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INTRODUCTION.

IT is to be hoped that, as a consequence of the
present active scrutiny of our educational aims
and methods, and of the resulting encouragement
of the study of modern languages, we shall not
remain, as a nation, so much isolated from
ideas and tendencies in continental thought and
literature as we have been in the past. As things
are, however, the translation of this book 1is
doubtless required; at any rate, it brings vividly
before us an instructive point of view. Though
some of M. Poincaré’s chapters have been collected
from well-known treatises written several years
ago, and indeed are sometimes in detail not quite
up to date, besides occasionally suggesting the
suspicion that his views may possibly have been
modified in the interval, yet their publication in
a compact form has excited a warm welcome in
this country. '

It must be confessed that the English language
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hardly lends itself as a perfect medium for the
rendering of the delicate shades of suggestion
and allusion characteristic of M. Poincaré’s play
around his subject; notwithstanding the excel-
lence of the translation, loss in this respect is
inevitable.

There has been of late a growing trend of
opinion, prompted in part by general philosophical
views, in the direction that the theoretical con-
structions of physical science are largely factitious,
that instead of presenting a valid image of the
relations of things on which further progress can
be based, they are still little better than a mirage.
The best method of abating this scepticism is to
become acquainted with the real scope and modes
of application of conceptions which, in the popular
language of superficial exposition—and even in
the unguarded and playful paradox of their
authors, intended only for the instructed eye—
often look bizarre enough. But much advantage
will accrue if men of science become their own
epistemologists, and show to the world by critical
exposition in non-technical terms of the results
and methods of their constructive work, that more
than mere instinct is involved in it: the com-
munity has indeed a right to expect as much as
this.
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It would be hard to find any one better
qualified for this kind of exposition, either
from the profundity of his own mathematical
achievements, or from the extent and freshness
of his interest in the theories of physical science,
than the author of this book. If an appreciation
might be ventured on as regards the later chapters,
they are, perhaps, intended to present the stern
logical analyst quizzing the cultivator of physical
ideas as to what he is driving at, and whither he
expects to go, rather than any responsible attempt
towards a settled confession of faith. Thus, when
M. Poincaré allows himself for a moment to
indulge in a process of evaporation of the
Principle of Energy, he is content to sum up:
“Eh bien, quelles que soient les notions nouvelles
que les expériences futures nous donneront sur le
monde, nous sommes slrs d’avance qu'il y aura
quelque chose qui demeurera constant et que nous
pourrons appeler énergie” (p. 166), and to leave
the matter there for his readers to think it out.
Though hardly necessary in the original French, it
may not now be superfluous to point out that
independent reflection and criticism on the part
of the reader are tacitly implied here as clce-
where.

An interesting passage is the one devoted to
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Maxwell’s theory of the functions of the zther,
and the comparison of the close-knit theories of
the classical French mathematical physicists with
the somewhat loosely-connected corpus of ideas by
which Maxwell, the interpreter and successor of
IFaraday, has (posthumously) recast the whole
face of physical science. How many times has
that theory been re-written since Maxwell’s day ?
and yet how little has it been altered in essence,
except by further developments in the problem of
moving bodies, from the form in which he left it!
If, as M. Poincaré remarks, the French instinct
for precision and lucid demonstration sometimes
finds itself ill at ease with physical theories of
the British school, he as readily admits (pp. 223,
224), and indeed fully appreciates, the advantages
on the other side. Our own mental philosophers
have been shocked at the point of view indicated
by the proposition hazarded by ILaplace, that a
sufficiently developed intelligence, if it were made
acquainted with the positions and motions of the
atoms at any instant, could predict all future
history: no amount of demur suffices sometimes
to persuade them that this is not a conception
universally entertained in physical science. It
was not so even in Laplace’s own day. From
the point of view of the study of the evolution
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of the sciences, there are few episodes more
instructive than the collision between Laplace
and Young with regard to the theory of capil-
larity. The precise and intricate mathematical
analysis of Laplace, starting from fixed pre-
conceptions regarding atomic forces which were
to remain intact throughout the logical develop-
ment of the argument, came into contrast with the
tentative, mobile intuitions of Young; yet the
latter was able to grasp, by sheer direct mental
force, the fruitful though partial analogies of this
recondite class of phenomena with more familiar
operations of nature, and to form a direct picture
of the way things interacted, such as could only
have been illustrated, quite possibly damaged or
obliterated, by premature effort to translate it
into elaborate analytical formulas. The apercus
of Young were apparently devoid of all cogency
to Laplace; while Young expressed, doubtless in
too extreme a way, his sense of the inanity of the
array of mathematical logic of his rival. The
subsequent history involved the Nemesis that the
fabric of Laplace was taken down and recon-
structed in the next generation by Poisson; while
the modern cultivator of the subject turns, at any
rate in England, to neither of those expositions
for illumination, but rather finds in the partial
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and succinet indications of Young the best start-
ing-point for further effort.

It seems, however, hard to accept entirely
the distinction suggested (p. 213) between the
methods of cultivating theoretical physics in
the two countries. To mention only two
transcendent names which stand at the very
front of two of the greatest developments of
physical science of the last century, Carnot and
Fresnel, their procedure was certainly not on the
lines thus described. Possibly it is not devoid of
significance that each of them attained his first
effective recognition from the British school.

It may, in fact, be maintained that the part
played by mechanical and such-like theories—
analogies if you will—is an essential one. The
reader of this book will appreciate that the human
mind has need of many instruments of comparison
and discovery besides the unrelenting logic of the
infinitesimal calculus. The dynamical basis which
underlies the objects of our most frequent ex-
perience has now been systematised into a great
calculus of exact thought, and traces of new real
relationships may come out more vividly when
considered in terms of our familiar acquaintance
with dynamical systems than when formulated
under the paler shadow of more analytical abstrac-
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tions. It dis even possible for a constructive
physicist to conduct his mental operations entirely
by dynamical images, though Helmholtz, as well
as our author, seems to class a predilection in this
direction as a British trait. A time arrives when,
as in other subjects, ideas have crystallised out
into distinctness; their exact verification and
development then becomes a problem in mathe-
matical physics. But whether the mechanical
analogies still survive, or new terms are now
introduced devoid of all naive mechanical bias,
it matters essentially little. The precise de-
termination of the relations of things in the
rational scheme of nature in which we find
ourselves is the fundamental task, and for its
fulfilment in any direction advantage has to be
taken of our knowledge, even when only partial,
of new aspects and types of relationship which
may have become familiar perhaps in quite
different fields. Nor can it be forgotten that the
most fruitful and fundamental conceptions of
abstract pure mathematics itself have often been
suggested from these mechanical ideas of flux
and force, where the play of intuition is our
most powerful guide. The study of the historical
evolution of physical theories is essential to the

complete understanding of their import. It is in
b
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the mental workshop of a Iresnel, a Kelvin, or
a Helmholtz, that profound ideas of the deep
things of Nature are struck out and assume
form; when pondered over and paraphrased by
philosophers we see them react on the conduct
of life: it is the business of criticism to polish
them gradually to the common measure of human
understanding. Oppressed though we are with
the necessity of being specialists, if we are
to know anything thoroughly in these days of
accumulated details, we may at any rate pro-
fitably study the historical evolution of knowledge
over a field wider than our own.

The aspect of the subject which has here been
dwelt on is that scientific progress, considered
historically, 1s not a strictly logical process, and
does not proceed by syllogisms. New ideas
emerge dimly into intuition, come into con-
sciousness from nobody knows where, and become
the material on which the mind operates, forging
them gradually into consistent doctrine, which
can be welded on to existing domains of know-
ledge. But this process is never complete: a
crude connection can always be pointed to by a
logician as an indication of the imperfection of
human constructions.

If intuition plays a part which is so important,
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it is surely necessary that we should possess a firm
grasp of its limitations. In M. Poincaré’s earlier
chapters the reader can gain very pleasantly a
vivid idea of the various and highly complicated
ways of docketing our perceptions of the relations
of external things, all equally valid, that were
open to the human race to develop. Strange to
say, they never tried any of them; and, satisfied
with the very remarkable practical fitness of the
scheme of geometry and dynamics that came
naturally to hand, did not consciously trouble
themselves about the possible existence of others
until recently. Still more recently has it been
found that the good Bishop Berkeley’s logical
jibes against the Newtonian ideas of fluxions and
limiting ratios cannot be adequately appeased in
the rigorous mathematical conscience, until our
apparent continuities are resolved mentally into
discrete aggregates which we only partially
apprehend. The irresistible impulse to atomize
everything thus proves to be not merely a disease
of the physicist; a deeper origin, in the nature
of knowledge itself, is suggested.

Everywhere want of absolute, exact adaptation
can be detected, if pains are taken, between the
various constructions that result from our mental
activity and the impressions which give rise to
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them. The bluntness of our unaided sensual
perceptions, which are the source in part of the
intuitions of the race, is well brought out in this
connection by M. Poincaré. Is there real con-
tradiction ? Harmony usually proves to be re-
covered by shifting our attitude to the phenomena.
All experience leads us to interpret the totality of
things as a consistent cosmos—undergoing evolu-
tion, the naturalists will say—in the large-scale
workings of which we are interested spectators
and explorers, while of the inner relations and
ramifications we only apprehend dim glimpses.
When our formulation of experience is imperfect
or even paradoxical, we learn to attribute the
fault to our point of view, and to expect that
future adaptation will put it right. But Truth
resides in a deep well, and we shall never get
to the bottom. Only, while deriving enjoyment
and insight from M. Poincaré’s Socratic exposi-
tion of the limitations of the human outlook on
the universe, let us beware of counting limitation
as imperfection, and drifting into an inadequate
conception of the wonderful fabric of human

knowledge.
J. LARMOR.
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—_———

To the superficial observer scientific truth is un-
assailable, the logic of science is infallible; and if
scientific men sometimes make mistakes, it is
because they have not understood the rules of
the game. Mathematical truths are derived from
a few self-evident propositions, by a chain of
flawless reasonings; they are imposed not only on
us, but on Nature itself. By them the Creator is
fettered, as it were, and His choice is limited to
a relatively small number of solutions. A few
experiments, therefore, will be sufficient to enable
us to determine what choice He has made. From
each experiment a number of consequences will
follow by a series of mathematical deductions,
and in this way each of them will reveal to us a
corner of the universe. This, to the minds of most
people, and to students who are getting their first
ideas of physics, is the origin of certainty in
science. This is what they take to be the réle of
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experiment and mathematics. And thus, too, it
was understood a hundred years ago by many
men of science who dreamed of constructing the
world with the aid of the smallest possible amount
of material borrowed from experiment.

But upon more mature reflection the position
held by hypothesis was seen; it was recognised that
it is as necessary to the experimenter as it is to the
mathematician. And then the doubt arose if all
these constructions are built on solid foundations.
The conclusion was drawn that a breath would
bring them to the ground. This sceptical attitude
does not escape the charge of superficiality. To
doubt everything or to believe everything are two
equally convenient solutions; both dispense with
the necessity of reflection.

Instead of a summary condemnation we should

. examine with the utmost care the role of hypo-
thesis; we shall then recognise not only that it is
necessary, but that in most cases it is legitimate.
We shall also see that there are several kinds of

}hypotheses; that some are verifiable, and when
once confirmed by experiment become truths of

I great fertility; that others may be useful to us in

!(ﬁxing our ideas; and finally, that others are

) hypotheses only in appearance, and reduce to
definitions or to conventions in disguise. The
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latter are to be met with especially in mathematics
and in the sciences to which it is applied. From
them, indeed, the sciences derive their rigour;
such conventions are the result of the unrestricted
activity of the mind, which in this domain recog-/
nises no obstacle. For here the mind may affirm
because it lays down its own laws; but let us
clearly understand that while these laws are
imposed on our science, which otherwise could
not exist, they are not imposed on Nature. Are
they then arbitrary? No; for if they were, they
would not be fertile. Experience leaves us our
freedom of choice, but it guides us by helping us to
discern the most convenient path to follow. Our
laws are therefore like those of an absolute
monarch, who is wise and consults his council of
state. Some people have been struck by this
characteristic of free convention which may be
recognised in certain fundamental principles of
the sciences. Some have set no limits to their
generalisations, and at the same time they have
forgotten that there is a difference between liberty
and the purely arbitrary. So that they are com-
pelled to end in what is called nominalisin; they
have asked if the savant is not the dupe of his
own definitions, and if the world he thinks he has
discovered is not simply the creation of his own
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caprice! Under these conditions science would
retain its certainty, but would not attain its object,
and would become powerless. Now, we daily see
what science is doing for us. This could not be
unless it taught us something about reality; the
alim of science is not things themselves, as the
dogmatists in their simplicity imagine, but the
relations between things; outside those relations
there is no reality knowable.

Such is the conclusion to which we are led; but
to reach that conclusion we must pass in review
the series of sciences from arithmetic and
geometry to mechanics and experimental physics.
What is the nature of mathematical reasoning?
Is it recally deductive, as i1s commonly supposed ?
Careful analysis shows us that it is nothing of the
kind ; that it participates to some extent in the
nature of inductive reasoning, and for that reason
it is fruitful. But none the less does it retain its
character of absolute rigour; and this is what
must first be shown.

When we know more of this instrument which
is placed in the hands of the investigator by
mathematics, we have then to analyse another
fundamental idea, that of mathematical magni-

L Cf. M. le Roy: ‘‘Science et Dhilosophie,” Revue de Aléta-
physique et de Morale, 1901.



AUTHOR’S PREFACE. XXV

tude. Do we find it in nature, or have we our-
selves introduced it? And if the latter be the
case, are we not running a risk of coming to
incorrect conclusions all round? Comparing the
rough data of our senses with that extremely com-
plex and subtle conception which mathematicians
call magnitude, we are compelled to recognise a
divergence. The framework into which we wish
to make everything fit is one of our own construc-
tion; but we did not construct it at random, we
constructed it by measurement so to speak; and
that is why we can fit the facts into it without
altering their essential qualities.

_— Space is another framework which we impose

)
)
|
\

on the world. Whence are the first principles of
geometry derived ? Are they imposed on us by
logic? Lobatschewsky, by inventing non-Euclid-
ean geometries, has shown that this is not the case.
Is space revealed to us by our senses? No; for
the space revealed to us by our senses is absolutely
different from the space of geometry. Is geometry
derived from experience? Careful discussion will
give the answer—no! We therefore conclude that
the principles of geometry are only conventions ;
but these conventions are not arbitrary, and if
transported into another world (which I shall
call the non-Euclidean world, and which I shall
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endeavour to describe), we shall find ourselves
compelled to adopt more of them.

In mechanics we shall be led to analogous con-
clusions, and we shall see that the principles of
this science, although more directly based on
experience, still share the conventional character
of the geometrical postulates. So far, nominalism
triumphs; but we now come to the physical
sciences, properly so called, and here the scene
changes. We meet with hypotheses of another
kind, and we fully grasp how fruitful they are.
No doubt at the outset theories seem unsound,
and the history of science shows us how ephemeral
they are; but they do not entirely perish, and of
each of them some traces still remain. It is these
traces which we must try to discover, because in
them and in them alone is the true reality.

\ The method of the physical sciences is based
\ upon the induction which leads us to expect the
recurrence of a phenomenon when the circum-
stances which give rise to it are repeated. If all
the circumstances could be simultaneously re-
produced, this principle could be fearlessly applied;
but this never happens; some of the circumstances
will always be missing. Are we absolutely certain
that they are unimportant? Evidently not! It
may be probable, but it cannot be rigorously
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certain. Hence the importance of the role that is
played in the physical sciences by the law of
probability. The calculus of probabilities is there-
fore not merely a recreation, or a guide to the
baccarat player; and we must thoroughly examine
the principles on which it is based. In this con-
nection I have but very incomplete results to lay
before the reader, for the vague instinct which
enables us to determine probability almost defies
analysis. After a study of the conditions under
which the work of the physicist is carried on, I
have thought it best to show him at work. For
this purpose I have taken instances from the
history of optics and of electricity. We shall thus
see how the ideas of I'resnel and Maxwell took
their rise, and what unconscious hypotheses were
made by Ampere and the other founders of
electro-dynamics.
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PART L

NUMBER AND MAGNITUDE.
CHAPTER L.

ON THE NATURE OF MATHEMATICAL REASONING,
1.

THE very possibility of mathematical science seems
an insoluble contradiction. If this science is only
deductive in appearance, from whence is derived
that perfect rigour which is challenged by none?
If, on the contrary, all the propositions which it
enunciates may be derived in order by the rules
of formal logic, how is it that mathematics is
not reduced to a gigantic tautology? The syllo-
gism can teach us nothing essentially new, and
if everything must spring from the principle of
identity, then everything should be capable of
being reduced to that principle. Are we then to

admit that the enunciations of all the theorems
1
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with which so many volumes are filled, are only
indirect ways of saying that A is A ?

No doubt we may refer back to axioms which
are at the source of all these reasonings. If it is
felt that they cannot be reduced to the principle of
contradiction, if we decline to see in them any
more than experimental facts which have no part
or lot in mathematical necessity, there is still one
resource left to us: we may class them among
a priovi synthetic views. DBut this is no solution
of the difficulty—it is merely giving it a name; and
even if the nature of the synthetic views had no
longer for us any mystery, the contradiction would
not have disappeared; it would have only been
shirked. Syllogistic reasoning remains incapable
of adding anything to the data that are given it;
the data are reduced to axioms, and that is all we
should find in the conclusions.

No theorem can be new unless a new axiom
intervenes in its demonstration; reasoning can
only give us immediately evident truths borrowed
from direct intuition; it would only be an inter-
mediary parasite. Should we not therefore have
reason for asking if the syllogistic apparatus serves
only to disguise what we have borrowed ?

The contradiction will strike us the more if we
open any book on mathematics; on every page the
author announces his intention of generalising some
proposition already known. Does the mathematical
method proceed from the particular to the general,
and, if so, how can it be called deductive ?
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Finally, if the science of number were merely
analytical, or could be analytically derived from a |
few synthetic intuitions, it seems that a sufficiently |
powerful mind could with a single glance perceive
all its truths; nay, one might even hope that some
day a language would be invented simple enough
for these truths to be made evident to any person
of ordinary intelligence.

Even if these consequences are challenged, it
must be granted that mathematical reasoning has
. of itself a kind of creative virtue, and is therefore to
be distinguished from the syllogism. The difference
must be profound. We shall not, for instance,
find the key to the mystery in the frequent use of
the rule by which the same uniform operation
applied to two equal numbers will give identical
results.  All these modes of reasoning, whether or
not reducible to the syllogism, properly so called,
retain the analytical character, and ipso facto, lose
their power.

1L

The argument is an old one. Let us see how
Leibnitz tried to show that two and two make
four. I assume the number one to be defined, and
also the operation x+1—i.c., the adding of unity
to a given number x. These definitions, whatever
they may be, do not enter into the subsequent
reasoning. I next define the numbers 2, 3, 4 by
the equalities:—

(1) 1+1=2; (2) 241=3; (3) 3+1=4, and In
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the same way I define the operation x+2 by the
relation; (4) x+2=(x-+41)41.

Given this, we have :—

242=(2+1)+1; (def. 4).
(2+1)+1=3+1 (def. 2).
3+1=4 (def. 3).

whence 24-2=4 (Q)IBID)

It cannot be denied that this reasoning is purely
analytical. DBut if we ask a mathematician, he will
reply: “This is not a demonstration properly so
called; it is a verification.” We have confined
ourselves to bringing together one or other of two
purely conventional definitions, and we have verified

_their identity; nothing new has been learned.
_Verification differs from proof precisely because it
is analytical, and because it leads to nothing. It
leads to nothing because the conclusion is nothing
but the premisses translated into another language.
A real proof, on the other hand, is fruitful, because
the conclusion is in a sense more general than the
premisses. The equality 2+2=4 can be verified
because it is particular. Each individual enuncia-
tion in mathematics may be always verified in
the same way. DBut if mathematics could be
reduced to a series of such verifications it
would not be a science. A chess-player, for
instance, does not create a science by winning a
piece. There is no science but the science of the
general. It may even be said that the object of
the exact sciences is to dispense with these direct
verifications.
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I11.

Let us now see the geometer at work, and try
to surprise some of his methods. The task is
not without difficulty; it is not enough to open a
book at random and to analyse any proof we may
come across. I%irst of all, geometry must be ex-
cluded, or the question becomes complicated by
difficult problems relating to the role of the
postulates, the nature and the origin of the idea
of space. For analogous reasons we cannot
avail ourselves of the infinitesimal calculus. We
must seek mathematical thought where it has
remained pure—i.e., in Arithmetic. DBut we
still have to choose; in the higher parts of
the theory of numbers the primitive mathemati-
cal ideas have already undergone so profound
an elaboration that it becomes difficult to analyse
them.

