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PREFACE

This volume contains abstracts of a series of lectures given to

graduate students in electrical engineering at Union College. It

is primarily intended to prepare the student to understand and

to deal mathematically with phenomena which are incidental to

abnormal or transient conditions in electric circuits.

The first part is practically a reprint of a series of articles

published by the author some years ago in the General Electric

Review. These cover the simple transients in circuits containing

concentrated inductance, capacity, and resistance, which have

been treated by many authors, notably by BEDELL AND CREHORE
in their

"
Alternating Currents," published 1893.

The second part deals with the somewhat more difficult prob-
lems of transients in circuits of distributed inductance, capacity
and resistance. These were treated mathematically very fully

almost thirty years ago by Heaviside in a series of papers on
"
Electromagnetic Theory/

7

later published in book form. In

1909 Steinmetz's
"
Transient Phenomena" appeared. This

book covered in a broad sense very much the same ground as that

of the authors given above, but covered it in an essentially differ-

ent way; introducing for the first time asfa-r as the author knows
a really advanced book on practical electrical engineering

problems.
The third part of the book deals with problems in electro-

statics. These again have been very fully treated almost fifty

years ago by Maxwell in his famous books on "Electricity and

Magnetism.
"

Since that time a large number of papers and books

have appeared on the subject, notably by Heaviside, Kelvin,

Gray, Jeans and Webster, and quite recently by Coffin in his

interesting little book on "Vector Analysis."
While the literature on this phase of engineering is thus very

extensive, it has, for all purposes, been closed to the practical

engineer because of his lack of sufficient mathematical knowledge.
Dr. W. S. Franklin has, however, recently published a number of

papers, which in a beautifully simple way have demonstrated
that these advanced problems can be solved with simple
mathematics.



vi PREFACE

The last part of the book gives an outline of the theory oi

electric radiation. The mathematical theory was again given

almost fifty years ago by Maxwell. Hertz's verification of

Maxwell's theoretical work given twenty years later and pub-
lished in his "Electric Waves" is today almost the last word in

the theory of wireless transmission of energy. Yet it would be

out of place to omit a reference to the recent excellent papers and

books by Marconi, Lodge, Flemming, Pierce, Zenneck, Cohen,
Austin and a score of others.

It is evident then that the field covered in this volume is not

new. Nevertheless, the book seems justified because it endeavors

to give the theory in a way comprehensible to students who have

had only the ordinary undergraduate course in electrical engi-

neering. It is hoped that the volume will also serve a useful

purpose in bringing to the attention of students a field of mathe-

matics of extreme practical importance that is hardly known
to them.

The author is greatly indebted to one of his graduate stu-

dents, MR. M. K. TSEN, who not only examined the manuscript
in detail, but checked and elaborated upon the theoretical work.

He is also indebted to DR. A. S. MCALLISTER, who kindly criticized

the manuscript prior to its publication and offered valuable

suggestions.



CONTENTS
CHAPTER PAGE

INTRODUCTION 1

PART I

TRANSIENT PHENOMENA

I. CIRCUITS CONTAINING CONCENTRATED INDUCTANCE AND
RESISTANCE 3

II. PROBLEMS INVOLVING MUTUAL INDUCTANCE 33

III. CIRCUITS OF RESISTANCE AND VARIABLE INDUCTANCE ... 56

IV. CHARACTERISTICS OF CONDENSERS 68

V. A CIRCUIT CONTAINING DISTRIBUTED RESISTANCE AND IN-

DUCTANCE 106

VI. CIRCUIT CONTAINING DISTRIBUTED LEAKAGE CONDUCTANCE
AND CAPACITY 110

VII. CIRCUIT CONTAINING DISTRIBUTED RESISTANCE AND
CAPACITY 113

VIII. DISTRIBUTED INDUCTANCE AND CAPACITY 127

IX. DISTRIBUTED RESISTANCE INDUCTANCE LEAKAGE CON-
DUCTANCE AND CAPACITY 143

X. PERMANENT CONDITIONS WHEN ONE OF THE FOUR CONSTANTS,

R, L, G, AND C is NEGLIGIBLE 148

XL DISTRIBUTION OF FLUX OR CURRENT IN A CYLINDRICAL OR
FLAT CONDUCTOR 150

PART II

PROBLEMS IN ELECTRO-STATICS

XII. FUNDAMENTAL LAWS 157

XIII. METHODS OF IMAGES, APPLIED TO THE PROBLEM OF POINT
CHARGES + 10 AND 5, SEPARATED 5 CM 168

XIV. APPLICATION OF THE POTENTIAL FORMULA V =
2.*

TO SOME MAGNETIC PROBLEMS 180

XV. DIVERGENCE OF A VECTOR, POISSON AND LAPLACE EQUATIONS. 186

XVI. LEGENDRE'S FUNCTION 189

XVII. DISTRIBUTION OF CHARGE ON AN ELLIPSOID 199

XVIII. CONCENTRIC SPHERES 209
XIX. CYLINDRICAL CONDUCTORS 218

XX. MUTUAL AND SELF-INDUCTION OF ELECTRO-STATIC CHARGES
OR FLUXES MAXWELL'S COEFFICIENTS 232

XXI. TWO-CONDUCTOR CABLE 237

vii



Vlll CONTENTS

XXII. THE ELECTRO-STATIC EFFECT OF A THREE-PHASE LINE ON AN
ADJACENT WIRE OR WIRES 249

XXIII. THE CURL OF A VECTOR 257

XXIV. THE EQUATION OF THE ELECTROMOTIVE FORCE 260

XXV. SOLUTION OF ALTERNATING CURRENT IN CYLINDRICAL CON-
DUCTOR SKIN EFFECT '. 271

XXVI. ELECTROMAGNETIC RADIATION. . 278

APPENDIX I: PARTIAL DIFFERENTIATION . .

APPENDIX II: ELEMENTS OF VECTOR ANALYSIS.

319

327

INDEX 331



ELECTRCAL ENIN-EERING
ADVANCED COURSE

PART I. TRANSIENT PHENOMENA
CHAPTER I

CIRCUITS CONTAINING CONCENTRATED INDUCT-
ANCE AND RESISTANCE

The study of transients in circuits of concentrated inductance

and resistance involves as a rule a knowledge of the solution of

linear differential equations of the first order.

One example of such a differential equation is:

2+/i(*)=/i(*) (1)

where fi(x) and fz(x) may be functions of x or constants, but

must not be functions of y.

For the sake of convenience fi(x) will be denoted by P and

fz(x) by Q. P and Q in the most general case are then functions

of x but not of y. Thus, equation (1) becomes

% + Pdv = Q (2)

A solution of this equation can be obtained, in several ways,
all of which, however, involve "educated guesses."

Let, for instance,

y = uv (3)

where u and v are unknown functions of x, which will be deter-

mined in the most advantageous way.

Since dy dv du
y = uv, -7- = u -; \~ v-j- (4)1 dx dx dx

Substituting (3) and (4) in equation (2),

dv du

or

Since u is entirely arbitrary, this expression can be greatly
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simplified, by selecting such a value of u as to make the coefficient

of v or the parenthesis zero. Therefore let:

,dx u

.'. logu = - fPdx + C.

Since the simplest possible function is sought, let that particu-

lar one be chosen, which makes C = zero. Thus:

log u - - fPdx,
and u = e-SPdx (6)

Substituting now this value in (5), there is obtained,

.'. v = fefpd* Qdx + C.

and since y =
uv,

y = t-fFd* [ffP** Qdx + C] (7)

Special cases:

First. Let P be constant, a; and Q be a function of x

and y = e~
ax
[fe

ax
Qdx + C] (8)

Second. Let P be a function of x, but Q be a constant, b.

and y = e-^Fdx [bfefpd* dx + C] (9)

Third. Let both P and Q be constants, a and 6 respectively,

dy'

or
> _ _ i n -ax

Fourth. Let P be a function of x and Q be zero.

and, y =
<
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If P is a constant a, then y = Ce~ax.

Fifth. Let P be zero and Q be a constant, 6,

. dy^ b

and, y = bx + C. (12)

Two useful integrals that can, of course, easily be solved but

will frequently appear are given below for the sake of convenience.

e
ai

cos ut dt = -
-5 [o> sin ut -\- a COS co/1.

a" + or

rf

sin at dt = -
~^\a sin co^ co cos co/1.

a 2 + a;
2/

A study will now be made of the equation of the current flowing

in such circuit when the impressed e.m.f. is steady and also when
it varies with time. Referring to Fig. 1, it is evident that the

following e.m.fs. exist:

FIG. 1.

First, the impressed e.m.f., E\

Second, the e.m.f. consumed by the resistance =
ir;

Third the e.m.f. consumed by the self-inductance =
j^ --yr or

di
L

di>

where E is the impressed e.m.f. in volts,

r the resistance in ohms,
N the number of turns of the coil,

L the inductance in henrys (assumed constant),

-77 the rate of change of flux at a particular instant, t, and

i the current in amperes at any particular instant.
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The e.m.f. consumed by self-inductance can be expressed as

J*
or L -jT- because the inductance by definition is :

_AT0=

108
i

thus Nd<t> _ di^

10*dt
"

dt'

The equation connecting these e.m.fs. is obviously:

' *-* + L (14)

That is, at any instant the impressed e.m.f. E is numerically

equal to the e.m.f. consumed by the resistance and the e.m.f.

consumed by the inductance. Note that e.m.fs. consumed by
but not e.m.fs. of resistance and self-induction are considered.

The latter are:

T
di

ir and L rr
dt

Equation (14) can be written:

l+z'-f
f

Compare this equation with (2) and note that P = T and Q =
LJ

E
-j-

are constant when the impressed e.m.f. is constant and not

function of t. Thus the solution is found in equation (10) and

*
/~v 1 '

1

"^
/ -f t~*\

i = Ce L + -
(16)

The integration constant C is determined from the fact that

time is required to impart energy, that is, in this case to produce
or alter a magnetic field.

Before the switch is closed, there is obviously no field sur-

rounding the turns. Shortly after, however, there is a current

and thus a field which appears simultaneously with the current.

Thus since a magnetic field can not be produced instantaneously,
no current can pass at the very first instant. Thus for t = 0,
i = 0. Therefore

= C.--L- +?,
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but c =
1,

therefore = C +
^,

and C = -
^;

and . Ef
I = 11

r \

This equation shows, that as t increases, the current increases,

and finally reaches a value,

Assume now that after the current has reached this value, the

circuit is disconnected from the generator, and at the same instant

short-circuited. What can be expected to happen?
The Dying Away of a Current in an Inductive Circuit. Re-

ferring to Fig. 2, since the coil is surrounded by a magnetic field,

and the field can not be destroyed

instantaneously, and since the mag-
netic field can not exist without a

current, it is' evident that the cur-

rent can not disappear instantan-

eously, but must die away gradu- FIG. 2.

ally.

Referring to equation (15) which is the general equation of the

current and remembering that the impressed e.m.f. E is zero,

we have:

the solution of which has been shown to be:

i = Ce'i*'

To determine the integration constant, it is remembered that

at the very first instant when t = O, there was a definite current /

in the circuit.

Thus, i = I when t = 0,

which substitued above gives:

C =
I,

and the equation of the decaying current becomes:

=
-

(is)
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If dW is the energy delivered during a short interval dt, then

the rate of energy supply, or power is:

_.
dt

The practical unit of power is the watt, which is work done at

the rate of 1 joule per second. At any instant the power is the

product of the instantaneous values of e.m.f. and current.

Thus the power equation corresponding to equation (14) is:

Ei = i X ir + iXL~
= i*r + Li jt

(19)

It is seen from this equation that when the instantaneous

value of the current is i, energy is being dissipated at the rate of

i
2r joules per sec., or watts, in heat, and is being stored in the

magnetic field at the rate of Li
y-

watts. The energy that has

been supplied to the circuit t sec. after the switch is closed and

the current started is:

Eidt joules (20)fJo
The energy dissipated in heat

=

I
Prdt (21)

and the energy stored in the magnetic field

, V
(22)

where 7 is the particular value of i when the time is t.

In almost all calculations of transient phenomena, the ex-

pression e~ax is met with, e is the base of the natural logarithm.
It has the numerical value of approximately 2.718. To calculate

the numerical value of any particular expression, the ordinary

logarithms are used. Thus, for instance, to find the value of

y = c~- 2
,
the method is as follows:

log y = - 0.2 log e = - 0.2 X 0.434 = - 0.0868

+ 0.9132 - 1,

therefore y = 0.819,

therefore
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In Fig. 3 are shown the values of this function for a large number
of values of the exponents. Since this curve is plotted on

rectangular coordinate paper, it is rather unsatisfactory for

small values of the exponent, and the table below has therefore

been worked out.

FIG. 3.

Example No. 1. A coil having 1000 turns and 5 ohms resist-

ance is connected to a source of constant potential of 100 volts.
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(a) Show at what rate energy is being delivered to the entire

circuit and to the resistance. Show at what rate it is being

stored in the magnetic field as the current is increasing after the

circuit is closed.

(b) What is the rate of change of the flux when the current is

10 amp.?

Referring to equation (13),

*
T? (23)

therefore the rate of energy supply to the entire system is Ei

watts,

and
Ei +

108 dt
(24)

The current will begin at zero value and finally reach a value of

E
i = I = = 20 amp.

2000

1800

1600

"1400

1200
c

fc 1000

400

200

Rate of Energy Supply to Inductive Circuit

Constants of Circuits

e = 100 Volts

r = 5 Ohms
N = 1000 Turns

8 10 12

Current in Amperes

FIG. 4.

14 1G 20

The rate at which energy is dissipated in heat is i*r and the

rate at which energy is stored in the magnetic field is:

3?
- w - *v (25)

The three curves in Fig. 4 show these rates.

It is interesting to note that energy is being stored at the

greatest rate when the current is one-half of the the final value.

This can readily be proven by differentiation of equation (25)
and equating the result to zero, thus,

E - 2ir =
0,
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therefore . E_ /
~
2r

~
2*

The rate of change of the flux as the current changes is obviously

d<j> _ E - ir

~dt
~ F X IF8

'

Therefore when the current is 10 amp. the rate of change is

5,000,000 lines per sec. The rate of change is greatest at

first and becomes zero when the current reaches its final value.

The determination by calculation of the inductance L of a

circuit is usually very difficult, in fact almost impossible except
in the very simplest cases, such as parallel long circular con-

ductors. Approximations of one nature or another have almost

always to be resorted to. Usually the inductive circuit contains

iron, and in that case the reluctance (and hence the inductance)
is not constant but changes with the degree of magnetization.
Later in this volume the effect of the changing inductance in

iron circuits will be considered, but at present it shall be assumed

that L is a constant regardless of the value of the current.

The inductance of the field circuit of a dynamo can readily be

determined for any particular field current by experiment. All

that is needed is to run the machine at some speed and to read

the voltage and field current. These data in addition to those

of the field and armature windings suffice. By definition,

total flux X turns

current X 108

The total flux per pole is determined from the voltage, speed and

armature winding. Consider a 10-kw., two-pole, direct-current,

110-volt generator, having 2.5 megalines of flux per pole, and

1500 field-turns per pole. Assume that at normal voltage its

field current is 3 amp. and that the field spools are connected in

series. Thus

T
2.5 X 106 X 1500 X 2 orL =

3 x 1Q8
= 25 henrys.

Example No. 2. Figs. 5 and 6 represent the direct-current

generator referred to above. M is the armature and F the field.

If a voltmeter of 11,000 ohms resistance is connected as shown
and switch S is opened without arc when the field current in

ammeter A is 3 amp., what will be the effect on the voltmeter and

will the ammeter and voltmeter read in the same direction as
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before the switch was opened? Before the switch is opened the

current flow is as shown in Fig. 5. As the switch is opened

the field flux can not die away instantaneously. The field cur-

rent therefore can not die away instantaneously, but continues to

flow through the only available path, which is that of the volt-

meter. Since the resistance of the voltmeter is 11,000 ohms it is

evident that the voltage across the instrument becomes at the

very first instant very high.

FIG. 5.

x~i r

i t
FIG. 6.

It tends to become ir = 3 X 11,000 = 33,000 volts.

Thus the voltmeter will probably burn out as the needle

swings to the opposite side of the scale. The ammeter needle

will remain stationary for the first instant and gradually come
down to zero.

This problem gives an idea of the nature of the shock that is

experienced where the field current of a generator is carelessly

interrupted and permitted to pass through a person. Depending
upon the nature of the contact the resistance of a body may be

from 1000 to 10,000 ohms. If, therefore, a person touches both

sides of the field winding when the field circuit is interrupted,
he will experience a very severe shock. The energy stored is

usually quite considerable. In this case it is J^L/
2 = J X 25 X

9 = 113 joules. Since 1 joule is 0.74 ft.-lb., the energy available

is 84 ft.-lb., i.e., that of a pound weight dropping 84 ft.

It may bs asked, what would happen if the voltmeter were not

connected across the field winding? Where would the initial

rush of current, of 3 amp. flow, when the switch was opened?
In reality it is impossible to open the field switch without an

arc; therefore the current can not be interrupted instantaneously.
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Furthermore the circuit is more complex than assumed. The
field winding has considerable capacity and therefore acts as if it

were shunted by a condenser. A portion of the 3 amp. will

therefore flow as condenser current, but a large portion will

appear as secondary currents in the iron circuit of the poles.

This phenomenon will be understood later from the investigation

of circuits having mutual inductance.

The problem is instructive in that it explains frequent burnout

of voltmeters, and in that it teaches that the voltmeter should

always be disconnected before the switch is opened, or otherwise

be connected on the armature side of the field switch. It teaches

also that in opening the field switch a relatively low resistance

should be shunted across the field winding to prevent high vol-

tage, and finally that it is well to open the field switch slowly.

The importance of shunting the field circuit is best illustrated by
a numerical example.

j Example No. 3 (Fig. 7). Assume that the field circuit having a

resistance of 36.5 ohms is shunted by a resistance of 50 ohms, and

assume again, for the sake of simplicity, that the field current of

it \

r = 36.5

L= 25

FIG. 7.

3 amp. is Interrupted without arc and that L is constant at 25

henrys. The total resistance in the circuit is then 50 + 36.5

ohms or 86.5 ohms. Determine the current in the field winding
and the shunted resistance and the voltage across the field coils

which is the same as the voltage across the resistance after the

switch is opened.

Referring to equation (18)

= 3e-3.46
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It is seen that in this case the maximum voltage across the field

coils, which, of course, occurs at the moment of opening the

switch, is 150 volts, as compared with 33,000 when the voltmeter

shunted the field coils. The field current i dies away very rapidly.

In 1 sec. it has almost disappeared. The energy stored in the

field is spent in heating as an i
zr loss.

Example No. 4. Prove that in discharging an inductive circuit

all energy stored is spent in heat.

The instantaneous value of the current was found to be:

i = Ie~l
l

,

therefore the energy expended in heat from time zero to infinite

time is:

2r

J"<--

/*

i*rdt = Pr\
=o Jo

[T
2r -i oo T2r

-*'*]. --^
It is of interest to study the rate at which the field flux, or what

is equivalent, the field current, can build up when closing the

field winding on a constant-potential busbar, and to see how much
more rapidly the field current can be made to build up when a

considerable resistance is inserted in series with the field coils.

It will be assumed that use is made of the winding described

in example 3, that is, one with a resistance of 36.5 ohms and

inductance of 25 henrys. This circuit is connected to a

direct-current busbar having a constant potential of 110 volts.

Referring to equation (17),

i = l ~^ =3[1 -6- 1 -46
'].

The lower curve in Fig. 8 shows the result of this calculation.

If, instead of exciting the winding from a 110-volt main, it is

connected to a 220-volt circuit and sufficient resistance is inserted

in series to keep the permanent current at 3 amp., the rise in

current will be more rapid than in the first case, as shown in the

upper curve of Fig. 8.

There is an interesting mechanical analogy for the starting or

stopping of a current in an inductive circuit.

To bring a train up to speed a certain force is necessary; this

force must overcome the friction and provide the necessary
acceleration.
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Let F be the total force necessary, and fv the force of friction

and wind resistance which, for simplicity's sake, is assumed to

be proportional to the velocity v, and the mass M.

Then F = fv + mass X acceleration

or, dv f
F^

dt
~~ M v "

M'

.2 .4 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Time in Seconds

FlG. 8.

If the drawbar pull F as well as the coefficient of friction / be

assumed constant during acceleration,

F f
t-*

where C is the integration constant
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If the train start from rest, then for t = O, v = O.

F F
.'. O =

j
+ C, or, C -

-,

. -[,-.-
By comparing this with the equation for the starting of a current

Fr r
~~i

in an inductive circuit, which is, i =
1^1

e~L
*

J,it
is seen that

in electrical problems, the current corresponds to Velocity, the

e.m.f. to the mechanical force, the ohmic resistance to frictional

resistance and the inductance to the mass.

The analogy can be carried further. The energy stored in the

magnetic field, %LI 2
, corresponds to the kinetic energy of a

moving body, %Mv 2
. The electromagnetic momentum LI cor-

responds to the mechanical momentum Mv, etc.

A problem involving mechanical as well as electrical transients

will next be considered.

Find the equation of the dying away of the field current in a

direct-current self-excited shunt motor disconnected from the

circuit and permitted to decelerate to standstill.

Let the moment of inertia of the revolving part be /. Let the

full speed be N revolutions per second corresponding to an angu-
lar velocity of 0:0 radians per second. Let the power required to

run the motor at full speed but at no-load be P hp., and assume

that this power is represented by friction loss in the brushes and

bearings, which is a very close approximation, particularly after

a few seconds of deceleration, when the core loss becomes very

small; and neglect the i
2r loss. Assume that the saturation curve

is a straight line, so that proportionality exists between the field

current and the flux.

Let the normal field current be J . Let the normal flux per

pole corresponding to this current be <. Let the armature e.m.f.

at full speed and flux be E, and the total field-circuit resistance

be r, and let the motor have p poles and each field spool have n
turns.

Mechanical Calculations. 1. Determine the angular velocity

o. It is, a = 2irN.

2. Determine the friction torque, or moment Q. We have

X lb.
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3. Determine the stored energy. In general W = ^Mv 2
,
in

the case of a revolving wheel; if p is the radius of gyration,

W = %M (2ir pN)
2 = %Ia 2

,

where / = Mp 2 = moment of inertia.

Thus, with revolving masses, / takes the place of M, and a. of v.

During deceleration, no external force or torque is applied.

Thus,

= Q + I
-JT

= torque of friction + torque of deceleration.

(For sake of simplicity the small power given electrically is

neglected.)

da =
-jdt,or,a

=
j t + C;

for t = 0, a. = a . .'. C = a -

Q.
. . a. = ao

-j
t.

If T denotes the time at which the rotor stops, then for t = T,

a = 0.

Ci ^ T ' T*= a ~jT, ..7 -
Q

O .

And, o,_ / t\

\
l ""

T)
a = Oi jfj t = o

Check whether all energy is spent at t = T, neglecting the sup-

ply of energy from the diminution of magnetic field and the con-

sumption of energy in heat. The stored energy is 3^/a
2

.

The energy consumed by friction during deceleration is:

I force X vel. dt = \ Q2* Ndt = \ Qadt = Q

substituting, ^ _ /
~
Q Q:O '

= Q L>|
o
-
7 Y Q2 a 2 = ~' Q 'E 'D '

Electrical Calculations. If the field current remained constant

during the deceleration (which it obviously does not), the arma-
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ture voltage at speed a would be:ei = E, so that due to the loss

of speed alone, the armature voltage is reduced from E to E.

If the field current is reduced from / to i, the flux is reduced

from <l> to <p, and therefore the e.m.f . at constant speed is reduced

in the proportion y--
i

Thus, at field excitation i and speed a, the armature voltage is

Jo a

but E
Jo~ '

But the relation between the current and the e.m.f. is:

di

or,

- -t -
.-. i = C ^ Lr = Ce LT 2

;

for < = 0, i = 7 . .*. C = J .

/. i = / oe"2TZ.

The motor stops, when t = T, and when the current is:

_rT
10
= J ^

Remembering the equation of the decaying current in an
_rT

ordinary inductive circuit, i = I ^~, it is evident that in the

case of a decelerating self-exciting machine the current does not

die as fast.

After the motor has stopped, the current obviously dies down

according to the law:

- ~I (t
~ T)

NOTE. For a more detailed discussion of this see STEINMETZ'S "Tran-
sient Phenomena."
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Verify the curve (a) in Fig. 9 in the case of a four-pole, 7.5-hp.

motor having the following constants:

P = 4 7 = 2.75 amp.
N = 20 E = 110

7 = 0.25 r = 40 ohms, total

$ = 1.5 megohms per pole n = 1000 per pole
P = 0.72 hp.

In large machines, the windage loss is frequently greater than

the loss in the bearings.

The windage loss may be assumed to be proportional to the

square of the velocity. In other words the torqu.e necessary to

overcome the windage is proportional to the speed.

Assuming again that the electric power is small and that it can

be neglected then the equation connecting speed and time during
deceleration becomes:

0= Qi + Qia + JF^'

or, da Q<2 Qi~

when . r Qi
a =

oto, 1 = 0. . . O =
o ~T 7T*

" a= ~

ft

when
i = T, the motor stops, a =

0,

-

>2 + Qi

-

y T, or, log
-1-

I
, ^2 + Q

r, a a .

e = Eo -
j-

=
ir,

OLQ IQ Q!o

a . T di
. . ir = IT + L --1
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s+f('-=)-

ao

which, transformed, becomes:

where 4=14-

v _and

I +(!-'>-.

but

when =
0, z = 7o;

rA

.". C =

If the problem given above is modified, so as to include a

windage loss at full speed of 0.15 hp. as well as the bearing loss

of 0.72 hp., the constants are:

r = 40, I = 0.25,

L = 2l, Q 2
- - 0.00525,

o
= 125.8, Qi = 3.16.

T becomes 9.04 sec., and

A = 5.71,

^ = 10.60,

K = 0.021,
_. 7 (-10.60* +504.6 -504.6e--2 1

. . & i 06

In curve 6, Fig. 9, is given the relation between the current

and time in this case.
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The problems considered up to this point have all involved

very simple integrations. Frequently, however, this is not the

case, and to solve the differential equations, it is necessary to

make algebraic transformations.

The most important of these transformations is to separate

fractions into partial fractions.

3.0

2.5

1,2.0

1.0

0.5

(b

5 6 7

Time, Seconds

FlG. 9.

10 11

Almost any algebra deals with this; nevertheless it may be

opportune to refer to it briefly here, although it is suggested

that the student's memory be refreshed by reading, for instance,

WILLSON'S " Advanced Algebra," from which the following is

largely abstracted.

If
FJ-\

is a fraction, that is, the numerator is of lower degree

than the denominator.

It is known that F(x) can always be expressed as the product

of linear factors, which are not necessarily real.

If the factors are real, then F(x) can be expressed as the product
of real linear and quadratic factors. Two cases will be here

considered.

First. No factors are repeated.

Example. F(x) = (aiX + &i) (a& + & 2) (a$x
2

-f- &3# -f- C3).

Then A l -f

F(x) aix + bi a2x -[- 6 2 a3x 2 + 6 3a; +

where AI, A 2 ,
A 3 ,

and B 3 are constants, which can readily be

found, since if the expression:
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aox
n
-f aix

n~ l + a 2xn~ 2 + -
i = b xn + to"- 1 + b 2xn~ 2 +

holds for all values of x, then the coefficients of like powers of x

must be equal, thus a =
&o, i

=
&i> etc -

Show that

* 2 l 1 2 5 4z + 5

Second. Some factors of the denominator are repeated.

F(x) = (aix + bi)
2
(a 2x + 6 2) (3^

2 + to + c 3 )
2

Then

+
Prove that

2x* + b 2 7 15

(x
-

l)
2
(x
-

3)
2

(x
-

I)
2 '

2(x
-

1)
'

(x
-

3)
2

2(x
-

3)

The application of this transformation is found in any transient

phenomenon in which disproportionality between magneto-
motiveforce and resulting flux exists.

As an example the condition governing the self-excitation

of a direct-current shunt-wound generator will be considered.

(For a more detailed discussion see STEINMETZ'S
"
Transient

Phenomena.")
It will be assumed that the relation between the flux <p and the

field current i can be sufficiently closely represented by FROE-
LICH'S equation:

9 - ki
(1)

1 +fcii

Let ec be the e.m.f. generated per megaline of flux at normal

speed, and eQ be the normal e.m.f. at normal flux
<f> .

Then e c

The e.m.f. e corresponding to any other flux <p is:

e = ec<p

The e.m.f. consumed by the resistance is ir.

The e.m.f. consumed by the changing flux is 77^
-

1UU dt

if (p is expressed in megalines
and n is the total number of turns enclosing the flux.
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Thus . n d<p
h
100 dt

from (1) . _ _JP__
K ~~~

K\(f>

<pr
. . ec<p

= T 7

Separating the variables

W/c/ /
j i v \Jj\D

n e<f>(K KHP) <pr

<p(eck r ecknp)

To integrate this the fraction is broken up into partial fractions

thus:

100 dt [A B
T-

and A is found to be

and B is found to be

n
[<f>

ek r k^ec(p

k

eck r

k\r

e ck r

Integrating each term we get after a slight transformation

~ - ~ '08 * -

If at the time of closing the field circuit the remanent flux

is <pr and the corresponding voltage = er then for t = 0, <p
= pr ,

e = er .

When C is determined and the final expression becomes:

n FT i
e

i
eck r kie ~\

t = ln/> / i x kec log r log ; ,

100ec (eck r) L
&

er
&

e ck r kierl

The voltage ultimately reached is e = e$ when t = .

Thus , eck r n/ioo
loe; r i = oo thus

P If - -- 7* A%
-|P

ecfc r
ec /c r K\en = or eo = ;

The greatest value of r which gives a positive value of e

r = eck.

The condition of self-excitation is thus r ^ eck.
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Up to this point, the problems have involved inductive circuits,

on which a direct-current e.m.f. has been impressed. In case of

alternating current the impressed e.m.f. varies from instant to

instant and, while a harmonic e.m.f. is usually assumed, fre-

quently the variation represented by a wave is much more com-

plex. As long, however, as the e.m.f. is obtained from a dynamo
of symmetrical poles, no matter how shaped, the e.m.f. wave

can be expressed by a series of sine functions of odd frequencies.

In the study of transient phenomena in connection with alter-

nating current, the equations are derived for the fundamental

wave only, that is, the instantaneous values of the e.m.f. are

represented by e = E sin 6.

If it is desired to know the result with distorted waves, the

simplest method is to treat each harmonic independently and to

add the instantaneous values so obtained. If the effective

value is desired the square root of the sum of the squares of the

effective value of each wave should be taken.

As stated previously, the instantaneous value of the e.m.f.

is generally expressed in two ways, either e = E sin coi or e =

E sin 6, or the expression may be of more general form : e

E sin (at -f a) and e = E sin (6 + a). In these expressions,

e is the particular value of the e.m.f. at time t, or at phase angle

6, and E is the maximum value of the e.m.f. In the first case,

the angle ut is expressed in radians, not in degrees, w is the an-

gular velocity = 2 TT/, where / is the frequency. The relation

between radians and degrees is 360 = 2ir radians, thus 1 radian

is -77
= 57.3. To reduce equation e = E sin (cot + ) to

ZTT

degrees it should therefore be written e = E sin (57.3 ut + a),

where in all cases a is expressed in degrees, as is customary. To
reduce the expression to radians it should be written

Note in connection with this that in the expression, y = sin x,

x is expressed in radians, not in degrees. To bring it to degrees
the equation becomes y = sin 57.3 x.

In the development the value of the sine function

Sin x = x -
I
+
I
-^ +

x is again expressed in radians.
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It is important to have this clearly in mind. It is well worth

while to plot some curves of distorted waves from equations in-

volving phase angle as well as radians.

Example No. 5. Verify the e.m.f. wave in Fig. 10, e = EI

sin ut + Es sin (3 ut + a) for E l
=--

10, E3
=

5, a = 30 and

the frequency 25 cycles.

.01 .02

Time in Seconds

FIG. 10.

.04

Prove by integration that with a distorted wave :

e = EI sin (ut -f i) + E 3 sin (3 cot + 3)

the effective value is e// = "\/6i
2
e// + ^3

2
e//

Thus in this instance, since the effective value of the funda-
~F 10

mental wave is ^
= 7= = 7.07, and that of the triple har-

monic is 7= = T= = 3.53, the effective value of the wave
V2

recorded by a voltmeter is e = \/7.07 2 + 3.53 2 = 7.9.

Referring to Fig. 11: prove that ammeter A when placed in a

circuit carrying 10 amp. direct current, 8 amp. 60-cycle current,

and 5 amp. 125-cycle current reads 13.7 amp.
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Harmonic e.m.f. Impressed on a Circuit of Resistance and

Inductance in Series. Let time be counted from zero value of

the impressed e.m.f. and let the e.m.f. be rising.

Thus e = E sin ut where e is the instantaneous value of the

harmonic e.m.f. at time t. E is the maximum value, co = 2 TT/,

is the angular velocity, / the frequency, r the resistance and L
the inductance of the circuit.

10 Amperes, D.C.

8 Amperes, 60 Cycle

5 Amperes, 25 Cycle

FIG. 11.

If i is the instantaneous value of the current when the e.m.f.

is e then:

e E sin cot = ir + L -77
at

or di r . E
(27)

(28)

By comparing this equation with equation (2), it is seen that
T V
T = P and

j-
sin ut = Q.

P is not a function of the independent variable t, but Q depends
thereon, thus the solution is given in equation (8).

It is

(29)i = e L
l

\ I e
+ L Y sm ut dt + C

The solution of this equation depends upon solving

C + r-tE , E r ,r
t

I ^L jr sm wt dt = Y~ I
L sm <*t dt.

E.
j-

is a constant and can be left out of consideration at present.
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It is also convenient to substitute a single letter for Y' Let then

L
The immediate problem then is to solve ftat

sin co dt.

An integral involving exponentials or sine functions is usually

easy to solve, because the differential of the functions are similar

to the functions.

If y = ax
then ^ = ae

ax
.

dx

Similarly if y = sin ux, then -5-
= co cos coz,

or if y = cos ux, then - = co sin cox.

Thus i at , _ j. at
Uif

and / . , 1 ,

sin co* dt cos cot at.

J w

Fortunately for the engineer there are only very few methods of

integration that need to be known. One of these is
"
Integration

by Parts."

That is: fudv = uv - fvdu (30)

In integral ft* sin to* dt, let u = e
at and dv = sin co* dt.

.'. du = ae
at and v = cos co*

CO

/. yV* sin co* dt = - cos cot + \
- e

at
cos co* dt (31)

CO J CO

This equation is indeed more complicated than the original. It

is evident, however, that by again integrating the last term in 31,

an integral results which contains an exponential term e
at and a

sine term instead of the cosine term. Thus the final expression

will contain integrals of the same trigonometrical and exponential

functions, which therefore can be solved directly. However, it

is somewhat more convenient to use another method.

Referring again to (30) let in this case:

u = sin co* and dv = e
at

dt

.'. du = co cos co* dt and v = -
e
at

a.

.'. ftat
sin co* dt = sin co* - (

- e
at

cos co* dt (32)
a J a
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By multiplying 31 by
- and 32 by and adding the two equa-
OL Ct>

tions, it is readily seen that

./V" sin ( dt = ^-.(^ - ^-') (33)
co- + a- \ co a I

T

Substituting = r and remembering that x
t
the reactance cor-

responding to the inductance L is 2irfL
= coL and that the

impedance z = \/r 2 + x 2
.

Then
I L * sin wt dt = e

+ L
-^,[

r sin coi x cos coi] (34)

Let the angle of lag of current be ft thus

tan ft
= - and r = z cos ft (35)

x = z sin ft (36)

Substituting the values in 34:

-t +
r

t L
sin coi dt = e

L - sin (cot ft) (37)
z

Referring to equation 29

E -L t

i sin (cot ft) + Ce L (38)

The integration constant C is determined from the particular

problem under consideration.

Assume that it is desired to find the value of the current at any
instant after the switch is closed and the alternating e.m.f. is

impressed upon the circuit, and that the switch is closed at time

t = ib when the instantaneous value of the e.m.f. is e = E
sin coii.

Since, as has previously been discussed, it is impossible to

establish a magnetic field instantaneously, the current can not

flow at the first instant. Thus for t = t\, i = 0. Substituting
these values in equation 38, then:

7? r

= - sin (coii ft) + Ce~L
tl

,

E Z
l

.'. C = e L sin (coii /3),

Substituting this in (38)

sin (coi ft) e *
lfa)

sin (uti ft) (39)i =-- ~\s
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It is often convenient, to eliminate t entirely from the expres-

sion and to use the phase angle 8 only and to express 6 in degrees.

That is, the e.m.f. is expressed as e = E sin 6. In that case

B = ^t =
27T/7.

The exponential term 6~
a ~'

becomes ~^ (fl
"

0l) = ~* ((? ~' l)

T_ (9-fr)

if 6 and 6\ are expressed in radians or & 57.3 if and 6\ are

expressed in degrees.

Thus when 6 and d\ represent degrees

Er - r <-_*> -]

i = -I sin (e
-

(3)
- e * 57.3 sin (0i

-
/3) (40)

The equation is, however, always written

i = | [sin (0
-

i?)
- ~* "-' !)

sin (0!
-

0)]
(41)

and it is understood that the exponential term should be ex-

pressed in radians.

Equation (41) can, of course, be derived directly by using the

phase angle instead of cat.

Thus T
di

E sin ir = er + L -7-
cfo

may be written

E sin - ir + x ^, (42)

where x is the reactance.

Thus, x =
2-irffj

= coL

and cot = 6.

.". d# = codt or dt = -
CO

Prove that equation 41 is the solution of

di
E sin 6 ir -\- X~TC,

The exponential term in equation (41), while of importance

during the first second or so, ceases to affect the result very

shortly after the switch is closed.

Thus the equation for the current after the system is stable is

i =
E
z

sin (8
-

0) (43)

The current lags behind the e.m.f., E sin 0, by an angle 0, whose
x

tangent is -
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The effective value of the e.m.f. is

E
=

V5
and of the current

j
E

~~

V2Z
It is of interest to note that the transient term is a maximum
when sin (B l

-
/3)

=
1, that is 0i

- = 90, or 0i = 90 + /3.

This value of 6\ also gives the maximum value of the perma-
nent current.

FIG. 12.

The exponential term is zero, that is, there is no transient

effect if #1 j8
= 6 or #1 f3 or, in other words, if the circuit is

closed at such a time as would give zero value of the permanent
current.

Fig. 12 shows a series of such transient currents. Each curve

corresponds to the closing of the switch at a particular value 0i

of the phase of the e.m.f.

Thus, for instance, curve D shows the starting current when
the e.m.f. wave has a phase angle of +60, that is, when 0i =
60. These curves are calculated with the following constants

E = 1 r = 0.196 x = 0.98.

Problem No. 6. Check some curve in Fig. 12.

It is of interest to study the rate at which energy is being sup-



INDUCTANCE AND RESISTANCE 31

plied at any instant. This is equal to the product of the e.m.f.

and the current:

p = d = Es'm B X
|[sin (6

-
0)
- e~x

(0
~

dl}
sin fa - 0)] (44)

By simple transformations the equation becomes
- cos (20

-
0)P :

-^(0-00 -I

- e * sin (0i 0) sin
0J

(45)

A -Impressed Voltage
- Power Input

C- Permanent Power

FIG. 13.

The first term in equation 45 must represent the power at any
instant after the conditions have become stable. This power is

expressed by
E 2

P 1
=
22 [cos

- cos (20
-

ft] (46)

It consists of two terms, on e a constant term ^ cos /3, the

other a term which changes with double frequency; the net

result of which over a complete period is zero, since the positive

values are as large as the negative. Thus while the instantan-

eous values of the power vary from instant to instant and may
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alternate from positive to negative values there is a definite

average power delivered, which is

E 2

P =
2z

cos P

The exponential part of the power,

P 2
= -

e

~ r

x
(e
~

9l)
sin (0!

-
0) sin (47)

is gradually decreasing in magnitude as well as oscillating at

normal frequency.

In Fig. 13 are given three curves; the first, A, is the wave of

the impressed e tm.f.; the second, B, the power input; and the

third, (7, the power curve after conditions are stable. These

curves have been based upon the constants given in problem 6

and are well worth reproducing by calculation.

The curves show that during the transient period the instant

of maximum power is practically the same as that for permanent
condition. They also show that the first rush of power is greater

than that which corresponds to permanent condition, the reason

being that the change of flux during the first part of the cycle

is greater than during the corresponding time under stable

condition.



CHAPTER II

PROBLEMS INVOLVING MUTUAL INDUCTANCE

Up to this point the problems considered have dealt with cir-

cuits of inductance and resistance only. However, in many
circuits of commercial interest there are secondary circuits which

are more or less closely coupled with the primary, and which

influence the former materially. As instances of such circuits

may be given the secondary winding of a transformer, the eddy
currents in pole pieces of generators and motors, induced cur-

rents in telephone lines running parallel to transmission lines, etc.

Sometimes the secondary circuits carry currents by virtue of

impressed e.m.fs., but frequently the currents are the result of

the action of the primary currents. With a change of primary
current obviously there is a change of the flux produced by the

current and if this flux interlinks with the second circuit, e.m.fs.

are induced therein, the values of which become higher as the

interlinkage becomes more nearly perfect. While it is impossible

to arrange two circuits so that all flux interlinking one will also

interlink the other, the condition can be approached reasonably
close under the most favorable conditions.

The limiting case is, of course, perfect mutual induction, which

condition will therefore first be considered briefly.

Two Coils of Perfect Mutual Inductance. Assume then that

it is possible to place two coils so close together that there is no

leakage flux between them, that is, so that all flux that surrounds

one coil also surrounds the other. Let the first coil, the primary

coil, have NI turns and r\ ohms resistance, and the secondary
coil N% turns and r2 ohms resistance. Determine the open-circuit

voltage of the second winding. When the first is connected to a

source of constant potential E, we have obviously:

F 'r r

The rate of change of flux is thus

d4> E i

dt
~~

A
33
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Therefore the voltage of the second coil e 2 is

Nz d4> N 2

~WTt~ ~Nl (1

At the instant of starting, when ii is zero, the secondary voltage

is e 2
= - -

-rp E, that is, it is proportional to the ratio of turns.

7^

When the primary current reaches its constant value J =

the secondary voltage e 2 is zero. If the secondary winding has

more turns than the primary, then at first the secondary voltage

is higher than the impressed voltage. It decreases rapidly,

however, and soon becomes zero.

Prove that the two voltages are equal numerically when

Assume that two coils, which, when considered alone, have

resistances and inductances of r\, r% and LI, L 2 , respectively, are

placed so close together that there is perfect mutual inductance

between them (which of course is in reality impossible). Find

the open-circuit voltage of the second coil if the first coil is

connected to a source of constant potential.

In the primary we have:

E = ifl + L, J-
The counter e.m.f. of self-induction of the primary coil is

- LI -j7 and thus the voltage of the second coil is

N2 dii

Check the values of the primary current and secondary voltage
as given in full lines of Fig. 14.

for

E = 10 n - 0.10 L! = 2.5 NI = 10

r 2
= 0.50 L 2

= 10 N2
= 20

In the case referred to above the primary current will rise from

zero to a final value of 100 amp., while the secondary voltage
decreases from 20 volts to zero.

If when the primary current has reached its final value the

coil is suddenly short-circuited, what will the primary current

and secondary voltage be?
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The primary current will decrease according to equation:

Check numerically the two dotted curves in Fig. 13.

During the discharge of the primary the number of coulombs
are

| hdt =
(

Jo Jo
= 100 =

r i

2500 coulombs.

FIG. 14.

Obviously, when connecting the primary to the source of supply,
the number of coulombs required up to the time when the current

becomes stationary is infinite, since it takes infinite time for the

current to reach this value.

Two coils of resistances and inductances of ri, r and LI L are

connected in series and placed so close together that it is assumed

that they have perfect mutual inductance. What will be the

resultant resistance and inductance (a), if the coils are wound
3
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in the same direction; (6), if the coils are wound in opposite
directions?

The inductance of an air coil is subject to rigid mathematical

determination, but the complete solution is very cumbersome.

However, one of the best approximations, that of BROOKS and

TURNER, published as an Engineering Experiment Station

Bulletin by the University of Illinois, is:

L = cm- IQfr + 12c + 2R
109

(6 + c + R)
^

106 + lOc + 1.472

X 0.51og 10
(lOO

+

For coils which are not extremely thin or extremely long, this

equation becomes approximately:

L = 7

cm"
(2)

(b + c +
Where L is expressed in henrys

cm = centimeter length of wire

b and c are the height and thickness respectively of the coil

and R the outside radius, all in cm.

The maximum inductance is obtained when b = C and R
(see Fig. 15). Then

2C

L = 0.27Cm

C X 10 9 henrys.

It is seen that the inductance is proportional to the square of

the total length of wire, which is, of course, proportional to the

turns. Thus the inductance is proportional to the square of the

number of turns, or

L = KN\

(a) Coils in the same direction.
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Let N be the number of turns in the first coil, or,

N =

and NI the number of the turns in the second coil, or,

JLlr
The total number of turns in the two coils when considered as

one coil (which is permissible when perfect mutual inductance is

assumed) is

The combined inductance is then

Lo = KN 2 = (VL + VLi) 2 = L + Li + 2-v/LLL

The resistance is obviously r = r + r\.

(b) By similar reasoning it is found that if the turns are in

opposite directions

Lo = L + LI 2\/LLi and r = r + ^i-

From the above it is evident that the equation for the starting

current, for instance, is:

Two Coils of Perfect Mutual Inductance Connected Simulta-

neously to Sources of Constant e.m.fs. E and EI. Let r, r\ and L,

LI be the resistance and inductances respectively, and assume

that the circuits are closed at the same instant. Assume first

that the coils are connected in the same direction, that is, in such

a way that the permanent current in both coils will produce mag-
netic fields of the same polarity. It is evident that in this case the

impressed e.m.f. has to overcome not only the resistance and in-

ductance drop due to the current in the coil, but also the e.m.f.

which by transformer action is induced in one coil by the change
of current in the other.

