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INTRODUCTION

The statements of analysis can be grouped into three

classes according to the depth to which the limit concept Is

used In their formulation and proof.

A first class consists of theorems which are entirely

Independent of the concept of limit, and deal with

approximations. To this group belong graphical and numerical

differentiation and Integration as well as statements concern-

ing the reciprocity of these two approximative operations.

A second class consists of formulae In whose proofs the

concept of limit Is used In a mild, so to speak, algebraic,

way. This group comprises the bulk of formulae of calculus

concerning elementary functions and some formulae concerning

all dlfferentlable functions: the rules for the formation of

the derivatives of elementary functions, the determination of

antlderlvatlves by substitution and by parts, etc. (Not In-

cluded In this group Is the theorem that each two antlderlva-

tlves of the same function differ at most by a constant).

A third group of statements Is based on the assumption

that In each closed Interval each continuous function assumes

Its maximum. To this group belong the mean value theorem and

Its applications, of which I mention the Taylor development

and Its Implications concerning maxima and minima, Indeter-

minate forms, and the theorem* about the antlderlvatlves of

the same function.



In this book, we shall develop the second group of state-

ments from a few assumptions concerning three operations

(addition, multiplication, substitution) and two operators

(derivation and antiderivation). A first part is devoted to

the three operations. A second part deals with the Algebra of

Derivation and Antiderivation. A third part contains a sketch

of the theory of functions of several variables.

In developing the Algebra of Analysis, we shall make use

of the notation of the operator theory. Furthermore, we shall

completely avoid variables in our formulae. These principles

necessitate changes of the current notation most of which re-

sult in formal as well as conceptual simplification and

systematization.

In initiating students into calculus, at the present- time

one may find it hard to take full advantage of all these

simplifications - not on account of any specific difficulties

inherent to the proposed set-up or the proposed notation, but

because a student of calculus must be enabled to read books on

differential equations, theoretical physics, mathematical

economics, etc., all of which at present are written in* the

classical notation. It will take a long time till these ap-

plied fields will be presented in a more modern way. In the

meantime, students must acquire not only the knowledge but an

operative grasp of the traditional notation with all its short-

comings from which, in fact, some applied fields, as physical

chemistry, suffer more than mathematics proper. However, a

gradual change of our obsolete notation probably is not only

desirable but unavoidable. The first step in this direction
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Is undoubtedly an uncompromising exposition of the new ideas

for professional mathematicians and especially teachers of

mathematics. It is one of the aims of this book to

provide the reader with such an exposition.

Several sections of this publication may be helpful in

simplifying the current presentation of calculus even when

our treatment is translated into the classical notation. In

this connection, we mention the Algebra of Antiderivation, the

development of the entire differential calculus from a few

formulae, our treatment of the exponential and tangential

functions on the basis of the functional equations and the

formulae

D exp 0s! and D tan 0 = 1,

our introduction of the power functions, and the treatment of

antiderivatlon by substitution.

Apart from these pedagogical aspects, our Algebra of

Analysis seems to open an extended field of research* Many

additional results will be published in more technical papers.

Perhaps one will find the general idea of Algebra of Analysis

related to that of our Algebra of Geometry whose development

the author has outlined in the second lecture in the Rice

Institute Pamphlets, Vol. 27, 1940, p. 41-80.



I. THE ALGEBRA OF FUNCTIONS OF ONE VARIABLE

1. The Classical Foundation of the Theory of Functions.

The classical theory starts with the assumption that a

field of numbers is given. That is to say, it starts with a

system N of things, called numbers, which we add and multiply

according to the well-known laws of a field.

Next, the theory of functions of one variable explicltely

defines a function f as the association of a number f(x) with

each number x of some subset Df of N« This set Df is called

the domain of f. The set Rf of all numbers f(x) which f

associates with the numbers x of Df, is called the range of f.

A function whose range consists of exactly one number is called
*)constant .

The definition of the concept of functions is followed by

explicit definitions of the concept of equality of functions

and of three binary operations: addition, multiplication, and

substitution. We define: f » g if and only if Df = Dg and

f(x) » g(x) for each number x of Df * D. (The concept of

equality of numbers of the given field is assumed to be known).

If Df = D_, we call sum of f and g [product of f and g] the

function which associates the number f(x) + g(x) [the number

f(x)«g(x)J with each number x of Df = Dg. If Rg is a subset

*-) Analyzing the somewhat vague concept
of "association11 we see that f is a set
of ordered pairs of numbers (d,r) such
that each element of Df occurs as the first
element of exactly one pair. The second
element, r, of the pair (d,r) is that elem-
ent f(d) of Rf which f "associates" with d.
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of Dff we call t of g the function which associates the number

f(g(x)) with each number x of Dg.

It Is an odd fact that In the classical calculus no sym-

bols for the sum of f and g, the product of f and g, and f of

g, are introduced. Using the notation of the calculus of

operators, we shall denote the results of the three operations

by
f + g* t*B> t&>

respectively, so that the numbers associated by these functions

with the number x are

(f+g)(x), (f-g)(x), (fg)(x),

respectively. We shall never omit the dot symbolizing multi-

plication in order to avoid a confusion of multiplication with

substitution. In this notation the classical definitions of

f +g, f »g, fg read

(f +g)(x) « f(x) + g(x), (f-g)(x)»f(x)-g(x), (fg)(x)*f(g(x)).

From these explicit definitions Of the classical theory,

one deduces properties of the defined concepts. Is two examples we

mention the commutative law for multiplication and the associ-

ative law for substitution.

In order to prove f *g s g*ff by virtue of the equality

concept, we have to show that (f*g)(x) * (g*f)(x) for each x.

From the definition of the product of functions we obtain

(f*g)(x) = f(x)*g(x) and (g*f)(x) * g(x)*f(x). From the com-

mutativeness of multiplication in the given field of numbers,

it follows that f(x)*g(x) - g(x)*f(x) which completes the

proof*

In order to prove f(gh) = (fg)h, we have to prove

(f(gh)Hx) " I(fg)h](x) for each z. How from the definition
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of substitution It follows that

[f(gh)](x) - ft(gh)(x)] « f[g(h(x))]

[(fg)h](x) = (fg)(h(x)) - f[g(h(x))]

which completes the proof.

The commutative law for substitution does not generally

hold, as we see, if we set f(x) = 1 + x and g(x) - x2. We

have f(g(x)) » 1 + x2 and g(fx)) » (1 * x)2.

2. Algebra of Functions (Tri-Operational Algebra.).

In contrast to the classical approach we do not start

with a given field of numbers and do not define functions in

terms of numbers. In fact, we shall not give any explicit

definition of functions, and we shall abolish the dualism be-

tween numbers and functions .

We start out with a system of things, called functions

and denoted by small letters f,g,..., and three binary opera-

tions: addition denoted by +, multiplication denoted by • ,

and substitution denoted by Juxtaposition. For these opera-

tions we postulate the following laws which in the classical

theory (as we have seen In two examples) are deduced from the

explicit definitions:

Operation: Addition Multiplication Substitution

Commutative 'f+g*g+f f,g=g.f
Law:

Associative (f+g)+h = f+(g+h) (f•gj-h'f-(g-h) (fg)h=f(gh)
Law:

*) At the same time we rid the foundations of
analysis of set theoretical elements which are con-
tained In the explicit definition of functions (see
footnote p.4).



Distributive (f «g)h = fh-gh ( f +g )h » fh+gh (f+g)-h=f.h+g*i
Laws

Neutral
Elements s

O^l^J^O 10 = 1

Opposite f+(-f)=0
Elements:

Commutatlveness of substitution is not postulated because

it does not hold in the classical theory* The three distribu-

tive laws listed under

addition multiplication substitution

will be called

multlplicative-substitutlve, additive- subs titutive, additive-

multiplicative, distributive laws, respectively, or briefly,

m.s.d. law a.s.d. law a.m.d. law.

From the commutative law .of multiplication and the a.m.d. law

it follows that h»(f + g) = h-f +h-g. In absence of a com-

mutative law for substitution the a.s.d. law and the m.s.d.

law do not imply

h(f +g) • hf +hg and h(f.g) » hf«hg.

