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Preface 

In this text we aim to cover the basic results of thermodynamics and sta- 
tistical mechanics which are needed by undergraduate chemistry students. 
We cover in some detail the properties of ideal gases, since this model sys- 
tem allows analytical solutions to be developed. and the results derived 
can be used more widely. However, we do not here cover topics such as the 
properties of non-ideal gases, liquids and solids, nor the thermodynamics 
of solutions and electrochemical cells. 

Thermodynamics is a subject which many students find confusing and 
difficult to grasp. In part this is due to the large number of thermodynam- 
ic quantities and relations they have to master. In this text we have 
attempted to introduce each of these in a logical order, then develop them 
in a clear and coherent way to try to guide the student, so they will gain 
confidence in applying thermodynamic analysis to chemical problems. A 
further difficulty some students encounter is with the level of mathemat- 
ics required, and we have tried to keep this as simple as possible. 

We have followed closely the IUPAC recommendations for nomencla- 
ture [I. Mills et al., Quantities, Units und Synbols in Pliysicul Chemistry, 
2nd edn., Blackwell Scientific, Oxford, 19931, even though some usage 
may be unfamiliar to many students. Thus, for example, we write AvapHm 
for the molar enthalpy of vaporization; note that the subscript m is fre- 
quently omitted, the units indicating whether or not a molar quantity is 
in tended. 

This book is based closely upon current first-year thermodynamics and 
second-year statistical mechanics courses given to undergraduate chem- 
istry students at Imperial College, London. We are deeply indebted to our 
course predecessors, Dr. Garry Rumbles, Professor Michael Spiro and 
Professor Dominic Tildesley. for their sterling efforts in developing these 
courses and course notes, and for their invaluable and extensive advice. 
Any errors or points of confusion in the text are of course entirely our 
responsibility. We are grateful to Martyn Berry for his careful reading of 
the manuscript. 

John Seddon and Julian Gale 
London 

I.. 
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Introduction 

Thermodynamics and quantum mechanics are the two fundamental 
pillars of chemistry. The latter is mainly concerned with the micro- 
scopic properties of atoms or molecules, whereas classical thermo- 
dynamics concerns the macroscopic or bulk equilibrium properties of 
matter. The link to molecular properties is the subject of statistical 
mechanics, which is dealt with in the second half of this text. 
Thermodynamics underpins all chemical process and reactions. On the 
one hand, it is based on quite abstract and subtle concepts; on the other 
hand, it is an extremely practical subject, dealing with questions such as: 
“What is the equilibrium constant for this reaction and how does it vary 
with temperature‘?” 

In this introductory text, we will see that thermodynamics - like quan- 
tum mechanics - depends on a small number of basic ideas and postu- 
lates, and that everything else follows in a straightforward way if the 
underlying principles are grasped. Thermodynamics is never wrong; if a 
process appears to break the Laws, it means that our analysis is wrong 
or incomplete. We will look at simple examples to illustrate the basic 
principles involved. It should be noted that the mathematics required is 
generally rather simple, once you are clear about what you are trying to 
calculate and how you are going to go about it. 

Thermodynamics is essentially concerned with the conservation of 
energy, and with energy transfer, either in an organized form (work), or 
in a chaotic, disorganized form (heat). It predicts the spontaneous direc- 
tion of chemical processes or reactions, and the equilibrium states of 
chemical systems. However, it does not deal with the rates of processes 
or reactions: this is the subject of chemical kinetics. Thermodynamics 
arose in part out of the need in the 19th century to improve the design 
of steam engines. As the subject evolved it was found that the results 
were perfectly general, applying equally to all chemical and physical sys- 
tems. Many of the underlying concepts are easiest to understand when 
applied to purely mechanical systems, such as the expansion of a gas in 

1 



2 Thermodynamics and Statistical Mechanics 

a cylinder. Where appropriate, we will use such systems as illustrative 
examples and in problems. 

In this chapter we will introduce the four Laws of Thermodynamics, 
then explore their consequences for chemical processes. In order to do 
this, we will first have to make some formal definitions. 

1.1 The Laws of Thermodynamics 

There are four Laws of Thermodynamics. Somewhat confusingly, the 
first of these is known as the Zeroth Law. It is concerned with the defi- 
nition of temperature and thermal equilibrium, and may be stated as: 

“There is LI unique scale of temperature. ” 

Thus if body A is in thermal equilibrium with body B, and B with C, 
then A is also in thermal equilibrium with C (Figure 1.1). 

The First Law is concerned with the conservation of energy, and may 
be stated as: 

1 I “The energy of un isolated system is constant. ” 
Figure 1.1 Thermal equilibrium 

This means that energy can be neither created nor destroyed, only trans- 
ferred between systems, or between a system and its surroundings. 

The Second Law is concerned with the spontaneous direction of 
processes, determined by changes in the entropy S (introduced in 

transfer 

1 Chapter 4). One way of expressing it is as follows (see Figure 1.2): 

‘‘ When trrw systems are brought into thermal contact, heat flows spon- 
taneously.from the one at higher temperature to the one at lower tem- 
perature, not the other way round” 

I 

There are many equivalent statements of the Second Law, such as: 

Heat cannot be completely converted into work for any cyclic process, 
but work can spontaneously be completely converted into heat. 
Spontaneous changes are always accompanied by a conversion of 
energy into a more disordered form. 

Figure 1.2 Direction of 
spontaneous heat flow 
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The entropy S of an isolated system increases during any sponta- 
neous change or process. 

The Third Law is also concerned with entropy, and may be stated as 
follows: 

“All perfect rtzcrterids have the sum: entropy S at T = 0, mil  this value 
may be taken to be S = 0; at higher tcmperutures, S is always positive. 
It is iinpossible to cool uny system to T = 0.” 

I .2 Definitions 
~~~~~ ~~ 

Before proceeding with exploring the implications and applications of the 
Laws, it is necessary to make a number of definitions (see Figure 1.3): 

System: region of chemical interest, c‘.g. a reaction vessel, characterized 
by properties such as T, p ,  V,  composition, etc. 

Surroundings: region outside the system, sometimes where we make our 
measurements, and separated from the system by a boundary. 

Open system: both energy and matter can be exchanged between the sys- 
tem and its surroundings. 

Closed system: only energy can be transferred, either as work, or by heat 
transfer. 

Isolated system: neither energy nor matter can be exchanged. 

Adiabatic system: the system is thermally isolated, and so heat transfer 
cannot occur, although work can be performed on or by the system. 

Diathermic system: a system for which heat transfer is possible. 

I .3 Exothermic and Endothermic Processes 
~ ~~ 

An exothermic process is defined as: 

“ A  process which releases energy us lzeut. ” 

An example would be the combustion of hydrogen. If the system is udi- 
abutic, the heat released stays in the system, ruisiizg its temperature. If 
the system is diutherniic, and maintained at a constant temperature by a 
thermal reservoir, the heat released Ilows from the system into the sur- 
roundings (the thermal reservoir:). 

Figure 1.3 Types of system: 
(a) oDen; (b) closed; (c) isolated; . , .  . .  

An endothermic process is defnecl as: 

“ A  process which absorbs energy 11s heut. ” 

(d) adiabatic 

An example would be the vaporization of water. If the system is 
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adiabatic, the heat is absorbed from the system, lowering its temperature. 
If the system is diathermic, heat flows in from the surroundings in order 
to maintain the system at the same temperature as the surroundings. 
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The First Law 

Having introduced the Laws of Thermodynamics in the previous chap- 
ter, we now need to learn how to apply them to chemical systems. We 
will begin this task by considering energy, and energy transformations. 

2.1 Internal Energy 

The internal energy U of a system is the total energy it contains as a 
result of its physical state, that is, under specified conditions of T, p ,  I/, 
etc. The First Law states that the internal energy of a system is constant 
unless it is changed by work, w,  or by heat transfer, q: 

5 



6 Thermodynamics and Statistical Mechanics 

A large, macroscopic change in a 
quarltity x 1s denoted a Smah 
incremental change in X is 
denoted dx. 

U does not depend on how that state was reached; we say that U is a 
state function. The value of U depends on the amount of matter in our 
system; if we double the mass, we double U. We say that U is an exten- 
sive property of the system. However, the molar value, Urn = U/n, does 
not depend on the amount of matter present: it is an intensive property 
of the system. In microscopic terms (i.e., at the molecular level), U is 
equal to the total sum of the energy levels of the atoms or molecules 
making up the system, weighted by their probabilities of being occupied. 

The syrnbol 1 denotes the sum 
of the terms to the right c f  the 
symbol. For example: 

1 c x ,  = (x ,+ x, + xg+ x,) 
f - = l  

The symbol a:> denotes the 
average value of the quartity x.  

2.2 Heat 

Heat flow may be defined as: 

“The trcuisfer of energy due to a difference in temperuture between the 
sj-stem a id  its surroundings. ” 

If ‘system < ‘surroutiditigs, y is positive, and heat flows into the system, 
raising i t s  internal energy U. 
If ‘system > ‘surroundings’ q is riegative, and heat flows out ofthe sys- 
tem, lowring its internal energy U. 

For example, if a sealed flask of nitrogen gas is placed in a hot oven, 
heat will flow into the flask (y > 0), raising the temperature and the inter- 
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nal energy of the gas (by increasing the populations of the higher energy 
levels of the N, * molecules). 

2.3 Work 

Work may be defined as: 

“ A  process which i-ould be used diwctl-,: to move an object a certain dis- 
tance aguinst an opposing forcv. ’’ 

In general, ,the work w is defined by the integral of the vector dot 
product of the force F and the small incremental displacement ds: 

W’ = J F - d s  (2.4) 

The dot product between 
two vectors 
r:, := (x2, y,, z?) IS: r;r2 = 
(X,X? + YIY, + Z,ZJ 

If the force is constant, and in the opposite direction to the direction of 
motion of the object. this simplifies to: 

= (x,, y , ,  z,) and 

j/t.’ = --FAs 

Where As is the distance the object has moved. 

Figure 2.1 Work involved in 
lifting a weight 



8 Thermodynamics and Statistical Mechanics 

2.3.1 Types of Work 

It is important to understand that there are many different types of work, 
and these can all change the internal energy of the system (see Table 2.1). 

Figure 2.2 Work of 
compression 

I-- 

C I 
Figure 2.3 Electrical work. The 
work of charging a capacitor is 
q2/2C, where g is the charge on 
the capacitor and C is the 
capacitance 

Figure 2.4 Heat flow 

Table 2.1 Examples of different types of work 

Type dw Example 
~~~~~ ~ 

Extension f dl 
Volume 
Surface 
Electrical 4 dq Battery (9 = potential: g = charge) 

Bond or spring (f = force constant; I = length) 
Piston @ex = external pressure; V = volume) 
Liquid surface ( y =  surface tension; o = area) 

-Pex dV 
Y do 

It is also important to grasp the difference between work and heat. 
Work is the transfer of energy due to the orgunized motion of molecules 
(or atoms, electrons, photons, etc.). For example, the atoms in a piston 
all move together in the same direction to compress a gas in a cylinder 
(Figure 2.2). 

As another example, a battery of voltage V performs electrical work 
in driving electrons preferentially in one direction along a wire to charge 
a capacitor (Figure 2.3). 

Heat is the transfer of energy between the system and the surround- 
ings due to the chirotic, disorganized motion (i.e. the thermal motion) of 
molecules (or atoms, electrons, etc.). For example, two metal blocks at 
different temperatures are brought into thermal contact. There is a net 
heat flow from the higher temperature block to the lower temperature 
block (Figure 2.4). 

Note that metals are good thermal conductors for the same reason 
that they are good electrical conductors: the availability of conduction 
electrons which are relatively free to diffuse around inside the metal. 

2.3.2 Work of Expansion 

As a first example of the calculation of work, we will consider the work 
of expansion of a gas (Figure 2.5). The work done by the system against 
the surroundings in moving a piston of area A by a distance dz against 
an opposing force F(z) = p,,(z)A is: 

The system will expand if p (= pin) > p,,. The negative sign means that 
for an e...pcmsion (dV positive), the work is negative, i.e. the internal 
energy U of the system decreases by carrying out the work on the sur- 
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roundings. If p,, > p ,  the system will undergo compressiun (d V is nega- 
tive), and thus the work is positive, i.r. the internal energy U of the sys- 
tem increases. Note that in both cases it is the e.uternal pressurepex which 
determines the amount of work done, not the system pressure p. 

F=P,,A 3= 

System 
\ P J  / 

dz 

Figure 2.5 Compression or 
expansion of a gas by a piston 

Figure 2.6 Indicator diagram 
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A reversible ptocws is one which 
IS carried out in irifinitesimnlly 
small incremental steps, SI rch 
that the system remains 
essentially in equilibrium at all 
stages during the Ixocess 

Figure 2.7 Isothermal (T = 
constant) expansion of an ideal 
gas. 

The partial derivative (X!XI, 
denotes the derivative of function 
f vvith respect to the variable x ,  
whilst holding :he variable y to be 
constant. 

Isothermal Reversible Expansion 

The expansion may be carried out reversibly by adjustingpex to be equal 
to p (the pressure within the system) at each infinitesimal step in the 
expansion, thereby keeping the system always in equilibrium (Figure 2.7). 
The work is then: 

VA vB V 

Note that, to simplify the notition, we leave it implicitly understood 
that p varies with V. Since the pressure p of the system is given by the 
equation of state of the gas (pV = nRT for an ideal gas), this integral 
can be evaluated directly if T is constant, (i.e. isothermal). Thus, for an 
ideal gas: 

(:) c'R d V 
V 

weXp = -nRT - = -nRTln 
I 'A 

(2.10) 

Note that the magnitude of wexp is the area under the p = nRT/V curve 
from VA to VB. As we expect, for an expansion (V ,  > V,), wexp is neg- 
ative, i.e. work has been done by the system. 

The internal energy U is constant during an isothermal expansion, 
since (aU/av),. is zero for an ideal gas (see Worked Problem 2.1). Thus 
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AU = (q  + w )  = 0, and hence: 

(2.1 1)  

Thus, in the present example, heat y is transferred from the surround- 
ings to the system to balance exactly the work weXp done by the system, 
and thereby keep the internal energy U of the system constant. 

Irreversible Expansion 

If the expansion is carried out irreversibly, by suddenly lowering p,, from 
p A  to pB, the expansion occurs against a constant external pressure p,, = 
p B ,  and the work of expansion is given by: 

(2.12) 

Note that this result applies when the system is either adiabatic or isother- 
mal. Thus the work performed in an irreversible expansion is smaller in 
magnitude than the work of a reversible expansion: 

(2.13) 

This can 
indicator 
principle 

be seen directly from the areas under the two curves on the The magnitude of a quantity f is 

diagram (Figure 2.7). This result is an example of a general denoted I f l -  the modulus Of f .  For 
example : 

which can be stated as: 1-31 131 = 3. 

“ A  sysrem operating between specbfi‘ed initial and -final states does the 
maximunz work when the process is carried out reversibly. ” 

This statement is not restricted to work of expansion (PV work), 
but applies to all kinds of work (chemical, electrical, electrochemical, 
etc.). 

Isothermal Compression 

We can return the system from VB to V,4 either reversibly or irreversibly, 
by compression (Figure 2.8). 

Reversible Compression 

If we gradually increase p,, from p B  to p A ,  keeping the system in equi- 
librium at each step, the system will compress along the same curve 
(j = nRT/V) as for the reversible expansion, and the work (area under 
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Irreversible 

Figure 2.8 Isothermal 
compression of an ideal gas 1 VA vi v 

the p- V curve) will therefore have the same magnitude (but opposite sign 
because A V is now negative): 

wcOmp(rev) = -wexp(rev) = +nRTln - (3 (2.14) 

Thus wcomp is positive, and the same amount of work has been done on 
the system by compression as was done by the system during the expan- 
sion. Since AU = 0 (for an ideal gas), an amount of heat: 

(2.15) 

flows from the system to the surroundings (q is negative). 

Irreversible Compression 

To carry this out, we suddenly increase pe, to pA (for example, by quick- 
ly placing a suitable mass onto the piston, then stopping it at volume 
V,). The work on the system is then: 

(2.16) 

and is positive. We see that wcomp(irr) > wcomp(rev), and thus the work 
done on the system is smallest when the compression is carried out 
reversibly. This is the opposite of the result for the work done by the sys- 
tem (e.g. during an expansion). It is clear from comparing the indicator 
diagrams that: 

i.e. more work is done on the system during an irreversible compression 
than is done by the system during an irreversible expansion. Since the 
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work done on the surroundings was different for the two different paths 
between the same states (VA and VB), i.e. the reversible and the irre- 
versible paths, it is clear that work is not a state function (described at 
the beginning of this chapter). Since the heat transfer is also different for 
the two paths (to exactly counterbalance the work), the heat is also clear- 
ly not a state function. We refer to work w and heat q as path functions, 
since their values will depend on the path taken between the initial and 
final states. 

Consider an infinitesimal change in U: 

d U  = dq + dw (2.17) 

The total internal energy change in taking the system from state A to 
state B is given by: 

U R  

AU = J d U  = ( U B - U A )  (2.18) 
U A  

and AU is independent of the path taken between A and B (Figure 2.9): 
the internal energy U is a state function. See Box 2.1. 

y2 

Y 

YI 

B 

r I 
I I 

X 
5 x2 

figure 2.9 For a state function 
such as U(x,y), AU is independent 
of the path followed from the ini- 
tial state A to the final state B. 
The variables x and y are any 
two of pressure p ,  volume V and 
temperature T 
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2. The internal energy U of a monatomic ideal gas is U = 
&Nm<v2>, where N is the number of atoms, m is the mass of one 
atom, and the kinetic theory of gases gives the mean-square speed 
<v2> of the atoms as <v2> = 3pV/1Vm. 
(i) How does U depend on temperature? 
(ii) Does Udepend on pressure or volume, at constant temperature? 

3. A volume of an ideal gas is contained within a cylinder with a 
frictionless piston at one end. When the internal volume of the 
cylinder is V1 = 1 dm3, the outward pressure on the piston is p ,  = 
10 atm. The piston is held stationary by an opposing pressure con- 
sisting of 1 atm due to the air outside and 9 atm due to nine weights 
sitting on the piston (each weight exerts 1 atm pressure). Calculate 
the work done i f  
(i) all of the weights are removed quickly together; 
(ii) five of the weights are removed quickly together, the system 
allowed to equilibrate, and then the remaining four weights are 
removed quickly; 
(iii) the weights are removed one at a time, the system being allowed 
to come to equilibrium at each step. 
Discuss how the maximum amount of work could be extracted from 
the system. Calculate this value. 

4. One mole of an ideal gas is carried through the following cycle: 

I . An adiabatic system consisting of a thermally insulated reaction 
vessel with a 10 R resistance heater inside is connected to a 20 V 
power supply, which is switched on for 50 s. 
(i) Analyse the change in internal energy AU of the system. 
(ii) Repeat the analysis for an isothermd diuthermic system (i.e. the 
system is in contact with a thermal reservoir such as a water bath). 

I 

I 
~ 

A B C 
1 -+ 2 + 3 -3 1 

Vm/dm' 22.4 22.4 44.8 22.4 
TIK 273 546 546 273 

Assuming each process is carried out reversibly: 
(i) Calculate the pressure at each state, 1, 2 and 3. 
(ii) Name each process, A, B and C. 
(iii) Obtain expressions for the heat flow y, the work MI, and the 
internal energy change AU for eac'h process. 
(iv) Calculate numerical values for y, and AU for the complete 
cycle. 



Heat Capacity, Enthalpy and 
Thermochemistry 

Our next task is to learn how to analyse heat flow in chemical systems. 
This turns out to be the key to deriving the entropy, and hence many of 
the most important thermodynamic properties. 

3.1 Heat Capacity, C 

When heat flows into a system, then provided no phase change (such as 
boiling) occurs, its temperature will increase. The increment d T  by which 
T increases is proportional to the amount of heat flow dq: 

d T =  dq 

The ratio dyldTis called the heat capacity (units: J K-I): 

c=($ 

The heat capacity is thus the increment in heat dq required to increase 

16 
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the temperature by an amount dT. C varies for different substances, for 
different phases (e.g. solid, liquid. gas) and in general will vary with tem- 
perature and pressure (although it does not for an ideal gas). C is an 
extensive quantity, but the vliolnr heat capacity, Cm = C/n, is an inten- 
sive property. Frequently, the subscript m is omitted; the quoted units 
then define whether C or Cm is intended. A typical value for Cm is that 
for liquid water at 25 "C: Cm =: 80 J K mol I .  

3.1 .I lsochoric (Constant Volume) Heat Capacity 

If the heat is supplied at a constant sample volume (d Y = 0), the system 
can do no pV work, and so (assuming the system does no other kind of 
work), from the First Law: 

(dy),. = d U  

The isochoric heat capacity C,, is then defined as: 

Note, we write the derivative using ";I" symbols to denote that C,  is the 
partial derivative of U with regard to T,  at constant V. 

3.1 B 2  Isobaric (Constant Pressure) Heat Capacity 

If the heat is supplied at a constant sample pressure, usually the sample 
will expand, doing work against the external pressure. Thus not all of 
the heat will be used to raise the temperature, and a greater heat flow 
(dq)l, will be required to raise the system temperature by the same amount 
as in the constant volume case. Thus the isobaric (constant pressure) heat 
capacity Cl, will normally be greater thlan C,. From the First Law (assum- 
ing only p V  work): 

Thus: 

dq = dC' + p,,dV 

Therefore: 
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Note that the change in internal energy AU is normally less for a given 
heat flow for an isobaric than for an isochoric process. 

3.1.3 Temperature Dependence of C, 

Later, we will see how to calculate enthalpy (AH), entropy (AS) and 
Gibbs free energy (AG) changes of chemical processes at different 
temperatures. The key to doing this is the knowledge of how the heat 
capacity C,, varies with temperature (Figure 3.1). 

