
7.10 .31

THE LOEB CLASSICAL LIBRARY EDITED BY
 E. CAPPS Ph.D., LL.D. T. E. PAGE, Litt.D. W. H. D. ROUSE, Litt.D.

THEOPHRASTUS ENQUIRY INTO PLANTS

II

41

THEOPHRASTUS ENQUIRY INTO PLANTS AND MINOR WORKS ON ODOURS AND WEATHER SIGNS

WITH AN ENGLISH TRANSLATION BY SIR ARTHUR HORT, Bart., M.A.

formerly fellow of trinity college, cambridge

IN TWO VOLUMES

> II

LONDON : WILLIAM HEINEMANN NEW YORK : G. P. PUTNAM'S SONS MCMXVI

LIBRARY
JUN 191972
UNIVERSITY OF TORONTO

$$
\begin{aligned}
& P A \\
& 4448 \\
& A 8 \\
& 1916 \\
& \text { v. } 2 \\
& \text { cop. } 2
\end{aligned}
$$

CONTENTS

B00K VI
OF UNDER-SHRUBS
PAGE Of the classification of under-shrubs : the wild kinds : the chief distinction that between spinous and spineless 3
Of spineless under-shrubs and their differences 7
Of certain specially important spineless under-shrubs- silphium and magydaris-belonging to ferula-like plants 15
Of spinous under-shrubs and their differences 21
Of cultivated under-shrubs (coronary plants), with which are included those coronary plants which are herbaceous 35
Of the seasons at which coronary plants flower, and of the length of their life 49
BOOK VII
of herbaceous plants, other than coronary plants: pot-hrrbs and similar wild herbs
Of the times of sowing and of germination of pot-herbs 59
Of the propagation of pot-herbs, and of differences in their roots 67
Of the flowers and fruits of pot-herbs 75
Of the various forms of some pot-herbs 81
Of the cultivation of pot-herbs; manure and water 93
Of the pests which infest pot-herbs 95
Of the time for which seed of pot-herbs can be kept 97
Of uncultivated herbs : the wild forms of pot-herbs 99

CONTENTS

Of other uncultivated herbs, which may be classed with
PAGE:
pot-herbs 103
Of the differences in stem and leaf found in all herba- ceous plants 107
Of other differences seen in herbaceous plants in general, as compared with one another and with trees 111
Of the seasons at which herbs grow and flower 115
Of the classes into which herbaceous plants may be divided, as those having a spike and chicory-like plants 119
Of herbs which have fleshy or bulbous roots 125
Of certain properties and habits peculiar to certain herbaceous plants 135
BOOK VIII
OF HERBACEOUS PLANTS: CEREALS, PULSES, AND 'SUMMER CROPS'
Of the three classes and the times of sowing and of germination 143
Of differences in the mode of germination and of subse- quent development 149
Of differences in development due to soil or climate 155
Of differences between the parts of cereals, pulses, and summer crops respectively 159
Of the differences between cereals 165
Of the differences between pulses 173
Of sowing, manuring, and watering 177
Of the degeneration of cereals into darnel 183
Of the peculiar character of chick-pea 183
Of special features of 'summer crops' 185
Of treatment of cereals peculiar to special localitics 185
Of cercals which grow a second time from the same stock 187
Of the effects of climate, soil, and manuring 189
Of different qualities of seed 191
vi

CONTENTS

Of degeneration of cereals, and of the weeds which
PAGEinfest particular crops
Of the conditions in the seeds of pulses known as 'cookable ' and ' uncookable,' and their causes 197
Of the grains and pulses which most exhaust the soil, or which improve it 199
Of the diseases of cereals and pulses, and of hurtful winds 201
Of seeds which keep or do not keep well 205
Of the age at which seeds should be sown 209
Of artificial means of preserving seed 211
Of the effect of heat on seeds 211
Of certain peculiarities of the seed of lupin and aigilops 213
BOOK IX
OF THE JUICES OF PLANTS, AND OF THE MEDICINAL PROPERTIES OF HERBS
Of the various kinds of plant-juices and the methods of collecting them 217
Of resinous trees and the methods of collecting resin and pitch 223
Of the making of pitch in Macedonia and in Syria 229
Of frankincense and myrrh : various accounts 233
Of cinnamon and cassia : various accounts 243
Of balsam of Mecca 245
Of other aromatic plants-all oriental, except the iris 247
Of the medicinal juices of plants and the collection of them : general account 251
Of the cutting of roots for medicinal purposes, and of certain superstitions connected therewith 255
Of the medicinal uses of divers parts of plants 261
Of hellebores, the white and the black : their uses and distribution 265
Of the various kinds of all-heal 269
Of the various plants called strykhnos 271
Of the various kinds of tithymallos 275

CONTENTS

PAGE
Of the two herbs called libanotis 277
Of the two kinds of chamaeleon 277
Of the various plants called 'poppy' 279
Of roots possessing remarkable taste or smell 281
Of the time for which roots can be kept without losing their virtue 287
Of the localities which specially produce medicinal herbs 289
Of the medicinal herbs peculiar to Crete 295
Of wolf's-bane and its habitat, and of meadow-saffron 299
Of two famous druggists and of the virtues of hemlock 303
How use diminishes the efficacy of drugs, and how they have not the same effect on all constitutions 305
Of plants that possess properties affecting lifeless objects 309
Of plants whose properties affect animals other than man 309
Of plants possessing properties which affect the mental powers 311
Of plants said to have magical properties 313
A problem as to cause and effect 313
Of certain plants, not yet mentioned, which possess special properties 315
MINOR WORKS
introduction to the treatises concrining odours and concerning weather signs 324
CONCERNING ODOURS
Introductory: Of odours in general and the classifi- cation of them 327
Of natural odours ; of those of animals and of the effect of odours on animals 329
Of smell and taste 331
Of odours in plants 333
Of artificial odours in general and their manufacture : especially of the use of perfumes in wine 333
viii

CONTENTS

PAGE
Of the oils used as the vehicle of perfumes 341
Of the spices used in making perfumes and their treat- ment 347
Of the various parts of plants used for perfumes, and of the composition of various notable perfumes 351
Of the properties of various spices 355
Of the medicinal properties of certain perfumes 359
Of rules for the mixture of spices, and of the storing of various perfumes 361
Of the properties of certain perfumes 365
Of other properties and peculiarities of perfumes 373
Of the making of perfume-powders and compound per- fumes 377
Of the characteristic smells of animals, and of certain curious facts as to the smell of animal and vegetable products 381
Of odours as compared with other sense-impressions 383
CONCERNING WEATHER SIGNS
Introductory : general principles 391
The signs of rain 397
The signs of wind 407
The signs of fair weather 427
Miscellaneous signs 431
index of Plants 435
KEY TO THE INDEX -
I.-List of plants mentioned in the Enquiry under botauical names 487
II. - List of plants mentioned in the Enquiry unde popular names 494

Ravernxen

45206t
较标 c数教


``` 1 1502
```


 e suidillyigutanderve 2
 8，．．．部3

seme

－ $8:$

1918

48

THEOPHRASTUS

ENQUIRY INTO PLANTS воок VI

ӨЕОФРАЕТОצ חЕРI ФケTתN İTOPIAミ

Z

 $\sigma \nu \mu \pi \epsilon \rho \iota \lambda a \mu \beta a ́ \nu o \nu \tau a \iota ~ \phi v ́ \sigma \epsilon \iota \varsigma^{\bullet}$ oiov ท̋ $\gamma \epsilon \sigma \iota \tau \eta \rho \grave{a}$ $\pi о \iota \omega ́ \delta \eta s$ є̇ $\sigma \tau i ́$.

[^0]
THEOPHRASTUS

ENQUIRY INTO PLANTS

BOOK VI

Of Under-Shrubs.

Of the classification of under-shrubs: the wild kinds: the chief distinction that between spinous and spineless.

I. We have spoken already of trees and shrubs, and next we must speak of under-shrubs and herbaceous plants and of any other natural classes which are included with these; for instance, cereals come under herbaceous plants.

But first let us tell of under-shrubs, for this class comes near those mentioned above because of its woody character. Now it may be said that with all plants the wild kinds are more abundant than the cultivated, and this is certainly true of the undershrubs. For the cultivated kinds of this class ${ }^{1}$ are not numerous, and consist almost entirely of coronary plants, as rose gillifluwer carnation sweet marjoram martagon lily, to which may be added tufted thyme bergamot-mint calamint southernwood. For all these are woody and have small leaves; wherefore ${ }^{2}$ they are classed as under-shrubs. This class covers given in 1,3 . 1 , nor do some of the plants here mentioned come under the description. St. considers the text defective.

THEOPHRASTUS

 ӧтау $\pi \epsilon \rho \grave{\imath} \sigma \tau \epsilon \phi а \nu \omega \mu a ́ \tau \omega \nu \kappa а \grave{\imath} \lambda a \chi a ́ \nu \omega \nu \pi о \iota \omega ́ \mu \epsilon \theta a$ $\mu \nu \epsilon i ́ a \nu$. $\nu \hat{v} \nu \delta \epsilon ̀ ~ \pi \rho \hat{\omega} \tau o \nu \pi \epsilon \rho i ̀ ~ \tau \hat{\omega} \nu$ à $\gamma \hat{\rho} i ́ \omega \nu \lambda \epsilon ́ \gamma \omega \mu \epsilon \nu$.

 $\pi \epsilon \iota \rho a \tau$ є́ò єītєî̀.

 $\pi a \lambda i ́ o v \rho o s ~ \beta a ́ t o s ~ \rho o \delta o \omega \nu i ́ a ~ к a ́ т \pi a \rho ı s . ~ Є ̇ \nu ~ \mu e ̀ \nu ~ o u ̂ \nu ~$
入áßoı тàs סıaфорás.

[^1]
ENQUIRY INTO PLANTS, VI. ı. 2-3

also pot-herbs, such as cabbage rue and others like them. Of these it is perhaps more appropriate to speak under their proper designation, that is, when we come to make mention of coronary plants and pot-herbs. Now let us first speak of the wild kinds. Of these are several classes and subdivisions, which we must distinguish by the characteristics of each sub-division as well as by those of each class taken as a whole. ${ }^{1}$

The most important difference distinguishing class from class which one could find is that between the spineless and the spinous kinds. Again under each of these two heads there are many differences distinguishing kinds and forms, of which we must endeavour to speak severally.
${ }^{2}$ Of spinous kinds some just consist of spines, as asparagus and shorpios; for these have no leaves except their spines. Then there are the spinousleaved plants, as thistle eryngo safflower ; these and the like have their spines on the leaves, whence their name. Others again have leaves as well as their spines, as rest-harrow caltrop and pheos, ${ }^{3}$, which some call stoibe. Caltrop is also ${ }^{4}$ spinous-fruited, having spines on the fruit-vessel. Wherefore this peculiarity marks it off from almost all other plants; though many trees and shrubs have spines on the shoots, as wild pear pomegranate Christ's thorn bramble rose caper. Such 5 are the general distinctions which may be made among spinous plants.
 smaller divisions called $\mu \hat{\epsilon} \rho \eta$ above.
${ }_{2}$ Plin. 21. 91.
 ${ }_{\sigma \tau}$. P_{2}. cf. 6. 5. 1 and Index.
 кaveov UMVAld. of. 6. 5. 3. ' oivv add. Sch.

THEOPHRASTUS

 є́ $\rho \epsilon \cup \theta \epsilon \delta a \nu o ̀ \nu ~ \sigma \pi \epsilon \iota \rho a i ́ a ~ к \nu \epsilon ́ \omega \rho o \nu ~ o ́ \rho i ́ \gamma a \nu o s ~ \theta u ́ \mu \beta \rho a ~$ $\sigma \phi а ́ к о s ~ є ̀ \lambda є \lambda i ́ \sigma \phi а к о s ~ \pi \rho a ́ \sigma \iota o \nu ~ к o ́ v и \zeta а ~ \mu є \lambda \iota \sigma \sigma o ́-~$

[^2]

ENQUIRY INTO PLANTS, VI. I. 4-1I. 2

With spineless plants it is not possible to make such 'generic' distinctions; for the variation of the leaves in size and shape is endless, and the differences are not clearly marked ${ }^{1}$; but we must try to distinguish on another principle. There are many classes of such plants and they differ widely, as rock-rose ${ }^{2}$ bryony madder privet ${ }^{3}$ kneoron marjoram savory sphakos ${ }^{4}$ (sage) eletisphakos ${ }^{5}$ (salvia) horehound konyza balm, and others like these ; and in addition to these we have the plants with a ferulalike stem ${ }^{6}$ or with a stem composed of fibre, as fennel horse-fennel ${ }^{7}$ narthekia (ferula) narthex (ferula) and the plant called by some wolf's bane, ${ }^{8}$ and others like these. All these, as well as any other ferulalike plants, may be placed in the class of undershrubs.

Of spineless under-shrubs and their differences.

II. The various forms and the differences between the above mentioned plants are in some cases more, in some less easy to distinguish. Of rock-rose ${ }^{9}$ they distinguish two kinds, 'male' and 'female,' in that the one is ${ }^{10}$ larger, tougher, more glossy, ${ }^{11}$ and has a crimson flower; both however are like the wild rose, ${ }^{12}$ save that the flower is smaller and scentless.

There are also two kinds of kneoron, one white, the other black. The white has a leathery oblong examples given here the two classes are taken together,
 article is not repeated.
${ }^{7}$ cf. 6. 2. 7.
${ }^{8}$ Lit. 'mouse-bane' : for other Greek names see Index.
 Diosc. 1. 97.

${ }^{11}$ i.e. has more glossy leaves.
12 cf. Plin. 21. 55 ; Theocr. 5. 131. See Index.

THEOPHRASTUS

 $\kappa а т а \delta \epsilon i ̂ \nu ~ \kappa а і ~ \pi \epsilon \rho \iota \lambda a \mu \beta a ́ \nu \epsilon \iota \nu, \omega \omega \pi \epsilon \epsilon \rho$ т $\hat{\omega}$ ої $\sigma \omega$. $\beta \lambda a \sigma \tau a ́ \nu \in \iota$ ठè каì à $\nu \theta \in \hat{\imath} \quad \mu \in \tau$ ’ í $\eta \mu \epsilon \rho i ́ a \nu \quad \mu \in \tau о-$

 $\theta \epsilon \rho \iota \nu a ́ s . ~ a ̀ \phi ’$ ov̉ каì $\dot{\eta} \mu \epsilon ́ \lambda \iota \tau \tau \alpha \lambda a \mu \beta a ́ \nu \epsilon \iota$ тò μ é l, каi тои́тє фабі̀ oi $\mu \in \lambda \iota \tau \tau o v \rho \gamma o i ̀ ~ \delta \hat{\eta} \lambda о \nu$ єìvaı

 $\tau \grave{\eta} \nu \stackrel{a}{a} \nu \theta \eta \sigma \iota \nu$ є่à̀ v̌ $\delta \omega \rho$ є่ $\pi \iota \gamma \epsilon ́ \nu \eta \tau a \iota$.

 таи̂та каi $\sigma \chi \in \delta o ̀ \nu ~ \pi \rho o ̀ s ~ \tau a ̀ ~ a ̆ \lambda \lambda a ~ \tau o ̀ ~ \kappa а т a ̀ ~ \tau o u ̀ s ~$

${ }^{1}$ cf. 1. 10. 4.
${ }^{2}$ Apparently an afterthought, suggested by the mention of the woodiness of the branches.
${ }^{3} \pi \epsilon \rho i \lambda \alpha \mu \beta \alpha \alpha^{\prime} \in \iota$ conj. W. from G ; $\pi \epsilon \rho i \lambda \alpha \mu \beta \alpha ́ \nu \epsilon \iota \nu$ Ald.
${ }^{4}$ Plin. 21. 55.

ENQUIRY INTO PLANTS, VI. i. 2-4

leaf, somewhat like that of the olive; the leaf of the black is like that of the tamarisk ${ }^{1}$ and fleshy; the white grows more on the ground and is scented, while the black is scentless. In both the root, which runs deep, is large (and the branches which divide at the ground level are numerous thick and woody), and the root is also very woody. ${ }^{2}$ It is also very tough, wherefore it is used for binding and to put ${ }^{3}$ round things, like the withy. It grows and flowers after the autumnal equinox, and remains in flower a long time.
${ }^{4}$ Of marjoram the black form is barren, the white bears fruit. ${ }^{5}$ There is a black and a white thyme, and it flowers very freely : it is in bloom about the summer solstice. It is from this flower that the bee gets the honey, and by it ${ }^{6}$ beekeepers say that it is made known whether they have a good yield of honey or not; for, if the thyme flowers abundantly, ${ }^{7}$ they have a good yield, but the bloom is injured or even destroyed if it is rained upon.

Savory, and still more marjoram, has a conspicuous fruitful seed, but in thyme it is not easy to find, being somehow mixed up with the flower; for men sow the flower and plants come up from it. ${ }^{8}$ This plant is sought and obtained by those in Athens who wish to export such herbs. But it has a peculiarity as compared both with similar plants and with most others, namely the kind of region which it affects ${ }^{9}$; they say that it can not be grown or become

[^3]
THEOPHRASTUS

 $\lambda a \chi o v ̂$. тapam λ ท́бוov oủv тò $\sigma u \mu \beta a i ̂ \nu o \nu ~ \tau о \hat{\tau o ~}$

 фúe σ Oaı.

 $\rho o \nu, \tau o ̀ ~ \delta e ̀ ~ \tau o v ~ є ̀ \lambda \epsilon \lambda \iota \sigma \phi a ́ к о v ~ \tau \rho a \chi v ́ \tau \epsilon \rho о \nu . ~$

 каӨáтєр тои̂ бфа́коv, каì тàs є̇vтонàs ả $\mu a v \rho о$ -

 छvขє $\sigma \tau \eta \kappa o ̀ s ~ \mu a ̂ \lambda \lambda o \nu ~ к а i ~ \tau o ̀ ~ o ̋ \lambda о \nu ~ \epsilon ̈ \lambda a \tau \tau о \nu, ~ \tau o ̀ ~$
 $\pi о \lambda v \kappa \lambda \omega \nu o ́ \tau \epsilon \rho о \nu$ каì тò $\phi u ̛ \lambda \lambda о \nu$ нєî̧ov каi $\lambda \iota \pi a \rho \omega ́ \tau \epsilon \rho \circ \nu$ é $\chi o \nu$, é $\tau \iota$ ठè $\tau o ̀ ~ a ̆ \nu \theta o s ~ \lambda a \mu \pi \rho o ́-$
 $\beta \lambda a \sigma \tau \epsilon \hat{\imath} \kappa a \grave{\imath}$ ò $\psi \iota a \nu \theta \epsilon \hat{\imath} \pi \epsilon \rho \grave{\imath}$ 'Аркто仑̂роע каі $\mu \epsilon \tau$ '

[^4]
ENQUIRY INTO PLANTS, VI. iI. 4-6

established ${ }^{1}$ where a breeze from the sea does not reach. This is why it does not grow in Arcadia, while savory marjoram and such plants are common in many parts. (A similar peculiarity is found in the olive; for it appears that it likewise will not grow more than three hundred furlongs from the sea.)

The difference between sphakos ${ }^{2}$ (sage) and elelisphakos (salvia) is like that between cultivated and wild; for the leaf of sphakos ${ }^{3}$ is smoother smaller and less succulent, ${ }^{4}$ while that of elelisphakos is rougher. ${ }^{5}$

There are also two kinds of horehound : one has a narrow leaf with a more jagged edge, and the notches are very conspicuous and deep, and this is the plant used by druggists for certain purposes; the other has a rounder ${ }^{6}$ leaf, which, like that of sphakos, is not at all succulent; the notches are less conspicuous and the edge less jagged.

Of konyza ${ }^{7}$ there is a 'male' and a 'female' kind, the differences between them being such as are usual between forms so distinguished; the 'female' has slenderer leaves, is more compact, and a smaller plant; the 'male' is larger, has thicker stalks, is more branched, has larger glossier leaves, and moreover the flower is more conspicuous. Both bear fruit; the plant as a whole is late in growing and in blooming; it blooms about the rising of

[^5]
THEOPHRASTUS

 т $\rho o ̀ s ~$ тà $\theta \eta \rho i ́ a ~ \chi \rho \eta \sigma i ́ \mu \eta . ~$

Tav̂ta $\mu \epsilon ̀ \nu$ ồv каì tà тoıav̂ta ${ }^{\prime \prime} \sigma \pi \epsilon \rho$ סıa-

 $\pi \lambda \epsilon i ́ \omega$ үа́㇒ є̇ $\sigma \tau \iota$.

Tò $\delta \grave{\epsilon} \nu \alpha \rho \theta \eta \kappa \hat{\omega} \delta \epsilon s, \kappa a i ̀ \gamma a ̀ \rho$ каi тои̂то $\tau \hat{\omega} \nu$

 $\tau \omega ́ \delta \eta$, àф’ ${ }^{\omega} \nu \tau a ́ \tau \epsilon \phi u ́ \lambda \lambda a \beta \lambda a \sigma \tau a ́ \nu \epsilon \iota ~ \kappa a i ~ \kappa a \nu \lambda о i ́$
8 тıvєS $\mu \iota \kappa \rho о i \cdot \beta \lambda a \sigma \tau a ́ \nu \epsilon \iota$ ס̀̀ $\pi a \rho a \lambda \lambda a ̀ \xi \tau a ̀$ фú $\lambda \lambda a \cdot$

 $\kappa a \nu \lambda \grave{\nu} \nu$ є̇ $\pi \grave{\iota} \pi о \lambda \frac{v}{,}, \kappa a \theta a ́ \pi \epsilon \rho \tau a ̀ ~ \tau о \hat{v} \kappa a \lambda a ́ \mu o v, \pi \lambda \grave{\eta} \nu$

 $\mu a \lambda a \kappa o ̀ \nu ~ \kappa a i ~ \pi о \lambda v \sigma \chi i \delta \epsilon ́ s, ~ \overleftarrow{\sigma} \sigma \tau \epsilon \epsilon i v a \iota ~ \sigma \chi \in \delta o ̀ \nu$

[^6]
ENQUIRY INTO PLANTS, VI. i. 6-8

Arcturus and is full grown ${ }^{1}$ after his setting. The smell of the 'male' plant is strong, but that of the 'female' more pungent; wherefore both of them are of use against wild beasts. ${ }^{2}$

These plants then and others like them have, as it were, different forms. Again there are some which have but one form both among those already mentioned and others as well;; for there are numerous plants of this class.
${ }^{3}$ The class of ferula-like plants (for this too belongs to the under-shrubs) comprises many kinds: here we must first speak of the characteristic which is common to all, including ferula itself ${ }^{4}$ (narthex) and narthekia, whether they both belong to the same kind and differ only in size, or whether, as some say, they are distinct. The obvious character of both is alike, except as to size; for narthex grows very tall, while narthetia is a small plant. Each of them has a single stalk, which is jointed; from this spring the leaves and some small stalks; the leaves come alternately-by which I mean that they do not spring from the same part of the joint, but in alternating rows. For a considerable distance they embrace the stalk, like the leaves of the reed, but they turn back from it more owing to their softness and their size; for the leaf is large soft and much divided, so that it is almost hair-like; the largest leaves are the lowest ones next the ground, and so on in proportion. The flower is quince-yellow ${ }^{5}$ and inconspicuous, the fruit ${ }^{6}$ like dill, but larger. ${ }^{7}$ The and above $\epsilon^{2} \nu$ ofs is hardly satisfactory. Sch. suspects corruption.
${ }^{5} \mu \eta \lambda \iota \nu o \epsilon เ \delta$ ès : cf. 7. 3. 1.

${ }^{7} \mu \in i \zeta \omega$ conj. Sch.; $\mu \in i ̂ \zeta o \nu$ Ald.

THEOPHRASTUS

 $\mu \epsilon \gamma a ́ \lambda o u s ~ \kappa a u \lambda o u ́ s . ~ \epsilon ̇ \nu \tau a \hat{v} \theta a ~ \delta \epsilon ̀ ~ \tau o ́ ~ \tau \epsilon ~ a ̈ \nu \theta o s ~$

 тoloûtos.

 $\mu a \nu \delta \rho a \gamma o \rho o v \tau \hat{\varphi} \mu \epsilon ́ \lambda a s \tau \epsilon \kappa a i ̀ \rho a \gamma \omega ́ \delta \eta s \kappa a i ̀ ~ o i \nu \omega ́ \delta \eta s$ єivaı $\tau \hat{\varphi} \chi \cup \mu \hat{\omega}$.

 $\kappa а \lambda о \hat{v} \sigma \iota \quad \mu$ и́ $\sigma \pi \epsilon \tau о \nu$, on $\mu \circ \iota o \nu \tau \hat{\varphi} \sigma \epsilon \lambda i ́ \nu \omega^{\cdot} \sigma \pi \epsilon ́ \rho \mu a$
${ }^{1}$ коїлоข add. W.
${ }^{2}$ See Index : the stalk is specially in question here.
 $\boldsymbol{\epsilon} \nu \nu \epsilon \cup \rho \sigma \sigma \kappa \alpha \nu \lambda \alpha$ conj. Sch. as in 6. 1. 4 ; but olio indicates the coinage of a fresh term. к $\omega \nu \epsilon \iota \nu$ seems to be placed in the wrong list.
${ }^{4}$ Pin. 25. 147-150 describes mundragoras, but his description is not taken from T. cf. Disc. 4. 75, where three kinds

ENQUIRY INTO PLANTS, VI. i. $8-111$. I

plant divides at the top and has some small branches, on which grow the flower and the fruit. It also bears flowers and fruit on the side-stalks all the way up, like dill. The stalk only lasts a year, and the growth takes place in spring, the leaves growing first and then the stem, as with other plants. It roots deep and has but a single root. Such is the ferula.

Of the others some to a certain extent resemble ferula, that is, in having a hollow stem ${ }^{1}$; for instance deadly nightshade hemlock hellebore asphodel ${ }^{2}$: while some have a stem more or less, as it were, consisting of fibre, ${ }^{3}$ as fennel aconite and others like these. The fruit of deadly nightshade ${ }^{4}$ is peculiar in being black and like a grape and like wine in taste.

> Of certain specially important spineless under-shrubs-silphium and magydaris-belonging to ferula-like plants.
III. Most important and peculiar in their characters are the silphium and papyrus of Egypt. These too come under the class of ferula-like plants; of these we have spoken ${ }^{5}$ of the papyrus already under the head of plants living in water; of the other we have now to speak.
${ }^{6}$ The silphium has a great deal of thick root; its stalk is like ferula in size, and is nearly as thick; the leaf, which they call maspeton, is like celery: it has a broad fruit, which is leaf-like, of $\mu a \nu \delta \rho a \gamma \delta \rho a s$ are described: there being only two known species of mandragora, the third may be atropa Belladonna ; and to this plant may also refer an interpolated sentence in Diosc. 4. 73 ($\alpha \nu \theta_{0}$. . $\sigma \tau \alpha \phi u \lambda \eta$ ñ).
${ }^{5}$ 4. 8. 3 and 4. Papyrus is loosely classed with ferula-like plants, as it has not a hollow stem. ${ }^{6}$ Plin. 19. 42-45.

THEOPHRASTUS

 $\kappa а v \lambda o ́ v,<o ̂ \nu>~ \epsilon ̇ \sigma \theta i ́ \epsilon \sigma \theta a \iota ~ \pi a ́ \nu \tau а ~ \tau \rho o ́ т о \nu ~ є ̀ \phi \theta o ̀ \nu ~$

 $\mu \epsilon ̀ \nu$ ảmò $\tau 0 \hat{v} \kappa \alpha \nu \lambda o v$ тòv $\delta \grave{\epsilon}$ ảmò $\tau \hat{\eta} S$ ค́i $\zeta_{\eta S}, \delta i$

 танıєvó $\mu \in \nu \circ \iota \pi \rho o ̀ s ~ \tau a ̀ s ~ \tau о \mu a ̀ s ~ к а i ̀ ~ \tau o ̀ ~ \pi \rho о u ̈ \pi a ́ \rho \chi о \nu ~$

3

 ソive

[^7]
ENQUIRY INTO PLANTS, VI. iI. I-3

as it were, ${ }^{1}$ and is called the phyllon. The stalk lasts only a year, like that of ferula. Now in spring it sends up this maspeton, which purges sheep and greatly fattens them, and makes their flesh wonderfully delicious; after that it sends up a stalk, which ${ }^{2}$ is eaten, it is said, in all ways, boiled and roast, and this too, they say, purges the body in forty days. It has two kinds of juice, one from the stalk and one from the root; wherefore the one is called 'stalk-juice,' the other 'root-juice.' The root has a black bark, which is stripped off. They have regulations, like those in use in mines, ${ }^{3}$ for cutting the root, in accordance with which they fix carefully the proper amount to be cut, having regard to previous cuttings and the supply of the plant. For it is not allowed to cut it wrong nor to cut more than the appointed amount; for, if the juice is kept and not used, it goes bad and decays. When they are conveying it to Peiraeus, they deal with it thus ${ }^{4}$:having put it in vessels and mixed meal with it, they shake it for a considerable time, and from this process it gets its colour, and this treatment ${ }^{5}$ makes it thenceforward keep without decaying. Such are the facts in regard to the cutting and treatment.

The plant is found over a wide tract of Libya, for a distance, ${ }^{6}$ they say, of more than four thousand furlongs, but it is most abundant ${ }^{7}$ near the Syrtis, starting from the Euesperides islands. It is a peculiarity of it that it avoids cultivated ground, and, as the land is brought under cultivation and tamed,

[^8]
THEOPHRASTUS

 $\Sigma \iota \mu \omega \nu i ́ \delta \eta \nu$ ă $\rho \chi о \nu \tau \alpha$ ' $\mathrm{A} \theta \dot{\eta} \nu \eta{ }^{2} \sigma \iota \nu$.

 őtav עóтоs $\lambda a \mu \pi \rho o ̀ s ~ \pi \nu \epsilon v ́ \sigma \eta ~ \mu \epsilon \tau a ̀ ~ K v ́ v a ~ \delta ı a \rho p i ́ \pi-~$

 $\epsilon \sigma \theta a \iota \kappa а \grave{~ \tau a ̀ s ~ \grave{\rho} i \zeta a s ~ \pi \rho о \sigma ф a ́ t o v s ~ к а т а т є \mu \nu о \mu \epsilon ́ v a s ~}$

[^9]
ENQUIRY INTO PLANTS, VI. iI. 3-5

it retires, plainly shewing that it needs no tendance but is a wild thing. The people of Cyrene say that the silphium appeared ${ }^{1}$ seven years before they founded their city; now they had lived there for about three hundred years before the archonship at Athens of Simonides. ${ }^{2}$

Such is their account. Others however say that the root of the silphium grows to the length of a cubit or a little longer, and in the middle of this is a head, ${ }^{3}$ which is the highest part and almost comes above ground, and is called the 'milk', ${ }^{4}$ from this then presently grows the stalk, and from that the magydaris, ${ }^{5}$ which is also called the phyllon ${ }^{6}$; but it ${ }^{7}$ is really the seed, and, when a strong south wind blows after the setting of the dog-star, it is scattered ${ }^{8}$ abroad and the silphium grows from it. The root and the stalk grow in the same year; nor is this a singular feature-unless they mean that it grows immediately after the dispersal ${ }^{9}$ of the seed-since the same thing occurs with other ${ }^{10}$ plants also.

There is this singular statement, which is inconsistent with what was said above, that, it is said, it is necessary to dig the ground every year, and that, if it be left alone, it bears ${ }^{11}$ the seed and the stalk, but these are inferior and so is the root; on the other hand, that with digging they are improved because the soil is changed. (This is inconsistent with the statement that silphium avoids cultivated land.) They add that the roots are cut up into vinegar and eaten fresh, and that the leaf is of a golden

[^10]
THEOPHRASTUS

 бкє $\boldsymbol{\tau}$ т́́ò.

 $\theta \in \omega \rho \eta \tau$ éo ν.

[^11]
ENQUIRY INTO PLANTS, VI. m. 5-Iv. I

colour. We have also the inconsistent statement that sheep are not purged by eating the leaves; for they say that in spring and in winter they are driven into the hill-country, where ${ }^{1}$ they feed on this and on another plant ${ }^{2}$ which is like southernwood; both these plants appear to be heating and not to cause purging, but, on the contrary, to have a drying effect and promote digestion. It is also said that, if a sheep which is sick or in bad condition comes to that district, it is quickly cured or else dies, but usually it recovers. Which of these accounts is true is matter for enquiry.
${ }^{3}$ The plant called magydaris is distinct from silphium, being of later growth and less pungent, and it does not produce the characteristic juice; experts can also easily distinguish it by its appearance. It grows in Syria and not in Cyrene, and they say that it is also abundant on Mount Parnassus, and some call it silphium. Whether however, like silphium, it avoids cultivated ground is matter for enquiry, as also whether it has any resemblance or likeness in leaf and stalk, and, in general, whether it produces a juice. In these examples we may consider the class of ferula-like plants [and, in general, that of spinous plants. ${ }^{4}$]

Of spinous under-shrubs and their differences.

IV. Taking next the class of spinous plants (for we must next speak of them), we have already distinguished ${ }^{5}$ those which are altogether spinous and those which have spinous leaves, and now we must

[^12]
THEOPHRASTUS

 $\tau \hat{\omega} \nu \kappa \alpha \nu \lambda \hat{\omega} \nu$ aैкад $\theta a \nu$ є́ $\chi \epsilon \iota \nu$ à $\lambda \lambda a ̀$ каì тò $\phi u ́ \lambda \lambda о \nu$

2

'А $\mu \phi o ́ \tau \epsilon \rho a \quad \delta є ̀ ~ \tau a v ̂ \tau a ~ a ̀ \nu \theta \epsilon \hat{\imath} ~ \mu \epsilon \tau \alpha ̀ ~ i o \eta \mu \epsilon \rho i ́ a \nu ~$

 $\beta \lambda a \sigma \tau \eta \dot{\sigma \epsilon \iota}$ aủt $\hat{\nu} \nu \tau \hat{\omega} \nu \kappa \alpha \nu \lambda \hat{\omega} \nu \cdot \dot{a} \nu \alpha \beta \lambda a \sigma \tau a ́ \nu \epsilon \iota$

$3 \mathrm{~T} \hat{\nu} \nu$ ठ̀̀ $\phi \nu \lambda \lambda \alpha \kappa a ́ \nu \theta \omega \nu$ тò $\pi \lambda \epsilon i ̂ \sigma \tau o \nu$ नє́vos $\dot{\omega} \varsigma$

> 1 ${ }^{1} \phi \in \notin s$ conj. St.; $\phi \lambda \in \grave{\omega}$ Ald. cf. 6. 1.3. ${ }^{2}$ cj. 6 1. 3.

ENQUIRY INTO PLANTS, VI. iv. I-3

speak of each of these classes separately, and also, in the third place, of those which have leaves as well as their spines, such as pheos ${ }^{1}$ and caltrop. Moreover caper has the peculiarity of possessing not only spines on its stems but also a spinous leaf. Of the classes thus distinguished that with spinous leaves is the largest, while that which is altogether spinous is about the smallest. It is indeed, as was said, a very small class, and it would not be easy to find examples of such plants besides asparagus and skorpios. ${ }^{2}$
${ }^{3}$ Both of these flower after the autumnal equinox. Skorpios produces its flower in the fleshy swelling ${ }^{4}$ below the top ${ }^{5}$ of the spinous twig; at first it is white, but afterwards it becomes purplish. Asparagus produces alongside of the spines a small knob, and from this grows the flower, which is of small size. Skorpios has a single root which runs deep; asparagus roots very deep and its roots are numerous and matted, the upper part of them being in one piece, ${ }^{6}$ and from this the actual shoots spring. The stalk comes up from the plant in spring and is edible; afterwards, as the season advances, it acquires its rough and spinous character ${ }^{7}$; the bloom appears not only on this stalk, but on those of previous years, for the stalk is not annual. Such is the character of plants which are altogether spinous.
${ }^{8}$ Of those which have spinous leaves the largest class, one may say, consists of those plants which

 Scal.
${ }^{6}$ i.e. tuberous. cf. Col. 11. 3. 43 ; Pall. 3. 24. 8; 4. 9. 11.
 $\theta \in i$ íaı Ald. ${ }^{8}$ Plin. 21.94.

THEOPHRASTUS

 à $\lambda \lambda a ̀ ~ \tau a ́ ~ \gamma \epsilon \tau о \iota a v ̂ \tau a ~ \pi a ́ \nu \tau а ~ o i ̂ o \nu ~ a ै к о \rho \nu а ~ \lambda є v к-~$

 $\delta^{\prime} \dot{a} \lambda \lambda \eta \eta^{\lambda} \lambda \omega \nu \pi \rho o ̀ s ~ \tau o i ̂ s ~ \epsilon i \rho \eta \mu \epsilon ́ \nu o \iota s ~ \tau \hat{\omega} \tau \grave{\alpha} \mu \grave{c} \nu \nu \pi o \lambda u ́-$

 каї є่тì $\pi о \lambda \grave{\nu} \nu \chi \rho o ́ \nu o \nu$.

[^13]
ENQUIRY INTO PLANTS, VI. iv. 3-4

are thistle-like, ${ }^{1}$ by which ${ }^{2}$ I mean that the swollen part, that part which contains the flower, or, it may be, the fruit, is in all cases a thistle-head, ${ }^{3}$ or has that appearance. However there are differences in the 'head' itself, in size shape colour number of spines and in other respects. For, apart from quite a few plants, such as soap-wort sow-thistle and possibly some others, nearly all the rest have this character (even sow-thistle ${ }^{4}$ has a spinous character, but its seed-process is different). The list includes all the following: akorna ${ }^{5}$ milk-thistle khalkeios safflower polyakanthos distaff-thistle onopyxos ixine chamaeleon (the last-named, however, has not spinous leaves, though golden thistle, which is also called 'meadow-thistle, ${ }^{6}$ has 7), and so on, for there are many more. These differ from one another not only in the aforesaid ways, but in that some of them have many stalks and side-growths, like the pinethistle, while some have a single stalk and no sidegrowths, like the safflower, and some again have out-growths above from the top of the plant, like the globe-thistle. ${ }^{8}$ Again some grow directly the first rains come, others at a later time, some again in summer, as the plant which some call yellow starthistle, and ixine. ${ }^{9}$ So too ${ }^{10}$ the flowering-time differs : golden thistle blooms late ${ }^{11}$ and is in bloom for a long time.
 $\lambda \in!\mu \omega \nu i a$ conj. W. But $\lambda \in \iota \mu \omega \nu i \alpha$ is not mentioned again in the following description, which is against its being a distinct plant from $\sigma \kappa \delta \bar{\lambda} \nu \mu o s$.

${ }^{8}$ púrpos: rhutrum C ; but Plin. l.c. has eryngen.
${ }^{9}$ Plin. 22. 23. $\quad 10 \kappa$ ка $\bar{\epsilon} \pi i$ conj. Sch.; каi $\dot{\eta}$ é πl Ald.H.
${ }^{11}$ ob ψ ıavè̀s conj. Bod. from Plin. l.c. floret sero et diu; Gủav $\begin{aligned} \text { ins } \\ \text { Ald. }\end{aligned}$

THEOPHRASTUS

 $\mu a \tau \omega ́ \delta \epsilon \iota \varsigma \pi a \hat{\alpha} \alpha a \iota, \pi \lambda \eta \nu \quad \mu \epsilon \iota \zeta$ о́б८ каі тขкขотє́роьs

 $\kappa а \tau a ̀ ~ \tau \eta ̀ \nu ~ \pi \rho o ́ \sigma о \psi \iota \nu ~ \tau \hat{\eta} \kappa \nu \eta{ }^{\prime} \kappa \omega$ т $\hat{\eta}$ ท̀ $\mu \epsilon ́ \rho \omega, \chi \rho \hat{\omega} \mu a$

[^14] 26

ENQUIRY INTO PLANTS, VI. iv. 5-6

Pine-thistle ${ }^{1}$ has but one kind, but there are different kinds of safflower, the wild and the cultivated. Again of the wild kind there are two forms, one very like the cultivated except that the stalk is straighter; wherefore in ancient times women sometimes used it to make distaffs. ${ }^{2}$ It has a fruit which is black large and bitter. The other is leafy, and its stalks are like those of the sow-thistle, ${ }^{3}$ so that to some extent it comes to have a prostrate stem; for on account of the softness of the stalks ${ }^{4}$ it bends down towards the ground; and it has a small ${ }^{5}$ fruit, which is bearded. All the forms produce abundant seed, ${ }^{6}$ but it is larger ${ }^{7}$ and more crowded in the wild forms. This kind has also a peculiarity as compared with other wild plants; these are usually coarser and more spinous than the cultivated forms, but in this plant the wild form is softer and smoother.

The akorna resembles in a general way in appearance the cultivated safflower, but has a yellowish colour and a sticky juice. ${ }^{8}$ There is also a plant called distaff-thistle, which is whiter than these. A peculiarity of the leaf of this is that, if it is stripped off and applied to the flesh, the contact makes the juice blood-coloured, ${ }^{9}$ wherefore some call this kind of spinous plant 'blood-wort'; also it has an abominable smell, like that of blood; it matures its fruit late,

[^15]
THEOPHRASTUS

$\pi \omega \rho o \nu . \tau \grave{o} \delta^{\delta}$ ö $\lambda o \nu$ ต́s $\dot{a} \pi \lambda \hat{\omega} s ~ \epsilon i \pi \epsilon i ̂ \nu ~ a ̈ \pi a \sigma a ~ \dot{\eta}$

 $\tau \epsilon \lambda \epsilon \omega \omega \sigma \epsilon \omega \varsigma$.

 $\mu \nu р і к \eta$ ккаї ӧ σa таратлท́бєа тои́тоья. тарако-

 тає каі ойкє́ть кєขтєі̂.

[^16]
ENQUIRY INTO PLANTS, VI, iv. 6-9

towards autumn. Indeed, generally speaking, all plants like the thistle-tribe ${ }^{1}$ are late fruiting. All these plants grow both from seed and from the root, so that there is but a short period between the beginning of growth and the maturing of the seed.

Golden thistle has not only this peculiarity, that it has a root which is edible, whether boiled or raw, but the root is best when the plant is in flower, and, as it becomes hard, it produces a juice. The flowering time ${ }^{2}$ is also peculiar, about the solstice.

The root of the sow-thistle ${ }^{3}$ is also fleshy and edible; but the swollen part ${ }^{4}$ is elongated and not thistle-like ${ }^{5}$; and, alone of the spinous-leaved plants, it has this peculiarity, in which it is the reverse of the chamaeleon, ${ }^{6}$ (for that plant, though it has not spinous leaves, has a thistle-like flower-head). The flower of the sow-thistle, as it ages, turns into down, as do that of the dandelion ${ }^{7}$ the tamarisk ${ }^{8}$ and other plants like these. In its growth ${ }^{9}$ there is a succession up to the summer, part forming flowers, part flowering, and part producing seed ${ }^{10}$; this ${ }^{11}$ has little moisture in it and has a sharp point. The leaf, as it dries, becomes flaccid and no longer pricks.

Ixine does not grow in many places, and it has leaves on the root. From the middle of the root grows the seed-bearing thistle-head, which is like
both of the plants which he calls $\chi \propto \mu \alpha i \lambda$ é $\omega \nu$ (see Index) have spinous leaves.

7 ª̀ $\pi a ́ \pi \eta s$ conj. Sch., cf. 7. 8. 3 ; $\pi \alpha ́ \pi \nu \eta s \mathrm{U}$; $\delta \alpha \pi \alpha ́ \nu \eta s \mathrm{P}$; $\delta \alpha ́ \phi \nu \eta s$ Ald.
${ }^{8} \mu \nu \rho f(\kappa \eta$ s conj. Sch.; $\mu \nu \rho$ fivns M ; $\mu \nu \rho \rho \rho \nu \eta s$ Ald.
${ }^{9}$ cf. Plin. l.c.
 нотókov̀ conj. Sch.
${ }^{11}$ Text perhaps defective.

THEOPHRASTUS

 та $\mu \grave{\nu} \nu$ oûv каì тà тoıav̂ta тavtaरô̂ $\sigma \chi \in \delta o ́ v$ є́ $\sigma \tau \iota \nu$.

 ä̀ $\mu \eta$.

 $\tau \omega \nu \quad \delta \grave{\epsilon} \tau \hat{\omega} \nu \pi a \pi \pi \omega \delta \hat{\omega} \nu \quad \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu$ є́ $\delta \omega \dot{\omega} \delta \iota \mu \circ \nu$

 фopaîs.

[^17]
ENQUIRY INTO PLANTS, VI. iv. $9-\mathrm{v}$. t

an apple and well hidden by ${ }^{1}$ the leaves; this on its head produces its gum, ${ }^{2}$ which is pleasant to the taste, and this is the 'thorn-mastich.' ${ }^{3}$ These plants and others like them are found almost everywhere.
${ }^{4}$ But the plant called kaktos (cardoon) grows only in Sicily, and not in Hellas. It is a plant quite different from any other; for it sends up straight from the root stems which creep on the ground, and its leaf is broad ${ }^{5}$ and spinous: these stems are called kaktoi; they are edible, if peeled, and are slightly bitter, and men preserve them in brine.

There is another kind which sends up an erect stem, called the pternix. This too is edible, but cannot be preserved. The fruit-vessel, which contains the seed, is in shape like a thistle-head ${ }^{6}$: and when the downy seeds are taken off, this too is edible and resembles the 'brain' 7 of the palm ; and it is called skalias. ${ }^{8}$ Such are the different characteristics in the light of which we may observe the spinousleaved plants.
V. Examples of plants which have leaves as well as spines are pheos ${ }^{9}$ rest-harrow star-thistle caltrop 'horse-pheos' ${ }^{10}$ (spurge) butcher's broom ${ }^{11} \ldots,^{12}$ and it has a fleshy leaf: it is much divided and has
${ }^{7}$ i.e. 'cabbage.' of. 2. 6. 2.
${ }^{8}$ ascaliam Plin. l.c.; á $\sigma \kappa$ d́ $\lambda \eta \rho o \nu$ Athen. l.c. Modern Greek бкd́入пра. English 'bottom.' See Index ќкктоs (2).
${ }^{9}$ ф'́ms conj. Stt,; $\phi \lambda$ éms Ald. of. 6. 1. 3.
 21. 91.
${ }^{11}$ Diosc. 2. 125 ; Plin. 19. 151.
${ }^{12}$ Text defective : the end of one sentence is missing and the beginning of the next, containing the name of a plant. G attaches the following description to ϕ éws. The plants presently described do not correspond to this list.

THEOPHRASTUS

$\sigma \chi \iota \delta e ̀ s ~ \delta \grave{e} \kappa a i ̀ \pi o \lambda v ́ \rho \rho \iota \zeta o \nu$, ov̉ $\mu \eta ̀ \nu$ катà $\beta a ́ \theta o v s$

 $\tau \epsilon \rho o \nu$.
2 Tò $\delta \grave{\epsilon} \tau \eta ̂ \varsigma \kappa a \pi \pi a ́ \rho \iota o s ~ i \delta \iota o \nu, ~ \check{\omega} \sigma \pi \epsilon \rho$ є่ $\lambda \epsilon ́ \chi \theta \eta$, $\pi a \rho a ̀ ~ \tau a v ̂ \tau a ~ к а i ̀ ~ \gamma a ̀ \rho ~ \tau o ̀ ~ \phi u ́ \lambda \lambda о \nu ~ e ̀ \pi a \kappa а \nu \theta i ́ \zeta o \nu ~$

 $\chi \lambda \omega \rho o ̀ \nu$ ä $\chi \rho \iota ~ \Pi \lambda \epsilon \iota a ́ \delta o s . ~ \chi a i ́ \rho \in \iota ~ \delta e ̀ ~ v i \phi a ́ \mu \mu o ı s$

 $\pi a ́ \nu \tau \omega \varsigma ~ a ̀ \lambda \eta \theta$ és.

 $\pi \epsilon \rho i ̀ ~ \tau a ̀ s ~ a u ̉ \lambda a ́ s . ~ \tau o ̀ ~ \delta \grave{\epsilon} \sigma \pi \epsilon ́ \rho \mu a ~ \tau o \hat{v} \mu \epsilon ̀ v ~ \pi \rho \omega i ́ o v$ $\sigma \eta \sigma a \mu \omega \hat{\delta} \epsilon \varsigma$, тô̂ ठє̀ ỏ $\psi i ́ o v ~ \sigma \tau \rho o \gamma \gamma u ́ \lambda o \nu ~ \epsilon ̇ \pi i ́ \mu \epsilon \lambda a \nu$

[^18]
FNQQUIRY INTO PLANTS, VI. v. $1-3$

many roots, but is not deep-rooting. It grows at the rising of the Pleiad, the first seed-time, ${ }^{1}$ and then ${ }^{2}$ puts forth its leaf; for it is not annual, but lives longer than one year.
${ }^{3}$ Caper, as was said, is quite distinct from these ; it has a spinous leaf and a spinous stem, whereas pheos ${ }^{4}$ and 'horse-pheos' have no spines on their leaves ${ }^{5}$; it has a single ${ }^{6}$ root, is low-growing, ${ }^{7}$ and has a creeping stem; it grows and flowers in summer, and the leaf remains green till the rising of the Pleiad. It rejoices in sandy light soils, and it is said that it is unwilling to grow on cultivated land, and that though it grows near towns and in good soil, and not, like silphium, in mountain country. This account however ${ }^{8}$ is not altogether accurate.
${ }^{9}$ A peculiarity of caltrop is that it is spinousfruited. ${ }^{10}$ There are two kinds; one has a leaf like that of chick-pea, the other has spinous leaves. Both are low-growing and much divided, but the spinous-leaved form grows later and is found near enclosures. The seed of the early kind is like that of sesame, that of the late kind is round and blackish and enclosed in a pod. These may serve as examples of plants which have spines as well as leaves. ${ }^{11}$
${ }^{12}$ Rest-harrow has spines on the shoots; the leaf, which is annual, ${ }^{13}$ is like that of rue, and grows right along the stem, so that the general appearance is

[^19]
THEOPHRASTUS

 ö $\lambda \eta \nu$ єiva८ $\mu \circ \rho \phi \eta{ }^{2} \nu, \delta \iota a \lambda a \mu \beta a \nu o \mu \epsilon ́ \nu \omega \nu$ є่ $\pi a \lambda \lambda \eta^{\prime}-$

 $\pi a ́ \lambda \iota \nu \beta \lambda a \sigma \tau a ́ \nu \epsilon \iota$ ä $\rho \chi \epsilon \tau a \iota$ ठє̀ тท̂s $\beta \lambda a \sigma \tau \eta \dot{\sigma} \epsilon \omega \varsigma$ θ ध́pous $\tau \epsilon \lambda \epsilon \iota o u ̂ \tau a l ~ \delta \grave{̀} \mu \epsilon \tau о \pi \omega ́ \rho o v$. $\tau \grave{a} \mu$ èv oûv äभрıa т $\omega \hat{\nu} \phi \rho \cup \gamma a \nu \iota \kappa \omega ̂ \nu$ є่к тоúт $\omega \nu \theta \epsilon \omega \rho \epsilon i ́ \sigma \theta \omega$.
 ä́ $\pi \epsilon \rho$ є่ ν тoîs $\sigma \tau \epsilon \phi а \nu \omega \mu a \tau \iota \kappa о i ̂ s ~ \epsilon ่ \sigma \tau \iota . ~$

Tà $\delta \grave{\epsilon} \kappa \alpha \theta^{\prime}$ öخov $\pi \epsilon \iota \rho a \tau \epsilon \in о \nu \pi \epsilon \rho i ̀ \sigma \tau \epsilon \phi a \nu \omega \mu a ́ \tau \omega \nu$
 бтєфаעш $\mu a \tau \iota \kappa \grave{\eta}$ фи́бıs iठठíav тıvà é $\chi \epsilon \iota ~ \tau a ́ \xi \iota \nu$,

[^20]
ENQUIRY INTO PLANTS, VI. v. $3^{-\mathrm{vi} . ~} 2$

that of a garland, ${ }^{1}$ the leaves being set at intervals alternately along it ${ }^{2}$; the flower is irregular, ${ }^{3}$ and the fruit contained in a pod, ${ }^{4}$ which is not divided into compartments. ${ }^{5}$ It grows in sticky rich soil and especially in sown and cultivated land; wherefore it is an enemy to husbandmen, and it is hard to kill; for, when it gets hold of a piece of ground, it immediately pushes its roots down deep, ${ }^{6}$ and every year it sends up new growths at the sides and the next year ${ }^{7}$ it roots these again. Wherefore it has to be dragged up entire ${ }^{8}$; this is done when the ground has been moistened, and then it is easier to destroy. But, if but a small piece is left, it shoots again from this. It begins to grow in summer and completes its growth in autimn. Let these examples serve for a survey of the wild forms of under-shrubs.

Of cultivated under-shrubs (coronary plants), with which are included those coronary plants which are herbaceous.
VI. The cultivated kinds need but a brief survey; these ${ }^{9}$ come under the class of coronary plants.

Of coronary plants we must endeavour to give a general account, so that the whole class may be included. This group has a somewhat peculiar position, since it overlaps partly the under-shrubs, partly the herbaceous plants; wherefore the latter must also be included and we must mention them as occasion serves, taking first the under-shrubs.

[^21]
THEOPHRASTUS

$3 \mathrm{~T} \hat{\omega} \nu \delta \grave{\epsilon}$ ä $\lambda \lambda \omega \nu \mu \hat{a} \lambda \lambda o \nu ~ \delta e ̀ ~ \tau \hat{\omega} \nu \pi a ́ \nu \tau \omega \nu$ ai $\mu e ̀ v$
 ä $\lambda \lambda a s$ iठıótทтas é $\chi o v \sigma \iota$ ，тaútas $\lambda \epsilon \kappa \tau \epsilon ́ o \nu$ ，oiov єi
 סıaфорás．

 то⿱㇒兀刂 $\omega \nu$ סè каì ai $\theta \epsilon \rho a \pi \epsilon i ̂ a \iota ~ \kappa a i ̀ ~ a i ~ \chi \hat{\omega} p a \iota ~ \delta \iota a ́-~$

[^22]
ENQUIRY INTO PLANTS, VI. vi. 2-3

${ }^{1}$ These may be divided into two groups according to their uses. Of some only the flower is serviceable; and of these some are sweet-scented, as gilliflower, some scentless, as carnation ${ }^{2}$ and wallflower. Of others again the branches leaves and in fact the whole growth are sweet-scented, as with tufted thyme calamint bergamot-mint and the rest. Both groups however belong to the under-shrubs. And of the first-mentioned, those valued for their flowers, the growth is in most ${ }^{3}$ cases that of undershrubs, (in some annual merely, in others of longer duration) except in the violet; for this is altogether without branches, its leaves grow close to the root, and it is always in leaf; while, as some say, it is able to bear flowers continuously, if it is tended in a certain way. This may be considered a peculiar characteristic of this plant.

Of the others, or rather of all the group, the general appearance is in each case plain to all; any peculiarities that they may exhibit we must mention, for instance, if ${ }^{4}$ some appear to have but a single form, while others have various forms.

Thus ${ }^{5}$ those of woody character, as tufted thyme bergamot-mint calamint, have but one form, unless one counts wild and cultivated, scented and scentless plants, as belonging to distinct forms; and again there are with these plants differences of culture of position and of climate. Some also ${ }^{6}$ of the group valued for their flowers ${ }^{7}$ have each but one form, for instance, the black ion (violet); for this does not appear to have different forms

[^23]
THEOPHRASTUS

 фи́ $\lambda \lambda \omega \nu$ каї о̉ $\lambda \iota у о ́ т \eta т \iota ~ к а і ̀ ~ т \rho а \chi и ́ т \eta \tau \iota ~ к а і ̀ ~ \lambda є \iota о ́ т \eta т \iota ~$ $\kappa a i ̀ ~ \epsilon u ̉ \chi \rho о i ́ a ~ к а i ̀ ~ є ن ̇ о \sigma \mu i ́ a . ~ \tau a ̀ ~ \mu e ̀ \nu ~ \gamma a ̀ \rho ~ \pi \lambda \epsilon i ̂ \sigma \tau a ~$

 oủtoı үà $\boldsymbol{\lambda a \mu \beta a ́ \nu o \nu \tau \epsilon s ~ \epsilon ̇ \kappa ~ \tau o v ̂ ~ П a \gamma \gamma a i ́ o v ~ ф u \tau \epsilon u ́ - ~}$

 $\pi a \rho a ̀ ~ \tau o v ̀ s ~ \tau o ́ \pi o v s ~ \epsilon ̇ \sigma \tau i ́ \nu ~ \epsilon ่ \pi \epsilon i ~ к а i ~ \tau a ̀ ~ \epsilon ่ \nu ~ \gamma \hat{\eta} \tau \hat{\eta}$

 ô каì тò $\mu v ́ \rho o \nu ~ \eta ้ \delta \iota \sigma \tau o \nu . ~ \dot{a} \pi \lambda \hat{\omega} \varsigma ~ \delta e ̀ ~ \kappa \alpha i ̀ ~ \tau \hat{\omega} \nu ~ i ̈ \omega \nu ~$ $\kappa \alpha i ̀ ~ \tau \hat{\omega} \nu ~ a ̈ \lambda \lambda \omega \nu$ à $\nu \theta \hat{\omega} \nu$ äкратоь $\mu a ́ \lambda \iota \sigma \tau a$ є́кєî θ_{ι}

[^24]
ENQUIRY INTO PLANTS, VI. vi. 3-5

like the white ion (gilliflower) in which the colour evidently varies; as does still more that of the lilies, if it be true, as some say, that there is a crimson kind. ${ }^{1}$
${ }^{2}$ Among ruses there are many differences, in the number of petals, in roughness, ${ }^{3}$ in beauty of colour, and in sweetness of scent. Most have five petals, but some have twelve or twenty, and some a great many more than these; for there are some, they say, which are even called 'hundredpetalled.' Most of such roses grow near Philippi ; for the people of that place get them on Mount Pangaeus, where they are abundant, and plant them. However the inner petals ${ }^{4}$ are very small, (the way in which they are produced being such that some are outside, some inside). Some kinds are not fragrant nor of large size. Among those which have large flowers those in which the part ${ }^{5}$ below the flower is rough are the more fragrant. In general, as has been said, good colour and scent depend upon locality; for even bushes which are growing in the same ${ }^{6}$ soil shew some variation in the presence or absence of a sweet scent. Sweetestscented of all are the roses of Cyrene, wherefore the perfume made from these is the sweetest. (Indeed it may be said generally that the scents? of the gilliflowers ${ }^{8}$ also and of the other flowers of that place are the purest, and especially the

7 ăкратоı μ д́入ı on Diose. 1. 25 ; Athen. l.c. (ăкратоь $\mu \alpha ́ \lambda \iota \sigma \tau \alpha$ каl $\theta \in i ̂ a l ~ a i ~$
 (rest uncertain) U. cf. C.P.6.18. 3.
${ }^{8}$? violets and gilliflowers: see Index.

THEOPHRASTUS

ai ò o $\mu a i ́, \delta \iota a \phi \epsilon \rho o ́ \nu \tau \omega \varsigma ~ \delta \grave{\epsilon}$ то̂ коóкоv• $\pi \lambda \epsilon \hat{\imath} \sigma \tau о \nu$

 тò ρ ódov. ai δ^{\prime} äभрıaı т таұúтєраь каì таîs
 $\sigma \tau \in \rho o \nu$ é $\chi o v \sigma \iota ~ к а і ̈ ~ \epsilon ้ \lambda а \tau \tau о \nu . ~$

 фu入入ós тє каi є́ $\gamma \gamma \epsilon \iota o ́ \phi u \lambda \lambda о$ каi баркóфиддós

[^25]
ENQUIRY INTO PLANTS, VI. vi. 5-8

scent of the saffron-crocus, ${ }^{1}$ a plant which seems to vary in this respect more than any other). Roses can be grown from seed, which is to be found below the flower in the 'apple,' and is like that of safflower or pine-thistle, ${ }^{2}$ but it has a sort of fluff, so that it is not unlike the seeds which have a pappus. ${ }^{3}$ As however the plant comes slowly from seed, they make cuttings of the stem, as has been said, and plant them. If the bush is burnt or cut over, it bears better flowers; for, if left to itself, it grows luxuriantly and makes too much wood. Also it has to be often transplanted; for then, they say, the roses are improved. The wild kinds are rougher both in stem and in leaf, and have also smaller flowers of a duller colour.
${ }^{4}$ The black ion (violet) differs from the whiteion (gilliflower) not only in other respects but in the plant itself, in that in the former the leaves are broad, lie close to the ground, and are fleshy, and there is much root.
${ }^{5}$ Krina (lilies) shew the variation in colour which has been already mentioned. ${ }^{6}$ The plant has in general a single stem, but occasionally divides into two, which may be due to differences ${ }^{7}$ in position and climate. On each stem grows sometimes one flower, but sometimes more; (for it is the top of the stem which produces the flower ${ }^{8}$) but this sort is less common. There is an ample root, which is fleshy and round. If the fruit is taken off, it
${ }^{6}$ Plin. 21. 25. The account of herbaceous coronary plants seems to begin here. cf. 6. 6. 10. ${ }^{6}$ 6. 6. 3.

${ }^{8} \beta \lambda \alpha \sigma \tau \alpha \nu$ el. But this word in T. has usually a more general sense. ? 'for in that case the top of the stem branches' (lit. 'makes fresh growth').

THEOPHRASTUS

 ŋ ${ }^{\alpha} \nu \partial \eta \sigma \iota \varsigma \kappa a i ̀ ~ \pi \epsilon \rho i ̀ ~ i \sigma \eta \mu \epsilon \rho i ́ a \nu$.
 $\tau \alpha \hat{v} \tau a, \pi \lambda \grave{\eta} \nu \phi \dot{\jmath} \lambda \lambda \omega \quad \sigma \tau \epsilon \nu \hat{\omega}, \sigma \chi \epsilon \delta o ̀ \nu \gamma \grave{a} \rho \stackrel{\omega}{\sigma} \sigma \pi \epsilon \rho$

 $\sigma а \rho \kappa \omega ́ \delta \eta s, \kappa a i ̀ ~ \tau o ̀ ~ o ̛ ̀ \lambda o \nu ~ \epsilon u ̈ \zeta \omega о \nu ~ \phi \iota \lambda \epsilon i ̂ ~ \delta \grave{\iota}$ каi $\pi а т є i ̂ \sigma \theta a \iota ~ к а і ~ \gamma і ́ \nu є \tau а \iota ~ к а \lambda \lambda i ́ \omega \nu ~ к а т а т \rho \iota ß о \mu є ́ \nu \eta ร ~$

[^26]
ENQUIRY INTO PLANTS, VI. vi. 8-io

germinates and produces a fresh plant, but of smaller size; the plant also produces a sort of tear-like exudation, which men also plant, as we have said. ${ }^{1}$

The narcissus ${ }^{2}$ or leirion (for some call it by the one name, some by the other) has its ground-leaves like those of the asphodel, ${ }^{3}$ but much broader, like those of the krinon (lily); its stem is leafless and grass-green ${ }^{4}$ and bears the flower at the top; the fruit ${ }^{5}$ is in a kind of membrane-like vessel, and is very large, black in colour, and oblong in shape. This as it falls germinates of its own accord; however men collect and set ${ }^{6}$ the seed, and also plant the root, which is fleshy round and large. The plant blooms very late, ${ }^{7}$ after the setting of Areturus about the equinox.
${ }^{8}$ The saffron-crocus is herbaceous in character, like the above-mentioned plants, ${ }^{9}$ but has a narrow leaf; indeed the leaves are, as it were, hair-like; it blooms very late, and grows either late or early, according as one looks at the season ${ }^{10}$; for it blooms after. ${ }^{11}$ the rising of the Pleiad and only for a few days. It pushes up the flower at once with the leaf, or even seems to do so earlier. The root ${ }^{12}$ is large and fleshy, and the whole plant vigorous; it loves even to be trodden on and grows fairer when the root is crushed into the ground by the
${ }^{5} \kappa а \rho \pi \delta \nu$ omitted in MSS.; add. Dalec. from Diosc. 4. 158.
${ }^{6} \pi \eta \gamma \nu$ v́ovaı: cf. 7. 4. 3 n .
${ }^{7}$ cf. C.P. 1. 10. 5 ; Plin. l.c. (a much confused passage).
${ }^{8}$ Plin. 21. 31-34.

${ }^{10}$ i.e. whether at the end of one season or the beginning of the next. cf. C.P. 1. 10. 5. $\lambda \alpha \mu \beta \alpha \alpha_{v o ı ~ U ; ~}^{\text {; }} \lambda \alpha \mu \beta$ ávєı Ald.
${ }^{11} \mu \in \tau \alpha$ add. W. ${ }^{12}$ cf. 7.9. 4.

THEOPHRASTUS

 тоîs кротŋтоîs ка́入入ıбтоs．$\dot{\eta}$ ठє̀ фитєía ảтò рíそ η s．
 ${ }_{a} \nu \theta \eta$ тà $\pi \rho о є \iota \rho \eta \mu \epsilon ́ \nu a$ тávтa $\sigma \pi \epsilon i ́ \rho \in \tau a \iota$ ，oiov

 каi $\dot{\eta}$ оì $\alpha, \nu \theta \eta$ ．каì үàp каi тои̂то ả $\nu \theta \hat{\omega} \delta \in \varsigma ., ~ \tau \grave{a}$

 єìvaí $\tau \iota \nu \omega \nu$ тòv карто́v．Є̇тєє каì тò ă ν Өоs

 Є̈рттv

[^27]
ENQUIRY INTO PLANTS，VI．vi．io－vil． 2

foot ${ }^{1}$ ：wherefore it is fairest along the roads and in well－worn places．${ }^{2}$ It is propagated from the root．

These are the ways then in which the above plants are grown．All the above－mentioned flowers are grown from seed，as gilliflower carnation spike－ lavender wall－flower martagon－lily；these plants themselves，as well as their roots，are woody． Drop－wort is also grown from seed；for that too is a plant grown for its flower．These and other plants like them may serve as examples of plants grown for their flowers．${ }^{3}$

VII．All the others flower and bear seed，though they do not all appear to do so，since in some cases the fruit is not obvious．Indeed in some the flower too is inconspicuous，but，because ${ }^{4}$ these grow slowly and with some difficulty，men propagate them rather by off－shoots，as was said at the beginning．How－ ever some contend that they have no fruit：and there are men who have actually tried with the following plants ${ }^{5}$ ；they have，they say，themselves often dried and rubbed out and sown the apparent fruit of thyme calamint bergamot－mint and green mint（for even that they have tried）and there was no germination from such sowing．However，the account given above is the truer，and the character of the wild forms testifies to this；for there is also a wild thyme（Attic thyme ${ }^{6}$ ），which they bring from the mountains and plant at Sicyon，or from Hymettus and plant at Athens；and in other districts the mountains and hills ${ }^{7}$ are quite covered with it，for instance in Thrace．There is also a
${ }^{5}$ ol $\tau \epsilon$ ．．．cioí transposed by Sch．；in MSS．after $\dot{\alpha} \lambda \eta \theta \epsilon$＇－ $\sigma \tau \in \rho o \nu$ ．
${ }^{6}$ Plin．19． 172 ；Athen．15． 28.
${ }^{7}$ 入́офо九 conj．W．；то́то九 Ald．

THEOPHRASTUS

 $\kappa а i ̀ ~ a u ̉ \chi \mu \omega \delta \epsilon ́ \sigma \tau \epsilon \rho о \nu$.

 $\mu о \nu о ́ \rho \rho ı \zeta о \nu ~ \tau \hat{\eta} \pi a \chi \in i ́ a ~ \tau a ̀ s ~ \delta^{\prime} a ̈ \lambda \lambda a s<a ̉ \phi i ́ \eta \sigma \iota \nu>a ̉ \pi$ ’

 $\pi о \lambda v \sigma \chi \iota \delta \epsilon i ̂ s ~ к а i ̀ ~ \tau а \rho \rho \omega ́ \delta \epsilon \iota \varsigma, ~ \xi v \lambda \omega ́ \delta \epsilon \iota \varsigma ~ \delta є ̀ ~ \pi a ̂ \sigma a \iota, ~$

[^28]
ENQUIRY INTO PLANTS, VI. vil. 2-4

wild bergamot-mint, and wild forms of the other plants mentioned, having a more pungent smell. Thyme is sometimes ${ }^{1}$ quite like cultivated thyme. ${ }^{2}$ Now it is plain that these wild forms possess this means of reproducing themselves. ${ }^{3}$
Southernwood actually grows more readily from seed than from a root ${ }^{4}$ or a piece torn off (though it grows even from seed with difficulty); however it can be propagated by layering in pots in summertime, like the 'gardens of Adonis' ${ }^{5}$; it is indeed very sensitive ${ }^{6}$ to cold and generally delicate even where the sun shines brightly; but, when it is established and has grown, it becomes tall and strong and tree-like, like rue, except that the latter is much more woody drier and less succulent.
${ }^{7}$ Sweet marjoram grows in either way, from pieces torn off or from seed; it produces a quantity of seed, which is fragrant with a delicate scent; it can also be transplanted. ${ }^{8}$ Southernwood also produces much seed, which has some scent. This plant has straight roots which run deep; it has, as it were, its single stout root, from which the others spring; ${ }^{9}$ while sweet marjoram thyme bergamot-mint and calamint have surface ${ }^{10}$ roots which are much divided and matted; in all these plants the roots are woody, but especially in southernwood, because of its size and because it is so dry.
l.c. so far as that passage is intelligible-but $\delta \dot{\xi}$ before $\epsilon^{\prime} \nu$

${ }^{5} \mathrm{cf}$. Plat. Phaedo 276 в and Thompson's n . Sir W. Thiselton-Dyer in Companion to Greek Studies, § 99, p. 65.
${ }^{6}$ of C.P. 4. 3. 2. $\quad{ }^{7}$ Plin. 21. 61.
${ }^{8} \mu \epsilon \tau \alpha \phi \cup \tau \in \dot{v} \epsilon \sigma \theta a \iota$ conj. Sch. from \mathbf{G}; $\mu \epsilon \tau \alpha \phi \dot{\prime} \in \sigma \theta a \iota$ Ald.

 16. 5.

THEOPHRASTUS

 $\phi \rho \epsilon ́ a \rho$. єỉठך $\delta \grave{\epsilon}$ тov̂ $\mu \epsilon ̀ \nu ~ \grave{\eta} \mu \epsilon ́ \rho o v ~ \lambda a ß \epsilon i ̂ \nu ~ o v ̉ \kappa ~$ єै $\sigma \tau, \kappa а \theta a ́ \pi \epsilon \rho ~ \epsilon ่ \lambda \epsilon ́ \chi \theta \eta$. то̂̂ $\delta \epsilon ̀ ~ a ̉ \gamma \rho i ́ o u ~ ф а \sigma i \nu ~$

 $\mu a \lambda a \kappa \omega ́ \tau \epsilon \rho о \nu$.

 каi фí入vঠра каì фıло́котра $\mu a ́ \lambda \iota \sigma т a \cdot ~ a v ̉ \chi \mu o ̀ \nu ~ \delta \grave{\epsilon}$

 є' $\xi i \sigma \tau a \tau a \iota \mu \grave{~ \mu} \mu \epsilon \tau a \phi v \tau \epsilon v o ́ \mu \epsilon \nu \circ \nu$.
VIII. T $\hat{\omega} \nu \delta^{\prime} a \dot{\alpha} \nu \theta \hat{\omega} \nu$ тò $\mu \epsilon ̀ \nu \pi \rho \hat{\omega} \tau о \nu$ є́кфаívєта८
 тô̂ $\chi \epsilon \iota \mu \omega ̂ \nu o s, ~ o ̈ \pi o v ~ \delta є ̀ ~ \sigma \kappa \lambda \eta \rho o ́ \tau \epsilon \rho o s ~ v ̌ \sigma \tau \epsilon \rho о \nu, ~$
 v̈ $\tau \epsilon \rho \circ \nu \kappa \alpha i$ тò $\phi \lambda o ́ \gamma \iota \nu o \nu ~ \kappa a \lambda о и ́ \mu \epsilon \nu о \nu ~ \tau o ̀ ~ a ̈ \gamma \rho \iota o \nu . ~$
${ }^{1}$ cf. Plin. 20. 245 and 246 (not from T.) ; O.P. 2. 18. 2 ; Diosc. 3. 38; Index é $\rho \pi u \lambda \lambda$ о
${ }_{2}{ }^{c} c f$. Plin. 19. 172, which refers however to $\sigma \iota \sigma v \mu \beta \rho \iota o v$; Nic. ap. Athen. 15. 31.
${ }^{3}$ Plin. 21. 61.
48

ENQUIRY INTO PLANTS, VI. vii. 5-vii. I

${ }^{1}$ The growth of the shoots of thyme is peculiar. If it has a stake, or is planted against a wall, it can send them out to any length; so also if it is let grow downwards; indeed it is most vigorous when grown into a pit. ${ }^{2}$ It is not possible to distinguish different forms of the cultivated kind, as has been said, but they say that of the wild kind (Attic thyme) there is more than one form; for that of the kind which grows on the mountains one form is like savory and very pungent, while the other is fragrant and more delicate.
${ }^{3}$ The season for planting most of these is autumn, and then men hasten to plant them as early as possible; however some are planted also in spring. All of them love shade, ${ }^{4}$ water, and especially dung; however thyme is patient of drought and, in general, needs moisture less than the others. These plants especially delight in the dung of beasts of burden; and it is said that they should often be transplanted, for that it improves them, while bergamot-mint, as has been said, actually degenerates ${ }^{5}$ if it is not transplanted.

Of the scasons at which coronary plants flower, and of the length of their lije.
VIII. ${ }^{6}$ Of the flowers the ${ }^{7}$ first to appear is the gilliflower; where the air is mild, it appears as soon as winter comes, but, where it is more severe, later, sometimes in spring. Along with the gilliflower, or a little later, appears the flower called the wild wall-
${ }^{4} \phi \iota \lambda$ о́бкıа conj. Scal. from G; фıлоккıа UMAld. cf. Plin. l.c.

${ }^{6}$ Plin. 21. 64-66; Athen. 15. 26 and 27. à $\nu \hat{\omega} \nu$: ? in the sense of $\dot{\alpha} \nu \theta \iota \kappa \hat{\omega} \nu$, as in 6. 6.3.
${ }^{7} \tau \grave{c}$ conj. Scal.; $\tau 0 \hat{v}$ Ald.

THEOPHRASTUS

таи̂та үà $\omega \hat{\nu}$ oi $\sigma \tau \epsilon \phi а \nu \eta \dot{\eta} \pi \lambda о к о \iota ~ \chi \rho \hat{\omega} \nu \tau а \iota ~ \pi о \lambda \grave{v}$
 $\kappa \iota \sigma \sigma о$ каì тò $\lambda \epsilon i ́ p \iota o \nu,<\kappa а i ̀ ~ \tau \hat{\omega} \nu$ ảypínv ảvє $\mu \dot{\omega}-$

 $\mu \in ́ v \eta ~ к а i ~ т o ̀ ~ \xi i ́ 申 ı о \nu ~ к а i ~ v a ́ к ı \nu \theta o s ~ к а i ~ \sigma \chi \in \delta o ̀ \nu ~$
 $\dot{v} \sigma \tau \epsilon \rho \epsilon \hat{\imath}$ тоúт $\omega \nu$ каì $\tau \epsilon \lambda \epsilon \nu \tau a i ̂ o \nu ~ \mu \epsilon ̀ \nu ~ \phi а i \nu є \tau a l, ~$

 каì ảфаıрŋ̂ тò ă $\nu \theta$ оs каì $\mu \grave{\eta}$ є́âa $\sigma \pi \epsilon \rho \mu а т о \hat{v} \sigma \theta a \iota$

 oûv $\begin{gathered} \\ \sigma\end{gathered} \pi \epsilon \rho$ є́a $\rho ⿺ \nu a ̀$ à фaívetal．

${ }^{1}$ Evidently both distinct from the vápкıб⿱宀⿻三丨口巾 \＃$\lambda \in$ eipıov of 6． $6.9 ; 6.8$ 3．See Index．
${ }^{2}$ каl $\tau \hat{\omega} \nu .$. ópєıov ins．Sch．from Athen．l．c．with alteration of $\partial \rho \epsilon \in \omega \nu$ to àrplav．cf．Plin．l．c．

3 i．e．the flower of muscari，mentioned in this way because elsewhere（e．g．7．12．1）the edible root is in question，which was properly called $\beta_{5} \lambda \beta$ ós．
${ }^{4}$ cf．9．19．3．${ }^{5}$ See Index．

ENQUIRY INTO PLANTS, VI. vii. 1 -3

flower. These, of all the flowers that the garlandmakers use, far outrun the others. After these come pheasant's eye ${ }^{1}$ and polyanthus ${ }^{1}$ narcissus (and, among wild plants, the kind of anemone which is called the 'mountain anemone') ${ }^{2}$ and the 'head' 3 of pursetassels; for this too some interweave in their garlands. After these come dropwort violet, and of wild plants, gold-flower, ${ }^{4}$ the meadow kind of anemone corn-flag hyakinthos (squill), and pretty well all the mountain flowers that are used. The rose comes last of these, and is the first of the spring flowers to come to an end, as it is the first to appear, for its time of blooming is short. So too is that of the rest of the wild plants mentioned, except hyakinthos, ${ }^{5}$ the wild kind (squill), and also the cultivated (larkspur); this lasts on, and so does the gilliHower, and for a still longer time the wallfower, while the violet, as has been said, ${ }^{6}$ blooms throughout the year, if it receives tendance. So too dropwort ${ }^{7}$ (for that too is one of the plants valued for their flowers, though it is herbaceous ${ }^{8}$ in character) if one pinches off and removes the flower instead of letting it go to seed, and if, further, ${ }^{9}$ it has a sunny position. The flower is clustering and white, like that of the wild ${ }^{10}$ These then are, we may say, the plants of spring.
${ }^{11}$ The following belong rather to summer: rosecampion carnation krinon ${ }^{12}$ (lily) spike-lavender and

[^29]
THEOPHRASTUS

 $\mu \epsilon \tau о \pi \omega \rho \iota \nu \omega \hat{\nu} \mu \epsilon \tau \alpha \lambda a \mu \beta a \nu o ́ \nu \tau \omega \nu$, є́à̀ $\delta \dot{\epsilon}$ ठ̀̀ каì

 τ às $\gamma \in \nu \epsilon \in \sigma \epsilon \iota$;

[^30]
ENQUIRY INTO PLANTS, VI. vir. 3-5

the Phrygian sweet marjoram ${ }^{1}$; also the plant called ' regret,' ${ }^{2}$ of which there are two kinds, one with a flower like that of larkspur, the other not coloured but white, ${ }^{3}$ which is used at funerals; and this one lasts longer. The iris also blooms in summer, and the plant called soap-wort, which has a beautiful flower but is scentless. In autumn bloom the other kind of narcissus, ${ }^{4}$ the crocus, both the scentless mountain form and the cultivated one (saffroncrocus) ; for these bloom directly the first rains come. The fruit ${ }^{5}$ of the cotoneaster and the flower of the smilax, both of them wild plants, are also used in garlands.

Such are the seasons at which each appears; and, to speak generally, there is no interval of time nor flowerless period, but even winter produces flowers, for all that it seems to be unproductive by reason of the cold, since the autumn flowers continue into winter, and to a much greater extent if the season be mild. For all things, ${ }^{6}$ one may say, or at least most of them, extend beyond their proper season, and all the more if the place be sunny; so that there is a continuous succession. These then are the periods and seasons at which the various flowers are produced.
${ }^{7}$ The life of the gilliflower is at most three years; as it ages it degenerates and produces paler flowers. ${ }^{8}$ A rose-bush lives five years, after which its prime ${ }^{9}$ is past, unless it is pruned by burning ${ }^{10}$; with this plant too the flowers become inferior as it ages. Position and a suitable climate contribute most to

[^31]
THEOPHRASTUS

 a้ $\nu \theta \eta$ каі ảpळ́ $\mu a \tau a$, ai $\delta є ̀ ~ \mu \nu \rho р i ́ v a \iota ~ \theta a v \mu a \sigma \tau a i ̀ ~$
 คْóסa каi i้a каi тà ä $\lambda \lambda a$ ă $\nu \theta \eta$ каi $\delta \iota \mu \eta \prime \nu \omega$, каi
 хро́vov таขิтa.
$\Delta о \kappa є i ̂ ~ \delta є ̀ ~ \pi o \lambda v ̀ ~ \pi \rho o ̀ s ~ є ن ̉ o \sigma \mu i ́ a \nu ~ \delta \iota a \phi ́ ́ p \epsilon \iota \nu, ~ \check{\omega} \sigma \pi \epsilon \rho$ є̉ λ é $\chi \forall \eta$, каі ó évıautòs toîos $\hat{\eta}$ тоîos $\gamma \in \nu o ́ \mu \in \nu о$,

 $\kappa \alpha i$ ám $\lambda \hat{\omega} s$ тàs тov̂ áépos $\mu \in \tau a \beta o \lambda a ́ s . ~ \tau a ̀ ~ \delta e ̀ ~ \epsilon ́ \nu ~$
 aै $\lambda \lambda a<\kappa \alpha \lambda \hat{\omega} s ~ \mu \epsilon ̀ \nu ~ a ̉ \nu \theta \epsilon i ̂ \nu>~ \tau \hat{\imath} \nu ~ \delta \grave{\epsilon}$ ỏ $\sigma \mu \hat{\eta}$ то $\pi \lambda a ̀$ $\chi \epsilon i ́ \rho \omega$ रívєбӨai. каi $\pi \epsilon \rho i$ $\mu \epsilon ̀ \nu ~ \tau \hat{\omega} \nu \quad \sigma \tau є \phi a \nu \omega-$ $\mu a \tau \iota \kappa \hat{\omega} \nu$ каi à $\pi \lambda \hat{\omega} s \tau \hat{\omega} \nu \quad \phi \rho v \gamma a \nu \iota \kappa \hat{\omega} \nu \quad \sigma \chi \epsilon \delta o ̀ \nu$ є́ע тои́тоья каi тоîs ó μ оí九ь є̇бтì $\mathfrak{\eta}$ íбторía.
${ }^{1}$?'violets and gilliflowers ; so also below.
${ }^{2}$ Plin. l.c.; cf. C.P. 6. 18. 3.
${ }^{8} \not{ }_{\chi} \nu \partial \eta$ conj. St. from G ; à $\nu a \nu \theta \grave{\eta}$ Ald. cf. C.P. 6. 19. 4.
${ }^{4}$ Plin. 15. 37.

ENQUIRY INTO PLANTS, VI. viil. 5-6

the fragrance of roses gilliflowers ${ }^{1}$ and other flowers. Thus in Egypt, ${ }^{2}$ while all other flowers ${ }^{3}$ and sweet herbs are scentless, the myrtles ${ }^{4}$ are marvellously fragrant. In that country it is said that the roses gilliflowers and other flowers are as much as two months ahead of those in our country, and also that they ${ }^{5}$ last a longer, or at least not a shorter, time than those of our country.

And, as has been said, the particular season according to its character, makes a great difference to the fragrance, not only by reason of rains and droughts, but also according as rain, wind, and in general, the changes of climate occur or do not occur at the fitting moment. Also it appears that in general roses gilliflowers and the rest bloom well on the mountains, but many of them have there an inferior scent. ${ }^{6}$ Concerning coronary plants and under-shrubs in general these examples and others like them suffice for our enquiry.
${ }^{5}$ тav̂тa conj. W.; roútov Ald.
 whence Sch. and W. conj. that some such words as ка入ิิs $\mu \hat{\epsilon} \nu$ have dropped out and $\dot{a} \nu \theta \in i \nu$ has been altered to $\not \approx \nu \theta \eta$. $c f$. C.P. 6. 20.1.

 3x. ato

 0 2

BOOK VII

H

 $\delta \iota a \iota \rho \epsilon \theta \epsilon \in \nu \tau \omega \nu \quad \gamma \epsilon \nu \omega \hat{\nu}$, Є่v $\dot{\otimes} \sigma \nu \mu \pi \epsilon \rho \iota \lambda a \mu \beta a ́ \nu o \nu \tau a i ́$ $\pi \omega \varsigma$ тò $\lambda a \chi a \nu \eta \rho o ̀ \nu ~ \kappa a i ̀ ~ \tau o ̀ ~ \sigma \iota \tau \hat{\omega} \delta \epsilon \varsigma . ~ к а i ̀ ~ \pi \rho \hat{\omega} \tau o \nu$ $\pi \epsilon \rho \grave{i} \tau о \hat{v} \lambda a \chi a \nu \omega ́ \delta o v s ~ \lambda \epsilon \kappa \tau \epsilon ́ \sigma \nu$ à $\rho \xi a \mu \epsilon ́ \nu o v s$ àmò $\tau \hat{\omega} \nu \dot{\eta} \mu \epsilon ́ \rho \omega \nu$, є̇ $\pi \epsilon \grave{\imath} \gamma \nu \omega ́ \rho \iota \mu a \quad \mu a ̂ \lambda \lambda o \nu \tau ч \gamma \chi a ́ \nu \epsilon \iota \tau \hat{\omega} \nu$ à $\gamma \boldsymbol{\rho} i \omega \nu$.

Eiбi $\delta \grave{\eta} \tau \rho \epsilon i ̂ S$ ä $\rho о \tau о \iota ~ \pi a ́ \nu \tau \omega \nu \tau \hat{\omega} \nu \kappa \eta \pi \epsilon v о \mu$ év $\omega \nu$,
 $\epsilon i ̂ s ~ \mu \grave{̀} \nu$ oủv ơ $\chi \in \iota \mu \epsilon \rho \iota \nu o ́ s, ~ a ̈ \lambda \lambda o s ~ \delta e ̀ ~ o ̀ ~ \theta \epsilon \rho \iota \nu o ́ s, ~$

[^32]
BOOK VII

Of Herbaceous Plants, other than Coronary Plants : Pot-herbs and similar Wild Herbs.

Of the times of sowing and of germination of pot-herbs.

I. Next we have to tell of herbaceous plants: for this class remains of those which we distinguished at the outset, and it includes to some extent the classes of pot-herbs and of cereals. And first we must speak of the class of pot-herbs, beginning with the cultivated kinds, since it happens that these are better known than the wild kinds.
${ }^{1}$ There are three seed-times for all things grown in gardens, at which men sow the various herbs, distinguishing by the season. One is the 'winter' seed-time, another the 'summer,' and the third is that which falls between these, coming after the winter solstice. These terms however are given in regard not to the sowing, but to the growth and use of each kind; for the actual sowing takes place, one might almost say, at the opposite seasons. Thus, the 'winter' period begins after the summer ${ }^{2}$ solstice in the month Metageitnion, ${ }^{3}$ in which they sow cabbage radish turnip, and what are called 'secondary crops,' that is to say, beet lettuce rocket monk's rhubarb mustard coriander dill cress; and
${ }^{2} \theta \in \rho \iota \nu a ̀ s ~ c o n j$. Scal.; $\chi \in!\mu \in p ı \nu a ̀ s ~ U(?) M P_{2}$ Ald. G (ed. Bas. and Par. but not ed. Tarv.).
${ }^{3}$ July. ס̀̀ before M. om. Sch.

THEOPHRASTUS

 $\tau \epsilon \rho o v \pi a ́ \lambda \iota \nu \mu \in \theta^{\prime} \dot{\eta} \lambda i ́ o v ~ \tau \rho o \pi a ̀ s ~ \tau o ̂ ̂ ~ Г a \mu \eta \lambda \iota \omega ̂ \nu o s ~$

 ảvסрá $\nu \eta$ $\theta u ́ \mu \beta \rho o \nu . ~ \pi o \iota o v ̂ \nu \tau a \iota ~ \delta e ̀ ~ \pi \lambda \epsilon i ́ o v s ~ a ̉ \rho o ́-~$

 á оо́тoıs тà є̇тíбтора.

 ஸs єimєîv. Opıסaкívaı ठє̀ tєтартаîaı $\hat{\eta} \pi \epsilon \mu \pi \tau-$ aîaı. бíкvos δ è каì колокúvтך $\pi \epsilon \rho i ̀ ~ \tau a ̀ s ~ \pi \epsilon ́ \nu \tau \epsilon ~$

 Oov δ è $\tau \epsilon \tau а \rho \tau a i ̂ o \nu . ~ к a ́ \rho \delta a \mu o \nu ~ \delta \grave{~} \kappa a \grave{\nu} \nu a ̂ \pi v \pi \epsilon \mu \pi \tau$ -

 каi ópíqavos èv $\pi \lambda \epsilon i ́ o \sigma \iota \nu ~ \grave{\eta}$ трıáкоута. $\delta v \sigma-$ $\phi v \epsilon ́ \sigma \tau a \tau o \nu ~ \delta \epsilon ̀ ~ \pi a ́ \nu \tau \omega \nu ~ \tau o ̀ ~ \sigma \epsilon ́ \lambda \iota \nu o \nu . ~ \tau \epsilon \sigma \sigma a \rho a к о-~$ бтaîov үáp фабıl oi $\tau a ̀ ~ \sigma v \nu \tau о \mu \omega ́ т \epsilon \rho a ~ \lambda \epsilon ́ \gamma о \nu \tau \epsilon \varsigma, ~$

[^33]
ENQUIRY INTO PLANTS, VII. I. 2-3

this is also called the 'first' period of cultivation. The second period begins after the winter solstice in the month Gamelion, ${ }^{1}$ in which they scatter or plant the seed of leeks celery long onion orach. The third period, which is called the 'summer' period, begins in the month Munychion ${ }^{2}$: in this are sown cucumber gourd blite basil purslane savory. Moreover they make several sowings of the same herb at each season, as of radish basil and the others. And at all the periods are sown the 'secondary crops.'
${ }^{3}$ Not all herbs germinate within the same time, but some are quicker, others slower, namely those which germinate with difficulty. The speediest are basil blite rocket, and of those sown for winter ${ }^{4}$ use, radish ; for these germinate in about three days. Lettuce takes four or five, cucumber and gourd about five or six, or, as some say, seven; however, cucumber is earlier and quicker than the others. Purslane takes a longer time, dill four days, cress and mustard five. Beet in summer takes six days, in winter ten, orach takes eight, and turnip ten. Leek ${ }^{5}$ and long onion do not take the same time, but the former nineteen to twenty days, the latter ten to twelve. Coriander germinates with difficulty; indeed fresh seed will not come up at all unless it is moistened. ${ }^{6}$ Savory ${ }^{7}$ and marjoram take more than thirty days; but celery germinates with the greatest difficulty of all; for those who make the time comparatively short say forty days, and others fifty, and

[^34]
THEOPHRASTUS

 $\chi \epsilon \iota \mu \hat{\omega} \nu o s, \tau o ̀ ~ \delta \grave{~} \tau \epsilon u ́ \tau \lambda \iota o \nu, \check{\omega} \sigma \pi \epsilon \rho \epsilon \not \subset \rho \eta \tau \alpha \iota, \pi a \rho a \lambda-$

$\Delta \iota a \phi \in ́ \rho \epsilon \iota ~ \delta \grave{\epsilon}$ т $\rho o ̀ s ~ \tau o ̀ ~ \theta a ̂ t \tau o \nu ~ к а \grave{~} \beta \rho a \delta u ́ \tau \epsilon \rho о \nu$ $\kappa а \grave{~} \dot{\eta} \tau \hat{\omega} \nu \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu \pi a \lambda a \iota o ́ \tau \eta s$. $\tau a ̀ ~ \mu \epsilon ̀ \nu ~ \gamma \grave{a} \rho$

[^35]
ENQUIRY INTO PLANTS, VII. I. 3-6

that too, at whichever period it is sown, for some sow it as a 'secondary crop' at all the periods.

Generally speaking, those herbs which are sown at more than one season ${ }^{1}$ do not mature ${ }^{2}$ faster in the summer. Howbeit it is strange if the season and the state of the atmosphere do not contribute at all to quicker growth, and if, when there is an unfavourable cold season and the atmosphere is cloudy, these conditions do not tend to make growth slower, ${ }^{3}$ seeing that, when stormy or fair weather follows the sowing, germination is slower or quicker accordingly. And there is another thing which makes a difference as to the raising of the various herbs; germination begins earlier in sunny places which have an even temperature.

As a matter of fact, to speak roundly, the causes of such differences must be found in several different circumstances, in the seeds themselves, in the ground, in the state of the atmosphere, and in the season at which each is sown, according as it is stormy or fair. However it is a point for consideration with which herbs the time of sowing makes a difference and with which it makes none; thus it is said that radish germinates on the third day whether it be sown in summer or in winter, while beet, as has been said, behaves differently according to the season. Anyway such are and are said to be the seasons of germination in each case.
${ }^{4}$ Another thing which makes a difference as to the rapidity with which the seeds germinate is their age; for some herbs come up quicker from fresh seed, as

т $\rho \grave{s}$ s toे Bpaioútcpov conj. Sch. (with $\mu 0 \chi \theta$. к. 廿uxpà supply $\dot{\eta}$ äpa $\hat{\eta})$.
${ }^{4}$ Plin. 19. 118. δ é conj. Scal.; ràp Ald.H.

THEOPHRASTUS

 бíкvov $\pi \rho o ̀ s ~ \tau o ̀ ~ \theta a ̂ t \tau o \nu ~ \eta ̂ ~ \epsilon ̇ v ~ \gamma a ́ \lambda a \kappa \tau \iota ~ ท ̂ ̀ ~ \epsilon ̇ \nu ~ v i \delta a \tau \iota . ~$ тà δ^{\prime} àmò талаı$\hat{\omega} \nu$, oiov σ é $\lambda \iota \nu o \nu \tau \epsilon u ́ t \lambda l o \nu ~ \kappa a ́ \rho-~$ $\delta a \mu o \nu$ өúrßра корíàvò ópíqavov• єïтєр $\mu \grave{\eta}$

7

 $\kappa а i ̀ \gamma a ̀ \rho ~ \epsilon ̇ \pi i ̀ ~ \tau \hat{\omega} \nu$ ả $\gamma \rho i ́ \omega \nu$ ó $\rho \hat{\omega} \mu \epsilon \nu \quad \sigma \nu \mu \beta a i ̂ \nu o \nu, ~ \epsilon ̇ a ̀ \nu$

 $\tau \hat{\eta} \tau \epsilon \lambda \epsilon \iota \omega ́ \sigma \epsilon \iota \tau \hat{\omega} \nu \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu$ av̉aívє $\tau a \iota$.
 тò κ картò̀ $\dot{\alpha} \pi о т \epsilon \lambda \epsilon \iota о \hat{v} \tau a \iota ~ \kappa а т a ̀ ~ \tau o ̀ ~ \sigma \chi \hat{\eta} \mu a$ то̂ $\pi a \rho a \beta \lambda a \sigma \tau \eta \dot{\sigma} \epsilon \iota \varsigma \epsilon \in \kappa \quad \tau \hat{\omega} \nu \kappa \alpha \nu \lambda \omega \hat{\nu}$ є́ $\chi \epsilon \iota \nu \quad \dot{\alpha} \kappa \rho \epsilon-$

[^36]
ENQUIRY INTO PLANTS, VII. i. 6-8

leek long onion cucumber gourd; (some even soak the seed of cucumber first in milk or water, to make it germinate quicker). Some come up quicker from old seed, as celery beet cress savory coriander marjoram (unless indeed they are raised ${ }^{\mathbf{1}}$ from fresh seed in the manner ${ }^{2}$ which we have mentioned). There is, they say, a singular feature about beet ${ }^{3}$; the seed does not all germinate at once, but some of it not for some time, some even in the next or in the third year; wherefore it is said that little comes up from much seed.

Any of the seeds, if they are ripe when they fall, last till their own proper season and do not sprout till then. And in this they are consistent; for we note that the same thing happens with the seed of wild plants, unless it is destroyed. However all mature their fruits in the summer, though sooner and quicker, generally speaking, when they are sown earlier. The season also ${ }^{4}$ makes a difference; things sown in the hot season push up their shoots and go to seed sooner, as radish and turnip. Some however bear their fruit not in the same year but in the next, as celery ${ }^{5}$ leek long onion, which plants also last a longer time, and are not annual ; for most herbs wither with the ripening of their seed.

Generally speaking, all those that push up shoots and mature their fruit reach their perfection of form in having side-shoots branching from the main stem -except those which have but a single stem, as leek long onion onion garlic.

All these herbs are lovers of water and of dung,

> 3 cf. C.P. 4. 3. 2 ; Plin. l.c.
> 4 סє conj. W.; $\gamma \dot{\alpha} \rho$ Ald.H.
> 5 Plin. l.c.

THEOPHRASTUS

тà à $\sigma \theta \epsilon \nu \epsilon ́ \sigma \tau \epsilon \rho a \kappa a i ̀ \pi \lambda \epsilon i ́ o \nu o s ~ \epsilon ̇ \pi ı \mu \epsilon \lambda \epsilon i a s ~ \delta \epsilon o ́ \mu \epsilon \nu a$, $\tau \grave{d} \delta \grave{̀} \kappa \alpha i ̀ \tau \rho o \phi \hat{\eta} s$.

 $\dot{\rho} \iota \zeta \omega \hat{\omega} \epsilon \varsigma \pi \rho \circ \sigma \lambda a \beta \epsilon i \nu, \quad \dot{a} \pi o ̀ o ~ \delta \grave{\epsilon} \tau \hat{\omega} \nu \beta \lambda a \sigma \tau \hat{\omega} \nu \pi \eta{ }^{\prime}-$
 то̂̂тo öтаע $\sigma \pi \iota \theta a \mu \iota a i ̂ o \nu ~ \hat{\eta} \mu \epsilon i ̂ \zeta o \nu ~ \gamma є ́ \nu \eta \tau a \iota ~ \tau \epsilon \mu o ́ \nu \tau \epsilon \varsigma ~$

 $\kappa є \phi а \lambda о \rho \rho i \zeta \omega \nu$. фи́єта८ $\delta \dot{\epsilon} \kappa a i ̀ ~ \epsilon \grave{~} \tau \iota \nu \omega \nu$ ai $\dot{\rho} \iota \zeta a \iota$
 ő $\tau \tau \omega \nu$. öтı ठ̀̀ à àò $\sigma \pi \epsilon ́ \rho \mu a \tau o s ~ \pi a ́ \nu \tau a ~ \beta \lambda a \sigma \tau a ́ \nu є \iota ~$

2

 $\pi \lambda \epsilon i ́ o v s$ oủ $\mu o ́ \nu o \nu$ èv tôîs $\dot{\eta} \mu \epsilon ́ \rho o \iota s ~ \kappa a i ̀ ~ \kappa \eta \pi \epsilon v o-$

 $\pi а \rho a \beta \lambda a \sigma \tau \alpha ́ \nu \in \iota \delta^{\prime}$ évıa каі̀ $\tau \hat{\omega} \nu \mu \grave{\nu} \kappa є \phi а \lambda о \rho \rho i \zeta \omega \nu$

[^37]
ENQUIRY INTO PLANTS, VII. i. 8-H. 2

and especially the weaker ones, which require more attention or in some cases more feeding.

Of the propagation of pot-herbs, and of differences in their roots.
II. ${ }^{1}$ All these herbs are propagated from seed, and some also by a piece torn off, a shoot, or a piece of root. Cabbage is propagated by a piece torn off, ${ }^{2}$ since it is essential ${ }^{3}$ in this case to take a piece which has root attached to it. From cuttings ${ }^{4}$ are grown rue marjoram basil; for slips of this too men plant when it has grown to the height of a span or more, cutting off half the plant. ${ }^{5}$ By root ${ }^{6}$ are planted garlic onion purse-tassels cuckoo-pint and in general such bulbous plants. Such propagation is also possible in cases where the roots persist for more than a year, though the shoots last but for a year. And it is plain that all these herbs can be grown from seed; for even rue can (which some deny), though the process is slow, and so cuttings are also taken.

Of those which are propagated by a piece of root the root is long-lived, though the plant itself may be annual; wherefore the roots of such plants make offsets and so increase ; and this is true not only of plants cultivated in the garden, but also of wild plants, as we have said, for instance of purse-tassels long onion ${ }^{7}$ squill and so forth. Some plants even which are not bulbous ${ }^{8}$ but longer-lived make offsets, as celery and beet; for these send out roots from which grow leaves and stems. Long onion and

[^38]
THEOPHRASTUS

 $\sigma \kappa о \rho о ́ \delta \omega \nu$ каї $\beta о \lambda \beta \omega ิ \nu$ каì $\omega \sigma \pi \epsilon \rho$ ảpı $\theta \mu$ ós тьs

 $\kappa a v \lambda o v ̂ ~ \kappa a i ̀ ~ \rho ْ i \zeta \eta ร ~ \tau \hat{\omega} \nu ~ \epsilon i \rho \eta \mu \epsilon ́ \nu \omega \nu$.

 $\pi a \lambda \iota \mu \beta \lambda a \sigma \tau \epsilon i ̂ s ~ \epsilon i v a \iota ~ \kappa a v \lambda o u ́ s \cdot ~ \tau o ̀ \nu ~ \gamma \grave{\alpha} \rho \pi \rho \hat{\omega} \tau o \nu$

[^39]
ENQUIRY INTO PLANTS, VII. i. 2-4

leek ${ }^{1}$ also make offsets, sending out a 'head' below, like the bulb of purse-tassels, from which the leaves spring; but this only takes place when the stem has withered and the seed has been removed. But, as ${ }^{2}$ the 'heads' ${ }^{3}$ of such plants are not useful, they do not collect them ${ }^{4}$ for storing dry; wherefore also they do not plant these. ${ }^{5}$ It may be that somehow these are akin and closely allied to onion, wherefore what has been said is not surprising. However in all those plants, both wild and cultivated alike, ${ }^{6}$ which have an annual stem, ${ }^{7}$ but yet live longer than a year, there is an outgrowth of the roots, just as there is in under-shrubs and shrubby plants: while in onions garlic and purse-tassels even a number, ${ }^{8}$ as it were, of such roots is formed. In fact, ${ }^{9}$ they are reproduced in three ways, as has been said; from seed in all cases and from the stem ${ }^{10}$ and root in those specified.
${ }^{11}$ Almost all shoot again if the stem is broken (except those which are stemless), but most obviously basil lettuce cabbage, which are, as it were, broken for a practical reason. Indeed they say that the stems of lettuce which thus grow again are sweeter, ${ }^{12}$ for that the original stem has a taste like fig-juice and is bitter, as being not properly ripened. Some however say that the later stems have the taste of fig-juice more than the original one, but that, so long as they are tender, they appear sweeter. Be that as

[^40]
THEOPHRASTUS

 $\sigma \tau \eta{ }^{\prime} \sigma \epsilon \epsilon \nu \hat{\eta} \delta i ́ \omega \nu \dot{a} \phi a \iota \rho \epsilon \theta \in ́ \nu \tau \omega \nu \gamma \epsilon \tau \hat{\omega} \nu \phi \dot{v} \lambda \lambda \omega \nu \pi \rho o ̀$ то̂ ठıакаvдíбaı.
$\Delta \iota a \mu \epsilon ́ v o v \sigma \iota ~ \delta e ̀ ~ a i ~ \rho ~ \rho i \zeta ̧ a \iota ~ \pi \lambda \epsilon \iota o ́ \nu \omega \nu, ~ a ̉ \lambda \lambda ’ ~ a i ́ ~ \mu e ̀ \nu ~$ $\beta \lambda a \sigma \tau a ́ \nu o v \sigma \iota \pi a ́ \lambda \iota \nu$ ai $\delta \grave{c}$ ov̉. $\dot{\rho} a \phi a \nu i s$ yoûv каì

 $\tau \iota \nu \epsilon \varsigma ~ \epsilon ่ \xi \epsilon \pi \pi i \tau \eta \delta \epsilon \varsigma \tau \hat{\omega} \nu \kappa \eta \pi о \cup \rho \omega \hat{\nu} \cdot$ ov̉ $\beta \lambda a \sigma \tau a ́ \nu 0 v \sigma \iota$

 $a ̈ \lambda \lambda \omega \nu \epsilon \notin \tau \tau i . \quad \tau a ̀ \delta \epsilon ̀ ̀ \pi \lambda \epsilon i \sigma \tau a \tau \hat{\omega} \nu \lambda a \chi a ́ \nu \omega \nu \mu o \nu o ́ \rho-$
 $\pi а \rho a \phi u ́ \epsilon \iota ~ \tau a ̀ s ~ i \sigma о \pi a \chi \epsilon i s ~ \tau a u ́ \tau a s, ~ \check{~} \sigma \pi \epsilon \rho \sigma \in ́ \lambda \iota \nu o \nu$ $\kappa а i ̀ \tau \epsilon u ́ \tau \lambda \iota o \nu, ~ a ̀ \pi o ̀ ~ \tau \eta ̄ s ~ \mu \epsilon ́ \sigma \eta s, \pi \omega s ~ \dot{\eta} \pi a \rho a ́ \phi v \sigma i ́ s$

 oú $\delta \dot{\epsilon}$ áф $\alpha \iota \rho \epsilon \tau o ́ s, ~ \tilde{\omega} \sigma \pi \epsilon \rho$ ó $\tau \hat{\omega} \nu, \dot{\rho} a \phi a \nu i ́ \delta \omega \nu$, $\dot{a} \lambda \lambda \alpha \dot{\alpha}$ $\mu \hat{a} \lambda \lambda o \nu$ oỉos ó $\tau \hat{\omega} \nu$ i im $\pi o \sigma \epsilon \lambda i ́ \nu \omega \nu$. $\dot{\omega} \sigma a u ́ \tau \omega s$ ठ̀̀
 $\tau a u ́ t \eta s \delta_{\epsilon}$ ä $\lambda \lambda a \iota$.

[^41]
ENQUIRY INTO PLANTS, VII. i. 4-6

it may, it is admitted that in the case of cabbage the stem is sweeter if it should have grown ${ }^{1}$ again after being broken, provided that the leaves are stripped off before the plant runs to stalk.

In most cases the roots persist, but they do not in all cases produce fresh growth. Thus radish and turnip persist till summer, if earth is thrown on them, and they increase in size; and some gardeners do this deliberately; but they do not make fresh growth nor send out leaves, even if one ${ }^{2}$ removes the earth heaped over them. And this may also be observed in other plants. However, most pot-herbs have the single stout root which runs deep; for even in those which produce these side-roots of equal stoutness, as celery and beet, the side-growth comes, as it were, from the middle root and it is not separate to start with; but to this single root are attached the small out-growths, ${ }^{3}$ both in radish and in turnip. These instances are familiar to all because of the use ${ }^{4}$ which is made of these plants.

The beet has a single long stout straight root like that of the radish, and has stout out-growths, sometimes two, sometimes three, sometimes only one, and the small ones are attached to these. The root is fleshy and sweet and pleasant to the taste, wherefore some even eat it raw. The 'bark' is not thick and cannot be detached, like that of the radish, but rather resembles that of alexanders. In like manner the root of orach is single and runs deep, and other roots are attached to it.
$\tau \epsilon \kappa a l$ $\tau \hat{\eta} s a ̉ \pi \pi o ф v a ́ \delta o s ~ \kappa a l ~ \mu \iota \kappa \rho a ̀ ~ A l d . H . ~ ; ~ s o ~ a l s o ~ M, ~ o m i t t i n g ~ \tau \epsilon . ~$ W.'s restoration of a very corrupt text is at least consistent with what follows in § 6 .

+ i.e. for food.

THEOPHRASTUS

Movoppı乌̆́тatov Sè тоv́т $\omega \nu \pi a ́ \nu \tau \omega \nu$ тò $\lambda a-$

 $\tau \epsilon \lambda \epsilon \iota \omega \theta \epsilon \hat{\epsilon} \sigma a \pi a \rho a \pi \lambda \eta \sigma i ́ a ~ \tau \hat{\eta} \tau o v ̂ \tau \epsilon \nu \tau \lambda i o v \cdot \pi o \lambda v-$

 то入v̀̀ χ рóvov．

Tò $\delta^{\prime} \omega ̈ \kappa \iota \mu о \nu \mu i a \nu ~ \mu \epsilon ̀ \nu ~ \tau \grave{\eta} \nu \pi a \chi є i ̂ a \nu ~ \tau \grave{\eta} \nu \kappa а т а$ $\beta a ́ \theta o u s ~ \tau a ̀ s ~ \delta ’ a ̆ \lambda \lambda a s ~ \tau a ̀ s ~ \epsilon ̇ \kappa ~ \pi \lambda a \gamma i o u ~ \lambda \epsilon \pi \tau a ̀ s ~$ є̇ $\pi \iota \epsilon \iota \kappa \hat{\omega} \varsigma ~ є \dot{v} \mu \eta ́ \kappa \epsilon \iota \varsigma$.

 каї цакротє́раs тท̂s ảdрафáそvos．
$\mathrm{T} \hat{\omega} \nu \delta_{\epsilon} \dot{\rho} \iota \zeta \hat{\omega} \nu \bar{\xi} \nu \lambda \omega \delta_{\epsilon} \sigma \tau a \tau a \iota \pi a \sigma \hat{\omega} \nu$ ai $\tau o \hat{v}$

 $\lambda a \pi a ́ \theta o v ~ \kappa а i ̀ ~ \rho a ф а \nu i ́ \delta o s ~ к а i ̀ ~ \gamma o \gamma \gamma v \lambda i ́ o o s ~ к а i ̀ ~ \pi a ́ \nu-~$

${ }^{1}$ cf．1．6． 6.
 98 （who mistranslates）．
${ }^{3}$ cf．7．6．1；C．P．3．1．4．${ }^{4}$ SeeéIndex，

ENQUIRY INTO PLANTS, VII. ir. 7-8

Monk's rhubarb ${ }^{1}$ however has a single root in a truer sense than any of the others, for it has no stout out-growths of root, but only the ${ }^{2}$ slender ones; its root also runs deeper than that of the others, being more than a foot and a half long. The wild sort ${ }^{3}$ however has a shorter root, and has several stems and branches, and its shape, as a whole, when fully grown resembles that of beet. Cultivated monk's rhubarb moreover is longer lived than the wild form, ${ }^{4}$ and, in general, we may say, than any other pot-herb, for, they say, it may live any time. It has a fleshy root, ${ }^{5}$ full of moisture, wherefore, if pulled up, it will live some time.

Basil has the single stout root, the one which runs deep, and the others at the sides are slender and fairly long.

Some herbs, as blite, have not the single straight root, but a number of roots which start directly from the top and are of a good stoutness ${ }^{6}$ and longer than those of orach.

The roots of basil are woodier than those of any of the other herbs, as also is its stem; for those of blite orach and the like are less woody. In general we may say that the roots of any ${ }^{7}$ of these herbs are either woody or fleshy. Examples of fleshy ${ }^{8}$ roots are beet celery alexanders monk's rhubarb radish turnip, and especially all 'heavy-headed' ${ }^{9}$ kinds, for the roots of these do not wither up altogether even when they are dried. Examples of those with woody roots

[^42]
THEOPHRASTUS

 $\xi u \lambda \omega ́ \delta \eta ~ \tau \epsilon \tau \grave{\eta} \nu$ ค́ļav каì oủ $\mu а \kappa \rho a ̀ \nu ~ o u ̉ \delta \grave{\epsilon}$ тàs

- B $\rho a \chi \dot{\rho} \rho \rho i \zeta a ~ \delta \grave{\epsilon}$ тav̂tá $\epsilon \sigma \tau \iota \nu$, oiov $\theta \rho i ̂ \delta a \xi \dot{a} \nu$ -

 ả $\lambda \lambda a ̀ ~ \mu o ́ v o \nu ~ \tau a ̀ s ~ \lambda \epsilon \pi \tau а ́ s, ~ к а i ̀ ~ \mu a ́ \lambda ı \sigma \tau a ~ \delta ̀ ̀ ~ \mu o v o ́ \rho-~$

 $\pi \lambda a \gamma i ́ \omega \nu \mu a ̂ \lambda \lambda o \nu \cdot \beta \rho a \chi u \tau \epsilon ́ \rho a \nu$ dè кaì $\mathfrak{\eta}$ ả $\gamma \rho i ́ a ~ \tau \eta ̂ s$

[^43]
ENQUIRY INTO PLANTS, VII. in. 8-iif. i

are basil blite orach rocket dill ${ }^{1}$ coriander, and in general, those with fibrous stems; for in dill and coriander, which have a single root, the root is woody and not long, and the slender side-roots ${ }^{2}$ from it are not numerous; but both plants have several stems and branches; wherefore in neither of these plants does the part above ground correspond to the part which is below.

The following ${ }^{3}$ have short roots : lettuce and purslane, in which both the straight main root and the side ones are short. ${ }^{4}$ Lettuce may be said to have no such side-roots, but only the slender ones, and may be called in the strictest sense a plant of a single root. In general all summer herbs have short roots: we may include cucumber gourd and bottlegourd, both because of the season to which they belong and perhaps still more because of their character, which corresponds to the season. However the transplanted lettuce has a shorter root than one that is raised from seed, since it is more apt to send out side-growths; also the wild kind has a shorter ${ }^{5}$ root than the cultivated, and the part above ground has more stems. ${ }^{6}$

Of the flowers and fruits of pot-herbs.

III. ${ }^{7}$ All, except one, of these herbs produce all their bloom at once, but basil has a succession of flowers, the lower part of the plant flowering first, and then, when that bloom is over, the upper part. Wherefore its season of bloom is a long one, like that of the

[^44]
THEOPHRASTUS

 тóas тò $\dot{\eta} \lambda \iota о т \rho o ́ \pi \iota о \nu \kappa а \lambda о v ́ \mu \epsilon \nu о \nu \kappa \alpha i ̀ ~ a ̈ \lambda \lambda a ~ \delta є ̀ ~ \tau \hat{\omega} \nu$ à $\gamma \rho i ́ \omega \nu$. à $\nu \theta \epsilon \hat{\imath}$ ठ̀̀ каi ó бíкvos mo入ùv $\chi \rho o ́ \nu o \nu$. $\kappa a i ̀ \gamma \grave{a} \rho$ є́ $\pi \iota \beta \lambda a \sigma \tau \alpha \dot{\nu} \epsilon \iota \nu$ тои́т ω үє $\sigma v \mu \beta a i \nu \in \iota$. тà

Tà $\delta \grave{\epsilon} \sigma \pi \epsilon ́ \rho \mu a \tau a ~ \delta \iota a \phi ́ ́ \rho є \iota ~ к а і ̀ ~ \tau о i ̂ s ~ \sigma \chi \eta ́ \mu a \sigma \iota . ~$

 $\sigma \pi \epsilon ́ \rho \mu a \tau a \hat{\eta} \gamma v \mu \nu о \sigma \pi \epsilon \in \rho \mu a \tau a \hat{\eta}$ є’ $\mu \phi \lambda о \iota \sigma \sigma \pi \epsilon ́ \rho \mu a \tau a$ ทै $\pi a \pi \pi о \sigma \pi \epsilon ́ \rho \mu a \tau a \cdot \dot{\rho} a \phi a \nu i s ~ \mu e ̀ v ~ \gamma \grave{a} \rho$ каl $\nu a ̂ \pi v$

 $\beta \lambda i ́ t o \nu ~ \delta \grave{\epsilon}$ каì тєút入ıov каì à $\delta \rho a ́ \phi a \xi v s ~ к а \grave{~}$ ळ̈кıцоу є́ $\mu ф \lambda о \iota о \sigma \pi є ́ \rho \mu а т а, ~ \theta \rho ı \delta а к і ̀ \eta ~ \delta \grave{\epsilon ~ т а т \pi т о-~}$ $\sigma \pi \epsilon ́ \rho \mu a \tau o \nu$.

Пávтa δ è $\pi о \lambda u ́ к а \rho \pi а ~ к а i ̀ ~ \pi о \lambda \nu \beta \lambda a \sigma \tau \hat{\eta}, \pi о \lambda \nu-$
 катà тои́тоv. фабì үà $\delta \in i ̂ \nu ~ к а т а \rho a ̂ \sigma \theta a i ́ ~ \tau \epsilon ~ к а i ̀ ~$
 каї толи́.

[^45]
ENQUIRY INTO PLANTS, VII. II. I-3

bean, and among herbaceous plants ${ }^{1}$ that of the plant called heliotropion, and also other wild plants. Cucumber also has a long period ${ }^{2}$ of bloom, for this plant has a second growth. The flowers are in some cases whitish, in others quince-yellow, ${ }^{3}$ in others somewhat reddish ${ }^{4}$; but the flower is never of a bright colour.
${ }^{5}$ The seeds too differ in shape; most are round, but some are oblong; some again are broad and leaflike, as those of orach, for the seed of this is like that of silphium; others again are narrow or marked in lines, ${ }^{6}$ as those of cummin. They also vary in colour, some being black, some the colour of wood, ${ }^{7}$ some paler. The seeds of all are either in pods or naked, or have an integument or have a pappus. Radish mustard and turnip have their seeds in pods; coriander fennel dill and cummin have naked seeds; those of blite beet orach and basil are enclosed in an integument; those of lettuce have a pappus on them.

All have numerous fruits and numerous shoots, but cummin has the most ${ }^{8}$ fruits of all. ${ }^{9}$ And there is another peculiarity told of this plant: they say that one must curse and abuse it, while sowing, if the crop is to be fair and abundant.

Nearly all of these, except cummin, are hard to dry for keeping,-unlike corn ${ }^{10}$; for this, when once

```
\({ }^{6} \gamma \rho \alpha \mu \mu \omega \delta \eta\) : cf 4. 12. 2. ; canaliculata Plin. l.c.
7 ?' brown'cf. 7 9. 3.
\({ }^{8}\) cf. 8. 3. 5; C P. 4. 15. 2.
\({ }^{9}\) cf 9. 8. 8; Plin. l.c. applies this to ढкєцоу, Pall. 4. 9. 5
to \(\pi \eta\) ク่ \(\alpha \nu o \nu\).
```



```
ràp; aitos os W. after Sch.; nec modo frumenti consistunt,
quod G .
```


THEOPHRASTUS

 $\xi \eta \rho a \nu \tau o ́ \tau \epsilon \rho a$ ठє̀ тà є́ $\mu \phi \lambda о \iota \sigma \pi \pi \epsilon ́ \rho \mu а т а$ каі̀ тои́т $\omega \nu$

 каі тодvбтє́риата, тодикарто́татоע δ є̀ тò б̈кıиоу.
 $\pi \rho a ́ \sigma o \nu ~ к \rho о ́ \mu \nu о \nu \cdot ~ \tau a ̀ ~ \delta \grave{\epsilon} \pi \lambda а \gamma ו o ́ к а \rho т а ~ \mu a ̂ \lambda \lambda о \nu, ~$

 үà ρ таи̂та каì є’к то̂̂ $\pi \lambda a \gamma i ́ o v, ~ к а i ̀ ~ \tau о ́ ~ \gamma є ~ \beta \lambda i ́ т о \nu ~$

 $\pi \rho a ́ \sigma o v ~ к а і ~ т o ̀ ~ \tau o ̂ ~ \sigma \epsilon \lambda i ́ \nu o u ~ \tau \iota \theta ́ ́ a \sigma \iota \nu ~ a ̉ m o \delta \eta ́ \sigma a \nu \tau \epsilon s ~$

 $\kappa \epsilon \lambda \epsilon \cup ́ o v \sigma \iota$ yoûv, ôtav $\tau \iota \varsigma \mu \epsilon \tau a \phi \cup \tau \epsilon u ́ \eta ~ \tau a ̀ ~ \sigma e ́ \lambda \iota \nu a$,

[^46]
ENQUIRY INTO PLANTS, VII. iII. 3-5

it is ripened, quickly dries and is shed, and the herbs whose seed have an integument are harder still to dry, especially basil. All however, when dried, produce more fruit : wherefore ${ }^{1}$ it is the custom to gather the seed early and dry it. All of them are prolific and produce many seeds, but basil produces most of all.

Examples of those which produce their fruit at. the top of the stem are basil leek onion: of those which produce it rather at the sides, radish turnip and the like; of those which produce it in both ways, blite and orach; both of these produce it at the side as well as at the top; in fact blite ${ }^{2}$ has its seed in clusters, closely attached to each branch. Some push up their shoots ${ }^{3}$ fairly soon from old seed, but seed from plants in their prime is the most rapid; for these plants too have a time when they are at their best. The beauty of the plant also corresponds ${ }^{4}$ in proportion, provided that equal care in ${ }^{5}$ other respects is shewn in cultivation.
${ }^{6}$ It likewise appears that, if a quantity of seed is sown in the same place, the resulting crop comes up and germinates better; thus they tie up seed of leek and celery in a piece of cloth ${ }^{7}$ before sowing, and then there is a large ${ }^{8}$ crop.

The position also contributes to growth ; at least, when celery is transplanted, they suggest that one should hammer ${ }^{9}$ in a peg of whatever size one wishes to make the celery; and also that one should sow the seed in a piece of cloth ${ }^{10}$ after hammering in a peg and filling the hole with dung and soil.
in UMAld.; text as given by Cam., which however onits

${ }^{5}$ cf. 7. 4. 7. $\quad{ }^{6}$ Plin. 19. $120 .{ }^{7}$ cf. C.P. 5. 6. 9.
${ }^{8} \mu \in \gamma^{\dot{d}} \lambda a$ conj. St.; $\mu \in \gamma^{\alpha} \lambda a \iota ~ A l d . H$.
${ }^{9}$ Made clearer C.P. 5. 6. 7. ${ }^{10}$ cf. C.P. 5. 6. 9.

THEOPHRASTUS

Kaì סıaфорà̀ $\lambda a \mu \beta a ́ v \epsilon \iota ~ к а т a ̀ ~ \tau o u ̀ s ~ \chi v \mu o v ̀ s ~$

 $\tau \eta$ 乞 $\theta \epsilon \rho a \pi \epsilon i ́ a s$.

 тоוои́тоцs.
2 Oîov tท̂s $\mathfrak{a} a \phi a \nu \hat{\imath} \delta o s<\gamma \epsilon ́ \nu \eta$ KopıдӨíà K $\lambda \epsilon \omega \nu a i ́ a \nu$

${ }^{1}$ каl toîs tónoıs Ald.; кađà toùs tónous conj. W. cf. C.P. 5. 6.7.

 каl ঠıафорà̀ conj. Sch. cf. Geop. 12. 19. 6.
${ }^{8}$ cf. 7. 1. 6 ; Geop. 12. 20. 3.
${ }^{4}$ After eival there is a lacuna in UMAld.; Cam. supplies
 80

ENQUIRY INTO PLANTS, VII. im. 5-iv. 2

Some things again come to resemble in their shape even the position ${ }^{1}$ in which they grow : thus the bottle-gourd becomes like in shape to the vessel ${ }^{2}$ in which it has been placed.

Moreover differences in taste are acquired in some cases when the seed has been treated specially beforehand; for instance, the seed of the cucumber produces a fruit with different taste if it is soaked ${ }^{3}$ in milk before sowing. But such matters belong perhaps more properly to the subject of cultivation.

Of the various forms of some pot-herbs.

IV. Of some herbs there are several kinds, but of others only one, as basil monk's rhubarb blite cress rocket orach coriander dill rue; of each of these they say that there is ${ }^{4}$ but one kind. But of others there is more than one, as radish cabbage beet cucumber gourd cummin garlic lettuce. Differences are marked in the leaves, the root, the colour, the taste, and so forth.

Thus of radish they recognise these various kinds ${ }^{5}$ -the Corinthian, that of Cleonae, the Leiothasian, amorea, the Bocotian. The Corinthian is said to be the strongest in growth, and it has an exposed root; for it pushes upwards, and not downwards like the others. The Leiothasian ${ }^{6}$ is called by some the
 rather supports H. ? read as in H.: $\tau \hat{\omega} \nu \delta \dot{\epsilon} \epsilon \in \sigma \tau \iota$ is perhaps an attempt to fill the lacuna.
${ }^{5}$ cf. Plin. 19. 75 and 76, who gives a kind called viride in place of T.'s $\alpha \mu \omega \rho \rho^{\prime} \alpha:$ see below. After β a $\phi \alpha \nu i ̂ \delta o s$ there is a
 restored from Athen. 2. 48 (cf. Plin. l.c.). Cam.H.Bas. (also Vo. Vin.(?)) give substantially the same.

6 The name suggests Thasos, off the Thracian coast.

VOL. II.

THEOPHRASTUS

 $\lambda \epsilon i ̂ a ~ \tau a ̀ ~ ф u ́ \lambda \lambda a, ~ \gamma \lambda \nu к v ́ т \epsilon \rho a \iota ~ к а i ̀ ~ \eta ̀ \delta i ́ o v s, ~ o ̈ \sigma \omega \nu ~ \delta ’ ~ a ̀ \nu ~$

 $\nu i ̂ \delta o s ~ \mu e ̀ \nu ~ o v ̂ \nu ~ \tau a v ̂ t a . ~$

Гoyju入íoos δ è oi $\mu e ́ \nu ~ \phi a \sigma ı \nu ~ \epsilon i v a l ~ o i ~ \delta ' ~ o и ̆ ~$

 $\pi \rho o ̀ s ~ \delta \grave{\epsilon}$ тò à àroӨ $\eta \lambda$ úvє $\sigma \theta a \iota ~ \pi \eta \gamma \nu v ́ v a \iota ~ \delta \epsilon i ̂ \nu ~ \mu a \nu a ́ s . ~$

 $\pi \rho o ̀ s ~ \sigma \pi є \rho \mu а т \iota \sigma \mu o ̀ \nu ~ \mu є т а ф є ́ \rho о \nu \tau є s ~ ф и \tau є v ́ o v \sigma \iota ~ \tau a ̀ s ~$

 $\gamma \grave{a} \rho \chi \rho \eta \sigma \tau \hat{\eta} s$ 就

 ả μ фoî̀ єivaı тàs סıaфорás.

[^47]
ENQUIRY INTO PLANTS, VII. iv. 2-3

Thracian radish, and it stands the winter best. The Boeotian is said to be the sweetest and to be round in shape, not of a long shape like that of Cleonae. Those kinds whose leaves are smooth are sweeter and pleasanter to the taste, those whose leaves are rough have a somewhat sharp taste. Besides the above-mentioned kinds ${ }^{1}$ there is yet another, whose leaves resemble those of rocket. These then are the different kinds of radish.

Of the turnip ${ }^{2}$ all do not agree that there are several kinds, but some say that the only difference is between the 'male' and the 'female,' and that both forms come from the same seed. In order to produce 'female' plants it is said that the seed should be sown ${ }^{3}$ thinly, for that, if it is sown thick, the result is all 'male' plants; and that the same result follows if the seed is sown in poor soil. Wherefore, when they are shifting plants for seeding, ${ }^{4}$ they plant the seedlings ${ }^{5}$ wide apart. ${ }^{6}$ Good and inferior seed can be easily distinguished by their appearance ; the seed of a good plant is fine, that of a poor one coarse. Both this plant and radish like exposure to winter; for it is supposed that this makes them sweeter and that they are thus made to grow roots rather than leaves. With a south wind and warm weather they ran up quickly. It needs explanation that both plants should thus adapt ${ }^{7}$ themselves in special ways.
${ }^{4} \pi \rho \grave{s} \sigma \pi \epsilon \rho \mu \alpha \tau \iota \sigma \mu \grave{\nu}$ conj. W.; тoùs $\sigma \pi \epsilon \rho \mu a \tau \iota \sigma \mu o u ̀ s ~ A l d ~ H . ~$ cf. 7. 5. 3.
${ }^{5}$ ék $\kappa \emptyset \dot{\sigma} \sigma \in เ s: c f .3 .3 .7$.
${ }^{6}$ каl $\pi \lambda a \tau \epsilon$ ías corrupt. $\delta \iota \epsilon \sigma \tau \eta \kappa v i a s(W$.$) gives the required$ sense ; but there may be a loss of some words, $\pi \lambda a \tau e i a s$ indicating that the object is to produce broader plants. cf. C.P. 5. 6. 9 and Sch.'s note.
${ }^{7} \tau \hat{\eta} s \delta \mu o t \omega \sigma \epsilon \omega s$ probably corrupt: no correction suggests itself.

83

THEOPHRASTUS

 $\pi \rho o ̀ s ~ \tau a ̀ s ~ к о \iota \lambda i ́ a s ~ a u ̉ t e ̂ ̀ ~ \chi \rho \hat{\nu \nu \tau a \iota ~ o i ~ i a \tau \rho o i ́ . ~ o ́ \mu o i ́ \omega s ~}$

 тє́ра каї нєүадофидлотє́ра.

 тוves इııкє入ıкóv.
5
 ä $\lambda \lambda a$ трía, тó тє $\pi \lambda a \tau v ́ к а u \lambda о \nu$ каi $\sigma \tau \rho о \gamma \gamma v \lambda o ́-$

 фабì каì θ v́paıs $\chi \rho \eta ̂ \sigma \theta a \iota ~ к \eta т о и р ı к а i ̂ s . ~ т o ̀ ~ \delta \grave{\epsilon}$

 $\kappa а \grave{\imath} \pi \lambda a \tau u ́ \tau \epsilon \rho о \nu ~ \kappa а \nu \lambda \grave{\nu} \nu \delta$ è $\mu \epsilon i \zeta \omega$. тоúт $\omega \nu$ $\delta \grave{\epsilon}$

 $\dot{\epsilon} \mu \phi \epsilon \rho \epsilon ́ \sigma \tau \epsilon \rho о \nu \tau \hat{\varphi}$ ả $\gamma \rho i ́ \varphi$.

[^48]
ENQUIRY INTO PLANTS, VII. iv. 4-6

${ }^{1}$ Of cabbage three kinds are distinguished, the curly-leaved, the smooth-leaved, and thirdly, the wild form. ${ }^{2}$ The wild form ${ }^{3}$ has a small round leaf, it has many branches and many leaves, and further a sharp medicinal taste; wherefore physicians use it for the stomach. Between the other two kinds ${ }^{4}$ there seem also to be differences, inasmuch as one of them bears no seed or only inferior seed. In general the curly-leaved kind has a better flavour than the smooth and it has larger leaves.
${ }^{5}$ So too with beet; the white kind has a better flavour than the black and produces fewer seeds; some call it 'Sicilian' beet.

So too with lettuce; the white kind is sweeter and tenderer. Of this plant there are three other kisds, ${ }^{6}$ the flat-stalked, the round-stalked, and the Laconian; the last-named has a leaf like the golden thistle, ${ }^{7}$ but is erect and strong-growing and has no side-shoots ${ }^{8}$ from the main stem. Of the 'flat' kinds some have such flat stalks that some, they say, use them to make a garden trellis. ${ }^{9}$ The third kind, which has much milky juice and small leaves and a whiter stem, is like a wild plant.
${ }^{10}$ In celery the differences between the various kinds lie in the leaves and stem; one kind is close and curly and has rough leaves, the other is more open in growth and flatter, but has a larger stalk. Again there are kinds with stems white, red or particoloured; and in general all such forms resemble more the wild kind.