In fact, In the classical theory these formulae are not gener-

ally true. Each of them represents a functional equality

characterizing a special class of functions h.

The neutral elements 0 and 1 In our algebra correspond to

the classical functions associating with each z the numbers 0

and 1, respectively. From the commit at ivity of addition and

multiplication In conjunction with the postulates 'concerning

0 and 1, it follows that 0 + f » f and l«f = f. For the neu-

tral element of substitution, j, both Jf = f and f J « f must
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be postulated* The element J • corresponds to the classical

function associating with each number x the number x. Oddly

enough, the classical calculus does not Introduce a symbol

for this fundamental function.

In the same way as one assumes 0 ̂  1 In defining a field,

we assume that the three neutral elements 0, 1, anl J are mutu-

ally different. Furthermore, we had to postulate that 0 sub-

stituted In 1 yields 1 because we shall have to make use of

this assumption and, as Rev. F. L. Brown proved by an example,

It Is Independent of the other postulates. (Under certain con-

ditions, the postulate 10 * 1 could be replaced by the simpler

formula 10 / 0).

The three neutral elements can easily be shown to be

unique. For Instance, If we had also fjf - f for each f, then

by applying this formula to f * J we should obtain JJf - J.

How JJ1 » Jf by virtue of the neutrality of J. Hence J = Jf.

With regard to addition we assume the existence of an

opposite element to each f. We denote by -f the function

which, added to f, yields the sum 0. The formulae which we as-

sumed with regard to addition and multiplication are Just

those valid In a commutative ring with a unit, I.e., a neutral

element of multiplication '.

In the classical theory the three operations are not

universal (I.e., applicable to each pair of functions). E.g.,

we can fora fg only If Rg Is part of Df * Hence we shall not

*) It should be noted that among the formulae
concerning addition and substitution, one which
would be valid In a non- commutative ring has not
been postulated, namely, h(f+g) » hf +hg.
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postulate in our algebra that the three operations are

universal. We shall interpret our postulates as formulae

which are valid if all terms are meaningful* The situation

is the same as in a grupold in which f+ (g+h) = (f+g) +h

is true provided that g+h, f + g, f + (g+h), and (f+g)+h

exist.

However, it is worth mentioning that our postulates are

consistent even in presence of the additional assumption

that the three operations are universal. A model satisfying

all these assumptions is the system of all polynomials

p » c0 + C}/J + °2*J
2 + ••• + Cjn'J111 with coefficients c^ be-

longing to a given ring (where jk is an abbreviation for a

product of k factors J) if sum, product, and substitution are

defined in the ordinary way. That is, if

q - do + dx«J + dg-j -f ... * oVJ
11* then

P + q » (o0 + d0)

p«q - C0d0 -f (QÔ

pq » o0 * cx« q *C2«q
2 *••••*• ĉ q*.

A simple model consisting of four functions 0,1,J,f,

is obtained if the three operations are defined by the follow-

ing tabless

•f

0

1
3
f

0 1 J f

0 1 J f

1 0 f J

J f 0 1

f j 1 0

0

1
j
f

0 1 J f

0 0 0 0

o 1 3 f
o J J o
0 f 0 f

0

1
3
t

o i 3 f
0 0 0 0

1 1 1 1
o i 3 f
i o f 3
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#\
In the classical theory we obtain the above system ' by

considering the field consisting of the numbers 0 and 1

(modulo 2) and by calling 0,1,J,f the functions associating

with the numbers 0 and 1 the numbers 0,0; 1,1; 0,1; 1,0,

respectively. As Rev. F. L. Brown has recently shown, this

system is the simplest one satisfying all the postulates since

no system consisting of 0,1, and j only satisfies all

postulates. However, Father Brown did find a system consist-

ing of the three elements 0,1,j, satisfying all the postulates

except the one concerning the existence of a negative element.

3* The Theory of Constant Functions.

We shall now single out a class of functions which we

will call constant functions or, briefly, constants. The defi-

nition will be in terms of the fundamental operations. From

the postulates concerning these operations, it will follow that

our constants enjoy the main properties of the constant funct-

ions of the classical theory.

We call a function f constant if f = fO. If we know of a

function that it is constant, then we shall usually denote It

by letters c,d,...

From the postulates it follows that Of » (0 + 0)f « Of + 0f.

Adding -(Of) to this equality we obtain the formula

Of « 0.

In particular 00 = 0. Hence 0 is a constant. That 1 is a con-

stant, is the content of the postulate 10 - 1. Since

JO 3 0 jf J9 we see that J is not a constant. We shall prove

) It can also be described as the system of all
polynomials modulo j + j with coefficients belong-
ing to the field 0,1 modulo 2.
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the following theorem:

The constants form a ring^ which is closed with respect

to substitution. If C-L and Cg are constants, then

<*1 + C2 = c-ĵ O + CgO = ((^ + C2̂ °'

Similarly, Ci*c2 ~ (ci*cg)0« Thus the sum and the product of

two constants are constants. From the fact that 0 is a con-

stant, it readily follows that the negative of a constant is a

constant. Thus the constants form a ring. Now let c be a con-

stant, and f any function. We have

fc - f(cO) » (fc)0.

Thus fc is a constant. Using the formula Of = 0 we obtain

cf = (cO)f = c(0f) =00-0.

Thus cf is a constant, more specifically, cf is the constant c«

This completes the proof of our theorem.

The last formula can also be expressed by saying that if

c is a constant, then not only cO = c but cf - c for each f.

If for a constant c there exists a function cf such that

c«cf = 1, then this wreciprocal11 c' is a constant. For

c'O » l»cfO = (e'«c)»cfO « cf»(c-cfO) » cf*(cO»cfO) «

c'«(c*c')0 * cf«10 » cf»l * c1.

We see: if for each constant c ̂  0 there exists a re-

ciprocal, then the constants form a field which is closed with

respect to substitution. However, the roots of an algebraic

*) Quite accurately, we should say: For the con-
stants all formulae postulated in a commutative
ring are valid if they are meaningful. Under ad-
ditional assumptions and with a sharper definition
of constants, we could prove them to form a ring.
We should have to call constant a function c such
that cO is defined and = 0. We should have to as-
sume that if fO and gO are defined, then {-f)0,
(f+g)0, and (f-g)O are defined*
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equation with constant coefficients need not be constants. For

Instance, each of the four functions 0,1, J,1+J, studied at the

end of the last section, satisfies the algebraic equation with

constant coefficients f * f » 0. The functions J and 1+J are

not constant.

The definition of equality of two functions In the classi-

cal theory Is reflected In the following fundamental proposi-

tion of our algebra: If fc * «c for each aonatant c, then

f * g. If this proposition holds, then we shall speak of a

tri-operational algebra with a base of constants.

Clearly, In such an algebra we have f = g if and only If

fc * ge for each constant c. Moreover, in order that f be a

constant it Is necessary and sufficient that fc a fO for each

constant c. For from fc * fO it follows that

f c = f 0 = f(0c) = (fO)c. Applying the equality criterion to f

and f0 we see that f is equal to the constant function f0.

A consequence of this last remark is the following first

theorems If for two constants CQ and ĉ  we have

?(<*0+J)
 m GX» then f » c^. In fact, for each constant c

the assumption implies that

fc • f(c0 + (c-c0)) * f(c0 + J)(c-c0) • C^C-CQ) • cx.

Another consequence is the following translation theorem! If

f(J+c) • f for each constant c, then f is constant. For from

the assumption it follows that

fo«f(0 + e) »f(JO + oO) «ft(J *c)0]
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An Algebra of Functions adults a representation by funct-

ions in the classical sense* With each function of our algebra

we can associate a function in the classical sense whose domain

and whose range are two sets of constants. With the function f
if.

of our algebra we can associate the function f in the classi-

cal sense whose domain consists of those constants which admit

substitution into f, and which associates with each such con-

stant c the constant fc. This association of functions in the

classical sense with functions of our algebra is readily seen

to be a homomorphlsm. That is to say, we have

(f + g)* = f*>g* (f,g)*-f*-g*, (fg)*«f*g*

where addition, multiplication, and substitution of the classi-

cal functions on the right sides of these equalities are to be

performed in the classical sense* The postulate of a base of

constants implies that the above homomorphlsm is an isomorph-

ism, that is to say, that f ̂  g implies f * f g*.

