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INTRODUCTION.

IT is to be hoped that, as a consequence of the

present active scrutiny of our educational aims

and methods, and of the resulting encouragement

of the study of modern languages, we shall not

remain, as a nation, so much isolated from

ideas and tendencies in continental thought and

literature as we have been in the past. As things

are, however, the translation of this book is

doubtless required; at any rate, it brings vividly

before us an instructive point of view. Though
some of M. Poincare s chapters have been collected

from well-known treatises written several years

ago, and indeed are sometimes in detail not quite

up to date, besides occasionally suggesting the

suspicion that his views may possibly have been

modified in the interval, yet their publication in

a compact form has excited a warm welcome in

this country.

It must be confessed that the English language
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hardly lends itself as a perfect medium for the

rendering of the delicate shades of suggestion

and allusion characteristic of M. Poincare s play

around his subject ; notwithstanding the excel

lence of the translation, loss in this respect is

inevitable.

There has been of late a growing trend of

opinion, prompted in part by general philosophical

views, in the direction that the theoretical con

structions of physical science are largely factitious,

that instead of presenting a valid image of the

relations of things on which further progress can

be based, they are still little better than a mirage.

The best method of abating this scepticism is to

become acquainted with the real scope and modes

of application of conceptions which, in the popular

language of superficial exposition and even in

the unguarded and playful paradox of their

authors, intended only for the instructed eye

often look bizarre enough. But much advantage

will accrue if men of science become their own

epistemologists, and show to the world by critical

exposition in non-technical terms of the results

and methods of their constructive work, that more

than mere instinct is involved in it: the com

munity has indeed a right to expect as much as

this.
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It would be hard to find any one better

qualified for this kind of exposition, either

from the profundity of his own mathematical

achievements, or from the extent and freshness

of his interest in the theories of physical science,

than the author of this book. If an appreciation

might be ventured on as regards the later chapters,

they are, perhaps, intended to present the stern

logical analyst quizzing the cultivator of physical

ideas as to what he is driving at, and wrhither he

expects to go, rather than any responsible attempt

towards a settled confession of faith. Thus, when

M. Poincare allows himself for a moment to

indulge in a process of evaporation of the

Principle of Energy, he is content to sum up:
&quot; Eh bien, quelles que soient les notions nouvelles

que les experiences futures nous donneront sur le

monde, nous sommes surs d avance qu il y aura

quelque chose qui demeurera constant et que nous

pourrons appeler cncrgic&quot; (p. 166), and to leave

the matter there for his readers to think it out.

Though hardly necessary in the original French, it

may not now be superfluous to point out that

independent reflection and criticism on the part

of the reader are tacitly implied here as else

where.

An interesting passage is the one devoted to
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Maxwell s theory of the functions of the sether,

and the comparison of the close-knit theories of

the classical French mathematical physicists with

the somewhat loosely-connected corpus of ideas by
which Maxwell, the interpreter and successor of

Faraday, has (posthumously) recast the whole

face of physical science. How many times has

that theory been re-written since Maxwell s day ?

and yet how little has it been altered in essence,

except by further developments in the problem of

moving bodies, from the form in which he left it!

If. as M. Poincare remarks, the French instinct

for precision and lucid demonstration sometimes

finds itself ill at ease with physical theories of

the British school, he as readily admits (pp. 223,

224), and indeed fully appreciates, the advantages

on the other side. Our owrn mental philosophers

have been shocked at the point of view indicated

by the proposition hazarded by Laplace, that a

sufficiently developed intelligence, if it were made

acquainted with the positions and motions of the

atoms at any instant, could predict all future

history: no amount of demur suffices sometimes

to persuade them that this is not a conception

universally entertained in physical science. It

was not so even in Laplace s own day. From

the point of view of the study of the evolution



INTRODUCTION. XV

of the sciences, there are few episodes more

instructive than the collision between Laplace

and Young with regard to the theory of capil

larity. The precise and intricate mathematical

analysis of Laplace, starting from fixed pre

conceptions regarding atomic forces which were

to remain intact throughout the logical develop

ment of the argument, came into contrast with the

tentative, mobile intuitions of Young ; yet the

latter was able to grasp, by sheer direct mental

force, the fruitful though partial analogies of this

recondite class of phenomena with more familiar

operations of nature, and to form a direct picture

of the way things interacted, such as could only

have been illustrated, quite possibly damaged or

obliterated, by premature effort to translate it

into elaborate analytical formulas. The apcrgus

of Young were apparently devoid of all cogency
to Laplace; while Young expressed, doubtless in

too extreme a way, his sense of the inanity of the

array of mathematical logic of his rival. The

subsequent history involved the Nemesis that the

fabric of Laplace was taken down and recon

structed in the next generation by Poisson; while

the modern cultivator of the subject turns, at any
rate in England, to neither of those expositions

for illumination, but rather finds in the partial
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and succinct indications of Young the best start

ing-point for further effort.

It seems, however, hard to accept entirely

the distinction suggested (p. 213) between the

methods of cultivating theoretical physics in

the two countries. To mention only two

transcendent names which stand at the very

front of two of the greatest developments of

physical science of the last century, Carnot and

Fresnel, their procedure was certainly not on the

lines thus described. Possibly it is not devoid of

significance that each of them attained his first

effective recognition from the British school.

It may, in fact, be maintained that the part

played by mechanical and such-like theories

analogies if you will is an essential one. The

reader of this book will appreciate that the human

mind -has need of many instruments of comparison
and discovery besides the unrelenting logic of the

infinitesimal calculus. The dynamical basis which

underlies the objects of our most frequent ex

perience has now been systematised into a great

calculus of exact thought, and traces of new real

relationships may come out more vividly when

considered in terms of our familiar acquaintance

with dynamical systems than when formulated

under the paler shadow of more analytical abstrac-
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tions. It is even possible for a constructive

physicist to conduct his mental operations entirely

by dynamical images, though Helmholtz, as well

as our author, seems to class a predilection in this

direction as a British trait. A time arrives when,

as in other subjects, ideas have crystallised out

into distinctness ;
their exact verification and

development then becomes a problem in mathe

matical physics. But whether the mechanical

analogies still survive, or new terms are now

introduced devoid of all naive mechanical bias,

it matters essentially little. The precise de

termination of the relations of things in the

rational scheme of nature in which we find

ourselves is the fundamental task, and for its

fulfilment in any direction advantage has to be

taken of our knowledge, even when only partial,

of new aspects and types of relationship which

may have become familiar perhaps in quite

different fields. Nor can it be forgotten that the

most fruitful and fundamental conceptions of

abstract pure mathematics itself have often been

suggested from these mechanical ideas of flux

and force, where the play of intuition is our

most powerful guide. The study of the historical

evolution of physical theories is essential to the

complete understanding of their import. It is in

b
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the mental workshop of a Fresnel, a Kelvin, or

a Helmholtz, that profound ideas of the deep

things of Nature are struck out and assume

form; when pondered over and paraphrased by

philosophers we see them react on the conduct

of life : it is the business of criticism to polish

them gradually to the common measure of human

understanding. Oppressed though we are writh

the necessity of being specialists, if we are

to know anything thoroughly in these days of

accumulated details, we may at any rate pro

fitably study the historical evolution of knowledge

over a field wider than our own.

The aspect of the subject which has here been

dwr

elt on is that scientific progress, considered

historically, is not a strictly logical process, and

does not proceed by syllogisms. New ideas

emerge dimly into intuition, come into con

sciousness from nobody knows where, and become

the material on which the mind operates, forging

them gradually into consistent doctrine, which

can be welded on to existing domains of know

ledge. But this process is never complete : a

crude connection can always be pointed to by a

logician as an indication of the imperfection of

human constructions.

If intuition plays a part which is so important,
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it is surely necessary that we should possess a firm

grasp of its limitations. In M. Poincare s earlier

chapters the reader can gain very pleasantly a

vivid idea of the various and highly complicated

ways of docketing our perceptions of the relations

of external things, all equally valid, that were

open to the human race to develop. Strange to

say, they never tried any of them
; and, satisfied

with the very remarkable practical fitness of the

scheme of geometry and dynamics that came

naturally to hand, did not consciously trouble

themselves about the possible existence of others

until recently. Still more recently has it been

found that the good Bishop Berkeley s logical

jibes against the Newtonian ideas of fluxions and

limiting ratios cannot be adequately appeased in

the rigorous mathematical conscience, until our

apparent continuities are resolved mentally into

discrete aggregates which we only partially

apprehend. The irresistible impulse to atomize

everything thus proves to be not merely a disease

of the physicist ;
a deeper origin, in the nature

of knowledge itself, is suggested.

Everywhere want of absolute, exact adaptation

can be detected, if pains are taken, between the

various constructions that result from our mental

activity and the impressions which give rise to
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them. The bluntness of our unaided sensual

perceptions, which are the source in part of the

intuitions of the race, is well brought out in this

connection by M. Poincare. Is there real con

tradiction ? Harmony usually proves to be re

covered by shifting our attitude to the phenomena.
All experience leads us to interpret the totality of

things as a consistent cosmos undergoing evolu

tion, the naturalists will say in the large-scale

workings of which we are interested spectators

and explorers, while of the inner relations and

ramifications we only apprehend dim glimpses.

When our formulation of experience is imperfect

or even paradoxical, we learn to attribute the

fault to our point of view, and to expect that

future adaptation will put it right. But Truth

resides in a deep well, and we shall never get

to the bottom. Only, while deriving enjoyment
and insight from M. Poincare s Socratic exposi

tion of the limitations of the human outlook on

the universe, let us beware of counting limitation

as imperfection, and drifting into an inadequate

conception of the wonderful fabric of human

knowledge.

J. LARMOR.
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To the superficial observer scientific truth is un

assailable, the logic of science is infallible
;
and if

scientific men sometimes make mistakes, it is

because they have not understood the rules of

the game. Mathematical truths are derived from

a few self-evident propositions, by a chain of

flawless reasonings ; they are imposed not only on

us, but on Nature itself. By them the Creator is

fettered, as it were, and His choice is limited to

a relatively small number of solutions. A few

experiments, therefore, will be sufficient to enable

us to determine what choice He has made. From

each experiment a number of consequences will

follow by a series of mathematical deductions,

and in this way each of them will reveal to us a

corner of the universe. This, to the minds of most

people, and to students who are getting their first

ideas of physics, is the origin of certainty in

science. This is what they take to be the role of
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experiment and mathematics. And thus, too, it

was understood a hundred years ago by many
men of science who dreamed of constructing the

world with the aid of the smallest possible amount

of material borrowed from experiment.

But upon more mature reflection the position

held by hypothesis was seen
;

it was recognised that

it is as necessary to the experimenter as it is to the

mathematician. And then the doubt arose if all

these constructions are built on solid foundations.

The conclusion was drawn that a breath would

bring them to the ground. This sceptical attitude

does not escape the charge of superficiality. To
doubt everything or to believe everything are two

equally convenient solutions
;
both dispense with

the necessity of reflection.

Instead of a summary condemnation we should

. examine with the utmost care the role of hypo
thesis

;
we shall then recognise not only that it is

necessary, but that in most cases it is legitimate.

We shall also see that there are several kinds of

hypotheses; that some are verifiable, and when

once confirmed by experiment become truths of

great fertility; that others may be useful to us in

fixing our ideas; and finally, that others are

hypotheses only in appearance, and reduce to

definitions or to conventions in disguise. The
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latter are to be met with especially in mathematics
,

and in the sciences to which it is applied. From

them, indeed, the sciences derive their rigour ;

such conventions are the result of the unrestricted

activity of the mind, which in this domain recog-/

nises no obstacle. For here the mind may affirms

because it lays down its own la\vs
;

but let us

clearly understand that while these laws are

imposed on our science, which otherwise could

not exist, they are not imposed on Nature. Are^ ;

they then arbitrary? No; for if they were, they

would not be fertile. Experience leaves us our

freedom of choice, but it guides us by helping us to

discern the most convenient path to follow. Our

laws are therefore like those of an absolute

monarch, who is wise and consults his council of

state. Some people have been struck by this

characteristic of free convention w^hich may be

recognised in certain fundamental principles of

the sciences. Some have set no limits to their

generalisations, and at the same time they have

forgotten that there is a difference between liberty

and the purely arbitrary. So that they are com

pelled to end in what is called nominalism; they

have asked if the savant is not the dupe of his

own definitions, and if the world he thinks he has

discovered is not simply the creation of his own
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caprice.
1 Under these conditions science would

retain its certainty, but would not attain its object,

and would become powerless. Now, we daily see

what science is doing for us. This could not be

unless it taught us something about reality; the

aim of science is not things themselves, as the

dogmatists in their simplicity imagine, but the

relations between things; outside those relations

there is no reality knowable.

Such is the conclusion to which we are led; but

to reach that conclusion we must pass in review

the series of sciences from arithmetic and

geometry to mechanics and experimental physics.

What is the nature of mathematical reasoning ?

Is it really deductive, as is commonly supposed ?

Careful analysis shows us that it is nothing of the

kind
;
that it participates to some extent in the

nature of inductive reasoning, and for that reason

it is fruitful. But none the less does it retain its

character of absolute rigour ;
and this is what

must first be shown.

When we know more of this instrument which

is placed in the hands of the investigator by

mathematics, we have then to analyse another

fundamental idea, that of mathematical magni-

1 Cf. M. le Roy: &quot;Science et Philosophic,&quot; Revue de Afe/a-

pkysique et de Morale
, 1901.



AUTHOR S PREFACE.

tude. Do we find it in nature, or have we our

selves introduced it ? And if the latter be the

case, are we not running a risk of coming to

incorrect conclusions all round ? Comparing the

rough data of our senses with that extremely com

plex and subtle conception \vhich mathematicians

call magnitude, we are compelled to recognise a

divergence. The framework into which \ve wish

to make everything fit is one of our own construc

tion ;
but wre did not construct it at random, we

constructed it by measurement so to speak; and

that is \vhy wre can fit the facts into it without

altering their essential qualities.

Space is another framework which we impose
on the world. Whence are the first principles of

geometry derived ? Are they imposed on us by

logic ? Lobatschewsky, by inventing non-Euclid

ean geometries, has shown that this is not the case.

Is space revealed to us by our senses ? No
;
for

the space revealed to us by our senses is absolutely

different from the space of geometry. Is geometry
derived from experience ? Careful discussion will

give the answer no ! We therefore conclude that

the principles of geometry are only conventions
;

but these conventions are not arbitrary, and if

transported into another w;orld (w
7hich I shall

call the non-Euclidean world, and which I shall
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endeavour to describe), we shall find ourselves

compelled to adopt more of them.

In mechanics we shall be led to analogous con

clusions, and we shall see that the principles of

this science, although more directly based on

experience, still share the conventional character

of the geometrical postulates. So far, nominalism

triumphs ;
but we now come to the physical

sciences, properly so called, and here the scene

changes. We meet with hypotheses of another

kind, and we fully grasp ho\v fruitful they are.

No doubt at the outset theories seem unsound,

and the history of science show s us how ephemeral

they are
;
but they do not entirely perish, and of

each of them some traces still remain. It is these

traces which we must try to discover, because in

them and in them alone is the true reality.

The method of the physical sciences is based

\upon the induction which leads us to expect the

recurrence of a phenomenon when the circum

stances which give rise to it are repeated. If all

the circumstances could be simultaneously re

produced, this principle could be fearlessly applied ;

but this never happens; some of the circumstances

will always be missing. Are we absolutely certain

that they are unimportant ? Evidently not ! It

may be probable, but it cannot be rigorously
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certain. Hence the importance of the role that is

played in the physical sciences by the law of

probability. The calculus of probabilities is there

fore not merely a recreation, or a guide to the

baccarat player; and we must thoroughly examine

the principles on which it is based. In this con

nection I have but very incomplete results to lay

before the reader, for the vague instinct wrhich

enables us to determine probability almost defies

analysis. After a study of the conditions under

which the work of the physicist is carried on, I

have thought it best to show him at work. For

this purpose I have taken instances from the

history of optics and of electricity. We shall thus

see how the ideas of Fresnel and Maxwell took

their rise, and what unconscious hypotheses were

made by Ampere and the other founders of

electro-dynamics.
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PART I.

NUMBER AND MAGNITUDE,

CHAPTER I.

ON THE NATURE OF MATHEMATICAL REASONING,

I.

THE very possibility of mathematical science seems

an insoluble contradiction. If this science is only
deductive in appearance, from whence is derived

that perfect rigour which is challenged by none?

If, on the contrary, all the propositions which it

enunciates may be derived in order by the rules

of formal logic, how is it that mathematics is

not reduced to a gigantic tautology? The syllo

gism can teach us nothing essentially new, and
if everything must spring from the principle of

identity, then everything should be capable of

being reduced to that principle. Are we then to

admit that the enunciations of all the theorems
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with which so many volumes are filled, are only
indirect ways of saying that A is A ?

No doubt we may refer back to axioms which
are at the source of all these reasonings. If it is

felt that they cannot be reduced to the principle of

contradiction, if we decline to see in them any
more than experimental facts which have no part
or lot in mathematical necessity, there is still one

resource left to us: we may class them among
a priori synthetic views. But this is no solution

of the difficulty it is merely giving it a name; and

even if the nature of the synthetic views had no

longer for us any mystery, the contradiction would

not have disappeared ;
it would have only been

shirked. Syllogistic reasoning remains incapable
of adding anything to the data that are given it

;

the data are reduced to axioms, and that is all we
should find in the conclusions.

No theorem can be new unless a new axiom

intervenes in its demonstration
; reasoning can

only give us immediately evident truths borrowed

from direct intuition; it would only be an inter

mediary parasite. Should we not therefore have

reason for asking if the syllogistic apparatus serves

only to disguise what we have borrowed ?

The contradiction will strike us the more if we

open any book on mathematics; on every page the

author announces his intention of generalising some

proposition already known. Does the mathematical

method proceed from the particular to the general,

and, if so, how can it be called deductive ?
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Finally, if the science of number were merely

analytical, or could be analytically derived from a /

few synthetic intuitions, it seems that a sufficiently /

powerful mind could with a single glance perceive
all its truths

; nay, one might even hope that some

day a language would be invented simple enough
for these truths to be made evident to any person
of ordinary intelligence.

Even if these consequences are challenged, it

must be granted that mathematical reasoning has

of itself a kind of creative virtue, and is therefore to

be distinguished from the syllogism. The difference

must be profound. We shall not, for instance,

find the key to the mystery in the frequent use of

the rule by which the same uniform operation

applied to two equal numbers will give identical

results. All these modes of reasoning, whether or

not reducible to the syllogism, properly so called,

retain the analytical character, and ipso facto, lose

their power.

II.

The argument is an old one. Let us see how
Leibnitz tried to show that two and two make
four. I assume the number one to be defined, and
also the operation A +I i.e., the adding of unity
to a given number x. These definitions, whatever

they may be, do not enter into the subsequent

reasoning. I next define the numbers 2, 3, 4 by
the equalities :

(i) 1 + 1 = 2; (2) 2 + 1 = 3; (3) a+ 1^4 and in
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the same way I define the operation x + 2 by the

relation; (4) ,t+2= (*+i)+ I.

Given this, we have :

2+2= (2+i)+ i; (def. 4).

(2+0+ 1=3+1 (def. 2).

3+ 1=4 (def. 3).

whence 2+ 2 = 4 Q.E.D.
It cannot be denied that this reasoning is purely

analytical. But if we ask a mathematician, he will

reply: &quot;This is not a demonstration properly so

called; it is a verification.&quot; We have confined

ourselves to bringing together one or other of two

purely conventional definitions, and we have verified

their identity ; nothing new has been learned.

\Verification differs from proof precisely because it

Is analytical, and because it leads to nothing. It

leads to nothing because the conclusion is nothing
but the premisses translated into another language.
A real proof, on the other hand, is fruitful, because

the conclusion is in a sense more general than the

premisses. The equality 2 + 2 = 4 can be verified

because it is particular. Each individual enuncia

tion in mathematics may be always verified in

the same way. But if mathematics could be

reduced to a series of such verifications it

would not be a science. A chess-player, for

instance, does not create a science by winning a

piece. There is no science but the science of the

general. It may even be said that the object of

the exact sciences is to dispense with these direct

verifications.
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III.

Let us now see the geometer at work, and try

to surprise some of his methods. The task is

not without difficulty; it is not enough to open a

book at random and to analyse any proof we may
come across. First of all, geometry must be ex

cluded, or the question becomes complicated by
difficult problems relating to the role of the

postulates, the nature and the origin of the idea

of space. For analogous reasons we cannot

avail ourselves of the infinitesimal calculus. We
must seek mathematical thought where it has

remained pure i.e., in Arithmetic. But we
still have to choose

;
in the higher parts of

the theory of numbers the primitive mathemati

cal ideas have already undergone so profound
an elaboration that it becomes difficult to analyse
them.

It is therefore at the beginning of Arithmetic

that we must expect to find the explanation we
seek

;
but it happens that it is precisely in the

proofs of the most elementary theorems that the

authors of classic treatises have displayed the least

precision and rigour. We may not impute this to

them as a crime
; they have obeyed a necessity.

Beginners are not prepared for real mathematical

rigour ; they would see in it nothing but empty,
tedious subtleties. It would be waste of time to

try to make them more exacting ; they have to

pass rapidly and without stopping over the road
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which was trodden slowly by the founders of the

science.

Why is so long a preparation necessary to

habituate oneself to this perfect rigour, which

it would seem should naturally be imposed on

all minds ? This is a logical and psychological

problem which is well worthy of study. But we
shall not dwell on it

;
it is foreign to our subject.

All I wish to insist on is, that we shall fail in our

purpose unless we reconstruct the proofs of the

elementary theorems, and give them, not the rough
form in which they are left so as not to weary the

beginner, but the form which will satisfy the skilled

geometer.

DEFINITION OF ADDITION.

I assume that the operation x+i has been

denned; it consists in adding the number I to a

given number x. Whatever may be said of this

definition, it does not enter into the subsequent

reasoning.
We now have to define the operation x + a, which

consists in adding the number a to any given
number x. Suppose that we have defined the

operation x+(a-i); the operation x + a will be

defined by the equality : (i) x + a = [x + (a
-

i)] + i.

We shall know what x + a is when we know what

x+(a-i) is, and as I have assumed that to start

with we know what x+i is, we can define

successively and &quot;

by recurrence
&quot;

the operations

x + 2, x + 3, etc. This definition deserves a moment s
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it is of a particular nature which

distinguishes it even at this stage from the purely

logical definition; the equality (i), in fact, contains

an infinite number of distinct definitions, each

having only one meaning when we know the

meaning of its predecessor.

PROPERTIES OF ADDITION.

Associative. I say that a-\-(b-\-c)= (a-\-b)-\-c; in

fact, the theorem is true for c= i. It may then be

written a-\-(b-\-i)= (a-{-b}-\-i; which, remembering
the difference of notation, is nothing but the equality

(i) by which I have just defined addition. Assume
the theorem true for c=y, I say that it will be true for

c=y+i. Let (a+b)+y=a+(b+y), it follows that

i=[&amp;gt;+(&+ y)]+i; or by def. (i)-

(y + I)=a +(b + y + i)=a + [b+ (y + i)J ,

which shows by a series of purely analytical deduc

tions that the theorem is true for y + i. Being
true for c = i, we see that it is successively true for

c = 2, c = 3, etc.

Commutative. (i) I say that a + i = i + a. The
theorem is evidently true for a = i

;
we can verify

by purely analytical reasoning that if it is true for

a --= y it will be true for a = y + i.
1 Now, it is true for

a=i, and therefore is true for a 2, a = 3, and so

on. This is what is meant by saying that the

proof is demonstrated &quot;

by recurrence.&quot;

(2) I say that a + b^b + a. The theorem has just

1 For (7+ i) |

- i-(i +7)+ i = i -I- (7-1- 1}. [TR.]
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been shown to hold good for b=i, and it may be

verified analytically that if it is true for b=ft}
it

will be true for b=fi+i. The proposition is thus

established by recurrence.

DEFINITION OF MULTIPLICATION.

We shall define multiplication by the equalities:

(i) aXi=a. (2) axb=[ax(b-i)]+a. Both of

these include an infinite number of definitions;

having defined aXi, it enables us to define in

succession aX2, aX3, and so on.

PROPERTIES OF MULTIPLICATION.

Distributive. I say that (a-\-b)Xc= (aXc)+
(bXc). We can verify analytically that the theorem

is true for c= i; then if it is true for c= y, it will be

true for c= y-\-i. The proposition is then proved

by recurrence.

Commutative. (i) I say that aXi= iXa. The
theorem is obvious for a= i. We can verify

analytically that if it is true for a a, it will be

true for &amp;lt;? -|- 1.

(2) I say that aXb= bXa. The theorem has

just been proved for b=i. We can verify analy

tically that if it be true for &=/? it will be true for

b=P+l.
IV.

This monotonous series of reasonings may now
be laid aside; but their very monotony brings

vividly to light the process, which is uniform,
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and is met again at every step. The process is

proof by recurrence. We first show that a

theorem is true for ;z= i; we then show that if

it is true for n I it is true for n, and we conclude

that it is true for all integers. We have no\v seen

how it may be used for the proof of the rules of

addition and multiplication that is to say, for the

rules of the algebraical calculus. This calculus

is an instrument of transformation which lends

itself to many more different combinations than

the simple syllogism ;
but it is still a purely analy

tical instrument, and is incapable of teaching us

anything new. If mathematics had no other in

strument, it would immediately be arrested in its

development; but it has recourse anew to the

same process i.e., to reasoning by recurrence, and

it can continue its forward march. Then if we
look carefully, \ve find this mode of reasoning at

every step, either under the simple form which we
have just given to it, or under a more or less modi

fied form. It is therefore mathematical reasoning

par excellence, and we must examine it closer.

V.

The essential characteristic of reasoning by re

currence is that it contains, condensed, so to

speak, in a single formula, an infinite number of

syllogisms. We shall see this more clearly if we
enunciate the syllogisms one after another. They
follow one another, if one may use the expression,
in a cascade. The following are the hypothetical
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syllogisms: The theorem is true of the number I.

Now, if it is true of i, it is true of 2; therefore it is

true of 2. Now, if it is true of 2, it is true of 3;

hence it is true of 3, and so on. We see that the

conclusion of each syllogism serves as the minor

of its successor. Further, the majors of all our

syllogisms may be reduced to a single form. If

the theorem is true of n -
i, it is true of n.

We see, then, that in reasoning by recurrence

we confine ourselves to the enunciation of the

minor of the first syllogism, and the general

formula which contains as particular cases all the

majors. This unending series of syllogisms is thus

reduced to a phrase of a few lines.

It is now easy to understand why every par
ticular consequence of a theorem may, as I have

above explained, be verified by purely analytical

processes. If, instead of proving that our theorem

is true for all numbers, we only wish to show that

it is true for the number 6 for instance, it will be

enough to establish the first five syllogisms in our

cascade. We shall require 9 if we wish to prove
it for the number 10; for a greater number we
shall require more still; but however great the

number may be we shall always reach it, and the

analytical verification will always be possible.

But however far we went we should never reach

the general theorem applicable to all numbers,
which alone is the object of science. To reach

it we should require an infinite number of syllo

gisms, and we should have to cross an abyss
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which the patience of the analyst, restricted to the

resources of formal logic, will never succeed in

crossing.

I asked at the outset why we cannot conceive of

a mind powerful enough to see at a glance the

whole body of mathematical truth. The answer is

now easy. A chess-player can combine for four or

five moves ahead; but, however extraordinary a

player he may be, he cannot prepare for more than

a finite number of moves. If he applies his facul

ties to Arithmetic, he cannot conceive its general
truths by direct intuition alone; to prove even the

smallest theorem he must use reasoning by re

currence, for that is the only instrument which

enables us to pass from the finite to the infinite.

This instrument is always useful, for it enables us

to leap over as many stages as we wish; it frees

us from the necessity of long, tedious, and

monotonous verifications which would rapidly
become impracticable. Then when we take in

hand the general theorem it becomes indispens

able, for otherwise we should ever be approaching
the analytical verification without ever actually

reaching it. In this domain of Arithmetic we may
think ourselves very far from the infinitesimal

analysis, but the idea of mathematical infinity is

already playing a preponderating part, and without

it there would be no science at all, because there

would be nothing general.
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VI.

The views upon which reasoning by recurrence

is based may be exhibited in other forms; we may
say, for instance, that in any finite collection of

different integers there is always one which is

smaller than any other. We may readily pass from

one enunciation to another, and thus give our

selves the illusion of having proved that reason

ing by recurrence is legitimate. But we shall

always be brought to a full stop we shall always
come to an indemonstrable axiom, which will at

bottom be but the proposition we had to prove
translated into another language. We cannot there-

(fore escape the conclusion that the rule of reason

ing by recurrence is irreducible to the principle of

contradiction. Nor can the rule come to us from

i experiment. Experiment may teach us that the

I rule is true for the first ten or the first hundred

, numbers, for instance; it will not bring us to the

indefinite series of numbers, but only to a more or

less long, but always limited, portion of the series.

Now, if that were all that is in question, the

principle of contradiction would be sufficient, it

would always enable us to develop as many
syllogisms as we wished. It is only when it is a

question of a single formula to embrace an infinite

number of syllogisms that this principle breaks

down, and there, too, experiment is powerless to

rLfaid. This rule, inaccessible to analytical proof
and to experiment, is the exact type of the a priori
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synthetic intuition. On the other hand, we
cannot see in it a convention as in the case of the

postulates of geometry.

Why then is this view imposed upon us with

such an irresistible weight of evidence ? It is

because it is only the affirmation of the power of

the mind which knows it can conceive of the

indefinite repetition of the same act, when the act

is once possible. The mind has a direct intuition

of this power, and experiment can only be for it an

opportunity of using it, and thereby of becoming
conscious of it.

But it will be said, if the legitimacy of reasoning

by recurrence cannot be established by experiment

alone, is it so with experiment aided by induction ?

We see successively that a theorem is true of the

number I, of the number 2, of the number 3, and
so on the law is manifest, we say, and it is so on

the same ground that every physical law is true

which is based on a very large but limited number
of observations.

It cannot escape our notice that here is a

striking analogy with the usual processes of

induction. But an essential difference exists.

Induction applied to the physical sciences is

always uncertain, because it is based on the be

lief in a general order of the universe, an order

which is external to us. Mathematical induction

i.e., proof by recurrence is, on the contrary,

necessarily imposed on us, because it is only the

affirmation of a property of the mind itself.
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VII.

Mathematicians, as I have said before, always
endeavour to generalise the propositions they have

obtained. To seek no further example, we have

just shown the equality, a+i = i + a, and we then

used it to establish the equality, a + b^b + a, which

is obviously more general. Mathematics may,
therefore, like the other sciences, proceed from the

particular to the general. This is a fact which

might otherwise have appeared incomprehensible
to us at the beginning of this study, but wrhich has

no longer anything mysterious about it, since we
have ascertained the analogies between proof by
recurrence and ordinary induction.

No doubt mathematical recurrent reasoning and

physical inductive reasoning are based on different

foundations, but they move in parallel lines and in

the same direction namely, from the particular

to the general.

Let us examine the case a little more closely.

To prove the equality a + 2 = 2 + a (i), we need

only apply the rule a + i =-- 1 + a, twice, and write

a + 2 = a+ I + 1 = 1 + + 1 = 1 + i + a = 2 + a (2).

The equality thus deduced by purely analytical

means is not, however, a simple particular case. It

is something quite different. We may not therefore

even say in the really analytical and deductive

part of mathematical reasoning that we proceed
from the general to the particular in the

ordinary sense of the words. The two sides of
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the equality (2) are merely more complicated
combinations than the two sides of the equality

(i), and analysis only serves to separate the ele

ments which enter into these combinations and to

study their relations.

Mathematicians therefore proceed &quot;by
construc

tion,&quot; they
&quot; construct

&quot; more complicated combina

tions. When they analyse these combinations,

these aggregates, so to speak, into their primitive

elements, they see the relations of the elements

and deduce the relations of the aggregates them
selves. The process is purely analytical, but it is

not a passing from the general to the particular,

for the aggregates obviously cannot be regarded as

more particular than their elements.

Great importance has been rightly attached to

this process of &quot;

construction,&quot; and some claim

to see in it the necessary and sufficient condi

tion of the progress of the exact sciences.

Necessary, no doubt, but not sufficient ! For a

construction to be useful and not mere waste of

mental effort, for it to serve as a stepping-stone to

higher things, it must first of all possess a kind of

unity enabling us to see something more than the

juxtaposition of its elements. Or more accurately,
there must be some advantage in considering the

construction rather than the elements themselves.

What can this advantage be ? Why reason on a

polygon, for instance, which is always decom

posable into triangles, and not on elementary

triangles ? It is because there are properties of
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pol}
7gons of any number of sides, and they can be

immediately applied to any particular kind of

polygon. In most cases it is only after long efforts

that those properties can be discovered, by directly

studying the relations of elementary triangles. If

the quadrilateral is anything more than the juxta

position of two triangles, it is because it is of the

polygon type.

A construction only becomes interesting when
it can be placed side by side with other analogous
constructions for forming species of the same

genus. To do this we must necessarily go back

from the particular to the general, ascending one

or more steps. The analytical process
&quot;

by
construction&quot; does not compel us to descend, but

it leaves us at the same level. We can only
ascend by mathematical induction, for from it

alone can we learn something new. Without the

aid of this induction, which in certain respects
differs from, but is as fruitful as, physical in

duction, construction would be powerless to create

science.

Let me observe, in conclusion, that this in

duction is only possible if the same operation can

be repeated indefinitely. That is why the theory
of chess can never become a science, for the

different moves of the same piece are limited and

do not resemble each other.



CHAPTER II.

MATHEMATICAL MAGNITUDE AND EXPERIMENT.

IF we want to know what the mathematicians

mean by a continuum, it is useless to appeal to

geometry. The geometer is always seeking, more
or less, to represent to himself the figures he is

studying, but his representations are only instru

ments to him
;
he uses space in his geometry just

as he uses chalk
;
and further, too much import

ance must not be attached to accidents which are

often nothing more than the whiteness of the

chalk.

The pure analyst has not to dread this pitfall.

He has disengaged mathematics from all extra

neous elements, and he is in a position to answer

our question :

&quot; Tell me exactly what this con

tinuum is, about which mathematicians reason.&quot;

Many analysts who reflect on their art have

already done so -M. Tannery, for instance, in

his Introduction a la theorie des Fonctiom d une

variable.

Let us start with the integers. Between any
two consecutive sets, intercalate one or more inter

mediary sets, and then between these sets others
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again, and so on indefinitely. We thus get an

unlimited number of terms, and these will be the

numbers which we call fractional, rational, or

commensurable. But this is not yet all
;
between

these terms, which, be it marked, are already

infinite in number, other terms are intercalated,

and these are called irrational or incommensurable.

Before going any further, let me make a pre

liminary remark. The continuum thus conceived

is no longer a collection of individuals arranged in

a certain order, infinite in number, it is true, but

external the one to the other. This is not the

ordinary conception in which it is supposed that

between the elements of the continuum exists an

intimate connection making of it one whole, in

which the point has no existence previous to the

line, but the line does exist previous to the point.

Multiplicity alone subsists, unity has disappeared
&quot;the continuum is unity in multiplicity/ accord

ing to the celebrated formula. The analysts have

even less reason to define their continuum as they

do, since it is always on this that they reason wrhen

they are particularly proud of their rigour. It

is enough to warn the reader that the real

mathematical continuum is quite different from

that of the physicists and from that of the

metaphysicians.
It may also be said, perhaps, that mathematicians

who are contented with this definition are the

dupes of words, that the nature of each of these

sets should be precisely indicated, that it should
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be explained how they are to be intercalated, and

that it should be shown how it is possible to do it.

