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The general existence theorem established in Note III ceases to apply
when the data of the problem is ascribed over a characteristic surface Ss.
In treating this important exceptional case we arrive at an existence
theorem which is, roughly speaking, analogous to the existence theorem
for the ordinary wave-equation when the data is given over a characteristic
surface and which also bears certain resemblances to a theorem of Hada-
mard.' This theorem is capable of dynamical application. It follows
from it that there exists 'an infinite number of sets of integrals h' of the
field equations such that each set of integrals and their first derivatives
assume the same values over a characteristic surface S3; in fact, the condi-
tions under which these integrals exist are such as to preclude the oc-
currence of more than a single set of integrals in case the surface ,S3 is
not a characteristic. This result leads to the interpretation of the char-
acteristic surfaces as gravitational and electro-magnetic wave surfaces
in the four-dimensional continuum. A brief discussion of these wave sur-
faces will be given in Note VI.

1. Let us denote for the moment by Xl, ..., X4 the coordinates of
the continuum; let us also denote by Hi the contravariant components
of the ftmdamental vectors and by G'O the contravariant components of
the fundamental metric tensor. A characteristic surface S3 is then a
three-dimensional surface cI(X) = 0 such that over it the equation

Gaxe = (1.1)
is satisfied. Suppose that P is not a singular point on the hypersurface
b = 0, i.e., all first derivatives of the function 4) do not vanish at P, and
consider another surface S. defined by L(X) = 0 which passes through
the point P. This latter surface will be subjected to the following condi-
tion, the reason for which will later appear.

C1. The inequality

Gap axa
P

X-C'* ;~(1.2)

holds at the point P.

The above condition is independent of the orientation of the fundamental
vectors. It is therefore possible, and we shall later find it expedient, to
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orientate the vector configurations throughout the continuum in the
following manner.

C2. The vector configurations are so oriented that the inequalities

z2 as t O (1.3)

0 (1.4)
aEl 1 |Ha HI OXa OX"t°(14

H2H 2

4El ;1E1 H4H'H" 6)a ax °(1.5)

are satisfied at the point P2.

We shall refer to the above conditions C1 and C2 as normal conditions.
It is evident that C2 might also be regarded as giving conditions on the
surfaces S3 and S*. However, the above point of view has been preferred
as it does not involve an apparent restriction on the characteristic surface
S3.

In consequence of condition C1 it follows that the rank of the matrix

aXl aX2 6X8 6X4(16

6X1 6X2 6X3 6X4
must be two at the point P. In fact, if the rank of this matrix were less
than two, condition C1 would fail to be satisfied. It is therefore possible
to choose functions Q(X) and 2(X) such that the jacobian of the coordinate
transformation

Xi = D(X), X2 = I(X), X3 = Q(X), X4 = :(X)
will not vanish at P; this means that the above transformation possesses
an inverse throughout the neighborhood of the point P. Under this
transformation the equation of the characteristic surface S3 assumes the
form xl = 0, while the equation of the auxiliary surface S3 becomes x2 = 0.
Denoting the components of the fundamental vectors and the fundamental
metric tensor in the (x) coordinate system by the usual designation of
h and g, respectively, we have from (1.1) that the contravariant component

= 0 over S3; also by Cl we have that gl2 00 at P. Moreover, the
condition C2 results in the fact that the inequalities

h1 > 0, hlh _- hlh hl0,h14 -h4h1 t 0 (1.7)
are satisfied by the contravariant components h, at the point P. In
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treating the problem of the determination of integrals of the field equations
by the specification of data over a characteristic surface S3 we shall assume
in the following work the normalization of this problem afforded by the
selection of the (x) coordinate system and the assertion of the conditions
C1 and C2.