It is therefore at the beginning of Arithmetic
that we must expect to find the explanation we
seek ; but it happens that it is precisely in the
proofs of the most elementary theorems that the
authors of classic treatises have displayed the least
precision and rigour. We may not impute this to
them as a crime; they have obeyed a necessity.
Beginners are not prepared for real mathematical
rigour ; they would see in it nothing but empty,
tedious subtleties. It would be waste of time to
try to make them more exacting; they have to
pass rapidly and without stopping over the road
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which was trodden slowly by the founders of the
science.

Why is so long a preparation necessary to
habituate oneself to this perfect rigour, which
it would seem should naturally be imposed on
all minds? This is a logical and psychological
problem which is well worthy of study. But we
shall not dwell on it; it is foreign to our subject.
All T wish to insist on is, that we shall fail in our
purpose unless we reconstruct the proofs of the
elementary theorems, and give them, not the rough
form in which they are left so as not to weary the
beginner, but the form which will satisfy the skilled
geometer.

DEFINITION OF ADDITION.

I assume that the operation x+1 has been
defined ; it consists in adding the number 1 to a
given number x. Whatever may be said of this
definition, it does not enter into the subsequent
reasoning.

We now have to define the operation x +a, which
consists in adding the number a to any given
number x. Suppose that we have defined the
operation x+(a—-1); the operation x+a will be
defined by the equality: (1) ¥+a=[x+(a-1)]+1.
We shall know what x+a is when we know what
x+(a-1)1is, and as I have assumed that to start
with we know what x41 is, we can define
successively and “ by recurrence” the operations
x+2,x+ 3, etc. Thisdefinition deserves a moment’s



NATURE OF MATHEMATICAL REASONING. 7

attentton; it is of a particular nature which
distinguishes it even at this stage from the purely
logical definition; the equality (1), in fact, contains
an infinite number of distinct definitions, each
having only one meaning when we know the
meaning of its predecessor.

PROPERTIES OF ADDITION.,

Associative.—1 say that a4 (b+c)=(a+0b)+c; in
fact, the theorem is true for c=1. It may then be
written a4 (0+1)=(a40)+41; which, remembering
the difference of notation,isnothing but the equality
(1) by which I have just defined addition. Assume
the theorem true for c=v, I say that it will be true for
c=vy+1. Let (a4+0)+y=a+(b+7), it follows that
[(a+0)+y]+1=[a+(b+7y)] +1; or by def. (1)—
(@a+b)+ y+D=a+b+y+D=a+ b+ (y+1)],
which shows by a series of purely analytical deduc-
tions that the theorem is true for y+1. Being
true for c=1, we see that it is successively true for
c=2,c¢=3, etc.

Commutative—(1) I say that a+1=1+4a. The
theorem 1s evidently true for a=1; we can verify
by purely analytical reasoning that if it is true for
a=7v it will be true for a=y+1.! Now, it is true for
a=1, and therefore is true for a=2, a=3, and so
on. This is what is meant by saying that the
proof is demonstrated * by recurrence.”

(2) I'saythat a+b—0+a. The theorem has just

PFor(y+1)+t1=(1iy)t1=1+(yi1).—[TR.]
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been shown to hold good for b=1, and it may be
verified analytically that if it is true for =g, it
will be true for b=S+1. The proposition is thus
established by recurrence.

DEFINITION OF MULTIPLICATION.

We shall define multiplication by the equalities:
(1) aX1=a. (2) axb=[aX(—1)]+a. Both of
these include an infinite number of definitions;
having defined aXx1, it enables us to define in
succession a X 2, a X 3, and so on.

PROPERTIES OF MULTIPLICATION.

Distributive.—1 say that (a+b)Xc=(aXc)+
(bXc). We can verify analytically that the theorem
is true for c=1; then if it is true for c=y, it will be
true for c=y+1. The proposition is then proved
by recurrence.

Commutative—(1) 1 say that aX1=1Xa. The
theorem is obvious for a=1. We can verify
analytically that if it is true for a—a, it will be
true for a=a41.

(2) 1 say that axb=0Xa. The theorem has
just been proved for b=1. We can verify analy-
tically that if it be true for =4 it will be true for
b=pB+41.

Iv.

This monotonous series of reasonings may now
be laid aside; but their very monotony brings
vividly to light the process, which is uniform,
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and is met again at every step. The process is
proof by recurrence. We first show that a
theorem is true for n=1; we then show that if
1t is true for n—1 it is true for », and we conclude
that it is true for all integers. We have now seen
how it may be used for the proof of the rules of
addition and multiplication—that is to say, for the
rules of the algebraical calculus. This calculus
is an instrument of transformation which lends
itself to many more different combinations than
the simple svllogism; but it is still a purely analy-
tical instrument, and is incapable of teaching us
anything new. If mathematics had no other in-
strument, it would immediately be arrested in its
development; but it has recourse anew to the
same process—i.¢., to reasoning by recurrence, and
it can continue its forward march. Then if we
look carefully, we find this mode of reasoning at
every step. either under the simple form which we
have just given to it, or under a more or less modi-
fied form. It is therefore mathematical reasoning
par excellence, and we must examine it closer.

V.

The essential characteristic of reasoning by re-
currence 1is that it contains, condensed, so to
speak, in a single formula, an infinite number of
syllogisms. We shall see this more clearly if we
enunciate the syllogisms one after another. They

follow one another, if one may use the expression,
in a cascade. The following are the hypothetical
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syllogisms:—The theorem is true of the number 1.
Now, if it is true of 1, it is true of 2; therefore it is
true of 2. Now, if it is true of 2, it is true of 3;
hence it is true of 3, and so on. We see that the
conclusion of each syllogism serves as the minor
of its successor. IFurther, the majors of all our
syllogisms may be reduced to a single form. If
the theorem is true of n — 1, it is true of ».

We see, then, that in reasoning by recurrence
we confine ourselves to the enunciation of the
minor of the first syllogism, and the general
formula which contains as particular cases all the
majors. This unending scries of syllogisms is thus
reduced to a phrase of a few lines.

It 1s now easy to understand why every par-
ticular consequence of a theorem may, as I have
above explained, be verified by purely analytical
processes. If, instead of proving that our theorem
is true for all numbers, we only wish to show that
it is true for the number 6 for instance, it will be
enough to establish the first five syllogisms in our
cascade. We shall require g if we wish to prove
it for the number 10; for a greater number we
shall require more still; but however great the
number may be we shall always reach it, and the
analytical verification will always be possible.
But however far we went we should never reach
the general theorem applicable to all numbers,
which alone is the object of science. To reach
it we should require an infinite number of syllo-
gisms, and we should have to cross an abyss



NATURE OF MATHEMATICAL REASONING. II

which the patience of the analyst, restricted to the
resources of formal logic, will never succeed in
crossing.

I asked at the outset why we cannot conceive of
a mind powerful enough to see at a glance the
whole body of mathematical truth. The answer is
now easy. A chess-player can combine for four or
five moves ahead; but, however extraordinary a
player he may be, he cannot prepare for more than
a finite number of moves. If he applies his facul-
ties to Arithmetic, he cannot conceive its general
truths by direct intuition alone; to prove even the
smallest theorem he must use reasoning by re-
currence, for that is the only instrument which
enables us to pass from the finite to the infinite.
This instrument is always useful, for it enables us
to leap over as many stages as we wish; it frees
us from the necessity of long, tedious, and
monotonous verifications which would rapidly
become impracticable. Then when we take in
hand the general theorem it becomes indispens-
able, for otherwise we should ever be approaching
the analytical verification without ever actually
reaching it. In this domain of Arithmetic we may
think ourselves very far from the infinitesimal
analysis, but the idea of mathematical infinity is
already playing a preponderating part, and without
it there would be no science at all, because there
would be nothing general.
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VL

The views upon which reasoning by recurrence

is based may be exhibited in other forms; we may
say, for instance, that in any finite collection of
different integers there is always one which is
smaller than any other. We may readily pass from
one cnunciation to another, and thus give our-
selves the illusion of having proved that reason-
ing by recurrence is legitimate. DBut we shall
always be brought to a full stop—we shall always
come to an indemonstrable axiom, which will at
bottom be but the proposition we had to prove
translated into anotherlanguage. We cannot there-
(fore escape the conclusion that the rule of reason-
iing by recurrence is irreducible to the principle of
contradiction. Nor can the rule come to us from
(expcriment. Experiment may teach us that the
| rule is true for the first ten or the first hundred
numbers, for instance; it will not bring us to the

~ indefinite series of numbers, but only to a more or
less long, but always limited, portion of the series.
Now, if that were all that is in question, the
principle of contradiction would be sufficient, it
would always enable us to develop as many
syllogisms as we wished. It is only when it is a
question of a single formula to embrace an infinite
number of syllogisms that this principle breaks
down, and there, too, experiment is powerless to
jaid.  This rule, inaccessible to analytical proof
and to experiment, is the exact type of the a priori
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synthetic intuition. On the other hand, we
cannot see in it a convention as in the case of the
postulates of geometry.

Why then is this view imposed upon us with
such an irresistible weight of evidence? It is
because it is only the affirmation of the power of
the mind which knows it can conceive of the
indefinite repetition of the same act, when the act
1s once possible. The mind has a direct intuition
of this power, and experiment can only be for it an
opportunity of using it, and thereby of becoming
conscious of it. ,

But it will be said, if the legitimacy of reasoning
by recurrence cannot be established by experiment
alone, is it so with experiment aided by induction?
We see successively that a theorem 1is true of the
number 1, of the number 2, of the number 3, and
so on—the law is manifest, we say, and it is so on
the same ground that every physical law is true
which is based on a very large but limited number
of observations.

It cannot escape our notice that here is a
striking analogy with the usual processes of
induction. But an essential difference exists.
Induction applied to the physical sciences is
always uncertain, because it is based on the be-
lief in a general order of the universe, an order
which is external to us. Mathematical induction
—i.c., proof by recurrence—is, on the contrary,
necessarily imposed on us, because it i1s only the
affirmation of a property of the mind itself.
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VIIL.

Mathematicians, as I have said before, always
endeavour to generalise the propositions they have
obtained. To seek no further example, we have
just shown the equality, a+1=1+a, and we then
used it to establish the equality, a+b=250+a, which
is obviously more general. Mathematics may,
therefore, like the other sciences, proceed from the
particular to the general. This is a fact which
might otherwise have appeared incomprehensible
to us at the beginning of this study, but which has
no longer anything mysterious about it, since we
have ascertained the analogies between proof by
recurrence and ordinary induction.

No doubt mathematical recurrent reasoning and
physical inductive reasoning are based on different
foundations, but they move in parallel lines and in
the same direction-—namely, from the particular
to the general.

Let us examine the case a little more closely.

To prove the equality a+2=2+a...... (1), we need
only apply the rule a+1=1+a, twice, and write
a+2=a+I1+I=1+a+I=I+1+a=2+da...... (2).

The equality thus deduced by purely analytical
means is not, however, a simple particular case. It
is something quite different. We may not therefore
even say in the really analytical and deductive
part of mathematical reasoning that we proceed
from the general to the particular in the
ordinary sense of the words. The two sides of
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the equality (2) are merely more complicated
combinations than the two sides of the equality
(1), and analysis only serves to separate the ele-
ments which enter into these combinations and to
study their relations.

Mathematicians therefore proceed ¢ by construc-
tion,” they “construct” more complicated combina-
tions. When they analyse these combinations,
these aggregates, so to speak, into their primitive
elements, they see the relations of the elements
and deduce the relations of the aggregates them-
selves. The process is purely analytical, but it is
not a passing from the general to the particular,
for the aggregates obviously cannot be regarded as
more particular than their elements.

Great importance has been rightly attached to
this process of ‘construction,” and some claim
to see in it the necessary and sufficient condi-
tion of the progress of the exact sciences.
Necessary, no doubt, but not sufficient! For a
construction to be useful and not mere waste of
mental cffort, for it to serve as a stepping-stone to
higher things, it must first of all possess a kind of
unity enabling us to see something more than the
juxtaposition of its elements. Or more accurately,
there must be some advantage in considering the
construction rather than the elements themselves.
What can this advantage be? Why reason on a
polygon, for instance, which is always decom-
posable into triangles, and not on elementary
triangles? It is because there are properties of
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polygons of any number of sides, and they can be
immediately applied to any particular kind of
polygon. In most cases it is only after long efforts
that those properties can be discovered, by directly
studying the relations of elementary triangles. If
the quadrilateral is anything more than the juxta-
position of two triangles, it is because it is of the
polyvgon type.

A construction only becomes interesting when
it can be placed side by side with other analogous
constructions for forming species of the same
genus. To do this we must necessarily go back
from the particular to the general, ascending one
or more steps. The analytical process by
construction” does not compel us to descend, but
it leaves us at the same level. We can only
ascend by mathematical induction, for from it
alone can we learn something new. Without the
aid of this induction, which in certain respects
differs from, but is as fruitful as, physical in-
duction, construction would be powerless to create
science.

Let me observe, in conclusion, that this in-
duction is only possible if the same operation can
be repeated indefinitely. That is why the theory
of chess can never become a science, for the
different moves of the same piece are limited and
do not resemble each other.



CHAPTER 1L
MATHEMATICAL MAGNITUDE AND EXPERIMENT.

I¥ we want to know what the mathematicians
mean by a continuum, it is useless to appeal to
geometry. The geometer is always seeking, more
or less, to represent to himself the figures he is
studying, but his representations are only instru-
ments to him ; he uses space in his geometry just
as he uses chalk; and further, too much import-
ance must not be attached to accidents which are
often nothing more than the whiteness of the
chalk.

The pure analyst has not to dread this_pitfall.
He has disengaged mathematics from all extra-
neous clements, and he is in a position to answer
our question:—“Tell me exactly what this con-
tinuum is, about which mathematicians reason.”
Many analysts who reflect on their art have
already done so—M. Tannery, for instance, in
his Introduction a la théorie des Fonctions dune
variable.

Let us start with the integers. Between any
two consecutive sets, intercalate one or more inter-

mediary sets, and then between these sets others
2
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again, and so on indefinitely. We thus get an
unlimited number of terms, and these will be the
numbers which we call fractional, rational, or
commensurable. But this is not yet all; between
these terms, which, be it marked, are already
infinite in number, other terms are intercalated,
and these are called irrational or incommensurable.

Before going any further, let me make a pre-
liminary remark. The continuum thus conceived
is no longer a collection of individuals arranged in
a certain order, infinitc in number, it is true, but
external the one to the other. This is not the
ordinary conception in which it is supposed that
between the clements of the continuum exists an
intimate connection making of it one whole, in
which the point has no existence previous to the
line, but the line does exist previous to the point.
Multiplicity alone subsists, unity has disappeared
—*“the continuum is unity in multiplicity,” accord-
ing to the celebrated formula. The analysts have
even less reason to define their continuum as they
do, since it is always on this that they reason when
they are particularly proud of their rigour. It .
is enough to warn the reader that the real
mathematical continuum is quite different from
that of the physicists and from that of the
metaphysicians.

It may also be said, perhaps, that mathematicians
who are contented with this definition are the
dupes of words, that the nature of each of these
sets should be precisely indicated, that it should
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be explained how they are to be intercalated, and
that 1t should be shown how it is possible to do it.
This, however, would be wrong; the only property
of the sets which comes into the reasoning is that of
preceding or succeeding these or those other sets;
this alone should therefore intervene in the defini-
tion. So we need not concern ourselves with the
manner in which the sets are intercalated, and
no one will doubt the possibility of the operation
if he only remembers that *possible” in the
language of geometers simply means exempt from
contradiction. But our definition is not yet com-
plete, and we come back to it after this rather long
digression.

Definition  of Incommensurables—The mathe-
maticians of the Berlin school, and Kronecker
in particular, have devoted themselves to con-
structing this continuous scale of irrational and
fractional numbers without using any other
materials than the integer. The mathematical
continuum from this point of view would be a
pure creation of the mind in which experiment
would have no part.

The idea of rational number not seeming to
present to them any difficulty, they have confined
their attention mainly to defining incommensurable
numbers. But before reproducing their definition
here, I must make an observation that will allay
the astonishment which this will not fail to provoke
in readers who are but little familiar with the
habits of geometers.
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Mathematicians do not study objects, but the
relations between objects; to them it is a matter
of indifference if these objects are replaced by
others, provided that the relations do not change.
Matter does not engage their attention, they are
interested by form alone.

If we did not remember it, we could hardly
understand that Kronecker gives the name of
incommensurable number to a simple symbol—
that is to say, something very different from the
idea we think we ought to have of a quantity
which should be measurable and almost tangible.

Let us see now what i1s Kronecker's definition.
Commensurable numbers may be divided into
classes in an infinite number of ways, subject
to the condition that any number whatever
of the first class is greater than any number
of the second. It may happen that among the
numbers of the first class there is one which is
smaller than all the rest; if, for instance, we
arrange in the first class all the numbers greater
than 2, and 2 itself, and in the second class all the
numbers smaller than 2, it is clear that 2z will be
the smallest of all the numbers of the first class.
The number 2 may therefore be chosen as the
symbol of this division.

It may happen, on the contrary, that in the
second class there is one which is greater than all
the rest. This is what takes place, for example,
if the first class comprises all the numbers greater
than 2, and if, in the second, are all the numbers
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less than 2, and 2 itself. Here again the
number 2 might be chosen as the symbol of this
division.

But it may equally well happen that we can find
neither in the first class a number smaller than all
the rest, nor in the second class a number greater
than all the rest. Suppose, for instance, we
place in the first class all the numbers whose
squares are greater than 2, and in the second all
the numbers whose squares are smaller than 2.
We know that in neither of them is a number whose
square is equal to 2. Evidently there will be in
the first class no number which is smaller than all
the rest, for however near the square of a number
may be to 2, we can always find a commensur-
able whose square is still nearer to 2. From
Kronecker's point of view, the incommensurable
number /2 is nothing but the symbol of this
particular method of division of commensurable
numbers; and to each mode of repartition corre-
sponds in this way a number, commensurable or
not, which serves as a symbol. But to be satisfied
with this would be to forget the origin of these
symbols; it remains to explain how we have been
led to attribute to them a kind of concrete
existence, and on the other hand, does not the
difficulty begin with fractions? Should we have
the notion of these numbers if we did not previously
know a matter which we conceive as infinitely
divisible—i.¢., as a continuum ?

The Physical Continuum.—We are next led to ask
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if the idea of the mathematical continuum is not
simply drawn from experiment. If that be so, the
rough data of experiment, which are our sensations,
could be measured. We might, indeed, be tempted
to believe that this is so, for in recent times there
has been an attempt to measure them, and a law
has even been formulated, known as IFechner’s
law, according to which sensation is proportional
to the logarithm of the stimulus. But if we
examine the experiments by which the endeavour
has been made to establish this law, we shall be
led to a diametrically opposite conclusion. It has,
for instance, been observed that a weight A of 10
grammes and a weight B of 11 grammes produced
identical sensations, that the weight B could no
longer be distinguished from a weight C of 12
grammes, but that the weight A was readily
distinguished from the weight C. Thus the rough
results of the experiments may be expressed by
the following relations: A=B, B=C, A - C, which
may be regarded as the formula of the physical
continuum. But here is an intolerable disagree-
ment with the law of contradiction, and the
necessity of banishing this disagreement has com-
pelled us to invent the mathematical continuum.
We are therefore forced to conclude that this
notion has been created entirely by the mind, but
it is experiment that has provided the opportunity.
We cannot believe that two quantities which are
equal to a third are not equal to one another, and
we are thus led to suppose that A is different from
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B, and B from C, and that if we have not been
aware of this, it is due to the imperfections of our
senses.

The Creation of the Mathematical Continuum: First
Stage.—So far it would suffice, in order to account
for facts, to intercalate between A and B a small
number of terms which would remain discrete.
What happens now if we have recourse to some
instrument to make up for the weakness of our
senses ? If, for example, we use a microscope ?
Such terms as A and B, which before were
indistinguishable from one another, appear now
to be distinct: but between A and B, which are
distinct, is intercalated another new term D,
which we can distinguish neither from A nor from
B. Although we may use the most delicate
methods, the rough results of our experiments
will always present the characters of the physical
continuum with the contradiction which is inherent
in it. We only escape from it by incessantly
intercalating new terms between the terms already
distinguished, and this operation must be pursued
indefinitely. We might conceive that it would be
possible to stop if we could imagine an instrument
powerful enough to decompose the physical con-
tinuum into discrete elements, just as the telescope
resolves the Milky Way into stars. But this we
cannot imagine; it is always with our senses that
we use our instruments; it is with the eye that we
observe the image magnified by the microscope,
and this image must thercfore always retain the
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characters of visual sensation, and therefore those
of the physical continuum.