Consider one coil alone, for instance the second coil: The

counter e.m.f. of this coil is i~5T' If it has N\ turns, the

voltage per turn is jj- rr' Since it has been assumed that
/V i u/t



38 ELECTRICAL ENGINEERING

there is no leakage field between the two coils, it is evident that

this same voltage per turn is induced in the first coil by the cur-

rent in the second. Thus the
" transformer

"
e.m.f. in the first

coil having N turns is
-^-

LI -rr, and similarly the transformer

e.m.f. produced in the second coil by the current in the first is

Ni T
di

~W L
dt

But N IT.

therefore the e.m.f. in the first coil caused by the mutual flux is

L
T dii _ ^/rr dil '

LI^ ~ VLLl
dt

Thus it is seen how, when the mutual inductance usually denoted

by M is perfect, M = \/LLi. In reality M is always smaller

than \/LLi. The general equation dealing with e.m.fs. consumed

by resistance, inductance and mutual inductance, are then

To solve for instance i the following transformation is conven-

ient, multiplying (3) by LI and (4) by M and add the equations

so obtained.

li is:
LiE - ME, = Liir + LL l

~
at

- Mi.r - M 2

^ (5)

Since with perfect mutual inductance

M2 = LLi (6)

Liir - LiE + MEi

dii _ LJT <ti

' '

~di
~
Mrl di'

Substituting this in equation (3) :
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or
5j hi
dt

r
Lr l + Lir Lr l + LIT

Thus
>

-
(9)

To determine the integration constant C, it would be a mistake

to assume that the current i is zero when t = 0. All that is

known is that the combined coil can not be surrounded instan-

taneously by a flux it takes some time to produce or alter a

magnetic field, because a transfer of energy is involved. It is

possible that currents will flow the very first instant, currents

which produce m.m.fs. of equal magnitude but in opposite direc-

tion. One particular case of this would be where the currents

were zero, but this is not a general solution.

What is known, then, is that no flux will exist the first instant.

Thus the m.m.fs. must be equal and opposite, and since the cross-

section of the magnetic flux and the direction of the turns are

assumed the same in both coils, it follows that for

or N . . IL
* i

=

-Ni
iu

"Ste
Substituting this value in equation (7)

LiE +

(ID

Mr,

or L\EJ "

Lri +
for t = 0.

i E
'

r
~

_ MEir
. . \j

r(Lri

ME
77

r(L

Similarly ii is found to be

. E MEjr + LErt , t ,10 ,
I = ---

77 =-r- 6 Lri+Lir (12)
r r(Lr l + Lir)

(13)
i r 1(Lr 1 +L 1r)

Problem No. 7. Prove by complete calculation that if the

terminals of the second coil are reversed the following are the

equations of the currents
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E LEr l
-

I =
r r(Lr l

r- 6 Ln+Lir

Lri+Lir

(14)

(15)

In the case that the two coils are excited from the same direct-

current busbars when E = E\ the equations become :

For coils wound in the same direction:

E
+

i+Lir

m
Ln+Lir

For coils wound in opposite direction:

Lri Mr m
t

ll 1
Lri

e Ln+Li

100

CO

Starting Currents

Two Coils of Perfect Mutual Inductance

A - Coil No.l
B - Coil No.2

D - Coil No'2 )
Wound PP site Directions

Wound in same Direction

(16)

(17)

(18)

(19)

FIG. 16.

In Fig. 16 are given four curves showing the currents in two such

coils of perfect mutual inductance, having the following constants :

r = 0.10

ri = 0.50

L = 2.5

Li = 10.0

E = E l
= 10 volts.
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It is assumed that they are connected in parallel to the same
source of direct current at a constant potential of 10 volts. The
full-drawn curves correspond to the condition in which the turns

are in the same direction; the dotted curves to that in which the

turns are in opposite directions. It is well to verify these curves

by calculation. It is of interest to note from the full-drawn

curves that, while the two coils are

connected to the same source of con-

stant potential, during the first few

seconds the currents actually flow in

opposite direction. The second coil

having twice as many turns as the

first, and therefore a smaller final

value of current, has a current of

negative value at the first instant of

one-half the magnitude of the current in the first coil. Eventu-

ally the currents become positive and are proportional inversely

as the ohmic resistances.

It is of interest to deduce the equations of the currents in the

two coils when the first is connected to a source of constant poten-

tial, and the second is short-circuited upon itself, as shown dia-

grammatically in Fig. 17.

FIG. 17.

CO

40

20

Starting Current
Two Coils of Perfect Mutual Inductance

A - Coil No.l
B - Coil No.2

FIG. 18.

Prove that with the coils wound in the same direction:

11- - Lri

r

MEr

Ln +Lir

t

TTr* 1

Ln+Lir

(20)

(21)
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In Fig. 18, which gives the values of the currents, it is of interest

to note that the current in the second coil, under this condition,

remains negative and approaches a value of zero. The initial

values of the currents are twice as great as before. Thus the

impedance is greatly reduced, as would be expected by the pres-

ence of the short-circuited winding.

As a further illustration consider:

Two similar coils having perfect mutual induction and calcu-

late the currents in the two coils when a sine wave of e.m.f. is

impressed upon one coil while the other is short-circuited.

Referring to Fig. 19

t , r, x

The equations evidently become:

di di\

di

FIG. 19.

E . di dii E- sin e and
^-

- ^ = cos (22)

Ex~
and dii E

dB 2x
Zl = ~

2~r
COS

i
= - e ~ cos d0 -f- Ce

- ~ - cos (6
-

?) + Ce L 9

/JQ I
(23)

where Z = 2 + (2x)
2

.

The condition determining the integration constant is that

when the switch is closed no flux exists, thus i ii.

Let then the switch be closed when = 0^
Thus from (22)

and from (23)

E- 2ii = sin 0!

-yr
~ cos (0!

-
^) +

JQ I

(24)

(25)
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From (24) and (25)

= X̂
^

[f5
COS (Sl

~~ ^ ~jr sin

' >

"""

-T1

]

The transient term disappears when
x sin 0i

y-
COS (01 (p)

=

Expanding and substituting it is readily seen that this occurs

when tan 0i =
-,
that is when 0i =

<p.

The transient is a maximum when:

d [x . sin
-FT COS (0i to)

7*

that is when tan 0i = ^-
or

0i - <?
- 90.

Limiting Cases. (a) r small compared with 2x. :.<p = 90

and cos (0 <p)
= sin and cos <p

= 0.

The transient effect is greatest when
# . E

.*. ii = -- sin and % = ^- sin (27)

(6) r large compared with 2# when
E E

il ==

~ir
and Z<

== ~
2r (28)

When dealing with commercial problems involving mutual
inductance it is never possible except as a first approximation to

assume perfect mutual inductance M 2
is always smaller than LL.

In that case the solution demands differential equations of the

second or even higher order.

Fortunately, however, the solutions of these equations are as

a rule simple.

The majority come under the class of linear differential equa-
tions with constant coefficient or they are of the types given
below. 1

1 For a complete discussion see '*A Course in Mathematics,"
WOODS AND BAILEY, vol. II; ''Differential Equations," JOHNSON; "Differ-

ential Equations," MURRAY, or indeed almost any book on differential

equations.
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d zy
First. -r 2̂

= f(x) = an expression that is a function of x.

Second. ~r~2
= fix,

-j-j
= an expression that is a function of x

and the first derivative of y with

respect to x.

Third.
^f2

=

Fourth. ~T\
=

f(y).

Fifth. Linear differential equations -r 2 + a
-j- + by = X.

d^v C13&

First. -j\
=

f(x)
= a function of the independent variable

only. By integration we get:

<fy = |/(a:)da; + ddx J

and y = J'

J*f(x)dx
2 + CiX + C 2 .

This is equally true for ~[ =
f(x)

Let dy d*y rfp

da;
P '

da;
2
"

dx

.' .X
-j-

=
f(x, p) which is of the first.order of p and x.

If we can find p from this equation then we can find y because

dy
dx

=
V'

d z
y"** S-/(*Z)

Let dy . d 2
y _ dp _ dp d/y _ dp

dx
~~ ^ '

dx 2
~

dx
~

dy dx
~

^dy

.

'

. X p -7- = f(y, p) which equation is of the first order of p and y.

If we can find p from this equation we can find y }
since

-^
=

p.

Fourth.
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dii

multiply both sides by 2 -7- dx

Integrating + C

== =

^fWv)dy + C

+ c

i. Linear differential equations of the second order with

constant coefficients. If the coefficients are not constant, the

solution is quite complicated. It is therefore omitted here. As

a matter of fact in almost all problems the coefficients are con-

stants.

where a and b are constants and X is either a function of z or a

constant or zero.

For convenience the symbol D which represents the differential

operator -r- is introduced.

D means one operation of differentiation in respect to x
t
D2 two

operations of differentiation in respect to x.

Thus equation (29) can be written

D 2
y + aDy + by = X or

(D
2 + aD + b)y = X (30)

from this follows that

=
X

y ~
D 2 + aD + 6'

Obviously this does not mean an ordinary fraction but is simply
a symbol to express the solution of equation (29). The denom-

inator on the right-hand side is not a number but is an operator

which has a definite meaning, so for instance (D
2 + aD + b)e

mx
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really is the sum of three terms the first of which for instance is

obtained by differentiating t
mx twice with respect to x, the second

once with respect to x, etc.,

The expression is:

raV* + amemx + bemx

Equation (30) can, as will be shown, be written

(D - m l)(D - m^y = X (31)

(D m2)y means -j-
- mzy.

Thus
d /dy \ (dy

(D - mi)(D - m 2)y = ~

d z
y dy dy

dx-*-
m*dx- m*dx

(32)

(Incidentally it is seen that the same result would be obtained by
the simple multiplication of (31) treating D as an ordinary quan-

tity). Comparing equations (29) and (32) it is seen that

-
(mi + mz) = a

and mim 2
= b.

From these equations mi and m2 can be expressed in terms of

a and b which are known.

A slight consideration will show that mi and mz are also the

roots of the so-called auxiliary equation m 2 + am + 6 = 0, which

corresponds to the so-called complementary function

and the auxiliary equation corresponding thereto

m 2 + am + b = O
\ l~2

.*. m = h * \
- - h

2
- \4

and . m- ,

(33)
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The rule then is to solve the so-called auxiliary equation

m 2 + am + 6 =

and find the values of mi and ra2

Then write,

(D - m l)(D - m 2)y = X.
To solve for y

Let u = (D - m 2)y (35)

(D - mi}u = X
and du

dx

U = 1xy c
-

1
x Xdx _|_ ^m^

From (35)

An Cm ~x XT*

l
l -A i

y = ee-
Instance: d 2

y dy

m 2 - 3m + 2 =

m = 1.5 V2.25 - 2 = 1.5 + 0.5 m 2
= 1

(Z)
-

1)(Z>
-

2)y = cosx

(D \}u = cos x

du
-j
-- u = cos x
dx

u = t
x
j*e~

x cos x dx + Ciex

but

e
x
j^e~

x cos x dx = % (sin x cos #) by simple integration

(D -
2)y = y^ (sin x - cos x) + CV = X l

dy (sin s - cos x)

dx
~

2y ~

~^T Cie = Xl

y = S*fe-**Xidx + C2e
2
*.

The three integrals involved are readily solved and the result

s

cos a; snx- - 3 -

In many cases a simpler integration is obtained by the following
method which involves the breaking up of a fraction in partial

fractions.
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It is known from algebra that if the equation given below

holds for all values of x then the coefficients of the like powers of

x are equal.

aQxn + aix
n~ l + an = b xn

-f- bix
n~ l + bn

Thus a = b

0,2
=

z

Equation
-j 2 + a -5 h fa/

= ^ can be written

(D - mOCD -
m,)?, = X or =

But it is known from algebra that the fraction

1 A B
(D - mi) (D - w2) D - mi D - m2

where A and 5 are to be determined._1_ = A(D -m2 ) +B(D -mi)
(D - mi) (D - m2)

~

(D - mi) (D - m2)

This equation shall hold for all values of D.

Rearranging the equation we get:

1 D(A + B) - (Am2 +
(D - mi) (D - m2)

~

(D - mi) (D - m2 )

On account of the identity the coefficient for D must be zero and
the constant terms must be equal, thus

and Ani2 + Bm\ = 1

B = --- and A =
m2 mi m2 mi

m2 mi D mi D m2

_JLJr_^__ i 1

mi m2 LZ> mi D m2J

Let y = u -\- v

u =^ 1̂D 1̂
(36)

and 1 X
~
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Equation (36) written out is

du
_

X
dx

u =

Similarly

v = - - -ft-** Xdx

The general solution is thus

y = Cie
mi* + C 2e

m2* + -

,m 2x "
<-*** Xdx.

mi mz

When X is a constant = K

The solution evidently becomes:

^ = C^mx + Cucw * + y-

When X is zero the equation is called the complementary func

tion and its solution is found by making K = in the above.

The solution of the equation,

is y = Ciemlx + C 2e
w 2a;

.

Before leaving the subject it is necessary to discuss the values

of mi and m 2 which involve a square root in (33) and (34) which

might be real, imaginary or zero.

a 2

(a) The square root is real, that is -j > 6.

We have shown then that mi and mz depend upon the auxiliary
d^v du

equation
-j 2 + a -r- + by = and that the solution of this

equation is,

OL'

(b) the square root is imaginary, that is b > -
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"fVlOTl / &
. -4, / O \ / d . >* /. Ct \

,, = rJ- + '\*-i> -4-c*(~2 -'\ 6 --4>

where a = A/6 -
-j'

But e'
ox = cos ax + j sin ax

.

'

. CV * = Ci cos ax -|- Cij sin ax

.

*

. C 2e~;oa: = C 2 cos ax Czj sin ax

y =
~ a

z [(d + C 2) + cos ax (Ci
- C 2) sin axj].

In order that y shall be real it is necessary that C\ + C 2 and

j (Ci C 2) shall be real, in other words, Ci C 2 must be im-

aginary.

Let A = Ci + C 2 and B = j(d - C 2 )

y = t~ 2 [A cos ax + B sin ax] (38)

= Cie~f sin (ax + C 2 ) (39)

where

and

tan C2
=

j}
m

(c) the square root is zero, that is
-j-

=
6, or m\ = m 2

This is not a complete solution of the complementary function

because we have only one integration constant.

The equation can obviously be written.

(D -
mi)

2
?/
=

= (D - mi}(D - mi)y = O (40)

Let

(D - m,}y = v (41)

Then 40 becomes

(D - mi)v =
or

dv
-; m\v = O
ax
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From (41)

(D -
mi)y =

or

fx - miy =

y = e
m l a: [/Vwl*C

or

i* [C lX + C 2 ] (42)

Two Coils Having Resistance, Self-inductance and Imperfect
Mutual Inductance Constant Impressed e.m.f. Let the constant

e.m.f. impressed on the first coil be E and that on the second

coil EI. Let their resistances and inductances be respectively

r, TI and L, LI and let M < LLj.

It follows that

E = ri + L
-j

\- M -r^ (43)

and dii
,

,,diE 1
= ^ 1rl + LI -j h M -r- (44)

Differentiate (44).

From (43) is found

Substitute (46) and (47) in (45) and arrange the equation
with reference to the derivatives.

/72/ J
7
'

/. ^ (LLi - M2
) +

-ft
(Lir + Lri) + irr, = Er, (48)

Or dH vLir + Lri~\ di

dt 2 '

LLLi - M 2J dt
'

LLi - M 2

=
zzr--ir2 (49)

E7

Similarly
ii
= ~ + BI*** + Brf- (51)

4
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where mi and m% are the roots of the equation.

Lir -f Lri rrim + LL^W* m + LL^-W
-

(L,r + Ln) + VW-LrO' + Wrr,

It is evident, from the factors under the square root sign, that

in this case the two roots are real.

Thus the solution is

L\r -f- Lri -

mi=
2(LLi

-
,.

and Lir + Lri
,

,

2

The integration constants AI, A 2 and J3i, 7? 2 are readily de-

termined, since in this case (where the mutual inductance is not

perfect) currents can not flow without producing some flux, and

thus, since the establishment of flux requires time, the currents

can not appear instantaneously.

Therefore at t = 0, i = ii
= 0.

Referring to (50) and denoting the final current

(where
/ ==

^) (56)

by = 7 + ^,4-^2, or A 2
= -

(A l + 7)

we get i = I + Aiei' - (Ai + I)e
m* (57)

and ^ = I I + B^"1* - (B l + 7i)e^ (58)

These equations still contain the two unknown quantities

A 2 and B 2 . To determine them, multiply (43) by LI and (44)

by - M.

L,E = L<ir + Lla + L,M (59)

- ML 1
- M 2

di- ME! = Liir - Mi^ + (LL - M2
) ^

~ LlE + (LLl
~

The value of -r is found by differentiating (57) and the value of
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i directly from equation (57). Substituting these values in (61)

and remembering that for t = 0, i\
=

0, the integration constant

AI is found to be:

Ltf - ME, + w,/(LLi - M 2
)

- - 2

.'. A 2
= -- (A! + /) (63)

Similarly n
LE l

- ME + ma/i(LLi
- M 2

)

(mi
- m2 ) (LLi

- M 2
)

B 2
= -

(Bi + /O (65)

The equations of the currents are found by substituting these

constants in equations (57) and (58). They are so long and

cumbersome, however, that it seems unnecessary to insert them
in this text.

Assume that the two coils are identical and wound in the

same direction, and are connected across the same constant

potential busbars. What are the equations of the currents?

mi and m z are found from equations (54) and (55).

m >
= -

L^M (66)

m z
= -

L
T

_ M (67)

AI = #1 is found from equation (62) by substituting these values.

E _

thus A 2
= B 2

= 0.

Referring to equation (57) :

(68)

This shows that the mutual inductance acts as self-inductance.

It is also evident that if the two coils are wound in opposite

directions the circuit is almost non-inductive. It would be non-

inductive if M = L; that is, with perfect mutual inductance.

It is of particular interest to study the relations of the currents

in two such identical windings inductively related when one is

supplied with current from a source of constant potential and

the other is short-circuited.
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It is well to deduce the equations from the two general ex-

pressions:

and . T dii . , f di= t,r, + L, ^ + M %

However, it is evident that having once determined the

general equations (57), (58), (62), (63), (64) and (65), it is possible

to give the equations for the case in consideration by putting

#1 = 0;

that is, T _ I _=

n
=

i = I + Aie"* -. (Ai + 7)e
m

(69)

and n = Bi mi* - #iew 2< = B! (
i< -

*) (70)

Referring to equation (62) and substituting equations (66)

and (67)

and

(71)

Referring to equation (64) and making similar substitutions

we get

M'
J

(72)

It is evident that these equations do not lend themselves to

the limiting condition M = L, on account of the assumption
made in determining the integration constants; that is, that leak-

age flux exists between the two coils. To get these values,

equations (20) and (21) should be used.

In Fig. 20 are given some very interesting curves which show

how the current in the short-circuited winding depends upon the

leakage flux between the windings. These curves represent the

conditions of two identical coils having a resistance of 0.10 ohm
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and an inductance of 2.5 henrys, placed at various distances

apart so that the mutual inductance is M = L in curve a,

M = 0.9L in curve b, M = 0.7L in curve C, M = 0.5L in

curve d, and M = 0.1L in curve e.

-4

2

-1

10 20 30 40 50 70 80 90 100 110 120 130 140 150 160 170 180

Time in Seconds

FlG. 20.

One of the coils is connected to a source of constant potential,

e = 1 volt, while the other is short-circuited.

Prove that the time for the maximum value of the secondary
current is:

Z^-M 2 L + M
Iog L - M'



CHAPTER III

10000

8000

CIRCUITS OF RESISTANCE AND VARIABLE INDUCTANCE

In the discussions given so far it has been assumed that the

inductance L has been constant. In almost all cases of interest

to engineers this is, however, not the case because almost all

magnetic circuits contain iron, and the permeability of iron is not

constant but depends upon
the magnetization. In other

words the flux produced by a

given current is not pro-

portional to the current.

Fig. 21 gives the saturation

curve of an entirely closed

iron magnetic circuit, as

shown in Fig. 22. It is the

familiar hysteresis loop, which

shows how the magnetism

lags behind the m.m.f. pro-

ducing it.

This particular sample has

a remnant magnetism of 7600

lines per cm. 2
,

so that this

density corresponds to an

exciting current of amp.
The maximum density is

10,000, which corresponds to

an exciting current of 4.5

FIG. 21. amp. If, after the maximum

density is reached, the current is gradually reduced the rela-

tion between existing current and density is found in curve a.

The flux does not disappear until the current is 2.6 amp. in op-

posite direction to the original 4.5 amp.
If, instead of being entirely of iron, the magnetic circuit con-

sisted partly of air circuit and partly iron (Fig. 23), the influence

of the air circuit would as a rule be so much greater than that of

56

-8000

-10000
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FIG. 22. FIG. 23.

the iron that the shape of the saturation curve would become

materially modified. Thus the saturation curve of a dynamo,
having a magnetic circuit

largely of iron but also of at

least a small air gap, can be

represented by a set of curves

similar to those in Fig. 24.

If the air circuit is very small

the two curves corresponding

to a and b in Fig. 21 can be observed. If the gap is reasonably

large the two curves merge into one as shown in the dotted line.

FROLICH evolved an equation of such a saturation curve for a

magnetic circuit consisting partly of iron and partly of an air

gap; which, modified by KENNELLY, can be written thus

ki
:

T+fo#
where <f>

is the flux corresponding to an exciting current of i amp.

4 6

Current in Amperes

FIG. 24.

If the number of turns of the exciting winding is known then

the inductance for any particular value of current i can be

determined. It is

N(f>
-. where N = number of turns.

:.L = AT
/clO-8

i + kj
The general equation thus becomes:

d , ^ di

r
NklQr
1 + kii dt

iNkkMr* di

(1
-

kii)
2 dt

(73)
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To solve this equation the variables are separated

di

or / *_ _ 10^
I 7 *\ 9 "\7*7

r

J (e-i

The integral is solved by breaking up the fraction

into three fractions

C
6 -

~
h i i T ~h

The constants can be readily found and the integration carried

out without the slightest difficulty.

A becomes -=
a 2

B becomes r
a 2

and C becomes
a

The result is:

Nk rr (1rr l + /dz
loe; e : h

La e ir10 8a La
"

e - ir 1 + MJ

where a = r -\- eki.

In this case a simple solution which is quite accurate is obtained

if the last term in (73) be omitted since an inspection will show
it to be small as compared with the second term.

We have then

di _ . JVMQ-8 di

Separating the variables we get:

di W*t
? (74)

(e
-

ir) (1 + fet) Nk

again 1 A B

A +Be + i(Aki - Br)

(e
-

ir) (I +
Since the left-hand member does not contain the unknown i

and since the constant term is 1, we get

A + Be = 1

Aki = Br.
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Thus A = _ _J1_ and B = fei

r + efci r + eki

The intergral is thus broken up into two simple integrals

r_ <** r ^
_ , C-

J (e- ir) (1 + kj) J (r + efci) (e
-

ir)
^
J (r+ *i)(H-

^
i fci

fci

r + eki
*

e ir

If it is desired to find the value of i at any time after the circuit

is closed then i = for t =

(75)
e ^r e

The curve connecting z and t can conveniently be obtained by

assuming different values of t and solving for the left-hand mem-
ber of the equation. The value of i can then, of course, be easily

determined.

Curve a in Fig. 25 shows the relation between the exciting cur-

rent and the time for the field current of a direct-current generator

having the following constants:

e = 100 volts = voltage impressed on the field.

r = 100 ohms = field resistance.

TV = 4000 = total number of field-turns in series.

01 = 1 megaline with 1 amp. excitation.

02 = 0.6 megaline with 0.5 amp. excitation.

From FROLICH'S equation follows then:

1 = and 0.6 = '

k = L5
i .i

ifci
= 0.5.

It is instructive to verify this curve.

Curve b gives the corresponding values if the saturation curve

had been a straight line, i.e., if the flux were 1 megaline for 1 amp.

excitation, and 0.5 megaline for 0.5 amp. excitation.
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In that case the inductance L would be constant and would be

4000 X 1,000,000L=
10' X 1

"

and the equation e = ir + L -r would be 100 = lOOf + 40
-^

in which case

i=l- e- 2 - 5 '

(76)

1.2

Time in Seconds

FIG. 25.

2.0

It is interesting to see that the field flux builds up considerably
slower than would have been the case if L had been constant.

The reason for this is that, while at the final value i = 1, the

inductance is the same in both cases, for all smaller values of

current the inductance is greater because the flux is greater
for the same current. When the saturation can not be expressed

by a simple equation, there is no better method than to calculate

step by step.

Let Fig. 26 represent such a saturation curve. Determine
the rise of current when a constant impressed e.m.f. of 100 volts

is impressed on a coil 4000 turns having a resistance of 100 ohms.

Thus N
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Using differences instead of differentials:

N A06:=ir + WAi
or 108

(e
-

ir) M

= 0.25 X 10 7
(1
- i

(77)

(78)

1.4

1.2

| 1-0

I
*8

c

5 .4

.2

.4 .8 1.2 1.6

Current in Amperes

FIG. 26.

If the values of current are determined every one tenth of a

second A = 0.10.

.'. A<j>
= 0.25 X 106

(1
-

i).

The actual flux at any time is of course SA< the corresponding
relation as obtained by the use of the differential equation.
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The method of calculating is illustrated in the table given below

and the results plotted in full-drawn lines in Fig. 27.

First approximation Second approximation

The starting of an alternating current in an inductive circuit

containing iron is of special interest since almost all electrical

devices used with alternating current have iron. Unfortunately
the equations are very complex and are not subject to solution,

even with long and elaborate treatment by series. Even in the

simplest case, when the saturation curve can be represented by
FROLICH'S equation, an accurate solution is not possible, although
to be sure it is not difficult to bring the relation into the form of a

linear differential equation. The problem in that case can be

solved as far as a mathematician is interested; but the engineer,

and indeed the mathematician, can not use the solution for any

practical purpose.

To illustrate this assume that an alternating-current e.m.f. is

impressed on a magnetic circuit having N effective turns per
ki

phase, and a saturation curve represented by <j>
=

..
,

, .

Assume that the resistance of the winding is r ohms, and that the

impressed e.m.f. is a sine wave. At any instant the following

relation exists:

E sin ut = ir + L -r. -\- i -r:'
dt at

But L =
j-fTjp

where N = number of turns

1 i is read off the saturation curve or since in this particular case a satura-

tion curve which can be expressed by FROLICH'S equation has been assumed

for the relation i =
1.5

1.5 1 + 0.5*
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again neglecting the last term.

,

di
. . E sin ut = ir + -

: : . -7-
1 + kii dt

where a = JVfc 10~ 8

substituting for 1 -f- k\i = ;

y

y = e~ ~T d'

r r + ki E sin o>< dt
J 1 1 i

(8o)

dto* 1 d

2/i i?/

r r a dy

k\y ki kiy dt

dy
kiy E sin ut = r ry a ~~

dy (r + fci E sin cup _ r_

dt+ y
~

a 'a
r + ki E sin ut--J- .

i E sin w< d<
"]

(82)

the solution for i is found by a simple substitution.

Unfortunately, however, the solution is not in a simple form

and can not be simplified; and thus, while mathematically the

problem is solved, practically it is unsolved. In cases like this it is

necessary to proceed by a step-by-step method.

Consider then the case of an alternating-current impressed

upon a magnetic structure having a saturation curve of any

shape. Let it, for instance, be expressed by

ki
=

r+i^i

The following relation exists at any instant :

E sin orf = ir + g (83)
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where r is the resistance

N
/. E sin cot eft = ir dt + j^

d< (84)

PI V 108 7> ID 8

*' d0 = sin ^ d*
~ "" d* (85)

If, with full-load effective current Ie the resistance drop is p per

cent, of the rated voltage, then

7
e
r =

j^Q r=, and for any other value of / as i, ir
= ^ ^- (86)

' 2

or since , cos coi ,

d = sin cot dt

E X 108 r , cos co pidt
d* = ~N L~ ~u TooT

T
~

It is usually more convenient in alternating-current problems to

introduce 6, the phase angle, instead of co.

In that case = ut and dt =

Referring to, (127)

_ E X 108

pin 6 dB _ pidB 1
~

~~N~ co

"

Ie 100 X/2COJ

OT

In most problems E, N, $max and the frequency are known,
so that numerical values can directly be substituted in the above

equation. Since, however, there is a relation between them, one

or more of the quantities may be unknown.

The most general aspect of the problem is given by eliminating

the numerical value of the impressed voltage, turns and fre-

quency, and specifying the maximum value of the flux : <j>
maximum

= $.

We have the following well-known relation between $, N, E
and co.

2irf 3>N
10 8 108

.'. - (88)
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When in an inductive circuit the resistance is very small compared
with the reactance so that the impressed and counter e.m.f. are

equal numerically.

Substituting this value in (87)

FIG. 28.

Substituting differences

A0, A cos and A0 instead of differentials, the equation becomes:
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If the ratio between flux, current and phase angle is deter-

mined every 10 then A0 = 10 = 0.175 radians.

cos 6 + 0.00124
pj

\

Numerical Example. Determine by "step-by-step" method
the current in an iron-clad inductive circuit when an alternating-

current e.m.f. is impressed thereon. Assume that the saturation

\

\

ssaodtuy ut ^uooanQ

FIG. 29

curve of the magnetic circuit is represented by Fig. 26 and

equation :

<t>
=

i ,'HKV megalines.

Assume that before the switch is closed the remanent magnetism
is zero as is practically the case when the magnetic circuit con-

tains an air gap. Assume further that under normal conditions
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of operation the maximum flux is 1.4 megalines, that normal

effective current is 1.7 amp., and that the resistance drop is

3.91 per cent. Then

A</>
= -- 1.4 [A cos + 0.00286i]

- 1.4 A cos - 0.004?;

The total flux is obviously ZA<. If the switch is closed when
the e.m.f. passes through zero and is rising, the normal flux at

that instant would be a maximum in the negative direction as

shown in Fig. 29. As it has been assumed that the flux really is

zero it is evident that there is a transient stage in the mag-
netization before permanent condition is reached. It is evident

also that if the switch were closed when the e.m.f. was a maxi-

mum no transient condition would result, because the condition

then demands zero flux, and the flux is assumed to be zero.

In the numerical example it is assumed that the switch is closed

when the e.m.f. wave passes through zero.

The method of using the above equation is best shown by the

table given below.

Column No. 1, phase angle; No. 2, the cosine of the phase angle; No. 3, difference in the

value of the cosine between two successive steps, for instance cos 20 cos 10; No. 4 is

self-explanatory; No. 5, first approximation of the flux (sum of No. 8 of the preceding line

and No. 4 on the line under consideration") ; No. 6, current as obtained from the saturation

curve or the equation if such is given; No. 7, ohmic drop; No. 8, second approximation to

the flux which takes into consideration the ohmic drop (the algebraic sum of No. 5 and
No. 7) ; No. 9, current corresponding to the last approximation of the flux column, No. 8.



CHAPTER IV

CHARACTERISTICS OF CONDENSERS

The charge q of a condenser is proportional to the voltage;
or q = Ce, where C is the capacity the value of which depends

upon the mechanical construction, dimensions, etc., of the con-

denser, and 6 is the voltage.

The charge q is expressed in coulombs or ampere-seconds.
Thus the charge dq given in a time dt when the current is i amp.
is:

dq = idt.

The capacity is expressed in farads, a very large unit; so large

indeed that in actual practice it is never used. The capacities

of condensers are almost always given in microfarads, that is,

in a unit which is one-millionth of a farad. Nevertheless,
in all formulae involving capacity, C stands for farads, not

microfarads (m-f.) unless stated to the contrary.
To give an idea of the capacity of condensers used in engi-

neering, it may be of interest to know that the ordinary paraffine

paper and tinfoil 500-volt blocks of the size of the average
text-book have a capacity from 1 to 2 m-f. In a high-potential
transmission line the capacity of one wire against neutral is

about 0.016 m-f. per mile. The capacity of underground
cables is relatively high. Depending upon the voltage and

type of cable, etc., it must obviously vary much. It is usually

less than 2 m-f. per mile and more than }/{Q m-f. The capacity
of an ordinary Leyden jar is extremely small a very small

fraction of a microfarad.

The fundamental equations for the condenser are as stated

above

q
= Ce (1)

and dq = idt (2)

From these follow: q /Q \=
C

dq = Cde (4)

and . = | (5)

68
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Substituting (4) in (2)
dp

Cde = idl ori = C ~ (6)
(it

or e, the voltage across the condenser = -~J*idt (7)

The rate of energy supply or power is ei

or from (6),

Cde de

or from (3) and (9), . _ ? . _ q_ dq~
C

^ "
C dt

The energy stored in a condenser, which is the same as that

required to charge a condenser to a voltage E or to a final

charge Q, is therefore the rate of energy multiplied by the time.

It is:

fJo

Jo

e

o2

/~n , /
or

cedt = C - C

2C

Equations (10) and (11) are obviously identical, since at any
instant

q
= Ce thus for e = E when q = Q

Q = CE, which, substituted in (11), gives

CE 2

2C 2

As in the case of inductance, the calculation of the capacity
of any but the simplest circuits is difficult. It will be dealt

with in later chapters.

Of particular interest to engineers,

however, are a few simple forms of con-

densers, the approximate capacity of

which are given by equations which are ^IG 39.

well known.

Thus the capacity between parallel plates, Fig. 30 is:

c = ' in microfarads
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where K, the specific inductive capacity is approximately 1 for

air, 2 for paraffin paper, 3 for rubber, 5 for mica and 6 for glass.

A, the effective area is given in sq. cm. and d, the thickness

of the dielectric, in centimeters.

The capacity between concentric conductors (Fig. 31) is:

0.0386LK
C

log

in microfarads

io

where the length I is given in miles of cable, K
is the specific inductive capacity, D the inside

diameter of the outside conductor, and d the

diameter of the inside conductor. This is the

capacity between the conductors, not the

capacity to neutral or ground. The capacity of

one conductor 1 mile long to neutral is twice as great.

The capacity between transmission lines is:

0.0386?

FIG. 31.

C = in microfarads

where I is expressed in miles and the capacity is that of one line

against neutral.D is the distance between wires, center to center,

and r the radius of wire. The charging current is thus

. 2irfCe

10 6

where e is one-half of the line voltage in the single-phase system
and 58 per cent, thereof in the three-phase system.

Circuits Containing Concentrated Capacity and Resistance

Consider at first the case of a constant e.m.f. E impressed

upon a circuit of resistance r and

capacity C, Fig. 32. After the cir-

cuit is established a current flows

and energy is delivered to the re-

sistance and the condenser. In the

resistance heat is developed and
in the condenser an electrostatic

field is produced. The energy given by the source of supply of

power is fEidt. The energy supplied to the resistance is

fftrdt

FIG. 32.
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and the energy supplied to the condenser

Thus
fEidt = fi*rdt + Cq ~? . (12)

Eidt = i*rdt + q ~l

Ei = i
zr + -

Jj
which is the power equation (13)

and ,-, . q dqE = *r +
Ci dt

or substituting for dq = idt

E = ir + -~ which is the voltage equation (14)C

Obviously the voltage equation could have been derived directly,

since ir is the e.m.f. consumed by the resistance and ~ the voltage

across the condenser.

The condenser voltage is thus ei = E ir; but

or de, I = E
dt

'

Cr
?

"
*r

Referring to equation^! = Ae cr -\- E (15)

where A is the integration constant: The current is readily

CA _JL< A _!,
c cv' -e c, (16)

r . ei
found, since % = C ~r

The charge g is = Cei - CAe~cr' + ^C. (17)

Special cases:

(a) Condenser charge.

At time t = 0, e\ = 0.

.'. referring to equation (15), A + E .'. A = E

(18)

Referring to equation (16)

t---&' (19)
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Referring to equation (17)

EC\l -

(6) Condenser discharge.

In this case the impressed voltage E
Referring to equation (15)

i

and e = A
i

.

(20)

for t = 0, ei = e .

= At cr
l

(21)

1

that is in opposite direction to charging current (22)

2000 Ohms.
""* -WV\A-

FIG. 33.

q
= Ce e~cr (23)

2oom.f. Referring to the e.m.f. of the con-

denser rather than to the impressed*

e.m.f., the current becomes positive

since the discharge current

,-.-- -C^
dt dt

_
C Cr

(24)

Cr
* " '

r
- (25)

In order fully to understand the action of condensers it is not

sufficient to follow the equations given above, but it is essential

and indeed necessary to figure a number of numerical examples.

h
2|

||.05

S.2.04

JU
If

02

jfiOl
3

oo
.1 .2 3 .4 .5 .6 .7 .8 .9 1.0 1.1

Time in Seconds

FIG. 34.

90 1.8

80 1.6

6o|l.2|

40^ .8

300 .6

20 .4

10 .2

For this reason Figs. 33 and 34 are given. The curves shown

there should be checked numerically by every student. They
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are calculated under the assumption that a constant impressed
e.m.f. of 100 volts is impressed on a circuit of 2000 ohms resist-

ance and 200 m-f. capacity, as shown in Fig. 33.

An interesting problem in connection with the charging and

discharging of condensers, is to consider the flow of current be-

tween two Leyden jars of different

capacity and voltage (Fig. 35) . The

energy stored in condenser A at volt-

age E is J^CE 2
. The energy stored

in condenser A at voltage e is

The energy stored in condenser B at FIG. 35.

voltage Ei is %CiEJ. The energy
stored in condenser B at voltage e\ is J^Ciei

2
. While current

flows between the two condensers, a readjustment of energy takes

place.

The energy equation is obviously:

0.5CE 2 + 0.5Ci#i2 - 0.5Ce2 - O.SCi^ 2 = fizrdt.

By differentiating this equation, the following results:

- Cede - Cieidei = i*rdt (26)

As it is assumed that the voltage of A is higher than that of B,

the latter being charged; thus

where e\ is the voltage of B at any time. Equation (26) contains

three variables, e, e 1} and i, which, however, are dependent upon
each other.

At any instant the following relation exists between the e.m.fs.

e = ir -f- ei

Thus de_ di^ dei _
d 2

^ dei

dt
~~ T

dt
""

dt dt 2
~

~dt

Substituting in (26)

ClCir-rr 4-ei) (Ctf-tt + -37) dei-j^ = Ci2r (-57)
\ eft / V di 2 d^ / rfi \ dt I

or

6
,

deiei
\ n ei lr r ei j

757
' Cl

~di(
Cir

~dt
+ ei

or dei \ / dei rr d 2
ei deA

) l
Cl

~di
+ CCirW + c

~dt)
=
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Since Cir -57 + 61 can not be zero
at

+ C-0 (29)

Integrating (157)

or dei C + Ci K
Kl

ei = K 1 + K 2e- (3D

where CCi
/

/-? i /^C + Ci

The integration constants KI and X 2 are determined from the

initial condition that for t = o, ei = EI and e = E

.'. Ei = KI + K2 or K2
= Ei - K l

i+ (E, -Kfc c

(33)

l dt~ C r"

but e = ir + e\

/.-- ^(^i
- Xi)e

"^ + K!
Co

for t = o e = E

:. E =- ^(E l
- K,) + K

Co

.'. K, = E, +^
and Co

The problem can be solved in a simpler way if it is realized

that the total charge in the system, is not changed after the

switch is closed. Thus

Qo = EC + E, d =
q + qi (36)

Where q and qi are the charges at any time in jars A and B
respectively.



CHARACTERISTICS OF CONDENSERS 75

In that case e = ir + e\\ or since q = eC and qi
=

e\C\,

Assuming E>Ei, then jar A is being discharged thus

dq

or g i

dt
'

Cdr q ~

where ^ CC\
Co ~ C + C

for J

Since condenser B is being charged

K EC si , si Co(E

Since condenser A is being discharged

,__* + z*j.-,-.
at r

The voltage across condenser A, which is being discharged is

for t = o e = E
n

, , (
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= O = O C (E E }

~
~Cor

1

TJ C (E EI

1 E - E^
/"* {s QT<

Ci r

i

for t = o,

and C , _. ,, x C

With a slight modification of this equation it is seen that for t

= oo the final voltage between the coatings of the Leyden jars is

E = Q

Numerical example: condenser A has a capacity of 1 m-f. and

is charged to 1000 volts; condenser B has a capacity of 2 m-f.

and is charged to 500 volts; the resistance is 10,000 ohms. Find

the current after the switch is closed.

The original charge in A is then 1000 X T = 0.001 cou-

500 X 2
lomb; the charge in B is

I-^G
= 0.001 coulomb also.

E - EI = 500

2 X 106 2

3 X 10 12 3 X 10 6

and 1

C + Ci = 3 X 10-6

c
V
c

= 0.667
c _^ Ci

= 0.333

*'
=
i<w--

150 ' =
-05

- 150 '
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e = 1000 - 0.667 X 500(1
- e- 150

<)

= 500[2
-

0.667(1
- e- 150

0]

i
= 500 + 0.333 X 500 (1

- - 150

= 500[1 + 0.333(1
- e- 160

')].

14

12

,10 1000
i

I

I
8 80 S

i6
> 600 1.060
S

<j

|

4^1400-5.040

|

2
W*200 g.020

> 000
.140

.120

10 1000 .100
I

! 8 5 800 | .08

> S

i 6.SCOO-J .06

ir*
-^^ 4-

. 4 3 400 g .04

? 2 200 O .02

>

-2 -200 -.02

-4 -400

\

Tim

Case No.2 Voltages H
-500

)00

.005 .010 .015

Time in Seconds

FlG. 36.

025

.025

For t = oo
,

eQ = e i 0.667 volts which is the final voltage of

the two jars.

Fig. 36 gives the result of these calculations.

Harmonic E.m.f. Impressed upon a Circuit of Resistance and

Capacity in Series. Let e = E sin cot be the impressed e.m.f., r

the resistance, C the capacity and q the charge at any instant.
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Then, referring to Fig. 37,

E sin wt = ir -{-

Differentiating

= ir -\-
-^

\ i
-

\ idt

di
u cos u>t = r-r +

-^

di i Eos cos cot

(1)

E Sin

FIG. 37.

Thus, _ i
t [ C +-

1-tEu J
i = e Cr \ I Cr cos cotdt + K

The integration is readily made and the result is:

E
i =

-y
sin (cot + j8) + -KV

where

and

Z = r'

a^r

tan /8
=

r

The voltage across the condenser is:

= ~ sn fldt + ^ fe c

At the moment of closing the switch ec = 0.

Thus for t = t 1} ec
= 0.

(2)

(3)

thus,

or
t = | [sin

(8

cos

cos

(4)

(5)
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As an interesting application of these equations and the corre-

sponding equation for inductive circuits, consider the nature of

the current supplied to a tuned circuit, Fig. 37, when the resist-

ance is small.

x = - xCjZ
= \/r 2

-}- x'2 = -\/r
2
-\-xc

2

The line current at any time is the sum of the currents in the

two circuits.

Q (0 - 8) + sin (0 + 8} -
e ~x (e

~
ei}

sn 1
- -

=
^| 2 sin cos j3 e r

'
'

cos (0i /?)

XC. ""I

r
e '

cos (0i -f )8) (7)

The line current is a combination of a sine wave of form - ~

sin and two exponential or logarithmic curves. Since r is

^_ fa a \

small compared with x or xej one of the logarithmic curves e *

M *^ c fa a

sin (0i ft) dies down at a slow rate, whereas the other -V 7 l

cos (0i -f- (3) dies down with extreme rapidity.
x

In the limiting case when -
is large and ft therefore approaches

90 the permanent term disappears since cos =
0,

and Er -J-(g- gi )
x c _ x

f(0_0,) .
~|=

'7? I
* COS 0i H r sin 0iZL r J

for #
r = OLto = ~~ cos QI

x

Thus the interesting situation occurs that if an alternating

voltage is impressed on a tuned circuit as shown in Fig. 37 and if

the resistance is zero the line current is a steady unidirectional

current having the value:

. _ E cosd i

x

If the switch is closed when 0i = 0, then the direct current is a

maximum and is . At any other time it has a smaller value.
x
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In Fig. 38 is shown a series of curves which illustrate this in

the case where the resistance is considerable and the circuit is

closed when 0i = 0. The constants for the circuit are:

E =
1, r = 0.05, x = xc

= 1

z'o is the total line current, the dotted sine wave is the impressed

e.m.f., IA the current in the condenser circuit, and IR the current

in the inductive circuit. As is seen, iQ is a unidirectional current

FIG. 38.

of slight pulsation, slowly decreasing in magnitude. After a

number of cycles it would become a small alternating current, as

shown in the curve marked Final i .

This feature of a tuned circuit might be of practical importance
in connection with problems of rectification charging of storage

batteries from an alternator by occasional interruption of the
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current and starting it at the time when normal current in either

branch would be a maximum.
Circuits of Inductance and Capacity. While practically such

circuits can never exist they offer much interest from a theoretical

point of view since their study

represents an introduction to oscil-

lating circuits, which are of much

importance in electrical engineering.

In Fig. 39 is shown such a cir-

cuit. In practice the condition

there indicated is approached FIQ
when a very low resistance over-

head transmission line supplies power to a cable net work, which

case, however, is fully treated in a subsequent chapter.

The following relation exists at any time.

where E is the instantaneous value of the impressed voltage and

e\ the voltage across the condenser.

But . _ n dei
-

dt

thus di _ d*ei
=

dl*

thus

LC^ + ei = E

or d*ei
, _fi_ J^

dt 2 ~^ CL~ CL

The solution of this equation has been given, it is

ei = E + Aie
mi '

mi and ra 2 are the roots of equation;

m. - f i .
,

<CL

m
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But e}

'

at = cos at + j sin at

-jat = cos at j s[u at

.'.A**
'

*

+ j sin at(Ai A 2 )

= Ao cos aZ -f- Bo sin at = A sin (a +

where A and 5 are integration constants.

The current

The integration constants are determined from the knowledge
of the initial conditions.

Assume for instance that it is desired to know the current and

the voltage across the condenser at any instant after the switch

is closed:

At the time t = 0, i = and e\ = 0;

.'. = E + A smB

and 1C D= A -J cos B.

Thus cos B must be:

.'. B = thus sin B = 1 and A = - E

and

The voltage across the reactance is L
-j-

it is

= cos
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In Fig. 40 are shown the voltages across the condenser and
inductance as a function of time. It is seen that there is no time

at which the voltage across the inductance is greater than the

impressed voltage and it is also seen

that at the instant of the first half

period the voltage across the con-

denser is twice as great as the im-

pressed. Thus the condenser will be

subjected to double voltage during
each cycle.

The maximum value of the current

is, as seen;

FIG. 40.

The frequency of the alternating current / =
-

~/TT
*s c

the natural frequency.
1 It is almost always much higher than

the frequencies used in commercial alternating-current circuits.