It is to be noted that even in an algebra in which the

three fundamental operations are universal and the constants

form a field, the postulate of the base of constants need not

be satisfied. We obtain an example of the independence of this

postulate by considering all polynomials

°o * °1*J * C2*j2 * •*• * V3"1

with coefficients 0 and 1 if addition, multiplication, and sub-

stitution are defined in the ordinary sense but modulo 2.

There are infinitely many such polynomials but only two con-

stants, viz., 0 and 1. For each polynomial the substitution

of 0 and 1 yields either 0 and 0, or 0 and 1, or 1 and 0, or

1 and 1. If we write a polynomial In the fora
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p = GO nh p
kl + p

k2 * ... + p*n

where co Is 0 or 1, then clearly p belongs to one of the fol-

lowing four classes:

Either co - 0 and n is even. Then pO - 0, pi - 0,

Or, cQ = 0 and n is odd. Then pO * 0, pi • 1.

Or, c0 » 1 and n is odd. Then pO • 1, pi » 0.

Orf CQ * 1 and n is even. Then pO = 1, pi -= 1.

If p. and Pg are two of the infinitely many polynomials belong-

ing to the same class, then for each constant (that is, for

c - 0 and c • 1) we have p^c = pgc and yet p^ f pg. The homo-

morphia representation of the functions of our algebra by

functions in the classical sense which we described above,

would lead to the four functions defined in the field modulo 2

mentioned at the end of the preceding section. Each function

of the first class would be mapped onto the function represent-

ing 0, each function of the second class on the function rep-

resenting J, each function of the third class on the function

representing 1 * J, and each function of the fourth class on

the function representing 1.

The following finite example for the same situation may

be omitted in a first reading. We consider the polynomials of

the preceding example modulo J + J4. That is to say, we set

J + J4 = 0. We thus retain a model consisting of 16 polynom-
Q T

lals cQ + c^J * Cg'J * c3»J with coefficients c^ » 0,1.

There are only two constants, 0 and 1, and hence only four

possibilities for pO and pi, as before. Each possibility is

realized for a class of four polynomials.. E.g.,. we have

pO * 0 and pi - 0 f or p1 - 0, pg » J * J
2, p3 * J * J

3 ,

P4 - 3 + J
4'



This is another example in which each function p, each

constant function as well as each of the 14 non-constant

functions, satisfies an algebraic equation with constant co-

efficients, namely, p •*• p4 s 0, as we see by substituting p

into the equality J * J4,=* 0.

4. The Lytic Operations*

While we did not postulate universality of the three

fundamental operations, we saw that a postulate to this effect

would be compatible with our assumptions. Now we are going to

introduce a function of a special kind whose very nature, in

presence of the other postulates, is incompatible with univer-

sality of substitution. We shall call this function rec (an

abbreviation for reciprocal) and define it by the equality

rec«J • 1.

If we substitute 0 in this equality we obtain (rec»J)0 « 10

from which, in view of 0»f « 0, it follows that

0 = rec 0*0 = rec 0-JO » (rec*J)0 = 10 = 1.

This contradicts the assumption 0^1. We see that in pres-

ence of the definition of rec we must give up some of our

postulates or abandon the universality of substitution by for-

bidding the substitution of the function 0 into the function

rec* We shall follow the latter course.

If the constants form a field, then 0 is the only con-

stant which cannot be substituted into rec. Into rec f we can-

not substitute those constants c for which fc = 0. For in-

stance, 1 cannot be substituted into rec(J -1).
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It goes without saying that, in the classical notation,

rec is the function associating with each number x / 0 the

number — . Prom the point of view of domains, the function

rec-J is not identical with the function 1. The latter is an

extension of the former. For the domain of 1 comprises all

numbers; that of rec, and hence of rec*j, all numbers / 0.

We shall disregard this difference and thus from now on

be compelled to Interpret our postulates as formulae which are

valid whenever their terms are meaningful, and we shall have

to interpret each result as a formula admitting those substitu-

tions which are admissible in all terms involved in the deri-

vation of the result from the postulates.

To make the analogy between rec f and -f more conspicuous

we shall frequently write neg f instead of -f • This notation

is Justified since there exists a function neg such that we

obtain -f by substituting f into the function neg. This

function neg is -J or -1»J. In the classical notation it is

the function associating with each number x the number -x.

Instead of postulating the existence of -f for each f it

would be sufficient to postulate the existence of a function

neg such that J + neg = 0. In view of Of = 0, Jf = f, and the

a.s.d. law this postulate implies f + neg f = 0 for each f.

We tabulate some analogous facts of the algebra of the funct-

ions neg and rec which we shall call the lytic functions with

regard to addition and multiplication, respectively.

J + neg • 0 J»rec «' J

f + neg f » 0 f «rec f * J

neg ( f +g) * neg f +"neg g rec(f»g) = rec f»rec g

neg neg = J rec rec a J
rec neg = neg rec.
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In fact, we have

rec(f«g) = rec(f«g)-l - rec(f «g)(f *rec f«g»rec g) -

rec(f »g)»(f »g)»(rec f-rec g) - !• rec f«rec g » rec f«rec g.

Using the formula rec Tec rec » 1 obtained by substituting

rec into J*rec • 1 we see

rec rec s (J«rec)«rec rec - J«(rec»rec rec) • J»l • J.

The proof of neg neg = J is similar.

From neg f = -l«f it follows that neg f«neg g = f «g.

Using this formula we obtain

rec neg = rec neg»(J»rec) = rec neg-(neg Jmeg rec) »

rec neg-(neg«neg rec)=(rec neg*neg)*neg rec=l«neg rec »neg rec.

ITe define: f is even if and only if f neg = neg f, and f

is odd if and only if f neg = f. The last of the tabulated

formulae can be expressed by saying that rec is odd. Clearly,

the product of two even or of two odd functions is even, the

product of an odd and even function is odd.

Concerning the lysis of substitution, we mention that if

for two functions f and g we have fg - j, then we shall call g

the right inverse of f, and f the left inverse of g* For

instance, the* function j is its own right and left inverse

since we have JJ - J, If co and GI belong to the ring of con-

stant functions, and c^ has a reciprocal c^1, then the funct-

ion c-ĵ J + CQ has the function c^
f«(J -CQ) as inverse on either

side. In the classical notation, in view of J(x) - x, the

definition of a pair of inverse functions reads

f(g(x)) = x.

In other words, f and g are pairs of inverse functions in the

classical sense, as log and exp or arctan and tan.
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We shall postulate the existence of inverse functions

only for special functions f. While there are functions neg

and rec satisfying the equations J + neg = 0 and J*rec = 1 and

such that we obtain the negative and the reciprocal of f by

substituting f into neg and rec, respectively, there certainly

does not exist a function inv satisfying the equation

J inv = J and such that we could obtain the inverse of f by

substituting f into inv. For by virtue of the definition of J

we should have J inv = inv, so that from J inv » J it would

follow that inv = J. But by substituting f into J we obtain f

which in general is not the inverse of f. Or we can say: By

substituting f into the equality J inv = J we obtain

J(inv f) » f rather than f(inv f) » J.

A constant function c clearly does not have inverse funct-

ions on either side. For, whatever function f may be, cf and

fc are constants, thus ̂  J since J is not a constant*

If g is a right inverse of f and has itself at least one

right inverse, h, then g has only one right inverse, namely,

f, and only one left inverse, namely, f• And f has only one

right and one left inverse, namely, g. In fact, from f g = J

and gh » J it follows that h • Jh - (fg)h « f(gh) » f J • f,

a situation familiar from the axlomatics of group theory.

5. Exponential Functions.

We call the function f an exponential function if and

only if
f(g-fh) » fg«fh and f ̂  0.

We shall 'denote exponential functions by exp. Thus

exp(g+h) = exp g*exp h. Substituting a constant CQ for g,

and J for h we see that
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exp(c0 + J) = exp c0»exp j = exp cQ»exp. If exp CQ * 0, then

It follows that exp( co + J) = 0. If our algebra has a base of

constants, then the last formula, by virtue of the first

theorem of Section 3, implies that exp - 0 in contradiction to

the assumption exp ̂  0. We thus see that exp co ft 0 for each

constant co. In further consequence, exp f / 0 for each f. For

if we had exp f = 0, then we should obtain

exp(fcQ) » (exp f)cQ • OcQ « 0

which, in view of the fact that fcQ is a constant, contradicts

the preceding remark.

