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I 

INTRODUCTION 

1. The subject-matter 
It is the threefold purpose of this essay, first to give a coherent and 

fairly inclusive account of the well-known and generally accepted 
portions of Einstein's theory of relativity, second to treat the exten
sion of thermodynamics to special and then to general relativity, and 
third to consider the applications both of relativistic mechanics and 
relativistic thermodynamics in the construction and interpretation of 
cosmological models. 

The special theory of relativity will first be developed in the next 
three chapters, which are devoted respectively to the kinematical, 
meohanica.l, and electromagnetic consequences of the two postulates 
of special relativity. In Chapter IT, under the general heading 'The 
Special rrheory of Relativity', the two postulates of the theory will be 
presented, together with a brief statement of the confirmatory empiri
cal evidence in their favour; theil' kinematical consequences will then 
be developed, firstly using the ordinary language which refers kinemati
cal oocun·cnc('s to somo selected set of three Cartesian axes aud the 
Ret of clocks tlm t cn,n be pictured as moving therewith, and secondly 
using tho nwro powerful quasi-geometrical language provided by the 
concept of a four-dimensional space-time continuum. In Chapter III, 
Special Rdativity ancl Meehanics, we shall develop fir:.:~t the mechanics 
of a particle anrl then those of a mechanical continuum from a postu
lntory bnHiH whieh iH obtained by adding tho ideas of the conservation 
of nutHH u.n<l of tho cq un.lity of action n.nd reaction to the kinematics 
of spocinl relativity. No n.ppeal to analogies with electromagnetic 
results will be 1weded to obtain the complete treatment, and the oon
Ridcrat.ions will be maintained on a macroscopic level throughout. 
Finally, in Chapter IV, Spccin.l H.clntivity n.nd Electrodynamics, we 
Hhn.ll eomplctu our tren.tmNlt of tho more familiar subjeot-ma.tter of 
t.Jw Hpeeial t.Iwnry, hy developing the close relationships between 
Rpecin.l rdativity and clPctromagnetic theory. Tho first part of this 
chapter will bo devoted to tho illl10rporation of the Lorentz electron 
theory in tho framework of special relativity, a procedure which 
tacitly assumes a rl•spcctable amount of validity still inherent in 
classical microscopic considerations in spite of the evident necessity 

!11106.11 



2 INTRODUCTION § 1 

for a. successful quantum electrodynamics; and the second part of tl~e 
chapter will be given to the development of Minkowski 's macro~cop10 
theory of. moving electromagnetic media based on the extension to 
special relativity of Maxwell's original treatment of stationary 

InUttter. . 
In Chapter V, Special Relativity and Thermodynamics, we then 

turn to less familiar consequences of the special theory. In the first 
part of the chapter we consider the effect of relativity, even on tho 
classical theri:nodynamics of stationary systems, in providing
$rough the relatiVistic relation between mass and energy-a na.tural 
starting-point for the energy content of thermodynamic systems, 
and a method for computing the energy changes accon1panying 

· ·physical-chemical processes from a knowledge of changes in maHs. 
This makes it feasible to consider such problems as the thcrtuo
dynamic equilibrium between hydrogen and helium, and that betwcon 
matter. and radiation-assuming the possibility of their intorconvor
sion-and treatments of these questions are given. In tho seeond 
part of the chapter we undertake the actual extension of therino
dynamics to special relativity in order to obtain a therrnodynurnic 
theory for the treatment of moving systems. Although tho results 
which are to be derived by such an application of rolativit.y to 
thermodynamics were considered by Planck and by Einstein only 
two years after the original preSentation of the special theory, but 
little further attention has been paid to them. Indeed

1 
the very 

essential difference between the equation 

E- Eo 
- 'J(I-u2fc2) ( 1.1) 

giving the energy of a moving particle E in terms of its propor energy 
E0 and velocity u, and the quite different equation 

Q = Qo~{l-u2/C2) (1.2) 

connecting a quantity of heat Q with proper heat Q0 and vcloeity, hnH 
apparently not always been appreciated. The common lack of fntnili
arity with this branch of relativity has doubtless been due to tho 
abse~oe of physical situations where its applications were nocmum.ry. 
For the later extension of thermodynamics to general relativity, 
nevert:helesa, a knowledge of the Planck-Einstein thermodynamicH iA 
essential, and at the end of this chapter we introduce a four-dinlen
sional expression for the second law of thermodynamics in special 
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relativity on which the extension to general relativity can later be 
based. 

In Chapter VI, The General Theory of Relativity, we consider the 
fundan1ental principles of the general theory of relativity together 
with some of its more elementary aq1plications. Part I of the chapter 
will treat the three corner-stones-the principle of covariance, the 
principle of equivalence, and the hypothesis of Mach-on which the 
theory rests. In agreement with the point of view first stated by 
Kretchsmann, the principle of covariance will be regarded as having 
a logically formal character which can imply no necessary physical 
consequences, but at the same time in agreement with. Einstein we 
shall emphasize the importance of usmg covariant language in search
ing for the axioms of physics, in order to eliminate the insinuation of 
unrecognized assumptions which might otherwise result from using 
the language of particular coordinates. The discussion of the princi
ple of equivalence will emphasize not only its empirical justification 
as an imtnediate and natural generalization of Galileo' s discovery 
that all bodies fall at the same rate, but will also lay stress on the 
philosophical desirability of the principle in making it possible to 
maintain the general idea of the relativity of all kinds of motion 
including accelerations and rotations as well as uniform velocities. 
rrhe designation 'Mach hypothesis' will be used to denote the general 
idea that the geometry of space-time is determined by the distribu
tion of matter and energy, so that some kind of field equations 
connecting the components of the metrical tensor g p.v with those of 
the energy-momentum tensor T

1
.w are in any case implied. In pre

senting the field equations actually chosen by Einstein, the cosmo
logical or A-term will be introduced and retained in many parts of the 
later treu.tment, not because of direct empirical or theoretical evi
dence for the existence of this term, but rather on account of the 
logical possibility of its existence and the necessity for ita presence 
in the caso of certain cosmological models which at least deserve 
discmiRion. Part II of Chapter VI will be given to ele1nentary appli
,cn~ions of general relu.tivity. rrhese will include a discussion of the 
c1ock pa.rn.dox which proved so puzzling during the interval between 
the developments of the special and general theories of relativity. 
'lrcatmont will also bo- given to Newton's theory of gravitation as a 
first and very close approximation to Einstein's theory, and the three 
crucial te-ats of general relativity will be considered. 
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Chapter VII, Relativistic Mechanics, will be divided into two parts 
on general mechanical principles and on solutions of the field equa
tions. In Part I, after illustrating the nature of the energy-momen
tum tensor and of the fundamental equations of mechanics by 
application to the behaviour of a perfect fluid, the equations of 
mechanics will be re-expressed in the form containing the pseudo
tensor density of potential gravitational energy and momentum t~ 
permitting us then to obtain conservation laws for Einstein's general
ized expressions for energy and momentum, to exhibit the relation 
between energy and gravitational mass, and to show the reduction 
of the energy of a system in the case of weak fields to the usual 
Newtonian form including potential gravitational energy. In Part II 
of Chapter VII, Einstein's general solution for the field equations in 
the case of weak fields will first be presented. This will then be 
followed by a discussion of the properties of the solutions that can be 
obtained in special oases of spherical symmet1-y and the like, including 
useful explicit expressions for the Christoffel symbols and components 
of the energy-momentum tensor which then apply. 

Chapter VIII, Relativistic Electrodynamics, will present the 
further extensions to general relativity both for the Lorentz electron 
theory and for the Minkowski macroscopic theory. This will be 
followed by a number of applications including the derivation of an 
expression for the relativistic energy-momentum tensor for black
body radiation, together with discussions of the gravitational inter
action of light rays and particles, and of the generalized Doppler 
effect, these latter being matters of special importance for the inter
pretation of astronomical findings. 

Chapter IX, Relativistic Thermodynamics, considers the extension 
of thermodynamics from special to general relativity together with 
its applications. The principles of relativistic mechanics themselves 
are taken as furnishing the analogue of the ordinary first law of 
classical thermodynamics; and the analogue of the second Ia w is pro
vided by the covariant generalization of the four-dimensional form 
in which the second law can be expressed in the case of special rela
tivity. Since the above choice for the analogue of the first law intro
duces only generally accepted results of relativity, the whole character 
of relativistic thermodynamics is determined by the relativistic 
second law. The axiom chosen for this law is hence carefully examined 
as to meaning; its present status is discussed as being the direct 
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covariant re-expression and therefore the most probable generaliza
tion of the ordinary second law; and its future status as a postulate 
to be verified or rejected on empirical grounds is emphasized. Follow
ing this discussion, applications are made to illustrate the character
istic differences between the results of relativistic thermodynamics, 
and those which might at first sight seem probable on the basis of 
a superficial extrapolation of conclusions familiar in the classical 
thermodynamics. Thus in the case of static systems, although we 
shall find the physical-chemical equilibrium between reacting sub
stances-as measured by a local observer-unaltered from that which 
would be predicted classically, we shall find on the other hand as a 
new phenomenon the necessity for a temperature gradient at thermal 
equilibrium to prevent the flow of heat from regions of higher to those 
of lower gravitational potential, in agreement with the qualitative 
idea that all forms of energy have weight as well as mass. Turning to 
non-static systems we shall then show the possibility for a limited 
class of thermodynamic processes which can occur both reversibly 
and at a finite rate-in contrast to the classical requirement of an 
infinitely slow rate to secure that maximum efficiency which 'Yould 
permit a return both of the system and its surroundings t<>. their 
initial state. We shall later find that the principles of relativistic 
mechanics themselves provide a justification for this new thermo
dynamic conclusion, since they permit the construction of cosmological 
models which would expand to an upper limit and then return with 
precisely reversed velocities to earlier states. Finally, in the case of 
irreversible processes taking place at a finite rate, we shall discover 
possibilities for a continuous increase in entropy without ever reach
ing an unsurpassable value of that quantity-in contrast to the 
classical conclusion of a final quiescent state of maximum entropy. 
This new kind of thermodynamic behaviour, which may be regarded 
as mainly resulting from the known modification of the principle of 
energy conservation by general relativity, will also find later illustra
tion among the cosmological models predicted as possible by tho 
principles of relativistic mechanics. 

In Chapter X, Application to Cosn10logical ~'fodels, we con1plete 
the text except for some appendices containing useful formulae and 
constants. In the first part of this chapter we shall show that the 
only possible static homogeneous models for the universe are the 
original ones of Einstein and de Sitter, and shall discuss some of their 
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properties which are important without reference to the adequacy 
of the models as pictures of the actual universe. We shall then turn 
to the consideration of non-statio homogeneous models which can be 
constructed so as to exhibit a number of the properties of the actual 
universe, . including, of course, the red shift in the light from the 
extra-galactic nebulae. Special attention will be given to the method 
of coiTelating the properties of such models with the results of 
astronomical observations although the details for obtaining the 
latter will not be considered. Attention will also be paid to the 
theoretically possible properties of such models, without primary 
reference to their immediate applicability in the correlation of already 
observed phenomena, since no models at the present stage of empirical 
observation can supply more than very provisional pictures of the 
actual universe. . . 

The most impqrtant omission in this text, from the subjects usually 
included in applications of the special theory of relativity, is the 
relativistic treatment of the statistical mechanics of a gas, as deve
~oped by ,Jiittner and to some extent by the present writer.t 'rhe 
omission is perhaps justified by our desire in the present work to 
avoid microscopic consi~erations as far as possible, and by the 
e~ting a.bsence of many physical situations where the use of this 
logically inevitable extension of relativity theory has as yet becmne 
needed .. 

In the case of the general theory of relativity, the most important 
omission lies in neglecting the attempts which have been made to 
construct a unified field theory, in which the phenomena of electricity 
as well as gravitation would both be treated from a combined 'geo
metrical' point of view. Up to the present, nevertheless, these 
attempts appear either to be equivalent to the usual relativistic 
extension of electromagnetic theory as given in the present text, or 
to be-although mathematically interesting-of undemonstrated 
physical importance. Furthermore, it is hard to escape the feeling 
that a successful unified field theory would involve microscopic con
siderations which are not the primary concern of this book. 

The most important inclusions, as compared with older texts on 
relativity, consist in the extension of thermodynamics to general 
relativity, and the material on non-static models of the universe. 
Other additions are provided by the calculations of thermodynamic 

t Ji.ittner, Ann. d. Phlgaik, 34, 856 (1911); Tolman, Phil. Mag., 28, 683 (1914). 
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equilibria with the help of the mass-energy relation of special rela
tivity, by the demonstration of the reduction of the relativistic 
expression for energy in the case of weak fields to the Newtonian 
expression including potential gravitational energy, by explicit ex
pressions given for the components of the energy-momentum tensor 
in the case of special fields, and by the treatments given to the 
energy-momentum tensor for radiation and to the gravitational inter
action of light rays and particles. 

2. The method of presentation 
In the presentation of material, the endeavour will be made to 

emphasize the physical nature of assumptions and conclusions and the 
physical significance of their interconnexion, rather than to lay stress 
on mathematical generality or even, indeed, on mathematical rigour. 
rrhe exposition will of course make use of the language and methods 
of tensor analysis, a table of tensor formulae being given in Appendix 
III to assist the reader in this connexion. No brief will be held, 
however, for the fallacious position that the possibilities of covariant 
expression are exhausted by the use of tensor language; and no 
hesitation will be felt in introducing Einstein's pseudo-tensor density 
~of potential gravitational energy and momentum in order to secure 
quantities obeying conservation laws, which can be taken as the 
relativistic analogues of energy and mmnentum. 

To make sure that reader and writer are not substituting a satis
faction in mathematical complications or in geometrical analogies for 
the tnain physical business at hand, the frequent translation of mathe
matical expressions into physicall8r11guage will be undertaken. Stress 
will be laid on the immediate physical significance of proper quantities 
such as proper lengths, times, temperatures, macroscopic densities, 
etc., whose values can be determined by a local observer using familiar 
methods of measurement. Special attention will be given to the pro
cedure for relating the coordinate position of nebulae with actual 
astronomical estimates of distance. 

In presenting the special theory of relativity no particular relation 
will be aHsumed between the units of length and time, and the 
formulae obtained will explicitly contain the velocity of light c. In 
going over to tho general theory of relativity, however, units will be 
assumed which give both the velocity of light and the constant of 
gravitation the values unity. This introduces a gain in simplicity of 
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m~thematica.l form which is partially offset by the loss in immediate 
physical significance and applicability. The translation of results 
into ordinary physical units will be facilitated, however, by the table 
in Appendix IV. 

The method of presenting the mechanics of a particle wHl be 
similar to that first developed by Professor Lewis and the ·present 
writer which obtains· a basis for the treatment by combining the 
kinematics of special relativity with the conservation laws for mass 
and momentum. The Laue mechanics for a continuous medium will 
then be obtained by the further development of these sam.e ideas, 
using the transformation equations for force provided by particle 
dynamics. This method seems to afford a more direct mechanical 
insight than methods based on analogies with electromagnetic rela
tions, or.on those starting from some variational principle as was used 
for example by the present ·writer in an earlier book.t 

To turn to more general features of the method of presentation, 
the ideal treatment for such a highly developed subject as the theory 
of relativity would perhaps be a strictly deductive one. In such a . 
method we should start with a set of inde:finables, definitions, and 
postulates and then construct a..logical .. universe of discourse. The 
ind.efinables and definitions would provide the subject-matter in thif:l 
universe of discourse, and the postulates together with the theorems, 
derived from them, with the help of logic or other discipline n1ore 
fundamental than that of the field of interest, would provide the 
significant assertions that could be made concerning the subject
matter. The usefulness of this logical construct in explaining the 
phenomena of the actual world would then depend on the success 
with which we could set up a one-to-one coiTespondence between the 
subject-matter and assertions in our universe of discourse and the 
elements and regularities observed in actual experience, in other 
words, on the success witll which we could use the construct as a 
representative map for findiiig our way around in the external world. 
Although the attempt will not be made in this book to construct such 
a logical universe of discourse, and no attention will be paid to 
matters so pleasant to the ldgician as the search for the smallest 
number of mutually independent and compatible postulates, it is 
nevertheless hoped that the method of exposition will benefit from 
a recognition of this ideal. 

t TluJ Theory of tM BelatitJWy of Motion. University of California Press, 1917. 



§ 3 POINT OF VIEW 9 

3. The point of view 
Throughout the essay a macroscopic and phenomenological point 

of view will be adopted as far as feasible. This is made possible in the 
case of relativistic mechanics by a treatment of mechanical media 
which defines the energy-momentum tensor in terms of such quanti
ties as the proper macroscopic density of matter p00 and the proper 
pressure Po which could be directly measured by a local observer. The 
use of the proper microscopic density of matter Po will be avoided. 
In the case of relativistic thermodynamics the treatment is, of 
course, naturally macroscopic on account of the essential nature of 
that science when we do not undertake any statistical me'chanical 
interpretations. Thus the quantity cf>o will be taken as the entropy 
density of the thermodynamic fluid or working substance as deter
mined by a local observer at the point and time of interest, using 
ordinary thermodynamic methods and introducing no conceptual 
division of the fluid into such elements as atoms and light quanta. In 
the case of electrodynamics, however, the macroscopic point of view 
cannot be entirely .maintained, since, in spite of the use that can be 
made of the Minkowski phenomenological electrodynamics of moving 
media, we have to be interested in the propagation of electromagnetic 
waves of such high frequency that some form of quantum electro
dynamics will ultimately be necessary for their satisfactory treatment. 

We of course accept Einstein's theory of relativity as a valid basis 
on which to build. In the case of the special theory of relativity the 
observational verification of the foundations provided by the 
Michelson-Morley experiment, by Kennedy's time transformation 
experiment, and by de Sitter's analysis of the orbits of double stars, 
and in the case of the general theory the observational verification of 
predictions provided by the motion of the perihelion of Mercury, by 
the bending of light in passing the sun, and by the effect of differences 
in gravitational potential on the wave-length of light are sufficient 
to justify such an acceptance. Future changes in the structure of 
theoretical physics are of course inevitable. Nevertheless, the variety 
of the tests to which the theory of relativity has been subjected, 
combined with its inner logicality, are sufficient to make us believe 
that further advances must incorporate enough of the present theory 
of relativity to make it a safe provisional foundation for macroscopic 
considerations. 

In the present sta-ge of physics it appears probable that the most 
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serious fut~ modifications in the theory of relativity will occur in the 
treatment of microscopic phenomena involving the electric and 
gravitational fields in the neighbourhood of individual elementary 
particles. Here some fusion of the points of view of the present 
theory of relativity and of the quantum mechanics will be necessary, 
which might pe brought about, as Einstein is inclined to believe, by an 
explanation of quantum phenomena as the statistical result to be 
expected on the basis of a successful unified field theory, or, as the 
proponents of the quantum mechanics are more inclined to believe, 
by some unified extension of quantum mechanics and quantum 
electrodynamics. In any case it seems certain that the present form 
of the theory of relativity is not suitable for the treatment of micro
scopic phenomena. Fortunately for the consideration of problems in 
celestial-mechanics and cosmology, we do not need to consider the 
difficulties that might thus arise since the scale of our interest is so 
large that the phenomena are in any case most naturally treated 
from a macroscopic point of view. 

As a further remark concerning the point of view adopted it may be 
well to emphasize at this point the highly abstract and idealized 
character of the conceptual models of the universe which we shall 
study in the last chapter. The models will always be much simpler 
than our actual surroundings, neglecting for example local details in 
the known structure of the universe and replacing the actual disposi
tion of the material therein by a continuous distribution of fluid. The 
reason for such idealization lies, of course, in the simplification which 
it introduces into the mathematical treatment. The procedure is 
analogous to the introduction, for example, of rigid weightless levers 
into the considerations of the older mechanics, or perfectly elastic 
spherical molecules into the simple kinetic theory, and is justified in 
so far as our physical intuition is successful in retaining in the 
simplified picture the essential elements of the actual situation. 

In addition to the introduction of fairly obvious simplifications in 
constructing cosmological models, it will also be necessary to intro
duce assumptions concerning features which are as yet unknown in 
the actual universe. Thus, since the distribution of the extra-galactic 
nebulae has been found to be roughly uniform out to some I08 light
years, we shall usually assume a homogeneous distribution of material 
throughout the whole of our models, even though we shall emphasize 
that this may not be true for the actual universe. Furthermore, we 



§ 3 POINT OF VIEW 11. 

shall investigate the effect of a variety of assumptions as to spatial 
curvature and cosmological constant since their actual values are 
not yet known. 

Finally, in our search for the conceivable properties which the 
universe might have in accordance with acceptable theory, we shall 
not hesitate to study cosmological models which are known to differ 
from the actual universe in important features. Thus the study of 
models filled solely with radiation, or filled with an equilibrium 
mixture of perfect gas and radiation, can lead to results of interest. 
Our general point of view will be, that the possibility of constructing 
cosmological models which exhibit a considerable number of features 
of the actual universe should lead to a sense of intellectual comfort 
and security, and that the construction of cosmological models 
which exhibit features of special interest, even though they differ in 
some ways from the actual universe, should lead to an increased 
insight into observational possibilities. In any case, models must, 
of course, be constructed in accordance with acceptable physical 
theory since the values which distinguish the cosmological specula
tions of the scientist from those of the crank arise from the atte1npt 
of the former to make his work logical and coherent with the rest of 
physics. 
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THE SPECIAL THEORY OF RELATIVITY 

Part I. THE TWO POSTULATES AND THE LORENTZ TRANSFORMATION 

4. Introduction 
In the present chapter we shall briefly treat the underlying 

principles and kinematical consequences of Einstein's special or 
restrictel;l theory of relativity. This branch of the theory of the 
relativity of motion has a restricted range of application since it deals 
only with the intercomparison of measurements made by observers 
who are specially assuined to be in unaccelerated relative motion, and 
in a region of space and time where the action of gravitation can be 
neglected. The treatment of observers with more complicated rela
tive motion and in regions where gravitation cannot be neglected 
forms the subject-matter of the general theory of relativity. 

The special theory, of relativity may be regarded as based on two 
postulates to which we now turn. 

5. The first postulate of relativity 
The first postulate of relativity states that it is impossible to measure 

or detect the unaccelerated translatory motion of a system through free 
space or through any ethefr-like medium which might be assumed to 
pervade it. In accordance with this postulate we can speak of the 
relative velocity of two systems, but it is meaningless to speak of the 
absolute velocity of a single system through free space. As a conse
quence of the postulate, it is evident that the general laws of physics 
for the description of phenomena in free space must be independent 
of the velocity of the particular system of coordinates used in their 
statement, since otherwise we could ascribe some absolute significance 
to different velocities. This latter form of statement is often the most 
immediately applicable for the purposes of drawing conclusions from 
the postulate. 

The first postulate is evidently one which recommends itself on the 
grounds of simplicity and reasonableness, and formed a natural part 
of the Newtonian system of ideas which regarded free space as empty. 
With the rise of the ether theory of light, however, it seemed possible 
that some special significance would have to be ascribed to different 
velocities of motion through the ether, and that the laws of physics 
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would assume a specially simple form when described with the help 
of a ~ystem of coordinates at rest in the ether. 

In the light of the ether theory the necessity thus arises for an 
·experimental verification of the postulate or the conclusions that 
can be drawn from it. The usefulness of·a deductive branch of physics 
depends on the success with which it can be used as a representative 
map for correlating the phenomena of the external world. Hence a 
direct experimental test of the postulates is not necessary provided 
the conclusions can be verified. Nevertheless, a feeling of greater 
intellectual satisfaction is obtained when the postulates themselves are 
chosen in such a way as to permit reasonably direct experimental tests. 

Fortunately the direct experimental verification of this postulate 
of the special theory of relativity may now be regarded as extremely 
satisfactory. In the first place we must put the well known Michelson
Morley experiment, which on the basis of the theory of a fixed ether 
should have led to a detection of the velocity of the earth's motion 
through that medium. The null effect obtained in the original per
formance of this experiment and in all the fairly numerous repeti
tions, except those of Miller,t leave little doubt that no velocity 
through the ether can thus be detected, even of the magnitude of the 
30 km. per sec. which should certainly arise from the earth's kno~ 
rotation in its orbit. Among recent repetitions, that of Kennedy:}: 
appears extremely satisfactory and has reduced the observational 
error of the null effect to the order of ±2 lrm. per sec. or less. 

As is well known, the result thus obtained in the Michelson-Morley 
experiment could be explained by itself alone, without giving up the 
notion of a fixed ether, by assuming that bodies moving through 
this medium suffer the so-called Lorentz-Fitzgerald contraction in 
the direction of their motion, which would produce just the necessary 
distortion in a moving Michelson interferometer to lead to a null 
effect. For this reason it is specially satisfactory that we can now put 
in the second place as a part of the direct verification of our postulate 

t For a summo.ry up to 1926, see Miller, Science, 63, 433 (1926). This work also 
shows no effect of other drift os great as would be expected to accompany the full 
velocity of the earth's motion in its orbit. An effect corresponding to o. velocity of 
about 10 km. per sec. along an axis with its a.pex in the COilBtellation Draco is reported, 
however, and interpreted as possibly due to a. velocity through the ether of 200 km. 
per sec. or more, whose effects are partially compensated by the Lorentz-Fitzgerald 
contraction. A stillla.ter account of Miller's work ha.s just been published in Reviews 
of Modern Physics, 5, 203 (1933). 

+ Kennedy, Proo. Nat. Acad. 12, 621 (1926). Illingworth, Phya. Rw. 30, 692 (1927). 



14 THE SPECIAL THEORY OF RELATIVITY § 5 

an experiment devised by Kennedy, which on the basis of a fixed 
ether and a real Lorentz~Fitzgerald contraction should still lead to 
a detection of the motion of the earth through that ether. The 
apparatus for this experiment consists of a Michelson interferometer 
with the two arms as unequal in length as feasible, so that the two 
beams which recombine· to give interference fringes have a con
siderable difference in the time required to pass from the source to 
the point of recombination. Assuming a fixed ether, but allowing 
for the Lorentz-Fitzgerald contraction associated with motion 
through this medium, analysis then shows that the difference in time 
of travel for the two beams would depend in a very simple way on the 
difference in length of the two arms and on the velocity of the 
apparatus through the ether. Hence, provided the period of the light 
source does not itself depend on this velocity, we should expect a 
shift in the fringe pattern to accompany the diurnal changes in the 
velocity of the apparatus through the ether produced by the earth's 
revolution on its axis, and the annual changes produced by its rota
tion in its orbit. The experiment was of course a very difficult one to 
perform, but the :final results of Kennedy and Thorndiket have 
satisfactorily demonstrated a null effect to the order of the experi
mental error, which corresponds to a velocity of only about ± 10 km. 
per sec. 

In addition to the Michelson~Morley and Kennedy-Thorndike 
experiments there have been a considerable number of other types 
of experiment devi!red to detect the motion of the earth thxough the 
ether, all of which have led to negative results.t Some of these are of 
considerable interest, but the two tests devised by Michelson and 
Kennedy are the most important and the most simply related to the 
ideas as to space and time which have been embodied in the special 
theory of relativity. To account for these two experiments on the 
basis of a fixed ether it would be necessary to introduce ingenious 
assumptions as to a ohange in length or Lorentz-Fitzgerald contrac
tion just sufficient to give a null effect in the Michelson experiment, 
and as to a change in period or time dilation just sufficient to give a 
null effect in the Keimedy experiment-all to the end of retaining 
a fixed ether so devili.shiy constructed that its existence could never 

t Kennedy and Thomdike, Phya. Rev. 42,400 (1932). 
~ See J. Laub, ''Ober die experimenteUen Grundla~n des Relativit!.tsprinzips': 

Jahrb. der .Rad\oaktivitdt u. Elektronilc, 7, 405 (1910). 
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be detected. In the theory of relativity, however, we proceed at the 
start from the basis that absolute velocity can have no significance 
and hence find nothing to trouble us in the result of these experiments. 
In the course of the development of the theory we shall obtain, 
moreover, the simple and unforced counterparts of the assumptions 
as to change in length and period, which would have to be introduced 
in an artificial and arbitrary manner in order to retain the notion 
of a fixed ether. 

6. The second postulate of relativity 
In addition to the first postulate the special theory of relativity 

depends on a second postulate, which states that the velocity of ligl~,t 
in free space i8 the same far all observers, independent of the relative 
velocity of the source of light and the observer. This postulate can be 
looked at as the result of combining the principle familiar to the ether 
theory of light, that the velocity of light is independent of the velocity 
of its source, with the idea resident in the first postulate which makes 
it impossible to assign any significance to the absolute velocity of the 
source but does permit us to speak of the relative velocity of the 
source and observer. 

It is important to note that the essential quality of the second 
postulate may thus be regarded as having been provided by a theory 
of light which assumed space to be filled with some form of ether, 
while the first postula~ of relativity may be regarded as the natural 
consequence of the Newtonian point of view of the emptiness of free 
space. It is not surprising that the combination of principles of such 
different character should have led to a modification in our idea.s as 
to the nature of time and space. 

At the time of Einstein's development of the special theory of 
relativity no experimental evidence had been assembled to show that 
the velocity of light i8 independent of the velocity of its source, and 
the adoption of the principle was due to its familiarity in the wave 
theory of light. At the present time, however, the experimental 
evidence is sufficient to exclude very definitely the most natural 
alternative proposal namely, that the velocity of light and the 
velocity of its source are additive, as assumed in the so-called emission 
theories of light.· 

As the most important evidence against the hypothesis that the 
velocity of light and the velocity of its source are additive we must 
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iiderations of Comstockt and de Sittert concerning the 
.ble stars. If the velocity of light did depend additively 

. ___ aity of its source, it is evident in the case of ·distant 
>lets that the time taken for light to reach the earth from a given 
Lber of the pair would be greatly shortened when this member is 
·oaching the earth at the time of emission and greatly lengthened 
1 the member is receding. The analysis of de Sitter shows that the 

distortion of the observations thus produced would have the effect 
of introducing a spurious eccentricity into the calculated orbit; and 
from the existence of doublets of small observed eccentricity the con ... 
elusion is drawn that the velocity of light could at the most be changed 
by only a small fraction of the velocity of the source. 

In addition to this very satisfactory evidence in favour of the 
principle of the constancy of the velocity of light, there are a number 
of optical experiments which show the untenability of different forms 
which have been proposed for the emission theory of light. These 
proposed forms of emission theory agree in assuming that the velocity 
of light from a moving source is to be taken as the vector sum of the 
ordinary velocity of light c and the velocity of the source v but vary 
in their assumptions as to the velocity of light after reflection frmn 
a mirror. The three assumptions which have been particularly con
sidered are (1) that the excited portion of the minor acts as a new 
source and that reflected light has the same velocity c relative to the 
mirror as that of light relative to its original source,§ (2) that re
flected light has the velocity c relative to the mirror image of its 
source,ll and (3) that light retains throughout its whole path the 
velocity c with respect to its original source. tt 

Optical experiments contradicting the first two of the above possible 
assumptions have not been difficult to find.tt The third of the above 
assumptions formed, however, the basis of a fairly complete emission 
theory which was developed by Ritz, and optical experiments to test 
it are difficult to perform since they are dependent on effects of the 
second order in vjc. It has been pointed out, however, by La Rosa 

t Comstock, Phya. Rev. 30, 267 (1910). 
~ de Sitter, Proc. Amaterdam Acad. 15, 1297 (1913); ibid. 16, 395 (1913). 
§ Tolman, Phya. Rev. 31, 26 (1910). 
II J. J. Thomson, Phil. Mag. 19, 301 (1910). Stewart, Phya. Rev. 32, 418 (1911). 
tt Ritz, Ann. de Ohim. et Phys. 13, 145 (1908). 
U Tolm.an,Phya . .RetJ. 31,26(1910); ibid.35, 136(1913). Marjorana,Phil.Mag. 

35, 163 {1918); ibid. 37' 145 (1919). 
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and by the present writert that a repetition of the Michelson-Morley 
experiment, using light coming originally from the sun rather than 
from a teiTestrial source, should lead to a fringe shift corresponding 
to the earth's velocity in its orbit around the sun, if the Ritz theory 
were correct. In the repetitions of the Michelson-Morley experiment 
which have been made by Miller tests were made using light from the 
sun and no effect .of the kind predicted was observed.t In any case, 
of course, we have the astronomical evidence of de Sitter against all 
forms of the emission theory. 

7. Necessity for modifying older ideas as to space and time 
Let us now accept the two postulates of special relativity as experi

mentally justified and inquire into the effect they have on our ideas 

a A Q' 

4 -• s • ,. 
b a b' 

FIG. 1 

as to the nature of space and time. Since the first postulate is a 
natural consequence of the Newtonian point of view that free space 
is empty, and the second postulate is a natural outcome of the 
opposing idea that space is everywhere filled with a fixed ether, we 
can expect the combination of the two postulates to lead to conse
quences which do not agree with our uninformed intuitions as to the 
nature of space and time. We shall illustrate this in the present 
section by a simple exan1ple. 

Consider a source of light S (Fig. 1)', and two systems, A moving 
towards the source 8, and B moving away from it. Observers on the 
two systems mark off some given distance aa' and bb', say one kilo
metre, on each of the systems in the direction of the source in order 
to measure the velocity of light by determining the time taken for 
it to travel from a to a' and from b to b'. 

In accordance with the first postulate of relativity we cannot 

t La H.osa, Phya. ZcitB. 13, ll20 (1912). Tolman, Phya. Rev. 35, 136 {1012). 
~ Millor, Proc. Nat. Acad. 11, 306 (1925). Professor Miller informs the writer 

that five sots of observations wero mado using sunlight at Mount Wilson in 1924: 
July 1 at 4.4u p.m.; .July 8 n.t 2.4u p.m.; and at u.ou p.m.; July 9 at 0.00 a.m.; 
July 26 at 0.30 a.m. By comparing theso observations with those made using an 
acot.ylone lamp juRt before or o.ftor tho sunlight experiments, the results obtained were 
found to be substantially tho so.xne. 

350$,11 r. 
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assign any significance to the absolute velocities of the two systems, 
but can speak of their velocities relative to the source. And in 
accordance with the second postulate of relativity the measured 
velocity of light must be independent of this relative velocity between 
source and observer. 

Hence we are led to the conclusion that the time taken for the light 
to travel :from a to a' shall measure the same as that for the light 
to travel from b to b', in spite of the fact that A is moving towards 
the source and B away fl'om it. This result seems to contradict the 
simple conclusions of common sense. Hence u the two postulates 
of relativity are true it is evident that our natural intuitions as to 
the nature of space and time are not completely correct, presumably 
because they are based on a too limited ancestral experience-human 
and a.nimal-with spatial a.nd temporal phenomena. 

· · In view of the experimental verification of the two postulates of 
special relativity, the example makes evident the necessity for a 
detailed study of the relations connecting the spatial and temporal 
measurements made by observers in relative motion. This we shall 
undertake in the next section. We shall gain thereby not only coiTect 
methods for the treatment of such measurements, but ultimately 
improved spatial and temporal intuitions as well. 

8. The Lorentz transformation equations 
To study the fundamental problem of the relations connecting the 

spatial and temporal measurements made by observers in relative 
motion, let us consider two systems of space-time coordinates Sand 
S' (Fig. 2} in relative motion with the velocity V,t which for con
venience may be taken as in the x-direction. Each system is pro
vided with a set of right-angled Cartesian axes, as indicated in the 
figure, and with a set of clocks distributed at convenient intervals 
throughout the system and moving with it. 

The pOBition of any given point in space at which some event occurs 
can be specified by giving its spatial coordinates x, y, and z with 
respect to thA axes of system 8, or its coordinates x/, y', and z' with 
respect to system S'. And the time at which the event occurs can be 
specified by giving the clock readings tort' in the two systems. 

For convenience the two systems are chosen so that the Cartesian 
t We shall use the oapita.l letter V to designate the relative velocity of the two 

systems of axes, and the small letters u, u', etc., to designate the velocity of a point 
relative to the coordinate systems. 
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axes OX and 0' X' lie along the same lin~, and for further simplification 
the starting-point for time measurements in the two systems is taken 
so that t and t' are equal to zero when the two origins 0 and 0' are 
in coincidence. 

The specific problem that now arises is to obtain a set of trans
formation equations connecting the variables of the two systems 
which will make it possible to transform the description of any given 

y Y' 

FIG. 2 

kinematical occUITence from the variables of the one system to those 
of the other. In other words, if some given kinematical occurrence 
has been measured by an observer moving with system S' and 
described in terms of the quanti ties x', y', z', and t', we desire a set 
of expressions for these quantities which on substitution will give a 
correct description of the same occurrence in terms of the variables 
x, y, z, and t, used by an observer moving with system 8. 

The con·ect expressions for this purpose were first obtained by 
Lorentz, and hence are usually called the Lorentz transformation 
equations, although their full significance from the point of view of 
the relativity of motion was first appreciated by Einstein. They may 
be written in the form 

(8.1) 
, 

z = z, 
, _ t-xVfc2 

t -:}(I- V2Jc2)' 

where V is the relative velocity of the two systems and c the velocity 
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of light. Or, by solving for the unprimed quantities in terms of the 
primed quantities, they may be written in the form 

x'+ Vt' 
:t = :.}(1- V2fc2)' 

y = y', (8.2) 
, 

z = z' 
_ t'+x'Vfc2 

t - ~(1-V2fc2)" 

A unique derivation of these equations from the first and second 
postulates of relativity, making use of obvious assumptions as to the 
validity of Euclidean geometry, the homogeneity of space and time, 
etc., can be obtained. We may content ourselves now, however, with 
pointing out that the equations do agree with the two postulates of 
relativity. 

In accordance with the first postulate of relativity, since absolute 
velocity has no significance, the two systems S and S' must be 
entirely equivalent for the description of physical occurrences. Hence 
the transformation equations for changing from the variables of 
system S to those of system S' must have exactly the same form as 
those for the reverse transformation, except of course for the sign of 
the relative velocity V. This condition, however, is evidently met 
since the set of equations (8.2) which are obtained by solving the set 
(8.1) are seen to be of unchanged form except for the substitution of 
- V in place of + V. 

In accordance with the second postulate of relativity, the velocity 
of light must measure the same in both systems of coordinates. To 
show that this is the case, we first call attention to the important 
fact that the Lorentz equations have been so constructed as to make 

·the quantity dx2+dy2+dz2-c2 dt2 (8.3) 

an invariant for the transformation. This is evident since on sub
stituting equations (8.2) in (8.3) ·We obtain 

d.-v2+dy2+dz2-c2 dt2 

= (dx'+Vdt' }
2+d ,2+d ,2_ 2 (~!~±(V~'/c2J}2 

~(I-V2fc2) y z c ..J(l- V2fc2) 

= dx'2+dy'2+dz'2-c2dt'2. (8.4) 

The in variance of this expression, however, immediately shows that 
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the velocity of light will measure the same in both sy~tems, since, if 
we have any impulse travelling with the velocity c with respect to 
system S in accordance with the equation 

cla;2+dy2+dz2-c2 dt2 = 0, (8.5) 

we shall also have it travelling with the velocity c with respect to 
system S' in accordance with the equation 

dx'2+dy'2+dz'2-c2 dt'2 = 0. (8.6) 

We thus see that the Lorentz transformation equations are in 
accord with the two postulates of relativity. It should also be noted 
that they are in accord with our ideas as to the homogeneity of space 
and time. Furthermore, when the relative velocity between the 
systems V is small compared with that of light they reduce to the 
so-called Galilean transformation equations, 

x' = x-Vt, 
, 

y = y, 
, 

z = z, (8.7) 

t' = t, 
which we might expect to hold on the basis of an intuition founded 
on a past experience limited to low velocities, and which were implicit 
in the ideas of Galileo and Newton as to the nature of space and 
time. 

It should also be remarked that the set of Lorentz transformations 
between all systems in unaccelerated uniform motion form a group, 
such that the combined result of successive transformations is equi
valent to a single transformation from the original to the final system 
of coordinates. It may also he pointed out that the transformation 
becomes imaginary for relative velocity between the systems V 
greater than tho velocity of light c, a result which is consistent with 
that of a following section showing that c is to be regarded as an 
upper limit for the possible relative velocities between material 
systems. 

With the help of simple manipulations we may now obtain from 
the Lorentz transformation equations a number of further equations 
which will prove useful for transforming tho measurements of 
geometrical or kinematical quantities which depend on the coordi
nates, and which will permit some simple physical interpretations. 
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9. Transformation equations for spatial and temporal inter
vals. Lorentz contraction and time dilation 
By the simple differentiation of equations (8.1) we obtain 

d , dx-v dt, 
x = IJ(l-V2fe2)' 

dy' = dy, (9.1) 

dz' = dz, 
_ dt-Vdxfe2 

dt/- <\)(1-V2fc2)' 

where the differential quantities dx, dy, dz, dt, and dx', dy', dz', dt' 
are to be interpreted as giving the measurements in the two systems 
of the spatial and temporal intervals which correspond to the differ~ 
ence in position and time of some given pair of neighbouring events. 
With the help of these equations we can now easily draw conclusions 
as to the intercomparison of measuring sticks and clocks in the two 
systems. 

Consider two measuring sticks held parallel to the x-axis, one in 
each of the two systems, in such a way that their scale divisions can 
be compared as the two sticks slide past each. other; and consider 
as the events to be observed the coming into coincidence of division 
marks on one of the measuring sticks with division marks on the 
other. 

Let us first determine how a length dx' laid off on the measuring 
stick in systemS' will appear when measured in systemS. To do 
this we must consider coincidences, whieh appear simultaneous in 
system S, between the end points of dx' and division marks on the 
measuring stick in systemS. Since the coincidences are simultaneous 
in system S, we shall have 

dt = 0, (9.2) 

and by substitutiol} in (9.1) obtain 

rkc' - dx dx = dx' '(1-V2fc2). (9.3) - OOJ(l-V2fc2) or 'V 

We conclude that a measuring stick travelling with system S' and 
measuring dx' in the units of that system will measure the shorter 
lengthdx'"'(l- V2/c2) in the units of systemS when the simultaneous 
positions of its ends are observed in that system. 

Let us next determine how a length dx laid off on the measuring 
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stick in system S will appear when measured in system S'. To do 
this we must now consider coincidences, which appear simultaneous 
in 81JBtem S', between the end points of dx and division marks on the 
measuring stick in system S'. Since the coincidences are simultaneous 
in systemS', we shall have in accordance with the last equation (9.1) 

, dt-V dxjc2 

dt = ,J(1- V2jc2) = 0, (9.4) 

and substituting into the first equation (9.1) shall this time obtain 

dx' = dx ~(1-V2/c2). (9.5) 

We conclude that a metre stick travelling with system S measures 
shorter in the same ratio as before when the simultaneous positions 
of its ends are observed in the other system S'. 

The two situations are symmetrical and in entire agreement. In 
both cases we find that a metre stick measures shorter in the ratio 
,J(1-V2/c2) : 1, when moving with the velocity V past the system in 
which the observation of length is being made, than when measured 
in a system in which it is at rest. 

Accepting the two postulates of relativity, this result, which may 
be called the Lorentz contraction, is to be regarded as an entirely 
real one which except for experimental difficulties could be verified 
by direct observation of the kind just described. The result differs 
from the contraction originally postulated by Lorentz and Fitzgerald 
to explain the Michelson-Morley experiment, since the present result 
gives a symmetrical relation between two measuring sticks in relative 
motion, while the hypothesis of Lorentz and Fitzgerald required a 
change in length for a single metro stick depending on its actual 
velocity through a real fixed ether. 

Turning now to the second and third equations in the set (9.1), we 
note at once that there will be no disagreement as to measurements 
made in the two systems of coordinates of distances at right angles 
to the line of motion. There is thus no change in length for a metre 
stick which is moving perpendicular to its length past the system of 
coordinates in which it is to be measured. This is in immediate agree
ment with tho possibility for a direct comparison of the lengths of 
two metro sticl{s in relative motion at right angles to their extension, 
since in this case the judgement that the two onds of the one metre 
stick had passed through coincidence with the two ends of the other 
could not depend on the motion of the observer. 
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Equations (9.1)' can also be used to provide conclusions as to the 
intercomparison of clocks in relative motion. Let us first determine 
how a time interval dt' measured on a single clock in system S' 
between two events, which occur at the same point in S', will 
measure with the clocks of systemS. Since the two events occur at 

·the same point inS', we have from the first of equations (9.1) 

' ~-V~ ) 
dx = :.}(1-V2fc2) = 0, (9.0 

and substituting this into the fourth of the equations we easily obtain 

dt' :_ dt .J(l-V"fe') or dt = .J(l ::;,.fc•)" (9. 7) 

We conclude that the time interval between two events which has 
the duration dt' wh~ measured with a given clock in system S', will 
have the longer duration dt' /~(1-V2jc2) when measured by the clocks 
in systemS. 

SimUarly we may determine how a time interval dt which can be 
measured on a single clock in system S between two events, which 
occur at the same point in systemS, will measure with the clocks of 
systemS'. In this case since the two events occur at the same point 
in system S we have {9.8) 

and substituting in the fourth of equations (9.1) immediately obtain 

dt, dt (9 9) 
= ~(1-V2fc2)" . 

Again we conclude that the time interval b~tween two events which 
has the duration dt when measured with a given clock has a longer 
duration when measured by clocks relative to which the first clock is 
moving. 

The two situations, in the case of the clocks as in the case of the 
measuring sticks, are symmetrical and in entire agreement. In both 
cases the seconds of the single clock appear lengthened in the ratio 
1: ..J(l- V2fc2) when it is moving with the velocity V past the clocks 
with which it is being compared. 

This time dilation and the conclusions as to the setting of clocks 
which can be shown to go with it are to be regarded except for experi
mental difficulties as an entirely verifiable mutual property of systems 
of clocks in relative motion, even as the Lorentz contraction could be 
regarded as a verifiable mutual property of metre sticks in relative 
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motion. Furthermore just as the Michelson-Morley experiment can 
be regarded as a direct test of the Lorentz contraction, the Kennedy
Thorndike experiment can be regarded as a direct test of time 
dilation. · 

Before leaving this section it will be well to put the fourth of 
equations (9.1) in another form which is often useful. Dividing 
through by dt we can write 

Vdx Vi 
1--- l--

dt' c2 dt c2 

dt = .J(l-V2jc2) = .J(l-V2jc2)' (9.10) 

which connects the measurements dt' and dt of the time interval in the 
two systems 8' and S between neighbouring events which occur at 
neighbouring points in space.· The spatial in~rval between the two 
events, when measured in system S, . has as its x-component the 
distance which would be travelled with the component velocity x in 
the time dt. 

10. Transformation equations for velocity 
With the help of equations (8.1) and (9.10) we can now easily obtain 

expressions for transforming measurements of velocity from the one 
system of coordinates to the other. Differentiating the first three of 
equations (8.1) with respect to t' and substituting the value for 
dt' jdt given by (9.10) we easily arrive at the results 

• 1 X-V 1 Uz- V x = ---- -----·-· or u = --·--· ------
l-xVjc2 x l-uz Vjc2' 

., 1i,J(1-V2jc2) , _ 1.t71 ,J(I-V2jc2) 
v = --i=-iv/c}. uv- - f=u~-Vfc2 - , 

(10.1) 

.:.' ___ z ,J(I- V2/c2) , u .J(I- V2jc2) 
'"' -- ---i-~iirijc'~- .. u,:J = -\-.~~--u~Vjc?.- ' 

where tho placing of a dot over a quantity has the significance of 
differentiation with respect to the time in the particular system of 
coordinu.tcs involved, so that we have for example for the component 
volocitieH in the x-direct.ion in the two systems the different forms 
of expression 

'Ux ~c: i = dxjdt and u;. = x' = dx' jdt'. 

The significance of these transformation equations is as follows: 
If for an observer in systemS a point is found to be moving with the 
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uniform velocity (x, iJ, z) its velocity (x', iJ', z') as measured by an 
·observer in system 8' can be calculated from the equations (10.1). 

Reciprocal equations for transformation in the opposite direction 
can of course be obtained by solving for the unprimed quantities in 
terms of the primed, and in accordance with the first postulate of 
relativity agree with that which results from interchanging primed 

·· and unprim.ed letters and changing the sign of V. It is often most 
convenient to have the transformation equations in the form in which 
they are solved for the unprimed quantities since this leads more 
readily to final expressions without the primes. For this reason it will 
be best to write down the reciprocal equations to (10.1}, and from 
·now on to give our remaining transformation equations in the :form 
in which they are solved for the unprim.ed quantities. We obtain 

from (10.1) u' + V 
u- --=-::t:~-

::t:- 1+u~ Vjc2' 

u - u~ ,J(1- V2fc2) (10.2) 
'U- 1+u~ Vjc2 > 

u = u; .J(1- V2fc2
) 

s 1+u~Vjc2 

The foregoing transformation equations immediately indicate that 
the velocity of light c may be regarded as an upper limit of possible 
velocities. The result is most readily seen if we use the equations in 
their second form (10.2) in which the relative velocity of the two 
systems occurs with the positive sign. In accordance with the first of 
these equations, even if we give the velocity of system S' past 8 the 
limiting value c and take a particle which itself has the limiting 
velocity u~ = c in the same direction with respect to systemS', the 
measured velocity with respect to system S will still be only 

(10.3) 

the velocity of light. 
In addition to this indication that the velocity of light is to be 

regarded as an upper limit, we shall find later that it would take an 
infinite amount of energy to give a material particle the velocity of 
light with respect to a system in which it was originally at rest. 
Furthermore, retaining our ideas as to cause and effect as being 
essentially valid for macroscopic considerations, it can be shown tha.t 
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causal impulses cannot be transmitted with a velocity greater than 
light, since it would then be possible to find systems of coordinates 
in which the effeot would precede the cause. t 

11. Transformation equations for the Lorentz contraction 
factor 
The quantity ..J(1-u2Jc2), whlch is the Lorentz contraction factor 

for an object moving ~th the velocity u with respect to a given 
system of coordinates, is sufficiently important to justify writing 
down the transformation equation for it which can be obtained from 
(10.2), namely, 

..J(1-u2jc2) = ..J(1-u'2jc2) ..J(l-V2jc2) (11.1) 
1+u~Vjc2 ' 

where (11.2) 

12. Transformation equations for acceleration 
By the further differentiation of equations (10.2) transformation 

equations for acceleration are obtained whlch can be written in the 
form 

u = 1+-~-- 1-- u' ( 
u' v)-s( v2)1 

;.c c2 c2 x• 

u = (I+~~-~)-
2

(1-V
2

)u.'-u' V(1+u~V)-
3

(1-V
2

)u' (12.1) v c2 c2 v u c2 c2 c2 a:' 

'li ... = I+ .. x .. 1-- u'-u'- 1+-a:.... 1-- u'. ( 
u' v)-2( v2) v( u' ~-s( v2) 

... c2 c2 z 13 c2 c2 c2 x 

Whereas it can be seen from equations (10.2) that a constant 
velocity in system S' implies a constant velocity in system S, it is 
interesting to note from equations (12.1) that a constant acceleration 
with respect to system S' would not in general imply a constant 
acceleration in system S, since the component accelerations in S 
depend not only on the accelerations in S' but also on the component 
velocities in that system which would be changing with the time. 

It will be appreciated of course that both the transformation 
equations for velocity (10.2) and for acceleration (12.1) must be 
applied in general to the 1notion of a particle at some specific identi
fiable point on its path. 

t See for example, Tolman, The TheO'I"'J of the Relativity of Motion, §52, The 
University of California Press, 1917. 
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THE SPECIAL THEORY OF RELATIVITY (contd.) 

Part II. TREATMENT OF SPECIAL RELATIVITY WITH THE HELP OF A 
FOUR-DIMENSIONAL GEOMETRY 

13. The space .. tfme continuum 
It is evident from the foregoing discussion of the consequences of 

the two postulates of relativity that spatial and temporal measure
ments are linked together in a very intimate manner. This appears 
clearly when we contrast the simple. Galilean transformation equations 
{8.7) with the Lorentz transformation equations (8.1). For example~ 
the Galilean time transformation equation 

t' = t (13.1) 

would indicate a universal time equally suitable for use by all 
observers, while the corresponding Lorentz equation 

, t-xVfc2 
t = --------

...}(1-V2fc2) 
(13.2) 

indicates that there is no single universal time equally suitable for all 
observers, but rather that the process of changing from one set of 
Cartesian axes to another for making spatial measurements should be 
accompanied by a change in the apparatus for time measurement, if 
the laws of physics are to have the same expression in the two systems 
of coordinates. 

An acceptance of the two postulates of relativity thus shows that 
the older notion of space and time as two independently existing 
continua-a three-dimensional continuum for the spatial location 
of events and an independent one-dimensional continuum for the 
temporal location of events-is a conceptual idea which we cannot 
now expect will be entirely successful for the correlation of spatial 
and temporal experiences. The possible alternative concept of space
time as a combined four-dimensional continuum, first introduced by 
Minkowski, has, however, proved very valuable. 

We must now turn to the method of expressing the facts of special 
relativity which can be obtained from this new conceptual apparatus. 
The importance of the method, which can hardly be overestimated, 
lies in several directions. The method is of great assistance in building 
up a set of appropriate space-time intuitions. The method avoids the 
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singling out of a particular axis as the direction for the relative motion 
of coordinate systems as has been done in the previous parts of .this 
chapter. The quasi-geometricallanguage used in treating the mathe
matics of the four-dimensional continuum is seldom misleading and 
often very suggestive and helpful. Finally, without this language 
Einstein's development of the gene.ral theory of relativity would have 
been seriously hampered. 

Although in the remainder of this chapter we shall mainly consider 
the mathematics of the so-called 'flat' space-time continuum appro
priate for the facts of special relativity, the results which can be 
obtained therefrom are fundamental for the later treatment of the 
'curved' space-time of general relativity. 

14. The three plus one dimensions of space-time 
To appreciate the nature of the space-time continuum it is advisable 

to introduce at once the language of a conceptual four-dimensional 
geometry. With the help of this language we can regard space-time as 
itself corresponding to a hyper-space of four dimensions, which could 
be provided with mutually perpendicular axes for plotting the values 
of the four quantities x, y, z, and t that can be used in describing 
spatial-temporal occurrences. In accordance with this language the 
position where an event occurs and the instant when it occurs would 
both bo represented by the location of a single point in the four
dimensional continuum. 

In using this language it is important to guard against the fallacy of 
assuming that all directions in the hyper-space are equivalent, and of 
assuming that extension in time is of the same nature as extension in 
space nlet'ely because it may be convenient to think of them as plotted 
along perpendicular axes. A similar fallacy would be to assume that 
pressure and volume are the same kind of quantity because they are 
plotted at right angles in the diagram on a pv indicator card. '!,hat 
there must be a difference between tho spatial and temporal axes in 
our hyper-space is made evident, by contrasting the physical possi
bility of rotating a metre stick from an orientation where it measures 
distances in the x-direction to one where it measures distances in the 
y-direction, with the impossibility of rotating it into a direction where 
it would 1neasure time intervals-in other words the impossibility of 
rotating a metre stick into a clock. 

In accordance with this difference, time should in no sense be 
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considered as the fourth dimension of space, but rather as one, and at 
that a unique one, of the four dimensions of space-time. This distinc
tion is often emphasized by spea.king of the space-time continuum. as 
(3+1)-dim.ensional rather than merely as four-dimensional. The 
(3+1)-dimen.sional character of the space-time continuum finds ex
pression at the start in the kind o! geometry used, as will be seen in 
a later section (§ 16). 

15. The geometry corresponding to space-time 
The geometry chosen as corresponding to the space-time continuum, 

i.e. the. kind of mathematics used, must be appropriate to serve as a 
means for expressing the conclusions drawn from the two postulates 
of relativity. As an essential and fundamental element in these con
clusions we shall take the invariance with respect to the Lorentz 
transformation of the expression 

£lx2+dy2+dz2-c2 dt2 (15.1) 

which was proved in (8.4), and shall choose a geometry which is con
ceptually constructed to correspond to this invariance. 

To do this we shall characterize our geometry by takingt 
diJ2 = -dx2-:-dy2-dz2+c2 dt2 (15.2) 

as the expression for an element of interval in our four-dimensional 
hyper-space in terms of x, y, z, and t. Since a given element of interval 
in a space is a conceptual entity which exists independent of any 
particular choice of axes it is invariant for all transformations of 
coordinates. Hence the choice of equation (15.2) as our starting-point 
preserves the desired invariance not only for the group of Lorentz 
transformations which will leave the right-hand side unchanged in 
form, but for all possible transformations of coordinates as well. This 
additional property will be of significance when we come to the con
sideration of the general theory of relativity. 

Since the entire nature of a geometryt is known to be determined 
by the form of its line element, the choice of (15.2) has completely 
fixed the character of the geometry we are to use; and we niay now 
examine some of its simpler properties and inquire into its actual 
u.sefulness for expressing the conclusions of special relativity. 

t It is of course a mere ma.tter of convention whether we assign the negative eign 
to the spatial components and the positive sign to the temporal components. We have 
followed here the more usual practice. 

t Except for further po~ble assumptions as to connectivity a.nd the identiftcation 
of points. 
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16. The signature of the line element and the three kinds of 
interval 

Examining the expression for the line element (15.2) we note that 
the quadratic form chosen is characterized by the negative signs of 
the spatial components dx2, dy2, and dz1 and the positive sign of the 
temporal component c2 dt2. This difference in sign may be regarded 
as reflecting the difference in the nature of spatial and temporal 
extension already emphasized above. 

Since the signature of the quadratic form-minus two--corre
sponding to the three negative signs and one positive sign, cannot be 
changed by any real transformation of coordinates, the distinction 
between spatial and temporal coordinates will always be preserved, 
and we shall encounter no difficulties in differentiating the time-like 
coordinate from the others by examining the signs. H we allow an 
imaginary transformation of coordinates the signature of the quadratic 
form will be changed but the distinction between coordinates can 
then be determined if we know their real or imaginary correlation 
with the physical process of counting off division points along the 
actual axes. 

Introducing into (15.2} the imaginary transformation 
X=iX y=ifj Z=iz Ct=U, (16.1) 

we obtain 
(16.2) 

with a change in signature to plus four. In accordance with this 
simple form, the geometry used in special relativity is often spoken 
of as that of a four-clin1ensional Euclidean (flat) space. The form 
(16.2) has also been used with the idea of simplifying the mathe
matical treatment. This procedure, however, introduces really but 
little simplification together with some chance for confusion, and 
often necessitates a transformation back to the original coordinates 
before making physical applications. We shall not find occasion to 
use it in this book. 

Returning now to the original form of the line element 

ds2 = -dx2-dy2-dz2+c2 dt2 (16.3) 

we note, in contrast to geometries where the signature is equal to the 
number of coordinates, the possibility for more than one kind of 
interval, depending on the relative magnitude of the spatial and 
temporal components. In the present case we shall call the interval 
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apace-like, time-like, or aingular according as dx2+dy2+dz2 is re
spectively greater than, leBa than, or equal to c2 dt2• 

In the case of a space-like interval, a Lorentz transformation to 
so-called proper coordinates can always be found (see§ 18) which will 
reduce the temporal component to zero, so that we can regard the 
magnitude of a space-like interval as physically determinable by 
comparison with a. suitably moving and oriented metre stick.· 
Similarly, in the case of a time-like interval we have the possibility of 
determining the. magnitude by comparison with a clock. The magni
tude of singular intervals is in any case zero. 

This possibility for a direct and unique determination of the 
magnitude of intervals by ·an appropriate physical measurement is 
iD. agreement with their invariance to coordinate transformations. In 
addition it provides means for the physical interpretation of the 
geometric results. 

17. The Lorentz rotation of axes 
In using the geometry corresponding to the space-time continuum, 

we are of course. not limited to any particular system of coordinates 
x, y, z, and t; but can transform at will to any other set of four 
coordinates whose functional dependence on the original coordinates 
is known. Of the various possible transformations, we shall wish to 
.consider for the purposes of special relativity only those which leave 
the expression for the element of interval in terms of the coordinates 

d82 = -dx2-dy2-dz2+c2dt2 (17.1) 

in the same simple form as a sum of squares without cross products, 
and shall leave the consideration of more general kinds of transforma
tion until it becomes necessary for the purposes of general relativity. 
Or in more geometrical language, since the flat space-time considered 
in special relativity makes it possible to use rectangular coordinates 
in which the expression for the line element preserves the simple 
form (17.1), there will be no advantage in introducing curvilinear 
coordinates until we come to the curved space-time of general 
relativity. 

The changes of coordinates which leave the form (17.1) unchanged 
include: the transformations which can be regarded geometrically 
as a transfer of origin, such, for example, as would be given by 

x' = x+.x0 y' = y z' = z t' = t, (17.2) 
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where x0 is a constant; the transformations which can be regarded 
as a spatial rotation of axes, such, for example, as would be given by 

x' = xcos8+ysin8 Y1 = ycos8-xsin8 z' = z t' = t, 
(17.3) 

where 8 is the angle of rotation in the xy-plane; and the Lorentz 
transformations, which can be regarded as a change in the velocity 
of the spatial axes, of which we have already had the exa1nple, 

I x-Vt I t-x Vfc2 

x 'JJ
1 y z' = z t = :J(l_:_V2jc2) = = ~(1-V2Jc2)" 

{17.4) 

That (17.1) and {17.2) will leave the right-hand side unchanged in 
form is evident on inspection, and that the transformation ( 17 .4) 
does not change the form has already been shown by (8.4). 

The transformation (17.4) can be expressed in the form 

X
1 = x cosh cfo-ct sinh cfo 'JJ1 = y Z

1 = z 

ct1 = ct cosh rfo-x sinh cfo, (17.5) 

where 1 
cfo = cosh-1 ~(1- V2jc2). (17.6) 

On account of the similarity between (17.3) and {17 .5) we could speak 
of the latter as an imaginary rotation in the xt-plane, and use the term 
Lorentz rotation of axes as descriptive of the Lorentz transforn1ation. 

18. The transformation to proper coordinates 

Among the different possible Lorentz transformations we shall 
often be interested in those which will give a change to so-called 
1woper coordinates for the particular interval ds in which we may be 
interested, If the interval is space-like in character, the time com
ponent will then he zero in proper coordinates, and if it is time-like in 
character the spatial components will be zero in proper coordinates. 

This tru.nsformation to proper coordinates can always be made. 
Consider an interval the square of whose magnitude is given in the 
original coordinates by the expression 

ds2 = -clx2+c2 dt2, (18.1) 

where merely for simplicity a spatial rotation of axes has previously 
been made, if necessary, to eliminate they and z components. And 

3696.11 }) 
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consider the transformation equations (9.1) which give us 

dx' _ dx-(Vfc) edt (18.2) 
- ~{1-V2fc2) ' 

dt' _ c dt-(Vfc) dx (18.3) 
c - ~(1-V2fc2) . 

lithe interval (18.1) is space-like·in character, the absolute magnitude 
of dx will be greater than· that of c dt and we can evidently choose a 
value of (V fc), less than the possible upper limit of ± l, which will 
make (18.3) equal to zero, so that the expression for the interval will 

reduce to da2 = -dx'2 (18.4) 

when we transform to the primed coordinates. On the other hand, if 
the interval is time-like in character, the absolute magnitude of c dt 
will be greater than that of dx and we can choose a value of ( V fc) which 
will make ( 18.2) equal to zero, so that the expression for the interval will 

reduce to dlJ'l. = dt'2. (18.5) 

In accordance with (18.4) and (18.5) by transforming to proper 
coordinates, i.e. changing to axes moving with the appropriate 
velocity, we can determine the value of any space-like interval by 
direct measurement with a suitably oriented and moving metre stick, 
and determine the value of any time-like interval by direct measure
ment with a suitably moving clock. As remarked above this provides 
a means for the physical interpretation of the mathematical results 
obtained from the geometry. 

19. Use of tensor analysis in the theory of relativity 
One of the great advantages of our present quasi-geometrical 

methods lies in the readiness with which we may now use the language 
of tensor analysis for the treatment of physical problems. A collection 
of the formulae of tenso:r analysis will be found in Appendix ill, and 
in the present section it will be sufficient to consider the definitions 
from which all the properties of tensors can be derived, and then point 
out in the next section certain simplifications which can be introduced 
in the case of the flat space-time of special relativity. 

In a space or continuum of four dimensions, corresponding to the 
four generalized coordinates (xl,x2, x3, x'), a tensor of rank r can be 
defined as a collection of 4" quantities associated with a given point 
in the continuum, whose values are transformed in accordance with 
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certain definite rules when any new set of coordinates (x'1,x'i,z'S,z'') 
are int:roduced as functions of the original· coordinates by the 
equations x'l = z'l(zl,x2,x3,x') 

:t'2 = x'2(x1, x2, x3, x4) 

x'a = x'3(zl' z2' xa' x') 

x'' = x'4(x1,x2,x3,x'). 

(19.1) 

A tensor of rank zero, or scalar, Swill be.defined as a single quantity 
whose value is unaltered by the transformation of coordinates in 
accordance with the equation 

8' = B. (19.2) 

A contravariant tensor of rank one, or vector, A ex will be defined.as 
a collection of four quantities 

A ex= (A1,A2,Aa,A4), (19.3) 

whose values are changed by the transformation of coordinates in 
accordance with the equation 

8 ,,.,. 
A'J£ = ~-ACX (19.4) 8:t1X , 

where (8x'~'foxrx) is the value obtained from (19.1) corresponding to 
the given point in the continuum, and the double occurrence of the 
'dummy' suffix a: will be taken to denote a summation over the values 
o: = 1, 2, 3, 4. And a covariant tensor of rank one Bcx will be defined as 
a collection of four quantities 

Bcx = (B1, B2, B3, B4), 

whose values are transformed in accordance with 

ax a: 
B~ = ox'~' BOI.. 

(19.5) 

(19.6) 

A contrava·riant tensor of rank two prxfJ will be defined as a collection 
of sixteen quantities 

prx{J = pu pn pl3 Tlti 
p21 p22 T23 T24 
pat p32 paa p34 
p41 T42 p43 p4.4. , 

whose values arc transformed in accordance with 

8x'l-' ox'"' T'J'V = -- -·-- .. pa.fJ axcx axP . 

(19.7) 

(19.8) 
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And a covariant tensor of the same rank Sa.~ will be defined as a collec· 
tion of sixteen quantities which are transformed in accordance with 

, axa. ax/3 
S =---8-a. p.v ax'P. ox'" ....,.. 

(19.9) 

Tensors of mixed contravariant and covariant nature or of higher 
rank can be similarly defined in accordance with the general expression 

T' p.v... _ Bx' P. ox'~ ax8_ ox" pcx~ ... 
pa ... - oxet. oX~ 8x'P 8x'a •.. ar: •·• 

(19.10) 

The double occUITence of dummy suffixes in a given term of a tensor 
expression will always be taken to denote summation over the four 
values 1, 2, 3, 4. Scalars are not necessarily to be regarded as located 
at any given point in the continuum, but tensors of higher rank must 
in general be thought of as associated with some given point, since 
the transformation factors (8x'P.joxa.) etc. will.in general be different 
at different points in the continuum. Tensor fields may of course be 
constructed, in which a value of the field tensor is associated with 
each point in the continuum. 

In case the continuum has the metrical properties afforded by an 

expression d82 = Up.vdxP. dxv (gp.v = gvp.) (19.11) 

for the scalar measure of the element of interval ds corresponding to 
the infinitesimal vector dxP., the fundamental metrical tensor g p.v will 
be of special importance in the analysis. With it are associated the 
quantity g (not a scalar) which is defined as the determinant 

g = !gp.vl ( 19.12) 

and the contravariant tensor gP.v which is defined as the normalized 
minor of g p.v 

gP.v = !g p.v I minor. 
g 

(19.13) 

With the help of these two fundamental tensors we may now define 
the method of raising and lowering indices, so as to obtain associated 
tensors of different degrees of covariance or contravariance, as given 
by the equations T ... rx ... = grxf3p ...... .. 

........ • .. f3 .. . 

and T ........ = g aT ... f3 ... . 
···""··· ex,., ........... , ( 19.14) 

This completes the definitions necessary as a basis for tensor analysis 
and all fu'rther properlies of tensors and rules of analysis can be obtained 
therefrom. Thus all the methods given in Appendix III for operating 
on tensors to obtain new tensors by addition, multiplication, con-
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traction, covariant differentiation, etc., can all of them be verified by 
showing that the result obtained has components which transform 
on change of coordinates in accordance with the rules of transforma
tion by which tensors were defined above. 

The great advantages of tensor analysis as a tool for mathematical 
physics arise in two ways. In the first place it gives a very con
densed and convenient language for the expression of physical laws. 
Thus the single tensor equation 

~JIO = 0 (19.15) 
is itself a representation of the 256 different equations that are 
obtained by assigning the different values 1, 2, 3, 4 to p,, v, u, and -r, 
and results may be obtained with the help of tensor analysis which 
would be extremely hard to calculate by 'long-hand' methods. In 
the second place the expression of a physical law by a tensor equation 
has exactly the same form in all coordinate systems, since it is readily 
seen from the general transformation rule ( 19.10) that any tensor 
equation pp.v ... = 0 

pa .. . (19.16) 

will be changed into an expression of just the same form 
T'p.v ... = 0 pu ••• (19.17) 

when the coordinates are transformed from (xt, x 2, xS, x4) to (x'1, x'2, 

x'3, x'4). 'The relations of this very convenient property to the 
postulates of the special and general theories of relativity will be more 
closely considered in§ 21 and in§ 73. 

20. Simplification of tensor analysis in the case of special 
relativity. Galilean coordinates 
In the case of the flat space-time continuum of the special theory 

of relativity, certain simplifications in the use of tensor analysis are 
possible since in accordance with (15.2) we can then reduce the general 
cxpresRion for tho element of interval ( 19.11) to the specially simple 
form 

(20.1) 

provided we introduce so-called Galilean coordinates defined in terms 
of our previous spatial ttnd temporal variables (x, y, z, t) hy the 

equations xt = x x2 = y xa = z x4 = ct. (20.2) 

In terms of those new coordinates the Lorentz transformation 
(17.4) corresponding to the change to a new set of spatial axes moving 
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· relative to the original ones in the x-direction with the velocity V can 
be written in the form 

'1- xl-x'Vfo . x'2 = xs 
x - "'(l-V2fo2) 

. 
x'3 = xa 

x4-x1Vfe 
x'4 = ~(1-V2jc2) 

(20.3) 

and the values for the factors (8x'~-'/8xrx.) etc. used in accordance with 
(19.10) for the transformation of tensors from the one system of 
coordinates to the other reduce for this simple case to 

CJx'l (3x'4 1 
&::1 = ox4 = .J(1-V2/o2) 

8x'1 8x'4 Vjo 
&::4 = axt =- .J(I-V2Jc2) 

(Jx'2 ox'S 
ox2 = ox8 = 1

' 

with all others zero. 

(20.4) 

Furthermore, when using the Galilean coordinates (20.2} appro
priate to special relativity, it should be noted that the Lorentz con
traction factor ..j(l-u2jo2), coiTesponding to a point moving with 
the velocity u, is given in accordance with (20.1) by the very simple 
expression 

J(1_ u2) = ~, 
c2 dx4 

(20.5) 

where the time-like interval ds is an element of the four-dimensional 
trajectory of the moving point. 

In addition, in the case of special relativity, since the metrical 
tensor coiTesponding to the formula for the interval (20.1} has the 
simple Galilean values 

Uu = Yaa = g33 = -1 Uu = 1 (20.6) 

Up.v = 0 (p. =/= v) 
the raising and lowering of suffixes in accordance with (19.14) will, in 
the case of the coordinates (20.2}, result only in a change of sign for 
certain of the components. Thus it will be found on applJ1ng the rules 
that the associated vectors A I' and AP. are connected by the simple 

relations A"= -A" (i = 1, 2, 3) A4 = A4 (20.7) . 

and the associated tensors T ""and T~'" are connected by the relations 
TP." = pp.v (except for ~4 = -T" and T4,., = -T"; i = 1, 2, 3) 

(20.8) 
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Finally, in the case of special relativity, it should be noted that 
several tensor operations are much simplified when the coordinates 
(20.2) are used. Thus the process of constructing a new tensor by 
covariant differentiation as given by equation (33) in Appendix Til 
takes a very simple form in these coordinates, and we can write for 
example for the covariant derivative of TP." 

(T~-'") = BTP-". (20.9) 
IX OXIX 

Similarly for the divergence or contracted covariant derivative we 
can write 0pp.v 

(TP.") = - (20.10) 
" ox" 

instead of the complicated expressions that would be necessary in 
more general coordinates. 

These simplifications in tensor analysis for special relativity are of 
considerable convenience. 

21. Correspondence of four -dimensional treatment with the 
postulates of special relativity 
To complete our consideration of the geometrical four-dimensional 

method of treating the special theory of relativity, we must now 
point out its correspondence with the two postulates of the special 
theory. This is an extremely simple matter. 

In accordance with the discussion of § 5 the first postulate of special 
relativity will be satisfied if the laws of physics, in the absence of 
gravitational action, are the same for all observers in uniform relative 
motion. '"flus, however, can be achieved with our present methods if 
we can 'Stttto these laws in the form of tensor equations, using therein 
tensors whoso components have the same physical significance for 
all systems of coordinates that correspond to different sets of Cartesian 
axes in uniform relative motion. Since tensor equations if true in one 
Hystcnl of coordinates arc true in all systems of coordinates (see 
19.16, 17), we shall then obtain tho desired correspondence with the 
first postulate, provided of course that our tensors have the character 
stated. 

The actual problem of constructing tensors whose components have 
the same physical significance in different systems of coordinates, 
cmTesponding to sets of axes in uniform relative motion, can be met 
in three different ways. In the first method of proceeding we define 
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the tensor by stating the physical quantities which are to be taken as 
- the components of the tensor in question referred to an arbilrary set 

of coordinates as given by {20.2), and then show by actually perform
ing the Lorentz transformation {20.3) that the components are 
transformed to the colTesponding physical quantities referred to other 
systems of coordinates. In the second method of proceeding we 
define the tensor by stating the physical quantities which are to be 
taken as the components of the tensor in question referred to proper 
coordinates with respect to which the material to which the tensor 
applies is at rest; on account of the unique position of proper coordi
nates this will of course 8.88ure the same physical significance for the 
components in coordinates corresponding to different states of motion. 
In the third method of proceeding we construct the tensor of interest 
by the rUles of tensor manipulation from simpler ones whose physical 
significance in different sets of' coordinates is already known. As 
simple examples of such tensors, which may be used for constructing 
further tensors, we have the scalar element of interval ds, the con
travariant vector ooiTesponding to a small coordinate displacement 
dx,., and the contravariant vectors of generalized ~velocity' and 'ac
celeration' dxP-jds andd2xP.fds2, where dB is the time-like interval which 
is an element of the four-dimensional trajectory of a moving point. 

The correspondence of our four-dimensional method with the 
second postUlate of special relativity is even simpler. In accordance 
with this postulate the velocity of light in free space must measure 
the same for different observers in uniform relative motion, and this 
result is secured by the way in which we originally defined the 
character of the space-time continuum for special relativity in§ 15. 

In accordance with (15.2) the element of interval in this continuum, 
using a given system of ordillary spatial and temporal coordinates 
(x, y, z, t), is given by 

d,s2 = -dx2-dy2-dz2+c2 dt2 ( 21.1) 

and the four-dimensional trajectory of a light impulse, tra veiling 
with the velocity c, will henoe be characterized by taking the value 

d8 = 0 (21.2) 

for any element of the trajectory_ since the substitution of (21.2) in 
(21.1) at once leads to the relation 

{~::c)2 {~11)' f(lz)2 
\dt + \dt + \dt = c

2
• 

(21.3) 
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If, however, we now transform to any other system of coordinates 
(x', y', z', t'), corresponding to a new set of axes in uniform motion 
relative to original ones, we know that the form of expression for the 
interval will still be the same on account of the nature of the Lorentz 
transformation, and that the value of the interval will still be the E,tl.me 
on account of the scalar character of ds. Hence also in these new 
coordinates the velocity of light will be given by 

(
dx')2 (dy')2 {dz~) 2 = 2 
dt' + dt' + dt' c (21.4) 

as is required by the second postulate. 
Our four-dimensional geometry has thus provided us with a very 

useful language for treating the facts of special relativity, which we 
shall not hesitate to use whenever it proves more convenient than the 
older language. In addition it is a language which is almost indis
pensable for the treatment of general relativity. 



m 
SPECIAL RELATIVITY AND MECHANICS 

Pan I. THE DYNAMICS OF A PARTICLE 

22. The principles of the conservation of mass and momentum 
We must now consider the effect of the special theory of relativity 

in modifying the older Newtonian mechanics. We shall first treat the 
mechanics of particles, sufficiently for our later needs, and then 
consider in Part II the dynamics of a continuous mechanical medium. , 

As a postula.tory basis for the mechanics of interacting particles we 
may take the two principles of the conservation of mass and momen

. tum, in conjunction- with the foregoing kinematical results of special 
rela.tivity. 

In accordance with these two conservation laws, the total mass of a 
system of particles must remain constant as the particles act on each 
other in agreement with the equation 

~ m = const., (22.1) 

where the summation 2 is to be taken over the masses m of all the 
particles in the system, and the components of the total momentum 
of the system in the~, y, and z directions must also remain constant 
in agreement with the equations 

I mux = const., 
I mu11 = const., (22.2) 

~ mu. = const., 
where the summations are to be taken over the components of 
momenta of all the individual particles. t And in accordance with the 
principles of relativity these equations must hold true in all sets of 
coordinates in uniform relative motion. 

Since the Newtonian system of mechanics also included the ideas 
of the rela.tivity of motion and of the conservation of mass and 
momentum, equations (22.1) and (22.2) would also hold in Newtonian 
theory in all sets of coordinates in uniform motion. There is never
theless an important difference between Newtonian and relativistic 

t Our present considerations apply to systems of particles which could interact 
only by collision. We BoTe not yet concerned with more complicated systems where 
a continuous distribution of mass and momentum might have to be assigned to the 
field. 
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mechanics owing to the difference in the transformation equations 
which would be applicable in changing from one set of moving coordi
nates to another. In Newtonian mechanics we should use the simple 
Galilean transformation equations (8.7) and should find it possible to 
satisfy equations(22.1) and (22.2) in all systems of coordin~tes on the 
assumption that the mass of a particle is a constant independent of 
its velocity. In relativistic mechanics, however, we must use the 
more complicated Lorentz transformation equations (8.1), and shall 
then find it possible to satisfy equations (22.1) and (22.2) only on the 
assumption that the mass of a particle depends on its velocity, as will 
be shown in the next section. 

23. The mass of a moving particle 
In order to show that the mass of a particle must depend on its 

velocity, if the conservation laws are to .hold in all systems of coordi
nates, we shall first consider the conservation of mass and momentum, 
in two different systems of coordinates 8' and S, for the case of a 
very simple head-on collision between two similar elastic particles. 

In the first system of coordinates, for convenience the primed 
system S', let the two particles be moving before collision with the 
velocities +u' and -u' parallel to the x-axis in such a way that a 
head-on encounter can occur. Since by hypothesis the two particles 
are perfectly similar and elastic, it is evident that they will first be 
brought to rest on collision and then rebound under the action of the 
elastic forces developed, moving back over their original paths with 
the respective velocities -u' and +u' of the same magnitude as 
before but reversed in direction. In this system of coordinates the 
collision is obviously such as to satisfy the conservation laws of ltlass 
and momentwn. 

Let us now change to a second system of coordinates S moving 
relative to the first in the x-direction with the velocity - V. Using 
this now system of coordinates, let us denote by u1 and u2 the 
velocities "of the two particles before collision, and allowing for the 
possibility that ma.ss may depend on velocity let us denete by m1 and 
rn2 the masses of the two particles before collision. Furthermore, let 
us denote by M the sum of the masses of the two particles at the 
instant in the course of the collision when they have come to relative 
rest, and are hence both moving with the velocity + V with respect 
to our present system of coordinates, S. 
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In a.cc·ordanoe with the conservation laws, which must also hold in 
this new system of coordinates, the total mass and total momentum 
of the two particles must be the same before collision and at the 
instant of relative rest, so that we can evidently write 

~+m2 = M (23.1) 

and ~Ut+m2u2 = MV. (23.2) 

In addition, however, using the transformation equation for velocity 
given by (10.2) we oa.n write for the velocities -u,. and u2, in terms of 
their values +u' ~nd -u' with respect to the original coordinates 8, 
the expressions 

u'+V -u'+V ~~~- and u (23.3) 
""J. = 1+u'Vfc2 2 = l-u'Vfc-2 • 

.And by combining these three equations and solving for the ratio of 
the two masses, we easily obtain 

'm·t = l+u'Vfc2' (23.4) 
m2 l-u'Vfc2 

which with the help of the transformation equation (11.1} gives us 

m1 -= ,.j(l-uUc2
) (23.5} 

m2 ,.j( l-uifc2} • 

In accordance with this result the masses of the two particles, which 
by hypothesis have the same value, say m0, when at rest, become 
inversely proportional to ,.j(I-uBfcZ) when moving with the velocity 
u, so that we may now write 

m = mo . (23.6) 
,.j(I-u2fc2) 

as the desired expression for the mass m of a moving particle in tern1s 
of its velocity u and mass at rest m0• 

Although this derivationt of the expression for the mass of n. 
moving particle depends on the consideration of a simple type of 
head-on collision for the two particles, it can also be shown quite 
easily, nevertheless, that the same expression is also directly obtained 
from the consideration of a glancing transverse collision,:!: and in 
addition that the expression with u taken as the total velocity is 
sufficient to secure the conservation of mass and momentum in all 
systems of coordinates for any kind of collision between two particles.§ 

t Tolman, Phil. Mag. 23, 375 (1912). 
~ ~ and Tolm~ Phil. Mag. 18, 510 (1909). § Tohnan, loc. cit. 
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We have, moreover, of course the experimental verification of the 
expression in the case of the mass of moving electrons to which we 
shall call attention in § 29. We shall hence have no hesitation in 
accepting the expression as correct in general for the mass of a moving 
particle. 

It is of interest to note in accordance with (23.6) that the mass of 
a particle would become infinite at the velocity of light. 1'his is an 
agreement with our previous findings in§ 10 that the velocity of light 
is to be regarded as an upper limit of possible velocities. 

It may also be remarked in concluding the present section, that our 
discussion already indicates that we shall have to ascribe mass to the 
potential energy of elastic deformation, in order to retain the con
servation laws of mass and momentum. This is evident from the fact 
that the foregoing equations for the head-on collision lead to the 
result 

M 2mo 
> :.J(f=-vsjc'i.)' (23. 7) 

which shows that the total mass of the two particles at the instant 
during the course of the collision when they have come to relative 
rest is greater than would be calculated from their velocity V and 
total unrlcformed rest-mass 2m0• 

24. The transformation equations for mass 
In accordance with equation (23.6) the mass of a given particle will 

measure differently in different sets of coordinates since the velocity 
will be different. From the transformation equation for the factor 
.J(l-u2/c2) given by (11.1) we easily obtain for the transformation 
of mnsAeH the result , (l+u~ Vjc2) 

11/, = 11/, ·-·-·-··· ... ·- ·-· (24.1) 
.J(l- V2fc2). 

And by differcntiltting with respect to the tin1c and simplifying we 

obtain dm dm' m.'V , ., -1 d14, 
dt = dt' + --c2- (I -1-'ltx V Jc~) dt' (24. 2) 

ns a. transformation equation for tho rate at which the mass of a 
particle is changing owing to change in velocity. 

25. The definition and transformation equations for force 
Since the mass of a moving particle will change with its velocity, 

it is no longer possible as in Newtonian mechanics to define force 
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both as mass times acceleration and as rate of change of momentum. 
· It proves to be most convenient to take the latter definition, since 
the principle of the equality of action and reaction for forces then 
becomes identical with the principle of the conservation of momen
tum which we took as an axiom. 

We shall hence write as the equation of definition for the force 
F acting on a particle of mass m and velocity u the vector expressiont 

or in scalar form 

F = !<mu) = !C(l:~fc•j)• (25.1) 

F. d ( . ) d ( mo Uz ) 
z = dt mx = dt ~(1-u2fc2) ' 

F. _ d ( ') _ d ( mo U11 ) (25 2) 
71 - dt my - dt .J(1-u2fc2) ' • 

F. d ( . ) d ( m0 U8 ) 
s= dt 'lnz = dt .J(1-u2fc2). 

It will be noted in accordance with this definition that in general 
force and acceleration will not be in the same direction as was the 
C8.$e in Newtonian mechanics. The advantages of the definition are, 
however, very great, not only because it preserves the principle of 
the equality of action and reaction but because it also can be shown 
to simplify the interpretation of electromagnetic phenomena (see 
for example § 29). 

Since we have already obtained transformation equations (10.2} 
(12.1) (24.1) (24.2) for all the quantities occurring on the right-hand 
side of (25.2) we can now also readily obtain transformation equations 
for the components of force which can be written in the form 

F. _ F' + u~ V F' . u~ V F. 
:z:- :z: c2+u~V v+ c2+u~V 21

' 

F. _ c1~{1-V2jc2) , 

v- c2+u~ V F 71' 

F. - c2~(1-V2fc2) I 

s- I+ I v F8. C Uz 

(25.3) 

These transformation equations have been derived for the particu
lar case of the forces acting on a particle to change its state of motion. 

t Note the inclusion of m0 inside the bracket which is to be difierentia.ted. This 
makes the expression applicable also in oases where the proper mass of the particle 
varies, as it migh~ for example, from an inB.ow of heat. 
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Nevertheless, it is to be noted that particles can have their state of 
motion changed not only by interaction with each other, but by 
interaction with other larger mechanical systems or with electro
magnetic systems as well. Hence, since we shall wish to retain the 
equality of action and reaction and thus the conservation of momen
tum in all branches of physics, it is evident that these same trans
formation eq nations must hold for all kinds of forces and all kinds 
of systems on which they may act. This conclusion will be of great 
importance in extending our system of dynamics to include the 
mechanics of a continuous medium. 

26. Work and kinetic energy 
As in the older mechanics we shall find it convenient to define the 

work done on a particle as equal to the force acting multiplied by the 
distance through which the particle is displaced in the direction of 
the action, as given by the equation 

dW=F·dr (26.1) 

where r is the radius vector determining the position of the particle. 
We shall also define the energy given to a particle by the action of a 
force as equal to the work done on it. 

In case we do work on a free particle we can easily evaluate its 
increase in kinetic energy in terms of change in velocity. Introducing 
into (26.1) the expression for force given by (25.1), we can write for 
the increase in kinetic energy 

du dm 
dE = m dt · dr + dt u ·dr 

= mu·du +u·u dm 

= mu du +u2 dm. (26.2) 

And substituting the expression for maas as a function of velocity 
given by (23.6) this becomes 

dE = mo u du + mo 'u.3fc2 du 
(1-u2Jc2)l (1-uzfc2)i 

m0 udu 
= (f:.....:u2Jc2)R • 

(20.3) 

We thus see, just as in Newtonian mechanics, that the kinetic 
energy given to a particle is solely a function of its change in velocity 
independent of the particular way in whioh this change is brought 
about. Fm;thermore, in accordance with equation (26.1) and the 
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principle of ·the equality of action and reaction, it is evident when 
two particles interact by elastic collision that the increase in kinetic 
energy of the one will be equal to the decrease in kinetic energy of the 
other, so that we shall also have in relativistic mechanics an analogue 
of the older principle of the conservation of vis-viva for elastic 
encounters. 

Integrating expression (27 .3) from zero to u, we obtain for the total 
kinetic enei'gy of a particle of rest-mass m0 moving with the velocity u 

E _ mo C2 
2 (26 4) 

- ,J(I-u2fc2) -moe ' . 

which reduces at velocities small compared with that of light, as 
would be expected, to the familiar Newtonian expression 

(26.5) 

27. The relations between mass, ener~y, and momentum 
We must now consider a very important relation between mass and 

energy which was quite unknown to the Newtonian mechanics. In 
accordance with §§ 23 and 26, the mass and energy of a particle are 
both dependent on the velocity and increase with it. And if we sub
stitute the expression for mass as a function of velocity given by 
(23.6) into the expressions (26.3) and (26.4) for increase in kinetic 
energy and total kinetic energy, we easily obtain the remarkably 

simple relation dE = c2 dm ( 27.1) 

for the increase in the kinetic energy of a particle in terms of its 
increase in mass, together with 

E = c2(m-m0) (27.2} 

for its total kinetic energy in terms of the increase in mass of the 
particle over that which it has at rest. In accordance with these 
equations the change in kinetic energy in ergs is equal to the change 
in mass ingrammes multiplied by.the square of the velocity of light in 
centimetres per second. 

We must now investigate the implied and suggested consequences 
of this remwrkable proportionality betweeh increased mass and 
kinetic energy. Since we shall take the principle of the conservation 
of mass not only as a fundamental postulate for a system of particles 
but for systems in general as well, this proportionality between in
creased mass and kinetic energy immediately implies in general that 
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any isolated system will always retain the same possibility of furnish
ing kinetic energy, without any alteration as to the theoretical 
amount available, although perhaps with some change as to the 
readiness of availability. Hence we can regard the principle of the 
conservation of mass as itself guaranteeing the principle of the con .. 
servation of energy. 

Furthermore, the proportionality between kinetic energy and 
increase in mass, together with the principles of the conservation of 
both mass and energy, immediately suggests that energy in any form 
always has the corresponding amount of mass immediately associated 
with it. Thus, for example, when a moving particle is brought to rest 
and hence loses both its increased mass (m-m0) and kinetic energy 
c2(m-m0), it seems reasonable to assume that this mass and energy, 
which are associated together in the moving particle and which leave 
it in association when the particle loses its motion, will still remain 
always associated together. Indeed if the particle is brought to rest 
by elastic transfer of energy to other particles, as in the case of 
viscous forces arising from collisions with hypothetical elastic mole
cules, tho considerations of § 20 are sufficient to show that the mass 
and energy do pass on in association to other particles. And in 
addition we have already seen in§ 23 that we must ascribe mass to 
the potential energy generated during the course of an elastic collision 
(see 23.7). lienee in what follows we shall postulate in general that a 
quantity of energy E always has immediately associated with it a '!naBS 

m of tl£e amount E 
'In=-. cs (27 .3) 

In addition as a further consequence of the association of mass with 
any given quantity of energy, as given by equation (27.3), it would 
also appear natural to assume the reciprocal relation of an association 
of en<'xgy with any given q uu.ntity of mass. This we shall do in what 
follows by postulating the relation 

E = mc2 (27 .4) 

for the enetgy .lC UBsociated with a mMs of any Teind rn. Tltis relation, 
which would imply an enormous store of energy m0 c2 still resident in 
a particle even when it is brought to rest, appears somewhat more 
strained than our previous considerations, but nevertheless logically 
plausible. 

Finally, as an important consequence of this association of mass 
~oon H 
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and energy, it is evident that the transfer of energy will necessarily 
involve ~e presence of momentum. For example, if we have a 
quru.J,tity of energy E which is being bodily transferred with the 
velocity u we can write for the associated momentum 

G = mu = E u. (27.5) 
c2 

In addition to ~he transfer of energy by the bodily motion of the 
system ·containillg it, we shall also wish to allow, however, for the 
transfer ·of energy when forces do work on a moving system. Thus if 
we oonsl.der a rod moving parallel to its length with forces acting on 
the· ·two ends in such a way that work is done on the rear end and 
delivered at the forward end, it is evident that in addition to the 
transfer of the energy content of the rod by its forward motion, there 
is ~ further flow of energy down the rod because of the action of these 
forces~- In ordeT_to allow for the mmnentum associated with alZ.forms of 
energy transjeJr we shall then write 

g=~ (27.6)· 
cz 

as a geneTal relation between density of momentum g and density of 
energy flow s. This expression contains no restrictions as to the 
mechanism of the energy transfer and will be fundamental for our 
later work. 

28. Four-dimensional expression of the mechanics of a 
particle 
The foregoing discussion contains all the underlying principles that 

are necessary for treating the mechanics of a particle, and we may 
now show the simplicity with which they can be expressed with the 
help of the four-dimensional language developed at the end of the 
preceding chapter. 

Returning to our fundamental idea of a four-dimensional space
time continuum, we can write, in accordance with (2Q.l), 

d,s?. = -(dx1)2-(dx2)2-(£lxS)2+(dx')2 (28.1) 

as an expression :for an infinitesimal line element ds in this continuum 
in terms of the rectangular so-called Galilean coordinates 

x1 = x x2 = y x8 = z x' = ct, (28.2) 

and may then define ~e four-dimensional 'momentum' of a particle 
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as the product of its· teat-mass m0 and its four-dimensional 1velocity' 

dxP-fds dxP ( fkl d:J;2 dx3 dx') 
m0 ds = m0 d8 , m0 ds, m0 d8 , m0 d8 . (28.3) 

Working out expressions for the four components of this vector, 
however, in terms of our usual coordinates x, y, z, and t as given by 
(28.2), we easily obtain 

dx1 m0 dx 
m -- -0 ds - c,J(l-u2fc2) dt' 

dz2 m
0 

dy 
modi' = c:.}(I-u2fc2) dt, 

dx3 m0 dz 
mo ds = c,J(l-u2fc2) dt' 

(28.4) 

dx' m0 
modi = ,J(I-u2fc2)' 

where 2 _ (dx)2 (dy)2 (dz)2 
u - dt + dt + dt • (28.5) 

Hence we see at once that our fundamental principles of the con
servation of the components of momentum m0 u:r:/~(l-u2/c2), eto., of 
mass m0f.J(l-u2/c2), and of energy m0 c2/,J(l-u2/c2) can all of them 
be obtained for interacting particles by the simple requirement 

(28.6) 

where the summation 2 is to be taken over all the particles of the 
system. This expression is not a tensor equation, since the left-hand 
side is a sum of vectors taken at different points in space-time 
(see § 19), and the right-hand side is not even a tensor in form. The 
equation is valid, however, for the particular kind of coordinates 
(28.2), and illustrates, moreover, the condensation which can be 
achieved with the help of four-dimensional language. 

If, nevertheless, we consider a single particle in free space unacted 
on by other bodies we can obtain a very simple and important tensor 
equation to describe its motion. For such a particle, it is evident 
from (28.6) that the motion will be given by 

dxP. 
·dB = canst. (28. 7) 

In the rectangular coordinates (28.2) being uaod this is, however, tho 
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equation for a straight line or geodesic. And this result can now be 
expressed in the general form 

8 f iJ,s = 0, (28.8) 

which is a tensor (scalar) equation, valid in all systems of coordinates. 
This result that the four-dimensional track of a free particle is a 

geodesic will be very important when we come to the general theory 
of relativity. In the case of a ray of light, we can take the track as 
being not only a geodesic, but with the additional restriction 

d8 = 0 (28.9) 

aJready discussed in§ 21. 
Also in the case of a particle acted on by a force we can make use of 

tensor language by considering a contravariant vector FP., the so
called Mjnkowski force, which can be defined by the equation 

F" = c> ! ( ma 0:} (28.10) 

where m0 is the proper mass of the particle as measured by a. local 
observer, dxP.fds is its generalized velocity, and the differentiation 
d( )/ds with respect to its four-dimensional trajectory is purposely 
taken so as to include possible changes in the proper mass m0 of the 
parlicle due, for example, to the generation of heat within it. 

The above expression is to be regarded as a tensor equation 
deflnjng FP. in all systems of coordinates. In the particular kind of 
coordinates given by (28.2) it is easy to calculate for the individual 
components the values 

p 1 _ 1 d ( m0 u::~: } 
- ~(l-u2/c2) dt ~(l-u2/c2) ' 

F'- _ 1 d ( m0 u21 \ 

-IJ(l-u2/c2) dt ~(l-u2Jc2)}' 

pa _ 1 d ( m0 u11 } 

- ...j(l-u2/c2) dt ..j(l-us;cs) ' 

(28.11) 

F4. _ 1 d f. m0 cz ) 
- ...j(l-u2/c2) dt\c..J(l-u2Jc2) ' 

where u is the ordinary velocity of the particle. Hence, remembering 
the expressions for the ordinary components of force giv.en by 
(25.2) and the relation between mass and energy given by (27.4) .:we 
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can now write foc the components of FP. in our present coordinates 
the simple expressions 

FP. _ ( Fa: F11 P's 1 dE) 
- ~(1-u2jc2)' ~(l-u2fc2)' ~(l-u2fc2)' ~(I-u2fc2) c dt · 

'(28.12) 

The possibility thus demonstrated of using the components of 
ordinary force to construct a four-dimensional vector proves to be 
quite useful. In accordance with the discussion of§ 25, forces of any 
origin whatever must all obey the same transformation laws, and will 
hence all share in this demonstrated property. The Imowledge thus 
provided as to the nature of forces can be very helpful, especially 
when further information may be lacking. [See§ 54 (c).] 

29. Applications of the dynamics of a particle 

This completes the development of the dynamics of a partie!~ as 
far as will be needed for our later considerations. The results are to 
be accepted not only on the basis of the experimental verification 
which they have received in those cases where it has been possible 
to test differences between. the predictions of relativistic and New
tonian mechanics, but also on the basis of the inner logicality of the 
theory which has led to them and the harmony of this theory with 
the rest of physics. The achievement of this logicality and harmony 
depends on the reconciliation of so many factors that we can feel con
siderable confidence in accepting results of the theory when necessary 
prior to thoir experimental verification. 

To conclude the treatment we may now briefly consider a few 
applications of the dynamics of a particle which will illustrate both 
the contact of the theory with experiment, and the logicality and 
harmony mentioned above. 

(a) The mass of high-velocity electrons. The increase in the mass 
of a particle with increasing velocity, which was obtained in§ 23, is 
fundamental for relativistic mechn.nios and forms the basis which 
implies or suggests tho further development. For this reason it is 
specially satisfactory that the expression m0/~(1-u2fc2) given by 
(23.6) for tho mass of a moving particle has now received good 
experimental verification in tho considerable number of measure
ments which have been mado on high-velocity p and cathode particles, 
since the original more or less qualitative discovery by Kaufmann of 
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a dependence of mass on velocity. A fairly recent description and 
critique of these measurements will be found in the Hanilbuch der 
Pkyaik.t 

(b) The relation between force and acceleration. As already noted 
in§ 25, if. we define the force acting on a particle as its rate of change 
of momentum as given by the equation 

F _ d ( ) _ du _ dm m0 du d { mo } u 
- dt mu - m dt. + u dt = ~(l-u2jc2) dt+ dt ~(1-u2fcl·) 

(29.1) 

it is e~dent in relativistic mechanics that the force F and acceleration 
dufdt will in general not be in the same direction, as was the case in 
Newtonian mechanics. 

The resolution of the force into components parallel to the accelera
tion and parallel to the ·velocity, as given by (29.1), makes the reason 
for this changed state of affairs immediately apparent. Since the 
acceleration itaeH will in general lead to a change in the mass of the 
particle, we must expect a change in momentum in the direction of 
the already existing velocity u as well as in the direction of the 
acceleration dufdt. Hence components of force will be needed in 
·general both in the direction of the acceleration and of the existing 
velocity. 

The·force may also be resolved into components parallel and per
pendicular to the acceleration. If, for example, we have a particle 
moving in the xy-plane with the velocity 

u = u:ci+u
31

j (29.2) 

a.nd des~ to accelerate it in the y-direction, it can easily be shown t 
that we must apply, in addition to a component of force F31 in the 
desired direction, an additional component F:c at right angles which 
will be given by the relation 

F. - 'U.:z:'U'II F. (29.3) 
. .:z: - 2 '2 Jl' 

c -'U.:z: 

This method of resolving the f~rce is also sometimes useful in giving 
an insight into the relations between force and acceleration. The 
extra component in the .. x-direotion is necessary, when the particle 
~eady has a component of velocity u.:z: in that direction, in order to 
take care of changes in momentum in tP,at direction, arising from 

t See report by Gerlach, Handbueh de1- PhyBik, xxii, Berlin, 1926. 
t Tolman, Ph~'Z. Mag. ll, 468 (1911}. . · 
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changes in mass even when the velocity in that direction remains 
constant. 

In accordance with (29.1) or (29.3) it will be seen that force and 
acceleration will be in the same direction for the two special cases of 
a transverse acceleration in which the force is applied at right angles to 
the existing velocity, and of a longitudinal acceleration in which the 
force is applied in the same direction as the existing velocity. For a 
transverse acceleration equation (29.1) reduces to 

F= m0 du 
,J(1-u2fcZ) dt' 

(29.4) 

and for a longitudinal acceleration it reduces to 

F = m0 du_ 
(I-u2fc2)1 dt 

(29.5) 

An examination of these equations Shows the reason why 

m0/~(l-u2jc2} 

has sometimes been caHed the transverse mass of a particle and 
m0/(I-u2fc2)1 the longitudinal mass. It should be emphasized, how~ 
ever, that it is only the first of these quantities m0/~(1-u2jc2) which 
can be regarded as a fundamental expression for the mass of a 
particle, since this is the quantity which will give the momentum 
when multiplied by tho velocity of tho particle, and is the quantity 
which iA conserved wh~n particles interact by collision. 

(c) Applications in electromagnetic theory. Although a funda
mental discussion is necessary for a complete development of the 
principles of electromagnetic theory, it is interesting to point out in 
passing that certain special electrical problems can be advantageously 
treated with the help of the dynamics of a particle. 

As a typical problem of this kind we may consider the calculation 
of the force with which a chftrgo e moving with the wliform velocity 
V, for simplicity taken in the x-dircction, would act on a second 
charge e1 in its neighbourhood. 'ro treat this problem with the help 
of the dynamics of n. particle, we may first take a system of coordinates 
in which the charge e is at rest ~o that it mn.y then be regarded as 
surrounded by a simpLe electrostatic field. In this original system of 
coordinates the force on e1 can be calculated very simply with the 
help of Coulomb's inverse square law of electrostatic repulsion, and 
by making use of the transformation equations for force (25.3) we 
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can then ohang_e to the desired system of coordinates in whioh the 
charge e is in motion. 

For the case in hand if the charge e is taken as at the origin of 
coordinates at the instant of interest and as moving along the x-axis 
with the uniform velocity V, the force on~ can readily be shownt by 
this ~ethod to be given by 

F, = i( 1-::){a:+ ~(yu,+~.)}, 
F" = e~(l-V2)(1- u:c ~y, (29.6) 

8a cs ci-) 

F. = ~ (1-V2) (1- u:c E'\?;, as c2 c2--} 

where ·x, y, z, and uD:, uv, u
6 

denote the coordinates and components of 
velocity of e1 with respect to this system of axes, and sis an abbre-

viation for 8 = .J{x2+(1- V2fc2)(y2+z2)}. (29.7} 

The result is the same as can be obtained by the more usual method 
of first computing the electric and magnetic fields produced by the 
moving charge e and then determining the force which they exert on 
the charge ~ which is itself moving through them. The present 
treatment shows that the somewhat complicated action of these 
electric and magnetic :fields on the charge e1 can be regarded as a 
simple electrostatic action by a suitable choice of coordinates. The 
general relations between electric and magnetic field strengths in 
different systems of coordinates will be treated in the following 
chapter on electromagnetic theory. 

A further illustration of the methods of applying the dynamics of 
a. particle to electromagnetic problems can be obtained if we again 
consider the charge e as constrained to move along the x~axis with 
the uniform velocity V, and take the charge e1 as located at the instant 
of interest on the y-axis at y = y and moving in the x-direotion with 
the same velocity u~ = V as the charge e itself, and having any 
desired component of velocity u

11 
in the y-direction. Under these 

circumstances it is evident from the simple qualitative considerations 
placed at our disposal by the theory of relativity, that the charge e1 
should merely receive an acceleration in they-direction and retain 
unchanged its component of velocity in the x-direction, since from 

t Tolman, Phil. Mag. 25, 150 (1918). 



§ 29 APPLICATION TO MOVING CHARGES 57 

the point of view of an observer moving along with e the phenomenon 
is merely one of ordinary electrostatic repulsion. It is interesting to 
see in detail, however, how this comes about. 

Substituting the values given above for the coordinates and com
ponents of velocity of e1 into (29.6), we obtain for the components of 
force acting on e1 

and Fv = ~:(1- ~:)" y, 

(29.8) 

and at first sight are surprised to find any component of force in the 
x-direction, since we expect the acceleration to be solely in the 
y-direction. In accordance with the preceding section we remember, 
however, that in general force and acceleration are not in the same 
direction, and by combining the two equations above we easily 
obtain 

F = --~~71_. F. 
x 2 y2 71' c-

(29.9) 

which, with ux = V, is the relation (29.:l) between the components 
of force that we have ah·eady obtained as the necessary condition for 
acceleration solely in they-direction. 

Other applications of particle dynamics to electromagnetic 
problems will suggest themselves to the reader. 

(d) Tests of the interrelation of mass, energy, and momentum. The 
relations between mass, energy, and momentum obtained in§ 27 are 
among the n10st important conclusions that have been drawn from 
the Einstein theory of relativity. 'fhere are several points of contact 
between these relations and experiment which we may now consider. 

The first of theHe relations was that connecting increase in kinetic 
energy with increase in mass as given by equation (27 .1). From a 
qualitative point of view since increase in velocity will certainly load 
to increase in kinetic energy, it is evident that all of the experiments 
on the increase of mass with increase in velocity are in agreement 
with the general idea that increase in energy and increase in mass go 
hand in hand. Among these experiments on the relation between 
mass u.nd velocity, however, were those of Hupkat in which the 
particles received their velocity by acceleration through a measured 
potential drop, the vcloeity then being calculated by equating the 
relativi~tic expression for kinetic energy (26.4) to the work done by 

t Hupko., Ann. der Ph.ysUI}, 31, 109 (1010). 
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the electric forces that produced the acceleration. Hence these 
particular experiments can also be regarded as a quantitative veri
fication of the relation between increased mass and kinetic energy, 
· proVided we accept the· simplest principles of electrical theory· · 

Turning next- to the more general ideas, embodied in equations 
(27.3) and (27.4), that all kinds of energy have the associated mass 
E Je' a.nd all kinds of mass the associated energy mc2

, it is evident 
that obvious macroscopic tests, such for example as would be given 
·by measurements of heat content and inertia, hold little promise 
owing to the great size of the conversion factor c2

• 

In the field of atomic physics, however, the range of validity for 
such ideas has recently -been strikingly extended. Thus, the qualita
tive suggestion,t that the energy of the incoming cosmic rays might 

-provide for the internal rest-masses of the pairs of positive and negative 
electrons observed by Anderaont and by Blackett and Occbialini,t 
has now been supplemented by the results obtained with y-rays by 
Anderson and Neddermeyer§ which give quantitative indication that 
the known energy of the y-ra.ys is sufficient to account for the re~t
masses plus the kinetic energies of the pairs of positive and negative 
electrons that appear. Furthermore, the long entertained possibility 
for intranuclear processes accompanied by a transformation of rest
mass into fa.miliar fo~ of energy, has now received excellent quanti
tati:ve confirmation by the measurements of Oliphant, Kinsey and 
Rutherford,\\ which show that the decreases in mass, when the two 
isotopes of lithium Li7 and l.J6 combine respectively with the isotopes 
of hydrogen W and H 2 to form helium He', are just sufficient to 
account for the kinetic energy of the pairs of a.-particles formed. 

Turning finally, moreover, to the relation of momentum with 
transfer of energy (27 .5), which was itself based on the assumption 

·of an equivalence between mass and energy, we have the quantita
tive and beautiful· experimental verification provided by measure
ments of light pressure. These show with considerable exactness that 
we have in the case of radiation the theoretically expected relation 
(27 .6) between density of momentum and density of energy flow. 

t Anderson,. Science, 76, 238 (1932). 
~ Blackett and Occhle.Um, Proo. Roy. Soc., A 139, 69 (1933). 
§ Anderson and Neddermeyer, Phys. Roo., 43, 1034 (1933). For more complete 

_ theory.see Oppenheimel' and Plesset, Phys. Roo., 44, 53 (1933). · 

B 
I! Oli?ha.nt, Kinsey and Rutherford. Proo. Roy. Soc., A 141, 722 (1933). See also 
ambndge, Pkys • .Rev., 44, 128 (1933). 
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SPECIAL RELATIVITY AND MECHANICS (cantil.) 

Part II. THE DYNAMICS OF A CONTINUOUS MECHANICAL MEDIUM 

30. The principles postulated 
In the classical Newtonian mechanics after treating the dynamics 

of particles it was customary to proceed to a development of the 
dynamics of rigid bodies whose state could be specified by the six 
coordinates which would give the position and orientation of the body 
and the six corresponding momenta. In relativistic mechanics, how
ever, it is evident as soon as we consider bodies of a finite size that 
in general an infinite number of variables will be necessary to 
determine their state, since disturbances set up in one part of the 
body can only be transmitted to other parts with a velocity less than 
that of light. In relativistic mechanics the most nearly rigid body we 
can think of would be one in which disturbances are propagated with 
the limiting velocity of light, and the older idea of a completely rigid· 
body whose parts would act together as a whole is no longer a legiti
mate abstraction. We may henco proceed at once to a development 
of the mechanics of a continuous medium, the resulting theory being 
due originally to the work of Laue. 

As the postulatory basis for this development we shall take the 
principles of the special theory of relativity and the two principles of 
the conservation of mass and momentmn in all systems of coordinates 
used in developing tho mechanics of a particle, and in addition shall 
combine these with tho conclusions as to the transformation equations 
for forces and the relations between mass and energy which were 
provided by tho mechanics of a particle. 

In accordance with this basis the theory of the mechanics of an 
elastic continuum can be regarded as a natural extension of the 
mechanics of a particle. The theory cannot, however, be regarded 
in any scnRc as deduced from tho mechanics . of particles, since we 
shall make no attempt to derive the properties of a continuum from 
the relativistic behaviour of the particles or molecules out of which 
the continuum might be thought of as composed. Even in the older 
Newtonian mechanics tho attempt to obtain a rigorous derivation of 
the mechanics of an elastic continuum from that for particles was 
perhaps not entirely satisfactory, and at the present time such an 
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attempt would be complicated not only by the facts of relativity, but 
also by the necessity of applying quantum mechanics to the behaviour 
of the ultimate particles. For these reasons it has seemed best to 
obtain the mechanics of a. continuum from its own postulatory basis
as ~ven above-with the help of a macroscopic treatment that avoids 
the necessity for quantum mechanics. This we proceed to do. 

31. The conservation of momentum and the components of 
stress t,1 
The first item in our postulatory basis to which we shall wish to 

pay attention is the principle of the conservation of momentum. To 
secure the validity of this principle we shall again regard force as 
equal to rate of change of momentum and require an equality between 
action and rea.otion in the interior of our elastic medium. Let us now 
see in detail how this is to be done. 

Considering a given set of Cartesian axes x, y, z, let us first define 
the components of stress t;,1 at any point in our medium as the nine 
quantities t,1 = tzx txv t;u 

t11:c t1111 t1111 

t.:r; tzy tll:4 

(31.1) 

which give the normal and tangential components of force exerted by 
the medium on unit surfaces at the point in question, in accordance 
with the usual understanding, that the symbol tii denotes the com
ponent of force parallel to the i-axis exerted on unit surface norn1al 
to the j-axis by the material lying on the side of this surface corre
sponding to smaller values of the coordinate x1• 

With this definition of the components of stress ti1, the principle of 
the equality of action and reaction can then be maintained by taking 
-t;,1 as the component of force parallel to the i-axis exerted on unit 
surface normal to thej-axis, by the material on the side of the surface 
corresponding to larger values of the coordinate xi. And this will be 
done in what follows as will be seen in the next section. 

32. The equations of motion in terms of the stresses tii 
With the help of the foregoing we may now obtain an expression 

for the equations of motion of the medium in terms of the stress ~ii· 
On the one hand, we may calculate the net force acting on a unit 

cube of the medium by considering the difference in the stress acting 
on the para.llel surfaces by which the cube is bounded. For example, 
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if we are considering the component of force in the x~direction and 
fix our attention on the pair of faces perpendicular to the y~axis, we 
can take txv as the force exerted on the lower of these two surfaces 
and in accordance with the postulated equality of action and reaction 
can take -(txv+BtxvfBy) as the force exerted on the upper surface. 
Hence for the net contribution of this pair of surfaces to the com~ 
ponent of force in the x-direction we shall have -8tZ11J8y, and summing 
for all three pairs of parallel surfaces can write 

f - &t= ~ fJtzg ) 
:r:- -&i- By -a; (32.1 

for the total force in the x-direction acting on a unit cube of the 
material. Or generalizing, we can write 

fi = - 8ti3 (32.2) 
Ox :I 

for the component of force acting in the ith direction on unit volume, 
where the double occurrence of the dummy suffixj indicates summa
tion for the three coordinates x, y, z. 