The Discharge of a Condenser through an Inductance. Re-

ferring to Fig. 41. Let E be the voltage of the condenser before

the circuit is closed and i the current at any instant after the

switch is closed.

Then

But the discharge current

e = L

thus

and

or

i = - C

di

di

dt

de (

dt FIG. 41.

L
dt

CL
dt 2

eo = -CL'
1

di 2

CL

the auxiliary equation becomes :

m 2 + -== =0 or m =

1 In case of a transmission line the natural frequency will be shown to

1
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thus

and
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cos

cos

The integration constants A and B are determined from the fact

that at t = 0, i = 0, and e = E . Thus:

EQ = A sin B

= - C Dcos B

'. cos B = and B ^

and

.'. sin B 1 and A
t

= En sm

cos

2

E

I = En COS

sn

s

It is seen that the discharge frequency is the same as the

frequency at charge, and that the maximum value of the current

P ftE
\L-

As another application of this will be considered the condition

when a short-circuit is suddenly

opened and the large current in-

stantly interrupted.

This condition is diagrammat-

ically illustrated in Fig. 42. S

represents a switch which short-

circuits the condenser and is

opened at the instant under consideration. (In practice this

switch may represent a short-circuit across the cables opened by
the magnetic effects of the current.) The current I in the

short-circuit is evidently the same as the current in the inductance
;

therefore the energy stored in the magnetic field is 0.5LJ 2
.

At any time after the switch is opened the current i flowing

through the condenser, inductance and generator (all assumed as

FIG. 42.
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having zero resistance) is governed by the condition that the

energy stored in the condenser and inductance is the same as

the original energy.

.'. 0.5Li2 + 0.5Ce 2 = 0.5L/ 2

LI'2 - Li* = Ce*

but . _ ~de
1 ^7.

dt

thus /de
,-
2 = C2 /^V

\dt)

:.LP - LC*(~}
2

= Ce\

Differentiating or/^2 ^2g
~ 2LL

dt 2 dt
=

.
d*e I-+ 6 '-

and . / t %

e '-'- A sin + B
)

for t = Q,i = I,e =

Thus = A sin 5; and sin 5 =
0, and B =

1C
=

i = I cos

It is interesting to note that while at the instant of opening the

switch, or the short-circuit, the voltage e across the condenser is

zero, one-quarter of a period later (period being here the natural

period which is extremely short) the voltage is a maximum and

is

6max =

These equations are instructive in that they show that the

maximum voltage obtained in opening a short-circuit in a cable
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or transmission line is independent of the length of the line and

depends only upon the constants of the circuit per unit length and

the current at the time the circuit is interrupted.

They also show that when the circuit is closed on a transmission

line of considerable inductance and capacity, the maximum rush

of current is also independent of the length of the line and depends

only upon the value of the e.m.f. and the circuit constants.

Harmonic E.m.f. Impressed upon a Circuit of Inductance and

Capacity but Negligible Resistance. This strictly theoretical

condition is chosen for two reasons. The solution of the equa-
tions introduces some mathematical operations which have

hitherto not been considered and the problem from the electrical

point of view illuminates in a relatively simple way what happens
in the extreme case in switching high-potential circuits.

The general equation obviously becomes:

E sin ei (1)

where e\ is the voltage across the condenser, Fig. 43.

But
^

dt

.'. E sin

thus L -7
at

CL

or

FIG. 43.

d 2
6i 61 EW + CL

=
CL

sln (2)

It is seen that the right-hand member of the equation is a

function of L To solve such equation the solution of the comple-

mentary function is first found; that is, zero is substituted for

the right-hand member:

V
' r CL

~

i
2 +-== = or m = j .J

CL/

(3)



CHARACTERISTICS OF CONDENSERS 87

Ai +A/cE' + AvT^m,' = A^at + A#- iat
(4)

where

The equation, as has been shown previously, can be written

61 = A sin (at + #)

Thus the complementary function is

eQ = A sin (at + B) (5)

The next step is to eliminate the sine function from the general

equation (2) by two successive differentiations:

Substituting the value of Ea 2 sin coi from equation (2) and

arranging the equation in the order of the derivatives:

(7)

The complete solution of (7) is obtained in the usual way:

m 4 + (a
2 + a>

2
)ra

2 + coV =

W 2(m 2 + a 2
) + a>

2
(ra

2 + 2
)
=

or (m2 + w 2
) (m

2 + a 2
)
=

.*. m = + jb)

m = + jo.

Thus d = Ai sin (at + #0 + A 2 sin (a + 5 2) (8)

By referring to (5) it is evident that A 2 and 5 2 must be the same

as A and B.

Thus i
= eQ + AI sin (o> + BI)

The integration constants AI and BI are determined from the

fact that the expression A\ sin (co + BI) must be a particular

solution of (2).

Thus i
= AI sin (o> + 1)

-7- = AICO cos (&t -}- BI)

d zd
- = -- Aiw 2 sin (cot + BI)
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Substituting these values in (2).

Thus
- Aico

2 sin (ut + Bi) + Ai 2 sin (coZ + BJ = Ea* sin ut (9)

or A^a 2 - co
2
) sin (at + BI) = Ea 2 sin ut.

Thus equating the coefficients of similar terms:

Ea 2 = Ai(a
2 -

co
2
)

* --^.-5%; (10)or or c a:

and 1
= /. from (8) (11)

ei =
EXc

sin ut + A sin (erf + 5) (12)
3?c 32

The second term in this equation may in this case be more

advantageously written :

AQ sin at + Bo cos a

/. ei = - - sin coi + A sin a^ + Bo cos at (13)
3?c E

= 7a:c sin coi + A sin a^ + Bo cos at (14)

Where / is the maximum value of the permanent current,

that is,

/ - ~^ (15)
X c
- X

i = C 3 - = Ixcu cos ut + A Qa cos at B a sin CK (16)
at

Considering the problem of starting a current in such a circuit :

when t = ti, i = and e\ = 0. If these values are substituted

in equations (13) and (16) it is readily found that

BQ = Ixc sin ati cos coi sin at\ cos cd\ (17)

AQ = Ixc sin ati sin wt\ -\ cos at\ cos co^i \ (18)

Substituting these values in the equations for the current and

e.m.f. across the condenser we find:

ei = - sin at cos coZi sin a(t ti)
Xc X L a

- sin coii cos a(t
-

fi)l (19)
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and

i = C -TT = ~ cos at cos coti cos a(t ti)
at Xc x L

1C 1+ xc
^Ij-

sin coti sin a(t
-

fc) I (20)

While as a rule equations of the form given in (2) having a

sine function or exponential function on the right-hand member,
can be solved by the method given above, it may be opportune
here to call attention to another well-known method of more

general application.

The differential equation is:

fJZf,
<L + eia

2 = Ea 2 sin cot

This expression is given in symbolic factors as follows:

(D - mi) (D - m 2)ei
= Ea 2 sin cot (21)

where D is an abbreviation of -r and mi and mz are the roots of

the complementary function

d 2
ei

777- -f- eia
2 or m 2 + a 2 =

at

.'. m = ja or mi = + ja
and mz = ja

Equation 21 can thus be written

(D + ja) (D -
ja)ei = Ea 2 sin cot

Let u = ei(D ja)

.'. (D -f ja)u = Ea 2 sin cot

^ + jau = Ea 2 sin coi (22)

This is a linear differential equation of the first order and its

solution is.

u = e-i*t
|

6+/ j^o:2 sin w^ ^ + Ci~^ (23)

/.
. . . ,. .

,
/ja sin cot co cos coA

eiat sm cot dt = e]at
[

J

\ co
2 - a 2

/

cot-^co^cot)
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Since u = e^(D ja)

dt

i
= e+3

'

at e-*at udtI e-

e]

'

at
I

~
}

'

at --
(ja sin cot co cos

J to
2 a 2

t

|

e
-+ iat e-jat C lC

-J dt + C #>*' (25)

These four integrals are solved independently below :

First,

s 3

.*f.- 2
'

J
f sn

(

la sm co* co cos co *\ EC
, jat

J
I A

co + a 2
/

J
co

4+a 2

(ja sin co* + co cos co*) (26)

Second,
r ~

iat cos co^ dt =
a* I co" a*2 -

I -jat
u s^n ^ ~

Ja cos ^
\

^a?co

\
C
"

co
2 + a 2 /

: ~
J

co
4-a 4

(a cos co* jco sin co*) (27)

Third,
r _.at _ _.at

r _ 2
.

a<O 1C I C (Zt' vy l6 I C ttt'

J J
"

2ja
e 'a< ~

23at =
2ja

e
~

}

'

at = C^at
(28)

Fourth, C 2e>'
at

(29)

The last two terms can be written

C 3e-'
a < + C 2e>< = C 4 sin (a* + C 6) (30)

In the general equation it is seen that the second integral is

negative thus:

co
2 sin co + a 2 sin co^ jaco cos co^ (31)

= C4 sin (at + C 6) H--ri jaw cos

+ co
2
si

n -
/ *= C 4 sin (at

sin (

This equation is identical with (12).

= C 4 sin ( + C B) + -- sin co* (32)Xc X
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As an application of these formulae will be considered a 100-

mile 60-cycle transmission line supplying power to a cable net-

work of 50 miles. For the sake of simplicity and for the sake of

later instructive comparison the resistance of the cable and of

the overhead line will be neglected in this particular investigation

and it will also be assumed that the inductance of the cables and

the capacity of the overhead lines are so small as to be negligible

when compared with the inductance of the overhead line and the

capacity of the cables.

While the inductance of a line, of course, depends upon the

size of the conductors and the distance between them, in reality

it is not subject to a great deal of variation in ordinary lines.

It is about 0.002 henrys per mile of single conductor.

The capacity of a cable system is, however, subject to great

variation, depending upon the nature of the cables. Assume
that in this case it is 2 m-f. per mile of single conductor, when

referring to neutral voltage:

C =
4
farads and L = 0.2 henrys

= 26.4 ohms

x =
2irfL

= 75.4 ohms
=

27T/
= 377.

If the circuit is closed when the impressed e.m.f. is zero, that

is, when ti
=

0, then equations 209 and 210 become:

ei = -
0.54#[sin 377* - 1.69 sin 223*]

and i = -
0.0204#[cos 377Z - cos 223*]

The time for one complete cycle of the fundamental wave is

gg
= 0.0166 sec.

If, therefore, the circuit is closed when the impressed e.m.f.

is a maximum, that is, when

h = t = 0.00416

then the equations become:

d = -
0.54#[sin 377* - cos 223(*

-
0.00416)]

i = -
0.0204#[cos 377* + 0.59 sin 223( -

0.00416)]
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These curves are shown in Figs. 44 and 45 when the impressed
e.m.f. is 100 volts.

The curve e\ in Fig. 44 shows the e.m.f. across the condenser,

the curve i the current when the switch is closed at zero value of

FIG. 44.

2 200

150

.S oO

50

1 100

150

2 200

90 isp 270

\

/450 720 9(0

FIG. 45.

the impressed e.m.f. The corresponding lines in Fig. 45 show
the same quantities when the switch is closed when the impressed
e.m.f. is a maximum. In both figures the dotted sine wave is

the impressed e.m.f.
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Circuits Having Resistance, Inductance and Capacity. Con-
stant Impressed E.m.f. Let E, Fig. 46, be the constant impressed
e.m.f.

r, the resistance

L, the inductance

and

C, the capacity in farads.

L

c:

Then

FIG. 46.

T di
,

Differentiating di d*i i
= T + L +

or dH
>

r dii _

dt*
+ L dt

+ CL
"

The solution of this equation has been shown previously to be :

Where mi and ra2 are the roots of the auxiliary equation.

where

and

_

2L 4L 2 CL

CL2L
~ =

= - -

4L
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Three conditions are possible:

(a) r 2
-T^ is positive.

(b) r* -
-~r is negative.

4L.
(c) r2

-fT
is zero.

Considering first the Case (a),

^
~^r

(positive).

Then i = ^[A*? + A*-'*
1

}.

The e.m.f. across the condenser is:

ei = E -ir -L d~ = E - re-
at

[A^
1 + A*'*

1

]
-

L[((3
- a

The integration constants for starting the current in this circuit

are determined from the fact that when t = 0, i = and e\ = 0.

Thus E
Ai = Ai and AI =

^jZLp

2L/3

2
4L

\ r '^ :=>S >

If

then . El -l'-=^)i -f'J^\ t \*-( -
)

By differentiating i and substituting its value and that of i in

the equation of the voltage of the condenser:

e\ = E ir Jl -j-.j

dt

we get

[1 /
r ~ s

t
r+s t\~]

i if._i_ cr\ o7~ i (^ Q\ f 9r~ t
\1 ^.^ I (r +- o) 2L IT ^Jc *^

^o \ / J

The equation for the discharge current can readily be proven
to be exactly the same as that of the initial current except for

reversed sign.
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During the discharge the voltage is

r-f S

where E is the voltage of the condenser before the discharge.

Case (6).- r - 4 negative.

In this case + r2 ~- can be written j -\\-~ r 2

\ C \ C

Si where S x
== - r 2

It has been shown previously that this equation can be written :

(1)

where A and 5 are integration constants. The e.m.f. across the

condenser is

Substituting the values of i and - as obtained from equation (1)

Counting time from the instant of closing the circuit, then for

t = 0, i = 0, and e\ = 0.

From equation (1) it is found that A sin B = 0; .'. B =
0,

2#
and from equation (2) A = -~-

01

. 2E *
t . Sit

t =
ST

6 2L Sm
2L

where tan 7 =

In a similar way is found the equation for the discharge

current which will be identical with the charging current, and

the voltage across the condenser, ea = EQe ~2L
l

sin (
^F + T ) >

where EQ is the original voltage across the condenser.
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Case (c).
4L

r2

In this case, as has been shown previously,

i = em i* (A + Bx)
r

i = e 2L (A + Bt)
or

= E re ~2L
l

(A + Bt)
- LBe 2L

l + ^~-

If the time is counted from the instant of closing the switch,

then for t = 0, i = 0, and ei =

A =

and - " - ^ hi
E - LB, or B

and

The equation for the discharge current is the same as that of

the initial charging current, the voltage across the condenser

during discharge being:

As an application of these equations
will be considered the case of starting

a direct current at 500 volts in a 20-mile

concentric cable having the dimensions

given in Fig. 47.

In this instance it will be assumed

that the capacity of the line can be

represented as that of a condenser at

the end of the line taking one-half of

the charging current.

It will be assumed that the specific

inductive capacity is 3, the diameter

of the inside conductor 0.5 in., the

inside diameter of the outside conductor 0.7 in., and the' out-

side diameter 0.86 in. The resistance of the 20 miles of cable is

8.8 ohms.

FIG. 47.
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The capacity per mile of concentric cable previously given is

n o^sft Jf

Cmf = - ~ = 0.795 m-f. per mile.

^og-

Thus the capacity of the 20 miles of cable is 15.9 m-f. and the

equivalent capacity at the end of the line is 7.95 m-f., or 7.95

by 10~ 6 farads.

Since the determination of the inductance of a concentric

cable involves the general method applied to other systems, it

will be given below, although such determinations do not come
within the scope of this treatise.

The inductance is recollected to be numerically equal to the

interlinkages of the turns and flux per unit current.

In general if the m.m.f. acting in a circuit is M then the flux

4irM X area of magnetic circuit
produced is

,
-r * ~r- = ^ The interlinkage

length of magnetic circuit

factor is that fraction of the total current which is enclosed by
the flux and

L =
y-2J

flux X turns X interlinkage factor.

Consider first the flux in the inside conductor due to the assumed
uniform distribution of the current.

At a distance x from the center see Fig. 47, the m.m.f. is
^
/

where / is the total current. The area of the flux per centimeter

of length of conductor is dx and the length of the magnetic circuit

is 2irx.

x 2 dx x
... dv, 1

= 4,_ /_ ==2J _&
(

TTX
2

This flux interlinks with ^ of the total current, and hence the

x 2

interlinkage factor is ^.

1 C r
x 3

.'. LI = I 27 dx = % (assuming /x
= 1)

Between the conductors the flux interlinks with the whole

current, and hence by a similar reasoning we get
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The current in the inner conductor interlinks with the entire

flux which is inside of the outer conductor but which is caused by
the difference in m.m.f . in the inner and outer conductor.

At a distance XQ the m.m.f. is thus

_
R 2 -R 2

* *R Q
2 -R 2

The interlinkage of this flux with the current in the inner con-

ductor is of course unity; therefore

L *
=

IJ ~*o flo
2^!^ dx =

R 2 - R 2 log ^ " " l

The inductance of the outer conductor should be added to give

the total inductance of the cable.

The m.m.f. is _ r RQ ~ X Q

Ro 2 -
1

The interlinkage factor is

xp
2 - R 2

-R 2

,2 _' L *
- -

7/z (Ro
2 -R 2

)

^ R Q
2 - R 2 +

(R
2 -R 2

)
2 log

~R

The total inductance L = LI -j- L% + Ls + LI which is readily

proven to be:

This inductance is expressed in the absolute system of units.

By dividing by 109 the inductance is expressed in henrys.

The combined inductance L = 0.0039 henrys; thus r = 8.8,

L = 0.0039, and C = 7.95 m.f.

r2 = 77.5 1960 is thus negative.
c

Therefore this problem comes under the second case and

t
=

^/%-
- r2 = 43.4.

^ = 5550 ~ = 1130 tan 7 = - = 4.93r = 78.5
LU ZLi T

= 1.37 radians

/. i = 23e- 1130 ' sin 5550*

and ec = 500[1
- 1.02e

- 1130( sin (5550* + 1.37)].
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The frequency of the oscillation is
5550

27T

= 885 cycles, and the

time for one oscillation 0.00113 sec.

The maximum value of the current is determined by differen-

tiation. It occurs when t = 0.000246 sec. When 5550^ =

78.5, the current is 17.1 amp. The next maximum value occurs

when t = 0.000246 + 0.00113 = 0.001376 sec.

The maximum value of the voltage across the condenser is also

determined by differentiation. It occurs when t = 0.000565

sec., when ec = 763 volts. The next high value occurs obviously
at t = 0.001695 sec.

These curves are shown in Fig. 48.

0004

Starting

V; Condenser Volt; K

urrent

m- .001

odd!
0012 0014 0016 .0018

400

200

,002

FIG. 48.

It is of interest to note that for a given distance of transmission

the capacity, and therefore the charging current, is several times

as great in the case of the concentric cable as in the case of the

cable with parallel wires.

Similarly the inductance is several times as great in the case of

an overhead line as in the case of the cable. As a second numer-

ical application of these equations will be considered: 100 miles

of overhead transmission line supplying energy to a cable network

50 miles in length.

It will be assumed that the cable system consists of a large

number of short cables projecting in different directions from the

terminal substation, as would be the case when a high-tension
7
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line supplies energy to a city lighting network. The resistance

of the cable system can therefore be neglected. It will be

assumed that the high-potential line is three-phase and consists

of No. 00 B. & S. wire, having a resistance per 100 miles of 40

ohms and an inductance of approximately 0.2 henry. Hence the

capacity of the overhead line is very small compared with that of

the cable and it will be neglected.

The problem is to determine the values of the current and vol-

tage across the condenser when a steady e.m.f. of E volts is

applied at the generating station.

E = 100

r = 40

L = 0.2

C = 0.0001 farad.

/. r 2 = 1600

-Q
= 0.8 X 104 = 8000.

4L.
.'. r 2 =

-^
is negative.

Therefore there is an oscillation when the switch is closed, and
the constants are to be obtained from case (6).

= 2= 80
' 7 =

!o
= 2 " tan ^ = 2

and r 40 Si 80
V - 63.5

2L
=

^4
=: 10

> 2L
=
04

=

:.i = 0.025#e- 10 * sin 160*

and a = E[l - e" 100 ' 1.12 sin (160* + 63.5)].

The time for a complete cycle is
T^T

= 0.0392 sec., corresponding

to a natural frequency of ^
= 25.5 cycles per sec. It is inter-

esting to see that the effect of the resistance is to lower the

natural frequency, since if the resistance is neglected it would be

7= = 35.5 cycles.
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Circuit Containing Resistance, Inductance and Capacity in

Series. Harmonic E.m.f. Impressed. Fig. 49. From previous

discussions it is evident that the general equation is

di

dt
E sin cot = ir -\- L ^- -f- ~- I idt (1)

r E sin = ir + x~ + xc (idd (2)

FIG. 49.

The latter form is preferable when dealing with alternating-

current phenomena, but of course it must be remembered that x

and xc refer to the impressed frequency and not to the natural

frequency of the system; that is,

x =
2-nfL and xc

=

The solution of (2) can best be obtained by differentiating

twice,
di d 2

i
E cos 6 = r -TT + x -7T-2 + xci E sin 6

cttf

d z
i d*i di

dl '

idB (3)

Differentiating (3) and rearranging the equation:

d*i dH d*i di]
Xcl =

The auxiliary equation is:

xm* + rra3 + (xc + x)m 2 + rm + xc
=

ra 2
(zra

2 + rm xc ) + xm 2 + rm + xc
=

/. (m 2 + 1) (xm
2 + rm + xc )

=

Vr 2 -

Let r

2x
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then mi = + j

W2 = j

m3
= a + ft

1714
= -- a ft

and i = A, sin (0 + A 2) + ^'(A*-*
8 + A,^e

) (6)

The integration constants A \ and A 2 could be found by methods

outlined in the chapter on circuits of inductance and capacity.

It is possible, however, for students familiar with elementary

electrical engineering to determine them at once.

Apparently the first term represents the permanent and the

second the transient condition. In permanent operation the

current leads or lags behind the impressed e.m.f. by an angle </>

which depends upon the numerical values of the two reactances.

The final value of the current becomes, then,
-T7

i = ^ sin (0 + 0)
^o

if
tan 4 = ^ and Z == vV + (xc

-
x)

2
(7)

.'. i = ~ sin (6 + </>)+ <r
aV 3/' + A#- ft

) (8)
&Q

The integration constants A 3 and A 4 depend upon the terminal

conditions.

Before proceeding farther it is well to discuss the possible con-

ditions, namely:

(a) r 2 - 4xxc is positive.

(6) r - 4xxc is negative.

(c) r - 4xxc is zero.

Case (a).

r2 4xxc is positive.

Here ft is real and the solution of i is given in equation (8).

Case (&).

r2 4zzc is negative.

In this case \/V 2 xxc
= jV4xxc r 2

(9)

Let

then
i =

lj-
sin (6 + <l>) + AiT'to sin (0J + j) (11)

^0
where
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and
,
A B As + A 4

7 = tan" 1 -r- = tan" 1

7-1A 6 (A 3
- A 4 )

a S
t = ~- sin (0 + </>) + ~"*[A 6 cos 0i0 + A 6 sin faO] (12)

(c). r* -

If (12) is true, then m 3
= w4 ,

and we do not have a general

solution; that is:

- a + = - - since =
(13)

A general solution is obtained by letting

w4
= ra 3 + h (14)

where h is very small.

Here w 3
= a and ra 4

= a + h

then (see also equation 42, Chap. II),

E
i =

-yr
sin (0 + 0) + A 3e~'

'

-f A 4e
(
~

(15)

which may be written:

i = sin (0 + 0) + e~
ae
[A 8 + A 90] (16)

where A 8
= A 3 + A 4 and A 9

= A 4/i.

Each case will be considered independently.

Case (a). r2 4xxc (positive).

Since r2 4xxc is positive, is a real number and the solution

of the differential equation (4) is :

i = ^- sin (0 + 0) + A 3e~
( * 6

-\~ A 4e~
(

(17)

Let (
-

0) = K and (a + 0)
= K (18)

By differentiating equation (17) and substituting in the

equation

d = E sin ir
X-J-Q,

(19)

the voltage across the condenser is:

1?7
ei = E sin -

-^ sin (0 + + ) + A 3e~
J

^ lfl

(^ia:
-

r) (20)

where .,. x
(21)

(22)
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If the problem is to find the current and the condenser voltage

at any instant after the circuit is closed, and if the circuit is

closed when =
0i, then i = and ei = 0.

Substituting these conditions in equation (23), it may be

written :

A se~
Kei + A,*-*

1' 1 = --

|^sin
(0! + 0) (24)

Also equation (20) can be written:

EZ
Ax' 1

(Kx -
r) + A 4e~

J 9l

(Kix - r)
=

-^-
sin

(0i + + ^) - E sin 0i (25)

Solving equations (24) and (25) for A 3 and A 4 we have:

E
A 3

= K01
[Z sin (0i 4- <f> + ^) +

(Kix r) sin (0i -f 0) Z sin X ] (26)

and,
E

^r e
Kl01

\Z sin (0i + d> + ^) +
x - r) sin (0i + 0)

- Z sin Oi] (27)

Case (6). As stated before the expression \A*2 xxc is

imaginary and from equation

(28)

Equation (11) may be written:

E7

z = ^- sin (0 + 0) + e~
a0

[A 5 cos |8i0 + A 6 sin j3i0] (29)
-^0

where A 6
= A 3 + A 4 and AG = j(A 3 A 4).

If the switch is closed at =
0i, e\ = and i = 0. From

these conditions

A 5
= [- f- sin (0! + </>)

- A 6e-
afll

sin /3 1 1]-^- (30)
L Z/o J COS Piwi

From these relations and the equation (19)

can be written

-

-
r) cos 0i0] + A 6[- $ix cos 0i0 + (ax - r) sin

di
e\ = E sm zr x ->

EZ= E sin - -=r- sin (0 + + ^) + e~
a0
[A 5 [/3iZ sin
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where

Ecosp,d } ae [Z .

A 6
= -

TToT- e r sm 0i
- cos (01 + 0)

-
01

and [#
sin (^i + 0)e

a<?1 + A 6^o sin ffifln

Z cos /3i0

Case (c).

(r
2 = 4a:xc ), or the "critical case."

Equation (16) may be written:

E
i = -y- sin (0 -f- <p) -{- A%e

'

-f- ^4.9^e
'

(31)

If as before th'e switch is closed when = 6 1 then i = and

e\ 0. From these relations and the equation (19)

di
ei = E sin 6 ^r x -^uu

the condenser voltage is found to be:

777

e, = E sin 6 -
-^-

sin (0 + + ) + e~
a5

[^ 8 (o!X
-

r) +
^ 9(ax -

a:
-

r)] (32)

where,
77 r^ n

A 9
= -=r e"

01" sin (9 T
- cos (B l + <j>)

- a sin (0i + </>) (33)
Z/o L ^

A 8
= - ~ e^ 1

sin (19! + 0)
- A 9 (34)



CHAPTER V

A CIRCUIT CONTAINING DISTRIBUTED RESISTANCE
AND INDUCTANCE

An aerial transmission line with negligible capacity and leakage
conductance is an example of such circuit.

Fig. 50 represents an aerial transmission line with negligible

capacity and leakage conductance and with a load having an

impedance of \/Ri 2 + Li 2
co

2
.

Measuring x from the receiving end, consider an element of

the line dx.

Let the resistance of the line be R ohms per unit length of the

conductor and the inductance L henrys per unit length.

Then the resistance of the element is Rdx and its inductance

Ldx, and the voltage across the element is de. Therefore,

or

de = Rdxi

de

TJ diMX
df

di

As the same current flows in all parts of the line i is not a

function of x, thus equation (1) is readily integrated, it is:

106



RESISTANCE AND INDUCTANCE 107

where T di
x =

0, e = R]i + Li -T ,

. = di

f n .
. T di\

r
di

. . e =
(/fa + L--i- iz -f 72 1* + Lrr (2)
\ d< / d/

where x =
I, e = E or E sin o>Z, depending upon whether the

generator voltage is constant (a) or alternating (6), therefore,

(a) E = Ri + LJJ
I + R,i + Lr =

(fl/ + R,)i +

(JH+Zu)^ (3)

(6) sin co* = (Rl + 720* + (^ + LI)^ (4)

/?? + Ri is the total resistance and LI -f ^i the total inductance

of the circuit. Hence, neglecting capacity and leakage conduct-

ance, a circuit of distributed resistance and inductance may be

considered as if the resistance and inductance were concentrated

as far as the determination of the current is concerned.

Case (a). Unidirectional voltage impressed on the circuit.

For the current, solution of (3) gives

E f
Rl + Ri\

(1 LI+LI* (see equation (17), Chap. I) (5)
i \ /

P 7 , P
til -f rt

Substituting (5) in (2)

n
\

From (5) and (6) it is seen that at the moment of closing the

circuit, that is, when t = 0, i = and e = TJIT
1

E. In the

case of non-inductive load (when LI =
0), e = jE and e = for

x = 0.

It is interesting to note, that, while resistances consume no

voltages when i = 0, inductances do consume voltages when

i = 0, provided -^
= 0. When t =

,
that is, when the current

and the voltage reach their permanent conditions,
77? J?T \ 7?

*' = ~ e = " E
'
the expected results -
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Problem. Assume reasonable values for the constants, and

plot a series of curves for the voltages at various values of t and x.

Case (b). Alternating voltage impressed on the circuit.

From equation (39) in Chap. I, the solution of (4) is found to

be:

E r Rl + Rl
< t , n

i = | [sin
(co*

-
13)

- sin (w*i
-

/3)e

"
T+T7 (t

(7)

where ti is the time at which the circuit is closed.

Z = V(M + Ri)
2 + (LI + LJW

and _ , (LI + Li) co

(Rl + Ri)

Differentiating (7),

cos (/ -
0) + fj^-f^

sin co/!
-

|9)e

"
^TiT w '

J
(8)

Substituting (7) and (8) in (2), or,

sin (ft' 0) sin (wti 0)

(9)
where

-Li) 2
co

2
, and j8

r = tan-1

Referring to (7) and (9) it is seen that the current is the same

as if the resistance and inductance were concentrated, but the

voltage is different at different points, being modified in magni-

tude, and displaced in time phase.

It is noticed that no transient component in the voltage or

current exists at any point of the line, if the circuit is closed at

R
ti
= -, or in other words when sin (wti (3)

= 0.
CO

If sin (co/i |8) is not zero, the transient voltage appears at all

values of x except x =
I, for ft' can not equal (3, or ^ ZTT?

(LI + I/O co

can not equal to P7 , 5 unless x = I.

11 + K\

When t becomes large, that is, many cycles after the circuit is

closed, the exponential term approaches zero and the whole cir-

cuit becomes free of the transient, and (7) and (9) become :

i = | sin (ut
-

|8) (10)

EZ'
e = --sm (co* + j8'

-
0) (11)
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Z f

where x =
I, that is, at the generating end. -^ = I

L

&' =
]8, therefore,

e = E sin ut, as assumed.

The voltages at other values of x can readily be computed
from (11) and it is seen at once that the amplitude is proportional

7'
to -;= and the phase is ($' /3) radians leading the impressed e.m.f.

The effective value of the voltage at any value of # is:

(12)

where ee/f
= the effective value of the voltage at x, and Eef/ that

at generator, that is, at x = I.

When the line is open, that is, when Ri = oo
,
then (7) and (9)

become : i = 0, and e = E sin co for all values of x. No current

flows, which is to be expected.

Grounding the receiving end of the line, Ri = and LI = 0.

.'. -jj
=

-y and &' =
j8, hence (7) and (9) become:

/ i

i =
277[sin (ut

-
0")

- sin (wti
-

/3")e
v

"'J (13)

and Ex .

e = - sin at (14)

where ., / , ,.,, _, Lo>
A = \/ R 2

-f- L 2
co

,
and p = tan "5"

It is interesting to note that in this case the voltage has no

transient component and is in time-phase throughout the line.

PROBLEMS

1. Assume reasonable constants of the circuit for equation (9) and plot e

against t for (a) x =
0, (6) x =

^'

2. When an accidental ground occurs on an aerial transmission line the

voltage 10 miles away from the generator station is found to be 60 per

cent, of the generator voltage. Determine the point of grounding.



CHAPTER VI

CIRCUIT CONTAINING DISTRIBUTED LEAKAGE CON-
DUCTANCE AND CAPACITY

A low-voltage cable may be considered as an approximate

representation of such a circuit, since it contains distributed

leakage conductance and capacity but usually low resistance and
inductance. Since the resistance and inductance are considered

negligible as a limiting case, it remains to consider a system of

parallel conductance and capacity. The voltage may be con-

sidered the same at all points of the circuit, that is, independent
of x.

Let i in Fig. 51 be the current at x, then i + ---dx is the current

at x + dx. Let C be the capacity in farads per unit length of the

conductor against the ground or neutral, and G the conductance

FIG. 51.

in ohms per unit length of the conductor to the neutral. Hence
de

the current in the path of the capacity is Cdx-?-, and the current

in the path of the conductance is Gdxe. The difference in cur-

rent between the two sides of the element dx is dx. Therefore
dx

T- dx = Cdx -JT + Gdxe
f

or
(1)

110
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This equation is similar to (1) in Chap. V with i for e, e for i,

C for L, and G for R.

As e is independent of x, equation (1) integrated gives:

K (2)

It is of no interest to consider short circuit of the cable, since

the resistance and inductance are neglected, for it would mean
a dead short-circuit on the generator. Therefore consider the

case of switching the generator on the open cable. Thus, where

x =
0, i = 0. .'. K =

0, and (2) becomes:

(3)

Case (a). Unidirectional voltage impressed on the cable.

In this case, it is assumed that e = E from i = to t =
,

but just before t = 0, e = 0. Therefore it is assumed that

= co just before t = 0, and -77 = 0, just after t = 0; that is,

equivalent to assuming that the fictitious condensers were charged
with an infinitely large current during an infinitely small period.

In reality, the rise of the impressed e.m.f. takes time, though

extremely short, and the resistance and inductance of the circuit

limit the initial value of the current and lengthen the period of

charging.

These assumptions thus do not allow a study of the transient

condition. The equation indicates simply that i = <*>
,
for t = 0.

de
For the permanent condition we have -rr = 0, and (3) becomes:

i = GEx (4)

which is expected.

Case (b). Alternating voltage impressed on the cable.

Let the impressed e.m.f. be e = E sin wt, and the time of apply-

ing to the cable be fa, thus e = E sin u>(t ti). Hence,

de
-

-J7
= Eu COS 0>(2 ti).

Substituting these in (3)

i = [Cw cos u(t
-

ti) + G sin w(t
-

ti)]Ex,
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or i = #zVC 2
u>

2 + G 2 sin (ut
- wi + 0) (5)

where
ft
= tan- g^

This equation represents the permanent values of the current,

and shows that the current is proportional to x at all values of t,

and leads the impressed e.m.f. by /3 radians at all values of x.

The transient component does not appear in this equation, as

explained in case (a).

The transients will be studied in the following chapters, where

the capacity and inductance are considered.



CHAPTER VII

CIRCUIT CONTAINING DISTRIBUTED RESISTANCE AND
CAPACITY

In the study of the problems involving distributed inductance

and capacity, and the simpler problems involving the penetra-

tion of current or flux in conductors, etc., where alternating cur-

rent of sine shape is assumed, a certain differential equation,

given below is met.

Its solution is of importance to the engineer and deserves

consideration.

The equation is

^ - * ^ (i)
dx*~

'

at

A general solution which can readily be verified differentia-

tion is:

y = A Q + 2Aeax+bt
sin (ax + # + 7) (2)

or

y = A + Aie
0lX+6"

sin ( aix + ft it + 71)

+ A 2e
a *x+M

sin (a 2x + fat + 72) + . . .

The evaluation of the different constants is accomplished

partly from the known conditions at some points of the system,
and partly by solving for the constants by differentiation and

substitution.

In most problems, y or its derivative is known at some point,

where for instance after permanent condition has been reached

y = Y sin ut.

If the point happens to be where x =
x\, then equation (2)

becomes

Y sin ut = A + SAeox
i
+w

sin (aXi + fit +. T)
= Ao + SA'cM sin (#+/)

= Ao + A\e
blt

sin fat + T'i) + A'*** sin fat + y'*) +. . .

113
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Writing the equivalent of sines in terms of e

Jut _ f -jwt j(0it + y'i) _'

Y-

J(P*t + y',) _ -j(ft*t + y'd-- -+. .

it
- j(0,t + y't)

+ . . .

Thus, since the left-hand member contains the imaginary only,

and the right-hand member a constant and the complex imagin-

ary and the two sides must be equal for all values of t it is evident

that AQ and the b's are separately equal to zero.

.'. y= 2Aeax
sin (ax + ft + 7) (3)

^ = 2Aeax
[a sin (ax + ft + 7) + a cos (ax + ft + 7)]

oX

*~ = 2Aeax
(a

2 - a 2
) sin (ax + ft = 7) + 2aa cos (ax + ft + 7)

oX

^f
= 2Aeax

p COS (ax + # + 7)
at

Substituting these values in (1) and equating the coefficients

for similar trigonometric terms,

a* - a 2 =
0, and 2aa = k z

fi (4)

.*. (a -\- a)(a a) =
0, thus a + a =

0, or a a =
0, or both.

For a + a =
0, or a =

a, the second equation of (4) gives,

2 2 = fc
2
/3, which is evidently impossible. Thus there remains

only a a = 0ora = a.

Then 2a 2 = k 2
P, or, a = a = fc

-v/^
where a and a must

have like signs.

The general solution then becomes:

y = A,e
ax

sin (ax + ft + 71) + A 2e~
ax

sin (
- ax + ft + 72) (5)

and,

~ = A ie
ax
a[ sin (ax + # + 71) + cos (ax + ft + 71)]

- A ze~
ax
a[ sin (

- ax + ft + 72) + cos ( ax + ft + 72)]

= V2a
[A ic

*
sin (ax + ft + 71 + |)

- Aae'^sin (- ax + # + 72 + ) (6)
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Application of these equations will be found in the case of a

circuit of distributed resistance and capacity but negligible

inductance and leakage conductance, such circuit being approxi-

mately represented by the cable in Fig. 52.

Let R and C be the resistance and capacity respectively per
unit length of the cable. Let the distance be counted from the

receiving end of the line.

Let the voltage at B be e, and the voltage at A e -f- dx.
ox

.'. the voltage consumed in the line element is:

.

de j de j
e + dx e = dx.

dx dx

di
Let the current at B be i and the current at A be i + dx.

ox

Receiving End

of Line

A
FIG. 52.

Thus the difference in current on each side of the line element is

.

i -f dx i = dx.
ox ox

de

or,

.'. dx = iRdx,dx

de = ^R
dx

(7)

The difference in current on each side of the element is the

charging current of the element.

or

.
di , nj de

. . dx = Cdx
dx dt

di = de

dx dt

(8)
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di 1 d 2e
From equation (7) we get:

- =
>,

~~
2oX it oX

l_
d 2e

_ d^
' '

R dx 2
~

di'

or, d 2e de

Referring now to the general equation, it is seen that k 2 = CR,

[RC0and y =
e, and a = a =

\l~cT-

.'.e = A^s'm&x + ft + 71) + A 2e~
ax
sin(- ax + ft + 72) (10)

and,

1 de A/2a r . / TT\
* = Rdx= -ir[^

a*^(+ fl + Ti + y)-

A 2e-*sin(-
ax + ft + 72 + ^)] (11)

Case (a). Alternating current supplied to a circuit of distrib-

uted resistance and capacity.

Example No. 1. If the voltage at the generator end of the

line (x
=

e) is e = E sin cot, and if the cable is open at the

receiving end, then i = for x = and all values of t, and

e = E sin ut for x = e. From (10)

E sin ut = Aie al sin (al + ft + 7i) + A 2
~ al sin (- al + at +72)

= [Aie
al cos (al + 71) + A<*r al cos (- al + 72)] sin ft +

[Aie
al sin (aZ + 71) + A 2

~al sin (- al + 72)] cos #
.'. Aieal cos (aZ + 71) + A 2e~

al cos ( al + 72)
= 1?

and |8
= w,

and Aie a/ sin (aZ + 7i) + ^2- z sin (- al + 72) = (12)

For x =
0, i for all values of t from (11),

= Ai sin
(# + 71 + j)

- A 2 sin
(# + 72 + |

Since this must hold for all values of i,

Ai = Az = A and 71 = 72 = 7

Then from (12) we have:

E
t
al cos (al + 7) + e~al cos (

- al + 7)

and, e
al sin (al + 7) -f e~' sin ( al + 7) =0
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f
= tan" 1

I
al _al

tan al
,
and

117

A =

e = A [e
ax sin (ax

and.

=

^-~ A [e

a* sin
(

E
(13)

2al + -2aZ + 2 (COS
2

ttZ
- SHI 2

(rf)

-f- 7) + e-*sm (- a* + a>* + 7)! (14)

(15)

I ax + a>c + 7 +

e~ax sin f ax + a>2 + 7 +

Where A and 7 are given in (13) and

o- +^/^
If the voltage at the receiving end of the line were known rather

than the voltage at the generator then :

e = EQ sin ut for x =
0,

EQ being the maximum value of the voltage at the receiving end

of the line.

Thus,

EQ sin ut = AI sin (/ft + 71) + A 2 sin (/ft + 72)
= sin /ft(Ai cos 71 + A 2 cos 72) -(- cos /ft(A x sin 71 -f A 2 sin 72)

.'. AI cos 71 + A 2 cos 72 = EQ, fi
= u and, AI sin 71

+ A 2 sin 72 = (16)

For x =
0, i = for all values of t (assuming again an open line).

.'. AI sin \8t -\- 7i + T)
= A 2 sin (/ft + 72 + j)

AI sin /ft cos (71 +
^rj

-f AI cos fit sin (71 + T) =

A 2 sin fit cos (72 H- jj + A 2 cos fit sin (72 + jj

In order that this shall hold for all values of t, the coefficients

of the similar trigonometric terms of t must be the same.

.*. AX cos (71 + T) = A 2 cos (72 +
T-J

and,

or.

AI sin (71 + jj
= A 2 sin (72 + -

.'. tan
(7!

+ j)
= tan

(72
+ |j

,

7i = 7? = 7-

(17)



118 ELECTRICAL ENGINEERING

Then from (16)

(Ai + A 2) cos 7 = EQ and (Ai -f A 2) sin 7 =
.'.7 = and AI + A 2

= #o.

From (17) A , . A - --
^-1 /12 A . . A - ~

Therefore
771

e = __[
a* gm (aa

.

_f_ ut) + -ax gm (_ a:C

and,

where a =
~\~ \l~~n &nd .E'o is the maximum value of the e.m.f.

at the receiving end.

In the examples, both 1 and 2, the current leads the voltage

by 45 at all points of the line.

Let CQ be the voltage at the receiving end and e\ that at the

generating end.

From (14)

2E sin (co + 7)
e Q
= 2A sm (wt + 7) =

,

V>' + *-** + 2 (cos
2 al - sin 2

al)

and

ei = E sin

From (18)

eQ = EQ sin

and
TJ

ci = ^[c
ai sin (al + + e~a ' sin (- aZ + )]

TTf

=
-n[(e

al + ~0 cos aZ sin co^ + (c
ai e~al

) sin ai cos

= 2^o e
2^ + ~ 2^ + 2 (cos

2 aZ - sin 2
al) sin (co*

-
7).

Hence both equations show that, (a) the voltage at the re-

ceiving end leads the generator voltage by an angle 7, and (6)

the maximum voltage at the receiving end is:_2_
V* 201 + e- 20' + 2 (cos

2 aZ - sin 2 aO

times the maximum generator voltage. In fact examples (1)

and (2) refer to one phenomenon, but one terminal condition

already known and one terminal condition to be determined are

interchanged in the statements of the examples.
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Example No. 3. The same phenomenon may be studied in

still a different way, namely, measuring x from the generator

end, that is, x = I refers to the receiving end of the line.

When the generator is taken as the point from which the dis-

tance is measured, then, as the voltage and current decrease as

x increases, we have:

dx = iRdx,
C/Jv

and di , de
- dx = Cdx
dx dx

which by a similar transformation, also resolves in the differ-

ential equation :

*_!?. _ rp de
-

dx*
~ K

dt

.*. e = A^ax sin (ax + &t + 71) + Ax~ax sin (- ax + pt + 72)

and,

For x I. i = for all values of t.

.'. A** 1 sin (al + fit + 71 +
j)

= Ax~ al sin
(-

al + pt +. 72 + |

or,

= A! ai

[sin
pt cos

(al + 71 +
^)
+ cos # sin

(+
al +

= A 2e-
ai

|

sin ^ cos
^

a^ + 72 +
^j
+ cos pt sin f a/ + 72 +

4) I

As this must hold for all values of t,

.'. Aie al cos
(al + 71 +

^)
= A*-" 1 cos

(-
al + 72

and,

Ai6 fll sin
(a/
+ Ti +

|)
= A 2c-

ai sin
(-

al + 72 +

.'. tan
(al + 71 +

^j
= tan

(
al -f- 72 -f-

|j

/. 72 = 7i + 2aZ,

and it follows that,

At = Aie (20)
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For x =
0, e = E sin ut

;

.*. E sin cot = Ai sin (fit + 71) + A 2 sin (j3t + 72)

= (A i cos 71 + A 2 cos 72) sin pt + (Ai sin 71 + A 2 sin 72) cos fit.

In order to make this hold for all values of t,

|8
= CO

AI cos 71 -f- A 2 cos 72 = E,

and

Ai sin 71 + A2 sin 72 = 0.

From (20)

Ai sin 7! + Ai 2oZ sin (71 + 2al) =

.*. sin 71 = 2aZ
(sin 71 cos 2al + cos 71 sin 2aZ),

- e
20 * sin 2aZ

' ^ = tan
1 + e-cos^

Let 7 = 71 + al, then 71 = 7 al, and 72 = 7 + aZ. And
let A = Aie z = A 2e-

z
. Then,

pi

e~ al cos (7
-

al) + c
aZ cos (7 -f aZ)

= -T (22)

From (21) and 71 = 7 a, we have:

sin (7 al) e
2aZ sin 2al

tan 71 = tan (T - =

COS(Y
_

oi)

-
j + cos 2al

>

.'. 7 = tan i
r-?l- (

-l

_ e0( + e
-ol

which is the same as that in example (1)

Substituting the value of 7 in (22)

V ^al + e~ 2ai + 2(cos
2 al sin 2

aZ)

also the same as that in example (1).

Hence,

e = A[e~
a(l~ x}

sm( al x + wt + y) + c^^^sin (aZ x + ut -f 7)]

sn a

which are identical with the equations obtained in example (1),

only with (Z x) in the place of x.
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It is noticed that at any particular point of the line the current

and e.m.f. waves are sine waves.