[^49]
THEOPHRASTUS

 à ν údрєитои.
$7 \Delta \iota a \phi \in ́ \rho \epsilon \iota$ ठ̀̀ $\gamma \in ́ \nu \in \iota$ каì тà кро́ $\mu \nu a$ каi тà

 इa $\mu о \theta \rho a ́ к \iota a, \kappa a i ̀ \pi a ́ \lambda \iota \nu ~ \tau a ̀ ~ \sigma \eta \tau a ́ \nu \iota a ~ к а i ~ \sigma \chi \iota \sigma \tau \grave{a}$ $\kappa а і ̈ ~ ' А \sigma \kappa а \lambda \omega ́ v \iota a . ~ т о и ́ т \omega \nu ~ \delta e ̀ ~ \tau a ̀ ~ \mu \epsilon ̀ \nu ~ \sigma \eta т а ́ \nu \iota a ~$

 $\theta \epsilon \rho a \pi \epsilon$ v́ovol• $\pi \epsilon \rho \iota a \iota \rho \epsilon \theta \epsilon ́ \nu \tau \omega \nu$ ठ̀̀ $\tau \hat{\omega} \nu \quad \phi u ̛ \lambda \lambda \omega \nu$
 $\kappa a \lambda о \hat{v} \sigma \iota ~ \sigma \chi \iota \sigma \tau a ́$. oi $\delta e ̀ ~ \kappa a i ̀ ~ o ̈ \lambda \omega s ~ \phi а \sigma i ̀ ~ \pi a ́ v \tau \omega \nu ~$

[^50]86

ENQUIRY INTO PLANTS, VII. iv. 6-8

As to cucumber and gourd, it is said that there are various forms of the former, but of the latter, just as in radish and turnip, the differences are only between better and inferior individuals. ${ }^{1}$ Of the cucumber there are three forms, the Laconian the cudgel-shaped and the Boeotian. Of these the Laconian is better with moisture, the others without it.
${ }^{2}$ There are also various kinds of onion and of garlic; those of the onion are the more numerous, for instance, those called after their localities Sardian, ${ }^{3}$ Cnidian, Samothracian; and again the 'annual' the 'divided'4 (shallot) and that of Ascalon. ${ }^{5}$ Of these the annual kind is small but very sweet, while the divided and the Ascalonian differ plainly as to their character as well as in respect of their cultivation. For the 'divided' 6 kind they leave untended in winter with its foliage, ${ }^{7}$ but in spring they strip off ${ }^{8}$ the outside leaves and tend the plant in other ways; when the leaves are stripped off, others grow, and at the same time division takes place under ground, which is the reason of the name 'divided.' ${ }^{9}$ Some indeed say that all kinds should be thus treated, in order that the force of the plant may be directed downwards and it may not go to seed. The Ascalonian kind has a somewhat peculiar character ; it is the only kind which does not ${ }^{10}$ divide and which does not, as it were, reproduce itself from the root; moreover in the plant ${ }^{11}$ itself there is no power of increasing and multiplying; wherefore

[^51]
THEOPHRASTUS

 тои́т $\omega \nu \mu$ ย̀v oủv тolav́т η тıs $\hat{\eta}$ фv́бıs.

 $\pi a \rho a \pi \lambda \eta \sigma i ́ a ~ \delta e ̀ ~ \tau \rho o ́ \pi о \nu ~ \tau \iota \nu a ̀ ~ \tau o i ̂ ~ ' А ~ ' А к а \lambda \omega \nu i o \iota s, ~ \epsilon i ~$

 10 ä入入oıs. äтаעтa $\gamma \grave{a} \rho \pi \eta \gamma \nu v ́ \mu \epsilon \nu a$ каі $\beta \epsilon \lambda \tau i \omega$

[^52]
ENQUIRY INTO PLANTS, VII. iv. 8-10

many do not plant ${ }^{1}$ these, but raise them from seed; and the sowing is made late, towards the spring; and then, when the seed has germinated, they transplant. And the plant arrives at maturity so ${ }^{2}$ fast that it is taken up with the others or even earlier; whereas, if it is left a longer time in the ground, it rots. If planted on the other hand, ${ }^{3}$ it sends up a stem and merely produces seed, and then shrivels up ${ }^{4}$ and withers. Such then is the character of these.

Some also shew differences in colour; thus at Issus ${ }^{5}$ are found plants which in other respects resemble the others, ${ }^{6}$ but which are extremely white in colour; and they bear, it is said, onions like those of Sardis. Most distinct however is the character of the Cretan kind, which resembles to some extent that of Ascalon, if indeed it be not the same. For in Crete there is a kind which when sown produces a root, but when planted produces a stem and seed but has no 'head'; ${ }^{7}$ and it is sweet in flavour. This kind in fact has just the contrary character to the others; for they all grow better and faster when they are planted. All are planted ${ }^{8}$ after the rising of Arcturus while the earth is still warm, so that the rains may come upon them after planting. They are planted ${ }^{9}$ cither entire or else in sections made by cutting at the 'head.' The growth which results is not uniform; from the lower part comes an onion,

[^53]
THEOPHRASTUS

 äкра• каі̀ є̇ $\pi \iota \kappa \epsilon і р є \tau а \iota ~ \pi о \lambda \lambda a ́ \kappa \iota s, ~ \omega ̈ \sigma \pi \epsilon \rho ~ \tau o ̀ ~ \pi \rho a ́-~$
 $\tau a ̀ \mu$ èv oûv крó $\mu v a \sigma \chi \in \delta o ̀ \nu \tau a u ́ \tau a s$ é $\chi \in \iota ~ \tau a ̀ s ~ i \delta e ́ a s . ~$

 тà $\pi \rho \omega \not ̈ i a \cdot ~ \gamma є ́ \nu o s ~ \gamma a ́ \rho ~ \tau \iota ~ \tau v \gamma \chi a ́ \nu \epsilon \iota ~ \tau o \iota o v ̂ \tau o \nu ~ o ̂ ~ \epsilon ̉ \nu ~$

 $\kappa а i ̀ \tau a ̀ s ~ \theta \epsilon \rho a \pi \epsilon i ́ a s, \check{\omega} \sigma \pi \epsilon \rho \kappa \alpha \grave{\tau} \tau \hat{\omega} \nu a ̈ \lambda \lambda \lambda \omega \nu . \quad \tau \epsilon \lambda \epsilon \iota-$

${ }^{1}$ i.e. bulb; cf. 9. $116 . \quad 2$ cf. 7.2.2.
${ }^{3}$ Plin. 19. 111 and 112.

ENQUIRY INTO PLANTS, VII. Iv. IO-I 2

from the upper only foliage; while, if the plant is divided vertically, no growth at all takes place. The kind called horn-onion has no 'head,' ${ }^{\prime}$ but has as it were a long neck, at the top of which comes the new growth; it is often cut, like the leek; wherefore it is raised from seed and not planted. ${ }^{2}$ Such then, one may say, are the forms of the onion.
${ }^{3}$ Garlic is planted a little before or after the solstice, when it divides into cloves. ${ }^{4}$ There are different kinds distinguished as late or early, for there is one kind which matures in ${ }^{5}$ sixty days. There are also differences as to size. There is one kind which excels in size, especially that variety which is called Cyprian, which is not cooked but used for salads, and, when it is pounded up, it increases wondrously in bulk, making a foaming dressing. There is a further difference, in that some kinds cannot be divided into cloves. The sweetness of taste and smell and the vigour depend on the position ${ }^{6}$ and on cultivation, as with other herbs. Garlic reaches maturity from seed, but slowly, for in the first year it acquires a 'head' which is only as large as that of the leek, but in the next year it divides into cloves, and in the third is fully grown, and is not inferior, indeed some say it is superior, to the garlic which has been planted. ${ }^{7}$ The growth of the root in garlic and onion is not the same; in garlic, when the clove has swollen, the whole of it becomes convex ${ }^{8}$; then it increases and divides again into the cloves, and becomes several plants instead of one by the maturing of the 'head,'

[^54]
THEOPHRASTUS

V. Фí $\lambda v \delta \rho a$ ठè $\pi a ́ \nu \tau a \tau a ̀ ~ a ̆ \lambda \lambda a ~ \lambda a ́ \chi a \nu a ~ \kappa a i ̀ ~$

 $\kappa a i ̀ ~ \tau a ̀ ~ \epsilon ̇ \pi i ́ \kappa \eta \rho a ~ \tau \hat{\omega} \nu ~ i \sigma \chi v \rho \hat{\omega \nu}$. ко́т $\rho о \nu$ סè $\mu a ́ \lambda \iota \sigma \tau a$

 $\mu \iota \chi \theta \epsilon i \sigma a \nu \cdot$ oi ठє̀ каì $\sigma \pi \epsilon i ́ \rho o \nu \tau \epsilon \varsigma$ є̇ $\pi \iota \beta a ́ \lambda \lambda о v \sigma \iota \cdot$ $\chi \rho \hat{\omega} \nu \tau a \iota$ ठ̀̀ каì $\tau \hat{\eta}$ à $\nu \theta \rho \omega \pi i ́ \nu \eta \quad \dot{\omega} \mu \hat{\eta} \pi \rho o ̀ s ~ \tau \eta े \nu$

 коо́ $\mu v o \nu$ каì тò $\gamma \dot{\eta} \theta v o \nu$ - каíтои фабí тıvєs oủ

 $\chi \epsilon i \rho \iota \sigma \tau a ~ \delta \hat{\epsilon} \tau \grave{a}$ à $\lambda \nu \kappa a ̀ ~ \kappa a i ̀ ~ \delta \nu \sigma \mu a \nu \eta ̂, ~ \delta i ’$ ô каì $\dot{\epsilon} \kappa \tau \hat{\omega} \nu$ ò $\chi \epsilon \tau \hat{\omega} \nu$ oủ $\chi \rho \eta \sigma \tau a ́$ - $\sigma v \mu \pi \epsilon \rho \iota \phi \in ́ \rho \epsilon \iota$ 才à ρ

[^55]
ENQUIRY INTO PLANTS, VII. iv. $12-\mathrm{v} .2$

while the onion puts out another and another growth straight from the root, as do purse-tassels ${ }^{1}$ and squill and all such plants. For both onions and garlic multiply if they are not removed but left alone. They say also that garlic produces garlic heads on the stalk, ${ }^{2}$ and that the onion in like manner produces onions. ${ }^{3}$ Let this suffice for an account of their ways of growth.

Of the cultivation of pot-herbs ; manure and water.

V. ${ }^{4}$ All the pot-herbs are lovers of water and of dung, except rue, which does not at all like dung; this is true of the winter no less than of the summer herbs, and of the tender no less than of the strong ones. The dung which is most commended is that which is mixed with litter, while that of beasts of burden is held to be bad, because it is most apt to lose its moisture. Dung which is mixed with the seed is most in request, but some cast the manure on while they are sowing, and they also use fresh human dung as a liquid manure. ${ }^{5}$ The winter crops like moisture more than the summer ones, and the weak more than the strong, as well as those which specially need feeding. Onion and long onion also love moisture, though some say that they do not require it, if at the outset it has been applied twice or thrice. ${ }^{6}$ Fresh cold water is the best, and the worst is that which is brackish and thick: ${ }^{7}$ wherefore the water from irrigation ditches is not good, for it brings with it seeds of weeds. Rain

[^56]THEOPHRASTUS

 $\delta \grave{\epsilon} \tau \grave{a} \mu \epsilon ̀ \nu$ ả $\lambda \lambda a \pi \rho \omega \hat{l} \hat{\eta} \pi \rho o ̀ s ~ \grave{\epsilon} \sigma \pi \epsilon ́ \rho a \nu$ ，ő $\pi \omega \varsigma \mu \grave{\eta}$
 $\gamma \grave{a} \rho \delta_{\iota} a \beta \lambda a \sigma \tau a ́ \nu \epsilon \iota \nu$ Өâtтóv фабı $\theta \epsilon \rho \mu \hat{\omega}$ тò $\pi \rho \hat{\omega} \tau о \nu$

 тол入áкıs $\gamma a ̀ \rho \pi \epsilon \iota \nu \eta ̂ \nu \tau a ̀ ~ \lambda a ́ \chi a \nu a ́ ~ ф а \sigma \iota, ~ к а і ̀ ~ \tau a v ̂ \tau a ~$ $\gamma \nu \omega \rho i \zeta \epsilon \iota \nu$ тoùs $\epsilon \in \mu \pi \epsilon i \rho o v s ~ \tau \hat{\omega} \nu \kappa \eta \pi o v \rho \hat{\omega} \nu$.
3 Мєтафvtєvó $\mu \epsilon \nu a$ ठє̀ тávta ка入入ím каi $\mu \epsilon i \zeta \omega$
 $\tau \hat{\omega} \nu$ ค́aфavíठ $\omega \nu$ є̇к $\mu \epsilon \tau a \phi \nu \tau \epsilon i ́ a s . ~ \mu a ́ \lambda \iota \sigma \tau a ~ \delta \grave{~}$ $\mu \epsilon \tau a \phi \cup \tau \epsilon v ́ o v \sigma \iota ~ \pi \rho o ̀ s ~ \tau o u ̀ s ~ \sigma \pi \epsilon \rho \mu a \tau \iota \sigma \mu о v ́ s . ~ к а i ~$

 $\pi \eta \gamma \nu \nu \mu \epsilon ́ \nu \omega \nu \tau \hat{\omega} \nu \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu \hat{\eta} \sigma \pi \epsilon \iota \rho \circ \mu \epsilon ́ \nu \omega \nu$ ．
4 Өŋрía S̀̀ үívetal тaîs $\mu \epsilon ̀ \nu ~ \dot{\rho} a \phi a \nu \hat{\imath} \sigma \iota \psi v ́ \lambda \lambda a \iota$ ，

 $\pi \lambda \epsilon i ́ \sigma \iota \nu$ ai $\pi \rho a \sigma o \kappa o v \rho i ́ \delta \epsilon s$ ．taútas $\mu \epsilon ̀ \nu$ oủv $\dot{\eta}$ $\kappa \rho a ́ \sigma \tau \iota \varsigma ~ a ̀ \theta \rho о \iota \sigma \theta є i ̂ \sigma a ~ a ́ \pi o ́ \lambda \lambda \nu \sigma \iota ~ \kappa а i ̆ ~ o ̋ т а \nu ~ к о ́ т \rho о \varsigma ~$
${ }^{1} \gamma \iota \nu \delta \mu \in \nu \alpha$ лдे $\gamma \delta \nu \iota \mu \alpha$ H．；$\gamma \iota \nu \delta \mu \in \nu \alpha$ $\gamma \delta \nu \iota \mu \alpha$ UMAld．；？$\tau \grave{\alpha} \tau \grave{\alpha}$ $\gamma \delta \nu \iota \mu \alpha$ ．Either $\gamma \iota \nu \delta \mu \in \nu \alpha$ or $\gamma \delta \nu \iota \mu \alpha$ seems to be due to ditto－ graphy．For róvıua cf．C．P．1．15．1：đàs रovíuovs à $\rho \chi \alpha{ }_{2} s$.
${ }_{2} \kappa \alpha \theta \in ́ \nLeftarrow \eta \tau \alpha \iota$ conj．Sch．after Plin．l．c．；каөáч ${ }^{2} \tau \alpha \iota \mathrm{P}_{2}$ Ald．
 conj．W．cf．7．5．1，$\chi \dot{v} \lambda \omega \sigma \iota \nu$ ；C．P．3．9． 2.
${ }_{4}$ Plin．19． 183.

ENQUIRY INTO PLANTS, VII. v. 2-4

water is good, for it also appears to destroy the pests which devour the young plants. ${ }^{1}$ Some however say that rain-water is not good for melons nor for onions. Most herbs are watered in early morning or at evening, so that they may not be dried up ${ }^{2}$; but basil is watered even at noon, for it is said that it grows more quickly if it is watered at first with warm water. In general water seems to be extremely beneficial, especially if it is mixed with dung ${ }^{3}$; for, they say, pot-herbs often are hungry, and experienced gardeners can recognise when this is so.
${ }^{4}$ All herbs grow finer and larger if transplanted; for even the size of leeks and radishes depends on transplantation. Transplanting is done especially in view of collecting seed ${ }^{5}$: and, while most herbs bear it well, as long onion leek cabbage cucumber celery turnip lettuce, others bear it less well. ${ }^{6}$ All however make better growth and are larger if the seed is planted ${ }^{7}$ rather than scattered.

Of the pests which infest pot-herbs.

${ }^{8}$ As for pests,-radish is attacked by spiders, ${ }^{9}$ cabbage by caterpillars and grubs, while in lettuce, leek, and many other herbs occur 'leek-cutters.' 10 These are destroyed by collecting green fodder, ${ }^{11}$ or when they have been caught somewhere in a mass

[^57]
THEOPHRASTUS

 Sè $\rho a \phi a \nu i ̂ \sigma \iota ~ \pi \rho o ̀ s ~ \tau a ̀ s ~ \psi u ́ \lambda \lambda a s ~ \pi \rho o ́ \sigma \phi o \rho o \nu ~ \tau o ̀ ~$ є̇ $\pi \iota \sigma \pi \epsilon i ́ \rho \epsilon \iota \nu$ ó $\rho o ́ \beta o u s$ ．$\pi \rho o ̀ s ~ \delta \grave{̀}$ тò $\mu \grave{\eta}$ Yíve $\theta \theta a \iota$廿ú入入as oủ фабıv єỉval фáp μ ккov oủ ס́́v．ímò
 $\dot{a} \lambda \mu \hat{a}$ ．$\quad \tau a ̀ ~ \mu e ̀ \nu ~ o v ̂ \nu ~ \sigma v \mu \beta a i ́ \nu o \nu \tau a ~ \delta \iota a ̀ ~ \tau o v ́ \tau \omega \nu ~$ $\theta \epsilon \omega \rho \eta \tau$ є́о ν.

T $\omega \hat{\nu}$ ס̀̀ $\sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu$ тà $\mu \in ́ \nu$ є̇ $\sigma \tau \iota \nu$ i $\sigma \chi \nu \rho o ́ \tau \epsilon \rho a$

 $\nu a ̂ \pi v \epsilon u ̛ \zeta \omega \mu о \nu \quad \theta \dot{v} \mu \beta \rho a, a ̊ \pi \lambda \omega ̂ s ~ \tau a ̀ ~ \delta \rho \iota \mu \epsilon ́ a ~ \pi a ́ \nu \tau a . ~$

[^58]
ENQUIRY INTO PLANTS, VII. v. 4-6

of dung, ${ }^{1}$ the pest being fond of dung emerges, and, having entered the heap, remains dormant there ${ }^{2}$; wherefore it is then easy to catch, which otherwise it is not. To protect ${ }^{3}$ radishes against spiders ${ }^{4}$ it is of use to sow vetch ${ }^{5}$ among the crop; to prevent the spiders from being engendered they say that there is no specific. ${ }^{6}$ Basil turns pale about the rising of the dog-star, and coriander becomes mildewed. ${ }^{7}$ In these instances we may observe the accidents which occur to pot-herbs.

Of the time for which seed of pot-herbs can be kept.

${ }^{8}$ Of seeds some have more vitality than others as to keeping; among the more vigorous ones are coriander beet leek cress mustard rocket savory, and in general ${ }^{9}$ those of pungent taste ; among the less vigorous are long onion-which will not keep -orach basil gourd cucumber; and in general the summer herbs keep less well than the winter ones. No seed will keep more than four years so as still to be of use for sowing; though it is better in the second year, ${ }^{10}$ in some cases it does not deteriorate in three years, ${ }^{11}$ but after that time ${ }^{12}$ deterioration begins.

However for cooking purposes seed will keep a
${ }^{6}$ Plin. 19. 176.
 mBas. cf. 8. 10.1 ; C.P. 6. 10.5. In all three places W. introduces this word, comparing $\psi \omega \rho \stackrel{\alpha}{\nu}$ दُpu $\tau \iota \beta \hat{\alpha} \nu$, etc.
${ }^{8}$ Plin. 19. 181.

${ }^{10} \delta t^{\prime} \dot{e} v a$ conj. Scal.; δi^{\prime} 'ยva UMAld.H.

 ט̇тє $\rho \beta \alpha i v o \nu \mathrm{H}$.

THEOPHRASTUS

$\mu \epsilon ́ \nu \epsilon \iota, \pi \lambda \grave{\eta} \nu \dot{a} \sigma \theta \epsilon \nu \epsilon ́ \sigma \tau \epsilon \rho a$ тav̂тa $\dot{a} \nu a \gamma \kappa a i ̂ o \nu ~ \epsilon i ้ \nu a \iota$ ठıà тウ̀ ν à $\nu a \pi \nu o \eta ̀ \nu ~ \kappa a i ̀ ~ \tau \grave{\eta} \nu ~ \sigma \kappa \omega \lambda \eta ́ \kappa \omega \sigma \iota \nu . ~ \phi \theta о \rho a ̀ ~$

 $\gamma \epsilon v ́ \sigma \epsilon \iota, ~ \delta \iota$ ’ ô каі̀ $\pi \rho o ̀ s ~ т \eta ̀ \nu ~ \chi \rho \epsilon i ́ a \nu ~ \chi є i ́ \rho \omega . ~ к а і ̀ ~$ $\pi \epsilon \rho \grave{~} \mu \epsilon ̀ \nu \tau \hat{\omega} \nu \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu \kappa \alpha \grave{\iota}$ с́ $\pi \lambda \hat{\omega} \varsigma \tau \hat{\omega} \nu \kappa \eta \pi \epsilon v o-$ $\mu \epsilon ́ \nu \omega \nu$ iкаע $\omega \varsigma ~ \epsilon i \rho \eta \eta^{\prime} \sigma \omega$.
VI. $\Pi \epsilon \rho \grave{i} \delta \grave{\epsilon} \tau \hat{\omega} \nu \dot{a} \gamma \rho i ́ \omega \nu \kappa \alpha a ̀ ̀ \tau \hat{\omega} \nu \kappa \alpha \lambda o \nu \mu \epsilon ́ \nu \omega \nu$

 тà $\gamma \in ́ \nu \eta$ таи̂та каi ä $\gamma \rho \iota a$, каì $\sigma \chi \epsilon \delta o ̀ \nu \tau \alpha ́ \gamma \epsilon \pi о \lambda \lambda a ̀$

 каì тоîs каvлоîs каi $\mu a ́ \lambda \iota \sigma \tau а ~ т о i ̂ s ~ \chi \nu \lambda о i ̂ s ~ \delta р \iota \mu u ́-~$

 каі̀ סрıии́тєра каї і $\sigma \chi$ ขро́тєра.

[^59]
ENQUIRY INTO PLANTS, VII. v. 6-vi. 2

longer time, except that such seed must necessarily become less vigorous by reason of 'evaporation' 1 and destruction by worms. ${ }^{2}$ The chief cause of loss is vermin; for vermin occur in all the seeds, even those which are pungent, though least in the gourd ${ }^{3}$ tribe; such seeds however, as they lose their moisture, become bitter in taste and inferior for use. Let this suffice for an account of the seeds and in general of herbs cultivated in gardens.

Of uncultivated herbs: the wild forms of pot-herbs.

VI. ${ }^{4}$ We must now endeavour to speak in the same way of the wild kinds and of those which are called uncultivated herbs. Some of these have the same names as the cultivated ${ }^{5}$ kinds; for all these kinds exist also in a wild form, and most of them resemble the cultivated kinds in appearance, except that in the wild forms the leaves and also the stalks are smaller and rougher, and in particular these forms are more pungent and stronger in taste, for instance, savory ${ }^{6}$ marjoram cabbage and rue; the wild monk's rhubarb (dock) indeed, though it has a pleasanter taste than the cultivated, yet has ${ }^{7}$ a sharper flavour ; and this is the chief difference. Moreover all the wild kinds are less juicy than the cultivated, and perhaps this is the very reason why most ${ }^{5}$ of them are more pungent and stronger.

A peculiarity of 'wild cabbage' as compared with the others is that its stems are rounder and smoother

[^60]
THEOPHRASTUS

 т таұи́тєра каi тоîs каu入oîs каi тоîs фú入入оьs．

 $\kappa a v \lambda o ̀ \nu ~ o ́ \mu o i ́ \omega \varsigma, ~ \tau o ̀ \nu ~ o ̀ т o ̀ \nu ~ \delta e ̀ ~ \delta \rho \iota \mu u ̀ \nu ~ к а і ~ ф а \rho \mu a-~$

 $\chi \rho \eta ं \sigma \iota \mu a \delta^{\prime}$ ä $\mu \phi \omega$ фабi $\pi \rho o ̀ s ~ \sigma \tau \rho a \gamma \gamma o u p i ́ a \nu ~ \epsilon i v a \iota ~$

[^61]
ENQUIRY INTO PLANTS, VII. vi. 2-3

than in the cultivated kind, and, while in the latter the attachment of the leaf is flat, in the wild kind it is rounder, and the leaf itself has less angles; in other cases the wild form is the rougher ${ }^{1}$ both in stem and leaf.
${ }^{2}$ The wild turnip has a long root, like that of the radish, and a short stem.

The wild lettuce has a shorter leaf than the cultivated kind, and, as the plant matures, ${ }^{3}$ it becomes spinous; the stem is also shorter, while the juice is pungent and medicinal. It grows in fields ; they extract its juice at the time of wheat-harvest, and it is said that it purges away dropsy and takes away dimness of sight and removes ulcers ${ }^{4}$ on the eye; for which purpose it is administered in human milk.
${ }^{5}$ 'Horse-celery' (alexanders) 'marsh-celery' and 'mountain-celery' (parsley) differ both from one another and from the cultivated kind ; ' marsh-celery;' which grows by irrigation-ditches and in marshes, has scanty leaves, ${ }^{6}$ and is not of close habit, ${ }^{7}$ yet it somewhat resembles the cultivated kind in smell taste and appearance. 'Horse-celery' has a leaf like that of the marsh kind, but is of close habit and has a big stalk, and its root is as thick as a radish and black; ${ }^{8}$ the fruit is also black, and in size is larger than the seed of a vetch. They say that both kinds are serviceable in cases of strangury and for those suffering from stone, being administered in sweet white wine. Both kinds grow equally ${ }^{9}$

[^62]
THEOPHRASTUS

 $\kappa \epsilon i ́ \omega \nu \chi a ́ \rho ı \nu$.

 Sıaфopaí.

 $\chi a ́ \nu \epsilon \iota$ ß $\rho \omega \tau o ́ \nu . ~ к а \lambda о v ̂ \mu \epsilon \nu$ үà ρ 入á $\chi a \nu a ~ \tau a ̀ ~ \pi \rho o ̀ s ~$

[^63]IO2

ENQUIRY IN'TO PLANTS, VII. vi. 3-vir. I

everywhere. There is also a sort ${ }^{1}$ of gum which exudes from the plant, like myrrh, and some say that it is ${ }^{2}$ myrrh.
'Mountain-celery' (parsley) exhibits even greater differences; its leaf is like that of hemlock, ${ }^{3}$ the root is slender, and the fruit ${ }^{4}$ like that of dill, but smaller; it is given in dry wine for diseases of women.

In some cases however the wild kinds are not in the least like the cultivated ${ }^{5}$ in taste and properties; thus the wild and the cultivated cucumber ${ }^{6}$ are quite different, and their resemblance ${ }^{7}$ is due only to their general look, as, among coronary plants, there is resemblance between the wild and the cultivated kinds of gilliflower; for the leaves are alike. We have then described the differences which these plants present.

Of other uncultivated herbs, which may be classed with pot-herbs.
VII. Next we must speak of the differences found in the herbs called 'uncultivated,' and in general in any herbaceous plants ${ }^{8}$ which are not edible. For we give the name of 'pot-herbs' to those which are cultivated for our own use, but in a wider sense the term includes these also ; wherefore we must speak of them too. ${ }^{9}$ Under the name 'pot-herbs' are included also ${ }^{10}$ such plants as chicory dandelion ${ }^{11}$ khondrylla ${ }^{12}$ cat's ear groundsel, and in general all
${ }^{9}$ Plin. 21. 89. ${ }^{10}$ kal add. Scal.
${ }^{11}$ à $\pi \alpha \dot{\alpha} \pi \eta$ (or à $\left.\pi \alpha ́ \tau \eta\right)$ conj. Sch.; à $\phi \dot{\alpha} k \eta$ Ald. The latter is a
 7. 8. 3; 7. 11. 3 ; for spelling see notes on the last two passages.
${ }^{12} \chi^{6 \nu \delta \rho \nu \lambda \lambda a}$ conj. Salm. from Plin. l.c., cf. 7. 11. 4 n.; àvסри́a入a Ald.G. cf. Plin. 21. 105 ; Diosc. 2. 133.

THEOPHRASTUS

 ä $\lambda \lambda a \kappa \alpha \lambda о \hat{\sigma} \sigma \iota \nu, \sigma \kappa a ́ \nu \delta \iota \xi$ каі̀ ö σa ä $\lambda \lambda a$ тоьаv̂тa $\sigma \kappa a \nu \delta \iota \kappa \omega ́ \delta \eta, \tau \rho a \gamma о \pi \omega ́ \gamma \omega \nu$, oi $\delta є$ є ко́ $\not \eta \nu \kappa а \lambda о \hat{\nu} \sigma \iota \nu$,

 $\kappa а \lambda \epsilon i ̂ \tau a \iota ~ \tau \rho а у о т \omega ́ \gamma \omega \nu$.

 $\sigma \chi \epsilon \delta o ̀ \nu ~ \delta є ̀ ~ o v ̉ \kappa ~ \epsilon ̇ \lambda a ́ \tau \tau \omega ~ \tau a ̀ ~ \tau o \iota a v ̂ \tau a ́ ~ \epsilon ̇ \sigma \tau \iota . ~$
 $\tau \hat{\omega} \nu \quad \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu$, тà $\delta \grave{\epsilon}$ є̈ $\tau \epsilon \rho a$ нóvoע ảmò $\sigma \pi \epsilon ́ \rho-$

[^64]104

ENQUIRY INTO PLANTS, VII. vir. i-3

those that are called ${ }^{1}$ 'chicory-like' because of the resemblance in the leaves; for to a certain extent the leaves of all these are like those of chicory ; and we may add kaukalis chervil ${ }^{2}$ green mint. Some include under the name countless others, as wild chervil and all plants that resemble it, and goat's beard, ${ }^{3}$ which some call kome (' hair'), which has a long sweet root and leaves like those of the crocus, but longer, and a short stem, on which is set the sheath ${ }^{4}$; this is large, and on the top is the large mass of grey pappus, ${ }^{5}$ from which it gets its name of ' goat's beard.'

In like manner all those may be included which have a similar ${ }^{6}$ appearance, but juices suitable for food whether raw or cooked; for some need the action of fire, as malakhe (cheese-flower) beet monk's rhubarb nettle and bachelor's buttons; while garden nightshade ${ }^{7}$ is also eaten raw, and some in former times ${ }^{8}$ considered it worth growing in gardens. There are also many more, including the plant which has become proverbial ${ }^{9}$ for its bitterness, blue pimpernel, which has a leaf like basil. All these are either annual or have annual stems; for some of them wither away altogether in one season, while of others the roots persist for a longer time, and to this class belong the majority.

Some of these plants grow from roots and also from seed-unless in some cases they come up

[^65]
THEOPHRASTUS

 piou каì $\sigma \chi \epsilon \delta \grave{o} \nu \tau \hat{\omega} \nu$ ă $\lambda \lambda \omega \nu \tau \hat{\omega} \nu \kappa \iota \chi о \rho \iota \omega \delta \hat{\omega} \nu$. каi

$\Delta \iota a \phi o \rho a ̀ ~ \delta \grave{\epsilon} \tau \hat{\omega} \nu \dot{a} \nu \theta \hat{\omega} \nu \pi o \lambda \lambda \eta \eta^{\prime}, \pi \epsilon \rho \grave{\eta} \hat{\eta} \varsigma ~ \epsilon ่ \nu \tau o i ̂ \varsigma$

 ŋ̀ μ èv $\dot{a} \pi a ́ \pi \eta ~ \gamma \eta \rho a ́ \sigma a \nu \tau o s ~ \tau o ̂ ~ \pi \rho \omega ́ т o v ~ \pi a ́ \lambda \iota \nu ~$

 ă $о \sigma \mu \circ$.
VIII. Koıvŋ̀ δ è $\delta \iota a \phi o \rho a ̀ ~ \pi a ́ \nu \tau \omega \nu ~ \tau \hat{\omega} \nu \pi o \iota \omega \delta \hat{\omega} \nu$

[^66]
ENQUIRY INTO PLANTS, VII. vii. 3-viil. I

spontaneously. The growth alike of these ${ }^{1}$ and of others takes place in some cases with the first rains after the equinox, for instance, dandelion ${ }^{2}$ ribgrass and the plant which some call buprestis; in other cases after the rising of the Pleiad, for instance, chicory and most of the plants of that class. Some produce their flower immediately at the time of making growth, as lesser celandine, some not long after, as anemone, while some as soon as spring comes send up both their stems and flower, as chicory and the plants which resemble it, and those spinous plants which come under the head of pot-herbs.

There is much difference in the flowers, of which we have spoken already; for such difference is a thing common to all ; and some are altogether flowerless, as stonecrop. ${ }^{3}$ Those which produce their flower with the stem ${ }^{4}$ quickly shed the flower; except that dandelion, ${ }^{5}$ when the first flower is past its prime, produces another and yet another, and continues to do so right through the winter and spring up to the summer. Groundsel ${ }^{6}$ also blooms for a long time; the others however do not do this; for instance the crocus does not, neither the scented (saffron crocus) nor the white nor the spinous kind, ${ }^{7}$-which last are scentless.

Of the differences in stem and leaf found in all herbaceous plants.

VIII. A distinction which is found in all herbaceous plants alike is the following:-some have straight

${ }^{6}$ cf. C.P. 1. 22. 4 ; Plin. 25. 106.
${ }^{7}$ See Index. This plant can only have been called крóкоя because it produced a yellow dye.

THEOPHRASTUS

$\kappa а \nu \lambda a, ~ т a ̀ ~ \delta e ̀ ~ \epsilon ̇ \pi \iota \gamma \epsilon \iota o ́ к а \nu \lambda a, ~ \kappa а Ө a ́ \pi \epsilon \rho ~ \mu а \lambda a ́ \chi \eta ~$
 $\mu a ̂ \lambda \lambda o \nu$ ஸ̀s єimeî̀ toov̂tov, $\check{\omega} \sigma \pi \epsilon \rho$ кaì èv toîs

 $\mu \hat{\alpha} \lambda \lambda o \nu \dot{\eta} \sigma \mu i ̄ \lambda a \xi \pi \epsilon \rho \iota a \lambda \lambda o ́ к а \nu \lambda о \nu$.

 $\rho a ́ \beta \lambda a \sigma \tau a \kappa \alpha \tau a ̀ \tau o ̀ \nu \kappa a \nu \lambda o ̀ \nu \tau a ̀ ~ \delta \grave{~} \pi a \rho a \beta \lambda a \sigma \tau \iota \kappa a ́$,

 ópӨо́каv入a. тои́т $\omega \nu$ ठѐ ảmapáß入абта тà $\lambda \epsilon \iota o ́-$

 $\kappa а \nu \lambda a \kappa \alpha i ̀ ~ \tau о и ́ \tau \omega \nu ~[\tau о i ̂ s ~ \grave{\eta \mu e ́ \rho о ь s] ~ v i \pi a ́ \rho \chi є \iota . ~}$
3
$\Delta \iota a \phi о \rho a ̀ ~ \delta e ́ ~ \tau \iota s ~ к а i ̀ ~ \tau o \iota a ́ \delta \epsilon ~ \tau \hat{\omega} \nu ~ \pi о \iota \omega \delta \hat{\omega} \nu$ є̇ $\sigma \tau \iota \cdot$ $\tau \grave{a} \mu \epsilon ̀ \nu$ үà ρ є̇ $\pi \iota \gamma \epsilon \iota o ́ \phi u \lambda \lambda a$ тà δ^{\prime} є’ $\pi \iota \kappa a \nu \lambda o ́ \phi \nu \lambda \lambda a$

[^67] 108

ENQUIRY INTO PLANTS, VII. vir. $1-3$

and fibrous stems, some prostrate stems, ${ }^{1}$ as malakhe (cheese-flower) wild chervil ' wild cucumber' (squirting cucumber) ; while heliotropion ${ }^{2}$ has this character ${ }^{3}$ to an even greater extent, and so, among spinous plants, have caltrop caper and several others; for in these too the above-mentioned distinction is even more marked. Some again have clasping stems, but if they have nothing on which to throw themselves, their stems become prostrate, as epetine bedstraw and in general those which have a slender soft long stem; wherefore these in general grow in the midst of ${ }^{4}$ other plants. This point of difference too is common not only to all herbaceous plants and under-shrubs, but also to shrubby ones; for helix (ivy) has a clasping stem, and, still more, smilax.

Again of herbaceous plants too some have several stems, some only one; and of the latter some have no side-shoots along the stem, while others have side-shoots, for instance, among cultivated plants radish and some others. Those with prostrate stems have generally more than one, while those with erect stems have but one or a few. Of these those with smooth stems have no side-shoots, as onion leek garlic-the wild, as well as the cultivated forms; and of these ${ }^{5}$ again some have straight, some crooked stems.

There is also the following point of difference in herbaceous plants:-some have their leaves on the ground, some on the stem, some have both characters. The following have ground leaves-crowsfoot ${ }^{6}$ the

[^68]
THEOPHRASTUS

 à $\nu \epsilon \mu \dot{\omega} \nu \eta$ ảmapría à $\rho \nu o ́ \gamma \lambda \omega \sigma \sigma o \nu$ àmáт η ' є่тıкаv-

IX. "Е $\sigma \tau \iota$ ठè каì $\tau \grave{a ̀} \mu \grave{\iota} \nu$ äкарта $\tau a ̀ ~ \delta \grave{\epsilon} \kappa \alpha ́ \rho-$

 $\pi \rho \circ \sigma \phi \dot{\sigma} \sigma \epsilon$. каі̀ $\tau \hat{\omega} \nu \mu \epsilon ̀ \nu$ Є̇ע $\tau \hat{\eta} \beta \lambda \alpha \sigma \tau \eta{ }^{\prime} \sigma \epsilon \iota \pi \rho o$ -

 кал入óv.

[^69]
ENQUIRY INTO PLANTS, VII. viil. 3-ix. I

anthemon whose flowers have no petals ${ }^{1}$ (wild camomile) alkanet grass anemone hawk's beard plantain dandelion ${ }^{2}$; the following have leaves on the stem-ox-tongue the anthemon which has petalled flowers ${ }^{3}$ trefoil gilliflower; while chicory has both kinds of leaves ; for this plant produces, ${ }^{4}$ as well as leaves, a certain number of flowers on the stems at the points where the side-shoots are attached. Similar too are some of the plants with spinous leaves, but not those that are altogether spinous, as sow-thistle.

Of other differences seen in herbaceous plants in general, as compared with one another and with trees.
IX. Again some are barren, while others bear fruit, and, speaking generally, of herbaceous plants some get as far as producing leaves only, others have a stem and flower, but no fruit; some again have fruit as the completion of their development, while some bear fruit even though they have no flower, as is the case with some trees.
${ }^{5}$ The leaves of herbaceous plants again differ in hardly fewer, nay, even in more, ways than those of trees, and further, they present differences as compared with these, the chief being perhaps that some are attached by a leaf-stalk, some are attached directly, some attached with cauline appendages. ${ }^{6}$ And in some herbaceous plants the stalk ${ }^{7}$ is the first part to grow, but in most the leaves, which almost at the outset grow to their largest and are best for eating; whereas the leaves of trees always push out first a sort of stalk.

[^70]
THEOPHRASTUS

 $\mu \iota \kappa о ̀ \nu ~ є ่ \pi \iota \pi т о \rho ф \cup \rho i \zeta о \nu \tau а, \tau a ̀ ~ \delta є ̀ ~ \pi о \omega ́ \delta \eta ~ к а і ̈ ~ \chi \lambda о \omega ́ \delta \eta$ ，
 $\delta \epsilon \sigma \iota \tau \hat{\omega} \nu a \dot{ } \nu \theta \hat{\omega} \nu>\pi о \lambda \lambda a i ̀ \kappa a i ~ \pi a \nu \tau o \delta a \pi a i ~ \chi \rho o \iota a i ̀$
 aैo $\mu \mu o i ́ ~ \epsilon i \sigma \iota \nu . ~ к а i ̀ ~ \tau a ̀ ~ \mu e ̀ \nu ~ \delta \epsilon ́ v \delta \rho a ~ \tau \eta ̀ \nu ~ a ̈ \nu \theta \eta \sigma \iota \nu$ à $\theta \rho o ́ a \nu ~ \pi о \iota є i ̂ t a \iota, ~ т о u ́ t \omega \nu ~ \delta ’ ~ \epsilon ้ \nu ı а ~ к а т a ̀ ~ \mu \epsilon ́ \rho о \varsigma, ~ \omega ̈ \sigma-~$

 そ̀入ıотро́тьоข каì тò кı乙ópıov．
3
 $\xi \nu \lambda \omega ́ \delta \epsilon \iota \varsigma$ ai $\delta є ̀ ~ \sigma a \rho \kappa \omega ́ \delta \epsilon \iota \varsigma ~ к а і ̀ ~ i \nu \omega ́ \delta \epsilon \iota \varsigma, ~ \omega ̈ \sigma \pi \epsilon \rho ~ к а \grave{~}$ $\tau \omega ิ \nu \dot{\eta} \mu \epsilon \in \rho \omega \nu, \kappa \alpha \theta a ́ \pi \epsilon \rho$ aí $\tau \epsilon \tau о \hat{v}$ бíтоv каì т $\bar{\jmath}$

 $\mu 0 i ̂ s \mu_{\epsilon} \gamma_{\epsilon}^{\prime} \theta \in \sigma \iota \nu \cdot$ ai $\mu \epsilon ̀ \nu ~ \gamma a ̀ \rho ~ \lambda \epsilon v \kappa a i ̀ ~ a i ~ \delta e ̀ ~ \mu e ́ \lambda a \iota \nu a \iota ~$
 $\epsilon \in \epsilon \in \theta \epsilon \delta a ́ \nu o v \cdot a i \delta^{\prime} \omega ँ \sigma \pi \epsilon \rho \quad \xi a \nu \theta a i$ каi $\xi v \lambda о \epsilon i \delta \epsilon i \varsigma^{\circ}$

 ש̋ $\sigma \pi \epsilon \rho$ à $\sigma \phi о \delta є ́ \lambda o v ~ к а і ̈ ~ к р о ́ к о v \cdot ~ к а i ̀ ~ a i ~ \mu е ̀ \nu ~ \lambda \epsilon \pi v-~$

[^71]
ENQUIRY INTO PLANTS, VII. ix. 2-4

There is also much difference as to the flowers between herbaceous plants and trees; for in trees ${ }^{1}$ most of the flowers are white, while some are slightly reddish, others are greenish or greenish-yellow, but none of them ${ }^{2}$ have distinct gay colours; while in herbaceous plants the flowers shew many and various colours, both simple and in combination, and further, some of them are scented, others not. Again ${ }^{3}$ trees produce all their bloom at once, while some herbaceous plants have a succession of flowers, as we said ${ }^{4}$ of basil; wherefore it is in flower for a long period, as are many other herbs, such as heliotropion and chicory.

There are also many differences in the roots, and, in a way, the differences in these are more obvious; some are woody, some fleshy and fibrous, just as in the cultivated kinds, as are those of corn and most kinds of grass. Again the roots themselves exhibit in each case very many differences in colour smell taste and size ; some are white, some black, some red, as those of alkanet and madder ; some are yellowish, ${ }^{5}$ or the colour of wood. ${ }^{6}$ Again there are roots which are sweet, bitter, pungent, fragrant, evil-smelling; and some are medicinal, as has been said elsewhere.

There are also differences between those with fleshy roots; the roots of some are round, of some oblong and acorn-shaped, as those of asphodel and crocus; ${ }^{7}$ some consist of several layers, as those of purse-tassels squill and others which belong to that class, onion long onion and others like

[^72]vol. II.

THEOPHRASTUS

 oiov á $\rho \chi{ }^{\circ} \mu$ évov $\chi \epsilon \iota \mu \hat{\omega} \nu о s$ каi $\mu \in \sigma о и ̂ \nu t o s ~ к а i ̀ ~$

 каі $\delta \rho \iota \mu$ и́тทть каі үлики́тทть каі айбтךро́тทтє
 $\kappa a \tau \grave{a}$ тò $\mu \hat{a} \lambda \lambda o \nu . \quad \tau a ̀ s ~ \mu \epsilon ̀ v ~ o u ̀ v ~ \delta \iota a \phi o \rho a ̀ s ~ \epsilon ̉ \nu ~$ тои́тоьs $\lambda \eta \pi \tau$ є́ov.
X. $\Delta \iota \eta \rho \eta \mu e ́ v \omega \nu$ סè катà тàs ढ̋pas èкá $\sigma \tau \omega \nu$ $\pi \rho o ́ s ~ \tau \epsilon ~ \tau a ̀ s ~ \beta \lambda a \sigma \tau \eta ́ \sigma \epsilon \iota s ~ к а i ̀ ~ к а т a ̀ ~ \tau a ̀ s ~ a ̉ \nu \theta \dot{\eta} \sigma \epsilon \iota s$ $\kappa a \grave{~ \tau \epsilon \lambda \epsilon \iota \omega ́ \sigma \epsilon \iota \varsigma ~ \tau \hat{\omega} \nu \kappa \alpha \rho \pi \hat{\omega} \nu \text {, oủ } \delta \grave{\nu} \nu \dot{a} \nu \alpha \beta \lambda a \sigma \tau a ́ \nu \epsilon \iota}$

[^73][^74]
ENQUIRY INTO PLANTS, VII. ix. 4-x. it

these. Some are smooth loose and soft throughout, and, as it were, without 'bark,' as those of cuckoo-pint, while some have a 'bark' attached to the fleshy part, as those of cyclamen and turnip. And not all those that are fragrant or sweet or pleasant to the taste are also ${ }^{1}$ edible, any more than all those that are bitter are uneatable; any (whether sweet or bitter) that are harmless to the body after being eaten are edible; for some that are sweet are deadly and dangerous to health, while some are beneficial even if they are bitter or have an evil smell. The same may be said of the leaves and stalks, as in the case of wormwood and centaury. There are also differences in the time of growth and of flowering, the season being variously the beginning or middle of winter, or again spring, summer, or autumn. So too is there in like manner a difference in the fruits, which ${ }^{2}$ in some of these plants are edible and juicy, as well as ${ }^{3}$ the leaves seeds and roots. And in these cases there are further differences in the taste (of those which are edible and juicy), which may be sharp, pungent, sweet, dry, or exhibit other similar differences, either altogether or in degree. These are examples of the differences which we find.

Of the seasons at which herbs grow and flower.

X. Each plant having its proper season for growth, flowering and maturing of the fruit, nothing grows ${ }^{4}$ before its proper season either of those grown from a root or of those grown from seed, but each awaits

[^75]
THEOPHRASTUS

 $\pi \epsilon \rho \grave{~ \kappa о \nu u ́ \zeta \eta \varsigma ~ \tau \epsilon ~ к а i ~ \kappa а \pi \pi a ́ p ı \delta o s ~ \kappa а i ̀ ~ \tau \hat{\omega} \nu ~ a ̈ \lambda \lambda \omega \nu \cdot ~}$

 $\kappa a i ̀ ~ o ́ ~ \eta ’ \rho \iota \gamma \epsilon ́ \rho \omega \nu ~ \kappa а i ̀ ~ \tau a ̀ ~ a ̈ ̉ \lambda \lambda a ~ \chi \epsilon \iota \mu \epsilon \rho \iota \nu a ́, ~ \mu \epsilon \tau a ̀ ~ \delta \grave{~}$ таи̂та тà ク̆рıvà <каі̀ $\theta \in \rho \iota \nu a ̀>~ \kappa а \grave{\imath} \mu \in \tau о \pi \omega \rho \iota \nu a ́$.

 $\kappa \iota \chi o ́ p \iota o \nu$ каì тò ảpvóy $\lambda \omega \sigma \sigma o \nu$ каì ä̀ $\lambda \lambda a \cdot$ ठıà δ è

 тоі̂a $\pi \rho \hat{\omega} \tau a \quad \beta \lambda a \sigma \tau a ́ v \epsilon \iota ~ к а і$ тоі̂a ơ $\psi \iota \beta \lambda a \sigma \tau \hat{\eta}$.

[^76]
ENQUIRY INTO PLANTS, VII. x. i-3

its proper season and is not ${ }^{1}$ affected even by rain. For some are plants which belong properly to summer as to their growth and their flowering, as golden thistle and squirting cucumber, as was said 2 of shrubby plants and of konyza caper and the rest; for of these too none blooms or grows before its proper season. Wherefore in this respect too these plants would seem to differ from trees. For trees make their growth all at once or nearly so, or at all events we may say that they do so all at one season; but the plants of which we are now speaking have their times of growing and still more of flowering at many or rather at all seasons; so that, if one will consider it, both the growing and the flowering are almost continuous throughout the year; for one continually succeeds to another, so that all seasons are covered; thus after the dandelion ${ }^{3}$ will come the crocus ${ }^{4}$ anemone groundsel and the other plants of winter, and after these those of spring summer ${ }^{5}$ and autumn. Some again, as was said, because they do not produce all their bloom at once, ${ }^{6}$ cover a longer season; for there are some that thus bloom, for instance dandelion ${ }^{7}$ bugloss ${ }^{8}$ chicory plantain, and others; but because of this continuity and overlapping it does not seem easy in some cases to define which first make growth and which are late in growing,unless ${ }^{9}$ one were to lay down that the 'year'
${ }^{7}$ à̇á̃ŋŋ conj. W.; àфák Ald. cf. 7. 7.1 n.
${ }^{8}$ òvoxetiès conj. Sch. from Plin. 21. 100; Diose. 4. 24 ; ìvoкix $\chi \eta$ s UMAld.
${ }^{9}$ i.e. unless one has a fixed starting.point. Tiva wpas τ tivos
 MAld., but both give $\chi_{\nu u} \varsigma \hat{\eta}$; W. conjectures also $\tau \rho o \pi \grave{\alpha} s ~ \tau \grave{\alpha} s$
 i S \grave{n} as a trace of a lost sentence).

THEOPHRASTUS

 $\kappa а \rho \pi \hat{\omega} \nu \quad \pi a ́ \lambda \iota \nu$ ä $\lambda \lambda a s$ à $\rho \chi a ̀ s ~ \epsilon ̇ \nu i \sigma \tau \omega \nu \tau a \iota ~ \tau \hat{\eta} s$ уєขє́ $\sigma \epsilon \omega \varsigma^{\cdot}$ őтєє $\mu a ́ \lambda \iota \sigma \tau a$ бокєî $\sigma \nu \mu \beta a i \nu \epsilon \iota \nu \mu \epsilon \tau^{\prime}$
 $\mu a \tau \alpha \pi \lambda \epsilon і ̈ \sigma \tau a \quad \tau \epsilon \tau \epsilon \lambda \epsilon i \omega \tau \alpha \iota \kappa \alpha \grave{\tau} \tau \hat{\nu} \nu \in \nu \delta \rho \iota \kappa \omega ิ \nu$

 каї äтєтта тєрьката入а μ ßávєтаו, тои́тоьs катà

[^77]
ENQUIRY INTO PLANTS, VII. x. 3-xi. i

begins when a certain season begins. Further in these plants it is not easy to define ${ }^{1}$ in each case the time of first growth and the season when, the fruits being matured, it makes a fresh start in reproduction. This seems chiefly to occur after the autumnal equinox; for by that time most of the seeds are matured, like most of the fruits of trees: moreover a change then takes place in the seed ${ }^{2}$ itself as well as in the season. But in the case of any seeds which are still immature and unripe and so are overtaken by winter, the period of first growth, the flowering of the new plant, and the period of maturity are proportionally later. Wherefore it comes to pass that some bloom at the solstice, some at the rising of the dog-star, and some after the rising of Arcturus and the autumnal equinox. ${ }^{3}$

But these matters seem to require a wider investigation in order to determine when the process begins. However it is clear from what has been said that these plants present at least as many differences as trees. ${ }^{4}$ For some again of this class are evergreen, as hulwort heliotropion and maidenhair.

> Of the classes into which herbaceous plants may be divided, as those having a spike and chicory-like plants.
XI. Having then made these explanations we must now give a separate account of each plant, discussing the differences (in those plants in which they occur) and saying how they arise . . . ${ }^{5}$ except those peculiarities which belong to the

[^78]
THEOPHRASTUS

iठíav êкá $\sigma \tau \frac{}{}$

 $\omega ̈ \sigma \pi \epsilon \rho \kappa а і ̈ \epsilon \in \tau \tau \hat{\omega} \rho \dot{\rho} \iota \zeta \omega \nu$.

 $\mu \epsilon ́ \rho o s a ̀ \lambda \lambda a ̀ \delta c^{\prime}$ ö $\lambda o v \tau o \hat{v} \sigma \tau a ́ \chi v o s ~ \tilde{\omega} \sigma \pi \epsilon \rho$ ó $\pi v \rho o ́ s$.

 $\tau \grave{a}$ ä入入a тà $\sigma \tau a \chi v \omega ́ \delta \eta \lambda_{\epsilon} \epsilon \tau \epsilon ́ \sigma \nu$.
3 Tà δ є̀ кє $\chi \circ \rho \iota \omega ́ \delta \eta$ тá $\nu \tau a \quad \mu \epsilon ̀ \nu ~ \epsilon ̇ \pi \epsilon \tau \epsilon \iota o ́ \phi v \lambda \lambda a ~$

${ }_{2}^{1}$ i.e. spicate.
${ }^{2} \sigma \kappa \alpha \nu \delta \iota \kappa \omega \delta \eta$: i.e. umbellate. One would expect $\kappa \iota \chi o \rho \iota \omega \dot{\partial} \eta$, to correspond with $\S 3$; but the three classes mentioned seem to be merely 'samples' of classification: of the three only one ($\tau \alpha ̀ ~ \sigma \tau \alpha \chi v \omega \dot{\delta} \eta$) is described below, and other classes are aidded.
${ }^{3}$ цоvoфv̂ी I conj.: i.e. those which have a scape: cf. 2.6.9; C.P. 1. 1. 3. $\mu v o ́ \phi \alpha a$ U; $\mu \nu \nu \phi \hat{\omega} \alpha$ MAld.; om. G.

ENQUIRY INTO PLANTS, VII. xi. i-3

character of individual kinds. I mean for instance the plants which have a spike, ${ }^{1}$ those which may be classed with wild chervil, ${ }^{2}$ and those which have a single stem, ${ }^{3}$. . . or any other such class in which one can find some such general characteristics obvious to the senses either in leaves flowers roots or fruits; (for the classification is to be made by the visible parts, as well as by the roots). ${ }^{4}$
${ }^{5}$ An example of the plants which have a spike is the plant which some call 'dog's eye ${ }^{6}$ ' (rib-grass), which comprises several forms; we have also 'foxbrush,' stelephuros (płantain), which some call ' lamb's tongue' and some 'quail-plant'; and somewhat similar to this is thryallis. These are simple plants and uniform in character, having a spike which is not pointed nor bearded; while in 'fox-brush' it is soft and somewhat downy, in that it actually resembles the brush of a fox, whence also it has obtained its name. Similar to this is stelephuros (plantain), except that it does not, like that plant, flower here and there, but all up the spike like wheat. The bloom of both is downy like that of corn, and the plants in their general appearance resemble wheat, but have broader leaves. Of the other plants which have a spike a similar account may be given.
${ }^{7}$ The chicory-like plants all have annual leaves and have root-leaves, and they begin to grow after the Pleiad, except dandelion ${ }^{8}$; but in their stems

[^79]
THEOPHRASTUS

 $\mu \epsilon ́ \gamma a s ~ к а і ̈ ~ a ̀ m o ф v ́ \sigma \epsilon \iota \varsigma ~ \epsilon ̈ \chi ~ \chi \omega \nu ~ \pi о \lambda \lambda a ́ s, ~ є ै \tau \iota ~ \delta e ̀ ~ \gamma \lambda i ́-~$

 $\mu а к \rho о ́ \rho \rho \iota \zeta о \nu, ~ \delta i ’ ~ o ̀ ~ к а і ~ \delta v \sigma \omega ́ \lambda \lambda \epsilon \theta \rho о \nu . ~ o ̈ т а \nu ~ \gamma a ̀ \rho ~$

 $\tau \hat{\omega} \nu \kappa a \nu \lambda \omega \hat{\omega}$.

 то入úv.

 δ^{\prime} äд ${ }^{2}$ Os $\mu \eta \lambda \iota \nu 0 \in i \delta$ és.

[^80]
ENQUIRY INTO PLANTS, VII. xi. 3-4

and roots they exhibit great differences; for in some these are simpler and fewer, ${ }^{1}$ but the stem of chicory is large and has many side-shoots; also it is tough and hard to break, wherefore it is used for withes ${ }^{2}$; it makes side-growths from the root, and also has long roots, wherefore it is hard to kill; for, when the top is taken off to use as a vegetable, what remains ${ }^{3}$ starts growing again. Moreover different parts of it flower at different times, and the flowering goes on till autumn, since the stem appears to be hard. ${ }^{4}$ Also it bears a pod, which contains the seed, at the top of the stem.

Cat's ear ${ }^{5}$ is smoother and has a more cultivated appearance, and is also sweeter and not like ${ }^{6}$ khondrylla ${ }^{7}$; for the latter is altogether uneatable and ${ }^{8}$ unfit for food, and its root contains a quantity of pungent juice.

Dandelion ${ }^{9}$ is also unfit for food and bitter: it flowers early and quickly waxes old and the flower turns to pappus; but then another flower forms, and yet another, and this goes on right through the winter and spring up to the summer; and the flower is yellow.
${ }^{10}$ The like may be said of pikris : for this plant too blooms in spring, and like dandelion it flowers throughout the winter, and it flowers also to some extent in summer; in taste it is bitter, whence its name. These are the special points of difference

[^81]
THEOPHRASTUS

 $\kappa a i ̀ \tau \hat{\omega} \nu$ ä $\lambda \lambda \omega \nu \lambda a \mu \beta a ́ \nu \epsilon \iota \nu$ ó $\mu o i ́ \omega \varsigma$.
 $\rho i \zeta \omega \nu \hat{\eta} \kappa \epsilon \phi a \lambda о \rho \rho i \zeta \omega \nu, \hat{a}$ каi $\pi \rho o ̀ s ~ \tau a ̀ ~ a ̈ \lambda \lambda a ~ \kappa \alpha \grave{~}$

 $\gamma \grave{a} \rho \dot{\rho} \iota \zeta \hat{\omega} \nu, \check{\omega} \sigma \pi \epsilon \rho \epsilon \iota \rho \eta \tau \alpha \iota \pi \rho o ́ \tau \epsilon \rho \circ \nu$, ai $\mu \epsilon ̀ \nu \lambda \epsilon \pi v-$

 ai $\delta \grave{\epsilon} \pi \rho о \mu \eta ́ \kappa \epsilon \iota \varsigma ~ к а i ~ a i ~ \mu \epsilon ̀ \nu ~ \epsilon ́ \delta \omega ́ \delta \iota \mu o \iota ~ a i ~ \delta ' ~ a ̈ ß \rho \omega \tau о \iota . ~$

 $\pi \rho о \sigma \eta \gamma \circ \rho i ́ a \nu$. $a v ̈ \tau \eta$ ठѐ $\sigma \tau \epsilon \nu \circ \phi \nu \lambda \lambda о \tau \epsilon ́ \rho a ~ \tau \epsilon \kappa \alpha \grave{~}$ $\lambda \epsilon \iota \circ \tau \epsilon ́ \rho a \tau \hat{\omega} \nu \lambda o \iota \pi \hat{\omega} \nu \epsilon \in \sigma \tau \iota \nu$.

 $\tau \epsilon \kappa а \grave{~ \pi \rho o ̀ s ~ \tau a ̀ ~ \rho ْ ́ \gamma \gamma \mu a \tau a ~ a ̀ \gamma a \theta \eta ́ . ~ \pi \rho o ̀ s ~ \delta e ̀ ~ \tau \eta ̀ \nu ~}$
 $\mu \epsilon ́ \gamma a \sigma \phi o ́ \delta \rho a$ тò $\phi u ́ \lambda \lambda о \nu, \dot{u} \nu о \rho v ́ \xi a \nu \tau \epsilon \varsigma \sigma \tau \rho \in ́ \phi o v \sigma \iota \nu$,

[^82]
ENQUIRY INTO PLANTS, VII. xi. 4-xit. 2

about these plants; now we must endeavour, as was said, ${ }^{1}$ to set forth the special points of the other classes in like manner.

Of herbs which have fleshy or bulbous roots.

XII. ${ }^{2}$ There is a large class of these which have fleshy or bulbous roots : these exhibit differences both as compared with other plants and with one another both in roots leaves stems and their other prominent features. ${ }^{3}$ Of the roots, as has been said ${ }^{4}$ already, some are in layers, some fleshy, some have a 'bark,' some not; and again some are round, some oblong, some edible and some not fit for food. Among edible roots are not only purse-tassels and others which resemble them, but also the roots of asphodel and squill, though not of all kinds of the latter, but only of the kind called 'Epimenides' squill (French sparrow-grass) which gets its name from its use ${ }^{5}$; this kind has narrower leaves and is smoother than the others.
${ }^{6}$ The root of cuckoo-pint is also edible, and so are the leaves, if they are first boiled down in vinegar ; they are sweet, and are good for fractures. To increase the root, having first stripped ${ }^{7}$ off the leaves (and the leaf is very large), they dig ${ }^{8}$ it up and invert ${ }^{9}$ it in order that it may not shoot, ${ }^{10}$ but may draw all the nourishment into itself. This some

[^83]
THEOPHRASTUS

3
 Є่ $\psi \eta \theta \epsilon i ̂ \sigma a$, каì т $\rho \iota \phi \theta \epsilon \hat{\epsilon} \sigma a \quad \mu \iota \gamma \nu v \mu \epsilon \in \nu \eta$ т $\hat{\iota}$ à $\lambda \epsilon v ́ \rho \omega$

'H $\delta \in ̀ ~ \tau o v ̂ ~ \theta \eta \sigma \epsilon i ́ o v ~ т \hat{\eta} ~ \mu \grave{\nu} \gamma є v ́ \sigma \in \iota ~ \pi \iota \kappa \rho a ́, ~ т \rho \iota-~$

 ai Sıaфораi..
XIII. Katà $\delta \in ̀$ tà $\phi u ́ \lambda \lambda a ~ \tau o i ̂ s ~ \tau \epsilon ~ \mu \epsilon \gamma \epsilon ́ \theta \epsilon \sigma \iota \nu ~$ $\kappa а i ̀ ~ \tau o i ̂ s ~ \sigma \chi \eta ́ \mu a \sigma \iota \nu$. ò $\mu \epsilon ̀ \nu ~ a ̉ \sigma \phi o ́ \delta є \lambda о s ~ \mu а к \rho o ̀ \nu ~ к а \grave{~}$
 $\sigma \kappa i ́ \lambda \lambda a ~ \pi \lambda a \tau \grave{v} \kappa а \grave{~ \epsilon u ́ \delta \iota a i ́ \rho \epsilon т о \nu, ~ т o ̀ ~ \delta e ̀ ~ \phi a ́ \sigma \gamma a \nu o \nu ~}$

[^84]126

ENQUIRY INTO PLANTS, VII. xiI. 2-xiII. 2

do also with purse-tassels, when they lay them by. ${ }^{1}$ ${ }^{2}$ However the root of edder-wort (for a kind of cuckoo-pint is so called because of its variegated stem) is not good for food, but is used for drugs.

But the root of the plant called corn-flag is sweet, and, if cooked and pounded up and mixed with the flour, makes the bread sweet and wholesome. It is round and without 'bark,' and has small offsets like the long onion. Many of them are found in moles' runs ${ }^{3}$; for this animal likes them and collects them.
${ }^{4}$ The root of theseion is bitter to the taste, but when pounded purges the bowels. There are also certain others of these roots which have medicinal properties, but of many the roots are neither medicinal nor edible. Such are the differences in the roots.
XIII. ${ }^{5}$ In the leaves the differences are in size and shape. Asphodel has a long leaf, which is somewhat narrow and tough, while that of squill is broad and tears easily; corn-flag, which is called by some xiphos ('sword'), has a sword-like leaf, whence its name, and iris one more like a reed. That of cuckoopint, in addition to being broad, is concave and like that of cucumber; that of the narcissus is narrow substantial and glossy, those of purse-tassels and plants of that character are quite narrow, and that of crocus narrower still.
${ }^{6}$ Some have not a stem at all, nor a flower, as the edible cuckoo-pint ; some have only the flower-stem, as narcissus and crocus; some however have a stem, as squill purse-tassels iris and corn-flag ; but asphodel

[^85]
THEOPHRASTUS

 $\sigma v \nu i \sigma \tau a \tau a \iota \sigma \kappa \omega \bar{\lambda} \eta \xi$, ôs ϵ is ä̀ $\lambda \lambda о \mu \epsilon \tau \alpha \beta a ́ \lambda \lambda \in \iota \zeta \hat{\omega} o \nu$

[^86]128

ENQUIRY INTO PLANTS, VII. xiir. 2-4

has the tallest of all-for the antherikos (asphodelstalk) is very tall : that of iris is smaller, but tougher, though in general it is like the asphodel-stalk. Asphodel also produces much fruit, and its fruit is woody : in shape it is triangular and in colour black; it is found in the round vessel which is below the flower, and it falls out ${ }^{1}$ in summer when this splits open. It does not produce all its flowers ${ }^{2}$ at once; in which respect it resembles squill, but the flowering begins at the bottom. In the stalk of asphodel forms a grub which changes into another creature like a hornet, and then, when the stem withers, eats its way out and flies away. A peculiarity of the plant as compared with others which have a smooth stem appears to be that, though it is slender, it has outgrowths at the top. It provides many things useful for food: the stalk is edible when fried, the seed when roasted, and above all the root ${ }^{3}$ when cut up with figs; in fact, as Hesiod says, ${ }^{4}$ the plant is extremely profitable.

Now all bulbous plants are tenacious of life, but especially squill; for this even lives when hung up and continues to do so for a very long time ; it is even able to keep other things that are stored, for instance the pomegranate, if the stalk of the fruit is set in it; and some cuttings ${ }^{5}$ strike more quickly if set in it; and it is said that, if planted before the entrance door of a house, it wards off mischief ${ }^{6}$ which threatens it. All these bulbs grow in masses, as do onions and garlic ; for they make offsets from the root, and some

$$
\begin{aligned}
& { }^{3} \text { cf. } 7.9 .4 ; 9.9 .6 . \\
& { }^{4} \text { Hes. Op. } 41 . \\
& 5 \text { cf 2.5. } 5 ; C . P .5 .6 .10 . \\
& { }^{6} \text { Sc. witcheraft. veneficiorum noxam Plin. 21. } 108 .
\end{aligned}
$$

THEOPHRASTUS

 עор каì o ßo入ßós．
 ảmò $\pi a ́ \nu \tau \omega \nu ~ \beta \lambda a \sigma \tau a ́ v \epsilon \iota \nu ~ a ̆ \mu a ~ \tau \hat{\omega} \nu ~ \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu$ ， ả入入à тô̂ $\mu \epsilon ̀ \nu$ aủтоєтìs тô̂ δ^{\prime} єis עє́ $\omega \tau a, \kappa а Ө a ́ \pi \epsilon \rho$

 $\kappa a i ̀ ~ \tau o ̀ ~ \mu e ́ \lambda \lambda \lambda o \nu ~ \lambda e ́ ~ \gamma \epsilon \sigma \theta a \iota, \pi \lambda \eta ̀ \nu ~ o v ̉ ~ \pi o \lambda \lambda \hat{\omega} \nu, \theta a v-$

 каu入òs $\pi \rho о ́ т \epsilon \rho о \nu$.

 $\epsilon i \varsigma ~ v ̈ \sigma \tau \epsilon \rho o \nu ~ \epsilon ̇ \pi i ~ \tau о u ́ \tau \omega ~ \tau o ̀ ~ a ̆ \nu \theta o s ~ a ̉ \nu i ́ \sigma \chi o \nu ~ \pi \rho о \sigma-~$

[^87]
ENQUIRY INTO PLANTS, VII. xim. 4-6

plainly are also increased by seed, as the asphodel polyanthus narcissus corn-flag and purse-tassels.

However it is said to be a peculiarity of pursetassels that all the seeds do not germinate at once, but some in the same year, some the next year; a like account is given of aigilops ${ }^{1}$ and trefoil. If then this is true, it is not peculiar to this plant. Nor perhaps is the following characteristic, which is not found in many plants and is marvellous wherever it does occur-and it is found in squill and narcissus : namely that, whereas in most plants, whether those originally planted or those which are produced from them in season, the leaf comes up first and then presently the stem, in these plants the stem comes up first.

In the case of narcissus it is only the flower-stem which comes up, and it immediately pushes up ${ }^{2}$ the flower. But in squill it is the stem ${ }^{3}$ proper which thus appears, and presently the flower appears emerging ${ }^{4}$ from and sitting on it. And it makes three flowerings, ${ }^{5}$ of which the first appears to mark the first seed-time, the second the middle one, and the third the last one; for, according as these flowerings have occurred, ${ }^{6}$ so the crops usually turn out. But, when the flower-stem ${ }^{7}$ has waxed old, then the growth of the leaves follows many days later. So also is it with narcissus, except that it has no second stem besides the flower-stem, as we said, no: any visible fruit; but the flower itselt

[^88]
THEOPHRASTUS

Прòs μ èv oưv $\tau a ̀$ ä $\lambda \lambda \alpha \tau a ̀ ~ \sigma v \nu a ́ \mu \phi \omega ~ \tau a v ̂ \tau a ~ i ́ \delta ı a . ~$ $\pi \rho o ̀ s ~ \delta \grave{\epsilon} \tau a ̀ ~ \pi \rho o a \nu \theta o v ̂ \nu \tau a \tau \omega ิ \nu \phi u ́ \lambda \lambda \omega \nu \kappa a i ̀ \tau \hat{\omega} \nu$
 $\tau \hat{\omega} \nu \dot{a} \nu \theta \iota \kappa \hat{\omega} \nu$, ${ }^{\epsilon} \tau \iota \tau \epsilon \tau \hat{\omega} \nu \quad \delta \epsilon \in \nu \delta \rho \omega \nu \quad \dot{\eta} \quad \dot{a} \mu \nu \gamma \delta a \lambda \hat{\eta}$

 $\kappa a i ̀ ~ o u ̉ ~ \mu \epsilon \gamma a ́ \lambda \eta, \pi \rho о \sigma \epsilon \mu \phi \epsilon \rho \grave{\eta} \varsigma$ ठ̀̀ катà тò $\sigma \chi \hat{\eta} \mu a$ $\tau \hat{\omega} \beta o \lambda \beta \hat{\varphi}, \pi \lambda \grave{\eta} \nu<o u ̉>\lambda \epsilon \pi v \rho \iota \omega ́ \delta \eta s$. тav̂тa $\mu \epsilon ̀ \nu$ ồ้ $\begin{gathered}\text { é } \chi \epsilon \iota ~ \sigma \kappa \epsilon ́ \psi \iota \nu . ~\end{gathered}$

[^89]
ENQUIRY INTO PLANTS, VII. xiil. 6-8

perishes with the stem, and when it has withered, then the plant puts up its leaves.

These two plants then, as compared with the other bulbous plants are peculiar; and, as compared with those which bloom before the leaves and stems appear (as the autumn squill ${ }^{1}$ seems to do, and other plants with conspicuous flowers, as well as, among trees, the almond especially, if not alone), there is the distinction that, while these two put forth their leaves along with the flowers or ${ }^{2}$ immediately afterwards (so that about some the matter is uncertain) in ${ }^{3}$ the case of these two the flower appears, as it were, from a different starting-point, there being a considerable number of days in between, and the growth of the leaves not beginning till, ${ }^{4}$ in the case of one of them, the flower, and in the case of the other, the whole stem has withered. Squill produces its leaves before the flower, narcissus afterwards; but the latter produces much more abundant foliage, and the individual ${ }^{5}$ root is small ${ }^{6}$ rather than large, resembling purse-tassels in shape, except that it is not formed of scales. ${ }^{7}$ About these matters then there is doubt.

Of purse-tassels it is plain that there are several kinds; for they differ in size colour shape and taste. ${ }^{8}$ In some places they are so sweet as to be eaten raw, as in the Tauric Chersonese. But the greatest and most distinct difference is shown by the ' wool-bearing ${ }^{9}$ ' purse-tassels; for there is such a kind, and it grows on ${ }^{10}$ the sea-shore, and has the wool beneath the outer tunic, so that it is between

[^90]
THEOPHRASTUS

 $\tau \rho \iota \chi \hat{\omega} \delta \epsilon \varsigma$.

 є̇тєi тоîs $\gamma \epsilon$ Хрळ́ $\mu a \sigma \iota ~ \lambda \epsilon v к a ̀ ~ к а i ̀ ~ o u ̉ ~ \lambda \epsilon \pi v \rho \iota \omega ́ \delta \eta . ~$
 тò ка́т $\pi \rho \hat{\omega} \tau o \nu, \hat{o}$ калоv̂б८ . . . $\chi \epsilon \iota \mu \hat{\nu} \nu a$, тô̂ δ^{\prime}

 тоıav́таs è $\chi \in \iota$ тàs $\delta \iota a \phi o p a ́ s . ~$
XIV. "I $1 \delta \iota a$ ס̀̀ каì тav̂тa Є̉v тoîs $\pi o \iota \omega ́ \delta \epsilon \sigma \iota \nu$,

[^91]the edible inside and the outside : of it are woven felt shoes and other articles of apparel. Wherefore ${ }^{1}$ this kind is woolly and distinct from the Indian kind, which is hairy.
${ }^{2}$ There are also several kinds of plants of the same class as purse-tassels ${ }^{3}$ such as snowdrop starflower opition ${ }^{4}$ kyix, and to a certain extent Barbary nut. These belong to this class only in having round roots; for in colour ${ }^{5}$ they are white, and the bulbs are not formed of scales. A peculiarity of Barbary nut is that the lower end of the root grows first, and this is called . . . ; it grows ${ }^{6}$ during winter, but, when spring appears, it decreases, while the upper part, which is edible, grows. Such are the differences in these plants.

Of certain properties and habits peculiar to certain herbaceous plants.
XIV. There are also the following peculiarities in herbaceous plants, for instance that ${ }^{7}$ which we find in 'wet-proof' (maidenhair) ; ${ }^{8}$ the leaf does not even get wet when it is watered, nor does it catch the dew, ${ }^{9}$ because the dew does not ${ }^{10}$ rest on it; whence its name. ${ }^{11}$ There are two kinds, the white 'wet-proof' (English maidenhair), and the black (maidenhair); and both are useful to prevent the falling off of the hair of the head, for which purpose they are pounded up and mixed with olive-oil. They grow

6 'Grows' supplied from G and Plin. l.c., who have no trace of 8 кало $\bar{\sigma} \iota$.
${ }^{7}$ I have bracketed $\tau \epsilon . \quad{ }^{8}$ Plin. 22. 62-65.
 adhaesisse humoris constat G.
${ }^{10} \mu \grave{\eta}$ before $\tau \grave{\eta} \nu$ add. W.
${ }^{11}$ Plin. l.c.; 27. 138; 25. 132.

THEOPHRASTUS

$\mu a \lambda \iota \sigma \tau a \pi \rho o ̀ s ~ \tau a ̀ ~ v i \delta \rho \eta \lambda a ́ . ~ i ́ s ~ \delta e ̀ ~ o l o \nu \tau a i ́ ~ t ı \nu \epsilon s, ~$

 $\delta \grave{\epsilon}$ ф $і \lambda \epsilon \hat{\imath} \sigma \kappa \iota \epsilon \rho a ́$.
2
 ä $\nu \theta \epsilon \mu \circ \nu$, öтє $\tau \hat{\omega} \nu \quad \mu \epsilon ̀ \nu$ ä $\lambda \lambda \omega \nu \pi a ́ \nu \tau \omega \nu \tau \dot{\alpha} \kappa \alpha ́ \tau \omega$

 $\mu \epsilon ́ \sigma \omega$ тò $\chi \lambda \omega \rho o ́ v$. каі̀ картòs òs є́ктíттєє, каӨáá$\pi \epsilon \rho$ тоіिs àка $\nu \theta \dot{\omega} \delta \epsilon \sigma \iota, \kappa а т а \lambda \iota \pi \grave{\omega} \nu \tau \grave{\eta} \nu \pi \rho o ́ \sigma \phi v \sigma \iota \nu$ $\kappa \epsilon \nu \eta^{\prime} \nu \cdot \epsilon^{\prime \prime} \delta \eta \delta^{\prime}$ av̉тồ $\pi \lambda \epsilon \epsilon^{\prime} \omega$.
3
"İıov $\delta \grave{\epsilon}$ каі̀ тò $\pi \epsilon \rho \grave{\imath} \tau \grave{\eta} \nu \dot{a} \pi a \rho i ́ \nu \eta \nu, \hat{\eta}$ каі̀ т $\hat{\nu} \nu$

 $\kappa а \lambda о u ́ \mu \epsilon \nu о \nu ~ \kappa а i ̀ ~ o ́ ~ \sigma \kappa o ́ \lambda v \mu о s, ~ a ̈ \mu a ~ \gamma a ̀ \rho ~ \tau а i ̂ s ~ \tau \rho о-~$ тaîs каì oưtos, Є̈т८ סè тò $\chi \in \lambda \iota \delta o ́ v \iota o \nu, \kappa a i ̀ ~ \gamma a ̀ \rho ~$

 $\sigma \nu \mu \pi \tau \omega \mu a \tau \iota \kappa \dot{\nu} \nu$.

[^92]
ENQUIRY INTO PLANTS, VII. xiv. r-xv. i

especially in damp places. Some think that trikhomanes ${ }^{1}$ (English maidenhair) is also useful in cases of strangury. Its stem is like that of the black kind, but it has small leaves, which are close set and grow in opposite pairs ; there is no root below, and the plant loves shady places.

Of those plants which do not flower all at once anthemon has the peculiarity that, while in all others ${ }^{2}$ the lower part flowers first, in this plant it is the upper part which does so; the outer circle of the flower is white, ${ }^{3}$ and the centre green ${ }^{4}$; and the fruit falls off, as in spinous plants, leaving the attachment bare. There are several forms of it.
${ }^{5}$ Bedstraw has the peculiarity that it sticks to clothes owing to its roughness, and it is hard to pull away; indeed it is in this rough part that the flower is contained : it does not project nor show, but matures within itself and produces seed; so that its habit is like that of weasels and sharks; for, as these animals ${ }^{6}$ likewise produce eggs in themselves and then bear their young alive, so this plant keeps its flower within itself, matures it and produces fruit.
XV. ${ }^{7}$ As to these plants whose flowering time is dependent on the heavenly bodies, ${ }^{8}$ as the plant called heliotropion, golden thistle (for this also blooms at the solstice), and also 'swallow-plant' (greater celandine)-for this blooms when the ${ }^{9}$ Swallow-wind blows-the reason in these cases would seem to be partly in their nature and partly accidental.

```
\({ }^{2}\) ₹ \(\delta \iota \nu \nu\) after \(\pi \alpha ́ \nu \tau \omega \nu\) om. W. after Sch.
\({ }^{3} \tau \delta \lambda \epsilon \cup \kappa \delta \nu\) : ? \(\lambda \epsilon \nu \kappa \delta \nu \tau \delta . \quad 4\) ? om. \(\tau 亠\) before \(\chi \lambda \omega \rho \delta \nu\).
\({ }^{5}\) Plin. 21. 104. \({ }^{6}\) cf. Arist. H.A. 6. 11.
7 Athen. 15. 32. \({ }^{8}\) á \(\sigma \tau \rho o \iota s\) conj. St.; à \(\gamma\) pious Ald.
\({ }^{9} \tau \hat{\psi}\) conj. Sch.; \(\tau \hat{p}\) MAld. cf. Plin. 2. 122.
```


THEOPHRASTUS

 $\delta \eta s$ бuppoń.

 $\theta \in \omega \rho \in i ̂ \nu \kappa a i ̀ ~ \tau a ̀ s ~ \delta \iota a \phi o p a ̀ s ~ \pi \rho o ̀ s ~ \tau a ̀ ~ a ̆ ̉ \lambda \lambda a . ~ \tau a ̀ ~ \mu \epsilon ̀ \nu ~$
 $\dot{\omega} \sigma \pi \epsilon \rho$ ó $\lambda \omega \tau$ ós τ

 $\delta \nu \nu a ́ \mu \epsilon \iota \delta \grave{\epsilon} \tau \hat{\eta} \kappa \alpha \tau a ̀ ~ \tau \grave{\eta} \nu \pi \rho \circ \sigma \phi \quad \rho a ́ v$, , $\epsilon \tau \iota \tau \epsilon \tau \hat{\varphi} \mu \grave{\eta}$
 $\pi \lambda \epsilon i \omega$.

 $\kappa a \grave{~ \tau} \hat{\omega} \nu \sigma \iota \tau, \omega \delta \hat{\omega} \nu \mu \epsilon \tau \grave{a}$ таи̂тa $\lambda \epsilon \kappa \tau \epsilon ́ о \nu \cdot \tau о \hat{v} \tau о$ خà ρ

[^93]
ENQUIRY INTO PLANTS, VII. xv. 2-4

Such peculiarities are common in other plants also ; thus ${ }^{1}$ it is the nature of the house-leek to remain always moist and green, its leaf being fleshy smooth and oblong. It grows on flat shores, ${ }^{2}$ on the ${ }^{3}$ earthy tops of walls, and especially on tiled roofs, when there is on them a sandy accumulation of earth.

Possibly one might mention many other eccentricities. But, as has been repeatedly said, we must only observe the peculiarities and differences which one plant has as compared with others. Some plants are found in several forms which have almost ${ }^{4}$ the same name, for instance the lotos; for of this there are many forms differing in leaves stems flowers and fruit, including the plant called melilotos ${ }^{5}$; there are also forms differing in the virtues for which ${ }^{6}$ they are used as food, and again in their fondness for different localities. So too is it with many other plants.

Others are found in fewer forms, as strylhnos, ${ }^{7}$ which is a general name covering plants that are quite distinct; one is edible and like a cultivated plant, having a berry-like fruit, and there are two others, ${ }^{8}$ of which the one is said to induce sleep, the other to cause madness, or, if it is administered in a larger dose, death. The same thing may be observed in other plants which are widely different. Now about the other herbaceous plants enough has been said; but concerning corn and corn-like plants we must speak next; for this subject still lies before us.

[^94]

 Ariñ

 दn

 Smady
 क.

[^95]
BOOK VIII

Θ

 $\epsilon i \rho \eta{ }^{\prime} \sigma \theta \omega \cdot \pi \epsilon \rho i ̀$ ठ̀̀ $\sigma i \tau o v \kappa a i ̀ \tau \hat{\omega} \nu \sigma \iota \tau \omega \delta \hat{\omega} \nu \lambda \in ́ \gamma \omega \mu \epsilon \nu$
 $\tau \hat{\omega} \nu \pi o \iota \omega \delta \hat{\omega} \nu$.
Δ v́o סè aủтô̂ $\gamma \in ́ \nu \eta ~ \tau a ̀ ~ \mu \epsilon ́ \gamma \iota \sigma \tau a ~ \tau v \gamma \chi a ́ \nu \epsilon \iota ~ \tau \grave{a}$

 oiov кv́a μ оs є́ $\rho \in ́ \beta \iota \nu$ Oos $\pi \iota \sigma o ̀ s ~ \kappa a i ̀ ~ o ̈ \lambda \omega \varsigma ~ \tau a ̀ ~ o ̀ ~ o ̛ ~ \pi \rho \iota a ~$

 áро́тоьs à $\nu \omega ́ \nu v \mu a$ коьขท̣̂ $\pi \rho о \sigma \eta \gamma о \rho i ́ a . ~$
 фv́єтa८ γ àp àmò $\sigma \pi \epsilon \in \rho \mu a \tau o s, ~ \epsilon ̇ a ̀ \nu ~ \mu \eta ́ ~ \tau \iota ~ \sigma \pi a ́ v \iota o \nu ~$

[^96]
BOOK VIII

Of Herbaceous Plants: Cereals, Pulses, and 'Summer Crops.'

Of the three clusses and the times of sowing and of germination.
I. Let the above suffice for an account of the other herbaceous ${ }^{1}$ plants; let us now discuss corn and corn-like plants in the same manner as those already treated; for this class of herbaceous plants we reserved.
${ }^{2}$ There are two principal classes; there are the corn-like plants such as wheat barley one-seeded wheat rice-wheat and the others which resemble either of the first two ; and again there are the leguminous plants, as bean chick-pea pea, and in general those to which the name of pulses is given. Besides these there is a third class, which includes millet ${ }^{3}$ Italian millet, sesame and in general the plants which belong to the summer seed-time, ${ }^{4}$ which lack any common designation.

There is only one single way of propagating these ; they grow from seed, except that some may grow rarely and scantily from a root. There are two seasons for sowing most of them; the first and most important is about the setting of the Pleiad ${ }^{5}$; this rule we find even Hesiod ${ }^{6}$ following with ${ }^{4} c f .8 .7 .3$.
${ }^{5} \Pi \lambda \epsilon \iota \alpha ́ \delta o s ~ c o n j$. Sch.; $\pi \lambda \epsilon \iota \alpha ́ \delta \alpha s$ U; $\pi \lambda \epsilon \iota \alpha ́ \delta \omega \nu$ Ald.
${ }^{6}$ Hes. Op. 383.

THEOPHRASTUS

 єủ θ ús.

 $\kappa а \grave{\imath} \tau \hat{\omega} \nu \chi \in \delta \rho о \pi \hat{\omega} \nu \tau a ̀$ тоıá ϵ, факòs ảфáкך $\pi \iota \sigma o ́ s$.

 $\nu \epsilon \iota a \nu$, ö $\pi \omega \varsigma \pi \rho о \lambda a ́ \beta \omega \sigma \iota \tau a i ̂ \varsigma ~ \epsilon v ̉ \delta i ́ a \iota \varsigma ~ \tau \grave{\eta} \nu a \cup ้ \xi \eta \sigma \iota \nu$. $\delta u ́ o ~ \mu \epsilon ̀ \nu ~ o u ̛ \nu \nu ~ a u ̉ \tau a \iota$. $\tau \rho i ́ \tau \eta ~ \delta \grave{\epsilon} \tau \hat{\omega} \nu \quad \theta \epsilon \rho \iota \nu \hat{\omega} \nu \hat{\eta} \nu$

[^97]
ENQUIRY INTO PLANTS, VIII. I. 2-4

most authorities ; wherefore some call it simply 'the seed-time.' Another time is at the beginning of spring after the winter equinox. However different crops are sown at the two seasons. For some of them love to be sown early, some late because they cannot bear the winters, while some will do not amiss at either season, both towards winter and towards spring.

Crops sown early are wheat and barley, and of these the latter is sown the earlier; also rice-wheat one-seeded wheat olyra, ${ }^{1}$ and others which resemble wheat. For all of these the time of sowing is about the same. Of leguminous plants ${ }^{2}$ bean and okhros, ${ }^{3}$ it may be said, are specially sown at this time; for these on account of their weakness like to be well rooted before the winter. Lupin is also sown early ; in fact they say it should be sown straight from the threshing-floor. ${ }^{4}$

Those which are sown late are certain special varieties ${ }^{5}$ of these very kinds, as a certain kind of wheat, and of barley the kind which is called 'three months barley' because it takes that time to mature; and among lcguminous plants lentil tare pea. However some of these plants are sown at both seasons, as vetch and chick-pea; some also sow beans late, if they have missed the first seed-time. To speak generally, some crops are sown early because of their robustness, since they can stand the winters, some because of their weakness, so that their growth may be secured ${ }^{6}$ in the fine weather. These then are the two seasons; the third is that of the summer crops of which we

[^98]
THEOPHRASTUS

 oûv éкá
 каі̀ крьӨ̀̀ μ èv каі̀ тирòs є́ $\beta \delta о \mu а i ̂ a ~ \mu a ́ \lambda \iota \sigma \tau a \cdot ~ \pi \rho о-~$

 ßрa $\tau \in \rho o \nu$.

$$
\begin{aligned}
& 1 \text { 年yıa conj. W.; } \begin{array}{l}
\text { ev Ald. } \\
2 \text { The reason is given C. P. 4. 8. } 2 . \\
{ }^{8} \text { cf. } 7.1 .4 .
\end{array}
\end{aligned}
$$

146

ENQUIRY INTO PLANTS, VIIİ. I. 4-7

spoke, in which are sown millet Italian millet sesame, and also erysmon and horminon. Such then are the times for each.

Some are quicker in coming up, some slower. Barley and wheat generally come up on the seventh day, but barley is the earlier. Pulses take four or five days, except beans; for they, like some kinds ${ }^{1}$ of corn, require a longer time; in some places they take as much as fifteen days, or even twenty. This crop indeed is the slowest to start of all, and if after the sowing there is a long spell of wet weather, it is extremely slow. ${ }^{2}$ Whether the sprouting ${ }^{3}$ of crops sown at the spring seed-time is quicker because of the season is matter for enquiry.

These times of sprouting or germination must be taken generally; for at some times and places germination takes fewer days, as with barley ${ }^{4}$ in Egypt, where it is said to come up on the third or fourth day; while elsewhere it takes longer than the period mentioned, which is not surprising when both soil and climate are different, when one makes the sowing earlier or later, and when the crop is subjected to different influences afterwards. For open light soil with a favourable ${ }^{5}$ climate produces quick and easy growth, while soil that is sticky and heavy tends to slow growth, and that of a specially dry district to slower growth still.

Moreover the time of growth is affected, according as storms supervene, or droughts, or fine weather or again rain; for these conditions make wide differences. So too it makes a difference if the

THEOPHRASTUS

 $\tilde{\omega} \sigma \pi \epsilon \rho$ oi $\Phi \omega \kappa \epsilon i ̂ \varsigma, o ̈ \pi \omega \varsigma$ ầ oí $\chi \epsilon \iota \mu \hat{\omega} \nu \epsilon \varsigma \mu_{\eta} \nu \eta \eta^{\pi} \iota a$ $\kappa а т а \lambda \alpha \mu \beta a ́ v \omega \sigma \iota \nu$.

[^99]
ENQUIRY INTO PLANTS, VIII. I. 7-II. 2

ground has been well tilled ${ }^{1}$ and given dung, or if neither of these things has been done: for the soil makes a difference even as to the early or late germination of each crop. In Hellas some are used to sow everything earlier because of the coldness of the soil, for instance the Phocians; ${ }^{2}$ the object being that the winter may not overtake the crop while it is still tender.

Of differences in the mode of germination and of subsequent development.

II. In germinating some of these plants produce their root and their leaves from the same point, some separately, from either end of the seed. Wheat barley one-seeded wheat, and in general all the cereals produce them from either end, in a manner corresponding to ${ }^{3}$ the position of the seed in the ear, the root growing from the stout lower part, the shoot from the upper part; but the part corresponding to the root and that corresponding to the stem form a single continuous whole. Beans and other leguminous plants do not grow in the same manner, but they produce the root and the stem from the same point, namely the point at which the seed is attached to the pod, which, it is plain, is a sort of starting point of fresh growth. In some cases there is also a formation resembling the penis, as in beans chick-peas and especially in lupins; from this ${ }^{4}$ the root grows downwards, the leaf and the stem upwards.

There are then these different ways of germinating; but a point ${ }^{5}$ in which all these plants agree is that they all send out their roots at the place where

[^100]
THEOPHRASTUS

$\kappa а \theta a ́ \pi \epsilon \rho ~ \epsilon ̇ \nu ~ \tau о i ̂ s ~ \delta є \nu \delta \rho \iota к о i ̂ s ~ \tau \iota \sigma \iota \nu ~ a ̉ \nu a ́ \pi a \lambda \iota \nu$, olio

 тà $\sigma \pi$ є́р $\mu a \tau a-\pi a ́ \nu \tau a ~ \gamma a ́ \rho ~ \pi \omega \varsigma ~ к а i ̀ ~ \tau a v ̂ \tau a ~ \delta ı \mu є \rho \eta ̂, ~$

 нькро́v.

 ó $\pi v \rho o ̀ s ~ \kappa a i ~ \grave{\eta} \kappa \rho \iota \theta \grave{\eta}$ каi $\tau \grave{a}$ aaa $\lambda \lambda a \tau \grave{\alpha} \sigma \iota \tau \omega \dot{\partial} \eta$

 $\tau \grave{a}$ ठè $\sigma \iota \tau \eta \rho a ̀ ~ \pi o \lambda u ́ \rho \rho \iota \zeta a ~ \pi o \lambda \lambda o u ̀ s ~ \mu e ̀ \nu ~ a ̀ \nu i ́ \eta \sigma \iota ~$
${ }^{1} \beta a \lambda a ́ \nu \varphi$: $\delta \iota o \sigma \beta a \lambda a ́ \nu \varphi$ Sch. from mBod.
${ }^{2} \tau \iota \sigma \iota \tau \bar{\omega} \nu \delta \epsilon ́ \nu \delta \rho \omega \nu$ conj. W.; $\sigma \iota \tau \omega \delta \epsilon \sigma \iota \nu$ UMAld.; $\tau 0 i ̂ s ~ \delta \epsilon \nu \delta \rho \iota \kappa o i ̂ s$ conj. Sch. This and W.'s other conjectures in this section are rather desperate, but are accepted provisionally as at least restoring a satisfactory sense. The passage looks as if it had been deliberately tampered with by someone who misunderstood it.

ENQUIRY INTO PLANTS, VIII. iI. 2-3

the seed is attached to the pod or ear, whereas the contrary is the case with the seeds of certain trees, as almond hazel acorn ${ }^{1}$ and the like. And in all these plants the root begins to grow a little before the stem; whereas in certain trees ${ }^{2}$ the bud first begins to grow within the seed itself, and, as it increases in size, the seeds split-for all such seeds are in a manner in two halves, and those of leguminous plants again all plainly have two valves and are double-and then the root is immediately thrust out; but in cereals, ${ }^{3}$ since the seeds are in one piece, ${ }^{4}$ this does not ${ }^{5}$ occur, but the root grows a little before the bud.

Barley and wheat come up with a single leaf, but peas beans and chick-peas with several. ${ }^{6}$ All the leguminous plants have a single woody root, and also slender ${ }^{7}$ side-roots springing from this. The chick-pea is about the deepest rooting of these, and sometimes it has side-roots; but wheat barley and the other cereals have a number of fine roots, wherefore they are matted together. ${ }^{8}$ Again all such plants have many branches and many stems. And there is a sort of contrast between these two classes; the leguminous plants, which have a single root, have many side-growths above from the stemall except beans; while the cereals, which have many roots, send up many shoots, ${ }^{9}$ but these have

[^101]THEOPHRASTUS

4 Tòv $\mu \epsilon ̀ \nu$ ov̉v $\chi \in \iota \mu \omega ิ \nu a$ є่ ν т $\hat{\imath}$ र χ ón $\mu \epsilon ́ \nu \epsilon \iota ~ т \grave{a}$
 є̇к то̂̀ $\mu \epsilon ́ \sigma o v ~ к а i ̀ ~ \gamma o v a \tau o v ̂ \tau a \iota . ~ \sigma v \mu \beta a i ́ \nu \in \iota ~ \delta ' ~$

 тои́т $\omega \nu$ - $̈ \sigma \tau \epsilon \sigma \chi \epsilon \delta \grave{\nu} \stackrel{\text { ä } \mu a ~ \tau \hat{\omega}}{\kappa} \kappa \lambda a \mu о \hat{v} \sigma \theta a \iota$ $\sigma \nu \nu i ́ \sigma \tau a \sigma \theta a \iota<\hat{\eta}>\mu \iota \kappa \rho o ̀ \nu$ v̈ $\sigma \tau \epsilon \rho о \nu \cdot a ̉ \lambda \lambda$ ' ov $\pi \rho o ́-$

 ő $\gamma к о \nu$.

 ópóßov каі є́ $\rho \in \beta i \nu \theta \circ v, ~ т о и ́ т \omega \nu ~ \delta ’ ~ a ̀ т a ́ \nu \tau \omega \nu ~ \tau о \hat{v}$

 $\mu \epsilon ́ \rho o s ~ \gamma a ̀ \rho ~ a ̀ \nu \theta \epsilon i ̂ \nu, ~ o i ~ \delta \grave{\epsilon}$ ám $\lambda \omega \hat{s}$. $\dot{\eta} \gamma \grave{a} \rho$ ă $\nu \theta \eta \sigma \iota s$ $\tau \hat{\omega} \nu \mu \grave{\nu} \nu \quad \sigma \tau a \chi \nu \eta \rho \hat{\omega} \nu$ à $\theta \rho o ́ \omega s$ т $\hat{\omega} \nu \delta \epsilon ̀ ~ \epsilon ่ \lambda \lambda o \beta \omega \delta \hat{\omega} \nu$ каì $\chi \in \delta \rho о \pi \hat{\omega \nu} \pi a ́ \nu \tau \omega \nu$ катà $\mu \epsilon ́ \rho о \varsigma . ; \pi \rho \omega ̂ \tau \alpha ~ \gamma a ̀ \rho ~$
 є́ $\chi о ́ \mu \epsilon \nu a$, каì оӥтшs aiєє $\beta a \delta i \zeta \epsilon \iota ~ \pi \rho o ̀ s ~ \tau a ̀ ~ " a ̉ \nu \omega . ~$
${ }^{1}$ Plin. 18. 52. $\quad{ }^{2}$ Plin. 18. 56.

$$
{ }^{3} c^{f} .7 .7 .1 ; 8.4 .3 .
$$

152

ENQUIRY INTO PLANTS, VIII. i. 3-5

no side-shoots-except such sorts of wheat as are called sitanias and krithanias (' barley-wheat').
${ }^{1}$ During winter cereals remain in the blade, but, as the season begins to smile, they send up a stem from the midst and it becomes jointed. ${ }^{2}$ And it comes to pass that the ear also at once appears in the third, or in some cases in the fourth joint, though it is not distinctly seen in the mass of growth (the whole stem contains more joints than three or four), so that it must be formed at the same time that the straw grows or but a little later; though it does not become conspicuous till it has first swollen and formed in the sheath, ${ }^{3}$ and by that time its size makes its development visible.

Four or five days after being set free ${ }^{4}$ wheat and barley flower and remain in bloom for a like number of days; those who put the period at the longest say that the bloom is shed in seven days. ${ }^{5} \mathrm{On}$ the other hand the flowering period of leguminous plants lasts a long time; that of vetch and chick-pea is longer than that of most, but that of the bean is far longer than that of any of them; they say that it is in bloom for forty days; some however give this period absolutely, others say that at different times different parts are in flower, ${ }^{6}$ since the whole plant does not flower at once. For plants with an ear bloom all at once, but plants with pods and all leguminous plants bloom part at a time; the lower part blooms first, and, when this bloom has fallen, the part next above it, and so on up to the top.

[^102]
THEOPHRASTUS

$\delta i ’$ ô $\pi \rho \lambda \lambda a ̀ ~ \tau \hat{\omega} \nu$ ó ó $\beta \omega \nu \tau i \lambda \lambda \epsilon \tau \alpha \iota \tau \grave{a} \mu \epsilon ̀ \nu \kappa a ́ \tau \omega$ $\kappa а т є \rho \rho и \eta \kappa o ́ \tau а ~ \tau a ̀ ~ \delta ' ~ a ̆ \nu \omega ~ \chi \lambda \omega \rho a ̀ ~ \pi a ́ \mu \pi a \nu . ~$
 єıô̂עтаı тирòs μ è ν каì крıӨ̀̀ тєттаракобтаîa $\mu a ́ \lambda \iota \sigma \tau a \cdot \pi a \rho a \pi \lambda \eta \sigma i ́ \omega s$ ठ̀̀ кaì тíф $\kappa \alpha i ̀ ~ \tau a ̉ \lambda \lambda a$ тà тоんаи̂та. тєттаракобтаîov ס́́ фаб८ каì тò

 $\tau \epsilon \lambda \epsilon \iota o \hat{\tau} \tau \iota \iota \quad \tau a i ̂ s ~ \dot{~ a ́ \pi a ́ \sigma a \iota s ~ \check{~} \sigma \pi \pi \epsilon \rho ~ \tau \iota \nu e ́ s ~ \phi a \sigma \iota \nu . ~}$
 ке́ $\gamma \chi \rho \circ \iota \kappa \alpha i ̀ ~ \tau a ̀ ~ \sigma \eta ́ \sigma a \mu a ~ к а i ~ o i ~ \mu e ́ \lambda \iota \nu o \iota ~ к а i ̀ ~ o ̈ \lambda \omega s ~$ тà $\theta \epsilon \rho \iota \nu a ̀ ~ \sigma \chi \epsilon \delta o ̀ \nu ~ o ́ \mu о \lambda о \gamma є i ̂ \tau а \iota ~ \tau a ̀ s ~ \tau \epsilon \tau \tau а р а ́ к о \nu \theta ' ~$

[^103]154

ENQUIRY INTO PLANTS, VIII. II. 5-8

Wherefore, at the time when some of the vetches are gathered, the lower seeds have already fallen, while the upper ones are still quite green.

After the flowering is over wheat and barley develop and mature in about forty days; one-seeded wheat and other such plants take about the same time. So too, they say, does the bean, which blooms and matures in a like number of days: but the others take fewer, and fewest of all the chick-pea, since, as some say, it takes only forty days from the time when it is sown to that when it is mature ; and in any case it is clear that the plant as a whole develops very rapidly. Millet sesame Italian millet ${ }^{1}$ and the summer crops in general, it is fairly well agreed, take the same number of days, that is, forty; though some say that they take less.

Of differences in development due to soil or climate.

${ }^{2}$ Again as to the development of the plant there are differences according to soil and climate. Some soils seem to produce the crop in fewer days; for instance, Egypt may be given as a specially conspicuous example; in that country barley is reaped in six months and wheat in seven: while in Hellas the barley ${ }^{3}$ harvest is in the seventh month, or in most parts in the eighth, and wheat requires an even longer time. However even in Egypt the whole harvest is not gathered at such an early date, but only what is required for the first-fruits; for they gather new grain for the meal required in certain sacrifices in the sixth month, and that too in the regions high up the Nile, above Memphis.

It is said also that in the Messenian district in

[^104]
THEOPHRASTUS

 $\tau \grave{\eta} \nu \tau \epsilon \lambda \epsilon i \omega \sigma \iota \nu \tau \hat{\omega} \nu$ ó $\psi i ́ \omega \nu \cdot \tau \grave{\nu} \nu \tau \hat{\omega} \nu$ ó $\sigma \pi \rho i ́ \omega \nu \mu \epsilon ̀ \nu$

 $\theta \epsilon \rho i \zeta \zeta о \sigma \iota, \delta i$ ồ каì $\lambda \in ́ \gamma \epsilon \iota \nu$ aủtoùs öтє $\mu \in ́ \chi \rho \iota$

 $\pi a \rho ’ a v ̉ \tau o i ̂ s . ~ \delta є \iota \nu \eta ̀ \nu ~ \delta e ́ ~ \tau \iota \nu a ~ \delta \iota a \delta o u ̂ \nu a \iota ~ т \eta ̀ \nu ~ \chi َ ́ \rho a \nu ~$
 фópov ả $\gamma a \theta \grave{\eta} \nu$ à $\mu \pi \epsilon \lambda о \phi o ́ \rho o \nu ~ \delta$ è $\mu \epsilon \tau \rho i ́ a \nu$.

 ă μa тaîs ä入入aıs $\theta \epsilon \rho i ́ \sigma a \nu \tau \epsilon s$ таútas $\sigma \pi \epsilon i ́ \rho o v \sigma \iota \nu$

 ш̈ $\sigma \pi \epsilon \rho$ є́є Kıдıкías фабì єis Kaттабокíà каі

 ${ }^{2}$ cf.C.P. 4. 11. 8.

ENQUIRY INTO PLANTS, VIII. i. 8-9

Sicily at the place called Mylae the late sown crops mature rapidly; thus the sowing of pulses goes on for six months, but he that made the last sowing gathers his crop at the same time as the first: also that the soil is exceedingly good, so that it yields thirty-fold ${ }^{1}$; and there are also wonderful pastures and forest-land. They tell of an even more wonderful thing in Melos ${ }^{2}$; there they reap thirty or forty days after sowing; wherefore it is a saying of the islanders that " one should continue sowing till one sees a swathe." However it is said that pulses ${ }^{3}$ in their country do not grow like this, nor are they abundant. Yet they say that the soil is wonderfully productive; for it is good both for corn and olives, and fairly good for vines.

However what occurs in Chalkia, ${ }^{4}$ an island belonging to the Rhodians, goes even beyond this and is more extraordinary than all the instances given; there they say that there is a place which is so early and so fertile that, when the barley is sown after reaping the crop with the other crops, they then sow again, and then reap the crop thus sown at the same time as the remaining crops; this then, if it be true, marks a difference greater than we find anywhere else. For it is less surprising that there should be a difference in crops transferred ${ }^{5}$ to another region, as they say occurs when they are transferred from Cilicia to Cappadocia or in general beyond the Taurus; for these regions are obviously very dissimilar.

[^105]
THEOPHRASTU̇S

 ả $\lambda \lambda a \iota, ~ \sigma$ v́vopò ov̉ $\sigma a \nu$ каì $\mu i a \nu ~ \theta a v \mu a \sigma \iota \dot{т а т о \nu \cdot ~}$

 ϵi ' δ 'ä μa, $\delta \hat{\eta} \lambda o \nu$ ö $\tau \iota \pi \lambda \epsilon i ́ \omega \nu$ ầ o o रpóvos.

 ö $\lambda \omega \varsigma$ тà є̇ $\pi \iota \theta a \lambda a ́ \tau \tau \iota a$ каі̀ єis тav̂та каì єis тò̀s ä λ Xovs картои́s, $\dot{\omega} s \tau a ̀ ~ \pi \epsilon \rho і ~ \tau \eta ̀ \nu ’ А \kappa \tau \grave{\nu} \nu \kappa а \lambda о и-$

 $\kappa a \grave{~ \tau o ̀ ~} \lambda \epsilon \pi \tau o ́ \gamma \epsilon \omega \nu$ єìvaı каì $\psi a \phi a \rho a ̀ \nu ~ \tau \grave{\nu} \nu$
 $\tau \epsilon \lambda \epsilon i ́ \omega \sigma \iota \nu$ oṽ $\tau \omega \varsigma$ é $\chi \epsilon \iota$.
 $\mu \epsilon ́ \nu a ~ \tau \hat{\omega} \nu \quad \gamma \epsilon \nu \hat{\omega} \nu$, oiov $\sigma i ̂ \tau o s \chi \epsilon \delta \rho o \pi a ̀ ~ \tau a ̀ ~ \theta \epsilon \rho \iota \nu a ́, ~$

[^106]
ENQUIRY INTO PLANTS, VIII. i. Io-iII. 1

But that one particular land should produce two crops in the time that other lands to which it is close take to produce one, is very remarkable; wherefore Chalkia exhibits the greatest difference.

The crops grown in other regions show not much, if any, dissimilarity as to time ; those grown at Athens are only about thirty days or not much more before those of the Hellespont region. Now, if the sowing should turn out to be also earlier, that would shift the season back ${ }^{1}$; if it is at the same time, it is plain that the difference of time would be greater. ${ }^{2}$

Again the particular district makes a considerable difference, even as between places which are not far apart; thus the crops of Salamis are far earlier than those of the rest of Attica, and so in general are those of places by the sea; and this applies to other fruits as well as these: for instance, those of the place called Akte in the Peloponnese and of Phalykos ${ }^{3}$ in the Megarid are early; but here something is contributed by the fact that the soil is light and crumbling. Such are the facts in regard to growth and development.

Of differences between the parts of cereals, pulses, and summer crops respectively.

III. There are also differences between ${ }^{4}$ the whole classes which we have mentioned, namely cereals leguminous plants ${ }^{5}$ and summer crops, as well as between the several members ${ }^{6}$ of the same class. Cereals have the leaf of a reed, while of

${ }^{4}$ ка日' conj. Sch.; каl Ald.H. ${ }^{6}$ cf. 8. 1. 1.
${ }^{6} \delta \mu \sigma \gamma \epsilon \nu \hat{\eta}$ conj. Sch.; $\delta \mu o t o \gamma \epsilon \nu \hat{\eta}$ Ald.

THEOPHRASTUS

$\pi \hat{\omega} \nu \tau a ̀ ~ \mu e ̀ \nu ~ \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon ́ s, ~ o i o \nu ~ o ̀ ~ \kappa v ́ a \mu o s ~ \kappa а i ̀ ~ \sigma \chi \epsilon \delta o ̀ \nu ~$

 $\kappa а i ̀ ~ \epsilon ’ \rho v \sigma i ́ \mu o v ~ \nu а \rho \theta \eta \kappa \omega ́ \delta \eta s ~ \mu a ̂ \lambda \lambda о \nu . ~ к а і ̀ ~ \tau a ̀ ~ \mu \epsilon ́ \nu ~$

 $\mu a ̂ \lambda \lambda o \nu$, oiò є́ є́́ $\beta \iota \nu \theta$ os ő $\rho о \beta$ оs факós, тà δ ' є̇ $\pi \iota-$

 $\pi \omega \hat{\nu}$ óp $\begin{gathered}\text { óкаидоs ó кv́a } \mu о \text { s. }\end{gathered}$

 $\pi \epsilon \rho \tau \hat{\omega} \nu \chi \in \delta \rho о \pi \hat{\omega} \nu, \kappa a i ̀ \tau \omega \nu \pi \lambda \epsilon i ́ \sigma \tau \omega \nu \kappa о \lambda о \beta a \dot{a}$.
${ }^{1}$ Plin. 18. 58. ${ }^{2}$ i.e. 'summer crops'; cf. 8. 1. 1.
${ }^{3}$ Sc. but not jointed. W. suggests that the original text may have been $\tau \hat{\omega} \nu \delta \dot{\epsilon} \delta$ óóגov кoî̀os olov δ toû кuá $\mu o v$.

${ }^{5}$ \% add. St.; om. Ald.H. Gx. ${ }^{6}$ 1. 13. 1 (?)
${ }^{7} \chi^{\nu} \boldsymbol{0}$ ó $\delta \eta$. No rendering seems quite satisfactory : the 160

ENQUIRY INTO PLANTS, VIII. mI. 1-3

leguminous plants some have a round leaf, as beans and most others, some a more oblong leaf, as pea lathyros okhros and the like. ${ }^{1}$ Some again have fibrous leaves, others leaves without veins and fibres. Again sesame ${ }^{2}$ and erysimon ${ }^{2}$ have leaves quite distinct from these.

Again the stem of cereals is jointed and hollow; wherefore it is called the 'reed,' while that of the bean is hollow, ${ }^{3}$ and that of the other leguminous plants is more woody, that of chick-pea woodiest of all; of the summer crops that of millet and Italian millet ${ }^{4}$ is reed-like, that of sesame and erysimon is more like the stem of ferula. Some again have erect stems, as wheat barley and in general the cereals and summer crops; some have rather a crooked stem, as chick-pea vetch lentil; some a creeping stem as okhros pea lathyros; while calavance, if long stakes are set by it, climbs them and becomes fruitful, whereas otherwise the plant is unhealthy and liable to rust; the bean, most of all leguminous plants, if not ${ }^{5}$ alone among them, has an erect stem.

The flowers also shew differences in character and in position (of which matters we have to some extent treated in our general account) ${ }^{6}$; thus some are 'downy,' ${ }^{7}$ as those of corn ${ }^{8}$ and of any plant that has an 'ear'; others are 'leafy,' ${ }^{9}$ as those of leguminous plants, and in most cases they are irregular ${ }^{10}$ flowers; for most of these have meaning is that such flowers may be classed with those distinguished by this term in 1. 13.1, as not being petaloid.
 omnium fere gerentium spicam; пov каl $\pi \alpha \nu \tau \partial s ~ \tau o v ̂ ~ \chi u \lambda \omega ́ \sigma o u s ~$ UMAld. ${ }^{9}$ Sc. petaloid.
${ }^{10} \mathrm{cf}$. . 6. 5. 3. i.e. they depart from radial symmetry.

THEOPHRASTUS

 то̂ кé $\gamma \chi \rho о v ~ \kappa a i ̀ ~ \mu \epsilon \lambda i ́ v o v ~ \tau о и ̂ ~ \delta e ̀ ~ \sigma \eta \sigma a ́ \mu o v ~ к а i ̀ ~$

 $\kappa \epsilon \gamma \chi \rho \omega ́ \delta \eta \pi \epsilon \rho i ̀ \tau o ̀ \nu \sigma \tau a ́ \chi \nu \nu^{\bullet} \tau a ̀$ ठє̀ $\chi \in \delta \rho о \pi a ̀ ~ \epsilon \exists \xi$

 тои́тoıs.
4 ' $\mathrm{O} \mu$ оíws δ è каì $\tau \grave{a} \kappa \alpha \tau \grave{\alpha}$ тоѝs картои́s, öт८ $\tau \grave{a}$

 $\mu \epsilon \nu$ о́ $\sigma \pi \epsilon \rho \mu a$, тà $\delta \grave{\epsilon} \gamma \nu \mu \nu o ́ \sigma \pi \epsilon \rho \mu a \cdot \kappa a i ̀ ~ \epsilon ้ \tau \iota ~ \tau \grave{a} \mu \grave{\epsilon} \nu$

 $\mu a ́ \lambda \iota \sigma \tau \alpha ~ ф а к о ́ s . ~ a ́ m \lambda \omega ̂ s ~ \delta є ̀ ~ \tau a ̀ ~ \mu \iota к р о \sigma \pi є \rho \mu о ́ т є \rho а ~$ $\mu a ̂ \lambda \lambda o \nu$ ஸ́s єimeîv, $̈ \sigma \pi \epsilon \epsilon \rho \kappa a i ̀ ~ \tau \hat{\omega} \nu ~ \lambda a \chi a \nu \omega \delta \hat{\omega} \nu$ $\kappa v ́ \mu \iota \nu o \nu$ å $\pi a ́ \nu \tau \omega \nu$ oै $\nu \tau \omega \nu \pi o \lambda v \sigma \pi \epsilon ́ \rho \mu \omega \nu$. i $\sigma \chi v \rho o ́-$ $\tau \epsilon \rho a$ ठè $\pi \rho o ̀ s ~ \mu \epsilon ̀ \nu ~ \tau o ̀ \nu ~ \chi \epsilon \iota \mu \omega ि \nu a ~ \kappa a i ~ o ̈ \lambda \omega s ~ \tau a ̀ ~$

[^107]
ENQUIRY INTO PLANTS, VIII. m. 3-5

such flowers. Those of millet and Italian millet ${ }^{1}$ are also 'downy,' ${ }^{2}$ those of sesame and erysimon 'leafy.' Another difference is that in some cases the flowers are round the fruit; thus those of corn and millet are round the ear; while in leguminous plants the fruit comes as it were from the flower itself, or at least from the same starting-point. Another difference is that some produce all their flowers at once, others in succession. And there are other differences akin to these.

In like manner there are differences in the fruits; some have an 'ear,' leguminous plants a pod, and millet-like plants a 'plume'3-which is the name given to an inflorescence ${ }^{4}$ such as reeds have. Again, generally speaking, ${ }^{5}$ some have their seeds in a vessel, ${ }^{6}$ some in pods, ${ }^{7}$ some naked; and further some bear their fruit at the top, some at the sides; and there are other differences which bear on this enquiry.

In general the leguminous plants produce more fruit and are more prolific, and the summer crops millet and sesame are even more so than these, while among the leguminous plants themselves lentil is the most prolific. ${ }^{8}$ Generally speaking, those that have small seeds are more prolific, as cummin among pot-herbs, which are all prolific of seed. The seeds of cereals are more robust as to standing winter and conditions of climate generally, while those of leguminous plants are stronger as to providing food. ${ }^{9}$ However it may be that in this respect
 C.P. 4. 7. 5.
${ }^{7}$ cf. 1. 11. 2. ${ }^{8}$ cf. C.P. 4. 15. 2.
${ }^{9}$ i.e. what has just been said perhaps applies only to human food. Sense fixed by 8. 9. 3 ad fin.: cf. Plin. 18. 50.

THEOPHRASTUS

 адขáтадıข．

 $\mu \in \rho \hat{\omega} \nu \dot{a} \nu \omega \mu a \lambda i a \nu$ ，oiov $\tau \hat{\omega} \nu$ бוт $\omega \delta \hat{\omega} \nu$ тvpòs

 $\mu e i ̀ \lambda \iota \sigma \tau a \pi a ́ \nu \tau \omega \nu$ és єimeîv ó ß $\kappa а i ̀ ~ i \psi \eta \lambda о ́ т \epsilon \rho о s ~ o ́ ~ к a ́ \lambda a \mu о s ~ \tau о \hat{v} \pi v \rho o \hat{v} \hat{\eta} \tau \hat{\eta} s$
 фú入入ov $\mu \hat{a} \lambda \lambda$ дov ó $\pi v \rho o ́ s . ~$

 o $\mu a \lambda \eta$＇s tıs．

 $\pi a ́ \lambda \iota \nu$ ，oiov $\pi \nu \rho \hat{\omega} \nu \kappa \alpha \grave{~ \kappa \rho \iota \theta \hat{\omega} \nu, \pi о \lambda \lambda a ̀ ~ \gamma ́ ́ \nu \eta ~ к а \grave{~}}$ тоîs картоîs aùtoîs סıaф́́роута каì тоîs бтá $\chi v \sigma \iota$ каì таîs ä入入аıs $\mu о \rho \phi а i ̂ s ~ к а і ̀ ~ e ́ т \iota ~ \tau а i ̂ s ~ \delta v \nu a ́ \mu \epsilon \sigma \iota ~$

[^108]
ENQUIRY INTO PLANTS, VIII. iII. 5-iv. 2

the other animals are affected in the opposite ${ }^{1}$ way to men.

Of the differences between cereals.

IV. There are then these differences ${ }^{2}$ between the various classes; and as between plants of the same class ${ }^{3}$ there are plainly differences due to the unlikeness in the various parts. Thus among cereals wheat as compared with barley has a narrower leaf, and a smoother stem of closer texture tougher and less brittle. ${ }^{4}$ Again the seed of wheat has several coats, ${ }^{5}$ that of barley is naked, that plant having its seeds specially naked. Also one-seeded wheat rice-wheat and all such plants have their seed in several coats, and above all, it may be said, is this true of oats. ${ }^{6}$ Also the 'reed ' of wheat is taller than ${ }^{7}$ that of barley, and wheat has its ear less distant from the 'leaf.'

Further the husk of wheat is distinct ${ }^{8}$ from that of barley, being less dry and softer. Barley also differs from wheat in this respect; it has grains in a regular row, ${ }^{9}$ whereas those of wheat are not in a row, but the ear is as it were quite simple in form. ${ }^{10}$

Such then are the differences as between one whole kind and another. But in each of these kinds again, for instance in barley and wheat, there are many sub-divisions differing both in the actual fruits, in the ear, and in the other characteristic

[^109]
THEOPHRASTUS

$\kappa a i ̀ ~ \tau o i ̂ s ~ \pi a ́ \theta \epsilon \sigma \sigma . ~ \tau \hat{\omega} \nu \quad \mu \epsilon ̀ \nu ~ \kappa \rho \iota \theta \hat{\omega} \nu$ ai $\mu \in ́ \nu ~ \epsilon i \sigma \iota$

 $\sigma \tau a ́ \chi v \epsilon \varsigma ~ \delta e ̀ ~ \tau \hat{\omega} \nu ~ \mu e ̀ \nu ~ \mu \epsilon \gamma a ́ \lambda o \iota ~ к а i ̀ ~ \mu a \nu o ́ \tau \epsilon \rho o \iota ~ \tau a i ̂ s ~$

 $\mu \iota \kappa \rho o ́ \nu, ~ \check{\omega} \sigma \pi \epsilon \rho \tau \hat{\omega} \nu$ 'А $\chi \downarrow \lambda \lambda \epsilon i ́ \omega \nu \kappa а \lambda о \nu \mu \epsilon ́ \nu \omega \nu$. каі̀

 $\mu a \nu o ́ \tau \epsilon \rho a \iota$ катà тòv $\sigma \tau a ́ \chi \nu \nu$. Єैт८ סè ai $\mu \epsilon ̀ \nu \lambda \epsilon \nu$ $\kappa a i ́, ~ a i ~ \delta \grave{\epsilon} \mu \epsilon ่ \lambda a \iota \nu a \iota ~ к а i ̀ ~ \epsilon ̀ \pi \iota \pi о \rho \phi \nu \rho i \zeta о v \sigma a \iota, ~ a i ̈ \pi \epsilon \rho ~$

 $\tau \hat{\nu} \nu \lambda \epsilon v \kappa \hat{\nu} \nu$ i $\sigma \chi \nu \rho о ́ т \epsilon \rho a \iota$.
 à $\pi \grave{o}$ т $\hat{\omega} \nu \quad \chi \omega \rho \hat{\nu} \nu$ é $\chi o \nu \tau a$ tàs є̇ $\pi \omega \nu \nu \mu i ́ a s$, oỉo
之ıкє入oí. Sıaфорàs סè каì таîs xpoıaîs каì тоîs

 $\mu a ́ \lambda \iota \sigma \tau a ~ \tau а i ̂ \varsigma ~ \pi \rho o ̀ s ~ \tau \grave{\nu} \nu ~ \sigma i ́ \tau \eta \sigma \iota \nu$. тıvès каì $\dot{a} \pi{ }^{\prime}$

[^110]
ENQUIRY INTO PLANTS, VIII. iv. 2-3

features; and again in capacities ${ }^{1}$ and properties. ${ }^{2}$ ${ }^{3}$ Of barley different sorts have respectively two, three, four, and five rows of seeds; the largest number ${ }^{4}$ known is six, for there is a kind which bears that number. And those which have more rows have generally the grains set closer together. Another great difference is that of having side-shoots, as we said of the Indian kind. ${ }^{5}$ Again in barley ${ }^{6}$ the ears are in some kinds large and of looser make, in some smaller and set closer; in some kinds the ear is some way from the 'leaf,' in some it is nearer to it, as in the kind called 'Achillean.' ${ }^{7}$ Again of the grains themselves some are rounder and smaller, some more oblong and larger and set at wider intervals on the ear. Moreover some are white, some black or reddish, and the latter are thought to produce much meal and to be more robust than the white as to bearing winter wind or conditions of climate generally.

There are ${ }^{8}$ also many kinds of wheat which take their names simply from the places where they grow, ${ }^{9}$ as Libyan Pontic ${ }^{10}$ Thracian Assyrian Egyptian Sicilian. They show differences ${ }^{11}$ in colour size form and individual character, and also ${ }^{12}$ as regards their capacities ${ }^{13}$ in general and especially their value as food. Some again get

[^111]
THEOPHRASTUS

ä $\lambda \lambda \omega \nu$ тàs $\pi \rho о \sigma \eta \gamma \circ \rho i ́ a s, ~ o i o \nu ~ к а \gamma \chi \rho u \delta i ́ a s ~ \sigma \tau \lambda \epsilon \gamma-$

 єi้ Tıs $\lambda a \mu \beta a ́ \nu o \iota ~ \tau a ̀ s ~ \tau o \iota a u ́ t a s \cdot ~ o l o ́ \nu ~ є i \sigma \iota \nu ~ o i ~ \mu e ̀ v ~$

 $\mu o \nu$ oi $\mu e ̀ \nu \lambda \epsilon \pi \tau o ̀ \nu$ oi $\delta \grave{\epsilon} \pi a \chi u ́ \nu \cdot$ каì тои̂тo ó $\Lambda \iota-$

 Єрáкıоs. каi ó μ ย̀v $\mu о \nu о к а ́ \lambda а \mu о s ~ o ̀ ~ \delta e ̀ ~ т о \lambda ч к а ́-~$

 $\hat{\eta}$ тоîs $\pi \rho о ́ т \epsilon \rho о \nu ~ \epsilon i \rho \eta \mu \epsilon ́ \nu o \iota s ~ к а т a ̀ ~ \tau a ̀ s ~ \delta v \nu a ́ \mu \epsilon \iota s . ~$

 є́ $\chi \epsilon \iota \nu$, каì үà ρ oủס̀̀ $\pi i ́ \tau v \rho o \nu$ Є้ $\chi \epsilon \iota \nu \pi o \lambda u ́ . \quad \sigma \pi a-$ $\nu \iota \omega ́ \tau a \tau o s ~ \mu \epsilon ̀ \nu ~ o u ̉ \nu ~ к а i ~ \tau a ́ \chi \iota \sigma \tau o s ~ \epsilon i s ~ \tau \epsilon \lambda \epsilon i ́ \omega \sigma \iota \nu ~$

[^112]
ENQUIRY INTO PLANTS, VIII. iv. 3-4

their distinctive names for other reasons, as kankhrydias stlengys ${ }^{1}$ 'Alexandrian'2; all of which must be distinguished by the above-mentioned ${ }^{3}$ characters. Again, if one takes such differences as the following, they are quite characteristic-thus some are early, some late, some are vigorous and prolific, some are small ${ }^{4}$ and produce little, some have a large, some a small ear. The ears of some remain ${ }^{5}$ a long time in the sheath, ${ }^{6}$ of some it remains but a short time, as that of the Libyan kind. ${ }^{7}$ Again some have a slender, some a stout haulm; the Libyan kind has this characteristic also, and that of kankhrydias is also stout. Again the grain of some has few coats, ${ }^{8}$ of some many, for instance the Thracian. ${ }^{9}$ Some kinds have a single 'reed,' some more than one, and in the latter class the number varies.
${ }^{10}$ So too must we distinguish any differences like these or those mentioned above which are found in the several capacities; for these would seem to be the most essential differences. In this connexion we may distinguish kinds which mature in three or in two months, and those, if there be such, which take a less number of days; for instance, they say that in the region of Aineia there is a kind which ripens and attains perfection within forty days from the time of sowing; they say too that this grain is strong and heavy, not light like that which takes three months; wherefore they give it even to the servants, for it also does not contain much bran. Now this kind is the rarest and the quickest to

[^113]
THEOPHRASTUS

 $\kappa a i ̀ ~ \eta ̀ \delta \epsilon i ̂ s . ~ к а і ̀ ~ a ̈ \lambda \lambda о \iota ~ \delta e ́ ~ \tau \iota \nu \epsilon s ~ o i ~ \pi \epsilon \rho \grave{~ E v ै ß o ı a \nu ~}$
 $\pi о \lambda \lambda о \grave{~ \kappa а i ̀ ~ \pi a \nu \tau а \chi o v ̂ ~ к о и ̂ ф о \iota ~ o v ̉ \tau o \iota ~ к а і ̀ ~ o ̉ \lambda \iota \gamma o \chi o ́ o \iota ~}$ каі̀ $\mu о \nu о к а ́ \lambda а \mu о \iota ~ к а т a ̀ ~ т \grave{\nu ~ е ै к ф и \sigma \iota \nu ~ к а і ̀ ~ т o ̀ ~ o ̛ ̀ \lambda о \nu ~}$
 $\pi \nu \rho o ̀ s ~ o ́ ~ \Pi о \nu \tau \iota к o ́ s \cdot ~ \beta a p u ́ \tau \epsilon \rho o s ~ \delta \grave{\epsilon} \tau \omega \nu$ єis тŋ̀

 oữ ω s ádpòv єìvaí фa⿱九 $\tau o ̀ \nu ~ \sigma i ̂ \tau o \nu ~ \omega ّ \sigma \tau \epsilon ~ \pi v \rho \eta ̂ \nu o s ~$ є̇ $\lambda a i ́ a s ~ \mu \epsilon ́ \gamma \epsilon \theta о s ~ \lambda a \mu \beta a ́ \nu \epsilon \iota \nu, ~ \epsilon ̇ \nu ~ \delta є ̀ ~ \tau o i ̂ s ~ \Pi \iota \sigma \sigma a ́ т o \iota s ~$

 коифо́тทта то̀ тєрі тоѝs Поутıкоѝs $\sigma v \mu \beta a i ̂ \nu o \nu . ~$ єíбì $\gamma \grave{\alpha} \rho$ oi $\mu \epsilon ̀ \nu ~ \sigma \kappa \lambda \eta \rho o i ̀ ~ \eta ’ \rho \iota \nu o i ̀ ~ o i ~ \delta \grave{\epsilon} ~ \mu а \lambda а к о і ̀ ~$

[^114]
ENQUIRY INTO PLANTS, VIII. iv. 4-6

mature. But there is also a kind which takes two months; this was brought to Achaia from Sicily; it is not however prolific nor fertile, though as food it is light and sweet. There is another such kind which grows in Euboea and especially in the region of Karystos. There are several kinds that take three months, and these, wherever they are found, are light and not prolific; their growth consists of a single 'reed,' and in general they are not robust. Lightest of all we may say is the Pontic wheat ; the Sicilian is heavier than most of those imported into Hellas, but heavier still than this is the Boeotian; in proof of which it is said that the athletes in Boeotia consume scarcely three pints, ${ }^{1}$ while, when they come to Athens, they easily manage five. ${ }^{2}$ The Laconian kind is also light. The reason for these differences is to be found in the respective soils and in the climate ; ${ }^{3}$ for in Asia not far from Bactra they say that in a certain place the corn is so vigorous that the grains grow as large as an olive-stone, while in the country called that of the Pissatoi it is so strong that, if a man eats too much of it, he bursts, which was actually the fate of many of the Macedonians. ${ }^{4}$ There is one curious thing about the corn of Pontus, which is an exception ${ }^{5}$ to the rule as to the lightness of crops raised in three months; for there the hard crops are those of the spring, the soft ones those of the winter; for soft kinds are exceedingly light. Two sowings, as it appears, are made of all corn

[^115]
THEOPHRASTUS

 $\lambda o v \sigma \iota \nu]$.

Eīi $\delta \grave{\epsilon}$ кaì oi $\mu \grave{\epsilon} \nu$ каӨapoì aip $\hat{\nu} \nu, \quad \check{\omega} \sigma \pi \epsilon \rho$ ó
 $\kappa \omega ̂ \varsigma ~ к а i ̀ ~ o ́ ~ \Sigma ı \kappa є \lambda o ̀ s ~ к а i ̀ ~ \mu a ́ \lambda \iota \sigma \tau а ~ o ́ ~ ' А к р а \gamma а \nu т i ̂ \nu o s ~$ oủk aíрஸ́d η s.

