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INTRODUCTION

The statements of analysis can be grouped into three
classes according to the depth to which the limit concept is
used in their formulation and proof.

A first class consists of theorems which are entirely
independent of the concept of limit, and deal with
approximations. To this group belong graphical and numerical
differentiation and integration as well as statements concern-
ing the reciprocity of these two approximative operations.

A second class consists of formulae in whose proofs the
concept of 1imit 1s used in a mlld, so to speak, algebraic,
way. This group comprises the bulk of formulae of calculus
concerning elementary functions and some formulae concerning
all differentiable functions: the rules for the formation of
the derivatives of elementary functions, the determination of
antiderivatives by substitution and by parts, etc. (Not in-
cluded in this group is the theorem that each two antideriva-
tives of the same function differ at most by a constant).

A third group of statements is based on the assumptlon
that in each closed interval each continuous function assumes
its maximum. To this group belong the mean value theorem and
its applications, of which I mention the Taylor development
and 1ts implications concerning maxima and minima, indeter-
minate forms, and the theorem: about the antiderivatives of
the same function.



In this book, we shall develop the second group of state-
ments from a few assumptions concerning three operations
(addition, multiplication, substitution) and two operators
(derivation and antidegivation). A first part is devoted to
the three operations. A second part deals with the Algebra of
Derivation and Antiderivation. A third part contalns a sketch
of the theory of functlons of several variables.

In developing the Algebra of Analysis, we shall make use
of the notation of the operator theory. Furthermore, we shall
completeiy avold variables in our formulae. These principles
necessitate ehanges of the current notation most of which re-
sult in formal as well as conceptual simplification and
systematization.

In initiating students into calculus, at the present- time
one may find it hard to take full advantage of all these
simplifications - not on account of any specific difficultles
inherent to the proposed set-up or the proposed notation, but
because a student of calculus must be enabled to read books on
differential equations, theoretical physics, mathematical
economics, etc., all of which at present are written in the
classical notation. It will take a long time till these ap-
plied fields will be presented in a more modern way. In the
meantime, students must acquire not only the knowledge but an
operative grasp of the traditional notatlion with all its short-
comings from which, in fact, some applied flelds, as physical
chemistry, suffer more than mathematics proper. However, a
gradual change of our obsolete notation probably 1s not only
desirable but unavoidable. The first step in this direction
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is undoubtedly an uncompromising exposition of the new ideas
for professional mathematicians and especially teachers of
mathematics. It 1s one of the aims of this book to

provide the reader with such an exposition.

Several sectlons of this publication may be helpful in
simplifying the current presentation of calculus even when
our treatment is translated into the classical notation. In
this connection, we mention the Algebra of Antiderivation, the
development of the entire differential calculus from a few
formulae, our treatment of the exponentlial and tangentlial
functions on the basis of the functional equations and the
formulae

Dexp 0=1 and D tan 0 =1,
our introduction of the power functions, and the treatment of
antiderivation by suhstitution.

Apart from these pedagogical aspects, our Algebra of
Analysis seems to open an extended fleld of research. Many
additional results will be published in more technical papers.
Perhaps one will find the general idea of Algebra of Analysis
related to that of our Algebra of Geometry whose development
the author has outlined in the second lecture in the Rice
Institute Pamphlets, Vol. 27, 1940, p. 41-80.



I. THE ALGEBRA OF FUNCTIONS OF ONE VARIABLE

l. The Classical Foundation of the Theory of Functions.

The classical theory starts with the assumption that a
field of numbers 1s given. That 1s to say, it starts with a
system N of things, called numbers, which we add and multiply
according to the well-known laws of a fleld.

Next, the theory of functions of one variable explicitely
defines a function f as the assoclation of a number f(x) with
each number x of some subset Dy of N. This set Dy 1s called
the domain of f. The set Re of all numbers £(x) which £
associates with the numbers x of Dr, is called the range of f.
A function whose range consists of exactly one number 1s called
comtant* ).

The definitlon of the concept of functions is followed by
explicit definitions of the concept of equality of functions
and of three binary operations: addition, multiplication, and
substitution. We defineif = g 1f and only if De = D8 and
f(x) = g(x) for each number x of D, = Dg. (The concept of
equality of numbers of the given field 1s assumed to be known)
If Dp = g» Ve call sum of £ and g [product of £ and g] the
function which associates the number f(x) + g(x) [the number

f(x)+g(x)} with each number x of De = Ds. Ir R8 is a subset

%) Analyzing the somewhat vague concept
of "assoclation" we see that £ is a set

of ordered palirs of numbers (d,r) such
that each element of Dy occurs as the first
element of exactly one pair. The second
element, r, of the pair (d4,r) is that elem-
ent £(d) of Rp which f "gssoclates™ with d.
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of Dp, we call f of g the function which assoclates the number
£(g(x)) with each number x of Ds.

It is an odd fact that in the classical calculus no sym-
bols for the sum of f and g, the product of f and g, and f of
g, are introduced. TUsing the notation of the calculus of
operators, we shall denote the results of the three operations

by
f+g, feg, fg,

respectively, so that the numbers associated by these functions
with the number x are

(£ +g)(x), (£-g)(x), (£g)(x),
respectively. We shall never omlt the dot symbolizing multi-
plication in order to avold a confusion of multiplication with
substitution. In this notatlon the classical definitions of
f+g, fog, fg read
(f+g)(x) = £(x) + g(x), (£-g)(x) =£(x)-g(x), (£g)(x) =£(g(x)).

From these explicit definitions of ths classical theory,
one deduces properties of the defined concepts. As two examples we
mention the commutative law for multiplication and the associ-
ative law for substitution.

In oxrder to prove feg = gef, by virtue of the equality
concept, we have to show that (feg)(x) = (gef)(x) for each x.
From the definition of the product of functions we obtain
(£.g)(x) = £(x)-g(x) and (g-r)(x) = g(x)+f(x). From the com-
mutativeness of multiplication in the given field of numbers,
1t follows that f(x)-g(x) = g(x)f(x) which completes the
proof.

In order to prove f(gh) = (fg)h, we have to prove
[f(gh)])(x) = [(£g)h](x) for each x. Now from the definition



of substitution it follows that
[£(eh)l(x) = £l(gh)(x)]
[(£g)hl(x) = (£g)(h(x))
which completes the proof.

flglh(x))]
£lg(h(x))]

The commutative law for substitution does not generally
hold, as we see, if we set £(x) = 1 + x and g(x) = x°. We
have f(g(x)) =1+ x* and glfx)) = (1 + x)2.

2. Algebra of Functions (Tri-Operational Algebra).

In contrast to the classical approach we do not start
with a given field of numbers and do not define functions in
terms of numbers. In fact, we shall not give any explicii':
definition of functlions, and we shall abolish the dualism be-
tween numbers and functions*) .

We start out with a system of things, called functions
and denoted by small letters f,g,..., and three binary opera-
tions: addltion denoted by +, multiplication denoted by -,
and substitution denoted by juxtaposition. For these opera-
tions we postulate the following laws which in the classical
theory (as we have seen in two examples) are deduced from the

explicit definitions:

Operation: Addition . Multiplication Substitution
Commutative - f+g =g+l feg=gef = =  mcecccaca..
Taw:

Asg:ciative (f+g)+h =£+(g+h) (£eg)h=f.(g-h) (fg)h =£(gh)
ws

*) At the same time we rid the foundations of
analysis of set theoretical elements which are con-
tained in the explicit definition of functions (see
footnote p.4).



Di;:ributive (feg)h =fhegh (f+g)h =fh+gh (f+g)+h=f-h+gh
W3

Neutral r+0=¢ fel=¢ fij=3jr=¢
Elements:
0#£1#3#0 10=1
Opposite t#(-£) =0
Elements:

Commutativeness of substltution 1s not postulated because
1t does not hold in the classical theory. The three distribu-
tive laws listed under

addition multiplication substitution
will be called

multiplicative-substitutive, additive-substitutive,additive-
multiplicative, distributive laws, respectively, or briefly,
m.s.d. law a.8.d. law a.m.d. law.

From the commutative law of multiplication and the a.m.d. law
it follows that he(f +g) = hef +heg. In absence of a com-
mutative law for substitution the a.s.d. law and the m.s.d.
law do not imply

h(f +g) = hf +hg and h(f-g) = hf+hg.
In fact, in the classical theory these formulae are not gener-
ally true. Each of them represents a functional eq{:ality
characterizing a special class of functions h.

