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FOREWORD

This Report of the Subcommittee on the Theory of Numbers is the first
one to be published by the Committee. In broad outline it exhibits the general
plan for all Reports in the series. In adopting this plan the Committee desires
to make clear that the Reports are being prepared primarily for scholars and
others active in scientific work throughout the world.

It is recognized however that, even in the United States, those using this
and later Reports may often be greatly hampered through lack of library facili-
ties. Because of this fact the bibliographic section of our present Report is more
extended than it might otherwise have been. Information is there given con-
cerning the holdings, in libraries of the United States and Canada, of the books
and pamphlets to which reference has been made. It may thus frequently be
found that a desired publication is near at hand. The Union List of Serials
furnishes similar information concerning serials containing tables and errata
in the tables discussed. But these errata are often in periodicals and books
somewhat difficult of access. Hence it was finally decided, as a matter of
policy, to list all known errata in tables surveyed. It seemed desirable in this
Report to group all errata together in a special section; in later Reports,
however, they may be included in the bibliographic section.

Authorities for all errata are indicated, and in the case of errata previously
printed the sources are given. Professor Lehmer’s personal contributions in
this connection are very notable; where no authority is mentioned it is to be
assumed that the discovery of the errata was due to him. The reader who
makes checks will find that the reprinting in this Report of all known pub-
lished errata has two other great advantages over giving mere references to
sources, namely, that they are combined with other known unpublished errata,
and that source notations (often difficult of comprehension, except by the ex-
pert) have been made to conform with those of this Report.

It is a pleasure to acknowledge notable courtesies extended to us. Doctor
Arthur Beer, of the University of London Observatory, placed at our disposal
for this Report the late Doctor Jirf Kavén’s manuscript lists of errata in the
tables of Chernac, Goldberg, and Inghirami, discovered while preparing his re-
markable Factor Tables. Hence it may well be assumed that our lists of errata
in the cases of the two latter are complete. The same may be said of the Gifford
tables errata supplied by Doctor L. J. Comrie of London, the great authority
on all that pertains to table making.

The directions for the use of this Report in the contents and index ought to
render all of its material readily available.

The undersigned will be happy to hear from anyone who may notice in
this Report any omission, inaccuracy, or misstatement. It is not expected that
another Report will be ready for publication before 1942.

R. C. ArRCHIBALD
December 1940 Chairman of the Committee
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STYLE, NOTATIONS, AND ABBREVIATIONS

In the series of Reports of this Committee there will be references to Serials,
Books and Pamphlets, and Manuscripts. It seemed desirable to be able readily
to determine where such material might be consulted. The serial holdings of
libraries of the United States and Canada are indicated in the Union List of
Serials and its Supplements, of which a new and enlarged edition, in a single
alphabet, is now in an advanced stage of preparation. The present custodian
of all manuscripts is stated. From the hundreds of Libraries listed in the Union
List of Serials the following 37 were selected, representing Canada and 22
states. These Libraries are as follows:

CPT California Institute of Technology, Pasadena

CU  University of California, Berkeley

CaM McGill University, Montreal

CaTU University of Toronto

CoU University of Colorado, Boulder

CtY Yale University, New Haven, Conn.

DLC Library of Congress, Washington

IC] John Crerar Library, Chicago, Ill.

ICU University of Chicago

IEN Northwestern University, Evanston, Ill.

IU  University of Illinois, Urbana

InU  University of Indiana, Bloomington

IaAS Iowa State College, Ames

IaU University of Iowa, Iowa City

KyU University of Kentucky, Lexington

MdB]J The Johns Hopkins University, Baltimore, Md.

MB Boston Public Library

MCM Massachusetts Institute of Technology, Cambridge, Mass.

MH Harvard University, Cambridge, Mass.

MiU University of Michigan, Ann Arbor

MnU University of Minnesota, Minneapolis

MoU University of Missouri, Columbia, Mo.

NbhD Dartmouth College, Hanover, N. H.

NjP Princeton University, Princeton, N. J.

NIC Cornell University, Ithaca, N. Y.

NN New York Public Library

NNC Columbia University, New York, N. Y.

NRU University of Rochester, Rochester, N. Y.

NcD Duke University, Durham, N. C.

OCU University of Cincinnati
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STYLE, NOTATIONS, AND ABBREVIATIONS

OU  Ohio State University, Columbus

PBL Lehigh University, Bethlehem, Pa.

PU  University of Pennsylvania, Philadelphia, Pa.
RPB Brown University, Providence, R. 1.

TxU University of Texas, Austin

WvU West Virginia University, Morgantown

WU  University of Wisconsin, Madison

In the case of all Books and Pamphlets mentioned in our Reports, the hold-
ings of each of these Libraries are indicated in the Bibliographies. It may be
noted that the forms of titles of Serials in our Bibliographies follow the forms
in the newest Union List. Transliterations of Russian and Ukrainian names,
and titles of articles and periodicals, are in accordance with Manual of Foreign
Languages, third edition, Washington, 1936.

A few of the Abbreviations used in the Reports are as follows:

Abt.= Abteilung

Acad.=Academy, Académie, etc.

Akad.=Akademiia, Akademija, Akademie, etc.

Am.=America, American

App. = Appendix

Ass. = Association

Ast.= Astronomy, Astronomische, etc.

Biog.= Biography

Br.=British

Bull. =Bulletin

Cambridge = Cambridge, England

col.=column

d.=der, die, di, etc.

Dept.=Department

ed.=edited, edition

f.=for, fiir

Fis. = Fisiche

Gesell. = Gesellschaft

heraus. = herausgegeben

Inst.=Institute (English or French)

Int.=International

Ist.=1Istituto (Italian)

Jahresb. = Jahresbericht

Jn.=Journal

Kl.=Klasse

Mat.=Matematica, Matematici, Matemética, etc.

Math. = Mathematics, Mathematical, Mathematische, etc.

Mo.=Monthly

n.s.=new series
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Nach. = Nachrichten

Nat.= National

Natw.= Naturwissenschaften
no.=number

nos. =numbers

opp. = opposite

p.=page, pages

Phil. = Philosophical

Phys. = Physical, Physics, Physik, Physikalische
Proc. = Proceedings
Rev.=Review

s, =series

Sci. = Science, scientifique
Sitzungsb. = Sitzungsberichte
So.=Society

Sup. = Superiore, Supérieure, etc.
Trans. = Transactions

transl. = translated, translation
u.=und

Univ. = University, Universidade, Université, Universita, etc.
v.=volume, volumes, voor

Wiss. = Wissenschaften

z.=zur

Z.=Zeitschrift
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INTRODUCTION

The theory of numbers is a peculiar subject, being at once a purely deduc-
tive and a largely experimental science. Nearly every classical theorem of im-
portance (proved or unproved) has been discovered by experiment, and it is
safe to say that man will never cease to experiment with numbers. The results
of a great many experiments have been recorded in the form of tables, a large
number of which have been published. The theory suggested by these experi-
ments, when once established, has often made desirable the production of fur-
ther tables of a more fundamental sort, either to facilitate the application of
the theory or to make possible further experiments. It is not surprising that
there exists today a great variety of tables concerned with the theory of num-
bers. Most of these are scattered widely through the extensive literature on
the subject, comparatively few being “tables” in the usual sense of the word,
i.e., appearing as separately published volumes. This report is intended to pre-
sent a useful account of such tables. It is written from the point of view of
the research worker rather than that of the historian, biographer, or biblio-
phile.

Another peculiarity of the theory of numbers is the fact that many of its
devotees are not professional mathematicians but amateurs with widely vary-
ing familiarity with the terminology and the symbolism of the subject. In
describing tables dealing with those subjects most apt to attract the amateur,
some care has been taken to minimize technical nomenclature and notation,
and to explain the terminology actually used, while for subjects of the more
advanced type no attempt has been made to explain anything except the con-
tents of the table, since no one unfamiliar with the rudiments of the subject
would have any use for such a table.

There are three main parts of the report:

I. A descriptive account of existing tables, arranged according to the topi-
cal classification of tables in the theory of numbers indicated in the Contents.

II. A bibliography arranged alphabetically by authors giving exact refer-
ences to the source of the tables referred to in Part I.

IIL. Lists of errata in the tables.

Brief comment on each Part may be given here.

Part I is not so much a description of tables as a description of what each
table contains. It is assumed that the research worker is not interested in the
size of page or type, or the exact title of column headings, or even the notation
or arrangement of the table in so far as these features do not affect the practi-
cal use of the table. Since there is very little duplication of tables the user is
seldom in a position to choose this or that table on such grounds as one does
with tables of logarithms, for example. However, it is a well known fact that
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INTRODUCTION

many tables in the theory of numbers have uses not contemplated by the au-
thor of the table. A particular table is mentioned as many times and in as
many places as there are, to the writer’s best knowledge, practical uses to
which it may be put.