This, however, would be wrong; the only property
of the sets which comes into the reasoning is that of

preceding or succeeding these or those other sets;

this alone should therefore intervene in the defini

tion. So we need not concern ourselves with the

manner in which the sets are intercalated, and

no one will doubt the possibility of the operation
if he only remembers that

&quot;

possible
&quot;

in the

language of geometers simply means exempt from

contradiction. But our definition is not yet com

plete, and we come back to it after this rather long

digression.

Definition of Incommensurable^. The mathe

maticians of the Berlin school, and Kronecker

in particular, have devoted themselves to con

structing this continuous scale of irrational and

fractional numbers without using any other

materials than the integer. The mathematical

continuum from this point of view would be a

pure creation of the mind in .which experiment
would have no part.

The idea of rational number not seeming to

present to them any difficulty, they have confined

their attention mainly to defining incommensurable

numbers. But before reproducing their definition

here, I must make an observation that will allay
the astonishment which this will not fail to provoke
in readers who are but little familiar with the

habits of geometers.
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Mathematicians do not study objects, but the

relations between objects; to them it is a matter

of indifference if these objects are replaced by

others, provided that the relations do not change.
Matter does not engage their attention, they are

interested by form alone.

If we did not remember it, we could hardly
understand that Kronecker gives the name of

incommensurable number to a simple symbol
that is to say, something very different from the

idea we think we ought to have of a quantity
which should be measurable and almost tangible.

Let us see no\v what is Kronecker s definition.

Commensurable numbers may be divided into

classes in an infinite number of ways, subject

to the condition that any number whatever

of the first class is greater than any number

of the second. It may happen that among the

numbers of the first class there is one which is

smaller than all the rest
; if, for instance, we

arrange in the first class all the numbers greater

than 2, and 2 itself, and in the second class all the

numbers smaller than 2, it is clear that 2 will be

the smallest of all the numbers of the first class.

The number 2 may therefore be chosen as the

symbol of this division.

It may happen, on the contrary, that in the

second class there is one which is greater than all

the rest. This is what takes place, for example,
if the first class comprises all the numbers greater

than 2, and if, in the second, are all the numbers
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less than 2, and 2 itself. Here again the

number 2 might be chosen as the symbol of this

division.

But it may equally well happen that we can find

neither in the first class a number smaller than all

the rest, nor in the second class a number greater
than all the rest. Suppose, for instance, we

place in the first class all the numbers whose

squares are greater than 2, and in the second all

the numbers whose squares are smaller than 2.

We know that in neither of them is a number whose

square is equal to 2. Evidently there will be in

the first class no number which is smaller than all

the rest, for however near the square of a number

may be to 2, we can always find a commensur
able whose square is still nearer to 2. From
Kronecker s point of view, the incommensurable

number v/2 is nothing but the symbol of this

particular method of division of commensurable
numbers

;
and to each mode of repartition corre

sponds in this way a number, commensurable or

not, which serves as a symbol. But to be satisfied

with this would be to forget the origin of these

symbols; it remains to explain how we have been

led to attribute to them a kind of concrete

existence, and on the other hand, does not the

difficulty begin with fractions ? Should we have

the notion of these numbers if we did not previously
know a matter which we conceive as infinitely
divisible i.e., as a continuum ?

The Physical Continuum. We are next led to ask
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if the idea of the mathematical continuum is not

simply drawn from experiment. If that be so, the

rough data of experiment, which are our sensations,

could be measured. We might, indeed, be tempted
to believe that this is so, for in recent times there

has been an attempt to measure them, and a law

has even been formulated, known as Fechner s

law, according to which sensation is proportional
to the logarithm of the stimulus. But if we
examine the experiments by which the endeavour

has been made to establish this law, we shall be

led to a diametrically opposite conclusion. It has,

for instance, been observed that a weight A of 10

grammes and a weight B of n grammes produced
identical sensations, that the weight B could no

longer be distinguished from a weight C of 12

grammes, but that the weight A was readily

distinguished from the weight C. Thus the rough
results of the experiments may be expressed by
the following relations: A= B, B C, A &amp;lt; C, which

may be regarded as the formula of the physical
continuum. But here is an intolerable disagree
ment with the law of contradiction, and the

necessity of banishing this disagreement has com

pelled us to invent the mathematical continuum.

We are therefore forced to conclude that this

notion has been created entirely by the mind, but

it is experiment that has provided the opportunity.
We cannot believe that two quantities which are

equal to a third are not equal to one another, and

we are thus led to suppose that A is different from
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B, and B from C, and that if we have not been

aware of this, it is due to the imperfections of our

senses.

The Creation of the Mathematical Continuum: First

Stage. So far it would suffice, in order to account

for facts, to intercalate between A and B a small

number of terms which would remain discrete.

What happens now if we have recourse to some

instrument to make up for the weakness of our

senses ? If, for example, we use a microscope ?

Such terms as A and B, which before were

indistinguishable from one another, appear now
to be distinct : but between A and B, which are

distinct, is intercalated another new term D,

which we can distinguish neither from A nor from

B. Although we may use the most delicate

methods, the rough results of our experiments
will always present the characters of the physical

continuum with the contradiction which is inherent

in it. We only escape from it by incessantly

intercalating newT terms between the terms already

distinguished, and this operation must be pursued

indefinitely. We might conceive that it would be

possible to stop if we could imagine an instrument

powerful enough to decompose the physical con

tinuum into discrete elements, just as the telescope

resolves the Milky Way into stars. But this we
cannot imagine ;

it is always with our senses that

we use our instruments
;

it is with the eye that we
observe the image magnified by the microscope,
and this image must therefore always retain the
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characters of visual sensation, and therefore those

of the physical continuum.

Nothing distinguishes a length directly observed

from half that length doubled by the microscope.
The whole is homogeneous to the part ;

and there

is a fresh contradiction or rather there would be

one if the number of the terms were supposed
to be finite

;
it is clear that the part containing

less terms than the whole cannot be similar to the

whole. The contradiction ceases as soon as the

number of terms is regarded as infinite. There is

nothing, for example, to prevent us from regarding
the aggregate of integers as similar to the aggregate
of even numbers, which is however only a part

of it; in fact, to each integer corresponds another

even number which is its double. But it is not

only to escape this contradiction contained in the

empiric data that the mind is led to create the

concept of a continuum formed of an indefinite

number of terms.

Here everything takes place just as in the series

of the integers. We have the faculty of conceiving
that a unit may be added to a collection of units.

Thanks to experiment, we have had the opportunity
of exercising this faculty and are conscious of

it
;
but from this fact we feel that our power is

unlimited, and that we can count indefinitely,

although we have never had to count more than

a finite number of objects. In the same way, as

soon as we have intercalated terms between two

consecutive terms of a series, we feel that this
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operation may be continued without limit, and

that, so to speak, there is no intrinsic reason for

stopping. As an abbreviation, I may give the

name of a mathematical continuum of the first

order to every aggregate of terms formed after the

same law as the scale of commensurable numbers.

If. then, we intercalate new sets according to tru:

laws of incommensurable numbers, we obtain

what may be called a continuum of the second

order.

Second Stage. We have only taken our first

step. We have explained the origin of con

tinuums of the first order
;
we must now see why

this is not sufficient, and why the incommensurable

numbers had to be invented.

If we try to imagine a line, it must have the

characters of the physical continuum that is to

say, our representation must have a certain

breadth. Two lines will therefore appear to us

under the form of two narrow bands, and if we
are content with this rough image, it is clear

that where two lines cross they must have somo
common part. But the pure geometer makes one

further effort
;

without entirely renouncing the

aid of his senses, he tries to imagine a line without

breadth and a point without size. This he can

do only by imagining a line as the limit towards

which tends a band that is growing thinner and

thinner, and the point as the limit towards which
is tending an area that is growing smaller and
smaller. Our two bands, however narrow they
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may be, will always have a common area
;

the

smaller they are the smaller it will be, and its

limit is what the geometer calls a point. This is

why it is said that the two lines which cross

must have a common point, and this truth seems

intuitive.

But a contradiction would be implied if we
conceived of lines as continuums of the first order

i.e., the lines traced by the geometer should only

give us points, the co-ordinates of which are

rational numbers. The contradiction would be

manifest if we were, for instance, to assert the

existence of lines and circles. It is clear, in fact,

that if the points whose co-ordinates are com
mensurable were alone regarded as real, the

in-circle of a square and the diagonal of the

square would not intersect, since the co-ordinates

of the point of intersection are incommensurable.

Even then we should have only certain incom

mensurable numbers, and not all these numbers.

But let us imagine a line divided into two half-

rays (demi-droites). Each of these half-rays will

appear to our minds as a band of a certain breadth;

these bands will fit close together, because there

must be no interval between them. The common

part will appear to us to be a point which will still

remain as we imagine the bands to become thinner

and thinner, so that we admit as an intuitive truth

that if a line be divided into two half-rays the

common frontier of these half-rays is a point.

Here we recognise the conception of Kronecker,
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in which an incommensurable number was regarded
as the common frontier of two classes of rational

numbers. Such is the origin of the continuum of

the second order, which is the mathematical con

tinuum properly so called.

Summary. To sum up, the mind has the faculty^
of creating symbols, and it is thus that it has con

structed the mathematical continuum, which is

only a particular system of symbols. The only
limit to its power is the necessity of avoiding all

contradiction
;
but the mind only makes use of it

when experiment gives a reason for it.

In the case with which we are concerned, the

reason is given by the idea of the physical con

tinuum, drawn from the rough data of the senses.

But this idea leads to a series of contradictions

from each of which in turn we must be freed.

In this way we are forced to imagine a more
and more complicated system of symbols. That
on which we shall dwell is not merely exempt
from internal contradiction, it was so already at

all the steps we have taken, but it is no longer in

contradiction with the various propositions which

are called intuitive, and which are derived from

more or less elaborate empirical notions.

Measurable Magnitude. So far we have not

spoken of the measure of magnitudes; we can tell

if any one of them is greater than any other,

but we cannot say that it is two or three times

as large.

So far, I have only considered the order in which
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the terms are arranged ;
but that is not sufficient

for most applications. We must learn how to

compare the interval which separates any two
terms. On this condition alone will the con

tinuum become measurable, and the operations
of arithmetic -be applicable. This can only be

done by the aid of a new and special con

vention
;
and this convention is, that in such a

case the interval between the terms A and B is

equal to the interval which separates C and D.

For instance, we started with the integers, and

between two consecutive sets we intercalated ;/

intermediary sets
; by convention we now assume

these new sets to be equidistant. This is one

of the ways of denning the addition of two

magnitudes; for if the interval AB is by definition

equal to the interval CD, the interval AD will by
definition be the sum of the intervals AB and AC.
This definition is very largely, but not altogether,

arbitrary. It must satisfy certain conditions the

commutative and associative laws of addition, for

instance
; but, provided the definition we choose

satisfies these laws, the choice is indifferent, and

we need not state it precisely.

Remarks. We are now in a position to discuss

several important questions.

(i) Is the creative power of the mind exhausted

by the creation of the mathematical continuum ?

The answer is in the negative, and this is shown
in a very striking manner by the work of Du Bois

Reymond.
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We know that mathematicians distinguish

between infinitesimals of different orders, and that

infinitesimals of the second order are infinitely

small, not only absolutely so, but also in relation

to those of the first order. It is not difficult to

imagine infinitesimals of fractional or even of

irrational order, and here once more we find the

mathematical continuum which has been dealt

with in the preceding pages. Further, there are

infinitesimals which are infinitely small with

reference to those of the first order, and infinitely

large with respect to the order i + e, however

small e may be. Here, then, are new terms inter

calated in our series; and if I may be permitted to

revert to the terminology used in the preceding

pages, a terminology which is very convenient,

although it has not been consecrated by usage, I

shall say that we have created a kind of con

tinuum of the third order.

It is an easy matter to go further, but it is idle

to do so, for we would only be imagining symbols
without any possible application, and no one will

dream of doing that. This continuum of the third

order, to which we are led by the consideration of

the different orders of infinitesimals, is in itself

of but little use and hardly worth quoting.

Geometers look on it as a mere curiosity. The
mind only uses its creative faculty when experi-

ment requires it.

(2) When we are once in possession of the

conception of the mathematical continuum, are
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we protected from contradictions analogous to

those which gave it birth ? No, and the follow

ing is an instance :

He is a savant indeed who will not take it as

evident that every curve has a tangent ; and, in

fact, if we think of a curve and a straight line as

two narrow bands, we can always arrange them in

such a way that they have a common part without

intersecting. Suppose now that the breadth of

the bands diminishes indefinitely : the common

part will still remain, and in the limit, so to speak,
the two lines will have a common point, although

they do not intersect i.e., they will touch. The

geometer who reasons in this way is only doing
what we have done when we proved that two lines

which intersect have a common point, and his

intuition might also seem to be quite legitimate.

But this is not the case. We can show that there

are curves which have no tangent, if we define

such a curve as an analytical continuum of the

second order. No doubt some artifice analogous
to those we have discussed above would enable us

to get rid of this contradiction, but as the latter is

only met with in very exceptional cases, we need

not trouble to do so. Instead of endeavouring to

reconcile intuition and analysis, we are content to

sacrifice one of them, and as analysis must be

flawless, intuition must go to the wall.

The Physical Continuum of several Dimensions.

We have discussed above the physical continuum

as it is derived from the immediate evidence of our
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senses or, if the reader prefers, from the rough
results of Fechner s experiments ;

I have shown

that these results are summed up in the contra

dictory formulae : A= 13, B= C, A &amp;lt; C.

Let us now see how this notion is generalised,

and how from it may be derived the concept of

continuums of several dimensions. Consider any
two aggregates of sensations. We can either

distinguish between them, or we cannot; just as in

Fechner s experiments the weight of 10 grammes
could be distinguished from the weight of 12

grammes, but not from the weight of n grammes.
This is all that is required to construct the con

tinuum of several dimensions.

Let us call one of these aggregates of sensations

an element. It will be in a measure analogous to

the point of the mathematicians, but will not be,

however, the same thing. We cannot say that

our element has no size, for we cannot distinguish

it from its immediate neighbours, and it is thus

surrounded by a kind of fog. If the astronomical

comparison may be allowed, our &quot;elements&quot;

would be like nebulae, whereas the mathematical

points would be like stars.

If this be granted, a system of elements will

form a continuum, if we can pass from any one of

them to any other by a series of consecutive

elements such that each cannot be distinguished
from its predecessor. This linear series is to the

line of the mathematician what the isolated element

was to the point.
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Before going further, I must explain what is

meant by a cut. Let us consider a continuum C,
and remove from it certain of its elements, which
for a moment we shall regard as no longer belong

ing to the continuum. We shall call the aggregate
of elements thus removed a cut. By means of this

cut, the continuum C will be subdivided into

several distinct continuums
;

the aggregate of

elements which remain will cease to form a single

continuum. There will then be on C two ele

ments, A and B, which we must look upon as

belonging to two distinct continuums; and we see

that this must be so, because it will be impossible
to find a linear series of consecutive elements of C
(each of the elements indistinguishable from the

preceding, the first being A and the last B), unless

one of the elements of this series is indistinguisliablc

from one of the elements of the cut.

It may happen, on the contrary, that the cut

may not be sufficient to subdivide the continuum

C. To classify the physical continuums, we must

first of all ascertain the nature of the cuts which

must be made in order to subdivide them. If a

physical continuum, C, may be subdivided by a cut

reducing to a finite number of elements, all dis

tinguishable the one from the other (and therefore

forming neither one continuum nor several con

tinuums), we shall call C a continuum of one

dimension. If, on the contrary, C can only be sub

divided by cuts which are themselves continuums,
we shall say that C is of several dimensions; if
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the cuts are continuums of one dimension, then

we shall say that C has two dimensions
;

if cuts of

two dimensions are sufficient, we shall say that C
is of three dimensions, and so on. Thus the

notion of the physical continuum of several dimen

sions is defined, thanks to the very simple fact,

that two aggregates of sensations may be dis

tinguishable or indistinguishable.
The Mathematical Continuum of Several Dimensions.

The conception of the mathematical continuum

of n dimensions may be led up to quite naturally

by a process similar to that which we discussed at

the beginning of this chapter. A point of such a

continuum is defined by a system of n distinct

magnitudes which we call its co-ordinates.

The magnitudes need not always be measurable;
there is, for instance, one branch of geometry
independent of the measure of magnitudes, in

which we are only concerned with knowing, for

example, if, on a curve ABC, the point B is

between the points A and C, and in which it is

immaterial whether the arc A B is equal to or

twice the arc B C. This branch is called Analysis
Situs. It contains quite a large body of doctrine

which has attracted the attention of the greatest

geometers, and from which are derived, one from

another, a&quot; whole series of remarkable theorems.

What distinguishes these theorems from those of

ordinary geometry is that they are purely quali
tative. They are still true if the figures are copied

by an unskilful draughtsman, with the result that

3
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the proportions are distorted and the straight lines

replaced by lines which are more or less curved.

As soon as measurement is introduced into the

continuum we have just defined, the continuum

becomes space, and geometry is born. But the

discussion of this is reserved for Part II.



PART II.

SPACE.

CHAPTER III.

NON-EUCLIDEAN GEOMETRIES.

EVERY conclusion presumes premisses. These

premisses are either self-evident and need no

demonstration, or can be established only if based

on other propositions ; and, as we cannot go back

in this way to infinity, every deductive science,

and geometry in particular, must rest upon a

certain number of indemonstrable axioms. All

treatises of geometry begin therefore with the

enunciation of these axioms. But there is a

distinction to be drawn between them. Some of

these, for example,
&quot;

Things which are equal to )

the same thing are equal to one another,&quot; are not

propositions in geometry but propositions in

analysis. I look upon them as analytical a priori

intuitions, and they concern me no further. But

I must insist on other axioms which are special

to geometry. Of these most treatises explicitly^
enunciate three : (i) Only one line can pass

through two points ; (2) a straight line is the
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shortest distance between two points ; (3) through
one point only one parallel can be drawn to a

given straight line. Although we generally dis

pense with proving the second of these axioms, it

would be possible to deduce it from the other two,

and from those much more numerous axioms

which are implicitly admitted without enuncia

tion, as I shall explain further on. For a long
time a proof of the third axiom known as Euclid s

postulate was sought in vain. It is impossible to

imagine the efforts that have been spent in pursuit

of this chimera. Finally, at the beginning of the

nineteenth century, and
almost^ simultaneously,

two scientists, a Russian and a Bulgxiria-n, Lobat-

schewsky and Bolyai, showred irrefutably that this

proof is impossible. They have nearly rid us of

inventors of geometries without a postulate, and

ever since the Academic des Sciences receives only
about one or two new demonstrations a year.

But the question was not exhausted, and it was

not long before a great step was taken by the

celebrated memoir of Riemann, entitled : Ueber

die Hypothesen welche der Geometric zum Grunde

liegen. This little work has inspired most of the

recent treatises to which I shall later on refer, and

among which I may mention those of Beltratni

and Helmholtz.

The Geometry of Lobatschewsky. If it were

possible to deduce Euclid s postulate from the

several axioms, it is evident that by rejecting

the postulate and retaining the other axioms we
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should be led to contradictory consequences. It

would be, therefore, impossible to found on those

premisses a coherent geometry. Now, this is

precisely what Lobatschewsky has done. He
assumes at the outset that several parallels may
be drawn through a point to a given straight line,

and he retains all the other axioms of Euclid.

From these hypotheses he deduces a series of

theorems between which it is impossible to find

any contradiction, and he constructs a geometry
as impeccable in its logic as Euclidean geometry, N

The theorems are very different, however, from

those to which we are accustomed, and at first

will be fourud a little disconcerting. For instance,
the sum of the angles of a triangle is always less

than two right angles, and the difference between
that sum and two right angles is proportional to

the area of the triangle. It is impossible to con

struct a figure similar to a given figure but of

different dimensions. If the circumference of a

circle be divided into n equal parts, and tangents
be drawn at the points of intersection, the n

tangents will form a polygon if the radius of

the circle is small enough, but if the radius is

large enough they will never meet. We need not

multiply these examples. Lobatschewsky s pro

positions have no relation to those of Euclid, ,

but they are none the less logically interconnected.

Riemann s Geometry. Let us imagine to our

selves a world only peopled with beings of no
J

_nickness, and suppose these &quot;infinitely flat&quot;
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animals are all in one and the same plane, from

which they cannot emerge. Let us further admit

that this world is sufficiently distant from other

worlds to be withdrawn from their influence, and
while we are making these hypotheses it will not

cost us much to endow these beings with reason

ing power, and to believe them capable of making
a geometry. In that case they will certainly
attribute to space only two dimensions. But
now suppose that these imaginary animals, \vhile.

remaining without thickness, have the form of a

spherical, and not of a plane figure, and are all on

the same sphere, from which they cannot escape.
What kind of a geometry will they construct ? In

the first place, it is clear that they will attribute to

space only two dimensions. The straight line to

them will be the shortest distance from one point
on the sphere to another that is to say, an arc of

a great circle. In a word, their geometry will be

spherical geometry. What they will call space
will be the sphere on which they are confined, and
on which take place all the phenomena with

which they are acquainted. Their space will

therefore be unbounded, since on a sphere one may
always walk forward without ever being brought
to a stop, and yet it will be finite; the end will

never be found, but the complete tour can be

made. Well, Riemann s geometry is spherical

geometry extended to three dimensions. To con

struct it, the German mathematician had first of

all to throw overboard, not only Euclid s postulate
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but also the first axiom that only one line can pass

through two points. On a sphere, through two

given points, we can in general draw only one great

circle which, as we have just seen, would be to

our imaginary beings a straight line. But there

was one exception. If the two given points are

at the ends of a diameter, an infinite number of

great circles can be drawn through them. In

the same way, in Riemann s geometry at least in

one of its forms through two points only one

straight line can in general be drawn, but there are

exceptional cases in which through two points

an infinite number of straight lines can be drawn.

So there is a kind of opposition between the

geometries of Riemann and Lobatschewsky. For

instance, the sum of the angles of a triangle is

equal to two right angles in Euclid s geometry,
less than two right angles in that of Lobat

schewsky, and greater than two right angles in that

of Riemann. The number of parallel lines that

can be drawn through a given point to a given
line is one in Euclid s geometry, none in Riemann s,

and an infinite number in the geometry of Lobat- \\

schewsky. Let us add that Riemann s space is \

finite, although unbounded in the sense which we
have above attached to these words.

Surfaces with Constant Curvature. One objection,

however, remains possible. There is no contradic

tion between the theorems of Lobatschewsky and

Riemann; but however numerous are the other

consequences that these geometers have deduced
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from their hypotheses, they had to arrest their

course before they exhausted them all, for the

number would be infinite; and who can say that

if they had carried their deductions further they
would not have eventually reached some con-

J ^/ ttu^tradiction ? This difficulty does not exist for

**Riemann s geometry, provided it is limited to

o dimensions. As we have seen, the two-

dimensional geometry of Riemann, in fact, does

kn, &amp;lt;ti&quot;

1**T not differ from spherical geometry, which is only a

krancn of ordinary geometry, and is therefore out-

side all contradiction. Beltrami, by showing that

Lobatschewsky s two-dimensional geometry was

only a branch of ordinary geometry, has equally
refuted the objection as far as it is concerned.

This is the course of his argument: Let us con

sider any figure whatever on a surface. Imagine
this figure to be traced on a flexible and in-

extensible canvas applied to the surface, in such

a way that when the canvas is displaced and

deformed the different lines of the figure change
their form without changing their length. As a

rule, this flexible and inextensible figure cannot be

displaced without leaving the surface. But there

are certain surfaces for which such a movement
would be possible. They are surfaces of constant

curvature. If we resume the comparison that we
made just now, and imagine beings without thick

ness living on one of these surfaces, they will

regard as possible the motion of a figure all the

lines of which remain of a constant length. Such
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a movement would appear absurd, on the other

hand, to animals without thickness living on a

surface of variable curvature. These surfaces of

constant curvature are of two kinds. The
curvature of some is positive, and they may be

deformed so as to be applied to a sphere. The

geometry of these surfaces is therefore reduced to

spherical geometry- namely, Riemann s. The cur

vature of others is negative. Beltrami has shown

that the geometry of these surfaces is identical

with that of Lobatschewsky. Thus the two-

dimensional geometries of Riemann and Lobat- *

schewsky are connected with Euclidean geometry.

Interpretation of ^on-Euclidean Geometries. Thus

vanishes the objection so far as two-dimensional

geometries are concerned. It would be easy to

extend Beltrami s reasoning to three-dimensional

geometries, and minds which do not recoil before

space of four dimensions will see no difficulty in

it; but such minds are few in number. I prefer,

then, to proceed otherwise. Let us consider a

certain plane, which I shall call the fundamental

plane, and let us construct a kind of dictionary by

making a double series of terms written in two

columns, and corresponding each to each, just as

in ordinary dictionaries the words in two languages
which have the same signification correspond to

one another:

Space The portion of space situated

above the fundamental

plane.
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Plane ...

Line

Sphere
Circle

Angle
Distance between

two points

Sphere cutting orthogonally
the fundamental plane.

Circle cutting orthogonally
the fundamental plane.

Sphere.
Circle.

Angle.

Logarithm of the anharmonic

ratio of these two points
and of the intersection

of the fundamental plane
with the circle passing

through these two points
and cutting it orthogon

ally.

Etc.

Let us now take Lobatschewsky s theorems and
translate them by the aid of this dictionary, as we
would translate a German text with the aid of

a German - French dictionary. We shall then

obtain the theorems of ordinary geometry. For

instance, Lobatschewsky s theorem: &quot;The sum of

the angles of a triangle is less than two right

angles,&quot; may be translated thus: &quot;If a curvilinear

triangle has for its sides arcs of circles which if

produced would cut orthogonally the fundamental

plane, the sum of the angles of this curvilinear

triangle will be less than two right angles.&quot; Thus,
however far the consequences of Lobatschewsky s

hypotheses are carried, they will never lead to a



NON-EUCLIDEAN GEOMETRIES. 43

contradiction; in fact, if two of Lobatschewsky s

theorems were contradictory, the translations of

these twTo theorems made by the aid of our

dictionary would be contradictory also. But

these translations are theorems of ordinary

geometry, and no one doubts that ordinary

geometry is exempt from contradiction. Whence
is the certainty derived, and how far is it justified?

That is a question upon which I cannot enter

here, but it is a very interesting question, and I

think not insoluble. Nothing, therefore, is left of

the objection I formulated above. But this is not

all. Lobatschewsky s geometry being susceptible
of a concrete interpretation, ceases to be a useless

logical exercise, and may be applied. I have no

time here to deal with these applications, nor

with what Herr Klein and myself have done by

using them in the integration of linear equations.

Further, this interpretation is not unique, and

several dictionaries may be constructed analogous
to that above, which will enable us by a simple
translation to convert Lobatschewsky s theorems

into the theorems of ordinary geometry.

Implicit Axioms. Are the axioms implicitly

enunciated in our text-books the only foundation

of geometry ? We may be assured of the contrary
when we see that, when they are abandoned one

after another, there are still left standing some

propositions which are common to the geometries
of Euclid, Lobatschewsky, and Riemann. These

propositions must be based on premisses that
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geometers admit without enunciation. It is in

teresting to try and extract them from the classical

proofs.

John Stuart Mill asserted 1 that every definition

contains an axiom, because by denning we im

plicitly affirm the existence of the object defined.

That is going rather too far. It is but rarely in

mathematics that a definition is given without

following it up by the proof of the existence of the

object defined, and when this is not done it is

generally because the reader can easily supply

it; and it must not be forgotten that the word
&quot;existence&quot; has not the same meaning when it

refers to a mathematical entity as when it refers to

a material object.

A mathematical entity exists provided there is

no contradiction implied in its definition, either in

itself, or with the propositions previously admitted.

But if the observation of John Stuart Mill cannot

be applied to all definitions, it is none the less true

for some of them. A plane is sometimes defined

in the following manner: The plane is a surface

such that the line which joins any two points

upon it lies wholly on that surface. Now, there is

obviously a new axiom concealed in this definition.

It is true we might change it, and that would be

preferable, but then we should have to enunciate

the axiom explicitly. Other definitions may give
rise to no less important reflections, such as, for

example, that of the equality of two figures. Two
1
Logic &amp;gt;

c. viii., cf. Definitions, 5-6. TR.
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figures are equal when they can be superposed.
To superpose them, one of them must be displaced

until it coincides with the other. But how must

it be displaced ? If we asked that question, no

doubt we should be told that it ought to be done

without deforming it, and as an invariable solid is

displaced. The vicious circle would then be evi

dent. As a matter of fact, this definition defines

nothing. It has no meaning to a being living in a

world in which there are only fluids. If it seems

clear to us, it is because we are accustomed to the

properties of natural solids which do not much
differ from those of the ideal solids, all of whose

dimensions are invariable. However, imperfect as

it may be, this definition implies an axiom. The

possibility of the motion of an invariable figure is

not a self-evident truth. At least it is only so in

the application to Euclid s postulate, and not as an

analytical a priori intuition would be. More

over, when we study the definitions and the proofs
of geometry, we see that we are compelled to

admit without proof not only the possibility of

this motion, but also some of its properties. This

first arises in the definition of the straight line.

Many defective definitions have been given, but

the true one is that which is understood in all the

proofs in which the straight line intervenes.
&quot;

It

may happen that the motion of an invariable figure

may be such that all the points of a line belonging
to the figure are motionless, while all the points
situate outside that line are in. motion. Such a
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line would be called a straight line/ We have

deliberately in this enunciation separated the

definition from the axiom which it implies. Many
proofs such as those of the cases of the equality of

triangles, of the possibility of drawing a perpen
dicular from a point to a straight line, assume pro

positions the enunciations of which are dispensed

with, for they necessarily imply that it is possible

to move a figure in space in a certain way.
The Fourth Geometry. Among these explicit

axioms there is one which seems to me to deserve

some attention, because when we abandon it we
can construct a fourth geometry as coherent as

those of Euclid, Lobatschewsky, and Riemann.

To prove that we can always draw a perpendicular
at a point A to a straight line A B, we consider a

straight line A C movable about the point A, and

initially identical with the fixed straight line A B.

We then can make it turn about the point A until

it lies in A B produced. Thus we assume two

propositions first, that such a rotation is possible,

and then that it may continue until the two lines

lie the one in the other produced. If the first

point is conceded and the second rejected, we are

led to a series of theorems even stranger than those

of Lobatschewsky and Riemann, but equally free

from contradiction. I shall give only one of these

theorems, and I shall not choose the least remark

able of them. A real straight line may be perpen
dicular to itself.

Lie s Theorem. The number of axioms implicitly
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introduced into classical proofs is greater than

necessary, and it would be interesting to reduce

them to a minimum. It may be asked, in the first

place, if this reduction is possible if the number of

necessary axioms and that of imaginable geometries
is not infinite? A theorem due to Sophus Lie is of

weighty importance in this discussion. It may be

enunciated in the following manner: Suppose the

following premisses are admitted: (i) space has n

dimensions; (2) the movement of an invariable

figure is possible; (3) p conditions are necessary to

determine the position of this figure in space.

The number of geometries compatible with these

premisses will be limited. I may even add that if n

is given, a superior limit can be assigned to p. If,

therefore, the possibility of the movement is

granted, we can only invent a finite and even

a rather restricted number of three-dimensional

geometries.
Riemann s Geometries. However, this result

ssems contradicted by Riemann, for that scientist

constructs an infinite number of geometries, and

that to which his name is usually attached is only
a particular case of them. All depends, he says,

on the manner in which the length of a curve is

defined. Now, there is an infinite number of ways
of defining this length, and each of them may be

the starting-point of a new geometry. That is

perfectly true, but most of these definitions are in

compatible with the movement of a variable figure

such as we assume to be possible in Lie s theorem.
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These geometries of Riemann, so interesting on

various grounds, can never be, therefore, purely

analytical, and would not lend themselves to

proofs analogous to those of Euclid.

&quot;On the Nature of Axioms. Most mathematicians

regard Lobatschewsky s geometry as a mere logical

curiosity. Some of them have, however, gone
further. If several geometries are possible, they

say, is it certain that our geometry is the one that

is true
?^ Experiment no doubt teaches us that the

sum of the angles of a triangle is equal to two

right angles, but this is because the triangles we
deal with are too small. According to Lobat-

schewsky, the difference is proportional to the area

of the triangle, and will not this become sensible

when we operate on much larger triangles, and
when our measurements become more accurate ?

-;
Euclid s geometry would thus be a provisory

geometry. Now, to discuss this view we must
first of all ask ourselves, what is the nature of

geometrical axioms ? Are they synthetic a priori

intuitions, as Kant affirmed ? They would then

be imposed upon us with such a force that we
could not conceive of the contrary proposition, nor

could we build upon it a theoretical edifice. There
would be no non-Euclidean geometry. To con

vince ourselves of this, let us take a true synthetic
a priori intuition the following, for instance, which

played an important part in the first chapter: If

a theorem is true for the number i, and if it has

oeen proved that it is true of + i, provided it is
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true of n, it will be true for all positive integers.

Let us next try to get rid of this, and while reject

ing this proposition let us construct a false

arithmetic analogous to non-Euclidean geometry.
We shall not be able to do it. We shall be even

tempted at the outset to look upon these intui

tions as analytical. Besides, to take up again
our fiction of animals without thickness, we can

scarcely admit that these beings, if their minds

are like ours, would adopt the Euclidean geometry,
which would be contradicted by all their experi
ence. Ought we, then, to conclude that the&quot;

axioms of geometry are experimental truths ?

But we do not make experiments on ideal lines or

ideal circles; wre can only make them on material

objects. On what, therefore, would experiments

serving as a foundation for geometry be based ?

The answer is easy. We have seen above that we

constantly reason as if the geometrical figures

behaved like solids. What geometry would borrow

from experiment would be therefore the pro

perties of these bodies. The properties of light

and its propagation in a straight line have also

given rise to some of the propositions of geometry,
and in particular to those of projective geometry,
so that from that point of view one would be

tempted to say that metrical geometry is the study
of solids, and projective geometry that of light.

But a difficulty remains, and is unsurmountable.
If geometry were an experimental science, it wTo

not be an exact science. It would be subjected to !

4
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continual revision. Nay, it would from that day
forth be proved to be erroneous, for we know that

no rigorously invariable solid exists/&quot; The geo

metrical axioms are therefore neither synthetic a priori

intuitions nor experimental facts. They are conven-

\
tions. Our choice among all possible conventions

/is guided by experimental facts; but it remains

free, and is only limited by the necessity of avoid

ing every contradiction, and thus it is that pos
tulates may remain rigorously true even when the

experimental laws which have determined their

adoption are only approximate. In other words,

the axioms of geometry (I do not speak of those of

arithmetic) are only definitions in disguise. What,
then, are we to think of the question : Is

Euclidean geometry true ? It has no meaning.
We might as well ask if the metric system is true,

and if the old weights and measures are false; if

Cartesian co-ordinates are true and polar co

ordinates false. jOne geometry cannot be more

true than another; it can only be more convenient.

|
Now, Euclidean geometry is, and will remain, the

\ most convenient: ist, because it is the simplest,

&quot;)

\ and it is not so only because of our mental habits

,
. or because of the kind of direct intuition that we

have of Euclidean space ;
it is the simplest in

\ itself, just as a polynomial of the first degree is

simpler than a polynomial of the second degree;

2nd, because it sufficiently agrees with the pro-

(
*

perties of natural solids, those bodies which we
\. can compare and measure by means of our senses.