The neutral elements O and 1 in our algebra correspond to
the classical functions assoclating with each x the numbers 0
and 1, respectively. From the c;oxmutativity of addition and
multiplication in conjunction with the postulates ‘concerning
0 and 1, it follows that O+f = £ and 1f = f. For the neu-
tral element of substitution, J, both jf = £ and fj = £ must
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be postulated. The element J - corresponds to the classical
function assoclating with each number x the number x. 0ddly
enough, the classical calculus does not introduce a symbol
for this fundamental function.

In the same way as one assumes O # 1 in defining a field,
we assume that the three neutral elements 0, 1l,and j are mutu-
ally different. Furthermore, we had to postulate that 0 sub-
stituted in 1 ylelds 1 because we shall have to make use of
this assumption and, as Rev. F. L. Brown provedﬂby an example,
it is independent of the other postulates. (Under certain con-
ditions, the postulate 10 = 1 could be replaced by the simpler
formula 10 # 0).

The three neutral elements can easlly be shown to be
unique. For instance, if we had also f£J' = £ for each f, then
by applying this formula to £ = ] we should obtailn jj' = 3.
Now j3' = J' by virtue of the neutrality of j. Hence jJ = j!'.

With regard to addition we assume the existence of an
opposite element to each f. We denote by -f the function
which, added to f, ylelds the sum O. The formulae which we as-
sumed with regard to addition and multiplication are just
those valid in a commtative ring with a unit, i.e., a neutral
element of multiplication *).

In the classical theory the three operations are not
universal (i.e., applicable to each pair of functions). E.g.,

we can form fg only 1if R8 is part of De. Hence we shall not

¥) It should be noted that among the formmlae
concerning addition and substitution, one which
would be valid in a non-commtative ring has not
been postulated, namely, h(f +g) = hf +hg.



postulate in our algebra that the three operations are
universal. We shall interpret our postulates as formulae

which are valid if all terms are meaningful. The situation
1s the same as in a grupoid in which f+(g+h) = (f +g) +h

is true provided that g+h, £+g, £+(g+h), and (£+g) +h

exist.
However, it is worth mentioning that our postulates are

consistent even in presence of the additlonal assumption
that the three operations are universal. A model satisfying
all these assumptions is the system of all polynomials
P=0+cyed #0ged? # ooe # opes™ with coefficients c, be-
longing to a gilven ring (where Jk is an abbreviation for a
product of k factors j) if sum, product, and substitution are

defined in the ordinary way. That is, if
qQ=a,+a)+ dped # oo 4 d,+J%, then
P*ra=1(c,*+a)+ (c; #a))e]+ (cp ¢ az)._,z P
Ped = oy # (0gedy +01085) ] + (0gndp +0) 0y +0pedp)esZ 4 ocn
pq= °o + cloq-.-ozo 2 4 oece ¥ cncqm.
A simple model conslsting of four functions 0,1,],f,
is obtalned 1f the three operations are defined by the follow-

ing tabless
+] o013t clo13¢ o13¢
o13¢ o/l oooo oloodo
1|10 1|o13¢ 11111
JfJro JjojiJo Jlor13¢2
t|{r310 t|loror t|102}
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In the classlcal theory we obtaln the above system*) by
consldering the fileld consisting of the numbers 0 and 1
(modulo 2) and by calling 0,1, J,f the functions assoclating
with the numbers 0 and 1 the numbers 0,0; 1,1; 0,1; 1,0,
respectively. As Rev. F. L. Brown has recently shown, this
system 1s the simplest one satisfylng all the postulates since
no system consisting of 0,1, and j only satisfies all
postulates. However, Father Brown did find a system consist-
ing of the three elements 0,1, ], satisfylng all the postulates

except the one concerning the existence of a negative element.

3. The Theory of Constant Functions.

We shall now single out a class of functions which we
will call constant functions or, briefly, constants. The defi-
nition will be in terms of the fundamental operations. From
the postulates concerning these operations, it will follow that
our constants enjoy the maln properties of the constant funct-
ions of the classical theory.

We call a function f constant if £ = £0. If we know of a
function that it 1is constant, then we shall usually denote 1t
by letters c,d,...

From the postulates it follows that Of = (0+0)f = Of +0Of.
Adding -(0f) to this equality we obtain the formula

of = 0.
In particular 00 = 0. Hence O 1s a constant. That 1 1s a con-
stant, 1s the content of the postulate 10 = 1. 8Since
Jo=0# J, we see that ] 1s not a constant. We shall prove

*) It can also be descgibed as the system of all
polynomials modulo J + J° with coefficients belong-
ing to the fleld 0,1 modulo 2.
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the followling theorem:
The constants form a ring*) which is closed with respect

to substitution. If cq and c, are constants, then

e ¥ cg = ¢y0 + 50 = () + ¢5)0.
Simllarly, c,-cy = (c1°c2)0. Thus the sum and the product of
two constants are constants. From the fact that 0 1s a con-
stant, 1t readily follows that the negative of a constant is a
constant. Thus the constants form a ring. Now let ¢ be a con-
stant, and f any functlon. We have
fe = £(c0) = (fe)o.
Thus fc is a constant. Using the formula Of = O we obtain
ef = (c0)f = ¢(0f) = c0 = c.
Thus cf is a constant, more specifically, cf is the constant c.
This completes the proof of our theorem.
The last formula can also be expressed by saying that if
¢ 1s a constant, then not only ¢O = ¢ but c¢f = ¢ for each f.
If for a constant ¢ there exlsts a function c¢' such that
cec! = 1, then this "reciprocal®™ c! is a constant. For
c!0 = 1¢c'0 = (c'+¢c)ec'0 = c'+(c-c'0) = c'+(c0°c'0) =
cle(cec?)0 =c'10 =c'el = ¢c'.
We see: 1if for each constant ¢ # 0 there exists a re-
ciprocal, then the constants form a field which is closed with

respect to substitution. However, the roots of an algebraic

%) Quite accurately, we should say: For the con-
stants all formulae postulated in a commtative
ring are valld if they are meaningful. Under ad-
ditional assumptions and with a sharper definition
of constants, we could prove them to form a ring.
We should have to call constant a function ¢ such
that cO 1s defined and = 0. We should have to as-
sume that if fO and gO are defined, then (-f)O,
(£+g)0, and (f-g)0 are defined.
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equation with constant coeffliclients need not be constants. For
instance, each of the four functions 0,1, ]J,1+J, studied at the
end of the last section, satisfies the algebralc equatlion with
constant coefficlents £ + £° = 0. The functions § and 1+j are
not constant.

The definition of equality of two functions in the classi-
cal theory 1s reflected in the following fundamental proposi-
tion of our algebra: If fc = gc for each conatant ¢, then
f =g, If this proposition holds, then we shall speak of a
tri-operational algebra with a base of constants.

Clearly, in such an algebra we have f = g 1f and only 1if
fc = ge for each constant c. MNoreover, in order that f be a
constant 1t 1s necessary and sufficient that fc = £0 for each
constant c¢. For from fc = £0 1t follows that
fo = £0 = £(0c) = (£0)o. Applying the equality criterion to f
and £0 we see that f is equal to the constant function fO.

A consequence of this last remark 1s the following first
theorem: If for two constants c, and ¢; we have
f(co+J) = 03, then £ = c3. In fact, for each constant ¢
the assumption implies that

fe = f(cy, * (c-cy)) = flcg+J)e=-cy) = eg(c=-0cy) = ¢;.

Another consequence is the followling translation theorems If
f(j+c) = £ for each constant ¢, then £ is constant. For from
the assumption it follows that

fe=£(0+c) =£(JO+c0) =£[(J+c)O]l =[£f(J+c)]O=rO.
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An Algebra of Functions admits a representation by funct-
ions in the classical sense: With each function of our algebra
we can associate a function in the classical sense whose domain
and whose range are two sets of constants. With the function f
of our algebra we can assoclate the function f* in the classi-
cal sense whose domaln consists of those constants which admit
substitution into f, and which assoclates with each such con-
stant ¢ the constant fc. This assoclation of functions in the
classical sense with functlons of our algebra is readily seen
to be a homomorphism. That 1s to say, we have

(£+g)* = t*+g% (£,g)%=1%g", (£g)" =r*g*
where addition, multiplication, and substitution of the classi-
cal functions on the right sldes of these equalities are to be
performed in the classical sense. The postulate of a base of
constants implies that the above homomorphism is an isomorph-
ism, that is to say, that f ¥ g implles £~ # g*.