The wave length X is found when, x\^~ =

.*. X = X i
= = 2ir\hnr

CRa) \CRu

mr/~ \fCR'

The time required for the wave to go one complete wave length

is H-
Thus the velocity of propagation is:

distance / w I Ifw /2o>

Thus the velocity of propagation is proportional to the square
root of the frequency.

Higher harmonics travel faster than the fundamental. The
third harmonic travels 73 per cent, faster, etc.

But while the higher harmonics travel faster than the funda-

mental their attentuation is greater as will be seen.

When the wave has traveled one complete wave length, that

is, when x = X =
^\J~(

The exponential term becomes:

2

CRu

= e~
2v = 4- = 0.0019.

That is, the wave is only 0.2 per cent, of its original value. It

has reached = = 0.368 of its original value when

CRu
~~ = l r x ~- =

2
/

2 /I
cT^

=
VCRW

=
\Cte

Thus the third harmonic has decreased to 37 per cent, of its

original value in a distance which is only 58 per cent, of that

required by the fundamental to be reduced to 37 per cent, of its

original value.
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To find the time for the wave to decay to - of its original

value, we have:

distance
/ 1 //TT

time =
; r? =

-\/ ~^ -j- 2 A/T^: =
velocity \CRirf \CR

Thus the time required for a given decay varies inversely as

the frequency. The third harmonic requires only one-third of

the time of that of the fundamental.

Instance. A concentric cable 100 miles long. Assume a

capacity of 1 m-f. per mile to the neutral.

Using the mile as the unit of distance,

C = 10 6
.

Assume the cable to have a resistance (of one conductor) of 1

ohm per mile.

Then R = I

At 60 cycles, / = 60 and co = 377.

/2 X 377
.'. Velocity of propagation = A/

6
= 27.500 miles per

sec. The velocity of the triple frequency wave would be,

\/3 X 27,500 = 47.500 miles per sec.

The main wave is reduced to 37 per cent, of its original value

after = = 0.00265 sec.; and the triple frequency wave is

reduced to the same fraction in one-third of the time or 0.0009

sec. In the first case the wave has traveled 73 miles; in the case

of the triple harmonic 42 miles.

Problem. Develop the equation of the voltage and the cur-

rent in a closed cable under alternating impressed e.m.f.

Case (6). Direct current supplied to the cable.

Example No. 1. Consider the line open at the receiving

end (x =
0).

Assume,
e = K + 2A ax+bt sin (ax + ft + y)

where x =
1, e = E for all values of t,

This is evidently only possible if

2Ae al+bt sin (al + pt + 7) = and K = E.
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As this must hold for all values of t, p =
0, and al + 7 = nir.

1

7T

It is found convenient to let 7 =
~, that is, to make
z

cos al = 0, and al = mr + = i^L+ii*:

where 7
TT STT STT 7?r

ai==
2

'

"2" T T' etc"

Thus, e = E + ~SAt ax + l" cos

f) f*

.
2
= a ae ax cos ^ _ aaeax sn

ot

Substituting these values in the general equation

d*e de

.W Tt

and equating the coefficient of similar trigonometric terms we

get:
a 2 -a 2

~CR~

and ax = or a =
0, since a. can not equal zero.

'eosia+M? (23 )

1

sin
v ' '

(24)
K dX K n = o 2i

When * = 0, x < 1, e =

n =

1 In this equation appear several constants, some of which are determined

by the terminal conditions, others by mathematical transformations. It is,

of course, possible to do a certain amount of choosing as long as the choice

satisfies the differential equation as well as the known conditions which exist

in the problem. So, for instance, we may assign an arbitrary value of

7 and carry the calculations through when we may find that the final expres-

sion is simple or too complicated to be of practical value.

It is reasonable that in the first trial 7 may be assumed as zero. When
the problem is worked out on this basis it is seen that the answer is not sus-

ceptible to a simple equation. The trial will suggest another value, most

likely 7 = -
|.

This is therefore used.
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In order to determine the values of A n , multiply both sides

of (24) by cos - dx and integrate between and e, thus

C
Jo

e

7r(l + 2k}x
n =~

. 7r(l + 2n)z,
cos ^

J

- 2, A n cos- -7^7
- dx

21 n =o 21

Each term on the left-hand side equals zero except that one

which has n =
k, and hence this particular value is used, and we

have

A, cos *
*

<fc = - E

Integrated,

coB (25)
TT n = i n 2/

sin -
-^-- (26)

Lli n = i ^t

The voltage at the receiving end is:

For i =
0, < = _ 4""" (-

, TT2?
which is zero, in accordance with the assumption made in develop-

ing the equation.

Therefore, incidentally, we get

which is a known interesting series from which the value of TT

can be computed.
The current at the generating end is

(27)

when t = and x =
I,
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which is a limiting value never reached, since with the slightest

increase in t the series converges very rapidly.
7T

2

For the sake of briefness, write ra for
~p7^r2 then, for x

I,

2E
i =

Jft(e~
mt + e~9w ' + *~25m ' + e~49w< + . . .) (28)

From (28) it is readily seen, that, when t has any appreciable

value, the current dies out approximately according to the

exponential, "*'. When the line is very long, the initial large

current will remain during a considerable length of time. When
I is very small, the limiting case is that of concentrated capacity.

As I = (28) approaches:

-*-*
HI is the resistance and Cl the capacity of the entire line.

In the case of concentrated resistance and capacity it has been

shown that

E - l

t

Comparing the equations it is seen that the transient current

can be fairly well approximated by assuming that the line capac-

ity is concentrated in the middle of the line.

Example No. 2. In case the line is grounded at the receiving
T^

end, the permanent voltage is -T--

Thus, _
Ex

I

7 may in this case be conveniently taken as zero, thus,

Ex -^ t
- 2Ae CR sin ax

for x I, e = E for all values of t.

Thus sin al = 0, and al = rnr

/. e =^ + T^-"^' Sin^
1 n =

For t = 0, e = for all values of x < L

Ex
smT T
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A n is determined as before by multiplication and integration

and we get finally:

. sin (29)

(30 )
J-l/lr il/l/ n _, J

The current at the receiving end is:

1 =s CD * -,

2

(31)



CHAPTER VIII

DISTRIBUTED INDUCTANCE AND CAPACITY

Permanent Condition. Let L and C (Fig. 53) be respectively

the inductance and capacity per unit length of the circuit.

The voltage consumed in the line element dx is:

de
,

, di
,- dx = L dx (1)ox dt

_J Receiving End
of Line

The difference in current between two sides of the element is :

(2)

Differentiating (1) with respect to x

d 2e di
_

_, j ^

dx*
~

dtdx

Differentiating (2) with respect to t,

~dxdi
== C

~di*

d%_ _
M

'

dx* di

dx~*

= LCW
127

Similarly,

(3)

(4)
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In this problem there is, therefore, encountered an equation of

the following type:

=
dt

2 dx 2 (5)

An often successful procedure for finding particular solutions

of simple partial equations of this or similar simple types, is to

assume the solution to be:

y=UV (6)

Where U is a function of t only and V is a function of x only.

Differentiating, we get:

" = U
dx 2 dx 2

d 2
y _ d 2U

dt 2
~

dt 2

Substituting (7) in (5)

^_^^Z or J_^
dt 2

" U
dx 2 Uk 2 dt 2

1 d 2V
V dx 2

(7)

(8)

Since the left-hand member is a function of t only and the

right-hand member a function of x only, it follows that each side

of the equation must be equal to the same constant. Let that

constant be a 2
.

and
d 'V

2T7- = a 2V
dx 2

(9)

The following trigonometric terms evidently satisfy (9) .

U = sin akt or U = cos akt

V = sin at or V = cos at

Thus the solution is:

y = K -j- S[Ai sin ax sin afcZ -f- A 2 sin ax cos fccrf +
As cos ax sin aAtf + A 4 cos ax cos

Where AI, A 2, A 3 ,
A 4 and K are to be determined, and k =

and the S sign refers to summation with all possible values

(10)

(U)

1

of a.
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Consider now the specific case of an open alternating-current
line of negligible resistance and leakage. Determine the values

of the current and e.m.f. at any time at any point of the line after

the permanent condition has been reached.

If the distance is counted from the generator end the generator

voltage is e E sin ut

then di de

-dx dx = +C
di

dx

and, de di

The final differential equation becomes, the same as equation

(3).

The conditions for open line are:

for x =
0, e = E sin ut

for x =
I,

i = for all values of t.

Since we are dealing with permanent condition the current and

e.m.f. vary with fundamental frequency and the solution is

therefore :

e = A i sin ax sin kat + A 2 sin ax cos kat +
A s cos ax sin kat + A 4 cos ax cos kat

i = A 5 sin ax sin kat + A 6 sin ax cos kat +
A-j cos ax sin kat + A 8 cos ax cos kat (15)

These are related by the equation:

de _ di

dx~
~

d~t

- = a[A i cos ax sin kat + A 2 cos ax cos kat
(j 30

AS sin ax sin kat A 4 sin ax cos kat].

L = LkalAz sin ax cos kat A 6 sin ax sin kat +
of

A? cos ax cos fca A 8 cos a sin fcorf].

Equating the coefficients for similar trigonometric terms, of t,

AI cos ax As sin a = Lfc[ A 6 sin ax A 8 cos ax]'

and,

cos ax A.4 sin ax = Lk[A b sin ax + A 7 cos ax]

(A)
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Since these must hold for all values of x, we can substitute

ax = and ax = ~>

:. A l
= LkA B (16)

A 2
= - LkA 7 (17)

and, -A 9
= LAA 6 (18)

-A 4
= - LkA b (19)

For x =
I, i = for all values of t,

.' .
= A 5 sin al sin kat + A 6 sin al cos fcotf +

A 7 cos sin fccx -f A. 8 cos cos fc (B)

.'.A 5 sin a? + AT cos a/ =

.'.A e sin al + A 8 cos al =

.'.A 7
= - A 5 tan Z (20)

/.A 8
= - A 6 tan al (21)

.'. e = LkAs sin ax sin fcotf LfcAr sin ax cos fcZ -

LkA 6 cos ax sin kat + LfcA 5 cos ax cos fcaL

For a; = 0, e = E sin ut

.'. # sin ut = LkA & sin kat LkA$ cos /ca^,

W
.' . E = LkA & ,

or A 6
=

yr-'
A 5

=
0, and co = ka.

From (19) and (19) A 3
= E

and A 4
=

From (20) and (21) A 7
=

W
and, A 8

=
yy tan al

From (16) and (17) A l
=

7 tan aZ

and A 2
=

Therefore, A^ = E tan al

A 2
=

A 3
= #

A 4
=

A 6
=

A

A 7
=

A 8
= TT ^an a ^

i>/C

e = E tan a? sin ax sin fcatf + E cos ax sin
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'

i = --v-r sin ax cos kat + -f-p tan at cos axkat.
LK LK

Substituting, , _
1

_ _"

VLC *

e = #[tan ul-\/LC sin co\/LC sin co + cos u\/LC x sin coj],
rr

v-~

or,

e = E sin w<[tan ul^/LC sin u\/LC x + cos u\/LC x],
/ _ _

i = E-l~ cos co^ftan coZ\/LC cos u\/LC x sin w\/EC a;

rr

t = v-~[tan wl-\/LC cos w\/LC x cos co sin u^/LC a; cos coZJ,

or, cos co \-LC (Z a;)
e = # sin coi

-
, (22)

cos cov LC t

C ^sin
cos coi
-

(23)

The voltage at the end of the line is :

E sin co^

Example. If the receiver voltage, instead of the generator
e.m.f. is known and if the distance had been counted from the

receiving end of the line, then

i = 0, for x =

and, de _ di

d~x~
' L

dt

Thus the signs for A 5, A 6, A^ and A*, in equation (A) would

have been reversed.

:.Ai = - AsLk.
A 2

= + A 7 Lk.

A 4
=

Equation (B) would have been:
= A 7 sin kat + A 8 cos kat, .'. A 7 and A 8

=
.'. e = LkAs cos ax sin kat LkA & cos ax cos fc

For c = 0, e EQ sin ut.

.'. EQ = sin co = LkA 6 sin kat

.'. EQ = LkA 6) and A 5
= and o

.". e = EQ cos ax sin fca

Z = s*u ax cos ^a ^
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or, e = EQ cos to\/LC X sin coi (25)

i = Eo+Lr sin u\/LC X cos WT (26)\L
Therefore the generator voltage is:

e = cos u-\/LC IEQ sin cot = E sin co,

cos co \/LC I

and (25) becomes:

cos co \/LC x
e = E sin coi

-
, ?

cos co \/LCl

which is obviously identical with (23) as obtained before.

It is seen at once that the receiver voltage is

1

cos co \/LC I

times that of the generator e.m.f. As the cosine is always less

than unity except I = 0, the receiver voltage is always greater

than the generator e.m.f.

Therefore the receiver voltage would approach infinity, when

2wfVLCl =
I

, J_ _1 JL_
4(Ll)(Cl) 4L Co

that is, when the natural frequency of the line and the frequency

of the impressed e.m.f. coincide.

The wave length is X = /

WV.L/O Co

X 2^/ 1

Thus the velocity of propagation = =
/,

- ==
/, ^

1 coV^o^o V-^o GO

If the inductance inside of the conductor is negligible, then the

velocity becomes that of light = 188,000 miles per second. In

reality it is somewhat less.

So for instance in a transmission line consisting of No.

B. & S. wires, 18 in. apart,

L = 1.6 X 10~ 3
henrys per mile.

C = 0.019 X 10~ 6 farads per mile.

-4= = 182,000 miles per sec.



INDUCTANCE AND CAPACITY 133

For short distances,

sin co -\/LC x = u-\/LC x

cos co \/LC x = I

.*. e = Eo sin ut

Ic
i = Eo -^1 co -\/LCx cos

jC/o
cos co = cos co

Xc

where xc is the capacity reactance of length a of the cable. It is

seen that the current in time phase leads the voltage by 90.

Transient Condition. When a steady voltage is impressed

upon the circuit.

DR. FRANKLIN in his book on waves and his paper before the

A. I. E. E. of April, 1914, has approached the subject from a most

simple and instructive point of view and has been able to make
some generalizations which are of great value.

He shows that whatever the distribution of the current or

e.m.f. in a travelling wave along a transmission line there must

be a fixed ratio between the instantaneous values, which ratio is

C
Y when the line resistance and leakage reactance are negligible,

and it can be represented by a somewhat more complicated ex-

pression when they are taken into consideration.

His reasoning is briefly as follows:

If the current in an element of the line is i the magnetic flux

in the area a, b, c, d, Fig. 53, is Lidx.

If the current wave progresses toward the right with a velocity

V the time required for the flux to sweep past be is
-y]

thus the

e.m.f. induced along be is
^x

= LiV.

y
Similarly if e' is the voltage in the line element then the charge

on ab is e'Cdx.

This charge flows past the point in time
y,

where V is the

velocity of propagation of the e.m.f. distribution; thus

., _ Q _ Cdx
1

t

=
''

dx
:=CeV '

V
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In order then that these distributions shall sustain each other,

i = {', e = e
r and V = V.

*

.'. e = LiV and i = CeV

or

and
Ce' - Li- or,^ = + -

e
' \L

The -f sign belonging to outgoing waves, arid, the sign to

the reflected waves.

. i 1C
,

i' 1C i i'
. .

- = + A /T and -SB - /-- or-= -
e \L e \L e e

where index '
refers to the reflected waves.

When the line is open at the receiving end the sum of the in-

coming and reflected current waves must be zero, thus i -\- i' =

, .,
e i

. c' = + e
. . e' = i' -. = -f- -e = + e .

i i

When the line is short-circuited at the receiving end, e + e' =
.'. e

f = e. Thus i' = i.

When the receiving circuit is noil-inductive and of resistance/^,

e + e' = R(i + i'}

but e 1L e

substituting these values above, then,

(R - a) . a - R
e = e ~^r-t

and i = i ^*R + a a + R

It is seen that the reflected current and e.m.f. waves may be

positive, zero, or negative, depending upon the relative values

of R and .*/-

In DR. FRANKLIN'S American Institute Paper (April, 1914) is

given a very full discussion of the nature of these reflected waves

and some highly instructive diagrams are shown.

For example, when the receiving circuit is inductive the line

acts at the instant of reflection as if it were open circuited, since

the current can not rise instantaneously in an inductive circuit.

After some time the condition becomes that of a non-inductive
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receiving circuit, discussed above (since we are dealing with

direct-current voltage). Between the two periods of time the

current and e.m.f. change according to a simple exponential
law.

Of special interest is the condition of the waves when the line

constants change. DR. FRANKLIN illustrates this condition in

the case of an overhead line connected to a cable system.
Let i

y
ir and i t be the instantaneous values of the outgoing

current, the reflected current and the transmitted current, and

let e, er and e t be the corresponding values of the e.m.f.

Then e + er = e t

i + ir = it

e er e t

* - = - = a ~ = b
+ I Ir It

From these equations are found

b -a

It is of interest to apply these simple relations numerically.

Assume that the inductance and the capacity of a cable sup-

plying power to an overhead line are: L = 0.0002 henrys and
8

C = ~Q farads per mile, and that the corresponding constants

for the overhead line are LI = 0.0015 henrys and C\ =
~T^

farads per mile.

dllCl -, ; \J*\J\J1.U /, ~ v_
i

If therefore such cable-overhead line combination is connected

to a source of steady e.m.f., e, the voltage at the junction as the

548
wave reaches it will be e t

=
oo? o

= 1-88 times that at the
.6OC7.O
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generator. Should the overhead line be open at the receiving
end the voltage will be doubled as the reflected wave starts on
its journey back. Thus as a maximum at the junction the volt-

age would equal 3.76 times the impressed value.

The mathematical solution of the problem is given in equation

(11) which can be written in the following way:

e = K + ZA sin ( ax + kat + 7) (27)

where
=

+ a applies to the waves issuing from the generator and a
to those going toward it. From the expression ax + kat, it

is seen that the waves of all frequencies travel with the same

velocity, +k or k where the signs indicate the direction of

motion.

It will be shown that in the case of an open line connected to a

source (of negligible resistance) of undirectional voltage, four

waves have to be considered before the cycle repeats itself.

First the outgoing rectangular wave of value E which begin-

ning at the generator progresses toward the open end of the line.

Second the reflected wave also of strength E which returns from
the open end toward the generator which with the initial wave

gives a wave of double voltage. Third a negative wave of

strength E which progresses from the generator toward the

open end of the line, which wave is necessary in order to maintain

the generator voltage E. Fourth the reflected wave of the

negative wave which is of strength E and which progresses
toward the generator.

Consider now what happens at a point located say at one-fourth

of the length of the line from the generator.
If the time required for the wave to reach the end of the line

is T, it is evident that during Y T there is no voltage at the point.

After that time the voltage remains constant at a value E until

the first reflected wave arrives. This occurs evidently when t =

1%T. Thus between t = ^ and t = 1.757
7
the voltage at the

point is E.

From that on it has a value of 2E until the negative gener-
ator wave reaches the point which occurs when t = 2T -f-

T
- = 2.25 2

T

. After that time the voltage has a value of 2E -
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E = E until the reflected wave of the negative wave arrives

T
which is when t = 4T -

-j
= 3.75 T

7
. Then the voltage = 2E -

2E =
0, and it remains zero until a time t = 4.25T

7 when the

voltage again equals E and the cycle is repeated.
The result is the wave shown in Fig. 54.

E.M.F, Wave

A train of waves would pass the point indefinitely since we

have neglected the energy loss in resistance. The wave length

is evidently four times that of the open line.

Consider now the current wave of Fig. 55.

As successive equal elements of the line are being charged to

voltage E a constant current has been shown to flow from the

generator while the voltage wave progresses toward the end of

Current Wave

FIG. 55.

the line. At the end the current must be zero, therefore the

reflected current wave must be equal but opposite to the incoming
wave. The reversed current reaches the generator after a time

2T, when the current becomes zero. After that time the genera-

tor supplies E voltage and a negative wave of current flows

until it also is neutralized by the reflected current which occurs

when t = 4T.

Consider the current at the particular point mentioned above.
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T
From t = to t = -j no current flows. After that the current

is constant until the reflected current reaches the point (at t =

1.75T) when it drops to zero. It remains zero until the negative

current issuing from the generator reaches the point fat t = 2T

T\
-f

-T)
. Then it becomes negative and remains negative until the

negative reflected current now positive reaches the point It =

T\
4T

-j] t
when it again is zero and so forth.

In general centering our mind on a particular point x, from the

receiving end of the line there is no e.m.f. or current at that point

until t =
JT

. After this the voltage is E, the generator voltage

for some time. At t = T, the waves reach the end of the line and

I + x
reflect, therefore after t =

j-
,
e = 2E for a period of time. At

21
t =

-j-,
the waves return to the generator end. In order to keep

the voltage at the generator end constant at E the generator must

now begin to supply E. Therefore after time t =
]T~~>

e at x

becomes 2E E = E] and after t = -W
,
e at x becomes 2E

41
2E = 0. At t = -r the generator reverses its voltage from E

to +E again, and the voltage at x repeats its cycle again and

again.

Referring now to equation (27)

e = K + SA sin (ax + kat + 7) + SA' sin (- ax + kat + 7') (28)

when x =
I, e = E for all values of t.

:. 2A = SA' and sin (al + 7) = - sin (al + 7')

*v' 'Y ~4~ TlTT= sin (mr al + 7') thus a = -

^
where n = is an odd number (29)

and K = E

:. e = E + SA[sin(aa? + A;a/ + 7)+sin(- ax + kat + y')] (30)
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At the receiving end of the line (x =
0).

e = for all values of t which are less than T.

But when t = T the voltage is 2E.
/c

Thus t = is a transition point, a point of discontinuity, e is

either or 2E. Substituting the two values in equation (30)

we get:

+ E = 2,4 [sin (al + 7) + sin (al + 7')] respectively (31)

At the open end of the line where there is complete reflection

the incoming and outgoing waves are identical

.'. 7 =
7'.

Thus from (29) a =
-~j

where n is an odd number.

.'. (31) becomes + E = 22A sin ( +
7) (32)

In the development of the trigonometric series it is found that :

4 n=c
sin nO

+ 1 = -- S - where n is an odd number (33)

where the negative sign refers to values of 6 between ?r and 2w and

the positive sign to values between and TT or TT < 6 < 2ir for

negative sign. < 8 < TT for positive sign.

See "BYERLY'S FOURIER'S Series and Spherical Harmonics"

(page 51). Comparing equations (32) and (33) it is evident that:

_
E 4 1

An ~
2 IT n

and nw

y + T = nfl.

It remains to determine the value of 6. The two series have

TT and 2-K or in common. It remains to choose the proper value

of these.

If TT were chosen the signs in (32) and (33) would be reversed,

if however, or 2ir is chosen, the signs are satisfied. Thus

mr nir

+ 7 = 2n?r or . . 7 == -
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Thus equation (30) becomes:

e = E + j- -S^Fsin ^ (x + kt - 1) + sin ~ (- x + kt -
I)] (34)a Tt H L 1 &l J

and since de
di^

dx
~

dt

2
i[sin ^ (a + fc - - sin^ (- s + & -

Z)]
(35)

The curves drawn in Figs. 54 and 55 may be verified as follows :

=

for t <

x = T
Z -x

k

x -\- kt I < x -\- I x I or smaller than

.'. 6 in the trigonometric series lies between TT and 2ir.

Therefore S - sin (a; + kt - Z)
= -

.

Tl 4

Consider with the second term in (34), x + kt I < x+l
31

x I, thus smaller than 2x or smaller than 2 + -r or 1.51

thus 6 is again negative and the series of the second term in (35)

-

-7

kt l = X-\-l

adds up to -

.'. e = E -\- ^
-

( -7
jj
=0 which agrees with the curve.

When k = -- = =

we are in the first quadrant

and - x + kt - I = - x + I
-

I = - x = -

6 lies in the fourth quadrant

.*. 2J- sin ( x -\- kt 1)
=

2"

.'. e =1 which agrees with the curve.
07

For j = _ k + kt-l=*x + 2l l = x + l= 1.751.

6 lies in the second quadrant- thus:
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and - x + kt - I = - x + I = 0.25Z.

6 lies in the first quadrant, thus :

Z^sin (-x + kt - Z)
- +

TV 71

.'. e = 2# which agrees with the curve.

The current wave may similarly be checked. When for

instance t = T, it is readily seen that the algebraic sum of the

trigonometric terms become j

E 4 1C TT 1C
i = ?r ~\ IT o = E \ T which agrees with the curve.

A 7T \-L/ A \ Li

It is thus seen that when considering the outgoing waves only the

i JC
relation between the current and e.m.f. waves must be - = \ T>

e \L
the equation also shows that when considering the reflected waves

The effect of the line resistance is to taper the waves so that

instead of their being represented as a ribbon of parallel sides

the sides slant toward each other; thus the reflected e.m.f. wave

is not as great as the original wave, and the line soon reaches a

state of permanent condition.

In reality the wave front is not vertical but slants and the

corner is rounded off, due to the skin effect of the conductors.

The higher harmonics of the current meet a much higher resist-

ance than do the lower, and hence the resistance is not a constant

quantity but different resistances should be assumed in connec-

tion with the different harmonics.

The mathematics involved becomes, however, altogether too

complicated for any practical application. The important

point is that if the values of the waves are determined in a cir-

cuit having no resistance, the most pronounced variations in

current and e.m.f. are discovered.

A circuit having no resistance and no leakage is said to produce

pure waves the characteristics of which are, as has been shown,
such that
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That is the electric energy is always equal to the magnetic

energy.

The wave may, however, be pure even if there is resistance and

leakage but in that case the energy dissipated in heat per unit

length of line must be equal to the energy dissipated by leakage
in the electric field.

e 2

.'. i
2R =

77- where R i is the leakage resistance per unit

length.

/?/?
e2 L

' ' RHl ==

i* C

A line in which this relation exists is called a distortionless

line.

For a full discussion of such circuit the reader is again referred

to DR. FRANKLIN'S book on waves.



CHAPTER IX

DISTRIBUTED RESISTANCE, INDUCTANCE, LEAKAGE,
CONDUCTANCE AND CAPACITY

Let R, L, G and C, Fig. 56, be the line constants per unit

length of the line, K being expressed in ohms, L in henrys, G in

ohms and C in farads.

The voltage equation is evidently

or,

or,

de . di
dx = Rdx i -\- Ldx --

ox ot

de . di

dx dt

dx = Gdxe 4- Cdx TT
ox dt

(1)

(2)

R L

FIG. 56.

Differentiating (1) partially with respect to x and (2) with

respect to t and combining the results with (1) and (2) we get:

^ = LC
d~ + (RC + GL)

~ + RGe
OX" Ol" Ol

and,

(3)

(4)

where a' and & may be positive or negative, real or imaginary,

simple or complex.
143

The general solution of these equations is
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Substituting the general solution in (3) or (4) and equating
the coefficient, we get

a' 2 = LCp'*(RC + GL)ff + RG (5)

Substituting a + ja for of and b + JP for ff in (5) and separat-

ing the real and imaginary terms, we have

a 2 - a2 = LC (6
2 - 2

) + (RC + GL) b + RG (6)

and 2aa = 2LC6/5 + (RC + GL)/? (7)

A slight consideration shows that the exponential solution

given above can be written

e = k + ZAt* ax bt
sin (pt ax + 7) (8)

If now for the sake of simplicity only the permanent condition

is considered we get

e = k + SAc ax
sin (pt a* + 7) (9)

If as a further limitation the current and e.m.f. are assumed

to be simple sine functions, depending in time upon the impressed

frequency, then p has only one value <o. From (6) and (7) follows

then that only two values of a. and a exist, one being positive the

other negative

.'. e = Aitax sin (pt + ax -f 71) + A 2e~
ax sin (pt

- ax + 73) (10)

In this equation, one term represents the sum of the outgoing,

the other the sum of the incoming waves.

If the line is open at the receiving end then the beginning value

of the reflected waves must be identical with the final value of

the incoming waves when x = 0.

Thus under this condition for x =

A l sin (pt + 71) = At sin (pt + 72)

Since this must hold for all values of t

'

7i = 72 and A\ = A%

If the voltage at the generator end is E sin o>/, then

E = sin ut = A 1 [e
al sin (pt + al + 71) + t~al sin (pt

- al + 7^]

which by simple transformation becomes

E sin at = A i (sin pt [e
al cos (al + 7i) + e~ al cos (- al - 71)]

+ cos pt[e
al sin (al + 71) + e~ al sin (- al + 71)]}

+ c- 20' + 2(cos
2

Z
-

sin'aZ) sin (pt + B)
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where ,
_ _ e

al sin (al + 71) + e~al sin ( al + 71)
al cos (al + 71) + e~al cos ( al + y^

Thus 13
= co and =

#
=

V^M- <r 2<" + 27cos
2
~al - sin* of)

Since =

e
al sin (al + 71) + <r al sin (- aZ + Tl)

=

which gives e
al e~al

71 = tan" 1

aT^~^. ^an ^

Equation (10) is now completely determined.

-Q-
+ Gc =

Ai{Cw[e
oa! cos (w + 0-0: + 71) + e~ax cos (co/ ax -f-

71) + (7 [e
a * sin (co^ + ax + Tl) + ~ oa; sin (co

- ax + 71] }

= AI \/C 2
oo

2'

-|- G 2
[e

ax sin (co^ -f- ax -j- 71 ~h ^) ~h

e
-ax

gjn ^^ _ ax _|_ ^ i _|_ ^J Qjj

where . Cw
<p
= tan" 1

^

Let i now be the permanent component of the current, and
assume :

di> = Biae
ax sin (cot + ax 4- ^>i) Bia*~ax sin (co a

ox

+ Biaeax cos (co^ + 0:0; + <^?i) Biat~ax cos (coi ca

z sin (co ax + <^2 + <r) (13)

," 1 -
a

According to (2), (11) and (13) must be identical, and hence,

where
,

<r = tan" 1 -
a

Pi -f <r == 71

To sum up,

E'
[
e
ai sin (co^ + ax + <p t ) + ~oa; sin (ut -{- ax + 71)]

A/c 2ai + ~ 2al + 2 (cos
2 al - sin 2

aZ)

(15)

'-*>pyf?
[
e
az sin (w^ + aa; + 71) e~oa; sin (coi ao: +
V^ + e~ 2al + 2 (cos

2 al - sin 2 ^)
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where

[
e
al

f
al

^r+7^
tan a

1a = tan" 1

a

. Ceo
<p

= tan- 1

(Pi
=

<P + 7i

and,

a =

+

the latter two values being determined from (6) and (7) by let-

ting 6 = and (3
= w,

These solutions apply when the transient terms become negli-

gible, i.e., when t is large enough to make e~ bt
comparatively

small.

Case (6). Direct-current distribution in an open line. Con-
sider the line open as before. For the permanent component of

the solution, i.e., a solution which applies after the line has been

switched to the generator for a sufficient length of time, the equa-
tion can be derived as follows:

Referring to equations (6) and (7), b is zero, when only the

permanent component is considered, and ft is also zero, as there

exists no periodic phenomenon, when the impressed voltage is

constant and when the starting phenomenon is reduced to negli-

gible magnitude.

Substituting 6 = and ft
= in (6) and (7) we get:

a 2 - a 2 = RG and 2acx =
0,

from the latter, either a or a must be zero, while from the former

a can not be zero, since a itself must not be imaginary.

/. a = and a = \/RG.

Let e
f
be the permanent component of the voltage and assume:

e
r = A^ x + A 2e~

ax
(18)

where x =
I, e' = E

l

(19)
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Let i be the permanent component of the current. According
to (2),

Substituting (18) and (20)

-

Integrating, ^ = G^ ox _ A ^_ax
^ + R (21)

According to (1) de' . di'

Tx~ Rl+L
~dt

Substituting (18) and (21) in (2),

(A * - A e )
a

Since a 2 = RG, K =
0, and (21) becomes:

I---WI--A* )

where x =
0, i

r =
0, .'. AI = A 2 .

From (19) . . E
1 2

~
ai I

e
~al

Therefore, ^ __ ^
e

' + ~aj;

^
j-^ (24)

where a = + *\/RG, these equations apply when the transient

terms become negligible.

10



CHAPTER X

PERMANENT CONDITIONS WHEN ONE OF THE FOUR
CONSTANTS, R, L, G, AND C IS NEGLIGIBLE

I. R = 0.

Case (a). Alternating current: The solutions are given by (14)

and (15) in the previous chapter, but in this case,

a=

andj

Case (6). Direct current: Referring to (23) and (24) in the

previous chapter,

a =-- ^/RG =

/. e' = E.

Under this condition the equations deduced give $ in the case of

the permanent current. Thus they do not lend themselves to the

determination of the current.

II. G =

Case (a). Alternating current: With

a = + \/-7r 1+ \/L 2
6o

2 + R z
Leo],

and

equations (14) and (15) in the previous chapter give the solution.

Case (6). Direct current: From (23) and (24) in the previous

chapter,

e' = E and i = 0.

III. L = 0.

148
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Case (a). Alternating current: In this case

and

1+ VG 2 + C 2
co

2 -
<?]

Case (6). Direct current:

f
ax I -02;

e'
- E--* -

and,

al ~ 6~

IV. C =

Case (a). Alternating current: In this case,

and

Case (6). Direct current: Same as III.



CHAPTER XI

THE DISTRIBUTION OF FLUX OR CURRENT IN A CYLIN-
DRICAL OR FLAT CONDUCTOR

The general reasoning and the mathematics involved in the

study of flux or current distribution in conductors is very simi-

lar to that involved in the study of propagation phenomena in

transmission lines. It is therefore included in this part of the

book even though it is again and more fully considered in a later

chapter, where the subject is approached from a different point
of view.

Distribution of Flux in Cylindrical and Flat Bars. When a

cylindrical bar is magnetized by a winding surrounding it, the

etizing Winding1

FIG. 57.

flux of final flux density corresponding to the external m.m.f.

appears at the surface nearest to the magnetizing winding.
At a distance from the surface of the bar, the flux density is

less than that at the surface, because as the flux penetrates the

inner layers of the bar, it induces a voltage in the outer layers,

which causes a flow of current that produces m.m.f. of a direction

more or less in opposition to the external impressed m.m.f.

Referring to Fig. 57, consider a concentric tubular element of

150
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thickness dx and mean radius x, then another of thickness dx but

mean radius x + dx.

Let <{>
be the flux in the tubular element of radius x, and <f> + d<fr

that of radius x + dx. Thus d</> is the increment of flux in the

tubular element, as x increases from x to x + dx, but the total

flux in the tubular element is 0.

</>
is the result of the external m.m.f . and the m.m.f. (demagnet-

izing) due to the current between x and XQ', </> + dcf> is the result

of the external m.m.f. and the m.m.f. due to the current between

x + dx and XQ. Therefore d<j> is caused by the decrement of

demagnetizing m.m.f. due to the current between x and x + dx,

i.e., within dx.

Let i be the current density at x, then the current within dx is

ildx, and the m.m.f. due to it is also ildx, as the number of turns

is unity (7 being the length of the cylinder).

Let B be the flux density at x then dB the increment of flux

density as x increases from x to x -\- dx. Thus d(j>
= 2irxdxdB.

m.m.f.
Since flux = 0.4 TT

and the reluctance in this case is

-=

reluctance

I

2ir X dxu, *

OAirildx
We get d<p

= 2>jr X-d X dB = -
,

thus dll = .

,^

If p is the spec, resistance

then the resistance that the current within dx meets is I 7.7

and the e.m.f. consumed by the resistance = ildx I yr~
=

2-jrpxi.

Let e be the e.m.f. induced in the circle of radius x, and e + de

that in the circle of radius x + dx.

As no external e.m.f. is applied around the circle of radius x

the sum of the consumed and the induced e.m.fs. is zero, thus:

e + Zirpxi = (2)

Substituting (2) in (1)

UlJ v/.i/iyuc/ /Q\" - ^r W



152 ELECTRICAL ENGINEERING

e is induced by all the flux within the circle of radius x, and e -f-

de by all the flux within the circle of radius x -f- dx, thus de is

induced by all flux in the tubular element 2irxdx, which is

1 d<t>

according to our notation. Hence de = ^cs -77 or using partial

differentials,

de -
10 8

dt

or

or,

0.2-n-xdxdB

de

108 dt

2irx dB
io8 l>i

(4)

Equation (3) may be written:

=

Differentiating with respect to x,

d 2B dB
X r -f

- =
dx 2 dx

Combining (4) and (5), dividing by x

d 2B I dB 0.47rju

dx 2

" +
x dx

= :

T0 8
P

Q.47TM de

+x>
dx

dt

(5)

(6)

A long thin flat bar may be considered as a

cylindrical bar of infinitely small curvature or

infinitely large radius, thus x considered as the

radius becomes infinity andeauation (6) becomes:

d*B

dx 2

0.47T/Z dB
108

P dt

Wmdmg while dx and x take the meanings as shown in
FIG - 58'

the Fig. 58.

Equation (7) may be directly derived from consideration of a

flat bar in place of a cylindrical bar.

Distribution of Current in Cylindrical and Flat Bars. Reason-

ing as in the previous paragraph, but considering the current and

flux interchanged in their places, not only similar but also iden-

tical equations will be derived for the distribution of current.
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Let B in Fig. 59 be the flux density at x, i be the current density
at x, and i + di the current density at x + dx.

The flux in the tubular element dx is Bldx.

The reluctance of the flux path is r-r-

0.47T m.m.f .

Ihus since rlux =
reluctance

2irBx
m.m.f. = m =

j^-r2ATTp.
(8)

FIG. 59.

As x increases from x to x + dx, the m.m.f. increases from what

is within the circle of radius to that of radius x + dx

dm =
2irxdxi, or -T- = 2irxi where i is the current density at

distance x

Differentiating (8)

dm
dx

Equating (2) and (3)

27T

0.47TM (+')

f.dx
, o.4,,,-x

(9)

(10)

(11)

As x increases from x to x + dx, the increment of current

density is di, and the increment of current in the tubular element

is 2Trxdxdi.
,
The resistance of the material that this increment

/

Therefore the increment of theof current traverses is

consumed e.m.f. is:

2irxdx

2irxdxdi
2-irxdx

PUi.
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Hence the decrement of the induced e.m.f., de is pldi. This

-de is caused by the flux in the tubular element, viz., Bldx.

Therefore

de= pldi = -- ^ -r.Bldx,
J. \J Ct'L

using signs of partial differentials, and re-arranging, we have :

dx
=
W~p dT

Differentiating (11) with respect to t and (5) to x,

d 2B I dB di
+ - = 0.47T/*- (13)

(14)

a*
~

lov at

The solution of equation (15) is somewhat difficult and is

therefore delayed until later (see Skin Effect in Cylindrical

Conductors).

Equation (16), however, which shows the flux distribution in a

lamination is readily solved when the impressed m.m.f. and there-

fore, at least in non-magnetic materials the flux density is a sine

function of time.

Let B = Bm sin cot

-

The effective value of the first expression may
be represented by vector OA = B, and that of

B A the second expression in the derivative by OM =
FIG. 60.

dxdt
'

x dt
"

dt

and d 2
i 1 d 2B

dx 2 10 8
p dxdt

Substituting (-12) and (14) in (13)

d 2
i \ di 0.4717* di

dx~2
~^~

x dx
=

108
p ~di

For long or thin flat bars,

di

Thus dealing now with effective values we can write:
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where

P10
8

To solve this equation we write,

d 2B - v 2B = /. m 2 - v 2 =

.'. m = v

and B = A^vx + A^e~vx
.

Since the density must be the same at equal distances from the

center line

A^vx
-f A 2e~

vx = Ai~ vx + AzeLvx

which requires that A i
= A 2

= A

2 _ 04^
plO

8
'

It is readily seen that if v =
(1 + j)a

V 2 = 2ja
2

2j P10
8

- oa: ~Jazor B = A[e
ax

ejax + e- oa:
c

Substituting trigonometric expressions and combining the

real and imaginary terms we get:

Since e :iax = cos ax j sin ax

B = A[(e
ax + e~ax) COS ax + j(e

ax
e
ax

) sin ax].

If B i is the effective value of the surface density then B = BI
for x = d.

If, furthermore, it is assumed as an approximation that e~ a&

is small compared with e
aS

then,

B l
= Ae a5

(cos ad + j sin a 8)

and flic"*'

cos a8 + j sin ad

t
* + e

"
X) COS + " - ") n ]
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and B Bie~a V e
2ax + e~ 2ax + 2 cos 2 ax

where as given above

<0.27r2/^7
:

\ p io8

For iron p is approximately IO 5 and /* may be anything up to

18,000.

1

For copper p is approximately and i = 1.



PART II. PROBLEMS IN ELECTROSTATICS

CHAPTER XII

FUNDAMENTAL LAWS

Coulomb's Law. The fundamental law upon which our know-

ledge of electrostatic or electromagnetic phenomena rests was
found experimentally by COULOMB. It is similar to NEWTON'S
law of gravitation and is:

F = c^orF = c^ (1)iv>i ntZ

where F is the force acting upon the point charges Qi and Q 2 ,
or

the magnet poles of strength mi and w 2 ,
c is a constant depending

upon the system of units employed, and r is the distance between

the charges or magnet-poles, respectively.

In the electrostatic system of units, as well as in the electro-

magnetic system of units, c is taken as unity when the medium
is air, or rather vacuum,

.:r-3&.,**r-*F- .
(2)

where F is expressed in dynes.
Thus two unit charges or two unit magnet-poles repel each

other with a force of 1 dyne when separated 1 cm.

If the medium has a specific inductive capacity K, then

1
=
K r*

If the magnetic medium has a permeability /z, then

The strength of unit poles is then measured assuming that

it were possible by the repulsion between two similar poles.

When the force is 1 dyne and the distance is 1 cm., the poles have

unit strength.
157
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Field Intensity. Surrounding electric charges or magnet-poles
is a field, and the intensity of the field at a point is defined as the

property of the space, which is measured by the force exerted by
the field on unit charge or unit pole located in that point, when
electric and magnetic fields, respectively, are considered.

Because of this definition, it must not be inferred that the

intensity of the field is a force; it is not a force, but merely a

space function just as the gravitational field intensity is a space
function. The force acting on a certain mass at a certain point

may have any value, depending upon the particular mass used

in the experiment.

Important Theorems. While COULOMB'S law forms the basis

on which the theories rest, the progress in the art would probably
have been slow were it not that a number of theorems have been

worked out more or less directly from that law. These theorems

are:

GAUSS'S theorem, the divergence theorem, GREEN'S and

STORE'S theorems, etc., all having important bearing on prac-

tical problems.

Surface Integral of a Distributed Vector. As a preliminary

to these theorems the surface integral of a distributed vector

will be defined.

It will be assumed that an electric field exists due to some

charge and that lines of force or tubes of force radiate from the

charge in all directions. It is desired to find the number of lines

that go through a surface, say a cap that is placed in the field.

In Fig. 61, AB may be assumed to be, for instance, the inter-

section of the plane of a loop of wire, over which the cap is made,
with the plane of the paper.

If the surface of the cap were divided up into a number of

elements and the direction and the intensity of the field at every

point were known, then it obviously would be possible to calculate

the total number of lines (the flux) that crosses the cap or the

surface.

The sum of the fluxes normal to each element of the surface

is called the surface integral of the normal field intensity over the

cap, or the total outward flux through the cap. (The normal to

the elementary surface is always understood to be drawn out-

ward from the surface. On account of the sign of trigonometric

function a normal drawn inward will lead to a negative surface

integral.)
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If another diaphragm or cap (Fig. 62) were stretched across the

wire loop AB, it is evident that a certain amount of flux would

enter the space between the diaphragms and a certain amount
leave it.

It will be shown in this case that the total normal outward flux

from the space enclosed by the two caps will be zero, as long as

no charged particles are enclosed by the diaphragms.

Consider then a distributed vector field (Fig. 63), and let R
be the value of the vector at the small surface element dS,

making an angle 6 with the normal to the surface element. R
represents the electrostatic or electromagnetic field intensity.

The field intensity along the normal is then R cos 6, and the

flux going through dS is: dif/
= R cos 6dS, i.e.,

df = R cos (N tR)dS.

.'.
\l/
= total outward flux through the surface,

RcosddS,

where N is the component of the field intensity normal to dS, i.e.,

N = R cos 0.

This can also be expressed in rectangular coordinates by
vector analysis, provided that dS represents not a surface dS,

but a vector at right angles to dS of size dS. (See appendix for

dot product.)

Let

and

R = X(x,y,z)i + Y(x,y,z)j + Z(x,y,z)k

dS = dS xi + dSyj + dSzk.
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Then,

ffR-dS = ff(XdSx+~
,~

' ^,N / //T?J j where obviously dSz
= dydz.YdSy + ZdS.) =ff(Xdy-dz _

y

+ Zdxdy),

Another way of expressing the surface integral of a distributed

vector field is:

ff(Xl + Ym

In these equations X, Y andZ are the components of the vector

along the three axes and I, m, and n, the direction cosines of the

normal to the surface.

Thus: I = cos (N,x),

and, m = cos (N,y),

n = cos (N,z).

.'. IdS = dydz,

and, mdS = dzdx,

ndS = dxdy.

.'. ff(XdSx + YdS y + ZdS.) = ff(Xl + Fw + Zn)dS.

Gauss's Theorem. According to GAUSS'S theorem the total

normal outward flux from a closed surface containing a charge

Q is = 47rQ.

Let N be the component of the field intensity R normal to an

elemental surface of the bag dS.

The theorem can be expressed mathematically by:

ffNdS =- 47rQ.

Let dw, Fig. 64, be the solid angle atA corresponding to dS or dSi,

which is perpendicular to R

or, dSi = r 2w.

ffNdS = SfRcosedS = ffRdSi = f fRr*dvu.

But COULOMB'S law gives:

_QQ

or since by definition

F _i
r 2

F = R,
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Qi = unity.

161

(1)

FIG. 64.

the integral to be taken around the entire surface, that is over the

complete solid angle, which is 47r,

Thus,

= 47rQ.

ffNdS =
47TQ,

or if there are many charges in the envelope,

ffNdS = 4irSQ.

It is seen that the total flux radiating from a point charge Q or

a magnet pole m is <p
= 4ir Q and (p

= 4irm respectively.

It will be shown that while the conception of lines or tubes of

force is very much the same, both serve to map out a field, by
convention a tube includes 4?r lines.

From (1) it is seen, that the intensity at a point distant r from

a point charge Q is
2

-

By a similar reasoning, it is readily seen that in magnetic

problems,

tp
= magnetic flux = 4?rm;

and, mH -
r,,

where m is the strength of the pole causing the field, and H is the

intensity of the magnetic field.
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But, to return to GAUSS'S theorem, it is readily seen that the

shape of the bag is immaterial. Assume so, for instance, that

the shape is that shown in Fig. 65.