If exp c^ = 1, then exp(f + c^) = exp c^«exp f s exp f for

each f• Conversely, if the constants form a field, from

exp(c +0^ = exp c in view of exp c 7* 0 it follows that

exp G! = 1. Now exp(c + 0) = exp c. Thus exp 0 = 1. Con-

sequently, 1 = exp(J +neg) = exp • exp neg and hence

exp neg = rec exp.

Obviously, in each ring the function 1 is an exponential

function* From exp 0 = 1 it follows that 1 is the only con-

stant exponential function. From now on, when talking about

exponential functions we shall always mean exponential funct-

ions / 1.

If the constants form a finite field, then no exponential

function exists. Let indeed p 7* 0 be the characteristic of

the field of constants. Since p -1 is the sum of p -1 sum-

mands 1, for an exponential function we should have

exp(p-l) = (exp I)5"1.

Now in a field of characteristic p we have c1^1 = 1 for each c.

Hence exp(p-l)= 1. From ( p - l ) + l = 0it would follow that
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exp(p-l)»exp 1 = exp 0. Since exp 0 = exp(p-l) = 1 we

should have exp 1 = 1. But then exp 2 = exp l»exp 1 = 1,

exp 3 = exp 2«exp 1 = 1, etc., hence exp c = 1 for each c.

However, exponential functions do exist In finite rings.

For instance, one readily verifies that in the ring of residues

modulo 9 the function which under substitution

of 0,1,2,3,4,5,6,7,8

yields 1,4,7,1,4,7,1,4,7, respectively,

Is an exponential function. In the infinite ring without divi-

sors of 0 consisting of the numbers m •*• n»i where m and n are

Integers and i2 = -1, the function which under substitution of

a + n*i yields im n is an exponential function. If the con-

stants form the ring of all Integers or the field of all

rational numbers, then no exponential functions defined for all

constants, exist.

6. The Logarithmic Functions.

We shall now take a step towards the algebra of real

functions by assuming, in addition to a base of constants,

three postulates about the ring of constants. For the sake of

brevity we shall call a constant c a square if there exists a

constant c1 ? 0 such that c = c-̂
2. Now we postulate for each

constant c which is not a divisor of 0:

1. If c is a square, then -c is not a square.

2. If c is not a square, then -c is a square.

3. There exists a constant 1/2 such that 1/2 + 1/2 = 1

(and consequently for each c a constant c/2 such that

c/2 * c/2 = c, namely, c*l/2).
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Clearly, the product of two squares, as well as the prod-

uct of two negative squares, is a square. The product of a

square and a negative square Is not a square. It follows that

if a square has a reciprocal, the reciprocal Is a square.

Postulate 5 Is satisfied In each field of characteristic

jt 2. Postulate 1 can be expressed by saying that c^ + c2
2 = 0

Implies C-L = c2 = 0, a weaker form of the postulate for a real

field. Postulates 1 and 2 are sufficient to establish In the

ring what may be called a multiplicative order: If we call

each square "positive", then for each element c of the ring

either c Is a divisor of 0, or c Is positive, or -c Is posit-

ive, and the product of two positive elements Is positive.

However, even if the ring is a field, postulates 1 and 2 are

not sufficient to order the field (I.e., to guarantee that

also the sum of two positive elements is positive) as the

field of residues modulo 7 shows if we call 1,2,4 positive.

Neither does each ordered field satisfy postulate 2 as the

field of all rational numbers shows.

We shall now assume that an exponential function which

admits the substitution of each constant, has an inverse on

both sides which admits the substitution of each square. We

shall call such a function a logarithmic function and denote

it by log.

For each constant d, from exp d = exp( d/2 + d/2) «

exp(d/2)*exp(d/2) It follows that each constant exp d is a

square. This fact implies that log c admits only the sub-

stitution of squares. For if log c is defined, then

c = Jc - (exp log)c = exp(log c)
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and exp d is a square for each d. The same reasoning, in view

of exp d ̂  0, shows that log does not admit the substitution

of 0. Consequently, the function log (J*J) admits the substitu-

tion of each constant jf 0.

Moreover, we have log 1 = log (exp 0) =(log exp)0 = JO = 0.

Now let log G! and log eg be defined. That is, ê  and eg

are squares which implies that also c^-Cg is a square and

logfĉ 'Cg) is defined. We have

log c^ + log c2 = J(log c^ •*• log eg) • log exp (log o^+ log eg)
slog(exp log ĉ /log exp 03)== loĝ -cg).

It follows that

0 * log 1 » log(J«J»rec«rec) » log(3»J) * log(rec*rec)

and hence log(rec«rec) = neg log(j«J), formulae which admit

the substitution of each constant ̂  0.

Similarly,

0 = log 1 = log(jTec) * log J * log rec.

However, the last equality admits only the substitution of

squares (and of all squares since if c is a square, rec c is a

square). Thus the same holds for

log rec s neg log.

7. The Absolute and the Slgnum,

Under the assumptions of the preceding section one can

introduce a function which we shall call the absolute value or,

briefly, the absolute, and which we shall denote by abs. We

define

abs = exp[̂  *log( j*J)] and abs 0 = 0.

In the classical theory the function corresponding with abs

associates with each x the number |x|. The function abs
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admits the substitution of each constant and Is readily seen

to enjoy the following properties:

1. abs c

2. abs2 - J2

3. abs neg = abs

4. abs ̂  0.

It Is easily seen that abs rec = rec abs*

We further define a signum function, denoted by sgn, In

the following wayt

sgn = abs Tec and sgn 0 = 0.

In the classical theory the function corresponding with sgn

associates 0 with 0, 1 with each positive, -1 with each negat-

ive number.

The function sgn has the following properties:

1. sgn c-̂ sgn c2 - sgnCc-^Cg)

2. sgn3 = sgn

3* sgn neg = neg sgn

4. sgn / 0.

One readily verifies that sgn yields 1 or -1 according to

whether a square or the negative of a square Is substituted*

On this fact one can base another Introduction of the assump-

tions of the preceding section, an Introduction which Is more

In line with the Algebra of Functions than the postulates 1 and

2 concerning squares. We can postulate the existence of a

function abs or a function sgn with the four properties men-

tioned above and define: a constant c which Is not divisor of

0, Is positive or negative according to whether

abs c - c. or abs c - -c (sgn c = 1 or sgn c = -1).
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We remark that the' four postulates for sgn are independent.

In the field of residues modulo 3 the function s which admits

the substitution of all three constants 0,1,-1 and (like the

function -J) yields sO » 0, si » -1, s(-l) = 1 satisfies all

postulates except the first. In the field of residues modulo

5 the function s which admits the substitution of 0, ±1,±2

and (like the function J) yields sc = c for each c, satisfies

all postulates except the second. In the same field the

function s which (like J2) yields sO • p, si » s(-l),

s2 = s(-2) «• -1 satisfies all postulates except the third. In

each field the function 0 satisfies all postulates except the

fourth.

We have

abs exp » exp [j • log( J»J)]exp • exptjj • log(exp»exp)]

• exp[77 • 2*log exp] s exp J * exp.

For the function log abs, on account of its importance,

we shall introduce a special symbol. We shall denote it by

logabs. We have

logabs - log expfijr *log(J»J)] - § • log( J«J).

The function logabs admits the substitution of each constant

? 0. It corresponds to the function associating log|x| with

each x 7* 0 in the classical theory. We have

logabs exp » (log abs)exp = log (abs exp) = log exp = J,

exp logabs » exp log abs a J abs • abs,

exp(logabs f + logabs g)«exp logabs f*exp logabs g» abs f-absg.

By virtue of j s sgn• abs and sgnfĉ '̂Cg) = sgn ĉ *0gn c2 it

follows that

f»g « sgn f«sgn g» exp (logabs f ̂  logabs g).
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The last formula could be used aa a definition of multi-

plication in terms of addition and substitution, in conjunction

with the exponential and the signum functions. Algebra of

Functions migfct be developed from postulates about two opera-

tions and two particular functions, possibly one particular

function.