CHAPTER IV.

SPACE AND GEOMETRY.

LET us begin with a little paradox. Beings whose

minds were made as ours, and with senses like

ours, but without any preliminary education,

might receive from a suitably-chosen external

world impressions which would lead them to

construct a geometry other than that of Euclid,

and to localise the phenomena of this external

world in a non-Euclidean space, or even in space
of four dimensions. As for us, whose education

has been made by our actual world, if we were

suddenly transported into this new world, we
should have no difficulty in referring phenomena
to our Euclidean space. Perhaps somebody may
appear on the scene some day who will devote his

life to it, and be able to represent to himself the

fourth dimension.

Geometrical Space and Representative Space. It is

often said that the images we form of external

objects are localised in space, and even that they
can only be formed on this condition. It is also

said that this space, which thus serves as a kind of

framework ready prepared for our sensations and

representations, is identical with the space of the
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geometers, having all the properties of that space.
To all clear-headed

v

men who think in this way,
the preceding statement might well appear extra

ordinary; but it is as well to see if they are not

the victims of some illusion which closer analysis

may be able to dissipate. In the first place, what
are the properties of space properly so called ?

I mean of that space which is the object of

geometry, and which I shall call geometrical

space. The following are some of the more

essential:

ist, it is continuous; 2nd, it is infinite; 3rd, it

is of three dimensions; 4th, it is homogeneous
that is to say, all its points are identical one

with another; 5th, it is isotropic. Compare this

now with the framework of our representations

and sensations, which I may call representative

space.

Visual Space. First of all let us consider a

purely visual impression, due to an image formed

on the back of the retina. A cursory analysis shows

us this image as continuous, but as possessing only
two dimensions, which already distinguishes purely
visual from what may be called geometrical space.

On the other hand, the image is enclosed within

a limited framework ;
and there is a no less

important difference: this pure visual space is not

homogeneous. All the points on the retina, apart

from the images which may be formed, do not

play the same role. The yellow spot can in no

way be regarded as identical with a point on the
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edge of the retina. Not only does the same object

produce on it much brighter impressions, but in

the whole of the limited framework the point
which occupies the centre will not appear identical

with a point near one of the edges. Closer

analysis no doubt would show us that this con

tinuity of visual space and its two dimensions are

but an illusion. It would make visual space even

more different than before from geometrical space,

but we may treat this remark as incidental.

However, sight enables us to appreciate dis

tance, and therefore to perceive a third dimension.

But every one knows that this perception of thei t *) })&quot;

third dimension reduces to a sense of the effort of

accommodation which must be made, and to a

sense of the convergence of the two eyes, that

must take place in order to perceive an object,

distinctly. These are muscular sensations quite
different from the visual sensations which have

given us the concept of the two first dimensions.

The third dimension will therefore not appear to us

as playing the same role as the two others. What
may be called complete visual space is not therefore

an isotropic space. It has, it is true, exactly
three dimensions; which means that the elements

of our visual sensations (those at least which
concur in forming the concept of extension) will

be completely defined if we know three of them;
or, in mathematical language, they will be func

tions of three independent variables. But let us

look at the matter a little closer. The third
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dimension is revealed to us in two different ways:

by the effort of accommodation, and by the con

vergence of the eyes. No doubt these two in

dications are always in harmony; there is between

them a constant relation; or, in mathematical

language, the two variables which measure these

two muscular sensations do not appear to us as

independent. Or, again, to avoid an appeal to

mathematical ideas which are already rather too

refined, we may go back to the language of the

preceding chapter and enunciate the same fact as

follows: If two sensations of convergence A and
B are indistinguishable, the two sensations of

accommodation A and B which accompany them

respectively will also be indistinguishable. But

that is, so to speak, an experimental fact. Nothing

prevents us a priori from assuming the contrary,
and if the contrary takes place, if these two

muscular sensations both vary independently, we
must take into account one more independent

variable, and complete visual space will appear
to us as a physical continuum of four dimensions.

And so in this there is also a fact of external

experiment. Nothing prevents us from assuming
that a being with a mind like ours, with the same

sense-organs as ourselves, may be placed in a world

in which light would only reach him after being

passed through refracting media of complicated
form. The two indications which enable us to

appreciate distances would cease to be connected

by a constant relation. A being educating his



- SPACE AND GEOMETRY. 55

senses in such a world would no doubt attribute

four dimensions to complete visual space.
Tactile and Motor Space. &quot;Tactile space&quot; is

more complicated still than visual space, and differs

even more widely from geometrical space. It is

useless to repeat for the sense of touch my remarks

on the sense of sight. But outside the data of

sight and touch there are other sensations which

contribute as much and more than they do to the

genesis of the concept of space. They are those

which everybody knows, which accompany all our

movements, and which we usually call muscular

sensations. The corresponding framework con

stitutes what may be called motor space. Each
muscle gives rise to a special sensation which may
be increased or diminished so that the aggregate
of our muscular sensations will depend upon as

many variables as we have muscles. From this

point of view motor space would have as many dimen

sions as we have muscles. I know that it is said

that if the muscular sensations contribute to form

the concept of space, it is because we have the

sense of the direction of each movement, and that

this is an integral part of the sensation. If this

were so, and if a muscular sense could not be

aroused unless it were accompanied by this geo
metrical sense of direction, geometrical space
would certainly be a form imposed upon our

sensitiveness. But I do not see this at all when
I analyse my sensations. What I do see is th-at

the sensations which correspond to movements in
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the same direction are connected in my mind by a

simple association of ideas. It is to this association

that what we call the sense of direction is reduced.

We cannot therefore discover this sense in a single

sensation. This association is extremely complex,
for the contraction of the same muscle may cor

respond, according to the position of the limbs,

to very different movements of direction. More

over, it is evidently acquired ;
it is like all

associations of ideas, the result of a habit. This

habit itself is the result of a very large number of

experiments, and no doubt if the education of our

senses had taken place in a different medium,
where we would have been subjected to different

impressions, then contrary habits would have been

acquired, and our muscular sensations would have

been associated according to other laws.

Characteristics of Representative Space. Thus re

presentative space in its triple form visual,

tactile, and motor differs essentially from geo
metrical space. It is neither homogeneous nor

isotropic; we cannot even say that it is of three

dimensions. It is often said that we &quot;

project
&quot;

into geometrical space the objects of our external

perception; that we &quot;localise&quot; them. Now, has

that any meaning, and if so what is that meaning ?

Does it mean that we represent to ourselves ex

ternal objects in geometrical space ? Our repre
sentations are only the reproduction of our sensa

tions; they canSe*- tnerefore be arranged in the

same framework that is to say, in representative
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space. It is also just as impossible for us to repre

sent to ourselves external objects in geometrical^

space, as it is impossible for a painter to paint on

a flat surface objects with their three dimensions.

Representative space is only an image of geo
metrical space, an image deformed by a kind of

perspective, and we can only represent to our

selves objects by making them obey the laws of

this perspective. Thus we do not represent to our

selves external bodies in geometrical space, but we
reason about these bodies as if they were situated

in geometrical space. When it is said, on the

other hand, that we &quot;localise&quot; such an object in

such a point of space, what does it mean ? //

simply means that we represent to ourselves the move

ments that must take place to reach that object. And
it does not mean that to represent to ourselves

these movements they must be projected into

space, and that the concept of space must therefore

pre-exist. When I say that we represent to our

selves these movements, I only mean that we

represent to ourselves the muscular sensations

which accompany them, and which have no

geometrical character, and which therefore in no

way imply the pre-existence of the concept of

space.

Changes of State and Changes of Position. But,

it may be said, if the concept of geometrical space
is not imposed upon our minds, and if, on the

other hand, none of our sensations can furnish us

with that concept, how then did it ever come into
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existence ? This is what we have now to examine,
and it will take some time; but I can sum up in a

few words the attempt at explanation which I am
going to develop. None of our sensations, if isolated,

could have brought us to the concept of space ; we are

brought to it solely by studying the laws by which those

sensations succeed one another. We see at first that
. . r--lta^-^^*-~^^
our impressions are subject to change; but among
the changes that we ascertain, we are very soon

led to make a distinction. Sometimes we say that

\

thejDbjects,
the causes of these impressions, have

changed their state, sometimes that they have

changed their position, that they have only been

displaced. Whether an object changes its state or

only its position, this is always translated for us in

the same manner, by a modification in an aggregate

of impressions. How then have we been enabled

to distinguish them ? If there were only change
of position, we could restore the primitive aggre

gate of impressions by making movements which

would confront us with the movable object in

the same relative situation. WT

e thus correct the

modification which was produced, and we re

establish the initial state by an inverse modifica

tion. If, for example, it were a question of the

sight, and if an object be displaced before our

eyes, we can &quot;

follow it with the
eye,&quot;

and retain

its image on the same point of the retina by
appropriate movements of the eyeball. These
movements we are conscious of because they are

voluntary, and because they are accompanied by
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muscular sensations. But that does not mean
that we represent them to ourselves in geometrical

space. So what characterises change of position,

what distinguishes it from change of state, is that

it can always be corrected by this means. It may
therefore happen that we pass from the aggregate
of impressions A to the aggregate B in two differ

ent ways. First, involuntarily and without ex

periencing muscular sensations which happens
when it is the object that is displaced; secondly,

voluntarily, and with muscular sensation which

happens when the object is motionless, but when
we displace ourselves in such a way that the

object has relative motion with respect to us. If

this be so, the translation of the aggregate A to

the aggregate B is only a change of position. It

follows that sight and touch could not have given
us the idea of space without the help of the
&quot; muscular sense.&quot; Not only could this concept
not be derived from a single sensation, or even from

a series of sensations; but a motionless being could

never have acquired it, because, not being able to

correct by his movements the effects of the change
of position of external objects, he would have had

no reason to distinguish them from changes of

state. Nor would he have been able to acquire
it if his movements had not been voluntary,
or if they were unaccompanied by any sensations

whatever.

Conditions of Compensation. How is such a

compensation possible in such a way that two
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changes, otherwise mutually independent, may be

reciprocally corrected ? A mind already familiar
with geometry would reason as follows: If there

is to be compensation, the different parts of the

external object on the one hand, and the different

organs of our senses on the other, must be in the

same relative position after the double change.
And for that to be the case, the different parts of

the external body on the one hand, and the differ

ent organs of our senses on the other, must have

the same relative position to each other after the

double change; and so with the different parts of

our body with respect to each other. In other

words, the external object in the first change must

be displaced as an invariable solid would be dis

placed, and it must also be so with the whole of our

body in the second change, which is to correct the

first. Under these conditions compensation may
be produced. But we who as yet know nothing of

geometry, whose ideas of space are not yet formed,

we cannot reason in this way we cannot predict

a priori if compensation is possible. But experi

ment shows us that it sometimes does take place,

and we start from this experimental fact in order

to distinguish changes of state from changes of

position.

Solid Bodies and Geometry. Among surrounding

objects there are some which frequently experience

displacements that may be thus corrected by a

correlative movement of our own body namely,
solid bodies. The other objects, whose form is vari-
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able, only in exceptional circumstances undergo
similar displacement (change of position without

change of form). When the displacement of a

body takes place with deformation, we can no

longer by appropriate movements place the organs
of our body in the same relative situation with

respect to this body; we can no longer, therefore,

reconstruct the primitive aggregate of impressions.

It is only later, and after a series of newr

experi

ments, that we learn how to decompose a body of

variable form into smaller elements such that each

is displaced approximately according to the same

laws as solid bodies. We thus distinguish &quot;de

formations&quot; from other changes of state. In these

deformations each element undergoes a simple

change of position which may be corrected; but the

modification of the aggregate is more profound,
and can no longer be corrected by a correlative

movement. Such a concept is very complex even

at this stage, and has been relatively slow in

its appearance. It would not have been conceived

at all had not the observation of solid bodies shown

us beforehand how to distinguish changes of

position.

//, then, there were no solid bodies in nature there

would be no geometry.

Another remark deserves a moment s attention.

Suppose a solid body to occupy successively the

positions a and /?; in the first position it will give

us an aggregate of impressions A, and in the second

position the aggregate of impressions B. Now let
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there be a second solid body, of qualities entirely

different from the first of different colour, for

instance. Assume it to pass from the position u,

where it gives us the aggregate of impressions A to

the position /?, where it gives the aggregate of

impressions B . In general, the aggregate A will

have nothing in common with the aggregate A
,

nor will the aggregate B have anything in common
with the aggregate B . The transition from the

aggregate A to the aggregate B, and that of the

aggregate A to the aggregate B
,
are therefore

two changes which in themselves have in general

nothing in common. Yet \ve consider both

these changes as displacements; and, further, we
consider them the same displacement. How can

this be ? It is simply because they may be both

corrected by the same correlative movement of our

body.
&quot;

Correlative movement,&quot; therefore, con

stitutes the sole connection between two phenomena
which otherwise we should never have dreamed of

connecting.
On the other hand, our body, thanks to the

number of its articulations and muscles, may have

a multitude of different movements, but all are not

capable of
&quot;

correcting
&quot;

a modification of external

objects ;
those alone are capable of it in which

our whole body, or at least all those in which

the organs of our senses enter into play are

displaced en bloc i.e., without any variation of

their relative positions, as in the case of a solid

body.
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To sum up :

1. In the first place, we distinguish two categories

of phenomena : The first involuntary, unaccom

panied by muscular sensations, and attributed to

external objects they are external changes; the

second, of opposite character and attributed to the

movements of our own body, are internal changes.

2. We notice that certain changes of each in

these categories may be corrected by a correlative

change of the other category.

3. We distinguish among external changes those

that have a correlative in the other category
which we call displacements; and in the same way
we distinguish among the internal changes those

which have a correlative in the first category.

Thus by means of this reciprocity is defined a

particular class of phenomena called displace

ments. The laws of these phenomena are the object of

geometry.
Law of Homogeneity. The first of these laws

is the law of homogeneity. Suppose that by an

external change we pass from the aggregate of

impressions A to the aggregate B, and that then

this change is corrected by a correlative

voluntary movement ft so that we are brought
back to the aggregate A. Suppose nowr that

another external change a brings us again from

the aggregate A to the aggregate B. Experiment
then shows us that this change u

,
like the change

u, may be corrected by a voluntary correlative

movement /3 ,
and that this movement // corre-
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spends to the same muscular sensations as the

movement fi which corrected a.

This fact is usually enunciated as follows : Space
is homogeneous and isotropic. We may also say that a

movement which is once produced may be repeated
a second and a third time, and so on, without any
variation of its properties. In the first chapter, in

which \ve discussed the nature of mathematical

reasoning, we saw the importance that should be

attached to the possibility of repeating the same

operation indefinitely. The virtue of mathematical

reasoning is due to this repetition; by means of the

law of homogeneity geometrical facts are appre
hended. To be complete, to the law of homo

geneity must be added a multitude of other laws,

into the details of which I do not propose to enter,

but which mathematicians sum up by saying that

these displacements form a
&quot;group.&quot;

The Non-Euclidean World. -If geometrical space

were a framework imposed on each of our repre
sentations considered individually, it would be

impossible to represent to ourselves an image
without this framework, and we should be quite

unable to change our geometry. But this is not

the case
; geometry is only the summary of the

laws by which these images succeed each other.

There is nothing, therefore, to prevent us from

imagining a series of representations, similar in

every way to our ordinary representations, but

succeeding one another according to laws which

differ from those to which we are accustomed. We
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may thus conceive that beings whose education

has taken place in a medium in which those laws

would be so different, might have a very different

geometry from ours.

Suppose, for example, a world enclosed in a large

sphere and subject to the following laws : The ^

temperature is not uniform; it is greatest at the^uir&quot;

centre, and gradually decreases as we move towards

the circumference of the sphere, where it is absolute

zero. The law of this temperature is as follows :

If R be the radius of the sphere, and r the distance

of the point considered from the centre, the abso

lute temperature will be proportional to R2
r2 .

Further, I shall suppose that in this world all bodies

have the same co-efficient of dilatation, so that the

linear dilatation of any body is proportional to its

absolute temperature. Finally, I shall assume that

a body transported from one point to another of

different temperature is instantaneously in thermal

equilibrium with its new environment. There is

nothing in these hypotheses either contradictory
or unimaginable. A moving object will become
smaller and smaller as it approaches the circum

ference of the sphere. Let us observe, in the first

place, that although from the point of view of our

ordinary geometry this wTorld is finite, to its inhabit

ants it will appear infinite. As they approach the

surface of the sphere they become colder, and at

the same time smaller and smaller. The steps

they take are therefore also smaller and smaller,

so that they can never reach the boundary of the

5
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// sphere. If to us geometry is only the study of the

;/
laws according to which invariable solids move, to

j|
these imaginary beings it will be the study of the

I j
laws of motion of solids deformed by the differences

j,
/ of temperature alluded to.

No doubt, in our world, natural solids also ex

perience variations of form and volume due to

differences of temperature. But in laying the

foundations of geometry we neglect these varia

tions; for besides being but small they are irregular,

and consequently appear to us to be accidental.

In our hypothetical world this will no longer be

the case, the variations will obey very simple and

regular laws. On the other hand, the different

solid parts ofwhich the bodies of these inhabitants

are composed will undergo the same variations of

form and volume.

Let me make another hypothesis: suppose that

light passes through media of different refractive

indices, such that the index of refraction is inversely

proportional to R2
r
2

. Under these conditions it

is clear that the rays of light will no longer be

rectilinear but circular. To justify what has been

said, we have to prove that certain changes in the

position of external objects may be corrected by
correlative movements of the beings which inhabit

this imaginary world; and in such a way as to

restore the primitive aggregate of the impressions

experienced by these sentient beings. Suppose,
for example, that an object is displaced and

deformed, not like an invariable solid, but like a
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solid subjected to unequal dilatations in exact con

formity with the law of temperature assumed

above. To use an abbreviation, we shall call such

a movement a non-Euclidean displacement.
If a sentient being be in the neighbourhood of

such a displacement of the object, his impressions
will be modified; but by moving in a suitable

manner, he may reconstruct them. For this

purpose, all that is required is that the aggregate

of the sentient being and the object, considered as

forming a single body, shall experience one of those

special displacements which I have just called non-

Euclidean. This is possible ifwe suppose that the

limbs of these beings dilate according to the same

laws as the other bodies of the world they inhabit.

Although from the point of view of our ordinary

geometry there is a deformation of the bodies in

this displacement, and although their different

parts are no longer in the same relative position,

nevertheless we shall see that the impressions of

the sentient being remain the same as before
;
in

fact, though the mutual distances of the different

parts have varied, yet the parts which at first were

in contact are still in contact. It follows that

tactile impressions will be unchanged. On the

other hand, from the hypothesis as to refraction

and the curvature of the rays of light, visual im

pressions will also be unchanged. These imaginary

beings will therefore be led to classify the pheno
mena they observe, and to distinguish among them

the
&quot;

changes of position,&quot; which may be corrected
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by a voluntary correlative movement, just as we
do.

If they construct a geometry, it will not be like

ours, which is the study of the movements of our

invariable solids; it will be the study of the

changes of position which they will have thus

distinguished, and will be &quot; non-Euclidean dis

placements,&quot; and this will be non-Euclidean geo

metry. So that beings like ourselves, educated in

such a world, will not have the same geometry as

ours.

The World of Four Dimensions. Just as we have

pictured to ourselves a non-Euclidean world, so we

may picture a world of four dimensions.

The sense of light, even with one eye, together
with the muscular sensations relative to the move
ments of the eyeball, will suffice to enable us to

conceive of space of three dimensions. The images
of external objects are painted on the retina, which
is a plane of two dimensions; these are perspectives.

But as eye and objects are movable, we see in

succession different perspectives of the same body
taken from different points of view. We find at

the same time that the transition from one per

spective to another is often accompanied by
muscular sensations. If the transition from the

perspective A to the perspective B, and that of the

perspective A to the perspective B are accom

panied by the same muscular sensations, we
connect them as we do other operations of the

same nature. Then when we study the laws
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according to which these operations are com

bined, we see that they form a group, which has

the same structure as that of the movements of

invariable solids. Now, we have seen that it is

from the properties of this group that we derive

the idea of geometrical space and that of three

dimensions. We thus understand how these

perspectives gave rise to the conception of three

dimensions, although each perspective is of only

two dimensions, because they succeed each other

according to certain laws. Well, in the same way
that we draw the perspective of a three-dimen

sional figure on a plane, so we can draw that of a

four-dimensional figure on a canvas of three (or

two) dimensions. To a geometer this is but child s

play. We can even draw several perspectives of

the same figure from several different points of

view. We can easily represent to ourselves these

perspectives, since they are of only three dimen

sions. Imagine that the different perspectives of

one and the same object to occur in succession,

and that the transition from one to the other is

accompanied by muscular sensations. It is under

stood that we shall consider two of these transitions

as two operations of the same nature when they
are associated with the same muscular sensations.

There is nothing, then, to prevent us from imagin

ing that these operations are combined according
to any law we choose for instance, by forming
a group with the same structure as that of the

movements of an invariable four-dimensional solid.
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In this there is nothing that we cannot represent
to ourselves, and, moreover, these sensations are

those which a being would experience \vho has a

retina of two dimensions, and who may be dis

placed in space of four dimensions. In this sense

we may say that we can represent to ourselves the

fourth dimension.

Conclusions. It is seen that experiment plays a

considerable role in the genesis of geometry; but

it would be a mistake to conclude from that that

geometry is, even in part, an experimental science.

If it were experimental, it would only be ap

proximative and provisory. And what a rough

approximation it would be ! Geometry would be

only the study of the movements of solid bodies;

but, in reality, it is not concerned with natural

solids : its object is certain ideal solids, absolutely

invariable, which are but a greatly simplified and

very remote image of them. The concept of these

ideal bodies is entirely mental, and experiment is

but the opportunity which enables us to reach the

idea. The object of geometry is the study of a

particular
&quot;

group&quot;; but the general concept of

group pre-exists in our minds, at least potentially.

It is imposed on us not as a form of our sensitive

ness, but as a form of our understanding; only,

from among all possible groups, we must choose

one that will be the standard, so to speak, to

which we shall refer natural phenomena.

Experiment guides us in this choice, which it

does not impose on us. It tells us not what is the
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truest, but what is the most convenient geometry.
It will be noticed that my description of these

fantastic worlds has required no language other

than that of ordinary geometry. Then, were we

transported to those worlds, there would be no

need to change that language. Beings educated

there would no doubt find it more convenient to

create a geometry different from ours, and better

adapted to their impressions; but as for us, in the

presence of the same impressions, it is certain that

we should not find it more convenient to make a

change.



CHAPTER V.

EXPERIMENT AND GEOMETRY.

1. I have on several occasions in the preceding

pages tried to show how the principles of geometry
are not experimental facts, and that in particular

Euclid s postulate cannot be proved by experiment.
However convincing the reasons already given

may appear to me, I feel I must dwell upon them,
because there is a profoundly false conception

deeply rooted in many minds.

2. Think of a material circle, measure its radius

and circumference, and see if the ratio of the two

lengths is equal to ~. What have we done ? We
have made an experiment on the properties of the

matter with which this roundness has been realised,

and of which the measure we used is made.

3. Geometry and Astronomy. The same question

may also be asked in another way. If Lobat-

schewsky s geometry is true, the parallax of a very
distant star will be finite. If Riemann s is true, it

will be negative. These are the results which

seem within the reach of experiment, and it is

hoped that astronomical observations may enable

us to decide between the -twer geometries. But
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what we call a straight line in astronomy is simply
the path of a ray of light. If, therefore, we were

to discover negative parallaxes, or to prove that all

parallaxes are higher than a certain limit, we
should have a choice between two conclusions:

we could give up Euclidean geometry, or modify
the laws of optics, and suppose that light is not

rigorously propagated in a straight line. It is

needless to add that every one would look upon
this solution as the more advantageous. Euclidean

geometry, therefore, has nothing to fear from fresh

experiments.

4. Can we maintain that certain phenomena
which are possible in Euclidean space would be

impossible in non-Euclidean space, so that experi
ment in establishing these phenomena would

directly contradict the non-Euclidean hypothesis?
I think that such a question cannot be seriously

asked. To me it is exactly equivalent to the fol

lowing, the absurdity of which is obvious: There

are lengths which can be expressed in metres and

centimetres, but cannot be measured in toises, feet,

and inches; so that experiment, by ascertaining the

existence of these lengths, would directly contra

dict this hypothesis, that there are toises divided

into six feet. Let us look at the question a little

more closely. I assume that the straight line in

Euclidean space possesses any two properties,
which I shall call A and B; that in non-Euclidean

space it still possesses the property A, but no

longer possesses the property B; and, finally, I
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assume that in both Euclidean and non-Euclidean

space the straight line is the only line that pos
sesses the property A. If this were so, experiment
would be able to decide between the hypotheses of

Euclid and Lobatschewsky. It would be found

that some concrete object, upon which wre can

experiment for example, a pencil of rays of light

possesses the property A. We should conclude

that it is rectilinear, and we should then endeavour

to find out if it does, or does not, possess the pro

perty B. But it is not so. There exists no

property which can, like this property A, be an

absolute criterion enabling us to recognise the

straight line, and to distinguish it from every
other line. Shall we say, for instance,

&quot; This pro

perty will be the following: the straight line is a

line such that a figure of which this line is a part
can move without the mutual distances of its

points varying, and in such a way that all the

points in this straight line remain fixed&quot;? Now,
this is a property which in either Euclidean or

non-Euclidean space belongs to the straight line,

and belongs to it alone. But how can we ascer

tain by experiment if it belongs to any particular

concrete object ? Distances must be measured,
and how shall we know that any concrete magni
tude which I have measured with my material

instrument really represents the abstract distance?

We have only removed the difficulty a little farther

off. In reality, the property that I have just

enunciated is not a property of the straight line
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alone; it is a property of the straight line and of

distance. For it to serve as an absolute criterion,

we must be able to show, not only that it does not

also belong to any other line than the straight line

and to distance, but also that it does not belong
to any other line than the straight line, and to any
other magnitude than distance. NOWT

,
that is not

true, and if we are not convinced by these con

siderations, I challenge any one to give me a

concrete experiment which can be interpreted in

the Euclidean system, and which cannot be inter

preted in the system of Lobatschewsky. As I

am well aware that this challenge will never be

accepted, I may conclude that no experiment will

ever be in contradiction with Euclid s postulate;

but, on the other hand, no experiment will ever be

in contradiction with Lobatschewsky s postulate.

5. But it is not sufficient that the Euclidean

(or non- Euclidean) geometry can, ever be directly

contradicted by experiment. Nor could it happen
that it can only agree with experiment by a viola

tion of the principle of sufficient reason, and of

that of the relativity of space. Let me explain

myself. Consider any material system whatever.

We have to consider on the one hand the &quot;

state
&quot;

of the various bodies of this system for example,
their temperature, their electric potential, etc.;

and on the other hand their position in space.

And among the data which enable us to define

this position we distinguish the mutual distances

of these bodies that define their relative positions,
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and the conditions which define the absolute posi

tion of the system and its absolute orientation in

space. The law of the phenomena which will be

produced in this system will depend on the state

of these bodies, and on their mutual distances ;

but because of the relativity and the inertia of

space, they will not depend on the absolute posi

tion and orientation of the system. In other

words, the state of the bodies and their mutual

distances at_any moment will solelyjiepend on

the state of the^ same bodies^ ajod on their mutual

distances at the initial moment, but wr

ill in no

way depend on the absolute initial position of

the system and of its absolute initial orientation.

This is what we shall call, for the sake of

abbreviation, the law of relativity,

So far I have spoken as a Euclidean geometer.
But I have said that an experiment, whatever it

may be, requires an interpretation on the Euclidean

hypothesis; it equally requires one on the non-

Euclidean hypothesis. Well, we have made a series

of experiments. We have interpreted them on the

Euclidean hypothesis, and we have recognised
that these experiments thus interpreted do not

violate this &quot;law of relativity.&quot; We now interpret

them on the non-Euclidean hypothesis. This is

always possible, only the non-Euclidean distances

of our different bodies in this new interpretation

will not generally be the same as the Euclidean

distances in the primitive interpretation. Will

our experiment interpreted in this new manner
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be still in agreement with our &quot; law of
relativity,&quot;

and if this agreement had not taken place, would
we not still have the right to say that experiment
has proved the falsity of non- Euclidean geometry?
It is easy to see that this is an idle fear. In fact,

to apply the law of relativity in all its rigour, it

must be applied to the entire universe
;
for if we

were to consider only a part of the universe, and
if the absolute position of this part were to vary,
the distances of the other bodies of the universe

would equally vary ;
their influence on the part of

the universe considered might therefore increase

or diminish, and this might modify the laws of

the phenomena which take place in it. But if

our system is the entire universe, experiment is

powerless to give us any opinion on its position
and its absolute orientation in space. All that

our instruments, however perfect they may be,

can let us know will be the state of the different

parts of the universe, and their mutual distances.

Hence, our law of relativity may be enunciated as

follows: The readings that we can make with our

instruments at any given moment will depen

only on the readings that we were able to make
on the same instruments at the initial moment,
Now such an enunciation is independent of all

interpretation by experiments. If the law is true

in the Euclidean interpretation, it will be also true

in the non-Euclidean interpretation. Allow me
to make a short digression on this point. I have

spoken above of the data which define the position
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of the different bodies of the system. I might also

have spoken of those which define their velocities.

I should then have to distinguish the velocity with

which the mutual distances of the different bodies

are changing, and on the other hand the velocities

of translation and rotation of the system ;
that is

to say, the velocities with which its absolute posi

tion and orientation are changing. For the mind
to be fully satisfied, the law^f relativity would

have to be enunciated as follows: The state of

bodies and their mutual distances at any given

moment, as well as the velocities with which

those distances are changing at that moment,
will depend only on the state of those bodies,

on their mutual distances at the initial moment,
and on the velocities with which those distances

were changing at the initial moment. But they
will not depend on the absolute initial position

of the system nor on its absolute orientation, nor

on the velocities with which that absolute posi

tion and orientation were changing at the initial

moment. Unfortunately, the law thus enunciated

does not agree with experiments at least, as they
are ordinarily interpreted. Suppose a man were

translated to a planet, the sky of which was con

stantly covered with a thick curtain of clouds, so

that he could never see the other stars. On that

planet he wrould live as if it \vere isolated in space.

But he w ould notice that it revolves, either by

measuring its ellipticity (which is ordinarily done

by means of astronomical observations, but which
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could be done by purely geodesic means), or by

repeating the experiment of Foucault s pendulum.
The absolute rotation of this planet might be

clearly shown in this way. Now, here is a fact

which shocks the philosopher, but which the

physicist is compelled to accept. We know that

from this fact Newton concluded the existence of

absolute space. I myself cannot accept this way
of looking at it. I shall explain why in Part III.,

but for the moment it is not my intention to

discuss this difficulty. I must therefore resign

myself, in the enunciation of the law of relativity,

to including velocities of every kind among the

data which define the state of the bodies. How
ever that may be, the difficulty is the same for

both Euclid s geometry and for Lobatschewsky s.

I need not therefore trouble about it further, and
I have only mentioned it incidentally. To sum

up, whichever way we look at it, it is impossible
to discover in geometric empiricism a rational

meaning.
6. Experiments only teach us the relations of

bodies to one another. They do not and cannot ,

give us the relations of bodies and space, nor the ;

mutual relations of the different parts of space.
&quot;Yes!&quot; you reply, &quot;a single experiment is not

enough, because it only gives us one equation with

several unknowns
;
but when I have made enough

experiments I shall have enough equations to

calculate all my unknowns.&quot; If I know the height
of the main-mast, that is not sufficient to enable
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me to calculate the age of the captain. When
you have measured every fragment of wood in a

ship you will have many equations, but you will

be no nearer knowing the captain s age. All your
measurements bearing on your fragments of wood
can tell you only what concerns those fragments ;

and similarly, your experiments, however numerous

they may be, referring only to the relations of

bodies with one another, \vill tell you nothing
about the mutual relations of the different parts
of space.

7. Will you say that if the experiments have

reference to the bodies, they at least have reference

to the geometrical properties of the bodies. First,

what do you understand by the geometrical pro-

Arties nf frnHiesJ I assume that it is a question
the relations of the bodies to space. These

properties therefore are not reached by experi

ments which only have reference to the relations

of bodies to one another, and that is enough to

show that it is not of those properties that there

can be a question. Let us therefore begin by

making ourselves clear as to the sense of the

phrase : geometrical properties of bodies. When
I say that a body is composed of several parts, I

presume that I am thus enunciating a geometrical

property, and that will be true even if I agree to

give the improper name of points to the very
small parts I am considering. When I say that

this or that part of a certain body is in contact

with this or that part of another body, I am
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enunciating a proposition which concerns the

mutual relations of the two bodies, and not their

relations with space. I assume that you will

agree with me that these are not geometrical

properties. I am sure that at least you will

grant that these properties are independent of

all knowledge of metrical geometry. Admitting

this, I suppose that we have a solid body formed

of eight thin iron rods, oa, ob, oc, od, oe, of, og, oh,

connected at one of their extremities, o. And let

us take a second solid body for example, a piece

of wood, on which are marked three little spots

of ink which I shall call P y. I now suppose
that we find that we can bring into contact a ft y

with ago; by that I mean a with a, and at the

same time /3 with g, and 7 with o. Then we can

successively bring into contact af3y with bgo, ego,

dgo, ego, fgo, then with aho, bJw, cho, dho, cho, fho;
and then ay successively with ab, be, cd, de, ef, fa.

Now these are observations that can be made
without having any idea beforehand as to the

form or the metrical properties of space. They
have no reference whatever to the &quot;

geometrical

properties of bodies.&quot; These observations will

not be possible if the bodies on which we experi

ment move in a group having the same structure

as the Lobatschewskian group (I mean according
to the same laws as solid bodies in Lobatschewsky s

geometry). They therefore suffice to prove that

these bodies move according to the Euclidean

group; or at least that they do not move according
6
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to the Lobatschewskian group. That they may
be compatible with the Euclidean group is easily

seen
;

for we might make them so if the body
a/3y were an invariable solid of our ordinary

geometry in the shape of a right-angled triangle,

and if the points abcdefgh \vere the vertices of

a polyhedron formed of two regular hexagonal

pyramids of our ordinary geometry having abode/

as their common base, and having the one g and
the other . h as their vertices. Suppose now,
instead of the previous observations, we note that

we can as before apply afiy successively to ago,

bgo, ego, dgo, ego, fgo, aJw, bho, cho, dho, eho, fho,
and then that we can apply a/3 (and no longer ay)

successively to ab, be, cd, dc, ef, and fa. These are

observations that could be made if non-Euclidean

geometry were true. If the bodies a/3y, oabcdefgh
were invariable solids, if the former were a right-

angled triangle, and the latter a double regular

hexagonal pyramid of suitable dimensions. These

new verifications are therefore impossible if the

bodies move according to the Euclidean group;
but they become possible if we suppose the bodies

to move according to the Lobatschewskian group.