 $\beta a \rho \grave{v}$ каі̀ кєфаладүє́s. à $\lambda \lambda a ̀ ̀ ~ \tau a ̀ ~ \mu \epsilon ̀ \nu ~ \tau o \iota a v ̂ \tau a, ~$
 є̇ $\pi \iota \beta a ́ \lambda \lambda \epsilon \iota \tau$ тồs $\gamma^{\prime} \nu \in \sigma \iota \nu$.
V. 'E ν סè toîs ỏ otrpious oủ ó ónoíns è $\sigma \tau i$

 $\dot{\eta}, \tau \hat{\omega} \nu \chi \rho \omega \mu a ́ \tau \omega \nu \kappa \alpha i \tau^{\tau} \omega \nu \chi \chi^{\nu \lambda \omega} \nu$ ठıaфорá, $\tau \hat{\omega} \nu$
 каi тоîs $\mu \in \gamma \epsilon \in \theta \epsilon \sigma \iota$ каi тоîs χ v

入єикà үлики́тєра. каі̀ үà ó őроßоs каі фако̀s

2

[^116]
ENQUIRY INTO PLANTS, VIII. iv. 6-v. 2

alike, one in winter and one in spring, at which time they also plant the seed of the pulses. ${ }^{1}$

Some kinds are free from darnel, as the Pontic and the Egyptian; the Sicilian is also fairly free from it, and that of Akragas is especially immune from darnel.
${ }^{2}$ Peculiar however to the Sicilian is the plant called melampyron, ${ }^{3}$ which is harmless ${ }^{4}$ and not, like the darnel, injurious and productive of headache. ${ }^{5}$ However such peculiarities, as was said, must be ascribed to the soil, and to a certain extent ${ }^{6}$ to the different characters of different kinds.

Of the differences between pulses.

V. In pulses we cannot find such differences to the same extent, whether for the want of equally careful enquiry or because there is actually less diversity in these plants. ${ }^{7}$ For, apart from chickpea lentil and to a certain extent bean and vetch (in so far as in these we find differences of colour and taste), among the rest ${ }^{8}$ no distinct forms are recognised. Chick-peas however differ in size colour taste and shape; thus there are the varieties called 'rams,' 'vetch-like' chick-peas and the intermediate forms. ${ }^{9}$ In all pulses the white are the sweeter, and this applies to vetch lentil chick-pea bean and sesame, of which also there is a white form.
${ }^{10}$ However it is more possible to recognise the differences in such points as these :-all these plants have pods, ${ }^{11}$ but whereas the pods in some kinds have

[^117]
THEOPHRASTUS

 $\mu а \kappa \rho o ́ \lambda о \beta a ~ \tau a ̀ ~ \delta \grave{\epsilon} \kappa а i ̀ ~ \sigma \tau \rho о \gamma \gamma v \lambda o ́ \lambda о \beta a, \kappa а \theta a ́ т \epsilon \rho ~ o ́$

 $\phi а \kappa \hat{\nu}$.

 $\sigma \chi \epsilon \delta o ̀ \nu ~ a ̉ \kappa o ́ \lambda o v \theta o \iota ~ \tau o i ̂ s ~ \sigma \pi \epsilon ́ \rho \mu a \sigma i ́ \nu ~ \epsilon i \sigma \iota \nu, ~ o i ~ \mu \epsilon ̀ \nu ~$

[^118]
ENQUIRY INTO PLANTS, VIII. v. 2-4

no divisions, ${ }^{1}$ but the seeds as it were touch one another, ${ }^{2}$ as in vetch pea and most kinds, in some there are divisions, ${ }^{3}$ as in lupin and still more in sesame, in which the divisions are of a peculiar kind. ${ }^{4}$ Again some have long, some round pods, as chick-pea. And the number of seeds follows in proportion, since they are fewer in the small pods, as in those of chick-pea and lentil.

Possibly these differences correspond to those which we mentioned in the case of cereals as to the ears and the actual fruits; for what are called 'pods' also ${ }^{5}$ fairly correspond to the shape of the seeds, some being flat, as those of lentil and tare, some more or less cylindrical, as those of vetch and pea ${ }^{6}$: for in the case of either pair of plants the seeds correspond in shape. However one might discover and distinguish many such differences, of which some are common to a whole kind, ${ }^{7}$ others special to particular varieties.

In all cases the seeds are attached to the pods and have a sort of starting-point, which in some cases projects, as in bean and chick-pea, in some is hollow, as in lupin and some others, and in some is not thus conspicuous but smaller and, as it were, only indicated; this is plain from observation; it is from this point that the seeds germinate and take root when they are sown, as was said ${ }^{8}$: but to start with they are themselves nourished by being so attached to the pod until they are matured. This

[^119]
THEOPHRASTUS

 $\tau \hat{\omega} \nu \pi \rho о є \iota \rho \eta \mu \epsilon ́ \nu \omega \nu$. $\pi \epsilon \rho \grave{\iota} \mu \epsilon ̀ \nu$ ov̉v $\tau \hat{\omega} \nu \kappa a \tau \grave{a} \tau a ̀ s$ Sıaфорàs ä̀ $\lambda \iota$.

 $\kappa \rho \iota \theta \dot{a} \varsigma \stackrel{\omega}{\varsigma} \mu a ́ \lambda \iota \sigma \tau a$ av̉таркєî̀ $\delta v \nu a ́ \mu \in \nu a$, őтоv $\mu \grave{\eta}$

 Sè $\tau \eta ̀ \nu \sigma \pi o \rho a ̀ \nu ~ v ̌ \delta \omega \rho$ є่ $\pi \iota \gamma i \nu \epsilon \sigma \theta a \iota \pi a ̂ \sigma \iota ~ \xi v \mu \phi \epsilon ́ \rho \epsilon \iota$,

 $\mu \iota \nu о \nu \kappa а \grave{̀}$ єри́бє μ од.
2

 єi δ é $\tau \iota \varsigma \pi \rho o ̀ s ~ \tau a ̀ ~ \sigma \pi \epsilon ́ \rho \mu a \tau a ~ \theta \epsilon \omega \rho o i ́ \eta ~ к а i ~ \mu a ́ \lambda \iota \sigma \tau a ́ ~$ $\gamma \epsilon \pi \rho o ̀ s ~ a u ̉ \tau o u ̀ s ~ \tau o u ̀ s ~ \tau o ́ \pi o v s ~ a ̈ \mu a ~ \tau \hat{\varphi}$ є́ $\delta a ́ \phi \epsilon \iota$ $\kappa a i ̀ ~ \tau \grave{\nu} \nu \theta \epsilon \epsilon \sigma \iota \nu \dot{a} \nu a \theta \epsilon \omega \rho \hat{\omega} \nu \tau \eta{ }^{\prime} \nu \gamma \epsilon \pi \rho o ̀ s ~ \tau a ̀ ~ \pi \nu \epsilon v ́-$

[^120]
ENQUIRY INTO PLANTS, VIII. v. $4^{-\mathrm{vi} . ~} 2$

is clear both from what is said now and from what was said before. Enough then about the points of difference.

Of sowing, manuring, and watering.

VI. It is expedient to sow all these, if possible, at the early seed-time; however some plant the seed even in dry ground, and especially wheat and barley, on the theory that they are most likely to hold their own ${ }^{1}$ at a time when the ground is not infested ${ }^{2}$ with birds or other creatures. For it appears that in general the first sowing is better, and worst that which is made in half-soaked ground; ${ }^{3}$ for then the seeds perish and become 'milky'; ${ }^{4}$ moreover many weeds come up at that time. After the sowing however it is beneficial for all that rain should fall on them, except in the case of some which appear to germinate then with more difficulty, as seems ${ }^{5}$ to be the case with beans, and among summer crops with sesame cummin and crysimon.
${ }^{6}$ As to sowing thickly or scantily one should have regard to the soil as well as to other considerations; for a fat good soil can bear more than one which is sandy and light. However there is a saying that the same soil can take at one time more, at another less seed; and in general the former condition is taken as an unfavourable omen, for then they say at once that the soil is hungry; however this is perhaps a rather foolish saying. If a man should have regard to the kind of the seed and especially to the actual situation, considering the aspect in respect of winds
${ }^{4}$ cf. $\gamma a \lambda d \kappa \kappa \omega \sigma t s$, C. P. 4. 4.7 and 8.
${ }^{5}$ бокєî conj. W.; ह̇ठóкєi Ald. ${ }^{6}$ Plin. 18. 190.

THEOPHRASTUS

 sıaфopás.

 є́a $\rho \iota \nu \eta ̂ s . ~ \epsilon ่ \nu \iota a \chi o v ̂ ~ \delta e ̀ ~ o u ̉ ~ \xi v \mu \phi \epsilon ́ \rho \epsilon \iota \nu ~ \beta a \theta \epsilon i ̂ a \nu ~ a ̉ \rho o-~$

 $\pi \rho o ̀ s ~ \tau a ̀ s ~ \chi \omega ́ \rho a s . ~$

 $\kappa a i ̀ ~ a u ̉ \tau \omega ิ \nu \tau \hat{\omega} \nu \pi \nu \hat{\omega} \nu$ тoîos $\tau \hat{\eta}$ тoía $\pi \rho o ́ \sigma \phi о \rho o s$,
 <каi> таîs aै $\lambda \lambda a \iota \varsigma$ ó $\mu о i ́ \omega s$.

 каі крıӨаîs каі тоîs $\sigma \iota \tau \omega ́ \delta \epsilon \sigma \iota ~ \beta \lambda a \beta \epsilon \rho o ́ \nu \cdot a ̉ \pi o ́ \lambda$ -

[^121]
ENQUIRY INTO PLANTS, V̇III. vi. 2-5

and sun, as well as the soil itself, he would more properly gauge ${ }^{1}$ the differences.

Similarly manuring ${ }^{2}$ for the sown crops should be done with regard to the soil ; and it is better to turn up fallow ${ }^{3}$ land in winter than in spring. And there are some ${ }^{4}$ places in which deep ploughing is not expedient, as in Syria; wherefore they use small plough-shares. In other parts to work the ground too much is injurious, as in Sicily: wherefore many settlers in the country, it appears, make a mistake. From every point of view ${ }^{5}$ therefore the soil must be considered.

The seeds are also classified according as each suits a particular soil; in wintry lands wheat is sown rather than barley, and in general they say ${ }^{6}$ that corn rather than leguminous plants should be sown in barren soils which are only disturbed ${ }^{7}$ at long intervals; and such soils bear wheat better than barley. ${ }^{8}$ Moreover wheat welcomes abundant rain ${ }^{9}$ more than barley, and bears better on land which is not manured. ${ }^{10}$ In like manner they distinguish among wheats themselves which suits which kind of soil, namely which grows best in good ${ }^{11}$ fat soil and which in crumbling light soil, and ${ }^{12}$ so on with other kinds of soil.
${ }^{13}$ More abundant rain is beneficial to all crops when they have come into leaf and formed the flower; however it is harmful to wheats and barleys and other cereals when they are actually in flower; for

[^122]
THEOPHRASTUS

 тótoıs ò $\psi \epsilon ̀ ~ \sigma \pi \epsilon i ́ p \in \iota \nu ~ a u ̛ \tau o ́ v . ~ \kappa v ́ a \mu o s ~ \delta \grave{e ~ a d \nu \theta \omega ̂ \nu}$

 $\kappa \rho \iota \theta \grave{\eta} \nu \delta \dot{\epsilon} \pi v \rho o \hat{v} \mu a ̂ \lambda \lambda o \nu$.

[^123]
ENQUIRY INTO PLANTS, VIII. vi. 5-7

it destroys the flower. But to pulses it is harmless, except to chick-peas; for these, if the salt is washed off them, perish from rot ${ }^{1}$ or from being eaten by caterpillars. However the black and the red ${ }^{2}$ chick-pea are stronger than the white, and it is beneficial, they say, to sow this crop late in moist soil. The bean ${ }^{3}$ likes especially to receive rain when it is in flower; wherefore men are unwilling, as we said, to sow it late, because it flowers for a long time; but after it has shed its flowers, it needs ${ }^{4}$ very little water, since its time of maturity is now near. But, when cereals have matured, it appears that water actually injures them, and barley more than wheat.

In Egypt Babylon and Bactra, where the country receives no rain, or ${ }^{5}$ but little, the dews are sufficient nourishment; and so is it also ${ }^{6}$ in the regions about Cyrene and the Euesperides. However to all, generally speaking, it is the spring rains which are the most seasonable; and that is why Sicily is rich in corn; for there is abundance of soft rain in spring and little of it in winter. A light soil requires plenty of rain, but little at a time; while that which is fat can indeed bear both an abundance of rain and a drought; (for a droughty country seawinds ${ }^{7}$ and breezes seem to be helpful, and various breezes of this kind prevail in various countries, as has been said already). Yet in general drought suits corn better than excessive rain; for heavy showers, apart from the harm which they do in other ways, often actually destroy the seed, or at

[^124]
THEOPHRASTUS

 àт $о \boldsymbol{\varnothing} \epsilon i \hat{\nu}$.
VII. T $\hat{\omega} \nu \mu \epsilon ̀ \nu ~ o u ̛ \nu ~ a ै \lambda \lambda \omega \nu ~ \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu ~ o u ̉ \delta \epsilon ̀ \nu ~ \epsilon i s ~$ ä $\lambda \lambda о$ тє́ ϕ vкє $\mu \epsilon \tau а \beta a ́ \lambda \lambda \epsilon \iota \nu$ ф $\theta \epsilon \iota \rho o ́ \mu \epsilon \nu о \nu, \pi v \rho o ̀ \nu$ Sє̀ каì крıӨ̀̀̀ єis aịрáv фаб九 каì $\mu a ̂ \lambda \lambda o \nu ~ \tau o ̀ \nu ~$
 $\mu a ́ \lambda \iota \sigma \tau a$ є̀v тоîs єv̉v́סроıs каì ỏ $\mu \beta \rho \omega ́ \delta \epsilon \sigma \iota \chi \omega \rho i ́ o \iota s$.
 тóa, $\pi \in \iota \rho \hat{\omega} \nu \tau a \iota ~ \gamma a ́ \rho ~ \tau \iota \nu \in s ~ \tau o v ̂ t o ~ \lambda e ́ \gamma \epsilon \iota \nu, ~ \grave{\epsilon} \kappa \epsilon \hat{\theta} \theta \epsilon \nu$

 $\pi \epsilon \rho \grave{~ \tau \eta ̀ \nu} \stackrel{\text { ä } \nu}{ } \theta \eta \sigma \iota \nu \quad \lambda \epsilon \chi \theta \epsilon \grave{\nu}$ каі̀ тò тá $\chi \iota \sigma \tau a \quad \tau \epsilon \lambda \epsilon \iota \circ-$ $\kappa \alpha \rho \pi \epsilon i ̂ \nu ~ i \sigma \chi \nu \rho o ́ \tau a \tau о \nu$ òv каì $\xi \cup \lambda \omega \delta \epsilon ́ \sigma \tau а т о \nu, \kappa a i ̀$

[^125]
ENQUIRY INTO PLANTS, VIII. vi. 7-vir. 2

least cause a luxuriant growth of leafage, so that the grain is choked and becomes abortive.

Of the degeneration of cereals into darnel.

VII. ${ }^{1}$ Now, while it is not the nature of any other of these seeds to degenerate and change into something else, they say that wheat and barley change into darnel, and especially wheat; and that this occurs with heavy rains and especially in well-watered and rainy districts. But that darnel is not a plant of the spring, like other weeds ${ }^{2}$ (for some endeavour ${ }^{3}$ to make this out) is clear from the following consideration : it springs up and becomes noticeable directly ${ }^{4}$ winter comes; and it is distinguished in many ways; the foliage ${ }^{5}$ is narrow abundant and glossy, and this gloss is the most marked of these differences; (the ${ }^{6}$ leaves of aigilops 7 are indeed also abundant, ${ }^{8}$ but this character does not shew itself in them till spring). This then is peculiar to the seeds of wheat and barley, and also to those of flax ; for that too, they say, turns into darnel.

Of the peculiar character of chick-pea.

A peculiarity of chick-pea as compared with other leguminous plants is that which has been mentioned as to its flowering; and also the fact that it is the quickest to mature its fruit, being very strong and woody; and again there is the fact that in
${ }^{5}$ cf. C.P. 4. 4. $11 . \quad{ }^{6}$ toîs conj. Sch.; $\tau \hat{\eta} s$ Ald.
7 Plin. 18. 155.
${ }^{8}$ à $\lambda \lambda^{\prime}$. . . ai $\mathfrak{\gamma} i \lambda \omega \pi o s$: text a makeshift. Wanting in Ald.

THEOPHRASTUS

 $\kappa v a ́ \mu \omega \nu \kappa а i т \pi \epsilon \rho \pi v \kappa \nu о \sigma \pi о \rho о \nu \mu \in ́ \nu \omega \nu$ каi $\pi о \lambda \grave{v} \nu$ $\kappa \alpha \rho \pi \grave{\nu} \nu ф \epsilon \rho о ́ \nu \tau \omega \nu$.
3 Tà δ è èv voîs $\theta \epsilon \rho \iota \nu o i ̂ s ~ a ̉ \rho o ́ t o ı s ~ o ̉ \lambda i ́ y o v ~ \delta \epsilon i ̂ ~ \pi a ́ \nu \tau a, ~$ $\phi a \sigma i$ ठè каi tà va $\mu a \tau \iota a i ̂ a ~ \sigma v \mu \phi \epsilon ́ \rho \epsilon \iota \nu ~ \mu a ̂ \lambda \lambda o \nu ~$

 тькра́. Єैбть ठє̀ тò $\mu \epsilon ̀ \nu ~ \epsilon ่ \rho и ́ \sigma \iota \mu o \nu ~ o ̋ \mu о \iota o \nu ~ \sigma \eta \sigma a ́ \mu \varphi ~$
 $\sigma \pi \epsilon i ́ \rho \epsilon \tau \alpha \iota$ ठє̀ ă $\mu a \kappa \alpha i ̀$ тò $\sigma \dot{\eta} \sigma a \mu о \nu$. $\pi \epsilon \rho i ̀ \mu \epsilon ̀ \nu ~ o ̛ ̉ \nu$ тои́т $\omega \nu$ бкє $\pi \tau$ т́oข.
4 'Ev סè тaîs ảyaӨaîs $\chi \omega ́ \rho a \iota s ~ \pi \rho o ̀ s ~ \tau o ̀ ~ \mu \eta ̀ ~ \phi v \lambda \lambda o-~$

${ }^{1}$ Lit. 'does not make fallow land.' cf. C.P. 4. 8. 3.
 $\kappa \alpha \rho \pi \bar{o} s \mathrm{U}$; картдs M ; картдь Ald. cf. C.P. l.c. and 4. 8. 1 ;
 картоits, 'for fresh crops.'
${ }^{3} \delta \frac{1}{E}$ conj. W.; $\gamma \in$ Ald. ${ }^{4}$ cf. C.P. 4. 8. 3.

 C.P. 3. 20. 7. 184

ENQUIRY INTO PLANTS, VIII. vil. 2-4

general it does not reinvigorate the ground, ${ }^{1}$ since it exhausts ${ }^{2}$ it ; but it destroys weeds, ${ }^{3}$ and above all and soonest caltrop. And in general ${ }^{4}$ it is not every kind of soil which suits it ; the soil should be black and fat. Of the other leguminous plants the bean best ${ }^{5}$ reinvigorates the ground, even if it is sown thick and produces much fruit.

Of special features of 'summer crops.'

All those crops ${ }^{6}$ sown at the summer seed-time need little water, ${ }^{7}$ and they say also that spring water is better for them than rain water; and Italian millet ${ }^{8}$ and millet need less water, for, if they have too much, they shed their leaves. Millet is the robuster plant, Italian millet is sweeter and less robust. Sesame and lupin are not eaten green by any animal ${ }^{9}$; whether the same is true of erysimon and horminon is matter for enquiry; for these too are bitter. Erysimon is like sesame and is oily; horminon is like cummin and black, and is sown at the same time as sesame. These matters then require investigation.

Of treatment of cereals peculiar to special localities.

${ }^{10}$ In good soils to prevent the crop running wildly to leaf they graze and cut down the young corn,
${ }^{6}$ Plin. 18, 96 and 101.
7 ojírov, sc. vidazos, but the omission is strange; perhaps due to misunderstanding of $\dot{o} \lambda i \gamma \sigma u \quad \delta \in i ̂$ by a scribe. Sch. joins the words $\tau \dot{\alpha} \delta \dot{\epsilon} \ldots \pi \alpha{ }^{2} \nu \tau \alpha$ to the last sentence, and supplies $\kappa \alpha \rho \pi i \zeta \epsilon \tau \alpha \iota \tau \eta \grave{\eta} \nu \hat{\eta} \nu(\dot{a} \lambda i ́ \gamma o v \quad \delta \in \hat{\imath}=$ almost).
${ }^{8} \mu \epsilon ́ \lambda \iota \nu o 九$ Ald. H.; ề $\lambda \nu \mu o \iota$ Vin. cf. 8. 1. 1. n.
${ }^{9}$ Ş̂ov add. Sch. from G and Plin. 18. 96. cf. C.P. 6. 12.12.
${ }^{10}$ Plin. 18. 157-162.

THEOPHRASTUS

 $\kappa а \lambda о \hat{v} \sigma \iota ~ к а \mu а к і а \nu, ~ к а і ̀ ~ о \grave{\kappa ~ a ̀ т о к а Ө і ́ \sigma т а \sigma \theta a \iota ~}$ $\pi a ́ \lambda \iota \nu \quad \sigma \pi \epsilon \iota \rho o ́ \mu \epsilon \nu o \nu \cdot \tau o v ̂ \tau o ~ \mu \epsilon ̀ \nu ~ o u ̂ \nu ~ \omega ̀ s ~ \pi a v ́ \rho o \iota s ~$
 àєì каі̀ $\begin{gathered}\sigma \\ \pi \epsilon \rho \\ \tau \epsilon \tau a \gamma \mu \epsilon ́ \nu \omega s ~ \epsilon ̇ \pi \iota \kappa \epsilon i ́ \rho o v \sigma \iota ~ \mu \epsilon ̀ \nu ~ \delta i ́ s, ~ \tau o ̀ ~\end{gathered}$ S̀̀ трíтov тà $\pi \rho o ́ \beta a \tau a ~ \epsilon ̇ \pi a \phi ı a ̂ \sigma \iota \nu \cdot ~ o v ̃ \tau \omega ~ \gamma a ̀ \rho ~ \phi u ́ \epsilon \iota ~$

 $\pi о \lambda \lambda \eta \nu^{\cdot} \pi i ́ \epsilon \iota \rho a \nu$ үà ov̉ $\sigma \alpha \nu \kappa a i ̀ \pi u \kappa \nu \grave{\nu} \nu \tau \eta े \nu \gamma \hat{\eta} \nu$

 $\dot{a} \rho \in \tau \hat{\eta} \zeta$.
5 Фv́єта८ ठè каì ảmò $\rho \iota \zeta \hat{\nu} \pi$ тирòs каі крıӨ̀̀

 $\beta \lambda a \sigma \tau a ́ \nu o \nu \tau o s . ~ \dot{~} \sigma a u ́ t \omega s ~ \delta e ̀ ~ \kappa a ̂ ̀ \nu ~ i ́ \pi o ̀ ~ \chi \epsilon \iota \mu \omega ̂ \nu o s$
 $\nu \omega \nu$ • ó ठè $\sigma \tau a ́ \chi v \varsigma ~ \dot{a} \tau \epsilon \lambda \grave{\zeta} \varsigma \kappa \alpha i$ нוкрòs àmò $\tau \hat{\omega} \nu$

[^126]
ENQUIRY INTO PLANTS, VIII. vir. 4-5

for instance in Thessaly. And the result is that, however often they graze it, the crop is not impaired; while if they cut it down not more than once, the wheat changes in character and becomes tall and weak-what they call 'long-shafted' corn, and, if seed of this is sown, it does not recover its character. This the Thessalians tell of as having occurred in a few cases. At Babylon however they cut it down twice always and as it were systematically, and after that they let the sheep on to it; for in that case it makes its straw, but otherwise it runs wildly to leaf; and, if the ground is ill cultivated, it produces fifty fold, if it is carefully cultivated, a hundred fold. And the 'cultivation' consists in letting the water lie on it as long as possible, so that it may make much silt ${ }^{1}$; for the soil being fat and close must be made open. And at Babylon ${ }^{2}$ the ground does not produce weeds and grasses, as it does in Egypt. Such are the things which depend on the quality of the soil.

Of cereals which grow a second time from the same stock.

${ }^{3}$ Wheat and barley also in many places grow from the root in the next year, or in the same year from crops cut down for fodder, since a second haulm shoots up. The like happens also if the plant has been nipped by winter; for it shoots again when rain comes; but such plants produce an ear which is imperfect and under-sized. There is also new growth the next year from plants which are roughly treated or trodden down ${ }^{4}$ so that hardly anything remains visible, as happens when an army has marched over

$$
{ }^{3} \text { cf. C.P. 4. 8. 5. }{ }^{4} \text { cf. C.P. l.c. }
$$

THEOPHRASTUS

 $\tau о u ́ \tau \omega \nu$, ov̂s ка入ov̂$\sigma \iota \nu$ ă $\rho \nu a \varsigma^{\cdot} \tau \hat{\omega} \nu$ $\delta \grave{\epsilon} \chi \epsilon \delta \rho о \pi \hat{\omega} \nu$ oủסèv סúvataı tolov̂tov $\pi o \iota \epsilon i ̂ \nu ~ \hat{\eta}$ oủ χ ó $\mu o i ́ \omega s$. кaì ai $\beta \lambda a \sigma \tau \eta \sigma \sigma \iota \varsigma$ тобаvтaХ$ิ \varsigma$.

Méza סè кaì ai χ ต̂paı סıaф́́povбıv oủ $\mu o ́ v o \nu ~ \tau \hat{̣}$

 $\tau \epsilon \lambda \epsilon \sigma \phi \circ \rho 0 \hat{v} \sigma \iota$ ठıà $\tau o ̀ ~ \pi \rho o ̀ s ~ \tau a ̀ ~ \pi \nu \epsilon u ́ \mu a \tau a ~ \tau a ̀ ~ \pi o ́ \nu \tau \iota a ~$

 Sè tà ßópєıa тaîs סè тà Dóтıa.
 $\mu a ́ \lambda \iota \sigma \theta^{\prime} \hat{\eta}<\pi \rho o ̀>\tau o \hat{v} \sigma \pi o ́ \rho o v \cdot \kappa а \tau \epsilon \rho \gamma a \sigma \theta \epsilon i ̂ \sigma a$ үà ρ

[^127]
ENQUIRY INTO PLANTS, VIII. vir. 5-7

the field; the ears in such cases ${ }^{1}$ too are undersized and are called 'lambs.' ${ }^{2}$ But no kind of leguminous plant ${ }^{3}$ can do anything of the kind, or at least not to the same extent. In these various ways ${ }^{4}$ may new growth occur.

Of the effects of climate, soil, and manuring.

For growth and nourishment the climate is the most important factor, and in general the character of the season as a whole; for when rain, fair weather and storms occur opportunely, all crops bear well and are fruitful, even if they be in soil which is impregnated with salt or poor. Wherefore there is an apt proverbial saying ${ }^{5}$ that "it is the year which bears and not the field.'

But the soil also makes much difference, according as it is ${ }^{6}$ fat or light, well watered or parched, and it also makes quite as much difference what sort of air and of winds prevails in that region; for some soils, ${ }^{7}$ though light and poor, produce a good crop because the land has a fair aspect in regard to sea breezes. But, as has been repeatedly said already, the same breeze has not this effect in all places; some places are suited by a west, some by a north, some by a south wind.

Again the working of the soil and above all that which is done before ${ }^{8}$ the sowing has an important effect; for when the soil is well worked it bears easily. Also dung is helpful by warming and ripening the soil, for manured land gets the start by as much as twenty days of that which has not been

[^128]
THEOPHRASTU̇S

 $\pi \tau \epsilon \rho i ́ \delta o s, ~ \tau а u ́ \tau \eta \nu ~ \delta є ̀ ~ \phi \theta \epsilon i ́ \rho \epsilon \iota \nu ~ ф а \sigma i ̀ \nu ~ є ̇ \pi \iota \beta a \lambda \lambda о-~$

 Sıà т̀̀v кóт $\rho \circ \nu$ каì тò oűpov.
VIII. T $\hat{\omega} \nu \delta \grave{~} \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu$ є̈кабта каі $\pi \rho o ̀ s ~ \tau \grave{\nu} \nu$

入óyov $\pi о \iota \epsilon i \sigma \theta a \iota ~ \tau \grave{\eta} \nu \mu \epsilon \tau a \beta o \lambda \eta \nu_{\nu}$. $\tau \grave{a} \delta^{\prime} \epsilon \in \kappa \tau \hat{\omega} \nu$

[^129]
ENQUIRY INTO PLANTS, VIII. vir. 7-viir. 2

manured. However manure is not good for all crops; and further it is beneficial not only to corn and the like but to most other things, except fern, ${ }^{1}$ which they say it destroys if it is put on. (Fern is also destroyed if sheep lie on it, and, as some say, lucerne is destroyed by their dung and urine.)

Of different qualities of seed.

VIII. There is a particular kind of soil ${ }^{2}$ which best suits each kind of seed, whether we compare one class with another or those of the same class; and attempts are made to distinguish these. ${ }^{3}$ Foreign seeds change into the native sorts in about three years. It is well that they should be imported from a warm climate to one that is rather less warm, or from a cold one ${ }^{4}$ to one that is rather less cold. Those imported from a wintry climate, if they be those of early crops, are late in coming into ear, ${ }^{5}$ so that they get destroyed by drought unless rain late in the season saves them. Wherefore they say that one should take good heed not to mix foreign with native seeds, unless they come from a similar place, since ${ }^{6}$ they do not agree with the soil ${ }^{7}$ as to the time of being sown and of germinating, and accordingly need different cultivation; and so that one should take good heed to the differences of soil, the properties of the seed, and further the seasons appropriate to each.

When however there is a good season, the grain also is fuller. ${ }^{8}$ For instance at Athens the barley pro-

[^130]
THEOPHRASTUS

 $\pi \epsilon \rho i$ 'E入áтєıà oi $\pi v \rho o i ̀ ~ \pi o \iota o v ̂ \sigma \iota \nu ~ \grave{\eta} \mu \iota o ́ \lambda \iota a ~ \tau \grave{a}$

 үі̀шєтаı каì $\gamma \grave{a} \rho$ ảmaүрьо̂таı каі̀ $\dot{\eta} \mu \epsilon \rho о \hat{\tau} \tau \iota$, $\kappa а \theta a ́ \pi \tau \epsilon \rho \tau a ̀ ~ \delta \in ́ \nu \delta \rho a \cdot \kappa а \grave{\imath} o ̈ \lambda \omega \varsigma ~ \mu \epsilon \tau а \beta a ́ \lambda \lambda \epsilon \iota<\kappa а \tau a ̀>$
 $\pi \rho o ̀ s ~ \tau o ̀ ~ \chi \epsilon i \rho o \nu . ~$

 $\pi v \rho \hat{\omega} \nu \kappa \alpha i ̀ \kappa \rho \iota \theta \hat{\omega} \nu \delta \iota a \phi \theta \epsilon \iota \rho о \mu \in ́ \nu \omega \nu \cdot \hat{\eta} \epsilon i ̉ \mu \eta े ~ \tau о \hat{\tau} \tau о$ ả $\lambda \lambda a ̀ ~ \phi i \lambda \epsilon i ̂ ~ \gamma \epsilon \mu a ́ \lambda \iota \sigma \tau a ~ \epsilon ̀ \nu ~ \tau o i ̂ s ~ \pi v p o i ̂ s ~ \gamma i v e \sigma \theta a \iota, ~$ каӨа́тєр каі̀ ó $\mu є \lambda a ́ \mu \pi т р о$ ó Поутькòs каі̀ тò $\tau \hat{\omega} \nu \beta о \lambda \beta \hat{\omega} \nu \sigma \pi \epsilon ́ \rho \mu a, \kappa a i ̀ ~ a ̈ \lambda \lambda a \delta \grave{\epsilon}$ є̀v ä $\lambda \lambda o \iota s \tau \hat{\omega} \nu$
 таîs крıөaîs, є̇̀ ס̀̀ тоîs факоîs äракоs тò т $\rho a \chi$ v̀ $\kappa а i ̀ ~ \sigma \kappa \lambda \eta \rho o ́ \nu, ~ \epsilon ̀ \nu ~ \delta e ̀ ~ \tau а i ̂ s ~ a ̉ ф а ́ к \alpha \iota я ~ o ́ ~ \pi \epsilon \lambda \epsilon к i ̂ \nu о s ~$
 є̈кабто́v Є̇бт८ тò $\sigma v \nu \epsilon \kappa \tau \rho \epsilon ф о ́ \mu \epsilon \nu о \nu ~ к а i ̀ ~ \sigma v \nu а \nu а-~$

[^131]192

ENQUIRY INTO PLANTS, VIII. viir. 2-3

duces more meal than anywhere else, since it is an excellent land for that crop; and this is so, not merely when a very large crop is sown, but when the weather has been favourable for it. And in Phocis about Elateia the wheats produce half as much meal again as elsewhere ; while at Soli in Cilicia this is true of both wheat and barley; and in other parts there are other crops for which the soil is severally well adapted. Wherefore grain turns out better or worse because of the soil as well as because of cultivation; for in some places it changes into the cultivated from the wild form, or the reverse, like trees; and in general it changes according ${ }^{1}$ to the soil in which it is grown, just as some ${ }^{2}$ trees, when transplanted, forthwith deteriorate.

Of degeneration of cereals, and of the weeds which infest particular crops.

But no kind can change altogether into another, except one-seeded wheat and rice-wheat, ${ }^{3}$ as we said ${ }^{4}$ in our previous discussions, and darnel which comes from degenerate wheat and barley : at least, if this is not the true account, darnel loves chiefly to appear among wheat, as does the Pontic ${ }^{5}$ melampyros and the seed of purse-tassels, ${ }^{6}$ even as other seeds appear in other crops; thus aigilops seems to grow for choice among barley, and among lentils the rough hard kind of arakos, while among tares occurs the axe-weed, ${ }^{7}$ which resembles an axe-head in appearance. Indeed in the case of nearly every crop there is a plant which grows up with it and
${ }^{5} c f .8$. 4. 6, where $\mu \in \lambda \alpha{ }^{\mu} \mu \pi v \rho o \nu$ was said to be peculiar to Sicily. ${ }^{6}$ cf.C.P. 4. 6. 1.
${ }^{7}$ Plin. 18. 155 ; 27. 121 ; Diosc. 3. 130 ; Hesych. s.v. β é $\lambda \lambda \epsilon \kappa и s$.

VOL. II.

THEOPHRASTUS

 $\lambda \in \pi \tau \alpha i ̂ \varsigma ~ o u ̉ \kappa ~ \epsilon ่ \nu ~ \tau \alpha i ̂ s ~ \pi \iota \epsilon i ́ \rho a \iota \varsigma, ~ \check{\omega} \sigma \pi \epsilon \rho$ каì тท̂s

[^132]
ENQUIRY INTO PLANTS, VIII. viil. 3-5

mingles with it, whether this is due to the soil, which is a reasonable explanation, or to some other ${ }^{1}$ cause. Some plants of this character evidently attach themselves to more than one kind of crop, but, because they are specially vigorous in some one particular crop, they are thought to be peculiar to that one, as 'vetch-strangler' (dodder) to vetches and bedstraw to lentils. But the former gains the mastery over the vetches especially because of the weakness of that plant; and bedstraw is specially luxuriant among lentils; to some extent it resembles dodder, in that ${ }^{2}$ it overspreads the whole plant and holds it fast as it were in coils, ${ }^{3}$ for it is thus that dodder strangles the plant, and this is the origin of its name ('vetch-strangler').
${ }_{4}^{4}$ The plant which springs up straight from the roots of cummin and the plant called broom-rape which .similarly attaches itself to 'ox-horn' 5 (fenugreek) are somewhat more peculiar in their habits. ${ }^{6}$ Broom-rape has a single stem, ${ }^{7}$ and is not unlike ... , ${ }^{8}$ but is much shorter and has on the top a sort of head, while its root is more or less round ; and there is no other plant which it starves except fenugreek. These plants grow in light and not in fat soils; thus in Euboea they do not occur at Lelanton, ${ }^{9}$ but only about Kanethos ${ }^{10}$ and in districts of like character.
> ${ }^{5}$ Plin. 24. 184.
> ${ }^{6}$ idía MSS.; ? \% $8 . \alpha$.
> ${ }^{7} c f$. C.P. 5. 15. 5, where the same is said of $\lambda \in \iota \mu \delta \delta \omega \rho o \nu$ (cf. Plin. 19. 176). But Ald.Bas.Cam. give aíjóowov here; hemodorum G .
> ${ }^{8} \tau \hat{\omega} \kappa a v \lambda \hat{\varphi}$ probably conceals the name of a plant.
> ${ }^{9} c f$. Strabo, 10.1.9. L. is the name of a Euboean river in Plin. 4. 64.
> ${ }^{10}$ cf. Strabo, 10. 1. 8, Ap. Rhod. 1. 77.

THEOPHRASTUS

 $\mu \hat{a} \lambda \lambda o \nu$ є̇v $\tau 0 i ̂ s ~ \epsilon i p \eta \mu \epsilon ́ v o u s ~ \delta \iota a ̀ ~ \tau \eta े \nu ~ a ̉ \sigma \theta \epsilon ́ \nu \epsilon \iota a \nu . ~$
0
 $\sigma \iota \tau \omega \delta \hat{\omega} \nu \pi a \rho a \pi \lambda \eta{ }^{\prime} \sigma \iota \nu \hat{\eta}$ каì таv̇тó $\tau \iota \sigma \nu \mu \beta a i ́ \nu \epsilon \iota \nu$,

 ó $\mu \circ i ́ \omega s$ ả $\lambda \lambda a ̀ ~ \mu a ́ \lambda \iota \sigma \tau a ~ \epsilon ̇ \pi i ̀ ~ \tau \hat{\omega} \nu ~ \kappa v a ́ \mu \omega \nu ~ \lambda \in ́ \gamma є \tau \alpha \iota ~$ $\kappa а і$ факิิע, єі้т’ oűv каі $\mu а ́ \lambda \iota \sigma \tau a ~ \pi a \sigma \chi o ́ v \tau \omega \nu ~$

 $\epsilon i \sigma \iota \nu$ oì aíєì ф́́povaı тєрápova кaì ä $\lambda \lambda о \iota \pi \alpha ́ \lambda \iota \nu$

 тєра́ $о \nu а<\pi о т є ̀ ~ \delta є ̀ ~ a ̀ \tau \epsilon \rho a ́ \mu о \nu а .>~ \pi \epsilon \rho \grave{~ Ф \iota \lambda i ́ \pi \pi т о v s ~}$

 $\tau a v ̂ \tau a ~ \mu \epsilon ̀ \nu ~ o v ̂ \nu ~ \mu \eta \nu v ́ \epsilon \iota ~ \delta \iota o ́ \tau \iota ~ \pi o \lambda \lambda a \chi \hat{\varsigma ~ \tau \hat{\nu} \nu ~ a u ̉ \tau \omega ̂ \nu}$

[^133]
ENQUIRY INTO PLANTS, VIII. viil. 5-7

The reason then why these plants, which attach themselves to more than one kind, grow stronger when attached to the plants specified, is that the latter are not robust.

Of the conditions in the seeds of pulses knoun as 'cookable'
and 'uncookable,' and their causes.
${ }^{1}$ The terms 'cookable' and 'uncookable ' are only applied to pulses, but it is not unreasonable to suppose that conditions like those indicated, if not identical with them, occur also in cereals, though they are not so obvious, since these plants are not put to the same use. Indeed it is said that these terms are not applied even to all pulses alike, but chiefly to beans and lentils, either because these are specially subject to these conditions, or because the use to which they are put makes them more conspicuous. At all events the conditions occur for a variety of reasons; for in many parts ${ }^{2}$ there are places which regularly produce seeds that are 'cookable,' while others again produce seeds that are 'uncookable'; in general however it is light soils which tend to produce the former. Now it is a certain condition of the climate which causes this variation ; a proof of which is the fact that the same piece of land, tilled in the same manner, produces sometimes seeds that are 'cookable,' sometimes seeds that are 'uncookable.' ${ }^{3}$ In the district of Philippi, if the beans, while being winnowed, ${ }^{4}$ are caught by the prevailing wind of the country, they become ' uncookable,' having previously been 'cookalle.' These facts prove that for various reasons, of districts ${ }^{5}$ which are close together, have the same

[^134]
THEOPHRASTUS

 aü入акоя $\delta \iota o \rho \iota \zeta o v ́ \sigma \eta s$.

 ठє̀ карто̀s коифо́татоs каі̀ т $\rho о \sigma \phi \iota \lambda \eta ̀ \varsigma ~ \pi a ̂ \sigma \iota ~ \tau о \imath ̂ \varsigma ~$

 $\kappa \omega ́ \tau \epsilon \rho о \nu$ каї $\dot{a} \sigma \theta \epsilon \nu \epsilon ́ \sigma \tau \epsilon \rho о \nu ~ \tau о и ́ \tau \omega \nu . ~ \dot{\eta}$ ठє̀ тíф
 $<\kappa a i$ $\lambda \epsilon \pi \tau о к а ́ \lambda a \mu о \nu,>~ \delta \iota$ ò каi $\chi \omega ́ \rho a \nu ~ \zeta \eta \tau \epsilon \hat{\imath}$
${ }^{1}$ cf. C.P. 4. 12. 1. $\quad{ }^{2} c f . C . P .4 .8 .3$.
${ }^{3}$ Plin. 18. 120 ; Varro 1. 23. 3 ; Col. 2. 10. 7.
4. 8. 2.
${ }^{5}$ i.e. dig in the bean-plants if the soil is poor, before the pods are formed enough to make it worth while to gather the beans. So Varro l.c. ${ }^{6}$ Cited by Galen.

ENQUIRY INTO PLANTS, VIII. vii. 7-1x. 2

aspect and shew no difference of soil, some bear 'cookable' some ' uncookable' seeds, and that sometimes when there is only ${ }^{1}$ the breadth of a furrow between them.

Of the grains and pulses which most exhaust the soil, or which improve it.
IX. Wheat exhausts the land more than any other crop, and next to it barley; wherefore the former requires good soil, while barley will bear even on somewhat crumbling soils; ${ }^{2}$ and of leguminous plants chick-pea is the most exhausting, although this crop is in the ground only a very short time. ${ }^{3}$ Beans, as was said, ${ }^{4}$ are in other ways not a burdensome crop to the ground, they even seem to manure it, because the plant is of loose growth and rots easily; wherefore the people of Macedonia and Thessaly turn over the ground when it is in flower. ${ }^{5}$
${ }^{6}$ Of the plants which resemble wheat or barley -such as zeia (rice-wheat) one-seeded wheat olyra ${ }^{7}$ (rice-wheat) oats aigilops-zeia is the strongest ${ }^{8}$ and most exhausts the ground; for it has many roots which run deep and many stems; but its fruit is the lightest and is welcome to all animals. Of the rest oats ${ }^{9}$ is the most exhausting; for this too has many roots and many stems. Olyra is a more delicate plant and not so robust as these. But one-seeded wheat is the crop which is of all the least burdensome to the soil; for it has but a single slender stem ${ }^{10}$; wherefore also it requires a light soil and not, like

[^135]
THEOPHRASTUS

 $\omega \sigma \pi \epsilon \rho$ ä $\gamma \rho \iota$ ' ä́т $\tau \alpha$ каì $\dot{\alpha} \nu \eta \dot{\eta} \mu \rho a$.

 єivaı $\tau \hat{\eta} \gamma \hat{\eta}$ каі $\mu a ́ \lambda \iota \sigma \tau а ~ к а \rho т і \zeta є \sigma \theta a \iota ~ к а і ̈ т о \iota ~$ толчкаланю́тєроу каі таұขкаланผ́тєроу каі
 $\tau \grave{\nu} \nu \gamma \hat{\eta} \nu \kappa о \hat{\phi} \phi a \kappa \alpha \grave{\iota} \tau \alpha ̀ \pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \grave{\eta} \mu \epsilon \tau \epsilon ́ \rho a \nu \tau \rho \circ \phi \dot{\eta} \nu$.

 $\tau \hat{a} \lambda \lambda a ~ \zeta \omega \omega a . \quad \kappa a i ̀ ~ \pi \epsilon \rho i ̀ ~ \mu \epsilon ̀ \nu ~ \tau о v ́ т \omega \nu ~ a ̈ \lambda \iota s . ~$
X. Noбŋ́ $\mu a \tau a ~ \delta \grave{~} \tau \hat{\omega} \nu \sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu \tau \grave{\alpha} \mu \epsilon ̀ \nu \kappa о \iota \nu a ̀$
 oîo ó $\sigma \phi \alpha \kappa \epsilon \lambda \iota \sigma \mu o ̀ s ~ \tau о \hat{v}$ є́ $\rho \epsilon \beta i \nu \theta o v$, каì тò $\dot{v} \pi$ ò $\kappa а \mu \pi \hat{\omega} \nu \kappa \alpha \tau \epsilon \sigma \theta_{\epsilon} \epsilon \sigma \theta a \iota \kappa a i$ ímò $\psi \nu \lambda \lambda \hat{\omega} \nu, \tau \iota \nu a ̀ ̀ ~ \delta \grave{~}$

ENQUIRY INTO PLANTS, VIII. ix. 2-x. i

zeia, one that is fat and good. These last two, ${ }^{1}$ zeia and one-seeded wheat, are also those which are likest to wheat, while ${ }^{2}$ aigilops and oats are as it were wild and uncultivated things.

Aigilops also greatly exhausts the land, having many roots and many stems; while darnel is a plant which has become altogether wild. Of the crops sown at the summer seed-time sesame seems to be most severe on the land and to exhaust it most; yet ${ }^{3}$ millet has more numerous and stouter stems and more roots. Moreover there is a difference between crops which ${ }^{4}$ are called 'light' in relation to the soil and those called 'light' in regard to human use. For some, such as leguminous plants and millet, are light in one sense but not in the other ; and, as was said, ${ }^{5}$ what ${ }^{6}$ is light for men is not necessarily so for the other animals. Now enough of these matters.

Of the diseases of cereals and pulses, and of hurtful winds.

X. ${ }^{7}$ As to diseases of seeds-some are common to all, as rust, some are peculiar to certain kinds; thus chick-pea is alone subject to rot 8 and to being eaten by caterpillars and by spiders ${ }^{9}$; and some seeds are eaten ${ }^{10}$ by other small creatures. Some again are liable to canker and mildew, ${ }^{11}$ as cummin. But creatures which do not come from the plant itself but from without do not do so much harm; thus the kantharis ${ }^{12}$ is a visitor among wheat, the

[^136]THEOPHRASTUS
 δ^{\prime} є่ ν ä $\lambda \lambda$ дıเs.
 $\lambda o \nu \tau \hat{\omega} \nu$ ó $\sigma \pi \rho i ́ \omega \nu \cdot a v ่ \tau \hat{\omega} \nu$ ठ̀̀ тоv́т $\omega \nu \kappa \rho \iota \theta \dot{\eta} \mu \hat{a} \lambda \lambda o \nu$ ทै тuро́s• каі т $\hat{\nu} \nu \kappa \rho \iota \theta \hat{\omega} \nu$ є́тєрає є́тє́ $\rho \omega \nu$, $\mu a ́ \lambda \iota \sigma т а ~$

 $\pi \rho о \sigma \eta ́ \nu \epsilon \mu a$ каi $\mu \epsilon \tau \epsilon ́ \omega \rho a$ оن̉к є่ $\rho v \sigma \iota \beta \hat{\alpha}$ ท̂ ท̂ттоע,

 $\tau \hat{\nu} \pi \nu \epsilon \cup \mu a ́ \tau \omega \nu$ каi тvрòs каi крıөŋ, őтаע ${ }_{\eta}$

 $\mu \eta \delta$ ' є́ $\pi i ́ \delta \eta \lambda o \nu$ єỉvaı тòv $\sigma \tau a ́ \chi v \nu$ т $\hat{\eta}$ oै $\psi \in \iota$ oै $\nu \tau a$ $\kappa \in \nu o ́ \nu$.
4 Tòv סè $\pi v \rho o ̀ \nu ~ a ́ \pi o \lambda \lambda v ́ o v \sigma \iota ~ \kappa а i ̀ ~ o i ~ \sigma \kappa \omega ́ \lambda \eta \kappa \epsilon s ~ o i ~$ $\mu \epsilon ̀ \nu ~ \epsilon u ̉ \theta u ̀ s ~ к а \tau \epsilon \sigma \theta i ́ o \nu \tau \epsilon s ~ \phi v o ́ \mu \epsilon \nu o \iota ~ \tau a ̀ s ~ \rho ீ i \zeta a s, ~ o i ~ \delta \grave{~}$

 $\mu \epsilon \nu o \nu ~ \kappa a ́ \lambda a \mu о \nu . ~ \epsilon ̇ \sigma \theta i ́ \epsilon \iota ~ \delta \epsilon ̀ ~ a ̉ \chi \rho \iota ~ \tau o v ̂ ~ \sigma \tau a ́ \chi v o s, ~ \epsilon i ̄ \tau ' ~$
${ }_{1}$ Plin. 18. 154.
${ }_{2}^{2}$ épvoı $\beta \hat{a}$ conj. W.; $\notin p v \sigma i \beta a \iota ~ A l d . ; ~ \epsilon i s ~ a d d . ~ S c h . ~$
${ }^{8}$ rà add. Sch. $\quad{ }^{4}$ cf. C.P. 3. 22. 2.
${ }^{5}$ Épuбı β â conj. Sch.; द̇pvoíßaı Ald.
${ }_{7}^{6}$ cf. C.I.P. 4. 13. 4; Plin. 18. 151.
${ }^{7}$ uє́ $\gamma a \lambda a$ conj. Sch.; $u \in \gamma \dot{ } \lambda \eta$ UMAld,
202

ENQUIRY INTO PLANTS, VIII. x. $1-4$

phalangion in vetches, and other pests in other crops.
${ }^{1}$ Generally speaking, cereals are more liable to rust ${ }^{2}$ than pulses, and among these barley is more liable to it than wheat; while of barleys some kinds are more liable than others, and most of all, it may be said, the kind called 'Achillean.' Moreover the position and character of the land make no small difference in this respect; for lands which ${ }^{3}$ are exposed to the wind ${ }^{4}$ and elevated are not liable to rust, ${ }^{5}$ or less so, while those that lie low and are not exposed to wind are more so. And rust occurs chiefly at the full moon. ${ }^{6}$ Again wheat and barley are destroyed by winds, if they are caught by them either when in flower, or when the flower has just fallen and they are weak; and this applies specially to barley, indeed it occurs when the grain is already ripening, if the winds are violent ${ }^{7}$ and last a long time; for they dry up and parch the grain, which some call being 'wind-bitten.' Also a hot sun after cloudy weather destroys both, and wheat more than barley, so that the ear is not even conspicuous, since it is empty.

Wheat is also destroyed by grubs; sometimes they eat the roots, as soon as they appear, ${ }^{8}$ sometimes they do their work when by reason of drought the ear cannot be formed ${ }^{9}$; for at such times the grub is engendered, and eats the haulm as it is becoming unrolled ${ }^{10}$; it eats right up to the ear and then,

[^137]
THEOPHRASTUS

 $\kappa а \lambda a ́ \mu о \nu ~ к а і ̀ ~ є ̇ к \beta \iota a ́ \sigma \eta \tau а \iota ~ \tau \grave{\nu \nu ~ a ̉ \pi о ́ \chi \nu \sigma \iota \nu, ~ т о v ̂ т о ~}$
 Sè oủ mavtađô tò $\pi \epsilon \rho i ̀ ~ t o u ̀ s ~ \pi u \rho o u ́ s, ~ o i o v ~ e ̀ v ~$

 тоîs $\lambda a \theta$ v́poıs каì тоîs $\pi \iota \sigma o i ̂ s, ~ o ̈ \tau a \nu ~ v j \gamma \rho a \nu \theta \hat{\omega} \sigma \iota ~$

 $\tau \hat{\omega} \nu \kappa \epsilon \rho a \sigma \tau \hat{\omega} \nu \kappa \alpha \lambda о \nu \mu \epsilon ́ \nu \omega \nu$. $\pi \rho o ̀ s ~ a ̈ \pi a \nu \tau a ~ \delta \grave{\eta}$ $\tau а \hat{\tau} \tau a \mu \epsilon \gamma a ́ \lambda a$ סıaф́є́povoıv ai $\chi \hat{\omega} \rho a \iota ~ o u ̉ \kappa ~ a ̉ \lambda o ́ \gamma \omega \varsigma \varsigma^{\circ}$

XI. T $\hat{\nu} \nu$ ס̀̀ $\sigma \pi \epsilon \rho \mu a ́ \tau \omega \nu$ oủ $\chi \dot{\eta}$ aủt̀̀ $\delta v v_{\nu} \mu i ́ s$ є̇ $\sigma \tau \iota \nu$ єìs $\tau \epsilon \tau \grave{̀} \nu \beta \lambda a ́ \sigma \tau \eta \sigma \iota \nu$ каì єis $\theta \eta \sigma a v \rho \iota \sigma \mu o ́ \nu$.

[^138]
ENQUIRY INTO PLANTS, VIII. x. 4 -xi. i

having consumed it, perishes. And, if it has entirely eaten it, the wheat itself ${ }^{1}$ perishes; if however it has only eaten one ${ }^{2}$ side of the haulm and the plant has succeeded in forming the ear, half the ear withers away, but the other half remains sound. However it is not everywhere that the wheat is so affected; for instance this does not occur in Thessaly, but only in certain regions, as in Libya and at Lelanton in Euboea.

Grubs occur also in okhros ${ }^{3}$ lathyros and peas, whenever these crops get too much rain and then hot weather supervenes; and caterpillars occur in chick-peas under the same conditions. ${ }^{4}$ All ${ }^{5}$ these pests perish, when they have exhausted their food, whether the fruit in which they occur be green or dry, just as wood-worms do and the grubs found in beans and other plants, as was said of the pests found in growing trees and in felled timber. But the creature called 'horned worm' ${ }^{6}$ is an exception. Now in regard to all these pests the position makes a great difference, as might be expected. For the climate, it need hardly be said, makes a difference according as it is hot or cold, moist or dry ; and it was the climate which gave rise to these pests ${ }^{7}$; wherefore they are not always found even in places in which they ordinarily occur. ${ }^{8}$

Of seeds which keep or do not keep well.

XI. The seeds have not all the same capacity for germination and for keeping well. Some germinate
${ }^{6}$ cf. 4. 14. 5 ; C.P. 5. 10. 5.

${ }^{8}$ i.e. because the atmospheric conditions are not always favourable to the pest.

THEOPHRASTUS

є̈vıa $\mu \epsilon ̀ \nu ~ \gamma a ̀ \rho ~ \beta \lambda a \sigma \tau a ́ \nu \epsilon \iota ~ к а i ̀ ~ \tau \epsilon \lambda \epsilon \iota o v ̂ \tau a \iota ~ \tau a ́ \chi \iota \sigma \tau a ~$

 où ఢ由оүovєî. каi $\sigma \eta \pi о \mu \epsilon ́ \nu o \iota s ~ \mu \epsilon ̀ \nu ~ \pi a ̂ \sigma \iota ~ \sigma \kappa \omega ́ \omega \eta \eta \xi$

 $\check{\omega} \sigma \pi \epsilon \rho \dot{a} \gamma \rho i \omega$.

 с Эaí фабıv ö̀ $\lambda \omega s$ кúa $\mu o \nu$, δi '̀̀ каì єis $\theta \eta \sigma a v \rho \iota \sigma-$

 ¿ $\chi^{\nu \lambda o ́ \tau \epsilon \rho a ~ \tau a ̀ ~} \mu$ c̀v $\chi \in \delta \rho о \pi a ̀ ~ \pi \rho o ̀ s ~ \tau o ̀ ~ \mu a ̂ \lambda \lambda о \nu ~ \kappa a \grave{~}$ ค̣âov $\sigma v \lambda \lambda \epsilon ́ \xi a \iota, \tau a \chi \grave{v} \gamma \grave{a} \rho$ катар $\rho \epsilon \hat{\imath} \kappa \alpha i ̀ ~ a v ̉ a \nu \theta \in ́ \nu \tau a$

[^139]
ENQUIRY INTO PLANTS, VIII. xi. i-3

and mature very quickly, and keep excellently, as Italian millet and millet. Some germinate well, ${ }^{1}$ but soon rot, ${ }^{2}$ as beans, and especially those that are ' cookable ${ }^{3}$ ' ; so do tare and calavance ; also barley perishes sooner ${ }^{4}$ than wheat ; and dusty ${ }^{5}$ grain and that which is kept in plastered store-rooms perishes sooner than that which is kept in unplastered rooms.

Again, as seeds decay, ${ }^{\text {b }}$ they engender special creatures, except chick-pea, which alone engenders none. As they rot, ${ }^{7}$ all produce a grub; but, as they get worm-eaten, each produces a special creature. Chick-pea and vetch keep best of all, and better still than these lupin; but this, as it were, is like a wild kind. ${ }^{8}$
${ }^{9}$ It appears that soil and climate make a difference as to whether the seed gets worm-eaten or not; at least they say that at Apollonia on the Ionian Sea beans do not get eaten in this way at all, and therefore they are put away and stored; and about Cyzicus they keep an even longer time. It also makes a great difference to keeping that the seed should be gathered dry, for then there is less moisture in it. ${ }^{10}$ However the seeds of leguminous plants are gathered with a certain amount of moisture in them, ${ }^{11}$ because then they can be collected in greater quantity and more easily; for otherwise they are soon shed and get shrivelled up and split ${ }^{12}$;

\footnotetext{
${ }^{7}$ i.e. rot is produced in all cases by the same creature ($\sigma \kappa \omega \lambda \eta \xi$), but the condition called being 'worm-eaten' is due in each plant to a different pest.
${ }^{8}$ i.e. and so the seed is hard and not liable to these attacks. cf. 8. 11. 8 ; C.P. 4. 16. 2.

Bas. cf.C.P. 4. 13.3. ${ }^{12}$ Plin. 18.125.

THEOPHRASTUS

 ठıà тò $\beta \epsilon \lambda \tau i ́ o u s ~ \epsilon i s ~ \tau a ̀ ~ a ̈ \lambda \phi ı \tau a ~ \gamma i ́ v \epsilon \sigma \theta a \iota ~ \mu \grave{\eta} \grave{a} \pi \epsilon$ $\xi \eta \rho a \mu \mu$ évas. $\kappa \rho \iota \theta a ́ s, \kappa а \grave{~ \delta о к о \hat{v} \sigma \iota \nu} \mathfrak{a} \delta \rho v ́ \nu \in \sigma \theta a \iota ~ \epsilon ̇ \nu ~ \theta \grave{\omega} \mu \omega \quad \mu a ̂ \lambda \lambda о \nu$

 $\theta \epsilon \rho \iota \zeta o ́ \mu \epsilon \nu о \nu$ каі̀ ảтó $\lambda \lambda \nu \sigma \theta a \iota ~ \tau o ̀ ~ \sigma \pi \epsilon ́ \rho \mu a . ~$
 ठокєî тà éváєva тà סє̀ סí́va $\chi \epsilon i ́ \rho \omega ~ \kappa а i ̀ ~ \tau a ̀ ~ \tau р i ́ \epsilon \nu a, ~$

 таîs $\delta v \nu a ́ \mu \epsilon \sigma \iota ~ \delta ı a ̀ ~ \tau o u ̀ s ~ \tau o ́ t o v s ~ \epsilon ̀ \nu ~ o i s ~ a ̀ \nu ~ \theta \eta \sigma a v p i ́-~$

[^140]208

ENQUIRY INTO PLANTS, VIII. xi. 3-6

and wheat and one kind of barley are gathered before they are dry, because then they are better for meal.

Wherefore the grain of wheat and barley is put into heaps, and it seems to ripen in a heap rather than to lose substance. ${ }^{1}$ (However corn does not get worm-eaten when it is reaped after exposure to rain.) ${ }^{2}$ Also corn lasts better than other things if it is left standing, and so does lupin to an even greater extent; indeed this crop is not even gathered till rain has fallen, ${ }^{3}$ because, if it is gathered, the seed springs out and is lost.

Of the age at which seeds should be sown.

${ }^{4}$ For propagation and sowing generally seeds one year old seem to be the best; ${ }^{5}$ those two or three years old are inferior, while those kept a still longer time are infertile, though they are still available as food. For each kind has a definite period of life in regard to reproduction. However these seeds too differ in their capacity according to the place in which they are stored. For instance, in Cappadocia at a place called Petra they say that seed remains even for forty years fertile and fit for sowing, while as food it is available for sixty or seventy years; for that it does not get wormeaten at all like clothes and other stored-up articles. for that the region is, apart from this, elevated and always exposed to fair winds and breezes which prevail alike from ${ }^{6}$ the east, the west, and the
 Plin. 18. 133.
${ }^{4}$ Plin. 18. 195.
${ }_{6}^{5}$ cf. 7. 5. 5; Geop. ${ }^{2}$. 16.
${ }^{6} \dot{\alpha} \pi{ }^{\prime}$ conj. Sch.; ${ }^{2} \pi i \mathrm{P}_{2}$ Ald.

THEOPHRASTUS

 то́т $\omega \nu$ ídıa.

 $\kappa а \grave{̀} \dot{a} \beta \lambda a \sigma \tau \eta \hat{\eta}$ үірєтаи• каїтоь $\pi \epsilon \rho i ́ \gamma \epsilon \mathrm{~B} a \beta v \lambda \hat{\omega} \nu \dot{\alpha}$ $\phi a \sigma \iota ~ \tau a ̀ s ~ \kappa \rho \iota \theta a ̀ s ~ \kappa a i ̀ ~ \tau o u ̀ s ~ \pi v \rho o u ̀ s ~ \epsilon ̇ \pi i ~ \tau \eta ̂ \varsigma ~ a ̈ \lambda \omega ~$ $\pi \eta \delta \hat{a} \nu$, $̈ \sigma \pi \epsilon \rho$ тà ф $\rho v \gamma o ́ \mu \epsilon \nu a \cdot ~ \grave{a} \lambda \lambda a ̀$ $\delta \hat{\eta} \lambda o \nu$ öт ι

 $\pi a ́ v \tau \omega \nu \hat{\eta} \tau \hat{\omega} \nu \pi \lambda \epsilon i \sigma \tau \omega \nu$.
${ }^{1}$ cf. C.P. 5. 18. 3 ; for millet-seed see J.H.S. vol. xxxv. part i. p. 22.
 $\mu^{\prime} \nu \eta \mathrm{P}_{2}$. cf. Plin. 18. 305.
${ }^{3}$ тарала́ттovaı conj. Sch., cf. Geop. 2. 21. 3 ; ($\left.{ }^{\epsilon} \mu \pi \alpha ́ \sigma \sigma є \iota \nu\right)$; тapaтáттovo، UMAld. cf. Varro 1. 57. 1.

ENQUIRY INTO PLANTS, VIII. xi. 6-7

south. They say that in Media ${ }^{1}$ also and other elevated countries the seed when stored keeps for a long time. And it is plain that chick-pea lupin vetch millet and the like will keep a far longer time than these seeds, as they do even in districts of Hellas. However these peculiarities, as has been said, are due to the particular region.

Of artificial means of prestrving seed.

There appears to be a kind of earth in some places, which when sprinkled ${ }^{2}$ over the seed helps to make wheat keep, for instance, the earth found at Olynthos and at Kerinthos in Euboea; this makes the grain inferior for food, but fuller in appearance ; the earth is sprinkled ${ }^{3}$ in the proportion of one pint to twenty-four of grain.

Of the effect of heat on seeds.

All seeds if exposed to fire perish and become infertile. Yet they say that at Babylon ${ }^{4}$ the grains of barley and wheat jump on the threshing-floor like corn which is being parched. However it is plain that it is some particular kind of warmth ${ }^{5}$ which produces this effect: or else the jumping is simply another effect of heat. ${ }^{6}$ Such behaviour would appear to be common to most, ${ }^{7}$ if not to all kinds.

[^141]
THEOPHRASTUS

 ϕ úє $\sigma \theta a \iota ~ \in ̇ \nu ~ \delta \iota є \iota \rho \gamma a \sigma \mu \epsilon ́ \nu \eta$.

 $\lambda \epsilon ́ \gamma \epsilon \tau a \iota \pi \rho o ̀ s ~ \tau a ̀ ~ a ̈ \lambda \lambda a ~ \tau \alpha ̀ ~ \sigma \iota \tau \omega ́ \delta \eta ~ \sigma \pi \epsilon ́ \rho \mu а \tau а ~ \kappa а \grave{~}$ $\dot{\eta} \pi a \rho$ ' Є̇vıavтò $\beta \lambda a ́ \sigma \tau \eta \sigma \iota \varsigma$ є́катє́pov $\tau \hat{\omega} \nu \quad \sigma \pi \epsilon \rho-$

 $\beta \lambda a ́ \sigma \tau \eta \sigma \iota \nu$.

[^142]
ENQUIRY INTO PLANTS, VIII. xi. 8-9

Of certain peculiarities of the seed of lupin and aigilops.
Some even ${ }^{1}$ of those kinds which seem to be more or less wild have peculiarities as to their germination and growth, for instance, lupin and aigilops. For lupin, although it is very robust, unless it is planted immediately after leaving the threshing-floor, ${ }^{2}$ turns out of poor growth, as was said, and refuses altogether to be buried in the ground; ${ }^{3}$ wherefore they sow it without first ploughing ${ }^{4}$ the land. And often if the seed has fallen amid thick undergrowth or herbage, ${ }^{5}$ it thrusts this aside, fastens on to the earth with its root and grows vigorously. It seeks sandy and poor soil for choice, and will not grow at all in ${ }^{6}$ cultivated ${ }^{7}$ soil.

Aigilops has the opposite character; it grows better in tilled soil; and in some places where at first it would not grow, if the ground is tilled, it grows and yields a large crop, and in general it likes good soil. A peculiarity ${ }^{8}$ mentioned in regard to it as compared with other cereal seeds is that one seed in two does not germinate for a year. Wherefore those who wish to destroy it entirely, (since it is naturally hard to destroy), leave the fields unsown for two years, and, when it springs up, send in ${ }^{9}$ the sheep several times till they have grazed it down, and this is a way of completely destroying it. At the same time this testifies to the fact that the seed does not all germinate at once.

[^143]

 wh

 anith

 H2

[^144]
BOOK IX

I

 $\delta \grave{\epsilon} \tau a \hat{\imath} \varsigma \mu \epsilon ̀ \nu ~ \mu \hat{a} \lambda \lambda о \nu \tau a \hat{\imath} \varsigma \delta^{\prime} \hat{\eta} \tau \tau о \nu$ ảкодоv $\theta \epsilon \hat{\imath}$, таîs δ^{\prime} ö $\lambda \omega \varsigma$ ои̉к oै̀
 тท̀v $\beta \lambda a ́ \sigma \tau \eta \sigma \iota \nu, ~ i \sigma \chi v р о т а ́ т \eta ~ \delta \grave{\epsilon} \kappa \alpha i ~ \mu a ́ \lambda \iota \sigma \tau а$
 каі $\beta \lambda a \sigma \tau a ́ \nu о \nu \tau а ~ к а i ̀ ~ к а \rho т о \gamma о \nu о и ิ \nu \tau а . ~ \sigma v \mu \beta a i ́ \nu є \iota ~$
 $\mu \in ̀ \nu ~ \lambda \epsilon v \kappa a ̀ s ~ o i ̂ o \nu ~ т о i ̂ s ~ o ̇ \pi \omega ́ \delta \epsilon \sigma \iota, ~ т о i ̂ s ~ \delta ' ~ a i ́ \mu a \tau \omega ́ \delta \epsilon \iota s ~$

 тоі̂ऽ є่тєтєєокаv́д
 $\tau \hat{\omega} \nu$ о́т $\pi \delta \hat{\omega} \nu \cdot \tau \hat{\omega} \nu \delta є$ каi $\delta а \kappa \rho v \omega ́ \delta \eta \varsigma$ 才ívєтає, каӨá-

[^145]
BOOK IX

Of the Juices of Plants, and of the Medicinal
Of the various kinds of plant-juices and the methods of collecting them.
I. ${ }^{1}$ Moisture belongs to plants as such and some call it the 'sap,' to give it a general name ; and it plainly has ${ }^{2}$ special qualities in each plant. This moisture is attended by a taste, in some cases more, in some less, while in some it would seem to have none, so weak and watery is it. Now all plants have most moisture at the time of making growth, but it is strongest and most shows its character when the plant has ceased to grow and to bear fruit. Again in some plants the juice has a special colour ; in some it is white, as in those which have a milky juice; in some blood-red, as in centaury ${ }^{3}$ and the spinous plant which is called distaff-thistle; in some green : and in some of other colours. And these qualities are more obvious in annual ${ }^{4}$ plants and those with annual stems than in trees.

Again in some plants the juice is merely thick, as in those in which it is of milky character; but in some it is of gummy character, as in silver-fir fir terebinth Aleppo pine almond kerasos (bird-cherry) bullace Phoenician cedar prickly cedar acacia elm. ${ }^{5}$ For

${ }^{5} \pi \tau \in \lambda \in ́ a s$ after $\kappa \epsilon ́ \delta \rho \circ{ }^{2} \mathrm{P}_{2}$ Ald.; transposed by Sch. after Tobias Aldinus. cf. Plin. 13. 67.

THEOPHRASTUS

 $\kappa \alpha i$ таv̂та, каì тò $\beta a ́ \lambda \sigma a \mu о \nu ~ \kappa a i ̀<\hat{\eta}>\chi a \lambda \beta a ́ \nu \eta$

 тои́т $\omega \nu \mu$ è̀ $\pi a ́ \nu \tau \omega \nu$ ề $\tau \epsilon$ тоîৎ каv入oîs каì тоîऽ

 $\sigma \kappa \alpha \mu \mu \omega \nu i ́ a s ~ \kappa а i ~ a ̈ \lambda \lambda \omega \nu ~ \pi о \lambda \lambda \omega ิ \nu ~ ф а \rho \mu а к \omega \delta \omega ิ \nu$.

 $\kappa \alpha i ̀ ~ \tau o v ̂ ~ \sigma i \lambda \phi i o v . ~$

[^146]
ENQUIRY INTO PLANTS, IX. I. 2-4

this last also produces a gum, though it does not exude from the bark, but is found in the 'bag' ${ }^{1}$ of the leaves; there are also the juices from which come frankincense and myrrh; for these too are gums; so too are balsam of Mecca khalbane ${ }^{2}$ and any others of the kind that there may be, such as, they say, the Indian akantha, from which comes something ${ }^{3}$ resembling myrrh; and a similar substance forms on mastich and the spinous plant called ixine (pine-thistle), whence mastic-gum is made.

All these have a fragrant odour, as in general have those which contain a viscous substance and are fatty; while those that are not fatty have no scent, as gum and the juice which exudes from the almond. The pine-thistle ${ }^{4}$ of Crete has also a gum, and so has the plant called tragacanth; ${ }^{5}$ this was formerly supposed to grow only in Crete, but now it is well known to grow also in Achaia in the Peloponnese and elsewhere in Hellas and in Asia in the Median country. In all these plants the gum occurs in the stems the trunks and the branches, but in some plants it is found in the roots, as in alexanders scammony and many other medicinal plants. In some it is found in the stem and also in the root; ${ }^{6}$ for of some ${ }^{7}$ plants they tap the stem and the roots as well, as is done with silphium.

Now the juice of alexanders is like myrrh, and some, having heard that myrrh comes from it, have supposed that, if myrrh is sown, alexanders comes up

[^147]
THEOPHRASTUS

 סvvá $\mu \in \iota$ s.

 $\dot{a} \lambda \lambda a ̀ ~ \tau o ̀ ~ \mu e ̀ v ~ \tau \eta ̂ S ~ a ̉ \mu \pi e ́ \lambda o v ~ \mu a ́ \lambda ı \sigma \tau a ~ \sigma v \nu i ́ \sigma \tau a \sigma \theta a i ́ ~$
 то̂̂ ठє̀ $\mu \epsilon \tau о т \omega ́ \rho o v ~ \kappa а i ~ a ̀ \rho \chi о \mu e ́ v o v ~ т о \hat{v} \chi є \iota \mu \hat{\nu \nu}$

 $\mu \epsilon \tau \grave{a} \tau \eta ̀ \nu \quad \beta \lambda a ́ \sigma \tau \eta \sigma \iota \nu$. тò δ^{\prime} ö òov oủk є̇тє́тєєos $\dot{\eta}$

 Sè каì тò èv इupía ßá̀ $\sigma a \mu o \nu$.
 given as a synonym; $\epsilon^{2} \nu$ aùroîs Ald.

[^148]
ENQUIRY INTO PLANTS, IX. I. 4-7

from it; ${ }^{1}$ for, as was said, ${ }^{2}$ this plant can be grown from an exudation, like the krinonia (lily) and other plants. The juice of silphium is pungent like the plant itself; for what is called the 'juice' of silphium is a gum. Scammony and similar plants, as was said, ${ }^{3}$ have medicinal properties.

In all the plants mentioned the juice either forms naturally, or when incisions are made, or in both ways, ${ }^{4}$ but it is obvious that men only make incisions in plants whose juice is of use and is specially sought after. ${ }^{5}$ Now there is no use in the gum which exudes from the almond, wherefore men do not tap it. ${ }^{6}$ However it is plain that in plants whose gum forms naturally the flow of juice is greater. The incisions and the clotting of the juice do not take place at the same season in all cases; ${ }^{7}$ but the juice of the vine clots best they say if the incision is made a little before budding begins, less well in the autumn or at the beginning of winter; (although in regard to production of fruit these ${ }^{8}$ seasons are the best in the case of most ${ }^{9}$ vines). However with terebinth fir or any other tree which produces resin the best time is after the period of budding; yet in general these trees are not cut every year, but at longer intervals. The frankincense and myrrh trees they say should be cut at the rising of the Dogstar and on the hottest days, and so also the 'Syrian balsam' (balsam of Mecca).

The cutting of these is also a more delicate matter

[^149]
THEOPHRASTUS

 тои́т $\omega \nu$ ó каu入òs $\pi \rho о ́ т \epsilon \rho о \nu, ~ \check{\omega} \sigma \pi \epsilon \rho ~ \kappa a i ̀ ~ \tau o ̂ ~ \sigma \iota \lambda-~$
 $\kappa a v \lambda i ́ a \nu ~ \tau o ̀ \nu ~ \delta e ̀ ~ \rho ́ \iota \zeta i ́ a v . ~ к а i ́ ~ \epsilon ̇ \sigma \tau \iota ~ \beta \epsilon \lambda \tau i ́ \omega \nu ~ o ́ ~ \rho ̊ \iota \zeta i ́ a s . ~$

 $\pi \epsilon \rho \iota \pi a ́ \tau \tau о v \sigma \iota \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \pi \hat{\eta} \xi \iota \nu . \quad \tau \eta े \nu ~ \check{\omega} \rho a \nu \tau \hat{\eta} S$

 тои̂тo μ è̀ ס̀̀ коเขóv.

 $\epsilon \dot{v} \omega \delta \epsilon \sigma \tau a ́ \tau \eta ~ к а i ̀ ~ к о v ф о т а ́ т \eta ~ \tau \hat{\eta}$ ó $\sigma \mu \hat{\eta}$ ả $\lambda \lambda$ ’ ỏ $\lambda i ́ \gamma \eta$.
 $\gamma \grave{a} \rho$ т $\eta \varsigma \quad \pi \epsilon v \kappa i ́ \nu \eta s . \pi \lambda \epsilon i ́ \sigma \tau \eta$ ठ̀̀ $\dot{\eta} \pi \epsilon \cup \kappa i \nu \eta$ каі̀

[^150]
ENQUIRY INTO PLANTS, IX. I. 7-11. 2

and is done on a smaller scale; for the flow of juice is less. In those plants whose stem and root are both cut the stem is cut first, as also with silphium; and the juices so obtained are called respectively stalk-juice and root-juice, of which the latter is the better, for it is clear transparent and less liquid. The stalk-juice is more liquid, and for this reason they sprinkle meal ${ }^{1}$ over it to make it clot. The Libyans know the season for cutting, for it is they that gather the silphium. ${ }^{2}$ So also do the rootdiggers and those that collect medicinal juices, for these too tap the stems earlier. And in general all those who collect whether roots or juices observe the season which is appropriate in each case. And this remark applies generally.

Of resinous trees and the methods of collecting resin and pitch.
II. ${ }^{3}$ Resin is made in the following manner:-in fir it is done by removing the resinous wood after the tree has been tapped; for then the juice flows into the hole so made in greater abundance ; in silver-fir and Aleppo pine it is done by tapping the wood, after tasting it. For there is no fixed rule for all alike; thus with terebinth they tap both the stem and the branches; but the juice which runs into the stem is always more abundant and better than that which flows into the branches.

There are also differences in ${ }^{4}$ the resin obtained from different trees. The best is that of terebinth ; for it sets firm, is the most fragrant, and has the most delicate smell ; but the yield is not abundant. Next comes that of silver-fir and Aleppo pine, for these are more delicate than that of the fir. But that of the fir

[^151]
THEOPHRASTUS

ßаритáтך каі $\pi \iota \tau \tau \omega \delta є \sigma \tau a ́ \tau \eta ~ \delta \iota a ̀ ~ т o ̀ ~ \mu a ́ \lambda \iota \sigma \tau а ~$
 v́үрá, кӓтєєта оӥт ω бvvíбтатаı. каíтоı фабi каì

 $\tau \epsilon \rho \mu i \nu \theta \omega \nu \mu \epsilon \sigma \tau o ̀ \nu \stackrel{\prime}{ } \pi \pi a \nu \mu \epsilon \gamma \alpha ́ \lambda \omega \nu$.

 $\tau \grave{\nu} \nu$ ä $\rho \rho \epsilon \nu a \cdot \kappa а \lambda о \hat{\sigma} \sigma \iota$ रà ρ ä $\rho \rho є \nu a ~ \tau \grave{\eta} \nu \mu \grave{\eta} \kappa \alpha \rho$ -

 тò $\pi a \rho a ́ \pi a \nu$.
"Ебть ס̀̀ каі ảфорía тıs каì єủфорía каі̀ $\pi \lambda \eta$ ク́-

 $\kappa а \lambda \lambda о \nu \grave{\eta} \nu \pi i \tau \tau \eta \varsigma$, oủ $\chi \dot{\eta} \pi о \lambda \cup \kappa а \rho \pi i ́ a ~ \tau \hat{\omega} \nu \pi \epsilon \cup \kappa \hat{\omega} \nu$.

[^152]
ENQUIRY INTO PLANTS, IX. II. 2-4

is the most abundant, the grossest and the most pitchlike, because this tree has the greatest amount of resinous wood. It is carried about in baskets in a liquid state, and so acquires the more solid form which we know. However they say that in Syria pitch is extracted even from the terebinth by burning ${ }^{1}$; for there is in that land a mountain which, as we said before, ${ }^{2}$ is all covered with great terebinths.

Some ${ }^{3}$ say the same of Aleppo pine and also of Phoenician cedar ; but this must be taken as only indicating what can be done, the practice not being common; for the people of Macedonia do not extract pitch by burning even from fir, except from the 'male' kind (they call the kind which bears no fruit ${ }^{4}$ the 'male'); the 'female' kind they only treat in this way when they have found roots containing pitch; for all firs have resinous wood extending to the roots. ${ }^{5}$ The finest and purest pitch is that obtained from trees growing in a sunny position and facing north ${ }^{6}$; that obtained from trees growing in shade is coarser ${ }^{7}$ and mụddy ; (in exceedingly shady places the fir does not even grow at all).

Again the yield may be either good or bad as to amount and as to quality; thus, when there is a moderate winter, it is abundant and good and whiter in colour, but, when there is a severe winter, it is scanty and of inferior quality. And it is these conditions, and not the tree's capacity for bearing fruit, which determine the amount and quality of pitch.
${ }^{6}$ Apparently because this is the dry quarter in the Balkan peninsula.
${ }^{7} \beta \lambda \wedge \sigma \omega \rho \omega \omega \tau \epsilon ́ \rho \alpha$ conj. Sch.; $\beta \rho \circ \sigma \eta \rho o \tau \epsilon ́ \rho \alpha \mathrm{M}$; $\beta \lambda \neq \sigma \eta \rho o \tau \epsilon ́ \rho \alpha$ Ald. of C.P.6.12. 5.

VOL. II.

THEOPHRASTUS

 $\pi a \rho a \lambda i ́ a \nu, \tau \grave{\eta} \nu$ є่к $\tau \hat{\eta} \mathrm{S}$ 'I $\delta a i ́ a s ~ \pi \lambda \epsilon i ́ \omega$ каi $\mu \epsilon \lambda a \nu$ -

 є̇ $\lambda a ́ \tau \tau \omega$ रívє $\sigma \theta a \iota, \delta a ̨ \delta \omega \delta \epsilon \sigma \tau \epsilon ́ \rho a \nu ~ \delta \grave{\epsilon} \tau \grave{\eta} \nu$ 'I $\delta a i ́ a \nu$.

 тоîs aủ $\chi \mu \circ \hat{\varsigma}, \kappa \alpha i \grave{\epsilon} \kappa$ т $\omega \hat{\nu} \chi \in \iota \mu \epsilon \rho \iota \nu \omega ̂ \nu$ каi $\pi a \lambda \iota-$
 $\tau a v ̂ \tau a \mu \epsilon ̀ \nu ~ o v ̂ \nu ~ o u ̈ \tau \omega s ~ \in ́ \kappa a ́ \tau \epsilon \rho o \iota ~ \lambda e ́ \gamma o v \sigma \iota \nu$.

- 'А $\nu a \pi \lambda \eta \rho o v ̂ \sigma \theta a \iota ~ \delta \grave{\epsilon} \sigma \nu \mu \beta a i v \epsilon \iota ~ \tau \grave{\alpha} \kappa о \iota \lambda \omega ́ \mu a \tau a$

 тov̂ छuv́

[^153]
ENQUIRY INTO PLANTS, IX. H. 5-6

The people of Mount Ida distinguish different kinds of fir, calling one 'that of Mount Ida' (Corsican pine), another the 'fir of the seashore,' (Aleppo pine); ${ }^{1}$ and they say that the pitch obtained from the former is more abundant blacker sweeter and generally more fragrant ${ }^{2}$ in the raw state, but that boiling down reduces the amount; for that it contains a larger proportion of watery matter, wherefore it is less substantial; but that derived from the 'fir of the seashore' is browner and thicker in the raw state, so that the amount is less reduced by boiling down; that the 'fir of Mount Ida' however contains more resinous wood. And, speaking generally, they say that from an equal amount of resinous wood more pitch is obtained and in a more liquid state in wet weather than during a drought, and from a wintry and shady position than from one that is sunny and enjoys fair weather. Such is the account given by the peoples of Mount Ida and of Macedonia respectively.
${ }^{3}$ The holes for the pitch fill up, so that the pitch can be again removed, ${ }^{4}$ in good firs in a year, in those of more moderate quality in two years, in poor trees in three. The filling-up is composed of the pitch; it is not caused by closing up of the wood; for the wood cannot close up and become one again, but the effect which takes the time mentioned is due to the formation of the pitch. ${ }^{5}$ However it is clearly inevitable that there should be some new growth of the wood too, seeing that the resinous wood is

[^154]
THEOPHRASTUS

 $\tau o ̀ ~ \sigma \tau \epsilon ́ \lambda \epsilon \chi \sigma \varsigma,-\lambda \epsilon \pi i \zeta 0 v \sigma \iota$ ठè $\tau o ̀ ~ \pi \rho o ̀ s ~ \eta ̄ \lambda \iota o \nu ~ \mu \epsilon ́ \rho o s ~$

 ن́тò $\tau \hat{\omega} \nu \pi \nu \epsilon \nu \mu a ́ \tau \omega \nu$ батє́v. то́тє δ ' Є' $\xi a \imath \rho \epsilon i ̂ \nu$

 $\epsilon l \pi o \mu \epsilon \nu, \epsilon \in \nu \delta a ̨ \delta o v s \pi a \sigma \hat{\omega} \nu$.
 é $\lambda \epsilon ́ \chi \theta \eta, \sigma v \nu \epsilon \chi \hat{\omega} s$ тồтo $\delta \rho a ̂ \nu$ тàs δ è $\chi \epsilon i ́ \rho o \nu a s ~ \delta ı a ̀ ~$ $\pi \lambda \epsilon i ́ o \nu o s ~ \chi \rho o ́ \nu o v \cdot \kappa а i ̀ ~ т а \mu ı \epsilon v o \mu \epsilon ́ \nu \omega \nu ~ \mu \grave{\iota} \nu \pi \lambda \epsilon i ́ \omega$

 ai $\pi \epsilon \hat{\kappa} \kappa a \iota ~ \kappa а і ~ \delta a \delta o \phi о \rho о \hat{v} \sigma \iota ~ к а \rho \pi о ф о \rho о \hat{\sigma \iota ~} \mu \epsilon ̀ \nu$
 $\pi \rho \in \sigma \beta \dot{\tau} \tau \epsilon \rho a \iota$ үıขó $\mu \in \nu a \iota$.
 öтаע катабкєvá $\sigma \omega \sigma \iota \nu$ ó $\mu a \lambda \hat{\eta} \tau о ́ \pi о \nu ~ \ddot{\omega} \sigma \pi \epsilon \rho$ ä $\lambda \omega$

[^155]
ENQUIRY INTO PLANTS, IX. i. 6-III. I

removed ${ }^{1}$ and burnt when the discharge of pitch takes place. So much for this account.
${ }^{2}$ The people of Mount Ida however say that, when they bark the stem,-and they bark the side towards the sun to a height of two or three cubits from the ground,--the flow of pitch takes place in that part, ${ }^{3}$ and in about a year the wood becomes full of pitch; and that, when they have hewn this part out, pitch forms again in the next year, and in the third year in like manner; after which ${ }^{4}$ that the tree, because it has been cut away underneath, is rotted by the winds and falls; and that then ${ }^{5}$ they take out its heart, for that is especially full of pitch, and that they also extract pitch from ${ }^{6}$ the roots; for that these too, as we said, ${ }^{7}$ are full of pitch in all firs.

Now it is plainly to be expected that they should, as was said, repeatedly thus treat a good tree, but an inferior one at longer intervals, and that, if the tree is husbanded, the supply should hold out longer, while, if they remove all the pitch, it will not hold out so long; it appears as a matter of fact that the tree will stand about three such removals of its substance. ${ }^{8}$ However firs do not produce both fruit and pitch at once; they begin to bear fruit when they are quite yourg, but they only produce pitch much later, when they are older.

Of the making of pitch in Macedonia and in Syria.

III. This is the manner in which they make pitch by fire :-having prepared a level piece of ground,

[^156]
THEOPHRASTUS

 $\sigma \iota \nu$ ö $\pi \omega \varsigma \mu \eta \delta a \mu \hat{\varsigma} \varsigma \delta \iota a \lambda a ́ \mu \psi \eta$ тò $\pi \hat{v} \rho$, àmó $\lambda \lambda \nu \tau a \iota$

 $\pi \rho o ̀ ~ \eta ̛ \lambda i ́ o v ~ \delta र ́ v a \nu т о s ~ є ̀ к к є к а \nu \mu є ́ v \eta ~ \gamma і ́ \nu є \tau а \iota ~ к а \grave{~}$

[^157]
ENQUIRY INTO PLANTS, IX. iil. I-3

which they make like a threshing-floor with a slope for the pitch to run towards the middle, and having made it smooth, ${ }^{1}$ they cleave the logs and place them in an arrangement like that used by charcoal-burners, ${ }^{2}$ except that there is no pit; but the billets are set upright against one another, so that the pile goes on growing in height according to the number used. And they say that the erection is complete, ${ }^{3}$ when the pile is 180 cubits in circumference, and fifty, or at most sixty, in height ; or again when it is a hundred cubits in circumference and a hundred in height, ${ }^{4}$ if the wood happens to be rich in pitch. Having then thus arranged the pile and having covered it in with timber they throw on earth and completely cover it, so that the fire may not by any means show through; for, if this happens, the pitch is ruined. Then they kindle the pile where the passage is left, and then, having ${ }^{5}$ filled that part ${ }^{6}$ up too with the timber and piled on earth, they mount a ladder and watch wherever they see the smoke pushing its way out, and keep on piling on the earth, so that the fire may not even shew itself. And a conduit is prepared for the pitch right though the pile, so that it may flow into a hole about fifteen cubits off, and the pitch as it flows out is now cold to the touch. The pile burns for nearly two days and nights; for on the second day before sunset it has burnt itself out and the pile has fallen in; for this occurs if the pitch is no longer flowing. All this time ${ }^{7}$ they keep watch and do not

[^158]
THEOPHRASTUS

 Макє δ оиía к каíovбı тò̀ то́́тоу тои̂тоע.

 ő $\rho o s ~ \delta e ́ ~ \epsilon ่ \sigma \tau \iota \nu ~ a u ̉ \tau o i ̂ s ~ \tau \iota \varsigma ~ к а i ̀ ~ \sigma \eta \mu \epsilon i ̂ a ~ \tau o ̂ ̀ ~ \pi a v ́ є \sigma \theta a \iota ~$

 $\pi i \tau \tau a \nu$ oṽт $\omega \varsigma$ ể $\chi \iota$.

 ảmò $\tau \hat{\omega} \nu \tau о ́ \pi \omega \nu$ є́бтì $\tau \hat{\omega} \nu \tau \epsilon \pi \rho o ̀ s ~ \mu \epsilon \sigma \eta \mu \beta$ рíaע каì àvaтo入ńv.
2
Гíveтaı μ èv ov̂̀ ó $\lambda i ́ \beta a \nu o s ~ к а і ̀ ~ \grave{\eta} \sigma \mu v ́ \rho \nu a ~ к а i ̀ ~ \dot{\eta}$

[^159]
ENQUIRY INTO PLANTS, IX. II. $3^{-1 v . ~} 2$

go to rest, in case the fire should come through; and they offer sacrifice and keep holiday, praying that the pitch may be abundant and good. Such is the manner in which the people of Macedonia make pitch by fire.

They say that in Asia in the Syrian region they do not extract the pitch by cutting ${ }^{1}$ out of the tree the wood containing it, but use fire to the tree itself, applying an instrument fashioned on purpose, ${ }^{2}$ with which they set fire to it. ${ }^{3}$ And then, when they have melted out the pitch at once place, they shift the instrument to another. But they have a limit and indications when to stop, chiefly of course the fact that the pitch ceases to flow. They also, as was said before, ${ }^{4}$ use fire to get pitch out of the terebinth ; for the places where this tree grows do not produce the fir. Such are the facts about resin and pitch.

Of frankincense and myrrh: various accounts.

IV. As to frankincense myrrh balsam of Mecca and similar plants it has been said that the gum is produced both by incision and naturally. Now we must endeavour to say what ${ }^{5}$ is the natural character of these trees and to mention any peculiarities as to the origin of the gum or its collection or anything ${ }^{6}$ else. So too concerning the other fragrant plants; most of these come from places in the south and east.

Now frankincense myrrh cassia and also cinnamon are found in the Arabian peninsula ${ }^{7}$ about

[^160]
THEOPHRASTUS

 $\dot{\rho \in i ̂ \nu} \delta^{\prime}$ є́ ξ aủtô̂ каi тотаноùs єis тò $\pi \epsilon ́ \delta \iota o \nu$. eival δ è tò μ èv tov̂ $\lambda_{\iota} \beta a \nu \omega \tau o \hat{v}$ סév $\delta \rho o \nu$ oủ μ é γa,

 $\tau \hat{\omega} \chi \rho \dot{\omega} \mu a \tau \iota \pi о \hat{\omega} \delta \epsilon \varsigma \sigma \phi o ́ \delta \rho a, \kappa a \theta a ́ \pi \epsilon \rho \tau o ̀ ~ \pi \eta ́ \gamma \alpha \nu o \nu$. $\lambda \epsilon \iota o ́ \phi \lambda o ı o \nu \delta \epsilon ̀ \pi a ̂ \nu, ~ \check{\omega} \sigma \pi \epsilon \rho \tau \grave{\eta} \nu \delta a ́ \phi \nu \eta \nu$.

 тò тồ $\lambda \iota \beta a \nu \omega \tau o \hat{v}$ סaф
 $\phi u ́ \lambda \lambda o \nu$ סè $\pi \rho \circ \sigma \epsilon \mu \phi \epsilon \rho \in ̀ s ~ \epsilon ้ \chi \epsilon \iota \nu \tau \hat{\eta} \pi \tau \epsilon \lambda \epsilon ́ a ́ a, \pi \lambda \eta े \nu$
 $\pi \rho i ́ v o v$.
"Eфaбav סè oủto九 катà тòv тари́miouv ồ $\epsilon \xi$

[^161]
ENQUIRY INTO PLANTS, IX. Iv. 2-4

Saba Hadramyta Kitibaina and Mamali. The trees of frankincense and myrrh grow partly in the mountains, partly on private estates at the foot of the mountains; wherefore some are under cultivation, others not; the mountains, they say, are lofty, forest-covered and subject to snow, and rivers from them flow down to the plain. The frankincense-tree, ${ }^{1}$ it is said, is not tall, about five cubits high, and it is much branched; it has a leaf like that of the pear, but much smaller and very grassy in colour, like rue; the bark is altogether smooth like that of bay.

The myrrh-tree ${ }^{2}$ is said to be still smaller in stature and more bushy; it is said to have ${ }^{3}$ a tough stem, which is contorted near the ground, and is stouter than a man's leg; and to have a smooth bark like that of andrachne. Others who say that they have seen it agree pretty closely about the size ; neither of these trees, they say, is large, but that which bears myrrh is the smaller and of lower growth; however they say that, while the frankin-cense-tree ${ }^{4}$ has a leaf like that of bay and smooth bark, that which bears myrrh is spinous and not smooth, and has a leaf like that of the elm, except that it is curly and spinous ${ }^{5}$ at the tip like that of kermes-oak.
${ }^{6}$ These said that on the coasting voyage which they made from the bay of the Heroes they landed to look for water on the mountains and so saw these trees and the manner of collecting their gums. ${ }^{7}$ They reported that with both trees incisions had
 $\lambda \epsilon \iota \delta \phi u \lambda \lambda o \nu$ є $\uparrow v a \iota$ Ald.H. cf. Plin. 12. 57.
${ }^{5}$ cf. 3. 10. 1; 3. 11. 3.
${ }^{6}$ cf. Arr. Anab. 3. 5. 4; 7. 20. 1 and 2.
${ }^{3}$ Plin. 12. 58-62.

THEOPHRASTUS

$\tau \grave{a} \sigma \tau \epsilon \lambda \epsilon ́ \chi \eta$ каì $\tau 0 u ̀ s \kappa \lambda a ́ \delta o u s, a ̉ \lambda \lambda a ̀ ~ \tau a ̀ ~ \mu \epsilon ̀ \nu ~ © ̃ \sigma \pi \epsilon \epsilon \rho$

 $\lambda_{\iota} \beta a \nu \omega \tau o ̀ \nu$ єivaı каї каӨapòv каі̀ $\delta \iota a \phi a \nu \eta$, тò̀ δ^{\prime}

 5 тробєîval. тò δ è őpos ämav $\mu \epsilon \mu \epsilon \rho i \sigma \theta a \iota ~ \tau о i ̂ s ~$ इaßaioıs, tov́tovs خà ρ єivaı кирíous, סıкаíovs δ є̀
 $\kappa а i ̀ a u ̛ \tau o i ~ \delta a \psi ı \lambda \omega ̂ s ~ \epsilon i ́ s ~ \tau a ̀ ~ \pi \lambda o i ̂ a ~ \lambda a \beta o ́ \nu \tau \epsilon s ~ \epsilon ̇ \nu \theta \epsilon ́-~$

 $\kappa а i ̀ ~ \epsilon ै \phi а \sigma a \nu ~ a ̉ \kappa о и ́ є \iota \nu, ~ o ̈ \tau \iota ~ \sigma \nu \nu a ́ \gamma \epsilon \tau а \iota ~ т а \nu \tau а \chi o ́ \theta \epsilon \nu ~ \dot{\eta}$ $\sigma \mu v ́ \rho \nu a \kappa \alpha a i ̀ ~ o ́ ~ \lambda \iota \beta a \nu \omega \tau o ̀ s ~ \epsilon i s ~ \tau o ̀ ~ i \epsilon \rho o ̀ \nu ~ \tau o ̀ ~ \tau o v ̂ ~ \dot{\eta} \lambda i ́ o v . ~$

[^162]
ENQUIRY INTO PLANTS, IX. iv. 4-6

been made both in the stems and in the branches, but that, while the stems looked as if they had been cut with an axe, in the branches the incisions were slighter; also that in some cases the gum was dropping, but that in others it remained sticking to the tree; and that in some places mats woven of palm-leaves were put underneath, while in some the ground underneath was merely made level and clean; and that the frankincense on the mats was clear and transparent, that collected on the ground less so; and that that which remained sticking to the trees they scraped off with iron tools, wherefore sometimes pieces of bark remained in it. The whole range, they said, belongs to the portion of the Sabaeans; for it is under their sway, and they are honest in their dealings with one another. Wherefore no one keeps watch; so that these sailors greedily took, they said, and put on board their ships some of the frankincense and myrrh, since there was no one about, and sailed away. They also reported another thing which they said they had been told, that the myrrh and frankincense are collected from all parts into the temple of the sun; and that this temple is the most sacred thing which the Sabacans of that region possess, and it is guarded by certain Arabians in arms. And that when they have brought it, each man piles up his own contribution of frankincense and the myrrh in like manner, and leaves it with those on guard; and on the pile he puts a tablet on which is stated the number of measures which it contains, and the price for which each measure should be sold ${ }^{1}$; and that, when the merchants come, they look at the tablets, and whichsoever pile pleases them, they

THEOPHRASTUS

"А $\lambda \lambda$ o८ δ '́ tıves tò $\mu \epsilon ̀ \nu ~ \tau o v ̂ ~ \lambda \iota \beta a \nu \omega \tau o v ̂ ~ \delta e ́ v \delta \rho o \nu ~$

 $\tau \hat{\nu} \nu \nu \epsilon \in \omega \nu$ 入ıßаעшто̀̀ $\lambda \epsilon v \kappa о ́ т \epsilon \rho о \nu ~ к а і ̈ ~ \grave{~} о \delta \mu о ́ т є \rho о \nu$, тòv δ^{\prime} є’к т $\hat{\nu} \nu \pi а р \eta \kappa \mu а к о ́ т \omega \nu ~ \xi а \nu \theta о ́ т є \rho о \nu ~ к а і ~$
 $\mu i \nu \theta \omega, \tau \rho a \chi u ́ \tau \epsilon \rho о \nu$ í каì àкаעӨ $\omega \delta \in ́ \sigma \tau \epsilon \rho о \nu$, фи́л-

 тои́т $\omega \nu$ т̀̀ тар $\pi \kappa \mu а к о ́ т а ~ є \dot{o} о \boldsymbol{\mu}$ о́тєра.
 $\gamma \hat{\eta} \nu$ íтápүıлоv каї $\pi \lambda a \kappa \omega ́ \delta \eta, \kappa \alpha i ̀ ~ v ̋ \delta a \tau a ~ \pi \eta \gamma а i ̂ a ~$ $\sigma \pi a ́ \nu \iota a$. тav̂ta μ èv oûv vitevavtía тê ví申єбӨaı каі̀ v̈єбӨaı каі̀ тотаноѝs є́ $\xi \iota \in ́ v a \iota \cdot ~ \tau o ̀ ~ \delta e ̀ ~ \pi a \rho o ́ \mu о \iota o \nu ~$ єivaı тò $\delta \in ́ v \delta \rho o \nu ~ \tau \hat{\imath} ~ \tau \epsilon \rho \mu i \nu \theta \omega ~ \kappa а і ̀ ~ a ̈ \lambda \lambda o \iota ~ \tau \iota \nu \epsilon ̀ s ~$

[^163]238

ENQUIRY INTO PLANTS, IX. iv. 6-8

measure, and put down the price on the spot whence they have taken the wares, and then the priest comes and, having taken the third part of the price for the god, leaves the rest of it where it was, and this remains safe for the owners until they come and claim it.

Others report that the tree which produces the frankincense is like mastich, and its fruit is like the fruit of that tree, but the leaf is reddish : also that the frankincense derived from young trees is whiter and less fragrant, while that derived from those which have passed their prime is yellower and more fragrant; also that the tree which produces myrrh is like the terebinth, but rougher and more thorny; that the leaf is somewhat rounder, and that, if one chews it, it resembles that of the terebinth in taste; also that of myrrh-trees too those that are past their prime give more fragrant myrrh.
${ }^{1}$ Both trees, it is said, grow in the same region ; the soil is clayey ${ }^{2}$ and caked, ${ }^{3}$ and spring waters are scarce. Now these reports are contradictory to ${ }^{4}$ that which says that the country is subject to snow and rain and sends forth rivers. However others make the statement ${ }^{5}$ that the tree is like the terebinth; in fact some say that it is the same tree; for that logs of it were brought to Antigonus by the Arabs who brought the frankincense down to the sea, and that these did not differ at all from logs of terebinth. ${ }^{6}$ However these informants were guilty

[^164]
THEOPHRASTUS

 $\lambda o \nu, ~ \epsilon l ้ ~ \tau \iota ~ \delta \epsilon \hat{\imath} ~ \sigma \tau a \theta \mu a ̂ \sigma \theta a \iota ~ \tau o v ̂ \tau o \cdot ~ o ́ ~ \lambda \iota \beta a \nu \omega \tau o ̀ s ~ \delta ' ~$

 а̀кךко́а $\mu \in \nu$ ar $\chi \rho \iota$ үє $\tau о \hat{v} \nu \hat{\nu} \nu$.

[^165]
ENQUIRY INTO PLANTS, IX. iv. 8-10

of a further more important piece of ignorance ; for they believed that the frankincense and the myrrh were produced by the same tree. Wherefore the account derived from those who sailed from the city of Heroes is more to be believed; ${ }^{1}$ in fact the frankincense-tree which grows above Sardes in a certain sacred precinct has ${ }^{2}$ a leaf like that of bay, if we may judge at all by this; and the frankincense derived both from its stem and its branches is like in appearance and in smell, when it is burnt as incense, to other frankincense. This is the only tree which can never be cultivated. ${ }^{3}$

Some say that the frankincense-tree is more abundant ${ }^{4}$ in Arabia, but finer in the adjacent islands ${ }^{5}$ over which the Arabians bear rule; ${ }^{6}$ for there it is said that they mould the gum on the trees to any shape that they please. And perhaps this is not incredible, since it is possible to make any kind of incision that they like. Some of the lumps ${ }^{7}$ of gum are very large, so that one is large enough in bulk to fill the hand and in weight is more than a third of a pound. All frankincense is gathered in the rough and is like bark in appearance. Myrrh ${ }^{8}$ is either 'fluid' 9 (myrrh-oil) or 'solid' (agglutinated). That of better quality is tested by its taste, and of this they select that which is of uniform colour. ${ }^{10}$ Now of frankincense and myrrh these are about all the facts that have come to our notice at present.

[^166]241
VOL. 11.

THEOPHRASTUS

 $\mu \epsilon \gamma a ́ \lambda o v s ~ a ̉ \lambda \lambda ’$ ท̀ $\lambda i ́ \kappa o v s ~ a ̈ \gamma \nu o v, ~ \pi о \lambda v \kappa \lambda a ́ \delta o v s ~ \delta \grave{~}$

 $\nu \in \tau a \iota \sigma \pi \iota \theta a \mu \iota a i ̂ o \nu ~ \hat{\eta} \mu \iota \kappa \rho \hat{\omega} \mu \epsilon i \zeta o \nu \cdot$ è $\pi o ́ \mu \epsilon \nu o \nu ~ \delta \grave{\epsilon}$

 $\tau \iota \sigma \tau o \nu, \pi \lambda \epsilon i ̂ \sigma \tau o \nu ~ \gamma a ̀ \rho ~ \epsilon ́ \chi ~ Є \iota \nu ~ к а i ~ \tau o ̀ \nu ~ \phi \lambda o \iota o ́ \nu . ~ o i ~$

 тоѝs тóסas катаßаívovбı каі бu入入є́ $\gamma о v \sigma \iota \nu$, є $i \theta^{\prime}$

 $\mu \in ́ v \eta \nu \tau a v ́ \tau \eta \nu \cdot ~ o v ̉ \tau o s ~ \mu \epsilon ̀ \nu ~ o v ̂ \nu ~ \tau \hat{̣}$ oै $\nu \tau \iota \mu \hat{v} \theta o s$.
3 Tìv dè кaбíav фaбì тàs μ èv $\dot{\rho} a ́ \beta \delta o v s ~ \pi a \chi v-~$

[^167]242

ENQUIRY INTO PLANTS, IX. v. i-3

Of cimamon and cassia : various accounts.

V. ${ }^{1}$ Of cinnamon and cassia the following account is given : both are shrubs, it is said, and not of large size, but of the same size as bushes of chaste-tree, with many branches and woody. When they cut down the whole cinnamon-tree, they divide it into five parts; of these the first is that which grows next the branches and this is the best: this is cut in lengths a span long or a little longer; next comes the second kind, which is cut in shorter lengths; then come the third and the fourth, and last the least valuable wood, which grows next the root; for this has least bark, and it is the bark and not the wood which is serviceable; wherefore the part which grows high up the tree is the best, since it has the most bark. Such is the account given by some.

Others say that cinnamon is shrubby or rather like an under-shrub; and that there are two kinds, one black, the other white. ${ }^{2}$ And there is also a tale told about it; they say that it grows in deep glens, and that in these there are numerous snakes which have a deadly bite; against these they protect their hands and feet before they go down into the glens, and then, when they have brought up the cinnamon, they divide it in three parts and draw lots for it with the sun; and whatever portion falls to the lot of the sun they leave behind; and they say that, as soon as they leave the spot, they see this take fire. Now this is sheer fable.
${ }^{3}$ Cassia, they say, has stouter branches, which are very fibrous and difficult to strip of the bark ${ }^{4}$; and it is the bark of this tree also which is serviceable.

[^168]
THEOPHRASTUS

 тобаv̂тa $\lambda \in ́ \gamma \epsilon \tau a \iota$.
VI. Tò̀ $\delta \grave{\epsilon} \beta a ́ \lambda \sigma a \mu o \nu$ 耳iveral $\mu \epsilon ̀ \nu ~ \epsilon ̇ \nu \tau \hat{\varphi} a u ̉ \lambda \hat{\omega} \nu \iota$ $\tau \hat{\varphi} \pi \epsilon \rho i \quad \sum v \rho i ́ a \nu . \quad \pi a \rho a \delta \epsilon i \sigma o v s \delta^{\prime}$ єivaí фaбı סv́o

 ท̀лíкоу ค̊óa $\mu \in \gamma a ́ \lambda \eta ~ \pi о \lambda u ́ \kappa \lambda a \delta o \nu ~ \delta e ̀ ~ \sigma \phi o ́ \delta \rho a . ~$

 $\tau a \pi \nu i ́ \gamma \eta \dot{\omega} \sigma \iota, \kappa \alpha i ̀ \tau a ̀ ~ \sigma \tau \epsilon \lambda \epsilon ́ \chi \eta \kappa a i ~ \tau a ̀ ~ \alpha ้ \nu \omega$. $\tau \grave{\eta} \nu$

[^169]
ENQUIRY INTO PLANTS, IX. v. 3-vi. 2

When then they cut off the branches, they chop them up into lengths of about two fingers' breadth or rather more, and these they sew up in raw ${ }^{1}$ hide; and then from the leather and the decaying wood little worms are engendered, which devour the wood but do not touch the bark, because it is bitter and has a pungent odour. This is all the information forthcoming about cinnamon and cassia.

Of balsam of Mecca.

VI. ${ }^{2}$ Balsam of Mecca grows in the valley of Syria. They say that there are only two parks in which it grows, one of about four acres, the other much smaller. The tree is as tall as a good-sized pomegranate and is much branched; it has a leaf like that of rue, but it is pale; and it is evergreen; the fruit is like that of the terebinth in size shape and colour, and this too is very fragrant, ${ }^{3}$ indeed more so than the gum.
${ }^{4}$ The gum, they say, is collected by making incisions, which is done with bent pieces of iron at the time of the Dog-star, when there is scorching heat; and the incisions are made both in the trunks and in the upper parts of the tree. The collecting goes on throughout the summer; but the quantity which flows is not large ; in a day a single man can collect a shell-full ${ }^{5}$; the fragrance is exceeding great and rich, so that that which comes from a small amount is perceived for a wide distance. However it does not reach us in a pure state; what is collected is mixed with other things; for it mixes freely with

[^170]
THEOPHRASTUS

 $\pi \omega \lambda \epsilon i ̂ \sigma \theta a \iota<\gamma a ̀ \rho>\tau i \mu \iota a$. каі тウ̀ $\frac{\epsilon}{\epsilon} \rho \gamma a \sigma i ́ a \nu \tau \eta ̀ \nu$

 סє̀ סокєîv єivaı тô̂ $\mu \eta \eta^{\mu \epsilon \gamma a ́ \lambda a ~ \gamma i ́ v \epsilon \sigma \theta a \iota ~ \tau a ̀ ~ \delta e ́ v \delta \rho a ~}$ $\kappa \alpha i ̀ \tau \eta ̀ \nu \tau \hat{\omega} \nu \dot{\rho} a \beta \delta i \omega \nu \tau о \mu \eta \nu^{\prime}$. Sıà $\gamma a ̀ \rho$ тò $\pi o \lambda \lambda a ́-$

 $\nu \epsilon \sigma \theta a \iota ~ \delta \grave{̀ ̀ ~ \epsilon ̇ \kappa ~ \mu \epsilon ̀ \nu ~ \tau o ̂ ̀ ~ \mu \epsilon i \zeta o v o s ~ \pi a \rho a \delta \epsilon i ́ \sigma o v ~ a ̉ \gamma \gamma \epsilon i ́-~}$

 цíav.
 $\beta a ́ \lambda \lambda о \nu \tau \iota ~ \tau o ̀ \nu ~ \Lambda i ́ \beta a \nu o \nu ~ \mu \epsilon \tau а \xi ̆ ̀ ̀ ~ т о и ̂ ~ т \epsilon ~ \Lambda \iota \beta a ́ \nu o v ~$

 Síov moд̀̀ каì кадóv. öтои Sè ò кá入аноs каì ó б χ oivos фv́єтаı $\lambda i ́ \mu \nu \eta ~ \mu є \gamma a ́ \lambda \eta ~ \tau v \gamma \chi a ́ v є \iota, ~ \pi \rho o ̀ s ~$

[^171]
ENQUIRY INTO PLANTS, IX. vi. 2-vii. i

other things ; and what is known in Hellas is generally mixed with something else. The boughs are also very fragrant. In fact it is on account of these boughs, they say, that the tree is pruned (as well as for a different reason ${ }^{1}$), since ${ }^{2}$ the boughs cut off can be sold for a good price. In fact the culture of the trees has the same motive ${ }^{3}$ as the irrigation (for they are constantly irrigated). And the cutting of the boughs seems likewise to be partly the reason why the trees do not grow tall; for, since they are often cut about, they send out branches instead of putting out all their energy in one direction.

Balsam is said not to grow wild anywhere. From the larger park are obtained twelve vessels containing each about three pints, from the other only two such vessels; the pure gum sells for twice its weight in silver, the mixed sort at a price proportionate to its purity. Balsam then appears to be of exceptional fragrance.

Of other aromatic plants-all oriental, except the iris.
VII. ${ }^{4}$ Sweet-flag and ginger-grass grow beyond the Libanus between that range and another small range, in the depression thus formed; and not, as some say, between Libanus and Anti-Libanus. For Anti-Libanus is a long way from Libanus, and between them is a wide fair plain called 'The Valley.' But, where the sweet-flag and gingergrass grow, there is a large lake, ${ }^{5}$ and they grow near it in the dried up marshes, covering an extent

[^172]
THEOPHRASTUS

 $\kappa а \theta a ́ \pi \epsilon \rho ~ \tau \iota \nu \in ́ s, ~ \phi a \sigma \iota, ~ \tau а i ̂ s ~ \pi \rho о \sigma \phi \in \rho о \mu \epsilon ́ v a \iota s ~ \nu a v \sigma i ̀ ~$

 тávта тà єv้oб μa ois $\pi \rho o ̀ s ~ \tau a ̀ ~ a ̀ p ' ́ \mu a \tau a ~ \chi \rho \omega ̂ \nu \tau а \iota, ~$
 кататє́ $\mu \pi \epsilon \tau \alpha \iota, \tau a ̀ \delta^{\prime} \epsilon \in \xi$ 'Apaßías, oiov $\pi \rho o ̀ s \tau \hat{\psi}$,

 $\hat{\eta} \tau \grave{a} \pi \lambda \epsilon \hat{i} \sigma \tau a$.

[^173]248

ENQUIRY INTO PLANTS, IX. vii. i-3

of more than thirty furlongs. They have no fragrance ${ }^{1}$ when they are green, but only when they are dried, and in appearance they do not differ ${ }^{2}$ from ordinary reeds and rushes; but, as you approach the spot, immediately a sweet smell strikes you. However it is not true, as some say, that the fragrance is wafted to ships approaching ${ }^{3}$ the country; for indeed this district is more than 150 furlongs from the sea. However it is said that in Arabia the breezes wafted from the land are fragrant.

Such then are the plants in Syria which have remarkable fragrance. For that of khalbane is more oppressive and somewhat medicinal; ${ }^{4}$ for this perfume also is produced in Syria from the plant called allheal. As to all the other fragrant plants used for aromatic odours, they come partly from India whence they are sent over sea, and partly from Arabia, for instance, komakon ${ }^{5}$-as well as cinnamon and cassia. The fruit called komakon is said to be distinct ${ }^{6}$ from this; the komakon of which we are speaking is a perfume which they mix with the choicest unguents. Cardamom and Nepaul cardamom some say come from Media; others say that these come from India, as well as spikenard and most, if not all, of the other species.

Now this is a general list of the plants used for perfumes:-cassia cinnamon cardamom spikenard nairon balsam of Mecca aspalathos storax iris narte

[^174]
THEOPHRASTUS

 ка́ $\lambda a \mu о \varsigma$ ả $\mu a ́ \rho а к о \nu ~ \lambda \omega \tau o ̀ s ~ a ̆ \nu \nu \eta \tau о \varsigma . ~ \tau о и ́ т \omega \nu ~ \delta \grave{\varepsilon} \tau \grave{a}$
 $\tau a ̀ ~ \delta \grave{̀} \sigma \pi \epsilon ́ \rho \mu a \tau a ~ \tau a ̀ ~ \delta e ̀ ~ \delta a ́ \kappa \rho v a ~ \tau a ̀ ~ \delta e ̀ ~ a ̆ \nu \theta \eta$. каì $\tau a ̀ ~ \mu \epsilon ̀ \nu ~ \pi о \lambda \lambda a \chi o v ̂ ~ \gamma i ́ v \epsilon \tau a \iota, ~ \tau a ̀ ~ \delta \grave{̀ ~} \pi \epsilon \rho \iota \tau \tau о ́ \tau a \tau a \kappa \alpha \grave{~}$

 єiрท́ $\sigma \theta \omega$.

 тои́т $\omega \nu$ каі $\chi \omega \rho \grave{\varsigma}$ av̀таì ка θ^{\prime} aútàs тодлàs каi

 $\mu а \kappa \omega \delta \hat{\omega} \nu$ oi $\rho \iota \zeta о \tau o ́ \mu о \iota$.

[^175]kostos all-heal saffron-crocus myrrh kypeiron gingergrass sweet-flag sweet marjoram lotos dill. Of these it is the roots, bark, branches, wood, seeds, gum or flowers which in different cases yield the perfume. Some of them grow in many places, but the most excellent and most fragrant all come from Asia and sunny regions. From Europe itself comes none of them except the iris.
${ }^{1}$ This is best in Illyria, not in the part near the sea, but in that which is further inland and lies more to the north. In different districts it varies in quality; no special attention is needed, except to scrape the roots clean and dry them.

As for the roots which grow in Thrace, such as one ${ }^{2}$ which has a smell like spikenard and certain others, their fragrance is but slight and feeble. Let this suffice for an account of sweetsmelling plants.

Of the medicinal juices of plants and the collection of them: general account.

VIII. Now we must endeavour to speak in like manner of those juices which have not been mentioned already, I mean, such as are medicinal or have other properties; and at the same time we must speak of roots; for some of the juices are derived from roots, and apart from that roots have in themselves divers properties of all kinds; and in general we must discuss medicinal things of all kinds, as fruit, extracted juice, ${ }^{3}$ leaves, roots, 'herbs' ; for the herb-diggers call some medicinal things by this name.
${ }^{3} \chi v \lambda \iota \sigma \mu \circ \hat{v} \mathrm{P}_{2}$ Ald.H ; каv入ô conj. W. The list is of the aspects in which the herbalist would regard the plant, not of the parts of the plant.

THEOPHRASTUS

 $\pi \rho o ̀ s ~ \pi \lambda \epsilon i ́ \omega \cdot ~ \zeta \eta \tau о \hat{\nu} \nu \tau a \iota$ ठè $\mu a ́ \lambda \iota \sigma \tau a$ ai $\phi a \rho \mu a-$

 aữaîs Єै χ оvб九 каì тоîs картоîs каì тоîs òтоîs，
 סvvá $\mu \epsilon \iota \varsigma ~ \tau a ̀ s ~ \pi о \lambda \lambda a ̀ \varsigma ~ \sigma \chi \epsilon \delta o ̀ \nu ~ \pi o ́ a s ~ \kappa а \lambda o v ̂ \sigma \iota \nu$ ，$̄ \sigma-$ $\pi \epsilon \rho \epsilon i ้ \rho \eta \tau a \iota \mu \iota \kappa \varphi \hat{\varphi} \pi \rho о ́ т \epsilon \rho о \nu$ ，oi $\rho \iota \zeta о т о ́ \mu о \iota$.

 à $\lambda \lambda$＇${ }^{\eta} \gamma \epsilon \pi \lambda \epsilon i ́ \omega \nu \tau o \hat{v} \mu \epsilon \tau о \pi \epsilon ́ \rho о v \mu \epsilon \tau$＇＇А $\rho \kappa \tau о \hat{v} \rho \circ \nu$ ， öтаע фv入入орроท́ $\sigma \omega \sigma \iota \nu$ ，ö $\sigma \omega \nu$ ठє̀ каi ó картòs
 ó $\pi \iota \sigma \mu o ̀ s ~ \eta े ~ a ̀ \pi o ̀ ~ \tau \hat{\omega} \nu ~ \kappa a v \lambda \hat{\omega} \nu, \check{\omega} \sigma \pi \epsilon \rho ~ \tau o v ~ \tau \iota \theta v \mu a ́ \lambda-~$ λ ov каì $\tau \hat{\eta} \varsigma \quad \theta \rho \iota \delta a \kappa i \nu \eta s \kappa a i ̀ ~ \sigma \chi \epsilon \delta o ̀ \nu \tau \hat{\omega} \nu \pi \lambda \epsilon i \sigma \tau \omega \nu$ ，

${ }^{1}$ From this point to 9．19．4，$\gamma^{i} \nu \in \sigma \theta a l$ ，the text is repeated in U ，with considerable variations，as a tenth book．Ald． also repeats the first few lines of this passage（down to end of §1）as a fragment of a tenth book．The two Medicean MSS also repeat 9．8．1，$\tau \hat{\omega} \nu \delta \dot{\epsilon} \rho_{\iota} \zeta \hat{\omega} \nu$ ，down to 9．10．3， B＇́ $\lambda \tau \iota \sigma \tau 0 \iota ~ \delta \grave{\epsilon} \mathrm{kal}$ ois，as part of a tenth book．The＇tenth book＇readings in each case are distinguished by a＊．
${ }^{2}{ }^{2} \iota \zeta \omega \bar{\omega} \nu$ ：$\delta l \zeta \alpha$ signifies a medicinal plant in general（ $c f$. pı $\zeta \delta \sigma \tau 0 \mu 0 \iota$ ）as well as＇root＇；the double sense makes transla－ tion of this section awkward：I print it＇root＇where it has the wider sense．

ENQUIRY INTO PLANTS, IX. vin. i-2

${ }^{1}$ The properties of 'roots' ${ }^{2}$ are numerous and they have numerous uses; but those which have medicinal virtues are especially sought after, as being the most useful; and they differ in not all being applied to the same ${ }^{3}$ purposes and in not all having their virtue in the same parts of them. ${ }^{4}$. To speak generally, most 'roots' have it in themselves ${ }^{5}$; or else it is found in the fruits or the juices of the plant; and in some cases in the leaves as well, and it is to the virtues of the leaves in most cases that the herbdiggers refer, when they speak, as has just been said, ${ }^{\text {b }}$ of ' herbs.'

The collection of the juice from plants from which it is collected is mostly done in summer, in some cases at the beginning of that season, in others when it is well advanced. The digging of roots is done in some cases at the time of wheat-harvest or a little earlier, but the greater part of it in autumn after the rising of Arcturus when the plants have shed their leaves, and, in the case of those whose fruit is serviceable, when they have lost their fruit. The collection of juice is made either from the stalks, ${ }^{7}$ as with tithymallos (spurge) wild lettuce and the majority of plants, or from the roots, or thirdly from the head, as in the case of the poppy; for this is the only plant which is so treated ${ }^{8}$ and this is its peculiarity. In some plants the juice collects of its own accord in

[^176]
THEOPHRASTUS

бvขíбтатає $\delta a \kappa \rho v \omega ́ \delta \eta \varsigma \tau \iota \varsigma, \stackrel{\omega}{\omega} \pi \epsilon \epsilon \rho \kappa a i ̀ \tau \hat{\eta} \varsigma \tau \rho a \gamma a-$

 єis ả $\gamma \gamma \epsilon i ̂ a ~ \sigma v \nu a ́ y o v \sigma \iota \nu, ~ \check{\omega} \sigma \pi \epsilon \rho$ каì $\tau \grave{\nu}$ то̂̂ тıӨv$\mu a ́ \lambda \lambda o v \hat{\eta} \mu \eta \kappa \omega \nu i ́ o v, \kappa a \lambda o v ̂ \sigma \iota$ үà ρ ả $\mu \phi о \tau \in ́ \rho \omega \varsigma$, каì $\dot{a} \pi \lambda \hat{\omega} \varsigma$ ö $\sigma \alpha \pi o \lambda v v_{o} \pi a \tau v \gamma \chi a ́ \nu \epsilon \iota \cdot \tau \hat{\omega} \nu$ סє̀ $\mu \eta ̀ \pi o \lambda v o ́-$

 $\mu a ~ a ̉ \sigma \theta \epsilon \nu \epsilon ́ \sigma \tau \epsilon \rho о \nu ~ \tau o \hat{v} \kappa a \rho \pi о \hat{v}, ~ \tau o \hat{v} \kappa \omega \nu \epsilon i ́ o v ~ \delta \grave{\epsilon}$ í $\chi \cup \rho о ́ \tau \epsilon \rho о \nu, \kappa a i ̀ ~ \tau \grave{\eta} \nu ~ \dot{a} \pi a \lambda \lambda a \gamma \eta ̀ \nu ~ \grave{\rho}$ á ω тоьєî кaì

 $\kappa a i ̀ ~ \tau o ̀ ~ \tau \eta ̂ s ~ \theta a \psi i ́ a s . ~ \tau a ̀ ~ \delta \grave{\epsilon}$ ä入入a $\pi a ́ \nu \tau a ~ a ̉ \sigma \theta \epsilon \nu \epsilon ́-$ $\sigma \tau \epsilon \rho a$. oî $\mu \epsilon \grave{\nu}$ ov̉v ó $\pi \iota \sigma \mu \circ \grave{\imath} \sigma \chi \epsilon \delta \grave{\nu} \nu \tau o \sigma a v \tau a \chi \hat{\omega}$ s rívovial.

 $\tau a ̀ \varsigma \kappa a ́ \tau \omega \tau a ̀ s ~ \lambda \epsilon \pi \tau a ́ s \cdot \tau \grave{\eta} \nu$ үà ρ ä $\omega \omega$ т $\eta \nu \pi a \chi є i ̂ a \nu$

[^177]the form of a sort of gum, as with tragacanth; for incision of this plant cannot be made ; but in most it is obtained by incision. In some cases the juice is collected straight into vessels, for instance that of lithymallos (spurge) or mekonion (for the plant has both names) and in general the juice of specially juicy plants is so collected. But that of those which do not yield abundant juice is taken with a piece of wool, as also that of wild lettuce. ${ }^{1}$
${ }^{2}$ In some cases there can be no collection of juice, but there is a sort of extraction of it, for instance in the case of plants which are cut down or bruised; they then pour water over them and strain off the fluid, keeping the sediment; but it is plain that in these cases the juice obtained is dry and less copious. In most 'roots' the juice thus extracted is less powerful than that of the fruit, but in hemlock it is stronger and it causes an easier ${ }^{3}$ and speedier ${ }^{4}$ death even when administered in a quite small pill ; and it is also more effective for other uses. ${ }^{5}$ That of thapsia is also powerful, while all the rest are less so. Such then is a general account of the various ways of obtaining the juices of plants.

Of the cutting of roots for medicinal purposes, and of certuin
superstitions connected therevith.
As to cutting of the roots there is no such diversity of practice, except as to the season, which may be summer or autumn, and as to the particular roots selected. ${ }^{6}$ Thus in hellebore the slender lower roots are taken, for they say that the thick upper part ${ }^{7}$ which forms a sort of head is useless, and that

[^178]
THEOPHRASTUS

 $\lambda \epsilon ́ \gamma o v \sigma \iota$. кє $\lambda \epsilon$ v́ovaı γ à ρ тàs $\mu \in ̀ \nu ~ \kappa а \tau ’ ~ a ̈ \nu \epsilon \mu о \nu ~$

 $\kappa v \nu о \sigma \beta a ́ \tau o v ~ \tau o ̀ \nu ~ \kappa а \rho \pi о ̀ \nu ~ \sigma \nu \lambda \lambda \epsilon ́ \gamma \epsilon \iota \nu, ~ \epsilon i ̉ ~ \delta є ̀ ~ \mu \eta े \kappa i ́ \nu-$

 $\lambda \epsilon \iota \nu$, oiov каі тò кадоú $\mu \in \nu o \nu \kappa \lambda \cup ́ \mu \epsilon \nu o \nu$.

 $\tau \grave{\eta} \nu$ モ̋ $\delta \rho a \nu$.

[^179]
ENQUIRY INTO PLANTS, IX. viI. 4-6

it is only given to dogs when it is desired to purge them. And in certain other plants also such differences are mentioned.

Further we may ${ }^{1}$ add statements made by druggists and herb-diggers, which in some cases may be to the point, but in others contain exaggeration. Thus they enjoin that in cutting some roots one should stand to windward,-for instance, in cutting thapsia among others, and that one should first anoint oneself with oil, ${ }^{2}$ for that one's body will swell up if one stands the other way. Also that the fruit of the wild rose must be gathered standing to windward, since otherwise there is danger to the eyes. Also that some roots should be gathered at night, others by day, and some before the sun strikes on them, for instance those of the plant called honeysuckle. ${ }^{3}$

These and similar remarks may well seem to be not off the point, for the properties of these plants are hurtful ; they take hold, it is said, like fire and burn ; ${ }^{4}$ for hellebore too soon makes the head heavy, and men caunot go on digging it up for long; wherefore they first eat garlic and take a dranght of neat wine therewith. On the other hand the following ideas may be considered far-fetched and irrelevant; ${ }^{5}$ for instance they say that the peony, which some call glykyside, should be dug up at night, for, if a man does it in the day-time and is observed by a woodpecker while he is gathering the fruit, he risks the loss of his eyesight; and, if he is cutting the root at the time, he gets prolapsus ani.

$$
\begin{aligned}
& 2 \text { Plin. 13. } 124 \text {; Diosc. }{ }^{4} .153 . \\
& { }^{8} \text { cf. 9. 18. } 6 . \\
& 5 \text { Plin. } 25.50 . \\
& \text { Plin. 27. } 85 \text {; 25. } 29 .
\end{aligned}
$$

THEOPHRASTUS

 $\dot{a} \nu \tau \epsilon \mu \beta a ́ \lambda \lambda \epsilon \iota \nu \quad \gamma \grave{\rho} \rho \quad \tau \hat{\eta} \gamma \hat{\eta}$ таукартià <каi>

 8 Kaì aै入入a סè тoıav̂ta $\pi \lambda \epsilon i ́ \omega$. $\pi \epsilon \rho \iota \gamma \rho a ́ \phi \epsilon \iota \nu$ ס̀̀

 $\pi \epsilon \rho \iota \circ \rho \chi \epsilon \hat{\imath} \sigma \theta a \iota$ каі̀ $\lambda \epsilon ́ \gamma \epsilon \iota \nu$ ம̀s $\pi \lambda \epsilon \hat{\imath} \sigma \tau a \quad \pi \epsilon \rho \grave{\imath}$ ả ϕ -

[^180]
ENQUIRY INTO PLANTS, IX. vim. 7-8

It is also said that, while cutting feverwort ${ }^{1}$ one must beware of the buzzard-hawk, if one wishes to come off unhurt; and other reasons for caution ${ }^{2}$ are also given. That one should be bidden to pray while cutting is not perhaps unreasonable, but the additions made to this injunction are absurd; for instance as to cutting the kind of all-heal which is called that of Asklepios; ${ }^{3}$ for then it is said that one should put in the ground in its place an offering made of all kinds of fruits and a cake ; and that, when one is cutting gladwyn, ${ }^{4}$ one should put in its place to pay for it cakes of meal from spring-sown wheat, ${ }^{5}$ and that one should cut it with a two-edged sword, first making a circle round it three times, ${ }^{6}$ and that the piece first cut must be held up in the air while the rest is being cut.

And many similar notions are mentioned. Thus it is said that one should draw three circles round mandrake with a sword, and cut it with one's face towards the west; and at the cutting of the second piece one should dance round the plant and say as many things as possible about the mysteries of love. (This seems to be like the direction given about cummin, ${ }^{7}$ that one should utter curses at the time of sowing.) One should also, it is said, draw a circle round the black hellebore and cut it standing towards the east and saying prayers, and one should look out for an eagle both on the right and on the left; for that there is danger to those that cut, if your eagle should come near, that
${ }^{4}$ cf. Plin. 21. 42, who read i $\rho \imath v$. cf. Diosc. 4. 22, where $\xi v \rho i s$ is called a kind of $\overline{\mathrm{I}}$ s ; ; so also Plin. 21. 142.

${ }^{6} \tau \rho / s$ conj. Sch.; $\tau \rho \in i$ is $\mathrm{U}^{*} \mathrm{M}^{*} \mathrm{P}_{2}$ Ald. So also in next section. ${ }^{7}$ cf. 7. 3. 3.

THEOPHRASTUS

 $\dot{\rho} \iota \zeta о т о \mu \iota \omega \nu \pi \lambda \eta े \nu$ ov̂s $\epsilon \ddot{\Pi} \pi о \mu \in \nu$.

 $\kappa а \pi \nu \hat{\omega}$.

2

 $\sigma \eta \sigma a \mu \omega ́ \delta \eta ~ \tau о и ̆ \tau o v$.