8. The Power Functions.

We shall now for each constant c Introduce a function

called the c-th power and denoted by c-po. We define c-po in

the same way in which it is defined in the theory of complex

functions:
c-po » exp(c*log).

From this definition it follows that c-po admits the substitu-

tion of all squares and only of squares* More accurately, we

should call the above function the c-th power based on the

function exp. However, in some cases we shall see that, for

algebraic reasons, power functions are Independent of the

particular choice of the exponential function used in defining

them* For instance

0-po - exp(O-log) = exp 0*1 and 1 -po *exp(l«log) *exp log*J.

If exp1 is another exponential function, log1 the Inverse of

exp9, and if we define

c-po1 = exp'(c*logf)»

then, as before, we have

XX-po^exp'CO^log'J^exp1 0*1 and l-pof*expf(l*logf }-expf logf*J.

Moreover, we obtain the following three functional

equations for the power functions

c1-po *cg-po * (cj + cg^po

cx-po Cg-po » (c1»c2)-po

c-po f • c -po g*c -po (f*g).
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Proof:

e^po-Cg-po • exp(c1»log)-exp(c2«log) • expCĉ l̂ g * Cg*log)

* expKcj+CgjO-og] - ̂ + Cg)-po,

cl"po ̂ "P0 = exP(ci*loe) exp(cg-log). » exptc-^log exp(cg-log)]

» exptc^tcg-log)] ̂ exptfc-^CgJlog] ̂ (ĉ Cg) - po,

c-po f-c-po g- exp(c*log f)«exp(c*log g) » exp(c*log f + c*logg)

• exp[c*(log f *log g)] ̂ exptc'logtf «g)] =c-po(f »g).

From the firat of these functional equations It follows

that

1 = 0-po = (c + (-c)) - po = c -po»(-c) -po, and hence

(-c) -po = rec c-po, in particular, (-1) - po = rec.

Moreover, we have 2 - po = 1 - po*l - po = ]«J and, by induction,

we see that for each positive integer n, the n-th power is the

product of n factors J. This statement as well as the funct-

ional equations for c-po are independent of the choice of the

exponential function exp used in defining the power functions.

From the second functional equation it follows that

c-po i-po • exp(c«log)exp(i -log) » exp[c*log exp(i *log)]c c c w

• exp[c-J(-| -log)] -exp(c-|*log)«exp(l*log) «exp log • J.

Thus, c-po and -| - po are inverse functions.

In the equation 2 - po = J*J, the right side admits the

substitution of any constant, while the left side admits only

the substitution of squares. However, we may consistently

extend the definition of c-po by the following stipulations:

1. c - po 0 * 0

2. If c is a rational number n1/n2 with an odd de-

nominator xig and a numerator n^ which is relatively prime to

ng, then the function c-po is even if the number n^ is even,

and odd if n is odd.
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We do not permit the substitution of negative squares

into c - po in the remaining cases, that is, if c is a rational

number with an even denominator or not rational. We remark

that in case that c is a rational number n1/n2 whose denomin-

ator is even, we have not only

rig- po c-po=n1-po but also n̂ -po neg c-po = n̂ -po.

After the above extension our definition includes all the cases

covered by the classical theory of power functions.

In case that c is a positive integer we readily see that

the extended function c-po Is Identical with the product of

c factors J . For c = • • ..... or » m (m and n integers )
2n+l 2n+l

it is easily seen that the extended c-th powers can be

written

- P°

- po = sgn.«cp[ -logabs]

In operating with integers we have omitted and shall omit the

multiplication dot. 2m+l stands, of course, for 2«m+l.

The reader can easily check to which extent our supplem-

entary stipulations concerning the definition of c - po are

compatible with the three functional equations for power

functions* For instance, the equation ĉ -po Cg-po • ( c^ • Cg )-po

can not be upheld after the extension; In other words, it does

not permit the substitution of negative constants. A* an

example, we mention

- po 2-po = exp [1 • log exp(2 -logabs ) ] = exp logabs = abs .

Thus the extended function 2-po and the function i - po are
2
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not Inverse. The function ~ - po 2 - po Is not = j but = abs

which, in fact, is Cauchy's representation of the function abs.

9« The Trigonometric Functions.

We call f a tangential function if and only if

We shall denote a tangential function by tan. In the second

chapter we shall single out among the tangential functions

the ordinary tangent function.

From the definition it follows s If tan g - 0, then

tan(f + g) • tan f. Moreover,

tan 0 * tan(0 + 0) - **?m* - *- .1-tan 0-tan 0

Consequently, if the constant tan 0 is to be real, we have

tan 0=0. Furthermore, it readily follows from the defini-

tion that tan is an odd function.

In this section we shall assume that the constants form

the field of real numbers. Moreover, we shall postulate the

existence of a smallest constant c>0 such that tan c = 0.

Then tan does not admit the substitution of the constants c/2

and -c/2. For if, say, tan (c/2) were defined, then we should

have
- 2*tan( c/2)

** C = l-tan(c/2)'tan(e/2) *

This equality would imply tan (c/2)= 0-in contradiction to our

assumption that c is the smallest number 0 for which tan c=0.

It further follows that tan (c/4)= 1 or -1 since, by virtue

of the definition of tan, every other value of tan (c/4)

would entail a value for tan (c/2) . We shall only admit the
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substitution into tan of constants between -c/2 and c/2.

Relative to each tangential function we define a sine and

a cosine function in the following way:

and coa(2.J)

We obviously have

ain(2»j) _ 2 'tan
cos(2.J) IT ES?

Substituting i *j Into the equality, we see that tan -sin/cos.
2

Other useful identities are
2 2 2 2sin * cos - 1 and 1 + tan * rec cos .

We postulate an Inverse of tan on both sides and call it

arctan.
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II. THE ALGEBRA OP CALCULUS

1. The Algebra of Derivatives.

We shall now introduce an operator D associating with a

function f a function Df, called the derivative of f• We

shall not attempt to formulate criteria as to which functions

form the domain of the operator D or as to which constants, if

any, may be substituted into Df. In our Algebra of Deriva-

tives, we shall adopt the same point of view as in our Algebra

of Functions: We shall derive formulae which are valid in

classical calculus provided that the terms involved in the

derivation of the formulae are meaningful. In classical cal-

culus, for a given function f and a given constant c, the

symbol (Df )c is meaningful if the function -rf-ĵ  has a limit

for c. We, too, might define (Df)c in terms of a limit opera-

tor, L, and derive the fundamental properties of D from

postulates concerning L. But in the present exposition we

start out with an undefined operator D subject to a few

assumptions connecting D with the Algebra of Functions.

Since D is not a function, the postulates of the Algebra

of Functions can not be applied to D. .Especially the associ-

ative law for substitution does not hold for D. Thus the sym-

bol Dfg is ambiguous. It may mean D(fg) or (Df )g. In order

to save parentheses we shall make the convention that the

symbol D refers only to the immediately following function or

group of functions combined in parentheses. Thus we shall

briefly write Dfg for (Df )g and reserve parentheses for the

case D(fg).
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Three postulates will connect D with the three funda-

mental operations of the Algebra of Functions i

I. D(f + g) a Df + Dg

II. D(f«g) * f»Dg+g*Df

III. D(fg) a Dfg*Dg

Postulate III replaces the associative law for substitution

with respect to D. It states that D(fg) and (Dg)f differ by

the factor Dg.

By postulate I we have

DO • D(0 + 0) * DO-I-DO.

Thus DO a 0. This formula has two Important consequences. „

By means of It we first see that

0 a DO * D(f +neg f) - Df +D neg f,

and thus

D neg f a neg Df.

Secondly, If c Is a constant, that is to say, if c * cO,

we obtain

DC a DcO a D(cO) a DcO-DO a DcO*0 » 0.

Postulate II now yields

D(c«f) « c»Df+ f»Dd * c«Df -i-0 • c»Df.

We shall call this result the-Constant Factor Rule.

In view of f J - f postulate III yields

Df - D(fJ) « DfJ-DJ « Df-DJ.