Figure 3.1 Schematic sketch of 
the variation of Cp with tempera- 
ture for butane. Ttrs, T,,, and Tvap 
are the solid I-solid I1 transition 
temperature, the melting point 
and the boiling point, respectively 
(Adapted from E. B. Smith, Basic 
Chemical Thermodynamics, 
Oxford University Press, Oxford, 
1990) 

TI  K 

For some systems (e.g. monatomic gases such as argon), Cp is inde- 
pendent of temperature. However, for most systems the heat capacity 
varies in quite a complex way with temperature. Furthermore, at first- 
order phase transitions such as melting or boiling points, the heat capac- 
ity tends to infinity (C, + -) because the heat flow dq does not change 
the temperature until the latent heat of the transition has been supplied. 
Within the gas phase, we can use an empirical form for the temperature 
dependence of C,: 

c C,, = a + bT + - 
T’ (3-4) 

Values of the constants a, b and c are listed for many elements and com- 
pounds in textbooks (e.g. see Atkins or Alberty and Silbey in Further 
Reading). 
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3.2 Enthalpy 

It is useful to define a new thermodynamic quantity, the enthalpy H ,  
such that (when no additional work other than p V  work is present): 

d H  = (dy), 

This may be achieved by defining the enthalpy as: 

H =  U + p V  

(3-5) 

(3.6) 

The expression for the isobaric heat capacity then takes on a simple 
form in terms of H: 

c,, = [;+) 
P 

(3.7) 

The importance of the enthalpy function is that the change in enthalpy 
AH is equal to the heat flow q at constant pressure, a condition which 
often applies in chemistry. Furthermore, since the enthalpy is defined in 
terms of U, p and V, which are all stute functions, H is also a state func- 
tion, and thus AH is independent of the path taken between the initial 
and final states. The subject of therrriochemistry relies upon this fact. 

It should be noted that for solids arid liquids, which are nearly incom- 
pressible (i.e. AV = 0), AH = AU. However, for gases (e.g. an ideal gas, 
p V = nRT), AH = AU + AnRT, and if the number of moles of gases in 
the system changes, AH f AU. 
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3.3 Thermochemistry 

Consider a reaction (assumed to go to completion): 

A + B + C + D  

If the initial system has an enthalpy H , ,  and the final system has an 
enthalpy H3, - the enthalpy change upon reaction is: 

AH = ( H ,  - H , )  

If AH is negative ( H ,  < H,) ,  heat is released, and the reaction is exother- 
mic. If AH is positiie ( H ,  > H , ) ,  heat is absorbed, and the reaction is 
endothermic. If the reaction is carried out under adiabatic conditions, 
there is no heat flow between the system and the surroundings, and the 
enthalpy change AH causes a change of temperature of the system: 

AH negutive (exothermic) + T rises 
AH positive (endothermic) -+ T fulls 

If the reaction is carried out isothennully, the enthalpy change AH caus- 
es a flow of heat into or from the surroundings, in order to maintain the 
temperature constant: 

AH negative (exothermic): q < 0 (heat flows from system) 
AH positive (endothermic): q > 0 (heat flows into system) 

Summarizing: 

Conditions Exothermic Endothermic 
(AH 0) (AH ' 0) 

Adiabatic T rises i T falls 
I sot hermal Heat flows from Heat flows into 

system (9 < 0) system (9 > 0) 

L-- - 

3.4 Reaction Enthalpy and Hess's Law 
~~ 

For chemical reactions, we denote the enthalpy change as ArH, known 
as the reaction enthalpy. When all reactants and products are in their 
standurd states (at a pressure p = pe = 1 bar = lo5 Pa), then we refer 
to the standard reaction enthalpy, ArH*. It is necessary to specify the 
temperature at which ArHe is defined. This is usually taken to be 25 "C 
(298 K). To calculate the standard reaction enthalpy for any chemical 
reaction we use the fact that the enthalpy is a state function, which allows 
us to conclude (ignoring any mixing effects) that: 
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"The stundurd enthalpy of un ovmiII reaction is the suru of the stun- 
durd enthalpies of the individual recictiom into ivhich the reaction may 
be divided. " 

Thus, for u A  + bB + CC + dD: 

where AfHj* is the standard enthalpy of formation of species j (j = A, B, 
C or D), and a, b, c', and d are the number of moles of each species 
involved in the reaction. 

In general: 

VprodA&:bc - vrextAf.Hz',ct (3.9) 
prod re<ict 

This is known as Hess's Law. The stoichiometric coefficients vprod and 
vreact are the smallest integers consistent with the reaction. The AfHe 
values are dejned to be zero for all elenients in their standard state 
(p = 1 bar = 100 kPa) at any temperature (real gases are taken to behave 
ideally in their standard state. For example, AfHe for argon is zero even 
though He(298 K) = (5/2)RT = 6.2 kJ mol I .  Thus the AfH* 
values for all other chemical species are relative to their constituent 
elements in their standard states. AfHe values at 298 K have been 
determined for many simple compounds, and are tabulated in various 
textbooks (see Table 3.1 and Further Reading). Note that AfHe values 
are per mole of the compoundformed. Thus, for the formation of liquid 
H,O, the value of AfHe(298 K) = -285.8 kJ mol is for: 

not for: 

Table 3.1 Examties of erithabies of formation 

Species A,Ht'/kJ mol-' 

0 
0 
0 
-241.8 
-285.8 
-393.5 
-1 87.8 
+264.0 
+90.3 



22 Thermodynamics and Statistical Mechanics 

Note that AfHe can be negative or positive. We can calculate the stan- 
dard reaction enthalpy ArHe for any reaction, as long as it can be 
expressed in terms of reactions of species whose standard enthalpies of 
formation AfHe are known (or can be estimated). 

3.5 Temperature Dependence of Enthalpy 
Changes 

Since C,, = (aH/dT), ,  (equation 3.7), it follows that, at constant pressure: 

dAH = AC/,dT (3.10) 

where AC,] is the change in heat capacity between the final and initial 
states. Integrating both sides of this equation from T, to T, gives: 

7 ,  

7’1 

AH(T,) = AH(T,)+ AC,,dT (3.1 1) 

This important result is known as Kirchhoffs equation. If the C,, are 
independent of temperature, then: 

AH(T,) = AH(T,) + AC,,(T, -TI)  (3.12) 

Otherwise we may use, for each species, the empirical form given in 
equation (3.4): 
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For reaction enthalpies: 
T.? 

A r H O  (T2) = A r H (  TI) + ArCpdT 
TI 

where: 

A r c p  = C V p r o K p .  proj  - C vreactcp.  react 
prod react 

If the Cp are independent of temperature, then: 

ArH* (T2) = ArH* (7’1 ) + Arc,,( T 2 - TI) 

(3.13) 

(3.14) 

(3.15) 

E. B. Smith, Basic Chemical Thermodynumics, 4th edn., Oxford University 

P. W. .4tkins, Physical Chenzistry. 6th edn., Oxford University Press, 

R. A. Alberty and R. J .  Silbey, P h j ~ s i ~ a l  Clzetnislry, 2nd edn.. Wiley, New 

R. G. Mortimer, Physical Chemistry, Benjamin Cummings, Redwood City, 

D. A. McQuarrie and J .  D. Simon, A4olecwlur Tliermocl~iiamics, University 

Press, Oxford, 1990, chapter 2. 

Oxford, 1998, chapters 2 and 3. 

York, 1996, chapter 2. 

Calif., 1993, chapter 2. 

Science Books, Sausalito, Calif,, 1999. chapter 5. 
. . .. ... . ~~ ..- - - . . .. .___ __ - . . . . . .. 
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1 Derive expressions for Urn, Hm, C ,  and C,, for an ideal gas, and 
evaluate them at 298 K, using the result from the kinetic theory of 
gases that U,,, = (3/2)pV. 

2. (i) 100 g of KNO, (Aso,He(298 K) = +34.9 kJ mol--I) is added 
to 1 dm3 of water (C,,(H,O) = 75.29 J K-I mol-I) at 298 K in an 
adiabatic container. What is the temperature of the water when the 
salt has all dissolved? 
(ii) Repeat the calculation for AlCl, ($,8*(298 K) = -329 kJ 
mol I ) .  

3. Calculate the reaction enthalpy for the process: 

at 700 K (the appropriate temperature for ammonia synthesis), 
given that for NH,(g), AfH*(298. 15 K) = -46.1 1 kJ mol-', and the 
variation of C/, with temperature can be represented approximately 
by the equation: C,, = a + bT + c T 2 .  Values for the constants a, b 
and c are: 

a/J K mol-' b/J K--, molk' d J  K mol-1 
N2 28.58 3.77 x lop3 -0.50 x lo5 
H, 27.28 3.26 x lo-' +0.50 x lo5 

NH, 29.75 25.1 x lo-, -1.55 x lo5 



The Second and Third Laws: 
Entropy 

We now turn to the topic that lies at the heart of thermodynamics and 
chemical equilibrium: entropy. 

4.1 Spontaneous Processes 

What determines the spontaneous direction of change in chemical sys- 
tems? Some simple examples show that it is not determined solely by the 
minimization of the energy (or the enthalpy). 

(a) Isothermal expansion of an ideal gas. Two flasks having equal vol- 
umes are connected by a tap. Initially, flask A is filled with gas to a pres- 
sure p A ,  and flask B is evacuated. When the tap is opened, gas will flow 
from A to B until the pressures are equal (Figure 4.1). However, AU = 
0 and AH = 0 for this process [since (aU/dv), = 0 and (dH/dV), = 0 for 
an ideal gas; see Chapter 3, Worked Problem 3.11. Note that heat flows 
in from the surroundings, because the gas in flask A performs work on 
the gas in flask B as the pressure p B  builds up from zero to its final value 
of pA/2. 

25 
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Figure 4.1 Isothermal 
expansion of a perfect gas 

Figure 4.2 Thermal equilibration 
of two metal blocks, where TA > 
TB, and Tf lies between TA and TB 

Figure 4.3 Endothermic 
dissolution of sodium nitrate in 

1 I 

Tap 

A B 

(b) Thermal equilibrium. Two identical blocks of metal, one at a tem- 
perature TA, and the other at a lower temperature TB, are brought into 
thermal contact and then isolated (Figure 4.2). Although AU = 0 (because 
they are isolated), we know that heat will flow from A to B until both 
blocks are at the same final temperature Tr The chances of the reverse 
process happening spontaneously are vanishingly small. 

4 

time 

(c) Endothermic solution of a salt. If we add a little solid NaNO, to 
water, it will dissolve, even though the process is endothermic (AH > 0), 
and hence heat is absorbed (the solution cools down) (Figure 4.3). 

NaN03 

time 

Ti 

(d) Chemical equilibrium. Consider the dissociation: 

N,O, * 2N0, 

N,O, at 298 K and a pressure of 1 atm will spontaneously partially dis- 
sociate (-19%) to NO,, despite the fact that the reaction enthalpy for 
dissociation ( A J P  = + 57.2 kJ mol-I) is large and positive, i.e. the process 
is endothermic. 

The examples (c) and (d) show that reactions can spontaneously occur 
even if they are disfavoured in terms of the enthalpy changes. What then 
is the driving force? It is clear from these examples that in some way 
each system is spontaneously moving towards a more disordered or more 
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uniform state. It is also the case (although perhaps less obvious) that the 
systems have lost some capacity for carrying out work (for example, the 
expanding gas could have been used to do work on a turbine). We could 
even have found examples where the system apparently spontaneously 
becomes more ordered, such as the crystallization of a supersaturated 
solution. 

The driving force is that in each case of a spontuneozis process the total 
entropy of the system plus its surroundings has increased: 

where A S  is the change in entropy upon the process occurring. This is a 
statement of the Second Law of Thermodynamics, which can also be 
expressed in terms of the small, incremental changes in entropy occur- 
ring during the process: 

(dS + dcyr) > 01 spontaneous,irreversible 

(dS + dgUrr) = 0 equilibrium,reversible (4.2) 

Note that for convenience we have dropped the superscript denoting 
the system, and for the remainder of this text this should be implicitly 
understood. 

The total entropy spontaneously tends to increase until equilibrium is 
attained, and then stays constant (see Box 4.1). 

4.2 The Clausius Inequality 

Now, example (b) of the previous section suggests that entropy changes 
must be related in some way to heat flow. When heat flows into the 
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surroundings, it leads to an increase in their disorder. Furthermore, the 
amount of disorder caused is greater for a given heat flow, the lower the 
temperature of the surroundings. These observations suggest that the 
entropy change should be proportional to the heat flow, and inversely 
proportional to the temperature (later in this text we will justify in more 
detail why it has this form, and see how to calculate the entropy at a 
microscopic level). Thus for the surroundings: 

Now, if a process occurring in the system causes a heat flow dq into the 
system, then the heat flow into the surroundings is (-dq), and the result- 
ing entropy change is: 

where we assume that the thermal reservoir of the surroundings is large 
enough for its temperature to remain the same. 

Thus, since (dS + dSsurr) 2 0 (from the Second Law): 

or: 
dq d S 2 -  
T (4.5) 

This result is known as the Clausius inequality. It states that the change 
in entropy of the system must be greater than (dq/T) for any spontaneous, 
irreversible process, and will become equal to (dq/T) for a reversible 
process (where equilibrium is maintained at each step). If the system is 
thermally isolated, no heat flow can occur (dq = 0) and so the Clausius 
inequality becomes: 

> 0: spontaneous 
= 0: equilibrium 

dS2O 

Thus for an isolated system, its entropy will spontaneously increase to 
some maximum value, which will correspond to equilibrium. 

To calculate the entropy S of the system, in order to ensure that S is 
a state function, we must determine it along a reversible path. Thus we 
define: 
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We can then calculate the entropy change of the system using: 

Now, although we have to choose a reversible path from A to B in order 
to be able to calculate the value of AS, any other path, in particular 
any irreversible path, will still have this same value, because S is a state 
function. 

4.3 Temperature Dependence of the Entropy, S 

At constant pressure, the heat flow dqrrv into or out of the system to 
change the temperature from TI  to T3 is equal to the incremental enthalpy 
change dH, which in turn is directly-related to the isobaric heat capacity 
Cp: 

dy,,, = d H  = C,,dT (4.9) 

Thus: 

AS=S(T2)-S(T,)= ?($)IT 
TI 

At a phase transition (for example, melting): 

(4.10) 

(4.11) 

Note that heat flows into the system (q,,, > 0) to drive an endothermic 
transition (AtrsH > 0). 

Thus, when a phase transition occurs at some temperature T,,, below 
the final temperature T2, and setting TI  = 0 K: 

The Third Law states that the entropy of any perfect substance at 
T = 0 may be taken to be S(0) = 0. Thus we can determine the absolute 
(Third Law) value of S at any temperature if we know Cp(7') and AtrsH. 
All other transitions are included in the same way (solid-solid, boiling, 
etc.); note that, for second-order transitions, AtrsH = 0. 
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Equations (4.14)-(4.17) apply whether the processes are carried out 
reversibly or irreversibly, because S is a state function. However, AS""" 
will in general be different in the two cases. Considering an isothermal 
expansion of an ideal gas, we know that in the reversible case (equation 
2.12): 

The entropy change of the surroundings is then: 

(4.18) 

(4.19) 

and so, for a reversible expansion: 

However, for the irreversible case (e.g., expansion into a vacuum, from 
v* to vB): q = --w = 0, and so A S u r r  = 0. 

The entropy change of the system, AS, has the same value as for the 
reversible case (because S is a state function), and thus for the sponta- 
neous, irreversible expansion: 

(4.2 1) 

This example shows us that the entropy change of the surroundings was 
needed, in order to tell whether or not the process was spontaneous (the 
entropy change of the system, AS, was the same in both cases). This is 
not very convenient, as we prefer to focus attention on the system. This 
may be achieved by introducing two new thermodynamic functions, the 
Gibbs (G) and the Helmholtz ( A )  free energies, which we will encounter 
in the next chapter. 
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1. It is possible to cool liquids to well below their normal freez- 
ing point, because of kinetic barriers to the nucleation of the solid. 
Suppose 1 mole of supercooled water is stored at -10 "C and 1 bar, 
but at some point in time it spontaneously freezes to ice. 
(i) Why is this an irreversible change? 
(ii) Qualitatively discuss how one sets about calculating changes in 
state functions for irreversible changes. 
(iii) Calculate the decrease in entropy ASe for the supercooled water 
upon freezing, and the resulting increase in entropy of the sur- 
roundings, ASsurr, at the given temperature and pressure. Use the 
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following: C{,(liq H,O) = 75.29 J K mol I ;  Cp(ice) = 36.9 J K-I 
mol (assume these& values are independent of temperature within 
each phase); AfLlsH*(273 K) = +6.008 kJ mol I .  

2. (i) Prove that, under isobaric (constant pressure) conditions, the 
entropy change A S  of an ideal gas going from state A to state B is 
given by equation (4.15): 

(ii) Show that, under isothermal conditions, the pressure depend- 
ence of the entropy of an ideal gas is given by equation (4.17): 

S = S  -nRln,. t I 
3. Calculate the change in molar entropy, AS, of 0, gas, when it 
is heated at atmospheric pressure from 25 to 150 'C. The heat 
capacity is given by: 

The coefficients u, b and c for O, gas may be taken to be: a = 29.96 
J K mol-I; h = 4.18 x 10 J IC-? molk'; c = -1.67 x lo5 J K mol-I. 

.................... - .. ~ - -. . . . . . . .  . . . .  



Free Energy 

In this chapter we will learn how the entropy changes of the system 
and surroundings can be incorporated into a new state function of the 
system, the free energy. 

5.1 Gibbs and Helmholtz Free Energy 

The Gibbs and Helmholtz free energies arise from the Clausius inequal- 
ity, d S  2 dqlT, which can be rearranged as TdS - dq 2 0. Since dq = dU 
- drv, we may write: 

At constant volume, dw = 0 (assuming no work of any form), giving: 

At constant pressure (assuming no non-p I/ work), equation (5.1) 
becomes: 

35 
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or: 
T d S - d U - P d V 2 0  

(TdS - d H  2 O)p (5.3) 

We now define two new functions, the Helmholtz free energy: 

A = U - T S  

and the Gibbs free energy: 

G = H - T S  

(5.4) 

(5 -5 )  

Differentiating these expressions gives: 

d A = d U - T d S - S d T  
dG = d H  - TdS - SdT 

If the temperature is held constant (dT = 0): 

dA 1 d U -  TdS 
d G = d H - T d S  

Thus, substituting into equations (5.2) and (5.3): 

dA 5 0 ;  constant volume (5.6) 

dG 5 0 ;  constant pressure ( 5  * 7 )  

We have thus been able to express the Clausius inequality in terms of 
two new state functions of the system alone: 

r-- 
Constant volume Constant pressure 

Spontaneous process d A < O  dG < 0 
Equilibrium, reversible process dA = 0 dG = 0 

5.2 Maximum Work 

The maximum work is obtained when processes are carried out 
reversibly. Then the Clausius inequality (equation 4.5) reads: d S  = 
dqre,/T, or dq,,, = TdS. Now we also know from the First Law that dq,, 
= d U -  dwrev, and so: 
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This equation states that: 

Maximum work = (Internal energy change) - (Unavailable energy) 

Separating the work into p V  work plus all “extra” work: 

dwrev(extra) - pd V = dU - TdS 
dwrev(extra) = dU + pd I/ - TdS 

Thus the “extra” work under conditions of constant volume and tem- 
perature is: 

dwrev(extra) = dA (5.9) 

Under conditions of constant pressure and temperature, the correspon- 
ding result is: 

dwreV(extra) = dG (5.10) 

Thus, AG is equal to the maximum (non-pv work available from the 
system at constant pressure and temperature. 

For a spontaneous process under isobaric conditions, dG < 0, i.e. G 
will decrease spontaneously until it reaches a minimum (Figure 5.1). 

At this point, dG = 0, and equilibrium is reached. No further work 
can be obtained from the system, even under reversible conditions. 

Figure 5.1 The minimum in G 
gives the equilibrium point 
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5.3 Pressure and Temperature Dependence of G 

G = H - T S  
= U + p V - T S  

dG = dU + pd V + Vdp - TdS - SdT 

But dU = dq + drv (First Law), and so d U  = TdS -pd V (for a reversible 
change with no non-pV work). Thus: 

dG = Vdp - SdT (5.11) 

This key equation, known as the Fundamental Equation, tells us how G 
varies with pressure and temperature. Because all the variables are state 
functions, it applies both to reversible and irreversible processes. 

For an isothermal process ( d T  = 0), the Fundamental Equation 
becomes dG = Vdp, and thus gives the pressure dependence of G at con- 
stant temperature: 

(g) = v  
T 

(5.12) 

For an isobaric process (dp = 0), on the other hand, it reduces to 
dG = --SdT, and thus gives the temperature dependence of G at constant 
pressure: 

(g) =-s 
I’ 

(5.13) 

Now, since S = ( H  - G)/T (equation 5.5): 

dv 
dx dx 

But, from the product rule of differentiation = u-+ v”): 
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Thus: 

This expression is known as the Gibbs-Helmholtz Equation, and tells us 
how AG varies with temperature in terms of AH. We will use this result 
later to calculate the temperature dependence of the equilibrium 
constant. 
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6 
Phase Transitions 

In this chapter we will explore how the Gibbs free energy determines 
phase stability for a pure substance, and how the Fundamental Equation 
can be used to determine the effect of pressure on phase transitions. 

6.1 Stability of Phases 

Under constant pressure conditions, because dG < 0 for a spontaneous 
process, systems will tend to adopt whichever phase has the lowest value 
of the Gibbs free energy G. Now G = H - TS (equation 5.5) and (aG/&’J,, 
= -S (equation 5.13). Thus G always fulls with temperature, at a rate 
given by the entropy S of the phase (Figure 6.1). 

Typically, H (solid) < H (liquid) < H (gas) [all negative] and S (solid) 
< S (liquid) < S (gas) [all positive]. Thus at low temperatures the solid 
has the lowest G and is the stable phase. At higher temperatures, first 
the liquid then the gas become the stable phase. At the phase transition 
itself, the Gibbs free energies of the two coexisting phases are equal: 

40 
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G 

I 
I I 
r, Tb 

w 

T 

AtrsG = (G, -- GI\) = 0 

Therefore, A,,$ = TtAtrsS, or: 

Figure 6.1 The temperature 
dependence of G for a pure 
substance 

Thus we can calculate the transition entropy AtrSS directly from the tran- 
sition enthalpy A$, which can be measured by calorimetry. 
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Figure 6.2 The effect of 
pressure on the Gibbs free 
energy G for a pure substance 
co, ’ P,)  

It is found that for many simple organic liquids the entropy of vapor- 
ization has a constant value close to: 

AvapSe = 85 J K-I molt’ (6.2) 

This approximation is known as Trouton’s rule. The higher value for 
water is a reflection of the higher degree of order in liquid water due to 
hydrogen bonding. 

6.2 Effect of Pressure on the Boiling Point 

I 

r, - 
T 

TI 

6.3 Phase Diagrams 

The variation of the transition temperature with pressure is displayed on 
a p-T phase diagram (Figure 6.3). Pressure also shifts the melting point 
Tfu,, but generally by a smaller amount, since Vm(s) = Vm(l). For water, 
the melting point TfUs actually decreases with pressure. This unusual 
behaviour is because ice is less dense than water (it floats!), i.e. Vm(s) > 
Vm(l) for water. Point A is the triple point (T7 = 273.16 K), where three 
phases (ice, water and water vapour) coexist. 