The practical viewpoint was taken in deciding what constitutes a table in
the theory of numbers, and what tables are worthy of inclusion. Tables vary
a great deal in the difficulty of their construction, from completely trivial tables
of the natural numbers to such tables as those of the factors of 22"+ 1, one ad-
ditional entry in which may require months of heavy computing. In general,
old obscure tables, which have been superseded by more extensive and more
easily available modern tables, have been omitted. Short tables, every entry
in which is easily computed, merely illustrating some universal theorem and
with no other conceivable use, have also been omitted. The present century
with its improved mechanical computing devices has seen the development of
many practical methods for finding isolated entries in number theory tables.
In spite of this, many old tables, any single entry of which is now almost easier
to compute than to consult, have been included in the report since they serve
as sources of statistical information about the function or the problem con-
sidered.

Most of those tables prior to 1918 which have not been included here are
mentioned in Dickson’s exhaustive three-volume History of ¢he Theory of Num-
bers. Under DicksoN 14 of the Bibliography in the present report will be found
supplementary references to the exact places in this history where these tables
are cited, arranged according to our classification of tables in the theory of
numbers. For example the entry

ds v. 1, ch. I, no. 54: ch. III, no. 235.

means that two tables of class d; (solutions of special binomial congruences)
are cited in vol. 1, chapter I, paper 54, and chapter III, paper 235.

For a fuller description of many of the older tables cited in this report the
reader is referred to Cayley’s valuable and interesting report on tables in the
theory of numbers, CAYLEY 7.

The writer has tried to include practically all tables appearing since 1918,
and on the whole has probably erred on the side of inclusion rather than ex-
clusion.

A few remarks about nomenclature in Part I may be made here. The
unqualified word “number” in this report means a positive integer and is
denoted generally by n. The majority of tables have numbers for arguments.
In saying that a table gives values of f(n) for »<1000 it is meant that
f(1),1(2), - - -, f(1000) are tabulated. If the table extends from 500 to 10 000
at intervals of 100 we write »=500(100)10 000. A great many tables have
prime numbers as arguments, however. Throughout the report the letter
designates a prime which may be 21, >1, or >2 according to the context.

(2]



INTRODUCTION

To say that the function f is tabulated for each prime of the first million as
argument, we write “f(p) is given for p <10%” Occasionally it is convenient
to use the words decade, century, chiliad, or myriad to indicate an interval of
10, 100, 1000, or 10 000 numbers. Frequently the arguments of a table are num-
bers (or primes) of some special form, such as a multiple of 6 plus 1. In cases of
this sort we use such notations as n = 6k+1<1000,0r 1013 < p=6x—1 <10 007.

In Part I, tables are described as though entirely free from errors, with the
exception of an occasional remark on the reliability of certain general utility
tables where the user has some choice in his selection.

The uninterrupted description of tables in Part I is made possible by Part
II, where one may find complete bibliographic references, arranged by au-
thors, to the one or more places in which each of the tables mentioned in
Part I appears. The various reprints, editions, or reproductions of a table are
distinguished by subscripts on the number following the author’s name. Thus,
for example, CAYLEY 6, refers to the original table, while CAYLEY 64 refers to
the same table as reprinted in his Collected Mathematical Papers. In Part I
these distinctions are rarely used, but in Part III they are convenient.

Following each reference in Part II (except CAYLEY 7, CUNNINGHAM 4042,
DicksoN 14, and D. H. LErMER 11) there appears in square brackets, [ ], an
indication of the kind (or kinds) of tables contained in the work referred to,
together with their location. The small boldface letters, with or without sub-
scripts, refer to the classification of tables given in the Contents. The page
numbers following any particular classification letter not only locate the table
for the reader in possession of the publication, but give an idea of the extent
of the table to the reader who may not have it, and will be of help in ordering
photostats or a microfilm of the table from a distant library. In further expla-
nation of the notation used, it should be noted that the absence of page num-
bers after a particular letter indicates that practically the whole work is
devoted to a table, or tables, of this particular class. An asterisk placed on a
classification letter indicates that errors in the corresponding table are cited
in Part III. When a publication has tables capable of several classifications and
errors are cited in all tables, an asterisk is placed after the closing bracket.
The following examples with explanations should make these notations clear.

[f.] A list of consecutive primes occupying practically the whole work re-
ferred to.

[di, 14-29: d#, 30-35: f,] Tables of primitive roots on pages 14-29. Solu-
tions of special binomial congruences on pages 30-35, with errors cited
in Part III. Lists of consecutive primes on practically every page.

As already mentioned, Part ITI gives errata in certain tables mentioned in
Part I and is arranged alphabetically according to authors. The list of errors
given for any particular table is not necessarily complete. Tables mentioned
in Part I but not in Part III, so that no asterisk appears after the reference in
Part II, may contain errors, either unknown to the writer or too trivial to be
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INTRODUCTION

of any practical interest. In cases where errors have been found by others, the
authority for the corrections, together with a reference to their source in case
they have been published, is generally given in parentheses after the errors in
question. In no case has an error been listed which was printed in connection
with the table itself.

The writer has seen nearly all the tables mentioned in this report in at
least one of the following libraries:

Brown University Mathematical Library, Providence, R. 1.
Princeton University Mathematical Library, Princeton, N. J.
University of California Library, Berkeley, California
Cambridge University Library, Cambridge, England

The Science Library, London, England.

The writer’s best thanks are due to the chairman of this Committee, Pro-
fessor Archibald, whose unceasing efforts and expert knowledge have added
greatly to the accuracy and reliability of Part II, and to Mr. S. A. Joffe, who
has read all the manuscript and proof with great care, and has given many
valuable suggestions.

The writer also wishes to acknowledge the frequent assistance of Miss
M. C. Shields of the Princeton University Mathematical Library. Dr.
N. G. W. H. Beeger has kindly supplied information about lists of primes,
Mr. H. J. Woodall, information about works of Cunningham, and Dr. S. Perlis,
information concerning the tables in the University of Chicago dissertations.

The part of the work on this report which was done abroad was made
possible by a fellowship of the John Simon Guggenheim Memorial Foundation.
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I

DESCRIPTIVE SURVEY
F. THEORY OF NUMBERS

a. PERFECT AND AMICABLE NUMBERS AND THEIR GENERALIZATIONS

The number # is called perfect if it is equal to the sum of its proper divisors
(i.e., divisors <#). Only 12 perfect numbers are known. These numbers are
given by 2~1(2*—1) forn=2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127. A list
of these 12 numbers, written in the decimal system, has been given recently by
TRAVERS 1.

Chapter 1 of DICKSON 4 gives a very complete historical account of perfect
numbers up to the year 1916 with many references to old lists of these numbers.
AxrcHIBALD 1 has given a complete up to date historico-bibliographic summary
in tabular form.

If we use o(n) to denote the sum of all the divisors of # (including 1 and #),
a perfect number is one for which o(n)=2#n. In case o(n)>2n the number »
is called abundant. A list of all even abundant numbers <6232 is given in
DicksoN 2 (Table III, p. 274-277). A rather special list of all primitive abun-
dant numbers (i.e., numbers containing no abundant or perfect factors) with
exactly four distinct prime factors of which the second in order of magnitude
is 5, appears in D1cksoN 3.

If » is such that o(s) =Fkn, then n is called multiply perfect and k is the
index of perfection. Thus a perfect number has an index of 2. The first real
table of multiply perfect numbers is due to CARMICHAEL 1, who gave a list of
47 such numbers including all <10° Later CARMICHAEL AND MAsSON 1 ex-
tended this list to 251 numbers. Further lists of such numbers of index k=35, 6,
and 7 appear in PoUuLET 1. The most complete list to date is POULET 2, which
gives 334 multiply perfect numbers with 3<k<8.

Two numbers %, and 73 such that each is the sum of the proper divisors of
the other, or in other words, such that o(n;) =o(ns) =n1+ns, are called ami-
cable. Euler discovered 64 such pairs, which are tabulated in Dickson 4. More
recent lists are found in MasonN 1 and in PouLET 2 (p. 46-50), the latter con-
taining 156 amicable pairs. A list of 21 new pairs, due to E. B. Escott, appears
in POULET § together with a table of the distribution of amicable numbers
<1033,

A set of k numbers n,, m,, - - - , 1, not necessarily distinct, and such that

a(n) =a(ng) = =c(m)=n+n+ - +n
is called a set of multiply amicable numbers of index k. Lists of such sets of num-
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a-b, DESCRIPTIVE SURVEY

bers with 2<% < 6 are found in MasoN 1, while many more for the same range
of k are given in POULET 2.