They would therefore suffice to sho\v, if we carried

them out, that the bodies in question do not move

according to the Euclidean group. And so, with

out making any hypothesis on the form and the

nature of space, on the relations of the bodies

and space, and without attributing to bodies any

geometrical property, I have made observations
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which have enabled me to show in one case that

the bodies experimented upon move according to

a group, the structure of which is Euclidean, and

in the other case, that they move in a group, the

structure of which is Lobatschewskian. It can

not be said that all the first observations would

constitute an experiment proving that space is

Euclidean, and the second an experiment proving
that space is non-Euclidean

;
in fact, it might be

imagined (note that I use the word imagined) that

there are bodies moving in such a manner as

to render possible the second series of observations:

and the proof is that the first mechanic who came
our way could construct it if he would only take

the trouble. But you must not conclude, however,
that space is non-Euclidean. In the same way,

just as ordinary solid bodies would continue

to exist when the mechanic had constructed the

strange bodies I have just mentioned, he would
have to conclude that space is both Euclidean

and non-Euclidean. Suppose, for instance, that

we have a large sphere of radius R, and that its

temperature decreases from the centre to the

surface of the sphere according to the law of

which I spoke when I was describing the non-

Euclidean world. We might have bodies whose
dilatation is negligeable, and which would behave

as ordinary invariable solids; and, on the other

hand, we might have very dilatable bodies, which

would behave as non-Euclidean solids. We
might have two double pyramids oabcdefgh and
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o db cd efg ti, and two triangles a /3 y and a /3 y .

The first double pyramid would be rectilinear, and

the second curvilinear. The triangle a/3y would

consist of undilatable matter, and the other of very
dilatable matter. We might therefore make our

first observations with the double pyramid o a li

and the triangle a {$ y .

And then the experiment would seem to show

first, that Euclidean geometry is true, and then

that it is false. Hence, experiments have reference

not to space but to bodies.

SUPPLEMENT.

8. To round the matter off, I ought to speak of

a very delicate question, which will require con

siderable development ;
but I shall confine myself

to summing up what I have written in the Revue

de Metaphysique ct de Morale and in the Monist.

When we say that space has three dimensions,
what do we mean ? We have seen the importance
of these

&quot;

internal changes
&quot; which are revealed to

us by our muscular sensations. They may serve

to characterise the different attitudes of our body.
Let us take arbitrarily as our origin one of these

attitudes, A. When we pass from this initial

attitude to another attitude B we experience a

series of muscular sensations, and this series S of

muscular sensations will define B. Observe, how
ever, that we shall often look upon two series S
and S as defining the same attitude B (since the



EXPERIMENT AND GEOMETRY. 85

initial and final attitudes A and B remaining the

same, the intermediary attitudes of the corre

sponding sensations may differ). How then can

we recognise the equivalence of these two series ?

Because they may serve to compensate for the same

external change, or more generally, because, when

it is a question of compensation for an external

change, one of the series may be replaced by the

other. Among these series we have distinguished

those which can alone compensate for an external

change, and which we have called
&quot;

displacements.&quot;

As we cannot distinguish two displacements which

are very close together, the aggregate of these

displacements presents the characteristics of a

physical continuum. Experience teaches us that

they are the characteristics of a physical con

tinuum of six dimensions
;
but we do not know as

yet how many dimensions space itself possesses, so

we must first of all answer another question.

What is a point in space ? Every one thinks he

knows, but that is an illusion. What we see when

we try to represent to ourselves a point in space is

a black spot on white paper, a spot of chalk on

a blackboard, always an object. The question

should therefore be understood as follows : What
do I mean when I say the object B is at the

point which a moment before was occupied by the

object A ? Again, what criterion will enable

me to recognise it ? I mean that although I have

not moved (my muscular sense tells me this), my
finger, which just now touched the object A, is
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now touching the object B. I might have used

other criteria for instance, another finger or the

sense of sight but the first criterion is sufficient.

I know that if it answers in the affirmative all

other criteria will give the same answer. I know
it from experiment. I cannot know it a priori.

\

I For the same reason I say that touch cannot

/ be exercised at a distance
;
that is another way of

enunciating the same experimental fact. If I

say, on the contrary, that sight is exercised at a

distance, it means that the criterion furnished by
sight may give an affirmative answer while the

others reply in the negative.
To sum up. For each attitude of my body my

finger determines a point, and it is that and that

only which defines a point in space. To each

attitude corresponds in this way a point. But it

often happens that the same point corresponds to

several different attitudes (in this case we say that

our finger has not moved, but the rest of our body
has). We distinguish, therefore, among changes
of attitude those in which the finger does not

move. How are we led to this ? It is because we
often remark that in these changes the object
which is in touch with the finger remains in con

tact with it. Let us arrange then in the same
class all the attitudes which are deduced one from

the other by one of the changes that we have thus

distinguished. To all these attitudes of the same
class will correspond the same point in space.

Then to each class will correspond a point, and to



EXPERIMENT AND GEOMETRY. 87

each point a class. Yet it may be said that what

we get from this experiment is not the point, but

the class of changes, or, better still, the corre

sponding class of muscular sensations. Thus, when
we say that space has three dimensions, we merely
mean that the aggregate of these classes appears to

us with the characteristics of a physical continuum

of three dimensions. Then if, instead of defining

the points in space with the aid of the first finger,

I use, for example, another finger, would the

results be the same ? That is by no means a

priori evident. But, as we have seen, experiment
has shown us that all our criteria are in agree

ment, and this enables us to answer in the

affirmative. If we recur to what we have called

displacements, the aggregate of which forms, as

we have seen, a group, we shall be brought to

distinguish those in which a finger does not move;
and by what has preceded, those are the displace
ments which characterise a point in space, and

their aggregate will form a sub-group of our

group. To each sub-group of this kind, then, will

correspond a point in space. We might be

tempted to conclude that experiment has taught
us the number of dimensions of space ;

but in

reality our experiments have referred not to space,
but to our body and its relations with neighbour

ing objects. What is more, our experiments
are exceeding crude. In our mind the latent idea

of a certain number of groups pre-existed; these

are the groups with which Lie s theory is con-
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cerned. Which shall we choose to form a kind of

standard by which to compare natural pheno
mena ? And when this group is chosen, which

of the sub-groups shall we take to characterise a

point in space ? Experiment has guided us by
showing us what choice adapts itself best to the

properties of our body ;
but there its role ends.



PART III.

FORCE.

CHAPTER VI.

THE CLASSICAL MECHANICS.

THE English teach mechanics as an experimental

science; on the Continent it is taught always more.,

or less as a deductive and a priori science. The

English are right, no doubt. How is it that the

other method has been persisted in for so long; how
is it that Continental scientists who have tried to

escape from the practice of their predecessors have

in most cases been unsuccessful ? On the other

hand, if the principles of mechanics are only of

experimental origin, are they not merely approxi
mate and provisory ? May we not be some day

compelled by new experiments to modify or even

to abandon them ? These are the questions which

naturally arise, and the difficulty of solution is

largely due to the fact that treatises on mechanics

do not clearly distinguish between what is experi

ment, what is mathematical reasoning, what is

convention, and what is hypothesis. This is not

all.
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1. There is no absolute space, and we only

conceive of relative motion
;
and yet in most cases

mechanical facts are enunciated as if there is an

absolute space to which they can be referred.

2. There is no absolute time. When we say that

two periods are equal, the statement has no

meaning, and can only acquire a meaning by a

convention.

3. Not only have we no direct intuition of the

equality of two periods, but we have not even

direct intuition of the simultaneity of two events

occurring in two different places. I have ex

plained this in an article entitled
&quot; Mesure du

Temps.&quot;

4. Finally, is not our Euclidean geometry in

itself only a kind of convention of language ?

Mechanical facts might be enunciated with refer

ence to a non-Euclidean space which would be

less convenient but quite as legitimate as our

ordinary space ;
the enunciation would become

more complicated, but it still would be possible.

Thus, absolute space, absolute time, and even

geometry are not conditions which are imposed on

mechanics. All these things no more existed

before mechanics than the French language can

be logically said to have existed before the truths

which are expressed in French. We might
endeavour to enunciate the fundamental law of

mechanics in a language independent of all these

1 Revue de Mtlaphysique et de Morale, t. vi., pp. 1-13, January,
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conventions; and no doubt we should in this way
get a clearer idea of those laws in themselves.

This is what M. Andrade has tried to do, to

some extent at any rate, in his Lecons de Mecanique

physique. Of course the enunciation of these laws

would become much more complicated, because all

these conventions have been adopted for the very

purpose of abbreviating and simplifying the enun

ciation. As far as we are concerned, I shall ignore
all these difficulties; not because I disregard

them, far from it; but because they have re

ceived sufficient attention in the first two parts,

of the book. Provisionally, then, we shall admit

absolute time and Euclidean geometry.
The Principle of Inertia. A body under the

action of no force can only move uniformly in a

straight line. Is this a truth imposed on the mind

a priori ? If this be so, how is it that the Greeks

ignored it ? How could they have believed that

motion ceases with the cause of motion ? or, again,

that every body, if there is nothing to prevent it,

will move in a circle, the noblest of all forms of

motion ?

If it be said that the velocity of a body cannot

change, if there is no reason for it to change, may
we not just as legitimately maintain that the

position of a body cannot change, or that the

curvature of its path cannot change, without the

agency of an external cause? Is, then, the prin

ciple of inertia, which is not an a priori truth, an

experimental fact ? Have there ever been experi-
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merits on bodies acted on by no forces ? and, if so,

how did we know that no forces were acting ?

The usual instance is that of a ball rolling for a

very long time on a marble table; but why do

we say it is under the action of no force ? Is it

because it is too remote from all other bodies to

experience any sensible action ? It is not further

from the earth than if it were thrown freely into

the air; and we all know that in that case it

would be subject to the attraction of the earth.

Teachers of mechanics usually pass rapidly over

the example of the ball, but they add that the

principle of inertia is verified indirectly by its con

sequences. This is very badly expressed; they

evidently mean that various consequences may be

verified by a more general principle, of which the

principle of inertia is only a particular case. I

shall propose for this general principle the

following enunciation: The acceleration of a

body depends only on its position and that of

neighbouring bodies, and on their velocities.

Mathematicians would say that the movements
of all the material molecules of the universe

depend on differential equations of the second

order. To make it clear that this is really a

generalisation of the law of inertia we may again
have recourse to our imagination. The law of

inertia, as I have said above, is not imposed on us

a priori; other laws would be just as compatible
with the principle of sufficient reason. If a body
is not acted upon by a force, instead of supposing
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that its velocity is unchanged we may suppose
that its position or its acceleration is unchanged.

Let us for a moment suppose that one of these

two laws is a law of nature, and substitute it for

the law of inertia: what will be the natural

generalisation? A moment s reflection will show
us. In the first case, we may suppose that the

velocity of a body depends only on its position and

that of neighbouring bodies; in the second case,

that the variation of the acceleration of a body

depends only on the position of the body and ,of

neighbouring bodies, on their velocities and

accelerations; or, in mathematical terms, the

differential equations of the motion would be of

the first order in the first case and of the third

order in the second.

Let us now modify our supposition a little.

Suppose a world analogous to our solar system,
but one in which by a singular chance the orbits

of all the planets have neither eccentricity nor

inclination; and further, I suppose that the

masses of the planets are too small for their

mutual perturbations to be sensible. Astronomers

living in one of these planets would not hesitate to

conclude that the orbit of a star can only be

circular and parallel to a certain plane; the

position of a star at a given moment would then

be sufficient to determine its velocity and path.
The law of inertia which they would adopt would

be the former of the two hypothetical laws I have

mentioned.
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Now, imagine this system to be some day
crossed by a body of vast mass and immense

velocity coming from distant constellations. All

the orbits would be profoundly disturbed. Our
astronomers would not be greatly astonished.

They would guess that this new star is in itself

quite capable of doing all the mischief; but, they
would say, as soon as it has passed by, order will

again be established. No doubt the distances of

the planets from the sun will not be the same as

before the cataclysm, but the orbits will become
circular again as soon as the disturbing cause has

disappeared. It would be only when the perturb

ing body is remote, and when the orbits, instead of

being circular are found to be elliptical, that the

astronomers would find out their mistake, and

discover the necessity of reconstructing their

mechanics.

I have dwelt on these hypotheses, for it seems to

me that we can clearly understand our generalised
law of inertia only by opposing it to a contrary

hypothesis.
Has this generalised law of inertia been veri

fied by experiment, and can it be so verified ?

When Newton wrote the Principia, he certainly

regarded this truth as experimentally acquired and

demonstrated. It was so in his eyes, not only
from the anthropomorphic conception to which I

shall later refer, but also because of the work of

Galileo. It was so proved by the laws of Kepler.

According to those laws, in fact, the path of a
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planet is entirely determined by its initial position

and initial velocity; this, indeed, is what our

generalised law of inertia requires.

For this principle to be only true in appearance
lest we should fear that some day it must be re

placed by one of the analogous principles which I

opposed to it just now we must have been led

astray by some amazing chance such as that \vhich

had led into error our imaginary astronomers.

Such an hypothesis is so unlikely that it need not

delay us. No one will believe that there can be

such chances; no doubt the probability that two

eccentricities are both exactly zero is not smaller

than the probability that one is o.i and the other

0.2. The probability of a simple event is not

smaller than that of a complex one. If, however,
the former does occur, we shall not attribute its

occurrence to chance; we shall not be inclined to

believe that nature has done it deliberately to

deceive us. The hypothesis of an error of this

kind being discarded, we may admit that so far as

astronomy is concerned our law has been verified

by experiment.
But Astronomy is not the whole of Physics.

May we not fear that some day a new experi
ment will falsify the law in some domain of

physics ? An experimental la\v is always subject
to revision

;
we may always expect to see it re

placed by some other and more exact law. But

no one seriously thinks that the law of which we

speak will ever be abandoned or amended. Why ?
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Precisely because it will never be submitted to a

decisive test.

In the first place, for this test to be complete,
all the bodies of the universe must return with

their initial velocities to their initial positions after

a certain time. We ought then to find that they
would resume their original paths. But this test

is impossible; it can be only partially applied, and
even when it is applied there will still be some
bodies which will not return to their original

positions. Thus there will be a ready explanation
of any breaking down of the law.

Yet this is not all. In Astronomy we sec the

bodies whose motion we are studying, and in most

cases we grant that they are not subject to the

action of other invisible bodies. Under these con

ditions, our law must certainly be either verified or

not. But it is not so in Physics. If physical

phenomena are due to motion, it is to the motion

of molecules which we cannot see. If, then, the

acceleration of bodies wre cannot see depends on

something else than the positions or velocities of

other visible bodies or of invisible molecules, the

existence of which we have been led previously
to admit, there is nothing to prevent us from

supposing that this something else is the position

or velocity of other molecules of which we have

not so far suspected the existence. The law

will be safeguarded. Let me express the same

thought in another form in mathematical language.

Suppose we are observing n molecules, and find
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that their yi co-ordinates satisfy a system of 3

differential equations of the fourth order (and

not of the second, as required by the law of

inertia). We know that by introducing 3^ variable

auxiliaries, a system of 311 equations of the fourth

order may be reduced to a system of 6n equations

of the second order. If, then, we suppose that the

3 auxiliary variables represent the co-ordinates of

n invisible molecules, the result is again conform

able to the law of inertia. To sum up, this law,

verified experimentally in some particular cases,

may be extended fearlessly to the most general

cases; for we know that in these general cases

it can neither be confirmed nor contradicted by

experiment.
The Law of Acceleration. The acceleration of a

body is equal to the force which acts on it divided

by its mass.

Can this law be verified by experiment ? If so,

we have to measure the three magnitudes men
tioned in the enunciation : acceleration, force,

and mass. I admit that acceleration may be

measured, because I pass over the difficulty

arising from the measurement of time. But how
are we to measure force and mass ? We do not

even know what they are. What is mass ?

Newton replies :

&quot; The product of the volume and
the

density.&quot;

&quot;

It were better to
say,&quot;

answer
Thomson and Tait,

&quot;

that density is the quotient
of the mass by the volume.&quot; What is force ?

&quot;

It
is,&quot; replies Lagrange,

&quot;

that which moves or

7
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tends to move a
body.&quot;

&quot;

It
is,&quot; according to

Kirchoff, &quot;the product of the mass and the

acceleration.&quot; Then why not say that mass is

the quotient of the force by the acceleration ?

These difficulties are insurmountable.

When we say force is the cause of motion, we
are talking metaphysics ;

and this definition, if we
had to be content with it, would be absolutely

fruitless, would lead to absolutely nothing. For a

definition to be of any use it must tell us how to

measure force
;
and that is quite sufficient, for it is

by no means necessary to tell \vhat force is in

itself, nor whether it is the cause or the effect of

motion. We must therefore first define what is

meant by the equality of two forces. When are

twro forces equal ? We are told that it is when

they give the same acceleration to the same mass,

or when acting in opposite directions they are in

equilibrium. This definition is a sham. A force

applied to a body cannot be uncoupled and

applied to another body as an engine is uncoupled
from one train and coupled to another. It is

therefore impossible to say what acceleration such

a force, applied to such a body, would give to

another body if it were applied to it. It is im

possible to tell how two forces which are not

acting in exactly opposite directions would be

have if they were acting in opposite directions.

It is this definition which we try to materialise, as

it were, when we measure a force with a dyna
mometer or with a balance. Two forces, F and
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F
,
which I suppose, for simplicity, to be acting

vertically upwards, are respectively applied to two

bodies, C and C . I attach a body weighing P

first to C and then to C
;

if there is equilibrium in

both cases I conclude that the two forces F and

F are equal, for they are both equal to the weight
of the body P. But am I certain that the body P

has kept its weight when I transferred it from the

first body to the second ? Far from it. I am
certain of the contrary. I know that the magni
tude of the weight varies from one point to

another, and that it is greater, for instance, at the

pole than at the equator. No doubt the difference

is very small, and we neglect it in practice ;
but a

definition must have mathematical rigour ;
this

rigour does not exist. What I say of weight
would apply equally to the force of the spring of

a dynamometer, which would vary according to

temperature and many other circumstances. Nor
is this all. We cannot say that the weight of the

body P is applied to the body C and keeps in

equilibrium the force F. What is applied to

the body C is the action of the body P on the

body C. On the other hand, the body P is

acted on by its weight, and by the reaction R
of the body C on P the forces F and A are

equal, because they are in equilibrium; the forces

A and R are equal by virtue of the principle

of action and reaction
;
and finally, the force

R and the weight P are equal because they
are in equilibrium. From these three equalities



100 SCIENCE AND HYPOTHESIS.

we deduce the equality of the weight P and the

force F.

Thus we are compelled to bring into our defini

tion, of the equality of two forces the principle
of the equality of action and reaction; hence this

principle can no longer be regarded as an experimental
law hit only as a definition.

To recognise the equality of two forces we are

then in possession of two rules : the equality of

two forces in equilibrium and the equality of action

and reaction. But, as we have seen, these are not

sufficient, and we are compelled to have recourse

to a third rule, and to admit that certain forces

the weight of a body, for instance ar&amp;gt;5 constant in

magnitude and direction. But this third rule is

an experimental law. It is only approximately
true: it is a bad definition. We are therefore

reduced to Kirchoff s definition: force is the pro
duct of the mass and the acceleration. This law

of Newton in its turn ceases to be regarded as an

experimental law, it is now only a definition. But
as a definition it is insufficient, for we do not

know what mass is. It enables us, no doubt, to

calculate the ratio of two forces applied at

different times to the same body, but it tells us

nothing about the ratio of two forces applied to

two different bodies. To fill up the gap we must
have recourse to Newton s third law, the equality
of action and reaction, still regarded not as

an experimental law but as a definition. Two
bodies, A and B, act on each other

;
t

v

ie accelera-
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tion of A, multiplied by the mass of A, is equal to

the action of B on A
;

in the same way the

acceleration of B, multiplied by the mass of B is

equal to the reaction of A on B. As, by definition,

the action and the reaction are equal, the masses

of A and B arc respectively in the inverse ratio of

their masses. Thus is the ratio of the two masses

defined, and it is for experiment to verify that the

ratio is constant.

This would do very well if the two bodies were

alone and could be abstracted from the action of

the rest of the world
;
but this is by no means

the case. The acceleration of A is not solely due

to the action of B, but to that of a multitude of.
-

other bodies, C, D, . . . To apply the preceding
rule we must decompose the acceleration of A into

many components, and find out which of these

components is due to the action of B. The

decomposition would still be possible if we

suppose that the action of C on A is simply added
to that of B on A, and that the presence of the

body C does not in any way modify the action of

B on A, or that the presence of B does not modify
the action of C on A

;
that is, if we admit that

any two bodies attract each other, that their

mutual action is along their join, and is only de

pendent on their distance apart ; if, in a word, we
admit the hypothesis of central forces.

We know that to determine the masses of the

heavenly bodies we adopt quite a different prin

ciple. The law of gravitation teaches us that the
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attraction of two bodies is proportional to their

masses; if r is their distance apart, m and ni their

masses, k a constant, then their attraction will be

knun /r
2

. What we are measuring is therefore not

mass, the ratio of the force to the acceleration, but

the attracting mass
;
not the inertia of the body,

but its attracting power. It is an indirect process,

the use of which is not indispensable theoretically.

We might have said that the attraction is in

versely proportional to the square of the distance,

without being proportional to the product of the

masses, that it is equal to //r
2 and not to kinm .

If it were so, we should nevertheless, by observing
the relative motion of the celestial bodies, be able

to calculate the masses of these bodies.

But have we any right to admit the hypothesis
of central forces ? Is this hypothesis rigorously

accurate ? Is it certain that it will never be

falsified by experiment ? Who will venture to

make such an assertion ? And if we must abandon

this hypothesis, the building which has been so

laboriously erected must fall to the ground.
We have no longer any right to speak of the

component of the acceleration of A which is

due to the action of B. We have no means of

distinguishing it from that which is due to the

action of C or of any other body. The rule

becomes inapplicable in the measurement of

masses. What then is left of the principle of

the equality of action and reaction ? If we

reject the hypothesis of central forces this prin-
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ciple must go too
;

the geometrical resultant of

all the forces applied to the different bodies of a

system abstracted from all external action will be

zero. In other words, the motion of the centre of

gravity of this system will be uniform and in a

straight line. Here would seem to be a means of

defining mass. The position of the centre of

gravity evidently depends on the values given to

the masses
;
we must select these values so that

the motion of the centre of gravity is uniform

and rectilinear. This will always be possible if

Newton s third law holds good, and it will be in

general possible only in one way. But no system
exists which is abstracted from all external action;

every part of the universe is subject, more or less,

to the action of the other parts. The law of the

Motion of the centre of gravity is only rigorously true

when applied to the whole universe.

But then, to obtain the values of the masses

we must find the motion of the centre of gravity
of the universe. The absurdity of this conclusion

is obvious
;

the motion of the centre of gravity
of the universe will be for ever to us unknown.

Nothing, therefore, is left, and our efforts are

fruitless. There is no escape from the following

definition, which is only a confession of failure :

Masses are co-efficients which it is found convenient to

introduce into calculations.

We could reconstruct our mechanics by giving
to our masses different values. The new me
chanics would be in contradiction neither with
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experiment nor with the general principles of

dynamics (the principle of inertia, proportion

ality of masses and accelerations, equality of

action and reaction, uniform motion of the centre

of gravity in a straight line, and areas). But the

equations of this mechanics would not be so simple.

Let us clearly understand this. It would be only
the first terms which would be less simple i.e.,

those we already know through experiment ;

perhaps the small masses could be slightly altered

without the complete equations gaining or losing
in simplicity.

Hertz has inquired if the principles of mechanics

are rigorously true.
&quot; In the opinion of many

physicists it seems inconceivable that experiment
will ever alter the impregnable principles of

mechanics; and yet, what is due to experiment

may always be rectified by experiment.&quot; From
what we have just seen these fears would appear
to be groundless. The principles of dynamics

appeared to us first as experimental truths, but

we have been compelled to use them as defini

tions. It is by definition that force is equal to

the product of the mass and the acceleration
;

this is a principle which is henceforth beyond
the reach of any future experiment. Thus
it is by definition that action and reaction are

equal and opposite. But then it will be said,

these unverifiable principles are absolutely devoid

of any significance. They cannot be disproved by

experiment, but we can learn from them nothing
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of any use to us
;
\vhat then is the use of studying

dynamics ? This somewhat rapid condemnation

would be rather unfair. There is not in Nature any

system perfectly isolated, perfectly abstracted from

all external action
;
but there are systems which

are nearly isolated. If we observe such a system,
we can study not only the relative motion of its

different parts w
rith respect to each other, but the

motion of its centre of gravity with respect to the

other parts of the universe. We then find that

the motion of its centre of gravity is nearly uniform

and rectilinear in conformity with Newton s Third

Law. This is an experimental fact, which cannot

be invalidated by a more accurate experiment.

What, in fact, would a more accurate experiment
teach us ? It \vould teach us that the law is only

approximately true, and we know that already.

Thus is explained how experiment may serve as a basis

for the principles of mechanics, and yet will never

invalidate them.

Anthropomorphic Mechanics. It will be said that

Kirchoff has only followed the general tendency of

mathematicians towards nominalism
;
from this his

skill as a physicist has not saved him. He wanted
a definition of a force, and he took the first that

came handy ;
but we do not require a definition

of force
;
the idea of force is primitive, irreducible,

indefinable
;
we all know what it is

;
of it we have

direct intuition. This direct intuition arises from

the idea of effort which is familiar to us from

childhood. But in the first place, even if this
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direct intuition made known to us the real nature

of force in itself, it would prove to be an insufficient

basis for mechanics ; it would, moreover, be quite

useless. The important thing is not to know
what force is, but how to measure it. Everything
which does not teach us how to measure it is as

useless to the mechanician as, for instance, the

subjective idea of heat and cold to the student of

heat. This subjective idea cannot be translated

into numbers, and is therefore useless
;
a scientist

whose skin is an absolutely bad conductor of heat,

and who, therefore, has never felt the sensation

of heat or cold, would read a thermometer in just

the same way as any one else, and would have

enough material to construct the whole of the

theory of heat.

Now this immediate notion of effort is of no use

to us in the measurement of force. It is clear, for

example, that I shall experience more fatigue in

lifting a weight of 100 Ib. than a man who is

accustomed to lifting heavy burdens. But there

is more than this. This notion of effort does not

teach us the nature of force
;

it is definitively re

duced to a recollection of muscular sensations, and

no one will maintain that the sun experiences
a muscular sensation when it attracts the earth.

All that we can expect to find from it is a symbol,
less precise and less convenient than the arrows

(to denote direction) used by geometers, and quite

as remote from reality.

Anthropomorphism plays a considerable historic
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role ill the genesis of mechanics
; perhaps it may

yet furnish us with a symbol which some minds

may find convenient; but it can be the foundation

of nothing of a really scientific or philosophical

character.

The Thread School. M. Andrade, in his Lccons

de Mecanique physique, has modernised anthropo

morphic mechanics. To the school of mechanics

with which Kirchoff is identified, he opposes a

school which is quaintly called the &quot; Thread

School.&quot;

This school tries to reduce everything to the con

sideration of certain material systems of negligible

mass, regarded in a state of tension and capable
of transmitting considerable effort to distant

bodies systems of which the ideal type is the

fine string, wire, or thread. A thread which

transmits any force is slightly lengthened in the

direction of that force; the direction of the thread

tells us the direction of the force, and the magni
tude of the force is measured by the lengthening of

the thread.

We may imagine such an experiment as the

following : A body A is attached to a thread ;

at the other extremity of the thread acts a force

which is made to vary until the length of the

thread is increased by a, and the acceleration

of the body A is recorded. A is then detached,

and a body B is attached to the same thread, and

the same or another force is made to act until

the increment of length again is a, and the
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acceleration of B is noted. The experiment is

then renewed with both A and B until the incre

ment of length is ft. The four accelerations

observed should be proportional. Here we have

an experimental verification of the law of accelera

tion enunciated above. Again, we may consider

a body under the action of several threads in

equal tension, and by experiment we determine

the direction of those threads when the body
is in equilibrium. This is an experimental
verification of the law of the composition of

forces. But, as a matter of fact, what have we
done ? We have defined the force acting on the

string by the deformation of the thread, which is

reasonable enough; we have then assumed that if

a body is attached to this thread, the effort which

is transmitted to it by the thread is equal to the

action exercised by the body on the thread
;

in

fact, we have used the principle of action and

reaction by considering it, not as an experimental

truth, but as the very definition of force. This

definition is quite as conventional as that of

Kirchoff, but it is much less general.

All the forces are not transmitted by the thread

(and to compare them they would all have to be

transmitted by identical threads). If we even

admitted that the earth is attached to the sun by
an invisible thread, at any rate it will be agreed
that we have no means of measuring the increment

of the thread. Nine times out of ten, in con

sequence, our definition will be in default
;

no
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sense of any kind can be attached to it, and we
must fall back on that of Kirchoff. Why then go
on in this roundabout way ? You admit a certain

definition of force which has a meaning only in

certain particular cases. In those cases you verify

by experiment that it leads to the law of accelera

tion. On the strength of these experiments you
then take the law of acceleration as a definition of

force in all the other cases.

Would it not be simpler to consider the law of

acceleration as a definition in all cases, and to

regard the experiments in question, not as verifica

tions of that law, but as verifications of the

principle of action and reaction, or as proving
the deformations of an elastic body depend only
on the forces acting on that body ? Without

taking into account the fact that the conditions

in which your definition could be accepted can

only be very imperfectly fulfilled, that a thread is

never without mass, that it is never isolated from

all other forces than the reaction of the bodies

attached to its extremities.

The ideas expounded by M. Andrade are none

the less very interesting. If they do not satisfy our

logical requirements, they give us a better view of

the historical genesis of the fundamental ideas of

mechanics. The reflections they suggest show us

how the human mind passed from a naive

anthropomorphism to the present conception of

science.

We see that we end with an experiment which
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is very particular, and as a matter of fact very

crude, and we start with a perfectly general law,

perfectly precise, the truth of which we regard as

absolute. We have, so to speak, freely conferred

this certainty on it by looking upon it as a con

vention.

Are the laws of acceleration and of the com

position of forces only arbitrary conventions ?

Conventions, yes; arbitrary, no they would be

so if we lost sight of the experiments which led the

founders of the science to adopt them, and which,

imperfect as they were, were sufficient to justify

their adoption. It is well from time to time to let

our attention dwell on the experimental origin of

these conventions.



CHAPTER VII.

RELATIVE AND ABSOLUTE MOTION.

The Principle of Relative Motion. Sometimes

endeavours have been made to connect the law of

acceleration with a more general principle. The
movement of any system whatever ought to

obey the same laws, whether it is referred to fixed

axes or to the movable axes which are implied
in uniform motion in a straight line. This is

the principle of relative motion
;

it is imposed

upon us for two reasons: the commonest experi
ment confirms it; the consideration of the contrary

hypothesis is singularly repugnant to the mind.

Let us admit it then, and consider a body under

the action of a force. The relative motion of this

body with respect to an observer moving with a

uniform velocity equal to the initial velocity of the

body, should be identical with what would be its

absolute motion if it started from rest. We con

clude that its acceleration must not depend upon
its absolute velocity, and from that we attempt to

deduce the complete law of acceleration.

For a long time there have been traces of this

proof in the regulations for the degree of IB. es Sc.
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It is clear that the attempt has failed. The
obstacle which prevented us from proving the

law of acceleration is that we have no definition

of force. This obstacle subsists in its entirety,

since the principle invoked has not furnished us

wdth the missing definition. The principle of

relative motion is none the less very interesting,

and deserves to be considered for its own sake.

Let us try to enunciate it in an accurate manner.

We have said above that the accelerations of the

different bodies which form part of an isolated

system only depend on their velocities and their

relative positions, and not on their velocities and

their absolute positions, provided that the mov
able axes to which the relative motion is referred

move uniformly in a straight line; or, if it is pre

ferred, their accelerations depend only on the

differences of their velocities and the differences of

their co-ordinates, and not on the absolute values

of these velocities and co-ordinates. If this prin

ciple is true for relative accelerations, or rather

for differences of acceleration, by combining it

with the law of reaction we shall deduce that it is

true for absolute accelerations. It remains to be

seen how we can prove that differences of accelera

tion depend only on differences of velocities

and co-ordinates; or, to speak in mathematical

language, that these differences of co-ordinates

satisfy differential equations of the second order.

Can this proof be deduced from experiment or

from a priori conditions? Remembering what we
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have said before, the reader will give his own
answer. Thus enunciated, in fact, the principle of

relative motion curiously resembles what I called

above the generalised principle of inertia; it is not

quite the same thing, since it is a question of

differences of co-ordinates, and not of the co

ordinates themselves. The new principle teaches

us something more than the old, but the same

discussion applies to it, and would lead to the

same conclusions. We need not recur to it.

Newton s Argument. Here we find a very im

portant and even slightly disturbing question. I

have said that the principle of relative motion

was not for us simply a result of experiment; and

that a priori every contrary hypothesis would be

repugnant to the mind. But, then, why is the

principle only true if the motion of the movable

axes is uniform and in a straight line? It seems

that it should be imposed upon us with the same

force if the motion is accelerated, or at any rate

if it reduces to a uniform rotation. In these two

cases, in fact, the principle is not true. I need not

dwell on the case in which the motion of the

axes is in a straight line and not uniform. The

paradox does not bear a moment s examination.

If I am in a railway carriage, and if the train,

striking against any obstacle whatever, is suddenly

stopped, I shall be projected on to the opposite

side, although I have not been directly acted upon

by any force. There is nothing mysterious in

that, and if I have not been subject to the action

8
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of any external force, the train has experienced an

external impact. There can be nothing para
doxical in the relative motion of two bodies being
disturbed when the motion of one or the other is

modified by an external cause. Nor need I dwell

on the case of relative motion referring to axes

which rotate uniformly. If the sky were for ever

covered with clouds, and if we had no means of

observing the stars, we might, nevertheless, con

clude that the earth turns round. We should be

warned of this fact by the flattening at the poles,

or by the experiment of Foucault s pendulum.
And yet, would there in this case be any meaning
in saying that the earth turns round ? If there is

I

no absolute space, can a thing turn without turn

ing with respect to something; and, on the other

hand, how can we admit Newton s conclusion and

believe in absolute space? But it is not sufficient

to state that all possible solutions are equally

unpleasant to us. We must analyse in each case

the reason of our dislike, in order to make our

choice with the knowledge of the cause. The

long discussion which follows must, therefore, be

excused.

Let us resume our imaginary story. Thick

clouds hide the stars from men who cannot observe

them, and even are ignorant of their existence.

How will those men know that the earth turns

round ? No doubt, for a longer period than did

our ancestors, they will regard the soil on which

they stand as fixed and immovable! They will
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wait a much longer time than we did for the

coming of a Copernicus; but this Copernicus will

come at last. How will he come? In the first

place, the mechanical school of this world would
not run their heads against an absolute contradic

tion. In the theory of relative motion we observe,

besides real forces, t\vo imaginary forces, which

we call ordinary centrifugal force and compounded
centrifugal force. Our imaginary scientists can

thus explain everything by looking upon these two

forces as real, and they would not see in this a

contradiction of the generalised principle of inertia,

for these forces would depend, the one on the

relative positions of the different parts of the

system, such as real attractions, and the other on

their relative velocities, as in the case of real

frictions. Many difficulties, however, would before

long awaken their attention. If they succeeded in

realising an isolated system, the centre of gravity
of this system would not have an approximately
rectilinear path. They could invoke, to explain
this fact, the centrifugal forces which they would

regard as real, and which, no doubt, they would
attribute to the mutual actions of the bodies only

they would not see these forces vanish at great
distances that is to say, in proportion as the

isolation is better realised. Far from it. Centri

fugal force increases indefinitely with distance.

Already this difficulty would seem to them suffi

ciently serious, but it would not detain them for

long. They would soon imagine some very subtle
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medium analogous to our ether, in which all

bodies would be bathed, and which would exer

cise on them a repulsive action. But that is not

all. Space is symmetrical yet the laws of

motion would present no symmetry. They should

be able to distinguish between right and left.