6.4 Clapeyron Equation 

In order to explicitly calculate the two-phase co-existence curves AB, AC 
and AD (see Figure 6.3), we use the fact that the transition lines are 
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p I bar 

1 .o 

defined by the p and T values where each pair of phases have the same 
Gibbs free energy G. For example, considering the liquid--vapour equi- 
librium, if we change p to (p + dp) and T to ( T  + dT), the two phases 
will only remain in equilibrium if dG(1) = dG(g); that is, from equation 
(5.1 l), if V(1)dp - S(1)dT = V(g)dp - S(g)dT. 

It follows directly that: 

The boiling point of a liquid is very sensitive to pressure: for H,O, an 
additional pressure of 0.36 atm will increase the boiling point by 10 "C. 
Similarly for the solid-liquid (melting) curve: 

The Clapeyron equation is exact, and is valid for all phase transitions. 
For H,O, AfusV is negative (-1.7 cm3 mol-I) and so (dp/dT) is negative. 
Thus ice can be melted by applying pressure. However, the effect is quite 
small: inserting the value for water of AfusHe = + 6.008 kJ mol-' shows 
that it needs a pressure of 130 atm to lower the melting point of ice by 
1 "C. For most other substances, AfusV is positive, and pressure will 
increase the melting point. 

6.5 Clausius-Clapeyron Equation 

On vaporization, the change in molar volume AvapV may be approxi- 
mated by V,(g), since V,(g) >> Vm(l) by a factor of more than lo3. 
Assuming the vapour behaves like an ideal gas, Vm(g) = (RT/p), and sub- 
stituting into the Clapeyron equation gives: 

Figure 6.3 Schematic 
pressure-temperature phase 
diagram for H,O (not to scale). 
Trust T3 and T .  are the standard 
melting point, the triple point and 
the standard boiling point, 
respectively 
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Noting that dp/p = d lnp,  this may be written as: 

If AvapH is independent of temperature, this 

(6.5) 

can be integrated to give: 

+constant (6.6) 
A"& lnp = -~ 
R T  

Thus, if we measure the vapour pressure p of a liquid as a function 
of temperature, a plot of In p versus 1/T will give a straight line of 
gradient (-AVapH/R). The explicit expression for the vapour pressure is: 

p = p * e x p  [ -- Av;H[+)] , 

wherep* is the vapour pressure at the initial temperature P. The vapour 
pressure increases steeply as the temperature increases, reaching a value 
of p = 1 atm at the normal boiling point T,,. Note that p = pe = 1 bar 
defines the standard boiling point (99.6 "C for H,O), which is thus slightly 
lower than the boiling point at 1 atm. 

Equations (6.5)-(6.7) are equivalent forms of the Clausius-Clapeyron 
equation. 

6.6 Gibbs Free Energy and Chemical Potential 

Recall that, for constant temperature, the fundamental equation (5.1 1 )  
is dG = Vdp. For an ideal gas, p V  = nRT, and hence: 

dG = nRT( :) 
Integrating from pA to pB gives: 

AG = (GB - GA) = nRTln - t:) 
If we choose pA = pe = 1 bar, then (writing G, as 

G = Ge+nRTln 

G, = G," + RTln[-$] 

G): 
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The molar Gibbs free energy Gm = G h  for a pure substance and is 
equal to the chemical potential p, which for an ideal gas becomes: 

where p0 is the standard chemical potential, i.e. the chemical potential 
at a pressure p = p 0  = 1 bar. This equation shows that we can deter- 
mine the chemical potential p(g) for a gas by measuring its pressure, and 
p(1) for a liquid by measuring its vapour pressure, since p(1) = p(g) when 
the liquid and vapour are in equilibrium (assuming the vapour behaves 
ideally). 

The formal definition of the chemical potential of a pure substance is: 

.=(El p. T 

When we have a mixture of different substances, this definition is 
modified to: 

(6.10) 

where nj is the number of moles of species j ,  and the number of moles 
of all other species present is held constant, along with the pressure and 
temperature. This equation tells us that the Gibbs free energy will in gen- 
eral depend on the chemical compositions nj as well as T and p ,  and so 
the fundamental equation must be extended (for a binary system) to: 

Thus (for a binary mixture): 

dG = Vdp - SdT + p,dn, + p2dn, (6.12) 

In general, when a total of N species, labelled j ,  are present: 
N 

dG = VdP - SdT + cp ,dn j  
j=l 

(6.13) 

This important equation is known as the Fundamental Equation of 
Chemical Thermodynamics (see Box 6.1). 
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18 Integrate the Clapeyron equation to derive an approximate 
expression for the pressure as a function of temperature at the 
solid-liquid phase boundary. Hence calculate the pressure (in addi- 
tion top*) which must be applied to melt ice at -10 "C. Take the 
molar volumes of ice and liquid water to be 19.7 cm3 mol-I and 
18.0 cm3 mol-I, respectively, and ArusH8 = +6.008 kJ mol-I. 

2. Calculate the boiling point T and the enthalpy of vaporization b 
AvapH of butane, given the following data for its equilibrium vapour 
pressure at a range of temperatures: 
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T/K 
195.12 
212.68 
226.29 
262.28 
272.82 

p/mmHg 
9.90 

36.26 
85.59 

503.34 
764.50 

3. Calculate he standard Gibbs free energy of formation, AfGe, 
of liquid H,O at 298 K. Is the process spontaneous? Analyse the 
entropy changes occurring in the system and the surroundings, and 
show how this leads to the same conclusion about the spontaneity 
of the process. 



Chemical Equilibrium 

In this chapter we will use the concepts and results developed in the 
preceding chapters to analyse chemical equilibrium and to calculate 
equilibrium constants. 

7.1 Extent of Reaction and the Reaction Gibbs 
Free Energy 

Consider a simple reaction: 

For example, the isomerization of pentane to 2-methylbutane. If a small 
amount d< of A is converted into B: 

dn, = -d< and dn, = d< 

The extent of reaction < (the Greek letter “xi”) is 6 = 0 for pure A, and < 
= 1 for pure B, for 1 mole of the substance. Now, at constant Tandp,  if 
dn,\ moles of A are converted to dn, moles of B, from equation (6.1 1): 

49 
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Thus: 

Note that pB and pA vary as the extent of reaction 6 varies. This quan- 
tity is called the reaction Gibbs free energy, ArG: 

and it gives the slope of the total Gibbs free energy G of the system versus 
the extent of the reaction 6 (Figure 7.1). 

Figure 7.1 Variation of G with 
the extent of reaction 5 

0 S/mol 1 

The symbol ArG, although accepted by IUPAC, is unfortunate because 
ArG is in general a derivative of G, not a difference in G. A r c  is only 
equal to the change in G for 1 mole of A converting to 1 mole of B, at 
fixed composition (because of the definition of the chemical potentials). 
This would imply that a large number of moles of both A and B must 
be present, so that conversion of one mole would hardly change the com- 
position. It is clear that when y, > yB, ArG is negative, G falls with 
increasing 6, and the reaction A + B is spontaneous. On the other hand, 
when p, < pB, ArG is positive, and the opposite reaction B + A is spon- 
taneous. The system will attain equilibrium when A,G = 0, i.e. when p, 
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= ,uB (the chemical potentials of A and B become equal), since this will 
define the minimum in G. 

7.2 The Equilibrium Constant 

In order to relate ArG to the compositions of A and B, we need to sub- 
stitute expressions for their chemical potentials, (uA and pB. If A and B 
behave as ideal gases, these are given by: 

Then, the reaction Gibbs free energy ArG = (pB - pA) is: 

ArG = ArGe+ R7ln - t: 1 (7.3) 

where the standard (molar) reaction Gibbs free energy is: 

Note that ArGO does represent a free energy difference; it is the standard 
free energy change when one mole of reaction takes place, with both 
reactants and products remaining in their standard states (p = p"). We 
can calculate ArG* from the Gibbs free energies of formation AfG? 

ArGe = A,G"(B) - A,.Ge(A) (7.5) 

Selected values of A,G* are listed in various textbooks (e.g. see Further 
Reading). Note that ArG* = 0 for all elements in their standard states at 
any temperature [for example, O,( g), Hg( 11, C( s, graphite)]. 

For the mixture of A and B considered above, if 4 =: 0, pq >> pB and 
so A,.G < 0, and the reaction proceeds to the right. Conversely, for 5 =: 

1, p A  << pB and so A r c  > 0, and the reaction moves to the left. 
Equilibrium occurs when ArG = 0, that is. when: 

A,G" = -R7lnK,, (7.6) 

where the equilibrium constant Kp is the ratio of the partial pressures p A  
and pB at equilibrium: 

If ArG" < 0, then I$, = (pB/pA)eq > 1 ,  and equilibrium lies to the right 
(towards B) (Figure 7.2). 
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Figure 7.2 Position of 
equilibrium when ArGe < 0 

Figure 7.3 Position of 
equilibrium when ArGe > 0 

G 
A , G ~  c 

Eqm. 

L 

0 0.5 1 
Extent of reaction, 6 

If ArG* > 0, then K,, = (p,/p,),, < 1, and equilibrium lies to the left 
(towards A) (Figure 7.3). 

G 
A ~ G ~  > o 

0 0.5 1 
Extent of reaction, 6 

If ArGe = 0, then K,, = 1 and y g  = pA. Note that the reason why 
equilibrium does not lie fully to the left or the right when ArG* + 0 is 
due to the favourable entropy of mixing of A and B (reactants and 
products). 

For a more complex reaction such as 

aA + bB * cC + dD 

we write dn, = -adg, dn, = -hd& dnc = cdg and dn, = ddg, and hence 
from equation (6.13) we have: 
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The chemical potentials p j  are in general expressed in terms of activities 
up using: 

p j  = pj" + RT I n  ui (7.9) 

The activity is an ejJective concentration, taking into account deviations 
from ideality due to intermolecular interactions, and takes the following 
forms (listed here for completeness): 

(a) Ideal gas of partial pressure p,: ~ i ,  = 

(b) Real gas of effective pressure ( fugacity) -6: u, = 7 , 

(c) Solvent of mole fraction xj and activity coefficient 3; in this case, p/" 
is the chemical potential of pure solvent j :  uI = ~x; 
(d) Solution of molality (moles of solute per kg of solvent) m, and activity 

, t 1.  
k 1. 

coefficient (pj* is the chemical potential of solute j at unit molality, 

m" = 1 mol kg-I): u, = 

In terms of activities the reaction Gibbs free energy becomes: 

where: 

Then the equilibrium constant K', is given by: 

A ~ G *  = -R T In K,, 

with: 

In the most general case, we may write: 

(7.10) 

(7.1 1) 

(7.12) 

(7.13) 

(7.14) 
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wherep!d andrEt denote multiplication over the activities uprod and areact 
of products and reactants, and the stoichiometric coefficients vprod and 
vrcact are the smallest integers consistent with the reaction. Note that K,, 
as defined above is unitless (as is K,). 

As before, the values of ArGO are obtained from: 

ArG* = C ~ p r o d ~ t . G  Z o d  - C vreact A E x t  (7.15) 

(remember that A , . G *  values are tabulated in various textbooks, and are 
defined to be zero for all elements in their standard state at any tem- 
perature). Otherwise, A r c 0  can be obtained from: 

prod react 

ArGO = ArH* - TArSO (7.16) 

where ArH* is obtained from the AfH" and: 

A r P =  C ~ p r u d S & d  - C VreactS%x (7.17) 
prod react 

where the standard Third Law entropies S*(T) can be obtained by inte- 
gration of C,( T )  as previously described (Section 4.3), up to the required 
temperature T. 

7.3 Temperature Dependence of the Equilibrium 
Constant 

Since: 

then: 

A r P  lnK=-- 
RT 

d T  

(the differentials are complete rather than partial b 
depend only on temperature, not on pressure). 
Helmholtz equation (equation 5.14) states that: 

cause K and ArG* 
Now the Gibbs- 

Hence: 

A H  
[$[%)],,=-7 

dlnK A H f '  
~ = +'- 

d T  R T ~  (7.18) 

This equation is known as the van't Hoff isochore. If ArH* is positive 
(endothermic reaction), then increasing temperature will increase 1nK and 
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hence K (i.e. favour products). If ArHe is negative (exothermic reaction), 
then increasing temperature will decrease InK and hence K (i.e. favour 
react ants). 

For small temperature changes, we can often assume that ArHO is 
independent of temperature. Integration then gives: 

7.4 Effect of Pressure on Equilibrium 

(7.19) 

~~ -~ ~~ ~ 

At fixed temperature, Kdepends only on ArGO, but this has a value which 
is defined at the standard pressure ofpO = 1 bar. Thus ArGO, and hence 
K ,  are independent of pressure, that is: 
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[g) = o  
T 

(7.20) 

This does not mean, however, that the compositions of reactants and 
products also remain constant. For example, if all reactants and prod- 
ucts behave as ideal gases, we can define an equilibrium constant K\- 
(compare with equation 7.14) in terms of the mole fractions xj: 

Thus, since xi = p,/p: 

(7.21) 

(7.22) 

where An = Tvpr0, - Zvreact. An is the change in the total number of moles 
of gaseous species as the reaction goes from left to right. Thus: 

(7.23) 

and thus the equilibrium constant in terms of mole fractions, Ky, does 
depend on the pressure. The latter equality is valid for any reaction, i.e. 
also in solution. ArVe is the volume change accompanying one mole of 
reaction under standard conditions. 

7.5 Le Chatelier’s Principle 
~ ~~ ~ 

An important empirical principle can be stated as follows: 

“Perturbation of a system at equilibrium will cause the equilibrium posi- 
tion to change in such a way as to tend to remove the perturbation.” 

For example, for an exothermic reaction (A,H* < 0), lowering the tem- 
perature will shift the equilibrium towards the products, releasing more 
heat and tending to raise the temperature. Similarly, for a reaction with 
a positive volume change (ArV* > 0), application of pressure will shift 
the equilibrium towards the react ants. 

Although it is useful to keep in mind these qualitative statements of 
Le Chatelier’s principle, it is also important to put the principle onto a 
quantitative footing, embodied in the two equations for the effects of 
temperature (equation 7.18) and pressure (equation 7.23) on chemical 
equilibrium. 
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I 

~ 

~ 

I 

1 At high temperatures, carbon dioxide dissociates as: 

2CO,(g) 2CO(g) + O,(g) 

At a pressure p = 1 bar, the fractional dissociation a is: a = 2 x 
at 1400 K. Assuming that the 

standard reaction enthalpy, A,HO, is independent of temperature, 
calculate the standard reaction Gibbs free energy, ArG*, and the 
standard reaction entropy, A,S*, at 1000 K. 

at 1000 K, and a = 1.3 x 

2. The data in the table below give the equilibrium constant, Kp, 
as a function of temperature, for the reaction: 

- ~ . . . .. .. . . __ . 
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T/K Kp 
1900 2.31 x lo4 
2000 4.08 x 
2100 6.86 x lo4 

2300 1.69 x 
2400 2.51 x 

i 2500 3.60 x 
~ 2600 5.03 x 

2200 1.10 x 10-3 

(i) Using these data, calculate the standard reaction enthalpy, 

1 ArH*, and the standard reaction entropy, ArSe (assume they are 
both independent of temperature). I (ii) Using these values, calculate the standard reaction Gibbs free 
energy, Arc*, at 1000 K, and hence determine the partial pressure 
of NO in air at 1000 K, assuming that air consists of 8OYo N,(g) 
and 20% O,(g). 
(iii) The standard Gibbs free energy of formation of NO(g) at 1000 
K has a value of A,Ge(lOOO K) = +77.77 kJ mol-'. Compare this 
with the value predicted in part (ii) and discuss any differences. 

3. (i) For the gas phase dissociation reaction: 

derive an expression for the degree of dissociation a in terms of 
the equilibrium constant Kp. 
(ii) For the dissociation of gaseous N,O, to 2NO,, calculate Kp and 
a at pressures p = 1 and 10 atm, for temperatures T = 198, 298 
and 398 K, given that ArH*(298 K) = +57.2 kJ mol-I and ArS* 
(298 K) = +176 J K--' mol-'. 



8 
The Statistical Definition of 
Entropy 

In the previous chapters of this book we have developed the main con- 
cepts of classical thermodynamics, which govern chemical processes at  
it niucroscopic level such as we would encounter in the laboratory. 
However, this begs the question of how this relates to what happens at  
the microscopic or atomic level. The theory that allows us to connect 
these two extremes is statistical mechanics, and was developed largely 
towards the end of the 19th century, with the most significant contribu- 
tions being made by, firstly, Boltzmann and then later by Gibbs. Since 
much of this work predates the discovery of quantum mechanics, the 
theory was originally based on a classical or Newtonian view of how 
atoms moved and interacted with each other. However, given that we 
have the benefit of this subsequent knowledge, we shall confine ourselves 
to a quantized view of the world. In other words, energy can only take 
certain allowed values, known as energy levels, as opposed to be being 
a continuous function as in classical mechanics. 

Statistical mechanics is the ineuris lq* wliich we cun relate microscopic 
iizdividuul energ-v levels to macroscopic thermodynumics. 

Before we can proceed to develop the ideas of statistical mechanics we 
must first revisit the concept of entropy. 

59 
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When Boltzmann first proposed 
the relationship between entropy 
and microstates it was riot widely 
accepted as being correct. This 
concerned him and ultiniately 
contributed to his premature 
demise. As a suitable epitaph, S 
= k In W was engraved on his 
tombstone. However, we V\IIII 
demonstrate that this hypothesis 
appears to be borne out in 
reality. 

8 = N,k,, where N, IS the 
Avogadro constant 

8=1 Statistical Entropy 

In Chapter 4 we first encountered the concept of the entropy of a sys- 
tem, and we have already seen that this quantity is a measure of the 
degree of disorder. Hence we know that a gas has a greater entropy than 
a liquid phase of the same material, which in turn has a greater entropy 
than the equivalent solid, because the particles become arranged in a 
more orderly fashion as we progress along this sequence. Although this 
allows us to say something qualitatively about what entropy is about, 
what we need is a more quantitative definition. 

It was Boltzmann who first proposed a formal definition of the entropy 
of a system: 

S = k ,  In W (8.1) 

In this expression, k ,  is Boltzmann’s constant, which has the value 
1.38066 x 10 23 J K I ,  In is the natural logarithm, and W is the number 
of microstates. We will explain in detail exactly what is meant by the 
number of microstates in the next section, but this is the term which 
actually quantifies how disordered a system is. 

There are two key points to appreciate concerning the definition of 
entropy as given in equation (8.1): 

This equation is a hypothesis. There is no derivation for this formula: 
it must be assumed to be true, and its validity rests on whether the 
results that develop from it are found to be in accord with experi- 
mental observation. 
This equation represents the definition of Boltzmann’s constant. 
Although Boltzmann’s constant and the related universal gas con- 
stant, R, appear in many theories and equations in both thermody- 
namics and kinetics, this is the expression that defines the value and 
is where it first appeared. We can now begin to appreciate the enor- 
mous significance of statistical mechanics, and in particular the sta- 
tistical definition of the entropy, because it implies that a multitude 
of other results must all be derivable from this starting point. 

Before returning to the subject of the statistical definition of entropy, we 
must first learn how to calculate the number of microstates for a given 
system. 

8.2 Microstates 

Before we can define what a microstate is, it is necessary to understand 
first what we mean by a state: 

“The state o f u  system is defined by specifying the occupancy of ull of 
the energy levels of that system.” 
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Consider the simple system shown in Figure 8.1, which consists of three 
evenly spaced energy levels that are occupied by two particles. This sys- 
tem could represent electrons within electronic energy levels or molecules 
within vibrational energy levels, for instance. 

In our simple system we may define the state with the notation (l,l,O) 
where the numbers, going from left to right, represent the occupancy of 
the levels from the lowest one upwards. Hence, if we excited one of the 

Level 
2 -  

* 0  
particles from the second to third level we would have the distinct state 
( 1  ,071). 

We are now ready to address the concept of a microstate. Imagine 
that in our simple system we can now distinguish between the two par- 
ticles and we label them 1 and 2. There are now two ways in which we 
can obtain the state (l,l,O), depending on whether particle 1 or 2 is the 
one in the lowest level (Figure 8.2). These represent the two possible 
microstates of the state (l,l,O). 

Figure 8.1 A simple three-level 
system with two particles 

Level 

We can formally define a microstate as follows: 

“ A  microstate is a conjigurution of distinguishable purticles within a I 
Figure 8.2 The two microstates 
of the state ( l , l , O )  

given stute. ” 

The number of microstates, W, is therefore the number of distinct ways 
of arranging a set of distinguishable particles to achieve a given state. 

Figure 8.3 The three 
microstates of the state (2,l ,O) 
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When the number of particles and energy levels is small, then we can 
derive the number of microstates from inspection by writing down all 
the possible permutations. However, this rapidly becomes tiresome as 
the number increases. We therefore need a more general way of arriving 
at the total number of microstates. Fortunately this is a straightforward 
matter in probability theory, which leads to the formula: 

Product: a sequence of terms 
that are all multiplied together 
can be written as follows: 

Sum: a sequence of terrns that 
are all added together can be 
similarly written as: 

N 

~ S , = S 1 + S p + S 3 +  ...+ SP/ 
1-1 

Factorials: the value of n! is 
given by: 

N !  W = -  n nj! 
Levels 

i=l 

Here N is the total number of particles in 
number of particles in the ith energy level. 
are related by: 

Levels 

N = x n i  
i=l 

the system, whereas ni is the 
Therefore the two quantities 

(8-3) 

Using this general formula for the number of microstates, we can rap- 
idly evaluate this quantity for any given state. 

n! = n x (n - 1) x (n - 2) 
x (n - 3) x ... x 2 x 1 

An important fact to remember is 
that O! = 1. Consequently, 
unoccupied levels make no 
contribution to the number of 
microstates and can therefore be 
ignored. 

8.3 Calculating the Entropy 

Now that we have an expression for the number of microstates, the cal- 
culation of the entropy for simple systems becomes possible by directly 
applying the formula proposed by Boltzmann. 
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We can now begin to justify the definition of statistical entropy, by 
exploring whether it has some of the basic properties we would expect 
from what we already know about entropy from classical thermody- 
namics. 

First, let us consider what happens as the temperature tends towards 
absolute zero. Under these conditions, we know that all particles should 
be in the ground state energy level, since by definition temperature is a 
measure of the excess energy in a system above that at 0 K. If all parti- 
cles are in the same level, then the number of microstates is just equal 
to one. 