A series of numbers ,, #s, - - - each term of which is the sum of the proper
divisors of the preceding term is called an aliguot series with leader n,. The ques-
tion of whether there exists an unbounded aliquot series is at present unan-
swered. DicksoN 2 has considered all aliquot series with leaders < 1000. Table
I (p. 267-272) gives most of these series complete. 13 incomplete series are
given in Table II (p. 272-274). These are corrected and extended or completed
in PouLET 2 (p. 68-72) and PouLET 3 (p. 188). The longest completed series
has 138 as a leader and contains 178 terms.

In Table IV of DicksoN 2 (p. 278-290) the first few terms of aliquot series
with leaders <6232 are given; in each case enough of the series is given to be
sure it is not periodic with a period <6. If an aliquot series is purely periodic
with proper period %# then the % distinct members of the series are called
sociable numbers of index k. Perfect and amicable numbers correspond to k=1
and 2. PouLET 2 (p. 68) has discovered two sets of sociable numbers with in-
dices S and 28 and with leaders 12496 and 14316 respectively.

Tables for facilitating the investigation of perfect, abundant, and amicable
numbers, and their generalizations are described under bs (sum and number of
divisors, and allied functions).

b. NuMEericaL FuncTions
bi. Euler's totient function and its inverse, sum, and generalizations

There are but two tables of Euler’s totient function ¢(n), defined as the
number of numbers not exceeding # and prime to #. These are SYLVESTER 2
in which ¢(n) is given for # <1000 and J. W. L. GrLA1sHER 27, where (in Table
I) the function is tabulated to #=10000. The fact that there are only two
tables of this fundamental function may be accounted for by the simple for-
mula for ¢(n), by means of which isolated values of ¢ may be quickly found,
once the factorization of » into its prime factors is known, namely:

S e P )= (1= Dps (pa—1) - p" (o — D).

Both tables were in fact constructed with a view to obtaining numerical data
for the less simple functions, the sum and inverse of ¢.

There are several small tables of the inverse of ¢ giving all n’s for which
¢(n) has a given value. For ¢(n) <100 we may cite Lucas 5, and KRAITCHIK 4.
These also give the number of »'s in each case. Two much larger tables exist:
CArMICHAEL 2, which extends to ¢(n)=1000, and J. W. L. GLAIsHER 27,
where Table II gives all n’s up to ¢(n)=2500.

A manuscript table of MILLER 1 gives odd solutions n of ¢(n)=N for all
possible N <10 000 and was used to verify Glaisher’s Table II.

The sum function

(6]



DESCRIPTIVE SURVEY by
»n 3 3
o(n) = 3 90) = Tﬁ + 0(n log )

has been the subject of numerous papers. A table of ®(n) for 5 < 100 together
with (for comparison purposes) the nearest integer to 3n%/x? is given in
PEROTT 1. A more extensive table is SYLVESTER 2, which tabulates &(n) up
to n=1000 together with 3n3/x2, correct to the second decimal place. SARMA
1 has tabulated &(n) for »=2300(50)800 and for 820, and gives for the same
values of n the error function

3n?
E(n) = ®(n) — P

which he states is positive for # < 1000 except for n=_820. Values of ®(»s) and
3n?/x? for n=1000(1000)10 000 are given in GLAISHER 27. Isolated values of
&(n), at least for n< 500 000, are most easily calculated by means of the
formula

2m) = 1= 5 {[Z]wor+ u[2] @ - 0} - wevmivar

Pl 1 4

where the values of the M&bius function u(%) may be taken from MERTENS 1,
and its sum function
M(z) = ;:: ()
may be taken from the tables of STERNECK 1, 2.
A function ¥(), similar to Euler’s ¢(n), which may be defined as the least
common multiple of the factors occurring in the above product for ¢(n) or as
the least positive exponent k for which the congruence

x* = 1(mod »)

holds for all x prime to », has important applications in the theory of the bi-
nomial congruence. CAUCHY 1, 2 contain tables of y(n) for <100 and for
7 < 1000 respectively, while MOREATU 1 has a table of the inverse of ¥(n) giving
all values of # below 1000 (and in most cases many larger values also) for
which ¢(n) has a given value < 100.

Another special table dealing with the numbers less than and prime to n
is due to BACKLUND 1, and gives the frequency of a fixed difference between
consecutive members of the set of integers prime to #=2-3-5--- p, for
1=<r<8. Thus for r=6, we find that among the ¢(2:3-5-7-11-13) = ¢(30030)
= 5760 numbers less than and prime to 30030 there are precisely 1690 consecu-
tive ones differing by 6.

Lists of the actual numbers <# and prime to » are given for every <120
in CRELLE 3.

(7]
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If all irreducible fractions between 0 and 1 whose denominators do not
exceed N be arranged in increasing order the resulting sequence of ®(N) frac-
tions is called the Farey series of order N. GoopwyN 1, 2 give the Farey series
of orders 100 and 1000 respectively. The Farey series of order N less than 100
or 1000 may be read directly from the corresponding table simply by omitting
those fractions whose denominators exceed N.

bs. Sum and number of divisors, and allied functions

There exists only one large table of the sum ¢(n) and the number »(n)
of divisors of # (including 1 and ). These functions are given in Table I of
GraisHER 27 for all # up to 10 000. A table of o(n) for » <100 is in GLAISHER
17, where the function is denoted by ¥(n). Table III of GLAISHER 27 gives all
values of # = 10 000 for which »(n) has a given value, while Table IV gives for
each possible value of o(n) < 10 000 all those n’s for which ¢(n) has this value.
DicksoN 2 has published a somewhat similar inverse table of o extending only
as far as #=1600. These inverse tables are useful in finding multiply perfect
numbers, amicable numbers, etc. Another kind of table useful in this con-
nection gives the decomposition into prime factors of the values of o(p®)
=(p=t1—1)/(p—1), two examples of which are EULER 1 and KRAITCHIK 7.
The former table extends for each prime p as far as a=r, as follows:

Pl 2 3 S 7T 18 1 19 2 295p<100
w | %6 15 9 10 9o 71 5 5 4 3

The latter table extends for each p <1000 over =2, 3, 4, 5, 6, 8, 10, 12 and
for p <100 (and for several larger primes) over a=7, 9, 14, 15, 16, 18, 20, 24,
and 30.

In connection with the function » there is the concept due to Ramanujan
of a highly composite number, that is, a number which has more divisors than
any smaller number. A list of the first 103 highly composite numbers extending
as far as 6 746 328 388 800, which is the first number to have as many as 10080
divisors, is given in RAMANUJAN 1.

Glaisher has given several tables of numerical functions which depend upon
the difference between the number of divisors of # of one specified form, and
the number of divisors of # of another specified form. These functions occur
naturally in the series expansion of certain elliptic functions and are also con-
nected with the number of representations of integers by certain binary quad-
ratic forms. The function of this kind most frequently met with is E(n), the
difference between the number of divisors of # of the form 4k+1, and the
number of those of the form 4%+ 3. Tables of E(n) are given in GLAISHER 17,
p- 164-165 to n=100, in GLAISHER 15, to »=1000. In GLAISHER 18, and in
GLAISHER 19, the function E(12n+1) is given for » < 100. The function H(n)
denoting the excess of the number of 3441 divisors of # over the number of
3k+2 divisors is tabulated in GLAISHER 19 to =100, and in GLAISHER 24,

(8]
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to #=1000. The function J(n) denoting the excess of the number of 8%+1
and 8%+3 divisors of # over the number of 82+5 and 8%+-7 divisors is tabu-
lated for #<1000 in GLAISHER 25. The function E;(n) denoting the excess of
the sum of the squares of the 4k+1 divisors of n over the sum of the squares
of the 4k+-3 divisors is given for » < 100 in GLAISHER 17.

The sum of the first # values of the above functions has been given by
Glaisher as follows:

function range of » asymptotic formula reference

g o(k) =1000(1000)10 000 wias/12 GrasmE 27, p. viii
g »(k) = 1000(1000)10 000 nlog nt(2C—1)n  GrasmER 26, p. 42

g EGF)  m=100(100)1000(1000)10 000 _— Graszzs 26, p. 193
)é H#)  »=100(100)1000(1000)10 000 w/33 GramssEz 26, p. 204
36 w=100(100)1000 wr/2vF  Guawssz 26, p. 213

In each case the values are compared with the corresponding asymptotic for-
mula.