2. We shall find it expedient in making certain calculations to introduce
a slight change in notation. Let us put

ca = 14,= h, -y = h1, 5 = h

a = h2, b = h2, c = h1, d = 12
for the contravariant components hK; also

W= aC2-2_ 72 62, W* = aa-Bb--yc-Ad.
The two-rowed determinants formed from the matrix

a a 7 1
a b c d|

will also enter into our calculations so that we shall use the abbreviations

A = ab-p#a, B = ac- ya, C= ad-ba
D = Pc-yb E=1d-bb, F= yd-Sc.

The above quantity W is nothing more than the contravariant component
g11 and hence vanishes over the characteristic surface S3; also W* stands
for the contravariant component g12 So that W* t 0 at P. Finally the
inequalities P Z 0, A Z 0 and F Z 0 are equivalent to (1.7).

3. Consider the matrix represented by Table 1. Each row in table 1
corresponds to an equation III (2.2) or III (3.1) determined by the indi-
cated values of j, k, I or j, respectively, and the elements in any column
are the coefficients of the derivatives at the top of this column; more
precisely each row in Table 1 corresponds to a set of four equations but
the above terminology is convenient and has been used throughout this
note. It is necessarv to deduce a number of lemmas regarding certain
matrices and determinants formed from the elements in Table 1.

Let us denote by M1 the matrix formed from the elements in the first
six columns in Table 1. The fourth order determinant in the upper left-
hand corner of M1 will be denoted by J. More generally a determinant
constructed from the elements in rows 1, m, . . ., n and columns p, q, .., r
in Table 1 will be designated by the symbol

m ...n
P ... r

Let us consider the eight determinants of order five in M1 which are formed
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by bordering J in all possible manners. Expansions of these deter-
minants show that

12345 12346 -a7W, 1|2345123466 a2aw.
12345 12346 12346 12345

12347 |12348 _ 2 W 3477 2348

12345 12346 ' 12346- 12345W

Since W = 0 at a point P on a characteristic surface S3 it follows by a

theorem in algebra3 that if J 0 0 at P the rank of the matrix Ml is four
at P. We can, in fact, easily prove a more specific result, namely, that
every determinant of order five in Ml contains W as a factor.4 As we shall
later have use of this result we state it as the following

jkl b.hI ah' ?ht a ahsaht ahI ahI ahI ahI ahZ A'
2,14,2 4,1 3,2 4,2 3,1 4,1 8,2 4,2 3,2 2,14,l

a
~ 1a ax, 6x1a 15alx' ax aX2 ax' aX2 (X2 a C2 aX2

123 -Y 0 0 -a 0 13 0 -a 0 b -c 0

=4 O-_Y a 0O-f0 a 0 -b 0 0 -c

j 3 0 a 0 0 a 0 -b 0 a 0 d

124 -a 0 i 0 -a 0 b 0 -a 0 -d 0

134 0 -a y 0 0 _ c 0 0 -d 0 -a

J= 2 a 0 0 'y - 0 0 c d 0 a 0

234 0 -0 0 -5 'y 0 0 -d c 0 0 -b

j= 1 3 °0 5 0 0 y d 0 0 c b 0

TABLE 1

LEMMA I. Every determinant of order five of the matrix M1 has the form
WR(a, 9, -y, 5), where R (a, j,P'y, 5) denotes a polygnomial in the variabks
indicated.

Let us denote by M.l the matrix determined by the elements in the
first four rows and first six columns in Table 1. The following lemma
can then be proved.
LEMMA II. The matrix M2 is of rank four at a point P of a characteristic

surface.
This lemma shows in particular that the rank of M1 is four at P. To

prove Lemma II we consider the determinant

l 2 3 4 (a 2
3 4 5 61
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contained in M2. The assumption that the above determinant vanishes
gives a2 = B2 and since W = OatP it follows that -y = 5 = Oat P. Hence
F = 0 at P contrary to condition C2 in Sect. 1. This proves Lemma II.
By calculation we have that5

123 4 5 6 7 8 -4A2P + (B2 + C2-D2-E2)2.
3 4 5 6 7 8 9 lOj

Since A t 0 and F t 0 we obtain the result stated in the following
LEMMA III. The inequality

11234567 8 >0
3 4 5 6 7 8 9 10

is satisfied at the point P.
4. We shall apply the symbols U and V to represent components

h1k as indicated by the scheme

U h',1, h',3; V hh44,, h3,2, h4,2,l4,' .