It 1s to be noted that even in an algebra in which the
three fundamental operations are universal and the constants
form a fleld, the postulate of the base of constants need not
be satisfied. We obtaln an example of the independence of this
postulate by considering all polynomlals

e, * cqed + ¢2.32 + eee 4 g oJm
with coefficients O and 1 1f addition, multiplication, and sub-
stitution are defined in the ordinary sense but modulo 2.
There are infinitely many such polynomlals but only two con-
stants, viz., 0 and 1. For each polynomial the substitution
of 0 and 1 ylelds either 0 and O, or 0 and 1, or 1 and 0, or
1l and 1. If we write a polynomial in the form
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p=c°+pk1+pk2+c-o*pkn

where [ is 0 or 1, then clearly p belongs to one of the fol-
lowing four classes:

Either ¢, = 0 and n 1s even. Then p0 = 0, pl = O,

or, c. = 0 and n 1is odd. Then p0 = 0, pl = 1.

or, ¢, =1 and n is odde Then p0 =1, pl = 0.
Or, c. =11 and n 1s even. Then p0 =1, pl = 1.

If Py and py are two of the infinitely many polynomials belong-
ing to the same class, then for each constant (that is, for
¢ =0and ¢ =1) we have pjc = ppec and yet py # pge The homo-
morphic representation of the functlons of our algebra by
functions in the classical sense which we described above,
would lead to the four functions defined in the field modulo 2
mentioned at the end of the preceding section. Each function
of the first class would be mapped onto the function represent-
ing 0, each function of the second class on the function rep-
resenting J, each function of the third class on the function
representing 1 + j, and each function of the fourth class on
the function representing 1l. .

The following finite example for the same situation may
be omitted in a first reading. We consider the polynomials of
the preceding example modulo J + .14. That 1s to say, we set
j + 3% = 0. We thus retain a model consisting of 16 polynom-
lals o, + cyed + cged® + cges° with coefficlents c, = 0,1.
There are only two constants, O and 1, and hence only four
possibilities for pO and pl, as before. Each possf.bility is
realized for a class of four polynomials. E.g., we have
po=-0andp1=ororp1=o,p2=j+.12. p3=1*.13»
p, =3+ 3%
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This 1s another example in which each function p, each
constant function as well as each of the 14 non-constant
functions, satisfles an algebralc equation with constant co-
efficlents, namely, p + p4 = 0, as we see by substituting p
into the equality j + §* = o.

4, The Lytic Operations.
While we did not postulate universality of the three

fundamental operations, we saw that a postulate to this effect
would be compatible with our assumptions. Now we are going to
introduce a function of a special kind whose very nature, in
presence of the other postulates, is incompatible with univer-
sality of substitution. We shall call this function rec (an
abbreviation for reciprocal) and define it by the equality
recej = 1,
If we substitute O in this equality we obtain (rec-j)0 = 10
from which, in view of Oef = O, it follows that
0 = rec 00 = rec 030 = (recej)0 =10 = 1.

This contradicts the assumption O # 1. We see that in pres-
ence of the definition of rec we must give up some of our
postulates or abandon the universality of substitution by for-
bidding the substitution of the function 0 into the function
rec. We shall follow the latter course.

If the constants form a field, then O is the only con-
stant which cannot be substituted into rec. Into rec £ we can-
not substitute those constants ¢ for which fe = 0. For in-

stance, 1 cannot be substituted into rec(j -1).
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It goes without saylng that, in the classical notation,
rec is the function assoclating with each number x # O the
number-:-'i- . From the point of view of domains,the function
rec+j 1s not identical with the function 1. The latter 1s an
extension of the former. For the domain of 1 comprises all
numbers; that of rec, and hence of rec<j, all numbers # O.

We shall disregard this difference and thus from now on
be compelled to interpret our postulates as formulae which are
valid whenever their terms are meaningful, and we shall have
to interpret each result as a formula admitting those substitu-
tions which are admissible in all terms involved in the deri-
vation of the result from the postulates.

To make the analogy between rec f and -f more conspicuous
we shall frequently write neg f instead of -f. This notation
is justified since there exlsts a function neg such that we
obtain -f by substituting f into the function neg. This
function neg 1s -J or -1¢j. In the classical notation 1t is
the function assoclating with each number x the number -x.

Instead of postulating the existence of -f for each f it
would be sufficlent to postulate the existence of a function
neg such that J + neg = 0. In viewof Of = 0, Jf = £, and the
a.8.d, law this postulate implles f + neg £ = 0 for each f.

We tabulate some analogous facts of the algebra of the funct-
ions neg and rec which we shall call the lytic functions with
regard to addition and multiplication, respectively.

J+neg=0 Jjerec =]

f+negf=0 ferec £ =}

neg (f+g) = neg f+neg g rec(feg) = rec forec g

neg neg = J rec rec = §
rec neg = neg rec.
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In fact, we have
rec(f+g) = rec(f-g)+l = rec(feg)(ferec fegerec g) =
rec(feg)+(feg)e(rec ferec g) = 1+ rec ferec g = rec ferec g.

Using the formula recerec rec = 1 obtalned by substituting
rec into Jerec = 1 we see

rec rec = (Jjerec)erec rec = je(recerec rec) = jel = j.

The proof of neg neg = J 1s simllar.

From neg £ = =1<f 1t follows that neg feneg g = feg.
Using this formula we obtain
rec neg = rec nege(Jjerec) = rec neg-(neg j°neg rec) =
rec neg-(neg-neg rec)=(rec neg-neg)-neg rec=l-neg rec =neg rec.

We define: f 1s even if and only if f neg = neg f, and f
is odd if qnd only if f neg = f. The last of the tabulated
formulae can be expressed by saylng that rec is odd. Clearly,
the product of two even or of two odd functions 1is even, the
product of an odd and even function 1s odd.

Concerning the lysis of substitution, we mention that if
for two functions f and g we have fg = J, then we shall call g
the right inverse of f, and £ the left inverse of g. For
instance, the function J is its own right and left inverse
since we have JJj = J. If c, and ¢y belong to the ring of con-
stant functlions, and ey has a- reciprocal °1" then the functe
ion ¢y¢J + c, has the function ¢y '*(J-c,) as inverse on elther
side. In the classical notation, in view of j(x) = x, the
deﬁni.tic':n of a palr of inverse functions reads

f(g(x)) = x.

In other words, f and g are pairs of inverse functions in the

classical sense, as log and exp or arctan and tan.
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We shall postulate the exlstence of inverse functions
only for speclal functions f. While there are functions neg
and rec satisfying the equations J + neg = 0 and jerec = 1 and
such that we obtaln the negative and the reciprocal of f by
substituting f into neg and rec, respectively, there certainly
does not exist a function inv satisfylng the equation
J inv = J and such that we could obtain the lnverse of f by
substituting f into inv. For by virtue of the definition of jJ
we should have J inv = inv, so that from J inv = J it would
follow that inv = j. But by substituting f into J we obtain f
which in general 1s not the lnverse of f. Or we can say: By
substituting f into the equality J inv = § we obtain
J(inv £) = £ rather than f(inv £) = .

A constant function ¢ clearly does not have inverse funct-
ions on elther side. For, whatever function f may be, c¢f and
fc are constants, thus # j since j 1s not a constant.

If g 1s a right inverse of f and has 1ltself at least one
right inverse, h, then g has only one right inverse, namely,
f, and only one left inverse, namely, f. And f has only one
right and one left inverse, namely, g. In fact, from fg = ]
and gh = J 1t follows that h = Jh = (fg)h = f(gh) = £] = £,

a situation familiar from the axlomatics of group theory.

Se Exponential Functions.

We call the function f an‘exponential function if and

only 1if
f(g+h) = fgefh and £ #o0.

We shall denote exponential functions by exp. Thus

exp(g +h) = exp g-exp h. Substituting a constant ¢, for g,

(]
and J for h we see that
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e?:p(co+j) = exp c_°exp J = exp c,°exp. If exp ¢, = 0, then
it follows that exp( o +J) = 0. If our algebra has a base of
congtants, then the last formula, by virtue of the first
theorem of Section 3, implies that exp = 0 in contradiction to
the assumption exp # 0. We thus see that exp c, # 0 for each
constant cg. In further consequence, exp f # 0 for each f. For
if we had exp £ = 0, then we should obtain

exp(fco) = (exp f)co =0c, =0
which, in view of the fact that fc, is a constant, contradicts
the preceding remark.

If exp ¢ = 1, then exp(f+cy) = exp cy*exp £ = exp £ for
each f. Conversely, if the constants form a field, from
exp(c +cy) = exp ¢ in view of exp ¢ # 0 1t follows that
exp ¢; = 1. Now exp(c+0) = exp c. Thus exp 0 = 1. Con-
sequently, 1 = exp(] +neg) = exp - exp neg and hence
exp neg = rec exp.

Obviously, in each ring the function 1 is an exponential
function. From exp 0 = 1 it follows that 1 is the only con-
stant exponential function. From now on, when talking about
exponential functions we shall always mean exponential funct-
ions # 1.