 є́ $\xi a \mu \beta \lambda \omega ̈ \sigma \epsilon \iota s ~ к а i ̀ ~ \tau a ̀ s ~ \delta v \sigma o v p i ́ a s, ~ o ́ ~ \delta ̀ ̀ ~ o ̀ m o ̀ s ~ \dot{\eta}$

[^181]
ENQUIRY INTO PLANTS, IX. viir. 8-ix. 2

they may die ${ }^{1}$ within the year. These notions then seem to be irrelevant, as has been said. There are however no methods of root-cutting besides those which we have mentioned.

Of the medicinal uses of divers parts of plants.

IX. As was said, ${ }^{2}$ of some plants the root, fruit and juice are all serviceable, as of all-heal among others; of some the root and the juice, as of scammony ${ }^{3}$ cyclamen thapsia and others, such as mandrake; for the leaf of this, they say, used with meal, is useful for wounds, and the root for erysipelas, when scraped and steeped in vinegar, and also for gout, for sleeplessness, and for love potions. It is administered in wine or vinegar ; they cut little balls of it, as of ${ }^{4}$ radishes, and making a string of them hang them up in the smoke over must.
${ }^{5}$ Of hellebore both root and fruit are useful for the same purposes, ${ }^{6}$-if it is true, as is said, that the people of Anticyra use the fruit as a purge; this fruit contains the well-known ${ }^{7}$ drug called sesamodes.

Various parts of all-heal are also useful, and not all for the same purposes; the fruit is used in cases of miscarriage and for disorders of the bladder, while the juice, ${ }^{8}$ which is called khalbane, is used in cases of miscarriage and also for sprains and such-like troubles; also for the ears, and to strengthen the
${ }^{5}$ Diosc. 4. 108, 109 and 162.
${ }^{6}$ rà̀̀ $\dot{\alpha}$ conj. Sch. from G; $\tau \alpha \hat{v} \tau a U^{*} M^{*}$ Ald.
${ }^{7}$ I have inserted $\tau \grave{r}$. cf.9. 14. 4 ; Plin. 22. $133 ; 25.52$ and 64 ; Diose. l.c. The drug was actually called $\sigma \eta \sigma a \mu o \epsilon \delta(\bar{t}$ s or бпбаuoєi̊̀ns. For the sense of tov̀rov cf. 3. 7. 3; 3. 8. 3 and reff.
${ }^{8}$ This seems to be a mistake. cf. 9. 7. 2; Diosc. 3. 83; Plin. 12. 126.

THEOPHRASTUS

 тò $\sigma \pi \epsilon ́ \rho \mu a$ т \bar{s} р $\rho i \zeta \eta \eta s . ~ \gamma i ́ \nu \epsilon \tau a \iota ~ \delta e ̀ ~ \pi \epsilon \rho i ̀ ~ \Sigma v \rho i ́ a \nu ~$ каі тє́ $\mu \nu \epsilon \tau а \iota ~ \pi \epsilon \rho і ̀ ~ \pi v \rho а \mu \eta \tau o ́ \nu . ~$

 $\kappa а i ̀ \pi \rho o ̀ s ~ \tau a ̀ ~ \epsilon ̌ \lambda \kappa \eta ~ \epsilon ̇ \nu ~ \mu \epsilon ́ \lambda \iota \tau u ~ o ̀ ~ \delta e ̀ ~ o ̉ \pi o ̀ s, ~ \pi \rho o ̀ s ~ \tau a ̀ s ~$

4

Kaì тồ oukv́ov dè tov̂ ả

 δ è каì $\mathfrak{\eta} \delta u ́$.

Tò $\mu \epsilon ̂ \nu ~ o ̛ ̉ \nu ~ \mu \grave{\nu} \pi \rho o ̀ s ~ \tau a u ̉ \tau o ̀ ~ \pi a ́ \nu \tau a ~ \tau a ̀ ~ \mu \epsilon ́ \rho \eta ~$

[^182]
ENQUIRY INTO PI.ANTS, IX. ix. 2-5

voice. The root is used in childbirth, for diseases of women, and for flatulence in beasts of burden. It is also useful in making the iris-perfume because of its fragrance; but the seed is stronger than the root. It grows in Syria and is cut at the time of wheat-harvest.

Of cyclamen the root is used for suppurating ${ }^{1}$ boils; also as a pessary for women and, mixed with honey, for dressing wounds; the juice for purgings of the head, ${ }^{2}$ for which purpose it is mixed with honey and poured in; it also conduces to drunkenness, if one is given a draught of wine in which it has been steeped. They say also that the root is a good charm for inducing rapid delivery and as a love potion; ${ }^{3}$ when they have dug it up, they burn it, and then, having steeped the ashes in wine, make little balls like those made of wine-lees which we use as soap.
${ }^{4}$ Of 'wild cucumber' (squirting cucumber) the root is used for ${ }^{5}$ white leprosy and for mange in sheep, while the extracted juice makes the drug called 'the driver.' ${ }^{6}$ It is collected in autumn, for then it is best.

Of germander the leaves pounded up in olive-oil are used for fractures and wounds and for spreading sores; the fruit purges bile, and is good also for the eyes; for ulcers ${ }^{7}$ in the cye they pound up the leaf in olive-oil before applying it. It has leaves like the oak, but its entire growth is only about a palm high; and it is sweet both to smell and taste.

Now that all parts are not serviceable for the same purpose is perhaps not strange; it is more

$$
\begin{aligned}
& { }^{4} \text { Diosc. 4. } 150 \text {; Plin. 20. 3. }{ }^{5}{ }^{5}{ }^{\pi} \rho \text { ds add. St. } \\
& { }^{6} \text { cf. } 9.14 .1 \text { and } 2 .
\end{aligned}
$$

THEOPHRASTUS

 í $\chi a ́ \delta o s, ~ o i ~ \delta ’ ~ a ̈ \pi \iota о \nu ~ к а \lambda о \hat{v} \sigma \iota, ~ к а і ̀ ~ \tau \eta ई \varsigma ~ \lambda \iota \beta a \nu \omega \tau i ́-~$

 $\mu a \rho a ́ \theta \omega$ т $\pi \grave{̀} \nu \quad \pi \lambda a \tau u ́ \tau \epsilon \rho о \nu$ каu $\lambda \grave{\nu} \nu$ ठє̀ $\nu a \rho \theta \eta \kappa \omega ́ \delta \eta$

 $\lambda \epsilon \pi v \rho \iota \omega ́ \delta \eta$. фı入єî δ è ópєıvà $\chi \omega \rho i ́ a ~ к а і ̀ ~ к о \chi \lambda a-~$
 oủv í $\delta \iota o \nu \tau \omega \hat{\omega} \nu \epsilon \rho \eta \mu \epsilon ́ \nu \omega \nu$.

 $\lambda \epsilon \cup \kappa \eta ̀ \nu ~ \tau o ̂ ̂ ~ \delta e ̀ ~ \mu e ́ \lambda a \iota \nu a \nu \cdot ~ o i ~ \delta e ̀ ~ \tau o v ̂ ~ \mu e ̀ \nu ~ \mu e ́ \lambda a \nu o s ~$

 $\phi u ́ \lambda \lambda o \nu ~ \delta \grave{\epsilon} \pi \lambda a \tau v ́ \sigma \chi \iota \sigma \tau o \nu, \pi a \rho o ́ \mu o \iota o \nu ~ \sigma \phi o ́ \delta \rho a \tau \hat{\omega}$

[^183]264

ENQUIRY INTO PLANTS, IX. ix. $5-\mathrm{x}$. I

surprising that part of the same 'root' should purge upwards and another part downwards, as is the case with thapsia and iskhas-which some call apios (spurge) -and with libanotis; for ${ }^{1}$ it is not strange that on the other hand the same parts should purge both upwards and downwards, as is the case with 'the driver.'
${ }^{2}$ Thapsia has a leaf like fennel, but broader, a stalk like that of ferula, and a white root.
${ }^{3}$ Islhas (or apios) has a leaf like rue and short, three or four prostrate stems, and a root like that of asphodel, except that it is composed of scales; ${ }^{4}$ it loves mountain districts with a gravelly soil. It is collected in spring. Now this account applies only to the above-mentioned plants.

Of hellebores, the white and the black: their uses and distribution.

X. ${ }^{5}$ The white and the black hellebore appear to have nothing in common except the name. But accounts differ as to the appearance of the plants; some say that the two are alike and differ only in colour, the root of the one being white, of the other black; some however say that the leaf of the 'black' is like that of bay, that of the white like that of the leek, but that the roots are alike except for their respective colours. Now those who say that the two plants are alike describe the appearance ${ }^{6}$ as follows :- the stem is like that of asphodel and very short; the leaf has broad divisions, and is extremely like that of ferula, but is long; it is closely attached to the root and
${ }_{5}^{4}$ cf. Diose. 3. 134.
${ }^{5}$ Plin. 25. 47-61. See Index. cf. 9. 11. 5 n .
6 i.e. of the two plants regarded as one; but the text of the following description seems to be hopelessly confused.

THEOPHRASTUS

 रovoı $\pi \lambda \epsilon i ̂ \sigma \tau o s ~ \gamma a ̀ \rho ~ \epsilon ̇ v \tau a v ̂ \theta a ~ ф u ́ є \tau a \iota ~ к а i ̀ ~ a ̈ p ı \sigma \tau о s . ~$

 ő $\rho o s ~ є v ̉ \phi a ́ \rho \mu а к о \nu . ~ o ́ ~ \delta e ̀ ~ \lambda є v к o ̀ s ~ o ̀ \lambda \iota \gamma a \chi o \hat{v} . ~ \beta e ́ \lambda-~$

 єîvą $\pi a ́ p v$ тov̀s $\pi i ́ v o \nu \tau a s$.
 ó Oítaîos. ó dè Пapváбıos каì ó Aitw入ıкós,

[^184]
ENQUIRY INTO PLANTS, IX. x. 1 -4

creeps on the ground; the plant has numerous roots, to wit, the slender roots which are serviceable.

Also they say that the black is fatal to horses oxen and pigs, wherefore none of these animals eat it; while the white is eaten by sheep, and from this circumstance the virtue of the plant was first observed, since it purges them; it is at its prime in autumn, and past its prime when spring comes. However the people of Mount Oeta gather it for the meetings ${ }^{1}$ of the Amphictyons; for it grows there in greatest abundance and best, though at only one place in the district of Oeta, namely about Pyra.
(The seed of rupture-wort is mixed with the potion given to promote easy vomiting; this plant is a small herb).

The black kind of hellebore grows everywhere; it is found in Boeotia, in Euboea and in many other places; but best is that from Mount Helicon, which mountain is in general rich in medicinal herbs. The white occurs in few places; the best and that which is most used comes from one of four places, Oeta, ${ }^{2}$ Pontus, Elea, and Malea. ${ }^{3}$ They say that that of Elea grows in the vineyards and makes the wine so diuretic that those who drink it become quite emaciated.

But best of all these and better than that found anywhere else is that of Mount Oeta, while that of Parnassus and that of Aetolia (for the plant is common in these parts too and men buy and sell it, not knowing ${ }^{4}$ the difference) are tough and ex-
${ }^{2} \delta$ before Oìraios add. Sch.
 ${ }_{\omega} \quad$ rns Ald. Plin. l.c. gives Parnassus as the fourth locality: cf. § 4 .
${ }_{4}$ The words où $\chi \delta \tau \in$ may have arisen from oủk єiठठ́ $\tau \in s$.

THEOPHRASTUS

äyav $\pi \epsilon \rho \iota \sigma \kappa \epsilon \lambda \epsilon i ̂ s$ ．$\tau a \hat{v ิ \tau a} \mu \epsilon ̀ \nu$ ov̉v ő $\mu \circ \iota a$ тaîs $\mu о \rho \phi a i ̂ s$ ồта таîs $\delta v \nu a ́ \mu \in \sigma \iota$ ठıaфє́ $\rho о \nu \tau a$ ．
$\mathrm{K} a \lambda o v ̂ \sigma \iota$ ठè тòv $\mu e ́ \lambda a \nu a ́ ~ \tau \iota \nu \epsilon \varsigma ~ e ́ к т о \mu о \nu ~ M \epsilon \lambda a \mu-~$

 $\delta_{\epsilon} \pi \lambda \epsilon i ́ \omega ~ \chi р \hat{\nu} \nu \tau a \iota$.

XI．Под入à δ é є̇ $\sigma \tau \iota \kappa а \grave{\iota} \tau \grave{\alpha} \pi а \nu a ́ к \eta ~ к а i ̀ ~ o i ~ \tau \iota \theta v ́-~$

 $\kappa а \lambda о u ́ \mu \epsilon \nu o \nu ~ \tau o ̀ ~ \delta ' ~ ' А ~ А к к \lambda \eta \pi i ́ \epsilon \iota o \nu ~ \tau o ̀ ~ \delta ~ ' ~ ' Н ~ Н а ́ к \lambda є \iota o \nu . ~$

 $\chi \omega \rho i ́ a ~ \tau a ̀ ~ \pi i o v a \cdot ~ \chi \rho \omega ̂ \nu \tau a \iota ~ \delta \grave{\epsilon} \pi \rho o ́ s ~ \tau \epsilon ~ \tau o v ̀ s ~ e ́ ~ \chi ~ \chi \epsilon \iota s$ $\kappa a i ̀ ~ \tau a ̀ ~ \phi а \lambda a ́ \gamma \gamma \iota a ~ \kappa а і ̀ ~ \tau o v ̀ s ~ \sigma \eta ̂ \pi a s ~ к а i ~ \tau a ̀ ~ a ̈ \lambda \lambda a ~$

 μ é $\lambda \iota \tau \iota$ ．
 $\sigma \pi \iota \theta a \mu \grave{\nu} \nu$ 入єикク̀̀ $\delta \grave{\epsilon}$ каіे $\pi a \chi \epsilon i ̂ a \nu ~ \sigma \phi o ́ \delta \rho a$ ，каі

 $\pi \lambda \grave{\eta} \nu \pi a \chi u ́ \tau \epsilon \rho о \nu \cdot a ̉ \gamma a \theta o ̀ \nu ~ \delta \epsilon ̀ ~ \epsilon i \nu a i ́ ~ \phi a \sigma \iota ~ \epsilon ́ \rho \pi \epsilon \tau \hat{\omega} \nu$
 for＇black hellebore．＇cf．P＇lin．25．47；Diosc．4． 149 ；Hesych． and Galen，Lex．Hipp．s．v．
${ }^{2}$ 9．9．2．${ }^{3}$ Plin．25．32；26． 139.
${ }^{4}$ цıкрà̀ conj．H．from Plin．25．32．radix parva；$\mu а к \rho \alpha ̀ \nu ~ U * ~$ Ald．

ENQUIRY INTO PLANTS, IX. x. 4-xi. 2

ceeding harsh. These plants then, while resembling the best form in appearance, differ in their virtues.

Some call the black the 'hellebore of Melampus,'1 saying that he first cut and discovered it. Men also purify horses and sheep with it, at the same time chanting an incantation; and they put it to several other uses.

Of the various kinds of all-heal.
XI. There are also several kinds of all-heal tithymallos (spurge) and other herbs. To begin with, one plant called all-heal is the one found in Syria, of which we have recently spoken. ${ }^{2}{ }^{3}$ Then come the three other kinds, known as that of Chaeronea, that of Asclepios, and that of Heracles. That of Chaeronea has a leaf like monk's rhubarb, but larger and rougher, a golden flower, and a small ${ }^{4}$ root; and it specially loves rich ground; they use it for the bites of snakes, spiders, vipers ${ }^{5}$ and other reptiles, administering it in wine or anointing the place with it mixed with olive-oil. In treating a snake-bite they use a plaster of it, and also give a draught of it mixed with vinegar ${ }^{6}$; and they also say that it is good for sores ${ }^{7}$ when mixed with wine and olive-oil, and for tumours when mixed with honey.
${ }^{8}$ The kind called after Asklepios has a white and very stout root about a span long and a thick bark which is crusted with salt ${ }^{9}$; its stem is jointed all the way up, its leaf like that of thapsia, but thicker ; it is said that it is good to scrape and drink

[^185]
THEOPHPASTUS

$\tau \epsilon$ そúovta $\pi i ́ \nu \epsilon \iota \nu, \kappa a i ̀ ~ \sigma \pi \lambda \eta \nu o ̀ s ~ o ̋ \tau a \nu ~ a i ̂ \mu a ~ \pi \epsilon \rho i ̀$

 $\kappa а i ̀ ~ \gamma a \sigma \tau \rho o ̀ s ~ o ́ \delta v ́ v \eta s ~ \epsilon ̀ \nu ~ o i ̀ \nu \varphi ~ \xi u ́ v \nu \tau a . ~ \delta u ́ v a \sigma \theta a \iota ~ \delta \grave{~}$

 ov̉• ai סє̀ $\delta v \nu a ́ \mu \epsilon \iota \varsigma ~ a ̉ \mu \phi o i ̂ \nu ~ a i ~ a u ̛ \tau a i ́, ~ \pi \rho o ́ \sigma \theta \epsilon \tau o ́ \nu ~ \tau \epsilon ~$

${ }^{1} \kappa \in \phi \alpha \lambda \alpha i ́ a s$ conj. Sch.; кєфа入ท̂̀s Ald.
 Ald. H. cf. § 3.
${ }^{3}$ Plin. 25. 32 ; Diosc. 3. 48.
 $\pi \iota \kappa \rho \alpha ̀ \nu \mathrm{U}^{*}$; $\delta \iota \kappa \rho \alpha \nu \hat{\eta} \hat{\eta} \tau \rho \iota \kappa \rho \alpha \nu \hat{\eta}$ Ald.
270

ENQUIRY INTO PLANTS, IX. xi. 2-5

it against bites of reptiles, to take it in a posset of honey for disorders of the spleen, when the blood collects about it, and against headache ${ }^{1}$ to pound it up in olive-oil and anoint the head; that it is of use also in other obscure troubles, and against stomachache, if scraped and taken in wine. It is said also to be able to prevent long periods of sickness. Again for running sores ${ }^{2}$ one may sprinkle it on in hot wine, first washing the place, while for dry sores one may soak it in wine and apply a plaster.
${ }^{3}$ The kind named after Herakles has a large broad leaf, three spans each way, a root as thick as a man's finger, forking in two or three ${ }^{4}$; in taste it is somewhat bitter, in smell like pure frankincense ${ }^{5}$; ${ }^{6}$ it is good to drink it against epilepsy, mixed with the rennet of a seal in the proportion of one to four, or in sweet wine against pain ${ }^{7}$ in the stomach; it may be used dry ${ }^{8}$ for running sores, and mixed with honey for dry ones. Such are the special features about these plants and their respective virtues.
${ }^{9}$ There are also other kinds of all-heal, of which one has a fine leaf, the other not; the properties of both kinds are the same; namely they are used as a pessary for women, and a plaster may be made of them mixed with meal for spreading sores as well as for ordinary sores.

Of the various plants called strykhnos.

As to strykhnos again and tithymallos (spurge) there is in either case more than one form of the plant

[^186]
THEOPHRASTUS

$\lambda o t$. $\tau \hat{\omega} \nu$ रà $\rho \sigma \tau \rho v ́ \chi \nu \omega \nu$ ó $\mu \epsilon ̀ \nu ~ \dot{v} \pi \nu \omega \dot{\omega} \delta \eta S$ ó $\delta \grave{\epsilon}$

 таı δ è ध̉v $\chi a \rho a ́ \delta \rho a \iota s ~ к а i ̀ ~ \tau o i ̂ s ~ \mu \nu \eta ́ \mu a \sigma \iota \nu . ~$

 $\check{\omega} \sigma \tau \epsilon \mu \grave{\eta} \pi a v ́ \epsilon \sigma \theta a \iota ~ \mu a \iota \nu o ́ \mu \epsilon \nu о \nu ~ \tau \rho \epsilon i ̂ s, ~ к а i ~ \sigma v \mu-$

${ }^{1} c f .7 .15 .4$, where a third $\sigma \tau \rho v^{\prime} \chi \nu o s$ is mentioned, which is $\delta \mu \dot{\omega} \nu \mu \boldsymbol{\mu}$, not $\sigma \nu \nu \omega \nu \nu \mu o s$, i.e. which has nothing in common with these two $\sigma \tau \rho \chi^{\prime} \chi_{0}$ except the name. cf. also 9.15.5.
${ }^{2}$ кро́кои conj. Dalec. from Diosc. 4. 72, картдд . . . крокі-乌оута ; ко́ккоч MSS.
 conjecture $\sigma \pi \iota \theta \alpha \mu \eta \eta_{\nu} \mu \epsilon \in \gamma \alpha$.
${ }_{5}$ Plin. 21. 177-179; Diose. 4. 73.
${ }^{5}$ Opúopor Ald.H.; $\theta \rho u \delta \rho \rho o \nu U^{*}$; Bpuópov U ; Bpúopor MmBas.;

ENQUIRY INTO PLANTS，IX．xi．5－6

denoted by the name．${ }^{1}$ Of the plants called strylihnos one induces sleep，the other（thorn－apple）causes madness．The first－mentioned has a root which be－ comes red like blood as it dries，but when first dug up it is white；its fruit is a deeper orange than saffron，${ }^{2}$ its leaf like that of tithymallos or the sweet apple；and it is itself rough，and about a foot high．${ }^{3}$ The＇bark＇of the root of this they bruise severely， and soaking it in neat wine give it as a draught，and it induces sleep．It grows in water－courses and on tombs．
${ }^{4}$ The kind which produces madness（which some call thryoron ${ }^{5}$ and some peritton ${ }^{6}$ ）has a white hollow root about a cubit long．Of this three twentieths of an ounce in weight is given，if the patient is to become merely sportive and to think himself a fine fellow；twice this dose ${ }^{7}$ if he is to go mad outright and have delusions ${ }^{8}$ ；thrice the dose， if he is to be permanently insane；（and then they say that the juice of centaury is mixed with it）； four ${ }^{9}$ times the dose is given，if the man is to be killed．The leaf is like that of rocket，but larger， the stem about a fathom long；the＇head＇${ }^{10}$ is like that of a long onion，but larger and rougher．And it also resembles the fruit of the plane－tree．
briorem G．Plin．l．c．seems to have read द́puөpòv ；Diosc．l．c． Bpúov．
${ }^{6} \pi \epsilon \rho \iota \tau \tau \partial \nu$ Ald．H．，i．e．＇violent＇；pissum G ；Plin．l．c．peris－ son ；Diosc．l．c．π є́ $\rho \sigma \iota \downarrow$ ．
${ }^{7}$ סpa⿱㇒木al conj．Sch．；$\delta \rho a \chi \mu a ̀ s ~ A l d$.
${ }^{8} \kappa a l$ ．．．фаíve $\sigma \theta a$ om．UM ：ungrammatical，and possibly a gloss；but cf．Diosc．and Plin．l．c．
$\tau \epsilon ́ \tau \tau a \rho \in s$ conj．Sch．；$\tau \in ́ \tau \tau a p a s$ Ald ；$\tau \in ́ \sigma \sigma \alpha \rho a s \mathrm{U}^{*}$ ．
${ }^{10} 7.4 .10$ it was said that rń⿱日一 here the＇head＇seems to be the inflorescence．$c f$ ．Diosc．and Plin．l．c．

THEOPHRASTUS

7

 $\mu \eta ́ \kappa \omega \nu o s, ~ \tau o ̀ ~ \delta e ̀ ~ \sigma v \nu a \mu \phi o ́ т \epsilon \rho o \nu ~ o ̛ \sigma o \nu ~ o ́ \xi v ́ \beta a \phi o v . ~$

 $\pi о i ̂ s ~ \chi \rho \eta \dot{\sigma} \iota \mu a$.

[^187]
ENQUIRY INTO PLANTS, IX. xı. $7-9$

Of the various kinds of tithymallos.

${ }^{1}$ Of the various plants called tithymallos (spurge) that which is called sea-spurge has a round scarlet ${ }^{2}$ leaf; the stem (and the size of the plant generally) is about a span long, and the fruit is white. It is gathered when the grape is just turning, and the dried fruit is given in a draught, the dose being the twenty-fourth part of a pint.
${ }^{3}$ That which is called the 'male' has a leaf like the olive, and the height of the whole plant is a cubit. Of this they collect the juice at the time of vintage, and, after preparing it, use it as occasion demands ${ }^{4}$; and it purges chiefly downwards.
${ }^{5}$ The kind of tithymallos called 'myrtle-like' is white; it has a leaf like the myrtle, but spinous at the tip; it puts out earthward twigs about a span long, and these bear the fruit ${ }^{6}$ not all at the same time but in alternate years, so that from the same root grow fruits partly this and partly next year. It loves hill-country. The fruit of it is called a 'nut.' They gather it when the barley is ripening and dry and clean it ; (it is the actual fruit ${ }^{7}$ which they clean) ; they wash it in water and, after drying it again, give it in a draught, mixing with it two parts of 'black ${ }^{8}$ poppy'; and the whole dose amounts to about an eighth of a pint. It purges phlegm downwards. If they administer the 'nut' itself, they first pound it up in sweet wine, or give it in parched sesame to bite up. These plants then have leaves juices or fruits which are serviceable.
${ }^{5}$ Diose. 4. 164 ; Plin. 26. $66 . \quad{ }^{6}$ cf. C.P. 4. 6. 9.
${ }^{7}$ W. adds $\delta \dot{\epsilon}$ after $a \dot{v} \tau \dot{\nu} \nu$. The treatment of the leaves has perhaps dropped out. $c f$. Plin. l.c. (''s version is even shorter.
${ }^{8}$ رé $\lambda a \iota v a$ must here mean 'dark,' i.e. red. See Index.

THEOPHRASTUS

 ó סè картòs $\pi \rho o ́ s ~ \tau \epsilon ~ \tau a ̀ s ~ \sigma \tau р а \gamma \gamma o u p i ́ a s ~ к а i ̀ ~ \pi ~ \rho o ̀ s ~$
犭á̀a $\gamma v \nu a \iota \xi i \nu ~ \epsilon ̇ \mu \pi о \iota \epsilon i ̂ \nu . ~$

 Sè $\pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \gamma \hat{\eta} \nu \kappa а ́ т \omega . ~ к \omega \lambda u ́ \epsilon \iota ~ \delta \grave{~ к а ı ̀ ~ \epsilon i s ~ i \mu a ́ т \iota a ~}$
 то $\boldsymbol{i} \mathbf{a}$.

${ }^{1}$ Diosc. 3. 74 ; Plin. 19. 187.
${ }^{2} \mathrm{cf}$. Plin. 24. 99 and 101.
${ }^{2}$ cf. 7.6.2;9.9.5.

ENQUIRY INTO PLANTS, IX. xi. ro-xir. i

Of the two herls called libanotis.

${ }^{1}$ Of the plants called libanotis, (for there are two) one is barren, the other fruitful, the latter having both fruit and leaves that are serviceable, the former only a serviceable root. The fruit is called kakhry. ${ }^{2}$ This plant has a leaf like marsh celery, but much larger, a stem a cubit long or more, a large stout white root, which smells like frankincense, and a white rough elongated fruit. It grows chicfly wherever there is parched and rocky soil; the root is serviceable for sores, and for diseases of women when given in a draught of dry black wine. The fruit is good for strangury, for the ears, for ulcers ${ }^{3}$ on the eye, for ophthalmia and for producing milk in women.

The barren kind has a leaf like that of the bitter lettuce, but rougher and paler; the root is short. It grows where there is abundance of heather. ${ }^{4}$ The root can purge both upwards and downwards, the upper part being used for the former, that nearer the ground for the latter purpose. Also, if it is put among clothes, it prevents moth. It is gathered at the time of wheat-harvest.

Of the two kinds of chamaeleon.

XII. ${ }^{5}$ Of chamaeleon there is the white kind and the dark; the properties of the roots are different, and the roots also differ ${ }^{6}$ in appearance. In the one case the root is white stout and sweet, and it has a heavy smell; they say that when cooked it is serviceable against flux; it is chopped up like

[^188]
THEOPHRASTUS

 ò $\lambda о \sigma \chi$ oívov，каі̀ $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ \epsilon ̄ \lambda \mu \iota \nu \theta a ~ \tau \grave{\eta} \nu \pi \lambda a \tau \epsilon i ̂ a \nu$,

 $\mu \epsilon \tau \grave{a}$ ė $\lambda a i ̂ o v ~ \kappa a i ̀ ~ v ̋ \delta a \tau o s, ~ \sigma \hat{v} \nu ~ \delta e ̀ ~ \mu \epsilon \tau \grave{a ̀ ~} \dot{\rho} a \phi a ́ \nu \omega \nu$

 таí тıৎ à $\sigma \theta \epsilon \nu o \hat{v} \nu \tau о \varsigma ~ a ̀ \nu \theta \rho \omega ́ \pi т о \nu ~ \delta \iota a \pi \epsilon \iota \rho a ̂ \sigma \theta a \iota ~ \epsilon i ~$

 $\pi а \chi є i ̂ a ~ к а i ̀ ~ \mu e ́ \lambda a \iota \nu a ~ \delta \iota a \rho \rho a \gamma є i ̂ \sigma a ~ \delta e ̀ ~ i ́ \pi o ́ \xi a \nu \theta o s . ~$

 $\theta \epsilon i s$ èma入єє申ó $\mu \epsilon \nu$ оs каì ả̀фòv $\dot{\omega} \sigma a v ́ \tau \omega \varsigma^{\cdot}$ ả $\nu a \iota \rho \epsilon \hat{\imath}$ Sè каì тoùs кúvas．

[^189]
ENQUIRY INTO PLANTS, IX. xir. 1-3

radishes ${ }^{1}$ and the pieces strung on a rush ; it is also good against the broad maw-worm; the patient first eats a bunch of raisins and then drinks about an eighth of a pint of this scraped up in a draught of dry wine. It is fatal to dogs and pigs; to kill a dog it is well mixed up in a meal paste with oil and water, to kill a pig it is mixed with 'mountain cabbage' (spurge). ${ }^{2}$ It is given to a woman in sweet winelees or sweet wine. And if one wishes to discover whether a man that is sick will recover, they say that he should be washed with this for three days, and, if he survives the experience, he will recover. It grows everywhere alike and has a leaf like the golden thistle, but larger; the plant itself has a large thistle-like ${ }^{3}$ head ${ }^{4}$ close to the ground ; some actually ${ }^{5}$ call it the thistle.
${ }^{6}$ The dark kind resembles the other in leat, which is like that of the golden thistle but smaller and smoother; the plant itself is in general appearance like a sunshade; the root is stout and black, and when broken is yellowish. It likes cold uncultivated soil : it has the property of expelling leprosy; for this it is given pounded up in vinegar, or else scrapings of it are made into a plaster ; and it is also used for the white leprosy. This plant is also fatal to dogs. ${ }^{7}$

Of the various plants called 'poppy.'

${ }^{8}$ There are several kinds of wild poppy: the one called the horned poppy is black: the leaf of this is
 l.c.; δ^{\prime} đккауо PAld.G.
${ }^{6}$ Diosc. 3. 9 ; Plin. l.c.
${ }^{7}$ кúvas: кuvoppaíotas, dog-ticks, conj. Reinesius from Plin. ricinos canum.
${ }^{8}$ Diosc. 4. 64 ; Plin. 20. 205 and 206.

- THEOPHRASTUS

$\pi \epsilon \rho \phi \lambda o ́ \mu o v \tau \eta ̂ S \mu \epsilon \lambda a i ́ \nu \eta s \hat{\eta}^{\eta} \tau \tau o \nu \delta \epsilon ̀ \mu \epsilon ́ \lambda a \nu, \tau o \hat{v} \delta \hat{\epsilon}$

4 'Etépa ס̀̀ $\mu \eta к \kappa \omega$ pooàs кадоvرє́vך тароноía

 $\delta a \kappa \tau \dot{\gamma} \lambda o v$. $\sigma v \lambda \lambda \epsilon ́ \gamma \epsilon \tau a \iota$ ठè $\pi \rho o ̀ ~ \tau o v ̂ ~ \theta \epsilon \rho \iota \sigma \mu o v ̂ \tau \hat{\omega} \nu$ $\kappa \rho \iota \theta \hat{\omega} \nu, \epsilon \in \gamma \chi \lambda \omega \rho о \tau \epsilon ́ \rho a \quad \delta \grave{\epsilon} \mu \hat{a} \lambda \lambda o \nu$. каӨaípєı $\delta \grave{\epsilon}$ $\kappa а ́ т \omega$.
5

 $\kappa \rho a ́ \tau \omega . ~ \tau а и ิ \tau \alpha ~ \mu \grave{v} \nu$ ov̂v $\tilde{\omega} \sigma \pi \epsilon \rho$ ó $\mu \omega \nu v \mu i ́ a ~ \tau \iota \nu \grave{~}$ $\sigma v \nu \epsilon$ 'í $\eta \pi \tau a \iota$.
XIII. T $\hat{\nu} \nu$ ס̀̀ $\dot{\rho} \iota \zeta \hat{\omega} \nu$ кaì èv toîs $\chi v \mu o i ̂ s ~ a i$

[^190]
ENQUIRY INTO PLANTS, IX. xir. 3-xim. I

like that of the black mullein, but it is not so black ; the stem grows about a cubit high, the root is stout and shallow, the fruit is twisted like a little horn ${ }^{1}$: it is gathered at the time of wheat harvest. It has the property of purging the belly, and the leaf is used for removing ulcers on sheep's eyes. It grows by the sea, wherever there is rocky ground.
${ }^{2}$ Another kind of poppy is that called rhoias, which is like wild chicory, wherefore it is even eaten : it grows in cultivated fields and especially among barley. It has a red flower, and a head as large as a man's finger-nail. It is gathered before the barley-harvest, when it is still somewhat green. It purges downwards.
${ }^{3}$ Another kind of poppy is called Herakleia: it has a leaf like soap-wort, with which ${ }^{4}$ they bleach linen: the root is slender and does not run deep, and the fruit is white. The root of this plant purges upwards: and some use it in a posset of mead for epileptics.
${ }^{5}$ These kinds then are distinct plants, though they come under one name.

Of roots possessing remarkable taste or smell.

XIII. The differences between roots are shown in their tastes ${ }^{6}$ and in their smells : some are pungent, some bitter, some sweet : some again have a pleasant, others a disagreeable smell. The plant called yellow water-lily ${ }^{7}$ is sweet: it grows in lakes and marshy places, as in the district of Orchomenus, at
${ }^{4}$ This appears to refer to $\sigma \tau \rho o u \theta$ ós, not to 'Hpak λ e'ía, as Plin. takes it. cf. 6. 4. 3 and Index, $\sigma \tau \rho o v^{\prime} \iota_{o v}$ (2).
${ }^{5}$ i.e. poáds and 'Hpakतéia are popularly called 'poppies.'
 7. 15. 4.
${ }^{6}$ रv μ oîs conj. Scl. ; χ v入oîs Ald.
Plin. 25. 75.

THEOPHRASTUS

 бळ́бєка.

 $\tau \grave{a} \mu \epsilon ̀ v$ oû̀ $\pi \rho \circ \sigma a ́ \gamma \epsilon \iota \nu \kappa \epsilon \lambda \epsilon v ́ o v \sigma \iota \nu$ èv v̉ $\delta a \tau \iota$ ảva-

 $\kappa \nu i \sigma a \iota \cdot \epsilon \in a ̀ \nu ~ \delta \grave{\epsilon}$ ai $\mu \hat{\eta} \tau \rho a \iota \pi \rho o \pi \epsilon ́ \sigma \omega \sigma \iota, \tau \hat{\imath}$ v̋ $\delta a \tau \iota$ àток $\lambda \dot{u} \zeta \epsilon \iota \nu$.]

[^191]
ENQUIRY INTO PLANTS, IX. xil. i-3

Marathon and in parts of Crete : the Boeotians, who eat the fruit, call it madonaïs. It has a large leaf which lies on the water: and it is said that it acts as a styptic if it is pounded up and put on the wound: it is also serviceable in the form of a draught for dysentery.
${ }^{1}$ 'Scythian root' (liquorice) is also sweet; some indeed call it simply 'sweet-root.' ${ }^{2}$ It is found about Lake Maeotis : it is useful against asthma or a dry cough and in general for troubles in the chest: also, administered in honey, for wounds : also it has the property of quenching thirst, if one holds it in the mouth: wherefore they say that the Scythians, with the help of this and mares' milk cheese ${ }^{3}$ can go eleven or twelve days without drinking.
${ }^{4}$ [Birthwort is fragrant to the smell but in taste is very bitter: in colour it is black. The best grows on the mountains: it has a leaf like alsine, but rounder: it is useful for many purposes, and is best for sores on the head ${ }^{5}$ and other sores, also for bites of reptiles, for inducing sleep and for disorders of the womb. ${ }^{6}$ It is directed that it should be applied as a plaster, steeped in water, and for the other purposes should be given shredded into honey and olive-oil : for snake-bites it should be taken in sour wine and also used as a plaster on the bite : to induce sleep it should be scraped up ${ }^{7}$ and administered in black dry wine ; in cases of prolapsus uteri a lotion of it mixed with water should be applied.]
${ }^{4}$ Diosc. 3. 4; Plin. 25. 95. This section is repeated 9. 20. 4. with considerable variations: that seems to be its proper place.
${ }^{5} \kappa \in \phi a \lambda \hat{\eta} s$ conj. W.; $\kappa \in \phi a \lambda \eta \eta \nu$ Ald. cf. § 20, кєфа入 $\delta \theta \lambda \alpha \sigma \tau \alpha$.
 duplicate passage § 20 ; $\left.\begin{array}{c}\epsilon \\ \tau \\ \hline\end{array}\right)$ MSS.
${ }^{7}$ кvíбаı conj. W.; кviбаs U*Ald.

THEOPHRASTUS

 є้̇ тоîs ép

 $\mu a \sigma \iota$ ठıафорàs où $\tau \hat{\omega} \lambda \epsilon \cup \kappa \hat{\omega}$ каї μ é $\lambda a \nu \iota \kappa а \grave{\imath} \xi a \nu \theta \hat{\omega}$ $\mu o ́ v o \nu, a ̀ \lambda \lambda$ ' ${ }^{\prime} \nu \iota a \iota ~ к a i ̀ ~ o i \nu o \chi p \omega ̄ \tau \epsilon \varsigma, ~ a i ~ \delta ' ~ \epsilon ́ \rho v \theta \rho a i ́, ~$

5
 خà ρ ả $\mu \phi о \tau \in ́ \rho \omega s$, ó $\rho v \tau \tau о \mu \epsilon ́ \nu \eta$ є́ $\rho v \theta \rho a ̀ ~ \xi \eta \rho а \iota \nu о \mu \epsilon ́ \nu \eta ~$

 трòs тàs í χ Łádas.

[^192]284

ENQUIRY INTO PLANTS, IX. xim. 4-6

${ }^{1}$ These then are sweet : other roots are bitter, and some unpleasant to the taste. Of those that are sweet ${ }^{2}$ there are some that cause mental derangement, as the plant like the golden thistle which grows near Tegea : of this Pandeios the sculptor ate, and went mad while he was working in the temple. Others have fatal effects, as that ${ }^{3}$ which grows near the mines in the fields of ${ }^{4}$ Thrace: this however is inoffensive and quite sweet to the taste, and the death which it causes is easy and like falling asleep. There are also differences in colour, not merely as to being black or white or yellow, but some are quite winecoloured and some are red, as the root of madder.
${ }^{5}$ The root of pentaphyllon or pentapetes (cinquefoil) ${ }^{6}$ (for the plant bears both names) is red when it is dug up, but as it dries it becomes black and square: its leaf is like a vine-leaf, and it is small and like it in colour : it grows and fades along with the vine. It only has five leaves in all, whence its name: it sends out long slender stems on the ground, and it has joints. ${ }^{7}$
${ }^{8}$ Madder has a leaf like ivy, but it is rounder: it grows along the ground like dog's-tooth grass and loves shady spots. It has diuretic properties, wherefore it is used for pains in the loins or hip-disease.

Some roots are of peculiar shape, as that of the plant called 'scorpion-plant' (leopard's bane) ${ }^{9}$ and that of polypody. For the former is like a scorpion

[^193]
THEOPHRASTUS

 $\pi \epsilon \rho$ ai тồ $\pi о \lambda u ́ \pi o \delta o s ~ \pi \lambda \epsilon \kappa \tau a ́ v a \iota$. каӨaípєı $\delta \grave{\epsilon}$ $\kappa a ́ \tau \omega \cdot \kappa a ̂ \nu ~ \pi \epsilon \rho \iota a ́ \psi \eta \tau a i ́ ~ \tau \iota \varsigma ~ o v ้ ~ \phi a \sigma \iota \nu ~ \grave{\epsilon} \mu \phi \cup ́ \epsilon \sigma \theta a \iota$

XIV. Пaб̂̂ע $\delta \grave{\epsilon} \tau \hat{\omega} \nu \quad \dot{\rho} \iota \zeta \hat{\omega} \nu$ ai $\mu \grave{\epsilon} \nu \quad \pi \lambda \epsilon i ́ \omega$ $\chi \rho o ́ \nu o \nu ~ a i ~ \delta \grave{\epsilon}$ є̉ $\lambda a ́ \tau \tau \omega ~ \delta \iota a \mu e ́ v o v \sigma \iota \nu . ~ o ̀ ~ \mu e ̀ \nu ~ \gamma a ̀ \rho ~$

 ő $\lambda \omega \varsigma \tau \hat{\omega} \nu$ фар $\mu a ́ \kappa \omega \nu ~ \pi \lambda \epsilon i \sigma \tau \tau \nu \nu \iota a \mu \epsilon ́ \nu \epsilon \iota ~ \chi \rho o ́ \nu o \nu ~ \tau o ̀ ~$

 $\kappa o ́ \psi \omega \sigma \iota ~ \tau \iota \theta \in ́ a \sigma \iota ~ \epsilon i s ~ \tau є ́ \phi \rho a \nu ~ u ́ \gamma \rho o ́ v, ~ \kappa a i ̀ ~ o u ̛ \delta ’ ~ \omega ̂ s ~$
 $\nu v \sigma \iota \pi \rho \circ \sigma a \gamma \circ \mu \epsilon \nu \circ \nu$ тoùs λ ú $\chi \nu 0 v s$. фабì δ є̀ μ óvov

[^194]
ENQUIRY INTO PLANTS, IX. xir. 6-xiv. 2

and is also useful ${ }^{1}$ against the sting of that creature and for certain other purposes. ${ }^{2}$ The root of polypody is rough and has suckers like the tentacles of the polyp. It purges downwards: and, if one wears it as an amulet, they say that one ${ }^{3}$ does not get a polypus. It has a leaf like the great fern, and it grows on rocks.

Of the time for which roots can be kept without losing their virtue.
XIV. ${ }^{4}$ Some roots keep a longer, some a shorter time. Hellebore retains its usefulness for as much as thirty years, birthwort five or six, the black chamaeleon for forty, feverwort ${ }^{5}$ (whose root is thick and compact) for ten or twelve. Sulphur-wort keeps five or six years, the root of the ' wild vine' ${ }^{6}$ (bryony) for a year, if it be kept in the shade and not damaged : ${ }^{7}$ otherwise it rots and becomes spongy. ${ }^{8}$ Others keep for various periods. But, to speak generally, of all plants used as drugs the 'driver' ${ }^{\circ}$ keeps longest, and, the older it is, the better it is. At least a certain physician, who was no boaster nor liar, said that he had some which was 200 years old and of marvellous virtue, and that it was a present to him from some one. The cause of its keeping so long is its moisture: ${ }^{10}$ for to secure this, as soon as they have cut it, they put it among ashes without drying it, and not even so does it become dry, but up to fifty years it will put the lamp ${ }^{11}$ out if it is brought near it. And they say that alone of all

[^195]
THEOPHRASTUS

 $\sigma Ө a \iota ~ \delta ’ ~ a u ̉ t \omega ิ \nu ~ \tau a ̀ s ~ \delta v \nu a ́ \mu \epsilon \iota \varsigma ~ \mu a \nu o v \mu \epsilon ́ \nu \omega \nu ~ к а \grave{~}$

4
 $\tau \epsilon \lambda \epsilon \iota \omega \theta \hat{\eta} \nu a \iota$ каì á $\delta \rho v \nu \theta \hat{\eta} \nu a \iota ~ \tau \grave{\nu} \kappa \kappa а \rho \pi o ́ \nu . ~ \grave{\omega} \sigma a v ́-$

 $\sigma a ́ \mu \omega]$.
XV. Фариакю́סєıs ठѐ ठокои̂бıд єivaı тóто九

${ }^{1}$ Plin. 27. 143.
${ }^{2}$ i.e. not engendered in the root.
${ }^{2}$ A beetle? cf. Arist. H.A. 5. 8.
${ }^{4}$ This section is omitted in U*. Plin. 27. 144.

ENQUIRY INTO PLANTS, IX. xiv. $2-\mathrm{xv}$. 1

drugs, or to a greater degree than any, it effects a thorough purge upwards: this then is a virtue peculiar to it.

Those roots which contain any sweetness become worm-eaten in course of time, but those that are pungent are not so affected, though their virtues diminish as they become flabloy and waste away. ${ }^{1}$ No creature coming from without ${ }^{2}$ touches a pungent root, but the sphondyle ${ }^{3}$ attacks them all; this then is a peculiarity of this creature.
${ }^{4}$ Any root, they say, deteriorates if one lets the fruit grow to maturity and ripen : and so in like manner does the fruit, if you drain the root of its juice: and in general roots with medicinal properties do not have the juice of their roots taken, and only those whose seeds are medicinal are thus treated. But some say that they use the roots for choice, because the fruit is too powerful for the human body to be able to bear it. However this does not appear to be true as a universal rule, seeing that the people of Anticyra administer ${ }^{5}$ doses of the drug ${ }^{6}$ sesamodes made from hellebore, which is so called because its fruit is like sesame.

Of the localities which specially produce medicinal herbs.

XV. The places outside Hellas which specially produce medicinal herls seem to be the parts of Tyrrhenia and Latium (where they say that Circe dwelt), and still more parts of Egypt, as Homer says :

[^196]
THEOPHRASTUS

 $\phi \eta \sigma i ̀ \lambda a \beta \epsilon i ̂ \nu$ " $\epsilon \in \theta \lambda a ̀$ тá oi Пo入úסа $\mu \nu a$ тópє

 $\lambda \eta \dot{\eta} \eta \nu$ тоєєî̀ каі $\dot{\alpha} \pi a ́ \theta \epsilon \iota a \nu ~ \tau \omega ิ \nu ~ к а к \omega ิ \nu . ~ к а і ̀ ~$

 є́лєүєíaıs $\dot{\varsigma} \pi о \lambda \nu ф а ́ \rho \mu а к о \nu ~ \lambda є ́ \gamma є \iota ~ т \eta ̀ \nu ~ T v \rho \rho р \eta \nu i a \nu . ~$

Oí ठè тóтоц тávтєs $\pi \omega \varsigma$ фаívovtal $\mu \epsilon \tau \in ́ \chi \epsilon \iota \nu$

 каi oi $\pi \rho o ̀ s ~ a ̀ \nu a \tau о \lambda a ̀ s ~ є ौ \chi o v \sigma \iota ~ \theta a v \mu a \sigma \tau a ̀ s ~ \delta v \nu a ́ \mu \epsilon \iota s . ~$

 $\pi a ́ \lambda \iota \nu \dot{\eta} \sigma \nu \nu a ́ \gamma o v \sigma a \kappa \alpha i ̀ ~ \pi \rho o ̀ s ~ є ́ a u \tau \eta ̀ \nu ~ \epsilon ่ \pi \iota \sigma \pi \omega \mu \epsilon ́ \nu \eta$, à $\delta \dot{\eta} \phi a \sigma \iota \nu \epsilon \dot{v} \rho \eta \hat{\sigma} \sigma a \iota \pi \rho o ̀ s ~ \tau a ̀ ~ \tau \hat{\omega} \nu$ ỏ $\phi \iota \delta i ́ \omega \nu \tau \omega ิ \nu$

 $\hat{\eta} \nu$ ठ̀̀ $\lambda \in ́ \gamma o v \sigma \iota \nu$ oi $\mu \in ̀ \nu ~ \kappa \epsilon \nu \tau \eta \theta \epsilon i ́ \sigma \eta s ~ \tau \eta ̂ s ~ \phi \lambda \epsilon \beta o ̀ s$

[^197]
ENQUIRY INTO PLANTS, IX. xv. 1 -3

for thence he says ${ }^{1}$ that Helen brought "things of virtue which Polydamna, the Egyptian wife of Thon, gave her; there the grain-bearing earth produces most drugs, many that are good, and many baneful." Among these ${ }^{2}$ he says was nepenthes, the famous drug which cures sorrow and passion, so that it causes forgetfulness and indifference to ills. So these lands seem to have been pointed out, as it were, by the poets. For Aeschylus too in his elegies speaks of Tyrrhenia as rich in drugs, for he tells of the "Tyrrhenian stock, a nation that makes drugs."

It seems that almost all places take their share in producing drugs, but that they differ in the extent to which they do so ; for the regions of the North, South, and East have herbs of marvellous virtue. Thus in Ethiopia there is a certain deadly root ${ }^{3}$ with which they smear their arrows. And in Scythia there is this and there are also others, some of which kill at once those who eat them, some after an interval, shorter or longer, so that in the latter case men have a lingering death. In India there are many other kinds, ${ }^{4}$ but the most extraordinary, ${ }^{5}$ if they tell the truth, are these: there is one which has the power to make the blood disperse and as it were to put it to flight, ${ }^{6}$ and another which collects it and draws it to itself; these they say were discovered as remedies for the bites of deadly serpents.

In Thrace it is said there are fairly numerous other kinds, but that about the most powerful is 'blood-stancher,' ${ }^{7}$ which stops and prevents the flow

[^198]
THEOPHRASTUS

oi δ è каі $\sigma \phi о \delta \rho о т є ́ \rho \omega s ~ \delta \iota a \tau \mu \eta \theta \epsilon i ́ \sigma \eta s ~ i ́ \sigma \chi \epsilon \iota \nu ~ к а і ~$

 тò 才á入a．тívovaı סè ßóєıov．ठокєî үà ρ то入v－
 β ốs．

 μ é $\lambda a \nu a$ ．

[^199]
ENQUIRY INTO PLANTS, IX. xv. 3-6

of blood, some say if the vein is merely pricked, others even if it is deeply cut into. ${ }^{1}$ These then of the places outside Hellas are those that are most productive of drugs.
${ }^{2}$ Of places in Hellas those most productive of drugs are Pelion in Thessaly, Telethrion in Euboea, Parnassus, and also Arcadia and Laconia, for both these states produce medicinal herbs; wherefore the Arcadians are accustomed, instead of drinking medicine, to drink milk in spring when the juices of such plants are at their best, for then the milk has most medicinal virtue. It is cows' milk that they drink, since it appears that the cow eats more than any other animal and is more impartial as to what she eats.
${ }^{3}$ Both kinds of hellebore, the white and the black, grow in their country, and also carrot, ${ }^{4}$ a saffroncoloured plant like bay; and a plant which the Arcadians call 'wild cabbage' ${ }^{5}$ (spurge) but some physicians kerais ; also a plant called by some marsh mallow, ${ }^{6}$ also birthwort hartwort alexanders sulphurwort Herakleia, and both kinds of strylhnos, ${ }^{7}$ that which has a scarlet and that which has a black fruit.

There also grow there the 'wild cucumber' (squirting cucumber), of which the drug 'driver's is compounded, and the tithymallos (spurge) of which hippophaës ${ }^{9}$ is made; this is best about Tegea, and that kind is much sought after; it grows there in
${ }^{4}$ סav̂kov. This name recurs § 8 and 9. 20. 2. Text must be defective here: the epithets are unintelligible, and perhaps belong to another plant whose name has dropped out. See Index.
${ }^{5} c f .9$. 12. 1. and Index.

${ }^{7}$ cf.9.11.5. $\quad{ }^{8}$ cf.9.9 4;9.14.1.
${ }^{9}{ }^{i \pi \pi \pi o \phi} \dot{ } \epsilon s$ is elsewhere the name of a plant: $c f$. Diose. 4. 159. $\epsilon \xi$ oî may be corrupt, or the text defective.

THEOPHRASTUS

 K入єєторíà． $\Psi \omega \phi i ́ \delta a \kappa a \grave{\imath} \pi \lambda \epsilon i \sigma \tau \eta$ каì ápí $\sigma \tau \eta$ ．тò $\delta \grave{\epsilon} \mu \hat{\omega} \lambda v$

 Ү＇єivaı $\chi a \lambda \epsilon \pi o ́ v, ~ \grave{\omega} s^{\prime \prime} \mathrm{O} \mu \eta \rho o ́ s ~ \phi \eta \sigma \iota$.

 $\kappa a i ̀ \tau \hat{\eta}$ oै $\psi \epsilon \iota \kappa a \lambda \lambda i ́ \omega \nu$ каi $\delta a v ̂ \kappa \nu \quad \pi \epsilon \rho i ̀ \tau \grave{\nu} \nu \Pi$－ траїк̀̀ $\delta \iota a \phi$ є́роу тои̂то ठє̀ $\theta \epsilon \rho \mu a \nu \tau \iota \kappa o ̀ \nu ~ ф и ́ \sigma \epsilon є, ~$

 Opıov．каì тaûta μ èv коıvà $\pi \lambda \epsilon \iota o ́ \nu \omega \nu \chi \omega ́ \rho \omega \nu$ ．
 $\mu a \sigma \tau o ̀ \nu$ ठє̀ $\tau \hat{\eta}$ ठvขá $\mu \epsilon \iota$ каì $\pi \rho o ̀ s ~ \pi \lambda \epsilon i ́ \omega ~ \chi \rho \eta ́ \sigma \iota \mu о \nu ~$

 $\kappa \lambda \omega \sigma \grave{\nu}$ oủ $\delta \grave{\epsilon} \tau \hat{\varphi} \kappa \alpha \rho \pi \hat{\varphi} \cdot \chi \rho \eta \sigma_{\iota} \mu о \nu$ $\delta \grave{\epsilon} \pi \rho o ̀ s \pi о \lambda \lambda a ̀$ $\mu \epsilon ̀ \nu$ каì ä入入a，$\mu a ́ \lambda \iota \sigma \tau a ~ \delta \epsilon ́, ~ \omega ॅ \sigma \pi \epsilon \rho ~ \epsilon ̇ \lambda \epsilon ́ \chi ~ Ө \eta, \pi \rho o ̀ s ~$

[^200]
ENQUIRY INTO PLANTS, IX. xv. 6-xvi. I

considerable abundance, but in greatest abundance and best about Kleitoria.
${ }^{1}$ All-heal grows in great abundance and best in ${ }^{2}$ the rocky ground about Psophis, moly about Pheneos and on Mount Kyllene. They say that this plant is like the moly mentioned by Homer, that it has a round root like an onion and a leaf like squill, and that it is used against spells and magic arts, but that it is not, as Homer says, difficult to dig up.
${ }^{3}$ Hemlock is best about Susa ${ }^{4}$ and in the coldest spots. Most of these plants occur also in Laconia, for this too is a land rich in medicinal herbs. In Achaia tragacanth ${ }^{5}$ is abundant and is as good as that of Crete, it is believed, and even fairer in appearance. Daukon ${ }^{6}$ again is excellent in the country about Patrai ${ }^{7}$; this is by nature healing, and it has a black root. Most of these grow also on Mount Parnassus and about Telethrion. So these plants are common to several lands.

Of the medicinal herbs peculiar to Crete.

XVI. ${ }^{8}$ But dittany is peculiar to Crete. This plant is marvellous in virtue and is useful for many purposes, but especially for women in child-birth. Its leaf is like pennyroyal, to which it also bears some resemblance in taste; but the twigs are slenderer. They use the leaves, not the twigs nor the fruit: and the leaf is useful for many other purposes, but above all,

Hellas. But Plin. 25. 154 has Susa: it can hardly be the

 Persian town.${ }^{5}$ Plin. 13. 115.
${ }^{6}$ Repeated 9. 20. 2 ; cf. 9. 15. 5 and Index.
${ }^{7}$ Патраїкोे conj. Sch., cf. 9.20.2; $\pi \alpha \tau \rho \iota \kappa \grave{\nu}$ Ald.; $\sigma \pi \alpha \rho \tau \iota \alpha-$ $\kappa \grave{\eta} \nu \mathrm{U}^{*}$; $\sigma \pi a \rho \tau \iota \kappa \grave{\nu} \nu \mathrm{MP}$; Patrensi agro G.
${ }^{8}$ Plin. 25.92.

THEOPHRASTUS

 үàp ỏ入íjos ó тóтos ó фє́p $\omega \nu$, каì тov̂тov ai aîyes éк $\kappa \epsilon ́ \mu о \nu \tau a \iota ~ \delta \iota a ̀ ~ \tau o ̀ ~ \phi \iota \lambda \eta \delta \epsilon i ̂ \nu$. ả $\lambda \eta \theta$ ès δ ́́ $\phi a \sigma \iota \nu$
 $\tau о \xi \epsilon \nu \theta \hat{\omega} \sigma \iota$ є̇к $\beta a ́ \lambda \lambda \lambda \epsilon \iota$. тò $\mu \epsilon ̀ \nu$ ở้ סíкта $\mu \nu 0 \nu$

 тàs $\delta є \sigma \mu i ́ \delta a \varsigma$ є̇v váp $\forall \eta \kappa \iota ~ \grave{\eta} \kappa а \lambda a ́ \mu \omega ~ \pi \rho o ̀ s ~ \tau o ̀ ~ \mu \grave{\eta}$ $\dot{a} \pi о \pi \nu \epsilon i ̂ \nu \cdot \dot{a} \sigma \theta \epsilon \nu \epsilon \in \sigma \tau \epsilon \rho о \nu$ Үà $\rho \dot{a} \pi о \pi \nu \epsilon \hat{v} \sigma a \nu$. $\lambda \epsilon ́-$

 $\kappa а Ө a ́ \pi \epsilon \rho \kappa а \grave{a} \nprec \lambda \lambda a \operatorname{\pi o\lambda \lambda à~\pi \lambda \epsilon i\omega ~\tau ои́\tau \omega \nu ~\kappa а\tau à~}$
 траХєîà.

 $\theta a v \mu a \sigma \tau o ̀ \nu ~ a ̈ \mu a ~ к а і ̀ ~ i ́ \delta \iota o \nu ~ \tau \eta ̂ s ~ \nu \eta ́ \sigma o v . ~ \phi а \sigma i ̀ ~ \delta ' ́ ~$

[^201]
ENQUIRY INTO PLANTS, IX. xvi. r-3

as was said, against difficult labour in women; for it is said that either it makes labour quite easy or at least it confessedly makes the pains to cease: it is given as a draught in water. It is a scarce plant: for the region which bears it is not extensive, and the goats graze it down because they are fond of it. The story of the arrows is also said to be true,-that, if goats eat it when they have been shot, it rids them ${ }^{1}$ of the arrow. Such then is dittany and such its properties.
${ }^{2}$ 'False dittany' is like it in leaf, but has smaller twigs, and in virtue is far inferior. For it is of service in the same ways, but is feebler and not nearly so powerful. The virtue of dittany is perceived directly it is taken into the mouth : for a small piece of it has a very warming effect. The bunches of it are put in the hollow stem of ferula ${ }^{3}$ or a reed, so that it may not exhale its virtue : for, if it does so, it is less effective. Some say that dittany and 'false dittany' are essentially the same plant, but that the latter is an inferior form produced by growing in places with richer soil ; just as many other things ${ }^{4}$ become inferior in their properties for the same cause. For dittany loves rough ground.
${ }^{5}$ There is also another plant called 'dittany,' though it has nothing in common with these except the name. This has neither the same appearance nor the same virtue; for its leaf is like bergamotmint and its twigs are larger, and further its use and virtue are differently shewn. The true plant is, as was said, marvellous, and is also peculiar to the island of Crete. Indeed some say that the plants

[^202]
THEOPHRASTUS

$\tau \iota \nu \epsilon \varsigma$ ö $\lambda \omega \varsigma \tau \hat{\omega} \nu$ фú $\lambda \lambda \omega \nu \kappa \alpha i ̀ \tau \hat{\nu} \nu$ ỏpo $\delta a ́ \mu \nu \omega \nu \kappa \alpha i$
 $\delta \grave{\epsilon}$ ä $\lambda \lambda \omega \nu \tau \hat{\omega} \nu \gamma \epsilon \pi \lambda \epsilon i ́ \sigma \tau \omega \nu \tau a ̀ ~ \epsilon ̀ \nu \tau \hat{\varphi} \Pi a \rho \nu a \sigma \hat{\varphi}$.

 $\chi \rho \hat{\eta} \sigma \theta a \iota$ каi $\pi \rho o ̀ s ~ a ̈ \lambda \lambda a ~ a ̈ \tau \tau a . ~ \pi \iota \nu o ́ \mu \in \nu о \nu ~ \delta ' ~$

[^203]of Crete are superior in leaves boughs ${ }^{1}$ and in general all the parts above ground to those of other places; while those of Parnassus are superior to most of those found elsewhere.

Of wolf's-bane and its habitat, and of meadow-saffron.
${ }^{2}$ Wolf's-bane grows in Crete and in Zakynthos, but is most abundant and best at Herakleia in Pontus. It has a leaf like chicory, a root like in shape and colour to a prawn, ${ }^{3}$ and in this root resides its deadly property, whereas they say that the leaf and the fruit produce no effects. The fruit is that of a herb, ${ }^{4}$ not that of a shrub or tree. It is a lowgrowing herb and shows no special feature, but is like corn, except that the seed is not in an ear. It grows everywhere and not only at Akonai, ${ }^{5}$ from whence it gets its name (this is a village of the Mariandynoi) ${ }^{6}$: and it specially likes rocky ground. Neither sheep nor any other animals eat it. ${ }^{7}$ In order to be effective it is said that it must be compounded in a certain manner, and that not everyone can do this: and so that physicians, not knowing how to compound it, use it as a septic and for other purposes: and ${ }^{8}$ that, if drunk mixed in wine or a honey-posset, it produces no sensation : but that it can be so compounded as to prove fatal at a certain moment which may be in two three or six months, or in a year, or even in two years: and that the

[^204]
THEOPHRASTUS

 $\lambda \in \iota \rho i ́ \omega \cdot$ каì тои̃тo тávtas єỉéval ι_{i} ô каì тà

 $\kappa a i ̀ ~ \gamma a ̀ \rho ~ o u ̉ \delta \grave{~} \tau a \chi \epsilon i a \nu \quad \pi о є \epsilon i ̂ \sigma \theta a \iota ~ \tau \grave{\eta} \nu \dot{a} \pi a \lambda \lambda a \gamma \eta े \nu$

 $\lambda a ́ \tau \tau \epsilon \sigma \theta a \iota ~ \kappa а \grave{\imath}$ v̈бтєроу $\chi \rho o ́ \nu \omega$ тоѝs $\delta \grave{\epsilon}$ каì єis

[^205]
ENQUIRY INTO PLANTS, IX. xvi. 5-6

longer the time the more painful the death, since the body then wastes away, while, if it acts at once, death is quite painless. And it is said that no antidote ${ }^{1}$ which can counteract it has been discovered, like the natural antidotes to other ${ }^{2}$ poisonous herbs of which we are told : though the country-folk ${ }^{3}$ can sometimes save a man with honey and wine and such like things, only however occasionally and with difficulty.
(On the other hand they say that for meadowsaffron ${ }^{4}$ the antidote has been found : for that there is another root which counteracts that herb: ${ }^{5}$ and that it ${ }^{6}$ has a leaf like hellebore ${ }^{7}$ or the madonna lily: ${ }^{8}$ and that this ${ }^{9}$ is generally known. Wherefore they say that slaves often take meadow-saffron when greatly provoked, and then themselves have recourse ${ }^{10}$ to the antidote and effect a cure,-seeing that the poison does not cause a speedy and easy death, but ${ }^{11}$ one that is lingering and slow,-unless indeed, merely because the cure is so easy, ${ }^{12}$ the antidote has not been properly prepared. ${ }^{13}$ At least they say that though death may ensue at once, sometimes it only occurs after a considerable interval, which in some cases extends to a year, and that in these latter cases the dose given has incurable effects: and that

[^206]
THEOPHRASTUS

$\tau a v ̂ \tau a ~ \delta \grave{\epsilon}$ є’ $\xi a \kappa \rho \iota \beta \omega \theta \hat{\eta} \nu a \iota \mu a ́ \lambda \iota \sigma \tau a \operatorname{\pi a\rho à~\tau oîs~Tv\rho -~}$ 7 рך

 àко入ovӨєìv катà тàs $\sigma v \lambda \lambda o \gamma a ́ s \cdot ~ i \sigma o \chi \rho o ́ v o u s ~ \gamma a ̀ \rho ~$ тoùs $\theta a v a ́ \tau o u s ~ \gamma i v e \sigma \theta a \iota ~ \tau o i ̂ s ~ a ̉ \pi o ̀ ~ \tau \hat{\eta} s ~ \sigma u \lambda \lambda o \gamma \hat{\eta} s$ χ póvoıs.
δ Epaov́as δ ó Mavtıvєùs єúpク́кєє ть тoьô̂tov,
 àmó $\lambda v \sigma \iota \nu$ тoîs ò òois $\chi \rho \omega ́ \mu \epsilon \nu o s ~ \kappa \omega \nu \epsilon i ́ o v ~ \tau \epsilon ~ \kappa \alpha \grave{~}$
 бфóठра каі $\mu \iota \kappa \rho o ̀ v ~ o ̋ \sigma о \nu ~ \epsilon i s ~ \delta \rho а \chi \mu \eta ̂ s ~ o ́ \lambda к \eta ̀ \nu . ~$

 є้ $\mu \pi \epsilon \iota \rho о$ s.
${ }^{1}$ oũv add. W.
 eivaı каi M.

ENQUIRY INTO PLANTS, IX. xvi. 6-8

these facts have been most carefully ascertained among the Tyrrhenians of Herakleia. Now ${ }^{1}$ it is not surprising that in some circumstances the effects of the poison should be incurable, and yet in others that a cure should be possible, this being also the case with other deadly poisons.)

To return-wolf's bane, as has been said, is useless to those who do not understand it; in fact it is said that it is not lawful even to have it in one's possession, under pain of death; also that the length of time which it takes to produce its effects depends on ${ }^{2}$ the time when it is gathered; for that the time which it takes to kill is equal to that which has elapsed since it was gathered.

Of two famous druggists and of the virtues of hemlock.

Thrasyas of Mantineia had discovered, as he said, a poison which produces an easy and painless end; he used the juices of hemlock poppy and other such herbs, so compounded as to make a dose of conveniently small size, weighing only somewhat less than a quarter of an ounce. For the effects of this compound there is absolutely no cure, and it will keep any length of time without losing its virtue at all. He used to gather his hemlock, not just anywhere, but at Susa ${ }^{3}$ or some other cold and shady spot; and so too with the other ingredients; he also used to compound many other poisons, using many ingredients. His pupil Alexias was also clever and no less skilful than his master, being also versed in the science of medicine generally.

[^207]
THEOPHRASTUS

 $\tau \rho i ́ \psi \epsilon \iota \epsilon \nu$, ả $\lambda \lambda a ̀$ т $\pi \epsilon \rho \iota \pi \tau i \sigma a \nu \tau \epsilon \varsigma$ каì à $\phi \epsilon \lambda o ́ \nu \tau \epsilon \varsigma ~ \tau o ̀ ~$

 v̋ $\delta \omega \rho$ тivovбı $\nu, \check{\omega} \sigma \tau \epsilon \tau а \chi \epsilon i ̂ a \nu ~ \kappa а i ̀ ~ \epsilon ̇ \lambda а ф \rho a ̀ \nu ~ \gamma i ́ \nu \epsilon-~$ $\sigma \theta a \iota ~ \tau \grave{\eta} \nu \dot{a} \pi a \lambda \lambda a \gamma \eta \dot{\nu}$.
XVII. `А $\pi a ́ v \tau \omega \nu ~ \delta \grave{\epsilon} \tau \hat{\omega} \nu$ фар $\mu a ́ \kappa \omega \nu$ ai $\delta v \nu a ́ \mu \epsilon \iota \varsigma$ $\dot{a} \sigma \theta \epsilon \nu \epsilon ́ \sigma \tau \epsilon \rho a \iota ~ \tau o i ̂ s ~ \sigma v \nu \epsilon \imath \theta \iota \sigma \mu \in ́ \nu o \iota s ~ \tau o i ̂ s ~ \delta \grave{̀ ~ к а i ̀ ~ a ̉ \nu-~}$
 $\pi o \lambda u ̀ \nu \tilde{\omega} \sigma \tau \epsilon a \dot{a} \nu a \lambda i ́ \sigma \kappa \epsilon \iota \nu$ סє́ $\Theta \mu a s$ ö̀ $\lambda a s$ oưסèv $\pi a ́ \sigma-$

 каї aủтòs каї є̈тєрои.

[^208]304

ENQUIRY INTO PLANTS, IX. xvi. 9-xvir. 2

Now these things seem to have been ascertained far better in recent than in former times. And many things go to shew that the method of using the various drugs makes a difference; thus the people of Ceos formerly did not use hemlock in the way described, but just shredded it up for use, as did other people; but now not one of them would think of shredding it, but they first strip off the outside and take off the husk, since this is what causes the difficulty, as it is not easily assimilated ${ }^{1}$; then they bruise it in the mortar, and, after putting it through a fine sieve, ${ }^{2}$ sprinkle it on water and so drink it; and then death is made swift and easy.

How use diminishes the efficacy of drugs, and how they have not the same effect on all constitutions.
XVII. ${ }^{3}$ The virtues of all drugs become weaker to those who are accustomed to them, and in some cases become entirely ineffective. Thus some eat enough hellebore to consume whole bundles and yet suffer no hurt ; this is what Thrasyas did, who, as it appeared, was very cunning in the use of herbs. And it appears that shepherds sometimes do the like; wherefore the shepherd who came before the vendor of drugs (at whom men marvelled because he ate one or two roots) and himself consumed the whole bundle, destroyed the vendor's reputation: it was said that both this man and others did this every day.

For it seems that some poisons become poisonous because they are unfamiliar, or perhaps it is a more accurate way of putting it to say that familiarity makes

${ }^{3}$ Plin. 27. 144.

THEOPHRASTUS

$\epsilon i \pi \epsilon i ̂ \nu$ ís $\tau \hat{\eta}$ б $\sigma \nu \eta \theta \epsilon i ́ a ~ o u ̉ ~ ф а ́ \rho \mu а к а ~ \pi р о \sigma \delta є \xi а-~$

 каì 入оv́ $\alpha a \sigma \theta a \iota ~ \kappa a i ̀ ~ \delta \epsilon \iota \pi \nu \epsilon i ̂ \nu ~ \tilde{\omega} \sigma \pi \epsilon \rho ~ \epsilon i ́ \omega \theta \epsilon \iota ~ к а i ̀ ~ о u ̉ \kappa ~$
 бкєvаба́ $\mu \epsilon \nu о \varsigma \kappa а \tau \epsilon ́ \sigma \chi \epsilon \cdot \kappa i ́ \sigma \sigma \eta \rho \iota \nu$ үà ρ є̇ $\pi \iota \pi a ́ \tau \tau \omega \nu$

${ }^{1}$ This story is quoted by Apollonius, Hist. Mirab. 50. 306

ENQUIRY INTO PLANTS, IX. xvil. 2-4

poisons non-poisonous; for, when the constitution has accepted them and prevails over them, they cease to be poisons, as Thrasyas also remarked; for he said that the same thing was a poison to one and not to another; thus he distinguished between different constitutions, as he thought was right; and he was clever at observing the differences. Also, besides the constitution, it is plain that use has something to do with it. At least Eudemus, the vendor of drugs, who had a high reputation in his business, after making a wager that he would experience no effect before sunset, drank a quite moderate dose, and it proved too strong for his power of resistance : ${ }^{1}$ while the Chian Eudemus took a draught of hellebore and was not purged. And on one occasion he said that in a single day he took two and twenty draughts in the market-place as he sat at his stall, and did not leave the place till it was evening, and then he went home and had a bath and dined, and was not sick. However this man was able to hold out because he had provided himself with an antidote; for he said that after the seventh dose he took a draught of tart vinegar with pumice-stone dust in it, and later on took a draught of the same in wine in like manņer ; and that the virtue of the pumice-stone dust is so great that, if one puts it into a boiling pot of wine, ${ }^{2}$ it causes it to cease to boil, not merely for the moment, but altogether, clearly because it has a drying effect and it catches the vapour and passes it off. It was then by this antidote that Eudemus was able to contain himself in spite of the large quantity of hellebore which he took.

However many things go to show that use makes

[^209]
THEOPHRASTUS

 $\psi v \chi a \quad \sigma \omega ́ \mu a \tau a \mu o ́ v o \nu a ̉ \lambda \lambda a ̀$ каì т $\rho o ̀ s ~ \tau a ̀ ~ a ̈ \psi v \chi a . ~$

Tò $\delta \grave{\epsilon}$ Өך入úфovov, oi $\delta_{\epsilon} \sigma \kappa о \rho \pi i ́ o \nu ~ к а \lambda о и ̆ \sigma \iota ~ \delta ı a ̀ ~$

[^210]
ENQUIRY INTO PLANTS, IX. xvir. $4^{-x v i I I . ~} 2$

much difference; ${ }^{1}$ thus some say that the sheep of some places do not eat wormwood; yet those of Pontus not only eat it but become fatter and fairer and, as some say, have no bile. But these things may be said to belong to a different enquiry.

Of plants that possess properties affecting lifeless objects.

XVIII. Herbs and shrubs, ${ }^{2}$ as has been said, have many virtues which are shown in their effects not only on living bodies but on lifeless ones. Thus they say that there is a kind of akantha (gum arabic) which thickens water, when it is put in it; ${ }^{3}$ and that so also does the root of marsh-mallow if one shreds it and puts it in and stands the water in the open air. Marsh-mallow has a leaf like mallow, but larger and rougher; the stems are soft, the flower yellow, the fruit like that of mallow, the root fibrous and white, with a taste like that of the stem of mallow. They use it for fractures and for coughs in sweet wine, and for sores in olive-oil.
${ }^{4}$ They say that there is another kind which, if cooked with meat, combines with it and as it were sets it hard; and there are others that attract things to them, like the magnet or amber. So much for effects produced on lifeless things.

Of plants whose properties affect animals other than man.
${ }^{5}$ Wolf's bane, which some call 'scorpion-plant because it has a root like a scorpion, kills that animal

[^211]
THEOPHRASTUS

 $\lambda \epsilon ́ \beta о \rho о \nu ~ \lambda є ч к o ̀ \nu ~ к а т а т а ́ \sigma \eta, ~ \pi a ́ \lambda \iota \nu ~ a ́ \nu i ́ \sigma \tau а \sigma \theta a i ́ ~$ фабıv• ảто́д入vбє ठє̀ каì ßойs каі̀ тоо́ßата каі

 $\dot{\eta} \mu \epsilon \tau \epsilon ́ \rho о \iota \varsigma ~ \sigma \dot{\omega} \mu a \sigma \iota \chi \omega \rho i s ~ \tau \hat{\omega} \nu$ т $\rho o ̀ s$ v́ $\gamma \epsilon i ́ a \nu$ каі̀
 $\phi a \sigma i \nu \nu$ oủ $\mu o ́ \nu o \nu ~ \tau \hat{\omega} \nu ~ \sigma \omega \mu a \tau \iota \kappa \omega ̂ \nu ~ a ̉ \lambda \lambda a ̀ ~ \kappa a i ̀ ~ \tau \omega ̂ \nu ~$

 Sè ópeıvà $\chi \omega \rho i ́ a . ~ \phi а i ́ v \epsilon \tau а \iota ~ \delta \grave{e ̀ ~ o v ̉ ~ т о v ̂ т o ~ a ̈ т о \pi о \nu . ~}$
 oivต́ð η.
${ }^{1} \sigma \kappa о \rho \pi i \varphi$ conj. W.; $\sigma \kappa о р \pi i o v ~ A l d . ~$
${ }^{2}$ 18. 3, $\lambda \epsilon \in \omega \sigma \hat{\epsilon} \sigma \omega \mu a \tau \iota \kappa \bar{\omega} \nu \ldots$ 18. 11 (the account of the physical effects) is here omitted.
${ }^{3} 9.11 .6$.

ENQUIRY INTO PLANTS, IX. xviil. 2-xix. i

if it is shredded over him; while if one then sprinkles him with white hellebore, they say that he comes to life again. It is also fatal to oxen sheep beasts of burden and in general to any fourfooted animal, and kills them the same day if the root or leaf is put on the genitals; and it is also useful as a draught against a scorpion's sting. It has a leaf like cyclamen, and a root, as was said, like a scorpion. ${ }^{1}$ It grows like dog's-tooth grass, and is jointed, and it loves shady places. Now if what has been told already about the scorpion be true, then other similar tales are not incredible. (Indeed fabulous tales are not composed without some reason). ${ }^{2}$ And in relation to our own persons, apart from their effects in regard to health disease and death, it is said that herbs have also other properties affecting not only the bodily but also the mental powers.

Of plants possessing properties which affect the mental powers.
XIX. As to those which affect the mind, strylknos, as was said before, ${ }^{3}$ is said to upset the mental powers and make one mad; ${ }^{4}$ while the root of onotheras (oleander) administered in wine makes the temper gentler and more cheerful. This plant has a leaf like the almond, but smaller, ${ }^{5}$ and the flower is red like a rose. The plant itself (which loves hilly country) forms a large bush; the root is red and large, and, if this is dried, it gives off a fragrance like wine. And this does not seem surprising, since there is a sort of 'bouquet' given off by a thing which has the peculiar quality of wine.
${ }^{4}$ Diosc. 4. 117 ; Plin. 26. 111.
${ }^{5}$ мıкро́тєрод conj. W.; $\pi \iota \kappa \rho o ́ \tau \epsilon \rho о \nu$ UM ; $\pi \lambda a \tau u ́ \tau \epsilon \rho o \nu$ Ald. (so also Diosc. l.c.). G seems to have read μ акро́тєрог.

THEOPHRASTUS

 $\tau \epsilon \tau \hat{\omega} \nu \pi \epsilon \rho \iota a ́ \pi \tau \tau \nu \kappa \alpha a ̀$ ö $\lambda \omega \varsigma \tau \hat{\omega} \nu \dot{a} \lambda \epsilon \xi \iota \not \subset a \rho \mu a ́ \kappa \omega \nu$ $\lambda \epsilon \gamma о \mu \epsilon ́ \nu \omega \nu$ тоі̂s $\tau \epsilon \sigma \dot{\omega} \mu a \sigma \iota$ каі̀ таîs оікíaıs. каі̀
 Movaaîov $\epsilon i \mathfrak{s} \pi a ̂ \nu ~ \pi \rho a ̂ \gamma \mu a ~ \sigma \pi o v \delta a i ̂ o \nu ~ \chi \rho \eta ́ \sigma \iota \mu о \nu ~$

 $\pi \rho o ̀ s ~ \tau a ̀ ~ \delta а к \epsilon \tau \grave{a ̀ ~ \epsilon ̇ \nu ~ о ı ้ \nu \omega ~ к а i ̀ ~ \pi \rho o ̀ s ~ \tau a ̀ ~ \pi v \rho i ́ к а \nu \sigma \tau a ~}$ катакаи́баעтєs каì $\mu i \xi a \nu \tau \epsilon s ~ \mu e ́ \lambda \iota \tau \iota . ~ \tau a ̀ ~ \mu \epsilon ̀ \nu ~$

 $\mu \epsilon \iota \varsigma$, ö $\sigma a \iota ~ \tau a v ̉ \tau o ̀ ~ \delta u ́ v a \nu \tau a \iota ~ к а i ̀ ~ \tau \hat{\omega} \nu$ av̉т $\omega \nu$ aitíal,

[^212]
ENQUIRY INTO PLANTS, IX. xix. 2-4

Of plants said to have magical properties.

On the other hand what is said of amulets and charms in general for the body or the house is somewhat foolish and incredible. ${ }^{1}$ Thus they say that tripolion ${ }^{2}$ according to Hesiod and Musaeus is useful for every good purpose, wherefore they dig it up by night, camping on the spot. So too what is said of good or fair fame as affected by plants is quite as foolish or more so: for they say that the plant called snapdragon ${ }^{3}$ produces fair fame. This plant is like bedstraw but it has no root: and the fruit has what resembles a calf's nostrils. The man who anoints himself with this they say wins fair fame. ${ }^{4}$ And they say that the same result follows, if he crowns himself with the flower of gold-flower, sprinkling it with unguent from a vessel of unfired gold. The flower of gold-flower is like gold, the leaf is white. The stem also is white ${ }^{5}$ and hard, the root is slender and does not run deep. ${ }^{6}$ Men use it in wine against the bites of serpents, and to make a plaster for burns after burning it and mixing the ashes with honey. Such tales then, as was said before, proceed from men who desire to glorify their own crafts.

A problem as to cause and effect.

Now since the natural qualities of roots fruits and juices have many virtues of all sorts, some having the same virtue and causing the same result, while of a plant. Plin. l.c. seems to combine Diosc.'s account of $\pi \delta \bar{\lambda} \iota o \nu(3.110)$ with his account of $\tau \rho \iota \pi \delta \lambda \iota o \nu(4.132)$.
${ }^{3}$ тə̀ à $v \tau$ íppivov conj. St. from Diosc. 4. 130; Plin. 25. 129 ;

${ }_{5}^{4}$ Diosc. 4. 57; Plin. 21. 66. Qited also by Athen. 15. 27.
${ }^{6} \lambda \epsilon u \kappa \delta \nu$ conj. Sch.; $\lambda \epsilon \pi \tau \partial \nu$ UMU*Ald.G.
${ }^{6}$ Diosc. l.c.; Plin. 21. 168 and 169.

THEOPHRASTUS

$\kappa а \grave{~ \pi a ́ \lambda \iota \nu ~ o ̈ \sigma a \iota ~ \tau a ̀ ~ \epsilon ̀ \nu a \nu \tau i ́ a, ~ \delta \iota a \pi о \rho \eta ́ \sigma \epsilon \iota \epsilon \nu ~ a ̉ \nu ~ \tau \iota \varsigma ~}$
 $\pi o ́ \tau \epsilon \rho о \nu$ ö σa т $\hat{\omega} \nu$ aủt $\hat{\nu} \nu$ aïтıa катà $\mu i ́ a \nu ~ \tau \iota \nu a ̀ ~$

 $\tau \iota \nu \omega \nu$ каì ä $\lambda \lambda \omega \nu$ тàs ϕ v́ $\sigma \iota \varsigma ~ \grave{\eta}$ тàs $\delta v \nu a ́ \mu \epsilon \iota \varsigma$

XX. Tò $\delta \grave{\eta} \pi \epsilon \epsilon \pi \epsilon \rho \iota ~ \kappa а \rho \pi o ̀ s ~ \mu \epsilon ́ \nu ~ \epsilon ̇ \sigma \tau \iota ~ \delta \iota \tau \tau o ̀ \nu ~ \delta \grave{~}$ aủrov̂ тò $\gamma \in ́ \nu o s \cdot ~ \tau o ̀ ~ \mu e ̀ \nu ~ \gamma a ̀ \rho ~ \sigma \tau \rho o \gamma \gamma u ́ \lambda o \nu ~ \omega ̈ \sigma \pi \epsilon \epsilon \rho ~$
 ठафvíठєs, ن́тє́ $\rho v \theta \rho o \nu$ тò ठє̀ $\pi \rho o ́ \mu \eta \kappa \epsilon s ~ \mu \epsilon ́ \lambda a \nu ~$ $\sigma \pi \epsilon \rho \mu a ́ \tau \iota a \quad \mu \eta \kappa \omega \nu \iota \kappa \grave{a}$ є́ $\chi o \nu \cdot i \sigma \chi v \rho o ́ \tau \epsilon \rho o \nu$ סѐ $\pi о \lambda \grave{v}$
 $\pi \rho o ̀ s ~ \tau o ̀ ~ \kappa ผ ́ \nu є \iota o \nu ~ \beta о \eta \theta \epsilon i ̂ ~ \tau a \hat{\tau} \tau a ́ ~ \tau \epsilon ~ к а i ̀ ~ o ̛ ~ \lambda_{\iota} \beta a \nu \omega \tau o ́ s$.

 $\sigma \tau \in ́ a \tau \iota ~ \pi \epsilon \rho \iota \pi \lambda a ́ \tau \tau о \nu \tau \epsilon \varsigma{ }^{\bullet}$ ка́єє γ à ρ ă $\lambda \lambda \omega \varsigma ~ \tau o ̀ \nu ~$ фápuүүа.

[^213]
ENQUIRY INTO PLANTS, IX. xix. $4^{-x x . ~} 2$

others have opposite virtues, one might raise a question which is perhaps equally perplexing in regard to other matters, to wit, whether those that produce the same effect do so in virtue of some single virtue which is common to them all, or whether the same result may not come about also from ${ }^{1}$ different causes.-Let us be content to put the question thus : but now we must proceed to speak of the natural qualities or virtues of any other plants that we can mention.

Of certain plants, not yet mentioned, which possess special properties.
XX. ${ }^{2}$ Pepper is a fruit, and there are two kinds: one is round like bitter vetch, having a case and flesh like the berries of bay, and it is reddish : the other is elongated and black and has seeds like those of poppy : and this kind is much stronger than the other. Both however are heating: wherefore these, as well as frankincense, are used as antidotes for poisoning by hemlock.
${ }^{3}$ The 'Cnidian berry' is round, red in colour, larger than that of pepper, and far stronger in its heating power; wherefore, when it is given as a pill ${ }^{4}$ (for it is given to open the bowels) they knead it up in a piece of bread or dough : otherwise it burns the throat.
${ }^{5}$ The root ${ }^{6}$ of sulphur-wort is also heating, wherefore they make of it an ointment to produce a sweat, as with other things so used. This root ${ }^{6}$ is also

[^214]
THEOPHRASTUS

 'Аркабі́a.

 $\mu a ́ \lambda \iota \sigma \tau a$.

 $\sigma \pi \epsilon ́ \rho \mu a \tau \iota \delta^{\prime}$ oủ $\chi \rho \omega ิ \nu \tau a \iota$.

 סıафӨєípєтаı.

Tò $\delta e ̀ ~ \pi o \lambda v \pi o ́ \delta \iota o \nu ~ \mu \epsilon \tau \grave{a} \tau \grave{\alpha}$ v̈ $\delta a \tau a \dot{a} \nu a \beta \lambda a \sigma \tau \epsilon \hat{\imath}$ $\sigma \pi \epsilon ́ \rho \mu a$ סè ov̉ фúєı.

[^215]
ENQUIRY INTO PLANTS, IX. xx. 2-4

given for the spleen : but neither its seed nor its juice is of use: it grows in Arcadia. ${ }^{1}$
${ }_{2}$ Daukon of excellent quality grows in the district of Patrai in Achaia, and is heating by nature : it has a black root.
${ }^{3}$ The root of the 'wild vine' (bryony) is also heating and pungent: wherefore it is useful as a depilatory and to remove freckles : and the fruit is used for smoothing hides. It is cut at any season, but especially in autumn.
${ }^{4}$ The root of edderwort given in milk is useful for stopping a cough. It has a variegated snake-like stem : the seed is not used.
${ }^{5}$ The root of thapsia has emetic properties: and, if one retains it, it purges both upwards and downwards. It is also able to remove bruises : and it restores other contusions to a pale colour. ${ }^{6}$ Its juice is stronger and purges both upwards and downwards : the seed is not used. It grows especially in Attica, but also in other places : the cattle of the country do not touch it, but imported cattle feed on it and perish of diarrhoea. ${ }^{7}$
${ }^{8}$ Polypody springs up ${ }^{9}$ after rain, and produces no seed.
${ }^{10}$ The wood of ebony is in appearance like box, but when barked it becomes black: it is useful against ophthalmia, and is rubbed on a whetstone for that use.

[^216]
THEOPHRASTUS

 סè кaì $\mu a ́ \lambda \iota \sigma \tau a$ є̇ע тоîs őpєбь• каì aũтך $\beta \in \lambda \tau i \sigma \tau \eta$.

 v̋ $\delta a \tau \iota ~ a ̀ \nu a \delta \epsilon v o \mu e ́ \nu \eta$ каі кататлатто的 η, тà δ^{\prime}

 $\pi о \lambda \nu \chi \rho \eta \sigma \tau i a$.

Tîs $\delta \dot{\epsilon}$, $\sigma \kappa a \mu \mu \omega \nu i ́ a s ~ \omega ̈ \sigma \pi \epsilon \rho ~ \epsilon ’ \xi ~ \epsilon ̉ v a \nu \tau i ́ a s ~ o ́ ~ o ̉ \pi o ̀ s ~$

 $\pi \omega ́ \rho o v$ фа σ^{\prime} iv.

 $\pi \epsilon \rho \grave{~ \tau a ̀ ~ \gamma \nu \mu \nu a ́ \sigma \iota a ~ к а i ̀ ~ o ̈ \lambda \omega s ~ B o ı \omega т o i ́ . ~ ' A \theta \eta \nu a i ̂ o \iota ~}$ δ^{\prime} ov.
 $\beta \epsilon \lambda \tau i ́ \omega$ тà є̇к т $\hat{\omega} \nu \chi \epsilon \iota \mu \rho \iota \nu \hat{\omega} \nu \kappa a i ̀ \pi \rho о \sigma \beta о ́ \rho \rho \omega \nu$

[^217]
ENQUIRY INTO PLANTS, IX. xx. 4-5

${ }^{1}$ Birthwort is a stout plant and is bitter to the taste: it is black in colour and fragrant; the leaf is round. However there is not much of the plant above ground. It grows especially ${ }^{2}$ on mountains, and then ${ }^{3}$ it is best. Many uses of it for various purposes are enumerated; it is best for bruises on the head, good also for other wounds, against snake-bites, to produce sleep, for the womb as a pessary: for some purposes it is soaked with water and applied as a plaster, for others it is scraped into honey and oliveoil : against snake-bites it is drunk in sour wine and also sprinkled over the bite; to induce sleep it is given pounded up in black dry wine: ${ }^{4}$ in cases of prolapsus uteri it is used in water as a lotion. This plant then seems to have a surpassing variety of usefulness.
${ }^{5}$ Of scammony, as though by contrast, only the juice is useful and no other part.

Of male-fern no part but the root is useful and it has a sweet astringent taste. It expels the flat worm. It has no seed nor juice : and they say it is ripe for cutting in autumn.
${ }^{6}$ (This worm naturally infests certain races: speaking generally the following are liable to itthe Egyptians, the Arabians, the Armenians, the Matadides, the Syrians, the Cilicians : the Thracians have it not, nor the Phrygians. Among the Hellenes those Thebans who frequent wrestling-schools and the Boeotians generally are liable to it: but not the Athenians.)

Of all drugs, to speak generally, those are better which come from places that are wintry, face the

[^218]THEOPHRASTUS

 тò $\delta \grave{\epsilon} \mathrm{T} \boldsymbol{\mathrm { \epsilon }} \boldsymbol{\lambda} \boldsymbol{\epsilon} \theta \rho \iota o \nu$ бúбкıор.

 тоîs òmoîs $\hat{\eta}$ каі ä $\lambda \lambda \omega$ тıvì $\tau \hat{\omega} \nu \mu о \rho i \omega \nu$, каì тò
 $\delta \nu \nu a ́ \mu \epsilon \iota \varsigma$, каi $\pi \epsilon \rho i ̀ \tau \hat{\omega} \nu \chi \nu \lambda \hat{\omega} \nu \tau \hat{\omega} \nu \tau \epsilon \epsilon \mathcal{\nu} o ́ \sigma \mu \omega \nu$

ENQUIRY INTO PLANTS, IX. xx. 5-6

north and are dry: wherefore of those which grow in Euboea best, they say, are the drugs of Aigai or Telethrion, these places being dry, while Telethrion is also shady.
${ }^{1}$ Thus we have spoken of drugs, those that are medicinal and those that have virtues of whatsoever kind, whether in the root itself, or in the juice, or in any other of their parts, and in general of all the shrubby or herbaceous plants which have such virtues, as well as their tastes, whether they be fragrant or without fragrance, with the differences between them, which are equally part of their essential character.
${ }^{1}$ This section begins a tenth book in UMAld.H.C; $c f$. 9. 8.1 n . The concluding words can hardly represent the original text.
 Th ita

 Alathonitione

MINOR WORKS

INTRODUCTION TO THE TREATISES CONCERNING ODOURS AND CONCERNING WEATHER SIGNS

The text of the two opuscula given here is reprinted from that of Wimmer in the Teubner series, 1862, and in the Didot edition, 1866; the latter is very carelessly printed : a few slight alterations are mentioned in the notes. Both works are included in the Aldine edition (1497), and in that of Camotius (see p. x). For the de odoribus two MSS., Cod. Vaticanus (A) and Cod. Parisiensis (Q) were collated by Brandis. The text of the de signis is considered by Wimmer to be very corrupt and defective: he has admitted some emendations made by Schneider from an old Latin translation published at Bologna in 1516. Schneider's commentary makes frequent reference to an edition of the opuscula of Theophrastus by Turnebus and Daniel Furlanus, printed at Hanau in Prussia in 1605, and reprinted there in 1615.

The de signis was one of Aratus' authorities for his Diosemeia: I have only however made reference to that work where it appears to throw light on the text of Theophrastus. These and most other references for the two fragments I owe chiefly to Schneider.

CONCERNING ODOURS

CONTENTS

SECTIONS.
1-3. Introductory : Of odours in general and the classification of them.
4. Of natural odours: Of those of animals and of the effect of odours on animals.
5. Of smell and taste.
6. Of odours in plants.

7-13. Of artificial odours in general and their manufacture : especially of the use of perfumes in wine.
14-20. Of the oils used as the vehicle of perfumes.
21-26. Of the spices used in making perfumes and their treatment.
27-31. Of the various parts of plants used for perfumes, and of the composition of various notable perfumes.
$32-35$. Of the properties of various spices.
$35-36$. Of the medicinal properties of certain perfumes.
$37-41$. Of rules for the mixture of spices, and of the storing of various perfumes.
42-50. Of the properties of certain perfumes.
51-56. Of other properties and peculiarities of perfumes.
57-59. Of the making of perfume-powders and compound perfumes.
61-63. Of the characteristic smells of animals, and of certain curions facts as to the smell of animal and vegetable products.
64-69. Of odours as compared with other sense-impressions.

IIEPI OM ON

 డّ $\sigma \pi \epsilon \rho$ ar $\chi \nu \mu о \nu$, ठıò каі̀ $\tau \grave{a} \dot{a} \pi \lambda \hat{a}$ apo $\delta \mu a$, oiov
 er $\chi \in \iota$ ठıò $\mu a ́ \lambda \iota \sigma \tau a \mu \iota \kappa т \eta ́$.
T $\mathrm{T} \hat{\nu} \nu \delta^{\prime}$ oj $\delta \mu \hat{\omega} \nu$ ai $\mu \epsilon ̀ \nu ~ \ddot{\omega} \sigma \pi \epsilon \rho ~ a ̉ \epsilon \iota \delta \epsilon i ̂ S ~ \kappa a i ̀ ~ v i \delta a \rho \epsilon i ̂ s ~$ $\kappa а Ө a ́ \pi \epsilon \rho ~ \epsilon ̇ \pi i ̀ ~ \tau \hat{\omega} \nu ~ \chi v \mu \hat{\nu} \nu$, ai δ ' $\notin \chi o v \sigma a i ́ ~ \tau \iota \nu a s ~$

 oi $\chi v \mu o i ̀ ~ a ̀ \lambda \lambda ’ ~ ف ́ s ~ a ̀ \nu ~ \tau o i ̂ s ~ \gamma \epsilon ́ v e \sigma \iota \nu, ~ o ̈ \tau \iota ~ \tau a ̀ ~ \mu e ̀ v ~$

 $\kappa о \iota \nu a i \delta^{\prime}$ eैvıaı тоv́т $\omega \nu$ каі̀ т $\omega \nu$ как $\omega \delta \hat{\omega} \nu$.

[^219]
CONCERNING ODOURS

Introductory: Of odours in general and the classification of them.
I. Odours in general, like tastes, are due to mixture: for anything which is uncompounded has no smell, just as it has no taste: wherefore simple substances have no smell, such as water air and fire: on the other hand earth is the only elementary substance which has a smell, or at least it has one to a greater extent than the others, because it is of a more composite character than they.

Of odours some are, as it were, indistinct and insipid, as is the case with tastes, while some have a distinct character. And these characters appear to correspond to those of tastes, yet they have not in all cases the same names, as we said in a former treatise; nor in general are they marked off from one another by such specific differences as are tastes: rather the differences are, one may say, in generic character, some things having a good, some an evil odour. ${ }^{1}$ But the various kinds of good or evil odour, although they exhibit considerable differences, have not received further distinguishing names, marking off one particular kind of sweetness or of bitterness from another: we speak of an odour as pungent, powerful, faint, sweet, or heavy, though some of these descriptions apply to evil-smelling things as well as to those which have a good odour.

THEOPHRASTUS

 $\phi \theta \in \iota \rho о \mu \in ́ v o \iota s ~ \sigma a \pi \rho o ́ \tau \eta s$. ă $\pi a \nu$ خà $\rho \tau o ̀ ~ \sigma \eta \pi o ́ \mu \in \nu o ̣ \nu$
 3 $\sigma a \pi \rho o ́ \tau \eta \tau a$ $\tau \hat{\eta}$ ó $\mu \circ \iota o ́ \tau \eta \tau \iota \tau \hat{\eta} \varsigma \phi \theta o \rho a ̂ s . ~ \grave{\epsilon} \nu$ äт $\pi a \sigma \iota$

 $\pi о \lambda \lambda a ̀ ~ \gamma a ̀ \rho ~ o u ̉ ~ \kappa \alpha \kappa \omega ́ \delta \eta ~ \tau a ̀ ~ \epsilon ̇ \kappa ~ \tau \hat{\omega} \nu ~ \sigma a \pi \rho \hat{\omega} \nu$, ω s

 $\kappa \alpha i ̀ \tau \omega \hat{\nu} \epsilon \dot{v} \omega \delta \hat{\omega} \nu \beta a \rho u ́ \tau \eta \tau a$ таîs ò $\sigma \mu a i ̂ s$.

[^220]
CONCERNING ODOURS, $2-4$

Putridity however is a general term, applied, one may say, to anything which is subject to decay ${ }^{1}$: for anything which is decomposing has an evil odour,unless indeed the name putridity be extended to sourness ${ }^{2}$ in wine because the change in the wine is analogous to decomposition. The evil odour of putridity is found in all things, alike in plants in animals and in inanimate things: it attends the decay of things which are not formed directly out of a substance which is decaying : for some things have also the odour of that substance, though it is not found in every case. ${ }^{3}$ Thus in many instances things which are produced by decaying matter have no evil odour: for instance, mushrooms which grow from dung have none: but things which grow from decay and are actually formed out of it have such an odour. To speak generally then, things that have been cooked, delicate things, and things which are least of an earthy nature have a good odour, (odour being a matter of exhalation), and it is obvious that those of an opposite character have an evil odour. But, even as many things pleasant to the taste present a certain bitterness, so many things that have a good odour have a kind of heavy scent.

Of natural odours; of those of animals and of the effect of odours on animals.
II. Every plant animal or inanimate thing that has an odour has one peculiar to itself: but in many
case exhalation is easier. The sense given to $\dot{\alpha} \nu a \pi \nu o \eta ́$ requires illustration (the passages cited by LS. are not in point). Sch., construing apparently as W . does, 'since smell depends on breathing' (? inhalation), admits that he does not see the point of this clause.

THEOPHRASTUS

 $\dot{\eta} \mu a ̂ \varsigma ~ \delta \grave{\epsilon} \kappa a i ̀ a i ~ \tau \hat{\omega} \nu \zeta \hat{\omega} \omega \nu \lambda a \nu \theta a ́ \nu o v \sigma \iota \nu \tau \omega \hat{\nu}$ ỏ $\sigma \mu \omega-$
 $\kappa a \theta^{\prime}$ aíтò $\chi a i \rho \epsilon \iota \nu ~ \dot{\omega} \varsigma ~ \epsilon i \pi \epsilon i ̂ \nu, ~ \grave{a} \lambda \lambda \lambda^{\prime}$ ö $\sigma a ~ \pi \rho o ̀ s ~ \tau \eta े \nu ~$

 रúvauıv.
 трофаîs, oiov ai т $\hat{\omega} \nu$ àкробрv́шע каi ảтíшע каi

 $\beta \epsilon \beta \eta \kappa o ́ \varsigma \cdot$ ai $\mu \epsilon ̀ \nu$ т $\hat{\omega} \nu \chi \nu \lambda \hat{\omega} \nu \kappa a i$ т $\hat{\varsigma} \tau \rho о ф \hat{\eta} \varsigma \kappa а \tau \grave{a}$ $\sigma \nu \mu \beta \epsilon \beta \eta \kappa о ́ s, ~ a i ~ \delta ’ ~ \omega ̈ \sigma \pi \epsilon \rho ~ \tau \hat{\omega} \nu ~ a ̉ \nu \theta \hat{\omega} \nu \kappa a \theta^{\prime}$ aíтás.

[^221]
CONCERNING ODOURS, 4-5

cases it is not obvious to us because, one might almost say, our sense of smell is inferior to that of all other animals. Thus things which appear to us to have no odour give forth an odour of which other animals are conscious: for instance beasts of burden can smell the barley of Kedropolis, ${ }^{1}$ and refuse to eat it because of its evil odour. Also we are unaware of the odour of animals which appear to possess one. Now no animal appears to take pleasure in a good odour for its own sake, so to speak, but only in the odour of things which conduce to its nurture and enjoyment. Indeed some animals seem to be annoyed by odours, even good ${ }^{2}$ ones, if what is said of vultures and beetles be true ; the explanation is that their natural character is antipathetic to odours. To appreciate this in particular cases one should take into consideration the temperament of the animal in question and also its power of smell.

Of smell and taste.

Now the odour of some things which have a good odour resides in things which are used for food, for instance that of stone-fruits ${ }^{3}$ pears and apples, the smell of which is sweet even if one does not eat them; indeed it may be said to be sweeter in that case. However, to make a general distinction, some odours exist independently, while others are incidental ; ${ }^{4}$ those of juices and things used for food are incidental, those of flowers exist independently. And, as was said above, ${ }^{\text {b }}$ things which have a good odour are generally of unpleasant, astringent or

[^222]
THEOPHRASTUS

 ô̂ $\sigma a \cdot \tau o ̀ ~ \delta ' ~ o v ̂ \rho o \nu ~ \pi o \iota \epsilon \imath ̂ ~ \epsilon v ่ \omega ̂ \delta \epsilon s . ~$

 [каì фuтoîs] каì тoîs ả $\psi v ́ \chi o \iota s, ~ a u ̂ t a \iota ~ \mu e ̀ v ~ ф а \nu є \rho o ̀ v ~$

 каі таі̂я тара<бкєvaîs, $\dot{\varsigma} \kappa \alpha i>\pi \rho o ̀ s ~ \tau a ̀ s \tau \hat{\omega} \nu$ $\chi \nu \mu \hat{\omega} \nu$ є $\dot{v} \sigma \tau о \mu i a s$. ov̉ $\mu \dot{\eta} \nu \dot{a} \lambda \lambda \lambda^{\prime} \stackrel{\omega}{\omega}^{\prime} \gamma^{\prime} \dot{a} \pi \lambda \hat{\omega} \varsigma$
${ }^{1}$ cf. H.P. 1. 11. 2.
${ }^{2}$ i.e. the berry: Sch. would read à $\rho \kappa \epsilon \theta$ i's. cf. Н. P. 3. 12. 4, with which this statement is inconsistent. Sch. suggests

${ }^{4}$ aîs I omit ; ऱj kal $\tau \delta \epsilon \dot{\jmath}$. conj. Turn.

CONCERNING ODOURS, 5-7

somewhat bitter taste. Again some things which have a good taste have also an evil odour, such as the carob, ${ }^{1}$ which is sweet (this is true of some regions, if not of all). Again the Phoenician cedar, ${ }^{2}$ though it is sweet to the taste, when chewed produces a sort of evil odour, though it makes the water fragrant.

Of odours in plants.

Some odours being found in plants or in their parts-as twig, leaf, bark, fruit, gum-and others, as we distinguished, in animals ${ }^{3}$ and in inanimate things, it is plain that the former are matured each of them in the part to which it belongs; and ${ }^{4}$ a good or evil odour follows according to the natural character of that part, the maturing being due to the warmth which is found in it. On the other hand in inanimate things the odour, like the taste, is formed and modified by the properties of the simple substances of which the thing is made.

Of artificial odours in general and their manufacture: especially of the use of perfumes in wine.
III. Next we must endeavour to speak of those odours, and also those tastes, which are artificially ${ }^{5}$ and deliberately produced. In either case it is clear that improvement is always what we have in view; for that is the aim of every artificial process. Now even uncompounded substances have certain odours, which men endeavour to assist by artificial means, ${ }_{-}^{6}$ even as they try to assist nature in producing palatable tastes. However, to speak generally, the
${ }^{5}$ The same phrase occurs in similar connexion C.P.6.11. 2.
${ }^{6}$ Text defective. Ald Bas. Vo. have marks of omission. W. after Turn. gives кal taîs π apa $<\sigma \kappa \epsilon v a i ̂ s, ~ \dot{\omega} s \kappa a l>\tau a i ̂ s ~ \tau \omega ิ \nu$ $\chi v \mu \hat{\omega} \nu \in \dot{v} \sigma \tau 0<\mu i a s>$, which I have slightly altered.

THEOPHRASTUS

 $\hat{\eta} \pi a \rho a ́ \lambda \lambda a \tau \tau o \nu \tau \hat{\varphi} \pi a \rho a \lambda \lambda a ́ \tau \tau o \nu \tau \iota, \hat{\eta}$ ن́ $\gamma \rho \hat{\varphi}$ ن́ $\gamma \rho o ̀ \nu$

8 'Ек $\delta v o i ̂ \nu ~ \gamma \grave{a} \rho ~ \tau о и ́ \tau \omega \nu ~ к а i ~ \dot{\eta} \tau \hat{\omega} \nu \chi \nu \lambda \hat{\omega} \nu \kappa \alpha i ̀$

 íypoîs $\pi \rho o ̀ s ~ i ́ \gamma \rho a ́ . ~ \tau o ̀ ~ \delta e ̀ ~ \tau \rho i ́ т o \nu, ~ o ̂ ~ к а i ̀ ~ \pi \lambda \epsilon i ̂ \sigma \tau o ́ \nu ~$

 $\mu \iota \gamma \nu v ́ v t \epsilon \varsigma ~ \kappa a i ̀ ~ o i ̉ o \nu ~ a ̉ \rho т v ́ o \nu t \epsilon s . ~ \tau a v ̂ t a ~ \mu e ̀ v ~ o u ̊ \nu ~$
 $\kappa a \grave{\imath} \pi \rho o ̀ s ~ \tau а u ́ \tau \eta \nu ~ \tau \grave{\eta} \nu$ al̆ $\sigma \theta \eta \sigma \iota \nu, \tau \grave{a} \delta^{\prime} \omega ̈ \sigma \pi \epsilon \rho$

[^223]
CONCERNING ODOURS, 7-9

result is usually obtained by a mixture, and accordingly ${ }^{1}$ such mixtures are of two things (or classes of things), a liquid and a solid: but there are three ways in which the result may be reached (the combination ${ }^{2}$ being one either of like with like, or of unlike substances), according as a liquid is compounded with another liquid, a solid with another solid, or a solid with a liquid.

For tastes and odours alike are derived from these two things : the method of the makers of spices and perfume-powders ${ }^{3}$ is to mix solid with solid, that of those who compound unguents or flavour wines is to mix liquid with liquid: but the third method, which is the commonest, is that of the perfumer, who mixes solid with liquid, that being the way in which all perfumes ${ }^{4}$ and ointments are compounded. Further one must know which odours will combine well with which, and what combination makes a good blend, just as in the case of tastes : for there too those who make combinations and, as it were, season their dishes, are aiming at this same object. So much for the ingredients and the methods whereby these arts attain their ends.

The object of the mixture is in the one case simply the production of a particular odour and the gratification of the corresponding sense, in the other there is a desire to produce, as it were, a pleasanter taste: this for instance is the object of flavouring wine with perfumes or of putting spices into it.

[^224]
THEOPHRASTUS

 ả $\pi o ́ \lambda a v \sigma \iota \nu \dot{a} \lambda \lambda \eta \dot{\eta} \lambda \omega \nu$, ö $\theta \in \nu$ каì aủтoîऽ тoîs $\gamma \in v$ бтoîs そทтov̂б८ тàs єv̉oбนías.

 ßрю $\mu a ́ \tau \omega \nu$ ov̉ס́́v, ả $\lambda \lambda a ̀$ тávта $\lambda v \mu a i ́ \nu \epsilon \tau a \iota ~ \kappa а \grave{~}$

 $\sigma \theta a i ́ \tau \epsilon ~ \tau o ̀ \nu ~ o i \kappa \epsilon i ̂ o \nu ~ \chi \nu \lambda o ̀ \nu ~ \delta \iota a ̀ ~ \tau \grave{\eta} \nu ~ i \sigma \chi \grave{\nu} \nu ~ \kappa a i ̀$

 $\tau \hat{\eta}$ үєúбєє X
 тò $\delta \epsilon ̀ ~ \pi \iota \kappa \rho o ̀ ̀ ~ \kappa a i ̀ ~ \delta v ́ \sigma \chi \nu \mu о \nu ~ \tau \hat{\eta} \gamma \epsilon v ́ \sigma \epsilon \iota ~ \mu \grave{\eta}$ є’ $\mu \phi a \iota-$

${ }^{1}$ cf. 67 ; Arist. de Sens. 5. ${ }^{2}$ cf. Arist. l.c.
${ }^{3}$ As opposed to wine. Sch., misunderstanding this, thinks $\xi \eta \rho \omega \hat{\nu}$ corrupt.
${ }^{4}$ I have restored кal, which Sch. and W. omit, missing the point of the antithesis $\mu \dot{\epsilon} \nu . \ldots \delta$ én $^{\text {. }}$
336

CONCERNING ODOURS, $9-11$

${ }^{1}$ For the two senses of taste and smell being akin to one another, each provides in a way for the enjoyment of the other: wherefore it is through things which appeal to the taste, as well as those which appeal to the sense of smell, that men try to discover fragrant odours.

The question may perhaps be raised why perfume and other fragrant things, while they give a pleasant taste to wine, ${ }^{2}$ yet have not this effect on any other article of food, but in all cases spoil food, whether it be cooked or not. The explanation we must take to be that this is what happens-the perfume if mixed with solid ${ }^{3}$ things is in any case powerful enough to deprive them of their proper taste, and at the same time it makes obtrusive its own taste, which is astringent and somewhat bitter,-all perfumeries having that character,-while, if one bites up the food, this effect is even ${ }^{4}$ more apparent because the food is crushed and broken up, and also because it remains longer in the mouth. But on wine neither effect is produced, since in this the taste is very strong and too generally diffused to be overpowered: also wine does not linger on the palate for any length of time, but merely touches it, so that, while it makes one conscious of its own pleasant taste, it does not make the palate feel the bitter unpalatable taste of the perfume: in fact the odour of this acts as a sort of relish ${ }^{5}$ to the draught. This effect indeed ${ }^{6}$ it has on wine which is sweet and specially needs the addition of perfume, because it has no 'relish' of its own; while with other wines the reason is that, as the effect of the mixture, the
${ }^{5}$ Sc. 'bouquet.'
${ }^{6}$ I have restored $\gamma \dot{\alpha} \rho$, omitted by Sch. and W.

THEOPHRASTUS

 є่ $\lambda \epsilon ́ \chi \theta \eta$, $\delta \in \iota \nu o ̀ s ~ \delta \epsilon ́ \xi a \sigma \theta a \iota ~ \tau a ̀ s ~ o ̀ \sigma \mu a ́ s . ~ . ~$

 $\kappa а \grave{\imath} \tau \hat{a} \lambda \lambda a$ тà єv̌oб $\mu a \tau \hat{\omega} \nu \quad \xi \eta \rho \hat{\omega} \nu$ i $\sigma \chi \nu \rho o ́ \tau \epsilon \rho a$
 $\kappa а \grave{~ \tau р і ́ \psi \epsilon \omega \varsigma ~ \pi \rho о \sigma \delta є i ̂ т а \iota ~ к а і ̀ ~ \delta \iota a \iota \rho \epsilon ́ \sigma \epsilon \omega s, ~ \tau a ̀ ~ \delta \grave{\epsilon}}$ $\kappa а i ̀ \pi \nu \rho \omega ́ \sigma \epsilon \omega \varsigma, \mathscr{\omega} \sigma \pi \epsilon \rho \dot{\eta} \sigma \mu v \rho \nu а$ каi ó $\lambda_{\iota} \beta a \nu \omega \tau o ̀ s$

 $\pi o ́ \rho \rho \omega ~ \tau a ̀ s ~ a ̀ \pi o \pi \nu o i ́ a s, ~ \tau a ̀ ~ \delta ' ~ o i ̉ o \nu ~ a ̉ \nu o i \xi \xi \epsilon \omega s ~ \delta ́ e ́ o \nu \tau a l ~$ $\tau \omega \hat{\nu} \pi o ́ \rho \omega \nu$, ơ $\theta \epsilon \nu$ סıaıрои́ $\mu \in \nu a$ каі котто́ $\mu \epsilon \nu a$

 $\pi \rho о \sigma \lambda a \mu \beta a ́ v \in \iota ~ \tau o ̀ ~ a ̉ \lambda \lambda o ́ \tau \rho \iota o \nu . ~ o ́ ~ \delta \grave{\epsilon}$ 入ı $\beta a \nu \omega \tau o ̀ s$
 $\pi \rho о \sigma \delta \in ́ o \nu \tau a \iota \pi \nu \rho \omega ́ \sigma \epsilon \omega \varsigma ~ \mu a \lambda a \kappa \hat{\eta} s, \hat{\eta} \kappa a \tau \grave{a} \mu \iota \kappa \rho \grave{\nu}$

[^225]
CONCERNING ODOURS, II-I3

two ${ }^{1}$ odours combine, as it were, to form one. Wine indeed, as was said before, ${ }^{2}$ has a special property of assimilating odours.

Another question also suggests itself,-why it is that, while the smell of flowers and other ${ }^{3}$ things used for garlands, though it is not so strong, can be perceived even at a great distance, the iris-perfume, ${ }^{4}$ spikenard and other fragrant solids smell stronger at a short distance : and of some of these the smell is only perceived when they are eaten, while some need even to be bruised and broken up, and others to be subjected to fire, as myrrh frankincense and anything that is burnt as incense. The explanation is that, whereas in flowers that which causes the smell is on the surface, seeing that the texture of flowers is open and they are not substantial, in all such solid substances as roots the power of producing smell is diffused through a substantial mass, while the exterior parts are dried up and of close texture : and this is why flowers emit the scent which exhales from them to a long distance, while things like roots need an opening of their passages. Hence, when these are broken up or bruised, they are in all cases more fragrant, while, ${ }^{5}$ if flowers are crushed, they have a comparatively evil smell : for under such treatment roots give forth the property which belongs to them, but flowers acquire a property which is not their own. Again frankincense and myrrh, since they are by nature of even closer texture than roots, need a gentle application of fire, which, by gradually warming them, will cause the scent to be exhaled. For, if these substances are bruised or crushed, they will indeed present an odour, but it will not be so

[^226]
THEOPHRASTUS

 тои́т $\omega \nu$ 立̀ ô̂̀ toıav̂taí тıves ai aitíal.

14
 тò ö̀ov oiov єis $\theta \eta \sigma a v \rho \iota \sigma \mu o ́ \nu$ є̇ $\sigma \tau \iota ~ \tau \hat{\omega} \nu$ ỏ $\sigma \mu \hat{\omega} \nu$.

 татоv, oiov тò á $\mu v \gamma \delta \alpha ́ \lambda \iota \nu o \nu . ~ \tau o ̀ ~ \delta e ̀ ~ \sigma \eta \sigma a ́ \mu \iota \nu o \nu ~$ $\kappa a i ̀ \tau o ̀ ~ \epsilon ’ \kappa ~ \tau \hat{\omega} \nu$ є่ $\lambda a \iota \omega \hat{\nu} \mu a ́ \lambda \iota \sigma \tau a$.

 ov̊v тò тotov̂tov oiкєเóтaтov, ả $\lambda \iota \pi$ éбтaтoע үáp.
 $\pi \iota \kappa \rho \hat{\omega} \nu \dot{a} \mu \nu \gamma \delta a ́ \lambda \omega \nu \cdot \pi o \lambda \lambda a ̀ ~ \delta \epsilon ̀ ~ \gamma i \nu \epsilon \tau a \iota ~ \pi \epsilon \rho \grave{~} \mathrm{~K} \iota \lambda \iota-$
 $\kappa а і ̈ \epsilon i \varsigma ~ \tau a ̀ ~ \sigma \pi o v \delta a i ̂ a ~ \tau \hat{\omega} \nu \mu v ́ \rho \omega \nu \dot{\alpha} \rho \mu o ́ \tau \tau \epsilon \iota \nu, \omega ̈ \sigma \pi \epsilon \rho$

[^227]
CONCERNING ODOURS, $13-16$

sweet nor so lasting as when they have been subjected to fire. Such are the explanations of these difficulties.

Of the oils used as the vehicle of perfumes.

IV. Now the composition and preparation of perfumes aim entirely, one may say, at making the odours last. That is why men make oil the vehicle of them, since it keeps a very long time and also is most convenient for use. ${ }^{1}$ By nature indeed oil is not at all well suited to take in an odour, because of its close and greasy character : and of particular oils this is specially true of the most viscous, such as almond-oil, while sesame-oil and olive-oil are the least receptive of all.

The oil most used is that derived from the Egyptian ${ }^{2}$ or Syrian balanos, since this is the least viscous; the olive-oil which is most used is that which is pressed from 'coarse olives' ${ }^{3}$ in the raw state, since this is thought to be the least greasy and the least coarse : this is used while it is new, not when it is old, for that which is kept above a year is useless, having become thick and viscous. This then is the kind of olive-oil which is most suitable, since it is the least greasy. Some say that for unguent the oil derived from bitter almonds is best : these are abundant in Cilicia, where an unguent is made from them. It is said that this is suitable for choice perfumes, like the oil of the Egyptian balanos: this is suitable in itself, ${ }^{4}$ however the shells of the fruit are thrown into the oil to give it a good odour: indeed they are also thrown into
${ }^{3}$ cf. H.P. 2. 2. 12; C.P. 6. 8. 3 and 5.
${ }^{4}$ aù̀亢̀ conj. Sch.; тồ̃o Vulg.W.

THEOPHRASTUS

 $\mu \epsilon ̀ \nu ~ \epsilon ̇ \pi \iota \sigma \tau u ́ \phi o \nu \tau \epsilon \varsigma ~ \tau o ̀ ~ \epsilon ै \lambda a \iota o \nu ~ \tau o i ̂ s ~ \delta e ̀ ~ \kappa a i ̀ ~ \tau \eta ̀ \nu ~ o ̉ \sigma \mu \grave{\eta \nu}$
 $\epsilon i s ~ \tau o ̀ ~ \delta \epsilon ́ \xi a \sigma \theta a \iota \mu a ̂ \lambda \lambda o \nu \tau \eta ̀ \nu$ ỏ $\sigma \mu \eta ́ \nu$, 屯ै $\sigma \pi \epsilon \rho \tau a ̀ ~ \epsilon ้ \rho \iota a$
 poıs $\tau \hat{\omega} \nu$ á $\rho \omega \mu a ́ \tau \omega \nu$, єì θ^{\prime} v́ $\sigma \tau \epsilon \rho о \nu$ є่ $\mu \beta a ́ \lambda \lambda o v \sigma \iota \nu$
 $\kappa \rho a \tau \epsilon \hat{\imath}$ خà ρ ảєi тò є’ $\sigma \chi a \tau o \nu$ є́ $\mu \beta a \lambda \lambda o ́ \mu \epsilon \nu о \nu$ каì
 $\epsilon \epsilon \mu \beta \lambda \eta \theta \hat{\eta} \quad \mu \nu \hat{a} \kappa \alpha i$ v̇ $\sigma \tau \epsilon \rho о \nu \epsilon \in \mu \beta \lambda \eta \theta \hat{\omega} \sigma \iota \kappa \iota \nu a \mu \omega ́ \mu \circ \nu$
 брахиaí.
 ті́ тотє тà áрผ́ $\mu а \tau а$ т $\rho о є \mu \beta a \lambda \lambda о ́ \mu \epsilon \nu a$ бєктькю́-

${ }^{1} \tau \grave{\partial}$ conj. Sch.; $\tau \grave{\alpha}$ Vulg. W. Sch. also adds $\dot{\alpha} \mu v \gamma \delta \alpha \dot{\alpha} \lambda \omega \nu$ after $\pi \iota \kappa \rho \omega ิ \nu$.
${ }^{2}$ i.e. those derived from the Egyptian balanos and bitter almonds.
342

CONCERNING ODOURS, $16-18$

that ${ }^{1}$ which is made from bitter almonds. Once more, is it not inconsistent to seek the vehicle which has the least odour of its own, such as the oil which is pressed raw from 'coarse olives,' and yet at the same time to use the above-mentioned ${ }^{2}$ oils as vehicles? (for oil of almonds has a pungent smell). Possibly the explanation is that it is only by being cooked that oil acquires an evil smell. ${ }^{3}$ These matters then are subject for enquiry.

They use spices in the making of all perfumes; some to thicken ${ }^{4}$ the oil, some in order to impart their odour. For in all cases they thicken the oil to some extent to make it take the odour better, just as they treat wool for dyeing. The less powerful spices are used for the thickening, and then at a later stage they put in the one whose odour they wish to secure. ${ }^{5}$ For that which is put in last always dominates, even if it is in small quantity; thus, if a pound of myrrh is put into a half-pint of oil, and at a later stage a third of an ounce of cinnamon is added, this small amount dominates.

At this one may well wonder ; and also why it is that the previous addition of spices, which have an odour of their own, renders the oil more receptive : for the vehicle should be scentless, but a substance over which another substance has thus prevailed, cannot be scentless, so that it ought, one would think, to have become less receptive. However both facts, or rather all of them, may be accounted for in the same way :-the spices, being solid, attract to
${ }^{3}$ Sc. 'and these oils are used in the raw state' (?). I do not see how Furlanus' explanation, quoted by Sch., is to be found in the text. The following sentence shews that T. does not claim to have settled the question.
${ }^{4}$ i.e. to make it less volatile.
${ }^{5}$ cf. Plin. 13. 19.

THEOPHRASTUS

 $\tau \in i ̂ \nu$.

 тои́т φ ठıà тò $\pi \lambda \eta \rho \hat{\omega} \sigma a \iota ~ \tau o v ̀ \varsigma ~ \pi o ́ \rho o v s . ~ \tilde{\omega} \sigma \tau \epsilon \kappa а т a ̀ ~$

 $\kappa \omega ́ т а т о \nu, ~ o i o \nu \tau \eta ̂ s ~ \beta a \lambda a ́ \nu o v, ~ \kappa а i ̀ ~ \chi \rho о \nu \iota \omega ́ т а т о \nu, ~ \kappa а i ̀ ~$

 vov $\mu a ́ \lambda \iota \sigma \tau a ~ a ̉ \pi a \theta e ́ s . ~$
' $\Omega \sigma a u ́ \tau \omega s$ ठ̀̀ каì $\tau \hat{\omega} \nu$ ả $\lambda \lambda \omega \nu$ тò $\sigma \eta \sigma a ́ \mu \iota \nu o \nu$,

[^228]
CONCERNING ODOURS, $18-20$

themselves the viscid part of the oil, and so it attaches itself to them ; thus the density of the oil is destroyed : the oil, thus becoming thinner by the removal ${ }^{1}$ of its viscid part which chiefly contains the characteristic odour, becomes more receptive of the spice which is added to it, because it does not now offer resistance.

Again that odour which is due to the spices becomes less powerful as it is spent on the viscid part of the oil, while at the same time it is preserved by this because it has entirely filled up its passages. Wherefore it naturally follows that, even if the added spice is in small quantity, its odour predominates, since it passes into a vehicle which is in itself not at all powerful and which is more receptive than itself. A corresponding account may be given of the keeping quality of the several oils, of their power of resisting fire, and other such qualities. Thus that oil which is most receptive, for instance, that of the Egyptian balanos, will also keep longest, and for the same reason; namely that that oil which is most receptive unites, more than others, into one single substance, as it were, with the spices. Such a substance will always last longer than others; which also explains why, if exposed to fire, it is less affected than others.

Of the other oils the same applies to that of sesame, this being specially receptive; ${ }^{2}$ but, for the contrary reason, almond-oil soon loses its virtue and keeps for a shorter time than any other, for that oil which has been least receptive parts soonest with the property received. Sesame-oil however receives rose-perfume better than other oils ${ }^{2}$ because of its have printed it from Sch.'s text. The omission is evidently due to the double occurrence of $\tau \grave{\partial} \sigma \dot{\eta} \sigma \alpha \mu \nu \nu \nu$,

THEOPHRASTUS

$\sigma \eta \sigma a ́ \mu \iota \nu o \nu$ ठıà т̀̀ $\nu \lambda \iota \pi a \rho o ́ \tau \eta \tau a \cdot \pi v \rho o v ́ \mu \in \nu o \nu ~ \delta \grave{\epsilon}$ є́ ξ ó乡є८ $\sigma \eta \sigma$ á $\mu o v$ каӨát $\epsilon \rho$ ảva入vó $\mu \epsilon \nu o \nu$ ．ai $\mu \epsilon ̀ \nu$ oûv $\tau \hat{\omega} \nu$ é $\lambda a i ́ \omega \nu$ фv́бєıऽ кaì $\delta v \nu a ́ \mu \epsilon \iota \varsigma ~ \tau o \iota a v ̂ \tau a \iota . ~$ $\pi \lambda \eta े \nu \tau \hat{\omega} \nu \dot{a} \nu \theta \hat{\omega} \nu$ छ$\eta \rho a ̀ ~ \kappa \alpha i ̀ ~ \theta \epsilon \rho \mu a ̀ ~ \kappa а i ̀ ~ \sigma \tau v \pi \tau \iota \kappa \grave{a}$

 i $\rho \iota \varsigma \quad \sigma \mu v ́ \rho \nu a \quad \lambda \iota \beta a \nu \omega \tau o ́ s, \dot{\omega} \varsigma \delta^{\prime} \dot{a} \pi \lambda \hat{\omega} \varsigma$ єimeî̀ каi $\tau \grave{a} \mu \nu ́ \rho a$ ．коועótaтaı $\delta \grave{\epsilon} \tau \hat{\nu} \nu$ ठvעá $\mu \epsilon \omega \nu$ тó $\tau \epsilon$ бтиттıкò каi тò $\theta \in \rho \mu a \nu \tau \iota \kappa o ́ \nu, ~ a ̀ ~ \delta \grave{\eta} \kappa \alpha i ̀ ~ \epsilon ’ \rho \gamma a ́-~$ そovта८．
22 ＇$\Upsilon \pi \sigma \sigma \tau \cup ́ \phi o \nu \tau a \iota ~ \mu e ̀ \nu ~ o u ̂ \nu ~ \pi a ́ v \tau a ~ \pi v \rho o u ́ \mu \in \nu a, \tau a ̀ \varsigma$

 $\psi \tau \chi \rho \circ \beta a \phi \hat{\eta}$ т⿳亠㐅

 $\lambda \alpha \mu \beta a ́ v \epsilon \iota ~ \tau a ̀ s ~ \kappa v \rho i ́ a s ~ o ̉ \sigma \mu a ̀ s ~ \mu a ̂ \lambda \lambda o \nu ~ \eta ै ~ o ̈ \sigma a ~ \psi v \chi \rho a ̀ ~$ Sıà тò $\pi \rho \circ \phi v \rho a ̂ \sigma \theta a \iota ~ \tau a ̀ ~ \pi v \rho o v ́ \mu \epsilon \nu a$ ，тà $\mu \epsilon ̀ \nu ~ o i ̀ \nu \omega$
 $\psi v \chi \rho a ̀ ~ \xi \eta \rho a ̀ ~ o ้ \nu \tau a ~ \mu a ̂ \lambda \lambda о \nu, ~ к а \theta a ́ \pi \epsilon \rho \rho ~ i ́ \rho \iota \varsigma ~ к о \pi \epsilon i ̂ \sigma a . ~$ 346

CONCERNING ODOURS, 20-23

viscid quality ; and, when subjected to fire, it gives out a smell of sesame, as though it were being disintegrated. Such are the special characters and properties of the various oils.

Of the spices used in making perfumes and their treatment.

V. Almost all spices and sweet scents except flowers are dry hot astringent and mordant. Some also possess a certain bitterness, as we said above, as iris, myrrh, frankincense, and perfumes in general. However the most universal qualities are astringency and the production of heat ; they actually produce these effects.

All spices are given their astringent quality by exposure to fire, but some of them assume their special odours even when cold and not exposed to fire ; and it also appears that, just as with vegetable dyes some are applied hot and some cold, so is it with odours. But in all cases the cooking, whether to produce the astringent quality or to impart the proper odour, is done in vessels standing in water and not in actual contact with the fire; the reason being that the heating must be gentle, and there would be considerable waste if these were in actual contact with the flames; and further the perfume would smell of burning.

However there is less waste when the perfume obtains its proper odour by exposure to fire than when it does so in a cold state, since those perfumes which are subjected to fire are first steeped either in fragrant wine or in water: for then they absorb ${ }^{1}$ less : while those which are treated in a cold state, being dry, absorb ${ }^{1}$ more, for instance bruised iris-root. Thus, if

[^229]
THEOPHRASTUS

$\lambda a \mu \beta a ́ \nu o \nu \tau o s ~ \gamma a ̀ \rho ~ \tau o ̂ ̀ ~ a ̉ \mu ф о \rho \epsilon ́ \omega s ~ \xi \eta \rho a ̂ s ~ i ́ \rho t \delta o s ~$

 є́à̀ фvраӨєîбa каì $\pi v \rho о \nu \mu \epsilon ́ \nu \eta$. бvцßаívєı $\delta \grave{\epsilon}$ ढ̈ $\sigma \pi \epsilon \rho \kappa a i ̀ ~ \epsilon ̇ \kappa \theta \lambda i ́ \beta \epsilon \sigma \theta a \iota ~ \mu a ̂ \lambda \lambda o \nu ~ \epsilon ̇ \kappa ~ \tau \hat{\omega} \nu ~ \pi \rho о-$

 $\pi о \lambda \grave{v}$ є́ктívตбıข.