On the other hand, sincef~. is the component of force on unit volume 
we can take f£ 8v as the force on a small element of the material of 
volume 8v, and equate this to the rate of change of the momentum of 
the element in accordance with the expression 

d 
fi 8v = dt(Ui 8v), (32.3) 

where U1. is the density of momentum at the point in question parallel 
to the i-axis. 

Combining (32.2) and (32.3), we can then write the equations of 
motion for the element Sv in tho form 

atu ~ tl ~ - - ov = -((]· ov) 
ax) dt I J, 

dgi ~ d; ~ ) = --- ov+ui-(av. 
dt dt 

(32.4) 

This expression can be simplified, however, since we can evide~tly 
write for tho rate of chango in the momentum density of the element 

dg.l = agi + u ogi + u au-~.+ au-~. 
dt at x ax 71 &l.J 1/t.z az 

= 
8ffei + UJ :~, (32.5) 

i 
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where the :first term arises from the rate of change at the point in 
question an:d the second term from the motion of the element with 
the components of velocity u1• And for the rate of change of volume 

we oa.n write ) !:_ (8v) = (Ouaz + &uv + &ue 8v 
dt ax &y az 

= ~ 8v. (32.6) 
ax :I 

Substituting (32.5) a.nd (32.6) in (32.4) and simplifying, we then 
obtain the equations of motion for our medium in the simple form 
desired 

-~ = ag'+u; ag'+g, &u3 
Bx:1 &t ax:J 8x; 

= ag,+~(g,u;)· (32.7) 
&t ax:J 

The result is a general representation for the three separate equations 
that correspond to taking the subscript i as x, y, or z, and summing 
for the three axes in the case of the dummy subscriptj. 

33. The equation of continuity 
The foregoing three equations were obtained as the outcome of our 

postulate as to the conservation of mome:p.tum, and we may now 
supplement them with the help of the principle of the conservation of 
mass by the equation of continuity 

Buz+~+ ags = - 8p (33.1) 
ax ay az at 

or au:~_ ap ----, 
ax:J &t 

(33.2) 

where p is the density of mass at the point in question. Since the 
density of momentum g is by definiti.on equal to the density of mass 
flow, this equation is an evident expression of our postulate as to the 
conservation of mass. 

34. The transformation equations for the stresses tu 
With the help of the two conservation laws of mass and momentum, 

we have thus obtained the equations of motion (32.7) and the 
equation of continuity (33.2) for a continuous medium, and in 
accordance with the :first postulate of relativity, equations of this 
same form will apply to the behaviour of the medium in all systems 
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of coordinates in uniform relative motion. In order, however, to 
make any use of these relations connecting the quantities-stress 
t"i' density of momentum g, and density of mass p-we must now show 
how the values of these quantities referred to any given system of 
coordinates are to be determined. To accomplish this, we shall obtain 
in the present section transformation equations which will permit 
a calculation of the components of stress tii in terms of the com
ponents t~ as they would be directly measured by an observer moving 
along with the medium at the point of interest; and in the next 
section we shall obtain transformation equations which will similarly 
permit the calculation of the other quantities g and pin terms of 
quantities which could be directly measured by qrdinary methods. 

These transformation equations for t"1, g, and p will themselves be 
based of course on our previous study of the Lorentz transformation 
and the conclusions drawn therefrom. And it should perhaps be 
emphasized that it is this introduction of the Lorentz transformation 
which determines the essential character of the relativistic mechanics 
of a continuum, since the equations of motion (32. 7) and continuity 
(33.2) would also be true in Newtonian mechanics in all systems of 
coordinates if we should use the Galilean transformation instead of the 
Lorentz transformation. 

Let us now consider the transformation for the components of the 
stress t1.1 from one system of coordinates to another. Since these 
components of stress have themselves been defined in terms of forces 
and the areas on which they act, we are already well prepared to 
calculate the transformation equations for these quantities. In 
transforming the expressions for the areas we shall merely have to 
allow for the Lorentz contraction(§ 9), which was an immediate result 
of tho fundamental transformation equations for spatial and temporal 
measurements. And in transforming the expressions for components 
of force wo can use the results of§ 25, since as already pointed out in 
that section the transformation equations for forces of any origin 
must be the same if we are to retain the conservation of momentum 
in general and in all systems of coordinates. 

For simplicity let us assume that our original system of coordinates 
S has been oriented so that the material, at the point of interest in 
the medium, will be moving with respect to this system with the 
velocity u, parallel to the x~axis without components of velocity in 
the y- and z-directions. And let us take as our second system, so-called 
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proper coordinates S0, also moving in the x-direction with respect to 
8 with the velocity u = v, (34.1) 

so that the material at the point and time of interest will be at rest 
in system S 0 in accordance with the equations 

u~ = ug = u~ = 0. (34.2) 

We may now easily secure expressions for the components of stress 
t# with respect to Sin terms of the components t?1 with 1·espect to 8°. 
Substituting the expressions for velocity (34.1) and (34.2) into the 
transformation equations for force (25.3), we at once obtain 

Fa;= F£ Fg = Frr.}(1-u2fc2
) l'z = Fg..J(1-u2fc2

) (34.3) 

as transformation equations connecting measurements of force in the 
two systems; and noting that the Lorentz contraction (9.3) will 
affect the transformation of areas normal to the y- and z-axes but not 
those normal to the x-axis, we can write 

Am= A~ A 21 = Ag..J(l-u2fc2) Az = Ag..J(1-u2fc2) (34.4) 

for the transformation of areas normal to the directions indicated by 
the subscripts. Returning then to our original definition of the com
ponents of stress (31.1) in terms of force per unit area, we easily see 
that the transformation equations will bet 

t11m = t?r.x~ ( 1-u2 1 c2
) tyy = tgv tuz = t~z 

tsa: = tM(l-u2jc2
) tw = t~ (::: = t2z (34.5) 

specialized, of course, by the simplification that the direction of axes 
in system S has been chosen so as to make the velocity u of the 
material at the point of interest parallel to the x-axis. 

Owing to the circumstance that the velocity of the material is 
zero at the point of interest with respect to the proper coordinates 
8°, the ordinary principles of Newtonian mechanics can be applied 
in that system, which lead, as is well known, to the symmetry of the 
stress tensor fb so that we have 

to _to 
;cy - y;c to _to 

zx- .:1'.::: (34.6) 

t These equations for the transformation of stresses diffor from thoRo given by 
Tobna.n, The Theory of the Relativity of Motion,§ 122, since tho strosRos woro thoro do· 
tined with reference to unit proper volume of the material. The prostmt definition in 
terms of force per unit area. as measured in either system of coordinates is chosen to 
agree with the usage of Laue, Das Relativitiitaprinzip, second edition, Braunschweig, 
1913. 
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in system 8°. We note then in accordance with (34.5) the important 
conclusion that the components of the stress in system 8 will not give 
a symmetrical array. So that in general when the point of interest 
is moving with respect to the coordinate system we can expect to find 

tij =I= tji• (34. 7) 

The great importance of the transformation equations for the com
ponents of stress (34.5) lies in the possibility which they provide for 
correlating the stress in rapidly moving material with the known 
behaviour of stress in stationary material. 

35. The transformation equations for the densities of mass 
and momentum 
In addition to the above equations (34.5) which permit us to calcu

late the stress at any point in our medium in terms of the stress as 
measured by an observer moving with the material at that point, we 
shall also desire-as pointed out at the beginning of the last section
equations which will permit us to calculate the densities of mass 
p and 1nomentum Yl in terms of quantities which could be measured 
by an obRcrvor moving with tho material. To obtain these relations 
will be a somewhat long aud complicated task, and in carrying out 
tho deduction we shall have to make use of the relativistic relations 
between mass, energy, and momentum which is the remai.ni.ng part 
of the postulatory basis stated in § 30, which has not yet been 
employed. 

With tho help of t.hese relations between mass, energy, and momen
tum we shall first obtain an expression for tho momentum of a moving 
portion of our medium in terms of its mass (or energy), velocity, and 
state of stress. This expression for ruomontum will then permit us to 
calculate tho forco acting on a stressed portion of the medium when 
its momentum n.nrl velocity are changed, and hence to calculate the 
work clone and increase in energy when the material is brought from 
zero velocity up to tho actual velocity of interest. We shall then be 
in a position t.o compute tho mass, energy, and momentum of the 
moving materin.l in terms of its velocity and its mass, energy, and 
state of stresH ns they nppoar to un observer moving with it. We 
now turn to tho derivation which cnn be obtained along these lines. 

In accordance with our ideas as to the conncxion between density 
of momentum nn<l density of energy flow as given by (27.6), it is 
evident that tho momentum of a moving portion of material when 

31\05.11 , •• 
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subjected to stress will be due not only to the bodily motion of the 
mass which it contains but also to the density of energy :Bow arising 
from the work done by the forces of stress that act on its moving 
faces. Thus, if we have material of density p moving with the velocity 
u which we take for simplicity as parallel to the x-axis, we can write 
for its density of momentum in the x-, y-, andz-directions 

+t:tteu 
u~ = pu ""02' 

t3:11 'U 
g'll = -cs' 

tzzU 
Uts = 7' 

(35.1) 

since t:cm u, taw u, and tau are evidently the densities of energy :Bow in 
the directions indicated due to the action of the forces of stress, and 
division by c2 will be necessary owing to the difference in units for the 
measurement of mass and energy. It is an important and interesting 
result of relativistic mechanics that there will be in general com
ponents of momentum in a stressed body at right angles to the 
direction of motion. 

For the total momentum of a small portion of the medium of 
volume v we can then write in accordance with (35.1) the expressions 

E+t:uv G =---·U 
x c2 ' 

G =~3:1/vu 
11 c2 ' 

G t:rzv 
IJ = -2u, c 

(35.2) 

where for later convenience we have expressed the total mass in terms 
of the energy E divided by c2• And from the definition of force as 
equal to the rate of change of momentum we can write 

F~ = !!:..(E+tu::ev u), 
dt o2 

F. = !!(~ZJ!.'E. u), (35.3) 11 dt c2 

F.= !(t;," u) 
for the components of force which would have to be applied to the 
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material in the volume v in order to change its velocity u parallel to 
the x-axis. 

We are now ready to calculate the work done and energy input 
necessary to bring a given portion of our stressed material from zero 
velocity up to the velocity of interest. Let us start with material 
having the volume v0, energy content EO, and stress f& and b~g it 
from zero velocity to that of interest by an adiabatic acceleration 
parallel to the x-axis which leaves the condition of the material 
(i.e. v0, E 0, and t~1 ) unchanged when measured by an observer moving 
with the material. In accordance with the Lorentz contraction (9.3) 
we can write for the volume at the velocity u 

v = vo -J(l-u2fc2), (35.4) 

and in accordance with the transformation equations for stress 
(34.5) shall have 

tu = t~a: (35.5) 

throughout the course of the acceleration. For the rate of energy 
increase we can then evidently write 

dE dx dv 
dt =Fa: dt- txx dt, (35.6) 

where the first term is the rate at which work is done by the action 
of the force which produces the acceleration, and the second term is 
the rate at w hieh work is done by the forces of stress which act on 
a volume which is decreu.sing in its length parallel to the x-axis owing 
to the Lorentz contraction. 

Writing 'U. in place of dxfdt, and substituting the expression for Fa: 
given hy (:J5.3) we can then re-express (35.6) in the form 

d!C tlR 1t2 ~ 'l£ du u2 dv u du dv 
dt = dt (;2 + l!J c~ dt + t.,.x c2 dt + t;r.;c v c2 dt - tx:r. dt ' 

where f.u has been treated u.s a constant in accordance with (35.5). 
This can ea::~ily he rewritten in tho fornt 

I - -;- --· ~~ -1- t v = .1u + t . 'l' -. -, ( 
u

2
) cl ( Ll ) ( Ll ) 'lt du 

d~ dt .rx XX c2 ell 

which can readily he integrated between zero velocity and u to give 
us tho final result 

(35. 7) 

where tho superscript 0 indicates the values of the quantities involved 
a,g measured by ttn observer nt rest with respect to the medium. 
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This last equation, however, now permits us to write the desired 
expreBBions for the densities of mass and momentum. Dividing 
(85. 7) by the volume v, noting the relation between v and v0 given by 
(35.4) introducing the equality of t:x::x: and ~ given by (35.5), and 
changing from the density of energy to that of mass with the help of 
the factor c1, we can easily obtain for the density of mass 

P _ Poo+t~u2f04 (35.8) 
- l-u2jc2 ' 

where p00 is the proper density of the material as measured by an 
observer moving with it. And combining this result with (35.1) and 
(34.5) we obtain for the densities of momentum parallel to the three 
axes 

c2p +t0 u g - 00 :n 
a: - l-u2je2 e2 ' 

- ~ 'U 
g11 - ~(1-u2jes) cs' (35.9) 

tO 'U 

giJ = ~(1-:s;e2) cs· 

These are the desired expressions which will permit us to calculate 
the densities of mass p and momentum gi, at a point in a medium 
moving with the velocity u, in terms of this velocity and the density 
p00 and stress t?1 as measured by an observer moving with the material. 
The equations are specialized for simplicity by a choice of coordinates 
such that the direction of motion is parallel to the x-axis, but are 
otherwise general. 

It should be specially noted that these equations have been derived 
without any reference to the microscopic behaviour of the ultimate 
particles of which the material might be thought of as composed, and 
the quantities occurring therein, such as density, velocity, and stress, 
are to be regarded as macroscopically measured. To emphasize this 
we have used the symbol p00 to designate the proper macroscopic 
density of the material as measured by a local observer, since the 
symbol p0 with a single subscript is usually used to designate a 

.hypothetical microscopic density. As mentioned in§ 30, by adopt
ing a macroscopic treatment, we have avoided the necessity for a 
quantum-mechanical treatment of the behaviour of the ultimate 
pa.rticles. 
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36. Restatement of results in terms of the (absolute) stress Pii 
The foregoing transformation equations for the components of 

stress and the densities of mass and momentum, together with the 
equations of motion and continuity, evidently provide a complete 
apparatus for treating the mechanics of a continuous medium. 
Nevertheless this apparatus may be put in a specially simple form, 
as will be shown below, if we now define a new aiTay of quantities P# 
by the equations (36.1) 

where t-t; are the components of stress at the point in question as 
previously defined, and g, and u; are the indicated components of 

·momentum density and velocity at that point. 
Irl accordance with this definition, together with the relation {34.6), . 

we have in the special case of proper coordinates, which are moving 
with the point of interest, the simple relations 

PO - pO - tO - .10 ij - ]i - 1j - liJ;,, (36.2) 

and making use of this result, together with the transformation 
equations for stress (34.5) and momentum density (35.9), we easily 
calculate for more general coordinates, in which the material at the 
point of interest is moving with the velocity u in the x-direction, the 
transformation equations 

P~+PooU9 

Pxz = 1-_usjcs __ _ 

_ P~x o 
Pyx - ~(i ...:_u2jc2j Puu = Pw P-v~ = P~ (36.3) 

Furthermore, the transformation equations for density of mass and 
momentum (35.8, 9) may now be re-expressed in the form 

_ Poo+P~ U 2{c" p- -· ··-·· .. -····-··----
l-u2jc?. 

(36.4) 

and 
pO 'U 

g = -' -· ~ -- --- -
~ ~(l-u2jc2) c2 ' 

0 _ Pxv 'U g --· .. -- , ..... ---·-
'II ~(l-u2/c2) c2 

(36.5) 

Finally, with the help of the definition (36.1), the equations of 
motion (32.7) can be expressed in the new language in the extremely 
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simple form 
Op~+ 8f/;. = 0 
ax1 at 

and the equation of continuity (33.2) may again be written 

~+ap = o. ax1 at 

§ 36 

(36.6) 

(36.7) 

Since the equations (36.2, 3, 4, 5) permit us to compute all the 
quantities occurring in the equations of motion and continuity 
(36.6, 7), in terms of quantities measurable by ordinary methods by 

·a local observer moving with the material, we now have in a compact 
and convenient form all that is needed for treating the mechanics of 

·a continuous medium. The transformation equations (36.3, 4, 5) are 
specialized for simplicity to the slight extent that we have chosen our 
axes in such a way that the velocity u of the n1edium at the point in 
question is parallel to the x·axis, but are otherwise general. 

It is of interest to note that although the stress ti:J as originally 
defined in terms of the forces exerted by the medium on unit area did 
not give a symmetrical array of quantities (34.5} except in the case 
of proper coordinates, nevertheless the new quantities Pti do give a 
symmetrical array in all coordinates as shown by (36.2, 3). 

Since the forces corresponding to the ti:J are those which one portion 
of the medium exerts on another, the surfaces on which the t 11 act 
are at rest relative to the medium. For this reason the quantities tii 
are sometimes called the components of relative stress. On the other 
hand, the new quantities Pi:J determine in accordance with (36.6) the 
rate of change of momentum density at a given point fixed in space as 
referred ·to the coordinate system. For this reason the quantities Pii 
are sometimes called the components of absolute stress, as was done 
in the heading of this section. 

The introduction of the new quantities Pti is of great advantage in 
now permitting a further re-expression of the apparatus for treating 
the mechanics of a continuous medium in very simple four-dimensional 
language with the help of a generalized symmetrical four-dimensional 
tensor, a matter to which we now turn in the following section. 

37. Four-dimensional expression of the mechanics of a con
tinuous medium 
To obtain an apparatus for treating the mechanics of a continuous 

medium in four-dimensional language we shall now return to our 
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fundamental idea of a four-dimensional space-time continuum with 
the system of Galilean coordinates (x1, x2, x3, x4) which are related to 
our previous spatial and temporal coordinates by the expressions 
(19.1) x1 = x x2 = y x3 = z x' = ct (37 .1) .. 
and introduce a symmetrical four-dimensional tensor pp.v_the so-
called energy-momentum tensor-for describing the condition of the 
mechanical medium at any given point in space and time. The ten 
independent components of this symmetrical tensor pp.v will be taken 
in such a way as to be very simply related to the ten quantities Pii' 
u~., and p, used above in treating the mechanics of a continuum, and 
so as to lead to a single very simple tensor equation which will be 
equivalent to the three equations of motion and the equation of con
tinuity necessary for the previous treatment. 

To define the energy-momentum tensor pp.v in terms of our previous 
quantities, we shall first consider proper coordinates (x5, x~, xg, x~) 
such that the medium at the point and time of interest has zero 
spatial velocities with respect to these particular coordinates 

dxl dx2 dx3 
_o=-o=-o=O 
ds ds ds ' 

(37 .2) 

and then state that in these coordinates the tensor reduces so that its 
components have the simple values 

pcxfJ = pO 0 p~ 0 0 x.z: Pa:y 
0 

Pv;r; 0 
Pm1 

0 
Pv~ 0 

p~ 0 Pzu p~ 0 

0 0 0 c2p00• (37 .3) 

It is ovirlcnt that this statement completely defines the components 
of the tensor at the point in question in all systems of coordinates, 
since we can write in accordance with our general equation (19.8) 

pp.v = oxP. ?x~ pcx.fJ 
axrx oxf3 ° 0 0 

(37.4) 

as an expression for obtaining the components of this tensor in any 
desired new system of coordinates (xt, x2, x3, x4), from their values in 
proper coordinates as given by (37 .3). 

We are now ready to investigate the usefulness of this newly 
defined four-dimensional tensor. If we transform from the original 
coordinates (x~, x5, xg, x~) in which the material was at rest at the 
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nterest to a new set (xl,x2,x3,x4) in whlch the material is 
,; pa.r8Jlel to the x-axis with the velocity u, we must set 

1- x~+~/o 2- z x3- a x'- x~+uxMc (37 5) 
x - :j(I-u2fo2) x - Xo - Xo - ,J(l-uBfc2) . 

in accordance with the Lorentz transformation equations (20.3) with 
V put equal to -u. We then obtain in agreement with (20.4) for the 
differential coefficients that occur in the transformation equation 
(37.4) as the only non-vanishing values 

8xl ax' 1 
ox5 = 8x~ = ,J(I-uBfcB)' 

ox1 ox' ufc 
~=ox~= .J(l-uz;cz)' 

(37.6) 

ox2 ox3 

-=-=1. axz axs 
0 0 

Substituting these into (37.4) with the TgfJ as given by (37.3) we can 
then readily obtain for the components of the tensor in the new 
coordinates the values 

pp.v = P~+ Poo U
2 0 0 s + 0 P:ry Pxs c Poo P .r~ '!!' 

l-u2jc2 .J(I-u2jc2) ".J( 1-u2fc2) l-u2fc2 c 
0 p~ u Pv~ pg., 0 

J(l-u2fc2) Pvz .J(l-u2fc2) c 
0 0 'U Pts~ 0 0 p~ 

.J(l-u2Jci} Ps'll Pzz .J(l-u2fc2) c 
C2Poo+.P~U 0 u p~ 'U C2Poo+P~x U 2

/C
2 P:rv 

l-u2fc2 c .J(l-u2jc2) c :j(I-u2fc2) e 1-uz;cz ' 
(37.7) 

and comparing these values with those given by the transformation 
equations (36.3, 4, 5) in the previous section, we see that this reduces 
to the simple symmetrical array 

pp.v = Pu Pxv P'" cg:r: 

Pvx Pw Pvz cg'll 

PIJ:r; Pt~~ P" cgs 
cgaJ Cflv cgts C

2p, 

(37.8) 

the components of the tensor thus having the same physical signi
ficance in all systems of Galilea.n coordinates. 

The usefulness of this energy-momentum tensor becomes at once 
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apparent since our earlier equations of motion and continuity can 
now be written in the extremely simple combined form 

oTP.Vj{)xV = 0. (37.9} 

Noting the values of the coordinates given by (37.1}, it is easily seen 
that the four equations, obtainable from (37.9) by assigning top. the 
different values 1, 2, 3, 4 and summing over the dummy suffix v, are 
as a matter of fact identical with our previous equations of motion and 
continuity (36.6, 7). 

Since 8TP.vjaxv is the expression in our present simple coordinates 
for the contracted covariant derivative of TP.v, this final equation 
can be regarded as expressing a tensor relation, and in accordance 
with the discussion of§ 21 this property is sufficient to secure agree
ment with the postulates of relativity. Hence this equation, together 
with the definition of pp.v given by (37.3), may now itself be taken as 
a very satisfactory postulatory basis for the mechanics of a con
tinuous medium. This starting-point will be of special value when we 
come to the general theory of relativity. 

38. Applications of the mechanics of a continuous medium 
It is evident that the system of mechanics, whose development we 

have now completed, differs in important respects from Newtonian 
mechanics. These differences can be most clearly seen with the help 
of equations (36.4, 5) which show not only that the mass of a moving 
body would depend on its velocity as already found in the case of 
particles, but in addition that the mass and momentum would depend 
on the state of stress, and that there would in general be components 
of momentum in a stressed body at right angles to the direction of 
motion. 

A direct experimental test of these additional differences between 
Newtonian and relativistic mechanics would be very important, 
especially as much of the mechanics of general relativity will have to 
be founded on our present results. It will be noted, moreover, in 
accordance with the equations mentioned that these new differences 
from Newtonian mechanics would exist even at low velocities pro
vided the stresses p~1 = tfl1 were great enough. Nevertheless, there 
are at present no simple mechanical examples known in which these 
stresses are large enough to produce appreciable deviations from 
Newtonian mechanics. This is unfortunate from the point of view of 
obtaining a direct experimental verification of the new mechanics, 
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but of course, on the other hand, signifies that there are no known 
mechanical phenomena which disagree with the new mechanics. 

Since simple direct tests of the mechanics under discussion are 
not feasible, our trust in its conclusions must be dependent on the 
coherence of the theory with the rest of physics and on its own internal 
coherence. The presence of such coherence has-it is believed-been 
made evident in the method of development which we have chosen 
to obtain the theory. The feeling that such coherence exists will, 
however, be further strengthened if we now develop some of the conse
quences of the theory, and show as far as possible their rational nature 
and relation to other fields of physics. 

(a) The mass and momentum of a finite system. Sta.rting with the 
equations of motion and continuity in the differential form in which 
they have been derived, let us first consider the results that can then 
be obtained by integrating over a finite volume. 

Considering first the equation of continuity (33.1) and carrying out 
an integration over a definite fixed volume in space, we can write for 
the rate of change in the mass inside that volume 

dm =fop dv =-Iff (agx+ agu+ ogtl) dxdydz (38.1) 
dt at ax ay az ' 

or by performing a part of the integration we can write this in the 
form 

d: = J: dv = - J J IYa:l~' dydz - J J !!lui:· dxdz - J J lu~l~· dxdy, 

(38.2}. 

where the limits of integration at the boundary of the volume con
sidered have been denoted by x, x', etc. We have thus related the rate 
of change of the mass inside the spatial volume considered to the 
density of flow across the boundary. For an isolated system this will 
give us the principle of the conservation of mass and also the prin
ciple of the conservation of energy on account of the interrelation of 
those two quantities. 

In a similar way starting with the equations of motion in their 
original form we can obtain information by integration as to the rate 
of change in the momentum of a finite system. Here, however, we 
have two possibilities of procedure corresponding to the two different 

. forms in which the equations of motion have been expressed

. originally in terms of the stresses t-tj and later in terms of the Pij· 
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Let us first consider the equations of motion in their later rather 
simpler form (36.6). We can then again integrate over a definite 
fixed volume in apace, and obtain for the rate of change of the ith 
component of momentum inside this volume 

dGi =I ogi dv = --'Iff (Opix+ ap,v+ opu) dxdydz, (38.3) 
dt at ax ay az 

or by performing a part of the integration we can write this in the 
form 

dGt 
at 

= I 8ffti dv = - I I IPia:l:' dydz -I I IPiyl~' dxdz - I I IP~I:' dxdy, 

(38.4) 

where the limits of integration at the boundary of the volume oon
Ridercd have been denoted by x, x', etc. We have thus related the 
rate of change of the momentum inside the spatial volume considered 
to the values of p 11 at the boundary. For an isolated system this will 
of course give us the principle of the conservation of momentum. 

We may also consider the equations of motion in their earlier for1n 
(32.4) d at 

-d (g1 3v) = -~ 8v, 
t uXj 

(38.5) 

which gives the rate of change in the momentum of the elem~nt of 
material lying at the time in question in the volume 8v, instead of the 
rate of change in the density of 1nomentum at the point of location. 
We can then integrate, this time over the material located at the instant 
under consideration inside a given bounda?y instead of over a fixed 
volume in space, and obtain for the rate of change in the momentum 
of this n1aterial 

d~~·' = ;t f g, dv o= _ f f f (~z+ a;+ a;:) dxdydz, (38.6) 

or by performing a part of the integration we can write this in the 
form 

diGil 
dt 

= ;t f Y·l dv = - f f ltia:l~· dydz- f f ltivl~· dxdz- f f ltisl:' dxdy, 

(38.7) 
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where the limits of integration at the boundary have been denoted 
by x, x', etc., and we used the symbol!Gt! to denote the momentum 
of a given amount of the material as distinct from the momentum Gi 
inside a given spatial volume. Equation (38. 7) relates the rate of 
change in the momentum of a given amount of the material to the 
forces acting on its surface, and reduces again to the principle of the 
conservation of momentum for an isolated system. 

To conclude the present section it may also be pointed out that the 
results given by the equations (38.2) and (38.4) for the rate of change 
in the ~afls and the three components of momentum inside a given 
volume of space can be expressed with the help of our four-dimen
sional tensor language by a single generalized equation. For this 

·purpose we start with the equations of motion and continuity in the 
very simple form given by (37.9) 

fJTP.Vjoxv = 0, (38.8) 
where pp.v is the energy-momentum tensor as defined in § 37. By 
integrating over the spatial coordinates xl, x2, x3 for the spatial 
volume of interest we obtain 

III (oTf-1-l + 8TP.t. + fJTJ.LS + 8TJJ.4) dxldxt.dxa = 0, (38.9) 
c3x1 fJx'l. c3x3 ox' 

and by performing a part of the integration and rearranging we can 
then write 

I I I a:; dxldx2dxs 

= - I I IT~L'I;.' dx"d:If'- I I IT~L0 1:;' dx'dx"- I I IT~L3 1;.' dx'dx", 
(38.10) 

where the limits of integration at the boundary have been denoted 
by xl, x'1, etc. 

This result may be called the energy-momentum principle as 
applied to a finite region. Noting the values of TJ.Lv as given by 
(37.8), we see that with p. taken as I, 2, or 3 it relates the rate of 
change with the time x4. of a component of momentum within the 
region with conditions at the boundary, and is equivalent to the three 
equations given by (38.4). And with p. taken as 4 it relates the rate 
of change of mass or energy with conditions at the boundary and is 
equivalent to (38.2). The equation thus agrees with the idea that 
changes in the mass, energy, and momentum within a given region 
are due to flow across the boundary, and in the case of an isolated 
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system is seen to reduce to the principles of the conservation of mass, 
energy, and momentum. 

(b) The angular momentum of a finite system. In the case of 
angular momentum we shall be primarily interested in the amount of 
momentum associated with a finite system rather than that located 
in a fixed region in space. For such a system we may then define 
the component of angular momentum, taken for specificity around 
the z-axis, in the usual way as given by the integral 

Ma = J (xg11-YU:rJ dv (38.11) 

taken over the material composing the aystem in which we are inter
ested; where x andy are coordinates of the element of the material 
dv and U:r: and g11 are the indicated components of density of momen
tum at that point. And differentiating this with respect to the time, 
using (38.5) for the rate of change of.the momentum of the element 
dv, we easily obtain 

d:• = :e I (xg11-yg.) dv = I (-x ::: + y ':,;; +"u•g• -u. g.) dv 
(38.12) 

as an expression for the rate of change with time of this component 
of the total angular momentum of the system. 

This relation can be re-expressed to advantage, however, to show 
the effect of forces external to the system in changing its angular 
momentum with the help of a somewhat complicated transformation. 
Considering the two first terms, we can obtain with the help of a 
partial integration 

I ( at111 + at:x;) d -X- Y- v 
8x1 ox:/ 

- III ( ot'JI:r: at'U1J Btvz + otx:r: + Btxu + ot:r:z) d d d - -x--x--x- y- y- y- x y z 
~ ~ & & ~ & 

=I I 1-xtu:r:+Yt:r:xl~' dydz + I I 1-xtJtu+Ytzvl~ dxdz + 

+ I I 1-xtua+Yt:l~ dxdy +I I I (t·u:r:-t:ey) dxdydz, (38.13) 

where the limits of integration at the boundary of the system have 
been denoted by x, x', etc. In addition we can write with the help 
of (36.1) 

tu:r:-twu = Pv:r:-UuU:r:-Pa:u+U:cUu = -(U:r:Uu-u11 g:r:) (38.14) 
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on account of the. symmetry of p,1. Substituting (38.13) and {38.14) 
into (38.12) we then obtain the desired result 

dMzfdt = - I J !xt11x-yt~!=' dydz -

- I I Jxtu11 -1flzul~' dxdz - I I !xt11z;-Ytu:zl:' dxdy. (38.1.5) 

In accordance with this expression, we see that the rate of change of 
the angular momentum of the system is equal to the turning moment 
of the exterior forces which act on it from the outside. Furthermore, 
for an isolated system in which these forces vanish, the equation 
evidently reduces to the principle of the conservation of angular 
momentum (38.16) 

To complete our consideration of angular momentum we must now 
point out an important difference between relativistic and Newtonian 
mechanics. Returning to our original expression for angular momen
tum (38.11 ), let us consider a system in a steady state of uniform 
motion in a straight line, the momentum g dv of each element of 
volume being a constant independent of the time. Under these 
circumstances it might be expected that the angular momentwn of 
the system would also be a constant independent of the time. Never
theless, differentiating (38.11) with respect to the time, allowing for the 
constancy of g dv for each element, we obtain for the rate of change 
of the angular momentum with the time the actual result 

dMzfdt =I (uxg11 -uugx) dv. (38.17) 

In Newtonian mechanics, since velocity u and density of momcn
tum g were in the same direction this result would have been equal 
to zero. In fact we could have written in that case g11 = pu11 and 
g:D = pux, which leads at once to the cancellation of the two terms in 
the bracket. In relativistic mechanics, nevertheless, we have already 
seen in equations (35.1) and (35.2) that we can have tnomentum at 
right angles to the direction of motion in the case of a stressed medium. 
Indeed, in relativistic mechanics the relation of the stress to the 
integrand in (38.17) is given by equation (38.14) already obtained 
above 

Hence in relativistic mechanics, owing to the lack of symmetry of the 
components of stress t'l1, we must conclude that the angular momen
tum of a stressed body can in general be changing with the time, even 
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when it is in a steady state of motion in a straight line; and an 
external turning moment can be necessary in order to produce this 
change in angular momentum and maintain the body in its steady 
state of motion. 

(c) The right-angled lever as an example. The apparently paradoxi
cal case of the stressed right-angled lever affords an interesting 

4-------+ 
8 c 

0 

A Fi 
FIG. 3 

example of the above conclusion that a turning moment may be 
necessary to maintain a stressed body in a uniform state of trans
latory motion. i" Consider a right-angled lever as shown in Figure 3, 
with a pivot at the corner B and opposing forces F1 and F2 at the two 
ends A and 0. Let the lever be stationary with respect to a system 
of proper coordinates 8°, the two lever arms being equal in this 
system of coordinates 

lo _ zo 
1- 2 

and tho two forces also being equal 
Fo_ Fo 
1- 2' 

Let us now consider the lever as it appears using a new system of 
coordinates S with respect to which the lever is lll£)Ving in the x-direc
tion with the velocity V. Referred to this new system of coordinates 

t Lauo, Vcrh. d. Dcut8ch. Plll!JB. Gca. 13, 518 (1911). 
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the length Zt of the arm which lies parallel to the y-axis will evidently 
be the same as in system S0 

Zt = l~, 
but the other arm which lies parallel to the direction of motion will 
have ·the shorter length in accordance with the Lorentz contraction 

l2 = Z~ ~(1-V"jc2). 
Furthermore, in accordance with our transformation equations for 
force (25.3), we shall have for the forces acting at the two ends 

~=F~' 

and F~ = F~ ~(1-V"frl·). 
With the help of these values for the forces and lever arms we can 

now calculate for the turning moment acting on the lever around the 
pivot B 

F1 l1 -F2 l2 = F~l~-Fglg(1-V2jc2) = F~l~V2jc2 = ~l1 V2jc2
• 

Since the lever is obviously not rotating about the pivot B when 
looked at either from the point of view of system 8° or 8, we are thus 
led to a simple example of a stressed body in uniform translatory 
motion which nevertheless needs a turning moment to maintain this 
state of motion. 

This result is, however, in entire agreement with the conclusions 
reached in the preceding section, since we can eaaily show that the 
angular momentum of the system is indeed actually being increased 

. by a flow of energy into it at exactly the rate demanded by this turn
ing moment. Since the force~ is doing the work~ V per second at 
the point A, a stream of energy of this amount is evidently continu
ously entering the system at A and flowing out through the pivot 
at B, where an equal and opposite force is acting. In accordance then 
with our ideas as to. the relation of mass and energy, we hence have 
the mass .1i;_ Vjc2 per second entering the system at A and are thus 
increasing its angular momentum at the rate 

v V2 

1;_ 2 Vl1 = ~ l1 2 . 
c c 

This, however, is the very result which was found above for the 
turning moment acting on the lever and we thus have the entire 
resolution of any apparent paradox. 

(d) The complete static system. The complications, which can arise 
in the case of the uniform translatory motion of a stressed body, as 
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just illustrated by the right-angled lever which was acted on by a 
turning moment and yet did not turn, are much reduced if we con
sider the complete static system involved. In the above example 
this would mean the considemtion of the stressed lever together with 
the housing which carries its pivot and carries the supports for the 
springs that can be thought of as exerting the forces ~ and F2 on 
its two ends. And in general we shall understand by a complete 
static system, an entire structure which can remain in a permanent 
state of rest with respect to a set of proper coordinates S0, without 
the necessity for any forces from the outside. 

In the first place, since such systems will evidently remain in a 
state of uniform translatory motion with respect to any system of 
Lorentz coordinates S, without the application of forces from outside, 
it is evident that no turning moment is necessary for their steady 
motion and in accordance with (38.16) that their angular momentum 
as a whole is not changing with the time. 

In the second place, we can demonstrate with the help of a certain 
amount of calculation that the expressions for the mass and momen
tum of such complete systems reduce to a very simple form. This we 
shall now show. 

With respect to a set of proper coordinates S 0, we can write the 
equations of tnotion (36.6) for the system in the form 

8P?1 + ag~ = o (38.18) 
ax1 ot ' 

and since the velocity of all parts of the system is zero in these 
coordinates, the densities of momentum g2 will everywhere have the 
constant value zero in accordance with (36.5), so that we can rewrite 

this in the form ~P?J = op9x + ()p?u + ap~ = O. (38_19) 
ax1 ox &I.J oz 

Let us now integrate this expression over a volume which is bounded 
on one side by a plane perpendicular to the x-axis, that cuts through 
the system at some arbitrary point, say x', and is completed by any 
surface whatever which lies entirely outside the system. We then have 

If I (a:!'+~·+ U:!·) dxdydz 

=I IIP~xl~' dydz +I I IPYvl~' dxdz +I I IP?zl; dxdy 

= 0, (38.20) 
31iD5 .11 

(J 
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where the limits of that part of the integration which has been per
formed are denoted by x, x', eiN. Since, however, all these limits 
except x' lie outside the system itself, the ·'stresses' p~ will all be 
zero at the limits except for Pfa: on the surface x = x', and (38.20) 
will then reduce to 

JJ ptdydz = 0 (38.21) 

over a plane which cuts through the system at any arbitrary point 
perpendicular to the x-axis. Multiplying this by dx and integrating 
over the whole system we then obtain the useful result 

J J J p~ d!xdydz = 0, 
or in general J JJ p~dxdydz = 0, (38.22) 

since the plane cutting the system can be taken perpendicular to 
any one of the three axes. 

This result now permits us to obtain the desired simple expressions 
for the mass and momentum of the system as a whole when referred 
to any set of coordinates S. For simplicity let us take the system as 
moving with respect to S in the x-direction with the velocity u. We 
can then arrive at its total mass by integrating the expression for the 
density given by (36.4) over the whole volume. We obtain 

m = J p dv = J Poo+P~u2Jc' ...j(l-u2jc2) dvo, 
1-u2fc2 

(38.23) 

where we have substituted for the element of volume dv in terms of 
the element of proper volume dv0, with the help of the Lorentz con
traction. Noting (38.22) this evidently gives us the simple result 

m = J Poo dv0 = mo , (38 24) 
...)( 1-u2Jc") ...j( 1-u2jc2) · 

where m0 is the rest-mass of the system . .And carrying out similar 
integrations, using the expressions for momentum deJ+Sity given by 
(36.5), we at once obtain for the total momentum of the system the 
components 

G mo 
aJ = ...j(I-uZfc2) u (38.25) 

Hence for a complete static system the expressions for mass and 
momentum reduce to the same simple form that we originally found 
for a particle, and there are no complexities which would result from 
components of momentum not parallel to the velocity. Moreover, if 
we act on such systems with external forces which exert no turning 
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moment, but merely produce what may be called a quasi-stationary 
adiabatic acceleration that leaves the internal condition unchanged 
from the point of view of a local observer travelling with the system, 
we can then apply the previous dynamics of a particle to the pheno
mena. 

Vice versa this last result now permits us to regard the mechanics 
of a particle acted on by external forces as a special case of the 
mechanics of a continuous medium, if we treat the particle as a 
complete static system too small to be acted on by a turning moment 
and with an internal state which remains unchanged from the point 
of view of a local observer. This conclusion is satisfying as an indica
tion of the logical coherence of our whole system of mechanics. 

It may also be noted in closing that an extension of the conclusions 
as to the boha vi our of a complete static system to include electrical 
as well as mechanical phenomena may be regarded as explaining 
the result obtained in the well-known Trouton-Noble experiments, 
which demonstrated that there is no tendency for a charged con
denser •moving with the earth to turn about its axis. Calculation 
shows that the field of a charged condenser which is in motion 
should exert a tmning moment on the material parts of which the 
system is constructed, and a somewhat lengthy and complicated 
computation is necessary to show that this turning moment is 
just suflicicnt to account for an increase in the angular momentum 
of those stressed Inaterial parts which is ocoun·ing, even when the 
condonsor is not tw.·ning, on account of a transverse energy flow. 
If, however, wo regard the field and the material parts of the con
denser tu.kcn together as forming a complete static system we can at 
once conclude, in accordance with the previous discussion, that the 
Rystem as a whole can be in uniform translatory motion without 
exhibiting any tendency to turn about its axis. This conclusion and 
tho cxperimcnta.l findings are of course both what would be directly 
demanded by the first postulate of tho special theory of relativity. 



IV 

SPECIAL RELATmTY AND ELECTRODYNAMICS 

Part I. ELECTRON THEORY 

39. The Maxwelt .. Lorentz field equations 
In the present chapter we shall consider the relations between 

special relativity and electrodynamics, bashig the treatment in Part I 
on the point of view of the Lorentz electron theory and in Part II on 
a macroscopic point of view. · 

Since the classical Newtonian mechanics was developed on the 
tacit basis of the simple Galilean transformation equations (8.7) for 
space and time, while the relativistic mechanics of Einstein, on the 
other hand, was explicitly developed on the basis of the Lorentz 
transformation (8.1), there are very conspicuous differences in the 
nature of the two resulting theories, as has been shown in the pre
ceding chapter. In the case of electrodynamics, however, the intro
duction of special relativity produced a much smaller change in 
theory, since the development of electrodynamics in the hands of 
Lorentz had already actually led the way to the transformation 
equations now associated with his name. 

On account of this small divergence between classical and rela
tivistic electromagnetic theory, we can now take as a postulatory 
starting-point for relativistic electrodynamics the well-known Max
well-Lorentz field equations which we write in the vector form 

divE= p, (39.1) 

div H = 0, (39.2) 

1 BH 
ourl E = ---, (39.3) 

c at 
1 BE u 

curl H =- -+p-, 
c Bt c 

{39.4) 

where E and Hare the electric and magnetic field strengths, pis the 
density of electric charge, u the velocity with which it is moving, and 
c the velocity of light. 

These equations were proposed by Lorentz as a basis for electro
dynamics long before the modern development of quantum mechanics, 
and assume possibilities of attaching significance to microscopic 
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quantities not in accord with present modes of thought. Thus the 
quantities p and u occuring in these equations were regarded as giving 
the microscopic density of charge and velocity, specified when 
necessary even for points within the electron, and E and H were taken 
as the forces on unit charge and unit pole even under conditions 
where no actual experiments with existing test charges and poles 
could be conceived for measuring their values. 

This difficulty with the Lorentz axioms, arising from the classical 
microscopic point of view adopted in their development, is unfortu
nate. Nevertheless, at the time of writing no completely satisfactory 
quantutn electrodynamics appears to have been developed, and in 
any· case we can be sure that the conclusions drawn from the Lorentz 
starting-point will have much in common with later developments. 
Furthermore in Part II of the present chapter we shall give attention 
to a phenomenological treatment of the electrodynamics of ponder
able bodies, which will be more closely analogous to the entirely 
macroscopic treatment which we were able to give to mechanics in 
the preceding chapter. 

Several well-known conclusions that are customarily drawn directly 
from the Lorentz field equations may be mentioned before pro
ceeding. 

If we take the divergence of (39.4) and introduce (30.1) we at once 
obtain 

:: + div(pu) = 0, (39.5) 

since div curl His of course equal to zero. This equation of continuity 
for the density of electric charge is an expression of the fact of the 
conservation of total charge. 

Secondly, if we consider the field equn.tions (39.1-4) for the case of 
free spaco with p = 0, wo can easily transform them with the help 
of equation (13) in Appendix II into the form 

o2E 82E 82E 1 o2E 
ox2 1- O?.J2 + oz2- C2 ot2 = o (39.6) 

and (39.7) 

which are the well-known wave equations for the propagation of 
electromagnetic disturbances in freo space with the velocity c. 

Finally, if wo introduce the so-called scalar potential~ and vector 
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potential A with the help of the equations 

E = -gradcfo-! oA (39.8) 
c at 

and H = curiA, (39.9) 

it can be shown that these new quantities can be taken so as to satisfy 
the differential equations 

o2cfo o2cfo o2cfo I o2cfo -
ax2 + ay2 + az2- 02 atz - -p 

(39.10} 

o2A o2A o2A 1 82A u 
and ox2 + &y2 + 8z2 -c2 at2 = -pc. (39.11) 

These then have the well-known solutions 

cfo = 2_ J [p] dv 
4rr r 

(39.12) 

and A=_!_ J [eu] dv, 
4rrc r 

(39.13) 

where the integration is to be carried out over the whole of spltce, r is 
the distance from the point of interest to the element of volume dv, 
and the square brackets signify that the value of the quantity inside 
is to be taken at a time r/c earlier than that of the instant of interest. 
These results taken with (39.8, 9) thus provide a complete solution 
for the field in terms of the distribution of charge and cmTen~. 

40. The transformation equations for E, H, and p 

The postulatory basis for electrodynamics provided by the field 
equations (39.1-4), which apply in the first instance to some particular 
set of coordinates, must now be extended in such a way as to include 
the essential ideas of the special theory of relativity. To do this we 
must require in accordance with the two postulates of relativity firstly 
that equations of exactly the same form as the above shall correctly 
describe electromagnetic phenomena in all sets of coordinates in 
uniform relative motion, secondly that the transformation equations 
for the kinematical quantities occurring in the above equations shall 
be those already provided by the Lorentz transformation, and thirdly 
that the equations for transforming the newly introduced electro
magnetic quantities E, H, and p from one set of coordinates to a 
second set, moving relative thereto, shall be entirely symmetrical 
with those for the reverse transformation except for the sign of the 
relative velocity between the two sets of coordinates. 
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Considering the transformation from an original set of coordinates 
S to a second set S' moving relative thereto with the velocity V, 
taken for simplicity in the x-direotion, the foregoing conditions can, 
as a matter of fact, all be satisfied by taking the Lorentz transforma
tion equations (8.1) for the coordinates x,y,z,andt, together with 
(10.1) for the components Uoz:, u11, and u. of the velocity u, and by 
taking for the transformation of the electromagnetic quantities the 
equations proposed by Einstein 

Ex= E~ 

E~+ V H; 
e 

Ev = .J(l- V"fc2) (40.1) 

(40.2) 

(40.3) 

By substituting these transformation equations together with those 
for coordinates and velocities, the field equations (39.1-4) are indeed 
found by a somewhat lengthy calculation to be unchanged in form 
whon oxpresAccl in tho primed instead of in the unprimed variables. 
FlU'thcrmore, on solving the above equations for the primed in 
terms of unprimod quantities, the equations for the roverse trans
formation urn also found to be of tho satne form except for tho sign 
of V. Hence these equations do satisfy the requirements of relativity. 

As a result of the combined aJJpearance of components of E' and 
H' in tho transformn,tion equations (40.1, 2) for both E and H, it is to 
be noted tlmt the separation of an electromagnetic field into electric 
and magnetic portions is dependent on the state of motion of the set 
of coorilinates which is being used. A field which would be regarded 
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·electrostatic in system S' would have magnetic components 
L S . 

. .uould also be noted that the transformation equation for 
e1ectrio density (40.3) is such as to make total electric charge an 
invariant, since by the introduction of (11.1} this equation can be 
rewritten in the form p .J(1-u'2fc2) 

p' = ..J(1-u2fc2). 
(40.4) 

This shows that the measurements of electric density in· the two 
systems are inversely proportional to the factors which determine the 
Lorentz contraction, and hence that the measurements of a total 
charge e will agree giving us 

e = e'. (40.5) 

This is in accordance with the idea that electric charge is essentially 
a quantity having discrete magnitude to be determined by counting 
numbers of electrons and protons, and hence necessarily invariant 
for different observers. Conversely, of course, this invariancc could 
be used to establish ( 40.3). 

41. The force on a moving charge 
In addition to the four field equations, the Lorentz electromagnetic 

theory as originally developed contained as part of its postulatory 
basis a fifth equation for the force acting on a moving charge of 
electricity. It is, however, a gratifying result of the present method 
of development that this fifth fundamental equation can be derived 
with the help of the transformation equations for force obtained from 
the mechanics of a particle, and hence does not have to be taken as 
a separate axiom. t 

Consider a chargee moving with respect to system S with any given 
velocity V, and for simplicity choose the direction of axes inS in such 
a way that the motion h. in the x-direction, giving us 

'Ux = V u 11 = 0 'U.z = 0. ( 4.1.1 ) 

To calculate the force in system S acting on this moving charge, let 
us now first consider the force acting on it in a second system of 
coordinates S', which is itself moving relative to S with the same 
velocity V as the charge e. Since the charge is at rest in this new 
system S' the force acting on it in these coordinates will be imme
diately given as the product of charge by electric field strength, 

t Tolman, Phil. Mag. 21, 296 (1911). 
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owing to the definition of this quantity as the force acting on unit 
stationary charge, so that we can write at once 

F~ = e'E~ 

F~ = e'E~ 

F' 'E' s:: = e z• 

(41.2) 

Introducing the transformation equations for force (25.3), for the 
in variance of electric charge ( 40.5), and for the c01nponents of electric 
field strength (40.1) and noting the values for Ua:, u11 , and 'Uz given by 
(41.1) we then immediately obtain 

Fx = eEx 

F, = e(E.- 'UzoH,) (41.3) 

F.= e(E.+ 'Uz~)· 
Removing now the specialization involved in choosing the x-axis 
parallel to the motion, we can then Wl'ite in general for the force 
acting on a charge e moving with the velocity u the vector expression 

F = e(E+~[uxH]), (41.4) 

or for the force per unit charge 
. I 

F = E+-(uxH], (41.5) 
c 

which is the desired fifth fundamental equation of the Maxwell
Lorentz theory of electromagnetism. 

42. The energy and momentum of the electromagnetic field 
With the help of the above equation and the four field equations, 

expressions can be obtained by well-known methods for the energy 
and mon1entum resident in an electr01nagnetic field. The results are 
so important for the theory of relativity as to warrant tho presenta
tion of the calculations by which they are obtained. 

In accordance with equation (41.5) the component of force acting 
ou u. rnoving charge due to the magnetic field lies at right angles to 
the direction of motion. It hence does no work on the charge, and 
we can write, for the total rate at which the electromagnetic field is 
doing work on the charged material inside a given boundary, the 

expression dWJdt = J (p~. E) clv, (42.1) 
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where p is the density of electric charge, and we shall regard the 
integration as taken over a definite .fixed volume in space. 

This result can be changed, however, for our present purposes with 
the help of the field equations, by substituting for pu the value given 
by (39 . .4), and by adding to the integrand a quantity which is evidently 
zero in accordance with (39.3). We can then rewrite (42.1) in the form 

d_W =- J ~(E2+92) dv -c J (H·curlE-E·curlH) dv, (42.2) 
dt . 8t 2 

and by well-known rela tiona of vector analysis ( eq nation 17, Appendix 
IT) this can be rewritten in the form 

d_W = - f ~(E2+H2) dv -c f [ExH] du, 
dt m 2 n 

(42.3) 

where the last term is integrated over the surface surrounding the 
volume under consideration and the subscript n denotes the outward 
normal component of the vector in question. 

This last equation has a simple interpretation if we include the idea 
of the conservation of energy as part of our postulatory basis. We 
must then regard the rate at which work is being done on the material 
within the. boundary as equal to the rate at which energy is being 
abstracted from the electromagnetic field. The .first term on the 
right-hand side of ( 42.3) can hence be interpreted as the rate of change 
in the energy of the electromagnetic field lying inside the volume 
under consideration, and the second term can be interpreted as the 
rate of flow of electromagnetic energy across the boundary of that 
volume. For the density of electromagnetic energy we can then 
evidently take the well-known expression 

E2+HB p = _ _;___ 
2 

and for the density of energy :flow, or Poynting vector, 

s = c[ExH]. 

(42.4) 

(42.5) 

Or, making use of the relations between mass, energy, and momentum 
discussed in § 27, we can write for the density of electromagnetic 
mass 

I E2+H2 

P = c2 2 ' 
(42.6) 

and for the density of momentum 

g = ![ExH]. 
c 

(42.7) 
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43. The electromagnetic stresses 
With the help of our fundamental equations we can jn addition 

obtain the known expressions of Maxwell for the stresses in the field, 
which will also he important for the theory of relativity. To do this 
we consider the effect of the electromagnetic field in changing the 
momentum of electrically charged n1atter instead of its energy as 
was done in the last section. 

In accordance with equation ( 41.5) we can write for the rate at 
which the electromagnetic field is changing the momentum of the 
charged material inside a given boundary, the expression 

~~=I p(E+~[uxHJ) dv, (43.1) 

whm·c we shall again regard tho integration as taken over a definite 
fixed volume in space. And substituting for p and pufc the values 
given by the field equations (39.1) and (39.4), this can be rewritten as 

cldG =I (EdivE+(ourlH)XH-! oE X a) dv 
.t c at 

-·- { (EdivE+(cm·lH)xH+~E x 8
H_! ~[ExH]) dv 

• c ot c ut 

which hy (39.3) and (42.7) becomes 

dl.G =I (EdivE+(curlH)xH+(curlE)xE- Bg) dv, (43.2) 
tl ~ 

where g is the density of electromagnetic momentum in the field. Or 
considering for specificity the component of momentum in the 
x-direction, and writing out in detail the values for the x-components 
of the vectors involved, this will give us after a somewhat long but 
stru.ight.for·ward transformation 

rf(/.1] '·-I[·~ -~(l!J2.-l!J2 -N':-'-H2 -ll2 -H2)+ ()(E. E -1-If. H)+ 
it •> ')· , X U ~ I .r. II Z ~y~ X Y X Y f .... c.l. ur 

+ ;~(~,Ez+HxHz)- a:;] dv. (43.3) 

'rhis result has a simple interpretation, however, if we now define tho 
stresses in the field as given in general by the symmetrical expressions 

Pu = -HEr-RJ-IO~+Hi-Hj-Hi) 

Pli = -(ElE1+Hilf1), (43.4) 



92 SPECIAL RELATIVITY AND ELECTRODYNAMICS § 43 

which will permit us to rewrite (43.3) in the general form 

dGi+ Jag, dv = - JJJ (&pi:D+ Op1.11+ 8pu) dxdydz, (43.5) & m ~ ~ & 

or, by performing a part of the integration, in the form 

dG, + I ag, dv 
dt at 

= - I J 1Pi.2:1~' dydz- I I lPivl~' dxdz- I I IPul:' dxdy, (43.6) 

where the limits of integration are denoted by x, X
1

, etc. These equa
tions show that the change in the total momentum, mechanical plus 
that of the electromagnetic field, inside the boundary may be 
calculated from the electromagnetic stresses at the surla9e as defined 
by (4:3.4). Furthermore the appropriateness of the name electro .. 
magnetic stresses for the quantities P1./ is now evident from the form 
of these equations. 

44. Transformation equations for electromagnetic densities 
and stresses 
We have thus obtained expressions in the last two sections for 

quantities which may be fittingly regarded as the density of electro
magnetic mass, density of electromagnetic momentum, and the com
ponents of electromagnetic stress. And since these quantities are all 
defined with the help of equations (42.6), (42.7), and (4:3.4:) in terms 
of the electromagnetic field strengths E and H, we can evidently 
obtain transformation equations from one set of coordinates to 
another with the help of the transformations (40.1) and (40.2) for the 
components of these two vectors. The calculations for doing this are 
somewhat tedious but perfectly straightforward. We obtain for the 
transformation from a set of coordinates S to a new set 8 1 moving 
with the relative velocity V parallel to the x-axis the expressions 

_ p' +P~ V2/c4+ 2g~ V jc2 
p - ---------·-----l-V2fc2 

(44-.1) 

_ (c2p'+P~x)Vjc2+(1+ V2fc2)g~ 
Ux- 1_ V2Jc2 (44.2) 

p 1 +p'V2+2g' V 
1)1 - :t;t X r=- 1::._ V2fc2 --· 

I 

PVII = Pw 

I 

Pva =Pya (44.3) 
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and the transformation equations for the remaining components can 
be obtained from the above on account of the symmetry in y and z 
and ofpii. 

It should be specially noted that these equations reduce to the same 
form as equations (36.3-5) for the analogous mechanical quantities 
if the new set of coordinates S' are specially chosen with a velocity 
V = u and the components of momentum g~, g;, and g~ are set equal 
to zero, as was the case for the proper coordinates used in the 
mechanical case, and can be shown to be of exactly the same form as 
the mechanical equations for the more general transformation here 
considered. 

45. Combined result of mechanical and electromagnetic 
actions 
In the preceding chapter we obtained in§ 38 expressions for the 

effect of mechanical actions in changing the mass (or energy) and 
momentum inside a given fixed spatial volume, and in the present 
chapter have obtained in§§ 42, 43 analogous expressions for the effect 
of electromagnetic actions in changing these same quantities. We 
may now consider the comparison and combination of the two kinds 
of effects. In doing so we shall distinguish between mechanical and 
electromagnetic quantities with the help of brackets carrying the 
subscripts (me) and (em) respectively, and for brevity we shall let 
the double occurrence of a subscript (j) in a given term denote 
as previously a summation over the three spatial coordinates x, y, 
andz. 

We can then write in accordance with equations (38.1) and (38.3) 
a.s expressions for the effects of mechanical action on the mass and 
momentum in a given spatial volume 

( 45.1) 

and 

f a J o at[gl],m: dv = - ax/Pii]me dv. (45.2) 

On the other hand, noting that the rate at which work is being done 
on matter is c2 times the rate at which its mass is being increased, we 
can write with the help of the equations given in§§ 42, 43 as expres
sions for the effects of electromagnetic action again on the mechanical 
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mass and momentum in a given spatial volume 

I ![P],., dv = - J {![Pl.,.+ a~}U;],.,} dv (45.3) 

and 

I :t[g;],., dv = - J { :t[g1],,, + a~}Pt;l.,.} dv. ( 45.4) 

Since in general there will be a simultaneous mechanical and 
electromagnetic action on mass and 1nomentum, we are now tempted 
to combine these equations by addition to obtain the total rate of 
change of these quantities. Before doing this, however, we must 
emphasize the very different character of the considerations by which 
we were led to the mechanical and to the electromagnetic equations. 

The mechanical equations were obtained from a macroscopic 
phenomenological point of view. The quantities p, g, and PiJ occurring 
in them are.all macroscopic in character and are defined with the help 
of equations (36.3-5) in terms of macroscopic quantities which could 
be directly measured by a local observer moving with the rna terial 
under consideration. Furthermore, the theoretical treatment for 
obtaining the equations of mechanics included no microscopic con
siderations, but depended on natural, although perhaps not always 
inevitable, extensions of conclusions drawn from actual macroscopic 
experiments on the conservation of mass and momentum, on the 
postulates of relativity and on the phenomenological behaviour of 
elastic bodies when at rest. Hence we can expect the treatment to be 
relatively unaffected by the development of quantmn mechanics. 

On the other hand, our development of electromagnetic theory has 
so far been based on the microscopic point of view adopted in the 
classical electron theory of Lorentz. The quantities (p] , [p] , 

me em 
[g]em' and [Pii]em occurring in (45.3, 4) are microscopic in character 
and are regarded as referring to an exact point in space and instant 
in time even under conditions when no conceptual experiment can be 
devised for determining their values. Hence we must expect the 
treatment that we have given to be altered by the development of 
a satisfactory quantum electrodynamics, although many of the 
results when applied to macroscopic phenomena will certainly be 
unchanged. 

The macroscopic character of the quantities in (45.1, 2) and the 
microscopic character of those in (45.3, 4) makes the immediate 
addition of the two kinds of action on mechanical density and 
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momentum logically unsound. If, however, we assume that a correct 
process of averaging to obtain macroscopic instead of microscopic den
sities would leave the electromagnetic equations (45.3, 4) unaltered 
in form, we should then feel justified in adding the two kinds of action. 
With some change in order we should thus obtain 

J(a a a a } 
Bt[p ]me+ alP ]e7n + ax:J [g:J]me -f- ax/g:l]em dv = 0 (45.5) 

and 

(45.6) 

Or, combining mechanical and electromagnetic quantities which are 
of the same nature, and changing to the differential form, we could 
write 

(45.7) 

and 

agi+?Pii = 0 (45.8) 
at ax:J 

for the dependence of the total densities of mass and momentum on 
the time. These expressions are of exactly the same form as our 
original equations of continuity and motion (36.6, 7) for the purely 
mechanical case. 

46. Four-dimensional expression of the electron theory 
(a) The field equations. The field equations (39.1-4) on which the 

electron theory is based can readily be expressed in the four-dimen
sional language which we have previously used for the space-time 
continuum. This is often very advantageous. 

To obtain such an expression we shall again make use of the 
Galilean coordinates originally given by (20.2) 

x1 = x x2 = y x3 = z x4 = ct, 
corresponding to the simple formula for interval 

ds2 = -(dx1)2-(dx2)2-(dx3)2+(flx4)2, 

(46.1) 

( 46.2) 
which is always possible in the flat space-time of special relativity, 
and shall introduce two vectors on which the analysis will bo made 
to depend. 

The first of these is the so-called cUITent vector JP., which can be 
defined in general for any system of coordinates by the expression 

Jp. =Po dxP.jda, (40.3) 
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where p0 is the proper density of electric charge at the point of interest 
as measured by a local observer a.nd dxf.t.jd8 is its generalized velocity. 
In the special coordinates ( 46.1 ), the components of the current 
vector evidently become 

( 
dxl dx2 dx3 dx') 

J~ = Po d8, Po d8 ' Po d8 ' Po d8 

( 
dx4 dxl dx' dx2 dx" dx3 dx4) 

= Po da dx'' Po dB dx'' Po dB dx'' Po dB 

( 
'Ua: 'Ull 'Uil ) 

:c: pc, Pc' Pe' P , (46.4) 

since . dsfdx' = ..J(1-u2je2) (46.5) 

is the factor for the Lorentz contraction of the moving charge. 
The second vector to be introduced is the so-called generalized 

potentia[, cf>P', which can be defined by taking its components in the 
coordinates ( 46.1) as given by 

¢P' = (A3:, A11, Ae, cp) (46.6) 

in terms of the ordinary vector potential A and scalar potential 
cp previously introduced by equations (39.8-11). By applying the 
Lorentz transformation to the components of this vector as given by 
(39.12, 13}, it can be shown that cpP. will depend on A and cp in the way 
given in all systems of coordinates of the type (46.1). 

With the help of the covariant associate cp,.,_ of this generalized 
potential we may also define the so-called electromagnetic tensor 
F14v by the tensor equation 

F = ~- 8«/>v. (46.7) 
J'V (}xV 8XI-' 

In the special coordinates ( 46.1 ), the covariant expression for the 
potential will have, in aacordance with (20. 7) the components 

cp"' =(-Ax, -A.11, -A,~, cp) (46.8) 

and the components of Fpv in terms~ of the electric and magnetic 
field strengths E and H are easily calculated from (39.8, '9) and found 
to have the values 

FI'V = 0 H,~ -Hu Ex rv -H 0 H:c Eu .I (46.9) 
Ifv -H 0 E X z 

-E -E'II -E,~ 0, J-L ~ 
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while in accordance with (20.8) its contravariant associate has the 
components 

HIIJ -H71 -E:x: 
0 H~ -Ey 

-H 0 -E :X: 1/J 

(46.10) 

fL E:x: E11 EIIJ 0. 

With the help of the quantities which we have thus defined, the 
content of the Lorentz field equations can now be expressed in very 
simple form by the two equations 

(46.11) 

and (46.12) 

The first of these equations is easily seen from the definition of ~v 
given by (46.7) to be an identity. It is a tensor equation true in all 
systems of coordinates if true in one [see equation ( 41), Appendix III]. 
The second equation must be regarded as an independent postulate 
and, since 8FP.vjaxv is the form assumed in our present simple coordi
nates by the contracted covariant derivative of FP.v, may also be 
regarded as expressing a tensor relation. 

Assigning toft, v, and a the different values 1, 2, 3, 4, and introduc
ing the components of JP., F~-'v' and FP.v which are given above by 
(46.4, 9, 10), it is readily shown that the first of these equations 
(46.11) is equivalent to the set of equations 

~!!_"!+?H11 -f- 0~ = 0 (46.13) ox 8y oz 
and BE:. BEy _ 1 BH:x: -------, ay az c at 

BE:e oEe _ 1 oH11 
az - ax - - c -at ' (46.14) 

BEy BE~_ 1 8~. -------, ax ay c at 

while the second equation (46.12} is equivalent to 

BE:x: + 8E11 + oEilJ = 
ox Oy oz p 

(46.15) 

3696.11 H 
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~-~ = !_ 8Ea:+P 'tta:, 
8y 8z () f)t () 

oH:» ;._ aH; = ! 8E11 + P u11 , 

8z 8x () 8t () 
(46.16) 

~-aHa:=! BEs+P u •. 
ax a11 o Ot c 

These equations are, however-in scalar form-the four field equa
tions (39.1-4) on which the Lorentz electron theory is founded. The 
two equations ( 46.11, 12) thus furnish an extremely satisfactory start
ing-point for electromagnetic investigations. 

(b) Four-dimensional expression of force on moving charge. In 
addition to this possibilitY of expressing the Lorentz field equations 
in :four-dimensional language, it should also be noted that the 
expression for force (41.4),' given by the :fifth fundamental equation 
of the Lorentz theory, also has the correct four-dimensional character. 
This is most easily made evident by considering the possibility of 
constructing a contravariant vector FP. with components which are 
related to the ordinary components of force and rate of energy change 
in accordance with the scheme 

1 dE) 
J(1-utjc?.) edt ' 

(46.17) 

As a matter of fact, substituting from the fifth fundamental 
equation (41.4), the values for the components of force Fx, F11, and~ 
acting on a charge e moving with the velocity u, and for dE jdt the 
work done by them, it is easily found with the help of our trans
formation equations (40.1, 2) and (40.5), that the quantities given by 
( 46.17) do transform as the components of a contravariant vector. 
In accordance with our previous discussion of equation (28.12) 
this agrees, however, with a necessary property of forces of any 
origin. 

Furthermore, substituting these values for the components of 
FP. into our previous equation (28.10) for the force acting on a moving 
particle 

(46.18) 
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we can readily obtain the expected results 

!L(I::O:./c•)} = e{E+~[uxHJ} 
and ;t{.J(l~~:/c•)} = e(E · u). 

(46.19) 

(c) Four-dimensional expression of electromagnetic energy-momen
tum tensor. Finally, it should be noted that we can evidently 
construct from the electromagnetic stresses P-s; and the densities of 
electromagnetic mass p and of momentum g,, an electromagnetic 
energy-momentum tensor [TP-"]em entirely similar in form to our 
previous mech~cal tensor [T~'"]me, since the transformation equa
tions (44.1-3) for the electromagnetic quantities are of exactly the 
same form as those for the corresponding mechanical quantities. 
This electromagnetic energy momentum tensor will then have 
the form 

[T~-'"]em := Px:r: . P:r:v PXIJ (ExH]a: 

'Pu:.c Pu11 Pv~ (EXH]
11 

(46.20) 

'Pzx p~ Pss [ExH].er 

(ExH]:r: (ExH]
11 

[ExH].: 
E2+H2 

2 

where the Maxwell stresses have the values previously given by the 

formulae Pii = -n(Ei-EJ-~+Hi-H~-Hl), (46.21) 

'Pii = -(EiE3+IitH3). 

And if we permit the possibility discussed in§ 45 of combining the 
corresponding mechanical and electrical quantities, it is evident 
that the equations of motion and continuity (45.7, 8) for a combined 
mechanical and electrical system could then be expressed by the 
four-dimensional equation 

BT~-'" a . 
··---- .. -· = -{[T~'"] +[T~'"] } = 0. ( 46.22) 
Ox" fJxv me em 

47. Applications of the electron theory 
The foregoing completes the discussion of the relations between 

special relativity and electrodynamics from the point of view of the 
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electron theory, in so far as will be necessary for our further work. 
The treatment shows that the Lorentz electron theory can be taken 
over into special relativity with almost no alteration, beyond the 
very agreeable one that the fundamental equations can now be taken 
as valid with respect to all sets of axes in uniform motion, and not 
merely with respect to axes at rest in a supposi.tious ether. This 
makes it possible to continue to use most previous applications of the 
Lorentz theory, in so far as they are not modified by quantum theory, 
and we shall not give special consideration to them here. 

One of the most important applications of the Lorentz theory lies 
in the possibility of deriving Maxwell's electromagnetic field equa
tions for ponderable matter from a consideration of the average 
behaviour of the electrons which such matter may be assumed to 
contain. The essential point of the treatment consist~ in relating the 
'macroscopic' quantities E, D, H, B, J, and p of the Maxwell theory to 
the appropriate averages which can be obtained from the 'micro
scopic' quantities E, H, u, and p of the electron theory, and then 
showing that the 'macroscopic' quantities do satisfy Maxwell's 
equations for matter. This was successfully caiTied out by Lorentz 
himself for the case considered by Maxwell of matter at rest, while 
for the case of matter in motion treatments agreeing with the special 
theory of relativity have been given by Bornt and by Dallenbach.:f: 

For the purposes of this book, however, we shall omit any detailed 
consideration of this possibility of basing the electromagnetic equa
tions for ponderable matter on those of the electron theory, and 
shall now tum to Part II of the present chapter in which these equa
tions are treated from a more strictly phenomenological point of 
view. Such a treatment will be more in keeping with that which we 
were able to give to the mechanics of ponderable matter, and will 
avoid the uncertainties which still obscure the applications of rela
tivity in the microscopic field of quantum mechanics and quantum 
electrodynamics. 

t Born, Math,. Ann. 68, 526 (1910). 
:1: DA.llenbach, Ann. der Physik, 58, 523 (1919). 
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Part II. MACROSCOPIC THEORY 

48. The field equations for stationary matter 
In order to treat the gross electromagnetic behaviour of ponder

able matter we shall follow the method of Minkowski, t by :first assum
ing in accordance with available experimental information that the 
behaviour in the case of stationary matter is correctly described by 
Maxwell's theory, and then drawing conclusions as to the behaviour 
of moving matter with the help of the theory of relativity. Since the 
results of any electromagnetic experiment made on stationary matter 
should be describable in terms of the spatial and temporal behaviour 
of identifiable objects, and the special theory of relativity has pro
vided a unique method for translating the description of such 
behaviour to a new system of coordinates in which the matter would 
have any desired uniform velocity, the proposed method of attack 
should lead unambiguously to an electromagnetic theory applicable 
to any body in a state of uniform motion. In addition we shall find 
that the theory we obtain would also be rigorously applicable to 
a system of bodies with different uniform velocities provided they 
are separated by free space. For more complicated kinds of motion 
the theory is presumably at least a first approximation. 

In accordance with Maxwell's theory, the field equations for 
stationary matter connecting the electric field strength E, electric 
displacement D, magnetic field strength H, and magnetic induction 
B, with the densities of charge p and conduction current J are given 
by the vector expressions 

divODO = po, 

div0B0 = 0, 

curlOEO = _! f:JBO' 
C f:Jt0 

curloHo = ! {ano + Jo) 
C ()tO ' 

(48.1) 

(48.2) 

(48.3) 

(48.4) 

where we have attached the superscript 0 to the quantities involved 

t Minkowski, Math. Ann. 68, 472 (1910). 
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in order to int;licate that they are measured with respect to a proper 
system of coordinates so in which the matter is at rest. 

The quantities occurring in these equations are to be regarded a.s 
m.a.oroscopically determinable. Thus EO, no, aol and B0 are the forces 
per unit of electric charge and per unit of magnetic pole strength as 
they would be determined by considering the limit approached in 
ideM but nevertheless conceivable· macroscopic experiments to be 
carried out with obtainable test charges and poles inserted at the 
point of interest into prescribed longitudinal or transverse crevasses 
cut in the matter, and po and JO are to be regarded as the macroscopic 
densities of charge and cunent for volume elements that ca.n be 
treated as infinitesimals although la.rge compared with intermolecular 
distances. Hence in so far as we restrict ourselves to problems which 
do not involve too small intervals of space or time our present treat
ment will be una.ffooted by the quantum·mechanical considerations 
which should be introduced into a correct microscopic treatment. 

49. The constitutive equations for stationary matter 
The above field equations are not sufficient in number to give a 

complete determination of electromagnetic phenomena but must be 
supplemented by further relations connecting the quantities em
ployed with the constitution of the material involved. In order not 
to introduce too great complication, we shall take these :furthet• 
relations as given by the familiar simple equations of Maxwell 

no= EEO so= JLHO JO = aEO, (49.1) 

where the dielectric constant E, the magnetic permeability p., and the 
electrical conductivity a are to be regarded as known functions of the 
position and time. 

Although the field equations (48.1-4) are regarded as holding in 
general for inhomogeneous and anisotropic bodies, the further results 
which depend on these particular constitutive equations will be 
limited to isotropic matter in the absence of so-called impressed 
electrical forces of an extraneous-for example thermal or chemical
nature. 

50. The field equations infour-dimensionallan~ua~e 
In our previous applications of the special theory of relativity to 

mechanics and to electron theory, we have first developed the treat
ment in terms of the coordinates (x, y, z) and (t) corresponding to 
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three-dimensional space and a separate one~d.imenaional time, and 
then followed this by a translation or parallel treatment in terms of 
the coordinates (xt, x2, x3, x') corresponding to a four~dimensional 
space-time continuum. The simplicity and appropriateness of the 
four-dimensional method has thereby been made evident. In our 
present application to the complicated electrodynamics of ponderable 
matter, we shall from the start take advantage of this powerful 
method, by first formulating the fundamental equations in four
dimensional language, and then translating results back into the 
older language when desirable. 

To carry this out we now return to our earlier space-time coordi
nates {20.2) (50.1) 

coiTesponding to the simple form (20.1) for the element of interval 

ds2 = -(dxl)2-(dx2)2-(fk3)2+(dx')2, (50.2) 

and introduce for treating the electrodynamics of ponderable matter 
two anti-symmetric electromagnetic tensors FP." and HP.", which we 
define by stating that their components in proper coordinates 
(xfi, x~, xg, xt), with respect to which the material is at rest, are given 
in terms of the quantities appearing in the Maxwell field equations 
(§ 48) by the expressions 

FP." = 0 BO c -Bo 
71 

-Eo a; 

l>V -Bo 0 ~ -Eo z 71 (50.3) 
BO -m 0 -Eo 

71 :1) " EO EO "l'IO 0 fL X v J:!)z 

and 
HP." = 0 JfO z -Ho 

71 
-Do 

:1) 

v -Ho 0 no -Do 

1 
z X 11 (50.4) 

HO -Ho 0 -Do v :1) a 

no Dg no 0 fL X a 

together with the current vector Jp. whose components in proper ooor-
dinates are given by 

(JO JO JO p•). {50.5) Jp. = ex' v z -, -, 
c c 

With the help of the tensors, which we have thus defined, we oan 
now express the content of the originally postulated Maxwell field 
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equations by the simple tensor equations 

8F1w + Bl'v~ + ~~E = o (50.6) 
axu oxl-' axv 

and oH~-'vjaxv = JP.. (IS0.7) 

Since these are tensor equations, in the form coiTesponding t.o nny Ret 
of rectangular coordinates of the type (50.1), they 'vill he true in all 
suoh sets of coordinates if true in one. In proper coorclinll.tcA, how· 
ever, their identity with Maxwell's equations can readily ho V("rifiPd 
from the definitions we have given for the tensors involved, (tl0.6) 
being equivalent to (48.2) and (48.3), and (50.7) to (48.1) n.nd {4N.4). 
Hence we have thus ·obtained a simple expression for the 1it-ld 
equations in a. form valid for matter in uniform motion as wc~ll u.s for 
matter at rest. 

These equations ~ also be regarded as applying to tho cn.t=tc of 
several bodies moving with different uniform velocities and Rcpnrn.tN:l 
by free spaoo, since the tensors FP.v, HP.v, and Jp. can be tn.km1 iuRidu 
each of these bodies as reducing to the forms (50.3-5) when rt.•fcrrt'd 
to proper coordinates moving with the material, thus gunrantt.•uing 
that Maxwell's equations for stationary matter will hold for enoh hucly. 

51. The constitutive equations in four-dimensionallunguuJte 
The . co~titutive equations (49.1) connecting displaePnH•nt, 

magnetization, and current with the properties of tho ntn.torinl c•nn 
also easily be expressed in four-dimensional language with thn ht•lp 
ofthe~requa~onst 

dxr:t. fkr:t. 
Hrx.fJ di = eF a.p di ( 61 . 1) 

(gaJJF,.a+Uayl'ap+UataFp,) ~a. 

( H dxcx = IL Yr:tP ,a+uayHap+UcxaHp,) d1J (fi 1.2) 
and Ja. J; dxfJ dxa: u dxfJ 

- ~fii d;' = o(JpyFye~ da ~ (51.3) 
where E, f.L, and u are the diel tri 
and conductivity of the ma eo. c constant, magnetic pcrtneahility, 
:moving with it, and Q:ea. tena.l as measured by a locu.l o hscrvcr 
the matter at th . /d8, dxfljda are components of tho 'velooit.y' of 

e po:mt of interest 
Nting . 
J; o that in proper coordinates iJxt~jds will be unit 

t Weyl, &um Zeit MaterU . Y Wh(•n 
' ' ' Berlin, fourth edition, 1921, p. 174. 
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ex= 4 and otherwise zero, it is easy to verify for proper coordinates 
the equivalence of (51.1-3) to the original constitutive equations 
(49.1). Hence these new expressions for the constitutive equations, 
being valid in one set of coordinates, are valid in all sets of co
ordinates owing to their tensor character. They too can be applied in 
the case of several bodies in uniform motion separated by free apace. 

52. The field equations for moving matter in ordinary vector 
language 
We have thus obtained, in the two preceding sections, expressions 

both for the field equations and for. the constitutive equations in 
a four-dimensional form which can be used for matter in a state of 
uniform motion as well as for matter at rest. We have henc~ provided 
a complete basis for the macroscopic electrodynamics of moving 
matter, and no new content can be added to this basis by re-express
ing it in other forms. Nevertheless, we can perhaps gain some further 
insight into the physical nature of the theory if we now translate the 
results obtained back into ordinary vector language. 

To do this, let us now return to the tensors FP.v, Hp.v, and Jp. 
defined above by their components in proper coordinates, and as a 
matter of convention use the same symbols without the superscript 0 to 
designate their components in any system of coordinates of the 
type (50.1). In agreement with the possibility of expressing the 
original Maxwell equations in the form (50.6, 7), we can then evi
dently write the field equations in general, for matter moving with 
a uniform velocity as well as for stationary matter, in the original 
Maxwellian form (48.1-4): 

divD = p, 

divB = 0, 

1 8B 
curiE=---, 

c at 

curlH =! (
00 + J). c at 

(52.1) 

(52.2) 

{52.3) 

(52.4) 

Furthermore, making use of the rules of tensor transformation 
(19.10), and the convention above by which the quantities occurring 
in these equations were defined, we can readily obtain as the equations 
for the transformation of these quantities from a given system of 
coordinates S (x, y, z, t) to a new systemS' (x', y', z', t'), corresponding 
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to new axes moving in the x-direction with the velocity V relative 
to the old, the expressions 

Em= E~ 

E~+ VB~ 
c 

Ev = .J( I-vsjc2) 
(52.5) 

(52.6) 

(52.7) 

(52.8) 

(52.9) 

and (52.10) 
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Several points of interest with respect to these results may be 
mentioned. 

In the case of free space, it should be noted that we shall have 
D = E, B = H, J = 0, and p = 0 and the above field equations and 
transformation equations will then reduce to the same form (§§ 39 
and 40) as the corresponding equations for the electron theory 
in the absence of matter. This result is of course satisfactory 
from the point of view of the consistency of the two methods of 
attack. 

With regard to the physical significance of the quantities occurring 
in our new formulation of the field equations (52.1-4), we can assign 
them no immediate meaning beyond what is determined by their 
definition as names for the components of certain tensors as pro
vided by a previous paragraph. With the help of the transformation 
equations (52.5) to (52.10), however, we can relate the values of 
these quantities in any desired system of coordinates S with the 
values of the coiTesponding quantities as directly measured by a 
local observer, using proper coordinates 8° in which the material is 
at rest. 

Making use of this possibility together with the transformation 
equations for force (25.3), it can readily be shown that the forces E0 

and H0 which would be found by a local observer to act on unit 
charge and unit pole moving with the matter, would lead to the 
relations 

and 

E* = E+[:xBJ 
H* =H-[:xo] 

(52.11) 

(52.12) 

as expressions in terms of the variables of system S for the forces 
acting on unit charge and unit pole which are moving with the matter 
with the velocity u. These expressions will perhaps give a feeling for 
the physical nature of the quantities involved. 

It is also of physical interest to consider the separation of the total 
current J into conduction current C and convection current pu, in 
accordance with the equation of definition 

J = C+pu. (52.13) 
Making this separation, we can readily obtain from the transforma
tion equations (52.9, 10) the following expressions for the conduction 
current and charge in matter moving parallel to the x-a:x:is with the 
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velocity V: 

and 

O:c = 0£../(1- V2/c2) 

q,= a~ 
a.c= og 

P ao Vfc2 
p- 0 + a; 
-~(I-V2Jc") ~(1·=-v2Ji2) · 

§52 

(52.14) 

(52.15) 

In the case of a charged insulator moving with the velocity V in the 
x-direotion, this would give for the total value of J to be substituted 
into the field equation (52.4), the purely convective term 

J = pv = :.;< 1 ~ :w•i (52.16) 

in agreement with Rowland's celebrated discovery of the existence 
of a convection current. 

In more general oases the separation of total current into conduc
tion and convection current· is dependent on the system of coordinates 
being used. Even when the charge density is zero in proper coordi
nates, charge density and convection current can appear in other 
coordinates, in accordance with (52.15), provided the conduction 
current is not zero in proper coordinates. Looked at from a micro
scopic point of view, this possibility-that different observers may 
disagree as to the relative number of positive and negative electrons 
in a given volume element of the material-can be shown in detail 
to arise only when there is relative motion between the two kinds of 
electrons and to depend in an entirely expected manner on the lack 
of agreement as to simultaneity provided by the theory of relativity. t 
53. The constitutive equations for movina matter in ordinary 

vector language 
The constitutive equations connecting displacement, magnetiza

tion, and current with the properties of the material, which were given 
for proper coordinates in § 49 and in tensor form in § 51, can also 
easily be found with the help of the equations in the preceding section 
to be expressible in terms of the vectors that we are now using. 

Defining in analogy with (52.11) and (52.12) two new vectors by 
the equations [u ] 

D* =D+ -XH (53.1) 
c 

and (53.2) 

t See Laue, Das Relati1Jitdtsprimip. Braunschweig, second edition, 1913, p. 145. 
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the first two of the constitutive equations can be written in the simple 
form 

D* = eE* and B* = pH*; (53.3) 

and using the expressions for conduction current given by (52.14) 
the third constitutive equation can be written in the form 

O:c = a.J(1-u2jc2)E: 

Q - a E* 
11 - .J(1-us;cs) 11 

(53.4) 

02 ·= ,V(1_:u2jc2) E:, 
where the velocity u of the moving material is taken as parallel to the 
x-axis. This latter result may be regarded as the analogue of Ohm's 
law for moving material. 

54. Applications of the macroscopic theory 
The foregoing has given a 'complete statement of the unde~lying 

basis for macroscopic electrodynamics, expressed both in four
dimensionallanguage and in the language of ordinary vector theory. 
It will be seen that this basis is but little altered from that which 
has usually been employed in electromagnetic considerations and we 
shall now merely wish to consider certain consequences of the theory 
which are specially illuminating or of importance for our later work. 

(a) The conservation of electric charge. Making use of the equation 
oHP.Vjf)xv = JP., (54.1) 

which is the second of our two fundamental equations (50.6, 7) for 
the macroscopic theory, we can immediately obtain the principle of 
the conservation of electric charge. Differentiating (54.1) with respect 
to xP. we can evidently write 

O.Jp. = ~'J.Hp.v = 0 (54.2) 
OXI-' 0XI-'0xV ' 

where the value zero arises owing to the antisymm.etry of HP.v. 
Writing out the expression for the first term in (54.2) in full, how
ever, this gives 

aJl + aJ2 + aJ~ + aJ' = o (54. a) 
&,xl f)x2 axs ox' ' 

or in terms of our usual coordinates as given by (50.1), and the ex
pressions for the components of Jp. in terms of ordinary vector 
language set up by the conventio.us introduced in § 52, we can write 



110 SPECIAL RELATIVITY AND ELECTRODYNAMICS § 64 

this in the form 

aJ:n+~+ a~+ ap = o. (54.4) 
ax ay az at 

Since J is to be regarded as the sum of the convection and con
duction currents, this can be taken as an equation of continuity 
guaranteeing the conservation of total electric charge. 

(b) Boundary conditions. Boundary conditions at the surfaces 
between media of different properties, quite similar to those familiar 
in Maxwell's theory for stationary matter, can be derivedt from the 
field equations given in § 52. In the case of moving matter we en
counter a certain complication, however, since the field equations 
contain the expressions aajat and ODjot, for the rate of change of the 
vectors involved at a. given point in space, and these vectors will in 
general be changing discontinuously at a point w]#ch is momentarily 
coincident with the moving boundary. If, nevertheless, we consider 
the rate of change with time at a point moving with the same velocity 
u as the material itself, as given by the operator 

d a 
dt = at+ (u\7) (54.5) 

we may expect to obtain finite rates of change even within the 
boundary layer. 

With this in mind we may now rewrite our field equation (52.4) in 

the form (u ) J I aD (u ) curlH+- V D-- =- -+ -V D, (54.6) 
0 c c at c 

and conclude that the quantity on the left-hand side of this equation 
will everywhere be finite on account of the form of the right-hand side. 
Or, writing out in full the three components corresponding to the 
left-hand side and expressing the current J as the sum of the conduc
tion current C and convection current pu, we can conclude that the 
following three quantities are finite 

8Il._ oHv+ u:r: oD:r:+~ aDx+ u~BD~-pux_ O:r: 
ay az c ax c ay c az c c 

oHx _ oH'?. + "Ux oD11 + ~ oD11 + uz ~D11 _ u11 _ Ou 
Oz ox COx cay coz PC c 

(54.7) 

ollv _ aH:c + u:r: aDz+ u11 aD.G + u~ a DoG_ uz _e.G 
ax ay cox cay caz Po o' 

t Einstein and Laub, Ann. der J:'hysilc, 28, 445 (1909). 
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To make use of these results let us now for simplicity choose coor
dinates such that the boundary surface between the two media will 
be parallel to the yz-plane at the point of interest. Since differentia.:. 
tion with respect toy and z will then evidently lead to finite results, 
and since the conduction current C may be taken as :finite by hypo
thesis, we can evidently discard some of the terms occuxring in (54. 7), 
and take as finite the simpler quantities 

u:~:(aD~-p) 
c Ox ' 

.:_ ~Hs + u:~: ?_D11 _ p ~ 
ox c ox c, 

~lly + 'U:~: oD8 -p U8 • 

Ox c ox c 

The first of these expressions gives us 

&D:~: finite --p 
Ox 

(54.8) 

(54.9) 

or ill):~:= w, (54.10) 

where ADa: is the discontinuous change in the normal component of 
electric displacement on passing through the boru1dary due to any 
charge of surface density w which may be present. The remaining 
two expressions may be combined with (54.9) to give 

?!!_v- (Ug oD:z;- U.r. aDs) 
ox c ax c Ox 

and oHt!. _ (U:n ~!!_v_ U11 ~:!?~) 
ox COx COx 

as finite quantities, or since the components of the velocity u are 
constant we can conclude that 

H -(u"'D-Uzn,.\ 
11 c :1: c ~, 

and H .. -(u:~:n-u'UD) (54.11) .. c 71 c ;& 

will vary continuously in passing across the boundary. These latter 
quantities, however, are the tangential components of the vector 

H*=H-[:xo] 
as previously defined by (52.12). 
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Applying similar methods to the field equation (52.3), we may now 
state in general 

(51..12) 

as expressions for the presence or absence of any discontinuous change 
that would take place in the normal or tangential components of the 
vectors indicated on passing across the boundary between two media. 
The expressions also apply at the boundary between matter and free 
space where the velocity of the matter u is to be substituted into the 
expressions forE* and H*. 

(c) The Joule heating effect. If we consider the alteration which 
will be produced in the energy content of a small element of matter 
due to the action of an electromagnetic field in which it is immersed, 
it is evident that this can result either from the mechanical work done 
by the ponderomotive forces arising from the field or from the (Joule) 
heat generated within the element by electromagnetic action. Hence 
we can write for a small increment SE in the energy of the element, in 
terms of work done SW and heat generated SQ, the expression 

SE = SW+SQ. (54.13) 

And if we restrict ourselves for simplicity to cases, where the only 
work done is that corresponding to the motion of the element as 
a whole in the field of force, we can then write for the Joule heat 
developed 

BQ = -BW+SE 

(54.14} 

where Fa:, Flf, and ~ are the components of force of electromagnetic 
origiR acting on the element as a whole. 

In accordance with the discUBBion of Chapter III, however, all 
forces of whatever origin must obey the same transformation laws, 
and hence in agreement with (28.12) we can take the quantities 

( 
-F. -F. -F. 1 dE) 

F"" = ~(1-u~jc2f ..J(1-u~jc2)' ..j(1-u~jc2)' :J{l-·u2jc2) o dt ' 
(54.15} 

where u is the ordinary velocity of the element, as being the com
ponents of a covariant vector in the space-time coordinates 

xl = x x2 = y z3 = z x' = ct. (54.16) 
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By combining (54.14) and {54.15) we can now write 

8Q = ..J(1-u2fc2)F,_,. 8XI' (54.17) 

as an expression for the increment of heat. 
By the rules of tensor analysis, however, F,_,. 8x~ must be a scalar 

invariant, having the same value in all systems of coordinates, so 
that we now obtain 

(54.18) 

as a general expression connecting the increment of heat 8Q and 
velocity of the element of matter u, as measured in any given system 
of coordinates, with the increment of heat oQ0 as measured in proper 
coordinates by a local observer. The result is of special interest 
because of its agreement with the transformation equation for heat 
which we shall obtain in our development of relativistic thermo
dynamics. 

(d) Electromagnetic energy and momentum. With the help of the 
field equations we can readily obtain expressions which will permit 
a calculation of the rates at which the energy and momentum are 
changing inside a bounda.ry which lies in the free space surrounding 
a material body acted on by electromagnetic force. 

Taking the inner product of the field equation (52.3) with H and 
subtracting the inner product of (52.4) withE, we obtain the result 

E ·a~ +H ·a:+ E · J +c(H ·curl E-E ·curl H) = 0. (54.19) 

Integrating this over tho region inside a stationary boundary which 
encloses the system of interest we obtain with the help of a well
known relation of vector ann.Iysis [equation (17), Appendix II] 

J (E· ~ +H· ~ +E· 1) dv = -c J [EXH)n du, (54.20) 

where the right-hand term is integrated over the surface surrounding 
the volumo under consideration and tho subscript n denotes the 
outward normal component of the vector in question. 

For 11 volume containing no ponderable matter this evidently 
rcducC's to the familiar equation 

(54.21) 

whore the left-hand side gives the known expression for the rate at 
811011.11 
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1nergy is increasing, and the right-hand side must then give 
.j of energy :B.ow through the boundary. 

we returning to the more general equation, the left-hand side 
4.20) must be an expression for the rate of energy increase even 

when ponderable matter is present, since the boundary was by 
hypothesis located in the free space surrounding the matter. Equa
tion (54.20) can hence be used to calculate the rate at which the 

. energy is changing inside a fixed boundary located in the free space 
sUITounding a material system by an integration extending over the 
volume involved. The equation is analogous to (42.3) in the electron 
theory but does not furnish unique expressions for the densities of 
electromagnetic energy and momentum inside of matter. 

Simila;rly, we can obtain an expression for the rate at whioh the 
momentum bside the boundary is changing with time from the 
field equations. Taking the proauct of the field equation (52.1) 
withE and adding the outer product of (52.4) with B we obtain the 
result 

EdivD-Ep+(curlH)XB-~ 8D X B-J XB = 0. (54.22} 
·c Bt c 

Changing signs, separating J into convection current pu and con
duction current C, and making use of the field equation (52.3) this 
can be written in the form 

p(E+~xB)+ C X B+! ~[DxB]-EdivD-c c c 8t 

-(curlH)XB-(curlE) XD = 0. (54.28) 

Or, introducing the electric and magnetic polarizations defined by 

P =D-E (54.24) 

and M =B-H, (54.25} 

we can write 

p(E+ u X s) + C X B-E divP+P X curl E+M X curlH +! ~[D X B] 
c c c Bt 

= EdivE+(curlE)xE+(curlH)xH. (54.26} 

Considering for specificity the x-component and integrating over the 
region inside a fixed boundary located in the free space surrounding 
the system of interest, this will give us with help of a somewhat long 
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but straightforward transformation 

J HE+>B)+~xB-
-EdivP+PxcurlE+MxourlH+!~[DxBJ} dv 

c 8t "' 

= J J! ~(E2-E2-E2+H2-H2-H2)+!_(E. E.+ u 'R)+ \ 2 8x a: u 13 :c u z ay :c u .&..L:e ,£; 

+ !<Ea:E,+H:x:Hz)} dv. (54.27) 

This equation is analogous to equation (43.3) of the electron theory 
and the ·quantities whose partial differentials appear on the right
hand side give the known expressions for the Maxwell electromagnetic 
stresses Pxx' pX11, and P:m· In case the boundary encloses no matter the 
equation reduces to the familiar form 

J! 8 
[EX H] dv = J- (8pxa: + OpX'll + Opxz) dv (54.28) 

c at a: ax fJy az ' 
where the left-hand side gi vcs the known expression for the rate at 
which the x-component of momentum is increasing, and the right
hand side which can evidently be replaced by a surface integral must 
then give tho rate of momentum flow through the boundary. 

Hen co, returning to the more general equation, the left-hand side 
of (54.27) must be an expression for the rate of momentum increase 
even when ponderable matter is present, since the boundary was by 
hypothesis located in the free space surrounding the matter. The 
equation can hence bo used for calculating the rate of momentum 
increase by integrating over the volume involved but does not 
furnish uniq uo expressions for the electromagnetic stresses inside 
of matter. 

(e) The energy-momentum tensor. Since the macroscopic theory 
has not led to unique expressions for the densities of electromagnetic 
energy and momentum n.nd for tho electromagnetic stresses inside of 
matter, tho construction of an electromagnetic energy-momentum 
tensor ['J.'p.v] cannot be caiTied out in an unambiguous manner, and 

!lllL 

sovoral different proposals for such a tensor have actuo.lly been con-
sidered without the attainment of universal agreement. t 

In accordance with mu· general ideas as to the relation between 

t Sao Pauli, 'Rolativitll.tatheorio', Encycloplidie der math. Wi8a., Band v. 2, Heft 4, 
Loipzig, 1921, § 35. 
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densities of momentum and energy :flow as discussed in§ 27, it appears 
that such a tensor should be symmetrical with respect to the com
ponents T4P. a.nd TIJA., and presumably in the other components since 
the microscopic treatment of the electron theory led to a completely 
symmetrical tensor. With no matter present the macroscopic theory 
leads unambiguously to an energy-momentum tensor of the same 
form as that obtained in the Lorentz theory. 

Even in the absence of unambiguous values for the components of 
such a tensor in terms of the variable in the field equations, it seems 
reasonable to assume the possibility of using a combined equation 

of the form oTP.v = ~{[T~-'v] +[T~-'v] } = 0 (54.29) 
axv axv mB em 

for treating the macroscopic behaviour of a combined mechanical and 
electromagnetic system, where [ T~-'v]em is presumably a symmetrical 
tensor. 

(f) Applications to experimental observations. As mentioned at the 
beginning of this section (§54), the macroscopic electromagnetic 
theory which has been developed with the help of special relativity 
does not differ greatly from those usually employed in electromagnetic 
considerations; indeed, for the cases of free space and of stationary 
bodies it is identical with that of Maxwell. For this reason we can be 
assured of its agreement with a great mass of experimental fact. 

In the case of moving bodies, the agreement of the present electro .. 
dynamics with Rowland's discovery of the convection current has 
already been pointed out in connexion with equation (52.16), and the 
result that the conduction cUITent as given by (53.4) is proportional 
-except for terms of theorderu2fc2_tothe vector E* = E+[ujcxB] 
is in satisfactory agreement with experiment. 

The theory can also be shown to give satisfactory explanations of 
the Roentgen-Eichenwald experiment on the magnetic field produced 
by the rotation of a dielectric in an electric field, and of the H. A. 
Wilson experiment on the surface charge produced by the rotation 
of a dielectric in a magnetic field. These experiments were not satis
factorily explained by the Hertz theory of moving dielectrics, although 
the results were accounted for by the Lorentz theory. In a.ddition, 
special attention should be called to the later experiments of M. 
Wilson and H. A. Wilson, t who repeated the original Wilson experi-

t M. Wilson and H. A. Wilson, Proc. Roy. Soc. (A) 89, 99 (1914). 
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ment with an artificially constructed dielectric which had an appreci~ 
able :r;nagnetic permeability. In this case there is a disagreement 
between the prediction to whioh the Lorentz theory had seemed to 
lead, and that obtained without ambiguity from the macroscopic 
electrodynamics developed in this chapter. The experimental results 
agreed with the latter. 



v 
SPECIAL RELATIVITY AND THERMODYNAMICS 

Pare I. THE THERMO;DYNAMICS OF STATIONARY SYSTEMS 

55. Introduction 
In the present chapter we shall discuss the relations of special 

relativity to thermodynamics. These relations are found to be of two 
different sorts. 

On the one hand, the special theory of relativity has provided us 
with a simple equation connecting mass and energy which permits us 
to calculate the change in the energy content of a thermodynamic 
system from its ch~ge in mass. This new relation proves to be of 
thermodynamic importance-without reference to the state of motion 
of the system considered-since. it permits the calculation of thermo
dynamic equilibria for certain conceiva.ble processes where our only 
possibility o£ knowing the· energy changes that would accompany 
the process must at present be based on a knowledge of the changes 
in mass that would take place. 

On the other hand, the special theory of relativity has provided us, 
through the Lorentz transformation, with a possible method of 
translating the experimental findings obtained by a local observer, 
who is stationary with respect to a thermodynamic system, into 
terms which would express the results for an observer with respect to 
whom the system is in motion. This hence leads, as first shown by 
Planck and by Einstein, to a thermodynamic theory for moving 
systems. 

In Part I of the present chapter we shall consider the thermo
dynamics of stationary systems, first developing some well-known 
portions of the classical theory which will be specially useful to us 
later, and then exhibiting the application of the mass-energy relation 
of special relativity to thermodynamics by calculations of the 
equilibria between hydrogen and helium and between matter and 
radia.tion, assuming the possibility of their interconversion. 

in Part IT we shall consider the Lorentz transformation for thermo
dynamic quantities and the thermodynamics of moving systems. The 
work will include a four-dimensional formulation of thermodynamic 
principles which will be of particular interest when we later undertake 
the extension of thermodynamics to general relativity. 
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Before proceeding to these tasks, it is important to emphasize the 
macroscopic and phenomenological character of thermodynamic con
siderations. The principles of thermodynamics can, to be sure, be 
based with a certain degree of success on the microscopic considera
tions of statistical mechanics. Nevertheless, both on account of their 
historical origin and essential content, it is most satisfa~tory to regard 
the two laws of classical thermodynamics as a generalized formula
tion of observations made in the actual performance of num~ous 
macroscopic experiments. Even the so-called third law of thermo
dynamics, although its content is greatly illuminated by the statistical 
mechanical interpretation of entropy, was originally formulated 
without the aid of this interpretation, and is now justified as a satis
factory principle by its dependence on a great mass of actual experi
mental data. The phenomenological character of thermodynamic 
considerations and the extended basis of experimental verification 
give us great confidence in thermodynamic predictions even when 
applied to quite new situations. 

Since the considerations of the theory of relativity are also-for the 
present at least-primarily macroscopic in character, the construction 
of a relativistic thermodynamics seems a natural and evident exten
sion to undertake. The construction of a fundamentally satisfactory 
relativistic statistical mechanics would be in any case a complicated 
business and at present a somewhat dubious undertaking .. N evertheleas, 
some progress in this direction has already been made using classical 
rather than quantutn-mechanical statistics as a starting-point. t 

In connexion with the phenomenological character of thermo
dynamics it is also of interest to emphasize once more the pheno
menological character of relativistic considerations. Indeed, the 
formulation of the first postulate of relativity, as a generalization of 
failures to detect the motion of the earth through a suppositions ether, 
has an interesting parallelism with the formulation of the second law of 
thermodynamics as a generalization of failures to construct perpetual 
motion machines of the so-called second kind. And the formulation of 
the second postulate of relativity as expressing the results of measure
ments on the velocity of light from moving sources, has something 
in common with the formulation of the first law of thermodynamics 
as expressing the results obtained in measurements such a.s those on 
the mechanical equivalent of heat. 

t Jiittner, Ann. d. Physik, 34, 856 (1911). Tolman, Phil. Mag. 28, 583 (1914). 
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The experimental ba.Sis for the special theory of relativity is perhaps 
· less extended than that for thermodynamics. In addition, there is 
often a more complicated chain of deductive reasoning involved in" 
obtajn'ing conclusions from the theory of relativity and more intro
duction of subsidiary hypotheses. Nevertheless, it does not appear 
that the mere process of combining the two theories should of itself 
involve any increase in uncertainty, and the main principles of rela
tivistic thermodynamics can certainly be accepted with considerable 
confidence. Those applications which involve most in the way of 
subsidiary hypotheses must of course be regarded with the most 
auspicion. It is, however, one of the main functions of theoretical 

· science, not merely to describe in complicated fashion those facts that 
are already known, but to extrapolate as wisely as may be into regions 
yet unexplored but pregnant with human interest. 

56. The first law of thermodynamics and the zero point of 
energy content 
In accordance with the ideas underlying the science of thermo

dynamics, the energy contained in a system is a definite function of 
its state and can only be changed when the state of the system is 
itself altered. When such a change in state takes place, it is important 
for the purposes of thermodynamics to distinguish two different 
modes of transfer by which the energy content may be affected, 
namely the flow of heat and the performance of work. 

Recognizing these two possibilities, the first law of thermodynamics 
then states the principle of the conservation of energy in the form 

A.E = Q- fV, (56.1) 
where 6.E is the increase in energy content corresponding to some 
given change in state, and Q and Ware respectively the heat flow 
into the system from the surroundings and the work done by the 
system on the SlllToundings when a particular process takes place 
that leads to the given change in state. The equation may be regarded 
as an expression of the principle of the conservation of energy, since 
it excludes the possibility of creation or destruction of energy within 
any region by equating the change in its energy content to a transfer 
through the boundary in the form of heat or work. 

The special theory of relativity has in no way destroyed our ideas 
as to the conservation and localization of energy, t nor modified our 

t Indeed the relativistic association of mass with energy has fortified our concepts 
as to the localization of energy. 
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ideas as to the possibility of distinguishing between heat and work. 
Hence in the extension of thermodynamics to special ~lati.vitythe first 
law can evidently be taken over unaltered in the form given by (56.1). 

The theory of relativity has, however, provided an important 
supplement to the above equation by giving us the additional relation 
connecting energy with mass as discussed in §§ 27 and 29 (d). In 
accordance with this n,ew relation we can also express the increase in 
the energy of a system 6.E in terms of its increase in mass !lm, by 
the equation, 6.E = c2~m, (56.2) 

where cis the velocity of light. And this equation will make it possible 
to apply the calculations of thermodynamics to processes where a 
change in mass furnishes the only information as to energy content. 

Furthermore, although the first law equation (56.1) gives informa
tion only as to changes in energy content and provides no unique zero 
point of energy content, it may be noted that our previous g~erallza
tion of the relativistjc relation (56.2) to the form 

E= c2m (56.3) 

suggests that the absence of all mass can rationally be taken as the 
zero point of energy content. 

57. The second law of thermodynamics and the starting-point 
for entropy content 
In addition to its energy FJ, thermodynamics also recognizes the 

entropy Sofa system as a definite function of its state. Furthermore, 
just as the first law relates the energy change in a system to the heat 
absorbed and work dono when some process occurs which changes the 
state of tho system, so too the second law of thermodynamics relates 
the change in entropy content of the system to the character of the 
process by which the chango in state is brought about. 

In order to obtain a definition of entropy and a statement of the 
second law it is first necessary to distinguish between irreversible and 
reversible processes, the former being actual processes by which the 
state of a system may be changed without presenting the possibility 
of restoring both the system and its surroundings to their original 
condition, and tho latter being ideal processes-approached as a limit 
by actual processes as they are made n1ore efficient-of such a nature 
that the system and its smToundings could both be returned to their 
original condition. 
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With the help of this distinction, we can now define the change in 
the entropy content of a system, which accompanies a change in its 
state, by the equation 

(57.1) 

rev 

where T is the te1nperature for each element of heat dQ transferred 
across the "">oundary from the surrotmdings into the system, and the 
integration-as indicated by the subscript [rev ]-is to be taken for 
the case of an ideal reversible process by which the given change in 
state could be thought of as brought about. Moreover, in the light 
of this definition, we can then state the second law of thermodynamics 
in the general form 

I dQ 
6.8 ~ 'J.l' (57.2) 

where the integral can now be taken for any process under considera
tion by which the system goes from its initial to its final state, and the 
sign 'is greater than' is to be used unless the process actually is 
reversible. 

In accordance with these expressions, and our previous statement 
that the entropy content of a systcn1 is a definite function of its state, 
it is evident that the quantity J dQrP will have the same maximum 
value for all reversible processes that result in a given change in the 
state of a system and a smaller value for all irreversible processes that 
result in the same change of state. We are thus provided by the 
second law with a criterion for diHtinguishing between reversible and 
irreversible processes and at least a partial description of their 
character which will be found to lead to specific conclusions of interest 
and importance. 

To complete our consideration as to the nature of entropy we must 
also inquire as to the total entropy content of a system. Just as the 
statement of the first law fmnishcd no unique zero point for energy 
contents, so the above two expressions which give the substance of 
the second law, are merely statements as to changes in entropy con
tent and furnish no uniq uc zero point for entropy contents. In the 
case of energy we have seen that a rational zero point of energy could 
be provided by the mass-energy relationship of the theory of relativity. 
In the case of entropy a zero point-or more strictly a useful starting
point-is provided by the so-called third law of thermodynamics as 
discovered and formulated by N ernst and Planck. 
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In accordance with the third law of thermodynamics, there is no 
change in entropy content 

(57.3) 

for any change-at the absolute zero of temperature-in the state 
of a system which is composed both initially and finally of pure 
crystalline substances. As a result of this principle it becomes 
specially convenient to take the value zero 

ST=O = 0, (57.4) 

for the entropy of all pure crystalline substances at the absolute zero, 
and with this as a starting-point then take as their entropy under 
other conditions the increase which occurs in changing the substance 
to the particular condition of interest. With this convention it is 
evident that the entropy increase accompanying any change of state 
can then be obtained by subtracting the sum of the entropies assigned 
to the initial substances under the conditions in question from that 
for the final substances. 

As mentioned above in § 55, a deeper insight into the nature of the 
third law of thermodynamics can be obtained with the help of the 
statistical-mechanical interpretation of entropy, which shows
speaking somewhat loosely-that the assignment of zero entropy 
to a pure crystal at the absolute zero corresponds to the complete 
lack of disorder in the atomic arrangement of such a crystal. Con
siderations of this microscopic kind can be specially important in 
criticizing the application of the third law in cases which involve 
internuclear reactions or the complete transformation of matter into 
radiation as will be undertaken in §§ 66 and 67. From our present 
point of view, however, since we desire to remain as far as possible on 
the macroscopic pl1enomenologicallevel, it is perhaps most important 
to emphasize that the third law of thermodynamics can now be 
regarded-at least for the case of ordinary chemical reactions-as 
an empirical principle which is well supported by a mass of data 
obtained particularly under the direction and leadership of Nernst 
and of Lewis. 

58. Heat content, free energy, and thermodynamic potential 
In addition to the fundamental thermodynamic quantities energy 

and entropy, it also proves useful to introduce three further defined 
quantities H, A, and F which may be called for convenience by the 
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~ual but somewhat misleading names-heat content, free energy, 
and thermodynamic potential. 

Restricting ourselves to systems which have the same pressure and 
temperature in all parts, these quantities may then be defined by the 

equations H = E+pv, (58.1} 

A = E-TS, (58.2) 

F = E-TS+pv = H-TS, (58.3} 

where E, S, T,p, and v are respectively the energy, entropy, tem
perature, pressure, and volume of the system under consideration. 

It will be noted from the above expressions that H, A, and Fare 
respectively the x, .p, and ~. of Gibbs. t Furthermore, A is the free 
energy as originally defined by Helmholtz,~ and F is the quantity 
usually called fre~ energy by chemists.§ The nature of the three new 
quantities and reasons· for the names by which they are denoted can 
be seen from the following considerations. 

If we consider a system which is kept under constant pressure in 
such a manner that the only work it can do on the surroundings will 
be due to change in volume against this pressure, we can write from 
equa.tion (58.1) llH = llE+pllv 

= llE+W, 
or in accordance with the first law equation (56.1) 

MI.= Q. (58.4) 

Hence for such processes the heat absorbed is equal to the increase 
in the quantity called heat-content. The designation heat-content 
is, nevertheless, not a happy one since the above simple relation is not 
true for processes in general. In addition, the designation heat-con
tent unfortunately suggests-in agreement with the abandoned 
caloric theory-the incorrect use of the term heat to characterize a 
portion of the energy actually contained within a system, instead of 
its correct use to characterize a portion of the energy being transferred 
across the boundary separating the system from its surroundings. 

Turning next to a system which is kept at constant temperature, we 
can write from equation (58.2) 

M = !lE-TilS, 

t Gibbs, 'On the Equilibrium of Heterogeneous Substances', OoUected Works, 
'Tol. i, p. 87, New York, 1928. · t Helmholtz, Berl. Ber. 1, 22 (1882). 

§ Lewis, 'Journ. Amer. Ohem. S~. 35, 14 (1913). 
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and, making use of the first and second laws (56.1) and (57.2), we can 
substitute A.E= Q-W 

(58.5) 
TA.S ~ Q, 

which leads to the result W ~-A.A. (58.6) 

In accordance with tl1is relation, the work which can be done on its 
surroundings by a Aystem maintained at constant temperature cannot 
be greater than the decrease in the quantity which has been called its 
free energy. This makes the reason for the name obvious, although 
it must be emphasized that tho result obtained applies, of course, 
only to isothermal processes. 

Finally considering a system which is kept both at constant tem
perature and under constant pressure, we can write from equation 
(58.3) 

and again substituting the results of the first and second laws as given 
by (58.5) we obtain the expression 

fV -pA.v ~ -tl.F. (58.7) 

In accordance with this relation, for a systmn n1aintained under the 
conditions specified, the total work which can be done by the system 
on its sutToundings diminished by that done against the pressure 
under which it h~ 1naintn.ined cannot be greater than the decrease in 
its thermodynamic potential Jl. Since the excess work, over and 
above thu.t wllich mu~t ho expended in any case against the external 
pressure, is often the portion of special interest on account of its 
availability for accomplishing desired results, the thermodynamic 
potential F iA also often called-in particular by chemists-the 
free energy of the system. r:rhe relation given by (58.7) applies of 
course only to isothermal isopiestic processes. 

59. General conditions for thermodynamic change and 
equilibrium 
With the help of the foregoing wo can now investigate the condi

tions which arc nceesHary if a thermodynamic systern is to undergo 
change or to bo in a state of equilibrium. This we shall do first for 
isolated systems which cnamot interact with the sUIToundings, then 
for systems which arc maintained at consta.nt volume and tempera
ture, and finally for systems maintained at constant pressure and 
temperature. 
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In the case of an i8olated system, the heat Q absorbed in any change 
of state will necessarily be zero owing to the postulated lack of any 
interaction with the surroundings. Hence, substituting into the 
second law expression (57.2) we obtain 

A.S ~ o (59.1) 

as a necessary condition for any change that takes place in the state 
of an isolated system. In accordance with this result the entropy of 
an isolated system cannot decrease but will increase with the time if 
irreversible processes take place, or at the limit remain constant if 
reversible processes take place. Moreover, if the system is in a state 
of maximum possible entropy, such that variations in its condition 
cannot lead to further increase in entropy, as denoted by the formu-

lation 88 = o, (59.2) 

the system will evidently be in a condition of thermodynamic equili
bririm where further changes will be impossible. In applying this 
condition to simple homogeneous systems, it is to be noted that 
holding the energy and volume constant will be sufficient to secure 
the necessary lack of interaction with the sUIToundings. 