Equations III (2.2) and III (3.1) can now be solved for first derivatives
of the V with respect to xl and x2 in consequence of the fact that the
determinant

1234567 8
3 4 5 6 7 8 9 10

does not vanish at P by Lemma III. This solution gives

av ER(h) au + E R(h) av + * (4.1)

(a = 1, 2, 3, 4; = 3, 4)

a 1 W
= WER

-
+ EZ R +R E

-+ *B (4.2)

(a = 2, 3, 4; # = 3, 4)

where R denotes a rational function of the h, and the* as usual denotes
terms of lower order than those which have been written down explicitly.
The occurrence of the quantity W as a factor in the first term of the right
member of (4.2) follows as a result of Lemma III; this fact is essential
in our later work.
By multiplying the four equations corresponding to the first four rows

in Table 1 by suitably chosen quantities p, q, r, s and adding to the equation
corresponding to the seventh row in Table 1 it is possible to obtain an
equation in which the coefficients of the derivatives of the components
U and V with respect to xl will vanish at P. This follows from Lemmas
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I and II. Similarly it is possible to multiply the four equations corre-
sponding to the first four rows in Table 1 by quantities p, q, r, s, and add
to the equation corresponding to the last row in Table 1 so as to obtain
an equation in which the coefficients of the above derivatives will likewise
vanish at P. We can, in fact, construct in an obvious manner a system
of linear equations in the unknown quiantities p, q, r, s or p, q, r, s with
the non-vanishing determinant

,,=11 2 3 4
|3 4 .5 61

and solve by Cramer's rule. This gives

P = 2 2'et,q2-2r a2C (2' S a2 2

-(3 - a _ -a 6
P aa_(2'2 a2_ 2'r a2- #2's a2( 2

In the two equations so obtained the coefficients of the derivatives in
in the last six columns of Table 1, i.e., the derivatives of the quantities
U and V with respect to x2, will be given by the matrix

u v w x y z

-v u -x w - z y

ihA uE-oaC aB- #D
in which U = a2 - (32' a2 - (32 ' W = a2 - (2

-6A -aF yD+SE-bW
X a2 - 22Y2 _2 Z a2 (32

Let us call the four equations corresponding to the first four rows in Table

0 -a 0 a -ey 0

a 0 -3 00 - Y

0 - 0 0 a 0 a

a 0 -a 0 -6 0

U V W X y Z

-v u -x w -z y

TABLE 2

which does not vanish at

1 the system L1 and the two equations which
we have constructed by the above process, the
system L2. Now differentiate L1 with respect
to x2 and L2 with respect to xl. On combin-
ing the resulting equations we have a system
L3 of six equations which can be solved for the
second derivatives with respect to xl, x2 of
the quantities U and V. Table 2 indicates
the determinant of the coefficients of these
derivatives in L3. Expanding5 this determin-
ant and neglecting additive terms containing
W we obtain the simple quantity (2(3W*)2
P in consequence of the normal conditions

imposed in Sect. 1; this fact permits the unique determination of the
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above second derivatives and leads to a system of equations L3 of the
form

O2U
6XI-X2( 62U O2U 62V

=WF3R x ER a + R + *x (4 3)
62V (xl(- xla-
xx2l (a6* l ifI = 1, 2)

It is to be observed that the first term in the right member of these equa-
tions contains W as a factor and that terms involving second derivatives
of V with respect to xl do not appear.