25 $\pi \rho o ́ \sigma \phi о \rho a ~ \tau \hat{\omega} \nu \dot{a} \rho \omega \mu a ́ \tau \omega \nu$, oiov єis $\mu \epsilon ̀ \nu$ т̀̀v кv́: $\pi \rho о \nu \kappa а \rho \delta a ́ \mu \omega \mu о \nu \dot{a} \sigma \pi a ́ \lambda a \theta о \nu$ ảvaфvрá$\sigma a \nu \tau \epsilon \varsigma \tau \hat{\omega}$
 $\kappa a ́ \lambda a \mu о \nu . \quad \dot{\eta} \delta^{\prime}$ àvaфúpaбıs ó $\mu о i ́ \omega s$. каì тоîs

[^230]
CONCERNING ODOURS, 23-26

into eight and a half gallons of oil we put thirteen gallons ${ }^{1}$ of dry and bruised iris-root, they say that much loss is caused, while if one does not steep it too much, only about eleven pints and a half are wasted : and in the case of most perfumes the waste is less.

However the superior ${ }^{2}$ iris-perfume is made by using the root dry and not subjecting it to fire : for then its virtue asserts itself more completely than when it is steeped in a liquid or subjected to fire. It also comes to pass that, if the perfumes have been first steeped, their virtues are, as it were, squeezed out of them to a greater extent, because they take in and absorb less: and so, when they are making them astringent, they do not leave the spices in the oil for long, but take them out, so that they should not absorb an excessive amount.

For making each perfume they put in the suitable spices. Thus to make kypros ${ }^{3}$ they put in cardamom ${ }^{4}$ and aspalathos, ${ }^{5}$ having first steeped them in sweet wine. ${ }^{6}$ To make rose-perfume they put in ginger-grass aspalathos and sweet-flag: and these are steeped as in the case of kypros. So too into each of the others are put the spices which suit them. Into rose-perfume moreover is put a quantity of salt ${ }^{7}$: this treatment is peculiar to that perfume, and involves a great deal of waste, twentythree gallons ${ }^{8}$ of salt being put to eight gallons and a half of the perfume.

The manufacture of kypros resembles that of

$$
{ }^{6} \tau \hat{\varphi} \epsilon \dot{\omega} \omega \dot{\omega} \delta \iota \text { here evidently means the same us } \tau \hat{\varphi} \gamma \lambda \nu \kappa \epsilon \hat{i}, 44 \text {, }
$$ where $\tau \hat{\varphi}$ ot $\nu \varphi \tau \hat{\varphi} \epsilon \dot{\omega} \omega \dot{\delta} \in t$ occurs just above: $c f . \mu \in \lambda เ \kappa \rho \alpha \dot{\alpha} \tau \varphi$ 方 $\gamma \lambda ข \kappa \in \hat{\imath}$, C.I. 6. 17. 2.

${ }^{7}$ To prevent decay, as Diosc. 2. 53 explains.
${ }^{8}$ Turn. suggests that μ é $\delta \iota \mu \nu 0$ should be $\mu \nu a i ̂$, the initial m having been misunderstood by a copyist.

THEOPHRASTUS

 $\pi \rho о \sigma \tau \cup ф \in ́ \nu \tau о s ~ \gamma a ̀ \rho ~ \epsilon ่ \lambda a i o v ~ к а i ̀ ~ \tau a ̀ ~ \mu \hat{\eta} \lambda a ~ \epsilon ̇ \mu \beta a ́ \lambda-~$
 $\mu \in \lambda a i ́ \nu \in \sigma \theta a \iota ~ к а т a ̀ ~ \pi a ́ \sigma a s ~ \tau a ̀ s ~ \epsilon ́ \mu \beta o \lambda a ́ s \cdot ~ \mu є \lambda a \iota \nu o-~$
 $\kappa \alpha i ̀ ~ \epsilon ̇ \pi i ̀ ~ \tau \eta ̂ ऽ ~ \kappa u ́ \pi \rho o v . ~$
27 VI. "A $\quad 1 a \nu \tau a$ סè $\sigma v \nu \tau i ́ \theta \epsilon \nu \tau a \iota ~ \tau a ̀ ~ \mu v ́ p a ~ \tau a ̀ ~ \mu e ̀ v ~$
 $\tau a ̀ \delta^{\prime} a ̉ \pi o ̀ ~ \rho ’ i \zeta \eta S ~ \tau a ̀ ~ \delta ' ~ a ̉ \pi o ̀ ~ \xi u ́ \lambda \omega \nu ~ \tau a ̀ ~ \delta ' ~ a ̉ \pi o ̀ ~ \kappa a \rho-~$

 $\phi u ́ \lambda \lambda \omega \nu$ oiov $\tau o ́ ~ \tau \epsilon ~ \mu u ́ \rho \rho ı \nu o \nu ~ \kappa a i ̀ ~ \tau o ̀ ~ o i v a ́ \nu \theta ı \nu o \nu . ~$

 a้o $\delta \mu$ оу.

[^231]
CONCERNING ODOURS, 26-28

rose-perfume, except that, unless one soon takes out the flowers and squeezes them out, decay sets in and ruins the perfume by giving it a disagreeable smell, since they cause decay as they get soaked. Similar also is the manufacture of quince-perfume ${ }^{1}$: the oil is first made astringent, and is cold when the quinces ${ }^{2}$ are put into it: then they take them out before they turn black, removing each batch before the next is put in: for, as they turn black, decay ensues because they get soaked through-just as in the case of kypros.

Of the various parts of plants used for perfumes, and of the composition of various notable perfumes.
VI. ${ }^{3}$ Perfumes are compounded from various parts of the plant, flowers leaves twigs root wood fruit and gum : and in most cases the perfume is made from a mixture of several parts. Rose and gilliflower perfumes are made from the flowers: so also is the perfume called susinon, ${ }^{4}$ this too being made from flowers, namely, lilies : also the perfumes named from bergamot-mint and tufted thyme, kypros, and also the saffron-perfume; the crocus which produces this is best in Aegina and Cilicia. Instances of those made from the leaves are the perfumes called from myrtle and drop-wort ${ }^{5}$: this grows in Cyprus on the hills and is very fragrant : that which grows in Hellas yields no perfume, being scentless.
${ }^{6}$ From roots are made the perfumes named from iris spikenard and sweet marjoram, ${ }^{7}$ an ingredient in which is koston; for it is the root to which this name

[^232]
THEOPHRASTUS

 <катà> $\mu \iota \kappa р о ̀ \nu ~ \sigma \tau а ́ \zeta \epsilon \iota \nu . ~ o ̂ ~ \delta \grave{\eta}$ нóvò тıvés фабıv,

 $\mu a \tau \epsilon i ́ a \nu ~ \pi \epsilon \rho i ̀ ~ \tau o ̀ ~ \mu \epsilon \gamma а \lambda \epsilon i ̂ o \nu ~ к а i ̀ ~ \tau o ̀ ~ A i ̀ \gamma v ́ \pi т \iota o \nu ~ \epsilon i ̉ \nu a \iota, ~$

[^233]
CONCERNING ODOURS, 28-30

is applied. The Eretrian unguent is made from the root of kypeiron, ${ }^{1}$ which is obtained from the Cyclades as well as from Euboea. From wood is made what is called 'palm-perfume': for they put in what is called the 'spathe,' ${ }^{2}$ having first dried it. From fruits are made the quince-perfume, the myrtle, and the bay. The 'Egyptian' is made from several ingredients, including cinnamon and myrrh.

Again from several parts of the plant is made the perfume called megaleion, ${ }^{3}$ which is made from cinnamon and . . . ${ }^{4}$ and from the myrrh when it is bruised flows an oil : it is in fact called stakte ${ }^{5}$ (in drops) because it comes in drops slowly. Some indeed say that this is the only simple uncompounded perfume, and that all the others are compound, though made from a larger or smaller number of ingredients, and that iris-perfume is made from the smallest number of all. Some assert this, but others declare that the manufacture of stakte (myrrh-oil) is as follows : having bruised the myrrh and dissolved it in oil of balanos over a gentle fire, they pour hot water on it: and the myrrh and oil sink to the bottom like a deposit; and, as soon as this has occurred, they strain off the water and squeeze the sediment in a press.

Megaleion, these authorities say, is compounded of burnt resin ${ }^{6}$ and oil of balanos, with which are mixed cassia cinnamon and myrrh. They add that this perfume and the Egyptian are the most troublesome

[^234]VOL. 11.
A A

THEOPHRASTUS

 $\kappa а i ̀ ~ \tau \alpha ̊ \lambda \lambda a \cdot \delta \epsilon \kappa \tau \iota \kappa \omega ́ \tau \epsilon \rho о \nu ~ \gamma a ̀ \rho ~ a ̉ \phi \epsilon \psi \eta \theta \in ́ \nu$. тò δ^{\prime} ả $\mu a \rho a ́ \kappa \iota \nu o \nu \tau o ̀ ~ \chi \rho \eta \sigma \tau o ̀ \nu ~ \epsilon ่ \kappa ~ \tau \omega ิ \nu ~ \beta \epsilon \lambda \tau i \sigma \tau \tau \nu \nu ~ a ̉ \rho \omega-~$

 $\epsilon i \varsigma ~ e ̂ \nu ~ \mu u ́ \rho o \nu, ~ a ̉ \lambda \lambda a ̀ ~ \psi \epsilon v \delta \dot{\omega} \nu v \mu o ́ s ~ \tau \iota \varsigma ~ \dot{\eta}$ ė $\pi i \kappa \lambda \eta \sigma \iota \varsigma$.

 $\epsilon \dot{v} \tau \epsilon \lambda \hat{\eta} \pi a ́ \nu \tau a \cdot \tau a v ̂ \tau a$ ס̀̀ à á $\rho \omega \mu a ́ \tau \iota \sigma \tau a$ סıóть тò

 $\delta^{\prime} \epsilon \dot{\tau} \tau \epsilon \lambda \epsilon ́ \sigma \iota \nu$ ov̉ $\lambda v \sigma \iota \tau \epsilon \lambda \epsilon \hat{\imath}$ тò $\chi \rho \hat{\omega} \mu a \pi \rho o \sigma \tau \iota \theta \in ́ \nu a \iota$.

32
 oủ χ ai ỏ ó $\mu a i ̀ \mu o ́ \nu o \nu ~ a ̉ \lambda \lambda a ̀ ~ к а i ̀ ~ a i ~ \delta \rho \iota \mu v ́ т \eta т є \varsigma ~ к а i ̀ ~$ ai $\theta \epsilon \rho \mu о ́ т \eta \tau \epsilon \varsigma$ є̇עí $\omega \nu$, ठıò каì $\tau \hat{\omega} \nu$ oi้ $\nu \omega \nu \tau \iota \sigma \grave{\tau} \tau \grave{a}$

CONCERNING ODOURS, $30-32$

to make, since no others involve the mixture of so many and such costly ingredients. To make megaleion, they say, the oil is boiled for ten days and nights, and not till then do they put in the resin and the other things, since the oil is more receptive when it has been thoroughly boiled. The superior kind of sweet marjoram-perfume, ${ }^{1}$ they say, is made of all the best spices except sweet marjoram : in fact this is the only spice which perfumers do not use for any perfume, and the name is a misnomer.

Some perfumes are made up colourless, some are given a colour. They give a colour to sweet mar-joram-perfume, rose-perfume, and megaleion, while among expensive kinds the Egyptian, quince-perfume and kypros are colourless, as well as all the cheaper kinds. The reason why these are made without colour is that it is desired that the Egyptian and kypros should look white and that quince-perfume should have the colour of quinces, while it is not worth while to add colour to the cheaper sorts. The dye used for colouring red perfumes is alkanet; the sweet marjoram-perfume is dyed with the substance called khroma (dye), which is a root imported from Syria.

Of the properties of various spices.

VII. It is thought that not only the smells of perfumes contribute to a pleasant taste, but also the qualities of pungency and heat which are found in some of them : accordingly some of these perfumes are also mixed with certain wines to give, as it were, 'point' to them. Thus myrrh is hot and has a biting quality as well as being astringent, and it also
${ }^{1}$ Clcarly distinct from that mentioned in 28.

THEOPHRASTUS

$\sigma \tau u ́ \psi \epsilon \omega \varsigma$, ê $\chi \epsilon \iota$ ठє̀ каì тıкрíav. тò סє̀ кıขá $\mu \omega \mu о \nu$

 $\theta \epsilon \rho \mu \grave{\eta}$ ठє̀ каі $\sigma \tau v \pi \tau \iota \kappa \eta$ каì $\dot{\eta}$ i $\rho \iota \varsigma, \kappa a \theta^{\prime} \dot{v} \pi \epsilon \rho \beta о \lambda \eta \nu$

 ȯтòs каì тò картiov àvסрıкш́тєра тро̀s à $\mu \phi о ́ т \epsilon р а$

 каі $\theta \epsilon \rho \mu о ́ т \epsilon \rho о \nu, ~ \sigma \tau v \pi \tau \iota \kappa a ̀ ~ \delta \grave{e ̀ ~ o ́ \mu o i ́ \omega s ~ a ̆ \mu \phi \omega . ~}$ тoút $\omega \nu$ ঠє̀ $\sigma \tau v \pi \tau \iota \kappa \omega ́ \tau \epsilon \rho о \nu$ тò кúтєє८ov. $\sigma \tau v ́ \phi \epsilon \iota$

 $\chi \rho \hat{\omega} \mu а$ тò єis тò ả $\mu а р а ́ к \iota \nu о \nu ~ є ́ \mu \mu \iota \gamma \nu v ́ \mu \epsilon \nu о \nu ~ \theta \epsilon \rho-~$

 $\pi a ́ \lambda \iota \nu$. oiov $\dot{\eta}$ ípıs єís $\mu \epsilon ̀ \nu ~ \tau \grave{\eta} \nu \epsilon \in \rho \gamma а \sigma i ́ a \nu ~ a ̉ \kappa \mu u ́ \zeta \epsilon \iota ~$

 $\kappa а i ̀ ~ \tau о \hat{v} \kappa \iota \nu а \mu \omega ́ \mu о и ~ к а i ̀ ~ \tau о \hat{v}$ ко́бтоv каì ти̂s кабías. б боî̀os ठѐ каì ка́ланоs таракна́そєє $\tau a \chi v ́ . ~ \tau \omega ิ \nu \delta^{\prime} \dot{a} \nu \theta \hat{\omega} \nu \tau a ̀ ~ \mu \epsilon ̀ \nu ~ \epsilon u ̀ \theta u ̀ s ~ \chi \lambda \omega \rho a ̀ ~ o ै \nu \tau \alpha ~$

[^235]
CONCERNING ODOURS, 32-34

has a bitter quality. Cinnamon again has a fair amount of pungency as well as heat. So too is it with koston. Cassia exceeds both of these in heat pungency and astringency. Iris-perfume is hot and astringent, and excessively bitter when it is fresh, ${ }^{1}$ in which state it causes sores on the skin of those that work on it. Cardamom has also a biting quality as well as heat. The juice and the fruit of balsam of Mecca are more active in producing both these qualities, while the wood is less so. Nepaul cardamom has also a property similar to this.

Ginger-grass ${ }^{2}$ has a more biting quality than sweet-flag, ${ }^{3}$ and is hotter; but both are equally astringent. Kypeiron is however more astringent than either. The sweet-scented aspalathos also has this quality. Spikenard has a biting quality as well as heat. Maron and the khroma which is mixed with sweet marjoram-perfume are heating. ${ }^{4}$ The root of alkanet also contributes to the colour of rose-perfume and iris-perfume.

Now some spices when they are fresh have at first heavy and pungent qualities, but in course of time become sweet till they have reached their prime, and then lose their properties again. Thus the iris is at its prime for manufacturing the perfume for three years after it was gathered, and ${ }^{5}$ lasts for six years at longest. ${ }^{5}$ Maron lasts two years; myrrh ten, and improves with time. Cinnamon koston and cassia keep at their best for about the same periods as these. Ginger-grass and sweet-flag soon get past their prime. Of flowers some, like the rose, possess

[^236]
THEOPHRASTUS

$\tau a ̀ s ~ \delta v \nu a ́ \mu \epsilon \iota \varsigma$ è $\chi \epsilon \iota, \kappa a \theta a ́ \pi \epsilon \rho ~ \tau o ̀ ~ \rho o ́ \delta o \nu, \tau a ̀ ~ \delta e ̀ ~ \xi \eta \rho а \nu-~$
 үà ρ íүро́тє ρa.

Tàs $\mu \epsilon ̀ \nu$ ov̊v фú $\sigma \epsilon \iota \varsigma \kappa a i ̀ ~ \delta v \nu a ́ \mu \epsilon \iota s ~ \tau \hat{\omega} \nu \dot{a} \rho \omega \mu a ́ \tau \omega \nu$ є̇к тои́т $\omega \nu$ Өє $\omega \rho \eta \tau$ є́о
VIII. Докєî ठ̀̀ тò $\mu \epsilon \gamma a \lambda \epsilon i ̂ o \nu ~ a ̉ \phi \lambda \epsilon ́ \gamma \mu a \nu \tau o \nu ~$
 $\pi \rho o ̀ s ~ \tau \grave{a}$ ळ̉тa. тav̂тa δ^{\prime} oủк ả $\lambda o ́ \gamma \omega s . ~ \tau o \hat{v} \mu \grave{\nu} \nu$

 Sè fódıvov тoîs $\dot{\omega} \sigma i ̀ \nu ~ a ̉ \gamma a Ө o ̀ \nu ~ o ̈ \tau \iota ~ \epsilon ̇ \nu ~ a ̀ \lambda \sigma i ̀ \nu ~ \grave{\eta}$
 тov̀s äخas. סıò каi $\dot{\eta}$ à $\lambda о \sigma a ́ \chi \nu \eta ~ a ̉ \gamma a \theta o ́ \nu . ~ a ̉ \lambda \lambda a ̀ ~$

 $\tau o ̀ ~ v i \pi \epsilon \xi a \chi \theta \eta \sigma o ́ \mu \epsilon \nu o \nu \cdot \tau o \hat{v} \tau o ~ \delta \grave{\epsilon}$ oi ä $\lambda \epsilon \varsigma ~ \pi o \iota o v ̂ \sigma \iota \nu$,

 $\kappa а i ̀ ~ \delta ı a ̀ ~ \tau o ̀ ~ « ̇ \pi о \sigma \tau u ́ \phi \epsilon \iota \nu ~ \tau o u ̀ s ~ \epsilon ̇ \pi i ~ \tau \eta ̀ \nu ~ \kappa v ́ \sigma т \iota \nu ~$

[^237]
CONCERNING ODOURS, 34-36

their virtues from the first while they are still fresh, some only after they are dried, as crocus and melilotos, ${ }^{1}$ these having a certain amount of moisture while they are fresh.

These examples may suffice for study of the characters and properties of spices.

Of the medicinal properties of certain perfumes.

VIII. Megaleion is believed to relieve the inflammation caused by any wound, and rose-perfume to be excellent for the ears. And this is probable enough. For the former is composed, as was said, of burnt resin cassia cinnamon and myrrh, and all these have astringent and drying properties: while the reason why rose-perfume is good for the ears is that salt is used in the manufacture of it: for it is by reason of the salt that it dries and warms (which is why 'sea-foam ${ }^{2}$ ' is also good for the ears). Its use against strangury however needs explanation: for it is said to be specially helpful against this. The explanation may be that anything which is to remove the difficulty must first dissolve that which is to be removed; and this is the effect of the salt, while the fragrance supplies the necessary stimulus.

Why however, it may be asked, though irisperfume is fragrant, does it not give the stimulus? Perhaps it is because it is astringent and closes the passages, so that by shutting them it prevents free course. On the other hand this perfume acts as a laxative on the bowels because of its heating quality and because it astringes the passages leading to the bladder: for, when these are closed, the liquid collects in the bowels. In general iris-

[^238]
THEOPHRASTUS

 ov้̉ $\epsilon \in \xi \omega \tau \hat{\eta} \varsigma \tau \in ́ \chi \nu \eta$.
 $\tau \hat{\omega} \nu \dot{a} \rho \omega \mu a ́ \tau \omega \nu, \mathscr{\omega} \sigma \tau^{\prime} \epsilon \epsilon \kappa \tau \omega \nu$ aủ $\tau \hat{\omega} \nu \dot{a} \epsilon i \quad \chi \rho \eta \sigma \tau \grave{a}$ $\kappa a i ̀ ~ o ̈ \mu о \iota а ~ \gamma i ́ \nu \epsilon \sigma \theta a \iota, ~ a ̀ \lambda \lambda o i ̂ a ~ \delta є ̀ ~ \sigma v \mu \beta a i ́ \nu \epsilon \iota ~ \delta ı a ̀ ~ \tau \grave{\nu} \nu$ $\dot{a} \nu \omega \mu a \lambda i ́ a \nu ~ \tau \hat{\omega} \nu ~ \delta v \nu \alpha ́ \mu \epsilon \omega \nu ~ \tau \hat{\omega} \nu ~ \epsilon ̇ \nu ~ \tau о i ̂ s ~ a ̉ \rho \omega ́ \mu a \sigma \iota . ~$ $\tau \hat{\eta} \varsigma \delta^{\prime} \dot{a} \nu \omega \mu a \lambda i ́ a s ~ a i t i ́ a \iota ~ \pi \lambda \epsilon i ́ o v s . ~ \mu i ́ a ~ \mu \epsilon ́ v, ~ \eta ̈ \pi \epsilon \rho ~$

 $\sigma \nu \lambda \lambda о \gamma \eta \dot{\nu}$, ö σa र $\rho o ́ \nu o v ~ \delta \in i ̂ \tau a \iota ~ \pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ a ̉ \kappa \mu \eta ́ \nu, ~$
 рєî̀ каì ن́бтєрєî̀.

'H μ ఢ̀v oûv $\gamma \in ́ \nu \epsilon \sigma \iota \varsigma ~ \kappa a i ̀ ~ \sigma u ́ \nu \theta \epsilon \sigma \iota \varsigma ~ \tau \omega ̂ \nu ~ \mu u ́ \rho \omega \nu ~ \epsilon ่ \kappa ~$ тои́т $\omega \nu$.
360

CONCERNING ODOURS, $36-38$

perfume, as well as others, has medicinal properties. And the explanation in all cases, to put it generally, lies in the above-mentioned properties of astringency and heating; for it is spices possessing these properties that are medicinal. However these matters lie outside our subject of study.

Of rules for the mixture of spices, and of the storing of various perfumes.

IX. There is no fixed rule for the combination and mixture of spices in the sense that the same components will always produce a satisfactory and a uniform result: the result varies by reason of the varying quality of the virtues found in the spices. For this there are several reasons. One, which applies also to fruits, is the character of the season; this causes the virtues to be sometimes much more than ordinarily powerful, sometimes less so. Another is to be found in the time of collection, according as it is made before or after the spices are in their prime. A third cause operates after the collection, that is, in the case of those spices which need time to come to their prime, as was said ${ }^{1}$: for here too it is possible to be too soon or too late.

Of these causes that which depends on the seasons is not within our control, except so far as we can discover which spices in a particular season have powerful, and which weak virtues. ${ }^{2}$ But we can control those which depend on collecting them when in their prime, or on keeping them after they are collected, that is, if we know pretty well how to hit the right moment.

So much for the origin and composition of perfumes.
${ }^{1} 34 . \quad{ }^{2}$ i.e. and we can select accordingly.

THEOPHRASTUS
 тò ĭ $\rho \iota \nu о \nu$ каì тò à $\mu а \rho а ́ к \iota \nu о \nu ~ к а i ̀ ~ \tau o ̀ ~ \nu a ́ \rho \delta \iota \nu о \nu, ~$

 Sè $\tau \hat{\eta}$ à $\sigma \theta \epsilon \nu \epsilon$ ía каì тò єủmé $\pi a \nu \tau a$ єivaı каĭ ờ $\omega \varsigma$ $\epsilon \dot{\delta} \delta \iota a ́ \pi \nu \epsilon \cup \sigma \tau a \cdot \tau \grave{a} \delta^{\prime} \epsilon \in \tau \tau \hat{\omega} \nu \dot{\rho} \iota \zeta \hat{\omega} \nu \kappa a i ~ \tau \omega \hat{\omega} \lambda о \iota \pi \hat{\omega} \nu$ $\chi \rho о \nu \iota \omega ́ т \epsilon \rho a \cdot \pi \lambda \epsilon i \omega \nu$ خà ρ ท̀ ò $\sigma \mu \grave{\eta} \kappa a i ̀ ~ i \sigma \chi v \rho о \tau \epsilon ́ \rho a$ $\kappa а і ~ \sigma \omega \mu a \tau \omega \delta \epsilon \sigma \tau \epsilon ́ \rho a$.
$40 \Delta \iota a \phi \theta \epsilon i ́ \rho \epsilon \iota$ ठ̀̀ tà $\mu v ́ \rho a$ каi $̈ \rho a \quad \theta \epsilon \rho \mu \eta े ~ к а i ̀ ~$

 $\pi \rho о \sigma \eta \lambda i ́ o v s \dot{a} \lambda \lambda ’$ öт८ $\mu a ́ \lambda \iota \sigma \tau a \operatorname{\pi a\lambda \iota \sigma \kappa iovs\cdot ~àфa\iota -~}$

 $\pi ⿰ 丿 \epsilon \in \hat{\imath}$ Sıà тò $\sigma v \sigma \tau \epsilon ́ \lambda \lambda \epsilon \iota \nu, a ̉ \lambda \lambda$ ' oủk àфаıрєîтaí

 41 тò oíкєîov áфаıрєîбӨaı $\theta \epsilon \rho \mu o ́ v$. Sıò каì єís ả $\gamma \gamma \epsilon i ̂ a ~$

 3^{62}

CONCERNING ODOURS, 3 - ${ }^{8-4}$

Those which last longest are the Egyptian, the iris, the sweet marjoram and the spikenard perfumes: but myrrh-oil has the longest life of any; for it will keep any time. A certain perfumer said that he had had Egyptian perfume in his shop for eight years, and iris-perfume for twenty, and that it was still in good case, in fact better than fresh perfume. These are instances of perfumes which will keep a long time.

On the other hand all those made from flowers have little vigour. These are usually at their best after two months, but they deteriorate when a year has past and the season has come round again at which the flowers are at their best. Also, as these perfumes lack vigour, so also do they quickly mellow, and, in most cases, quickly evaporate. Those made from roots and the other parts of the plant last longer, their odour being fuller stronger and more substantial.

Perfumes are ruined by a hot season or place or by being put in the sun. This is why perfumers seek upper rooms which do not face the sun but are shaded as much as possible. For the sun or a hot place deprives the perfumes of their odour, and in general makes them lose their character more than cold treatment : while cold and frost, even if they make them less odorous by congealing them, yet do not altogether deprive them of their virtue. For the most destructive thing that can happen to them, as to wines and other savours, is that they should be deprived of their proper heat. This is why men put them into vessels of lead and try to secure phials of alabaster-a stone which has the required effect: for lead is cold and of close texture, and stone has

THEOPHRASTUS

 $\tau \eta \rho \circ \hat{v} \sigma \iota, \kappa a i ̀ \tau \hat{\varphi} \psi \cup \chi \rho \hat{\varphi} \kappa \alpha i ̀ \tau \hat{\omega} \pi v \kappa \nu \hat{\varphi}, \mu \eta \dot{\tau} \tau$

 $\phi \theta \epsilon i \rho \in \iota$ каі катаעа入íбкєь, каӨáтєр є̇ $\lambda \in ́ \chi \theta \eta$, тàs ò $\sigma \mu a ́ s, ~ a ̈ \lambda \lambda \omega s ~ \tau \epsilon ~ \kappa а i ̀ ~ \tau a ̀ s ~ \mu \eta ̀ ~ \phi v \sigma \iota \kappa a ́ s . ~$
X. Kєфа $\lambda a \lambda \gamma \hat{\eta}$ $\delta \grave{\epsilon} \tau \hat{\omega} \nu \quad \mu \epsilon ̀ \nu \quad \pi o \lambda v \tau \epsilon \lambda \hat{\omega} \nu$ тò à $\mu а р а ́ к \iota \nu о \nu ~ к а і ̀ ~ \tau o ̀ ~ \nu a ́ p \delta \iota \nu o \nu ~ к а і ̀ ~ \mu \epsilon \gamma а \lambda \epsilon i ̂ о \nu, ~ \tau \hat{\omega \nu}$

 ки́тлоऽ, à каi тоі̂ऽ ảvסрáбı $\mu a ́ \lambda \iota \sigma \tau a ~ \dot{a} \rho \mu o ́ \tau \tau \epsilon \iota \nu$

 тò ả $\mu a \rho a ́ \kappa \iota \nu o \nu ~ \kappa а \grave{\imath}$ тò $\nu a ́ \rho \delta \iota \nu o \nu . ~ \delta \iota a ̀ ~ \gamma a ̀ \rho ~ т \eta ̀ \nu ~$ í χ ùv каì тò тá χ os oủk єv̉aтóтиoa oủ ${ }^{\prime}$ єủaфaí $\rho \in \tau a \cdot \zeta \eta \tau o v ̂ \sigma \iota<\gamma a ̀ \rho>\tau a ̀ ~ \chi \rho o ́ v \iota a . ~$
'Етєì $\delta \hat{\epsilon}$ тà $\mu \dot{\epsilon} \nu \quad \dot{a} \sigma \theta \epsilon \nu \hat{\eta} \tau \grave{a} \delta^{\prime} i \sigma \chi \nu \rho a ́$, каì
 $\pi \rho о є \iota \rho \eta \mu \in ́ v a, \delta \iota a ̀ ~ \tau о ข ̂ \tau o ~ \tau a ̀ ~ \mu \grave{\nu} \nu \stackrel{้}{\nu} \nu \iota \nu a \mu \eta$ т $\tau \rho \iota-$

[^239]
CONCERNING ODOURS, 41-43

the same character, that being the best for keeping perfumes which has it in the highest degree. ${ }^{1}$ So that vessels made of these materials keep the perfume well for both reasons, their coolness and their closeness of texture : they neither let the odour pass away through them, nor do they take in anything else. For evaporation destroys the perfume, and so also does any foreign substance which finds its way in: for even draughts of air destroy odours and cause them to waste, as was said, especially those odours which do not belong to a thing's essential nature.

Of the properties of certain perfumes.

X. Headache is caused by sweet marjoram spikenard and megaleion among costly perfumes : most of the cheap ones have also this effect, notably that made from bay. The lightest are rose-perfume and kypros, which seem to be the best suited to men, as also is lily-perfume. The best for women are myrrh-oil, megaleion, the Egyptian, sweet marjoram, and spikenard: for these owing to their strength and substantial character do not easily evaporate and are not easily made to disperse, and ${ }^{2}$ a lasting perfume is what women require.

Inasmuch however as some perfumes are stronger than others, the stronger being those made from roots and the others already mentioned, for this reason those derived from flowers are more fragrant if they are not bruised, while bruising improves those made from roots and the others. For the former kind evaporate and pass off as they are warmed by the bruising, thus losing their character, while the latter owing to their strength have, as it

THEOPHRASTUS

 $\tau \hat{\omega} \nu \hat{\rho} \iota \zeta \hat{\omega} \nu \kappa \alpha i \begin{gathered}\text { ö } \\ \lambda \omega s \\ \tau \hat{\omega} \nu \\ \sigma \tau \epsilon \rho \epsilon \hat{\omega} \nu \\ \sigma \nu \mu \beta a i \nu \epsilon \iota, ~\end{gathered}$
 $\check{\omega} \sigma \tau \epsilon \dot{\eta} \kappa о \lambda о u ̈ \theta \eta \kappa \epsilon \nu$ є́ка́тєра $\tau \hat{\eta}$ à $\rho \chi \hat{\eta}$. $\tau \grave{\alpha} \delta^{\prime} \epsilon \in \kappa$

 $\mu a ̂ \lambda \lambda o \nu \tau \hat{\omega}$ à́ $\rho \iota$.

 $\epsilon_{\epsilon} \lambda \in \chi \theta \eta$.

 $\tau \hat{\omega} \nu$ ă $\lambda \lambda \omega \nu$ ò $\sigma \mu a ̀ s$ ő $\tau \alpha \nu \pi \rho о \mu v \rho \iota \sigma \theta \omega \hat{\omega} \iota$ ठıò каі

${ }^{1} \dot{\eta}$ ins. W. $\quad{ }^{2} \dot{\eta}$ ins. W.
${ }^{3}$ The words ávie $\delta \rho \stackrel{\mu}{c}$ are omitted in both W.'s editions, but represented in his Latin version.

CONCERNING ODOURS, 43-45

were, certain passages opened by the bruising, and so their fragrance is made more obvious. This, as was said, also takes place in the case of the roots themselves and of the solid things in general; but the result in the case of flowers is just the opposite, so that both kinds behave according to their origin. That this should apply to the perfumes made from myrrh is quite natural for both reasons; they mingle more than others with the air, and the heat ${ }^{1}$ due to the bruising is not prejudicial, since it is gentle, and myrrh ${ }^{2}$ in fact requires a certain amount of heating. And in general any strong odour, whether it be pleasing or the reverse, whether it be pungent ${ }^{3}$ or sharp, or whatever its character, becomes more pronounced with movement; for then it becomes, as it were, active and mingles more with the air.

The Egyptian perfume, myrrh-oil, and any others that have a strong odour become ${ }^{4}$ sweeter if they are mixed with fragrant wine; for then their heavy quality is removed. In fact myrrh itself is made to exhale a more fragrant odour by being steeped in sweet wine, as was said ${ }^{5}$ in a former treatise.

If one has regard to the virtues of the perfumes in question, one may well be surprised at what happens in the case of rose-perfume:-though it is lighter and less powerful than any other, if one has first been scented with it, it destroys the odour of the others. And this is why perfumers, if a purchaser hesitates and is not inclined to buy this perfume, scent him with it so that he is not able to smell the others. The explanation is that, being very delicate and acceptable to the sense of smell, by reason of its lightness it penetrates as no

[^240]
THEOPHRASTUS

$\pi \lambda \eta \rho o \hat{\imath}$ тov̀s $\pi o ́ \rho o v \varsigma, ~ \omega ̈ \sigma \theta \prime \dot{\eta}$ aï $\sigma \theta \eta \sigma \iota \varsigma \kappa a \tau \epsilon \iota \lambda \eta \mu-$

 $\tau \hat{\omega} \nu i \sigma \chi \nu \rho \hat{\omega} \nu \tilde{\omega} \sigma \pi \epsilon \rho \mu \epsilon \theta \dot{v} \sigma \kappa \omega \nu \tau \grave{\eta} \nu$ aĭ $\sigma \theta \eta \sigma \iota \nu \kappa a \grave{ }$ $\kappa а \rho \eta \beta a \rho a ̂ \nu \pi о \iota \omega \nu \cdot \tau \rho і т о \varsigma \delta^{\prime}$ öтау трокатад $\eta \phi \theta \hat{\eta}$ $\tau \hat{\omega}$ ßє入тiovl $\tau \grave{o}$ रà ρ є̇ $\pi \epsilon \iota \sigma a ́ \gamma \epsilon \iota \nu$ тò $\chi \epsilon i ̂ \rho o \nu ~ o u ̉ ~$ pádıov. oủ $\delta \in ́ \chi \epsilon \tau a \iota ~ \gamma a ̀ \rho ~ \dot{\eta}$ aï $\sigma \eta \sigma \iota \varsigma, \omega ̈ \sigma \pi \epsilon \rho$ oủ δ^{\prime}

 тàs $\sigma v \nu \theta$ é $\sigma \epsilon \iota \varsigma, ~ \grave{a} \nu o \iota \gamma o ́ \mu \epsilon \nu a \iota ~ \delta ' ~ \epsilon ' \xi o ́ \zeta о v \sigma \iota ~ \tau о u ́ т o v ~$

 $\zeta_{\epsilon \iota} \tau \hat{\omega} \nu$ ä $\lambda \lambda \omega \nu \cdot \lambda \epsilon \pi \tau \grave{\eta}$ रà ρ ov̉бa $\dot{\eta}$ à $\nu a \pi \nu o \grave{\eta}$ кaì $\dot{\eta} \theta \rho \circ \iota \sigma \mu \epsilon ́ \nu \eta$ $\tau \hat{\eta} \kappa \alpha \tau а \kappa \lambda \epsilon і ́ \sigma \epsilon \iota ~ \pi \rho о \tau \epsilon \rho \epsilon \hat{\imath} \tau \epsilon \tau \hat{\omega} \nu \lambda о \iota-$ $\pi \hat{\omega} \nu \kappa a \grave{~ \delta \iota a \delta i ́ \delta o \tau a \iota ~ \pi a \nu \tau a \chi o v . ~ \delta \iota a ̀ ~ \tau a u ̉ t o ̀ ~ \delta \grave{\epsilon}}$ тои̂то каì àто入ท́ชєє таХ̀̀ каі катакратєîтаь $\pi a ́ \lambda \iota \nu \cdot a ̉ \sigma \theta \epsilon \nu \epsilon i ̂ ~ \gamma a ̀ \rho ~ \tau o ̀ ~ \lambda \epsilon \pi \tau o ̀ \nu ~ к а i ̀ ~ \mu а \lambda а к o ́ \nu . ~$

[^241]
CONCERNING ODOURS, 45-48

other can and fills up the passages of the sense, so that being entirely taken up and filled with it, it is unable to judge of others. For the power of judging is inhibited in two, or possibly in three ways; one is that which has just been mentioned; another is that the sense of smell is, as it were, intoxicated with its powerful virtues and becomes stupefied : the third is that the sense may be preoccupied with the superior odour; for then it is not easy to introduce after it what is inferior, since the sense of smell refuses this-just as the sense of taste in like case refuses flavours and foods in general.

It is also thought that the rose even weakens the effect of compound perfume ${ }^{1}$; for, when the flower is at its best, they treat compound perfumes with it; and, when these come to be opened, they smell only or chiefly of rose. However this effect is only temporary and transient because of the weakness and delicacy of the rose-scent, (the very quality which also causes it to assert ${ }^{2}$ itself over the scent of the other ingredients). For, as it is so delicate and is compressed by confinement, it is exhaled before the others and disperses in all directions. It is also for this reason that the rose-scent only asserts itself for a short time and then is overpowered again; for anything that is delicate and subtle must be lacking in vigour.

Certain wines have also a similar effect: if they are first drunk, there is no satisfaction in others. Some again make it even difficult to take others

[^242]
THEOPHRASTUS

 $\kappa a i ̀ \tau \hat{\eta} \dot{a}^{\alpha} \pi \grave{o} \tau \omega \nu \mu u ́ \rho \omega \nu$.
'H δ ' aitia $\phi a \nu \epsilon \rho a ̀ ~ \delta i a ̀ ~ \tau \hat{\omega} \nu \pi \rho о є \iota \rho \eta \mu \in ́ \nu \omega \nu, \epsilon i \not \pi \epsilon \rho$

 тò $\sigma u \mu \pi \epsilon ́ \psi a \iota \kappa a i ̀ ~ \delta \iota a \nu o i \xi \xi \iota ~ \tau o u ̀ s ~ \pi o ́ \rho o v s . ~ o i ~ \gamma a ̀ \rho ~$

50

 oí $\gamma \epsilon \iota \nu$ тoùs mópovs, $\epsilon i s$ à $\sigma v \mu \beta a ́ \lambda \lambda \epsilon \tau a \iota \tau o ̀ ~ \epsilon ̀ \nu ~ \tau \hat{\varphi}$

[^243]
CONCERNING ODOURS, 48-50

after them; this is the effect for instance of wine of Erythrae, ${ }^{1}$ which has a taste of brine and is subtle. The ${ }^{2}$ explanation one must endeavour to find by comparing analogous cases. ${ }^{3}$ However there is one peculiarity which as we have already more or less indicated, is possessed by rose-perfume only; while all or most of the others are heady, this, as was said, gives actual relief from heaviness and discomfort, even from that caused by other perfumes.

The reason for this is plain in view of what has been already said, seeing that this perfume overpowers others and penetrates everywhere. For the others that are heady are heavy because they are made of heavy substances, whether roots or juices; while this perfume is both light as to its scent and also by its heat well adapted to bring the passages to a suitable temperature and to open them. For pains in the head are due to an excess of moisture in it, or of air which gets confined in it, so that it is necessary to get rid of the one, and to raise the temperature of the other or to remove it.

And for all such purposes heat is useful, both for removing the moisture or air, and, still more, for raising the temperature of the passages and opening them: and to these ends it is helpful that the perfume should have been prepared with salt, since the effect of salt is to open the passages and to warm them thoroughly. Again the fragrance also supplies a stimulus to movement. This perfume is also considered to be good against lassitude, because its heat and its lightness make it suitable, and also because it penetrates to the inner passages. Some however say that kypros is quite as efficacious: for this too has a delicate scent which is grateful to the

THEOPHRASTUS

 é $\chi o v \sigma i ́ ~ \tau \iota \nu a ~ \chi \rho \epsilon i ́ a \nu, ~ a i ́ ~ \mu e ̀ \nu ~ a ̀ ~ ф a \iota \rho o v ̂ \sigma a \iota ~ \tau \grave{\nu \nu ~ \beta a \rho u ́-~}$

 $\sigma \tau a \iota \tau o ̀ s ~ \lambda a \mu \beta a ́ \nu \epsilon \iota \nu ~ \tau o ̀ \nu ~ o i ́ v o v . ~$

 $\kappa а \grave{~ \tau o ̀ \nu ~ ’ E \rho \nu \theta \rho a i ̂ o \nu, ~ \tau o v ̂ ~ \mu \grave{\nu} \nu \tau \grave{\nu} \nu \mu а \lambda а к o ́ т \eta \tau а ~ \tau o ̂ ̂ ~}$

 $\theta a \tau$ épou <каì т $\hat{\eta}$ єن̉oo $\mu i ́ a ~ \theta a \tau \epsilon ́ \rho o v>. ~ \pi o \lambda \lambda a ̀ s ~ \delta \grave{\epsilon}$

 $\mu i \xi \epsilon \iota \varsigma$. тои̂то μ èv oủv ídıov tov̂ poóívov.

${ }^{1}$ Quoted by Athen. 1. 58. $\quad{ }^{2}$ cf. 48.
${ }^{3}$ This sentence must be defective : as it stands, the effect of only one wine is given, though the effect is said to be

CONCERNING ODOURS, 50-53

skin. These and similar properties may be considered peculiar to these particular perfumes.

Of other properties and peculiarities of perfumes.

XI. The admixture of rose-perfume, whether in scents or in flavours, if it be well blended, is beneficial, in the one case by removing the heaviness and strength of the scent, in the other by imparting a fragrant scent or a sweet taste to the flavour, as in the case of wines. ${ }^{1}$ Thus the wine which is served in the town-hall of Thasos, which appears to be of wonderfully delightful quality, is thus flavoured. For they put into the jar a lump of dough which has been kneaded up with honey, so that the wine gets its fragrance from itself, but its sweet taste from the honeyed dough.

This result also follows, it is said, from the mixture of different wines,-for example, if a strong fragrant wine be mixed with one that is mild and without fragrance, (for instance, if wine of Heraclea be mixed with wine of Erythrae), ${ }^{2}$ since the latter contributes its mildness and the former its fragrance: ${ }^{3}$ for the effect is that they simultaneously destroy one another's inferior qualities through the mildness of the one and the fragrance of the other. There are many other such blends mentioned by and known to experts. And it is quite to be expected that such a result should follow from blending odours, as it does from blending colours, if one discovers the suitable combinations. This then is peculiar to rose-perfume.

However there is one question which applies to all perfumes, namely, why it is that they appear to

THEOPHRASTUS

ảmò $\tau о \hat{v} \kappa \alpha \rho \pi о \hat{v} \tau \hat{\eta} \varsigma \chi \epsilon \iota \rho o ̀ s ~ \eta ̈ \delta \iota \sigma \tau a ~ ф а i ́ \nu \epsilon \tau a \iota, \delta \iota o$
 δ^{\prime} aitíav éк тov є́vavtiov $\lambda \eta \pi \tau \in ́ o \nu$, öт८ тò $\theta \in \rho \mu \grave{\nu}$
 то̂̂s μ úpoıs ảva $\mu \iota \gamma \nu v \mu$ évoıs т̣̂ $\chi \rho \omega \tau i ́$.

 єैоוкє тò μ èv oiov $\sigma v \nu a \nu a \mu i ́ \gamma \nu v \sigma \theta a \iota ~ \pi \lambda \epsilon i ́ o \sigma \iota \nu ~ o ̉ \sigma-~$ $\mu a i ̂ s ~ є ̇ \tau \epsilon ́ \rho a \iota s ~ i ́ \phi ' ~ ف ิ \nu ~ a ̉ \mu a v \rho о \hat{\tau} \alpha \iota, ~ \sigma v \gamma к а т а \mu \iota \gamma \nu v-$

[^244]
CONCERNING ODOURS, 53-55

be sweetest when the scent comes from the wrist ${ }^{1}$; so that perfumers ${ }^{2}$ apply the scent to this part. The explanation must be sought by observing what happens in the contrary case, inasmuch as heat changes or destroys the character of a scent, and the effect on the sense of smell is immediately perceived when perfumes are brought into close contact with the skin.

The question is also raised why those who do not habitually use perfumes smell of them more strongly, when they do so, than those who use them habitually. The suggestion might be made that this is an illusion due to the fact that the use is not habitual, and does not represent what really happens. If however it does, it would appear that in the one case the perfume becomes, as it were, confused with a number of other scents which weaken its force (the smell of the skin also becoming mixed with it), while in the other case the porous condition of the skin takes in the scent as it were uncontaminated, and so makes it perceptible by the sense of smell, because it lingers for some time. One might also make a suggestion of opposite character, that the skin takes in perfumes less readily because it is not used to them, and so, as the perfumes mingle with it more slowly, they preserve ${ }^{3}$ their scent for a longer time. One may add that this is a small point and that all do not agree as to the fact.

Those perfumes whose scent is strongest get the best hold on the skin head and other parts of the body, and last for the longest time: such are phrase presumably means the back of the hand, and suggests that $\dot{\alpha} \pi \grave{\delta}$ тov̂ kapтồ may be corrupt.
${ }^{2}$ Sc. in offering samples for choice.
${ }^{3} \mathrm{Sc}$. it is not absorbed by the skin.

THEOPHRASTUS

iб χ иро́тата таîs ò ouaîs, oiov $\mu \in \gamma a \lambda \epsilon i ̂ o \nu$, Aiरú-

 κ ки́троs.

 μ е́v η s.
 $\kappa \alpha i ̀ ~ \delta u \nu a ́ \mu \epsilon \omega \varsigma ~ є ่ \pi i ̀ ~ \tau o \sigma o u ̂ t o \nu ~ \epsilon i \rho \eta ́ \sigma \theta \omega . ~$
XII. Tà $\delta \grave{\epsilon} \pi \epsilon \rho \grave{\imath} \tau \grave{\eta} \nu \tau \hat{\omega} \nu \xi \eta \rho \hat{\omega} \nu \mu i \xi \iota \nu, ~ \epsilon \epsilon \xi \dot{\omega} \nu$ $<\tau a ̀>\delta \iota a \pi a ́ \sigma \mu a \tau a \kappa \alpha i ̀ ~ a i ~ \sigma v \nu \theta \epsilon ́ \sigma \epsilon \iota \varsigma$, ov̉к єैт८ Чŋтєî $\mu i \xi \imath \nu \tau \hat{\omega} \nu \delta$ é $\tau \iota \nu \omega \nu \dot{\omega} \rho \iota \sigma \mu \in ́ \nu \omega \nu, \vec{a} \lambda \lambda ’$ ö $\sigma \omega$ ă $\nu \tau \iota \varsigma$ $\pi \lambda \epsilon i ́ \omega ~ к а і ̀ ~ \pi о \iota к \iota \lambda \omega ́ т \epsilon \rho а ~ \mu i \xi \xi \eta$, тобоv́тч каі $\dot{\eta}$ ò $\sigma \mu \grave{\eta}$

${ }^{1}$ rà ins. Sch.

CONCERNING ODOURS, 55-57

megaleion, Egyptian perfume and sweet marjoramperfume. Those on the other hand which are weak and have not a powerful scent, since they are volatile and evaporate, also quickly come to an end: for instance rose-perfume and kypros.

There are some however whose scent is even better on the second day, when any heavy quality that they possessed has evaporated. Some again are altogether more permanent, as spikenard and irisperfume, and the stronger ${ }^{1}$ a perfume is, the longer it lasts. Again some perfumes for some reason keep their scent in the bath when the body is relaxed, or at least do not help to produce a disagreeable effect; while others become disagreeable and cause an even more unpleasant odour than the sweat, as though some sort of decomposition or decay took place.

Let this suffice for an account of the manufacture and properties of perfumes.

Of the making of perfume-powders and compound perfumes.
XII. As to the mixing of solid substances to make powders ${ }^{1}$ and compound perfumes, we do not find it here necessary to mix certain specified ingredients : the more numerous and the more various the perfumes that are mixed, the more distinguished and the more grateful will be the scent-just as though one were mixing whatever spices themselves ${ }^{2}$ were procurable. As a matter of fact the custom is to use a mixture made of all kinds. Again in perfumes of this class the aim and object is not to make the mixture smell of some one particular thing, but to

[^245]
THEOPHRASTUS

 $\tau \hat{\omega} \nu$ i $\sigma \chi \nu \rho \hat{\omega} \nu$ є̇ $\lambda a ́ \tau \tau \omega \mu \iota \gamma \nu v ́ o v \sigma \iota \nu, ~ \mathscr{\omega} \sigma \pi \epsilon \rho$. . . $\tau \grave{a}$
 v̇ாè ρ ov каì ả $\rho \tau i ́ \omega s$ є̇ $\lambda \epsilon ́ \chi \theta \eta$.

 $\gamma \epsilon \kappa a i ̀ ~ o i ~ \mu \nu \rho є \psi \circ \grave{~} \chi \rho \omega \hat{\nu \tau a \iota . ~ \mu \epsilon ́ v o v \sigma \iota ~ \delta \grave{\epsilon} ~ \pi о \lambda \grave{v} \nu}$
 $\tau \grave{\eta} \nu \tau \hat{\omega} \nu$ i $\mu a \tau i ́ \omega \nu$ ó $\sigma \mu \eta{ }^{\prime} \nu, \tau \hat{\omega} \nu$ ठè $\delta \iota a \pi a \sigma \mu a ́ \tau \omega \nu \in i s$

 π рòs ä $\lambda \lambda \eta \lambda a<\mu \iota \chi \theta$ ध́v $\tau a>\tau a i ̂ s ~ o ̉ \sigma \mu a i ̂ s . ~$
59 Eủ $\lambda o ́ \gamma \omega s$ ठè $\tau a ̀ ~ \mu u ́ \rho a ~ \phi а \rho \mu а \kappa \omega ́ \delta \eta ~ \delta ı a ̀ ~ \tau \eta ̀ \nu ~ \tau \hat{\omega} \nu$

[^246]
CONCERNING ODOURS, 57-59

produce a general scent derived from them all. This is why every few days they open the vessel and remove each time that perfume whose scent is overpowering the others, adding at the same time smaller quantities of the less powerful scents, such as . . ., ${ }^{1}$ while some perfumes are never added, such as galingale, of which we spoke just now.

When they make compound perfumes, they moisten the spices with fragrant wine: and this certainly seems to be useful for producing fragrance, seeing that perfumers also use it. These compound perfumes last a long time. They are used to impart a pleasant odour to clothes, while the powders are used for bedding, so that they may come in contact with the skin: for this kind of preparation gets a better hold and is more lasting, so that men use it thus instead of scenting their bodies directly. ${ }^{2}$ Some, before putting the powder in the bedding, soak it in fragrant wine, so that it may acquire its scent: and some powders they moisten by mixing them with mead and wine, or again simply with mead. For in general both these things help to give them fragrance. Compound perfumes also last well. From which what was said above becomes manifest, inasmuch as solid perfumes, when mixed ${ }^{3}$ with one another, acquire a greater fragrance.
${ }^{4}$ It is to be expected that perfumes should have medicinal properties in view of the virtues of spices: for these too have such virtues. The effects of

[^247]
THEOPHRASTUS

 ä $\lambda \lambda a \pi \lambda \epsilon i \omega$ т $\hat{\omega} \nu$ катà тò $\sigma \hat{\omega} \mu a$ $\delta \iota a \lambda \lambda o \iota o \hat{\nu} \nu \tau a$,

 єن̉قùs $\sigma \grave{v} \nu$ тоîs є́ $\rho v \gamma \mu \circ i ̂ \varsigma ~ a ̉ \pi o \delta i ́ \delta \omega \sigma \iota \nu ~ \epsilon v ่ \omega ́ \delta \epsilon \iota \varsigma ~ \tau a ̀ s ~$

 $\sigma \nu \nu \tau \eta \kappa о \mu \in ́ \nu \omega \nu$ каі ка $\mu \nu \quad \nu \tau \omega \nu$ $\sigma \omega \mu a ́ \tau \omega \nu$. ठı̀̀ каі oi трáyoı каì oi é $\lambda a \phi o \iota ~ к а i ~ \lambda a \gamma o i ̀ ~ к а i ̀ ~ \tau d ̉ \lambda \lambda a ~$ то́тє $\mu a ́ \lambda \iota \sigma \tau a$ öఢєє.

[^248] 380

CONCERNING ODOURS, 59-62

plasters and of what some call 'poultices' prove what virtues they display, since they disperse tumours and abscesses and produce a distinct effect on various other parts of the body, on its surface, but also on the interior parts: for instance, if one lays a plaster on his abdomen and breast, the patient forthwith produces fragrant odours along with his eructations. ${ }^{1}$

Of the characteristic smells of animals, and of certain curious
facts as to the smell of animal and vegetable products.
XIII. The smells of animals correspond to their several characters: each has a smell of its own according to its particular composition. These smells are pleasant and pure when ${ }^{2}$ the animal is in its prime and in good condition, and even pleasanter when they ${ }^{3}$ are young and tender. But the small is strongest and least pleasant at the breeding season, and generally when the body is wasting or out of condition: wherefore goats stags hares and other animals have most smell at such times.

It is a remarkable fact and peculiar to the goat that goat-skins ${ }^{4}$ are sympathetically affected when the breeding season comes round. The reason plainly is that there remains somehow in the hide the sort of virtue or moisture from which arises the breeding impulse when the animal is alive. It is natural therefore that, when this is excited and warmed by the air, the skin also should be excited ${ }^{5}$ so far as it belongs to it to be so affected. Wherefore the original cause as it were of the

[^249]
THEOPHRASTUS

 ŋ̀ δ^{\prime} ò $\chi є i a ~ \tau о ́ т є ~ \mu \epsilon ̀ \nu ~ \mu є \gamma a ́ \lambda \eta \nu ~ \mu є \rho i ́ \delta a ~ \sigma \nu \mu \beta a ́ \lambda \lambda є \tau \alpha \iota, ~$

 тоьaúтๆ $\sigma \nu \mu \pi a ́ \theta \epsilon \iota a \cdot \kappa a i ~ \gamma a ̀ \rho ~ o ́ ~ o i v o s ~ a ̈ \mu a ~ \tau \hat{n}$ $\sigma \tau a \phi \nu \lambda \hat{\eta}$ ठокєî $\sigma v \nu a \nu \theta \epsilon i ̂ \nu ~ \kappa а i ̀ ~ \tau a ̀ ~ \sigma \kappa o ́ \rho о \delta а ~ \kappa а і ̀ ~ \tau a ̀ ~$

 aủтoîs $\beta \lambda a \sigma \tau a ́ \nu \epsilon \iota \nu$. ő $\lambda \omega \varsigma$ ठє̀ тáעта кıขєîтaı
 $\kappa а \tau \grave{~} \tau a ̀ s \beta \lambda a \sigma \tau \eta \tau \iota \kappa a ̀ s ~ \check{\omega} \rho a \varsigma^{\bullet} \dot{\eta} \gamma$ àp є̇vvтápХоvбa

 $\sigma \nu \mu \beta a i ̂ \nu o \nu, \epsilon i \pi \pi \epsilon \rho$ ä μa тaîs фш入íaıs є̇таípєтaı $\kappa а i ̀ ~ \epsilon ̇ \kappa \pi \lambda \eta \rho o ̂ ̂ ~ \tau a ̀ ~ a ̉ \gamma \gamma \epsilon i ̂ a . ~$

 $\chi \rho o ́ a s ~ o u ̉ \chi ~ \dot{o} \mu o i ́ \omega s ~ \pi \rho o ̀ s ~ \tau a ̀ s ~ \dot{v} \pi о к є \iota \mu \in ́ v a s ~ a i ́ \sigma \theta \eta ́-~$
 $\pi \rho o ̀ s ~ a ̈ \pi т а \nu \tau a \varsigma ~ к о \iota \nu o ́ \nu ; ~ a ̈ \pi a \nu \tau \epsilon \varsigma ~ \gamma a ̀ ̀ ~ o i ~ \mu e ̀ \nu ~ \mu o ́ \nu \eta s ~$

[^250]
CONCERNING ODOURS, 62-64

phenomenon is the special condition of the animal at such periods: for at these times even those males which are not breeding have the smell, and the sterile goats and the females in general. Indeed, though at that particular time the fact that animals are actually breeding is a powerful factor in producing the smell, yet their condition is in itself a cause.

Similar sympathetic behaviour is found in a manner in other things also. Thus wine appears to 'bloom' ${ }^{1}$ at the same time as the growing grape, and stored garlic and onions appear to have the most pungent smell at the season when those ${ }^{2}$ in the ground are sprouting: however in this case sprouting takes place in the stored vegetables also. And in general any plant whose root is in layers ${ }^{3}$ or fleshy becomes active at the season of sprouting, unless it has been completely dried: for it is the force latent in such plants which is stirred into activity. But the most remarkable phenomenon of the kind is what occurs with bears' grease: it makes active growth at the time of the bear's winter sleep ${ }^{4}$ and completely fills the vessels in which it is kept.

Of odours as compared with other sense-impressions.

XIV. What can be the reason why Democritus, though he assigns various flavours to the sense of taste, yet does not in like manner assign various smells and colours to the senses to which they belong? According to his system he should have done so. Perhaps the same criticism should apply to all who have dealt with the subject: for they all
in this matter: his version (coctas ursorum carnes) adds to the marvel.

THEOPHRASTUS

 і́токєє $\mu \epsilon \nu a, \sigma \kappa \lambda \eta \rho o ̀ \nu \mu a \lambda a \kappa o ̀ \nu \tau \rho a \chi \grave{v} \lambda \epsilon \hat{\iota} o \nu$.
 $\mu \epsilon ̀ \nu \tau \hat{\varphi} \mu \grave{\eta} \kappa а \tau а \mu \epsilon \rho i \zeta \epsilon \sigma \theta a \iota \stackrel{\omega}{\omega} \sigma \tau^{\prime} \epsilon \xi \xi \dot{\alpha} \mu \phi o i ̂ \nu$, oiov

[^251]
CONCERNING ODOURS, 64-66

either give the various qualities and distinguish the experiences of this sense ${ }^{1}$ alone or at least comparatively neglect the others: thus with colours ${ }^{2}$ they distinguish white and black, and with flavours sweet and bitter, yet they make no corresponding classification of smells, but merely class them as 'pleasant' or 'unpleasant.' So too they fail to distinguish different experiences of the sense of touch, whereas several belong immediately to this sense, as hardness, softness, roughness, smoothness.

In sounds still more are there differences, as that between shrill and deep. Again some senseexperiences are simple, some compound. Flavours are simple first in the sense that they cannot be resolved into two components ${ }^{3}$: instances are water oil phlegm blood, ${ }^{4}$ and in general anything which floats, like milk, ${ }^{5}$ or which causes separation, like vinegar. (Where mixture can be produced by pressure or crushing, it is quite a different matter). Secondly there are flavours which do not readily combine in another sense, namely for human use, or which even spoil one another if they are mixed, as sea-water, or water with soda in it or which has a bitter taste : these spoil wines or other things that are good to drink, unless they are taken at once.

Now the odours which in this sense do not combine are numerous, and, speaking generally, it is the pleasant odours which do not combine with the unpleasant ones. It would indeed be difficult, if not impossible, to find a case in which mixture is an

[^252]385
vol. II.
C C

THEOPHRASTUS

 та́баוя $\mu \iota \kappa \tau a i ́$.

 χ นóv.

 μ н́vov каi oîov $\phi \theta i \sigma \iota \nu . \quad \mu \epsilon \tau а \kappa \iota \nu o v ̂ \nu \tau a \iota ~ \delta ' ~ \epsilon ̀ \nu ~ \tau a i ̂ \varsigma ~$

[^253]
CONCERNING ODOURS, 66-68

improvement to the odour: in fact one might say that not ${ }^{1}$ every combination of one fragrant thing with another will produce such a quality, but though sometimes the effect of such mixture is an improvement, sometimes it may be the reverse, as in the case of perfumes : for while the effect of some admixtures is to remove excessive strength or harshness, in other cases the odour is enfeebled and made, as it were, insipid. With solids however all combinations are possible.

In fact powders are the better, the more ingredients they have. Also the admixture of wine makes some perfumes and things used for incense more fragrant, for instance myrrh. It appears also that perfume sweetens wines, wherefore some add it in the manufacture, some put it in at the time of drinking. Nor is it unnatural that between these senses, since they are akin and are affected by the same objects, there should be a sort of reciprocity : for, to speak generally, no taste is unaccompanied by smell and no smell is unaccompanied by taste, the reason being that a thing which has no taste produces no smell.

It is also the case that smells actually change along with tastes, for instance in wine and certain fruits. And in some cases, as with grapes, the change takes place earlier, during ${ }^{2}$ the flowering period : while in perfumes it occurs only when they have reached their best and are about, as it were, to go off. Almost all perfumes undergo alteration at certain seasons of the year, and this applies specially to the weakest kinds : in the case of those made

[^254]c c 2

'THEOPHRASTUS

 $a ̈ \nu \theta$ os.
69 [Tàs $\sigma \nu \nu \theta$ é $\sigma \epsilon \iota \varsigma ~ \pi o \iota o v ̂ \sigma \iota \nu ~ \epsilon ̇ \kappa ~ \tau \hat{\omega} \nu ~ \grave{~} \rho \omega \mu a ́ t \omega \nu . ~$

 $\kappa \alpha i \pi a ́ \lambda \iota \nu$ бє̀ каi $\pi a ́ \lambda \iota \nu ~ \delta \iota a \lambda \epsilon i ́ \pi о \nu \tau \epsilon \varsigma ~ \chi \rho о ́ \nu о \nu$,
 $\lambda a \mu \beta a ́ \nu \epsilon \iota ~ \tau a ̀ ~ i \mu a ́ \tau \iota a ~ \epsilon i s ~ \tau a v ̂ \tau a ~ \tau ı \theta є ́ \mu є \nu a . ~$

 $\beta \epsilon \lambda \tau i ́ \omega \mu a ́ \lambda \iota \sigma \tau a$ ठє̀ тท̀ $\nu i \rho \iota \nu] . .$.

[^255]
CONCERNING ODOURS, 68-69

from flowers this period is that at which the plants from which they are made are in bloom. ${ }^{1}$
[Compound ${ }^{2}$ perfumes are made from spices: they bruise and mix a variety of these and shut them up together in a box. Then after a few days they open the box and take out the spice which seems to have the strongest smell : this treatment is repeated at intervals, so that the smell of no one ingredient may overpower the others. And clothes put away with such perfumes acquire a marvellous fragrance.

The perfume ${ }^{3}$ made of the Egyptian balanos, though it has not much seent of its own, when mixed with others, especially iris-perfume, improves them]. . . . ${ }^{4}$
${ }^{4}$ The remaining sentences ($\S \S 70,71$) seem to be disconnected scraps, which perhaps do not belong to this treatise at all. The text of them being defective, it seems not worth while to attempt translation.

ПЕPI $\Sigma H M E I \Omega N ~ \Upsilon \Delta A T \Omega N$ KAI חNETMAT ΩN KAI XEIM $\Omega N \Omega N$ KAI E $\triangle I \Omega N$

I. $\Sigma \eta \mu \epsilon i ̂ a ~ v ́ \delta a ́ \tau \omega \nu ~ \kappa а і ̀ ~ \pi \nu є \nu \mu a ́ \tau \omega \nu \kappa а \grave{~} \chi \in \iota \mu \omega ́ \nu \omega \nu$
 à $\mu \epsilon ̀ \nu$ aùzoì $\pi \rho о \sigma \kappa о \pi \eta \prime \sigma a \nu \tau \epsilon \varsigma ~ a ̀ ~ \delta \grave{\epsilon} \pi a \rho ' ~ \epsilon ̇ \tau \epsilon ́ \rho \omega \nu ~$ ои้к ảסокí $\mu \omega \nu$ 入aßóvтєs.

Tà μ èv ởv énì toîs ă ảעaтє́خ入

 $\pi \rho о a \nu a \tau$ é́ $\lambda \lambda \eta$ тô $\dot{\eta} \lambda i ́ o v ~ \tau o ̀ ~ a ै \sigma \tau \rho o \nu, ~ a i ~ \delta ' ~ a ̀ к \rho o ́-~$ $\nu v \chi o \iota$ öт

 Плєıáסos каi ' Ω рíшvos каi Kvуós.

 $\kappa a \theta \dot{\eta} \kappa \epsilon \iota \tau \hat{\omega} \nu \dot{\psi} \psi \eta \lambda \hat{\omega} \nu \cdot \tau \hat{\omega} \nu \tau \grave{\epsilon}$ خà $\rho \pi \nu \epsilon v \mu a ́ \tau \omega \nu$

CONCERNING WEATHER SIGNS

Introductory: general principles.
I. The signs of rain wind storm and fair weather we have described so far as was attainable, partly from our own observation, partly from the information of persons of credit.

Now those signs which belong to the setting or rising of the heavenly bodies must be learnt from astronomy. ${ }^{1}$ Their settings are twofold, since they may be said to have set when they become invisible. And this occurs when the star sets along with the sun, and also when it sets at sunrise. In like manner their risings are twofold: there is the morning rising, when the star rises before the sun, and there is the rising at nightfall, when it rises at sunset.

Now what are called the risings of Arcturus occur at both times, his winter rising being at nightfall and his autumn rising at dawn. But the rising of most of the familiar constellations is at dawn, for instance, the Pleiad Orion and the Dog.

Of the remaining signs some belong specially to all such lands as contain high mountains and valleys, specially where such mountains extend down to the sea: for, when the winds begin to blow, the clouds are thrown against such places, and, when the winds

[^256]
THEOPHRASTUS

 $\epsilon i \varsigma ~ \tau a ̀ ~ к о i ̂ \lambda a ~ \sigma v \gamma к а Ө i \zeta є \iota . ~ \delta \iota o ̀ ~ \delta \epsilon i ̂ ~ \pi \rho о \sigma є ́ \chi \epsilon \iota \nu ~ o v ̉ ~$

 ảmò тoút $\omega \nu$ ．

 ảmò тov̂ $\Lambda \epsilon \pi \epsilon \tau и ́ \mu \nu o v$ ，каì К $\lambda \epsilon о ́ \sigma \tau \rho a \tau o s ~ \epsilon ̇ \nu \mathrm{~T} \epsilon \nu \epsilon \in \delta \omega$
 $\Lambda v \kappa а \beta \eta \tau \tau о \hat{v}$ тà $\pi \epsilon \rho i ̀ ~ \tau a ̀ s ~ \tau \rho о \pi a ̀ s ~ \sigma \nu \nu \epsilon i ̂ \delta \epsilon, ~ \pi a \rho ' ~$

 $\kappa a i ̀ ~ a ̈ \lambda \lambda o \iota ~ \delta \grave{\epsilon} \tau o ̀ \nu ~ \tau \rho o ́ \pi о \nu ~ \tau о \hat{\tau} \tau о \nu ~ ウ ̉ \sigma \tau \rho о \lambda o ́ \gamma \eta \sigma a \nu$.

 $\pi a Ө \eta \mu a ́ \tau \omega \nu, \mu a ́ \lambda \iota \sigma \tau a ~ \delta \grave{̀}$ кvрьஸ́тата $<\tau a ̀>~ a ́ \pi o ̀ ~$
 oiov ${ }^{\text {グ } \lambda \iota o ́ s ~ \epsilon ̇ \sigma \tau \iota . ~ \delta i o ̀ ~ к a i ̀ ~ a i ~ \sigma u ́ v o \delta o \iota ~ \tau \hat{\omega} \nu ~ \mu \eta \nu \omega ̂ \nu ~}$

 6 סєî oûv т $\rho \circ \sigma$ é $\chi \epsilon \iota \nu$ $\mu a ́ \lambda \iota \sigma \tau a ~ \tau a i ̂ s ~ a ̉ \nu a \tau o \lambda a i ̂ s ~ \tau a i ̂ s ~$
 ßои入о́ $є є о \nu \pi \rho о \gamma \iota \nu \omega ́ \sigma \kappa є \iota$ ．

[^257]
CONCERNING WEATHER SIGNS, 3-6

change, the clouds also change ${ }^{1}$ and take a contrary direction, and, as they become laden with moisture, they settle down in the hollows because of their weight. Wherefore good heed must be taken to the local conditions of the region in which one is placed. It is indeed always possible to find such an observer, and the signs learnt from such persons are the most trustworthy.

Thus in some parts have been found good astronomers: for instance, ${ }^{2}$ Matriketas at Methymna observed the solstices from Mount Lepetymnos, Cleostratus ${ }^{3}$ in Tenedos from Mount Ida, Phaeinos at Athens from Mount Lycabettus: Meton, who made the cycle ${ }^{4}$ of nineteen years, was the pupil of the last-named. Phaeinos was a resident alien at Athens, while Meton was an Athenian. Others also have made astronomical observations in like manner.

Again there are other signs which are taken from domestic animals or from certain other quarters and happenings. Most important of all are the ${ }^{5}$ signs taken from the sun and moon: for the moon is as it were a nocturnal sun. Wherefore also the meetings of the months are stormy, because the moon's light fails from the fourth day from the end of one month to the fourth day from the beginning of the next: there is therefore a failure of the moon corresponding to the failure of the sun. Wherefore anyone who desires to forecast the weather must pay especial heed to the character of the risings and settings of these luminaries.

$$
\begin{aligned}
& { }^{4} \text { Called 'the great year': cf. Aelian. V.H. 10. 7. т } \delta \nu
\end{aligned}
$$

conj. W.
${ }^{5}$ tà seems necessary. ? кúpıa tえ..

THEOPHRASTUS

 $\mu \in \rho i ́ a \iota ~ \pi o \iota o ̂ \sigma \iota \nu$ ．oila $\tau \iota \varsigma$ ầ oủv $\mathfrak{\eta}$ катá⿱宀табıs
 $\pi о \lambda \grave{v} \mu \epsilon ́ \chi \rho \iota \tau \rho о \pi \hat{\omega} \nu$ ，кầ $\nu \mu \tau \tau \beta \beta a ́ \lambda \lambda \eta, \mu \in \tau a ̀$ т $\tau о-$

 $\delta \dot{v} \sigma \epsilon \omega \varsigma$ ．

 $\kappa а i ̀ ~ a i ~ \tau \epsilon \tau \rho a ́ \delta є \varsigma, ~ Ш ̈ \sigma \tau \epsilon ~ a ̉ \pi o ̀ ~ \nu o v \mu \eta \nu i ́ a s ~ \grave{~} s ~ \dot{a} \pi{ }^{\prime}$

 тєт $a ́ \delta o s ~ \epsilon i ́ s ~ \tau \grave{\eta} \nu \nu o v \mu \eta \nu i ́ a \nu$.

 $\pi \rho \omega i ̀$ каі $\mu \epsilon \sigma \eta \mu \beta$ рía каì $\delta \epsilon i \lambda \eta \eta$ каì δ v́б七s，каì тà тท̂S $\nu \cup \kappa \tau o ̀ s ~ \mu \epsilon ́ \rho \eta ~ т a ̀ ~ a ̉ \nu a ́ \lambda o \gamma a ~ \tau a u ̛ \tau o ̀ ~ \pi o l є i ̂ ~ \tau o i ̂ s ~$ $\epsilon i \rho \eta \mu \epsilon ́ \nu o \iota s ~ \pi \epsilon \rho i \quad \pi \nu \epsilon \nu \mu a ́ t \omega \nu$ каі $\chi \epsilon \iota \mu \hat{\nu} \nu о$ каі $\epsilon v ̉ \delta i ́ a s . ~ \mu a ́ \lambda \iota \sigma \tau a ~ \gamma a ̀ \rho ~ \epsilon ̇ a ̀ \nu ~ \mu \epsilon ́ \lambda \lambda \eta \eta ~ \mu \epsilon \tau \alpha \beta a ́ \lambda \lambda \epsilon \iota \nu, ~ \epsilon ’ \nu$

CONCERNING WEATHER SIGNS, 6-9

Now the first point to be seized is that the various periods are all divided in half, so that one's study of the year the month or the day should take account of these divisions. The year is divided in half by the setting and rising of the Pleiad ${ }^{1}$: for from the setting to the rising is a half year. So that to begin with the whole period is divided into halves : and a like division is effected by the solstices and equinoxes. From which it follows that, whatever is the condition of the atmosphere when the Pleiad sets, that it continues in general to be till the winter solstice, and, if it does change, the change only takes place after the solstice: while, if it does not change, it continues the same till the spring equinox : the same principle holds good from that time to the rising of the Pleiad, from that again to the summer solstice, from that again to the autumnal equinox, and from that to the setting of the Pleiad.

So too is it with each month ; the full moon and the eighth ${ }^{2}$ and the fourth days make divisions into halves, so that one should make the new moon the starting-point of one's survey. A change most often takes place on the fourth day, or, failing that, on the eighth, or, failing that, at the full moon; after that the periods are from the full moon to the eighth day from the end of the month, from that to the fourth day from the end, and from that to the new moon.

The divisions of the day follow in general the same principle : there is the sunrise, the mid-morning, noon, mid-afternoon, and sunset; and the corresponding divisions of the night have like effects in the matter of winds storms and fair weather; that is to say, if there is to be a change, it will generally

[^258]
THEOPHRASTUS

 тò $\pi о \lambda v ́ . ~ \delta \eta \lambda o i ̂ ~ \delta \grave{\epsilon}$ каì тà ä̀ $\lambda \lambda a \quad \sigma \eta \mu \epsilon i a \cdot ~ \epsilon a ̀ d \nu$ خà ρ ѝे $\pi \rho о ́ т \epsilon \rho о \nu, ~ т \rho \iota \tau a i ̂ a ~ \mu a ́ \lambda \iota \sigma \tau a ~ \sigma \eta \mu a i \nu \epsilon \iota ~$
 є́ $\omega \theta \iota \nu \circ \hat{v}$.
 $\tau \rho \iota \hat{\nu} \nu \dot{\eta} \mu \epsilon \rho \hat{\omega} \nu$ ஸ́s тà $\pi о \lambda \lambda a ̀ ~ \epsilon ̇ \pi \iota \sigma \eta \mu \alpha i \nu \epsilon \iota . ~ к а \grave{̀}$ є́à ν ค́áßסo九 $\nu о \tau o ́ \theta \epsilon \nu$, тaủтà $\delta \grave{\epsilon}$ тav̂тa ßоррâ $\theta \epsilon \nu$

 тò $\sigma \eta \mu \in i ̂ o \nu . ~ к а i ̀ ~ o ̈ т а \nu ~ к а v \mu a т i ́ a s ~ \delta u ́ \eta t a \iota ~ к а i ̀ ~$
 $\sigma \eta \mu \in i o \nu$.
12 , Tà aủvà $\delta \epsilon ̀ ~ \sigma \eta \mu a i ́ \nu \epsilon \iota ~ к а i ̀ ~ \sigma \epsilon \lambda \eta ́ \nu \eta ~ \pi a \nu \sigma \epsilon \lambda \eta ́ \nu \omega$

 т $\quad \iota \tau a i ̂ o s ~ \hat{\omega} \nu$ ó $\mu \epsilon i ́ s$.

[^259]
CONCERNING WEATHER SIGNS, 9-12

occur at one of these divisions. In general therefore one should observe the periods in the way indicated, though as to particular signs we must follow the accepted method. ${ }^{1}$

The signs of rain.

Now the signs of rain appear to be as follows: most ummistakable is that which occurs at dawn, when the sky has a reddish appearance before sunrise; for this usually indicates rain within three days, if not on that very day. Other signs point the same way: thus a red sky at sunset indicates rain within three days, if not before, though less certainly than a red sky at dawn.

Again, if the sun sets in a cloud in winter or spring, this generally indicates rain within three days. So too, if there are streaks of light from the south, while, if these are seen in the north, it is a less certain sign. Again, if the sun when it rises has a black mark, or if it rises ${ }^{2}$ out of clouds, it is a sign of rain; while, if at sunrise there are rays ${ }^{3}$ shooting out before the actual rising, it is a sign of rain and also of wind. Again if, as the sun sinks, a cloud forms below it and this breaks up its rays, it is a sign of stormy weather. Again, if it sets or rises with a burning heat, and there is no wind, it is a sign of rain.

Moonrise gives similar indications, at the time of full moon: they are less certain when the moon is not full. If the moon looks fiery, it indicates breezy weather for that month, if dusky, wet weather ; and, whatever indications the crescent moon gives, are given when it is three days old.

[^260]
THEOPHRASTUS

13

 ठє̀ $\sigma \eta \mu \epsilon i ̂ a] \pi о \mu \phi o ́ \lambda v \gamma \epsilon \varsigma$ à $\nu \sigma \tau a ́ \mu \epsilon \nu a \iota \pi \lambda \epsilon i ́ o v s$ є́ $\pi \grave{\imath}$
 тò $\pi o \lambda \dot{v} i \rho \iota s \pi \epsilon \rho i ̀ ~ \lambda u ́ \chi \nu o \nu \eta$ ท̀ $\delta ı a ̀ ~ \lambda u ́ \chi \nu o v ~ \delta ı a \phi a \iota \nu o-~$

 $\theta \hat{\eta} \rho \in \varsigma$ є̇ $\pi \iota \gamma \epsilon ́ \nu \omega \nu \tau \alpha \iota$.

 каì $\beta a ́ t \rho a \chi o \iota ~ \mu a ̂ \lambda \lambda о \nu ~ a ̆ ́ \delta o \nu \tau \epsilon s ~ \sigma \eta \mu a i ́ \nu o v \sigma \iota \nu ~ v i \delta \omega \rho . ~$

 $\tau a ̀ s ~ \lambda i ́ \mu \nu a s ~ v ̈ \delta \omega \rho ~ \sigma \eta \mu a i ́ v o v \sigma \iota . ~ \beta o u ̀ s ~ \tau \grave{\eta} \nu \pi \rho o \sigma-$

${ }^{1} c f .37 . \quad{ }^{2}$ üdacos ins. Furl. $\quad{ }^{3}$ Plin. 18. 344.

${ }^{6}$ cf. Arist. Meteor. 3. 4 ; Plut. Quaest. Nat. 1. 2.
7 cf. 42.
${ }^{8}$ i.e. breaks up into small 'grains' (?). cf. 25, 42, 54.

CONCERNING WEATHER SIGNS, I3-15

Many shooting ${ }^{1}$ stars are a sign of rain or wind, and the wind or rain will come from that quarter from which they appear. Again, if at sunrise or sunset the sun's rays appear massed together, it is a sign of rain. ${ }^{2}$ Also it is a sign of rain when at sunrise the rays ${ }^{3}$ are coloured as in an eclipse ; and also when there are clouds ${ }^{4}$ like a fleece of wool. The rising of bubbles ${ }^{5}$ in large numbers on the surface of rivers is a sign of abundant rain. And in general, when a rainbow ${ }^{6}$ is seen round or through a lamp, it signifies rain from the south.

Again, if the wind is from the south, the snuff ${ }^{7}$ of the lamp-wick indicates rain; it also indicates wind in proportion to its bulk and size: while if the snuff is small, like millet-seed, ${ }^{8}$ and of bright colour, it indicates rain as well as wind. Again, when in winter the lamp rejects ${ }^{9}$ the flame but catches, as it were, here and there in spurts, it is a sign of rain : so also is it, if the rays of light leap up on the lamp, or if there are sparks.

It is a sign of rain or storm when birds which are not aquatic take a bath. It is a sign of rain when a toad takes a bath, and still more so when frogs are vocal. So too is the appearance of the lizard known as 'salamander,' ${ }^{10}$ and still more the chirruping of the green frog in a tree. It is a sign of rain when swallows ${ }^{11}$ hit the water of the lakes with their belly. It is a sign of storm or rain when the ox
${ }^{9}$ i.e. refuses to light properly. The appearance seems to be that described Verg. Georg. 1. 391 (scintillare oleum). In the same passage putres concrescere fungos perhaps illustrates the comparison of the snuff to millet-seed above.
${ }^{10} c f$. de igne 60, where it is explained why the salamander puts fire out.
${ }^{11}$ Plin. 18. 363 ; Verg. Georg. 1. 377.

THEOPHRASTUS

 $\sigma \eta \mu a i \nu \epsilon \iota$.
 $\kappa а т а к \lambda u ́ \zeta \epsilon \iota ~ ひ ̈ \delta \omega \rho ~ \sigma \eta \mu а і ̀ \nu \epsilon \iota ~ к а і ~ к о \lambda \nu \mu \beta \hat{\omega} \sigma a \pi о \lambda$ -
 $\pi o \lambda \lambda a ̀ \varsigma^{\prime} \mu \in \tau a \beta a ́ \lambda \lambda \epsilon \iota \nu \epsilon i \omega \theta \omega \grave{\omega}$ ф $\omega \nu a ́ s$, тоv́т $\omega \nu$ є $\mathfrak{a} \nu$

 övтos, $\mu \iota \mu \hat{\eta} \tau a \iota \tau \hat{\eta} \phi \omega \nu \hat{\eta}$ oiov $\sigma \tau a \lambda a \gamma \mu \circ u ́ s$, vi $\delta \omega \rho$

 $\epsilon i \sigma \pi \epsilon \tau о ́ \mu \in \nu O s \quad \phi \theta \epsilon \iota \rho i \zeta \eta \tau a \iota$, v̈ $\delta \omega \rho$ б $\eta \mu a i ̀ \nu \epsilon \iota$. каì

 Өa入áттŋ $\dot{a} \pi о \pi \tau \epsilon \rho v \gamma i \zeta \omega \nu \tau a \ell, \dot{\omega} \varsigma \nu \hat{\eta} \tau \tau a$ vi $\delta \omega \rho \sigma \eta$ -

[^261]
CONCERNING WEATHER SIGNS，15－18

licks his fore－hoof；if he puts ${ }^{1}$ his head up towards the sky and snuffs the air，it is a sign of rain．

It is a sign of rain when a crow puts back its head on a rock which is washed by waves，or when it often dives or hovers over the water．It is a sign of rain if the raven，who is accustomed to make many different sounds，repeats one of these twice quickly and makes a whirring ${ }^{2}$ sound and shakes his wings． So too if，during a rainy season，${ }^{3}$ he utters many different sounds，or if he searches for lice perched on an olive－tree．And if，whether in fair or wet weather， he imitates，as it were，with his voice falling drops， it is a sign of rain．So too is it if ravens or jack－ daws fly high and scream ${ }^{4}$ like hawks．And，if a raven in fair weather does not utter his accustomed note and makes a whirring with his wings，${ }^{5}$ it is a sign of rain．

It is a sign of rain if a hawk perches on a tree，flies right into it and proceeds to search for lice：also， when in summer a number of birds living on an island pack together ：if a moderate number collect， it is a good sign for goats and flocks，while if the number is exceedingly large，it portends a severe drought．And in general it is a sign of rain when cocks and hens search for lice；as also when they make a noise like that of falling rain．

Again it is a sign of rain when a tame ${ }^{6}$ duck gets under the eaves and flaps its wings．Also it is a sign of rain when jackdaws and fowls flap their wings whether on a lake or on the sea－like the duck．It

[^262]
THEOPHRASTUS

 $\sigma \pi \iota \nu \theta \eta \rho i \zeta o v \sigma a \quad \pi \hat{a} \sigma a \quad \pi \epsilon \rho i \pi \lambda \epsilon \epsilon \varsigma$ v̋ $\delta a \tau o \varsigma \quad \sigma \eta \mu \epsilon \hat{\imath} о \nu$.

 $\pi v \kappa \nu a ̀ ~ v ́ \delta \omega \rho ~ \hat{\eta} \chi \in \iota \mu \hat{\nu} \nu a \quad \sigma \eta \mu a i ́ \nu \epsilon \iota$.

 $\kappa а і ̈$ є̇к $\pi \lambda a \gamma i o v$, v̌ $\delta a \tau o s ~ \sigma \eta \mu \epsilon i ̂ o \nu . ~ \kappa а і ̀ ~ \epsilon ́ a ̀ \nu ~ o ́ ~ a ̈ \nu v-~$

 наívє!.

 $\pi \epsilon ́ \rho \iota a \iota ~ \grave{a} \sigma \tau \rho a \pi a i$ v̌ $\delta \omega \rho$ аúтíка $\sigma \eta \mu a i ้ \nu o v \sigma \iota \nu ~ \hat{\eta}$
${ }^{1}$ Sch. cites Plin. 18. 364, vermes terreni erumpentes, as representing this, which seems doubtful.
${ }^{2}$ cf. Plin. 18.361 ; Cic. Div. 2. 70.

402

CONCERNING WEATHER SIGNS, 18-21

is a sign of wind or rain when a heron utters his note at early morning: if, as he flies towards the sea, he utters his cry, it is a sign of rain rather than of wind, and in general, if he makes a loud cry, it portends wind.

It is a sign of rain or storm if a chaffinch kept in the house utters its note at dawn. It is also a sign if any pot filled with water causes sparks to fly when it is put on the fire. It is also a sign of rain when a number of millepedes ${ }^{1}$ are seen crawling up a wall. A dolphin ${ }^{2}$ diving near land and frequently reappearing indicates rain or storm.

If the lesser Mount Hymettus, which is called the Dry Hill, has cloud in ${ }^{3}$ its hollows, it is a sign of rain : so also is it, if the greater Hymettus has clouds in summer on the top and on the sides: or if the Dry Hymettus has white clouds on the top and on the sides ; also if the south-west wind ${ }^{4}$ blows at the equinox.

Thunder in winter and at dawn indicates wind ${ }^{5}$ rather than rain; thunder in summer at midday or in the evening is a sign of rain. If lightning is seen from all sides, it will be a sign of rain or wind, and also if it occurs in the evening. Again, if when the south wind ${ }^{6}$ is blowing at early dawn, ${ }^{7}$ there is lightning from the same quarter, it indicates rain or wind. When the west wind is accompanied by lightning from the north, it indicates either storm or rain. Lightning in the evening in summer time indicates rain within three days, if not immediately.

[^263]
THEOPHRASTUS

$\tau \rho \iota \hat{\nu} \dot{\eta} \mu \epsilon \rho \hat{\omega} \nu$. каì òтడ́рая $\beta о \rho \rho a ̂ \theta \epsilon \nu$ à $\sigma \tau \rho a \pi a \grave{ }$ íбатькò̀ б $\eta \mu \epsilon i ̂ o \nu$.

 $\lambda o \nu$ ai $\delta \epsilon i ́ \lambda \eta s$.
 $\mu \epsilon \nu o \iota$ " $\mathrm{O} \nu o \iota, \dot{\omega} \nu$ тò $\mu \epsilon \tau a \xi \grave{v}$ тò $\nu \epsilon \phi \in ́ \lambda \iota o \nu \dot{\eta}$ Фá $\tau \eta$

 тò $\pi о \lambda \grave{v} \pi \rho o ̀ s ~ i \sigma \eta \mu \epsilon \rho i a \nu ~ v ̋ \delta \omega \rho ~ \hat{\eta}$ ävє $\mu o s$. каì тò $\delta \eta \mu o ́ \sigma \iota o \nu$ тò $\pi \epsilon \rho \grave{\imath}$ тàs $\mu v i ́ a s ~ \lambda \epsilon \gamma o ́ \mu \epsilon \nu o \nu ~ a ̉ \lambda \eta \theta \in ́ s-~$ öта⿱ γ व̀ ρ бáк $\nu \omega \sigma \iota ~ \sigma \phi o ́ \delta \rho a, ~ v ́ \delta a \tau o s ~ \sigma \eta \mu \epsilon i ̂ o \nu . ~$
 $\hat{\eta} \chi \epsilon \iota \mu \hat{\nu} \nu a, \delta \epsilon i ́ \lambda \eta s \delta_{\epsilon}$ v̌ $\delta \omega \omega \rho$.

[^264]
CONCERNING WEATHER SIGNS, $2 \mathrm{r}-24$

Lightning from the north in late summer is a sign of rain.
${ }^{1}$ When Euboea has a girdle about it up to the waist, there will be rain in a short space. If cloud clings about Mount Pelion, it is an indication of rain or wind from the quarter to which it clings. When a rainbow appears, it is an indication of rain; if many rainbows appear, it is an indication of longcontinued rain. So too is it often when the sun appears ${ }^{2}$ suddenly out of cloud. It is a sign of rain if ants ${ }^{3}$ in a hollow place carry their eggs up from the ant-hill to the high ground, a sign of fair weather if they carry them down. If two mocksuns ${ }^{4}$ appear, one to the south, the other to the north, and there is at the same time a halo, these indicate that it will shortly rain. A dark halo round the sun indicates rain, especially if it occurs in the afternoon.

In the Crab are two stars called the Asses, and the nebulous space between them is called the Manger ${ }^{5}$; if this appears dark, it is a sign of rain. If there is no rain at the rising of the Dog or of Arcturus, there will generally be rain or wind towards the equinox. Also the popular saying about flies is true; when they bite excessively, it is a sign of rain. If a chaffinch ${ }^{6}$ utters its note at dawn, it is a sign of rain or storm, if in the afternoon, of rain.

When at night a long stretch of white cloud encompasses Hymettus below the peaks, there will generally be rain in a few days. If cloud settles on
${ }^{2}$ cf. H.P. 8. 10. 3.
${ }^{3}$ Plin. 18. 364 ; Verg. Georg. 1. 379.
${ }^{4}$ cf. $29 . \quad{ }^{5}$ cf. $43,51$.
${ }^{6}$ cf. 19, of which this seems to be in part a repetition.

THEOPHRASTUS

25 Фaбì $\delta \in ́ ~ \tau \iota \nu \epsilon \varsigma ~ \kappa a i ̀ ~ \epsilon i ̉ ~ \epsilon ̉ \nu ~ a ̈ \nu \theta \rho a \xi ̌ \imath \lambda a \mu \pi \rho a ̀ ~ \chi a ́ \lambda a \zeta a ~$

 עо́тєроу. каї öт $\alpha \nu<\pi a ́ \lambda \iota \nu>$ ò $\chi \epsilon$ v́шขтає $\pi \rho o ́ \beta a \tau a$

26 II. "Үठatos μ è ν ô̂v tav̂ta $\lambda \in ́ \gamma \epsilon \tau a \iota ~ \sigma \eta \mu \epsilon i ̂ a$.

 тò $\sigma \eta \mu \in i ̂ o \nu$. каì є́à $\boldsymbol{\nu}$ коî入os фаívךтаı ó $\ddot{\eta} \lambda \iota o s$,

 Xpoviovs $\sigma \eta \mu a i \nu \epsilon \iota$. Є̇à ν ai ảктîvєs ai μ èv $\pi \rho o ̀ s$ ßорра̂̀ ai סè $\pi \rho o ̀ s ~ \nu o ́ \tau o \nu ~ \sigma \chi i \zeta \omega \nu \tau a \iota ~ \tau o u ́ \tau o v ~ \mu e ́ \sigma o v ~$

[^265]
CONCERNING WEATHER SIGNS, 24-26

the temple of Zeus Hellanios ${ }^{1}$ in Aegina, usually rain follows. If a great deal of rain falls in winter, the spring is usually dry; if the winter has been dry, the spring is usually wet. When there is much ${ }^{2}$ snow in winter, a good season generally follows.

Some say that, if in the embers ${ }^{3}$ there is an appearance as of shining hail-stones, it generally prognosticates hail; while, if the appearance is like a number of small shining millet-seeds, ${ }^{4}$ it portends fair weather, if there is wind at the time, but, if there is no wind, rain or wind. It is better both for plants and for animals that rain should come from the north before it comes from the south; it must however be fresh and not briny to the taste. And in general a season ${ }^{5}$ in which a north wind prevails is better and healthier than one in which southerly winds prevail. It is a sign of a long winter when sheep or goats have a second ${ }^{6}$ breeding season.

The signs of wind.

II. Such then are said to be the signs of rain. The following are signs of wind and breezes. ${ }^{7}$ If the sun rises with a burning heat but does not shine brilliantly, it is a sign of wind. If the sun has a hollow appearance, it is a sign of wind or rain. If it blazes with a burning heat for several days, it portends long-continued drought or wind. -If at dawn its rays are parted, some pointing to the north and some

[^266]
THEOPHRASTUS

 $\sigma \eta \mu \epsilon i ̂ o ́ \nu \epsilon ๋ \sigma \tau \iota \nu$.

 $\pi \nu \in \hat{v} \mu a$.

 ar $\nu \in \mu \omega ́ \delta \eta s$.

 $\chi \epsilon \iota \mu \hat{\nu} a$ б $\eta \mu a i ̀ \nu \epsilon \iota . \quad \dot{\eta}$ ar $\mu \pi \omega \tau \iota \varsigma$ ßópєוov $\pi \nu \epsilon \hat{v} \mu a$

[^267]
CONCERNING WEATHER SIGNS, 26-29

to the south, while the orb itself is ${ }^{1}$ clearly seen between, it is a sign of rain and wind.

Also black spots on the sun or moon indicate rain, red spots wind. Again, if, while a north wind blows, the horns ${ }^{2}$ of the crescent moon stand out straight, westerly winds will generally succeed, and the rest of the month will be stormy. When the upper horn of the crescent moon is bent, northerly winds ${ }^{3}$ will prevail for that part of the month : when the lower horn is bent, southerly winds will prevail. ${ }^{4}$ If however the horns up to the fourth day point straight and have not a graceful bend inwards but round to a circle, it will generally be stormy till the middle of the month. If the moon is dusky, it indicates rain, if fiery, it indicates wind.

It is a sign of rain when gulls and ducks, whether wild or tame, plunge under water, a sign of wind when they flap their wings. Wherever the bird called kepphos flies during a calm, it is a sign of coming wind. If sparrows in winter begin to be clamorous at evening, it is a sign of a coming change or of a fall of rain. A heron flying from the sea and screaming is a sign that a breeze is coming : so is it in general a sign of wind when he screams loudly.

A dog rolling on the ground is a sign of violent wind. A number of cobwebs ${ }^{5}$ in motion portends wind or storm. The ebb-tide indicates a north wind, the flowing tide a wind from the south. For, if the flowing tide sets from the north, there is a change to the south, and if an ebb-tide comes from the south, there is a change to the north. It is

[^268]
THEOPHRASTUS

$\mu \epsilon \tau \alpha \beta a ́ \lambda \lambda \epsilon \iota$. Өá $\lambda a \sigma \sigma a$ oỉoov̂ $\sigma \alpha$ каì ảктаì $\beta о \hat{\omega} \sigma \alpha \iota$

'Н тє́ $\mu \pi \tau \eta$ каі бєка́тך áто̀ трот $\hat{\nu} \nu \tau \hat{\omega} \nu$ $\chi \in \iota \mu \epsilon \rho \iota \nu \hat{\nu} \nu \dot{\omega}$ s тà mo入入à עótıos. ßорєíw δ ס̀̀

 $\mu \epsilon ́ \gamma \in \Theta o s$.

 ai ${ }_{a} \lambda \omega \nu \epsilon \varsigma \pi \epsilon \rho \grave{\imath} \tau \grave{\eta} \nu \sigma \epsilon \lambda \dot{\eta} \nu \eta \nu \pi \nu \epsilon \nu \mu a \tau \omega ́ \delta \epsilon \iota \varsigma \mu \hat{a} \lambda \lambda o \nu$

[^269]
CONCERNING WEATHER SIGNS, 29-31

a sign of wind when the sea ${ }^{1}$ has a swell or promontories moan or there is loud noise on the beach. Now the north wind has less force as it ceases to blow, the south wind as it begins. A mock sun, in whatever quarter it appears, indicates rain or wind.

The fifteenth ${ }^{2}$ day after the winter solstice is generally marked by southerly winds. If there is a northerly wind, everything gets dried ${ }^{3}$ up, if a southerly, there is abundant moisture. If, while a south wind is blowing, glued articles make a cracking sound, it indicates a change to a south ${ }^{4}$ wind. If the feet swell, there will be a change to a south wind. This also sometimes indicates a hurricane. So too does it, if a man has a shooting pain in the right foot. ${ }^{5}$ The behaviour ${ }^{6}$ of the hedgehog is also significant: this animal makes two holes wherever he lives, one towards the north, the other towards the south : now whichever hole he blocks up, it indicates wind from that quarter, and, if he closes both, it indicates violent wind.

If a mountain . . . , ${ }^{7}$ it indicates wind from the north. If at sea during a wind there is a sudden calm, it indicates a change or an increase of wind. If promontories ${ }^{8}$ seem to stand high out of the sea, or a single island looks like several, it indicates a change to south wind. If the land looks black from the sea, it indicates a north wind, ${ }^{9}$ if white, a south wind. A halo ${ }^{10}$ about the moon signifies wind more certainly than a halo about the sun : but in either case, if there is a break in the halo, it indicates wind, which will come from the quarter in which the break is. If the sky is overcast in whatever quarter

[^270]
THEOPHRASTUS

 $\mu a i \nu \in \ell, \kappa \alpha \grave{\imath}$ ő $\theta \epsilon \nu$ à ν ai $\dot{a} \sigma \tau \rho a \pi a i ̀ ~ \pi v \kappa \nu a i ~ \gamma i ́ \nu \omega \nu-~$

 $i \sigma \chi \nu \rho o ̀ \nu ~ a ̀ \sigma \tau \rho a ́ \pi \tau \eta, ~ \theta a ̂ \tau \tau о \nu ~ к а і ̈ ~ \sigma ф о \delta \rho o ́ т є \rho о \nu ~ \pi \nu \epsilon u ́-$

 à̀ í $\chi \cup \rho о ́ т є \rho a \iota ~ \gamma i ́ \nu \omega \nu \tau а \iota ~ a ̀ \sigma \tau \rho a т а i ̀ ~ к а i ̀ ~ \beta \rho о \nu \tau а i ́, ~$

 oi δ è $\delta \in \iota \lambda \iota \nu o i ̀ ~ t a \chi u ̀ ~ \pi a v ́ o \nu t a \iota . ~ o i ~ \beta o p e ́ a \iota ~ \pi a u ́ o \nu t a \iota ~$

 ро́тєра тà $\pi \nu \epsilon$ v́ $\mu a \tau a$ үі́vєтає тà $\dot{\eta} \mu \epsilon ́ \rho a s ~ \hat{\eta} \nu \cup ́ \kappa \tau \omega \rho$ à $\rho \chi o ́ \mu \in v a$.

[^271]
CONCERNING WEATHER SIGNS, 3^{1-34}

the sun is first seen, there will be wind from that quarter. Light ${ }^{1}$ clouds in summer-time indicate wind.

If lightning comes from all sides, it indicates rain, and from any quarter from which the flashes come in quick succession there will be wind. In summer ${ }^{2}$ from whatever quarter lightning and thunder come, there will be violent winds : if the flashes are brilliant and startling, the wind will come sooner and be more violent; if they are of gentler character and come at longer intervals, the wind will get up gradually. In winter and autumn however the reverse happens, for the lightning causes the wind to cease : and, the more violent the lightning and thunder are, the more will the wind be reduced. In spring I consider that the indications would ${ }^{3}$ not so invariably have the same meaning,-and this is also true of winter.

If, while a south wind is blowing, there comes lightning from the north, the wind ceases. If there is lightning at dawn, the wind generally ceases on the third day: other winds than a south wind however do not cease till the fifth seventh or ninth day, though a wind which got up in the afternoon will cease sooner. A north ${ }^{4}$ wind generally ceases in an odd, a south wind in an even number of days. Winds get up at sunrise or moonrise. If the rising sun or moon have caused the wind to cease, presently ${ }^{5}$ it gets up again with more force, and winds which begin to blow in the day-time last longer and are stronger than those which begin at night.

If periodic winds have been blowing for a long time, and a windy autumn follows, the winter is windless : if however the contrary happens, the character
${ }^{4}$ Plin. 2. 129.
${ }^{5}$ So Furl, renders : W. inserts $\mu \grave{\eta}$ after $\sigma \in \lambda \eta \nu \eta$.

THEOPHRASTUS

 $\tau а и ́ \tau \eta ~ a ̈ \nu \epsilon \mu о s ~ \pi \nu \epsilon v \sigma \epsilon i ̂ \tau a \iota$. ai $\nu \epsilon \phi \epsilon \in \lambda a \iota ~ \epsilon ่ \kappa \tau \hat{\omega} \nu$ ö $\pi \iota \sigma \theta \epsilon \nu \pi \rho о \sigma i \zeta о v \sigma a \iota ~ \kappa a i$ oै $\boldsymbol{\pi} \iota \sigma \theta \epsilon \nu \quad \pi \nu \epsilon v \sigma о \hat{\nu} \nu \tau a \iota$.

 $\pi a ́ \chi \nu \eta \nu$ ßорє́as єi้ $\omega \theta \in \pi \nu \epsilon i ̂ \nu$., $\mu v ̌ \kappa \eta \tau \epsilon \epsilon ~ \epsilon ่ \pi i ̀ ~ \lambda u ́ \chi \nu o v ~$ עо́тıоข $\pi \nu \epsilon \hat{v} \mu a \hat{\eta} \eta$ ӥ $\delta \omega \rho$ б $\eta \mu a i ́ \nu o v \sigma \iota \nu$.

${ }^{1} c f .22$.
${ }^{2} c f .57$.
${ }^{3}$ cf. de Ventis 50 ; Arist. Probl. 26. 3. \quad cf. 14, 25, 42, 54.
5 The 'figure' (giving points of the compass) has not been preserved. Arist. Meteor. 2. 6. describes such a figure (v́moर $\rho \alpha \phi \eta^{\prime}$), which may be reconstructed thus:-

CONCERNING WEATHER SIGNS, 34-35

of winter is also reversed. From whatever quarter cloud streams out from a mountain peak, wind will blow in the direction thus indicated. Clouds which cling to the back of the mountain will also produce wind from the back of it. If there is a girdle ${ }^{1}$ of cloud half way up Mount Athos, and if mountains in general wear such a girdle, there will generally follow a southerly wind. Comets ${ }^{2}$ usually indicate wind, and, if there are many of them, drought is also indicated. After snow ${ }^{3}$ a south wind, after hoar-frost a north wind generally blows. Snuff ${ }^{4}$ in a lamp indicates wind or rain from the south.

The points from which the winds come are as they are given in the figure. ${ }^{5}$ The winds which most often come on the top of other winds while these are still blowing are the north wind (aparktias), ${ }^{6}$ the north-north-east and the north-west. When however the winds are not dispersed by one another but die down of their own accord, they change ${ }^{7}$ to the next winds on the figure, reckoning from left

Arist. does not seem to distinguish $\beta_{1} \operatorname{céćas}^{2}$ and àmapктias: his өparкlas is T.'s өpaкias : his eight principal winds (underlined in diagram) correspond to those represented on the famous Tower of the Winds at Athens, built about two hundred years later.
${ }^{6}$ cf. Arist. l.c.
${ }^{7}$ Plin. 2. 128.

THEOPHRASTUS

 $\dot{\alpha} \pi \grave{o} \tau \hat{\omega} \nu \dot{\alpha} \kappa a \nu \theta \hat{\omega} \nu$, aै $\nu \in \mu о \nu \quad \sigma \eta \mu a i ́ \nu o v \sigma \iota \nu$ єै $\sigma \epsilon \sigma \theta a \iota$ $\mu \epsilon ́ \gamma a \nu$. ő $\theta \epsilon \nu$ à̀ $\nu \dot{a} \sigma \tau \epsilon \in \rho \in \varsigma \delta \iota a ́ \tau \tau \omega \sigma \iota \pi o \lambda \lambda o i ́, a ̉ \nu \epsilon \mu \circ \nu$

[^272]
CONCERNING WEATHER SIGNS, 35-37

to right according to the course of the sun. When the south wind begins to blow, it is dry, but it becomes wet before it ceases: so too does the southeast wind. The east wind, coming from the quarter where the sun rises at the equinox, is wet: but it brings the rain in light showers.

The north-east and south-west are the wettest winds ; the north the north-north-east and the northeast bring hail; snow comes with the north-northeast ${ }^{1}$ and north. The south, the west, and the south-east winds bring heat. Some of these have their effect on places which they strike as they come from the sea, others on places which they visit as they come over land. The winds which more than any others make the sky thick with cloud and completely cover it are the north-east and the southwest, especially the former. While the other winds repel the clouds from themselves, the north-east alone attracts them as it blows. Those winds which chiefly bring a clear sky are the north-north-west and the north-west, and next after them the north. Those which most have the character of a hurricane are the north the north-north-west and the northwest.

They acquire this character when they fall upon one another as they blow, especially in autumn, but to some extent in spring. Those which are accompanied by lightning are the north-north-west the northwest the north and the north-north-east. If at sea ${ }^{2}$ a quantity of down is seen blown along, which has come from thistles, it indicates that there will be a great wind. Wind ${ }^{3}$ may be expected from any quarter in which a number of shooting stars are
${ }^{3}$ cf. 13; Plin. 18. 352 ; Verg. Georg. 1. 365.
417

THEOPHRASTUS

 $\mu a \tau a$ б $\eta \mu$ aívov ι.
$\Pi \nu \epsilon \nu \mu a ́ \tau \omega \nu \mu \grave{\iota} \nu$ oův $\sigma \eta \mu \epsilon i ̂ a ~ \tau a v ̂ \tau a$.

 $\chi \epsilon \iota \mu a ́ \sigma \epsilon \iota$. каі̀ є́à̀ v́тобт $\rho a \phi \hat{\omega} \sigma \iota \pi \epsilon \tau о ́ \rho \epsilon \nu \circ \iota, \chi \in \iota-$

 $\chi \in \iota \mu \epsilon ́ \rho \iota o \nu . \quad \sigma \pi i ́ \nu o s ~ \sigma \tau \rho o v \theta$ òs $\sigma \pi i \zeta \omega \nu$ є́ $\omega \theta \in \nu \quad \chi \in \iota-$

 $\chi \epsilon \iota \mu \epsilon ́ \rho \iota o \iota$. $\sigma \tau \rho o v \theta$ òs $\epsilon \in a ̀ \nu ~ \lambda \epsilon v \kappa o ̀ s ~ \hat{\eta} \quad \chi \epsilon \lambda \iota \delta \grave{\omega} \nu \hat{\eta}$

 $\phi a \nu \omega ิ \sigma \iota \nu, v ँ \delta \omega \rho$.

 $\phi \theta \epsilon \gamma \gamma o ́ \mu \epsilon \nu о \varsigma \chi \in \iota \mu \epsilon ́ p \iota o \nu$. öба v̈ $\delta \omega \rho$ б $\eta \mu a i ́ \nu \in \iota, \chi \in \iota-$

[^273]
CONCERNING WEATHER SIGNS, 37-40

seen. If these appear in every quarter alike, it indicates many winds.

Such then are the signs of winds.
III. The following are signs of storm. The sun becoming obscured as it sinks indicates storm. And, according as its orb is divided as it sets, so the succeeding days turn out; for instance, a third or a half of the orb may remain visible. ${ }^{1}$ If the horns ${ }^{2}$ of the moon point straight up till the fourth day, and if it rounds to a circle, it will be stormy till the middle of the month. If cranes fly early and in flocks, it will be an early winter ${ }^{3}$; if they fly late and for a long time, it will be a late winter; and, if they wheel as they fly, it indicates stormy weather.
${ }^{4}$ It is a sign of storm when geese make more clamour than usual or fight for their food; so too is it when a sparrow or chaffinch twitters at dawn. It indicates a storm when the golderest ${ }^{5}$ goes into holes and hides itself; so also when the redbreast does the same. It is a sign of storm when the crow caws twice in quick succession and then a third time ; also when the crow or raven or jackdaw makes its call late. It is a sign of a great storm when a white sparrow or swallow is seen, or a white specimen of any other bird which is not usually white, even as the appearance of a large number of such birds of a dark colour signifies rain.

It is also an indication of storm when birds flee from the sea. A chaffinch uttering its note in an inhabited house is a sign of storm. All the signs which indicate rain bring stormy weather, that is to say, snow and storm, if not rain. If the raven utters

[^274]
THEOPHRASTUS

$\kappa o ́ \rho a \xi$ ф $\omega \nu a ̀ s ~ \pi o \lambda \lambda a ̀ s ~ \mu \epsilon \tau a \beta a ́ \lambda \lambda \omega \nu \quad \chi \epsilon \iota \mu \hat{\omega} \nu o s$

 $\pi \epsilon \lambda a ́ \gamma \epsilon \iota, \chi \epsilon \iota \mu \epsilon \rho \iota \nu \frac{v}{v}$ є́тоvs $\sigma \eta \mu \epsilon i ̂ o \nu . \quad \pi \rho o ́ \beta a \tau a$ є̇àे $\pi \rho \omega t ̀$ ò $\chi \epsilon u ̛ \eta \tau a \iota, \pi \rho \omega ́ i o v ~ \chi \epsilon \iota \mu \hat{\omega} \nu a$ б $\eta \mu a i ้ \nu o v \sigma \iota$.

 θ âttov, évavtious т $\hat{\varphi}$ ßoppầ vé $\mu \in \sigma \theta a \iota$. ßóєs

[^275]
CONCERNING WEATHER SIGNS, 40-42

a great variety of sounds in winter, it is a sign of storm. Jackdaws flying from the south are a sign of storm, and so are cuttle-fish. ${ }^{1}$ It is a sign of storm when a loud ${ }^{2}$ voice is heard in harbour, which is reechoed many times. It is a sign of a stormy season when a number of jelly-fish ${ }^{3}$ appear in the sea. It indicates an early winter when the breeding season of sheep begins early.

If in autumn sheep or oxen dig holes and lie keeping their heads close to one another, it indicates a severe winter. They say that in Pontus when Arcturus rises, (the cattle ${ }^{4}$) face northwards as they graze. It is a sign of storm when cattle eat more than usual and lie down on their right sides. ${ }^{5}$ So is it when the ass shakes ${ }^{6}$ his ears, or when sheep or birds fight for their food more than usual, since they are then trying to secure a store against bad weather : also when mice squeak and dance.

A bitch digging holes with her paws and a treefrog croaking alone at early dawn ${ }^{7}$ are signs of storm: it indicates storm when a number of the worms ${ }^{8}$ called 'the earth's entrails' appear. It is a sign of storm if the fire refuses to catch, or if a lamp refuses to light: while, if much ash is formed, it is a sign of snow. If a lamp burns steadily in fine weather, it is a sign of storm: so is it if in wintertime dark snuff ${ }^{9}$ forms: if it is, as it were, full of numerous millet-seeds, there will be stormy weather ;

[^276]
THEOPHRASTUS

 тоs каі̀ ö $\lambda \omega s$ ó о́є $\omega \nu$ корифаì катє χ о́ $\mu є \nu а \iota ~ \dot{ч} \pi \grave{̀}$

 $\tau \iota \lambda \lambda o ́ \mu \epsilon \nu \circ \nu$, ой $\pi \omega \pi a v ่ є \tau a \iota$ ó $\chi є \iota \mu \omega ́ \nu$.

 $\pi \nu \iota \gamma \eta \rho o ̀ \nu ~ к а і ̈ ~ о и ̉ к ~ a ̀ \nu є \mu \hat{\omega} \delta \epsilon \varsigma$.
 $\sigma \phi o ́ \delta \rho a$ خívovtal. є́à̀ є̇ πi корифท̂s őpovs vé申os

[^277]
CONCERNING WEATHER SIGNS, 42-45

and if these in fine weather appear in a circle round the flame, it is a sign of snow.

If the 'Ass's Manger ${ }^{1}$ ' shrinks in size and becomes dark, it is a sign of storm; also if there is vivid lightning which does not remain in the same quarter. If at the setting of the Pleiad there is lightning over Parnes Brilessus and Hymettus-when it appears over all three mountains, it indicates a great storm; when over the two lesser heights, a less violent storm; when over Parnes alone, fine weather. Again, if during a storm a long cloud stretches over Hymettus, it signifies that the storm will increase in force. It is a sign of storm when Athos Olympus and mountain-peaks in general are covered with clouds. If during fine weather a cloud appears in the sky stretching a long way and torn to shreds, stormy weather will continue.

If the autumn is unusually fine, the succeeding spring is generally cold. If winter begins early, it ends early and there is a fair spring; if the reverse, spring will also be late. If the winter is wet, the spring will be dry, if the winter is dry, the spring will be fair. If the late summer is satisfactory, the sheep will generally suffer from hunger. If the spring and summer are cold, the late summer and autumn ${ }^{2}$ will be stifling hot and windless.

If the kermes-oak ${ }^{3}$ fruits well, there follows a long succession of storms. If a cloud stands upright on a mountain-peak, it indicates storm; whence Archilochus' lines " Mark you, ${ }^{4}$ Glaucus; deep ocean aselli appellatae, exiguum inter illas spatium obtinente nubecula, quam praesepia appellant. ${ }^{2} \tau \delta$ add. Sch. ${ }^{3}$ cf. 49.
${ }^{4}$ A comparison of war to stormy weather. Quoted also by Plut. de Superstitione, 72, and by Heraclides, Allegoriae Homericae, 4. In both citations the Greek is corrupt.

THEOPHRASTUS

 $\epsilon \dot{u} \theta \dot{v}$.

47

 $\pi \lambda \eta \sigma \iota a ́ \zeta \omega \sigma \iota$, каì ő $\lambda \omega s$ тà ă äpıa Onpía є́à $\nu \pi \rho o ̀ s$ тà є́ $\rho \gamma a ́ \sigma \iota \mu a$, ßópєıov каì $\chi є \iota \mu \omega ิ \nu o s ~ \mu \in ́ \gamma \epsilon Ө$ Os $\sigma \eta$ -
 ăขє $\mu о \nu$ каì тà $\pi \rho o ̀ s ~ Ф u ́ \lambda \eta s ~ ф р а ́ т \tau \eta т а \iota ~ \nu \epsilon ́ \phi є \sigma \iota ~$ ßорєí $\omega \nu$ ö $\nu \tau \omega \nu$, $\chi є \iota \mu \epsilon ́ \rho \iota o \nu ~ \tau o ̀ ~ \sigma \eta \mu \epsilon i ̂ o \nu . ~$
48 "Otav $\pi \nu i ́ \gamma \eta ~ \gamma i \nu \eta t a \iota ~ i \sigma \chi \nu \rho a ́, ~ \grave{\omega} \varsigma \tau a ̀ \pi o \lambda \lambda a ̀$

 $\hat{\epsilon} \nu$ тоîs $\pi \epsilon \delta \iota \nu 0 i ̂ s ~ \kappa а і ̈ ~ к o i ́ \lambda o ı s ~ \gamma i ́ v \epsilon \tau а \iota . ~ \delta \epsilon i ̂ ~ o u ̀ \nu ~ \tau \eta े \nu ~$

[^278]
CONCERNING WEATHER SIGNS, 45-48

is now stirred up with waves, and about the heights of the Gyrae ${ }^{1}$ there rises a cloud erect, the sign of storm." If the clouds are of uniform colour, like ${ }^{2}$ a white membrane, it is a sign of storm. When, as some clouds are motionless, others move towards them while they remain at rest, it is a sign of storm.

If the sun in winter after gleaming out is again obscured, and this is repeated two or three times, it will be stormy all day. If the star Hermes appears in winter, it indicates cold, if in summer, heat. When in fine weather bees do not fly ${ }^{3}$ long distances, but fly about where they are, it indicates that there will be a storm. The howling of a wolf indicates a storm within three days. When a wolf approaches or enters cultivated ground in the season of winter, it indicates that a storm will come immediately.

It is also a sign of great storms and heavy rain when many wasps appear in autumn, or when white birds ${ }^{4}$ approach cultivated lands; and in general when wild creatures approach such lands, it indicates a north wind and a severe storm. If the western side of Parnes and the side towards Phyle are blocked with clouds during a north wind, it is a sign of storm.

When there is severe heat, generally there is compensation and a severe winter follows. If there is much rain in spring, it is followed by severe heat in low-lying districts and valleys; so that one should mark how the season begins. If the autumn is where Aias Oilens perished. The word is missing in the MSS. of T .
${ }^{2} \delta \mu o \hat{o} \nu$ has perhaps dropped out after $\delta \mu \delta \chi \rho \omega \nu \hat{\eta}$; the adjective seems to agree with $\nu \bar{\epsilon} \notin o s$.
${ }^{3} \mathrm{cf}$. Arist. H.A. 9. 40 ad fin.
${ }^{4}$ Plin, 18. 363 : presumably gulls, etc.

THEOPHRASTUS

$\sigma \phi o ́ \delta \rho a, ~ \tau o ̀ ~ \epsilon ै a \rho ~ \omega ́ s ~ \tau a ̀ ~ \pi o \lambda \lambda a ̀ ~ \gamma i ́ \nu \epsilon \tau а \iota ~ \psi u \chi \rho o ́ v-~$

 тгıупрóv． $\pi o \lambda \lambda \grave{a}$ रєı $\mu \hat{\nu} \nu a$ í $\chi \nu \rho o ̀ \nu ~ \sigma \eta \mu a i ́ \nu o v \sigma \iota \nu, ~ \epsilon ̇ \nu i ́ o \tau \epsilon ~ \delta \grave{\epsilon}$ каì aủ $\chi \mu$ о́s фа⿱ו兀
 $\theta \hat{\eta}$, б $\eta \mu a i \nu \in \iota ~ \tau a i ̂ s ~ \phi \omega \nu a i ̂ s ~ a i s ~ a ̀ \phi i ́ \eta \sigma \iota \nu ~ a ̈ \nu \epsilon \mu о \nu ~ \kappa a i ̀ ~$

 $\mu a ́ \chi \omega \nu \tau a \iota ~ к а і ̈ ~ \phi \epsilon ́ \rho \omega \sigma \iota \nu$.

 $\sigma \epsilon \lambda \eta ́ \nu \eta \pi a \nu \sigma \epsilon \lambda \eta ́ \nu \omega$ ．каì $\delta v o ́ \mu \epsilon \nu о s$ グ入ıos $\chi \epsilon \iota-$

 $\chi є \iota \mu \hat{\nu \nu o s ~} \omega \chi \rho o ̀ s ~ \eta ̉, ~ \epsilon u ̉ \delta i ́ a \nu ~ \sigma \eta \mu a i ́ v \epsilon \iota . ~$

 $\lambda a \mu \pi \rho a ̀ ~ \phi a i ́ \nu \eta \tau a \iota, \epsilon \dot{\delta} \delta \iota \epsilon \iota \nu o ́ \nu$ ．ă $\lambda \omega \varsigma \delta_{\epsilon}$ є́à $\nu \dot{o} \mu a \lambda \hat{\omega} \varsigma$

[^279]
CONCERNING WEATHER SIGNS, 48-51

exceedingly fine, generally the spring is cold: if the spring is late and cold, the summer goes on late and the ${ }^{1}$ autumn is usually scorching hot.

When the kermes-oak ${ }^{2}$ fruits exceedingly well, it generally indicates a severe winter, and sometimes they say that this sign is followed by droughts. If one takes a mole ${ }^{3}$ and puts it in a tub, the bottom ${ }^{4}$ of which has been covered with clay, it indicates by the sounds which it utters wind or fine weather. There is also the sign of storm which is popularly recognized everywhere, namely when mice fight for the possession of chaff and carry it about.

The signs of fair weather.

IV. The following are signs of fair weather. ${ }^{5}$ If the sun rises brilliant but without scorching heat and without showing any special sign in his orb, it indicates fair weather. The same may be said of the moon when it is full. If in winter that part of the sky into which the sun goes down is clear, it is a sign of fair weather, unless on the preceding days that part has not been clear, though it was clear above the horizon: in that case the prospect is uncertain. It is also a sign of fair weather, if during stormy conditions that part of the sky into which the sun sets is clear; and also if, in winter at the time of setting, the sun has a pale colour.

Again, it indicates fair weather if the outline of the moon on the third day is bright; also if the 'Ass's ${ }^{6}$ Manger' is clear and bright. If the halo ${ }^{7}$ forms and disappears evenly, it is a sign of fair
tration, which is the more convincing of the creatures suggested. ${ }^{5}$ Plin. 18. 342. ${ }^{6}{ }^{\text {cf. 23, }} 43$.
${ }^{7}$ cf. 22, 31 ; Plin. 18. 345 ; Arist. Meteor. 3. 3.

THEOPHRASTUS

$\pi a \gamma \hat{\eta}$ каì $\mu a \rho a \nu \theta \hat{\eta}, ~ \epsilon \dot{\delta} \delta i ́ a \nu ~ \sigma \eta \mu a i ́ \nu \epsilon \iota$ ．ai кท入áסєs $\nu \epsilon \phi \in ́ \lambda a \iota ~ \chi \epsilon \iota \mu \hat{\omega} \nu o s ~ \epsilon v ่ \delta \iota \epsilon \iota \nu a i ́ . ~ " О \lambda \nu \mu \pi o s ~ \delta \grave{\epsilon}$ каі̀ ＂ $\mathrm{A} \theta \omega \mathrm{s}$ каї ờ $\lambda \omega \mathrm{s}$ тà őр τ à $\sigma \eta \mu a \nu \tau \iota \kappa a ̀$ öта $\tau a ̀ s$
 őтаע $\tau a ̀ ~ \nu \epsilon ́ \phi \eta ~ \pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \theta a ́ \lambda a \sigma \sigma a \nu ~ a u ̉ \tau \grave{\eta} \nu \pi a \rho a-$

 $\pi o \lambda \lambda a ̀ \tau \hat{\eta}$ v $\sigma \tau \epsilon \rho a i a$.

 $\kappa \rho a ́ \xi \eta \eta, ~ \epsilon v ̉ \delta \iota \epsilon \iota \nu o ́ s$.

 ßо入ท́v．каì öтà ßорє́as vєфє́ $\lambda a s$ тод入às кıṿ̂̂ є̇к $\pi \nu \epsilon \in \omega \nu \mu \epsilon ́ \gamma a s, ~ \epsilon u ̉ \delta i ́ a \nu ~ \sigma \eta \mu a i ́ \nu \epsilon \iota$.

[^280]
CONCERNING WEATHER SIGNS, 5I-53

weather. Light ${ }^{1}$ clouds in winter are a sign of fine weather. It is a sign of fine weather when Olympus Athos and in general the mountains which give signs have their tops ${ }^{2}$ clear: so too is it, when clouds encompass them at the sea-level. ${ }^{3}$ Also when after rain the clouds have a bronze colour towards sundown: in that case there will generally be fine weather the next day.

When there is mist, little or no rain follows. When cranes ${ }^{4}$ take flight and do not come back, it is a sign of fair weather: for they do not do so till they see a clear sky before them as they fly. It is a sign of fair weather when during a storm ${ }^{5}$ an owl makes a low hoot, or at night during a storm it utters a low sound. If the sea-owl utters its note during a storm, it indicates fair weather, if during fair weather, it indicates a storm. It is a sign of fair weather if a solitary raven makes a low croak, and, after croaking three times, repeats the sound again and again. . . . ${ }^{6}$

If the crow caws thrice directly the dawn appears, it indicates fair weather, as also if it makes a low note in the evening during a storm. It is a sign of fair weather if a goldcrest flies out abroad from a hole or from a hedge or from its nest. Again, if during a storm from the north there is a white gleam from that quarter, while in the south a solid mass of cloud has formed, it generally signifies a change to fair weather. Again when the north wind (Boreas) as it begins to blow violently stirs up a number of clouds, it indicates fair weather.

[^281]
THEOPHRASTUS

 $\chi \epsilon \iota \mu \hat{\omega} \nu o s$ каıó $\mu \in \nu o s$ j̀ $\sigma v \chi a i ̂ o s ~ \epsilon u ̉ \delta i ́ a \nu ~ \sigma \eta \mu a i ́ v \epsilon \iota . ~$
 $\kappa \alpha i ̀ ~ \epsilon ́ a ̀ \nu ~ \epsilon ̇ \nu ~ \kappa v ́ к \lambda \omega ~ \tau \eta ̀ \nu ~ \mu \nu ́ \xi a \nu ~ \pi \epsilon \rho \iota \gamma \rho a ́ \phi ~ \eta ~ \lambda a \mu \pi \rho a ̀ ~$ $\gamma \rho а \mu \mu \eta^{\prime}$.

 тои̂тò ăpotos.

पє́ $\gamma \epsilon \tau a \iota$ ठѐ каì тоиáסє $\sigma \eta \mu \epsilon i ̂ a ~ o ̈ \lambda \omega \nu ~ \tau \epsilon ~ \tau \hat{\omega} \nu$

 $\mu \epsilon \tau \grave{a} \tau \grave{\eta} \nu$ є́apıvŋ̀ ν í $\sigma \mu \epsilon \rho i ́ a \nu$ ó $\mu i ́ \chi \lambda a \iota \pi i \pi \tau \omega \sigma \iota$,
 $\mu \hat{\nu} \nu a \dot{a} \mu \phi о \tau \epsilon ́ \rho \omega \nu$ ảpı $\theta \mu о v \mu \epsilon ́ \nu \omega \nu$. ö $\sigma \alpha \iota ~ \mu \grave{\iota} \nu \quad$ ä μa

[^282]
CONCERNING WEATHER SIGNS, 54-56

When sheep begin to breed late, it is a sign which fulfils itself in fair weather. So is it when an ox lies ${ }^{1}$ on his left side, and also when a dog does the same : if they lie on the right side, it indicates storm. The appearance of a number of cicadas indicates that the season will be unhealthy. If a lamp burns quietly during a storm, it indicates fair weather. So also if it has on the surface an appearance like shining millet-seeds : ${ }^{2}$ also if a bright line surrounds the lamp-nozzle.

The fruiting of the mastich ${ }^{3}$ gives signs as to the seasons of sowing : ${ }^{4}$ it takes place at three several periods, which indicate respectively the time for the first the second and the third sowing : and according as one or other of these fruiting-times turns out ${ }^{5}$ best and produces the most abundant fruit, so too will be the success of the corresponding time of sowing.

Miscellaneous signs.

The following signs are said to affect either the whole year or whole periods ${ }^{6}$ of it. If at the beginning of winter there is dull weather followed by heat, and these conditions are dispersed by wind without rain, it indicates that towards the spring there will be hail. Again, if after the spring equinox mists come down, it is an indication of breezes and winds by the seventh month, reckoning inclusively. Those mists which come down when the moon is in its first quarter indicate breezes for that period, those which come down when the moon is in its third quarter indicate rain. And the more mists

$$
\begin{aligned}
& { }^{4} c f . H . P .7 .1 .1 \text { foll. } \\
& { }^{5} \kappa \kappa \beta \text { ív } \mathrm{I} \text { conj.: } c f . H . P .7 .13 .6 ; \kappa \lambda l \nu \eta \text { MSS. } \\
& \text { cf. } 6 .
\end{aligned}
$$

THEOPHRASTUS

 $\pi i ́ \pi \tau \omega \sigma \iota, \mu a ̂ \lambda \lambda o \nu \tau \grave{\alpha} \epsilon i \rho \eta \mu \epsilon ́ v a$ б $\eta \mu a i ́ \nu \epsilon \iota$.

 $\lambda \in ́ \gamma o v \sigma \iota \nu$ out $\mu o ́ v o \nu ~ \tau a ̀ ~ \pi \rho o \in \iota \rho \eta \mu \epsilon ́ v a ~ \sigma \eta \mu a i ́ v o v \sigma \iota \nu ~$

${ }^{1}$ cf. 34 ; Arist. Meteor. 1. 6.
2 Text seems doubtful, as cold weather was included above.

CONCERNING WEATHER SIGNS, 56-57

come down when the moon is assuming either shape, the more certainly is the result just mentioned indicated.

Also the winds which accompany the falling of the mists are significant: if the breezes come from the east or south, rain is indicated; if from the west or north, breezes and cold weather. And the stars which the Egyptians ${ }^{1}$ call 'comets' indicate not only the conditions just mentioned but also cold ${ }^{2}$ weather. ${ }^{3}$ In the case of the rising of the stars the indication, as in the case also of the equinoxes and solstices, is given not at the actual time but a little earlier or later.
${ }^{3}$ The text of this sentence can hardly be sound. $\sigma \eta \mu \alpha i \nu \in \iota \nu$


```
<0, (2)
```


INDEX OF PLANTS

NOTE TO THE INDEX OF PLANTS

Sprengel made the first comprehensive attempt to determine in modern nomenclature the plants mentioned by Theophrastus: Wimmer gives the result in the Introduction to his 1842 edition. Sprengel adopted the most probable identifications of earlier botanists, supplemented by his own conjectures and Sibthorp's exploration of the Greek flora. The ambitious but uncritical Conspectus Florae Classicae of Fraas did not add much to our knowledge, which throughout had been vitiated by failure to recognise the fact that the Mediterranean flora differed from that of Western and Central Europe. Halacsy's Conspectus Florae Graecae now gives us a scientific enumeration of the native plants of Greece; a Greek plant-name can be wedded to a plant which at any rate is Greek. Incidentally much has been cleared up by special research at the hands of De Candolle, Hanbury, Yule, Schweinfurth, Bretzl, and others.

The identifications in the following Index are drawn from various sources; for their selection in view of the botanical data available I am indebted to Sir William Thiselton-Dyer. A considerable number may be accepted as certain, many are probable, some no more than possible.