If the constants form a finite field, then no exponential
function exists. Let indeed p # O be the characteristic of
the field of constants. Since p-1 is the sum of p-1 sume
mands 1, for an exponential function we should have

exp(p-1) = (exp1)P "1,
Now in a field of characteristic p we have ep"l = 1 for each c.
Hence exp(p-1)= 1. From (p-1) + 1 = 0 it would follow that
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exp(p-1)+exp 1 = exp O. Since exp 0 = exp(p-1) = 1 we
should have exp 1 = 1, But then exp 2 = exp lvexp 1 =1,
exp 3 = exp 2¢6xp 1 = 1, etc., hence exp ¢ = 1 for each c.

However, exponential functlions do exist in finite rings.
For instance, one readily verifies that in the ring of residues
modulo 9 the function which under substitution

of o0,1,2,3,4,5,6,7,8

ylelds 1,4,7,1,4,7,1,4,7, respectively,
is an exponential function. In the infinite ring without divi-
sors of O consisting of the numbers m + nei where m and n are
integers and 12 = -1, the function which under substitution of
m + nel ylelds 12 %8 34 an exponential function. If the con-
stants form the ring of all integers or the fileld of all
rational numbers, then no exponential functions defined for all

constants, exist.

6. The Logarithmic Functions.

We shall now take a step towards the algebra of real
functions by assuming, in addition to a base of constants,
three postulates about the ring of constants. For the sake of
brevity we shall call a constant c a square 1f there exists a
constant ¢y 7‘ 0 such that ¢ = 312. Now we postulate for each
constant ¢ which 1s not a divisor of 0Ot

l. If c is a square, then -c¢ 1is not a square.

2. If c is not a square, then -c is a square.

3. There exists a constant 1/2 such that 1/2 + 1/2 =1
(and consequently for each ¢ a constant c/2 such that
¢/2 + ¢/2 = ¢, namely, c-1/2).
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Clearly, the product of two squares, as well as the prod-
uct of two negative squares, is a square. The product of a
square and a negative square 1s not a square. It follows that
if a square has a reclprocal, the reciprocal is a square.

Postulate 3 1s satisfled in each fleld of characteristic
# 2. Postulate 1l can be expressed by saylng that c12 +022 =0
implies ey = cg = 0, a weaker form of the postulate for a real
field. Postulates 1 and 2 are sufficlent to establish in the
ring what may be called a multiplicative order: If we call
each square "positive", then for each element ¢ of the ring
either ¢ 1s a divisor of 0, or ¢ 1s positive, or -c 1s posit-
ive, and the product of two positive elements is positive.
However, even 1f the ring 1s a field, postulates 1 and 2 are
not sufficlent to order the fleld (i.e., to guarantee that
also the sum of two positive elements is positive) as the
fleld of residues modulo 7 shows 1f we call 1,2,4 positive.
Neither does each ordered field satisfy postulate 2 as the
field of all rational numbers shows.

We shall now assume that an exponential function which
admits the substitution of each constant, has an inverse on
both sides which admits the substitution of each square. We
shall call such a functi.on a logarithmic function and denote
it by log. '

For each constant d, from exp d = exp(d/2 +d4/2) =
exp(d/2)+exp(d/2) it follows that each constant exp d is a
square. This fact implies that log c¢c admits only the sub-
stitution of squares. For 1f log ¢ 1s defined, then

¢ = Jc= (exp log)ec = exp(log c)
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and exp d 1s a square for each d. The same reasoning, in view
of exp 4 # 0, shows that log does not admit the substitution
of 0. Consequently, the function log (j-j) admits the substitu-
tion of each constant # 0.
Moreover, we have log 1 = log (exp 0) =(log exp)0=30=0.
Now let log ¢y and log cp be defined. That is, e; and cp
are squares which implies that also ey °Co is a square and
log(cy *cy) 1s defined. We have
log ¢y * log cy = J(log c; + log cg) = log exp(log o+ log cg)
=log(exp log c; *log exp cp) = log(cyecy).
It follows that
0 = log 1 = log(j+Jerecerec) = log(J*J) + log(rec-rec)
and hence log(recerec) = neg log(Jj+J), formulae which admit
the substitution of each constant # O.
Similarly,
0 = log 1 = log(jerec) = log J + log rec.
However, the last equality admits only the substitution of
squares (and of all squares since if ¢ 1s a square, rec c is a
square). Thus the same holds for

log rec = neg log.

7. The Absolute and the Signum.
Under the assumptions of the preceding section one can

introduce a function which we shall call the absolute value or
briefly, the absolute, and which we shall denote by abs., We
define

abs = exp[%- *log(J*J)] and abs 0 = O,
In the classical theory the function corresponding with abs
associates with each x the number |x|. The function abs
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admits the substitutlon of each constant and 1s readily seen
to enjoy the followlng properties:

1, abs c,-abs cy = abs(c,ecy)

2. abs? = j2

3. abs neg = abs

4, abs # 0.
It 1s easlly seen that abs rec = rec abs.

We further define a signum function, denoted by sgn, in
the followlng ways
sgn = abs°rec and sgn 0 = 0.
In the classical theory the function corresponding with sgn
assoclates 0 with O, 1 with each positive, -1 with each negat-
ive number.
The function sgn has the following properties:

1. sgn cy°sgn cy = sgn(c, *cp)

2. sgn5 = sgn

3. 8gn neg = neg sgn

4. sgn # 0.
One readlly verifies that sgn ylelds 1 or -1 according to
whether a square or the negative of a square 1s substituted,
On this fact one can base another introduction of the assump-
tions of the preceding section, an introduction which 1s more
in line with the Algebra of Functions than the postulates 1 and
2 concerning squares. We can postulate the existence of a
function abs or a function sgn with the four properties men-
tioned above and define: a constant ¢ which is not divisor of
0, 1s positive or negative according to whether

abs ¢ = ¢c. or abs e =-c (sgnc=1lorsgnc = -1).
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We remark that the four postulates for sgn are independent.
In the fleld of residues modulo 3 the function s which admits
the substitution of all three constants 0,1,-1 and (like the
function -J) yields s0 = 0, s1 = =1, s(-1) = 1 satisfles all
postulates except the first. In the fleld of residues modulo
5 the function s which admits the substitution of 0, +1,+2
and (like the function J) yields sc = ¢ for each ¢, satisfies
all postulates except the second. In the same fleld the
function s which (1ike j2) ylelds s0 = 0, 81 = s(-1),

82 = s8(-2) = -1 satisfies all postulates except the third. In
each fleld the functlion O satisfles all postulates except the
fourth.

We have
abs exp = exp [% *log(J+J)lexp = exp[% * log(exp-exp)]

= oxpl%- +2+log exp] = exp J = exp.

For the function log abs, on account of 1ts importance,
we shall introduce a special symbol. We shall denote it by
logabs. We have

logabs = log exp[% «log(3-3)] = % +log(J3).
The function logabs admits the substitution of each constant
# 0. It corresponds to the function associating log|{x| with
each x # 0 in the classical theory. We have

logabs exp = (log abs)exp = log(abs exp) = log exp = ],

exp logabs = exp log abs = J abs = abs,

exp(logabs f +logabs g) =exp logabs f-exp logabs g= abs f-abs g.
By virtue of J = sgn-abs and sgn(c;-cy) = sgn c;+sgn cg it
follows that

feg = sgn fesgn groxp(logabs £ + logabs g).
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The last formula could be used as a definition of multi-

plication in terms of addition and substitution, in conjunction
with the exponential and the signum functions. Algebra of
Functions might be developed from postulates about two opera-
tions and two particular functions, possibly one particular
function. '
8. The Power Functlons.

We shall now for each constant c¢ introduce a function
called the c-th power and denoted by c-po. We define c-po in
the same way in which it is defined in the theory of complex

functions:
¢ -po = exp(celog).

From this definition 1t follows that ¢ - po admits the substitu-
tion of all squares and only of squares. More accurately, we
should call the above function the c-th power based on the
function exp. However, in some cases we shall see that, for
algebralc reasons, power functions are independent of the
particular choice of the exponential function used in defining
them. For instance
0-po = exp(0-1log) = exp O0=1 and 1 - po =exp(l-log) =exp log=}.
If exp'is another exponential function, log' the inverse of
exp!, and 1f we define
c-po! = ezp'(e-log'),
then, as before, we have
O-po '=exp '(0+log')=exp' 0=1 and l-po'=exp'(l-log')=exp' log'=].
Moreover, we obtaln the following three functional

equations for the power functions

63 -po scg=-po = (e +cg)-po

0 =P0 05 =po = (o5°05) - po

c-po fec-po g=c-po(f«g).
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Proof: .