5. Let us write I (4.5) or III (2.1) in the form

-2 +EZ RU+>ERV (5.1a)

- ax + ERU+RV
614 614 (5. lb)

3x2 2 + E RU +ZRV)

4 + E RU + E RV

2 + E RU + E RV (5.1c)

6h4 614

Other equations of this type likewise result from the condition W = 0
over the surface S3; in fact we have

Eglh' a' = O(a = 2,3,4) (5.2)
~2 6

over S3. Now a * O at P since a =O would give =y = a = O at
P and we would have a contradiction with the normal conditions imposed
in Sect. 1. Making use of this fact and also the fact that W* 0 at P
equations (5.2) can be solved for the derivatives of the covariant com-
ponent h' with respect to X2, X3 and X4. Hence (5.2) can be given the
form

621 _62 _ 6 3
6X2 - ***''X3 - =*...-** (53
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where the dots denote terms of the sort occurring in the right members
of (5.1) with the exception of the derivatives in the left members of (5.3).
It is to be borne in mind that equations (5.3) hold only over the surface
S3 and must not, therefore, be differentiated with respect to the coordinate
xl in the process of finding derivatives of the component h' which we shall
later employ. This circumstance, however, causes no difficulty since
such differentiations can be made on the equation (5.1a) which contains
the derivative of h1 with respect to xl in its left member.

6. Suppose that each component U is defined over the surfaces S3
and S3* as an analytic function of.the surface coordinates. We represent
this by writing

U = J(X2, X3, X4) for xl = 0 (6.1)
U = K(x1,x3,x4) for x2 = o

where it is to be understood that over the two-dimensional surface S
defined by xl = x2 = 0 the functions J and K are identical, i.e.,

J(0, x3, x4) = K(0, x3, X4).

Over the surface S2 we shall ascribe the components V as indicated by
the equation

V = L(x3, X4) for x1 = = 0. (6.2)

Similarly the components h' will be defined throughout the four-dimen-
sional continuum, over the above surfaces S3, S2 and along the curve Si
given by x1 = =X3 = 0 as shown by the following equations

h- PS(X'1 x2, x3, x4) h = Qi(X2, X3, X4)
[i=1, 2, 3, 4]

-XI = °__ . (6.3)

h= R(x3, x4) hi SI(X4)

-XI X2 = O j X1 =X2 = X3 = O0

A value (h')o will be assigned the component h1 at the point P, which is
now taken as the origin of the (x) coordinate system, such that the con-
ditioiis W = 0 and ,B 0 are satisfied at P. It will, moreover, be assumed
that the values of the h, in (6.3) are such that the remainder of the normal
conditions imposed in Sect. 1, namely, W* t 0,4 t 0 aiid F t 0 hold
likewise at the point P; there is also the condition, which is a consequence
of the underlying postulates of the space of distant parallelism, that the
determinant I jiI t 0 at P.
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The specification of the above data is sufficient to determine the power
series expansions of the components hs in the neighborhood of the point
P. We observe, for example, that the quantities in the right members
of (4.1) and (4.2) are known at P so that the left members of these equa-
tions are determined. Likewise the left members of (5.1) and (5.3) are
determined at P since all quantities occurring in the right members of
these equations are known from the assignment of the above data. In
other words, all first derivatives of the quantities U, V and hs are de-
termined at the point P. To assist in the calculation of the higher de-
rivatives of these quantities we lay down certain rules of anteriority which
indicate the order in which these derivatives are to be determined. If
21 and e3 denote derivatives of U or V we shall say that 2I is anterior to
e when one of the following conditions is satisfied:

(1) 21 is of lower order than !;
(2) 2 is of the same order as e8 but involves fewer differentiations

with respect to xl;
(3) 21 is of the same order as Q, involves the same number of differen-

tiations with respect to x1, but fewer differentiations with respect to X2;
(4) 1 is of the same order as !8, involves the same number of differ-

entiations with respect to xl and the same number of differentiations
with respect to X2.2, but 21 is a derivative of a quantity U whereas 58 is
a derivative of a quantity V.