INDEX OF PLANTS

comp．＝compared．
$=$ denotes a synonym．Where a reference is added（see e．g．
גंтрактv入ís），it indicates that Theophrastus himself states that
the names are synonymous．
áßpóтovov，southernwood，Artemisia arborescens
1．9．4．evergreen； 6.1 .1 ．in list of under－shrubs；6．3．6．an un－ named plant comp．：see App． （23）：6．7．3．propagation； 6．7．4．much seed：roots described．
äyvos（ $=$ oi ioos），chaste－tree，Vitex Agnus－castus
1．3．2．a shrub which becomes tree－like；1．14．2．bears fruit at the top；3．12．1．growth of крávєєa comp．；3．12． 2.
 4．10．2．è $\lambda a i ́ a \gamma \nu o s ~ c o m p . ; ~ 9.5 .1 . ~$ size of кıvá $\omega \nu 0 \nu$ and кaбía comp．
 Olea Oleaster
2．2．5．comes from seed of è λ áa． ä $\gamma \mathrm{p} \omega \sigma \tau \iota \mathrm{s}$ ，dog＇s tooth grass，Cynodon Dactylon
1．6．7．root jointed；1．6． 10. roots large and numerous； 2．2．1．propagation；4．6． 6. фи̂кos（6）comp．；4．10．5－6 root described；4．11．13．an unnamed form of кá入a μ os comp．：root of κ ．ò＇I $\nu \delta \iota \kappa$ ќs comp．；9．13．6．habit of épev θ é $\delta a \nu 0 \nu$ comp．
ä $\gamma \chi 0 v \sigma a$ ，a！kanet，Anchusa tinctoria
7．8．3．leaves＇on the ground＇： 7．9．3．roots red．
adiavrov，maiden－hair，Adiantum Capillus－Veneris，etc．
7．10．5．evergreen；7．14．1．leaf cannot be wetted：two kinds
（see below）：medicinal use： grows in damp places．
ásíavtov tò $\lambda \in v \kappa o ́ v ~(=\tau \rho ı \chi o \mu a \nu \epsilon ́ s ~$ 7．14．1），English maiden－hair， Asplenium Trichomanes
7．14．1．described by comparison with $\dot{\alpha} . \tau \dot{\alpha} \mu \epsilon \lambda^{\prime}{ }^{\nu}$ ：medicinal use： likes shady places．
ásiavtov tó $\mu \in ́ \lambda a v$, maiden－hair，Adi－ antum Capillus．Veneris
7．14．1．comp．with $\dot{\alpha}$ ．тó λ גevкóv．
á $\delta \rho \alpha ́ \phi a \xi v s$, orach，Atriplex rosea
1．14．2．bears fruit both on top and at sides；3．10．5．seeds of фíגupa comp．；7．1．2－3．time of sowing and of germination； 7．2．6．root described；7．2．7－8． root of β 人íтo comp．；7．2． 8. root：7．3．2．seeds；7．3．4．seed borne both at top and at side； 7．4．1．only one kind；7．5．5． seed does not keep well．
áeí乡wov，house－lcek，Sempervivum tectorum
1．10．4．leaves fleshy；7．15． 2. always moist and green：habitat． à $\theta \rho a \nmid$ ép η, traveller＇s joy，Clematis Vitalba
5．9．6．wood makes good fire－ sticks：described；5．9．7．the stationary piece should be made of this or кıттós．
aikєєpos，black poplar，Populus nigra 1．2．7．bark；1．5．2．bark fleshy； 2 2．10．Cretan form bears fruit； 3．1．1．propagation；3．3．1．tree of mountain and plain；3．3．4．a question if it bears fruit；etc．；

INDEX OF PLANTS

3．4．2．time of budding；3．6．1． quick growing；3．14．2．described； 4．1．1．likes wet ground；4．7．4． size of unnamed Arabian tree， ses App．（12a），comp．；4．13． 2. shorter－lived by water；5．9． 4. wood makes an evil smoke when burnt for charcoal
aiyì $\omega \psi(1)$（ $=\tilde{a} \sigma \pi \rho \iota \varsigma)$ ，Turkey oak， Quercus Cerris
3．8．2．one of the five（Idaean） kinds of oak：fruit；3．8． 4. hablt and timber；3．8． 6. galls：фа́бкоs（q．v．）．
aiyìn $\psi(2)$（grass），Aegilops ovata
7．13．5．seed sometimes takes two years to germinate；8．7． 1. comp．with aipa；8．8．3．grows specially among крьөai；8．9． 2. like a wild plant；8．9．3．greatly exhausts the soil；8．11．8－9． peculiarities about seed．
aifó $\omega \omega \rho o \nu$ ，broom－rape，Orobanche cruenta
 described．
aipa，darnel，Lolium temulentum
1．5．2．＇bark＇in one layer；2．4．1． rupós turns into à．；4．4． 10.
 infest certain kinds of rupós： contrasted with $\mu \in \lambda \alpha ́ \mu \pi v \rho o \nu$ ； 8．7．1．kpitin and especially $\pi v \rho o ́ s$ said to change into $\dot{\alpha}$ ． under certain conditions：de－ scribed：divov also said to change into $\dot{\alpha}$ ．：comp．with aijí $\lambda \omega \psi$（2）；8．8．3．produced possibly by degeneration of $\kappa \rho \iota \theta \dot{\eta}$ and ruрós，or else specially affects such crops ；8．9．3．alto－ gether a wild plant．
$\dot{\alpha} \kappa \alpha \lambda v ́ \phi \eta$ ，nettie，Urtica urens
7．7．2．a $\lambda \alpha ́ \chi a \nu o \nu ; ~ n e e d s ~ c o o k i n g . ~$
äка $\nu \alpha$（1）$\dot{\eta}$ Aiүvrría，acacia，Aca－ cia arabica（and albida）
4．2．1．peculiar to Egypt；4．2．8． described：two kinds（ $\dot{\eta}$ 入єvк $\dot{\eta}$ and $\dot{\eta}$ нédaıva）distinguished （see below）；9．1．2．sap gummy，
$\alpha{ }_{\alpha} \kappa \alpha \nu \theta \alpha(\dot{\eta}$ Ai $\gamma v \pi \tau i \alpha) \dot{\eta} \lambda \epsilon v \kappa \eta \dot{\eta}, ~ a c a c i a$, Acacia albida
4．2．3．distinguished from $\dot{a}^{2}, \dot{\eta}$ нéлаııa．
 Acacia arabica
4．2．8．distinguished from $\dot{\alpha}$ ．$\dot{\eta}$入evkń．
 corn－thistle，Carduus arvensis
4．10．6．root etc．described．
äкаг θa（3）$\dot{\eta}$ סı廿ás，Acacia tortilis
4．7．1．the only tree which grows on part of the＇Red Sea＇coast．
 Balsamodendron Mukul
9．1．2．sap gummy：gum like $\sigma \mu v ́ \rho \nu a$.
äкаขӨа（5）ஸ̀ 入єvкクे＇Нраклє́ovs（＝ ăкауөа（6）），Euphorbia anti－ quorum
4．4．12．described：uses of wood äкаขөa（6）（peculiar to Gedrosia）， ＝ăкауөa（5），Euphorbia anti－ quorum
4．4．13．described ：has a blinding juice．
äка⿰ $\theta \alpha$（7）$\tau \iota s$ ，gum arabic，Acantha arabica
9．18．1．said to have the property of thickening water．
 $=i \xi i ้ \nu \eta=$ रaцаı入є́ $\omega \nu \dot{o}$ деvкós 9．12．1．），pine－thistle，Atractylis gummifera．
äка ν оs $(=a ̈ \kappa \alpha \nu \theta a(8)=i \xi i a(2)=i \xi i \nu \eta=$ $\chi^{\alpha \mu \alpha ı \lambda \epsilon ́ \omega \nu \dot{\delta} \lambda \epsilon v \kappa o ́ s), ~ p i n e-t h i s t l e, ~}$ Atractylis gummifera
1．10．6．spinous－leaved ；1．13． 3. flower attached above each seed；6．1．3．has spines on the leaves：a wild under－shrub； 6．4．4．many stalks and side－ growths；6．4．5．one form only； 6．4．8．root of бó $\boldsymbol{\kappa о}$ ся contrasted： χ дцаı入є́ $\omega \nu$ comp．；6．4．11．fruit－ case of ка́ктоз（1）comp．；6．6． 6. seed of póosov comp．；9．12． 1. ＇head＇of xauai入éwv ó 入evкós comp．：another name for xapat－ $\lambda \epsilon ́ \omega \nu(?) ; 9.12 .2$ leaf of $\chi \alpha \mu \alpha-$ $\lambda \epsilon ́ \omega \nu$ ò μ é $\lambda a s$ comp．
 $\sigma \kappa о \rho \pi$ тós（3）），wolf＇s bane，Aconi－ tum Anthora
9．16．4．localities：described： habitat：eaten by no animal； 9．16．5．difficulty of compound－ ing drug：effects：has no anti－

INDEX OF PLANTS

dote; 9.16.7. use requires expert knowledge: legal restrictions: proportion between times of gathering and of administering.
ăкорva, Cnicus Acarna

1. 10. 6. spinous-leaved; 7.4.3. a 'thistle-like ' plant; 6. 4. 6. described.
 nigra
1. 4. 2. time of budding.
úкт̂̀ ($=$ àкт́és), elder,Sambucus nigra
1. 5. 4. wood without knots ; 1. 6. 4. core fleshy: has no core, according to some: 1.8. 1. few knots; 4. 13. 2. shorter-lived by water; 5. 3. 3. character of wood.
à $\lambda \theta a i ́ a ~(=\mu a \lambda a ́ \chi \eta ~ \grave{~ \eta ̀ ~ a ̀ p i ́ a ~ 9 . ~ 15 . ~ 5 .), ~}$ marsh-mallow, Althaea officinalis
1. 15. 5. a drug, called in Arcadia мала́хŋ $\dot{\eta}$ üypia; 9.18.1. root said to thicken water: described: medicinal use.
äд^цоv, Atriplex Halimus
1. 16. 5. very dangerous to trees.

ג̀ $\lambda \sigma i \nu \eta$, Parietaria cretica
1. 13. 3. leaf of ápıatodoxía comp. $\dot{\alpha} \lambda \omega \pi \epsilon \in ́ \kappa о \cup \rho o s, ~ P o l y p o g o n ~ m o n s p e l i e n-~ . ~$ sis
1. 11. 2. flowers in a spike: described.
 am, Origanum Majorana
1. 9. 4, evergreen; 6. 1. 1. in list of under-shrubs; 6. 7. 4. propagation: roots described; 6.8.3. flowering time ; 9. 7. 3. in list of àрш́мата.
ä $\mu \pi \in \lambda$ os (1) (leaf oivapov 9, 13. 5.), vine, Vitis vinifera
1. 2. 3. has tendrils; 1.2.7. bark; 1. 3. 1. a typlcal 'tree'; 1.3.5. evergreen at Elephantine; 1.5.2. bark cracked and fibrous: bark in layers; 1.6.1. core fleshy; 1.6. 3. roots thin ; 1. 6. 5. roots branching upwards; 1. 8. 5. highest shoots 'roughest' : 'eye' analngous to knot in other trees; 1. 9. 1. effect of pruning; 1.10.4. leaves broad; 1.10.5.
leaf divided; 1. 10.7. long leaf stalk: attachment of leaf-stalk; 1. 10. 8. leaves made of 'bark; and flesh; 1. 11. 4. seeds all together in a single case; 1.11.5. each grape separately attached; 1. 12. 1. taste of fruit; 1. 12. 2. taste of sap ; 1. 13. 1. flower 'downy'; 1.13. 3. flower surrounds fruit; 1. 13. 4. some kinds sterile; 1.14.1. bears on new shoots; 1. 14. 4. many cultivated forms; 2. 1. 3. propagation; 2.2.4. degenerates from seed; 2. 3. 1. sometlmes spontaneously changes character; 2. 3. 2. d̀. ò кátvéos varies in colour of grapes on same bunch; 2. 3. 3. sometimes bears fruit on the stem ; etc.; 2.5.3. propagation: cannot be grafted; 2. 5. 4. propagation; 2. 5. 7. low ground suitable: great varlety of kinds according to soil ; 2. 6. 12. cuttings set upside down; 2.7.1. water-loving; 2. 7. 2. needs much pruning; 2. 7. 5. use of dust ; 2. 7.6. rootpruning; 3.5.4. autumn budding; 3. 17. 3. bark of ко入о tia (2) comp.; 3.18.5. flower and fruit of poùs comp.; 3. 18. 12. cluster of berries of $\sigma \mu \mathrm{i} \lambda a \xi$ (2) comp.; 4. 4. 8. unnamed Indian tree (cotton-plant) planted in rows like á.; 4.4. 11. in India confined to hill-country ; 4.5.4. grows on Mount Tmolus and Mysian Olympus; 4.7.7. leaf
 4. 7. 8. occurs on island of Tylos; 4. 13. 2. some kinds short-lived; 4. 13. 4-6. said to be longest-lived of trees: reason: method of prolonging life artificially; 4. 14. 2. young plants liable to 'sun-scorch'; 4. 14. 6 . other diseases; 4.14.7. effects of injury to roots; 4. 14. 8. effect of raln on fruiting; 4. 14. 9. a special pest at Miletus; 4. 14. 10. effect of hot winds; 4.14.13. effects of frost; 4. 15. 1. outer bark can be stripped; 4. 16. 1. survives

INDEX OF PLANTS

splitting of stem; 4.16. 6. natural antipathy of $\dot{\alpha}$. to $\dot{\rho} \dot{\alpha} \phi a \nu o s ;$ 5. 3. 4. character of wood; 5. 4. 1. the less fruitful trees produce more solid wood; 5.9.4. wood, if damp, makes an evil smell when burnt for charcoal; 5. 9. 6. à $\theta \rho a \gamma$ ćvŋ comp.; 8. 2. 8. $\dot{\alpha}$. in Melos; 9. 1. 6. time of tapping; 9.13.5. leaf and time of growth of $\pi \in \nu \tau a \pi \epsilon \tau \epsilon$ comp.; 9. 18. 11. peculiar properties of certain local kinds.
${ }_{a}^{2} \mu \pi \epsilon \lambda$ os (2) (Mt. Ida), currant grape, Vitis vinifera, var. corinthiaca
3. 17. 4. a local Idaean kind; 3. 17. 6. do. described.
$\ddot{\alpha}_{\mu} \mu \pi \epsilon \lambda o s(3) \dot{\eta} \pi о \nu \tau i ́ a$, Fucus spiralis
4.6.2. peculiar to certain waters ; 4. 6. 9. described.
$\ddot{\alpha} \mu \pi \epsilon \lambda$ os (4), $\dot{\eta} \dot{a} \gamma \rho i ́ a(=\mu \dot{\eta} \lambda \omega \theta \rho o \nu)$, bryony, Bryonia cretica
3. 18. 12. fruit of $\sigma \mu i \lambda \alpha \xi$ (2) comp. $9.14,1$ how long drug prepared from it will keep; 9. 20. 3. properties of root: medicinal use.
$\dot{\alpha} \mu \nu \gamma \delta \alpha \lambda \hat{\eta}$, almond, Prunus Amygdalus

1. 6. 3. large central root; 1.9.6. leaves produced early, but not shed early; 1.11. 1 . seed immediately within envelope; 1.11.3. seed in a woody shell; 1. 12. 1. taste of fruit; 1. 13. 1. flower 'leafy': flower of some kinds reddish; 1.14.1. bears on last year's wood; 2. 2. 5. degenerates from seed; etc.; 2. 2. 9. effects of cultivation; 2.2.11. do.: effect of tapping gum; 2.5.6. trees should be planted far apart; 2. 7. 6. 'punishing' the tree; 2. 7. 7. tapping the gum; 2.8.1. apt to shed immature fruit; 3.11. 4. fruit of $\mu \in \lambda i a \quad$ comp.; 3. 12. 1. leaf of кра́vєıа comp.; 4. 4. 7. fruit of
 fruit of unnamed Persian tree (see App. (13)), comp.; 4.14.12. uninjured by special winds; 5.9.5 wood-ashes make pungent smoke; 7. 13. 6. flower appears bcfore leaves and (new growth of) stem; 8.2.2. germination de-
scribed; 9. 1. 2. sap gummy; 9. 1. 3. gum scentless; 9. 1. 5. gum useless; 9. 19.1. leaf of òoońpas comp.
$\dot{\alpha} \mu \omega \mu \boldsymbol{\nu}$, Nepaul cardamom, Amomum subulatum
1. 7. 2. an $\alpha \rho \omega \mu \alpha$, Median or Indian.
$\dot{\alpha} \nu \delta \rho a ́ \chi \lambda \eta$, andrachne, Arbutus $A n$ drachne
1. 5. 2. bark readily drops off ; 1. 9. 3. evergreen; 3. 3. 1. a mountain tree; 3. 3. 3. evergreen; 3. 4. 2. time of budding; 3. 4. 4. time of fruiting ; 3. 4. 6 . do.; 3. 6. 1. slow growing (?); 3.16.5. described; 3. 16. 6. leaf of коккуүє́a comp; 4. 4. 2. leaf of $\mu \eta \lambda \epsilon ́ \alpha \dot{\eta}$ Пє $\rho \sigma \iota \kappa \dot{\eta}$ comp.; 4.7.5. an unnamed Persian tree (see App. (14)), comp.; 4. 15.1. does not perish if bark is stripped; 4. 15. 2, bark cracks; 5. 7. 6. wood used for parts of loom; 9. 4. 3. bark of $\sigma \mu$ úpva comp.
àvópáx $\nu \eta$, purslane, Portulaca oleracea
1. 2. 2-3. time of sowing and germination; 7.2.9. root described.
ávєн́́vŋ, anemone, Anemone spp.
7.8.3. leaves ' on the ground.'
ávєцஸ́vך, anemone, Anemone coronaria
1. 7. 3. puts forth flower soon after season of growth begins; 7.10.2. flowers in winter.
$\dot{\alpha} \nu \epsilon \mu \omega ́ \eta \eta$ ทे $\lambda є \iota \mu \omega \dot{\prime}$, Anemone pavonina
1. 8. 9. flowering-time.
ávє μ úv $\dot{\eta}$ úpeía, Anemone blanda
1. 8. 9. flowering-time.
äv $\eta \theta \circ \nu$ ($=\tilde{\alpha} \nu \nu \eta \tau \circ \varsigma$), dill, Anethum graveolens
1. 11. 2. seeds naked; 1. 12. 2. taste of sap; 6. 2. 8. fruit of váp $\eta \eta \xi$ and vapө \quad кia comp.; also setting of flowers and fruit; 7. 1. 2-3. time of sowing and germination; 7. 2. 8. root described; 7.3.2. seeds described; 7. 4. 1. only one kind; 7.6. 4. fruit of ipeco
$\ddot{a}^{*} \nu \theta \epsilon \mu \circ \nu$, Anthemis chia, etc. (see below)
1. 13. 3. flower attached above

INDEX OF PLANTS

each seed; 7. 14. 2. flowering begins at top: oflower and fruit: several kinds (see below).
$u ̈ \nu \theta \epsilon \mu \circ \nu$ тò $\alpha \dot{\alpha} \dot{\prime} \lambda \lambda \alpha \nu \theta \epsilon \mathrm{s}$, wild chamomile, Matricaria Chamomilla
7.8. 3. leaves ' on the ground.'
ä $\nu \theta \in \mu \circ \nu$ тò $\phi v \lambda \lambda \hat{\omega} \delta e s$, Anthemis chia
7.8.3. leaves on the stem.

1. 12. 13. scent.
ävข η тоs ($=a ̈ \nu \eta \theta$ ov.) dill, Anethum graveolens
1. 7. 3. in list of ápémaгa.
àvтípèov, snapdragon, Antirrhinum Orontium
1. 19. 2. alleged magic properties : described.
à $\pi \alpha ́ \pi \eta$, dandelion, Taraxacum officinale
1. 4. 8. (?) flower of $\chi a \mu \alpha \iota \lambda \epsilon \in \nu$ comp.; 7. 7. 1. a λ áxavov: classed as 'chicory-like' from its leaves; 7. 7. 3. season of growing: 7. 7. 4. prolonged flowering-time; 7. 8. 3. leaves 'on the ground'; 7. 10. 2. (?) flowers in winter, earliest of all; 7. 10. 3. flowers borne in succession; 7. 11. 3. flowering-time; 7. 11. 4. inedible: growth described.
àmapyia, hawk's beard, Crepis Columnae
1. 8. 3. leaves ' on the ground.'
$\dot{\alpha} \pi a \rho i \nu \eta$, bedstraw, Galium Aparine
1. 8. 9. stem 'clasping,' but, for want of support, 'on the ground'; 7. 14. 3. clings to clothes: peculiar setting of flower described; 8. 8, 4. grows specially among факоi: growth described; 9. 19. 2. ávтíppıvov comp.
äлıо: (1), pear, Pyrus communis, var. sativa
1.2.7. bark; 1.3.3. a tree whose stem is not single; 1. 8. 2. has less knots than áxpás; 1. 10. 5. leaves round ; 1.11. 4 . seeds all together in a single case ; 1.11. 5 . seeds in a membrane; 1. 12. 2. taste of sap; 1.13. 1. flower 'leafy'; 1.13.3. Hower above fruit-case; 1.14.1
bears on last year's wood; 1. 14. 4. a cultivated form of áxpás; many cultivated forms; 2.1.2. propagation; 2.2.4. degenerates from seed; 2. 2. 5. seed produces wild form ; 2.2.12. cannot be made out of axpás by cultivation; 2. 5. 3. grafting; 2.5.6. trees should be planted rather far apart; 2.7.7.' punishing' the tree; 2.8.1. apt to shed immature fruit; 3.2.1. produces less fruit than á ${ }^{\text {pás, }}$ but ripens more; 3. 3. 2. has better fruit and timber in lowlands; 3. 4. 2. time of budding; 3. 6. 2. formation of buds; 3. 11. 5. mountain and lowland forms comp.; 3. 12. 8. fruit of ö η comp. as to keeping; 3.14.1. leaf of $\pi \tau \epsilon \lambda \epsilon \dot{\alpha}$ comp.; 3. 14. 3. leaf of $\kappa \lambda \dot{\eta} \theta \rho \alpha$ comp.; 3. 18. 7. does not differ in kind from
 4. 3. 1. size of $\lambda \omega$ ós (4) comp.; 4.4.2. thorns of $\mu \eta \lambda \epsilon \in \dot{\eta} \Pi_{\epsilon} \rho \sigma \iota \kappa \eta$ comp.; 4.5.3. abundant in Pontus; 4.13. 1. shorter-lived than áxpás; 4.14.2. apt to get wormeaten; 4.14.10. fruit gets wormeaten; 4. 14. 12. uninjured by special winds; 5.3.2. leaf of an unnamed tree comp. (see App. (20)); 9.4.2. leaf of $\lambda_{\iota} \beta a \nu \omega \tau$ ós comp.
 vos ì ípeía), spurge, Euphorbia Apios
1. 9. 5. medicinal use; 9.9.6. described.
äракоя, Vicia Sibthorpii
1.6.12. an unnamed plant (see App. (1)) comp.; 8.8.3. ('the rough hard kind') grows specially among факоí.
á $a_{\chi} \chi \delta \nu a$, Lathyrus amphicarpus
1.1. 7. fruit underground; 1.6.12. root like a second fruit.
ápía ($=i \psi o s=\phi \in \lambda \lambda$ ó $\delta \rho v s$ 3.16.3.), holm-oak, Quercus Ilex var. agrifolia
1. 3. 8. doubt whether it has a flower; 3.4.2. time of budding; 3.4.4. time of fruiting; 3.16.3. Dorian name for $\phi \in \lambda \lambda$ ó $\delta \rho v$;

INDEX OF PLANTS

3．17．1．acorn of фeג入ós comp．； 4．7．2．（？）leaf of $\delta \dot{\alpha} \phi \nu \eta$（6） comp．；5．1．1．time of cutting timber；5．3．3．character of wood；5．4．2．wood proof against decay；5．5．1．wood hard to work；5．9．1．wood makes good charcoal．
ápıбтodoxia，birthwort，Aristolochia rotunda
9．13．2．described：medicinal use； 9．14．1．how long drug will keep；9．15．5．grows in Arcadia； 9．20．4．cf．9．13． 2.
ăркєvөos（＝кє́ঠिраs（3）），Phoenician cedar，Juniperus phoenicea
1．9．3．evergreen；3．3．1．a mountain tree；3．3．3．ever－ green；3．3．8．doubt whether it has a flower；3．4．1．takes a year to ripen fruit；3．4．5．time of fruiting；etc．；3．4．6．do．； 3．6．1．slow－growing（？）；3．6．5． shallow－rooting according to Arcadians；3．12．3－4．described： distinguished from кéठpos（1）： 4．1．3．grows high on moun－ tains，but not tall；5．7． 4. use of wood in house－building； 5．7．6．other uses of wood： does not decay；9．1．2．sap gummy．
$\dot{\alpha} \rho \nu o ́ \gamma \lambda \omega \sigma \sigma o \nu(=\sigma \tau \epsilon \lambda \epsilon ́ \phi o v \rho o s$ 7．11．2．， according to some，＝ö $\rho \tau v \boldsymbol{\xi}$ 7．11．2．，according to some）， plantain，Plantago maior
7．8．3．leaves＇on the ground＇； 7．10．3．flowers borne in succes－ sion；7．11．2．flowers in a spike： described by comparison with ả $\lambda \omega \pi$ е́кочроя．
ápov，cuckoo－pint，Arum italicum
1．6．7．root fleshy；1．6．8．has a stout root and also fibrous roots：roots not tapering； 1．6．10．cultivation；1．16．10．（？） flower made of flesh；7．2． 1. propagation；7．9．4．root de－ scribed；7．12．2．root and leaves edible：use in surgery：special treatment to promote growth of root：one kind inedible（see Sракóvтıov）；7．13．1．leaves de－ scribed；7．13．2．no stem or flower
 cury，Mercurialis perennis
9．19．5．properties：described．
$\dot{\alpha} \sigma \pi \alpha ́ \lambda \alpha \theta$ os，Calycotome villosa

ä $\sigma \pi \rho!\varsigma(=$ aiyì $\lambda \omega \psi(1))$ ，Turkey oak， Quercus Cerris
3．8．2．one of the four Macedonian kinds of oak：acorns and timber．
$\dot{\alpha} \sigma \tau$ е́рьбкоя，Michaelmas daisy，Aster Amellus
4．12．2．seed of $\mu e \lambda \alpha \gamma к \rho \alpha \nu i ́ s$ comp．
$\dot{a} \sigma \tau a \neq \mathbf{s}$, Delphinium Staphisagria
9．12．1．medicinal use．
ȧ $\sigma \phi \dot{\rho} \rho$ 人ооs，asparagus，Asparagus acutifolius
1．10． 6. spines for leaves；6．1．3． do．；a wild under－shrub；6．4．1． one of very few plants which are altogether spinous；6．4．2． described
$\dot{\alpha} \sigma \phi o ́ \delta \epsilon \lambda о s$（stem $\dot{\alpha} \nu \theta$ épıкоs），（ $=\pi$ ó θ os （2）），asphodel，Asphodelus ramo－ sus
1．4．3．belongs to＇ferula－like＇ plants；1．10．7．attachment of leaves；6．6．9．leaves of ν áp－ кıббos（1）comp．；7．9．4．root acorn－shaped； 7 12．1．root edible；7．13．1．leaves described； 7．13．2－3．stem of ipis comp．： largest stem of herbaceous plants：fruit inflorescence etc． described；worm which infests it：uses for food of stem and roots；7．13．4．grown from seed； 9．9．6．leaf of ioxas comp．； 9．10．1．stem of $\dot{\epsilon} \lambda \lambda \epsilon \in \beta o p o s ~ c o m p . ~$ by some．
$\tilde{a} \sigma \chi \propto \nu$, puff－ball，Lycoperdon gigan－ teum
1．6．9．not a root，though under－ ground．
áтрактv入ís（＝фóvos 6．4．6．），distaff－ thistle，Carthamus lanatus
6．4．3．a＇thistle－like＇plant； 6．4．6．described：also called фóvos：reason；9．1．1．juice blood－coloured．
áф́́кๆ，tare，Vicia sativa var．angus－ tifolia
8．1．4．（a pulse）sown late；8．5．3． shape of pod；8．8．3． $\boldsymbol{\pi}$ елєкivos

INDEX OF PLANTS

grows specially among ä.; 8.11.1. seed does not keep.
גंф́́ркך (a natural hybrid between ávঠра́х $\lambda \eta$ and кó $\mu a \rho o s)$, hybrid arbutus, Arbutus hybrida
1.9.3. evergreen; 3.3.1. a mountain tree; 3. 3. 3. evergreen; 3. 4. 2. time of budding; 3.4.4. time of fruiting; 5.7.7. uses of wood.
$\vec{a} \phi i a$, lesser celandine, Ranunculus Ficaria
7.7.3. puts forth flowers at season of growth.
àxpás, wild pear, Pyrus amygdaliformis
1.4.1. more fruitful than cultivated kind; 1. 8. 2. has more knots than ăтios; 1.9.7. time of shedding leaves; 1. 14.4. a wild form of ántos; 2.2 . 5 . produced from seed of án π os; 2.2.12. cannot be made into äntos by cultivation; 3. 2 1. produces more fruit than ámıos, but ripens less; 3.3.1. a tree of mountain and plain; 3. 3. 2. has better fruit and timber in lowlands; 3. 4. 2. time of budding; 3.4.4. time of fruiting; 3. 6. 1. slow growing (?); 3. 11. 5. mountain and lowland forms comp.; 3. 12. 8. fruit of ${ }^{\circ} \eta$ comp. as to keeping; 3. 14. 2. bark of λ cúкŋ comp.; 3. 18. 7. does not differ in kind from ärnos; 4. 13. 1. longer lived than ámios; 5.5.1. cobblers' strops made of the wood.
$\dot{\alpha} \psi i \nu \theta \iota o v$, wormwood, Artemisia $A b-$ sinthium

1. 12. 13. taste of fruit; 4.5. 1. seeks cold regions; 7.9.5: leaves and stem bitter, yet wholesome; 9.17.4. said to become by use non-poisonous to sheep.
ßádavos, Balanites aegyptiaca
1. 2. 3. peculiar to Egypt; 4. 2. 6. described.
$\beta \alpha ́ \lambda \sigma a \mu o \nu(g u m$ ìmoßá̀ $\sigma \alpha \mu o \nu)$), balsam of Mecca, Balsamodendron Opobalsamum
1. 2. 2. sap gummy; 9. 1. 7. time of tapping; 9.4.1. collection of
gum; 9.6.1-4. described: habitat : method of collection : nowhere found wild; 9. 7. 3. in list of $\alpha \rho \omega$ $\mu \alpha \tau \alpha$.
ßáтos, bramble, Rubus ulmifolius
1.3.1. a typical 'shrub'; 1.53. thorns on wood; 1.9.4. evergreen; 1.10.6. leaf with spinous projections; 1. 10.7. stem presently spinous; 3.18.3. grows in wet and dry places alike: 3. 18. 4. kinds distinguished; 3. 18. 12. cluster of berries of $\sigma \mu i \lambda \lambda \xi{ }^{2}$ (2) comp; 4. 8. 1. to some extent grows in marshes; 4.12.4. to some extent aquatic; 6. 1. 3. has spines on the shoots.
$\beta \lambda \eta \chi \omega$, pennyroyal, Mentha Pulegium
1. 16. 17. leaf etc. of siктадро" comp.
$\beta \lambda i \tau o v$, blite, Amaranthus Blitum
1. 14. 2. bears fruit both on top and at sides; 7.1.2-3. time of sowing and of germination; 7. 2. 7-8. root described ; 7.3.2. seeds described; 7. 3. 4. seed borne both on top and at side ; 7. 4. 1. only one kind.

Bo入kivn, star-flower, Ornithogalum umbellatum
7. 13. 9. belongs to $\tau \alpha ̀ \beta o \lambda \beta \omega \delta \eta$.
ßo入ßós, purse-tassels, Muscari comosum etc. (see below).
1.6.7. root in scales; 1.6.8. root not tapering; 1. 6. 9. no side roots : (part of) stem underground; 1. 10. 7. no leaf-stalk: attachment of leaves; 6.8. 1. flowering time: used as a coronary plant; 7.2.1. propagation ; 7. 2. 2. root makes offsets; 7. 2. 3. offisets specially numerous; 7.4.12. formation of roots of кро́भиои comp.; 7. 9. 4., cf. 1. 6. 7.; 7. 12. 1. example of an edible root; 7. 12. 2. special treatment to promote growth of root; 7. 13. 1. leaves described; 7. 13. 2. flower-stent not the only stem; 7.13. 4-5. grown from seed: seed sometimes takes two years to germinate ; 7. 13. 7. root of vápкıббоs (1) comp. ; 7. 13. 8.

INDEX OF PLANTS

several kinds ；7．13．9．roots of various plants comp．；8．8． 3. grows specially among $\pi v \rho o ́ s$.
ßo入ßòs í épıó申opos，Pancratium maritimum
7．13．8．grows on beach：de－ scribed：uses for food and cloth－ ing．
ßоикє́рая，（ $=\tau \hat{\eta} \lambda \iota \varsigma)$ ，fenugreek．Tri－ gonella Foenum－Graccum
4．4．10．an Indian plant（see App．（8）），comp．8．8．5．aiرó－ $\delta \omega \rho o \nu$ parasitic on β ．
ßouméגıos，ash，Fraxinus excelsior
3．11．4－5．described ；4．8． 2. common in Egypt．
ßoúm $\quad \eta \sigma \tau \iota$ ，？
7．7．3．season of growing．
ßoúromos，sedge，Carex riparia
1．5．3．stem very smooth；1．10．5． leaves end in a point：further described；4．8．1．in list of $\tau \grave{\alpha}$ лохиш́ঠ η ；4．10．4．described； 4．10．6．grows both on land and in water：grows on the floating islands of Lake Copais； 4．10．7．part used for food； 4．11．12．foliage of some ка́лалоı comp．
Bpónos，oats，Avena sativa
8．4．1．seed has more coats than other cereals；8．9．2．exhausts the soil：reason：like a wild plant．
Bpúov，oyster－green，Ulva Lactuca
4．6．2．occurs generally in Greek waters；4．6．6．described．
$\gamma \eta \dot{\theta}$ vov，long onion，Allium Cepa var． 1．6．9．part of stem underground； 7．1．2－3．time of sowing and of germination；7．1．6．germina－ tion；7．1．7．bears fruit in second year：has single stem； 7．2．2－3．root makes offsets； 7．5．1．likes water；7．5．3．bears transplanting； 7.5 .5 seed does not keep well；7．9．4．root in
 comp．；9．11．6．＇head＇of $\sigma \tau \rho \dot{\chi} \nu$ os ò $\mu a \nu \iota \kappa o ́ s ~ c o m p . ~$
भฑंтecov．（Attic for $\gamma \dot{\eta} \theta v o \nu)$ ，horn－ onion，Allium Cepa var．
1．10．8．leaves hollow；7．4． 10.
described：cultivation（classed as a form of кро́ $\mu \nu \sigma \nu$ ）．
$\gamma \lambda \in i ̂ v o s$, Acer creticum
3．3．1．name for lowland form of $\sigma \phi$ б́v $\alpha a \mu \nu o s ; 3.11$ ．2．timber
 9．13．2．，liquorice，Glycyrrhiza glabra．
$\gamma \lambda \nu \kappa v \sigma i \delta \eta ~(=\pi \alpha \iota \omega \nu i ́ \alpha ~ q . v),. ~ 9.8 .6 ., ~$ peony，Paeonia officinalis．
roypu入ís，turnip，Brassica Rapa
1．6．6．root fleshy ；1．6．7．root of bark and fiesh；7．1．2．time of sowing；7，1．7．germinatlon； 7．2．5．survives and increases In size under a heap of soil： root described；7．2．8．do．； 7．3．2．seeds described；7．3．4． seed borne at side；7．4． 3. doubtful if more than one kind： seed，method of sowing，effect of weather；7．5．3．bears trans－ planting；7．6．2．wild form distinguished；7．9．4．root has ＇bark．＇

Sav̂kov（1），carrot，Daucus Carota
9．15．5．Arcadian drug：described （see note）．
סav̂кov（2），Malabaila aurea
9．15．8．grows about Patral： properties：root black；9．20．2． cf． 9.15 .8.
 1．11．3．），sweet bay，Laurus nobilis
1．5．2．bark thin ；1．6．2．roots both stout and fine；1．6．4．roots crooked ；etc．；1．8．1．few knots； 1．9．3．evergreen（cultivated and wild forms，see below）； 1．11．3．fleshy seed in a shell （סaфvis）；1．12．1．taste of fruit； 1．14．4．many cultivated forms； 2．1．3．propagation；2．2． 6. sometimes improves from seed； 2．5．6．trees should be planted close together；3．3．3．ever－ green；3．4．2．time of budding； 3．7．3．（one kind）produces a cluster；3．11．3．leaves of $\mu \in \lambda i ́ a$ comp．；3．11．4．winter－buds of $\mu \in \lambda i a$ comp．；3．12．7．leaf of oै η comp．to that of $\delta . \dot{\eta} \lambda \in \pi \tau o ́ \phi u \lambda \lambda$ os； 3．13． 5 ．leaflet of $\dot{\alpha} \kappa \tau \hat{\eta}$ comp．to

INDEX OF PLANTS

leaf of $\delta . \dot{\eta} \pi \lambda a \tau v ́ \phi v \lambda \lambda o s ; 3.14 .3$. flower（？）of кл $\eta^{\theta} \theta$ рa comp．； 3．15．4．leaf of $\tau \dot{\epsilon} \rho \mu \iota \nu \theta$ os comp＇； 3．16．4．leaf of кó μ ароs comp．； 3．17．3．leaf of колоíть（2）comp． to $\delta . \dot{\eta} \pi \lambda a \tau v$ ́ $\phi v \lambda \lambda$ os；4．4．12．leaf of an unnamed Arian shrub comp．（see App．（10））；4．4． 13. leaf of an unnamed Gedrosian tree comp．（sec App．（11））；4．5．3． does not thrive in cold regions； 4．5．4．grows in Propontis； 4．7．1．a class of marine Atlantic plants comp．；4．7．4．leaf of an unnamed Arabian tree（see App．（12b））comp．；4．13．3．after decaying shoots again from same stock；4．16．6．spoils flavour of grape；5．3．3－4． character of wood；5．7．7．wood used for walking－sticks；5．8． 3. grows in lowland parts of Latium：abundant on Circeian promontory ；5．9．7．fire－drills made of the wood，because it does not wear away；9．4． 2. bark of λ с β a $\nu \omega$ тós comp．；9．4．3． leaf of $\lambda_{\iota} \beta \alpha_{\nu} \omega$ ós comp．（by some）；9．4．9．do．；9．10．1．leaf of è $\lambda \lambda \epsilon ́ \beta o \rho o s ~ \dot{~ o ́ ~ \mu e ́ \lambda a s ~ c o m p . ~(b y ~}$ some）；9．15．5．סаи̂кор（1）comp．； 9．20．1．one kind of $\pi \epsilon ́ \pi \epsilon \rho \iota$（fruit comp．
ठáфขך（2）$\dot{\eta}$ áypia（＝ùvo日ウ́pas），ole－ ander，Nerium Oleander
1．9．3．distinguished from δ ．$\dot{\eta}$ $\eta \mu \in \rho о s$.
$\delta \alpha \dot{\alpha} \phi \nu \eta$（3）$\dot{\eta}$＇A $\lambda \epsilon \xi a \nu \delta \rho \epsilon \iota \alpha$, Alexan－ drian laurel，Ruscus Hypophyl－ lum
1．10．8．bears fruit on leaves； 3．17．4．do．
$\delta \alpha ́ \phi \nu \eta$（4）$\dot{\eta} \lambda \epsilon \pi \tau o ́ \phi v \lambda \lambda o s$, sweet bay， Laurus nobilis
3．12．7．（see under $\delta a ́ \phi \nu \eta)$.
$\delta a ́ \phi \nu \eta(5) \dot{\eta} \pi \lambda a \tau u ́ \phi v \lambda \lambda o s$, sweet bay， Laurus nobilis
3．11．3．，3．13．5．，3．17．3．（see under $\delta \dot{\alpha} \phi \nu \eta)$ ．
$\delta \alpha ́ \phi \nu \eta$（6）（ $=\dot{\epsilon} \lambda \alpha \dot{\alpha} \alpha$（3）$=\mathrm{App}$ ．（14））， white mangrove，Avicennia officinalis
4．7．1．grows in＇Red Sea＇；4．7．2． described：produces a drug for stanching blood．

Siктa $\mu \nu 0 \nu$ ，dittany，Origanum Dic－ tamnus
9．16．1－2．described：medicinal use：popular belief about its use to goats：comp．with $\psi \in$ evo $^{-}$ бíктац $\frac{\nu}{}$ ；9．16．3．habitat．
סíxтацрор（є̈тєрор），Ballota Pseudo－ dictamnus
9．16．3．Cretan：has nothing in common with true δ ．except the name：described：properties different．
Sıó $\sigma \alpha \theta$ os，carnation，Dianthus in－ odorus
6．1．1．in list of under－shrubs； 6．6．2．a cultivated under－shrub： a coronary plant：scentless； 6．6．11．grown from seed： woody；6．8．3．flowering time．
 кóv），4．8．11．，chestnut，Castanea vesca
1．12．1．taste of fruit；3．2． 3. evidence that it is really wild； 3．3．1．a mountain tree；3．3．8． doubt whether it has a flower； 3．4．2．time of budding；3．4．4． time of fruiting；3．5．5．winter－ buds；4．5．1．in list of northern trees；4．5．4．abundant on Mount Tmolus and Mysian Olympus；4．8．11．bark of root of $\lambda \omega$ oús（2）comp．to shell of chestnut．
סıó π тvpos，Diospyros Lotus
3．13．3．fruit of кє́paбos comp．
סó入 ι xos，calavance，Vigna sinensis
8．3．2．stem；8．11．1．seed does not keep．

 то ๕ ィкós），pole－reed，Arundo Donax
4．11．11．a kind of $\kappa \alpha ́ \lambda a \mu o s: ~ h a b i t ~$ and habltat．
Spaкóvтוov，edderwort，Dracunculus vulgaris
7．12．2．an inedible and poisonous kind of ápov；9．20．3．medicinal use：described．
Spumís，Drypis spinosa
1．10．6．spinous－leaved．
Spûs（1），oak，Quercus Robur
1．2．1．has galls（кךкís）；1．2． 7. bark；1．5．2．bark thick：bark fleshy；1．5．3．wood fleshy；1．5．5．

INDEX OF PLANTS

wood heavy because it contains mineral matter ; 1.6.1. core hard and close; 1.6.2. core called 'oak-black' : core large and conspicuous; 1.6.3. roots many and long; 1.6.4. roots fieshy: deep-rooting; 1. 8. 5. diseased formation (крaঠŋ́); 1. 9. 5. an evergreen specimen; 1. 10. 6. leaves notched: leaves with spinous projections; 1. 10. 7. attachment of leaves; 1. 11. 3. seed in a leathery shell; 2. 2. 3. propagation; 2. 2. 6. deteriorates from seed; 3.3.1. tree of mountain and plain; 3. 3. 3. evergreen in some places; 3.3.8. doubt whether it has a flower (β ри́ov) ; 3.4.2. time of budding; 3. 4. 4. time of fruiting; 3.5.1. periods of budding; etc.; 3.5.2 galls; 3. 5. 5. winter-buds; 3.6.1. quick growing; 3. 6. 5 . instance of a deep-rooting tree; 3.7.4-6. various galls; etc.; 3.8.2. four or five kinds, viz. $\dot{\eta} \mu \in \rho i s$ or $̇$ ̇̇т $\mu o ́ \delta \rho v s$, ai $\boldsymbol{\gamma}^{\prime} \lambda \omega \psi$, $\pi \lambda a \tau \dot{u} \phi \cup \lambda \lambda o s, \phi \eta \gamma o ́ s$, à $\lambda i \phi \lambda o t o s$ or ev̇v́́флocos (five recognised by inhabitants of Mt. Ida) ; 3.16.1. leaf growth and bark of $\pi \rho i ̂ \nu o s ~ c o m p . ; ~ 3 . ~ 16 . ~ 3 . ~ \phi \in \lambda \lambda o ́-~$ סpus $\delta \rho \hat{s}$ s and $\pi \rho i ̂ \nu o s ~ c o m p . ; ~$ 4. 2. 8. common in Thebaid; 4.5.1. in list of northern trees; 4.5.3. grows in Pontus; 4.14.10. infested by knips; 4. 15. 2. survives stripping of bark for some time ; 4. 15. 3. effect of stripping bark in winter; 5.1.2. time of cutting timber: reasons; 5.1.4. do.; 5. 3.1. core very close and heavy; 5.3.3. character of wood; 5. 4. 1. wood hard and heavy; 5.4.2. wood proof against decay; 5. 4. 3. wood does not decay if buried or soaked in water : rots in seawater: 5. 4. 8. effect of salt water on different parts; 5.5.1. wood hard to work; 5.6.1. wood contains mineral matter and so gives under weight: apt to split; 5. 7. 2. used for keel of triremes and for merchantmen to make
extra keel for hauling: does not glue well on to $\dot{\epsilon} \lambda a ́ \tau \eta$ or π еј́к η; 5. 7. 4. use of wood in housebuilding: 5.8.3. grows in Latium on Circeian promontory ${ }^{-}$ 5. 9. 1. wood makes good charcoal, but inferior to ápia and ко́мароs; 5. 9. 2. charcoal of this wood less esteemed by smiths than that of π еи́кך; 8. 2. 2. germination from acorn described; 9.9.5. leaf of zapai$\delta \rho u s$ comp.
$\delta \rho \hat{s} s$ (2) $\dot{\eta} \dot{\alpha} \gamma \rho i ́ a(=\phi \eta \gamma o ́ s ~ 3 . ~ 8 . ~ 2),$. Valonia oak, Quercus Aegilops

1. 5. 2. rough bark; 3. 8. 2. see under $\delta \rho \hat{v} \mathrm{~s}$:
 ϕ,otos 3. 8. 2.), sea-bark oak, Quercus Pseudo-Robur
1. 8. 2. one of the five kinds of oak (Mt. Ida) : = δ. $\dot{\eta}$ є $v \theta \dot{v} \phi \lambda o \iota o s ;$ 3. 8. 3-4. acorns; 3. 8. 5. habit and timber; 3. 8. 6. фа́бкоs (q.v.) grows on it; 3.8.7. timber; 5.1.2 time of cutting timber.
 3. 8. 2.), sea-bark oak, Quercus Pseudo-Robur
1. 8. 2, one of the five kinds of oak (Mt. Ida).
 $\dot{\eta} \mu \in \rho$'s (2)), true oak, Quercus Robur
1. 8. 2. one of the five kinds of oak (Mt. Ida).
$\delta \rho \hat{s}$ (6) $\dot{\eta} \pi \lambda a \tau u ́ \phi u \lambda \lambda o s$, broad-leaved oak (scrub oak), Quercus lanuginosa
1. 8. 2. one of the five kinds of oak (Mt. Ida) : fruit; 3. 8. 5. habit and timber; 3.8.6. galls: one of the four Macedonian oaks: has bitter acorns.
$\delta \rho v ิ s$ (7) (ϕ ûкоऽ), Cystoseira ericoides
4.6.2. peculiar to certain waters; 4. 6. 7-8. described.

סpv̂s (8) (тоутía), Sargassum vulgare
4.6.9. distinguished from $\delta \rho \hat{c}_{\mathrm{s}}(7)$; has a useful β áda ${ }^{2}$ os.
 Ebenum

1. 5. 4. wood heavy; 1. 5. 5. do. because of close grain; 1.6.1.

INDEX OF PLANTS

core hard and close ；4．4．6．de－ scribed：two kinds distinguished （see below）；5．8．1．wood very close and heavy，especially the core；5．3．2．colour of wood of тépuıvos comp．：wood of an unnamed tree（see App．（20）） comp．to a variegated $\dot{\epsilon}_{.} ; 5.4 .2$ ． wood proof against decay； 9．20．4．colour and medicinal use of wood．
éßévŋ（2），Diospyros melanoxylon
4．4．6．a kind with inferior wood． єìєтias，see кáda μ os ò єi入єтías
 μ édas
é入áa，olive，Olea Europea
1．3．1．a typical＇tree＇；1．5． 4. wood easily broken，not split： wood has many knots；1．5．5． wood easily broken，because tough and not of straight grain； 1．6．2．core not conspicuous； 1．6．3．roots both stout and thin；1．6．4．roots branching； etc．：shallow rooting；roots crooker；etc．；1．8．2．has less knots than ко́тıvos；1．8．6．liable to excrescences；etc．；1．9． 3. evergreen；1．10．1．leaves in－ verted in summer；1．10．2．colour of leaves；1．10．4．leaves nar－ row；1．10．7．leaf－stalk short； etc．；1．11．1．seed enveloped in flesh and stone；1．11．3．fleshy seed in a stone；1．11．4．effect on fruit of rich feeding；1．12．1． taste of fruit；1．13．2．flower consists of one＇leaf＇only partly divided；1．13．3．flower sur－ rounds fruit；etc；1．14．1．bears on last year＇s wood；1．14． 2. bears frult both on top and at side；1．14．4．a cultivated form of кóт七vos；2．1．2．propagation； 2．1．4．do．；2．2．5．seed produces wild form ；2．2．12．cannot be made out of кóтгдos by cultiva－ tion；2．3．1．sometimes clianges to кóтьvos spontaneously ；etc．； 2．5．3．grafting；2．5．4．propa－ gation；2．5．6．do．：trees should be planted far apart；2．5． 7. low ground suitable；2．7．2． needs much pruning：2．7．3．
requires pungent manure and much water；3．2．1．produces less fruit than кóтıvos but ripens more；3．12． 2 ．flower and fruit of $\theta \eta \lambda v к р a ́ v \epsilon \iota a$ comp．；3．17． 5. size of fruit of $\sigma v \kappa \hat{\eta} \dot{\eta}^{\prime}$ I δ aía comp．； 4．2．8．common in Thebaid； 4．2．9．character in Thebaid； 4．3．1．grows and bears well in Cyrenaica；4．4．1．（？）distribu－ tion in Asia；4．7．2．leaf and fruit of $\dot{\epsilon}^{\prime} \lambda \alpha \alpha^{\prime} \alpha$（3）comp．；4．7． 4. size of fruit of unnamed Arablan tree comp．（see App．（12b））； 4．13．1．shorter－lived than кóтเvos；4．13．2．story of a very old tree at Athens；4．13．5．ex－ planation of longevity；4．14．2． diseases；4．14．8．effect of rain on fruiting；4．14．9．specially apt to shed fruit at Taras； 4．14．10．other diseases：effect of hot winds；4．4．11．suffers much from special winds；4．16．1． improved by lopping branches； 5．3．3．character of wood；5．3．7． images made from the root； 5．4．2．wood proof against de－ cay；5．4．4．wood not eaten by teredon；5．5．2．core not obvious：wherefore wood not apt to＇draw＇；5．5．3．core not obvious but exists；5．6．1．wood apt to spiit under pressure； 5．9．6．wood good for kindling furnaces；5．9．7．wood not suit－ able for fire－sticks：reason； 5．9．8．articles made of the wood have been known to pro－ duce shoots：instances；6． 2.1. leaf of кvé ω pos ò $\lambda \in v \kappa o ́ s ~ c o m p . ; ~$ 6．2．4．will not grow more than a short distance from the sea； 8．2．8．abundant in Melos； 9．18．5．fruit of $\theta \eta \lambda$ v́yovov comp．
 vov comp．to undeveloped olive． ¿̇入áa（2），Olea cuspidata

4．4．11．Indlan（in hill－country only）．
＇$\in \lambda \hat{\lambda} a^{\prime}$＇$(3)(=\delta a ́ \phi \nu \eta(6)=$ App．（14））， white mangrove，Avicennia offi－ cinalis
4．7．1．grows in＇Red Sea＇；4．7．2． described．

INDEX OF PLANTS

є̇ $\lambda a \iota a \gamma v o s$ (properly é λ éayvos), goat willow, Salix Caprea
4. 10. 1-2. in list of plants of L. Copais: described.
є̀入áтๆ (1),silver-fir, Abies cephalonica

1. 2. 8. branches opposite ; 1.3.6. refuses cultivation; 1. 5. 1. erect and tall;1.5.2. bark in layers; 1. 5. 3. wood fibrous; 1. 5. 4. wood easily split; 1.5.5. do. because of straight grain ; 1.6.3. root single; 1.6.4. roots fibrous; 1.6.5 roots not branching; 1.8.1. many knots; 1.8.2. 'male' has more knots than 'female'; 1. 8. 3. branches at right angles; 1. 9. 1. growth chiefly upwards; 1.9.2. growth affected by position; 1. 9. 3. evergreen; 1.10.5. leaves described; 1. 12. 1. taste of fruit; 1. 12. 2. taste of sap; 1, 13.1. flower yellow; 2. 2. 2. propagated only by seed; 2.7.3. requires pungent manure; 3.1.2. grows only from seed; 3.3.1. a mountain tree; 3.3.3. evergreen; 3. 4. 5. time of flowering and fruiting; 3.5.1. period of budding; 3. 5. 3. do.; 3.5.5. winter-buds; 3.6.1. quick growing: even young tree fruits; 3.6.2.formation of buds; 3. 6. 4. not deep-rooting; 3. 6. 5. deep-rooting according to Arcadians; etc.; 3. 7. 1-2. dies if topped: formation of callus; 3.9.5. timber compared with $\pi \epsilon$ v́кŋ: etc.; 3.9.6. differences between 'male' and 'female': described; 3. 9. 7. further comparison with $\pi \epsilon$ úк η : produces $\lambda o \hat{v} \sigma \sigma o \nu ; 3.9 .8$. do.: core and callus; 4. 1. 1. likes shade; 4. 1. 2. grows tall in shade but has inferior timber; 4. 1. 3. grows high on mountains, but not tall; 4. 4. 1. (?) distribution in Asla; 4. 5. 1. in list of Northern trees; 4. 5. 3. does not grow in Pontus; 4. 15. 3. effects of stripping bark at various seasons; 4. 16. 1. topping fatal; 4. 16.1-2. not injured by cut-
ting for resin ; 4. 16. 4. said to perish if entirely deprived of its heart-wood; 5. 1. 1. time when timber is of best colour ; 5. 1. 2. time of cutting timber; 5.1.4. do.; 5. 1. 5-6. timber comp. with $\pi i \tau v s ; 5,1.7$. uses of timber; 5.1.8. growth and character; 5. 1. 9-10. methods of cleaving; 5.3.3. character of wood; 5.3.5. used for doors; 5. 4. 4. less eaten by teredon than $\pi \epsilon$ ย́к η; 5. 4. 6. wood, if barked just before time of budding, does not decay in water : story in proof of this; 5.5.1. knotty parts of wood hard to work; 5. 5. 2. core most obvious in $\dot{\epsilon} . ;$ 5. 6. 1. wood good for struts: behaviour under pressure ; 5. 6. 2. strongest of all woods; 5.7.1-2. use of wood in ship-building; 5.7.4-5. uses of wood in housebuilding and crafts: the most generally useful of woods : more so than $\pi \epsilon v ́ \kappa \eta$; 5. 9. 8. wood has a peculiar exudation; 9.1.2. sap gummy ; 9.2.1. production of resin ($\rho \eta{ }^{2} i \nu \eta$) ; 9.2.2. quality of resin.
є́ λ árך (2), silver-fir, Abies pectinata
1. 8. 9. grows to great size in Latium, but finer still in Corsica; 5.8.3. grows in hillcountry of Latium.
' '̇ג́тท' (3), 'sea-fir,' Cystoseira Abies-marina
4.6.2. peculiar to certain waters; 4. 6. 7-8. described.

4.5.1. in list of northern plants.
 marsh celery, Apium graveolens
1. 6. 3. comp. with σ éג $\iota \nu \nu$: medi cinal use.
è $\lambda \epsilon$ со́xpvбos, gold-flower, Helichry sum siculum
1. 8. 9. flowering time; 9.19. 3. alleged magic properties: described: medicinal use.
è $\lambda \epsilon \lambda i ́ \sigma \phi$ коs, salvia, Salvia triloba
1. 2. 4. a spineless wild undershrub; 6. 2. 5. like wild σ б́́коз: leaf described.

INDEX OF PLANTS

é $e_{e ́ v ı o v, ~ c a l a m i n t, ~ C a l a m i n t h a ~ i n-~}^{\text {－}}$ cana
2．1．3．propagation；6．1． 1 ．in list of under－shrubs；6．6．2．a cultivated under－shrub：a coron－ ary plant：the whole plant scented；6．6．3．woody：only one form ；6．7．2．said by some to have no fruit；6．7．4．roots described．
é $\lambda i \kappa \eta$ ，crack willow，Salix fragilis
3．13．7．Arcadian name for willow． ${ }^{\epsilon} \lambda \iota \xi$ ，ivy，Hedera Helix
3．18．7－8．described：does not develop into кıттós；3．18． 8. kinds；7．8．1．stem＇clasping．＇
 Hedera Helix
3．18．8．several kinds．
 ivy，Hedera Helix
3．18．8．several kinds．

3．18．8．described．
е̇ $\lambda \lambda \in \beta o p i \nu \eta$ ，rupture－wort，Herniaria glabra
9．10．2．seed mixed with è $\lambda \lambda$ é ¿ λ evkós to make an emetic．
̇̀ $\lambda \epsilon$＇́ßopos，hellebore，Helleborus cyclo－ phyllus and Veratrum album
4．5．1．seeks cold regions；6．2． 9 ． belongs to＇ferula－like＇plants： has a hollow stem；9．8．4．what part of root cut for medicinal use ：＇bulbous＇part a purge for dogs；9．8．6．poisonous effect on those who dig it；precau－ tions；9．9．2．medicinal use； 9．10．1－4．kinds distinguished （see below）；9．14．1．how long drug will keep；9．17．1－3．the drug can be made ineffectual by use：instances．
̇̇ $\lambda \lambda \epsilon$ éßopos ì $\lambda \in u \kappa o ́ s$, white hellebore， Veratrum album
9．10．1．has nothing in common with è．，ó μ é $\lambda a s$ except the name： divergent accounts given of the resemblances between the two plants：described；9．10．2．not poisonous to sheep；when in season ：distribution；9．10．3－4． very local：local varieties， Oitaîos，Hovтıós，＇Eגeáтns，Ma．

Oiraios the best：properties of ＇Eגєátทs；9．15．5．grows in Ar－ cadia；9．18．2．restores scorpion to life when it has been killed with $\sigma \kappa \circ \rho \pi i o s(3)$ ．
 9．14．4．），hellebore，Helleborus cyclophyllus
9．8．8．superstition as to gather－ ing；9．10．1．（see under $\dot{\epsilon}$ ．$\dot{\text { o }}$入evкós）：described；9．10． 2. poisonous to animals；9．10． 3 ． grows everywhere ：some local－ ities specified；9．10．4．called
 uses for purification and as charm；9．14．4．use of fruit in medicine；9．15．5．grows in Arcadia；9．16．6．leaf of éфінєероv comp．
é $\lambda \nu \mu \mathrm{os}$ ，Italian millet，Setaria italica
4．4．10．inflorescence of öpvら̌ov comp．；8．1．1．in list of＇summer crops＇distinct from cereals and pulses；8．11．1．seed keeps well．
Ëvөpvaкov，chervil，Scandix australis 7．7．1．a גáxavov．

7．8．1．stem＇clasping，＇but，for want of support，＇＇on the ground．＇
＇Е $\pi \tau \mu \in \nu i ́ \delta \epsilon \iota o s$, see бкì $\lambda \lambda \alpha \dot{\eta}^{\prime}$＇Е．
є̇тireтро⿱，stone－crop，Sedum ano－ petalum
7．7．4．flowerless．

2．4．2．seed soaked before sowing； 2．6．6．size of some dates comp．； 4．4．4．size of fruit of $\sigma v \kappa \hat{\eta} \hat{\eta}^{\prime} \mathrm{I} \nu \delta \iota \kappa \eta$ comp．；4．4．9．not found in India；6．5．3．leaf of a kind of трípodos comp．；8．1．1．in list of pulses；8．1．4．sown both early and late；8．2．1．germination described；8．2．3．comes up with several leaves：deep－root－ ing；8．2．5．flowering time； 8．2．6．time of maturing seed； 8．3．2．stem ；8．5．1．several kinds：three mentioned，кpıoi， ipoßıaiot，oi àvà μ ć σ ov：white forms sweetest；8．5．2．pod round：seeds comparatively few；8．5．4．attachment of seed；

INDEX OF PLANTS

8. 6. 5. rain hurtful when $\dot{\epsilon}$. is in flower: three kinds mentioned,
 comp. with other pulses: destroys weeds: suitable soil: grows well after ки́auos; 8. 9. 1. exhausts the soil most of pulses ; 8. 10. 1. diseases and pests; 8.10.5. infested by caterpillars; 8. 11.2. only seed which does not engender 'worms' etc.: seed keeps well; 8. 11. 6. do. especially in hill country.
є́єєíкŋ, heath, Erica arborea
1. 14. 2. bears fruit on the top; 9. 11. 11. $\lambda_{\iota} \beta$ 人̀штіs $\dot{\eta}$ ắкартоऽ grows where $\dot{\epsilon}$. is abundant.
épevédavóv, madder, Rubia tinctorum
1. 2. 4. a spineless wild undershrub; 7.9.3. roots red; 9.13.4. do.; 9.13.6. described: habit: habitat: medicinal use.
épıveós, wild fig, Ficus Carica
1. 8. 2. has more knots than $\sigma v \kappa \hat{\eta}$; 1. 14. 4. wild form of $\sigma u \kappa \hat{\eta}$; 2. 2. 12. cannot be made into $\sigma v \kappa \hat{\eta}$ by cultivation; 2. 3. 1. sometimes changes to $\sigma v \kappa \hat{\eta}$ spontaneously; 3.3.1. a mountain tree; 3. 4. 2. time of buding; 4. 2. 3. fruit of $\sigma v \kappa \hat{\eta} \dot{\eta}$ Kvipía comp.; 4. 13. 1. longerlived than $\sigma \cup \kappa \hat{\eta} ; 4$ 4. 14. 4. not liable to diseases of $\sigma v \kappa \hat{\eta} ; 5.6 .2$. wood tough and easy to bend: uses; 5.9.5. wood makes pungent smoke.
(δ év $\delta \rho \circ \nu$ rò) éptó $\phi o \rho \circ \nu$, cotton-plant, Gossypium arboreum
1. 4.8. (not named) clothes made from it; 4. 7. 7-8. described.
 thyme, Thymus Sibthorpii
2. 9. 4. evergreen; 2.1.3. propagation; 6. 1.1. in list of undershrubs; 6. 6. 2. a cultivated under-shrub: a coronary plant: the whole plant scented; 6. 6. 3. woody: only one form; 6. 7. 2. said by some to have no fruit: 6. 7. 4. roots described; 6.7. 5. growth peculiar: wild forms (see є̈ртv cultivation.

๕ $\rho \pi$ udios (2) ò äypıos, Attic thyme, Thymus atticus
6. 7. 2. produces seeds, unlike غ. (1) ; brought from Hymettus; sometimes quite like θ v́r os; 6. 7. 5. has various forms.

غ́ $\rho v ́ \sigma \iota \mu o \nu$, Sisymbrium polyceratium
8. 1. 4. sown later than cereals and pulses, a 'summer crop'; 8. 3. 1. leaf ; 8. 3. 3. flower; 8. 6. 1. rain not beneficial after sowing; 8. 7. 3. doubtfui if eaten green by animals: described.
 8. 3. 2.), wheat-rust, Puccinin graminis
8. 10. 1. a pest common to all crops (cereals, pulses etc.).
 $\dot{\eta} \eta \mu \in \rho о s)$, true oak, Quercus Robur
3. 8. 2. one of the flve kinds of oak (Mt. Ida) : = \quad i μ cpis: fruit; 3. 8. 7. one of the four Macedonian kinds: lias sweet acorns.
Ev̀ßoїкóv, see карv́a ท̀ Ev̀ßoїки́.
єv̀ $\zeta \omega \mu \circ \nu$, rocket, Eruca sativa

1. 6. 6. root woody ; 7. 1. 2-3. time of sowing and germination; 7. 2. 8. root described; 7.4.1. only one kind; 7. 4. 2. leaf of a kind of jaфavis comp.; 7. 5. 5. seed keeps well; 9.11.6. leaf of $\sigma \tau \rho v \chi \nu$ òs ó ravecós comp.
єv่ $\theta \dot{v} \phi \lambda^{\prime}$ ocos ($\delta \rho \hat{v} s$), see $\delta \rho \hat{v} s$ (4).
єن̇ம́vขроs, spindle-tree, Euonymus europaeus
[3. 18.13. described].
є́ $\phi \dot{\eta} \mu \in \rho \circ \nu$ ($=\sigma \pi \alpha ́ \lambda \alpha \dot{\xi}$ (?)), meadow saffron, Colchicum parnassicum
1. 16. 6. a poison which has an antidote : described: effects.

Цєєá, rice-wheat, Triticum dicoccum 2. 4. 1. seed, unless bruised, pro-
 comp.; 8.1.1. in list of cereals; 8. 1. 2. sown early ; 8. 8. 3. 广. and $\tau i \phi \eta$ only plants which can change into something quite different (cf. 2. 4. 1.) ; 8. 9. 2. exhausts the soil: reason: likes rich soil: ζ. and $\tau i \phi \eta$ the cereals most like tupós

INDEX OF PLANTS

suyıa，maple，Acer campestre
3．3．1．a mountain tree：name for mountain form of－$\sigma \phi \in ́ \nu \delta \alpha, \mu-$ vos；3．4．2．time of budding； 3．6．1．slow growing（？）； 3．11．1－2．described；5．1． 2. time of cutting timber；5．1．4． do．；5．3．3．character of wood ； 5．7．6．uses of wood．
$\zeta \omega \sigma \tau \eta \dot{\rho}$, see фи̂коs（1）ті́ $\pi \lambda a \tau v ́ \phi u \lambda \lambda o \nu$.
$\dot{\eta} \delta v ́ o \sigma \mu \circ \nu,(=\mu i \nu \theta \eta)$ ，green mint， Mentha viridis
7．7．1．a 入áха⿱亠乂ov．
$\dot{\eta} \lambda \iota о \tau \rho o ́ \pi о$ ，Heliotropium villosum
7．3．1．length of flowering season of $\ddot{\omega} \kappa \mu$ оу comp．；7．8．1．stem ＇on the ground＇；7．9．2．long in flower；7．10．5．evergreen； 7．15．1．flowering depends on the heavenly bodies．
їнєрís（1），gall－oak，Quercus infec－ toria
3．8．2．one of the five＇Idaean＇ kinds of oak：fruit；3．8． 4. habit and timber；3．8．6．galls． $\dot{n} \mu \in \lim ^{\prime}$（2），（so－called by some）（ $=$
 true oak，Quercus Robur
3．8．2．bears sweet fruit．
ض̀ $\mu є \rho о к а \lambda$ е́s，Martagon lily，Lilium Martagon
6．1．1．in list of under－shrubs（see note）；6．6．11．grown from seed：a coronary plant．
$\dot{\eta} \mu$ cóvov，milt－waste，Asplenium Ceterach
9．18．7．properties of leaf：de－ scribed：habitat：mules fond of it．
$\dot{\eta} \rho а к \lambda \epsilon i \alpha$（ $=\mu \dot{\eta} \kappa \omega \nu \dot{\eta}$＇Нраклєіа），Si－ lene venosa
9．15．5．an Arcadian drug．
ض̀раклєштєкخ̀（карv́a），see карv́a ض̀ ＇Нраклє $\omega \tau \iota \bar{\prime}{ }^{\prime}$.

7．7．1．a $\lambda \alpha ́ x$ avò：classed as ＇chicory－like from its leaves： 7．7．4．prolonged flowering． time；7．10．2．flowers in winter．
ท̉ $\dot{\gamma} \gamma \gamma \iota \circ$ ，eryngo，Eryngium cam－ pestre
6．1．3．has spines on the leaves： a wild under－shrub．
oaчia，Thapsia garganica
9．8．3．most powerful juice from root；9．8．5．superstition as tc method of cutting；9．9．1．root and juice used；9．9．5．medi－ cinal use ；9．9．6．described； 9．11．2．leaf of $\pi \alpha ́ \nu а к \in \varsigma \tau \dot{\prime}{ }^{\prime} А \sigma^{-}$ $\kappa \lambda \eta \pi i \epsilon \iota \rho$ comp．；9．20．3．medi－ cinal use：grows specially in Attica：properties；effect on foreign and native cattle．
ө́́pros，lupin，Lupinus alba
1．3．6．refuses cultivation ；1．7．3． seed roots through under－ growth；3．2．1．fruits better in wild state；4．7． 5 ．fruit of an unnamed Arabian tree（see App．（13））comp．；4．7．6．fruit of an unnamed Persian tree （see App．（13））comp．；4．7． 7. fruit of a tree of the island of Tylos（see App．（13））comp．； 8．1．3．sown early；8．2．1． germination described；8．5．2． seeds in compartments；8．5．4． attachment of seed；8．7． 3. not eaten green by any animal； 8．11．2．seed keeps well：like a wild plant；8．11．6．seed keeps specially well in hill country； 8．11．8．peculiarities about sowing seed．
 cury，Mercurialis perennis
9．18．5．properties ：described．
өך入vкра́vєia，cornel，Cornus san－ guinea
1．8．2．has less knots than крáveıa； 3．3．1．tree of mountain and plain；3．4．2．time of budding； 3．4．3．time of fruiting；3．4． 6 ． fruit inedible；3．12．1－2．de－ scribed；5．4．1．less fruitful than кра́vєıa．
$\theta_{\eta \lambda v ́ \pi \tau \epsilon \rho \iota s, ~ b r a c k e n, ~ P t e r i s ~ a q u i l i n a ~}^{a}$
9．18．8．properties：distinguished from $\pi \tau \in \rho_{i}$ ．
 $\sigma к о р \pi i o s ~(3) ~ 9 . ~ 18 . ~ 2.), ~ w o l f ' s ~$ bane，Aconitum Anthora
9．18．2．properties：habit：fatal to the scorpion．
$\theta \dot{\eta} \sigma$ cov，Corydalis densiflora
7．12．3．root bitter ：medicinal use．

INDEX OF PLANTS

Өpaúta入os，joint－fir，Ephedra campy－ lopoda
3．6．4．very shallow－rooting： many roots；4．1．3．likes shade
Opioakív（properly，but not always， distinguished from $\theta p \hat{i} \delta \alpha \xi$ ），wild lettuce，Lactuca scariola
1．10．7．time of leaf－growth： stem presently spinous；1．12．2． taste of sap；7．1．2－3．time of sowing and of germination； 7．3．2．seeds；7．4．1．several kinds；7．4．5．do．viz．入evкウ， $\pi \lambda a \tau$ ќкаv入os，$\sigma \tau \rho о \gamma y v \lambda$ óкаvдоs， ムакшขкќ：differences；7．5． 4. pests；7．6．2．wild form dis－ tinguished：medicinal use； 9．8．2．juice of stalk collected， with a piece of wool ；9．11．10． leaf of $\lambda \iota \beta a \nu \omega \tau i s \dot{\eta}$ a̋ка $\rho \pi$ оs comp． to θ ．ท̀ $\pi \iota \kappa \rho \alpha \alpha^{\text {．}}$
$\theta \rho i ̂ \delta a \xi$ ，lettuce，Lactuca sativa
7．2．4．grows again when stem is cut：effect on flavour；7．2．9． root described；7．5．3．bears transplanting．
$\theta \rho v a \lambda \lambda i ́ s$, Plantago crassifolia
7．11．12．flowers more or less in a ＇spike．＇
Opvov，（a grass），Imperata arundi－ nacea
4．11．12．foliage of some ка́дацоь comp．
Opvóopov（？）（＝$=\sigma \tau \rho v \chi \nu$ д̀s í μ avıкós 9．11．6．），thorn－apple，Datura Stramonium．
Ovia（ $\theta \dot{v} \epsilon \ell$ ），odorous cedar，Jumi－ perus foetidissima
1．9．3．evergreen；3．4．2．time of budding；3．4．6．time of fruit－ ing；4．1．3．grows on hill－tops．
（ $\theta \hat{v} \mu a$ ，？a madrepore
4．7．1．grows in Atlantlc：turns to stone）．
Өv́ $\mu \beta \rho a(\theta \dot{v} \mu \beta \rho \rho \nu)$ ，savory，Satureia Thymbra
1．3．1．（？）a typical under－shrub； 1．12．1．taste of fruit；1．12． 2. taste of sap；6．1．4．a spineless wild under－shrub；6．2．3．seed conspicuous：not，like θ v́mos， particular as to situation；6．7．5． a wild form of $\tilde{\varepsilon} \rho \pi v \lambda \lambda$ os comp．； 7．1．2－3．time of sowing and of germination；7．1．6．germina－
tion ；7．5．5．seed keeps well； 7．6．1．wild form distinguished．
өv́mov（1）（Oímos），Cretan thyme， Thymbra capitata
1．12．2．taste of sap；3．1．3．re－ produces itself without seed； 6．2．3．two forms，black and white：seed inconspicuous； 6．2．4．requires sea－breezes．
（＇\forall о́mov＇（2），？a madrepore
4．7．2．a marine plant which turns to stone：described）．
Qvov（ θ v́a），thyine－wood，Callitris quadrivalvis
5．3．7．described：character and use of wood；5．4．2 wood proof against decay．
iaбぃம́vך，bindweed，Convolvulus sepium
1．13．2．flower consists of one ＇leaf．＇
íкцך，？duckweed，Lemna minor
4．10．1－2．in list of plants of Lake Copais；4．10．4．requires further investigation
isia（1），oak－mistletoe，Loranthus europaeus
3．7．6．grows on oak and other trees；3．16．1．grows on π pivos．

 thistle，Atractylis gummifera
9．1．3．Cretan：produces a gum．
i乡ivך（gum（áка⿱Өiкخ）мабтiхך 6．4．9．， 9．1．2．）（ $=\tilde{\alpha} \kappa \alpha \nu \theta \alpha(9)=\tilde{\alpha} к \alpha \nu \circ$ ，
 pine－thistle，Atractylis gummi－ fera
6．4．3．a＇thistle－like＇plant； 6．4．4．time of growing；6． 49. described；9．1．2．produces a gum called $\mu a \sigma \tau i \chi \eta$ ．
iov（ $=i \omega \nu i ́ a=i o \nu$ тò $\lambda \epsilon u \kappa o ́ v$ ），gilli－ flower，Matthiola incana
1．9．4．evergreen；2．1．3．pro－ pagation；4．7．4．colour and scent of unnamed Arabian tree（see App．（12a））comp．； 6．1．1．in list of under－shrubs； 6．6．1．a cultivated under－ shrub：a coronary plant；sweet－ scented；6．6．5．sweetest－scented at Cyrene；6．6．11．grows from

INDEX OF PLANTS

seed；woody；6．8．5．position and climate important for frag－ rance：flowers very early in Egypt；6．8．6．on mountains blooms well，but has inferior scent；7．6．4．wild form quite distinct，alike only in leaf．
iov tò $\lambda \in v \kappa o ́ v ~(=\lambda \epsilon v \kappa o ́ i o \nu ~(1) ~=~ i \omega v i ́ a ~ \grave{~}$入єuкท＇），gilliflower，Matthiola in－ cana
3．18．13．flower of ev่ต́vขนos comp．；4．7．8．flower of an Arabian tree（see App．（15）） comp ；6．6．3．several colour forms；6．6．7．distinguished from i．tò μ é $\lambda a v$ ；6．8．1－2． flowering－time；6．8．5．plant lives three years at most：de－ generates with age：7．8． 3. leaves＇on the stem．＇
 violet，Viola odorata
1．13．2．has a＇twofold＇flower； 6．6．3．only one form ；6．6．7． distinguished from i．тò 入evкóv； 6．8．1－2．a coronary plant： flowering time．
invov，？marestail，Hippuris vulgaris
4．10．1－2．in list of plants of Lake Copais；4．10．4．requires further Investigation．
imтоца́раөог（ $=\mu$ ауúdapıs），Prangos ferulacea
6．1．4．a spineless wild under－ shrub：belongs to＇ferula－like＇ plants．
$\iota \pi \pi \circ \sigma$ édıvov，Alexanders，Smyrnium Olusatrum
1．9．4．evergreen；2．2．1．propa－ gation；7．2．6．root of $\tau \in v ́ \tau \lambda \iota o \nu$ comp．；7．2．8．root；7．6． 3. comp．with é $\lambda \in \tau \sigma \sigma$ é $\lambda c \nu o \nu:$ medi－ cinal use；9，1．3．root produces a gum：which is like $\sigma \mu v \rho_{\nu}$ ； 9．1．4．propagated from a Sák $\rho v o v:$ a popular error about e．and $\sigma \mu v \dot{\rho} \nu \vee ; 9,15.1$ grows in Arcadia．
intoфає́s，see тi日v́rad入os．
imródews，spurge，Euphorbia acan－ thathamnos
6．5．1．In list of spinous plants which have leaves as well as spines；6．5．2．has no spines on the leaves．
ipıs，iris，Iris pallida，etc．
1．7．2．root fragrant；4．5． 2. grows best in Illyria on shores of Adriatic；6．8．3．a coronary plant：flowering time；7．13．1． leaves described；7．13． 2. flower－stem not the only stem： stem comp．With $\dot{a} \sigma \phi$ ódences $^{\text {：}}$ 9．7．3．in list of $\dot{\alpha} \rho \dot{\omega} \mu a \tau \alpha ; 9.7 .4$. only European apw μ ：best in Illyria：preparation；9．9． 2. perfume．
iбха⿱䒑䶹s，Andropogon Ischaemum
9．15．3．Thracian ：properties．
iбхás（＝ámıos（2）9．9．5．＝$\dot{\text { р́áфavos }}$ $\dot{\eta}$ opeía），spurge，Euphorbia Apios．
iтéa，willow，Salix spp．
1．4．2．llves near water；1．4． 3. ＇amphibious＇；1．5．1．crooked and low；1．5．4．wood light； 3．1．1．propagation ；3．1． 2. seems to have no fruit，yet re－ produces itself：instance；3．1．3． sheds its fruit unripened；3．3．1． tree of mountain and plain； 3．3．4．a question if it bears fruit； 3．4．2．time of budding；3．6．1． quick or slow grower？；3．13．7． described：kinds（see below）： called in Arcadia é λ íк η ；3．14． 4. leaf of ко入vтéa comp．；4．1． 1. likes wet ground；4．5．7．com－ mon in some Mediterranean regions；4．8．1．grows partially in water；4．10．1．in list of plants of Lake Copais；4．10． 6. grows both on land and in water；4．13．2．shorter－lived by water；4．16．2．grows again after being cut or blown down； 4．16．3．instance of a tree which survived the lopping of its branches；5．3．4．character of wood；5．7．7．uses of wood； 5．9．4．wood makes an evil smoke when burnt for charcoal iтéa ض̀ $\lambda \epsilon v \kappa \eta$ ，white willow，Salix alba
3．13．7．described．
ivéa ท̀ μ édaıva，Salix amplexicaulis
3．13．7．described．
¿фvov，spike－lavender，Lavandula Spica
6．6．11．a coronary plant：grown

INDEX OF PLANTS

from seed；6．8．3．flowering time．
世os，？cork－oak，Quercus Suber（G． from Plin．16．98．Hesych．has ¿ $\psi \circ s=\kappa \iota \sigma \sigma o ́ s)$
3．4．2．time of budding．
$i \omega \nu i a$（ $=i$ iov q．v．$=i \omega \nu i \alpha \dot{\eta} \lambda \epsilon v \kappa \dot{\eta}=$
 gilliflower，Matthiola incana．
 gilliflower，Matthiola incana．
 vlolet，Viola odorata．

ка́ктоs（1），cardoon，Cynara Cardun－ culus
6．4． $10-11$. a＇thistle－like＂ plant：described：peculiar to Sicily．
ка́ктоs（2），artichoke，Cynara Scoly－ mus
6．4．11．has erect＇stalk＇called $\pi \tau \epsilon ́ \rho \nu \iota \xi:$ described；edible；base of receptacle called $\sigma \kappa \alpha \lambda i ́ a s$.
ка́лацоs，reed
1．5．2．bark fibrous：bark in one layer；1．5．3．stem jointed； 1．6．2 core membranous；1．6．7． root jointed；1．6．10．roots large and numerous；1．8．3．joints regular；1．8．5．joints analogous to＇knots＇；1．9．4．evergreen ； 1．10．5．leaves end in a point； further described； 1.10 .9 ．leaves made of fibre：leaf－stalk made of fibre；2．2．1．（a kind of） propagation；4．8．1．in list of т̀̀ лохцผ́бך；4．8．7．кv́aцos ò Aipúntıos comp．；4．8．8．thick－ ness of root of кúamos ò Aiyv́t－ тıos comp．；4．9．1．class of rivers in which κ ．grows；4．9．3．has ＇side－growths＇；4．10．1．in list of plants of Lake Copais；4．10．6． grows both on land and in water；4．10．7．effect of drought； 4．11．1．distinguished from κ ． $\dot{\text { ó av̉ } \lambda \eta \tau i k o ́ s ~(s e e ~ b e l o w): ~ a ~ s t o u t ~}$ and a slender form（o xapaкías and is $\pi \lambda$ о́ксцоя）（see below）； 4．11．10－13．other forms；6．2． 8. setting of leaves of ν áp $\eta \xi \xi$ and уарөпкіа сотр．；9．16．1．ঠіктанрор kept є́v ка入á μ

 $=\kappa$ ．$\stackrel{\text { o }}{ }$ रapaкías $=$ §óva ξ ，pole－ reed，Arundo Donax
4．10． 1 ．in list of plants of Lake Copais；4．10．6．grows only in water；4．11．1．distinguished from the ordinary form of k ；； 4．11．2．not true that it takes nine years to grow；4．11． 3. conditions of growth；4．11． 4. described by contrast with other ка́лацоь；4．11．4－7．manufac－ ture of the mouthpieces of pipes；4．11．8－9．distribution in region of Lake Copais．
кáлaرos ò єìєєías，Ammophila arun－ dinacea
4．11．13．the＇male kind＇of κ ． èmíyєios，so called hy some．
κ ќланоs（éníyєtos），bush－grass，Cala－ mogrostis Epigeios
4．11．13．described ：growth comp． to ã $\gamma \rho \omega \sigma \pi \iota$ ．
 Calamus
4．8．3．grows in a Syrian lake； 9．7．1．habitat（east of Lebanon）： described：fragrance；9．7．3．in list of $\dot{\alpha} \rho \dot{\mu} \mu a \tau \alpha$ ．
ка́ланоs ò＇I＇Lठıкós，bamboo，Bambusa arundinacea
4．11．13．described．
ка́ламоя ó＇I ν ঠ́cós（＇male＇），Male bamboo，Dendrocalamus strictus
4．11．13．distinguished as solid．

 $=\kappa . \dot{\text { о }}$ харакias $=$ бóva ξ ），pole－ reed，Arundo Donax
4．11．12．colour．
ка́лацоs ó тлóксцоs，spear－grass， Phragmites communis
4．11．1．pliant reed；compared with к．ó xapakias：grows on floating islands of Lake Copais． ка́入аноs ó бvpıуүіаs（ $=\kappa$ ．ò av̉ $\lambda \eta \tau \iota \kappa$ ós
 $=\kappa$ ．̀ харакías $=$ бóva ξ ），pole－ reed，Arundo Donax
4．11． 10 described．

 бupı γ үías $=\kappa$ ．̀̀ χ аракías $=$ бó－ $\nu a \xi$ ），pole－reed，Arundo Donax
4．11．11．described．

INDEX OF PLANTS

 etc.), pole-reed, Arundo Donax
4. 11. 1. stout form: described: grows in reed-beds of Lake Copais.
ка́入а ${ }^{\alpha}$ оs (other kinds)
4. 11. 10 . briefly described. ка́ттарıs, сарег, Capparis spinosa
1.3.6. refuses cultivation; 3.2.1. fruits better in wild state; 4. 2. 6. fruit of β á $\lambda a \nu o s$ comp.; 6.1.3. has spines on the shoots; 6. 4. 1. has spines on leaves as well as on stem; 6. 5. 2. described; 7. 8. 1. stem 'on the ground ; 7. 10. 1. grows and flowers entirely in summer.
$\kappa а ́ \rho \delta a \mu о \nu$, cress, Lepidium sativum

1. 12. 13. taste of fruit; 7.1.2-3. time of sowing and germination; 7. 1. 6. germination; 7.4.1. only one kind; 7.5.5. seed keeps well.
$\kappa \alpha \rho \delta a ́ \mu \omega \mu о \nu$, cardamom, Elettaria Cardamomum
1. 7. 2. an ${ }_{\alpha} \rho \omega \mu \alpha$, Median or Indian; 9. 7. 3. in list of áp $\dot{\omega} \mu a \tau a$. карúa (fruit кápvov), hazel, Corylus avellana
1. 12. 13. taste of fruit; 3.2. 3. evidence that it is really wild; 3. 3. 1. a mountain tree; 3.4.2. time of budding; 3. 4. 4. time of fruiting; 4.5. 4. abundant on Tmolus and Mysian Olympus; 8. 2. 2. germination described.
 tanea vesca var. (improved form)
1.11.3. seed in a leathery shell. 4. 5. 4. common in Euboea and Magnesia; 5. 4. 2. wood proof against decay; 5. 4. 4. wood does not decay in water (?) 5. 6. 1. wood makes a noise when about to split: instance; 5.7.7. uses of wood: does not rapidly decay; 5.9.2. charcoal of this wood used in iron-mines.
 (fruit kúpvov), fllbert, Corylus avellana vars.
1. 3. 3. effect of not pruning; 1.10. 6. leaves notched; 1.11.1. seed immediately withtu enve-
lope; 1.11.3. seed in a woody shell; 3.3.8. doubt whether it has a flower (iovios) ; 3. 5. 5-6. catkins; 3. 6. 2. formation of buds; 3.6.5. deep-rooting according to Arcadians: etc.; 3. 7. 3. catkins; 3. 15. 1-2. described: kinds.
 regia
3.6.2. formation of buds; 3.14.4. leaf of $\sigma \eta \mu v ́ \delta \alpha$ comp.
кабia, cassia, Cinnamoтит iners
1. 4. 14. in list of oriental aromatic plants; 9. 4. 2. Arabian; 9. 5. 1. and 3. described: method of collection ; 9. 7. 2. Arabian ; 9. 7. 3. in list of áp(i)$\mu \alpha \tau \alpha$.
каvкалís, Tordylium apulum
1. 7. 8. а $\lambda a ́ \chi a \nu o v . ~$

кéरxpos, millet, Panicum miliaceum

1. 11. 2. seeds in a husk ; 4. 4. 10. inflorescence of "opv弓ov comp.; 4.8.10. fruit of λ arós (2) comp.; 4. 10. 3. size of seeds of $\sigma i \delta \eta$ comp.; 8.1.1. in list of 'summer crops' distinct from cereals and pulses; 8.1.4. sown later than cereals and pulses; 8.2.6. time of maturing seed; 8. 3. 2. stem ; 8. 3. 3. flower; 8. 3. 4. seed abundant; 8. 7. 3. needs little water: comp. with μ é λ vos; 8. 9. 3. reasons why it might have been expected to exhaust the soil: contrasted with pulses as to 'lightness'; 8.11.1. seed keeps well; 8.11.6. do. specially in hill-country; 9.18. 6. fruit of кратає $\gamma \dot{\omega} \nu$ comp. $\kappa \epsilon \delta$ is, juniper, Juniperus communis
1. 9.4. evergreen : a dwarf kind (cf. кédoos 3. 13. 7.); 1. 10. 6. leaf spinous at tip; 1. 12. 1. taste of fruit.
 prickly cedar, Juniperus Oxycedrus
1.5.3. wood not fleshy ; 1.10. 6. leaf spinous at tip; 3. 6. 5. shallow-rooting according to Arcadians; 3.10.2. μ inos comp.; 3.12.3-4. described: two kinds,

INDEX OF PLANTS

кıкй) (see кé δ pos (3)); distinguished from גогкеvөоs; 3. 13. 7. has a dwarf form (? $\kappa \in \delta \rho i s, c f$. 1.9.4.); 4.3.3. size of fruit of талíovpos \dot{o} 'Aıyúmтios comp.; 4.5.2 grows on Thracian and Phrygian mountains; 4. 16. 1. some think topping fatal; 5.3.7. images made from the wood; 5.4.2. wood proof against decay; 5.9.8. wood exudes moisture : hence 'sweating' statues; 9. 1. 2. sap gummy.

кéסpos (2), Syrian cedar, Juniperus excelsa
3.2.6. characteristic of mountains of Cilicia and Syria; 4. 5. 5. grows in Syria and is used for ships; 5. 7. 1-2. use of wood in ship-building; 5. 7. 4. use of wood in house-building; 5.8.1. remarkably fine in some regions e.g. Syria.
 Phoenlcian cedar, Juniperus phoenicea
3.12.3. see кéठроя (1); 9. 2. 3. said to be burnt for pitch in Syria.
кéठpos (4) $\dot{\eta}$ Avкín
3. 12. 3. a kind so distinguished by some from кédроs (3).
кєขтaúpò, centaury, Centaurea salonitana

1. 12. 13. taste of fruit; 3. 3. 6. only bears fruit in hill country; 4.5.1. seeks cold regions; 7.9.5. leaves and stems bitter, yet wholesome; 9.1.1. juice bloodred; 9.11. 6 . juice mixed with
 potion.
кеvraupis, feverwort, Erythraea Cen. taurium
1. 8. 7. superstition as to gathering; 9. 14. 1. how long drug will keep.
$\kappa \in \nu \tau \rho о \mu \nu \rho \rho i \nu \eta$ ($=\mu \nu \alpha ́ \kappa \alpha \nu \theta$ оs), butcher's broom, Ruscus aculeatus
1. 17. 4. bears fruit on its leaves.
$\kappa \in \rho a ̈ i ̈ s ~(=\dot{\rho a ́ \phi \alpha \nu o s ~ \dot{~} \dot{a} \text { àpía 9. 15. 5.), }}$ charlock, Raphanus Raphanistrum.
кépaбоs (= лака́p $)$, bird-cherry, Prunus avium
3.13.1-3. described 4.15.1.bark
can be stripped; 9. 1. 2. sap gummy.
кєраúviov, 'thunder-truffle,' Tuber aestivum
1. 6. 5. has no roots.

кєркis (1), Judas-tree, Cercis Siliquastrum

1. 11. 2. seeds in a pod.
$\kappa \in \rho к i s(2)$. aspen, Populus tremula
1. 14. 3. described.
 carob, Ceratonia Siliqua
1.11.2. seeds in a pod; 1. 13. 2. bears on stem and branches; 4. 2. 4. described.
$\kappa \eta \dot{\lambda} \lambda a \sigma \tau \rho \circ \mathrm{~s}$ (кท́入aनтро⿱), holly, Ilex Aquifolium
1.3.6. refuses cultivation; 1.9.3. evergreen; 3.3.1. tree of mountain and plain; 3.3.3. evergreen; 3.4.5-6. time of fruiting; said to lose fruit in winter; 4. 1. 3. grows in very cold positions; 5.6.2. colour of wood of фıлv́кท comp.; 5. 7. 7. wood used for walking-sticks.
$\kappa \iota \nu a ́ \mu \omega \mu о \nu$, cinnamon, Cinnamomum Cassia
4.4.14. in list of oriental aromatic plants; 9.4.2. Arabian; 9.5.1-2. two kinds, white and black, described: habitat: method of collection: a story; 9.7.2. in list of $\dot{\alpha} \rho \omega \dot{\mu} \alpha \tau \alpha$.
кíaOos, rock-rose, Cistus spp.
1. 2. 4. a spineless wild undershrub; 6. 2. 2. described : two forms (see below).
кíθ os ò ä $\rho \rho \eta \nu$, Cistus villosus
1. 2. 3. described.

кíбөos ó $\theta \hat{\eta} \lambda v s$. Cistus salvifolius
6.2.1. described.

кıттós, ivy, Hedera Helix

1. 3. 2. a shrub which becomes tree-like; 1. 9. 4. evergreen; 1. 10. 1. leaves change shape with age of plant; 1.10 .7 . long leaf-stalk; 1. 13. 1. flower 'downy'; 1. 13. 4. attachment of flower; 3.4.6. time of fruiting: 3. 10. 5. fruit and leaf of фìvpa comp.; 3. 14. 2. leaf of керкі́s (2) comp.; 3. 18. 6. kinds distinguished (see below); 3. 18. 7. distinguished from

INDEX OF PLANTS

Є̈ $\lambda \iota \xi$ ；3．18．9－10．described： habit etc．；3．18．11．cluster of berrles of $\sigma \mu \hat{i} \lambda a \xi$（2）comp．：de－ scribed；4．4．1．distribution in Asia；4．16．5．overgrowth of κ ． dangerous to trees；5．3． 4. character of wood；5．9．6．wood said to make best fire－sticks； 5．9．7．the stationary fire－stick should be made of κ ．or $\dot{\alpha} \theta \rho \alpha-$ $\gamma \epsilon ́ \nu \eta ; 9,13.6$ ．leaf of $\epsilon \rho \in v \theta \in \delta \alpha \nu o ́ \nu$ comp．
кıттòs ó é $\lambda \iota \xi$ ，see é $\lambda \iota \xi$
кıт兀òs ò 入єvкós，white－berried ivy， Hedera Helix
3．18．6．described ；several kinds： one $=\kappa о \rho v \mu \beta i ́ a s$, one $=\kappa$. o＇A＇A $\alpha \rho-$ $\nu \iota$ кós；3．18．9．roots；3．18． 10. fruit $; 9.18 .5$ ．properties of fruit． кıттòs ó μ é $\boldsymbol{\lambda}$ ， ，black－berried ivy， Hedera Helix
3．18．6．several kinds；3．18． 9. roots ；3．18．10．fruit．
кıХо́pıò（кıХо́рŋ），chicory，Cichorium Intybus
1．10．7．attachment of leaves； 7．7．1．a $\lambda \alpha ́ x a \nu o \nu$ ；a class of piants called＇chicory－like＇from their leaves；7．7．3．season of growing；7．8．3．leaves＇on the ground＇and＇on the stem＇；etc．； 7．9．2．long in flower；7．10． 3 ． flowers borne in succession； 7．11．3．root，inflorescence and seed－vessel described；9．12． 4.
 ä $\gamma \mathrm{p}$ เov；9．16．4．leaf of áкóvıtov comp．
$\kappa \lambda \eta \dot{\eta} \theta \rho a$ ，alder，Alnus glutinosa
1．4．3．＇amphibious＇；3．3．1．tree of mountain and plain；3．3． 6. does not always fruit；3．4． 2. time of budding；3．4．4．time of fruiting；3．6．1．slow grow－ ing（？）；3．6．5．roots slender and＇plain，＇according to Area dians；3．14．3．described； 3．15．1．leaf of кари́a $\dot{\eta}$＇Нраклєш－ тıкй comp．；4．8．1．grows par－ tially in water．
$\kappa \lambda \iota \nu$ о́трохоs（？），Acer Pseudo－platanus
3．11．1．a form of $\sigma \phi \in ́ \nu \delta a \mu \nu o s$. $\kappa \lambda ข ́ \mu \epsilon \nu o \nu$ ，honeysuckle，Lonicera etrusca
9．8．5．superstition as to time of
cutting；9．18．6－7．propertles of fruit．
кขéwзò（berry Kขí̊ıos ко́ккоя）， Daphne Gnidium
6．1．4．a spineless wild under－ shrub；9．20．2．berry de－ scribed；medicinal use and pro－ perties．

6．2．2．distinguished from κ ，i μ énas；use of root．
к ν é ω роs ó μ é $\lambda a s$, Thymelaea hirsuta
1．10．4．leaves fleshy；6．2．2．see к．ò лєико́s．
 $\theta \dot{\omega} \delta \eta s)$ ，safflower，Carthamustinc－ torius etc．（see below）
1．13．3．flowers attached above each seed；6．1．3．a wild under－ shrub：has spines on the leaves； 6．4．3．a＇thistle－like＇plant； 6．4．4．no side－growths；6．4．5． three forms distinguished and described，one cultivated（see below）；6．6，6．seed of pó⿱óov comp．
$\kappa \nu \eta ิ \kappa o s \dot{\eta}$ à $\gamma \rho i ́ a$, Carthamus leucocaulos
6．4．5．distinguished from κ ．$\dot{\eta}$ $\eta ँ \mu \in \rho o s$.
$\kappa \nu \hat{\eta} \kappa о$ ş $\dot{\eta}$ à $\gamma \mathrm{pi} a$（ėт́́pa），Cnicus bene－ dictus
6．4．5．described．
$\kappa \nu \eta ̂ \kappa o s \dot{\eta} \eta \eta \mu \in \rho o s$, Carthamus tinctorius
6．4．5．distinguished from wild kinds．

кӧї（ $=$ кочксо́фороу），doum－palm， Hyphaene thebaica
1．10．5．reedy leaves；2．6．10．a shrubby palm ：Ethiopian．
коккขүє́a，wig－tree，Rhus Cotinus
3．16．6．described．
кокку $\mu \eta \lambda$ е́a（fruit кокки́яŋлсу），plum－ tree，Prunus domestica
1．10． 10 ．fruit made of flesh and fibre；1．11．1．seed euveloped in flesh and stone；1．12．1．taste of fruit；1．13．1．flower＇leafy＇； 1．13．3．flower above fruit－case； 3．6．4．very shallow－rooting： few roots；3．6．5．deep－rooting according to Idaeans；etc．； 4．2．3．size of fruit of $\sigma v \kappa \hat{\eta} \dot{\eta}$ Kumpía comp．；4．2．5．fruit－stone of $\pi \in \rho \sigma$ éa comp．

INDEX OF PLANTS

 Cordia Myxa
4．2．10．described．
кодоьті́a（1）（кодочтє́a 3．17．2．：cf． 3．17．3．n．），Cytisus aeolicus
1．11．2．tree of Lipari islands： seeds in a pod；3．17．2．de－ scribed．
кодо七тía（2），Salix cinerea
3．17．3．Idaean ：described
ко入окv́vтŋ，gourd，Cucurbita maxima
1．11．4．seeds in a row：1．12． 2. taste of sap；1．13．3．flower attached above fruit：2．7． 5. use of dust；7．1．2－3．time of sowing and of germination； 7．1．6．germination；7．2．9．rcot described；7．4．1．several kinds； 7．5． 5 ．seed does not keep well．
кодขтє́a，bladder－senna，Colutea ar－ borescens
［3．14．4．described．］
 arbutus，Arbutus Unedo
1．5．2．bark readily drops off ； 1．9．3．evergreen；3．16．4．de－ scribed；3．16．6．leaf of кок－ куүє́a comp．；5．9．1．wood makes good charcoal．
$\kappa o ́ \mu \eta=\tau \rho \alpha \gamma о \pi \omega ́ \gamma \omega \nu$ 7．7．1．q．v．
ко́v兀らа，Inula spp．
6．1．4．a spineless wild under－ shrub；6．2．5．two kinds de－ scribed and compared（＇male＇ and＇female＇）（see below）； 7．10．1．grows and flowers entirely in summer．
ко́vv̧a خ̀ ä $\rho \rho \eta \nu$ ，Inula viscosa
6．2．5．
кóvvらૂ ท் $\theta \dot{\eta} \lambda є \iota a$ ，Inula graveolens
6．2． 5.
корía ν оу，coriander，Coriandrum sativum
1．11．2．seeds naked；7．1．2－3． time of sowing and germination； 7．1．6．germination；7．2． 8 ． root described；7．3．2．seeds described；7．4．1．only one kind；7．5．4．effect of hot weather；7．5．5．seed keeps well．
корvцвіая，see кıтто̀s ò 入єvкós．
ко́рхороs，blue pimpernel，Anagallis caerulea
7．7．2．a $\lambda \alpha ́ \chi a \nu o \nu: ~ p r o v e r b i a l ~ f o r ~$ bitterness
458

коршขóтоvs，hartshorn，Plantago Coronopus
7．8．3．leaves＇on the ground．＇ ко́бтоs，Saussurea Lappa
9．7．3．In list of á $\rho \dot{\omega} \mu a \tau \alpha$
ко́тıvos（？＝áypıé̀aıos），wild olive， Olea Oleaster
1．4．1．more fruitful than é $\begin{aligned} & \text { áa ；}\end{aligned}$ 1．8．1．many knots；1．8． 2 ． more knots than é $\lambda \alpha{ }^{\circ} \alpha$ ；1．8． 3. knots regular ：knots opposite ； 1．8．6．liable to excrescences； 1．14．4．wild form of $\grave{\epsilon} \lambda \alpha ́ a ; 2.2 .11$ ． cannot be made into è λ áa by cultivation ：effect of transplant－ ing and removing top－growth； 2．3．1．occasionally changes to è λ áa spontaneously；3．2． 1. produces more fruit than é̀áa but ripens less；3．6．2．knots opposite ；3．15．6．size of fruit of крázal $\frac{1}{}$ s comp．；4．4． 11. Indian olive between κ ．and ċ $\lambda \alpha ́ a ; 4.13$ ．1．longer－lived than é $\lambda u a^{\alpha} ; 4.13 .2$ ．story of a very old κ ．at Olympia；4．14． 12. suffers less than é入áa from special winds；5．2．4．story of a tree at Megara；5．3．3．char－ acter of wood；5．4．2．wood proof against decay；5．4． 4. wood not eaten by teredon； 5．7．ses of wood for car－ pen ${ }^{2}$ ols．
 Hypnaene thebaica
2．6．9．（not named）described； 4．2．7．described．
$\kappa \rho \alpha \dot{\nu \in \iota \alpha ~(f r u i t ~ к \rho \alpha ́ \nu \in o \nu ~ 4 . ~ 4 . ~ 5), ~}$ cornelian cherry，Corn：1s mas
1．6．1．core hard and close；1．8．2． has more knots than $\theta \eta \lambda v-$ крávєıa；3．2．1．fruit sweeter and better ripened in wild than in cultivated form；3．3．1．tree of mountain and plain ；3．4． 2. time of budding；3．4．3．time of fruiting；3．6．1．slow－grow－ ing（？）；3．12．1－2．described； 4．4．5．fruit of an unnamed Indian tree（see App．（6））comp．； 5．4．1．more fruitful than $\theta_{\eta \lambda v-}$ крáveta；5．6．4．wood very strong．

INDEX OF PLANTS

кратаíyovos，willow－weed，Polygo－ num Persicaria
9．18．6．properties：described． кра́тасуоs（＝крагаєүஸ́v 3．15．6．）， Crataegus Heldreichii
3．15．6．described：perhaps a wild form of $\mu \in \sigma \pi i \lambda \eta$ ．
крŋпís，ox－tongue，Helminthia echi－ oeides
7．8．3．leaves on the stalk． крı日＇，barley，Hordeum sativum

1．6 5．roots numerous；1．6．6． do．；1．11．5．each seed separ－ ately attached：2．2．9．said to turn sometimes into wheat； 2．4．1．wild κ ．turns into culti－ vated with cultivation ；4．4． 9. India has a corresponding cereal and a wild form of κ ．；8．1．1． in list of cereals；8．1．3．sown early，before $\pi v \rho o ́ s ; 8.1 .5-6$. time of germination in Hellas （and in Egypt？）；8．2．1．ger－ mination described；8．2． 3. single leaf first appears：roots described；8．2．6．time of ma－ turing seed；8．2．7．time of harvest in Hellas and in Egypt； 8．2．9．crop very early in island of Chalkia；8．3．2．stem ；8．4．1－2． comp．in detail with other cereals：kinds distinguished （see below）；8．6．1．conditions for sowing；8．6．4．suitable soil； 8．6．5－6．rain hurtful when κ ． is in flower：and when it is ripe； 8．7．1．said to change into aipa under certain conditions；8．7．5． in many places comes up again next year；etc．；8．8．2．favour－ able localities；8．8．3．aiyi $\lambda \omega \psi$（2） grows specially among κ ．；8．9．1． exhausts the soil，but less than $\pi v \rho \rho^{\prime}$ ：reason；8．10． 2. wheat－rust ；8．10．3．effects of weather；8．11．1．seed keeps less well than rupós； 8．11．3．grain stored without drying；8．11．7．at Babylon grain jumps on the threshing－ floor：reason；9．11．9．$\tau i \theta v^{-}$ $\mu a \lambda \lambda o s \dot{o} \mu v \rho \tau i r \eta s$ gathered at time of barley－harvest； 9.12.
 of κ ．

крıөaì ai ảypíaı（Indlan），Sorghum halepense
4．4．9．can be used for bread．
крıөaì ai＇AXı入入єîal，barley，Hordeum sativum var．
8．4．2．ear close to leaf ；8．10． 2. specially liable to wheat－rust．
крı日ai ai＇I $\nu \delta$ ঠкаиi，barley，Hordeum sativum var．
8 4．2．branching．
$\kappa \rho \iota \theta \omega \hat{\nu}$ रévvs трímŋvov，barley，Hor－ deum sativum var．
8．1．4．sown late．
крívov（＝крıгшvía，cf．入eípıov（1））， lily，Lilium candidum etc．
1．13．2．has a＇twofold＇flower； 2．2．1．propagation from exuda－ tion；etc．；4．8．6．an unnamed Egyptian plant（see App．（18）） comp．；4．8．9．petals of flower of $\lambda \omega \tau$ ós（2）comp．；6．6．3．several colour forms；6．6．8．do．；a coronary plant：described ：pro－ pagation；6．6．9．leaves of
 flowering time；9．1．4．cf． 2．2． 1.
крívo тò π орфирои̂v，Turk＇s cap lily， Lilium chalcedonicum
6．6．3．（see крívov）．
крьоі́，see є́рє́ $\beta \iota \nu \theta$ оя．
кро́коs，crocus，Crocus spp．etc．（see below）
1．6．6．root fleshy ；1．6．7．do． 1．6．11．large fleshy root； 7．7．1．leaf of $\tau \rho a \gamma o \pi \omega \dot{\sigma} \omega \nu$ comp．； 7．7．4．flowering time short： three kinds mentioned，ev゙vo $\mu \mathrm{os}$ ， $\lambda \in ч к о ́ s, ~ a ̉ к а \nu \theta \dot{\omega ́ \delta \eta ~(s e e ~ b e l o w) . ~}$ 7．9．4．root acorn－shaped；7．10 2. flowers in winter；7．13．1．leaves described；7．13．2．no stem except flower－stem．
 ทั $\mu \in \rho o s)$ ，safflower，Carthamus tinctorius
7．7．4．（вее кро́коя）．
кро́коs ó єv̋обцоs，saffron crocus， Crocus sativus
4．3．1．abundant in Cyrenaica； 6．6．5．sweetest－scented at Cyrene；6．6．10．a coronary plant：described：propagation 6．8．3．flowering time：a wild （scentless）and a cultivated

INDEX OF PLANTS

kind; 7. 7. 4. sce кро́коя; 9.7.3. in list of áp $\boldsymbol{\mu}^{\mu} \alpha \tau \alpha$.
кро́коs ò גєvкós, crocus, crocus cancellatus
7. 7. 4: 7. 10. 2. (зее кро́коя).

кроцขоүท́rєєov, onion, Allium Cepa var.
4. 6. 2. root of фи̂кos $i \grave{̀} \pi \lambda a \tau v ́$ comp.
кро́ $\mu v o \nu$, onion, Alliuт Cepa

1. 5. 2. 'bark' in layers; 1.6.7. root in scales; 1. 6. 9. no side roots; 1. 10. 7. attachment of leaves; 1.10.8. leaves hollow; 7. 1. 7. stem single; 7. 2. 1. propagation; 7.2.3. growth of $\gamma \dot{\eta} \theta v o \nu$ and $\pi \rho a ́ \sigma o \nu$ comp.: offsets specially numerous; 7.3.4. seed borne at top; 7. 4. 7-10. kinds distinguished, Zápólov,

 tion and special points of $\sigma \chi \iota \sigma$ -
 further local varieties; 7. 4. 12 formation of roots of oxópodov contrasted; 7.5.1. likes water; 7 5. 2. said to dislike rainwater; 7. 8. 2. stem smooth, not branched; 7. 9. 4.cf. 1.6.7; 7. 13. 4. grows in colonies because of offsets; $9,15.7$. root of $\mu \hat{\omega} \lambda \nu$ comp.
кро́ $\mu \nu 0 \nu$ тò $\sigma \chi \iota \sigma \tau o ́ v$, shallot, Allium Cepa var.
1. 4. 7-10. distinguished from other varieties of кро́иvov: cultivation.
$\kappa \rho o ́ \tau \omega \nu$, castor-oil plant, Ricinus communis
1.10. 1. leaves change shape with age of plant; 3.18.7. do.
ки́auos, bean, Vicia Faba
1. 13. 3. size of fruit of кє́paros comp.; 3.15. 3. fruit of τ '́p $\mu \iota \nu$ Өos comp.; 3.17. 6 size of berry of ă $\mu \pi \epsilon \lambda o s$ of fruit of $\lambda \omega$ ós (4) comp.; 7. 3. 1. length of flowering of $\ddot{\omega} \kappa \iota \mu о \nu$ comp.; 8. 1. 1. in list of pulses; 8. 1. 3-4, sown early, but can be sown late; 8. 1. 5. time of germination: very slow; 8.2.1. germination described; 8. 2. 3. comes up
with several leaves: roots and side-growths contrasted with other pulses; 8.2.5. flowering time; 8. 2. 6. time of maturing seed; 8.3.1. leaf; 8.3.2.stem; 8. 5. 1. more than one kind: white form sweetest; 8. 5. 4. attachment of seed; 8.6.1. rain not beneficial after sowing; 8. 6. 5. likes water when in flower, but not later; 8. 7. 2. makes ground fertile for 'єє́$\beta \iota \nu \theta$ os; 8. 8, 6 causes etc. of κ. becoming 'cookable' or 'uncookable'; 8.9.1. improves the soil ($c f .8$. 7. 2.) ; 8. 10. 5. infested by ives; 8. 11. 1. seed does not keep ; 8. 11. 3. seed keeps well in some localities.
кv́auos (ò Aǐyúntıos), Nelumbium speciosum
1. 8. 7-8 described; 4.8.9. stalk, leaves and growth of fruit of $\lambda \omega \tau$ ós (2) comp.
 otpoution (1)), quince, Cydonia vulgaris
1. 2. 5. produced from seed of $\sigma \tau \rho o v ́ \theta \iota o \nu ; 4.8 .11$. size of root of $\lambda \omega \tau$ ós (2) comp. to $\mu \tilde{\eta} \lambda o \nu$ кข $\delta \dot{\omega} \nu \iota \circ$.
$\kappa \nu \ddot{\epsilon} \xi$, ?
7.13. 9. (in defective sentence): belongs to $\tau \grave{\alpha} \beta 0 \lambda \beta \omega \dot{\sigma} \eta$.
кขкла́цıгоs, cyclamen, Cyclamen graecum
1. 9. 4. ront has 'bark'; 9. 9. 1. root and juice used; 9.9.3. use in medicine and as charm; 9. 18. 2. leaf of $\sigma к о \rho \pi i o s ~(3) ~$ comp.
кข́мıго⿱, cummin, Cuminum Cyminum
1.11. 2. seeds naked; 7.3.2-3. seeds described: popular belief about sowing; 7. 4. 1. several kinds; 8.3.5. seed very abundant and small; 8. 6. 1 rain not beneflcial after sowing; 8. 8. 5. a plant parasitic on root (see App. (25)); 8. 10. 1. diseases; 9. 8. 8. cf. 7. 3. 2-3.
кvขóppoঠov, dog-rose, Rosa canina
1. 4. 8. an unnamed lndian tree (cotton plant) comp.

INDEX OF PLANTS

кขขóбßaros, wild rose, Rosa sempervirens
3. 18. 4. described; 9.8.5. superstition as to method of cutting. $\kappa u ́ v \omega \psi$, rib-grass, Plantago lanceolata
7.7.3. time of growing: 7.11.2. (?) flowers in a spike.
кขта́ріттоs, cypress, Cupressus sempervirens

1. 5. 6. erect and tall; 1. 5. 3. wood not fleshy; 1.6.4. shallow rooting; 1. 6. 5. roots not branching; 1. 8. 2. 'male' has more knots than 'female'; 1.9.1. growth chiefly upwards; 1. 9. 3. evergreen; 1. 10. 4. leaves fleshy; 2. 2. 2. propagation; 2.2.6. seed of 'female' produces ' male' trees; 2.7.1. dislikes manure and water; 3.1.6. comes up spontaneously in Crete; 3.2.3. evidence that it is really wild (at least ' male' form) ; 3. 2. 6. characteristic of the Cretan Ida; 3. 12 4. bark of кé δ pos (1) comp.; 4.1.3. grows very high on Cretan mountains; 4. 3. 1. grows in Cyrenaica; 4. 5. 2. abounds in Crete, Lycia, Rhodes; 4. 18. 12. beer (β pvtós) made from κ. in Egypt; 4,16. 1. some think topping fatal; 5.3.7. oúo comp.: images made from the wood; 5. 4. 1. the 'male" form the more fruitful; 5. 4. 2. wood proof against decay: an instance: takes a fine polish; 5. 7. 4. use of wood in housebuilding.
кv́теєроу, Cyperus rotundus
1. 7.3. in list of $\dot{\alpha} \rho \dot{\omega} \mu a \tau \alpha$. ки́тєєроя, galingale, Cyperus longus
1.5.3..stem very smooth; 1.6.8. a stout root and also fibrous roots; 1.8.1. no knots; 1.10. 5. leaves end in a point; further described; 4.8.1. in list of $\tau \alpha$ $\lambda о \chi \mu \omega ́ \delta \eta ; 4.8 .12$. leaves of $\mu a \lambda \iota v a \theta a ́ \lambda \lambda \eta$ comp; 4.110. 1. in list of plants of Lake Copals; 4. 10. 5. described; 4. 10. 6. grows both on land and in water: grows on the floating islands of Lake Copais
4.11. 12. foliage of some ка́ $\lambda a \mu \nu \varepsilon$ comp.
кर́тเขos, see póa.
ки́тьбоs (1), laburnum, Laburnum vulgare
1.6.1. core hard and close; 4.4.6. habit of $\in ß \in ́ v \eta$ comp.; 5. 3. 1. wood of the core very close and heavy.
кúтьбos (2), tree-medick, Medicago arborea
2. 16. 5. dangerous to trees.

кю́иакоу, Ailanthus malabarica
9. 7. 2. an Arabian áp $\omega \mu \alpha$ (i.e. imported through Arabia : mixed with other á $\omega \dot{\mu} \mu \alpha \tau \alpha$: [name also given to fruit of a different plant].
кळ́vecov, hemlock, Conium maculatum
1.5.3. stem fleshy ; 6.2.9. belongs to 'ferula-like' plants: has a hollow stem; 7. 6. 4. leaf of òpeıoбé $\ell \iota \nu$ ov comp.; 9.8.3. nıost powerful juice from root; 9.15 .8 . localities; 9.16 . 8. medical experience ; 9. 16. 9. treatment in Keos; 9. 20. 1. тє́терь an antidote to k.
$\kappa \omega \nu o ́ \phi o \rho o s$, see [$\pi \epsilon च ́ \kappa \eta \eta \dot{\eta}] \kappa \omega \nu o ́ \phi o \rho o s$
$\lambda \alpha ́ \theta v \rho o s$, Lathyrus sativus
8. 3. 1. leaf; 8. 3. 2. stem; 8. 10. 5. infested by ' worms.'
$\lambda а к \alpha ́ \rho \eta ~(\lambda а ́ к а р а) ~(=к є ́ \rho \alpha \sigma о s ? ~ М а с е-~$ donian name), bird-cherry, Prunus avium
3. 3. 1. a tree of mountain and plain; 3. 6. 1. slow-growing (?).
$\lambda \alpha ́ \pi \alpha \theta$ os ($\lambda a ́ \pi \alpha \alpha 0 \nu$), monk's rhubarb, Rumex Patientia
1.6.6. root single; 7. 1. 2. time of sowing; 7. 2. 7-8. root described; 7. 4. 1. only one kind; 7.6.1. wild form distinguished (see below); 9. 11. 1. leaf of тávakes tò Xeıpóvecov comp.
 glomeratus
7. 6. 1. dlstinguished from λ. тò й $\mu є р о \nu ; 7.7 .2$ a а $\lambda \alpha_{\chi}{ }^{\nu} \nu \nu$; needs cooking.

INDEX OF PLANTS

 golden thistle，Scolymus his－ panicus
6．4．3．a thistle－like＂plant： leaves spinous．
גeipıov（1）（＝крívov q．v．）Madonna lily，Lilium candidum
3．13．6．flower of $\dot{\alpha} \kappa \tau \hat{\eta}$ has the heavy scent of $\lambda . ; 3$ ．18． 11. scent of flower of $\sigma \mu i \lambda a \xi$（2） comp．；9．16．6．（？）leaf of é $\eta_{\eta}^{\mu} \epsilon \rho \frac{\nu}{}$ comp．
גeípıov（2），narcissus，Narcissus spp．（see below）
1．13．2．flower consists of one ＇leaf＇only partly divided．
גeipıov，polyanthus narcissus，Nar－ cissus Tazetta
6．8．1．flowering time；7．13．4． grown from seed．
入еiрıò（тò ëтєрод 6．8．3．）（ $=\nu \alpha ́ \rho к \iota \sigma \sigma o s$ （1）6．6．9．），narcissus，Narcissus serotinus
6．6．9．a coronary plant：de－ scribed；flowering time．
$\lambda \epsilon ́ \mu \nu a$, water chickweed，Callitriche verna
4．10．1．in list of plants of Lake Copais．
入єvка́кадөa，milk－thistle，Silybum marianum
6．4．3．a＇thistle－like＇plant．
лєv́кŋ，abele，Populus alba
1．10．1．leaves change shape with age of tree：leaves inverted in summer；3．1．1．propaga－ tion；3．3．1．tree of moun－ tain and plain；3．4．2．time of budding；3．6．1．quick－ growing；3．14．2．described ； 3．18．7．cf．1．10．1．；4．1． 1. likes wet ground；4．2． 3 stem of $\sigma v \kappa \hat{\eta} \dot{\eta}$ Kvmpia comp．； 4．8．1．grows partially in water； 4．8．2．scarce on Nile；4．10． 2 ． flower of é $\lambda a i a y \nu o s ~ c o m p . ; ~$ 4．13．2．shorter－lived by water； 4．16．3．instance of a tree which grew again after falling down；5．9．4．wood makes an evil smoke when burnt for char－ coal．
入evкóion（1）（＝iov тò $\lambda \epsilon u \kappa o ́ v=i \omega v i a ~$ $\dot{\eta}$ 入evкท́），gilliflower，Matthiola incana

גevkóiov（2），snowdrop，Galanthus nivalis
7．13．9．（in defective sentence） belongs to $\tau \dot{\alpha} \beta \circ \lambda \beta \omega \dot{\delta} \eta$ ．
$\lambda_{\iota} \beta{ }^{\rho} \omega \omega \tau i s$
9.9 5．medicinal use；9．11．10－11． two kinds（see below）．
$\lambda \iota \beta \alpha \nu \omega \tau i s \dot{\eta}$ äкартоs，Lactuca graeca
9．11．10－11．described ：medi－ cinal use ：habitat．
 9．11．10．），Lecokia cretica
9．11．10．described：medicinal use ：habitat：prevents moth in clothes．
$\lambda \iota \beta a \nu \omega \tau o ́ s$, （gum $\lambda_{i} \beta \alpha \nu o s$, frankin－
 etc．），frankincense－tree，Bos－ wellia Carteri
4．4．14．In list of oriental á $\rho \dot{\omega} \mu \alpha \tau \alpha$ ； 9．1．6．time of tapping；9．4．1． collection of gum；9．4． 2. Arabian：described：habitat； 9．4．3．another account；9．4．4－10． accounts of travellers；9．11．3 scent of тávaкes тò＇ H ра́клєєор comp．；9．11．10．scent of root of $\lambda i \beta a \nu \omega \tau i s \dot{\eta}$ ка́рлєцоs comp．； 9．20．1．an antidote to $\kappa \omega ́ \nu \in \epsilon \nu$.
λ ívov，flax，Linum usitatissimum
3．18．3．seeds oily；8．7．1．said to change into aipa．
入ívov π úpı $\nu 0 \nu$
9．18．6．growth of kparaíyovos comp．
גıго́ттартоу，Spanish broom，Spar－ tium junceum
1．5．2．bark in layers．
$\lambda v \chi \nu i s$, rose－campion，Lychnis coron－ aria
6．8．3．a coronary plant ：flower－ ing time．
（ $\lambda \omega \tau$ ós）
7．15．3．many plants called by this name which have nothing in common but the name．
$\lambda \omega$ rós（1），nettle－tree，Celtis aus－ tralis
1．5．3．wood not fleshy ；1．6． 1. core hard and close；1．8． 2. few knots ；4．2．5．colour of wood of $\pi \epsilon \rho \sigma$ éa comp．；4．2． 9. wood of olive of Thebaid comp．： 4．2．12．wood of an unnamed

INDEX OF PLANTS

comp．；5．3．1．wood very close and lieavy ；5．3．7．images made from the wood；5．4． 2. wood proof against decay： turns black when old；5．5． 4. core not obvious but exists； 5．5．6．treatment of core for making door－hinges；5．8． 1 ． grows in some places exception－ ally fine．
$\lambda \omega \tau$ ós（2）（aquatic）（root kópoıov）， Nile water－lily，Nymphaea stel－ lata
4．8．9－11．described．
$\lambda \omega$ тós（3）（herb），trefoil，Trifolium fragiferum
7．8．3．leaves＇on the stem＇； 7．13．5．seed sometimes takes two years to germinate．
$\lambda \omega \tau$ о́s（4）（Libyan tree），Zizyphus Lotus
4 3．1．common in Libya；4．3．1－2． described；4．3．4．further de－ scribed．
$\lambda \omega \tau$ о́s（5）（aromatic）（ $=\mu \in \lambda i \lambda \omega \tau o s)$, Trigonella graeca
9．7．3．in list of $\dot{\alpha} \rho \omega \mu \alpha \tau \alpha$ ．
$\mu a \gamma v ́ \delta a \rho l s$（ $=i \pi \pi о \mu a ́ \rho a \theta o \nu)$ ，Prangos ferulacea
1．6．12．root most characteristic part；6．3．7．distinct from бí入фор：described：distribu－ tion．
［6．3．4．name also given to seed of $\sigma i \lambda \phi(0 \nu]$ ］．
$\mu a \delta \omega \nu a ́ i s$（ $=\nu v \mu \phi a i a \operatorname{9.13.1}$ ．），yellow water－lily．Nuphar luteum
цàáхך（1），mallow，Lavatera ar－ borea
1．3．2．a herb which becomes tree－like under cultivation； 1．9．2．do．；4．15．1．outer bark can be stripped；9．18．1．leaf fruit and taste of stem of $\dot{a} \lambda \theta a i a$ comp．
щàáxŋ（2），cheese－fiower，Malva silvestris
7．7．2．a $\lambda \alpha ́ \chi \alpha \nu o \nu ; ~ n e e d s ~ c o o k i n g ; ~$ 7．8．1．stem＇on the ground＇
$\mu a \lambda \alpha ́ \chi \eta$（3）$\dot{\eta} \alpha \dot{\gamma p} i a$（ $=\dot{\alpha} \lambda \theta a i ́ a ~ 9.15 .5$ ．）， marsh－mallow，Althaea offici－ nalis
$\mu a \lambda \iota v a \theta \dot{\alpha} \lambda \lambda \eta$（ $=\mu \nu \alpha ́ \sigma \iota \nu$ ），Cyperus esculentus
4．8．12．described．
$\mu a \nu \delta \rho a \gamma o ́ \rho a s(1)$, mandrake，Mandra－ gora officinarum
9．8．8．superstition as to gather－ ing；9．9．1．root and juice used：medicinal use of leaf and root．
$\mu a \nu \delta \alpha \gamma_{0} \rho a s$（2），？deadly night． shade，Atropa Belladonna
6．2．9．belongs to＇ferula－like＇ plants：has hollow stem：fruit described．
Mápa日ov，fennel，Foeniculum vulgare
1．11．2．seeds naked；1．12． 2. taste of sap；4．6．3．фर̂кos rò т ρ со́́фил入о ν comp．；6．1．4．a spine－ less wild under－shrub：belongs to＇ferula－like＇plants；6．2．9． do．：has a fibrous stem；7．3． 2. seeds described；9．9．6．leaf of θ a ía comp．
ма́бтєтор，see бі́入фьор
 4． 12 1．），bog－rush，Schoenus nigricans
$\mu е \lambda \alpha ́ \mu \pi v \rho o \nu$（ $\mu \in \lambda a ́ \mu \pi v \rho o s$ ），Neslia paniculata
8．4．6．infests mupòs ò Zike入ós： contrasted with aifa；8．8． 3. （ $\mu \in \lambda \alpha ́ \mu \pi v \rho o s ~ o ̀ ~ H o v \tau ı к o ́ s), ~ s p e c i-~$ ally affects crops of $\pi v \rho o ́ s$.
мелía，manna－ash，Fraxinus Ornus
3．3．1．tree of mountain and plain；3．4．4．time of fruiting； 3．6．1．slow growing（？）；3．6．5． roots numerous matted and run deep，according to Arca－ dians；3．11．3－4．described： two kinds，see β ouré̀ıos；3．17．1． leaf of фe入入ós comp．；4．5． 3. grows in Pontus；4．8． 2. common on Nile；5．1．2．time of cutting timber；5．6．4．wood ＇moist＇：used for elastic bed－ steads；5．7．3．wood used for bent－wood work：use in ship－ building；5．7．8．uses of wood for carpenter＇s tools．
$\mu \in \lambda i ́ \lambda \omega \tau o s(=\lambda \omega \tau o ́ s(5))$, Trigonella graeca
7．15．3．one of the many diverse plants called $\lambda \omega \tau$ os．
$\mu e ́ \lambda \iota \nu o s$, （in other authors $\mu e \lambda i \nu \eta$ ：

INDEX OF PLANTS

see 8．1．1．n．），Italian millet， Setaria italica
8．1．4．sown later than cereals and pulses；8．2．6．time of maturing seed；8．3．2．stem； 8．3．3．flower；8．7．3．needs little water：comp with кé $\gamma \times \rho \circ$ s． $\mu \in \lambda \iota \sigma \sigma o ́ \phi u \lambda \lambda o v$, balm，Melissa offici－ nalis
6．1．4．a spineless wild under－ shrub．
мєцаікидоу，see ко́мароя
$\mu \in \sigma \pi i \lambda \lambda \eta$（fruit $\mu \in ́ \sigma \pi \iota \lambda o \nu)(=\mu$ ．$\dot{\eta}$ бaтávecos），medlar，Mespilus germanica
3．12．5－6．described ：three kinds （Idaean account，see below）； 3．13．1．leaf of кépacos comp．； 3．15．6．leaf，bark and taste of fruit of крátaıyos comp．；3．17．5． flower of $\sigma \cup \kappa \bar{\eta} \dot{\eta}$＇ISaia comp． also taste of fruit；4．2．10，fruit of коккขци入є́a comp．： 4 8． 12. малıгаАа́л入 η comp．；4．14． 10. fruit gets worm－eaten．
$\mu \in \sigma \pi i \lambda \eta \dot{\eta} \dot{\eta} \alpha{ }^{2} \nu \theta \eta \delta o v o c i \delta \partial \eta$, hawthorn， Crataequs Oxyacantha
3．12．5．described．
$\mu \epsilon \sigma \pi i \lambda \eta \dot{\eta} \dot{\eta} \alpha{ }^{2} \theta \dot{\eta} \delta \omega \nu$ ，oriental thorn， Crataegus orientalis．
3．12．5．described．
$\mu \epsilon \sigma \pi i \lambda \lambda \eta \dot{\eta}$ бaтávéos，medlar，Mes－ pilus germanica
3．12．5．described．
M η ठıк̀े（ π óa．），lucerne，Medicago sativa
8．7．7．destroyed by sheep sleep－ ing on it．
$\mu \eta \dot{\kappa} \omega \nu$, poppy etc．，Papaver spp．etc． （see below）
1．9．4．evergreen；1．11．2．seeds in a vessel；4．8．7．size of flower of кúauos á Aiyúntios comp．； 4．8．10．size of＇head＇of $\lambda \omega$ tós （2）comp．；4．10．3． oíŋ η comp．（？）； 9．8．2．juice of＇head＇collected； 9．12．3－5．kinds（see below） having nothing in common but the name；9．16．9．medical experience；9．20．1．seeds of one kind of π éné \quad comp．
 Silene venosa
9．12．5．described：medicinal use．
$\mu \eta ́ \kappa \omega \nu \quad \dot{\eta}$ кєparitus，horned poppy， Glaucium flavum var．Serpierii
9．12．3．described：medicinal use； habitat．

9．11．9．mixed with $\tau \ell \theta^{\prime} \mu a \lambda \lambda o s \dot{ }$ ó $\mu v \rho \tau i \neq \eta$ s to make a medicine．
$\mu \eta{ }^{\prime} \kappa \omega \nu$（ $\dot{\eta}$ ò $\pi \dot{\omega} \delta \eta s$ ）．opium poppy， Papaver somniferum
1．12．2．juice．

9．12．4．described：edible：habl－ tat：medicinal use．
 spurge，Euphorbia Peplus
9．8．2．collection of juice．
$\mu \eta \lambda \epsilon^{\prime} \alpha$（fruit $\mu \hat{\eta} \lambda o \nu$ ），apple，Pyrus Malus
1．3．3．a tree whose stem is not single ；1．5．2．bark smooth： bark readily drops off；1．6．1． core fleshy；1．6．3．few roots； 1．6．4．shallow rooting；1．8． 4 ． knots peculiar；1．9．1．trunk divides low down；1．10． 4. （？）leaves fleshy；1．10． 5. leaves oblong；1．11．4．seeds all together in a single case； 1．11．5．seeds in a membrane； 1．12．1．taste of fruit；1．12． 2 ． taste of sap；1．13．1．flower ＇leafy＇；1．13．3．flower above fruit－case；1．14．1．bears on last year＇s wood：some kinds bear also on new wood；1．14．4． many cultivated forms；2．1． 2 ． propagation ；2．2．4．degene－ rates from seed；2．2．5．seed produces wild form ；2．5． 3. grafting ；2．5．6．trees should be planted fairly close together； 2．6．6．some dates round like $\mu \hat{\eta} \lambda a$ ；2．8．1．apt to shed im－ mature fruit；3．3．1．tree of mountain and plain；3．3．2 has better fruit and timber in low－ lands；3．4．2．time of budding； 3．4．4．time of fruiting；3．11．5． mountain and lowland forms compared；4．5．3．abundant in Pontus；4．5．4．grows on Mount Tmolus and Mysian Olympus；
 épıó申opov comp．；4．10．2．leaf of è̀aiayvos comp．（？）；4．10． 3.

INDEX OF PLANTS

size of flower of oion comp.; 4. 13. 2. short-lived, especially certain kinds; 4. 13. 3. after decaying shoots again from same stock; 4. 14. 2. apt to get worm-eaten; 4. 14. 10 fruit gets worm-eaten; 4. 14. 12. uninjured by special winds; 4.16.1. survives splitting of stem; 5.3.3. character of wood; 5. 4. 1. the less fruitful trees produce more solid wood; 6. 4. 9 'head' of i ξ iv ν comp. to $\mu \hat{\eta} \lambda o \nu$.
$\mu \eta \lambda e ́ a ~ \grave{\eta} \gamma \lambda v \kappa \epsilon \in i a, ~ P y r u s$ Malus var.?
4. 13. 2. specially short-lived; 4.14. 7. has specially weak constitution; a form of $\mu . \dot{\eta}$ é $\alpha \rho \iota \nu \dot{\eta} ;$ 9. 11. 5. leaf of $\sigma \tau \rho v \chi^{\prime} \nu o s \dot{\partial} \dot{v} \pi-$

2. 1. 3. propagation ; 4.7.7. size of cotton-bearing vessel comp.; 4 13. 2. specially short-lived; 4. 14. 7. has weak constitution ; (ef. $\mu . \dot{\eta} \gamma \lambda \nu \kappa \epsilon i a)$.