Hence the entropy at absolute zero of a system is zero: 

S(0 K) = k ,  In 1 = 0 (8.4) 

This demonstrates that the statistical definition of entropy is consistent 
with the Third Law of Thermodynamics. 

Secondly, let us consider what happens if we treble the size of our 
original simple system composed of two particles in the state (l,l,O) so 
that we have three sets of levels and three pairs of particles (Figure 8.4). 

Note that we treat the three individual copies within the trebled sys- 
tem as being physically separated so that the particles cannot be 
exchanged. This yields a total of eight microstates overall. Let us now 
consider the entropy of the original two-particle system, and of our new 
system, which is three times as large: 
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1 Figure 8.4 The eight 
microstates for the trebled 
system size of the state (1,1,0) 

For two part ides: 
S, = k, In 2 

S, = k ,  In 8 = k ,  In 23 = 3k, In 2 

(8.5) 

(8.6) 
For six particles: 

From the above example we can see that when the system size is trebled, 
then the statistical entropy also trebles. Thus, as required, the entropy 
is an extensive property of the system. 

To express things more generally, the number of microstates increas- 
es as 2N, where N is the number of copies of the original system. Because 
the number of microstates therefore increases exponentially with the 
size of the system, it follows that the entropy must be proportional to 
the natural logarithm of the number of microstates, as hypothesized 
by Boltzmann. Hence, although we cannot actually prove the statistical 
definition of entropy, it can be demonstrated to be consistent with the 
known properties of classical entropy. 
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I m  Experimental estimates of the absolute entropy of solid carbon 
monoxide close to absolute zero suggest that S(0 K) = 5.7 J K--' 
mol--', not zero as expected. Suggest a reason why this might be the 
case. 

2 m  If four particles were placed in an infinite set of uniformly spaced 
energy levels, how would they occupy the energy levels in order to 
maximize the entropy? 
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3. Calculate the entropy for a system consisting of 10 particles dis- 
tributed over four energy levels with occupancies of (5,3,2,0). 

4. If a single particle were to be excited by one energy level in the 
system of problem 3, what would be the occupancy of the levels 
that maximizes the entropy of the system? If the separation of the 
energy levels is 1 x 10 2o J, what would be the Helmholtz free ener- 
gy change for this process at 298 K? [Note: Helmholtz free energy 
differences can be described using an equivalent expression to equa- 
tion (7.16) for the Gibbs free energy, AA = AU -TAS] 



Connecting Microscopic and 
Macroscopic Properties 

So f a  we have shown how statistical mechanics allows the calculation 
of the entropy of a system from the occupation of the energy levels. 
Initially, it may seem that the present chapter departs somewhat from 
this theme, as we consider how it is possible to relate the macroscopic 
properties of a system to the microscopic states and energy levels. 
However, towards the end we will see that the statistical definition of the 
entropy actually plays a crucial role in quantifying this connection. 

9.1 Ensembles 

At the macroscopic level that we encounter in the laboratory, the state 
of a system can be defined by invoking a range of quantities, including 
those given in Table 9.1. 

67 



68 Thermodynamics and Statistical Mechanics 

A phase is a state of matter that 
is generally uniform through out, 
both in physical properties and 
chemical composition Most 
chemical substances exhibit at 
least three phases, namely sohd, 
l q d  and gas However, many 
systems can exist in more 
phases than this. For example. a 
solid can have several distincl 
structures with the same 
composition known as 
polymorphs, each one of which 
represents a distinct phase 

Table 9.1 Examples of different types of macroscopic parameters 

Parameter Symbol Comments 

Number of atoms N 
Number of moles n N = nN, 
Volume V 
Density p Related to N or n and V 
Internal energy U Sum of kinetic and potential energy contributions 
Temperature T Measure of kinetic energy 
Pressure p Force exerted by a gas per unit area due to kinetic energy 

Although there are a large number of different macroscopic variables, 
we can see that many of them are related and therefore not independ- 
ently adjustable. For example, we have already encountered the ideal gas 
equation: 

In this case we can clearly see that once we know, for instance, the num- 
ber of moles of gas, the volunie they occupy and the temperature, then 
the pressure is determined. 

It turns out that the above idea that only three macroscopic variables 
of a system can be independently controlled is quite general for a single 
phase. When an experiment is performed, the set of three variables that 
is effectively fixed or controlled depends on the way in which the exper- 
iment is carried out. A particular set of three fixed variables is called an 
ensemble, some examples of which are given in Table 9.2. 

1 Table 9.2 Examples of common ensembles 

Ensemble name Fixed variables Laboratory conditions 

Microcanonical N, V,  U Isolated system in a vacuum 
Canonical N, V, T Enclosed system in a heat bath 
Isothermal/isobaric N, p,  T Open system in a heat bath 
Grand canonical p ,  V, T Temperature-controlled adsorbent in contact 

with a gas 

We should note that, although in Table 9.2 the microcanonical 
ensemble has the fixed variables N, V and U according to the 
current nomenclature, this is more generally referred to as the NVE 
ensemble 

Perhaps the most widely employed experimental conditions are those 
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in which a sample is thermostated in an open vessel, and therefore the 
isothermaI/isobaric ensemble is the most important. For simplicity, most 
of the arguments we will develop in this book will actually relate to the 
canonical ensemble. However, the same principles can be applied to other 
sets of conditions or ensembles as well. 

9.2 Ensemble Averages 

What we have said about ensembles so far just defines the types that 
exist and the basic concept of having fixed macroscopic quantities. Now 
we must give a more formal definition, from which it will become appar- 
ent where the name “ensemble” actually comes from: 

“An ensemble is a set of sampled configwutions oj-a system, in contact 
with a tlzerrml bath, where ~ a c h  iizdiriducrl scitiiple niuy huw a different 
stute while sharing three cot7znzmz tnucroscopic properties. ” 

At first sight this sounds a bit daunting; however, it should become clear- 
er with an example. The significance and utility of this construction will 
become more apparent in the next section of the chapter. Imagine we 
have a system that consists of a diatomic molecule in a box of fixed vol- 
ume, which is only undergoing simple harmonic vibration. Now let us 
draw many sampled configurations of this system and place them 
together, as schematically illustrated in Figure 9.1. 

Figure 9.1 Three, from a series 
of many, sampled configurations 
of a system consisting of a single 
diatomic molecule. Inset is the 
potential energy curve for simple 
harmonic motion, indicating the 
stage each molecule has reached 

Providing the size of the box is sufficiently large for the molecules in 
adjacent boxes not to interact, there will be no exchange of energy and 
the volume will remain constant. Hence we have a situation where the 
system is in the microimonicul ensenihlc. 

During simple harmonic motion there will be a continual interchange 
between potential and kinetic energy within each molecule, as shown in 
Figure 9.2. 

Turning our attention to the properties of this particular ensemble 
that are not constrained to be the same in different sampled configura- 
tions, let us consider the temperature within each box. Temperature in 
this case is simply a measure of the kinetic energy, and so will be vary- 
ing with time in any given box. However, the average value within any 
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Figure 9.2 Schematic illustra- 
tion of the potential and kinetic 
energy versus bond length for a 
harmonic oscillator. Here U, is 
the initial energy imparted to the 
system 

r0 
Bond length 

given box will be constant, since all molecules are undergoing the same 
harmonic motion. 

If we assume that different sampled configurations of our diatomic 
molecule started vibrating at random times, then each sample may have 
a distinct amount of kinetic energy and therefore a different instanta- 
neous temperature. The average temperature of all the sampled config- 
urations at any instant will tend to be close to the average temperature 
of any individual sampled configuration as it evolves over time, and the 
degree of fluctuatiofi about the average will be small. How true this is 
obviously depends on just how out of phase all the vibrations are with- 
in the evolving sampled configurations. 

From this “thought experiment” we can draw a number of important 
general points: 

All properties, which are not specified as fixed within a given 
ensemble, fluctuate about an average value. 
When the average value is constunt, then the system is at equilibrium. 
The larger a system is, the smaller the fluctuations about the aver- 
age will be. 
For a sufficiently large number of sampled configurations, the aver- 
age value of a property over the ensemble is the same as the time 
average of that property for a single system. 

This last point, which states that the ensemble average, <P>ensemb,e, and 
the time average should be the same, is known as the ergodic hypothesis 
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Figure 9.3 A potential energy 
surface with two local minima 

To put things on a more formal footing, we can express the value of The ensemble average of a 
3roperty can be written as: some macroscopic measurable property. P, according to the following: 

ensctnblu (9’2) This uses the notation that ( ) 
indicates the average of the 
quantity within the brackets. 
Formally this lrnplles the Integral 
over all possible configurations. 

Considering the ensemble average as being over a large number of , “ ~ n ~ ~ ~ t , % ~ k 9 s n ~ n ~ ~ e ~ ~ n  this 

where Ne is the number of sampled config;urations in the ensemble and 
P,  is the value of the property for the ith configuration. 

copies of the system that sample different configurations is not particu- 
larly convenient in practice, since this is a hypothetical construct. The 
reality is that we have one system that explores all the states that are 
consistent with the ensemble being considered. Hence we can rewrite 
equation (9.2) in terms of these N S  states and the probability, p,, of the 
ensemble being in that state: 

becomes a summatlo,, 
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Another way of viewing this change is to take our large number of 
sampled configurations within the ensemble and to classify them all 
according to what state they are in. The probability of a state then just 
becomes the number of sampled configurations in that particular state, 
divided by the total number of samples. 

Each energy level represents a particular state of that system and will 
have a well-defined value of any given property, P, associated with it. 
Hence, in equation (9.3) we can equally as well replace the sum of states 
with a sum over energy levels where the probability is now just the num- 
ber of particles occupying that level divided by the total number: 

Hi p .  = - 
‘ N  (9.4) 

We have almost reached our ultimate aim of relating the macroscopic 
value of a property for a system to that for an individual energy level or 
state. All that is needed now is to know how the particles will be dis- 
tributed over the available energy levels. 

9.3 What is the Preferred State of a System? 

To understand how we go about determining the most favourable dis- 
tribution of a given number of particles over a set of energy levels, it is 
easiest to consider a simple example. 

Figure 9.4 All possible states 
that satisfy the criteria of the 
question 
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The answer is that there are five valid distributions of the particles 
~ 

I 
over the energy levels. ~ 

1 . ___ ......... ! 

Now let us consider the outcome of the above problem more closely. 
Although there are five different distributions that have the correct 
energy and number of particles, we now have to consider the question 
of whether each of these distributions is equally probable. 

From our knowledge of classical thermodynamics, we expect that a 
system will always try to minimize its free unergy. In the case of this prob- 
lem we are implicitly working under conditions of fixed volume, since in 
general if we were to change the volume this would alter the energy 
level spacing. Consequently the relevant quantity is the Helmholtz free 
energy, A (see Section 5.1). 
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For small numbers of particles it is quite feasible to follow the above 
approach to finding the preferred distribution that minimises the free ener- 
gy. However, for real macroscopic systems we have to be able to deal with 
numbers of particles of the order of Avogadro’s constant. Fortunately, 
Boltzmann has already generalized this method for the limit of a large 
number of particles to yield the distribution that carries his name. 

9.4 The Boltzmann Distribution 

The distribution of particles over a series of energy levels can be found 
by following the same procedure as above, but in an algebraic fashion. 
Hence the basic principles are: 

The derivation of the Boltzmann distribution is beyond the scope of this 
text, though this can be found in the Further Reading for those who are 
interested. The most important thing is to know the final result, and to 
understand the principles from which it is derived: 

Muximix the entropy of the system 
Constrain the number of particles, N ,  to be coizstunt 
Constrain the internal energy, U, to be constunt 

ni=exp -- ( ?T) 

exp --- [ :4 
all lcvels c i=l exP[-&) 

(9.8) 

(9.9) 

There is one further key point to understand: the Boltzmann distribu- 
tion is an upproxii~ute result that becomes valid in the limit of large num- 
bers ofparticles. Therefore, it would have been wrong to use this result 
to tackle the worked problems given earlier, but it is perfectly valid when 
we are dealing with, for example, a mole of particles. 

The distribution of particles over energy levels according to the 
Boltzmann distribution is illustrated schematically in Figure 9.5. This 
demonstrates that, as the temperature tends to absolute zero, all parti- 
cles should be in the ground state, while as the temperature becomes very 
large relative to the energy separation, then the difference in occupancy 
between adjacent states decreases. 

Now that we have an expression for the probability of finding a par- 
ticle in an energy level for a macroscopic system, we are in a position to 
be able to calculate the properties of that system starting from those of 
individual atoms or molecules. Exactly how this can be done is the sub- 
ject of the next chapter. 
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P 
0, c w I- - Figure 9.5 Schematic 

illLstration of the occupancy of a 
set of energy levels of separation 
AU when (a) T = 0 ,  (b) k,T -- Au, 
(c) k,T >> Au 
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1. A system consists of a set of uniformly spaced energy levels of 
separation 1 x J, starting from a first level which has an ener- 
gy of 0 J. Eight particles are placed within this system with a total 
energy of 6 x J. (a) How many possible states are there that 
satisfy these requirements? (b) Which state is the most probable? 

2. If there exists two excited states at energies of 0.72 and 1.24 kJ 
mol-' above the ground state in a system, what would be the per- 
centage of particles occupying each state at equilibrium when the 
temperature is 300 K? 



I 0  
The Partition Function 

In the previous chapter we demonstrated that some property, P, can be 
related to’the value for an individual energy level, Pi, according to the 
probabilities, pi, given by the Boltzmann distribution: 

all levels 
- 

Pmrasured - (P)e,,remh,c = c pip; 
i=l 

(10.1) 

Now we will develop the above approach further through the use of a 
quantity called the partition function 

10.1 Definition of the Partition Function 

If we consider the expression for the Boltzmann distribution given in 
equation (9.9)’ it can be seen that the same denominator appears in the 
formula regardless of which level’s probability is being determined. This 

77 
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term, which is just the sum over all levels of the exponential weighting 
for that level, is given the name of the total partition function, Q: 

all levels 

Q =  exp -- 
i=l ( k 9  ( 10.2) 

The partition function is actually the most important quantity in statis- 
tical mechanics. It contains the information about how the levels are 
occupied in a system. We can also attach a physical significance to it: 

“The partition function represents the number qf thermally accessible 
energy levels iit u given ten~peratuve. ’’ 

We will return to this point again when we begin to actually calculate 
partition functions for specific cases. 

Here we should introduce a piece of notation that is widely used for 
brevity: 

1 P,= - 
k I J  

Therefore the partition function can also be 
all Icvels 

Q =  C (-Pui) 
i= I 

, 

(10.3) 

written as: 

(10.4) 

The significance of the partition function only becomes apparent when 
we see that the key thermodynamic quantities can be expressed in terms 
of Q. In the remainder of this chapter we will demonstrate how this is 
possible. 

10.2 The Internal Energy 

From what has gone before, we can write the equation that defines the 
overall internal energy for a system, introducing Q for the first time: 

(10.5) 
I I Y 

From here on it will be implicit that the summations are over all energy 
levels, unless stated otherwise. 
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We wish to try to rewrite equation (10.5) in terms of Q alone. It is eas- 
iest to proceed in a slightly roundabout fashion, by first calculating the 
first derivative of the partition function with respect to temperature: 

a d T  = ?( a ) e x p (  k,T- -") kBT 

Dividing both sides by Q and rearranging, we obtain: 

( 1 0.1 0) 

(10.11) 

Comparison with equation (10.5) shows that the right-hand side of equa- 
tion (10. l l )  is the result we were seeking for the ensemble average of the 
internal energy. By using the result of equation (10.7), we can make one 
final rearrangement: 

(10.12) 

Notice that here we have introduced the Fact that the partial differential 
of In Q with respect to temperature is for constant volume. 

There is a small additional consideration for equation (10.12). We are 
measuring the energy with respect to its value at absolute zero ( i .4 .  the 
ground state energy). If the system contains vibrational degrees of free- 
dom, there will also be a zero-point energy, U0. Hence we should more 
correctly write: 
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(10.13) 

The above equation tells us that the internal energy depends on the rate 
at which the higher energy levels become occupied with temperature. 

10.3 The Helmholtz Free Energy 
~~ 

Earlier we have seen the Gibhs-Helmholtz relationship (equation 5.14) 
between the Gibbs free energy and the enthalpy. If the same derivation 
is performed under conditions of constant volume rather than constant 
pressure, an analogous equation connecting the Helmholtz free energy 
and the internal energy may be arrived at: 

U 
= -7 (10.14) 

The statistical mechanical expression for A can now be obtained by 
simply substituting equation ( 10.12) into the above expression: 

( 1 0.1 5 )  

Cancelling the factors of TL on the right-hand side, and integrating both 
sides with respect to temperature at constant volume: 

A - A , ,  = -k,TlnQ (10.16) 

Once again we have introduced a term, this time A,, which allows for 
the value of the free energy at absolute zero and arises as a constant of 
integration. However, this term is usually zero, except in the case of 
vibrational energy levels. 

10.4 The Entropy 

Having derived expressions for the internal energy and Helmholtz free 
energy in terms of the partition function, it is now straightforward to 
arrive at one for the entropy by using; 

A = U - T S  (10.17) 

which on rearranging gives: 

U - A  S = -  
T 

(10.18) 
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Substituting for U and A from equations (10.13) and (10.16), respec- 
tively, yields: 

S = k,,( 31) alnQ + k,lnQ 

I '  ( 1 0.19) 

Note that the constants U, and A ,  are in'fact the same, and therefore 
cancel out, so that the entropy at absolute zero really is zero. 

103 The Pressure 

We can determine a relationship between the partition function and pres- 
sure from the equation that connects the pressure to the Helmholtz free 
energy: 

10m6 The lsochoric Heat Capacity 
~~ ~ 

The final property we shall consider, for the moment, is the isochoric 
heat capacity. This quantity is important since it reflects how easy it is 
to excite the system to a higher energy state. The heat capacity at con- 
stant pressure is more complex to determine as it would involve work- 
ing in a different ensemble, and therefore we will not consider it here. 

Starting from the definition of the heat capacity at constant volume: 

c+) I '  (10.21) 

we can again substitute for U using equation (10.13) to arrive at: 

(10.22) 

From this we can see that the heat capacity differs from the other 
properties we have considered so far because it is the only one that 
involves a second derivative of the partition function. The way in which 
this quantity differs can be further explored by returning to our original 
definition of the internal energy as an ensemble average: 

(1 0.23) 

The pressure can be related to 
the Helmholtz free energy by 
taking partial derivatives: 

dA = dU - TdS - SdT 

BLf for a reversible change: 

dU = dq + dw 
= TdS - pdV 

Combining equations we obtain: 

dA = -SdT - pdV 

Therefore: 

($)"=-s: [$) T =-p 
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~ ~ 

This differentiation is given as one of the problems below. Here we shall 
go straight to the result, which is that the heat capacity can be written 
in the following alternative form: 

c, = 
(u’) - (u)’ 

k,T’ 
(1 0.24) 

where the averages are defined as: 

(u2) = cui- exp( -Uj / k ,  T )  
I Q 

exp( -Ui / k ,  T )  
I Q (u) = Cui 

(10.25) 

( 10.26) 

From equation (10.24), we can see that the heat capacity is related to 
the difference between the mean squared internal energy and the square 
of the mean internal energy. The numerator can be further rewritten by 
introducing the following: 

su=u-(u) 

((su)’) = (u’) - (u)z 

(1 0.27) 

(1  0.28) 

Consequently, the heat capacity is related to the mean square deviation 
of the internal energy from its average value. In Figure 10.1 a typical 
distribution of internal energies in the canonical ensemble is illustrated. 
The heat capacity is an example of a fluctuation property, where the 
magnitude is a reflection of the width of the distribution of the internal 
energy about its mean. 

-___ 

I---- 
I Boltzman Density 

states 

Figure 10.1 The distribution of 
energies in the canonical 
ensemble 
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lm By differentiating the expression for the heat capacity at con- 
stant volume given in equation (10.23), derive the relationship for 
this property given in equation (10.24). 

2. Show that the heat capacity at constant volume can be expressed 
as: 



An Ideal Gas of Atoms 

In our discussion of statistical mechanics so far we have necessarily been 
quite general. However, we are now in the position where we can con- 
sider how to apply these general ideas to specific cases. Arguably, the 
simplest system we can think of in chemistry is an ideal gas consisting 
of single atoms. The statistical mechanics of this material will be the topic 
of this chapter. 

11 .l The Ideal Gas 

The starting point for this chapter is to consider an ideal gas composed 
of many individual atoms. In subsequent chapters we shall see how to 
extend this to the more general situation of an ideal gas consisting of 
molecules. First we must define what we mean by an ideal gas: 

84 
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“An ideal gas is one in rvhich the energy of every component atom or 
molecule is independent of any other. ’’ 

To express this formally, if the energy of an individual atom i in a state 
v is u,(i), then the total internal energy for that state is given by: 

(1 1.2) 

For an ideal gas of atoms the internal energy will consist entirely of 
kinetic energy (if we neglect the electronic energy of the atoms for now). 
The implication of equation (1 1.1) is that all atoms move independently 
from each other in an ideal gas, with no interaction unless they collide. 

Although the approximation of a non-interacting ideal gas sounds like 
a rather crude one, in reality many of the results that follow from this 
turn out to be surprisingly good in comparison with experiment, at least 
at low pressures. Statistical mechanics is equally as valid for interacting 
systems. However, the theory involved is more complex, and beyond the 
scope of this introductory text. 

Now let us consider what happens when we express the partition func- 
tion in terms of the individual particle energies by substituting equation 
(1 1.1) into equation (10.4): 

Q = xexp(-PU,) = ~exp(-P(u,.(l)+u,(2)+ ... + u , ( N ) ) )  (1 1.3) 
&’ 1’ 

Using the result of equation (11.4), we can manipulate equation (11.3): 

However, if all the atoms are the same, then so will be the partition func- 
tion for each atom: 
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(1  1.7) 

Here we have introduced a new quantity, y, which is the atomic or molec- 
ular partition function, depending on which type of particle we are con- 
cerned with. As the name suggests, this is just the partition function for 
an individuul citorii or molecule. To distinguish it from the quantity Q, 
which is the partition function for the overall system, we recall that this 
is the total partition function 

In fact, the situation is slightly more complicated, since equation ( 11.7) 
only applies to particles that are distinguishable. For example, the atoms 
in a solid are associated with particular lattice sites about which they 
vibrate. Therefore if we label all the atoms we can distinguish them 
through the coordinates of their position. If we consider the situation in 
a liyzrid or a gus, then the atoms are free to move and swap positions, 
which makes the atoms indistinguishable from each other. 