Hence DJ » 1 unless Df = 0 for each f which we shall later

exclude* Anticipating this development, we shall from now on

assume that DJ = 1. A frequently used consequence of DJ * 1

and Do a o is the formula

D(J + o) • 1.
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Applying the formula D neg f = neg Df to f s J we obtain

D neg = -1.

If f Is even, that Is, if f - f neg, then

Df - D(f neg) = Df neg*D neg =* Df neg*-l = neg Df neg

from which It follows that neg Df = Df neg, or in other words,

that Df is odd. Similarly, one can prove that if f is odd,

then Df is even. Using this fact, we see that

0 =* Dl - D(J«rec) - J»D rec + rec-DJ » J«D rec+rec.

It follows that J»D rec = neg rec and D rec = neg (-2) -po.

By virtue of postulate III we conclude further that

D(rec g) - neg (-2)-po g»Dg.

By means of postulate II we obtain

D(f«rec g)«f«D(rec g) +rec g-Df "f *neg(-2)-po g*Dg + rec g-Df,

that is, the Quotient Rule

D(f»rec g) * (g-Df -f-Df)»(-2)-po g.

Let g be a right inverse of f. From fg » J it follows

by virtue of postulate II that

Dfg*Dg s D] B 1, and thus Dg = rec Dfg.

If h is a left Inverse of f, then hf • J implies that

Dhf *Df • DJ « 1, and thus Dhf » rec Df.

If h is also a right Inverse, then substitution of h into the

last formula yields the preceding formula for the derivation

of a right inverse. For

Dh = DhJ s Dhfh ̂  rec Dfh*

By Induction we obtain from the three postulates

D(fn + f« *••••*• f ) « Df. •«• Df« •«-••• 4- Df1. & u JL £ n
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where p^. denotes the product of the n factors fĵ fg, ...,fn

with the exception of f^.

The second of these rules, for equal factors, yields the

in particular ^ _

This formula In conjunction with postulate I and the Constant

Factor Rule enables us to derive each polynomial

We call f an algebraic function, more specifically, an

algebraic function belonging to the polynomials P0,p1,***,pn,lf

. ~ . J2 . . *n „ ̂
Po * PI** * ̂ 2 * *"* **n*r °*

By virtue of the formulae derived In this section we obtain
n v n

Df » neg( 2 r«D« )*rec( 2

2, The Derivation of Exponential Functions*

Let ezp be an exponential function. We apply the formula

exp(f +g) « exp f*exp g to f * J and g • c. We obtain

D[exp(J -t-c)] =D exp(J -»-,c)»D(J *c)»D exp(] +c)-l=D exp (J +e).

On the other hand

D[exp(J -»-c)] »D(exp J«exp c) «D(exp*exp c) *exp c*D exp.

Thus, D exp(J -f c) sexp c*exp. Substituting 0 in this equality

we obtain

on the left side: D exp(J+c)0*D exp(0 + o)*D exp c

on the right side: exp cO*D exp 0»exp c«D exp 0«

Thus D exp c « exp c»D exp 0 fbr each constant o. If we have
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a base of constant a It follows that D exp * exp*D exp 0* We

see that the derivative of an exponential function Is a con-

stant Multiple of the function*

We shall postulate the existence of an exponential funct-

ion for which D exp 0*1. From now on we shall restrict the

symbol exp to this exponential function defined by the two

postulates

1. exp(f + g) * exp f-exp g

2. D exp 0 « 1.

Postulate 2 Makes the previous stipulations exp f 0 and 7* 1

superfluous since DO * Dl « 0 and thus DOO » D10 * 0 f !• In

the classical theory, the only differentiate (and even the

only continuous) function satisfying the postulates 1 and 2 is

the function associating ex with each x.

From the two postulates we have derived that D exp • exp*

In Chapter I we saw in the algebra of the exponential

functions that exp c ̂  0 for each c. Hence D exp c ̂  0 for

each c. Thus our postulate 2 concerning the exponential

function implies the existence of a function which, in an al*

gebra with a base of constants, justifies our conclusion

DJ * 1 In the preceding section. In the sense., that DJc =* 1 for

each constant c* We merely have to apply pur previous reason-

ing to f » exp* From exp J * exp it follows that

D exp * D(exp J) » D exp ]«D] m D exp«Dj

hence D exp c =» D exp c»DJc for each constant c. Since

D exp c ̂  0, we may multiply.both sides of this equality by

rec D exp c and thus "obtain Djc * 1 for each constant c. Hence

DJ « 1 if we have a base of constants.
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Applying postulate 3 to the formula D exp =* exp, we obtain

D(exp f) « D exp f-Df » exp f*Df.

3* The Derivation of Logarithmic Functions.

87 log we shall from now on denote the Inverse of the

function exp for which D exp 0 = 1 and D exp • exp*

From exp log * J by virtue of -postulate III it follows

that

1 =DJ * D(exp log) »D exp log*D log*exp log*D log*J«D log.

Thus, D log * rec.

The function reo on the right side admits the substitut-

ion of .each constant jf 0, the function log on the left side

the substitution of squares only* Instead of log we shall

study the function logabs • log abs which, like rec, admits

the substitution of each constant ̂  0.

2> logabs - Df| •log(J.J)] - | •D[log(J-J)] -f *Dlog(J.J)-D(J-J)

• £«rec(J«J)»2«J *rec(J»J)»J =(rec J«rec J)«J *(rec*rec)*J

» rec*(rec*J) * rec*l « rec.

Next we compute D abs. We have

D abs »p(exp log abs) *D(exp logabs) *D exp logabs«D logabs

* exp logabs • rec * abs »rec «sgn.

We remark that the formulae D log " reo and D abs • sgn

by virtue of postulate III entail the formula D logabs * rec.

Applying the last formula and postulate III we obtain

D( logabs f) » D logabs f «Df " rec f *Df.

4. Logarithmic and Exponential Derivation.

The formulae at 'the end of the two preceding sections can

also be written as follows:
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Df • f«D(logabs f) and Df • rec exp f*D(exp f).

Replacing f In the former formula by a particular function f

la called logarithmic derivation (or differentiation) of f.

Similarly, replacing f In the latter formula by a particular

function f might be called exponential derivation of f •

We -apply the former. method with benefit whenever logabs f

IB simpler than f. As an example of logarithmic derivation,

we treat the power functions* From c - po m exp(c-log) it fol-

lows that log c-po « c*log which is Indeed simpler than c-po.

We have D(log c-po) • c»D log * c*rec. Hence by the formula

of logarithmic derivation

D c-po * c-po»D(log c-po) » c-po«c«rec * c«(c-l) -po.

We mention that this formula holds also for the extended

c-th powers in case that c is a rational number with an odd

denominator. For in these cases we obtain

- po*pec

• ̂ " Si

We see that, in accordance with the general role, the deriva-

tive of the even function ' ~. - po la odd, and the derivative_. «nrl
of the odd function T1!, - po Is even.
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.As another example we apply logarithmic derivation to the

function f = exp(J•logabs) in the classical theory denoted by

x*. We have logabs f = J*logabs, thus

Ddogabs f) = logabs + J«rec » logabs + 1.

Hence, Df » f-D(logabs f) • exp(J*logabs)•(logabs + 1).

In general, for functions starting with the symbol exp

the function logabs f is simpler than f, and hence logarithmic

derivation is convenient* The same is true for functions f

which are products f̂ «fg»...*fn provided that we can find

Ddogabs t±) for 1 • 1,2,...,n. For D(logabs f) la the sum of

these n functions.

Exponential derivation Is convenient whenever exp f is

simpler than f. This is the ca»e for functions starting with

the symbol log or logabs. As an example, we treat the funct-

ion f • iogabs{J + logabs). Now,D(exp f) »D(J + logabs) »1 +rec.

Hence,
Df -rec exp f«D(exp f) "recCj -rlogabs)•(! +ree).

5. The Derivation of the Trigonometric Functions,

Let tan be a tangential function, c a constant. From the

definition of tan it follows that

tan(J+c) •*•*.***" c m tan-Htan c
1 - tan j*tan c 1 - tanrtan e

By virtue of the quotient-rule we obtain

D tan(J -f e) - D[tan(J ê)]

m (1" tan*tan c)*D tan - (tan + tan c)* - tan o*P tan
(1 - tan*tan c)2

» D tan•(!-»-tan c«tan c)«rec(l - tan*tan c)2.