Nothing distinguishes a length directly observed
from half that length doubled by the microscope.
The whole is homogeneous to the part; and there
is a fresh contradiction—or rather there would be
one if the number of the terms were supposed
to be finite; it is clear that the part containing
less terms than the whole cannot be similar to the
whole. The contradiction ceases as soon as the
number of terms is regarded as infinite. There is
nothing, for example, to prevent us from regarding
the aggregate of integers as similar to the aggregate
of even numbers, which is however only a part
of it; in fact, to each integer corresponds another
even number which is its double. But it is not
only to escape this contradiction contained in the
empiric data that the mind is led to create the
concept of a continuum formed of an indefinite
number of terms.

Here everything takes place just as in the series
of the integers. \We have the faculty of conceiving
that a unit may be added to a collection of units.
Thanks to experiment, we have had the opportunity
of exercising this faculty and are conscious of
it; but from this fact we feel that our power is
unlimited, and that we can count indefinitely,
although we have never had to count more than
a finite number of objects. In the same way, as
soon as we have intercalated terms between two
consecutive terms of a series, we feel that this
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operation may be continued without limit, and
that, so to speak, there is no intrinsic reason for
stopping. As an abbreviation, I may give the
name of a mathematical continuum of the first
order to every aggregate of terms formed after the
same law as the scale of commensurable numbers.
If. then, we intercalate new sets according to thc
Jaws of incommensurable numbers, we obtain
what may be called a continuum of the second
order.

Second Stage.—We have only taken our first
step.  We have explained the origin of con-
tinuums of the first order; we must now sec why
this is not sutficient, and why the incommensurable
numbers had to be invented.

If we try to imagine a line, it must have the
characters of the physical continuum—that is to
say, our representation must have a certain
breadth. Two lines will therefore appear to us
under the form of two narrow bands, and if we
are content with this rough image, it is clear
that where two lines cross they must have some
common part. But the pure geometer makes one
further cffort; without entirely renouncing the
aid of his senses, he tries to imagine a line without
breadth and a point without size. This he can
do only by imagining a line as the limit towards
which tends a band that is growing thinner and
thinner, and the point as the limit towards which
is tending an area that is growing smaller and
smaller.  Our two bands, however narrow they
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may be, will always have a common area; the
smaller they are the smaller it will be, and its
limit is what the geometer calls a point. This is
why it is said that the two lines which cross
must have a common point, and this truth seems
intuitive.

But a contradiction would be implied if we
conceived of lines as continuums of the first order—
i.c., the lines traced by the geometer should only
give us points, the co-ordinates of which are
rational numbers. The contradiction would be
manifest if we were, for instance, to assert the
existence of lines and circles. It is clear, in fact,
that if the points whose co-ordinates are com-
mensurable were alone regarded as real, the
in-circle of a square and the diagonal of the
square would not intersect, since the co-ordinates
of the point of intersection are incommensurable.

Even then we should have only certain incom-
mensurable numbers, and not all these numbers.

But let us imagine a line divided into two half-
rays (demi-droites). Lach of these half-rays will
appear to our minds as a band of a certain breadth;
these bands will fit close together, because there
must be no interval between them. The common
part will appear to us to be a point which will still
remain as we imagine the bands to become thinner
and thinner, so that we admit as an intuitive truth
that if a line be divided into two half-rays the
common frontier of these half-rays is a point.
Here we recognise the conception of Kronecker,
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in which an incommensurable number was regarded
as the common frontier of two classes of rational
numbers. Such is the origin of the continuum of
the second order, which is the mathematical con-
tinuum properly so called.

Swummary.—To sum up, the mind has the faculty
of creating symbols, and it is thus that it has con-
structed the mathematical continuum, which is
only a particular system of symbols. The only
limit to its power is the nccessity of avoiding all
contradiction ; but the mind only makes use of it
when experiment gives a reason for it.

In the case with which we are concerned, the
reason is given by the idea of the physical con-
tinuum, drawn from the rough data of the senses.
But this idea leads to a series of contradictions
from cach of which in turn we must be freed.
In this way we are forced to imagine a more
and more complicated system of symbols. That
on which we shall dwell is not merely exempt
from internal contradiction,—it was so already at
all the steps we have taken,—but it 1s no longer in
contradiction with the various propositions which
are called intuitive, and which are derived from
more or less elaborate empirical notions.

Measurable Magnitude.—So far we have not
spoken of the measure of magnitudes; we can tell
if any one of them is greater than any other,
but we cannot say that it is two or three times
as large.

So far, I have only considered the order in which
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the terms are arranged; but that is not sufficient
for most applications. We must learn how to
compare the interval which separates any two
terms. On this condition alone will the con-
tinuum become measurable, and the operations
of arithmetic -be applicable. This can only be
done by the aid of a new and special con-
vention; and this convention is, that in such a
casc the interval between the terms A and B is
cqual to the interval which separates C and D.
For instance, we started with the integers, and
between two consecutive sets we intercalated 2
intermediary sets: by convention we now assume
these new sets to be equidistant. This is one
of the ways of defining the addition of two
magnitudes; for if the interval AB is by definition
equal to the interval CD, the interval AD will by
definition be the sum of the intervals AB and AC.
This definition is very largely, but not altogether,
arbitrary. It must satisfy certain conditions—the
commutative and associative laws of addition, for
instance; but, provided the definition we choose
satisfies these laws, the choice is indifferent, and
we need not state it precisely.

Remarks—\We are now in a position to discuss
several important questions.

(1) Is the creative power of the mind exhausted
by the creation of the mathematical continuum ?
The answer is in the negative, and this is shown
in a very striking manner by the work of Du Bois
Reymond.
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We know that mathematicians distinguish
between infinitesimals of different orders, and that
infinitesimals of the second order are infinitely
small, not only absolutely so, but also in relation
to those of the first order. It is not difticult to
imagine infinitesimals of fractional or even of
irrational order, and here once more we find the
mathematical continuum which has been dealt
with in the preceding pages. Further, there are
infinitesimals which are infinitely small with
reference to those of the first order, and infinitely
large with respect to the order 1+e however
small e may be. Here, then, are new terms inter-
calated in our series; and if I may be permitted to
revert to the terminology used in the preceding
pages, a terminology which is very convenient,
although it has not been consecrated by usage, I
shall say that we have created a kind of con-
tinuum of the third order.

It is an easy matter to go further, but it is idle
to do so, for we would only be imagining symbols
without any possible application, and no one will
dream of doing that. This continuum of the third
order, to which we are led by the consideration of
the different orders of infinitesimals, is in itself
of but little use and hardly worth quoting.
Geometers look on it as a mere curiosity. The |
mind only uses its creative faculty when experi-
ment requires it.

(2) When we are once in possession of the
conception of the mathematical continuum, are
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we protected from contradictions analogous to
those which gave it birth? No, and the follow-
ing 1s an instance :—

He is a savant indeed who will not take it as
evident that every curve has a tangent; and, in
fact, if we think of a curve and a straight linc as
two narrow bands, we can always arrange them in
such a way that they have a common part without
intersecting.  Suppose now that the breadth of
the bands diminishes indefinitely: the common
part will still remain, and in the limit, so to speak,
the two lines will have a common point, although
they do not intersect—i.c., they will touch. The
geometer who reasons in this way is only doing
what we have done when we proved that two lines
which 1ntersect have a common point, and his
intuition might also seem to be quite legitimate.
But this is not the case. We can show that there
are curves which have no tangent, if we define
such a curve as an analytical continuum of the
second order. No doubt some artifice analogous
to those we have discussed above would cnable us
to get rid of this contradiction, but as the latter is
only met with in very exceptional cases, we need
not trouble to do so. Instead of endeavouring to
reconcile intuition and analysis, we are content to
sacrifice one of them, and as analysis must be
flawless, intuition must go to the wall.

The Physical Continuwum of several Dimensions.—
We have discussed above the physical continuum
as it 1s derived from the immediate evidence of our
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senses—or, if the reader prefers, from the rough
results of Fechner’s experiments; I have shown
that these results are summed up in the contra-
dictory formule :—A=DB, B=C, A <C.

Let us now sce how this notion is generalised,
and how from it may be derived the concept of
continuums of several dimensions. Consider any
two aggregates of sensations. We can either
distinguish between them, or we cannot; just as in
Fechner’s experiments the weight of 1o grammes
could be distinguished from the weight of 12
grammes, but not from the weight of 11 grammes.
This is all that is required to construct the con-
tinuum of several dimensions.

Let us call one of these aggregates of sensations
an clement. It will be In a measure analogous to
the point of the mathematicians, but will not be,
however, the same thing. We cannot say that
our element has no size, for we cannot distinguish
it from its immediate ncighbours, and it is thus
surrounded by a kind of fog. If the astronomical
comparison may be allowed, our ‘“elements”
would be like nebule, whereas the mathematical
points would be like stars.

If this be granted, a system of elements will
form a continuum, if we can pass from any one of
them to any other by a series of consccutive
elements such that each cannot be distinguished
from its predecessor. This lincar series is to the
line of the mathematician what the isolated element
was to the point.
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Before going further, I must explain what is
meant by a cut. Let us consider a continuum C,
and remove from it certain of its elements, which
for a moment we shall regard as no longer belong-
ing to the continuum. We shall call the aggregate
of elements thus removed a cut. By means of this
cut, the continuum C will be subdivided into
several distinct continuums; the aggregate of
clements which remain will cease to form a single
continuum. There will then be on C two ele-
ments, A and B, which we must look upon as
belonging to two distinct continuums; and we see
that this must be so, because it will be impossible
to find a linear series of consecutive elements of C
(each of the elements indistinguishable from the
preceding, the first being A and the last B), unless
one of the elements of this scries is indistinguishable
Sfrom one of the elements of the cut.

It may happen, on the contrary, that the cut
may not be sufficient to subdivide the continuum
C. To classify the physical continuums, we must
first of all ascertain the nature of the cuts which
must be made in order to subdivide them. Ifa
physical continuum, C, may be subdivided by a cut
reducing to a finite number of elements, all dis-
tinguishable the one from the other (and therefore
forming neither one continuum nor several con-
tinuums), we shall call C a continuum of one
dimension. If, on the contrary, C can only be sub-
divided by cuts which are themselves continuums,
we shall say that C is of several dimensions; if
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the cuts are continuums of one dimension, then
we shall say that C has two dimensions; if cuts of
two dimensions are sufficient, we shall say that C
is of three dimensions, and so on. Thus the
notion of the physical continuum of several dimen-
sions is defined, thanks to the very simple fact,
that two aggregates of sensations may be dis-
tinguishable or indistinguishable.

The Mathematical Continuum of Several Dimensions.
—The conception of the mathematical continuum
of 1 dimensions may be led up to quite naturally
by a process similar to that which we discussed at
the beginning of this chapter. A point of such a
continuum is defined by a system of » distinct
magnitudes which we call its co-ordinates.

The magnitudes need not always be measurable;
there is, for instance, one branch of geometry
independent of the measure of magnitudes, in
which we are only concerned with knowing, for
example, if, on a curve ABC, the point B is
between the points A and C, and in which it is
immaterial whether the arc AB is equal to or
twice the arc BC. This branch is called Analysis
Situs. It contains quite a large body of doctrine
which has attracted the attention of the greatest
geometers, and from which are derived, one from
another, a* whole series of remarkable theorems.
What distinguishes these theorems from those of
ordinary geometry is that they are purely quali-
tative. They are still true if the figures are copied
by an unskilful draughtsman, with the result that

3
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the proportions are distorted and the straight lines
replaced by lines which are more or less curved.
As soon as measurement is introduced into the
continuum we have just defined, the continuum
becomes space, and geometry is born. But the
discussion of this is reserved for Part II.



PART 1L
SPACE.

CHAPTER III.
NON-EUCLIDEAN GEOMETRIES.

EVERY conclusion presumes premisses. These
premisses are either self-evident and need no
demonstration, or can be established only if based
on other propositions; and, as we cannot go back
in this way to infinity, every deductive science,
and geometry in particular, must rest upon a
certain number of indemonstrable axioms. All
treatises of geometry begin therefore with the
enunciation of these axioms. DBut there is a
distinction to be drawn between them. Some of
these, for example, “Things which are equal to
the same thing are equal to one another,” are not
propositions in geometry but propositions in
analysis. I look upon them as analytical a priori
intuitions, and they concern me no further. DBut
I must insist on other axioms which are special
to geometry. Of these most treatises explicitly |
enunciate three:—(1) Only one line can pass |
through two points; (2) a straight line is the



36 SCIENCE AND HYPOTHESIS.

shortest distance between two points; (3) through
one point only one parallel can be drawn to a
given straight line. Although we generally dis-
pense with proving the second of these axioms, it
would be possible to deduce it from the other two,
and from those much more numerous axioms
which are implicitly admitted without enuncia-
tion, as I shall explain further on. For a long
time a proof of the third axiom known as Euclid’s
postulate was sought in vain. It is impossible to
imagine the efforts that have been spent in pursuit
of this chimera. Finally, at the beginning of the
nineteenth century, and alm(“c;L simulfzgl ously,
two scientists, a Russian and a"B , Lobat-
schewsky and Bolyai, showed irrefutably that this
proof is impossible. They have nearly rid us of
inventors of geometries without a postulate, and
ever since the Académie des Sciences receives only
about one or two new demonstrations a year.
But the question was not exhausted, and it was
not long before a great step was taken by the
celebrated memoir of Riemann, entitled: Ucber
die Hypothesen welche dev Geometrie zum Grunde
licgen. This little work has inspired most of the
recent treatises to which I shall later on refer, and
among which I may mention those of Beltrami
and Helmholtz.

The Geometry of Lobatschewsky. —If it were
possible to deduce Euclid’s postulate from the
several axioms, it is evident that by rejecting
the postulate and retaining the other axioms we
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should be led to contradictory consequences. It
would be, therefore, impossible to found on those
premisses a coherent geometry. Now, this is
precisely what Lobatschewsky has done. He
assumes at the outset that several parallels may
be drawn through a point to a given straight line,
and he retains all the other axioms of Euclid.
From these hypotheses he deduces a series of
theorems between which it is impossible to find
any contradiction, and he constructs a geometry
as impeccable in its logic as Euclidean geometry.
The theorems are very different, however, from
those to which we are accustomed, and at first
will be found a little disconcerting. For instance,
the sum of the angles of a triangle is always less
than two right angles, and the difference between
that sum and two right angles is proportional to
the area of the triangle. It is impossible to con-
struct a figure similar to a given figure but of
different dimensions. If the circumference of a
circle be divided into # equal parts, and tangents
be drawn at the points of intersection, the n
tangents will form a polygon if the radius of
the circle is small enough, but if the radius is
large enough they will never meet. We need not
multiply these examples. Lobatschewsky’s pro-
positions have no relation to those of Euclid,
but they are none the less logically interconnected.

Riemann’s Geometry.—Let us imagine to our-
selves a world only peopled with beings of no
“nickness, and suppose these ““infinitely flat”

7
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animals are all in one and the same plane, from
which they cannot emerge. Let us further admit
that this world is sufficiently distant from other
worlds to be withdrawn from their influence, and
while we are making these hypotheses it will not
cost us much to endow these beings with reason-
ing power, and to believe them capable of making
a geometry. In that case they will certainly
attribute to space only two dimensions. But
now suppose that these imaginary animals, while
remaining without thickness, have the form of a
spherical, and not of a plane figure, and are all on
the same sphere, from which they cannot escape.
What kind of a geometry will they construct? In
the first place, it is clear that they will attribute to
space only two dimensions. The straight line to
them will be the shortest distance from one point
on the sphere to another—that is to say, an arc of
a great circle. In a word, their geometry will be
spherical geometry. What they will call space
will be the sphere on which they are confined, and
on which take place all the phenomena with
which they are acquainted. Their space will
therefore be unbounded, since on a sphere one may
always walk forward without ever being brought

~to a stop, and yet it will be finite; the end will

never be found, but the complete tour can be

" made. Well, Riemann’s geometry is spherical

geometry extended to three dimensions. To con-
struct it, the German mathematician had first of
all to throw overboard, not only Euclid’s postulatc.
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but also the first axiom that only one line can pass

through two points. On a sphere, through two

given points, we can n general draw only one great

circle which, as we have just seen, would be to

our imaginary beings a straight line. But there

was one exception. If the two given points are

at the ends of a diameter, an infinite number of ’

great circles can be drawn through them. In

the same way, in Riemann’s geometry—at least in

one of its forms—-through two points only one

straight line can in gcnelal be drawn, but there are |

exceptional cases in which through two pomts

an infinite number of straight lines can be drawn.

So there is a kind of opposition between the

geometries of Riemann and Lobatschewsky. For

instance, the sum of the angles of a triangle is

equal to two right angles in Euclid's geometry,

less than two right angles in that of Lobat-

schewsky, and greater than two right angles in that -

of Riemann. The number of parallel lines that M

can be drawn through a given point to a given

line is one in Euclid’s geometry, none in Riemann’s,

and an infinite number in the geometry of Lobat- \\ Jt

schewsky. Let us add that Riemann’s space is

finite, although unbounded in the sense which wee=

have above attached to these words. & Uov
Surfaces with Constant Curvature.—One objection,

however, remains possible. There is no contradic-

tion between the theorems of Lobatschewsky and

Riemann; but however numerous are the other

consequences that these geometers have deduced
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from their hypotheses, they had to arrest their

course before they exhausted them all, for the

number would be infinite; and who can say that

if they had carried their deductions further they

would not have eventually reached some con-

J% W _tradiction? This difficulty does not exist for
wellirg “Riemann’s geometry, provided it is limited to
L"f’“‘"‘“"“t\\o dimensions. As we have seen, the two-
t*’)‘““’e dimensional geometry of Riemann, in fact, does
we de et ot differ from spherical geometry, which is only a
= branch of ordinary geometry, and is therefore out-
Yo side all contradiction. Beltrami, by showing that
Lobatschewsky's two-dimensional geometry was

only a branch of ordinary geometry, has equally

refuted the objection as far as it is concerned.

This is the course of his argument: Let us con-

sider any figure whatever on a surface. Imagine

this figure to be traced on a flexible and in-
extensible canvas applied to the surface, in such

a way that when the canvas is displaced and
deformed the different lines of the figure change

their form without changing their length. As a

rule, this flexible and inextensible figure cannot be
displaced without leaving the surface. But there

are certain surfaces for which such a movement

would be possible. They are surfaces of constant
curvature. If we resume the comparison that we

made just now, and imagine beings without thick-

ness living on one of these surfaces, they will

regard as possible the motion of a figure all the

lines of which remain of a constant length. Such
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a movement would appear absurd, on the other
hand, to animals without thickness living on a
surface of variable curvature. These surfaces of
constant curvature are of two kinds. The
curvature of some is positive, and they may be
deformed so as to be applied to a sphere. The
geometry of these surfaces is therefore reduced to
spherical geometry—namely, Riemann’s. The cur-
vature of others is negative. Beltrami has shown
that the geometry of these surfaces is identical
with that of Iobatschewsky. Thus the two-
dimensional geometries of Riemann and ILobat-
schewsky are connected with Euclidean geometry.
Interpretation of Non-Euclidean Geometries.—Thus
vanishes the objection so far as two-dimensional
geometries are concerned. It would be easy to
extend Beltrami's reasoning to three-dimensional
geometries, and minds which do not recoil before
space of four dimensions will see no difficulty in
it; but such minds are few in number. 1 prefer,
then, to proceed otherwise. Let us consider a
certain plane, which I shall call the fundamental
plane, and let us construct a kind of dictionary by
making a double series of terms written in two
columns, and corresponding cach to each, just as
in ordinary dictionaries the words in two languages
which have the same signification correspond to

one another:—
Space ... ... ... The portion of space situated
above the fundamental

plane.
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Plane ... ... ... Sphere cutting orthogonally
the fundamental plane.

Line ... ... ... Circle cutting orthogonally
the fundamental plane.

Sphere... ... ... Sphere.

Circle ... ... ... Circle.