Turning next to the case of systems subject to external constraints 
which maintain conatant volume and temperature, we can evidently 
write 

A.E=Q 

in accordance with the :first law equation (56.1), since the external 
work will be zero on account of the constancy of volume. Combining 
this result with the second law expression (57.2), and making use of 
the constancy of temperature, we then obtain 

TA.S ~ A.E, 

or introducing the definition of free energy (58.2) 

-A.A.~ 0 (59.3) 

as a necessary condition for any change of state at constant volume 
and temperature. In accordance with this result, the free energy of 
a system maintained under these conditions can only decrease or 
remain constant with the time, and the condition for thermodynamic 
equilibrium will be that for a minimum value of the free energy, as 
denoted by the formulation 

BA = 0. (59.4) 

Similarly, in the case of systems subject to external constraints 
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which maintain constant pressure and temperature, we can write 
ll.E = Q-pllv 

in accordance with the :first law, and combining with the second law 
obtain a decrease in thermodynamic potential 

-6.F ~ 0 (59.5) 
as a necessary condition for any change in state, and a minimum of 
thermodynamic potential as denoted by 

8F = 0 (59.6) 

as the condition for thermodynamic equilibrium. 
The foregoing conditions for thermodynamic change and equili

brium prove very useful in predicting the behaviour of physical
chemical systems. The first pair of conditions as given by (59.1) and 
(59.2), for the case of an isolated system subject to no external con
straints, seem perhaps the most fundamental, since by the inclusion 
of a sufficient region within the boundary of the system to be con
sidered-or indeed if allowable by considering the universe as 
a whole--we can undertake the treatment of any situation of interest. 
The third pair of conditions as given by (59.5) and (59.6), for the case 
of a system maintained at constant pressure and temperature, is 
often the most useful on account of our frequent interest in the equili
brium of a system at some specified pressure and temperature--for 
example atmospheric pressure and room temperature. 

60. Conditions for change and equilibrium in homogeneous 
systems 
In order to apply the foregoing conditions for thermodynamic 

change and equilibrium to determine the behaviour of any given 
system, we should have to know the dependence of its entropy, free 
energy, or thermodynamic potential on the variables used for the 
description of its state. The form of this dependence must, of course, 
be worked out for the particular system under consideration, and in 
the present section we shall investigate this form for the case of 
simple homogeneous systems. This can be done with the help of an 
equation which combines the requirements of the first and second laws. · 

Consider a simple system-having uniform pressure, temperature, 
and composition throughout-whose state can be completely specified 
by the energy E, volume v, and number of mols n,, n8, ••• , n" o£ the 
different substances which it contains. Since the entropy S of a 
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system is a definite function of its state, we oan then evidently write 
in accordance with the principles of the differential calculus 

as as as as 
dS . oE dE+ av dv + an

1 
dn1 +···+an,. dnn (60.1) 

as an expression for the dependence of the entropy of this system on 
the variables determining its state. 

For an infinitesimal reversible change solely in energy and volume 
we can evidently write, however, in accordance with the first and 
second laws 

dB = dQ = dE+:p dv, 
T T 

(60.2) 

which gives us for the partial differentials with respect to energy and 
volume the well-known expressions 

as 1 as p 
aE = T and av = T' (60.3) 

where p and T are the pressure and temperature. Substituting these 
expressions, equation (60.1) can now be written in the more useful 
form 1 p oS as 

dS = T dE+ T dv + 8n
1 

dn1 + ... +ann dnn- (60.4) 

With the help of this equation and our previous definitions of free 
energy and thermodynamic potential, it is also possible to derive 
useful expressions for the dependence of these latter quantities on the 
variables which determine the state of a system. To carry this out 
we have only to differentiate the equations (58.2, 3) by which free 
energy and thermodynamic potential were defined, which will give us 

dA = dE-S dT - T dS (60.5) 

and dF =dE-S dT -T dS +v dp +P dv, (60.6) 

and then substitute the expression fordS given by (6b.4). 
Doing this we can then write the three parallel expressions for the 

dependence of entropy, free energy, and thermodynamic potential 
on the state of the system 

dS =!.dE+ P dv + (oS\ dn1 + ... +(·?-~) dn, (60.7) 
T T en-;) E,'IJ Onn E,v 

dA = -S dT -p dv -T(08
) dn1 - ... -T(!:) dn,-, (60.8) 

~ E,v n E,v 

dF = -S dT +v dp -T(
88

) dn1 - ... -T(
88

) dn"', (60.9) 
On1 E,v Onn E,v 
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where subscripts have been introduced to prevent mistake as to the 
variables held constant when differentiating the entropy with respect 
to the variables determining the composition. 

These equations are of such a form that in using them it is evident 
that we are to treat entropy as a function of energy, volume, and com
position-free energy as a function of temperature, volume, and com
position-and thermodynamic potential as a function of temperature, 
pressure, and composition. Doing so, we can now write for the partial 
derivatives with respect to composition the useful relations 

-T(as) = (aA_\ = (a~\ , (60.10) 
oni E,'U On,J T,v fJnd T,p 

where the subscripts indicate the variables in addition to those giving 
the composition which are taken as regarded as determining the 
quantities S, A, and F. 

With the help of the above considerations, we may now easily 
investigate tho pos..,ibilities for change in the composition of a homo
geneous system by chemical reactions involving the substances 
present. To do this let us consider any possible chemical reaction 
which might be written down for these substances, and denote by 
Sn1, Sn2, ••• , Sni,. .. , Sn.,~ tho changes that would occur in composition 
if this reaction should proceed to an infinitesimal extent. We can 
then write for the infinitesimal changes in entropy, free energy, or 
thermodynamic potential thn.t would u.ccontpu.nysuch an infinitesimal 
reaction proceeding under the respective conditions of constant 
E and v, con~:;;tn.nt 'P and v, or constant 1.' n.nd p, the expressions 

(SS)E,v = ~ (?8
.) Snl, -'7 on ... Jt,v 

(60.11) 

(3Fh·.v = "" (~.F.) 8ni, f on ... ']',p 

where tho summation is to be takon over all tho substances involved 
in tho reaction. 

In accordance with tho preceding section (§59), however, we can 
take tho occurrence of u. maximum of entropy, u. minimmn of free 
energy, or ~l. minimum of ther1nodyna.n1ic potential, under the 
respective conditions specified, u.s a criterion of thermodynamic 

31i91Ul J{ 
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equilibrium. Hence, noting the relation given by (60.10), we can now 
use as the criterion of chemical stability any one of the three following 
expressions which proves most convenient for the particular problem 

2; (:} 8n, = 0, (60.12) 
i -t E,, 

2; {~) 8ni = 0, (60.13) 
i i T.v 

2 {::) 3ni = 0, (60.14) 
i ( T,p 

and these expressions will hold for each reaction which has no thermo
dynamic tendency to proceed. 

In case the system is not in a state of chemical equilibrium, the 
quantities given above will not be equal to zero for all possible 
reactions that might occur. Thus if we have a homogeneous isolated 
system of constant energy and volume, ·and there is a reaction for 
which the quantity given in (60.12) is greater than zero, the progress 
of this reaction would lead to an increase in entropy, and we can 
expect it to take place and continue until the values of the coefficients 
(oSfoRt) becom~ such that equilibrium is reached (see§ 63). 

Although the criteria for chemical stability given above have been 
obtained from a consideration of the possibility of chemical reaction 
in a finite homogeneous system subject to specified external restraints, 
they can be applied in general since the tendency for a chemical 
reaction to take place is determined solely by conditions at the point 
of interest. Thus if rp is the density of entropy at any particular point, 
there will be no tendency for chemical reaction at that point, provided 
we have in agreement with (60.1~ the relation 

'- (8~ \ 8c, = o, (60.15) 
~ ocJ-

i P•" 
where the quantities (ocf>joci.)p,;; denote rates of change in entropy 
density with concentration at constant ·energy density p and specific 
volume v, and the quantities oci denote the infinitesima.l changes in 
concentration of the different reacting substances which would 
accompany the progress of the reaction under those conditions. 

61. Uniformity of temperature at thermal equilibrium 
We have now developed sufficient apparatus for thermodynamic 

considerations so that we can proceed to develop consequences of 
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interest. In the present section and the two following ones we shall 
consider three well-known principles, commonly employed in the 
classical thermodyna.mics, in accordance with which (i) a state of 
thermal equilibrium would necessarily be characterized by uniformity 
of temperature; (ii) thermodynamic processes taking place at a finite 
rate would necessarily be iiTeversible; and (iii) the final state of an 
isolated system would necessarily be one of maximum entropy where 
further change would be impossible. 

These three principles have been obtained in the past with the help 
of the ideas of the classical thermodynamics by such simple and direct 
methods as to seem inescapable, and have frequently been made 
the basis for philosophic reflection on the nature of the universe as 
a whole. Nevertheless, when we consider the extension of thermo
dynamics to general relativity in the later parts of this book we shall 
find that all three of these principles must be regarded as subject to 
exception. 

To investigate the distribution of temperature at thermal equili
brium, let us consider the transfer of a small amount of heat dQ 
from one part of an isolated system at temperature 21_ to a second 
part at the lower temperature T2• In accordance with the expres
sion of the second law of thermodynamics given by (57 .2), we can 
evidently write for the increase in the entropies of the two parts of 
the system dQ lQ 

ds .......... d lS .......,. c 1~-T, an r 2:;::;--'1., 
1 2 

a.nd hence by addition for the change in entropy of the whole system 

dQ dQ 
dS ;:::: - T. + :1., > 0, 

1 2 
(61.1) 

tho value being greater than zero since 11 is grcator than T2 by 
hypothesis. 

In accordance with this result, an isolated system having parts at 
diiiercnt temperatures would not be in a state of thermodynamic 
equilibrimn since a process could occur which would lead to an 
increase in entropy, in contradiction to tho criterion for equilibrium 
given by (l39.2). In tho classicuJ. thermodynamics we are thus led to 
the general conclusion that there is a tendency for heat to flow from 
regions of higher to those oflowertemperature, and that uniform tem
perature throughout is a necessary condition for thermal eq uHibriun1. 
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In our la~ development of relativistic thermodynamics, however, 
we shall find a necessity for modifying this conclusion when different 
portions of the system under consideration are at different gravita
tional potentials (see§ 129). Roughly speaking, the reason for the 
modification can be said to lie in the fact that heat must be regarded 
as ·having weight. Hence on the transfer of heat from a place of 
higher to a place of lower gravitational potential, the quantity 
abstracted at the upper level is less than that added at 'the lower level 
and the analysis that led to (61.1) is no long~r valid. Defining 
temperature as that which would be measured .by a local observer 
using proper coordinates, the result obtained in the relativistic treat
ment will actually show the necessity for a definite temperature 
gradient at thermal equilibrium to prevent the flow of heat from 
places ofhigher to those of lower gravitational potential. 

62. Irreversibility and rate of change 
The second familiar principle used in the classical thermodynamics, 

to which we wish to draw attention, is the conclusion that thermo
dynamic processes which take place at a finite rate are necessarily 
irreversible. The common reason for belief in this principle lies in the 
general idea that thermodynamic processes would necessarily have to 
be canied out at an infinitesimally slow rate in order to secure that 
maximum efficiency which would be needed for reversibility. A 
detailed analysis of the application of this idea to a specific typical 
example will make the reasons for the principle clearer, and will 
indicate the possibility for later modification when we treat the 
extension of thermodynamics to general relativity. 

As a thermodynamic system sufficiently typical to illustrate the 
different kinds of processes that must be considered, let us take a 
mixture of gases, enclosed in a cylinder provided with a movable 
piston. Any change in the thermodynamic state of this system must 
involve either the transfer of heat, or of work, between the system 
and its surroundings, or be due solely to a change in internal con
ditions. We may consider these three possibilities seriatim. 

First of all, it is evident from our knowledge of the phenomena of 
heat conduction that the transfer of heat between the system and its 
surroundings at a finite rate could only occur as the accompaniment 
of a finite temperature gradient. It would thus involve the transfer of 
heat from regions of higher to those of lower temperature, and hence 
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in accordance with (61.1) of the preceding section there would be an 
increase in entropy for the system and its sUIToundings taken as a 
whole. Since this whole, however, could itself be regarded as an 
isolated s:rstem, such an increase in entropy would involve irreversi· 
bility in accordance with our treatment of isolated systems in§ 59, 
and hence we can allow no transfer of heat into the system at a finite 
rate if the process is to be reversible. 

Turning next to the exchange of energy between the system and its 
sUIToundings by the performance of work, this could be accomplished 
in the case of the system mentioned by an expansion of the gases 
which would force the piston out in such a way as to do work on some 
suitable external mechanism for storing potential energy. In order 
to carry this out reversibly, however, it is evident that the force 
exerted on the external mechanism during the expansion could not 
be less than the force necessary to recompress the gases on reversal 
of the direction of motion. It is evident, nevertheless, that this could 
not be accomplished with a finite rate of expansion-in the first place 
because of the friction that would accompany a finite velocity of the 
piston, and in the second place because the flow of gases necessary to 
fill in the space left by the moving piston would not take place rapidly 
enough to maintain as great a gas pressure on the piston during 
expansion as would be present during compression. Since similar 
considerations could be applied to other modes of doing work, we are 
led to the general conclusion that the system can do no work on its 
suiToundings at a finite rate and still maintain reversibility. 

Since the system cannot interact reversibly with its surroundings 
either by the transfer of heat or work at a :finite rate, we must now 
inquire into the possibility of internal processes. Furthermore, since 
the system can have no interaction with its surronndings it may now 
be treated as isolated, and these internal processes in accordance with 
(59.1) must lead to no increase in entropy if we are to maintain rever
sibility. 

For the system considered, the possible internal processes could be 
the transfer of heat from one portion of the gases to another inside 
the cylinder, the performance of work by one portion of the gases on 
another on account of pressure differences, the diffusion of one of the 
component gases from a place of higher to one of lower concentration, 
or the chemical reaction of the gases among themselves. None of these 
processes, however, could take place at a finite rate without increase 
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in entropy and hence irreverSibility. The transfer of heat and work 
inside the system at a finite rate would of course be just as irre
versible as the ·transfer between system and surroundings considered 
above, and we must conclude that the temperature and pressure 
would have to be uniform throughout the contents of the cylinder. 
Furthermore, the diffusion of a mol of gas from concentration o1 to o2 

at constant temperature would be accompanied by the increase in 
entropy Rln (c1/o2), without reference to the rate at which it took 
place. And finally, in accordance with our knowledge of chemical 
kinetics and the criterion for change in an isolated system given by 
(59.1), if any chemical reaction were possible which did not lead to 
increase in entropy it would on the average take place as often in the 
forward and reverse directions without resulting change in com· 
position. 

Hence for the simple system considered we are led to the conclusion 
that no processes, with or without interaction between system and 
SUIToundings, could take place both reversibly and at a finite rate. 
Furthermore, the system treated is sufficiently typical to illustrate 
the line of thought by which this result has come to be regarded as 
a general principle for use in connexion with the classical thermo
dynamics. 

It remains to point out a reason for exceptions to this principle 
which we shall later find resident in the extension of thermodynamics 
to general relativity. This will be found to lie in the possibility for 
changes in the proper volume of an element of matter-as measured 
by a local observer-due to changes in gravitational potentials which 
are neglected in the classical theory. We were led above to the con· 
elusion that a reversible increase in the volume of the gas could not 
take place at a finite rate because of friction that would develop and 
because of a falling off in outward pressure that would accompany 
the flow of gas to fill in the apace left by the moving piston. In rela· 
tivistic mechanics, however, we shall find possibilities for a change in 
proper volume without friction and with a complete balance between 
internal and external pressures, and hence shall be led to different 
thermodynamic conclusions. 

63. Final state of an isolated system 
The third principle of the classical thermodynamics which we wish 

to consider is the conclusion that the final state of an isolated system 



§ 63 FINAL STATE OF A SYSTEM 135 

would necessarily be one of maximum entropy where further change 
would be impossible. The justification for this prin~iple in the 
classical thermodynamics is found to depend on the first and second 
laws in a relatively simple manner. 

·In accordance with the first law of classical thermodynamics the 
energy content of an isolated system must remain constant, and in 
accordance with the second law-see§§ 59 and 62-its entropy must 
increase with the time as a result. of any actual thermodynamic 
changes that take place in it. Hence if there is an upper limit, giving 
the maximum possible entropy of the system, this will determine the 
final state of the system, where in accordance with (59.2) further 
change will be impossible. 

The proof that a maximum upper limit of entropy would exist can 
be caiTied out in detail by the methods of the classical thermo
dynamics for any specified isolated system chosen as typical. More 
generally it is evident that the entropy of a system can be regarded as 
a function of .its energy, volume, and sufficient further variables to 
determine its internal configuration and constitution, and since the 
energy of an isolated system will be constant we need only to consider 
the dependence of entropy on the volwne and internal variables. In 
the case of unconfined gases, however, this dependence is such that 
with constant energy content a final state of infinite dilution and com
plete dissocia.tion into atoms would be one of maximum entropy. And 
in the case of systems held together by their own coherence a final 
state of maximum entropy would be obtained when the internal 
variables have udjusted themselves to the most favourable values 
possible in the restricted range permitted by the fixed value of the 
energy. 

For example, in the case of a homogeneous systen1 of constant 
energy and volume, tho considerations of § 60 have shown that the 
condition for a given chcrnicu.l reaction to take place would be given 
by the expression (see 00.12) 

~ (as) Sni > o, f ani E,v 
(63.1) 

where 8n1, 8n2,. .. , Snb ... denote the changes in the number of mols of 
the <lifTcrent interacting substn.nces which would occur if the reaction 
in question should proceed to an infinitesimal extent. And since the 
value of any individual differential coefficient (8S/8nt) is actually 



136 SPECIAL RELATIVITY AND THERMODYNAMICS § 63 

found to cieorea.Be with increasing values of n" it is evident that 
continued reaction would ultimately lead to a condition of maximum 
entropy. 

By co~iderations such as these the classical thermodynamics has 
been led to the belief that isolated systems would approach a :final 
state of maximum possible entropy where further change would not 
take place. In our later extension of thermodynamics to general 
relativity, however, this conclusion will be modified by the fact that 
relativistic mechanics does not require a constant value for what may 
be called the total proper energy of an isolated system, and this 
removes the restriction on the adjustment of variables to secure 
incireased entropy imposed in the classical thermodynamics by the 
principle of the conservation of energy. 

64. Energy and entropy of a perfect monatomic gas 
As a. preparation for later applications we may now treat several 

matters of a more specific nature. In the present section we shall give 
expressions for the energy and entropy of a perfect monatomic gas. 

For the relation between the pressure, volume, and temperature of. 
such a gas we can take the perfect gas laws in the form 

pv = NkT, (64.1) 

where N is the number of molecules present, and Boltzmann's con
stant k is the ordinary gas law constant R for one mol of the gas 
divided by the number of molecules in a mol (Avogadro's number A) 

k = RfA. (64.2) 

Furthermore, in accordance with experiment and the simplest con
siderations of the kinetic theory, we can write 

0,, = iNk and O.P = iNk (64.3) 

for the heat capacities of such a gas at constant volume and constant 
pressure respectively, and in addition can taket 

Ekin '= JNkT (64.4) 

as an expression for the translational kinetic energy of the molecules 
at temperature T. 

t For sufficiently light molecules at sufficiently high temperatures the expression 
becomes E = 3NkP. · 
See J iittner and Tolman, loc. cit. 



§ 64 MONATOMIC GAS 18'1 

Making use of the fundamental starting-point for energy content 
provided by the mass-energy relationship of Einstein, as discussed 
:in § 56, we can then take for the total energy of such a gas the sum of 
the energy due to the rest-mass m of the particles themselves, and the 
above value for the kinetic energy, in accordance with the expression 

E = Nmr:l·+JNlcT. (64.5) 

This result will be of importance when we desire to consider the 
possible transformation of matter into radiation, or the possible 
transformation of one kind of atoms into another as in the formation 
of helium out of hydrogen, since the store of internal energy N rnc2 can 
then be drawn upon. 

For the dependence of the entropy of a perfect gas on temperature 
and volume, we can evidently write 

dS = 0" d: +P :v, (64.6) 

since (0, dT +P dv) would be the heat absorbed in a reversible change 
of temperature and volume. And substituting the values of Ov and 
v given by (64.1) and (64.3) and integrating we obtain 

8 = &Nlclog T-Nklogp+oonst. (64. 7) 

as an expression for the entropy of N molecules of perfect mona
tomic gas at temperature T and pressure p. Or introducing the con
centration of tho gas cas given by the gas laws in the form 

N 
p = -leT = ckT (64.8) 

v 

we can also rewrite the above expression for entropy in the equivalent 
form 8 = RNklog:Z'-Nklogc+const. (64.9) 

The value of the constant of integration occuning in equation 
(64.7) can be taken proportional to the number of molecules N, but 
is of course otherwise w1determined, until we choose some specific 
zero point for entropy contents. Taking the zero of entropy-in 
accordance with the third law of thermodynamics (§ 57)-to be that 
for the substance in tho form of a pure crystal at the absolute zero, 
we can then determine the constant from a knowledge of the reversible 
heat of evaporation from the crystalline to the gaseous form. This 
can readily be done theoreticallyt and leads to the well-known 

t See, for e::mmple, Tolman, St41Mtical Meclwnicl, New York, 1927. 



138 SPECIAL RELATIVITY AND THERMODYNAMICS § 64: 

Sackur·Tetrode equation for the entropy of a monatomic gas 

(2mn)l(ke)« 
S =iNk log T-Nklogp+Nklog ha , (64.10} 

or in terms of concentration 
(2mnk)le~ 

8 == iNklogT-Nklogc+Nklog-h3-, (64.11) 

where the additive constant is seen to depend on the mass m per 
molecule for the particular gas in question, and on certain universal 
constants, the base of the natural system of logarithms e, Boltzmann's 
constant k, and Planck's constant h. The actual dependence of the 
entropy of monatomic gases on these quantities in the way stated may 
now be regarded as a satisfactorily tested empirical fact. 

The quantity given by equations (64.10, 11) is often spoken of as 
the absolute entropy of the gas. Since such a designation might be 
misleading, however, it is well to emphasize that this quantity is in 
any case-both theoretically and experimentally-the increase in 
entropy that would accompany a change in state of the substance 
considered from the form of a pure crystal at the absolute zero to that 
of a perfect monatomic gas under the conditions specified. 

For practical calculations equations (64.10, 11) can be written in 
the following forms for the entropy per mol of gas at a given concen
tration c or at a given pressure p; 

S = IRlog T-Rlogc+iRlogM +So (64.12) 

and S = IRlog T-Rlogp+iRlogM +S~, (64.13) 

where the logarithms are to the base e, the entropy Sand gas constant 
R are in calories per mol per degree centigrade, T is in degrees centi
grade absolute, M is the molecular weight of the gas in grammes, c is 
in mols per cubic centimetre, pis in normal atmospheres, and the 
constants have the valuest 

80 = -11·0533 

and 8~ = -2·29852 

(64.14) 

(64.15) 

calories per mol per degree centigrade. The expressions are, of course, 
for monatomic gases. 

Expressions for the energy and entropy of gases composed of more 
complicated molecules, where allowance must be made for the rota-

t Birge, Phys. Rev. Supplement, 1, 1 (1929). 
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tion of the molecule as a whole and if necessary also for the oscillation 
of the atoms within the molecule, can also be o bta.ined, but will not 
be necessary for the applications that will be undertaken. 

65. Energy and entropy of black-body radiation 
In the present section we shall give the well-known expressions 

for the energy and entropy of black-body radiation, for use in our 
later applications. 

As shown by the work of Stefan and Boltzmann, the energy density 
u for radiation in equilibrium with the walls of a hollow enclosure at 
temperature T is given by the formula 

u = aT4, 

where Stefan's constant a has the valuet 
a= 7·6237 X IQ-15 

(65.1) 

(65.2) 

in ergs per cubic centimetre per degree centigrade to the fourth power. 
Furthermore, the pressure of this radiation is given by 

a 
p =- T 4 • (65.3) 

3 

In accordance with (65.1) wo may then write for the total energy 
of the radiation present at equilibrium in a hollow enclosure of volume 

vat temperature T E = avT4. (65.4) 

Furthermore, in accordance with the above expressions, we can 
evidently write for tho heat absorbed when the volume of the 
enclosure is increased by a reversible isothermal expansion 

dQ = dE+dW 

= aT' dv +~aT4 dv 

= ~aT4 dn, 
and hence for the increase in the entropy content of the enclosure 

dB= 3aT3 dv. 
This expression can now be integrated, however, to give the total 
entropy increase corresponding to an increase in the volume from. 
zero to v. We thus obtain, for the total entropy of the radiation at 
equilibrium in a hollow enclosure of volume vat temperature T, the 

expression s = &avTa. (65.5) 

Moreover, this quantity could be strictly spoken of as the absolute 

t Birge, loo. cit. 
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entropy of the radiation, since it is the total entropy increase accom· 
panying the actual introduction of the radiation into the space 
created inside the enclosure. 

As a further i.J;nportant characteristic of black-body radiation we 
may ·also note· that the energy distribution among the different 
frequencies is given at equilibrium by the Planck law 

hvS 1 
du = 87TCS e}vlkT _ 1 dv. (65.6} 

66. The equilibrium between hydrogen and helium 
As an interesting thermodynamic application of the relation be

tween mass a.nd energy provided by the theory of relativity, we may 
now consider the possible formation of helium out of hydrogen in 
accordance with a quasi-chemical reaction which we can write in the 
form 4H= He. (66.1) 

If the hydrogen atom does consist of one proton and one electron and 
the helium atom of a nucleus containing four protons and two 
electrons surrounded by two external electrons-as it seems reason
able to believe-such an internuclear reaction should be entirely 
possible. Furthermore, since the mass of the helium atom is con
siderably less than that of four hydrogen atoms there should be a 
great evolution of heat accompanying this process and hence in 
accordance with the qualitatively coiTect principle of Berthelot a 
great tendency for the reaction to occur. In the present section we 
shall calculate the conditions of equilibrium for this postulated 
prooess.t 

To do this it will be most convenient to take the criterion for 
chemical equilibrium in the form given by our previous equation 

(60.14) (aF) L - 8ni = 0, (66.2) 
" an" T,p 

where the quantities 8nt are the changes in number of mols of the 
different substances present which would occur if the reaction under 
test should proceed to an infinitesimal extent, and the quantities 
(8Ff8n.d are the rates of change in the thermodynamic potential of 
the system at constant temperature and pressure per mol of the 
substance indicated. Applying this criterion to the reaction between 

t Tolman, Joum. Amsr. Ohem. Soc. 44, 1902 (1922}. 
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hydrogen and helium as given by (66.1), and using the subscripts 
l and 2 to refer to hydrogen and helium respectively we can write 
the requirement for equilibrium in the form 

(:F) 3nt+(~\ 8n2 = 0, 
~ T,p ;) T.p 

or since we shall necessarily have four hydrogen atoms used for each 
helium atom formed we can substitute 

-8"-J. = 48n1 

a.nd obtain -4eF) +(!;8 = 0 (66.3) 
Bnt T,p T,p 

as a relation which must hold at equilibrium. 
To use this equation in our present problem, we may assume the 

hydrogen and helium both sufficiently dilute, so that they can be 
treated as perfect monatomic gases at their partial pressures and the 
temperature of the mixture. The thermodynamic potential per mol 
of hydrogen or lu~lium produced in the mixture can then be taken as 
equal to the n.ctual thermodynamic potential for one mol of that gas 
in a pure state at the temperature and pressure thus given. And since 
these thermodynamic potentials will themselves be calculable in 
terms of tho energy E, pressure p, volume v, and temperature T of 
the gas in question from tho equation of definition (58.3) 

F = E+pv-TS 

the condition of equilibrium (60.3) can now be rewritten in the form 

(E2-!-p2 ·v-TS2)-4(E1 +p1 v-TS1) = 0, (66.4) 

where the subscripts 1 and 2 again refer to hydrogen and helium, 
E1 and B2 being the energies and S1 and B2 the entropies of a mol of 
pure hydrogen or helium at the temperature T and the pressures 
p 1 and p2 respectively, which n.re the partial pressures in the equili
brium mixture. 

For tho energy difference between a mol of helium and 4 mols of 
hydrogen, allowing for tho relativistic relation between mass and 
energy, wo mn.y write in accordance with (64.5) 

E2-4E1 = (M2-4llf1 )c2 -~RT, {66.5) 

where M1 and lr/2 aro tho molecular weights of hydrogen and helium, 
thus placing the energy change equal to the change in internal energy 
plus the chango in the kinetic energy of the molecules. Furthermore, 
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for the pressure-volume products we may write in ltccordnn<w wxth 

the gas laws pzv-4pl v = -3RT. (tW.fl) 

Finally, for the entropies we can use the vah~cs p~ovi~lPd by tho 
Sackur-Tetrode equation in the form (64.13), which wtll giV(ll UH 

-TB2+4TBt 
p·l. ... ~f·~ 3'/1 ':-f' (Uf1 7) = lj.RTlog T-RTlog_!+RRTlog 1tf -1- · lo,; w • 
Ps .J.r• 2 

Substituting these e:A-pressions into the equilibriun1 <~onclit.inn 
(66.4) and solving, we then obtain as an expression for tho <~quilihrilun 
constant for the reaction 

p (M. -4:.M ) JJ.£ 9 3B;) 1 !i (C ,. ~) 
log.Pt =- sRT 1 cs_Jilog T+~log M1- ll -1- -~f' lh.\ 

where p
1 

and p 2 are the equilibrium pressures of hydrngt•n nnd 
b.elium. 

To obtain numerical results with the help of this c.ct nnt.ion, we nuty 
take for the molecular weights of monatomic hydrogen n.ncl lwliutn 
the 1932 atomic weights 1·0078 and 4·002 gm., thus zu·~h·c~ting tht' 
small fraction of the isotope of hydrogen of approximu.to wt'ight 
2 recently discovered. For the other quantities we nw.y uso t.he vultwH 
of Birge,t for the velocity of light c = 2·90796 x l 010 cn1. seo. -- 1 , fur 
the gas constant R = 8·31360X 107 erg. deg.-I. mol-1 or l·!JHH·i:J 
cal. deg.-1 mol-1, and for S~ = -2·29852 cal. d.cg. - 1 niol-- 1 enrrn
sponding to taking the pressures in atmospheres. Subst,it.uting t.lw:-:t~ 
values and changing to logarithms to the base 10, we then oht.uiu with 
sufficient accuracy for our present purposes 

.P2 1·371 X 1011 
log-=. ---·---·-7·5log T -1-5·048 (Ofi.U) 

Pt T . ' 

~here the equilibrium pressures p1 and p 2 of hydrogen n.nd lwl i 11111 n n~ 
m atmospheres. Or denoting the total pressure of tho tnixt.nrP hy . 

.P = .Pt+.Pa (Hfl.lO) 

~d letting cx be the fraction of helium which would ho dissollinted 
~to hydrogen at equilibrium we can also easily rewrite thiH oquntinu 
m the form 

lo 256p3cx' 1·371 x 1011 
g(l-cx)(l+3cx)a=- p +7·5logT-5·64R. (Ofl.ll) 

t Birge, lao. cit. 



§ 66 EQUILIBRIUM OF HYDROGEN AND HELIUM 14:3 

In accordance with these results, we see that there would be an 
extremely great thermodynamic tendency for hydrogen to change 
over into helium unless we should go to extremely high temperatures 
and low pressures. This tendency arises because of the great evolu
tion of energy accompanying the formation of heliu1n from hydrogen 
corresponding to a loss in mass which is not large in gramtncs por mol 
formed, but very large in ergs on account of the appearance of the 
square of the velocity of light as the conversion factor. 'rhus in 
accordance with (66.9) we should have 

p 2 = 1 at T ~ 2X 10° 0 0. (66.12) 
Pt 

and hence should need a temperature over 109 degrees absolute in 
order to have monatomic hydrogen at one atmosphere in equilibrium 
with helium at that same pressure. And in accordance with (66.11), 
even at a temperature of a milliou degrees and a pressure as low as 
1o-1oo atmospheres, the fraction of helium G: dissociated into mona
tomic hydrogen would only be 

a:= Io-ao,ooo JT = lOB c C. (66.13) 
\p = I0-100 atm. 

These calculations have been mado for the equilibrium between 
unionized helium and unionized n1onatomio hydrogen. Ncvertholcss, 
tho free energy changes, accompanying such processes as ionizn.tion 
or ordinary chemical reaction, are so smn.ll compared with that for 
the internuclear reaction as not to chungo the gonorn.l conclusion tluLt 
hydrogen would in any ca._c;;e bo nhnost contplotoly transformed into 
helium at equilibrium under all but the most extretne conditions of 
high temperature and low pressure. 

This result must now be co1nparod with tholn1own facts concerning 
the presence of hydrogen and heli1un on tho earth, a.ud in tho ann and 
other stars. On tho earth it is well known that hydrogon shows as 
yet no discovered tendency to go over into holiun1. Hydrogen at 
ten-estriu.l tern pcraturcs und preBstu·t~s iH of courso lu.rgcly in tho 
diatonlic form or combined with oxygon to forn1 wn.tor. As noted 
above, however, this would not apprcciu.bly dilninish tho therino
dynamic tendency to for1n helium. Furthornwro, it is woll l<nown 
from spectral data that hydrogen in tho unionized n1onatomic form 
and unionized helium are both found in npprcciablo amounts in 
the chromosphere of the sun and in stars of a number of classes at 
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temperatures ranging say from 6,000 to 20,000 degrees absolute 
and at pressures enormously greater than the 1 o-100 atmospheres men
tioned above. We must hence conclude in general th&t the observed 
concentratioDB of hydrogen and helium in the universe are very far 
from oo!Tespondence with the amounts calculated for equilibrium. 

Similar conclusions, as to a discrepancy between relative amounts 
calculated for thermodynamic equilibrium and actually observed, 
have been obtained by Urey and Bradleyt for the case of a consider .. 
able number of isotopes which could be conceivably transformed into 
each other by internuclear reactions, of the type given by the example 

012+017 = c1s+ota. 
The method of calculation is similar to that employed above for the 
equilibrium between hydrogen and helium. The calculations have 
the advantage that the effect of deviations from the perfect gas laws 
-which might arise under the actual conditions obtaining when 
equilibrium is established-would tend to cancel out by affecting· 
both reactants and products in the same way. The calculations have 
the disadvantage, however, of smaller and at least in some cases less 
certain mass changes, and of less general information as to the 
relative abundanoe in the universe as a whole of the substances 
involved. The actual relative abundances of the isotopes in terrestrial 
material was found not to be in agreement with the relative abun
dances that would be calculated for equilibrium conditions at any 
assigned temperature. 

To account for the discrepancy, between the observed concentra
tion of hydrogen on the earth or in the sun and stars and that 
calculated for equilibrium, three general types of explanation present 
themselves. First, it is possible that helium cannot-be formed out of 
the constituents of hydrogen as assumed; secondly, the theoretical 
basis for the calculations may not be justified at some point; and 
thirdly, hydrogen may actually have a thermodynamic tendency to 
go over into helium but the reaction be so slow that equilibrium has 
not been attained. 

The reasons for believing in the possible formation of helium and 
the other higher elements from the constituents of hydrogen lie in the 
approximate whole number relations between atomic weights, in the 
observed emission of electrons and protons where certain nuclei are 
decomposed either artificially or by radioactive disintegration, and 

t Urey and Bradley, Phys. Bev. 38, 718 (1981). 
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in the general simplification and reduction in nwn.ber of necessary 
independent assumptions obtained with the help of this hypothesis. 
These reasons are strong but certainly not conclusive evidence that. 
helium can be formed from hydrogen, since our present knowledge 
as to the number and nature of fundamental particles, such as posi
tive and' negative electrons, protons, and neutrons, .is not complete. 
If helium cannot be produced solely from the constituents of hydro
gen the treatment given is of course not applicable. 

The theoretical basis for the calculations might be wrong either 
on account of the expression used for the energy change that .would 
accompany the reaction, or on account of the expression used for the 
entropy change. The energy change was calculated with the help of 
Einstein's mass-energy relationship. This principle form-s such 
a simple and integral part of the theory of relativity that we should 
be loth to abandon it. The entropy change was calculated with the 
help of the Sackur-Tetrode expression for the entropy of monatomic 
gases. This expression undoubtedly gives correctly that part of the 
entropy which is associated with the unordered spatial arrangement 
and motion of the atoms as a whole, but neglects any possible 
disorder within the nucleus. Nevertheless, we should have to assume 
an enormous increase in the internal disorder within protons or 
electrons themselves in going from helium to hydrogen in order to 
change the nature of the conclusions in the direction of higher con
centrations of hydrogen. 

The most probable explanation for the high concentration of 
hydrogen in the observable portion of the universe appears to lie, 
hence, in the assumption of an exceedingly slow rate for the reaction 
by which hydrogen would go over into helium, coupled with the 
hypothesis that even larger amounts of hydrogen were 'present in 
the universe in the past . 

. The assumption of great slowness for the reaction is in itself entirely 
reasonable. If the reaction took place in accordance with the simple 
mechanism 4H 4 He 

it would be of a very high order-the fourth-and in addition the 
nuclei of the hydrogen atoms would then be hindered in coming into 
intimate contact by the presence of the valency electrons. And if the 
reaction took place in accordance with the mechanism 

4H ++2E- ~He++ 
31193.11 
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after ionization of the valency electrons, it would be of even higher 
order, and intimate contact would in this case be hindered by a net 
electrostatic repulsion. Hence, except under extreme conditions of 
pressure and temperature, we should in any case expect the reaction 
to be very slow. 

On the other hand, the assumption of even larger amounts of 
hydrogen present in the universe in the past, at once introduces us to 
difficulties of the well-known kind, always encountered in the applica
tion of the second law over long time-intervals. In the case at hand, 
even if one assume a very small rate of reaction, we can still ask why 
the equilibrium concentration of hydrogen has not been reached in 
the infinite past time presumably available for transformation into 
helium. The consideration of such difficulties will form an important 
part of our later work. For the time being we may content ourselves 
with pointing out that the high concentration of hydrogen, the lack 
of equilibrium ratios for the relative amounts of the isotopes, and the 
presence of still undisintegrated radioactive substances are all pheno
mena of a similar kind, which indicate the possibility that the present 
composition of the matter in this portion of the universe results from 
a past history that involved exceedingly high temperatures. 

67. The equilibrium between matter and radiation 
As a second thermodynamic application of the relativistic relation 

between mass and energy, we may now consider the possible trans
formation of matter into radiation. This process, which is often called 
the annihilation of matter, would occur if negative electrons and 
protoDB or negative and positive electrons should be able to combine, 
with a resulting mutual neutralization of electric charge, and a 
change of the energy corresponding to their total mass into the form 
of electromagnetic radiation. We have, of course, at the present time 
no direct evidence that such a process ever does occur, although at 
least in the case of negative and positive electrons it seems highly 
probable. Nevertheless the a.nnihilation of matter, together with 
the transformation of hydxogen into helium, have both of them 
seemed attractive hypotheses to astrophysicists in order to account 
for the long life during which energy emission has taken place from 
the sun and other stars. 

Assuming for t~e time being the possibility of such a transforma
tion, we shall investigate in the present section the conditions for 
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thermodynamic equj.librium. between matter and radiation. Such an 
investigation was first made by Stern, t and later with a somewhat 
altered point of view by the present writer.t 

To carry out the investigation we shall find it most convenient to 
employ the criterion for equilibrium given by equation (59.2) 

(88)E,v = 0, (67.1) 

in accordance with which the entropy of a system maintained at 
constant energy and volume would be at a maximum. In order to 
use this criterion we shall need expressions both for the energy and 
entropy of a system containing an interacting mixture of matter and 
radiation. To obtain these expressions, we shall take the matter as 
being in the form of a perfect monatomic gas, and shall assume matter 
and radiation both sufficiently dilute so that we shall be justified in 
neglecting interaction and regarding the total energy and entropy as 
the sum of the usual expressions for the energies and entropies of the 
two constituents. 

For the total energy of a system containing N molecules of mass 'In 
in volume v and at temperature T, we may then write in accordance 
with equations (64.5) and (65.4) 

(67 .2) 

where the first term allows for the internal energy associated with 
the 1nass of the molecules, as is necessary if we are to contemplate 
the transformation of matter into radiation, and the other two ter1ns 
give the kinetic energy of the 1nonatomic molecules and tho energy 
of the radiation. 

For the entropy of the gas contained in the systen1 we shall find it 
most convenient to use the expression in terms of concentration as 

given by (64·9) S = HNklog 11-Nklogc+const., (67.3) 

and for the entropy of the radiation wo can uso tho expression given 
by (65.5) 

S = uavT3
• (H7.4) 

'£he additive constant in (67 .3) must be taken proportionn.I t.o the 
number of molecules N, but will otherwise bo dctern1inod by tho 
choice of starting-point for entropy values, and in combining tho two 
expressions for entropy wo must use tho same starting-point for tho 
entropy of matter and radiation if their inter-conversion is to be 

t Stern, Zeita. Elektrochetn. 31, 448 (1026). 
t Tolman, Proc. Nat. Acad. 12, 670 (1026). 
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considered. In order to do this let us 'Write Nk log be9 as an expression 
for the constant, where the particular form is taken merely in the 
interests of simplicity in the final formula, and b is a quantity whose 
value by hypothesis shall be such as to secure the necessary identity 
of starting-point. Adding the two e~essions we can then write for 
the total entropy of our mixture 

B =INk log T-Nk1og(Njv)+Nk1ogbel+iavT8• . (67.5) 

In accordance with our criterion for equilibrium, this quantity is 
to be a maximum at constant energy and volume. Taking the 
variation with respect toN and T, keeping v constant, we can then 
write 

88 = {jklog T-klog(Nfv}-k+klogbet} 8N + 
+(J:NkfT+4avT2) 8T = 0, (67.6) 

together with the subsidiary equation for the constancy of the energy 

8E = (mc2+JkT) 8N +(iNk+4avTB) ST = 0 (67.7) 

as the necessary conditions for equilibrium. And by combining these 
two equations and .solving, we easily obtain as the desired expression 
for the concentration of monatomic gas in equilibrium with radiation 
at temperature T the simple expression 

Njv = bTBe-mctlkT, (67.8) 

which shows that the equilibrium concentration of matter would 
increase with rise in temperature. 

In order to obtain specific values from this equation for the equili
brium concentration of matter at any given temperature we need to 
have a value for the constant b. Empirically we have of course no 
direct knowledge as to what this value should be. Theoretically, 
however, we know that its value must be such as to give the same 
starting-point to the entropy of matter and radiation, and the treat
ment given to the problem by Stern was equivalent to assuming that 
the entropies of a hollow enclosure containing radiation, and of 
matter in the form of a pure crystal, would both approach zero on 
cooling down to the absolute zero of temperature. The justification 
for the fust part of this assumption seems reasonable, since there 
would be no radiation at all left in the enclosure at absolute zero. The 
justification for the second part of the assumption seems less certain, 
however, since it takes for the total entropy of matter only that part 
which would be connected with the disordered positions and motions 
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of the component atoms and neglects other possibilities. Nevertheless, 
this assumption is probably the best that we can make at present. 

Assuming that we are justified in taking as the total entropy of 
matter that which it has over and above the entropy of a pure crystal 
at the absolute zero, we can easily proceed since it is eVident that the 
term in (67 .5), containing the constant b, can then be set equal to the 
last term in our previous expression ( 64.11) for the entropy increase 
in going from a crystal at the absolute zero to the form of gas. This 

will give us (2-mnk)iei 
Nklogbei = Nklog h

3 
, 

and on solving forb and substituting into (67.8), we obtain Stern's 
expression for the concentration of monatomic gas in equilibriuril 
with radiation at the temperature T 

(67.9) 

For the purposes of practical calculation, by substituting values for 
the universal constants, this can be rewritten in the form 

c = 3·143X 10-4MITRe-l·OBIX10'1 .M/T, (67.10) 

where cis the concentration in mols per cubic centimetre and M is 
the molecular weight in grams. 

In accordance with these expressions it is immediately evident that 
the calculated equilibrium concentration of matter would be exceed
ingly low except at enormously high temperatures on account of 
the great effect of the negative exponent -rnc2jlcT. Thus for a gas of 
molecular weight one composed of simple neutral particles (neutron 
gas) whose mass could be directly transformed into radiation, the 
calculated equilibrium concentration even at 109 degrees centigrade 
would only be 

c = I0-4686 ~~~8 or N = 6·06x 10-4663 ~~.~~.u~e~. (67.11) 
cm.3 cm.3 

Instead of considering the equilibrium between radiation and o. gas 
composed of simple neutral particles, it might seem more in corre
spondence with actuality to consider tho equilibrium between radia
tion and a mixture of negative electrons and protons of masses 
m1 and m2, or of negative ·and positive electrons, produced from 
radiation in equal numbers in order to maintain electrical neutrality. 
The treatment of this case can also easily be carried out by the 



150 SPECIAL RELATIVITY AND THERMODYNAMICS ! 87 

methods employed above and leads in place of (67.9) to the expl'<-'WIIOn 

N _ (2?T.../(lfntms)k)1
pte-Cm1 +m2)c1/2kT (07.12) 

-;;;- h2 

. Nf f th t ki d f I>u.I·ticle w lu~ru thcr. for the equal concentratiOns v o e wo n s o · t • 

average mass of the two particles (fnt +m2)/2 now nppt~nt·~ u~ the 
negative exponent. The result still leads, of course. to oxct'~~lvt-ly 
low equilibrium concentrations of matter. 

To account for the enormous discrepancy between thP ohHN'Vt~d 
concentrations of matter and 1·adiation in the univm"He, nrul wlu1t 
would be calculated for thermodynamic equilihriun1, f\hnilnr '~un
siderations present themselves as in the previous cn.so of thP po:-tHibl(l' 
transformation of hydrogen into helium. ~rhus it is poAHi hit~, first 
that matter and radiation are not interconvertible ns nHHntnetl, 
secondly that the theoretical basis for the calculations is not juHtHied 
at some point, and thirdly that matter does have a groat. tc-ndPnt•y to 
go over into radiation, but that the change is so slow that. eqnilihrhun 
has not been attained. 

In the case of the present problem, it is felt that tho netun.l m·t~urN 
renee of combinations between negative and positive t'lt•et.rmlH to 
form radiation is highly probable, t but the general q ueHt-.iou of thu 
possible transformation of all kinds of matter, including twutrona 
and protons, into radiation is less certain. To justify sneh u.n HNHtUUJ'· 

tion we have little to go on except the fact that 1nattcr and rncliat.inn 
both have mass, and hence-accepting the principle of the t~ou~<·rvn
tion of mass-we can tell how much radiation would bo fornH·d frun1 
a given amount of matter. It seems entirely possible, howov<•r, thr1t 
some forms of matter contain entities which cannot bo ehn.ngecl int(a 
radiation. ·· 

With.regard to the theoretical basis for the calcula.tionH, HJwdul 
eznpha&s must be laid on the uncertainties involved in obtniniug u. 
value fo~ the constant bin equation (67.8) by taking the entropy of 
matter m the crystalline form at the absolute zero as tho corn!ot 
s~g-point. This is certainly an appropriate proccdur<' in (HJtl

Sid~nng the transformation of one kind of matter into nlH )t.lwr by 
or~ary chemical reaction, but is much more dubious for prom•HHeH 
which would autually · 1 th d . 
. . mvo ve e estruct10n of fundamental pnrtidt~N, 

Since It neglects the possibility of entropy resident within thPir 

t See Oppenheimer and Plesset, Pkya. Rev. 44, 63 (1933). 
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structure. It is to be noted, nevertheless, that we have no theory of 
such entropy inside the particles, and perfectly enormous stores of 
such entropy would be necessary to overcome the great effect of the 
negative exponent -mc2jkT in leading to low concentrations of 
matter. 

With regard to the rate of reaction by which radiation might be 
formed from 1natter, theoretical computation has indicated a very 
high rate for the mutual annihi1ation of positive and negative 
electrons, t and this is perhaps in agreement with the apparent lack 
of accumulation of the positive electrons which we now know to be 
continuously driven out from terrestrial matter by the bombardment 
of cosmic rays. In the case of other processes we have no informa· 
tion. The mutual annihilation of one proton and one electron would 
be a complicated process involving the production of two light quanta 
under just the necessary conditions to satisfy the conservation laws 
and might well have a low a priO'J-i probability of occurrence. Never
theless, it is possible that the rate of annihilation would have to be 
exceedingly small if we should desire to account both for the total 
concentration of matter and the relative concentrations of ita differ
ent forms by assuming general equilibrium at a very high temperature 
at some time in the past. 

ln spite of the uncertainties which attend the foregoing treatment 
of the equilibrium between matter and radiation, and to a lesser 
extent that for the equilibrium between hydrogen and helium, it is 
believed that the methods of calculation employed are instructive, 
and the results obtained are at least of some interest in our present 
state of knowledge. It is perhaps specially interesting to note that 
thermodyna.mic calculations can be made which are logical and conse
quent, even at a time when our ignorance of necessary facts precludes 
a definite assertion as to their actual applicability to the physical 
situation proposed. Such an experimentation with 'if' 'then' con
siderations can be of great importance both to the intellect and the 
imagination. 

t Oppenheimer, P!J.ys. Rev. 35, 939 (1930). 
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oPECIAL RELATIVITY AND THERMODYNAMICS (contd.) 

Pari II. THE THERMODYNAMICS OF MOVING SYSTEMS 

68. The two laws of thermodynamics for a movin~ system 
In Part I of this chapter we have considered the classical thermo

dynamics of stationary systems, and have investigated the effect of 
the theory of relativity only in so far as it has provided a new means 
for determining the energy content of a system. We must now tum 
to the more far-reaching effects of relativity in providing, as first 
shown by Planckt and by Einstein,t a satisfactory theory for the 
treatment of thermodynamic systems which are in motion relative 
to the set of axes which are being used by the observer. 

As a basis for the theory we shall find it possible to use the two laws 
of thermodynamics written in exactly their previous forms: 

/!:,.E= Q-W (68.1) 

for the energy change of a system in terms of heat absorbed and work 
done, and 

(68.2) 

for the entropy change in terms of heat absorbed and temperature. 
In applying these expressions, however, it will now be understood that 
the quantities, energy, entropy, heat, work, and temperature which 
appear therein are to be assigned the values which are appropriate to 
the particular set of axes which is being used, with reference to which 
the thermodynamic system under consideration is not necessarily at 
rest but may be in a state of uniform translatory motion. 

The justification for using the above expressions (68.1) and (68.2), 
as giving the content of the first and second laws of thermodynamics 
when applied to systems in a state of uniform motion, will depend 
on the fact that the transformation equations for the quantities 
involved will be such as to make the validity of these expressions, in 
a set of coordinates with respect to which a thermodynamic system 
is in motion, equival~nt to their validity in proper coordinates with 
respect to which the system is at rest. In these latter coordinates, 

t Ple.nck, Berl. Ber. 1907, p. 542; Ann. der Physik, 26, 1 (1908). 
t Einstein, Jahrb. der Radioaktivit& und Elektronik, 4, 411 (1907). 
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however, these expressions are merely a statement of the olassiQal 
first and second laws for which we assume that there is adequate 
empirical justification. 

We may now turn to a consideration of the Lorentz transformation 
equations for the quantities involved. 

69. The Lorentz transformation£ or thermodynamic quantities 
For most of our purposes it will be sufficient if we limit our treat

ment to simple systems containing a thermodynamic fluid which oan 
exert an equal pressure in all directions but cannot withstand shear, 
and whose state can be specified by two variables such as energy and 
volume or temperature and pressure. Such a limitation is familiar 
in thermodynamic discussions and its introduction will make it 
sufficient for the present to consider the Lorentz transformation only 
for the quantities-volume, pressure, energy, work, heat, entropy, 
and temperature. 

The first four of these quantities are of a mechanical nature, and 
the equations for their transformation have already been given or 
implied in what has preceded and will not be subject to alteration on 
account of thermodynamic considerations. Nevertheless, in order to 
unify our treatment we shall also give here, on the basis of earlier prin
ciples, a discussion of tho Lorentz transformat.ion of these quantities, 
especially as some simplification is introduced by the limitation which 
we have placed on the kind of stress which the fluid oan withstand. 
The transformation equations for tho new quantities heat, entropy, 
and temperature must be-in accordance with our previous remarks
such as to make the validity of the two laws of thermodynamics 
(68.1) and (68.2) in any given set of coordinates equivalent to their 
validity in proper coordinates, with respect to which the thermodyna
mic system is at rest. This requirement with one acceptable addition, 
which will appear in obtaining the transformation equation for 
entropy, is sufficient to lead to a unique solution. 

It will prove most convenient to have our transformation equations 
in a form which relateR tho quantity of interest in a given set of 
coordinates S with qun.ntities as measured in proper coordinates 8° by 
a local observer 1noving with the thermodynamic system in question. 
We now proceed to obtain such equations. 

(a) Volume and pressure. For the volume v of a thermodynamic 
system moving with the uniform velocity u we can immediately write 
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in accordance with our previous consideration of the Lorentz con
traction (69.1') 

where v0 is the volume as measured in proper coordinates. 
For tlie pressure p we can base the Lorentz transformation on the 

definition of pressure as force per unit area and on the known trans
formation equations for force. To do this let us temporarily use for 
simplicity axes chosen in such a way that the ve~ocity u of the system 
of interest will be parallel to the x-axis. For the forces Fa:, F11, and F. 
acting on surfaces of the system which lie perpendicular to the 
indicated axes we can then evidently write in accordance with the 
transformation equations for force (25.3) 

Fa;= F~, 

F11 = FW(l-u2Jc2), 

~ = Fg..j(l-u2Jc2), 

(69.2} 

where F~, Fg, and F~ are the forces acting on these same surfaces as 
measured in proper coordinates 8°. Hence, since an area perpendicular 
to the x-axis will not be affected by. the Lorentz contraction, while 
areas perpendicular to the other two axes will be contracted in the 
ratio of ~(l-u2/c2) : 1," we at once obtain the simple result 

P = p0, (69.3) 

as the transformation equation for pressure. This result will be seen 
to be merely a specialization of the general transformation equations 
for the components of stress (34.5), for the case now being considered, 
in which the stresses reduce to a hydrostatic pressure 

p = t:u; = tf/1J = t_. tlJ = 0 (i =f. j). (69.4) 

(b) Energy. To obtain an expression for the energy of our moving 
system we shall start with the system in a state of rest, in the internal 
condition which is to be considered, and then determine the work 
necessary to bring it to the velocity of interest by a quasi .. stationary 
adiabatic acceleration which will not disturb that internal condition
as measured by a local observer-which we desire to consider. To 
carry this out we shall first need to obtain an expression for the force 
acting during the process of acceleration. 

In accordance with our previous discussions of the relation between 
density of momentum and density of energy flow, see §§ 27 and 35, it 
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is evident that we can write, in the case of a. fluid of density p and 
pressure p, moving with the velocity u, 

pu 
g=pu+-, c2 

(69.5) 

as an expression for the density of momentum, where the first term is 
the density of momentum associated with the mass motion of the 
fluid, and the second term allows for the additional momentum that 
is associated with the flow of energy resulting from work done on the 
moving fluid by the pressure acting on it. And introducing the rela~ 
tion between mass and energy we can then write 

G = E+,_pv u, (69.6) 
c 

as an expression for the total momentum of the fluid in volume v, in 
entire agreement .with our previous more general equations (35.2). 

This then gives us F = !!:..(E+..:pv u) 
dt c2 (69.7) 

as the desired expression for the external force that will accompany 
the acceleration of the system. 

We are now ready to calculate the work done and energy increase 
associated with a change in velocity. This will evidently be the sum 
of the work done by the external force F, and by the action of the 
pressure p on the changing volume v of the system, so that we can 
put for the rate of change in energy 

dE dv dt = F ·u-p dt. (69.8) 

In applying this result to the process to be considered we can take in 
accordance with (69.1} and (69.3). 

p =Po and v = v~(l-u2jc2), (69.9) 
where p 0 and v0 will be constants, since we desire to carry out the 
acceleration in such a way as to leave p 0 and v0 for the state of the 
system as measured by a local observer with the unchanged values 
which are of interest to us. Making use of the constancy of p thus 
provided, and substituting (69.7) for F, we can then write 

dE _ dE u 2+ 'lt.2 dv+ E+pv u du _ dv 
dt - dt c2 p c2 dt c2 dt p dt ' 

or by transposing, 

( u2) d E+pv du 
I- c2 dt(E+pv) = c2 u dt' 
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which can easily be integrated to give us 
const. 

E+pv = ~(1-u2/c2)" 
Evaluating the constant by considering the value of E+pv at u :-.=::- 0, 

w.ecanthenwrite Eo+PoVo (69.10) 
E+pv = ..j(1-u2Jc2)' 

or in accordance with (69.9) 

.E _ Eo+Po Vo u"f~~ 
- ..j(l-u2jc2) 

(69.11) 

as the desired transformation equations for energy. The result will 
readily be seen to be a specialization of our previous equation (8lS. 7) 
for the caae that the stress reduces to a simple hydrostatic pressure. 

(c) Work. To obtain an expression for the work done when the 
internal state of the system is changed, keeping the velocity u constant, 
we must remember in accordance with the principles of relativistic 
mechanics that the momentum of a system can change oven nt con
stant velocity if its energy changes, and hence an external forco 
which does work may be necessary to maintain the constant velocity. 
FortheworkdW accompanying a change in internal state at constant 
velocity we can then write 

dW = p dv -u·dG, (60.12) 

where the first term gives the work done against the pressure and 
the second term takes care of the work associated with tho external 
force necessary to maintain constant velocity. Or substituting frcnn 
(69.6) for the case of constant velocity, we can put 

u" 
dW = p dv - 2 d(E+pv). (09.I3) c 

Introducing (69.I), (69.3), and (69.IO) this gives us 

dW - '(I "/ ") d u"fc" - ~ -u c Po Vo --,----- ------- d(E +Po Vo) 
'V(I-u"Jc2) 

0 

dW - '(I 2/ 2 u"/c2 
- ~ -u c) dWo ---·-------- d(E +1J v ) 

~(I-u"/c") o o o 
or 

(60.14) 

as an expression for the work dW in terms of quantities which nre 
meamn-ed in proper coordinates. 

(d) Heat Th tit' h . · e quan Ies w ose transformation equationR havo 
JUSt been considered were of a mechanical nature and no new 
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principles beyond those of our previous mechanics were introduced 
into their treatment. Turning now to the :first of the non~meohanioal 
quantities heat, we can obtain its transformation equation from the 
requirement that the first law of thermodynamics as given by (68.1) 
is to hold both in the set of coordinates S that are being employed 
and in proper coordinates S0• 

In accordance with (68.1) we can write 

dQ = dE+dW (69.15) 
for a small element of heat absorbed; and substituting for dE and 
dW from (69.11) and (69.14), we obtain for the case of a change in 
internal state without change in velocity 

dQ = dE0+d(p0 v0 )u2fc"+.J( 1-u"fc") dW. _ d.E0+d(p0 v0) u
2 

~(1-u2/c2) 0 ~(1-u2/c2) c2 

or dQ = ...j(1-u2jc2)(dE0+dW0). 

Since the first law of thermodynamics, however, must certainly hold 
in proper coordinates we may put 

dQ0 = dE0+dW';,, (69.16) 

and are thus uniquely led to the transformation equation for heat 

dQ = .J(1-u2jc2) dQ0 (69.17) 

or Q = ...j(1-u2jc2)Q0• 

With this transformation equation for heat, the validity of the first 
law in any given coordinate systemS is then seen to be equivalent to 
its validity in proper coordinates S0, which agrees with the justifica~ 
tion proposed in§ 68 for our choice of fundamental principles. The 
transformation equation (69.17) will also be seen to be in complete 
agreement with equation (54.18) obtained in our previous investiga~ 
tion of the Joule heating effect. 

(e) Entropy. In order to obtain the transformation equation for 
entropy we shall add to our thermodynamic requirements for systems 
in a state of rest or uniform motion, the requirement that the entropy 
of a system would be unaltered by a reversible adiabatic change in 
velocity without absorption of heat. This addition is evidently in 
acceptable agreement with our ideas as to reversible processes and 
as to the significance of entropy. 

Considering now a thermodynamic system in some internal state 
of interest and originally at rest with the entropy 8 0, we can then 
accelerate it to the velocity u reversibly and adiabatically without 
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change in its internal state, and hence without change either in its 
proper entropy 80 or entropy S with respect to the coordinate system 
actua.lly being used. We are thus led to the simple transformation 
equation for entropy s = s

0
• (69.18} 

In further justification it may also be noted that this result is in 
agreement with the statistical mechanical interpretation of entropy 
in terms of probability, since the probability of finding a system in a 
given state should evidently be independent of the velocity of the 
observer relative to it. 

{f) Temperature. Finally with the help of the second law of thermo
dynamics (68.2), and the transformation equations for heat and 
entropy just obtained, the transformation for temperature becomes 
immediately evident. In accordance with the second law we have 

~s~ J~, 
and substituting (69.17) and (69.18) we obtain 

MO~ J ,Y(I---:_~~"_~~9•. 
In proper coordinates, however, the second law must certainly hold 
in the sim pie classical form 

~80 ~ J ~~-0 , 
so that we can at once take 

T = ~(1-u2jc2)T0 (69.19) 

as the transformation equation for temperature. 
The transformation equations for all three of the non-mechanical 

quantities Q, S, and T have thus been taken so that the validity of 
the two laws of thermodynamics in a given coordinate system Sis 
equivalent to their validity in proper coordinates 8°, which was the 
justification proposed in § 68 for our choice of fundamental principles. 

To conclude the section we may now collect into one place the trans
formation equations for thermodynamic quantities, for convenience 
of future reference. 

v = v0 ~(1-u2jc2), 

p =po, 

E = Eo+PoVoU2
/C

2 

~(1-u2fc2) ' 
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u"fc.2 
dW = ~(1-u2/c2) dW0 -:j(l-u2/c2) d(Eo+.PoVo), 

dQ = ~(l-u2/c2) dQ0, 

S = S0, 

T = ~(1-u2/c2)T0• 
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(69.20) 

70. Thermodynamic applications 
From the foregoing equations it is immediately evident that the 

thermodynamic equations for moving systems differ from those for 
stationary systems only in terms of the second order or higher in ufc. 
Hence the direct empirical verification of the applications of this 
extension of thermodynamics is hardly to be expected. There are, 
however, two simple conceptual applications, which we may now 
develop as illustrating the internal consis~ncy of the theory. 

(a) Carnot cycle involving change in velocity. Our first application 
will be the consideration of a simple reversible cycle involving the 
transfer of heat from a stationary to a moving heat reservoir. The 
process may be regarded as analogous to the Carnot cycle of ordinary 
thermodynamics, and the result obtained will illustrate the con
sistency of our transformation equation for temperature. 

Consider a simple systemS (the engine), containing a fluid which 
will be kept at the constant pressure p =Po throughout the cycle, 
and two heat reservoirs R1 being at temperature ~ and at rest, and 
R2 being at temperature T2 and moving with the velocity u. In the 
initial state (a) of the system let it be at rest with the same tempera
ture Ta = 1i as the reservoir R1, and having the energy content and 
volume Ea and va; and let the first step of the cycle consist in a change 
to state (b) by the reversible isopiestio absorption of heat from the 
reservoir R1. For the heat Q1 absorbed from the reservoir and the 
work W 1 done by the system we cab. evidently write 

Ql = Eb-Ea+P(Vb-Va) (70.1) 
and ~ = p(vb-va)· (70.2) 

In the second step of the cycle let us change to state (c) by a re
versible adiabatic acceleration to the same velocity u as that of the 
reservoir R2, keeping the internal condition of the system unaltered 
as measured by a local observer moving therewith. There will be no 
heat change in this process and the work done will be 

~ = Eb-Ec. (70.3) 
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By hypothesis let the temperature of the system in state (c) be the 
same as that of the reservoir :R2, and let the third step of the cycle 
consist in the reversible transfer to the reservoir of a certain amount 
of heat - Q1 whose value will be determined later. The work Wa done 
by the system during this process will be in part due to a change in 
voluine under the constant pressure p, and in part due to a change in 
momentum even at the constant velocity u as previously discussed. 
Making use of equation (69.13) we can then evidently write for the 
heat aJ:>sorbed and work done during this step 

Q2 = Q! (70.4) 

and Wa = p(vc~-V0)- (u2fc2){Ea-Ec+P(Va-vcH· (70.5) 
Finally, by hypothesis let the heat transferred in the above step 

be "just sufficient so that the system can be returned to its original 
state (a) by a reversible deceleration which leaves the internal con
dition unaltered as measured by a local observer. There will be no 
heat change in this process and the work done will be 

~ = Ed-Ea. (70.6) 

We have now completed the cycle and are ready to apply the two 
laws of thermodynamics. 

In accordance with the first law of thermodynamics, the total heat 
absorbed by the system in this cycle must be equal to the total work 
done, since the system finally arrives in its initial state with its 
original energy content. Hence we can evidently write 

Qt+Qa = ~+w;+Wa+~, (70.7) 
and on solving for Q2 and substituting the above values for the other 
quantities, this is found to lead to the result 

Qa = {(Ed+Pva)-(E<'+pv0 )}{1-u2jc2}. (70.8) 

In accordance with (69.10), however, we can evidently put 

E + _ Ea+Pva d E+ _ Eb+Pvb 
a PVa- .J(l-u2jc2) an c PVc- .J(l-u2fc2)' 

since the cycle was carried out in such a way that the internal con
dition of the system as measured by a local observer moving there
with was the same in states (d) and (a), and in states (c) and (b). 
Substituting in (70.8) this then gives us 

Qs = {Ea.-Eb+p(va-vb)}~(l-u2fc2), 
or in accordance with (70.1) 

Qll = -Q1J(l-u2jc2). (70.9) 
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On the other hand, in accordance with the second law of thermo
dynamics, we can evidently write 

Ql+ Q2 = 0, (70.10) 
2i T2 

since the total entropy change of the system will be zero for the cycle. 
And substituting (70.9) in (70.10) we obtain the result 

T2 = 1i~(I-u2jc2). (70.11) 

In accordance with the process described, the quantity T1 occuning 
in this expression is the temperatUre of the system S (the engine) 
when at rest and the quantity T2 is the temperature to which it falls 
when its velocity is raised to u by a process which does not change its 
internal condition as measured by a local observer moving therewith. 
The result is in complete agreement with. the transformation equa
tion for temperature (69.19) obtained above by somewhat different 
considerations. 

(b) The dynamics of thermal radiation. As a second applicati~n 
of the considerations developed in this chapter we may consider the 
dynamics of a hollow enclosure filled with black-body radiation, and 
moving with the velocity u. 

In accordance with (65.3) and (65.4) the energy and pressure for 
such a system will have the values 

and 

E0 = av0 T~ 
Po= !aT~ 

(70.12) 

(70.13) 

when measured by a local observer who is moving with the same 
velocity as the enclosure. Hence, making use of (69.11), we can write 
for the energy with reference to coordinates such that the system has 

the velocity u E = ~ T~+ iavo T~_"!'_~/~~ 
--· \. ~{l-u2jc2) 
. \ I+iu2Jc2 

= Eo ~(l-u2/c2)' (70.14) 

andir. accordance with(69.6)and(69.10) we can write for the momen-

tum of the system _ avo T~+iavo T~ u 
G--· ---~-

~(l-u2jc2) c2 

4 E0 u 
= 3 ~(l-u2jc2) c2 • 

(70.15) 

351Ui.ll 
M 
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These expressions for the energy and momentum of a moving 
'Hohlraum.' are of interest because of their agreement with the con
clusions obtained by Mosengeilt directly from the electromagnetic 
theory of radiation without the explicit use of relativity. 

71. Use of four-dimensionallanguag~ in thermodynamics 
In our development of the dynamics of a mechanical medium it 

was found possible to express the content of the laws for the con
servation of mass, energy, and momentum in four-dimensional 
language by a single equation (37.9) having the simple form 

fJTP." jfJx" = 0, (71.1) 

where the components of the energy-momentum tensor pp.v are 
related to densities of mass, energy,. and momentum and to the 
stresses in the manner given by the table of components (37.~). 

And this equation can be employed to investigate the energy changes 
within a mechanical medium for use in connexion with the first law 
of thermodynamics. 

In the present section we shall show the po~sibility of expressing 
the second law of thermodynamics in a four-dimensional form. This 
will be important for our later extension of thermodynamics to 
general relativity. 

To obtain the desired result let us start with the second law of 
thermodynamics in its original form (68.2), and consider a small 
element of any given thermodynamic fluid or medium as the system 
to which we apply it. If 8v is the volume of this element and cp is the 
density of entropy at the point where the element is located, the 
entropy content of the element will be ~ Bv, and we can evidently 
write in accordance with the second law 

d BQ 
dt(cp 8v)8t ~ T (71.2) 

as an expression which relates the change in this entropy content in 
the infinitesimal time 8t with the heat SQ which flows into the element 
during that time interval and the temperature T at the point in 
question. 

Expanding the left-hand side of this expression we obtain 

(
dcp 8 +,~. d Sv) St 2 BQ 
dt v '~" dt ;?" T ' 

t Mosengeil, Ann. der Physik, 22, 867 (1907). 
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and, substituting evident expressions in terms of partial derivatives 
for the two total derivatives with respect to the time, this becomes 

( acp + acfo + acp + acfo) avSt + (~ au:x: + ~ ~ + ,~..au,~) a at ~ a Q 
Uz ax u11 fJy Ua f)z at or ox "r ?Y 'f' az v ~ T ' 

where Uz, u11 , and u,~ are the components of the velocity of the fluid 
at the point under consideration. Combining terms this result can be 
written in the simpler form 

[
a a a acp] aQ ax ( rfouz) + fJy ( cpu11) + az ( cfou.s) + at av8t ~ T , (71.3) 

or, introducing expressions for Uz, u11, u,~, and 8v in terms of the 
coordinates x, y, z, and t, in the form · ' 

[~ (rfo dx) +~(rP.dy) +~(cfo dz) + ocfo] a a 8 at~ 8Q ax dt ay · dt az dt at x Y z ~ T · (71.4) 

In order tore-express this result in four-dimensional language, let 
us now return to our fundamental idea of a four-dimensional space
time continuum characterized by the formula for interval (20.1) 

' 

ds" = -(dx1)"-(dx")2-(dx3)2+(ck-')1 (71.5) 

in terms of the space-time coordinates (x1 , x2, x3, x') where 

x1 = x x2 = y x8 = z x' = ct. ( 7 I. 6) 

Introducing these new coordinates we can then evidently rewrite 
(71.4) in the form 

[ ~1 ( ~ ::) + a:• (~ ::) + ~3 ( ~ :~ +::.] Sx'Sx
2
8x"Sx' ~ s:, 

or, by an obvious substitution, in the form 

[~.(~:. ~')+~.(~! ~1+~.(~! ~")+ 
+ ~(~::. ~')] 8x18x2Sx•Sx< ~ 8~. (71. 7) 

In accordance with the formula for interval (71.5}, however, it is 
evident that dsfdx' is equal to the factor which gives the Lorentz 

contraction dsfdx4 = ..J(1-u2fc2) (71.8) 

for matter moving with the velocity at the point in question. Further
more, since entropy in accordance with (69.18) is an invariant for the 
Lorentz transformation, we can evidently write as the transformation 
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·equation for entropy density 

cp = _ _i_~---· .. (71. 9) 
.J(l-u2/c2) • 

Hence by combining (71.8) and (71.9) we shall be able to put 

ds 
cf> dx' = q,0• (71.10) 

In addition, in accordance with the transf01·mation equations for 
heat and temperature (69.17) and (69.19) we can put 

8Q 8Q0 -=-, T T0 

(71.11) 

where T0 and 8Q0 are the temperature and the heat that enters the 
element as measured by a local observer moving therewith. · 

Substituting (71.10) and (71.11), our expression (71.7) for there~ 
quirements of the second law can then be written in the symmetrical 
form 

[a!. ( sbo ~
1

) + 0:. ( sbo ~)+a:. ( sbo ~) + 
+ ~(¢• ~)] 8x18x•8x"8:t';;;. ~~. (71.12) 

Introducing the summation convention this can be written in the 

shorter form 0 ( dxJ-1.) 8Q - q,0 - 8x18x28x38x4 ~ -·-· .CJ. ('71.13). 
oxt-£ d8 T0 

Or defining the entropy vector SP., in terms of proper entropy density 
cfoo and generalized velocity of the fluid dxP.jda, by the equation 

dxP. 
SP. = rp0-, (71.14) 

ds 
we may finally write the very simple equation 

aSP. 8x18x28x3Sx4 ~ 8 Q 0 (71.15) 
oxfL ~ T

0
• 

The foregoing equations (71.12), (71.13), and (71.15) express the 
requirements of the second law of thermodynamics in the desired 
four-dimensional form which will be valid for any space-time coor
dinates of the type (71.6). They are of the form assumed by tensor 
equations of rank zero in 'rectangular' coordinates of this type, and 
can be written by a slight modification in a general tensor form valid 
in 'curvilinear' coordinates as well. This latter form will provide the 
basis for our later extension of thermodynamics to general relativity. 



VI 

THE GENERAL THEORY OF RELATIVITY 

Part I. THE FUNDAMENTAL PRINCIPLES OF GENERAL RELATIVITY 

72. Introduction 
Einstein's theory of relativity may be regarded as based on the 

fundamental idea of the relativity of all motion. In accordance with 
this idea we can detect and measure the motion of a given body 
relative to other bodies, but cannot assign any meaning to its 
absolute motion. 

The special theory of relativity makes only a. restricted use of 
this general idea, since it merely assumes the relativity of uniform 
translatory motion in a region of free space where gravitational effects 
can be neglected. As a result of this assumption we are led to the 
conclusion that the laws of physics for the description of phenomena 
in free space must be independent of the velocity of the particular 
observer who makes measurements for their determination, and must 
hence have the same form and content when referred to different sets 
of Cartesian axes which are in uniform relative translatory motion. 
Making use of this conclusion, the special theory of relativity then 
guides us in determining the necessary form of the laws of physics 
when expressed in the coordinates corresponding to any desired set 
of unaccelerated Cartesian axes, assuming that the effects of gravi
tation can be neglected. The special theory of relativity, however, 
makes no hypothesis as to the relativity of all kinds of motion, gives 
no discussion of the form of the laws of physics when referred to more 
general coordinates con-esponding, for example, to spatial axes in 
non-uniform motion, and provides no treatment of gravitational 
action. 

The gene.ral theory of relativity, to which we now turn, attempts, 
on the other hand, to make full use of the general idea of the relativity 
of all kinds of motion. In the first place, this immediately leads to 
a consideration of the laws of physics when referred to any kind of 
space-time coordinates, and to the conclusion that these laws must 
be expressible in a form which is independent of the particular 
space-time coordinates chosen, since otherwise the difference in form 
could provide a criterion for judging the absolute motion of the 
spatial framework used in the construction of different systems of 
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coordinates. ~the second place the programme thus initiated is also 
found to involve a consideration of the effects of gravitational action. 
This arises from the fact that the expression of the equations of physics 
in a form which is independent of the coordinate system does no~ in 
general prevent a change in their numerical content when we change 
from one system of coordinates to another, and it is only by relating 
such changes in numerical content to conceivable changes in gravita
tional field that we are able to eliminate criteria for absolute motion 
and to preserve the idea of the relativity of all kinds of motion. This, 
however, is found to lead to a complete theory of gravitational action. 
Hence by a natural extension of the fundamental basis, the general 
theory of relativity leads to a satisfactory solution of the two obvious 
problems which were le:ft untouched by the special theory of relativity. 

The assumption that the laws of physics can be expressed .in a 
form which is independent of the coordinate system is called the 
principle of covariance, and the actual hypothesis by which gravita
tional considerations are introduced into the development has been 
named the principle of equivalence, for reasons which will appear 
later. We may now undertake the detailed consideration of these two 
principles and their more immediate consequences. 

73. The principle of covariance 
In accordance with the principle of covariance the general laws of 

physics can be expressed in a form which is independent of the choice 
of space-time coordinates. In the present section we shall first discuss 
the justification for the introduction of this hypothesis, the theoretical 
and practical nature of the consequences that could follow its 
adoption, and the methods by which it is to be used. We shall then 
consider two simple and important examples of the employment of 
the principle, which are furnished by the covariant expression of the 
formula for space-time interval and by the covariant expression for 
the equations of motion for free particles and light rays. 

{a) Justification for the principle of covariance. As already indicated 
in the preceding section, our primary motive in introducing the prin
ciple of covariance can be regarded as residing in our desire to make 
full use of the idea of the relativity of all kinds of motion. If the general 
laws of physics could not be expressed in a form which is the same for 
all space-time coordinate systems we could take the differences in 
form for different coordinate systems as an evidence of differences in 
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the absolute motion of the spatial frameworks used in setting up the 
space-time coordinate systems. This we avoid by the introduction 
of the principle of covariance, even though we shall later find-as 
already mentioned-that invaria.nce of form alone is still not sufficient 
to preserve the relativity of all kinds of motion. 

Although our original motive for introducing the principle of 
covariance may thus be thought of as furnished by the idea of the 
relativity of motion, there is an even more immediate justification for 
believing in its validity. AB emphasized by Einstein the laws of 
physics are to be regarded as a codification of the results of experi
mental observations, and these consist in the last analysis in the 
determination of space-time eoincidences.t The recording of such 
space-time coincidences is, of course, conveniently carried out with 
the help of some system of space-time coordinates. Nevertheless, the 
actual physical behaviour can be in no way affected by the coordinate 
system used, which may be introduced by the experimenter in any 
arbitrary way which suits his convenience or fancy. As a result of 
this independence of physical reality and coordinate system, we are 
then led to the .conviction that the laws of physics-whatever they 
may he--can be expressed in a form which makes no reference to any 
particular coordinate system, and we are further strengthened in this 
conviction by the great success which the mathematician has already 
had in devising language-in particular that of the tensor calculus
for the covariant expression of geometrical and physical relations. 
We thus come to regard the principle of covariance as in any case an 
inescapable axiom, and to regard it as merely a task-possibly 
difficult but theoretically possible-for the mathematician to find 
a form, invariant to coordinate transformation, for the expression 
of any desired physical law. 

(b) Consequences of the principle of covariance. The full apprecia
tion of this inescapable character of the principle of covariance has 
an immediate effect on our estimate of the theoretical consequences 
that could follow from the adoption of the principle. If the laws of 
physics-whatever they might be-could in any case be expressed 
in· invariant form, given sufficient ingenuity on the part of the 
investigator, it becomes at once evident that the adoption of the 
principle imposes no necessary restriction on the nature of these 
laws. Hence the very reasoning that leads to our certainty of belief 

t As elsewhere in the book, we are considering macroscopic phenomena.. 
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in the validity of the principle of covariance, has at the same time 
robbed the principle· of any absolutely necessary consequences, a. 
conclusion first presented by Kretschmannt and concurred in by 
Eillstein. t 

Nevertheless, as further emphasized by Einstein, the explicit use 
of the principle of covariance does have important actual conse
quences in our investigation of the axioms of physics. In searching 
:for the appropriate axioms, we shall wish to e1irninate unsuspected 
assumptions that could arise from the use of any particular coordinate 
system. Hence from the very start we shall desire to express our 
axioms by covariant equations that make no use of a particular 
coordinate system. This, however, has important actual conse
quences, since we are then led to adopt as axioms, not such principles 
a.s appear simple when we use some special coordinate system, but 
such principles as can be simply expressed by covariant equations 
that are independent of the coordinates. There is, moreover, a certain 
theoretical justification for this mode of procedure, since even without 
any belief in the necessary simplicity of nature it is evident that our 
progress in understanding must lie in a process of successive approxi
mation that starts· with the provisional use of simple expressions, and 
~ stated above to el_iminate unsuspected assumptions these must be 
stated in covariant language. Hence the adoption and use of the 
principle does have great heuristic value, as illustrated, :for example, 
by the fact that it would certainly be practically impossible to take 
the Newtonian law of gravitation as an appropriate axiom, since its 
expression in covariant langua.ge would undoubtedly be too com
plicated either for comprehension or use. 

(c) Method of obtaining covariant expressions. In the ac.tual em
ployment of the principle of covari8.nce, we are enormously assisted 
in our task of expressing the fundamental axioms or principles of 
physics in covariant :form by the use of the tensor calculus, developed 
by Ricci and Levi-Civita, since· as we have already seen in § 19 
the expression of a physical law by a tensor equation has exactly 
t];l.e same form in all systems of space-time ooordina tes. Hence in the 
development o£ general relativity we are at once led to seek expres
sions for the fundamental postulates of physics in the form of tensor 
equations, and are greatly helped in this task by the fact that we ha.ve 

t KrefsOhmann, Ann. der Physik, 53, r>75 (1917). 
t Einstein, ibid. 55, 241 (1918). 
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already found tensor equations for many of the principles of the 
special theory of relativity. 

Although the tensor analysis is thus of the greatest importance for 
the development of general relativity, it would be wrong to assume, 
as has sometimes been done with unfortunate results in the past, that 
we must limit ourselves to the use of tensor equations in investigating 
the fundamental principles of physics. The fact that all tensor 
equations are necessarily covariant equations does not, ·of course, 
eliminate the possibility of covariant equations which are not tensor 
equations. Indeed the frequent use of covariant equations connecting 
tensor densities-instead of tensors-is a specially simple and fa.m.iliar 
example to the contrary. In addition Einstein's development of the 
equations of relativistic mechanics in a covariant form containing the 
pseudo-tensor density of potential energy and momentum has been 
of great importance in obtaining an insight into mechanics, and we 
shall not hesitate to employ it in this book. 

(d) Covariant expression for interval. In the development of the 
special theory of relativity we have found that the principles of 
physics can be treated with great effectiveness with the help of a four
dimensional space-time geometry, characterized by the formula for 
the element of interval 

(73.1) 

where x, y, z, and tare our usual spatial and temporal variables. In 
the development of the general theory of relativity we shall find the 
use of the idea of a four-dimensional space-time continuum even more 
necessary, and in accordance with the principle of covariance shall 
need a covariant expression for the formula for interval by which the 
geometry can be characterized. As a preliminary step in this direc
tion let us first examine the possibility of re-expressing this special 
relativity formula for interval in covariant form. 

The expression for interval given by (73.1) is not a completely 
covariant one, since it retains unaltered form only for the limited 
class of transformations discussed in§ 17. These include the Lorentz 
transformation to a new set of variables x', y', z', t', coiTesponding to 
new Cartesian axes moving with uniform velocity relative to the old, 
but with more general transformations, corresponding, for example, 
to a change to accelerated axes or even to the mere change to spatial 
polar coordinates, the form will not be unaltered. 
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It is easily possible, however, tore-express the formula for interval 
in cov&ria.:O.t language, since we immediately recognize (73.1) as the 
simplified expression in 'rectangular' coordinates for the general 
tensor relation dB2 = g dxfLdx'~~ 

fi.JI ' 
(73.2} 

which is valid in any coordinates, using the appropriate values for the 
components Up.v of the metrical tensor and summing as indicated over 
all values of p., v = 1, 2, 3, 4. 

To demonstrate the existence of this possibility in detail, we have 
merely to note in the first place that our covariant expression (73.2) 
is indeed equivalent to the original expression for interval (73.1) with 
the specially simple values for the components of the metrical tensor 

Uu = Y22 =Usa ::c:: -1 g44 = c2 

Up.v = 0 (p. #- v), (73.3) 

and then to show in the second place that by any arbitrary trans
formation to new coordinates the forinula for interval will still be 
left in the form (73.2). 

To prove this, let us consider an arbitrary change to any desired 
new set of general (curvilinear) coordinates x1, x2, xs, x' which are 
related to the original (rectangular) coordinates x, y, z, tin any way 

XI-' = x~-'(x, y, z, t), (73.4) 

which is consistent with the necessary conditions of continuity and 
unambiguity. Making use of the relations between the two systems 
of coordinates we can then write 

dx = ~ dx1 + ox dx" + ax dx3 + ox rJ.x4 
8x1 8x2 8x8 ax' 

. . . . . . . . . . . . . . (73.5) . .. . . . . . . . . . . . . 

dt = ~ dx1 +!!__ d 2 +!!._ d 3 + ~ dx4 
t3xl 8x2 X (Jx3 X ox4 

for the differentials of the old variables in terms of the new. By 
squaring these and introducing into (73.1) we then obtain 

d8"= (-(!)"-(:!,)"-(!)"+c'(a~)"]<dz>>• + 
. . . . . . . . . . . . . . . . ' . 
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. . . . . . . . . . . . . . . 
which is seen to be still in the form (73.2), as was to be proved. 

It should be noted from the form of (73.6), that the g,_,.v will always 
be symmetrical in p. and v. It should also be remarked that the tensor 
character of (Jp.v is immediately evident, since in accordance with the 
postulated invariance of interval we can write for any pair of coor
dinate systems x'P. and XI' the equivalent expressions 

d82 = g' dx'P.dx'" - g I) d,xc¥clx/3 p.v - rx,. ' (73.7) 

which will evidently give us 
, a~ axf1 

g p.v = ox'~' em'" g rxfJ 
(73.8) 

as the transformation equation for the g ~'"' and this is in agreement 
with the general equation (19.10) that we have given for the definition 
of tensors. 

The generally covariant tensor expression (73.2) which we havo 
thus obtained for the element of interval now makes it possible to 
treat the facts of special relativity using not only our usual coor
dinates x, y, z, t, but also using any set of general coordinates 
x1, x2, xs, x' which we may desire to introduce. At the present stage 
of the argument we have only demonstrated the justice of using this 
covariant formula in the absence of gravitational action when the 
principles of the special theory are actually valid. Nevertheless, we 
shall show in the next section[(§ 74 (e)] with the help of the principle 
of equivalence that we shall also have a measure of justification for 
using this same formula in the more general case when gravitational 
action is involved, when no coordinates can be found which would 
make it possible to express the formula for interval throughout tho 
whole of space-time in the original simple form (73.1). 

(e) Covariant expression for the trajectories of free particles and 
light rays. As a second example of the introduction of the idea of 
covariance we may now consider the covariant expression of the 
equations governing the motion of free particles and light rays. The 
possibility of obtaining such a covariant expression has already been 
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shown in § 28· in our discussion of the four-dimensional treatment of 
the mechanics of a particle as given by the special theory of relativity. 
A somewhat more complete treatment from our present point of view 
will, however, be useful. . 

In aCcordance with the special theory of relativity the behaviour 
of a free particle would be governed by Newton's first law of motion, 
so that the particle would move in a straight line with constant com
ponents of velocity 

dx dy dz (73.9) 
dt = Ux dt = Uy dt = Uz, 

where x, y, z, and t are our usual spatial and temporal variables. And 
by combining these expressions with the formula for space-time 
interval (73.1), we can.re-express them in the four-dimensional form 

dx Ux 

ds = -;j(c2=u2) 

dy u11 
d8 = ~(c2-u2) 

dz u.e 
ds = ~(c2-u2) 

(73.10) 

dt 1 
ds = ,J(c2-u'i) · 

Interpreting this result, we 1?00 that the four-dimensional 'velocity' 
of a free particle would be a vector with constant components, 
and that its four-dimensional trajectory would hence be a straight 
line. 

By differentiating these expressions a second time with respect to 
the element of interval, we can re-express the conditions for the four
dimensional trajectory in the form 

d2x diJ d2z d2t 
d82 = diJ2 = d,s2 = dtJ2 = o. (73.11) 

Furthermore, these conditions can also be expressed in. accordance 
with the known properties of the straight line by the single equation 

8 f ds = 0, (73.12) 

which states that the total interval along the trajectory shall be an 
extremum for small variations which ·vanish at the two limits o~ 
integration. This final form of expression is, however, a tensor 
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(scalar) equation which makes no reference to any particular coor
dinates and would lead to the same results in all systems of coor
dinates. 

We thus have no difficulty in finding a. covariant expression for the 
motion which could be assumed by a free particle in accordance with 
the special theory of relativity. Moreover, just as in the case of 
the covariant expression for interval, it is to be emphasized that we 
shall later find (§ 74e) a certain justification, with the help of the 
principle of equivalence, for taking our covariant expression (73.12) 
for the trajectory as also valid in the presence of gravitational fields 
when no coordinates are possible such that the formula for interval 
could be written t~ughout in the simple form (73.1). In this case 
equation (73.12) is the general condition for a geodesic, of which the 
straight line is a special case. 

In making practical use of the condition for a geodesic it is u.suaHy 
convenient to replace (73.12) by the equivalent equations 

d2XU dXJl- rJ,xv 
ds2 +{JLv, o}dB ds = 0, (73.13) 

which can easily be obtained from (73.12) by familiar methods by 
substituting the general formula for interval (73.2). The Christoffel 
three-index symbols with 'curly' brackets occurring in (73.13) are 

defined by (ag 8 ag } 
{p.v a}= igaA --~+-rf.!A--·---~~ (73.14) 

' OX11 oxf' OX" 

while three-index symbols with 'square' brackets are defined by 

[ p.v u] = l(~!!P:~+~Uv!Z-~~), (73.15) ' axv oxP- axa 
neither of these quantities being tensors. It will be immediately 
seen from (73.13) that the general conditions for a geodesic do 
reduce in the case of the ':Bat' space-time of special relativity to 
the simple form (73.11), since for the coordinates x, y, z, t the 
components of the metrical tensor Up.v will then be constants and 
the three-index symbols will vanish. 

Turning to the case of light rays, the eq nations of motion will be 
the same as for the case of particles with the additional restriction 

ds = 0 (73.16) 

already discussed in§ 21, corresponding to the fixed value for the 
velocity of light in free space. 
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The foregoing discussions of the covariant expression for interval 
and of the covariant expressions for the motion of particles and light 
rays give typical examples of the possibility of re-expressing the 
principles of the special theory of relativity in a covariant form which 
permits the use ·of any desired 'curvilinear' coordinates x1, x2, x8, x' 
instead of the usual 'rectilinear' coordinates x, y, z, t. In both oases 
we shall later obtain with the help of the principle of equivalence 
(§ 74e) a measure of justification for taking these covariant expres
sions as valid not only in the case of the 'fiat' space-time of special 
relativity, but also in the case of the 'curved' space-time which we 
shall :find to be associated with the presence of permanent gravita
tional fields. 

74. The principle of equivalence 
We may now turn to an examination of the principle of equivalence, 

which furnishes the second main element in the general theory of 
·. relativity and the one which leads to the necessary introduction of 

gravitational .fields and 'curved' space~time into the considerations. 
We must :first discuss the method of formulating this principle which 
is a somewhat more involved matter than in the case of the principle 
of cov.ariance. 

(a) Formulation of the principle of equivalence. Metric and 
gravitation. The principle of equivalence gives specific expression to 
the correspondence between the results which would be obtained by 
an observer who makes measurements in a gravitational field using 
a frame of reference which is held stationary, and the results obtained 
by a second observer who makes measurements in the absence of 
gravitational field but using an accelerated frame of reference. In 
a qualitative way it is immediately evident that some measure of 
coiTespondence between the two sets of measurements should exist, 
since both observers would find an acceleration with respect to their 
frames of reference for all free particles left to their own motion. 

To o btai.n a precise expression of the principle, we may first consider 
the hypothetical limiting case of a non-accelerated observer in a per
fectly uniform gravitational field, as contrasted with a uniformly 
accelerated observer in a region of free space where the gravitational 
field can be neglected. In this case the principle of equivalence makes 
the definite assertion that the results obtained by the two observers 
in performing any given physical experiment will be precisely 
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identical, provided of course that the observer in free space is given 
an acceleration, relative to the non-accelerated axes of the special 
theory of relativity, which is equal and opposite to the gravitational 
acceleration found by the other observer. 

An alternative expression of the principle of equivalence can also 
be given which is often more convenient for use. Having asserted the 
complete equivalence between the two observers, we appreciate that 
the equivalence will have to persist when we make analogous changes 
in their states of motion. Thus if the observer in the field is himself 
allowed to fall freely with the natural acceleratipn due to gravity, and 
the forced acceleration given to the observer in free space is reduced 
to zero, they must still obtain identical results in any given experi
ment that they may perform. In other words, for a freely falling 
observer :ip. a uniform gravitational field the effects of gravitation 
would be abolished. Hence the principle of equivalence can also be 
taken as the assertion that it is always possible in the case of a uniform 
gravitational field to transform to space-time coordinates such that 
the effects of gravity will not appear. 
·In the general case of non-uniform fields, the statement of the 

principle of equivalence has to be modified since the natural accelera
tion due to gravity would be different in different parts of the field. 
Nevertheless, we may still maintain for a sufficiently small region 
that the effects of gravitation could be removed by the use of freely 
falling axes, having the natural acceleration due to gravity for that 
region. This is illustrated, for example, by the temporary and limited 
abolition of gravitational action which would be obtained inside a 
freely falling lift at the surface of the earth. Hence the principle 
of equivalence may be finally formulated by the statement that it is 
always possible at any space-time point of interest to transform to 
coordinates such that the effects of gravity will disappear over a 
differential region in the neighbourhood of that point, which is taken 
small enough so that the spatial and temporal variation of gravity 
within the region may be neglected. 

The recognition, which the principle of equivalence thus gives to 
the possibility of permanent gravitational fields which cannot be 
completelytransformedawaybychoice of coordinate system, leads at 
once to an intimate relation between metric and gravitation. In 
accordance with the special theory of relativity, coordinates x, y, 
z, t can be chosen such that throughout space-time the formula for 
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interval can be written in the simple form 

ds2 = -dx2-dy2-dz2+c2 dt2, 

where the metri,cal tensor has the constant values 

Yu = Y22 = Yss = -1 Y44 = C
2 

§ 74 

(74.1) 

gf'v = 0 (J.L =I= v). (74.2) 

In acco1·dance with the above, however, it will not be possible in the 
case of permanent gravitational fields to find coordinates such that 
the components of the metrical tensor assume these values except in 
the neighbourhood of some selected point, and we shall find it neces
sary to use the more general formula for interval 

ds2 = Up.v rJ,xPdxv, (74.3) 

where the components of the metrical tensor may be any function of 
the coordinates Up.v = Up.v(xl, x2, xS, x'). (74.4) 

.There is thus an intimate relation between metric and gravitation 
to be more precisely investigated as we proceed. Using the language 
of our four-dimensional geometry, however, we can already say that 
the absence of gravitational field corresponds to the metric :for a 'flat' 
space-time and the presence of any given pennanent gravitational 
field corresponds to the metric for some particular kind of 'curved' 
space-time. 

(b) Principle of equivalence and relativity of motion. We may next 
consider the relation of the principle of equivalence to the funda
mental idea o£ the relativity of all kinds of motion. 

The first step towards the preservation of this idea lay in the intro~ 
duction . of the principle of covariance, in accordance with which 
the equations of physics can be expressed in a form the same :for all 
coordinate systems, thus removing the possibility of using essential 
differences in form as a criterion of absolute differences in motion. 
As already mentioned, nevertheless, this alone is not neceBBarily 
sufficient to preserve the idea of the relativity of all kinds of motion, 
since equations of the same form can exhibit eBBential differences in 
numerical content which could be used as possible criteria of absolute 
motion. At this point, however, the introduction o:f the principle of 
equivalence can be regarded as the second step in preserving the idea. 
of the relativity of all kinds of motion, since with the help of this 
principle it proves possible, if so desired, to interpret the essential 
changes in numerical content which are actually found to accompany 
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changes in coordinate system as due to changes in gravitational field 
rather than to changes in the absolute state of motion of the axes of 
reference. 

To illustrate this by a specific example we may concentrate our 
attention on the simple case of two observers in free space, the first 
being regarded as in a state of rest or uniform motion and the second 
as accelerated. In spite of the principle of covariance which allows 
the two observers to treat, for example, the motion of free particles by 
equations of exactly the same form, it is evident that they must find 
essential differences in numerical content, since the :first observer 
would find no motion relative to himself for a. free p~cle which he 
places in his immediate neighbourhood and the second observer would 
find a definite motion for such a test particle owing to his own state 
of acceleration. And this difference could be interpreted by the 
second observer as a definite criterion for the absolute character of 
his acceleration, if the principle of equivalence did not enter at this 
point and permit him-as we have seen above-to ascribe the 
acceleration of free particles with equal justice as being due to the 
presence of a gravitational field. 
T~ treat this same example somewhat more mathematically, let .us 

consider that the unaccelerated observer uses a coordinate system 
conesponding to our usual spatial and temporal variables x, y, z, and t 
and·to the formula for interval 

(74.5) 

On the other hand, let us assume that the second observer, who can 
be taken as moving relative to the fi.I):It with the acceleration a in the 
.x-direction, uses the coordinates x', y', z', and t' as given by 

x' = x-iat2 y' = y z' = z t' = t (74.6) 

in accordance with the usual transformation to accelerated axes, 
which we may certainly regard as a reasonable change at least at low 
velocities. Substituting from (74.6) into (74.5) we then find as the 
formula for interval for the second observer the expression 

ds2 = -dx'2-dy'2-dz'2+(c2-a2t'2)dt'2- 2at' dx'dy'. (74.7) 

Examining the two formulae for interval (74.5) and (74. 7), we 
immediately appreciate their essential difference in content, in spite 
of the fact that both formulae are in agreement with the generally 

3119&.11 N 
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covariant expression for interval 

dlJ2 = g dxJLdxv 
J.I.V ' 

since in the one case the components of the metrical tensor g P." have 
the si~ple constant values -l,,cs, 0, and in the other case are con
siderably more complicated. This difference, moreover, is imme
diately reflected in a difference in the experimental results which the 
two observers obtain. Thus although both observers can use the 
same covariant equations (73.13) previously given 

· dBxa dxP- dxv 
ds?. + {p.v, u} d8 ([i = 0 

• 
to describe the motion of free particles, the first observer will find 
that the application of this equation leads to the general result 

d2x d2y d2z d2t 
--~ = --- = - = - = 0, ds2 dtJ2 ds2 ds2 

(74.8) 

while the second observer will obtain a more complicated result which 
reduces for the case of particles having negligible velocity to 

d2x' -a d'k·' d2z' d~t' · 
f1 - 0 (74.9) 

ds2 = c2-a2fJ. ds2 = ds2 = ds2 - • 

In accordance with the principle of equivalence, nevertheless, the 
second observer is permitted to interpret this difference in experi
mental results-arisirJ.g from the changed values of the components 
of the metJ.ical tensor-as due to the presence of a gravitational :field 
rather than to any absolute quality in his state of motion. 

As a result of the foregoing discussion, we now appreciate in general 
that the principle of equivalence will permit us, if we so desire, to 
interpret the change in the content of the equations of physics when 
we change to a new coordinate system as due to a change in gravita
tional field rather than to a change in the absolute motion of the 
spatial framework. This, however, is sufficient to preserve the idea 
of the relativity of all motion. Thus the changed results, that we 
ordinarily describe ·as being due to a change in our ref~rence frame
work from a state ·of rest to a state of accelerated motion, can also be 
described as due to the changed gravitational field which results 
when the reference system is left at rest and the remainder of the 
universe is ·accelerated in the opposite direction. Acceleration as 
well as velocity thus partakes in the quality of relativity. Similarly· 
the effects accompanying the change, ordinarily described as that 
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from ~ta.tiona:ry to rotating axes, can only be regarded as due to the 
relative rotation of the axes and the gravitating bodies in the rest of 
the universe. . 

We shall later have further examples of the validity of the idea of 
the relativity of all kinds of motion, a very instructive one being given 
by the discussion in§ 79 (c) of the so-called clock paradox. In general, 
the possibility of contradictions to this idea may now be regarded 
as satisfactorily removed by the introduction of the principle of 
equivalence. 

(c) Justification for the principle of equivalence. .Although the 
general idea of the relativity of all kinds of motion thus provides a 
strong motive for the acceptance of the principle of equivalence, our 
justification for the introduction of this principle can also be based 
on more immediate grounds. Unlike the principle of covariance, the 
principle of equivalence cannot be regarded as a necessarily ines
capable axiom of physics, since it makes perfectly definite statell)ents 
as to the interrelated character of coordinate systems and gravita
tional fields which might or might not be true. Hence it is also unlike 
the principle of covariance in demanding necessary physical conse
quences, and our :final justification for the introduction of the 
principle must depend on the comparison of these predicted conse
quences with the results .of observation and experiment. 

The simplest of these consequences is the conclusion that the 
gravitational acceleration of all bodies would have to be the same 
when tested in the same gravitational field, since the presence and 
amount of thls acceleration would be solely a function of the coor
dinate system used. Hence the far-reaching discovery of Galileo that 
all bodieS fall at the same rate, and the precise tests of this law 
furnished in the case of ordinary materials by the exhaustive investi
gations of Eotvos and in the case of radioactive material by the 
work of Southerns, can be regarded as furnishing immediate support 
for the principle of equivalence. 

In addition to this simple, but nevertheless very general and well 
tested, consequence of the principle of equivalence, we shall see in 
§ 80 that the general theory of relativity leads to the Newtonian 
theory of gravitation as a first and very close approximation. Hence 
the accurately confirmed laws of celestial mechanics can also be 
regarded as furnishing support for the building-stones upon which the 
theory is based. 
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Finally, moreover, our belief in the principles of the general theory 
of relativity receives the compelling sanction provided by the three 
so-ca.lled crucial tests, § 83, which distinguish between the predictions 
of the approximate Newtonian theory and those of the more precise 
Einstein theory. So that we must regard all the postulates of the 
theory as being very satisfactorily chosen. 

In addition to these observational verifications, which justify the 
introduction of the principle of equivalence, we must also assign a 
high importance to our intuitive appreciation of the rationality of 
assuming the abolition of gravitational effects for a freely falling 
observer, and to our intellectual appreciation of the simplicity, clarity, 
and effectiveness of the postulate that we thus obtain. The8e qualities 
of intuitive rationality and of intellectual simplicity, clarity, and 
effectiveness, which bespeak so unmistakably the insight and genius 
of Einstein, furnish of themselves of course no evidence of corre
spondence with experimental and observational fact. They are, never
theless, necessary qualities for those principles which the human 
mind is willing to use as the fundamental postuiates for science, and 
their presence must hence be regarded as also furnishing important 
justification for the acceptance of the principle of equivalence. 

(d) Use of the principle of equivalence in generalizing the principles 
of special relativity. Na~ral and proper coordinates. In accordance 
with the principle of equivalence we can always choose coordinates 
so as to make the effects of gravity disappear in the immediate 
neighbourhood of any space-time point of interest, over a differential 
region taken small enough so that we can neglect the spatial and 
temporal variations of gravity for the range involved. In the absence 
of gravity, however, the principles of the special theory of relativity 
can be regarded as being valid. Hence the principle of equivalence 
can also be understood as requiring the possibility of choosing coor
dinates such that the general statements of the laws of physics will 
reduce in the immediate neighbourhood of any desired point to forms 
previously given by the special theory of relativity in terms of our 
usual spatial and temporal variables x, y, z, and t, or more simply in 
terms of the so-called Galilean coordinates introduced in§ 20: 

x1 = x, x2 = y, x8 = z, x' = ct. 

Such coordinates may be called natural coordinates for the point 
in question. In these coordinates, in accordance with the special 
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relativity formula for interval, the components of the metrical tensor 
Up.v will assume, at the chosen point of interest, their previous simple 
values -1, +I, and 0, and the first differential coefficients of the 
Up.v with respect to these coordinates will be zero at that point. In 
general, however, the second differential coefficients will not be zero 
except for the special case of space-time that actually is :flat. It will 
thus be seen that the assumption of approximate coiTectness for the 
special theory of relativity in the immediate neighbourhood of any 
desired space-time point is analogous to the approximate replace
ment of a curved surface by its tangent plane at a given point of 
interest, made use of in geometrical considerations. 

For any given space-time point there will be an infinite number 
of different possible systems of natural coordinates, which can be 
obtained by rotating the spatial axes to different orientations, and by 
making the Lorentz transformation to different velocities of the 
origin. Among these different systems we shall often be specially 
interested in coordinates which are so chosen that some particular 
observer with his measuring instruments or some particular thing 
such as a given particle of matter will be at least momentarily at rest 
with respect to the spatial axes. Such systems may be called proper 
coordinates for the observer or thing in question, and by§ 18 a trans
formation to such coordinates can of course always be made. 

The possibility thus furnished by the principle of equivalence of 
using natural coordinates gives us a powerful instrument for use in 
determining the general laws of physics, since we now require that 
they must in any case be of such form, when expressed in natural 
coordinates, that they will reduce at the selected point to their 
previously obtained special relativity forms. This provides a pro
cedure for testing covariant expressions which may be proposed as 
general laws of physics, and eliminating those which do not agree 
with the principle of equivalence. The method of course does not lead 
to necessarily unique results, since more than one generalization of the 
principles of special relativity having the required property can be 
possible. NevertheleBB, in many cases the simplest possible generaliza
tions which present themselves are found to provide satisfactory 
principles. 

(e) Interval and trajectory in the presence of gravitational fields. In 
our discussion of the principle of covariance [see§§ 73 (d) and 73 (e)], 
it has already been intimated that we shall adopt the covariant forms, 
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in which the special relativity formulae for the element of interval and 
for the trajectories of free particles and light rays can be expressed, 
as also valid in the 'curved' space-time associated with permanent 
gravitational fields. We must now show that this does agree with the 
reqtiixements of the principle of equivalence as just discussed above. 

To show this in the case of the formula for interval 
d82 = u,.~.~~ dxfAdx" (74.10) 

we must first prove that a transformation of coordinates is always 
possible such that the first differential coefficients of the components 
of the metrical tensor g ,.,., will become zero at any selected point. This, 
however, is a well-known theorem of differential geometry which 
demonstrates that it is always possible to reduce to such 'geodesic 
coordinates'. To do this we first transfer the origin of coordinates to 
the point of interest and then change from unprimed to primed 
variables by the substitution 

x• = g~x'fA-!{ctfi, e}og~gex'~Lx'", (74.11) 
where {~[3, e}

0 
is the value of the three-index symbol at the origin. It 

is then readily proved that we shall have the relationst 

(74.12) 

holding at the origin in the new coordinates. Having secured the 
desired constancy at the origin for the components of the metrical 
tensor, the further transformation to coordinates such that the 
components y,_,., will assume at that point the prescribed values 
-1, c2, 0 or ±I, 0 can then be secured by familiar methods. Hence 
the_ choice of the covariant expression (74.10) as the general relativity 
formula for interval, in the presence as well as in the absence of 
gravitational fields, is in agreement with the requirements of the 
principle of equivalence. 

Turning next to the covariant expression 
d}':lf' dxP. dx" 
ds2 +{IJ.v, u} d8 lls = 0 (74.13) 

as given by the special theory of relativity (73.13) for the trajectory 
of a free particle or light ray, we see at once that this is also suitable 
to take as a postulate which will be applicable in general relativity in 
the presence of gravitational fields, since in natural coordinates the 

t See for example Eddington, The Matl~ematical Theory of Relati'V'ity, Cambridge, 
1923, p. 77. 
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Christoffel three-index symbols (73.14) will evidently vanish a.t the 
point of interest in accordance with (74.12), and the general formula, 
(74.13) will reduce to the special relativity fonn (78.11) 

d2x(1 
--- = 0. d82 

Furthermore, the additional limitation 

ds=O 

(74.14) 

(74.15) 

which must be used in the case of light rays can evidently be appro
priately taken as a general condition also in the presence of gravita
tional fields. The conditions for a geodesic as given by (74.13) can 
thU& be postulated as also applying to the motion of particles or light 
rays in a gravitational field. This gives an enormous step forward in 
the direction of securing a complete theory of gravitation, a step 
which of course must be justified, when the time comes, by com
parison with the observational data of astronomy. 

The fundamental tensor g p.v occurs both in the formula for interval 
(74.10) and in the formula for trajectory (74.18). In the formula for 
interval it appears as a set of metrical quantities which determine 
the nature of the space-time geometry by relating the measured 
values of different intervals to the corresponding coordinate differ
ences. In the formula for trajectory the first derivatives of the Up.v 

with respect to the coordinates appear in the Christoffel three-index 
symbol in a certain analogy with the appearance of the derivatives 
of the Newtonian gravitational potential in the older expreBBions for 
trajectory. This dual character of the fundamental tensor may be 
recognized by refeiTing to the ten independent quantities g~-'" either 
as the components of the metrical tensor or as the gravitational 
potentials in the Einstein theory of gravitation. The dependence of 
the geometry of space-time and hence also of space itself on gravita
tion, arising from this dual character of the fundamental tensor, is 
a. noteworthy result of the general theory of relativity .. 

The rather abstract quality of the formula for interval (74.10) must 
not be allowed to obscure the fact of its reference to matters which 
are completely observational in character. Any interval expressed by 
the formula (74.10) will be either space-like, time-like, or singular 
in character according as da2 is negative, positive, or zero. By 
transformation to suitably chosen proper coordinates x, y, z, t, the 
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expression for any space-like interval can be thrown into the form 

-dtJB = dx2+dy2+dz2, (74.16) 

and the expression for any time-like interval into the form 

ds" = cs dts, (74.17) 

which makes the coiTeSponding proper length or proper time imme
diately determinable from the readings of suitably taken metre sticks 
or clocks. 

Similarly the formula for trajectory (7 4.13) refers to observational 
situations, since the time-like interval ds is then the proper time for 
a local observer moving with the particle in question, and the rate of 
change of the coordinates of the particle with this quantity can be 
observationally determined. 

75. The dependence of gravitational field and metric on the 
distribution of matter and energy. Principle of Mach 
In addition to the principles of covariance and equivalence we 

must evidently introduce some further element into the theory of 
gravitation. With the help of the two foregoing principles we have 
learned to interpret the fundamental tensor g p.v in its metrical aspect 
as determining the nature of space-time geometry and in its gravita
tional aspect as determining the motion of particles and light rays. 
We have so far, nevertheless, no laws for the actual dependence of the 
values of the gp.v on the coordinates, beyond that provided by the 
very general notion that 'fiat' space-time corresponds to the absence 
of intrinsic gravitational action and that 'curved' space-time corre
sponds to the presence of permanent gravitational fields. Hence we 
must now seek, as the third element in the relativistic theory of 
gravitation, a precise statement of the laws giving the dependence 
of the metrical and gravitational field on space-time position, which 
will permit the calculation of gravitational effects in the presence of 
any given distribution of matter and energy. 

In accordance with the Newtonian theory of gravitation the action 
of gravity at any point in space at a given instant is determined by the 
location of the sUITounding matter, and this general idea with suitable 
modifications must evidently be taken over into the relativistic theory 
of gravitation since theN ewtonian theory is in any case an exceedingly 
close first approximation. In Newtonian theory the dependence of the 
gravitational potential rp on the distribution of matter of density p is 
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given by Poisson's equation 

a?;p os.p o2r/J _ 
OXS + ays + ozS - 4Tr/cp, (75.1) 

where k is the gravitational constant. In the relativistic theory of 
gravitation modifications will be necessary, in the first place sinoe 
we shall need to calculate the ten components of the metrioaJ tensor 
or gravitational potentials Up.v instead of the single gravitational 
potential .p of the Newtonian theory, and in the second place because 
the special theory of relativity has provided us with relations between 
mass, energy, and momentum which indicate that covariant expres
sions are to be obtained by making use of all ten components of the 
energy-momentum tensor T,_,.v, rather than by singling out some single 
quantity which we could call the density of matter. 

Our general aim, hence, will be to obtain a covariant equation 
connecting the g,_,.v with the T,_,.v which will be the analogue of Poisson's 
equation, and which will lead to the same results as the Newtonian 
theory to a first approximation. Before proceeding to the complete 
solution of this task, however, it will first be profitable to consider 
two special cases, that of the field corresponding to the special theory 
of relativity, and that of a field in empty space but in the neigh
bourhood of gravitating bodies. 