Substituting 0 we obtain

D tan c * D tan 0*(l+tan c*tan c)»rec(l-tan 0*tan c) .
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Since tan 0 = 0 we have

D tan c =D tan 0«(l+tan c*tan c) for each eonatant c.

If we have a base of constant a, then

D tan - D tan O-U+tan2).

We shall now postulate that there Is a tangential function tan

for which D tan 0 = 1. From now on we shall reserve the sym̂

bol tan for this function given by the postulates

1. tan(f+g)- tanf+tang
1-tan f «tan g

2. D tan 0 * 1.

For this function we have
Q Q

D tan • 1 4- tan m rec cos .

In the classical analysis, for each constant a the funct-

ion tan (a-x) satisfies postulate 1. The function associating

tan x with z is the only one which satisfies postulates 1 and

2. In a paper "e and ir In Elementary Calculus11 (to appear in

the near future ) we describe how the postulates

D tan 0*1 and D exp 0 * 1 in conjunction with the functional

equations for the tangential and exponential functions yield

an intuitive introduction of ir and e, as well as a simple dev-

elopment of the ̂ natural* tangential and exponential functions

ex and tan x (x measured in radians).

From tan arctan » J we obtain

1 » D(tan arctan) * D tan arotan*D arctan

« (1 +tan2)arctan«D arctan = (1 + J )«D arctan.

It follows that
D arctan * rec(l + J ).

From the definition of the sine function we conclude by

virtue of the Quotient Rule
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2*D sln(2*J) = D[sln(2«J)]

* 2«[(1+tan2)-D tan-2*tan«D tan* tan] Teed * tan2)2

* 2-{l-tan2)«D tan-ree(l +tan2)2 »2«(1 - tan2)«rec(l+tan2)

a 2*cos(2«J).

It follows that D(sln(2;J)] * cos(2«J). Substituting i • J
2

we obtain
D sin = cos.

Similarly, we arrive at D cos * neg sin. (It goes without say-

Ing that the symbols sin and cos are reserved for the functions

defined In terms of the tangential function for which

D tan 0 * 1).

6. The Foundation of the Algebra of Antlderivatlves.

The Algebra of Anti derivatives Is based on an equivalence

relation which we shall symbolize by ~, and a right Inverse of

the operator D which we shall symbolize by S. We shall read

the symbol Sf *an ant 1 derivative of f* or 'an integral of f*

Indicating by this expression the multi-valuedness of the

operator S In contrast to the uni-valuedness of D. The latter

Is expressed in the Implication

If f - g, then Df » Dg

which will be of basic Importance for the Algebra of Anti-

derivatives.

Sf is what in the classical analysis is denoted by

/f (x)dx while f ~g expresses the relation f f(x) = gf(x) for

which the classical theory does not Introduce a special symbol.

Only to some extent f -»g corresponds to what in classical

integral calculus is denoted by f(x) a g(x) + const. As we

shall see In this section, f * g + c implies f~g. However,
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our Algebra of Antlderivatlon neither infers nor postulates

that conversely f~g Implies f = g + c. In classical analysis

the proof of the fact that functions with equal derivatives

differ by a constant, requires deeper logical methods than

the proof of any theorem corresponding to our Algebra of Anal-

ysis (see Introduction).

In view of the connection of our antiderivation with

the classical calcuTus of indefinite Integralsf we shall call

f the Integrand of Sf .

The two fundamental concepts of the Algebra of Anti deri-

vation are Introduced by the postulates:

A. f ~g If arid only if Df » Dg

B. D(Sf) * f.

No ambiguity will arise if we write postulate B in the form

DSf » f since we shall leave DS undefined. We mlgit, of

course, express postulate B in the form DS = J. At the begin-

ning of this section, in calling S a right inverse of D, we

adopted this point of view. But we shall refrain from elabor-

ating on this idea (as In the Algebra of Antlderlvates we re-

frained from briefly writing D neg =* neg D instead of

D neg f = neg Df) since its consistent extension would necessi-

tate the use of functions of more variables.

From the definition A it follows that the equivalence re-

lation Is reflexive, symmetric, and transitive. Since DO * 0

and DJ = 0, we have 0~1. In fact, for each constant c we

âve c~0. More generally, from the Algebra of Derivatives

it follows that f + c~f.

Next we consider two fundamental consequences of postu-

late B. If 3f~g, then DSf a Dg, thus by postulate B, f-Dg.
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Conversely, If f • Dg, then from B It follows that DSf » Dg

and hence Sf ~ g. We thus see

C. Sf - g if and only if f » Dg.

Secondly, we see: If SDf ~ g, then DSDf « Dg and from B

it follows that Df = Dg* Hence f ~ g and g ~ t• We thus

obtain the result

D. SDf ~ f.

Obviously, this Algebra of Antiderivation solves all the

difficulties connected with the multi-valuedness of the

operator 3. In our formula, Sf stands for any function g for

which Dg = f. The formulae concerning antiderivatives result-

ing from our two postulates of the Algebra of Anti derivation

express only the equivalence (never the equality) of anti-

derivatives with functions or other antiderivatives* For in-

stance, from DO » DC « 0 it follows that SO ~ c. Clearly,

also the classical integral calculus lacks formulae expressing

the equality of any antiderivation and any other function*

7. Formulae of the Algebra of Derivation in the
Notation of Antiderivation,

The formulae A. - D. of the preceding section enable us to

translate each formula of the Algebra of Derivation into a

formula about antiderivation* We start translating the

postulates I - III of the Algebra of Derivations

Sf +Sg~ SD(Sf + Sg) ~ S(DSf + DSg) ~ S(f + g).

f «g ~ SD(f «g)~ S(f *Dg +g-Df ) - S(f «Dg) +S(g«Df).

fg - SD(fg) - S(Dfg«Dg).
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We thus obtain

I» S(f + g) ~Sf + Sg

II1 f »g ~ S(f »Dg) + S(g-Df )

III1 fg~ S(Dfg-Dg).

Important la the special case of II f for f - c and g ~~ Sh. We

obtain the Constant Factor Rule

c«Sh ~ S(c*h)«

Translating the formulae
o

D exp - exp, D logabs = rec, D tan = rec cos

we obtain

S exp — exp, S rec ~ logabs, S rec cos2 ~ tan.

From D c - po = c*( c - 1) - po, It follows that

S[c*(c -1) -po]^c -po.

Applying the Constant Factor Rule for i (if c / 0) and re-

placing o*l by c, we obtain

S c - po * — - * ( c+1) - po if c 7* 0.
C"*"l

8. The Three Methods of An ti derivation,

If in formula III' we replace f by Sh we obtain
+

IĤ  Shg~ S(hg'Dg).

' The formula lU * is the source of two methods for the computa-

tion of antiderlvatives.

The first of these methods consists in applying formula

III* read from the right to the left, that is, in the form

3(hg*Dg) ~ Shg.

In words: If the Integrand of an antiderl vative which we

wish to find, can be represented as the product of what re-

sults from a function h by substitution of a function g times

the derivative of this function g, then we obtain the
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antiderivative we are looking for, by substituting g Into the

antlderlvatlve of h. The problem of finding the antideriva-

tive of hg*Dg Is thus reduced to the problem of finding the

antiderivative of h.

Examples:

S(rec g»Dg) ~ logabs g

S(tan g-Dg) ~ rec cos2g

S(exp g*Dg) ~ exp g, etc.

The second method, called antlderlvatlon by substitution,

consists In substituting Into formula III*, read from the left

to the right, the right Inverse of g which we shall denote by

g*. We obtain

Shgg*~S(hg-Dg)g*"

thus

B. Sh~ S(hg*Dg)g*.

In words: We find the antiderivative of h by substituting

Into h any function g, multiplying the result by Dg, finding

the antiderivative of the product, and substituting Into this

antiderivative the right Inverse of g.

While formula E Is correct for each h and g, It Is of

practical use for given h only if we can find a function g

with a right inverse such that S(hg*Dg) is simpler than Sh.

Example:

Sh -~ S(h tan*D tan)arctan.
o

The formula is useful If S(h tan Tec cos ) is simpler than Sh.