Consider the system illustrated in Figure 11.1. Here we have three 
identical atoms except for the arbitrary labels. Although we can draw 
six different arrangements or complexions of the system, based on the 
labels that are attached, these are all really identical and indistinguish- 
able. Hence, if we were to include them all, we would have overcount- 
ed the number of unique states by 6 (which is derived from 3!). For the 
above system, we have to divide by six when calculating the total parti- 
tion function. 

Figure 11.1 The six possible 
configurations of three gaseous 
atoms that are indistinguishable 

In general, for a system containing N identical atoms or molecules: 
In dis t ing u ish u h le part ides ( guslliq u id) : 

qfi Q = -  
N !  

(11.8) 
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Distingiiisli~ihle particles (solid) : 
Q=if  (11.9) 

Remember that atoms can be different through both position and type, 
if we were to consider a mixture. 

I I .2 The Molecular Partition Function 
~~ ~~ ~ 

An individual molecule in an ideal gas has energy due to its types of 
motion - translation (T), rotation (R)  and vibration (V) - as well as that 
due to its electronic state (E). If we make the approximation that the 
energy levels for these four different processes are independent: 

then we can fxtorize the molecular partition function into contributions 
from each form of energy: 

T R V E  (1  1.12) = Y Y Y Y  

In this chapter we are considering primarily a n  ideal monatomic gas, 
and therefore the challenge is to calculate the translational partition 
function, qT. since translation is the only form of motion possible. 
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The Schrodinger equation 
defines the energy, U ,  of a 
system that is not evolving with 
time in terms of the wavefunction, 
y, and the Hamiltonian. H: 

H y = U y  

The HamilTonian contains terms 
that describe the potential 
energy, V.  of the electrostatic 
interaction of the electrons and 
nuclei, with themselves and each 
other, plus the kinetic energy of 
these particles: 

I I .3 The Translational. Partition Function 

In order to calculate the translational partition function we will begin by 
taking a quantum point of view. Every atom has a wavefunction, f i r ) ,  
that describes the probability (p)  of finding that particle at any given 
point in space, according to the Born interpretation 

Consider an atom of mass m inside a cubic container of side L. We 
know that the probability of finding the atom must go to zero when it 
reaches the side, if it is assumed that the atom cannot escape. Hence we 
need to solve the Schrodinger equation for a particle translating within 
these boundary conditions. 

The solution is that of the well-known particle in a box, which yields 
allowed energy levels, u,,, of: 

(n,* + ply2  + nz2)h2 
8mL2 

u,, = (11.13) 

where n ,  n,,, n- are the quantum numbers in each Cartesian direction 
and take values between I and 00. 

Figure 11.2 The three lowest 
energy wavefunctions for a 
particle in a box 
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space is exactly zero: 

where the triple summation is over all combinations of nvy, ny and n-. 
Note that we have summed over all the states, neglecting the fact that 
many will be degenerate due to permutations of the three quantum num- 
bers. Again, the result of equation (1 1.4) may be used to factorize the 
expression in equation (1 1.17): 

qT={~exp(-SnlL2kBT]}{~exp[-8~n~'kBT rzY2h2 n12h2 ]}{;ex(- 8mL2k,T nz2h2 )} 
(11.18) 

When two. or more, energy levels 
have the Same energy, then they It is clear that for a cubic box the three terms in the product are iden- 

tical, and therefore: 

I1  n,'h2 
qT = [ - 8rnL2kBT 

are said to be degenerate. For a 
particle in a box, we can 
describe the state of the system 
by specifying the values of nk, nv 
and n , in the abbreviated form 
(n,,n, ,n ) From the form of 
equation (1 1.1 7), the energy 
levels (2,l  ? l ) ,  (1,2,1) and (1,1,2) 
will be degenerate with each 
other, for example. 

'.19) 
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In order to further develop the translational partition function we need 
to make two more steps: 

A pprosimr t ions 

The translational energy levels are so close together that the integer 
quantum number, ny, can be converted to a continuous variable. In 
other words, the summation in equation (1 1.19) can be replaced by 
an integral. 
The integral of tz,v from 1 to 00 can be replaced by the integral from 0 
to 00 with negligible effect. This allows a standard integral to be used. 

Using these approximations, we arrive at the following: 

Many exponential functions of 
variables between the limits of 0 

(1  1.20) 

and 00 take the form of standard 
Integrals9 which can be In 

inathematical tabulations: 

Solving equation ( 1 1.20) with a standard integral leads to the simpli- 
fied expression for the translational partition function: 

(1 1.21) 

where V is the volume, equal to L3. The thermal de Broglie wavelength, 
A, of a particle of mass m and a temperature T, is given by: 
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(1 1.22) 

The expression for the translational partition function can therefore be 
rewritten in terms of the de Broglie wavelength by substituting equation 
(1 1.22) into equation (1 1.21): 

In order to calculate the translational partition function we therefore 
need the following pieces of information: 

T, the temperature (K) 
m, the mass of a single atom or molecule (kg) 

V, the volume that the gas occupies (m3) 

11.4 The Internal Energy of a Monatomic Ideal Gas 

We are now in a position to write down the total partition function for 
a monatomic gas containing N atoms in terms of the atomic transla- 
tional partition function: 

(1 1.24) 
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To specify exactly where an atom 
is in space requires three 
independent Cartesian 
coordinates, x ,  y and z. Each of 
these is a degree of freedom. 
When atoms are pat? of a 
molecule, the degrees of freedom 
take the form of translation, 
rotation and vibration. 
However, the total nurnber of 
degrees of freedom for a 
molecule containing N atoms will 
always be 3N. The distribution of 
degrees of freedom between 
types of motion for .3N atoms 
can be summarized as follows: 

Atoms 3N 0 0 
Linear 

Non-linear 
molecule 3 2 3 N - 5  

molecule 3 3 3 N - 6  

Substituting this into the relationship between the total partition func- 
tion and the internal energy from equation (10.12) yields the following 
expression: 

To simplify matters we can use the properties of logarithms, as shown 
in equation (1 1.5), to separate any terms that depend on T. The deriva- 
tive with respect to T of any remaining terms will then be zero and can 
be neglected. In equation (1 1.22), only il depends on T', and so we can 
reduce this to: 

u = k B T 2 (  aln aT T 3N'2 ) 
V 

U = - 3N kBT2( $) 
2 

3 
2 

U = - NkBT 

(1 1.26) 

(1 1.27) 

(1 1.28) 

(1 1.29) 

While this is the final result for N atoms, we can write a simpler form 
for the molar translational internal energy by using the relationship 
between Boltzmann's constant and the Universal gas constant, R = N,k,: 

3 U,,,=-RT 
2 

(1 1.30) 

The above results for 
from classical theory 

the internal energy are exactly the values that arise 
according to the equipartition theorem: 

The equipartition theorem states that every degree of freedom should 
have an energy o f f  k,T. 

Since there are three translational degrees of freedom per atom, it can 
be seen that this is consistent with equation (1 1.29). The reason that we 
have arrived at a classical result, despite beginning from quantized 
energy levels, is because we replaced a summation by an integral in deriv- 
ing the expression for the translational partition function. An integral 
requires that a variable be continuous, which in this case implies that 
there are no discrete energy levels. This means that energy can be added, 
or removed, from a system in any arbitrary amount, which is consistent 
with the classical view of energy. 
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11.5 The Heat Capacity of a Monatomic Ideal Gas 

From the result for the internal energy we can derive an expression for 
the molar heat capacity at constant volume of an ideal gas, which is 
again equivalent to the classical result: 

l l m 6  The Pressure of a Monatomic Ideal Gas 

(1 1.31) 

We recall that the pressure is given by the expression: 

(1  1.32) 

Again we can make use of the properties of the logarithm, as given in 
equation (1 1 . 3 ,  so that we need only consider the terms in the transla- 
tional partition function that depend on volume, since all others will 
vanish when differentiated: 

This final result can be rewritten in the more familiar form: 

p V = n R T  (1 1.34) 

which is the ideal gas equation. Hence statistical mechanics offers a 
means of deriving the clussical relationship between the pressure, volume, 
number of atoms and temperature of an ideal gas. 

1Im7 The Entropy of a Monatomic Ideal Gas 

So far, all of the derivations of the properties of an ideal gas have led 
to well-known classical results. However, no equivalent formula exists 
for the entropy of an ideal gas. Consequently, the prediction of the 
entropy represents the first real test of statistical mechanics. Again we 
begin by recalling the definition of the entropy in terms of the partition 
function: 

s= k B T ( F )  alnQ +k,lnQ 

1' 

(1 1.35) 
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1. By what factor would the total partition function for a system 
of four atoms in the solid state change if melting occurred? 

2. Two gaseous systems consist of mixtures of atoms of type A 
and B in containers of equal volume, where the atomic partition 
functions are qA and qg, respectively. The first system consists of 
four atoms of A and two atoms of B, while the second contains 
three atoms of both types. Write down expressions for the total 
partition functions of (a) both separate systems, (b) the system that 
would result from mixing both systems in the container of one of 
them, ( c )  the combined system that arises by linking both contain- 
ers together . 

3. Calculate (a) the de Broglie wavelength and (b) the translational 
partition function for an atom of Br (mass = 79.90 g mol-I) at 
500 K when occupying a volume of 35 dm’. 

4. Derive an expression for the translational contribution to the 
Helmholtz free energy of an ideal gas. 

5. Calculate the molar entropy of Zn (molar mass = 65.38 g mol-I) 
as an ideal gas at a temperature of 800 K and a pressure of 1 GPa. 



12 
An Ideal Gas of Diatomic 
Molecules 

In order to keep everything as simple as possible, we have so far only 
considered in detail the statistical mechanics of atoms. In this chapter we 
will take the next step of examining the case of an ideul gas composed 
of diutovnic* niolecwks. As a consequence, it is necessary to introduce the 
calculation of the rotutionul and vibrutionul partition functions. Finally, 
we shall briefly discuss how to evaluate also the electronic contribution 
to the partition function. 

98 



An Ideal Gas of Diatomic Molecules 99 

12.1 The Rotational Partition Function 

As soon as we move from considering an ideal gas that consists only of 
atoms to one that is composed of diatomic molecules, we gain two addi- 
tional forms of motion: rotation and vi6r.uticin. For a diatomic molecule 
there will be a total of 3N = 6 degrees of freedom, of which 3 are trans- 
lations, 2 are rotations and 1 is a vibration (recall the margin note on 
page 92 in Chapter 11). 

First of all, let us consider the case of a rotating molecule composed 
of two atoms with masses rn, and ni, as shown in Figure 12.1. The rota- 
tional properties of such a molecule are determined by its moment of 
inertia, I ,  which can be expressed in terms of the masses and their dis- 
tances from the centre of mass 

'L' 

I = c l?lil;2 (12.1) 
,=I 

However, for the case of a diatoniic' tiioleciile only, there is a simplified 
formula: 

I =p' ( 12.2) 

where r is now the bond length in the molecule and ,U is the reduced mass 
of the system, which is defined as: 

(12.3) 112, }?I2 p- 
ti?, + I??? 

Hence in the simple case of a homonuclear diatomic molecule, where 
both atoms are the same (e.g. NJ, then the reduced mass is just half the 
mass of a single atom. 

Solving the Schrodinger equation for a freely rotating molecule yields 
the following expression for the allowed rotational energy levels: 

uy = B J ( J  + 1) (12.4) 

where B is the rotational constant of the molecule, which is a function 
of the moment of inertia and fundamental constants: 

( 12.5) 

Centre m2 
of 

mass 

Figure 12.1 A heteronuclear 
diatomic molecule 

If the masses of the atoms are in 
g mol-', then the reduced mass 
in kg is: 

Strictly speaking, the rotational constant is not actually a constant, since 
the bond length is also a function of the state of the molecule with regard 
to other forms of motion. However, we shall ignore such complications 
here, and assume that we are dealing with a so-called rigid rotor where 
the bond length is fixed. 
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r------ 

I 

I 
I 

128 g=7 

6B g=5 

2B g=3 
0 g= 1 

I 

Figure 12.2 The rotational 
energy levels for a diatomic mole- 
cule 

m 

q K  = z ( 2 J + l ) e x p  
J=O 

The quantity J is the rotational quantum number, and takes integer 
values from 0 upwards. The sequence of rotational energy levels is illus- 
trated in Figure 12.2. Each of the rotational energy levels also has a 
degeneracy, g,  of (2J + 1). 

When degeneracies are present, we can re-write the expression for the 
partition function, taking only the rotational contribution to equation 
(1 1.12), so that we only sum over unique energies and just multiply by 
the number of degenerate levels: 

nondegenerate states 

q =  C g,exp 
i=l 

(12.6) 

Hence for the case of rotation we can write down the expression that 
defines the rotational partition function by combining equations (1 2.4) 
and (12.5) to obtain the energy, ui, and substituting into equation (12.6): 

m J( J + l)h2 [ - 8dIkBT ] q R  = C ( 2 ~ + 1 ) e x p  
J=O 

(12.7) 

As was the case for translational motion, the spacing of the rotational 
energy levels is generally quite small in comparison with k,T, which 
means that the above summation can again be replaced by an integral 
to simplify the result. However, care must be taken as this will only be 
valid for molecules with large moments of inertia, i. e. those which con- 
tain heavy atoms or have long bond lengths. In general we should 
consider the magnitude of the energy level separation, AU, relative to 
thermal energies. 

Equation (12.7) can actually be rewritten by introducing a quantity 
referred to as the rotational temperature, Or, that collects together con- 
stants which have the combined units of Kelvin: 

(12.8) 

h' 
8z2 Ik, 

0, =- (12.9) 

The rotational temperature turns out to be particularly useful in trying 
to decide whether a molecule will show classical or quantum behaviour, 
depending on the temperature: 

CZussical behaviour: AU << k,T T >> Or => integral 
Quantized behaviour: AU >> k,T T << er => summation 
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Assuming that we are in the classical regime, we can now proceed to 
replace the summation by an integral. To do this requires a substitution 
of variables with x = J(J + 1) and therefore dx = (2J + 1)dJ: 

(12.10) 

(12.1 1) 

( 1 2.1 2) 

Substituting the limits of infinity and zero into the above expression leads 
to the final result for the rotational partition function: 

( 12.1 3) 
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12.2 Rotation and Symmetry 

Having arrived at the result for the rotational partition function for a 
diatomic molecule, we now have to consider a complication that arises 
for rotational motion. There is a subtle problem in that the quantum 
properties of nuclei cause the occupation of only certain rotational states 
to be permitted. In the case of diatomic molecules, this complication only 
upplies to the honionuclear cme. 

Nuclei, just like electrons and other particles, can possess spin. We 
can divide all particles into two categories: 

Bosom: particles with integral spin (0, 1, 2,  ...) 
Fernzions: particles with half-integral spin (1/2, 3/2, . . .) 

Examples of fermions are electrons, protons and isotopes of certain 
atoms including I3C, while deuterons, photons and atoms such as l6O 
are bosons. 

Just as when considering the electronic structure of atoms, we must 
allow for the Pauli exclusion principle. In a more general form than that 
which is usually encountered when discussing the electronic structure of 
atoms, this can be stated as follows: 

" When two identicd particles Lire interchunged, the total Ityavefunction 
iwusi clkmgt, sign j b r  Jerniions und renznin unchnnged for hosons. '' 

A wavefunction, y, must obey This selection rule controls which rotational transitions are allowed, 
the following conditions when two depending on the nuclei within the molecule. Before we can apply these 
particles are interchanged: rules we need to know what the rotational wavefunctions look like. These 
fermons: ly + 4' correspond to the rotational energy levels obtained by solving 
Bosom: YL -+ Y' Schrodinger's equation (12.4), and have the appearance shown in Figure 



An Ideal Gas of Diatomic Molecules 103 

12.3 in the case of a homonuclear diatomic molecule for the three lowest- 
lying levels. 

As can be seen, the shape is just the same as the spherical harmonics 
that correspond to the angular momentum quantum number, I ,  for the 
electronic wavefunctions of the hydrogen atom. Hence J = 0 resembles 
an s orbital, J = 1 a p orbital and so on. 

Now let us consider the effect of rotating a homonuclear diatomic 
molecule by 180". For even J levels, the rotational wavefunction is sym- 
metric and therefore the wavefunction does not change sign. Therefore 
this would be an allowed rotational state for a molecule where the nuclei 
were bosons, since it complies with the Pauli exclusion principle. By con- 
sideration of the rotational symmetry, we can arrive at the general rules: 

Fermions can only exist in rotutional Iayels Itqith an even J value. 
Bosons can only exist in rotationiil Icvels with im odd J value. 

The main consequence of these selection rules is to influence the levels 
that we have to include when performing our summation to calculate 
the rotational partition function. For example, for the molecule I6O2, 
where the nuclei are bosons, the partition function now becomes: 

0 (w J=o + w) + (w + -w) 

% (&;) 

J= 1 

Figure 12.3 The rotational 
J=O-2 wavefunctions for a 
homonuclear diatomic molecule 

m J (  J + 1)h' 
y R ( 1 6 ~ 2 ) =  c (25+1)exp 

J even 

If we are in the regime where the temperature is large enough relative to 
the rotational temperature that we can use the integral approximation, 
then effectively we ignore half the area under the curve and thus just 
divide the integral by a factor of 2: 

(12.15) 

Indeed, the above formula would apply regardless of whether the nuclei 
were fermions or bosons, since both must be divided by a factor of two. 

In general, whenever a molecule has rotational symmetry, the num- 
ber of allowed levels is reduced owing to the nuclear spin. Hence we can 
introduce a so-called symmetry number, 0, which is the factor by which 
the rotational partition function must be divided to correct for the 
reduced number of accessible rotational states: 

For diatomic molecules we have have the following rules: 

(12.16) 

Heteronuclear diatomics: o = 1 
Homonudeur diatomics: o = 2 
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For more complex molecules than diatomics we require a knowledge of 
group theory in order to be able to define the symmetry number; this is 
beyond the scope of this text. However, for completeness we shall state 
the general definition of the symmetry number: 

“The symmetry number is the order of the rotation sub-group of the 
molecule. This is equal to the number of rotational symmetry elements, 
plus the identity.” 

In Table 12.1 we give examples of the symmetry numbers for a few com- 
mon molecules, showing how this was arrived at from the symmetry ele- 
ments. However, for a full explanation of the symmetry it is necessary 
to consult the Further Reading. 

Table 12.1 The symmetry numbers of some typical molecules 

Molecule Rotational sub-group 0 

12.3 The Properties of a Rigid Rotor 

For a system of N independent diatomic molecules, when the tempera- 
ture is sufficiently large, the rotational partition function is: 

( 1 2.1 7) 

Recall that we do not require a factor of N! because the arguments about 
distinguishability only apply to translational degrees of freedom. 

Using the expression derived earlier (equation 10.12), we can deter- 
mine the internal energy due to rotation: 
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a U" = Nk,T' -In T = Nk,T 
dT 

(12.19) 

Note that because the symmetry number does not depend on tempera- 
ture it disappears during the above differentiation. Hence, the result for 
the internal energy is not influenced by the symmetry of the system and 
the fact that only some of the levels are accessible to molecules, a result 
that at first may be surprising. 

As with the translational energy, this accords with the classical result 
from the eyuipurtition theorem which states that each degree of freedom 
has associated with it +k,T worth of energy. For a linear molecule there 
are just two degrees of rotational freedom, rather than the three found 
in the general case. Again this agreement with classical theory arises 
because we have started from the partition function result obtained by 
integration (i. e. we have explicitly neglected quantization). 

From the above result for the internal energy, we can arrive at the 
expression for the molar heat capacity at constant volume for rotation 
of a diatomic molecule: 

c; = - ( R T ) = R  d 
aT 

( 12.20) 
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The harmonic oscillator 
assumes that the potential 
energy, L', about tk'e equilibrium 
bond length, r:), is yiven by: 

Here the increase in potential 
energy is the same regardless of 
whether a bond is being 
compressed or expanded While 
this is a good approximation for 
small displacements, it is 
incorrect when the bond IS 

greatly stretched since the 
molecule dissociates and the 
energy approaches a constant 
value A better representation of 
the potential IS the Morse 
potential 

where Dc is the dissociation 
energy of the bond This potential 
is said to be anharmon,c and 
leads to a second term in the 
expression for the vibrational 
energy levels that depends on 
the anharmoncity constmf, x,: 

Figure 12.4 The vibrational 
energy levels for the harmonic 
oscillator superimposed on the 
associated potential energy curve 

12.4 The Harmonic Oscillator 

A diatomic molecule possesses just a single vibration frequency or nor- 
mal mode for the stretching of the bond. This characteristic frequency, 
w, can be related to the force constant of the bond, k,  and the reduced 
mass, p, according to the following relationship: 

(12.21) 

For simplicity we shall only consider the case of the harmonic oscilla- 
tor, since this leads to more compact expressions for the partition func- 
tion and thermodynamic properties. This will be a good approximation 
for most diatomic molecules at low temperatures, since the spacing 
between levels is usually quite large and therefore only a few low-lying 
vibrational states will be occupied. However, if we were to consider high- 
er temperatures or more complex molecules with low-frequency motions, 
then inclusion of anharmonicity would become important. 

The solution of the Schrodinger equation for a harmonic oscillator 
gives rise to a set of equally spaced, singly degenerate levels, as shown 
in Figure 12.4. The allowed energies are given by the expression: 

u,'; = n+- hw i n = 0, 1, 2... (12.22) 

where n is the vibrational quantum number. An important feature to 
note is that even in the n = 0 vibrational ground state the molecule pos- 
sesses a vibrational energy offhw, which is known as the zero point 
energy (see Figure 12.4). Thi  reason that this exists is linked to 
Heisenberg's uncertainity principle, one of the fundamental principles on 
which quantum mechanics is founded. In one guise this states that it is 
not possible to know both the exact position and momentum of a particle 

zero point energy 
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simultaneously. Hence the zero point motion prevents the molecule from 
ever being fully at rest, which would violate the above hypothesis. 

To determine the molecular vibrational partition function, all we need 
to do is substitute in the expression for the energy levels (equation 12.22) 
to arrive at: 

(1 2.23) 

Unlike the other forms of energy we have considered so far, the spacing 
of the vibrational energy levels is almost always large compared to k,T, 
at least under ambient conditions. Consequently the partition function 
must be treated as a sum rather than being approximated as an integral 
as we have done previously. 