The general hypothesis that the metrical field is determined by 
the distribution of matter and energy may be called the principle of 
Mach.t 

76. The field corresponding to the special theory of relativity. 
The Riemann-Christoffel tensor 
The special theory of relativity can be regarded as developed on the 

assumption of a 'flat' space-time, which neglects the presence of 
intrinsic gravitational fields, and the results obtained may be re
garded as approximately correct in what may be called the free space 
at great distances from gravitating bodies. We may now inquire into 
the covariant expression of the conditions necessary for the 'flat' 
space-time corresponding to the special theory. 

t This hypothesis was designated as the principle of Mach by Einstain, Ann. de.r 
Physik, 55, 241 {1918), since he took it to be a generalization of Mach's requirement 
that inertia must be regarded as based on the interaction of bodies. At the time 
Einstein believed tha.t the Mach principle neoessita.tad the introduction of the cosmo
logical A-tenn into the field equations. This term, however, no longer appears 
necessary, 
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To obtain this we. must :first consider the Riemann-Christoffel 
tensor, which can be expressed in terms of the Christoffel three-index 
symbols by the equation 

· a a 
R:n~a = {p.u, cx}{w, -r}-{p.v, a:}{a:u, T}+-{p.u, -r}-;-{i.Lv, T}. (76.1) 

r· axv uX0 

The tensor character of this expression can be readily demonstrated. 
In accordance with the form given and the definition of the three
index symbols (73.14), it. will be seen that the tensor is constructed 
solely from the components of the metrical tensor g p.v and their first 
and second derivatives with respect to the coordinates. It can be 
shown, moreover, that the only tensors which can be thus constructed 
solely from the fundamental tensor without going beyond the second 
derivatives are themselves functions of the g p.v and ~va· 

The conditions for 'flat' space-time can now be expressed by setting 
the Riemann-Christoffel tensor equal to zero, giving us the covariant 
eq11;ation R~vu = 0. (76,2) 

This equation is evidently a necessary condition, since in the case of 
'flat, space-time we know that it is possible to choose coordinates 
which will make the components of g,_,.v constants, and thus give all 
the Christoffel three-index symbols the value zero. The proof can 
also be given that the vanishing of the Riemann-Ch1istoffel tensor is 
a sufficient condition for the possibility of choosing coordinates which 
will make all the components of g,_,.v constants, as first shown by 
Lipschitz. t 

The tensor equation (76.2) thus expresses the conditions necessary 
for the validity of the special theory of relativity and for the absence 
of permanent gravitational fields, which cannot be transformed away 
by a suitable choice of coordinates. In the actual universe the den
sity of matter is found to be approximately uniform as far as the 
Mount Wilson 100-inch telescope can penetrate, at least to over 
108 light years; and there is no reason to believe that there is any 
region in the universe where the gravitational field could aotuaJly 
be completely transformed away. Indeed the mere presence of 
physical measuring instruments would be accompanied by an irre
ducible gravitational field. In other words, that which we have 
hitherto designated as the free space in which the special theory of 

t Lipschitz, Orelk1s Journ., 70, 71 (1869). 
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relativity would be exactly true presumably does not exist in the 
actual universe except as an idealization. Nevertheless, it is evident 
that the principles of the special theory of relativity are approxi
mately true even in the permanent gravitational field at the surface 
of the earth, and would be valid to an extremely high degree of 
approximation in internebular space. The use of the special theory of 
relativity as an abstract idealization thus s~ems entirely legitimate. 

77. The gravitational :field in empty space. The contracted 
Riemann -Christoffel tensor 
Since the equation obtained by setting the Riemann-Christoffel 

tensor equal to zero would eliminate the possibility of permanent 
gravitational fields, it is evident that we must seek some less stringent 
relation for the gravitational field in the empty space in the neigh
bourhood of gravitating bodies. 

We can arrive at such a less stringent relation with the help of the 
contracted Riemann-Christoffel tensor which is obtained by setting 
a = Tin (76.1) and summing. This gives us the tensor 

a a 
RP." = {p.a, a::}{a::v, a}-{1-'v, a::}{a::a, a}+ axv{p.a, a}- axa{p.v, a}, (77.1) 

which, with the help of equation (37) in Appendix III and a.ohange in 
order and in dummy suffixes, can also be written in the simplified 
form 

RJ-'11 = 

8 82 ,- 8 ,-
- aX«{p.v, a::}+{p.a::, fJ}{vfJ, a::}+ 8xi£dX)ogv-g-{p.v, ex} 8xe¥log"V-g. 

(77 .2) 

As the field equations in empty space but nevertheless in the 
neighbourhood of gravitating masses, Einstein has proposed the 
relation 

Rp.v = 0, (77 .3) 

which would evidently be true when the condition for 'fiat' space
time (76.2) is satisfied, but .could also be true under less stringent 
conditions. 

The theoretical justification for the choice of this equation will 
become apparent in the next section, where it will be possible to 
regard it as a limiting case of the more general equation for gravita
tional field in the presence of matter; and the very exact observational 
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justification .provided by the observed motions of the planets will be 
considered in § 83. 

78. The gravitational field in the presence of matter and 
energy 
We must now turn to the complete solution of the fundamental 

problem outlined in§ 75, of obtaining a covariant relation between 
the gravitational potentials u,.,.v and components of the energy
momentum tensor Tpv which will be the appropriate relativistic 
analogue of Poisson's equation 

a~ o"rp o2r/J 1) 
8x2 + aya + azs = 4-rrlcp, (78. 

which in the Newtonian theory of gravitation connects the single 
gravitational potential ifs with the density of matter p and the 
gravitational constant lc. 

In obtaining a solution of this fundamental problem Einstein had 
several kinds of consideration to assist him. In the first place, in 
agreement with the preliminary outline of the problem given in 
§ 75, we may expect that the relativistic analogue of Poisson's equa
tion will be a relation connecting all ten gravitational potentials g f'V 

with the distribution of matter and energy aa given by the ten com
ponenta of the energy-momentum tensor Tpv· In the second place, in 
accordance with the principle of covariance, we shall desire to express 
this result in covariant form, which will suggest the search for a. 
tensor of the second rank, constructed from the Upv and their deri
vatives with respeot to the coordinates, which can be equated to the 
energy-momentum te:asor Tpv· In the third place, since Poisson's 
equation does not involve higher derivatives of the Newtonian 
potential than the second, it will be natural to assume that it will 
not be necessary-at least in first approximation-to use a terisor 
containing higher derivatives of the Up.v than the second. Finally, in 
accordance with the principle of equivalence, we know that the 
energy-momentum tensor is a quantity whose ordinary divergence 
can be made to vanish at any selected point by the use of natural 
coordinates, since in the special theory of relativity we have already 
obtained, in Galilean ooordinates, the relation (37.9) 

(78.2) 
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in the treatment given in § 37 to the mechanics of & continuous 
medium. 

I 

These considerations were sufficient to suggest as the relativistic 
analogue of Poisson's equation, the tensor equation fil'st proposed by 
Einstein Rp.v-!RUp.v+Au,.,v = -I(T,.,,, (78.3) 

where Rp.v is the contracted Riemann~Christo:ffel tensor, B is the 
invariant obtained by the further contraction of this tensor, A is a 
constant, the so-called cosmological constant whose significance will 
be considered in more detail later, K is a constant which is related to 
the ordinary constant of gravitation by a factor to be obtained in 
§ 80 when Poisson's equation is obtained as a first approximation, 
and Tp.v is the energy~momentum tensor which is defined for the 
purpose of general relativity by assigning to its components in proper 
coordinates-and hence in any set of natural coordinates-the values 
which it would have in accordance with the special theory of 
.relativity. · 

This relation satisfactorily fulfils all the conditions mentioned 
above. It reduc~s in the case of weak gravitational fields to Poisson's 
equation as a first approximation as will be shown in § 80. It con
nects the ten gravitational potentials g p.v and their derivatives with 
the components of the energy-momentum tensor Pp.v· It satisfies 
the principle of covariance by being a tensor equation valid in all 
systems of coordinates if valid in one. And it contains no derivatives 
of the g p.v higher than the second. 

Furthermore, it is to be noted that it secures the validity of (78.2) 
in natural coordinates in a very fundamental manner, since it can 
readily be shown from the definition of the Riemann-Christoffel 
tensor that the relation 

(78.4) 

is a necessary identity with any constant value for A; and this will 
give as the fundamental equation of mechanics in any system of 
coordinates 

(78.5) 

fJpp.v 
or - = 0, (78.6) 

ox" 
in the special case of natural coordinates where the Christoffel three
index symbols vanish. Moreover, it is to be emphasized in this 
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oonnexion, in the first place that (RP."-!RgP."+AgP."), with A an arbi
trary conBtant, can be shown to be the most general tensor of the second 
rank constructed solely from the g p.v and their first and second deriva
tives whose contracted covariant derivative (78.4} would be identically 
equal to zero, and in the second place that four identical relations 
must necessarily be present since otherwise the solution of the ten 
field equations (78.3) for the ten Yp.v would not permit the four-fold 
transformation of coordinates which must necessarily be possible. 

We are thus impelled with considerable force at least to the tenta
tive acceptance of Einstein's relation (78.3) as the appropriate field 

· equations for the relativistic theory of gravitation. The complete 
justification for accepting this relation must of course depend on the 
correspondence between the predictions which it provides and the 
results of observation. To test this correspondence we can make 
use of the field equations (78.3) with any given distribution of 
matter and energy to predict the dependence of the tensor g ,.,.., 
on the coordinates used, and then compare the predicted values 
of the Up.v with observed values of the g,_,.... Theoretically, these 
observed values could of course be obtained from the direct measure
ment of space-like and time-like intervals with the help of the 
formula for interval ds2 = Up.v dxP.dx". Practically, however, such 
direct measurements cannot be carried out with sufficient accuracy 
even to distinguish between 'flat' and 'curved' space-time, and our 
accurate determinations of the g p.v depend on the measurement of 
astronomical motions, followed by the calculation of the Up.v with the 
help of the formula for trajectory 

(78. 7) 

By raising indices, the field equations (78.3) can be written in the 
different forms 

-~eT~ = R~-lRg~+Ag~ 

-~eTIL" = RP."-!Rg~L"+Ag~L", 
and by the contraction of (78.9) we can evidently write 

~eT = R-4A. 

(78.8) 

(78.9) 

(78.10) 

(78.11) 

In empty space with all the components of the energy-momentum 
tensor equal to zero we see, by combining (78.8) and (78.11), that the 
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field equations will then reduce to the simple form 

Rp.v = Agp.v• (78.12) 
Nevertheless, as already stated in the preceding section§ 77, we shall 
actually find in empty space that the motions of the planets corre
spond with great precision to the even simpler field equations 

Rp.v = 0. (78.13) 
Therefore, since we shall find later [see, for example, equation (82.10)] 
that the effects of the A-term would increase with the size of the 
region considered, we may conclude that the unspecified constant A, 
introduced above in order to obtain the most general expression with 
a vanishing covariant derivative (7 8.4), is either actually equal to 
zero or in any case small enough so that its effects are inappreciable 
within a region of the size of the solar system. Hence, in many of our 
considerations at the very least, we shall be justified in setting A equal 
to zero, and taking the field equations in the simpler form 

together with 
-JCTJlov = Rp.v-iBUp.v' 

ICT = R 
as the result of contraction. 

(78.14) 

(78.15) 

For regions of great size, on the other hand, it can be shown that 
effects could result even from a very small value of A. Hence for 
cosmological considerations we shall retain the possibility that the 
quantity A, customarily known as the coBmological constant, may not 
necessarily be exactly equal to zero. 

We are now ready to consider a number of the simpler applications 
of general relativity, some of which will be specially important in 
ill":lstrating the correspondence between theory and observation .. 



VI 

THE GENERAL THEORY OF RELATIVITY (contd.) 

Parlii. ELEMENTARY APPLICATIONS OF GENERAL RELATIVITY 

79. Simple consequences of the principle of equivalence 
As already noted, unlike the principle of covariance, the principle 

of equivalence cannot be regarded as a necessarily inescapable axiom 
of physics, but must be considered as a definite postulate whose 
consequences are to be tested by comparison with observation and 
experiment. We may now consider certain simple qualitative and 
semi-quantitative consequences that can be drawn directly from this 
principle without the full apparatus of the general theory of relativity. 

(a) The proportionality of weight and mass. The most important 
of these simple consequences of the principle of equivalence is the 
conclusion, already mentioned in § 74 (c), that the gravitational 
acceleration of all bodies would have to be the same when tested in 
the same gravitational field, since the presenoe and amount of this 
acceleration would by this principle be solely a function of tho coor
dinate system used. The result is in immediate agreement with the 
fundamental discovery of Galileo that different bodies do fall at tho 
same rate in the earth's gravitational field. 

Since the gravitational acceleration g of a body at the sw·faco of 
the earth is connected, in the language of Newton's second law of 
motion, with ita mass m and the gravitational force acting on it or 
weight W by the equation 

W=mg, (79.1) 

the above result can also be stated as requiring a constant propor
tionality between weight and mass for different bodies. The precise 
and exhaustive tests of this proportionality made on ordinary 
materiala by Eotvos, t and the similar experiments on radioactive 
materials made by Southernst are in complete agreement with the 
theoretical conclusion. 

(b) Effect of gravitational potential on the rate of a clock. In 
accordance with the principle of equivalence there should be an 
agreement between the results obtained by a uniformly accelerated 

t Eotv&!,Math.undNaturw. Ber. aus Ungam, 8, 65 (1890). 
t Southerns, Proc. Boy. Boo. 84A, 325 (1910). 
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observer who makes measurements in the absence of any intrinsic 
gravitational field, and those obtained in similar experiments by a 
stationary observer in the presence of a uniform gravitational field. 
Since we can easily make approximate calculations as to the nature 
of the results obtained by the accelerated observer, this provides a 
simple method for investigating certain of the effects of gravity. 

This method can be readily applied to determine the effect of 
differences in gravitational potential on the observed rate of clocks. 
Let us first consider an observer in the absence of any intrinaic 
gravitational field who is subject to the constant acceleration g, and 
is provided with two identically constructed clocks placed one ahead 
of the other on a line parallel to the direction of acceleration at a 
distance apart h. Let the clocks have the natural period T 0, and let 
light signals be sent at the end of each period from one clock to the 
other to permit a comparison of their observed rates. 

Since the time necessary for a signal to pass between the two clocks 
will be approximately ., 

t = -, 
c 

where c is the velocity of light, the forward clock will acquire the 
added velocity in the direction of motion 

h 
'V = gt = g-

c 

in the interval necessary for light to pass from the rear to the forward 
clock. Hence by the ordinary Doppler effect when the rates of the 
clocks are compared, the period of the rear clock, when measured in 
terms of that of the forward clock with the help of the &Tiving light 
signals, will be found to be approximately 

T = To(l+;) = To(l+g!)· (79.2) 

With the help of the principle of equivalence, however, this result 
can be at once reinterpreted as also applying to the analogous situa
tion of two stationary clocks separated by a distance h in the direction 
of a uniform gravitational field of intensity g, so that we may imme
diately write as a consequence of (79.2) 

To= T1(1+ ~t) (79.3) 

for the relation connecting the periods T 2 and T 1 of the two identically 
81196.11 0 
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constructed clocks with their difference in gravitational potential 
Aifl = gk, the clock at the lower potential having the longer observed 
period. 

Furthermore, since time measurements could be made with the 
help of the period of light corresponding to any given spectral line, 
we can evidently regard different atoms of the same substance as 
furnishing the identically constructed clocks necessary for the validity 
of the above relation. Hence, making use of (79.3) together with the 
relation between the period and wave-length of light, we are at once 
led to the conclusion that there should be an observed shift 8A. of the 
approximate amount 

(79.4) 

in the wave-length A of light which passes through a difference in 
gravitational potential of amount Atfr, in travelling from the point of 
origin to that where the observation is made. The observational 
verification of this result will be more particularly mentioned in 
§ 83 (c), in oonnexion with the three so-called crucial tests of 
relativity. 

(c) The clock paradox. The foregoing relation between the rate of 
n. clock and its gravitational potential has also been found to furnish 
the solution for a well-known paradox, which can arise when the 
behaviour of clocks is treated in accordance with the principles of 
special relativity without making due allowance for the principles 
of the general theory. 

Consider two identically constructed clocks A and B, originally 
together and at rest, and let a force F1 be then applied for a short 
time to clock B giving it the velocity u with which it then travels 
away from A at a constant rate for a time which is long compared 
with that necessary for the acceleration. At the end of this time 
let a second force F2 be applied in the reverse direction which brings 
B to rest and starts it back towards A with the reversed velocity -u. 
And finally, when it has returned to the neighbourhood of A) let the 
clock B be brought once more to rest by the action of a third 
force lf'3• 

Since by hypothesis the time intervals necessary for the accelera
tion and deceleration of clock B are made negligibly short compared 
wfth the time of travel at the constant velocity u, we can then write, 
in accordance with the decreased rate of a moving clock given by the 
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special theory of relativity (see§ 9), · 

!:itB ( 1 'UZ ) 
tl.t.J. = :j( 1-u2fc2) = !l.tB 1 + 2 cs + ... (79.5) 

as an expression connecting the measurements !l.t"" and aeB-..:on the 
two different clocks-of the elapsed time necessary for the clopk B to 
move out from A and return. In accordance with this expression we 
are thus led to the definite conclusion that clock B would register a 
smaller number of divisions than clock .A at the end of the indicated 
experiment. 

At first sight, nevertheless, this conclusion-obtained quite 
correctly from the special theory of relativity-appears incompatible 
with the idea of the relativity of all motion, since it should then be 
equally as acceptable to regard Bas the clock whlch remains at rest 
and consider A as moving away with the velocity -u and returning 
with tho velocity +u. And taking A as the moving clock, it then seems 
as if A should be the clock that registers the smaller number of divi
sions. 

The apparent paradox is, however, readily solved with the help 
of the general theory of relativity, if we do not neglect the actual lack 
of symmetry between the treatment given to the clock .A which was 
at no time subjected to any force, and that given to the clock B which 
was subjected to the successive forces F1, F 2, and F8 when the 
relative motion of the clocks was changed. To preserve thls same 
state of affairs in a valid description of the experiment, taking .A as 
the moving clock and Bas the one which remains at rest, we may 
a.ssume that the changes in the relative motion of the two clocks are 
produced by the temporary introduction of homogeneous gravita
tional fields, which are allowed tp act freely on A in such a way as to 
produce the desired changes in velocity without .A experiencing any 
force, and in such a way as to necessitate the action of the same forces 
on Bas before in order to maintain it at rest. This then gives us a 
valid description of the identical experiment in the new language, and 
we can easily calculate the relation which would now be expected 
between the two time measurements 6.t4. and At8 • 

To do this, let us first put 

and 

flt.J. = T.J_+T.:. +T~ +T~ 
!l.tB = TB+T.B+Tn+T;;, 

(79.6) 

(79.7) 



196 THE GENERAL THEORY OF RELATIVITY § 79 

where -r .A and -rB are the time measurements referred to the two clocks 
during which the clook A is now regarded as having the uniform 
velocity u, and -r,.4, ~' 'T:::_ and -r.B, TB, -ri are the times needed for the 
three changes in the velocity of A which are brought about at the 
beginning, middle, and end of the experiment by the temporary intro
duction of an appropriate gravitational field as mentioned above. 
And let us take these latter intervals as very short compared with 
the time during which .A. is in uniform motion, in correspondence with 
the previous description of the experiment. 

Since the clock A is now the one which moves, we can in the first 
place write in accordance with the special theory of relativity to the 
desired order of precision 

T.J. = TB(}-~ :: +·+ (79.8) 

in contrast to the previous relation (79.5) where B was taken as the 
moving clock. Furthermore, since the two clocks will be at practically 
the same potential when the gravitational fields are introduced at the 
beginning and end of the experiment, we can evidently write with 
sufficient precision 

I I d Ill IN -r .A = -rB an -r .4. = Tn· (79.9) 

On the other hand, when the gravitational field is introduced at the 
middle of the experiment to produce the necessary reversal in the 
motion of A, the two clocks will be at a great distance from each other, 
and we must evidently write in accordance with our previous treat
ment 

(79.10) 

where lltfo is their difference in gravitational potential at that time. 
This difference in potential, however, is given in terms of the 

distance between the two clocks k and the gravitational acceleration 
g by the simple expression 

llt/J = hg. 

Furthermore, we can evidently put 

k = fUTn, 

since 2h is the total distance travelled at the speed u, .and can write 
2u 

g =-;;-
'TB 

since 2u is the total change in velocity in the time -r,B. Substituting 



§ 79 THE CLOCK PARADOX 197 

these three expressions we can then write (79.10) in the more useful 
form 

(79.11) 

and combining this equation with the previous equations (79.6-9) we 
obtain 

"" '"B ( 1 + ~ :: + .. .) +,._9+,-iJ+,.B, 

or to our order of approximation, since the primed quantities are 
very short compared with TB, 

( 
1 u 2· 

~t.A = !ltB 1 +2 e2). (79.12) 

Comparing this result with the earlier equation (79.5), we now see 
that whether we consider A or B to be the clock which moves we 
obtain the same expression for the relative readings of the two clocks, 
to the order of approximation that has been employed. The treat
ment of the problem without approximation would involve the full 
apparatus of the general theory of relativity. 

The solution thus provided for the well-known clock paradox of 
the special theory gives a specially illuminating example of the 
justification for regarding all kinds of motion as relative, that has 
been made possible by the adoption of the general theory of relativity. 

A similar treatment can also be given with entire success to the 
difference in rate between a clock placed at the centre of a rotating 
platform and a second clock fixed to the periphery of the platform. 
H the platform is taken as rotating, the peripheral clock will be re
garded as having a slower rate than the central clock because of its 
velocity of motion. On the other hand, if the platform is taken as at 
rest and the remainder of the universe as rotating in the opposite 
direction, the slower rate of the peripheral clock will be ascribed to 
its position of lower gravitational potential coiTesponding to the 
gravitational interpretation which would then be given to centrifugal 
action. The general idea of the relativity of all kinds of motion will 
thus again be preserved, since we can with equal success treat 
the platform or the remainder of the universe as subject to the 
rotation. 
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80. Newton's theory as a :first approximation 
As our next application of the general theory, we may now show 

that Newton's theory of gravitation can be regarded as giving a first . 
approximation to the more rigorous results 6f the general theory· of 
relativity, with the quantity g,, of the general theory closely related 
to the gravitational potentialtfo of the Newtonian theory. To demon
strate this, we must show in the first place that the Newtonian motion 
of a free particle would agree in :first approximation with that 
predicted from the relativistic equations of motion, and in the second 
place that t];le field equation of Poisson can be regarded as a first 
approximation to the more general field equations of Einstein. In 
doing so, we may restrict our con.sideratio'ns to very weak static fields 
and to test particles having very small velocities compared with that 
of light, since the Newtonian theory was only developed to cover such 
oases. Hence we may take the line element as differing only slightly 
from the special relativity form, as expressed in Galilean coordinates, 

diJ2 = -(dxl)Z-(dxZ)2-(dx3)2+(dx')2 (80.1) 

with components of g,_,.v which have very closely the special relativity 

values Un !::: 922 !::: Uaa ~ -1 g" !::: 1 (80.2) 

gJLv ~ 0 (p. =/:= v) 

and which are independent of the time 

au,.w = o. (80.3) 
Ox' 

Furthermore, we may take the components for the generalized 
velocity of our test part.icles as having the approximate values 

dx1 dx2 dx3 dx' 
ds ~ da ~ ds ~ 0 da ~ 1. (80.4) 

(a) Motion of free particle in a weak gravitational field. We are 
now ready to consider tb,e motion of a. free test particle in such a. 
weak field. 

In accordance with the theory of relativity [see§ 74 (e)], the tra
jectory of a free particle will be given in general by the equations for 
a geodesic (74.13) 

dZ:x;tf dxf' dxV 
diJ?. +{l.w, u}dB da = 0, 

and in the present simplified case. these will reduce for a = 1, 2, 3 as 
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a result of equations (80.4), to the approximate form 

d'Axa 
d(x')2 +{44, o} = 0. (80.5) 

Furthermore, in accordance with the definition for the three~index 
symbols (73.14) and the approximate values for the gJLv given by 
(80.2), we can write 

{44 u} = 11"1aa(ag4.a + og l.a- ag ") 
' . w ax• ax' axu 

where the summation convention is suspended; and on account of the 
static.nature of the field expressed by (80.3), this leads to the simpli
fied result 

(80.6) 

which on substitution into (80.5) gives 

d&xa 1 8g4fo 

d(x4)2 = -2 axa. (80.7) 

This result, however, can easily be rewritten in a form familiar in 
the Newtonian theory of gravitation if we introduce our usual spatial 
and temporal variables by their relation with Galilean coordinates · 

xl = x x2 = y x3 = z x4 = ct (80.8) 

and define the Newtonian potential rp in terms of g44 by the expression 

or 

1!.. = g"+const. 
c2 2 

"' 944-1 c2 = -2- (80.9) 

where the additive constant has been so chosen as to make the 
potential .p approach the value zero in the free space at great dis
tances from gravitating bodies where g4, approaches its special 
relativity value unity. Substituting (80.8) and (80.9) in (80. 7), we 
can then write our result in the well~known Newtonian form 

(80.10) 

(b) Poisson's equation as an approximation for Einstein's field 
equations. To complete the justification for this interpretation of 
the Newtonian potential 1/J, we must also show that Einstein's rela~ 
tivistic field equations will give us as a first approximation the same 
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dependence of tfo on the distribution of matter as Poisson's equation 
in the Newtonian theory of gravitation. 

To do this we note, in accordance with the expression for the 
energy-momentum tensor (37.8) given by the special theory of rela
tivity in the coordinates (.x1,.x2,x3,x'}, that the components of the 
energy-momentum tensor will in the present case all be approximately 
zero except for the component 

pu. = c2p, 

provided we do have a weak static field as has been assumed, and 
provided the mechanical stresses P1.; are negligible compared with the 
density of energy as is true in ordinary applications. Hence on account 
of the specially simple values for the components of the metrical 
tensor g,.,., given by (80.2) which will be involved in the raising and 
lowering of suffixes, we can write for the application in hand 

T" = P: = T" = T = c2p, (80.11) 

with all other comporum.ts of the energy-momentum tensor T,.,., equal 
to zero. 

Combining (80.11), moreover, with equations (78.14) and (78.15) we 
see for the case in hand that the relativistic field equations will now 
provide the simple result 

or 

-Kc2p = R44-iKc2pg" 
KC'I.p 

Ru=--. 
2 

(80.12) 

And examining the expreBBion for Rp.v given by (77 .1 )-since pro
ducts of the Christoffel three-index symbols can be neglected on 
account of the weakness of the field and derivatives with respect to 
the time are zero in a statio field-we can rewrite this in the form 

8 { KC2p 
- 44,u} = -, . axa 2 

o-r finally by the introduction of (80.6) in the form of the desired 
equation 

~(Uu)+-82 (g")+~(g44) = KC
2
p 

&x2 \ 2 &g2 2 azs 2 .. 2 . 
(80.13) 

This equation, however, is in complete agreement with PoiBBon's 
equation (75.1) in the Newtonian theory of gravitation, provided we 
again take tz = g~, +con st. 
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as in (80.9), and assign to the constant K the value 

8wk 
I(=--c4 ' 

201 . 

(80.14) 

where k is the ordinary constant of gravitation and cis the velocity 
of light. 

We thus complete the demonstration that Newton's theory of 
gravitation can be regarded as a first approximation for the more 
complete theory of gravitation furnished by the general theory of 
relativity. Furthermore, since it can be shown to be an exceedingly 
close approximation-for fields of the strength encountered in the 
more usual applications of gravitational theory-we can now regard 
all the well~tested results of celestial mechanics as furnishing impor
tant support for the relativistic theory of gravitation. 

81. Units to be used in relativistic calculations 
Equation (80.14) provides a definite value, in terms of the usual 

constant of gravity k and the velocity of light c, for the constant Kin 
Einstein's field equations (78.3), and this makes it possible to obtain 
numerical conclusions from these equations for comparison with 
observa tiona! results. Substituting the valuest 

c = 2·99796 x 1010 em. sec. -1 and k = 6·664 x 10-8 em. 8 gm. -1 sec. -2 

(81.1) 
we obtain 

81rk .ta 2 
K = --- = 2·073X IO--cm.-1gm.- 1 sec. c4 (81.2) 

This value of K is dependent in the first place on the fact that we 
are using the centimetre-gramme-second system of units, and in the 
second place on the fact that we have taken the components of the 
energy~momentum tensor pp.v when referred to Galilean coordinates 
(37.8) as having the dimensions of energy density instead of mass 
density as is sometimes done. 

By changing at this point, however, to a new system of units, some 
simplification can be introduced into the writing of relativistic 
equations and the effect of any arbitrary convention as to the dimen
sions of pp.v can be eliminated. To do this we may retain the centi~ 
metre as the unit of length and then choose the units of time and mass 
so as to give the velocity of light in free space c, and the cousta.nt of 

' 
t Birge, Phys. Rev. Supplement, 1, 1 (1929). 
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gravitation k the values unity 

c=l k = l. (81.3). 

With this choice of units, the energy and mass of a given system 
Will have in accordance with (27 .4) the same numerical value 

E = m, (81.4) 

so that the two different proposals mentioned above for setting up the 
energy-momentum tensor will lead to the same numerical result. 
Furthermore, the constant " will now have the simple value 

" = 8'7T, (81.5) 

and the relativistic field equations (78.8) can be written in the form 

-87TT,_w = R1.w-!RUp.v+Agf1-v' (81,6) 

In any computations which follow we shall assume the use of these 
units. The results of the computations, however, can easily be 
translated into c.g.s. units with the help of the following relations 
connecting the values for lengths, times, and masses L, T, Min c.g.s. 
units with their values l, t, m in the new units. 

L = l em. 
t 

T = 
2

•
998 

X 
1010 

= 3·335 X I0-11 t sec. (81. 7) 

(2·998 X 1010)2 
M = 6·664 X 1o-s m = 1·349 X 102sm gm. 

82. The Schwarzschild line element 
As a specially important application of the general theory of rela

tivity, we may next consider the problem of obtaining an expression 
for the line element or formula for interval in the empty space 
surrounding a gravitating point particle. The complete solution of 
this problem was first obtained by Schwarzschildt and is of great 
significance, since it provides a treatment of the gravitational field 
surrounding the sun for use ~ discussing the three crucial tests, that 
distinguish between the predictions of the Newtonian theory of 
gravitation and the more exact predictions of the theory of relativity. 

The methods of solving this problem are so well known that it will 
be sufficient for our purposes to indicate the derivation. In accordance 
with the static and spherically symmetrical nature of the field which 
would surround an attracting point particle, it can be shown 

t Schwarzschild, Berl. Ber. 1916, p. 189. 
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necessarily possible (see§ 95) to choose coordinates r, 8, p, and t such 
that the line element will be of the simple form 

f18B = -e'A dr2-r2 d8"-r2sin"() f142+ev dt1, (82.1) 

where ,\ and v are functions of r alone. Furthermore, the components 
of the energy .. momentum tensor T"p. corresponding to this 'formula for 
interval [see the later equations (95.3)] are known to have the values 

877 1 = -e- -+- +-T 1 ~(v' 1~ 1 
r r 2 r" 

(
v" 'A'v' v'2 v' -"A') 877~ = 81rTg = -e-A ---+-+·-
2 4 4 2r 

877Tt = e-A --- +-(
A' 1) 1 
r r" r 2 

877~ = 0 (p ¥= v), 

(82.2) 

where the primes indicate differentiation with respect to r, and the 
cosmological constant A has been taken as zero. 

In the empty space surrounding our particle, nevertheless, all the 
components of the energy-momentum tensor will evidently be equal 
to zero. Combining the first and third of these equations, this then 
leads to the result \1 I " = -v' (82.3) 

and, combining with the second of the above equations, we obtain 

v" +v'2+ 2v' = 0, 
r 

which is easily seen to have the solution 

(82.4) 

b 
ev = a+-, (82.5) 

r 

where a and b are constants of integration. 
At great distances from the particle, however, where r approaches 

infinity, we must expect the line element to approach the special 
relativity, form 

ds" = -dr"-r" d82-r"sin28 d<fo 2+dt?. (82.6) 

with~= ev = 1, in the units adopted in the preceding section. As 
a result, equation {82.5) can then be rewritten in the form 

2m 
ev = 1--, ,. (82. 7) 

where the constant a has been set equal to unity and the constant b 
has been called -2m to correspond to the later physical interpretation 
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of m a8 the mass of the particle. And as a further result, in accord~ 
ance with (8.2.3), we must also evidently have 

(82.8) 

and these expressions when introduced into the first and third of 
equations (82.2) will also secure the values zero for Tf and Pt. · 

Hence, substituting (82. 7) and (82.8) into the general expression 
(82.1), we can now write, for the line element in the neighbourhood 
of an attracting point particle, the Schwarzschild solution 

(82.9) 

Since this result has been obtained with the help of expressions 
(82.2) for the components of the energy-momentum tensor T~ in 
which the cosmological constant A has been set equal to zero, the 
solution corresponds, in accordance with (78.12) and (78.13), to 
Einstein's original field equations for the case of empty space 

R,_w = 0. 

It is also easily possible, however, to employ the complete expressions 
for the energy-momentum tensor (see 95.3) without omitting the 
cosmological term, and this is found to lead to the result 

d81 = - dr
2 

-r2 d82 -r2sin28 a..cp2 +(I- 2m-Ar2\ at2, 

1 _ 2m_ Ar2 r 3 J 
r 3 (82.10) 

which corresponds to the more general possibility for the field equa
tions in empty space 

R,_w = Agp.v• 

Comparing the two expressions for the line element (82.9) and (82.10), 
we now see as already remarked in § 78 that the effect of the A term 
on the field surrounding an attracting point particle would increase 
with the size of the region considered. Hence, since the motions of the 
planets are actually given with great accuracy by (82.9), we can con
clude that A is in any case small enough not to produce appreciable 
effects within a region of the order of size of the solar system. 

The particular form for the Schwarzschild line element given by 
(82.9) is of course dependent on the coordinate system which is being 
used, and the forms which it assumes in other coordinate systems are 
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sometimes more useful. Substituting if in place of r with the help of 
the relation 

(82.11) 

we readily obtain the Schwanschild line element in the form 

..:Jfts = -(1+m\'(d-s +-mdom+-a. so;u .. s)+~1-m/2r]2 dtt (82.12) 
u..:s . 2i} r r. r sm Wfl (1+m/2f)2 , 

and by substituting 'rectangular coordinates' 
X= rsin8cosq, 1J = fsin8sint/J Z = icos8, (82.18) 

this can be written in the form 

d82 =-(I+ m)'(cJa2+dy2+dz2)+~1-m/2r)s dtl (82.14) 
2r (1+m/2r)2 ' 

where we now have r = .J(x2+y2+z2). 
These new coordinates may be calle4 isotropic, since the formula 

for interval is symmetrical in x, y, and z. At great distances from the 
central particle where terms of the order of (m/r)2 and higher can be 
neglected in comparison with unity, this expression for the Schwarz
schild line element reduces to the approximate form 

. ds1 = - (I + ~)(tk'+dy1+1k1)+ (I-~) dt" (82.I5) 

with • r = .J(x2+y2+z2). 

83. The three crucial tests of relativity 
We must now turn to the actual coiTespondence between the 

Schwarzschild expression for the line element sUITOunding an attract
ing point particle and the observational facts of astronomy. The 
methods of investigating this correspondence are so well known that 
it will be sufficient for our purposes merely to indicate the treatment. t 

We may first consider the motion of the planets in the gravitational 
field of the sun. Since the planets can be regarded as free particles, 
their space-time trajectories will be given in accordance with the 
theory of relativity [see § 74 (e)] by the equations for a geodesic 
(7 4.13) d2xa dxl-' fixv 

ds2 + {J.tv, a} (ii da = 0. (83.1) 

Since the field surrounding the sun can be regarded as that due to an 
attracting point particle, the values of the Christoffel three-index 

t We follow the treatment of Eddington, The MathmnatiooZ Theory of Relativity, 
Cambridge, 1923. 
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symbols to be used in (83.1) will be those for the Schwarzschild line 
element, which we shall use in the form in which it was derived (82.9) 
and these-in so far as they do not vanish-are known to be given 
(see 95.2) by the expressions 

. 1 dA 1 
{11, 1} = 2 dr {21, 2} = r 1 

{31, 3} =-
r 

1 
{12, 2} =-

r 
{22, 1} = -re->t {32, 3} = oot 8 

{41 4} =! dv 
' 2 dr 

{44,1} = e~~ 
1 

{13, 8} =- {23, 3} = cot8 {33, I}= -rsin18e-~ 
r 

{14, 4} = ~: {33, 2} = -sin 8 cos 8, (83.2) 

provided we substitute for ..\ and v the values for the Schwarzschild 
line element given by (82. 7) and (82.8). 

Introducing these expressions for the Christoffel symbols into 
(83.1), we then o.btain for the four possible cases cr = I, 2, 3, 4 

d2r .f.! d"A(dr)2-re-.\(d8)2-rsin2tJe-~(dcp)2 + ev->t dv(dt)' = 0, (83.3} 
ds1 2 dr ds ds ds 2 dr ds 

-+-- --sm8cos8- = 0 dlfJ 2 dr d8 . (d4)2 
d82 'I' ds ds d& , 

dltfo +~ dr dcfo +2cot8 # d8 = 0 
d82 r da d8 ds d8 ' 

(83.4) 

(83.5) 

(83.6) 

as the equations which would govern the motion of a planet. These 
equations can be readily simplified, however, by choosing coordinates 
such that the planet is originally moving in the plane 8 = -fn'. This 
will make d8fds and cosO both initially equal to zero and hence in 
accordance with (83.4) permanently equal to zero, so that the equa
tions will reduce to the simpler form 

dlr +! d..\(dr)2 -re-A(dcfo)2 + ev~ dv(dt)2 = 0, (83.7) 
d,s2 2 dr ds ds 2 dr d8 

d2~ +~ dr rJ4 = 0 (83.8) 
da2 r ds d8 ' 

(83.9) 
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These equations can now easily be handled since the Qriginal 
. expression (82.1) for the line element itself provides one integral and 

two of the equations, (83.8) and (83.9), can readily be integrated by 
inspection. We thus obtain 

eA{:)"+r•{t)"-e•{:)'+I = 0, 
d<p h -=-, d8 r2 

dt- k -v -- e ds 

8.8 the first integrals of the above equations, where h and lc are con
stants of integration. And by combining the first and third of these 
equations, and substituting the values for A and v given by (82. 7) and 
(82.8), we obtain as the relativistic equations for the motion of a 
planet 

(83.10) 

(83.11) 

where r and cp are the spatial coordinates originally introduced, 
sn and lc are constants, and dais an element of proper time as measured 
by a local clock moving with the planet. 

This puts the relativistic equations for the orbit of a planet in a 
form suitable for comparison with the two Newtonian equations, 
resulting from the application of the ordinary laws for the com~erva
tion of energy and of angular momentum, 

(dr) 2 (dcp) 2 2m 
dt +r2 dt - -;,- = const. 

r2 dcp = const., 
dt 

(83.12) 

(83.13) 

where m is the mass of the sun expressed in the units of§ 81, and 
where we must now regard r and cp as ordinary polar coordinates and 
dt as an ordinary time interval as used in prerelativistio considera
tions which neglected the possibility of effects of motion and of 
curvature on spatial and temporal measurements. 

Since these effects of motion and of curvature would be extremely 
,email for the slow velocities of the planets and in the nearly 'flat' 
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space-time surrounding the sun, t and since the added term r"drfo1/d89 

occurring in (83.10) would be very small compared with unity, being. 
as it is the square of the transverse velocity of the planet divided 
by the square of the velocity of light, the reasons can now be appre~ 
ciated for the high order of accuracy obtained in the application of the 
Newtonian theory of gravitation to the field of celestial mechanics. 

There are, nevertheless, three consequences which can be obtained 
from the Schwarzschild line element which can be used to distinguish 
between the relativistic and Newtonian theories of gravitation. To 
these we must now turn our attention. 

(a) The advance of perihelion. The first of these three orucia.l tests 
of relativity is made possible by the fact that the added term in the 
relativistic equation (83.10), as compared with the analogous New~ 
tonian equation (83.12), leads to planetary orbits with a slow rotation 
of perihelion instead of to the perfectly closed elliptical orbits of the 
older theory. 

Substituting (83.11) into (83.10), differentiating with respect to cp, 
and for simplicity putting 1 

'U = -, (83.14) 
r 

we can easily obtain 
diu+ _ m 3 2 tL/>2 u- h'+ mu (83.15) 

t In accordance with the Schwa.rzschild line element, the spatial geometry around 
the sun would be characterized by the formula for interval 

d,.l 
dul = + r 2 d8' +r'sin18 dtfo' 

1-2mjr 
instead of by the usual formula for flat space 

du1 = dr2+r1 d(JJ +r•sin18 d<fo1• 

Even at the surface of the sun, however, the term 2mfr would be only about 4 X 10·• 
and at the distance of the earth would drop to about 2 x 10-a. Hence the space around 
the sun is sufficiently fiat so that the coordinates r, 8, and tfo for the position of a planet 
could not be distinguished from the values assigned on the ba.sis of considerations that 
neglect spatial curvature. . 

Furthermore, in accordance with the form of the line element, the relation between 
increments in proper time da as measured on the planet and in coordinate time dt 
would be given by 

da1 
( 1 dr• dB• . ~· 2m.) - = 1- -+rl-+r'sm10-+- , 

dt1 1-2mfr dt1 dt1 dt1 1' 

where the second term. would be very small compared with unity, being for example 
about 3 X 10-a in the case of the earth. Hence the two kinds of time could also not be 
distinguished in describing the orbit of a planet. 

Our present considerations give a concrete illustration of the fact that deviations of 
the giL" from their Galilean values, which are small from the metrical point of view, can 
be very important from the gravitational point of view. 
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as a relativistic equation for a planetary orbit, to be compared with 
the analogous Newtonian equation 

diu m 
d~"+u = h"" (83.16) 

Since the added term a-mu1 on theright~hand side of (83.15) is easily 
seen with the help of (83.11) to be very small compared with mfh1, the 
difference between the relativistic and Newtonian equations is only 
slight. Hence in solving the relativistic equation (83.15) we may 
take as a first approximation the well~kn.own solution of the New
tonian equation (83.16) 

m 
u = h"{l+ecos(~-w)}, (83.17) 

where e is the eccentricity of the orbit and w the longitude of peri
helion. By substituting this solution back into ( 83.15) it then becomes 
possible to obtain 

u = ~{l+eoos(<fo-w-a;• <P}} (83.18) 

as a satisfactory second approximation. This result can then be 
interpreted by assigning per revolution of the planet an advance in the 
longitude of its perihelion of the amount 

6mn2 
8w = -. (83.19) h,2 

Mercury is the only one of the solar planets for which the predicted 
advance is sufficient to be observationally determinable with cer
tainty. The predicted advance in the longitude of perihelion amounts 
in the case of Mercury to 42· 9 seconds of arc per century and the 
observational advance to 43·5 seconda.t The agreement must be 
regarded as satisfactory. 

(b) The gravitational deftexion of light. The second of the three 
crucial tests of relativity is furnished by the deflexion of light in 
passing through the gravitational field in the neighbourhood of 
the snn. 

In accordance with the general theory of relativity [see § 7 4 (e)], the 
trajectory of a light ray as well as that of a free particle should be 
governed by the equations for a geodesic, with the added condition 
ds = 0 for the interval associated with the motion. Hence, by 

t Chazy, Oomptes Bemlus, 182, 1134 (1926). 
3686.11 p 
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introducing this further condition, our previous equation for the 
orbit of a planet (83.15} should also be applicable to the path of light 
rays in the field of an attracting point particle. In accordance with . 
(83.11}, it is evident, moreover, that the effect of this further condi
tion can be obtained by setting k = oo in (83.15) and writing 

d2u dcp
2
+u = 3mu2 (83.20} 

with 'U = ! (83 .. 21) 
r 

as an equation for the path of a ray of light in the neighbourhood of 
an attracting point particle of mass m. 

In the absence of the disturbing term 3mu2, the solution for (83.20) 
could be taken as the equation 

rcoscp = R (83.22) 

for a straight line which passes the attracting point at the distance R. 
And by substituting (83.22} back into (83.20) it is possible to obtain 

rcoscp = R-~(rcos2cp+2rsin2cp) (83.23) 

as a satisfactory second approximation. Changing to Cartesian coor
dinates, which can be taken as approximately valid in the nearly 
Euclidean space surrounding the sun, this can be rewritten in the 
form m x2+2y2 

x = R- R .J(x2+y2). 
(88.24) 

For large values of y this gives us 

where the upper sign is to be used for y positive and the lower sign 
for y negative. Hence for the angle between the asymptotic directions 
of the ray we obtain 

8 =4m 
R" 

(83.25) 

For a ray of light which grazes the sun's limb this leads to an angle 
of deflexion of 1· 7 5 seconds of arc. This prediction can be tested by 
observations made at times of total eclipse on the apparent positions 
of stars whose light has passed close to the limb of the sun. The 
results must be regarded as in exceedingly satisfactory correspon~ 
denoe with theory. The :first and quite good checks on the relativistic 
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theory were obtained by the British eclipse expeditions of 1919, and 
the most satisfactory data. at present are presumably t~ose . of 
Campbell and Trumplert who obtained the results 1·72"'±0·11.., and 
1·82"'±0·15"' with two different sizes of cameras in the 1922 expedi
tion of the Lick Observatory. 

It is interesting to point out that the relativistic expression for the 
defiexion of light passing a mass m, as given by (83.25), is twice as 
great as would be calculated from the simple Newtonian theory for 
a particle travelling with the velocity of light. 

To obtain the Newtonian result we may consider the particle to be 
travelling approximately parallel to they-axis and to pass the mass 
rri at the distance x = R. For the acceleration in the x-direction we 
can then write d"x m.x 

dt2 = - (x2+y2)t' 

or with sufficient approximation for our present purposes 

d'J.x mR 
dym = - (R2+yz)t' 

solving and choosing the constants of integration so as to make 
dxfdy = 0 and x = R at y = 0, we easily obtain as the approximate 
trajectory for large values of y 

m 
X= R--(±y}, 

R 

giving for the angle betwee:p. the asymptotic directions 

2m 
9 = ---, 

R 

which is half the previous result (83.25). 
This large difference between the relativistic and quasi-Newtonian 

results makes the observational check of the former all the more 
significant. 

(c) Gravitational shift in spectral lines. As the third crucial test of 
the general theory of relativity, we have the dependence of the wave
length of light on the gravitational potential of its source, already 
approximately treated in § 79 (b) with the help of the principle of 
equivalence. Making use of the Schwarzschild line element, we may 
now investigate somewhat more in detail the shift that would be 

t Campbell and Trumpler, Lick Observatory Bull. 11, 41 (1923); 13, ISO (1928). 
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expected in the period of spectral lines originating at the surface of 
the sun or other star. This can be done very easily. 
· On the one hand, in accordance with the Schwarzschild line element 
(82.9) and the relation a.,= 0 for the trajectory of light, we note that 
the velocity of light originating at the surface of the star would be 
given in terms of the coordinates r and t by the expression 

~=(1- 2m) (83.26) 
dt r ' 

which is seen to be independent of the coordinate t. We may hence 
conclude that successive light impulses which are separated by the 
coordinate period 8t when they originate at the surface of the star 
would still be separated by this coordinate period on reaching a 
stationary observer. 

On the other hand, we note in accordance with the Schwarzschild 
line element that the proper period 8s for a stationary atom and its 
coordinate period 8t would be connected by the relation 

(83.27) 

Hence since the proper period of an atom should be independent of 
its location, and since we l:tave seen above that the coordinate period 
of light is in the present ca.se unaltered by transmission, we can now 
write 

;\+8-1 = 8t = 1 ro-~ I+~ 
). 8B .J{l-(2mjr)}- r 

(83.28} 

for the ratio of the observed wave-lengths of light corresponding to 
a given spectral line which originates in the one case at the surface 
of the star at r and in the other case at a great distance from the star 
where the observer himself is located. 

In the case of light originating on the surface of the sun this should 
lead to a very small shift towards the red to the extent 

8A T = 2·12X l0-8• (83.29) 

In the ease of the very dense companion to Sirius, however, the shift 
should be about thirty times as great. In both cases the agreement 
between theory and observation is now satisfactory as a result of the 
work of St. J ohnt and of Adams.t 

t s~. John, A8trophy8ical Journ. 67, 195 (1928). 
~ Adams, Proc. Nat. Acad. 11, 382 (1925). 
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The satisfactory verification of the general theory of relativity 
provided by these three crucial tests may well be emphasized. The 
verification is all the more significant, since the advance in the peri~ 
helion of Mercury was the only one of the three phenomena in 
question which was actually known at the time when Einstein's 
theory was developed, and the effects of gravitation both in deter
mining the path and wave-length of light had not even been observed 
as qualitative phenomena prior to their prediction by the theory of 
relativity. 

It is also remarkable that Einstein's development of relativity was 
in no sense the result of a mere attempt to account for a small known 
difference between the observed orbit of Mercury and that predicted 
by Newtonian theory, but W8.8 the full flowering of a complicated 
theoretical structure, growing from fundamental principles whose 
main justification seemed to lie in their inherent qualities of reason
ableness and generality. The extraordinary success of a theory, 
obtained by those methods of intellectualistic approach, whose 
dangers have been so evident since the time of Galileo, well bespeaks 
the genius of the founder. 

The observational verification which the theory of relativity has 
already received must make us regard it as a distinct advance over 
Newtonian theory, and can encourage us to proceed now to the con
sideration of further developments where the possibilities for observa
tional verification are not always immediately present. 
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RELATIVISTIC MECHANICS 

Pari I. SOME GENERAL MECHANICAL PRINCIPLES 

84. The fundamental equations of relativistic mechanics 
In the present chapter we shall undertake a somewhat detailed 

development of cert~ consequences of relativistic mechanics that 
are needed for our further work or that appear to be especially illu
minating. These consequences are all implicitly contained in the field 
equation of Einstein 

-81TTp.v = RP.V-!RgP.v+AgP.v, (84.1) 

which connects the distribution of matter and energy with the 
geometry of space-time, by relating the energy-momentum tensor 
Tp.v to the fundamental metrical tensor g p.v and its derivatives. And 
it is the business of relativistic mechanics to investigate with the 
help of this equation the principles which govern the energy-momen
tum tensor, and hence determine the behaviour of matter and energy. 

For many purposes the full import of the above equation will not 
be necessary. The right-hand side of (84.1) gives a quantity whose 
tensor divergence is known to be identically equal to zero. Hence, 
we may write as an immediate consequence of (84.1) 

(TP.v)v = 0, (84.2) 

and from this simple equation alone we can then draw many impor
tant conclusions as to the behaviour of matter and energy. Indeed, 
since this equation reduces in natural coordinates to the form 

oTP.v = 0 (84.3) 
axv , 

which we took in§ 37 as an expression for the fundamental equations 
of mechanics in special relativity, it will now be natural to refer to 
( 84. 2) as the general relativity expression for the fundamental eq ua.
tions of mechanics. 

Expanding this expression in accordance with the rules for covariant 
differentiation, the fundamental equations of mechanics can also be 
written in the form 

oTP.v 
CJxv +{cxv, p.}Tcxv+{w, v}T~~« = 0, (84.4) 
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and by lowering the suffix p. in the form 

~-{p.v, a:}P~+{cxv, v}P~ = 0. (84.5) 

Furthermore, by introducing in place of the energy-momentum tensor 
the corresponding tensor-density 

l:~ = P~ .V-u (84.6) 

this can be rewritten in accordance with well-known transformations 
(equation (47), Appendix III) in the simpler forms 

(84. 7) 

and (84.8) 

85. The nature of the energy-momentum tensor. General 
expression in the case of a perfect fluid 
In order to obtain physical conclusions from these fundamental 

equations of ntechanics, we must of course apply them to some 
particular kind of physical medium for which we actually know the 
dependence of the energy-momentum tensor on observable properties 
of the medium. We shall hence desire explicit expressions for the 
energy-momentum tensor pp.v in terms of quantities which can be 
determined by ordinary methods of measurement. In accordance 
with the principle of equivalence, we can obtain such expressions by 
the covariant generalization of expressions for the energy-momentum 
tensor which have already been provided in the special theory of 
relativity. 

In the case of a purely mechanical medium, whose state at any 
point can be specified by the mechanical stresses p21 and density p00 

as measured by a local observer, we have already found in the special 
theory of relativity that the energy-momentum tensor can be 
defined, by takingt 

pcx{J - pO pO pO 0 
0 - :r.:z: XU ll"RI 

P~;l) P~v P~a 0 
0 

(85.1) 

0 Poo 
as the components of the energy-momentum tensor in a. special set 

t See § 37. Noto that we ho.va sot c1 = 1 in agrocmont with tho 1mits adopted 
in§ 81. 
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of GaJilean coordinates so chosen that the material is at rest in these 
coordinates at the position and time of interest. Turning to the 
general theory of relativity, however, it is evident from the principle 
of equivalence that the energy-momentum tensor would also have to 
reduce to this same array in proper coordinates (xA, ~' xg, x3) for any 
given p9int of interest. Hence the same array also gives us a defini-

. tion of the energy -momentum tensor for a mechanical medium in 
general relativity by stating its components in a chosen system of 
proper coordinates. To obtain its components in any other coordinate 
system (xl,x1,x3,x4), we have then merely to employ the rule for 
tensor transformation 

TP.., = ox,.,. ~ TQ;P 
~ax/3 °' 

(85.2) 

whioh allows us to compute the desired components-with the help 
of the derivatives connecting the new system of coordinates with the 
original proper system-in terms of the proper density p00 and stresses 
P21 as measured by a local observer using ordinary physical methods. 
Vice versa, if we know the components of the energy-momentum in 
a given set of coordinates, the possibility is presented of calculating 
the proper stresses and density with the help of the reverse trans
formation . 

.Although the foregoing equation (85.2) gives us a general expression 
for the energy-momentum tensor of a mechanical medium in any 
desired system of coordinates, its actual content will be dependent 
on the derivatives connecting these coordinates with some set of 
proper coordinates. In the case of a perfect fluid, however, it is 
rea.dil.y possible to introduce substitutions which will eliminate the 
explicit appearance of the proper coordinates, and give an expression 
which depends in a clearer way on the actual coordinate system which 
is being employed. 

In the case of a perfect fluid, which we define as a mechanical 
medium incapable of exerting transverse stresses, the only com
ponents of stress for a local observer will be those corresponding to 
the proper hydrostatic pressure p(J, so that the energy~momentum 
tensor will then have in proper coordinates the simple set of com
ponents Ttl _ tn22. _ pss _ P 

0 -.L(j- 0- 0 

pa.{J = 0 (a: * [3), 
T'"- p 0 - 00 

(85.3) 

and substituting these values into the general expression for the 
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energy-momentum tensor given by (85.2), we can then write as an 
expression for it 

8xP. axv aX~-' axv 8xf' axv 8xf' a:r;v 
pp.v = ax1 axxPo+ 8z2 ax2:Po+ ax! a~Po+ ax!: a:r;4 Poo' (85.4) 

0 0 0 0 0 0 0 0 

where (xb, ~, x~, x~) are proper coordinates for the point under con
sideration and (x1,x2,x3,x4) are the coordinates of actual interest. 

To simplify this expression for the energy~momentum tensor, we 
can write in the first place for the contravariant components of the 
metrical tensor in the desired coordinates in terms of their values in 
proper coordinates 8xl-' axv 

gP.v = -~rfoP, 
a~ ax~ 

which on substituting the simple values in proper coordinates gives us 
axP. axv 8xP. axv 8xP. axv 8xl-' axv 

gP.V = -azt ax1 -(}X2 ax2 -8XS axs+ax' ax"" (85•5> 
0 0 0 0 0 0 0 0 

And in the second place, we can evidently write for the macroscopic 
velocity of the fluid with respect to the desired coordinates 

dxP. = 8xP. ~x~ +ax~-' dx~ + ~ dx~ -1- ax,.,.~ 
d8 axA da ax~ ds oxg dB ax~ ds ' 

which reduces to 
(85.6) 

owing to the value zero for the spatial components of velocity and the 
value unity for its temporal component in proper coordinates. 

Substituting (85.5) and (85.6) in (85.4), we can then express the 
energy-momentum tensor for a perfect fluid in the very useful and 
general form dxf' dxv 

'J.'p.v = (Poo+.Po)·di -dB -gP.vpo, (85.7) 

where p00 and .Po are the proper macroscopic density and pressure of 
the fluid and the quantities dxP.fd8 are the components of the macro
scopic velocity of the fluid with respect to the actual coordinate 
system that is being used. 

Since a disordered distribution of radiation can be regarded as 
a perfeut fluid characterized by its density and pressure, with the 
specially simple relation 

(85.8) 

connecting these two quantities, see § 65, it also proves possible to 
use the above equation (85.7) together with this additional restriction 
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as the expression for the energy-momentum tensor for such a dis
tribution of radiation, provided we now take dxP.fds as the velocity
with respect to the coordinate system that is being used-of an 
observer who himself finds on the average no net flow of energy (see 
the later work of § 109). 

We shall find the expression for the energy-momentum tensor of 
a perfect fluid given by (85. 7) extremely useful in our later work. For 
more complicated mechanical media which exert transverse stresses, 
and for fluids in which heat flow is taking place it is not applicable. 
Furtherm.ore, for electromagnetic fields which are more complicated 
than a disordered distribution of radiation we should have to use 
the more general expression for the energy-momentum tensor, which 
will be developed in the next chapter. Nevertheless, many important 
problems can be investigated with the help of modele composed of 
a perfect fluid. 

86. The mechanical behaviour of a perfect fluid 
To illustrate the physical significance of the fundamental equations 

of mechanics which were discussed in§ 84, we may now apply them to 
the caae of a perfect fluid with the help of the expression for its 
energy-momentum tensor which we have just obtained. For sim
plicity and to obtain insight into the physical nature of the results 
we shall express them in terms of proper coordinates for some 
particular point of interest . 

. Using proper coordinates, it is evident that the general equations 
of mechanics (84.4) will reduce to the form 

oTf.Lv = 0 (86.1) 
axv ' 

owing to the null value for the Christoffel three-index symbols in 
proper coordinates. Furthermore, in proper coordinates the com
ponents of the metrical tensor will assume their Galilean values and 
their first differential coefficients will vanish at the point of interest 
so that we can write 

ag,.,.v = ag,.,.v = o. 
axcx. axcx. gp.v = gf'V = ±1, 0 (86.2) 

In addition, the spatial and temporal components of the velocity of 
the fluid will have the values 

:=z=:=O dt = 1 
da 

(86.3) 
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at the point of interest. Finally, since we can write a.s a result of the 
general form of the formula for interval 

iJ,x iJ,x tk dy dt dt 
1 = Uuds d8 +2gl2ds d8 + ... +g"ds ds' 

it is evident that we must have as a consequence of. differentiating 
both sides of this .~xpre~sion the relation 

~(dt) = 0 axcx ds (86.4) 

at the point of interest, since the differentiation of all terms in the 
above expression except the last, followed by substitution of (86.2) 
and (86.3), would evidently lead to null results. Hence in proper 
coordinates at the point of interest the derivatives of the temporal 
component of velocity will vanish, although the derivatives of the 
spatial components will not in general be zero even at that point. 

The foregoing equations together with our expression for the energy
momentum tensor of a perfect fluid 

Tf'v = (Poo+Po) dxf' ~-g~-'vPo (86.5) 
dsds 

are all that is necessary for the investigation. 
Substituting into (86.1) for the case JL = 1, we easily obtain 

-+(Poo+Po)- - = 0 op0 a (dx) 
ax at ds 

as the only terms that survive, and in accordance with (86.3) and 
( 86.4) this can be rewritten in the form 

opo ( >du::c 
}fx + Poo+Po dt = o, (86.6) 

where duxfdt is the acceleration of the fluid parallel to the x-axis. 
Remembering, however, the contribution to momentum to be 
expected from the work done by mechanical forces such as the 
pressure, as discussed in § 35, and not forgetting that the velocity 
of the :fluid is zero at the point of interest in the coordinates which 
we are using, it is at once evident that this result is what would 
be expected as a consequence of the usual relation between force 
and rate of change of momentum. Similar equations will of course 
be obtained for the oases p. = 2 and 3. 

For the case p. = 4, we obtain by substitution into (86.1) as the 
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only surviving terms 

.?...((Poo+.Po)dx dt] +![(Poo+.Po)dy dt] + ax dB ds ay as da 

+ ![<Poo+Pol: :] + ![<Poo+Pol{:)"] -~0 
= 0, 

and in accordance with (86.3) and (86.4), this can be rewritten in the 

form ) 
(au:c +au,+ au.) + ap00 + (au~ 1 fJu11 + &ui' = 0 

~00 ax &y az at Po ax ay az 
which on multiplication by 

8v0 = 8x8y8z, (86.7) 

where 8v0 is the proper volume of an element of the fluid, gives us 

d d 
dt(p00 8v0)+Podt(8v0 ) = 0, (86.8) 

which states that for proper coordinates the rate of change in the 
energy of an element of the fluid can be calculated in the expected 
way from the rate at which work is being done against the external 
pressure. 

Using proper coordinates, the application of the equations of rela
tivistic ll1:00hanics to a perfect fluid thus leads to expressions which 
have an immediate interpretation in terms of physical measure
. ments. Furthermore, for a local observer at rest in the fluid, who 
examines an element of the fluid small enough so that gravitational 
curvature can be neglected, we find the same laws of mechanical 
behaviour as we should predict from our previous knowledge of the 
energy-momentum principle. In addition, using natural coordinates 
in which the fluid is not at rest at the point of interest, results can 
readily be obtained which are in agreement with what would be 
expected from the more complicated expressions for the energy, 
momentum, and stress of a moving fluid which were developed for 
the special theory of relativity in Chapter III. In more general 
coordinates, however, the physical interpretation of the equations 
of mechanics will be less direct as we shall see in later sections. 

AB we have shown above, a local observer at rest in a fluid, who 
examines an element of the surrounding medium small enough so 
that gravit-ational curvature can be neglected, will find the same 
mechanical behaviour as we ~hould have been inclined to pre~ct 
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from our previous knowledge of the energy-momentum principle. 
Furthermore, it may be emphasized that we can expect, as a result 
of the principle of equivalence, some similar familiar findings in the 
case of a local observer who measures the electrody'lUJ!mic or thermo
dynamic behaviour of a small element of the :fluid in his immediate 
neighbourhood. Nevertheless, it must not be forgotten, in the general 
theory of relativity, that proper coordinates can be expected to lead 
to simple relations only in the immediate neighbourhood of a selected 
point. The mistake must not be made, for example, of supposing 
that the energy-momentum principle in its special relativity form 
would hold in general relativity over a region of finite size. 

This can be well illustrated with the help of the equation 

d d 
dt (Poo8vo)+Podt (8v0) = 0, (86.9) 

0 0 

which we have just derived, connecting the rate of energy change 
which a local observer would find for a small element of fluid in his 
neighbourhood with the rate at which work is being done on the 
surroundings. The result for the individual element agrees with what 
we might expect from our usual ideas as to the conservation and 
transfer of energy. It should be noted, however, that this same 
equation can evidently be applied to each one of all the elements into 
which the total fluid of a finite system could be divided. And, with 
positive pressure throughout, we shall later find that this leads to 
possibilities for isolated systems in which the proper energy (p00 8v0) of 
every element of the fluid is decreasing when the system is expanding 
or increasing when the system is contracting. 

This fact that the sum total of the proper energies of the elements 
of a fluid which make up an isolated system is not necessarily constant 
seems at first sight quite strange. It corresponds, however, in 
Newtonian gravitational theory to the necessity of ascribing potential 
energy to the gravitational field in order to preserve the principle of 
the conservation of energy. And in the next two sections we shall see 
how the analogous treatment of potential gravitational energy and 
momentum is to be carried out in the general theory of relativity. 

The result that the sum total of the proper energies of the elements 
of a fluid is not necessarily conserved proves to be of great importance 
for relativistic thermodynamics. We shall later see (§ 131) that this 
removes restrictions on the possibilities for entropy increase in an 
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isolated sy~ which were imposed in the classical thermodynamics 
by the ordinary principle of the conservation of energy. 

In conclusion, it should be specially noted in accordance with (86.8) 
that perfect fluids. have been defined in such a way as to behave 
adiabatically when examined by a local observer-the proper energy 
of an element of the fluid being subject to change as a result of exter
nal work but not as the result of heat-flow. This circumstance should 
be kept in mind in using perfect fluids for the construction o£ con
ceptual models. 

87. Re-expression of the equations of mechanics in the form of 
an ordinary diver~ence 
Although mechanical principles can often be applied most readily 

with the help of the forms in which we have already expressed the 
fundamental equations of relativistic mechanics in § 84, it will be 
necessary to re-express these equations in the form of an ordinary 
divergence in order to obtain for finite systems the analogues o£ the 
classical principles for the conservation of energy and momentum. 
This can be done with the help of a somewhat lengthy but well-known 
consideration which we may now consider in outline. t 

We first define the so-called Lagrangian function 2 in terms of the 
Christoffel three-index symbols by the equation 

i! = "-gg~'v[{p.cx, p}{vp, cx}-{JLv,o: }{o:,B, ,8}]. (87 .1) 

Since the combination of Christoffel symbols appearing inside· the 
square brackets is not itself a tensor, the quantity 2 is not a scalar 
density. ,Nevertheless, since equation (87.1) is taken as defining .2 in 
all systems of coordinates, we shall be able to find its value in any 
coordinates and can construct non-tensor but nevertheless covariant 
equations in which it occurs. 

Taking a small variation in .E with respect to the quantities on 
which it depends, it is found possible after considerable simplification 
to write this in the form 

82 = [ -~o:, fJ}{vf3, o:}+{JLv, o:}{o:,B, ,8}] 8(g~'v-J-g) + 
+ [ -{JLv, o: }+ t~{v,B, P}+ !!fv{J-',8, ,8}] 8 { ~ (g~'vv'g)}. ( 8 7. 2) 

Hence if we now regard E as a function of the two new quantities 

t The treatment of this section follows Eddington, The Math.ematical Theory of 
Belotit1Wy, Cambridge, 1923, §§ 58 and 59. 



§ 87 

defined by 

we can write 

and 

RE-EXPRESSION OF EQUATIONS 

,,- a,-
9,.,." = gJ.L"~-g and g~v = axa- (gJ.L"v-g), 

B2 
BgJ.L

11 
= -{p.o:, {3}{v{3, cx}+{J.w, cx}{cx,B, {3} 

a£ 
og~v = -{J.Lv, cx}+!~{v,8,,8}+~{p.f3, {3}. 

223 

(87 .3) 

(87 .4) 

(81.5) 

With the help of these two expressions for the dependence of 2 on 
the variables 91-L" and 9~", we can now obtain several useful equations 
containing 2 which will be needed in the present section or later. 
Comparing (87.4) and (87.5) with the expression for the contracted 
Riemann-Christoffel tensor given by (77.1), it will be seen on examina
tion that we can write this in the form 

_!__ 82 - a£ = R (87 6) 
OXCX 09~V 09J.LV p.v• • 

This result shows a formal resemblance to the equations of motion in 
the classical Lagrangian form in agreement with the name that we 
have given to the function £. Furthermore, multiplying (87.4) and 
(87.5) by 9~-'" and 9{;" it can be shown after some simplification that 
we can write BE 

91-L"- = -2 (87.7) 
B9~-'" 

and 9,.,." __ a~ ... = 2£. 
IX 09~V 

(87.8) 

For the scalar density 9l we can then obtain the expresson 

9!- gJ.L"R '-g = 91-L"R - p.v~ p.v 

= 9J.LV _!.___ ()£ _ 9J.LV ~~. 
axa: o9t:" ogJ.L" 

- ~( p.v_a£)- ,.,."a£ __ ,.,."a£ 
- oxiX 9 09~v Sa: og~v 9 B9J.L" 

= a!• ( 9,.. a}~.) _ .ll. (87. o) 

We are now ready to undertake the re-expression of the funda
mental equations of mechanics in the form of an ordinary divergence. 
To do this we shall wish to transform the second term in·the previous 
form for the equations of mechanics given by (84.8). In accordance 
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with the original field equations (84.1), we can write 

-&rXP., dgP.v = (R~.~..,-:JsRg,.,..,+Ag,.,..,)~ g dgP." 
= R,.,..,.J=U dgP."-iR..J UUp.v dgf.I."+A.J=Uu~.~.v dgll" 
= R,.,..,..J g dg~-'"+R d.J-g-2A dtJ-g 
= R~.~..,..J-gdg~-'"+g~-'" R,.,.., dA/ g·-2A d..J=-u 
= R,.,.., d(~~-'"..J-g}-2A dA/-g, (87.10) 

where we have made use of equation (39) in Appendix III, in going 
from the second to the third of the above expressions. Substituting 
the value for R,.,.11 in terms of the Lagrangian function given by 
(87.6), and the value of g~" corresponding to the equation of defini
tion (87.3) we then obtain 

-&rX ~ = g~v(_!_ 82 _ c2_)_ 2A ~..J ____ ~ 
p.v OXJJ ,.. ox"' og~" ogf'" oxP 

o ( H-" o2) o p.v o2 H-" o2 2A &J=:a 
= axcx 9;e ag~" - ex"' 9;e ag~"-9;e og~-'"- aXft 

- a ( ~~~ 82) 82 a p.v 82 a p.v 2A N ~ 
- axcx 9;e og~" - ag~v a:J9cx - ogP.v8Jg - 8XJf 
_ o ( ,.,.., 82 ) o2 2A ~:::g 
- axcx 9;e ag~" - axfJ- aXP 

= _!_[s~" 82 -g~2-2g~A..J-u]. (87.11) 
fJXCX 1-' OQ~V 1-' 1-' 

To make use of this result, let us now define a new quantity, which 
may be called the pseudo-tensor density of gravitational energy and 
momentum, by the equation 

1 [ 82 ,-] tp = 1&r -g~" og~v+Up2+2upA"1-g . 

In accordance with this definition together with (87 .11) 
evidently have ot" 0 cxfJ 

2= iX QL. Ox11 ex,.. oxf' 

(87 .12) 

we shall 

(87 .13) 

And substitutlng in (84.8), we may now write the equations of 
mechanics in the desired form of an ordinary divergence 

~(l:"+t") = 0 (87.14) ox" ,.,. ,.,. . 

This equation is not a tensor equation, both because the quantity 
t~ is not a. true tensor density and because the expression is that for 



§ 87 THE PSEUDO-TENSOR DENSITY t~ 225 

an ordinary divergence instead of a tensor divergence. Nevertheless, 
t~ is a quantity· which is defined in all systems of coordinates by 
(87.12), and the equation is a covariant one valid in all systems of 
coordinates. Hence we may have no hesitation in llsing this very 
beautiful result of Einstein. 

In accordance with the definition oft~ given by (87.12) and the 
values for the quantities occUlTing therein as given by previous equa
tions of this section, it will be noted that the value of t~ at any point 
will be determined by the values for the components of the metrical 
tensor Ya.p and their first derivatives 8gr41/8x'Y at that point. Further
more, if we use natural coordinates for the particular point of interest 
it is seen that the expression for t; will then reduce to 

87Ti~ = g~A~ g, (87.15) 

which by combining with the expression for the energy-momentum 
tensor (84.1) will also give us in these cOQrdinates 

-S?T(~~+t~) = (~-!Rgp.J-g. (87.16) 

Since t~ is not a true tensor density, however, we shall not have these 
simple results in all coordinate systems. 

88. The energy-momentum principle for finite systems 
With the help of our new expression for the principles of mechanics, 

we may now obtain an important result which may be regarded as 
the relativistic analogue of the ordinary laws of the conservation of 
energy and momentum. 

To do this, let us take xl, x2, and xS as being space-like coordinates 
and x4 the time-like coordinate, and apply equation (87.14} to a given 
finite system of interest by multiplying by dx1da;2fk3 and integrating 
at some given 'time' xt over the spatial region in question. Carrying 
this out, we at once obtain with some rearrangement of terms 

J J J 8~C!~+t~) dxldx2dxs 

= - J J J [a~l(~~+t~)+ a~2(~~+t~)+ a:a<~~+t~)] c~A;ldx2dxs, 
(88.1) 

and taking the limits of integration corresponding to the region as 
being constants x1 to x'1, x2 to x'2, etc. independent of the 'time' x', 

3595.11 Q 



226 RELATIVISTIC MECHANICS §.88 

this can be rewritten in the form 

! f f f (X~+~) dx1dx
2dx3 =- f f IX~+i~l::~ dx2d.W-

- Jf I~+!~ I;' tk1do:"- f f l~+t~l;.' dzld:cO (88.2) 

by performing the indicated integrations on the right-hand side of 
(88.1). 

Equation (88.2) as written is true in all sets of coordinates, owing 
to its immediate dependence on the covariant equation (87.14). The 
interpretation and use of the equation are often simplified, however, 
if we choose ooordinates in such a way that the limits of integration 
w, x'1, etc., which must be taken in order to include the region in 
question, actually lie on the boundary surface which separates the 
system n'Om its surroundings. Thus, for example, quasi-Cartesian 
coordinates x, y, z with the limits of integration x to x', y toy', and 
z to z', lying on the actual boundary of the system, are preferable for 
our present purposes to polar coordinates r, 8, and 4> with the limits 
of integration 0 tor, 0 tow, and 0 to 217', in which case r would be the 
only limit actually lying on the boundary. The increased simplicity 
of the properly chosen coordinates arises from the fact that the righ~ 
hand side of (88.2) is then determined solely by the values assumed 
by X~, t~, etc. at the boundary of the system and is not dependent on 
their values within the system. Having chosen coordinates in the 
way suggested, equation (88.2) then states that the rate of change 
with the 'time' x4 of the volume integral on the left-hand side is 
equal to the sum of the surface integrals on the right side, which has 
a value that is entirely determined by conditions prevailing at the 
boundary ~parating the system from its surroundings. 

Equati6n (88.2) is thus of the proper form to be considered as the 
expression of a conservation law provided we regard the right-hand 
side as defining a flux through the boundary. Furthermore, if we 
consider the limiting case of 'fiat' space-time where the special theory 
of relativity would be valid, equation (88.2) could then be rewritten 
using Galilean coordinates in the form 

c! f f f T~ dx1dx2dxS 

=- f f 1~1:;': tk'do:"- f fIT~ I~;· dx1do:"- f fIT~ I:;' dzltk•, 
(88.3) 
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since t~ would then be zero, in accordance with (87.15) and the value 
A = 0 for the case of 'fla~aoe-time, and~ would equal ~owing 
to the value unity for .J-g in these coordinates. Referring, how
ever, to our previous equation (88.10) we see that (88.3) is entirely 
equivalent with f.l- = 1, 2, 3 to the special relativity expression result
ing from the law of the conservation of the three components of 
linear momentum, and with f.1- = 4 to the result of the law of the 
conservation of energy.t 

Hence we may now take (88.2) as the analogue in general relativity 
of the usual energy-momentum principle if we define 

Jp. = J I I (~~+t~) fkldx2dx8
, (88.4) 

with p. = 1, 2, 3 as the expressions for the components of momenta of 
the region, and with f.l- = 4 as the expression for its energy . .And in 
accordance with this definition we may now regard the quantities 
~~ as the densities of material energy and momentum and the t~ 
as densities of potential gravitational energy and momentum. This 
necessity of including potential energy and momentum in order to 
secure the analogue of the usual energy-momentum principle is in 
agreement with the possibilities for the sum total of the proper energy 
of an isolated system not to remain constant which were mentioned 
at the end of§ 86. 

As a result of our definition (88.4), the quantities J,.,. which we may 
regard as representing the energy and momenta of a :finite system 
are not the components of a true covariant vector. They are, how
ever, defined by (88.4) for all systems of coordinates and the equations 
in which they appear are covariant equations true in all systems of 
coordinates. 

The physical significance of the quantities JP. can be most easily 
grasped in the case of an isolated system. Consider an isolated system 
enclosed by a boundltry located in the surrounding empty space at 
a sufficient diHtn.nce so that wo aro justified in neglecting the curva
ture of spn.cc-tirno for points on the bounda.ry and beyond. The 
spatial region inside this boundary can then bo regnrded as generating 
a tube in a surrounding 'fiat' space-time, and wo can choose coor
dinates in such a way that they will go continuously over into some 

t The loworod position of p. in (88.3) as compared with (38.10) is not importa.nt, 
ainoe (T~t~),. = 0 implies (gfXII. T"''')11 = (T~)., = 0 owing to tho relation (Uat~o~)v = 0. See 
Appondix III, equation (3G). 
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particular .set of special relativity Galilean coordinates in the region 
outside tbis tube. 

Using these coordinates it is then evident that the general energy~ 
momentum principle (88.2) will reduce for such an isolated system 
to the simple principles of the conservation of energy and momentum 

OJ. iii = 0, (88.5) 

since the right-hand side of (88.2) will now be zero in accordance with 
(87.16), if we take the curvature of space-time as negligible at the 
boundary of the tube as assumed. 

Furthermore, it may be shown that the quantities J,. are inde
pendent of any changes that we may make in the coordinate system 
inside the tube, provided the changed coordinate system still coin
cides with the original Galilean system in regions outside the tube. 
To see this we merely have to note that a third auxiliary coordinate 
system could be introduced coinciding with the common Galilean 
coordinate system in regions outside the tube, and coinciding inside 
the tube for one Yalue of the 'time' x' (as given outside the tube) 
with the original coordinate system and at a later 'time' x4 with the 
changed coordinate system. Then, since in accordance with (88.5) 
the values of J,_ would be independent of x' in all three coordinate 
systems, we can conclude that the values would have to be identical 
for the three coordinate systems. 

In addition, it can be shown that the quantities JP. would transform 
like the components of a. four-dimensional vector for the linear 
transformations which could be introduced to change to any desired 
new set of Galilean coordinates for the region outside the tube. The 
rigorous proof of this, nevertheless, is somewhat complicated and we 
need not include it here. t 

As a result of the foregoing, we then see that the physical signifi
cance of the quantities J,.,. in the case of an isolated system can be 
appreciated from the four properties of reducing at the limit to the 
quantities which we have already taken as energy an.d momenta in 
the special theory of relativity, of obeying a conservation law when 
we use coordinates that are Galilean in the flat space-time outside the 
system, of being independent of the choice of coordinates within the 

t See Pauli, 'Relativititstheorie', EnoyolopMM der math. Wi.!s. Band V,, Heft 4, 
Leipzig, 1921. § 21. 
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region of appreciable space-time curvature, and of depending on 
different Galilean systems of coordinates in the surrounding ':B.at' 
space-time in an analogous manner to the quantities m0 rki;P-fds which 
can be regarded (see 28.4) as determining the momenta and energy of 
a single particle in special relativity. This should assist in giving us 
a feeling for the physical nature of these quantities. 

89. The densities of ener~y and momentum expressed as 
divergences 
For some of our further applications of the energy-momentum 

principle, it will now be desirable to re-express the quantities 
(~~ +t~), which we regard as giving the densities of energy and 
momentum, themselves in the form of divergences. To do this, we 
may first combine the expressions for~ and t~ given by (84.1) a.nd 
(87.12) and write 

87T(l:~ + t~) = - 91~ -1- ig~ 9t-!g~P 0~~p + }g~ £, ( 89 .I) 

where it is interesting to note that the A-term cancels out even if the 
cosmological constant is not exactly equal to zero. Substituting 
from (87.6) and (87.9) we obtain · 

8 (l:V +tV) OW O os:! + (XJI o.E + _1 V 8 ( OC{J 81! ) 1 cx,8 8.5! 
1T ~ ~ = -g 8xY Bg~IX g agiiiX "!Up. axr g a~ -"2"91£ ag~fJ' 

and this can evidently be rewritten in the form 

87T(l:V +tv) = !-.(-gcxv -~~- + igv gcx,8 ()£p) + 
P. P. axr og~cx "' a~ 

+ cxv o£ + av 8£ .1 cxp 8£ (89 2) 
9y ag~IX 9 agp.oc·- I9p Bg~· · 

From the definitions which we have given for the quantities entering 
into this expression, it can be shown, nevertheless, by a rather lengthy 
but straightforward computationt that the sum of the last three 
terms of the expression will be identically equal to zero. This then 
permits us to write the divergence 

87T(l:V+fV) = ~(-s!XV O-~- +igJI ga,8~~Q) (89.3) 
#' p. oxY 8g~cx I' og~,.. 

as a useful relation for calculating the relativistic densities of energy 
and momentum. 

t Tolman, Phy8. Ret~. 35, 875 (1930). 
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90. Limiting values for certain quantities at a large distance 
from an isolated system 
In the following section we shall wish to use equation ( 89.3) to 

obtain expressions for the total energy and momentum of an isolated 
material system. As a preliminary, we shall first calculate the limit
ing values which would be approached at large distances from the 
system by oertain of the quantities which can occur on the right
hand side of this expression. 

In carrying out the computations, we shall use a system of quasi
Galilean coordinates (x, y, z, t) which are chos~n so that the material 
system of interest is permanently located in the neighbourhood of 
the origin x = y = z = 0, and so chosen that the line element will 
approach the Galilean form. at very great distances from this origin. 
As a consequence we can then assign to the line element at sufficient 
distances from the origin the approximate Schwarzschild form given 
by (82.15) 

ds' = -(1+ 2~)(h"+dy'+tk'J+(1- 2~) dt' (90.1) 

with r = .J(x2+y2+zt) and m = constant, (90.2) 

since at sufficient distances the field will be spherically symmetrical 
owing to the location of the material system, and will be static owing 
to the i~lation, which we shall regard as requiring the metric at these 
distances to be unaffected by changes taking place within the material 
system itself. 

Neglecting terms of the order of (mfr) compared with unity, it is 
easily found that the Christoffel three-index symbols corresponding 
to this line element will be of the forms 

mar 
{p.~J-, ~-'} = - r2 ax,.,. 
r.. m 8r 
1JA'IJ., v} = - -r2 axv 
{v~J-, p.} = {l'v, p.} = ± ~ ~ r2 &.k;v 

{p,v, o} = 0, (90.3) 

where p., v, and u represent different indices. In using these expres
sions it will be noted in accordance with (90.2) that certain of these 
quantities will be zero owing to the independence of r and x4 = t. 

With the help of these expressions for the Christoffel symbols, and 



§ 90 SOME LIMITING VALUES 231 

the expression for af!jag~v given by (87.5), we can now obtain explicit 
expressions for quantities which can occur on the right-hand side of 
(89.3) which will be needed in the next section. We calculate to the 
same order of approximation as the expressions for the Christoffel 
symbols 

gtX4 a2 = _a2
A = -{14, 1}+l{4E:, e} = 0 

ag}IX agl .. 

go:' a2 = 82 = -{ 14 2} = o 
ag~o: 8g~' ' 

go:' a2 82 m &r 
- =- = -{44 1} = ---
Bgfo: agf ' r 2 ax 
a2 of! of! of! a.£! 

go:P og~fl = - agp- agi2 - ag~8 + agf4 

= +{11, 1}-}{lE:, e}-!{1E:, E:}+{22, 1 }+{33, 1}-{44, 1} 

=m(_ar -(-ar _ar _ar +ar)+ar +ar _ar} 
r 2 ax ax Ox ax ax ax ax 8x 

Extending thesf' results with the help of the symmetry in x, y, an.dz, 
and replacing the derivatives of r with respect to the coordinates by 
the direction cosines for the radius vector, we can then write 

go:P 0.~ = 
2~ oos(n:r.) 

ogfP r 2 

grxP -~i! = 2m cos(ny) 
ag~fl r 2 

tJ 8!! 2m go:,.,_IJ = -
2 

cos(nz), 
ag~,., r 

(90.4) 

(90.5) 

(90.6) 
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as a list which gives the limiting values at large distances from the 
material system for those quantities which we shall need in the 
next section. 

91. The mass, energy, and momentum of an isolated system 
With the help of the foregoing values, we may now obtain expres· 

siena for the energy and components of momentum of an isolated 
system. In accordance with (88.4) and (89.3), we can write for the 
energy .of the system 

U = ~ = J J J (~~+t~) dxdydz 

== ~ JJJ .!_(-gO&' 82 + }g01.B 81!) dxdydz, (91'.1) 
. Bw 8xY 8g~ ag~P 

provided we ta.ke the integration over a sufficient volume surrounding 
the system of interest. · Taking this volume as a, sphere of radius r 
around the origin, noting the summation implied by the double 
ooourence of the dummy y, using Gauss's theorem to transform the 
first three terms of the summation to a surface integral, and noting 
the values given by (90.5, 6) which will be assumed by quantities on 
the right-hand side of (91.1) at sufficient values of r, we then obtain 

U = ~ J J ~':{cos2(nx) + oos2(ny) + cos2(nz)} du + 

+2.! ffJ (-gO&'~+igcx.B 82
\ dxdydz. (91.2) 

8w 8t 8g~ 8g~P I 
The :first term in this expression is immediately seen to have the v&lue 
m. The second term in the expression cannot be explicitly computed, 
however, since it involves an integration over the whole volume of the 
sphere which includes regions in the neighbourhood of the origin 
where we know nothing about the nature of the line element. Never
theless, since U is a constant in accordance with the conservation of 
energy for an isolated system expressed by ( 88.5), a.nd since m is 
a constant as by hypothesis it determines the static field at large 
distances, it is evident that the second term on the right-hand aide 
of (91.2) must also be a constant; and hence indeed have the value 
zero owing to the impossibility for the integral involved to change 
perm.anently a.t a. constant .finite rate. We thus obtain for the energy 
of our isolated system Einstein's very satisfactory result 

U = m. (91.3) 
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The momentum of the system with respect to the coordinates 
being used can be similarly determined. In accordance with (88.4) 
and (89.3) we can write for the component of momentum in the 
x-direction 

Jl = I I I (l:f+tV dxdydz 

= 2_ JJJ ~ (-o1X' aE) dxdydz, 
8?T &r:'l ag~cx 

and treating this in the ·same way as we did (91.1), noting the zero 
values for terms in the integrand which will arise from (90.4), we 
obtain 

(91.4) 

where the value zero rises from reasoning similar to that given in the 
immediately preceding paragraph. 

Summarizing, we may now write for the three components of 
momentum ~, J2, and J3 and for the energy J4 = U of an isolated 
material system permanently located at the origin of a system of 
quasi -Galilean coordinates of the kind used 

JP. = (0, 0, 0, m). (91.5) 

The value zero for the three components of momentu1n arises of 
course from our particular choice of coordinates, having the system of 
interest at rest so to speak at the origin. The value m obtained for 
the energy of the system seems very appropriate, since it shows that 
the total energy of an isolated object is also the quantity, occurring 
in the approximate Schwarzschild expression, which determines the 
gravitational field at large distances from that object. 

Making use of the possibility, already mentioned at the end of 
§ 88, of showing that the components of JP. would transform like 
those of a covariant vector, for linear transformations which change 
from one system of Galilean coordinates to another in the surrounding 
'flat' space-time, we could also write in agreement with (91.5) the 
more general contravariant expression 

dxP. 
Jp. = rn di' (91.6) 

where dxP fds may be regarded as corresponding roughly to the velocity 
of the system as a whole with respect to the particular set of coordi
nates in use. 
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92. The energy of a quasi-static isolated system expressed by 
an integral extending only over the occupied space 
For certain purposes both of the expressions for the energy of an 

isolated system 

U = J J J (~~+±:) dxdydz and U = m (92.1} 

may be Uil.Satisfactory. The first of these expressions suffers .fron1 the 
fact that the indicated integration will in general have to be carried 
out over a volume which is large compared with the actual system of 
interest, since t~ is not in general equal to zero in empty space. And 
the second expression suffers from the fact that it gives no method 
of computing the energy from the actual distribution of matter and 
radiation within the system. For a particular class of systems, which 
may be called quasi-statio, another expression can be obtained that 
is sometimes more usable. 

Substituting into the first of the two expressions (92.1) the value 
for the density of potential gravitational energy t~ given by (87.12), 

we obtain U = JJJ (~~+~-_I_ g~/3 oi! ) dxdydz, 
16'" 16'" ag~P 

where the cosmological term has been omitted since the application 
will be to small systems which can be regarded as surrounded by 
'fiat' space-time. Introducing the expression for 2 given by (87.9) 
this becomes 

U = ~,--+- _ gaf3 _ __ g4P --·- dxdydz. Iff [ , m 1 a ( oi!) 1 a oi!] 
1611' 16'" oxY ag~P 16'" ag~P 

Furthermore, substituting for ill, in agreement with (78.11), the well
known expression 

9l = 87rl: =- 87r{l:l+~~+~:+l:!), 

expanding the third term of the integrand, and then combining with 
the fourth term, the expression for U can be rewritten in the form 

U = J J J i(Xi-l:~-X~-Xg) dxdydz + 

+ 1!,. f f f [!(g•P ;) + ~(g•P ~;P) + ~( g•P ~)] ikdydz + 
(92.2) 

1 JJJ r./3 ~ ( a~\ + 1617' 9 8t ag:fJ} dxdydz. 
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To proceed, let us now introduce the definite requirement that the 
coordinates (x, y, z, t) be chosen so as to be of the quasi-Galilean type 
used in the two preceding sections, with the physical system of inter
est permanently located at the origin. The second integral on the 
right-hand side of (92.2) can then be readily evaluated with the help 
of Gauss's theorem, by taking the region of integration as a sphere 
and introducing the values given by (90.6) at the distant boundary. 
We thus obtain for the second integral the value tm which in accord
ance with (91.3) is also equal to !U. Substituting in (92.2) we then 
obtain 

u = f f f (l:~-2:1-::t~-!g) dxdydz -1-

+ -1 JJJ gc.:,8 ~(-~2 ) dxdydz. 
H7T at ag~/3 

(92.3) 

Finally let us define a quasi-static system as one in which changes 
are taking place with tho 'tin1e' t slowly enough so that the second 
term on the right-hand side of (92.3) is negligible compared with the 
first. This will, of courRc, be strictly true when we are interested in 
quiescent states of temporary or permanent equilibrium. For such 
systems we can then uso tho simple expression for the encrgyt 

U = J J J r.:r:--!l-l:i-!5} dxdydz. (92.4) 

And this expression has tho grcu.t advantage that it can be evaluated 
by integrating only over t.ho region u.ctually occupied by matter or 
electromagnetic energy, since the values of X~ will bo zero in empty 
space. 

t 'l'olmn.n, Pltya. Rev. 35, 875 (1930). 



VII 
RELATIVISTIC MECHANICS (contd.) 

Part II. SOLUTIONS OF THE FIELD EQUATIONS 

93. Einstein's general solution of the field equations in the case 
of weak fields. 
As mentioned at the beginning of this chapter, the principles of 

relativistic mechanics are all implicitly contained in Einstein's field 

equations -&rT~ = ~-!~+Ag~, (93.1) 

which connects the energy-momentum tensor with the geometry of 
space-time. In the preceding part of the chapter we have investigated 
those mechanical conclusions which arise from the fact that the 
tensor divergence of the energy-momentum tensor ~ must be equal 
to zero, since the tensor divergence of the right-hand side of (93.1) is 

·known to be identically equally to zero. In what follows we shall be 
interested in the more complete problem of obtaining solutions for 
the ten differential equations denoted by (93.1), which will permit 
us to correlate the components of the energy-momentum tensor T~ as 
directly as may be with the components of the metrical tensor Up.v· 

· In the case of weak enough fields this problem has been completely 
solved by Einstein's approximate solution of these field equations. 
In the case of strong fields we can obtain no general solution of the 
equations, but by introducing special assumptions as to the physical 

. nature of the system under consideration, can obtain a number of 
simplified expressions relating the components of ~ to the com
ponents of g p.v and its derivatives which prove to be useful in solving 
the equations in particular cases. 

We may first consider Einstein's general approximate solution. To 
obtain this solution we shall assume the gravitational field so weak 
that we can employ coordinates which are nearly Galilean in character, 
and can hence represent the components of the metrical tensor by the 
expression 

U,.,.v = 8,.,.v+h14v, (93.2) 

where the 814v are the constant Galilean values for the g14v, ±I and 0, 
and the k14v are small correction terms. The quantities k14v and their 
derivatives with respect to the coordinates will be regarded as terms 
of the first order whose squares may be neglected. We shall also find 
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it convenient to introduce the quantities 

h~ = 8~0"""ar:; h = h~ = aa'A}&a'A (93.3) 

where the &'v are the Galilean values of the g~'". 
Turning now to the expression for the contracted Riemann

Christoffel tensor given by (77.1), it is evident by neglecting higher 
order terms that we can write correct to the first order 

a a 
RI'V = azv~u, u}-axa{ll.v, u} 

= !_·(isa~{ahpJ. aha~_~})-axv axa + Oxl' ~ 

- !_(l_sa~(ahp).. ohv~- ahP."}) 
aza "I axv + oxl' axA 

- 1~a~( o2ha~ aah,.,.a aahv~ a2h"" ) 
- "fV axl'axv- axvax~- f)xafJxl-' + aza~ . 

Rearranging, introducing the quantities defined by (93.3), and chang
ing dummy suffixes, this can be rewritten as 

R = !8a~ a'Ahl'v_ !( aah - }2h~ - a'Ah~ ) (93.4) 
p.v .. axaax~ + 2 axl'axv axv axar: axP-axar: . 

We shall now show the possibility of satisfying this relation by the 
two equations 

(93.5) 

and 
_!_2_h_ _ 82h~ 

azvaxar: (93.6) 

In accordance with (93.5), and our original expression for the 
energy-momentum tensor (93.1), omitting the cosmological term, we 
can evidently write 

-161r~ = 2R~-g~R 

=sa~-~~--- (hV -i8Vh) 
axaax~ I' I' 

(93.7) 

( 
aa aa aa aa) 

= - ax2 - oy2 - aza+ ata (h~-lS~h). 

This 'wave equation' has the well-known solution familiar in the 
theory of retarded potentials 

1 f [ -l67T~] 
(h~- !8~ h) = 41r .. r 14

- dxdydz, (93.8) 
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whete the integration is to be carried out over the whole spatial 
volume, r is the distance from the point of interest where the value 
of (h~-f8~ h) is desired to the particular element of volume dxdydz 
under consideration, and the square brackets indicate that we are 
to use the value ofT~ at a time earlier than that of interest by the 
interval needed for a signal to pass with unit velocity from the 
element dxdydz Wlder consideration to the point of interest. 

To complete our justification for this solution we must show that 
it also secures the validity of (93.6). From the differentiation of 
(93.8), we can write 

.!_ (h~-1s~ h)= -4 J [(a;ax~)T~] d.xdydz. 
&o: ,.,. ,.,. r 

In accordance with (93. 7), nevertheless, T~ is a quantity of the first 
order, and hence in accordance with the fw1dan1ental relation for 
the divergence of the energy-momentum tensor (84.5), its divergence 
will be a quantity of the second order, and we can write to our order 
of approximation aha. 1 oh 

_p. =- -. 
ox"' 2 oxf£ 

Substituting this, however, together with the analogous expression 
iii v, we immediately see that this will secure the necessary validity 
of (93.6). 

The approximate solution of Einstein's field equations which we 
have thus justified 

(h~-1-S~h) = -4 J [~~] dxdydz (93.9} 

proves to be very useful in permitting for the case of weak fields a 
straightforward calculation of the small deviations h,.,.v from the 
Galilean values for the metrical tensor, whenever the energy
momentum tensor is given as a function of the coordinates. Although 
the method of treatment provided by this solution is limited to weak 
fields, it should be specially noted that there is no limitation as to the 
velocity of the matter producing the field; and this provides ~1 great 
step forward from the Newtonian level of treatment where there was 
great uncertainty as to the mechanism and velocity with which 
gravitational effects would be propagated. 

In accordance with the interpretation which we have for the right
hand side of (93.9), it is evident that we must now think of gravita
tional effects as propagated in the present coordinates with unit 
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velocity, that is, with the same velocity as light. Furthermore, in 
accordance with the 'wave equation' (93.7), it is evident that we may 
expect gravitational waves carrying energy and propagated with this 
velocity. The emission and absorption of such waves, which to be 
sure may be expected to carry only extremely s1nall amounts of 
energy, have been investigated by Einstein.t 

The solution (93.9) has been used by Thirring and Lense~ to discuss 
the effect of the rotation of a central astronomical body on the 
surrounding gravitational field and hence on the motion of satellites. 
The effects of such rotations are too small to be of practical astro
nomical interest. The solution has also been used by Thirring§ to 
investigate the theoretical problem of the gravitational field inside 
a thin rotating shell of matter, with the interesting and clarifying 
result that the rotation of the shell leads as might be expected to 
analogues of the centrifugal and coriolis forces of ordinary mechanics. 
In the next chapter the solution will be used in investigating the 
gravitational field produced by pencils and pulses of light. 

94. Line elements for systems with spherical symmetry 
Although we have no general solution for Einstein's field equations, 

except in the above case of weak fields, wo cn.n nevertheless often 
proceed by assuming a form for tho solution which corresponds to 
the nature of tho physical problem under consideration, and then 
investigating the properties of this proposed form. Thus, for example, 
if the physical system of interest iH such tha.t we know that its 
structure is spatially spherically symmetrical, wo cn.n f<~el Aure that 
coordinates can L>c chosen in such a. wa.y that the line element for the 
systen1 will exhibit this symmetry. 

As the most general forn1 of line dement exhibiting Aph(•ricn.l 
Rynl.n10try we mn.y evidently writ.e 

ds2 = -e>. dr2 -&(r2 d02 +r2t;in20 drp2)-l-l~v dt2 +2a drdt, (04.1) 

where.:\, p,, v, and a u.re functionH of r n.nd t alone n.IHl tho coeflicicnt:-:~ 
-eA, -el', and +ev have been ehoson in the exponential form in order 
to distinguish clearly between the Hpn.ce-liko coordinates r, 0, a.ud rp 
and the time-like coordinate t. 

This general forn1 of spherically symmetrical line olCinent can, 

t Einstein, Berl. Ber. 1018, p. 154. 
t Thirring and Lonso, Pltys. Zeits. 19, 150 (1018). 
§ Thi.rring, Phys. Ztdta. 19, 33 (1918); ibid. 22, 29 (1921). 
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however, be subjected to simplifying transformations. To do this we 
may first introduce a new variable r' in accordance with the equation 

(94.2) 

Making this substitution, and dropping primes, it is easily seen that 
the line element is then exp1•essihle in the form 

d,sS = -eJ. dr2 -r2 d82 -r2sin28 dcp2 +ev dt2 +2a drdt, (94.3) 

where~' v, and a are now new functions of the new r and of t. 
A further simplification which will eliminate the cross product can 

now be made by substituting a new time variable t' in accordance 

with the equation dt' = 7J(a d'· +ev dt), (94.4) 

where 7J is an integrating factor which will make the right-hand side 
a perfect differential. In accordance with (94.4) we shall have 

dt' 2 a2 
ev dt2 +2a drdt = ---- dr2, 

'YJ2ev ev 
(94.5) 

so that on substitution into (94.3), and dropping primes, we can then 
express the line element in the simple standard form 

ds2 = -el\ dr2 -r2 d82 -r2sin28 dcp2 +ev dt2 

~ = ~(r, t) v = v(r, t), (94.6) 

where A and v are functions of the present rand t alone. t 
The possibility of eliminating a single cross product by the use of 

an integrating factor as in (94.4) greatly simplifies the treatment of 
pro blem.s exhibiting spherical symmetry. 

For some purposes a somewhat different for1n of the line element for 
cases of spherical symmetry is more convenient. This may be obtained 
from (94.6) by introducing a new variable r' in accordance with the 
equation 

dr' = eil\ dr 
r' r · 

(94.7) 

Making this substitution, and dropping primes, the line element can 
then be expressed in the form 

dJs?. = -eP(dr2 +r2 d82 +r2sin28 dcp2)+ev dt?. 

p. = p.(r, t) v = v(r, t), (94.8) 

where p. and v are now functions of the present rand t. And by an 

t Lemaitre, Monthly Noticu, 91, 490 (1931). 
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obvious further substitution this can also be rewritten in the form 

ds2 = -el'(dx2+dy2+dz2)+ev dt'J. 

p. = p.(r, t) v = v(r, t) r = .J(x2+y2+z2). (94.9) 

These two latter systems of coordinates may be called isotropic. 

95.. Static line element with spherical symmetry 
We must now turn to a more detailed examination of the foregoing 

proposed forms of solution for the field equations. To assist in 
obtaining actual solutions from them, we shall desire explicit expres
sions for the Christoffel three-index symbols and for the components 
of the energy-momentum tensor in terms of the quantities used in 
expressing these proposed line elements. 

We may first consider physical systems which are statio as well as 
spherically symmetrical. In accordance with (94.6) we can then 
write our line element in the standard f<;>rm 

ds2 = -eJ. dr2 -r~ d02 -r2sin20 dcp2 +ev dt2 

~ = ~(r) v = v(r). (95.1) 

The Christoffel three-index symbols corresponding to this form of 
line element can easily be evaluated from the definition given by 
(73.14) and are well known to have the values 

{11, I}= !~' {21, 2} = 1/r 
{12, 2} = lfr {22, 1} =-re-A 

{13, 3} = lfr {23, 3} = cot 8 
{14, 4} = ~v' 

{31, 3} = Ifr 

{32, 3} = cot f) 
{33, I}= -rsin2()e-~ 
{33, 2} = -sin(} cos(} 

{41, 4} = tv' 
{ 44, 1} = iev-Av', 

(95.2) 

where accents denote differentiation with respect to r, and all further 
three-index symbols vanish. 

Using these values of the three-index symbols the components 
Rp.v of the contracted H.iemann-Christoffel tensor can then be 
computed with the help of (77.2), and the components T p.v of the 
energy-momentum tensor obtained from (81.6). It is simplest to 
express these in the form of the mixed tensor. The only ones which do 

311915.11 R 
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not vanish .are found to be 

SrrTl = -e-~(v' + .!.) +.!_-A 
r r2 r2 

&r21 = 87TT~ = -e-" ---+-+ -A (
v" A'v' v'2 v' -A') 
2 4 4 2r 

(95.3) 

&rT: = e-~(~-.!_) +~-A. r r2 r2 

Instead of taking the line element in the form (94.6), we could of 
course also use it in the isotropic ·form (94.8) 

f182 = -&'(dr2+r2 d82 +r2sin.28 dcP2)+ev dt2 

I-' = 1-"(r) v = v(r). (95.4) 

The Christoffel symbols corresponding to this form in the case of 
a statio system are 

{11, 1} = tf£' 

{12t 2} = 1/r+ tl'' 
{13, 3} = lfr+ il'' 
{14, 4} = !v' 

{31, 3} = 1/r+ il'' 
{32, 3} = cot 8 

{33, 1} = -(r+!T2~L')sin28 
{33, 2} = -sinO cos 8 

{21, 2} = 1/r+ i;p.' 

{22, 1} = - (r+tr21-'') 

{23, 3} = cot 8 

{41, 4} = iv' 
{44, 1} = ie"-f'v', 

(95.5) 

where accents again denote differentiation with respect tor, and all 
further three-index symbols vanish. 

The non-va:nishing components of the energy-momentum tensor 
corresponding to this form of line element are 

SwTt = -e-P. - +-+--- -A (
f£''1. f£

1

V
1 

f£
1 +v') 

4 2 r 

(
f£" v" v''l. p.' +v'\ 

SwTi = &rT~ = -e-P. 2+2+4+ 2r )-A 

S...Tt = -e-~0· +p.: + 2:')-A. 
(95.6) 

In applying either of the above forms of line element to a system 
which consists of a. perfect fluid, we shall have in accordance with 
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(85. 7) for the energy-momentum tensor 

pp.v = (Poo+.Po) a: :-gJA 11Po, 

or lowering the index I-' 
dxot. dxV 

~ = (Poo+.Po)Ucxp. ds di-~Po· 

24:3 

(95.7) 

(95.8) 

Since we are dealing with a static problem, however, we can evidently 
write, in the case of both of the above line elements, for the com
ponents of fluid 'velocity' 

dr d8 d4 
-=-=-=0 
ds da ds 

dt - = .o-iv ds too • (95.9) 

Introducing these values into (95.8) we then obtain for the com
ponents of the energy-momentum tensor 

Tt-T2-ps_ 111 1- 2- 8- -ro (95.10) 

which may be substituted in the case of a perfect fluid into (95.3) and 
(95.6). 

Furthermore, in the case of a perfect fluid, the equality between 
the radial stress T~ and the transverse stresses T~ = TR makes it 
possible to derive a very simple expression for pressure gradient. 
Thus equating the two expressions for T~ and 71 given by (95.3) we 
obtain 

e-~(v"_A'v' +v'2 +~--::-~'-v' _.!_)+! = O. 
2 4 4 2r r r2 r2 

And multiplying through by 2/r and rearranging terms, this can be 
rewritten in the form 

e-~(v" _ v' _ 2)-e-~A'(v' +~)+!+e-"(A' +v')v' = O, 
r r r 3 r .,~a r 3 r r 2 

which on comparison with (05.3) and (95.10) is seen to be equivalent to 

dpo ( )v' 0 (95 1 ) dr + Poo +Po 2 = · . 1 

This is the relativistic analogue of the Newtonian expression for the 
dependence of pressure on gravitational potential 

dp dip 
dr +P dr = O. 

A result of exactly tho same form as (95.11) can also be obtained in 
the case of isotropic coordinates by equating the two expressions for 
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Pi and ~given by (95.6), and again multiplying by 2/r and rearrang
ing terms. 

Hence in the case of a static system having spherical symmetry and 
consisting of a perfect fluid we can take the line element in the 
sta.ndard form 

with 

ds2 = -e>.. dr2-r2 d82 -r2sin20 tf42 +ev dt2 

A= ~(r) v = v(r) 

(
v' 1) 1 81rp0 = e->. -+- --+A ,. r2 r2 

( 
, ' 'v' '2 ' ,\') "v " v v-&rpo = e- ---+-+--+A 

2 4 4 2r 

(
>..' 1) 1 S'"Poo = e->. --- +--A r r2 r2 

dpo = _ (Poo +Po)v'; 
dr 2 

or in the isotropic form 

diJ2 = -eJI-(dr2 +r2 d82 +r2sin28 tf42)+ev dt2 

v = v(r) 
with 

( 
p.'2 2p..') 

STTPoo = -e-P. 1£" +4+1 -A 

dpo (Poo+Po)v' 
dr =- 2 

(95.12) 

(95.13) 

(95.14) 

(95.15) 

It should be noted, moreover, is using equations (95.13) or (95.15) to 
determine the form of line element in terms of the distribution of 
density and pressure that they only express three original con
ditions. In solving the equations, this then permits us when desired 
to substitute, in place of the more complicated of the two expressions 
for pressure, the much simpler and physically more illuminating 
expression for pressure gradient. 
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96. Schwarzschild 's exterior and interior solutions 
Before proceeding to more complicated line elements, we may now 

illustrate the method of using the relations given in the preceding 
section in order to obtain actual solutions for the form of line element. 
In § 82 we have already used the relations (95.3) to obtain the line 
element surrounding an attracting point particle. The solution 
obtained, however, is equally applicable to the empty space surround
ing a finite static system having spherical symmetry, and we may call 
the result Schwarzschild' s exterior aolution. 

To obtain this exterior solution, we may take the line element as 
being in the form (95.1) already discussed 

da2 = -eA dr2 -r2 d82 -r2sin28 de/>2 +ev d,t?. (96.1) 

and then set all the components of the energy-momentum tensor 
which are given by (95.3) as equal to zero in theemptyspacesWTound
ing the sphere of matter. This will provide us with the three differen
tial equations 

-e- -+- +-- = 0 ,\(v' l) 1 A 
r r 2 r 2 

(96.2) 

e-.\--- +--A= 0, (
>..' 1) 1 
r r 2 r 2 

which are readily found to be satisfied by the solution previously 
given, corresponding to the line element 

dr
2 

( 2m Ar2
) rJ,a2 = - -r2 tl82 -r2sin 2(} dcp2 + 1--- - dt2 

2m Ar2 r 3 ' 
1--- . 

r 3 (96.3) 

where 2m is a constant. 
This form of solution is to bo t~1kcn as valid everywhere in the 

empty space outHide the sphere of matter, and must be continued 
inside the sphere by another form of solution which will depend on the 
properties of the matter compo8ing the sphere. To obtain such an 
interior aolution for a particular case, we may assume with Schwarz
schildt that the material composing the sphere consists of an incom
pressible perfect fluid of constant proper density p00 • In accordance 

t Sohwo.rzsohild, Berl. Ber. 1916, p. 424. 
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with (95.13) we can then write 

&rrp0 = e~ -+- --+A (
v' 1) 1 
r ,.2 ,.2 (96.4) 

&rp00 = e~ --- +--A (]..' 1) 1 ,. ,.2 ,.2 (96.5) 

dpo _ (Poo+Po)v' 
dr-- 2 (96.6} 

as equations for the interior of the sphere, which are to be solved 
onder the conditions that the pressure be zero at the boundary of the 
Rphere, and that the density p00 be constant inside this boundary. 

As a result of the constancy of p00 and A we can immediately inte
grate the second of these equations (96.5) and obtain 

e-~ = 1-A+&rPoor2+ 0 
3 r 

as can readily be verified by redifferentiation, 0 being a constant of 
integration; and to rem,ove singularities at the origin, we shall aSBign 
the value zero to this constant and write the desired solution for 
;\ in the form 

r 2 3 e-.\= 1-- with R2 = . (96.7) 
R2 A+8~00 

To obtain a solution for v we may first integrate equation (96.6), 
which on account of the constancy of p00, will give us the simple result 

(Poo+.Po) = const. e-lv. 

Combining this with the expressions for Po and p00 given by (96.4) 
and (96.5) we obtain 

(")..' v') elJie-.\ -;:-+-;:- = const., 

and, substituting the value for e-.\ given by (96. 7), this becomes 

( 
2 v' rv'~ elv -+--- = oonst., R2 r R2 

which will be seen to have the solution 

eiJI = .A-B~(I-T2jR2), 

where .A and B are the two constants of integration. 

(96.8) 

In accordance with (96.7) and (96.8) we can then write Schwarz
schild's interior solution for a fluid sphere of constant density p00 in 
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the form 
dr2 

ds2 = -I-r2fR2-r2 d82 -r2sin28 if4>2 +(.A-B.J(l-r2fR2))2 dt2, 

or substituting 
. r smx=R 

we can also write it in the form 

(96.9) 

(96.10) 

ds2 = -R2(dx2+sin2x d82 +sin2xsin118 c¥2)+(A-Bcos x)2 dt2, 
(96.11) 

which shows that the spatial geometry inside the fluid is that for the 
'surface' of a sphere in four dimensions. 

The preBBure corresponding to the line element (96.9) is found with 
the help of (96.4) to be given by 

&rp0 = _!_(~J!~~;j r"/R')=~)+A. (96.12) 
. Jl2 A-B (I-r2fR2) 

Neglecting terms containing A which can in any case only be of im
portance at great distances from the origin, we can then make the 
pressure equal to zero at the boundary of the sphere r = r 1, and make 
the interior solution (H6.9) agree at this radius with the exterior 
solution (96.3) by assigning the following values to the constants in 
the expressions 

R2 3 = ----, 
81rp00 

A= ~j(1- rr), 
2 R2 B = ~' 

4Tr 3 
m = 3Poor1, 

(96.13) 
which completes the solution of the problem. 

In order for the solution to be real we must have 

., 3 
ri ·:::: - - . ' 

81rp00 
(96.14) 

whioh puts an upper limit on the possible sizo of a sphere of given 
density, and on the mass of a sphoro of given radius. These limits are 
very generous, however, and ha vo so far led to no conflict with 
astrophysical observation. 

97. The energy of a sphere of perfect fluid 
Before leaving tho discuHHion of spheres of fluid, it will also be of 

interest to show the possibility of obtaining a vory siinple expression 
for their total energy when inn quasi-statio state. t 

t 'l'olrnun, l'ltys. Rev. 35, 875 (1930). 
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To do this it will be simplest· to consider the line element in the 
isotropic form 

ds1 = -el'(da:2+dy1+dz1)+ev dt2 

p, = f.L(r) v = v(r} r = .J(x2+y2+z2). (97.1) 

Since the coordinates x, y, z, t for this form of line element are evi
dently of the quasi-Galilean type, which become Galilean at great 
distances from the origin, we can then write in accordance with (92.4) 

U = f f f (X~-X~-~-X:) dxdydz 

(97.2) 

as an expression in these coordinates for the energy of a sphere of 
fluid having the above line element. We can substitute, moreover, 
for the component of the energy-mom-entum tensor the expressions 
in terms of density p00 and pressure p 0 given by (95.10), and rewrite 
the energy in the form 

U = JJJ (Poo+3p0)ei<a,.,.+v> dxdydz. (97.3) 

Or finally, noting that the proper spatial volume, coiTesponding to 
a coordinate range dxdydz, will be 

dJ'o = ell' dxdydz, (97.4) 

we can re-express the energy for a static sphere of perfect :fluid in the 
simple and physically understandable form 

U = J (p00+3p0)eiv dl{,, (97.5) 

where the integration is to be taken over the whole proper volume of 
the sphere. 