4. 13. 2. comparatively long-lived.
 rus Medica
1.11. 4. seeds in a row; 1. 13. 4. only pistillate flower fruitful; 4. 4. 2. peculiar to Media and Persia: described.

$\mu \dot{\eta} \lambda \omega \theta \rho o \nu(=\tilde{\alpha} \mu \pi \epsilon \lambda$ оs (4)), bryony, Bryonia cretica
3. 18. 11. fruit of $\sigma \mu i \lambda \lambda \xi \xi(2)$ comp.; 6. 1.4. a spineless wild undershrub.
ц \dot{v} aveos, Limnanthemum nymphoides
4. 10. 1-2. in list of plants of Lake Copais; 4.10.4. requires further investigation.
$\mu \hat{\lambda} \lambda a \xi(=\sigma \mu i \lambda a \xi(2))$, smilax, Smilax aspera
1.10. 5. leaf described; 1.10.6. leaf with spinous projections; 6. 8. 3. flower used in garlands.
mídos, yew, Taxus baccata

1. 9. 3. evergreen; 3. 3. 1. a mountain tree; 3. 3. 3. evergreen; 3. 4. 2. time of budding; 3. 4. 5. time of flowering and fruiting; 3. 4.6. time of fruit-
ing; 3. 6. 1. slow growing (?) 3. 10. 2. described; 4.1.3. likes shade ; 5. 7. 6. uses of wood.
$\mu i \nu \theta \eta$ ($\mu i \nu \theta a)(=\dot{\eta} \delta v \dot{\sigma} \sigma \mu o \nu)$, green mint, Mentha viridis
1. 4. 5. $\sigma \iota \sigma \dot{\prime} \mu \beta \rho \iota o \nu$ turns into μ. unless often transplanted; 6.7.2. said by some to have no fruit.
$\mu \nu \alpha ́ \sigma \iota o \nu(=\mu a \lambda \iota \nu a \theta a ́ \lambda \lambda \eta)$, Cyperus esculentus
1. 8. 2. used for food in Egypt; 4. 8. 6. described.
$\mu \nu a ́ к a \nu \theta_{0}$ ($=\kappa \in \nu \tau \rho о \mu \nu \rho \rho i ́ v \eta$), butcher's broom, Ruscus aculeatus
1. 5. 6. in list of spinous plants which have leaves as well as spines.
μ и́клs, mushroom etc., Fungus
1.1. 11. has not all the 'parts' of a plant; 1. 5. 3. stem very smooth; 1. 6. 5. no roots; 3. 7. 6. grows on roots of trees.
[4. 7. 2. marine growths which turn to stone];
[4. 14. 3. name given to a disease of '̇ं $\dot{\alpha} \alpha a]$.
 oxoptios (3)), wolf's bane, Aconitum Anthora
1. 2. 4. a spineless wild undershrub: belongs to 'ferula-like' plants; 6. 2. 9. do.; has a fibrous stem.
$\mu \nu \rho i ́ k \eta$ (1), tamarisk, Tamarix tetrandra
1. 4. 3. 'amphibious'; 1. 9. 3. evergreen; 1. 10. 4. leaves fleshy; 3.3.1. tree of mountain and plain; 3. 3. 3. evergreen; 3. 16. 4. bark of кóцароз comp.; 4. 2. 6. (?) leaf of Bàavos comp.; 4. 6. 7. leaf of $\delta \rho \hat{v}_{\mathrm{s}}$ (7) comp; 6.2.1. leaf of кvéwpos ò μ édas comp.; 6. 4. 8. flower of xamat$\lambda e ́ \omega \nu$ comp.
$\mu \nu \rho$ íк η (2), tamarisk, Tamarix articulata
5.4.8. Arabian : wood very strong. $\mu \nu \rho \rho i v \eta$ ($\mu \dot{\nu} \rho \rho \iota \nu o s, \mu v ́ \rho \tau o s)$ (fruit $\mu \dot{\jmath} \rho$ Tov), myrtle, Myrtus communis
1. 3. 3. effect of not pruning; 1. 9. 3. evergreen; 1. 10. 2. leaves close-set and opposite; 1. 10. 4. leaves narrow; 1.10.8.

INDEX OF PLANTS

leaves regular；1．12．1．taste of fruit ；1．13．3．flower above fruit－case；1．14．1．bears on last year＇s wood：flowers borne on new wood not fertile；1．14．4． many cultivated forms；2．1．4． propagation；2．2．6．sometimes improves from seed；2．5． 6. propagation：trees should be planted close together ；2． 72. needs much pruning；2．7． 3. requires pungent manure and much water； 3.6 2．formation of buds ；3．12．4．fruit of кé $\delta \rho$ os （1）comp．；3．15．5．leaf of πv＇gos comp．；3．16．4．flower of кó－ мapos comp．；4．2．6．（？）leaf of $\beta a ́ \lambda a \nu o s ~ c o m p . ; ~ 4 . ~ 3 . ~ 1 . ~ a r r a n g e-~$ ment of fruit of $\lambda \omega$ ．ós（4）comp．； 4．5．3．does not thrive in cold regions；4．5．4．grows in Pro－ pontls；5．8．3．grows in low－ land parts of Latium：and on Circeian promontory（a dwarf kind）；6．8．5．very fragrant in Egypt；9．11．9．leaf of $\tau \iota \theta v^{-}$ ца入入os ó $\mu v \rho \tau i ́ \tau \eta s$ comp．
$\mu \hat{\omega} \lambda v$, moly，Allium nigrum
9．15．7．localities in Arcadia： said to be like the μ ．of Homer ： described：use as charm．
vaipov
？
9．7．3．in list of $\alpha \rho \dot{\omega} \mu \alpha \tau \alpha$ ． $\nu \hat{\alpha} \pi v$ ，white mustard，Brassica alba

1．12．1．taste of fruit；7．1．2－3； time of sowing and of germina－ tion；7．3．2．seeds described； 7．5．5．sced keeps well．
$\nu \alpha ́ \rho \delta o \nu$ ，spikenard，Nardostachys Ja－ tamansi
9．7．2．an Indian $\alpha \rho \omega \mu \alpha ; 9.7 .3$. in list of à $\omega \dot{\mu} \alpha \tau \alpha$ ；9．7．4．an unnamed Thracian plant（see App．（25））comp．
$\nu \alpha \rho \theta \eta \kappa i ́ a ~(=\nu a ́ p \theta \eta \xi$ see 6．2．7．），ferula， Ferula communis
6．1．4 spineless：belongs to＇ferula－ like，plants；6．2．7．perhaps differs only in size from $\nu \alpha ́ \rho \theta \eta \xi ;$ 6．2．8．described．
$\nu \alpha ́ \rho \theta \eta \xi$（ $=\nu a \rho \theta_{\eta \kappa i a}$ see 6．2．7．），ferula， Ferula communis
1．2．7．flesh turns to wood；1．6．1． core fleshy；1．6．2．core mem－
branous；6．2．7．perhaps differs only in size from $\nu \alpha \rho \theta \eta \kappa i \alpha ;$ 6．2．8．described；6．3．1．stalk of σ íגфıov comp．；9．9．6．stem of θ aүía comp．；9．10．1．leaf of both é $\lambda \lambda$ é 9．16．2．ठíктациод kept èv $\nu a ́ p-$ $\theta \eta \kappa \iota$.
ν а́ркьббоз（1）（＝лєípıод（2）6．6．9．）， narcissus，Narcissus serotinus
6．6．9．a coronary plant：described； 7．13．1．leaves described；7．13．2． no stem except the flower－stem； 7．13．5－7．stem appears before leaves，viz．flower－stem：se－ quence described and comp． with $\sigma \times i \lambda \lambda \alpha$ ．
vápкıббos（2），pheasant＇s eye nar－ cissus，Narcissus poeticus
6．8．1．flowering time．
$\nu \alpha ́ \rho \tau \eta$
9．7．3．in list of $\dot{\alpha} \rho \omega \dot{\mu} \mu \alpha \tau \alpha$ ．
 poppy，Papaver somniferum．
9．15．1．mythical：supposed effects．
$\nu v \mu ф$ аía（ $=\mu a \delta \omega \nu \alpha$ ás 9.13 .1 ．），yellow water－lily，Nuphar luteum
9．13．1．fragrant：habitat and localities：leaf described ：medi－ cinal use：called $\mu a \delta \omega \nu a ́ i s$ in Boeotia．

乡ípıs，gladwyn，Iris foetidissima
9．8．7．superstition as to gathering．
$\xi i \phi \iota \nu\left(=\xi i \phi o s ~ 7.13 .1 .=\phi \dot{\alpha} \sigma \gamma^{2} \nu \nu\right)$ ， corn－flag，Gladiolus segetum
6．8．1．flowering time；7．13． 2. flower－stem not the only stem．
 corn－flag，Gladiolus segetum．
o้ $\gamma \chi \nu \eta$ ，wild pear，Pyrus communis var．Pyraster
2．5．6．trees should be planted rather far apart．
ö η（oï η ），sorb，Sorbus domestica
2． 210 ．becomes sterile in a warm place；2．7．7．＇correcting＇the tree；3．2．1．fruit sweeter and better ripened in wild than in cultivated form；3．5．5．winter－ buds；3．6． 5 ．roots shallow but strong：thick according to Ar－ cadians； 3 11． 3 ．leaf of $\mu \in \lambda i ́ a$

INDEX OF PLANTS

comp．；3．12．6－9．described ； 3．15．4．leaf of τ є́pu九 ν Өos comp．
oivávè（1），drop－wort，Spiraea Fili－ pendula
6．6．11．a coronary plant：grown from seed；6．8．1－2．flowering time ：flower described．
oivávөŋ（2）خ̀ á $\gamma p i a$ ，wild vine，Vitis silvestris
5．9．6．$\dot{\alpha} \theta \rho \alpha$ ধ́́v η comp．
－ícos（ $=$ ä $\gamma \nu \circ$ ），，withy，Vitex Agnus－ castus
3．18．1－2．has two forms，＇white＇ and＇black＇；6．2 2．used for tying－up．

ỏ $\lambda \cup \dot{p}^{\rho} \alpha$ ，（cultural variety of $\zeta \in \iota \alpha$ ），rice－ wheat，Triticum dicoccum
8．1．3．sown early；8．4．1．comp． in detail with other cereals； 8． 9 2．does not exhaust the soil much：reason．
 Nerium Oleander
9．19．1．effect on＇mind＇：de－ scribed．

6．4．3．a＇thistle－like＇plant． ¿̀voxєi入és，bugloss，Echium diffusum

7．10．3．flowers borne in succes－ sion．
ò $\omega \omega \nu^{\prime}$＇s，rest－harrow，Ononis anti－ quorum
6．1．3．has leaves as well as spines：a wild under－shrub； 6．5．1．in list of spinous plants which have leaves as well as spines；6．5．3－4．described： troublesome to farmers．
ú乡váка⿰Өos，cotoneaster，Cotoneaster Pyracantha
1．9．3．evergreen；3．3．1．tree of mountain and plain；3．3． 3. evergreen；3．4．2．time of bud－ ding；3．4．4．time of fruiting； 4．4．2．thorns of $\mu \eta \lambda \epsilon ́ a \dot{\eta}$ Пєрбьки́ comp．；6．8 3．fruit used in gar－ lands．
ó乡v́n（uॄ́va），beech，Fagus silvatica
3．3．8．doubt whether it has a flower；3．6．5．roots few slender and＇plain＇according to Arcadians：shallow－rooting； 3．10．1．described；3．11．5． mountain and lowland forms
compared；5．1．2．time of cut－ ting timber ；5．1．4．do．；5．4．4． wood does not decay in water； 5．6．4．wood＇moist＇：used for elastic bedsteads；5．7．2．wood used for keel etc．of small vessels； 5．7．6．other uses of wood； 5．8．3．grows very fine in low－ land part of Latium．
ò छ́v́кe $\delta \rho \circ \mathrm{s}$（ $=\kappa \in ́ \delta \rho \rho$（1）3．12．3．）， prickly cedar，Juniperus Oxy－ cedrus
3．12．3．some，who call $\alpha \rho \kappa \in v \theta$ os a кédpos，distinguish кéঠpos（1）as ò ξ úк $\delta \rho о$ ．
imeтí ω ，？
7．13．9．（in defective sentence） belongs to $\tau \grave{\alpha} \beta \circ \lambda \beta \omega \dot{\delta} \eta$ ．

ópecoซé ${ }^{\text {cıvov，parsley，Petroselinum }}$ sativum
7．6．3－4．distinguished from other forms of σ é $\lambda_{\ell \nu o \nu}$ ：medicinal use．
̀j $\rho \in \iota \pi \tau \epsilon \lambda \in ́ \alpha$ ，wych－elm，Ulmus mon－ tana
3．14．1．distinguished from $\pi \tau \epsilon \lambda \epsilon$ ．
 marjoram，Origanum viride etc．
1．9．4．evergreen（partly）；1．12．1． taste of fruit；6．1．4．a spine－ less wild under－shrub；6．2． 3. two forms，＇black＇and＇white＇ （see below）：seed conspicuous： not，like θ únos，particular as to situation ；7．1．3．time of ger－ mination ；7．1．6．germination； 7．2．1．propagation；7．6 1． wild form distinguished．
úpíyavos $\dot{\eta}$ גєuки́，marjoram，Ori－ ganum heracleoticum
6．2．3．distinguished from bं．it μ е́лачva．
 joram，Origanum viride
6．2．3．distinguished from ó．$\dot{\eta}$ $\lambda \in v \kappa \eta$ ．
ö $\rho \mu$ сьо⿱，Salvia Horminum
8．1．4．sown later than cereals and pulses；8．7．3．doubtful if eaten green by animals：de－ scribed：sown at same time as $\sigma \eta \sigma \alpha ́ \mu \eta$ ．
oj ooßáyхŋ，dodder，Cuscuta europaea
8．8．4．grows specially among öровог：reason：àтарíz comp．

INDEX OF PLANTS

opoßos，bitter vetch，Errum Ervilia
2．4．2．more digestible if sown in spring；7．5．4．used to prevent ψ v́dдal in $\rho a \phi a \nu i ́ s ; ~ 7.6 .3$ ．size of
 sown both early and late；8．2．5． flowering tlme；8．3．2．stem； 8．5．1．more than one kind： white form sweetest；8．5． 2. seeds not in compartments； 8．5．3．shape of pod；8．8． 4. ó $\rho o \beta$ á $\gamma \chi \eta$ grows specially among ó．；8．10．1．a pest；8．11． 2. seed keeps well；8．11．6．do． specially in hill－country ；9．20．1． shape of one kind of $\pi \varepsilon \in \epsilon \epsilon \rho$ （fruit）comp．
 some，7．11．2．），plantain，Plan－ tago Lagopus．
ō $\rho v \zeta o v$, rice，Oryza sativa
4．4．10．described．
ò $\rho \chi \iota$ ィs（1）（ μ ќ $\gamma a s$ ），orchis，Orchis pap－ ilionacea
9．18．3．properties：leaf and stalk． ö $\rho \chi$ ィs（2）（ μ וкро́s），orchis，Orchis longicruris
9．18．3．properties：leaf and stalk．
 3．10．3．），hop－hornbeam，Ostrya carpinifolia
1．8．2．＇male＇has more knots than＇female＇；3．3．1．tree of mountain and plain；3．6． 1. slow－growing（？）；3．10．3．de－ scribed．
ü $\sigma \tau \rho v s$（ $=$ b̀ $\sigma \tau \rho v ́ a ~ 3.10 .3$ ．），hop－horn－ beam，Ostrya carpinifolia
3． 10 3．described．
ov̈＇ryov，Colocasia antiquorum
1．1．7．＇fruit＇underground；1．6．9． grows underground；1．6．11． described．
$\pi a ́ \delta o s(?=\pi \eta \delta o ́ s(?))$, Prunus Mahaleb
4．1．3．likes shade．
$\pi \alpha \iota \omega \nu^{\prime} \alpha\left(=\gamma \lambda v \kappa v \sigma^{\prime} \delta \eta\right.$ 9．8．6．），peony， Paeonia officinalis
9．8．6．superstition as to time of digging．
raגiovpos（1），Christ＇s thorn，Pali－ urus australis
1．3．1．a typical＇shrıb＇；1．3． 2. becomes tree－like；1．5．3．thorns on wood；1．10．6．leaf with
spinous projections；1．10． 7. stem presently spinous；3．3．1． tree of mountain and plain； 3．4．2．time of budding；3．4．4． time of fruiting；3．11．2．fruit of $\sigma \phi$ évóa $\mu \nu 0$ s comp．；3．18． 3. kinds：described；4．8．1．to some extent grows in marshes； 4．12．4．to some extent aquatic； 6．1．3．has spines on the shoots．
та入íovpos（2）（̊̀ Aǐर́ттtios），Zizyphus Spina－Christi
4．3．1－2．common in Libya； 4．3．3．described ：distinguished from π ．of Hellas．
 Opopanax hispidus
9．15．7．localities．
па́vaкes（тò Zúpıov？9．7．2：9．10．1．）， （juice χ a入ßávŋ（？）9．7．2：9．9．2．， see note），all－heal，Ferulago galbanifera
9．1．2．in list of plants whose juice is a gum；9．7．2．Syrian： रà β áv η made from π ．；9．7．3． in list of áр́́мага；9．9．1．root fruit and julce used；9．9． 2. uses for medicine and perfume； 9．11．1．kinds（see below）； 9．11．4．two further kinds，one fine－leaved，the other not： medicinal use．
 dosa
9．8．7．superstition as to gather－ ing；9．11，1．described：medi－ cinal use．
 Opopanax hispidus
9．11．1．in list of kinds of π ．； 9．11．3．described：medicinal use．
та́vaкes тò Xeıр́veıov，elecampane， Inula Helenium
9．11．1．described：habitat： medicinal use．
таขтáסovба，star－thistle，Centaurea Calcitrapa
6．5．1．in list of spinous plants which have leaves as well as spines．
$\pi \alpha ́ \pi v \rho o s$（stalk пáтvроs），papyrus， Cyperus Papyrus
4．8．2．useful for food in Egypt； 4．8．3－4．described：uses ；

INDEX OF PLANTS

4. 8. 5. stem of oáp comp ; 6. 3. 1. belongs to 'ferula-like' plants.
$\pi \alpha \rho \theta$ éviov, bachelor's buttons, Pyrethrum Parthenium
1. 7. 2. a $\lambda \alpha ́ \chi \alpha \nu o \nu:$ needs cooking тéšs, bullfist, Lycoperdon Bovista 1. 6. 5. no roots.
$\pi \epsilon \lambda \epsilon к i$ vos, axe-weed, Securigera Coronilla
1. 8. 3. grows specially among а́ф́́к η : name explained.
$\pi \epsilon \nu \tau \alpha \pi \epsilon \tau \epsilon ́ s\left(=\pi \epsilon \nu \tau a ́ \phi \nu \lambda \lambda \frac{1}{} 9.13 .5\right.$.), cinquefoil, Potentilla reptans
9.13. 5. described.
$\pi \epsilon \nu \tau \alpha ́ \phi v \lambda \lambda о \nu(=\pi \epsilon \nu \tau \alpha \pi \epsilon \tau \epsilon ́ s ~ 9 . ~ 13.5),$. cinquefoil, Potentilla reptans.
($\pi \epsilon ́ \pi \epsilon \rho \iota)$, pepper, Piper nigrum
1. 20.1. a fruit: two forms: described: properties: antidote to кढ́vєєov; 9. 20. 2. size of

$\pi \epsilon \rho \delta i ́ k \iota o \nu$, 'partridge-plant,' Polygonum maritimum
1.6.11. large fleshy roots.
$\pi \epsilon \rho i \tau \tau o ́ s ~(? ~ \sigma \tau \rho v ́ \chi \nu o s ~ i ̀ ~ \pi \epsilon \rho \iota \tau \tau o ́ s) ~(=~$
 thorn-apple, DaturaStramonium.
 peri
2. 3.5. not fruitful everywhere; 4. 2. 1. peculiar to Egypt; 4.2.5. described; 4.2.8. common in Thebaid.
$\pi \epsilon ́ \rho \sigma \iota o \nu(=\pi \epsilon \rho \sigma \epsilon ́ \alpha)$,Mimusops Schimperi
3. 2. 10. effects of climate.
$\pi \epsilon ข \kappa \in ́ \delta a \nu o \nu$, sulphur-wort, Peucedanum officinale
1. 14. 15. how long drug will keep; 9. 15. 1. grows in Arcadia; 9. 20. 2. properties of root: use in medicine: grows in Arcadia. тєи́кך, fir, Pinus spp.
1.3.6. refuses cultivation; 1.5.1. erect and tall; 1.5.4. wood has many knots; 1.6.1. core woody; 1.6.3. root single; 1.6.5. roots not branching; 1.8. 1. many knots; 1. 9. 3. evergreen (the wild and one cultivated kind); 1. 10. 4. leaves like teeth of comb (?); 1.10.6. leaf spinous at tip; 1. 12. 1. taste of fruit; 1. 12. 2. taste of sap; 2. 2. 2 .
propagated only by seed; 2.5.2. instance of very long roots; 3. 1. 2. grows only from seed: 3.2.3. evidence that it is really wild; 3. 3. 1. a mountain tree; 3.3.3. evergreen; 3.3.8. doubt whether it has a flower; 3. 4. 5. time of budding and fruiting; 3.4.6. time of fruiting; 3.5.1. periods of budding; 3.5.3. do.; 3. 5. 5. winter-buds; 3. 5. 6. cone; 3. 6. 1. quick growing: even young tree fruits; 3.6.4. not deep-rooting; 3.7.1. dies if topped; 3. 7. 3. produces a 'tuft' (кúт $\tau \alpha \rho \circ$) ; 3. 9. 1-8. kinds according to various anthorities (see below) : distinction from пívs; 3.9.4. timber, foliage; 3. 9. 5. further distinction from $\pi i \tau v s$: the disease 'pitch-glut'; 3.9.7. comparison with é $\lambda \alpha ́ \tau \eta ; 3.9 .8$. do.: core and callus; 4.1.1. likes sun; 4. 1. 2. in shade has inferior timber; 4.5.1. in list of Northern trees; 4.5.3. does not grow in Pontus; 4. 15. 3. effects of stripping bark at various seasons; 4. 16. 1. topping fatal; 4.16.1-2. not injured by cutting for tar; 4. 16.4. said to perlsh if entirely deprived of its heartwood; 5. 1. 2. time of cutting timber; 5.1.4. do.; 5.1. 9-10. methods of cleaving; 5. 4. 2. wood (when resinous) proof against decay; 5. 4. 4. more eaten by teredon than è $\lambda \alpha \alpha^{\tau} \eta$: 5. 4. 8. effect of salt water ou different parts; 5.5.1. knotty parts of wood hard to work; 5. 6. 1. wood good for struts: behaviour under pressure; 5.6.2 takes glue best of all woods; 5. 7. 1-2. uses of wood in shipbuilding; 5. 7. 4-5. uses in house-building and crafts; 5.8.1. grows to great size in Latium, but finer still in Corsica; 5.8.3. grows in hill-country of Latium; 5. 9. 3. charcoal of this wood preferred by smiths to that of סpûs; 9. 1. 2. sap gummy ; 9.1.6. time of tapping; 9.2 1. pro-

INDEX OF PLANTS

ductive of resin ($\rho \eta{ }^{2} i \nu \eta$) ; 9.2.2. quality of resin ; 9.2.3-4. Macedonians only burn the ' male' for pitch ($\pi i \tau \tau \alpha$), and the roots of the 'female'; aspect etc. required for production of good pitch; 9. 2. 5. Idaean account different (see π. $\dot{\eta}$ 'I ${ }^{2}$ aía and π. $\dot{\eta} \pi a \rho a \lambda i ́ a) ; 9.2$ 2. 6. fllling up the holes; 9.2.7. do. Idaean account; 9. 2. 8. further rules for collecting pitch: age of tree; etc.; 9. 3. 1-3. method of preparing pitch; 9.1.4. does not grow in Syria.
 'İaía), Corsican pine, Pinus Laricio
3. 9. 2. described: 3. 9. 4. one of three wild kinds (Idaean account).
$\pi \epsilon$ v́кך ì ä́картоs ('male'), Corsican pine, Pinus Laricio
3. 9. 2. comp. with 'female.'
$\pi \epsilon$ v́кŋ ì ǎккартоs (' female'), Aleppo pine, Pinus halepensis
3.9. 2. comp. with ' male.'
$\pi \epsilon$ úк $\eta \dot{\eta}$ ӑ $\rho \rho \eta \nu\left(=\pi \dot{\eta} \dot{\eta} \pi \alpha \rho \alpha \lambda i ́ \alpha=\pi i \tau v{ }^{\prime}\right.$ in 3. 9. 5.), Aleppo pine, Pinus halepensis
3. 9. 3. timber: produces $\sigma v \kappa \hat{\eta}$ (Mt. Ida); 3.9.4. one of three wild kinds (Idaean account).
 stone pine, Pinus Pinea
3. 9. 1. distinguished from other kinds; 3. 9. 4. Arcadians say it is a mívvs: timber, foliage, resin.
 'Iסaia), Corsican pine, Pinus Laricio
3. 9. 3. timber: contains aizís; 3. 9.4. one of three wild kinds (Idaean account).
 ө́ǹєиa), Corsican pine, Pinus Laricio
3.9.1-2, described; 9.2.5. Idaean account of pitch ($\pi i \tau \tau \alpha$).
 stone pine, Pinus pinea
2.2.6. seeds true; 3.9.4. foliage : pitch ($\pi i \tau \tau \alpha$): Arcadians say it is a mívs.
$\pi \epsilon v ́ \kappa \eta$ ทं $\pi \alpha \rho a \lambda i ́ a ~(~=\pi . \dot{\eta}$ ă $\rho \rho \eta \nu=\pi i ́ \tau v s$ in 3.9.5), Aleppo pine, Pinus halepensis
3. 9. 1. described; 9.2.5. Idaean account of pitch ($\pi i \tau \tau a$).
$\pi \eta \eta^{\gamma} \nu_{\nu o \nu}(\pi \eta \gamma$ ávıov), rue, Ruta graveolens

1. 3. 4. a typical under-shrub; 1.3.4. becomes tree-like; 1.9.4, evergreen; 1. 10. 4. leaves fleshy ; 2. 1. 3. propagation; 6. 1. 1. may be classed as an under-shrub; 6. 5. 3. leaf of ò $\nu \omega \nu$ is comp.; 6. 7. 3. strong
 propagation: seed slow to germinate; 7.4.1. only one kind; 7. 5. 1. dislikes manure; 7.6.1. wild form distingui hed; 9.4.2. colour of leaf of $\lambda_{\iota} \beta \alpha \nu \omega \tau o ́ s$ comp.; 9.5.1 leaf of $\beta \dot{\alpha} \lambda \sigma \alpha \mu о \nu$ comp.; 9. 9. 6. leaf of iб才ás (ă $\pi \iota o s(2))$ comp.
$\pi \eta \delta o ́ s(?)(?=\pi \alpha ́ \delta o s ~ 4.1 .3),$. Prunus Mahaleb
1. 7. 6. uses of wood.
$\pi є к р i ́ s$, Urospermuт picroeides
1. 11. 4. inedible: flowers in spring, but also throughout winter and summer.
rîגos, Polyporus igniarius (?)
1. 7 4. produced by δ pûs; descrlbed.
пьбós, pea, Pisum sativum
8.1.1. in list of pulses; 8. 1. 4 sown late; 8. 2. 3. comes up with several leaves; 8. 3. 1. leaf: 8. 3. 2. stem; 8. 5. 2. seeds not in compartments; 8. 5. 3. shape of pod; 8. 10.5. infested by 'worms.'
 ã $\rho \rho \eta \nu$ in 3. 9. 5. $=\pi \epsilon$ v́к $\eta \dot{\eta} \pi \alpha \rho \alpha-$ día in 3. 9. 5.), Aleppo pine, Pinus halepensis
2. 6. 7. core woody; 1. 10. 4: leaves like teeth of comb; 1. 10. 6. leaf spinous at tip; 1. 12. 1. taste of fruit; 22.2 propagated only by seed;3.1.2. do.; 3. 3. 3. evergreen ; 3. 3. 8. doubt whether it has a flower (кúттароs) ; 3. 4 5. time of budding and fruiting; 3.5.5. winterbuds; 3. 6. 1. slow growing (?) :

INDEX OF PLANTS

even young tree fruits ；3．94－8． $\pi \epsilon v ́ k \eta$ and $\pi i ́ \tau v s ; 39.6$ dis－ tinction from π єv́к η ；3．11． 1. bark of $\sigma \phi \in ́ \nu \delta a \mu \nu$ os comp．；3．17．1． bark of $\phi \in \lambda$ ós comp．；4．5． 3. does not grow in Pontus： 4．14．8．if topped，becomes barren，but is not destroyed； 4．16．1．topping fatal；5．1． 2. time of cutting timber；5．1． 4. do．；5．1．5－6．timber comp． with è $\lambda a ́ \tau \eta$ ；5 7．1．used in Cyprus for ship－bullding instead of $\pi \epsilon$ и́к η ；5．7．3．wood used for bent－wood work in triremes； 5．7．5．use of wood in ship－ building and house－building： soon rots；5．7．8．use of wood for carpenter＇s tools；5．9． 2. charcoal of this wood used In silver mines；9．1．2．sap gummy； 9．2．1．production of resin （ $\rho \eta \tau_{i} \nu \eta$ ）；9．2．2．quality of resin；9．2．3．said to be burnt for pitch（ $\pi i \tau \tau \alpha$ ）in Syria．
пiтus д̀ $\dot{\text { àpia }}(=\pi i ́ \tau v s=\pi е v ́ \kappa \eta ~ \dot{n}$ a̋ $\rho р \eta \nu=\pi \epsilon$ v́кそ $\dot{\eta} \pi \alpha \rho a \lambda i \alpha$ in 3.9 .5 ．） Pinus halepensis（mountain form）
1．9． 3 evergreen；3．3．1．a mcuntain tree（Macedonian）．

2．2．6．seeds come true．
$\pi \lambda a ́ \tau a v o s$, plane，Platanus oricntalis
1．4．2．lives near water；1．6．3． roots many and long； 1 7．1． example of long roots；1．8．5． diseased formation（крабウ́）； 1．9．5．evergreen specimens； 1．10．4．leaves broad；1．10．7． attachment of leaf－stalk；3．1．1． propagation；3． 13 ．produces seed and seedlings；3．3．3．ever－ green in some places； 3 4． 2. time of budding；3．6．1．quick growing；3．111．leaf of $\sigma \phi \in \nu^{\prime}$
 sort of winter－bud like that of $\mu \in \lambda i a ; 4$ ．5．6．found at only one place on Adriatic coast：rare in Italy；4．5． 7. common in some Mediterranean regions；4．7．4．size of unnamed Arabian tree（see App．12a） comp．；4．8．1．grows partially
in water；not common on Nile； 4．13． 2 ：trees said to have been planted by Agamemnon；4．15．2． bark cracks；4．16．2．grows again after being cut or blown down：instances； 5 3．4．char－ acter of wood；5．7．3．wood used for bent－wood work：soon decays；5．9．4．wood makes an evil smoke when burnt for char－ coal；9．11．6．＇head＇of $\sigma \tau \rho v ́ x-$ ν os ó ravekós comp．to fruit of π ． $\pi \lambda a \tau u ́ \phi u \lambda \lambda o s(\delta \rho \hat{s})$ see $\delta \rho \hat{v} s(6)$. тóa，grass

7．8．3．leaves＇on the ground．＇ то́a ท̀ M $\eta \delta \iota \kappa \bar{\prime}$ ，see $\mathrm{M} \eta \delta \iota \kappa \eta$ ．
π óधos（1），larkspur，Delphinium orientale
6．8．3．a coronary plant：flowers in summer：flower like v́ákıvӨos．
 Asphodelus ramosus
6．8．3．a coronary plant：flowers in summer：flower white：used in connexion with funerals．
π ódıov，hulwort，Teucrium Polium
1．10．4．leaves fleshy：prevents moth in clothes；2．8．3．used for caprification； $7 \quad 10.5$ ．ever－ green．
толขа́ка ν 0о，Carduus acanthoides
6．4．3．a＇thistle－like＇plant．
ко入v π ódıov，polypody，Polypodium vulgare
9．13．6．peculiar shape：described： named from cuttle－fish（ $\pi 0 \lambda \hat{u}^{-}$ novs），and used as charm to prevent polyp（ $\pi \mathrm{o}$ únovs）：other medicinal use：habitat；9．20．4． comes up after rain：has no seed．
$\pi \rho a ́ \sigma \iota o v, M a r r u b i u m$ spp．
6．1．4．a spineless wild under－ shrub；6．2．5．two kinds； see below．
$\pi \rho a ́ \sigma \iota o \nu(1)$ ，horehound，Marrubium peregrinum
6．2．5．leaf described：used by druggists．
$\pi \rho a ́ \sigma \iota o v(2)$ ，horehound，Marrubium vulgare
6．2．5．leaf described．
$\pi \rho \dot{\sigma} \sigma \mathrm{v}$（1），leek，Allium Porrum
7．1．2－3．time of sowing and of germination；7．1．6．germina－

INDEX OF PLANTS

tion；7．1．7．bears fruit in second year：stem single； 7．2．2 3．root makes offsets； 7．3．4．seed borne at top：me－ thod of sowing；7．4．10．coat often like үウ́тєєор；7．4．11．size of＇head＇of one year old σ кó－ podov comp．；7．5．3．improved by transplanting；7．5．4．pests； 7．5．5．seed keeps well；7．8．2． stem smooth，not branched； 9．10．1．leaf of $\dot{\epsilon} \lambda \lambda$ е́ ${ }^{\circ}$ opos入evкós comp．by some．
 （1））；grass－wrack，Posidonia oceanica
4．6．2．$=\zeta \dot{\sigma} \sigma \tau \eta \rho, q . v$.
тра́бор（3）（ $=\phi$ и̂коs（2）），riband－weed， Laminaria saccharina
4．6．4．carried by current from Atlantic into Mediterranean ： described；4．7．1．refers to 46.4 ．
трivos，kermes－oak，Quercus coccifera
1．6．1．core hard and close；1．6．2． core large and conspicuous； 1．9．3．evergreen；1．10． 6. leaves with spinous projections； 3．3．1．a mountain tree；3．3．3． evergreen；3．3．6．does not al－ ways fruit：3．4．1．takes a year to ripen fruit；3．4．4－6；time of fruiting；3．6．4．deep root－ ing；3．7．3．produces a scarlet ＇berry＇；3．16．1．described； 3．16．2．$\sigma \mu i \lambda \alpha \xi$（1）comp．； 3．16．3．$\phi \in \lambda \lambda o ́ \delta \rho v s ~ \delta \rho v ̂ s ~ a n d ~ \pi . ~$ comp．；3．16．4．leaf of кóцароs comp．；4．3．1．leaf of $\lambda \omega$ tós（4） comp；effect of stripping bark in winter；5．4．8．wood of $\mu \nu \mathrm{pik} \mathrm{\eta}$（2）comp．for strength； 5．5．4．core not obvious，but exists；5．7．6．uses of wood； 5．9．7．wood used for fire－sticks； 9．4．3．leaf of $\sigma \mu$ v́ $\rho \nu a$ comp．by some．
$\pi \rho о$ и́л $\boldsymbol{\eta}$（＝$=\sigma$ тобías），bullace，Prunus insititia
9．1．2．sap gummy． ттe入éa，elm，Ulmus glabra

1．8．5．diseased formation（ $\kappa \rho a \delta \eta$ ）； 1．10．1．leaves inverted in sum－ mer；1．10．6．leaves notched； 3．1．1．propagation ；3．1． 2. seems to have no fruit yet re－
produces itself ：instance；3．1．3． do．：proof；3．3．1．tree of mountain and plain：3．3．4．a question if it bears fruit；3．4．2． time of budding；3．6．1．quick growing；3．7．3．produces a $\beta o ́ \tau p u s$ and leaf－galls；3．11． 5. mountain and lowland forms comp．；3．14．1．description： kinds；3．15．4．leaf－galls of τ т́puı̀日os comp．；3．17．3．leaf of Idaean ко入o८тía comp．；3．17． 5. leaf of $\sigma v \kappa \eta \hat{\eta}$＇I δ aía comp．；3．18．5． leaf of pous comp．；4．2．3．leaf of $\sigma v \kappa \eta \hat{\eta}$ Kvapia comp．；4．5． 3. grows in Pontus；4．5．7．com－ mon in some Mediterranean regions；4．9．2．leaf of $\tau \rho i^{-}$ ßodos（3）comp．；4．15．2．sur－ vives stripping of bark；5．1．2． time of cutting timber；5．3．4． character of wood；5．3． 5. method of making door－hinges of the wood；5，4．3．wood does not decay if exposed to air； 5．6．4．wood strong：used for door－hinges；5．7．3．wood used for bent－wood work：use in shipbuilding；5．7．6．other uses of wood ；5．7．8．uses of wood for carpenter＇s tools； 9．1．2．sap gummy ：gum con－ tained in the＇bag＇；9．4． 3. leaf of $\sigma \mu \nu \rho \nu a$ comp．（by some）．
$\pi \tau \epsilon \rho$ is，fern，Nephrodium Filix－mas
1．10．5．frond described；4．2．11． leaf of an unnamed Memphian shrub（see App．（2））comp．；8．7．7． destroyed by manure or by sheep sleeping on it；9．13． 6. leaf of $\pi 0 \lambda \nu \pi$ ó $\delta i o \nu$ comp．to π ．$\dot{\eta}$ $\mu \epsilon \gamma a ́ \lambda \eta$ ；9．18．8．distinguished from $\theta \eta \lambda$ úntєрıs；9．20．5．root only of use：medicinal use ： time of gathering．
$\pi v ́ \xi o s$, box，Buxus sempervirens
1．5．4．wood heavy；1．5．5．do． because of close grain；1．6． 2. core not conspicuous；1．8．2． few knots；1．9．3．evergreen； 3．3．1．a mountain tree ；3．3．3． evergreen ； 3.4 6．time of fruit－ ing：fruit inedible；3．6．1．slow growing（？）；3．15．5．described； 4．4．1．hard to grow in Baby－

INDEX OF PLANTS

lon ；4．5．1．in list of Northern trees；5．3．1．wood very close and heavy；5．3．7．images made from the wood；5．4．1． wood hard and heavy；5．4．2． wood proof against decay ； 5．4．5．wood not attacked by $\sigma \kappa \omega \lambda \eta \xi$ ；5．5．2．core not ob－ vious：wherefore wood not apt to＇draw＇；5．5．4．core not obvious but exists；5．7．7．uses of wood ：that grown on Mount Olympus useless ；5．7．8．uses of wood for carpenter＇s tools； 9．20．4．wood of é $\beta \in \nu 0$ comp． $\pi \nu \rho_{5}$ ，wheat，Triticum vulgare
1．5．2．＇bark＇fibrous；1．6．5．roots numerous；1．6．6．do．；1．11．2． seeds in a husk； 111.5 ．each seed separately attached；2．2．9． said to turn sometimes into крıө́；；2．4．1．turns into aïpa：wild π ．turns into cultivated with cultivation ；4．4．9．nvpoi grow in India；4．10．3．taste of seeds of oíß \quad comp．；7．11．2．inflorescence and general appearance of $\sigma \tau \epsilon \lambda \epsilon-$ фoupos comp．；8．1．1．in list of cereals；8．1．3．sown early，but after $\kappa \rho \iota \theta \eta^{\prime}$ ；8．1．4．one kind sown late；8．1．5．time of ger－ mination；8．2．1．germination described；8．2．3．single leaf first appears：roots described； 8．2．6．time of maturing seed； 8．2．7．time of harvest in Hellas and in Egypt；8．3．2．stem； 8．4．1－2．compared in detail with other cereals；8．4．3－5． kinds distinguished，local and other（see below）；8．6．1．con－ ditions for sowing；8．6．4．suit－ able soil ；8．6．5－6．rain hurtful when π ．is in flower ：and when it is ripe，but less so than to крi日ウ＇；8．7．1．said to change into aipa under certain condi－ tions；8．7．4．effect of cutting down or grazing young crop in Thessaly and in Babylon；8．7．5． in many places comes up again nextyear；etc．；8．8．2．favourable localities；8．8．3．degenerates into aipa，－or else aipa is specially apt to grow among π ；

8．9．1．exhausts the soil most of cereals；8．10．1．a pest of π ．； 8．10．2．wheat－rust；8．10． 3. effects of weather；8．10．4．effects of＇worms＇in various localities； 8．11．1．seed keeps better than крıө́＇；8．11．3．grain stored without drying；8．11．7．effect of mixing earth with the grain in some places：at Babylon grain jumps on the threshing－ floor：reason．
nvpòs ò Aiyúmtios，Triticum vulgare var．
8．4．3．in list of varieties of π ．； 8．4．6．escapes aîpa．
 gare var．
8．4．3．in list of varieties．
тvpòs ò＇A $\sigma \sigma$ ópos，Triticum vulgare var．
8．4．3．in list of varieties．
пupòs ó Botẃtoos，Triticum vulgare var．
8．4．5．heaviest grain．
$\pi \nu \rho o ̀ s$ ò Өpákcos，Triticum vulgare var．
8．4．3．grain has many coats． пирòs ò кахри

8．4．3．thick stem．

8．2．3．branching．
тขрòs ò пакшу七кós
8．4．5．grain light．
тирòs ó ムıßuкós
8．4．3．grain not long in husk thick stem．
тvрòs ò Поvтıкós
8．4．3．－4．lightest grain ；8．4． 5. variation in grain；8．4．6．escapes aipa．
тupòs ì oitavías
8．2．3．branching．
тupòs ò ミıcкe入ós
8．4．3．，8．4．5．heaviest grain of kinds imported to Hellas ；8．4．6． fairly free from aifo，especially that of Akragas：infested with $\mu \in \lambda \alpha ́ \mu \pi v \rho o v$.
пupòs ó $\sigma \tau \lambda \epsilon \gamma{ }^{\prime}$ ús
8．4．3．in list of varieties，see note
$\dot{\rho} \alpha$ $\mu \nu o s$, buckthorn，Rhamnus spp．
1．5．3．stem fleshy ；1．9．4．ever－ green；3．18．12．cluster of ber－

INDEX OF PLANTS

ries of $\sigma \mu i \lambda \lambda \alpha_{\xi}^{\xi}(2)$ comp．；5．9． 7. wood used for flre－sticks，es－ pecially for the stationary piece． ¢́á $\mu \nu$ оs $\dot{\eta}$ 入єvки́，buckthorn，Rhamnus graeca
3．18．2．distinguished from $\dot{\rho}$ ．$\dot{\eta}$ мé $\lambda a \iota \nu \alpha$ ．
 nus oleoides
3．18．2．distinguished from $\dot{\rho}$ ．$\dot{\eta}$入єикй．
рафаvís，radish，Raphanus sativus
1．2．7．flesh of root turns to wood；1．6．6．root fleshy； 1．6．7．root of＇bark＇and flesh； 7．1．2－3．time of sowing and of germination；7．1．5．do．；7．1．7． germination；7．2． 5 ．survives and increases in size under a heap of soil ；7．2．5－6．root de－ scribed；7．2．8．do．；7．3． 2. seeds described；7．3．4．seed borne at side；7．4．1－2．several kinds（described）Kopıvөia，
 $\dot{\alpha} \mu \omega \rho$ éa（see below），Bot $\omega \tau$ ia，and one with leaf like ev̌ $\zeta \omega \mu \circ \nu$ ；7．4．3． effects of weather；7．5．3．im－ proved by transplanting；7．5．4． pests；7．6．2．root of wild roy－ yudís comp．；7．6．3．root of immóé $\lambda \iota \nu o \nu$ comp．；7．8．2．stem branched；9．9．1．method of cutting root of $\mu \alpha \nu \delta p a y o ́ p a s$（1） comp．；9．12．1．method of cut－ ting up xaua८入é $\omega \nu$ ò $\lambda e v<$ ós for medicinal use comp．
ро pavis $\dot{\eta}$ à $\mu \omega \rho$ е́a，horse－radish（？）
7．4．2．in list of varieties of $\dot{\rho}$ ． р́ápa os，cabbage，Brassica cretica

1．3．4．becomes tree－like；1．6． 6. root single；1．9．4．evergreen； 1．10．4．leaves fleshy；1．14． 2. bears fruit on top and at side； 4．4．12．size of an unnamed Asian shrub（see App．（10））comp．； 4．16．6．spoils flavour of grape： vine－shoot turns away from $\dot{\rho}$ ； whence use of \dot{p} ．as cure for effects of wine；6．1．2．may be classed as an under－shrub 7．1．2－3．time of sowing and of germination ；7．2．1．propaga－ tion；7．2．4．grows again when stem is cut；effect on flavour；

7．4．1．several kinds；7．4． 4. three kinds distinguished，ov̀خó－
 below）；7．5．3．bears trans－ planting；7．5．4．pests ；7．6．1－2． wild form distinguished，
 charlock，Raphanus Raphanis－ trum
7．4．4．see $\mathfrak{\rho} \dot{\phi} \phi a \nu o s ; 7.6 .1-2$ ．see páфavos；9．15．5．Arcadian：a drug：also called кepáïs．
р́áфavos ท̀ òpeía（ $=a ̆ \pi \iota o s(2)=i \sigma \chi a ́ s)$, spurge，Euphorbia Apios
9．12．1．used to kill a pig，mixed with रauaı入é $\omega \nu$ ò devкós．
คoó（ $\rho \circ \iota \alpha ́), ~(f l o w e r ~ к ข ́ т \iota \nu o s), ~ p o m e-~$ granate，Punica Granatum
1．3．3．a tree which has not how－ ever a single stem；1．5． 1. crooked and low；1．6．1．core fleshy；1．6．3．few roots ；1．6．4． shallow rooting；1．6．5．roots branching upwards；1．9． 1. much branched；1．10．4．leaves narrow；1．10．10．fruit made of fibre and skin；1．11．4．seeds all together in a single case； 1．11．5．each fruit separately attached（？）；1．11．6．arrange－ ment of stones：1．12．1．taste of fruit；1．13．1．flower red； 1．13．3．flower above fruit－case； 1．13．4．some kinds sterile； 1．13．5．flower described；1．14．1． bears on last year＇s wood； 1．14．4．many cultivated forms ； 2．1．2－3．propagation；2．2．4 degenerates from seed；2．2． 5. do．details；2．2．7．in some places improves from seed； 2．2．9．effects of cultivation ； 2．2．10．ref．to 2．2．9．；2．2． 11 effect of good cultivation；2．3．1． sometimes changes character； 2．3．2．ref．to 2．2．7．；2．3． 3. sometimes bears fruit on the stem；2．5．5．propagation； 2．5．6．trees should be planted close together；2．6．8．size of fruit of a kind of ϕ oivt ξ（1） comp．；2．6．12．cuttings set up－ side down；2．7．1．water－loving； 2．7．3．requires pungent manure and much water；2．8．1．apt to

INDEX OF PLANTS

shed immature fruit；3．5． 4. autumn budding；3．6．2．for－ mation of buds；3．18．4．fruit and growth of кvvóбßazos comp．； 3．18．13．size and leaf of $\epsilon \dot{v} \omega \nu v \mu$ os comp．；4．3．3．stones eaten with fruit；4．5．3．grows well in Pontus with shelter；4．5． 4. grows on Mt．Tmolus and Mysian Olympus；4．10． 3. flower of vión comp．：seeds of бíß η contrasted；4．13．2．short－ lived，especially the stoneless form（see below）；4．13．3．after decaying shoots again from same stock；4．14．10．fruit gets worm－eaten；4．14．12．unin－ jured by special winds；4．16．1． survives splitting of stem ；6．1．3． has spines on the shoots；7．13．4． fruit kept by inserting stalk in bulb of $\sigma \kappa i ́ \lambda \lambda a ; 9.5$ ．2．size of β á ${ }^{\prime} \sigma \alpha \mu o \nu \mathrm{comp}$ ．
คò̀ ̀̀ ảmúp $\begin{gathered}\text { vos，Punica Granatum }\end{gathered}$ var．
4．13．2．specially short－lived． ¢oठ $\omega \nu i a$（flower $\dot{\rho} o \delta o \nu$ ，fruit $\mu \hat{\eta} \lambda o \nu$ 6．6．6．），rose，Rosa centifolia etc．
1．9．4．evergreen；1．13．1．colour alluded to ；1．13．2．has a＇two－ fold＇flower；1．13．3．flower above fruit－case；1．13．5．flower of $\mathfrak{\rho o \alpha ́}$ comp．；2．2．1．propaga－ tion ；4．8．7．colour of flower of ки́aцоs ò Aiyúnтıos comp．；4．10．3． sepals of $\sigma i \delta \eta$ comp．；6．1．1．in list of under－shrubs；6．1．3．has spines on the shoots；6．6．4－6． a cultivated under－shrub：a coronary plant：many kinds： localities：propagation and cul－ tivation；6．8．2．flowering time； 6．8．5．bush lives five years and then degenerates unless pruned：position and climate importantfor fragrance：flowers very early in Egypt；6．8． 6. blooms well on mountains， but has inferior scent；9．19．1． colour of flower of ovo日ńpas comp．
póóov tò äyptov，wild rose，Rosa dumetorum
6．2．1．fiower of kía日os comp．
pov̂s（drug pov̂s 3．18．5．），sumach Rhus Coriaria
3．18．1．has more than one form （see below）；3．18．5．＇male＇ and＇female＇forms：described ： used for dyeing：produces a drug called $\mathfrak{\rho}$ ovs．
คov̂s $\dot{\eta}$ 入єvкท́
3．18．2．distinguished from $\dot{\rho}$ ，$\dot{\eta}$ нéлaıva．
pov̂s ท̀ μ énaıva
3．18．2．distinguished from $\dot{\rho}$ ．$\dot{\eta}$入єधки́
ค́v́тpos，globe－thistle，Echinops spin－ osus
6．4．4．a＇thistle－like＇plant： branches from the top．
σ ápı（stalk σ ápı），Cyperus auricomus
4．8．2．useful for food in Egypt； 4．8．5．described．
бé入ıvov，celery，A pium graveolens
1．2．2．takes two years to mature； 1．6．6．root single，but with large side－growths；1．9．4．ever－ green（partly）；1．10．7．time of leaf－growth；1．12．2．taste of sap；2．4．3．effect of trampling and rolling in seed；6．3．1．leaf of oìd申ov comp．；7．1．2－3．time of sowing and germination； 7．1．6．germination；7．1． 7. bears fruit in second year； 7．2．2．root makes offsets； 7．2．5．root described；7．2． 8. do．；7．3．4－5．methods of sow－ ing and transplanting；7．4．6． kinds distinguished ；7．5．3． bears transplanting；7．6．3．wild forms（immo

 marsh celery，Apium graveo－ lens
4．8．1．in list of marsh plants； 9．11．1．leaf of $\lambda \iota \beta a \nu \omega \tau i s ~ \grave{\eta}$ ка́р－ $\pi \iota \mu$ о с comp．
$\sigma \epsilon ́ \sigma \epsilon \lambda \iota$ ，hartwort，Tordylium offi－ cinale
9．15．5．an Arcadian drug．
oŋmúsa（？），Judas－tree，Cercis Sili－ quastrum
3．14． 4 ．described；5．7．7．（？） wood used for walking－sticks．

INDEX OF PLANTS

$\sigma \dot{\eta} \sigma \alpha \mu o \nu$（seed $\sigma \dot{\eta} \sigma \alpha \mu \eta$ ），sesame， Sesamum indicum
1．11．2．seed－vessel；3．13．6．seeds of berry of $\dot{\alpha} \kappa \tau \hat{\eta}$ comp．；3．18．13． fruit of єu่ต́vv μ os comp．；4．8．14． size of fruit of an unnamed Egyptian plant（see App．（20）） comp．；6．5．3．seed of a kind of трíßo八os comp．；8．1．1．In list of ＇summer crops＇distinct from cereals and pulses；8．1．4．sown later than cereals and pulses； 8 2．6．time of maturing seed； 8．3．1．leaf；8．3．2．stem；8．3．3． flower；8．3．4．seed abundant； 8．5．1．a white kind，which is the sweetest；8．5．2．seeds in compartments；8．6．1．rain not beneficial after sowing； 8．7．3．not eaten green by any
 at same time as őppcvov；8．9．3． exhausts the soil；9．9．2．fruit of є̀خ入є́ $\beta_{0} \rho o s$ comp．；9．14．4．do．
бíð η ，waterlily，Nymphaea alba
4．10．1－2．in list of plants of Lake Copais；4．10．3－4．de－ scribed ：size of fruit of β oúromos comp．（to seed of σ ．）；4．10． 6. grows only in water；4．10． 7. part used for food．
бıкv́a，bottle－gourd，Lagenaria vul－ garis
1．11．4．seeds in a row；1．13． 3. flower attached above fruit； 7．2．9．root described；7．3． 5. takes shape of vessel in which it is grown．
бі́кvos（бікvov），cucumber，Cucumis sativus
1．10．10．fruit made of flesh and fibre；1．12．2．taste of sap； 1．13．3．flower attached above fruit；1．13．4．some flowers sterile；2．7．5．use of dust； 7．1．2－3．time of sowing and germination ；7．1．6．germina－ tion；7．2．9．root described； 7．3．1．long in flower；flower described；7．3．5．effect of soaking seed in milk；7．4． 1. several kinds；7．4．6．do．viz． Аакшлıкós，бкуталías，Botóтıos； 7．5．2．said to dislike rain－ water；7． 5 3．bears trans－
planting；7．5．5．seed does not keep well；7．5．6．seed not liable to pests；7．13．1．leaf of ă $\rho \frac{\nu}{}$ comp．
бíкvos ì äypios，（drug è̀aти́pıov 9．9．4．），squirting cucumber， Ecballium Elaterium
4．5．1．in list of Northern plants； 7．6．4．quite distinct from cul－ tivated $\sigma . ; 7.8 .1$ ．stem＇on the ground＇；9．9．4．medicinal use ： ċ่ ${ }^{2}$ и́pıov made from seed； 9．4．1－2．how long drug will keep：conditions；9．15． 6. grows in Arcadia．
σ б́̀ ϕ оо（leaf $\mu \dot{\alpha} \sigma \pi \epsilon \tau о \nu 6.3 .1$ ），（seed фúd入ov，$\left.\mu a \gamma v^{\delta} \alpha \rho!s ~ 6 . ~ 3 . ~ 4\right), ~ s i l-~$ phium，Ferula tingitana
1．6．12．root most characteristic part；3．1．6．comes up spon－ taneously；3．2．1．fruits better in wild state；4．3．1．grows in Cyrenaica；4．3．7．considera－ tion postponed；6．3．1－2．de－ scribed：belongs to＇ferula－ like＇plants：rules as to cutting and treatment；6．3．3．distri－ bution；6．3．4－6．another ac－ count，inconsistent in some points；6．5．2．grows in mountain country；7．3．2．seeds of á $\delta \rho \alpha{ }^{-}-$ фasus comp．；9．1．3．stem and root produce a gum；9．1． 4. gum pungent；9．1．7．time of tapping：details about juices of stem and root．
$\sigma \iota \sigma \cup ́ \mu \beta \rho \iota o \nu$, bergamot－mint，Mentha aquatica
1．3．1．（？）a typical＇under－shrub＇； 2．1．3．propagation ；2．4． 1 ． turns into $\mu i \nu \theta \eta$ ，unless often transplanted；6．1．1．in list of under－shrubs；6．6．2．a culti－ vated under－shrub；a coronary plant：the whole plant scented； 6．6．3．woody：only one form； 6．7．2．said by some to have no fruit：but the wild form cer－ tainly seeds ；6．7．4．roots de－ scribed；6．7．6．cultivation； 9．16．3．leaf of $\delta i ́ \kappa \tau \alpha \mu \nu \circ \nu(\epsilon ̈ \tau \epsilon \rho \circ \nu)$ comp．
бıбvpíyxıo ，Barbary nut，Iris Sisyrinchium
1．10．7．attachment of leaves；

INDEX OF PLANTS

7．13． 9 （in defective sentence） belongs to $\tau \grave{\alpha} \beta$ o $\lambda \beta \omega \delta \eta$ ：peculiar growth of root：upper part edible．
бка入і́ая，sеe ка́ктоя（2）．
бкаццнvia，scammony，Convolvulus Scammonia
4．5．1．seeks cold regions；9．1．3． root produces a gum ；9．1． 4. gum has medicinal properties； 9．9．1．root and juice used； 9．20． 5 ．juice only used．
бка́vסıॄ，wild chervil，Scandix Pec－ ten－Veneris
7．7．1．a $\lambda \alpha ́ \chi a \nu o \nu ;$ a class of plants called $\sigma к а \nu \delta \kappa \omega ́ \delta \eta ; ~ 7.8 .1 . s t e m ~$ ＇on the ground．
бкídлa，squill，Urginea maritima
1．6．7．root in scales；1．6． 8. root fleshy and bark－like ：root not tapering；1．6．9．no side roots；1．10．7．no leaf－stalk： attachment of leaves；2．5． 5. cuttings of $\sigma v \kappa \hat{\eta}$ etc．set in the bulb．of $\sigma . ; 7$ 7．2．2．root makes offsets；7．4．12．formation of roots of кро́ $\mu \nu о \nu$ comp．；7．9．4．， $c f .1 .6 .7$ ；7．12．1．root edible（of
 （see below）；7．13．1．leaves de－ scribed：7．13．2．flower－stem not the only stem；7．13． 3. ＇successive＇flowering of $\dot{a} \sigma \phi o$－ ठєлоs comp．；7．13．4．very tenacious of life ：hence various uses：use as a charm ；7．13．5－7． stem appears before leaves： sequence described and comp． with that of vápкıббos（1）； 9．18．3．leaf of ö $\rho \chi$ ts comp．
бкі́गोа $\dot{\eta}$＇E $\pi \iota \mu \in \nu i \delta \in \iota o s$, French spar－ row－grass，Ornithogalum pyren－ aicum
7．12．1．see above．
$\sigma \kappa o ́ \lambda \nu \mu \circ$（ $=$ ？$\lambda \epsilon \iota \mu \omega \nu i ́ a ~ 6.4 .3$.$) ，golden$ thistle，Scolymus hispanicus
6．4．3．a＇thistle－like＇plant： leaves spinous；6．4．4．time of flowering；6．4．7．described；
 ν vкウ́ comp．；7．10．1．grows and flowers entirely in summer； 7．15．1．flowering depends on the heavenly bodies； 9.12 .1.

9．13．4．an unnamed plant of Tegea comp．
бколо́тє $\nu \delta \rho \circ \nu$ ，hart＇s tongue，Scolo－ pendrium vulgare
9．18．7．leaf of ク̀mióvıo comp．
бкópoঠov（ σ кópסov），garlic，Allium sativum
1．6．9．no side－roots ；1．10． 7. attachment of leaves ；7．1． 7. stem single；7．2．1．propaga－ tion；7．2．3．offsets specially numerous；7．4．1．several kinds ；7．4．7．do．；7．4．11．do．； e．g．тò Kúmpıov：cultivation etc．； 7．4．12．formation of roots of кро́ μ vo contrasted；7．8． 2. stem smooth，not branched； 7．13．4．grows in colonies be－ cause of offsets；9．8．6．eaten as precaution by diggers of е̇ $\lambda \lambda$ е́ β ороя．
$\sigma к о \rho \pi i ́ o s(1), G e n i s t a ~ a c a n t h o c l a d a$
6．1．3．has spines for leaves； 6．4．1．one of very few plants which are altogether spinous； 6．4．2．described．
бкортíos（2），leopard＇s bane，Doro－ nicum cordatum
9．13．6．peculiar shape，resembles scorpion，and is useful against its sting．
бкортіоя（3）（？бкортіог）（＝а́корітор $=\theta \eta \lambda v ́ \phi \circ \nu 0 \nu 9.18 .2$ ．$=\mu \nu$ ó申ого $\nu)$ ， wolf＇s bane，Aconitum Anthora
9．18．2．properties ：habitat： fatal to scorpion．
$\sigma \kappa v \theta \iota \kappa \eta$（ $=\gamma \lambda \nu \kappa \in i \alpha, s c$ ．рí̧а 9．13．2．）， liquorice，Glycyrrhiza glabra
9．13．2．fragrant：grows on Lake Maiotis：medicinal use：use against thirst．
$\sigma \mu i \lambda a \xi(1)$ ，holm－oak，Quercus Ilex typica
3．16．2．described．
$\sigma \mu i \lambda a \xi(?)(2)(=\mu i \lambda \alpha \xi)$ ，smilax，Smi－ lax aspera
3．18．11－12．described；7．8．1． stem clasping．
$\sigma \mu v ́ \rho \nu a\left(g u m \quad \sigma \mu v \rho^{\rho} \nu a \operatorname{9.1}\right.$ ．2．），myrrh， Balsamodendron Myrrha
4．4．12．gum of an Arian äка $\nu \theta$ a（see App．（9））comp．；4．4．14．in list of Oriental д́ $\rho \omega ́ \mu \alpha \tau \alpha$ ；9．1．2．sap gummy（called $\sigma \mu$ v́pva）；9．1．6 time of tapping；9．4．1．collec－

INDEX OF PL.ANTS

tion of gum ; 9. 4. 2. Arabian: habitat; 9. 4. 3. described (two accounts) ; 9. 4. 4-10. accounts of travellers; 9.7.3. in list of áрө́ $\mu а \tau а$.
бó $\boldsymbol{\kappa o s , \text { , sow-thistle, Sonchus Nymani }}$
4.6.10. growth of фoivt (2) comp.; 6. 4. 3. a 'thistle-like' plant, but has not the characteristic 'head' of such plants; 6.4.5. stalk of a kind of äкavos comp.; 6. 4. 8. root.
 saffron, Colchicum parnassicum

1. 6. 11. large fleshy roots.

бाeıpaia, privet, Ligustrum vulgare

1. 14. 2. bears fruit at top; 6.1.4. a spineless wild under-shrub.
($\sigma \pi$ o $\gamma \gamma i \alpha$, sponge
1. 6. 5. found on North Coast of Crete ; 4. 6. 10. distinguished from 'plants.')
бтоঠıás ($=\pi \rho \frac{v}{\mu \nu \eta}$), bullace, Prunus insititia
1. 6.4. very shallow rooting : few roots.
 according to some) (= о́ $\rho \tau v \xi$ 7. 11. 2. according to some), plantain, Plantago Lagopus
$\sigma \tau o \iota \beta \dot{\eta}$ ($=\phi$ ф́ws 6. 1. 3.), Poterium spinosum
2. 10. 4. leaves fleshy; 6. 1. 3. has leaves as well as spines: a wild under-shrub; 6. 5. 1. in list of such plants; 6. 5. 2. has no spines on the leaves.
 Cydonin vulgaris
1. 2. 5. seed produces кvס́ẁtos.

बт $\rho \circ \mathrm{v}$ iov (2) ($=\sigma \tau \rho \circ \hat{\text { ® }}$ os $)$, soap-wort, Saponaria officinalis
6. 4. 3. a 'thistle-like' plant, but has not the characteristic 'head' of such plants; 6.8.3. a coronary plant: flowering time: scentless.
$\sigma \tau \rho o v ิ \theta$ os ($=\sigma \tau \rho o v \theta i o v(2)$),soap-wort, Saponaria officinalis
9. 12. 5. leaf of $\mu \dot{\eta} \kappa \omega \nu \dot{\eta}$ 'Нраклеía comp.
otpúxvos
7. 15.4. several plants called by this name, which have nothing in common but the name : three
mentioned (see below) ; 9.11. 5-6.
kinds (see below) ; 9.15. 5. two kinds grow in Arcadia.
 shade, Solanum nigrum
3. 18.11. fruit of $\sigma \mu i \lambda \alpha \xi(2)$ comp.; 7. 7. 2. a $\lambda \alpha ́ \chi a \nu o \nu: ~ c a n ~ b e ~$ eaten raw; 7. 15. 4. more or less cultivated: has berries.
$\sigma \tau \rho$ v́र vos ó μ aviкós (= θ púopos 9.116. $=\pi \epsilon \rho \iota \tau \tau o ́ s ~ 9.11 .6)$ thorn-apple, Datura Stramonium
7.15. 4. causes madness, or, in a large dose, death; 9. 11. 6. described: medicinal use; 9.19.1. effect on ' mind.'
 fera
7. 15. 4. induces sleep; 9. 11. 5. described: medicinal use : habitat.
$\sigma \tau v ́ p a \xi$, , storax, Storax officinalis
9. 7. 3. in list of $\dot{\alpha} \rho \omega$ ر $\mu \alpha \tau \alpha$.

бvка́цєขos, mulberry, Morus nigra

1. 6.1. core hard and close:1.9.7. time of leafing; 1. 10. 10. fruit made of flbre and skin; 1. 12. 1. taste of fruit; 1.13 . 1 . flower 'downy'; 1.13.4. attachment of flower ; 5. 3. 4. character of wood; 5. 4. 2. do.: wood little liable to decay: turns black when old; 5. 6. 2. wood tough and easy to bend: uses; 5. 7. 3. wood used for bent-wood work: use in shipbuilding.
бvка́ $\mu \imath$ os $\dot{\eta}$ Aíरvitia, sycamore. Ficus Sycamorus
1.1.7. position of fruit; 1. 13.2. bears on stem; 4. 1. 5. barren in uncongenial climate; 4.2.1-2. peculiar to Egypt: described; 4. 2. 4. $\kappa \in \rho \omega \nu^{a} a$ distinguished.
σ бкरी (1) (fruit $\sigma \hat{\kappa o \nu}$), fig, Ficus Carica
2. 3. 4. a typical 'tree'; 1. 3. 5. evergreen at Elephantine; 1.5.1. crooked and low; 1. 5. 2. bark smooth: bark in one layer; 1. 5. 3. wood fleshy; 1. 5. 3. wood not fibrous; 1.6.1. core fleshy; 1.6.3. roots many and long; 1. 6. 4. roots crooked; 1. 72 . roots very long; 1.8.1.

INDEX OF PLANTS

no knots ; 1.8. 2. has less knots than épıveós; 1. 8. 5. young branches 'roughest'; 1.9.7.time of shedding leaves; 1. 10. 4. leaves broad; 1. 10. 5. leaf divided: etc.; 1. 10. 8. leaves made of 'bark' and flesh; 1. 11. 4. seeds all together in a single case; 1. 11. 6. arrangement of seeds; 1. 12. 1. taste of fruit; 1. 12. 2. taste of sap; 1. 14. 1. bears on new shoots: sometimes also on old wood (?); 1. 14. 4. cultivated form of épıveós: many cultivated forms; 2. 1. 2. propagation ; 2. 2. 4. degenerates from seed: etc.; 2. 2. 12. cannot be made out of $\dot{\text { épeveós by cultivation } \text {; }}$ 2. 3. 1. sometimes changes to épıveós spontaneously; 2. 3. 3. sometimes bears fruit from behind the leaves: other anomalies; 2. 5. 3. grafting; 2. 5. 4. propagation; 2. 5. 5. cuttings set in a bulb of $\sigma \kappa i \lambda \lambda \eta ; 2.5 .6$. easily propagated : trees should be planted far apart; 2.5.7. low ground suitable; 2. 6. 6. dates said to vary as much as figs in colour etc.; 2.6.12. cuttings set upside down; 2. 7. 1. effects of watering; 2. 7. 5. use of dust ; 2. 7. 6. root-pruning etc.; 2.8 1. apt to shed immature fruit: caprification ; 2.8.2-4. do. and pseudocaprification ; 3. 3. 8. sheds е́pıvá; 3. 4. 2. time of budding; 3.5.4. autumn budding; 3.6.2. formation of buds; 3. 7. 3. produces épıvá and ồ $\lambda \nu \nu \theta \circ \iota$; [3. 17. 4. a local Idaean kind (see below) ; 3. 17. 5. do. described;] 4.2.3. taste of fruit of $\sigma . \dot{\eta}$ Kumpia comp.; 4. 4. 4. fruit of $\eta \sigma v \kappa \hat{\eta}$ ' $\mathrm{I} \nu \delta \iota \kappa \dot{\eta}$ comp.; 4. 5. 3. grows well in Pontus with shelter; 4. 7. 7. size of marine trees of island oi Tylos comp.; 4.13.1. shorter-lived than épıveós; 4. 13. 2. short-lived; 4.14.2. apt to get worm-eaten: young plants liable to 'sunscorch'; 4. 14.3. destroyed by 'worms'
which breed in it: gets scab in some regions; 4. 14. 4-5. other diseases; 4.14.8. effects on fruit of rain and drought; 4. 14. 10. infested by knips; 4. 14. 12. suffers most from special winds; 4.15.2. survives stripping of bark for some time ; 4. 15.2. instance of bark growing again; 4. 16. 1. survives splitting of stem; 5.3.3. character of wood; 5. 6. 1. wood strong only against a vertical strain; 5. 9. 5. wood makes pungent smoke; 5. 9. 6. wood good for kindling furnaces ; 7. 13. 2. root of $\dot{\alpha} \sigma \phi \dot{\phi} \delta \in \lambda$ os eaten with figs.
$\sigma v \kappa \hat{\eta}$ (2) $\dot{\eta}$ Aiүvitía (=кєршขia 1.11.2.), carob, Ceratonia Siliqua

бvкฑ̂ (3) $\grave{\eta}$ 'İaía (fruit $\sigma \hat{\kappa} к \nu$), Amelanchier vulgaris
3. 17. 4-5. described.

бvкर्ŋ (4) $\dot{\eta}$ 'I $\nu \delta \iota \kappa \eta$, banyan, Ficus bengalensis
1.7.3. roots again from branches; 4. 4. 4-5. described.
$\sigma v \kappa \hat{\eta}(5) \dot{\eta}$ Kvaрía, sycamore, Ficus Sycamorus var.
4. 2. 3. described.

бטкท̂ (6) і̀ ムaкшขєкท́, Ficus Carica var.
2. 7. 1. water-loving ; 2. 8. 1. caprification not used.
бטкท̂ (7) ($\grave{\eta}$ 'A $\rho \alpha \beta \iota \eta$), Ficus Carica var.?
4.7.8. an evergreen Arabian kind.
($\sigma v \kappa \hat{\eta}$ (8) (? an alcyonidian polyp)
4.6.2 peculiar to certain waters; 4. 6. 9. described).
-фф́коз, sage, Salvia calycina
6. 1. 4. a spineless wild undershrub; 6. 2. 5. like cultivated $\dot{\text { é }} \boldsymbol{\text { е }} \boldsymbol{i} \boldsymbol{\sigma} \boldsymbol{\phi}$ акоs: leaf of one kind of тра́ $\sigma \iota \frac{1}{}$ comp.
$\sigma \phi \in ́ v \delta a \mu \nu o s$, maple, Acer monspessulanum
3. 3. 1. a tree of mountain and plain; 3.3.8 doubt whether it has a flower; 3. 4. 4. time of fruiting; 3. 6. 1. slow-growing (?) ; 3. 6. 5. roots shallow and few according to Arcadians; 3. 11. 1-2. described; 5. 1. 2. time of cutting timber ; 5.1.4.

INDEX OF PLANTS

do．；5．3．3．character of tim－ ber；5．7．6．uses of wood．
σ Xivos（fruit σ Xıvis 9．4．7．），mastich， Pistacia Lentiscus
9．1．2．produces a gum ；9．4．7． $\lambda_{\iota} \beta \alpha \nu \omega \tau$ ós comp．by some．
$\sigma \chi$ oìos（1），rush，Juncus spp．etc．
1．5．3．not jointed ；1．8．1．no knots ；4．8．1．in list of $\tau \grave{\alpha}$ лохиш́ঠ ；4．12．1－3．kinds dis－ tinguished．
 Cymbopogon Schoenanthus
9．7．1．habitat（E．of Lebanon）： described：fragrance；9．7． 3. in list of áp $\omega \mu \alpha \tau \alpha$ ．
$\sigma \chi$ оî̀os（3）̀̀ ка́ртєноя，$(=\mu \in \lambda \alpha \gamma к р \alpha-$ עís，4．12．1．），bog－rush，Schoenus nigricans
4．12．1－3．described．
бхоîvos（4）¿̀ ó入ó $\sigma \chi o \iota \nu o s$, Scirpus Holoschoenus
4．12．2．described； 9 12．1．used for stringing pieces of χ a $\mu \downarrow \lambda$ é $\omega \nu$ ¿̀ λ evкós．
$\sigma \chi o i ̂ \nu o s(5) \dot{o}$ ỏšv́s，Iuncus acutus
4．12．1－2．described．
$\sigma \chi o i v o s(6)$
4．7．3．stone＇σ रoìpol＇in＇Red Sea．＇）
$\tau \in ́ \rho \mu \iota \nu \theta$ os（ $\tau \in \rho \in ́ \beta \iota \nu \theta$ os），terebinth， Pis－ tacia Terebinthus
1．9．3．evergreen（wild form）； 3．2．6．characteristic of Syria； 3．3．1．a mountain tree；3．3．3． evergreen ；3．4．2．time of bud－ ding；3．4．4．time of fruiting； 3．15．3－4．described ；4．4．7．τ ． $\dot{\eta}$＇I $\nu \delta \iota \kappa \eta$ ́ comp．；4，16．1－2．not injured by cutting for resin； 5．3．2．character of wood：uses； 5．7．7．fruit and resin useful， wood not used in craits；9．1．2． sap gummy；9．1．6．time of tapping；9．2．1．method of tapping ；9．2．2．produces best resin（ $\dot{\rho} \eta \mathrm{i} i \eta \eta$ ）；9．2．2．said to be burnt for pitch（ $\pi i \tau \tau \alpha$ ）in Syria：cf．3．2．6．；9．3． 4. method of preparing pitch in Syria；9．4．7．$\sigma \mu$ v́pva comp．by some；9．4．8．some say $\sigma \mu$ úpva $=\tau . ; 9.5$ ．1．fruit of β á $\sigma \sigma \mu \mathrm{ov}$ comp．

3．4．2．time of budding；3．4．6， time of fruiting．
тeт $\rho \dot{a} \lambda \iota \xi$ ，yellow star－thistle，Cen－ taurea solstitialis
6．4．4．a＇thistle－like＇plant： time of growing．
$\tau \in \hat{v} \tau \lambda \iota s$（ $=\tau$ ềv $\tau 0 \nu$ ）
7．7．2．a λ á $\chi a v o v$ ；needs cooking． $\tau \in \hat{\tau} \tau \lambda o \nu$（ $\tau \in \tilde{\tau} \tau \lambda \iota \circ \nu$ ）$=\tau \in \hat{\tau} \tau \lambda \iota \varsigma$ ，beet， Beta maritima
1．3．2．becomes large in cultiva－ tion；1．5．3．stem fleshy；1．6．6． root single，but with large side－ growths；1．6．7．root fleshy； 1．9．2．，cf．1．3．2；1．10．4． leaves fleshy ；7．1．2－3．time of sowing and germination；7．1．5． do．；7．1．6．germination；7．2．2 root makes offsets；7．2．5－6． root described；7．2．7．root of лáma日ò comp．；7．2．8．root； 7．3．2．seeds；7．4．1．several kinds ；7．4．4．two kinds，тò
 7．5．5．seed keeps well．
тท̂入ıs（＝ßovképas），fenugreek，Trigo－ nella Foenum－graecum
3．17．2．leaf of кодovтéa（кодoıтía （1）comp．
тiөv́maдлоs（produces imтофаés？ 9．15．6．see note）（ $=\mu \eta \kappa \omega \dot{\omega} \iota \circ$ р 9．8．2．），spurge，Euphorbia Peplus etc．
9．8．2．juice of stalk，how col－ lected；9．11．1．several kinds； 9．11．5．do．；leaf of $\sigma \tau \rho v \chi^{2}$
 （see below）；9．15．6．Arcadian ： localities．
 thorpii
9．11．8．described ：medicinal use．
тiӨv́ma入入os ò $\mu v \rho \tau i ́ \tau \eta s$（fruit кápvov 9． 11 9．），Euphorbia Myrsinites
9．11．9．described：habitat：time of gathering ：medicinal use．
тıӨv́ma入入os ó mapádıos，sea－spurge， Euphorbia Paralias
9．11．7．described：medicinal use．
ti $\phi \eta$ ，one－seeded wheat，Triticum monococcum
1．6．5．roots numerous；2．4． 1.

INDEX OF PLANTS

seed，unless bruised，produces тvpós ；8．1．1．in list of cereals； 8．1．3．sown early ；8．2．1．ger－ mination described；8．2． 6. time of ripening seed；8．4．1． comp．in detail with other cereals；8．8．3．τ ．and 弓єćá only plants which can change into something quite different（cf． 2．4．1．）；8． 9 2．exhausts the soil less than any other cereal： reason：likes light soil：τ ．and ら́tá the cereals most like тиро́s．
ri申vov，autumn squill，Scilla autum－ nalis
7．13．7．flower appears before leaves and stem．
траүа́ка⿱䒑夫a（1），tragacanth，Astra－ galus creticus
9．1．3．produces a gum：now known to grow not only in Crete（see τ ．（2））；9．8．2．no cutting needed to collect gum．
траүа́каәөa（2），tragacanth，Astra－ galus Parnassi
9．15．8．abundant in Achaia and not inferior to the τ ．of Crete．
траүоты́үш（ $=\kappa$ ко́м 7．7．1．）goat＇s beard，Tragopogon porrifolius
 трíßoдos（1），caltrop，Tribulus ter－ restris
3．1． 6 comes up spontaneously in damp places；6．1．3．has leaves as well as spines：has spines on the fruit－vessel： 6．5．3．distinguished from $\tau \rho i-$ Bodos（2）；7．8．1．stem＇on the ground＇；8．7．2．（as a weed）

трíßodos（2），caltron，Fagonia cretica
6．1．3．has leaves as well as spines；6．4．1．do．；6．5．1．in list of such plants；6．5．3．dis－ tinguished from тpípoios（1）； grows near enclosures．
трípodos（3），water chestnut，Trapa natans
4．9．1－3．described．
трıто́̀ıov（？），Aster Tripolium
9．19．2．use as charm．
 7．14．1．，English maidenhair， Asplenium Trichomanes
rúpŋ，bulrush，Typha angustata
1．5．3．not jointed；1．8．1．no knots；4．10．1．in list of plants of Lake Copais；4．10．5．de－ scribed；4．10．6．grows both on land and in water：some doubt this；4．10．7．part used for food．
váḱcıvos $\dot{\eta}$ ảypía，Scilla bifolia
6．8．1－2，flowering time．
váxııəos $\dot{\eta}$ $\sigma \pi a \rho \tau \eta \dot{\prime}$ ，larkspur，Del－ phinium Ajacis
6．8．2．flowering time：flower of тóधos（1）comp．
viסvov，truffle，Tuber cibarium
1．1．11．has not all the＇parts＇of a plant；1．6．5．no roots；1．6．9． underground．
vimoхoıís，cat＇s ear，Hypochoeris radicata
7：7．1．a λ áxavov；classed as ＇chicory－like＇from its leaves； 7．11．4．growth contrasted with रо́vঠридла．
v̈фєap，mistletoe，Viscum album
3．16．1．grows on π pivos．
фaкós，lentil，Ervum Lens
2．4．2．seed sown in dung；3．15． 3. fruit of $\tau \in ́ \rho \mu \iota \nu \theta$ os comp．；3．17．2． size of fruit of колоьтía（1）comp．； 3．18．5．arrangement of fruit of ¢ov̂s comp．；4．4．9．not found in India；4．4．10．a so－called ϕ ．in India；8．1．4．sown late；8．3．2． stem；8．3．4．seed；8．5． 1. several kinds；white form sweetest；8．5．2．seeds com－ paratively few；8．5．3．shape of pod；8．8．3．арако grows specially among $\phi . ; 8$ 8．8．4．so also $\dot{\alpha} \pi \alpha \rho i \nu \eta ; 8.8 .6$ ．causes etc． of ϕ ．becoming＇cookable＇or ＇uncookable．＇
$\phi а ́ \sigma \gamma a \nu o \nu(=\xi i \phi \iota o \nu=\xi i \phi \circ$ 7．13．1．$)$ ， corn－flag，Gladiolus segetum
7．12．3．use of root in food：root described；7．13．1．leaves de－ scribed；7．13．4．grown from seed．
фа́бкоs，tree－moss，Usnea barbata
3．8．6．borne only on aiyí $\omega \psi$（1）． $\phi \in \lambda \lambda$ ódpus（ $=$ ápía 3．16．3．），holm－ oak，Quercus Ilex var．agrifolia
1．9．3．evergreen；3．3．3．do．；

INDEX OF PLANTS

3. 16. 3. described: called ápía by Dorians.
$\phi \in \lambda \lambda o ́ s,(?=$ "廿os cf. Plin. 16. 98.), cork-oak, Quercus Suber
1. 2. 7. bark; 1.5.2. bark rough and fleshy; 1.5.4. wood light; 3. 17. 1. grows in Tyrrhenia: described; 4. 15. 1. is the stronger for having its bark stripped; 5.3.6. wood of ϕ oivı ξ (1) comp.

фéшs ($=\sigma \tau o \imath \beta \dot{\eta}$ 6. 1. 3.), Poterium spinosum.
$\phi \eta \gamma o ́ s(=\delta \rho \hat{s} \stackrel{\dot{\eta}}{ }$ ả $\gamma \rho i ́ a)$, Valonia oak, Quercus Aegilops
3. 3. 1. a mountain tree ; 3. 4. 2. time of budding; 3.6.1. slowgrowing (?); 3.8.2. one of the five 'Idaean' kinds of oak: described : fruit; 3.8.3-4. acorns; 3. 8. 4. timber; 3. 8. 7. one of the four 'Macedonian' kinds of oak; 4. 13. 2. ancient trees at Ilium; 5. 1. 2. time of cutting timber.
ф८лv́кך, alaternus, Rhamnus Alaternus
1.9.3. evergreen; 3.3.1. a mountain tree; 3. 3. 3. evergreen; 3. 4. 2. time of budding; 3.4.4. time of fruiting ; 5.6.2. easiest wood for turning.
$\phi i ́ \lambda \nu \rho a(=\phi i ́ \lambda \nu \rho a \dot{\eta}$ ө $\dot{\eta} \lambda \epsilon \iota \alpha$), lime (or silver lime), Tilia platyphyllos, (or tomentosa)

1. 5. 2. bark thin : bark in layers; 1.5.5. wood pliable; 1. 10. 1 . leaves inverted in summer; 1. 12. 4. leaves, but not fruit, eaten by animals; 3.3.1. a mountain tree; 3.4.2. time of budding; 3. 4.6. time of fruiting: fruit inedible ; 3. 5. 5-6. winter-buds; 3. 10. 4-5. described: 'male' and 'female' forms distinguished (see below); 3. 11. 1. bark of $\sigma \phi \in ́ \nu \delta a \mu \nu 0 s$ comp.; 3. 13. 1. bark of кє́paбоя comp.; 3. 13. 3. grows where кє́рабоs grows; 3. 17.5. leaf of $\sigma v \kappa \eta$ ク̀ 'I δ aía comp.; 4.4.1. hard to grow in Babylon; 4.5.1. in list of Northern trees; 4.8.1. grows partially in water; 4.15.1. outer bark can be stripped;
1. 15. 2. survives stripping of bark for some time; 5. 1. 2. time of cutting timber; 5.1.4. do.; 5. 3. 3. character of wood; 5. 5. 1. wood easy to work; blunts tools; 5.6.2. wood soft and easy to work; 5.7.5 various uses of wood and bark; 5.9.7. wood used for fire-sticks.
фíגvра $\dot{\eta}$ á $\rho \rho \eta \nu(=\phi i \lambda \nu \rho \in ́ \alpha)$, mockprivet, Phillyrea media
1. 10. 4-5. distinguished from ϕ. $\dot{\eta}$ өи́лє
фíגvpa $\dot{\eta}$ Өй $\lambda \epsilon \iota a$ ($=\phi i ́ \lambda v \rho a)$, silverlime, Tilia tomentosa
3.10. 4-5. distinguished from ϕ. $\dot{\eta}$ ${ }^{\alpha} \rho \rho \eta \nu$.
ф८лvрє́а, mock-privet, Phillyrea media
1. 9. 3. evergreen; 3. 4. 6. (?) time of fruiting.
$\phi \lambda \epsilon \omega$ ($\phi \lambda \epsilon \omega$ s), Erianthus Ravennae
4.8.1. In list of $\tau \grave{\alpha} \lambda o \chi \mu \omega ́ \delta \eta ; 4.10 .1$. in list of plants of Lake Copais; 4. 10. 4. described; 4. 10. 6 . grows both on land and in water; grows on the floating islands of Lake Copais ; 4. 10. 7. part used for food; 4. 11. 12. foliage of some ка́ладог comp.
$\phi \lambda o ́ \gamma \iota \nu \circ \nu(=\phi \lambda$ ós $)$, wall-flower, Cheiranthus Cheiri
1. 8. $1-2$, a coronary plant: flowering time.
$\phi \lambda o ́ \mu o s ~ \grave{\eta} \mu$ е́лацьa, mullein, Verbascum sinuatum
1. 12. 3. leaf of $\mu \dot{\eta} \kappa \omega \nu \dot{\eta} \kappa є \rho a \tau i \tau \iota s$ comp.
 Cheiranthus Cheiri
1. 6. 2. a cultivated under-shrub; a coronary plant: scentless; 6. 6. 11. grown from seed.

фoîvı(1), date-palm, Phoenix dactylifera

1. 2. 7. 'flesh' turns to wood; 1.4.3. (?) tolerant of sea-water; 1. 5. 1. few branches; 1. 5. 2. rough bark; 1. 5. 3 wood fibrous; 1.6.2. core not distinguishable; 1. 9. 1. growth chiefly upwards; 1. 9. 3. evergreen; 1. 10. 5. reedy leaves; 1.11.1. seed immediately within envelope: envelope not single;

INDEX OF PLANTS

1. 11. 3. seed solid and 'dry' throughout; 1. 13. 5. 'male' only flowers; 1.14.2 bears fruit at top; 2. 2. 2. propagation; 2. 2.6 seeds come true; 2.2.8. effect of locality; 2.2.10. effects of climate; 2.6.1. propagation from fruit; 2.6.2. propagation from 'head'; 2.6.3. cultivation ; 2.6.4. do.; 2. 6. 5. cultivation in Syria; 2.6.8. various kinds; [2.6.9. branching kind: see кочкเóфороу]; [2. 610. shrubby kind: see кої§] ; 2.6.12. cuttings set upside down; 2. 8. 1. apt to shed immature fruit; 2. 8. 4. artificial fertilisation; 3.3.5. not fruitful wherever it grows; 3. 13. 7. dwarf
 cf.2.2.10; 4.2.7. коикıо́форор comp.; 4. 3. 1. grows in parts of Libya; 4. 3. 5. grows well in waterless Libya: salt in soil, water supply; 4.3.7. kept alive by dew in dry regions; 4. 4. 3. sown in pots; 4.4.13. dangerous to eat unripe dates (in Gedrosia); 4. 7. 8. occurs on the island of Tylos; 4. 13. 2. story of the very old ϕ. on Delos; 4. 14. 8. if topped, becomes barren, but is not destroyed; 4. 15. 2. survives stripping of bark; 5. 3. 6. character of wood: used for images; 5. 6. 1. wood strong: behaviour under pressure: 5. 9. 4. wood makes a very evil smoke when burnt for charcoal; 6. 4. 11. seed-vessel of ка́ктоs (1), when stripped of seeds, comp. to 'brain' of ϕ.; 9. 4. 4. mats in Arabia made of leaves of ϕ.
фoîvı ${ }^{\prime}$ (2), Nannorhops ritchiana
1. 4. 8. Bactrian.
 Chamaerops humilis
1. 6. 11. described; 3.13.7. (?). фoî̀ ξ (4), Callophyllis laciniata
4.6.2. peculiar to certain waters; 4. 6. 10. described.

фо́vos (=àтрактvдís 6. 4. 6.), distaffthistle, Carthamus lanatus
6. 4. 6. reason for name
ϕ ûкos (1) тò $\pi \lambda a \tau u ́ \phi u \lambda \lambda o \nu(=\zeta \omega ́ \sigma \tau \eta \rho$ 4. 6. 2. $=\pi \rho a ́ \sigma o \nu ~(2)), ~ g r a s s-~$ wrack, Posidonia oceanica
4. 6. 2. occurs generally in Greek waters: root described.
 band-weed, ($=\pi \rho \alpha ́ \sigma o \nu \quad(3))$, Laminaria saccharina
4. 6. 4. described: grows in Atlantic: washed into Mediterranean; 4. 7. 1. refers to 4.6.4.

4.6.4. collected by sponge-fishers.
 foeniculosa
4.6.3. described.

фи̂коs (5), litmus, Roccella tinctoria
4. 6. 5. Cretan: dye described.

фरैкоs (6), grass-wrack, Cymodoceu nodosa (and Zostera marina)
4. 6. 6. described: comp. to ä $\gamma \rho \omega \sigma \tau \iota$.

6. 4. 3. a ' thistle-like' plant.

хацаíßатоs (=ßáтos), Rubus ulmifolius
3. 18. 4. described.

хацаıб́́ф η, periwinkle, Vinca herbacea
3. 18. 13. leaf of єن่ต́vvuos comp. хацаíסpvs, germander, Teucrium Chamaedrys
9. 9.5. medicinal use : described. $\chi \propto \mu a i \lambda \epsilon ́ \omega \nu$, chamaeleon
6. 4. 3. a 'thistle-like' plant, but leaves not spinous (see n. on 6.4.8.); 6.4.8. flower turns into 'down'; 9. 12. 1-2, kinds (see below).
 9.12.1. = ӓкаขоs $=i \xi$ ía $(2)=$ igív ${ }^{\prime}$), pine-thistle, Atractylis oummifera
9.12.1. described: medicinal use : fatal to dogs and pigs: how administered: grows everywhere.
$\chi \propto \mu a \iota \lambda \epsilon ́ \omega \nu$ ò μ é $\lambda a s, C a r d o p a t i u m$ corymbosum
9. 12. 2. described: medicinal use: habitat: fatal to dogs; 9. 14. 1. how long drug will keep.

INDEX OF PLANTS

$\chi^{\kappa \lambda \iota \delta o ́ v ı o \nu, ~ g r e a t e r ~ c e l a n d i n e, ~ C h e l i-~}$ donium maius
7．15．1．flowering depends on the heavenly bodies．
χ óv $\delta \rho v \lambda \lambda a$, Chondrilla juncea
7．7．1．a $\lambda a ́ \chi a \nu o v: ~ c l a s s e d ~ a s ~$ ＇chicory－like＇from its leaves； 7．11．4．growth of imoxotpis contrasted．

$\psi \in v \delta o \delta i ́ k \tau a \mu \nu o v$, Ballota acetabulosa

9．16．2．comp with סiкта $\nu_{\nu} \nu$ as to appearance and properties：sald by some to be only a degene－ rate form of $\delta i ́ к \tau а \mu \nu \alpha \nu$ ：method of keeping．

ผّкєцоь，basil，Ocymuт basilicum
1．6．6－7．root woody；1．10． 7.
time of leaf－growth；7．1．2－3． time of sowing and germina－ tion；7．2．1．propagation ；7．2．4． grows again when stem is cut； 7．2．7－8．root described；7．3．1． long in flower；7．3．2－3 seeds described；7．3．4．seed very abundant：seed borne at top； 7．4．1．only one kind；7．5．2． watered at mid－day；7．5．4． effect of hot weather；7．5， 5 ． seed does not keep well ；7．7．2． leaf of ко́рхороs comp．；7．9．2． flowers borne in succession，$c f$ ． 7．3．1．；9．18．5．leaf of áppevó－ yovov and of $\theta \eta \lambda$ v́rovov comp．
玉xpo
8．1．3．sown early；8．3．1．leaf ； 8．3．2．stem；8．10．5．infested by＇worms．＇

APPENDIX OF UNNAMED PLANTS

The following plants（arranged in the order of mention）which are described or indicated，but not named，in the Enquiry，seem possible to identify：－
 thyrus tuberosus
1．6．12．root described．
 mosa asperata
4．2．11．described：＇sensitive．＇
3．（ $\delta \in ́ v \delta \rho o \nu . . . \mu \epsilon \gamma a \lambda o ́ к \alpha \rho \pi о \nu)$ ，Jack－ fruit，Artocarpus integrifolia
4．4．5．used for food by Indian sages．
4．（фv́八入 10ν ．．$\tau 0 i ̂ s ~ \tau \hat{\omega} \nu ~ \sigma \tau \rho o v \theta \hat{\omega} \nu$ ттєрої ő $\mu о \iota o \nu$ ），banana，Musa sapientum
4．4．5．described．
5．（картòs бко入ıòs é $\sigma \theta$ tó μ evos δ è $\gamma \lambda v \kappa$ ús），mango，Mangifera in－ dica
4．4．5．fruit described：causes dysentery．
6．（картòs öpotos toîs крале́o七s），јu－ jube，Zizyphus Jujuba
4．4． 5.
484

7．（öนо七ov $\tau \in \rho \mu i v \theta \omega)$ ，pistachio－nut， Pistacia vera
4．4．7．described．
8．（öนосоу тй oै $\neq \epsilon$ каì тò β ои́кєрая）， Phaseolus Mungo
4．4．9－10．called by Hellenes факós，and similarly used．
 äкаขөa（4）$\dot{\eta}$＇ $\mathrm{I} \nu \delta \iota \kappa \eta$ ），Balsamo－ dendron Mukul
4．4．12．grows in Aria：de－ scribed．
 foetida，Scorodosma foetidum
4．4．12．described：fatal to horses．
 Nerium odorum
4．4．13．effect on animals．
12a．（ס́́vঠpa μ＇́ $\gamma a \lambda a$ ），mangrove， Bruguiera gymnorhiza
4．7．4．described．

INDEX OF PLANTS

 סáфvŋn) mangrove, Rhizophora mucronata
4. 7. 4. described (as if identical with $12 a$.).
 ceras maius
4. 7. 5,6 , and 7. described.
14. (ठ́́v $\delta \rho a$ ö öota $\tau \hat{\eta}$ ảv $\delta \rho \alpha ́ x \lambda \eta$ ($=$ ठáф $\eta \eta$ (6) $=$ é $\lambda \alpha \alpha^{\alpha}$ (3)), white mangrove, Avicennia officinalis
4. 7. 5. described.
 $\lambda \in ข к о$ о́ $\varphi)(=(16))$, tamarind, Tamarindus indica
4. 7. 8. grows in the island of Tylos.
 tamarind, Tamarindus indica
4. 7. 8. grows in the island of Tylos: opening and closing of flower.
17. ($\sigma v \kappa \hat{\eta}$ ov่ $\phi v \lambda \lambda о \rho o o v ̂ \sigma \alpha), ~ F i c u s ~$ laccifera
4. 7. 8. grows in the island of Tylos.
18. (ömo七ov тoîs крívoıs) Ottelia alismoides
4. 8. 6. Egyptian marsh-plant: habitat and leaves: medicinal use.
19. (êv $\tau \iota$ रévos èv $\tau \alpha i ̂ s ~ \lambda i ́ \mu \nu a \iota s), ~$ Saccharum biflorum
4. 8. 13. use for fodder.
 Corchorus trilocularis
4. 8. 14. treatment as fodder: fruit described.
21. (δ év $\delta \rho o \nu)$, Sissoo-wood, Dalbergia Sissoo
5. 3. 2. wood described: use for making furniture.
22. ((̇ंv́lo ν), teak, Tectona grandis
5.4.7. wood stands sea-water well.
23. (('́́v $\delta \rho o \nu)$, calamander wood, Diospyros quaesita
5. 4. 7. wood described.
 camphorata
6.3.6. properties : effect on sheep.
25. (тò $\tau \hat{\eta}$ váp $\delta \omega \pi \rho \circ \sigma \epsilon \mu \phi \in \rho \hat{\eta}$ т̀े ν ó $\sigma \mu \grave{\nu} \nu$ é $\chi \circ \nu$), Valeriana Dioscoridis
9. 7. 4. a Thracian á $\rho \omega \mu$.
 $\tau \hat{\omega} \kappa \nu \mu(\nu \varphi)$, broom-rape, Orobanche versicolor
8. 8. 5. parasitic on кข́ц८ขov.
27. (рí̧a 1 avarךфópos), Somali arrowpoison, Acokanthera Schimperi
9. 15. 2. Aethiopian: used for poisoning arrows.

anktid 50 Thatro

 (h)

 shrout

$$
56
$$

$4+3+202020+2$

 ank

 -
 \qquad

is hath alt at ecay ctio

 29

KEY TO THE INDEX

I．－LIST OF PLANTS MENTIONED IN THE ENQUIRY UNDER BOTANICAL NAMES

Abies cephalonica	¢̇̀áqๆ（1）
pectinata	
acia albida	
－arabica	arava
tortilis	ӑкаขөа（3）
Acantha arabica	（7）
cer campestre	suyía
creticum	
－monspessulanum	σ
pseudo－Platanus	kגıl
Acokanthera Schim－	App．
Aconitum Anthora	ảко́vıтоу，өךлv́－ фovov，$\mu v o ́-$ фогоу，бкор－ mios（3）
Acorus Calamus	
Adiantum Capi	
Veneris	
Aegiceras majus	App．
Aegilops ovata	aiyi入ı廿
Ailanthus malaba	кө́макор
Ajuga Ira	ย̇тєтi้ท
Allium Cepa and vars	$\gamma \dot{\theta} \theta$ vov，$\gamma \dot{\prime} \tau \epsilon \epsilon-$ оу，кро́м $\nu \frac{1}{}$ ， к．тò $\sigma \chi$ ८ σ－ то́v，кроцขо－ ข $\boldsymbol{\eta} \tau \epsilon 10 \nu$
nigrum	
Porrum	áaos（1）
－sativum	
Alnus glutinosa	$\kappa \lambda \lambda \eta{ }^{\text {¢ }}$
Althaea officinalis	
Amaranthus Blitum Amelanchier vulgaris Amomum subulatum	β 人itov

Anagallis caerulea	ко́pXopos
Anchusa tinctoria	
Andropogon Ischae－ mum	íरXaıros
Anemone blanda	$\dot{\alpha} \nu \in \mu \dot{\omega} \nu \eta \quad \dot{\eta}$ ópeía
－coronaria	à．$\dot{\eta}$ 入e $\mu \omega$ vía
pavonina	
spp．	
Anethum graveolens	a้ $\nu \eta \theta$ ov，ã้ $\nu \eta-$
Anthemis chia	$\alpha \ddot{\alpha} \nu \theta \epsilon \mu о \nu, \dot{\alpha} . \tau \grave{o}$ $\phi \nu \lambda \lambda \omega \bar{\omega} \delta \varsigma$
Antirrhinum Oron－ tium	ȧ ν тípptvov
Apium graveolens	è $\lambda \epsilon \iota \sigma \sigma e ́ \lambda \iota \nu o \nu$ ， $\sigma e ́ \lambda \iota \nu o \nu, \sigma$ ． тò é $\lambda \epsilon \iota \circ$
Arbutus Andrachne	
－hybrida	а̇фа́ркך
Unedo	ко́mароя
Aristolochia rotunda	ápıбто入охía
Artemisia Absinthium	$\dot{\alpha} \psi \chi^{\prime}$
－arborescens －camphorata	ảßр́тоขоข App．（24）
Artocarpus integri－	App．（3）
folia	
Arum italicum	a้ ${ }^{\text {a }}$
Arundo Donax	Sóvağ，кá入ано ó aủ入ךтıкós
Asparagus acutifolius	à σ ¢́apayos
Asphodelus ramosus	
Asplenium Ceterach	ท̀mıóvıov
－Trichomanes	这тov
	入єvкóv，т ρ ८ Хо $\mu \alpha$ е́s

KEY TO THE INDEX

Aster Amellus
Tripolium
Astragalus creticus
Atractylis gummifera

Atriplex Halimus
$\overline{\text { Atropa Belladonna }}$

A vena sativa
A vicennia officinalis

Balanites aegyptiaca
Ballota acetabulosa

$\sum_{\text {nus }}^{p}$	Síктам pov）
Balsamodendron Mu－	
kul	App．（9）
Myrrha	бرuv́p ${ }^{\text {a }}$
Opobalsamum	β вád $\sigma \alpha \mu$
Bambusa arundinacea	ка́ланоs ò＇I ν－
Beta maritima	$\tau \in \hat{\tau} \tau \lambda$
Brassica alba	$\nu \hat{\text { âmv }}$
cretica	¢́áфа⿱亠䒑os
Rapa	\％or
Bruguiera gymnorhiza	App．（12a）
Bryonia cretica	$\ddot{a} \mu \pi \epsilon \lambda$ os $\dot{\eta} \dot{\alpha} \gamma$ pía，μ и́ $\omega \omega \theta \rho \circ$
Buxus sempervirens	múgos
Calamintha incana	è λ éviol
Calamogrostis Epi－ geios	ка́ланоs（ėாí－ $\gamma \in$ еоs）
Callitriche verna	$\lambda \epsilon \mu \nu a$
Callitris quadrivalvis	θ viov
Callophyllis laciniata	¢oivl§（4）
Calycotome villosa	áamá入 α Oos
Capparis spinosa	ка́ттарıड़
Cardopatium corym－ bosum	$\chi \alpha \mu \alpha \lambda \epsilon \dot{\omega} \nu$ μ ć̀as
Carduus arvensis	äкаขөa（2）
－acanthoides	то入váкаขөоs
Carex riparia	вои́тоноs
Carlina corymbosa	Ха́лкєıos
Carthamus lanatus	aтрактv入ís， фóvos

áбте́рьбкоs
трıто́入ıо⿱
траүа́ка⿱䒑夫a（1） траүа́ка $\boldsymbol{\nu}^{2}$（2）
$\alpha \kappa \alpha \nu \theta a$（8），
 （2），i $\xi i \nu \eta$ ， χ д $\mu \alpha \iota \lambda \epsilon \omega \nu$ ò入єчко́s
ä $\lambda \iota \mu$ о
ádpá申áves
$\mu a \nu \delta \rho a \gamma o ́ \rho a s$
（2）
вро́ноs
$\delta \alpha \dot{\alpha} \nu \eta \quad$（6）， ć $\lambda a ́ a$（3）， App．（14）
β ádavos
$\psi \in v \delta o \delta i ́ k т а \mu-$ vov
Síктацрор（ëтє－ ро⿱）
кк $\alpha \nu$（4），
p．（b）
вира
валбаног anasos o IV
$\nu \hat{a} \pi v$
páфavos
roy \quad vís
App．（12a）
$\ddot{\alpha} \mu \pi \in \lambda$ os $\dot{\eta} \dot{\alpha} \gamma-$ рía，$\mu \dot{\eta} \lambda \omega \theta \rho o \nu$
π rúgos
é λ évıo
ка́入 $\alpha \mu$ оs（є่ πi－
入ecos
ovóv
фoivl ξ（4）
a $\sigma \pi \alpha ́ \lambda a \theta o s$
antapls
a $\mu \alpha / \lambda \epsilon \omega \nu$

атрактилі́s， óvos

Carthamus leucocaulos кขท̂кos $\dot{\eta}$ à $\gamma p i a$
－tinctorius

Castanea vesca

Celtis australis
Centaurea calcitrapa
－salonitana
－solstitialis
Ceratonia Siliqua
Cerris Siliquastrum
Chamaerops humilis
Cheiranthus Cheiri
Chelidonium majus
Chondrilla juncea
Cicer arietinum
Cichorium Intybus
Cinnamomum Cassia
－iners
Cistus salvifolius
－villosus
Citrus medica
Clematis vitalba
Cnicus Acarna
——benedictus
Colchicum parnassi－ cum
Colocasia antiquorum
Colutea arborescens
Conium maculatum
Convolvulus Scam－ monla
— sepium
Corchorus trilocularis
Cordia Myxa
Coriandrum sativum
Cornus Mas
－sanguinea
Corydalis densiflora
Cotoneaster Pyra－ cantha
Corylus avellana

Crataegus Heldreichii
－orientalis

кขท̂́коs，к．$\dot{\eta}$ ท̈ $\mu \in \rho о$ s，кро́－ коз і̀ а́кау－ $\theta \omega \dot{\sigma} \eta \mathrm{s}$
Sıos β ádalos карv́a ท̀ $\mathbf{E v}$ ． ßоїки́
$\lambda \omega \tau$ ós（1）
та $\tau \tau \dot{\delta} \delta 0 v \sigma \alpha$
кєขtav́pıov
тєтра́лı ξ
кєршиía
$\kappa \in \rho \kappa i{ }^{\prime}$（1）$\sigma \eta$－ μ ú δa
фoîv ξ（3）
$\phi \lambda o ́ \gamma \iota \nu 0 \nu, \phi \lambda$ ó
$\chi \in \lambda \iota$ ©óvion
Хо́ $\nu \delta \rho v \lambda \lambda \alpha$
é $\rho \in ́ \beta \iota \nu \theta$ os
кıхópıò
$\kappa \iota \nu a ́ \mu \omega \mu о \nu$
кабіа
$\kappa i ́ \sigma \theta o s$ ò $\theta \hat{\eta} \lambda \nu \varsigma$
 वॅр $\rho \eta \nu$
$\mu \eta \lambda \epsilon ́ a \mathfrak{\eta} \Pi \epsilon \rho \sigma \iota-$ $\kappa \eta$（ $\mathrm{M}_{\eta} \delta \iota \kappa \eta$ ）
$\dot{\alpha} \theta \rho a \gamma \epsilon ́ \nu \eta$
ӓкорขа
$\kappa \nu \eta ̄ \kappa o s \dot{\eta}$ à $\boldsymbol{\rho} i i^{a}$ （ $\epsilon \tau \epsilon ́ \rho a)$
є่ф $\eta \boldsymbol{\mu} \in \rho о \nu, \sigma \pi \alpha ́-$ $\lambda a \xi$
oṽiรүov
кодขтє́а
к ω vetov
бкацншขía
¿a $\sigma \iota \omega ́ \nu \eta$
App．（20）
коккуцŋлєє́a（ $\dot{\eta}$ Aíyviría）
корі́avขоу
кра́עєıа
Өŋ入ขкра́עєєа
өи́テєıov

карv́a
карv́a خ̀＇Hpa－ $\kappa \lambda \epsilon \omega \tau \iota \kappa \dot{\eta}$
кра́таlуos
$\mu \in \sigma \pi i ́ \lambda \eta$ ท̀ àv． $\theta \eta \delta \omega ́ v$

KEY TO THE INDEX

Crataegus oxyacantha
Crepis Columnae
Crocus cancellatus
sativus
－spp．
Cucumis sativus
Cucurbita maxima
Cuminum Cyminum
Cupressus semper－ virens
Cuscuta europaea
Cyclamen graecum
Cydonia vulgaris
Cymbopogon Schoen－ anthus
Cymodocea nodosa Cynara Cardunculus －Scolymus
Cynodon Dactylon
Cyperus auricomus
－esculentus
－longus
－${ }^{\text {Papyrus }}$ rotundus
Cystoseira Abies ma－ rina
－ericoides
foeniculosa
Cytisus aeolicus
Dalbergia Sissoo
Daphne Gnidium
－oleoides
Datura Stramonium

Daucus Carota
Delphinium Ajacis

Dendrocalamus stric－ tus
Diospyros Ebenum
－Melanoxylon
Dracunculus vulgaris
Drypis spinosa
Ecballium Elaterium
Echinops spinosus
Echium diffusum
$\mu \in \sigma \pi i \lambda \eta \dot{\eta} \dot{a} \nu-$ өnסovoeións
à àapía
к．ò 入evkós

кро́коя
oíkuos
кодоки́vтท
кv́uczov
кута́рıттоs
jровáyхך
кикла́мцขоя
кขסぉ́vıov， aтpoveiov（1）
oxoìvos（2）
фर̂коธ（6）
ка́ктоs（1）
ка́ктоя（2）
ајр $\boldsymbol{\omega} \sigma \tau \iota$
$\sigma a p t$
малıväá $\lambda \lambda \eta$ ， $\mu \nu \alpha ́ \sigma \iota o \nu$
кйтетроs
тámupos
кúrecpov
غ̇да́тŋ（3）
סpûs（7）
фіैкоя（4）
кологті́（1）
App．（21）
$\kappa \nu$ ќwpov
$\kappa \nu$ ќшpos ó $\lambda \in v$－ кós
Opviopov，π пepir－ tós，otpứX－ vos ó μ avicos
ठav̂kov（1）
$\dot{v} \dot{\alpha} \kappa \iota \nu \theta$ os $\dot{\eta}$ бтарти́
пóoos（1）
à σ тapis
ка́лацоз ó＇ $\mathrm{I} \nu$－ סıкós
غ̇ßévŋ（1）
éßév̀（2）
брако́vтіор
סpvitis
oíkvos ò äypıos póvpos
ovoxeciés

Elettaria Cardamo－ mum
Ephedra campylo－Өpav́ta入os poda
Erianthus Ravennae
Erica arborea
Eruca sativa
Ervum Lens
Eryngium campestre
Erythraea Centauf－ rium
Euonymus europaeus
－latifolius
Euphorbia antiquo－ rum
－Apios
－Myrsinites
－paralias
－Peplus
－Sibthorpii
－spp．

Fagonia cretica
Fagus silvatica
Ferula communis
－nodosa
－tingitana
Ferulago galbanifera
Ficus bengalensis
－Carica
－－var．
－laccifera
－Sycamorus
－－var．
Fraxinus excelsior －Ornus
Fucus spiralis
Fungi
Galanthus nivalis
Galium A parine
Genista acanthoclada
$\kappa а р \delta a ́ \mu \omega \mu о \nu$
$\phi \lambda є \omega ́$
єреі́кท
ей $\check{\omega} \mu \boldsymbol{\mu} \nu$
факós
ทри́үүчov

ev่ต́vv

ӑкагөа（5），（6）
ämıos（2），i σ－ xás，pạ́ádos ض їреіа
тıөúpà入os ò $\mu \nu \rho \tau i t n s$
тiөúpà入ıos ó тара́дios
$\mu \eta \kappa \omega \nu \iota \nu \nu, \tau \iota \theta v v^{-}$ мà入os
$\tau \ell \hat{v} \mu \mathrm{\mu} \lambda \mathrm{l}$ os $\dot{\text { o }}$ äрр $\eta \nu$
$\mu \eta к \dot{\omega} \nu \iota o \nu, \quad i \pi-$ тофе́ ω ऽ，τ－ өи́цал入os

трі́ßo入os（2）
ósún
vapөөŋкía，váp－ Өท ξ
тávaкes тò
＇Абкл \quad тíciov
бі́入фıv
та́vакея

бขкरु（1）
бvк $\dot{\eta}, \dot{\eta}$＇ $\mathrm{A} \rho \alpha-$ $\beta \iota \kappa \eta$
App．（17）
огка́цьขоs ì Aiyumtia
बvкй $\grave{\eta}$ Kvтfía
ßov μ édıos
$\mu \in \lambda i ́ a$
ӑ $\mu \pi$ телоь（3）
ми́кŋяs
入evкóiov（2）
ä $\pi \alpha \bar{\rho}$
бкортіоя（1）

KEY TO THE INDEX

Gladiolus segetum	$\xi i \phi \iota o v, \xi i \phi o s$, фá́ $\gamma a \nu 0 \nu$
Glaucium flavum var Serpierii	$\mu \dot{\eta} \kappa \omega \nu \dot{\eta}$ кєра－ тitis
Glycyrrhiza glabra	ү入ขкєîa（ $\rho i \zeta \alpha$ ），
Gossypium arboreum	（ δ év $\delta \rho \frac{\nu}{\text { ò }}$ ） éplóфopov
Hedera Helix	é入ı ${ }^{\text {¢ }}$ ，кıтто́s
Helichrysum siculum	è $\lambda \in \iota$ ¢́ópuos
Heliotropium villo－ sum	ท̇入เотро́тเо้
Helleborus cyclo－ phyllus	є̇ $\lambda \lambda$ е́ β ороs， є่．ò μ ć $\lambda a s$
Herniaria glabra	é $\lambda \lambda \in \beta$ орív η
Hippuris vulgaris	亿ัข
Hordeum sativum and vars．	$\kappa \rho \iota \theta \dot{\eta}$
Hyphaene thebaica	ко́̈ї，коукเо́фо－ pov
Ilex Aquifolium	кท́入人бтроs
Imperata arundi－	θ ¢v́ov
Inula Helenium	та́vaке¢ тò
－graveolens	ко́vvらa ท̀ θ^{\prime}－
－viscosa	
－spp．	кóvvら生
Iris foetidissima	kipis
－pallida etc．	ipls
－Sisyrinchium	テıनvpíyXıov
Juglans regia	кари́a $\dot{\eta}$ Пер－ бוкท́
Juncus acutus	oXoîvos ó ò ${ }^{\text {ćs }}$
\qquad spp． Juniperus co	oxoîvos кє δ рís
－excelsa	кéסpos（2）
－foetidissima	Ovía
－phoenicea	а̋ркєขӨоц，кє́－ $\delta \rho o s(3)$
－Oxycedrus	кє́ठ́pos（1），ỏ६ú－ $\kappa \in \delta \rho o s$
Laburnum vulgare	кข́тıбоs（1）
Lactuca graeca	$\lambda<\beta \alpha \nu \omega \tau i s$
－sativa	$\theta \rho \hat{i} \delta a \xi$
－＿scariola	Өр⿺ঠакі́य

Lagenaria vulgaris

Lapidium sativum

Lathyrus amphicar－
pus
－Ochrus
－sativus
－tuberosus
Laurus nobilis
Lavandula spica
Lavatera arborea
Lecokia cretica
Lemna minor
Ligustrum vuigare
Lilium candidum etc．
－chaicedonicum
－Martagon
Limnanthemum nym－ phoides
Linum usitatissimum
Lolium temulentum
Lonicera etrusca
Loranthus europaeus
Lupinus alba
Lychnis coronaria
Lycoperdon Bovista
－giganteum

Malabaila aurea
Malva silvestris
Mandragora offici－ narum
Mangifera indica
Marrubium peregri－ num
Matthiola incana

б七кv́a
фи̂коs（2）
ка́рбаиор
ада́хєঠva
© \quad рpos
入aөúpos
App．（1）
ठáф $\quad \eta$（1）
¿ø ϕ vo
ма入á又ך（1）
$\lambda \iota \beta a \nu \omega \tau$ о́s ка́ртьцоз
iкк
$\sigma \pi \epsilon \iota \rho a i a$
$\kappa \rho i ́ \nu o \nu, ~ \kappa \rho \iota \nu \omega-$ vía，גeípıov（1）
крívov т̀̀ пор－ фupoûv
ทัцєрокал入е́я
$\mu \eta{ }^{2} \nu a \nu \theta$ os
入ívov
aipa
$\kappa \lambda \nu \dot{\mu} \in \nu 0 \nu$
ifía（1）
θ е́р \boldsymbol{q} os
duxvis
π є́sts
ă $\sigma \chi$ เo

סаขิкоข（2）
$\mu a \lambda \alpha \alpha^{\prime} \eta$（2）
марбраүо́рая
（1）
App．（5）
$\pi \rho a ́ \sigma \iota o v$
îov тò 入evkóv，

Matricaria Chamo－ milla
Medicago arborea
－sativa
Melissa officinalis
Mentha aquatica
－Pulegium
— viridis
Mercurialis perennis iwvía（ $\grave{\eta} \lambda \in \nu$－ ки́），入єบкóiov （1）
ă $\nu \theta \in \mu \circ \nu \quad \tau$ ò $\dot{a} \phi$ úd $\lambda a \nu \theta$ es
кข́т८боs（2）
（ π óa）$\dot{\eta}$ M $\eta \delta \iota \kappa \eta$
$\mu \in \lambda \iota \sigma \sigma o ́ \phi v \lambda-$入ov
$\sigma \iota \sigma$ úm β pıov
$\beta \lambda \eta \chi \omega$
ท̀ $\delta \dot{v} \sigma \sigma \mu \nu \nu$ ，$\mu i \nu$－ $\theta \eta$
àppevóyovov， ө $\eta \lambda$ úyovov

KEY TO THE INDEX

Mespilus germanica etc．	$\mu \in \sigma \pi i \lambda \eta, \mu \in \sigma-$ пí入ך η б $\sigma \tau \alpha ́-$
Mimosa asperata	App．（2）
Mimusops Schimperi	$\pi є \rho \sigma \in ́ \alpha, \pi є ́ \rho-$ otov
Musa sapientum	App．（4）
Muscari comosum etc．	β во入乃ós
Myrtus communis	$\mu \nu \rho \rho i \nu \eta$
Nannorhops ritchiana	\＄oivl ${ }^{\text {c（2）}}$
Narcissus poeticus	vápкıббоs（2）
－serotinus	Aeipiov（2）， $\nu \alpha ́ \rho \kappa \iota \sigma \sigma o s(1)$
－Tazetta	λ ¢́́pıos（2）
－spp	$\lambda \in i \rho \iota o \nu(2)$
Nardostachys Jata－ mansi	vápóov
Nelumblum specio－	кúauos ó Ai－ रúmтוos．
Nephrodium Filix－ mas	π тєрís
Nerium Oleander	סáфvך $\grave{\eta} a ̉ \gamma p i ́ a$, ovo日خ́pas
－odorum	App．（11）
Neslia paniculata	$\mu е \lambda \alpha ́ \mu \pi \tau р ~$
Nuphar luteum	$\mu \alpha \delta \omega \nu \alpha ́ i s, v v \mu-$ фaía
Nymphaea alba	$\sigma i \delta$
stellata	$\lambda \omega \tau$ ós（2）
Ocymum basilicum	¢̈кцоо
Olea cuspidata	¢̇入áa（2）
－europaea	¢̇入ᄉ́a（1）
Oleaster	àypıédalos，кó－
Ononis antiquorum	òvavís
Onopordon illyricum	
Opoponax hispidus	таขа́кеца，
rchis longicruris	öpxis
Origanum Dictamnus	opx＇s
Origanum Dictamnus heracleoticum	біктан ópíravos
	，入єขкท่
－Majorana	à μ а́ракоข
－viride etc．	ópíravos，ipí－ yavos $\dot{\eta}$ н́́－
Ornithogalum pyre－ naicum \qquad umbellatum	入a＜va бкíd入a ${ }^{\prime}$＇Етו－ $\mu \in \nu i ́ \delta \epsilon$ tos $\beta 0 \lambda \beta i v \eta$

Mimosa asperata
Mimusons Schimperi
Musa sapientum
Muscari comosum etc． Myrtus communis

Nannorhops ritchiana
Narcissus poeticus －serotinus
－Tazetta
Nardostachys Jata－ mansi
Nelumblum specio－ ephrodium Filix－ mas
Nerium Oleander
－odorum
Neslia paniculata
Nuphar luteum
Nymphaea alba

Ocymum basilicum
Olea cuspidata
－europaea
Ononis antiquorum
Onopordon illyricum

Orchis longicruris
Origanum Dictamnus
－heracleoticum
－Majorana
viride etc．

Ornithogalum pyre－
－umbellatum

пí入 $\eta \eta$ ŋ $\sigma \alpha \tau \alpha-$ $\nu \in \operatorname{los}$
App．（2）
$\rho \sigma \in \alpha, \pi \epsilon \rho-$体

Bo
uvopív

фoivl ξ（2）
ขа́ркıббоs（2）
λ eípiov（2）， ขа́ркıббоs（1）
入eípton（2）
pıov（2）

кv́áuos ò Ai－ үúmтוos

סáф $\nu \eta \eta_{\eta} \dot{a} \gamma p i ́ a$,

$\mu е \lambda \alpha ́ \mu \pi v \rho o \nu$
$\mu a \delta \omega \nu \alpha ́ i s, ~ v v \mu-$ фaía
бíon
$\lambda \omega$ тós（2）
※ксцо⿱
є́ λ áa（2）
$\uparrow \lambda \alpha \alpha(1)$
ayplé入alos，кó－
ò $\nu \omega v i ́ s$
ò ν ónv ${ }^{\circ}$ os
тара́кеєа，та́ ν－ а́клєєор
ö ρ x＇s
ор又＇s
біктацрор
ópíyavos ì
лєขкท
（1） yavos $\dot{\eta}$ μ ć－入alva
$\mu \in \nu$ ídeios
$\beta o \lambda \beta i v \eta$

Orobanche cruenta
－versicolor
Oryza sativa
Ostrya carpinifolia
Ottelia alismoides
Paeonia officinalis

Paliurus australis

Pancratium mariti－ mum
Panicum millaceum
Papaver hybridum
－Rhoeas
－somniferum
－ spp ．
Parietaria cretica
Petroselinum sativum
Peucedanum offici－ nale
Phillyrea media
Phoenix dactylifera
Phragmites commu－ nis
Pinus brutia
－halcpensis
－Laricio
－pinea
－spp．
Pimpinella Anisum
Piper nigrum
Pistacia Lentiscus
－Terebinthus
vera
Pisum sativum
Plantago Coronopus
－crassifolia
－Lagopus
－lanceolata
－major
Platanus orientalis
Polygonum mariti－ mum
aíцóów
App．（26）
o้ ρ vらоv
ó $\sigma \tau \rho v u^{\alpha}$ ǒ $\sigma \tau \rho v$ s
App．（18）
$\gamma \lambda \nu \kappa v \sigma i \delta \eta$ ， тає ω vía
madiovpos
乃o入ßòs ó €̇pó－ фороs
кє́ $\gamma \chi \rho \circ$ оs
$\mu \eta$ ทัк $\omega \nu$ ท̀ ρ ocás
$\mu \eta \kappa \kappa \omega \nu \quad \eta \quad \mu \epsilon ́-$

$$
\lambda \alpha \iota v a
$$

$\mu \dot{\eta} \kappa \omega \nu$（ ${ }^{\prime}$ ỏ $\pi \omega$－ $\delta \eta \varsigma), \nu \eta \pi \epsilon \nu-$ θ ©́s
$\mu \eta ́ \kappa \omega \nu$
$\dot{\alpha} \lambda \sigma i v \eta$
ópetoซé $\iota \iota \nu$
$\pi \epsilon \cup \kappa \in ́ \delta \alpha \nu 0 \nu$
філирє́a
фoîvık（1）
ка́ланоs ó χ а－ ракі́аs
$\pi i ́ \tau v s$ ท̀ $\phi \theta \in \iota \rho o ́-$ molos
пítus；seealso under nítvs ท̀ á $\gamma \mathrm{p}$ ía
$\pi \epsilon$ и́кท ウ̀ ${ }^{\alpha} \kappa \alpha \rho-$ mos，$\quad \pi . \quad \eta$ өи́ $\lambda \in \iota a, \pi$ ．ท ＇I
 роs，π ．$\dot{\eta} \kappa \omega$－ vóфopos
$\pi є$ ย์кท
a̋vขךбоข
$\pi є ́ \pi є \rho \iota$
oxivos
тє́ $\rho \mu \iota \nu$ ооs
App．（7）
тьбós
коршขóтоия
$\theta \rho v a \lambda \lambda i ́ s$
о้ртvछ，\quad ттєлє́－ фovpos
кúv $\omega \psi$
$\alpha \alpha^{\alpha} \nu o ́ \gamma \lambda \omega \sigma \sigma o \nu$
$\pi \lambda a ́ \tau \alpha \nu o s$
$\pi \epsilon \rho \delta i ́ k \iota o \nu$

KEY TO THE INDEX

Polygonum Persicaria Polypodium vulgare Polypogon mouspeli－ ensis
Polyporus igniarius Populus nigra tremula
Portulaca oleracea
Potentilla reptans
Poterium spinosum
Prangos ferulacea
Prunus Amygdalus
－avium
－domestica
－insititia
－Mahaleb
Pteris aquilina
Puccinia graminis Punica Granatum
Pyrethrum Parthe－ nium
Pyrus amygdalifor－ mis
－communis
－var．Pyraster
－Malus
－－vars

Quercus Aegilops
－Cerris
－coccifera
－Ilex typica
agrifolia
－infectoria
－lanuginosa
＿Pseudo－Robur
－Robur
－Suber

кратаíyovos
$\pi 0 \lambda v \pi$ ó $\delta \iota \nu$
ả̀ $\omega \pi$ єє́коขроя
rî̀os
ailyєıpos

ảv $\delta \rho a ́ \chi \nu \eta$
$\pi є \nu \tau \alpha \pi \epsilon \tau \in ́ s$, $\pi \epsilon \nu \tau \alpha ́ \phi \cup \lambda \lambda о \nu$
$\sigma \tau 0 \iota \beta \eta$ ，фє ω s
$i \pi \pi \% \mu a ́ p a \theta o \nu$, маyúbapıs
$\dot{\alpha} \mu \nu \gamma \delta \alpha \lambda \hat{\eta}$
кє́paбоя，$\lambda \alpha$－ $\kappa \alpha ́ p \eta$
коккข $\mu \eta \lambda$ е́а
$\pi \rho о \cup ́ \mu \nu \eta, \sigma \pi \sigma^{-}$ Slás
$\pi a ́ \delta o s(\pi \eta \delta o ́ s ?)$
Өŋ入ข́mтєpis
є́pvoíß
póa
ค̊óa ท̇ àrúp
тарӨ́́viov
ảxpás
ä π ıos（1）
จัว $\gamma \sim \eta$
$\mu \eta \lambda \epsilon ́ \alpha$
$\mu \eta \lambda \epsilon ́ \alpha$ ท̀ $\gamma \lambda \nu$－ $\kappa \in i a, \mu . \quad \dot{\eta}$ є̇apıขท́，μ ．خ ó $\xi \in \imath \hat{a}$

Spv̂s $\dot{\eta}$ ả $\gamma \boldsymbol{p} i a$, ф \quad үós
aiyiA $\omega \psi$（1）， äбтрıs
трìvos
$\sigma \mu i ̂ \lambda \alpha \xi(1)$
ápía，¿廿os， $\phi \in \lambda \lambda o ́ \delta \rho u s$
ท $\mu \in \rho$ is（1）
$\delta \rho \hat{v} s \dot{\eta} \pi \lambda a \tau v ́-$ фvג入os
סpûs $\dot{\eta}$ à λ í－ $\phi \lambda o c o s, \delta$ ．$\dot{\eta}$ єv่өúф入olos
 роя，є̇тvцó－ Spus，ìmepís （2）
фe入入ós，ǐ $\psi o s$（？）

Ranunculus Ficaria
Raphanus Raphani－ strum
－sativus
Rhamnus alaternus
－graeca
＿oleoides
——spp．
Rhizophora mucro－ nata
Rhus Coriaria
－Cotinus
Ricinus communis
Rosa canina
－centifolia var．
－dumetorum
－sempervirens
Rubus ulmifolius
Roccella tinctoria
Rumex conglomera－ tus
－Patientia
Ruscus aculeatus
——Hypophyllum
Ruta graveolens
Saccharum biflorum
Salix alba
－amplexicaulis
－＿cinerea
－fragilis
－spp．
Salvia calycina
－Horminum
－triloba
Sambucus nigra
Saponaria officinalis
Sargassum vulgare
Satureia Thymbra
Saussurea Lappa
Scandix australis
－Pecten－Veneris
Schoenus Holoschoe－ nus
—nigricans
Scilla autumnalis
＿bifolia

ảфía
кера́ïs，¢óqua－ vos $\mathfrak{\eta}$ à $\gamma \mathrm{pía}$
рафалis
ϕ ф̀v́кท

$\lambda \alpha \iota \nu \alpha$
р́áuvos
App．（12b）
คْoûs
коккиує́а
кро́т $\omega \nu$
кข ко́рробо⿱
роб由vía
pódov tò ăypıov
кข ν ó σ ßатоs
вátos，хацаí－ Bazos
фйкоз（5）
$\lambda \alpha ́ \pi \alpha \theta o \nu$ тò ä γ－ plod
$\lambda \alpha ́ \pi \alpha \theta$ os
$\kappa \in \nu \tau \rho о \mu \nu \rho \rho i \nu \eta$ ， $\mu \nu a ́ к \alpha \nu \theta$ os
$\delta \alpha ́ \phi \nu \eta \dot{\eta}^{\prime} A \lambda \epsilon \xi-$ av $\delta \rho \in i ́ a$
$\pi \dot{\eta} \gamma \alpha \nu 0 \nu$
App．（19）
iтє́a $\dot{\eta}$ 入єขкŋ́
iтéa ท̀ μ нé $\lambda a \iota \nu a$
колоьтіа（2）
€̇入íкท
iтє́a
бфа́коs
öpucvov
є $\lambda \in \lambda$ і́ $\sigma ф$ ккоs
а́ктє́оз，а́ктй
oтpov日iov（2）， бтроиิ Os
$\delta \rho \hat{v}_{\mathrm{s}}(8)$
$\theta \dot{u} \mu \beta \rho a$
ко́ $\boldsymbol{\sigma}$ тos

$\sigma \kappa \alpha ́ \nu \delta \iota \xi$
oxoîvos ó ò ó－ oxocvos
$\mu \in \lambda a \gamma \kappa \rho a \nu i s$, oxoivos ó ка́ртьцоя
ті́фvov
v́áкıv $\begin{gathered}\text { os } \\ \dot{\eta} \\ \text { à } \gamma-~\end{gathered}$ pía

KEY TO THE INDEX

KEY TO THE INDEX

II．－LIST OF PLANTS MENTIONED IN THE ENQUIRY UNDER POPULAR NAMES

Abele	$\lambda \in \dot{v}$	Bog－rush	$\mu \in \lambda \alpha \gamma \kappa \rho \sim \nu i s$,
Alacias			${ }^{\text {axoivos }}$ ¢ ${ }^{\text {cospr }}$
${ }^{\text {Alder }}$	філикท $\kappa \lambda \eta \eta^{\theta} \rho a$	Bottle－gourd	ヶкúa
Alexanders	immogé̀ılvov	Box	uígos
Alkanet	аүरооуба	Bracken	
Allheal	та́⿱亠䒑𧰨кея	Brambles	вáтos，$\chi^{\text {ap }}$
Almond	${ }_{\text {a }} \mu \nu \gamma \delta \alpha \lambda \lambda \hat{\eta}$		
Andrachne	àvó áa $^{\lambda} \eta$	Broadleaved oak	
Anemones			$\phi v \lambda$
Apples	$\mu \eta \lambda \epsilon ́ a$	Broom－rapes	¢uód
Arbutus	корароя àфа́ркп	Brooms	App
Arrow-poison (So-	App．（27）	Bryony	бкортіо（1）
Artichoke	ка́кттos（2）		pía，$\mu \dot{j} \lambda \omega \theta$－
Asafoetida	App．（10）		
Ashes	Bovue入cos，	Buckthorns	
		Bugloss	oxe
Aspara		Bullist	étis
Aspen	керкі＇¢（2）	Bulrush	
Asphodel	$\dot{\alpha} \sigma \phi ́_{\delta} \in \lambda 0 s, \pi o ́-$ θ os（2）	Bush－grass	
Axe－weed	$\pi \in \lambda$ екіроs	Butcher＇s broom	$\nu \tau р о \mu \nu$
Bachelor＇s buttons	$\pi \alpha \rho \theta$		
Balm	$\mu \in \lambda \iota \sigma \sigma o ́ \phi \cup \lambda$－		
	λ 人 ${ }^{\text {d }}$	Cabbage	jáápavos
Balsam of Mecea	вáлоаноע	Calamander－wood	App．（23）
Bamboos		Calamint	
	d	Calavance	סódixos
Banyan	бuкท̂ $\chi^{\prime} \mathrm{I} \nu \delta$ ıкท́	Caltrop	трíiojos（1），
Barbary nut	$\boldsymbol{\sigma}$ ¢оиpì	Caper	ámтар
Barley	крı θ＇n	Cardamom	карба́льно
Basil	шкццоข	－Nepaul	ӑн $\mu \mu \boldsymbol{\sim}$
Bay（sweet）	Sá¢ıך（1）	Cardoon	ко́ктоя（1）
Bean	кข์аноя	Carnation	סcóravoos
Bedstraw	änapip	Carob	pwía，ove
Beet	тev̂rגov，		¢ Aipurtia
Bergamot－mint	\％ıテv́ußpıov	Cassia	aria
Bindweed	iactury	Castor－oil plant	${ }_{\text {коót }}$
Bird－cherry	ке́рабоэs，$\lambda a-$	Cat＇s ear Cedar，odorous	$\dot{v} \pi 0 \times 0 \text { р }$ Bviá
Birth－wo	àpıбтo入oxía	－prickly	
Bladder－senna	ко入ขт́̇а		
	β рітор	－Syrian	foos（2）

KEY TO THE INDEX

Dittany	Síктанио
Dock	入áma日ov тò a̋ γ－ pıov
Dodder	ó $\rho \beta \beta$ áy $\chi \eta$
Dog－mercury	Өŋ入ข́үovov
Dog－rose	кขขópposov
Dog＇s tooth grass	$\alpha^{2} \gamma \rho \omega \sigma \tau$ ¢
Doum－palm	форо⿱
Dropwort	oivávon（1）
Duckweed	$i к \mu \eta$
Dwarf palm	$\phi o \imath v \iota \xi \quad \chi^{\alpha}-$ маєррıфйs

Ebony	є̇ $\beta \in \frac{1}{\nu} \eta$
Edder－wort	Sрако́vтiov
Elder	àктє́os，áк兀へ̂
Elecampane	тávaкestò Xel－ คผ́ขєடоข
Elms	$\pi \tau \in \lambda \in ́ \alpha, \quad$ òpel－ $\pi \tau \epsilon \lambda \in ́ a$
Eryngo	ท̉pú $\gamma \boldsymbol{\gamma}$ ¢оข
Fenugreek	ßоvкє́раs，тท̄－入is

Ferns \longleftarrow ảSíavtov，ض̆ μ có－ $\nu \iota o v, \quad \theta \eta \lambda v-$ $\pi \tau \epsilon \rho і$ ，то入v－
тódıov，ттє－
рís，трıХона－ עés，бко入о－ тє́vঠрıov
Ferula vap9そкía，váp－
Feverwort кєעтavpis
Fig，wild
Figs
épıveós
$\sigma v \kappa \hat{\eta}, \quad \sigma . \dot{\eta}$ ＇Aрaß८ки́，σ ． $\dot{\eta} \quad \mathrm{I} v \delta \iota \kappa \dot{\eta}$, App．（17）
Filbert карv́a ض̀＇Hpa－ $\kappa \lambda \in \omega \tau \iota \kappa \eta \eta^{\prime}$
Firs тєúкŋ，є̀入árך
Flax
Frankincense－tree $\lambda_{\iota} \beta a \nu \omega \tau o ́ s$
Frenchsparrow－$\sigma \kappa i \lambda \lambda \alpha \dot{\eta}^{\prime} E \pi \iota-$ grass
Fungi $\mu \in \nu i \delta \in \operatorname{los}$

Galingale ки́тєєроя
Gall－oak ท̀mepis（1）
Garden nightshade $\sigma \tau \rho u ́ x v o s:$

KEY TO THE INDEX

Garlics
Germander
Gilliflower
Ginger－grass

Gladwyn
Globe－thistle Goat＇s beard Goat willow Gold flower Golden thistle

Gourd

Grasses
Groundsel Gum arabic

Hartshorn
Hart＇s tongue
Hartwort
Hawk＇s beard
Hawthorn

Hazel
 Heath
 Hellebores
 Hemlock
 Holly
 Holm－oaks

Honeysuckle （Greek）
Hop－hornbeam
Horehounds
Horned poppy
Horseradish
House－leek
Hulwort

Irises
Ivies

Jack－fruit
Joint－fir
Jujube
Judas－tree
$\mu \omega ิ \lambda \nu, ~ \sigma \kappa o ́ \rho o ~$
$\delta о \nu$
xaцаídpvs
iò tò 入єvкóv
oxoìvos ò ev̉凶－ $\delta \eta_{\mathrm{s}}$（？）
stipis
ри́тpos
трауотడ́ү $\omega \nu$
è $\lambda \alpha i a y$ vos
ė $\lambda \in$ со́ χ рvбоs
$\lambda \in \iota \mu \omega \nu i ́ a$（2）， бко́дขцоя
колокข́vтך
aiyìicu（2）， $\theta \rho$ v́ov，π óa
ท̀рєує́р $\omega \nu$
äк $\nu \nu$（7）

корадо́тоия
бколотє́v $\delta \rho \iota o \nu$

$\dot{\alpha} \pi \alpha \rho \gamma_{i ́ \alpha}^{\alpha}$
$\mu \in \sigma \pi i \lambda \eta \dot{\eta} \dot{\alpha} \nu=$ Ondovocións
карv́a
є́ $\rho \in$ і́кท
é $\lambda \lambda$ é β opos
$\kappa \omega \nu \in \iota \quad \nu$
κ кил $\alpha \sigma \tau \rho о$ я
ápía，＂̈uos，$\sigma \mu \hat{i}-$ $\lambda a \xi(1), \phi \in \lambda-$ $\lambda o ́ \delta p u s$
$\kappa \lambda \dot{\mu} \mu \in \nu=\nu$
ò $\sigma \tau \rho$ v́a，ö $\sigma \tau \rho v$ s
π тáбtov
$\mu \eta ́ \kappa \omega \nu$ ท̀ кєра－ tites рафаvis $\dot{\eta} \dot{\alpha} \mu$－ шре́a（？）
áeí̧wov
π б́入ıо
ipis，छ̇ipıs，$\sigma \iota$ oupíyxion
ë $\lambda \iota \xi$ ，кıттós
App．（3）
өраи́талоs
App．（6）
керкіз（1），б η－ μ v́ $\delta \alpha$

Junlpers
äpкevӨos，θ vîa，
$\boldsymbol{\kappa \in \delta \rho i ́ s , ~ к e ́ - ~}$
סpos，í乌úкe－
$\delta \rho o s$

Kermes－oak $\quad \pi \rho i ̂ \nu o s$

Laburnum кútıбos（1）

（1），v́áкıv0os $\dot{\eta} \sigma \pi a \rho \tau \dot{\eta}$
Leek
Lentil
Leopard＇s bane
Lettuce
Lilies

Liquorice
Limes
Litmus
Lucerne
Lupin

Madder
Madonna lily
Maiden－hair
－English
Mallow Mandrake

Mango
Mangroves
－white
Manna－ash
Maples

Marestail
Marjorams
－sweet
Marsh celery
Marsh mallow

тра́боу（1）
факós
бкорті́оs（2）
$\theta \rho i ́ \delta a \xi, ~ \theta \rho \iota \delta a-$ кív η
ท̀ $к$ срокал入е́s， крі́vò，к． Tò mo $\boldsymbol{\rho} \phi v$－ poûv，入eí－ plov（1）
$\gamma \lambda v \kappa \in i a$（ $\rho i \zeta a)$

фí入vpa，ϕ ．ウ̀ θ ที่
фи̂коз（5）
（ π óa）$\grave{\eta} \mathrm{M} \eta \delta \iota \kappa \eta ́$
өе́p

є́реv θ e $\delta a \nu$ vó ν

крívol，入eíplò （1）
ádíavtov，à．тò μ éخà
ásíàtov tò入єчкóv
мала́хŋ（1）
магораүо́рая
（1）
App．（5）
App．（12）
ס́́ффv（6），è $\lambda \alpha ́ \alpha$ （3），App．（14）
$\mu \in \lambda i a$
 клеขóтрохоs， $\sigma \phi \epsilon ́ \nu \delta a \mu \nu 0 s$
ั̈ $\pi \nu 0 \nu$
ópíyavov
аја́раког

à $\lambda \theta a \dot{a} a, \mu a \lambda \alpha{ }^{\prime}-$ $\chi \eta$ ท̀ à $\gamma \rho i ́ a$

KEY TO THE INDEX

KEY TO THE INDEX

Soapwort
Sorb
Southernwood
Spanish broom
Spear－grass
Sow－thistle
Spike－lavender
Spikenard
Spindle－tree
Spurges

Squills
Star－flower
Star－thistle
－－yellow
Stonecrop
Storax
Sulphur－wort
Sumachs
Sweet bay
Sweet flag
Sycamore

Tamarind
Tamarisks
Tare
Teak
Terebinth
Thistles

$\sigma \tau \rho \circ$ ú θ וo (2), $\boldsymbol{\sigma \tau \rho o v ̂ \theta o s}$

ö η
ảß ${ }^{\text {átovov }}$
入ıขóбтарто⿱
ка́ $\lambda a \mu$ оs ò $\boldsymbol{\pi} \boldsymbol{\lambda}$ ó－ кıцоя，к．о харакі́а
бо́үкоя
iфvov
ν ápóov

äккцөa（5），（6）， ă π 七os（ 2 ），$i \pi-$ тоф́єшs，i σ－ χ д́s，$\quad \mu \not \approx \omega \dot{-}$
 ท̀ ópeia，viӨú－ ma入入os
$\sigma \kappa i \lambda \lambda a, \quad \tau i-$ фvov，vákı $\nu-$ θ os $\dot{\eta}$ à γ pía
乃o λ 及iv
$\pi \alpha \nu \tau \alpha ́ \delta o v \sigma a$
$\tau \in \tau \rho \alpha ́ \lambda \iota \xi$
є̇ $\pi i ́ \pi \epsilon \tau \rho \circ \nu$
бтúpás
теvкє́ $\delta a \nu$ оу
poūs
ठáфvך（1）
 $\delta \eta s$
бvкáuıvos ì Aijutria，σ ． ŋ̀ Kvipía

App．（15），（16）
мирікп
àфа́кク
App．（22）
тє́puıข日оs
ǎk $\alpha \nu \theta a$（2）， （8），ӑкауоя， áкориа，iگ́áa （2），ikiv ка́ктоя，$\lambda \in \iota-$ $\mu \omega \nu$ ía（2），入єขка́ка $\nu \theta a$ ， толváка ν Өos， ค̀́vpos，бко́－ $\lambda \nu \mu$ оя，шó γ－ кos，χ á λ－ кelos，Xapal－ $\lambda \epsilon ́ \omega \nu$

KEY TO THE INDEX

Thorn，oriental Thorn－apple	$\mu \in \sigma \pi i ́ \lambda \eta \dot{\eta} \dot{\alpha} \nu=$ $\theta \eta \delta \omega \dot{\nu}$ Өри́оро $\nu, \pi \epsilon \rho \iota \tau$ ．	Vine，wild Violet	oivávөضウ่ á γ pio
Thorn－apple	тós，$\sigma \tau \rho v \chi$－	Wall－flower	$\phi \lambda$ о́yıvov，$\phi \lambda$ ós
Thyine－wood	Qúov		кари́a $\dot{\eta}$
Thyme，Attic		Water chestnut	трísodos（3）
	pros	Water chickweed	入ér ${ }^{\text {dea }}$
－Cretan	Ov ${ }^{\text {cov（1）}}$	Water－lily，Nile	$\lambda \omega \tau$ ¢́s（2）
	єр $¢$	white	－ ión $^{\text {r }}$
Tine－tare	ท $\mu \mathrm{\epsilon}$ ¢ 0 ）	－yellow	$\mu a \delta \omega \nu$ áis
Tragacanth	A		фаía
Traveller＇s joy		Wheats	тryós
Tree－medick	кข́тıสos（2）	Wheat－rust	
Tree－moss	фа́бкоs	Wig－tree	коккуүєа
Trefoil	$\lambda \omega \tau$ ós（3）	Willows	
Truffles	$\kappa \in \rho a u ́ v i o \nu$ ，vั δ－ vov		к η ，ітє́а，ко－
Turk＇s cap lily	крívol тò пор－	Willow－weed	кратаíyovos
Turkey oak	фvpov̂v	Withy	oifos
Turkey oak	aiyin $\omega \psi$ a $\sigma \pi \rho i s$	Wolf＇s bane	àко́vitov，өŋдди́－
Turnip	\％oryvגís		ovov，μ ооо－
Valonia oak	$\delta \rho \hat{v} s \dot{\eta}^{\text {¢ }}$ ajpía，	Wormwo	
	¢7\％os	W ych－elm	ò реєттє入є́a
Vine	$\stackrel{\text { al }}{\sim}$	Yew	

Printed in Great Britain by Richard Clay \& Sons, Limited, bungay, SUfFolk.