¢y=po*Co=po = exp(cl-log)'exp(czolog) = exp(clo‘.l.og-tczdog)
= expl(c;+cy)log] = (cy +c5) - po,

¢1-Po ¢y =po = exp(clolog) exp(czvlog). = oxp[cl-log exp(cavlog)]

exp[cl-(cz-log)] =exp[(c1-c2)log] =(cy°c5) - po,

c=po fec=-po g= exp(celog £)-exp(celog g) = exp(celog £ +c-logg)
= explce(log £ +1og g)] =explc-log(feg)] =c - po(f-g).

From the first of these functional equations it follows
that

1 =0-po = (c+(-c)) -po = ¢c=pos(-c) -po, and hence

(-c) =po = rec c=-po, in particular, (-1) - po = rec.
Moreover, we have 2 -po = 1l -po*l-po = J+J and, by induction,
we see that for each positive integer n, the n-th power is the
product of n factors j., This statement as well as the funct-
ional equations for ¢ - po are independent of the cholce of the
exponential function exp used in defining the power functions.

From the second functlonal equation 1t follows that
c-po 1-po = exp(celoglexp(l «1og) = explc-log exp(i - 1log)]
= OIP[c-J(% *log)] =exp(c-%°los)=exp(lolog) =exp log = J.
Thus, ¢ - po and %-po are inverse functions.

In the equation 2 -po = j¢J, the right side admits the
substitution of any constant, while the left side admits only
the substitution of squares. However, we may consistently
extend the definitlon of ¢ - po by the following stipulations:

l, c=po 0=0

2, If c is a rational number n;/n, with an odd de-
nominator ny and a numerator ny which is relatively prime to
ng, then the functlon c¢-po is even if the number n; is even,
and odd if ny is oad.
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We do not permit the substitution of negative squares
into ¢ -po in the remalning cases, that is, if c is a rational
number with an even denominator or not rational. We remark
that in case that ¢ 1s a rational number nl/nz whose denomin-
ator 1s even, we have not only

Dy= PO C~PO =n,-po but also ny-po neg c-po =n,-po.
After the above extension our definition inclndes all the cases
covered by the classlical theory of power functions.

In case that c is a positive integer we readily see that
the extended function c - po is identlcal with the product of

2m r = 2ol (m and n integers)
2n+1 2n+l

c factors jJ. For c =

it is easily seen that the extended c-th powers can be

written
2m = 2m m_ .
Zner ~ PO = explz logabs] = exp[ oo «log(]+])]

2mtl | 55 = agneexp[2®*L .10gabs].
2n+l

In operating with lntegers we have omltted and shall omit the
multiplication dot. 2m#l stands, of course, for 2em+l.

The reader can easlly check to which extent our supplem-
entary stipulations concerning the definition of c -po are
compatible with the three functional equations for power
functions. For instance, the equation €=Po Co=po =(c1~c2)-po
can not be upheld after the extension; in other words, it does
not permit the substitution of negative constants. As an
example, we mention
%- po 2-po =exp[% *log exp(2-logabs)] =exp logabs =abs.

Thus the extended function 2 - po and the function %-po are
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not inverse. The functlon %-po 2 -po 1s not = J but = abs

which, in fact, 1s Cauchy's representation of the function abs.

Se The Trigonometric Functions.

We call £ a tangential function if and only if

+ fh
f(g +h) 31—%‘1'_3'_:!1’; and f # 0.

We shall denote a tangentlal function by tan. In the second
chapter we shall single out among the tangentlial functions
the ordinary tangent function.

From the definition it followss If tan g = 0, then

tan(f +g) = tan f. Moreover,

2etan 0
tan 0 = tan(0+0) = ~ten 0.San 0 °

Consequently, if the constant tan O 1s to be real, we have
tan 0 = 0. PFurthermore, it readily follows from the defini-
tion that tan 1s an odd functlon.

In this section we shall assume that the constants form
the field of real numbers. Moreover, we shall postulate the
existence of a smallest constant ¢ >0 such that tan ¢ = 0.
Then tan does not admit the substitution of the constants c/2
and -c¢/2. For 1f, say, tan (c/2) were defined, then we should

have
- - 2+tan ( ¢/2)
0% tan ¢ = TT%an (/&) -tan (o/2) °

This equality would imply tan (¢/2)=0-1in contradiction to our

assumption that ¢ is the smallest number O for which tan ¢ =0.
It further follows that tan (¢/4)= 1 or -1 since, by virtue
of the definition of tan, every other value of tan (c/4)

would entail a value for tan (¢/2). We shall only admit the
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substitution into tan of constants between -c¢/2 and c/2.
Relative to each tangential function we define a sine and
a cosine function in the followlng way:

2+tan 1 - tan®
1n(2e4) = —=2 2. =
sin(2-3) 1 + tan? and cos(2-]) 1ot

We obviously have

sin(2-]) - _2+tan _ .
cog(ZOJ) m tan(2 J)c

Substituting -:él- *J into the equality, we see that tan =sin/cos.
Other useful ldentities are
sinz + cos2 =1l and 1 +tan2 =rec coaz.
We postulate an inverse of tan on both sides and call it

arctan.
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II. ALGEBRA OF CALCULUS
—————————————————————

1. The Algebra of Derivatives.

We shall now introduce an operator D assoclating with a
function £ a function Df, called the derivative of f. We
shall not attempt to formulate criteria as to which functions
form the domain of the operator D or as to which constants, 1if
any, may be substituted into Df. In our Algebra of Deriva-
tives, we shall adopt the same point of view as in our Algebra
of Functions: We shall derive formulae which are valid in
classical calculus provided that the terms involved in the
derivation of the formulae are meaningful. In classical cal-
culus, for a given function f and a given constant ¢, the
symbol (Df)c is meaningful 1f the function £=i¢ g §° has a limt
for c. We, too, might define (Df)c in terms of a limit opera-
tor, L, and derive the fundamental properties of D fron.u
postulates concerning L. But in the present exposition we
start out with an undefined operator D subject to a few
assumptions comnecting D with the Algebra of Functions.

Since D is not a function, the postulates of the Algebra
of Punctions can not be applied to D. Especlally the associ-
ative law for substitution does not hold for D. Thus the sym-
bol Dfg is ambiguous. It may mean D(fg) or (Df)g. In order
to save parentheses we shall make the convention that the
symbol D xfeferl only to the immediately following function or
group of functions combined in parentheses. Thus we shall
briefly write Dfg for (Df)g and reserve parentheses for the
case D(rg).
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Three postulates will connect D with the three funda-
mental operations of the Algebra of Functions:
I. D(f+g) =Df+Dg
II. D(feg) = £+Dg+g-Df
III. D(fg) = Dfg-Dg
Postulate III replaces the assoclative law for substitution
with respect to D. It states that D(fg) and (Dg)f differ by
the factor Dg.
By postulate I we have
DO = D(0 +0) = DO +DO.
Thus DO = 0., This formula has two important consequences. ,
By means of 1t we first see that
0 =D0 =D(f +neg £f) = Df +D neg £,
and thus
D neg £ = neg Df.
Secondly, if ¢ 1s a constant, that is to say, if ¢ = ¢O,
we obtain
Dec = DcO = D(c0) = DecO0-DO = Dc0-0 = O.
Postulate II now ylelds
D(cef) = ceDf +f£<Dc = ceDf +0 = c-Df.
We shall call this result the Constant Factor Rule.
In view of £j = f postulate III ylelds
Df = D(fj) = D£j-DJ = DL£-DJ.
Hence DJ = 1 unless Df = O for each f which we shall later
exclude. Anticipating this development, we shall from now on
assume that DJ = 1. A frequently used consequence of Dj = 1
and D¢ = 0 1s the formula
D(J +¢) =1,



Applying the formula D neg £ = neg Df to £ = jJ we obtaln
D neg = -1.
If f 18 even, that 1s, if £ = £ neg, then
Df = D(f neg) = Df neg*D neg = Df neg--L = neg Df neg
from which it follows that neg Df = Df neg, or in other words,
that Df is odd. Similarly, one can prove that if f 1s odd,
then Df is even. Using this fact, we see that
0 =Dl =D(jerec) = j*D rec+rec-Dj = j+D rec +rec.
It follows that j*D rec = neg rec and D rec = neg (-2) - po.
By virtue of postulate III we conclude further that
D(rec g) = neg (-2)-po g-Dg.
By means of postulate II we obtain
D(ferec g)=f<D(rec g) +rec g-Df =f-neg(-2)-po g<Dg + rec g-nf,
that 1s, the Quotient Rule
D(ferec g) = (g*Df - £Df)+(-2)-po g.
Let g be a right inverse of f. From fg = J 1t follows
by virtue of postulate II that
DfgeDg = DJ =1, and thus Dg = rec Dfg.
If h is a left inverse of f, then hf = j implies that -
Dhf+Df = DJ =1, and thus Dhf = rec Df.
If h 1s also a right inverse, then substitution of h into the
last formula ylelds the preceding formula for the derivation
of a right inverse. For
Dh = DhJ = Dhfh $ rec Dfh.
By induction we obtaln from the three postulates
D(fy + f5 + eco + £ ) =Dfy) + Dfy + <o + Df