In the case of weak enough fields, i.e. small enough spheres so that 
the Newtonian theory of gravitation can be regarded as a satisfactory 
approximation, it is interesting to show that the above expression 
for energy would reduce to what might be expected on the basis of 
Newtonian ideas. 

In weak fields, in accordance with (80.9), we can take the ordinary 
Newtonian potential .pas given by the expressiont 

.P = i(g"-1) = !(ev-1) ~ §v, 

t Where c in (80.9) has been set equal to one to correspond to our present units. 
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and hence can make the approximate substitution 

eiv = I+zfo (97.6) 

in the formula for the energy of the sphere given by (97 .5). This then 
gives us 

U = f {Poo+3Po)(I+rft) £lVo 

= J Poo dVo + J PoozP dVo +3 J Po dVo +3 J Poa/J d"Vo· (97.7) 

This expression can be changed, however, into a more recognizable 
form. Since for weak fields afJ will be small compared with unity, and 
p 0 for ordinary matter small compared with p00, we can neglect the 
last term in ( 97. 7) in comparison with the other terms, and can drop 
the subscripts (0) in the second and third terms which specify a 
proper system of coordinates for the measurement of quantities. We 
then have 

U = J Poo clJiO + I prft dV +3 J p dV. (97.8). 

On the basis of Newtonian theory, moreover, we can make a further 
substitution. Integrating over the total volume of the sphere con
tained within its radius r 1, we can write 

,., 
3 J p dV = 3 J 4!rfr2p dr 

0 

r1 

= l4m-3p,~'- I 4mr dp 
0 

since the pressure will fall to zero on the boundary of the sphere at r 1• 

And since - 477T2 dp is the total radial force acting outward on the 
spherical shell of material dM .. lying between the radii rand r+dr, we 
can equate this to tho gravitational attraction acting on this shell 
and write r 

3 I p dV = I ~r dM.-. 
0 

Or finally, since the right-hand side of this expression is evidently the 
work which would bo necessary to remove the total material of the 
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shell to infinity, we can substitute the usual expression for potential 
energy and write 

(97.9) 

Substituting (97.9) in (97.8), we then have for the total energy of the 
sphere 

(97.10) 

We thus see, at the Newtonian level of approximation, that the 
rela.tivistic formula for the total energy of a fluid sphere would reduce 
to the Slim of the total proper energy and the usual Newtonian ex
pression for potential gravitational energy. This satisfactory result 
can serve to increase our confidence in the practical advantages of 

·Einstein's procedure in introducing the pseudo-tensor densities of 
potential gravitational energy and momentum t~. 

98. Non-static line elements with spherical symmetry 

We must now turn to the more complicated case of non-static line 
elements with spherical symmetry. In accordance with (94.6), we 
can then assume the solution to be of the standard form 

r1,s2 = -e'A dr2 -r2 d82 -r2sin.28 dcp2 +ev dt2 

A=A(r,t) v=v(r,t). (98.1} 

The Christoffel symbols corresponding to this form of line element 
are found to be 

{11, 1} = !A' 
{11, 4} = ie"A-v~ 
{12, 2} = 1/r 
{13, 3} = 1/r 
{14,1} = ~~ 
{14,4} = !v' 

{31, 3} = 1Jr 
{32,3} = cot8 
{33, 1} = -rsin28e-' 

{33, 2} = -sin8cos8 

{21, 2} = 1/r 
{22, 1} = -re-~ 
{23, 3} =cot 8 

{41, 1} = !..\ 
{41, 4} = !v' 
{ 44, 1} = !ev-.\v' 

{44, 4} = !v, 

(98.2) 

where the accents indicate differentiation with respect tor and the 
dots with respect tot, and all further three-index symbols vanish. 
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Using these values of the three-index symbols, the components of 
the energy-momentum tensor which do not vanish are then found to 
have the valuest 

(
v' 1) 1 871'T~ = -e-~ -+- +--A 
r r 2 r 2 

(
v" A' v' v'2 v' -A') (X ~ 2 }u)) 

&~ = &rTB = -e-~ ---+-+ +e-v -+--- -A 2 4 4 2r 2 4 4 

&T: = e-~ --- +--A ' (~' 1) 1 
r r 2 r 2 

~ B?TT1 = -e-~
r 

~ 87TTt = e-v-. 
r 

(98.3) 

It is interesting to compare these expressions for the components of 
the energy-momentum tensor with the corresponding ones (95.3) for 
the static case. As has been pointed out by Lemaitre it will be noted 
that the difference lies only in the added term in the components of 
transverse stress Ti and Tg and the appearance of the new components 
Tl and Tf. Roughly speaking, we can then say that the change from 
the static to the non-static case corresponds to the appearance of 
a t;ransverse wave coupled with a radial flow of energy. 

We could, of course, also use isotropic coordinates in the case of 
spherical symmetry, and assume the solution in accordance with 
(94.8) to be of the form 

ds2 = -eP.(dr2+r2 d(}2 +r2sin28 dtfo2)+ev dt2 

p. = p.(r, t) v = v(r, t). (98.4) 

The Christoffel symbols corresponding to this form of line element 
are found to be 

{11, 1} =tiL' 
{11, 4} = 1&-vp. 

{12, 2} = 1/r+i~-t' 

{21, 2} = 1/r+l~-t' 

{22, 1} = -(r+}r2p.') 

{22, 4} = }r2eP--vp, 

t The above values for the Christoffel three-index symbols and for the components 
of the energy-momentum tensor were calculated by Dr. Boris Podolsky and the 
present writer. The values of the T~ agree with those obtained for this Slime line 
element by Lemaitre, Monthly Notic68, 91, 490 (1931). 
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{18, 3} = I/r+tJ.t' {23, 3} = cot 8 

{14, I} = tJl {24, 2} = ill 
{14, 4} = fv' 

{31, 3} = 1/r+!p.' 
{32, 3} = cot 8 

{33, I} = -:-(r+!r2J.t')sin2fJ 
{33, 2} = -Bin(} COB(} 

{33, 4} = ir2sin2(} e)l--V(J. 

{3~, 3} =til 

{41, 1} = tP. 
{41, 4} = iv' 
{42, 2} = tJl 
{43, 3} =til 
{ 44, I} = teJI-P-v' 
{44, 4} =tv, 

§ 98 

(98.5) 

where accents again denote differentiation with respect to r and dots 
with respect to t, and all further three-index symbols vanish. 

The non-vanishing components of the energy-momentum tensor 
corresponding to this form of line element aret 

S...T} = -e-,.(~>~' +~'~' +~''~•')+e-•(;;.+tp.•-~';)-A 

87T71 = S'"Tg = -e-P.(~-'" +v" +v'2+p/+vj+e-v(p.+fJl2_Jlv)-A 
2 2 4 2r) 2 

( 
'2 2 ') 87TT~ = -e-P. J.t" +P-
4 

+ ~ +!e-vJl2-A 

S...J'l = e-"(P.' -~';') 

S...Tf = -e-•(p.'-":). 
99. Birkho:ff's theorem 

(98.6) 

The expressions (98.3) for the energy-momentum tensor corre
sponding to the standard form of line element (98.1) make it easy to 
derive an interesting theorem originally due to Birkhoff.t 

Consider a spherically symmetrical mass of material SUITounded by 
empty space free from matter or radiation. Since all the components 

t The above values for the Christoffel three-index symbols and for the components 
of the energy-momentum tensor were calculated by Dr. Boris Podolsky and have been 
checked by Dr. Dingle with the help of the more general results given in § 100. · 

~ Birkhoff, Relativity and Modern PhyBios, Harvard University Press, 1923. See 
p. 253, § 7. 



§ 99 BIRKHOFF'S THEOREM 2lSS 

of the energy-momentum tensor will have to be zero in this empty 
space, we shall have to have 

(99.1) 

in the space surrounding the sphere of material, as a result of the 
appearance of ~in the expreBBions for Tl and Tf in (98.3) . 

. With~= 0, however, it will be seen that the expreBBions for the 
energy-momentum tensor (98.3) become identical in form with those 
for the statio case given by (95.3), and hence in the empty space 
surrounding the sphere will again give Sohwarzschild's exterior 
solution (see§ 96) 

-A v 2m ArZ e =e =1----, 
r 3 

{99.2) 

where m will again have to be a constant independent of the time to 
preserve the truth of (99.1). 

Hence the condition of spherical symmetry alone is sufficient to 
secure Sohwarzschild's statio exterior solution for the empty space 
surrounding a sphere of material. And spherically symmetrical 
pulsations could take place in the sphere without any loss of mass or 
energy due to gravitational waves. For an actual loss of energy we 
should have to give up the requirement of empty space surrounding 
the sphere, and permit an actual flow of matter or radiation. 

100. A more general line element 

To conclude the present chapter, we may finally give the Christoffel 
symbols and components of the energy-momentum tensor correspond
ing to a very general form of line element, which have been computed 
by Dingle.t 

For the line clement we shall write 

(100.1) 

where A, B, C, and D can be any functions of the coordinates, all 
four of them being regarded as essentially positive quantities so that 
xt, x2, x3 will be space-like coordinates and x4 time-like. This line 
element is more general than any of the previous ones which we have 
considered. It assumes the possibility of eliminating cross products, 
but does not require spherical symmetry. 

t Dingle, Proc. Nat. Aoad. 19, 560 (1933). 
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The Christoffel symbols corresponding to this line element are 
I aA I aA I aA I aA 

{11, I}= + 2A & 1 {2I, I} = + 2A axa {3I, I}= + 2A axa {4I, I} = + 2A &.z:4o 

I aA I aB 
{11,2} = -2Baxs {2I,2} = +maxt {3I,2} = o {4I,2} = o 

I aA I ao 
{11,3} = --- {2I,3} = 0 {3I,3} = +-- {4I,3} = 0 

20 aa:a 20 azl 
IU IW 

{11,4:} = + 2D &' {2I,4} = 0 {3I, 4} = 0 {4I, 4} = + 2D 8a;1 

{I2, I} = + ~: {22, I} = - ~:. {32, I} = 0 { 42, I} = 0 

IM IM IM IM 
{I2,2} = +-- {22,2} = +-- {32,2} = + -- {42,2} = +2B ~ 

2B &1 2B & 1 2B aa:8 Uo(;-

{22, 3} = - ..!_ aB {32, 3} = + _!_ ao {42, 3} = o {I2, 3} = 0 20 az3 20 axa 

{I2,4} = o {22,4} = +m:. {32,4} = o {42,4} = + ~~ 
{I3, I} = + _!_ aA {23, I} = 0 {33, I} = -

2
IA _aa~ {43, I} = 0 

2A axa a: 
I aB I ao 

{I3,2} = 0 {23,2} = + 
2
BOxB {33,2} = -

2
B&B {43,2} = 0 

I ao I ao - I ao I ao 
{I3, 3} = + 20 &1 {23, 3} = + 20 axs {33, 3} = + 20 aa;a {43, 3} = + 20 &' 

I ao I aD 
{I3,4} = 0 {23,4} = 0 {33,4} = + 

2
Dax4 {43,4} = + 2D8z3 

IU IW 
{I4, I}=+-- {24, I}= 0 {34, I}= 0 {44, I}= + 2A !:1-1 2A ax4 crw 

{I4,2} = 0 {24,2} = + ~:~ {34,2} = 0 {44,2} = + 2~: 
I ao I aD 

{I4, 3} = 0 {24, 3} = 0 {34, 3} = + 20 &4 { 44, 3} = + 20 tJa;3 

{I4,4} = + ~:~ {24,4} = + 2b!~ {34,4} = + 2b: {44,4} = + 2b: 

(I00.2) 

and the components of the energy-momentum tensor~ are 

1[ 1 ( 82B 8zo) 1 ( 82B a2D} 
- Sn-Ti = 2 BO 8(x3)2 + 8(x2)2 - Jjjj 8(x')2- 8(x2)2 -

1 ( 820 8aD }] 
-(jjj 8(x4)2-8(z3)2 -

1[ 1 (8B 80 (80)2
} 1 (80 8B (8B\2} 

-4 B(Jt ax~ 8x3+ ax2 + oBa 8x2 .3x2+ 8x3} -

1 (8B 8D (8D\ 2} 1 (8D 8B (8B)z} 
- BD2 Ox' 8x'- ax2j + DB2 8x2 8x2 - fJx4 -
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__ I {ao aD -(aD)2
}+-I {aD ao -(ao)~}-

OD2 ox' ax' oxB D02 axS Ox8 ax' 

I {ao aD aB aD aB ao} 1 'aB ao 
-BOD ox2 8x2 + oxB oxB- ox' 8x' -ABO Ox1 axi-

I oB aD_ I ao oD]+A 
ABD Ox1 ()x1 A OD c3z1 Ox1 

I[ I ( asA a~o ) I ( a~A. a~D ) 
-S1rP~ = 2 AO o(xs)2+ a(zl-)2 -AD o(x')2-8(zl)2 -

1 ( aso asD )] 
- OD o(x')2 - 8(~)2 -

I [ I {aA ao (a0)2
} I {ao aA (aA 'l -4 A02 axa axB+ 0z1 + oAs 0x1 azl + az&} -

I {aA aD (aD)2
} I {aD aA (aA)2

} -AD2 Ox4 ax'- ox1 + DA2' axl oxl- Ox' -

I {ao aD (aD)2
} I {aD ao (ao)2

} - OD2 axt ax'- Ox8 + D02 axS ox8 - ax' -

I {ao aD aA aD aA ao} I aA ao 
-AOD ox1 ox1 + azs oxB-ax' ax' -ABO ox2 8x2-

I aA aD I ao aD] 
- ABD 8x2 8x2- BOD ox~ 0:r;2 +A 

__ I {oA oD _ (oD)2
} + __ I {aD oA _ (oA)2

} _ 

AD2 axt ax' 0z1 DA ~ ()xl az1 ax' 

I {oB oD (oD)2
} I {aD oB (oB)2

} - BD2 axt axt- ax2 + DB2 ax2 ax2- ox' -
I {aB aD aA aD aA aB} I aA aB 

-A-BD oxl & 1 + ox2 ox2- axt ax' -ABO oxB aza-:-

I aA an 1 aB aD] 
-A OD 8x8 oxJ-BOD 8x8 Ox8 +A 



-S1rATi = -S1rB~ 
1 [ 1 a2o 1 a2D ] 1[ 1 ao ao 1 aD aD 

= - 2 0 8x1ox2 + D ox1ox2 + 4 02 ox1 ox2 + D2 ox1 ox2 + 
1 aA ao 1 aA aD 1 aB ao 1 aB aD] 

+A 0 8x2 ox1 +AD ox2 ox1 + BO ax1 8x2 + BD Ox1 8x2 

-SwATl = -S1rOTf 

1[ 1 o2B 1 o1D ] 1[ 1 oB oB 1 aD aD 
= -2 B ox1ox3 + D 8x1ox3 + 4 B2 ox1 azs + D2 8x1 8xi + 

1 aA aB 1 aA aD 1 ao aB 1 &O aD] 
+ AB 8x8 8x1 +AD ox8 ox1 + 0 B ox1 ox8 + OD ox1 ox8 

-SwB~ = -81TOT~ 

1 [ 1 82 A 1 82 D ] 1 [ 1 oA oA 1 aD oD 
= - 2 A &x2axs + D 8x2ox3 + 4 A 2 ox2 ox8 + D2 ox2 M + 

1 aA aB 1 aA ao 1 aD aB 1 an ao] 
+ AB 8Xi azs+ AO or ox2+ DB ox2 aza+ DO Ox3 8x2 

-81TAPl = +B1rDTt 

1[ 1 &2B 1 &20 ] 1[ 1 aB aB 1 ao ao 
= -2 B 8x1ox4 + 0 ox1ox4 + 4 B2 8x1 Ox'+ 02 8x1 Ox4 + 

1 aA aB 1 aA ao 1 aD aB 1 an aa] 
+ AB Ox4 8x1 + AO ox' ox1 +DB 8x1 Ox4 +DO ox1 Ox' 
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-87rBT~ = +BwDT~ 

1[ 1 o2A 1 a2o ] 1[ 1 aA aA 1 aa ao 
= -2 A 8x2o~+ 0 CJx2ox' +4 Ai 8x2 ax'+ 0 2 axe~+ 

1 aA aB 1 aA aD 1 ao aB 1 aD ao] 
+ AB 8x2 ax'+ AD Ox' az2+ OB 8x2 ax'+ DO az2 Ox' 

-sw.oT: = +BwDT~ 
1[ 1 a2.A 1 a2B ] 1[ 1 aA aA 1 aB aB 

= -2 A axSOx'+ B axSax' +4 A 2 axa M+ w azs ax'+ 

1 aA ao 1 aA aD 1 aB ao 1 aB aD] 
+ AO 8x8 az4+ AD Ox' axS+ BO Oz3 ax'+ BD ox' Oz3 

(1~0.3) 

81196·11 s 
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RELATIVISTIC ELECTRODYNAMICS 

Part.!. TRE COV.AiuANT GENERALIZATION OF ELECTRIOAL THEORY 

101. Introduction 
In the present chapter we shall give a brief account of the exten

sion ·of electrodynamics to general relativity which is customarily 
made and which can be based on the electrodynamics of special 
relativity already considered in Chapter IV. We shall also consider 
some applications which are of interest for our further work . 

. We shall first consider the relativistic generalization of the Lorentz 
electron theory in spite of the difficulties, which we have previously 
emphasized, that arise from the fact that the Lorentz theory is 
developed from a microscopic point of view and yet ignores those 
restrictions on a correct microscopic treatment which must eventually · 
be introduced in accordance with the more recent development of · 
quantum theory. We shall then give some attention to the generaliza
tion of the macroscopic theory developed in the second part of· 
Chapter IV. 

102. The ~eneralized Lorentz electron theory. The field equa· 
tlons 
In the special theory of relativity it was found in§ 46 that the 

Maxwell-Lorentz field equations could be expressed in Galilean coor
dinates with the help of two vectors, the generalized potential cfoP., 
whose components are given in terms of the ordinary vector potential 
A and scalar potential cfo, by the expression 

cpP. = (Aa~,A11,A.,<fo), (102.1) 

and the generalized cu1 rent density Jp., whose components can be 
given in terms of proper charge density Po and coordinate velocity 
dxP.fds, or in terms of densities of charge p and current pu referred to 
the coordinates being used, by the expressions 

J u dxP. ( 'U:z: 'Uv u. ) 
r =Po dB = Pc' Pc' P-:c;' P · (102.2) 

With the help of these vectors, the full content of the Maxwell
Lorentz field equations, using the Galilean coorclinates permitted in. 
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the special theory of relati~ty, can then be expressed by the two 
equations aq, oc/J 

F = :I.I!:----! (102 3) p.v oxv oxP. • 

oFP.v 
and -- = JP., (102.4) oxv 

where the first equation defines the antisymmetric electromagnetic 
field tensor Fp.v in terms of the potential, and the second equation 
relates the field tensor to the current vector. 

The foregoing equations are to be taken as valid in the 'flat' space
time of special relativity and are expressed in the Galilean coordinates 
which may then be used. In accordance with. the principle of 
equivalence, however, the analogous general relativity equations must 
also reduce to this same form when expressed in natural coordinates 
for the particular point of interest. Hence it is reasonable to assume 
that the completely relativistic field equations can be taken as being 
merely the covariant re-expression of the above equations of the 
special theory. 

The covariant re-expression of the above equations is very simple. 
The equations of definition for the generalized potential and current 
(102.1) and (102.2) will need no modification, since by defining these 
vectors in one system of coordinates they have then been defined
with the help of the rules for tensor transformation-in all systems 
of coordinates. To obtain the covariant re-expression for the two 
remaining equations, we shall have only to substitute covariant 
differentiation for ordinary differentiation and write as the electro
magnetic field equations in general relativity 

oc/J ocfov 
Fp.v = (c/Jp.)v-(!fov)p. = 'i{J- 8xP. (102.5) 

and (102.6) 

where the first of these equations is not even changed in form, owing 
to the mutual cancellation of the two terms containing Christoffel 
symbols which arise from the indicated covariant differentiation. 

103. The motion of a charged particle 
In addition to the field equations we shall also need to include in 

the theory an expression describing the motion of charged particles. 
This must of course be a covariant generalization of the fifth funda
mental equation of the Maxwell-Lorentz equation (41.4) for the force 
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acting on a moving particle. The desired expression can be taken as 

d'l.xP- . tJ,xot. dxf3 e dx" -+{o:fJ u.}- -+-Ffl-- = 0, (103.1) da2 , ,- ds dB m
0 

ex d8 

where efm0 is the ratio of the charge of the particle to· its rest mass and 
F~ = gP.~F._" is the electromagnetic field tensor already introduced. 
It will be seen that the equation gives expression to the comM 
bined action of the gravitational and electromagnetic fields on the 
particle. 

To show that the above equation is a satisfactory generalization 
of the usual law of force for a charged particle, we must show in the 
first place that it is a covariant expression true in all coordinate 
systems if .true in one, and in the second place that it reduces in 
natural coordinates to the usual equation for the force on a moving 
particle. 

To show that it is a covariant expression, it is most convenient to 
note that it can evidently be rewritten in the form 

(103.2) 

which is seen to be a tensor equation of rank one. 
To show that it reduces in natural coordinates to the usual expresM 

sion for electromagnetic force, we note that the Christoffel threeM 
index symbols will then be zero, corresponding to the disappearance 
of gravitational effects with respect to freely falling axes. Making 
use of the expressions for the field tensor FP." in natural coordinates 
given by (46.9), and remembering in accordance with {20.5) that we 
can take dafdt as the Lorentz factor of contraction ~(1-u2) where u is 
the ordinary velocity of the particle in our present units, it will then 
be found that the four equations corresponding to (103.1) can be 
written in the familiar form 

~L~:.)) = eEw+e(u,H.-u.Ily) 

d( m0 Uu) _..., dt .J(1-u2) = e.tJJ11 +e(uteH~-u~Hz) 
(103.3) 
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which-in our present units-are seen to be the usual equations for 
the action of the electromagnetic field in changing the momentum 
and energy of the particle. 

104. The energy-momentum tensor 
To complete the translation of the Lorentz electrodynamics into 

relativistic form we must also have a covariant expression for the 
electromagnetic energy-momentum tensor. This is found to be given 
in terms of the field tensor Ff£v by the formula 

[T~'v:Jem = -gv.BFI'cxF,Bcx+W~'v Fcx.BFcx,B· {104.1) 

This expression is easily seen to satisfy the necessary requirements. 
The expression is evidently covariant since it is a tensor equation of 
rank two. And substituting the values given by (46.9) for the com
ponents of the field tensor in natural coordinates, we find that the 
above expression does reduce in such coordinates to the special 
relativity expression for the electromagnetic energy-momentum, 
tensor as previously given by (46.20) and (46.21). Thus typical 
examples for the components of [T~'v]mn are found, as would be 
expected in our present units which make c = 1, to be given by 

pn = -i(E!-E:-E!+H~-~-H!) 
Tl2 = -(E~E21+H~llu) (104.2) 
T1

' = (E21 1I.-Ezllu) 

T" = l<~+.E;+.E!+~+~+m). 
Assuming the possibility already discussed in § 45 of combining 

analogous mechanical and electrical quantities, we could now state 
the energy-momentum principle for a combined mechanical and 
electrical system in the covariant form 

(T~'v)v = ([T~'v]me+[T~'v]em)v = 0, (104.3) 

corresponding to the previous special relativity form (46.22). 
This completes all that is necessary for the covariant re-expression 

of the Lorentz electron theory in a form consonant with general 
relativity. 

105. The generalized macroscopic theory 
As already discussed and emphasized the Lorentz electron theory 

has a somewhat unsatisfactory status, owing to its microscopic 
character. It is hence interesting to find that the macroscopic theory, 
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developed in the second part of Chapter IV, can also easily be re~ 
expressed in a covariant form suitable for incorporation in general 
relativity. 

The macroscopic theory in special relativity was based on two anti~ 
symmetric field tensors F~J-v and HP.v and on the current vector JP.. 
These three tensors were defined in§ 50 by giving their components 
in a system of Galilean coordinates so chosen that the electromagnetic 
medium under consideration would be macroscopically at rest. In 
these coordinates the field tensors have components which are 
directly given by the components of Maxwell's four familiar vectors 

· of electric field strength E, electric displacement D, magnetic field 
strength H, and magnetic induction B, as they would be determined 
by an observer at rest in the medium. And the components of the 
current vector are given by the densities · of current flow and of 
electric charge also as measured by such a special observer. 

In building th~ macroscopic theory in general relativity, it is 
evident that we may at once take over these same tensors FP.v, HP.v, 
and Jp. into the general theory, since we can now define them in an 
entirely similar manner by reference to the measurements of a local 
observer tlsing proper coordinates for the particular point of interest, 
and having defined the components in these proper coordinates we 
have then defined them by the rules of tensor transformation in all 
coordinates. 

To proceed with the generalization of the macroscopic theory we 
must then make sure that our previous field equations given in § 50 
are expressed in covariant form. This is already true for the first 
of the two equations . . 

(105.1) 

owing to a. mutual cancellation of three~index symbols, which arises 
when the corresponding covariant derivatives are taken on account 
of the antisymmetrio character of the tensor F . To make the p.v 
second of the field equations covariant it is only necessary to replace 
ordinary differentiation by covariant differentiation and write 

(105.2) 

Finally as a possible set of equations to complete the macroscopic 
theory, we may take the constitutive equations in the covariant form 

I 
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in which they have already been written in§ 51 
dxOI. d:J;OI. 

Ha.fJ d8 = EFa.fJ da ' 

dxOI. ~01. 
(Ua.{JF,a+UcxyFa{J+Ua.aF{J,) di = JL(Ua.{Jll,a+Urx:yHs{J+U®HFJy) d:i' 

(105.3) 

where E, p., and a are dielectric constant, magnetic permeability, and 
conductivity of the material as measured by a local observer, and 
dxa.fd8 and dxfJjdB refer to the macroscopic velocity of the medium at .. 
the point of interest. These constitutive equations contain of course 
the usual approximations involved in assuming that the matter ca.n 

I 

be characterized at each point by the three scalars c:, p., and a. 
The extension of the macroscopic theory to general relativity is thus 

straightforward. The equations obtained, however, are by no means 
simple. and have as yet been little applied. 
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Part II. SOME ~PLICATIONS OF RELATIVISTIC ELECTRODYNAMICS 

106. The conservation of electric charge 
We may now turn to certain applications of relativistic eleotro

dyna.m.i.cs which will be of interest. The results obtained will suffer 
to some extent from the unsatisfactory character of the Lorentz 
electron theory which we have already emphasized. 

We may first consider the relativistic analogue of the classical 
expression for the conservation of electric charge. 

Introducing tensor densities, the second of our two field equations 
(102.6) can be written in the form (see Appendix m, equation 48), 

and owing to the antisymmetry of ii~'v this leads to the result 

(32ijl'" - 8,31' -___::::____ - - - 0. 
axJ.'oXV OXf' 

(106.1) 

{106.2) 

In place of the cU.ITent density, however, we may introduce the 
expression by which Jp. was defined (102.2), and rewrite this equation 

in the form a ( dxP- ) 
- p0-.J=Y = 0 {106.3) 
axP. dB ' 

where. p0 is the proper density of charge as it appears to a local 
observer and dxP-fds is the 'velocity' of the charge. 

To show that this result implies the conservation of electricity, we 
may most conveniently examine its implications in a system of natural 
coordinates for the point of interest x, y, z, t. In agreement with the 
GaJi.lean. values which we shall then have for the Yp.v and with the 
disappearance of their first derivatives with respect to the coordinates, 
we can then substitute 

H=1 
and rewrite (106.3) in the form 

a { dt dx) a ( dt dtu) a ( dt dz) a ( dt) 8x\!'0 ds dt + Oy Pods dt + 8z Pods dt + 8t Pod8 = O; 
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or since dtfrls is the factor of Lorentz contraction this ca.n again be 
rewritten in the form 

a a a · .ap 
ax(pua:)+ ay(pull)+az(pu.)+ at = 0, (106.4) 

where p is the density of charge and ua:, u11, and u. the ordinary com
ponents of velocity with respect to the present coordinates. 

The result is, however, the usual equation of continuity for the 
csubsta.nce' whose density is p, and the conservation of electricity 
has been demonstrated as desired. 

107. The gravitational field of a char~ed particle 
~ a second application of relativistic electrodynamics, it will be 

interesting to consider the gravitational field of a charged particle. 
Taking the particle as being at rest at the origin of our system of 

coordinates, we ca.n evidently write the line element-in the standard 
spherically symmetrical form. 

d8" = -e!- dr" -rs d81 -r1sin2fJ dc/>1 +e" dJ1, (107.1) 
where ~ and v are functions of r alone which approach zero at very 
large values of r. To solve for ~ and v we must first consider the 
electric field surrounding the particle. 

Taking the potentials cfo,. as functions of r alone, and substituting 
into the expression (102.5) which defines the field tensor F,., in terms 
of these potentials, we then see that the only components which 
could at the very most survive would be 

Fn = -..liis Fal = -..liia Fu = -Fu. 
It is easily shown, moreover, that the first two of these components 

would aJ.so vanish, since on substituting into the second of the two 
field equations in the form (106.1) we should have in the space 
surrounding the particle 

otj~~' = ~(g22g11F21 .J-g] = ~(F21 e-lc"-11>sin8) = 0, 
Ox" ar ar 

or F 21 = const. e~-v>, 

together with a similar expression for F81• At large distances from 
the particle, however, where ~ and v approach zero and the ordinary 
equations for the electromagnetic field become valid, we know that 
F11 would be zero from its relation to magnotic field strength and 
must hence conclude that the constant has the value zero, so that 
}11 and similarly 1;1 are zero throughout. 
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To obta.in .an expression for the sole remaining component of the 
field tensor, we have by again applying (106.1) 

c3iJb' = !_[g"g11F41~ g] = ~(-F41 r2e-i(~+v>sin8) = 0, 
axv Or Or 

or -F,
1 

= F
14 

= E1 ei(~+v>, (107.2) 
r 

where Eisa co~stant of integration such that 41re can be identified 
with the charge on the particle in our present (Heaviside, relativistic) · 
units, owing to the known relation of'F41 to the electric field strength 
at sufficient distances from the particle. 

Having obtained this result for the surviving component of the 
field tensor, we can now substitute into the expression for the 
energy-momentum tensor (104.1) and readily obtain as the only 
components 1 Es 

.pt _ pz- ps- T"- (107 3) 
1 - - 2 - - 3 - ' - 2 r' · · 

These expressions for the energy-momentum tensor may now be 
equated to the expressions for this tensor in terms of 1\ and v as 
furnished by (95.3) to give us the differential equations: 

4?Te2 = -e->.(v' +.!.)+.!., 
r" r r2 r2 

4?rE
1 ~(v" 'A'v' v'2 v' ->..') 

f' = e- 2-4+4+-~ ' (107.4) 

47re2 = e-~(1\' - .!.) + .!_' 
r" r r 1 r2 

where the cosmological constant A has been taken as equal to zero 
as not of present interest. And these equations are readily seen to 
have a solution corresponding to the line element 

diJI dr2 I d82 2 . ri.l. ( 2m 4n-EI) dt2 = - 2m 47re1-r -r sm28 W<f's + I--;:-+ -;:a . 
1--;:-+--;:2 (107.5) 

This result is interesting in showing the contribution of the energy 
of the electric field surrounding the charge to the curvature of space
time. For any actual charged particle the gravitational effect of the 
electrical energy would be negligible compared with that of the 
intrinsic mass m at reasonable distance from the particle. Thus, if 
we considered a. particle with the mass and charge customarily 
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assigned to the negative electron, we find, paying due regard to 
units, that the two terms contributing to the curvature would stand 
in the ratio 

4mE2 jr2 2?re1 1· 5 X 1 o-13 
=-=~ , 

2mjr mr r 

where r is in centimetres. Hence we see that deviations from flat 
space-time due to the charge would be negligible compared with 
those due to the mass, except at exceedingly small distances from the 
particle. 

108. The propagation of electromaanetic waves 
We may next investigate the propagation of electromagnetic dis

turbances in space. In doing this we shall be interested in the 
propagation of the components of the field tensor F,...v which have a 
fairly immediate physical significance, rather than in the propaga
tion of the components of the potential rPp. which are less directly 
interpretable. 

Following a method due to Eddington, t we may write in accordance 
with the two field equations (102.5, 6), after differentiating with 
respect to v, J,...v = F~rx.v = grx.f1F,...prx.v 

= grx.f1(q,p.f1rx.v-t/>p,...cxv), 

and by a known theorem of the tensor analysis [see Appendix III, 
equation (43)] this can be re-expressed by introducing the Riemann
Christoffel tensor in the form 

Jp.v = grx.f1(r/J,...pvrx.- q,fJp.vrx.)-grx.f1(R~vrx.rPf:p+Rpva. rP,...r-Rpvrx. cf>f:,...-R~vrx.rP{J£) 

= grx.f1(r/J,...pv-rPpp.v)rx.-grx.f1(:W,.,.vrx.Frp- Rpva. Ft:p.) 

= grx.P(cf>,...pv-cf>p,...v)rx.-R,...vrx.£ Fffa._R~ F£W 

Hence subtracting the analogous expression for Jv,_,. we obtain 

Jp.v-J,p. = grx.f1(c/J,...pv-rPv{Jp.-rPfJp.v+rPpvp.)rx.-

- ( R,...vrx.6 - Rvp.rx.t:) F6 rx.- R~ FffJL + R~ F,_11 , 

and making use of the symmetry properties of the tensors involved, 
and applying equation (42) in Appendix Ill, this then becomes 

J,...v-Jvp. = grx.f1(¢,...vp-rPvp.{J+~pvcfo£+R:,...pr/Je+Rpvp. cp£)a.-

-2Rp.VOt€ F 6 rx.- R~F£P. +R~FEV' 

t Eddington, Tile Mathematical Theory of Belativ·ity, Cambridge, 1923, § 74. 
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which, in &oc)ordance with the cyclical property for the Riema.nn-
Christoftel tensor • B14,+B:"fJ+Bfl," = 0, 
gives us the desired result 

g«fl(FI'.,)"~ = g'X.P(tf>l'v-t/Jvp.){Ja. = Jl'v-Jvp.+2BI'v'X.EFE'X.-~Fo+R:F•w 
(108.1) 

The operator g«P( )~ occurring on the left-hand side of this 
expression is a generalization of the dalembertian of the non-rela
tivistic theory a• a• as as 

- axa- aya- aza +at'' 
and the result (108.1) may be regarded as the analogue of the wave 
equation of the ordinary electromagnetic theory. 

Adopting natural coordinates at the point of interest,_ ahd noting 
that in such coordinates the derivatives of the Christoffel three
index symbols will not vanish, while the symbols themselves become 
zero, it will be found that we can rewrite (108.1) in the form 

a.fl[ a•F,..... F a 1...... } F. a { l] g a:crxaxP- EV&.JJ~' £ - ~-'"axP vex,£ 

= Jp.v-J.,,_.. +2Rp.v«.E FEot-~FEv+R: FEW {108.2) 

In natural coordinates, however, the components ofF,_.., have the 
immediate interpretation in terms of field strength originally given 
by Tables (46.9, 10). Hence in the absence of current Jf' and at the 
limit of zero :field strength, the wave equation reduces in natural 
coordinates to the familiar form 

- a2F,w-a2 F,A:V- 02 F,.w + ()2 
FI'V = 0 

8x2 ays azs &t' ' 
(108.3) 

which corresponds to the propagation of electromagnetic distur
bances with unit velocity. It is interesting to note, however, that this 
result has been demonstrated only for vanishing field strengths and 
hence indeed for va.nishing intensities of the electromagnetic dis
turbance itself. 

With the help of (108.3), we may -now give a new justification for 
our earlier procedure in taking the path of a ray of light as a space
time geodesic with ds = 0. AB a solution of (108.3), corresponding to 
a. plane wave, we find 

F. 2'JT 
,.. .. =A cos-x-(Zx+my+m-t) (108.4) 
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provided we take the amplitude A, wave-length ,\, and direction 
cosines Z, m, and n as quantities whose first and second derivatives 
vanish. This wave corresponds in geometrical optics to a. ray 
travelling with unit velocity 

-dx2-dy2-dz2+dt1= 0 
under the condition 

d2x dly d}z 
dt" = dt2 = dt2 = O, 

when described in the natural coordinates, x, y, z, t being used. This 
result, however, can be re-expressed in a form valid for all systems of 
coordinates by stating that the path of the ray can be taken as a 
space-time geodesic with ds = 0. Thus our original principle receives 
the desired added justification. 

109. The ener~y-momentum tensor for disordered radiation 
We may next consider some problems connected with the energy

momentum tensor corresponding to different distributions of electro
magnetic radiation. 

Since a disordered distribution of electromagnetic radiation can be 
regarded as having the mechanical properties of a perfect fluid, we 
have already suggested in § 85 that we could assign to such radiation 
the usual expression for the energy-momentum tensor of a perfect 
fluid dxP- a.:xv 

TP." = (Poo+Po)dB ds -gP."po, (109.1) 

where the density and pressure of the radiation-as measured by a 
local observer who finds no net flow of energy-would be connected by 
the specially simple relation 

Poo = 3p0, (109.2) 

and the quantities dxP-jdB would be the components of velocity of 
such a local observer with respect to the coordinates actually being 
employed. 

This method of deciding on the correct expression for the energy
momentum tensor of a disordered distribution of radiation, by treat
ing it as a perfect fluid, is logically not unsatisfactory owing to the 
macroscopic character of the considerations involved. Nevertheless, 
it will be interesting to showt that we should also be led to the same 

t Tolman and Ebrenfest, Phy1. B~. 36, 1791 (1930). 
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result by taking the appropriate average of the microscopic expres~ 
sions for the electromagnetic energy-momentum tensor which was 
considered in § 104. 

To do this let us first take a system of proper coordinates in which 
there is on the average no net flow of energy at the point and time of 
interest. With respect to such a system of coordinates the com
ponents of the energy-momentum tensor looked at from a microscopic 
point of view will assume their classical values in terms of electric 
and magnetic :field strengths as already given in § 104 by the typical 
examples 

T11 = -1(~~~-E;+Hi-~-H:), 
T11 = - (Er.cE11+Hr.clly), 
pu = (EvHc-EzH.u), 

T44 = i(E~+E~+E:+~+H~+H!). 

(109.3) 

In using these expressions to o bta.in the corresponding macroscopic 
quantities, it is evident that we shall have the following relations 
holding on the average: 

Ei = E~ = .8! and IIi= H~ = H!, (109.4) 

since for disordered radiation the averaged field strengths will be 
independent of direction; 

E~E11 =EvE,= EtsEr.c = 0 and Hr.cH.y = H11 H~ = ~H:» = 0, 

(109.5) 
since for disordered radiation the lack of phase relations will make the 
instantaneous values of the above products positive or negative with 
equal probability; and 

E'J/Hz-Ezllu = E,Hr.c-Er.cH= = Er.cH11 -E'JIHr.c = 0, (109.6) 

since the coordinates now in use have been chosen so that there would 
be no net flow of energy. 

Combining the foregoing results of the process of averaging with 
the expressions for the energy-momentum tensor (109.3), we then see 
that the only surviving components of the macroscopic averaged 
energy-momentum tensor can be written as 

with 
pn = p12 = pas = Po T"'- p - 00 (109.7) 

Poo = 3p0, ( 109.8) 

where Poo, the proper macroscopic density of energy at the point of 
interest, is the average of the usual expression for the density of 
electromagnetic energy in the absence of matter, and the three sur-
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viving components of the Maxwell stre8ses are each equal to oneM 
third of this amount, that is to the radiation pressure p 0• 

Having obtained the expre88ions (109. 7) for the components of the 
energy-momentum tensor in a particular system of coordinates, we 
oan of course then obtain them in any system of coordinates by the 
rules of tensor transformation. And indeed, applying the same treat
ment as previously used, in§ 85, to obtain in the ca8e of an ordinary 
perfect fluid a general expression for the energy-momentum tensor 
from a knowledge of its components in proper coordinates, we are at 
once led to the expected expression 

dxJI. fkv 
pp.v = (Poo+Po)d& ds -gP.vpo {109.9) 

Poo = 3po 

for the energy-momentum tensor of a disordered distribution of 
radiation, where the 'velocities' dxl'jds are now to be interpreted as 
being those for a local observer who himself finds on the average no 
net flow of energy, and hence may be regarded as moving along with 
the radiation as a whole. 

110. The gravitational mass of disordered radiation 
Having shown that we are justified in taking the energy-momentum 

tensor for disordered radiation as having the same form as that for 
other perfect fluids,. we may now draw an interesting conclusion as 
to the effectiveness of such radiation in producing a gravitational 
field. 

If we take the line element for a statio sphere·of perfect fluid in the 

form daB= -eJ'(dx2+dyl+dz2)+ev dt2, (110.1) 

we may set the mass of the sphere m equal to ita energy U in accord
ance with § 91, and in accordance with § 97 express the latter in the 
form of an integral over the total volume of the fluid, giving us, 

m = U = J (p00+3p0)ei~ d'Va, (110.2) 

where dV0 is an element of proper volume of the fluid. 
As a result of our considerations this expression should apply not 

only to spheres of :fluid matter, but also to fluid mixtures of matter 
and radiation as well. Furthermore, the quantity m may be regarded 
as a measure of the field producing power of the sphere, since it was 
defined in§ 90 so as to be the constant which would ocour in the 
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Sohwarzschild expression for the line element in the empty space 
surrounding the sphere. Hence, since the pressure p0 of disordered 
radiation is necessarily equal to one-third its energy density p00, and 
the pressure of matter is under ordinary cirownstances only a 
minute fraction of its density, we are led to the interesting conclusion 
that disordered radiation in the interior of a fluid sphere contributes 
roughly speaking twice as much to the gravitational field of the sphere 
as the same amount of energy in the form of matter. 

It is interesting to compare this conclusion with the fact, already 
mentioned at the end of § 83 (b), that the gravitational deflexion of 
light in passing an attracting mass is twice as much as would be 
calculated from a direct application of Newtonian theory for a particle . 
moving with the velocity of light. In following sections we shall see 
additional examples of similar differences between the behaviour 
of matter and radiation. 

111. The energy-momentum tensor corresponding to a 
directed flow of radiation 
We may now turn from the consideration of disordered radiation to 

that of a directed flow of radiation. Using natural coordinates at the 
point of interest, we may then again take the components of the 
energy-momentum tensor, regarded from a microscopic point of view, 
as being given in terms of the electric and magnetic field strengths 
by the typical examples shown by (109.3). Lowering indices for later 
convenience, these can be written in the form 

Tf = !(E~-~-E!+H::-H~-H:), 
T§ = T~ = (E:~;E11+HxiL;), 
Tl = -Tt = (E11 Hz-EziL;), 
Tt = i(.Ei+.E;+E!+.Hi+.H;+H;). 

(111.1) 

Considering now for simplicity that the radiation is travelling in 
the x-direction and is plane polarized with its electric vector parallel 
to th~ y-direction, we shall have in accordance with the usual electro
magnetic theory of light 

E:~; = E. = Hz = Bu = 0, E11 = H~. 
And substituting in the above expressions shall obtain as the only 
surviving components of the energy-momentum tensor 

~+ffi - ""- - T' - T1 - - T" - " _. ..tj- ,- .,- 1- ' 
2 

(111.2) 
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aJI. the components being thus numerically equal tQ the expression 
for the density of electromagnetic energy. 

The result given by this expression has been obtained for plane 
polarized radiation and from a microscopic point of view, but should 
evidently also hold on the average for incoherent unpolarized radia
tion. We shall hence take as our general macroscopic expression for 
the energy-momentum tensor corresponding to a flow of radiation in 
the x-direction Tl-T'-Tl- T'-p - 1- ... - ,-- 1-' (111.3) 

where pis the density of radiant energy at the point of interest and 
these surviving components are expressed in natural coordinates for 
that point. 

112. The gravitational field corresponding to a directed flow 
of radiation 
With the help of this expression for the ~ergy-momentum. tensor 

for a directed flow of radiation, we may now determine the corre
sponding gravitational field, provided we take the field weak enough 
so that we can use Einstein's approximate solution of the field equa
tions as developed in § 93. 

We can then write the metriQal tensor in the form 

gp.Y = s,...v+hi'V' (112.1) 

where the s,...v are the constant Galilean values of the gp..,, ±1 and 0, 
and the h,...v are small correction terms of the first order ; and introM 
ducing the quantities 

h~ = s>.rxhp.a. h = h.~ = sa~n,o').., (112.2) 

where the 8~-'v are the Galilean values of the g~-'v, we can write the 
approximate solutiQn of the :field equations in the form 

(h~-~8~h) = -4 f [~~] dxdydz, (112.3) 

where the integration is to be carried out over the whole spatial 
volume, r is the distance from the peint of interest, where the value 
of (h~-~8~h) is desired, to the particular element of volume dxdydz 
under consideration, and the square brackets indicate that we are to 
use the value of T~ at a time earlier than that of interest by the 
interval needed for a signal to pass with unit velocity from the 
element dxdydz under consideration to the point of interest. 

Furthermore, in applying this approximate solution to the case at 
8686.11 T 



274: RELATIVISTIC ELECTRODYNAMICS § 112 

hand, we oa.n substitute for the T~ the values given above by (111.3) 
for natural coordinates, sinoe the T~ are themselves quantities of the 
first order and the coordinates in actual use are approximately 
natural coordinates at each point under consideration. We thus 
obtain corresponding to a flow of radiation in the x-d.irection 

h}-lh = 4 J [p]rdV, 

h~-ih = hft-ih = 0, 

hl-lh = -4 J [p]rdV, 

Ai =-lit= -4 J [PJ;v. 

(112.4) 

and with the help of (112.2) can easily solve these equations in the 

form -liu = -k .. = "'" = k41 = 4 J [pJrdV, (112.5) 

with all other components of kp.., equal to zero. 
This result then gives us a solution for the gravitational field 

corresponding to a flow of radiation in the x-direction, provided the 
field is weak enough to permit the use of Einstein's approximate 
solution. And this latter condition would presumably not be invali
dated because of too large a contribution to the field from any ordinary 
beam or pulse of radiation that we might encounter in nature or the 
laboratory. 

113. The gravitational action of a pencil of light 
(a) The line element in the neighbourhood of a limited pencil of 

light. As an application of the foregoing expression for the gravita
tional field corresponding to a unidirectional :flow of radiation, it 
would first be natural to try to consider the field in the neighbourhood 
of an infinite pencil of light, stretching in the x-direotion from minus 
to plus infinity. This proves to be impossible, nevertheless, by the 
method adopted since the values of the h,_,., then come out infinite 
when the integration given in (112.5) is performed, which would 
invalidate the approximate solution of the field equations that has 
been employed. 

This difficulty does not arise, however, if we consider a thin 
pencil of radiation of limited length Z and constant linear density p, 
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passing steadily along the x-axis between a source at x = 0 and an 
absorber at x = Z. In accordance with (112.5), we can then write 
for the contribution of the radiation to the gravitational potentials 
at any point of interest x, y, z in the neighbourhood of the pencil 

-ku = -h" = 'ht, = hu = 4 I [p ]rdV 

u ... l _ I 4pd'U 
- [(x-u)B+ys+z2]t (113.1) 

uao 

= 4 lo [(l-x)B+ys+zB]i+(l-x) 
P g [xB+ys+zB]i-x ' 

and with a finite length of pencil Z this oan be made as small as desired 
by taking the density of radiation p small. 

It should be noted that this expression has been derived on the 
assumption of a steady pencil of radiation, so that no explicit intro
duction of retarded potentials into the calculation was needed. The 
expression would hence of course not be applicable in the neigh
bourhood of times when the pencil was being started or stopped It 
should also be noted that the treatment assumes a flow of radiation 
solely in the x-direction and thus neglects diffraction effects at the 
surface of the pencil. Finally, it should be pointed out that the 
expression gives only the contribution of the pencil of radiation 
to the field, and neglects the contribution of the bodies which aot 
as source and absorber; and this includes a neglect of any effects 
resulting from changes in the motion or internal condition of 
these bodies which might themselves be connected with the flow 
of radiation. 

With these restrictions, however, we may regard the gravitational 
field in the neighbourhood of this limited pencil of light as given 
by (113.1). 

(b) Velocity of a test ray of light in the neighbourhood of the pencil. 
In order to appreciate the character of this gravitational field in the 
neighbourhood of a pencil of light, we may now consider, first the 
motion of test rays of light, and then the motion of test particles in 
the neighbourhood of the pencil. 

To investigate the motion of the test rays, we may write the 
formula for interval in the neighbourhood of the pencil in accordance 
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with (113.1) in the form 

d82 = -(1-h11) fk2 -dyB-dz2+(1+h11) dt1 -2h11 dxdt, 

and, setting this equal to zero in order to correspond to the track of 
the test ray of light, we obtain after dividing through by dt1 

dx1 dy1 dz1 dx 
(1-hu) dtl + dtB + dt" + 2hu dt = 1+hu (113.2} 

as a general expression for the velocity of our test ray in the neigh
bourhood of the pencil. 

Solving this general expression for velocity, first for the case of 
a test ray moving at the instant of interest parallel to the x-axis, and 
hence also to the pencil, we obtain the two cases 

dx 1+h11 - = +1 and - . 
dt 1-h11 

(113.3} 

On the other hand, solving for a test ray moving parallel to the y-axis, 
and hence in a plane perpendicular to the pencil, we obtain the two 
cases 

(113.4) 

In accordance with the first of these expressions, we see that a test 
ray of light, moving parallel to the pencil and in the same direction as 
that for the light in the pencil, would have unit velocity at any point 
in the field. On the other hand, for test rays moving in other directions, 
we should have a variable velocity depending as might be expected 
on the position in the gravitational field of the pencil, since h11 will 
depend on position in the way given by (113.1). 

We may also inquire into the acceleration which would be experi
enced by the rays. Differentiating (113.2), we obtain as a general 
expression for the accelerations 

2 (dx h dx + t) d2x dy dly dz d2z 
dt - 11 dt "'11 dt2 + 2 

dt dt2 + 2 
dt dt2 -

-(dx" -2dx + 1)d~u = 0 
dt2 dt dt ' 

(113.5) 

and for the special case of a ray which has at the instant of interest 
the components of velocity 

dx 
-=1 
dt 

(113.6) 
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this then leads to the result 
d2x 
dt" = 0. (113. 7) 

Thus, such a test ray retains its unit velocity parallel to the pencil, 
and hence in accordance with the general expression for velocity 
( 113.2) must also permanently retain zero components of velocity 
perpendicular to the pencil. 

This result is of considerable interest, since it means, in the special 
case of parallel rays of light travelling in the same direction, that 
there will be no gravitational interaction between the rays. This 
conclusion is satisfactory from the point of view of the stability of 
our originally postulated pencil of light, and also from the point of 
view of interpreting the behaviour of parallel rays of light coming. 
from distant astronomical objects. 

(c) Acceleration of a test particle in the neighbourhood of the pencil. 
We may next consider the effect of the gravitational field of our 
pencil of radiation in accelerating stationary test particles placed in 
the neighbourhood. 

In accordance with (74.13), the acceleration of such a test particle 
will be given by the geodesic equation 

d2xa d,xJJ- dxv 
.ds2 + {Jl.v, o} -dB ds = 0, 

and for stationary particles with 

this will reduce to 

dx = dy = dz = 0 
ds d8 ds 

dt 
ds = 1, 

d2xa 
dB" +{44,a} = 0. 

Working out the values of the Christoffel three-index symbols which 
correspond to the gravitational field of the pencil as given by (113.1) 
we easily find to the order of approximation of our solution of the 
field equations 

Furthermore, substituting the explicit value for h44 in the neigh
bourhood of the pencil provided by (113.1), we then obtain, with 
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some rearrangement, for the acceleration of a 8tationary partiole 
parallel to the pencil . 

d2x- 2 { 1 1 ) (113.8) 
dt2 - P [ x2+y2+z~']t- [(l-x)2+y2+z2]i ' 

and for its acceleration in a plane perpendicular to the pencil 

d2y 2py { x l-x ) (113 9) 
dtB = -y2+zs [x2+y2+z2]i +[(Z-x)2+y2+z2]i ' ' 

where x, y, z denotes the position of the test particle, and the track of 
the pencil lies as will be remembered along the x-axis from a:= 0 
to x = l. 

For the case of a particle placed at a point equally distant from the 
two ends of the track, these general expressions reduce, for the case 
of acceleration parallel to the track to the simple result 

d'-x = 0, (113.10) 
dt2 

and, taking z = 0 for the acceleration towards the track, to the 
result dif 2pl 

dt2 = - y[ ( tl)2+y2Jr · 
(113.11} 

These results for the acceleration of a test particle parallel and per
pendicular to the track of the pencil are o£ considerable interest. 

In the first place, it will be found that both of the general expres
sions (113.8) and (113.9) are just twice as great as would be calculated 
on the basis of Newtonian theory if we replaced the pencil of radiation 
by a material rod of the same density and length. This is another 
example (see § 110) of a case where radiation may be regarded as 
more effective in producing a gravitational field than a similar dis
tribution of matter of the same density. 
· In the second place, it is of interest to emphasize in accordance 
with ( 113.8) and ( 113.10) that the acceleration parallel to the track of 
the pencil would be towards the longer segment of track for a particle 
placed at a point nearer one end of the track than the other, but 
would be zero for a particle placed equally distant from the two ends 
of the track. Hence for a particle, which is not actually situated in 
the path of the pencil, there is no preponderant gravitational action 
in the direction of motion of the light itself. This is to be contrasted 
with the effect of light pressure which would act on a particle actually 
placed in the pencil in the direction of radiation flow, and may also 
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be contrasted with the Compton effect on an electron placed in 
the pencil which would also be preponderatingly in the forward 
direction. 

114. The gravitational action of a pulse of Ught 
(a) The line element in the neighbourhood of the limited track of 

a pulse of light. We may now turn to a consideration of the gravita
tional field in the neighbourhood of the track of a limited pulse of 
radiation. This will be more complicated to treat than the case of 
the steady pencil since the field will now be non -statio, and we shall 
have to make explicit use of the method of retarded potentials in 
determining the way in which ·the gravitational effect spreads out 
from the moving pulse. 

Let us consider a pulse of radiation, of length ,\, linear density p, 
and negligible cross-section, travelling along the x-axis from x = 0 
to x = l. These may be regarded as the points at which the pulse 
emerges from the emitter and enters the absorber, or as giving an 
arbitrary portion of the track selected for investigation, and we shall 
neglect any effects coming from the pulse or parts of it that do not 
lie within this range. We shall also neglect as before any gravita
tional effects due to the absorber and emitter or changes that may 
take place within them. Some such restrictions appear to be necessary 
in order to secure a determinable problem. In particular we shall 
point out later that our method of attaok h&B to be limited to a track 
of finite length. 

For simplicity we shall choose our time scale so as to make t = 0 
when the front end of the pulse crosses the point x = 0. Then at 
any later time the front end of the pulse will be located at x = t and 
the rear end at x = t-,\ since the pulse may be taken as travelling 
"With unit velocity. 

Let us now take some point of interest x, y, z in the neighbourhood 
of the track and calculate with the help of equation (112.5) the 
gravitational field produced by the pulse at this point at the time t. 
Since this equation for the gravitational field has to be applied in 
accordance with the method of retarded potentials, let us take 
x = a as giving the position of the front end of the pulse and x = b 
the position of the rear end of the pulse when they 'emit' the gravi
tational influence which is received at the point x, y, z at the time 
t. In accordance with (112.5) we may then evidently write for the 
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gravitationa.I potentials at x, y, z and timet 

J. - "l. - J. - '1. - 4 I [p] dV 
-"'11 - -u'" - "'14 - 1"41 - r 

(114.1) 

To evaluate this expression, however, we must determine a and b 
as functions of the time t. To do this we note with our choice of 
starting-point for time measurements that a= x gives not only the 
position of the front end of the pulse when it emits the gravitational 
influence reaching the point of interest at time t, but also denotes the 
time at which this impulse is emitted. Hence (t-a) is the time· 
·available for the gravitational influence to travel from the front end 
of the pulse to the point of interest and since this influence is pro
pagated with unit velocity, we can write 

(t-a)2 = (x-a)2+y2+z2, 

and solving for a obtain 
tB-x2-yB-z2 

a= . 
2(t-x) 

Similarly, we obtain forb the expression 

.(t-,\)2-x2-y2-z2 
b= . 

2(t-,\-x) 

(114.2} 

(114.3) 

These values for a and b apply of course to the positions of the front 
and rear end of the pulse only when they lie within the range of 
track from x = 0 to x = Z that we have selected for investigation. 
Since the pulse starts to enter this portion of track at t = 0, and 
[x2+y2+z2]t is evidently the time needed for a gravitational influence 
to travel from the point of entrance to the point x, y, z of interest, 
we shall disregard the gravitational effect of the pulse completely 
until the timet= [x2+y2+z2]t and then take 

b __ 
0 

{ from t = [ x2+y2+z2]i 
to t = [ x2+y2+z2]t+,\. 

(114.4) 

Similarly, since we are not interested in gravitational influences 
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emitted from portions of the track lying beyond x = l, we shall take 

a = l { from t = l+[(l-x)1+y1+z2]i- {114.5) 
to t = Z+[(l-x)t+yB+z2Ji+,\, 

and disregard the gravitational effect completely after the latter of 
these times. 

We may now substitute the foregoing expressions for a a.nd b into 
(114.1) and obtain as explicit expressions, for the gravitational 
potentials at the point and time of interest x, y, z, t, 

-k11 = -h44 = h14 = h41 (114.6) 

- 4 lo t-x {from t = [ x2+ys+z']i-
- P g[x1+y1+z1]l-x to t = [x1+ys+z']i+,\ 

t-x {from t = [ x1+y1+z']i+,\ 
= 4plogt-,\-x to t = l+[(l-x)1+y1+z2]i 

= 4 lo [(l-x)1+y2+z1]i+(l-x) {from t = Z+[(l-x)t+yB+zB]i 
P g t-,\-x to t == l+[(l-x)B+ys+zBJi+,\. 

With the help of these expressions, we can now appreciate why it 
is necessary to restrict our present kind of treatment to a. finite 
portion of track in order to obtain a determinate problem. With an 
infinite track the second of the above expressions for the gravita
tional potentials would evidently be applicable at all times, and this 
would then become infinite at the timet= x when the pulse comes 
abreast of the point of interest, which would invalidate the approxi
mate method of solving the field equations that has been employed. 
Taking as we do, however, a limited portion of the track this difficulty 
is avoided since we consider only those gravitational effects which 
arise after the pulse starts to enter the track at t = 0, and this 
corresponds to a time of reception at the point of interest 

t = [ xB+yB+zB]i 

so that the infinity no longer arises. 
The foregoing expressions are derived on the assumption of a flow 

of radiation solely in the x-direction and hence neglect diffraction 
effects at the boundary of the pulse. 

(b) Velocity of a test ray of light in the neighbourhood of the pulse. 
To appreciate the nature of the above gravitational field in the 
neighbourhood of the pulse, we may first consider the velocity of 
a test ray of light in the field of the pulse. The treatment will 
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evidently be the same as that ah-eady given in § 113 (b) for the case of 
the steady pencil and the results w:Ul evidently have exactly the same 
form as those obtained in that section, differing in content, neverthe~ 
less, since we should now have to substitute the expressions for hu 
given by (114.6) instead of by (113.1) in order to get the specifio 
dependence of velocity on position and time. For the case of a test 
ray of light moving in the same direction and parallel to the track of 
the pulse we shall, however, again evidently obtain the very satis
factory result of a velocity which remains permanently unity without 
being affected by gravitational interaction with the pulse. 

(o) Acceleration of a test particle in the neighbourhood of the pulse. 
We may now investigate the gravitational acceleration which would 
be experienced by a neighbouring test particle as a result of the 
passage of the pulse of light. If we take the test particle as stationary 
the accelerations will again evidently be determined as in § 113 {o) by 
the equation dlxu 

dsi +{44, u} = 0. 

The values of the Christoffel three-index symbols corresponding to 
our present non-static case are nevertheless now a little more com
plicated than before. We easily obtain, however, to the desired order 
of approximation 

d2y 1 ah44 -= ---, 
d82 2 ay 

d2z 1 ah,4 
ds2 = -2--az· 

Substituting for the gravitational potentials the values given by 
(114.6), we then obtain for the acceleration-parallel to the track
of a Btationary test particle placed for simplicity at a point where 
z = 0, the expressions 

(
from t = [x2+y2JA 
to t = [x2+y2]&+A 

d2x ( 1 ___ 1 ___ ) 
df" = 2P -t--x-t-A-x (

from t = [x2+y2Jl+A 
to t = l+[(l-:l~)2+y2)l 
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and for the acceleration perpendicular to the track 

d?.y -2py {from t = [x2+yB]i 
dt2 = [xB+y2]t{[x2+yB]t-x} to t = [x2+y2]t+~ 
dly {from t = [ xB+yB]i +~ 
dt2 = 0 to 

t = Z+[(Z-x)2+yB]i 

dly 2py ~fro~- Z+[(Z-x)•+tl!l 
dtl = [(Z-x)B+yB)t{[(Z-x)B+yB)t+ (Z-x)} to 

t = Z+((Z-x)2+y1]*+~. 
(114.8) 

In accordance with these expressions, we see that parallel to the 
track, the calculated acceleration would first be in the same direction 
as the motion of the pulse, and then in the opposite direction. On 
the other hand, perpendicular to the motion of the pulse, the accelera
tion would first be towards the track and later away from it. These 
conclusions appear somewhat complicated, and a better idea of the 
actual nature of the gravitational interaction will be obtained if we 
consider the net integrated effect corresponding to the whole motion 
of the pulse over the selected portion of the track from x = 0 to x = Z. 

Making use of the expressions given by (114.7),,integrating over the 
time intervals given, adding the results together and cancelling out 
a considerable number of balancing terms, it can easily be shown that 
we obtain for our stationary test particle the net acceleration parallel 
to the track 

(114.9) 

and, making use of (114.8), for the net acceleration towards the track 

I d2y _ 2pA{ x l-x )· 
dt2 dt- --y [xs+ys]i +[(l-x)s+y2]i ' (114.10) 

in both cases the result being that which con-esponds of course only 
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to the gravitational influences originating from the selected portion 
of the track x = 0 to x = Z. 

For the case of a particle placed at a point equally distant from 
the two ends of the track, these general results reduce to the simpler 
expressions analogous to ( 113.10) and ( 113.11) in the case of the 

steady pencil, J d'Ax 
- dt = 0 (114.11) 
dt" 

f d'iJ 2p>J ) 
and dt2 dt = - y[(ii)2+y2]i' (114.1~ 

These results for the net acceleration of stationary test particles 
parallel and perpendicular to the track of the pulse are of considerable 
interest. 

In the first place, since these expressions give the total accelerative 
action produced by the pulse during the time Z needed for it to tra
verse the selected portion of track, we may obtain expressions for 
the average accelerative action of the pulse (tipuise) by dividing 
through by l. Doing so and comparing with our previous expressions 
for the instantaneous accelerations (apencu) in the case of a steady 
pencil with the same length of track and the same location of the 
test particle, we obtain the general result 

iipuise Appulse _ m pulse ( 114.13) 
~enoll lpponoll- mpenoll 

This result seems readily acceptable, moreover, on the basis of our 
usual physical notions. Since we have already pointed out that the 
gravitational action of the pencil on a test particle would be twice as 
great as would be calculated on the basis of Newtonian theory if we 
replaced the pencil of radiation by a material rod of the same density 
and length, the above result may be regarded as another example of 
a case where radiation is more effective in producing gravitational 
action than what might be regarded as the equivalent distribution 
of stationary matter. 

In the second place, it is of interest to emphasize, in accordance 
with (114.9) and (114.11), that the net acceleration parallel to the 
track of the pulse would be towards the longer segment of the track 
for a particle placed at a point nearer one end of the track than the 
other, but would be zero for a particle placed equally distant frotn 
the two ends of the track. Again, as in the case of the pencil, a particle 
situated outside of the actual track of the pulse and hence not subject 
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to such actions as light pressure or the Compton effect, would not 
appear liable to a preponderating effect in the direction of motion of 
the pulse itself, as a result of the gravitational influence coming from 
a definite selected portion of the track. 

115. Discussion of the gravitational interaction of light rays 
and particles 
The foregoing results as to the gravitational field of pencils and 

pulses of light have been presented in considerable detailt on a.Qcount 
of the insight which they can give us into the gravitational inter
action of light rays and particles. 

The most characteristic feature of these results lies in the discovery 
that the acceleration of a test particle by the gravitational influence 
proceeding from a selected portion of light track is-to the order of 
approximation employed-twice as great as would be calculated on a 
simple Newtonian basis if we regarded the track as filled during the 
time of interest with matter having the same average density as that 
provided by the passage of the light. This conclusion is very satis
factory since we have already seen in § 83 (b) that the gravitational 
bending of a ray of light in passing through the field of an attracting 
particle is also approximately twice as great as would be calculated 
on a simple Newtonian basis, if we regarded the ray of light as having 
the Newtonian acceleration of a particle moving through the field in 
question. 

As a result of this double occurrence of the factor two, we are 
hence permitted in thinking about the mutual gravitational inter
action of particles and light rays to retain to a considerable extent in 
first approximation our usual ideas as to the conservation of momen
tum, without the necessity of resorting to the complete relativistic 
treatment in which the conservation laws are exactly preserved by 
introducing the pseudo tensor t~ of potential gravitational energy and 
momentum. 

A simple example will serve to make this approximate conserva
tion of ordinary momentum clearer. In accordance with equation 
(114.12) in the last section, we are provided with an expression for the 
net acceleration-due to a selected portion l of the light track of a 
pula~ for a particle placed at the distance 11 from the track at a point 
equally distant from the two ends. Multiplying this expression by the 

t Tolman, Ehrenfest, and Podolsky, Phgs. Rev. 37, 602 (1981). 
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m.a.ss of the particle M and denoting the mass of the pulse by m = p"A., 
we then obtain for the net momentum received by the particle in the · 
y-clireotion 

I diJ 2mMZ (1111! 1) 
M dtl dt = - y[(tl)z+y2]i" u •. 

On the other hand, in accordance with § 83 (b), we can take the 
momentum acquired by the pulse in they-direction as being twice 
what would be calculated on a simple Newtonian basis, and hence, 
noting that velocity of light is unity, as given by 

I 

I d2y I 2mMy 2mMl ( 15 2) 
m dt2 dt = [(ll-x)2+y2]t dx = y[(il)2+yl]i' 1 , 

0 

Since these two expressions are equal in magnitude and opposite in 
sign, we thus have an illustration of the approximate conservation 
of momentum which obtains without taking into consideration a.ny 
potential momentum of the gravitational field. 

As a second important characteristic of the results obtained in the 
foregoing sections, we have the discovery that a stationary particle 
placed equally distant from the two ends of a selected portion of 
light track, but outside the actual track, receives therefrom no net 
acceleration in the direction of the motion.,of the light itself. From the 
point of view of the conservation of momentum, this discovery is the 
converse of the more familiar conclusion that light would receive no 
change in the total momentum in its direction of motion in passing 
through the field of a stationary particle between two points equally 
distant therefrom. This converse conclusion is sufficiently important 
from the point of view of astronomical observations to deserve 
separate consideration. 

For the gravitational field surrounding a stationary particle, we 
can obviously write the line element in a spherically symmetrical 
statio form 

d82 = Uu(dr2+rs d82 +r2sin28 d4>2)+g44 dt2• (115.3) 
See for example (82.12), where g11 and g44 are function~ of r alone. 
If now we consider a ray of light passing through this field, it is 
evident from the static character of the line element that successive 
impulses travelling along the ray will take the same time At to travel 
from one given point r1, 81, 4>1 to another r2, 82, 4>2. Hence if two 
successive impulses are separated by an interval 8t at the first point 
they will still be separated by the same interval Stat the second point. 
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Furthermore, if these two points are chosen at positions on the track 
at the same radius r1 = r3 from the particle, it is evident that this 
coordinate time interval 8t will correspond to the same proper time 
interval 8t0 = ~U« 8t as measured by local observers located at the 
two points. Hence the period and frequency of light as measured by 
observers at rest in the field will not be altered by the passage of the 
light from one point in the field to another of the same gravitational 
potential g", a result whio'h holds, moreover, in general for statio 
fields. From the relation between frequency and total momentum in 
the direction of motion g = hvfo, we now reach, however, the con
clusion stated above as to the constancy of total momentum in the 
direction of motion. 

This result has been obtained, of course, for the case of a statio 
field, and we may legitimately ask whether the motion acquired by 
an originally stationary particle as a result of the passage. of light 
would not in turn affect the field through which the light still has 
to pass, and thus by a second-order effect lead to a change in total 
momentum in the direction of motion. An exact analysis of such 
a second-order effect would appear to be complicated. Nevertheless, 
speaking roughly, since we may regard gravitational impulses and 
light as both tra veiling with the same fundamental velocity, it would 
seem difficult for any gravitational effect to emanate from an element 
of the oncoming radiation, travel down to the particle, and by 
changing the motion of the particle then produce an effect on the 
gravitational field through which that same element of radiation still 
has to pass. Hence we should in any case be inclined to expect that 
such a second-order effect on the total momentum and frequency of 
light travelling through the gravitational field of a particle would 
have to be exceedingly small compared with the first-order transverse 
effect on the direction of the momentum. 

As a consequence it is usual to conclude that light giving sharply 
defined images of distant astronomical objects has not had its 
frequency appreciably affected by passing through the gravitational 
fields of particles lying along its path. This conclusion is important in 
interpreting the red-shift in the light from the extra-galactic nebulae, 
since it has been pointed out by Zwickyt that a gravitational effect 
on frequency, of. the kind made improbable by the above considera
tions, might have offered another explanation for this red-shift 

t Zwicky, Proo. Nat. Acad. 15, 773 (1929). 
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rather th~ the now commonly accepted explanation based on the 
recessional motion of the nebulae. 

116. The generalized Doppler effect 
To .conclude the present chapter, we may now give a schematic 

outline of the method of treating the general problem of the efleot 
of gravitational fields and of the motions of source and observer on 
the measured wave-lengths of light. . 

To treat this problem we must have in the first place a lmowledge 
of the line element in the region where the transmission of light from 
source to observer is taking place. This we may take in the general 

form d82 = Uu dx2+2Ula dxdy + ... +2ga, dzdt +g" dta. (116.1) 

In the second place we must know the positions of the sourae 
(Xt, y1, Zt) and of the observer (x2, y2, z2) as a function of the timet 

(X1,2f1,Z1) =f1(t), (116.2) 

(116.3) 

Since the velocity of light is given by setting the expxession for the 
line element (116.1) equal to zero, and since the position of souroe and 
observer are given by (116.2) and (116.3), we can then calculate the 
time of reception t2 by the observer of a light impulse leaving the 
source at any desired time t1 as a function of that time t1, giving us all 

expression of the form ta = f(t
1

). (116.4) 

Furthermore, by differentiation we can also obtain an expression for 
the time interval 8t2 between the receipt of two successive wave 
crests in terms of t1 and the time interval8t1 between their emission, 
which will be of the form 

(116.5) 

In accordance with the expression for the line element, however, 
we may write 

[ 
dx2 dx dy ]~ 8~= Yudt2+2g12dt dt+ ... +g44 8t1, 

x1 y,l!l,i1 

(110.6) 

as an expression for the proper period of the emitting source as 
measured by a local observer moving with it, where dxjdt, dy fdt, 
and dzfdt are the components of velocity of the source at the time of 
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emission. And similarly, we may write 

8tg = [uu :: + 2glz: ~~ + ... +u"]1 
8ta 

:Z:. J/a fa ta 

"(116.7) 

as the observed proper period of the oncoming signal as measured by 
the final observer, where dxfdt, etc., are now the velocities of this 
observer at the time of reception. 

Substituting (116.6) and {l16.7) into (116.5), and noting that the 
proper period 8t~ for the emitting source can be taken as pro.;. 
portional to the usually measured wave-length A for the kind of 
luminous material involved, and that the observed proper period 
8tg for the oncoming signal can be taken as proportional to the 
ob~rved wave-length A+8,\ we obtain 

[ 
fk2 dx dy ]t 

A+8A 8tg dj(~) Uuifti+2gudtdt+···+g,, :x:,1,,z,t. 

-r = 8fl = Tt; [ tJ,x2 dx dy ]' (116.8) 
g11 dt" +2g12 dt dt + ... +g,, 

ll:a'Jil e, "Is 

as the desired expression for the shift in the observed wave-length of 
the light from a distant source.t 

This general expression for shift in wave-length can, of course, be 
given specific content only when we have a given gravitational field, 
corresponding to a specific line element (116.1), and have a source 
and observer located and moving in a definite manner corresponding 
to specific forms for (116.2) and (116.3). It may be well to point out, 
however, that the expression implies in any case the same fractional 
shift in observed wave-length for all parts of the spectrum. It should 
also be noted that the fractional shift in wave-length is a definitely 
observable quantity, which will have the same calculated value, for 
any specified case, no matter what coordinates we may use in making 
the computation. Thus no changes will occur in the result, if we 
introduce changes in the form of the line element merely by substi
tuting new variables as functions of the original ones before making 
the computation, a fact which is perhaps not always appreciated. 
Finally it may be remarked, that although the expression is formu
lated so as to give the value of the shift as a function of the time of 

t This derivation has been obtained by taking cls-= 0 as giving the velocity of 
light, o.nd this expression has boon justified for weak eleotroma.gnetio disturbances in 
§ 108. For a treatment based directly on wave optics, see Lo.ue, Berl. Ber. p. 8 (1931). 

8lSII6 .11 u 
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emission~' ·we can of course also obtain it as a function of the time 
of reception t2 when we know the form of (116.4). 

Our final expression may be regarded as that for a generalized 
Doppler effect, siD.ce its value depends not only on the direct effect 
of the motions of source and observer in changing the time for light 
to travel from one to the other, but also on the indirect effect of these 
motions in determining the relation. between coordinate time intervals 
and proper time intervals, and furthermore on the etfect of the 
gravitational potentials in determining the velocity with which the 
light travels. We shall have later use for this treatment of generalized 
Doppler effect in Chapter X. 



IX 

RELATIVISTIC THERMODYNAMICS 

Part 1. THE EXTENSION OF THERMODYNAMICS TO GENERAL 
RELATIVITY 

117. Introduction 
In the development of the classical thermodynamics, two limita

tions were actually present. In the :first place the thermodynamic 
systems considered were tacitly taken as being at rest with respect 
to the observer; and in the second place the systems considered were 
either taken as unaffected by gravitation, or in any case as affected 
by fields weak enough and small enough in extent, so that they could 
be treated with the help of the Newtonian the9ry of gravitation and 
the older ideas as to the nature of space and time. To remove the 
first of these limitations and obtain a thermodynamic theory suitable 
for moving systems, it is necessary to employ the principles for the 
intercomparison of measurements made by observers in relative 
motion to each other provided by the special. theory of relativity. To 
remove the second of the limitations, and obtain a theory suitable for 
investigating the precise thermodynamic effects of gravity in fields 
of any magnitude, and suitable for studying the thermodynamic 
behaviour of systems large enough so that the curvature of space
time cannot be neglected, it is necessary to make use of the more 
precise theory of gravitation and more adequate ideas as to the 
nature of space and time provided by the general theory of relativity. 

In Chapter V we have already considered the extension of thermo
dynamics to special relativity, first carried out by Planck and by 
Einstein. We obtained therefrom not only a thermodynamic theory for 
moving systems, but also, with the help of the Lorentz transforma
tion equations for heat, work, temperature, and entropy, we achieved 
a deeper insight into the nature of thermodynamic quantities, anrl by 
the introduction of our four-dimensional formulation of the second 
law of thermodynamics we made a preliminary step in the direction 
of covariant generalization. 

In the present chapter we shall consider the extension of thermo
dynamics to general relativity, and the applications of the system of 
relativistic thermodynamics which we thus obtain. To obtain this 
extension it will merely be necessary to generalize our previous special 
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relativistic thermodynamic theory in what appears to be a straight
forward and natural manner. Hence since this theory was itself 
obtained from the classical thermodynamics in a straightforward 
way, we shall have considerable confidence in the outcome. In 
addition we shall be able to confirm our confidence in this further 
extension with the help of examples which illustrate an agreement 
between . the conclusions drawn from relativistic thermodynamics 
and those which can be drawn from relativistic mechanics alone. 

Since the steps that must be taken to extend the classical thermo
dynamics first to special relativity and then to general relativity will 
appear to be almost self-evident and trivial, it might be supposed 
that the. conclusions to be drawn from relativistic thermodynamics 
would necessarily have the same qualitative character as those 
familiar in the classical theory. As we shall see, nevertheless, on 
account of the great difference between classical and relativistic ideas 
as to the nature of space and time, conclusions of a qualitatively new 
kind can arise when we consider systems of sufficient extent so that 
gravitational curvature becomes important. 

118. The relativistic analo~ue of the first law of thermo
dynamics 
In the classical thermodynamics it was customary to express the 

requirements of the first law of thermodynamics with the help of the 

equation M = Q- w. (118.1) 

This equation is to be regarded in the first place as expressing the 
principle of the conservation of energy by equating tho total energy 
change in a system to that which is transferred across the boundary; 
and is to be regarded in the second place as introducing a distinction 
between the two methods of energy transfer-flow of heat and 
performance of work-which becomes especially important for the 
later application of the second law of thermodynamics. 

In relativistic thermodynamics, in analogy with the classical first 
law, we shall in the :first place have to satisfy the general principles of 
relativistic mechanics, which lead as we have seen in Chapter VII to 
the appropriate generalization of the classical laws for the conserva
tion of energy and momentum.t 

These principles of relativistic mechanics are all implicitly contained 

t Tolman, Pf'oo. Nat. Acad. 14, 268 (1928). 
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in Einstein's field equations 
-&rTP.V = :RP.V-!RgP.V+Agp.v (118.2) 

connecting the energy-momentum tensor Tl'11 with the geometry of 
space-time . .And since the tensor divergence of the right-hand side 
of this expression is found to vanish identically, these field equations 
lead at once to the familiar expressions for the equations of mechanics 

(TP-11
) 11 = 0 (118.3) 

and {118.4) 

or, by ·the introduction of the pseudo tensor density of potential 
energy and momentum t~, to the expression 

o(~+t~) - 0 (118.5) ox11 - ' 

which is the form showing the closest resemblance to the classical 
energy-momentum principle. By requiring in relativistic thermo
dynamics that all thermodynamic processes should satisfy these 
principles of mechanics, we introduce the analogues of the classical 
requirements both for the conservation of energy and for the conserva
tion of momentum, the introduction of the latter not having been 
explicitly necessary in the classical thermodynamics owing to the 
tacit restriction to stationary systems. 

To complete the analogy with the classical first law of thermo
dynamics, we shall in the second place also have to introduce in 
relativistic thermodynamics a distinction between flow of heat and 
performance of work. This, however, must be postponed until the 
appropriate nature of the distinction has been made clear from our 
considerations of the relativistic extension of the second law of 
thermodynamics. 

119. The relativistic analo~ue of the second law of thermo
dynamics 
To assist us in obtaining the relativistic analogue of the usual 

second law of thermodynamics, we have in the first place the four
dimensional expression for the requirements of the second law in 
special relativity, as already given in§ 71 using Galilean coordinates 

by the formula a ( dXI') 8Q 
8xP' cp0 ds 8x8y8z8t ~ Too, (119.1) 
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where cfoo is the proper density of entropy at the point and time of 
interest as measured by a local observer at rest in the thermodynamic 
fluid or working substance, the quantities dxP.jds are the components 
of the macroscopic 'velocity' of the fluid at that point with respect 
to the coordinates in use, 8Q0 is the proper heat as measured by a local 
observer which flows at the proper temperature T 0 into the element 
of :fluid and during the time denoted by oxoy8zot, and the two signs 
of equality and inequality refer respectively to the cases of reversible 
and irreversible processes. 

In addition, to guide us in obtaining the desired extension of the 
second law, we must also make use of the two fWldamental ideas 
underlying general relativity which are expressed by the principle 
of covariance and by the principle of equivalence. In accordance 
with the principle of covariance, the axiom which we choose must be 
expressed in a general form which is the same for all coordinate 
systems, in order that we may avoid the introduction of unsuspected 
assumptions which might otherwise arise from the use of special 
coordinates. And in accordance with the principle of equivalence, the 
axiom must be chosen so as to agree with the requirements of the 
special theory of relativity, provided we use natural coordinates for 
the particular point of interest. 

As a consequence of the foregoing considerations, we are then at 
once led to expect that the correct expression for t.he second law of 
thermodynamics in general relativity will be provided by taking the 
immediate covariant ro-expression of the special rolati vity law 
(119.1) which can be written in the formt 

(
.1.. dxP.) ,- ~ 1~ 2~ 3~ 1 .........._ 8Qo 
't'o-di ,_, '\f-g ax aX ax aX -.?' -T

0 
, 

or defining the entropy vector by 
dxP. 

SP. = cfoo- -
dB 

in the even more compact form 

~ 8x18x28x38x4 ~ 0 ~0 • 
0 

(119.2) 

(110.3) 

(119.4) 

The above expression will evidently satisfy the principle of 
covariance owing to its character as a tensor expression of rank zero, 
(cp0 dxP-/ds)p. being a scalar since it is the contracted covariant 

t Tolman, Proc. Nat. A.cad. 14, 701 (1928). 
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derivative of a vector, ,J-g 8x18x28x88x' being a scalar since it is 
the magnitude of a four-dimensional volume expressed in natural 
measure, and finally 8Q0fT0 also being a scalar since it obviously does 
not depend on the particular coordinates in use. This expression will 
also satisfy the principle of equivalence since in natural coordinates 
for any point of interest, it will immediately reduce to the special 
relativity law (119.1), the contracted covariant derivative 

(rp0 dxl-"jdB)p. 

being replaced by the ordinary divergence, and the quantity ,J-g 
assuming the value unity. 

The principle given by (119.2) thus satisfies all the conditions that 
we now know how to impose and will be adopted in what follows as 
a statement of the relativistic second law of thermodynamics. It 
must be noted, however, that we have not been led absolutely 
uniquely to this law since other more complicated covariant expres
sions might be proposed which would also reduce in flat space-time 
to the special relativity law. Hence the proposed principle must be 
regarded as a postulate whose ultimate validity remains to be tested 
through comparison with the facts of observation. 

It may be emphasized, nevertheless, that we have followed a 
sensible course of procedure in adopting the immediate covariant 
re-expression of the special relativity second law, since our previous 
satisfactory experience with the immediate covariant re-expressions 
of the special relativity formulae for space-time interval and geodesic 
trajectory have given us confidence that such procedure when feasible 
is likely to prove correct. It may also be emphasized that we shall 
find the theoretical consequences of the postulated relativistic second 
law to be coherent with the rest of relativity, and in particular shall 
find examples where the results of relativistic thermodynamics 
can be checked by using the methods of relativistic mechanics 
alone. 

For purposes of practical computation it is often advantageous to 
re-express the statement of the relativistic second law given by 
(119.2) in the equivalent form 

~,.(.Po~ -J-u) 8x'8x2&!:883:';;. 
8~•. 

[See equation (46), Appendix III.] 

(119.5) 
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120. On the interpretation of the relativistic second law of 
thermodynamics 
Since we -have taken the relativistic first law of thermodynamics 

as being merely a restatement of the principles of relativistic mechanics, 
a clear understanding of the relativistic second law is especially 
essential, as it is this latter principle which determines the whole 
character of relativistic thermodynamics. Thie, understanding we 
shall now attempt to assure. 

First of all it is to be remarked that the distinction between 
reversible and irreversible processes· is still preserved in relativistic 
thermodynamics owing to the occurrence of the two signs of equality 
and inequality in the expression for the second law, the former being . 
applicable to the case of reversible processes and the latter being 
applicable to irreversible processes. 

The occurrence of the sign of inequality also implies a distinction 
for the case of irreversible processes between the forward and 
backwaxd directions of time, similar to that in ordinary thermo" 
dynamics, since it is evident that the truth of our expression for the . 
. second law depends on the sign attached to the increment of coordi" 
nate time 8x' occurring on. the left.hand side of the inequality. Hence 
neglecting the occurrence of fluctuations, the entropy principle still 
indicates the unidirectional character of time in relativistic as in 
classical thermodynamics. This is of interest since the possibility of 
illuminating the principles of relativity by regarding time to be 
plotted as a fourth dimension perpendicular to space has sometimes 
had a tendency to obscure those reasons, whether fundamental or 
not, on which we customarily base our ideas as to the unidirectional 
quality of time. 

Attention should also be drawn to the preservation of the essentially 
macroscopic and phenomenological character of thermodynamic con· 
siderations in the relativistic extension. Indeed, all the quantities 
occurring in the relativistic second law (119.2) are to be regarded as 
having significance only from a macroscopic point of view, and as 
being defined by perfectly definite empirical specifications which can 
be given for their determination. 

Thus cfoo is the entropy per unit volume of the fluid at the point and 
time of interest as measured by a local observer at rest with respect 
to the fiuid. It is, of course, a macroscopic density owing to the 
nature of our concept of entropy, and is to be regarded as character-
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izing the fluid looked at from a laxge scale point of view without any 
microscopic analysis into atoms and radiation. 

The quantities dxJl.fds are the components of the macroscopic 
'velocity' of the fluid at the position and instant of interest. Thus, fo!" 
example, the value of ikc1fd8 would be found by observing the motion 
of a macroscopically identifiable point of the fluid, and computing 
the rate of change of its x1 coordinate with respect to the readings of. 
a natural clock moving with the point. And dx' Jda would be found by 
computing the rate of change in the value of the time-like coordinate 
x' for the point with respect to the readings of the same clock. 

Similaxly the quantity g is the determinant formed from the ·com
ponents of the metrical tensor g p.v when these are determined macro
scopically, an advantageous circumstance in view of our complete 
lack of knowledge even as to the significance of this tensor from an 
atomic point of view. Furthermore the coordinate range 8x18x28x88x' 
is to be regarded as denoting a macroscopically infinitesimal element 
of four-dimensional volume. 

Turning .finally, moreover, to the right-hand side of our expression, 
the quantity To is to be taken as the absolute temperature of the fluid 
.as measured in the usual manner by a l(}.cal observer at rest in the 
fluid at the position and instant of interest. And 8Q0 is the heat as 
measured by this local observer which flows into an element of the 
fluid having the instantaneous proper volume 8v0 during the proper 
time 8t0, where these quantities are chosen to give the same magnitude 
of four-dimensional volume in natural measure as is included in the 
coordinate range 8x18x28x38x'. These two final quantities 8Q0 and Po 
hence retain the macroscopic character of heat and temperature 
in the older thermodynamics. 

It is important to emphasize the macroscopic and phenomenological 
character of relativistic thermodynamics, since it permits us to a void 
all the complexities and uncertainties which attach to the atomic 
point of view, especially at the present time of partial incompleteness 
in the development of quantum theory, and allows us to proceed 
with the natural confidence belonging to an empirical approach. 

121. On the interpretation of heat in relativistic thermo
dynamics 
In the process of generalizing the second law of thermodynamics 

from the form which it assumes in special relativity to that taken in 
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general relativity, it is not easy to follow the precise significance of 
the quantity 8Q0 appearing on the right-hand side of the expression 
and denoting a quantity of absorbed heat as measured by a local 
observer. Hence the specifications which we have given for the deter
mination of 8Q0 in the preceding section may not be immediately 
evident, and. the present section will be devoted to the interpretation 
of this quantity.t 

To carry out this interpretation, let us first consider the expression 
for the relativistic second law (119.2), in the original form in which it 
was written 

(.Po ~t ../-g 8xt&:"llx8&!:' ;:;;. ~. ( 121.1) 

Assuming that we understand the significance of all the other 
quantities in this expression, we can then begin by showing with the 
help of the principle of covariance that 8Q0 is in any case a scalar, 
having a value proportional to the range 8x18x28x38x', but otherwise 
independent of the coordinate system. 

To do this we note in the first place that the quantities (cp0 dxP.jds)p. 
and T0 are neceSBarily scalars with numerical values entirely inde
pendent of the coordinate system-the first because it is the con
tracted covariant derivative of a vector and the second from the 
unique specifications given for its determination by a local observer. 
In the second place we note that the quantity -J-g 8x18x28x38x' 
is also a soalar, having a numerical value proportional to the in
finitesimal range 8x18x28x38x4, but otherwise independent of the 
coordinate system, since it is an expression for the four-dimensional 
volume in natural measure specified by that range. Hence in 
accordance with the principle of covariance, it is evident that the 
remaining quantity appearing in the postulate 8Q0 must also be 
scalar with a numerical value proportional to the infinitesimal range 
8x18x28x38x4, but otherwise independent of the coordinate system, in 
order that the postulated law may agree with the requirements of 
co-variance by having the same significance in all coordinate systems. 

Having shown then that the quantity 8Q0 is necessarily a soalar 
with a value intrinsically independent of the coordinate system, we 
can now determine its value by making use of any specially con
venient coordinate system. For this purpose we shall choose natural 
coordinates x, y, z, t for the particular point of interest. In accordance 

t Tolman and Robertson, Phy11. Rev. 43, 664 (1933 ). 
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with the principle of equivalence, such natural coordinates can 
always be found, and their choice will make our previous principles 
of thermodynamics-as given for the special theory of relativity
valid in the immediate neighbourhood of the selected point. 

Using these coordinates, covariant differentiation will reduce to 
ordinary differentiation and the quantity .../=f, will assume the value 
unity, so that the left-hand side of our expression for the second 
law (121.1) will assume the form 

(.Po ~t .J-g 8z'-&x:"8z88z' 
= [! (.Po!';}+~ (.Po:)+~ (.Po:}+~ (.Po:}] 8z8y8z8t, 

(121.2). 
and by substituting the evident expressions 

dx dt dy dt dz dt 
ds = U:cds ds = 'U'lld,s ds = 'U"'dtJ' 

where ua:, u11, and u16 are the components of the velocity of the fluid 
as ordinarily expressed, this can be rewritten as 

[!(.Po: u=} +~(.Po: uu}+ !(.Po: u.) + :t(.Po:}] 8z8y8z8t. 

In accordance with the special theory of relativity, however, 
entropy is an invariant for the Lorentz transformation, and hence 
entropy density will depend on the Lorentz contraction factor ilsjdt 
in such a manner that we can substitute 

dt 
4> = cfoo dB' 

where cp is the entropy density of the fluid referred to our present 
coor<linates. Doing so, we then obtain in place of the above expression 

[! (</>u=l+ a: <.Pu,l+ ~ (shu.>+~] 8x8y8z8t, 

which can be rewritten in the form 

[&/> + ocp u + ocp u + ocfo u +4> (Ouz + Ouv +au.~~)] 8x8y8z8t 
ot ox :z: ay 11 oz z ox ay oz 

or [ az + 4> div u] 8x8y8z8t, 

where we now represent by the total derivative dcfofdt the rate of 
change in entropy density as we follow a point moving with the fluid. 
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And denoting by 8v the volume of fluid instantaneously contained 
in the coordinate range 8x8y8z this becomes 

[~8v+cf> !(8v)] 8t = !<cf>8v) 8t; 

so that we can finally write 

(.Po ~t .J-g 8:i'&.:0&!fl8x' = !(</>311) 8! (121.3) 

as an expression for the left"hand side of the relativistic second law 
(121.1), using natural coordinates for the point of interest. 

Hence, using natural coordinates, it is evident that the left-hand 
side of the relativistic second law becomes the increase, in time 8t, 
which takes place in the entropy of the small element of fluid in
stantaneously contained in the coordinate range 8x8y8z. In accord" 
anoe with the principle of equivalence, however, we can apply special 
relativistic thermodynamic theory to this small system and connect 
its increase in entropy with heat and temperature by the expression 

;t (cf>8v)8t ~ 8~, (121.4) 

where 8Q is the heat absorbed by this element of fluid in time 8t at . 
temperature T, these quantities also being referred to our present 
system of coordinates. Furthermore, since the ratio of heat to 
temperature is an invariant for the Lorentz transformation we can 
also take 8Q BQ0 

·p =-To' (121.5) 

where 8Q0 and T0 are the absorbed heat and temperature as measured 
in proper coordinates by a local observer moving with the element 
of fluid. Moreover, in accordance with the Lorentz contraction for 
volume elements and the Lorentz time dilation for time intervals we 
can write (121.6) 

where 8v0 is the instantaneous volume of the element of fluid as 
measured in proper coordinates and 8t0 is the proper time during 
which the heat absorption takes place. 

Hence, combining the information given by (121.3, 4, 5, 6), we have 
now obtained in natural coordinates an expression 

( c/>0 dxP-) .J=U Bx18x28xa8x4 ~ ~q~, (121.7) 
ds II- T0 
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of the same form as postulated above for the relativistic second law, 
together with the desired specific interpretation of the quantity 8Q0 

occurring on the right-hand side, as the heat-measured by a. local 
observer at rest in the fluid at the point and time of interest-which 
flows into an element of the fluid having the instantaneous proper 
volume 8v0 during the proper time 8t0, these quantities being so 
chosen as to make 

OVo Bto = ov8t = ..J-g 8x18x28x38x4. (121.8) 

This result has been obtained using natural coordinates. Never
theleBB, in accordance with our earlier discussion of the scalar chaxac
ter of 8Q0, the interpretation is valiQ. for any coordinate system. No 
specification of the shape of the element of fluid is given, since to the 

· order of quantities considered, the heat absorbed depends only on 
the product of volume and time interval. 

Sinoo.8Q0 is the heat absorbed by a definite element of the fluid, 
·it will be noted as in ordinary thermodynamics that heat flow is to 
be regaxded as taking place relative to the material fluid or working 
substance of interest, rather than as relative to some system of spatial 
coordinates that happen to be in use. 

It must finally be remarked, in order to remove Wlcertainties which 
could arise when we come to the integration of the second law expres
sion, that in applying the second law each increment of heat entering 
a system of interest is to be taken as divided by the temperature at 
the location where it crosses the boundary separating the system from 
its surroundings, again as in the usual thermodynamics. Hence we 
can regard 8Q0 and T0 as quantities which are determined by measure
ments made in the usual manner by observers located on the boundaxy 
of the element of fluid considered. 

122. On the use of co-moving coordinates in thermodynamic 
considerations 
The discussion of the preceding section has shown that heat flow is 

in general to be taken as relative to the material fluid of interest 
rather than relative to the particular spatial coordinates in use. This 
makes it especially convenient in thermodynamic considerations to 
select a coordinate system such that the fluid has permanently 
everywhere zero components of 'velocity' 

d.-r;l dx2 dx3 

(ii = ds = ds = 0 (122.1) 
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with respect to the spatial coordinates. Such coordinates may be 
caJled co--movi'fi{J and are presumably always possible, since they can 
be obtained by taking the spatial coordinates as given by a network 
drawn so as to connect adjacent identifiable points of the fluid and 
then allowed to move therewith. 

Referred to ·such coordinates, the relativistic second law gives 
specially simple and understandable results. Starting with the second 
form (119.5) in which we have expressed the law 

a!,.( .Po~ H) 8xl8x"8x38x';;;, 
8~• (122.2) 

we at once obtain, on account of the permanent validity of the 
relations (122.1) at all points of the fluid, a reduction to the simple 

form 8 ( dx4 -) 8Q 8Xi cp0 ds ..J-g 8x18x28x38x4 ~ Too. (122.3) 

Furthermore, since the coordinates are mutually independent this 
can be rewritten in the form 

:,..( .Po.J g 8x18x"8x3 ~) 8x' ;;;, 
8~•. ( 122.4) 

In this form, however, the relation has very considerable advan~ 
tages. In the first place, taking elements of four-dimensional volume 
at the point of interest which have equal volumes expressed in natural 

measure 8v0 dt0 = 8v0 d8 = ~--g 8x18x28x3dx4, (122.5) 

it ia evident that we can rewrite the above relation in the form 

8~ (r/J0 8v0) 8x4 ~ 8~0 , 
0 

(122.6) 

where 8v0 will be equal to the proper volume of the element of fluid 
permanently located in the coor<linate range 8x1~x28x3, as measured 
at any instant by a local observer moving with that element. In the 
second place, we can evidently re-express this latter relation in the 
form 

( 122. 7) 

where (122.8) 

is the increment in proper time which corresponds at any instant to 
the increment in coordinate time 8x'. 

The form for the second law given by (112.6) proves useful by 
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containing an expression for the rate of change in the proper entropy 
of any given element of fluid with respect to the coorclinate timex' 
which applies throughout all parts of the system under consideration. 
This is of considerable advantage in the treatment of finite systems. 

The form for the law given by (122.7) is useful in again showing the 
validity of our previous interpretation of 8Q0• Since the left-hand 
side of {122.7) is the increase, as found by a local observer, which 
occurs in time 8t0 in the entropy of an element of ftuid of volume 
8v0, it is evident from the ordinary principles of thermodynamics
which must apply for such a local observer-that 8Q0 must be the 
heat which he finds to be absorbed by the element in that time. On 
the other hand, in accordance with (122.5) and (122.8) we have 

8v0 8t0 = ~-g 8x18x28x88x', (122.9) 

which is our previous specification (121.8) for the volume of the 
element and time interval that are to· be employed by the local 
observer in measuring the heat 8Q0• 

The form for the second law given by (122. 7) is also useful in 
emphasizing the principle that a local observer examining the thermo
dynamic behaviour of an element of fluid in his immediate neigh
bourhood must use the same methods of measuring entropy, heat, 
and temperature, and employ the same criteria of reversibility and 
irreversibility as have been made familiar by the classical thermo
dynamics. This principle serves to increase our confidence in the 
validity of relativistic thermodynamics, and to explain the fact that 
outstanding differences between the conclusions of classical and 
relativistic thermodynamics tend to appear only when large portions 
of the universe are under consideration. 



IX 
RELATIVISTIC THERMODYNAMICS (contd.) 

Part II. APPLICATIONS OF RELATIVISTIC THERMODYNAMICS 

123. Application of the first law to changes in the static state 
of a system 
We may now commence our investigation of the consequences of re" 

lativistio thermodynamics. Since our first interest will lie in determin • 
ing the conditions for statio thermodynamic equilibrium, we shall begin 
by examining the restrictions imposed by the principles of relativistic 
mechanics on the changes which might take place in a thern1odynamio 
system from one statio state to another without involving any changes 
in the surroundings that lie outside the selected region of interest. 

Consider a system together with its surroundings which up to some 
initial 'time' x'' are in a given statio state such that there are no 
changes taking place with respect to x4, and then let a change take 
place inside the system without affecting the surroundings to some 
new statio state at 'time' x"4 , after which there will again be no changes 
taking place with respect to the time-like coordinate x4. 

Since this change is to take place without involving any effects 
on the surroundings, it is evident (a) that thero must be no transfer of 
energy or momentum between the system and surroundings, and (b) 
that the distribution of energy and momentum in the surroundings 
must remain unaltered. It is easy to show, however, that these con" 
ditions are met if the change inside the syste1n involves no changes in 
the values of the gravitational potentials UfLv and of their first and 
second derivatives ogfLvfoxa. and o2gfLvfoxrx oxfJ at the boundary of the 
system and beyond. 

To show that this restriction is sufficient to prevent the transfer of 
energy and momentum from the surroundings into the system, we 
may .return to our previous expression (88.2) for the energy-momen" 
tum principle as applied to a finite system 

~ J I J (X~ +tt) dzldx2dxa = 

-I I ~~~+t~1;:1 

dx2dx3
- J I ~~~+t~l~· dx1llxs- J J j!~ +t~l~:· clxldx2, 

(123.1) 
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where the left~ hand side of the equation gives the rate of change in the 
three components of momentum and in the energy of the system, 
according as we take fL = 1, 2, 3, 4, and the right~ hand side can be 
regarded as giving the flow of momentum or energy across the boundary 
from the surroundings into the system, provided we choose as usual 
coordinates such that the necessary limits of integration actually lie 
on the boundary separating the system from its surroundings. 

Up until the initial time x'' when the change in state commences, 
the left-hand side of this equation will be zero since by hypothesis 
the system is then in some given statio state. Hence the right~hand 
side of the equation will also be zero at timex''· The right~hand side, 
however, is a constant independent of x', since the quantities 

-81r~ = illp-iillg~+Agp.J=U (123.2) 

and 
8£ .l-16'7l'fV = -gatP- +gv .U+2Agv -v-g 

1-' . p. 8g~ 1-' p. 
(123.3) 

are definitely determined by the g p.v and their first and second 
derivatives, and by hypothesis these do not change at points on the 
boundary, corresponding to the limits of integration on the right .. 
hand side of (123.1). Hence both sides of that equation remain zero 
and there is no transfer of energy or momentum between the syste~ 
and its surroundings. 

To show that the restriction is sufficient to prevent any change in 
the distribution of energy and momentum in the sUIToundings, we 
merely have to note again in accordance with (123.2) that the energy~ 
momentum tensor is definitely determined by the gravitational 
potentials g,_..v and their first and second derivatives, and henoe if 
these quantities remain constant for points outside the boundary the 
distribution of energy and momentum will also have to remain un~ 
changed in the surroundings. 

Hence, to sum up the results of this section, we may state, in 
accordance with the principles of relativistic mechanics or first law of 
relativistic thermodynamics, that a thermodynamic system can 
change from one statio state to another without involving any 
changes in the sunoundings, provided we subject the gravitational 
potentials and their first and second derivatives at points on the 
boundary and beyond to the restriction 

Bg = a(ag~'!) =a( 02
Up.v_) = o. (123.4) p.v oxat oxat axP 

311115.11 
X 
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124. Application of the second law to chanaes in the static 
state of a system 
Having thus found restrictions-analogous to those imposed in 

classical thermodynamics by the ordinary first law-that are sufficient 
to guarantee changes in the static state of a system which could 
take place without involving any changes in the surroundings, we 
may now inquire into the restrictions which would be imposed by the 
second law on the possible changes in static state. 

To investigate this it will be best to employ co-movlng coordinates 
of the kind discussed in§ 122. In any case the coordinates would be 
co-moving before and after the internal change takes place since the 
system is then by hypothesis in some static state, and by using coor
dinates which are also co-moving during the change we can then 
express the restrictions imposed by the second law on the nature of 
the change in the simple form (see 122.3) 

~.(rf>o ~./-g) 8x18x"&:Sa.:<;;;. 8~0 • (124.1) 

In accordance with (122.6), we can regard the left-hand side of this 
expression as the increase which takes place in 'time' 8x' in the proper 
entropy as measured by a local observer of the element of fluid per
manently located in the 'spatial' range 8x18x28xB; and in accordance 
with (122.7) we can regard the right-hand side of this expression as 
given by the heat measured by a local observer which flows into 
this element of fluid in the increment of proper time 8t0 which 
corresponds to 8x'. 

If we integrate this expression for a given element of the fluid over 
the total interval x'4 to x"4 during which change takes place, we 
shall obtain 

(124.2) 

where the left-hand side is the total change which the local observer 
finds in the entropy of the element, and the right-hand side-in 
accordance with the specifications given at the end of§ 121-is the 
total result obtained by summing all the increments of heat that 
enter the element each divided by the temperature of the boundary 
at the time of passage, the measurements being made by observers on 
the boundary of the element. 
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H we now perform a second integration, this time over all the 
elements of fluid included in the system, it is evident that the right
hand side of (124.2) will lead to a null result giving 

a:/'' 

J J J J a~(~. 't;; ¥-g) 8zl8x'&"&:' ~ 0' (124.3) 

It'' 

since by hypothesis we shall be interested in changes which involve 
no flow of heat at the boundary of the system as a whole, and our 
method for the precise specification of 8Q0 and T 0 will lead to a 
cancellation between contiguous elements within the system. 

Hence the conditions imposed by the relativistic second law of 
thermodynamics on changes in the interior of a system from one 
static state to another without affecting the surroundings can be 
expressed by the relation 

[Iff~.:' V-u~)... ~ [fff ~.~V-u~lck"L. 
(124.4) 

where the subscripts x'' and x"4 indicate that the values of the integrals 
are to be taken for the initial and final states of the system. 

To emphasize the analogy with classical thermodynamics this 
result could also be stated as the requirement that the 'entropy' Scan 
only remain constant or increase when the system changes from one 
static state to another, provided we define that quantity as the total 
integrated proper entropy of the elements of fluid in the system 

s = f I I rPo a; ~-g dxldx2dx3. (124.5) 

125. The conditions for static thermodynamic equilibrium 
With the help of the two foregoing sections we may now express 

the conditions for static thermodynamic equilibrium in a finite 
system having no interaction with its surroundings in the form of the 
variational equation 

8 J J J r/Jo ·a;; ~-g d.x1dx2dx3 = 0 (125.1) 

under the subsidiary condition to be imposed at the boundary of the 
system 

Bg = s(~gP.") = a(- 82g~'!-) = o. 
J.l." axrx. fJxrx.axfJ 

(125.2) 
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The first of these equations is the condition for a maximum value 
of the integral in question and is imposed by the second law which as 
shown by (124.4) will only permit increases if there is any change at 
all in this quantity when the system changes from one statio state 
to another without interaction with the surroundings. And the 
second set of equations provides, as we have seen in§ 123, a sufficient 
condition to prevent ariy interaction between the system and it& 
surroundings when the internal. change takes place. 

126. Static equilibrium in the case of a spherical distribution 
of ftuid 
In the case of a fluid system held together by gravitational attrac

tion, a state of statio equilibrium will necessarily be one of spherical 
symmetry; and we may give special attention to the form assumed. 
in that case by the above conditions for equilibrium. In accordance 
with (94.9) we may then write the line element to start with in the 

form · da2 = -eJ'(dxS+dy2+dzS)+ev a,ts, (126.1) 

where p. = p.(r) v = v(r) r = "'(x2+y2+z2) (126.2) 

and the isotropic coordinates x, y, z, t are such that the limits of 
integration necessary to include any given region of interest will fall 
on the actual boundary separating that region from its surroundings, 
and hence are of the variety assumed in § 123 in obtaining the 
subsidiary conditions expressed by (125.2). 

With the above form of line element we shall evidently have 

M = ebHlv and dt = e-lv, (126.3) 
ds 

the latter since the spatial components of fluid 'velocity' will be 
zero. Substituting in (125.1) and noting the implications of (125.2) 
and (126.2), we can then write the requirements for statio thermo
dynamic equilibrium in the form 

8 J J J rPo efP. dxdydz = 0, (126.4) 

under the subsidiary conditions at the boundary of the region of 
integration 8p. = 8p,' = 8p," = 8v = 8v' = Bv" = 0, 

where the accents denote differentiation with respect to 
r = .J(x2+y2+zs). 

(126.5) 

To obtain these conditions we have employed the coordinates 
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x, y, z, t since as remarked above they are of the kind used in § 123 
in obtaining the relations {125.2). It will now be convenient for our 
later work, however, to transform to polar coordinates r, 8, "'' t. 

We can then write the line element in the form 
ds2 = -e~-'(dr2+r2 d82 +r2sin28 t:Up2)+ev dt2 (126.6) 

p. = p.(r) v = v(r) 

and, taking the region of integration as a spherical shell lying between 
r1 andr1, rewrite the requirements for statio equilibrium for a spherical 
distribution of fluid in the form 

r• 

a f 41rr/Jo ell-'f51 dr = 0 (126.7) 

under the subsidiary conditions 

8p. = 8p.' = 8p." = 8v = 8v' = 8v" = 0 (at r1 and r2). (126.8) 

In order to apply (126.7), however, we can introduce a more imme
diate and useful dependence on the form of the line element and on 
the composition of the fluid. 

In the first place we recall in accordance with (95.15), that the 
expressions for the proper pressure p 0 and proper macroscopic density 
p00 of ·the fluid corresponding to the above form of line element are 

given by ( ,2 , , , + ') 
8'77"1') = e-P. t:._ + P. v I 1-' v 
"ro 4 2 r ' 

(
p." v'' v' 2 p.' + v') 

Swpo = e-P. 2+ 2 +4+ 2r ' 

- ( N p.'2 2p.') B17Poo = -e P. f' +4+7 , 
(126.9) 

dpo = _Poo+.Pov'. 
dr 2 

In the second place, since we can evidently take [see equation (51), 
Appendix III] v0 = 41rell-'f2 dr (126.10) 

as an expression for the infinitesimal proper spatial volume of the 
fluid lying between rand r+dr, and we can also take 

S 0 = 4mr/J0 e&l-'f2 dr (126.11) 

as an expression for the proper entropy of this spherical shell of fluid 
as it would be determined by local observers, both of these quantities 
being of course infinitesimals. The proper entropy of an element of 
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:fluid, however, will depend on its proper energy, volume, and com
position in the same way as in the classical thermodynamics [see 
equation (60.4)]. Hence when we come to introduce the variation of 
the expression given by (126.11) into the condition for equilibrium 
(126.7) we can write 

880 = ~ 8E0 +~8v0+(~ 81'1J.+-·+(:_Q\ &nn, (126.12) 
0 0 Ea.'Vo J Eo."o 

where T0 is the proper temperature of the shell of fluid as measured 
by a local observer, E0 is its proper energy and ~' n1h etc. are the 
number of mols of the different substances which determine its com
position. Furthermore, in using this relation we can take in accord
ance with (126.9) 

8E0 = 8(41rp00 eiJAor9 dr) 

[e'~-'( ' 2 ) ei-1-'( '2 2 ') ] = - 2 8~"+~ 8p.' +-;:8p.' +T p."+~'4 + ; 8p. ,.a dr 

= [-e;(81-'" + ~ 81-'' +~ 81-'')+lmp00 el1'8f' ]r• dr, (126.13) 

and in accordance with (126.10) 

8v0 = 8(41refl-'r2 dr) 
= 6mfJL8p. r 2 dr, 

and finally in accordance with ( 126.11) 

(126.14) 

( :::
0
) 8ni = 4'7T(~:g) 8c2 eiJAor2 dr, (126.15) 

i ~.~ i JL 

where (ocp0joc~)JL is the partial derivative of proper entropy density 
with the concentration of the ith component, taken at constant 
energy density and constant specific volume, this latter being indi
cated by the subscript p. since energy density and specific volume are 
determined by this quantity and its derivatives: 

Substituting these relations, we can now rewrite our earlier con
dition for equilibrium (126. 7) in the form 

ra 

J [- elP. (8p." +p.' 81-'' +~8p.')+ 2'7Tpoo+6?TpOeiJL 8p. + 
2~ 2 r ~ 

rl 

This expression can be further simplified, however, in the usual 
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manner by performing partial integrations and dropping terms whioh 
become zero on account of boundary conditions. Substituting 

3p." = :r(3p.') 8p/ = !(8p.), 

and, using from the boundary conditions (126.8), the relations 

8p.' = 8p. = 0 (at r1 and r2). 

We thus readily obtain after some simplification 

r:~ 

+ J 817' )' (8~g) Bc2 ef/Aor2 dr = 0 (126.16) 
- ac, 11-

f't i 

as our final expression for the condition of thermodynamic equilibriun1 
in a fluid sphere. 

In accordance with the method by which this expression was 
obtained, it will be seen that the variations in proper energy 8E0 and 
proper volume 8v0, originally occurring in (126.12), have both con
tributed to the variation in the metrical variable p., while the varia
tions 8n£ in the number of mols of the different constituents in the 
shell of fluid between r and r+dr have directly led to the variations 
8c2 in the concentrations which determine the composition at each 
value of r. Since E0 and v0 originally entered our considerations as 
variables which were independent of those determining the com
position ni, it is evident that we can regard the variation indicated 
by 8p. in equation ( 126.16) as independent of that indicated by the 8c?. 

127. Chemical equilibrium in a gravitating sphere of fluid 
We may now use the general condition for equilibrium obtained in 

the last section to investigate the chemical equilibrium between 
reacting substances in the interior of a gravitating sphere of fluid. 
Since the variations indicated by a,.,. and 8c2 in (126.16) are to be 
treated as independent, it is evident that wo can take the second 
integral in this expression as itself equal to zero, and this can only 
be satisfied provided we have 

2: {~:g) 8c.2 = 0, 
·l i IL 

(127.1) 

holding at each value of r, where the subscript p. indicates constancy 
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of energy density and specific volume. Comparing this with {60.15), 
however, we see that this relation is the same as the classical condi
tion for chemical equilibrium provided we use entropy densi~ies and 
concentrations as measured by a local observer at rest in the fluid. 
Hence the chemical equilibria between reacting substances at any 
point in a gravitating sphere of :fluid will be characterized by the same 
conditions-measured by a local observer-as would be calculated 
on a classical basis. 