As with rotation, it turns out we can group together a number of terms 
that collectively have the units of Kelvin to yield a quantity known as 
the vibrational temperature, 0": 

hm e, =- 
kB 

( 12.24) 

The vibrational temperature is a measure of the onset of classical behav- 
iour as the temperature increases, in the same sense as the rotational 
temperature introduced in equation ( 12.9). In Table 12.2 some examples 
of typical vibrational temperatures are given. For more complex mole- 
cules than diatomics there will be a different value for each mode due 
to the frequency of vibration varying. It is clear from the values in Table 
12.2 that nearly all simple molecules will show quantization in their vibra- 
tional properties. 

Table 12.2 Vibrational temperatures for selected molecules. Note that for polyatomic 
molecules the vibrational temperatures for each of the normal modes are given 

Molecule V K  Molecule V K  

H2 621 0 
N2 3340 
0, 2230 

Br2 470 
CIZ a1 o 

co2 0 1  1 ago 
L1'2 3360 
w3 = o4 954 

co 
NO 
HCI 
H Br 
HI 

H2O L1'1 

L1'2 

L1'3 

3070 
2690 
41 40 
3700 
3200 
541 0 
5250 
2290 

In this text, the unit used for 
vibrational frequencies is 
wavenumbers, cm-! . Although 
this is not an SI unit, it is still the 
most widely employed unit in the 
literature, and therefore it is 
important to be familiar with 
handling wavenumbers. To 
corivett a vibrational frequency in 
wavenumbers to one in the SI 
unit of Hz (s-') it is necessary to 
muitiply by the speed of light 
expressed as 2.998 x 1O'O cm s-'. 
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It is possible to develop further the expression for the vibrational par- 
tition function, even though it must remain as a summation. Writing out 
the sum: 

y b' = ex p[ - a) + ex p( - 21 + ex p( - 5) + . . . ( 1 2.25) 

We can factor out the term arising from the zero point energy: 

yv = exp( -&I[ 1 + exp( -%) + exp( --%I + ...I (12.26) 

To clarify the following working, let us make the substitution: 

which leads to: 

( 12.27) 

( 12.28) 
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Identifying the term in parentheses in equation (12.28) as just a stan- 
dard geometric progression allows us to use the result for the sum of 
such a series given in equation (12.32). Note that because the vibrational 
frequency and temperature are always positive, we can demonstrate that 
x is necessarily less than 1 and therefore the sum will be convergent. 
Hence, we can now eliminate the explicit summation from the vibrational 
partition function: 

*,-I I 1 

q" = - (12.33) 
(I - x j  

Substituting back in for x using equation (12.27) we obtain: 

(1 2.34) 

Note that the second equivalent form of the result given above is 
obtained from the first by multiplying both the top and bottom of the 
equation by exp( e,/T). 

Finally, we can also express the result for the molecular vibrational 
partition function in terms of the fundamental constants and the vibra- 
tional frequency, instead of the vibrational temperature: 

(12.35) 
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12.5 Thermodynamic Properties of the Harmonic 
Oscillator 

As before with other forms of motion, we can now determine the 
vibrational contribution to the thermodynamic properties of a diatomic 
molecule that is behaving as a harmonic oscillator. However, unlike the 
previous cases we have considered, we cannot expect to arrive at simple 
classical results, because we have explicitly considered the quantization 
of vibration throughout the derivation of the partition function. 

For a collection of N independent vibrating diatomic molecules with 
a single characteristic vibrational frequency, we can write down the total 
vibrational partition function by combining equations (1 1.9) and ( I  2.34): 

(12.36) 

Substituting this into the expression for the energy in terms of the total 
partition function (10.12) and using the properties of logarithms to con- 
vert the power of N into a multiplier: 

Uv = NkBT' A( ln[ exp(-8,/2T) )) 
aT 1 - exp(-8,/T) 

(12.37) 

This differentiation is most easily performed by using the results ln(A/B) 
= ln(A) -- ln(B) and ln(exp(A)) = A. Thus: 

I/" = Nk T 2 -  a ( - 2 - l n  ( 1-exp ( -8 v /  T ))) (12.38) 
a T  2T 

Performing the differentiation of the two terms leads to: 

(12.39) 
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(1 2.40) 

The first term in the above expression is just the zero point energy of N 
harmonic oscillators, while the second term is the additional energy that 
arises from the excited vibrational states that are occupied at a particu- 
lar temperature. 

We can now further determine the molar heat capacity at constant 
volume for the harmonic oscillator through the relationship: 

c,, =(a+) I (1 2.44) 
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Hence we obtain the following expression by substituting in equation 
(1  2.40) for 1 mole of atoms: 

Performing the differentiation, the zero point energy disappears, since it 
is independent of temperature, to leave only the contribution of the 
second term: 

( 12.46) 

If we consider the limit of the molar heat capacity at high temperatures, 
i.e. when T >> ev, we can introduce the same approximation for the 
exponential terms used in the previous worked problem: 

= (1 + %] (12.47) 

Therefore the vibrational component of the molar heat capacity tends 
to R as the temperature goes to infinity. Note that we could also have 
arrived 8t the same result via the limiting behaviour of the internal energy 
at high temperature, as given in equation (1 2.43). 

The characteristic shape of the temperature dependence of the molar 
heat capacity at constant volume is shown in Figure 12.5. We have 
already explained the fact that the curve reaches a plateau at high tem- 
peratures since the influence of quantization ceases to be important. As 
the temperature approaches absolute zero, the heat capacity also tends 
to zero. This is a direct consequence of quantization, since until a min- 
imum level of thermal energy is achieved - such that excitation to the 
second vibrational level can occur - it will be impossible for the har- 
monic oscillator to adsorb any internal energy. 

There are many other thermodynamic properties of a vibrating 
diatomic molecule that could be explored using the relationships 

Figure 12.5 The molar heat 
capacity of vibration at constant 
volume as a function of tempera- 
ture expressed as a ratio to the 
characteristic vibrational tempera- 
ture of the mode 
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previously given. The approach to deriving these expressions and their 
characteristics is very similar to those illustrated above for the internal 
energy and heat capacity, Hence no further discussion will be given here, 
but some of these properties are the subject of the problems at the end 
of the chapter. 

12.6 The Electronic Partition Function 

Unlike the other forms of motion considered so far, it is impossible to 
write down a simple expression for the electronic energy levels. These 
must be obtained by solving the electronic Schrodinger equation as deter- 
mined from quantum mechanics, and then used in the general expres- 
sion for the partition function: 

all states 

q E =  c i=l .P.exP[-%) (1 2.48) 

Note that it is important to remernber that many electronic states have 
degeneracies, g ,  which must be taken into account. 
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g =  1 

g = 3  

157.4 cm-' 

g = 5  

Figure 12.6 The first three 
electronic states of the oxygen 
atom 

The state of an electron is 
quantized and is determined by 
four quantum numbers: 
n = principal quantum number 
(any positive integer, ie .  1 ,  2. 
3. .  .) 
I = orbital angular momentum 
(integer between 0 and n - 1) 
m = orbital angular momentum in 
z-direction (integer between +I 
and 4) 
s = electron spin (+ + or - +) 

F-or many electron sqstems, the 
individual Iorbital angular 
momenturn contributions, I ,  
c,ombine to give the total orbital 
angular momentum, L ,  while the 
electron spin components 
similarly sum together to give S. 
In turn. ths orbital a i d  electron 
spin contributions sum together 
to the yield the total angular 
momenturn of the system. J.  
Because thls is a sum of ,vectors 
with several allowed orientations, 
rnore than one value of J can 
arise from 21 given L and S. 

The state of a manyelectron 
system can be described by a 
term symool, A']' 'L,. where the 
value of L is represented by a 
letter, S (1- = 0), P (L -= l ) ,  
D (L = Z) ,  etc., for an atom (or a 
capital Greek letter for molecules). 

Because the separation between electronic states is, on the whole, very 
much larger than thermal energies, often only the ground state is impor- 
tant in the calculation of the partition function. Hence the electronic par- 
tition function is usually just equal to the degeneracy of the electronic 
ground state. Nearly all stable molecules have closed-shell singlet ground 
states, and hence the degeneracy, and therefore the partition function, is 
just equal to 1. 

There are some important diatomic molecules that have open-shell 
ground states, such as 0, and NO. Furthermore, many atoms have 
unpaired electrons when in the gas phase. For example, consider the oxy- 
gen atom whose low-lying electronic states are illustrated in Figure 12.6. 

For an atom, the J quantum number for the total angular momen- 
tum can take values from JL + SJ to ( L  - Sl, with a degeneracy of 2 J  + 
1. Hence the degeneracies of the 3P7, 3P, and 3Po electronic states are 5,  
3 and 1, respectively. Hence we can write down the electronic partition 
function as being: 

157.4hc 

Remember that the speed of light, c,  should be expressed in cm s-l, given 
that the excitation energies are expressed in wavenumbers. At 300 K, for 
example, this would yield: 

qf = Sexp(O)+ 3exp(-0.0075) + exp(-0.0108) = 8.97 (12.50) 
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1. Derive expressions for the rotational contribution to the fol- 
lowing thermodynamic quantities for a diatomic molecule: (a) the 
pressure, (b) the entropy. 

2. Calculate the rotational temperature for a molecule of Cl,, given 
that the molar mass of Cl is 35.4.53 g mol and the bond length is 
0.1986 nm. What would be the rctational partition function for this 
molecule at a temperature of 298.15 K? 

~ . ~ . 
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3. Calculate the vibrational contribution to the internal energy of 
a mole of dichlorine molecules at 298 K, given that the vibrational 
frequency is 561.1 cm I .  How does this result compare with the clas- 
sical limit? 

4. Derive an expression for the vibrational entropy of a harmonic 
oscillator. 

5. Calculate the electronic partition function for the OH radical 
at 298 K, given that there are two doublet electronic states sepa- 
rated by 139.7 cm-'. 

6. The molecule NO has a doubly degenerate ground state and a 
low-lying first excited state of the same multiplicity at a relative 
energy of 121.1 cm-'. Assuming that no other electronic states 
contribute: (a) derive an expression for the heat capacity, C,; (b) 
sketch the variation of the heat capacity relative to the Boltzmann 
constant with temperature; and (c) explain the shape of the heat 
capacity curve. 
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ticularly useful, as it provides a useful check on whether any values we 
calculate are sensible. Also included are some generalizations of the 
formulae we have previously encountered for situations beyond the 
diatomic molecule case so far considered. 

Table 13.1 Summary of the partition functions for an ideal gas. Here V represents 
the volume (in m3), M represents the mass of a molecule, I is the moment of inertia 
for a linear molecule, I*, I, and I, are the moments of inertia for a non-linear molecule 
about the tsrinciual axes, and CT is the svmmetw number. 

Energy Degrees Partition 
of freedom function 

Order of 
magnitude 

Translational 3 1031-1032 x v 

Rotational (linear) 2 8n2 Ik, T 10-1 0 2  

&' 
I / ;  

('A 'B I,)' 8n2 k, T ~- [ h2 )x '02-'03 

Rotational (non-linear) 3 

0 

Vibration (per mode) 1 eXp(- hU/2k, T )  1-10 

. (1 -exp(-hw/k,T)) 

In the case of a polyatomic molecule with m normal modes of vibra- 
tion (instead of just one as we have so far encountered), each with a har- 
monic frequency of dr)l, the molecular vibrational partition function will 
just be the product of the values for each mode: 

(13.1) 

Although we have been concerned only with gases so far, and have 
restricted ourselves to ideal gases for the calculation of individual 
partition functions, the concepts we have developed can be applied more 
generally. For example, it is equally possible to use the foregoing results 
to study solids as well. In this case it is only necessary to consider vibra- 
tional motion. Hence the partition function for a solid may be deter- 
mined using equation (1 3. l), where the product is of the terms for all of 
the phonons, which are the vibrational modes of the material. 

13.2 The Gibbs Free Energy 

In the previous chapters it has been demonstrated how it is possible to 
calculate the Helmholtz free energy on a statistical mechanical basis. 
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However, most gas phase reactions occur under conditions of constant 
temperature and pressure, where the appropriate thermodynamic quan- 
tity is the Gibbs free energy. Our aim now is to show how this may also 
be arrived at. 

Using the expressions of classical thermodynamics already previously 
introduced in Chapter 5,  specifics.lly combining the equations (5.4) and 
(5.5) with equation (3.6), the relationship between the Gibbs and 
Helmholtz free energies can be seen to be: 

G = A + p V  (1 3.2) 

If we continue to consider only the case of an ideal gas of n moles, the 
second term above can be replaced by using the ideal gas equation: 

G = A + n R T  (1 3.3) 

The Helmholtz free energy can now be expressed in terms of the total 
partition function: 

G - G,, = -kBT In Q + FZRT (1 3.4) 

Note that we have replaced A ,  with Go, since at absolute zero both terms 
are the same and equivalent to tht: zero point internal energy. Assuming 
we have N gaseous species present, then we may express the total parti- 
tion function in terms of the molecular partition function, remembering 
to include the factor of N !  since this is for a gas: 

G - Go = -k, T In( 5) + nRT (13.5) 

G-Go =-Nk,TIny+k,TlnN!+nRT ( I  3.6) 

Again it is possible to use Stirling’s qqmn-iincitiorz to eliminate In N !  for 
the case of large N ,  as well as recalling that NkB = nR: 

G-Go =-nRTlnqi-nRTlnN-izRT+nRT (1 3.7) 

Simplifying and combining the logarithms gives: 

G-G,, =-nRTln - (d) (1 3.8) 

The ratio q/N is actually an intensive quantity, i.c. it is independent of 
the number of moles. It is possible to demonstrate this by considering q 
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as the translational component of the partition function. For this case: 

g x 
(13.9) 2nmkgT V 2nmkgT Nk,T 

I=( N h? ] ,=( ] 
Here we have substituted for the volume, assuming that the ideal gas 
equation applies. This leaves an expression in which the number of par- 
ticles cancels out, therefore proving that the ratio is intensive. We can 
now re-write equation (13.8) in terms of the molar partition function, 
q,, and the Avogadro constant, NA:  

G-G,, = - n R T l n [ F )  (13.10) 

Note that the molar partition function here is the partition function for 
one atom or molecule moving around in the molar volume at a pressure 
p ,  and is not to be confused with the total molar partition function, which 
is that for one mole of species under the same conditions. The above 
arguments are not altered by the contributions of the other partition 
functions, since they are all already per molecule. 

13.3 The Standard Gibbs Free Energy 

The standard molar Gibbs function for substance J is defined at the stan- 
dard pressure, p* = 1 bar, as: 

GY-G7 (0) = -RTln[$] (13.1 1) 

where yJe  is the partition function for one molecule of J in a volume 
R TIPe. 

Let us return to the standard Gibbs function at zero temperature. For 
an ideal gas: 

G = H - T S  (13.12) 

G = U + nRT - TS (13.13) 

Hence when T = 0, G = U. Thus in the standard state: 

(13.14) 

where the first term on the right-hand side is now the molar internal 
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energy of the substance J at absolute zero. This is the intrinsic energy in 
the atom or molecule. 

Now consider a simple chemica:l reaction: 

c c  .-+ dD (13.15) 

in which c moles of a molecule C are transformed into d moles of a mol- 
ecule D. Then the standard Gibbs free energy for the reaction will be: 

A,GO = dGZ - cGF (13.16) 

Ar UO(0) is the difference between the intrinsic internal energies of the 
products and reactants, as illustrared in Figure 13.1. The second term 
takes into account the fact that at non-zero temperatures the reactants 
and products can take up the therrnal energy in different ways. 

Zero point en1 

Reactant C 

We can readily generalize equation (1 3.18) to any reaction with mul- 
tiple reactants and products as follows: 

r -I 

A,GO= A r p ( 0 ) -  RTln n -& I .J “ I V ”  J ( 1 3.1 9) 

Figure 13.1 The difference 
between the intrinsic energies of 
the products and reactants. Note 
the energies are measured from 
the bottom of the vibrational well 
and not the zero point energy 

where the product is over all the species in the reaction. The index vJ is 
the number of moles associated with each species in the reaction. It takes 
a positive sign for products and a negative sign for reactants. 
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13.4 The Equilibrium Constant, Kp 

Earlier, in equation (7.6),  it was shown that the equilibrium constant for 
a gas phase reaction, I$, is determined simply by the Gibbs free energy 
change associated with that reaction and the temperature: 

A,Ge=-RTlnKp (1 3.20) 

Combining equations (13.19) and (13.20) and dividing through by RT 
we obtain: 

Using A = ln(exp(A)) for the first term on the right-hand side of equa- 
tion (1 3.21): 

InK,=In (I n [ - < ) ] ~ e x p [ - ' ' ~ ( ~ ' ] )  (13.22) 

This then simplifies to the final expression for the equilibrium constant: 

(13.23) 

Hence if we know the internal energy difference between a set of reac- 
tants and products, plus their partition functions, it is possible to calcu- 
late the position of chemical equilibrium. 



Statistical Mechanics and Equilibrium 123 



124 Thermodynamics and Statistical Mechanics 

Statistical mechanics can be even more powerful than this, since it is 
possible to go beyond static equilibrium properties, and even to predict 
the rates of reactions or kinetics for cases where the activation energy is 
large compared with thermal energies. This application of statistical 
mechanics is known as transition state theory, and is beyond the scope 
of this introductory text. However, the basic concept involves using equa- 
tion (1 3.23) to calculate the equilibrium constant between the reactants 
and a so-called activated complex that represents the transition state for 
the process. 
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lm Calculate the standard Gibbs free energy of reaction for the 
formation of gaseous HCl from H, and Cl,, given the following 
data: 

H,: 
Cl,: 
HCl: 

Y = 0.07417 nm, o = 4400.39 cm--', Do = 432.06 kJ mol-* 
r = 0.1986 nm, o = 561.1 cm-I, Do = 238.80 kJ mol-I 
Y = 0.12746 nm, o = 2989.6 cm-I, Do = 427.43 kJ mol-' 

The molar masses of H and Cl are 1.008 and 35.455 g mol-I, respec- 
tively. Standard pressure is 10 1.325 Pa and standard temperature 
is 298.15 K. 

2. Determine the equilibrium constant under standard conditions 
for the gas phase dissociation of the diatomic lithium molecule: 

given that the dissociation energ:y, bond length and vibrational fre- 
quency of Li, are 99.38 kJ mol-l, 0.2673 nm and 353.59 cm-l, respec- 
tively, and that the molar mass of lithium is 6.94 g mol-I. You may 
assume that only the ground electronic state of each species con- 
tributes to the partition function. 
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Activated complex: transition state configuration for a chemical reaction 

Activation energy: minimum internal energy barrier that has to be over- 

Activity, ai: effective concentration of species i. 
Activity coefficient, yi: ratio of activity to mole fraction (solvent) or 

molality (solute) for species i. 
Adiabatic process: one in which no heat flow occurs; the system is ther- 

mally isolated. 
Amount of substance in moles (mol), n: the number of atoms or mole- 

cules divided by NA. 
Anharmonicity: the deviation of a vibrating molecule from harmonic 

behaviour, with the energy levels becoming closer together with 
increasing vibrational quantum number and ultimately leading to dis- 
socia tion. 

that is considered to be in equilibrium with the reactants. 

come for a chemical reaction to occur. 

Avogadro’s constant, NA: 6.022 x 
Bar: unit of pressure; 1 bar = 100 kPa (exactly). 
Boiling (vaporization) point, Tvap: temperature at which the vapour pres- 

sure of a liquid equals the external pressure. The normal boiling point 
Tb is equal to Tvap at p = 1 atm; the stundurd boiling point is defined 
at p = p* = 1 bar. 

Boltzmann distribution: n/ni = exp(-A Uj,/kaT). Determines the occupan- 
cy of particles within energy levels for a macroscopic system. 

Boltzmann’s constant, k,: 1.38066 x J K-I. The constant of pro- 
portionality between the statistical entropy and the natural logarithm 
of the number of microstates. 

Born-Haber cycle: a closed path of reaction enthalpies which allows 
any one of the enthalpy changes to be determined if the others are 
known. 

Born interpretation: the product of a wavefunction and its complex con- 
jugate is equal to the electron density. 

mol-I. 

126 
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Canonical ensemble: the NVT ensl=mble, in which the specified proper- 
ties are the number of particles, the volume and the temperature. 

Chemical equilibrium: extent of reaction which minimizes the total Gibbs 
free energy G of the system. 

Chemical potential, pi = (dG/dnJP, T,, l j  ,li. * change of G with the number 
of moles of species i. 

Clapeyron equation: gives the slope of the boundary between two phas- 
es in a (p ,  7') phase diagram, for example, the pressure dependence of 
the boiling point. 

Classical theory: one in which properties, such as energy, are continu- 
ous and not quantized. 

Clausius-Clapeyron equation: gives the temperature dependence of the 
vapour pressure of a liquid. 

Clausius inequality, d S  2 dq/T The entropy change of the system is 
greater than (for a spontaneous process) or equal to (for a reversible 
process) the heat flow divided by the temperature of the system. 

Closed system: no exchange of matter, but heat flow and work are per- 
mi t ted. 

Complexion: one of the possible indistinguishable arrangements of a set 
of particles within a microstate. 

Component: one of the single species present in the system. 
Composition, x: mole fraction units. 
Concentration, c: mol dm-3. 
Critical point: where coexisting phases become indistinguishable (e.g.  liq- 

uid and vapour). 
Dalton's law: the pressure exerted by a mixture of ideal gases is the sum 

of the pressures exerted by the individual gases occupying the same 
volume alone. 

Distinguishable: particles have a different chemical composition or are 
fixed in space, and are therefore unable to exchange positions through 
translation motion. 

C); the charge on 
an electron is -e. 

Electrical charge, q: elementary charge e (1.6 x 

Electrical work, tvel: dwel = @dq. 
Electric potential, a: units: volts ( I  V = 1 J C-'). 
Endothermic process: AH > 0 (heat absorbed; system gets colder, if ther- 

mally isolated). 
Ensemble: a set of sampled configurations of a system, in contact with 

a thermal bath, where each ind:widual sample may have a different 
state while sharing three common macroscopic properties. 

Ensemble average: the value of a :property when averaged over all the 
states explored within an ensemble. 

Enthalpy, H: H = U + pV; AH is the amount of heat transferred at con- 
stant pressure (assuming only p V  work performed). 
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Entropy, S: d S  = dw,,v/T. 
Equation of state: defines the thermodynamic state of the system in terms 

of a small number of system variables (for example, for an ideal gas: 
p = nRT/V). 

Equilibrium: state of system where no further net spontaneous change 
occurs. 

Equilibrium constant, K: defined in terms of the concentrations (or activ- 
ities) of the reactants and products at equilibrium; also related to the 
standard reaction Gibbs free energy by ArG* = -RT In K.  

Equilibrium constant, K,,: defined in terms of the partial pressures of the 
gaseous reactants and products at equilibrium. 