Angle ... ... ... Angle

Distance between

two points ... ILogarithm of the anharmonic

ratio of these two points
and of the intersection
of the fundamental plane
with the circle passing
through these two points
and cutting 1t orthogon-
ally.
Ete. B,

Let us now take Lobatschewsky's theorems and
translate them by the aid of this dictionary, as we
would translate a German text with the aid of
a German - Irench dictionary. We shall then
obtain the theorems of ordinary geometry. For
instance, Lobatschewsky’s theorem: “ The sum of
the angles of a triangle is less than two right
angles,” may be translated thus: “If a curvilinear
triangle has for its sides arcs of circles which if
produced would cut orthogonally the fundamental
plane, the sum of the angles of this curvilinear
triangle will be less than two right angles.” Thus,
however far the consequences of Lobatschewsky’s
hypotheses are carried, they will never lead to a
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contradiction; in fact, if two of Lobatschewsky’s
theorems were contradictory, the translations of
these two theorems made by the aid of our
dictionary would be contradictory also. But
these translations are theorems of ordinary
geometry, and no one doubts that ordinary
geometry 1s exempt from contradiction. Whence
is the certainty derived, and how far is it justified?
That is a question upon which I cannot enter
here, but it is a very intercsting question, and I
think not insoluble. Nothing, therefore, is left of
the objection I formulated above. But this is not
all.  Lobatschewsky’s geometry being susceptible
of a concrete interpretation, ceases to be a useless
logical excrcise, and may be applied. I have no
time here to deal with these applications, nor
with what Herr Klein and myself have done by
using them in the integration of linear equations.
Further, this interpretation is not unique, and
several dictionaries may be constructed analogous
to that above, which will enable us by a simple
translation to convert Lobatschewsky’s theorems
into the theorems of ordinary geometry.

Implicit Axioms. — Are the axioms implicitly
enunciated in our text-books the only foundation
of geometry? We may be assured of the contrary
when we see that, when they are abandoned one
after another, there are still left standing some
propositions which are common to the geometries
of Euclid, Lobatschewsky, and Riemann. These
propositions must be based on premisses that
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geometers admit without enunciation. It is in-
teresting to try and extract them from the classical
proofs.

John Stuart Mill asserted! that every definition
contains an axiom, because by defining we im-
plicitly affirm the existence of the object defined.
That is going rather too far. It is but rarely in
mathematics that a definition is given without
following it up by the proof of the existence of the
object defined, and when this 1s not done it is
generally because the reader can easily supply
it; and it must not be forgotten that the word
‘““existence” has not the same meaning when it
refers to a mathematical entity as when it refers to
a material object.

A mathematical entity exists provided there is
no contradiction tmplied in its definition, either in
itself, or with the propositions previously admitted.
But if the observation of John Stuart Mill cannot
be applied to all definitions, it is none the less true
for some of them. A plane is sometimes defined
in the following manner:—The plane is a surface
such that the line which joins any two points
upon it lies wholly on that surface. Now, there is
obviously a new axiom concealed in this definition.
It is true we might change it, and that would be
preferable, but then we should have to enunciate
the axiom explicitly. Other definitions may give
rise to no less important reflections, such as, for
example, that of the equality of two figures. Two

L Logic, c. viil., cf. Definitions, § 5-6.— Tr.
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figures are equal when they can be superposed.
To superpose them, one of them must be displaced
until it coincides with the other. DBut how must
it be displaced? If we asked that question, no
doubt we should be told that it ought to be done
without deforming it, and as an invariable solid is
displaced. The vicious circle would then be evi-
dent. As a matter of fact, this definition defines
nothing. It has no meaning to a being living in a
world in which there are only fluids. If it seems
clear to us, it is because we are accustomed to the
properties of natural solids which do not much
differ from those of the ideal solids, all of whose
dimensions are invariable. However, imperfect as
it may be, this definition implies an axiom. The
possibility of the motion of an invariable figure is
not a self-evident truth. At least it is only so in
the application to Euclid’s postulate, and not as an
analytical a priori intuition would be. More-
over, when we study the definitions and the proofs
of geometry, we see that we are compelled to
admit without proof not only the possibility of
this motion, but also some of its properties. This
first arises in the definition of the straight line.
Many defective definitions have been given, but
the true one is that which i1s understood in all the
proofs in which the straight line intervenes. * It
may happen that the motion of an invariable figure
may be such that all the points of a line belonging .
to the figure are motionless, while all the points
situate outside that line are in motion. Such a

SPn ¢
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line would be called a straight line.” We have
deliberately in this enunciation separated the
definition from the axiom which it implies. Many
proofs such as those of the cases of the equality of
triangles, of the possibility of drawing a perpen-
dicular from a point to a straight line, assume pro-
positions the enunciations of which are dispensed
with, for they necessarily imply that it is possible
to move a figure in space in a certain way.

The Fourth Geometry.—Among these explicit
axioms there is one which seems to me to deserve
some attention, because when we abandon it we
can construct a fourth geometry as coherent as
those of Euclid, Lobatschewsky, and Riemann.
To prove that we can always draw a perpendicular
at a point A to a straight line A B, we consider a
straight line A C movable about the point A, and
initially identical with the fixed straight line A B.
We then can make it turn about the point A until
it lies in A B produced. Thus we assume two
propositions—first, that such a rotation is possible,
and then that it may continue until the two lines
lie the one in the other produced. If the first
point is conceded and the second rejected, we are
led to a series of theorems even stranger than those
of Lobatschewsky and Riemann, but equally free
from contradiction. 1 shall give only one of these
theorems, and I shall not choose the least remark-
able of them. A real straight line may be perpen-
dicular to itself.

Lie’s Theorem.—The number of axioms implicitly
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introduced into classical proofs is greater than
necessary, and it would be interesting to reduce
them to a minimum. It may be asked, in the first
place, if this reduction is possible—if the number of
necessary axioms and that of imaginable geometries
is not infinite? A theorem due to Sophus Lie is of
weighty importance in this discussion. It may be
enunciated in the following manner:—Suppose the
following premisses are admitted: (1) space has #
dimensions; (2) the movement of an invariable
figure is possible; (3) p conditions are necessary to
determine the position of this figure in space.

The number of geometries compatible with these
premisses will be limited. 1 may even add that if n
is given, a superior limit can be assigned to p. If,
therefore, the possibility of the movement is
granted, we can only invent a finite and even
a rather restricted number of three-dimensional
geometries.

Riemann's Geometries.— However, this result
s2ems contradicted by Riemann, for that scientist
constructs an infinite number of geometries, and
that to which his name is usually attached is only
a particular case of them. All depends, he says,
on the manner in which the length of a curve is
defined. Now, there is an infinite number of ways
of defining this length, and each of them may be
the starting-point of a new geometry. That is
perfectly true, but most of these definitions are in-
compatible with the movement of a variable figure
such as we assume to be possible in Lie’s theorem.
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These geometries of Riemann, so interesting on
various grounds, can never be, therefore, purely
analytical, and would not lend themselves to
proofs analogous to those of Euclid.

On the Nature of Axioms.—Most mathematicians

“regard Lobatschewsky’s geometry as a mere logical

curiosity. Some of them have, however, gone
further. If several geometries are possible, they
say, 1s it certain that our geometry is the one that
is true 7| Experiment no doubt teaches us that the
sum of the angles of a triangle is equal to two
right angles, but this is because the triangles we
deal with are too small. According to Lobat-
schewsky, the difference is proportional to the area
of the triangle, and will not this become sensible
when we operate on much larger triangles, and
when our measurements become more accurate ?
LEuclid’s geometry would thus be a provisory
geometry. Now, to discuss this view we must
first of all ask ourselves, what i1s the nature of
geometrical axioms? Are they synthetic a prior:
intuitions, as Kant affirmed? They would then
be imposed upon us with such a force that we
could not conceive of the contrary proposition, nor
could we build upon it a theoretical edifice. There
would be no non-Euclidean geometry. To con-
vince ourselves of this, let us take a true synthetic
a priori intuition—the following, for instance, which
played an important part in the first chapter:—If
a theorem 1is true for the number 1, and if it has
peen proved that it is true of n+ 1, provided it is
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true of n, it will be true for all positive integers.
Let us next try to get rid of this, and while reject-
ing this proposition let us construct a false
arithmetic analogous to non-Euclidean geometry.
We shall not be able to do it. We shall be even
tempted at the outset to look upon these intui-
tions as analytical. Besides, to take up again
our fiction of animals without thickness, we can
scarcely admit that these beings, if their minds
are like ours, would adopt the Euclidean geometry,
which would be contradicted by all their experi-
ence. Ought we, then, to conclude that the
axioms of geometry are experimental truths?
But we do not make experiments on ideal lines or
ideal circles; we can only make them on material
objects. On what, therefore, would experiments
serving as a foundation for geometry be based?
The answer is easy. We have seen above that we |
constantly reason as if the geometrical figures
behaved like solids. What geometry would borrow
from experiment would be therefore the pro-
perties of these bodies. The properties of light
and its propagation in a straight line have also
given rise to some of the propositions of geometry,
and in particular to those of projective geometry,
so that from that point of view one would be
tempted to say that metrical geometry is the study
of solids, and projective geometry that of light.
But a difficulty remains, and is unsurmountable.
If geometry were an experimental science, it w ould’]
not be an exact science. It would be Subjected to
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continual revision. Nay, it would from that day
forth be proved to be erroneous, for we know that
no rigorously invariable solid exists The geo-
nietrical axioms are therefore neither synthetic & priort
intuitions nor experimental facts. They are conven-

“tions. Our choice among all possible conventions

is guided by experimental facts; but it remains
free, and is only limited by the necessity of avoid-
ing every contradiction, and thus it is that pos-
tulates may remain rigorously true even when the
experimental laws which have determined their
adoption are only approximate. In other words,
the axioms of geometry (I do not speak of those of
arithmetic) are only definitions tn disguise.  What,
then, arc we to think of the question: Is
Euclidean geometry true? It has no meaning.
We might as well ask if the metric system is true,
and if the old weights and measures are false; if
Cartesian co-ordinates are true and polar co-
ordinates false. |One geometry cannot be more
true than another; it can only be more convenient.
Now, Euclidean geometry is, and will remain, the
most convenient: 1st, because it is the simplest,
and it is not so only because of our mental habits
or because of the kind of direct intuition that we
have of Euclidean space; it is the simplest in
itself, just as a polynomial of the first degree is
simpler than a polynomial of the second degree;
2nd, because it sufficiently agrees with the pro-
perties of natural solids, those bodies which we
can compare and measure by means of our senses.



CHAPTLER 1IV.
SPACE AND GEOMETRY.

LET us begin with a little paradox. Beings whose
minds were made as ours, and with senses like
ours, but without any preliminary education,
might receive from a suitably-chosen external
world impressions which would lead them to
construct a geometry other than that of Euclid,
and to localise the phenomena of this external
world in a non-Euclidean space, or even in space
of four dimensions. As for us, whose education
has been made by our actual world, if we were
suddenly transported into this new world, we
should have no difficulty in referring phenomena
to our Euclidean space. Perhaps somebody may
appear on the scene some day who will devote his
life to it, and be able to represent to himself the
fourth dimension.

Geometrical Space and Representative Space.—I1t is
often said that the images we form of external
objects are localised in space, and even that they
can only be formed on this condition. It is also
said that this space, which thus serves as a kind of
framework ready prepared for our sensations and
representations, is identical with the space of the
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geometers, having all the properties of that space.
To all clear-headed men who think in this way,
the preceding statement might well appear extra-
ordinary; but it is as well to see if they are not
the victims of some illusion which closer analysis
may be able to dissipate. In the first place, what
are the properties of space properly so called ?
I mean of that space which is the object of
geometry, and which I shall call geometrical
space. The following are some of the more
essential :—

1st, it is continuous; 2nd, it is infinite; 3rd, it
is of three dimensions; 4th, it i1s homogeneous—
that is to say, all its points are identical one
with another; sth, it is isotropic. Compare this
now with the framework of our representations
and sensations, which I may call representative
space.

Visual Space.—First of all let us consider a
purely visual impression, due to an image formed
on the back of the retina. A cursory analysis shows
us this image as continuous, but as possessing only
two dimensions, which already distinguishes purely
visual from what may be called geometrical space.
On the other hand, the image is enclosed within
a limited framework; and there is a no less
important difference: this pure visual space is not
homogeneous.  All the points on the retina, apart
from the images which may be formed, do not
play the same role. The yellow spot can in no
way be regarded as identical with a point on the
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edge of the retina. Not only does the same object
produce on it much brighter impressions, but in
the whole of the lmited framework the point
which occupies the centre will not appear identical
with a point near one of the edges. Closer
analysis no doubt would show us that this con-
tinuity of visual space and its two dimensions are
but an illusion. It would make visual space even
more different than before from geometrical space,
but we may treat this remark as incidental.
However, sight enables us to appreciate dis-
tance, and therefore to perceive a third dimension.
But every one ‘knows that this perception of the
third dimension reduces to a sense of the effort ofl ,
accommodation which must be made, and to a ;Y
scnse of the convergence of the two eyes, that
must take place in order to perccive an object/
distinctly. These are muscular sensations quite
different from the visual sensations which have
given us the concept of the two first dimensions.
The third dimension will therefore not appear to us
as playing the same role as the two others. What
may be called complete visual space is not therefore
an isotropic space. It has, it is true, exactly
three dimensions; which means that the elements
of our visual sensations (those at least which
concur in forming the concept of extension) will
be completely defined if we know three of them;
or, in mathematical language, they will be func-
tions of three independent variables. But let us
look at the matter a little closer. The third

L
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dimension is revealed to us in two different ways:
by the effort of accommodation, and by the con-
vergence of the eyes. No doubt these two in-
dications are always in harmony; there is between
them a constant relation; or, in mathematical
language, the two variables which measure these
two muscular sensations do not appear to us as
independent. Or, again, to aveid an appeal to
mathematical ideas which are already rather too
refined, we may go back to the language of the
preceding chapter and enunciate the same fact as
follows:—If two sensations of convergence A and
B are indistinguishable, the two sensations of
accommodation A" and B’ which accompany them
respectively will also be indistinguishable. But
that is, so to speak, an experimental fact. Nothing
prevents us a priori from assuming the contrary,
and if the contrary takes place, if these two
muscular sensations both vary independently, we
must take into account one more independent
variable, and complete visual space will appear
to us as a physical continuum of four dimensions.
And so in this there is also a fact of external
experiment. Nothing prevents us from assuming
that a being with a mind like ours, with the same
sense-organs as ourselves, may be placed in a world
in which light would only reach him after being
passed through refracting media of complicated
form. The two indications which enable us to
appreciate distances would cease to be connected
by a constant relation. A being educating his
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senses in such a world would no doubt attribute
four dimensions to complete visual space.

Tactile and Motor Space.—“ Tactile space” is
more complicated still than visual space, and differs
even more widely from geometrical space. It is
useless to repeat for the sense of touch my remarks
on the sense of sight. But outside the data of
sight and touch there are other sensations which
contribute as much and more than they do to the
genesis of the concept of space. They are those
which everybody knows, which accompany all our
movements, and which we usually call muscular
sensations. The corresponding framework con-
stitutes what may be called motor space. Each
muscle gives rise to a special sensation which may
be increased or diminished so that the aggregate
of our muscular sensations will depend upon as
many variables as we have muscles. Irom this
point of view motor space would have as many dimen-
stons as we have muscles. 1 know that it is said
that if the muscular sensations contribute to form
the concept of space, it is because we have the
sense of the direction of each movement, and that
this is an integral part of the sensation. If this
were so, and if a muscular sense could not be
aroused unless it were accompanied by this geo-
metrical sense of direction, geometrical space
would certainly be a form imposed upon our
sensitiveness. But I do not see this at all when
I analyse my sensations. What I do see is that
the sensations which correspond to movements in
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.
the same direction are connected in my mind by a
simple association of ideas. It is to this association
that what we call the sense of direction is reduced.
We cannot therefore discover this sense in a single
sensation. This association 1s extremely complex,
for the contraction of the same muscle may cor-
respond, according to the position of the limbs,
to very different movements of direction. More-
over, it 1s ecvidently acquired; it 1s like all
associations of ideas, the result of a /habit. This
habit itself 1s the result of a very large number of
experiments, and no doubt if the education of our
senses had taken place in a different medium,
where we would have been subjected to different
impressions, then contrary habits would have been
acquired, and our muscular sensations would have
been associated according to other laws.
Characteristics of Representative Space.—Thus re-
presentative space in 1its triple form — visual,
tactile, and motor—differs essentially from geo-
metrical space. It is neither homogeneous nor
isotropic; we cannot even say that it is of three
dimensions. It is often said that we “project™
into geometrical space the objects of our external
perception; that we ““localise” them. Now, has
that any meaning, and if so what is that meaning ?
Does it mean that we represent to ourselves ex-
ternal objects in geometrical space? Our repre-
sentations are only the reproduction of our sensa-
tions; they canmet therefore be arranged in the
same framework—that is to say, in representative -



SPACE AND GEOMETRY. 57

space. It is also just as impossible for us to repre-
sent to ourselves external objects in geometrical .
space, as it is impossible for a painter to paint on
a flat surface objects with their three dimensions.
Representative space is only an image of geo-
metrical space, an image deformed by a kind of
perspective, and we can only represent to our-
selves objects by making them obey the laws of
this perspective. Thus we do not represent to our-
selves external bodies in geometrical space, but we
reason about these bodies as if they were situated
in geometrical space. When it is said, on the
other hand, that we “localise” such an object in
such a point of space, what does it mean? If
simply means that we represent to ourselves the move-
ments that must take place to reach that object. And ’
it does not mean that to represent to ourselves
these movements they must be projected into
space, and that the concept of space must therefore
pre-exist. When I say that we represent to our-
selves these movements, I only mean that we
represent to ourselves the muscular sensations
which accompany them, and which bhave no
geometrical character, and which therefore in no
way imply the pre-existence of the concept of
space.

Changes of State and Changes of Position.—But,
it may be said, if the concept of geometrical space
is not imposed upon our minds, and if, on the
other hand, none of our sensations can furnish us

- with that concept, how then did it ever come into
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existence ? This is what we have now to examine,
and it will take some time; but I can sum up in a
few words the attempt at explanation which I am
going to develop. None of our sensations, if isolated,
could have brought us to the concept of space; we are
brought to it solely by studying the laws by which those

0 sensations succeed one a;miher We see at first that

our impressions are subject to change; but among
the chqnges that we ascertain, we are very soon
led to make a distinction. Sometimes we say that
the objects, the causes of these impressions, have
changed their state, sometimes that they have
changed their position, that they have only been
displaced. Whether an object changes its state or
only its position, this is always translated for us in
the same manner, by a modification in an aggregate
of impressions. How then have we been enabled
to distinguish them ? If there were only change
of position, we could restore the primitive aggre-
gate of impressions by making movements which
would confront us with the movable object in
the same relative situation. We thus correct the
modification which was produced, and we re-
establish the initial state by an inverse modifica-
tion. If, for example, it were a question of the
sight, and if an object be displaced before our
eyes, we can “follow it with the eye,” and retain
its image on the same point of the retina by
appropriate movements of the eyeball. These
movements we are conscious of because they are
voluntary, and because they are accompanied by
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muscular sensations. But that does not mean .
that we represent them to ourselves in geometrical
space. So what characterises change of position,
what distinguishes it from change of state, is that
it can always be corrected by this means. It may
therefore happen that we pass from the aggregate
of impressions A to the aggregate B in two differ-
ent ways. First, involuntarily and without ex-
periencing muscular sensations—svhich happens
when it is the object that is displaced; secondly,
voluntarily, and with muscular sensation—which
happens when the object is motionless, but when ’
we displace ourselves in such a way that tlleTM~'
object has relative motion with respect to us. If
this be so, the translation of the aggregate A to
the aggregate B is only a change of position. It
follows that sight and touch could not have given
us the idea of space without the help of the
“muscular sense.” Not only could this concept
not be derived from a single sensation, or even from
a series of sensations; but a motionless being could
never have acquired it, because, not being able to
correct by his movements the effects of the change
of position of external objects, he would have had
no reason to distinguish them from changes of
state. Nor would he have been able to acquire
it if his movements had not been voluntary,
or if they were unaccompanied by any sensations
whatever.