FIG. 65. FIG. 66.

The vector R cuts the surface three times. The outward
normal flux is positive at A, negative at B, and again positive

at C. Thus the net result is one positive outward flux (Fig. 65).

Were the charge outside of the envelope, then the flux cuts the

bag two, four, six or an even number of times, so that the total

outward flux is cancelled by an equal total inward flux (Fig. 66).

The net result then is, that

ffNdS =
0,

when the bag does not contain a charge.

Potential. The electric potential is similar to the potential

energy of matter; it is a space function.

The electric potential at a point is defined as the work done

in bringing a unit positive charge from a place of zero field to the

point under consideration.

The magnetic potential is defined in a similar way, substituting

unit pole for unit charge.

Path of Unit

Charge

FIG. *67.

Referring to Fig. 67 R is the intensity at a point of the path of

the unit charge in its journey from infinity, where the field is

zero, to the point P, where the potential is to be determined, then

V = - fR cos 6ds,
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the minus sign being adopted by convention; but

dr = ds cos 6, .' .ds = -
,

cosd

and,

rr = rp Crp o ii rp o
V - Mr- -I

-jUr
= Q-M ..

Jr = oo J oo I I
\

oo ' p

In general, the potential at a point due to several point charges

It is interesting to note that the potential is not dependent

upon the path chosen in the journey; 'it depends only upon the

point charge at A and the distance between P and A. It is

strictly a space function.

The potential is the same on any surface the elements of which

have the same distance from the point charge.

Thus the potential of the surface of a sphere having a point

charge in its center, and influenced by no other charge, is:

where r is the radius.

Since by definition the capacity is C =
y,

we note that the

capacity of an isolated sphere is C = r.

The capacity in the electrostatic system of units is in centi-

meters. A sphere of 10 cm. radius is said to have a capacity
of 10 cm.

It will be shown later that to convert the capacity to farads

V 2
(3 X 10 10

)
2

involves a division by ^ = ~
~Tnir~

= ^ X 10 n . Thus in

this case the capacity of the particular sphere would be C =
10

t~ farads -

Line Integral. The intensity R of the electric field has not

only a definite numerical value, but also a definite direction.

Let the components of R along any three rectangular coordi-

nates be, X, Y and Z, and let the components of the distance ds

on the respective axes be dx
} dy and dz. Then, since the poten-

11
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tial is the same, no matter what path we may take, by travel-

ling along the axes, we get:

fx,y,z
V

J-
'Xdx + Ydy + Zdz.

This integral is called the line integral of the distributed vector

along the path.

Using vector analysis (see appendix) we get:

V = J*R-ds, the integral of the dot product,

where R = iX + JY + kZ,

and ds = idx + jdy + kdz,

.'. R-ds = Xdx + Ydy + Zdz.

Differentiating, we get:

dV = - (Xdx + Ydy + Zdz) (1)

Recollecting that if V is a function of the space coordinates x, y
and z only,

d dV

It is evident, since it has been shown that the potential is a

function depending only upon the space coordinates, that

~
do;

and

and
ay
dn

= - z

= - R

(2)

where means differentiation along the lines of force, T is
dn dn

usually denoted by G, the potential gradient.

Equation (1) must be a complete differential, the criterion

of which is that,
ar _ dx
~dx

~

dy
=

'

_
dy dz
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and aX ^ dZ^
dz

~~

dx
~~

dY a 27
~dx

~ ~
dydx

and dX d zV
dy

~

~dxdy

Thus, aF dX
. =

0, which was to be proven

Gauss's Theorem in Term of Potential Gradient. From equa-
tion (2) it is evident that GAUSS'S theorem can be expressed in

yet another form.

Since R = -_ . it is evident that
dn }

dS is the total outward flux.^
Thus,

if the envelope contains a charge; and

- dS =
0, if the envelope contains no charge.

dn

In both cases, T- means differentiating along the normal to
on

surface, dS.

On account of the similarity between the electric and magnetic

definitions, we obtain, by reasoning identically with that given

above, for the magnetic potential,

fx,y,z fx,y,z
V = -

I H cos dds = -
I (Ldx + Mdy + Ndz),

where
dV *, dV Ar

dV
i 17

dV '

L = > M = N = --> and H =
a^ a^/ a^ an

and,

7=2; I

J
dS = -

47rZra, if the envelope contains

magnetic particles; and I I
- dS = 0; if the envelope does

J J on

not contain magnetic particles.
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Equipotential Surfaces shown in Dotted Lines Around Two Point Charges

Separated 5 cm.; Q l
= +1Q.; Q 2

= - 5.

FlG. 68.

Lines of Force shown in Fine Lines and Equipotential Surfaces shown in Heavy Lines

Around Two Point Charges Separated 5 cm.
; Q t

= + 10 , Q 2
= - 5

FIG. 69.
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In these equations, H is the intensity of the magnetic field,

L, M and N are the components of the intensity, H, along the

three axes.

V
Application of the Formula, V = 2 - In Fig. 68 is shown the

equipotential surfaces between two point charges, Qi = +10 and

Qz =
5, separated 5 cm.

The potential at any point, P, is obviously :

VP
- '

+ $.
ri r2

The lines of force can not well be shown in a plane, but a fair

idea of their shape can be gained from Fig. 69.

The direction of each line of force is obtained by combining
72 1, the intensity at a point due to Qi, and R 2 ,

the intensity due

to Q 2 .



CHAPTER XIII

METHOD OF IMAGES, APPLIED TO THE PROBLEM OF
POINT CHARGES +10 AND -5, SEPARATED 5 CM

In plotting the equipotential surfaces of the problem given

above, it is readily seen and proven that the surface of zero

potential, Fig. 70, is a sphere, and that the following relations

obtain:

(1) a =

FIG. 70.

25 _ 50
cm. and p = -

Substituting, we get a = =~

X 5 = 3.33 cm.

It is evident that the field distribution will not be affected if

a grounded metallic sphere of radius, p, at a distance (D + a)

from the positive charge is surrounding the negative point charge

at B.

And it is also evident that the potential will be the same (
=

0),

if the charge at B is removed altogether.
168
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It is thus evident, that, reversing the line of argument, the

potential distribution in a system involving a point charge at A
and a grounded sphere of radius p with center at a distance L from

the point charge, can be determined without the laborious deter-

mination of the distribution of the induced charge on the sphere,

simply by using two point charges at A and B.

The location of B and the charge which must be assumed at the

non-existing point B can be determined from the following rela-

tions which are easily proven:

LP(L
- D) = P

2
,
or D = L - p

*>

L

and ~ p

Potential Distribution between a Point Charge and a Metallic

Sphere. While it is evident then that the field can be determined

without much labor in the case of a grounded sphere, the problem
becomes quite involved if the sphere is insulated and kept at a

certain potential, V, which is not zero.

To calculate the potential distribution in that case, it is neces-

sary to study the distribution of the surface charge.

FIG. 71.

Consider first the case of the grounded sphere. The intensity

of the field at a point is the resultant of the intensities due to the

charges at A and 5, the so-called inverse points.

It must be expected that the direction of the resultant field

is perpendicular to the surface at all points, thus we can draw the
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diagram in Fig. 71. Remembering that R
}
the intensity is

the vectorial sum of

-4 and v or of Ri and
ri

2 r2

The intensities R\ and R 2 are resolved along the radius CP ana

along a line parallel to AB. It is seen that PE and PG are equal,

and cancel each other, so that the resultant intensity is in line of

CP and is PF + PH, algebraically.

Let the radius of the sphere in Fig. 71 be p. By similar tri-

angles,

PF PC PC p.
~R~

=

PA ' =/*/! p^
: = *ti ,

and PH _ PC _T PC
Po

"

P#'
"

But

and

And it has been shown that Q 2
= Qi j-'

Li

Since La = p
2

,
from the figure, it is seen that,

n L p

'
C 2 72\ C1\

p7?
(p

- L)

By Coulomb's theorem, 47r(T = .R, where o- is the surface density
of charge, or charge per square centimeter,

- 2
) (2)
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When the radius is very large, the surface of the sphere ap-

proaches a plane, Fig. 72, and a approaches p. Thus, if d, in

Fig. 72, is the distance of the point charge from the plane of

zero potential, we have:

L = P + d,

which, substituted in (1), gives:

R =
3 (p2

~
(p

=:
(
~ 2pd ~

or, since d- is small compared with 2pd,

and the surface density of charge is:

Qid

27rri
3

FIG. 72.

The surface density of charge decreases inversely as the cube

of the distance from the point.

Assume now that the sphere is insulated and without charge,

it will then have some potential not zero.

It was shown, that, when the sphere is at zero potential, it

acts as if it had a charge Qz =
Q\Y ^ ^ne inverse point B

of point A. In order that its charge shall be zero, we have to

apply mathematically, somewhere in the sphere, a charge =

Q 2
= _|_Qiy. Then the total charge obviously is zero.

Li

Since the resultant potential of the external charge Qi and the

internal charge Q\j gives zero potential of the spherical

surface, in order to maintain a uniform potential V all over the

sphere, the assumed charge must be applied in the center of the

sphere.

Thus we deal with three charges, which combined cause the

external field.

First. The field due to the external point charge Q\.

Second. The field due to the charge Q 2 at tne inverse point.

Third. The field due to the charge Q 2 in the center of the

sphere.
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The charge Q 2 gives a uniform surface density of

Q 2 (?i

47TP
2 *~

47TPL

The combined effect of Qi at A and Q 2 at 5 has been shown to

give a surface density of

=

Thus the actual surface density is:

Equation (3) then gives the distribution of the surface charge
on an insulated sphere without any independent charge. The

equation must, and does show, that a is positive on one side and

negative on the other side, in order that the total charge be zero.

The potential of the sphere is obviously,

charge _ Qip _ Qi
radius pL L

This is of interest, in that it shows that the potential of a sphere

due to a point charge Qi situated L cm. from the center is
-j^-

This can be proven in a more general way as follows :

Assume that a non-conducting sphere be placed in an electric

field caused by a number of point charges, a, 6, c, etc. Let the

potential of a small element of the sphere be V. The value of

V changes from point to point of the surface of the sphere.

The average value of the potential V is:

VdS

where dS is an element of the surface.

Referring to Fig. 73 :

dS = r sin 6d4>rdd

.'. Vm ^^ffVs
and the average potential gradient along the radius is:

*

Cfirr
2 J J

dS.
4irr 2 J J dr

Since is the intensity as well as the gradient it follows that
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dS is the flux diverging from the sphere. This is zero as we

have assumed that no charge exists in the sphere.

Thus -~^ and Vm is a constant for all values of r.

We conclude then that the average potential of a sphere is

the same as the potential at the center.

rdO

FIG. 73.

Suppose now that the insulated sphere had a charge QQ .

In order that the surface of the sphere shall be an equipotential

surface, this charge also should be considered as placed in the

center, and its surface density should be added to those given
above.

L n 3

The potential of the sphere will obviously be the sum of the

potentials due to its own charge Q and due to the point charge

Qo , Qi

or,

Usually V is known rather than

It is of interest to find the attractive or repulsive force between

the point charge at A and the sphere.
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The force is, by COULOMB'S law, proportional to the product
of charges and inversely proportional to the square of the

distance.

The following conditions therefore exist:

First. A charge + Qi at A. Fig. 74.

Second. A charge Q\ y- at B.
Li

Thisd.A charge + #1
~ + Q at C.
Li

FIG. 74.

Thus the force between the sphere and the point charge is:

F =

L 2
p
2

But it has been shown that D =
j >

Lt

p =
~ Qi 2 L 2

jo Qi 2
p QoQi"

(L
2 -p 2

)
2

"

L~* L 3 L 2
'

which, by transformations, becomes :

QoQi ,p
3
(2L

2 -p 2
)

L 2
" Vl L 3

(L
2 -

p
2
)
2

Example Qi =
1, Q Q

= 10.

L = variable,

p = 10.

For L =
100,

10 1000 20,000 - 100 1

104
'

106
(10,000

-
100)

2

" *

1000 yn

For L =
11,

10 1000 (242 - 100)F -

121- 1330 (121 -10Q) 2=
- 0.158 dyne attraction.

It is thus seen that a lightly charged particle may be repelled, if

far away from a charge of the same sign, and may be attracted

when near. If, however, the charges are of opposite signs, the

charges attract always.
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Problem. Construct the equipotential surfaces between an

insulated charged sphere and a point charge, when

p = 10 cm.,

L = 20 cm.,

Qi --
i,

and _ 21
~

20'

Potential Distribution between Two Spheres. Let sphere A
in Fig. 75 have a pot. V and a radius R] and sphere 5 have a

pot. FI and a radius

FIG. 75.

Calculate first the charges at A and B and the location of

these charges, when A is at potential V and B is at zero potential.

Then reverse the operation, and calculate the charges at A and B
and the location of these charges, when B is at a potential Vi

and A is at zero potential. Then add the charges and potentials

respectively, and the desired solution is obviously obtained.

(1) Calculation of the charges on A and B when the potential

of A is V and that of B is zero :

The first approximation is obtained when the potential of A
alone is considered. We have then, since in general Q = VR, a

charge in the center of A of value Q = VR, and we may, for

completeness, say that its distance a from the center is zero.

VR
This charge affects B by giving B a potential, which is

-y

Since, however, the potential of B must be zero, it is necessary
VR

to supply B with a charge which gives a potential
-

-j-.
This

charge, which may be called Q'i> has previously been shown
/7? \

to be Q'i =
VR(-J-},

shall not be placed in the center of
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the sphere, but at a distance 61, which is obtained by the relation

previously proven:
(radius)

2

~
distance from charge to center of sphere

\T~D~D

But the charge Q'i or --
j

at 61 affects the potential of A,

so that its potential is no longer V, but

V + f
--

r
-j

-s- (distance from charge Q'i to center of A)

V- VRRl
L(L - &0*

To bring the potential of A back to V, A must be supplied with a

charge, which is:

As far as the external action of the charge is concerned, it is

located at a i} where as before

This charge at a\ affects sphere B and induces a potential which is

VR 2Ri

L(L-bi) (L-ai)'
In order to bring the potential back to zero, a charge Q'% has to

_ T/P2P
be added to B, which gives a potential of r /r _ ^ \ (T~I )'

and this charge, as far as external influences are concerned, is

located at a point 62, where

, RS
62 =

Continuing the process, the necessary additional charge on A to

balance the effect of Q'% at 62 is found to be :

Qi= _^_^_ =

and

Again, n,v 3
L(L - 61) (L

-
ai) (L

- 62) (L
-

at)'

and , R\ 2

3
"
(L-a2)'
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The total charge on A is QA = Q + Q l + Q 2 + . . .
;

The total charge on B is QB = Q'i Q'z + Q'z + . . . .

But, it must be remembered that in order to find the intensity

of the field at any point, the position of the charges has to be

considered.

, (2) By an identical method, a new set of charges are obtained,

when A is kept at zero potential and B at its potential V.

The total charges on A and B are the sum of all the charges so

calculated.

Assuming, for instance, that the potentials of A and B are

both positive.

The first set of calculations will then give a number of positive

charges in A, all of which, except the first, located at points, riot

its center, the charges in B will all be negative, and all be located

at points not its center.

The second set of calculations (not shown above) will result in

a series of negative charges in A, all of which are located at points

not its center, and a set of positive charges in the sphere B }
the

first of which is at its center. Thus the total charge in either A
or B is a sum of a series of positive and negative charges.

Simple Case. For two similar spheres, one at zero potential

and the other at a potential, V, we have:
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The total charge on the sphere of potential V is :

QA = Qo + Qi + Q 2 + . . .
;

and that of the sphere of zero potential is :

QB - Q'l + Q' 2 + Q'z + . .

To study the sphere gap, the following problem has been

solved to show more particularly, that, while the difference in

potential between two gaps may be the same, one gap may break

down with considerably lower potential difference than the

other.

Air at atmospheric pressure appears to sustain, as a maxi-

mum, a density of about 100 lines per sq. cm., or a potential

gradient of 100, electrostatic units or in practical units 30,000

volts per cm. If, therefore, the potential to ground is high, the

air may well break down around the spheres, even though the

potential difference between the spheres may be comparatively
low.

When the air breaks down, corona appears. Then the effective

dimensions of the spheres are increased and the gap length

correspondingly lowered.

The following three cases are calculated, and the results are

tabulated below.

Diameter of the spheres, 25 cm.

Distance between surfaces, 14 cm.

Potential difference 1000 electro static units or 300,000 volts.

In the first case, sphere A has a potential of 1000 and B is

at zero potential, in the second case the spheres are at potentials

+500 and 500 respectively, and in the third case they are

at potentials +1500 and +500 respectively. In the example
the potential gradient G is calculated at the surface of the sphere

of highest potential on the center line between the spheres al-

though it may, of course, be greater at some other points. In

general G = S .,. .
2

- The gradients due to the two spheres

should obviously be added if the charges are of opposite potential.

Since the intensity of the field is in the same direction at the point

considered.
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Summary of the first case:

For sphere A,
a = Co = 12,500

ttl
= 4.46 Ci = 1,430

a 2 =4.53 Q2
= 186

a 3 =4.53 Q 3
= 24.4

For sphere B,

60 = Q'o =
b l = 4 Q'i = -

4,000

62 = 4.5 Q' 2
= - 516

63
= 4.53 Q' 3

= -- 67.3

6 4
= 4.53 Q\ = - 9

In general G = ^
.'.G = - S ~ = -

114.6, or,
-

34,500 volts per cm.

Thus the sphere probably begins to glow.

Summary of the second case :

ao = 6 = o Qo = Q'o = 6,250

Ol = bi = 4.01 Qi = Q'i = 2,000

a2
= 6 2

= 4.45 62 = Q' 2
= 714

a3
= 6 3

= 4.51 Q3
= Q's = 258

a 4
= & 4

= 4.53 Q 4
= Q\ = 93.5

a 5
= 6 6

= 4.54 Q 6
= Q' 6

= 34.2

(^ = -100.2 or about -30,000 volts per cm. The spheres

ought to be just about on the point of glowing.

Summary of third case :

Qo = 18,750 Q'o = 6,250

Q l
= -

2,000 Q'I = -
6,000

Q2
= + 2,140 Q't = + 714

Qs
= - 258 Q

;

3
= - 775

#4 = + 280 e
;

4
= + 93.5

Q b
= - 34.2 Q' B

= - 102.6

The a's and 6's are the same as above.

G = -128 or -38,400 volts per cm.

Thus the spheres glow undoubtedly, and if "ground" is under

the spheres the potential gradient may be slightly higher below

the line connecting the centers of the spheres.
12



CHAPTER XIV

APPLICATION OF THE POTENTIAL FORMULA V = 2 -

TO SOME MAGNETIC PROBLEMS

The magnetic potential at a point in a magnetic field is, as

has already been stated, the work done in ergs in bringing a unit

pole from infinity, or a point of no magnetic field, to the point

under consideration.

By GAUSS'S theorem the outward normal flux from a pole of

strength m is 4irm. Thus the intensity of the magnetic field, H,

at a distance, r. from the pole is
| ^

'>

or, H = m-
f

r2

tlll(l) . -|-T flv 7 "V.

or in general, V = 2

Obviously, a magnetic pole can not exist alone; there is always

a north pole and a south pole in every magnet. Thus to get

the potential at a point, at least two poles of opposite signs must

be considered.

The potential of a small magnet at distance large compared
with its dimension is:

V = -
' S

> where 6 is the angle the axis of the magnet makes

with the radius vector to the point.

This is readily seen, if the magnetism be assumed as con-

centrated at the poles of the magnet.

Referring to Fig. 76, the potential at P is:

_ m m m
V =

AP + ~BP~

m
, (1)

180
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If r is large, compared with I then V =

m m
A/r2 + lr cos \/r 2

Ir cos

The square root can be expanded by the binomial theorem.

We have,

=
|l

--
J^

- cos -h . . . .' 1 J
- cos . . .1

=
%
cos 6 (approximately) (2)

Aba.

FIG. 76.

It is seen from (1) that the magnetic potential at P is in times

the difference in -, as we go from one pole to another, where r is

the distance from a pole to the point P. Let I = ds, then the rate

of change of -
along ds, is:

-

(-) . thus the total difference is (-)ds,
ds W ds W

.

dr

If I', m', and nf
are the direction cosines of the magnetic particle

at (x, y, z), we can then also write,

>""[> I +'sC') + i OK
Magnetic Shell. A thin piece magnetized at right angles to its

surface is called a magnetic shell. It can thus be assumed as
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made up of a large number of small magnets as shown in Fig. 77.

Let the total pole strength in Fig. 78 be m and the area S, then the

pole strength per unit area is -. Let the thickness of the shell be

I, then the potential at P due to the shell is from equation (2).

v
S

where is the solid angle at P subtended by the surface of the

shell.

(Recollect that the solid angle, doi = -y cos 0.)

FIG. 77. FIG. 78.

ml is called the magnetic moment, the strength of a mag-
netic shell or the moment per unit area is usually denoted by 0,

ml

and, V =
grco.

WEBER proved experimentally that a small circuit in a plane

carrying current produces the same kind of a field as a magnet,
and that the potential at a point depends upon the area A of the

coil, the current 7, and the distance to the point, by a relation :

_. KAI cos
V =

y
>

r2

from which the electromagnetic unit of current can be deter-

mined by making k unity.

AI cos ml cos

thus, and 7 = r- = g, the strength of the magnetic shell sur-

rounded by the circuit or coil.
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Since we have proven that V =
#co, we get the following simple

relation between magnetic potential and current:

V =
7co, where co is the solid angle subtended at the point by

the surface of the coil. It is evident then, that, as long as we do

not tread the circuit, and as long as we return to the starting

point, the work done in moving a pole in the field is zero.

To illustrate this, the potential at a point on the axis of a cir-

cular wire carrying I abs. amp. will be determined.

First let the point be at the center of the coil, Fig. 79, then co =

27r, and, V = 2?r/.

FIG. 79. FIG. 80.

If the point is on the axis, but a distance x from the face of the

coil as shown in Fig. 80, then the solid angle is:

co = 2ir(l
- COS a) =

27r( 1

and, - / x

'

The magnetic field intensity along the z-axis, which is the

direction of the magnetic field, is:

dx
~

(R
2 + x*)*

'

and the force in dynes on a pole of strength m is :

2TrR 2m
=

(R
2 + X*)*

'

for x =
0, that is if the point is in the plane of the coil and in its

center,

H = 27T/

R
'

The work done in bringing unit pole once or several times

through a loop carrying a current / will now be investigated.
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Referring to Fig. 81, before the journey starts, the potential at

P has been shown to be 7<o.

When the journey has covered 1 revolution, the solid angle
has changed from to 4?r. Thus, after n revolutions of the unit

pole the potential of it is :

Iw + 4irln = I (co + 47rn).

It is evident then, that, when a magnetic-pole of strength m is

moved around in a field, and returned to the starting point, work
will be done every time the circuit is treaded. If it is treaded n

times, the work is:

The magnetic potential is thus a multi-valued function of the

space coordinates.

p

Path of Unit Pole

FIG. 81. FIG. 82.

dV
The intensity of the magnetic field at the point, H =

-^
depends, however, only upon the term involving the solid angle

co, not upon the term involving 4?m.

Consider now a straight infinitely long wire carrying current I.

Let the wire form the y-axis and let the point be in the x-z

plane (Fig. 82). The cone subtended by the plane of the current

(x-y plane with ?/-axis as one edge) which goes out to infinity and
the point P has a solid angle, 2(ir 0).

NOTE. If the angle in the x-z plane had been TT, the solid

angle would have been 27r; in this.case the former is (TT 0), the

latter is 2(ir
-

0).

.*. V = /( + 4arri)
=

(27r
- 20 + 47m).

The direction of the lines of force which are circles around the

y axis are along the arc, rdB, then

ff = ~S =
T'

an equation very often used in electrical engineering.



CHAPTER XV

R (read del dot R},

V is sometimes called LAME'S

DIVERGENCE OF A VECTOR, POISSONS AND LAPLACE
EQUATION

It has been shown by GAUSS'S theorem that the total flux

entering and leaving a closed surface in a vector field is zero,

unless the (closed) surface,contains some charge Q, in which case

the outward flux equals 4?rQ.

This charge may be a single charge, or it may consist of a large

number of small charges throughout the interior of the surface.

The divergence of a vector is the excess of outgoing flux over

the incoming flux per unit volume of the space enclosed by the

surface; it is the number of lines which diverge per unit volume.

If the excess of flux in a small volume dv is d\f/, then the diver-

d\L>

gence of the vector is -T-

It is written div. R, div. (X, Y, Z) or V

where V stands for + ^r + ^dx dy dz

differential parameter.
It is evident, from what has

been said above, that unless

some charges are enclosed in

the small volume, there can be

no divergence. If there are as

many units of positive charge
as of negative charge in each

small volume, there can also be

no divergence, i.e., div. R = 0.

The divergence is positive, if

there is an excess of positive

charge; it is negative (sometimes called convergence), if there is

an excess of negative charge. The presence of divergences

involves the presence of charges. In hydraulics the presence of

divergence means either the presence of some source of fluid in

the element or some change in density.

Consider a small volume represented by a cube, in Fig. 83 for

the sake of simplicity. This cube is assumed to be a small part
185

T Axis

FIG. 83.
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of the total volume enclosed by the envelope that contains the

charges.

Let X, Y and Z be the components of the field intensity R
parallel to the coordinate axes and at the center of the surface

a, b and c.

If R is a continuous function, which depends upon the space
coordinates only, and if the edges of the cube are dx, dy, dz then

the value of the ^-component of the field intensity at Ci = Zi =

Thus, the incoming flux at c is: Zdxdy, the outgoing flux at

is [Z + -T- dz\ dxdy.

Consequently, the difference is

'dZ

(dz}dxdy;

Similarly, for the other sides,

and / -
dy } dzdx.

dy

The total diverging flux is thus:

Hence by definition

div. R = V - R~ = V-R.
dv

If p is the charge per unit volume or the volume density, then

the outward normal flux is 4?rp.

ax ar az
dx dy dz'

A vector field is said to be solenoidal, if there is no divergence.
Such a field is, for instance, the electric field in free space or the

field of force of gravitation in free space.
The divergence theorem connects the surface and volume inte-

grals and states that the surface integral of the normal outward
flux of a distributed vector is equal to the volume integral of the

divergence taken throughout the volume. It is one of the forms

of Green's theorem.
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It is

ffR cos SdS =

Using the notation of vector analysis, we get:

ffn-RdS = fffRdv,
where n is the unit normal vector.

This theorem is subject to rigid mathematical proof, but can be

understood without advanced mathematics, if the volume
enclosed by the surface is assumed to be divided up into a large

number of small volumes, each fitting tightly against the others.

As we add the normal outward fluxes of the different elemental

volumes, all will cancel, except those on the very outside surface,

since every wall separating two elements is integrated over twice

with normals in opposite direction.

The outward normal flux is J* J* R cos Ods. Since the excess

of outgoing flux over the incoming flux in the element of volume,

dxdydz, is:

--h
~^~

+
-Q-J dxdydz, it follows that the total outgoing

flux is:

III f-r +
-.J

h
-Q-} dxdydz, which is equal to I I R

cos 6dS.

Poisson's equation is:

d*V\
" = "p -

This becomes: dX dY dZ

If X
}
Y and Z are gradients or intensities of a scalar point

function V, so that

X = - -V- Y = -
d~- Z = -

d# ' dw '

62

ax

ay

-ay
=

az
62

=

dz 2 '
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and
dx*

"
dy

2
"

dz*
=

47rp >

where p is the density of electrification or charge per unit volume.
This equation then applies, when the region of the electrostatic

field under consideration contains positive or negative charges, or

sources and sinks as some writers call them.

Laplace's equation is:

VV VV dF
_

dx*
~

dy
2
"

dz 2
'

or, as it is often written,

V2F =
0,

(Read del square V = zero) and refers to a region in which there

are no charges, or to a solenoidal field.

By means of LAPLACE'S equation it is possible to determine the

potential at any point in the dielectric surrounding a charged

body. If the body is unsymmetrical in every way the equation
becomes very involved, but if, as is almost always the case in

practice, there is some axis of symmetry and particularly if the

body has circular symmetry then the potential distribution can

usually be calculated fairly , easily, especially if a table of

LEGENDRE'S coefficients is available.



CHAPTER XVI

LEGENDRE'S FUNCTION

The potential at points outside of the bodies having circular

symmetry, such as circular discs, circular rings, etc., can be

determined very readily by means of a certain function,

viz., LEGENDRE'S function, which has been worked out and is

tabulated much in the same way as trigonometric functions.

LAPLACE'S equation

g-O (1)dx 2

can be used as has been shown in exploring the space surrounding

charged body.
With circular symmetry of the charged body it is obviously

advantageous to express the equation in spherical coordinates

(see Appendix heading Partial Differentiation). Thus,

rd 2
(rV) _J_J)/. dF\ 1 d 2V
dr2 sin 6 dd \

Sm
BO/ sin 2 6 d<?

2

With z-axis as the axis of circular sym-

metry, the potential will be the same for ,--

all values of <, as long as r and 6 are con-

stant, as is readily seen in Fig. 84.

Equation (2) becomes:

rd 2
(rV) ,

1 <

(2)

dr2 (3)

This is then an equation of two inde-

pendent variables, r and 0. The general

method of solving such equation is to FIG. 84.

assume the solution to be:

V =
R'6',

1 where R r

is a function of r only, and 0' is a function

of 6 only.

Substituting in (3),

l NoTE. See Byerly's "Fourier's Series and Spherical Harmonics."

189
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or,
*

.,
d 2

. R' d 30'

re'^(rR'}= -^^sin*-,
or, r a 2

(rR'} I d I . dO'\

W ~^~ ~ W^e de (
sm eW <5 >

The left-hand term is a function of r only, the right-hand term

of 6 only.

In order then that this shall hold for all values of r and 0, each

term must not only be a constant, but must be the same
constant.

Let this constant which is entirely arbitrary, be a 2
,

-'-0 (6)

and 1 d /sin 6

Equation (6) becomes;

rS^ + 2r
dr 2 dr

dr

The solution of (8) is readily found, it is :

where

and

(9)

It is evident then that rm and -^i are particular solutions of

equation (6).

If we choose for a 2 a value which is:

a 2 = m(m + 1),

then equation (9) is satisfied, since
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It has been shown that rm is a particular solution of R', thus

using this solution at first, we get

V = rmB\

Substituting this in equation (3) we get,

and,
36

Equation (11) can be solved for 0'.

We have,
d I . a0'\ . a 2

0'

Let

80'

a: = cos 0, there sin = \/l x 2
'.

rift'

In equation (12), is to be determined -- and -
^-'

ou do

80' 86' 8x 86' . 86'^ = " smd== "
\j ^/v \j \J v/**/

/ a a0'\ ax _ r_a_
/

a0_'

\ax a0 / a0
~

Lax \ ax

a 2
0'

a0 2

(14)
U^l/

r) f)
f

Substituting the value of T~T- from equation (13) and the value
ofj

of
j

from (14) in (12), we get:

a

Thus equation (11) becomes:

r)
2
/?'

m(m + 1) 8' + ~ (1
- x

^-(x + x) =
0,

+ !)' = (16)
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This equation, which very important, is called LEGENDRE'S

equation.

It can also be written:

[(1
- x) ~] + m (m + 1) tr - (17)

since>

Assume now that 0' can be expressed in whole powers of x

multiplied by constant coefficients, that is,

9' = 2a nxn = a + aix' + a 2z 2 + a 3z 3 + . . . (18)

Referring to equation (17),

~\nf

(1
- x2

)
- = ai - aiz

2 + 2a 2x - 2a zx
3 + 3a 3x

z - 3a 3a:
4

(1
- x 2

)
= - 2aix + 2a2

-

and,

m (m + 1) 6' = m (m + I)a + m (m + 1) aiz' + m (m + 1) a 2^ 2 +
m(m + 1) a 3z

3 + . . .

Collecting the coefficient for similar powers of x we get:

[2a 2 + m(m + I)a ]
is the constant term;

[6a
3

2ai + m(m + l)oj is the coefficient of x 1

',

[
6a2 + 12a4 + m(m + 1) a2 ]

is the coefficient of x2
;

Since, from equation (17), each of these coefficients is zero, we

get:

m(m -f- l)ao m(m -\

2
*** a a i >

D

m (m -f- 1) a2 + 6a2 _ m (w + 1)
~ 6

It is seen that if a =
0, all the even terms disappear; if ai =0,

the odd terms disappear.



LEGENDRE'S FUNCTION 193

The coefficients are related in a comparably simple manner, as

follows:

I ON L'\"*

or, (fc+l)(fc

m(m + 1)
-

(fc +!)(*-

From (20) it follows, that, if fc = m -
2,

(m - 2+ l)(m - 2 + 2) m(m -
1)~

(m - m + 2)(m + m - 2 +1)
am ~

2(2m -
1)

m(m -
1) (m - 2) (m -

3)

_

2.4(2m- I) (2m -
3)

m(m l)(m 2)(m 3)(m 4)(m 5)x i _ . L- _ ft
. rff>

2 4 6 (2m - l)(2m - 3) (2m - 5)

It is thus possible to express equation (18) as follows: 6' = 2 anzn
;

if the highest power of x is xm
,
then we get:

,

2 (2m - 1)

W (m -
1) (m - 2) (m - 3)

]
2 4(2m -

1) (2m - 3)

where am is entirely arbitrary, and it is convenient to choose a

value,

(2m -
1) (2m - 3) (2m - 5) ... 1

am = 7

because, for this value of am ,
6' 1 when x = 1.

. , = (2m - 1) (2m - 3) (2m - 5) ... 1 r _ m(m -
1) m_ 2

m! 2(2m - 1)
^

m(m-l)(m-2)(m-3) 1

2-4(2m - 1) (2m - 3)

Since 6' is a function of #, and contains no higher power of x than

>x m
,
it is customary to write, instead of 6', Pm(x), or since x was

cos 0, Pm(cos 6).

Before enumerating some values of 6', recollect that (factorial 0) =
1,

or 0! = 1, or I?
=

1; and since |1
=

1,
0=1 = 1. This is readily seen

In 1

since
j
n _ l

= n] forn =
1,

= =
1, .*. |0

= 1.
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Example. Find P 3 (cos 0).

m =
3, .'.P 3(z)

= (6
-

1) (6
-

3) (6
-

5)

1-2-3
r

8
3 3-1

,
-i

2
'

6 - l
x

.

Note that only three terms can be used in the numerator in

front of the parenthesis, -since the last term must end with 1 as

is shown in equation (22).

The parenthesis contains only two terms, because the next

term would give a negative exponent, and we have assumed that

the powers of x are positive integer numbers.

Thus, for m =
3,

P 3

Similarly, for m =
2,

(4
-

1) (4
-

3)

1-2

For m =
1,

Pi(s) = ^ x = x

or,

V = A rP (cos 0) +

(23)

For m =
0,

But we assumed as a particular solution:

V = r"0' .', V = 2A mrmPm(x), or 2A mrmPm(cos 6) (24)

(cos 0) + A 2r
2P 2 (cos 0) +

A 3r
3P 3 (cos + . . . (25)

Referring now to equation (10), we see that there is also another

particular solution, namely:

or,

_ A 2P 2 (cos^)

(26)

Before applying these equations to some practical problems, it

may be of interest to note that the LEGENDRE'S function can be
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obtained by expanding ^ where R' is the distance between two

points (Fig. 85).

and

R' = \r 2 + ri
2 - 2rri cos 0.

If n > r,
l

f
;

Ur5

t __
2r .T^ A

where A =
(1 + h 2 -

where T

p = cos e.

FIG. 85.

Expanding A by the binomial theorem, we get:

hp
Po +

-
3p)

+ /i
2P 2 + /i

3P 3 + . . (27)

The similarity between (23) and (27) is obvious.

Returning now to the problem of a circular wire carrying

current, we have shown that the potential at a point on the axis,

that is, r coincides with i/-axis and 6 = 0, is :

where r and R are shown in Fig. 86.

If R > r, see Fig. 86, then
FIG. 86.
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Remembering that when -^ = K is a fraction

Since equation (23) holds for all values of 0, it also holds when
6 = 0. Thus we can readily determine the coefficients A

, Ai,
A 2 , etc., which are:

Ao = 2*1,

A -

R '

A, =
0,

_ .,_, 1

A 4
=

0,

A 6
=

0,

AT- +

y =
27r7[l

--

^P! (cos 0) + M ^3^3 (cos 0)
-

M^5 (cos 0) + ^ P 7 (cos 0) + . .

.]
(28)

If r > R, then,

r ^ !. 3B 4 l-3-5fl6
-i

2.7
[1
- 1 + K- - - + ^-Q

- +

[7?
2 P^ z?6 n

>i^-M^+K 6 |+ ]
(29)

From equation (26) we get:

+ Pl *e + A l
*&

.*. Ao =
0,

R2
1
= 2?r/

'T'
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A 2
=

0,

A 3
= - 2irl

A, =
0,

A 6
=

/. V = 2irl [^^1 (cos 0)
- % ^

4

P S (cos 6) +
7?6 -,

.

;J
(30)

As a second application of the use of the LEGENDRE'S function,

the following problem will be considered.

Find the potential at points outside of a thin circular disc, Fig.

87, charged to a certain potential, V.

It will be proven that the distribution of the surface charge is :

where Q is the total charge, that is, the charge on both sides.

FIG. 87. FIG. 88.

We first calculate the potential at a point PI on the axis

(Fig.
/"Vo = /"*ro

=

2Q

Q
1
r 2 -

=
2K

cos ^T^
as can be readily found by simple integration.

This expression then must be expanded in a power series.

This can not be readily done, but its derivative with respect

to r becomes a simple expression, which can be expanded,
the resulting series can be readily integrated. Thus,

^. ["-*?- -i r2 - R2
1 = Q

drl2R
C

r2 + R 21 R 2 + r2

If R > r, then

Q ^H ,J1 J
6

, 1

fi a + r2 B2 L R 2 ~*~ R 4 R & ^ ' ' '

J
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Integrating,

R R -&- -+ c}OH J

For r = 0, i.e., on the disc, and the potential of the disc will be

proven, to be
^

'

D"'

r - -"
2

7 -if-- -
-4- 4- 1"

R 12 R + 3^ 3 + 5^ 5
"

when r > R, it is found in a similar way that:

'-[?-+-+]
Equation (31) is similar to:

7 = A r P (cos 0) + Air !

Pi(cos 0) + A 2r
2P 2 (cos 0)+ . . .

'' Ao = '' Al = ~'' A2 =
> As = '^)A^ '

etc '

* V =
|[I

P (COS 6)
"
i Pl (cos ^) + 3^^2(cos 0)

Equation (32) is similar to:

_ A P cos0
'

AiPi (cos 0) A 2 P2 (cos 0)

f l f2 r3
-

'

/. A = 5- B, A! =
0, A 2

= -

^ y,
A 3

=
0, A 4

=
^ y,e
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DISTRIBUTION OF CHARGE ON AN ELLIPSOID

If an ellipsoidal thin shell is formed by two similar, similarly

situated ellipsoids, and the charge per unit volume, p, is constant

in the shell, then the force at any point

inside the ellipsoid is zero, that is the poten-
tial is constant. The outer surface is an

equipotential surface. 1

To prove this, consider the attraction at

o of the two masses at A and B, Fig. 89. FIG. 89.

The volume at A is rz du dr .'. charge, q = pr
2 dudr.

The volume of B is n 2 du dr .'. charge q'
= pr^ dudri

.'. The attraction of A at is -^
= pdu dr.

The attraction of B at is
2
= pdu dri.

But from geometry it is known that with two ellipsoids, one of

axes a, b and c, and the other of a (1 + a), b(l -f a) and c(l-f ),

that is, with two similar, similarly situated concentric ellipsoids,

dr must always be equal to dri. Thus the attraction at must

be zero.

In the case of a conducting ellipsoid charged with electricity,

the charge is confined to the surface and the distribution will be

shown to be such as is represented by the thickness of the shell

in Fig. 89. It is greatest where the curvature is greatest and

least on the flat point of the surface.

The problem then is to express the thickness of the shell in

terms of a variable surface charge, cr.

The volume of the shell is evidently = %irabc [(I + a)
3

1];

considering uniform volume charge, the total charge is:

1 NOTE. See "Analytical Statics," vol. II, by ROUTH.

199
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But a =
pd, where 5 is the variable thickness of the shell,

:.Q-

or

3QS

J
s

QS

FIG. 90.

But the thickness of the shell 5 can be ex-

pressed as the distance between two parallel

planes going through any point of the shell.

We have from geometry (see Fig. 90) that

the distance from the center of an ellipsoid to

a tangent plane is :

P = ~
(1)

/ g *

\ a4
""

fe
4 "*"

c4

Neglecting infinitesimals of higher order than the first,

d = p(l + a)
- p = pa.

Qp
. . a =

4irabc y + a +
l)

;
or at the limit =

0,

(T =

4:irabc

Consider now a very thin flat elliptic disc in the x y plane

(c is small) we have from (1)

Q

o

when c approaches zero,

47Ttt&
/

x2

V J - *
-
v

As a consequence for a circular disc,

Q
a =

- r
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where R is the radius of the disc and r the particu- P

lar distance from the center, where a is the surface

density on the disc.

To find the potential of the circular disc, we calcu-

late the potential at a point on the axis, Fig. 91. FIG. 91.

rdrQA =
2Trrdr2<r f

V = - r--
- ~ = 4-7T

Jr-R Vx* + r* JR 4irR\/R 2 - r*

= __Q T __ rdr
'

RJR V(R2 -rz
)(x

In this equation, x is, of course, a constant, being the distance

from the disc at which the potential is to be determined :

On the disc, x =
0,

Q C rdr

Q dr Q

Incidentally, since the capacity is ^, it follows that the capacity

2
of a disc is

-
R, which is 2/Tr times that of a sphere of the same

7T

radius.

FIG. 92.

Potentials, Outside and Inside, and in the Body of a Spherical

Shell. Let the uniform charge per unit volume of the mass of

the shell be p, and the inner radius r and the outer radius R,

Fig. 92.

The area of the shaded surface, Fig. 92, is r^<p rA0

= r sin 6 A^> rA0;
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the volume of an element of thickness Ar is :

r 2 sin 0A0A0Ar.

If p is the charge per unit volume, then the charge on the

small volume is:

q
= pr

2 sin 0A<A0Ar.

Thus the potential function at P due to the charge on the small

volume is:

V =
^ but a = Vri 2 + (c

- r cos 0)
2

= Vc 2
-f r 2 sin 2 + r2 cos 2 - 2cr cos

= V c 2 + r2 - 2 cr cos
;

or, a 2 = c 2 + r 2 - 2cr cos (1)

pr'sinftfrdfrfr

a r = ro ^ =0 , = c2 + r2 = 2cr cos

From (1), a 2 = c 2 + r 2 - 2cr cos 0,

.*. 2ada = 2cr sin 0d0

sin AM = ^
(3)

cr

Substitute (3) and (1) in (2),

r=R
_ f

r

Jr

pr'adadrd*

"
prdadrd*

^ 2"

f= Q J
fr = R r? = 2*

r[(c + r)
-

(c
-

r)] drdS (4)
C Jr = ro Jv = Q

r = R r
I

= ro Jv

^
I 2irr*dr

= 47T5 /^!3 - r 3\ = p(volume of shell) = Q
c \ 3 /

=

c

=

c
(5)

If point P had been inside of the shell, then the limits of inte-

gration of a would be r c and r + c.
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.'. Equation (4) would be:
X"

Tp
X" _. O

F = 2
( | r[(r + c)

-
(r
-

c)]drd<p.
C Jr = ro Jv = Q

2
rr=R r<p=2*

I crdrdp

Jr-

-B

(8)

which is independent upon c, the position of the point P.

Thus the potential is constant inside of a hollow sphere.

FIG. 93.

If the point had been in the body of the shell, Fig. 93, then the

potential would be the sum of the potentials due to the mass

outside and inside of the spherical surface which contains P.

The field intensity or potential gradient is

dv

(The signs should all be reversed for gravitational potentials.)

In the case of the point being outside the sphere,

dV Q 4

dc 3c2
- r 3

)

and 2Q STTP (R*
- r 3

)

c3
:

3c3

In the case where the point is inside, it is:

(8)

(9)
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where the point is in the shell then :

^Z o f ?cf W-l
"

dc
= ^p L" 3

"
3cJ

rV _ 1 _
c3

2r 2 (10)

dc 31 c 3

Problem. Plot the potential, the potential gradient, and
d2V
j-zdc2

when V 1 at the center;

ri =
1;

r-o
= 0.5

in the case shown in Fig. 94.

For a full discussion see WEBSTER'S "Electricity and Magnetism."

FIG. 94.

FIG. 95.

Potential Outside of a Non-conducting Charged Oblate Ellipsoid,

Let the equation of the oblate ellipsiod, Fig. 95, be:

x2
y

2 z 2

~o ~I 9 ~T~ ~o =
o2 a2 c 2
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Let the total charge of the ellipsoid be Q, and the potential on

the surface be VQ.

The surface intensity at the element ring, generated by ds,

Fig. 96, revolved about the z-axis, has been proven to be:

pQ
(T -

X

FIG. 96.

where p is the distance from the origin to ds, and

5 + * + ~ +

where

Q

,2 ~2From (1),

a 2 ^ c 2
~

Differentiating, 2r drQ 2zdz _
~2 I ^2

~~ U
>

or,

(2)

(3)
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The potential at P on the axis due to the ring-shaped element

surface is:

(4)
(r
-

Substituting (2) and (3) in (4) we get: the potential at P
due to the whole ellipsoid

Qdz

r,2cV(r-z) 2

From the equation of the ellipsoid,

substituting in (5),

"=

(5)

f_ c 2V -
(a

2 - c2
) z 2 - 2rc 2z + c2

(a
2 + r2

)

, (a
2 - c2

)z + re2 1 c

, sin" 1 -
. = =

2Va2 c2 caVa2 - c2 + r2
J _ c

Q f. . a2 -c2 + rc .
1
-a2 + c2 + rc] /

. sm" 1
x = sin" 1

. : (6)2V a 2 - c2
[ aVa2 - c2 + r2 a-ya2 - c2 + r2

J

To find the potential at a j>oint, like PI, which is not on

the z-axis, LEGENDRE'S function may be employed, and the

equation (6) is to be expanded into a series in the terms of r.