For a table of all the divisors of each number up to 10 000 see ANJEMA 1.

bs. Miobius’ inversion function and ils sum
The function u(#) defined for positive integers n by -

v =1, w@)=-1, p@p*)=0 for a>1
u(mn) = u(m)u(n) (m and n coprime),

plays a very fundamental role in the theory of numerical functions, and has the
value +1 or —1 if » is a product of an even or odd number of distinct primes,
but vanishes for all other numbers s> 1. This function is so easy to evaluate
for isolated numbers whose factors are known that tables of u(n) are rare and
were constructed to study the behavior of a more complicated allied function.
GrAM 1 gives u(n) together with the sum S,=) s.u(k)k~! for #=<300. This
was published before Euler’s conjecture that S,—0 as n— had been rigor-
ously proved. MERTENS 1 contains a table of u(n) and of the sum M(xn)
=) 2.u(k) for #<10 000. STERNECK 1 tabulates M () for all <150 000,
while in STERNECK 2, M (n) is given for n=150 000 (50) 500 000. Finally in
STERNECK 4, 5 a table of M (n) is given for 16 values ranging from 600 000 to
5 000 000. These tables were computed with the hope of shedding some light
on the still unsolved problem of the order of magnitude of M(x), a problem
intimately connected with the Riemann hypothesis. These tables, however,
may also be used to advantage in computing other sum functions, as indicated

[9]
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above in connection with ®(n). A list of numbers <10* which are primes or
products of distinct primes is given in boldface type in Table III of GLAISHER
27. These are arranged, in increasing order, into sets according as # is a prod-
uctof 1,2, 3, 4 or 5 distinct primes. This list is useful in evaluating and invert-
ing series involving u(n).

bi. The quotients of Fermat and Wilson

The integer g,=(a?'—1)/p, where p is a prime, is known as Fermat's
guotient and occurs in several branches of the theory of numbers. Its connec-
tion with the so-called first case of Fermat’s last theorem, which dates from
1909, accounts for most of the tables of g,.. MEIsSNER 1 tabulated ¢gs modulo 2
for »<2000. This table was extended from 2000 to 3697 by BEEGER 3, who
discovered a second example p=3511 of g2=0 (mod p), the first being p=1093.
The table of HAUSSNER 2 gives ¢ (mod p) for p =10 009. BEEGER 4 extended
his table from 3697 to 13999, and recently this high limit has been raised to
#<16 000 in BEEGER 8. Extensive tables for g, exist only for a=2. HAUSSNER
3 gives a table of all known cases of ¢,=0 (mod p) in which ¢ < p. Tables such
as MEISSNER 2, BEEGER 1, and CUNNINGHAM 5 which give all solutions x of
27 1=1 (mod p?) are described under d; (solutions of special binomial con-
gruences).

The integer w,= [(p—1)!+1]/p, where p isa prime, is known as Wilson’s
quotient. Only two small tables of w, (mod p) exist, namely BEEGER 2, for
$<300, and E. LEHMER 1, for p<211. The congruence w,=0 (mod p) has
only two known solutions p=S5, 13.

bs. Sums of products of consecutive integers

Two tables may be cited in this connection: GLAISHER 23 which gives the
sums of products, k at a time, of the integers 1,2, 3, - - - , n for all 2<# and for
n<22, and Moritz 1 which gives the sums of products % at a time of the in-
tegersm+1,m+2,- - - ,m+nfor0=m=10,1sn=<12and 1%k =<12. Tables
of the sums of like powers of 1, 2, - - - , i, as well as tables of Bernoulli num-
bers and polynomials, will be cited and described in another report of this
Committee, Section 1.

bs. Numerical recurring series

There are a number of recurring series which have been computed to a
great many terms, in particular LAISANT 1, in which the Fibonacci series
1#,(0,1,1,2,3,5, - - -) and its associated series v,=us,/%, are both tabulated
up to n=120. In most cases these series are rather special and were computed
for factorization purposes. These will be described under e;, but may be cited
as follows: HarL 1, LaisanT 1, D. H. LEEMER 2, KrAITCHIK 4, LUcas 1,
Pouirer 3.

(10]
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by Triangular numbers

There are three tables of triangular numbers n(n-+1)/2. The earliest and
most extensive is JONCOURT 1, which gives the first 20 000 triangular numbers.
KAauUsLER 1 has a table of the first 1000 triangular numbers, with their doubles
and their halves whenever these latter numbers are integers. More recently
BARBETTE 1 has given the first 5000 triangular numbers. Figurate numbers of
higher order, namely

wot D+ k- om= ("7,

are essentially binomial coefficients, tables of which numbers will be cited and
described in another report, Section I, of this Committee.

¢. Periopic DECIMALS

Although tables for the conversion of ordinary fractions into decimals be-
long properly to another report of this Committee, Section A, there are a few
such tables which are of number-theoretic interest inasmuch as they give in
each case the complete period of the repeating decimal.

Perhaps the best known table of this sort is due to Gauss 5, and was in-
tended for use (according to the title) in finding the complete period of the
repeating decimal for P/Q, where Q < 1000. Strictly speaking this is true only
for <467 but the table is also available for an unlimited number of other
fractions. We can, of course, suppose that P <Q and prime to Q and by partial
fractions we may express P/Q by

P/Q = £l—+ ﬁ +---+ ﬂ
n 2 et
where Q=pT'p3* - - - p3*, the p’s being distinct primes, and the P’s being in-
tegers. Hence we need consider only fractions of the form P/Q, where Q is a
prime or a power of a prime #2 or 5. Therefore we set Q=2*, ¢=¢(Q)
=p=Y(p—1)=e¢-f, where ¢ is the exponent of 10 and f its residue-index
(mod ). Let g be any primitive root of p* so that g/=10 (mod p°). Then if
P=g! (mod p) we can write

i =kf+» 0=sk<e0=v<])
Then
P = gt = (g/)*g’ = 10%g" (mod $°),
which shows that P and g’ have essentially the same decimal expression, or in

other words it suffices to tabulate the f really distinct periodic decimals corre-
sponding to the f fractions

1 g g g
p* P p° Tope
[11]
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In particular if 10 happens to be a primitive root of p= there is only one period
to give.

Such a table is given in Gauss 5 for p*<467. For 467 < p= <1000 only the
periods for 1/p* are given. The primitive roots used for each p= are given on
page 420. In actual practice it is seldom necessary to anticipate which of the f
fundamental decimal periods corresponds to a given P/p?, since after the first
few digits are determined this can be recognized from the table.

There are three other tables similar to Gauss 5. In fact this table is an ex-
tension of an earlier one for p < 100 given in GAUss 1. Another table for p < 347
due to Hoilel is given in LEBESGUE 2 and is reproduced in HoUEL 1.

Another and more complete set of tables which serve the same purpose
more expeditiously is due to Goodwyn. In GoopwyN 3 are given the possible
periods of every fraction P/Q with Q <1024, while the possible non-periodic
part of the decimal (if any) may be read from GoopwyN 2. GoopwYyN 1 con-
tains the same material as GoopwyN 2, 3 but is limited to fractions with de-
nominators <100. These rare tables are described in greatest detail in
GLAISHER 4.

Tables giving a complete period when a rational fraction is converted into a
“decimal” in a scale of notation different from 10 are as follows: BELLAVITIS 1
has given a table! similar to Gauss 5 for p <383 but with the base 2 instead
of 10. CuUNNINGHAM 12 gives the complete period of 1/ for base 2, for 7 <100,
while CUNNINGHAM 18 contains a table of the same extent for the bases 3 and 5.

d. THE BiNoMIAL CONGRUENCE

The congruence z"—a=0 (mod m) is the subject of a great many tables
many of which can be classified in several ways. The case #=2 is not consid-
ered here but is discussed under i. There is, of course, an intimate connection
between the binomial congruence and the binomial equation *—a=0, espe-
cially when a=1. Tables having to do with this equation are treated under o.
Every solution z of the binomial congruence gives a factor m of the number
a2"—a. Hence tables of factors of 2*—a or even x*—ay", which are described
under e, give, indirectly, solutions of the binomial congruence.

It is difficult to give an orderly description of the tables relating to the
binomial congruence without making some conventions as regards nomencla-
ture and notation. Thus the real integer x (if it exists) will be called the dase,
n will be called the index of g for the base x modulo m, and a will be called an
nth power residue of m, and we shall write (a/m),=1 to indicate that x exists.
The term solution of a binomial congruence will be reserved to denote the re-

1 To save space such a decimal as
1/25 = ,00001010001111010111* 00001010001111 - - -

is written simply 41113, thus indicating that the first half of the period (to the left of the star)
begins with 4 zeros, followed by 1 one, 1 zero, etc. The second half of the period is complementary
to the first.