D(fl'fz‘oao'rn) = pld)fl + pz’sz * ecoe # pnODfn



where p, denotes the product of the n factors 1.'1,f2,...,fn
with the exception of fy.
D(£yf0...8,) = Dfyfoeeefn Digfaeecfpeece Dy £y D).
The second of these rules, for equal factors, ylelds the

formla
pr® = n.e™lope,

in particuiar
DI® = ny™1,

This formula in conjunction with postulate I and the Constant
Factor Rule enables us to derive each polynomial
D(oo -.vcloj "’02'32 L XXX +Q-an) -cl "2'62'1 L XEX) +no°-.j-1 .
We call f an algebralc function, more specifically, an
algebraic function belonging to the polynomials PosPysecesPpoif
po + p10f+ pzofz + eos $ pn.fns 0.
By virtue of the formulae derived in this section we obtain
n n -1
Df = neg( 2 5D, )ervec( 2 kef* Yep ).
8 2ot Py k=1 P

2. The Derivation of Exponential Functions.

Let exp be an exponential function. We apply the formula

exp(f+g) = exp feexp g to £ = J and g = ¢. We obtain
Dlexp(J +¢)] =D exp(J +0)*D(J +¢c) =D exp(J +0)°1 =D exp (] +¢c).
On the other hand

Dlexp(j +c¢)] =D(exp J-exp c) =D(expeexp c¢) =exp c<D exp.
Thus, D exp(J +c) =exp ceexp. Substituting 0 in this equality
we obtaln

on the left side: D exp(Jj +¢c)O0=D exp(0O+c) =D exp o

on the right side: exp cO°D exp O=exp oD exp 0.
Thus D exp ¢ = exp c¢*D exp O for each constant ¢. If we have
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a base of constants it follows that D exp = exp*D exp 0. We
see that the derivative of an exponential function is a con-
stant mmltiple of the function.

We shall postulate the existence of an exponential funct-
ion for which D exp O = 1. From now on we shall restrict the
symbol exp to this exponential function defined by the two
postulates

1. exp(f+g) = exp feoxp g

2. Dexp O0=],
Postulate 2 makes the previous stipulations exp # O and # 1
superfluous since DO = D1 = 0 and thus DOO = D10 = 0 # 1. In
the classical theory, the only differentiable (and even the
only continuous) function satisfying the postulates 1 and 2 is
the function associating e* with each x.

From the two postulates we have derived that D exp = exp.

In Chapter I we saw in the algebra of the exponential
functions that exp ¢ ¥ O for each c. Hence D exp ¢ ¥ O for
each ¢. Thus our postulate 2 concerning the ;xponentitl
function implies the existence of a funetion which, in an al-
gobra with a base of constants, justifies our conclusion
DJ = 1 in the preceding section, in the sense that Djc = 1 for
each constant c. We merely have to apply our previous reason-
ing to £ = exp. From exp j= exp it follows that

D exp = D(exp j) = D exp J:D] = D exp+Df
hence D exp ¢ = D exp c*Djc for each constant c. Since
D exp ¢ ¥ 0, we may multiply.both sides of this equality by
rec D exp ¢ and thus obtain Djc = 1 for each constant c. Hence
Dj =1 if we have o. base of constants.
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Applying postulate 3 to the formula D exp = exp, we obtaln
D(exp £) = D exp £«Df = exp f-Df.

3 The Derivation of Logarithmic Functions.

By log we shall from now on denote the inverse of the
function exp for which D exp O = 1 and D exp = exp.

From exp log = § by virtue of -postulate III it follows
that
1=DJ = D(exp log) =D exp logeD log =exp log+*D log = j<D log.
Thus, D log = rec.

The function rec on the right side admits the substitut-
lon of each constant # 0, the function log on the left side
the substitution of squares only. Instead of log we shall
study the function logabs = log abs which, like rec, admits
the substitution of each constant # 0.

D logabs = Dt% *log(J-J)] = %; *D[1og(J3)] -%-plog(J-j)-n(:-j)
= %-reo(j-J)-Z-j =pec(Je])ej =(rec jerec j)+J =(recerec) ]
= rece(rec+j) = rec-l = rec.

Next we compute D abs. We have
D abs =D(exp log abs) =D(exp logabs) =D exp logabs-D logabs
= oxp logabs-rec =abs-rec =sgn.

We remark that the formulae D log = rec and D abs = sgn
by virtue of postulate III entall the formula D logabs = rec.

Applying the last formula and postulate III we obtain

D(logabs £) = D logabs £<Df = rec f£+Df. '

4. Iogarithmic and Exponential Derivation.

The formulae at the end of the two preceding sections can
also be written as follows:



36

Df = f.D(logabs £) and Df = rec exp f-D(exp f).
Replacing £ in the former formula by a particular function f
is called logarithmic derivation (or differentiation)of f.
Similarly, replacing £ in the latter formula by a particular
function £ might be called exponentlal derivation of f,

We .apply the former method with benefit whenever logabs f
is simpler than f. As an example of logarithmic derivation,
we treat the power functions. From ¢ -po = exp(c-log) it fol-
lows that log ¢ -po = celog which is indeed simpler than ¢ - po.
We have D(log ¢ -po) = ¢°D log = c*rec. Hence by the formula
of logarithmic derivation

Dc-po = ¢c=-po+D({log c=po) = ¢ -poecerec = c*(c=-1) - po.

We mention that this formmla holds also for the extended

c-th powers in case that c 1s a rational number with an odd

denominator. For in these cases we obtain

2m 2m . 2m |
Done1 = P “gme1 - P D{10g exp ey logabe1}
2m pr2m . em _ em _ _ .
= B - PO-Dlg,y clogebsl = ol “Ener - POUTCC
= 2m .2§n-n2-1 - po.

2o+l = 2ntl

2ml 2ml . cexo(2EHL |
D o1 " P "oy - PO D{losnbs [sgn m(znu 1ogaba)]}

2mel . 2mel |
= oty - P° D{logo.ba exp (2n+1 logtba)}

e R0 U omel Zmel
= Zne1 - POD(Goey s 1ogabe) = ST *2ney - PO°TeO
= -2-;.;!-1- OM - po.

2n+l  2n#l

We see that, in accordance with the genersal rule, the deriva-

2m
one1 - P° is odd, and the derivative

-po is even.

tive of the even function

2m+l
of the odd function ool
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.As another example we apply logaritimic derivation to the
function £ = exp(]elogabs) in the classical theory denoted by
x*. We have logabs f = je.logabs, thus

D(logabs f) = logabs + jerec = logabs + 1.
Hence, Df = f-D(logabs f) = exp(J-logabs)-(logabs + 1).

In general, for functions starting with the symbol exp
the function logabs f 1s simpler than f, and hence logarithmic
derivatlion is co;xvenient. The same 1s true for functions f
which are products fjefoe...of provided that we can find
D(1logabs £;) for 1 =1,2,...,n. For D(logabs f) is the sum of
these n functions.

Exponential derivation is convenient whenever exp f is
simpler than f£. This is the case for functions starting with
the symbol log or logabs. As an example, we treat the funct-
ion £ = jogabs(J +1logabs). Now,D(exp f) =D(j +logabs) =1 + rec.

Hence, -
Df =rec exp f£*D(exp f) =rec(] +logabs)+(1 +rec).

6. The Derivation of the Trigonometric Functions.

Let tan be a tangential function, ¢ a constant. From the

definition of tan it follows that

tan j +tan ¢ tan +tan ¢
* -; P ——
tan(J +c) = l-tan Jetan ¢ = l - tanctan ¢
By virtue of the quotlent.rule we obtaln

D tan(J +¢) = Dltan(] +¢)]

(1 - tanetan ¢)+D tan - (tan+tan ¢c)* - tan c*D tan

= (1 - tan-tan cﬁ

= D tane(l +tan cetan ¢)-rec(l - tan+tan c)z.
Substituting O we obtain
D tan ¢ = D tan 0+(1 +tan c-tan ¢)erec(l - tan Otan c)z.