Conditions of Compensation.—How 1is such a
compensation possible in such a way that two
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changes, otherwise mutually independent, may be
reciprocally corrected? A mind already familiar
with geometry would reason as follows :—If there
is to be compensation, the different parts of the
external object on the one hand, and the different
organs of our senses on the other, must be in the
same relative position after the double change.
And for that to be the case, the different parts of
the external body on the one hand, and the differ-
ent organs of our senses on the other, must have
the same relative position to each other after the
double change; and so with the different parts of
our body with respect to each other. In other
words, the external object in the first change must
be displaced as an invariable solid would be dis-
placed, and it must also be so with the whole of our
body in the second change, which is to correct the
first. Under these conditions compensation may
be produced. But we who as yet know nothing of
geometry, whose ideas of space are not yet formed,
we cannot reason in this way—we cannot predict
a priori if compensation is possible. But experi-
ment shows us that it sometimes does take place,
and we start from this experimental fact in order
to distinguish changes of state from changes of
position.

Solid Bodies and Geometry.—Among surrounding
objects there are some which frequently experience
displacements that may be thus corrected by a
correlative movement of our own body—namely,
solid bodies. The other objects, whose form is vari-
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able, only in exceptional circumstances undergo
similar displacement (change of position without
change of form). When the displacement of a
body takes place with deformation, we can no
longer by appropriate movements place the organs
of our body in the same relative situation with
respect to this body; we can no longer, thercfore,
reconstruct the primitive aggregate of impressions.

It is only later, and after a series of new experi-
ments, that we learn how to decompose a body of
variable form into smaller elements such that each
is displaced approximately according to the same
laws as solid bodies. We thus distinguish “de-
formations” from other changes of state. In these
deformations each element undergoes a simple
change of position which may be corrected; but the
modification of the aggregate is more profound,
and can no longer be corrected by a correlative
movement. Such a concept is very complex even
at this stage, and has been relatively slow in
its appearance. It would not have been conceived
at all had not the observation of solid bodies shown
us beforchand how to distinguish changes of
position.

If, then, there weve no solid bodies i nature there
would be no geometry.

Another remark deserves a moment’s attention.
Suppose a solid body to occupy successively the
positions « and f; in the first position it will give
us an aggregate of impressions A, and in the second
position the aggregate of impressions B.  Now let
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there be a second solid body, of qualities entirely
different from the first—of different colour, for
instance. Assume it to pass from the position «,
where it gives us the aggregate of impressions A’ to
the position f3, where it gives the aggregate of
impressions B’. In general, the aggregate A will
have nothing in common with the aggregate A,
nor will the aggregate B have anything in common
with the aggregate B’. The transition from the
aggregate A to the aggregate B, and that of the
aggregate A’ to the aggregate B, are therefore
two changes which in themselves have in general
nothing in common. Yet we consider both
these changes as displacements; and, further, we
consider them the same displacement. How can
“this be? It is simply because they may be both
corrected by the same correlative movement of our
body. “Correlative movement,” therefore, con-
stitutes the sole connection between two phenomena
which otherwise we should never have dreamed of
connecting.

On the other hand, our body, thanks to the
number of its articulations and muscles, may have
a multitude of different movements, but all are not
capable of *“correcting” a modification of external
objects; those alone are capable of it in which
our whole body, or at least all those in which
the organs of our senses enter into play are
displaced en bloc—i.c., without any variation of
their relative positions, as in the case of a solid
body.
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To sum up:

1. Inthe first place, we distinguish two categories
of phenomena:—The first involuntary, unaccom-
panied by muscular sensations, and attributed to
external objects—they are external changes; the
second, of opposite character and attributed to the
movements of our own body, are internal changes.

2. We notice that certain changes of cach in
these categories may be corrected by a correlative
change of the other category.

3. We distinguish among external changes those
that have a correlative in the other category—
which we call displacements; and in the same way
we distinguish among the internal changes those
which have a correlative in the first category.

Thus by means of this reciprocity is defined a
particular class of phenomena called displace-
ments. The laws of these phenomena are the object of
geometry.

Law of Homogeneity.—The first of these laws
is the law of homogeneity. Suppose that by an
external change we pass from the aggregate of
impressions A to the aggregate B, and that then
this change « is corrected by a correlative
voluntary movement f, so that we are brought
back to the aggregate A. Suppose now that
another external change « brings us again from
the aggregate A to the aggregate B.  Experiment
then shows us that this change o, like the change
a, may be corrected by a voluntary correlative
movement [, and that this movement /3 corre-
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sponds to the same muscular sensations as the
movement 3 which corrected «.

This fact 1s usually enunciated as follows :—Space
1s homogencous and isotropic. We may also say that a
movement which is once produced may be repeated
a second and a third time, and so on, without any
variation of its properties. In the first chapter, in
which we discussed the nature of mathematical
reasoning, we saw the importance that should be
attached to the possibility of repeating the same
operation indefinitely. The virtue of mathematical
reasoning is due to this repetition; by means of the
law of homogeneity geometrical facts are appre-
hended. To be complete, to the law of homo-
geneity must be added a multitude of other laws,
into the details of which I do not propose to enter,
but which mathematicians sum up by saying that
these displacements form a “group.”

The Non-Euclidean World.—1f geometrical space
were a framework imposed on cach of our repre-
sentations considered individually, it would be
impossible to represent to ourselves an image
without this framework, and we should be quite
unable to change our geometry. But this is not
the case; geometry is only the summary of the
laws by which these images succeed each other.
There is nothing, therefore, to prevent us from
imagining a series of representations, similar in
every way to our ordinary representations, but
succeeding one another according to laws which
differ from those to which we are accustomed. We
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may thus conceive that beings whose education
has taken place in a medium in which those laws
would be so different, might have a very different
geometry from ours.

Suppose, for example, a world enclosed in a large
sphere and subject to the following laws:—The
temperature is not uniform; it is greatest at the
centre, and gradually decreases as we move towards
the circumference of the sphere, where it is absolute
zero. The law of this temperature is as follows :—
If R be theradius of the sphere, and » the distance
of the point considered from the centre, the abso-
lute temperature will be proportional to R>—r2
Further, I shall suppose that in this world all bodies
have the same co-efficient of dilatation, so that the
linear dilatation of any body is proportional to its
absolute temperature. Finally, I shall assume that
a body transported from one point to another of
different temperature is instantaneously in thermal
equilibrium with its new environment. There is
nothing in these hypotheses either contradictory
or unimaginable. A moving object will become
smaller and smaller as it approaches the circum-
ference of the sphere. Let us observe, in the first
place, that although from the point of view of our
ordinary geometry this world is finite, to its inhabit-
ants it will appear infinite. As they approach the
surface of the sphere they become colder, and at
the same time smaller and smaller. The steps
they take are therefore also smaller and smaller,
so that they can never reach the boundary of the
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irsphere. If to us geometry is only the study of the
laws according to which invariable solids move, to
/i these imaginary beings it will be the study of the
| laws of motion of solids deformed by the differences
|} of temperature alluded to.

No doubt, in our world, natural solids also ex-
perience variations of form and volume due to
differences of temperature. But in laying the
foundations of geometry we neglect these varia-
tions; for besides being but small they are irregular,
and consequently appear to us to be accidental.
In our hypothetical world this will no longer be
the case, the variations will obey very simple and
regular laws. On the other hand, the different
solid parts of which the bodies of these inhabitants
are composed will undergo the same variations of
form and volume.

Let me make another hypothesis: suppose that
light passes through media of different refractive
indices, such that the index of refraction is inversely
proportional to R*—r%  Under these conditions it
is clear that the rays of light will no longer be
rectilinear but circular. To justify what has been
said, we have to prove that certain changes in the
position of external objects may be corrected by
correlative movements of the beings which inhabit
this imaginary world; and in such a way as to
restore the primitive aggregate of the impressions
experienced by these sentient beings. Suppose,
for example, that an object is displaced and
deformed, not like an invariable solid, but like a
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solid subjected to unequal dilatations in exact con-
formity with the law of temperature assumed
above. Touse an abbreviation, we shall call such
a movement a non-Euclidean displacement.

If a sentient being be in the neighbourhood of
such a displacement of the object, his impressions
will be modified; but by moving in a suitable
manner, he may reconstruct them. Ior ‘this
purpose, all that is required is that the aggregate
of the sentient being and the object, considered as
forming a single body, shall experience one of those
special displacements which I have just called non-
Euclidean. This is possible if we suppose that the
limbs of these beings dilate according to the same
laws as the other bodies of the world they inhabit.

Although from the point of view of our ordinary
geometry there is a deformation of the bodies in
this displacement, and although their different
parts are no longer in the same relative position,
nevertheless we shall see that the impressions of
the sentient being remain the same as before; in
fact, though the mutual distances of the different
parts have varied, yet the parts which at first were
in contact are still in contact. It follows that
tactile impressions will be unchanged. On the
other hand, from the hypothesis as to refraction
and the curvature of the rays of light, visual im-
pressions will also be unchanged. These imaginary
beings will therefore be led to classify the pheno-
mena they observe, and to distinguish among them
the “ changes of position,” which may be corrected
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by a voluntary correlative movement, just as we
do. :

If they construct a geometry, it will not be like
ours, which is the study of the movements of our
invariable solids; it will be the study of the
changes of position which they will have thus
distinguished, and will be “non-Euclidean dis-
placements,” and this will be non-Euclidean geo-
metry. So that beings like ourselves, educated in
such a world, will not have the same geometry as
ours.

The World of Four Dimensions.—Just as we have
pictured to ourselves a non-Euclidean world, so we
may picture a world of four dimensions.

The sense of light, even with one eye, together
with the muscular sensations relative to the move-
ments of the eyeball, will suffice to enable us to
conceive of space of three dimensions. The images
of external objects are painted on the retina, which
is a plane of two dimensions; these are perspectives.
But as eye and objects are movable, we see in
succession different perspectives of the same body
taken from different points of view. We find at
the same time that the transition from one per-
spective to another is often accompanied by
muscular sensations. If the transition from the
perspective A to the perspective B, and that of the
perspective A’ to the perspective B’ are accom-
panied by the same muscular sensations, we
connect them as we do other operations of the
same nature. Then when we study the laws
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according to which these operations are com-
bined, we see that they form a group, which has
the same structure as that of the movements of
invariable solids. Now, we have seen that it is
from the properties of this group that we derive
the idea of geometrical space and that of three
dimensions. We thus understand how these
perspectives gave rise to the conception of three
dimensions, although each perspective is of only
two dimensions,—because they succeed cach other
according to certain laws. Well, in the same way
that we draw the perspective of a three-dimen-
sional figure on a plane, so we can draw that of a
four-dimensional figurc on a canvas of three (or
two) dimensions. To a geometer this is but child’s
play. We can even draw several perspectives of
the same figure from several different points of
view. We can easily represent to ourselves these
perspectives, since they are of only three dimen-
sions. Imagine that the different perspectives of
one and the same object to occur in succession,
and that the transition from one to the other is
accompanied by muscular sensations. It is under-
stood that we shall consider two of these transitions
as two operations of the same nature when they
are associated with the same muscular sensations.
There is nothing, then, to prevent us from imagin-
ing that these operations are combined according
to any law we choose—for instance, by forming
a group with the same structure as that of the
movements of an invariable four-dimensional solid.
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In this there is nothing that we cannot represent
to ourselves, and, moreover, these sensations are
those which a being would experience who has a
retina of two dimensions, and who may be dis-
placed in space of four dimensions. In this sense
we may say that we can represent to ourselves the
fourth dimension.

Conclusions.—It is seen that experiment pla\s a
considerable role in the genesis of geometry; but
it would be a mistake to conclude from that that
geometry is, even in part, an experimental science.
If it were experimental, it would only be ap-
proximative and provisory. And what a rough
approximation it would be! Geometry would be
only the study of the movements of solid bodies;
but, in reality, it is not concerned with natural
solids: its object is certain ideal solids, absolutely
invariable, which are but a greatly simplified and
very remote image of them. The concept of these
ideal bodies is entirely mental, and experiment is
but the opportunity which enables us to reach the
idea. The object of geometry is the study of a
particular ““grcup”; but the general concept of
group pre-exists in our minds, at least potentially.
It is imposed on us not as a form of our sensitive-
ness, but as a form of our understanding; only,
from among all possible groups, we must choose
one that will be the standard, so to speak, to
which we shall refer natural phenomena.

Expenment guides us in this choice, whlch it
does not impose on us. It tells us not what is the
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truest, but what is the most convenient geometry.
It will be noticed that my description of these
fantastic worlds has required no language other
than that of ordinary geometry. Then, were we
transported to those worlds, there would be no
need to change that language. DBeings educated
there would no doubt find it more convenient to
create a geometry different from ours, and better
adapted to their impressions; but as for us, in the
presence of the same impressions, it is certain that
we should not find it more convenient to make a
change.



CHAPTER V.
EXPERIMENT AND GEOMETRY.

1. I have on several occasions in the preceding
pages tried to show how the principles of geometry
are not experimental facts, and that in particular
Euclid’s postulate cannot be proved by experiment.
However convincing the reasons already given
may appear to me, I feel I must dwell upon them,
because there is a profoundly false conception
deeply rooted in many minds.

2. Think of a material circle, measure its radius
and circumference, and see if the ratio of the two
lengths is equal to =. What have we done? We
have made an experiment on the properties of the
matter with which this voundness has been realised,
and of which the measure we used is made.

3. Geometry and Astronony.—The same question
may also be asked in another way. If Lobat-
schewsky's geometry is true, the parallax of a very
distant star will be finite. If Riemann’s is true, it
will be negative. These are the results which
seem within the reach of experiment, and it is
hoped that astronomical observations may enable
us to decide between the $we geometries. But
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what we call a straight line in astronomy is simply
the path of a ray of light. If, therefore, we were
to discover negative parallaxes, or to prove that all
parallaxes are higher than a certain limit, we
should have a choice between two conclusions:
we could give up Euclidean geometry, or modify
the laws of optics, and suppose that light is not
rigorously propagated in a straight line. It is
needless to add that every one would look upon
this solution as the more advantageous. Euclidean
geometry, therefore, has nothing to fear from fresh
experiments.

4. Can we maintain that certain phenomena
which are possible in Euclidean space would be
impossible in non-Euclidean space, so that experi-
ment in establishing these phenomena would
directly contradict the non-Euclidean hypothesis ?
I think that such a question cannot be seriously
asked. To me it is exactly equivalent to the fol-
lowing, the absurdity of which is obvious:—There
are lengths which can be expressed in metres and
centimetres, but cannot be measured in toises, feet,
and inches; so that experiment, by ascertaining the
existence of these lengths, would directly contra-
dict this hypothesis, that there are toises divided
into six feet. Let us look at the question a little
more closely. I assume that the straight line in
Euclidean space possesses any two properties,
which I shall call A and B; that in non-Euclidean
space it still possesses the property A, but no
longer possesses the property B; and, finally, I
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assume that in both Euclidean and non-Euclidean
space the straight line is the only line that pos-
sesses the property A. If this were so, experiment
would be able to decide between the hypotheses of
Euclid and Lobatschewsky. It would be found
that some concrete object, upon which we can
experiment—for example, a pencil of rays of light—
possesses the property A. We should conclude
that it is rectilinear, and we should then endeavour
to find out if it does, or does not, possess the pro-
perty B. DBut ¢ 45 not so. There exists no
property which can, like this property A, be an
absolute criterion enabling us to recognise the
straight line, and to distinguish it from every
other line.  Shall we say, for instance, ““ This pro-
perty will be the following: the straight line is a
line such that a figure of which this line is a part
can move without the mutual distances of its
points varying, and in such a way that all the
points in this straight line remain fixed”? Now,
this is a property which in either Euclidean or
non-Euclidean space belongs to the straight line,
and belongs to it alone. DBut how can we ascer-
tain by experiment if it belongs to any particular
concrete object? Distances must be measured,
and how shall we know that any concrete magni-
tude which I have measured with my material
instrument really represents the abstract distance?
We have only removed the difficulty a little farther
off. In reality, the property that I have just
enunciated is not a property of the straight line
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alone; it is a property of the straight line and of
distance. For it to serve as an absolute criterion,
we must be able to show, not only that it does not
also belong to any other line than the straight line
and to distance, but also that it does not belong
to any other line than the straight line, and to any
other magnitude than distance. Now, that is not
true, and if we are not convinced by these con-
siderations, I challenge any one to give me a
concrete experiment which can be interpreted in
the Euclidean system, and which cannot be inter-
preted in the system of Lobatschewsky. As I
am well aware that this challenge will never be
accepted, I may conclude that no experiment will
ever be in contradiction with Euclid's postulate;
but, on the other hand, no experiment will cver be
in contradiction with Lobatschewsky’s postulate.
5. But it is not sufficient that the Euclidean
(or non-Euclidean) geometry can/’ever be directly
contradicted by experiment. Nor could it happen
that it can only agree with experiment by a viola-
tion of the principle of sufficient reason, and of
that of the relativity of space. Let me explain
myself. Consider any material system whatever.
We have to consider on the one hand the “state”
of the various bodies of this system—for example,
their temperature, their electric potential, etc.;
and on the other hand their position in space.
And among the data which enable us to define
this position we distinguish the mutual distances
of these bodies that define their relative positions,
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and the conditions which define the absolute posi-
tion of the system and its absolute orientation in
space. The law of the phenomena which will be
produced in this system will depend on the state
of these bodies, and on their mutual distances;
but because of the relativity and the inertia of
space, they will not depend on the absolute posi-
tion and orientation of the system. In other
words, the state of the bodies and their mutual
distances at any moment will solely d_Bend on
the state of the same bodies and ‘on their mutual
distances at the initial moment, but will in no
way depend on the absolute initial position of
the system and of its absolute initial orientation.
This is what we shall call, for the sake of
abbreviation, the law of relativity.

So far I have spoken as a Euclidean geometer.
But I have said that an experiment, whatever it
may be, requires an interpretation on the Euclidean
hypothesis; it equally requires one on the non-
Euclidean hypothesis. Well, we have made a series
of experiments. We have interpreted them on the
Euclidean hypothesis, and we have recognised
that these experiments thus interpreted do not
violate this “law of relativity.” We now interpret
them on the non-Euclidean hypothesis. This is
always possible, only the non-Euclidean distances
of our different bodies in this new interpretation
will not generally be the same as the Euclidean
distances in the primitive interpretation. Will
our experiment interpreted in this new manner
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be still in agreement with our “law of relativity,”
and if this agreement had not taken place, would
we not still have the right to say that experiment
has proved the falsity of non-Euclidean geometry?
It is easy to see that this is an idle fear. In fact,
to apply the law of relativity in all its rigour, it
must be applied to the entire universe; for if we
were to consider only a part of the universe, and
if the absolute position of this part were to vary,
the distances of the other bodies of the universe
would equally vary; their influence on the part of
the universe considered might therefore increase
or diminish, and this might modify the laws of
the phenomena which take place in it. But if
our system is the entire universe, experiment is
powerless to give us any opinion on its position
and its absolute orientation in space. All that
our instruments, however perfect they may be,
can let us know will be the state of the different
parts of the universe, and their mutual distances.
Hence, our law of relativity may be enunciated as
follows:—The readings that we can make with our #5. 4
instruments at any given moment will depend et
only on the readings that we were able to make “*~+
on the same instruments at the initial moment.
Now such an enunciation is independent of all
interpretation by experiments. If the law is true
in the Euclidean interpretation, it will be also true
in the non-Euclidean interpretation. Allow me
to make a short digression on this point. I have
spoken above of the data which define the position
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of the different bodies of the system. I might also
have spoken of those which define their velocities.
I should then have to distinguish the velocity with
which the mutual distances of the different bodies
are changing, and on the other hand the velocities
of {ranslation and rotation of the system; that is
to say, the velocities with which its absolute posi-
tion and orientation are changing. For the mind
to be fully satisfied, the law of relativity would
have to be enunciated as follows:—The state of
bodies and their mutual distances at any given
moment, as well as the velocities with which
those distances are changing at that moment,
\ will depend only on the state of those bodies,
/ on their mutual distances at the initial moment,
[ and on the velocities with which those distances
.Lwere changing at the initial moment. DBut they
will not depend on the absolute initial position
of the system nor on its absolute orientation, nor
on the velocities with which that absolute posi-
tion and orientation were changing at the initial
moment. Unfortunately, the law thus enunciated
does not agree with experiments—at least, as they
are ordinarily interpreted. Suppose a man were
translated to a planet, the sky of which was con-
stantly covered with a thick curtain of clouds, so
that he could never sce the other stars. On that
planet he would live as if it were isolated in space.
But he would notice that it revolves, either by
measuring its ellipticity (which is ordinarily done
by means of astronomical observations, but which
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could be done by purely geodesic means), or by
repeating the experiment of Foucault’s pendulum.
The absolute rotation of this planet might be
clearly shown in this way. Now, here is a fact
which shocks the philosopher, but which the
physicist is compelled to accept. We know that
from this fact Newton concluded the existence of ’
absolute space. I myself cannot accept this way
of looking at it. I shall explain why in Part III.,
but for the moment it is not my intention to
discuss this difficulty. I must therefore resign
myself, in the enunciation of the law of relativity,
to including velocities of every kind among the
data which define the state of the bodies. How-
ever that may be, the difficulty is the same for
both Euclid’s geometry and for Lobatschewsky’s.
I need not therefore trouble about it further, and
I have only mentioned it incidentally. To sum
up, whichever way we look at it, it is impossible
to discover in geometric empiricism a rational
meaning.