For Instance, this is the case if h = (-gf) -Po(l+2-po), in

classical notation, h(x) - (l+x2)'3/2. We have
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h tan - (-f ) -po (I* tan2)

h tan Tec cos2 = cos,

cos3

S[(- ij ) - po (1 + 2 - po)] ̂  S cos arctan ~ sin arctan.

The third method, called an ti derivation by parts, consists

in an application of formula IIf, written in the following

form

P. S(f-Dg)~ f*g - S(g-Df).

While this formula holds for each f and g, it is of practical

use for the computation of an ant i derivative Sh only if we

succeed in representing h as the product of two functions f

and f1 such that

1) Sf̂  can be found,

2) S(Df -Sf-ĵ ) can be found.

If we set Sf̂ ^ g, then formula F enables us to compute

F'. S(f -f̂  ~ f -Sf-L - S(Df -Ŝ ).

While it is immaterial which ant i derivative of f^ we use in

the expression on the right side, It is essential that on both

places the same antiderlvatlve Sf̂  Is selected.

Example:

S logabs ~ S(logabs-l) ~ S(logabs-DJ)

^» J«logabs - 8(J»rec) ̂ J*logabs - Sl~*J*logabs - J.
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III. ON FUNCTIONS OP HIGHER RANK

1, The Algebra of Functions of Higher Rank.

As In the first chapter, we shall denote functions by

small letters f,g,h, ... But we shall assume now that with

each function f a positive integer r, called the rank of f, is

associated. The rank will correspond to the number of vari-

ables of f in the classical notation. Whenever it is neces-

sary to indicate the rank of f we shall write f̂ r' or, where

no confusion with powers can arise, briefly fr.

Only one operation will be assumed, substitution, de-

noted by juxtaposition. If f is of rank r, then for each

ordered r- tuple of functions gi*««**gr there is a function

f(ĝ , ...,gr). It is called the function obtained from f by

substituting g£ at the index i for i » 1, ...,r» If a function

f is followed by r functions in parentheses, separated by

commas, it will be understood that f is of rank r. If ĝ  is

of rank s^, then ffĝ  ..*,gr} is of rank a^ + ••• + sp.

Substitution will be assumed to satisfy the following

lawst

I. Associative Law.

..,hSi ),..., gr(hfll|pl,...,ha )].

For some purposes it is convenient to denote the a± functions

substituted into gA by \v***±a. (* * If2,...,r). In this

notation the associative law reads:



46

jf - f(j,...,j) - f.
III. Ljŵ of jpep£esslon. if for the function f of rank

r > 1 we have
f - f(J,...fJ,g.J,...,J)

no natter which function g we substitute at the Index 1, then

there exists a function f^j whose rank is by 1 less than that

of f, for which
(i) and thus

We say of such a function f that it admits the suppression of

the Index !• In the classical notation, a function admitting

the suppression of the Index 1 is one which does not depend

upon its 1-th variable, as f(x,y,z) = 4*x + 5*log z does not

depend upon y.

Definition: If for a function f of rank 1 we have

f g * f for each g, then f is called a constant*

If for a function f of rank r we have f a f(g1,...*gr)

no matter which functions ĝ > •••jgp we substitute, then we can

suppress any r-1 of the indices and thus arrive at a constant

function. We may call f a constant function of rank r. By

substituting r constant functions Into any function of rank r,

we obtain a constant function.

If a function of rank r admits the suppression of each of

its Indices, then it is constant. E.g., for r » 2,

If f(g,J) - f and f{J,h) - f,

then f{g,h) - tf(J,h)](g,J) - f(g,J) - f.
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It is easy to prove that the function obtained from f by

substituting a constant at the index i, admits the suppression

of the index i if the rank of f is > 1, and is a constant if

the rank of f is - 1.

^* Law of Identifi cation. Let R be the set of numbers

^1, ...,r}, and R =* R^ + ••••§• R^ a splitting of R into m(<r)

mutually disjoint, non-vacuous sets Rj • {l3,lf*9lj,k*\*

Then for each function f of rank r there exists a function

f of rank m sucn that S'"" ls

to the function obtained from f by substituting g1 at the

Indices belonging to R̂ ,..., and ̂ at the indices belonging

to RBI* For instance, if R - f !,..», 6 j, R, = fl,2,4j,

R2 « ̂ sj, R^ s {3,6J, and f is of rank 6, then there is a

function %- R2,RS of rank 3 such that

Obtaining %, ,R2,R»
 from R corresponds to the formation of

f(x,x,y,x,2,y) from f(x1,...,x6) in the classical notation.

For each function f we have fRg = f(g, . *.,g). This is the

case m « 1«

We remark that for each function f of rank 2, and each

two functions ĝ  and gg of rank 1, we clearly have

v* ĵ lL̂ -?®™̂ ?̂!?̂ * If f is a function of rank r

and if p Is the permutation 1̂  ...,lr of the numbers

1, ...,r, then there Is a function fp of rank r such that for

each r- tuple of constant functions CI,...,CP we have

fp(ĉ ,.«»,cr) * f(c< ,*.*,G£ )•
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For each function fr of rank r the permutations p for which

frp = fr, form a subgroup rt* of ZP, the synnetrie group of r

elements. /̂ fr is called the group of fp. If Tfr * ZP,

then fr is called a symmetric function.

In formulating this law, we substituted into f only con*

stant functions, since without this restriction none but

constant functions f would satisfy the law. Indeed, let f be

a function of rank 2, and let p be the permutation 2,1 of the

numbers 1,2* If we had postulated the existence of a function

fp such that fp(g1,g2) • f(gg*gx)
 for each Palr of functions

&!>£& °̂  ranlc 1* then by substituting the functions ĥ jhg into

the two above functions of rank 2 we should obtain

By virtue of the associative law for substitution this equality

would imply

for each quadruple of functions g1,g2,h1,h2. Applying this

formula to
gl - hjj » 0. 1^ - J

we see tljat
fp(aggO) - f(gg,0)

for each function gg. How, since ggO is a constant, we see

that fp(0,ggO) is a constant. Hence, f would permit the sup-

pression of the index 1. Similarly we could prove that f

would permit the suppression of the index 2. Thus f would be

a constant.
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2. Sun and Product.

We call a function f of rank 2 associative If

A constant function n Is said to be neutral with respect

to f If
f(n,g) * f(g,n) » g.

An associative, symmetric function of rank 2 may be con-

sidered as an associative, commutative binary operation. In-

stead of f(gjh) we may write goh. We shall postulate the

existence of two such functions s and p whose corresponding

operations will be denoted by + and • , and called addition

and Multiplication, respectively* We shall postulate the ex-

istence of neutral elements denoted by 0 and 1, respectively,

and shall assume a distributive connection of s and p.

In order to establish the connection of these concepts

with those of the Algebra of Functions developed in Part I, we

remark that the sum of two functions g and h of rank 1 consid-

ered in Part I, is [s(g,h)]_ rather than s(g,h). For s(g,h)

is a function of rank 2 whereas the sum of two functions con-

sidered in Part I was a function of rank 1. We had

(f +g)h « fh+gh. By virtue of the remark following the Law

of Identification In the preceding section, this formula (i*e«,

the a.s.d. law) Is indeed valid for [s(g,h)]_ . In the classl-
K

cal notation, s(g,h) corresponds to g(x) + h(y) while

[s(g,h)]R corresponds to the sum g(x) + h(x) which we con-

sidered in Part I. Similarly the product g*h of Part I is
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3, The Algebra of Partial Derivatives.

If f la a function of rank r, we Introduce r operators

DJL. We call D̂ f the partial derivative of f for the Index !•

This operator la connected with substitution and Identifica-

tion according to the following postulates:

I. Dijlftgĵ f.fgp)] » D1f(g1,...,gr).Djgi.

Here the symbol ij refers to the J-th index in g^, in the sane

way aa we could denote the s1 + • • • * sp functions to be sub-

stituted Into the function f(glf«..*gr) by

(D4 f )« p .^ J «!,...,%•

Here R^ -f ••• + Rj^ la a decomposition of the aet R « flf...,rV

Into non- vacuous, disjoint subsets.

4 detailed development of the Algebra of Partial Deriva-

tion on this foundation will be the content of another

publication,
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