and
N2 is the sum of all those that enclose 0 but not P. I will assume' that
P is a limit point of N. If P lies on the boundary of a complementary
domain of M it must lie on the outer boundary of that domain, and if the
simple closed curve' which constitutes this outer boundary should enclose
O then P would belong to K. Suppose that P does not belong to the
boundary of a complementary domain of M whose outer boundary en-
closes 0. If there exist any complementary domains of M whose bound-
aries contain P, let H denote the set of all the outer boundaries of such
domains, let U denote the sum of the inateriors of all the curves of the
set H and let T denote the point set consisting of U plus its boundary.
The curve M does not' have more than a finite number.of complementary
domains of diameter greater than a given positive positive number. Hence
there are not more than a finite number of curves of the set H of diameter
greater than such a number. But the point set composed of any such curve
plus its interior is itself a continuous curve and T is the sum of all such
point sets. It follows, by a theorem of Sierpinski's,7 that T is a continu-
ous curve. Therefore M + T is a continuous curve. But P does not
belong to the boundary of any complementary domain of M + T. Hence
there exists8 a sequence a of simple closed curves ji, j2, js, .. ., all belonging
to M + T and enclosing P, such that for every n the diameter of j, is
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less than l/n, and ji encloses j,,+ but does not enclose 0. Suppose some
curve J of the set G contains two distinct points A and B in common with
a curve Q of the set H. If P does not belong to J, the point 0 is enclosed
by the simple closed curve L consisting of a certain arc of J together with
a certain interval of the arc APB of Q. But L lies wholly in M, contains
P and encloses 0. Hence, in this case, P belongs to K. Suppose some
curve J of the set G contains only one point A in common with one curve
Q, of the set H and only one point B in common with a certain other
curve Q2 of the set H and suppose that the points A and B are distinct.
If AP denotes one of the arcs of Q, from A to P, it may be shown that there
is one arc of Q2 from B to P which has no point except P in common with
AP. Let BP denote such an arc of Q2. Let AB denote the sum of the
arcs AP and BP. There is an arc of J which together with AB forms a
simple closed curve that lies wholly in M, encloses 0 and contains P.
Hence, in this case also, P belongs to K. Suppose now that some curve
of the set G has one and only one point E in common with T, and suppose
that E is distinct from P. In this case it can easily be shown that there
exist other curves of G which pass through E and that indeed P is a limit
point of the sum of all such curves. The point E lies on some curve JE of
the set H. Since M is a continuous curve there existsg a positive number
d such that every point of M whose distance from P is less than d can be
joined to P by a simple continuous arc which lies wholly in M and whose'
diameter is less than e, the distance from P to E. But there exists a curve
J of the set G which passes through E and which contains a point X at
a distance from P less than d. Suppose J has no point except E in common
with T. Let XP denote an arc which is a subset of M and whose diameter.
is less than e. Let Z denote the last point that XP has in common with
J and let Y denote the first point after Z that it has in common with T.
Let ZY denote the interval of XP whose end-points are Z and Y. Let
Jy denote a curve of H which contains Y. There exists an arc YE which
is a subset of JE + JY. Let ZYE denote the arc obtained by adding
together the two arcs ZY and YE. There exists on J an arc EWZ such
that the simple closed curve formed by the two arcs EWZ and ZYE
encloses 0. But this curve is a subset of M and it has two points Y and
E in common with T. It follows, by a result established above, that P
belongs to K. Suppose finally that no curve of the set G has a point in
common with the point set T. If T exists, in other words if there exists
at least one simple closed curve C belonging to the set H, then there
exists an integer n such thatjn contains at least one point within C and there
exists a simple closed curve J of the set G such that j,, encloses at least
one point of J and it may be shown that the point set C + Jn + J contains
a simple closed curve which encloses 0 -and contains P and therefore P
belongs to K. If, on the other hand, T does not exist then the following
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argument applies. For each n there exists a simple closed curve Jn which
belongs to G and contains points within Jna+i. There exist two mutually
exclusive arcs An,,B,, and C"D,, lying on J,, and lying, except for their end-
points, wholly within ji and wholly without jn+i, the points A. and Cn
lying onj,, and the points B,, and D,, lying onj,,+1. If A2 is B1 let X2 denote
A2 and let Y2 denote C2. If A2 is not B1 let X2 and Y2 denote C2 and A2,
respectively, or A2 and C2, respectively, according as C2 is or is not on that
arc of jn+i which has B1 and A2 as end-points and which does not contain
D1. In any case if B1 is identical with X2 let B1X2 denote the point B1
and if B1 is distinct from X2 let B1X2 denote that arc of jn+i which has
B1 and X2 as end-points and which does not contain D1. Similarly, if D1
is Y2 let D1 Y2 denote D1 and if D1 is not Y2 let D1 Y2 denote that arc of jn+l
which has D1 and Y2 as end-points and which does not contain B1. Now