6. Experiments only teach us the relations of
bodies to one another. They do not and cannot
give us the relations of bodies and space, nor the
mutual relations of the different parts of space.
“Yes!” you reply, “a single experiment is not
enough, because it only gives us one equation with
several unknowns; but when I have made enough
experiments I shall have enough equations to
calculate all my unknowns.” If I know the height
of the main-mast, that is not sufficient to enable
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me to calculate the age of the captain. When
you have measured every fragment of wood in a
ship you will have many equations, but you will
be no nearer knowing the captain’s age. All your
measurements bearing on your fragments of wood
can tell you only what concerns those fragments;
and similarly, your experiments, however numerous
they may be, referring only to the relations of
bodies with one another, will tell you nothing
about the mutual relations of the different parts
of space.

7. Will you say that if the experiments have
reference to the bodies, they at least have reference
to the geometrical properties of the bodies. First,

~what do you understand by the geometrical pro-
\,E_?r_tilg_of__ho.di&# I assume that it is a question
Gof the relations of the bodies to space. These
properties therefore are not reached by experi-
ments which only have reference to the relations
of bodies to one another, and that is enough to
show that it is not of those properties that there
can be a question. Let us therefore begin by
making ourselves clear as to the sense of the
phrase: geometrical properties of bodies. When
I say that a body is composed of several parts, I
presume that I am thus enunciating a geometrical
property, and that will be true even if I agree to
give the improper name of points to the very
small parts I am considering. When I say that
this or that part of a certain body is in contact
with this or that part of another body, I am
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enunciating a proposition which concerns the
mutual relations of the two bodies, and not their
relations with space. 1 assume that you will
agree with me that these are not geometrical
properties. I am sure that at least you will
grant that these properties are independent of
all knowledge of metrical geometry. Admitting
this, I suppose that we have a solid body formed
of eight thin iron rods, oa, 0b, oc, vd, ve, of, og, ok,
connected at one of their extremities, 0. And let
us take a second solid body—for example, a piece
of wood, on which are marked three little spots
of ink which T shall call « 8y. I now suppose
that we find that we can bring into contact o 3y
with ago; by that I mean « with a4, and at the
same time 3 with g, and y with 0. Then we can
successively bring into contact «fy with bgo, cgo,
dgo, ego, fyo, then with aho, dbho, cho, dho, cho, fho;
and then ay successively with ab, be, cd, de, ¢f, fa.
Now these are observations that can be made
without having any idea beforehand as to the
form or the imetrical properties of space. They
have no reference whatever to the ‘“geometrical
properties of bodies.” These observations will
not be possible if the bodies on which we experi-
ment move in a group having the same structure
as the Lobatschewskian group (I mean according
to the same laws as sohid bodies in Lobatschewsky's
geometry). They therefore suffice to prove that
these bodies move according to the Euclidean
group; or at least that they do not move according
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to the Lobatschewskian group. That they may
be compatible with the Euclidean group is easily
seen; for we might make them so if the body
afly were an invariable solid of our ordinary
geometry in the shape of a right-angled triangle,
and 1f the points abcdefgh were the vertices of
a polyhedron formed of two regular hexagonal
pyramids of our ordinary geometry having abcdef
as their common base, and having the one ¢ and
the other./ as their vertices. Suppose now,
instead of the previous observations, we note that
we can as before apply «fy successively to ago,
bgo, cgo, dgo, ego, fgo, aho, bho, cho, dho, eho, fho,
and then that we can apply o8 (and no longer ay)
successively to ab, be, cd, de, ef, and fa. These are
observations that could be made if non-Euclidean
geometry were true. If the bodies afy, oabedefgh
were invariable solids, if the former were a right-
angled triangle, and the latter a double regular
hexagonal pyramid of suitable dimensions. These
new verifications are therefore impossible if the
bodies move according to the Euclidean group;
but they become possible if we suppose the bodies
to move according to the Lobatschewskian group.
They would therefore suffice to show, if we carried
them out, that the bodies in question do not move
according to the Euclidean group. And so, with-
out making any hypothesis on the form and the
nature of space, on the relations of the bodies
and space, and without attributing to bodies any
geometrical property, I have made observations
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which have enabled me to show in one case that
the bodies experimented upon move according to
a group, the structure of which is Euclidean, and
in the other case, that they move in a group, the
structure of which is Lobatschewskian. It can-
not be said that all the first observations would
constitute an experiment proving that space is
Euclidean, and the second an experiment proving
that space is non-Euclidean; in fact, it might be
imagined (note that I use the word imagined) that
there are bodies moving in such a manner as
to render possible the second series of observations:
and the proof is that the first mechanic who came
our way could construct it if he would only take
the trouble. But you must not conclude, however,
that space is non-Euclidean. In the same way,
just as ordinary solid bodies would continue
to exist when the mechanic had constructed the
strange bodies I have just mentioned, he would
have to conclude that space is both Euclidean
and non-Euclidean. Suppose, for instance, that
we have a large sphere of radius R, and that its
temperature decreases from the centre to the
surface of the sphere according to the law of
which I spoke when I was describing the non-
Euclidean world. We might have bodies whose
dilatation is negligeable, and which would behave
as ordinary invariable solids; and, on the other
hand, we might have very dilatable bodies, which
would behave as non-Euclidean solids. We
might have two double pyramids oabedefgh and



8.]. SCIENCE AND HYPOTHESIS.

b’ de fg'l, and two triangles « Sy and o’ 8y
The first double pyramid would be rectilinear, and
the second curvilinear. The triangle «By would
consist of undilatable matter, and the other of very
dilatable matter. We might therefore make our
first observations with the double pyramid o'a’l’
and the triangle o’ 8 7.

And then the experiment would seem to show—
first, that Euclidean geometry is true, and then
that it 1s false. Hence, experiments have reference
not to space but to bodices.

SUPPLEMENT.

8. To round the matter off, I ought to speak of
a very delicate question, which will require con-
siderable development ; but I shall confine myself
to summing up what I have written in the Revue
de Métaphysique et de Morale and in the Monist.
When we say that space has three dimensions,
what do we mean? We have seen the importance
of these “internal changes” which are revealed to
us by our muscular sensations. They may serve
to characterise the different attitudes of our body.
Let us take arbitrarily as our origin one of these
attitudes, A.  When we pass from this initial
attitude to another attitude B we experience a
series of muscular sensations, and this series S of
muscular sensations will define B.  Observe, how-
ever, that we shall often look upon two series S
and S’ as defining the same attitude B (since the
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initial and final attitudes A and B remaining the
same, the intermediary attitudes of the corre-
sponding sensations may differ). How then can
we recognise the equivalence of these two series?
Because they may serve to compensate for the same
external change, or more generally, because, when
it is a question of compensation for an external
change, one of the series may be replaced by the
other. Among these series we have distinguished
those which can alone compensate for an external
change, and which we have called “displacements.”
As we cannot distinguish two displacements which
are very close together, the aggregate of these
displacements presents the characteristics of a
physical continuum. Experience teaches us that
they are the characteristics of a physical con-
tinuum of six dimensions; but we do not know as
yet how many dimensions space itself possesses, so
we must first of all answer another question.
What is a point in space? Every one thinks he
knows, but that is an illusion. What we see when
we try to represent to ourselves a point in space is
a black spot on white paper, a spot of chalk on
a blackboard, always an object. The question
should therefore be understood as follows :—\What
do I mean when I say the object B is at the
point which a moment before was occupied by the
object A? Again, what criterion will enable
me to recognise it ? I mean that although I have
not moved (my muscular sense tells me this), my
finger, which just now touched the object A, is
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now touching the object B. I might have used
other criteria—for instance, another finger or the
sense of sight—but the first criterion is sufficient.
I know that if it answers in the affirmative all
other criteria will give the same answer. I know
it from experiment. I cannot know it a priori.
For the same reason I say that touch cannot
be exercised at a distance; that is another way of
enunciating the same experimental fact. If I
say, on the contrary, that sight is exercised at a
distance, it means that the criterion furnished by
sight may give an affirmative answer while the
others reply in the negative.

To sum up. For each attitude of my body my
finger determines a point, and it is that and that
only which defines a point in space. To each
attitude corresponds in this way a point. But it
often happens that the same point corresponds to
several different attitudes (in this case we say that
our finger has not moved, but the rest of our body
has). We distinguish, therefore, among changes
of attitude those in which the finger does not
move. How are we led to this? It is because we
often remark that in these changes the object
which is in touch with the finger remains in con-
tact with it. ILet us arrange then in the same
class all the attitudes which are deduced one from
the other by one of the changes that we have thus
distinguished. To all these attitudes of the same
class will correspond the same point in space.
Then to each class will correspond a point, and to

-
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each point a class. Yet it may be said that what
we get from this experiment is not the point, but
the class of changes, or, better still, the corre-
sponding class of muscular sensations. Thus, when
we say that space has three dimensions, we merely
mean that the aggregate of these classes appears to
us with the characteristics of a physical continuum
of three dimensions. Then if, instead of defining
the points in space with the aid of the first finger,
I use, for example, another finger, would the
results be the same? That is by no means a
prior? evident. But, as we have seen, experiment
has shown us that all our criteria are in agree-
ment, and this enables us to answer in the
affirmative. If we recur to what we have called
displacements, the aggregate of which forms, as
we have seen, a group, we shall be brought to
distinguish those in which a finger does not move;
and by what has preceded, those are the displace-
ments which characterise a point in space, and
their aggregate will form a sub-group of our
group. To each sub-group of this kind, then, will
correspond a point in space. We might be
tempted to conclude that experiment has taught
us the number of dimensions of space; but in
reality our experiments have referred not to space,
but to our body and its relations with neighbour-
ing objects. What is more, our experiments
are exceeding crude. In our mind the latent idea
of a certain number of groups pre-existed; these
are the groups with which Lie's theory is con-
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cerned. Which shall we choose to form a kind of
standard by which to compare natural pheno-
mena ? And when this group is chosen, which
of the sub-groups shall we take to characterise a
point in space ? Iixperiment has guided us by
showing us what choice adapts itself best to the
properties of our body; but there its role ends.



PART IIL
FORCE.
CHAPTER VI
THE CLASSICAL MECHANICS.

Tue English teach mechanics as an experimental
science; on the Continent it is taught always more..-
or less as a deductive and a priori science. The
English are right, no doubt. How is it that the
other method has been persisted in for so long; how
is it that Continental scientists who have tried to
escape from the practice of their predecessors have
in most cases been unsuccessful ?  On the other
hand, if the principles of mechanics are only of
experimental origin, are they not merely approxi-
mate and provisory? May we not be some day
compelled by new experiments to modify or even
to abandon them? These are the questions which
naturally arise, and the difficulty of solution is
largely due to the fact that treatises on mechanics
do not clearly distinguish between what is experi-
ment, what is mathematical reasoning, what is
convention, and what is hypothesis. This is not

all.
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1. There is no absolute space, and we only
conceive of relative motion; and yet in most cases
mechanical facts are enunciated as if there is an
absolute space to which they can be referred.

2. There is no absolute time. When we say that
two periods are equal, the statement has no
meaning, and can only acquire a meaning by a
convention.

3. Not only have we no direct intuition of the
equality of two periods, but we have not even
direct intuition of the simultaneity of two events
occurring in two different places. 1 have ex-
plained this in an article entitled “ Mesure du
Temps.”!

4. Finally, is not our Euclidean geometry in
itself only a kind of convention of language?
Mechanical facts might be enunciated with refer-
ence to a non-Euclidean space which would be
less convenient but quite as legitimate as our
ordinary space; the enunciation would become
more complicated, but it still would be possible.

Thus, absolute space, absolute time, and even
geometry are not conditions which are imposed on
mechanics. All these things no more existed
before mechanics than the French language can
be logically said to have existed before the truths
which are expressed in French. We might
endeavour to enunciate the fundamental law of
mechanics in a language independent of all these

Y Revue de Métaphysique et de Morale, t. vi., pp. 1-13, January,
1898.



THE CLASSICAL MECHANICS. 91

conventions; and no doubt we should in this way
get a clearer idea of those laws in themselves.
This is what M. Andrade has tried to do, to
some extent at any rate, in his Lecons de Mécanique
physigue.  Of course the enunciation of these laws
would become much more complicated, because all
these conventions have been adopted for the very
purpose of abbreviating and simplifying the enun-
ciation. As far as we are concerned, I shall ignore
all these difficulties; noet because I disregard
them, far from it; but because they have re-
ceived sufficient attention in the first two parts
of the book. Provisionally, then, we shall admit
absolute time and Euclidean geometry.

The Principle of Inertin.— A body under the
action of no force can only move uniformly in a
straight line. Is this a truth imposed on the mind
a priovi ?  If this be so, how is it that the Greeks
ignored it? How could they have believed that
motion ceases with the cause of motion? or, again,
that every body, if there is nothing to prevent it,
will move in a circle, the noblest of all forms of
motion ? '

If it be said that the velocity of a body cannot
change, if there is no reason for it to change, may
we not just as legitimately maintain that the
position of a body cannot change, or that the
curvature of its path cannot change, without the
agency of an external cause? Is, then, the prin-
ciple of inertia, which is not an a priors truth, an
experimental fact? Have there ever been experi-
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ments on bodies acted on by no forces? and, if so,
how did we know that no forces were acting?
The usual instance is that of a ball rolling for a
very long time on a marble table; but why do
we say it is under the action of no force? Isit
because it is too remote from all other bodies to
experience any sensible action? It is not further
from the earth than if it were thrown freely into
the air; and we all know that in that case it
would be subject to the attraction of the earth.
Teachers of mechanics usually pass rapidly over
the example of the ball, but they add that the
principle of inertia is verified indirectly by its con-
sequences. This is very badly expressed; thev
evidently mean that various consequences may be
verified by a more general principle, of which the
principle of inertia is only a particular case. I
shall propose for this general principle the
following enunciation:—The acceleration of a
body depends only on its position and that of
neighbouring bodies, and on their velocities.
Mathematicians would say that the movements
of all the material molecules of the universe
depend on differential equations of the second
order. To make it clear that this is really a
gencralisation of the law of inertia we may again
have recourse to our imagination. The law of
inertia, as I have said above, is not imposed on us
a priori; other laws would be just as compatible
with the principle of sufficient reason. If a body
is not acted upon by a force, instead of supposing
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that its velocity 1s unchanged we may suppose
that its position or its acceleration is unchanged.

Let us for a moment suppose that one of these
two laws is a law of nature, and substitute it for
the law of inertia: what will be the natural
generalisation? A moment’s reflection will show
us. In the first case, we may suppose that the
velocity of a body depends only on its position and
that of neighbouring bodies; in the second case,
that the variation of the acceleration of a body
depends only on the position of the body and of
neighbouring bodies, on their velocities and
accelerations; or, in mathematical terms, the
differential equations of the motion would be of
the first order in the first case and of the third
order in the second.

Let us now modify our supposition a little.
Suppose a world analogous to our solar system,
but one in which by a singular chance the orbits
of all the planets have neither eccentricity nor
inclination; and further, I suppose that the
masses of the planets are too small for their
mutual perturbations to be sensible. Astronomers
living in one of these planets would not hesitate to
conclude that the orbit of a star can only be
circular and parallel to a certain plane; the
position of a star at a given moment would then
be sufficient to determine its velocity and path.
The law of inertia which they would adopt would
be the former of the two hypothetical laws I have
mentioned.
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Now, imagine this system to be some day
crossed by a body of vast mass and immense
velocity coming from distant constellations. All
the orbits would be profoundly disturbed. Our
astronomers would not be greatly astonished.
They would guess that this new star is in itself
quite capable of doing all the mischief; but, they
would say, as soon as it has passed by, order will
again be established. No doubt the distances of
the planets from the sun will not be the same as
before the cataclysm, but the orbits will become
circular again as soon as the disturbing cause has
disappeared. It would be only when the perturb-
ing body is remote, and when the orbits, instead of
being circular are found to be elliptical, that the
astronomers would find out their mistake, and
discover the necessity of reconstructing their
mechanics.

I have dwelt on these hypotheses, for it seems to
me that we can clearly understand our generalised
law of inertia only by opposing it to a contrary
hypothesis.

Has this generalised law of inertia been veri-
fied by experiment, and can it be so verified ?
When Newton wrote the Principia, he certainly
regarded this truth as experimentally acquired and
demonstrated. It was so in his eyes, not only
from the anthropomorphic conception to which I
shall later refer, but also because of the work of
Galileo. It was so proved by the laws of Kepler.
According to those laws, in fact, the path of a
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planet is entirely determined by its initial position
and initial velocity; this, indeed, is what our
generalised law of inertia requires.

For this principle to be only true in appearance
-—lest we should fear that some day it must be re-
placed by one of the analogous principles which I
opposed to it just now—we must have been led
astray by some amazing chance such as that which
had led into error our imaginary astronomers.
Such an hypothesis is so unlikely that it need not
delay us. No one will believe that there can be
such chances; no doubt the probability that two
eccentricities are both exactly zero is not smaller
than the probability that one is 0.1 and the other
0.2. The probability of a simple event is not
smaller than that of a complex one. If, however,
the former does occur, we shall not attribute its
occurrence to chance; we shall not be inclined to
believe that nature has done it deliberately to
deceive us. The hypothesis of an error of this
kind being discarded, we may admit that so far as
astronomy is concerned our law has been verified
by experiment.

But Astronomy is not the whole of Physics.
May we not fear that some day a new experi-
ment will falsify the law in some domain of
physics 2 An experimental law is always subject
to revision; we may always expect to see it re-
placed by some other and more exact law. DBut
no one seriously thinks that the law of which we
speak will ever be abandoned or amended. Why?
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Precisely because it will never be submitted to a
decisive test.

In the first place, for this test to be complete,
all the bodies of the universe must return with
their initial velocities to their initial positions after
a certain time. We ought then to find that they
would resume their original paths. But this test
is impossible; it can be only partially applied, and
even when it is applied there will still be some
bodies which will not return to their original
positions. Thus there will be a ready explanation
of any breaking down of the law.

Yet this is not all. In Astronomy we see the
bodies whose motion we are studying, and in most
cases we grant that they are not subject to the
action of other invisible bodies. Under these con-
ditions, our law must certainly be either verified or
not. But it is not so in Physics. If physical
phenomena are due to motion, it is to the motion
of molecules which we cannot see. If, then, the
acceleration of bodies we cannot see depends on
something else than the positions or velocities of
other visible bodies or of invisible molecules, the
existence of which we have been led previously
to admit, there is nothing to prevent us from
supposing that this something else is the position
or velocity of other molecules of which we have
not so far suspected the existence. The law
will be safeguarded. Let me express the same
thought in another form in mathematical language.
Suppose we are observing n molecules, and find
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that their 37 co-ordinates satisfy a system of 3n
differential equations of the fourth order (and
not of the second, as required by the law of
inertia). We know that by introducing 37 variable
auxiliaries, a system of 31 equations of the fourth
order may be reduced to a system of 61 equations
of the second order. If, then, we suppose that the
3n auxiliary variables represent the co-ordinates of
n invisible molecules, the result is again conform-
able to the law of inertia. To sum up, this law,
verified experimentally in some particular cases,
may be extended fearlessly to the most general
cases; for we know that in these general cases
it can neither be confirmed nor contradicted by
experiment.

The Law of Acceleration.—The acceleration of a
body is equal to the force which acts on it divided
by its mass.