In order to obtain an expression which may be easily expanded,
differentiate (6) with respect to r, expand the result into a series,

and then integrate the series. Thus differentiating (6),

dVp Q
(7)

dr (a
2 - c2 + r2

)

Expanding (7),

dVP -Q r r2 r4

_r^_ l

dr a2 -c2 L a 2 -c2
~

i

(a
2 - c2)

2
"

(a
2 - c2

)
4

'

'J
1

when c < r < \/a 2 - c2
(8)

V Q -[_
c

, y( _c V _
"

2 2 2 2 \Va2 - CV
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For a point on the surface, i.e., when r =
c,

.-. C =V~ + tan-' -7= (10)^ V a 2 c2

Since FPl is a function of VP and /, the solution for VPl takes

the following form:

VPl
= Ao + AiriPi(cos 5) + A 2ri

2P 2 (cos 0) +
A 3ri

3P3 (cos 0) + ....
When
=

0, n =
r, Pi = P 2

= P 8
=

- - . 1, and FPl
= FP .

^ + - - tan- 1 -
7J=

Q QVa2 - c2 \/a2 - c2J

a 2 - c2!

= 0;

. U-- -

(a
2 - cV
1 c A P^cosfl)

tan L 7= = I 7^- ^r
(a

2 c2 )

P 3 (cos e) ,
P5

(cos 0) ,
,

P 7 (cos 6) 7 _
I

v /
~* 3 * L- M 5 I

x y
, 7 _i_ I

,

I O / 9 9\ 9*1 F* / *> 9\ *?
' 1 I^ T / 9 9\ A ' 4 I I

3 (a
2 c 2

)
2 5 (a

2
c
2
)
3

7(a
2 c2)

4

which is applicable, when

When

expanding (7),

Whenr = c, VP =
0, .'. (7 = 0.

And

_ Q
,
ii)

,

A 2P2
(cos0)

,

3 3
,

I n"
"

r!
2 n 3 4

-
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When =
0, PI = P 2

= P 3
=

. . .
=

1, r l
=

r, and VPl
= VP)

/. ^o = Q;

A! =
0;

4 Q(a-c).
"T"" ;

A* =
0;

=
0;

a2 - c2) Ps (cos ^)
.

(a
2 - c2

)
2 P 4 (cos 0)~~ ~

(a
2 - c2 )

3 P 6 (cos 6>)

7ri
7

-

which is applicable, when

ri >Va2 -c2
. (12)

(Two similar series can be derived for an oblong ellipsoid.

For this and the potential at a point inside an ellipsoid, see

W. E. BYERLY'S "Series.")



CHAPTER XVIII

CONCENTRIC SPHERES

Fig. 97 represents a system of concentric spherical shells. It

is desired to find the potential at any point in the medium (which
is assumed free from charge).

Since we are dealing with spherical bodies and since the body
is symmetrical, indeed a sphere, LAPLACE'S equation in spherical
coordinates becomes :

d*V
aPPendlx) (1)

FIG. 97.

To solve this equation, one first ascertains if the relation

dV = A
dr

~
r2

is satisfactory. (We may well assume this solution, since it can
be expected that the intensity or force on unit charge varies

inversely as the square of the distance.)

Then,

d^V _2A
dr2

~~

r3
'

Substitute in (1) to see if the solution satisfies the equation

-~ + l
= o,Q.E.D.

Thus, 37 _ A
~dr

~
7*

209
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satisfies the equation (1).

or,V=- + B (2)

Or we might have solved the equation as follows :

Let _ dV
.
dW _ dy

y ~~

dr'
'

dr2 dr

.-.*+*.-
-
J*-dr -log r2 A A

. . v = Ae = Ae =
,

1) -$
e log r* r

2"

Or again we might have developed the equation directly, without

using LAPLACE'S equation, by assuming a positive charge Q on

the inside sphere.

The intensity of the field at a point in the medium at a distance

r is then by GAUSS'S theorem:

A~n n
R =

.'. V = -
\ Rdr = + ^ + B (3)

an equation of the same form as (2).

Referring to equation (2), let Vi be the potential of the inner

sphere of radius r\ and Vz that of the outer, then,

and
' F2

= - + B.

r2 r rir2

r2

r2 - ri r

where ri < r < r2
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To determine the meaning of B assume that the outer shell is

grounded, or which is the same, at zero potential, then

and

from (4),

. v tfi D . K r l

. . V 2
= ~ ~~ -

-T jD. . . > = - - V i.
r2
-

ri r 2
- n

From (5), y = Vi n r2 _ _TI__
r2
-

ri r r2 - ri
*

= _FVi_ rra _ 1
1 == JV

r 2 ri Lr J r 2

- r

7*1 r

If the outside sphere is very far off so that r 2 approaches

infinity and F 2 zero, then,

V z
=

0, r 2
= oo

;

7 2
= o = - + 5, /. 5 = 0.

r2 ? r r

The potential gradient in the space between the conductors is:

7.-F.

It is the greatest at the surface of the inner sphere, where

r = ri.

r2

The potential gradient at the inner surface of the outer conductor

is evidently :

r2 ri r2

Referring to equation (7),

R =
4^ri

=
^J equating to (8),

Qi _
7i-7 2 ra.

r2
-

14
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Example. Calculate the average potential gradient in the

space between two concentric spheres separated by a distance of

2 cm.

Assume that the potential gradient at the surface of the inside

conductor is 100 electro-static units per centimeter, that is, just

about on the point of glowing.

Consider a concentric sphere, Fig. 98, the inner sphere of which

has a charge Q\ and the outer a charge Qo = $2 + Qs-

FIG. 98.

Evidently, Qo = Q 2 + Q 8 .

Since all tubes of force beginning at the surface of the inner

conductor terminate at the inner surface of the outer conductor,

it is evident that the charge Qz = Qi-

.'. Qo = - Qi + Q 8 .

The potential at a point outside of the outer conductor is

thus, from (6),

T7 Qo Qs-Qi ,

y = ^_ = ^ *_, where r = r3 .

r T

Since the capacity of an electric field is the ratio between the

charge on the positive boundary and the potential difference

between the boundaries,

c -
ri-F 2

Thus horn (9),

c== Ii^Z_2 . rir2
.

1

r2 ri Fi K 2 / 2 / 1

The capacity of the inside sphere alone is ri.

Capacity of concentric spheres _ r^

Capacity of inner sphere r2
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If the thickness of the dielectric is small compared with the

radius, then:

C = r ,
^^ = T

4' where S = r,
-

r,.
6 d

4?rri
2

_ area of sphere

as a limiting case, where TI = r^ = we get parallel plates, and,

area on one plate

47r(distance between them)

The capacity is expressed in cm. not in farads. To get the

capacity in farads divide C by 9 X 10. u

The energy input to a condenser is:

W =

Thus the energy stored in the field between two concentric

spheres, is:

Infinite Parallel Planes. LAPLACE'S equation applies in this

case so long as there are no charges between the condenser plates,

_
d*V

dx2
"

dy
2

~~
dz 2

=

Since the field depends upon the distance between the plates only,

that is, upon one of the coordinates only, we get,w _ .
dv

__
"T "^ U, . . j L/o
dx2 dx

and V = C x + d. ,

If the charge on plate A (Fig. 99)
A

ifc^T |
Ql

is Qi and the potential FI; and the ,

charge on plate B is $2 and the poten- B --
1
-Q *

tial Vz', and if the distance between

the plates is d]

We have:

Vi = + Cj,

and

F 2
= C d + Ci.

Subtracting,

Vi - V z
= -

Cod, or, C = - (Fl
"T
V
^.
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:.V -^ -x + Ci; or, since V 1
= d,

d

The potential gradient, that is the potential drop per cm. is:

=-=^
It is constant all through the dielectric.

The total outward flux from A is 47rQi, one-half of this enters

the space between the plates. The inward flux to B is ^irQi,

and one-half of this is added to the flux from A. Thus the total

flux in the space between the plates is:

But the charge on A, Qi, must be numerically the same as that

on B, Q%, since all tubes of force leaving A enter B, thus Qi =
$2,

numerically, but of course of opposite sign, which, however, is

taken care of in the above discussion.

Thus the total flux in the gap is 4?rQ, where Q is the charge on

one of the plates.
47T0

.'. R, the intensity of the field, is j- where A is the area of one

side of the plate.

And
' G = R = ^;

or from (1),

4rQ Fi- F 2 . r _ Q A.
A d

"
' ' L =

Fi - 72

"

This could have been calculated in still another way.

Since D

V = - fRdx = - X

For x =
0, V = 7i; /. Ci = 7i.

for , ,, T7 . T7 T7
oj = d, V = 7 2 ;

. . V z
= Vi --T d,
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1s .

2

..
If the plates are separated by uniform insulation of specific

., v ,, .,
. KA KA

inductive capacity, A, the capacity is -r, cm., or . ,

Q 1()ll

farads.

If the dielectric consists of several layers of different specific

inductive capacities then one can consider that the condenser is

made up of a number of condensers in series and the capacity
of each is:

KiA
Ci = -7r> etc.

47rdi

The total capacity is obtained from the well-known relation:

V * V *
'

AI A 2

All these formulae are approximate, however, since no allow-

ance has been made for the effect of the edges, but the plates

were assumed to be infinite.

Concentric Cylinders. LAPLACE'S equation can again be used

if it is assumed that there are no charges between the cylinders.

Moreover since we are dealing with cylinders, it is best to put
LAPLACE'S equation in cylindrical coordinates. Thus we have:

~dr*
+

r ~fo
~~

let y = -r-> then (1) becomes -j- H y = 0.

The solution of this equation is

-f*L =
A

=
A

y ^^
-. log r

"
M
I

dV A
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To determine the integration constants,

let V = Fi, r = r, (Fig. 100)

and V = F2 ,
r = r2.

Then, Vi = A log (n) + B,

and T
r

2
= A log (r 2) + 5.

.'. Fi - F 2
= A (log ri

-
log 7- 2)

= A log

and,

><*

FIG. 100.

The potential gradient or the intensity of the electrostatic

field is:

dV V, - V Z /1\ 47TW 2^

where Qi = charge per unit length of conductor, and Z = length

of conductor.

per centimeter length of conductor.

The potential gradient is the greatest at the surface of the inner

conductor, where it is:

1 7, - 7i

Graded insulation between the conductors.

In order that G may be constant at all points of the dielectric

it is evident that the specific inductive capacity must be the high-

est at the inner conductor, and be inversely proportional to the

distance from the inner conductor.
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Let the specific inductive capacity be expressed by the follow-

ing formula:

K =
~, where a is a constant.

With a charge Q on the inner conductor, the flux per centimeter

length is 4irQ, thus the force on unit charge is:

_ 2Q
K2irr

~
Kr

=- C^dr=- (^dr=- f*
J Kr J ar J a

dV 2QG = = -- = constant.
dr a

The same result could have been obtained directly from (2),

which, in the general case when Kl, becomes:

R 4,0 2Q
K2irr Kr

aK = ->
r

Substituting

R =

G)

20
R = - - = constant, Q.E.D.



CHAPTER XIX

CYLINDRICAL CONDUCTORS

Line Charge. Assume that the conductor which is perpendicu-
lar to the page is infinitely long and its diameter so small that

it may be considered as line, and let the charge per unit length

beQ.
The electric field is then represented by radial lines in planes

parallel to the page or, which is the same, at right angles to the

axis of the conductor.

The intensity of the field at a point P, Fig. 101, is obviously:

2Q

And the difference in potential between two points PI and P is:

- C^ dr
Jhi r

- 2Q [log n -
log fcj

= 2Q log (1)

FIG. 101.

Two equal but opposite line charges separated by a distance 2hi:

Let A and B (Fig. 102) be the locations of the line charges.
The difference in potential between midways between the

charges and P, due to the charge on A alone, is and has been

shown :

Vp
- V. = 2Q log (2)

The difference of potential between o andP due to the line charge

Q on B is obviously,

Vp
- V, = - 2Q log J-

1

(3)
TZ

218
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Thus the difference of potential between and P due to both

line charges is:

V9
- V =

(2Q log
-

log
)
= 2Q log .

(4)

Referring to equation (2) or (3), if P lies midway between A
and B, so that r\ = r 2

=
hi, then:

Vp
- V = 0,

thus as long as the charges are equal and opposite, the potential
at is zero, which would, of course, have been concluded without

proof.

V = 2Q log ^ (5)

where V is the potential of P due to the charges on both lines.

From (5), follows

T2 --= 2Q = a = a constant (6)

for all surfaces of potential V.

Equation (6) represents a circle, defined by the following relation :

~OA X OB = R 2
(7)

referring to Fig. 103, where is the center of the circle, A and

B Fig. 103) are called the inverse points, and O f

the center of

inversion.

FIG. 103. FIG. 104.

To prove that equation (6) represents a circle refer to Fig. 104.

4-

or.

O,
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which is the familiar equation of a circle having a radius of

o __
,"1-C 2

and its center at a point whose coordinates are:

"1-C 2 from A;
= 0,

/. OA X OB =

from B.

= R 2
;

(1
- C 2

)
2

thus, equations (6) and (7) are proved.

The ratio, > can be expressed by a simple equation involving

h, the distance of the center from the neutral plane, and the

radius, R.

FIG. 105.

Referring to Fig. 105.

R 2 = OA X OB =
(h
-

hi)(h +
hi =

or, i
= 2 - R 2

But triangles OPB and OPA are similar, since

OP2 = OA X OB;

- _T?_ Tl
,

'OP
~

OA'

r, = OP
=

R
=
B

ri

~
OA

~
h hi

~
a

(8)

(9)
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Substituting (8) in (9),

rs = R = R(h +
ri

~

h-
We can then determine the potential of a circle, or, which is

equivalent in this case, a cylinder, whose center is h cm. from

the neutral plane and whose radius is R, as

Similarly the potential at a circle around the negative charge

7 2
= - 2Q log R (12a)

/. V = V l
- 7 2 ,

that is, the potential difference between the two cylinders is:

h +
4Qlog R (13a)

For the sake of convenience, will be added other expressions for

Vi, Vz and V, involving hi, and R instead of h and R.

From (8), h 2 = R 2 + /U
2
,

which, substituted, gives

V l
= 2Q log R

- -2Qlog- R

and, = 4Qlog-
4- V hi

2 +

(126)

(136)

It is now evident how we can go from line charges to charges
on actual conductors. It has been proven that the equipotential

surfaces around the line charges are cylinders and hence if circular

cylinders be substituted for the circles, the distribution of the

field is not affected.

The capacity per centimeter length of two such metal cylinders

(that is, of the double conductor) is :

4 log
h +
= cm. (14)

R
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CW--- -f- -/=== farads (15)

9 X 10" 4 log

* ^~
or, Cm_/. per 1000 ft., of circuit (double conductor)

m-f. (16)

R
'where logic means the ordinary logarithm not the natural

logarithm h is half the distance between conductors, and K
the specific inductive capacity.

If E is the effective value of the alternating-current line

voltage, then the charging current per 1000 ft. of double con-

ductor is readily proven to be:

Cm.f .

The capacity to neutral is obtained directly from (lla) and is:

c= 1

n , h + Vh 2 - R 2

2 log
-

gr-

It is thus seen that the capacity to neutral is twice as great

as that between the lines.

This results, of course, in the same charging current as in the

E
first case, since in this case the voltage is -^- Thus the capacity

of 1000 ft. of one wire to neutral or ground is:

Cm-f.
= ~

j-- ,
= m-f. per 1000 ft. of transmission.

logio
-

~/j>~

Two Parallel Cylindrical Conductors of Different Diameters

but Equal and Opposite Charges. Since OA X OB = Ri 2 and

(FB X WA = R 2
2

,
we have

a(a + 2hi) = Ri 2
,
or a hi + \/h\ 2 + R\ 2

(1)

and -'- '

2hi) = Rz2
,
or = -hi + V/^F^T2

(2)

and
^

F,= -2Qlog^= -2Qlog|
2

(3)



CYLINDRICAL CONDUCTORS 223

Substituting (1) and (2) in (3),

Vi - V 2
= 2Q log

and

C = Q

(- hi '+ Vfti 2 + #i2
) (- fti + \//ii

1

2 log
RiR:

-
hi + Vfti2 + Ri2

) (
-

fti + Vfti 2 + #2 2
)

To obtain an expression in terms of h and R, instead of hi and

R, from Fig. 106 we have:

(3
= 2h - 2hi - a (4)

.'. /? + 2hi = 2h - a (5)

FIG. 106.

Substituting (4) and (5) in (2),

(2h
-

Solving (1) for 2hi and substituting it in (6),

a

(6)

or,

or,

(2h =

2ha 2 +

a)(2h a) R% ,

- #i 2 - 4/i
2
) a + 2hRS = 0,

- V(Ri2 - R*2 + 4/i)
2 - 16ft2

4ft

where the sign in front of the radical is minus not plus,

because a = when Ri = 0. Similarly,

4ft

.'. C =
2 log

_ __
(RiR*\
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2 log
4/i

2-
(Ri

2 + R 2
2
)
- V 16/i

4 -

which becomes:

C = -

4 log
h + \A2 - R 2

R

if R is substituted for both RI and R z ,
a result obtained before.

Construction of Equipotential Surfaces around a Cylindrical

Conductor, Charged to a Certain

Potential, V. Let the distance be-

tween the center of the conductor,

Fig. 107, and ground be h, and the

distance of the equivalent line charge

above ground be hi.

Since the ground is an equipotential

surface, it is evident that the problem
will in no way be affected, if a

second conductor with a charge Q
be placed equidistant below the

ground surface, and the equipotential

surfaces around A be considered as

due to a positive charge, Q at A, and

an equal but opposite ("image")

charge Q, at the inverse point A'.

Suppose that it is desired to draw the equipotential surface

through a point P, distant d from the ground.
The first step is to locate the equivalent line charge in the

original conductor of radius R and distance h from ground.
We have,

/ii
2 = h 2 - R 2

,

.". hi = Vh 2 - R2
(1)

from A, the

(2)

(3)

(4)

FIG. 107.

h 2 - R 2

To find the radius of a circle whose center is

location of the equivalent line charge, we have,

But from the figure we have,

hi + ttl
= fa + d

.*. i
= RI + d hi.
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Substituting (4) in (2),

(Ri + d- /ii) (2/i! + -to -
hi)

2d (5)

The potential of the circle of radius Ri, which goes through the

point, P, is:

Fl = 2Q log
^ = 2Q log

*'

But V, the potential of the conductor, is:

log

Knowing the radius from (5), and the center is Ri + d above

ground, the equipotential surface through P can be drawn, and

the potential of that surface is given by (6).

Potential of a Cylinder due to External Charges. In order

to determine the potential due to a number of charged cylindrical

conductors, it is necessary to calculate the potential of one

cylinder due to charges on other cylinders placed in the vicinity.

FIG. 108.

Consider a line charge Q at B in Fig. 108 and determine the

average potential due to Q on a non-conductive cylinder A. The

potential at P is, as has been shown :

V = 2Q log ->

but from the triangle OPB,

r2 = d 2 - C

2dr l cos
- -~ cos
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r = d V/c 2 + 1 2k cos <f>,

226

or,

where

Thus the average potential of A is

=
TT I

*TrjQ

log

rJo log (1

- cos

- cos

/"2r

where

2Q \oghi-2Q\ogd- I log (a-b cos

a = 1 + fc
2

and, b = 2k.

Evaluating the definite integral (see PIERCE'S "Table of

Integrals") we find that the last term is zero.

Thus, VA = 2Q(log h -
log d)

= 2Q log
-j

1

(D

Thus, the average potential is independent upon the radius of

the conductor.

But equation (l)has been shown previously to be the potential

at a point distant d from a line charge distant hi above ground.
Thus to determine the potential of a cylindrical conductor A,

due to a line charge at B distant d, the diameter of the conductor

does not enter as long as, with metallic conductors, the field can

be assumed not disturbed by the conductor.

FIG. 109.

Referring to Fig. 109,

The potential of A due to B is:

log
-
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The potential of A due to C is :

F 2
= 2Q 2 log |-

.'. V = Fi -}- F 2
= 2Qi log ^ + 2Q 2 log ^ai a2

Lines of Force between Parallel Cylinders. Let s-s (Fig.

110) be a part of a line of force, and N-N a line at right angles

to it. Thus the projection of G\ on the normal is Gi 1 = Gi cos a,

where G\ is the intensity at P due to the line charge at A . Simi-

larly the projection of (7 2 on the normal is G 2 cos 0. The sum
of the projections must be zero, since N-N is perpendicular

to the line of force.

cos a -f G 2 cos |8
= (1)

But

and

cos

cos a =

Similarly,

L ds

-2Q

TT
as

15
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Substituting in (1),

de l + de = o

or 0i + 6 2
= constant.

This equation represents a family of circles through A and B,

with center on the line 0-0.

Construction of Lines of Force. Referring to Fig. Ill, as P
is in the center line,

n= G l cos

or,

FIG. 111.

Knowing the values of x and the fixed points, A and B, the

lines of force, being circles, can be readily constructed.

Problem. Draw equipotential surfaces around a line charge

placed 10 cm. above the neutral plane, when the charge is 1

electro-static unit per centimeter of conductor.

Find the radius of the conductor containing the line charge

whose potential is 2000 volts. Draw surfaces corresponding

to 400, 800, 1200 and 1600 volts.

Draw lines of force whose intensities at the neutral plane are

120, 110, 100, 90 and 80 volts per centimeter.

Solutions.

First. Radius of conductor: Since 2000 volts corresponds to

6.67 electro-static units, we have:

6.67 = 2Q log
hi + Vhi 2 + R 2

. 10 + \XI66~+ fl
2

- = 2 log
-

R R

.. 10 + VlOO +^ n^Q/ix/QQ 1 AA^
. . logio ^ = 0.434 X 3.3 = 1.445.

R

.
10 + V 100 + R 2

R
= 28.05 .*. R = 0.72 cm.

By a similar process the radii corresponding to 1600, 1200, 800

and 400 volts are found.
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These being calculated, the corresponding values of A, the

distances from the neutral plane, are found by the relation

h = VV + R 2
-

Second. To find the intersection between the neutral plane
and the line of force of intensity 100 volts per centimeter or 0.333

electro-static units, we have:

- 1 = 10
).333 X 10

-1 = 10X0.447 = 4.47 cm.

Capacity of Two Cylindrical Conductors, when the Effect of

the Proximity of the Earth is Considered. Consider, for the

sake of simplicity, the case of two cylinders of equal radii, and

charges Q and Qi respectively.

FIG. 112.

Referring to Fig. 112, it has been shown that the potential

of A due to its own charge, Q, and the charge on its image, A' is:

2Qlog R (1)

It has also been shown that the potential of A due to the Qi, on

conductor B is:

V, = 2Q 1 log^ (2)

Similarly, the potential of A due to the image of B is :

V, = 2Qi log
-1

(3)
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Thus the total effect of conductor B on A is:

V z + V, = 2Q l log
~

(4)

And the resultant potential of A is:

"

VA =- V l + F 2 + V 3
= 2Q log

Similarly,

^-^log^f^-H*]** (6)

Special Cases. Two wires in parallel at same distance from

ground.

Thus h = H, Q = QL .'. VA = FB == 7.

Thus the capacity per centimeter of each wire is:

Q l

2 log
[I" R J

and the capacity of the two wires taken together, is:

c = -
-]> > + -i/M^fiT (8)

\d h + vft2 # 2

108 U' ~R~ "J
In the case of a transmission line, ft is large compared with

R, and df

is approximately 2ft.

1 1

It has been shown that the capacity of a single wire to neutral

is:

approximately. (10)

2 log
" ' - " " - ' 2/i

JLl/ Xl/

Thus the proximity of the other wire has reduced the capacity

of each wire, so that the combined capacity of the two in parallel

is usually not more than 25 to 30 per cent, greater than that of

a single wire.
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As an instance, let R = 0.5 cm., h = 1,000 cm., and d = 20 cm.

2000

(log
-- + log

= 0.0388 cm. per centimeter;

.*. 2Ci = 0.0776 cm. per centimeter

and the capacity of one single wire alone is

C
"""2000

= 0-0603 cm. per centimeter.

21
six<r

The capacity of the double wire is thus only 28.7 per cent.

greater than that of a single wire.

Second. Assume now that wire A' forms the return for A, so

that the charge on A is Q and that on B is Q.

From equation (5),

2Q log
- - -

approximately;

and rt
~ . (d' R

VB = 2Q log approximately.

- V =

If the effect of the ground has been neglected, then, as has been

shown, the capacity between the two wires would have been

approximately :

c = "

Comparing equations (11) and (12), it is evident that since -

is always smaller, but usually only very little smaller than

unity, C| is slightly greater than C.

The proximity of the ground has thus slightly increased the

capacity between wires. In transmission lines, the increase

amounts usually to less than 1 or 2 per cent.



CHAPTER XX

MUTUAL AND SELF-INDUCTION OF ELECTRO-STATIC
CHARGES OR FLUXES MAXWELL'S COEFFICIENTS

If among a number of conductors say No. 1, No. 2, etc., a

particular one, say No. 1, is given a charge qi, so that its potential

is Vi, and if all other conductors are connected tpo ground, that

is, are at zero potential, then,

where Ki.\ (with its two indices) is called the coefficient of

self-induction of electrostatic charge, and is, as seen, the capacity

of No. 1 due to its own charge q\, when all other conductors are

at zero potential.

Obviously while the potential of the other conductors is zero,

each has a certain part of the induced negative charge corre-

sponding to qi on No. 1.

The charge on No. 2, for instance, is of course proportional to

the potential of No. 1 and is written:

Similarly,

#3
= Ka.iVi, <?4

= Kt.iVi t
etc.

KZ.IJ KS.I, etc., are called the coefficients of mutual induction.

Since Vi is positive, #2 must be negative, therefore, K2 .i, or in

general, K with two different indices, is always negative, while K
with same indices is positive.

If instead of grounding all of the conductors except No. 1, we

now ground all but No. 2, and this is given a potential 2, we get,

by a similar reasoning,

q*
= K2.iVz , qz

= #3.2^2, #4
= #4.2^2, and, qi

= K^Vz.
Superimposing these conditions, it is readily concluded, that,

if at any time the potential of No. 1 is Vi, that of No. 2 is F2 ,

etc.

232
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The following relation obtains, if Qi, Q 2 , Qs, etc., are the total

charges on No. 1, No. 2, etc.:

Qi =

A little consideration will show that

KLZ =
/V2.i, etc.

The applications of these relations will be

illustrated in the case of the two similar

overhead wires (Fig. 113). The immediate

problem being to determine the values of

KI.H Kz.2 and Ki.%.

On account of symmetry, KI.I = Kz.z y

thus we have really only two unknown

quantities, namely, KI.I and KI.Z.

To determine them, give two equal

charges +Q to the conductors, then Vi F2 .

(1)

20 x?

,,

From (1), & =
i + K^V, =

= = C =

+

d' 2h\

t

I 2
log (d

'

R
[See (9) in the previous article.]

Now give one conductor a charge +Q and the other a charge

Q, so that the potential of No. 1 is Vi and that of No. 2 is

-Fi, then from (1), Qi = Vi (K^ - K^),

= c f -

2 log '

(3)

[See (11) in the previous article.]

From these equations it follows that :

lo (}
KI.I = - 5

'

'd 2h\ id' 2h\

^d' R/ \d R/

log
"

r - r
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and, , 2/i

#1.1
g R C + C'

#1.2 , d' C - C'

Numerical application, Fig. 113:

Let R = 0.5 cm.

h = 1000 cm.

d = 20 cm.

/. d' = 2000 cm.

.'

7^
= 4000,

?
= 100

'

and
>

I =, o.oi.

'* C =
2 log 400,000

= 0< 388
'

C' = s-^ -777
= 0.1352.

2 log 40

.'. KL1 = 0.087,

Ki . 2
= -

0.0482,

f^-
1 = - 1.806.A 1.2

Discussion. To show the application of these coefficients, the

following problems will be considered.

A. Compare the capacities between a wire and ground,

(a) when the wire is alone; (b) when an adjacent wire is grounded.
B. Compare the charging currents for the same applied voltage

between the two conductors when the two wires are insulated,

and when one is grounded. In the latter case, give the relative

proportions of the current in the grounded wire and in the ground
itself.

The numerical case will be: R = 0.5 cm.;
h = 1000cm.;

and, d = 20 cm.

The problems will be best solved by the use of the MAXWELL'S

equations, viz.

Qi = #i.iFi + Kt.iVt + Ki. t V*,

Q2 = #J.lFi + #2. 2F2 + #2.3^3,

and, Q 3
= KZ . 1V 1 +
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In these equations, index 1 refers to conductor No. 1, index

2 to No. 2, and index 3 to the ground.

Since the potential of No. 3 is zero and since we assume two

similar and similarly placed conductors,

V3
= 0, KM = #2.2 and K lft

= K,. 3 .

/. Qi = K1 . 1V1 + #!. 2F2 (7)

Q* = #i. 2F! + #i.iF2 (8)

and Q 3
= #i. 3Fi + K^V* (9)

Case A. (a) It has been shown that with a single conductor

suspended above ground, the capacity is:

C = --^r = 0.0601 cm. per cm. (10)
r i

""'

21og
fl

Thus if V is its potential the charging current is:

ri = 0.0601 ^
(6) since No. 2 is grounded, T 2

= 0.

Thus from (7), Qi = ^i.iFi .'. capacity = KI.I = 0.087, and

ri = 0.087^
The capacity of wire No. 1 is increased 45 per cent, by the

proximity of the grounded adjacent wire No. 2.

Case B. Under normal conditions,

Qz = - Qi and KI.I = K 2 .z,

.'. Qi = tfi.iFi + X!. 2F 2 ,

Thus the capacity between the conductors is:

C = g"
~ g" = 0.0676.

i

If FI F 2
= F, and if z'i is the current in conductor No. 1,

then

dV dV dV
i l
= C^ = y2 (#!.!

-
#,.,) ^-

=
0.0676^-
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When No. 2 is grounded, Vz = 0.

.'. Qi = Ki.iVi = Ki.iV, thus the capacity, C" =

= 1.285.
*1 JV.1.1

~ A- 1.2

The charging current in conductor No. 1 is increased 28.5

per cent, by the proximity of the adjacent grounded wire.

The charge in conductor No. 2 is:

Qz = K 2.iVi -f #2.2 V z
= Ki. 2V, since 7 2

= 0.

But
Xi.t = - 0.135 + 0.087 = -- 0.048

Thus
^2= -0.048f

The current carried in the ground is obviously

-
2 3
= (0.087

-
0.048) -^

.: ,-,-- 0.039

If the current in No. 1 after grounding No. 2, is taken as 1 amp.,

then wire No. 1 carries 1 amp., No. 2, 0.554 amp. and the

ground, 0.446 amp.
Problem. Assume three similar horizontal conductors of

R =
0.5, h = 1000 and d = 20.

Give the relative values of the charging current between No. 1

and No. 3 if No. 2 is indulated, and if it is grounded. Also give

the charging current if No. 2 is removed entirely. Consider

the current in the last case to be unity.



CHAPTER XXI

TWO-CONDUCTOR CABLE

Since the conductors as well as the lead covering are of metal,
the surfaces of each are equipotential surfaces. In order to

simplify the calculations it is desirable to substitute for the sheath

and each conductor a system of conductors, i.e., the conductor,
and its image, which will give the same distribution of potential.

Consider first the system of Fig. 114 consisting of A, its image
A' and the lead sheath. It is necessary to determine the position
of the line charges at distance hi from the neutral plane, so that

the conductor A and the sheath are equipotential surfaces.

From what has been shown previously, it is evident that the

following relations exist:

and
hi

2 = h 2 r 2
,
when considering the conductor;

hi
2 =

(h + a)
2

r*i
2

,
when considering the sheath.

i
2 - r 2 - a 2

Having determined h from (1),

hi is determined, as hi = \/h 2 r2

(1)

(2)

FIG. 114.

Referring to Fig. 114, it is evident that the potential of A is

due to its own charge and the charge on its image, and the charges

on B and its image.
TVf)

It is also recollected that the latter potential is: 2Q log =
mp

237
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if we neglect the shortening of the lines of force from m to p in

going through conductor B, where np is the distance between the

line charge in B and the center of A, and mp is the distance be-

tween the line charge in B' and the center of A.

.'. np 2a -f- h hi,

and mp = 2a -f- h + hi.

21 r' + VW-r'^a + h-h!
to neutral (3)

i" r* za -f AI Aii \

Approximation. Frequently, in fact almost always, the follow-

ing approximation can be made :

h = hi.

(4)

2 log
- "'

r a

If furthermore r2
is small compared with ri

2 a 2
,
and is small

compared with A 2
, then,

h -4- A//? 2 r2 2h ri
2 a 2

-
/I .

2a r r ar

thus, c =
_^

__
^
the capac jty to neutral (5)

2 log (

1

,

\r r^ +
Thus, the capacity between the two conductors is approximately

C "
/aa'r..

- (6)

4 log
(7-

"

^rf

or, in microfarads per 1000 ft. of cable,

(7)
,

log l

To determine the capacity of the two conductors in parallel

against the sheath, the two conductors are given positive charges,

+Q, and hence the charges on the images are Q.
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The potential of A due to its own charge and the charge on

its image is:

V'A - 2Q log *X^Ei
The potential of A due to the charges on B and its image is:

or, using the same approximations as before,

(9)

The potential of the sheath, if insulated, due to the charges

in A and its image is:

V. = 2Q log
*'

Similarly, due to B and its image is :

y". = 2Qlog^-
r\

.-. F. = 4Q log (10)
Tl

Using the same approximations as before,

V8
=- 4Q log ^ (11)

Thus the potential difference between the sheath and either

of the conductors (when they are connected in parallel) is

approximately :

V -VA -A. = 2Qlog-~- - 2Qlog

(12)

Thus the total capacity between the two conductors in parallel

and the sheath is:

log
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In connection with this it may be of interest to determine the

capacity between the conductor and the sheath in a single con-

ductor, eccentric cable, Fig. 115.

The potential of A due to its own charge and the charge on

its image is:

n + VV + r2

VA = 2Qlog

FIG. 115.

The potential of the sheath due to the charge on A and its

image is:

78
= 2Q log

hi + Vhi2 +

.'. C = II
(13)

Denoting the conductor A with 1, B with 2 and the sheath

with 3, the values of KI.I, KI.% and KI. S ,
are respectively identical

with K2 .2, K 2 .i and ^2.3. To determine them we have

and, Q3
= KZ . 1V 1 + ^3. 272 + #3 . 373 .

If we are concerned with the distribution of currents in the

conductors and lead sheath, it is convenient to consider the sheath

grounded, that is, 73
= 0.

and,
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If then FI = F 2
= F, that is, if both conductors are given

the same positive charge, then

Qi V(# 1;1 + #,. 2) /. C = #1.1 + #1.2;

but C has been determined in (12) which gives,

(14)

If the two conductors have potentials FI and FI, respectively,

then:

Qi = #1.1^ + # 1>2F 2
= F^L! - #i. 2),

.'. C = #1.1 ~ #1.2-

This capacity has been given in (5), which is:

1
C =

2a

r!
2 + a

From equations (14) and (15) the values of KI.\ and KI.Z are

readily obtained.

Consider finally that when the two conductors are in parallel,

that is, at the same potential and the charging current returns

over the grounded sheath, we have,

Qi + Q 2 + Q 3
=

0, and Vi = F 2
= V.

.'. (Ki.i + Ki.2 + KM + #2.2 + #3.1 + #3.2) F =
0,

or, 2#!.! + 2Ki. 2 + 2#!. 3
= 0.

.*. #1.3 = -
(#1.1 + #1.2) (16)

Problems. Find the charging current under the conditions

shown in Figs. 116-120, when r t
= 4r; a = 2r; .'. h = 2.75r;

hi = 2.55r; KI.I + #1.2 =
0.4; #1.1 - KI.I = 0.57 .'. #1.1 =

0.485; #1.2 = 0.085 and #1.3 = 0.4 (using no approximations).

(a) (Fig. 116.) F! = F2 ,
F3

= 0.

Q2
= Fi(#i. 2 -f- #2.2).

.'. ii (#1.1 + #1.2)
-jj,

dV
and iz = (#1.1 + #1.2)

~ 9
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the total charging current is

1 "*" l '^
~dt

'
'

dt'

(6) (Fig. 117.) 'i.iVi + Xi. 2F 2 ,

.-.<h -
i.i
- K 1.2

dV
: '

(c) (Fig. 118.) 7 2
= -

Fi, F = 27!.

o

FIG. 116. FIG. 117.

S

FIG. 118.

FIG. 119.

(d) (Fig. 119.) F 2
= 0.

FIG. 120.

= 0.485 .

dV
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(e) (Fig. 120.) Charging current in the eccentric cable: Since

the shortening of the lines of force in going through a conductor

is neglected, when the formulas were developed; so the solution

of case (6) is a solution of case (e),

dV
0.47

~df

Three-phase Cable. (Fig. 121.) -The location of the inverse

points is determined as in the case of the two-conductor cable.

Thus h 2 = h\
2 + r 2

,
when considering A and A'';

FIG. 121.

and (h -f- a)
2 = hi

2 + ^i
2
,
when considering the sheath.

'

h - r '

~2a~ -'

and At =

Thus /ii is known.

Let, at a given instant, the charges on A, B and C be QA ,

and Qc respectively.

The potential of A due to the charges on A and A' is:

V = 2QA log
-

16

(1)
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The potential of A due to the charges on B and B' is :

V = 2QB log
y

The potential of A due to the charges on C and C" is:

V = 2Qc \0g ~-

\J

/?t -4- -V/) 2 I r2 ~

.'. VA = 2QA log
- ^ + 2(QB + <?.) log

?
(2)

x is the distance between the inverse point of
' and the

center of A, and ?/ is the distance between the inverse point of

B and the center of A.

With a very slight approximation, the distance y may be

counted between the respective centers, thus,

y = aV3 (3)

and,

x * =
(h + hi + a)

2 + a 2 - 2a(h + fci + a) cos 120 (4)

leth + hi + a = D then,

x 2 = D2 + a 2 + aZ) (5)

It has been shown previously, that since the sheath is an equi-

potential surface,

(a + a)D = n 2 = (a + h - /ii) D = n 2
,

.'. D = -
T-Y^- (6)a + h hi

Approximations based on the usual conditions, that h is very

nearly the same as hi and r2 is small compared with h 2
.

Referring to equation (2),

hi + Vhi2 + r2 2/i D - a

r r r

2

(7)

Referring to (6), n _ V .U ~
a + h-h," a

a

Referring to (3), y = aV3 (10)

The potential of A due to charges on A and A' is = 2QA log
-

The potential of B due to charges on A and A' is = 2QA log -/=
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The potential of C due to charges on A and A' is = 2QA log
-

The potential of A due to charges on B and B' is = 2QB log

D a
The potential of 5 due to charges on B and 5' is = 2QB log

-

/v

The potential of C due to charges on B and B' is = 2Q# log

The potential of A due to charges on C and C' is = 2QC log
-

-r---

The potential of B due to charges on C and C' is = 2QC log

The potential of C due to charges on C and C' is = 2QC log
----

Since I,VA + 2FB + 27C
= in a three-phase system, we get,

by adding all the equations given above,

2 log
~ =

or, QA +QB + Qc =
(11)

which really needed no proof from our knowledge of the char-

acteristics of the three-phase system.
From (11) follows that QB + Qc = - QA -

/. VA = 2QA log
^ - 2QA log^

(12)

.', the capacity of A to ground or neutral is:

2 log
ryVi4 + a4 + r!

2 a2
/

or in microfarads per 1000 ft. of cable, to neutral,

0.00736

(13)

(14)

+ a4 + r a2
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In order to determine MAXWELL'S coefficients, by symmetry,
we have:

and, KI.Q = K2.Q
= K3 .

.

where index o represents the sheath. It is necessary to calculate

the capacity between all three conductors and the sheath.

Assume thus that the three conductors are given the same

positive charge Q, and that the images therefore have charges

Q. The potential of A due to the three charges is evidently

VA , 2Q lo, + 2Q log + 20 1.8

The potential of the sheath is due to the charges in the three

conductors and since the sheath is symmetrical with reference

to each conductor and its image, we get:

or, from the illustration, neglecting a,

Fo-3X2Qlog^ = 2

or since aD = rf,

log (16)

.'. C = -
i, between a conductor and the sheath.

ri
6 - a 6 '

21og 377W
It is now possible to determine the values of Ki m i, K^ and

KI.Q. Assume that the sheath is grounded, that is, V = 0.

/. Qi = K lmlVi + K^V* + K^V* = K^Vt + ^i. 2(F2 + V,).

Since Vi + 72 + F3
=

0, F2 + F3
= -- yt .
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1

It follows then from (13) that,

#1.1 #1 2
= -

2 log
\/3 (r!

2 - a 2
)

247

(19)

+ a 4 + ri
2 a 2

/

Considering next the case when all three conductors have
the same charge, then:

Qi = #i.i7i + #i. 272 + #i. 878
=

(#1.1 + #1.2 + #1.3) 7i =

From equation (18) it follows that,

Kl Q if
1.1 -f- ^^-1.2

-
1

(6
n 6

'i^r

(20)

From (19) and (20) KI.I and Ki 2 can be solved.

To determine K\ m Q, assume that not only the three conductors

but also the sheath is given a potential V, in which case the

charge is confined to the sheath only. Then:

=
(#!.! + Xi.2 + tfi.3 + KwW, .' ^1.1 + 2X 1>2 + ^1.0 =

0;
= (X 2.i + X2 . 2 + K 2 . 3 + X 2 . ) 7, .'. #1.1 + 2X 1 . 2 + XLO =

0;
= (X8.i + #3.2 + K3 . 3 + X 8.o)7, /. #1.1 + 2#!. 2 + Xi. =

0;

any one of these equations gives:

#1.0 = -
(#1.1 + 2Xi. 2) (21)

Thus XI.Q is determined.

Problem. Verify the equations of the charging current under

the conditions given below (Figs. 122-130) and apply the follow-

ing numerical values:

TI =
4r, a = 2r.

(Fig. 122) i=

(Fig. 123) i = 2

FIG. 123.

; ^ -
0<826

-
Xi.i / dt dt
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(Fig. 124) i = 3(/M.i + 2/M.j)
^
= 0.903

Ki.i
2 - #i.2

2 dV
(Fig. 125) t

dt

M* dV
dt

. _ ZKi.z*
to ~Tr~ A. 1.1

-IV 1.1

Si =

FIG. 128.

(Fig. 126) ti =

FIG. 129.

K

dV
l* = K

~di

i K dV
13 ~ Kl

-*~di

=
l '

St =
dt

(Fig. 127) i = 2(i.i + K lm
-

~K" K" A

(Fig. 12J

(Fig. 129) i

dV

i =

0.608

= - 0.418

= 0.

dV
dt'

FIG. 127.

v v
FIG. 130.

= 0.

= 1.488
dV
dt'

~dt'

(Fig. 130) Three-phase: z = (K lfl
- K^) - = 0.744



CHAPTER XXII

THE ELECTROSTATIC EFFECT OF A THREE-PHASE
LINE ON AN ADJACENT WIRE OR WIRES

The potential of the wire W, Fig. 131, due to A, B, and C
and their images is obviously:

V = 2QA log g + 2QB g + 2QC log g

2QBb, + 2Qcd (1)

where . r 2

01 = log >

61 = log p
and, , r6

Cl = log
-

If C is the average capacity of the three lines against neutral.

then: QA =
Ce\, QB = Cez ,

and Qc = Ces ,
where e\ t

e 2 and e s

are the instantaneous values of the Y voltages.

e26i -f e 8ci)

2CE[ai sin 6> + bi sin (^ + 120) + d sin (^ + 240)].

- 60 + b^ - cO + Ci(Cl
-

ai) (2)

where 7 is the maximum value of the Y voltage, that is, of the

voltage to neutral.

To determine the average capacity of the three wires: The

potential of A, Fig. 132, due to its own and the other charges is

evidently,

VA = 2QA log ^ + 2QB log g + 2QC log
||-

If the average value of R 2 , R* and RQ is #!, and the average
249
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values of R 3 and R$ is D, then the potential of A can be reason-

ably well expressed as:

VA = 2QA log y + 2QB log ^ + 2QC log
~

(3)WA log
-1 + 2 (Q* + Qc ) log ^

7
;

r = Radius of

Conductor

FIG. 131.

But QB + Qc = -QA ,
thus

7A = 2QA log (~ j^
=

1

FIG. 132.

/. C =

where D is the average distance between the conductors.

E
'.' Vmax. =

T?\/<ll(Q>l 61) + 61(61 Ci) + Ci(Ci
-

(4)

(5)

Problem. Prove that the maximum value of the induced

potential on a telegraph wire placed under a three-phase trans-

mission line of 100,000 volts (effective) between the lines is
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approximately 3100 volts, when H = average height of trans-

mission wires above ground = 1500 cm., D = 300 cm., and

r = 0.5 cm. The telegraph wire is 800 cm. above the ground,
and 50 cm. to the left of the center line of the pole.

It is seen that when the three-phase line is operating under

normal conditions, the voltage induced in an adjacent wire is

only a few per cent., in this case only 3 per cent, of the line

voltage. If, however, one of the three-phase lines is grounded,
so that the system is unbalanced electrostatically, then very
considerable voltage is induced as will be shown.

If ei = E sin e,

e 2
= E sin (e + 120),

and, 63
= E sin (0 + 240)

are the Y voltages or phase voltages,

then it is well known that the line voltages are :

V 1
- F3

= EV3 sin (6 + 30),

and, V2
- F3

= EV3 sin (e + 90).

Therefore, if phase No. 3 is grounded or at zero potential,

then we have the relation between the line voltage as shown in

Fig. 133. The line voltages differ 60 in time phase, when one

phase is grounded.
For the sake of simplicity, let :

Vi - 73
= V3 sin e = Va ;

'

V 2
- V, = EV3 sin (6 + 60) = 76 ;

73
= = Vc .

or, Va = #o sin 0;

where E G
= E\/3>

Vb
= E sin (6 + 60) ; FIG. 133.

Using MAXWELL'S equation, applying index e for ground,

and remembering that Vc
= Ve

=
0, we have,

Qa = Ki.iVa 4~ Ki.zVb,

Qb
= # 2.iF + K*. 2Vb ,

Qc = #3.lF + #3. 2F6 ,

and,

Q. = K..iVa + Ke . 2Vb .
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But KI.I X2 .2, Xi.2 = Xi.s and Ke .i
= Xe . 2 approximately.