This is an example of the tendency already mentioned for relativistic 
considerations often to lead to the same conclusions, for the results of 
meS.surements by a local observer, as would be obtained from classical 
considerations .. This tendency arises of course as a consequence of 
the origi,nal introduction of the principle of equivalence as a part of the 
axiomatic basis for the general theory of relativity, and a knowledge 
of this tendency can be used as a. fairly safe intuitive guide in drawing 
conclusions when we feel sure that the phenomena. under considers. .. 
tion do not depend on higher derivatives of the g ,.,., than the first. 

The definite demonstration of the principle that the conditions for 
chemical equilibrium are not directly affected by mere position in a 
gravitational :field is very important, since this is tacitly assumed to 
be true in our usual consideration of stellar models. As a consequence 
of the principle, it should be notR..d that the results of our previous 
discussion of the equilibria. between hydrogen and helium and that 
between matter and radiation would be applicable at any level in 
a star. Hence our previous difficulties as to their relative concentra
tions remain. In t¥e last chapter we shall see that a similar principle 
holds for chemical equilibria in static cosmological models. 

128. Thermal equilibrium in a gravitating sphere of fluid 
We may also use the general c~ndition for ·thermodynamic equili-

. brium obtained in § 126 to investigate the distribution of temperature 
in a fluid sphere which has come to thermal equilibrium. Again 
making use of the consideration that the variations indicated by 3p. 
and Be~ in (126.16) are to be treated as independent, we may this time 
conclude that the first integral in that expression is itself equal to zero. 
This, however, can evidently be true only if we have the relation 

~{eiP-r2!:_(!_)} = ~(Poo+3Po) eiP-r2 (128.1) 
dr dr T0 T0 

holding within the sphere at all values of r. 
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To put this equation in a form suitable for integration, we may 
re"express the right-hand side by substituting for (p00+3p0) from 
(126.9), using the expression given there for p00 , plus the first expres
sion for p0, plus twice the second expression for p 0• Doing so we 
obtain 

!:_{el1Lr2!:._(.!.)} = eliL(v" + v'2 +p.'v' + v') .,.2 

dr drT0 T0 2 4 4 r 

= ··-- el1Lr2-(eiv) . (128.2} e-lv d { d } 
T0 dr dr 

As a. first integral of this equation we evidently have 

eliL+lvr2- _ = __ -(elv)+B, d { 1 ) elf'r2 d 
dr T0 T0 dr 

where B is the consta.nt of integration, and this may be rewritten 

in the form d log Po 1 dv Be:-lf'-ivp
0 dr = -2 dr- .,.s-·. (128.8) 

By substituting from (126.9), however, this la.ttm· can be re-ex" 

pressed as rllog To 1 d:Po Be-~IL-l"To 
dr = Poo+Po dr- .,.s 

IJ;ence if we assume on physical grounds that at the centre of the 
sphere, r = 0, we have d'l'0 fdr and dp0jdr equal to zero, T0 not equal 
to zero, and the other functions of r finite, it is evident that the 
constant B must be equal to zero. We may then write our final ex
pression for the dependence of proper temperature on position in 
a. static sphere of fluid at thermal equilibrium in the equivalent 

forms d log T
0 

_ 1 dv 
dr - -2 dr'· (128'4) 

dlogT0 1 dp0 = -, 
dr Poo+Po dr 

(128.5) 

or by a second integration in the form 

Toelv = To -../(Uu) = 0, (128.6) 
where 0 is a new constant of integration. 

It would of course bo interesting also to investigate the possibility 
for solutions of physical interest in which the constant of integration 
B was not taken equal to zero. Nevertheless for ordinary continuous 
distributions of fluid it seemA clear that the simple equations just 
given must be regarded as the correct ones to use. 
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The first point to emphasize in connexion with the above results 
is the significant conclusion that the proper temperature of a fluid 
as measured by local observers using ordinary thermometric methods 
would not be constant throughout a fluid sphere which has come to 
thermal equilibrium, but would vary with gravitational potential, 
increasing with depth as we go toward the centre of the sphere. This 
conclusion is of course very different in character from the classical 
conclusion, as previously discussed in § 61, that unifonn temperature 
throughout is a necessary condition for thermal equilibrium. Never
theless, from the point of view of relativity, since all forms of energy 
must be expected to have weight as well as mass, the conclusion that 
a temperature gradient is necessary to prevent the flow of heat from 
regions of higher to those of lower gravitational potential seems a 
natural and appropriate result. t 

A ·second important aspect of the new result which should be noted 
is the fact that the actual effect of gravitational potential on equili-

. brium temperature would be extremely small except in very strong 
:fields. Thus in a field having the intensity of that at the earth's surface 
the change in temperature with radial position would have only the 
very small value dlogT iJJr ~ -lo-Is em. -1 (128.7) 

This result is of course in agreement with the fa,ct that we have as 
yet no observational evidence of any effect of gravitational field on 
thermal flow. 

It is indeed questionable whether the new effect would even be 
large enough to have importance for theories of stellar structure, 
since as will be seen from the form of the principle given by (128.5) 
the percentage rate of increase in temperature as we proceed inward 
in a sphere which has come to thermal equilibrium would in any case 
be smaller than the percentage rate of increase in pressure, and 
indeed very much smaller for ordinary matter with p00 large compared 
with p 0• It is, howe~er, conceivable that the new criteria for thermal 
flow might sometime be of interest in connexion with non-homo
geneous cosmological models, having thermal flow from one portion . 
of the model to another. 

As a third point in connexion with the results of this section, it is 
interesting to note that the new relation between temperature and 

t Tolma.n, PhyB. R61J. 35, 904 (1930). 
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gravitational potential is anyhow that which would be demanded in 
the case of a distribution of pure black-body radiation by the direct 
application of mechanical principles alone. Thus in the case of a 
spherical distribution of pure black-body radiation, such as might 
be thought of as surrounding a gravitating sphere of denser matter, 
we could conclude from the mechanical equations given by (126.9) 
that the pressure of the radiation would have to increase as we go 
inward, in order to support the weight of radiation above, at the rate 

dpo Poo+Po dv (128 8) 
dr=- 2 dr · 

For black-body radiation, however, we have the direct relations of 
Boltzmann and Stefan (see§ 65) connecting the mechanical quantities, 
density and pressure, with the thermodynamic quantity, temperature 

Poo =aPt 

and Po= ~ T~, (128.9) 

where a is Stefan's constant. And substituting these expressions 
above we at once obtain our previous relation between temperature 
and gravitational potential 

dlogT0 1 dv 
··--dr -- = -2 dr' (128.10) 

This direct verification, in a particular case, of a result previously 
obtained by taking the full apparatus of relativistic thermodynamics 
as a starting-point, can serve to increase our confidence in the valid
ity of our extension of thermodynamics to relativity. 

In concluding this section it should not be forgotten that the results 
here considered have been derived for the special case of a static 
distribution of fluid having spherical symmetry. It should also be 
noted that the quantity v, appearing in the condition for thermal 
equilibrium (128.10), is to be taken as the v which occurs in the 
special form (95.14) which can then be given to the line element, or 
could also be taken as the v in the expression for the line element 
(95.12), since as shown in§ 94 this quantity is not affected by the 
transformation between the two f01ms. 

129. Thermal equilibrium in a general static field 
We may now examine the conditions for thermal equilibriu1n in 

a more general static field, corresponding, for example, to a solid 
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structure ~here spherical symmetry would not be a necessary 
characteristic of the :final state of stability. t To investigate tempera .. 
ture equilibrium in such a case, we shall assume that the parts of the 
system whose temperatures are to be compaxed are in thermal contact 
with. a small connecting tube containing black body radiation, or 
could be put into such contact without introducing any essential 
change in the nature of the system. Such a tube might be called a 
radiation thermometer, and by calculating the change in radiation 
pressure as we go from one portion of the tube to another we shall 
be able to determine the temperature distribution at equilibrium. 

We shall take the line element for the system as having the Vel'Y 

general static form 
(129.1) 

where we adopt the convention of using Latin indices to correspond 
to spatial coordinates and save Greek indices to indicate any coor
dinate. In accordance with the usual definition of a static system we 
take the potentials g1,, g24, and g84 equal to zero, and take the other 
potentials gH and g44 as dependent in any arbitrary way desired on 
the spatial coordinates x1 , x2, and x3, but as iudependent of the time 
coordinate t. For the potential g", it will be noted from the form of 
the line element that we have the specially simple relation 

g" = ..!... (129.2} 
g" 

As an expression to use for the energy·momentum tensor of black
body radiation in the field defined by the above line element, we can 
take in accordance with § 109 the formula 

dxP. dxv 
Tw-' = (Poo+Po) --· --gP.vpo, (129.3) 

d8d8 

'With (129.4) 

Furthermore, noting in the case of a static system that the overall 
macroscopic velocity of radiation fi.ow would be equal to zero, we 
can write 

dxi dx1 .. 
di = d8 = 0 (t.,,? = 1,2,3). (129.5} 

And, taking account of the form of the line element, can also write 

t Tolma.n and Ehrenfest, Phys . .Re-v. 36, 1791 ( 1930). 
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for·the fourth component of 'velocity' 

d,x4 dt 1 
ds = ds = ,J(gu) = ~(g"). (129.6) 

Substituting these two expressions into (129.3), we then :find that 
the energy-momentum tensor has as its only surviving components 

pit= -(f'fp0 p~o& = g"p00• (129.7) 

And on lowering suffixes, we have 

T; = Ytot T'"' = -giotY"'"'Po = -g}po, 

T! = Yu T" = U«.u"Poo = Poo; 
so that we obtain as the only surviving components of the energy
momentum tensor in its mixed form 

T~ =~=PI= -Po T: = Poo· (1~9.8) 
We are now ready to use the principles of relativistic mechanics 

in the familiar .form 

a~- lX"'Pau"'p = o 
oxv 8xP 

to investigate the pressure in our postulated radiation thermometer. 
Taking the case p. = 1 and substituting equations (129·.7) and 
(129.8) we obtain 

a -· -EJg ,-ag 
()xl(-po,J-g)-l(-gifpo,J-g)ox~-i(fl"poo~-g) ax~= 0, 

and this can evidently be rewritten in the form 

.J-lJJ.+P.7-tPoH(~t1:~+lf'':;)+ 
+l(Poo+Po)..J-gfl"~C:. = 0. 

This can be easily simplified, however, by substituting, in accordance 
with Appendix III, equation (39), 

g'lfag,J+u"ag" = g«Pag"'fJ =! EJg' 
ax1 ax1 axt g ax1 

which is seen to lead to a cancellation of the second and third terms 
above, giving us 

apo+P-oo+Pog"auu = o. 
azt 2 axt 

And by making use of (129.2) and (129.4), this provides the final 
simple relation for the dependence of .the pressure in the radiation 
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thermometer on the coordinate xt, 

Blogp0+2alogg44 = 0 
()xl &.c;l • 

(129.9) 

Since similar rela.tions will hold for the dependence of pressure on 
the other spatial coordinates, we can now integrate and express the 
general dependence of radiation pressure on position in the re
markably compact form 

p0(g 44)2 = canst. 
and by substituting the relation between pressure and temperature 
given by the Boltzmann-Stefan relation 

Po= iaT~, 
this leads at once to the desired expression for the dependence of 
proper temperature on position in a general static field 

T0~(g44) = 0, (129.10) 

where 0 is the same in all parts of the system. 
Several remarks may be made concerning this final simple result. 
In the first place, comparing with (128.6) it will be noticed that 

the ~nditions for thermal equilibrium in a fluid sphere can now be 
regarded as a special case of this general result for any static :field. 
Since the first result was obtained from the principles of relativistic 

·thermodynamics and the second from mechanical principles alone, 
except for the final introduction of the Boltzmann-Stefan relation 
between pressure and temperature, we may regard the agreement 
as again furnishing justification for confidence in the new thermo
dynamics, similar to that poin~d out at the end of the preceding 
section. 

As a second point, it should be noted from the method of deriva
tion that the constancy of T0 ..J(g44) has been proved in the first 
instance solely for points Within the radiation thermometer. Never
theless, since P0 and gM are certainly continuous functions of position 
within the thermometer itself the result would also apply to the 
system itself where it comes in thermal contact with the thermometer· 

As a further consideration, it should be noted that tile derivation 
was carried out on the assumption that the system could be provided 
with a radiation thermometer, connecting the parts whose tempera
tures were to be compared, without disturbing the essential character 
of the system itself. Hence some discussion of the probable validity 
of this assumption would be desirable. For example, if we had a 
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gravitating system containing solid parts it would be necessary to 
make a hole into the solid and insert a radiation thermometer if we 
wished to obtain information as to the temperature of the interior 
by the method we have suggested, and this proceduxe would certainly 
have some effect on the gravitational potentials Up.v which are them
selves directly related to the distribution of matter and energy in the 
system. Nevertheless, since the equation of oonnexion 

-81TTp.v = Rp.v-tRr!p.v+AUp.v 
is a differential one giving the distribution of matter and energy in 
terms of the g p.v and their first and second derivatives, it seems correct 
to assume that the insertion of a thermometer of small dimensions 
could be made without seriously altering the values of the Up.v them
selves. This question might be further investigated, however, since 
exceptional oases of interest might be found. 

Finally, it is interesting to note th&t although the proper tempera
ture P0 varies from point to point in a gravitational system which has 
come to thermal equilibrium, nevertheless the constancy of the com
bined quantity P0~(g44) might provide some of the advantages of 
the classical principle of constant temperature as the criterion of 
thermal equilibrium. In this oonnexion it will be recalled that 
Einstein himself was led in his early speoula.tions on the nature 
of gravitation to distinguish between a quantity, called 'wahre 
Temperatur', which would be constant throughout a system at 
thermal equilibrium and a second quantity, called at the suggestion 
of Ehrenfest 'Tasohentemperatur', which would vary with gravita
tional potential. The considerations were of only a limited applica
bility since this was done at a time before the complete development 
of general relativity; the quantities mentioned, however, were re
spectively analogous to our present P0~(g") and P0• Nevertheless, 
since the proper temperature Po has an immediate physical signifi
cance from its direct relation to the measurements of a local observer, 
it will perhaps be best not to multiply the different kinds of tempera
ture to which we might give names, and to regard P0 as being funda
mentally the thing that we mean by the temperature at a point. 

130. On the increased possibility in relativistic thermo
dynamics for reversible processes at a finite rate 
We must now consider the possibility in relativistic thermodyna

mics for certain kinds of thermodynamic processes to take place both 
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reversibly and at a :finite rate. This provides a second example of 
the differences between the conclusions of relativistic thermodynamics 
and those which seemed inevitable from the classical point of view. 

We have already discussed in§ 62 the general line of argument by 
which the classical thermodynamics was led to the conclusion that 
reversible thermodynamic processes would always have to be carried 
out at an infinitesimally slow rate in order to secure that maximum 
·efficiency which would be necessary to permit a return both of the 
system .and its sUIToundings to their original states. In the present 
section we shall use the expansion of a perfect monatomic gas as an 
example to illustrate the differences which can arise between cla.ssica1 
and relativistic points of view as to reversibility and rate. 

_/ ___., 
~ 

---.... 

' FIG. 4 

Let us first consider the expansion of a sample of perfect mona
tomic gas by placing it in a cylinder provided with a movable piston 
as shown in Fig. 4. To begin with, it is evident in order to secure 

· reversibility that we can allow no heat flow between the cylinder and 
its surroundings to take place at a finite rate, since this would involve 
a finite temperature gradient and hence the irreversible transfer of 
heat from regions of higher to those of lower temperature. Therefore 
the expansion would in any case have to be carried out adiabatically. 
Even then, however) it is evident that the expansion could not be 
carried out reversibly at a finite rate, in the :first place because this 
would involve friction between the piston and the walls, and in the 
second place since the fluid in flowing in behind the moving piston 
would not be able to maintain as high a pressure at the expanding 
boundary as at an infinitesimal rate of expansion. Both of these 
effects would prevent the piston from doing as much work as would 
be necessary to recompress the gas. 

Hence we may conclude that such an expansion of gas in an enclosed 
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container with movable walls could not be carried out both reversibly 
and at a finite rate, since the expansion would not deliver sufficient 
work to the surroundings to secure reversibility. Furthermore, the 
argument would appear to be essentially the same and the con
clusion valid whether we use classical thermodynamics or adopt 
a relativistic point of view. 

Since this failure to secure reversibility in the case of an enclosed 
sample of gas, expanding at a finite rate, results from the inability of 
the expanding system to deliver the necessary work to its surround
ings, let us next turn to the expansion of an unenclosed perfect gas 
without any other surroundings at all, the gas itself being the only 
thing in the universe that we consider. Here we find greater differ
ences between classical and relativistic considerations, due principaJly 
to the fact that classical ideas did not provide a complete theory of 
gravitation. 

Three remarks may be made which perhaps give a fair idea as 
to the classical point of view with regard to the expansion of an 
unenclosed gas. In the first place, classical thought was so strongly 
impressed by the frequent dependence of irreversibility on finite 
rate-as illustrated above by the expansion of gas in a cylinder
that the existence of reversible processes occurring at a finite rate 
was for the most part not even seriously entertained as a possibility 
for any process. In the second place, in accordance with the usual 
classical ideas of a three-dimensional Euclidean space having infinite 
extent, it seemed most natural to consider that the only important. 
possibility for the expansion of an unenclosed gas would be its diffu
sion into the surrounding empty space. And this would be a process 
which would take place-to be sure at a finite rate-but with an 
irreversible increase in entropy owing in the last analysis to the 
entropy change 

JlS = RlogP1 

Pz 
(130.1) 

when a mol of gas drops from pressure p 1 to pressure p 2 without the 
performance of external work. Finally, the alternative possibility of 
a universe or cosmological model completely filled with an expanding 
gas was not considered from the classical point of view. It is this latter 
possibility that proves to be important for relativity. Classically, 
however, such models were not investigated, perhaps partly because 
it was known that the Wlmodified Newtonian theory of gravitation 

351111.U y 
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was incompatible with an infinite homogeneous distribution of gas 
in a static state, t and partly because the Newtonian theory-having 
provided no definite principles as to the velocity of propagation of 
gravitational action-was unable to carry through any unique 
treatment for such a non-static cosmological model. 

Turning, however, to a relativistic consideration of the possibilities 
for the expansion of an unenclosed gas, we find that relativistic 
mechanics, with its definite theory as to the interrelated geometrioaJ. . 
and gravitational aspect of the potentials g p.v' has been able to provide 
a perfectly unambiguous treatment for non-statio oosmolo'gioal 
models filled throughout their entire extent with any homogeneous 
distribution of expanding or contracting :fluid. And it is these models 
-when :filled with a sufficiently simple :fluid such as a perfect mona
tomic gas-which furnish illustrations of the relativistic possibility 
for reversible processes to take place at a finite rate. 

To obtain an understanding of this new possibility, we may antici
pate the results to be deriv~d in the next chapter by writing the line 
element for a non-statio homogeneous model of the universe in the 
form 

ds1 = - [1 +<~~)]• (dr•+r" d8• +r'sin18 d<f>•J+dt", ( 130.2) 

where r, 8, and cp are spatial coordinates, tis the time-like coordinate, 
R0 is a constant and the dependence of the J.lne element on time is 
determined by the functional form of the exponent g(t). This formula 
for interval can be shown to correspond to a cosmological model 
which is filled throughout its entire spatial extent with a homogeneous 
distribution of :fluid. The coordinates used are of the co-moving 
variety discussed in § 122 so that an element of the fluid located in 
any given coordinate range 8r888,P remains permanently therein. The 
proper volume of such an element of fluid 

et~ . 
Bvo = [I+(r2/4.R~)]8r2sm8 8r888cp, (130.3) 

will, however, in general be changing with the time owing to its 
dependence on g(t). When g is increasing with t all the elements of the 
:fluid in the whole model will be expanding at a rate which is pro
portionally the same in all parts of the model, and with g decreasing 
there will be a similar contraction throughout the model, and in 

t Neumann, .Abh. cl. Kgl. Sach8. G68. cl. Wiss. zu Leipzig, matk •• nat. Kl. 26, 97 
(1874:); Seeliger, .Am-. Naolw. 137, 129 (1895). 
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general these changes in proper volume would take pl.a.oe at a. :finite 
rate. 

We must now inquire whether such an expansion or contraction 
could take place reversibly as well as at a finite rate. Fig. 5 gives a 
symbolic two-dimensional representation of the space-like coordinates 
corresponding to the line element (130.2) which will assist in visualizing 
the differences between the expansion of gas in our present model and 
in the previous classical cylinder. · 

Applying the relativistic :first law of thermodynamics-i.e. the 
principles of relativistic mechanics 
-to the model, it is easily found 
(see § 151) that the energy rela
tions for each element of the :fluid 
would be described by the fami
liar equation for an adiabatic ex
pansion 

d d 
dt (Poo8vo)+Po dt (8v0) = 0, (130.4) 

the change in proper energy for 
each element of fluid being ac
counted for by the work which it 
does on its surroundings. Hence 
each element of the fluid would 
expand or contract adiabatically, 

FIG. 5 

without flow of heat from one portion of the model to another, as 
indeed would perhaps be intuitively evident from the homogeneity 
of conditions throughout the model. 

Having ascertained the adiabatic quality of the process, we oa.n 
then apply the relativistic second law (119.5) to our system after 
setting tho right-hand side of the expression-which is proportional 
to heat absorbed-equal to zero .. Doing so, the second law, for the 
model that we are considering and in the co-moving coordinates that 
we are using, then takes the simple form 

d { eloW 2 • } 
dt cfoo (l+(r2/ 4Wo)]8 r BID 8 8r888cp8t ~ 0, 

or, in accordance with (130.3), 
d 
dt (cfoo 8vo) ~ 0. (130.5) 
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Hence the appliciation of the relativistic second law of thermo
dynamics to such cosmological models shows that the proper entropy 
of each element of fluid as measured by a local observer can in any 
case only increase or remain constant. Since the equality sign applies 
to reversible prooeBBeS, constant proper entropy for each element of 
fluid then becomes the necessary requirement for the reversible 
expansion of these models at a finite rate. 

This requirement, however, can apparently be met provided the 
fluid filling the model is taken as sufficiently simple. 

To show this, we first note that the nature of the model is such as 
to eliminate possibilities for entropy increase which might otherwise 
result from inefficient interaction between the elements of fluid and 
their surroundings. Thus there is no increase in entropy due to 
irreversible heat flow into any element of fluid owing to the entire 
absence of heat flow throughout the model; there is no entropy in
crease due to the friction of moving pistons or the like since no con
tainers for the elements of fluid a.re now involved; and there is no 
entropy increase due to an inability of the fluid to keep up its full 
pressure at the expanding boundary of an element owing to the 
uniform presBUl'e throughout the whole model. There hence appears 
to be no irreversibility directly due to poor coupling of any element 
of fluid with its surroundings. 

The remaining poBBibilities for entropy increase then lie in irre
versible changes taking place inside the elements of fluid in the actual 
material of which the fluid is composed. In the case of complicated 
:fluids subjected to a finite rate of volume change such irreversible 
processes would certainly occur to an important extent. Thus if we 
took a bimolecular gas which tended to dissociate on expansion into 
its elements, it is evident that this chemical change could not com
pletely keep up with a finite rate of expansion and that the actual 
dissociation would take place under non-equilibrium conditions and 
hence be accompanied by increase in entropy. Indeed, with a finite 
rate of volume change, even the lag in such processes as the 
transfer of energy from the rotational to the translational degrees of 
freedom of a bimolecular gas would involve some irreversibility. In 
the case of simple enough fluids, however, such possibilities for inter
nal entropy increase would be almost or completely lacking. Thus 
if we took a perfect monatomic gas, as suggested for the fluid at the 
beginning of the section, there would be no possibility for internal 
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irreversible processes, provided we neglect the small energy transfers 
that would take place between the gas and the slight amount. of 
thermal radiation that would also actually be present. And in the 
case of a fluid composed of dust particles having negligible thermal 
preBBure, or of one composed solely of black-body radiation itself, there 
would appear to be no possibilities for internal irreversibility at all. 

The relativistic discovery of cosmological models, :filled with 
material throughout their entire extent, thus provides possibilities 
for the expansion of an unenclosed fluid without its dissipation into 
empty space and without friction, irreversible heat flow, or pressure 
drop at the walls of any container, of a kind hitherto unknown. 
Analysed from the point of view of relativistic thermodynamics, this 
then leads to an increased possibility for processes to take place at 
a finite rate and yet also either with complete reversibility, or in any 
case with the elimination of sources of irreversibility that seemed 
classically inevitable. 

Relativ:Jstic mechanics and relativistic thermodynamics have both 
contributed to the new result. Relativistic mechanics makes it 
possible to study tho behaviour of cosmological models as a whole, 
and then from the relations of the fundamental tensor Yp.v to density, 
preBSure, and proper volume to determine the behaviour of the 
individual elements of fluid in the model. With the help of the 
second law of relativistic thermodynamics we can then see if each 
of these elements of fluid behaves reversibly or irreversibly. Increased 
pOBBibilities for reversible behaviour have thus been found for homo
geneous systems, having uniform temperature and pressure through
out, and the investigation of non-homogeneous models from the same 
point of view would be interesting. 

The main importance of the new result lies in its demonstration of 
the necessity of using relativistic rather than classical thermo
dynamics in any attempt to understand the behaviour of the universe 
as a whole. In the next chapter the result will be found applicable 
to an important class of cosmological models. It will there be shown 
in§§ 170 and 171, that the thermodynamic condition for reversi
bility, which we have obtained by taking the equality sign in the 
relativistic expression for the second law, actually agrees with the 
requirements for a ren.l reversal in the motions of cosmological models; 
and it will be shown in§ 173, that an observer in a reversibly expand .. 
ing universe would be led to quite erroneous conclusions if he should 
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try to iriterpret the behaviour of his sUIToundings by the use of 
classical rather than relativistic thermodynamics. 

131. On the possibility for irreversible processes without 
re3chin~ a final state of maximum entropy 
It was shown in the last section that the theory of relativity a.s 

compared with classical theory provides an increased possibility for 
reversible thermodynamic processes. It was also evident from the 
discussion, however, that irreversible processes could in no way be 
eliminated from the considerations of relativistic thermodynamics, 
and indeed some degree of irreversibility would still appear to be the 
usual characteristic of the actual thermodynamic processes that take 
place in nature. 

In the case of irreversible processes important differences between 
the conclusions of classical and relativistic thermodynamics oan 
nevertheless arise. The classical thermodynamics, as shown in § 63, 
appeared to lead inevitably to the conclusion that the end result of 
irreversible processes would necessarily be a final state of maximum 
entropy where further thermodynamic change would be impossible. 
In the present section we shall discuss a relativistic possibility for 
,irreversible processes to occur without ever reaching any unsur
passable maximum value of that quantity. 

This new possibility for continuous irreversible change is also pro
vided by the cosmological models, considered in the preceding section 
and discussed more completely in the next chapter. For our present 
purposes it is sufficient to note that there is an important class of 
these models, see§ 163, such that expansion from any given finite 
proper volume would necessarily be followed by reversal in the 
direction of motion at some upper limit and return to smaller volumes. 
This behaviour can be deduced solely from the principles of relativistic 
mechanics alone, and does not depend on the nature or complexity 
of the fluid which we take as fimng the model but only on its assumed 
homogeneity of distribution. Hence on purely mechanical grounds 
we are led to the consideration of a class of cosmological models 
which would undergo a continued succession of alternate expansions 
and contractions, without reference to the thermodynamic character 
of the processes taking place within the elements of :fluid filling the 
model. 

In the case of a fluid simple enough so that these internal processes 
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would occur without increase in proper entropy, we have the con
ditions for perfect reversibility discussed in the last section, and we 
shall find in the next chapter that the model would continue to 
repeat a succession of identical expansions and contractions. 

In the case of more complicated fluids, however, it is evident that 
entropy increases would occur within the elements of fluid com
posing the model as they expanded and contracted. Thus in the case 
of a diatomic gas capable of reacting to form its elements, dissocia
tion would tend to take place during expansion and reassociation 
during compression, and with a finite rate of volume change there 
would be a lag so that these reactions would actually take place under 
non-equilibrium conditions and hence with increase in entropy. 
We must now inquire whether such irreversible behaviour would 
necessarily lead to a cessation in the succession of expansions and 
contractions. 

From the classical point of view a gradual decay in the motions of 
expansion and contraction would have seemed inevitable, since the 
continued occUITence of irreversible processes in an isolated system 
would have ultimately led to a condition of maximum entropy where 
further change would be impossible. In the classical thermodynamics 
the entropy of a homogeneous fluid could be determined with the 
help of the familiar equation (60.4), previously developed in§ 60, 

1 p as as 
dS = T dE+ T dv + ~ d~+···+ ann dn1" (131.1) 

where the energy E, volume v, and number of mols ~' ... , n,. of the 
different chemical components present are the independent variables 
chosen to determine the state of the system. In applying this equa
tion to an isolated system undergoing a succession of expansions and 
contractions, the energy change dE would have to be taken as zero 
owing to the classical principle of the conservation of energy, and 
the work pdv would have to be taken as zero owing to the isolation 
of the system. Hence in the long run the only possibility for increase 
in entropy in such a system would lie in the readjustment of composi
tion, and this could not continue indefinitely since with a given value 
of energy and volume there is a maximum possible value for the 
entropy of a homogeneous fluid corresponding to the attainment of 
chemical equilibrium between its components. Thus the classical 
thermodynamics would have concluded that the irreversible increase 
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in entropy could not permanently continue and that further change 
would cease at the condition of maximum entropy. ' 

From the point of view of relativity theory, however, the foregoing 
reasoning has to be modified in an important manner owing to the 
changed status of the energy principle in relativistic mechanics. In 
accordance with relativistic thermodynamics, we can still apply an 
equation of the same form as (131.1) 

d(c/Jo 8vo) = P.l d(p
00 

8v
0

) +~ d(8v
0

) + o(~o ~vo) dnY+ ... + o(~o ~vo) d~ 
o :to 8n1 n,. 

(131.2) 

to determine the proper entropy (rfo0 8v0) of each little element of fluid 
in the model in terms of ita proper energy (p00 8v0), volume 8va, and 
the number of mols n~, ... , ~ of the different chemical components 
which it contains. In accordance with the principles of relativistio 
mechanics, nevertheless, we can no longer conclude that the total 
proper energy associated with the fluid would be a constant, owing to 
the well-ki:town failure of the principle of energy conservation to hold 
in the theory of relativity, unless allowance is made for potential 
gravitational energy associated with the field as well as for the proper 
energy directly, associated with matter and radiation. Indeed, in 
accordance with the equation (130.4), already cited as applying to 
these cosmological models, 

d d ) 
dt{p00 8v0)+Po dt(8v0 ) = 0, (131.3 

it is evident that the proper energy of every element of fluid in the 
model will be decreasing when the model is expanding and increasing 
when it is contracting. Furthermore, there will be a general tendency 
for pressure to be too low to correspond to equilibrium on expansion 
and too high to correspond therewith on contraction. Thus instead 
of constant proper energy for each element of fluid in the model, we 
can expect in the long run a tendency for this energy to increase, thus 
removing the restrictions previously imposed by the classical principle 
of energy conservation on possible increases in entropy. 

Hence in relativistic thermodynamics we can no longer assume that 
there would be an unsurpassable maximum value for the entropy of 
our system, which would limit the continuance of irreversible pro
cesses in the fluid and thus necessitate a final stagnant state. Indeed, 
as a result of the more detailed analysis of the next chapter we shall 
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find in certain cases, instead of a decay in the amplitude of the 
successive irreversible expansions and contractions of these cosmo
logical models, an actual tendency for gl'adual increase in the upper 
limit to which the model expands, always followed, however, by 
renewed contraction. 

In order to appreciate the reasons for this new conclusion, it is 
well to emphasize as the most important step in the argument the 
removal of the classical requirement for a constant value of the 
energy directly aBSociated with the fluid composing the system. Even 
in the classical thermodynamics, the removal of this restriction-by 
taking a system having interaction with its surroundings instead of 
an isolated one-is sufficient also to remove the restriction on possible 
entropy increase. Thus consider, for example, a sample of diatomic 
gas, capable of dissociating into its elements, and enclosed in an 
ordinary cylinder provided with non-conducting walls and a movable 
piston. On moving this piston in and out so as to secure an alter
nate expansion and compreBBion, the gas will tend to dissociate on 
expansion and to recombine on compression. If this is carried out at 
a finite rate, however, equilibrium will not be maintained and the 
average pressure on expansion will be less than that necessary to 
secure reoompreBBion, so that a net amount of work will be necessary 
and the energy of the system will increase as the process is con
tinued. As a further result of the failure to maintain equilibrium, 
moreover, the two reactions of dissociation and recombination will 
not take place reversibly, so that the entropy of the system will also 
increase as the process is continued. Thus as long as sufficient external 
energy is available to continue the succession of expansions and com
pressions, both the energy and entropy of the system will increase 
and there will be no unsurpassable maximum of the latter quantity. 
Hence from the classical point of view it would be the ultimate 
failure in the external energy supply, rather than the internal increase 
in entropy of the fluid in the cylinder, that would bring the proposed 
proceBB to an end. From the relativistic point of view, on the other 
hand, since cosmological models can be constructed which have no 
limitation on total proper energy and hence also no limitation on total 
entropy, we must retain the possibility for irreversible processes which 
may continue without end. 

The main importance of the new result again lies in its demon
stration of the necessity of using relativistic rather than classical 
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thermodyn~cs in any attempt to understand the behaviour of the 1 

universe as a whole. · 

132. Conclusion 
In concluding the chapter, some apology should perhaps be offered 

for the apparently premature inclusion of the last two sect~ons, on 
reversible processes at a finite rate, and irreversible processes having 
no final state of maximum entropy, since it is evident that these new 
possibilities can finally be satisfactorily understood only with the 
help of the cosmological models to be studied in the next chapter, 
and we shall take the matter up again in Part III of that chapter. 
The inclusion was made, nevertheless, in order to exhibit in a single 
connected form the di:fferences between classical and relativistic 
thermodynamics. As indicated at the beginning of the chapter, it 
will be seen that conclusions of a qualitatively new kind are implied 
by the extension of thermodynamics to relativity,· these differences 
being due, however, more to changes in concepts as to the nature of 
space and time than to fundamental modifications in the postulates 
of thermodynamics. 

A number of developments ot relativistic thermodynamics remain 
to be carried out. 

1 

1 

1 

Further study of the conditions governing thermal flow, together 
with an explicit expression for the energy-momentum tensor of a 
thermally conducting fluid would be desirable. The thermodynamic
behaviour of non-homogeneous cosmological models, having thermal 
flow from one portion to another, should be investigated. The results 
might be of importance in interpreting the behaviour of the actual 
universe. 

A study of thermodynamic fluctt..ations should also be made, 
especia.lly as fluctuations may be very important at certain stages 
of cosmological development. Finally, the general interrelation 
between thermodynamics and statistical mechanics might well be 
treated from the point of view of general relativity. This would of 
course involve considerations that go beyond the macroscopic point 
of view adopted for the purposes of the present book. 
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APPLICATIONS TO COSMOLOGY 

Part I. STATIC COSMOLOGICAL MODELS 

133. Introduction 
In this final chapter, we must now investigate the applications of 

relativistic mechanics and relativistic thermodynamics to cosmology. 
This is an ambitious field of study characterized by danger as well 
as by interest. 

The most fundamental although not the most pressing danger that 
threatens the validity of the study lies in the possibility that the 
relativistic theory of gravitation might not really be applicable to the 
universe as a whole, or even to that portion out to some hundred 
million light years, which can be observed with the help of the Mount 
Wilson 100-inch telescope. The three so-called crucial tests make us 
indeed confident that relativity provides a real advance over the 
Newtonian theory of gravitation, and that it furnishes an acceptable 
treatment for the field in the empty space surrounding a star out to 
distances of the order of the dimensions of the solar system. Never
theless, the application of this same theory to the universe as a whole, 
filled with a distribution of matter and radiation rather than empty, 
involves an extension which cannot of course be made with certainty. 
To justify the extrapolation we can only depend in the first place 
on the remarkable rationality and inner logicality of the theory 
of relativity, which ntakes a wide range of applicability seem prob
able, and in the second place on the observed tendency for stars 
to cluster together in nebulae and for the nebulae themselves to 
occur with some clustering, which at least indicates for very great 
ranges of distance gravitational action of the general kind that would 
be predicted from relativistic theory. Furthermore, relativity cer
tainly provides at the present time the only possible theory of gravita
tion that could be applied to the behaviour of large portions of the 
universe, and hence we are forced to make use of this theory if we 
are to carry out cosmological speculations at all. 

Another source of difficulty for any kind of cosmological theory 
lies in the very real limitations in our observational knowledge as to 
the actual nature of the universe and its contents. Within the range 
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of about ax 108 light years which can be reached with the 100-in.cla 
telescope, the investigations of Hubble have shown the presenoe of 
about 108 nebulae, which are individually roughly of the ~ 
character ag our own galaxy of stru·s. These nebulae are to a. oertaid 
extent gathered into clusters, but on the whole are distributed with 
a fair uniformity of .about one nebula per 1018 cubic light years. :From 
the red-shift in the spectra of these nebulae ·we can infer that they 
have a motion of mutual recession, and from their apparent dia.metera, 
luminosity, and colour we can get some limit as to the prcsenoe of 
intervening obscuring material. We thus have considerable knowledp 
as to the contents of the universe out to 3 X I 08 ligltt year a, and indeed 
also some indication as to its probable behaviour within a. past time 
span of 3 x I 08 year a. 

There are, nevertheless, serious gaps in the information which we 
could desire. In the first place, although we can presumably make 
some extrapolation of the conditions observed in our immediate 
neighbourhood to greater distances, we have no real justification for 
assuming that the whole universe has the same properties as that 
portion which we have already seen. Hence, although we shall 
actually make great use of homogeneous models in our studies, wa 
shall have to realize that we do this primarily in order to seoure A 

definite and relatively simple mathematical problem, rather than to 
secure a correspondence with known reality. In the second place, 
although we have good information concerning the density of nebulae 
in our surroundings, we have very little information as to tho density 
of other forms of matter or of radiation in the enormous extragalactic 
spaces lying between the observed nebulae. Indeed it soemR possible 
from the work of Hubble that the density of rna ttor in tho form of 
extragalactic dust might be thousands of times as great as the 
averaged-out density of the nebulae, without giving riso to c:ffcchi 
that would have so far been found. This is a very serious limitation 
on our knowledge, since it prevents any precise determination of 
gravitational curvature. As a resUlt we do not know whether the 
actual uni~ · tiall 1 

• ~ IS spa y c osed or open, and can choose between 
umverses which are finite d infini"t · . . . an e In spat1al extent only on the 
h8.Sls 0~ dubious metaphysical predilections. 

In VIew of these uncertainties in observational knowledge muoh of 
our actual work must ne ril . . ' . 

· cessa Y consist In a stndy of cosmological 
mode.ZB, constructed in accordance with the theory of relativity, but 
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not necessarily agreeing in all particulars with the real universe. 
Indeed we shall feel justified in ~tudying some models, which are 
known to differ from the real universe in important ways, provided 
the results can illuminate our thinking by indicating the kind of 
phenomena that might actually occur without controverting estab~ 
lished theory. With the help of such studies, however, we shall 
certainly make progress in understanding the behaviour of nature 
on the largest possible scale, and this presents a task as interesting 
as the human mind can set, and provides a goal as noble as the 
human spirit can conceive. 

In Part I of the present chapter we shall consider static cosmo
logical models. We shall first show that the only possibilities for a 
homogeneous static model are those provided by the original Einstein 
universe filled with a uniform distribution of material, by the de Sitter 
empty universe, and by the empty flat space-time of the special 
theory of relativity. We shall then give a brief discussion of these 
different possibilities, sufficient to show the reasons for abandoning 
them as providing satisfactory models for the actual universe. In 
Part II we shall then make use of the principles of relativistic 
mechanics to derive the line element for non-static homogeneous 
cosmological models, and to study their mechanical properties and 
behaviour. In Part III we shall apply the principles of relativistic 
thermodynamics to this behaviour. Finally, in Part IV, we shall 
compare the properties of such models with the phenomena of the 
actual universe. 

134. The three possibilities for a homogeneous static universe 
We now undertake the specific task of showing that the only 

possibilities for a static homogeneous universe are exhausted by the 
line elements of Einstein, and of de Sitter, and that corresponding 
to the special theory of relativity. 

In obtaining any form of cosmological line element, we shall look 
at the universe from a large-scale point of view and neglect those 
local irregularities in gravitational field and in space-time curvature, 
which would occur in the immediate neighbourhood of individual 
stars or stellar systems. We can then treat the universe as filled with 
a continuous distribution of fluid of proper macroscopic density p00 

and pressure p 0, and shall feel justified in making this simplification 
since our interest lies in obtaining a general framework for the 
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behaviour of the universe as a whole, on which the details of local 
occurrences could later be superposed.. · 

In the case of a static homogeneous universe it is evident that 
coordinates can certainly be chosen such that the line element will 
exhibit spherical symmetry around any desired origin, since all parts 
of the universe are intrinsically permanently alike. Hence we may 
evidently take the line element in the general spherically symmetrical 

statio form ds2 = -ef. iJJr2-r2 d82 -r"sin28 Q42 +ev dts, (134.1) 

with A and v functions of r alone as given by (95.12), and take the 
pressure and density in accordance with (95.13) as determined by the 
equations 

81T,Po = e-A(v' +.!.\_!_+A, (134.2) 
r r2'} r2 

87Tp
00 

= e-A --- +--A, (134.3) (
"A' 1) 1 
r r 2 r 2 

dpo _ _ Poo+Pov' (134.4) 
dr- 2 ' 

where the accents signify differentiation with respect tor, and A is 
the cosmological constant. 

From this simple starting-point we can now easily obtain the only 
possibilities for a statio homogeneous model. To do so we have merely 
to investigate the consequence of imposing three necessary conditions 
on the foregoing equations. These are: first that the pressure Po as 
measured by a local observer shall everywhere be the same, owing to 
the assumed homogeneity of model; secondly that the proper macro
scopic density p00 shall everywhere be the same, again owing to the 
homogeneity of the model; and thirdly that the line element shall re
duce for small values of r to the special relativity form for fiat space
time with A = v = 0, owing to the known validity of the special 
theory o£ relativity for a limited space-time region, when we neglect 
local gravitational fields as postulated above. 

In accordance with the first of these conditions, it is evident
since Po is to have the same value in all parts of the model-that 
equation (134.4) can only be satisfied by taking 

Poo+Pov' = 0, (134.5) 
2 

and this can itself in tum only be satisfied by the three possibilities of 
setting v', or (p00+p0), or both equal to zero. 
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These three possibilities v' = 0, (134.6) 

or Poo+Po = 0, (134. 7) 

or both v' = 0 and Poo+Po = 0, (134.8) 

lead respectively to the Einstein, to the de Sitter, and to the special 
relativity line elements for the universe as we may now show in 
detail. 

135. The Einstein line element 
We may first consider the Einstein line element which arises from 

the first of the above three possibilities 

v' = 0. (135.1) 

Integrating this equation, and remembering that the line element 
is to reduce to the special relativity form, with v = 0 for small values 

of r, we at once obtain v = const. = o, (135.2) 

as the only possible solution. 
On the other hand, substituting this result in the expression for 

the pressure given by (134.2) and solving, we obtain 

e-" = 1-(A-87T.P0)r2. (135.3) 

Hence, defining for convenience a new constant R by the equation 

1 
A-Snp0 = RS' (135.4) 

we can then write as an expression for the resulting line element 

dr2 
ds2 = - -r2 d82 -r2sin28 dcfo2 +dt2 (135.5) 

1-r2fR2 . 

This is one of the well-known forms for the original Einstein line 
element for a static universe, t and we shall return later to a discussion 
of some of its properties. 

136. The de Sitter line element 
We may next consider the de Sitter line element which arises from 

the second of the possibilities given above 

Poo+Po = 0. (136.1) 

t Einstein, Berl. Ber. 1917, p. 142. 
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Adding the individual expressions for p00 and p 0 given by (134.2) 
and (134.3) we must then set 

(
>..' v') 87T(Poo+Po) = e~ r + r = 0, 

or \I I 
1\ = -v' 

and since>.. and v must both become zero at r = 0, in order for the 
line element to reduce to the special relativity form at the origin,. thiR 

can only be satisfied by ,\ = -v. (136.2) 

On the other hand, since Poo is to be a constant independent of 
position we can immediately integrate (134.3), and obtain as a solu
tion, which may be readily· verified by redifferentiation, 

-A- 1 A+S?Tpoo ·2+A e - - 1 -, 
3 r 

where A is the constant of integration. And, again making use of the 
reduction of the line element to the special relativity form with 
A= v = 0 at r = 0, we see that we must take this constant A equal 
to zero. Hence, noting (136.2), we at once have 

e-A = ev = 1-A+S7TPoor2 (136.3) 
3 

a.s a complete solution for the form of the line element. Hence, now 
defining for convenience a new constant R by the equation 

A+877Poo 1 (136.4) 
3 = R2 ' 

we can write as the complete expression for the line element 

ds2 = - drB -rs d(J2 -r2sin2(J dcpB +(I- r2} dt2. 
1-r2/Ba RZ 

(136.5) 

This, however, is one of the well~known forms for the original de 
Sitter line element,t and we shal~ later return to a discussion of some 
of its properties. 

137. The special relativity line element 
Finally, we may turn to the third possibility for a statio homo~ 

geneous universe in which we require in accordance with ( 134.8) both 

v' = 0 and Poo+Po = 0. (137.1) 

t de Sitter, Proo. Akatl. lVetenach. Amaterdam, 19, 1217 (1917). 
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Under these circumstances, however, we can take both the equa
tions (135.2) from the Einstein case and (136.2) from the de Sitter 
case as valid, and hence oan write as a complete solution the simple 
result, A = v = 0, (137 .2) 

corresponding to the special relativity form of line element 

ds2 = -dr2 -r2 d82 -r2sin.28 dq>2 +dt2, (137.3) 

which applies to the perfectly empty and ':flat' space-time of the 
special theory of relativity. 

In accordance with the discussion of§ 134, this now exhausts all 
the possibilities for a static homogeneous universe ;t and hence when 
we find that none of these three possibilities gives a satisfactory 
representation of the actual universe, we shall then have to turn to 
the consideration of some less restricted class of models. 

We may now undertake a brief survey of some of the more im
portant properties of the Einstein and de Sitter line elements, both of 
which include the special relativity line element as a particular case 
when the constant R assumes the value infinity. The survey will be 
of interest not only for historical reasons, but for the insight which 
it can give into the more adequate models which we shall later 
study. 

138. The geometry of the Einstein universe 
By the transformation of coordinates the Einstein line element 

dr2 

ds2 = ------r2 d89 -r2sin28 dcp2 +dt2 (138.1) 
1-r2/B2 

can be written in several different forms which are sometimes con
venient or can be of assistance in understanding the implied geometry. 

By the substitution 
r- p 

- 1+p2f4RB 
(138.2) 

we obtain an isotropic form 

t This proof that tho Einstoin, de Sitter, and special relativity line clements 
exhaust tho possibilities for a static solution follows the treatment of Tohnan, P1'oc. 
Nat. Acad. 15, 207 (1929). l!'or an earlier proof, see Friedmann, Zeits. f. Physik, 10, 
377 (1D22); and for a proof that there are no additional stationanJ solutiona, in tho 
sense of§ 142, soo Robertson, Proo. Nat. Aoad. 15, 822 (1929). 

3606.11 z 
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which by an obvious fu.rther transformation can also be written a.s 

d82 = - [1 +p~4:.RI]2 (£k2+dy2+dz2)+dt2. (138.4) 

By the substitution r = Rsinx (138.5) 

we obtain 
r1a2 = -R2(dx2+sin2x d82 +sin2xsin20 dq>l)+dt2. (138.6) 

' 
Finally, by introducing a. larger number of variables, with the help 

of the equations · 

z,_ = Rj(t-;} z1 = rsin8coatf> 

· Za = rsin8sin<fo z, = rcos 8, 

where z¥+~+zf+z~ = R2
, 

the line element assumes the form 

(138. 7) 

(138.8) 

ds2 = -~-d~-dzi-dz:+dt', (138.9) 

which permits us to regard our origina.l space-time as embedded in 
a. Euclidean space of higher dimensions. 

The kind of geometry corresponding to these different expressions 
for the line element is not completely determined, since different 
hypotheses a.s to connectivity and as to the identification of points 
can in general be made for a. given differential formula for interval. 
It will be simplest, however, as suggested by the last form in whioh 
we have written the line element, to regard the spatial extent of the 
Einstein universe as being the whole three-dimensional spherical 
surface ~+~+Z:+z~ = R2 embedded in the four-dimensional Eucli
dean space (z1, z1, z3, zJ. The geometry corresponding to the space-like 
variables in the Einstein line element would then be that for so-oalled 
spkerical space of radius R. By the identification of antipodal points 
of the sphere a.nd the introduction of suitable connectivity the spatial 
geometry could also be taken as of the so-called elliptical kind. 

Taking the spatial geometry as spherical, the total proper spatial 
volume of the Einstein universe would be given in accordance with 
(138.6) by ''" 'IT 'IT 

tJo = J J J RBsm 2x sin 8 dxd8dcp = 2m2 Jl3, (138.10) 
0 0 0 .... 

and the total proper distance around the universe would be 

l0 = 2?TR. (138.11) 

Ta.king the geometry as elliptical, the corresponding quantities would 



§ 138 THE EINSTEIN STATIC MODEL 339 

be one-half as great, and this difference could provide in principle a. 
method for distinguishing between the two possibilities of spherical 
and elliptical space. 

Introducing the time-like as well as the space-like variables, the 
complete space-time geometry corresponding to the Einstein universe 
could be regarded as that for a four-dimensional cylindrical surface 
embedded in five-dimensional space. 

Perhaps the chief importance of this investigation into the nature 
of the geometry implied by the Einstein line element lies in the 
assistance thereby provided to our intuitional appreciation of the 
homogeneity of the model. In accordance with the symmetrical form 
given to the line element by (138.9) it is immediately evident that on 
transforming back to 9", 8, cp, and t the origin of spatial coordinates and 
the zero point for the time coordinate could be taken at will, in agree
ment of course with our original assumptions as to the static and 
spatially homogeneous character of the model. It may, nevertheless, 
be emphasized in conclusion that for most problems of immediate 
interest there is no neceBBity to go beyond the results which can 
be obtained by usual analytical methods directly from the differ
ential formula for interval, and no necessity to attempt to visualize 
the geometry as a whole. 

139. Density and pressure of material in Einstein universe 
We may now turn to more physical aspects of the Einstein universe, 

by investigating the relations which would govern the density and 
pressure of the material in the model. 

Returning to the general form (134.1) for the line element 

ds2 = -e). dr2 -r2 d82 -t"1sin28 dcp2 +ev dt2 

and introducing the values 
9"2 

e-A = 1-- and v = 0, RS 

(139.1) 

(139.2) 

found in§ 135, into the expressions for pressure and density (95.13) 
which correspond to this general form of line element, we easily obtain 

and 

1 
8np0 = - R 2 +A, (139.3) 

3 
&rpoo = R2- A (139.4) 
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as expressions for the proper pressure and proper density of the 
material filling the model in terms of the two constants A and R. 

Alternatively, these equations may be solved for the two constants 

in the form A = 47r(Poo+3Po) (139.5) 

and (139.6} 

Hence, since the density Poo of the fluid taken as filling the model could 
on physical grounds only be a positive quantity, and the pressure Po 
could. only be positive or-assuming the possibility of reasonable 
cohesive forces-could only be negative to a very limited extent, we 
may conclude at once that A and R,2 would both be essentially positive 
quantities. 

H we regard A and R,2 as in the nature of adjustable parameters 
the model could be taken as filled with a fluid having any desired 
values for its pressure and density. 

Thus if we assumed the fluid to be composed of incoherent 
matter exerting no pressure, for example free particles (staTS) 
having negligible relative motions, as originally considered by 
Einstein, we should have from the above 

and 

1 
A=Jl2 

(139. 7) 

(139.8) 

and in accordance with (138.10) the total mass of the universe 
would be M = p00 v0 = tn-R. (139.9) 

On the other hand, if we took the model as filled solely with radia
tion, which has the highest known ratio of pressure to density for any 
possible .fluid, 

we should have (139.10) 

1 3 
and 4np0 = 

4
R2 4arp00 = 

4
.R

2
• (139.11) 

Comparing (139.8) with (139.11), we again see an example of the 
tendency first mentioned in§ 110 for radiation to produce greater 
gravitational curvature than the same density of ordinary matter. 
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Finally, if we took the model as completely empty with p00 and p 0 , 

both equal to zero, we should have 

1 
A=- = 0 (139.12) Jl2 

and the Einstein universe would degenerate into the fiat space-time 
of the special theory of relativity. 

Several important conclusions may be drawn from the results of 
this section. In the first place, it is to be noted that the discussion 
does demonstrate in accordance with the principles of relativity at 
least the conceptual possibility for cosmological models which would 
agree to some extent with the actual universe by containing a uni
form distribution of material of finite concentration. In the second 
place, since we have seen above that R2 would be positive and finite 
except in the degenerate case of a completely empty universe, it is 
to be noted that the radius R of the Einstein model would have to be 
real corresponding to an unbounded but nevertheless closed universe 
with a finite spatial volume. Finally, it may be emphasized, as seen 
above, that the cosmological constant A would have to be a positive 
quantity greater than zero if the model is to contain any matter at 
all. This necessity was perhaps the strongest argument which led to 
Einstein's addition of the logically possible but otherwise surprising 
cosmological tern1 to his original field equations. If we later find 
models which could contain a finite concentration of matter without 
the A-term, we can look with favour on the possibility of taking 
A equal to zero. 

140. Behaviour of particles and li~ht rays in the Einstein 
universe 
We may now turn to a further discussion of the physical properties 

of the original Einstein universe by investigating the behaviour of 
particles and light rays in such a model. 

In accordance with (74.13), the motion of a free particle in the 
gravitational field corresponding to the Einstein line element 

dr2 
ds2 = - ----t·2 d()2 -r2sin28 dcf> 2+dt2 (140.1) 

l-r2JR2 

would be given by the equations for a geodesic 

d2:J;a dxP. dxv 
diJ2 + {ftv, a} dB di = 0. (140.2) 
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We shall b~ specially interested in the case of particles which are at 
least temporarily at rest with respect to the spatial coordinates. This 
geodesic equation would then reduce to 

Z +{44,a}(:)" = 0, (140.3) 

since the spatial components of the 'velocity' of the particl~ drfda, 
d8fd8, and dcfo/ds would be zero. Comparing the expression for the 
Einstein line element (140.1}, however, with the expressions for the 
Christoffel three-index symbols given by (95.2) for this general form. 
of line element, we see that all symbols of the form {44, o} would 
vanish, and we are thus led at once to the conclusion that particles 
at rest with respect to the spatial coordinates would also have zero 

acceleration dlr d20 d2cp 
d82 = d82 = ds2 = 0 (140.4) 

and hence would remain permanently at rest . 
. This conclusion is of importance, since the Einstein model could 

not be expected to persist at all in the assumed static state, if the free 
particles contained in it could not remain at rest. The result is, 
nevertheless, not a sufficient criterion for complete stability as we 
shall see later. 

The velocity of light in the Einstein universe can be obtained by 
setting the expression for the interval (140.1) equal to zero. Doing so 
and focusing attention on the case of light travelling in the radial 
Ctirection we obtain for the velocity of light from or towards the 
origin 

(140.5) 

where it is to be specially noted, as a result of the form of the line 
element (104.1), that the time-like variable t agrees with proper time 
as it would be measured by a local observer at rest in the model with 
respect to the spatial coordinates. 

In accordance with this result, the time necessary for light to travel 
from the origin around the universe and back would be 

R 

t = 4 f ..j(l-"';.'JB') = 2-rrB, (140.6) 
0 

if we assumed spherical space, or one-half this amount if we assumed 
elliptical space. The amusing theoretical possibility thus provided, 
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for the light issuing from a star to travel around the universe and by 
refocusing lead to the appearance of a 'ghost' star in the neighbour
hood should not be taken very seriously in view of the idealization 
and inadequacy of the original Einstein model as a repre~ntation of 
the actual universe. 

The most important application of the expression for the velocity 
of light given by (140.5) lies in its use in showing t'hat we could expect 
no systematic shift in the wave-length of light from distant objects 
in the static Einstein universe. Consider an observer for convenience 
at the origin of coordinates r = 0 and a luminous source (nebula) at 
r = r, both being taken as permanently at rest with respect to the 
spatial coordinates in agreement with the zero acceleration for 
stationary particles demonstrated above, and in agreement with the 
static character ascribed to the model. In accordance with (140.5} the 
'time' t2 for the reception by the observer of light leaving the source 
at 'time' ~ would be 

r 

t - t + J dr - +R . -1 r 2- 1 :j(1-r2fJl2) - ~ sm Jf 
0 

Hence, since r is a constant, the interval8t1 between the receipt of two 
successive wave crests would be equal to the intervalS~ between their 
emission (140.7) 

On the other hand, however, in accordance with the form of the line 
element (140.1) the time-like variable t agrees with the proper time 
as measured by local observers at rest with respect to the spatial 
coordinates. Hence the equality (140.7) also implies an equality 
between the proper periods of the emitted and received light as they 
would be determined by observers at rest with respect to the original 
source and at rest at the origin. As a result, the light on reception 
would be observed to have the same period and wave-length as is 
found for the particular luminous material involved when it is used 
in the laboratory to provide a stationary source of light for a 
spectroscope. 

The method of obtaining this result gives a particularly simple 
illustration of the general metho~ for treating the generalized Doppler 
effect, schematically outlined at the end of Chapter VIII. In accor
dance with the result we can conclude in the case of the original 
Einstein model of the universe that there would be no systematic 
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oonnexion between observed wave-length and distance from observer 
to luminou.a sourees such ae the nebulae. There could of course be 
small Doppler effects due to the individual motions of the nebulae, 
but as a result of the general static character of the model we should 
expect these effects to be positive and negative with equal frequency 
and with no great spread from a mean of zero. 

141. Comparison of Einstein model with actual universe 
To con,.,lude our brief consideration of the properties of the Einstein 

universe we must now make some comparison with the properties of 
the actual Universe. 

The most satisfactory feature of th~ Einstein model is its corre
spondence as shown in§ 139 with a universe which could actually 
contain a finite concentration of uniformly distributed matter. In 
this respect it gives us a cosmology which is superior to that provided 
by the de Sitter model which as we shall see in§ 143 would have to 
be regarded as empty. It may again be emphasized, nevertheless, 
that this advantage is gained only at the expense of introducing the 
extra. cosmological term Ag,_,.v into Einstein's original field equations, 
which is a device similar to the modification in Poisson's equation 
proposed in the pastt in order to permit a uniform static distribution 
of matter in the flat space of the Newtonian theory. 

In accordance with the estimate of Hubble (see§ 177) the density 
of matter in the actual universe in the form of visible nebulae would 
have a value of about 

p = (1·3 to 1·6) x 10-30 gm.fcm.s (141.1) 

if averaged out over the whole of intergalactic space, as of course must 
.be done in replacing the actual universe by a model filled with a con
tinuous distribution of fluid. On the other hand, in accordance with 
§ 139, we have found that the density p00 in an Einstein universe 
filled with incoherent matter exerting negligible pressure would be 
related to radius R and cosmological constant A by the equation 

1 
4-n-poo = RZ =A. (141.2) 

Hence, neglecting the density of unseen matter and neglecting the 
pressure and density of the radiation in intergalactic space, and 

t See NemDa.nn, Allgemeine Untersuchungen aber das Newtonsche Prinzip der 
Femwirkungen, Leipzig,l896. 
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introducing the factor for the conversion of grammes to gravita· 
tional units given by (81.7) we obtain 

1 4?Tx 10-so 
A= R2 = 1·349 x 1028cm.-s, 

or A~ 9·3x 10-58 cm.-2, 

R ~ 3·3x 1028 cm ~ 3·5X 1010 light years. 

(141.3) 

(141.4) 

In obtaining these values of A and R we have taken the density of 
matter as 10-so gm.fcm.3, and this is presumably a lower limit for 
that quantity since it neglects dust and gas in the enormous reaches 
of intemebular space. Hence the value for A must be regarded as a 
lower li1nit and that for R as an upper limit. 

The value for A is small enough to be compatible with known 
planetary motions in the solar system, since if we write the Schwarz· 
schild line element in the complete form 

ds2 = - dr2 -r2 d£)2 -r2sin2f) dcp2 +(1- 2m_Ar2) dt2, 
1_ 2m_ Ar2 r 3 

r 3 · 

the ratio of the previously neglected term Ar2/3 to the main term 
2mfr at the distance of Neptune's orbit would only be 

Ar2/3 Ar3 9·3 X 10-58 X ( 4·5 X 101')3 
2m/r = 6m ~ ax 1·5 x 105 ~ 10-

19
' (

141.5) 

where we have taken the gravitational mass of the sun as 1·5 X 105. 
With regard to the value obtained for the radius R (3·5 X 1010 light 

years), there is also no trouble since as yet our telescopes have only 
penetrated to about 3 X 108 light years. 

The most unsatisfactory feature of the Einstein model as a basis 
for the cosmology of the actual universe is the finding discussed at 
the end of the last section, that it provides no reason to expect any 
systematic shift in the wave-length of light from distant objects. In 
the actual universe, however, the work of Hubble and Humason 
shows a definite red·shift in the light from the nebulae which increases 
at least very closely in linear proportion to the distance. This is of 
course the main consideration which will lead us to prefer non-statio 
to static models of the universe as a basis for actual cosmology. 

Closely connected with this unsatisfactory feature of the static 
Einstein model will be our later finding that the Einstein universe 
would not be stable. To be sure as we have seen in connexion with 
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· {140.4), free particles at rest in the model would not be subject to 
acceleration. Nevertheless, w.e shall later find, for example, that a 
statio Einstein universe would start oontrao~ as a whole if the 
matter in it should commence to be transformed into radi~tion, or 
vice 'Versa start expanding if the radiation in it should commence 
a condensation into matter. And we shall find in general the possi
bility for a wide variety of models that could expand or contract, as 
compared with very severe restrictions necessary fpr the permanence 
of a statio model. 

142. The geometry of the de Sitter universe 
Having found the original Einstein universe, although very im

portant for an understanding of relativistic cosmology, not entirely 
satisfactory as a model for the actual universe, we may now turn to 
a consideration of the other statio possibility provided by the de 
Sitter universe. 

By the transformation of coordinates we can change the original 
form in which we obtained the de Sitter line element 

dB2 =- dr
2 

-r2d82 -r2sin28ifAP2 +(1-~) dt2 (142.1) 
l-rtjR2 R2. 

into other forms which are sometimes convenient or geometrically 
illuminating. 

By the substitution 
r = Rsinx (142.2) 

we obtain 
ds2 = -R2 dx2-R2sin2x d82-R2sin2x sin28 dtfo2+oos2x dt2, (142.3) 
which is a form that has often been employed in discussing the de 
Sitter universe. 

A more interesting result may be obtained, however, by introducing 
five variables and transforming in accordance with the equations 

ex= rsin8coscp fJ = rsin8sincp y = rcos8 
8+€ = ReJIR.J(1-r2fR2) 8-e = Re-tiR...j(1-r2fR2). (142.4) 

This leads to the form 
diJ2 = -dcx2-df!1.-dy2-dlJ2+d€2. 

And by the further transformation 

Zt = icx :z:2 = ifJ . 
Za = "Y z5 = € (142.5) 

we obtain the result 

ds2 = dz~+dzi+dz~+dz~+dz~, (142.6) 
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where as a consequence of {142.4) we have the relation 

z~+z~+zi+z~+~ = {i.R)2 {142.7) 

as the equation which determines that four-dimensional surface in the 
five-dimensional manifold that corresponds to space-time. In accord
ance with this result we can regard the geometry of the de Sitter 
universe as that holding on the surface of a sphere embedded in five
dimensional Euclidean space. And, as in the case of the Einstein 
universe, we gain an added intuitional appreciation of the homo
geneity of the de Sitter model. It may be emphasized, nevertheless, 
that the formal simplicity in the expression for the line element given 
by (142.6) is achieved at the expense of losing track of the physical 
distinction between space-like intervals which are to be measured· 
in principle by the use of metre sticks and time-like intervals which 
are measurable with the help of clocks. 

Finally, we may examine· an interesting and important transforma
tion of coordinates discovered independently by Lemaitret and by 
Robertson,t and specially employed by the latter. The transforma
tion is obtainable by introducing the new variables 

;: = .j( 1-~/ R") e-t/R i' = t+l R log( 1- ~~). (142.8) 

This leads to the expression 

ds2 = -e2IIR(dfJ. +r2 d82 +r2sin28 f#2)+dt-,., 
which by dropping the bars over r and t, and also introducing for 
simplicity 1 k- R' 
can be Wiitten in the form 

ds2 = -e2kl(df-2 +r2 d82 +r2sin28 dcp2)+dt2, 

or by an obvious further substitution in the form 

ds2 = -e2kl(dx2+dy2+dz2)+dt2• 

{142.9) 

{142.10) 

{142.11) 

In this form for the line element the gravitational potentials Up., are 
no longer independent of the time-like coordinate t, which is now 
being employed. This, however, need occasion no surprise since it 
is obvious that any static form of line element can be changed into 
a non-static form by a suitable substitution of new coordinates which 
are functionally dependent on the original coordinates of both space-

t Le:rnaitre, J. Matl,, and Phys. (M:.I.T.), 4, 188 (1925). 
~ Robertson, Phil. Mag. 5, 835 (1928). 
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like and time-like character.t Moreover, as shown by Robertson, in 
the present case the properties of the manifold defined by (142.10) 
may be regarded to a certain extent as intrinsically independent of 
the newt, since a transformation to the variables 

r = reklo ; = t-to, 

which may be considered as a change in spatial scale combined with 
change to a new zero point for the time-like variable, leaves the form 
of the line element unf.l,ltered. 

The line elements (142.10) and (142.l1) may be designated in the 
language proposed by Robertson as stationary rather than static. This 
designation must not be confused, however, with another usage~ in 
which the term stationary is used to denote line elements in which the 
potentials g p.v are all independent of x' with some of the components 
g14, g24, and g84 present, and the term static is reserved for line elements 
in which these cross terms are missing. We shall find later use for the 
Robertson form of expression for the de Sitter line element [see 
§§ 144 (d), 183, and 184]. 

143. Absence of matter and radiation from de Sitter universe 
We must now turn to more physical aspects of the de Sitter universe 

by investigating the possibility for matter and radiation in the 1nodel. 
In accordance with the general treatment of the requirements for 
11 static homogeneous model discussed in § 134, the de Sitter line 
element was obtained in§ 136 by assuming that the necessary condi
tions for such a model were to be met by taking the proper density 
and pressure in the model as connected by the relation 

Poo+Po = 0. (143.1) 

The proper density of material p00 is, nevertheless, from its physical 
nature a quantity which could only be zero or positive. Furthermore, 
even if we permitted the idealized fluid filling the model to exhibit 
cohesive forces, it is evident that a negative pressure equal to the 
density in our present units could not be even remotely approached 
by any known material. Hence the above condition is evidently 
to be met only by taking the density and pressure each individually 
equal to zero Poo = 0 and Po= 0 (143.2) 

t For another non-static form for the de Sitter line element, see Lanczos, Pltysilc. 
ZeitB. 23, 539 (1922). 

:1: See Weyl, Raum, Zeit, Materie, Berlin (1921), p. 244. 
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corresponding to a completely empty universe, containing no appre
ciable amount either of matter or radiation. 

As a consequence of taking p00 = 0, we obtain a simplification in 
our previous equation (136.4) connecting cosmological constant and 
radius of the universe, so that the de Sitter line element can now be 
written as 

ds2 = - dr
2 

-r2 d82 -r2sin28 d4>2 +(1-~\ dt2 (143.3) 
1-r2JR2 R2} ' 

together with the simple expression for the constant R in terms of the 
cosmological constant 1 A 

R2 =a· (143.4) 

In accordance with this result, the de Sitter model can be regarded 
as spatially closed if the cosmological constant is positive, as de
generating into the open 'flat' space-time of the special theory of 
relativity if the cosmological constant is equal to zero, and as 
spatially open but 'curved' if the cosmological constant should be 
a negative quantity. In what follows we shall regard A as positive 
and R as real corresponding to a closed model. 

It is also interesting to note in accordance with (143.4) that 
Schwarzschild's exterior solution (96.3) 

ds2 = --- dr
2 

-r2 d82 -r2sin28d4>2 -1-(1- 2
m_Ar2) dt2 

1-(2mfr)-(Ar2/3) r 3' 
(143.5) 

for the static field in the empty space Sun'Ounding a spherical mass 
of matter, goes over into the de Sitter line element for a completely 
empty universe if we let the mass m of the sphere of matter at the 
origin go to zero. The expression given by (143.5) is interesting as 
being an actual if not very important example of a cosmological line 
element corresponding to a non-homogeneous model. 

144. Behaviour of test particles and light rays in the de Sitter 
universe 
(a) The geodesic equations. Since the de Sitter line element corre

sponds to a model.which must strictly be taken as completely empty, 
the presence of matter and radiation in the actual universe would 
necessarily produce some distortion away from the de Sitter model, 
a question to which we shall later 1-eturn in§ 183. The introduction of 
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test partiolea and test light rays into the model to study the gravita
tional field therein can, however, of course be considered. 

The motion of test particles and light rays will be governed by the 
equations for a geodesic 

d?.za dxJ' (kv 
ds'l. +{ltv, o}dB ds = 0. (144.1) 

Taking the de Sitter line element in the general form 

where 

d,sB = -ef. dr2 _,.2 d£)2 -r2sin2f} a.cp2 +ev dt2 

,.s 
e-~ = ev = 1--, R2 

(144.2) 

(144.3) 

and substituting into this geodesic equation the values for {p.v, a} 
given by (95.2), we obtain the four following oases for a = 1, 2, 3, 4. 

-+-- - -re-~ - -rsm28 e-~ - + !ev- - - == 0, d'Jr 1 dA(dJr)2 (d£))2 . (#)2 ~ dv(dt)2 
da2 2 dr ds ds dB d'l' d8 

d2() + 2 dr df)- sin{} cos{} (#)s = 0 
d82 t' ds ds dB ' 

d24> 2 dr "# df} # -+---+2oot9-- = 0 
d82 t' ds dB ds d8 ' 

d2t + dv dr dt = 0 
ds2 dr dB ds · 

Without loss of generality, however, these equations can be readily 
simplified by choosing coordinates such that the motion of interest 
is initially in the plane {} = tzr. In accordance with the second of the 
above equations the motion will then remain permanently in +,hat 
plane and the equations will reduce to 

d"'r 1 dA(dr)2 (#)2 dv(dt)2 d82+ 2 dr ds -re~ ds +iev-~ dr dB = 0, 

d"4> 2 dr d<p 
d82 +;dB ds = 0, 

d9t+dv dt _ 0 dB2 dB dB- . 

The first iri.tegrals corresponding to these equations can be easily 
obtained, since the form of the line element (144.2) itself provides one 
integral and the second and third equations can be I'eadily integrated 



§ 144 THE DE SITTER STATIC MODEL 351 

by inspection. We thus obtain 

eA(:)" +~(~)" -e·(!)" +I = o, 

d<P h 
ds = r 2 ' 

dt = ke-v 
dB ' 

where hand k are constants of integration. Finally, substituting the 
last two of these equations into the first and introducing the values 
for~ and v given by (144.3) we obtain the equations of motion in the 

form dJr J( . r2 h'l. 7112) 
dB=± kB-1+ R2-1i+ R2' 

,up h 
ds = 1'2 , (144.4) 

dt k 
ds = 1-r2/R2 ' 

In accordance with these equations it will be noted that his a para
meter which can assume either positive or negative values depending 
on the direction of motion. It should be noted, however, that for all 
values of r < B the parameter k must be a positive quantity, since 
we shall take increases in coordinate time t as directly correlated .with 
increases in proper time B. In the case of light rays the parameters 
h and k will assume infinite values, owing to the relation ds = 0 then 
obtaining. 

(b) Orbits of particles. We may now use the foregoing integrals of 
the geodesic equations to secure information as to the motion of 
particles in a de Sitter universe. 

We may first investigate the s"Mpe of orbit. Combining the first of 
the above equations with the second and rearranging we easily obtain 

hdlr 
(144.5) 

This equation can be readily integrated to give an analytical expres
sion for the shape of the orbits taken by partic~s in the de Sitter 
universe. An immediate intuitive appreciation of these shapes can 
be obtained, however~ by noting that (144.5) is well known in 
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Newtonian mechanicst as applying to the shape of orhit taken by a 
particle with a central repulsive force proportional to the radius r. 
Hence in the de Sitter model, the orbits of free particles, plotted in 
the present coordinates r, 9, 4>, would be in general curved away from 
the origin as though the particles were repelled by it. 

We may next investigate the velocity of motion in the orbit. This 
will, of course, not be the same as in the Newtonian analogue men
tioned above. In terms of increments of proper time ds for the particle 
itself, the two components of orbital velocity are already given by the 
foregoing first integrals of the geodesic equations. It will be noted, 
however, in accordance with the form (144.2, 3) in which we have 
taken the line element, that the coordinate timet is the proper time 
as it would be measured by an observer at rest at the origin. Hence, 
since it will be convenient in making compar.\sons with the actual 
universe to regard ourselves as located at the origin of coordinates, 
it will be advantageous to express the velocities for different particles 
in terms oft. To do this we have merely to eliminate dB from equa
tions (144.4), which gives us 

dr = ± (1-r2fR2) J(k,.-1+_::- h2 + h2) (144.6) 
& k w ~ w 

and dcf> h(1-r2fR2) (144.7) 
dt = k:r2 

for the two components of orbital velocity in terms of ordinary time 
as measured at the origin. 

As a result of these equations the radial velocity of the particle 
would be zero when 

r2 h2 h2 
k2-1+ R2- r2 + R2 = 0, 

and both components of velocity woUld be zero at 

r = R. 

(144.8) 

(144.9) 

The first of these equations determines the value of rat perihelion when 
the particle most closely approaches the origin. And in accordance 
with the second equation all particle motion ceases at the radius R, 
which we shall later designate as the apparent horizon of the universe. 

For the particular case of purely radial motion with k = 0, the 

t See, e.g., Boltzmann, Vorl68Ungen iiber dia Principe de1' Mechanik, Teil I, 20, 
equ.a.tion ( 40). 
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condition for closest approach (144.8) reduces to 

r = B~(1-k1) (144.10) 

perihelion only occurring when the parameter k is less than unity, the 
particle passing through the origin for larger values of k. 

Differentiating (144.6) and (144.7), we can also obtain expressions 
for the accelell'ation of a particle in its orbit. With some rearrange
ment of terms these become 

(144.11) 

and (144.12) 

In accordance with (144.11) we see that the radial acceleration of 
a particle whi9h has zero radial velocity is necessarily positive at any 
point between r = 0 and r =B. Hence a free particle which once 
reaches perihelion and starts to move away from the origin w:ould 
never again return. It will also be noted that for a particle at re~t 
at the origin, with r = 0 and h = 0, the acceleration would vanish. 
Hence such a particle would remain permanently located at the origin~ 
thus removing any conflict with our previous statement as to the 
convenience of regarding ourselves as located at the origin of the 
coordinates which we are using. 

(c) Behaviour of light rays in the de Sitter universe. We may now 
turn to the behaviour of light rays in the model. In accordance with 
the remarks made in connexion with the integrals of the geodesic 
equations (144.4), the parameters hand k would have to be infinite 
to correspond to the path of light in our present coordinates. Intro~ 
ducing this condition into the equation for the shape of orbit (144.5) 
we then obtain dr (144.13) 

d<p = J(k2-1 1 1) 
r2 hi + Jl2- rB 

for the path of light in the de Sitter model. This will be recognized as 
corresponding in Newtonian mechanicst to the orbit of a particle in 
the limiting case where the central force becomes zero. Furthermore, 
the equation can be integrated in the form rcos~+arsin~ = b, 
where a and b are constants. Hence the trajectories of light rays 
in the coordinates chosen would correspond to straight lines. This 

t See, e.g., Boltzmann, loo. cit. 
3595.11 An 
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provides an advantage for these coordinates in interpreting astro
nomical measurements of distance. 

To determine the velocity of light in the model we may return to 
the expression for the line element itself (144.2, 3), and set ds2 = 0. 
Doing so we obtain the general result 

·(r1Jr)2 ( r2 \{ 2(d8)2 . 2 (#)2} ( ,2)1 dt + 1- Jl?.j r dt +r2sin. 9 dt = 1- BB , (144.14) 

and for the case of purely radial motion this reduces to 

: = ±(1-;.). (144.15) 

Integrating this result from r = 0 to r = B, it is found that an 
infinite length of time as measured by an observer at the origin would 
be necessary for light to travel between the origin and r = R. Hence 
an obsel'Ver at the origin could never have any information of events 
happening at B or beyond and could speak of a harizon to the universe 
at this distance. It should be remarked, however, that another 
observer located at a different origin would locate his horizon differ
ently, and hence the spatially closed character of the model, men
tioned in connexion with (143.4), is to be regarded as applying to the 
findings of a particular observer. 

(d) Doppler effect in the de Sitter universe. With the help of our 
knowledge as to the behaviour of particles and light rays in a de 
Sitter universe we can now investigate the wave-length-as measured 
at the origin-of light coming from freely moving particles in the 
model. 

In accordance with the expression for the velocity of light given by 
(144.15), light leaving a particle located at the radius r at 'time' 'lt 
would anive at the origin at the later 'time' t2 given by 

,. 

t2 = ~+ f 1-~fB2' 
0 

And hence by differentiation the 'time' interval 8t2 between the 
reception of two successive wave crests would be related to the 'time' 
interval8t1, between their emission by the equation 

8t2 = ( 1+ l-~/B2 :)a~, (144.16) 

where drfdt is the radial velocity of the particle at the time of 
emission. 
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On the other hand, the proper time interval 8~ for an observer on 
the moving particle corresponding to the coordinate interval a~, 
assuming motion in the plane 8 = f7T, would evidently be 

8~ = 1-~/R
2

8~ (144:.17) 

in accordance with the third of equations (144.4), while the proper 
time interval between crests as measured at the origin would be 

8tg = 8t2. (144.18) 

Hence combining the three foregoing equations we obtain-by the 
method of§ 116-for the shift 8A in wave-length measured at the 

origin 1 dr 

A+8.:\ 8tR I+ I-r2jB2 di 
A = 8ey = l-r2JR2 

k 

or A+8A 1c k dr 
-A-= 1-r2jR2+(I-r2jR2)2 dt' (144.19) 

where the first term depends on the parameter 1c for the orbit and 
the radial position r of the particle at the time of emission, while the 
second term depends also on the radial velocity of the particle at the 
time of emission. 

Since the parameter lc as mentioned above would necessarily be a 
positive quantity, we see that the shift can be either towards the 
red or the violet according to the sign and magnitude of the velocity 
of the particle 'drjdt at the time of emission. When this velocity is 
positive the shift is neceBBarily in the direction of longer wave-lengths, 
but when it is negative the shift will be in the opposite direction only 
if the second term is great enough to overweigh the first. For example, 
for the case of a particle at perihelion with no component of radial 
motion at all we find, by introducing the condition for perihelion 
given by (144.8), a red-shift of the amount 

><+3.\ lc J(l- ~.+ ~:- ~) 
-y- = l-r2JR2 = + 1-r2JR2 ' (144.20) 

where r is now the radius at which perihelion occurs. 
In the de Sitter universe, we thus find the possibility both for red- or 

violet-shifts in the light coming from distant particles, but never
theless some tendency to favour the occurrence of red- over violet-
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shifts. This leads to the suggestion that the de Sitter model might 
account for the great preponderance of red-shifts over violet-shifts 
in the case of the nearer spiral nebulae discovered by Slipher, and 
the linear relation between red-shift and distance as we go to the more 
distant nebulae discovered by the extensive work of Hubble and 
Humason. 

To examine this suggestion it is evident that we cannot proceed 
solely on the basis of the expression for the generalized Doppler 
effect given by (144.19). This formula tells us, to be sure, what the 
observed wave-length of light from a given particle would be, provided 
we know its orbit and its position therein at the time of emission. 
But this information would have to be supplemented by some hypo
thesis as to the orbits and positions for the particles actually present, 
in order to make predictions as to phenomena in the real universe. 

At first sight, the most natural hypothesis to introduce in this con
nexion might appear to be one which would maintain conditions in our 
immediate neighbourhood permanently in an approximately steady 
state. To secure this result we should have to assume an approxi
mate equality between the number of particles (nebulae) which are 
entering our range of vision at any given time and the number which 
are leaving after having passed perihelion within that range. 

This hypothesis of continuous entry has been examined in some 
detail, however, by the present writert and found to show little 
promise as furnishing an account of the actual universe. In accord
ance with (144.19) and (144.20) there would indeed be some excess of 
red-shifts over violet-shifts in the observed light from the moving 
particles, since the red-shift would commence prior to the passage 
of perihelion and continue permanently thereafter. Nevertheless, it 
would be hard to account for the complete absence of violet-shifts 
actually found for all but a very few of the nearest nebulae, or· to 
account for the fairly precise, observational, linear relation between 
red-shift and distance on the proposed basis. 

An alternative hypothesis suggested by Weyland investigated by 
himselft and by Robertson§ has shown more immediate promise 
of possibly furnishing an account of the observed relation between 
red-shift and distance. In accordance with this hypothesis the 

t Tolman, .Ast.rop"Wys. J01J,r. 69, 245 (1929). 
t Weyl, Phys. Zeits. 24, 230 (1923); PMJ,. Mag. 9, 936 (1930). 
§ Robertson, Phil. Mag. 5, 835 (1928). 
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nebulae in the actual universe are to be regarded as lying on a 
coherent pencil of geodesics which diverge from a common point in 
the past. 

To investigate the detailed nature of the Weyl hypothesis it is 
most convenient to use the coordinates of Robertson, which were 
found in § 142 to lead to the very simple expression for the line 

element, diJ2 = -e2kl(dr2+r2 d82+r2sin28 dcp2)+dt2• (144.21) 

Using these coordinates and applying the geodesic equation 

d2XU dxJI- dxv 
diJ2 +{!.tv, o}dB ds = 0, 

-to the case of particles having no spatial components of 'velocity' 
(drjib = d8jds = dcpjds = 0), it is at once seen from the expressions 
for the Christoffel symbols {p.v,o} provided by (98.5), that the 
accelerations would vanish and that such particles would remain 
permanently at rest with respect tor, 8, and c/J. 

The Weyl hypothesis then consists in assuming that the nebulae 
in the actual universe are to be treated as a uniformly distributed 
set of free particles, which-except for small peculiar motions
remain at rest with respect to the spatial coordinates now being 
employed. It will be noted from the form of the line element that the 
present coordinate tis now the proper time not only for a particle 
at rest at the origin but also for any of these other particles which are 
at rest with respect tor, 8, and c/J. It will also be seen that any one of 
these particles could be taken as at the origin of coordinates without 
change in form of the line element. Hence all these particles may be 
regarded as equivalent, in the sense that observers thereon would all 
find approximately the same phenomena occurring in the universe. 

Although these particles are chosen so as to remain at rest with 
respect to our present spatial coordinates, it is evident that the 
proper distance between them as measured by rigid ~:~cales laid end 
to end would be changing with the time t, owing to the occurrence of 
this quantity in the components of Up.v· Hence we should expect a 
Doppler ahift in the light passing from one such particle to another. 

In accordance with the form of the line element the radial velocity 
of light in terms of our present coordinates would be 

dr - = ±e-kt. 
dt 
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Hence, considering a particle permanently located at the radius r, 
the times ~ and t2 for the emission of radiation from the particle and 
its reception· at the origin would be connected by the equation 

t. f' 

J e-kt dt = J dr = r = const., 
ts 0 

which on differentiation gives 

Bt2 = ek<t,-tJ B~ 

as the relation connecting the time interval Bt2 between the reception 
of two successive wave crests with the time interval B~ between'their 
emission. Since t, however, is the proper time foro bservers both at the 
particle and origin, this now gives as a general expression for the 
Doppler shift observed at the origin 

.A+B.A = Bt2 = ek(t,-tJ (144.22) 
A B~ 

or as an approximation for values of r which are not too great 

(144.23} 

It is evident, moreover, as will be discussed for the general case of 
non-static homogeneous models in detail in§ 179, that the coordinate 
distance r would in first approximation be proportional to astro
nomical determinations of distance. Hence, with the help of the 
Weyl hypothesis, we have obtained a distribution of nebulae in the 
de Sitter model which would exhibit an approximately linear relation 
between red-shift and distance as is found in the actual universe. 

It should perhaps be emphaedzed, nevertheless, that this result is 
due fully as much to the assumption we have made concerning the 
distribution of the nebulae in space-time as to the inherent properties 
of the de Sitter model. It may also be pointed out that a reversal in 
the signs of the terms -tjR and (R/2}log..J{1-(r2JR2)} in the trans
formation equations (142.8), by which we obtained the Robertson 
expression for the de Sitter line element, would give us a set of coor
dinates equally appropriate for discussing the reverse case of a system 
of approaching particles which would exhibit a Doppler shift towards 
the violet instead of towards the red. It should also be emphasized, 
however, that the Weylhypothesis has the very attractive feature of 
putting all the particles (nebulaoe) in the model on the same footing, 
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so that there would be nothing unique about the phenomena observed 
;from any particular nebula. 

145. Comparison of de Sitter model with actual universe 
The most satisfactory feature of the de Sitter model is the possi

bility which we have just discussed for it to contain a distribution of 
moving particles so chosen as to imitate the linear relation between 
red-shift and distance discovered by ~ubble and Humason for the 
light from the nebulae in the actual universe. 

In accordance with (144.23) we have as the expression for this rela
tion B>t 

1" = kr, (145.1) 

and as a result of the astronomical measurements, see § 177 (d), we 
may give to k the approximate numerical value 

k ~ 6·0 X 10-28 cm.-1 ~ 5·7 x 10-10 (light years)-1• (145.2) 

On the other hand, in accordance with (142.9) and (143.4) we may 
write for kin the case of the de Sitter model the theoretical expressions 

k = ~ = J~· (145.3) 

And this gives us 

R ~ 1·66 X 1027 em.~ 1·75 X 109 light years (145.4} 

(145.5) and A= 1·08 X 1Q-54 cm.-2. 

These results may be compared with the previous case of the 
Einstein universe as given by (141.3) and (141.4). It will be noted 
that the cosmological constant A comes out very considerably 
greater in the case of the de Sitter universe than in that of the 
Einstein universe. Nevertheless, comparing with the result given by 
(141.5), it will be seen that A is not large enough to affect known 
planetary orbits. It will also be noted that the distance R to the 
horizon in the de Sitter universe comes out appreciably less than the 
radius R of the Einstein universe, and perhaps dangerously close to 
the distances of the order 3 x 108 light years which have already been 
penetrated by the telescope. 

The most unsatisfactory feature of the de Sitter model, as a basis 
for the cosmology of the actual universe, is the finding discussed in 
§ 143 that the line element when strictly taken corresponds to a 
completely empty universe containing neither matter nor radiation. 
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Hence the actual presence of matter and radiation in the real universe 
must be regarded as producing a distortion away from the proposed 
line element. .And we shall later be able to show in § 183 that this 
distortion might be serious. 

It is interesting to note the contrast in the successful and unsuc
cessful features .of the two original statio models. The Einstein model 
permits a finite concentration of matter in the universe, but does not 
allow for any red-shift in the observed light coming from the nebulae. 
The de Sitter model permits, with the introduction of the Weyl hypo
thesis, a red-shift in the light from distant particles, but does not 
allow for the observed finite concentration o~ matter in the actual 
universe. The non-static models, to which we now turn in Part II of 
this Chapter, will be found to permit the successful features of both 
the older models. 



X 

APPLICATIONS TO COSMOLOGY (contd.) 

Part II. THE APPLICATION OF RELATIVISTIC MECHANICS TO NON
STATIC HOMOGENEOUS COSMOLOGICAL MODELS 

146. Reasons for chan~n11 to non-static models 
The original static universes of Einstein and of de Sitter are 

certainly very important in furnishing examples of the kind of cosmo
logical model that can be constructed within the theoretical frame
work of genm·al1-elativity. Moreover, as we shall see later, it is possible, 
although not necessarily probable, that these models might really 
correspond to a considerable extent with the initial and final states 
of the actual universe. Nevertheless, it is evident that neither of 
these models gives a satisfactory description of the present state of 
the actual universe, the one because it permits no shift in the wave
length of light from the nebulae, and the other because it permits 
no matter or radiation to be present in space. 

We must hence turn to some less restricted class of models in our 
attempts to describe the behaviour of the actual universe, and may 
begin by investigating the effects of dropping our previous require
ment that the line element for the universe should be expressible in 
a static form independent of the time-like coordinate x'. 

There are several reasons which make it natural to abandon this 
assumption that our cosmological models should neceBBarily be static 
in character. In the fll'st place, it is of course evident that any increase 
in generality which can be brought about by the removal of previous 
restrictions will be of advantage in increasing the range of possible 
applicability. The non-static models which we shall now study are, 
to be sure, mathematically more complicated than our previous 
static ones; nevertheless, the history of hmnan endeavours to under
stand the universe would certainly indicate no a priori right to 
demand mathematical simplicity of nature. In the second place, 
although there was some observational evidence for ascribing a 
reasonably stationary character to our surroundings at a time when 
our knowledge of the universe was practically limited to the stars in 
our own galaxy, this evidence must now be regarded as completely 
replaced by the observed red -shift in the light from the extra-galactic 
nebulae which at least leads to the presumption that these objects are 
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not static but are moving away from each other. In the third place, 
even if some successful alternative hypothesis should be proposed 
for explaining this red-shift, it should be emphasized that processes 
are certainly observed in the universe, such as the emission of radia
tion from the stars at the presumable expense of their mass, which
un:less compensated in some unlmown and ingenious manner-cer
tainly lead to changes in gravitational field with the time and hence 
necessarily to a ·non-static universe.t Finally, as we shall see later, 
we shall find that an originally static Einstein universe would in any 
case not be stable but would start to expand or contract as a result of 
disturbances.t 

By dropping the previous restriction to static models, we are at 
once led to the study of a considerable group of non-statio homo
geneous models,§ which were first theoretically investigated by 
Friedm.ann,ll and first considered in connexion with the phenomena 
of the actual universe by Lemaitr~. tt 

147. Assumption employed in der.iving non-static line element 
We shall commence our investigation by considering the deriva

tion of the form of line element which applies to the proposed models. 
The first completely satisfactory derivation of this line element was 
given by Robertson,~~ who based his deduction on two simple geo
metrical assumptions-first, that space-time £rom a large-scale point 
of view should be separable into space and a 'cosmic' time orthogonal 
thereto in such a way that the line element could be written at the 
start in the form ds2 = g-t1dx£dx1+dt2 (i,j = 1, 2, 3), and secondly, 
that space-time should be spatially homogeneous and isotropi~ when 
looked at from a large-scale point of view. This was followed by a. 
derivation by the present writer§§ based on a set of assumptions, 
selected on grounds of their immediate physical charaeter, but not 
chosen as simply and critically as is possible. The somewhat similar 
derivation to be given below will be based essentially on a single 

t Tolman, Proc. Nat. Acacl. 16, 320 (1930). 
t Eddington, Monthly Notioea, 90,668 (1930). 
§ For an excellent snmma:ry of the work on statio and non-statio models up until 

the end of 1932, see Robertson, Reviews of Modem PhysiCB, 5, 62 (1933). 
II FriedmA.tJn, Zeits. f. Physik, 10, 377 (1922). 
tt Lemattre, Ann. Soc. Sci. Bru:ceUes, 47 A, 49 (1927). 
U Robertson, Proc. Nat. A cad. 15, 822 (1929). The earlier deduction of Friedmann 

was not entirely satisfactory. 
§§ See loo. oit., § 146. 
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assumption as to spatial isotropy, having an immediate observational 
significance which will be evident from the beginning. 

In accordance with the results of Hubble, 'the large-scale properties 
of the universe do not appear to depend in any significant way on the 
direction of observation as far out as the 100-inch Mount Wilson 
telescope is able to penetrate. Thus with respect to our own loca
tion, on a particular one of the galaxies or nebulae which constitute 
the observed portion of the universe, we actually find the universe 
to be spatially isotropic. Generalizing this observed fact, we shall 
then take as our only essential hypothesis-necessary in addition 
to the principles of relativistic mechanics for deriving the desired 
line element-the assumption that an observer, located anywhere in 
the universe and at rest with respect to the mean motion of the 
matter in his neighbourhood, would also obtain observations showing 
a similar large-scale independence of direction. In other words, we 
shall assume spatial isotropy for the physical findings of any such 
observer. 

This assumption is a natural one to introduce, since it avoids the 
anthropocentric assignment of a unique importance to our own 
location in the universe, and proceeds as best we may by regarding 
the observations that we obtain as fairly representing the character 
of those which would be obtained from similar locations in other 
portions of the universe. Before investigating the consequences of 
this assumption, nevertheless, several critical remarks may be made 
concerning it. 

In the first place, it should be emphasized that the assumption is 
in any case meant to be only a rough principle applying on the 
average to regions large enough to contain many nebulae. In the 
second place, it should be noted that the requirement of spatial 
isotropy is to apply, of course, only as stated, to the findings of 
observers who are at rest with respect to the matter in their part of 
the universe, since observers moving through this matter would cer
tainly obtain findings which were dependent on the direction of the 
relative motion. 

Most important of all, however, it is to be emphasized that the 
assumption is to be regarded merely as a wo:r;king hypothesis, 
suggested by the present state of observational knowledge, but 
neceBBarily subject to some modification if we desire to allow for the 
finer details of the observed irregularities in nebular distribution, and 
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perhaps subject to far-reaching modification if more powerful tele
scopes should reveal a systematic lack of uniformity in different parts 
of the universe. The assumption is. not in the least intended to be 
taken as a fundamental law of nature, on the same footing as the 
principle of relativity, but should be regarded more nearly as a mere 
statement defining the kind of cosmological model we shall next 
discuss.t Furthermore, it is specially important to realize the possi
bility that this assumption of spatial isotropy might not agree with 
the facts in the actual universe, since even if the model we obtain 
does prove successful in correlating a certain number of cosmological 
phenomena, we must always keep an open mind as to changes and 
improvement-s which could make a better or more extended theory 
poBBible. To this we shall return later. 

148. Derivation of line element from assumption of spatial 
isotropy 
We must now turn to the details of deriving the general form of line 

element for the class of models that we are to discuss. As a result of 
our assumption of spatial isotropy, it is evident that we may at the 
start require our coordinate system to be such that the line element 
will explicitly exhibit spherical symmetry around the origin of co
ordinates, which can be taken at any desired point in the model 
which remains at rest with respect to the matter in its neighbourhood. 
Furthermore, it is evident that we can at the same time employ-as 
will prove most convenient-a co-moving coordinate system obtained 
by taking the spatial components as determined by a network of 
meshes which is drawn so as to connect adjacent material particles 
(nebulae) in the model and is allowed to move therewith. Hence as 
a starting-point, we shall assert the possibility of expressing the line 
element in co-moving coordinates in the most general possible forn1 
exhibiting spatial spherical symmetry. 

ds2 = -eP dr2 -&(r2 d()2 +r2sin28 d~2)+ev dt2 +2a drdt. (148.1) 

We take this most general form as a starting-point, rather than 
either of the simpler forms exhibiting spherical symmetry previously 
discussed in§§ 94 and 98, on account of the assertion that we are to 
use co-moving coordinates, which necessitates a special investigation 

t The procedure is very different from that of Milne, Zeits.j. AstrophyB., 6, 1 (1933), 
who would regard the homogeneity of the universe as a. fundamental principle from 
which even the laws of gravitation might be deduced. 
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to see if simplifications can be introduced without disturbing this 
desired character of the coordinate system. It is easy to demonstrate, 
however, that a reduction to the second of the two previous simplified 
forms can be made, still maintaining the co-moving character of the 
coordinates. 

In order to obtain simplifications, we may obviously consider any, 
transformations of coordinates which do· not upset the relations of 

the type dr d(} dcp 
ds = ds = ds = 0, (148.2) 

which must hold for the spatial components of the 'velocity' of 
particles in the model, if our coordinates are to be co-moving as 
desired. 

Without disturbing these relations we can evidently substitute 
a new time-like variable t' defined by the equation 

dt' ::::;:: 'YJ(a dr+ev dt), (148.3) 

where 'YJ is an integrating factor which makes the right-hand side of 
(148.3) a perfect differential. In accordance with (148.3) we shall have 

dt' 2 a2 

ev dt2+2a drdt = ----- dr2. (148.4) 'YJ2ev ev 

So that on substitution into (148.1), and dropping primes the line 
element can be written in the simpler form 

ds2 = -r!'- dr2 -&'(r2 d82 +r2sin28 dqJ2)+ev dt2, (148.5) 

where A, p., and v arc now functions of r and the present t, and the 
relations (148.2) have not been upset since r, 8, and cp are still the 
same variables as before. We have now reduced the line element to 
the general form studied by Dingle as discussed in § 100. 

To proceed farther in the simplification, we may next consider the 
components of gravitational acceleration for a free test particle in the 
mQdel. Theae would be determined by the equations for a geodesic 
(74.13), and for the case of a particle at rest with respeet tor, 8, and 
cp this would give us 

: = -{44, l}(:r d2(} (dt)2 dtJ2 = -{44, 2} dB ~t = -{44, 3}(:)"-
(148.6) 

Since this test particle is spatially at rest with respect to our present 
system of co-moving coordinates, it is also at rest with respect to a 
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local observer moving with the matter in the neighbourhood. In 
accordance with our assumption of spatial isotropy, however, such 
a local observer must obtain physical results which are independent 
of direction. Hence these accelerations can only have the value zero, t 
and we are led to the conclusion that the three Christoffel symbols 
appearing in (148.6) must themselves be zero. .And from Dingle's 
values for these quantities as given by (100.2) we then obtain 

av=av=av =O 
ar afJ aq, 

as a condition on the quantity v occurring in the expression for the 
line element (148.5). This shows that v is a function of t alone, and 
permits us to introduce a new time variable defined by the expression 

t' = J eiv dt (148.7) 

without disturbing the co-moving character of the coordinates. Doing 
so and dropping primes, we then obtain the further reduction to the 

form diJ2 = -eA df'2 -&'(r2 d(J2 +r2 sin2(J dcp2)+dt2. (148.8) 

We thus obtain a separation of space-time into space and a universal 
time t orthogonal thereto, without the necessity of introducing any 
further hypothesis. 

In accordance with this form of line element 

t = t0 

would now be the proper time as it would be measured by a local 
observer at rest with respect to the matter in his neighbourhood, and 

8Zt = elA 8r 8l2 = eiJJ.r 88 8l8 = elf'r sin fJ Be/> 
would be the proper distances as measured by this observer between 
particles belonging in the model which would permanently retain 
the above differences in coordinate position. For the fractional rate 
of change in these proper distances with proper time, we then obtain 

~log Sl,_ = ! oA !_log 3l
2 

= !_log 3l3 = ! op,, 
ato 2 at &to &to 2 at 

and, by our hypothesis of spatial isotropy for the findings of the local 
observer, are led to the useful relation 

oA op. 
&t = &t. (148.9} 

t We cannot in general use the co.moving character of coordinates as necessary 
justification for the requirement that the acceleration of such a particle must be zero, 
since gravitational action might be balanced by a pressure gradient. 
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This result now shows the possibility of a further simplification in 
the line element by the substitution 

- = el<>.-p> - or log r' = ei<>.-p.) - • dr' dr J dr 
r' r r 

(148.10) 

This substitution will not disturb the co-moving character of the 
coordinates, since we can evidently write for the radial velocity 
dr' fda of a particle in our new coordinates 

_! dr' = !..[ J el<>.-p> dr] dr + ~ [ J ei<>.-p> dr] dt 
r' ds 8r r d8 8t r dB 

= ~ [ J ei<>.-p> dr] dr + ! [ J ei<>.-p> (8;\ _ op.) dr] dt 
8r r d8 2 at at r dB' 

and in accordance with (148.9) this will be zero for any particle which 
is at rest, with drfda equal to zero, in our original coordinates. Intro
ducing (148.10) in (148.8) and dropping primes, we shall then be able 
to write the line element in the second of the forms considered in 
§ 98, 

(148.11) 

where p. is now a function of the present rand t. 
To continue with the derivation, we may again consider the proper 

distance 

between neighbouring particles belonging to the model which are 
permanently separated by the coordinate distance 8r. For th~ frac
tional rate of change of such a measured distance with the time we 
can write 

olog8lo 1 op. 
·-····m;-· .. = 2 at' 

and from our assumption of spatial isotropy it is evident that this 
quantity could not be found by the local observer either to increase 
or decrease with r. Hence we are led to the conclusion 

a a log 8l0 1 a211-_ ------- -· = - .. -·-·· = 0 
&r at 2 &rat ' 0 

and must take 11- as the sum of a function of r and t 

p.(r, t) = j(r)+g(t). 

(148.12) 

(148.13) 
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Introducing (148.13) into (148.11), we may now write the line element 
in the still more explicit form 

d82 = -ef<r>+oCO(dr2+r2 d(J2 +r2sin2(J dcp2)+dt2. (148.14) 

To .proceed from this point, we could now make use of a known 
principle of Riemannian geometry (Schur's theorem) in accordance 
with which the spatial isotropy at every point of the sub-space 
(r, 8, cp) with t constant would necessitate its spatial homogeneity, 
and thus permit us to Write for ef<r> a known form of solution. In 
accordance, nevertheless, with our desire to emphasi10e the physical 
character of our considerations, we shall actually proceed in a 
different manner. . 

Comparing the form for the line element (148.14} with the expres
sions for the energy-momentum tensor given for this general form by 
(98.6), we can now write as expressions for the only surviving com
ponents of the energy-momentum tensor 

where 

&rTl = -e-P.~• +~)+Hid2-A, 

&rT~ = 81rT~ = -e-P.ff" +f')+U+iif2-A, . \2 2r 

s.rT: = -e-P.V'+': + 2n+w•-A, 

p.(r, t) = f(r)+g(t), 

(148.15) 

and accents denote differentiation with respect tor and dots with 
respect to t. 

These expressions give, of course, the components of the energy
momentum tensor referred to our present system of coordinates 
(r, 8, cp, t). At any point of interest, however, we may evidently 
introduce proper coordinates (x0, y0, z0, t0) for a local observer at rest 
with respect to r, 9, and cp, in such a way that we shall have the 
relations 

dx0 = elP. dr dy0 = elfJ.r d9 dz0 = elJLr sin (J dcp dt0 = dt 

holding in the neighbourhood of that point. And in accordance with 
the general rules for the transformation of tensors, it is then seen 
that the above expressions would also give the analogous components 
of the energy-momentum tensor referred to these proper coordinates. 
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Thus, for example, we should have 

T l ax~ axfJ pa: i _.1 rm pl 
o1 = - - Q = e P.e •P. ..1. 1 = 1· axa: oxA ,.. 
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Hence the above expressions (148.15) may also be taken as giving 
the components of the energy-momentum tensor referred to proper 
coordinates as used by a local observer at rest with respect to the 
matter in the model. And from the assumed spatial isotropy in 
the findings of such an observer, we can then conclude that his 
measurements of stress will have to lead to a symmetry between the 
x, ·y, and z directions, such that we shall have 

T} = T~ = Tg. (148.16) 

Making use of this result, we then see from (148.15), that we obtain 
the relation !'" f' !" J' -+-=-+-, 

4 r 2 2r 

or (148:17) 

as an equation for determining the form of f(r). As a first integral 
of this equation we have 

df = clreit, 
dr 

where c1 is the constant of integration. And as the second integral 
we then obtain 1fc2 

eJ<r> = _2__ (148 18) 
[1-clr2f4c2]2' . 

where c2 is the second constant of integ:ration. 
This now completes the derivation. Retmning to our previous 

expression for the line element (148.14), absorbing the constant 
factor 1/c~ in efl(O, and to agree with familiar forms of expression 
putting 1 

_ C1 = -, (148.19) 
c2 R~ 

where R5 is a conBtant which can be positive, negative, or infinite, we 
can then write the line element in the final form 

eJl(l) 

M2 = - [1 +r2/4R~]2 (dr2+r2 d82 +r2sin28 dcp2)+dt2, (148.20) 

where g(t) is still an undetermined function of the time t. 
We have been interested in presenting this long derivation in order 
36115.U Bh 
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to show, by a line of reasoning each step of which has an immediate 
physical intePpretation, that the assumption of spatial isotropy for 
the large~sc8J.e physical findings obtained by observers at rest with 

· respect to the matter in their neighbourhood, combined with the. 
principles of relativistic mechanics, does inevitably lead to the pro
posed line element. Hence, if we should later be dissatisfied on 

· observational or philosophical grounds with the results to be obta.ined 
· from the proposed model, we must modify either the principles of 
relativistic mechanics, or the assumption th~t all observers in the 
universe must be expected to obtain large-scale re$ults which are 
independent of the direction of observation. 

r· 

149. General properties of the line element 
(a) Different forms o~ expression for the line element. By the tra.ns

formation of coordinates the line element for our present non-sta.-t;;ic 
models e(J(J> 

da2 = - (dr'+rs d8' +rlsin.28 dcpa)+dt2 (149.1) 
[I+r2f4.mJ2 

. 

can be written in several different forms which are sometimes con
venient or can be of assistance in understanding the implied geometry· 

By the obvious substitutions 
x = rsin8costfo y = rsin8sincp z = rcos8 (149.2) 

we·obtain the form 

ds• = -[1+~4W,]•(tl:r:1+dy•+&•)+dt1, (149.3) 

with r = .J(x'+Y'+z2
), 

which makes the spatial isotropy at any point perhaps more obvious. 
By the substitution 

- r 
r = 1+r1/4Wo (149.4) 

the line element assumes the form 

ds" = -e,aro( dr" +rs d82 +r2sin28 dcfo2)+dt2 (149.5) 
1-if"/Jlt ' 

which has the advantage of showing the relation of this non-statio 
line element to one of the most familiar forms for the static Einstein 
line element. t 

t Olmparing the transformation equation (149.4) with the previous transfor.ma.tion 
equation (188.2) used in connexion with the Einstein universe, it is to be noted that 
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By the further substitution 

·if= R0 sinx (149.6) 

we can now write the line element in the form 

diJ2 = -Wo&<"(dx2+ sin2x d82 + sin2xsin28 d~')+dt2. (149.7) 

Finally, by introducing a larger number of dimensions, with the 
help of the equations 

Zt = R0 tJ(1-r/Wo), z2 = ifsin8cos~, 
z3 = if sin 8 sin cf>, z, = if cos 8, (149.8) 

where z~+z~+z~+z~ = Wo, (144.9) 

the line element assumes the form 

ds2 = -&<O(dz~+dz:+dz~+dz~)+dt2, (149.10) 

which at any given timet permits us to regard our original space as 
embedded in a Euclidean space of a larger number of dimensions. 

(b) Geometry corresponding to line element. As in the case of the 
static Einstein universe, the kind of geometry corresponding to these 
different expressions for the line element is not completely determined 
since different hypotheses as to connectivity and as to the identifica
tion of points could be made. 

It will be simplest, however, as suggested by the last form in which 
we have written the line element, to regard the spatial extent of this 
non-static universe at any given time t as the whole three-dimen
sional spherical surface defined by 

z~+z~+z~+zr= Wo, (149.11) 
embedded in the four-dimensional Euclidean space (zv z2, z8, z,). Since 
the proper distance at time t corresponding to the coordinate interval 
dzv would from the form of the line element (149.10) evidently be 

dl0 = eioOO dzv (149.12) 

with similar expressions for the other spatial coordinates, it is evident 
that the radius of this spherical surface would be 

R = R0 eiO(l). (149.13) 

Hence this quantity is often spoken of as the radius of the non-static 
universe, and the geometry is spoken of as being that for the surface 
of a sphere in four dimensions whose radius is a function of the time. 

our present f' is analogous to the previous p, and OW' present r is analogous to the 
previousr. 
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It should b~ noted, however, in accordance with the equation (148.19) 
by which R0 was introduced, that this radius could be real, imaginary, 
or infinite. 

If we assume the radius real, the total integrated proper spatial 
volume of the model at any selected time t would be given in accord
ance with (149.7) by 

2'17' ., '" 

v0 = f J J Rgetfl(Osin2xsin8 dxd8f14 = 2-rr~RgetoOO, (149.14) 
0 0 0 

and the total integrated proper distance around the universe would 

be Z
0 

= 21rR
0

elD(t)_ (149.15) 

Taking the spatial geometry as elliptical rather than spherical, the 
corresponding quantities would be ha]f as great. 

If we assume the radius infinite or imaginary, the model would be 
spatially open rather than closed and the total proper volume could 
be most conveniently calculated, in accordance with the form {149.5} 
for the line element, from the expression 

21T 1T co 

v0 = J J J (l:;:;.A•Jl/•sme dfdBd<p = oo, 
0 0 0 

where .A2 is a positive quantity which can assume the value infinity, 
and the upper limit for if can be taken as infinity without disturbing 
the possibility for a physical interpretation of the line element by 
changing its signature. Evaluating the integral we then obtain an 
infinite total proper volume for open models. 

The symmetrical form (149.10), which we have been able to give 
to the line element by the device of considering a larger number of 
dimensions, is valuable in clearly showing the spatial homogeneity of 
the model already mentioned in connexion with (148.14). It is an 
interesting extension of Schur's theorem of Riemannian geometry, 
that the spatial isotropy which we have assumed for observers at 
all points in space-time should lead to an orthogonal separation into 
space and time and to homogeneity for the sub-manifold of space. 
It is in accordance with this result that our present models of the 
universe have been designated as non-static homogeneous cosmological 
models. 

(c) Result of transfer of origin of coordinates. The spatial homo
geneity of the model makes it evident that the origin for the spatial 
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coordinates can be selected at will at any desired point in the model 
without affecting the forms in which the line element can be expressed. 
Furthermore, on transferring the origin of coordinates from one 
point in the model to another, it can be shown not only that the 
line element can be written in an unaltered form, but also that the 

_coordinates of the new origin in the old system of coordinates will 
be related in the expected way to the coordinates of the old origin 
in the new system of coordinates. We may now demonstrate this 
principle.t . 

To agree with our later use of the result, we shall employ a system 
of coordinates (f, 8, cp, t) corresponiling to the third form (149.5) in 
which we have written the line element 

d!J2 = -eofJ>( dJr-2 +r2 d82 +r2sin28 tJ42)+dt1 (149.16) 
I-r/R~ ' 

and shall consider a nebula as being at rest at the origin of these 
coordinates, and an obseroer permanently located at if = a as provid
ing the new origin of the coordinates to which we wish to transform. 

In this original system of coordinates S we may then tabulate the 
spatial coordinates for the nebula and observer in the form 

System S R= 8 if> 
Nebula ' 0 . . (149.17) 
Observer a 0 0 

where the angular coordinates for the nebula at the origin are of 
course indeterminate, and for simplicity we have given the observer 
the polar and equatorial angles 8 = cp = 0, since the starting-points 
for measuring these angles can evidently be chosen in any arbitrary 
way that proves convenient. 

We now desire to find the result of transforming to a new system 
of coordinates S' of the same type as S but with the origin of coor· 
dinates located at the observer. To carry out this transformation it 
will be simplest to introduce intermediate steps in which we employ 
coordinates of the type given by the expression for the line element 
(149.10), corresponding to a treatment of our original space as em· 
bedded in a Euclidean space of one more dimension. Making use of 
the transformation equations (149.8), we shall then first transform to 
a new system of coordinates S,, in which the spatial coordinates for 

t Tolman, Proc. Nat. Acad.l6, 611 (1930). 
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nebula and observer will be seen to have the values 

Systems. zl z. Za Zc 

Nebula. Ro 0 0 0 (149.18) 

Observer R0 ,.j(l-a2/Wu) 0 0 a 

We may now consider a further change of coordinates to a new 
system s;, which may be regarded as a rotation in the z1 z4 plane, and 
which we define by the transformation equations 

z~ = Z]_ cos ex+z4 sin ex, 

z~ = -Z]_ sin ex+z4 cos oc, 

where we take 

(149.19) 

sin ex= ~ cos ex= ,.j(1-a2f R~). (149.20) 
Ro 

·Applying these transformation equations we then easily obtain as 
our new coordinates for the nebula and observer 

Nebula. R0 ..j(l-a''(Wo) 0 0 -a (149.21) 
Systems; zJ. ~ 1-+~ ~~ 

Observer R0 0 0 ·0 

This last transformation of coordinates, however, will be seen to 
have been such as to leave the line element in the form (149.10) and 
to preserve the form of the relation (149.9) which determines the 
three-dimensional surface in the four-dimensional manifold which 
corresponds to physical space. Hence we may now employ trans
formation equations of the form (149.8) to go back to a coordinate 
systemS' in which the line element will again have the form (149.16) 
with which we started. Doing so we then easily obtain for the 
coordinates of nebula and observer, 

SystemS' r' 8' cp' 
Nebula a (149.22) 

Observer 0 

where the values for all but one of the angular coordinates are un
determined. 