Equipartition theorem: a classical theorem that states that every degree 
of freedom for motion has an energy of iCC,T. 

Ergodic hypothesis: the ensemble average of a property is identical to 
the time average. 

Exact differential: one which on integration yields a value of the func- 
tion which is independent of the path of integration (for example, a 
state function). 

Exothermic process: AH < 0 (heat released; system gets hotter, if ther- 
mally isolated). 

Expansion work, wexp: pV work; dwexp = -pex dV. 
Extensive property: property that depends on the amount (mass) of sub- 

stance present (e.g. V,  U,  H ,  G). 
Extent of reaction, 5: fraction of 1 mol of reaction as written, proceed- 

ing from reactants to products. 
First Law: for any closed system there exists a property, energy, which 

is conserved and can be transferred into or out of the system by either 
work or heatflow. The internal energy of an isolated system is con- 
stant. 

Fluctuation property: a property that is determined by the distribution 
of a quantity about its mean value, and is therefore related to the 
degree of fluctuation. 

Free energy: see Gibbs and Helmholtz free energy. 
Fugacity,j effective pressure of a real gas. 
Fundamental equation of chemical thermodynamics: dG = V dp - S d T  

Gibbs free energy, G: G = H - TS. Spontaneous processes at constant 

Gibbs-Helmholtz equation: temperature dependence of G, in terms of H. 
Group theory: deals with the set of symmetry elements present in a mol- 

ecule and its properties. Can be used to determine whether vibrations 
are infrared or Raman active according to symmetry. 

Harmonic oscillator: a vibrating system where the potential energy is 
given by + k(r - rJ2 .  

+ Z,ui dni. 

pressure tend to minimize G. 
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Heat, q: the transfer of energy that results from temperature differences, 
or to maintain isothermal conditions; heat is a path function. 

Heat capacity (isobaric), Cp: rate of change of enthalpy H with T at con- 
stant pressure p.  

Heat capacity (isochoric), C,: rate of change of internal energy U with 
T at constant volume V.  

Heisenberg’s uncertainty principle: a fundamental hypothesis of quan- 
tum mechanics that states that Icertain pairs of observable properties, 
such as positionlmomentum arid energyltime, cannot be simultane- 
ously determined with arbitrary precision. 

Helmholtz free energy, A :  A = U - TS. Spontaneous processes at con- 
stant volume tend to minimize .4. 

Hess’s law: the overall reaction enthalpy is the sum of the reaction 
enthalpies of the individual reactions into which the reaction may be 
divided. 

Homonuclear: all nuclei are identical ( i e .  all are the same isotope of the 
same element). 

Ideal gas: a gas where the constituent atoms or molecules do not inter- 
act except when they collide. 

Ideal gas equation: pV = nRT. The equation of state for an ideal 
gas. 

Indistinguishable: particles have id entical chemical composition and are 
able to move freely, such that they can exchange positions through 
translational motion. 

Inexact differential: one whose integral yields a value of the function 
which depends on the path of integration (e.g. a path function). 

Intensive property: property which does not depend on the amount 
(mass) of substance present (e.g. p ,  T, Hm, p ) .  

Internal energy, U: the total energy of a system (electronic, kinetic, etc.); 
we can only measure changes in U: AU = q + \I?; d U  = dq + dw. 

Irreversible process: one that occurs spontaneously. The overall entropy 
of the system plus the surroundings increases. Less heat is absorbed, 
and less work done, than for the corresponding reversible process. 

Isobaric: constant pressure. 
Isochoric: constant volume. 
Isolated system: no exchange of energy (heat, work) or matter with the 

Isoplethic: constant composition. 
Isothermal: constant temperature. 
Isothermalhsobaric ensemble: the ny T ensemble, in which the fixed prop- 

Kinetics: the study of the rate of chemical reactions. 
Kirchhoff s law: gives the temperature dependence of enthalpy changes 

surroundings. 

erties are number of moles, pressure and temperature. 

in terms of the heat capacities. 
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Le Chatelier’s principle: systems at equilibrium respond to perturbations 
so as to tend to minimize the effect of the perturbation. 

Macroscopic system: one with a very large number of molecules or atoms 
(significant fraction of N J .  

Mass (atomic or molecular): m. 
Mass (molar), M: atomic or molecular weight; A4 = mNA. 
Melting (fusion) point, Tfus: transition temperature from solid to liquid. 
Microcanonical ensemble: the N VU (NVE) ensemble, in which the spec- 

ified properties are the number of particles, the volume and the inter- 
nal energy. 

Microscopic system: one with a small number of atoms or molecules. 
Microstate: a configuration of distinguishable particles within a given state. 
Molality, in: number of moles of solute per kg of solvent. 
Molar concentration (previously denoted “molarity”), c: number of moles 

per unit volume (mol dm-’1. 
Molecular partition function, q: the partition function calculated on the 

basis of the energy levels within a single molecule. 
Moment of inertia, I: the sum over all atoms within a molecule of the 

mass of that atom multiplied by the square of the distance from the 
centre of mass. This acts as a measure of how much force (torque) is 
required to rotate a molecule about a given axis. 

Normal mode: one of the vibrations in a polyatomic system when treat- 
ed as a harmonic oscillator. More formally, one of the eigenvectors 
obtained by diagonalizing the force constant matrix weighted by the 
inverse square roots of the atomic masses. 

Open system: matter exchange, heat flow and work are all permitted. 
Particle in a box: quantum mechanical model for a particle moving in a 

Partition function: 

Pascal, Pa: unit of prZsure; 1 Pa = I N m-2. 
Path function: property which depends on how the state of the system 

was attained, for example, work performed or heat transferred. 
Pauli exclusion principle: the wavefunction must be antisymmetric with 

respect to the interchange of two fermions (e.g. electrons) and sym- 
metric for the interchange of two bosons. 

Perfect gas: one which obeys the ideal gas law p V  = nRT. The internal 
energy of the gas depends on T, but not p or K 

Phase: state of matter that is uniform in chemical composition and in 
physical state. 

Phase diagram: plot showing regions of stability of phases as functions 
of two or more system variables (e.g. p ,  V, T, xi).  

Phase transition: transformation of one phase into another (e.g. melting 
of a solid to a liquid); the chemical potentials pi  of all components 
present are equal in both phases at the transition point. 

region of fixed length with zero potential energy. 
all levels 

exp (4, / kBT) 
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Phonon: vibrational mode of a solid. 
Potential difference (EMF), E; units: volts (1 V = 1 J C-I). 
Pressure, p :  force per unit area; units: pascal (Pa); 1 Pa = 1 N m-2. 
pV work: see expansion work. 
Quantum mechanics: theory in which properties, such as energy, exist 

with discrete values, instead of as continuous variables. 
Reaction Gibbs free energy, AGr: slope of the Gibbs free energy with the 

extent of reaction, 4. 
Reduced mass, p: for a diatomic molecule with two atoms of mass m, 

and m2, this is equal to (m,m2/m, + m.,). 
Reversible process: one in which the system remains in equilibrium at 

each point; the change proceeds infinitely slowly and is able to do the 
maximum amount of work. 

Rigid rotor: molecule whose bond lengths, bond angles and torsional 
angles remain fixed while rotating. 

Rotational constant, B: determines the rotational energy of a rigid rotor 
according to uJR = BJ(J + 1). 

Rotational quantum number, J: specifies which rotational energy level a 
molecule occupies. 

Rotational temperature, Or: a collection of fundamental constants (see 
equation 12.9), related to rotation, that determine approximately the 
temperature at which a rigid rotor makes the transition from quan- 
tum to classical behaviour. 

Sacker-Tetrode equation: the expression for the translational contribu- 
tion to the molar entropy of an ideal gas in terms of the pressure and 
temperature (see equation 1 1.39). 

Schrodinger equation: H v  = Uw; equation that determines the wave- 
function and energy levels for a time-independent system. 

Second Law: the entropy of an isolated system increases during any spon- 
taneous process. 

Selection rule: states whether the transition between two different ener- 
gy levels is allowed for forbidden. 

Solute: the minor component in a solution. 
Solution: a homogenous mixture of two or more components. 
Solvent: the major component in a solution. 
Spontaneous process: one in which the overall entropy (system plus sur- 

roundings) increases ( c g .  any irreversible process); (dc),, I 0; (dA), 
5 0; less heat is absorbed and less work done by the system than for 
the corresponding reversible process. 

Standard ambient temperature: 298.15 K (25 "C). 
Standard enthalpy change, AH? change in enthalpy per mole for a 

process ( c g .  fusion, vaporization, solution, ionization), in which the 
initial and final species are in their standard states. 

Standard enthalpy of formation, AfHe: the standard reaction enthalpy 
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for the formation of a compound from its elements in their standard 
states, e.g. Ar(g), N,(g), C(s, graphite). 

Standard entropy (Third Law), SO: entropy at the specified temperature 
and p = 1 bar, relative to S(T = 0) = 0. 

Standard Gibbs free energy of formation, AfG": the standard reaction 
Gibbs free energy for the formation of a compound from its elements 
in their standard states. 

Standard pressure, p": p = 1 bar = 100 kPa (exactly); note: 1 atm = 10 1.325 
kPa = 760 Torr = 760 mmHg. 

Standard reaction enthalpy, A,H? the change in enthalpy when the reac- 
tants change to products, both being in their standard states. 

Standard reaction entropy, A$? the change in entropy when the reac- 
tants change to products, both being in their standard states. 

Standard reaction Gibbs free energy, ArGe: the change in Gibbs free ener- 
gy when the reactants change to products, both being in their stan- 
dard states. 

Standard state: the pure form of a substance at a specified temperature 
at 1 bar pressure 0) = p"), denoted by a plimsoll (") superscript. 

State: the state of a system is defined by a small number of system vari- 
ables (state functions), not all of which are independent (e.g. p ,  T, V ,  
U, H, S, G). 

State function: property of the system that is independent of how the 
sample was prepared. 

Statistical mechanics: the theory that connects the microscopic level to 
macroscopic properties. 

Stirling's approximation: In N !  = N In iV - N ,  for large N .  
Stoichiometric coefficients, v: in writing out a chemical reaction, the v 

are the smallest integers consistent with the reaction, that is they are 
the smallest whole numbers of moles of each species involved in the 
reaction. 

Surface work, w p  work of changing area 0 due to surface tension dwy 
= Ydo. 

Surroundings: region outside the system of interest, separated from it by 
a boundary. 

Symmetry number, 0: the factor that the rotational partition function 
must be divided by to correct for the reduced number of accessible 
rotational states when symmetry is present. 

System: region of interest, where the reaction or process takes place, e.g. 
a reaction vessel. 

Thermal de Broglie wavelength: the associated quantum wavelength 
of a particle translating at a given temperature (see equation 
1 1.22). 

Thermal equilibrium: there is no tendency for heat flow; Tsystem = 
*w rrciuntl ings . 
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Thermochemistry: study of the heat produced or consumed by chemical 
reactions or processes. 

Third Law: the entropy of all perfect materials is zero at T = 0 K, and 
is always positive for T > 0 K. 

Total partition function, Q: the partition function for the complete sys- 
tem of particles. For N distinguishable particles this is related to the 
molecular partition function by Q = q*’, while for indistinguishable 
particles the relation is Q = q*’/N! 

Transition state theory: statistical mechanics approach to calculating 
reaction rates. Assumes that there is an activated complex in equilib- 
rium with the reactants, which goes through to the products with a 
frequency equal to that of the reactive vibrational mode. 

Triple point: point where three phases coexist (e.g. ice, water and water 
vapour). 

Trouton’s rule: the entropy of vaporization AvapS of many simple organ- 
ic liquids is close to 85 J K ’ mol-’. 

Universal gas constant, R: N,k, = 8.314 kJ K-’ mol-’. 
van’t Hoff isochore: gives the temperature dependence of the equilibri- 

um constant K in terms of A,HO. 
Vapour pressure, p :  partial pressure of a gas in equilibrium with its liq- 

uid. 
Vibrational frequency, w: the number of complete vibrational oscillations 

executed per second. 
Vibrational temperature, Ov: k d k , .  This quantity approximately deter- 

mines the temperature at which a harmonic oscillator makes the tran- 
sition from quantum to classical behaviour. 

Work, w: the change in energy that could be directly used to raise a 
weight somewhere in the surroundings; 119 is a path function. 

Zero point energy: 4lzw; the minimum energy of any vibrational motion 
of frequency w. 

Zeroth Law: if A is in thermal equilibrium with B, and B is in thermal 
equilibrium with C, then C is also in thermal equilibrium with A. 
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~ 

1 . (i) The power supply performs an amount of electrical work on 
the system: 

V’t 
weleC = Vit = - 

R 

Now AU = w + q, and q = 0 for an adiabatic system. Thus: 

Note that the electrical work is completely converted to heat in the 
heating element, raising the temperature of the system. 
(ii) For the diathermic system, the heat flows out of the system into 
the thermal reservoir, cancelling out the work and leaving the sys- 
tem’s internal energy unchanged: 

AU = ( w~~~~ + 4) = (+2 kJ - 2 kJ) = 0 

2. (i) Substituting for < v 2 >  gives: 

3 3 
U = - p V = - n R T  

2 2 

Thus U is directly proportional to temperature T. 
(ii) At constant temperature, U is independent of both pressure p 
and volume V.  

3. (i) If all the weights are removed at once, the external pressure 
p,, drops suddenly from 10 atm to 1 atm, and the gas will expand 
irreversibly against the constant p,, = 1 atm (due to the air in the 
room) until the internal pressure is also 1 atm. If the expansion is 

134 
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isothermal, its final volume will be 10 dm’ and the work done is: 

M’ = -(I atm) (10 - 1) dm3 = -9 dm3 atm = -912 J 

j 

I 

Note that the work is negative, i.e. the work is done by the system. 
An amount of heat q = --w will flow into the system to maintain U 
= (q  + w) = constant. 
(ii) If the weights are removed in two stages, the work done is the 
sum of two irreversible steps, the first expansion occurring against 
a higher p,, than the second. In the first stage, five weights are 
removed (p,, = 5 atm) and the work done is: 

i 

, 
I 

~ 

I 

11’ = -(5 atm) (2 - 1) dm3 = -5 dm3 atm 

In the second stage, the remaining four weights are removed be, = 
1 atm) and: 

~ 

w = -( 1 atm) (10 - 2) dm3 = -8 dm3 atm 

The total work is then: -13 dm3 atm = -1318 J .  
(iii) The same procedure is used to find that, if the weights are 
removed singly, the total work done is -1954 J. 
If the expansion is carried out reversibly (via an infinite number of 
vanishingly small steps), with p,, = p at all stages, then: 

Wrev = -nRT In[ 5) 
Thus, for the expansion from (pr = 10 atm, V,  = 1 dm3) to (pZ = 
I atm, V2 = 10 dm3), the reversible work is (with nRT = p V  = 10 
dm’ atm): 

w rev = -(lo In 10) dm’ atm = -2333 J 

This is the maximum amount of work that can be done by the 
system. 

4. Use p V = nRT to give: 

State TIK V/dm3 plPa 

1 273 22.4 1.013 x lo5 
2 546 22.4 2.026 x lo5 
3 546 44.8 1.013 x lo5 
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Process A is isochoric (dV = 0 and therefore no work is done). 
Process B is isothermal (dV # 0 and therefore work is done). 
Process C is isobaric (constant pressure). 
Given that AU = C P T  and AU = y + C V ,  we can write down expres- 
sions for AU, q and w :  

Process AU 4 N' 

A CkAT C , P T  0 
B 0 -1%) -RT In ( V,/ V,) 
C C,,AT C,,AT C P T  - C/,AT 

In order to calculate any values, we need to know C ,  and Cp. For 
one mole of an ideal gas, C ,  = 3 N 2  = 12. 47 J K- '  mol-I, and Cp 
= (C,, + R )  = 5R/2 = 20.79 J K-I mol-'. Then: 

Process A U/J 4/J WlJ 

A 3404.6 3404.6 0 
B 0 3146.5 -3146.5 
C --3 404.6 -5674.3 2269.7 
Total 0 876.8 -876.8 

Intuitively, AU = 0 for the complete cycle, since it is a state function. 

1. 2 2 
U = z p V = ' n R T  

2 2 

U(298 K) = 3.72 kJ mol I .  Therefore: 

5 5 
2 2 

H=U -+ ~ V = - ~ V = - I I R T  

H(298 K) = 6.20 kJ mol-I 
Cb. =(%) = - n R  3 

I,' 2 

CV,,, = 12.47 J K-' mol-' 

C p.m = 20.79 J K - *  mol-' 
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Note that C,. and C,, are independent of temperature for an ideal 
gas. Also note that [$] = 0 and [$'I = 0, i.e. the internal energy, 
U, and the enthalpy, H,'of an ideal gas are independent of volume 
at constant temperature. 
The relationship between C,, and C,. may be derived by writing: 

H = ( U +  p V )  =(U + nRT)  
d H  = d U  + nRdT 

(dg),, = (dq), + MRdT 

Therefore, for an ideal gas: 

C,, = C,. + FIR 

This agrees with the above expressions for C,, and C,,,. 

2. 100 g of KNO, CM, = 101.11) = 0.989 mol 

AsolH (298 K) = +34.9 kJ mol-' 

C,.,(H20) = 75.29 J K - '  mol-' 
8 

- 34,900 x 0.989 AH 
c ,  55.5 Cp.m 55.5 x 75.29 

-- AH - A T = - - -  - 

= -8.26 "C 
T,,,, = 16.7 "C 

100 g of AlCI, (Mr = 133.33) = 0.750 mol 

Aso,H (298 K)  = -329 kJ mol-' 
e 

(-329,000) x 0.750 
55.5 x 75.29 

A T = -  

=+59 "C 
Tincrl = 84 "C 

3. The integrated form of the Kirchhoff equation permits the cal- 
culation of the enthalpy of reaction at one temperature if it is 
known at a different temperature, together with the necessary heat 
capacity data: 
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11 

TI 

AH(T2) = AH(T, )+  I AC,dT 

Hence for this particular problem: 
700 

AH(T2)=-46,110+ (Cvo+CvbT+CvcT- ' )  d T  
298 

Expanding the three summations leads to: 

28.58 3 x 27.28 
3 2 = 29.75 - - - 
,L 

= -25.46 
C v b  = 1 8 . 3 3 ~  
CVC = -2.05 x lo5 

Therefore: 

AH( 700 K )  = -46,110 - 25.46[ 700 - 2981 

"""' 22982 +18.33 x lo-, +2.O5x1O5 --- 
[7:0 2:8 

= -46,110 - 10,23 1 + 3676 - 395 
Thus, ArHe(7O0 K) = -53.06 kJ mol-* 

1. (i) Freezing of a supercooled liquid is an irreversible change 
because, unlike at 273.15 K, the system does not remain at equi- 
librium during the freezing process, i.e., it cannot be reversed by 
an infinitesimal change in one of the conditions (T,  p ) .  
(ii) This is done by devising a set of reversible steps, the sum of 
which is equivalent to the single irreversible step. Since state func- 
tions are independent of the path taken, the value calculated is the 
same in both cases. 
(iii) For this problem we can devise the following reversible path 
between the initial and final states: (a) heat the water from 263.15 
K to 273.15 K, at constant pressure pe;  (b) freeze the water at 
273.15 K to ice at 273.15 K at p? This is a phase transition under 
equilibrium conditions and hence is a reversible process; (c) cool 
the ice from 273.15 K to 263.15 K at constant pressure p? For a 
change in temperature at constant pressure, the entropy change is 
given by: 
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The entropy of fusion is given by: 

AfusS* = Afus H TfUs 

Note that freezing at 273.15 K will involve an entropy change of 

Thus, for the reversible steps, we can write: 
( -AfusS 9. 

263.15 + 36.9 In - 273.15 6008 
= 75.291n- -- 

263.15 273.15 273.15 
= 2.81 - 21.99 - 1.38 

AfusSO = -20.56 J K mol-I 
This is the decrease in entropy of the supercooled water on freez- 
ing to ice at 263.15 K. To find the entropy change of the sur- 
roundings, we can assume that the large heat reservoir of the 
surroundings remains at constant temperature during the essen- 
tially reversible transfer to it of AfUsHO at 263.15 K. We calculate 
AfusH0(263. 15 K)  from the Kirchhoff equation (since the pressure 
is constant at p"): 

d(AfusHe)/dT = AC, = [C,,(liq H20) - C,,(ice)] = 
38.39 J K I mol I 

AfusH0(273. 15 K) - AfusHe(263. 15 K )  = 38.39[273.15 - 263.151 = 
383.9 J mol-' 

Hence, Af,JYe(263.15 K) = (6008 - 383.9) = +5.624 kJ mol 
and A P r r  = AfusSe(263.15 K) = (5624/263.15) = 21.37 J K-' mol-' 

The total entropy change is thus: 

A S O t d  = (ASsurr + AS) = (21.37 - 20.56) = +0.81 J K-' mol-' 

The entropy of the universe has increased during the irreversible 
freezing process, as the Second Law dictates. 

2. (i) The general expression we need is equation (4.13): 
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AS=C,.ln - +nRln - (3 (;) 
Under isobaric (constant pressure) conditions, we can write: 

(ii) Under isothermal conditions, we can use equation (4.16): 

Setting S,  = S, S,  = Se, p ,  = p ,  p A  = p 0  leads directly to: 

3. A S = J -  '' dT 
T r, 

= aJ- d T  + bldT + cJ- d T  
T T 3  

A S  = 29.961n - + 4.18 x 10-3(423. 15 - 298.15) 
423'1 

(298.15) 

423.15' 298.1 52 
- 

2 
= 10.49 + 0.52 - 0.47 
= +10.54 J K-' mol-' 
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lm Integration of the Clapeyron equation, assuming that the 
enthalpy and volume changes upon melting are independent of 
temperature and pressure, gives: 

For water: 

A ~ ~ ~ v  = v,, (water) - v,,, (ice) 

= -1.7 cm3 mol-' 
= 18.0-19.7 

A r u s P  = +6.008 kJ mol-' 
Thus: 

6008 
1.7 x loT6 

p = p * -  

= lo5 - 3.534 x lo9 In - [ :;::::) 
=1319x105 N rn-? 
= 1302 atm (1.32 kbar) 

2. 
assuming AvapH is independent of temperature, is: 

The integrated form of the Clausius-Clapeyron equation, 

A"& lnp = -- + const. 
RT 

A plot of the data in the form In p versus TI gives a straight line 
of gradient: 

AvapH = 24.72 kJ mol-.' 

The normal boiling point Tb is the temperature at which the vapour 
pressure p becomes equal to 1 atm = 760 mmHg. This value may 
be read off the plot, yielding Tb = 272.7 K (this is the same as the 
literature value of T,, = 272.7 K). 