8ince tan ‘0 = O we have
D tan ¢ =D tan 0¢(1 +tan c-tan ¢) for each constant c.
If we have a base of constants, then
D tan = D tan 0+(1 +tan®).
We shall now postulate that there is a tangential function tan

for which D tan 0 = 1. From now on we shall reserve the sym-

bol tan for this function given by the postulates
tan £ +tan g
l-tan fetan g

1. tan(f+g)=
2. D tan 0 = 1.
For this function we have
D tan = 1-H;n.n2 = rec 00l2.

In the classical analyslis, for each constant a the funct-
ion tan (a-x) satlsfies postulate 1. The function assoclating
tan x with x is the only one which satisfies postulates 1 and
2. In a paper "e and ¥ in Elementary Calculus® (to appear in
the near future ) we describe how the postulates
Dtan 0 =1 and D exp O = 1 in conjunction with the functional
equations for the tangential and exponential functions yleld
an intuitive introduction of v and e, as well as a simple dev-
elopment of the "natural® tangential and exponential functions
e* and tan x (x measured in radians).

From tan arctan = J we obtain

1 = D(tan arctan) = D tan arctan<D arctan
= (1 +tan®)arctan<D arctan = (1 + 32)-D arctan.

It follows that 2
D arctan = rec(l + j°).

From the definition of the sine function we conclude by
virtue of the Quotient Rule
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2+D sin(2+j) = D[sin(2])]
= 2¢[(1 + tan®) D tan -2+tan<D tan-tan]erec(l +tan®)2
= 2+(1 - tan®) D tan-rec(l +tan®)2 =2+(1 - tan?) -rec(1 + tan?)
= 2+c08(2°]).
It follows that D[sin(2:J)] = cos(2+J). Substituting % 3

we nbtain
D sin = cos.

Similarly, we arrive at D cos = neg sin. (It goes without say-
ing that the symbols sin and cos are reserved for the functions
defined in terms of the tangential function for which

D tan 0 = 1).

6. The Foundation of the Algebra of Antiderivatives.

The Algebra of Antiderivatives is based on an equivalence
relation which we shall symbolize by ~, and a right inverse of
the operator D which we shall symbolize by S. We shall read
the symbol Sf “an antiderivative of f™ or ™an integral of £*
indicating by this expression the multi-valuedness of the
operator 8 in contrast to the uni-valuedness of D. The latter
is expressed in the implication

If £ =g, then Df = Dg
which will be of baslc importance for the Algebra of Anti-
derivatives.

8f 1s what in the classlcal analysis is denoted by
J£(x)dx while f~g expresses the relation £'(x) = g'(x) for
which the classical theory does not introduce a special symbol.
Only to some extent f~g corresponds to what in classical
integral calculus is denoted by f(x) = g(x) +const. As we
shall see in this section, £ = g + ¢ implies f~ g. However,
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our Algebra of Antiderivation neither infers nor postulates
that conversely f~g implles £f =g + c. In class.t.cal analysis
the proof of the fact that functions with equal derivatives
differ by a constant, requires deeper loglcal methods than
the proof of any theorem corresponding to our Algebra of Anal-
ysis (see Introduction).

In view of the connection of our antiderivation with
the classical calculus of indefinite integrals, we shall call
f the integrand of Sf.

The two fundamental concepts of the Algebra of Antideri-
vation are introduced by the postulates:

A. f~g 1f and only if Df = Dg

B, D(sf) = ¢.
No ambiguity will arise if we write postulate B in the form
DSf = £ since we shall leave DS undefined. We might, of
course, express postulate B in the form DS = j. At the begin-
ning of this section, in calling S a right inverse of D, we
adopted this point of view. But we shall refrain from elabor-
ating on this i1dea (as in the Algebra of Antiderivates we re-
frained from briefly writing D neg = neg D instead of
D neg £ = neg Df) since 1ts consistent extension would necessi-
tate the use of functions of more variables.

From the definition A it follows that the equivalence re-
lation 1s reflexive, symmetric, and transitive. 8ince DO =0
and Dl = 0, we have O~1l. In fact, for each constant ¢ we
kave c~0., More generally, from the Algebra of Derivatives
it follows that £ + c~f.

Next we consider two fundamental consequences of postu-
late B. If 8f~g, then DSf = Dg, thus by postulate B, f =Dg.



41

Conversely, if f = Dg, then from B it follows that D3f = Dg
and hence Sf ~ g. We thus see
C. 8f~ gif and only if £ = Dg.

Secondly, we see: If SDf ~ g, then DSDf = Dg and from B
it follows that Df = Dg. Hence £ ~ g and g ~ f. We thus
obtain the result

D. 8pf ~ f.

Obviously, this Algebra of Antiderivation solves all the
difficulties connected with the multi-valuedness of the
operator S. In our formula, Sf stands for any function g for
which Dg = £, The formulae concerning antiderivatives result-
ing from our two postulates of the Algebra of Antiderivation
express only the equivalence (never the equality) of anti-
derivatives with functions or other antiderivatives. For in-
stance, from DO = Dc = O 1t follows that SO ~c¢. Clearly,
also the classical integral calculus lacks formulae expressing
the equality of any antiderivation and any other function.

7. Formulae of the Algebra of Derivation in the
Notation of Antiderivation.

The formulae A. -D. of the preceding section enable us to
translate each formula of the Algebra of Derivation into a
formula about antiderivation. We start translating the
postulates I - III of the Algebra of Derivatlon:

8f +3g ~ SD(Sf +8g) ~ S(D8f +Ds8g) ~ 8(£ +g).
feg ~ SD(f+g)~ S(f<Dg +g-Dr) ~ 8(f+Dg) +8(g+Df).
fg ~ 8D(fg) ~ 8(Drfg<Dg).
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We thus obtain
I' S(f +g)~8f +8g
II' feg~ 8(f+Dg) + S(g-Df)
III' fg ~ 8(Dfg-Dg).
Important is the special case of II' for £ = ¢ and g ~ Sh. We
obtain the Constant Factor Rule
¢*Sh~ S(c*h).
Translating the formulae

D exp = exp, D logabs = rec, D tan = rec cos®
we obtaln
S exp ~ exp, S rec ~ logabs, 8 rec cos? ~ tan.

From D c-po = c*(c=-1) =po, it follows that
S8fe*(¢c-1) - pol~ ¢ = po.
Applying the Constant Factor Rule for% (1f ¢ # 0) and re-
placing ¢ +1 by ¢, we obtain
1
Sc- = = o (ctl) - if ¢ # 0.
po = == (e+l) - po #

8. The Three Methods of Antiderivation.

If in formula III' we replace f by Sh we obtain
1Ir*  sng ~ S(hg-Dg).
The formula III* 1s the source of two methods for the computa-
tion of antlderivatives.
The first of these methods consists in applying formula
III* read from the right to the left, that is, in the form
8(hg-Dg) ~ Shg.
In words: If the integrand of an antlderivative which we
wish to find, can be represented as the product of what re-
sults from a function h by substltution of a function g times

the derivative of this function g, then we obtain the
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antiderivative we are looking for, by substituting g into the
antiderivative of h. The problem of finding the antideriva-
tive of hg+Dg 1s thus reduced to the problem of finding the
antiderivative of h.
Examples:
S(rec g-Dg) ~ logabs g
S(tan g-Dg) ~ rec coszg

S(exp g*Dg) ~exp g, etc.
The second method, called antiderivation by substitution,

consists in substituting into formula III*, read from the left
to the right, the right inverse of g which we shall denote by
g%. We obtain

Sh g g* ~ S(ng-Dg)g™
thus
E. Sh~ S(hg-Dg)g*.
In words: We find the antiderivative of h by substituting
into h any function g, multiplying the result by Dg, finding
the ‘antiderivative of the product, and substituting into this
antiderivative the right inverse of g.

While formula E 1s correct for each h and g, it 1is of
practical use for given h only if we can find a function g
with a right inverse such that S(hgeDg) 1s simpler than Sh.

Example:

sh ~ 3(h tanD tan)arctan.
The formula is useful if S(h tanerec cosa) is simpler than Sh.
For instance, this is the case if h = (-%) -po(l+2-po), in
classical notation, h(x) = (1 +x2)'3/2. We have
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h tan = (- 3) -po (1+ tan®) = cosS,

h tanerec c092

= cos,
S[(-%) -po (1+ 2 -po)]~ 8 cos arctan ~ sin arctan.