Comparing the tables (149.17) and (149.22), we now see that we 
have actually carried out a transformation from an original system 
of coordinates with the nebula at the origin r = 0 and the observer 
at i = a, to a new system of coordinates having the same form of line 
element (149.16) but with the observer at the origin of coordinates 
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r' = 0 and the nebula at f' = a. That this simple relation should 
hold for such a transfor:r;nation of coordinates was indeed to be 
expected. Nevertheless, the result will be of sufficient importance 
for our later considerations to justify the explicit proof which we 
have given here. 

(d) Physical interpretation of line element. In accordance with our 
general principles for the physical interpretation of formulae for 
interval, we can of course relate any of the foregoing expressions for 
the line element, in a non-static homogeneous universe, with the 
results that would be obtained by suitable measurements made in 
the ordinary manner with metre sticks or clocks. Thus if we_ write 
the line element in its original form 

ds• = - [t+~•tm]• (dr• +•' d8' +r'ain•8 dtf>')+dt', (149.23) 

we see that measurements of proper distance dl0 made by a local 
observer at rest with respect to r, 8, and if>, would be connected with 
coordinate differences by the equation 

elo<l> 
dlo = [I+r2/4R~] .J(dr2+r2 dfJ2 +r2sin2fJ d<p2). (149.24) 

Furthermore, we see that his measurements of proper time dt0 m a.de 
with his local clock would be connected with differences in c.oor
dinate time by the very simple relation 

dt0 = dt. {149.25) 

Similarly, of course, in the case of observers who are not at rest with 
respect tor, fJ, and cp we could find the somewhat more complicated 
relations between measurements of proper distance or time and 
coordinate differences. 

As a result of the simple relation (149.25), we see that the coordi
nate time t, in all of the expressions which we have given for our 
non-static line element, would agree with proper time as measured 
on his own clock by any local observer at rest with respect to the 
mean motion of matter in his part of the universe. It is important 
to emphasize this result, since it means that we can identify the 
coordinate t with our own measurements and estimates of past and 
future time. Hence any estimates of the time scale needed for astro
nomical changes are appropriately expressed in terms of the coor
dinate t, and no real changes in time scale are brought about by the 
mere substitution of a new time-like coordinate in place oft. 



376 APPLICATIONS TO COSMOLOGY § 160 

150. Density and pressure ill non-static universe 
Up to the present stage in our consideration of these homogeneous 

non-static models, we have made no hypothesis as to the nature of 
the material fi11ing th'e ~odel, beyond the assumption that we could 
neglect local irregularities from the large-scale point of view employed 
in cosmology, and the assumption that the material could then be 
taken as obeying Einstein's :field equations 

-8?TTI'v = Bp.v-lBgl'v+Agl'1,. . 

where, in accordance with the large-scale point of view, the com
. ponents of the energy-momentum tensor would have to be assigned 

values which could be regarded as appropriate averages for the posi
tion and instant of interest. 

We may now, however, introduce a more specific hypothesis by 
assuming that the material filling the model can be treated as a perfect 
fluid. It was advantageous to delay the introduction of this assump
tion until the spatial homogeneity of the model had been demon
strated. With a non-homogeneous distribution :we should expect 
.to encounter phenomena, such as the net outward flow of radiation 
from a region containing a greater concentration of luminous matter 
than its surroundings, which could no~ be appropriately represented 
by replacing the· actual material by a perfect fluid, owing to the 
circumstance noted in§ 86 that the expression for the energy-momen
tum tensor of a perfect fluid restricts the behaviour of the fluid to 
adiabatic processes without flow of heat, and hence provides no analogy 
for a transfer of energy by radiation flow from one portion of matter 
to another. HaVing found homogeneity, however, for the class of 
models under consideration we may now regard the radiation derived 
from the nebulae in any given large region as suffering no net increase 
or decrease by exchange with the surroundings, and introduce the 
definite hypothesis that the material in the actual universe, consisting 
of nebulae together with dispersed intergalactic matter and radiation, 
can be treated for the purposes o£ the model as a perfect fluid. 

As a consequence of this hypothesis, we can now apply, to the 
material fl1Hng the model, the specific expression obtained in § 85 for 
the energy-momentum tensor of a perfect fluid 

(150.1) 

where p00 and Po are the proper macroscopic density and pressure as 
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they would be 1neasured by a local observer at rest in the fluid, and 
the quantities dxP-fds are the components of the macroscopic· 'velocity' 
of this fluid with respect to the coordinates in use. 

Employing our original coordinate system (r, 8, cfo, t) in which the 
line element (149.1) assumes the form 

eO(O . 
ds1 = - (dr2 +r1 d82 +r2sin28 rJ42)+dt2 (150.2) 

[1+r1/4.m]2 

the spatial components of the 'velocity' of the fluid would be zero 

dr _ d8 _ dcfo _ 0 (150.S) ds_ds_ds_' 

owing to the fact that these coordinates have been chosen so as to be 
co~moving. And the temporal component would be 

dt 
-= 1, ds' (150.4) 

owing to the form of the line element. 'fhis introduces considerable 
simplification when combined with (150.1), and we then find as the 
only surviving components of the energy-momentum tensor 

p11 = -gnp0 p21 = -g22p0 pas= -gaap0 T" = p00, (150.5) 

or, on lowering indices, 

T~ = ~ = 71 = -Po T! = Poo· ( 150.6) 

The line element (150.2) is written, however, in a standard form, 
and expressions for the components of the energy-momentum tensor 
corresponding to this form have already been given by (98.6). 
Applying these expressions to the case of the present line element and 
introducing the pressure and density as given by (150.6), we then 
readily obtain 1 

87rp0 = - -e--oa>-U-!!i2+A (150.7) .m 
and 87Tp = ~e-(J(O+ag·2-A 

oo R~ 4 , 
(150.8) 

as simple expressions for the local pressure and density of the fluid in 
the model, where the dots indicate differentiation with respect to 
the time. 

Several remarks may be made concerning these expressions. In 
the first place, it will be noticed that the pressure and density 
are functions of the time t alone, and at a given va.lue of t would be 
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independent of position in the universe, in agreement with the spatial · 
ho~ogeneity of the model which we have already discussed. In the· 
second place, it will be seen that by ta.king g(t) as a constant inde
pendent of t the expressions for pressure and density would reduce 
to those given for the static Einstein universe by (139.3) and (139.4) 
with B = R0 ela as the constant value of the radius. Perhaps most 
important of all, however, in contrast to the case of the original 
static Einstein universe, it will be seen-when g(t) does vary with t-
that it is no longer essential for the constant R0 to be real and the 
cosmological constant A to be positive in order to obtain a positive 
density of energy p00 in the. model and a pressure p 0 .which is not 
negative. This is .especially significant since it removes the older 
a priori arguments for a necessarily closed universe and for the 
necessary introduction· of a cosmological term, and leaves these 
questions still open for observational decision. 

In interpreting the expressions for density p00 and pressure Po 
given by (150.7) ·and (150.8), it must be remembered that these 
quantities apply to the idealized fluid in the model, which we have 
substituted in place of the matter and radiation actually present 
in the real universe. In making this substitution, it would appear 
reasonable to take p00 as the averaged-out density o£ energy, corre
sponding to the nebulae and the internebular matter and inter
nebular radiation present in a sufficiently large region of the universe 
to be representative, including of course as an important item, and 
at the moment as the best known item, the energy mc2 corresponding 
to the mass of the nebulae. For the pressure p 0 of the fluid, it would 
appear reasonable to take ~e sum of the partial pressures, corre
spondiD.g firstly to the random motions of the nebulae themselves, 
secondly to the random motions of dust or other particles of matter 
present in internebular. space, and thirdly to the density of inter
nebular radiation. 

With the help of this picture of the factors responsible for the values 
o£ total energy density p00 and pressure p 0 , we can also obtain a rough 
expression for that part of the energy density Pm which directly 
corresponds to the mass of the nebulae and other particles of matter 
present in the universe. In the case of the nebulae the pressure corre
sponding to the random motion of these enormous particles would be 
equal to two-thirds of their kinetic energy per unit volume 

P = iPk 
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from ordinary kinetic theory considerations. This of course would be 
very small. In the case of particle8 of dust or other matter present 
in internebular space, the pressure would vary from two~thirds .the 
density of their kinetic energy 

P = iPk 
for slow random motions, down to one-third this quantity 

P = tPk 
for particles with velocities approaching that of light. Finally, for the 
case of radiation the pressure would in general be one-third the energy 
density p _ ~ 

- 1IPk· 
For the nebulae and slow moving particles, however, it is evident that 
the density of kinetic energy would be negligible compared with the 
density coiTesponding directly to the mass of the particles. Hence 
we may roughly take 

Pm = Poo-3Po (150.9) 

as that part of the total energy density which corresponds directly 
to the mSBs of the nebulae and whatever intemebular matter may be 
present; and this expression becomes exact when the pressure due to 
matter can be completely neglected. . 

Combining with equations (150. 7) and (150.8) we can then write 
for the density of matter in the universe the approximate expression 

81rpm = ;
2

e-o<1>+3g+3fi2-4A. (150.10) 
0 

151. Change in energy with time 
By substituting the values for the components of the energy

momentunl tensor (150.5) and (150.6) into the general equation of 
relativistic mechanics 

(151.1) 

for the case p. = 4, we at once obtain 

!!_(p Hu)+. !-p ~-u(un°Un+g22°Yss+gsa8Uaa) = 0 at oo - o at at at l ' 
since g44 hSB the conBtant value unity. And introducing the values 
for the components of the metrical tensor corresponding to the line 
element (150.2) which we are employing 

e(J(t> ass = - (dr2+r2 d(}2 +r2sin20 d~2)+dt2 (151.2) 
(I +r2/4R~]2 
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we easily find. that this reduces to 

a (Poo r2sin 8 elll(t>) a ( r2sin 8 eill(t> } _ 3) 
at (l+r2/4R~]3 +Po at [I+r2f41Vo]a - O. (l

5
1. 

This result, however, can be given an immediate physical inter~ 
pretation. In accordance with the form of the line element (151.2), it 
will be seen that the proper volume as measured by a local observer 
corresponding to a small coordinate range &r888cp would be given at 
any time t by the expression 

r9sin 8 e,foCl> 
8vo = [1+r2f41Vo]a 8r888cp. (151.4) 

Moreover, since the coordinates in use are co-moving, this is the 
· volume as it would appear to a local observer of an element of the 
fluid which would remain permanently in that range. Hence com
bining (151.3) and (151.4), we can now write 

d d 
dt(poo8vo)+.Podt(8vo) = 0, (151.5) 

and interpret this as relating the changes, which a local observer 
would find in the energy (p00 8v0) of any eiement of the fluid, with the 
work done on the surroundings in the way to be expected for adiabatic 
changes in volume. · 

As a consequence of (151.4) and (151.5), we now see that the volume 
of every element of fluid in the model would be increasing with the 
time if g(t) is increasing with t, and decreasing when g(t) is decreasing, 
and furthermore, if the pressure p 0 is a positive quantity greater 
than zero, that the proper energy of every element of fluid in the 
model would be decreasing when g(t) is increasing, and increasing 
when g(t) is decreasing. Hence, except for the special case of zero 
pressure, the total proper energy of the fluid will not in general be a 
constant; and the principle of energy conservation can only ·be made 
to apply by introducing a quantity to represent the potential energy 
of the gravitational field in the way already discussed in § 87. 

For some purposes it will be more convenient to write (151.3) in 
theform d d 

dt(pooelo<t).)+Pod/eiii(O) = 0, (151.6) 

which can evidently be done owing to the mutual independence of the 
coordinates r, 8, cp, and t. 

This 1.8.tter form of expression can be readily verified with the help 
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of the explicit expressions for density p00 and pressure p 0 given by 
(150.7) and (150.8), a necessary result since the fundamental equa
tion for the components of the energy-momentum tensor 

-81rTJ.LV = R,...v_!RgJ.LV+AgJ.Lv 

must provide-as we have seen-all the information which can be 
obtained from the equation of mechanics, 

axe-!xaP.~?~ = o 
axv 8xl-" ' 

which can be derived from it. 
In what follows we shall often find it convenient to take (151.6) 

together with (150.8) as being the two equations which relate the 
pressure and density of the fluid to the line element for the model, 
thus replacing the second-order eq~tion (150.7) by the first-order 
equation (151.6). 

152. Change in matter with time 
With the help of our rough expression (150.9) for that part of the 

total energy density 3 ( 152.1) 
Pm = Poo- Po' 

which coiTesponds directly to the mass of the nebulae and whatever 
intergalactic matter may be present, we can also investigate the 
dependence of the matter in the model on the time. t Combining 
(152.1) with (151.5) we can put 

d d d 
-l (Pm 8v0)+3-d (JJ0 8v0)+Po-d (8v0) = 0, (152.2) 
d t t 

and regarding M = Pm 8v0 (152.3) 

as the total proper mass of the nebulae and other particles of matter 
in a given coordinate range, we can rewrite this with the help of 
(151.4) in a form 

_ _!_ ~ = 6p0 dg +~ dp~ 
M dt Pm dt Pm dt ' 

(152.4) 

which gives the fractional rate of change in the proper mass of the 
matter present in the model. 

For the special case in which we take the pressure as permanently 
equal to zero, this rate would become equal to zero and we should 
have conservation of mass, as well as the conservation of total proper 
energy already noted for this special case in connexion with equation 
(151.5). t Tolman, Proc. Nat. Acaa. 16, 409 (1930). 
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Also for the special case determined by the condition 

6po dg + adpo = 0, 
dt dt 

which can also be expressed in the form 

d d 
3 dt(po8Vo)+Podt(8vo) = 0, 

§ 152 

(152.5) 

(152.6) 

we sl;lould have conservation of mass. And this will be seen to be the 
condition which would apply to the case of a model conta:ining a con
stant amount of matter exerting negligible pressure, and containing 
radiation which exerts the pressure p.,. = p.,./3, which will later be 
treated in § 160. 

In general, however, we should desire to allow some change in the 
proper mass associated with the matter in the model, since changes 
of this kind are presumably occurring in the actual universe. Thus, 
in accordance with the Einstein relation between mass and energy, 
the emission of radiation from the nebulae would be accompanied 
by a decrease in their mass, irrespective of the possibilities that the 
ultimate source of this radiation might lie in destructive processes 
such as the mutual annihilation of electrons and protons, or might 
lie in synthetic processes such as the formation of helium from 

, hydrogen with an accompanying decrease in mass. t Similarly, if the 
source of the cosmic rays should lie in the annihilation of internebular 
particles of matter or in the synthesis of more complicated atoms from 
hydrogen, there would also be a decrease in the mass of the matter 
in the universe. 

For some purposes, see§§ 165 and 184, it is more useful tore-express 
equation (152.4) in a form which shows the direct dependence of the 
rate of loss of mass on the rate of change in g(t). Making use of our 
previous expressions for p00 and p 0 (150. 7) and ( 150·8), we readily 
obtain after some rearrangement 

-~ dM = ~[Poo+iPo __ 1_(fi+~)]u, (152.7) 
M dt 2 Pm 41rpm ~ g 

where the dots indicate differentiation with respect to time. This 
expression for the fractional rate of decrease in the mass of matter in 
the model shows that the a.nnihilation of matter would in any case 

t This conclusion would have to be modified if the radiation frOm the stars should 
prove to be due to a failure of the principle of energy conservation in their interiors, as 
has been suggested by Bohr. 
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necessarily lead to a non-static model with g(t) not a constant. This 
result provides the specific justification for one of the general reasons 
given in§ 146 for changing to non-static models. 

153. Behaviour of particles in the model 
We may next consider the behaviour of free particles in the non

static model corresponding to our line element 

ds2 = - eJI(fJ (dr2+r1 d(J2 +r2sin18 d42)+ilt2 (153 1) 
[l+r2f4Wo]t . . 

In accordance with the principles of relativistic mechanics, the motion 
of free particles in the model would be determined by the equations 
for a geodesic dtxa dxP' dxv 

dsl +{ltv, a} dB (ii = 0. (153.2) 

And sinoe the line element (153.1) is written in a standard form, we· 
can employ our previous expressions for the Christoffel symbols 
{JLv, a} as given by (98.5), in using these equations. 

We may first investigate the case of a particle which is at rest with 
respect to the spatial coordinates r, 8, and tfo which will give us 

dr dO iJ4> dt 
ds = ds = ds = 0, dB = 1. (153.3) 

The equations for a geodesic then reduce to 
d2xa 
-ds2 +{44, a} = 0, 

and since all values of {44, a} are seen from (98.5) to be zero for our 
present line element, we find that all components of acceleration for 
such a particle would vanish 

d2r d28 d2tfo d1t 
f182 = tJ,s2 = dBI = dsl = 0, (153.4) 

and the particle would remain permanently at rest with respect to 
the spatial coordinates, and increments ds in proper time as measured 
by a local observer on the particle would permanently agree with in
crements dt in the coordinate time which we are using. 

The conclusion that particles at rest with respect to our spatial 
coordinates would experience no gravitational acceleration, tending 
to set them in motion, is of course in agreement with the fact that we 
have chosen co-moving coordinates such that the fluid filling the 
model remains permanently at rest with respect tor, 8, and tfo. The 
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result applies only to the gravitational acceleration, but owing to the 
homogeneity of the model, it is evident that other kinds of accelera
tion arising from collisions or radiation pressure would also be zero on 
the average for particles at rest relative to our spatial coordinates. 
The conclusion that particles of matter in the model would remain 
permanently at rest with respect to the coordinates r, B, and cp must 
not be confused with the fact that the proper distance between two 
such particles as determined by fitting metre sticks from one to the 
other would be changing with the time if g(t) is so changing. 

To investigate the more general case of particles havmg any 
arbitrary initial velocity with respect to the coordinates, it will prove 
most expeditious to start with the equation for a geodesic (153.2) for 
the case a = 4, which will give us 

d"t . da;J1- tJ,xv ) 
a.sz+{Jl.v,4}d8 ds = 0. (153.5 

Substituting from (98.5) the values of {p.v, 4} which correspond to 
our line element (153.1), we then obtain 

=. + ¥"!< (:)' Hei'Jlr' (:} • H&!lr•sm•e ('t)' = o, 

where efJCO 
eJ' = [l+r2f4R~]s~ 

and from the form of the line element itself, it is evident that the 
above result can be rewritten as 

d2t 1 dg [dt2 ] 
f182+2 dt dtJ2-1 = 0, 

2dt ~(dt) 
da dt dB dg 
dt2 = - dt' 
--1 dtJ2 

or 

which can be integrated to give us 

dt2 -1 = Ae-u<t> (153.6) 
d8Z ' 

where A is the constant of integration. 
To interpret this result, we may now again return to the line ele

ment (153.1) and note that this can be written in the form 

d82 - efl(l) ( dr" 2 d82 2 . 2 rJ42) 
dt2 - l- [l+r2/4Wo]2\dt2 +r dt2 +r sm 8 dt2 
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which can then be applied to the motion of particles in the form 
~2 1t2 --- = 1--
dt2 c2 ' 

(153.7} 

where c is the velocity of light, and u is the velocity of the particle as 
measured in the ordinary manner by an observer in its neighbourhood 
who is at rest with respect tor, 8, and cp, and who uses his own deter
minations of increments in proper time and proper distance 

eio(t) 
dt0 = dt, dl0 = [l+r2/ 4Wo] dr, etc. (153.8) 

Substituting (153.7) in (153.6) we then obtain 

u2fcl~ --'-:,...,.._ = Ae-o<t>, 
1-u2fc2 

(153.9) 

as an expression for the time dependence of the velocity u with which 
a free particle would be found to be moving by local observers along 
its path, who themselves remain at rest with respect to the aver~ge 
motion of matter in their neighbourhood. 

In accordance with (153.9), if g(t) is increasing with time, and the 
proper volumes of elements of the fluid in the model hence expanding~ 
the velocities of such free particles will be decreasing with time, and 
vice versa if the model is contracting these velocities will be increasing. 
H we apply this result to particles which are themselves regarded as 
constituents of the fluid in the model, and correlate the random 
velocities of such particles with the contributions they make to the 
energy density and pressure of this fluid, it can readily be shown that 
the dependence of velocity on time given by (153.9) is in entire agree
ment with the relation between energy density and pressure for the 
fluid previously given by (151.6). 

With the help of (153.9) we can also discuss the energy of free 
particles in the model as a function of time. This can be of interest 
in connexion with the energies of the cosmic rays in the actual uni
verse, since at least a portion of these rays may be due to fast-moving 
particles. By solving (153.9) we can easily obtain the result 

E 
E = :J(1__:-iJ;c2) = E0 .J(1+Ae-o(l>), (153.10) 

where E is the expression given by the special theory of relativity for 
the total energy of a particle, including its proper energy E0 = m0 c2 

corresponding to its mass. In accordance with this result, we see that 
3596.11 Cc 
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. the energy of such particles as measured by locaJ observers at rest 
with respect to the mean motion of matter in their neighbourhood 
would.be decreasing with the time if g(t) is increasing and the model 
expanding. . 

. To procure a better idea as to the rate at which the energy of such 
particles would be Chan.ging with time, we can obtain by the differen
tiation _and rearrangement of (153.10) 

. ~(E~Eo)!(E-E0) = 1(1+~)~ (153.11) 
as an. expression for the fractional rate of decrease in the kinetic 
energy of th~·pa.rticles (E-E0), which·in the case of" the cosmic rays 
. would be that portion of the energy available for producing ionization. 

· This fo:t;mula has the advantage of expressing the rate o~ energy 
change in terms of the quantity g = dgfdt, which a_s we shall later 

. find is closely related to the red-shift in the light. from the nebulae 
that would correspond to our model. In accordance With (153.11}, 
the fractional rate of decrease in the kinetic energy of free particles 
in the model would vary from g for slow moving particles with 
E ~ E0 , down to fi/2 for particles having velocities approaching that 
of light with E )> E0• As will be shown in § 156, the limiting case of 
particles having zero rest mass and moving with the precise velocity 
of light, would correspond to the behaviour of light quanta or photons. 

With the help of the equations for a geodesic, we can also investi
gate the form of the trajectories for free particles as well as their 
velocities. For our later purposes it will be sufficient to consider a, 

particle which is originally moving in the radial direction with 

dfJ = dcfo. = 0. (153.12) 
ds ds 

In accordance with the geodesic equations (153.2), we should then 

have ~+{11,2}(:)' +2{14,2}:: +{44,2}{:)' = 0, 

and '!::. +{11, s}(:)" +2{14,3}: : + { 44, 3} (:)" = o, 
and since the Christoffel symbols are all six found from (98.5) to be 
zero, we obtain the result 

(153.13) 
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We may hence conclude that free particles having their original 
motion directed to or from the origin of coordinates will continue to 
move in a radial direction. It is evident that this result is a direct 
consequence of the spatial isotropy of the model, and that it would 
also hold on transforming the line element to the form {149.5) since 
the coordinates () and cp are not affected by the transformation. 

154. Behaviour of li~ht rays in the model 
We may now turn to the behaviour of light rays in our present 

model, still making use of the line element in the form 

eoro 
d82 = - [l+r2/4R~]2 (dr2+r2 d82 +r2sin28 d~2)+dt2. (154.1) 

In accordance with the principles of relativistic mechanics, the equa
tions for a geodesic (153.2) would apply. to the motion of light rays 
as well as particles provided we consider the limiting case with ds = 0. 

Setting ds = 0 in the expression for the line element, we can at 
once write as a general expression for the velocity of light in our 
model, except when it is actually passing through matter, 

eo<l) (dr2 2 d()2 2 • 2 dcp2) -
[l+r2/4R~]2 dt2 +r dt2 +r sm () dt2 - 1. {154.2) 

And noting our previous expressions for inoren1ents in proper time 
and proper distance {153.8), we see that the velocity of light in empty 
space at any point in the model will be found to have the normal 
value u = c, (154.3) 

when measured in the ordinary manner by any observer at rest with 
respect to the mean motion of matter in his neighbourhood. 

For the special case of a ray of light moving in the radial direction, 
we have in accordance with (154.2) the coordinate velocity 

_ = ±e-ln<l> I+ ____ . dr [ r2 J 
dt 4R~ 

(154.4) 

Furthermore, in agreement with the treatnwnt g~von to the radial 
motion of a particle, see (153.13), it is evident that a ray, travelling to 
or from the origin of coordinates, would permanently maintain its 
motion on a radial path. 

Integrating (154.4) over the time interval t1 to t2 needed for a ray 
of light to travel between the origin and any desired coordinate 
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position, we obtain the expression 
r t. 

J dr J -i(l(l) d 
I+r2f4R3 = e t 

(154.5) 

0 ~ 

t. 

or 2R0tan-l_r_- J e-lo<t> dt (154.6) 
2R- ' 

0 
~ 

where the integral on the right-hand side can be evaluated only on 
the basis of some specific information or assumption as to' the form 
of g(t). 

If we assume that g(t) can be taken as linear with respect tot 

g = 2kt, (154.7) 

over the time interval of interest, we can then easily compute the 
right-hand side of (154.6) and obtain 

e-ldx- e-kls 
r = 2R0 tan 2kRo . (154.8) 

This formula for the time ~ to t2 necessary for light to travel in either 
direction between the origin r = 0 and the coordinate distance r = r 
can be applied, when the time interval is short enough so that the 
effect of the derivatives of g with respect to t higher than the first 
can be neglected. The result can find a possible application in inter
preting the reception of cosmic rays from intergalactic space. 

In the case of a closed ever-expanding model of the universe, the 
relation (154.6) between rand~ to t2 can lead to interesting restric
tions on the coordinate distance which light could travel in a finite 
time. Let us assume-:.merely for purposes of illustration-a model 
having the exact linear dependence of g on t (154.7) for all times from 
minus to plus infinity, and having the real radius R = R 0 e'", which 
would increase from zero to infinity between t = -oo and t = + oo. 
In the first place, it is then evident from (154.8) that light could be 
received at the origin at any given finite time t2 coming £rom any 
desired coordinate distance r, provided one chooses the time of start
ing ~-which can go to minus infinity-early enough. On the other 
hand, for light which leaves the origin at time t1, it is evident that 
there would be a maximum coordinate distance 

(154.9) 
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which could be reached even at t = oo. According to the values of 
k and R0, there would hence be a specific starting-time after which 
light could no longer travel completely around the model. Thus, 
under the assumptions taken, an observer at rest in the fluid filling 
the model could theoretically obtain information concerning suffici
ently early states of all parts of the universe, but even by waiting an 
jnflnite length of time could not obtain information as to their be
haviour later than a certain epoch. The discUBBion applies of course 
only to a particular assumed model, but is perhaps valuable in 
widening our views as to conceptual possibilities. 

155. The Doppler effect in the model 
We may next examine the Doppler effect on the observed wave

length of light, coming from distant objects in the model which 
corresponds to our line element 

eo<l.> 
ds2 = - ----·-·----(dr2-j-r2 d()2 +r2sin2() ;u·2)+dt2 (155 I) 

[l+r2f4Wo]2 IAIIf • • 

Since we shall be interested in comparing the wave-lengths of light 
from different objects as observed at a single location, it will be 
simplest to take the observer as permanently located at the origin 
of coordinates, and the luminous source as at any desired coordinate 
distance r which, however, may be varying with the time. We can 
then readily obtain an expression for the generalized Doppler effect 
following the schematic method outlined in§ 116. 

In accordance with our expression for the radial velocity of light 
in the model, see (154.4) and (154.5), we can write 

t1 r 

f e-lo<t> dt = f dr 
1+r2/4-Wo 

'· 0 

(155.2) 

as an equation, connecting the 'time' t1 at which light leaves a source 
located at r, with tho 'time' t2 at which it arrives at the origin. Hence, 
differentiating this expression with respect to the time of departure 
t1, we can obtain 

e-lu. 8t,-e-lu, 8t1 = I+r!/4W.(~;} 8!1, 

as an equation connecting the 'time' interval 8t1 between the de
parture of two wave crests from the source with the 'time' interval 
8t2 between their arrival at the origin, where g1 and g2 denote the 
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values of g'(t~ at~ and~?,) and (drjdt) is the radial component of the 
'coordinate velo6ity' of the source at the time of emission. And, 
noting the expressions for proper distanceg end times which would 
correspond to the form. of the line element, we can evidently rewrite 
this in the form · · 

(155.3) 

where c is the velocity of light and u,. is now the radial component of 
the velocity of the source, as it would be measured in the ordinary 
manner by an observer at rest with respect tor, 8, and cfo. · 

In accordance with the form of the line element, however, the 
proper time interval8Cl_ between the emission of these wave crests, 
as measured by a local observer moving with the source, would be 
related to the coordinate interval 8~ by the expression 

- { ef/1 (dr2 2 d()2 . 2 dcfo2) }i 
8tf- -[1+r2f4R~)2 dt2 +r dt' +r2sm 8 dt2 +1 8~. 

And noting again the implications of the line element, this can 
evidently be r.ewritten as 

8t~ = ..j(1-u2jc2) 8~, (155.4) 

where u is the total velocity of the source at the time of emission as 
measured in the ordinary manner by a local observer who is at rest 
with respect tor, 8, and cfo. Furthermore, for the proper time interval 
8tg between the reception of the wave crests by an observer at rest at 
the origin we shall evidently have 

8tg = 8t2. (155.5) 

Substituting (155.4) and (155.5) in (155.3), and equating the ratio 
of the proper periods of the emitted and received light to the ratio 
of the corresponding wave-lengths, we then finally obtain as the 
complete expression for the generalized Doppler effect 

>..+8>.. 8~ et<u.-uv ( u,.) 
->..- = 8~ = :j(I-u2fc2) 1+c ' (155.6) 

whereA+8>.. can evidently be taken as the wave-length of the light as 
ultimately observed at the origin, while>.. is the wave-length of the 
same light as measured by an observer who is located at the source 
and moves along therewith. 

The most important term in this expression for the generalized 
Doppler effect is ei<a.-av, which is due to the general motion of 
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particles (nebulae) in the model connected with changes in the value 
of g(t). The next most important term is (I+urfc) which is due to any 
peculiar radial velocity which the source in question may have relative 
to the mean motion of the matter in its neighbourhood. The least 
important term is .J(l-u2fc2), which may be regarded as due to the 
effect of velocity on the rate of a moving clock. (Transverse Doppler 
effect.) · 

In studying with the help of the model the red~shift in the light 
from the extra~galactic nebulae, it is usually sufficient to regard the 
nebulae as having the mean motion of matter appropriate to their 
neighbourhood and hence as at rest with respect tor, 6, and 4>. We 
then have to consider only the most important term, connected with 
the general expansion of the model, and can write 

A+BA = eiCD11-av, (155.7) 
A 

or for the fractional change in wave-length, 

8.,\ 
- - ei<oa-DJ.l-1 .,\- . (155.8) 

This result can also be written in other forms which prove illuminating. 
Introducing the radius of the model 

R = Roelo, (155.9) 
the result takes the form 

(155.10) 

where R1 is the radius of the model at the time the light leaves the 
source and R2 is the radius at the time it arrives at the observer. 
This makes it clear that a red-shift in the light from distant objects 
would be correlated on the basis of this model with a general expan
sion of the model, and the consequent recession of the source from 
the observer. 

This dependence of red ~shift on recession can be made even clearer 
if we introduce, in accordance with the form of the line element, the 
total proper distances from observer to source 

f' 

z. = el•• J I+~4ffi. (!55. II) 
0 

as they would be determined at times t1 and t2 by noting the number 
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of metre sticks necessary to reach from the origin to the coordinate 
distance r. Introducing these expressions into (I55.7), we can then 

'te 
Wl'l ~+&\ = la = I+ ~=-ll (I55.I2) 

~ ll ll' 

where (l2-l1 ) is the increase in proper distance from source to observer 
that takes place during the time taken by the light to travel from the 
one to the other. Since this time of travel in first approximation will 
equal in relativistic units the proper distance l1, we can also write the 
last result in the approximate form 

~+8~ ~"~ I+8Z ~"~ I+~ (I55.I3) 
~ - Bt- c' 

where u may be roughly regarded as the velocity of recession of the 
source. 

In accordance with these different expressions, it will be seen on 
the basis of the present model that the red-shift in the light from t~e 
extragalactic nebulae is to be interpreted as due to a real motion of 
recession, and is to be assigned approximately the amount which 
would be calculated from the usual expression for the ordinary 
Doppler effect. It is to be emphasized, however, as a consequence of 
the homogeneity of the model, that there is nothing unique about the 
recession of the nebulae away from any particular (our own) location, 
and that similar red-shifts would be obtained by observers at rest 
with respect to the matter in other portions of the model. 

156. Change in Doppler effect with distance 
To investigate the change in the Doppler effect as we go to more 

distant sources (nebulae), we may differentiate our previous 
expression 

(I 56. I) 

with respect to the coordinate distance to the source r. In doing so 
we may regard g2 as a constant, since this is the.value of g(t) at the 
time light is received at the origin, and we are actually interested in 
comparing the Doppler effects for different sources, which are all 
seen at the origin at the same given time t2 which we can take as the 
present. On the other hand, g1 must be regarded as a. variable, since 
by going to greater coordinate distancel::i r we shall have to go to 
earlier times of emission ~ in order for the light to reach the origin 
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at t2• Hence on the differentiation of (156.1), we must write 

~ (8X) = -!el<ua-oJ)dgl dt (156.2) 
dr A · dt dr' 

where dt will be the change in time of emission coiTespond.ing to the 
change in position dr. 
. Noting, however, the expression for the radial velocity of light that 

would correspond to the line element 
~~ . 

dtJZ = -[1+-,:"2/4Wo]2 (dr2 +r2 d62 +r2sin26 dc/J2)-1-dt2, (156.3} 

which we are using, it is evident that dt and dr will be so connected 
that we can rewrite our expreBBion (156.2) for the change in Doppler 
effect with distance in the form 

d (8A) eiDa fh 
dr T = 1+r2/4Wo 2' (156"4) 

where g1 is the rate of change in g(t) at the time the light is emitted. 
For our later purposes, it will also be convenient to have this result 

iri the form which it assumes when we use the alternative expression 
(149.5) for the line element 

ds2 = --eJJfJ.>(--~~
2

- +r2 d82 +r2sin28 .:~;.s)+dt2 (156.5) 
I-r2/ R~ W'f' ' 

obtained in § 149 by transforming from r tor with the help of (149.4). 
With this form for the line element it is evident that the change in 
Doppler effect with coordinate distance will be given by 

d (8A) eiDa fit 
dr T = ~(1-~iijWo) 2· (156·6) 

Since we shall later find both rand Fin first approximation to be 
proportional to astronomically measured distances, these formulae 
indicate an approximately linear relation between red-shift and 
distance, until we go out to difltances where the change in g1 becomes 
important. A more complete discussion of the change in Doppler 
effect with distance will be made possible in Part IV of the present 
chapter where we shall express g(t) as a series in t. 

To conclude this somewhat lengthy consideration of the Doppler 
effect in expanding or contracting cosmological models, it will also 
be useful for some purposes to show that the wave-length or frequency 
associated with any individual light quantum or photon as measured 
by observers lying along its path would be changing in a definite 
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manner with, the time, provided these observers are at rest with re
spect to our coordinates r, 8, and 4>. To see this we may return. to our 
exact formula (155.6) for the wave-length of light (A+8A) leaving a 
source at time 'lt having any arbitrary position andmotion, as finally 
measured at time t1 by an observer at rest in the coordinate system. 
If now we consider different such observers lying along the path of 
the photon, it is evident that the only quantity which will be changed 
in this formula as later and later observers examine the photon will 
be the quantity g1,·whioh is the value of g(t) at the time of observa
tion. Hence taking a logarithmic differentiation of (155.6) with 
respect to the time we can write for such observers 

dlog(A+8..\) 1 dg2 (156.7) 
dt = 2&' 

which by changing to frequencies can be expreBSed in the more con-
venient form 1 dv 1 dg 

-;dt=2dt' (156.8) 

where vis the frequency of any photon as measured by observers at 
rest with respect to the coordinate system r, (), and cp, and g is the 
value of g(t) for the model as a whole at the time of interest. 

157. General discussion of dependence on time for closed 
models 
Our derivation of the non-statio line element 

eo<t> 
iJ,a2 = - (1+r2/4Wo)2(dr2+r2 d()2 +r2sin2() dcp2)+dt2 

for homogeneous cosmological models placed no immediate restric
tions on the behaviour of these models as a function of the time, and 
we must now turn to the discussion of the form of the hitherto 
undetermined fuD.otion g(t). This we shall undertake by several 
different lines of attack. 

In accordance with equations (150.7) and (150.8), the pressure and 
density of the fluid taken as filling the model are definite functions 
o:f g(t) and its derivatives. Hence the time behaviour of the model 
can be regarded as determined by the properties of this :fluid. In the 
present section on closed models of the universe with R0 real, and in 
the next section on open models with R0 infinite or imaginary, we 
shall give a general discussion of the different possible types of time 
behaviour that could ooour if we impose only very general restrictions 
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on the properties of the fluid, such as the requirement that its 
pressure and density could never assume negative values. In the 
following sections of this part of the present chapter, we shall then 
discuss the time behaviour, making more specific assumptions as to 
the nature of the model or the fluid filling it. In Part m of the present 
chapter, we shall turn to the thermodynamic aspects of the changes 
that could take place in cosmological models with time. And finally 
in Part IV, in connexion with the correlation of actual observational 
data, we shall have occasion to treat the time dependence by the more 
phenomenological method of expressing g(t) as a power series in t, 
with coefficients which are to be determined as far as possible from 
actual knowledge as to red-shift and as to pressure and density in the 
universe. 

(a) General features of time dependence, R real, p00 ~ 0, Po~ 0. 
We shall commence our discussion of time dependenoet by assuming 
a, closed model with R0 real, and by assuming a fluid filling the model 
which cannot withstand tension, so that the density p00 and pressure 
p 0 can on physical grounds only be zero or positive. 

As the two equations which relate the density and pressure of this 
fluid to g(t), it will be most convenient to take (151.6) and (150.8) 

;t(pooela(t>)+Po:t (elu(O) = 0, 

and 3 3(dg)2 81rp00 = -e-o<O+- - -A, 
R2 4 dt 0 

(157.1) 

these being equivalent to the information originally given as to p 0 and 
p00 by (150.7, 8). Also for simplicity of expression, it will be convenient 
if were-express these equations by introducing the radius of the model 

R = R0 eiu(O. (157.2) 

Doing so, the first of these two expressions-the energy equation
can be rewritten in the form 

!!._(p00 R3)+Po d.(RS) = 0 (157.3) 
dt dt ' 

which gives (157 .4) 

and {157 .5) 

t The treatment given in this and the next section closely follows that of Robertson, 
Rsviewa of Modem Physics, 5, 62 (1933). 
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Thus in accordance with our assumptions as to R, p00 , and p 0, the 
quantities (p00 R3) and p00 could only decrease or remain constant as 
R increases. Furthermore, in accordance with (157.5) 'it is evident 
that the density of the fluid would go to zero if the radius goes to 
infinity, and hence all ever-expanding models would finally have the 
properties of the original de Sitter model. 

Introducing (157.2) into the second of our original equations(157.1), 
this reduces to a form 

(dR)2 = 81rp00_R~ +A~-~_ 1, 
dt 3 3 

or rLJ: = ± J(B.rp~R' + A:'-1), (157.6) 

which conveniently expresses the rate of change of the radius of the 
model with time. 

Since the quantity under the radical sign must necessarily be 
positive or zero, we are then led for any given value of the cosmo
logical constant A, to the expression 

(157.7) 

as a necessary restriction on R if the behaviour of the model is to be 
real, and to 3 

B
2

- 81rp00 =A (157.8) 

as the condition that the change in the radius R with time shall cease 
or reverse its direction. 

(b) Curve for the critical function of R. In order to examine the 
behaviour of the critical quantity 

( 
3 ) 1 ( 81rp00 R8

) Q = RB- 81Tpoo = RB 3- R (157.9) 

as a function of the radius R, as this latter changes with the time in 
the case of any given model, it will be convenient to try to construct 
as nearly as possible a rough plot of Q(R) against R. 

Differentiating Q with respect to R and setting the result equal to 
zero we obtain dQ 6 d 

- = ---81T-f.9.Q = 0 
dB R3 dR ' 

or introducing (157 .5) 

dQ _ -~+241T(Poo+Po) _ 0 dB- R3 R - ) (157.10) 
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as a necessary condition for a maximum, minimum, or point of in
flexion on the curve. And combining with (157.9), this gives 

1 
Q = R2+ 87rpo (> 0) (157.11) 

as an equation for the value of Q itself when such a. change in the 
curve takes place. 

Differentiating a second time, we then obtain 

. d2Q _ ~ _ ~~(P.C!~.+Po) + 24:-n: dp~ + ~411' dp0 { < ~ 
dR2 -R' R2 RdR Rdr -, 

>0 
or introducing (157.10) and (157.5) 

~ { : } eoop•, (157.12) 

with the respective signs ( < ), (=),and ( > ), as the further conditions, 
sufficient to distinguish the three cases of a maximum, point of in
flexion, or minimum. This result shows that the curve can have no 
points of inflexion or minima unless we are willing to assume that 
the pressure of the fluid could be :increasing during expansion. 

With the help of these results, we can now make a rough plot as 
shown in Fig. 6, for Q(R) as a function of R as this increases with 
the time. 

The features of this plot, concerning which we have sufficient in
formation to be sure, are shown by the full lines at A, B, and 0. They 
can be justified as follows. (A) In accordance with (157. 4) the quantity 
(p00 .R3) can only decrease or remain constant as R increases. Hence, 
omitting the case of a completely empty model as not of present 
interest, it is evident from (157.9) that Q rises asymptotically from 
minus infinity at R = 0, and continues to increase as long as .R 
increases without reaching any maximum or passing through any 
point of inflexion until after crossing the axis Q = 0, since by 
(157.11) such points can only occur for positive values of that quan
tity. (B) If R continues to increase, the curve must ultimately exhibit 
at least one maximum, since by (157.9) the quantity Q would ulti
mately have to decrease with R. (0) Finally, if R still cont:inues to 
increase, the curve must ultimately approach Q = 0, asymptotically 
as 3/W, as .R goes to infinity. 

The features of the plot, concerning which we do not have sufficient 
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information to be sure, are shown by the dotted lines at a, b, and c. 
They consist in the possibility for points of inflexion as shown at a, 
and minima followed by later maxima as shown at b and o. In accord
ance with ( 157.11) such features could exist only in the range between 

Q 

.A, 
0(11 -~). 

Q 
0 .. 

{0< 11< .llE] , ,., ,, 
I a 
I 
I 

A 

R 

FIG. 6 

Q = 0 and Q = Qma.x, where Qmax is the highest maximum on the 
curve as shown at B. And in accordance with (157.12), they could 
exist then, only if the pressure of the fluid should be able at certain 
points to rise during expansion. 

With the help of this plot we can now make some predictions as to 
the possible types of time behaviour for models, assuming different 
values for the cosmological constant A. During the course of an 
expansion, A, which has the same dimensions as the critical quantity 
Q, will stay constant as indicated by the horizontal lines in the figure. 
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Furthermore, in accordance with (157 .7), the critical quantity 

Q = (3/B2-87Tp00) 

must be smaller than A during expansion, and the motion must 
cease or reverse when Q becomes equal to A. Hence the different 
types of motion, to the discussion of which we now turn, will corre
spond to horizontal lines A= const. lying above the critical curve 
Q(R), and the nature of the motion will be determined by the points 
where these horizontals intersect the critical curve. 

(c) Monotonic universes of type M1 for A> AE. We shall denote 
the value of Q at the highest maximum on the curve as shown at B by 
AE, since as we shall see later this would be the value of A for a con
ceivable static Einstein universe. 

If the actual value of A is greater than AE, the time behaviour 
can be qualitatively described without ambiguity. Since the line 
A = const. then makes no intersections with the critical curve, the 
model would be of an ever-expanding type which proceeds from some 
singular state at B8 ~ 0 to the final state of an empty de Sitter 
universe as B --+ oo. If we consider the behaviour of the model at 
times earlier than that of the singular state, the motion would con
sist in a contraction from larger radii down to B = B8 • The present 
equations are not sufficient to describe the mechanism of p~sage 
through the singular state, and this may be regarded as occurring 
at a point at or in the neighbourhood of B = 0, where the idealiza
tions involved in setting up the model are not suited for the treatment 
of that mechanism. 

In accordance with the expression for rate of expansion given by 
(157 .6), and the condition on (p00 B3) given by (157 .4), it will be seen 
that such a model would leave a singular state at B = 0 with an 
infinite velocity. And by considering the integration of the above 
expression for rate of expansion, it will be seen that any finite value 
of R would then be reached in a finite time, but that an infinite time 
would elapse during the passage from B finite to B infinite. 

Such a model, which expands without reversal from a singular 
state in the past to infinity in the future, we designate as a mono
tonic universe of the first kind, type M1• As a model for the actual 
universe, it has the disadvantage of spending only an infinitesimal 
fraction of its total existence in a condition which differs appreciably 
from that of a completely empty de Sitter universe. Hence, if we 
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are willing to take our observations on the actual universe as giving 
a fair sample of the kind of conditions that would be found anywhere 
and at any time, we should then rule out this model. 

(d) Asymptotic universe of types·.A1 and ..4.2, for A = AE. We next 
tum to cases in which tl}.e cosmological constant is just equal to the 
value of Q at the maximum point of the curve as shown at B in 
Fig ... 6. This value we have denoted as AE. In accordance with 
(157.11)~ we then have 1 

8wpE = AE--, (157.13) 
RJc 

where PE and RE are the pressure and radius at this point. And in 
accordance with (157.8), if we consider a static universe (d.Rfdt = 0) 
with the above radius and cosmological constant, we should also have 

3 
&rrpE = R}: -AE. (157.14) 

These, however, are the conditions for pressure and density for a statio 
Einstein universe of radius RE and cosmological constant AE, as 
given by (139.3) and (139.4). Hence a statio Einstein universe 
could exist under the conditions corresponding to the maximum. 
point of the curve. It would, nevertheless, be unstable as we shall 
later see. 

With A= AE, two types of behaviour for a non-static model 
would be possible. 

The first type would be given by a model which starts expanding 
from a singular state at R8 < RE, and asymptotically approaches the 
condition of a static Einstein universe at R = RE, where in accord
ance with (157.13, 14) combined with (150.7, 8) the quantities dRjdt 
and d2Rjdt2 would both become zero. Considering the behaviour of 
the model at times earlier than that of the singular state the behaviour 
would consist in a contraction from larger radii down to R = R 8 • 

Such a model which expands from a singular state to a final statio 
Einstein state, we designate as an asymptotic universe of the first 
kind, type .A1 . 

The second type of behaviour with A = AE, would be given by a 
model which can be regarded as having asymptotically started from 
the statio Einstein state at R = RE at an infinite time in the past and 
as expanding permanently in the future into the condition of an 
empty de Sitter universe. Such a model we designate as an asymptotic 
universe of the second kind, type A 2• 
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As models for the actual universe, both of these types have the 
same disadvantage as type M1 of presumably spending only an 
inappreciable fraction of their total existence in a condition com· 
parable to that which we find in the actual universe. Type A 2, 

however, has the advantage of apparently originating from a non· 
singular state of finite volume at an infinite time in the past. This 
will be discussed more fully in§ 159 on the stability of the static 
Einstein universe, and in§ 161 specially devoted to these models. 

(e) Monotonic universes of type M 2 and oscillating universes of 
types 0 1 and O.b for 0 < A < AE. We next consider cases in which 
A lies between zero and AE. Here two different types of behaviour 
are definitely possible, and further types possible if the critical curve 
does have more than one maximum as indicated at b and c in Fig. 6. 

As the first type of behaviour, we have those models which expand 
continuously into the future from some point on the critical curve at 
~>REpast the maximum, where a reversal in the direction of 
motion from a preceding contracting phase takes place. Such a 
model, which has a true minimum finite radius and then expands 
without reversal to the state of an empty de Sitter universe, we 
designate as a monotonic universe of the second kind, type M 2• As 
a model for the actual universe, it again has the disadvantage of 
spending all but an infinitesimal fraction of its total existence in a 
condition unlike that which we observe. 

As the second type of behaviour, we have models which expand 
from a singular state at R8 < RE to a maximum radius which lies 
on the critical curve where the direction of motion will reverse. The 
contraction thus initiated then continues, until expansion would 
again start at a singular state, which from physical considerations 
must at least be located at a radius which is not less than R = 0. 
Such a model we designate as an oscillating universe of the first kind, 
type 0 1• As a model for the actual universe, it has the advantage of 

• spending all its life in a condition where there is a finite density of 
matter, provided irreversible processes do not take place which alter 
the conditions for successive maxima (see § 175). It hM, of course, 
the disadvantage of a singular state at the lower limit of contraction, 
through which the mechanism of passage is not described by the 
present equations. 

In case we allow a second maximum on the critical curve lower 
than the highest maximum at RE with an intervening minimum as 

3595.11 lid 
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shown in Fig. 6 at b and c, a vecy interesting new type of behaviour 
would be conceivable. This would arise with a value of A between 
the values of the critical quantity Q at this maximum and minimum, 
which would evidently permit an oscillation between a true minimum 
and ma.ximum radius, where R assumes the critical values given by 
the curve for Q as a function of R. In the case of reversible behaviour 
this would give a strictly periodic motion without singu.lar states. 
Such a model we· designate as an oscillating universe of the second 
.Jdnd, .type 02• AB a model for the actual universe it might at first 
sight seem to have great advantages, but as pointed out in connexion 
with (157.12), the necessary minimum on the critical curve could 
only occur if the pressure in the model could increase during expan
sion. We shall return later to the discussion of this matter in§ 172, 
and shaJ.l have to conclude that such models would not be of great 
importance. 

If a second maximum of the critical curve should exist, we should 
also evidently have possibilities for asymptotic universes of types .A.1 

and .A1, in the rangE) 0 < A < AE, but these would be similar to those 
already discussed above in§ 157 (d). 

(/) Oscillating universe of type 0 1, for A ~ 0. Finally, for the case 
of closed homogeneous models with the radius R real, we must con
sider the possibilities if the cosmological constant should lie in the 
range A ~ 0. Here it is immediately evident from Fig. 6, that the 
only possible kind of behaviour would be an oscillation of type 0 1 

back and forth between singular states at the lower limit which the 
radius reaches, and.ma.xima of the radius which lie on the critical 
curve. As a model for the actual universe, this behaviour would have 
the advantages and disadvantages already mentioned above for 
type 01• 

In conclusion it should be specially emphasized that such an oscil
latory behaviour of type 0 1, is the only possibility for a closed homo
geneous model with the cosmological constant A equal to zero. This 
is important, since A= 0 certainly seems the most reasonable 
assumption to make at the present time. In the first place the 
original argument, as discussed in§ 139, for Einstein's addition of the 
logioally permissible but otherwise surprising cosmological term to 
his original field equations in order to obtain a universe with a finite 
density of matter, now no longer exists in view of the wider possi
bilities presented by non-statio modele. In the second place, we have 
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at the present time no accepted theory for any value at all for the 
cosmological constant, although interesting considerations ooncem
ing this matter have been presented by Eddington. t .And in the third 
place, from the observational point of view we can at least say that 
the value of A must be small in order not to upset the application of 
relativistic theory to the orbits of the planets. Hence in what follows 
we shall lay special Stress on the behaviour of models with the cosmo
logical term omitted. 

158. General discussion of dependence on time for open models 
To complete our discussion we must also consider the behaviour in 

time for open models of the universe with R0 imaginary or infinite. 
Here the possibilities for different kinds of behaviour are quite 
restricted. 

We may again start with our previous equations for the dependence 
of density and pressure on the time (151.6) and (150.8) 

!(p00 efa<O)+Po!(effl{t))= 0, (158.1) 

and 81rp00 = - e-Q(l)+ - - -A, 3 3(dg)B .m 4 dt 
(158.2) 

but now since the radius R = R0 eio(l) would be an in£nite or imaginary 
quantity without direct appeal to our physical intuition, there ·will 
be no advantage in introducing the radius of the model. 

For our further purposes, the first of these equations may be re
expressed in the forms 

(158.3) 

and (158.4) 

which show that p00 eto and p00 are both quantities which could only 
decrease or remain constant as g increases, if we again introduce the 
assumption that the fluid in the model cannot withstand tension. 

The second of our original equations (158.2) can be written in the 
form 

and since by the hypothesis of an open model R0 is either infinite or 

t Eddington, The E:x:panding Unwerse, Cambridge, 1933. 
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imaginary this can be re-expressed as 

deio = ±j(8'1l'p00 ea + AeO+A2} 
~ 3 3 ' 

(158.5) 

where A is a real quantity which would assume the value zero if 
R0 is infinite. 

Since the quantity under the radical sign must necessarily be 
positive or zero, we are then led to the expression 

-3A2e-0-8?Tp00 ~A, (158.6) 

as a necessail'Y restriction on g if the behaviour of the model is to be 

real, and to -S.A2e-a_8'"Poo = o, (158.7) 

as the condition for a reversal in the direction of the rate of change 
of g with t. 

We can also easily construct a plot of the critical quantity 

Q = - 3.A 2e-a- 8?Tp00 = -- 3A 2+ ----1 [ &rp00 eta] 
eO eio 

(158.8) 

as a function of eia as shown in Fig. 7. In accordance with (158.8) 
Q is always negative, asymptotically approaching the value Q = -oo 
as eta goes to zero as a result of (158.3), and asymptotically approach
ing the value Q = 0 as eta goes to infinity, without any maxima, 
minima, or points of inflexion. 

With the help of this plot of the critical curve, we then readily see 
that only two kinds of behaviour would ·now be possible. The first 
would occur with A ~ 0, and would consist in the monotonic increase 
of eta from a singular state to infinity, giving us a universe of the 
type previously labelled M 1 which ultimately goes over into an empty 
de Sitter world, including the possibility of a Euclidean space with 
A = 0. The second type of behaviour would occur with A < 0, and 
would consist in the oscillation of eta from a singular state to a maxi
mum and return, giving us a universe of the type previously 
labelled 0 1. 

In treating the previous case of closed universes, it simplified the 
form of statement to describe the behaviour of the radius of the 
universe R = R0 elD(t>. In the present case of open universes, however, 
it seemed simpler to speak of the behaviour of ela<t> itself, since R 0 

would be infinite or imaginary. In both cases, nevertheless, it should 
be noted that the proper volume of any given element of fluid in the 
homogeneous model-as measured by a local observer-would always 
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be proportional to eta<o. Hence the changes, which we found to take 
place in the above quantities with time, can be immediately inter
preted in terms of the expansion and contraction of the fluid filling 

the model, ~oth for the case of closed models having a finite total 

Q 

~ 
o-A-~-0~~ 

~--------------------------eis 
4 
0 ~ 

11<0 

FIG. 7 

proper volume and for the case of open models having an infinite 
total proper volume. 

159. On the instability of the Einstein static universe 
We may now turn to a nmnber of'specific treatments which have 

been given to tho behaviour of homogeneous cosmological models 
with time. It will first be of interest to investigate the stability of 
the original Einstein static model with the help of our present know
ledge of the behaviour of non-static models. 

We may first look at the stability of the Einstein universe from the 
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point of view c;>f the plot which we have given in Fig. 6 for the critical 
quantity Q(R) as a function of the radius B. In accordance with the 
consideration which we have given to this critical curve, it is evident 
that the conditions for a static Einstein universe would correspond to 
a maximum, minimum, or point of inflexion on this curve, the radius 
of the universe being equal to the value of Rat that point and the 
·cosmological constant being equal to the value of Q(R) at the point. 
This is immediately seen from equations (157.11) for the value of 
Qat such a point, and (157.8) for the condition that the radius shall 
not be changing with time, which give us our previous conditions 

1 
81TPo = - Rz+A 

3 
and &rp00 = R2-A 

for the pressure and density in a static Einstein universe. 
With the help of Fig. 6, we then immediately see that a statio 

Einstein universe corresponding to a maximum point on the critical 
curve would be unstable, since the radius would continue to change in 
the same direction if the model once started to expand or contract. 
Also for a model conesponding to a point of inflexion, we should 
have in:stability, since there would be one direction in which the 
radius could change without crossing the critical curve. 

On the other hand, for a static Einstein universe corresponding to 
a minimum on the critical curve, we should evidently have stability, 
since the radius could not change at all without crossing the critical 
curve. This latter possibility could not be realized, however, as 
shown by (157.12) unless the pressure of the fluid in the model should 
increase with expa.o.s:ion. And on physical grounds we should not 
expect to find this for any actual fluid in an equilibrium condition. 
Hence we may conclude in general that a static Einstein universe 
would be in unstable equilibrium against changes in radius, and if it 
once started to expand or contract it would continue in such 
motion. 

We may also inquire into what change might occur in a statio 
Einstein model that would initiate an expansion or contraction away 
from the state of rest. In the case of a fluid filling the model whose 
pressure would be decreased by expansion and increased by contrac
tion, this can easily be found with the help of our general expression 
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for the pressure in a homogeneous non-statio model, 

&rrpo = - ~e-D-{j-fd1+A. 

407 

(159.1) 

Assuming the model originally in the state of a statio Einstein 
universe, this expression must reduce at that time to the usual equa
tion for the pressure in such a model 

1 
87T.P0 = - .R!e-o+A, (159.2) 

0 

with ii = 0 and g = 0 (159.3) 
and .R0 eio equal to the prescribed radius for the statio Einstein 
model. Hence if we should now suppose some process to take place 
in this momentarily non-expanding and non-contracting model which 
led to a. change in pressure with the time, we could write in accordance 
with (159.1) and (159.3), -&rt0 = ~ (159.4) 

as an expression for the effect of the changing pressure·on g(t). 
As a. consequence of this equation, we now see that the initiation 

of any process in such a. model involving decrease in pressure would 
also initiate an expansion which would then continue, since by hypo
thesis the expansion itself would lead to still further decreases in 
pressure. Vice versa., an increase in pressure would initiate a. con
traction. 

Hence, if we had a. statio Einstein universe, and free radiation in it 
should commence to condense into matter, or freely moving particles 
in it should be captured by condensation, the model would start to 
expand.t Or, on the other hand, if the matter in it should commence 
to transform into radiation the model would start to contract. We 
may thus conclude, not only that a static Einstein universe would be 
in unstable equilibrium, but that processes are easily conceivable 
which would initiate a. change away from the equilibrium value of 
its radius. 

160. Models in which the amount of matter is constant 
We may now consider in some detail the time behaviour of certain 

specific models which will be selected so as to illustrate different 
possibilities. 

t The nature of such processes has been speoiaJiy investigated by Lemattre, M ont'hJ,y 
Notices, 91, 490 (1931). 
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In the case of closed models, containing a mixture composed of 
a constant amount of incoherent matter (nebulae, dust) exerting 
negligible pressure, together with radiation exerting the pressure 
that corresponds to its density, a general expression for the radius as 
a function of time was first obtained by Lemaitre.t 

Since the pressure exerted by radiation i-s one-third its energy 
density, we can evidently write the energy equation (157.3) for these 
models in the form 

d d 
dt[(Pm+3Po)R3]+Po dt(R3

) = 0, (160.1) 

where Pm is the density o.f matter. Since matter, however, is itseH to 
be conserved this gives us 

PmR3 = const. and p0 R' = const., 

and employing the symbols used by Lemaitre we can then write 

l¥ 
BTrpm = RS 

81T.Po = ~' 
l¥ 3/3 81rpoo = 81r(pm + 3po) = R3 + R4' 

where 01 and f3 are constants. 
Introducing these expressions into our general equation 

we then obtain 

dR J(AR2 
01 f3 ) -=± --1+-+-dt 3 3R R2 

(160.2) 

(157.6), 

(160.3) 

as an explicit expression for the radius as a function of time. This 
result applies to models in which matter exerts negligible pressure 
and is conserved in amount. Putting f3 = 0, we obtain the special 
case originally investigated by Friedmann, in-which the total pressure 
is zero and energy as well as matter is conserved. 

The integration or quadrature of the above expression has been 
specially studied by de Sitter.t And a slightly more general expres
sion, in which the pressure of matter is not neglected, and in which 
explicit allowance is made for the case of open as well as closed models 
has been studied by Heckmann.§ 

t Lemaitre, Ann. Soc. Sci. BruxeUes, 47 A, 49 (1927). 
:t: de Sitter, BuU. Astron. lnBt. Netherlands, 5, 211 (1930); ibid., 6, 141 (1931). 
§ Heckmann, Nachr. Gea. WiBs. G6ttingen, 1932, p. 97. 
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161. Models which expand from an original static state 
In the case of models which can be regarded as expanding from the 

original state of a static Einstein universe, a direct integration of the 
foregoing expression for the change in radius with time can be 
obtained. 

Combining the expressions for pressure and density given by (160.2) 
with the original expressions for pressure and density (139.3, 4) as 
found for a static Einstein tmiverse, we can write for the special case 
of such models f3 1 

&rpE = Rl; = - Rj; +A (161.1) 

ex 3{3 3 
871'PE = Rs +m = m -A, 

E .nE .Llll!J 
and (161.2) 

where RE is the radius in the original static state. Substituting these 
expressions into (160.3), we can obtam after considerable rearrange
ment the simple form 

d: = ffa~:RJ((l+ :l.}<R"+2BzRl+3,B}, (161.3) 

where RE and f3 are the only parameters. 
To prepare this expression for integration it is simplest to express 

R in terms of its increase over the original value RE by substituting 

R = RE(1+x) x = R-RE. (161.4) 
RE 

Doing so we can then rewrite (161.3) in a form suitable for evaluation 

I ~3RE I (x+1) dx 
dt = 0\)(1+/3/ R~) xi.JX , (161.5) 

where we shall use as abbreviations 
~X = "'(x2+4x+02) (161.6) 

and 0 2 = 3(1+ (3/R}; )· 
1+(3/R"E 

(161.7) 

Integrating (161.5), we then obtain 

~3RE [ 1 x+~X-0] 
t = "'(1+/3/Ric) log(x+~X+2) + 0logx+~X+O +const., 

(161.8) 

as a definite expression for x and hence also for the radius R = R0 eiO'(t) 

as a function oi the time. 
Since the second term in this expression becomes minus infinity 
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when x = 0, and the first term becomes plus infinity when x = oo, it 
will be seen that the model would expand from the original static 
Einstein state with R = RE at t= -oo to the final empty de Sitter 
state at t = +oo, both of these states being approached asympto
tically. 

The effect of the pressure of radiation on the rate of expansion is 
given by. the appearance of fJJR}; in the above expressions. It can 
readily be seen, however, that the effect of pressure must in any case 
be small, since we can write in accordance with (161.1) and (161.2), 

p- 2pE 
~- PE+PE' 

(161.9) 

where ·PE and PE are the pressure and density in the original static 
Einstein state. Hence /3/ Hi; can in any case only vary between 0 for 
a model containing matter without radiation to i for a model con
taining nothing but radiation. And we may conclude from the way 
in which this term enters the above expressions, that the course of 
the expansion will be primarily determined only by the radius RE of 
the original static state. 

This matter was specially investigated by de Sitter (loc. cit) who 
compared the time behaviour of the two models given by 

and fJ 1 
R}; = 2 (161.10) 

for the respective cases of no radiation and no matter present. For 
the first of these cases equation (161.8) reduces to 

[ 
1 x+~X-~3] 

t = ~3RE log(x+~X+2)+-;ralogx+'\7X+'JS +const., 

(161.11) 
and for the second to the much simpler form 

R R 
t = ~log 4(x2+2x)+const. = ~:log(R2-RJc)+const. 

(161.12) 

For a given value of RE, however, the two expressions give very 
similar histories of expansion as shown by curves I and VII in Fig. 8, 
taken from de Sitter's article. We may hence conclude, that the case 
with zero pressure specially studied by Lemaitre in 1927 as a model 
for the actual universe is sufficiently representative of the class. 

Universes which expand from an original statio Einstein state have 
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sometimes been favoured by cosmologists, since the equations then. 
lead to no singular states and the models appear to offer an infinite 
time scale for past cosmological processes. More recently, however, 

R 

FIG. 8 t 

as emphasized by Eddingtont and otherst it has been felt that the 
logarithmic infinity for past time provided by these models was 
likely to have no real physical significance, in view of the unstable 
character of the static Einstein state, which we have investigated 
in§ 159. 

t Eddington, Monthly Notices, 90, 668 (1930). 
t McCrea and MoVittie, Monthly Notices, 91, 128 (1930'); ibid. 92, 7 (1931). 

Lemattre, Monthly Notices, 91,490 (1931). 
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162. Ever-expanding models which do not start from a static 
state 
Turning next to the case of ever-expanding models which do not 

start from an original static state, it is not in general possible to 
obtain. a simple integral for the relation between radius and time, 
given by (160.3) for the casein which matter is conserved. By numeri
cal quadrature, however, de Sitter has calculated the dependence of 
radius on time for a number of such models as shown in Fig. 8. 

The curves in this figure may be divided into four groups. Curves I 
and VII are the cases already mentioned for a model containing 
matter without radiation and a model containing radiation without 
matter, which start from an original static state. Curves II and IV 
are for models of type M2 discussed in§ 157 (e), which first contract 
to a true minimum radius having a value lying on the critical curve, 
and then expand monotonically to the empty de Sitter state. Curves 
Til and V are for models of type M1 discussed in§ 157 (c), which 
expand monotonically :from a singular state, here taken as located at 
R = 0. Finally curve VI is calculated for the limiting case of an 
entirely empty universe. 

From the point of view of a representation for the actual universe, 
it will be noted that monotonic universes of the first kind, which 
expand from a singular state, might offer some advantages in pro
viding a reasonably long time scale subsequent to the singular 
state. Lemaitret has more recently advocated such models and has 
picturesquely described the original singular state as that of a giant 
atom. 

163. Oscillating models (A= 0) 

In view of the rationality already emphasized of taking the value 
zero for the unknown cosmological constant A, and entirely omitting 
the cosmological term :from Einstein's field equations, we must pay 
special attention to oscillating models, which then become the only 
possibility for a closed universe. For two such models a simple treat
ment of the time behaviour can be given. 

The first of these models was originally considered by Friedmannt 
as early as 1922, and has since been advocated by Einstein.§ The 

t Lemaitre, Revue des questions scientiftques, 1931, p. 391. 
:): Friedmann, Zeits.f. Physik, 10, 377 (1922). 
§ Einstein, Berl. Bar. 1931, p. 235. 
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fluid in the model is taken as ·being incoherent matter which is 
conserved in amount and exerts negligible pressure. Refe~ing to 
equations (160.2), we immediately see that the radius for such models 
will be given as a function of the time by setting A and f3 equal to 
zero in (160.3), and writing 

~~ = ±j(3~-1). (163.1) 

where ex is a constant connected with the density of matter and rarlius 
by the equation 

87TpmR3 =ex= const. (163.2) 

The integral of this equation is readily seen to be a cycloid in the 
Rt-plane given by 

R = ~(1- costfo) 
6 

(163.3) 

in accordance wit~ which the radius oscillates between a singular 
state with R = 0 at t = 0 and a maximum of R = a./3 at t = 'ITot/6. 

A second closed model with A= 0, for which the time behaviour 
has been calculatedt is obtained by taking the fluid as consisting 
solely of black-body radiation. Referring again to equations (160.2) 
and (160.3), we see that the radius for such models will be given as 
a function of time by 

d~ = ±j(l_-1), 
dt R2 

(163.4) 

where f3 is a constant connected with the radius and pressure of the 
radiation by the equation 

877p0 R4 = f3 = const. (163.5) 

The integral of this equation is readily seen to be 
R = .J(f3-t2), (163.6) 

with the maximum of R falling at t = 0. 
As shown in § 157, oscillating models can also be obtained with 

values of A other than zero, and a number of plots for the time 
behaviour of such models are given in Fig. 9, aJ.so taken from de 
Sitter (loc. cit). Curve IX represents the cycloid for the case A= 0 
with the pressure zero. Curve VII is the limiting case A = AE of 
type A1 which expands asymptotically to a static Einstein state, and 
separates the oscillating models of type 01 from the ever expanding 
models of type M1• The diagram also gives the time behaviour for 

t Tolman, Phys. Rev. 38. 1758 (1931). 
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several ever-expanding models plotted, however, 'With somewhat 
different units. 

From the point of view of representing the actual universe, the 
oscillating models with A= 0 tend to have a short time scale from 

R 

'Z~ --....... JJJ ....... 
]J[ ·-

........... 

FIG.9 t 

the singular state, and further investigations would be necessary to 
describe the mechanism of passage through that state. 

To investigate the time scale from the singular state, it is most 
convenient to start with the equation for pressure in its original form 
(150.7) 

Setting A = 0 this can then be rewritten as 

g 3 1 e-fl Sn:Po 
- gs= 4+ R~ g2 +(i2' (163.7) 
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so that we can in any case put 

~(~) ~ ~-dt g .-- 4 

Integrating over the course of expansion from the singular state 
(t,, ri,) to the present state (t, g), we obtain 

t-t. ~ ~G-:J 
Hence for oscillating models with A = 0, we can in any case write 

4 
!l.t ~ ag' (163.8) 

where !l.t is the elapsed time since the singular state, and g is the 
present value of that quantity, as could be determined for the actual 
universe from observations on the red-shift. 

164. The open model of Einstein and de Sitter (A= 0, B0 = oo) 
Mathematically the simplest of all models can be obtained by 

taking the cosmological constant A equal to zero, and setting the 
constant R0 in the fundamental expression for the line element (149.1) 

equal to infinity A= 0 Ro = oo, (164.1) 

as has been proposed by Einstein and de Sitter. t 
The line element can then be written in the form 

ds1 = -&<'>(dr1+r1 d81 +r1sin18 d</>1)+dt1, (164.2) 

or also as ds1 = -ea<C>(dx1+dy1+dz1)+dt1 

and space-time becomes spatially :flat and spatially infinite in 
extent. 

Furthermore, substituting (164.1) into the general expressions for 
pressure and density (150. 7) and (150.8), these then reduce to the very 

simple form 87J1>o = -ii-lds, (164.3) 

and (164.4) 

The first of these equations requires that the acceleration ii always 
be negative to prevent· negative pressures. The second of the eq ua
tions provides an immediate relation between density and Doppler 
effect. For the two limiting oases of a :fluid consisting solely of matter 

t Einstein and de Bitter, Proc. NGI. Acad. 18, 213 (1932). 
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exerting a negligible pressure, or a fluid consisting solely of radiation 
exerting the pressure corresponding to its density, these equations 
can be immediately integrated. 

For the case of matter having zero pressure we can write from 
(164.3) 

~+~(:)" = 0, (164.5) 

which has the integral 
ekr = at+b, (164.6) 

where a and b are constants, and by combining with (164.4) we 

obtain a= ,j(6TTp00 elo), (164.7) 

as the value of the :first of these constants. 
For the case of radiation, having a pressure equal to one-third its 

energy density, we obtain by combining (164.3) and (164.4) the 

equation dsg (dg)s _ 
dt" + dt - 0, (164.8) 

which has the integral 
eO= at+b, (164.9) 

where the constant a this time has the value 

a= Je;; Pooe'•)· (164.10) 

By the method employed at the end of the last section, the elapsed 
time from the singular state is also found for models of the Einstein
de Sitter type to be in any case as small as 

4 
ll.t ~ 3{ (164.11) 

165. Discussion of factors which were neglected in studying 
special models 
The special models, which we have used in the foregoing sections 

to illustrate the different possibilities of temporal behaviour, were 
purposely limited, for the sake of simplicity, by the assumptions that 
the pressure due to the particles of matter in the fluid could be 
neglected, and that the total mass of this matter should remain con
stant. It is evident at least in theory, however, that these assump
tions were not necessary for a solution of the problem of behaviour 
in time, provided we have sufficient information as to the properties 
of the fluid fllling the model. 

In general, for the treatment of temporal behaviour, the expressions 
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for pressure and density obtained in§ 150, written most conveniently 
in the form 

(165.1) 

and (165.2) 

will give two of the necessary equations for determining p00 , p0, and.g 
as functions of the time, and the third equation will be provided by 
the nature of the :fluid. 
·· In case the fiuid.behaves reversibly, so that its pressure is a definite 
function of energy and volume, this third relation will be of the nature 
of an equation of state of the general form 

Po =. p0(E, v) = p0(p00 elo, e1°), (165.3) 

where eto, as we have seen (151.4), is a quantity which is propor
tional to the proper volume of any given element of the fluid. In 
case the :fluid behaves irreversibly, the third equation would have to 
contain time derivatives of g(t) as well as g(t) itself. In any case, 
however, with the help of the three equations and assumptions as to 
initial conditions and as to the values of the constants A and B 0, the 
problem should be theoretically soluble. 

The fact that we have neglected in our illustrative examples any 
contribution to pressure due to the random motion of particles of 
matter in the model can hardly be regarded as immediately serious 
for the purposes of cosmology. In the case of the present state of the 
actual universe, we should certainly regard the random motions of 
the nebulae themselves as properly correlated with a negligible 
pressure for the idealized fluid filling our model, and should pre
sumably also regard this as legitimate for the random motion of dust 
or other particles which may be present in intergalactic space. 

The fact, however, that we have taken the total mass of the matter 
in the models as constant, deserves a little more attention, since this 
means when applied to the real universe that we are neglecting the 
actual :flow of radiation from the nebulae into intemebular space. 
In accordance with equation (152.7) we can write 

_ _!_ dM = ~[Poo+iPo __ 1_(u+~)]u (165.4) 
M dt 2 Pm 4-rrpm g . 

as an expression for the fractional rate at which the mass of the 
3595.11 
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particles would be changing with time. And.writing for simplicity 

'Y = a[Poo+fPo _1_{ii+~)] (165.5) 
Pm 4wpm~ U 

we can re-express the above equation in the form 
1dM 1 d g 

- M dt = - (pmefl1) dt(pmell1) = "2' . (165.6) 

where Pm is the density of matter in the model. 
Concerning the present value of y in the actual universe, we do 

not have complete information since the cosmic rays have an un
known origin which may very likely involve a decrease in the mass of 
matter. If, however, we assume for all the matter in the universe 
a rate of fractional decrease the same as that for the sun we should 
obtain as small a value as 

, ~ l0-4., (165.7) 

and the true value may well be smaller yet. (de Sitter estimates 
y ~ 2 X 10-7.) 

Also concerning the rate of change of y with time we have no know
ledge. Nevertheless, over a reasonable time int.erval we may take y as 
a constant. Doing so, we can then integrate equation (165.6) and 
obtain Pm = P1 e-i(S+y)a (165.8) 

as an expression for the density of matter in our model, where p1 is 
a constant. Furthermore, for the density of radiation in the model 
we can write p,. = 3p0, (165.9) 

if we neglect the contribution of random particle motion to the total 
pressure Po· 

Substituting these two expressions into the energy equation 
(165.1) we shall then have 

d d 
dt (Pl. e-h'u + 3po eta)+ Po dt ( ell1) = 0' 

and by performing the indicated differentiations, resubstituting 
from (165.8) and (165.9), and rearranging, we can obtain therefrom 

.!_ dpo = .!. dp,. = _ (2 -l Pm)u, (165.10) 
Po dt p,. dt 2 p,. 

as an expression for the logarithmic rate of change in the pressure and 
in the density of radiation. 

This result is of interest in showing. for the case of an expanding 
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model with g positive, that the pressure and density of radiation 
would be decreasing with time except for large values of 'Y or pmf Pr· 
Assigning to 'Y the value given by (165. 7), the pressure of radiation 
would cease to build up as soon as the density of radiation compared 
with that of matter reached the value 

Pr = 2·5 X 10-"Pm· (165.11) 
Hence as first pointed out by de Sitter, t the theory of an expanding 

universe is capable of accounting for the apparent disappearance of 
the radi~tion which pours from the stars into internebular space. It 
will also be noted, when the pressure does deorea.se monotonically 
with expansion, that there can be no minima (see 157 .12) on the 
critical curve, Fig. 6, and hence no chance for an oscillating behaviour 
of the second kind, type 0 1• 

As a final remark concerning the simplifications which were made in 
obtaining specific illustrations of the different varieties of temporal 
behaviour, it is to be noticed that the fluids filling the models, were 
so chosen that their changes in density could be assumed to take 
place reversibly as the models themselves expanded or contracted, 
and the possibilities for irreversible behaviour were neglected. In 
Part III of the present chapter, to which we now turn, the differences 
between thermodynamically reversible and irreversible expansions 
and contractions of cosmological models will be specially considered. 

t de Sitter, Bull • .Aatron. !nat. Netherlands, 5, 211 (1930). 
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APPLICATIONS TO COSMOLOGY (contd.) 

PCif't III. THE APPLICATION OF RELATIVISTIC THERMODYNAMICS TO 
NON-STATIC HOMOGENEOUS COSMOLOGICAL MODELS 

166. Application of the relativistic fir~t law 
We must now undertake a brief consideration of the thermo

dynamic behaviour of the homogeneous cosmological models which 
correspond to the line element 

dB"= - · ef1(fJ (dr2+r" d81 +r2sin18 tUfo")+dt1• (166.1) 
[I +r" /4-Wo]" 

In accordance with the principles of relativistic thermodynamics as 
developed in Chapter IX, we may regard the relativistic analogue of 
the first Ia.w of ordinary thermodynamics as provided by the principles 
of relativistic mechanics as expressed in the form of the energy
momentum equation 

(166.2) 

And in applying this expression to the case of the above line element 
we may take the only surviving components of the energy-momentum 
tensor, in accordance with (150.5) and (150.6), as given by 

pu = -fflPo pu = -g"'JJo paa = -g83po T" = Poo' 

or, on lowering indices, 
(166.3) 

11 = 11 = Tg = -Po T: = Poo' 
where p00 and Po are the proper macroscopic density and pressure 
of the fluid as they would be measured by a local observer at rest 
therein at the position and instant of interest. 

Substituting (166.3) into (166.2), we obtain, for the case p, = 1, 

-!(p•.j ulH.Poh(gU~1 +rf'a:;"+ll""a:;'+u" 8!;) = o, 
where the last term in the parenthesis can be added .. m account of the 
constancy of U«· As a result of equation (39) in Ap}.endix III, how-
ever, this immediately reduces to , 

,-apo o..J g o+=g 
--v-ga;;-Po Or +Poa;:- = 0. 
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And since similar expressions result from taking p. as 2 or 3, the only 
information that we obtafu, by applying the energy-momentum 
equation to our present line element for the cases p. = 1, 2, 3 is the 
independence of pressure on p~sition 

opo = opo = apo = 0, ) ar a8 aq, ( 166.4 

which is already evident from. the known spatial homogeneity of the 
model. 

Substituting (166.3) in (166.2) for the case p. = 4, however, we 
obtain as already seen in§ 151, the equation 

!!_ (Poo ~ g)+ !Po H (un ogu + g22 Buzs + g88 ogaa) = 0 
fJt fJt fJt fJt ' 

and by inserting the expressions for the g14v given by the line element, 
this reduces to the important result 

a ( r2sin 8 eto(t) ) ·a ( rBsin 8 etoro ) 
at Poo[1+rBf4R~]a +Poat [1+rs/4Wo]a = 0. (166.5) 

Noting that the proper volume of any element of fluid, permanently 
located in the case of the present co-moving coordinates in any desired 
range 8r888cp, would be given by 

· r2sin 8 etu<t> 
8~o = [1+r2/4.R~]8 8r888q,, (166.6) 

we can also rewrite (166.5) in the form 

d d 
dt(Poo8vo)+Podt(8vo) = 0. (166. 7) 

This equation shows-as previously remarked-that the proper 
energy of each element of the fluid in the model as measured by a 
local observer would change with the proper volume of the element, 
in accordance with the ordinary equation for the adiabatic expansion 
or compression of the fluid. 

The result is thermodynamically important since it shows tha.t 
there will be no heat flow into or out of the elements of fluid composing 
the model. This conclusion may also be regarded as a consequence 
of the spatial homogeneity of the model. 

167. Application of the relativistic second law 
In accordance with the principles of relativistic thermodynamics, 

the analogue of the ordinary second law of thermodynamics as 
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discussed in § .1 i 9 can be taken as given by the expression 

8~ ( ~0 ":"-g) 8W8~~:"8W8.z' ;;> 
8 $.•, (167.1) 

where c/>0 is the proper entropy density of the fluid at the position and 
instant of interest, the quantities dx/1-fd!J are the components of the 
macroscopic 'velocity' of this :fluid referred to the coordinates in use, 
T0 is the proper temperature, and 8Q0 is the heat :flowing into the 
element of fluid and during the time denoted by 8x18x28x88x' as 
measured by the local observer. The sign of equality in this expres
sion refers to reversible processes and the sign of inequality to irre
versible processes. 

In applying this expreBBion to the models under consideration using 
coordinates corresponding t() the line element in the form (166.1), we 

can take dr dB de/> dt 
dB= dB = dB = 0 d8 = 1, (1~7 .2) 

owing to the co-moving character of the coordinates, and can set 

8Q0 = 0, (167 .3) 

owing to the adiabatic character of the changes demonstrated in the 
preceding section. Substituting in (167.1), we can then write the 
relativistic second law for these models in the form 

(167.4) 

and on substituting the expression for proper volume given by 
(166.6), this can be written in the form 

! (c/>0.8v0) ~ 0, (167 .5) 

which shows that the proper entropy for each element of :fluid in 
the model can only increase or at best remain constant as time 
proceeds. 

With the help of the two relations (166. 7) and (167 .5), we thus 
obtain the very satisfactory result that a local observer who examines 
an element .. of :fluid in his immediate neighbourhood would find 
therefor the same behaviour as would be predicted from the classical 
principles of thermodynamics for an element of :fluid undergoing an 
adiabatic expansion or contraction. 
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168. The conditions for thermodynamic equilibrium in a 
static Einstein universe 
Since we have seen that the static Einstein universe can be regarded 

as a special case given by our non-static models when g(t) becomes 
constant, we can now use the foregoing information as to the thermo
dynamic behaviour of non-static models to investigate the conditions 
for equilibrium in the original Einstein model. · 

We can investigate the conditions for a state of thermodynamic 
equilibrium in the usual manner, by considering the possibilities for 
change to a neighbouring state of the model, by varying the radius 
of the model R = Boeia, (168.1) 

and the number of mole 

(168.2) 

of the different chemical constituents which would give the oomposi
tion of any selected element of fluid and hence of the model as a whole. 

During the progress of such a variation, the model could be re
garded as temporarily non-statio with the energy and entropy of each 
element of the fluid subject to our previous relations (166. 7) and 
(167 .5). Hence since by (167 .5) the entropy of each element of the 
fluid oan only remain constant or increase with time, we can take 

8(cf>0 v0) = 0, 

under the subsidiary condition 

8(poovo)+.Po8vo = 0, 

(168.3) 

(168.4) 

as the necessary requirement for thermodynamic equilibrium, where 
we have now written 

r2sin 8 eta 
Vo = [l+rs/4-Wo]a 8r868cf>, (168.5) 

as the proper volume of the particular element of the fluid considered. 
To use the above conditions for equilibrium, we oan evidently 

write in accordance with the olassioal thermodynamics 

8(cf>0 v0) = 880 = ~ 8E0+~ 8v0+ (~g) 8~+ ... + (::) 8n~, 
0 0 "''"1 Ea>Do n. Eo, "'• 

(168.6) 

since the proper entropy 80 = cf>0 v0 as measured by a local observer 
will evidently depend in the classical manner on proper energy, 
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volume, and composition. Hence since we have E0 = p00 v0 for the 
proper energy, we obtain by combihini (168.4) and (168.6) + (:;) an: = 0, (168. 7) 

as a necessary condition for thermodynan:dc equilibrium in a static 
Einstein universe. 

This result is of interest since by comparsion with (60.12), we see 
that it gives the classioal condition for chemical equilibrium between 
different substances in the fluid. Hence the relative proportions 
between different materiaJ.s which might be able to change into each . 
other, for example hydrogen and helium, or indeed matter and 
radiation, would hav~ the same values at therm.od~c equilibrium 

' \ 

in a static Einstein universe as we should calculate for flat space-time. 
This is important since any effect of the gravitational curvature in 
the models on such ratios could have been very important for 
cosmology. t · 
. Although the pair of relations (168.3) and (168.4), or the equivalent 

pair (168.4) and (168. 7), can be taken as necessary conditions for 
thermodynamic equilibrium, it is of course evident t}lat further 
investigation is necessary to determine whether they are sufficient 
conditions for ·the equilibrium to be stable. And the investigations 
of § 159 have actually shown that the equilibrium state for an 
Einstein universe would in general be unstable towards small varia· 
tiona of the radius, unless indeed we could have a :fluid whose pressure 

. would increase on expansion. 

169. The conditions for reversible and irreversible changes in 
non-static models 

·With the help of our expressio;n (167.5) for the second law as 
applied to homogeneous cosmological models. 

d 
dt (t/J0 8v0) ~ 0, (169.1) 

we can readily ~tinguish between the characteristics of reversible 
and irreversible changes in such models. 

For the case of reversible processes, we shall have to use the equality 
sign in 'this expression, and can thus take constant proper entropy 

t Such an effect was originally supposed to be present by Lenz, Phys. Zeits. 27, 
. 642 (1926). See, however, Tolman, Proc. Nat . .ACad. 14, 353 (1928) and ibid. 17, 

153 (1931). 
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for each element of fluid in the model as the criterion of reversibility. 
Hence to investigate the possibility for reversible changes in the 
model we must ex8m.ine the causes which could lead to an increase in 
the entropy of an element of the fluid. 

In doing so, we note-as already pointed out in § 130-in the first 
place that no entropy increases could occur as a result of irreversible 
heat flow, since we have seen, from our application of the first law and 
also from the homogeneity of the model, that there is no heat flow in 
these models from one portion of. the fluid to another. In the second 
place, we note that no entropy increase could occur from the friction 
of moving members against the walls of any container for the fluid, 
as in familiar examples of adiabatic changes in volume, since now no 
such parts or container are involved. In the third place1 we note that 
no entropy increases could result from an inability of the fluid to 
maintain the same pressure in the interior and at the boundary of 
any element of fluid,·as in ordinary oases of expansion or compression 
in a cylinder where a pressure gradient is set up by the motion of the 
piston, since as a result of the homogeneity of the model the pressure 
(see 166.4) is uniform throughout. 

We thus see that the familiar sources for entropy increase, con
nected in ordinary engineering practice with heat flow at a finite rate 
and imperfect interaction of the working fluid with its surroundings, 
would be eliminated in the case of the elements of fluid in our cosmo
logical models. We can hence conclude that the changes in the model 
will be reversible, provided the internal physical-chemical processes 
which occur in the fluid itself as the model expands or contracts 
involve no entropy increase. 

The actual attainment of reversible behaviour for our non-statio 
cosmological models will then depend on the possibility of selecting 
fluids of a simple enough constitution so that no internal irreversible 
processes, which would change the proper entropy of any given element 
of the fluid filling the model, can occur. We have already pointed 
out in§ 130 of the chapter on relativistic thermodynamics that two 
such fluids would be provided by a distribution of particles of inco
herent matter (dust) exerting zero pressure, and by a distribution of 
black-body radiation. And in the next two sections we shall give 
special attention to the reversible behaviour of models :filled with 
these two fluids. 

In th~ case of more complicated fluids, however, it is evident that 
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internal processes would in general accompany a finite rate of change 
in the volume of an element of the fluid which would lead to increases 
in its entropy. This would then lead to the sign of inequality in the 
second law expression (169.1), and hence also to the conditions for 
a thermodynamically irreversible behaviour of the model. As a simple 
example of such a fluid, we have already pointed out in§ 131 the case 
of a diatomic gas, which with a finite rate of expansion or compression 
would dissociate into its elements or recombine under non-equili
brium conditions and hence with increase in entropy. In later sections 
of this Part of Chapter X we shall give special attention to the irre
versible expansion and contraction of cosmological models. 

170. Model filled with incoherent matter exerting no pressure 
as an example of reversible behaviour 
We may now give a little detailed consideration to a model filled 

with a distribution of incoherent matter or dust particles exerting 
negligible pressure, as furnishing an example of thermodynamically 
reversible behaviour at a finite rate. In such a model, the proper 
entropy associated with any element of the fluid would always be 
merely the sum total of the entropies of its constituent unchanging 
particles. Thus the entropy would have to remain constant, even 
with a finite rate of expansion or contraction of the model, and we 
should have the conditions for reversibility given by the equality 
sign in (169.1). 

Hence we should expect the expansion or contraction of such 
models to take place reversibly, with nothing to prevent the return 
of the model to an earlier state provided the conditions are such that 
a reversal in the direction of motion does take place. Indeed, if we 
set the cosmological constant A equal to zero, and thus obtain the 
conditions for closed models with an oscillating behaviour of the first 
kind, type 0 1, we have already seen in§ 163 that the radius would 
symmetrically increase and decrease with the time in a manner which 
can be described as a cycloid in the Rt-plane by the eqll:ations 

R = ij(1-costfs) t = ij(ifs-sintfs), (170.1) 

where IX is a constant. 
Thus the behaviour of such models would not only be thermo

dynamically reversible, but within a finite time would be subject to 
actual reversal as well if we set A equal to zero. Furthermore, even 
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if we are uncertain as to the mecha.nism of passage through the 
singular state at R = 0, we can at least conclude that the model 
would return again from its maximum expansion to states having the . 
same radius R as before, and with exactly the same rate of change 
(dBfdt) as before but in the reverse direction. 

171. Model filled with black-body radiation as an example of 
reversible behaviour 
AJ3 a second example of reversible behaviour with a finite rate of 

change, we may take a model filled solely with black-body radiation. 
Here too it is perhaps immediately evident that the entropy associated 
with the contents of any element having the coordinate range 8r888t/J 
would be constant, since the absence of irreversibility due to pressure 
gradients or friction of moving parts, combined with the absence of 
any other material present which could interact irreversibly with the 
radiation, means that changes in the proper volume of such an element 
even at a finite rate could be regarded as the reversible adiabatic 
expansion or compression of black-body radiation, which from the 
point of view of classical thermodynamics leads to no change in 
entropy. 

Nevertheless, the situation is sufficiently complicated so that it 
may be desirable to give a more detailed analysis. We shall first show 
that an expansion or contraction of the model would lead to a new 
black-body distribution of radiation corresponding to a new tempera
ture; and show that the change in proper volume and temperature 
for any element 8r888rp would then be such as to leave the entropy 
unchanged. 

AJ3 the definition of a black~body distribution of radiation, i.e. a 
distribution which is in thermodynamic equilibrium, we have the 
Planck distribution law (65.6}, which at any desired initial time ~ 
would give us B1rhv~ 1 

dE1 = CS efWJk'i',_ 1 dv1 dv1 (171.1) 

for the radiational energy dE1 which a local observer at rest in the 
coordinates r, 8, rp would find in the frequency range v1 to v1+dv1, 

and in the volume dv1, at the temperature 2}. 
At any later time t1 when the quantity g(t) which determines the 

temporal behaviour of the model has changed from g1 to g2, the 
frequency as measured by a local observer of the photons originally 
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responsible for the above energy will have become in accordance with 

(156.8) v:a = e~<u,-aa>vl, (171.2) 

and hence, owing to the proportionality with frequency, their energy 

will have become dEs= ei(Jh-fl~ aE
1

• (171.3) 

Furthermore, in accordance with the dependence of proper volume on 
time given by (151.4), the volume now containing these photons, or 
rather their equivalent, will have become 

dv2 = et<ua-ti'l) dv1• (171.4) 

Substituting these three equations into (171.1), we then obtain for 
the distribution of radiation at time t1 as measured again by a local 
observer 

(171.5) 

provided we take T1 as given by 

T1 = 1i el<u.-ua>. (171.6) 

This thus gives the desired demonstration that the expansion or con
traction of the model leads to a new distribution of black~body radia~ 
tion with the new temperature determined by (171.6). 

Hence since the entropy of black~ body radiation is given in accord~ 
ance with (65.5) in terms of its temperature and volume by the well~ 

known formula s = aa,Tav (171.7) 

we see that the entropy a8sociated with any given element 8r888tfo · 
would re:qtain constant, since we can write therefor in accordanoe 
with the foregoing equations 

S = faT~ 8v1 = fa118v1 = const. (171.8) 

Thus also in the case of a model filled solely with black~body radia
tion we should have constant entropy for each element 8r808cp, and 
hence the condition for expansions or contractions at a finite rate 
reversibly. Moreover, here too as in the preceding case, by taking the 
cosmological constant A as equal to zero, we could obtain closed 
models in which the motion would not only be reversible but actually 
reversed as well, the relation between radius and time being given in 
accordance with (163.6) by 

R = ,J(f1-t1), 

where f3 is a constant. 
(171.9) 

This case of reversible behaviour in a model containing black~body 
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radiation is perhaps more interesting than the previous one of a 
m:odel composed of dust particles exerting no pressure, since now the 
processes of expansion and contraction with the accompanying 
changes ih temperature seem definitely thermodynamic in character, 
as compared with the previous expansions and contractions which 
seemed purely mechanical in character and hence perhaps quite 
naturally reversible . 

.Also in the case of models conta.ining a mixture of dust particles 
and radiation having no appreciable interaction, it is evident that 
we should expect reversible behaviour. But as soon as we go to 
particles small enough so that their thermal motion cannot be 
neglected it is evident that we must expect some slight irreversibility, 
since with a finite rate of volume change there would be a delay in 
the transfer of energy between the particles and the accompanying 
radiation, which would lead to a lag behind the. conditions for true 
equilibrium. 

In connexion with the foregoing discussion, however, it is perhaps 
unnecessary to stress the precise-in any case hypothetical-con
ditions under which completely reversible volume · changes could 
take place at a finite rate. It is more important to emphasize the 
absence from our present cosmological models of the factors of 
irreversible heat flow, friction, and pressure gradients which are such 
common sources of irreversibility in ordinary thermodynamic p~· 
ceases taking place at a finite rate, that we may not realize that it is 
~heir presence rather than the. mere finiteness of the rate itself which 
is leading to irreversibility. t 
172. Discussion of failure to obtain periodic motions without 

singular states 
The foregoing examples of a reversible oscillation in the radius of 

a closed model, between values corresponding to a lower singular 
state and an upper maximum, suggest an investigation of the possi
bilities for a strictly periodic behaviour in which the volume of any 
element of the fluid would pass continuously back and forth between 
a true minimum and maximum. This would be a periodic oscillation 
of the second kind, type 01, already mentioned as conceivable in 
§ 157 (e). We may now show, nevertheless, assuming reasonable 

t This example of reversible behaviour at a :finite rate, together with a more 
complicated one, will be found in Tolman, PhyB. Re'IJ. 37, 1639 (1931); ibid. 38, 797 
(1931). 
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properties for the fluid in the model, that no such strictly periodic 
oscillations would be possible, t and that even non-periodic oscilla
tions of this kind would not appear important. 

Remembering that the dependence of the line element (166.1) on 
time for the models under discussion is given by the quantity g(t), 
we shall write the conditions for an oscillation of the model between 
a true minimum and maximum in the form 

Ut < U2 fit= fis = 0 ii1 ~ 0 ii2 ~ 0, (172.1) 
where the dots indicate differentiation with respect to time, and the 
subscripts 1 and 2 indicate the value of the given quantity at the 
minimum and maximum respectively. By combining these expres
sions with our expressions for the proper density and pressure of the 
fluid in the model 

and 

B1rPoo = ~e-u+ifi2-A .m 
8'1TJ1o = - ~~e-a-g-ifiB+A, 

(172.2) 

we can then find what properties the fluid would have to show in 
order to permit the postulated minimum and maximum. Since we 
shaJl wish to consider both closed and open models, we may distin
guish the three separate oases Wo > 0, R~ = oo, and .m < 0, corre
sponding respectively to closed, open flat, and open curved models. 

For the caae RB > 0, we can readily obtain from the foregoing 

P1 > P2 

P1 < Ps (172.3) 

as relations which must hold for the densities and pressures of the 
fluid at the minimum and maximum, in order for an oscillation of the 
type in question to occur. If such behaviour takes place, the density 
of the fluid would then decretUJe as the volume o;f each element of 
fluid in the model increases in the ratio eta1 to efaa in passing from 
minimum to maximum, but the pressure would have to increaae in 
passing from minimum to maximum, in agreement with a necessary 
condition for oscillations of type 0 2 already found for the special 
case of closed models with positive pressure in§ 157 (e). 

For strictly periodic oscillations, nevertheless, between a definite 
minimum and maximum it is evident that the behaviour of each 

t Tolman, Phys. Rev. 38, 1758 (1931). 
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element of the fluid would have to be thermodynamically reversible 
since otherwiSe the same state could not be returned to over and o'l"er 
again. Hence, in conne:xion with the above, we can rule out such 
strictly periodic oscillations, unless we are willing to assume a fluid 
fi]Jing the model which has the unusual properties of an increase in 
pressure accompanying reverBible adiabatic expanBion. 

For oscillations which are not strictly periodic but which might 
occur once or more between minima and maxima. which do not have 
to remain :fixed, the requirement of thermodynamic reversibility 
could be dropped. Hence the above conditions would be compatible 
with such an oscillation if, for example, there should be an irreversible 
rush in the formation of radiation during expansion so that the 
pressure would be sufficiently high at maximum to bring about 
reversal. It could hardly be expected, nevertheless, that the pressure 
could then decrease again on contraction so as to permit a second 
minimum. 

For the caBe .m = oo, to which we now turn, we obtain from the 
combination of (172.1) with (172.2) 

P1 = P2; 

arul for the ca.se Rg < 0, we obtain 

P1 < Ps 

(172.4) 

(172.5) 

as necessary conditions for oscillatory motion of the type Wlder COI\

sideration. 
In accordance with the energy equation (151.6), nevertheless, we 

can write (172.6) 

for the change in density with g. Hence the above conditions could 
be met only if we assumed an unlmown kind of fluid which can 
support a negative pressure at least equal to its energy density. 

As a result of the above discussion, it is evident, at least at the 
present stage of the theory, that we may neglect homogeneous models 
in which the elements of fluid would Wldergo either a strictly periodic 
expansion and contraction or any kind of successive oscillations in 
volume between a true minimum and maximum. This finding, never
theless, affects of course in no way the possibilities for oscillation 
between a lower singular state and a true upper maximum which we 
have previously studied. 
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173. Interp~;etation of reversible expansions by an ordinary 
observer 
In earlier sections we have studied the possibility for expansions or 

contractions to take place in our cosmological models at a finite rate, 
and yet thermodynamically either completely reversibly, or at least 
with the elimination of sources of irreversibility which commonly 
accompany a finite rate of change in small-size systems. This leads 
to the possibility that cosmological processes, which might be. inter
preted by an ordinary unsophisticated observer as irreversible merely 
on account of their finite rate, could actually be taking place reversi
bly. Such a possible confusion must be avoided in order to obtain 
clear notions as to cosmological phenomena. 

To investigate the matter, we shall take to start with the extremely 
simple model of§ 171, filled solely with blaok-bo.dy radiation, and at 
the time of interest undergoing a reversible expansion with the 
quantity g(t) in the formula for the line element 

ea<O 
diJ2 = _ (dr2+r2d82 +r2ain28 rl<p2)+dt2 (173.1) 

[l+r2/4Wo]2 ' 

~creasing with t. In considering the model we shall carefully dis
tinguish between the reB'Ults, which would be obtained by a local 
obBerver at rest with respect tor, 8, and cp and hence at rest with re
spect to the mean flow of energy in the model, and the interpretation, 
which he would place on these results from the point of view of 
classical thermodynamics, if he were an ordinary obBerver unfamiliar 
with relativistic thermodynamics and uninformed as to the general 
expansion taking place in the model. 

In determining the results which this ordinary observer would 
desire for his interpretation, we shall consider him for convenience 
as located at the origin of coordinates and let him examine the 
contents of the universe in a sinall region in his immediate neigh
bourhood. In doing this, in view of his ignorance as to the general 
expansion taking place, we shall assume that he marks this region 
off, not so as to contain a given element of the fluid in the model, 
but by laying measuring rods end to end from the origin so as to 
obtain a sphere of constant proper radius 

l0 = const. (173.2) 

around the origin. Taking this sphere as small enough so that terms 
of the order rf4B~ can be neglected in comparison with unity, the 
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coordinate rat its boundary will have the value 

r = Z0 e-iD (173.3) 

which will be varying with the time at the rate 

dr = -lloe-ladu. 
dt dt 

(173.4) 

And the proper volume of the sphere will have the constant value 

v0 == f'n'Zg. (173.5) 

Furthermore, in order to ascertain the results obtained by our 
observer from the measurements made in this region, we can use the 
en'ergy equation (166.7} which can be conveniently written in t~e 
fo~ d d 

-(p00 ett1)+p0 -(efu) = 0, (173.6) 
dt dt 

together with the relations connecting .Proper density, pressure, and 
temperature a 

p00 = aT~ and .Po = S T~, (173.7) 

which hold in case the fluid is black-body radiation as assumed. 
With the help of the foregoing, it is then easily seen, that our· 

observer will find 1 dpoo 1 dpo _ iJ,g 
---=--- -2-, {173.8) 
Poo dt .Po dt dt 

for the rate at which energy density and pressure are decreasing in 
his neighbourhood; 1 dTo 1 dg 

-- = ---, (173.9) 
T0 dt 2dt 

for the r~te at which the temperature is dropping in his neighbour-
hood; and 1 dno 3 iJ,g 

-- = -- -, (173.10) 
n0 dt 2 dt 

for the rate at which the number of photons_ no inside ~s sphere of 
constant volume is decreasing with time owing to net flow across the 
boundary. 

Moreover, it is evident, if our observer stations an assistant on the 
boundary of his sphere and directs him to comp~e the frequency of 
photons escaping with those that are entering from outside, that he 
will report an average shift towS!ds the red for the entering photons, 
since in accordance with (173.4} this assistant would be moving with 

3685.11 I•' f 
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respect to a local observer, chosen so as to remain at rest in the 
coordinate system r, 0, and cf>, and hence also so as to obtain isotropic 
findings for the frequency of radiation. 

Thus our ordinary observer would have at his disposal a continually 
dropping temperature in his own neighbourhood, and a flow of energy 
away therefrom towards regions of apparently lower temperature in 
the depths of space beyond, which he would be inclined to interpret 
from the classical point of view as evidences for a general process of 
energy degradation. He could hence be led to the erroneous conclu
sion that the universe was behaving irreversibly, in spite of the fact 
that the more legitimate considerations of relativistic thermodynamics 
have shown that such a model would actually be behaving reversibly, 
and indeed with a suitable value for the cosmological constant A 
would pass through a maximum expansion and return again to its 
original volume with reversed velocities. 

The above model is of course highly idealized, containing as it does 
nothing but black-body radiation. By neglecting the interaction 
between radiation and matter, however, reversible behaviour could 
also be obtained with a model contajning a mixture of black-body 
radiation and incoherent matter; and the same results would be 
found as to the flow of radiation away from any given location during 
expansion. Computations have also been madet with a model con
ta.ining a mixture of black-body radiation and a perfect monatomic 
gas, assuming the possibility of transforming radiation into matter 
and vice versa, and assuming-contrary to the presumable possi
bilities-that the interaction between matter and radiation could 
take place rapidly enough to maintain equilibrium conditions. In 
such a model, in addition to the outward flow of radiation, it is found 
except for extraordinarily high temperatures that a reversible expan
sion would be accompanied by the annihilation of matter. 

The main point to be stressed in connexion with the foregoing is the 
feasibility of mimicking with the help of reversibly expanding models 
-at least to some extent-the kind of behaviour, which in the case 
of the real universe would naturally be interpreted from older points 
of view as irreversible. This of course does not mean that actually 
irreversible processes are not taking place in the real universe, but it 
does emphasize the necessity of using relativistic rather than classical 
thermodynamics in the study of cosmology. 

t Tolman, Phy8. Ret1. 38, 797 (1931). 
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17 4. Analytical treatment of succession of expansions and 
contractions for a closed model with A = 0 

Since processes ~hich are actually thermodynamically irreversible 
appear to ~ake place in the real universe, we may now turn to a con
sideration of the irreversible behaviour of cosmological models. To 
prepare for this we shall devote the present section to an analytical 
treatment of the behaviour-whether reversible or irreversible-of 
closed models with the cosmological constant A set equal to zero. 
We make this selection partly because this aBBigns to A what seems 
to be-as already emphasized-the most natural value to take, and 
partly because closed models with this value of A provide a good 
illustration of the new relativistic features of irreversible processes 
which we shall wish to study. 

We have already seen in§ 157(f), that models of the above kind 
could only undergo an expansion from a lower singular state to an 
upper maximum followed by return to smaller volumes. We sh.&ll 
now investigate this behaviour in more detail. t 

For the models under consideration we may take the line element 
in the form 

ds?. = - efi(Q (dr2+r2 d82 +r2sin28 d..l.2)+dt2 (174.1) 
[1+r2f4R5],. ~ 

and base the treatment on the e~pressions for proper pressure and 
density given by (150.7) and (150.8): 

and 

B?TPo = _ _!_e-11-ii-id,. .m 
87TPoo = ~ e-"+id2

, 

(174.2) 

(174.3) 

where A has been set equal to zero, and where in agreement with our 
assumption of a closed model, we must take 

.m > 0. (174.4) 

Furthermore, in agreement with physical possibilities we must 

take Poo ;;:::::: 0, (174.5) 

since the density of material in the model could not be zero. We shall 

also take Po;;:::::: o, (174.6) 

since we shall regard the model as filled with a mixture of matter and 

t Tolman and Ward, Phys. Rw. 39, 835 (1932). 
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radiation capable of exerting positive· pressure, but incapable .of 
withstanding tension. 

(a) The .upper boundary of exp~ion. Asswping that at ~ome 
initial time t = 0, the model has a :finite volume and a finite rate of 
expansion corresponding to 

. g = Uo and g = g0 (174.7) 

we may first show that there will be a finite upper boundary beyond 
which g(t) caimot increase, without reference to the reversibility or 
~versibility of behaviour. 

Combining equation (174.2) with the inequality (174.6), we can 
write in general . · 

··+.BJ;s+_!_ -f1 ~ 0 g u me -..;::; ' 
0 

(174.8) 

and, since g will be positive as long as expansion continues, we can 
multiply this by the positive quantity 2elug and write 

or 

2 fU. • "+.S.nf(/AS+_!_ iQ • _,..- 0 egg "fC'JJ ~eg~, 

! ( elflg2) + ~ :t ( eiu) ~ o, (174.9) 

as an expression which will hold as long as g continues to increase. 
Integrating (174.9) between t = 0 and any later time of interest 

t = t, and substituting the initial values of g and g as given by 
(174.7), we then obtain 

eiDg2+ ~ eiu ~ elflog] + R42 eiflo, 
0 0 

(174.10) 

or noting in accordance with (174.4) that~ is positive . . 

(174.11) 

as an expression which will hold as long as g continues to increase. 
Hence, sui.ce g0 and fio are by hypothesis finite, there will be a :finite 
upper bolindary which g cannot surpass. This result may be expressed 
in the form g ~ y, (174.12) 
where y is a finite quantity. 

(b) Time necessary to reach maximum. With the help of the above, 
we can now show further that g will reach its maximum value and 
start to decrease within a finite time. 
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Combining the two inequalities (174.8) and (174.12), we oan evi-
dently write .. _,... 1 __, .a,.,-s 

g~ --e -u .m 
dfi 1 
dt 
~ ·--e_,, .m or (174.13) 

and integrating this between t = 0 and any later time of interest, we 
obtain · 

g ~ Yo--:-~ e-'Yt, 
0 

where g0 is the initial value of dgfdt. In accordance with this expres
sion, however, we see that at a finite time 

t ~ .m e'Yg0, (174.14) 

g(t) will reach its maximum and start to decrease. 
(c) Time necessary to complete contraction. It will also be of interest 

to consider the behaviour of the model after passing through the 
maximum and starting to contract. As~ will then evidently be 
negative, we may now multiply (174.8) by the negative quantity 
2efug, and integrating as was done before·in order to obtain (174.10), 
write as the result for the present case 

efflg2 + ~~ etu ;;;::::: elum g~ + ~ eiflm, 

where Um and dm are the values of the quantities indicated, on paBBing 
through the maximum at timet= tm. Moreover, since the velocity 
will be zero at this maximum, we shall actually have dm = 0, and may 
rewrite the above result in the form 

elugs ;;;::::: ~2 (elu.-eifl). 
0 

Furthermore, with g negative and R0 real and positive corresponding 
to a closed model, this is equivalent to 

dg 2 I etu dt ~ - Ro -v(etu._elu). (174.15) 

This expression, however, can readily be integrated between the 
time tm at which the maximum was passed and any later time of 
interest t, to give 

eia 
(t-tm) ~ R0{ eifl..j(eiu._eifl)- eiu. sin-1--r;;-+ tn"eiflm}. ( 17 4.16) 

ew• 
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In accordance with this expression, we then see that within a finite 

time (t-tm) ~ tn" R0 etfl, ( 17 4.17) 

after passing through its maximum, the value of g would decrease to 
minus infinity, provided the singular state at the lower limit of the 
motion did not occur earlier. 

(d) Behaviour at lower limit of contraction. To summarize the 
foregoing conclusions, we see that the model starting at a selected 
initial time with any finite value of g0 and finite rate of expansion g0, 

would then reach a maximum value of g and start contracting within 
a finite time later. And furthermore this contraction would proceed 
at a sufficient rate so that g could decrease to minus infinity again 
withln a finite time. We must now inquire as to the behaviour of the 
model on reaching the lower limit of contraction. 

In the first place, since the proper volume of any element of fluid 
in the model would always be proportional to eta, we realize on phy
sical grounds alone that etu = 0, g = - oo, would in any case set a 
lower limit for possible contraction. In the second place, never
theless, in acc?rdance with (174.15) when etfl reaches the value zero 
we should have 

g =- oo, 
and hence also in accordance with ( 17 4. 8) 

(174.18) 

jj = -oo, (174.19) 

at this point. Thus the conditions for an analytical minimum are 
completely unsatisfied, and the analysis would fail to describe the 
passage of the model through the point. 

Hence, since on physical grounds the contraction cannot proceed 
further than the point etu = 0, it iS evident on mathematical grounds 
that we can maintain the validity of the fundamental differential 
equations (174.2) and (174.3) which control the behaviour of the 
model, only by introducing a renewed expansion which starts from 
some singular state at the lower limit of contraction. This singular 
state may of course lie near rather than exactly at.the ·point etfl = 0. 

It is, to be sure, unfortunate that our differential equations for the 
motion of the model are not sufficient to describe the mechanism of 
paBBage through the lower limit of contraction, the existence of which 
is physically inevitably necessary. As suggested by Einstein,t it is 

t Einstein, Berl. Ber. 1931, p. 235. 
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possible that the idealizations-such for example as the complete 
. homogeneity of the model-on which the analysis has been founded 

are to be regarded in the case of an actual physical system as failing in 
the neighbourhood of this lower limit of contraction. The situation 
is perhaps similar to that which would be furnished by an attempt to 
describe the behaviour of an elastic ball, bouncing up and down 
from the floor, solely with the help of the usual equation for gravita-
tional acceleration d?.k 

(iii = -g. (174.20) 

This equation would be sufficient to describe the motion of the ball 
as it rose to its maximum height and fell from that point. It would 
fail, however, to give a description of the mechanism of reversal when 
the ball reached the floor, and further considerations involving the 
size and elastic properties of the ball would be necessary to describe 
the passage through that point. 