let X1, Yi, Z1 and W1 denote the points A1, C1, B1 and D1, respectively,
and let Z2 and W2denote B2andD2, respectively, or D2and B2, respectively,
according as X2 is identical with A2 or with C2. Let X2Z2 and Y2W2
denote the arcs A2B2 and C2D2 or the arcs C2D2 and A2B2, respectively,
according as X2 is identical with A2 or with C2. This process may be
continued. Thus there exist four infinite sequences X1Zi, X2Z2, X3,Z3,
Y1W1, Y2W2, Y3W3, ...; Z1X2, Z2X3, Z3X4, ..-.; and W1Y2, W2Y3, W3 Y4,
. . . such that, for every n, (a) X,, and Y,, lie on j,,, (b) X,,Zn and Y,,W,, lie,
except for their end-points, wholly within j,, and wholly without jn+i and,
indeed, one of them coincides with A,,B,, and the other one with C,,D,,,
(c) Z,X,,+1 and W,,Yn 1 lie on j,,+ and have no point in common. Let a
denote the point set P + X1Zi + Z1X2 + X2Z2 + Z2X3+.. . and let b
denote the point set P + YlWl + W1Y2 + Y2W2 + W2Y3+.... It is
easy to see that a and b are simple continuous arcs. These arcs belong to
M and have P as a common end-point but they have no other point in
common. The point set J, + a + b contains a simple closed curve which
passes through P and encloses 0. Hence P belongs to K. Thus the set
K contains all of its limit points.
THEOREM 8. If the point 0 lies in a bounded complementary domain of

the continuous curve M and K is the point set obtained by adding together
all simple closed curves that lie in M and enclose 0, then K is the sum of a
finite number of continuous curves.

Proof. It has been shown that K is closed. Suppose it is not the sum
of a finite number of continuous curves. Then, since every maximal con-
nected subset of K contains a simple closed curve that encloses 0 and every
one of these curves has a diameter greater than the shortest distance from
0 to K therefore either there is at least one maximal connected subset of
K which is not a continuous curve or there exists a positive number such
that infinitely many maximal connected subsets of K have diameters
greater than that number. In either case there exist'0 two circles k, and
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k2 and a countable infinity of continua M1,M2,Ms, ... such that (1) each
of these continua contains at least one point of ki and at least one point of
k2 and is a subset of K and of the point setH which is composed of the two
circles ki and k2 together with all points that lie between them, (2) no two
of these continua have a point in common and, indeed, no one of them is
a proper connected subset of any connected point set which is common
to K and H, (3) the point 0 does not belong to H. Let k3 denote a circle
concentric with ki and k2 and lying between them. For each n,M,, has
a point P,, in common with k3 and k contains a simple closed curve J,,
which encloses 0 and contains P,. Since, for each n,J,, contains a point
of k3 and encloses 0, and 0 does not lie between k, and k2, therefore J.
contains at least one point of ki or at least one point of k2. Let k4 denote
ki or k2 according as there do or do not exist infinitely many distinct valhes
of n such that J,, contains at least one point of ki. There exists an infinite
sequence of positive integers n,, n2, fn3, ... such that, for each i, J,, contains,
in common with M,,n, an arc t5 which has one end-point on k3 and the other
one on k4 and which lies, except for its end-points, wholly between k3 and
k4. The arcs of the sequence tl,t2,t3, ... are mutually exclusive and no
two of them can be joined by a connected subset of K that lies wholly
between k3 and k4. But M is uniformly regular." With the help of this
fact it can be seen that there exist two positive integers i and j such that
ti and tj can be joined by two mutually exclusive arcs ElFl and E2F2 which
are subsets of M and which lie wholly between k3 and k4, the points El
and E2 belonging to ti and the points F, and F2 belonging to tj. For each
n (n = 1,2) let A,, denote the last point that E,,F,, has in common with
M"> and let B, denote the first point following A. that it has in common
with M,,.. Suppose that, either when n = 1 or when n = 2,AnBx contains
at least one point of J,,i distinct from A,. Then, for that value of n, let
C,, denote the first such point in the order from A,, to B on the arc A,,B,,
and let L,, denote the last point of J,,,, other than C, in the order from
E,, to C,, on the interval E.C,, of the arc EJF,. The interval LC,, of the arc
E,,F has its end-points L,, and C,, on J,, but it has no other point in common
with J,,,. Hence the point 0 is enclosed by a simple closed curve formed
by the arc L,,C,, together with one of the arcs of J,, whose end-points are
L,, and C". Therefore every point of L.Cx belongs to K. But this is im-
possible since L,,C,, lies wholly between k3 and k4 and contains a point A,,
of M,,n and a point C, which does not belong to M,,,. Suppose, on the other
hand, that J,,, contains no point of A BA except AI and no point of A2B2
except A2. In this case, for each n (n = 1,2), the arc EnFn contains an
interval L,,C,, which has only the point C,, in common with J,,, and only
the point L,, in common with J,,i. By theorem 3 the point set J,i +
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J.. + L1C1 + L2C2 contains a simple closed curve enclosing 0 and con-
taining either A1C1 or A2C2. Hence AIC1 or A2C2 is a subset of K. Hence
P., can be joined to P,i by a connected subset of K lying between k1 and
k2. Thus again we have a contradiction. The truth of theorem 8 is
therefore established.