[12]
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sult of solving the congruence for the unknown base. The modulus m is almost
always a prime or a power of a prime, and when a table extends to all such
moduli not exceeding L we shall write p= < L, where it will be understood that
az1.

When a=1, the following nomenclature will be used. If n=e¢ is the least
positive number for which 2*=1 (mod ), then for brevity e is called the ez-
ponent of x (mod p).! The integer f=(p—1)/eis called the residue-index of x
(mod p), (after Cunningham), and is found more frequently than e in tables
on account of its small average size. Moreover, if f=35 for instance, then, by
Euler’s criterion, x is a fifth (but not higher) power-residue (mod ). Hence
tables of f give indirectly, by setting f=k, 2k, 3%, - - - , a list of those primes
which have x as a kth power-residue, or a list of those x’s which are k2th power
residues of a given prime. Those numbers x (positive or negative) for which
f=1 are called primitive roots of p.

d;. Primitive roots

There are ¢(p—1) incongruent primitive roots of p. The fact that there
are so many primitive roots causes no difficulty in the theory of the binomial
congruence but has caused considerable confusion in the tabulation of primi-
tive roots. There are only four tables giving the full set of primitive roots of .
These are OSTROGRADSKY 1, for p <200, reproduced in CHEBYSHEV 2, CAHEN 1,
and GRAVE 3, and extended in CHEBYSHEV 2;, to p < 353; CrELLE 1 for p< 101,
except for p=71, and KuLik 2, where 103 < p < 349.

In most applications it is sufficient to know only one primitive root of p.
All the others, if need be, may be generated from a single one by finding the
residues of

g g™ ¢, g™ (mod p)

where 7y, 73, - -, 74 are the ¢(p—1) numbers less than and prime to p—1.
For p<1000 the Canon Arithmeticus, JacoBI 2, gives these various powers.
For this reason authors of extensive tables of primitive roots have been con-
tent to give only one or sometimes two primitive roots for each p. A confusion
exists, however, as to which root should be given, some authors giving always
the least positive root, some the absolutely least root, some both, but fre-
quently any convenient root, especially + 10 when possible. It is often pointed
out that primitive roots with small absolute values, especially + 10, are easier
to raise to high powers (an operation which is most frequently met with) than
large roots. When p is quite large however this argument now-a-days has less
weight, for in this case it is not a question of computing g* by successive multi-
plications by g, but of calculating g* for isolated values of k. This is best done
by a computing machine writing % to the base 2 and using the method of

1 Reuschle (1856) and, more recently, Cunningham use the terminology “e is the hauptexpo-

nent of x.” This, and the above nomenclature is somewhat opposed to the older and more lengthy
“e is the exponent to which x belongs,” in which ¢ is thought of as possessing x.

[13]
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successive squarings modulo p in which case one soon loses sight of the original
root g. Perhaps the best reasons for insisting on least positive primitive roots
are 1) that this permits the collating of tables of primitive roots, and 2) that
there is considerable theoretical interest in the question of the distribution of
primes with large least primitive roots. The following is a tabular description
of the 20 extensive tables of primitive roots arranged according to the highest
value of p tabulated.

Tables of Primitive Roots
reference range of § t“:ﬂf‘:‘“ type of root hdki"ﬁ:‘w?t“ 10

Jacos1 2 1-1000 yes 3 yes
WERTHEIM 1 1-1000 no 1 yes
Kuux 2 1-1009 no 1 no
WERTHEIM 2 1-3000 yes 1 yes
CAHEN 3 200-3000 no 1 yes
WERTHEIM 3 3000-3500 yes 1 no
Korkin 1 1-4000 yes 3 no
Reuscare 1 1-5000 yes 1,3 no
WERTHEIM 4 3000-5000 yes 1 yes
Posse 1 4000-5000 yes 3 no
Posse 3 1-5000 yes 3 no
WERTHEIM § 1-6200 no 1 yes
DEesMAREST 1 1-10 000 no 3 not
Posse 2 5000-10 000 yes 2 no
Posse 4 5000-10 000 yes 2 no
GOLDBERG 2 1-10 160 1
Krarrcaix 1 1-25 000 no 3 no

{Cmmmom 1-25 409 no 1,1 no
WoopaLL and CrEAx 1

{Cmmmom 1-25 409 yes 1,1’ no
WoopaLL and CREAX 2

{Km\m:mx 4 1-27 457 no 3 no
(p. 131-145)

1 Yes on page 308.

The majority of tables give the factorization of p—1 into powers of primes,
information essential to the application of primitive roots to the binomial
congruence. Whether or not this is given in a particular table is indicated in
the center column above. The types of roots tabulated are as follows:

1. least positive primitive root

1/, greatest negative primitive root

2. absolutely least root

3. some primitive root usually not exceeding 10in absolute value modulo p.

ReuscHLE 1 gives the type 1 root for $ <1000 and one or two roots of type
3 beyond 1000. CunNiNgHAM, WoODALL and CREAK 1, 2 give both 1 and 1’
for each p. These tables are perhaps the most reliable of all. The authors also
give interesting data on the frequencies of least positive and greatest negative
roots. Some tables give an indication whether or not 10 is a primitive root of p.
Thus JacoBI 2 bases each table of his Canon Arithmeticus (described under d;)

[14]
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on the primitive root 10 whenever it exists. Other tables, as indicated in the last
column of the above tabular description, mark with an asterisk the primes
having 10 as a primitive root. Although this is not done in Krarrcuix 4 (p.
131-145), he gives a separate list (p. 61) of the 467 primes <10 000 of which 10
is a primitive root. On p. 55-58 are given lists of those primes <10 000 whose
least positive primitive root has a given value, and also the number of such
primes. A more extensive table of the number of primes whose least positive
and greatest negative primitive root have a given value is given in CONNING-
HAM, WooDALL and CRrEAK 1, for p < 25 409. It is remarkable that primes have
such small primitive roots,! and this fact has been of great assistance in the
preparation of tables described above.

ds. Exponents and residue-indices

Interest in the exponent of x modulo p first arose in the special case of
x2=10. It was observed that for p2 or 5 the length of the period of the circu-
lating decimal representing 1/p was a certain unpredictable factor ¢ of p—1,
and that the number 10*—1 was divisible by p if and only if # was divisible
by e, long before it was realized that these phenomena form only a part of a
general theory of the binomial congruence (in which the base 10 is in no way
peculiar), and in terms of which they are best described and investigated. As
this bit of history has repeated itself in the case of countless individuals who
have approached the theory of numbers from an interest in circulating deci-
mals, we shall consider first the tables devoted to exponents of 10.

The earliest table is due to BURCKHARDT 1 who completed the last page of
his factor table with a table of exponents of 10 for <2550, and 22 larger
primes. This table was reproduced with certain corrections by Jacosr 2 who
used it in constructing his Canon Arithmeticus. Tables of exponents and resi-
due-indices of 10 for various ranges of p may be given the following tabular
description.

Tables of Exponents and Residue-indices of 10

reference range of modulus exponent residue-index
BurcxHARDT 1 $<2550 yes no
DESMAREST 1 $<10 000 no yes
RevuscHLE 2 #<15 000 yes yes
SHANKS 1 $<20 000 yes no
KrArrcuix 1 $<25 000 yes no
{Cumtmcm $2<10 000 yes yes
WoopALL AND CREAK 1 {10000< $3525 409 no yes
SHANKS 3 20000 < » <30 000 yes no
Kearrcaix 4 (p. 131-145) 93527 457 no yes
3Bork 1 $<100 000 no yes if >2
HertzER 1 100000< <112 400 no yes if >2
SHANKS 4 30000< <120 000 yes no

1 All but 163 out of the 2800 primes under 25 410 have 25 g<12. The smallest prime known
to have its least positive primitive root =71 is p=48 473 881.
3 This table is due to F. Kesaler.
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A short table for composite as well as prime moduli (based on GoopwyN 3)
has been given by GLAISHER 4. This has for argument every number ¢< 1024
and prime to 10, and gives the exponent ¢ of 10 modulo ¢ as well as ¢(g) and
¢(q)/e, where ¢ is Euler’s totient function.