Can this law be verified by experiment? If so,
we have to measure the three magnitudes men-
tioned in the enunciation: acceleration, force,
and mass. I admit that acceleration may be
measured, because I pass over the difficulty
arising from the measurement of time. But how
are we to measure force and mass? We do not
even know what they are. What is mass?
Newton replies: “ The product of the volume and
the density.” “It were better to say,” answer
Thomson and Tait, “that density is the quotient
of the mass by the volume.” What is force?
“It is,” replies Lagrange, “that which moves or

7
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tends to move a body.” “It 1s,” according to
Kirchoff, “the product of the mass and the
acceleration.” Then why not say that mass is
the quotient of the force by the acceleration?
These difficulties are insurmountable.

When we say force is the cause of motion, we
are talking metaphysics; and this definition, if we
had to be content with it, would be absolutely
fruitless, would lead to absolutely nothing. For a
definition to be of any use it must tell us how to
measure force; and that is quite sufficient, for it is
by no means necessary to tell what force is in
itself, nor whether it is the cause or the effect of
motion. We must therefore first define what is
meant by the equality of two forces. When are
two forces equal? We are told that it is when
they give the same acceleration to the same mass,
or when acting in opposite directions they are in
equilibrium. This definition is a sham. A force
applied to a body cannot be uncoupled and
applied to another body as an engine is uncoupled
from one train and coupled to another. It is
therefore impossible to say what acceleration such
a force, applied to such a body, would give to
another body if it were applied to it. It is im-
possible to tell how two forces which are not
acting in exactly opposite directions would be-
have if they were acting in opposite directions.
1t is this definition which we try to materialise, as
it were, when we measure a force with a dyna-
mometer or with a balance. Two forces, F and
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F’, which I suppose, for simplicity, to be acting
vertically upwards, are respectively applied to two
bodies, C and C’. I attach a body weighing P
first to C and then to C’; if there is equilibrium in
both cases I conclude that the two forces I and
F’ are equal, for they are both equal to the weight
of the body P. But am I certain that the body P
has kept its weight when I transferred it from the
first body to the second? Far from it. I am
certain of the contrary. I know that the magni-
tude of the weight varies from one point to
another, and that it is greater, for instance, at the
pole than at the equator. No doubt the difference
is very small, and we neglect it in practice; but a
definition must have mathematical rigour; this
rigour does not exist. What I say of weight
would apply equally to the force of the spring of
a dynamometer, which would vary according to
temperature and many other circumstances. Nor
is this all.  We cannot say that the weight of the
body P is applied to the body C and keeps in
equilibrium the force F. What 1is applied to
the body C is the action of the body P on the
body C. On the other hand, the body P is
acted on by its weight, and by the reaction R
of the body C on P the forces I' and A are
equal, because they are in equilibrium; the forces
A and R are equal by virtue of the principle
of action and reaction; and finally, the force
R and the weight P are equal because they
are in equilibrium. From these three equalities
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we deduce the equality of the weight P and the
force T,

Thus we are compelled to bring into our defini-
tion of the equality of two forces the principle
of the equality of action and reaction; hence this
principle can no longer be regarded as an experimental
law but only as a definition.

To recognise the equality of two forces we are
then in possession of two rules: the equality of
two forces in equilibrium and the equoality of action
and reaction. DBut, as we have seen, these are not
sufficient, and we arc compelled to Fave recourse
to a third rule, and to admit that certain forces—
the weight of a body, for instance—ar: constant in
magnitude and direction. DBut this third rule is
an experimental law. It is only approximately
true: it s a bad definition. We are therefore
reduced to Kirchoff’s definition: force is the pro-
duct of the mass and the acceleration. This law
of Newton in its turn ceases to be regarded as an
experimental law, it is now only a definition. But
as a definition it is insufficient, for we do not
know what mass is. It enables us, no doubt, to
calculate the ratio of two forces applied at
different times to the same body, but it tells us
nothing about the ratio of two forces applied to
two different bodies. To fill up the gap we must
have recourse to Newton’s third law, the equality
of action and reaction, still regarded not as
an experimental law but as a definition. Two
bodies, A and B, act on each other; the accelera-
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tion of A, multiplied by the mass of A, is equaf to
the action of B on A; in the same way the
acceleration of BB, multiplied by the mass of B. is
equal to the reaction of A on B. As, by definition,
the action and the reaction are equal, the masses
of A and B are respectively in the inverse ratio of
their masses. Thus is the ratio of the two masses
defined, and it is for experiment to verify that the
ratio is constant.

This would do very well if the two bodies were
alone and could be abstracted from the action of
the rest of the world; but this is by no means
the case. The acceleration of A is not solely due
to the action of B, but to that of a multitude of
other bodies, C, D, . . . To apply the preceding
rule we must decompose the acceleration of A into
many components, and find out which of these
components is duc to the action of B. The
decomposition would still be possible if we
suppose that the action of C on A is simply added
to that of B on A, and that the presence of the
body C does not in any way modify the action of
B on A, or that the presence of B does not modify
the action of C on A; that is, if we admit that
any two bodies attract each other, that their
mutual action is along their join, and is only de-
pendent on their distance apart; if, in a word, we
admit the hypothesis of central forees.

We know that to determine the masses of the
heavenly bodies we adopt quite a different prin-
ciple. The law of gravitation teaches us that the

\ .
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attraction of two bodies is proportional to their
masses; if #» is their distance apart, m and m’ their
masses, £ a constant, then their attraction will be
k' [v¥*. What we are measuring is therefore not
mass, the ratio of the force to the acceleration, but
the attracting mass; not the inertia of the body,
but its attracting power. It is an indirect process,
the use of which is not indispensable theoretically.
We might have said that the attraction is in-
versely proportional to the square of the distance,
without being proportional to the product of the
masses, that it is equal to f/r* and not to kmm'.
If it were so, we should nevertheless, by observing
the 7elative motion of the celestial bodies, be able
to calculate the masses of these bodies.

But have we any right to admit the hypothesis
of central forces? Is this hypothesis rigorously
accurate ? Is it certain that it will never be
falsified by experiment? Who will venture to
make such an assertion? And if we must abandon
this hypothesis, the building which has been so
laboriously erected must fall to the ground.

We have no longer any right to speak of the
component of the acceleration of A which is
due to the action of B. We have no means of
distinguishing it from that which is due to the
action of C or of any other body. The rule
becomes inapplicable in the measurement of
masses. What then is left of the principle of
the equality of action and reaction? If we
reject the hypothesis of central forces this prin-



THE CLASSICAL MECHANICS. 103

ciple must go too; the geometrical resultant of
all the forces applied to the different bodies of a
system abstracted from all external action will be
zero. In other words, the motion of the centre of
gravity of this system will be uniform and in a
straight line. Here would seem to be a mecans of
defining mass. The position of the centre of
gravity evidently depends on the values given to
the masses; we must select these values so that
the motion of the centre of gravity is uniform
and rectilinear. This will always be possible if
Newton's third law holds good, and it will be in
general possible only in one way. But no system
exists which is abstracted from all external action;
every part of the universe is subject, more or less,
to the action of the other parts. The law of the
motion of the centre of gravity is only rigorously true
when applied to the whole universe.

But then, to obtain the values of the masses
we must find the motion of the centre of gravity
of the universe. The absurdity of this conclusion
is obvious; the motion of the centre of gravity
of the universe will be for ever to us unknown.
Nothing, therefore, is left, and our efforts are
fruitless. There is no escape from the following
definition, which is only a confession of failure:
Masses arve co-efficients which it is found convenient to
wntroduce into calsulations.

We could reconstruct our mechanics by giving
to our masses different values. The new me-
chanics would be in contradiction neither with



tog SCIENCE AND HYPOTHESIS.

experiment nor with the general principles of
dynamics (the principle of inertia, proportion-
ality of masses and accelerations, equality of
action and reaction, uniform motion of the centre
of gravity in a straight line, and areas). But the
equations of this mechanics would not be so simple.
Let us clearly understand this. It would be only
the first terms which would be less simple—z.c.,
those we already know through experiment;
perhaps the small masses could be slightly altered
without the complete equations gaining or losing
in simplicity.

Hertz has inquired if the principles of mechanics
are rigorously true. ‘In the opinion of many
physicists it seems inconceivable that experiment
will ever alter the impregnable principles of
mechanics; and yet, what is due to experitnent
may always be rectified by experiment.” From
what we have just seen these fears would appear
to be groundless. The principles of dynamics
appeared to us first as experimental truths, but
we have been compelled to use them as defini-
tions. It is by definition that force is equal to
the product of the mass and the acceleration;
this is a principle which is henceforth beyond
the reach of any future experiment. Thus
it is by definition that action and reaction are
equal and opposite. But then it will be said,
these unverifiable principles are absolutely devoid
of any significance. They cannot be disproved by
experiment, but we can learn from them nothing



THE CLASSICAL MECHANICS, 105

of any use to us; what then is the use of studying
dynamics? This somewhat rapid condemnation
would be rather unfair. Thereis not in Nature any
system perfectly isolated, perfectly abstracted from
all external action; but there are systems which
are nearly isolated. If we observe such a system,
we can study not only the relative motion of its
different parts with respect to cach other, but the
motion of its centre of gravity with respect to the
other parts of the universe. We then find that
the motion of its centre of gravity is nearly uniform
and rectilinear in conformity with Newton’s Third
Law. This is an experimental fact, which cannot
be invalidated by a more accurate experiment.
What, in fact, would a more accurate experiment
teach us? It would teach us that the law is only
approximately true, and we know that already.
Thus 1s explained how experiment may serve as a basis
for the principles of mechanics, and yct will never
invalidate them.

Anthropomorphic Mechanics.—It will be said that
Kirchoff has only followed the general tendency of
mathematicians towards nominalism; from this his
skill as a physicist has not saved him. He wanted
a definition of a force, and he took the first that
came handy; but we do not require a definition
of force; the idea of force is primitive, irreducible,
indefinable; we all know what it is; of it we have
direct intuition. This direct intuition arises from
the idea of effort which is familiar to us from
childhood. But in the first place, cven if this
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direct intuition made known to us the real nature
of force in itself, it would prove to be an insufficient
basis for mechanics; it would, moreover, be quite
useless.  The important thing is not to know
what force is, but how to measure it. Everything
which does not teach us how to measure it is as
useless to the mechanician as, for instance, the
subjective idea of heat and cold to the student of
heat. This subjective idea cannot be translated
into numbers, and is therefore useless; a scientist
whose skin is an absolutely bad conductor of heat,
and who, therefore, has never felt the sensation
of heat or cold, would read a thermometer in just
the same way as any one else, and would have
enough material to construct the whole of the
theory of heat.

Now this immediate notion of effort is of no use
to us in the measurement of force. It is clear, for
example, that I shall experience more fatigue in
lifting a weight of 100 lb. than a man who is
accustomed to lifting heavy burdens. But there
is more than this. This notion of effort does not
teach us the nature of force; it is definitively re-
duced to a recollection of muscular sensations, and
no one will maintain that the sun experiences
a muscular sensation when it attracts the earth.
All that we can expect to find from it is a symbol,
less precise and less convenient than the arrows
(to denote direction) used by geometers, and quite
as remote from reality.

Anthropomorphism plays a considerable historic
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role in the genesis of mechanics; perhaps it may
yet furnish us with a symbol which some minds
may find convenient; but it can be the foundation
of nothing of a really scientific or philosophical
character.

The Thread School—M. Andrade, in his Lecons
de Mecanique physique, has modernised anthropo-
morphic mechanics. To the school of mechanics
with which Kirchoff is identified, he opposes a
school which is quaintly called the “Thread
School.”

This school tries to reduce everything to the con-
sideration of certain material systems of negligible
mass, regarded in a state of tension and capable
of transmitting considerable effort to distant
bodies—systems of which the ideal type is the
fine string, wire, or thread. A thread which
transmits any force is slightly lengthened in the
direction of that force; the direction of the thread
tells us the direction of the force, and the magni-
tude of the force is measured by the lengthening of
the thread.

We may imagine such an experiment as the
following :—A body A4 is attached to a thread;
at the other extremity of the thread acts a force
which is made to vary until the length of the
thread is increased by «, and the acceleration
of the body A is recorded. A is then detached,
and a body B is attached to the same thread, and
the same or another force is made to act until
the increment of length again is «, and the
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acceleration of B is noted. The experiment is
then renewed with both 4 and B until the incre-
ment of length is 8. The four accelcrations
observed should be proportional. Here we have
an experimental verification of the law of accelera-
tion enunciated above. Again, we may consider
a body under the action of several threads in
equal tension, and by experiment we determine
the direction of those threads when the body
is in equilibrium. This is an experimental
verification of the law of the composition of
forces. DBut, as a matter of fact, what have we
done? We have defined the force acting on the
string by the deformation of the thread, which is
reasonable enough; we have then assumed that if
a body is attached to this thread, the effort which
is transmitted to it by the thread is equal to the
action exercised by the body on the thread; in
fact, we have used the principle of action and
reaction by considering it, not as an experimental
truth, but as the very definition of force. This
definition is quite as conventional as that of
Kirchoff, but it is much less general.

All the forces are not transmitted by the thread
(and to compare them they would all have to be
transmitted by identical threads). If we even
admitted that the earth is attached to the sun by
an invisible thread, at any rate it will be agreed
that we have no means of measuring the increment
of the thread. Nine times out of ten, in con-
sequence, our definition will be in default; no
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sense of any kind can be attached to it, and we
must fall back on that of Kirchoff. Why then go
on in this roundabout way? You admit a certain
definition of force which has a meaning only in
certain particular cases. In those cases you verify
by experiment that it leads to the law of accelera-
tion. On the strength of these experiments you
then take the law of acceleration as a definition of
force in all the other cases.

Would it not be simpler to consider the law of
acceleration as a definition in all cases, and to
regard the experiments in question, not as verifica-
tions of that law, but as verifications of the
principle of action and reaction, or as proving
the deformations of an elastic body depend only
on the forces acting on that body? Without
taking into account the fact that the conditions
in which your definition could be accepted can
only be very imperfectly fulfilled, that a thread is
never without mass, that it is never isolated from
all other forces than the reaction of the bodies
attached to its extremities.

The ideas expounded by M. Andrade are none
the less very interesting. If they do not satisfy our
logical requirements, they give us a better view of
the historical genesis of the fundamental ideas of
mechanics. The reflections they suggest show us
how the human mind passed from a naive
anthropomorphism to the present conception of
science.

We see that we end with an experiment which

-
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is very particular, and as a matter of fact very
crude, and we start with a perfectly general law,
perfectly precise, the truth of which we regard as
absolute. We have, so to speak, freely conferred
this certainty on it by looking upon it as a con-
vention.

Are the laws of acceleration and of the com-
position of forces only arbitrary conventions ?
Conventions, yes; arbitrary, no—they would be
so if we lost sight of the experiments which led the
founders of the science to adopt them, and which,
imperfect as they were, were sufficient to justify
their adoption. It is well from time to time to let
our attention dwell on the experimental origin of
these conventions,



CHAPTER VII.
RELATIVE AND ABSOLUTE MOTION.

The Principle of Relative Motion.— Sometimes
endeavours have been made to connect the law of
acceleration with a more genecral principle. The
movement of any system whatever ought to
obey the same laws, whether it is referred to fixed
axes or to the movable axes which are implied
in uniform motion in a straight line. This is
the principle of relative motion: it is imposed
upon us for two reasons: the commonest experi-
ment confirms it; the consideration of the contrary
hypothesis is singularly repugnant to the mind.

Let us admit it then, and consider a body under
the action of a force. The relative motion of this
body with respect to an observer moving with a
uniform velocity equal to the initial velocity of the
body, should be identical with what would be its
absolute motion if it started from rest. We con-
clude that its acceleration must not depend upon
its absolute velocity, and from that we attempt to
deduce the complete law of acceleration.

For a long time there have been traces of this
proof in the regulations for the degree of B. és Sc.

S
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It is clear that the attempt has failed. The
obstacle which prevented us from proving the
law of acceleration is that we have no definition
of force. This obstacle subsists in its entirety,
since the principle invoked has not furnished us
with the missing definition. The principle of
relative motion is none the less very interesting,
and deserves to be considered for its own sake.
Let us try to enunciate it in an accurate manner.
We have said above that the accelerations of the
different bodies which form part of an isolated
system only depend on their velocities and their
relative positions, and not on their velocities and
their absolute positions, provided that the mov-
able axes to which the relative motion is referred
move uniformly in a straight line; or, if it is pre-
ferred, their accelerations depend only on the
differences of their velocities and the differences of
their co-ordinates, and not on the absolute values
of these velocities and co-ordinates. If this prin-
ciple is true for relative accelerations, or rather
for differences of acceleration, by combining it
with the law of reaction we shall deduce that it is
true for absolute accelerations. It remains to be
seen how we can prove that differences of accelera-
tion depend only on differences of velocities
and co-ordinates; or, to speak in mathematical
language, that these differences of co-ordinates
satisfy differential equations of the second order.
Can this proof be deduced from experiment or
from a priori conditions? Remembering what we
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have said before, the reader will give his own
answer. Thus enunciated, in fact, the principle of
relative motion curiously resembles what I called
above the gencralised principle of inertia; it is not
quite the same thing, since it is a question of
differences of co-ordinates, and not of the co-
ordinates themselves. The new principle teaches
us something more than the old, but the same
discussion applies to it, and would lead to the
same conclusions. \We need not recur to it.
Newtow's Argument—Here we find a very im-
portant and even slightly disturbing question. I
have said that the principle of relative motion
was not for us simply a result of experiment; and
that a priori every contrary hypothesis would be
repugnant to the mind. But, then, why is the
principle only true if the motion of the movable
axes is uniform and in a straight line? It seems
that it should be imposed upon us with the same
force if the motion is accelerated, or at any rate
if it reduces to a uniform rotation. In these two
cases, in fact, the principle is not true. I need not
dwell on the case in which the motion of the
axes is in a straight line and not uniform. The
paradox does not bear a moment’s examination.
If I am in a railway carriage, and if the train,
striking against any obstacle whatever, is suddenly
stopped, I shall be projected on to the opposite
side, although I have not been directly acted upon
by any force. There is nothing mysterious in
that, and if I have not been subject to the action
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of any external force, the train has experienced an
external impact. There can be nothing para-
doxical in the relative motion of two bodies being
disturbed when the motion of one or the other is
modified by an external cause. Nor need I dwell
on the case of relative motion referring to axes
which rotate uniformly. If the sky were for ever
covered with clouds, and if we had no means of
observing the stars, we might, nevertheless, con-
clude that the earth turns round. We should be
warned of this fact by the flattening at the poles,
or by the experiment of Foucault’s pendulum.
And yet, would there in this case be any meaning
in saying that the earth turns round? If there is
no absolute space, can a thing turn without turn-
ing with respect to something; and, on the other
hand, how can we admit Newton’s conclusion and
believe in absolute space? But it is not sufficient
to state that all possible solutions are equally
unpleasant to us. We must analyse in each case
the reason of our dislike, in order to make our
choice with the knowledge of the cause. The
long discussion which follows must, therefore, be
excused.