TuZORJM 9. If 0 is a point lying in a bounded complementary domain

of a continuous curve M and K is the point set obtained by adding together
all simple closed curves that lie in M and enclose 0, then (1) the boundary
of -every complementary domain of a maximal connected subset of K is a
simple closed curve and (2) if T is a maximal connected subset of M-K, no
maximal connected subset of K contains more than one limit point of T.
Theorem 9 may be easily proved with the help of theorems 8 and 6.
THZORZM 10. If A and B are distinct points not belonging to the continu-

ous curve M, there exists a simple continuous arc from A to B which does not
disconnect M.

Proof. If A and B belong to the same complementary domain of M
they can be joined by an arc lying in that domain and therefore containing
no point of M. Suppose that A lies in a bounded complementary domain
of M and B lies in the unbounded one.12 Let K denote the set pf points
obtained by adding together all simple closed curves that lie in M and
enclose A.- By theorem 8, K is the sum of a finite number of continuous
curves. For each point P of M-K let Mp denote the maximal connected
subset of M-K which contains P and let Tp denote the set Mp together
with all its limit points. Let H denote the set of all such point sets Tp
for all points P of M-K. According to a theorem of W. L. Ayres,13 if
a continuous curve N is a proper subset of a continuous curve M and d
is any positive number, there are not more than a finite number of maximal
connected subsets of M-N of diameter greater than d. It can be seen
that this proposition remains true if, instead of being a single continuous
curve, N is the sum of a finite number of continuous curves. Hence there
are not more than a finite number of maximal connected subsets of M-K
all of diameter greater than the same positive number. It can be seen that
if x and y are any two distinct maximal connected subsets of K then not
more than a finite number of elements ofH have one point in common with
x and another point in common with y. Furthermore no maximal con-
nected subset of M-K has limit points in each of three distinct maximal
connected subsets of K. It follows, with the help of theorem 9, that the
set H can be expressed as the sum of two sets H1 and H2, where H1 con-
sists of all elements h of H such that h has only one point in common with
K, and H2 is a finite set consisting of all those elements h of H such that h
has just two points in common with K, these points belonging to different
maximal connected subsets of K. Let K1 denote the set of all -points
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X of K such that X belongs to some point set of the set H1, but not to
any point set of the set H2. For each point X of K1 let Nx denote the
point set obtained by adding together all point sets of the set H which
contain X. Let Q, denote the set of all point sets Nx for all points X of
K1. With the help of the fact that there are not more than a finite number
of elements of H of diameter greater than any preassigned positive number
it is easy to see that every element of Qi is a continuous curve and that
there are not more than a finite number of these curves of diameter greater
than any preassigned positive number. It is also clear that no two ele-
ments of Q, have a point in common. Let'K2 denote the finite point set
consisting of all points X of K such that X belongs to some point set
of the set H2. Let L denote the point set obtained by adding together all
point sets h of the setH such that h contains a point of K2.,Let Q2 denote
the set of all maximal connected subsets of L. The set Q2 cannot contain
more elements than K2 contains points. Hence Q2 is a finite set. Every
element of Q2 is a continuous curve and no two of them have a point in
common. No curve of the set Qi has a point in common with any curve
of the set Q2. Let Q denote the set of all curves q such that q belongs either
to Qi or to Q2. If a curve of the countable set Q separates A from B it
contains"4 a simple closed curve that separates A from B and thus contains
uncountably many points of K, which is impossible. Hence no element
of Q separates A from B. For each element q of Q let gq denote either q
or the point set obtained by adding to q all its bounded complementary
domains, according as q does or does not fail to separate the plane. Let
G1 denote the set of all point sets gq for all elements q of Q. Let G2 denote
the set of all cut points P of M such that P lies on some simple closed curve
which is a subset of M. By a theorem of G. T. Whyburn's,'5 G2 is a count-
able set of points. Let G3 denote the set of all points X of M such that X
is common to the boundaries B1 and B2 of two distinct complementary
domains D1 and D2 of M and is on the boundary of some complementary
domain of the point set D1 + D2 + B1 + B2. Let G denote the set of all
elements g such that g is either a point set of the set G1 or a point of the set
G2 or of the set G3. Let U denote the set of all continua x such that x