Tables of exponents and residue-indices of 2 may be tabulated in like man-
ner as follows:

Tables of Exponents and Residue-indices of 2

reference range of modulus exponent residue-index

CUNNINGHAM 4 2°<1000 yes yes

1 MEISSNER 1 $<2000 no yes

1 BEEGER 3 2000< p< 3700 no yes
REUSCHLE 1 $<5000 yes yes

1 HAUSSNER 2 £510 009 no yes

1 BEEGER 4 3700< p<14 000 no yes

1 BEEGER 8 14000< p<16 000 no yes
Krarrcaix 1 £<25 000 yes no

{Ctnmmcm { #*<10 000 yes yes
WoopaLr and CreAxk 1 10000< p 525 409 no yes
CuNNINGHAM and WOODALL 7 $<100 000 no yes if >2
KrarrcHik 4 (p. 131-191) <300 000 no yes

There are four tables of Kraitchik which give residue-indices of 2 for primes

of special fcrms up to high limits as follows:
p=2:3v5'4+1<107
KRAITCHIK 4, p. 53 p=k2*4+1,3<%k <99 (0dd), 22=n=<36, and
2-108< p< 1012

KRAITCHIK 4, p. 192-204 p=>512k+1<107
KRAITCHIK 6, p. 233-235 p=£k27+41, 108<p <102, £ <1000.

Tables of exponents and residue-indices of other bases are less numerous
and less extensive and give this information for several bases at once. They
may be described as follows:

reference bases range of modulus exponents residue-indices
RevuscHLE 1 3,5,6,7 £<1000 yes yes
KrAITCHIK 4 (p. 65) 2,3,5,10 $<1000 no yes
{Cmmmcm {2, 3,5,6,7 $*<10000 yes yes
WoopALL and CREAK 1 10,11,1 {10000< $525409 no yes

Another special table of CUNNINGEAM and WooDALL 1 gives for » <3001
the least positive a for which 10® 2:F 1=0 (mod p) has a root x, and also the
least such x.

Two, more elaborate tables, of the same type, are given in CUNNINGHAM,
WoopaLL and CrEAK 1. These give for each p=<10 000, and for each of the
four values y=3, §, 7, and 11, a set of three numbers (xo, oo, % ) satisfying
(for a certain choice of signs + ) the two congruences

==+ y%, t5y% + 1 = 0 (mod p°),

1 These tables give residue-indices as incidental data. The residue-indices were obtained from
the other tables in this list.
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where ay is the least possible such number for which x; and x; exist, and where
x9 and x4 are also as small as possible. In the first table (p. 33-64), t=2, while
in the second (p. 65-96), ¢=10. These tables were used by the authors for find-
ing exponents of y (mod p) from the known cases y=2 and y=10.

There exist also two small tables of Krarrcuix 4 (p. 63-65), which give
the least positive number x for which 2*=4 (mod p) for all » <1000 for which
such an z exists, together with a list of all » <1000 for which no such x exists.
The first table deals with A=3, and the second with A=S5.

An analogue of the series of numbers ¢"—1 (=0, 1, 2,---) is the
Fibonacci series

0,1,1,2,3,5,8,13,- - -
defined by
Un = tho1 + Un-s, %o = 0, % = 1.

Corresponding to the exponent of ¢ (mod ) we may define, after Lucas, the
rank of apparition of p as the least positive value ¢/ of #n for which u,=0
(mod p). Except for p=S5, ¢’ is a certain divisor of p+1 (more precisely
p—(5/9)), and the quotient f’=(p+1)/¢ is the counterpart of the residue-
index. KrAITCHIK 4 (p. 55) gives, for each $ <1000, the corresponding value
of f'.

An inverse table giving those p’s for which the exponent of ¢ (mod p) has
a given value ¢, would be a table of so-called primitive factors of a*—1. Such
tables are discussed under €;. A similar table in which the residue-index fis
given would be a table of those p’s of which @ is an exact fth power residue. Such
tables are described under d;.

ds. Powers and indices

If g is a primitive root of p then the p— 1 successive powers

goo glv g’, ) g’_’
taken modulo p are congruent, in some order, to the numbers
1,2,3,---,p—1.

A table for a fixed prime p of powers of a primitive root g giving for each
number 7, 0=Si=< p—2, the least positive number 5 for which

g' = n (mod p)

may be thought of as similar to a table of the exponential function ¢*. An in-
verse table, giving for each number #7#0 (mod p) that index i=1Ind,n (mod
#—1) for which the above congruence holds, would correspond to a table of
natural logarithms, and can be used, as suggested by Gauss 1 who published
such a table of indices for each prime <100, in precisely the same way as a
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logarithm table for finding products, quotients, powers and roots modulo p.
There is one practical difference, however, between a table of logarithms and a
table of indices; the logarithm table can be used inversely to find anti-loga-
rithms with perfect ease because log x is a strictly increasing function of z,
whereas a table of Ind » (mod p—1) forn=1,2,3,- .., p—2 has its values
scattered in such confusion that, except when p is small, there may be some diffi-
culty in finding the value of # (mod p) corresponding to a given value of Ind
(mod p—1). It therefore adds considerably to the effectiveness of a table of
indices to print a companion inverse table of powers of g (mod p). This ap-
pears to have been done first by OsTROGRADSKY 1 for all primes <200 in
1837-8. This table has been reproduced in CHEBYSHEV 2 and GRAVE 3, and
extended to p=2353 in CHEBYSHEV 2;. CAHEN 3 has reproduced the table for
<200 from Chebyshev but has introduced many new errors.

An entirely independent calculation of a set of tables of similar extent
(including also powers of primes <200) was made by HoUEL 1, who based his
table on absolutely least primitive roots. This table was first printed in
LEBESGUE 2 in 1864.

Two years after the appearance of Ostrogradsky’s work, Jacos: 2 published
his monumental Canon Arithmeticus, which extends to p=<1000. The part
for p<200 was reproduced from OsTROGRADSKY 1. Following Ostrogradsky,
Jacobi uses the primitive root + 10 whenever possible, otherwise usually a
primitive root whose square, cube, or other low power is congruent to 10
(mod ). This exceedingly useful table is still in print after 100 years.

A small table for moduli p= and 2p= < 100 appears in WERTHEIM 5. Another
table for » <100 appears in UsPENskY and HEASLET 1.

A somewhat similar table entitled A Binary Canon has been given by
CunNINGHAM 4. This gives for each p= < 1000 a pair of tables, one giving values
of 2¢ (mod #°), and the other giving, inversely, whenever it exists, that value
of i<p="1 (p—1) for which 2° has a given value (mod p*). For such moduli p=
as have 2 for a primitive root this pair of tables is equivalent for most purposes
to the corresponding pair in Canon Arithmeticus. For the other moduli the
tables are smaller or have blank entries since not all the powers of 2 will be
distinct, and certain indices are necessarily non-existent. This table is intended
chiefly for studying the binomial congruence with base 2.

The Canon Arithmeticus may be said to have reduced any problem to which
it is applicable to at most a simple pencil and paper calculation. The question
of extending the Canon to, say, p < 10000 is one which presents certain practical
difficulties. If the original form were preserved it would occupy several thou-
sand pages. With modern computing machines in use, however, such an ex-
tensive table is really unnecessary. In fact, as remarked above, the problem
of finding g* for an isolated value of # (mod p) is one that presents very little
difficulty. This means that we may dispense with that half of the Canon com-
prising the tables giving powers of g. The remaining tables of indices of all

[18]



DESCRIPTIVE SURVEY ds—d,

numbers <p may now be condensed by listing only indices of primes since
we have the multiplicative relation

Ind (mn) = Ind (n) + Ind (m) (mod p — 1).
Finally if ¢ is a rather large prime then by use of one of the relations
Ind(q) =Ind(g+ p) =Ind(g+ 2p)--- (mod p — 1)

one soon finds a number ¢+ kp all of whose prime factors are rather small.
Hence we may tabulate only the indices of rather small primes. A similar
condensation is possible for the modulus p= (a>1). A table based on such a
scheme has been published in Kra1TcHIK 4 (p. 216-267), which gives for each
modulus $*<10000 the indices of all primes < 100. This is an extension of a
previous table KraircHik 3 giving for p*<1000 the indices of every prime
< 50. KrarrcHIK 4 (p. 69-70) has also a table of the indices of odd primes <37
for moduli 2*, 5 <20, and 5", n<16.

Tables giving powers but not indices are either of a small extent or else
are of rather special types. There is the table of KuLik 2 which gives for each
p=349all powers (modulo p) of the least primitive root. This table is described
in the introduction as extending to p=1009 but its publication was abruptly
discontinued in the middle of the table for p=353. A small table giving all
powers of all numbers (modulo p) is due to BUuTTEL 1. It extends as far as p=29.

LEVANEN 1 constructed a table giving for each m <200 and prime to 10
the absolutely least value (mod m) of 10* for #=0, 1, - -, ¢/2, where ¢ is
the exponent of 10 (mod m).

CunnINGHAM 11 has given for each »<100 and for some much higher
primes the values (modulo p) of the functions E,= 22", 2&», 3", 5" for all values
of n.