The third method, called antiderivation by parts, consists
in an application of formula II', written in the following
form

Fo S(f-Dg) ~ feg - S(g*Df).
While this formula holds for each f and g, it is of practical
use for the computation of an antiderivative Sh only if we
succeed in representing h as the product of two functions f
and f; such that
1) S8f; can be found,
2) S(Df-8f;) can be found.
If we set 8f; ~ g, then formula F enables us to compute
S(£-fy):
F'. S(fefy) ~ f£e3f; - S(Df+81,).
While it 1s immaterial which antiderivative of f; we use in
the expresslon on the right side, it 1s essential that on both
places the same antiderivative Sfy 1s selected.
Example:
S logabs ~ S(logabs-1l) ~ 8(logabs-Dj)
~ J*logabs - 8(jerec) ~ jelogabs - S1~ j-logabs - J.
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III. ON FUNCTIONS OF HIGHER RANK

1. The Algebra of Functions of Higher Rank.

4s in the first chapter, we shall denote functions by
small letters f,g,h,... But we shall assume now that with
each function f a positive integer r, called the rank of £, is
assoclated. The rank will correspond to the number of vari-
ables of f in the classical notation. Whenever it is neces-
sary to indicate the rank of f we shall write £{T) or, where
no confusion with powers can arise, briefly T,

Only one operation will be assumed, substitution, de-
noted by juxtaposition. If f 1s of rank r, then for each
ordered r-tuple of functlons g;,e..,8, there is a function
r(gl,...,gr). It is called the function obtained from f by
substituting -9 at the index i for i =1,...,re If a function
f 1s followed by r functions in parentheses, separated by
commas, it w:lli be understood that f is of rank r. If g 1s
of rank s,, then f£(g,...,8,) 1s of rank s, + «-- + L

Substitution will be assumed to satisfy the following
lawss

I. Assoolative Law.

[f(slslg LX) o,gr’r)](hly oe .'h'1+' . .+'r)
= ftsl(hl' .0 o.hsl)l e "sr(h‘r-l"l' ooo,h'r)].

For some purposes it 1s convenient to denote the s; functions
substituted into g by hil""'hisi (1 =1,2,...,7). In this

notation the assoclative law reads:



46
[f(G]_. oo O’Sr)](hllg o0 .,hr.r)

= f[gl(hll, ...’hlll”...'gr(hrl"..'hr‘r)] °
II. Law of a Neutral Element.
It =12(3,0..,3) = £,
III. E'__ of .Pe_pz_o_g_s}gg. If for the function f of rank

r > 1 we have
L= 0(J,00053:803000053)

no matter which function g we substitute at the index i, then
there exists a function f(i ) whose rank is by 1 less than that

of £, for which
f(i) = £(Jy00093:8535900,5), and thus

L(1)(81seeesBr1) = £(B1s0eesB1.108s81500208p1)

We say of such a function f that it admits the suppression of
the index 1. In the classical notation, a function admitting
the suppression of the index 1 is one which does not depend
upon its i-th variable, as f£(x,y,zZ) = 4°x + 5°log z does not
depend upon y.

Definition: If for a function f of rank 1 we have
fg = £ for each g, theq f 1s called a constant.

If for a function f of rank r we have £ = £(g;,...,8,)
no matter which functions 81seees8y WO substitute, then we can
suppress any r -1 of the indices and thus arrive at a constant
function. We may call f a constant functlion of rank r. By
substituting r constant functions into any function of rank r,
we obtain a constant functlon.

If a function of rank r admits the suppression of each of
its indices, then it is constant. l.g._, for » = 2,

1if f(g,J) =f ana £(J,h) =1,
then f(g,h) = [£(J,h))(s,]) = £(g,]) = £.
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It is easy to prove that the function obtalned from f by
substituting a constant at the index 1, admits the suppression
of the index 1 if the rank of £ is > 1, and 1s a constant 1f
the rank of f 1s = 1.

IV. Law of Identification. Let R be the set of numbers
il,...,r}, and R =Ry + ¢-+ + Ry a splitting of R into m(<r)
mutually disjoint, non-vacuous sets RJ = {13’1,...,15’1:1}.
Then for each function £ of rank r there exlsts a function
TRy, ..., Ry Of Tank m such that fal,...,Rm(Sl'""sn) is equal
to the function obtalned from { by substituting g; at the
indices belonging to Rl,..., and g, at the indices belonging
to Ry. For instance, if R = {1,...,6}, R, = (1,2,4},

R, = {5}, Ry = {3,6}, and f 1s of rank 6, then there 1s a
function fRI’RB-RS of rank 3 such that

rnl.ng.nstm,sz.es) = £(g),81,83,81,82,83)-

Obtaining prRz:Rs from R corresponds to the formation of
£(x,x,5,x,2,y) from £(x3,+09Xg) in the classical notation.
For each function f we have fpg = £(g,++.,8). This 1s the
case m = 1.

We remark that for each function f of rank 2, and each
two functions 8 and g5 of rank 1, we clearly have

[£(gy,82)Jgh = £(gh,g5h).
V. Iaw of Permutation. If £ 1s a function of rank r

end 1f p is the permutation 11,...,1r of the numbers
l,¢00,r, then there is a function fp of rank r such that for
each r-tuple of constant functions CyseeesCp WO have

2p(ey500050,) = f(°11""'°1.,,)‘
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For each function £T of rank r the permutations p for which
r"p = tr, form a subgroup re* ot Zy, the symmetric group of r
elements. /7f” 1s called the group of rf., It T = Zy,
then fT is called a symmetric function.

In fornulating this law, we substituted into f only con~
stant functions, since without this restriction none but
constant functions f would satisfy the law. Indeed, let f be
a function of rank 2, and let p be the permutation 2,1 of the
numbers 1,2, If we had postulated the existence of a function
£p such that fp(gl,gz) = 1’(52,31) for each pair of functions
81,82 of rank 1, then by substituting the functions hj,hy into
the two above functions of rank 2 we should obtain

[fp(g]_:sg)](hlnhz) = [f(82:81)](h1:h2)-
By virtue of the associative law for substitution this equality
would imply -

fp(g1hys Boho) = flgphy, 8 hp)
for each quadruple of functions gl,ge,hl,hz. Applylng this
formula to
51 = h2 = 0, hl = J

we see that
£p(0, g50) = £(gy,0)

for each function gg. Now, since 820 is a constant, we see
that £p(0,g30) 1s a constant. Hence, f would permit the sup-
pression of the index 1. Similarly we could prove that £
would permit the suppression of the index 2. Thus f would be

a constant.
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2. Sum and Product.

We call a function f of rank 2 assoclative if
f[f(sl'%)pssl = f[glaf(Sz)SS)]o
A constant function n 1is said to be neutral with respect

to £ 1if
f(n,g) = £(g,n) = g.

An associative, symmetric function of rank 2 may be con-
sidered as an assoclative, commmutative binary operation. In-
stead of f(g,h) we may write goh. We shall postulate the
existence of two such functions s and p whose corresponding
operations will be denoted by + and », and called addition
and multiplication, respectively. We shall postulate the ex-
istence of neutral elements denoted by 0 and 1, respectively,
and shall assume a distributive connection of s and p.

In order to establish the comnection of these concepts
with those of the Algebra of Functions developed in Part I, we
remark that the sum of two functions g and h of rank 1 consid-
ered in Part I, is [s(g,h)]1=t rather than s(g,h). For s(g,h)
is a function of rank 2 whereas the sum of two functions con-
sidered in Part I was a functlon of rank 1. We had
(f+g)h = th+gh, By virtue of the remark following the Law
of Identification in the preceding section, this formula (1i.e.,
the a.s.d. law) is indeed valid for [s(s.l:l)]R . In the classi-
cal notation, s(g,h) corresponds to g(x) + h(y) while
l:s(g,I:n)]K corresponds to the sum g(x) + h(x) which we con-
sidered in Part I. 8imilarly the product geh of Part I 1is
[p(e,b)]g -



S. The Algebra of Partial Derivatives.

If £ 1s a function of rank r, we introduce r operators
Dy. We call Dyf the partial derivative of f for the index 1.
This operator is connected with substitution and identifioca-
tion according to the following postulates:

I. Dlj[r(sl’...’sr)] - Dif(sl' ."'sr).njsi.
Here the symbol 1J refers to the j-th index in g;, in the same

way as we could denote the 89 % o0+ 8y, functions to be sub-
stituted into the function f(g;,...,8,) by

hll, oo ’hl'l’ eoe ,hrl. ece .hr.r.

Ir. DifR,ee By ™ uf,nl‘”j R T I
Here Ry + «++ + R, 1s a decomposition of the set R = {1,...,1'}
into non-vacuous, disjoint subsets.
4 detalled development of the Algebra of Partial Deriva-
tion on this foundation will be the content of another
publication.
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