The rules of anteriority for the derivatives of the components h1 can
be made on the basis of the idea of the "cote" which we have previouslv
used (footnote 4 to Note III). Let us assign "cotes" to the ha and the
coordinates xa as follows:

Xa has "cote" -a
hi has "cote" 5
ha has "cote" a

(i * 1 ifa= 2)

Then if G and Z denote derivatives of components ht we shall say that
E is anterior to Z if:

(1) G is of lower order than Z;
(2) E is of the same order as Z but the "cote" of Q is algebraically

less than that of Z6
Finally we shall say that 21 is anterior to S if 21 is of lower order than

: and conversely that z is anterior to 21 if G is of lower order than W.
Now differentiate one of the equations (4.1), (4.2) or (4.3) any number

of times with respect to the co3rdinates x" and evaluate at the point P.
The resulting equation will then express the derivative in its left member
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as a sum of polynomials in anterior derivatives. In case we are dealing
with an equation (4.2) the vanishing of the factor W at P prevents the
occurrence in the right member of (4.2) of derivatives which are not an-
terior to the derivative in the left member of this equation; a similar
remark applies to an equation (4.3). If we differentiate one of the equa-
tions (5.3) any number of times with respect to coordinates x2, x3, x4 and
evaluate at P the derivatives in the right member of the resulting equation
will be anterior to the derivative in the left member. This will likewise
be the case if we differentiate one of the equations (5.1) any number of
times with respect to the coordinates ea except in the case of an equation
(5.1b) which involves in its right member a derivative of the component
hI; in this case, however, the derivative of the component h1 resulting
from differentiation of the equation (5. ib) can be eliminated by an obvious
substitution so as to obtain an equation in which the right member con-
tains only derivatives anterior to the derivative in its left member. From
the above considerations it is obvious that any derivative of U, V or h,
can be determined at P when the values are known at P of all derivatives
anterior to the derivative in question. It follows, therefore, that the
power series expansions of the components hs about the point P will be
fully determined by the value (h')o of the component 14 at P and the
specification of data given by (6.1), (6.2) and (6.3) in accordance with the
condition 14 t 0 at P and the normal conditions in Sect. 1.

7. It was shown in Note II that the expression

16K(3, r + 1) + 8K(2, r + 1) (7.1)

constituted a lower bound to the number of arbitrary derivatives of the
quantities U and V of the (r + I)st order; also the method explained in
Sect. 4 of Note III enables us to say that there cannot be less than
4K(4, r + 2) derivatives of the h1, of order (r + 1) to which arbitrary values
can be assigned at the point P when the condition W = 0 over the surface
83 is disregarded. When this latter condition is taken into consideration
it follows, therefore, that the difference between 4K(4, r + 2) and
K(3, r + 1), or

4K(4, r + 1) + 3K(3, r + 1) + 4K(2, r + 1) + 4 (7.2)

is a lower bound to the number of derivatives of the h1, of the (r + 1)st
order to which arbitrary values can be assigned at the point P.

If we differentiate r times the equations (4.1), (4.2), (5.1), (5.3) and
r - 1 times the equations (4.3), and then form the conditions of integra-
bility of the resulting equations we obtain a system M involving the U,
V and h1 and the derivatives of these quantities to the order (r + 1) at
most. Now the data specified by (6.3) shows that the number of arbitrary
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derivatives of ht, of the (r + 1)st order at P is at most equal to (7.2);
the number of arbitrary derivatives of U and V of the (r + 1)st order is
easily seen to be equal to (7.1) in consequence of (6.1) and (6.2). If,
therefore, one of the equations of M is not satisfied identically and if,
moreover, this equation involves at least one of the derivatives of the
components U, V or h. of order (r + 1) we shall be led to a contradiction
with the fact that (7.1) or (7.2) constitutes a lower bound to the number
of these derivatives which are arbitrary at the point P; in case an equation
of M does not involve a derivative of U, V, or h, of order (r + 1) and yet
is not satisfied identically we shall have a similar contradiction with regard
to the lower bound for derivatives of order less than (r + 1). It follows,
therefore, that all conditions of integrability involved in the determina-
tion of the power series expansions of the h, must be satisfied and, hence,
that these expansions are unique. As the power series expansions of the
h, can be shown to converge within a sufficiently small neighborhood at
the point P we arrive at the following7
EXISTENCE THEOREM. Let us specify the functions U over the surfaces