*

Qa Xi.iFa H- Ki.zVb,

Qb
= Xi. s7. + Xx.iFi,

Qc
= K^Va + Xi. 2F6 ,

and, Qe
= Xi.,7. + Xi. 6F6 .

'. Qa = Xi.i# sin + #1.2 EQ sin (0 + 60)

Xi.i + 0.6X1.2) sin + - # Xi. 2 cos (6)

sin 6> + Xi.i ^ sin (0 + 60) = #0(^1.2 + 0.5Xi.i)

Sin + --KLI cos (7)

Qc = Xi. 2(F + Vb) = E Ki 2 (1.5 sin 6 H pr cos 6) (8)
t

and, Qe
= Ki. e(Va + Vb) = E Ki. e (1.5 sin d +

-g
cos 0) (9)

Assuming for the present that the values of the MAXWELL'S
coefficients are known, it is then possible to obtain, in a manner
similar to that used for the balanced system, the potential of

the telegraph wire.

While in this case we deal with four charges, the effect of the

charge of the earth is not felt at the telegraph wire, because

the earth may be considered as an infinite cylinder, enclosing

all wires; thus the effect of its charge on any point inside it, re-

sults in no potential. The potential of the wire is now readily

obtained from equation (1). The charging current in the three

wires and the earth is found from equations (6) to (9), remem-

bering that = cot.

.
. dQa r \/3 . I
^a = ~TT = L(\CO\ (/Vi i H~ U.O/Vi 2) COS COl ~ Al 2 Sin 001 ,

at L 2 J

r \/3 i
4 = EQCO\ (Xi.2 + O.SXi.i) cos cot ~ XLI sin cot ',

ie = E OJ\ Xi.2 (1.5 COS Cot ^~ SHI CoZ
',

le
= E Q CO\ Ki. e (1.5 COS Cot ^~ Sm W

j

It remains now to determine the values of the MAXWELL'S
coefficients.

Give each of the three conductors the same charge Q, and

assume average values of the distance between the conductor

(10)
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and ground as H and the distance between conductors as D.

Then we have approximately the following relation:

OI7 9T/ 977
V. = 2Q log + 2Q log^ + 2Q log ^ = 2Q log

' ' V

We have also,

.'. #1.1 + 2# lt2
- - -^ (11)

2 log Wr
Give now three-phase charges to the three conductors, then,

QA = ^l.l^a + #1.2^6 + K-l-zVc = Ki.iVa ~ #1.2^6 =
Va (#!.!

- #x. 2).

Thus #1.1 #1.2 is the capacity of one of the three lines

against the neutral, which has been shown to be:

1

. . #1.1 #1.2
~

T^- (12)

21ogf
From (11) and (12), the numerical values of Kn and #i. 2

can be determined, as well as #1.3, so that all the coefficients are

known.

It may be of interest to consider the problem from another

point of view.

By grounding one conductor, while the potential difference

between the conductors is not changed, the potential of the

system of three conductors has been changed.
It should be possible, therefore, to calculate the charge Q ,

which should be given to each conductor, in order that the

new potential distribution shall exist. The charge should ob-

viously be such that the potential of C shall be reduced to zero.

Before grounding, the potential was +VC ,
and hence Q Q should

be such as to give C a potential of Vc .

:. -Vc
= 2Q log y

2

+ 2Q log
|^
+ 2Q log j*
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SH3

= 2Q log -j, using the approximations.

Since Vc
= E sin (cot + 240), the maximum value of the

TjJ

charge is Q = -

The charges on the conductor A after grounding the conductor

C are therefore,

QA + Qo = E sin cot

Similar expressions are of course readily written for the

charges on the conductors B and C.

The potential of the telegraph line after grounding is thus,

V = 2 [(QA + Q )ai + (QB + Qo)6i + (Qc + Qo)CJ.

By applying these equations to the numerical example given

previously, it will be found that the induced potential of the

telegraph line will be 25 per cent, of the phase voltage or 14.5

per cent, of the line voltage. In the case of an insulated balanced

system, it was found about 5 per cent, of the phase voltage or

about 3 per cent, of the line voltage.

The Effects of a Grounded Horizontal Wire on the Distribution

of Electricity in the Atmosphere. It has been observed that

frequently considerable potential difference exists between

successive layers of the atmosphere. A potential gradient of

600 volts per m., or roughly 200 volts per ft., is not unusual.

It is of interest then to see how much the potential at a given

height may be reduced by a grounded overhead line such as

is used in high-potential transmission systems.

Assume that the gradient, not far from the earth, is 2 electro-

static units per m. (600 volts per m.). It is readily seen that

the distribution can be quite closely represented by the effect of

a charged cylindrical conductor, say 300 m. or more above the

surface of the earth. The conductor then represents whatever

cause there was for the potential gradient.

The charge per centimeter length of the fictitious conductor

is determined by the fact that the potential at a certain height
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is known. Thus according to the assumption, the potential at

15 m. above the ground is 30 electro-static units. Thus referring

to Fig. 134,
01 C

V = 2Q log = 30 .'. Q Q
= 155.

Suppose now that it is desired to find the change in a grounded
overhead wire of radius r = 0.5 cm. placed 15 m. above ground.

Since the potential of A, Fig. 135, is zero, it is evident that

the potential of A due to its own charge and the charge on its

image plus the potential of A due to the charge on the fictitious

conductor and its image must be zero.

nr. TT i TL n~L

Thus 2Q log
- : + 2Q log JT~ = = 2Q log

- + 30.

.'. Q = -
30 = - 1.72 E.S.U.

T P Abs

FIG. 134. FIG. 135. FIG. 136.

The potential at a point P, Fig. 136, distant hi, from the

ground is then:

V = 2Q log -TT + 2Q log ,
but 2Q log -^ is, according to

KI TI III

the first assumption of uniform gradient, 0.02/ii (hi being given

in centimeters).

Thus the potential of P is :

VP
= 0.02/i!

- 3.44 log
-

(1)

The effect of two ground wires A and B on the potential at

a point P in the vicinity of the wires :
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The potential of A or B due to the fictitious and the two actual

conductors and their images must be zero.

The potential of A, Fig. 137, is:

2Q log |4i + 2<3 loS y + 2Q log ^
= =

or 0.02ft + 2Q log y ^
=

0, /. Q =
fj^ (2)

If the wires are 2 m. apart and 15 m. from ground then r 4
=

3010 cm. and r 3
= 200 cm.

:. Q = -1.31.

T

The potential at a point P, Fig. 138, is then:

Vp
= 0.02^! - 2.63 log

T-~
(3)

It will be seen that by means of a single ground wire above a

transmission line the potential is reduced by some 30 per cent.,

and when two ground wires are used by some 40 to 50 per cent.,

and that there is little gain in using ground wires of large diameter.



CHAPTER XXIII

THE CURL OF A VECTOR

In vector representation, the curl of a vector is represented

by the cross-product of the differential operator V and the

vector. It is:

V X R = curl R =

dZ dY

i j k

dx dy dz

X Y Z

dX
dx)

/dY
_ dX\~

dill\dx dy
iCx + jCy + kC,.

The curl of a vector is thus a vector and its components along
the axes are Cx ,

Cv ,
and Cz .

It is important to analyze the meaning of this new vector.

dy
c

^Z,

dz

FIG. 139.

Consider a small rectangle in the y-z plane, Fig. 139. Let

the component of R along the ^/-axis be Y and let it change to

FI, as we move along the z-axis from a to b.

dz
dz

Similarly,

257
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The line integral around the rectangle is then :

dL = Ydy + Zidz - Y^dy - Zdz

idZ dY\ , ,=
I
- -

) dydz.
\dy dz j

Extending this to all three planes, we get: the line integral

around dS,

-}dzdx +
dz dx

dy

= C cos adS, where a is the angle between curl C and the

normal to the surface dS.

The z-component of the curl Cx is then seen to be the limit

of the ratio between the line integral of the vector around a small

element in the y-z plane and the area of the element. Since it

is the ^-component, it is, of course, at right angle to the surface,

dydz.

In general,

r. i r AL dL
Curl = lim -TO = -TO,AS dS

where surface dS is normal to the vector C.

Stokes's Theorem. STOKES'S theorem states that the line

integral of a vector R around any closed contour is equal to the

surface integral of the curl of the vector over the surface or cap
enclosed by the contour.

The theorem holds always when transforming from the line

integral to the surface integral, but applies in the transformation

from the surface to the line integral only when -r + h

-T =
0, that is, only when the curl has no divergence.

Depending upon the system of notations used, it is written

in either of the following ways:
In vector notation, it is:

fR dr = ff (V X R)
'

NdS,

which is to be read: The line integral of the electric field in-

tensity along the circuit is equal to the surface integral of the

curl of the vector over any surface (any cap) bounded by the

circuit, where N is the unit, outward drawn normal to dS.
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Obviously, the theorem may also be written:

fRds cos (Rds) = f(Xdx + Ydy + Zdz)

dZ dY\ dX dZ BY d

where I, m and n are defined below.

The theorem can best be proven by calculus of variations,

but may be understood without mathematics by the following

reasoning. Refer to Fig. 140, which shows the

cap divided up into a number of small elements.

It is evident that the sum of the line integrals

around all these small areas resolves itself into the

line integral around the contour, 'since all lines,

except the contour, are traced in two equal and

opposite directions.

Thus if dL is the line integral around one of the small areas,

then

2dL = fR cos (Rds)dS.

But it has been shown, that

fdZ dY\. dX dZ. /BY
dL = " \.-

dx)
dzdx

cos adS, where a is the angle between the curl C and the normal

to the surface dS. (2)

.*. dL = C cos adS'

but dydz =
IdS, where I = cos (Nx)'}

dzdx = mdS, where m = cos (Ny) ;

dxdy = ndS
t
where n = cos (Nz);

by substituting these values in (2), equation (1) is proved.

17



CHAPTER XXIV

THE EQUATION OF THE ELECTROMOTIVE FORCE

It has been shown that the potential difference between two

points in an electric field is the line integral.

V = f(Xdx + Ydy + Zdz) = fGds (1)

where X, Y and Z are the components of the field intensities or

gradient along the x, y and z axes and V is expressed in electro-

static units.

It will be shown later that the conversion factor between the

electro-static units and electromagnetic units of potential is the

velocity of light, v = 3 X 10 10 cm. per sec.

The e.m.f. in the electromagnetic system of units is v times

that in the electro-static system of units. Equation (1) should

be written:

V = vf(Xdx -f- Ydy + Zdz) in electromagnetic units (2)

Experiments have also shown that the e.m.f. in electromagnetic
units in a circuit is equal and opposite to the product of the turns

enclosing the magnetic flux and the rate of change of the flux.

If L, M and N are the components along the x, y and z axes

of the magnetic field intensity, and if
I, m and n are the direction

cosines of the normal to the surface dS, and if /z is the permea-
bility then the flux is:

= ffpQL + mM + nN)dS = ffpH - dS

Then the e.m.f. induced per turn is:

V = - ~ = -
^ [ff(lL + mM + nN)dS] (3)

combining (2) and (3), and assuming M constant,

But from STOKES'S theorem, we can write:

f(Xdx + Ydy + Z*i) =//[Kf
-

)
+ (f

- g

260
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Equating (4) and (5), we get:

dY\ /dX dZ\ /dY dX\-\m
\~d~z

-
dx)

+ n
(to

"
a J

=

r

~
v dt

(6)

If the circuit be closed, a conduction current will flow, and its

magnitude will depend upon the resistance.

NOTE. If the circuit is inductive, this applies equally well, since in these

equations the total variation in flux is considered.

Let I, with components u, v and w be the current density

along the x, y and z axes, and p be the resistivity of the ma-

terial. Let ds with components dx
t dy and dz be an element

of the circuit, and A x ,
A y and A z be the projected areas of an

elemental surface dS, then the resistance along the z-axis is

- dx and dV = (resistance X current) = --T uA x
= pudx,A x A x

but

V dV YX =

~~dx
=pu >

- X = pu -

Similarly, Y =
pv,

and; Z = pw.

It should be noted that X, Y and Z are expressed in electro-

static units. Thus by transforming the relations to electro-

magnetic units, we get:

pu = vX]

pv =
zY',

pw = vZ.

The Equations of the Current. Let the components of the

current density along the three axes be u, v and w, in electromag-

netic units. Let I, m, and n be the direction cosines of the

normal to surface dS'
t
then the total current is:

+ mo + nw)dS.
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It was shown by AMPERE that the work done in carrying

unit pole around an element carrying current i was 4iri.

The work done is J* (Ldx -f Mdy + Ndz), where, as usual,

L, M and N are the components of the magnetic field intensity.

.*. f(Ldx + Mdy + Ndz) = 4x7 = 4*ff(lu + mv + nw)dS.

But by STOKES'S theorem,

f(Ldx + Mdy + Ndz) = ff(lCx + mCy + nCJdS.
+ mv + nw)dS.

dN dM= Cx
= -r-- -5

a?/ a^

r aL aAr= Cy
= - - ,

and, 4 _ c ._
5M _ aL

"

dz dy

Energy of the Electric Field. Consider a small cube-shaped
volume dxdydz, Fig. 141, in the electric field, and let the po-

tential difference between the two sides dxdy be V.

FIG. 141.

The capacity of the field enclosed by the cube has been shown

to be:

M J M J
4ird 4irdz

The energy stored in the field is J^CF2
,
and the potential

dv
V is Zdz, where Z =

_

Kte*y^ _ KZVxdydz
4irdz Sir

KZ* , KZ* .

-
dv, or the energy per unit volume =

-^ ,
when only

the ^-component of the field is considered.
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If the components of the electric field intensity R, are X,
TT

Y and Z, then, the total energy per unit volume = Wo =
^
O7T

(X 2 + F 2 + Z 2
).

Similarly, it is proven that the energy stored per unit volume
in the magnetic field is:

W = ^ (L
2 + M* + TV 2

).

Thus the total energy per cubic centimeter in space occupied

by magnetic and electric field is:

W = ^ [M (L
2 + M 2 + JV 2

) + K(X* + F 2 + Z 2
).]

There appears to be no limit to the possible intensities of the

magnetic field, but for the electric field in air at atmospheric

pressure, experiments indicate a maximum possible gradient, or

field intensity of 30,000 volts per cm., or 100 electro-static

units of potential per cm.

Thus in the electric field the maximum amount of energy at

normal pressure is:

100 2

Wmax .
= -~ - = 400 ergs per cu. cm. or 0.00004 joules per

cu. cm.

Maxwell's Displacement Current. MAXWELL assumes that

when a potential difference exists in any part of a dielectric, an

electric displacement, or a displacement of electricity has

taken place along the lines of electric intensity (force). The

greater the displacement, the greater the difference in potential.

The displacement, however, is resisted by the electric elasticity

of the medium, which, for the lack of a more satisfactory analogy,

can be thought of as being in a way similar to that existing in

an elastic body, against which a particle is pressed.

For a given potential difference, the displacement is greater

the greater the specific inductive capacity; for example, if the

dielectric be glass, the displacement may be five to six times as

great as would be true with air or vacuum.

A metal may be considered to have zero capacity, in other

words, energy can not be stored into it, but electricity would

continue to pass through it as long as a potential difference

existed.

Dielectrics, on the other hand, would permit electricity to

flow up only to a certain distance, and the flow ceases when the
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force causing the electricity to flow is exactly equal to the

opposing force due to the elasticity of the dielectric.

The displacement of electricity is in the direction of the lines

of electric force; since the displacement has magnitude as well

as direction, it is a vector quantity.

According to MAXWELL'S theory an electric current is a time

rate of change of the displacement of electricity.

The charge on a body is a measure of the displaced electricity.

Indeed, MAXWELL states that a charge Q on a body causes a

displacement of Q units of electricity out from the body, and he

has defined the displacement D as the charge per unit area. It

is then numerically equal to a
1

,
the charge per unit area, but

while or is a scalar quantity, D is a vector.

D can be expressed as a function of the intensity R and the

specific capacity K.

T ^ j. *. i? xi_ /> i j flux ^ 4?rC TIn air the intensity of the field is - - = j In
area area A

other dielectric of specific capacity K,

P 1 47TQ ARK
R =

K ~T " Q ~- ^T
Q ARK RK

The surface charge = T = -
AA 4:

Thus the displacement D is also,

The displacement of electricity is in the direction of the field.

Thus if /, g and h are the components of the displacement, and

X, Y and Z are the components of the electric field intensity,

then,
KX

g

47T
'

^^ In these equations, the units

are in the electro-static system,
and,

, KZ
h = -T.

4?r

The amount of electricity displaced is the product of current

and time, or considering current per square centimeter or current

density, the displacement is the product of current density and

time.
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Let Ud, vd ,
and wd be the components of the current density,

then:

ud dt =
df,

Vd dt =
dg,

and, dt = dh.

It has been shown that the conduction current density in

electro-static units was:

X

and,
Z

w =
,

where p is the specific resistance.

Thus the total current density along the x-axis is:

similarly,

= X ,df = X JtdX
p dt p 4ir dt

'

Y
,
dg Y KdY

v + vd = h -7.-
= h T- -7:7

p at p 4?r at

Z dfc Z X dZ

Thus, applying AMPERE'S relation, that in electromagnetic

units the curl of the magnetic field intensity is 4?r times the

current density, we get :

47T
,-
(w

similarly,

and,

1/47TZ

9\ p

dX\ _ lr47TK
dt)

:=

vlp
-
dt

dM

dz dx

dM dL

(16)

L p dtJ dx dy

where v at present is the unknown ratio between the units.

The corresponding equations for the e.m.f. were shown to be

jT *\ rr *\ ~\7

fj,
(JLJ O j O I

~
v dt dz

~

dx
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v dt
= f ~?x ^

_ p cW _ dY _ dX
~

v dt
=

dx
"

dy

By combining equations (1) and (2), it is possible to arrive at

equations of the electric and magnetic field intensities in any
medium conductor or non-conductor.

Differentiate (la) with respect to t,

7v 7" ~dt
+ K ~W

=
dydt

~
~dzdt

Differentiate (2c) with respect to y,

IJL
d 2N d 2Y d 2X

* '
~~

~v ~didy

=
dxdy

~
'dy

2

Differentiate (26) with respect to z,

fi d
2M d 2X d 2Z

"

~v Htdz
==

'dz 2
~

dxdz ^
2 ~y

Substitute (4) and (5) in (3), and add and subtract ^
=

T (
-^

}
,
the following equation results:

47TM dX 3 2X rd*X .^X.^X d_

p dt
' AM

dt 2
'' V

Idx 2
"

dy
2
"

dz 2
'

dx

which is the most general equation.
If there is no divergence, that is if we are interested in

medium having no charges, then the equation becomes:

It is readily seen that exactly similar equations not only
result for the Y and Z components of the electric field intensity,

but also for the components of the magnetic field intensity,

L, M and N.

Special Cases. (a) In a dielectric, p =
,
thus the equations

become :

(8)
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or in general,

-Qp
= a 2V 2

?7, where a 2 = ~, and U stands for either X, Y,

Z, L, M or N.

This is the well-known equation of the propagation of any
disturbance at finite speed.

The velocity of the propagation is a = -
. In air. k = 1

and M =
1, thus the velocity of propagation of the electric

and magnetic field is v.

This value has been measured and found to be that of light,

thus the conversion factor is the velocity of light. Thus v =
3 X 10 10

.

'

This important fact was deduced by MAXWELL in 1865.

(6) In a conductor, the specific inductive capacity may be

assumed as zero, thus we get:

or,

d*U
,

d 2U 47r dU .

d^
+^ =

^-ar in rectangular

coordinates, and,

, ,

1 dU .

^ a0T
+ -^ +

r -^T
==

>
ln cylindrical

coordinates.
;

Assuming, as an application, that it is desired to determine

the current distribution at any time in a cylindrical conductor

at any distance from the origin and any distance from the

center of the conductor. If the practical system of units is

used, v 2 =
1; and on account of circular symmetry, the term

involving disappears. Thus the equation becomes:

d z
i d z

i 1 di 4?r di , ,

a72 + a^2 + r dr
=
7 Hi

Distribution of current in a cylindrical conductor: If it is of

interest to find the distribution along a radius only, the equation
becomes :

dH 1 di _ 47r di , .

dr 2 + r dr
~

p dt
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It will be of interest to verify this equation directly. It has

been shown that the work done in ergs, in taking unit pole once

around a conductor carrying current 7 is 4?r7, where 7 is the

current enclosed in the path.

Consider, for the sake of simplicity, a cylindrical conductor,

Fig. 142. Let the instantaneous values of the current density

at distant r from the center be i, and that at r + dr be i + dr.

FIG. 142.

Let the magnetic field intensity at distant r be H] and at

riff

distant r + dr, be HI = H -f dr.

The work done on unit pole in going from a to b is:

#i(r + dr)6 =
(H +^ dr)

(r + dr)8 =

(\TT v

Hr + #dr + r -~- dr\
, neglecting the term which in-

volves (dr)
2

.

The work done in going from b to c, or from d to a, is zero,

because we travel on an equipotential surface.

The work done in going from c to d is Hrd.

:. W =
e(
Hdr + rdr = edr

And by definition given above,
W =

4irir0dr, neglecting the term which involves (dr)
2

.

H dH /1 x

(1)
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The ohmic drop in voltage along 1 cm. of the conductor at

the outer edge of the segment, that is, at r + dr from the center,

perpendicular to the paper, is:

(i + dr) p, where p is the specific resistance.

The drop along the inner edge is ip; thus the difference in the

e.m.f. at the two edges is:

de =

This must be then the e.m.f. which is consumed by the self-

induction due to the flux in the element.

The flux in the element is = pH(dr X 1 cm.) == Hdr (3)

AA. AH
(4)

(5)

From (2) and (4),

di dH di _ dH

Differentiating (1) with respect to t,

di
__

1 dJH d*H
'

dt r dt
+

drdt

Differentiating (5) with respect to r,

Substitute (7) in (6),

di 1 dH p dH
.*. 4?r =_- + -

z

Substitute the value of --- from (5) in (8),

di _ 1 p di p dH
dt r n dr IJL

dr2

or,

M dH . 1 di_
p dt

~
ar 2

""
r dr

in electromagnetic system of units.

Equation (9) is very important in connection with problems
of heat as well as electricity, it has been studied by great mathe-

maticians, notably, MAXWELL and LORD RAYLEIGH.

It is to be noted that the right-hand member of equation (9)

is LAPLACE'S equation transformed to cylindrical coordinates,
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when the cylinder has circular symmetry. Thus we could have

written :

Special Case. Flat bar: Referring to Fig. 69, in the case of

flat bar, r approaches infinity, and (9a) becomes:

Si

FIG. 143.

The distribution of flux in a cylindrical conductor surrounded

by an energized solenoid is determined in a similar way. Fig.

143 shows the path of the current and flux. The dots represent
the current, and the lines around the current, the flux.

The result for a cylinder is identical with equation (9), if

H is substituted for i.

Similarly, for a flat bar equation (10) is applicable with the

same substitutions.



CHAPTER XXV

MATHEMATICAL SOLUTION OF EQUATION 11, PAGE
267, DEALING WITH ALTERNATING CURRENT

DISTRIBUTION IN CIRCULAR CYLIN-
DRICAL CONDUCTOR

The general equation is as has been shown:

dH 1 di 47TM di

dr2 + r dr
~

p dt

Since we are dealing with sine waves, let:

i = i\ cos cot + z*2 sin cot (2)

where ii and i Zj the current densities, are functions of r but not of

t. Substitute first, i = i\ cos cot,

di dii- =cosa^->

-
2

and
> fU -a* sin erf.

at

dH\ 1 dll 4:TTfJL .

.'. cos ut T-^- H cos (^t T = - iico sin cot (3)

Similarly, for i = i% sin co,

J
a 2

l2
,

1 dll +47TM .

sin ut T
2

- + - sm o)t =- izoj cos cot (4)

Adding (3) and (4),

'

COS M^ + -
fr- H|

and d 2
i z 1 5i2

W+r dr
=

271
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+

6 2r
2

Assume :

i\ ==
a<) ~\~ air

and

Then:

v-
1 = 01 + 2a2r + 3a3r

2

-=-- = 2a2 + 6a3r

Let

+

n(n

bnr
n

.n-l +

HI'

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

'. ai = 0;4a 2
= m 26 ;9'a 3

= 7^26 1; in general, n
2an = m 26n_ 2 (16)

By similar substitutions in (14), we have:

1
= Q; 46 2

= m 2a
;
96 3

= m 2
aij in general,

(6) and (7) can be written:

dr

and,

dr

dr

Substituting (9), (10) and (11) in (13),

2a 2r + 6a3r2 + + n(n l)anr
n~ l -

+ a! + 2a 2r + 3a 3r
2 + + nanr

n~ l

6n = - m2an_ 2 ,
or (n

-
2)

2 &n_ 2
= - m 2 an_ 4

Combining the last equations in (16) and (17),

m4

an =

From (17),

n 2
(n
-

2)

(17)

(18)

(19)

Since ai =
0, and 61 = 0, from (18) and (19) all the a's and 6's

with odd indices separately equal to zero. And those with even

indices are as follows:
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a c
= a

m4

w 4

as =
fi-FToS

a

and so forth

m
42 . 6 2 *

m 4 m8

8 2 .^02
6
= +

42"7g2Tg2~

and so forth

(19)] 60 =+ 7^02 [See (16)]

a

m 10

22 -4 2 -6 2 -8 27o 2 o

and so forth

m 2

8 2

m 2

m 6

4 2 -6 2 -82
-(10)

2
-(12)

2

and so forth

Therefore, i\ = a (l
~

02742 + "02. 42.^2.02
~ ' * '

)

H 9
,"
t
"

and

52 2 2 -4 2 -6 2 2 2 -4 2 -6 2 -8 2
-(10)

2

~2"2~
~

2 2 -4 2 -6 2 + ***] +
m4 r4

)
(21)

LORD KELVIN has denoted the first series in (20) by ber (mr)

and the second in (20) by bei (mr), thus:

oer(x) 2 2 -4 2 -6 2 -8 2 ,
and

/v.2 ^.6 /rlO,.XN *> ^
|

t'

=
2*~ 22T42T6 2 "*"

2 2
"

T4 2 6 2 8 2
(lO)

2

And
4

ii = a for (mr) + 2
a 2 6et (mr), and,

4
t' 2
= ao 6ei (mr) + 5 a 2 6er (mr)

(22)

(23)

These functions, 6er and 6^', have been worked out and appear

frequently in books on mathematical physics.
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Therefore,

i = a her (mr) -\
-

2
a 2 bei (mr) cos ut +

\

a z ber (mr) a bei (mr) I sin cot (24)

The constants a and a2 are determined from the fact that the

extreme outside layer is not surrounded by any flux. (We
consider only the flux in the wire in this calculation.) Thus the

sine term is zero at all values of t.

Let Jo = maximum value of the current density at the surface,

then,

and

7 = a ber (mR) -\ ^ bei (mR),

2=
^ her (mR) a bei (mR)

(25)

Equations (25) are readily solved and give:

4a 2 _ JQ bei (mR)
m?

~~~

ber 2
(mR) -f bei2

(mR)'

IP ber (mR)
ber2

(mR) + bei2
(mR)

{[ber (mR) ber (n

and,

bei

(26)

bei
ber2

(mR) + bei2
(mR)

(mr)] cos ut + [bei (mR) ber (mr) ber (mR) bei (mr)] sin co} (27)

Thus the square of the effective current density

I r)P7*^ I ? rr I r>^7*^ ( 'YyiT'i
-j~\\ TO [t/C'/ \^ffvL\j) Ut/l \ifvl )

ber 2
(mR) bei 2

(mr) + bei2
(mR) bei2

(mr) + bei 2
(mR) ber 2

(mr)]

7 2

[ber
2
(mr) + bei 2

(mr)].
2[ber

2
(mR) + bei 2

(mR)]

V2 (mR) + bei 2
(mR)

(28)

At the center of the conductor, r = 0,

.'. ber (mr) =
1,

bei (mr) = 0.

1

leff.
= _

A/2 Vber2
(mR) + bei2

(mR)
at r = 0.
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With very low frequency, the current density approaches the

direct current case where it is normal and is:

thus the ratio of the alternating current density at the center.

to that of the direct current is:

___1__
\/ber2

(mR) + bei2
(mR)

For copper,
fj.
=

1,
= and p = 1600,

If the radius is 1 cm., and the frequency is 60,

mR =
1.72,

[ber
2
(mR) + bei 2

(mR)]~* = 0.87.

.'. the current density at the center is 87 per cent, of that at

the surface, and also 87 per cent, of what it would be with

direct current.

If the conductor had a diameter of 50 cm., the current density
at the center would only be 25 per cent, of that at the surface.

Actual watts consumed in heat are :

'72

[ber
2
(mr) + bei 2

(mr)]d(r
2
)

-(29)

C
2

I

Jo

2[6er
2
(mR) + bei 2

(mR)]

W = (ohmic resistance) (total eff. current)
2

(30)

Ohmic resistance = -
(31)

Total current = irK

i2irrdr =
ber 2

(mR) + bei2
(mR)

ber (mR) \ ber (mr)d(r
2
) + bei (mR) \ bei (mr)d(r

2
)

r CR CR
i

Cosut-\-\bei(mR) I ber(mr)d(r
2
) ber(mr) I bei(mr)d(r

2
) sincoZ

L Jo Jo J

272
.'. (total eff. current)

2 =
or , , . PN ,

, .

9
. ^r\-

2[ber
2
(mR) + bet 2

(mR)]

\ CR
I 2 \ CR 1 2

1

I ber (mr)d(r
2
) + j

bei (mr)d(r
2
) (32)U Uo
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(33)

(34)

(mr) = 1 - 312 + 25,500

210,100%

(mr) + bei 1
(mr) == 1 + 313 + 3900

I
[6er

2

/mr\ 12

21,700Q +

(mr)

3100 (35)

CR

\ ber

J

'

(mr)d(r
2
)
=

I I
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Substituting (35) (36) and (37) in (34),

K = 10
(38)

The following tables give the coefficient of skin effect at

various values of mil and the values of m for copper, aluminium

and iron.

The value of /x for iron is usually taken as 300, but experi-

ments on iron wires used as transmission lines seem to give values

of M as high as 1200.

LORD RAYLEIGH has shown that when the penetration is so

slight that the above table can not be used a close approximation
of the

"
effective thickness" in centimeters of the surface layer

which causes the current is:

== 7

where K is the specific conductivity.

6.6
This formula becomes 6 = 7= for copper approximately.

8 8

^=
for aluminium approximately.

16

Vrf
for steel approximately.



CHAPTER XXVI

ELECTROMAGNETIC RADIATION

Introduction. The laws governing electromagnetic radiation

were stated by MAXWELL fifty years ago. The experimental
verification was presented twenty years later by HERTZ in a

series of most extraordinary papers, which were later published
in book form. The practical application was made by MARCONI.

An extensive literature is now available, notably FLEMING'S

"The Principles of Electric Wave Telegraphy and Telephony,"
and ZENNECK'S "Wireless Telegraphy."

In writing this chapter the author has drawn extensively upon
the information which is given in these books. Since it is likely

that students who have not read what preceded this chapter

will want to understand the principles of wireless transmission

it has seemed wise to built up the theory from the fundamental

laws even though this procedure necessarily involves some

repetition of what has been given in previous chapters.

Fundamental Conceptions. Surrounding any body charged
with electricity is an electric field. The intensity of the field

usually varies from point to point, but, at any point it is propor-

tional to the charge, that is, the amount of electricity on the

charged body.
To charge a body we connect it to a source of potential when a

current momentarily flows from the source to the body, the cur-

rent stopping when the potential of the body is the same as the

potential of the source.

If i is the current flowing during an interval of time dt then

the resulting charge on the body is dq =
idt, or,

i - ^1 ~
dt

For reasons that will appear later, it has been assumed that

the outward field of flux from a body charged with Q units of

electricity is

\l/
= 4wQ lines of electric force.

278
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If the lines are uniformly distributed over a closed envelope of

area A sq. cm., then the density of the electric field is

By the introduction of the constant 4ir in the flux formula this

density becomes in space the same as the force in dynes per unit

charge which is numerically the same as the intensity R of the

electric field at the particular point considered. This is easily

seen from COULOMB'S law, which states that the repulsive force

between two charges Q and Qi is

f _QQi
J
-
Kr2

where r is the distance between them and Vi = 1.

In the ideal case the charge is confined to a point and the flux

is distributed uniformly in every direction.

. R = __ = ^Q = Q
area of sphere 4?rr2 r 2

where r is the distance from the point to the point charge.

or, Q = Rr*

/. / =
j3
rQ! = RQ,.

If, therefore, Qi ==!,/= R.

The potential difference between two points in an electric

field is by definition numerically the same as the work done in

moving unit charge from one point to the other.

Thus, if X represent the intensity of the electric field in a cer-

tain direction, say a direction parallel to the x-axis in a rectangu-
lar coordinate system, then the potential difference across a

short element dx is dV = Xdx = force on unit charge at dis-

tance x, or,

Y _dV=

dx'

Similarly v dV
=

dy

and _ dV
J 7

*

dz

Y and Z being, respectively, the electric intensities along, or

parallel to, the s&-a&d-y axes.

* *
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If we desire to find the potential difference between the ends

of a wire bent in a small rectangle in the x-y planes and the inten-

sities along the x and y axes are X and X\, Y and FI, then refer-

ring to Fig. 144,

dV = Xdx + Yidy - X,dx - Ydy (3)

dy

dx

FIG. 144.

For y =

y = dy

X = X
X = X,

The rate of change of X as we travel along the ?/-axis is

thus the total change in distance dy is :

dX,
-r dy
dy

y

Similarly,

Substituting (4) in (3) we get

dX

(4)

It is one of the properties of the electric field alone when free

from charges that the above potential difference is zero in a

closed circuit.

If, however, an e.m.f. is induced in the rectangular circuit by

change of flux treading through the circuit, then we get:

dt

dN 1 1
-^dxdy
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where N is the density of the magnetic field perpendicular to the

plane of the electric circuit.

By a similar reasoning we get then the following three impor-
tant equations:

dX
dy

=
ar
dx

dX
dz

dy

_

dx

dY_
dz

dN
dt

dM
dt

dL

dt

(5)

where X, Y, Z, L, M, N, are respectively the electric intensities

and magnetic intensities in the same system of units parallel to

the x, y and z axes.

Note that in air the densities are

'the same as the intensities.

The next consideration is in re-

lation to the magnetic effect of a

current.

Let A, Fig. 145, represent the

end view of a wire A carrying a

certain current dl, perpendicular
to the plane of the paper. Let the

curved line be in the plane of the paper.

The magnetic field intensity at P is then // and this is defined

similarly to R as numerically the same as the force on unit pole.

Let, therefore, a pole of unit strength be carried along the curved

path, Fig. 145. The work done per unit pole in completing the

journey once is evidently

W = fll cos 6ds =
(

- - cos 0ds
J r

FIG. 145.

but rda rda
-3 =. cos 6 , . as =

cos 6

ra -2*

:. w :

Jtx =
2dlda =

The work is independent of the position of the current element

and the path. Thus if there are a number of filament currents

inside the path,

I = Zdl

W = 47rJ (6)
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This quantity is by physicists called

^ the magnetomotive force, around the

circuit, whereas, engineers would call

I

Ll
it 47r X m.m.f .

d
Consider now a small rectangular

surface, Fig. 146, in the x-y plane of a

magnetic field, and let L and LI, M
* and MI be the components of the

FIG. 146. magnetic field intensities, along the x

and y axes respectively.

Then the line integral, or work on unit pole around the element

is

Ldx -\- Midy Lidx Mdy.

The rate of change of L as we travel along the y-axis is
^-

thus the total change is dy, thus

Ll= L + -
dy.

Similarly

dM dL idM dL\- - dxdy =
(d
- -

~) dxdy.

From (6) it is seen that

dy

where Iz is the total current flowing through the rectangle per-

pendicular to dxdy.

Depending upon the medium, this current may be the ordinary

conduction current such as flows in a wire or the charging current

which is incident to a change in the electric field, or indeed, the

sum of the two currents.

In this analysis it will be assumed that the air surrounding the

oscillator is free from ionization, so that its resistance is infinite;

thus the only currents considered are the
"
displacement, or

charging currents."

MAXWELL assumed that surrounding a charged body is an

electric field, the strength of which is proportional to the charge,

and that the intensity of the field is a measure of what he calls
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displaced electricity. The displacement of electricity is in the

direction of the field intensity, and is thus a directed quantity.

Numerically a charge Q displaces Q units of electricity outward

from the body. Since dQ =
idt, it follows that the displacement

current or, as engineers say, the charging current is proportional

to the time rate of change of the electric field intensity.

Or,
dR

where R is the intensity and a a constant to be determined.

MAXWELL worked out his theory on the basis that the dis-

placement is numerically the same as the charge per unit area.

Thus

area

But the outward normal flux from a charge Q is
\j/
=

4-n-Q ;
thus

the intensity of the field is

R
area area

r>

.'. R = 4:ird or d = 7- in air.

i = ~
4?r dt

where i is the current per unit area or current density.

If, therefore, u, v and w are the components of the displace-

ment current densities along the x
} y and z axes and X

}
Y and Z,

the components of the electric intensities then :

1 dX 1 dY 1 dZ
u = -7 w = -: and w = -

A TT (8)
4-7T d 4;r ^^ 4.w dt

everythir^g being given in electro-static units.

From (7) and (8) it is evident that one can write

/dM dL\ . dZ _

( ^r I dxdy = 4:irwdxdy = dxdy.
\ dx dy] dt

or,

dM _ dL dZ
dx

'

dy
==

dt'
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By a similar reasoning are obtained the following three

relations.

(9)

everything being given in the same system of units.

The simplest form of oscillator, or rather that form which

lends itself to the simplest mathematical treatment, is that used

by HERTZ.

The oscillator consists of two large spheres separated by a

considerable distance and connected by wires through the spark

gap to the source of energy as shown in Fig. 147.

o

Magnetic Field

FIG. 147.

O

It will be assumed that the electric field is due to the spheres

alone, and the magnetic field to the linear conductor.

It will be assumed that the axis of the oscillator is the 2-axis.

Thus the magnetic field which is in the form of rings around the

conductor has, in the x-y plane, no component in the direction

Z and therefore no e.m.f. can be induced in the x-y plane.

However, e.m.fs. will be induced in the direction of the Z-axis.

Whatever the potential distribution in the x-y plane it

must thus be due to the charges on the spheres alone, that is,

due to the electric field alone.

The distribution of potential around an electric double, that is,



ELECTROMAGNETIC RADIATION 285

around two spheres given equal but opposite charges. Referring

to Fig. 148, since

dV = - Rdr,

V = -fRdr = -J^r =
f.

The potential at P is (Fig. 149) :

FIG. 149.

It is

when r is large compared with dZ (see note).

NOTE. Proof:

(10)

a (q

^r

3/ 9 cos 6

and

(2

by the use of the binomial theorem it is easily seen that this becomes:

2qdz cos 6

-^2

Equation (10) may be written

where /i, one-half of the length of the oscillator is substituted

for dz.

NOTE. Equation 11 is not limited to spheres but is quite general as long

as the distances dealt with are long compared with the length of the oscil-
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lator. Suppose, for instance, that we are dealing with a linear oscillator.

We assume then that the potential at a point P can be expressed as due to

two point charges located at some points on each rod (not the end of the

oscillator) which will give the same potential as the linear conductor actually

gives at distances far away from the oscillator. While this assumption is

quite justified when dealing with points in space far away from the oscillator,

it is obviously not at all permissible at points near the oscillator, because

it is readily seen that the potential distribution at the surface of the two
halves of the oscillator must be such that the surfaces themselves are equi-

potential surfaces and two point charges, no matter where located, can not

give such equipotential surfaces. Fortunately, we are for practical purposes
interested in only what happens far away from the oscillator, where equation
11 applies. The subsequent equations can indeed be used with such linear

oscillator if instead of letting Q or 7 represent the charge and current respect-
2 2

ively, we use the average value along the oscillator which is
- Q and - 7.
7T 7T

The ratio between X the wave length and h the height of the sending antenna

is in such case, theoretically 4, but in reality due to various effect nearer 4.8.

When P is far away from the oscillator the electric condition

is not due to the instantaneous value of the charge q at the

oscillator but due to the value of q which existed somewhat
earlier in time.

Thus the charge causing the electric field at P is not q
= Q sin ut

but q = Q sin u(t At) where At is the time required for the

distribution to reach P.

If v is the velocity of the propagation which is that of light,

then
T

vAt = r 'or At = -
v

.'. q
= Q sin f ut

j

If X is the wave length then

27T
.*. q = Q sin I cot

rj
= Q sin (oot mr) = Q sin (mr cot)

.'. V = - 2Qh
d̂z r

. _
dF 6 2 sin (mr - ut)

(13)

v dV d 2 sin (mr -'

ay dydz
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H M

Z the component of the electric field intensity perpendicular to

the x-y plane cannot be obtained from V alone as discussed
above.

We shall now consider some of

the properties of the magnetic field

intensities.

Consider the x-y plane (Fig. 150).

It is obvious that since the lines

of force are circles, the sum of the

projections of the components of

the magnetic field intensities along
the x and y axes on a radius vector

must be zero. Let L and M be the components of H along the

FIG. 150.

x and y axes,

we have,

but

and

or

Since L itself is negative in the position shown,

L cos a + M sin a. =

cos a = -

P

sin a = -
P

'. Lx + My =
0,

- - but x 2 + y
2 =

x

L
M

.'. xdx + ydy = 0.

Thus L_ dx

M dy

or Ldy Mdx =

This is satisfied as long as

L = du du
and M =

dy dx

(14)

(15)

where u is any function of x and y
N the component along the 2-axis is obviously zero.

From equations (9) and (15)

dt

~dt

"aT

dy

dL

dz

dz dz dxdz

dL _ d 2u

dz
~~~

dydz

_ dM dL _ /d zu d*u\
''

~dx
"~

fry

"

dx (16)
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Referring now to (13) and differentiating X with respect to t

- <2Qh - (
d * sin (mr ~ w'

dt
" 2Qh

dt(dxdz
'

~~r

It is evident by comparing (16) and (17) that,

d sin (mr wQ

Substituting this value in (16) we get:

dX .d 3

(nsM. sin (mr
dt dtdxdz

or v on ,A = ZQfi

F = 2Q/i

N =

where n = sin (mr - cop

It is now a simple matter to get the different derivatives of

n. An inspection of the several terms will readily show that some

are much larger than others. There is little object in investi-

gating conditions close to the oscillator by these equations even

if all terms are used without considerable caution, because an

approximation was made in the assumption that the electric

field emanated from two point charges.

The derivatives contain trigonometric terms having coefficients

of raV2 mr and unity.

The terms containing w2r2 are so much larger than terms

involving mr and unity that the latter can be neglected. Making
these approximations and placing P in the x-z plane we get

for distances involving several wave lengths,
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7 =

Z = --- sin (wr

7, =

.. rrM = // =

sin 2
.

.

sin (rar cot) sinv

(19)

(20)

Everything is given in electro-static units at present since all

terms involve Q the charge which is expressed in such units.

FIG. 151.

R the intensity along the surface of a sphere through r is

(from Fig. 151):

R = Z sin B X cos 6 = - sin (mr at) sin (sin
2 + cos 2

0)

or R = sin (mr cot) sin (21)

It is of interest to compare equations (20) and (21)

47T 2since

and

We can write

X 2

2ir
ma) = -

47T 2

X2T

H = R (22)

when the charge is given in electro-static units.

The electric and magnetic intensities perpendicular to each

other in space are in time phase. Thus the product of the two

represents power. (This is the case only at some distance from

the oscillator, near the oscillator the large part of the fields is

in quadrature.)
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It is remembered that in the ordinary electric circuit involv-

ing capacity and inductance the magnetic and electric field

intensities are in time quadrature and, therefore, the product

represents
"
wattless power or better reactive power."

Energy Radiated. Equations (20) and (21) can be trans-

formed to read,

and

2Ihm . ,H = - sin (mr co/) sin

21 hm 2
. ,K sin (mr co/) sin 6

co r

(22)

Since

dq
q
= Q sin (co/ mr) and i = -37

= Qco cos (co/ mr)
dt

.'. I = QcoorQ

= Qco cos (mr co/)

If 7 is expressed in amperes and R in volts per centimeter,

then

and

But

H = 0.21 sin (mr -
co/) sin 6

21 Hm 2

R = 300 X 10 - - sin (mr -
co/) sin 6

m = and co = 2irf
= 2?r -r- .',

A A

0.47T/ hH = - - - sin (mr co/) sin 6
r A

1207T/ h .

R = -
r- sin (mr co/) sin 6

r \

(23)

(24)

From what has been shown, it is remembered that H and R
are perpendicular to each other in space.

The e.m.f. in a circuit is proportional to R, the current is

proportional to H and the power to HR sin a, where a is the angle

between H and R.

Since these fields are perpendicular to each other in space the

energy radiated in time dt eidt is proportional to HR, or, W =
kHRdt and it remains to determine the value of k.
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The voltage per centimeter is R\ thus e = R when considering

1 cm. of circuit. The m.m.f. that produces a magnetic in-

4:iri

tensity H is
- where I is the length of the magnetic circuit

in air.

. . HI
~

0.47T

or, if we consider 1 cm. length of magnetic circuit,

i =
H

0.47T*

Thus the energy transmitted through a square centimeter area

is:

RHdtW = eidt =
0.47T

Thus the energy radiated through the whole sphere of radius r

enclosing the oscillator is (from Fig. 152) :

FIG. 152.

s*e = TT rt = T
r>TjW = I 7r-r- 2wr

Je = Jr = 0.47T
sin Brdddt

h
240 7T

2 I 2 sin 2
(mr - ut) sin 3 OdOdt

but

- o
sin 2

(mr <*t)dt
= -~ approximately

19

(25)
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and
sm vav = y%

:. w =
1600^

W h 2

.'. watts = ^ = 1600
^-2

I 2
.

If I is given in effective current then,

h 2

watts = 3200 ^I
2

(26)

In the case of wireless transmission the radiated power corre-

sponds to one-half of the area of the sphere thus,

h 2

Watts = 1600
^-2

/ 2
(27)

where I is the effective value of the current. The " Radiation"

resistance is obviously

R = 1600 ^ (28)

It is noted that in the case of wireless telegraphy the energy
radiated is greatest along the equatorial plane, that is, near the

surface of the earth.

Since the receiving antenna is near the earth this result is,

of course, very desirable.