is either an element of G or a point which does not belong to any element
of G. The collection U is an upper semi-continuous16 collection of mu-
tually exclusive continua and every point of the plane belongs to some one
of them and no one of them separates the plane. Furthermore, G is a
countable subset of U. But if E is a countable set of points, every two
points not belonging to E can'7 be joined by an arc containing no point of
E. It follows' that there exists a simple continuous arc t with end-points
at A and B and containing no point of any element of the set G. If a
point P of the arc t belongs to at least one segment of t whose end-points
belong to the boundary of the same complementary domain of M then
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(1) there exists a segment ApBp which has this property and which contains
every other segment that has this property with respect to this particular
point P, and (2) since t contains no point of G3, there exists only one domain
Dp complementary toM and having bothAp andBp on its boundary. Let
W denote the set of all points P of t for which ApBp exists and for which
ApBp does not belong to Dp. For each point P of Wlet ApZpBp denote
a definite arc lying wholly in Dp except for its end-points Ap and Bp and
let sp denote the segment ApZpBp- (Ap + Bp). LetAB denote the arc
obtained by adding M-W to the sum of all the segments sp for all points
P of W. The arc AB does not separate M. For suppose it does; then
there exist two points X and Y belonging to M and such that every arc
M from X to Y contains at least one point of AB. It can be shown that
AB contains a point set CD, which is either a single point or an arc with
C and D as end-points, such that every arc in M from X to Y contains a
point of CD but such that if u is any proper subinterval of CD then there
exists, in M, an arc from X to Y that contains no point of u. If CD were
a point it would be a cut point of M, contrary to the fact that AB contains
no point of G1 or of G2. Hence CD is an interval. For each positive
integer n, let C. denote a point of CD such that the diameter of the in-
terval CC. of CD is less than 1/n. The curve M contains an arc t,, from
X to Y that has no point in common with the interval CnD of CD. But
t,, contains at least one point of CD. Hence it contains a point of the
interval CC". But every such point is at a distance from C less than 1/n.
Therefore C is a limit point of that maximal connected subset of (M +
CD) - CD that contains X. ButM + CD is a continuous curve. Hence4
M contains an arc XC which has no point except C in common with CD.
By a similar argument it may be shown that M contains an arc YC that has
only C in common with CD and two arcs XD and YD each having only
D in common with CD. The point set XC + XD contains an arc CX1D
and CY + YD contains an arc CY1D. The arcs CX1D and CY1D have in
common only their end-points C and D and together they form. a simple
closed curve J. The arc CD lies, except for its end-points, wholly in one
of the complementary domains of J. Let I denote this domain and let
E denote the other complementary domain of J. There does not exist
an arc with end-points at C and D and lying, except for C and D, wholly
in (E + M) - M. For if there were such an arc CWD then, according to
the method given for constructing AB, the arc CWD would.be a part of
AB which is impossible since CD is a part of AB. With the help of a
theorem proved by C. M. Cleveland8 and the fact that M + I is a regular
continuum it follows that M contains an arc X2Y2 which lies wholly in
E except for its end-points X2 and Y2 which lie, respectively, on the segment
CX1D of the arc CX1D and the segment CX2D of the arc CX2D. The
point set consisting of the segments CX1D and CX2D and the arc X2Y2
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contains an arc from X2 to Y2 that contains no point of CD. Thus the
supposition that theorem 10 is false has led to a contradiction.
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Let G be a simply transitive primitive group of degree n. The sub-
group G, that leaves one letter fixed is intransitive of degree n - 1 and is
a maximal subgroup of G. Let H be an invariant subgroup of G, of
degree n - m(<n - 1). Then the largest subgroup of G in which H
is invariant is G, and H fixes all the letters of a constituent of G,. From
a general theorem on transitive groups' it follows that G1 contains exactly
m - 1 non-invariant subgroups conjugate to H under G. If B, on the
r letters b, bi, . . . fixed by H, is a transitive constituent of G,, there is a
corresponding complete set of r conjugate subgroups H,, H,', ..., con-
jugate under G, and conjugate to H under G. To the transitive constitu-
ent C, on the ri letters c, cl, ... fixed by H, there corresponds the set
H2, H2', . . . of ri conjugate subgroups of G1, and so on. Since of all the
m conjugates of H under G found in G,, only H is invariant in G1, H is a
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