The primitive root tables of Korkin 1 and Possk 1, 2, 3, 4 described under
d, give for each prime in the range considered certain powers of a primitive
root modulo p. The notation for the various powers tabulated is as follows

3 3
= g1z} f! = goind = g(p-n/z‘, cen
= glr-D13 g = g(p—x)/:’, g’ =g L
u = gtrliq u = g(r—l)lc’, y' = glr-nid ..

where ¢ is a prime factor >3 of p—1.

di. Solutions of special binomial congruences

Tables of powers and indices of a primitive root (described under ds) such
as JACOBI 2 serve to solve the general binomial congruence

1) 2" = r (mod p).

In fact, armed with such a table, this congruence may be replaced by the
equivalent linear congruence
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nInd, 2 = Ind, r (mod p — 1).

In spite of the availability of this general method, there exist many tables
giving explicit solutions of binomial congruences of more or less special type,
partly for the same reason that, in spite of the existence of tables of logarithms,
there are numerous tables of square and cube roots, and partly because such
tables have in most cases some important connection with the problem of
factorization, a fact which accounts for the many extremely special tables de-
scribed in what follows.

There is in fact only one table giving explicit solutions of the general con-
gruence (1), and this table is very limited. It appears in CRELLE 1, and is re-
produced in CRELLE 2, and gives for each # all solutions x (mod p), if any, of

2™ = r (mod p) 1srsp—-1, psio0L

The degree n ranges over all integers <p in case p <31, but for 31< <101,
n assumes only those values which are prime factors of p—1.
Tables of solutions of the more specialized congruence

2" = 1 (mod p°)

are more numerous and extensive. REUSCHLE 3 contains tables of solutions
of this congruence with a=1, $ <1000, and # =< 100, besides » =105, 120, and
128. There is a table for each value of n giving only the ¢(n) “primitive”
solutions of the congruence for each p=kn+1<1000. The #—¢(n) imprimi-
tive solutions can be taken, if need be, from the tables corresponding to the
several divisors of s. Similar tables with a=1 and 2 (and for small p’s, many
higher values of «) have been given in CUNNINGEAM 5. However, these extend
only to p<101. A more extensive table is due to CUNNINGHAM and CREAK 1.
This is arranged according to = and extends to p=<10 000. For each such
modulus p= there is given the least positive solution x of 2"=1 (mod p°),
where # runs through the divisors of ¢ =p=! (p—1) with the exception of
the trivial cases n=1, and n=¢. The other solutions can be found if necessary
by taking successive powers (mod $°) of the tabulated solutions.

Cunningham’s Binomial Factorisations (CUNNINGHAM 28-34, 38, 39), 9
volumes of which have appeared, contain extensive tables of the ¢(») primi-
tive solutions of z"=1 (mod p°) for p=<100 000 and for numbers » from 3
to 17 and their doubles. Various smaller tables are given in which p=<10 000
(in some cases 50 000) for the odd numbers 7 <50 and their doubles, and also
for a few higher composite values of . The more extensive tables for a fixed n
are not confined to one volume but are distributed over three or four volumes
as indicated below. The sequence of prime arguments in the tables is often
interrupted to insert a sequence of prime power arguments. On the whole the
arrangement leaves something to be desired. The following scheme gives some
account of what values of # are considered in the various volumes.
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values of » volume numbers
4, 8, 16, 32: 3,6, 12, 24: - . - 1,4, 8.
5, 10, 15, 20, - - - 2,6,8,9.
7,14,21,---:9,18,27, - - - 3,7,8,9.
11,22,33,---:13,26,39,: - 5,7,8,9.
17,34,---:19,38,---:23,46,- - - 8, 9.
) 20, 295 p <47 9.

For =8, Cunningham’s table of the solutions of z*+1=0 (mod »)
(CunNNINGHAM 28, 29) has been extended from p=100 000 to =200 000 by
HorppENoOT 2.

So far we have discussed the special congruence

z" = 1 (mod p%)

in which » is fixed throughout the table. There are several tables in which
n=p—1. Tables of solutions x of the congruence

(2 z7~! = 1 (mod p?)

which occurs, for instance, in the discussion of Fermat’s last theorem date
from Jacos1 1, who gave all solutions of (2) for 3<p=37. BEEGER 1 gives a
more extensive table, in fact for p <200. MEISSNER 2 gives only one root x
of (2) for p<300, and a root of

27! = 1 (mod p?)
for $<200. A very short table of all solutions of
l=1(modp?) 1Sas12 p=<13

is given in BErwICK 1.
Another set of tables in which » depends on p is that of CUNNINGHAM 22
in which roots of

x#* = 1 1 (mod %)
are tabulated, and in some cases roots of
2% =+ 1(mod p?), ¢=2356 p2<10000, <19
Special tables of the general binomial congruences
z" =r (mod p) or ax* =1 (mod p)
may be cited as follows: CUNNINGEAM 21, giving solutions of
2=+ 2(mod p) and 22*= + 1 (mod p) for p < 1000,

and GERARDIN 3, giving all 4 solutions of
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2z =1 (mod p) for 1000 < p < 1600,

extended by VALROFF 1 up to p <5300.
CuNNINGHAM and WoODALL 9 have given tables of roots of the congruences

2* = w (mod p7), 2* = — z (mod $%), y2V = 1 (mod p°), 22 = — 1 (mod p°),

for p< 50, and p=73, 89, 127, 257, and for p=<1000 when a>1 and p<S17;
for 43=p<199, values of w, 3, y if <100 and values of x if <250; for
199 < <10 000, values of w and s if <100; for 199 < $ <1000, and for certain
selected primes <10 000, values of y if <100, and values of x if <250.

Finally we may cite here a rather special table of LAwTHER 1 which gives
for each integer N < 140 the least positive solution x of

24 = + 1 (mod N),
which is “primitive” in the sense that
#*# + 1 (mod N)

for any positive b <d. Here d is the largest possible exponent for which such
an x exists. For example if N is a prime, then d=(p—1)/2 and # is the least
quadratic non-residue of p. This table is for use in the splicing of telephone
cables.

ds. Higher residues

By a higher residue modulo p we shall mean the residue of an nth power,
where n2 3. The case n=2 will be dealt with separately under i;. A list of all
the nth power residues modulo p may be found by taking every sth entry in
a table of powers of a primitive root as described under d,. If the greatest
common divisor of # and p—1 is §, this process will give in fact all the éth
power residues, or in other words one can confine oneself to the case in which n
divides p—1 so that p is of the form nx+1.

KrarrcHIK 3 has given a table of all nth power residues for

n=3,4°56178,9,10, 12, 14, 16, 18

with respect to the first 20 or 25 primes p=nx+1 in each case.

A table of all three-digit cube-endings, i.e., cubic residues, modulo 1000,
is given in MATIES 1.

For the case n =4, Gauss 2 has a short table giving for each p=4x+1<100
not only its biquadratic residues but also those numbers < which have each
of the other three biquadratic characters. The corresponding table for cubic
characters by STIELTJES 1 extends to p=6x+1=<61.

A rather special table of NIEwIADOMSKI 1 gives all the pth power residues
(mod p?) for each p <200, and is used in connection with criteria for Fermat’s
last theorem.

Some tables give lists of those primes p having a given number a as an
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nth power residue. It has been pointed out before that such primes may be
picked out of the tables, described under d;, which give the residue-index of
the base ¢ modulo p. DESMAREST 1 and GERARDIN 1 each gave lists of primes
<10 000 of which 10 is an nth power residue. Similarly, KRAITCHIK 4 gives
lists of primes <10 000 of which 2 and 10 are nth power residues for all possi-
ble #22. REusCHLE 1 has listed all primes p <50 000 having 10 for a cubic
residue, and all primes p <25 000 having 10 as biquadratic and octic residues.
CuNNINGHAM 2 lists all primes < 25000 having 2 as an octic residue, indicating
those which have 2 as a 16th power residue.

GosskT 1 has a table for finding the biquadratic character of ¢ with respect
to p=a2+b2? in case the value of b/a (mod ¢) does not exceed 8 in absolute
value. Tables in CUNNINGHAM and GOSSET 1 serve to determine the biquad-
ratic character (¢/p)« when ¢ contains no prime factor exceeding 41, and the
cubic character (¢/#)s when ¢ contains no prime factor exceeding 47. These
tables are reproduced in CUNNINGHAM 36 (p. 130-133). These restrictions on ¢
are less drastic than would appear at first sight, since it is frequently easy to
replace a given ¢ by another congruent to it modulo p, and having only small
prime factors. The “quadratic partitions”

p=0ar+ b and 4p = L*— 2IM?

are supposed to be known. Tables of these partitions are cited and described
under j,.