S3 and S. and also the functions V over the surface S2 as arbitrary analytic
functions of the surface co6rdinates represented by equations (6.1) and (6.2),,
respectively. Moreover, let us specify the value of the component h' at P,
i.e., xa = 0, and also the values of the remaining components ha as arbitrary
analytic functions in accordance with (6.3), the above values being taken
subject to the following conditions:

W = 0, IhI t O, , t O
W* 0, A t 0, F O0

at the point P. Then there exists one, and only one, set offunctions h, given
by convergent power series expansions about the point P, which constitutes
a set of integrals of the field equations III (3.1) and for which the surface
S3 is a characteristic.

It should be observed that the normal conditions incorporated in the
statement of the above existence theorem have been imposed merely to
avoid the ambiguity which would otherwise occur in the selection of
certain non-vanishing determinants formed from the coefficients of certain
of the previous equations; these conditions in no way restrict the char-
acteristic surface S3.

8. Suppose that we confine our differentiations of the equations
(4.1), (4.2), (4.3), (5.1) and (5.3) in the process of determining the power
series expansions of the functions h, about the point P to differentiations
involving the indices X2, X3, X4 alone; this is evidently possible from the
rules of anteriority in Sect. 6. We then arrive at a determination of the
quantities h, and their first derivatives over the characteristic surface
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S3. Now if we consider the functions K in (6.1) which we can suppose
to be of the form

(P3(X1)3 + (4(X1)4 +

we see that this determination of the h, and their first derivatives over
S3 is independent of the (Pk. Different selections of the functions Pk(X3, X4)
will give different sets of integrals ht of the field equations and we arrive
at the fact that there exists an infinite number of sets of integrals ha of the
field equations such that each set of integrals and their first derivatives assume
the same values over a characteristic surface S3.
The above result can be extended in the following manner: Let us

supplement the above process by allowing a single differentiation with
respect to the coordinate xl. Then the quantities hs as well as their
first and second derivatives will be determined over S3 independently of
the functions O4, V5, . . . and there is an analogous result when we restrict
ourselves to p(>l) differentiations with respect to the coordinate xl.
Let us say that two sets of integrals ht of the field equations have contact
of order C over a characteristic surface S3 if the two sets of functions h ,

and all their derivatives to those of order C itclusive, but not derivatives
of the (C + 1)st order, assume the same values over S3. We can then
say that there exists an infinite number of sets of integrals h, of the field
equations having contact of order C(2. 1) with one another over a char-
acteristic surface S3. It is important to notice that if the surface S3 were
not a characteristic the functional data common to each of these sets of
integrals would be sufficient to give a unique determination of a set of
integrals h, of the field equations.

I J. Hadamard, Lecons sur la Propagation des Ondes, Hermann (1903), pp. 296-310.
2 See footnote 6 to Note III.
3 Bocher, Introduction to Higher Algebra, MacMillan, p. 54 (1929).
4 Let Q denote any determinant of order five in Ml. Assuming J * 0, we have

Q = 0 whenever W = 0 by the result in the text. Hence JQ = 0 for W = 0 without
restricting J to non-vanishing values. Hence JQ WT. Since the polynomial W
is irreducible it follows from the last equation that either J or Q must involve W as
a factor. But J is equal to a252 + 62yl2 so that W is not a factor.of J; hence W is a
factor of Q. While the above discussion is sufficiently general to admit the possibility
of J having zero values, the vanishing of J at the point P would, as a matter of fact,
be in contradiction to the normal conditions in Sect. 1.

I See footnote 3 to Note III.
6 A "cote" of a derivative is the integer obtained by adding to the "cote" of the

function which is differentiated, the "cotes" of all the variables of differentiation,
distinct or not.

7 The proof of convergence involved here will be given later in a comprehensive
exposition of the present theory.
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