They would see, for instance, that cyclones always
turn in the same direction, while for reasons of

symmetry they should turn indifferently in any
direction. If our scientists were able by dint of

much hard work to make their universe perfectly

symmetrical, this symmetry would not subsist,

although there is no apparent reason why it

should be disturbed in one direction more than

in another. They would extract this from the

situation no doubt they would invent something
which would not be more extraordinary than the

glass spheres of Ptolemy, and would thus go on

accumulating complications until the long-ex

pected Copernicus would sweep them all away
with a single blow, saying it is much more simple
to admit that the earth turns round. Just as

our Copernicus said to us:
&quot;

It is more convenient

to suppose that the earth turns round, because the

laws of astronomy are thus expressed in a more

simple language,&quot; so he would say to them: &quot;It

is more convenient to suppose that the earth turns

round, because the laws of mechanics are thus

expressed in much more simple language. That
does not prevent absolute space that is to say,

the point to which we must refer the earth to
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know if it really does turn round from having
no objective existence. And hence this affirma

tion: &quot;the earth turns round,&quot; has no meaning,
since it cannot be verified by experiment; since

such an experiment not only cannot be realised or

even dreamed of by the most daring Jules Verne,

but cannot even be conceived of without con

tradiction
; or, in other words, these two proposi

tions, &quot;the earth turns round,&quot; and, &quot;it is morel

convenient to suppose that the earth turns round,&quot; |

have one and the same meaning. There is nothing

more in one than in the other. Perhaps they will

not be content with this, and may find it surpris

ing that among all the hypotheses, or rather all

the conventions, that can be made on this subject

there is one which is more convenient than the

rest? But if we have admitted it without diffi

culty when it is a question of the laws of

astronomy, why should we object when it is a

question of the laws of mechanics ? We have

seen that the co-ordinates of bodies are deter

mined by differential equations of the second

order, and that so are the differences of these

co-ordinates. This is what we have called the

generalised principle of inertia, and the principle

of relative motion. If the distances of these

bodies were determined in the same way by

equations of the second order, it seems that the

mind should be entirely satisfied. How far does

the mind receive this satisfaction, and why is it

not content with it ? To explain this we had
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better take a simple example. I assume a system

analogous to our solar system, but in which fixed

stars foreign to this system cannot be perceived,
so that astronomers can only observe the mutual

distances of planets and the sun, and not the

absolute longitudes of the planets. If we deduce

directly from Newton s law the differential equa
tions which define the variation of these distances,

these equations will not be of the second order. I

mean that if, outside Newton s law, we knew the

initial values of these distances and of their de

rivatives with respect to time that would not be

sufficient to determine the values of these same
distances at an ulterior moment. A datum would

be still lacking, and this datum might be, for

example, what astronomers call the area-constant.

But here \ve may look at it from two different

points of view. We may consider two kinds of

constants. In the eyes of the physicist the world

reduces to a series of phenomena depending, on the

I one hand, solely on initial phenomena, and, on the

other hand, on the laws connecting consequence

|and antecedent. If observation then teaches us

that a certain quantity is a constant, we shall have

a choice of two ways of looking at it. So let us

admit that there is a law which requires that this

quantity shall not vary, but that by chance it has

been found to have had in the beginning of time

this value rather than that, a value that it has

kept ever since. This quantity might then be

called an accidental constant. Or again, let us
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admit on the contrary that there is a law of nature

which imposes on this quantity this value and not

that. We shall then have what may be called an

essential constant. For example, in virtue of the

laws of Newton the duration of the revolution of

the earth must be constant, But if it is 366 and

something sidereal days, and not 300 or 400, it is

because of some initial chance or other. It is an

accidental constant. If, on the other hand, the

exponent of the distance which figures in the

expression of the attractive force is equal to -2

and not to -3, it is not by chance, but because it

is required by Newton s la\v. It is an essential

constant. I do not know if this manner of giving

to chance its share is legitimate in itself, and if

there is not some artificiality about this distinc

tion; but it is certain at least that in proportion
as Nature has secrets, she will be strictly arbitrary

and always uncertain in their application. As far

as the area-constant is concerned, we are accus

tomed to look upon it as accidental. Is it certain

that our imaginary astronomers would do the

same ? If they were able to compare two different

solar systems, they would get the idea that this

constant may assume several different values. But
I supposed at the outset, as I was entitled to do,

that their system would appear isolated, and that

they would see no star which was foreign to their

system. Under these conditions they could only
detect a single constant, which would have an

absolutely invariable, unique value. They would
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be led no doubt to look upon it as an essential

constant.

One word in passing to forestall an objection.

The inhabitants of this imaginary world could

neither observe nor define the area-constant as we

do, because absolute longitudes escape their notice;

but that would not prevent them from being

rapidly led to remark a certain constant which

would be naturally introduced into their equations,
and which would be nothing but what we call the

area-constant. But then what would happen ?

If the area-constant is regarded as essential, as

dependent upon a law of nature, then in order to

calculate the distances of the planets at any given
moment it would be sufficient to know the initial

values of these distances and those of their first

derivatives. From this new point of view, dis

tances will be determined by differential equations
of the second order. Would this completely

satisfy the minds of these astronomers ? I think

not. In the first place, they wTould very soon see

that in differentiating their equations so as to

raise them to a higher order, these equations
would become much more simple, and they would

be especially struck by the difficulty which arises

from symmetry. They would have to admit

different laws, according as the aggregate of the

planets presented the figure of a certain polyhedron
or rather of a regular polyhedron, and these conse

quences can only be escaped by regarding the area-

constant as accidental. I have taken this particular
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example, because I have imagined astronomers

who would not be in the least concerned with

terrestrial mechanics and whose vision would be

bounded by the solar system. But our con

clusions apply in all cases. Our universe is more

extended than theirs, since we have fixed stars;

but it, too, is very limited, so we might reason on

the whole of our universe just as these astronomers

do on their solar system. We thus see that we
should be definitively led to conclude that the

equations which define distances are of an order

higher than the second. Why should this alarm

us why do we find it perfectly natural that the

sequence of phenomena depends on initial values

of the first derivatives of these distances, while we
hesitate to admit that they may depend on the

initial values of the second derivatives ? It can

only be because of mental habits created in us by
the constant study of the generalised principle of

inertia and of its consequences. The values of the

distances at any given moment depend upon their

initial values, on that of their first derivatives, and

something else. What is that something else ? If

we do not want it to be merely one of the second

derivatives, we have only the choice of hypotheses.

Suppose, as is usually done, that this something
else is the absolute orientation of the universe in

space, or the rapidity with which this orientation

varies; this may be, it certainly is, the most con

venient solution for the geometer. But it is not

the most satisfactory for the philosopher, because
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this orientation does not exist. We may assume

that this something else is the position or the

velocity of some invisible body, and this is what is

done by certain persons, who have even called the

body Alpha, although we are destined to never

know anything about this body except its name.

This is an artifice entirely analogous to that of

which I spoke at the end of the paragraph con

taining my reflections on the principle of inertia.

But as a matter of fact the difficulty is artificial.

Provided that the future indications of our instru

ments can only depend on the indications which

they have given us, or that they might have

formerly given us, such is all we want, and with

these conditions we may rest satisfied.



CHAPTER VIII.

ENERGY AND THERMODYNAMICS.

Energetics. The difficulties raised by the classi

cal mechanics have led certain minds to prefer a

new system which they call Energetics. Energetics

took its rise in consequence of the discovery of the

principle of the conservation of energy. Helm-

holtz gave it its definite form. We begin by de

fining two quantities which play a fundamental

part in this theory. They are kinetic energy, or

vis viva, and potential energy. Every change
that the bodies of nature can undergo is regulated

by two experimental laws. First, the sum of the

kinetic and potential energies is constant. This

is the principle of the conservation of energy.

Second, if a system of bodies is at A at the time t
,

and at B at the time 15 it always passes from the

first position to the second by such a path that

the mean value of the difference between the two

kinds of energy in the interval of time which

separates the two epochs t and t
l
is a minimum.

This is Hamilton s principle, and is one of the

forms of the principle of least action. The

energetic theory has the following advantages
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over the classical. First, it is less incomplete
that is to say, the principles of the conservation of

energy and of Hamilton teach us more than the

fundamental principles of the classical theory, and

exclude certain motions which do not occur in

nature and which would be compatible with the

classical theory. Second, it frees us from the

hypothesis of atoms, which it was almost impos
sible to avoid with the classical theory. But in

its turn it raises fresh difficulties. The definitions

of the two kinds of energy would raise difficulties

almost as great as those of force and mass in the

first system. However, we can get out of these

difficulties more easily, at any rate in the simplest

cases. Assume an isolated system formed of a

certain number of material points. Assume that

these points are acted upon by forces depending

only on their relative position and their dis

tances apart, and independent of their velocities.

In virtue of the principle of the conservation of

energy there must be a function of forces. In this

simple case the enunciation of the principle of the

conservation of energy is of extreme simplicity.

A certain quantity, which may be determined by

experiment, must remain constant. This quantity
is the sum of two terms. The first depends only on

the position of the material points, and is inde

pendent of their velocities; the second is pro

portional to the squares of these velocities. This

decomposition can only take place in one way.
The first of these terms, which I shall call U, will
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be potential energy ;
the second, which I shall call

T, will be kinetic energy. It is true that if T + U
is constant, so is any function of T + U, &amp;lt; (T + U).

But this function
&amp;lt;f&amp;gt; (T+U) will not be the sum of

two terms, the one independent of the velocities,

and the other proportional to the square of the

velocities. Among the functions which remain

constant there is only one which enjoys this pro

perty. It is T + U (or a linear function of T + U),

it matters not which, since this linear function may
always be reduced to T + U by a change of unit

and of origin. This, then, is what we call energy.
The first term we shall call potential energy, and

the second kinetic energy. The definition of the

two kinds of energy may therefore be carried

through without any ambiguity.
So it is with the definition of mass. Kinetic

energy, or vis viva, is expressed very simply by the

aid of the masses, and of the relative velocities of all

the material points with reference to one of them.

These relative velocities may be observed, and

when we have the expression of the kinetic energy
as a function of these relative velocities, the co

efficients of this expression will give us the masses.

So in this simple case the fundamental ideas can

be defined without difficulty. But the difficulties

reappear in the more complicated cases if the

forces, instead of depending solely on the dis

tances, depend also on the velocities. For ex

ample, Weber supposes the mutual action of two
electric molecules to depend not only on their
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distance but on their velocity and on their accelera

tion. If material points attracted each other

according to an analogous law, U would depend
on the velocity, and it might contain a term

proportional to the square of the velocity. How
can we detect among such terms those that arise

from T or U ? and how, therefore, can we dis

tinguish the two parts of the energy ? But there

is more than this. How can we define energy
itself? We have no more reason to take as our

definition T+U rather than any other function of

T + U, when the property which characterised

T + U has disappeared namely, that of being the

sum of two terms of a particular form. But that

is not all. We must take account, not only of

mechanical energy properly so called, but of the

other forms of energy heat, chemical energy,

electrical energy, etc. The principle of the con

servation of energy must be written T+U+Q=
a constant, where T is the sensible kinetic energy,

U the potential energy of position, depending only
on the position of the bodies, Q the internal

molecular energy under the thermal, chemical, or

electrical form. This would be all right if the

three terms were absolutely distinct
;

if T were

proportional to the square of the velocities, U
independent of these velocities and of the state of

the bodies, Q independent of the velocities and of

the positions of the bodies, and depending only on

their internal state. The expression for the energy
could be decomposed in one way only into three
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terms of this form. But this is not the case. Let

us consider electrified bodies. The electro-static

energy due to their mutual action will evidently

depend on their charge i.e., on their state
;

but it will equally depend on their position.

If these bodies are in motion, they will act

electro-dynamically on one another, and the

electro-dynamic energy will depend not only on

their state and their position but on their velocities.

We have therefore no means of making the selec

tion of the terms which should form part of T,

and U, and Q, and of separating the three parts of

the energy. IfT + U + Q is constant, the same is

true of any function whatever, &amp;lt;/&amp;gt; (T + U + Q).

If T + U + Q were of the particular form that I

have suggested above, no ambiguity would ensue.

Among the functions
&amp;lt;/&amp;gt; (T + U + Q) which remain

constant, there is only one that would be of this

particular form, namely the one which I would

agree to call energy. But I have said this is not

rigorously the case. Among the functions that

remain constant there is not one which can

rigorously be placed in this particular form. How
then can we choose from among them that which

should be called energy ? We have no longer

any guide in our choice.

Of the principle of the conservation of energy
there is nothing left then but an enunciation:

There is something which remains constant. In this

form it, in its turn, is outside the bounds of ex

periment and reduced to a kind of tautology. It
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is clear that if the world is governed by laws

there will be quantities which remain constant.

Like Newton s laws, and for an analogous reason,

the principle of the conservation of energy being
based on experiment, can no longer be invalidated

by it.

This discussion shows that, in passing from the

classical system to the energetic, an advance has

been made
;
but it shows, at the same time, that

we have not advanced far enough.
Another objection seems to be still more serious.

The principle of least action is applicable to revers

ible phenomena, but it is by no means satisfactory

as far as irreversible phenomena are concerned.

Helmholtz attempted to extend it to this class

of phenomena, but he did not and could not

succeed. So far as this is concerned all has yet to

be done. The very enunciation of the principle of

least action is objectionable. To move from one

point to another, a material molecule, acted upon

by no force, but compelled to move on a surface,

will take as its path the geodesic line i.e., the

shortest path. This molecule seems to know the

point to which we want to take it, to foresee

the time that it will take it to reach it by such

a path, and then to know how to choose the most

convenient path. The enunciation of the prin

ciple presents it to us, so to speak, as a living

and free entity. It is clear that it would be better

to replace it by a less objectionable enunciation,

one in which, as philosophers would say, final
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effects do not seem to be substituted for acting

causes.

Thcrmo-dynamics. The role of the two funda

mental principles of thermo-dynamics becomes

daily more important in all branches of natural

philosophy. Abandoning the ambitious theories

of forty years ago, encumbered as they were with

molecular hypotheses, we now try to rest on

thermo-dynamics alone the entire edifice of

mathematical physics. Will the two principles

of Mayer and of Clausius assure to it founda

tions solid enough to last for some time ? We
all feel it, but whence does our confidence

arise ? An eminent physicist said to me one day,

apropos of the law of errors: every one stoutly \

believes it, because mathematicians imagine that

it is an effect of observation, and observers imagine
that it is a mathematical theorem. And this was

for a long time the case with the principle of the

conservation of energy. It is no longer the same

now. There is no one who does not know that it

is an experimental fact. But then who gives us

the right of attributing to the principle itself more

generality and more precision than to the experi

ments which have served to demonstrate it? This

is asking, if it is legitimate to generalise, as we do

every day, empiric data, and I shall not be so

foolhardy as to discuss this question, after so many
philosophers have vainly tried to solve it. One

thing alone is certain. If this permission were

refused to us, science could not exist; or at least

9
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would be reduced to a kind of inventory, to the

ascertaining of isolated facts. It would not longer
be to us of any value, since it could not satisfy our

need of order and harmony, and because it would

be at the same time incapable of prediction.. As

the circumstances which have preceded any fact

whatever will never again, in all probability, be

simultaneously reproduced, we already require a

first generalisation to predict whether the fact will

be renewed as soon as the least of these circum

stances is changed, f But every proposition may
be generalised in an infinite number of ways.

Among all possible generalisations we must

choose, and we cannot but choose the simplest.

We are therefore led to adopt the same course

as if a simple law were, other things being equal,

more probable than a complex law. A century

ago it was frankly confessed and proclaimed
abroad that Nature loves simplicity; but Nature

has proved the contrary since then on more than

one occasion. We no longer confess this tendency,
and we only keep of it what is indispensable, so

that science may not become impossible. In

formulating a general, simple, and formal law,

based on a comparatively small number of not alto

gether consistent experiments, we have only obeyed
a necessity from which the human mind cannot

free itself. ^But there is something more, and that

is why I dwell on this topic. No one doubts that

Mayer s principle is not called upon to survive all

the particular laws from which it was deduced, in
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the same way that Newton s law has survived the

laws of Kepler from which it was derived, and

which are no longer anything but approximations,
if we take perturbations into account. Now why
does this principle thus occupy a kind of privileged

position among physical laws? There are many
reasons for that. At the outset we think that we
cannot reject it, or even doubt its absolute rigour,

without admitting the possibility of perpetual

motion; we certainly feel distrust at such a

prospect, and we believe ourselves less rash in

affirming it than in denying it. That perhaps is

not quite accurate. The impossibility of perpetual
motion only implies the conservation of energy for

reversible phenomena. The imposing simplicity

of Mayer s principle equally contributes to

strengthen our faith. In a law immediately de

duced from experiments, such as Mariotte s law,

this simplicity would rather appear to us a reason

for distrust
;
but here this is no longer the case.

We take elements which at the first glance are

unconnected; these arrange themselves in an un

expected order, and form a harmonious whole.

We cannot believe that this unexpected har

mony is a mere result of chance. Our conquest

appears to be valuable to us in proportion to the

efforts it has cost, and we feel the more certain of

having snatched its true secret from Nature in pro

portion as Nature has appeared more jealous of our

attempts to discover it. But these are only small

reasons. Before we raise Mayer s law to the
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dignity of an absolute principle, a deeper discussion

is necessary. But if we embark on this discussion

we see that this absolute principle is not even easy
to enunciate. In every particular case we clearly

see what energy is, and we can give it at least a

provisory definition; but it is impossible to find

a general definition of it. If we wish to enunciate

the principle in all its generality and apply it to

the universe, we see it vanish, so to speak, and

nothing is left but this there is something which

remains constant. But has this a meaning ? In

the determinist hypothesis the state of the uni

verse is determined by an extremely large number
n of parameters, which I shall call xit x.2 ,

x3 . . . xn .

As soon as we know at a given moment the values of

these n parameters, we also know their derivatives

with respect to time, and we can therefore cal

culate the values of these same parameters at an

anterior or ulterior moment. In other words,

these n parameters specify n differential equations
of the first order. These equations have n-i

integrals, and therefore there are n-i functions of

x
i&amp;gt;

X
2&amp;gt; #3 . . x

Mt
which remain constant. If we

say then, there is something which remains constant,

we are only enunciating a tautology. We would

be even embarrassed to decide which among all

our integrals is that which should retain the name
of energy. Besides, it is not in this sense that

Mayer s principle is understood when it is applied
to a limited system. We admit, then, that p of

our n parameters vary independently so that we
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have only n -p relations, generally linear, between

our n parameters and their derivatives. Suppose,
for the sake of simplicity, that the sum of the

work done by the external forces is zero, as well

as that of all the quantities of heat given off from

the interior: what will then be the meaning of

our principle ? There is a combination of these n -p
relations, of which the first member is an exact

differential; and then this differential vanishing
in virtue of our np relations, its integral is a

constant, and it is this integral which we call

energy. But how can it be that there are several

parameters whose variations are independent ?

That can only take place in the case of external

forces (although \ve have supposed, for the sake

of simplicity, that the algebraical sum of all the

work done by these forces has vanished). If,

in fact, the system were completely isolated from

all external action, the values of our n parameters
at a given moment would suffice to determine

the state of the system at any ulterior moment
whatever, provided that we still clung to the deter-

minist hypothesis. We should therefore fall back

on the same difficulty as before. If the future

state of the system is not entirely determined

by its present state, it is because it further depends
on the state of bodies external to the system.
But then, is it likely that there exist among the

parameters % which define the state of the system of

equations independent of this state of the external

bodies? and if in certain cases we think we can
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find them, is it not only because of our ignorance,
and because the influence of these bodies is too

weak for our experiment to be able to detect it ?

If the system is not regarded as completely

isolated, it is probable that the rigorously exact

expression of its internal energy will depend upon
the state of the external bodies. Again, I have

supposed above that the sum of all the external

work is zero, and if we wish to be free from

this rather artificial restriction the enunciation

becomes still more difficult. To formulate

Mayer s principle by giving it an absolute

meaning, we must extend it to the whole

universe, and then we find ourselves face to

face with the very difficulty we have endeavoured

to avoid. To sum up, and to use ordinary

language, the law of the conservation of energy
can have only one significance, because there is

in it a property common to all possible properties;
but in the determinist hypothesis there is only one

possible, and then the law has no meaning. In

the indeterminist hypothesis, on the other hand,
it would have a meaning even if \ve wished to

regard it in an absolute sense. It would appear
as a limitation imposed on freedom.

But this word warns me that I am wandering
from the subject, and that I am leaving the

domain of mathematics and physics. I check

myself, therefore, and I wish to retain only one

impression of the whole of this discussion, and

that is, that Mayer s law is a form subtle enough
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for us to be able to put into it almost anything we

like. I do not mean by that that it corresponds

to no objective reality, nor that it is reduced to

mere tautology; since, in each particular case, and

provided we do not wish to extend it to the

absolute, it has a perfectly clear meaning. This

subtlety is a reason for believing that it will last

long; and as, on the other hand, it will only

disappear to be blended in a higher harmony,
we may work with confidence and utilise it,

certain beforehand that our work will not be

lost.

Almost everything that I have just said

applies to the principle of Clausius. What

distinguishes it is, that it is expressed by an

inequality. It will be said perhaps that it is

the same with all physical laws, since their

precision is always limited by errors of

observation. But they at least claim to be

first approximations, and we hope to replace

them little by little by more exact laws. If,

on the other hand, the principle of Clausius

reduces to an inequality, this is not caused by
the imperfection of our means of observation, but

by the very nature of the question.

General Conclusions on Part III. The prin

ciples of mechanics are therefore presented to us

under two different aspects. On the one hand,

there are truths founded on experiment, and

verified approximately as far as almost isolated

systems are concerned ;
on the other hand,



136 SCIENCE AND HYPOTHESIS.

there are postulates applicable to the whole of

the universe and regarded as rigorously true.

If these postulates possess a generality and a

certainty which falsify the experimental truths

from which they were deduced, it is because

they reduce in final analysis to a simple con

vention that we have a right to make, because

we are certain beforehand that no experiment
can contradict it. This convention, however, is

not absolutely arbitrary; it is not the child

of our caprice. \Ye admit it because certain

experiments have shown us that it will be con

venient, and thus is explained how experiment
has built up the principles of mechanics, and

why, moreover, it cannot reverse them. Take a

comparison with geometry. The fundamental

propositions of geometry, for instance, Euclid s

postulate, are only conventions, and it is quite

as unreasonable to ask if they are true or false

as to ask if the metric system is true or false.

Only, these conventions are convenient, and there

are certain experiments which prove it to us. At

the first glance, the analogy is complete, the role

of experiment seems the same. We shall there

fore be tempted to say, either mechanics must

be looked upon as experimental science and then

it should be the same with geometry; or, on the

contrary, geometry is a deductive science, and
then we can say the same of mechanics. Such

a conclusion would be illegitimate. The experi

ments which have led us to adopt as more
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convenient the fundamental conventions of

geometry refer to bodies which have nothing
in common with those that are studied by

geometry. They refer to the properties of solid

bodies and to the propagation of light in a straight

line. These are mechanical, optical experiments.
In no way can they be regarded as geometrical

experiments. And even the probable reason why
our geometry seems convenient to us is, that our

bodies, our hands, and our limbs enjoy the properties
of solid bodies. Our fundamental experiments are

pre-eminently physiological experiments which

refer, not to the space which is the object that

geometry must study, but to our body that is to

say, to the instrument which we use for that

study. On the other hand, the fundamental

conventions of mechanics and the experiments
which prove to us that they are convenient,

certainly refer to the same objects or to analogous

objects. Conventional and general principles are

the natural and direct generalisations of experi
mental and particular principles. Let it not be

said that I am thus tracing artificial frontiers

between the sciences; that I am separating by
a barrier geometry properly so called from the

study of solid bodies. I might just as well

raise a barrier between experimental mechanics
and the conventional mechanics of general

principles. Who does not see, in fact, that

by separating these two sciences we mutilate

both, and that what will remain of the conven-
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tional mechanics when it is isolated will be but

very little, and can in no way be compared with

that grand body of doctrine which is called

geometry.
We now understand why the teaching of

mechanics should remain experimental. Thus

only can we be made to understand the genesis

of the science, and that is indispensable for

a complete knowledge of the science itself.

Besides, if we study mechanics, it is in order

to apply it
;
and we can only apply it if it remains

objective. Now, as we have seen, when principles

gain in generality and certainty they lose in

objectivity. It is therefore especially with the

objective side of principles that we must be

early familiarised, and this can only be by

passing from the particular to the general, instead

of from the general to the particular.

Principles are conventions and definitions in

disguise. They are, however, deduced from

experimental laws, and these laws have, so to

speak, been erected into principles to which

our mind attributes an absolute value. Some

philosophers have generalised far too much.

They have thought that the principles were

the whole of science, and therefore that the

whole of science was conventional. This para
doxical doctrine, which is called Nominalism,
cannot stand examination. How can a law

become a principle ? It expressed a relation

between two real terms, A and B; but it was
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not rigorously true, it was only approximate.
We introduce arbitrarily an intermediate term, C,

more or less imaginary, and C is by definition that

which has with A exactly the relation expressed

by the law. So our law is decomposed into an

absolute and rigorous principle which expresses

the relation of A to C, and an approximate experi

mental and revisable law which expresses the:

relation of C to B. But it is clear that however

far this decomposition may be carried, laws will

always remain. We shall now enter into the

domain of laws properly so called.



PART IV,

NATURE.

CHAPTER IX.

HYPOTHESES IN PHYSICS.

The Role of Experiment and Generalisation.

Experiment is the sole source of truth. It alone

can teach us something new
;

it alone can give
us certainty. These are two points that cannot

be questioned. But then, if experiment is every

thing, what place is left for mathematical physics ?

What can experimental physics do with such an

auxiliary an auxiliary, moreover, which seems

useless, and even may be dangerous?

However, mathematical physics exists. It has

rendered undeniable service, and that is a fact

which has to be explained. It is not sufficient

merely to observe
;
we must use our observations,

and for that purpose we must generalise. This

is what has always been done, only as the recollec

tion of past errors has made man more and more

circumspect, he has observed more and more and

generalised less and less. Every age has scoffed

at its predecessor, accusing it of having generalised
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too boldly and too naively. Descartes used to

commiserate the lonians. Descartes in his turn

makes us smile, and no doubt some day our

children will laugh at us. Is there no way of

getting at once to the gist of the matter, and

thereby escaping the raillery which we foresee ?

Cannot we be content with experiment alone ?

No, that is impossible ;
that would be a complete

misunderstanding of the true character of science.

The man of science must work with method.

Science is built up of facts, as a house is built of

stones
;
but an accumulation of facts is no more a

science than a heap of stones is a house. Most

important of all, the man of science must exhibit

foresight. Carlyle has written somewhere some

thing after this fashion.
&quot;

Nothing but facts are

of importance. John Lackland passed by here.

Here is something that is admirable. Here is a

reality for which I would give all the theories in

the world.&quot;
1

Carlyle was a compatriot of Bacon,

and, like him, he wished to proclaim his worship
of the God of Things as they are.

But Bacon would not have said that. That is

the language of the historian. The physicist

would most likely have said :

&quot;

John Lackland

passed by here. It is all the same to me, for he

will not pass this way again.&quot;

We all know that there are good and bad

experiments. The latter accumulate in vain.

Whether there are a hundred or a thousand,
1 V. Past and Present, end of Chapter I., Book II. [TR.]
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one single piece of work by a real master by a

Pasteur, for example will be sufficient to sweep
them into oblivion. Bacon w7ould have thoroughly
understood that, for he invented the phrase experi-

mentuni crucis; but Carlyle would not have under

stood it. A fact is a fact. A student has read

such and such a number on his thermometer.

He has taken no precautions. It does not matter;
he has read it, and if it is only the fact which

counts, this is a reality that is as much entitled

to be called a reality as the peregrinations of King

John Lackland. What, then, is a good experiment?
It is that which teaches us something more than

V an isolated fact. It is that which enables us to

predict, and to generalise. Without generalisa

tion, prediction is impossible. The circumstances

under which one has operated will never again
be reproduced simultaneously. The fact observed

will never be repeated. All that can be affirmed

is that under analogous circumstances an analogous
fact will be produced. To predict it, we must
therefore invoke the aid of analogy that is to say,

even at this stage, we must generalise. However
timid we may be, there must be interpolation.

Experiment only gives us a certain number of

isolated points. They must be connected by a

continuous line, and this is a true generalisation.

But more is done. The curve thus traced will

pass between and near the points observed; it

will not pass through the points themselves.

Thus we are not restricted to generalising our
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experiment, we correct it
;
and the physicist who

would abstain from these corrections, and really

content himself with experiment pure and simple,

would be compelled to enunciate very extra

ordinary laws indeed. Detached facts cannot

therefore satisfy us, and that is why our science

must be ordered, or, better still, generalised.

It is often said that experiments should be made
without preconceived ideas. That is impossible.

Not only would it make every experiment fruitless,

but even if we wished to do so, it could not be

done. Every man has his own conception of the

world, and this he cannot so easily lay aside. We
must, for example, use language, and our language
is necessarily steeped in preconceived ideas. Only

they are unconscious preconceived ideas, which

are a thousand times the most dangerous of all.

Shall we say, that if we cause others to intervene of

which we are fully conscious, that we shall only

aggravate the evil? I do not think so. I am
inclined to think that they will serve as ample

counterpoises I was almost going to say antidotes.

They will generally disagree, they will enter into

conflict one with another, and ipso facto, they will

force us to look at things under different aspects.
This is enough to free us. He is no longer a slave

who can choose his master.

Thus, by generalisation, every fact observed

enables us to predict a large number of others
;

only, we ought not to forget that the first alone

is certain, and that all the others are merely
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probable. However solidly founded a prediction

may appear to us, we are never absolutely sure that

experiment will not prove it to be baseless if we
set to work to verify it. But the probability of its

accuracy is often so great that practically we may
be content with it. It is far better to predict

without certainty, than never to have predicted
at all. We should never, therefore, disdain to

verify when the opportunity presents itself. But

every experiment is long and difficult, and the

labourers are few, and the number of facts which

we require to predict is enormous
; and besides

this mass, the number of direct verifications that

we can make will never be more than a negligible

quantity. Of this little that we can directly attain

we must choose the best. Every experiment must

enable us to make a maximum number of predic

tions having the highest possible degree of prob

ability. The problem is, so to speak, to increase

the output of the scientific machine. I may be

permitted to compare science to a library which

must go on increasing indefinitely; the librarian

has limited funds for his purchases, and he must,

therefore, strain every nerve not to waste them.

Experimental physics has to make the purchases,
and experimental physics alone can enrich the

library. As for mathematical physics, her duty
is to draw up the catalogue. If the catalogue is

well done the library is none the richer for it ; but

the reader will be enabled to utilise its riches;

and also by showing the librarian the gaps in his
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collection, it will help him to make a judicious
use of his funds, which is all the more important,
inasmuch as those funds are entirely inadequate.
That is the role of mathematical physics. It

must direct generalisation, so as to increase what
I called just now the output of science. By what
means it does this, and how it may do it without

danger, is what we have now to examine.

The Unity oj Nature. Let us first of all observe

that every generalisation supposes in a certain

measure a belief in the unity and simplicity of

Nature. As far as the unity is concerned, there

can be no difficulty. If the different parts of the

universe were not as the organs of the same body,

they would not re-act one upon the other; they
would mutually ignore each other, and we in

particular should only know one part. We need

not, therefore, ask if Nature is one, but how she

is one.

As for the second point, that is not so clear. It

is not certain that Nature is simple. Can we
without danger act as if she were ?

There was a time when the simplicity of

Mariotte s law was an argument in favour of its

accuracy: when Fresnel himself, after having said

in a conversation with Laplace that Nature cares

naught for analytical difficulties, was compelled
to explain his words so as not to give offence to

current opinion. Nowadays, ideas have changed

considerably ;
but those who do not believe that

natural laws must be simple, are still often obliged
10
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to act as if they did believe it. They cannot

entirely dispense with this necessity without

making all generalisation, and therefore all science,

impossible. It is clear that any fact can be

generalised in an infinite number of ways, and

it is a question of choice. The choice can only
be guided by considerations of simplicity. Let

us take the most ordinary case, that of interpola
tion. We draw a continuous line as regularly as

possible between the points given by observation.

Why do we avoid angular points and inflexions

that are too sharp ? Why do we not make our

curve describe the most capricious zigzags ? It

is because we know beforehand, or think we know,
that the law we have to express cannot be so

complicated as all that. The mass of Jupiter

may be deduced either from the movements of

his satellites, or from the perturbations of the

major planets, or from those of the minor planets.

If we take the mean of the determinations obtained

by these three methods, we find three numbers

very close together, but not quite identical. This

result might be interpreted by supposing that the

gravitation constant is not the same in the three

cases; the observations would be certainly much
better represented. Why do we reject this inter

pretation ? Not because it is absurd, but because

it is uselessly complicated. W7
e shall only accept

it when we are forced to, and it is not imposed

upon us yet. To sum up, in most cases every law

is held to be simple until the contrary is proved.
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This custom is imposed upon physicists by the

reasons that I have indicated, but how can it be

justified in the presence of discoveries which daily

show us fresh details, richer and more complex?
How can we even reconcile it with the unity of

nature ? For if all things are interdependent,
the relations in which so many different objects
intervene can no longer be simple.

If we study the history of science we see pro
duced two phenomena which are, so to speak,
each the inverse of the other. Sometimes it is

simplicity which is hidden under what is

apparently complex ; sometimes, on the contrary,
it is simplicity which is apparent, and which

conceals extremely complex realities. What is

there more complicated than the disturbed

motions of the planets, and what more simple
than Newton s law ? There, as Fresnel said,

Nature playing with analytical difficulties, only
uses simple means, and creates by their combina
tion I know not what tangled skein. Here it is

the hidden simplicity which must be disentangled.

Examples to the contrary abound. In the kinetic

theory of gases, molecules of tremendous velocity
are discussed, whose paths, deformed by incessant

impacts, have the most capricious shapes, and

plough their way through space in every direction.

The result observable is Mariotte s simple law.

Each individual fact was complicated. The law
of great numbers has re-established simplicity in

the mean. Here the simplicity is only apparent,
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and the coarseness of our senses alone prevents us

from seeing the complexity.

Many phenomena obey a law of proportion

ality. But why? Because in these phenomena
there is something which is very small. The

simple law observed is only the translation of

the general analytical rule by which the infinitely

small increment of a function is proportional
to the increment of the variable. As in reality

our increments are not infinitely small, but only

very small, the law of proportionality is only

approximate, and simplicity is only apparent.
What I have just said applies to the law of the

superposition of small movements, which is so

fruitful in its applications and which is the founda

tion of optics.

And Newton s law itself? Its simplicity, so

long undetected, is perhaps only apparent. Who
knows if it be not due to some complicated

mechanism, to the impact of some subtle matter

animated by irregular movements, and if it has

not become simple merely through the play of

averages and large numbers? In any case, it

is difficult not to suppose that the true law con

tains complementary terms which may become
sensible at small distances. If in astronomy they
are negligible, and if the law thus regains its

simplicity, it is solely on account of the enormous

distances of the celestial bodies. No doubt, if our

means of investigation became more and more

penetrating, we should discover the simple beneath



HYPOTHESES IN PHYSICS. 149

the complex, and then the complex from the

simple, and then again the simple beneath the

complex, and so on, without ever being able to

predict what the last term will be. We must stop

somewhere, and for science to be possible we must

stop where we have found simplicity. That is the

only ground on which we can erect the edifice of

our generalisations. But, this simplicity being

only apparent, will the ground be solid enough ?