3. The standard Gibbs free energy of formation, A,,G*, is defined 
as the standard reaction Gibbs free energy, ArG", for formation of 
the substance from its elements in their standard states (where they 
have A r c e  = 0): 
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ArG* = A r P -  TArS* 

= c VprodAfG;ood - c VrractAr.G:dcr 
prod react 

Thus we write the reaction per mole of the compound as: 

For liquid H,O at 25 "C: 

AfHO = -285.8 kJ mol--' 

= (69.9 - 130.7 - 102.5) 

= -163.3 J K- '  mol-' 
A,.Ge = AfH*- TArSe 

= -285.8 x lo3 - (298.15 x (-163.3)) 

= -237.1 kJ mol-' 

Note that A,.He and AfGO are zero for elements in heir standard 
states (at any temperature), even though the S" are not. 
The entropy change of the system, A r P ,  is negative, reflecting the 
increased order of liquid water compared to gaseous H, and 02. 
Although the large negative value for AfGe tells us that the equi- 
librium lies very strongly to the right (i.e., towards liquid water), it 
says nothing about the rute at which equilibrium will be attained. 
Indeed, a gaseous mixture of H2 and 0, may be kept for a very 
long time without reacting, owing to -the high energy barrier 
between reactants and products. 
The entropy change of the surroundings is given by 

(-285.8 x lo3) 

298.15 
= +958.6 J K-' mol-' 

- - - 

Thus the formation of liquid water from gaseous hydrogen and 
oxygen leads to a drop in entropy of the system, but a much larg- 
er increase in entropy of the surroundings, such that the overall 
entropy change is positive and the process is spontaneous (as seen 
directly by the negative sign of A,Ge). 
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lm This problem requires the use of: 

ArG* = -RT In K,, 

In this equation, ArGe is the standard reaction Gibbs free energy 
at the standard pressure p* ( 1  bar), and K/, is the (dimensionless) 
equilibrium constant, defined by: 

If the fractional dissociation of CO, is denoted by a, and the gas 
mixture is at a total pressurep,, we have, starting with 2 moles of 
co,: 

CO, CO 0, Total 

No. of moles 2(1 - a) 2a a 2 + a  

Partial pressures 2( 1 - a)p , ,  2ap0 ap,, po 
2+a 2+a 2 + a  

Therefore: 

a3 PO 
( l - a ) ' ( 2 + a )  p e  

K,, = 

For this problem we know that p o  = p 8  = 1 bar, and hence, neglect- 
ing a terms in the denominator (since a << 1): 

(1.27 x 1 O-')' 

2 
K,(1400 IS)= = 1.024 x lo-" 

The variation of K,, with temperature is given by the van't Hoff 
isochore: 

dlnK,, - A,P 
d( 1 / T )  R 

If ArHe is assumed to be independent of temperature, we obtain 
for the two temperatures T,  and T,: 

- - -- 

In K,, ( T2 ) - In K,, (T ) = - 
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With TI = 1000 K and T7 - = 1400 K, this becomes: 

In( 1 .024 x Io-" ) - in(4 x I 0-" ) = - 

There fore: 

ArHO = 8.314 x 3500 x (-27.61 + 46.97) = +563.4 kJ mol-I 
ArGe (1000 K) = -8.314 x 1000 x ln(4 x lo--*') = +390.5 kJ mol-' 

We can then calculate the reaction entropy using: 

Thus: 

 AH^ - AG* 
T 

A,Se = 

ArS*( 1000 K) = +172.9 J K -  mol-1 

Note that the standard reaction entropy is positive, since 2 moles 
of gas increase to 3 moles. 

2. 
ArGe = -RT In Kp = ArHe -- TArS* 
ln Kp = -(A,.H*/R)(l/T) + (A,S*/R) 

(i) Plot In Kp versus (l/Z-'): 
Gradient = -(ArHo/R) = -21.76 x lo3 K. Thus ArH* = +181 kJ mol-I. 
Intercept = A,S% = 3.08. Thus ArSO = +25.6 J K-' mol-I. 
(ii) ArCe(lOOO K) = 181 x lo3 - lOOO(25.6) = +155.4 kJ mol-I. Thus 
K,) = 7.63 x 10 9. 

Thus pNO = 3.49 x 
(iii) A,G" = ArG*/2, as expected from the definition of A,G? In the 
calculation of A,G*, we neglected the temperature dependences of 
ArHe and A,S? 

bar. 

3. Define the degree of dissociation a, such that a = 0 corresponds 
to pure A,, and a = 1 corresponds to pure A: 
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The equilibrium constant is defined as: 
I \ 2  

where P A  and PA,  are the partial pressures of A and A,. 
Now from Dalton’s law: 

P A  = -‘AP 

P A 2  = -‘A,P 

where p is the total pressure (PA + pAZ). 
We can thus express the mole fractions in terms of a: 

(1-a) - 1-a 
( l - a ) + 2 a  1+a 

- 
xA2 = 

Thus: 

! 
I i.e.: i 

I t’ 
i 
I 

~ 

1 
1 

Thus a decreases as p increases. When K,, is small compared with 
@/pel, a is approximately proportional to p ”?. 

For the dissociation of N,O, to 2N0, at 298 K: I 

A ~ G *  = A ~ H ~ -  TA,S* 
= + 5 7 . 2 ~ 1 0 ’ - 2 9 8 ~ ( + 1 7 6 )  
- T-T. I J n J  L L L W L  

K p  =exp -- =0.149 [ 
At a pressure p = p* = 1 bar: 
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1 At a pressure p = lop* = 10 bar: 

= 0.061 a = [ 0.1486 1'' 
0.1486 + 40 

To calculate K,, at different temperatures, we assume that ArHe is 
independent of temperature and use the integrated form of the van't 
Hoff isochore: 

I At T =  198K: 

In K P (  198) = In K/,( 298) - - 5 7 ~ 2 0 0 [ ~ - ~ 1  

K,(198) = 1.283~10-' 

1 At T =  398 K: 

In K,(398) = In Kp(298) -- -- - 
57'200[ 8.314 398 298 I 

K,(398) = 49.1 

The degree of dissociation at 298 and 398 K, at pressures of 1 and 
10 bar, are then calculated by inserting these values of Kp into the 
expression for a. The final results are: 

T/K 5 1  plbar a 
198 1.28 x 1 5.7 x lo4 

10 1.8 x lo4 
1 298 0.149 1 0.189 

10 0.06 1 
* 398 49.1 1 0.962 

10 0.742 
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I 
1 

I 

j 

I 

j 

i 
I 

I 

I 

1. In the structure of solid carbon monoxide, all the molecular 
axes are aligned. Although the energetically favoured structure has 
all the dipole moments oriented parallel to each other, at finite tem- 
peratures there will be disorder with some molecules aligned anti- 
parallel. This is due to the greater entropy of a structure in which 
the orientation of the molecules is not uniform, since there are more 
microstates. This is further assisted by the fact that the dipole 
moment of CO is small. Schematically, we can picture the two 
arrangements as: 

:c=o :c=o vs. :c=o o=c: 
When the solid is cooled to absolute zero, the disordered orienta- 
tions are frozen in, since the molecules do not have sufficient ener- 
gy to overcome the barrier to rotation. Hence the entropy fails to 
go to zero. It is generally true that systems can be kinetically 
trapped in metastable disordered states. Many everyday materials, 
such as glass for example, should exist in a different form under 
ambient conditions based on thermodynamic stability alone. We 
can go one step further in this problem and use the value of S given 
in the question, together with equation (8.1 ), to evaluate the num- 
ber of microstates, W. This yields W =: 2, which is consistent with 
the schematic picture of two possible relative orientations of neigh- 
bouring molecules. 

2. Without considering the order of occupancies of the levels or 
which particular levels are involved, since neither of these influence 
the answer, we can see that the possible configurations are (4,0,0,0), 
(3,1,0,0), (2,2,0,0), (2,1,1,0) and ( l , l , l , l ) .  For these the values of 
W would be 30, 120, 180, 360 and 720, respectively. Hence placing 
each particle in a separate level would maximize the entropy. The 
reason that particles do not always adopt this configuration is due 
to the internal energy, which would tend to cause all particles to 
exist in the ground state. If the separation of the levels is uniform, 
then the energies of the above five configurations in units of the 
separation, relative to the lowest level, would be 0, 1,  2, 3 and 6, 
respectively. Thus the trend in the increasing entropy is the same 
as that for the internal energy, Hence the optimal configuration is 
a compromise, between these two competing trends, that minimizes 
the free energy at any given temperature. 
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3. Cancelling 5! against part of lo! we can simplify the number of 
microstates before evaluating: 

S = k, In W = 1.08 x 1 0-” J K-‘ (to 3 s. f.) 

4. By exciting a single particle from the configuration (5,3,2,0), we 
can arrive at the following three possibilities: (4,4,2,0), (5,2,3,0) and 
(5,3,1,1). If we call Wo the number of microstates for (5,3,2,0), then 
the number for each of the other states can be evaluated relative 
to this as 5 W(J4, Wo and 2 Wo. Hence the occupancy configuration 
that would maximize the entropy is (5,3,1 ,l), since this maximizes 
the number of microstates and gives an entropy of 1.177 x J. 

The Helmholtz free energy difference between this state and the 
original one can be calculated using the analogous relationship to 
equation (7.16) under conditions of fixed volume. Using this we 
obtain : 

AA = AU - TAS = 1 x lo-”’ - 298 x (1.177 - 1.081) x lo-” J 

= +0.714 x lO-”’J (to 3 s.f.) 

I (a) There are a total of 11 distinct configurations that are pos- 
sible, Using the notation of Chapter 1, where the occupancies are 
listed for each level commencing with the ground state, the con- 
figurations are: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

W = 8  
W =  56 
W =  56 
W =  28 
W =  168 
W = 336 
w= 112 
W =  560 
W = 420 
W =  560 
W =  28 
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(b) The number of microstates is listed for each configuration 
above. The state(s) with the greatest number of microstates will 
maximize the entropy and thus lead to the lowest free energy. Hence 
we can see that there are two states which will be equally most 
probable, both having 560 microstates: 

(4,3,0,1 ,O,O,O) and (3,4,1,0,0,0,0) 

2. Assuming the number of particles to be large, we can use the 
Boltzmann distribution to evaluate the percentage in each state. 
The first step is to evaluate the exponential factor for each state, 
noting that because the energy differences are given in kJ mol-' we 
need to use R (8.314 J K-' mol-I) instead of k,: 

n,, 0~ exp [ -- ;;)=I 

0'72 ] = 0.74926 
8.314 x lop3 x 300 

.24 ) = 0.60826 
8.314 x lo-? x 300 

To obtain the percentage, P, in each level, we divide the factor for 
each level by the sum over the levels, multiplied by 100?40: 

x 100% = 42.4%) (to 3 s.f.) 1 .o 
1 .O + 0.74926 + 0.60826 

Po = 

4 =  0'74926 x 100% = 31.8% (to 3 s.f.1 
2.35752 

P2 = o*60826 x 100% = 25.8% (to 3 s.f.) 
2.35752 

ll To perform the differentiation we must use the quotient rule to 
handle the fraction, followed by the chain rule to deal with the indi- 
vidual terms: 
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The first and second terms in the outer bracket can be identified as 
and by definition. Hence we arrive at the desired result: 

(UZ) -(by c,. = 
kBT2 

2. Here the key task is to manipulate the numerator. Starting from 
the definition of 6U and taking its square: 

(GU)? =(u-(u))' =u2 -2u(u)+(u)2 
Now taking the average of this quantity leads to: 

((GU)') = (u2) - 2(u>(u)+ (u)? = (u2)- (u)? 
Substituting for the numerator in the result of the previous prob- 
lem yields the desired result: 

lm For a solid the total partition function for four identical atoms 
would be q4 where q is the atomic partition function. However, 
when melting occurs the atoms are no longer distinguishable, and 
thus the total partition function is now q4/4! Hence the total par- 
tition function will decrease on melting by a factor of 4! = 24. 

2. (a) For the separate systems, the partition functions can be writ- 
ten down remembering that only like atoms are indistinguishable: 

3 3  3 3  
q A Y B  - q A q B  Q2 =--- Q, =--- 4hBZ A Y B Z  

4!2! 48 3!3! 36 
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(b) When the atoms are combined into one container, the result is 
that for a system consisting of 7 atoms of A and 5 of B: 

(c) This part is more subtle: by linking the containers together the 
volume of the system has been doubled. Given that the transla- 
tional partition function per atom is proportional to the volume, 
the values of qA and qg will therefore be double their values for the 
original system. Hence in terms of the original atomic partition 
functions we obtain: 

3. In the following parts, remember to use only SI units. (a) The 
de Broglie wavelength is given by: 

f $4 
a=  - (6.6Y2XlO-'JS)' 

[ h? ) _I 21c 79'90 

6 . 0 2 2 ~ 1 0 ' ~  , 
lo-' kg ( I  .38066 x 1 0-'3 J K-')(500 K) 2mk,T 

= 8.735 x lo-'? m (to 3 d.p.) 

(b) To calculate the translational partition function we can use the 
de Broglie wavelength: 

4. There are two approaches to solving this problem: either by 
using the expressions already seen for U and S,  or by direct deri- 
vation from the definition of the Helmholtz free energy in terms of 
the total partition function. As the latter is the more complex, it is 
the one that will be presented here, though of course the answers 
are identical. 

A=-k,TlnQ=-k,Tln - =-Nk,TInq+kBTlnN! [ C!) 
At this point it is necessary to introduce Stirling's approximation: 

A = - NkBT In q + Nk,T In N - Nk,T = - Nk,T In - - NkBT (:I 
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Now we can introduce the specific expression for the translational 
partition function to yield the final result: 

( 2 mk,T)" 
A = -Nk,T In [ Nh' ' I a N k B T  

5. The solution here is to use the Sackur-Tetrode equation (1 1.39), 
taking care to convert all quantities to SI units: 

5R S,=-+Rln  
2 N,h3 lo9 1 

(7.5346 x 
6.65 12 x 1 0-6 

I .752 x 
= 20.785+8.3141n 

= 20.785+8.3141n 2 .4829~ lo4 = 104.9 J K-' mol 1 
J K-' mol-' 

(to 1 d.p.j 

1. (a) The pressure is calculated by taking the volume derivative 
of the partition function. However, the rotational partition func- 
tion does not depend on the volume. Therefore the rotational con- 
tribution to the pressure is zero. 
(bj To derive an expression for the entropy, begin by writing the 
definition in terms of the total partition function, and then intro- 
duce the rotational partition function: 

.*. s = NkB( F)v + Nk, In(-&) = Nk, + Nk, In[%) 

Note that the entropy is one of the thermodynamic properties where 
the symmetry number does influence the final result. 

2. The first stage is to calculate the moment of inertia in the SI 
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units of kg m2. Note that the process is simplified by using the fact 
that rn, = rn,: 

35.453 x lo-’ )(0.1986x lo-’)& m2 
2 x 6.022 x 10” 

= 1.161 x 1045kg m’ 

This result can then be combined with the remaining fundamental 
constants to give the rotational temperature: 

I, 2 (6.6262 x J s\l 
=0.347 K - \ I e, =- - 

8n’Ik, 8n~(l.161x1O4’ kgrn?)(1.38066~10-~~ J K - ’ )  

Note that the symmetry number, which for Cl, would be 2, is not 
included in the rotational temperature. Using equation ( 12.16), we 
can now calculate the rotational partition function: 

= 429.61 (to 2 d.p.) T 298.15 
08, 2 ~ 0 . 3 4 7  

+-= 

3. First convert the frequency into Hz (s-I) by multiplying by the 
speed of light (in cm s-l): 

CC) = 561.1 x 2.9979 x 10“’ HZ = 1.682 x 1013 HZ 

From this we can calculate the vibrational temperature: 

ho 6.6262 x x 1.682 x 10” = 807.24 
kl 1.38066 x 

0, =-= 

Equation (1 2.40) can now be used to arrive at the internal energy 
of vibration, using N = 1 for a single molecule: 

6.6262 x x 1.682 x 10” 1.38066 x lo-” x 807.24 ~ 

U ‘  = + J 

2 (exp( O ]  - 1) 
= 5.573 x lo-” + 7.954 x lo-’‘ J = 6.368 x lo-” J (to 3 d.p.) 

The classical limit for the vibrational energy based on equation 
(12.43), but for a single diatomic molecule rather than a mole, is: 

U,~,,,,,,, = k,T = 1.38066 x lo-’’ x 298 J = 4.1 1 4 ~  lo-” J (to 3 d.p.) 
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Comment: At first sight it appears odd that the quantum internal 
energy of vibration from statistical mechanics is higher than the 
classical internal energy from the equipartition theorem, given the 
fact that quantization restricts the uptake of energy until higher 
temperatures. The reason for this is the zero point energy of vibra- 
tion, which is the dominant contribution .to the quantized result, 
and is unaccounted for in the classical internal energy. 

4. For a single harmonic oscillator Q = qv. Hence we can substi- 
tute the expression for the vibrational partition function of a har- 
monic oscillator into the general equation for the entropy: 

s = k B T [ ~ )  a l n p  +kBlnqV yv = e x p ( - W T )  

I.' 1 - exp( - 8, /T) 

.*. S = li,T [ - [ -- 2";. - ln[ 1 - exp( -$)))I+ kB[ -$ -In( 1 - exp( -$)I] 
s=- kB8V + 1 !@L exp( -$)- - k, In[ 1 - exp( -%)) 

2T (I-exp(-O,/T)) T 

S =  kB8V exp( - 'V lT)  - kB Ill( 1 - eXp( - %)] 
T(  1 - exp( - 8, /T)) 

5. The electronic partition function is calculated by a direct sum 
over the levels, remembering to allow for the degeneracies. Also, 
the energy separation must be convert to J: 

139.7 x 2.9979 x 10'" x 6.6262 x 
q E  =2exp -0 +2exp - ( ( 1 . 3 8 0 6 6 ~ 1 0 - ' ~ ~ 2 9 8  

= 2 + 1.0188 = 3.019 (to 3 d.p.) 

6. (a) We can write down the electronic partition function for the 
two-level system: 

6.6262 x x 121.1 x 2.9979 x 10" 
q E  = 2 exp(0) + 2 exp 

1.38066~10- '~ x T  

=2+2exp[- 174.2365 ) 
We then need the general expression for the heat capacity, which 
can be obtained by differentiating that for the internal energy, in 
terms of the partition function, with respect to temperature at con- 
stant volume: 
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Working out the derivatives of the electronic partition function 
with respect to temperature, in terms of the electronic temperature 
(Oe = hAu/k,)  for generality, before substituting for 174.24 K later: 

Substituting these expressions into that for the heat capacity at con- 
stant volume, and simplifying, yields: 

(b) When sketching the form of the heat capacity curve it is nec- 
essary to know the limits at the extremes of temperature. As the 
temperature goes to absolute zero, the exponential term will dom- 
inate leading to the heat capacity going to zero. At high tempera- 
tures the term l/p will also make the heat capacity tend to zero. 
Given that all the terms in the equation must be positive, we know 
that the heat capacity curve will not cross the axis. Hence we can 
deduce that the curve must rise from zero, go through a maximum 
and then decay to zero again. Hence the heat capacity will have 
the following appearance: 
I 

Temperat u re/K 

Figure A.1 The electronic heat 
capacity C, relative to k, of a 
molecule of NO as a function of 
temperature 
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- 

(4&/N*)  I (4; I ” )  (4:* /N*)” 

ArGe = ArU* (0) - R T  In 

A 

To prove that there is a maximum, we would have to demonstrate 
that there is a point where the first derivative of C ,  with respect to 
temperature is zero and that the curvature is positive at this point: 

When the final term in brackets goes to zero, the heat capacity 
reaches a stationary point. Unfortunately, rearranging the above 
equation to make T the subject of the formula is non-trivial, but 
the solution can be found to be when T = 0.42Qe. Differentiating 
again and substituting this value for T demonstrates that the cur- 
vature is negative, as required for a maximum. 
(c) The reason for the shape is as follows. At low temperatures, 
quantization means that the heat capacity is initially zero since the 
higher level is not accessible. As the temperature increases, so elec- 
trons become excited to the second level until saturation of the 
upper level is reached (where the population of the levels is close 
to equal). At this point the heat capacity falls to zero because there 
is no means for the additional energy to be absorbed. 

1. The reaction for the formation of HCl is: 

For each reactant and product molecule we know that the molec- 
ular partition function can be written as: 

T R V  4 ’ 4 4 4  

All of the molecules have closed-shell singlet ground states and 
therefore the electronic partition function is always 1. Hence we 
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have to calculate the individual partition functions for each of the 
forms of motion for each molecule following the method used in 
previous problems for each type. The resulting values are: 

H2 6.77502 x 4.60412 x 1.7041 (0 = 2) 2.4493 x 
c12 5.21 139 x 1030 1.16109 x loA5 429.75 (0 = 2) 0.27670 
HCl 1.41331 x lo3] 2.64419 x 19.574 (o= 1) 7.3662 x lo4 

Next we need to calculate the internal energy of reaction, using the 
dissociation energies given. Note that we must also correct for the 
zero point energies of all molecules by adding these to the dissoci- 
ation energy: 

= -92.095 - 3.044 kJ mol-' = -95.14 kJ mol-' (to 2 d.p.) 

Finally, we can collect the two contributions to the free energy 
together : 

A,GO =-95.14-8.314x10T3 x298.151n[4.86796] kJmol-' 

= -95.14 - 3.92 kJ mol-' = -99.1 kJ mol-' 

2. The equilibrium constant can be written in terms of the molec- 
ular partition functions for the reactants and products as: 

Factorizing each partition function into the relevant contributions: 

The first step is to evaluate all the partition function contributions 
under the conditions specified. The calculated values: 

Molecule qT qR 4" qe' 

Li, 1.22394 x 1030 152.384 (0 = 2) 0.52057 1 
2 Li 4.32727 x - - 
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The internal energy of reaction is given by the dissociation energy 
plus the zero point energy of the Li, molecule: 

1 A,U(O) = D, + - N,hco 
2 

= 99.38 + 
= 101.495 kJ mol-' 

6.022 x x6.6262 x x 2.9979 x 10" x 353.59 kJ mol-l 
2 x 1000 

Substitut ng all values into the expression for l$: 

101.495 
enp(- 8 . 3 1 4 ~  lo-' x 298.15 

7.7145 x 10'' 
6.022 x lo2' 

Kp = 

= 12810.57exp(-40.94) = 2.1 16 x 

Comment: Lithium molecules show negligible dissociation under 
standard conditions. 
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