MARCONI'S improvement upon HERTZ'S oscillator resulted

from his connecting the lower end of his oscillator through a

spark gap to ground, by which he was able not only to obtain

the maximum energy, where it was most useful, but also to make
use of half the length of oscillator for the same distribution of

the magnetic and electric field above ground. This will be evi-

dent at once if it is considered that the earth being a perfect con-

ductor, its surface is an equipotential surface.

It is easily proven from the equations given that the energy
received near the surface of the earth through unit surface is

1.5 times the average value of the energy per unit surface.

It is also of interest to note that with an "
ideal" simple

antenna where X = 4h and the current is zero at the top at all

2
times and therefore the average value of the current is

- 1 that
7T

the power radiated in watts is 40/e
2 or the radiation resistance

is Rr
= 40 ohms.
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In this connection it is of interest to add that MAXWELL'S

general equation of propagation of electromagnetic waves in

space free from electric charges or magnets has been shown to be :

where u is any of the components of the electric and magnetic
intensities.

In the case of spherical waves it is readily proven by trans-

forming the equation in spherical coordinates that any function

of r vt divided by r satisfies the equation. Thus

r

The function used so far was

_ sin (mr coQ

r

which satisfies the above since mr ut = r = m(r vt).m
In the case of sustained oscillations the function chosen was

obviously most suitable. In the case of damped oscillations we
would naturally choose

TT = ~
e
-a(ut - mr}

sm(mr -
ut)

r

where A and a depend upon the amplitude and damping of the

circuit.

Of special interest is the magnetic intensity // near the surface

of the ground and the electric intensity R perpendicular to the

surface but near the ground.

Equation (21) gives,

R = sin (mr wt) sin = 2h~
' - sin (mr ut) sin =

r co r

4?r - / - sin (mr cot) sin
r A

where I is expressed in electro-static units.

If the current be expressed in amperes and the potential

gradient in volts per centimeter

4wlh V
X T7* X 300 sin (mr ojt) sin

10

= 377 - sin (mr - ut) sin (29)
r A
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Thus the maximum value of the potential gradient near the

surface of the ground is

Rmao. = 377 -
r- volts per cm. (30)

/ A

If, therefore, the height of the receiving antenna is hi cm. the

maximum value of the potential difference between earth and

top is

F
377 h

h IEl =

T~ x
hj

or the impedance of the receiving antenna is

Z Ei 377 h ,

2
~-

7- ~7~ x
* onms - (31 )

and the effective value of the voltage is :

E. = I
f
Z 1 (32)

where Ef is the effective value of the voltage across the receiving

antenna and Je is the effective current in the sending antenna.

In a simple antenna the current is a maximum at the gap and is

zero at the top. Thus the current is not uniform as is the case in

the HERTZ oscillator.

2
The average value of the current is

-
7. With such simple

7T

antenna the wave length X should be 4/i if there were no disturb-

ing effects.

Substituting these values we get as the impedance of the receiv-

ing antenna in an ideal simple antenna

Z\ = 60 ~ ohms (33)

The magnetic field intensity H (equation 10) is similarly modified

to

H =* 2 -h sin (mr ut) sin B = -
r- sin (mr wt) sin 6

0) T T A

where I is in abamperes, or if / is expressed in amperes rather

than abamperes
h . . . . /Q .,H = -
r- sin (mr cot) sin 8 (34)

T A

It is of interest to note that this agrees with the intensity due

to an infinitely long conductor if

h - JL
X
~

27T*
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If the sending antenna were a simple rod then the current at

the top would always be zero and the average value of the current

2
would be - 7. In that case the wave length would be 4/i.

7T

Substituting these values we get :

0.27H = - - sin (mr ut)

near the surface of the earth.

Thus the approximation sometimes made in writing

27H = -
sin(rar to/) sin 6

is not very far from right and is correct in the case of an "
ideal

simple antenna."

It should again be emphasized that equations (29) and (34)

give the values of the electric and the magnetic intensities several

wave lengths away from the oscillator.

It can very readily be proven by carrying out the differentia-

tions in equation (18) that near the oscillator the magnetic

intensity decreases inversely as the square of the distance and the

electric intensity inversely as the cube of the distance.

Power Factor and Logarithmic Decrement. Prior to the use

of high-frequency alternators for the production of radiation the

trains of waves were oscillating, with decaying current and e.m.f.

in the antenna and the word decrement had therefore a very

significant meaning.
When alternators or oscillating arcs are used the current and the

e.m.f. at the antenna are sustained, and therefore
" decrement"

ceases to have any meaning.
It is, therefore, appropriate to discuss the power factor rather

than to try to treat of the decrement in such circuits.

If RQ is the sum of the radiation resistance and the effective

resistance of the wires and the ground connection, then the power
consumed in the circuit is P -= PR

,
where 7 is the effective cur-

rent. If E is the effective voltage, then

I = 2irfCE = coCE where C is given in farads,

thuS
Pf = a>CR (35)
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Numerical application :

Let C = 003 m-f. - ~i farads.

h = 50 m.

X = 3000 m.

.'. Radiation resistance = 1600 (^7.7^;)
2 = 0.5 ohm approxi-

,
XoUUU/

mately

W =
27T/

= 27T = 27T10 5
.

A

Let the effective resistance of the wires and ground be 2 ohms,

then

R = 2.5 ohms.

.'. Pf = 27rl0 5

j^ 2.5 - 0.0047

or approximately one-half of 1 per cent.

The radiated energy corresponds in this case of course to only
one-fifth of this amount.

The product of the current and the e.m.f. is 200 times as great

as the power consumed in heat and radiations and 1000 times

as great as the power radiated.

Determination of the "Logarithmic Decrement." If a con-

denser is discharged in a circuit of negligible resistance an alter-

nating current will flow indefinitely, and no energy will be ex-

pended since the energy is transferred alternately between the

magnetic and the electric field.

When the current is a maximum (either positive or negative)

the e.m.f. across the condenser is zero; when on the other hand

the current is zero, the e.m.f. is a maximum.
Thus twice in each cycle the magnetic energy

wm =

is transferred to electric energy

W e
=

The total amount of energy in joules surging during a cycle

is then

W = L/ 2 where / is the maximum value of the current,

or,

W = CE2 where E is the maximum value of the voltage.
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If, however, the circuit contains resistance, 'the current will

not alternate indefinitely but will die down gradually, the rate

of decay being greater the greater the energy consumption.

During these oscillations energy is also transferred between the

electric and magnetic field but each pulse of energy is smaller,

than the preceding by the loss of energy in the resistance.

Ultimately all energy stored in the condenser becomes dissi-

pated in heat or radiated away.
The energy stored in a condenser is %CE 2

joules where E
is the voltage and C the capacity in farads. Thus if the condenser

is charged and discharged N times per sec. the sum of the energy
N

converted to heat and radiated away is -^CE
2

joules per sec.
Zi

or watts.

FIG. 153.

Thus
Wi = ^CE2 watts (36)z

In a circuit of concentrated inductance and capacity it is

shown in the elementary theory of alternating current that the

oscillating current can be expressed quite accurately by the

following equation:

i = I6
- at smut.

IT*

Where a = ^ and R Q and L are assumed constants which how-
iLi

ever is not the case in ironclad inductors and in arcs.
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The ratio
g

as is readily proven.

The logarithmic decrement is

(37)

Incidentally 5 is also the ratio between the energy absorbed by
the resistance and the surging energy per cycle.

Thus I 2RoT R T-~
which agrees with (37).

In the case of the HERTZ oscillator or the umbrella type of

antenna the inductance is confined largely to the linear con-

ductor and the capacity to the spheres or superstructure; thus

we may consider the inductance and capacity as separated rather

than distributed, thus

(38)

(39)

The resistance in the above formula is the sum of the radiation

resistance, the resistance of the wires (taking into consideration

the skin effect), the ground and the radiation resistance.

When an arc is used the resistance of the arc should also enter.

Unfortunately the latter is not a constant but depends upon the

current carried, and hence the decrement is not logarithmic.

However, for the purpose of this article the arc resistance may
be assumed constant at say 5 ohms. For a very complete dis-

cussion of this whole subject the reader is referred to FLEMMING'S
"
Principles of Electric Wave Telegraphy."

Equation 39 contains the inductance and capacity as well as

the resistance. The inductance is usually very difficult to

determine since at different wave lengths more or less inductance

is added to that of the antenna proper. The capacity of the

antenna is however, usually not changed but it depends upon the

construction of the aereal. The complexity of the structure is,

however, such that its value can hardly be calculated except in

the very simplest cases rarely used in practice.
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FLEMMING expresses the approximate capacity of a vertical

wire of radius, h cm. long as:

Cv
= - -

farads,
2 log

- X 9 X 10 11

when, as is the case in wireless stations the lower end of the wire

is near ground, the capacity may, however, be say 10 per cent,

greater.

He also expresses the capacity of a horizontal wire placed h\

above ground as

I

Ch =

2 log-
1 X .9 X 10 11

where I is the length in centimeters and h the height above

ground.

Thus the capacity of a T-shaped antenna may be approxi-
mated as:

c = cv + ch

obviously the total capacity is not at all proportional to the

number of wires connected in multiple. It is only slightly

increased as the number of wires is increased.

If the value of the capacity is difficult to calculate accurately
it is measured relatively easily and will therefore be assumed
as known. It ranges according to ZENNECK approximately as

follows :

0.001 m-f. in torpedo boat antenna.

0.002 m-f. in battleship antenna.

0.007 m-f. in BRANTROCK station.

0.18 m-f. in NAUEN high-power station.

The capacity of the antenna of the experimental installation at

Union College is 0.0012 m-f.

When the wave length is considerably more than four times

the height of the antenna the current distribution is fairly uni-

form in the conductor, and, the circuit can be treated as consist-

ing of "bunched" rather than distributed inductance and

capacity when the following relation obtains.

T = 27T/LC /. L = ~
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thus .C

-f (40)
\

Numerical application: Union College station with an antenna

having a capacity of 0.0012 m-f. sending out waves of 700 m.

length. Assume R = 10 ohms. (By far the greater part of

this is the ground and spark resistance.)

Then
5 = 2

o
10 _!2_

3 X _
10 10

70,000

In the case of the simple antenna it has been shown that the

2
radiation resistance assuming X = 4/i and Iavo >

= - / is 40 ohms.

Thus the radiation decrement is :

3 X 10 10 =
2 log 9 X 10 10

log

In reality due to the proximity of the earth and other causes

the wave length is nearer 4.8 than four times the antenna height,
2

and the average value of the current is nearer 0.7 and -.
7T

Substituting these values we get :

R = 34 ohms instead of 40 ohms

and the radiation decrement for the simple antenna is :

,_*!!* 8 X16*-^ (41)

2 log ^9X10"' log"

Abraham gives s
2.45

o
-

r*
i
] g ~

General Conclusions. Since the power radiated from an

antenna is:

W = 1600 ^ 7 2

it is evident that at a given voltage as the capacity of the super-

structure is increased the current and the wave length are in-

creased. Since, however, the energy is proportional to the square
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of the current and the wave length is proportional to -\/C it

follows that by adding capacity to the superstructure and there-

fore increasing the wave length the radiated energy is increased.

Therefore, if the capacity is made four times as great, the cur-

rent 2
is 16 times as great and X 2

is only four times as great, and

hence, the radiated energy for the same antenna height is in-

creased four-fold.

Unfortunately, however, there is hardly a practical way of

increasing the top capacity without decreasing the effective

height so that the gain is not as great as indicated and if the

umbrella is carried to an extreme, the effective height may be so

much decreased that the energy radiated may eventually begin
to decrease.

With a given construction of the antenna the wave length may
be increased by the introduction of inductance. In this case the

energy radiated is, however, reduced.

It is noted that for a given current the radiated power is

greater the higher the frequency. This does, however, not

necessarily mean that the power received is greater, since as will

be shown later the absorption of energy in space is much greater

with short wave length than with long.

At times it is necessary to send at two widely different fre-

quencies. The natural wave length may be say 600 m. and it is

desired to communicate at a wave length of 300 m. In that case

a condenser may be connected in the series with the antenna.

Since two condensers in series have a smaller capacity than each

and thus the frequency is increased.

The relation between the effective value of the antenna current

and the maximum instantaneous value of the current and e.m.f.

If the damping is not excessive the discharge current of a

condenser of voltage E can be represented by the following

equation :

_^o
i = EuCe 2L sin u

= Ie~at sin co

where

/ = EuC and = g =
|-

R Q being the total resistance in the circuit which is assumed

constant, not depending upon the current.
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The rate at which energy is being converted to heat and
radiated is then:

Ro P -*at sin 2
coZ.

The energy developed in one train of waves then is,

R I 2 e~2at sin 2 utdt = approximately (43)

If the antenna is charged and discharged N times per sec. then

the power is

W _
A/- L (AA\

43/

If Ic is the effective value of the antenna current as read by a

hot-wire instrument,

.:I = Ie ^jy (45)

and since /

Substituting JRo

and r 1
L =

we get l2R C

Je
, (47)

These equations connect the instantaneous max. values of the

antenna current and e.m.f. with the effective current read by a

hot-wire instrument.

Numerical application : At the Union College station R =
10,

12
X = 700 m., C = -, N = 500. Using the small sending set.

I = 2.5 amp.

3 X 10 10

70,000
0.43 X 106
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I = 2.527T.4310 6 = 46 amp.

E = 14,400 volts.

Relation between E.m.fs. Frequencies and Coupling in In-

ductively Connected Circuits. Let e\ in Fig. 154 be the voltage
across the primary capacity, e 2 in Fig. 154 be the voltage across

the secondary capacity.

Then neglecting resistance we get:

^7 =

but,

dt

"
dt

~dt

l
~df

- =

and

(1)

(2)

FIG. 154.

Substituting the current values of equation (2) and equation (1),

and writing

ei = Ei sin ut

e z
= EI sin (ut + a).

Thus

we get,

(3)

(4)
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From (3)

61 = F^rfc^2 (5)

Substitute (5) in (4) and assume that C\Li = C2L 2
= CL, that

is, assuming that the circuits when independent are tuned to the

same wave lengths, then,

(6)

- 2LCco 2 -
co

4
(L

2C 2 - lf 2CiC2)
-

1 k
"

CL(1 -
where

7
M

k =
.

(7)&nu\j \ j. t\j~ \ a. A/~

or,

(8)

where /o is the frequency of each circuit when alone.

It is seen from these equations that two frequencies exist in

the circuit and that they become nearer and nearer alike as the

coefficient of coupling is decreased, that is the less the value of

the mutual induction as compared with the self-induction.

In the case of transformation by ordinary transformer where

the mutual induction is almost perfect, only one frequency will

appear, namely, /2 the forced frequency which in that case is

/2
= / -7=- 1 other words the radiated frequency has only one

V2
value and that value is 70 per cent, of that of each circuit when
alone.

Since

/I _ \2

/2 Xi'

It follows that two different wave lengths are transmitted

and that

fT^fc
X2

- ' '-
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Wave meters are used to show the wave length, and hence, if

the wave length is known the coefficient of coupling can be deter-

mined, it is:

X 2
2 - Xa

1

(10)
k =

(11)

A2 -f AI*

It is evident from the above that the current and voltage
in two such circuits must be expressed as functions of two
frequencies.

Let 61 = AI cos coi 4~ Bia) 2t

e2
= A 2 cos coit -f- B 2 cos ai 2t

These equations are justified since the resistance is negligible,
and hence, no appreciable phase displacements exist between
the two voltages.

For
t = 0,

ei = E lt

and

e 2
= 0.

/. E! = A, + B 1

|= A 2 + B 2 \

Consider then the two waves separately.
We have from (5)

(12)

1 -
and

where

1

A 2

B l

(13)

a. =

ft
=

Thus from (12)

1 jLido? 2
2

Ai = E 1
- B 1

A 2
= - B 2

and

A, = E l
- Bi .'. A! = - aEi

(14)

a.
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E ljCl 1 A
.'. A<t =

a a

B= - A* /. B 2
= -

a

(15)

.'. Substituting these values in equation (11)

pi

[COS Uit COS 0> 2

a
Thus

From (13)

from (6)

- a

wi-

C02

2MC- a

(16)

Equation (16) shows the relation between the maximum voltage
and the capacity when the circuits have negligible resistance.

When damped oscillations are considered the equations become

more involved.

FIG. 155.

Consider the simplest case when the primary of the exciting

transformer, Fig. 155, is supplied with power from an alternator

or other source of sustained oscillations.

Due to the mutual induction between the primary and second-
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ary circuits an e.m.f. EI sin co^ will be impressed upon the

secondary.
The differential equation of the secondary circuit is thus :

EI sin &it = iRz + L^rrr + ^2
at

where e 2 is the voltage across the secondary condenser.

But . ~ de2

.-. E 1 sin Wl = C,R + C 2L 2

2 + e 2 (1)

The sine term can be eliminated by two successive differentia-

tions and the result will be a well-known linear differential

equation of the fourth order the solution of which is:

e2 = E
f
sm (wi$ + <p) + E'e

~ at sin (w 2 + t) (2)

The first term shows the value of the permanent voltage of the

secondary circuit of primary frequency, the second that of the

transient which very soon ceases to exist.

Thus, if it is desired to study the constants of the antenna the

transient term may be neglected and the permanent voltage
becomes

e^ = E sin (wi -f- v?).

Substituting this value in the differential equation we get

after some simple transformations the following relation between

the maximum value of the secondary voltage and the induced

voltage.

The secondary frequency

/ =

when the circuit contains no resistance and

when the resistance is R 2

Thus 1

\J2LJ1

or 1

77-7-
= ^2 +

U 2i-/ 2

20
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where R 2

az =
2L S

T "

co!
2 -

o> 2
2 -

a)
2 + (2eoia 2)

2

When the secondary circuit has the same natural period as the

primary impressed frequency the secondary current becomes a
maximum.
Thus for

0> 2
=

COi I = Ir

since a 2
4
is very small compared with 4coi

2a 2
2

.

This is readily shown to be

.*. The square of the effective value of the secondary currents is

L

2 -
C0 2

2 -
2
2
)
2

or 2
2
is small compared with co 2

2
,
thus

I _ 2a 2a>i

Tr

=

tW

//I
\/(l\ \

but

and
B

2

and

"

2L2/2

'

2ZT2
=

52j
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r* (-i-YI2 \ irfi /

.'.(I -o; 2
)
2

where

*

or

_-

and

If x is near unity then 1 x 2 =
(1 + x) (1 x) = 2(1 x)

and

=
27r(l

-
x)
rjL

\ir 2 - r

If the secondary current J is read by a hot wire instrument

then since the effective values are proportional to the maximum

values,

or,

er
If the frequency of the secondary is so adjusted that J 2 = --

z

then we get

a formula which is used estensively in connection with wave

meter measurements.

Inductively Coupled Oscillating Circuits Having Considerable

Damping. We have shown (equation 5) the following relation

between the effective secondary current Jr at resonance and the

induced e.m.f. EQ when the primary is supplied from a source of

sustained power
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The corresponding equation when both the primary and second-

ary circuits are oscillating has been worked out by BJERKNES and

others who found that as long as the decrements are small the

following relation obtains:

16/
3L

In this equation Jmax * is the maximum possible value of cur-

rent read by a hot wire instrument in the antenna circuit.

N is the number of condenser discharges per second.

EQ is the maximum value of the e.m.f. induced in the antenna

circuit. L 2 is the inductance of the antenna circuit in henrys,

/ is the frequency and di and dz the logarithmic decrements in

the primary and antenna circuits per full period.

7i =
E = <**MCiEi and E

2 _ _ ="

16/
3

"

Similarly,

In the case of sustained primary power.
The maximum instantaneous value of the antenna current is

from (45) remembering that in these equations the decrements

per full period is used.

T 2 A fS T 2
T

2
" max. ^ J "2 A "max. f?

~w~ i\r ~A^ 52

The maximum instantaneous value of the antenna voltage is

/2
(ID

Numerical Examples. Union College small set.

E l
= 5000 volts

120 .

Ci ==

JQ-TO
farads

farads

N = 500
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and

or

X = 700m.; /. / = 0.43 106

>!
= 0.05 5 2

= 0.10 k = 0.10 .'. did2 (d! + d 2)
= ~-

6

i o v 1 20 1 5

.

2 = 50,000 0.43 106 ^f^ 25 10 6 0.01 ~~ = 20
10 75
T _ jr

*J max. ~ Tt.tJ

4 \/ OH
- 0.43 10 6 X 0.10 = 1375

%
7 2

= 37 amp.

10 10

278 X 37 = 11,400 volts.
2x0.43 106 12

BJERKNES has shown how with a slight modification equation

(6) can be used to determine the decrement of the secondary
circuit which may, for instance, be the antenna circuit by means
of a third tuned circuit which is called a wave meter:

This expression is:

d + 5i = 27r
(l
- } (12)

where 5 is the decrement of the circuit being tested and <5i is

the decrement of the meter.

The formula is limited as is the case of equation (6) to the

condition that

Jr and J being the effective values of the current in the wave
meter.

It is also limited to the condition

that both d and Si are small and

that di is considerably smaller than

8 and that finally Xi and X 2 do not

differ more than, say, 5 per cent.

Referring to Fig. 156, W is the

wave meter which is a calebrated

closed circuit of known inductance,

capacity and therefore of known
natural period. The resistance is

FlG - 156 -

made as low as possible so that the decrement of the meter is small.

The value of the current or the (current)
2
is frequently deter-

mined by means of a low resistance heating element, actually a

thermal couple, which supplies a direct current to a galva-
nometer G.
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In that case the galvanometer deflection is obviously pro-

portional to the square of the current value.

The procedure is as follows. The meter is loosely coupled to

the antenna and the capacity of the wave meter is varied until

the largest galvanometer deflection G> is obtained and the

corresponding wave length \o is read.

Then the capacity is changed so that the deflection of the

C1

galvonometer is -~ when the meter reads shorter wave length.

We have then from (12)

5 + d l
= 27T (l

- ^]

To determine the decrement of the meter it is desirable to

insert in the meter circuit such non-inductive resistance that at

resonance, that is when the wave meter reads Xo, the galvanom-
C*

eter deflection is~
The capacity is then varied until the galvanometer deflection

C1

-^
when the wave length is X 2 .

We have then if 5 2 is the decrement due to the added resistance,

It has been shown in equation (8) that the relation between

the effective values of the resonance current with different

decrements are related as follows:

J/ 2 dd* (d l + da)
In our case

Jr'
2

Gr>

2

d\ = d = decrement of the antenna.

d'z = di + 5 2
= decrement of the wave meter in second

test.

di = 8 = decrement of the antenna.

<22
= 5i = decrement of the meter in the first test.
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2 = ( g * + *)(* + fr + frJ

5i(5 + 5 2 )

1-^
Si + 5 2 Xo Si + 5 2

Si
}

Xi

Xo

-

8 = 2I (Xl
~ Xa) (x ~ x ^)

* *
\ \ i \ o\
AQ AO "T~ *2 ^Ai

Numerical Example.
X = 500 m.

Xi = 485 m.

\z = 475 m.

.-. + .!
= 2ir

(l -^) = 0.189.

- ^
(
J -

500)
-

'314

- 0.125.

27T 10 X 25 = 0.
500 5

d = 0.126.

Conditions Affecting the Receiving Station. It has been shown
that at some distance from the sending antenna the maximum
value of the potential gradient in volts per centimeter near the

equatorial plane is

G==
l20irh

I (1)

where / is the maximum value of the current at the sending

antenna, the current being assumed the same at all points of

the conductor. The dimensions are given in centimeters.

A more general formula would be

*
(

.E2
=

j- (2)

where E2 is the maximum value of the voltage across the whole

receiving antenna, a is a correction factor for the current dis-

2
tribution which is

- for a simple antenna and unity for an antenna
7T

in which the height constitutes only a fraction of a quarter wave,
as is most frequently the case in actual practice.

h\, hz, X and r may be given in any units as long as they are

the same, hi and h 2 are the heights of the sending and receiv-
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ing antenna, X the wave length and r the distance between hi

and h z .

In order to be applicable to wireless transmission this formula

needs to be elaborated in several respects.

(a) The voltage is actually greater due to the concentration

of energy as the waves sweep over the surface of the earth.

(b) The voltage is smaller on account of the energy which

strays away from the curvature even if the surface of the earth

is assumed to be perfect of conductivity.

(c) The voltage is reduced on account of the energy absorption
of the earth current which effect is prominent near the sending
conductor where the concentration of current is greatest.

(d) The voltage is sometimes increased, but more often re-

duced, due to reflection, absorption, etc., depending upon the

condition of the atmosphere.

FIG. 157.

Conditions (c) and (d) have not been studied theoretically,

but a considerable amount of data has been given from actual

tests, notably by AUSTIN and FULLER. l

The Effect of the Curvature of the Earth. Assume that the

sending antenna is at A and the receiving antenna at B, Fig.

157.

The distance between A and B is -=-. In the case of a plane
z

wave the receiving antenna for the same distance would then be

at C where,

A -C =
\R.

Thus in this latter case the energy would be spread over a

AUSTIN, Bulletin, Bureau Standards, 1914.

FULLER, Proc., A. I. E. E., April, 1915.



ELECTROMAGNETIC RADIATION 315

circumference wnereas due to the curvature of the earth

the circumference is only 2irR. There is, therefore, a concentra-

tion of energy which can be represented by a coefficient

k' =

and since the intensity of the electric field is proportional to the

Venergy, the concentration coefficient for the electric field at a

distance r under the condition given above is

R0. .'. EnergyLet distance AC, Fig. 157, be equal to AB
per unit length of circumference at C is

E

Energy per unit circumference at B is

_E_
2irR sin 6

2irR6 6

2irR sin sin B
or =

(3)

FIG. 158.

The effect of the straying of power on the potential gradient
due to the curvature of the earth is included in the equation
according to theoretical works done by SUMMERFIELD and ZEN-
NECK by the introduction of a divergence factor.

0.0019r
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AUSTIN'S experiments indicate, however, that with continuous
waves this coefficient is:

0.0915r

and FULLER'S experiments show
0.0045r

=

(4)

AUSTIN'S equation gives values which lie between ZENNECK'S
and FULLER'S and has the advantage of being simpler than the
other two.

Thus the general formula for continuous waves becomes :

, ,

#2 = kki -- (5)

Note, however, that in equation (4) the dimensions are ex-

pressed in kilometers.

The maximum value of the antenna current in the case of
Tjl

sustained oscillations is evidently ^2 TT where R% is the total
/l2

resistance of the antenna that is the radiation resistance, the

effective resistance, ground resistance, and resistance of the

receiving device.

The equation 01 the current in the case of damped oscillations

is slightly different.

It has been shown that if an e.m.f., EQ, is impressed on a tuned

circuit the following relations obtain:

T 2 =~

where EQ is the voltage induced, which in our case is E%. di and

d-2, are the decrements in the two circuits.

Thus di and d% are in this case the decrements of the sending
and receiving circuits respectively.

Equation (7) may be written:

/ di\,,*
^i
+ ^

But the decrement of the receiving antenna is

2-L 2/
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where / M20 h=

. , =

4/di
wnere j i is in

Tt
2 N

m

g*Ji'

but /i
2 = Ji

2 ^ where Ji is the effective value of the sending

antenna current.

4/fl2
2 (l+JW RS (l+J)\ 2/ \ 2/

and
J2 = _ ^/^ (g)

The effective value of the voltage across the receiving antenna

TT ^ AsaJi (10)

_

where 2 is the effective value of the receiving voltage and Ji

is the effective current at the base of the sending antenna.

It is evident from the above that the ratio between the effect-

ive values of the received e.m.f. with sustained and with damped
oscillations is:

damped
if the decrements of the sending and receiving antennas were the

same then the ratio would be V2.
Method of Determining Power Received. AUSTIN based his

determinations on the fact that if in two circuits in parallel we
know the power in one we can calculate the power in the other

and the total power from the relations of the resistances Rys'

in the circuits.

The total power supplied is

FT F(E + E
\ E R + S

-~ E
\R
+ S)~ RS

The power of circuit R is

P -^Fr ~
R

%l - R + S P - R + S
" Pr

~
RS S

D I
Cf

or the total power = Pr .
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The minimum power Pr required for distinguishing between dots

and dashes of resistance R is determined experimentally by ob-

serving the current in the receiving antenna under conditions

that can be conveniently controlled.

Knowing Pr and R and the resistance S which is shunted across

the telephone receiver enables one to determine the total power
received. In FULLER'S experiments at Honolulu this minimum

power was found to be 3.2 X 10 10
watt, when dealing with sus-

tained oscillations.
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Partial Differentiation. The complete differential of a func-

tion V of several independent variables r, <p, 6 is recalled to be:

"-*+*+S
In words this equation reads: The total differential of V is

the sum of the partial differentials of V with respect to the

independent variables. meaning the derivative of V with

respect to r when <p and 6 are considered constant.

If the independent variables r, <p, and 6 are some functions of

a single other variables t the derivative of V with respect to t

is obtained by simply dividing equation (1) by dt.

Thus: dV dV dr aV d<p dV dd

dt
~

dr dt
+

d<p dt
+ d6 dt

If the independent variables r, <p and 6 are functions of several

other independent variables, for instance x, y, z, then the partial

derivative of V with respect to x is obtained in a similar way by
dividing the equation by dx, remembering, however, that now

-j is the partial derivative and should be written -r

dx dx

Thus ^ = iZ^,^I^_4_dZ^ m
dx dr dx

~*~

dp dx "*" a0 az

Similarly 3F = a7 6r 57 a^ dF a0

dy dr dy
~*~

d<p dy
"*"

d0 ay

and ^Z _ ?Z ^r ^Z ^ ^Z ^
a2

~
a/- a^

+
a^ dz

+
a<? a^

The second partial derivative of V with respect to x is obvi-

ously obtained from (3) as follows:

aF av ar
_a^

/ev\
_ dv_ av' '

/e\
_

\dr)
' '

dx 2 dr dx 2 dx dx\dr d<p dx 2 dx dx\ d

,dVWded_/dV\
dO dx 2 T dx dx\dd/ v ;

319
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dV dV dV
In equation (6) ,

-r and r are each functions of r, <p and 6.
or d( ou

and,

(7)

Substituting these values in equation (6) we get:

dw dV d*r dV ay dV d 2
e

'

dr

_ ~^ /

dr 2 \dx

2d 2V
dr_d<p

2d 2V dO dr

d6 dx 2

Q 2V /dS\

d0 2 \dx)

2d 2V d0

drd<p dx dx drdO dx dx d<pdO dx

A similar expression is, of course, obtained for

d 2V . d 2V
f

-
n and

(8)

dz 2

A complete discussion of partial differentiation can be found
in any text-book on Calculus, for instance, in volume II of WOODS
AND BAILEY'S "A Course in Mathematics."
As an application of the above is given the transformation of

LAPLACE'S equation from rectangular coordinates to spherical and

cylindrical coordinates.

FIG. 159.

(a) Transformation of LAPLACE'S equation to spherical coordi-

nates. Fig. 159.

" "
dx 2

dy
2 dz 2
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F = F(rM, r = fL (xyz), B = fz (xyz), <p
=

f*(xyz),

dV dV dr dV de dV dtp

~dx
~~

~dr dx
"

dO dx dtp dx

dx 2
= ~~

dr ax 2 ~*~
dx dx\dr

dV av
"

dx 2

But

de dx 2 '

ax

dx \d<p.

A/^Z\
~dx \dO/

dr2 dx "^ *~* *~~

dx \ dip) d<pdr dx

- _L
'

_i .

ax a0a<? ax

dX

= aF av aF
' '

dx 2
'

dr dx 2 4
"

de

/dr\

aF
ax 2

d_V_ /dr\ d_V_ /d6\ d_F
ar 2 \dx/ de 2 \dx/ dv 2

2a 2F ar de 2d 2v
dr_ d<p

dx,

2d 2v de

drde dx dx drd<p dx dx d6d<p dx dx

Q2y A2V
Similar expressions can be gotten for --r and

'

ax 2
dy

a 2F
ar 2

dy''

~

~dr (dx 2
dy

2 dz 2

dz 2

dy

aF
" " av

-. a 2F
"a^

L 5!Zr /M 2

4. /<M
2 /M 2

i~

a<
2 L\ax/

"

\d)
'

\dz) J

dz 2
/

+
(?y

dx
+

dy dy

)x ax dy dy dz dzJ

but in the spherical coordinate system,

\/x 2 4- i/
2

if

r = (x
2 + y

2 + 2
2
)^, 6 = arc tan - and ^ = arc tan -

dy

dr 30~i
,

2a 2Frar
a<^

ar a^ ar a^""
ax
+

d ~d dz a^
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From the construction, Fig. 159,

x = \/x 2 + y
2 cos <p

= r sin 6 cos <p',y
= r sin d sin <f>\ z

= r cos 6.

x
2\K

= - = sin cos v?2dx

y= ^ = sm sin
dy (x

2 + t/
2 + z*)* r

dr _ 2 _ z

dz
~

(x
2 + y

2 + )W
~

r
=

I^A.(X 2 I

^2)^/2 ^ r y J

X
dx x 2 + y* x* + y

2 + z*
"

(x
*

Z Z COS <f> COS ^ COS <p
-r COS V?

= - - = --
r 2 r r r

y

dy x2 + 2/
2 + 2 2

(a;
2 + y

2
)*

cos sin <p

dz
,

sn

A/i\
y

~dx \xl = y _ y r

f xz + y*

~

Vx 2 + y
2 rVx 2

r

sn
r sn

1

d<p x x x r cos <p

y
2 rx2 + y

2 r sn

a
,

. dO d<p=
(sin 6 cos <p )

= cos 6 cos <p sin sin <p
=

C/^C o3/ C/2/

. cos cos <p . . . . sin <p= cos 6 cos v X - - + sin sinI fjll.1. \J OXAA V^ * f*.

r
^

r sin 6

-
[cos

2 cos 2
<p -f sin 2
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= -
[(1

- sin 2
0)(1

- sin 2
<p) + sinV]

= -
[1
- sin 2 cos 2

<f>]

dy*
=

dy
(sin sin ^ = =

r
[1
~ si

av d n a0 i

^=^cos0 , -sm0- = + -sin'0

d 2 6 cos 6 cos <p / 1 \ dr
>
= - = cos cos " cos

1 .

2 (cos cos <p sm cos <p)

i

1 / . cos cos <p
H I cos <p sm -

r \ r

. 1 , . sin <f>

H cos sm
r r sm

=
I -j sin ^ cos ^ cos 2

<^ + sin 9 cos cosV

cos . "I

r r Sin 2
<^>sm

d 1 1 r=
^-

- cos sm $?
= = - -I 2 sin cos sin 2

r2 sin fa r sin 2

cos < d

r sin dx

sin
<^g dr 1 sin <p cos <90 cos

r2 sin do; r sin 2 dx r sin dz

J^ / cos <p l^
cos y? d(p _

1 cos <p cos 60~
&y \r sin

~
r2 sin B dy r sin 2

dy
sn
r sin

21
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1 sin (p . 1 sin <p cos

^ STl sin ' cos * +
F sin* a

1 2
-[1 sin 2 cos 2

(p + 1 sin 2
<^ + sin 2

0]
= -

cos

ax 2
dy

2 dz 2 r 2 sin

W +
\a?//

"

\dz>

sin 2 cos 2
</> + sin 2 sin 2

<p + cos 2 = 1

/a0\ 2 ,d0\ 2 /a0\ 2

=
iW \dyl \dz' r 2 sin 2

/a<p\
2

/av?\
2

/a<p\
2 _ i

\a^/
"

(dy)

"

Vaz/
~

r2 sin 2

ar a0
,

ar a0
,
ar a0 i x

T-^- + T- T,- + T-^ = -(sin cos cos 2
<p -f- sm cos sm 2

v?
ox ox oil dy dz oz r . .

sin cos 0)
=

dx dx dy dy dz dz

d0 d(p d0 dtp dd d<p

a 2F a 2F a 2F = aFrav av a 2ri aFra 2 a 2 a 2

~ ~"

an 2 /an 2 /an
2-|

a 2Fr /a0\ 2 /a0\ 2 /a0\

dx) (dy)
hW J^a^Lvax/ w \dJ

v,
JFr /a^\ 2 /a<^\ 2 /a<p\

2 "i _2 aF i cos aF
^X^l \^/

'

\dv/ \dz) . ~r ~dr r2 sin a0

.

i_
a 2F

- +
sin 2

i r / aF
,

a 2F\ . i /
fl aF,Ar

(
2
a7
+r

ai^)
+

sirT0 (
cos g

a0-
+s

A B



APPENDIX 325

But

.'. LAPLACE'S equation in spherical coordinates

sin 2 $ d<p*

(C) CYLINDRICAL COORDINATES

Referring in Fig. 160

V =
F(rBz) r = (z

2 + y*)K f
e = tan' ^z = z

x = r cos e, y = r sin z = z

= x - x

dx
~

(x
2
-f y

2
)^

~
r

dr

dy
dr

dz

cos 6

= sin 6

=

<

Six*

FIG. 160.

60

dx
+

y

r~

sn

cos
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?-dz

dz_dz__fa_^
dx dy dz

av a ,a0 sin 2 2

= cos = sm = H
ax 2 az dx r

av cos 2

^-r -oO *-*

az 2

a 2 a sin 1 n d8 . 1 n ar 2
v-s = = sm + sm -r- = sm cos
aar aa; r r ao; r^ dx r 2

a 2 a cos i so i a0 2
^-s

= - = sm cos -- =
5 sm cos

a?/
z

dy r r dy r 2-
dy r 2

^ =
az 2

a *z = d*z = d% =
dx 2

dy
2 dx 2

Vr av av = i
' '

dx 2
dy

2 dz 2
~

r

a 2 a 2 a 2

dx2 8v* 8z2
~

(I)'+'+-
dr<Wd^rdOdrd<)_
dx dx dy dy dz dz

dr dz dr dz dr dz
+ "

=
dx dx

+
a?/ dy dz dz

~

'

a^ 2
a?/

2 a^ 2
~

r ar 2 ar2 r2 a0 2
""

a^ 2
=

which is LAPLACE'S equation in cylindrical coordinates.
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Elements of Vector Analysis. Physical quantities can be

divided into two large and important classes, namely: scalars

and vectors.

A scalar quantity is one that is absolutely determined by its

magnitude. Thus temperature, work, etc., are scalars.

A vector quantity may be denned as one having magnitude,

sense and direction and it is necessary to specify these three in

order to determine a vector. Velocities and accelerations are

examples of vector quantities; forces are strictly not vectors,

since they are characterized not only by their magnitude, sense

and direction but also by the point of application, while vectors

do not have definite position in space. However, forces can

be treated as vectors when proper account is taken of this

difference.

Addition and Subtraction of Vectors. Vectors are added or

subtracted by the well-known parallelogram law:

Thus
a + o = c

and
c o a.

Vectors follow the associative and com-

mutative laws of algebra, and hence very
little explanation is necessary as to the

addition of vectors. a

The sum of three vectors a, b and c is
FlG> 161>

given by the diagonal mn as shown in Fig. 161.

Products of Vectors. There are two kinds of vector products :

I. The dot product which is denned as,

a dot b = a b = ab cos (a, b)

where a and b are the two vectors to be multiplied together,

and a and b are the numerical values of the vectors.

II. The cross product which is denned as:

a cross b = a X b = e ab sin (a, b) .

327
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where e denotes that the product is a vector. It is the unit

vector perpendicular to the plane formed by a and 6.

The above names have been introduced by WILLABD GIBBS

and they are used principally by American writers.

The reader is familiar with the resolution of vectors into com-

ponents which can be treated according to the laws of ordinary

algebra. The great advantage of vector analysis is that it deals

with vectors directly. It is found useful, however, to resolve

vectors into their components and in such case a vector a is

defined in terms of its magnitude along any direction, say x,

times a unit vector i along x.

For convenience rectangular coordinates are used and the

unit vector along the z-axis is denoted by i, the unit vector along
the y-axis is denoted by j and the unit vector along the z-axis

byfc.

Thus
a = axi -f- avj -f- axk

a = A/a*2 + a v
2 + a2

2

a = a(i cos a -f- j cos /3 -f k cos 7)

where a, and 7 are the direction cosines.

Now it will be easily seen from the definition of the dot product
that:

i - i 1 i -

j =

j-j = l t-fc =
k-k = 1 j -k =
a - a = a 2

It is also clear that the condition of perpendicularity of two

vectors is that their dot product shall be zero.

The dot product is also called (by HAMILTON)
the scalar product, because the product is a

scalar. The cross product is called the vector

product, because it is a vector.

.a a X 6 gives a vector c, Fig. 162, whose mag-

nitude is (ab) sin (a,6); its direction is along

the normal to the plane of the vectors a and 6,

and finally the sense of c is taken so that as one

goes from a to 6 he follows a right-hand screw. In other words

from a to b we follow the threads of a corkscrew whose direction

of progress determines the sense of 6. This is, of course, the well-
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known rule of MAXWELL for the relation between the direction

of flux, the motion of a conductor, and the e.m.f. thereby

generated.

It is clear from the definition of a cross product that in Fig. 163

i X j
= k = -

j Xi
j x k = i = - k X j

k X i = j = -- i X k

i X * = j X j = k X k = 0.

FIG. 163.

The cross product of two vectors can also be obtained in

terms of the components and the unit vectors i, j and /b; only
it is evident that care should be taken not to invert the order

of factors, since a Xb = 6 X a.

Exercise. Prove that if ax av a2 ,
b x bv b z are the rectangular

components of a and b.

a X b =
(a vbz

- aj) v) i + (afbx - ajb,) j + (axb v
- a vb x)k

or in determinant form,

* j

a X b = ax a v

b x by bz

Exercise. Prove that the absolute value of a X b which is

written a X b

=
(a) (b) sin (a, b)

a X 6= b v
2 + bf

2
)
-

(a xb x + a vb
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Now it will be noticed that in the last exercise, a 2
x + a2

y + az
2

is simply equal to a a.

Thus:

First term = a a

Second term = b - b

Third term =
(a 6)

2

= (ab cos a)
2

where = <
a, b

so that a X & = V(a )(& &)
-

(ab cos a)
2

a X 6 = "a 2& 2 - a 26 2 cos 2 a

= a& \ 1 cos a

= ab sin a

The product of a X 6, must be the normal to the plane of the

vectors a and b is seen as follows : Assume c to be the vector and

find a c = a. (a X b)

also b-c = b. (a X b)

Multiplying these out in the ordinary way we find

a c = 6 c = 0,

i.e., ac cos (a, c)
=

be cos (bj c)
=

which is satisfied when c is normal to the plane ab.

The above are intended to cover the very small part of vector

analysis used in this book. For further information the reader

should consult special treatises written on the subject.

HEAVISIDES' "
Electromagnetic Theory;" ABRAHAM and

FOPPL'S "Theory of Electricity and Magnetism" can be recom-

mended highly.

An excellent short treatise on the subject is "Elements of

Vector Analysis" by BURALLI-FORTI and R. MAREOLONGO, and
a somewhat larger work is that of WILLARD GIBBS, edited by
WILSON. Finally COFFIN'S "Vector Analysis" may be men-
tioned among works of reference, it appears indeed as best suited

for the introduction to vector analysis.
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Attenuation, 121

Austin, 316

Auxiliary equations, 46

B

Ber and bei function, 273

Bjerknes, 313

Capacity between concentric con-

ductors, 70

between parallel planes, 68

between transmission lines, 70

of antenna, 299

of a single wire, 230

of concentric cable, 96

of isolated spheres, 163

of two cylindrical conductors,
224

of two wires in multiple, 230

Charge distribution on an ellipsoid,

199

Circular symmetry, 188

Complete differential, 164

Complimentary function, 46, 86

Concentric cylinders, 215

spheres, 209

Condenser, capacity of, 68

characteristics of, 68

charged, 71

discharged, 72

energy supplied to, 71

Coulomb's law, 157

Coupling, effect on frequency, 303

Curl of a vector, 257

Current, equation of, 261

Curvature of earth, 314

Cylindrical bars, 150

conductor, current and flux

distribution, 268

conductors, 218

D

Differential equations, higher order,
44

operator, D, 45

Differentials and differences, 61

Direct-current generator, field cir-

cuit, 59

Displacement current, 263, 264

Distortionless line, 142

Divergence of a vector, 185

theorem, 186

E

Electric doublet, 284

field, energy of, 262

intensity, 290

Electromagnetic radiation, 278

Electromotive force, equation of, 260

F

Field intensity, 158

Flat conductors, 152 .

Flux and current distribution, 152

Forces between point charges and

spheres, 175

Froelich's equation, 22

Fuller, 316

G

Gauss' theorem, 160

Graph of function y = <rx
,
9

Green's theorem, 186

Grounded horizontal wire, effect on

potential distribution, 254

331
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H

Hertz's oscillator, 284

Hysteresis loop, 56

I

Images, method of, 168

Inductance, 11

of air coil, 36

of concentric cables, 97

Inductances, combined, 37

Inductive circuit containing iron, 62

K

Kelvin, 273

Lame's differential parameter, 185

Laplace's equation, 188, 320

Legendre's coefficient, 188

function, 189

Leyden jars, 72

Linear differential equations, 3

Line charge, 218

integral, 163

Logarithmic decrement, 295

M

Magnetic field, energy of, 263

energy stored in, 8

intensity, 290

potential, 180

and current, 183, 184

shell, 181

Marconi, 292

Maxwell's coefficient, 232, 263

Metallic spheres, 169

Mutual induction, 33

imperfect, 51

perfect, 37

O

Oblate ellipsoid, potential distribu-

tion, 24

Partial differentiation, 319

fractions, 21

Poisson's equation, 187

Potential, 162

distribution between point

charge and plane, 171

between two spheres, 175

gradient, 164, 165

of small magnet, 180

outside of thin circular disc, 197

Power factor, 295

received, 317

R

Radiated energy, 290

Radiation, 278

resistance, 292

Receiving station, 313

S

Short-circuited winding, current in,

54

Short-circuit suddenly opened, 84

Shunt motor self excited, 16

Skin effect, 271

Solenoidal field, 186

Solid angle, 183

Step-by-step method, 66

Stoke's theorem, 258

Surface density, 170

integral of distributed vector,

158

Symbolic factors, 89

Three-phase cable, 243

Three-phase line, 249

Tuned circuit, 80

Two conductor cables, 237

U

Unit charge and unit pole, 157

V

Vector analysis, 327

Velocity of propagation, 121-132

W
Wave lengths, 121-132

Weber's equation, 182
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