That is what we have now to discover.

For this purpose let us see what part is played
in our generalisations by the belief in simplicity.

We have verified a simple law in a considerable

number of particular cases. We refuse to admit

that this coincidence, so often repeated, is a result

of mere chance, and we conclude that the law

must be true in the general case.

Kepler remarks that the positions of a planet
observed by Tycho are all on the same ellipse.

Not for one moment does he think that, by a

singular freak of chance, Tycho had never looked

at the heavens except at the very moment when
the path of the planet happened to cut that

ellipse. What does it matter then if the simplicity
be real or if it hide a complex truth ? Whether it

be due to the influence of great numbers which

reduces individual differences to a level, or to the

greatness or the smallness of certain quantities
which allow of certain terms to be neglected in

no case is it due to chance. This simplicity, real

or apparent, has always a cause. We shall there-
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fore always be able to reason in the same fashion,

and if a simple law has been observed in several

particular cases, we may legitimately suppose that

it still will be true in analogous cases. To refuse

to admit this would be to attribute an in

admissible role to chance. However, there is a

difference. If the simplicity were real and pro
found it would bear the test of the increasing

precision of our methods of measurement. If,

then, we believe Nature to be profoundly simple,

we must conclude that it is an approximate and

not a rigorous simplicity. This is what was

formerly done, but it is what we have no longer
the right to do. The simplicity of Kepler s laws,

for instance, is only apparent ;
but that does not

prevent them from being applied to almost all

systems analogous to the solar system, though
that prevents them from being rigorously exact.

Role of Hypothesis. Every generalisation is a

hypothesis. Hypothesis therefore plays a neces

sary role, which no one has ever contested. Only,
it should always be as soon as possible submitted

to verification. It goes without saying that, if it

cannot stand this test, it must be abandoned

without any hesitation. This is, indeed, what

is generally done; but sometimes with a certain

impatience. Ah well ! this impatience is not

justified. The physicist who has just given up
one of his hypotheses should, on the contrary,

rejoice, for he found an unexpected opportunity of

discovery. His hypothesis, I imagine, had not
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been lightly adopted, It took into account all the

known factors which seem capable of intervention

in the phenomenon. If it is not verified, it is

because there is something unexpected and extra

ordinary about it, because we are on the point
of finding something unknown and new. Has
the hypothesis thus rejected been sterile ? Far

from it. It may be even said that it has rendered

more service than a true hypothesis. Not only
has it been the occasion of a decisive experiment,
but if this experiment had been made by chance,
without the hypothesis, no conclusion could have

been drawn
; nothing extraordinary would have

been seen
;
and only one fact the more would have

been catalogued, without deducing from it the

remotest consequence.

Now, under what conditions is the use of

hypothesis without danger ? The proposal to

submit all to experiment is not sufficient. Some

hypotheses are dangerous, first and foremost

those which are tacit and unconscious. And
since we make them without knowing them,
we cannot get rid of them. Here again, there

is a service that mathematical physics may
render us. By the precision which is its char

acteristic, we are compelled to formulate all the

hypotheses that we would unhesitatingly make
without its aid. Let us also notice that it is

important not to multiply hypotheses indefinitely.
If we construct a theory based upon multiple hypo
theses, and if experiment condemns it, which of
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the premisses must be changed ? It is impossible

to tell. Conversely, if the experiment succeeds,

must we suppose that it has verified all these

hypotheses at once ? Can several unknowns be

determined from a single equation ?

I We must also take care to distinguish between

the different kinds of hypotheses. First of all,

there are those wrhich are quite natural and

( necessary. It is difficult not to suppose that the

influence of very distant bodies is quite negligible,

that small movements obey a linear law, and that

effect is a continuous function of its cause. I will

say as much for the conditions imposed by

symmetry. All these hypotheses affirm, so to

speak, the common basis of all the theories of

mathematical physics. They are the last that

should be abandoned. There is a second category
of hypotheses which I shall qualify as indifferent.

In most questions the analyst assumes, at the

beginning of his calculations, either that matter is

continuous, or the reverse, that it is formed of

atoms. In either case, his results would have

been the same. On the atomic supposition he has

a little more difficulty in obtaining them that is

all. If, then, experiment confirms his conclusions,
will he suppose that he has proved, for example,
the real existence of atoms ?

In optical theories two vectors are introduced,
one of which we consider as a velocity and the

other as a vortex. This again is an indifferent

hypothesis, since we should have arrived at the
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same conclusions by assuming the former to be

a vortex and the latter to be a velocity. The

success of the experiment cannot prove, therefore,

that the first vector is really a velocity. It only

proves one thing namely, that it is a vector;

and that is the only hypothesis that has really

been introduced into the premisses. To give it

the concrete appearance that the fallibility of our

minds demands, it was necessary to consider it

either as a velocity or as a vortex. In the same

way, it was necessary to represent it by an x or a

y, but. the result will not prove that we were right

or wrong in regarding it as a velocity; nor will it

prove we are right or wrong in calling it x and

not y.

These indifferent hypotheses are never danger
ous provided their characters are not misunder

stood. They may be useful, either as artifices for

calculation, or to assist our understanding by
concrete images, to fix the ideas, as we say. They
need not therefore be rejected. The hypotheses
of the third category are real generalisations.

They must be confirmed or invalidated by experi
ment. Whether verified or condemned, they will

always be fruitful; but, for the reasons I have

given, they will only be so if they are not too

numerous.

Origin of Mathematical Physics. Let us go
further and study more closely the conditions

which have assisted the development of mathe
matical physics. We recognise at the outset that
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the efforts of men of science have always tended

to resolve the complex phenomenon given directly

by experiment into a very large number of ele

mentary phenomena, and that in three different

ways.

First, with respect to time. Instead of embracing
in its entirety the progressive development of a

phenomenon, we simply try to connect each

moment with the one immediately preceding.
We admit that the present state of the world

only depends on the immediate past, without

being directly influenced, so to speak, by the

recollection of a more distant past. Thanks to

this postulate, instead of studying directly the

whole succession of phenomena, we may confine

ourselves to writing down its differential equation;
for the laws of Kepler we substitute the law of

Newton.

Next, we try to decompose the phenomena in

space. What experiment gives us is a confused

aggregate of facts spread over a scene of consider

able extent. We must try to deduce the element

ary phenomenon, which will still be localised in a

very small region of space.
A few examples perhaps will make my meaning

clearer. If \ve wished to study in all its com

plexity the distribution of temperature in a cooling

solid, we could never do so. This is simply be

cause, if we only reflect that a point in the solid

can directly impart some of its heat to a neigh

bouring point, it will immediately impart that
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heat only to the nearest points, and it is but

gradually that the flow of heat will reach other

portions of the solid. The elementary pheno
menon is the interchange of heat between two

contiguous points. It is strictly localised and

relatively simple if, as is natural, we admit that

it is not influenced by the temperature of the

molecules whose distance apart is small.

I bend a rod: it takes a very complicated form,

the direct investigation of which would be im

possible. But I can attack the problem, however,

if I notice that its flexure is only the resultant of

the deformations of the very small elements of the

rod, and that the deformation of each of these

elements only depends on the forces which are

directly applied to it, and not in the least on

those which may be acting on the other elements.

In all these examples, which may be increased

without difficulty, it is admitted that there is no

action at a distance or at great distances. That

is an hypothesis. It is not always true, as the law

of gravitation proves. It must therefore be verified.

If it is confirmed, even approximately, it is valu

able, for it helps us to use mathematical physics,
at any rate by successive approximations. If it

does not stand the test, we must seek something
else that is analogous, for there are other means
of arriving at the elementary phenomenon. If

several bodies act simultaneously, it may happen
that their actions are independent, and may be

added one to the other, either as vectors or as scalar
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quantities. The elementary phenomenon is then

the action of an isolated body. Or suppose, again,

it is a question of small movements, or more

generally of small variations which obey the well-

known law of mutual or relative independence.
The movement observed will then be decomposed
into simple movements for example, sound into

its harmonics, and white light into its monochro
matic components. When we have discovered in

which direction to seek for the elementary pheno
mena, by what means may we reach it ? First, it

will often happen that in order to predict it, or rather

in order to predict what is useful to us, it will not

be necessary to know its mechanism. The law of

great numbers will suffice. Take for example the

propagation of heat. Each molecule radiates to

wards its neighbour we need not inquire accord

ing to what law; and if we make any supposition
in this respect, it will be an indifferent hypothesis,
and therefore useless and unverifiable. In fact,

by the action of averages and thanks to the

symmetry of the medium, all differences are

levelled, and, whatever the hypothesis may be, the

result is always the same.

The same feature is presented in the theory of

elasticity, and in that of capillarity. The neigh

bouring molecules attract and repel each other, we
need not inquire by what law. It is enough for us

that this attraction is sensible at small distances

only, and that the molecules are very numerous,
that the medium is symmetrical, and we have
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only to let the law of great numbers come into

play.

Here again the simplicity of the elementary

phenomenon is hidden beneath the complexity of

the observable resultant phenomenon; but in its

turn this simplicity was only apparent and dis

guised a very complex mechanism. Evidently the

best means of reaching the elementary pheno
menon would be experiment. It would be neces

sary by experimental artifices to dissociate the

complex system which nature offers for our in

vestigations and carefully to study the elements as

dissociated as possible; for example, natural white

light would be decomposed into monochromatic

lights by the aid of the prism, and into polarised

lights by the aid of the polariser. Unfortunately,

that is neither always possible nor always suffi

cient, and sometimes the mind must run ahead of

experiment. I shall only give one example which

has always struck me rather forcibly. If I de

compose white light, I shall be able to isolate a

portion of the spectrum, but however small it may
be, it will always be a certain width. In the same

way the natural lights which are called mono

chromatic give us a very fine array, but a y which

is not, however, infinitely fine. It might be

supposed that in the experimental study of the

properties of these natural lights, by operating
with finer and finer rays, and passing on at last

to the limit, so to speak, we should eventually
obtain the properties of a rigorously mono-
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chromatic light. That would not be accurate.

I assume that two rays emanate from the same

source, that they are first polarised in planes at

right angles, that they are then brought back

again to the same plane of polarisation, and that

we try to obtain interference. If the light were

rigorously monochromatic, there would be inter

ference; but with our nearly monochromatic

lights, there will be no interference, and that,

however narrow the ray may be. For it to be

otherwise, the ray would have to be several million

times finer than the finest known rays.

Here then we should be led astray by proceeding
to the limit. The mind has to run ahead of the

experiment, and if it has done so with success, it

is because it has allowed itself to be guided by the

instinct of simplicity. The knowledge of the ele

mentary fact enables us to state the problem in

the form of an equation. It only remains to de

duce from it by combination the observable and

verifiable complex fact. That is what we call

integration, and it is the province of the mathe
matician. It might be asked, why in physical
science generalisation so readily takes the

mathematical form. The reason is now easy to

see. It is not only because we have to express
numerical laws; it is because the observable

phenomenon is due to the superposition of a large

number of elementary phenomena which are all

similar to each other ; and in this way differential

equations are quite naturally introduced. It is
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not enough that each elementary phenomenon
should obey simple laws: all those that we have

to combine must obey the same law; then only
is the intervention of mathematics of any use.

Mathematics teaches us, in fact, to combine like

with like. Its object is to divine the result of a

combination without having to reconstruct that

combination element by element. If we have to

repeat the same operation several times, mathe

matics enables us to avoid this repetition by telling

the result beforehand by a kind of induction.

This I have explained before in the chapter on

mathematical reasoning. But for that purpose
all these operations must be similar; in the con

trary case we must evidently make up our minds

to working them out in full one after the other,

and mathematics will be useless. It is therefore,

thanks to the approximate homogeneity of the

matter studied by physicists, that mathematical

physics came into existence. In the natural

sciences the following conditions are no longer to

be found: homogeneity, relative independence of

remote parts, simplicity of the elementary fact;

and that is why the student of natural science is

compelled to have recourse to other modes of

generalisation.



CHAPTER X.

THE THEORIES OF MODERN PHYSICS,

Significance of Physical Theories. The ephemeral
nature of scientific theories takes by surprise the

man of the world. Their brief period of prosperity

ended, he sees them abandoned one after another
;

he sees ruins piled upon ruins; he predicts that

the theories in fashion to-day will in a short time

succumb in their turn, and he concludes that they
are absolutely in vain. This is what he calls the

bankruptcy of science.

His scepticism is superficial ;
he does not take

into account the object of scientific theories and

the part they play, or he would understand that

the ruins may be still good for something. No

theory seemed established on firmer ground than

Fresnel s, which attributed light to the move
ments of the ether. Then if Maxwell s theory is

to-day preferred, does that mean that Fresnel s

work was in vain ? No; for Fresnel s object was

not to know whether there really is an ether, if it

is or is not formed of atoms, if these atoms really

move in this way or that; his object was to

predict optical phenomena.
This Fresnel s theory enables us to do to-
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day as well as it did before Maxwell s time. The
differential equations are always true, they may
be always integrated by the same methods, and

the results of this integration still preserve their

value. It cannot be said that this is reducing

physical theories to simple practical recipes ;

these equations express relations, and if the

equations remain true, it is because the relations

preserve their reality. They teach us now, as they
did then, that there is such and such a relation

between this thing and that
; only, the something

which we then called motion, we now call electric

current. But these are merely names of the images
we substituted for the real objects which Nature

will hide for ever from our eyes. The true relations

between these real objects are the only reality we
can attain, and the sole condition is that the same

relations shall exist between these objects as between

the images we are forced to put in their place. If

the relations are known to us, what does it matter

if we think it convenient to replace one image by
another ?

That a given periodic phenomenon (an electric

oscillation, for instance) is really due to the

vibration of a given atom, which, behaving like

a pendulum, is really displaced in this manner or

that, all this is neither certain nor essential.

But that there is between the electric oscillation,

the movement of the pendulum, and all periodic

phenomena an intimate relationship which corre

sponds to a profound reality; that this relationship,
II
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this similarity, or rather this parallelism, is con

tinued in the details
;
that it is a consequence of

more general principles such as that of the con

servation of energy, and that of least action
;
this

we may affirm
;
this is the truth which will ever

remain the same in whatever garb we may see fit

to clothe it.

Many theories of dispersion have been proposed.
The first were imperfect, and contained but little

truth. Then came that of Helmholtz, and this

in its turn was modified in different ways ;
its

author himself conceived another theory, founded

on Maxwell s principles. But the remarkable

thing is, that all the scientists who followed

Helmholtz obtain the same equations, although
their starting-points were to all appearance widely

separated. I venture to say that these theories

are all simultaneously truje; not merely because

they express a true relation that between absorp
tion and abnormal dispersion. In the premisses
of these theories the part that is true is the part
common to all: it is the affirmation of this or

that relation between certain things, which some
call by one name and some by another.

The kinetic theory of gases has given rise to

many objections, to which it would be difficult

to find an answer were it claimed that the theory
is absolutely true. But all these objections do

not alter the fact that it has been useful,

particularly in revealing to us one true relation

which would otherwise have remained profoundly
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hidden the relation between gaseous and osmotic

pressures. In this sense, then, it may be said to

be true.

When a physicist finds a contradiction between

two theories which are equally dear to him, he

sometimes says:
&quot; Let us not be troubled, but let

us hold fast to the two ends of the chain, lest

we lose the intermediate links.&quot; This argument
of the embarrassed theologian would be ridiculous

if we were to attribute to physical theories the

interpretation given them by the man of the

world. In case of contradiction one of them at

least should be considered false. But this is no

longer the case if we only seek in them what
should be sought. It is quite possible that they
both express true relations, and that the contra

dictions only exist in the images we have formed
to ourselves of reality. To those who feel that

we are going too far in our limitations of the

domain accessible to the scientist, I reply: These

questions which we forbid you to investigate,
and which you so regret, are not only insoluble,

they are illusory and devoid of meaning.
Such a philosopher claims that all physics can be

explained by the mutual impact of atoms. If he

simply means that the same relations obtain

between physical phenomena as between ~the

mutual impact of a large number of billiard

balls well and good! this is verifiable, and

perhaps is true. But he means something more,
and we think we understand him, because we
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think we know what an impact is. Why? Simply
because we have often watched a game of billiards.

Are we to understand that God experiences the

same sensations in the contemplation of His

work that we do in watching a game of billiards ?

If it is not our intention to give his assertion

this fantastic meaning, and if we do not wish

to give it the more restricted meaning I have

already mentioned, which is the sound meaning,
then it has no meaning at all. Hypotheses of

this kind have therefore only a metaphorical sense.

The scientist should no more banish them than a

poet banishes metaphor; but he ought to know
what they are worth. They may be useful to

give satisfaction to the mind, and they will do

no harm as long as they are only indifferent

hypotheses.
These considerations explain to us why certain

theories, that were thought to be abandoned and

definitively condemned by experiment, are suddenly
revived from their ashes and begin a new life.

It is because they expressed true relations, and

had not ceased to do so when for some reason or

other we felt it necessary to enunciate the same

relations in another language. Their life had been

latent, as it were.

Barely fifteen years ago, was there anything
more ridiculous, more quaintly old-fashioned, than

the fluids of Coulomb ? And yet, here they are

re-appearing under the name of electrons. In what

do these permanently electrified molecules differ
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from the electric molecules of Coulomb ? It is

true that in the electrons the electricity is sup

ported by a little, a very little matter
;

in other

words, they have mass. Yet Coulomb did not

deny mass to his fluids, or if he did, it was with

reluctance. It would be rash to affirm that the

belief in electrons will not also undergo an eclipse,

but it was none the less curious to note this un

expected renaissance.

But the most striking example is Carnot s

principle. Carnot established it, starting from

false hypotheses. When it was found that heat

was indestructible, and may be converted into

work, his ideas were completely abandoned
;

later, Clausius returned to them, and to him is

due their definitive triumph. In its primitive

form, Carnot s theory expressed in addition to

true relations, other inexact relations, the debris

of old ideas
;
but the presence of the latter did

not alter the reality of the others. Clausius had

only to separate them, just as one lops off dead

branches.

The result was the second fundamental law of

thermodynamics. The relations were always the

same, although they did not hold, at least to all

appearance, between the same objects. This was
sufficient for the principle to retain its value.

Nor have the reasonings of Carnot perished on

this account
; they were applied to an imperfect

conception of matter, but their form i.e., the

essential part of them, remained correct. What
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I have just said throws some light at the same

time on the role of general principles, such as

those of the principle of least action or of the

conservation of energy. These principles are of

very great value. They were obtained in the

search for what there was in common in the

enunciation of numerous physical laws
; they

thus represent the quintessence of innumerable

observations. However, from their very generality
results a consequence to which I have called

attention in Chapter VIII. namely, that they are

no longer capable of verification. As we cannot

give a general definition of energy, the principle

of the conservation of energy simply signifies that

there is a something which remains constant.

Whatever fresh notions of the world may be

given us by future experiments, we are certain

beforehand that there is something which remains

constant, and which may be called energy. Does

this mean that the principle has no meaning and

vanishes into a tautology ? Not at all. It means

that the different things to which we give the

name of energy are connected by a true relation

ship ;
it affirms between them a real relation.

But then, if this principle has a meaning, it may
be false

;
it may be that we have no right to

extend indefinitely its applications, and yet it is

certain beforehand to be verified in the strict

sense of the word. How, then, shall we know
when it has been extended as far as is legitimate ?

Simply when it ceases to be useful to us i.e.,



THE THEORIES OF MODERN PHYSICS. 167

when we can no longer use it to predict correctly

new phenomena. We shall be certain in such a

case that the relation affirmed is no longer real,

for otherwise it would be fruitful
; experiment

without directly contradicting a new extension of

the principle will nevertheless have condemned it.

Physics and Mechanism. Most theorists have a

constant predilection for explanations borrowed

from physics, mechanics, or dynamics. Some
\vould be satisfied if they could account for all

phenomena by the motion of molecules attracting

one another according to certain laws. Others

are more exact : they would suppress attractions

acting at a distance
;
their molecules would follow

rectilinear paths, from which they would only be

deviated by impacts. Others again, such as Hertz,

suppress the forces as well, but suppose their

molecules subjected to geometrical connections

analogous, for instance, to those of articulated

systems; thus, they wish to reduce dynamics to a

kind of kinematics. In a word, they all wish to

bend nature into a certain form, and unless they
can do this they cannot be satisfied. Is Nature

flexible enough for this ?

We shall examine this question in Chapter XII.,

apropos of Maxwell s theory. Every time that the

principles of least action and energy are satisfied,

we shall see that not only is there always a

mechanical explanation possible, but that there

is an unlimited number of such explanations. By
means of a well-known theorem due to Konigs,
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it may be shown that we can explain everything
in an unlimited number of ways, by connections

after the manner of Hertz, or, again, by central

forces. No doubt it may be just as easily de

monstrated that everything may be explained by

simple impacts. For this, let us bear in mind
that it is not enough to be content with the

ordinary matter of which we are aware by means
of our senses, and the movements of which we
observe directly. We may conceive of ordinary
matter as either composed of atoms, whose internal

movements escape us, our senses being able to

estimate only the displacement of the whole
;
or

we may imagine one of those subtle fluids, which

under the name of ether or other names, have

from all time played so important a role in

physical theories. Often we go further, and regard
the ether as the only primitive, or even as the

only true matter. The more moderate consider

ordinary matter to be condensed ether, and

there is nothing startling in this conception; but

others only reduce its importance still further,

and see in matter nothing more than the geo
metrical locus of singularities in the ether. Lord

Kelvin, for instance, holds what we call matter

to be only the locus of those points at which the

ether is animated by vortex motions. Riemann
believes it to be locus of those points at which
ether is constantly destroyed ;

to Wiechert or

Larmor, it is the locus of the points at which
the ether has undergone a kind of torsion of a
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very particular kind. Taking any one of these

points of view, I ask by what right do we apply
to the ether the mechanical properties observed

in ordinary matter, which is but false matter ?

The ancient fluids, caloric, electricity, etc., were

abandoned when it was seen that heat is not

indestructible. But they were also laid aside

for another reason, In materialising them, their

individuality was, so to speak, emphasised gaps
were opened between them

;
and these gaps had

to be filled in when the sentiment of the unity of

Nature became stronger, and when the intimate

relations which connect all the parts were per

ceived. In multiplying the fluids, not only did

the ancient physicists create unnecessary entities,

but they destroyed real ties. It is not enough for

a theory not to affirm false relations ;
it must not

conceal true relations.

Does our ether actually exist ? We know the

origin of our belief in the ether. If light takes

several years to reach us from a distant star, it

is no longer on the star, nor is it on the earth.

It must be somewhere, and supported, so to speak,

by some material agency.
The same idea may be expressed in a more

mathematical and more abstract form. What we
note are the changes undergone by the material

molecules. We see, for instance, that the photo

graphic plate experiences the consequences of a

phenomenon of which the incandescent mass of

a star was the scene several vears before. Now,
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in ordinary mechanics, the state of the system
under consideration depends only on its state at

the moment immediately preceding; the system
therefore satisfies certain differential equations.
On the other hand, if we did not believe in the

ether, the state of the material universe would

depend not only on the state immediately pre

ceding, but also on much older states
;
the system

would satisfy equations of finite differences. The
ether was invented to escape this breaking down
of the laws of general mechanics.

Still, this would only compel us to fill the

interplanetary space with ether, but not to

make it penetrate into the midst of the material

media. Fizeau s experiment goes further. By
the interference of rays which have passed

through the air or water in motion, it seems to

show us two different media penetrating each

other, and yet being displaced with respect to

each other. The ether is all but in our grasp.

Experiments can be conceived in which we come
closer still to it. Assume that Newton s principle
of the equality of action and re-action is not true

if applied to matter alone, and that this can be

proved. The geometrical sum of all the forces

applied to all the molecules would no longer be

zero. If we did not wish to change the whole of the

science of mechanics, we should have to introduce

the ether, in order that the action which matter

apparently undergoes should be counterbalanced

by the re-action of matter on something.
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Or again, suppose we discover that optical and

electrical phenomena are influenced by the motion

of the earth. It would follow that those pheno
mena might reveal to us not only the relative

motion of material bodies, but also what would

seem to be their absolute motion. Again, it would

be necessary to have an ether in order that these

so-called absolute movements should not be their

displacements with respect to empty space, but

with respect to something concrete.

Will this ever be accomplished ? I do not

think so, and I shall explain why; and yet, it is

not absurd, for others have entertained this view.

For instance, if the theory of Lorentz, of which I

shall speak in more detail in Chapter XIII., were

true, Newton s principle would not apply to matter

alone, and the difference would not be very far

from being within reach of experiment. On the

other hand, many experiments have been made
on the influence of the motion of the earth. The
results have always been negative. But if these

experiments have been undertaken, it is because

we have not been certain beforehand; and indeed,

according to current theories, the compensation
would be only approximate, and we might expect
to find accurate methods giving positive results.

I think that such a hope is illusory ;
it was none

the less interesting to show that a success of this

kind would, in a certain sense, open to us a new
world.

And now allow me to make a digression ;
I
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must explain why I do not believe, in spite of

Lorentz, that more exact observations will ever

make evident anything else but the relative dis

placements of material bodies. Experiments have

been made that should have disclosed the terms

of the first order; the results were nugatory.
Could that have been by chance ? No one has

admitted this
;
a general explanation was sought,

and Lorentz found it. He showed that the terms

of the first order should cancel each other, but

not the terms of the second order. Then more
exact experiments were made, which were also

negative ;
neither could this be the result of

chance. An explanation was necessary, and was

forthcoming ; they always are
; hypotheses are

what we lack the least. But this is not enough.
Who is there who does not think that this leaves

to chance far too important a role ? Would it

not also be a chance that this singular concurrence

should cause a certain circumstance to destroy the

terms of the first order, and that a totally different

but very opportune circumstance should cause

those of the second order to vanish? No; the

same explanation must be found for the two

cases, and everything tends to show that this

explanation would serve equally well for the

terms of the higher order, and that the mutual

destruction of these terms will be rigorous and

absolute.

The Present State of Physics. Two opposite
tendencies may be distinguished in the history
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of the development of physics. On the one hand,

new relations are continually being discovered

between objects which seemed destined to remain

for ever unconnected
;
scattered facts cease to be

strangers to each other and tend to be marshalled

into an imposing synthesis. The march of science

is towards unity and simplicity.

On the other hand, new phenomena are con

tinually being revealed
;

it will be long before

they can be assigned their place sometimes it

may happen that to find them a place a corner of

the edifice must be demolished. In the same way,
we are continually perceiving details ever more

varied in the phenomena we know, where our

crude senses used to be unable to detect any lack

of unity. What we thought to be simple becomes

complex, and the march of science seems to be

towards diversity and complication.

Here, then, are two opposing tendencies, each of

which seems to triumph in turn. Which will win ?

If the first wins, science is possible ;
but nothing

proves this a priori, and it may be that after

unsuccessful efforts to bend Nature to our ideal of

unity in spite of herself, we shall be submerged by
the ever-rising flood of our new riches and com

pelled to renounce all idea of classification to

abandon our ideal, and to reduce science to the

mere recording of innumerable recipes.

In fact, we can give this question no answer.

All that we can do is to observe the science of

to-day, and compare it with that of yesterday.
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No doubt after this examination we shall be in a

position to offer a few conjectures.

Half-a-century ago hopes ran high indeed. The

unity of force had just been revealed to us by the

discovery of the conservation of energy and of its

transformation. This discovery also showed that

the phenomena of heat could be explained by
molecular movements. Although the nature of

these movements was not exactly known, no one

doubted but that they would be ascertained before

long. As for light, the work seemed entirely com

pleted. So far as electricity was concerned, there

was not so great an advance. Electricity had just

annexed magnetism. This was a considerable and
a definitive step towards unity. But how was

electricity in its turn to be brought into the

general unity, and how was it to be included in

the general universal mechanism ? No one had

the slightest idea. As to the possibility of the in

clusion, all were agreed ; they had faith. Finally,

as far as the molecular properties of material

bodies are concerned, the inclusion seemed easier,

but the details were very hazy. In a word, hopes
were vast and strong, but vague.

To-day, what do we see ? In the first place, a

step in advance immense progress. The relations

between light and electricity are now known
;
the

three domains of light, electricity, and magnetism,

formerly separated, are now one
;
and this annexa

tion seems definitive.

Nevertheless the conquest has caused us some
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sacrifices. Optical phenomena become particular

cases in electric phenomena; as long as the former

remained isolated, it was easy to explain them by
movements which were thought to be known in

all their details. That was easy enough ;
but any

explanation to be accepted must now cover the

whole domain of electricity. This cannot be done

without difficulty.

The most satisfactory theory is that of Lorentz;
it is unquestionably the theory that best explains
the known facts, the one that throws into relief

the greatest number of known relations, the one in

which we find most traces of definitive construc

tion. That it still possesses a serious fault I

have shown above. It is in contradiction with

Newton s law that action and re-action are equal
and opposite or rather, this principle according
to Lorentz cannot be applicable to matter alone

;

if it be true, it must take into account the action

of the ether on matter, and the re-action of the

matter on the ether. Now, in the new order, it is

very likely that things do not happen in this way.
However this may be, it is due to Lorentz that

the results of Fizeau on the optics of moving
bodies, the laws of normal and abnormal dis

persion and of absorption are connected with

each other and with the other properties of the

ether, by bonds which no doubt will not be

readily severed. Look at the ease with which the

new Zeeman phenomenon found its place, and
even aided the classification of Faraday s magnetic
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rotation, which had defied all Maxwell s efforts.

This facility proves that Lorentz s theory is not a

mere artificial combination which must eventually
find its solvent. It will probably have to be

modified, but not destroyed.
The only object of Lorentz was to include in a

single whole all the optics and electro-dynamics
of moving bodies

;
he did not claim to give a

mechanical explanation. Larmor goes further
;

keeping the essential part of Lorentz s theory, he

grafts upon it, so to speak, MacCullagh s ideas on

the direction of the movement of the ether.

MacCullagh held that the velocity of the ether

is the same in magnitude and direction as the

magnetic force. Ingenious as is this attempt, the

fault in Lorentz s theory remains, and is even

aggravated. According to Lorentz, we do not

know what the movements of the ether are; and
because we do not know this, we may suppose
them to be movements compensating those of

matter, and re-affirming that action and re-action

are equal and opposite. According to Larmor
we know the movements of the ether, and we
can prove that the compensation does not take

place.

If Larmor has failed, as in my opinion he has,

does it necessarily follow that a mechanical ex

planation is impossible ? Far from it. I said

above that as long as a phenomenon obeys the

two principles of energy and least action, so long
it allows of an unlimited number of mechanical
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explanations. And so with the phenomena of

optics and electricity.

But this is not enough. For a mechanical

explanation to be good it must be simple ;
to

choose it from among all the explanations that are

possible there must be other reasons than the

necessity of making a choice. Well, we have no

theory as yet which will satisfy this condition and

consequently be of any use. Are we then to

complain ? That would be to forget the end we

seek, which is not the mechanism
;
the true and

only aim is unity.

We ought therefore to set some limits to

our ambition. Let us not seek to formulate a

mechanical explanation ;
let us be content to

show that we can always find one if we wish. In

this we have succeeded. The principle of the

conservation of energy has always been confirmed,
and now it has a fellow in the principle of least

action, stated in the form appropriate to physics.
This has also been verified, at least as far as

concerns the reversible phenomena which obey

Lagrange s equations in other words, which obey
the most general laws of physics. The irreversible

phenomena are much more difficult to bring into

line
;

but they, too, are being co-ordinated and
tend to come into the unity. The light which

illuminates them comes from Carnot s principle.
For a long time thermo-dynamics was confined to

the study of the dilatations of bodies and of their

change of state. For some time past it has been
12
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growing bolder, and has considerably extended its

domain. We owe to it the theories of the voltaic

cell and of their thermo-electric phenomena; there

is not a corner in physics which it has not ex

plored, and it has even attacked chemistry itself.

The same laws hold good ; everywhere, disguised
in some form or other, we find Carnot s principle ;

everywhere also appears that eminently abstract

concept of entropy which is as universal as the

concept of energy, and like it, seems to conceal a

reality. It seemed that radiant heat must escape,

but recently that, too, has been brought under the

same laws.

In this way fresh analogies are revealed which

may be often pursued in detail
;
electric resistance

resembles the viscosity of fluids
; hysteresis would

rather be like the friction of solids. In all cases

friction appears to be the type most imitated by
the most diverse irreversible phenomena, and this

relationship is real and profound.
A strictly mechanical explanation of these

phenomena has also been sought, but, owing to

their nature, it is hardly likely that it will be

found. To find it, it has been necessary to

suppose that the irreversibility is but apparent, that

the elementary phenomena are reversible and obey
the known laws of dynamics. But the elements

are extremely numerous, and become blended

more and more, so that to our crude sight all

appears to tend towards uniformity i.e., all seems

to progress in the same direction, and that without
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hope of return. The apparent irreversibility is

therefore but an effect of the law of great numbers.

Only a being of infinitely subtle senses, such as

Maxwell s demon, could unravel this tangled skein

and turn back the course of the universe.

This conception, which is connected with the

kinetic theory of gases, has cost great effort and

has not, on the whole, been fruitful
;

it may
become so. This is not the place to examine if it

leads to contradictions, and if it is in conformity
with the true nature of things.

Let us notice, however, the original ideas of

M. Gouy on the Brownian movement. According
to this scientist, this singular movement does not

obey Carnot s principle. The particles which it sets

moving would be smaller than the meshes of that

tightly drawn net; they would thus be ready to

separate them, and thereby to set back the course

of the universe. One can almost see Maxwell s

demon at work. 1

To resume, phenomena long known are gradually

being better classified, but new phenomena come
to claim their place, and most of them, like the

Zeeman effect, find it at once. Then we have the

cathode rays, the X-rays, uranium and radium

rays; in fact, a whole world of which none had

suspected the existence. How many unexpected

1 Clerk-Maxwell imagined some supernatural agency at work,

sorting molecules in a gas of uniform temperature into (a] those

possessing kinetic energy above the average, (/;) those possessing
kinetic energy below the average. [Tk.]
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guests to find a place for ! No one can yet predict
the place they will occupy, but I do not believe

they will destroy the general unity : I think that

they will rather complete it. On the one hand,

indeed, the new radiations seem to be connected

with the phenomena of luminosity; not only do

they excite fluorescence, but they sometimes come
into existence under the same conditions as that

property; neither are they unrelated to the cause

which produces the electric spark under the action

of ultra-violet light. Finally, and most important
of all, it is believed that in all these phenomena
there exist ions, animated, it is true, with velocities

far greater than those of electrolytes. All this is

very vague, but it will all become clearer.

Phosphorescence and the action of light on the

spark were regions rather isolated, and consequently
somewhat neglected by investigators. It is to be

hoped that a new path will now be made which

will facilitate their communications with the

rest of science. Not only do we discover new

phenomena, but those we think we know are

revealed in unlooked-for aspects. In the free ether

the laws preserve their majestic simplicity, but

matter properly so called seems more and more

complex ;
all we can say of it is but approximate,

and our formulae are constantly requiring new
terms.

But the ranks are unbroken, the relations that

we have discovered between objects we thought

simple still hold good between the same objects
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when their complexity is recognised, and that

alone is the important thing. Our equations

become, it is true, more and more complicated, so

as to embrace more closely the complexity of

nature
;
but nothing is changed in the relations

which enable these equations to be derived from

each other. In a word, the form of these equations

persists. Take for instance the laws of reflection.