As the end result of this section, we may then conclude, for the case 
A= 0, that the only possible behaviour, for a closed homogeneous 
model of the universe filled with a fluid unable to withstand tension, 
would be a continued succession of expansions and contractions, 
such that g(t) would increase from a singular state at the lower limit 
of the previous contraction up to a true maximum, and then return 
again to a singular state where renewed expansion would again set in. 
Furthermore, if at any given initial time the value of g and its rate of 
increase g were finite, the upper limit reached by g would be finite and 
only a finite time would be necessary to complete the cycle of expan
sion and contraction. Finally, it is to be emphasized that these con
ditions have been obtained without any reference to the reversibility 
or irreversibility of the behaviour of the model, and would be equally 
valid for the succession of identical expansions and contractions which 

·would correspond to reversible behaviour and for the succession of 
changing expansions and contractions which would be obtained with 
irreversible behaviour. 

175. Application of thermodynamics to a succession of irre
versible expansions and contractions 
As already pointed out in Chapter IX, a continued succession of 

irreversible expansions and contractions, as found for the models 
considered in the preceding section, would seem very strange from the 
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poiri.t of view of classical thermodynamics, which would predict an 
ultimate state of maximUm. entropy and rest as the result of continued 
irreversible processes in an isolated system. Hence we must now 
examine the bearing of relativistic thermodynamics on this finding.t ' 

In accordance with our general discussion in § 169 of the conM 
ditions for reversibility and irreversibility in the behaviour of 
homogeneous models, the succession of irreversible expansions and 
contractions, which we are now considering, would be cha.racterized 
by a continued increase in the proper entropy of any selected element 
of fl.uid· in the model, as given by the sign of inequality in the 
expression d, . 

dt(r/J0 8v0) > 0. . (175.1) 

Thus, although the model might pass through states in the course of 
an expanSion or contraction in which the conditions momenta.rily 
correspond to those for physical-chemical equilibrium, it is evident 
that the entropy of any element of the :fluid·would ultimately have to 
increase without limit as the irreversible expansions and contractions 
continued. Hence we must now show that this can be possible, since 
the classical thermodynamics has accustomed us to the idea of a. 
maximum upper val\].e for the possible entropy of any isolated system. 

To investigate this point it is evident that we may take the proper 
entropy, measured for any small element of the fluid by a local 
observer, as depending on the state in accordance with the classical 
equation . 

d(tf>o av.) = ~. tl(p .. &.>+~: d(8vol+ IJ(~ol dnY+ ... + iJ(tf>~v.) ~. 
(175.2) 

where the proper energy of the element (p00 8v0), its proper volume 
8v0, and the number of mols ~, ... ,n~ of its different chemical conM 
stituents are taken as the independent variables which determine its 
state. 

In applying this equation to the continued increase in the entropy 
of the element, which must take place if the irreversible expansions 
a.nd contractions continue, we note in accordance .with the result 
obtained from the first law in§ 166 

d, d 
dt(Poo 8v0)+Podt(8v0) = 0, (175.3) 

t Tolman, Phys. RetJ. 39, 320 (1932). 
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th.a.t the immediate cause which leads to entropy increase cannot be 
due to the presence of the first two.term.s on the right-hand side of 
(175.2), since their sum will always be equal to zero. Hence. the 
internal mechanism by which the entropy increase is actually occur-

. ring at any time must be due to the presence of the remaining terms 
c:>n the right-hand side, which correspond to the irreversible adjust
ment of composition in the direction .of equilibrium. · . 

At first sight ft ~ght seeni that such an adjustment of concentra
tions could provi,de only a limited increase in entropy, since the 
classical thermodYn,amic~;l has made us falniliar with the existence. of 
a maximum poBBible entropy for a system having a given energy and 
volume ; the p:t:eaen:t case differs, however, from the classical case of 
an isolated system, since the proper energy of any selected element 
of fluid in the model does not have to remain constant. Indeed, in 
accordance ·with (175.3), the proper energy of every element of fluid 
in the model would be 4ecreasing with time d~ expansion and 
increasing with time during contraction. HeD:ce if the p~ure tends 
to be greater during a compression than during the previous expansion, 
as would be expected with a htg behind equilibrium conditions, an 
element of the :fluid can return to its original volume with increased 
energy and hence also with increased entropy. Thus, al~hough the 
internal mechanism of entropy increase would always be due a.t any 
instant to the adjustment of cop.centrations, for example in the 
direction. of dissociation during the later stages of expansion and in 
the direction of recombination duripg the later stages of contraction, 
the poBBibility for continued entropy increase would have to be due 
in the long run to an increase in the proper energy of the elements of 
fluid in the model. 

As shown in§ 131 of the last chapter, the situation is analogous 
to the continued increase in entropy and energy which would occur 
in the classical case of a continued succession of irreversible adiabatic 
expansions and compressions for a dissociating gas in a cylinder 
with non-conducting walls and a movable piston, so long as external 
energy was available to complete the desired compressions; and in 
the relativistic case this external energy can be regarded as coming 
from the potential energy of the gravitational field associated with 
Einstein's pseudo-tensor density t~. Similar considerations could also 
be given to the irreversible expansion and contraction of a mixture 
of matter and radiation, assuming a delay in their attainment of 
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equilibriru;n which in the later stages of expansion might inv~lve both 
a lag in the transformation of a portion of the mass of matter into 
radiation as well as a lag in the escape of radiation from the matter. 
Such possibilities might be of interest for the actual universe. 

Having found that a continued succession of irreversible expansions 
and contractions for our cosmological models would involve in the 
long run an increase in the proper energy of the elements of fluid 
therein when they return to the same volume, we must now examine 
the effects of such an increase on the character of later and later 
cycles. This can easily be done with the help of our equation for 
energy density (17 4.3), which gives 

(1-75.4) 

as an expression which is proportional to the proper energy of any 
selected element of the :fluid, having the proper volume 

r2sin8 etu 
8v0 = [l+r2/4.R~]8 8r888q,. (175.5) 

In accordance with these expressions we see that the volume of any 
element of the fluid will return to an earlier value when g(t) so returns, 
and hence that the energy of the element can be greater at a later 
return only in case the square of the velocity, g2, has a greater value. 
This, however, is sufficient to indicate the general difference between 
the character of a given cycle and sufficiently later ones, as shown in 
Fig. 10, where the later cycle has larger values of [g[ for a given value 
of elo, and hence also rises to a higher maximum. 

Since the value of the energy density at the point of maximum 
expansion would be given by 

3 
87Tp00 = .R~ e-o, (175.6) 

and the value of g at the maximum would ultimately increase without 
limit, we see that the energy density at this point would get smaller 
and smaller for later cycles. Hence, too, we may infer that the model 
might spend a greater and greater proportion of its period in a condi
tion of lower density than that observed, for example at present in 
the actual universe, even though a retum to higher densities would · 
always occur. The above conclusion as to energy density at the point 
of maximum expansion, however, does not apply in general to the 
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irreversible oscillations that could be obtained with other assump
tions as to A and R~. 

In concluding this Part of Chapter X, it should be emphasized, at 
our present stage of very incomplete knowledge as to the actual 
behaviour of our surroundings over long periods of time, that the 
importance of the foregoing applications of thermodynamics to cos
mological models lies primarily, not so much in providing immediate 
explanations for the phenomena of the real universe, as in indicating 

Later Cycle 

Earlier Cycle 

FIG. 10 t 

the ultimate necessity for the use of relativistic rather than classical 
thermodynamics for a succeBBful treatment of the problems of cosmo.
logy. Two considerations which might have a bearing on the problems 
of actual cosmology may, nevertheleBB, be mentioned. 

In the first place, the foregoing discussion has suggested the possi~ 
bility that the present state of the actual universe, or of that portion 
which lies within some 108 light years, may perhaps be the result of 
an irreversible expansion from an earlier state of exceedingly small 
volume, corresponding to the lower singular states that we have 
found in the case of some of our homogeneous models. In such a 
lower state of very small volume, the density, pressure, and tempera
ture that we should have to assign to the fluid in the model would, 
however, be very high; and the conditions for thermodynamic equili~ 
brium very much displaced, in the general direction for endothermic 
chemical reaction, as compared with those now prevailing on the 
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average in our surroundings. In Chapter V, nevertheless, we have 
seen that the relative amounts of hydrogen and helium, of different 
isotopes, and perhaps also of matter and radiation, actually found in 
the u¢verse, do show a great excess of endothermic substances when 
compared with present conditions for equilibrium. Hence it might 
be plausible to try to explain existing ratios as the result of slow 
irreversible changes which have taken place since an earlier state of 
high density and temperature. . 

In the second place, in connexion with the behaviour of the actual 
universe, some stress must be laid on the possibility found for a certain 
class of models to expand and contract irreversibly without ever 
reaching a.n unsurpassable state of maximum entropy .. It would of 
course not be safe to conclude therefrom that the actual universe 
will never reach a state of maximum entropy, where further change 
would· be impossible. Nevertheless, this finding in the case of certain 
kinds of model must be allowed to exert some liberalizing a.Qtion on 
our general .th~rmodynamic thinking. At the very least it would 
seem wisest, if we no longer dogmatically assert that the principles 
of thermodynamics necessarily require a universe which was created 
at a finite time in the past and which is fated for stagnation and 
death in the future. 
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APPLICATIONS TO COSMOLOGY (contd.) 

Pari IV. CORR~ATION OF PHENOMENA IN THE ACTUAL UNIVERSE 
WITH THE HELP OF NON-STATIC HOMOGENEOUS MODELS 

176. Introduction 
There are three different kinds of justification that can be given 

for our extensive consideration of the properties of non-static homo
geneous cosmological models. In the first place, we have a natural 
interest and intellectual pleasure in trying to develop the conse
quences of any set of mathematical assumptions without reference 
to possible physical applications. Secondly, since we have based our 
treatment on acceptable physical theory, we have the right to expect 
that the theoretical behaviour of our models will at least inform and 
liberalize our thinking as to conceptual possibilities for the behaviour 
of the actual universe. In the third place, however, and this is perhaps 
most important of all, we have the right to hope that the models can 
be so constructed as to assist in the correlation and explanation of 
the observed phenomena of the actual universe, and indeed may even 
be sufficiently representative as to permit some cautious extra
polation forward and backward in time, which will give us not too 
fallacious ideas as to the past and future history of our surroundings. 

It is this possibility of using non-static homogeneous models to 
correlate the phenomena of the actual universe, which has been only 
incidentally mentioned in the foregoing, to which we must now turn. 
In doing so, it is to be emphasized that we shall attempt as nearly as 
possible a phenomenological point of view. We shall regard the line 
element, which we have derived for our models, as an approximate . 
expression whic~ may cease to be even reasonably satisfactory when 
extrapolated to too great distances or over too long time intervals. 
Furthermore, we shall attempt to obtain information concerning the 
function g(t), which occurs in the expression for the line element·and 
hence determines the temporal behaviour of the models, not from 
hypothetical considerations as to the possible origin ~r fate of the 
universe, but by the more modest method of expanding this function 
as a power series in t around the present time, and then learning as 
much as we can about the coefficients in this series from actual 
observational data. 
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In the following rather long section, which is divided into several 
parts, we shall first consider the several kinds of observational in
formation which are now available concerning the contents and 
structlU'e of the real universe. This information has to do with the 
magnitudes, distances, spectra, diameters, masses, and distribution of 
the extra-galactic nebulae, since these are the only things outside our 
own g&laxy concerning which we now have any certainty of know
ledge. Our precise information as to the nature and behaviour of 
these objects is largely due to the work of Hubble and of Hubble and 
Hum.ason. We shall not concern ourselves with the observational 
problems involved in obtaining the raw data, but shall present in 
some detail the methods used in the interpretation thereof. In later 
sections we shall then consider the correlation of the available in
formation with the help of our non-static models. 

177. The observational data 
(a) The absolute magnitudes of the nearer nebulae. Of fundamental 

importance for our knowledge of the extra-galactic nebulae are the 
determinations of magnitude and distance made by Hubble and . 
Humason. t The work divides itself into three parts. In the first 
place, we have the determination of the mean absolute magnitude for 
a considerable number of the nearer nebulae from direct observations 
on individual stars which they contain. In the second place, we have 
the observation of apparent magnifludes for more distant nebulae 
which are associated in groups or clusters. And in the third place, 
we then have the use of these results to calculate the distances to the 
clusters. 

We may first consider the determination of absolute magnitudes 
for the nearer nebulae, and leave the apparent magnitudes and dis
tances of the more distant nebulae to the next two parts of this 
section. 

Types of stars which have been identified in the nearest extra
galactic nebulae include Cepheid variables, irregular variables, helium 
stars {B0 and 0), P Cygni" stars, and novae. With the help of the 
observed magnitudes and periods of the Cepheid variables, actually 
found therein, Hubble and Humason have determined the distances 
to eightt of the nearest nebulae, using Shapley's 1930 zero point for 

t Hubble and Humason, A.Bttropkya. Joum. 74, 43 (1931). 
:t: This includes the two companions of M 31 which are assu:med to be at the same 

distance as M 31 itself. 
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the period-luminosity relation for the Cepheids.t This together with 
Shapley's values for the two Ma,gellanic clouds, then gives us a.t 
least fairly accurate values for· the distances to ten extra-galactic 
nebulae. And these distances, moreover, are confirmed by the 
observed magnitudes for the other types of stars which can be 
recognized in these objects. 

Combining this knowledge as to ·the distances of the ten nebulae, 
with their total observed visual magnitude as obt&in.ed from Hop
mann' st correction of Holetschek's measures and from other sources, 
Hubble and Humason then find for the absolute visual magnitude 
of these objects-as they would appear at the standard distance of 
10 parsecs-the mean value -14·7, with a total range of about 5·0 
magnitudes, and an average residual of 1· 5 around this mean. 

In addition to these determinations, when the different types of 
star present can be distinguished, Hubble and Iruma.son have also 
been able to use the luminosity of the brightest stars present to 
extend the determination of absolute magnitudes to any case where 
stars can be recognized at all. For eight of the ten objects considered 
above,§ the absolute magnitudes of the brightest stars therein were 
found to have the mean value -6·1, with a range of only about 1·8 
magnitudes, and an average residual of 0·4: around the mean. Since 
the scatter in the magnitudes of the brightest stars is considerably 
less than the scatter in the magnitudes of the nebulae themselves, it 
seems rational to assume that the brightest stars in these objects have 
a reasonably constant absolute magnitude independent of the nebula 
in which they are located. Furthermore, the validity of this assump
tion is confirmed by the fact that all the data available show a scatter 
for the differences between the observed magnitudes for the nebulae 
as a whole and their brightest stars, which can apparently be ac
counted for by the scatter to be expected in the apsolute magnitudes 
of the nebulae alone. Hence it seems justifiable to take -6·1 as a 
figure for the absolute magnitude of the brightest stars in any nebula 
where they can be seen at all, and then obtain the absolute mag· 
nitude of the nebula by adding the difference between the observed 
magnitudes of the nebula and of its brightest stars. 

Proceeding along these lines, in the case of 40 nebulae where stars 

t Shapley, Star Ollustet-s, 1930, p. 189. 
t Hopma.nn, Amon. Nadvr. 214,425 (1921). 
§ This excludes the two companions of M 31 as separate objects. 
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could be seen, Hubble and Humaso~ have found for the mean differ
ence between the observed magnitudes of the nebulae ·as a whole and 
their brightest stars the figure -8·88, with a range of 4·9 magnitudes, 
and an average residual around the mean of 0·77. The agreement 
between the scatter ·of 5·0 magnitudes for the ten nebulae first con
sidered and the above scatter of 4. 9 magnitudes will be noted. 

· Combining the figures, -6·1 for the absolute magnitudes of the 
bnghtest stars, and -8·88 for the mean difference in the magnitudes 
of the forty nebulae and such stars, the result -15·0 is found for the 
mean absolute magnitude of these objects, as compared with -14·7 

. for the original ten nebulae. The check is very satisfactory, and 
Hubble and Humason finally adopt · 

.. Mvts = -14·9, (177.1) 

for the mean absolute viB'l.Uit magnitude of extra-galactic nebulae. 
For purposes of oomparison with more distant nebulae, it is also 

desirable to have a 'figure for mean absolute photographic magnitude. 
The ·photographic magnitudes of nebulae' were found to be best 
obtained by using extra-focal images larger than the focal dimensions 
of the nebulae. By comparing the photo-visual and photograp¥o 
magnitudes corresponding to such images for sixty nebulae in the 
Virgo cluster, Hubble and Humason obtain the figure 

01 = +1·10±0·02, 

for the mean colour-index of not too distant nebulae, and this value 
was in rea.sonable agreement with other data available. Combining 
with (177.1), the ~e M ) pg=-13·8, {177.2 

is then obtained for the mean absolute photographic magnitude of 
extra-galactic nebulae, using extra-focal images. t 

(b) The corrected apparent magnitudes for more distant nebulae. 
We now tum to the determinations by Hubble and Huma.aon of the 
apparent photographic magnitudes of more distant nebulae where 
individual stars cannot be seen. The treatment involves several 
interesting corrections the nature of which may first be considered. 

Since the light from the 'more distant nebulae is actually found to 
have suffered a shlft in wave-lengths towards the red, these corrections 

t Some revision in this value may result from the programme of work on photo
graphic magnitudes now under way at Mount .Wilson or from work elsewhere. 
Shapley gives the value M,,- -14·5. Proo. Nat. Acad. 19, 591 (1933). 
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must be applied to the immediately observed photographic magni
tudes in order to make them comparable with the above absolute 
photographic magnitudes as determined for the nearer nebulae which 
show no appreciable red-shift. The general nature of the corrections 
will be seen from the following considerations: first, that the red-shift 
implies an actual decrease in the total rate at which energy is being 
delivered at the boundary of the earth's atmosphere; secondly, that 
the changed distribution of this energy in the spectrum implies a 
change in the fraction of it which will be absorbed in passing through 
the earth's atmosphere; thirdly, that the changed distribution of 
energy implies a change in the relation of its thermal to its visual 
effectiveness; and finally, that the changed distribution of energy 
also implies a change in the relation of its visual to its photographic 
effectiveness. 

The detailed treatment of these corrections may be based on an 
equation which can be regarded as an empirical relation, connecting 
the photographic magnitude of a heavenly object as ordinarily 
measured, with its bolometric magnitude as would be determined 
from thermal measurements made without absorption by the earth 'a 
atmosphere. The equation may be written in the form 

mPo = mb+Amr+HI+OI, (177.3) 

where mPo and mb are the photographic and bolometric magni~udes, 
Amr is the empirical correction to be added to the bolometric magni
tude to obtain the radiometric magnitude as measured thermally 
after absorption by the earth's atmosphere, HI is the empirical value 
of the so-called heat-index which must be added to the radiometric 
magnitude to obtain the visual magnitude, and 01 is the empirical 
value of the so-called colour-index which must finally be added to 
the visual magnitude to obtain the photographic magnitude. 

In accordance with this equation, we may then write 

Amp0 = Amb+~(Amr)+A(HI)+A(Ol) (177.4) 

as an expression for the effect of the red-shift in increasing the 
photographic magnitude of the more distant nebulae, by producing 
changes in their bolometric magnitude and in the three empirically 
determined quantities that must be added thereto in order to obtain 
the photographic magnitude. 

To calculate the direct effect of the red-shift in changing the bolo
metric magnitude, we must make use of what may be regarded as the 

3595,11 Gg 
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equation of definition for magnitudes 

m-M = 2·5logL-2·5logl, (177.5) 

where m and M are the observed and absolute magnitudes for a 
heavenly object, l is the observed luminosity of the object, and L 
the luminosity which it would have at the standard distance of 10 
parsecs. 

The effect on luminosity of superimposing a red-shift on the radia
tion from a distant object can be twofold. In the first place, it is 
evident that the frequency, and hence energy, associated with each 
individual photon coming to the observer will be decreased in the 
ratio i\: (A+8i\) ·of the original to the increased wave-length. In the 
second place, if the red-shift is actually due to a Doppler effect, 
the rate at which photons anive at the observer will also be decreased 
in this same ratio. Since Hubble and Hum.ason do not wish to assign 
any particular cause for the red-shift, they purposely allow for only 
the first of these effects, and hence write in accordance with (177 .5). 

i\+8i\ Amb = 2·5log-i\-, (177.6) 

as the change in bolometric magnitude due to the red-shift. H we 
allow for both effects, the change in bolometric magnitude would be 
twice as great. For the Leo cluster, nevertheless, which has the 
largest red-shift so far observed the additional correction would be 
within the limits of probable error. 

To obtain the remaining quantities on the right-hand side of ( 177 .4) 
we must consider the effect of red-shift in changing the apparent 
temperature of nebulae, since atmospheric absorption, heat-index, 
and colour-index are quantities which have been observationally 
related to spectral type and hence to apparent temperature. The 
spectral type of the nebulae may be taken as approximately dG3 

corresponding to a black-body temperature of the emitting source of 
5,760° absolute. Hence if the light suffers a fractional shift in wave
length it is evident from Planck's law (65.6), that the new spectral 
distribution would correspond to an apparent temperature of emis
sion given by 

(177.7) 

Furthermore, as the empirical relations connecting temperature of 
emission with spectral type and hence also with atmospheric absorp-



§ 177 CORRECTIONS TO MAGNITUDE 451 

tion, heat-index, and colour-index, we may take the tabular expres
sion given by Hubble and Humason for the known data:-t 

TABLE I 

Heat-Indez Oolotw-I'Il!lem 
Temp. o AbB. SpeotraJ, Type E.ffed of Atm. HI 01 

6,500 F, 0·44 0·30 0·62 
6,000 dG0 0·43 0·32 0·72 
5,600 dG1 0·41 0·39 0·83 
5,100 dK.o 0·40 0·55 0·99 
4,400 dK, 0·48 1·10 1·26 
3,400 dM 0·53 1·40 1·76 

With the help of the foregoing equations, together with graphical 
interpolation of the data given by Table I, Hubble and Humason are 
then able to obtain the results shown in Table II for the effect of a 
given fractional shift in wave-length in producing-in accordance 
with (177.4)---a change in the photographic magnitudes of nebulae. 

TABLE II 
Effect of Red-Shift on Photographic Magnitude 

Velooity DiBtan.ce 8.\ Temp. Sp6CWal 
km.fseo. Parseos 1" 0 Abs. Type Am6 A( Am,.+ HI) A(Ol) Amp, 

.. . . 0·0000 5,760 dG3·0 0·000 0·000 0·000 0·000 
1,000 1·8X 106 0·0033 5, '140 3·3 0·003 0·004 0·008 0·015 
4,000 7·2 0·0133 5,685' 4·0 0·015 0·015 0·02 0·05 
8,000 14·4 0·0267 5,615 4·7 0·03 0·03 0·04 0·10 

12,000 21·6 0·0400 5,540 5·8 0·04 0·05 0·06 0·15 
16,000 28·8 0·0533 5,470 6·5 0·06 0·06 0·08 0·20 
20,000 36 0·0667 5,400 7·2 0·07 0·08 0·10 0·25 
30,000 54 0·1000 5,235 8·8 0·11 0·13 0·16 0·40 
40,000 72 0·133 5,080 dK0·2 0·14 0·20 0·21 0·55 
50,000 90 0·167 4,940 1·4 0·17 0·32 0·26 0·75 
60,000 108 0·200 4,800 2·3 0·20 0·44 0·31 0·95 

The third column in this table gives the actual fractional red-shift 
considered, while the first two columns give merely for convenience 
the velocity of recession which would correspond to this red-shift if 
we interpret it as due to an ordinary Doppler effect, together with 
the distance to the nebula which we shall later find observationally 
associated with that red-shift. The remaining columns give in order: 
the temperature corresponding to the red-shift as calculated from 

t Relation of temperature to type from Russell, Dugan, and Stewart, Astronomy, 
1927. Effect of atmosphere and heat index from Petit and Nicholson, .Astrophys. 
Jourr,. 68, 279 (1928). Colour-index from Seo.res, Astrophys. Joum. 55, 165 (1922). 
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( 177.7) ; the spectral type corresponding to this temperature as 
obtained from Table I; the change in bolometric magnitude caused by 
the red-shift as calculated from (177.6); the small change in Am,. 
combined with that in heat-index as obtained from Table I; the 
change in colour-index as also obtained from that table; and finally 
the total change in photographic magnitude AmP0 due to the red
shift as calculated in accordance with (177 .4) by combining the 
figures in the three preceding columns. By subtracting the appro
priate value for AmPU' it then becomes possible to correct the 
observed photographic magnitude for any nebula to that which 
would be expected if the light coming therefrom had suffered no 
red-shift. 

The actual data of Hubble and Humason for the average photo
graphic magnitudes and red-shlfts found in eight clusters of nebulae, 
and for two groups composed of isolated nebulae having a moderate 
range in magnitude, are given in Table Ill, where the red-shifts are 
expressed in terms of the corresponding velocity of recession. The 
average figure given for the photographic magnitude, is the most 
frequent magnitude in the case of the clusters and the mean magni
tude in the case of the two groups. The next to the last column in the 
table gives the correction -Ampu which, in accordance with the pre
ceding table, must be applied to the observed photographic magni
tude to allow for the effects of the red-shift. It will be seen that this 
correction at the present time is actually negligible for all except the 
three most distant clusters. The last column in the table gives the 
distances to the clusters obtained by the method of calculation to be 
discussed below. 

TABLE ill 

Dia· NurnlJM" 
Numbtr meter Red-shifts M~an Shift .A.t~trage Correction Distance 

Clusur Nebulae CZustM- Measured kmjsec. mn -ll.Tnpg Pars8cs 

Virgo (500) 12° 7 890 12·5 .. 1·8xl06 

Pegasus 100 1 5 3,810 15·5 .. 7·25 
Pisces 20 0·5 4 4,630 15.4 .. 7 
Cancer 150 1·5 2 4,820 16·0 .. 9 
Perseus 500 2·0 4 5,230 16·4 .. 11 
Coma 800 1·7 3 7,500 17·0 -0·10 13·8 
Ursa Major 300 0·7 1 11,800 18·0 -0·15 22 
Leo 400 0·6 1 19,600 19·0 -0·25 32 

Group I 16 .. 16 2,350 13·8 . . 
I 

. . 
Group II 21 .. 21 630 11·6 . . . . 

-
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(c) Nebular distances calculated from apparent magnitudes. Taking 
the nebulae which appear in a cluster to be actually physically 
associated in a relatively restricted region, it now becomes possible 
to calculate the distance to the cluster by comparing the average 
observed photographic magnitude for the nebulae therein with the 
mean absolute photographic magnitude obtained from nearer nebulae. 
In a similar manner~ it is also possible to calculate an average dis
tance for the isolated nebulae which have been grouped together for 
purposes of treatment. 

In order to make such calculations,- Hubble and Humason make 
use of two interesting assumptions. 

In the first place, it is assumed that the absolute· magnitude to 
be expected on the average for any nebula is the same as that pre
viously obtained for the nearer nebulae. Since the distance to the 
Leo cluster actually turns out to be a little more than lOB light 
years, this involves not only the aBSumption that nebulae in differen-t 
parts of the universe tend to be alike at a given time, but also the 
assumption that the luminosity of a nebula would suffer little change 
in lOB years. 

In the second place, it is assumed that the apparent luminosity of 
nebulae, making allowance for the effect of the red-shift, would be 
proportional to the inverse square of their distances, in the manner to 
be expected for stationary objects in ordinary Euclidean space. 

To make use of these assumptions, we have the equation of defini
tion for magnitude 

m-M = 2·5logL-2·5logZ, (177.8) 

where m and M are the observed and absolute magnitudes for a 
heavenly object, lis the observed luminosity of the object, and L the 
luminosity which it would have at the standard distance of 10 
parsecs. And we have the inverse square law for luminosities 

l D2 

L = d2 , (177.9) 

where d and Dare the actual and standard distances. Combining the 
two equations and setting D = 10, we obtain 

logd = 0·2(m-M)+l, (177.10) 

for the distance d in parsecs in terms of apparent and absolute 
magnitude. 
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This result may be applied to the photographic magnitudes of 
Hubble and Hu:mason in the form 

logd = 0·2(mpg-Am:p0 -M:p0 )+1, (177.11) 

where -il.mw is the correction for the effect of red-shlft already dis
cussed. With the help of this equation and the figures for absolute 

· and corrected apparent photographic magnitudes given by (177.2) 
and Table ill, the distances to the various clusters may now be 
obtained, as already shown in the last column of Table III, where the 
estimated reliability of the result is roughly indicated by the number 
of significant figures presented. 

A treatment of the relation between luminosity and distanoe, in 
which the assumption of flat space and stationary nebulae is not . 
made will be given in§ 179. It will be shown there that the calculated 
nebular distances d are related in a specially simple manner to the 
coordinate f which we have used in one of the later forms (149.5) in 
which we have expressed the original formula for the non-statio line 
element (149.1). 

(d) Relation of observed red-shift to magnitude and distance. In 
the case of extra-galactic nebulae, the nearly universal occurrence of 
spectral shifts towards the red was made evident at least as early as 
1922 by the pioneer work of Slipher,t on the light from nearby 
nebulae; and, by employing the methods for determining nebular 
distances discussed above, an approximate linearity of red-shift with 
calculated distance out to 2 X 106 parsecs was established in 1929 by 
the work of Hubble.t With the present much more extended data of 
Hubble and Humason, it now becomes possible to obtain a very 
satisfactory treatment of the dependence of red-shift on observed 
magnitude and hence also on calQulated distance. 

Since the quantities actually observed are red-shift and apparent 
magnitude, we may first consider the values for these quantities as 
given in Table ill for the case of the eight clusters and the two groups 
of isolated nebulae. The relation between the values given is shown 
in Fig. 11, taken from Hubble and Humason, where the logarithms of 
red-shift-expressed in terms of velocity v-have been plotted as 
ordinates, and the observed magnitudes are takeh as abscissae. The 
relation is evidently closely linear, and was found to be satisfactorily 

t See the table given by Eddington, The Mathematical Theory of RelatWif:IJ, 1923, 
p.162. t Hubble, Proo. Nat. Acad. 15, 168 (1929). 
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expressed by the equation 

logv = 0·2m+0·507, (177.12) 
with an average deviation of 0·031 in logv and 0·15 in m over the 
range of interest. 
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With the help of the equation connecting magnitude with distance 
given by (177.10), we can also examine _the relation between red·shift 
and calculated distance. This is shown in Fig. 12, where the red
shift is again expressed in terms of velocity. The dots near the origin 
represent the data for nearby individual nebulae, and the circles 
represent the data given in Table III. 
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The direct relation between red-shift and calculated distance is 
seen from this plot to be closely linear, and by combining equations 
(177.11} and (177.12) and inserting the value for Mpa = -13·8 can 
be expressed in the form 

! = 5·58 x 10_,km.fsec.. (177 .13) 
d parsec 

For our later purposes, it will be more useful to express the red-shift 
in terms of fractional change in the wave-length. We then obtain 

a;= 1·86 X 10-9 d (177 .14} 

with the distanced in parsecs, or 

8-" = 5·71 X I0-10 d 
A 

(177 .15) 

with d expressed in light years. It is believed that the uncertainty in 
the final result is definitely less than 20 per cent. and probably not 
more than 10 per cent. 

In considering the significance of this remarkable discovery of a 
linear relation between red-shift and distance, it is pertinent to in
quire into the constancy of the red-shift found for different nebulae 
in the same cluster. The Coma cluster may be taken as an example, 
since it shows a considerably wider range in red-shift than any of the 
other (nearer) clusters where more than one measurement has been 
made. At the time the data in Table ill were. assembled by Hubble 
and Humason, the red-shifts for four nebulae in this cluster had been 
measured. Three of these nebulae gave the values 6,700, 7 ,600, 
7,900 km.fsec., with a mean of 7,500 km.fsec. when corrected for 
solar motion. The fourth nebula gave the value 5,000 km.fsec. and 
was excluded from the treatment on the assumption that it was a 
superimposed object not belonging :to the cluster. Since that time 
Humason has obtained the red-shifts, 6,600, 6,900, 6,900, 7 ,000, 
8,500 km.fsec. for five additional members of the cluster. The total 
range of 1,900 km.fsec. may be somewhat exaggerated since each 
measurement depends on a single spectrogram with the small dis
persion of 87 5 A. per milHmetre. 

It is also of interest to inquire into the constancy of the fractional 
red-shift for different lines in the light from the same nebula. For 
this purpose Dr. Hubble has kindly placed at the writer's disposal 
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datafortenlinesin thespectrumofN.G. C.1275inthePerseuscluster, 
having unshifted values ranging from A= 3,727 to A= 5,007. The 
maximum and minimum values for 8'AjA occur at A = 4,363 and 
A= 5,007 and differ by about 14 per cent. of their mean. Both of 
these lines, however, are labelled 'poor'. For the first and last lines 
in the spectrum labelled 'good', occurring at the much more widely 
separated positions A = 3, 727 and A = 4,861, the values of 8AjA differ 
by only about 3 per cent. of their mean. Within the limits of 
accuracy of the present data the values of 8AJA may be regarded as 
independent of A. 

(e) Relation of apparent diameter to magnitude and distance. 
Assuming ordinary Euclidean space, populated with stationary nebu
lae all of which have the same actual dimensions, it is evident that the 
apparent diameters of these objects as measured by the subtended 
angle 88 could be taken inversely proportional to their distance d in 
accordance with the equationt 

88 = const.; (177.16) 
d 

and by combining this expression with the relation between distance 
and magnitude given by (177.10), we obtain 

log88 = -0·2m+c, (177.17) 
as a relation connecting the two immediately observable quantities 
apparent diameter and apparent magnitude, where cis a constant. 

In applying this equation to actual observations, it was found by 
Hubblet that the value of c, although reasonably constant for nebulae 
of any given type, had different values as might be expected for 
different types of nebulae. Nevertheless, the values do not vary 
greatly, and in the case of regular nebulae show an interesting de
pendence on the sequence of types of elliptical, spiral, and barred 
spiral forms which can be distinguished. By reducing all the nebulae 
to a standard type, it then became possible to correlate all the available 
data as shown below in Fig. 13, where the logarithms of apparent 
diameter are plotted as abscissae and the total visual magnitudes of 
the nebulae as ordinates. The two highest points on the plot are for 
the Magellanic clouds. The equation for the representative line is 

log88 = -0·2m+2·6, (177.18) 

t For the angles and distances under consideration there iR no need to distinguish 
between the subtended angle and the corresponding chord. 

:1: Hubble, A8trophya. JO?.trn. 64, 321 (1926). 
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where 88 is the maximum apparent diameter in minutes of arc and 
m is the observed visual magnitude. The equation applies of course 
only after the reduction to a standard type. 

The correlation shown by the above figure is sufficient to confirm 
our general idea as to the extra-galactic position of the objects con
sidered. A treatment of the relation between luminosity and apparent 
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diameter where the assumption of :flat-space and stationary nebulae 
is not made will be given in § 180. 

Equation (177.16) provides of course an alternative method for the 
determination of nebular distances, using apparent diameters instead 
of apparent magnitudes. In practice the method is complicated, 
however, not only by the presence of a wide variety in form, but also 
by the fact that determinations of apparent diameter are much more 
dependent on length of photographic exposure than those of apparent 
magnitude, owing to the high luminosity of the central regions of 
nebulae. 

(f) Actual diameters and masses of nebulae. The actual diameters 
of nebulae can be calculated from their apparent diameters and dis .. 
tances. The figures of Hubble for the mean maximum diameters for 
different types of nebulae are given in Table IV. 
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TABLE IV 

.Diamet&r Diameter 
Type in parsecs Type in parsecs 

Elliptical N ebula.e N orma.l Spira.ls 
Eo 360 s. 1,450 
El 430 s. 1,900 
Es 500 s, 2,500 
Ea 590 Barred Spirals 
E, 700 SB,. 1,280 
Es 810 SB• 1,320 
E, 960 SB0 2,250 
E7 1,130 Irregular N ebule.e 1,500 

4:59 

These figures would have to be diminished by about 15 per cent. in 
order to allow for the new zero point of the period-luminosity rela
tion for the Cepheids. It is to be emphasized, however, that the 
values obtained are dependent on exposure time and must not be 
taken as definite. Present estimatest of the diameter of our own 
system as outlined by the globular clusters are of the order of 20,000 
to 50,000 parsecs. Objects tentatively identified as globular clusters 
have recently been found in the Andromeda ne hula by Hubble,t and 
it seems probable that our own galaxy and the Andromeda nebula 
are of approximately the same size. 

Estimates of the masses of nebulae may be made by combining 
figures for actual diameter with those for velocity of rotation deter
mined with the spectroscope, by making the assumption of orbital 
rotation around the nucleus. They may also be obtained by Opik.'s 
method of assuming the same coefficient of emission for the material 
in the spirals as in our own galaxy. Using the somewhat meagre 
data available, Hubble§ estimates 

m = (6 to 10) X 1080 (177.19) 

as a reasonable value for the mean mass of the nebulae, where the 
mass of the sun is 0 = 1·983 X 1033 grammes. (177 .20) 

(g) Distribution of nebulae in space. Assuming ordinary Eucli
dean space populated with a uniform distribution of stationary 
nebulae, it is evident that the number of nebulae N to be expected 
out to any distance d could be taken as proportional to the cube 

t Soo Stebbins, Proc. Nat. Acad. 19,222 (1933). 
t Hubble, Aatrophya. Joum. 76,44 (1932). 
§ Hubble, Astrophya. Joum. 79, 8 (1934). 
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thereof, in accordance with the equation 

N = const.xda; (177.21) 

and by combining this expression with the relation between distance 
and magnitude given by (177 .10), we obtain 

logN = 0·6m+O, (177.22) · 

where m is the limiting magnitude considered and 0 is a constant. 
In applying this equation to actual observations, two interesting 

phenomena are encountered. 
In the first place, there appears to be a practically complete lack 

of any extra-galactic nebulae at all in the plane of the Milky Way, the 
'zone of avoidance' being somewhat irregular in shape but of the 
general order of 15° in width. The explanation of this phenomenon is 
doubtless to be found in the presence of a layer of obscuring material 
in our own galaxy. This explanation is strengthened by the presence 
of known clouds of material in the Milky Way which are even sufficient 
'to obscure all but the nearer stars in our own system. The explanation 
is still further strengthened by data of Hubblet which show that 
nebular counts increase between the zone of avoidance and the 
galactic poles in the manner to be expected if the nebulae are actually 
seen through a layer of obscuring material. 

The second phenomenon of interest is the irregularity in the density 
of nebular distribution, which is certainly found, unless sufficiently 
large ranges in depth and angular area are chosen for the individual 
counts. This is in any case partly due to the tendency for nebulae to 
be found in clusters. Thus, as emphasized by Shapley and Ames,t the 
total number of nebulae observed out to magnitude 13 is twice as 
great in the northern hemisphere as in the southern hemisphere. This 
difference, however, can be entirely ascribed to the presence of the 
populous Virgo cluster in the northern hemisphere within that range 
of magnitudes. In addition to such effects of clustering, Shapley§ 
:finds out to magnitude 18·2, after correcting to uniform conditions, 
an excess for nebular counts in the northern as compared with the 
southern hemisphere. Hubbiet finds, however, out to magnitude 
20 no such difference between the two hemispheres. 

Making due allowance for the obscuring effect in the Milky Way and 

t Hubble, AIMophys. Joum. 79, 8 (1934). 
t Shapley and Ames, Annals Harvard Obsen;atory, 88, 43 (1932). 
§ Shapley, Proc. Nat. Acad. 19, 389 (1933). 
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the lack of uniformity corresponding to insufficient ranges in depth 
and area,Hubblet finds that the distribution of extra·galactio nebulae 
can be reasonably represented by an equation of the above form 

logN = 0·6m-9·12, (177 .. 23) 

where N is the number per square degree, and m is the corrected 
apparent photographic magnitude. 

A treatment of the density of nebular distribution which does not 
involve the assumption of flat space and stationary nebulae will be 
given in§ 181. 

(h) Density of matter in space. Making use of the best estimates 
now available for the mean mass of the nebulae and their density of 
distribution, Hubblet takes 

p = (1·3to 1·6)X Io-sogm.jcm.3 (177.24) 

as an estimate for the averaged out density in space of the matter 
which composes the extra-galactic nebulae. 

This is of course a lower limit for the actual density of matter in 
space, since we do not now know how much other matter may be 
present in the form of dust, gas, or moving particles associated with 
cosmic ray phenomena. Hubble estimates that the density of extra
galactic dust might be a thousand times the figure given above with
out having as yet been detected. 

In addition to matter there is an unknown amount of radiation 
present in intergalactic space, including that which has come from 
the nebulae themselves and that which may be associated with cosmic 
ray phenomena. A uniform distribution of black·body radiation with 
a temperature of about 19° absolute would have a density of 10-ao 
gm.Jcm.3 

In view of the possibilities for other material besides the nebulae 
to be present in space, it is possible that the actual homogeneity of 
distribution may be n1uch greater than would be concluded from the 
tendency for nebulae to occur in clusters. 

For our later purposes, it will be advantageous to re·express 
(177.24) in the relativistic units of§ 81. Doing so we can write 

81r X I0-30 

81rp = 1.
349

.)(.j(jili ~ 1·86X 10-57 cm.-2, (177.25) 

or changing to light years as the unit of distance 
81rp ~ 1·7 X 10-21 (yrs.)-2• (177.26) 

Hubble, Aatrophys. Jou.rn. 79,8 (1934). 
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178. The relation between coordinate position and luminosity 
We must now turn to the interpretation of the foregoing observa

tional data. with the help of our non-statio models. In the next few 
sections it will first be necessary to derive a number of relations which 
will facilitate a comparison of the properties of such models with the 
data available, and a unified presentation of the correspondences 
between the behaviour of the model and the observed phenomena in 
the actual universe will have to be delayed until§ 185. 

In the present section we shall consider the relation between the 
coordinate positions of nebulae and the observed luminosities which 
would be expected on the basis of a non-statio homogeneous model. 

In carrying out the actual treatment, it will prove simplest not to 
use the line element in the first form that was obtained 

eu(l) 

d82 = - [l+r2/4R~]2 (dr2+r2 d82 +r2sin28 dcfo2)+dt2, (178.1) 

but in the later form 

dtJ2 = -eo(t>( dr
2 

+r2 d()2 +r2sin28 d.J..2)+dt2 (178.2) 
l-r2/ R5 '~-' ' 

which was obtained in § 149 by introducing the transformation 

- r 
r = I+r2/4Rf 

(178.3) 

Since this equation of transformation involves none of tho coordinates 
except r, it is evident that all of our previous expressions, for example 
those for density and pressure, which do not depend on r, will be 
unchanged. 

To obtain the desired relation between coordinate I>Osition and 
observed luminosity, t it will be simplest at the start to take the ne hula 
as located at the origin of coordinates and the observer at the given 
coordinate distance of interest if, both having no motion relative to 
the spatial coordinates in use, and hence in accordance with our 
previous considerations both permanently at rest with respect to the 
matter in their immediate neighbourhoods. As the definition of the 
observed luminosity l, we may take the rate which the observer finds 
for the energy received from the nebula in unit time and per unit 
area, using of course his own proper measures, ~nd assuming no 
absorption between him and the nebula. 

t Tolman, Proc. Nat. Acad. 16, 51~ (1930). 
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To undertake the calculation of this .luminosity, let t1 and t2 be 
the respective times for the departure of light from the nebula at the 
origin and its arrival at the·observer at the coordinate distance if. In 
accordance with the expression for the velocity of light that corre
sponds to the line element (178.2}, we can relate these two values of 
t to the distance travelled by the equation 

By differentiation-since the limits of integration of the right-hand 
side are constant-we then obtain 

(178.4) 

as an expression which connects the time interval 8t1 between the 
departure of two electromagnetic disturbances from the source and 
the time interval 8t2 between their arrival at the observer with the 
values of g(t} for the model, g1 and g2 at times ~ and t2• 

Applying this result to the time interval between successive wave 
crests which leave the nebula, noting that our coordinate timet agrees 
with proper time both for the nebula and for the observer, we may 
evidently write 

A+8A v _ -···- ... = ____ = el<aa ov 
A v+Bv 

(178.5) 

as an expression which relates the wave-length A and frequency v of 
light leaving the nebula with the shifted values (A+8A) and (v+8v) 
which it will exhibit to the observer. The expression agrees of course 
with our original treatment of the Doppler effect as shown by com· 
parison with (165.7). 

Furthermore, by applying the result given by (178.4} to the time 
interval between succe~sive photons which we can regard as carrying 
energy away from the nebula, we obtain 

(178.6) 

as a connexion bctwoon tho total rate z1 at which photons leave the 
nebultt, u.nd theirtotn.l ohAcrvcd rate of arrival z2 atthe surface around 
the origin defined by the coordinate distance r. 

li~inally, moreover, it is evident, from the form of the line element 
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(178.2), that we may write 
A 0 = 4nf2eDs, (178.7) 

as an expression for the total proper area of this bounding surface 
defined by if through which the photons pass at time t2. 

Hence making use of these last three equations, and taking hv1 as 
the mean 'energy of the photons that leave the nebula, it is evident 
that we can now write 

z = z.t~~ = ~~;(~~axr (178.8) 

as the desired expression for the observed luminosity of the ne hula as 
defined above. 

This result has been derived for simplicity taking the nebu1a as at 
the origin of coordinates and the observer at the coordinate distance 
if. It has been shown, however, in§ 149 (c) that the transformation to 
a new system of coordinates, having the same form of line element as 
given by (178.2) but having the observer at the origin, would place 
the nebula at the coordinate distance f. Hence we may regard (178.8) 
as applying equally well when the observer is at the origin and the 
nebula at if. 

This now makes it easy to compare the observed lmninosities for 
different nebulae which have different coordinate distances if but 
which are observed at the same time t2 at the origin. Taking the 
intrinsic luminosities and hence z1 and v1 as being the same for the 
different nebulae considered, we can immediately write from ( 178.H) 

z r'2(l+oA'/A')2 
r = r"' -< 1-t~.-aXJXp~ ( 178.9) 

for the ratio of the observed luminositicH of two identical nebulae 
located at the coordinate distances /f and f', nnd exhibiting the frac
tional red -shifts o>..j>.. and ()>..'/A' at the origin. 

Introducing the transformation equation (17H.3), this result can 
also be expressed in terms of our earlier coordinate r in the form 

l r'2 (1+r2j4R5)2 (1 -j-8A' />..')2 
r = r2 (I +r'2J4R~)2 fi =F8X/X)2 I 

(178.10) 

It is the increased complexity of this form H.s compared with (178.9) 
which recommends the use of the coordinate ~:~yHtcm ('r, 8, cp, t) for our 
present considerations instead of the original system (r, fJ, rp, t) whiuh 
was used in deriving the line element. 
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In obtajning these relations between luminosity and coordinate 
position, it will be noted that we assume, in addition to a homogeneous 
model, a constancy in the mean intrinsi~ luminosities of nebulae over 
the time intervals of the order of 108 years which will be involved in 
actual applications. 

By solving (178.9) for the coordinate positions of nebulae fin terms 
of their luminosities l, we can evidently rewrite the result in the form 

r = ~?~~t. (~~8~)· (178.11) 

179. The relation between coordinate position and astrono .. 
mically determined distance 
With the help of the relation between luminosity and nebular 

position given by (178.9), we can now readily determine the relation 
between coordinate positions f and the computed distances. d given 
by Hubble and Humason. To do this we must first replace luminosi
ties by magnitudes, owing to the use of this latter quantity in the 
computations made by astronomers. Solving (178.9) for the ratio 
f to f' between the coordinate positions of two nebulae and taking 
logarithms we can write 

f l' I I+8A' /A' 
logr' = 0·5logy+log I+sij>.., (179.1) 

and introducing the definition of magnitudes in the form 

l' 
m-m' = 2·5log I, 

the a hove can be written in the form 

f I . I+8A' /A' 
log¥' = 0·2(mb-mb)+log -i+aX;X-, (179.2) 

where 'm1, and m.;, are tho observed bolometric magnitudes, in agree
ment with tho definition which we have given for luminosity in the 
preceding section. 

~l'o compu.ro thi~ expression with that used by Hubble and Huma
son, we must now chn.nge to photographic magnitudes by introducing 
tho empirical relation between the1:1e two kinds of magnitude given by 
( 177 .3). Doing so, we ob~1.in 

(179.3) 

8696,11 H h 
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Taking if' as the coordinate for a nebula at the standard distance of 
10 parsecs, and for convenience choosing the mesh system so that we 
can then put i' = 10, it is evident-since the red-shift and its effects 
are negligible at that distance-that the above can be rewritten in 
the form 

logf = 0·2{m,.,-A(.1.m,.)-A(HJ)-.1.(0J)-M,.}-logl-~~~)+I, . 

(179.4) 

where m;0 has been replaced by the absolute photographic magnitude 
M:Po' Noting, however, in accordance with (177.4) and (177.6), the 
expression for tl.m:Po taken by Hubble and Humason as the effect of ' 
the red-shift on photographic magnitudes, this result can again be 
rewritten in the form 

logi = 0·2(m,.,-AmH-M,..l+l-0·5logl18~). (179.5) 

which can be immediately compared with the expression ( 177.11) 

logd = 0·2(mPO-tl.mPD'-MP0 )+1 (179.6) 

used in the calculation of distances by Hubble and Humason. 
As a consequence we may now write 

(179.7) 

as the desired relation between the distances d to the nebulae as com
puted by Hubble and Humason and the coordinate positions f which 
would be assigned to them on the basis of the line element (178.2), 
provided we choose the coordinate meshes for convenience so that 
f = 10 at the standard distance of 10 parsecs at the time of interest. 

The appearance of the factor ~(1+8Af"A) in these expressions is due 
to the fact, that the expanding model definitely assigns a Doppler 
effect as the cause of the red-shift and hence allows for a change in the 
frequency of arrival as well as in the intrinsic frequency associated 
with the photons which reach the observer, while the considerations 
of Hubble and Humason purposely allowed only for the latter of 
these two effects. The non-appearance of terms in B~ is due to 
the properties of the coordinate system (f, 8, <f>, t) which we have 
selected. 

Since for the Leo cluster, the farthest yet examined, the difference 
between if and d would only be about 3 per cent, we can regard these 



§ 179 COORDINATE POSITION AND DIAMETER 467 

quantities as the same within the observational error until further 
data are available. 

180. The relation between coordinate position and apparent 
diameter 
We may next consider the relation between the coordinate positions 

of nebulae and their apparent diameters, t again using the line element 
in the form 

ds2 = -eo<o( dr
2 

+f2 d82 +f2sin28 dcp2)+dt2 (180.1) 
1-f2/R~ . 

For the purposes of the discussion we shall take the observer as 
permanently located at the origin of coordinates and the nebula at 
the coordinate distance f. Furthermore, we shall take ~ and t9 as 
the times when the light which is observed leaves the nebula and 
arrives at the origin, this light travelling radially inward in accordance 
with§ 154. Taking the diameter of interest as lying in the direction 
of dfJ, we can then write, in accordance with the form of the line 
element, 8l0 = felo1 88, ( 180.2) 

as an expression for the proper diameter 8l0 of the nebula at the time 
t1 when the light is emitted, where g1 is the value of g(t) at that time, 
and 88 is the angular diameter for the nebula which will be observed 
at the origin. 

Assuming 8l0 actually the same for the different nebulae which are 
being observed at the same time t2 at the origin, we can then rewrite 
(180.2) in the form const. 

88 = --·;;_-- el<oa-DJ), 
r 

(180.3) 

since the value g2 for g(t) at the time of observation will be the same 
for these different nebulae. And introducing the expression for the 
red-shift (178.5), this can be rewritten in the form 

88 = c_o~_st. (~1~}. (180.4) 

By cornbining (180.4) with the relation (178.11) between observed 
luminositic~ and coordinate position we can write 

~ = const.e~8")". (180.5) 

as a relation between observed diameters, luminosities, and red-shift, 

t 'folrnan, Proc. Nat. Acad. 16, 511 ( 1930). 
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which could provide a direct empirical test of the hypothesis that 
the red-shift is due to an actual expansion. 

By combining (180.4) with the relation (179.7) between coordinate 
position rand astronomically determined distanced, we obtain 

88 = co~st. (~~8~)~, (180.6) 

as compared with the earlier expression (177.16) obtained by assum .. 
ing stationary nebulae in ordinary Euclidean space. 

181. The relation between coordinate position and counts of 
nebular distribution 
We now turn to a treatment of the number of nebulae to be ex

pected, from counts made out to a given coordinate distance f, on 
the assumption of a homogeneous expanding model. To obtain this 
we may let n 0 be the number of nebulae per unit proper volume at 
some selected initial time t0, when g(t) for the model has the value g0• 

In accordance with the expression for proper volume corresponding 
to the form of the line element (180.1), it is then evident that we may 
write for the nwnber of nebulae between the coordinate positions 
r andr+dr 

(181.1) 

We have shown, however, in§ 153 that particles at rest with respect 
to the spatial coordinates (r, 8, cfo) and hence also with respect to 
(f, fJ, cfo) would remain permanently so. Hence there will be no loss 
or gain by a net passage of nebulae past the boundaries f and r+dr, 
and (181.1) will give for all times the nmnber of nebulae in the selected 
coordinate range. Hence we may now write 

f 2 dr dN = const .. -· -- ---- - (181.2) . ,J ( 1-r2j R~) 
as a general expression for the change in nebular counts as we go to 
greater and greater coordinate distances f. Furthermore, from the 
relation of coordinate position to luminosity and red-shift given by 
(178.11), it is evident that this expression could pro,ride means for a 
direct empirical test of the actual homogeneity of nebular dis
tribution. 

Knowing the value of R0 which can be real, infinite, or imaginary, 
equation (181.2) can be integrated to give the total count out to any 
given value of f. From our later information as to the possible limite 
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for Wo, see (183.14), we shall find that r"f .m could hardly be greater 
than 2 per cent. even at the distance of the Leo cluster at some 108 

light years. Hence it will be sufficient for many purposes to take 

N = const.P, (181.3) 

as an expression for the expected number of nebulae out to any given 
value of r so far considered. By substituting equations (178.11), 
(179.7), and (180.4), this result can also be written in the variety of 
forms N = const. f3, 

N = const. d'(.\~ll.\)1, 

N = const. (-A-·)3 

zt A+8A ' 
(181.4) 

N = co~t..: (A +8A)
3 

(88)3 A ' 

for the expected number of nebulae out to a given value of the 
coordinate f, astronomically determined distance d, bolometric 
luminosity l, or apparent diameter 8fJ, where 8AjA is the observed red
shift for nebulae at that limit. t The second of these expressions is to 
be compared with the earlier expression (177.21) obtained by assum
ing stationary nebulae in ordinary Euclidean space. 

182. The relation between coordinate position and red .. shHt 
We may next consider the relation between coordinate position 

and observed red-shift, still using the coordinates (r, fJ, cfo, t) whic~ 
have boon found specially convenient for the correlation of astrono
mical data, and which coiTospond to the line clement for the homo
geneous model when written in the form 

r1.~2 .:..-= --emt)( ··- ~·c2 ___ + f2 d()2 +r2sin2fJ a..1..2) +dt2• (182.1) 
l-f2/R~ ~ 

In aocorclnnco with tho gcnt~rn.l treatment of the Doppler effect for 
homogoneouH moclelH given in§ Jf)5 (sec equation 155.8), or the inci
denbtl ircu.tment givnn in§ 17M (sen cqmttion 17H.5), we can write 

( 182.2) 

1· 'I'hn pmmihility nf IIHing Hud1 C'Xpr{lHHioru:t for nobulo.r eounlis to test tho Einsteirl
cln Hit.t.nr moclnl with /lg .. ex> nncl A .. 0, was prosontod in n locture givon by Professor 
l·~illlitoin nL Lim Cnliforniu. Inetitutn of 'l'oClhnology in tho win tor of I 032. 
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a.a· an expreasion for the fractional red-shift in the wave-length of 
nebUlar light as observed at the origin, where g1 is· the value of g(t) 
for the model when the light leaves the nebula at time t1 and g2 is its 
value when the light is observed at the origin at time t2• 

In applying this equation to observational data, it is evident that 
gf. can be treated as a constant, since we actually observe different 
nebulae at our own location, which we take as the origin, all at the 
same time. The quantity g1, however, will have to be regarded as a 
variable since by going to more and more distant nebulae we go to 
earlier and earlier times of emission and hence to changed values of 
g1• It is hence evident that the relation between red-shift and nebular 
distance will depend on the form of the relation between g and t. 
· In order to have a definite expression for the form of g(t), we could, 
of course, select a model having some one of the various possible 

_.types of time-behaviour discussed in Part II of this chapter, and then 
use the corresponding expression for g(t). Such a selection, however, 
would have to be made at the present time mainly on the basis of 
metaphysical predilections. For our present purposes, it will be 
better to adopt a much more phenomenological point of view and 
endeavour to obtain what information we can as to an appropriate 
form for g(t) by comparison with observational data. 

To undertake this it will be most convenient to regard g(t) as 
developed into a power series in t around the present time t9 = 0, 
which we take for convenience as the starting-point for temporal 
measurements. t This form of development seems reasonable in view 
of the obvious rationality of taking g(t) as a continuous function, and 
in view of the known approximate linearity of red-shift with distance. 
We may then write g(t) as the series 

g(t) = 2(kt+lt2+mt3+ ... ), (182.3) 

where lc, l, m, ... , are constant coefficients, the factor 2 has been intro
duced to avoid later fractions, and higher terms will for the present be 
neglected. 

The omission from the series of a constant term in t0 evidently 
involves no loss in generality, and by giving g(t) the convenient value 
g2 = 0 at the present time t2 = 0, makes the line element ( 182.1) 
reduce to the special relativity form in the neighbourhood of the 
origin and at the present time, and makes it possible to rewrite the 

t Tolman, Proc. Nal. Acad.l6, 409 (1930). 
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expression (182.2) for the red-shift observed at the origin in the form 

(182.4) 

where t1 is the time in the past when the observed light left the 
nebula. 

To compare with astronomical data., however, it will be more conN 
venient to have the red-shift expressed, not in terms of the time~ of 
light emission from the nebula, but as a power series in terms of the 
coordinate distance if to the nebula in question. To obtain such an 
expansion we shall need the values at if = 0 for the successive 
derivatives of 8'AjA with respect to f. 

For the first derivative we can write in accordance with (182.4) 

!:_(8A) = _1e-lth dgl d4 (182.5) 
dif A y ~ dif' 

where dtJdf is the change in the time with change in 'the coordinate 
position of the nebula considered. And in accordance with the expres
sion for the velocity of light which corresponds to the line element 
( 182.1) we can evidently write therefor 

dtt elu1 
dr = - :.}(1-r/ Wo)' 

which on substitution into (182.5) gives us 

d (8~) - 1 1 dgl 
df A - 2 ~(l-f2/ilg) ~ 

in agreement with our previous equation (156.6). 

(182.6) 

(182.7) 

By similar treatments we may obtain the higher derivatives of 8'A/A. 
Doing so, introducing the expression for g(t) given by (182.3), and 
taking the values for the derivatives at r = 0, we then finally obtain 

[~(8A)] = k 
df A r-o 

[!:(~)1...= -21 

[!.(~)t. = ~+2kl+6m, (182.8) 

where it is specially pleasurable to note that terms depending on th~ 
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spatial curvature corresponding to Wo do not appear until the third 
derivative. 

With the help of these expressions we may now express the red
shift as a function,of the coordinate position of the nebula in the form 
of the Maclaurin's series 

(182.9) 

In applying this result to the observational data for the actual 
universe, taking the light year as the unit of distance, we may 
evidently put k = 5·71 X I0-10 (yrs.)-1 (182.10) 

for the coefficient of the first term in the series, in accordance with the 
observations of Hubble and Humason as given by equation (177.15) 
where d may be replaced by r within the limits of observational error. 

Furthermore, since the red-shift is actually found within the limits 
of error to increase approximately linearly with r out to the Leo 
cluster at about 108 light years, it is evident that we can place some 
restriction on the range of permissible values of the coefficients of 
the following terms. If we take the plot of observed red-shift against 
distance given by Fig. 12, as indicating that the deviations from a 
simple linear formula 8'A/"A = kr should not exceed 1 per cent. at 107 

light years, should not greatly exceed 3 per cent. at 3 x 107 light years, 
andshouldnotexceed IS percent. at lOS lightyears, weare led to assign 

Ill< 5X I0-19 (yrs.)-2, (182.11) 

and (182.12) 

as reasonable upper limits for the values of these coefficients without 
reference to sign. 

These upper limits would produce the following percentage devia
tions from the simple formula 8Af'A = kf at the various distances given. 

TABLE v 
----.--------

Distance in 1 X 107 2x 107 3x 107 6X 107 

light years 
10 X 107 

------
Term in r 11 

0-9% 1·8% 2·6% 5·3% Termini 8·8% 

Term in r3 

0·1% 0·4% 0·8% I 3·2% I Term in r 
---·· 

8·8% 
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183. The relation of density to spatial curvature and cosmo
lo~ical constant 
We turn now to a comparison of the estimated density, as given by 

(177 .26), for the matter in the universe in the form of nebulae 

8-rrp = 1·7 X 10-21 (yrs.)-2 (p = 10-30 gm.fcm.3), (183.1) 

with our expressions for pressure, total density, and density of matter 
in the model as given by (150.7), (150.8), and (150.10). In terms of 
our series expansion for g(t), as given by (182.3), these expressions can 
be written as applying at the present timet = 0 in the form 

1 
87T.P0 = - .R~- 4l-3k2+A, (183.2) 

3 
81rp00 = R~ + 3lc2

- A, (183.3) 

and 
6 

81rpm = R~+ 12l+12/c2-4A, (183.4) 

where the density of matter is taken as Pm = p00-3p0 on the approxi
mate basis discussed in§ 150, which would be entirely valid if we 
could regard the pressure in the model as due solely to the radiation 
present. 

These expressions are a little difficult to handle owing to our 
meagre observational information and to the simultaneous appear
ance of the two quantities Rg and A concerning which we have as 
yet no information. Nevertheless, since the pressure in the model 
cannot be lo.'is than zero, and the density of matter cannot be less 
than thnt actually seen in the form of nebulae, we may write 

1 o < - R~- 4l-3lc2+A, (183.5) 

and 1·7X I0-21 < 1~-l-12l+12k2 -4A, (183.6) 

and by eliminating first A and then Rtl from those inequalities and 
combining with our previous knowledge as to the value of lc and the 
limits impoHed on l aR given in tho preceding section, we can readily 
obtain as pretty reliable lower limits 

I 
-I X ]0--18 <- (183.7) . B~ 

and -2 X I0-18 < A. (183.8) 
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The upper limits for these quantities are more uncertain. It would 
seem reasonable, however, to assume that the total density of matter 
and radiation present could hardly be greater than 1,000 times the 
value given for the density of matter in the· nebulae which would 
give us 

!2+3k2~A < 1·7 X 10-18. (183.9) 
0 

And since radiation has the highest possible ratio of pressure to 
density we can also evidently write 

3 3 
-R~-12l--9lc2+3A < .R~+3kZ-A, (183.10) 

and by using these inequalities together with our previous informa
tion as to lc and l can set the upper limits 

and 

1 - < 2·1 X 10-18 
R2 ' 0 

A < 5·7 X 10-18. 

(183.11) 

(183.12) 

Furthermore, making use of the information we now have as to lc, 
l, and (1/~) in connexion with our previous expression (182.12), we 
now :find that the limits form itself would be given by 

-5·3x 10-27 < m < 5·2x 10-27• (183.13) 

For convenience of reference we may collect the information 
obtained in this and the preceding section as to permissible values 

in the form k = 5.71 x 1o-1o (yrs.)-1 

-5 X 10-19 < l < 5 X 10-19 (yrs.)-Z 

-5·3 X 10-27 < m < 5·2 X 10-~7 (yrs.)-3 

1 
-1x10-18 < R~ < 2·1x10-18(yrs.)-2 

-2 X 10-18 < A < 5·7 X 10-18 (yrs.)-2• 

(183.14) 

It is interesting to note that the range of possible values given by 
(183.14) is such that we should not be justified in assuming that the 
original de Sitter line element was necessarily a good approximation 
for the behaviour of the actual universe. In accordance with (142.10), 
the de Sitter line element is a special case of the line element ( 182.1) 
now being used, which can be obtained by taking 1/R~, l, m, ... equal 
to zero. In the expressions for density and pressure, however, terms 
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of the order A and 1/Wo occur additively and it is not evident from 
(183.14) that the latter could be neglected in comparison with the 
former. 

184. The relation between red-shift and rate of disappearance 
of matter 
In§ 152 we have derived an expression for the fractional rate at 

which the mass of matter in a non-statio model would be disappearing 
as the result of emission of radiation from the nebulae, or of processes 
of synthesis or a.nnibilation of matter in internebula.r space which 
might be leading to the production of a radiational component of the 
cosmic rays. The expression obtained ( 152. 7) was an approximate 
one to the extent that the density of matter Pm was taken as the total 
density p00 minus the density of radiation which was assigned the 
value 3p0, but was otherwise exact. 

Using our present series expansion for g(t) 

g(t) = 2(kt+lt2+mt3+ ... ) (184.1) 

we can now write the previous expression (152.7), for the rate at which 
mass would be disappearing, in the form 

_ .!_ dM = 3 [Poo+iPo __ 1_ (4l+ 6m)] lc, (184.2) 
M dt Pm 4npm k 

where higher coefficients in the series thank, Z, m would in any case 
not occur. It is evident that this result might imply some restriction 
on the values of l and m in addition to those already founq.. 

We may first consider the case of a perfectly linear expression for 
g(t) with l and m equal to zero. In accordance with (182.9) and the 
limits which we have found for (1/R~) this would also imply a very 
closely linear expression for the red-shift as a function of distance. 
Under these circumstances with 

l = m = 0, (184.3) 

the rate of decrease in the mass of matter present would at least be as 
great as 1 dM -- ·-··-· = 3k 

M dt ' 
(184.4) 

since the numerator of the first term on the right-hand side of 
(184.2) can in any case not be less than the denominator. 

Giving k ita known observational value, however, this would imply 
a very rapid rate of decrease in the mass associated with matter. 



476 APPLICATIONS TO COSMOLOGY § 184 

This is illustrated by the following tablet in which the value of 3lc is 
compared with the known rates for the loss of mass by the emission 
of radiation from different types of stars. 

TABLE VI 

Generation of Energy by Typical Stars 

Ergs per Gramme 1 dM 
Star per Second - M dt (Yrs.)-1 

H.D. 1337 A 15,000 5·3 X 10-10 
B.D. 6° 1309 A (11,000) 3·9 X 10-10 
V Puppia A 1,100 3·9x I0-11 

Betelgeux (300) 1·1 X 10-11 

Capella. A 48 1·7 X 10-12 

Sirius A 29 1·0 X 10-12 

Sun 1·90 6·6 X 10-14 

ot Centa.uri B 0·90 3·2 X 10-14 

60 Kruger B 0·02 7·0X 10-18 

3k 50,000 17·1 X 10-10 

Hence unless we should be willing to allow the possibility of a 
higher average rate for the general transformation of the mass of 
matter into radiation, even than that observed in the star H.D. 1337 A 
which at present has the highest known ratio of luminosity to mass, 
we should have to conclude that the dependence of g(t) on t could not 
be strictly linear. It is conceivable, nevertheless, that a high rate of 
transformation of internebular matter into radiation might be con
nected with the production of cosmic rays. 

It is interesting to note that the above conclusion, that g(t) could 
not be an exactly linear function of t, also implies in accordance 
with (182.9) that the fractional red-shift 8'A/'A could not be expected 
to be an exactly linear function of the ooordina te distance to the 
nebulae f. 

In addition, it is of interest to realize that our present considera
tions might also imply a further complication in regarding the original 
de Sitter line element, for an empty model, as providing an approxi
mately satisfactory representation of the phenomena of the actual 
universe. To see this, we note from (142.10), as remarked in the pre
ceding section, that the de Sitter line element is a special case of the 
line element (182.1) now being used, which can be obtained by taking 
(1/R~) as equal to zero and setting g(t) exactly equal to 2kt. With 

t ';['he first two columns are from Jeans, Astronomy and Cosmogony. 
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g(t) linear, however, we should have the exceedingly high rate of 
a.nnibilation given by the last line in Table VI for that matter which 
must be regarded as actually present, even though we use an empty 
model as our first approximation. 

Having seen that the values of l and m cannot be taken as exactly 
zero unless we are willing to allow an extraordinarily high rate of 
transformation, we may now return to (184.2) and examine into the 
values of l and m which would be necessary to permit as low a rate 
of transformation as might be demanded by observational considera
tions. Since it' is safe to assume that the density of radiation in the 
universe could hardly be more than of the same order as the density 
of matter, it is evident from (184.2) that we could reduce the rate of 
transformation down to the value zero 

1 dM 
----=0 

M dt ' 

if we are allowed values of Z and m large enough so that we could 
take 6m 

4l+k ~ 87TPm· (184.5) 

Referring to (183.1), however, we should hardly wish to set 81rp,~ 
greater than a thousand times the observed minimum corresponding 
to the mass of the nebulae, which would give us 

6m 
4l+ k ~ 1·7 X 10-18, 

and in accordance with {183.14) we can take 

4l ~ 2 X 10-18, 

and 6m ~ 5·5 X 10-17 
k -.-::.: ' 

(184.6) 

(184.7) 

(184.8) 

as upper limits without disagreeing with the observed extent to which 
the rod-shift has been found linear with distance. 

Hence wo cn.n conclude that the approximate equality (184.6) could 
ho satisfied, and ll.R low a rate be assigned to the transformation of the 
matter in our model into radiation as 1nay be found empirically 
nocesHary without controverting any observational data so far estab
lished. ~l'hl~ desirability of more precise information as to the actual 
values of l and 1n is of course evident. 
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185. Summary of correspondences between model and actual 
universe 
This completes the derivation of special relations needed for com

paring the properties of non-static homogeneous models with the . 
phenomena of the actual universe, and we may now undertake a 
unified presentation of the correspondences which can be established. 
In a general way it can be said that there are no essential oon:B.icts 
between model and reality, and that the specific correspondences 
which can be presented are sufficient to make the model appear quite 
helpful in. interpreting the behaviour of the actual universe at least 
out to some 108 1ight years. 

To present these correspondences we may write the line element for 
the model in the form which we have found convenient 

ds2 = -el(ki+B•-rmt•+.")( dr
2 

+r2 d82 +r2sin28 fi<P2)+dt2, (185.1) 
1-P/Kf, 

where g(t) is expressed by a series expansion around the present 
timet= 0, and we take ourselves for convenience as located at the 
origin r = 0. Furthermore, taking the light year and the year as the 
units of distance and time, we may assign in accordance with (183.14) 
as appropriate numerical values to consider in correlating the model 
with observational data, k = 5.71 X 10-1o (yrs.)-1 

-5 X 10-18 < l < 5 X I0-18 (yrs.)-2 

-5·3 X 10-27 < m < 5·2 X 10-27 (yrs.)-8 (185.2) 

1 
-1 X 10-18 < R~ < 2·1 X 10-1B(yrs.)-2 

-2x10-18 <A< 5·7x1o-1s(yrs.)-2. 

As the first satisfactory feature of the model, we have the spatial 
isotropy and homogeneity which it exhibits. This is in agreement 
with our present observational findings, which on a large scale show 
no outstanding dependence on direction and indicate no preferred 
properties for our own location in the universe. With more extensive 
information, the change to a non-homogeneous model may become 
necessary as will be emphasized in the next sectio:o.. 

As a second feature of the model, we have its agreement with the 
findings of Hubble as to the relation between the computed distances 
to the nebulae and their apparent diameter and observed density of 
distribution. To show this, we have the relation between coordinate 
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position r in the model and the computed distances d to the nebulae 
as obtained by Hubble and Humason 

r = d.J{;\f(;\+8;\)}, (185.3) 

where 8;\f;\ is the observed red-shift in the light from the nebula under 
consideration; and we hav~below at the left and right respectively 
-the theoretical expressions for the observed diameter 88 at a given 
position and the nebular count N out to a given position, together 
with the empirical expressions taken by Hubble as approximately 
fitting the observations. 

88 = co~t. e~8A) 

r 

f r2 dr 
N = const. .../( 1 -r/R~) 

0 

88 = const. 
d 

N = const. ds. 

(185.4) 

(185.5) 

Owing to the small values of 8;\j;\ and rj Wo, even at 108 light years, 
and the approximate character of the observational data, we may 
regard the agreement between theory and observation as entirely 
satisfactory. 

As a third very important feature of the model, we have its un
strained explanation of the observed red-shift in the light from the 
nebulae as due to a. mutual recession of these objects. As the theo
retical expression for this red-shift we have 

~ = ki'-lr-.+(6~+ikl+m)r+... (185.6) 

as compared with the empirical expression of Hubble and Humason 

~ = kd. (185. 7) 

As shown in § 182, the range in possible numerical values given by 
(185.2) for the coefficients of the higher order terms is such, that the 
two expressions agree within a reasonable estimate as to the accuracy 
of the empirical formula. 

As a fourth feature of the model, we have the conclusion to be 
drawn from {186.6) that the fractional rod-shift in the light from any 
given nebula should be independent of the particular wave-length 
examined. '!'his agrees with the data available as discussed at the 
end of § 177 (d). 

As a fifth very satisfactory feature, we have the necessary presence 
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of matter in the models. The numerical values given by (185.2) are 
such that the density of this matter could not be less than the 
I0-30 gm.fom.8 which may be estimated as the averaged-out density 
of matter actually seen in the form of nebulae, such that the total 
density of all matter and radiation could not be greater than 1,000 
times this value, and such that the pressure could not be less 
than zero. 

Finally, as a sixth feature of the model, it has been found that the 
numerical values allowed by (185.2) are such, that the rate at which 
the mass of matter in the model is decreasing in favour of free radia
tion could be assigned any value, from zero up to and beyond that for 
the star having the highest known ratio of luminosity to mass, as may 
be made necessary by further observational information. Thus the 
model permits the flow of radiation from the stars, and indeed must 
be non-statio if this occurs, but prescribes no impossible figure for 
the amount of the flow. 

In addition to these direct correspondences between the properties 
of the model and observed phenomena, it should not be overlooked 
that the basis upon which the model has been constructed is furnished 
by the relativistic theory of gravitation, which-over smaller distances 
than those now involved-has itself received excellent confirmation. 
Furthermore, it may be emphasized again that this theory has in any 
case indicated the impossibility of constructing a stable static model 
of the universe, so that some red-shift or violet-shift in the light from 
distant objects is at least to be expected. 

It will be seen from the foregoing, that the degree of correspondence 
between the properties of the model and observed phenomena and 
the lack of any essential conflict are sufficient to give us <;on~ 

siderable confidence in a cautious use of our theory in interpreting 
the behaviour of the actual universe. 

A number of obvious suggestions present themselves as to further 
observational research. 

It is of course very desirable to extend the observations as to large
scale homogeneity as far as possible. The establishment of a signi
ficant difference between near and far parts of the universe or between 
the northern and southern hemispheres, as to density of nebular dis
tribution, or as to the relation between red-shift and distance would 
be very important and if found might provide the empirical basis for 
change to a non-homogeneous model. 
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A verification of the exact form of the predicted relation (180.5) 
between apparent diameters and luminosities 

88 - t ·(~+8;\) 2 

~l - cons . -,\- (185.8) 

would lend strong support to the hypothesis of nebular recession, 
since this relation would not necessarily hold with other explanations 
of the red-shift. The test would be complicated by the difficulties of 
handling the data on diameters. 

Similarly a verification of the relation between luminosity and 
nebular counts provided by the two equations (178.11) and (181.2) 

i' = co:t. (.\~8.\) (185.9) 

,. 
and f f2df 

N = const. ~(1_12/.Rg) (185.10) 

0 

would test both the theory of recession and the hypothesis of homo
geneous distribution. Both this and the foregoing test might be 
complicated when carried to the needed distances by the effect of 
intervening obscuration, or by the failure of the hypothesis that 
the nebulae have properties which can be regarded as constant over 
the time intervals involved. Indeed the main result of the tests might 
be to establish the probability of such effects. 

Further investigation of the red-shift as a function of distance will 
be exceedingly important. At present we do not even know tho sign 
of the second term in the series expression for 8Aj>.. as a function off, 
and hence cannot say whether the rate of the mutual recession of the 
nebulae is increasing or decreasing with time. The answer to this 
question might be made possible by the use of the two-hundred inch 
reflector now under construction. 

More information as to the contents of the universe in addition to 
tho visible nebulae will also be important. As already indicated, the 
presence of intergalactic gas or dust may sometime be detected from 
the obscuration that they produce, and increased knowledge concern
ing tho source and nature of the cosmic rays may soon be available. 
With more complete information as to the J>resencc of internebular 
material, our limits for the possible values of 1/ ll~ and A might be 
consirloru.hly narrowed. 

Cmworning some of theHe questions and concerning others now less 
9686.11 Ii 
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obvious, we can-in the near future-confidently expect increased 
observational knowledge. And it is observation rather than hypo
thesis that must dictate the final nature of our cosmological theory. 

186. Some general remarks concerning cosmological models 
In the present section we shall make some general remarks con

cerning the homogeneity, spatial curvature, and temporal behaviour 
tQ be ascribed to cosmological models. In the preceding section we 
have empha$ed the specific correspondences that can be established 
between observational data and the properties of a model appro
priately constructed in accordance with the principles of relativistic 
mechanics. In the present section, on the other hand, we shall be 
more impressed by the lack of sufficient observational data to permit 
a unique determination of all the characteristics for a reasonably 
successful cosmological picture that we might wish to know. 

(a) Homogeneity. We may first consider the justification for ascrib
ing spatial isotropy and hence also-as we have seen in § 148-
spatial homogeneity to tlie models that we have investigated. A very 
practical justification for this procedure lies in the definiteness and 
mathematical· tractability of the models that we thereby obtain. 
And a more real justification lies in the high degree of large-scale 
homogeneity actually observed. 

On the other hand, from a smaller scale point of view, it is evident 
that· there is a great tendency for the nebulae to occur in clusters. 
Hence the finer details of cosmic behaviour could not in tiDY case be 
represented by a perfectly homogeneous model. Thus, for example, 
it should be clearly appreciated that the lower singular state of exactly 
zero radius, which might be thought of as occurring in the case of an 
oscillatory time behaviour, must be regarded as the attribute of a. 
certain class of homogeneous models, and not as a state that would 
necessarily accompany an oscillating expansion and contraction of 
the whole or parts of the real universe. 

Furthermore, even from a large-scale point of view, it is evident 
that we have no knowledge as to conditions in the actual universe 
beyond some 108 light years. Hence it is entirely possible, that other 
densities of distribution, or contraction instead of expansion, may be 
present in portions of the universe beyond the reach of our present 
telescopes. An investigation of the forces of control which distant 
parts of the universe could exert on each other would be very impor-
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tant. It. is poBBiblethat these forces would not be sufficient to maintain 
uniform conditions throughout, a point which has also been empha
sized in conversation by the writer's colleague, Professor Zwicky. 

The use of homogeneous models must hence be regarded as com
mendable on grounds of mathematical convenience for obta.ining a 
suitable first approximation, as inappropriate, nevertheless, for the 
treatment of finer details, and as subject to possible important modi
fication when data on more distant portions of the universe become 
available. t 

(b) Spatial curvature. Adopting a homogeneous model as a satis
factory first approximation, the limits placed on the possible values 
of 1/R~ by known observational data are sufficiently wide as shown 
by (185.2), so that this quantity might actually be positive, zero, or 
negative. Hence we do not now have sufficient information to dis
tinguish definitely between the three oases of a model which is closed, 
open and spatially unourved, or open and spatially curved. 

Even if we introduce the special but reasonable assumption that the 
cosmological constant A is to be assigned the value ·zero, we cannot 
definitely determine the sign of 1/~. Making this assumption, the 
expression for density could be written in the form 

81Tp00 = ~~ + 37c2. (186.1) 

For 81Tp00, however, we have felt it necessary to take the range of 
possible values from 1·7 x 10-21 to 1·7 x 10-18, while 37c2 has the 
approximate value 1 X 10-18• It is interesting to see from this, 
nevertheless, that 1/ Wo would have to be negative and the model open, 
unless the actual density were considerably larger than that which 
can be observed in the form of nebular material. 

It is further evident that the known data do not conflict with the 
proposal of Einstein and de Sitter to take 1 f Rg and A both eq ua.l to 
zero, as discussed in § 164. It is also interesting to note that the 
specific Einstein-de Sitter model, which could be obtained by taking 
the pressure equal to zero as in equation (164.5), can be shown to 
lead to values for {j and g such that l and m would lie within the range 
given by (185.2) as compatible with the accuracy of the linear relation 
between red-shift and distance. 

Although we do not have the necessary observational data to decide 
t Compare Tolman, Proo. Nat. Acad. 20, 160 ( 1934). 
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between open and closed models, two remarks of a son1ewhat meta
physical character may be made in connexion with the problem. On 
the one hand, it might be urged, as has been done at least in con
versation by Professor Lema1tre, that the hypothesis of a closed and 
hence finite model was an 'optimistic' one to make, since an infinite 
universe could not be regarded in its totality as an object susceptible 
to scientific treatment. On the other hand, it might be equally urged, 
nevertheless, that there has been nothing in the whole past history 
of scientific endeavour to indicate that the field of its investigations 
would ever be exhausted. Indeed, the goal of science has always 
appeared to present the character of a receding horizon. Hence on 
a priori grounds an open model might perhaps seem equally probable. 

(o) Temporal behaviour. The observational data as summarized by 
(185.2) ate also insufficient to make any decision as to the kind of 
temporal behaviour that should be ascribed to the model over long 
periods of time. We can, to be sure, assert with some confidence that 
the universe in our immediate neighbourhood is now undergoing an 
expansion. Until we have information as to the sign of the second 
derivative of the red-shift as a function of distance, however, we 
cannot say whether the rate of expansion is increasing with time as we 
might expect for a model which will ultimately arrive in the empty de 
Sitter state, or is decreasing with time as we might expect for a model 
which is undergoing oscillations. 

Indeed, by making the specific hypothesis that the pressure in 
the model can he taken as zero, it can be shown that the extreme 
oases-of the Lemaltre model (161.11) with A = AE, Wo > 0 which 
expands from an original static state, of the Einstein model (163.3) 
with A = 0, R~ > 0 which oscillates between a lower singular state 
and a maximum, and of the Einstein-de Sitter model (164.6) with 
A= 0, R~ = oo which expands from a singular state-can all three 
be adjusted to give a behaviour at the present time which would lie 
within the limits which we have assigned as possible for the density 
of matter, and for the A.couracy of the linear relation of red-shift to 
distance. Hence we cannot now distinguish between the various 
possible types of time behaviour which were discussed at the end of 
Part IT of this chapter, and must regard those discussions as present
ing different conceptual possibilities rather than as immediately 
applicable. 

We have shown in§§ 163 and 164, for the two oases of the Einstein 
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model and the Einstein-de Sitter model, that the elapsed time of the 
expansion since the singular state would -have to be short~ being 
given by 4 

!lt ~ 3g' 

2 
or !lt ~ ak' (186.2) 

in terms of our series expansion. Hence for these models the elapsed 
time since the singular state could not be much greater than lOB years, 
which is of the order of the age of the earth. Furthermore, from the 
known value of the red-shift and its approximate linearity, it appears 
roughly in general that the major part of the past expansion has quite 
probably taken place in a past time of the order of 109 to 1010 years. 
In view of the much longer time scale, of the order of 1012 years, 
usually regarded as necessary for stell~ evolution, some discussion 
of the short time thus probably involved in cosmic expansion is 
necessary. 

In the first place in connexion with this apparent difficulty as to 
time scales,t it is to be emphasized that the highly idealized homo
geneous models which we have employed can hardly be regarded as 
adequate for drawing any exact conclusions as to the precise state of 
the actual universe say 109 years ago. Thus, as already mentioned 
earlier in this section, it is eviderit that the unique singular state at 
the lowrl" limit of volume from which the expansion would appear 
to start in the case of certain models must be regarded as a property 
of the homogeneous model rather than a character that could actually 
be found in the real universe. Furthermore, since we do not know 
the behaviour of the universe at distances beyond our own neigh
bourhood out to some 108 light years, it is evident that calculations 
of the exact time when the expansion for some given model started 
cannot be regarded as having a precise application to the real universe, 
u.nd we can merely roughly conclude that the time of expansion for 
our own neighbourhood might well be of the general order of 1011 to 
1010 years. 

t It should be approcin.tocl that the disagreement as to time scales is not to be 
resolvod by some trillk of subHtituting a now time-liko vo.riablc in plo.ce of our present 
ooordinato t. In acoordanco wit.h § l4U (d), tho ooordinato t itself would agreo with 
tho tinw mon.suromonts uuulo on a natural cloclt at rest in our own galaxy and hence be 
equally suitable for recording stollu.r evolution or tho approach and recession of other 
nobulae. 



486 APPLICATIONS TO COSMOLOGY § 186 

In the second pl.a.oe, it is to be emphasized, as has been done parti
cularly by de Sitter, t that there is no necessity for regarding the 
beginning of the expansion as in any sense the beginning of the 
universe, and no reason for expecting an identity between the time 
scales for stellar evolution and nebular expansion. Indeed de Sitter 
would regard the unhomogeneons structure of the nebulae, their high 
velocities of rotation, and the apparent date of the birth of our own 
planetary system, as all being pieces of evidence in agreement with 
~close approach of pre-existing nebulae or galaxies some 109 to 1010 

years ago. 
The' difference between the time scales for stellar evolution and 

nebular expansion suggests that no definiteness could now be attached 
to any idea as to the beginning of the physical universe. Indeed, it is 
difficult to escape the feeling that the time span for the phenomena 
of the universe might be most appropriately taken as extending from 
minus infinity in the past to plus infinity in the futUre. The classical 
thermodynamic arguments against such a view must certainly be 
somewhat modified in the light of the increased possibilities of be
haviour provided by relativistic thermodynamics, and would be 
subject to even more serious modification if the principle of energy 
conservation should fail within the interior of stars as suggested 
possible by Bohr. 

187. Our neighbourhood as a sample of the universe as a
whole 
It is evident from the foregoing that our present data are insufficient 

to provide a precise cosmological model which would necessarily 
correspond to the actual universe in all regions and over all time 
intervals. It is hence best to regard the line element which we have 
used for investigating the behaviour of the universe 

dll~ = -e2<kt+U'+ml'+ ... >( dr
2 +r d82 +rZsm28 dcp2\+ dtz 

1-f2/R~ } 
(187.1) 

as a :first approximation, suitable for treating events not too far dis
tant from our own location, at times not too remote from the present. 

On the basis of the ideas that we thus gain, it seems reasonable to 
conclude that the expansion of the universe-for which we find evi-

t de Sitter, Proo. Amsterdam Aoad. 35, 596 (1932). 
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dence at the present time and in our own neighbourhood-is ·a. 
phenomenon which has progressed during a past time at least of the 
order of 108 years and which will presumably continue for a com
parable time in the future. Furthermore, we are reasonably ·safe in 
believing that the density of nebular distribution and the rate of 
expansion will be found to persist, with roughly unchanged values, 
perhaps to several times the distances of the order of 108 light years 
already investigated. 

For the treatment of the whole universe in all its regions and during 
all of time we have, nevertheless, no adequate model, and to obtain 
ideas as to its complete nature can only rely on the roughest methods 
of scientific induction. To apply such methods we must proceed by 
regarding that portion of the universe which we have already studied 
as a fair sample, but not as an exact sample of the whole at all times 
and places. 

Having discovered an expanding distribution of nebulae as far as 
our telescopes can penetrate, we may reasonably regard the presence 
of matter in relative motion as a typical feature of the universe. 
Nevertheless, to ascribe to this matter everywhere the same density 
and stage of evolutionary development w hioh we now find in our own 
neighbourhood, and to exclude the possibility at all times and places 
of motions of contraction which are mechanically as simple as those 
of expansion, would be to regard our own present neighbourhood not 
only as a fair sample but quite unjustifiably as an exact replica of 
the whole. 

It may seem somewhat ironic to conclude our elaborate treatment 
of the properties and temporal behaviour of specific cosmological 
models, with words which disparage their applicability to the actual 
univ-erse. Their study, however, has certainly informed us as to con
ceptual possibilities, and has provided a provisional and approximate 
theoretical background which has already been successful in corre
lating a considerable number of the phenomena of the real universe. 

As a final remark it is desirable to emphasize the special necessity 
in the field of cosmology of avoiding the evils of autistic or wish
fulfilling thinking. In the first place, the problems of cosmology are 
necessarily extensive and intricate and must be attacked in the light 
of very meagre information. Hence, we must be careful not to sub
stitute the comfortable certainties of some simple mathematical 
model in place of the great complexities of the actual universe. In 
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the second place, it is evident that the past history of the universe 
8.nd the future. fate of man are involved in the issue of our studies. 
Hence we must be specially ·careful to keep our judgements unin
fected by the demands of theology and unswerved by human hopes 
and fears. The discovery of models, which start expansion from a 
singular state of zero volume, must not be confused with a proof that 
·the actual universe was created at a finite time in the past. And the 
discovery of models, which could expand and contract irreversibly 
without ever coming to. a final state of maximum entropy and rest, 
must not be confused with a proof that the actual universe will always 
provide a stage for the future role of man. 

It is appropriate to approach the problems of cosmology wit~ 
feelings of respect for their importance, of awe for their vastness, and 
of exultation for the temerity of the human mind in attempting to 
solve them. ·They must be U'eated, however, by the detailed, critical, 
and dispassionate methods of the scientist. 
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SYMBOLS FOR QUANTITIES 

A subscript 0 or superscript 0 attached to a symbol usually designates 
a proper quantity as measured by a local observer. (No~ exception 
in case of R = R0 eio<'>.) · 

Scalar quantities (Italic type). 
a Stefan-Boltzmann constant. 
A Free energy. Number of molecules in a mol. 
c Velocity of light. Concentration. 
il Distance as determined astronomically. 
e Electric charge. Base of natural logarithms. 

E Energy. 
F Thermodynamic potential. 

g(t), g Function giving time dependence of line element for 
homogeneous cosmological models. 

It Planck's constant. 
i J. 1. 
k Boltzmann's constant. Newton's constant of gravita

tion. 
l Luminosity of heavenly object. 

m Mass. Magnitude of heavenly object. 
n Number of mols. 
N Number of molecules. 
p Pressure. 
Q Heat. 
r Radial coordinate. 
R Gas constant. 

R0 elu<e> = R Radius of cosmological model. 
S Entropy. 
t rrime. 

'1' rremperature. 
u Velocity. DenAity of radiation. 
U Energy. 
v Volun1e. Velocity. 

Sv0 Element of proper spatial volume. 
V Relative velocity of coordinate axes. 
W Work. 

x, y, z Spatial coordinates. 
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a: Degree of dissociation. 
e Dielectric con,stant. 
"1 Integrating factor. 

8, rp, x Polar coordinates. 
88 Apparent diameter of a nebula. 

te Gravitational constant connecting energy~momentum tensor 
with contracted Riema.nn-Christo:ffel tensor. 

,\ Wave-length. 
A Cosmological constant. 
p. Magnetic permeability. 
v Frequency. 
p Density. 

p00 Proper macroscopic density of energy. 
p0 Proper density of electric charge. 
a Electrical conductivity. 
T Period. 
q, Scalar potential. Entropy density. 
rp Newtonian gravitational potential. 

Vector quantities (Clarendon type). 
A Vector potential. 
B Magnetic induction. 
C Density of conduction current. 
D Electric displacement. 
E Electric field strength. 
F Force. 
f Force acting on a unit cube. 
g Density of momentum. 
G Total momentum. 
H Magnetic field strength. 
J Current density. 

M Angular momentum. Magnetic polarization. 
P Electric polarization. 
s Density of energy flow. 
u Velocity. 

Tensors (Italic type with indices). 
Latin indices i, j, k, etc., assume values 1, 2, 3. 
Greek indices 0r:, {1, ... , p., v, ... , etc., assume values 1, 2, 3, 4. 

d8 Invariant interval. 
8,.,., Galilean values of metrical tensor. 
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FP. Minkowski ·force. 
FP.v Field tensor, electron theory. 

FP.v, HP.v Field tensors, macroscopic theory. 
g,_,.v Fundamental metrical tensor. 

g Determinant IUp.vl· 
h,_,.v Deviations from Galilean values of g p.v• 
Jp. Generalized cUlTent. Components of momentum and 

energy. 
Po Components of (absolute) stress. 

~va Riemann -Christoffel tensor. 
B,_,.v Contracted Riemann-Christoffel tensor. 

R Invariant obtained from Riemann-Christoffel tensor. 
t,1 Components of (relative) stress. 

pp.v Energy-momentum tensor. 

·Tensor densities (German type). 

S:~-'v Electric field tensor density. 
gf.'V = gf.'V~ g. 

g~v = !_(gP.v.J=:g). ax a. 

~,... Current vector density . 
.2 Lagrangian function (a pseudo scalar) .. 
t~ Pseudo tensor density of potential energy and momentum. 
X~ Tensor density of material energy and momentum. 

APPENDIX n 

SOME FORMULAE OF VECTOR ANALYSIS 

Unit vectors parallel to axes i, j, k. (1) 
Unit vector normal to a surface n. (2) 
Resolution of vector into components: 

F = Fa:i+F11 j+F.k. (3) 

Inner product of vectors: 

(A·B) = Aa:Ba:+At~Bv+A,B, = ABcos{AB). {4) 

Outer product of vectors: 

(AxB] = (A11 B.-A.B21)i+(A.B111-.Aa:B11)j+(Aa:B11-A11 B,)k. (5) 
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Normal component of vector: 

A"= (A·n) = A cos (An). (6) 

The vector operator del: 

'V = (i~ +j~+k~). ox 8y oz (7) 

gradrb = vq, = i 0q, + j 0q, + k 0q,. 
. Ox 8y oz (8) 

divA= 0/·A) = oA:~:+ oA11+ oA2!. 
ox fJy Oz 

(9) 

curl A= ['VxA] = (oA._ oA11)i+(oAa:_ oA•)j+(oA11 _ oAa:)k. (10) 
&lj oz oz ox ox fJy 

divcurlA = 0. (11) 

The Laplacian operator: 

( 
o2 o2 o2) 

"
2 
= 'V·'V = (Jx2+ &y2+ c3z2 . (12) 

curl curl F = graddiv F-'V2F. (13) 

Gauss's theorem: J ('V·A) dv = J An dO'. 
vol surf 

f (oAa: I oA11 + oA,) dv 
ox 8y 8z 

vol 

= J {A:z:cos(nx)+A11 cos(ny)+A.cos(nz)} dO'. (14) 

surf 

Stokes's theorem: J A·ds = J [curlA]n dO'. (15) 
lble suxf 

Green's theorem: 

J (4>'V21/J-t/J'V2~) dv = J (4>'\lrfo-rp'V~)n dO'. (16) 
vol surf 

Another integral theorem: 

J (A·curlB-B·curlA) dv = - J [Ax B]n dO'. (17) 
vol surf 

(18) 
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Solution of 'wave equation': 

'\/2- -- ·'· = w ( 
1 ()2) 
c2 Ot2 cr ' 

1 f [w] rp(X, y, Z, t) = -
471 

r dv, (19) 

where [ w] is the value of w at location of volume element dv and 
at time t-rfc. 

APPENDIX III 

SOME FORMULAE OF TENSOR ANALYSIS 

(a) GENERAL NoTATION. 

Indices a-:, fJ, ... , p., v, ... , etc., assume values 1, 2, 3; 4. (1) 

Covariant indices as ·subscripts; contravariant indices as super
scripts. 

Coordinate ayatemB. (2) 

where 

xP. = x1, x 2, x3, x' 

x'P. = x'1, x'2, x'8, x'' 
etc. 

x'P. = x'l'(x1, x2, x8, x'). 

Summation convention for dummy indices. 
0:'""'4 

Acx.Bcx. = ~ Acx.Bcx. = A 1B1+A2B2+A3B3+A'B, 
c:x=l 

0:=>4 P._=4 

Acx.fJBo:p =rv.~1 t1Acx.fJBcx.fJ = A11B11 fA11B12+ ... +A"B44, 

(3) 

etc. One of a pair of dummies always covariant and the other 
contra variant. 

Definition of a tensor. 
A collection of 4r components {with the rank r equal to the total 

number of indices a, fJ, ... , p., v, ... , etc.) which are associated with a 
given point xP. in the manifold, and are transformed to new values 
on a transformation of coordinates in accordance with the rule 

T'p.v ... = ~~~~ ~x'v 8x"l ~~. ~{} ... • 
pa... axor. axfJ Bx'P ax'a ... ,.a ... (4) 

Examples. 
Tensor of rank zero (scalar invariant): 

S' = S. (5) 
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Contravariant tensor of rank one (vector): 

A' ox'"A· . 1'- ex - axcx • 

Covariant tensor of rank one: 

Symmetrical tensor: 

Antisymmetrical tensor: 
FP.ll = _ pvp.. 

(6) 

(7) 

(8) 

(9) 

(10) 

(b) THE FuNDAMENTAL M:ETRIOAL TENsoR AND ITS PRoPERTms. 

The metrical tensor: 
gl'~ = gVp." 

The infinitesimal difference in coordinate position: 

dxl' = dx1
, dx2

' dx3
' dx'. 

The scalar interval ds corresponding to dxl': 
da2 = g p.v dxJl-fkv • 

The determinant formed from the components gp.v: 
\ 

g = lgp.vl· 
The normalized minor: 

The mixed tensor: 

gi'V = ~lmJn~!, 
g 

gv = av = { 1 p. = v 
I' I' 0 p. =F- v. 

The Galilean values of the g p.v: 
8p.v = ±1, 0. 

The Christoffel three-index symbols: 

[p.v,o'] = i(~'!+~vf:!_ ~_e.v), oxv Ox#' axa 

{p.v,a} = tua~(ogp).+ ogv~-~)· 
oxv O:d' ()x'A 

The Riemann -Christoffel tensor: 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

8 8 
R;va = {/.ta' Q! }{ cxv' 7' }-{p.v' Q! }{ Q!O'' 7'} + axv {p.a' 7'}-ox" {p.v' 7' }. ( 19) 
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The equation for a geodesic: 

f 
d2xa cJ,xl'- a,xv 

8 ds = 0 is equivalent to dtJS + {l.l.v, a} d8 d8 = 0. 

(e) TENSOR MA.Nl:PULATIONS. 

The raising, lowering, and ohange of indices (examples): 

495 

(20) 

Av = gvo:Ao: (21) 

A,.,. = gf'IXA 0: (22) 

Av = g~A«. (23) 

Contraction (examples): 

T = T; = gvo: pvcx = Tl+ T:+ Tl+ T~ (24) 

a a 
Rf'V = {l.l.u, cx}{cw, a}-{p.v, a:}{cxa, a}+ (Ja:V {p.a, a}-aza{p.v, a}. (25) 

Addition (example): 

A'"'= B~-'+0~-' = (B1+01), (B9+02), (B8+08), (B,+O,). (26) 

Outer product (example): 

A~= B"' {)P = B1 (J1 Blos B 08 
1 B1 0' 

B?.(Jl Bs02 B 0 8 z B20' 
Ba(Jl Ba(Jl BaOB B8 0 1 

B,(Jl B,02 B,()8 B,O'. (27) 

Inner product (example): 
A =A: = Bv Ov = B1 Ol+B2 0 2+Bs OS+B, 0'. (28) 

Covariant differentiation (examples): 
aAP. 

(A~-')v = Ae = axv +{cxv, p.}A IX (29) 

a A 
(Af')V = Af'V = ~-{p.v, cx}Ao: (30) 

8TP.v 
(Tf'V)a = T{:v = --+{cxu, p.}To:v+{cxa, v}TI-'cx (31) 

ox" 

(~)a= Tj'm = ~+{001, v}T~-{p.u, cx}T~ (32) 

ap .. v ••• 
(p .. v ... ) = ---·~-:.+{01.0' v}T·.ry., .. for each contravariant index .. f'... a fJx" ' .. ,_,.. .. 

-{Ita, cx}T:~::: for each covariant index. {33) 

Divergence: (P::~:::)v· (34) 
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(d) Ml:sOELLA.NEOUS FORMULAE. 

(g,.,.v)a = 0. 

{f'v, a} = {vf', a}. 

{~Xa, a}= a!«log~ g. 

T«fl dg «/3 = - T «P dg«P. 

dg 
- = g«/3 dg «/3 = - g «/3 dg«/3. 
g 

( ~ Be/> Bc/>v 'f'p.)v-(c/>v)IL = ::!:.1!:--. 
r- axv oxP. 

(Fp.,)a+(F,a),.,.+(FaJv = aF,...v + Bl!.a + oFa,.,.' 
r- axa &1;1.4 axv 

provided F,.,.v = -l!.w 

c/>p.va-tPp.av = 4>~ B~va' 
with c/>p.va = ( (c/>,.,.)v)a and 4>~~o(1JI = ((c/>,.,.)a)v• 

(T .. ,.,..Jva-(T .. p..Jap = ~ T .. ~ ... B~va' ... 
where the summation ~ is for all the origjna.l indices I'· 

(e) FoB.MUL.AE l:NvOLVING TENSOR DENSITIES. 

~ = T~-g. 
~ .. v ... = p .. v ... ~-g. 

.. p.... ··P.·-

(.AP.), ~ g = ~,.,. = _!__ (AIL~-g) = 0~. ,.. IL 8xJ1- BxJl-

(Tv) ~ g = ~v = o~_ 1c;x;«/3 ogetP = o'X~+ 1 'X /3 ag«P 
p. V p.V &.l;V ~ i3xl' OXV "! « OX"" ' 

provided pp.v = TviL. 
,- oljf'V 

F(P.V) 'V -g = ('Jf'V = . 
v v axv ' 

provided FfLv = - Fvp.. 

(f) FoUR-DIMENSIONAL VOLUME. PROPER SPATIAL VOLUME. 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

When limits of integration correspond to a given four-dimensional 
region, we have the invariant 

I= JJJJ ~ g' dx'1dx'2dx'3dx'' = JJJJ ~ gdx1dx2dx3dx4. (49) 
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When region is smaJI enough to permit natural coordinates x, y, z, t 
or proper coordinates x0, y0, z0, t0, we have 

81 = J J J J dxdydzdt = J J J J dx0 dy0 dz0 dt0 

= f f J f ..J-g dx1rb;Zrb;3dx4. (50) 

Hence we can take 

81 = 8v8t = 8v0 8t0 = 8v0 8s = J=U 8x18x28x38x', (51) 
where 8v and 8v0 are elements of spatial volume and 8t and 8t0 = 8s 
elements of time in natural and in proper coordinates respectively. 

APPENDIX IV 

USEFUL CONSTANTS* 

Stefan-Boltzmann constant 
Avogadro's number 
V elooity of light 
Charge of electron 
Specific charge of electron 
Planck's constant 
Boltzmann's constant 
Newton's constant (gravita-

tion) 
Gas constant 

a = 7·6237 x I0-16 erg om. - 3 deg. -& 

A = 6·064;s6 x 1oza mol. -1 
e = 2·99796X 1010 om. seo.-1 
e = 4·770X I0-1° abs. e.s. units. 

efm = 5·27941 X 1017 abs. e.s. units gm. -1 

h = 6·54 7 x I0-27 erg sec. 
k = 1·37089 X I0-16 erg deg.-1 
k = 6·664X I0-8 dyne em.' gm.-s 

B = 8·31360X 107 erg deg.-1 mol.-1 
= 1·98643 cal. deg. -1 mol. -1 

Transformation from relativistic to c.g.s. units: 

l, t, m in relativistic units. 
L, T, Min o.g.s. units. 
L = l om. 

T = 
1 t = 3·335x I0-11 t sec. 

2·998X 1010 

M = (2·998X 1Q10)Z m = 1·349 1028 . 
6·664X I0-8 X m gm 

1 parsec = 3·258 light years = 3·084 x 1018 em. 
1 light year = 9·463 X 1017 om. 
1 sidereal year = 3·1558 X 107 sec. 

• In pa'rt from Birge, Phy8. Rev., Supploment, 1, 1 ( 1929). 
3695,11 Kk 
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for particles, 42, 49, 51. 
in general relativity, 22lS-9, 261, 285. 

Constants, Table of, 4:97. 
Constitutive equations, 102, 104, 108, 

263. 
Coordinates: co-moving, 301, 364; Gali

lean, 37; proper, 33, 180; natural, 
180. 

Cosmic rays, 58, 151, 382, 385, 418, 4:76. 
Cosmological constant, 189, 191, 341, 

344, 402, 412, 473. 
Cosmological models, general rem.a.rks, 5, 

10, 332, 361, 482. 
Cosmological models (static), 331. 

Einstein model: behaviour of particles 
and light rays, 341 ; comparison 
with actual universe, 344; density 
and pressure, 339; derivation of line 
element, 335 ; Doppler effect, 343; 
geometry, 337; instability, 4:05; 
thennodynamic equilibrium, 4:23. 

de Sitter model: behaviour of particles 
and light rays, 349; comparison 
with actual universe, 359, 474, 4:76; 
density a.nd pressure zero, 348; 
derivation of line element, 335 ; 
Doppler effect, 354; geometry, 346. 

Cosmological models (non-static, homo
geneous), 361. 

Application of mechanics, 361 ; appli· 
cation of thermodynamics, 420 ; 
assumption of spatial isotropy, 362 ; 
behaviour of light rays, 387 ; be
haviour of particles, 383 ; change in 
energy with time, 379; change in 

matter with time, · 381 ; correspon· 
dence to actual universe, 4:78; 
density and pressure, 376; density 
of matter, 379; density related 'to 
spatial curvature and cosmological 
oonsta.nt, 4:73; derivation of line 

. element, 364; different eXpression& 
for line element and interpretation 
thereof, 370, 375; Doppler effect, 
389, 392; Einstein-de Sitter open 
model, 4:15; Friedma.nn. model w:l.th 
conservation of energy, 408; geo
metry, 871; Lema.itre model with 
conservation of mass, 408; models 
which expand co~tinuously from a 
static state, 4:09 ; models which 
expand continuously from a non
static state, 412; models with 
transformation of matter into radia
tion, 434, 441, 475; osciilatory be
haviour, 401, 402, 4:04, 412, 435, 
439; periodic behaviour, 401, 429; 
reversible and irreversible behaviour 
417, 424, 426, 427, 432, 4:39; time 
dependence for closed models, 394:; 
time dependence for open models, 
403; transfer of origin of coordinates, 
372, 464; transformation of matter 
into radiation, 362, 417, 434, 441, 
475. 

Current vector, 95, lOS, 107,· 258, 262. 

Da.lembertia.n, 268. 
Deftexion of light in gravitational field~ 

209, 285. 
Density of matter in space, 461. 
Dimensions of space-time, 29. 
Doppler effect: general treatment, 288 ; 

in Einstein model, 343; in non
static model, 389, 392; in de Sitter 
model, 354. 

Electrodynamics, 84, 258. 
Electromagnetic field tensors, 96, 103, 

259. 
Emission theories of light, 16. 
Energy content, 120. 
Energy-momentum tensor, for matter, 

71, 189, 215; for electricity 99, 115, 
261; for perfect fluid, 216; for radia
tion, 217, 269, 273. 

Entropy content, 121. 
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Entropy vector, 164, 294. 
Equilibrium: between hydrogen and 

helium, 140; between matter and 
radiation, 146; chemical, 129, 311 ; 
in Einstein universe, 405, 423; 
thermal, 130, 312, 315; thermo
dynamic, 125, 127, 307, 308. 

Euclidean space, 31. 

Field: corresponding·to flow of radiation, 
273; electromagnetic, 84, 95, 102, 
105,258, 262; gravitational, 185-91; 
of charged particle, 265 ; spherical, 
239, 241, 250 ; weak, 236. 

Final state of a system, 134, 326. 
Fixst law of thermodynamics, 120, 152, 

292. 
First postulate of relativity, 12. 
Free energy, 123. 

Galilean transformation, 21. 
General relativity, 165. 
Geodesic, 172. 
Geometry corresponding to space-time, 

30. 

Heat content, 123. 
Heat, relativistic interpretation, 297. 

Interval, 31, 169, 181. 
Isotopes, 144. 

Joule heat, 112. 

Kennedy-Thorndike experiment, 14. 
Kinetic energy, 4 7. 

Lagrangia.n function, 222. 
Light rays and particles, interaction of, 

2~5. 
Line element: Einstein, 335; non-static 

homogeneous universe, 364; 
Schwa.rzschild, 202, 349; de Sitter, 
335. 

Lorentz-Fitzgerald contraction, 13. 
Lorentz rotation, 32. 
Lorentz transformation, 18 ; for accelera

tion, 27 ; for contraction factor, 27; 
for electromagnetic densities and 
stresses, 92 ; for electromagnetic 
field, 87, 106; for energy, 154; for 
entropy, 157; for force, 46; for heat, 
157 ; for mass, 45 ; for mechanical 
densities and stresses, 64, 68, 69 ; 
for pressure, 154; for temperature, 
158; for velocity, 25; for volume, 
153; for work, 156. 

Macroscopic density, 68. 
Macroscopic electrodynamics, 261. 
:Magnitudes, see N ebula.e. 

·Mass, energy and momentum, relations 
between, 48. 

Mass: longitudinal, 55 ; of electron, 53 ; 
of particle, 43 ; of ra.clia.tion, 271 ; 
transverse, 55. 

Maxwell-Lorentz field equations, 84, 258. 
Maxwell's equations, 101. 
Mecha.nics, 42, 214. 
:Metric and gravitation, 176. 
Michelson-Morley experiment, 13. 
Minkowski force, 52. 

Nebulae: actual diameters and masses, 
458 ; distances, 453 ; distribution in 
space, 459 ; magnitudes, 446, 448 ; 
relation of coordina.te position, to 
apparent diameter 467, to distance 
465, to luminosity 462, to nebular 
counts 468, to red-shift 469 ; rela
tion of magnitude, to apparent 
diameter 457, to distance 453, to 
nebular counts 461, to red-shift 454. 

Newton's theory a.s a first approxima-
tion, 198. 

Pencil of light, 274. 
Perfect fluid, behaviour of, 218. 
Perfect gas, 136. 
Perihelion, advance of, 208. 
Planck law, 140. 
Planetary motion, 205. 
Poisson's equation, 185, 188, 199. 
Potential: generalized electromagnetic, 

96, 258; gravitational, 183; New
tonian, 199; scalar, 86; thermo
dynamic, 123; vector, 86. 

Poynting vector, 90. 
Principle of cova.riance, 166. 
Principle of equivalence, 174. 
Principle of Mach, 184. 
Proper coordinates, 33, 180. 
Proper quantities, use of, 7. 
Proper volume, 496. 
Pulse of light, 279. 

Radiation: black body, 139'; dynamics of 
bla.ck body, 161 ; energy-momentum 
tensor, 217, 269, 272; ftow of, 272; 
mass, 271. 

Red-shift, see Nebulae. 
Relativity, of uniform motion, 12; of o.U 

kinds of motion, 176. 
Reversibility a.nd irreversibility, 121, 294. 

296, 424. 
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Reversibility and rate, 132, 319. 
Riemann-Christoffel tenser, 185; con-

tracted 187 •. 
Right-angled lever, 79. 

Sakur-Tetrode equation, 138. 
Sampling of universe, 486. 
Schur's theorem, 368, 372. 
Second law of thermodynamics, 121, 152, 

162, 293, 296. 
Second postulate of relativity, 15. 
Signature of line element, 31. 
Space and time, ideas as to, 17. 
Space-time continuum, 28. 
Spatial contraction, 22. 
Spatial isotropy, 362, 364. 
Special relativity, 12. 
Stresses: electromagnetic 91, 11G ; 

mechanical, 60, 69. 
Symbols for quantities, 489. 

Tensor analysis, 34, 493. 
Tensors: electromagnetic :fl.eld tensors, 

96, 103, 259; current vector, 95, 103, 
107, 258, 262; energy-momentum 

tensor, for ma.tter 71, 189, 2HS, for 
electricity 99, lUS, 261, for perfect 
fluid 216,.for radiation 217,269, 273 ;· 
entropy vector, 164, 294; metricaJ. 
tensor, 36, 183, 494; pseudo-tensor 
of potential energy and momentum, 
224; Riemann-Christoffel tensor,185. 

Thermodynamic potential, 123. 
Thermodynamics, 118, 291. 
Third la.w of thermodynamics, 122. 
Time dilation, 22. 
Time scaJ.e, 412, 414, 416, 483. 
Trajectories of particles and light rays, 

171, 182. 

Units used in general relativity, 201, 497. 

Vector analysis, 491. 

Waves: electromagnetic, 85, 267; gravi
ta.tio~ 239. 

Wave-length, gravitational shift in, 211, 
286. 

Weight and mass, proportionality, 192. 
Work, 47, 120, 156. 
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