SWhurn cran-

\section*{| 002703711028 |
| :---: | :--- |}

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

PA	Theophrastus
4448	Enquiry into plants and
A8	minor works on odours and
1916	weather signs
V.2	
cop. 2	

Wallace
c

[^0]: ${ }^{1}$ cf. 6. 6. 1.
 2 This hardly corresponds to the definition of фpúrava

[^1]: ${ }^{1}$ ย $\sigma \tau \iota \nu$. . . $\epsilon ไ \delta \epsilon \sigma \iota$: text needlessly altered by Sch. and W. Sch. himself shews that T. uses eîoos and $\gamma \in \mathfrak{c} v o s$ almost indiscriminately. Here $\tau \hat{\omega} \nu \ddot{\partial} \lambda \omega \nu \nu \gamma \nu \omega \hat{\nu}$ means the same as $\tau o i ̂ s$

[^2]: ${ }^{1}$ i．e．there is a gradation．
 ${ }_{2}^{2}$ кiöos conj．Sch．；кıб⿱亠䒑s Ald．H．
 ${ }^{3}$ блєєраla conj．Sch．from Plin．21． 53 ；$\sigma \mu \eta \rho \in ́ a$ Ald．G．
 ${ }^{4}$ өú $\mu \beta \rho a \quad \sigma \phi a ́ \kappa o s ~ c o n j$ ．Sch．；$\theta \dot{u} \mu \beta \rho a s$ факдs UMVAld．
 ${ }^{5}$ cf．6．2． 5.
 ${ }^{6}$ ข $\alpha \rho \theta \eta \kappa \dot{v} \delta \eta=$ hollow－stemmed，èv $\nu \in v \rho o ́ \kappa \alpha \nu \lambda a=$ plants with a plain unjointed stem，solid with＇immersed＇fibres．In the 6

[^3]: ${ }^{5}$ Plin. 21. 56 and 154.
 ${ }^{\varepsilon}$ roút ω conj. Sch.; toûto Ald.
 ${ }^{7} \kappa \alpha \lambda \omega \hat{s}$ mBod.; đ $\lambda \lambda \omega s$ UMVAld H .
 ${ }^{8}$ Plin. 21. 57.
 ката̀ $\tau \delta$ б́ous P .

[^4]: ${ }^{1} \lambda \alpha \mu \beta \alpha \dot{\nu \epsilon \iota \nu} \mathrm{P}_{2}$ Ald.: lit. 'take hold,' cf. 6. 2. $6 ; \beta \lambda \alpha \sigma \tau \alpha ́ v \in \iota \nu$ conj. W.
 and 147.

[^5]: ${ }^{3} \sigma \phi$ ќкош conj. Sch.; $\sigma \phi \alpha к$ е́лои UMVP ${ }_{2}$ Ald.

 ${ }^{5} \tau \rho a \chi u ́ \tau \epsilon \rho o \nu$ conj. Scal. from G ; Bpaxú $\tau \in \rho o \nu$ Ald.H.
 ${ }^{6} \sigma \tau \rho o \gamma \gamma v \lambda o ́ \tau \epsilon \rho o \nu: c f .1 .10 .4 n$.
 ${ }^{7}$ See Index. Plin. 26. 58. cf. Nic. Ther. 875 ; Diosc. 3. 121 .

[^6]: ${ }^{1} \lambda \alpha \mu \beta \alpha \nu \in i$ Ald.; $\alpha \delta \rho u v^{1} \in \iota$ conj. W. But $c f$. the somewhat similar use 6. 2. 4.
 ${ }^{2}$ contra bestiarum morsus Plin. l.c.
 ${ }^{3}$ Plin. 13. 132 and 133.
 ${ }^{4}$ The form of expression in the repeated $\dot{v} \pi \grave{\epsilon} \rho$ seems loose,

[^7]: ${ }^{1}$ oiov $\phi u \lambda \lambda . \tau \delta \lambda \in \gamma$. conj. W.; $\phi u \lambda \lambda$. ofov $\tau \delta \lambda \in \gamma$. Ald.H.
 ${ }^{2}$ I have added $\delta \nu$.

 ${ }^{4}$ cf. 9. 1. 7; Diosc. 3. 80.

[^8]: mentum erat maturitatis color siccilasque sudore finito.
 ${ }^{6}$ cf. Strabo 2. 5. 20 ; 17. 3. 20 : Scyl. Periplus, Libya.
 ${ }^{7} \pi \lambda \epsilon i ̂ \sigma \tau a$ conj. W.; $\pi \lambda \epsilon i ́ o \nu \alpha \mathrm{U}$; $\tau \grave{\alpha} \pi \lambda \varepsilon i^{\circ} \nu \alpha$ MAld.; $\gamma i \nu \in \sigma \theta a \iota$ conj.W.; $\gamma \in \nu \in \in \sigma \theta a \iota$ Ald.

[^9]: ${ }^{1}$ cf. Hdt. 4.158.
 ${ }^{2}$ в.c. 310.
 by W., chiefly by alteration in the order of the words in Ald.
 ${ }^{4} \kappa \alpha \lambda \epsilon \hat{\sigma} \theta \alpha{ }^{2} \delta^{\prime} \epsilon \gamma^{\alpha} \lambda \alpha$ after $\phi \dot{v} \in \sigma \theta \alpha$ in Ald.
 ${ }^{5}$ In 6. 3. 7 this name is applied to a distinct plant. $\mu a \gamma$. тд каі conj. Salm.; $\mu a \gamma$. каі $\tau \grave{ } \mathrm{P}_{2}$ Ald.H. $\quad{ }^{6}$ cf. 6. 3. 2.

[^10]: $\delta_{ı} \alpha \rho \rho i \pi \tau \eta \tau \alpha \iota$ M.

 ${ }^{11} \mu \dot{\mu} \nu$ conj. Sch.; $\pi a ̂ \nu$ Ald.

[^11]: ${ }^{1}$ cf. Arr. Anab. 3. 23.6 and 7.
 ${ }^{2}$ Artemisia camphorata: Index App. (24).
 ${ }^{3}$ Plin. 19. 46 ; Diosc. 3. 94 ; Hesych. s.v.; Photius, Gloss. s.v.; cf. 6. 3. 4 n .

[^12]: \$ каl . . a a ка $\alpha \theta \dot{\omega} \delta \eta$. These words occur only in U: they cannot belong here. Note that $\tau \grave{\delta} \mu \grave{\nu} \nu \dot{\alpha} \kappa \alpha \nu \theta \hat{\omega} \delta \epsilon s{ }_{8} \lambda \omega s$ occurs just below. 6 6. 1. 3.

[^13]: ${ }^{1}{ }_{\alpha}^{\alpha} \kappa \alpha \nu \omega ิ \delta \in s$ mBas．；$\dot{\alpha} \kappa \alpha \nu \theta \hat{\omega} \delta$ es Ald．cf．1．13．3，where ak $\alpha \nu \hat{\omega} \delta \epsilon \epsilon$ is restored by W．＇s certain conj．
 ${ }^{2}$ àк $\alpha \nu \hat{\omega} \delta \epsilon s$ conj．Sch．；àка⿱亠䒑日⿹勹亾匕ढs Ald．H．；acanaceum G．
 supra．
 necessary in view of 6．4．8．

 ${ }^{6}$ ôs каl $\lambda \in \iota \mu \omega \nu i ́ a ~ I ~ c o n j . ; ~ \hat{~}$ каl $\lambda \epsilon!\mu \omega \nu i \alpha$ conj．Scal．from

[^14]: the plural being awkward.
 ${ }_{2} \pi \eta \nu i o s s$ conj. R. Const.; $\sigma \pi \lambda \eta \nu$ eious U ; $\sigma \pi \lambda \eta \nu i o u s$ MAld; colu G and Plin. l.c.; cf. Diosc. 3. 107.
 caule).
 ${ }^{4} \kappa \alpha \nu \lambda \omega \hat{\nu}$ conj. Scal. from Plin. l.c.; $\phi u ́ \lambda \lambda \omega \nu$ Ald.
 ${ }_{5}^{5} \mu \kappa \kappa \rho \delta \nu$ conj. Spr. from Plin. l.c. (minutum semen) ; $\pi \iota \kappa \rho \delta \nu$ Ald.

[^15]: $\pi \omega \gamma \omega \nu \delta s$: G. has fructum amarum (see last note) frequentem barbaeque modo hirsutum gignit: sunt ambo seminosa. W. conj. $\pi \omega \gamma \omega \nu 0 \sigma \pi \epsilon ́ \rho \mu \alpha \tau \alpha \delta^{\prime} \in \mathfrak{i} \sigma \boldsymbol{j} \pi \hat{\alpha} \sigma \alpha l$, which is not convincing. I have retained the corrupt text and translate in the light of G.
 ${ }^{7} \mu \epsilon!\oint \sigma \sigma \iota$: sc. $\sigma \pi \epsilon \rho \mu a \sigma t$, but $\sigma \pi \epsilon \rho \mu \alpha \tau \omega \delta \epsilon t s$ cannot be right.
 ${ }^{8} \chi v \lambda \delta \nu$ add. St.; om. Ald.; succo pingui G ; pinguiore sı,cco Plin. l.c. $\quad 9$ cf.9.1.1. Plin. 21. 95.

[^16]:
 ${ }^{2}$ cf. Hes. Op. 582.
 ${ }^{3}$ бб́үкоv conj. C. Hoffmann; ชै бкко Ald.
 ${ }^{4}$ кúךбıs: i.e. flower-head. cf. кúŋца 6. 4. 3 ; Plin. 21. 94.

 ${ }^{6} c f .6$. 4. 3. T.'s information seems to be incorrect, as

[^17]: ${ }^{1}$ vind conj. Sch.; ${ }^{\text {E }} \pi l$ l Ald.; Plin. l.c. malum contectum sua fronde. ${ }^{2}$ cf. 9. 1. 3. ${ }^{3}$ cf. Plin. 12. 72.
 ${ }^{4}$ Plin. 21. 97 ; Athen. 2. 83.
 ${ }^{5} \pi \lambda a \tau \grave{v}$ add. Scal. from Athen. l.c., cf. Plin. l.c.; om. Ald.H. The 'stems' are the petioles of the leaves.

[^18]: ${ }^{1}$ à ρ ótors conj. Bod.; àpórpors Ald. cf. 8. 1. 2.
 ${ }^{2} \tau o ́ \tau \epsilon$ conj. St.; rô̂ro Ald. ${ }^{3}$ cf. Pall. 10. 13. 2.
 ${ }^{4} \delta \phi \epsilon \epsilon \omega s$ conj. St. ; ü $\phi \epsilon \omega s$ Ald. Bas.Cam. H.; $\delta \phi \lambda \epsilon \omega \begin{gathered}\text { mBas. }\end{gathered}$
 ${ }^{5}$ Plin. 21. 91.

[^19]: ${ }^{6}$ Diosc. 2.173 gives a different account.
 ${ }^{7}$ cf. 7. 8. 1 .
 $8{ }_{0}{ }^{3} \nu$ add. W. (in comm.) from G.
 ${ }^{9}$ Plin. 21. 98. $\quad{ }^{10}$ cf.6.1. 3.
 ${ }^{11} \tau \grave{\alpha} \mu \epsilon \grave{\nu} \nu$ oûv $\pi \alpha \rho \alpha ̀ ~ \tau \grave{\alpha} \phi u ́ \lambda \lambda \alpha$ conj. Sch. (oưv add. W.); $\tau \grave{\alpha} \mu \in \grave{\nu} \nu$ oűv $\check{\omega} \sigma \pi \epsilon \rho$ d̀ $\nu \alpha ́ \phi u \lambda \lambda \alpha$ Ald.H. ${ }^{12}$ Plin. 21. 98.
 ${ }^{13}$ I have altered the punctuation ; $\pi \tau о \rho \theta \dot{\alpha} \kappa \alpha \nu \theta o \nu$, é $\pi \epsilon \in \tau \epsilon เ o \nu ~ \delta \epsilon ́ \cdot$. $\tau \delta \phi . \kappa \tau \lambda$. W. after UMP.

[^20]: ${ }^{1}$ Evidently some conventional way of making a wreath.
 ${ }^{2} \delta \iota \alpha \lambda \alpha \mu \beta \alpha \nu \circ \mu \epsilon ́ \nu \nu \omega \nu$ è $\pi \alpha \lambda \lambda \eta \dot{\eta} \lambda \omega \nu$ conj. W.; $\delta \iota a \lambda \alpha \mu \beta \alpha \nu 0 \mu \epsilon ́ \nu \eta \nu \dot{v} \pi$ ' $\dot{\alpha} \lambda \lambda \dot{\eta} \lambda \omega \nu$ Ald. cf. Plat. Prot. 346 E , where the verb means 'to punctuate.'
 ${ }^{3}$ колоßoavө̀̀s; cf. 8. 3. 3.

[^21]:
 ${ }^{5}$ cf. 8. 5. 2.
 ${ }^{6} \dot{\omega} \theta \epsilon i \tau \alpha \iota \kappa \alpha ́ \tau \omega \omega$ conj. Sch.; $\dot{\omega} \theta \epsilon i ̂ \tau \grave{\alpha} \kappa \alpha \tau \omega$ Ald.

 ${ }^{9}$ ă $\pi \in \rho$ conj. Sch.; $\epsilon \check{\iota} \pi \in \rho$ UMAld.G.

[^22]: ${ }^{1}$ Plin．21． 59.
 ${ }^{2}$ So Plin．l．c．；but Nic．ap．Athen．15． 31 calls this flower fragrant．
 ${ }^{8} \pi 0 \lambda \lambda \omega \hat{\omega} \nu$ conj．W．；$\pi 0 \lambda \lambda \grave{\alpha}$ UMAld．
 ${ }^{4}$ otov $\in i$ conj．W．；öтı Ald．${ }^{5}$ oî̀ conj．W．；cîov Ald．

[^23]:
 ${ }^{7} \dot{\alpha} \nu \theta \hat{\omega} \nu$ in the sense of $\dot{\alpha} \nu \theta \epsilon \kappa \hat{\omega} \nu \S 2$, which perhaps should be read here.

[^24]: ${ }^{1}$ cf. 6. 8. 1 n.; Diosc. 3. 102.
 ${ }^{2}$ Plin. 21. 14-21 ; Athen. 15. 29.
 ${ }^{3}$ i.e. of the bark. cf. Plin. 21. 17, scabritia corticis.
 ${ }^{4}$ Sc. in 'double' roses.
 ${ }^{6}$ i.e. the hip; c.lled of $\mu \phi \lambda$ оs Arist. Probl. 12. 8, where the same statement is made; called $\mu \hat{\eta} \lambda o \nu$ below, $\S 6$.

[^25]: l.c.; $\delta \iota \alpha \phi \epsilon \rho \delta \nu \tau \omega s$ ठो̀ $\tau 0 \hat{v}$ रpóvov Ald. cf Callim. Hymn to Apollo 83, whence it appears that an autumnal crocus (crocus sativis) is meant. See below § 10 .
 ${ }^{2} \dot{\alpha} \kappa \dot{\alpha} \nu \hat{\omega} \delta \epsilon s$ conj. Sch. from G, acanaceum ; $\dot{\omega} \nu \theta \hat{\omega} \delta \epsilon s$ UMAld.
 ${ }^{3} \pi \alpha \pi \pi \omega \delta \hat{\omega} \nu$ conj. Sch.; $\pi \rho \omega \dot{\tau} \omega \nu$ Ald.
 ${ }^{4}$ Plin. 21. 27.

[^26]: ${ }^{1}$ cf. 2. 2. 1 n., 9. 14 ; C.P. 1.4.4-6. Plin. 21. 26 describes a method of artificially producing crimson lilies from the bulbils of a white lily. cf. Geop. 11. 20.
 ${ }^{2} c f .6 .8 .1$ and 3. See Index. ${ }^{3} c f .7 .13 .1$.
 ${ }^{4}$ тош́ η : cf. 4. 10. 3.

[^27]: ${ }^{1} \pi \alpha ́ \tau \psi$ conj．Turneb．and others ；кát ω Ald．
 ${ }^{2}$ крот \quad тoîs：Plin．l．c．iuxta semitas ac fontes．Did he read кpouvoîs？

 ${ }^{4} \alpha \lambda \lambda \lambda^{\prime} \delta \tau \iota$ conj．W．from G ；$\alpha^{2} \lambda \lambda \alpha \delta_{\epsilon}^{\prime}$ UMPAid．

[^28]: ${ }^{1}$ èvlote conj. W.; द̀vloıs Ald.
 ${ }^{2}$ Plin. 21. 57. Description of various forms of ${ }^{\epsilon} \rho \pi v \lambda \lambda o s$ has perhaps dropped out after this word: $c f . \S 5$, каАа́ $\pi \in \rho$ є̀ $\lambda \epsilon \in \chi \theta \eta$.

 3 i.e. from seed, $\tau \alpha v ́ \tau \eta \nu$ conj. W.; $\pi \alpha ́ \nu \tau \alpha$ UMAld.; ? $\tau \alpha ́ \nu \tau \alpha$ $\tau а u ́ \tau \eta \nu$.
 ${ }^{4}$ Plin. 21. 34 : cf. C.P. 1. 4. 2. ảßpótovov. . . Dépous, text nearly as given by Ald. and by UM (?)-supported by Plin. 46

[^29]: ${ }^{6}$ 6. 6. 2 ; cf. C.P. 1. 13. $12 . \quad 7$ cf. 6. 6. 11.
 ${ }^{8} \pi \pi \omega \hat{\omega} \epsilon \epsilon$: sense not obvious; $\epsilon \dot{u} \omega \hat{\omega} \delta \epsilon s$ conj. Dalec. cf. C.P. 1. 13. 12. $\quad{ }^{\prime}$ ' $\tau \iota$ conj. W.; $\% \tau \iota$ UMAld.
 ${ }^{10}$ Ut labruscae G, perhaps a guess : see oivd $\nu \theta \eta$ in Index.
 ${ }^{11}$ Plin. 21, 67 and 68.
 ${ }^{12}$ крlvov Sch. from Athen. l.c.; so also Plin, l.c.; к $\eta \rho \iota \nu \theta o \nu$ Ald.

[^30]: ${ }^{1}$ cf. C.P. 1. 4. 1.
 ${ }^{2} c f$. the Eng. plant-name 'love-in-absence'; see $\pi \delta \theta_{o s}$ in Index.

[^31]: ${ }^{\varsigma}$ карл $\hat{\varphi}$: Phin. l, c. apparently read $\alpha \nu \theta \epsilon \epsilon$.
 ${ }^{6} \pi$ ávт' \ddagger conj. St.; $n d \nu \tau \eta$ Ald. H. $\quad 7$ Plin. 21. 69.
 ${ }^{8}{ }^{1} \alpha \mathrm{c}$ conj. St.; àel Alh.

[^32]: ${ }^{1}$ cf. C.P. 3. 20. 7 and 8.

[^33]: ${ }^{1}$ January. $\quad 2$ April. ${ }^{3}$ Plin. 19. 117.

[^34]: ${ }^{5} \pi \rho a \sigma o \nu$ conj. Bod.; $\pi \rho \alpha ́ \sigma \iota o \nu \mathrm{P}_{2}$ Ald. H .
 ${ }^{6}$ Bp $\ell \chi \theta \hat{\eta}$ conj. Bod. cf. C.P. 4. 3. 1; हi $\lambda \iota \chi \theta \hat{\eta}$ Ald.; $£ \lambda \iota \chi \theta \hat{\eta}$ P_{2} Bas.; so also G.
 ${ }^{7}$ af. C.P. 4. 3. 1 ; Plin. 19. 7.

[^35]: ${ }^{1}$ む́pas Vo.H.; $\chi \omega ́ \rho a s$ UM ; so also G.
 ${ }^{2} \tau \in ́ \lambda \in \iota a$ conj. W. (comm.) ; $\gamma \in \pi o \lambda \lambda \grave{\alpha}$ MSS.; τd mo $\lambda \lambda \grave{\alpha}$ Vo.Sch. W. (text) ; $\gamma i \nu \in \tau \alpha \iota$ conj. Sch. from $G ; \gamma i \nu \in \sigma \theta a \iota$ Ald.

 62

[^36]: ${ }^{1}$ фutєv́є $\tau a l$ aùrà conj. W.; où $\tau \grave{\text { U U WMId. }}$
 ${ }^{2}$ Sc. soaking.

[^37]: ${ }^{1}$ Plin. 19. 121. ${ }^{2}$ cf. C.P. 1. 4. 2.
 $\gamma \grave{\alpha} \rho$, missing the sense.
 ${ }^{4} \beta \lambda \alpha \sigma \tau \hat{\omega} \nu$ corresponds to $\kappa \lambda \omega \nu \partial s$ above.

[^38]: ${ }^{5}$ cf. C.P. 1. 4. 3. 6 i.e. offsets.
 7 yךөv́oss om. some editors, as not being wild.
 8 i.e. and so annual.

[^39]: ${ }^{1} \pi \rho \alpha \dot{\sigma} \sigma \nu$ conj. St.; $\pi \rho d \sigma \iota o \nu$ Ald. H.

 ${ }^{3}$ i.e. offset bulbs.
 ${ }^{4}$ W. omits $\mu \grave{\epsilon} \nu$ (Ald.UM(?)) after $\sigma v \lambda \lambda \epsilon ́ \gamma o v \sigma \iota$.
 ${ }^{6}$ i.e. the plant is increased by seed only and not by offsets. cf. 7. 4. 10 ; Plin. 19. 103.
 ${ }^{6} \delta \mu o t \omega s$ conj. Sch.; ${ }^{8} \mu \omega \boldsymbol{s}$ PAld.H.(UM ?).

[^40]: ${ }^{8} \dot{\alpha} \rho \iota \theta \mu \partial s$ is clearly corrupt, and has displaced an unusual word for which | |
 | :--- |
 | σ |
 | |
 | π |$\in \rho$ apologises.

 ${ }^{9}$ ठो̀ conj. Sch.; $\delta \underset{\epsilon}{ }$ Ald.
 ${ }^{10}$ кav入ov is here that part of the plant which is above ground. ${ }^{11}$ Plin. 19. 122.
 ${ }_{12}$ ijbious Vo.mBas. H., so too G, Plin. l.c., Athen. 2. 69 ; idious UAld. cf. C.P. 2. 15. 6.

[^41]: ${ }^{1} \beta \lambda \alpha \sigma \tau \eta \dot{\sigma} \epsilon t \epsilon \nu$ conj. Sch.; $\beta \lambda \alpha \sigma \tau \dot{\eta} \sigma \epsilon t$ Ald.
 ${ }^{2}$ où δ^{\prime} є' τ ts Ald. H.; $\epsilon i \mu \eta$ tis conj. Scal. supported by G.

[^42]: ${ }^{5}$ рiऽav conj. Sch.; σ d́ $\kappa \kappa$ Ald.
 ${ }^{6}$ Plin. l.c. seems to have read a different word from cu̇max i is, or to have misunderstood it.
 ${ }^{7} \pi a \sigma \omega \hat{\omega} \nu$ conj. W.; $\pi a \rho^{\prime} \hat{\omega} \nu$ U.MP ; also Ald.H., omitting ai.

 ${ }^{9}$ i.e. bulbous ; cf. 1.6.8.

[^43]: ${ }^{1}$ After à $\nu \dot{\eta} \theta o v$ Ald. H. have кal $\lambda \alpha \pi \alpha \dot{\theta} \theta o v:$ bracketed by W. after Sch.

 ${ }^{4}$ Athen. 2. 79. Sch suggests that the name of a plant has dropped out after $\tilde{\omega} \sigma \pi \epsilon \rho: ? \dot{\eta} \alpha \dot{\alpha} \delta \rho \alpha \chi \chi \nu \eta$.

[^44]: ${ }^{5}$ Bpaұutє́pav conj. Sch.; Bpaұutє́pa Ald.
 Ald. cf. Diosc. 2. 136. ${ }^{7}$ Plin. 19. 100.

[^45]: ${ }^{1}$ For the collective sense of $\pi \delta \dot{\alpha}(=\tau \grave{\alpha} \pi \sigma \omega \delta \eta)$ cf 1.3.1.
 ${ }^{2} \pi 0 \lambda \grave{\nu} \nu$ रpóvo conj. W., which at least gives the required sense ; калой $\mu \in \nu$ о Ald.

 ${ }^{4}$? 'orange.' ${ }^{5}$ Plin. 19. 119.

[^46]: ${ }^{1} \mu a ́ \lambda \iota \sigma \tau \alpha \ldots \delta^{\prime}$ ' δ missing in UMAld. Bas.; text as restored by Sch. from Cam., G and Plin. l.c.
 Ald.H.
 ${ }^{3}$ є̇ккаu入єî : cf. 7. 1. 7; 7. 4. 3, and esp. C.P. 4. 3. 5.

 * After àколou $\theta \epsilon \hat{i} \tau \hat{\omega} \nu$ follows a lacuna of one and a half lines

[^47]: ${ }^{1}$ Disc. 2. 112 mentions a kind called by the Romans ap uopáкıov. Pin. 19. 82 has armoracia and says that this was called armon in Pontus; Sch. suggests that the latter name may have given rise to both armoracia and à $\mu \omega \rho^{\prime}$ aa.
 ${ }^{2}$ Plin. 18. 129, cf. 19.75 ; Athens. 9. 7.
 ${ }^{3} \pi \eta \gamma \nu \dot{v} \nu a$. The verb is used of planting seeds singly ; cf. 6. 6.9 ; 7. 1. 2 ; 7. 5. 3 .

[^48]: ${ }^{1}$ Athen. 9. 9 ; Plin. 19. 80.
 ${ }^{2}$ Wild radish. See Index.

[^49]: ${ }^{3}$ ท́ à $\gamma p l a$ add. W.
 ${ }^{4}$ éкelvaıs conj. Sch. from Plin. l.c.; èкeivw Ald.H.
 ${ }^{5}$ Athen. 9. 11 ; Plin. 19. 132.
 ${ }^{6}$ Plin. 19. $125 . \quad{ }^{7}$ Athen. 2. 79. ${ }^{8}$ cf. 7. 2. 4.
 ${ }^{9}$ ostiola olitoria Plin. 19. $125 . \quad{ }^{10}$ Plin. 19. 124.

[^50]: ${ }^{1}$ Athen. 3. 4 ; Plin. 19. 68.
 ${ }^{2}$ Plin. 19. 101-104.

 4. i.e. making offsets.
 ${ }^{5}$ 'Aбкалढ́vıa, whence Eng. shallot; though this name is applied to $\kappa . \sigma \chi \iota \sigma \tau \delta \nu$.

[^51]:
 ${ }^{8} \pi \in \rho \iota \alpha \iota \rho o \hat{v} \sigma \iota$ conj. Scal. from Plin. l.c. and G; $\pi \in \rho \iota \alpha^{\gamma} \gamma o u \sigma \iota$ P_{2} Ald. H .
 ${ }^{10}$ oú add. Scal.
 ${ }^{9}$ cf. Pall. 3. 24. 3.
 ${ }^{11}$ i,e. the part above ground.

[^52]: ${ }^{1} \pi \eta \gamma \nu \dot{v}$ ova $: ~ c f .7 .4 .3 n$. The word evidently has a different sense here ; cf. § 10 , where $\pi \eta \gamma \nu v \dot{\omega}$ and фutєv́ ω seem to be synonymous.

 ${ }^{3}$ i.e. instead of being raised from seed. cf. what is said 7. 2. 2 of the offsets of $\gamma \boldsymbol{\gamma} \theta$ voov.

[^53]: ${ }^{4}$ кєעoûtaı conj. St. from G exinaniuntur; кaıvoûtaı Ald.
 ${ }^{5}{ }^{\gamma} \mathrm{I} \sigma \sigma \omega$ conj. Sch. from G and Plin. l.c.; $\gamma \sigma \psi \mathrm{UM}$; $\nu \eta{ }_{\eta} \sigma \varphi$ Ald.H.

 6 ăдлоıs conj. Sch.; $\lambda \in u \kappa o i ̂ s ~ A l d . ~{ }^{7}$ Sc. bulb.

 ${ }^{9}$ фитєúєтаı M ; фúєтаı Ald. cf. C.P.1. 4. 5.

[^54]:
 ${ }^{5} \delta_{\delta} \in \nu$ conj. Sch.; $\delta \theta \in \nu$ UMAld.
 ${ }_{7}^{6} \chi$ ẃpas conj. Dalec.; むopas UMP_{2} Ald.
 ${ }^{7}$ Sc. not raised from seed. ${ }^{8}$ So W. renders.

[^55]: ${ }^{1}$ cf. 7. 2. 2 and 3.
 Ald. See LS фи́бı $\boldsymbol{\gamma}$.

 ${ }^{4}$ Plin. 19. 156.

[^56]: ${ }^{5}$ Lit. 'for their liquid-manuring.' cf. C.P. 3. 9. 2, where $\chi u ́ \lambda \omega \sigma i s$ must have the same sense.
 ${ }^{6}$ Plin. 12. 182 and 183.
 ${ }^{7} \delta v \sigma \mu \alpha \nu \hat{\eta}$ UMAld.; $\delta v \sigma \mu \epsilon \nu \hat{\eta} \mathrm{H}$.

[^57]: ${ }^{5} \sigma \pi \epsilon \rho \mu a \tau \iota \sigma \mu$ о̀̀s conj. Scal.; $\sigma \pi \epsilon \rho \mu a \tau i к о$ Ùs UMAld. cf. 7. 4. 3.
 $\gamma \lambda\{\sigma \chi \rho o \iota \mathrm{M}$; $\gamma \lambda / \sigma \chi \rho o s$ Ald.; $\gamma \lambda \eta \dot{\eta} \chi \omega \nu$ conj. Scal. Sch. also conjectures $\tau \grave{\alpha} \lambda i \sigma \chi \rho \alpha$: see LS. s.v.
 ${ }^{7} \pi \eta \gamma \nu \nu \mu \epsilon \in \nu \omega \nu: c f .6 .6 .9 ; 7.4 .3 .{ }^{8}$ Plin. 19. 177.
 9 廿úл入ar: cf. Arist. H.A. 9. 39.].
 ${ }^{10}$ трабокоvpiঠєs : ? leaf-maggots. of. Arist. H.A. 5. 19. 20 ; Geop. 12. 9.
 ${ }^{11}$ кра́бтıs conj. R. Const.; крâбıs Ald.

[^58]: $\kappa \alpha \tau \alpha \beta a ́ \lambda \eta$ conj．W．after Sch．；кб́xpov à $\theta \rho \dot{\alpha} \alpha \nu$ conj．Scal．

 фíגutvò conj．R．Const．，but W．＇s conj．is confirmed by Geop．l．c．The change of gender in $\bar{\epsilon} \nu \delta \hat{v} \sigma \alpha$ is strange．

 ${ }^{4}$ 廿ú $\lambda \lambda$ as Ald．；канлàs conj．Sch．followed by W．
 ${ }^{5} \mathrm{cf}$. ．Geop．12． 7 ；Pall．1．35． 8 ；Plin．l．c．

[^59]: ${ }^{1}$ i.e. drying-up ; cf. Plat. Tim. 85 A.
 R. Const.
 ${ }^{3} \sigma_{\iota \kappa \iota \omega}{ }^{2}$ Ald.: perhaps here a general term for cucumbers, gourds, etc.; $\sigma \iota \kappa \nu \hat{\omega} \nu \mathrm{M}$; $\sigma \iota \kappa \cup ́ q$ conj. W.
 ${ }_{4}^{4}$ Plin. 19. 185.

[^60]: ${ }^{5}$ í $\mu \epsilon \in \rho o r s ~ c o n j$. Sch.; eip $\eta \mu \in ́ v o r s$ Ald. The correction would seem unnecessary but that Ald. gives eip $\quad \mu \dot{\prime} \nu o u s$ in $\S 4$ where $\dot{\eta} \mu \epsilon ́ \rho o u s$ is required. ${ }^{6}$ cf. Diosc. 3. 37.
 ${ }^{7}$ ơ $\nu, \tau \delta \nu$ I conj. ; $\tau \delta \nu \delta \in \in$ MSS.W.
 ${ }^{8} \gamma^{\boldsymbol{\epsilon}}$ conj. Sch.; $\boldsymbol{\tau} \in$ UMAld.

[^61]: ${ }^{1} \tau \rho a \chi u ́ \tau \epsilon \rho a$ conj．Sch．；т $\rho a \chi u ́ \tau \epsilon \rho o v$ Ald．，which contradicts what has just been said．
 ${ }^{2}$ Plin．20． 20 ；Diosc．2． 110.
 cf．C．P．4．3．5．

[^62]: 4. 9. 9. 5 ; Plin. 20. 58 ; Diosc. 2. 136.
 ${ }^{5}$ Plin. 19. 124.
 6 $\mu \alpha \nu \delta \phi \nu \lambda \lambda o \nu$: Plin. l.c. seems to have read $\mu o \nu \delta \phi \nu \lambda \lambda o \nu$.
 ${ }^{7}$ Diose. 3. 64. $\quad{ }^{8}$ Diosc. 3. 67.

[^63]: ${ }^{1} \tau \iota$ conj. Sch.; $\tau \delta$ Ald. cf. 9. 1. 4.
 ${ }^{2}$ \% $\lambda \omega s \mathrm{P}_{2}$ Bas.; $\ddagger \lambda \omega s$ Ald.; ? $\dot{\alpha} \pi \lambda \omega \hat{\omega}$ W.
 ${ }^{3} \kappa \omega \nu \epsilon i \varphi$ conj. Sch.; кovi ${ }^{(}$Ald. cf. 1. 5. 3 n.
 ${ }^{4} \kappa \alpha \rho \pi \dot{\nu} \nu$ conj. Cornarius on Diosc. 3.67. and Dalec.; каилд ν UMAld. of. Diosc. l.c.

 ${ }^{6}$ See Index, σ íkvos.
 ${ }^{7}$ i.e. which gives them a common name.
 MAld.

[^64]: ${ }^{1} \kappa \alpha \lambda \epsilon i \tau \alpha \iota$ conj. Sch.; $\tau \alpha \hat{v} \tau \alpha$ Ald.
 L. Dindorf ; ' $\epsilon \nu \theta o v \sigma \iota \kappa \delta \nu$ Ald.G. cf. Plin. 22. 81.
 ${ }^{3}$ Plin. 27. 142 ; Diosc. 2. 138.
 ${ }^{4} \kappa \alpha ́ \lambda \nu \xi$: cf. 8. 2. 4 ; 8. 4. 3.
 ${ }^{5} \pi \alpha ́ \pi \pi o \nu$ conj. W.; $\pi \alpha \gamma \eta \tau \delta \nu$ UMAld.; $\pi \omega \dot{\gamma} \omega \nu \alpha$ H. cf. Diose. l.c., where Saracenus corrects ка $\rho \pi \delta s$ to $\pi \not \approx \pi \pi$ оs.
 ${ }^{6}$ tolav́zas (sc. herbaceous) PmBas.; rolqûta $\tau \grave{a} s$ Ald.; tàs aùtàs conj. W.

[^65]: ${ }^{7}$ i.e. $\sigma \tau \rho v^{\chi} \chi \nu o s \delta^{\delta} \delta \dot{\sigma} \delta \iota \mu o s: c f .7 .15 .4$. The American 'wonder-berry.'
 probably defective.
 Schol.; Plin. 21. 183, ($=$ 'Is Saul also amiong the prophets?')

[^66]: 1 §è after tuút $\omega \boldsymbol{\nu}$ om. W.
 cf. 7. 7. 1 n. Plin. l.c., however, has aphace.
 ${ }^{3}$ è $\pi i \pi \epsilon \tau \rho o \nu$ conj. Scal. from Plin. l.c.; $\epsilon^{\boldsymbol{\epsilon} \pi} \boldsymbol{i} \mu \in \tau \rho o \nu$ UMAld.G. cf. Hesych. ${ }^{\ddagger} \kappa \alpha \lambda \hat{\varphi}$ conj. Sch.; $\kappa \alpha \rho \pi \hat{\varphi}$ UMAld. G.

[^67]: ${ }^{2}$ cf. 7. 15.1 ; Diosc. 4. 190 and 191 ; Plin. 22. 57.

[^68]: ${ }^{3}$ roıồ $\frac{\nu}{}$ conj. Sch. from G ; τ ov́ $\tau \omega \nu$ Ald.
 ${ }^{4} \underset{\epsilon}{\epsilon} \nu ; G$ seems to have read $\epsilon^{\prime} \pi^{\prime}$.
 ${ }^{5}$ тoîs $\dot{\eta} \mu \epsilon$ є́poss probably repeated by mistake from above.
 ${ }^{6}$ cf. C.P. 2. 5. 4 ; Plin. 22. 48 ; Diosc. 2. 130.

[^69]: after à $\nu \epsilon \mu \omega ́ \nu \eta$. cf. 7. 14. 2 ; Plin. 21. 56.

 ${ }^{3}$ cf. 1. 13. 1. and Index.

[^70]: ${ }^{5}$ Plin. 21. 100.
 ${ }^{6}$ i.e. petiolate, sessile, and decurrent respectively.
 ${ }^{7} \delta \kappa \alpha u \lambda d s$ add. Sch. from G.

[^71]: ${ }^{1}$ cf．1．13．1．
 лол入al UMAld．）$; \dot{\alpha} \nu \theta \iota \nu \hat{\varphi}$ for $\dot{\alpha} \nu \theta \iota \kappa \hat{\varphi}$ conj．W．，who also added $\tau \hat{\omega} \nu \dot{\alpha} \nu \theta \hat{\omega} \nu . \quad$ See LS．${ }^{2} \nu \theta_{\imath} \nu o ́ s$.

[^72]: Ald. H . 4.7.3. 1.
 ${ }^{5}$ Ё $\sigma \pi \epsilon \rho$ MSS. ; $\pi \lambda \epsilon i \sigma \tau \alpha \iota$ conj. W.

[^73]: ${ }^{1}$ кal conj. W.; η_{i} Ald.
 єlvaı кal кav入ods єivaı Ald.H. Text probably defective.

[^74]: 114

[^75]: ${ }^{3}$ каl pl\{as seems irrelevant.
 ${ }^{4} \dot{\alpha} \nu \alpha \beta \lambda \alpha \sigma \tau \alpha ́ \nu \in \iota$ conj. W.; $\dot{\alpha} \nu \alpha \beta \lambda \alpha \sigma \tau \epsilon i ̂ ~ к \alpha i ̀ ~ A l d . H . ~$

[^76]: ${ }^{1}$ où δ^{\prime} conj. W.; oŭ θ^{\prime} Ald. ${ }^{2}$ Reference not discoverable. ${ }^{3}$ à $\pi a ́ \pi \eta \nu$ conj. W.; àфáк ${ }^{2} \nu$ UMAld. cf. 7. 7. 1 n .
 ${ }^{4}$ кро́коs conj. Sch. (adding δ) ; д̆ $о$ оs U (corrected) ; кроs M ; om. Ald.; тд кро́ког mBas.
 ${ }^{5}$ кal θ єpııà seems to have dropped out.
 Ald.

[^77]: ${ }^{1}$ i.e. to fix the date of the beginning and end of the cycle of the plant's life.

 ${ }^{3}$ i.e. according as the seed ripened last year or this year. In this rather obscure section I follow W.'s explanations.
 ${ }_{4}$ Plin. 21. 100.

[^78]: ${ }^{5}$ Lacuna in UMAld.Cam. Bas., leaving the connexion of the next clause obscure.

[^79]: ${ }^{4}$ Roots being the basis of classification in xii. below.
 ${ }^{5}$ Plin. 21. 101.
 ${ }^{6}$ кúvш廿 conj. Sch.; à $\chi \dot{\nu} \nu \omega \psi$ UAld.; Plin. l.c. has cynops (cf. 7. 7. 3) ; oculus caninus G.

 7 i.e. composites. Plin. l.c.

[^80]: ${ }^{1}$ द̀ P át $\tau o u s$ conj. Scal.; θ átrous UMAld.
 ${ }_{2}^{2}$ Plin. 21. 88. ${ }^{3} \tau \delta$ conj. Sch.; $\tau \grave{\eta} \nu$ Ald.
 ${ }^{4}$ Meaning not obvious; $\sigma \kappa \lambda \eta \rho o \hat{v}$ is perhaps corrupt.
 ${ }^{5}$ vimoхoıpls conj. Scal.; ímoх'́p ${ }^{\circ} \sigma \iota s$ UMAld. cf. 7. 7.1 n .
 ${ }^{6}{ }^{\circ}{ }^{\circ} \chi \neq \omega \sigma \pi \epsilon \rho$: an adjective has perhaps dropped out between these words; ? $\pi \iota \kappa \rho \grave{\alpha}$ (amara Plin. l.c.).

[^81]: ${ }^{7} \chi o ́ \nu \delta \rho \nu \lambda \lambda \alpha$ conj. St.; $\chi \alpha \nu \delta \rho \nu \quad \alpha \lambda \lambda \alpha$ U; $\chi \alpha \nu \delta \rho \grave{̀} \quad \alpha \lambda \lambda \alpha$ M; $\chi \alpha \nu \delta \rho \grave{s}$ à $\lambda \lambda \grave{\alpha}$ Ald. H. ; cadryaliu G (Tarv.) ; candralia G (Bas. Par.).
 aüv η रàp Ald.; aü $\eta \eta$ रà ρ aß $\beta \omega \omega \tau$ os conj. Sch. from Plin. 21. 105.
 ̀ à $\pi \alpha ́ \pi \eta$ conj. W.; àфáкŋ Ald. cf. 7. 7. 1 n.
 ${ }^{10}$ Plin. 22. 66.

[^82]: ${ }^{1}$ cf. 7. 11. 2 ad fin. норфais : cf. 8. 4. 2.
 ${ }^{2}$ Plin. 19. 93 and 94.
 4 7. 9. 4.
 ${ }^{5}$ The legends about Epimenides suggest that the 'use' was possibly in magic: cf. what is said of $\sigma \kappa i \lambda \lambda a$ 7.13. 4. cf. Plin. l.c.

[^83]: ${ }^{6}$ Plin. 19. 96 ; 24. 162.
 ${ }^{7}$ à $\pi о ф u \lambda \lambda i ́ \sigma \omega \sigma \iota \nu$ conj. Sch.; à $\pi о ф u \lambda \alpha ́ \sigma \sigma \omega \sigma \iota \nu \mathrm{U}$; à $\pi о ф \cup \lambda \lambda \alpha ́ \sigma$ $\sigma \omega \sigma \iota \nu$ MAld.

 ${ }^{9}$ cf. 1.6.10; Plin. 19. 94 and 97 , who seems to have read катори́gavтєs: so also G. ? 'they plunge it in a pit.'
 ${ }^{10} \delta \iota a \beta \lambda \alpha \sigma \tau \alpha ́ \nu \eta$: cf. C.P. 4. 8. 1.

[^84]: ${ }^{1}$ бuvtiӨ'́vjes : sense doubtful. Sch. and W. mark the word as corrupt.
 ${ }^{2}$ cf. 9. 20. 3; Plin. 24. 142 ; Diosc. 2. 166.

[^85]: ${ }^{3}$ тарà тaîs $\sigma \kappa \alpha \lambda o \pi ı a i ̂ s ~ c o n j . ~ S c h . ; ~ \epsilon ̇ \nu ~ \tau а i ̂ s ~ \sigma \kappa . ~ c o n j . ~ W . ; ~ \tau a i ̂ s ~$ бколотías UMAld. ${ }^{4}$ Plin. 22.66. ${ }^{5}$ Plin. 21. 108.
 ${ }^{6}$ Plin. 21. 108 and 109.

[^86]:
 aṽavoıv Ald.; floret ver partes G.

[^87]: ${ }^{1} \alpha i \gamma i \lambda \omega \pi \alpha$ conj．Sch．from Plin．21． 103 ；$\gamma i \lambda \omega \pi \alpha$ UMAld．
 ${ }^{2}$ єù $\theta \grave{v} \pi \rho o \omega \theta \hat{\omega} \nu$ conj．W．；є $\dot{v} \theta u \pi \rho \delta \omega \rho o y$ Ald．H．cf．Plin． 21. 66，where however the statement is transferred to the crocus．

[^88]: ${ }^{3}$ i.e. the whole 'bud.'
 ${ }^{4} \dot{\alpha} \nu i \sigma \chi o \nu$ Ald.; $\dot{\alpha} \nu i \sigma \chi \omega \nu$ conj. Sch. followed by W.
 ${ }^{5}$ Plin. l.c.; cf. 18. 237.
 ${ }^{6}$ i.e. the flowering is the sign when to sow. The same is said of the fruiting of σ xivos de signis 55.

 7 oṽtos conj. Sch.; oũtws Ald.

[^89]: ${ }^{1}$ tíфvov Ald., cf. C.P. 1. 10. 5 ; τ ' Yфvov conj. W.; iphyum GBas.Par. cf. 6. 6. 11.
 ${ }_{3}{ }^{2} \pi i$ conj. H. ; $\pi \epsilon \rho i$ UMAld. ${ }^{4}$ W. adds $\grave{a} \nu$.
 ${ }^{5}$ aủv̀̀ : sc. apart from offsets.
 ${ }^{6} \mu \iota \kappa \rho \alpha ̀$ conj. Sch.; ov̉ $\mu \iota \kappa o \grave{~ A l d . ~}$

[^90]: 7 oủ $\lambda \epsilon \pi v \rho \iota \omega \dot{\eta} \eta$ s conj. Sch. from G, non squamata; oủסє̀ $\pi v \rho \omega \dot{\delta} \eta$ UMAld.; oủ $\lambda \epsilon \pi v \rho \omega \dot{\delta} \eta s \mathrm{H}$.
 ${ }^{8}$ Plin. 19. 95 ; Athen. 2. 64.
 ${ }^{9}$ Plin. 19. 32. See Index. $\quad 10 \quad \delta \nu$ after $\mu \in ่ \nu$ add. W.

[^91]: $<\chi \rho \eta \sigma \iota \mu \partial \nu \tau \delta>\epsilon \dot{\epsilon} \rho \iota \omega \hat{\omega} \epsilon s$ тov̂ro: 'wherefore this woolly kind is serviceable, which the Indian hairy kind is not.'
 ${ }^{2}$ Plin. 19. 95.
 ${ }^{3} \kappa \alpha{ }^{2} \lambda \lambda \dot{\prime} \tau \tau \omega^{*} \tau \alpha \hat{v} \tau \alpha \delta_{\epsilon}$: text corrupt and defective.
 ${ }^{4}$ ò $\pi \iota \tau \uparrow \omega \nu \mathrm{H} . ; \delta \pi \iota \tau i \omega \nu$ Ald.; pithyon Plin. l.c. ; ò $\pi \iota \tau i \omega \nu$ and $\kappa u ́ a ̨ \xi$ were possibly earth-nuts.
 ${ }^{5} \gamma \in$ conj. Sch ; $\tau \in$ Ald.

[^92]: ${ }^{1}$ i.e. the white kind. Sch. followed by G adds ro ral $\tau \rho \imath \chi o \mu \alpha \nu \dot{\epsilon} s \kappa a \lambda o u ́ \mu \in \nu o \nu$ after $\tau \grave{\partial} \mu \epsilon \grave{\nu} \lambda \epsilon \nu \kappa \grave{\nu} \nu$ above.
 1.36

[^93]: ${ }^{1}$ oiov conj. W.; $\delta \iota \partial$ Ald.
 Ald. cf. Xen. Hell. 2. 4. 30.
 ${ }^{3} \tau \in$ after $\tau o i ̄ s ~ a d d . ~ W . ~ a f t e r ~ L o b e c k . ~$
 ${ }^{4}$ e.g. $\lambda \omega$ tós and $\mu \in \lambda i \lambda \omega \tau o s$. See Index, $\lambda \omega \tau$ ós,
 ${ }^{5} \mu \in \boldsymbol{\lambda}$ í入 $\omega \tau$ os conj. Bod.; $\mu \in \boldsymbol{\lambda}$ ías $\sigma i ̂ \tau o s$ Ald.

[^94]:
 ${ }^{7}$ cf. 7. 7. 2 ; Plin. 21. 177-179; Diosc. 4. 70-73; Index.
 ${ }^{8}$ In 9. 11. 5 these two plants are said to be $\sigma v \nu \omega \omega^{\prime} \nu \mu o c$, i.e. different forms of the same plant, whereas the 'edible' $\sigma \tau \rho u ́ \chi \nu o s$ is the same only in name ($\delta \mu \omega \nu \nu \mu i(q)$. cf. 9. 12. 5.

[^95]:

 enimiometup据范

[^96]: ${ }^{1} \tau \hat{\omega} \nu$ before $\pi o t \omega \delta \hat{\omega} \nu$ om. Sch.
 ${ }^{2}$ Plin. 18. 48-80.
 ${ }^{3}$ ($\lambda v \mu$ os: $\mu \in \lambda i \nu \eta$ appears to be the Attic name for this plant. Sch. would restore it for $\bar{\epsilon} \lambda u \mu \mathrm{os}$ here and 4.4. 10 ; 8. 11. 1.

[^97]: ${ }^{1}$ A cultural variety of $\zeta \epsilon$ cá. cf. 8. 9. 2.
 ${ }^{2} \tau \hat{\omega} \nu \delta \epsilon ́ \gamma \in$ Ald.; $\gamma \epsilon$ om. Sch.
 ${ }^{3}$ む̀xpos conj. W.; кé $\gamma \chi$ рos Ald.; om. G. cf. 8.3.1 1 and 2. ${ }^{4}$ cf. 8. 11.8.

[^98]: differ as to their germination.'
 ${ }^{6}$ cf. C.P. 4. 7. 2.

[^99]: ${ }^{1} \dot{\omega} s \pi \rho o \in i \rho \gamma$. Ald.H.; $\dot{\omega} s$ om. Sch. from G. $\quad{ }^{2} c f .8 .8 .2$.
 ${ }^{3}{ }^{3} \not \omega \sigma \pi \in \rho$ conj. Scal.; $\pi \alpha^{\alpha} \nu \tau \alpha$ Ald. (? repeated by mistake). cf. C.P. 4. 7. 4.

 148

[^100]: ${ }^{4}$ тoútov conj. Sch.; тoút $\omega \nu$ Ald. cf. C.P. 4. 7. 4.
 ${ }^{5}$ cf. C.P. 4. 7. 7.

[^101]: ${ }^{3}$ бוтทрoîs conj. W.; $\chi \in \delta \rho o \pi o i ̂ s ~ U M A l d . ~$
 ${ }^{4} \kappa \alpha \theta^{\prime}$ '̂̀ ν à̉ $\frac{1}{\alpha}$ conj. W.; кат⿳亠 $\tau \grave{\tau} \alpha u ̉ \tau \grave{~ U M A l d . ~}$
 ${ }^{5}$ oủ conj. Scal. from G; oủ̀ UMAld.
 ${ }^{6}$ Plin. 18. 51.
 $7 \lambda \in \pi \tau \alpha ́ s ~ c o n j$. St.; $\lambda \in \pi \tau \alpha i ́$ Ald.H.

 * тappóठ η : cf. 6. 7. 4.
 ${ }^{9} \mu_{\mathrm{e} \nu} \nu$ conj. Sch.; γ àp Ald.H.

[^102]: ${ }^{4}$ Sc. from the sheath. $\dot{\alpha} \pi o \lambda v \theta \epsilon i s$ All.H.; $\dot{\alpha} \pi o \chi u \theta \epsilon l s c_{\text {conj. }}$ Sch. followed by W. cf. àmóxuots 8. 3. 4.
 ${ }^{5}$ Plin. 18. 59.

[^103]:

[^104]: ${ }^{2}$ Plin. 18. 49. ${ }^{3}$ крıtal conj. Sch.; π upol UMAld.

[^105]: M.G; P'omits $\tau \alpha \hat{v} \tau \alpha$.
 ${ }_{5}^{4}$ cf. Thuc. 8.41 foll.
 ${ }^{5} \mu \in \tau \in \nu \in \chi \theta^{\prime} \dot{\epsilon} \nu \tau a$ סıaф'́ $\rho \in \iota \nu$ conj. Sch. and W. from G; $\mu \in \tau \epsilon \gamma$. $\kappa \delta ́ \nu \tau \alpha s \quad \sigma \pi \epsilon i ́ p \epsilon เ \nu$ Ald.

[^106]: ${ }^{1}$ i.e. and so in part account for the difference. el $\eta \boldsymbol{\tau} \hat{\eta} s$

 ${ }^{2}$ i.e. we cannot say how far the difference is due to climate without knowing whether the seed-time at either place is the same.
 158

[^107]:
 ${ }^{2}$ cf. 8. 3. 3 n . ${ }^{3}$ Plin. 18. 53.
 ${ }^{4}$ ánó $\chi v \sigma \iota s$ conj. Sch. from $\mathrm{G} ;$ à $\pi \delta ́ \phi v \sigma \iota s \mathrm{P}_{2}$ Ald. cf. 4. 4. 10, àтохєїтaı; 8. 10. 4 ; C.P. 3. 21. 5.

[^108]: ${ }^{1}$ cf．7．4． 9.
 ${ }^{2}$ After $\delta \iota \alpha \phi o \rho \alpha ̀ s$ UM add $\tau \alpha ̀ ~ \delta \mu o l o \gamma \epsilon \nu \hat{\eta}$, Ald．$\tau \grave{\alpha} \mu \eta \eta^{\prime} \delta \mu o \iota o \gamma \epsilon \nu \eta \hat{\eta}$ ； om．Sch．and W．after G．
 ${ }^{3} \delta \mu o \gamma \in \nu \hat{\eta}$ conj．Sch．；$\delta \mu o \iota o \gamma \in \nu \hat{\eta}$ UMAld．cf．8．3． 1.
 ${ }^{4} \delta v \sigma \theta \lambda a \sigma \tau \delta \dot{\tau} \in \rho o \nu$ conj．Scal．from G，ruptu difficiliorem； $\delta \nu \sigma a \lambda \theta a \tau \omega ́ \tau \epsilon \rho o \nu$ UMAld．
 164

[^109]: кро́коз Ald.; Bри̂цоз Vin.
 ${ }^{7}{ }^{\wedge}$ conj. Sch. from Plin. l.c. and $(\pi$; каl Ald.H.
 ${ }^{8}$ Y $8 \iota o \nu$ Ald.; ทौठוov Vin.H. from G: so Sch. and W. cf. Col. 6. 3. 3.

[^110]: ${ }^{1}$ Explained below, 8. 4. 4 ; cf. 8. 4. 3.
 ${ }^{2} \pi \dot{d} \theta \in \sigma \iota: c f .1 .1 .1$ n. ${ }^{3}$ Plin. 18.78.
 ${ }^{4} \pi \lambda \epsilon \hat{\imath} \sigma \tau o \nu \delta^{\prime}$ é $\xi \dot{\alpha} \sigma \tau 0 \iota \chi o \nu$, кal $\gamma \dot{\alpha} \rho$ тotồтo conj. W.; $\pi \lambda \epsilon \hat{\imath} \sigma \tau o \nu$
 ov̂тov Ald.H.

[^111]: ${ }^{5}$ Referred to 4. 4. 9, but without mention of this feature.
 ${ }^{6}$ тais кpıtais conj. W.; $\tau \hat{\eta} s$ крıө̂̀s Ald.
 ${ }^{7}$ cf. C.P. 3. 21. 3; 3. 22. 2.

 ${ }^{9}$ cf. C.P. 3. 21. 2 ; Plin. 18. 2.

 ${ }^{11}$ סıaфорàs conj. W.; סıaфє́povtєs Ald.H.
 12 кal conj. W.; סè Ald.
 ${ }^{13}$ Explained below, 8. 4. 4 : pace of growth.

[^112]: ${ }^{1} \sigma \tau \lambda \epsilon \gamma \gamma \dot{\prime} s$. Sir W. Thiselton-Dyer conjectures $\sigma^{\prime} \lambda \iota \gamma \nu / s:$ $c f$. Plin. 18. 184, LS. $\sigma \iota \lambda l \gamma \nu \iota \nu$.
 ${ }^{2}$ cf. Geop. 3. 3. 11.
 ${ }^{3}$ i.e. colour, size, etc.
 Ald.).

[^113]: ${ }^{5}$ Ěvovites conj. W.; 'ézovtes Ald.
 ${ }^{6}$ cf. 8. 2. 4. 7 Plin. 18. 69.
 ${ }^{9}$ cf. C.P. 4. 12. 5; Plin. l.c.
 8 i.e. glumes. 10 Plin. 18. 70.

[^114]: P_{2} Ald. H .

[^115]: ${ }^{2} \pi \epsilon \nu \theta^{\prime}$ ทํ $\mu \iota \chi$ оí $\nu \iota \kappa \alpha$ conj. Sch.; $\pi \epsilon \nu \theta \eta \mu \iota \sigma \chi$ оívıка $\mathbf{M} ; \pi \epsilon \nu \theta \eta$ μ ихоірька P_{2} Ald.H. $\quad{ }_{3}$ Plin. 18. 70.
 i i.e. in Alexander's army.

[^116]: ${ }^{1} \delta \mu o i ́ \omega s . . . ~ к \alpha \tau \alpha \beta \alpha \lambda \lambda \lambda o v \sigma \iota \nu$ bracketed by Sch. as a gloss.
 ${ }^{2}$ But cf. 8. 8. 3. s $c f$. Diosc. 4. 116.
 ${ }^{4}$ i.e. when it gets into the bread.
 ${ }^{5} c f$. Plin. 18. 156 ; Diose. 2. 100.
 ${ }^{6}$ ö́ $\sigma \nu$ è $\pi \iota \beta \alpha ́ \lambda \lambda \in \iota$: cf. Arist. Pol. 1. 13. 8.

[^117]: ${ }^{7}$ Plin. 18. $124 . \quad{ }^{8} \gamma$ ' conj. Sch.; τ ' Ald.H.

 ${ }^{10}$ Plin 18. 125.
 $\dot{\epsilon} \pi \epsilon l \pi \alpha ́ \nu \tau \alpha \tau \alpha \hat{v} \tau^{\prime}$ conj. W.; $\epsilon^{2} \pi l \pi \alpha ́ \nu \tau \alpha \tau \alpha ̀$ Ald.H.

[^118]: Ald.H. $\quad{ }^{2}$ cf. 1. 11. 5.
 ${ }^{3} \delta \iota a \pi \epsilon \varnothing \rho a \gamma \mu \epsilon \in \nu \alpha$ conj. Sch.; $\lambda \epsilon i ̂ a \pi \epsilon ф \rho a \gamma \mu \epsilon ́ \nu \alpha$ Ald.H.
 ${ }^{4} c f .3 .18 .13$.

[^119]: ${ }^{5}$ i.e. as does the form of the ear in cereals.
 ${ }^{6}$ кal $\tau o \hat{v} \pi \iota \sigma o \hat{v} \cdot \tau \grave{\alpha} \gamma$ àp conj. Scal. from Plin. l.c. and G ; $\tau o \hat{v}$ $\pi เ \sigma o \hat{v} \gamma$ à $\rho \tau \grave{\alpha}$ UMAld.
 ${ }^{7}$ i.e. which either differentiate (e.g.) pea from lentil, or one variety of pea from another. cf. 8. 4. 2 n .

 8 8. 2. 1.

[^120]: ${ }^{1}$ aù $\alpha \rho \kappa є i ้ \nu$ Ald.; à $\nu \tau \alpha \rho \kappa є i ้ \nu$ U.
 ${ }^{2}$ Ėँเซเขทेs conj. Dalec.; è $\pi เ \nu \eta े s ~ U M A l d . ; ~ o b n o x i a ~ G . ~$
 ${ }^{3}$ i.e. after the rains.

[^121]: ${ }^{1}$ à $\nu \lambda \alpha \mu \beta \alpha ́ \nu o \iota ~ c o n j$. Sch.; à $\nu a \lambda a \mu \beta a ́ v o 九$ Ald.H.
 ${ }^{2} \kappa \delta \dot{\pi} \iota \sigma \iota s$ conj. Sch.; ко́тр \quad бєs Ald.
 ${ }^{3}$ cf. C.P. 3. 20. 7. ${ }^{4}$ cf. C.P. 3. 20. 5.
 Sch. followed by W.

 ${ }^{7}$ кıдoumévaıs conj. Sch. (cf. C.P. 3. 21. 4, ì Sıà Хpóvov $\gamma \in \omega \rho$ -

[^122]: ${ }^{9}$ cf. C.P. l.c.
 ${ }^{10}$ Explained C.P. l.c.
 ${ }^{11}$ à $\gamma a \theta \hat{\eta}$ conj. Casaub : so Vin.; a $\alpha \alpha \theta \dot{\eta}$ Ald. (and so with the other datives). 12 кal add. St.
 ${ }^{13}$ Plin. 18. 151 and 152.

[^123]: ${ }^{1} \sigma \phi \alpha \kappa \in \lambda\{\zeta o \nu \tau \in s: c f .4 .14 .4$.
 2δ रuppds тov̂ $\lambda \in u \kappa o \hat{v}$ conj. Scal. from G and Plin. 18. 124 ;
 ${ }^{3} c f . C . P$. 3. 22. 3.
 ${ }^{4} \delta \in i \tau \alpha \iota$ conj. Sch.; $\delta \in i ̂ \sigma \theta a \iota$ Ald.H.
 180

[^124]: ${ }^{5} \hat{\eta}$ add. Scal. from G : so Vin.

 ${ }^{7}$ ঞóvтıa conj. Sch.; rávтa Ald. cf. 8. 7. 6.

[^125]: ${ }^{1}$ Plin. 18. 149 and 150 ; cf. C.P. 4. 5. 2.
 ${ }^{2} \pi \delta \alpha$: ? grasses ; cf. 8. 6. 1.
 थे $\pi \epsilon \iota \rho \hat{\nu} \nu \tau \alpha \cdot \alpha i \tau \iota \omega \hat{\nu} \tau \alpha \iota$ रáp $\tau \iota \nu \epsilon s$ PM : so also Ald.Bas.Cam. with mark of corruption.

[^126]: ${ }^{1}{ }^{i} \lambda \grave{v} \nu$ conj. Sch. from Plin. 18. 162 ; v゙ $\lambda \eta \nu$ Ald.H.
 ${ }^{2}$ Text perhaps defective : cf. Plin. l.c.

[^127]: ${ }^{1}$ тoút $\omega \nu$ conj. Sch.; τ ov́ τ ovs Ald. H.
 ${ }^{2} c f$. Lewis and Short s.v. agna.
 ${ }^{3}$ C.P. l.c. gives the reason.

[^128]: ${ }^{5}$ Quoted also C.P. 3. 23. 4.
 ${ }^{6}$ elvat add. Sch. ${ }^{7}$ cf. C.P. 3. 23. 5.
 ${ }^{8} \pi \rho o ̀ ̀ ~ a d d . W . ~ c f . ~ C . P . ~ 3 . ~ 20.6 . ~$

[^129]: ${ }^{1} c f$. Col. 2. 2. 13. The reference is perhaps to fern grown for litter, or possibly for medicinal use. cf.9.20.5.
 ${ }_{2}$ रópas conj. Sch.; $ఓ p a s$ Ald. ${ }^{3}$ â conj. Dalec.; ầ Ald.
 ${ }^{4} \psi v \chi \in \iota \nu \omega ิ \nu$ conj. W. ; $\psi v \chi \iota \kappa \omega \nu \nu$ UM ; $\psi v \chi \rho \hat{\omega} \nu$ Ald.
 cf. 4. 4. 10.

[^130]:
 ${ }^{7} \chi \omega$ ́pq conj. Sch.; ${ }^{\text {an }}$ pa UMAld.
 and other reff. in Sch.'s exhaustive note.

[^131]: ${ }^{1}$ катà add. W. cf. 2. 4. 1.
 ${ }^{2} \tau \iota \nu a$ conj. W.; $\tau \in \mathrm{P}$; $\tau \hat{\varphi}$ Ald.; $\tau \grave{\mathrm{H}} \mathrm{H}$. Vin.Vo. cf. 2. 2. 6.
 ${ }^{3}$ Seid conj. Scal.; vía Ald.H. $\quad 4$ 2. 4. 1.

[^132]: 1 « $\lambda \lambda \eta \nu \tau \iota \nu \alpha$ conj. Sch.; $\alpha \lambda \lambda \eta s \tau \iota \nu \alpha \mathrm{U}$; $\alpha \lambda \lambda \eta \nu$ Ald.
 ${ }^{2} \tau \hat{\varphi}$ add. Sch.
 Ald. ; veluti bruchiis G.
 ${ }^{4}$ Plin. 19. 176, who however calls this ai μ ódwpov. See Index App. (26).

[^133]: ${ }^{1}$ cf. 2. 4. 2; C.P. 4. 12; Plin. 18. 155, who makes ateramum, teramum plants.
 ${ }^{2} \pi \lambda \in o \nu a \chi \hat{\omega} s \cdot \pi o \lambda \lambda a \chi o \hat{v}$ I conj. ; $\pi \lambda \epsilon \in \rho \cdot \pi \cdot \pi \lambda a \chi \hat{\omega} s$ MSS.

 ${ }^{4}$ cf. C.P. 4. 12. 8 ; Plut. Quaest. Conv. 7. 2. 3 ; Plin. l.c. 196

[^134]: ${ }^{5}$ aủ $\tau \hat{\omega} \nu$ conj. W.; $\delta \grave{\epsilon} \tau \hat{\omega} \nu$ Ald. cf. a similar expression 8.2.10.

[^135]: - See Index.

 10 каl $\lambda \in \pi \tau$ ока́ $\lambda \alpha \mu \boldsymbol{\nu}$ add. Bod, from Galen.

[^136]: 7 Plin. 18. 152 and 154. ${ }^{8}$ cf. 4. 14. 2.
 ${ }^{9} \psi v \lambda \lambda \omega \hat{\nu}$: described by Arist. H.A. 9. 39. 1.

 12 Plin. 18. 156.

[^137]: ${ }^{8}$ фиó $\notin \nu 0 九$ conj. Sch.; $\phi \nu o ́ \mu \in \nu 0 \nu$ Ald. cf. C.P. 3. 22. 4.
 ${ }^{9}$ àmoұvө̂̀vaı conj. Sch. after Vin.Vo.G; à $\pi 0 \lambda v \theta \hat{\eta} \nu a \iota ~ U M ~$ Ald. cf. C.P. 3. 22. 4; 4. 14. 1.
 the word as corrupt.

[^138]:

 ${ }^{3}$ cf.C P. 3. 22. 3. む $\chi p o \iota s$ conj. St.; ő χ poıs Ald.H.
 4 каӨд́лєр каl conj. Sch.; каl каӨд́лєе Ald.
 ${ }^{5} \pi \alpha ́ v \tau \alpha$ conj. W.; $\tau \grave{a}$ Ald.

[^139]: ${ }^{1} \epsilon \bar{j}$ conj. W.; oủ Ald. $\quad{ }^{2} \sigma \dot{\eta} \pi \epsilon \tau \alpha \iota$ add. W.
 ${ }^{8}$ cf. 8. 8. 6; C.P. 5. 18. 2. ${ }^{4}$ өâtcov add.W.

 коvıátoเs ŋ̀ àкоขıáтoıs Ald.; so also UM, but omitting тoîs; U
 Plin. 18. 301, Varro 1.57. 1, where the use of a cement of pounded marble is recommended.

[^140]: W. brackets as due to a gloss. cf. C'P. 4, 13. 6.
 $\theta \in \rho \iota \sigma \theta \hat{n}$ conj. W.; $\pi \in \rho \iota \phi \cup \hat{n}$ MSS.

[^141]: ${ }^{4}$ i.e. the grain is there exposed to great sun-heat. cf. de igne 44.

 5 i.e. the sun's heat is different in kind, and therefore in effect, to that of a fire.
 ${ }^{6}{ }_{\theta \in \rho \mu \mu \sigma i ́ a ~ c o n j . ~ S c h . ; ~}^{\theta \epsilon \rho \mu \alpha \sigma^{\prime} a}$ Ald.H.
 єiкб́vєs Ald. H.

[^142]: ${ }^{1}$ кal conj. Sch.; \# Ald.H.
 ${ }^{2}$ cf. 8. 1. 3. ${ }^{3}$ cf. C.P. 4. 7. 3.

[^143]: ${ }^{5}$ cf. 1. 7.3 ; Plin. 18. $134 . \quad{ }_{6}^{6} \epsilon^{2} \nu$ conj. W.; $\tau \hat{y}$ Ald.H.
 ${ }^{7}$ cf. 8. 11. 2. $\quad{ }^{8}$ cf. C.P. 4.6. 1.
 ${ }^{9}$ ė̃ $\pi a \phi \iota a ̂ \sigma \iota ~ c o n j . ~ S c h ., ~ c f . ~ 8 . ~ 7 . ~ 4 ; ~ a ̀ \phi ı \eta ̂ \sigma \iota ~ M ~ ; ~ a ̀ ф \imath \eta \sigma \iota ~ P ; ~$ àф!aбı Ald.

[^144]:

[^145]: ${ }^{1}$ cf. C.P. 6. 11. 16.
 ${ }^{2}$ I have omitted $\dot{\eta}$ and restored $\delta \dot{\epsilon}$ before ${ }^{\epsilon} \chi \chi \in t$ (om. Scal.; found in UMAld.).
 St.; кєv $\eta \eta \rho i \not{ }_{q} \mathbf{P}_{2}$ Ald.G, cf. 9, 8. 7.

[^146]: ${ }^{1}$ кшри́кч conj. Sch.; à $\gamma \gamma \epsilon i \notin \mathrm{H} . ;$ à $\gamma \in i \nmid \varphi \mathrm{P}_{2}$ Ald. probably a gloss on кшри́кч, for which cf. 2. 8. 3 and reff. in note. Plin. l.c. has preserved the right word through an absurd blunder -in Coryco_monte_Ciliciae.

[^147]: ${ }^{2}$ galbanum. $c \dot{f}$. Plin. 12. 121; 24. 21. Verg. G. 3. 415 ; 4. 264. See 9. 7. 2 ; 9. 9.2 n.

 ${ }^{5}$ Plin. 13. $115 . \quad{ }^{6}$ cf. C.P. 6. 11. 15.

[^148]: ${ }^{2} c f .2 .21$; 6.6.8; C.P. 1. 4. 6.
 ${ }^{3}$ 9. 1. 3. $\quad{ }^{4}$ cf. C.l'. 6. 11. 15.

[^149]: by G ; $\mu \hat{a} \lambda \lambda o \nu \cdot \dot{\epsilon} \pi l$ रov̂v $\tau \grave{\partial} \dot{\alpha} \pi \grave{\partial} \tau \hat{\eta} s \dot{\alpha}$. UMAld.
 $\kappa \alpha ̉ \nu \alpha$ áфє́ $\kappa \omega \sigma \iota$ MAld. cf. Plin. 24. 105.
 ${ }^{7}$ Plin. 24. $106 . \quad 8$ a iconj. W.; каl UPAld.
 ${ }^{9} \gamma \in$ conj. Sch.; $\delta \epsilon$ Ald. of. C.P. 3. 13. 2.

[^150]: ${ }^{1}$ cf. 6. 3. 2; C.P. 6. 11. 16.
 ${ }^{2}$ $\sigma i \lambda \phi \iota o \nu$ conj. St.; $\sigma \iota \lambda \phi i ́ o v$ UM ; $\sigma \iota \lambda \phi \iota \lambda \lambda \epsilon ́ \gamma o \nu \tau \epsilon s$ PAld.

[^151]: ${ }^{3}$ Plin. 16. 57. ${ }^{4}$ катà conj. W.; rav̂ra Ald.H.

[^152]: ${ }^{1} \pi เ \tau \tau о \kappa \alpha \nu \tau \epsilon і ̈ \sigma \theta \alpha \iota$ conj. Sch., cf. 9. 3. 4 ; тıттокаvөíбає U; $\pi \iota \tau \tau \omega \theta \epsilon i \sigma \alpha a$ Ald. ${ }^{2}$ 3. 2. 6.
 ${ }^{3}$ б́̀ conj. W.; кal Ald.H. cf. 3. 12. 3.
 ${ }^{4} \mu \grave{\eta}$ conj. W.; $\gamma \in$ Ald.H.; $\gamma \epsilon \mu \grave{\eta}$ Cod.Casaub.Vin.; $\gamma \in \mu \eta \nu$ Vo. (тخ̀ дакартор mBas.). cf. 3. 9. 2.
 ${ }^{5}$ Plin. 16. 59.

[^153]: ${ }^{1}$ Plin. 16. 60.
 $\kappa a l \epsilon \dot{u} \omega \oint \in \sigma \tau \epsilon \rho \alpha \nu$ W. cf 3. 9. 2.
 ${ }^{3}$ Plin. l.c.

[^154]:
 'however this is the interval which must elapse before the pitch can be worked again.'

[^155]: ${ }^{1}$ i.e. and so this kind of wood at least is replaced by fresh growth.
 ${ }_{2}$ Plin. 16. 57.

 conj. Sch.

[^156]: Ald.
 ${ }^{5} \tau \delta \delta \epsilon$ conj. Sch. from G ; τ oùs Ald.
 6 е́к Ald.; каl conj. W.
 7 9. 2. 3. ${ }^{8}$ cf. C.P. 5. 16. 2.

[^157]: ${ }^{1}$ द̇ठaфí $\sigma \omega \sigma \iota: c f .9 .4 .4$.
 ${ }^{2}$ cf. 5. 9, where however the 'pit' is not described.
 beginning of this clause. ?" and they say that the pile at largest is $180 "$. . .: so Sch. supplying $\mu \in \gamma i \sigma \tau \eta$ after $\eta \bar{\eta}$. The omitted words might also throw light on the preceding sentence.

[^158]: 4 à $\mu \phi о \tau \epsilon ́ \rho o \iota s: ~ a ́ \mu \phi о \tau \epsilon ́ \rho \omega \sigma \in$ conj. Sch.
 Ald.; $\in \pi \iota \sigma \alpha \mathfrak{\alpha} \xi \nu \tau \in s$ H.
 ${ }^{6}$ таûта Ald.; таúт $\eta \nu$ W. after Sch.'s conj.
 7 тоиิтov $\delta \in ́ \tau \delta \nu$ хрóvov conj. Sch. from G, totum tempus; тóv $\delta \epsilon$ $\delta \notin \tau \delta \nu \tau \rho o ́ \pi o \nu$ UMAld.H.

[^159]: $\pi \lambda \dot{\eta} \tau \tau \pi \nu \tau \in s$ Ald.
 word may be corrupt.

[^160]: тоиิтo $\pi \in \rho!a \lambda$ єí申ovias MSS.
 ${ }^{5} \pi \iota^{2} \alpha$ conj. W.; $\pi o \lambda \lambda \grave{\eta}$ Ald. ${ }^{6} \tau \iota$ before $\tau \omega \hat{\nu}$ add. Sch.
 ${ }^{7}$ X $\epsilon \rho \rho o \nu \eta \sigma \varphi$ conj. Saln.; $\chi \omega ́ \rho \underset{\&}{\nu} \eta \sigma \varphi$ Ald. cf. Plin. 6. 28.

[^161]: ${ }^{1}$ Plin. 12. 55 and 56.
 ${ }^{2}$ Plin. 12. 67.
 ${ }^{3}$ € $\chi \in เ \nu$ conj. Sch.; ${ }^{\ell} \chi \in \iota \mathrm{P}_{2}$ Ald.

[^162]: ${ }^{1} \pi \rho \alpha \theta \hat{\eta} \nu \alpha \iota$ conj. Sch. from G ; $\pi \rho \alpha \sigma \theta \hat{\eta} \nu \alpha \iota \mathrm{U}$; $\pi \rho \sigma \sigma \theta \in i ̂ \nu \alpha \iota ~ \mathrm{P}_{2}$ Ald.

[^163]: ${ }^{1}$ Plin. 12. 66 and 67.
 ${ }^{2}$ Plin. 12. 53.
 ${ }^{3} \pi \lambda \alpha \kappa \omega \dot{\delta} \eta$: lit. ' with a crust'; so W., but the word does not seem to occur elsewhere in this sense.
 ${ }^{4}$ cf. 9. 4. 2.

[^164]: ${ }^{5}$ i.e. the statement quoted of the myrrh-tree, §7. The 'tree' is here the $\lambda_{\iota} \beta \alpha \nu \omega \tau$ ós, but these authorities did not distinguish it from the myrrh-tree. See below.
 ${ }^{6} \tau \hat{\omega} \nu$ conj. Sch.; $\tau \hat{\varphi}$ UAld.

[^165]: ${ }^{1}$ Pin. 15. 57 ; cf. 16. 135.
 ${ }^{2} \delta^{\prime}$ € $\chi \in \iota$ conj. W.; $\delta i t \in \tau a \iota \mathrm{P}_{2}$ Ald.; om. H .
 oủ $\mu \iota \hat{a} s \tau v \gamma \chi \alpha \nu \in \iota \nu \mathrm{P}_{2}$. But there is no sign of a lacuna in the MSS., and out $\delta \epsilon \mu$ las is probably corrupt, as W. suggests. out $\delta \epsilon$ $\theta \in \rho$. is inconsistent with 9. 4. 2.
 ${ }^{4} \pi \lambda \epsilon i \omega \nu$ conj. W.; $\dot{\eta} \delta i \omega \nu \mathrm{P}_{2}$ Ald.

[^166]: ${ }^{5}$ Plin. 12. 60.

 ${ }^{7} \tau \omega \hat{\omega} \chi \chi \chi^{\delta} \delta \delta \rho \omega \nu$ conj. Sch. ; $\tau \hat{\varphi} \chi^{\delta} \nu \delta \rho \omega \mathrm{P}_{2}$ Ald.
 8 i.e. here the commodity so called.
 ${ }^{9}$ cf. Odor. 29.

[^167]: ${ }^{1}$ Plin. 12. 85-94.
 ${ }_{2}^{2}$ A similar tale is told of frankincense by Herodotus (3. 107), who has an equally surprising tale about cinnamon (3. 111).

[^168]: ${ }^{3}$ Plin. 12. 95-97.
 ${ }^{4} \pi \epsilon \rho \iota \phi \lambda$ oī̃aı H.; $\pi \epsilon \rho \iota \phi \lambda \in \hat{v} \sigma \alpha \iota \mathrm{UMP}_{2}$ Ald. cf. de igne 72.

[^169]: ${ }^{1} \nu \epsilon o ́ \delta o \rho o \nu$ conj. Sch.; $\nu \in o ́ \delta \in \rho o \nu \mathrm{P}_{2}$ Ald.
 ${ }^{2}$ Plin. 12 111-123.
 conj. But the clause begins without a conjunction, and some

[^170]: words about the flower may have dropped out, to which this clause refers ; $c f$. however Odor. 32.
 ${ }^{4}$ Diosc. 1. $19 . \quad 5$ Plin. 12. 117.

[^171]: ${ }^{1}$ tov I conj. ; rô MSS. G's rendering shews that the explanation of the 'different reason' (i.e. to strengthen the tree) has dropped out of our texts.
 ${ }^{2} \gamma \dot{\alpha} \rho$ add. Sch.

[^172]: ${ }^{3}$ The 'motive' is the production of boughs. $\epsilon^{\epsilon} \nu \tau \alpha \dot{\nu} \tau \hat{\eta}$

 ${ }^{4}$ Plin. 12. 104 and 105. ${ }^{5}$ cf. C.P. 6. 18. 2.

[^173]: P_{2} Ald. H .
 ${ }_{2}$ cf. C.P. 6. 18. 1. $\tau \hat{\omega} \nu \alpha \partial \lambda \omega \nu$: sc. кал $\alpha \mu \omega \nu \kappa \alpha l ~ \sigma \chi o i ̀ \nu \omega \nu$.
 ${ }^{3}$ тробфф $\rho o \mu \epsilon ́ \nu a \iota s ~ \nu a v \sigma i ̀ ~ \pi \rho \partial s ~ c o n j . ~ S c a l . ; ~ \pi \rho o \sigma \phi . ~ є i ̄ \nu a \iota ~ \pi \rho d s ~ \mathrm{P}_{2}$ Ald.
 ${ }^{+}$cf. 9. 9. 2 n . 'The plant,' i.e. one of the plants so called.
 ${ }^{5}$ Plin. 12. 135 ; cf. 13. 18.

[^174]: ${ }^{6}$ eivat has no government, and W. considers the passage corrupt. Comparison of Plin. l.c. suggests that the original text may have been something like this: тд кю́цакоу карлдд ${ }_{0} \nu$ • $\tau \grave{\nu} \nu \delta \dot{\epsilon} \chi \nu \lambda \dot{\partial} \nu \kappa$ к. $\tau . \lambda$., i.e. 'komakon is of different character from these, being a fruit, whose juice-?' Plin, calls κ, a kind of cinnamon.

[^175]: ${ }^{1}$ cf. C.P. 6. 14. 8 ; 6. 18. 12 ; Plin. 21. 40.
 ${ }^{2}$ See Index App. (25).

[^176]: ${ }^{3}$ тaủ $\tau \grave{a}$ conj. Scal. from G ; $\tau a \hat{v} \tau \alpha$ Ald.
 omitted here by Sch.: see below. ${ }^{5} \mathrm{Sc}$. in the roots.
 ${ }^{6} \ddot{\omega} \sigma \pi \epsilon \rho \ldots \pi \rho \dot{\sigma} \tau \epsilon \rho o \nu$ inserted here by Sch.: see above; $\ddot{\omega} \sigma \pi \in \rho \in \operatorname{ei\rho } \rho \tau \alpha \iota$ Ald.
 ${ }^{7} \kappa \alpha \nu \lambda \omega \hat{\omega} \nu$ Vin. Vo.Cod.Cas.: so also G ; $\kappa \alpha \rho \pi \omega \hat{\omega}$ Ald.HM*.
 каil M^{*}.

[^177]: ${ }^{1}$ cf. Diosc. 2. 136 ; Plin. 20. 58.
 ${ }^{2}$ cf. Diosc. 3. 7.

[^178]:
 ${ }^{5} c f$. Plin. 13. $125 . \quad{ }^{6}$ Plin. 25. 53. ${ }^{7}$ i.e. rhizome.

[^179]:

 256

[^180]: ${ }^{1}$ Plin. 25. 69 adds that this plant was therefore also called т $\boldsymbol{\rho}$ íopхıs. cf. Diose. 4. 162.

 ${ }^{3}$ Plin. 25. 30 and 31.

[^181]:
 variations in $\mathrm{U} * \mathrm{M} * \mathrm{PP}_{2}$: restoration a makeshift. cf. Plin. 25. 50. $\quad 2$ 9. 8. 1.
 ${ }^{3}$ Diosc. 4. 75 ; Plin. 26. 104 and 121.
 ${ }^{4} c f .9 .12 .1$.

[^182]:

 ${ }^{2}$ Diosc. 2. 164 ; Plin. 25. 133 ; 26. 149.
 ${ }^{3} c f$. Plin. 23. 63.

[^183]:
 ${ }^{2}$ Diosc. 4. 153 ; Plin. 13. 124.
 ${ }^{3}$ Diosc. 4, 175.

[^184]: ${ }^{1}$ Which were held apparently at Thermopylae regularly in autumn and sometimes in spring : the meeting would give opportunities for sale. $\dot{\alpha} \lambda \lambda \grave{\alpha}$ implies a spring meeting.

[^185]: ${ }^{5}$ бท̂тas conj. Scal., cf. Arist. Mir. Ausc. 164 ; $\sigma \hat{\eta} \tau a s$ Ald.

 ${ }^{7}$ For the genitive $c f$. §§ 2, 3; Xen. Mem. 3. 8. 3.
 ${ }^{8}$ Plin. 25. 30 ; Diosc. 3. 49.
 จ $\dot{\alpha} \lambda v \kappa \kappa ́ \delta \eta$: ? 'has a briny taste.'

[^186]: ßavఉтô̂ U*; $\lambda \iota \beta \alpha \nu \omega \tau 0 \hat{v} \kappa \alpha \theta \alpha \hat{\nu} \nu$ Ald.H каөapồ perhaps due to каӨárep. $\quad{ }^{6}$ cf. Fr. 175 ; Diosc. 2. 75.
 ${ }^{7}$ ò $\delta v ́ v \eta s$ conj. W.; j δ íval UMU*Ald.
 ${ }^{8}$ छ$\eta \rho \grave{\alpha} \nu$ conj. Sch.; $\xi \eta \rho \grave{a}$ U*Ald. ; $\xi \eta \rho a l$ M. ${ }^{9}$ Plin. 35. 33.

[^187]: ${ }^{1}$ Plin. 26. 68.
 ${ }^{2}$ кбкккцор conj. W.; кб́ккоз MSS. cf. Plin. l.c. ramis rubentibus. ${ }^{3}$ Jiose. 4. 164; Plin. 26. 62-65.
 Ald.

[^188]: ${ }^{5}$ Diosc. 3. 8 ; Plin. 22.45 and 46 , who explains the name (mutat cum terra colores). See Index.
 Ald.

[^189]: ${ }^{1}$ cf．9．9．1．
 ${ }^{2}$ cf．Pseudo－Diosc．4． 175 and Index．
 ג̀кау⿳⺈⿴囗十一 PAld．
 ${ }^{4} \delta \grave{\delta}$ after $\tau \grave{\nu} \nu$ om．Sch．；？$\tau \iota \nu \alpha \kappa є \phi а \lambda \grave{\eta} \nu \mathrm{~W}$ ．

[^190]: $\tau\left\{\omega \nu \mathrm{U}^{*}\right.$ Ald.
 ${ }^{2}$ Diosc. l.c.; Plin. 19. 167-169.
 ${ }^{3}$ Diosc. 4. 66 ; Plin. 20. 207, cf. 19. 21.
 280

[^191]: ${ }^{1}$ Diose 3. 5 ; Plin. 25. 82.
 ${ }^{2} \gamma \lambda \nu \kappa \epsilon i ̂ a v: ~ \gamma \lambda \nu \kappa u ́ p \rho ı \zeta a \nu$ conj. Dalec., whence 'liquorice.' cf. Plin. 11. 284.
 ${ }^{8} c f$. Plin. l.c., who took imakan to be a plant.
 282

[^192]: ${ }^{1}$ These words shew that $\S 3$ is out of place.
 ${ }^{2}$ cf. C.P. 6. 4. 5.
 ${ }^{3} \dot{\eta}$ conj. Sch.; ai U*Ald.
 ${ }^{4}$ év voîs ${ }^{\text {éprois }}$ тoîs W. from U*. ? a gloss on $\mu \epsilon ́ \tau \alpha \lambda \lambda \alpha$. $\tau \grave{\alpha} \mu \epsilon \tau . \tau \grave{\alpha} \epsilon \bar{\epsilon} \nu$ @. Ald. H.
 ${ }^{5}$ Plin. 25. 139.

[^193]: ${ }^{6} \pi \epsilon \nu \tau \alpha \pi \epsilon \tau o u ̄ s$ conj. Sch.; $\pi \in \nu \tau \alpha \pi \epsilon \in \tau o u$ UAld.; $\pi \epsilon \nu \tau \epsilon \pi \epsilon \in \tau o u$ M U*. cf. Diosc. 4. 42.

 fective, as nothing is said of the plant's medicinal use.
 ${ }^{8}$ Diosc. 3. 143 ; Plin. 19. 47.
 ${ }^{9} c f .9 .18 .2$.

[^194]: ${ }^{1} c f$. the mediaeval doctrine of 'signatures.'
 ${ }^{2}$ Diosc. 4. 186.

 ${ }^{4}$ Plin. 27. 143. ${ }^{5}$ cf.9.8.7. ${ }^{6}$ cf 9. 20.3.
 7 व̈пл $\eta \kappa \tau о s: ~ ? ~ b y ~ w o r m s . ~ c f . ~ a ̆ к о \pi о s . ~$

[^195]: ${ }^{8}$ бо $\mu \dot{\omega} \dot{\eta} \eta s$ conj. Sch.; $\sigma о \gamma \kappa \omega \delta \eta$ s Ald.H.
 ${ }^{9}$ A manufactured drug. cf. 9.9.4.
 ${ }^{10}$ Diosc. 4. 150 ; Plin. 20. 5.
 U*Ald.; xpóvous UM.

[^196]: ${ }^{5}$ i.e. and it is in this case the fruit which is used. The drug in question, as well as the plant, was called $\sigma \eta \sigma a \mu o \epsilon เ \delta \epsilon{ }^{\prime}$ s or $\sigma \eta \sigma \alpha \mu 0 \in i \delta \eta{ }^{2}$ s. cf. 9. 9. 2 n.; Diosc. 4. 149.
 ${ }^{6} \mathrm{Or}$ (if ${ }^{\epsilon} \lambda \lambda \epsilon \beta 6 \rho \mathrm{\rho ov}$ is sound) ' of the sesame-like hellebore,' i.e. he 'black.' δ " $\tau \iota$. . $\sigma \eta \sigma \alpha \dot{\mu} \mu$ I have bracketed, as a gloss on $\sigma \eta \sigma \alpha \mu \omega \dot{\delta} o u s$: $\bar{\lambda} \lambda \lambda \epsilon \beta \delta \delta \rho o u$ is probably also a gloss.

[^197]: ${ }^{1}$ Od. 4. 221 foll.
 ${ }^{2} \hat{\omega} \nu \delta \dot{\eta}$ conj. Sch.; wí $\delta \grave{\eta} \mathrm{U}^{*}$; ${ }^{2} \nu$ oîs $\delta \grave{\eta}$ PAld.

[^198]: ${ }^{8}$ Somali arrow-poison. Index App. (27).
 ${ }^{4}$ रév \quad conj. Dalec.; $\mu \epsilon ́ \rho \eta$ Ald.
 ${ }^{5} \pi \in \rho \iota \tau \tau o ́ \tau \alpha \tau \alpha$ conj. W.; $\pi \in p \iota \tau \tau o \tau a ́ \tau \eta$ Ald.

[^199]: ${ }^{1}$ I omit $\tau \alpha \hat{v} \tau \alpha$ ．．кoıvóv as apparently out of place and a duplicate of the last sentence of $\S 8$ ．
 ${ }^{2}$ Plin．25． 94 ；cf．4．5． 2.
 Plin．25． 110.

[^200]: ${ }^{1}$ Plin．25．30－33．
 ${ }^{2}$ кала̀ conj．St．；каl Ald．H．
 ${ }^{3}$ Plin．25． 151.
 ${ }^{4}$ इov̂ $\alpha a: c f .9 .16 .8$ ；$\Lambda o \hat{v} \sigma \alpha$（a town in Areadia）conj．Sch． （usually $\Lambda \boldsymbol{\Lambda} \boldsymbol{v} \sigma o \iota$ ），the other places mentioned being all in

[^201]:
 ${ }^{2}$ Plin. 25.93.
 кal Ald.

[^202]: ${ }^{4} \pi \lambda \epsilon i^{\prime} \omega$ тoú $\tau \omega \nu$ Ald., probably a duplicate of $\check{a} \lambda \lambda \alpha \pi_{0} \lambda \lambda \lambda \grave{\alpha}$;

[^203]: ${ }^{1}{ }^{j} \rho o \delta \alpha \mu \nu \omega \nu$: this word seems to occur only here in T.
 ${ }^{2}$ Diosc. 4. 76 and 77 ; Plin. 27.9 and 10.
 ${ }^{3}$ кар $\delta \iota \iota$ conj. W.; карі́aı U; кари́а Ald. cf. Diosc. l.c.
 ${ }^{4}$ cf. 9. 8. 1.
 ${ }^{5}$ Plin. 6.4, portus Acone veneno aconito dirus. Butin 27. 10. he apparently did not recognise 'Acócas as a proper name, 298

[^204]: and translates it in mudis cautibus, misled perhaps by rous $\pi \epsilon \tau \rho \omega \bar{\delta} \epsilon \iota \tau \boldsymbol{\tau} \boldsymbol{\sigma} \pi$ ous below.
 ${ }^{6}$ Mapıa $\delta \iota \nu \omega \bar{\omega} \nu$ conj. Meurs.; $\pi \epsilon \rho!a \nu \delta \dot{v} \nu \omega \nu$ U*Ald. 2.

 ${ }^{8}$ סè add. S'ch.

[^205]: ${ }^{1}$ i.e. no herb having that effect.
 $\phi u \delta \mu \in \nu o \nu$ conj. W. G seems to have had a fuller text.

 shews to be a gloss.
 The passage about $\bar{\epsilon} \phi h \mu \epsilon \rho o \nu$, which interrupts the account of áкóvıтov, is confused, and the text probably defective ; translation a makeshift. The sense of $\epsilon i \mu \bar{\eta} \ldots$. $\dot{\omega} s \delta_{\epsilon i}$ being perhaps irrecoverable, the connexion of what follows is obscured. W. gives up the passage.

[^206]: ${ }^{\epsilon} \phi \eta \eta^{\prime} \mu \in \rho o \nu$ Ald.
 ${ }^{6} \tau \boldsymbol{\tau}$
 7 i.e. the 'black': see Index.
 ${ }^{8} \lambda \in \iota \rho i \varphi$ conj. Guilandinus from Diose. 4. 84 ($\left.\kappa \rho i \nu \not \mathcal{q}^{\prime}\right)$; aipí ψ Ald.H. \quad тои̂тo Ald.; тои̂тo $\mu \grave{e} \nu$ UM.
 ${ }^{10}$ After $\delta \rho \mu \hat{\omega} \nu \tau \alpha$ UM add кal τ oùs oíкє́таs ễl τ тồтo $\delta \rho \mu a ̂ \nu$ and omit каl $\gamma \grave{\alpha} \rho$. . . $\theta a \nu \alpha \tau \eta \phi \dot{\rho} \rho \omega \nu$. ${ }^{11}$ à $\lambda \lambda \alpha ̀$ Ald.; oủ $\delta \grave{E} \mathrm{U}^{*}$.

 ${ }^{13}$ In which case apparently the slave outwits himself as well as his master by 'dying on him.'

[^207]: ${ }^{3}$ Zov́ $\sigma \omega \nu$ MSS.; $\Lambda o v v^{\prime} \omega \nu$ conj. Sch. cf.9.15. 8 n . The mention of Mantineia makes it likely that a place in Arcadia is intended.

[^208]:
 ${ }^{2} \delta \iota a \tau \tau \eta \sigma a \nu \tau \epsilon s$ conj. Hoffmann from G ; $\delta \iota a \pi \tau \eta \dot{\eta} \sigma \nu \tau \epsilon s$ Ald.H.; $\delta ı \eta \theta \dot{\eta} \sigma \alpha \nu \tau \epsilon s \mathrm{U}^{*} \mathrm{mP}$.

[^209]: ${ }^{2}$ ǒ̌vov add. Sch., cf. Plin. 36. 42; 14. 138.

[^210]: ${ }^{1} c f$. Plin. 27. 45.
 ${ }^{2}$ vin $\eta \mu a \tau a$: here a general term for shrubs and under-shrubs. cf. 9. 20.6.
 ${ }^{3}$ Diosc. 3. 146 ; Plin. 20. 84.

[^211]: ${ }_{4}$ Referred to by Apollon. Hist. Mirab.41. cf. Diosc. 3. 147 ; Plin. 27. 42 ; 25. 67.
 ${ }^{5}$ Referred to by Ael. H.A. 9. 27 ; Apollon. Hist. Mirab. 41. cf. Plin. 25. 122 (cf.27.6) ; Diosc. 4. 76. This is evidently a different plant to the $\sigma \kappa о \rho \pi l o s ~ m e n t i o n e d ~ 9.13 .6 . ~ S e e ~ I n d e x . ~$

[^212]: ${ }^{1}$ à $\pi \iota \theta a \nu \omega ́ \tau \epsilon \rho a$ conj. Scal. after G: so also Cod.Cas.Vin.Vo.; $\pi \imath \theta \alpha \nu \dot{\omega} \tau \epsilon \rho \alpha \mathrm{U}^{*} ; \pi \imath \theta \alpha \nu \delta \tau \in \rho \alpha$ Ald.
 ${ }^{2} \tau \rho \iota \pi \delta$ дıı ${ }^{2}$ UMU*Ald.; G from Plin. 21. 44 has polium. It may be observed that $\tau \rho \iota \pi \delta \lambda_{1}$ ov can hardly have occurred in a hexameter. Hesych., however, gives $\tau \rho \iota \sigma \pi \delta \lambda^{\prime}$ tov as the name

[^213]: ${ }^{1}$ à ϕ^{\prime} conj. Sch.; ' 'ф' U*P ; Ald. omits the preposition.
 ${ }^{2}$ Cited by Athen. 2. 73; cf. Diosc. 2. 159.
 ${ }^{3}$ Plin. 27. 70.

[^214]: ${ }^{4}$ ката́лотov conj. Sch.; ката̀ тóтov Ald. cf. кататótıo 9.8.3. ${ }^{5}$ cf. 9. 14. 1; Plin. 25. 117.

[^215]: ${ }^{1} c f .9 .15 .5$. ${ }^{2} c f .9 .15 .8 . n$.
 ${ }^{3}$ cf. 9. 14. 1 ; Diosc. 4. 181-183; Plin. 23. 19 and 21.
 ${ }^{4}$ cf. 7. 12. 2 ; Diosc. 2. 167. cf. Plin. 24. 89.
 ${ }^{5}$ Diosc. 4. 153 ; Plin. 13.125 and 126.

[^216]: 6 ข̇ $\pi \omega ́ \pi \iota \alpha$. . . є̌клєขка: text perhaps defective.
 7 סıappola conj. Sch.; סıáppoıa 引 UM : סıáppoıa aỉtoîs $\gamma^{\prime} \nu \in \tau \alpha \iota \geqslant$ Ald. G.
 ${ }^{8} c f .9 .13 .6 ;$ C.P. 2. 17. 4. The account of the virtues of this plant is evidently missing.
 ${ }^{9}$ ảv $\alpha \beta \beta \alpha \sigma \tau \epsilon \imath$ conj. W.; $\alpha i \notin l$ $\beta \alpha ́ \lambda \lambda \in \iota$ Ald.
 10 Diosc. 1. 98 ; Plin. 24. 89.

[^217]: ${ }^{1}$ cf. 9. 13.3. ${ }^{2}$ каl $\mu \dot{\alpha} \lambda \iota \sigma \tau a$ conj. W.; $\mu \dot{\alpha} \lambda \iota \sigma \tau \alpha \kappa a l$ Ald.
 ${ }^{3}$ aü $\tau \eta$ conj. Scal.; aùvخ̀ Ald.

[^218]: ${ }^{4}$ Cited by Apollon. Hist. Mirab. 29.
 ${ }^{5}$ Diosc. 4. 170; Plin. 27. 78-80. ${ }^{6}$ Plin. 27. 145.

[^219]: ${ }^{1}$ i.e. there is not one set of terms applied to the varieties of 'good' and another distinct set applied to the varieties of ' evil' odours, but we get a cross-division, some terms (such as 'strong') being applied to varieties of both classes. cf. 64-66.

[^220]: ${ }^{1}$ And so here we have a term which possibly is applied only to the one class of 'evil' odours.
 ${ }^{2}$ Which is not an 'evil' odour.
 ${ }^{3}$ i.e. putridity is a quality which things acquire as they decay, and does not necessarily imply that they are themselves formed out of decaying matter. In fact things so produced are not always 'putrid.'
 ${ }^{4}$ The sense is apparently that 'lighter' (or less solid) things exhale a lighter and pleasanter odour because in their

[^221]: ${ }^{1}$ In Thrace. cf. Arist. H.A. 9. 36. Turn. quotes an illustration from Scriptor $\theta a v \mu \alpha \sigma i \omega \nu$ àкov $\mu \alpha \dot{\tau} \tau \nu \nu 126$.

 2 є $่ \omega \delta\{\alpha / s . \quad ? \epsilon \dot{̉} \omega \delta \in \sigma$.

[^222]: ${ }^{3}$ àкробои́ш here apparently plurns, peaches, etc.
 ${ }^{4}$ i.e. the smell is a kind of 'accident,' or by-product of the taste. ${ }^{5} 1.3$.

[^223]: ${ }^{1}$ I have supplied $\mu / \xi \in$ is to fill the lacuna marked by W. after ovi $\tau \omega$ s ai: the text to the end of the section is defective, but a makeshift restoration and rendering seem possible : the sense of oütcos is obscure.

[^224]: ${ }^{2}$ i.e. given two components we have three possible combinations, A with A, B with B, or A with B.
 ${ }^{3}$ бıa $\pi \alpha ́ \sigma \mu \alpha \tau \alpha . \quad$ of. Plin. 13. 19; 21. 125.
 ${ }^{4}$ The difference between $\mu \dot{\prime} \rho o v$ and χ pi $\sigma \mu a \tau o s$ does not appear ; $\mu u ́ p o \nu$ seems to be loosely used, as just above it was used of an entirely liquid mixture.

[^225]: ${ }^{1}$ i.e. of the unadulterated wine and of the perfume.
 ${ }_{2}$ C.P.6.19.2. Sch.'s reasons for bracketing this sentence seem inadequate.
 ${ }^{3}$ i.e. fragrant leaves, etc. cf. H.P. 1. 12. 4.
 ${ }^{4}$ Made from the rhizomes : cf. H.P. 1. 7. 2, and Index.

[^226]: ${ }^{5}$ cf. Arist. Probl. 12. $9 ; 13.3$ and 11.

[^227]: ${ }^{1}$ This passage was misunderstood by Plin. 13. 19. The sense seems to be that the viscous character of oil, though preservative of perfume, is not easily receptive of it.
 ${ }^{2} c f$. H.P. 4. 2. 1; 4. 2.6. Bá入avos, balanites aegyptiaca. See Index.

[^228]: ${ }^{1}$ I have bracketed кal.
 ${ }^{2-2}$ This passage is omitted, apparently by accident, in both W.'s texts, though represented in his Latin version. I

[^229]: ${ }^{1}$ àvanlvel. So Sch. explains. cf. èk $\kappa\{\nu \omega \sigma \iota \nu, 24$.

[^230]: ${ }^{1}$ Dry measure : the equivalents given are, of course, only approximate.
 The article must be omitted in one place or the other.

 кúxpos, called from a tree of that name: not mentioned in H.P. cf. Plin. 12. 119.
 ${ }^{4}$ cf. H.P. 9. 7.2 and 3.
 ${ }^{5}$ cf. H.P. 9. 7. 3.

[^231]: ${ }^{1}$ cf. Diosc. 1. 58.
 ${ }^{2}$ I have bracketed кal as suggested by Sch.
 ${ }^{3}$ This passage, with some variations, is quoted by Athen. 15. 39. $\quad 4 c f$. Plin. 13. 11.
 ${ }^{5} c f$. H.P. 6. 6. 11. for the plant, and for the perfume Athen, 15. 38.

[^232]: ${ }^{6}$ Instances of perfumes made from twigs seem to be missing. $\quad{ }^{7} c f .30$. Text perhaps defective.

[^233]: ${ }^{1}$ cf. H.P. 9. 7. 3; C.P. 6. 11. 13.
 ${ }^{2}$ cf. H.P. 2. 8. 4. $\sigma \pi \alpha \dot{\alpha} \theta \eta \nu$ appears to be a conj. of W. for vulg. $\pi \lambda \alpha \dot{\tau} \eta \nu \nu:{ }^{\wedge} \lambda \alpha \dot{\tau} \tau \eta \nu$ Turn. cf. LS. s. r.
 ${ }^{3}$ Said to be called after the inventor, one Megallos : cf. Plin. 13. 13.

[^234]: 4 The end of the account of megaleion and the beginning of that of myrrh-perfume seem to be missing. ?Supply кal кабías каl $\sigma \mu \dot{\nu} \nu \eta s$.
 ${ }^{5}$ cf. H.P. 9. 4. 10. ${ }^{6}$ cf. Plin. 13. 7.

[^235]: ${ }^{1} \mathrm{cf}$. Plin 21. $42 . \quad{ }^{2} \mathrm{cf}$. Index. σ хoìvos (2).
 ${ }^{3}$ cf. Index, ка́лацоs δ є $\dot{\omega} \dot{\partial} \eta \mathrm{\eta}$.

[^236]: ${ }^{4}$ This sentence seems irrelevant here.
 accident, in both W.'s editions, though represented in his Latin translation.

[^237]: ${ }^{1}$.cf. C.P. 6. 14. 8 and 11,

[^238]: ${ }^{2}$ Said to be a zoophyte : cf. Arist. H.A. 9. 14. 2.

[^239]: ${ }^{1}$ e.g. alabaster, which here at least is spoken of as a kind of stone. $\quad{ }^{2} \gamma \grave{\alpha} \rho$ ins. Sch.

[^240]: ${ }^{4}$ I have bracketed кal. ${ }^{5}$ C.P. 6. 17. 2.

[^241]: ${ }^{1} c f .57,58$. $\sigma \dot{v} \nu \theta \epsilon \tau o s ~ \dot{\partial} \sigma \mu \dot{\eta}$ or $\sigma \dot{v} \nu \theta \epsilon \sigma$ ss seems to mean a kind of pot-pourri, which was from time to time renewed with fresh rose-petals. Sch. understands $\sigma \dot{v} \nu \theta \in \sigma$ is to mean 'clothes in a wardrobe' (cf. Lat. synthesis), but it must surely have the same meaning here as $\sigma \dot{v} \nu \theta \in \tau o s ~ \dot{\partial} \sigma \mu \eta$: Sch.'s citation from 57 does not seem to prove his point, and $\mu e ́ v o v \sigma \iota ~ \pi o \lambda \grave{v} \nu ~ \chi \rho o ́ v o \nu ~ a i ~ \sigma u \nu \theta \epsilon ́ \sigma \epsilon \iota s ~ i n ~ 58 ~ i s ~ c o n c l u s i v e ~ a g a i n s t ~$ hin. $c f$. also 69.

[^242]: ${ }^{2}$ i.e. when the pot-pourri is first opened: the 'delicacy' of the rose-scent causes it to be given off quickly and so (1) to be the first scent perceived, (2) to be volatile. $\quad \xi \xi \delta \delta \omega$ in this passage is used with gen. in two distinct senses.

[^243]: ${ }^{1} c f .52$.
 ${ }^{2} \delta \epsilon$ ins. W.
 ${ }^{3}$ i.e. the case is so far analogous to that of rose-perfume; but the comparison does not hold as to what follows.

[^244]: ${ }^{1}$ Sc. a part of the body which, not being fleshy, does not spoil the scent by its warmth. So Plin. 13. 19. appears to give the point-experimentum (unguentorum) inversa manu capitur, ne carnosae partis calor vitiet, though it may be questioned whether inversa manu represents карто仑̂. Pliny's

[^245]: ${ }^{2}$ Sc. the natural products from which the manufactured perfumes are made.

[^246]: ${ }^{1}$ The example is missing. Turn. supplies costum et amomum from Plin. 13. 16, which does not however certainly refer to this passage; see 69, where this passage seems to be repeated.
 ${ }^{2}$ The reference of $\varepsilon^{2} \kappa \in i v o v$ is obscure.
 ${ }^{3} \mu \iota \chi \theta$ év νa add. Turn.

[^247]: ${ }^{4}$ In W.'s text, which I have followed, there is some rearrangement (after Furlanus) of the order of sentences in this chapter and the next: e.g. part of $\S 61$ is transferred to §59. Both figures are retained for convenience of reference.

[^248]: ${ }^{1} \S 60$ on some other medicinal effects of perfumes is omitted. $\quad 2$ kal bracketed by W.

[^249]:
 si.e. the skin of a dead goat.
 ${ }^{5}$ W. adds кıшє $\sigma \theta$ al after $\ell \pi \iota \beta \dot{\iota} \lambda \lambda \epsilon \iota$.

[^250]: ${ }^{1}$ i.e. to form a 'crust.' $\quad{ }^{2}$ qà ins. Sch.
 ${ }^{3}$ cf. H.P. 1. 6. 7.
 ${ }^{4}$ i.e. when the fat of the living bear becomes abnormally developed. Plin. 8. 128. expresses his surprise at T.'s credulity 382

[^251]: 1 i.e. taste.
 ${ }^{2}$ There seems to be some confusion here, as in the first sentence of the section T. complained that colours are not classified. The following passage is unusually elliptical, and the text is probably defective. T.'s complaint seems to be that sense-experiences in general have been inadequately classified (cf. 2); and in 66 foll. he specially mentions smells.

[^252]: ${ }^{3}$ Sch. and W. after Turn. add $<\hat{\epsilon} \nu \gamma l \nu \in \sigma \theta a l>$ after $\dot{\alpha} \mu \phi o i v$, which seems unnecessary.
 4.e. a liquid which, in one way or another, refuses to mix with another liquid. 5 ? cream.

[^253]: ${ }^{1}$ I have inserted oủ χ, suggested by Sch.
 ${ }^{2}$ Like Sch. I fail to see the relevance of this remark. The sense required is 'while the fruit is still on the tree':

[^254]: possibly $\dot{\alpha} \nu \theta \epsilon \hat{i}$ has got in from below and we should read $\kappa \alpha \rho \pi \bar{\varphi}$.

[^255]: ${ }^{1}$ cf. 63.
 ${ }^{2} c f .57$, of which this section seems to be a repetition.
 ${ }^{3} c f .15$.

[^256]: ${ }^{1}$ Or, perhaps, 'from my astronomical works.'

[^257]: ${ }^{1}$ à $\nu \tau \iota \mu \in \theta^{\prime} \sigma \tau \alpha \nu \tau a \iota . \quad$ ？à $\nu \tau \iota \mu \in \theta^{\prime} \sigma \tau a \tau a \iota$.
 ${ }^{2}$ Plin．5．140．Of Matriketas nothing is known．
 ${ }^{3}$ Said（Plin．2．31）to have first recognised the Ram and the Archer．Athen．（7． 278 b）connects him with Tenedos，

[^258]: ${ }^{1}$ Plin. 18. 280.
 ${ }^{2} c f$. Arat. 73 f.

[^259]: ${ }^{1} \tau \delta \nu \dot{j} \pi o \gamma . \tau \rho \delta \pi o \nu$ seems to mean the same as the Aristote-
 rendering 'the following method' would however suit the context.

[^260]: ${ }^{2}$ à ν é $\chi \eta$ conj. Sch. $\quad{ }^{3}$ Plin. 18. 344.

[^261]: ${ }^{1}$ Plin. 18. 364 ; Verg. Georg. 1. 375.
 ${ }^{2}$ ent $\rho \rho 0 \quad \zeta \eta \dot{\eta} \eta \eta$. Sc. with his wings probably; not, as LS. 'croaks.' Plin. (18.362) seems to have had a fuller text, or to have drawn also on some other authority.
 ${ }^{3} \dot{v} \leq \tau \hat{\omega} \nu$ ờ $y \tau \omega \nu$ can hardly mean 'while it is raining.'

[^262]: ${ }^{4}$ iepaкiऽбб⿱亠乂．？＇hover like hawks．＇However，Arat． 231 understood it to refer to the voice：so LS．
 ${ }^{5}$ Ėnt $\uparrow \rho \rho \circ \stackrel{\beta}{0} \bar{\eta}$ ．Exact sense uncertain．cf．Soph．Ant． 1004.

[^263]: * cf. Arist. Probl. 26. 26.
 ${ }^{5} \not \subset \nu \in \mu \rho \nu$ ओ add. Furl. from Plin. 18. 354.
 ${ }^{6}$ cf. Soph. Aj. 257 ; Arist. Prohl. 26. 20.
 7 áкршрías. cf. 42. So Arat. 216 renders.

[^264]: ${ }^{1}$ Evidently an Attic saying, of days when only the upper part of the Euboean mountains was visible.

[^265]: ${ }^{1}$ So called also by Pind. Nem. 5. 19. Paus. 2. 30. 3 calls

 ${ }^{2}$ cf. C.P. 2. 2.
 406

[^266]: ${ }^{3} \nleftarrow \nu e_{p a \xi} \xi_{\iota}$ conj. Sch., supported by Plin. 18. 358 ; Arat. 309. à $\tau \tau \rho \alpha ́ \sigma \iota ~ M S S . ~$
 ${ }^{4} c f .14,42,54 . \quad{ }^{5} c f$. C.P. 2.2.
 ${ }^{6} \pi \alpha^{\prime} \lambda เ \nu$ ins. Sch.; text probably defective.
 ${ }^{7}$ Plin. 18. 342.

[^267]: ${ }^{1}$ Pin. 18. 343 suggests that this is the meaning: text perhaps defective. cf. Verg. Georg. 1. 445.
 ${ }^{2}$ cf. 38.
 ${ }^{3}$ Lit. 'the crescent moon has a northerly character.' in a $\boldsymbol{\nu} \boldsymbol{\omega}$ add. Furl.
 408

[^268]: ${ }^{4}$ cf. 38 ; Plin. 18. 347 ; Verg. Georg. i. 423 ; the English sign, 'the young moon with the old moon in her arm.'
 ${ }^{5}$ Plin. 11. 84 ; Arist. Probl. 26. 61.

[^269]: ${ }^{1}$ cf. 40 ; Plin. 18. 359 ; Verg. Georg. 1. 356.
 ${ }^{2}$ cf. Arist. Probl. 26. 12 ad fin.
 ${ }^{3}$ छпpaivei, ú γ paivel seem to be used quasi-impersonally; but the text is perhaps defective.
 ${ }^{4}$ עóтıa MSS. ; β bofeta conj. Furl., surely with good reason. cf. Arist. Probl. 1. 24.
 ${ }^{5}$ After $\delta \in \xi \iota \partial \nu$ Sch. and W. mark a lacuna, which does not seem necessary. ${ }^{6}$ cf. Arist. H.A. 9. 6 ad fin.

[^270]: ${ }^{7}$ I have marked a lacuna after ópos. Furl. renders si mons versus aquilonem extenditur, venti signum est, with what meaning I cannot see. ${ }^{8} \mathrm{cf}$. Arist. Meteor. 3. 4 ad init.
 ${ }^{9}$ Bópelov add. Furl. ${ }^{10} c f .51$.

[^271]: ${ }^{1} \kappa \eta \lambda a ́ \delta \epsilon s$, i.e. a 'mackerel sky' (?) The word seems to occur nowhere else except in Hesych., who renders $\alpha \nu v \delta \rho o s:$ derivation obscure. It should probably be read in § 51 for коь ${ }^{2} \delta \epsilon$ s. $\quad 2$ Plin. 18. 354.
 ${ }^{3}$ à. Sc. ϵ lvat, which perhaps should be added.

[^272]: ${ }^{1}$ I have bracketed đ β Bóéas as probably a gloss on àmaюктías; $\#$ is difficult to account for otherwise. See diagram.
 ${ }_{2}$ Plin. 18. 360.

[^273]: ${ }^{1}$ i.e. and the succeeding day will be more or less stormy in proportion. $\dot{\alpha} \pi o \lambda \epsilon i \phi \theta \epsilon i \eta$. ? $\dot{\alpha} \pi o \lambda \eta \phi \theta \in$ í $\eta=$ ' may be obscured.'
 ${ }^{2} c f .27$. i.e. it is possible, more or less, to see the whole circle.

[^274]: ${ }^{3}$ So Arat. 343 f. interprets. $\quad{ }^{4}$ Plin. 18. 363. ${ }^{5}$ iss bracketed by Sch.

[^275]: ${ }^{1} \tau \in v \theta i \delta \in s$. The word is perhaps corrupt and conceals the name of a bird.
 ${ }^{2}$ cf. 21, 29. толи́тлокеу is Furlanus' conj. for Vulg. $\pi 0 \lambda u ́ \pi o \delta o \nu$.
 ${ }^{3} \pi \nu \epsilon \dot{\mu} \mu \mathrm{v} \boldsymbol{\mathrm { V }} \mathrm{s}$. Plin. 18. 359. pulmones: cf. 9. 154.

[^276]: ${ }^{4}$ 日ẫ \quad ov is clearly corrupt, and words indicating what the sign portends are missing. ${ }^{5} . c f .54$.

 ${ }^{7}$ àкршрías. cf. 21.
 ${ }^{8} \gamma \hat{\eta} s{ }^{\ell} \epsilon \tau \tau \in \rho \alpha$. So Arat. 225 explains. One might guess ' worm-casts.'
 ${ }^{9} c f .14,25,34,54$.

[^277]: ${ }^{1}$ ơvov фárvŋ. cf. 23, 51. See LS, s.v. övos; Theocr. 22. 21. Plin. 18. 353, sunt in signo Cancri duae stellae parvae

[^278]: but one MS. of Plut. gives $\gamma \dot{v} \rho \omega \nu$ with a marginal gloss 'sc. $\pi \in \tau \rho \hat{\omega} \nu$,' which suggests that the word is a proper name. $O d$. 4. 500 mentions the Γ úpai (i.e. the 'round-backed rocks')

[^279]: ${ }^{1} \tau \delta$ add．Sch．$\quad{ }^{2} c f .45$.
 conj．Furl．
 ${ }^{4}$ i．e．（reading $\left.\sigma \kappa о \lambda о ́ \pi \alpha \kappa \alpha\right)$ for the bird to find worms in with its long beak（Sch．）．It is hard to say，without illus－ 426

[^280]: ${ }^{1} \kappa \eta \lambda a \dot{\delta} \delta \epsilon$ I conj．cf．31，to which this statement answers． коı $\lambda \alpha \delta_{\epsilon s}$ MSS．
 ${ }^{2}$ Plin．18．356．$\quad{ }^{3}$ Plin．18．357．cf．Verg．G̛eorg．1． 401.
 ${ }^{+}$Plin．18． 362.
 ${ }^{5}{ }^{2} \nu \chi \chi \in \mu \hat{\omega} \nu$ ．？＇in winter．＇The same ambiguity occurs in many places ：the sense seems fixed here by the next sentence． 428

[^281]: ${ }^{6}$ I have marked a lacuna : the answer to $\mu \dot{\epsilon} \nu$ is missing, presumably a statement about the significance of more than one raven. cf. Verg. Georg. 1. 410.

[^282]: ${ }^{1} c f .41 . \quad 2$ cf. 14, 25, 42.
 ${ }^{3}$ H.P. 7. 13. 6 the same is said of $\sigma \kappa l \lambda \lambda a$.