Fresnel established them by a simple and attractive

theory which experiment seemed to confirm. Sub

sequently, more accurate researches have shown
that this verification was but approximate; traces

of elliptic polarisation were detected everywhere.
But it is owing to the first approximation that the

cause of these anomalies was found in the existence

of a transition layer, and all the essentials of

Fresnel s theory have remained. We cannot help

reflecting that all these relations would never have

been noted if there had been doubt in the first

place as to the complexity of the objects they
connect. Long ago it was said: If Tycho had had

instruments ten times as precise, we would never

have had a Kepler, or a Newton, or Astronomy.
It is a misfortune for a science to be born too late,

when the means of observation have become too

perfect. That is what is happening at this moment
with respect to physical chemistry; the founders

are hampered in their general grasp by third and

fourth decimal places; happily they are men of

robust faith. As we get to know the properties
of matter better we see that continuity reigns.
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From the work of Andrews and Van der Waals,
we see how the transition from the liquid to the

gaseous state is made, and that it is not abrupt.

Similarly, there is no gap between the liquid and
solid states, and in the proceedings of a recent

Congress we see memoirs on the rigidity of liquids
side by side with papers on the flow of solids.

With this tendency there is no doubt a loss of

simplicity. Such and such an effect was represented

by straight lines; it is nowr

necessary to connect

these lines by more or less complicated curves.

On the other hand, unity is gained. Separate

categories quieted but did not satisfy the mind.

Finally, a new domain, that of chemistry, has

been invaded by the method of physics, and we see

the birth of physical chemistry. It is still quite

young, but already it has enabled us to connect

such phenomena as electrolysis, osmosis, and the

movements of ions.

From this cursory exposition what can we con

clude? Taking all things into account, we have

approached the realisation of unity. This has not

been done as quickly as was hoped fifty years ago,
and the path predicted has not always been

followed; but, on the whole, much ground has

been gained.



CHAPTER XL

THE CALCULUS OF PROBABILITIES.

No doubt the reader will be astonished to find

reflections on the calculus of probabilities in such

a volume as this. What has that calculus to do

with physical science ? The questions I shall raise

without, however, giving them a solution are

naturally raised by the philosopher who is examin

ing the problems of physics. So far is this the case,

that in the two preceding chapters I have several

times used the words
&quot;probability&quot;

and &quot;chance.&quot;

&quot; Predicted facts,&quot; as I said above,
&quot; can only be

probable.&quot; However solidly founded a predic
tion may appear to be, we are never absolutely
certain that experiment will not prove it false; but

the probability is often so great that practically

it may be accepted. And a little farther on I

added: &quot;See what a part the belief in simplicity

plays in our generalisations. We have verified a

simple law in a large number of particular cases,

and we refuse to admit that this so-often-repeated
coincidence is a mere effect of chance.&quot; Thus, in a

multitude of circumstances the physicist is often

in the same position as the gambler who reckons

up his chances. Every time that he reasons by
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induction, he more or less consciously requires the

calculus of probabilities, and that is why I am

obliged to open this chapter parenthetically, and to

interrupt our discussion of method in the physical

sciences in order to examine a little closer what this

calculus is worth, and what dependence we may
place upon it. The very name of the calculus of

probabilities is a paradox. Probability as opposed
to certainty is what one does not know, and how
can we calculate the unknown ? Yet many eminent

scientists have devoted themselves to this calculus,

and it cannot be denied that science has drawn there

from no small advantage. How can we explain

this apparent contradiction ? Has probability been

defined ? Can it even be defined ? And if it can

not, how can we venture to reason upon it ? The

definition, it will be said, is very simple. The

probability of an event is the ratio of the number

of cases favourable to the event to the total number
of possible cases. A simple example will show how

incomplete this definition is: I throw two dice.

What is the probability that one of the two

at least turns up a 6 ? Each can turn up in six

different ways; the number of possible cases is

6 x 6 = 36. The number of favourable cases is n
;

the probability is - 1

- That is the correct solution.

But why cannot we just as well proceed as follows?

-The points which turn up on the two dice form

= 2 1 different combinations. Among these

combinations, six are favourable
;
the probability
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is Now why is the first method of calculating

the number of possible cases more legitimate than

the second ? In any case it is not the definition

that tells us. We are therefore bound to complete
the definition by saying,

&quot; ... to the total number

of possible cases, provided the cases are equally

probable.&quot; So we are compelled to define the

probable by the probable. How can we know
that two possible cases are equally probable ?

Will it be by a convention ? If we insert at the

beginning of every problem an explicit convention,

well and good ! We then have nothing to do but to

apply the rules of arithmetic and algebra, and we

complete our calculation, when our result cannot

be called in question. But if we wish to make the

slightest application of this result, we must prove
that our convention is legitimate, and we shall find

ourselves in the presence of the very difficulty we

thought we had avoided. It may be said that

common-sense is enough to show us the convention

that should be adopted. Alas ! M. Bertrand has

amused himself by discussing the following simple

problem :

&quot; What is the probability that a chord

of a circle may be greater than the side of the

inscribed equilateral triangle?&quot; The illustrious

geometer successively adopted two conventions

which seemed to be equally imperative in the eyes
of common-sense, and with one convention he finds

J, and with the other J-. The conclusion which

seems to follow- from this is that the calculus of

probabilities is a useless science, that the obscure
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instinct which we call common-sense, and to which

we appeal for the legitimisation of our conventions,
must be distrusted. But to this conclusion we can

no longer subscribe. We cannot do without that

obscure instinct. Without it, science would be

impossible, and without it we could neither discover

nor apply a law. Have we any right, for instance,

to enunciate Newton s law ? No doubt numerous

observations are in agreement with it, but is not

that a simple fact of chance ? and how do we know,

besides, that this law which has been true for so

many generations will not be untrue in the next ?

To this objection the only answer you can give is:

It is very improbable. But grant the law. By
means of it I can calculate the position of Jupiter
in a year from now. Yet have I any right to say
this? Who can tell if a gigantic mass of enormous

velocity is not going to pass near the solar system
and produce unforeseen perturbations ? Here

again the only answer is : It is very improbable.
From this point of view all the sciences would only
be unconscious applications of the calculus of prob
abilities. And if this calculus be condemned, then

the whole of the sciences must also be condemned.

I shall not dwell at length on scientific problems
in which the intervention of the calculus of prob
abilities is more evident. In the forefront of these

is the problem of interpolation, in which, knowing
a certain number of values of a function, we try

to discover the intermediary values. I may also

mention the celebrated theory of errors of observa-
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tion, to which I shall return later; the kinetic

theory of gases, a well-known hypothesis wherein

each gaseous molecule is supposed to describe an

extremely complicated path, but in which, through
the effect of great numbers, the mean phenomena
\vhich are all we observe obey the simple laws of

Mariotte and Gay-Lussac. All these theories are

based upon the laws of great numbers, and the

calculus of probabilities would evidently involve

them in its ruin. It is true that they have only a

particular interest, and that, save as far as inter

polation is concerned, they are sacrifices to which

we might readily be resigned. But I have said

above, it would not be these partial sacrifices that

would be in question ;
it would be the legitimacy

of the whole of science that would be challenged.
I quite see that it might be said: We do not know,
and yet we must act. As for action, we have not

time to devote ourselves to an inquiry that will

suffice to dispel our ignorance. Besides, such an

inquiry would demand unlimited time. We must

therefore make up our minds without knowing.
This must be often done whatever may happen,
and we must follow the rules although we may
have but little confidence in them. What I know

is, not that such a thing is true, but that the best

course for me is to act as if it were true. The
calculus of probabilities, and therefore science

itself, would be no longer of any practical value.

Unfortunately the difficulty does not thus dis

appear. A gambler wants to try a coup, and he
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asks my advice. If I give it him, I use the

calculus of probabilities; but I shall not guarantee
success. That is what I shall call subjective prob

ability. In this case we might be content with the

explanation of which I have just given a sketch.

But assume that an observer is present at the play,
that he knows of the coup, and that play goes
on for a long time, and that he makes a summary
of his notes. He will find that events have

taken place in conformity with the laws of the

calculus of probabilities. That is what I shall call

objective probability, and it is this phenomenon
which has to be explained. There are numerous
Insurance Societies which apply the rules of the

calculus of probabilities, and they distribute to

their shareholders dividends, the objective reality
of which cannot be contested. In order to explain

them, we must do more than invoke our ignorance
and the necessity of action. Thus, absolute scepti
cism is not admissible. We may distrust, but we
cannot condemn en bloc. Discussion is necessary.

I. Classification of the Problems of Probability. In

order to classify the problems which are presented
to us with reference to probabilities, we must look at

them from different points of view, and first of all,

from that of generality. I said above that prob

ability is the ratio of the number of favourable to

the number of possible cases. What for want of a

better term I call generality will increase with the

number of possible cases. This number may be

finite, as, for instance, if we take a throw of the
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dice in which the number of possible cases is 36.

That is the first degree of generality. But if we

ask, for instance, what is the probability that a

point within a circle is within the inscribed square,

there are as many possible cases as there are points

in the circle that is to say, an infinite number.

This is the second degree of generality. Generality
can be pushed further still. We may ask the prob

ability that a function will satisfy a given condi

tion. There are then as many possible cases as one

can imagine different functions. This is the third

degree of generality, which we reach, for instance,

wrhen we try to find the most probable law after a

finite number of observations. Yet we may place

ourselves at a quite different point of view. If we
were not ignorant there would be no probability,

there could only be certainty. But our ignorance
cannot be absolute, for then there would be no

longer any probability at all. Thus the problems
of probability may be classed according to the

greater or less depth of this ignorance. In mathe

matics we may set ourselves problems in prob

ability. What is the probability that the fifth

decimal of a logarithm taken at random from a

table is a 9. There is no hesitation in answering
that this probability is i-ioth. Here we possess
all the data of the problem. We can calculate

our logarithm without having recourse to the

table, but we need not give ourselves the trouble.

This
.
is the first degree of ignorance. In the

physical sciences our ignorance is already greater.
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The state of a system at a given moment depends
on two things its initial state, and the law

according to which that state varies. If we know
both this lawr and this initial state, we have a

simple mathematical problem to solve, and we
fall back upon our first degree of ignorance.
Then it often happens that we know the law

and do not know the initial state. It may be

asked, for instance, what is the present distribu

tion of the minor planets ? We know that from

all time they have obeyed the laws of Kepler,

but we do not know what was their initial dis

tribution. In the kinetic theory of gases we
assume that the gaseous molecules follow recti

linear paths and obey the laws of impact and

elastic bodies; yet as we know nothing of their

initial velocities, we know nothing of their present
velocities. The calculus of probabilities alone

enables us to predict the mean phenomena which

will result from a combination of these velocities.

This is the second degree of ignorance. Finally
it is possible, that not only the initial conditions

but the laws themselves are unknown. We then

reach the third degree of ignorance, and in general
we can no longer affirm anything at all as to the

probability of a phenomenon. It often happens
that instead of trying to discover an event by
means of a more or less imperfect knowledge of

the law, the events may be known, and we want

to find the law
;

or that, instead of deducing
effects from causes, we wish to deduce the causes
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from the effects. Now, these problems are classified

as probability of causes, and are the most interesting

of all from their scientific applications. I play at

ecarte with a gentleman whom I know to be per

fectly honest. What is the chance that he turns

up the king ? It is
-J-.

This is a problem of the

probability of effects. I play with a gentleman
whom I do not know. He has dealt ten times,

and he has turned the king up six times. What
is the chance that he is a sharper ? This is a

problem in the probability of causes. It may be

said that it is the essential problem of the experi

mental method. I have observed n values of x

and the corresponding values of y. I have found

that the ratio of the latter to the former is prac

tically constant. There is the event
;
what is

the cause ? Is it probable that there is a general
law according to which y would be proportional
to x, and that small divergencies are due to errors

of observation ? This is the type of question that

we are ever asking, and which we unconsciously
solve whenever we are engaged in scientific work.

I am now going to pass in review these different

categories of problems by discussing in succession

what I have called subjective and objective prob

ability.

II. Probability in Mathematics. The impossi

bility of squaring the circle was shown in 1885, but

before that date all geometers considered this im

possibility as so
&quot;

probable&quot; that the Academic des

Sciences rejected without examination the, alas !
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too numerous memoirs on this subject that a

few unhappy madmen sent in every year. Was
the Academic wrong ? Evidently not, and it

knew perfectly well that by acting in this

manner it did not run the least risk of stifling

a discovery of moment. The Academic could

not have proved that it was right, but it knew

quite well that its instinct did not deceive it.

If you had asked the Academicians, they would

have answered: &quot;We have compared the prob

ability that an unknown scientist should have

found out what has been vainly sought for so

long, with the probability that there is one mad
man the more on the earth, and the latter has

appeared to us the greater.&quot;
These are very

good reasons, but there is nothing mathematical

about them; they are purely psychological. If

you had pressed them further, they would have

added: &quot; Why do you expect a particular value of

a transcendental function to be an algebraical

number; if ^ be the root of an algebraical equa

tion, why do you expect this root to be a period of

the function sin 2x, and why is it not the same

with the other roots of the same equation?&quot; To
sum up, they would have invoked the principle of

sufficient reason in its vaguest form. Yet what

information could they draw from it ? At most a

rule of conduct for the employment of their time,

which would be more usefully spent at their

ordinary work than in reading a lucubration

that inspired in them a legitimate distrust. But
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what I called above objective probability has

nothing in common with this first problem. It is

otherwise with the second. Let us consider the

first 10,000 logarithms that we find in a table.

Among these 10,000 logarithms I take one at

random. What is the probability that its third

decimal is an even number ? You will say with

out any hesitation that the probability is J, and in

fact if you pick out in a table the third decimals

in these 10,000 numbers you will find nearly as

many even digits as odd. Or, if you prefer it, let

us write 10,000 numbers corresponding to our

10,000 logarithms, writing down for each of these

numbers 4- 1 if the third decimal of the correspond

ing logarithm is even, and - i if odd; and then

let us take the mean of these 10,000 numbers. I

do not hesitate to say that the mean of these

10,000 units is probably zero, and if I were to

calculate it practically, I would verify that it is

extremely small. But this verification is needless.

I might have rigorously proved that this mean is

smaller than 0.003. To prove this result I should

have had to make a rather long calculation for

which there is no room here, and for which I

may refer the reader to an article that I pub
lished in the Revue generate des Sciences, April

I5th, 1899. The only point to which I wish to

draw attention is the following. In this calcula

tion I had occasion to rest my case on only two
facts namely, that the first and second derivatives

of the logarithm remain, in the interval considered,

13
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between certain limits. Hence our first conclusion

is that the property is not only true of the

logarithm but of any continuous function what

ever, since the derivatives of every continuous

function are limited. If I was certain beforehand

of the result, it is because I have often observed

analogous facts for other continuous functions; and

next, it is because I went through in my mind in

a more or less unconscious and imperfect manner

the reasoning which led me to the preceding in

equalities, just as a skilled calculator before finish

ing his multiplication takes into account what it

ought to come to approximately. And besides,

since what I call my intuition was only an incom

plete summary of a piece of true reasoning, it is

clear that observation has confirmed my predic

tions, and that the objective and subjective proba
bilities are in agreement. As a third example I shall

choose the following: The number u is taken at

random and n is a given very large integer. What
is the mean value of sin mi ? This problem has

no meaning by itself. To give it one, a convention

is required namely, we agree that the probability

for the number u to lie between a and a + da is

&amp;lt;j&amp;gt;(a)da;
that it is therefore proportional to the

infinitely small interval da, and is equal to this

multiplied by a function
&amp;lt;/&amp;gt;(/i), only depending

on a. As for this function I choose it arbitrarily,

but I must assume it to be continuous. The value

of sin nu remaining the same when u increases by
2 TT, I may without loss of generality assume that
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u lies between o and 2 TT, and I shall thus be

led to suppose that
&amp;lt;f&amp;gt;(a)

is a periodic function

whose period is 2 TT. The mean value that we
seek is readily expressed by a simple integral,

and it is easy to show that this integral is smaller

than ^, M K being the maximum value of the

Kth derivative of
(f&amp;gt;(u).

We see then that if the

Kth derivative is finite, our mean value will

tend towards zero when n increases indefinitely,

and that more rapidly than -
. The meanr j w&amp;gt;-i

value of sin nu when n is very large is therefore

zero. To define this value I required a conven

tion, but the result remains the same whatever

that convention may be. I have imposed upon

myself but slight restrictions when I assumed that

the function
(j&amp;gt;(a)

is continuous and periodic, and

these hypotheses are so natural that we may ask

ourselves how they can be escaped. Examination

of the three preceding examples, so different in all

respects, has already given us a glimpse on the

one hand of the role of what philosophers call the

principle of sufficient reason, and on the other hand
of the importance of the fact that certain pro

perties are common to all continuous functions.

The study of probability in the physical sciences

will lead us to the same result.

III. Probability in the Physical Sciences. We
now come to the problems which are connected

with what I have called the second degree of
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ignorance namely, those in which we know the

law but do not know the initial state of the

system. I could multiply examples, but I shall

take only one. What is the probable present
distribution of the minor planets on the zodiac ?

We know they obey the laws of Kepler. We may
even, without changing the nature of the problem,

suppose that their orbits are circular and situated

in the same plane, a plane which we are given.

On the other hand, we know absolutely nothing
about their initial distribution. However, we do

not hesitate to affirm that this distribution is now

nearly uniform. Why? Let b be the longitude

of a minor planet in the initial epoch that is to

say, the epoch zero. Let a be its mean motion.

Its longitude at the present time i.e., at the time

/ will be at + b. To say that the present distribu

tion is uniform is to say that the mean value of

the sines and cosines of multiples of at + b is zero.

Why do we assert this ? Let us represent our

minor planet by a point in a plane namely, the

point whose co-ordinates are a and b. All these

representative points will be contained in a certain

region of the plane, but as they are very numerous

this region will appear dotted with points. We
know nothing else about the distribution of the

points. Now what do we do when we apply the

calculus of probabilities to such a question as

this ? What is the probability that one or more

representative points may be found in a certain

portion of the plane ? In our ignorance we are
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compelled to make an arbitrary hypothesis. To

explain the nature of this hypothesis I may be

allowed to use, instead of a mathematical formula,

a crude but concrete image. Let us suppose
that over the surface of our plane has been

spread imaginary matter, the density of which is

variable, but varies continuously. We shall then

agree to say that the probable number of repre
sentative points to be found on a certain portion
of the plane is proportional to the quantity of

this imaginary matter which is found there. If

there are, then, two regions of the plane of the

same extent, the probabilities that a representative

point of one of our minor planets is in one or

other of these regions will be as the mean densities

of the imaginary matter in one or other of the

regions. Here then are two distributions, one

real, in which the representative points are very

numerous, very close together, but discrete like the

molecules of matter in the atomic hypothesis; the

other remote from reality, in which our representa
tive points are replaced by imaginary continuous

matter. We know that the latter cannot be real,

but we are forced to adopt it through our ignorance.

If, again, we had some idea of the real distribution

of the representative points, we could arrange it so

that in a region of some extent the density of this

imaginary continuous matter may be nearly pro

portional to the number of representative points,

or, if it is preferred, to the number of atoms which

are contained in that region. Even that is im-
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possible, and our ignorance is so great that we are

forced to choose arbitrarily the function which

defines the density of our imaginary matter. We
shall be compelled to adopt a hypothesis from

which we can hardly get away ;
we shall sup

pose that this function is continuous. That is

sufficient, as we shall see, to enable us to reach our

conclusion.

What is at the instant t the probable distribu

tion of the minor planets or rather, what is the

mean value of the sine of the longitude at the

moment t i.e., of sin (at + b)? We made at the

outset an arbitrary convention, but if we adopt it,

this probable value is entirely defined. Let us

decompose the plane into elements of surface.

Consider the value of sin (at + b) at the centre of

each of these elements. Multiply this value by the

surface of the element and by the corresponding

density of the imaginary matter. Let us then take

the sum for all the elements of the plane. This

sum, by definition, will be the probable mean
value we seek, which will thus be expressed by a

double integral. It may be thought at first that

this mean value depends on the choice of the

function &amp;lt; which defines the density of the imagin

ary matter, and as this function
&amp;lt;/&amp;gt;

is arbitrary, we

can, according to the arbitrary choice which we

make, obtain a certain mean value. But this is

not the case. A simple calculation shows us that

our double integral decreases very rapidly as t

increases. Thus, I cannot tell what hypothesis to
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make as to the probability of this or that initial

distribution, but when once the hypothesis is

made the result will be the same, and this gets

me out of my difficulty. Whatever the function

&amp;lt;/&amp;gt; may be, the mean value tends towards zero

as t increases, and as the minor planets have

certainly accomplished a very large number of

revolutions, I may assert that this mean value is

very small. I may give to
&amp;lt;/&amp;gt; any value I choose,

with one restriction : this function must be con

tinuous; and, in fact, from the point of view of

subjective probability, the choice of a discontinuous

function would have been unreasonable. What
reason could I have, for instance, for supposing
that the initial longitude might be exactly o, but

that it could not lie between o and i ?

The difficulty reappears if we look at it from the

point of view of objective probability; if we pass
from our imaginary distribution in which the sup

posititious matter was assumed to be continuous,

to the real distribution in which our representative

points are formed as discrete atoms. The mean
value of sin (at + b) will be represented quite

simply by

\
sin (at + b),

n being the number of minor planets. Instead of

a double integral referring to a continuous

function, we shall have a sum of discrete terms.

However, no one will seriously doubt that this

mean value is practically very small. Our repre-
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sentative points being very close together, our

discrete sum will in general differ very little from

an integral. An integral is the limit towards

which a sum of terms tends when the number of

these terms is indefinitely increased. If the terms

are very numerous, the sum will differ very little

from its limit that is to say, from the integral,

and what I said of the latter will still be true of

the sum itself. But there are exceptions. If, for

instance, for all the minor planets b = - -at, the

longitude of all the planets at the time t would be

,
and the mean value in question would be

evidently unity. For this to be the case at the

time o, the minor planets must have all been

lying on a kind of spiral of peculiar form, with

its spires very close together. All will admit that

such an initial distribution is extremely im

probable (and even if it were realised, the distribu

tion would not be uniform at the present time for

example, on the ist January 1900 ;
but it would

become so a few years later). Why, then, do we
think this initial distribution improbable ? This

must be explained, for if we are wrong in rejecting

as improbable this absurd hypothesis, our inquiry
breaks down, and we can no longer affirm any

thing on the subject of the probability of this or

that present distribution. Once more we shall

invoke the principle of sufficient reason, to which

we must always recur. We might admit that at

the beginning the planets were distributed almost
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in a straight line. We might admit that they
were irregularly distributed. But it seems to us

that there is no sufficient reason for the unknown
cause that gave them birth to have acted along a

curve so regular and yet so complicated, which

would appear to have been expressly chosen so

that the distribution at the present day would not

be uniform.

IV. Rouge ct Noir. The questions raised by

games of chance, such as roulette, are, funda

mentally, quite analogous to those we have just

treated. For example, a wheel is divided into thirty-

seven equal compartments, alternately red and

black. A ball is spun round the wheel, and after

having moved round a number of times, it stops in

front of one of these sub-divisions. The probability
that the division is red is obviously ^. The needle

describes an angle 0, including several complete
revolutions. I do not know what is the prob

ability that the ball is spun with such a force that

this angle should lie between and & + (!&, but I

can make a convention. I can suppose that this

probability is
&amp;lt;j&amp;gt;(6)dQ.

As for the function
&amp;lt;/&amp;gt;(#),

I

can choose it in an entirely arbitrary manner. I

have nothing to guide me in my choice, but I am

naturally induced to suppose the function to be

continuous. Let e be a length (measured on the

circumference of the circle of radius unity) of each

red and black compartment. We have to calcu

late the integral of ^(0)dB, extending it on the one

hand to all the red, and on the other hand to all
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the black compartments, and to compare the

results. Consider an interval 2 e comprising two
consecutive red and black compartments. Let

M and in be the maximum and minimum values of

the function
&amp;lt;/&amp;gt;(#)

in this interval. The integral
extended to the red compartments will be smaller

than Z Me; extended to the black it will be greater
than Z inc. The difference will therefore be

smaller than 21 (M - m) e . But if the function
4&amp;gt;

is

supposed continuous, and if on the other hand the

interval c is very small with respect to the total

angle described by the needle, the difference M -m
will be very small. The difference of the two

integrals will be therefore very small, and the

probability will be very nearly J. We see that

without knowing anything of the function
&amp;lt;f&amp;gt;

we
must act as if the probability were J. And on

the other hand it explains why, from the

objective point of view, if I watch a certain

number of coups, observation will give me almost

as many black coups as red. All the players
know this objective law; but it leads them into a

remarkable error, which has often been exposed,
but into which they are always falling. When
the red has won, for example, six times running,

they bet on black, thinking that they are playing
an absolutely safe game, because they say it is

a very rare thing for the red to win seven times

running. In reality their probability of winning
is still ^. Observation shows, it is true, that

the series of seven consecutive reds is very rare,
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but series of six reds followed by a black are

also very rare. They have noticed the rarity of

the series of seven reds; if they have not remarked

the rarity of six reds and a black, it is only
because such series strike the attention less.

V. The Probability of Causes.- We now come to

the problems of the probability of causes, the

most important from the point of view of

scientific applications. Two stars, for instance,

are very close together on the celestial sphere. Is

this apparent contiguity a mere effect of chance ?

Are these stars, although almost on the same
visual ray, situated at very different distances

from the earth, and therefore very far indeed from

one another ? or does the apparent correspond
to a real contiguity ? This is a problem on the

probability of causes.

First of all, I recall that at the outset of all

problems of probability of effects that have

occupied our attention up to now, we have had

to use a convention which was more or less

justified; and if in most cases the result was to

a certain extent independent of this convention,

it was only the condition of certain hypotheses
which enabled us a priori to reject discontinuous

functions, for example, or certain absurd con

ventions. We shall again find something

analogous to this when we deal with the prob

ability of causes. An effect may be produced

by the cause a or by the cause b. The effect

has just been observed. We ask the probability
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that it is due to the cause a. This is an a

posteriori probability of cause. But I could not

calculate it, if a convention more or less justified

did not tell me in advance what is the a priori

probability for the cause a to come into play
I mean the probability of this event to some one

who had not observed the effect. To make my
meaning clearer, I go back to the game of ecarte

mentioned before. My adversary deals for the

first time and turns up a king. What is the

probability that he is a sharper ? The formulae

ordinarily taught give -J,
a result which is

obviously rather surprising. If we look at it

closer, we see that the conclusion is arrived at

as if, before sitting down at the table, I had

considered that there was one chance in two
that my adversary was not honest. An absurd

hypothesis, because in that case I should certainly
not have played with him

;
and this explains the

absurdity of the conclusion. The function on

the a priori probability was unjustified, and that

is why the conclusion of the a posteriori probability
led me into an inadmissible result. The import
ance of this preliminary convention is obvious.

I shall even add that if none were made, the

problem of the a posteriori probability would have

no meaning. It -must be always made either

explicitly or tacitly.

Let us pass on to an example of a more
scientific character. I require to determine an

experimental law; this law, when discovered, can
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be represented by a curve. I make a certain

number of isolated observations, each of which

may be represented by a point. When I have

obtained these different points, I draw a curve

between them as carefully as possible, giving

my curve a regular form, avoiding sharp angles,

accentuated inflexions, and any sudden variation

of the radius of curvature. This curve will repre
sent to me the probable law, and not only will

it give me the values of the functions intermediary
to those which have been observed, but it also

gives me the observed values more accurately
than direct observation does; that is why I make
the curve pass near the points and not through
the points themselves.

Here, then, is a problem in the probability of

causes. The effects are the measurements I have

recorded; they depend on the combination of twro

causes the true law of the phenomenon and errors

of observation. Knowing the effects, we have to

find the probability that the phenomenon shall

obey this law or that, and that the observations

have been accompanied by this or that error.

The most probable law, therefore, corresponds to

the curve we have traced, and the most probable
error is represented by the distance of the cor

responding point from that curve. But the

problem has no meaning if before the observa

tions I had an a priori idea of the probability of

this law or that, or of the chances of error to

which I am exposed. If my instruments are



206 SCIENCE AND HYPOTHESIS.

good (and I knew whether this is so or not before

beginning the observations), I shall not draw the

curve far from the points which represent the

rough measurements. If they are inferior, I may
draw it a little farther from the points, so that I

may get a less sinuous curve; much will be sacri

ficed to regularity.

Why, then, do I draw a curve without sinu

osities ? Because I consider a priori a law

represented by a continuous function (or function

the derivatives of which to a high order are small),

as more probable than a law not satisfying those

conditions. But for this conviction the problem
would have no meaning ; interpolation would be

impossible; no law could be deduced from a

finite number of observations
;

science would
cease to exist.

Fifty years ago physicists considered, other

things being equal, a simple law as more probable
than a complicated law. This principle was even

invoked in favour of Mariotte s law as against
that of Regnault. But this belief is now

repudiated ;
and yet, how many times are we

compelled to act as though we still held it!

However that may be, what remains of this

tendency is the belief in continuity, and as we
have just seen, if the belief in continuity were

to disappear, experimental science would become

impossible.
VI. The Theory of Errors. We are thus brought

to consider the theory of errors which is directly
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connected with the problem of the probability

of causes. Here again we find effects to wit,

a certain number of irreconcilable observations,

and we try to find the causes which are, on the

one hand, the true value of the quantity to be

measured, and, on the other, the error made in

each isolated observation. We must calculate

the probable a posteriori value of each error, and

therefore the probable value of the quantity to be

measured. But, as I have just explained, we
cannot undertake this calculation unless we admit

a priori i.e., before any observations are made
that there is a law of the probability of errors.

Is there a law of errors ? The law to which

all calculators assent is Gauss s law, that is

represented by a certain transcendental curve

known as the
&quot;

bell.&quot;

But it is first of all necessary to recall

the classic distinction between systematic and

accidental errors. If the metre with which we
measure a length is too long, the number we get

will be too small, and it will be no use to measure

several times that is a systematic error. If we
measure with an accurate metre, we may make a

mistake, and find the length sometimes too large

and sometimes too small, and when we take the

mean of a large number of measurements,
the error will tend to grow small. These are

accidental errors.

It is clear that systematic errors do not satisfy

Gauss s law, but do accidental errors satisfy it ?
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Numerous proofs have been attempted, almost all

of them crude paralogisms. But starting from

the following hypotheses we may prove Gauss s

law : the error is the result of a very large number
of partial and independent errors

; each partial

error is very small and obeys any law of prob

ability whatever, provided the probability of a

positive error is the same as that of an equal

negative error. It is clear that these conditions

will be often, but not always, fulfilled, and we

may reserve the name of accidental for errors

which satisfy them.

We see that the method of least squares is not

legitimate in every case
;

in general, physicists
are more distrustful of it than astronomers. This

is no doubt because the latter, apart from the

systematic errors to which they and the physicists
are subject alike, have to contend with an

extremely important source of error which is

entirely accidental I mean atmospheric undula

tions. So it is very curious to hear a discussion

between a physicist and an astronomer about a

method of observation. The physicist, persuaded
that one good measurement is wrorth more than

many bad ones, is pre-eminently concerned with

the elimination by means of every precaution of

the final systematic errors; the astronomer retorts :

&quot; But you can only observe a small number of stars,

and accidental errors will not disappear.&quot;

What conclusion must we draw7
? Must we

continue to use the method of least squares ?
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We must distinguish. We have eliminated all

the systematic errors of which we have any

suspicion ;
we are quite certain that there are

others still, but we cannot detect them
;
and yet

we must make up our minds and adopt a definitive

value which will be regarded as the probable
value

;
and for that purpose it is clear that the

best thing we can do is to apply Gauss s law.

We have only applied a practical rule referring

to subjective probability. And there is no more

to be said.

Yet we want to go farther and say that not

only the probable value is so much, but that the

probable error in the result is so much. This

is absolutely invalid : it would be true only if

we were sure that all the systematic errors

were eliminated, and of that we know absolutely

nothing. We have two series of observations; by

applying the law of least squares we find that the

probable error in the first series is twice as small

as in the second. The second series may, how

ever, be more accurate than the first, because the

first is perhaps affected by a large systematic
error. All that we can say is, that the first series

is probably better than the second because its

accidental error is smaller, and that we have no

reason for affirming that the systematic error is

greater for one of the series than for the other,

our ignorance on this point being absolute.

VII. Conclusions. In the preceding lines I have

set several problems, and have given no solution.

14
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I do not regret this, for perhaps they will invite

the reader to reflect on these delicate questions.

However that may be, there are certain points

which seem to be well established. To undertake

the calculation of any probability, and even for

that calculation to have any meaning at all, we

must admit, as a point of departure, an hypothesis
or convention which has always something

arbitrary about it. In the choice of this con

vention we can be guided only by the principle

of sufficient reason. Unfortunately, this principle

is very vague and very elastic, and in the cursory

examination we have just made we have seen it

assume different forms. The form under which

we meet it most often is the belief in continuity,

a belief which it would be difficult to justify by

apodeictic reasoning, but without which all science

would be impossible. Finally, the problems to

which the calculus of probabilities may be applied

with profit are those in which the result is inde

pendent of the hypothesis made at the outset,

provided only that this hypothesis satisfies the

condition of continuity.



CHAPTER XII. 1

OPTICS AND ELECTRICITY.

FresneVs Theory. The best example that can be

chosen is the theory of light and its relations

to the theory of electricity. It is owing to Fresnel

that the science of optics is more advanced than

any other branch of physics. The theory called the

theory of undulations forms a complete whole,

which is satisfying to the mind
;

but we must
not ask from it what it cannot give us. The

object of mathematical theories is not to reveal

to us the real nature of things; that would be

an unreasonable claim. Their only object is to

co-ordinate the physical laws with which physical

experiment makes us acquainted, the enunciation

of which, without the aid of mathematics, we
should be unable to effect. Whether the ether

exists or not matters little let us leave that to

the metaphysicians; what is essential for us is, that

everything happens as if it existed, and that this

hypothesis is found to be suitable for the explana
tion of phenomena. After all, have we any other

1 This chapter is mainly taken from the prefaces of two of my
books^ Theorie Mathematique de la lumiere (Paris: Naud, 1889),

and Electricite et Optique (Paris: Naud, 1901).
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reason for believing in the existence of material

objects? That, too, is only a convenient hypothesis ;

only, it will never cease to be so, while some day,
no doubt, the ether will be thrown aside as useless.

But at the present moment the laws of optics,

and the equations which translate them into the

language of analysis, hold good at least as a first

approximation. It will therefore be always useful

to study a theory which brings these equations
into connection.

The undulatory theory is based on a molecular

hypothesis ;
this is an advantage to those who

think they can discover the cause under the law.

But others find in it a reason for distrust
;
and

this distrust seems to me as unfounded as the

illusions of the former. These hypotheses play
but a secondary role. They may be sacrificed,

and the sole reason why this is not generally done

is, that it would involve a certain loss of lucidity

in the explanation. In fact, if we look at it a

little closer we shall see that we borrow from

molecular hypotheses but two things the principle

of the conservation of energy, and the linear form

of the equations, which is the general law of small

movements as of all small variations. This ex

plains why most of the conclusions of Fresnel

remain unchanged when we adopt the electro

magnetic theory of light.

Maxwell s Theory. We all know that it was

Maxwell who connected by a slender tie two

branches of physics optics and electricity until
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then unsuspected of having anything in common.
Thus blended in a larger aggregate, in a higher

harmony, Fresnel s theory of optics did not perish.