Let us resume our imaginary story. Thick
clouds hide the stars from men who cannot observe
them, and even are ignorant of their existence.
How will those men know that the carth turns
round? No doubt, for a longer period than did
our ancestors, they will regard the soil on which
they stand as fixed and immovable! They will
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wait a much longer time than we did for the
coming of a Copernicus; but this Copernicus will
come at last. How will he come? In the first
place, the mechanical school of this world would
not run their heads against anabsolute contradic-
tion. In the theory of relative motion we observe,
besides real forces, two imaginary forces, which
we call ordinary centrifugal force and compounded
centrifugal force. Our imaginary scientists can
thus explain everything by looking upon these two
forces as real, and they would not see in this a
contradiction of the generalised principle of inertia,
for these forces would depend, the one on the
relative positions of the different parts of the
system, such as real attractions, and the other on
their relative velocities, as in the case of real
frictions. Many difficultics, however, would before
long awaken their attention. If they succeeded in
realising an isolated system, the centre of gravity
of this system would not have an approximately
rectilinear path. They could invoke, to explain
this fact, the centrifugal forces which they would
regard as real, and which, no doubt, they would
attribute to the mutual actions of the bodies—only
they would not sce these forces vanish at great
distances—that is to say, in proportion as the
isolation is better realized. Far from it. Centri-
fugal force increases indefinitely with distance.
Already this difficulty would seem to them suffi-
ciently serious, but it would not detain them for
long. They would soon imagine some very subtle
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medium analogous to our ether, in which all
bodies would be bathed, and which would exer-
cise on them a repulsive action. But that is not
all.  Space is symmetrical—yet the laws of
motion would present no symmetry. They should
be able to distinguish between right and left.
They would see, for instance, that cyclones always
turn in the same direction, while for reasons of
symmetry they should turn indifferently in any
direction. If our scientists were able by dint of
much hard work to make their universe perfectly
symmetrical, this symmetry would not subsist,
although there is no apparent reason why it
should be disturbed in one direction more than
in another. They would extract this from the
situation no doubt—they would invent something
which would not be more extraordinary than the
glass spheres of Ptolemy, and would thus go on
accumulating complications until the long-ex-
pected Copernicus would sweep them all away
with a single blow, saying it is much more simple
to admit that the earth turns round. Just as
our Copernicus said to us: It is more convenient
to suppose that the earth turns round, because the
laws of astronomy are thus expressed in a more
simple language,” so he would say to them: “It
is more convenient to suppose that the earth turns
round, because the laws of mechanics are thus
expressed in much more simple language. That
does not prevent absolute space—that is to say,
the point to which we must refer the earth to
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know if it really does turn round—from having
no objective existence. And hence this affirma-
tion: “the earth turns round,” has no meaning,
since it cannot be verified by experiment; since
such an experiment not only cannot be realised or
even dreamed of by the most daring Jules Verne,
but cannot even be conceived of without con-
tradiction; or, in other words, these two proposi-
tions, “thc earth turns round,” and, ‘it is more
convenient to suppose that the earth turns round,”
have one and the same meaning. There is nothing
more in one than in the other. Perhaps they will
not be content with this, and may find it surpris-
ing that among all the hypotheses, or rather all
the conventions, that can be made on this subject
there is one which is more convenient than the
rest? But if we have admitted it without diffi-
culty when it is a question of the laws of
astronomy, why should we object when it is a
question of the laws of mechanics? We have
seen that the co-ordinates of bodies are deter-
mined by differential equations of the second
order, and that so are the differences of these
co-ordinates. This is what we have called the
generalised principle of inertia, and the principle
of relative motion. If the distances of these
bodies were determined in the same way by
equations of the second order, it seems that the
mind should be entirely satisfied. How far does
the mind receive this satisfaction, and why is it
not content with it? To explain this we had
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better take a simple example. I assume a system
analogous to our solar system, but in which fixed
stars foreign to this system cannot be perceived,
so that astronomers can only observe the mutual
distances of planets and the sun, and not the
absolute longitudes of the planets. If we deduce
directly from Newton’s law the differential equa-
tions which define the variation of these distances,
these equations will not be of the second order. I
mean that if, outside Newton’s law, we knew the
initial values of these distances and of their de-
rivatives with respect to time—that would not be
sufficient to determine the values of these same
distances at an ulterior moment. A datum would
be still lacking, and this datum might be, for
example, what astronomers call the area-constant.
But here we may look at it from two different
points of view. We may consider two kinds of
constants. In the eyes of the physicist the world
reduces to a series of phenomena depending, on the
one hand, solely on initial phenomena, and, on the
other hand, on the laws connecting consequence
and antecedent. If observation then teaches us
that a certain quantity is a constant, we shall have
a choice of two ways of looking at it. So let us
admit that there is a law which requires that this
quantity shall not vary, but that by chance it has
been found to have had in the beginning of time
this value rather than that, a value that it has
kept ever since. This quantity might then be
called an accidental constant. Or again, let us
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admit on the contrary that there is a law of nature
which imposes on this quantity this value and not
that. We shall then have what may be called an
essential constant. For example, in virtue of the
laws of Newton the duration of the revolution of
the earth must be constant. But if it is 366 and
something sidereal days, and not 300 or 400, it is
because of some initial chance or other. It is an
accidental constant. If, on the other hand, the
exponent of the distance which figures in the
expression of the attractive force is equal to -2
and not to -3, 1t is not by chance, but because it
is required by Newton’s law. It is an essential
constant. I do not know if this manner of giving
to chance its share is legitimate in itself, and if
there is not some artificiality about this distinc-
tion; but it is certain at least that in proportion
as Nature has secrets, she will be strictly arbitrary
and always uncertain in their application. As far
as the area-constant is concerned, we are accus-
tomed to look upon it as accidental. Is it certain
that our imaginary astronomers would do the
same ? If they were able to compare two different
solar systems, they would get the idea that this
constant may assume several different values. But
I supposed at the outset, as I was entitled to do,
that their system would appear isolated, and that
they would sce no star which was foreign to their
system. Under these conditions they could only
detect a single constant, which would have an
absolutely invariable, unique value. They would
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be led no doubt to look upon it as an essential
constant.

One word in passing to forestall an objection.
The inhabitants of this imaginary world could
neither observe nor define the area-constant as we
do, because absolute longitudes escape their notice;
but that would not prevent them from being
rapidly led to remark a certain constant which
would be naturally introduced into their equations,
and which would be nothing but what we call the
area-constant. But then what would happen?
If the area-constant is regarded as essential, as
dependent upon a law of nature, then in order to
calculate the distances of the planets at any given
moment it would be sufficient to know the initial
values of these distances and those of their first
derivatives. Irom this new point of view, dis-
tances will be determined by differential equations
of the second order. Would this completely
satisfy the minds of these astronomers? 1 think
not. In the first place, they would very soon see
that in differentiating their equations so as to
raise them to a higher order, these equations
would become much more simple, and they would
be especially struck by the difficulty which arises
from symmetry. They would have to admit
different laws, according as the aggregate of the
planets presented the figure of a certain polyhedron
or rather of a regular polyhedron, and these conse-
quences can only be escaped by regarding the area-
constant as accidental. I have taken this particular
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example, because I have imagined astronomers
who would not be in the least concerned with
terrestrial mechanics and whose vision would be
bounded by the solar system. But our con-
clusions apply in all cases. Our universe is more
extended than theirs, since we have fixed stars;
but it, too, is very limited, so we might reason on
the whole of our universe just as these astronomers
do on their solar system. We thus see that we
should be definitively led to conclude that the
equations which define distances are of an order
higher than the second. Why should this alarm
us—why do we find it perfectly natural that the
sequence of phenomena depends on initial values
of the first derivatives of these distances, while we
hesitate to admit that they may depend on the
initial values of the second derivatives? It can
only be because of mental habits created in us by
the constant study of the generalised principle of
inertia and of its consequences. The values of the
distances at any given moment depend upon their
initial values, on that of their first derivatives, and
something else. What is that something else? If
we do not want it to be merely one of the second
derivatives, we have only the choice of hypotheses.
Suppose, as is usually done, that this something
else is the absolute orientation of the universe in
space, or the rapidity with which this orientation
varies; this may be, it certainly is, the most con-
venient solution for the geometer. But it is not
the most satisfactory for the philosopher, because
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this orientation does not exist. We may assume
that this something else is the position or the
velocity of some invisible body, and this is what is
done by certain persons, who have even called the
body Alpha, although we are destined to never
know anything about this body except its name.
This is an artifice entirely analogous to that of
which T spoke at the end of the paragraph con-
taining my reflections on the principle of inertia.
But as a matter of fact the difficulty is artificial.
Provided that the future indications of our instru-
ments can only depend on the indications which
they have given us, or that they might have
formerly given us, such is all we want, and with
these conditions we may rest satisfied.



CHAPTER VIIL
ENERGY AND THERMO-DYNAMICS.

Energetics.—The difficulties raised by the classi-
cal mechanics have led certain minds to prefer a
new system which they call Energetics. Energetics
took its rise in consequence of the discovery of the
principle of the conservation of energy. Helm-
holtz gave it its definite form. We begin by de-
fining two quantities which play a fundamental
part in this theory. They are kinefic energy, or
vis wviva, and pofential encrgy. Every change
that the bodies of nature can undergo is regulated
by two experimental laws. First, the sum of the
kinetic and potential energies is constant. This
is the principle of the conservation of energy.
Second, if a system of bodies is at A at the time £,,
and at B at the time ¢, it always passes from the
first position to the sccond by such a path that
the mcan value of the difference between the two
kinds of energy in the interval of time which
separates the two epochs £, and ¢, is a minimum.
This is Hamilton'’s principle, and is one of the
forms of the principle of least action. The
energetic theory has the following advantages
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over the classical. First, it is less incomplete—
that is to say, the principles of the conservation of
energy and of Hamilton teach us more than the
fundamental principles of the classical theory, and
exclude certain motions which do not occur in
nature and which would be compatible with the
classical theory. Second, it frees us from the
hypothesis of atoms, which it was almost impos-
sible to avoid with the classical theory. But in
its turn it raises fresh difficulties. The definitions
of the two kinds of energy would raise difficulties
almost as great as thosc of force and mass in the
first system. However, we can get out of these
difficulties more easily, at any rate in the simplest
cases. Assume an isolated system formed of a
certain number of material points. Assume that
these points are acted upon by forces depending
only on their relative position and their dis-
tances apart, and independent of their velocities.
In virtue of the principle of the conservation of
energy there must be a function of forces. In this
simple case the enunciation of the principle of the
conservation of energy is of extreme simplicity.
A certain quantity, which may be determined by
experiment, must remain constant. This quantity
is the sum of two terms. The first depends only on
the position of the material points, and is inde-
pendent of their velocities; the second is pro-
portional to the squares of these velocities. This
decomposition can only take place in one way.
The first of these terms, which I shall call U, will
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be potential energy; the second, which I shall call
T, will be kinetic energy. It is true that if T+ U
is constant, so is any function of T+ U, ¢ (T+U).
But this function ¢ (T'+ U) will not be the sum of
two terms, the one independent of the velocities,
and the other proportional to the square of the
velocities. Among the functions which remain
constant there is only one which enjoys this pro-
perty. It is T+ U (or a linear function of T + U),
it matters not which, since this linear function may
always be reduced to T+ U by a change of unit
and of origin. This, then, is what we call energy.
The first term we shall call potential energy, and
the second kinetic energy. The definition of the
two kinds of energy may therefore be carried
through without any ambiguity.

So it is with the definition of mass. Kinetic
energy, or vis viva, is expressed very simply by the
aid of the masses, and of the relative velocities of all
the material points with reference to one of them.
These relative velocities may be observed, and
when we have the expression of the kinetic energy
as a function of these relative velocities, the co-
efficients of this expression will give us the masses.
So in this simple case the fundamental ideas can
be defined without difficulty. But the difficulties
reappear in the more complicated cases if the
forces, instead of depending solely on the dis-
tances, depend also on the velocities. TFor ex-
ample, Weber supposes the mutual action of two
electric molecules to depend not only on their
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distance but on their velocity and on their accelera-
tion. If material points attracted each other
according to an analogous law, U would depend
on the velocity, and it might contain a term
proportional to the square of the velocity. How
can we detect among such terms those that arise
from T or U? and how, therefore, can we dis-
tinguish the two parts of the energy? DBut there
is more than this. How can we define energy
itself? We have no more reason to take as our
definition T + U rather than any other function of
T + U, when the property which characterised
T+ U has disappeared—namely, that of being the
sum of two terms of a particular form. Dut that
is not all. We must take account, not only of
mechanical energy properly so called, but of the
other forms of energy—heat, chemical energy,
electrical energy, etc. The principle of the con-
servation of energy must be written T+U+Q =
a constant, where T is the sensible kinetic energy,
U the potential energy of position, depending only
on the position of the bodies, Q the internal
molecular energy under the thermal, chemical, or
electrical form. This would be all right if the °
three terms were absolutely distinct; if T were
proportional to the square of the velocities, U
independent of these velocities and of the state of
the bodies, Q independent of the velocities and of
the positions of the bodies, and depending only on
their internal state. The expression for the energy
could be decomposed in one way only into three
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terms of this form. But this is not the case. Let
us consider electrified bodies. The electro-static
energy due to their mutual action will evidently
depend on their charge—i.e., on their state;
but it will equally depend on their position.
If these bodies are in motion, they will act
electro-dynamically on one another, and the
electro-dynamic energy will depend not only on
their state and their position but on their velocities.
We have therefore no means of making the selec-
tion of the terms which should form part of T,
and U, and Q, and of separating the three parts of
the energy. If T+ U+Q is constant, the same is
true of any function whatever, ¢ (T + U + Q).

If T+ U+Q were of the particular form that I
have suggested above, no ambiguity would ensue.
Among the functions ¢ (T+ U + Q) which remain
constant, there is only one that would be of this
particular form, namely the one which I would
agree to call energy. But I have said this is not
rigorously the case. Among the functions that
remain constant there is not one which can
rigorously be placed in this particular form. How
then can we choose from among them that which
should be called energy? We have no longer
any guide in our choice.

Of the principle of the conservation of energy
there is nothing left then but an enunciation:—
There ds something which remains constant.  In this
form it, in its turn, is outside the bounds of ex-
periment and reduced to a kind of tautology. It
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is clear that if the world is governed by laws
there will be quantities which remain constant.
Like Newton’s laws, and for an analogous reason,
the principle of the conservation of energy being
based on experiment, can no longer be invalidated
by it.

This discussion shows that, in passing from the
classical system to the energetic, an advance has
been made; but it shows, at the same time, that
we have not advanced far enough.

Another objection seems to be still more serious.
The principle of least action is applicable to revers-
ible phenomena, but it is by no means satisfactory
as far as irreversible phenomena are concerned.
Helmholtz attempted to extend it to this class
of phenomena, but he did not and could not
succeed. So far as this is concerned all has yet to
be done. The very enunciation of the principle of
least action is objectionable. To move from one
point to another, a material molecule, acted upon
by no force, but compelled to move on a surface,
will take as its path the geodesic line—i.e., the
shortest path. This molecule seems to know the
point to which we want to take it, to foresee
the time that it will take it to reach it by such
a path, and then to know how to choose the most
convenient path. The enunciation of the prin-
ciple presents it to us, so to speak, as a living
and free entity. It is clear that it would be better
to replace it by a less objectionable enunciation,
one in which, as philosophers would say, final
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effects do not seem to be substituted for acting
causes.

Thermo-dynamics.—The role of the two funda-
mental principles of thermo-dynamics becomes
daily more important in all branches of natural
philosophy. Abandoning the ambitious theories
of forty years ago, encumbered as they were with
molecular hypotheses, we now try to rest on
thermo-dynamics alone the ecntire edifice of
mathematical physics. Will the two principles
of Mayer and of Clausius assure to it founda-
tions solid enough to last for some time? We
all feel it, but whence does our confidence
arise? An eminent physicist said to me one day,
apropos of the law of errors:—every one stoutly
believes it, because mathematicians imagine that
it is an effect of observation, and observers imagine
that it is a mathematical theorem. And this was
for a long time the case with the principle of the
conscrvation of energy. It is no longer the same
now. There is no one who does not know that it
is an experimental fact. But then who gives us
the right of attributing to the principle itself more
generality and more precision than to the experi-
ments which have served to demonstrate it? This
is asking, if it is legitimate to generalise, as we do
every day, empiric data, and I shall not be so
foolhardy as to discuss this question, after so many
philosophers have vainly tried to solve it. One
thing alone is certain. 1If this permission were
refused to us, science could not exist; or at least

9



I30 SCIENCE AND HYPOTHESIS.

would be reduced to a kind of inventory, to the
ascertaining of isolated facts. It would not longer
be to us of any value, since it could not satisfy our
need of order and harmony, and because it would
be at the same time incapable of prediction.; As
the circumstances which have preceded any fact
whatever will never again, in all probability, be
simultaneously reproduced, we already require a
first generalisation to predict whether the fact will
be renewed as soon as the least of these circum-
stances is changed. | But every proposition may
be generalised in an infinite number of ways.
Among all possible generalisations we must
choose, and we cannot but choose the simplest.
We are therefore led to adopt the same course
as if a simple law were, other things being equal,
more probable than a complex law. A century
ago it was frankly confessed and proclaimed
abroad that Nature loves simplicity; but Nature
has proved the contrary since then on more than
one occasion. We no longer confess this tendency,
and we only keep of it what is indispensable, so
that science may not become impossible. In
formulating a general, simple, and formal law,
based on a comparatively small number of not alto-
gether consistent experiments, we have only obeyed
a necessity from which the human mind cannot
free itself. \But there is something more, and that
is why I dwell on this topic. No one doubts that
Mayer’s principle is not called upon to survive all
the particular laws from which it was deduced, in
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the same way that Newton’s law has survived the
laws of Kepler from which it was derived, and
which are no longer anything but approximations,
if we take perturbations into account. Now why
does this principle thus occupy a kind of privileged
position among physical laws? There are many
reasons for that. At the outset we think that we
cannot reject it, or even doubt its absolute rigour,
without admitting the possibility of perpetual
motion; we certainly feel distrust at such a
prospect, and we believe ourselves less rash in
affirming it than in denying it. That perhaps is
not quite accurate. The impossibility of perpetual
motion only implies the conservation of energy for
reversible phenomena. The imposing simplicity
of Mayer’s principle equally contributes to
strengthen our faith. In a law immediately de-
duced from experiments, such as Mariotte’s law,
this simplicity would rather appear to us a reason
for distrust; but here this is no longer the case.
We take elements which at the first glance are
unconnected; these arrange themselves in an un-
expected order, and form a harmonious whole.
We cannot believe that this unexpected har-
mony is a mere result of chance. Our conquest
appears to be valuable to us in proportion to the
efforts it has cost, and we feel the more certain of
having snatched its true secret from Nature in pro-
portion as Nature has appeared more jealous of our
attempts to discover it. But these are only small
reasons. Before we raise Mayer’s law to the
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dignity of an absolute principle, a deeper discussion
is necessary. But if we embark on this discussion
we see that this absolute principle is not even easy
to enunciate. In every particular case we clearly
see what energy is, and we can give it at least a
provisory definition; but it is impossible to find
a general definition of it. If we wish to enunciate
the principle in all its generality and apply it to
the universe, we see it vanish, so to speak, and
nothing is left but this—there is something which
remains constant. But has this a meaning? In
the determinist hypothesis the state of the uni-
verse is determined by an extremely large number
n of parameters, which I shall call %y, x4, 23 . . . x,,
As soon as we know at a given moment the values of
these 1 parameters, we also know their derivatives
with respect to time, and we can therefore cal-
culate the values of these same parameters at an
anterior or ulterior moment. In other words,
these n parameters specify » differential equations
of the first order. These equations have n-1
integrals, and therefore there are 7 -1 functions of
Xy, X9y %y . . . %, which remain constant. If we
say then, there is something which remains constant,
we are only enunciating a tautology. We would
be even embarrassed to decide which among all
our integrals is that which should retain the name
of energy. Besides, it 1s not in this sense that
Mayer's principle is understood when it is applied
to a limited system. We admit, then, that p of
our # parameters vary independently so that we
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have only # - p relations, generally linear, between
our 7 parameters and their derivatives. Suppose,
for the sake of simplicity, that the sum of the
work done by the external forces 1s zero, as well
as that of all the quantities of heat given off from
the interior: what will then be the meaning of
our principle? Therc is a combination of these n—p
relations, of which the first member is an exact
differential; and then this differential vanishing
in virtue of our n-p relations, its integral is a
constant, and 1t is this integral which we call
energy. But how can it be that there are several
parameters whose variations are independent ?
That can only take place in the case of external
forces (although we have supposed, for the sake
of simplicity, that the algebraical sum of all the
work done by these forces has vanished). If,
in fact, the system were completely isolated from
all external action, the values of our # parameters
at a given moment would suifice to determine
the state of the system at any ulterior moment
whatever, provided that we still clung to the deter-
minist hypothesis. We should therefore fall back
on the same difficulty as before. If the future
state of the system is not entirely determined
by its present state, it is because it further depends
on the state of bodies external to the system.
But then, 1s it likely that there exist among the
parameters ¥ which define the state of the system of
equations independent of this state of the external
bodies? and if in certain cases we think we can
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find them, is it not only because of our ignorance,
and because the influence of these bodies is too
weak for our experiment to be able to detect it?
If the system is not regarded as completely
isolated, it is probable that the rigorously exact
expression of its internal energy will depend upon
the state of the external bodies. Again, I have
supposed above that the sum of all the external
work is zecro, and if we wish to be free from
this rather artificial restriction the enunciation
becomes still more difficult. To formulate
Mayer’s principle by giving it an absolute
meaning, we must extend it to the whole
universe, and then we find ourselves face to
face with the very difficulty we have endeavoured
to avoid. To sum up, and to use ordinary
language, the law of the conservation of energy
can have only one significance, because there is
in it a property common to all possible properties;
but in the determinist hypothesis there is only one
possible, and then the law has no meaning. In
the indeterminist hypothesis, on the other hand,
it would have a meaning even if we wished to
regard it in an absolute sense. It would appear
as a limitation imposed on freedom.