Parts of it are yet alive, and their mutual relations

are still the same. Only, the language which we
use to express them has changed ; and, on the

other hand, Maxwell has revealed to us other

relations, hitherto unsuspected, between the

different branches of optics and the domain of

electricity.

The first time a French reader opens Maxwell s

book, his admiration is tempered with a feeling of

uneasiness, and often of distrust.

It is only after prolonged study, and at the cost

of much effort, that this feeling disappears. Some
minds of high calibre never lose this feeling. Why
is it so difficult for the ideas of this English
scientist to become acclimatised among us? No
doubt the education received by most enlightened
Frenchmen predisposes them to appreciate pre
cision and logic more than any other qualities.

In this respect the old theories of mathematical

physics gave us complete satisfaction. All our

masters, from Laplace to Cauchy, proceeded along
the same lines. Starting with clearly enunciated

hypotheses, they deduced from them all their

consequences with mathematical rigour, and then

compared them with experiment. It seemed to

be their aim to give to each of the branches

of physics the same precision as to celestial

mechanics.
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A mind accustomed to admire such models is

not easily satisfied with a theory. Not only will

it not tolerate the least appearance of contradic

tion, but it will expect the different parts to be

logically connected with one another, and will

require the number of hypotheses to be reduced

to a minimum.
This is not all

;
there will be other demands

which appear to me to be less reasonable. Behind

the matter of which our senses are aware, and

which is made known to us by experiment, such

a thinker will expect to see another kind of matter

the only true matter in its opinion which will

no longer have anything but purely geometrical

qualities, and the atoms of which will be mathe

matical points subject to the laws of dynamics
alone. And yet he will try to represent to

himself, by an unconscious contradiction, these

invisible and colourless atoms, and therefore

to bring them as close as possible to ordinary
matter.

Then only will he be thoroughly satisfied, and

he will then imagine that he has penetrated the

secret of the universe. Even if the satisfaction is

fallacious, it is none the less difficult to give it up.

Thus, on opening the pages of Maxwell, a French

man expects to find a theoretical whole, as logical

and as precise as the physical optics that is founded

on the hypothesis of the ether. He is thus pre

paring for himself a disappointment which I

should like the reader to avoid
;

so I will warn
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him at once of what he will find and what he will

not find in Maxwell.

Maxwell does not give a mechanical explanation
of electricity and magnetism ;

he confines himself

to showing that such an explanation is possible,

He shows that the phenomena of optics are only
a particular case of electro-magnetic phenomena.
From the whole theory of electricity a theory of

light can be immediately deduced. Unfortunately
the converse is not true

;
it is not always easy to

find a complete. explanation of electrical pheno
mena. In particular it is not easy if we take

as our starting-point Fresnel s theory; to do so,

no doubt, would be impossible; but none the less

we must ask ourselves if we are compelled to

surrender admirable results which we thought we
had definitively acquired. That seems a step

backwards, and many sound intellects will not

willingly allow of this.

Should the reader consent to set some bounds

to his hopes, he will still come across other

difficulties. The English scientist does not try

to erect a unique, definitive, and well-arranged

building; he seems to raise rather a large number
of provisional and independent constructions,

between which communication is difficult and

sometimes impossible. Take, for instance, the

chapter in which electrostatic attractions are

explained by the pressures and tensions of the

dielectric medium. This chapter might be sup

pressed without the rest of the book being
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thereby less clear or less complete, and yet
it contains a theory which is self-sufficient, and
which can be understood without reading a

word of what precedes or follows. But it is

not only independent of the rest of the book
;

it

is difficult to reconcile it with the fundamental

ideas of the volume. Maxwell does not even

attempt to reconcile it; he merely says: &quot;I have

not been able to make the next step namely, to

account by mechanical considerations for these

stresses in the dielectric.&quot;

This example will be sufficient to show wrhat

I mean
;

I could quote many others. Thus, who
would suspect on reading the pages devoted to

magnetic rotatory polarisation that there is an

identity between optical and magnetic pheno
mena ?

We must not flatter ourselves that we have

avoided every contradiction, but we ought to

make up our minds. Two contradictory theories,

provided that they are kept from overlapping, and
that we do not look to find in them the explana
tion of things, may, in fact, be very useful instru

ments of research
;
and perhaps the reading of

Maxwell would be less suggestive if he had not

opened up to us so many new and divergent ways.
But the fundamental idea is masked, as it were.

So far is this the case, that in most works that are

popularised, this idea is the only point which is

left completely untouched. To show the import
ance of this, I think I ought to explain in what this
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fundamental idea consists
;

but for that purpose
a short digression is necessary.

The Mechanical Explanation of Physical Phenomena.

In every physical phenomenon there is a certain

number of parameters which are reached directly

by experiment, and which can be measured. I

shall call them the parameters q. Observation

next teaches us the laws of the variations of these

parameters, and these laws can be generally stated

in the form of differential equations which connect

together the parameters q and time. What can

be done to give a mechanical interpretation to

such a phenomenon ? We may endeavour to

explain it, either by the movements of ordinary

matter, or by those of one or more hypothetical
fluids. These fluids will be considered as formed

of a very large number of isolated molecules m.

When may we say that we have a complete
mechanical explanation of the phenomenon? It

will be, on the one hand, when we know the

differential equations which are satisfied by the

co-ordinates of these hypothetical molecules /;/,

equations which must, in addition, conform to the

laws of dynamics; and, on the other hand, when we
know the relations which define the co-ordinates

of the molecules m as functions of the parameters

q, attainable by experiment. These equations, as

I have said, should conform to the principles of

dynamics, and, in particular, to the principle of

the conservation of energy, and to that of least

action.
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The first of these two principles teaches us that

the total energy is constant, and may be divided

into two parts :

(i) Kinetic energy, or vis viva, which depends
on the masses of the hypothetical molecules m,
and on their velocities. This I shall call T. (2)

The potential energy which depends only on the

co-ordinates of these molecules, and this I shall

call U. It is the sum of the energies T and U that

is constant.

Now what are we taught by the principle of

least action ? It teaches us that to pass from the

initial position occupied at the instant t
o to

the final position occupied at the instant tlf the

system must describe such a path that in the

interval of time between the instant t
o
and tv

the mean value of the action i.e., the difference

between the two energies T and U, must be as

small as possible. The first of these two principles

is, moreover, a consequence of the second. If we
know the functions T and U, this second principle
is sufficient to determine the equations of motion.

Among the paths which enable us to pass from

one position to another, there is clearly one for

which the mean value of the action is smaller than

for all the others. In addition, there is only^such

path ;
and it follows from this, that the principle

of least action is sufficient to determine the path
followed, and therefore the equations of motion.

We thus obtain what are called the equations of

Lagrange. In these equations the independent
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variables are the co-ordinates of the hypothetical
molecules m; but I now assume that we take for

the variables the parameters q, which are directly

accessible to experiment.
The two parts of the energy should then be

expressed as a function of the parameters q and

their derivatives
;

it is clear that it is under this

form that they will appear to the experimenter.
The latter will naturally endeavour to define

kinetic and potential energy by the aid of

quantities he can directly observe. 1 If this be

granted, the system will always proceed from one

position to another by such a path that the mean
value of the action is a minimum. It matters

little that T and U are now expressed by the aid

of the parameters q and their derivatives
;

it

matters little that it is also by the aid of these

parameters that we define the initial and fina

positions; the principle of least action will always
remain true.

Now here again, of the whole of the paths which

lead from one position to another, there is one and

only one for which the mean action is a minimum.
The principle of least action is therefore sufficient

for the determination of the differential equations
which define the variations of the parameters q.

The equations thus obtained are another form of

Lagrange s equations.
1 We may add that U will depend only on the q parameters, that

T will depend on them and their derivatives with respect to time,

and will be a homogeneous polynomial of the second degree with

respect to these derivatives.
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To form these equations we need not know the

relations which connect the parameters q with the

co-ordinates of the hypothetical molecules, nor the

masses of the molecules, nor the expression of U
as a function of the co-ordinates of these molecules.

All we need know is the expression of U as a

function of the parameters q, and that of T as a

function of the parameters q and their derivatives

i.e., the expressions of the kinetic and potential

energy in terms of experimental data.

One of two things must now happen. Either for

a convenient choice of T and U the Lagrangian

equations, constructed as we have indicated, will

be identical with the differential equations deduced

from experiment, or there will be no functions T
and U for which this identity takes place. In the

latter case it is clear that no mechanical explana
tion is possible. The necessary condition for a

mechanical explanation to be possible is therefore

this : that we may choose the functions T and U so

as to satisfy the principle of least action, and of the

conservation of energy. Besides, this condition is

sufficient. Suppose, in fact, that we have found a

function U of the parameters q, which represents
one of the parts of energy, and that the part of the

energy which we represent by T is a function of

the parameters q and their derivatives; that it

is a polynomial of the second degree with respect
to its derivatives, and finally that the Lagrangian

equations formed by the aid of these two functions

T and U are in conformity with the data of the
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experiment. How can we deduce from this a

mechanical explanation ? U must be regarded as

the potential energy of a system of which T is the

kinetic energy. There is no difficulty as far as U
is concerned, but can T be regarded as the vis viva

of a material system ?

It is easily shown that this is always possible,

and in an unlimited number of ways. I will be

content with referring the reader to the pages of

the preface of my lectricite et Optiqne for further

details. Thus, if the principle of least action

cannot be satisfied, no mechanical explanation is

possible; if it can be satisfied, there is not only one

explanation, but an unlimited number, whence it

follows that since there is one there must be an

unlimited number.

One more remark. Among the quantities that

may be reached by experiment directly we shall

consider some as the co-ordinates of our hypo
thetical molecules, some will be our parameters &amp;lt;/,

and the rest will be regarded as dependent not

only on the co-ordinates but on the velocities or

what comes to the same thing, we look on them as

derivatives of the parameters q, or as combinations

of these parameters and their derivatives.

Here then a question occurs: among all these

quantities measured experimentally which shall we
choose to represent the parameters q ? and which

shall we prefer to regard as the derivatives of these

parameters ? This choice remains arbitrary to a

large extent, but a mechanical explanation will be
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possible if it is done so as to satisfy the principle of

least action.

Next, Maxwell asks : Can this choice and that of

the two energies T and U be made so that electric

phenomena will satisfy this principle ? Experiment
shows us that the energy of an electro-magnetic
iield decomposes into electro-static and electro-

dynamic energy. Maxwell recognised that if we

regard the former as the potential energy U, and
the latter as the kinetic energy T, and that if on

the other hand we take the electro-static charges
of the conductors as the parameters q, and the in

tensity of the currents as derivatives of other

parameters (/under these conditions, Maxwell
has recognised that electric phenomena satisfies the

principle of least action. He was then certain of

a mechanical explanation. If he had expounded
this theory at the beginning of his first volume,
instead of relegating it to a corner of the second, it

would not have escaped the attention of most
readers. If therefore a phenomenon allows of a

complete mechanical explanation, it allows of an

unlimited number of others, which will equally take

into account all the particulars revealed by experi
ment. And this is confirmed by the history of

every branch of physics. In Optics, for instance,

Fresnel believed vibration to be perpendicular to

the plane of polarisation; Neumann holds that it is

parallel to that plane. For a long time an experi-

mcntum crucis was sought for, which would enable

us to decide between these two theories, but in
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vain. In the same way, without going out of the

domain of electricity, we find that the theory of

two fluids and the single fluid theory equally

account in a satisfactory manner for all the laws

of electro-statics. All these facts are easily ex

plained, thanks to the properties of the Lagrange

equations.
It is easy now to understand Maxwell s funda

mental idea. To demonstrate the possibility of a

mechanical explanation of electricity we need not

trouble to find the explanation itself; we need only
know the expression of the two functions T and U,

which are the two parts of energy, and to form with

these two functions Lagrange s equations, and

then to compare these equations with the experi

mental laws.

How shall we choose from all the possible

explanations one in which the help of experiment
will be wanting ? The day will perhaps come
when physicists will no longer concern themselves

with questions which are inaccessible to positive

methods, and will leave them to the metaphy
sicians. That day has not yet come; man does not

so easily resign himself to remaining for ever ignor
ant of the causes of things. Our choice cannot be

therefore any longer guided by considerations in

which personal appreciation plays too large a part.

There are, however, solutions which all will reject

because of their fantastic nature, and others which
all will prefer because of their simplicity. As
far as magnetism and electricity are concerned,
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Maxwell abstained from making any choice. It is

not that he has a systematic contempt for all that

positive methods cannot reach, as may be seen

from the time he has devoted to the kinetic theory
of gases. I may add that if in his magnum opus he

develops no complete explanation, he has attempted
one in an article in the Philosophical Magazine.
The strangeness and the complexity of the

hypotheses he found himself compelled to make,
led him afterwards to withdraw it.

The same spirit is found throughout his whole

work. He throws into relief the essential i.e.,

what is common to all theories; everything that

suits only a particular theory is passed over almost

in silence. The reader therefore finds himself in

the presence of form nearly devoid of matter,
which at first he is tempted to take as a fugitive

and unassailable phantom. But the efforts he is

thus compelled to make force him to think, and

eventually he sees that there is often something
rather artificial in the theoretical &quot;aggregates&quot;

which he once admired.



CHAPTER XIII.

ELECTRO-DYNAMICS.

THE history of electro-dynamics is very instructive

from our point of view. The title of Ampere s

immortal work is, Thcorie dcs phenomenes electro-

dynamiqucs, uniqueinent fondee sur experience. He
therefore imagined that he had made no hypotheses;
but as we shall not be long in recognising, he was
mistaken

; only, of these hypotheses he was quite
unaware. On the other hand, his successors see

them clearly enough, because their attention is

attracted by the weak points in Ampere s solution.

They made fresh hypotheses, but this time

deliberately. How many times they had to change
them before they reached the classic system, which

is perhaps even now not quite definitive, we shall

see.

I. Ampere s Theory. In Ampere s experimental

study of the mutual action of currents, he has

operated, and he could operate only, with closed

currents. This was not because he denied the

existence or possibility of open currents. If two

conductors are positively and negatively charged
and brought into communication by a wire, a

current is set up which passes from one to the

15
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other until the two potentials are equal. Accord

ing to the ideas of Ampere s time, this was

considered to be an open current
;
the current was

known to pass from the first conductor to the

second, but they did not know it returned from the

second to the first. All currents of this kind were

therefore considered by Ampere to be open-
currents for instance, the currents of discharge
of a condenser; he was unable to experiment on

them, their duration being too short. Another

kind of open current may be imagined. Suppose
we have two conductors A and B connected by a

wire AMB. Small conducting masses in motion

are first of all placed in contact with the conductor

B, receive an electric charge, and leaving B are

set in motion along a path BNA, carrying their

charge with them. On coming into contact with A
they lose their charge, which then returns to B

along the wire AMB. Now here we have, in a

sense, a closed circuit, since the electricity describes

the closed circuit BNAMB; but the two parts of

the current are quite different. In the wire AMB
the electricity is displaced through a fixed conductor

like a voltaic current, overcoming an ohmic resist

ance and developing heat; we say that it is

displaced by conduction. In the part BNA the

electricity is carried by a moving conductor, and is

said to be displaced by convection. If therefore the

convection current is considered to be perfectly

analogous to the conduction current, the circuit

BNAMB is closed; if on the contrary the convec-
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tion current is not a &quot;

true current,&quot; and, for

instance, does not act on the magnet, there is only

the conduction current AMB, which is open. For

example, if we connect by a wire the poles of a

Holtz machine, the charged rotating disc transfers

the electricity by convection from one pole to the

other, and it returns to the first pole by conduction

through the wire. But currents of this kind are

very difficult to produce with appreciable intensity;

in fact, with the means at Ampere s disposal we

may almost say it was impossible.
To sum up, Ampere could conceive of the exist

ence of two kinds of open currents, but he could

experiment on neither, because they were not

strong enough, or because their duration was too

short. Experiment therefore could only show him

the action of a closed current on a closed current

or more accurately, the action of a closed current

on a portion of current, because a current can be

made to describe a closed circuit, ofwhich part may
be in motion and the other part fixed. The displace
ments of the moving part may be studied under the

action of another closed current. On the other

hand, Ampere had no means of studying the action

of an open current either on a closed or on another

open current.

i. The Case of Closed Currents. In the case of

the mutual action of two closed currents, ex

periment revealed to Ampere remarkably simple
laws. The following will be useful to us in the

sequel :
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(1) If the intensity of the currents is kept constant,

and if the two circuits, after having undergone any

displacements and deformations whatever, return

finally to their initial positions, the total work

done by the electro-dynamical actions is zero. In

other words, there is an electro-dynamical potential

of the two circuits proportional to the product of

their intensities, and depending on the form and

relative positions of the circuits
;
the work done

by the electro-dynamical actions is equal to the

change of this potential.

(2) The action of a closed solenoid is zero.

(3) The action of a circuit C on another voltaic

circuit C depends only on the &quot;

magnetic field
&quot;

developed by the circuit C. At each point in

space we can, in fact, define in magnitude and

direction a certain force called
&quot;

magnetic force,&quot;

which enjoys the following properties:

(a) The force exercised by C on a magnetic

pole is applied to that pole, and is equal to the

magnetic force multiplied by the magnetic mass

of the pole.

(6) A very short magnetic needle tends to take

the direction of the magnetic force, and the couple
to which it tends to reduce is proportional to the

product of the magnetic force, the magnetic
moment of the needle, and the sine of the dip
of the needle.

(c) If the circuit C is displaced, the amount of

the work done by the electro-dynamic action of

C on C will be equal to the increment of &quot; flow
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of magnetic force
&quot; which passes through the

circuit.

2. Action of a Closed Current on a Portion of

Current. Ampere being unable to produce the

open current properly so called, had only one

way of studying the action of a closed current

on a portion of current. This was by operating
on a circuit C composed of two parts, one mov
able and the other fixed. The movable part was,

for instance, a movable wire a/3, the ends a and ft

of which could slide along a fixed wire. In one of

the positions of the movable wire the end a rested

on the point A, and the end ft on the point B of

the fixed wire. The current ran from a to ft i.e.,

from A to B along the movable wire, and then

from B to A along the fixed wire. This current

was therefore closed.

In the second position, the movable wire

having slipped, the points a and ft were respect

ively at A and B on the fixed wire. The current

ran from a to ft i.e., from A to B on the mov
able wire, and returned from B to B, and

then from B to A, and then from A to A all on

the fixed wire. This current was also closed.

If a similar circuit be exposed to the action of a

closed current C, the movable part will be dis

placed just as if it were acted on by a force.

Ampere admits that the force, apparently acting on

the movable part A B, representing the action of

C on the portion aft of the current, remains the

same whether an open current runs through a/3,
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stopping at a and /3, or whether a closed current

runs first to ft and then returns to a through the

fixed portion of the circuit. This hypothesis
seemed natural enough, and Ampere innocently
assumed it; nevertheless the hypothesis is not a

necessity, for we shall presently see that Helmholtz

rejected it. However that may be, it enabled

Ampere, although he had never produced an open

current, to lay down the laws of the action of a

closed current on an open current, or even on an

element of current. They are simple:

(1) The force acting on an element of current

is applied to that element
;

it is normal to the

element and to the magnetic force, and pro

portional to that component of the magnetic force

which is normal to the element.

(2) The action of a closed solenoid on an

element of current is zero. But the electro-

dynamic potential has disappeared i.e., when a

closed and an open current of constant intensities

return to their initial positions, the total work

done is not zero.

3. Continuous Rotations. The most remarkable

electro-dynamical experiments are those in which

continuous rotations are produced, and which are

called unipolar induction experiments. A magnet

may turn about its axis
;

a current passes first

through a fixed wire and then enters the magnet

by the pole N, for instance, passes through
half the magnet, and emerges by a sliding con

tact and re-enters the fixed wire. The magnet
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then begins to rotate continuously. This is

Faraday s experiment. How is it possible ? If it

were a question of two circuits of invariable form,

C fixed and C movable about an axis, the latter

would never take up a position of continuous

rotation
;

in fact, there is an electro-dynamical

potential ;
there must therefore be a position of

equilibrium when the potential is a maximum.
Continuous rotations are therefore possible only
when the circuit C is composed of two parts

one fixed, and the other movable about an axis,

as in the case of Faraday s experiment. Here

again it is convenient to draw a distinction. The

passage from the fixed to the movable part, or

rice versa, may take place either by simple contact,

the same point of the movable part remaining

constantly in contact with the same point of the

fixed part, or by sliding contact, the same point of

the movable part coming successively into con

tact with the different points of the fixed part.

It is only in the second case that there can

be continuous rotation. This is what then

happens : the system tends to take up a position
of equilibrium ; but, when at the point of reaching
that position, the sliding contact puts the moving

part in contact with a fresh point in the fixed

part ;
it changes the connexions and therefore the

conditions of equilibrium, so that as the position
of equilibrium is ever eluding, so to speak, the

system which is trying to reach it, rotation may
take place indefinitely.
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Ampere admits that the action of the circuit on

the movable part of C is the same as if the fixed

part of C did not exist, and therefore as if the

current passing through the movable part were

an open current. He concluded that the action of

a closed on an open current, or vice versa, that of

an open current on a fixed current, may give rise

to continuous rotation. But this conclusion

depends on the hypothesis which I have enunci

ated, and to which, as I said above, Helmholtz

declined to subscribe.

4. Mutual Action of Two Open Currents. As far

as the mutual action of two open currents, and in

particular that of two elements of current, is

concerned, all experiment breaks down. Ampere
falls back on hypothesis. He assumes: (i) that

the mutual action of two elements reduces to a

force acting along their join ; (2) that the action

of two closed currents is the resultant of the

mutual actions of their different elements, which

are the same as if these elements were isolated.

The remarkable thing is that here again Ampere
makes two hypotheses without being aware of it.

However that may be, these two hypotheses,

together with the experiments on closed currents,

suffice to determine completely the law of mutual

action of two elements. But then, most of the

simple laws we have met in the case of closed

currents are no longer true. In the first place,

there is no electro-dynamical potential ;
nor&quot; was

there any, as we have seen, in the case of a closed
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current acting on an open current. Next, there

is, properly speaking, no magnetic force
;
and we

have above denned this force in three different

ways: (i) By the action on a magnetic pole;

(2) by the director couple which orientates the

magnetic needle; (3) by the action on an element

of current.

In the case with which we are immediately
concerned, not only are these three definitions not

in harmony, but each has lost its meaning :

(1) A magnetic pole is no longer acted on by a

unique force applied to that pole. We have seen,

in fact, the action of an element of current on a

pole is not applied to the pole but to the element
;

it may, moreover, be replaced by a force applied to

the pole and by a couple.

(2) The couple which acts on the magnetic
needle is no longer a simple director couple, for its

moment with respect to the axis of the needle is

not zero. It decomposes into a director couple,

properly so called, and a supplementary couple
which tends to produce the continuous rotation of

which we have spoken above.

(3) Finally, the force acting on an element of

a current is not normal to that element. In

other words, the unity of the magnetic force has

disappeared.

Let us see in what this unity consists. Two
systems which exercise the same action on a mag
netic pole will also exercise the same action on an

indefinitely small magnetic needle, or on an element

15*
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of current placed at the point in space at which the

pole is. Well, this is true if the two systems only
contain closed currents, and according to Ampere
it would not be true if the systems contained open
currents. It is sufficient to remark, for instance,

that if a magnetic pole is placed at A and an

element at B, the direction of the element being
in AB produced, this element, which will exercise

no action on the pole, will exercise an action

either on a magnetic needle placed at A, or on

an element of current at A.

5. Induction. We know that the discovery of

electro-dynamical induction followed not long after

the immortal work of Ampere. As long as it is

only a question of closed currents there is no

difficulty, and Helmholtz has even remarked that

the principle of the conservation of energy is

sufficient for us to deduce the laws of induction

from the electro-dynamical laws of Ampere. But

on the condition, as Bertrand has shown, that

we make a certain number of hypotheses.
The same principle again enables this deduction

to be made in the case of open currents, although
the result cannot be tested by experiment, since

such currents cannot be produced.
If we wish to compare this method of analysis

with Ampere s theorem on open currents, we get

results which are calculated to surprise us. In

the first place, induction cannot be deduced from

the variation of the magnetic field by the well-

known formula of scientists and practical men;
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in fact, as I have said, properly speaking, there

is no magnetic field. But further, if a circuit C
is subjected to the induction of a variable voltaic

system S, and if this system S be displaced and

deformed in any way whatever, so that the

intensity of the currents of this system varies

according to any law whatever, then so long
as after these variations the system eventually

returns to its initial position, it seems natural

to suppose that the mean electro-motive force

induced in the current C is zero. This is true if

the circuit C is closed, and if the system S only
contains closed currents. It is no longer true if

we accept the theory of Ampere, since there would

be open currents. So that not only will induction

no longer be the variation of the flow of magnetic
force in any of the usual senses of the word, but

it cannot be represented by the variation of that

force whatever it may be.

II. Helmholtz s Theory. I have dwelt upon the

consequences of Ampere s theory and on his

method of explaining the action of open currents.

It is difficult to disregard the paradoxical and

artificial character of the propositions to which
we are thus led. We feel bound to think &quot;

it

cannot be so.&quot; We may imagine then that

Helmholtz has been led to look for something
else. He rejects the fundamental hypothesis of

Ampere namely, that the mutual action of two
elements of current reduces to a force along their

join. He admits that an clement of current is not
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acted upon by a single force but by a force and a

couple, and this is what gave rise to the cele

brated polemic between Bertrand and Helmholtz.

Helmholtz replaces Ampere s hypothesis by the

following : Two elements of current always
admit of an electro-dynamic potential, depending

solely upon their position and orientation; and the

work of the forces that they exercise one on the

other is equal to the variation of this potential.
Thus Helmholtz can no more do without

hypothesis than Ampere, but at least he does

not do so without explicitly announcing it. In

the case of closed currents, which alone are

accessible to experiment, the two theories agree;
in all other cases they differ. In the first place,

contrary to what Ampere supposed, the force

\vhich seems to act on the movable portion of

a closed current is not the same as that acting
on the movable portion if it were isolated and
if it constituted an open current. Let us return

to the circuit C
,
of which we spoke above, and

which was formed of a movable wire sliding on
a fixed wire. In the only experiment that can be

made the movable portion a/3 is not isolated, but is

part of a closed circuit. When it passes from

AB to A B
,
the total electro-dynamic potential

varies for two reasons. First, it has a slight incre

ment because the potential of A B with respect
to the circuit C is not the same as that of AB;
secondly, it has a second increment because it

must be increased by the potentials of the elements
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AA and B B with respect to C. It is this double

increment which represents the work of the force

acting upon the portion AB. If, on the contrary,

a/3 be isolated, the potential would only have the

first increment, and this first increment alone

would measure the work of the force acting on

AB. In the second place, there could be no

continuous rotation without sliding contact, and

in fact, that, as we have seen in the case of closed

currents, is an immediate consequence of the

existence of an electro-dynamic potential. In

Faraday s experiment, if the magnet is fixed,

and if the part of the current external to the

magnet runs along a movable wire, that movable

wire may undergo continuous rotation. But it

does not mean that, if the contacts of the weir

with the magnet were suppressed, and an open
current were to run along the wire, the wire

would still have a movement of continuous rota

tion. I have just said, in fact, that an isolated

element is not acted on in the same way as a

movable element making part of a closed circuit.

But there is another difference. The action of a

solenoid on a closed current is zero according to

experiment and according to the two theories.

Its action on an open current would be zero

according to Ampere, and it would not be

zero according to Helmholtz. From this follows

an important consequence. We have given above

three definitions of the magnetic force. The third

has no meaning here, since an element of current
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is no longer acted upon by a single force. Nor
has the first any meaning. What, in fact, is a

magnetic pole ? It is the extremity of an

indefinite linear magnet. This magnet may be

replaced by an indefinite solenoid. For the

definition of magnetic force to have any mean

ing, the action exercised by an open current on

an indefinite solenoid would only depend on the

position of the extremity of that solenoid i.e.,

that the action of a closed solenoid is zero. Now
we have just seen that this is not the case. On
the other hand, there is nothing to prevent us

from adopting the second definition which is

founded on the measurement of the director

couple which tends to orientate the magnetic
needle

; but, if it is adopted, neither the effects

of induction nor electro-dynamic effects will

depend solely on the distribution of the lines

of force in this magnetic field.

III. Difficulties raised by these Theories. Helm-
holtz s theory is an advance on that of Ampere;
it is necessary, however, that every difficulty

should be removed. In both, the name &quot;

magnetic
field

&quot;

has no meaning, or, if we give it one by a

more or less artificial convention, the ordinary
laws so familiar to electricians no longer apply;
and it is thus that the electro-motive force induced

in a wire is no longer measured by the number
of lines of force met by that wire. And our

objections do not proceed only from the fact that

it is difficult to give up deeply-rooted habits of
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language and thought. There is something more.

If we do not believe in actions at a distance,

electro-dynamic phenomena must be explained by
a modification of the medium. And this medium
is precisely what we call &quot;magnetic field, and

then the electro-magnetic effects should only

depend on that field. All these difficulties arise

from the hypothesis of open currents.

IV. Maxwell s Theory. Such were the difficulties

raised by the current theories, when Maxwell with

a stroke of the pen caused them to vanish. To
his mind, in fact, all currents are closed currents.

Maxwell admits that if in a dielectric, the electric

field happens to vary, this dielectric becomes the

seat of a particular phenomenon acting on the

galvanometer like a current and called the current

of displacement. If, then, two conductors bearing

positive and negative charges are placed in con

nection by means of a wire, during the discharge

there is an open current of conduction in that

wire; but there are produced at the same time in

the surrounding dielectric currents of displace

ment which close this current of conduction. We
know that Maxwell s theory leads to the explana
tion of optical phenomena which would be due to

extremely rapid electrical oscillations. At that

period such a conception was only a daring hypo
thesis which could be supported by no experiment;
but after twenty years Maxwell s ideas received the

confirmation of experiment. Hertz succeeded in

producing systems of electric oscillations which
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reproduce all the properties of light, and only
differ by the length of their wave that is to say,

as violet differs from red. In some measure he

made a synthesis of light. It might be said that

Hertz has not directly proved Maxwell s funda

mental idea of the action of the current of

displacement on the galvanometer. That is true

in a sense. What he has shown directly is that

electro-magnetic induction is not instantaneously

propagated, as was supposed, but its speed is the

speed of light. Yet, to suppose there is no current

of displacement, and that induction is with the

speed of light ; or, rather, to suppose that the

currents of displacement produce inductive effects,

and that the induction takes place instantaneously
comes to the same thing. This cannot be seen at

the first glance, but it is proved by an analysis
of which I must not even think of giving even a

summary here.

V. Rowland s Experiment. But, as I have said

above, there are two kinds of open conduction

currents. There are first the currents of discharge
of a condenser, or of any conductor whatever.

There are also cases in which the electric charges
describe a closed contour, being displaced by con

duction in one part of the circuit and by convec
tion in the other part. The question might be

regarded as solved for open currents of the first

kind; they were closed by currents of displace
ment. For open currents of the second kind the

solution appeared still more simple.
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It seemed that if the current were closed it

could only be by the current of convection itself.

For that purpose it was sufficient to admit that a
&quot; convection current

&quot;

i.e., a charged conductor in

motion could act on the galvanometer. But ex

perimental confirmation was lacking. It appeared
difficult, in fact, to obtain a sufficient intensity
even by increasing as much as possible the charge
and the velocity of the conductors. Rowland, an

extremely skilful experimentalist, was the first to

triumph, or to seem to triumph, over these diffi

culties. A disc received a strong electrostatic

charge and a very high speed of rotation. An
astatic magnetic system placed beside the disc

underwent deviations. The experiment was made
twice by Rowland, once in Berlin and once at Balti

more. It was afterwards repeated by Himstedt.

These physicists even believed that they could

announce that they had succeeded in making
quantitative measurements. For twenty years
Rowland s law was admitted without objection

by all physicists, and, indeed, everything seemed
to confirm it. The spark certainly does produce a

magnetic effect, and does it not seem extremely

likely that the spark discharged is due to particles

taken from one of the electrodes and transferred

to the other electrode with their charge ? Is not

the very spectrum of the spark, in which we

recognise the lines of the metal of the electrode,

a proof of it ? The spark would then be a real

current of induction.
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On the other hand, it is also admitted that in

an electrolyte the electricity is carried by the ions

in motion. The current in an electrolyte would

therefore also be a current of convection; but it

acts on the magnetic needle. And in the same

way for cathodic rays; Crooks attributed these

rays to very subtle matter charged with negative

electricity am! moving with very high velocity.

He looked upon them, in other words, as currents

of convection.
*

Now, these cathodic rays are

deviated by the magnet. In virtue of the

principle of action and re-action, they should in

their turn deviate the magnetic needle. It is

true that Hertz believed he had proved that the

cathodic rays do not carry negative electricity, and

that they do not act on the magnetic needle; but

Hertz was wrong. First of all, Perrin succeeded

in collecting the electricity carried by these rays

electricity of which Hertz denied the existence; the

German scientist appears to have been deceived

by the effects due to the action of the X-rays,
which were not yet discovered. Afterwards, and

quite recently, the action of the cathodic rays on

the magnetic needle has been brought to light.

Thus all these phenomena looked upon as currents

of convection, electric sparks, electrolytic currents,

cathodic rays, act in the same manner on the

galvanometer and in conformity to Rowland s

law.

VI. Loventz s Theory. We need not go much
further. According to Lorentz s theory, currents
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of conduction would themselves be true convection

currents. Electricity would remain indissolubly

connected with certain - material particles called

electrons. The circulation of these electrons

through bodies would produce voltaic currents,

and what would .distinguish conductors from

insulators would be that the one could be traversed

by these electrons, while the others would check

the movement of the electrons. Lorentz s theory
is very attractive. It gives a very simple explana
tion of certain phenomena, which the earlier

theories even Maxwell s in its primitive form-
could only deal with in an unsatisfactory manner;
for example, the aberration of light, the partial

impulse of luminous waves, magnetic polarisation,
and Zeeman s experiment.
A few objections still remained. The pheno

mena of an electric system seemed to depend on
the absolute velocity of translation of the centre

of gravity of this system, which is contrary to

the idea that we have of the relativity of space.

Supported by M. Cremieu, M. Lippman has pre
sented this objection in a very striking form.

Imagine two charged conductors with the same

velocity of translation. They are relatively at

rest. However, each of them being equivalent
to a current of convection, they ought to attract

one another, and by measuring this attraction

we could measure their absolute velocity.
&quot;No!&quot; replied the partisans of Lorentz. &quot;What

we could measure in that way is not their
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absolute velocity, but their relative velocity with

respect to the ether, so that the principle of rela

tivity is safe.&quot; Whatever there may be in these

objections, the edifice of electro-dynamics seemed,
at any rate in its broad lines, definitively con

structed. Everything was presented under the

most satisfactory aspect. The theories of Ampere
and Helmholtz, which were made for the open
currents that no longer existed, seem to have no

more than purely historic interest, and the in

extricable complications to which these theories

led have been almost forgotten. This quiescence
has been recently disturbed by the experiments of

M. Cremieu, which have contradicted, or at least

have seemed to contradict, the results formerly
obtained by Rowland. Numerous investigators

have endeavoured to solve the question, and fresh

experiments have been undertaken. What result

will they give ? I shall take care not to risk a

prophecy which might be falsified between the

day this book is ready for the press and the day on

which it is placed before the public.

THE END.
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