Finally there are tables giving merely the frequency of primes having a
given number a as an nth power residue. These have been obtained from tables
of residue-indices by counting the number of p’s having a given entry. Con-
NINGHAM and WooDALL 7 give the number of primes p in each 10 000 up to
100 000 for which (2/p)»=1 for all # <40. These are based upon corresponding
enumerations of primes having given residue-indices.! CUNNINGHAM 23 has
given similar tables for each of the bases 2, 3, 5, 6, 7, 10, 11 and 12. For the
bases 2 and 10 the number of primes in each 10 000 up to 100 000 for which
(2/p)a=1and (10/p)a=1 respectively is given for » < 40. A smaller table gives,
for each of the bases mentioned above, the number of primes less than 10 000
having this base as an nth power residue (n <40). These are based on a set of
tables giving for each base the number of primes having a specified residue-
index.

ds. Converse of Fermat’s theorem

It is a well known fact that the fundamental theorem of Fermat
(1) a*=a (mod ), if n is a prime
has a false converse. Four tables giving examples of composite numbers # for
which the congruence (1) holds may be cited here. Two of these are sufficiently

1 The number of primes < x for which (a/p),=1is clearly the sum of the numbers of primes
S« for which the residue-index of a has the value kn (k=1,2,3,---).
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complete to be used in connection with the problem of identifying primes, and
will be described from this point of view under g.

Isolated examples of composite numbers # satisfying the congruence (1),
usually with ¢=2, date from 1819. In 1907 EscotT 1 gave a list of 50 miscel-
laneous composite numbers s for which

(2 2*=2 (mod 7).

Another miscellaneous list is given by MiTrA 1 for ¢=2, 3, §, 6, 7, and 10.
D. H. LEBMER 6 gives a list of all 8-digit composite # satisfying (2), and having
their least prime factor p>313. The factor p is given with each n. This list
has been augmented by PouLET 4, who has listed all composite 1 <10® for
which (2) holds. Each # is given with its least factor provided this factor ex-
ceeds 30, otherwise the largest prime factor is given. The list comprises 2037
numbers. Many of these numbers % are such that (1) holds for every a prime
to » and are accordingly marked with an asterisk.

e. FacTtor TABLES

No other kind of table in the theory of numbers is as universally useful as
a factor table. The problem of factoring has long been recognized as a very
fundamental one, and factor tables, as a partial solution of this problem, have
a long and interesting history. This is especially true of the first of the two
kinds of factor tables described below which we have called “ordinary.” These
factor tables were constructed for general use, the entries being found either
by a sieve or by a multiple process. Tables of this sort, in which the entries
are obtained readily, but not in their natural order, and in which an isolated
entry cannot be easily found by direct calculations, exemplify the ideal table
in the theory of numbers. The history of ordinary factor tables may be found
in Chapter 13 of DicksoN 4, and in the sources there referred to, where an
account will also be found of the numerous very old tables that are of historical
interest. More recently, a bibliographic list of 16 ordinary factor tables, both
old and new, beyond 100 000 has been given by Henderson in PETERS, LODGE
and TERNOUTH, GIFFORD 1 (p. xiii-xv).

Tables of factors of numbers of special form are as a rule not published
separately, but are scattered through periodical literature. An effort has been
made to give a reasonably complete account of such tables.

ei. Ordinary factor tables

By an ordinary factor table we mean a table which gives at least one di-
visor >1, or indicates the primality, either of every number within its range,
or else of all the numbers not divisible by the first £ primes. We can classify?!
such tables into types, according to values of k. A factor table of type 0 would

1 To be sure, there are a number of small factor tables which omit only multiples of 2 and S,
and these escape our classification.
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be a table dealing with all integers in its range, a type 1 table would consider
all odd numbers in its range, a table of type 3 would deal with numbers prime
to 30, etc. All large tables are of types 3 and 4. Theoretically the higher the
type the more condensed the table becomes since a higher proportion of the
natural numbers is thereby excluded. A table of type 25, for example, dealing
with only those numbers whose least prime factor exceeds 100, would thus
eliminate from consideration 889, of all numbers as compared with about 779,
for a table of type 4. It is not difficult to see that the advantages of condensa-
tion gained by raising the type number are soon more than offset by the diffi-
culties of arranging and ordering the table, if indeed one is to maintain the
usual condensed form in which the number, whose least factor is given, is
indicated merely by the position which that factor occupies in the body of the
table. A factor table of high type and of very considerable extent could, how-
ever, be arranged in a form similar to a list of primes in which the last few
digits of each number considered are given together with some symbol for its
factor. The almost universal use of computing machines makes the omission
of small factors from a table of high type a less serious objection than formerly.

Factor tables may also be classified according to the range of numbers
about which information is given and also according to the amount of informa-
tion given. The only table which gives the fullest information possible is that
of ANJEMA 1. This rare table lists for each number <10 000 the complete set
of all its divisors. A dash (or two dashes in case » is a square) separates those
divisors which are <+/# from the others. This table is quite useful for experi-
mental work on certain numerical functions and Dirichlet series. All other
tables give either the canonical factorization into products of powers of primes,
e.g., 360=23.32.5, or else the least prime factor of each number considered.

Of the many small factor tables to 10 000 or thereabouts GLAISHER 27
(which was taken from BArRLOW 1) and STAGER 2 are typical in that they give
the canonical factorization of every number less than 10 000 and 12 000 respec-
tively, and are at the same time quite reliable. An unusual table to 10 000 is
due to CABEN 2. It is a table of type 5, which omits primes as well. Only the
least factor is given of each composite number, prime to 2-3-5-7-11, and less
than 10 Some idea of the condensation this achieves may be gained from the
fact that it occupies only three and one half small pages.

Turning now to medium-sized factor tables we find 10 tables with upper
limits ranging from 50 000 to about 250 000. The most useful and reliable of
these are KavAN 1 and PETERS, LopGE and TERNouTH, GIFFORD 1. Both are
of type 0 and give canonical factorizations of all numbers up to 256 000 and
100 000 respectively. The arrangement in the latter table in which consecutive
numbers lie in the same column rather than in the same line, is more conven-
ient for many of the purposes for which such a table would ordinarily be used.

Other tables in this group giving canonical factorizations are of type 3.
These are
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reference upper limit
PoLETTI 2 50 000
Carr 1 99 000
Grrrorp 1 100 390
VeGa 1 102 000
LmonNNE 1 102 003
GOLDBERG 1 251 647

Lidonne’s table is actually of type 0 as far as 10 000. The tables of Gifford and
Goldberg should be used carefully, since each contains numerous errors.
Poletti’s table is of a handy pocket size but has quite a number of misprints.

The other tables in this group give only the least prime factor. LEBESGUE],
which is a table of type 4, extends to 115 500. INGHIRAMI 1 deals with all num-
bers prime to 10 and less than 100 000, but is quite unreliable. GRAVE 3 is a
type 3 table extending to 108 000.

The largest table giving canonical factorizations is the monumental
Cribrum Arithmeticum of CHERNAC 1. This is a type 3 table and it extends to
1 020 000. It is remarkably accurate considering the number of entries and the
era in which it was produced (1811), although a complete examination of this
table has never been undertaken.

All other large tables list only the least prime factor of the number n con-
sidered, blank entries indicating that # is a prime. If the entry is a prime p
> +/n, then the quotient #/p is also a prime. If p </, it might be necessary
to consult the table again (or perhaps some smaller more convenient table)
for the least factor of #/p in case the complete decomposition of  is desired.
A single examination of the table yields the often sufficient information that
the number % is composite.

The nineteenth century saw the production and publication of such factor
tables for the first 9 millions. BURCKHARDT 1, 2, 3 set the style with his table
of the first three millions. These tables, almost always bound together, are,
because they deal with the first three millions, more frequently useful than
those of J. GLAISHER 1, 2, 3 for the fourth, fifth, and sixth millions and those
of DaSE 1, 2, 3, for the seventh, eighth, and ninth millions. All nine tables are
of type 3 and are quite uniform in their arrangement. The page is split into
3 parts by two horizontal partitions, and entries in the same line, but in ad-
jacent columns, refer to numbers differing by 300. This arrangement makes
for ease in entering the table. This advantage to the user was paid for at the
price of numerous errors (many of which occur in the eighth million) due to
the fact that the practically mechanical and self-checking stencil or sieve proc-
ess could not be employed to advantage for primes p much beyond 300 on
account of the lengthy stencils required. Instead, recourse was had to the
“multiple method,” and numerous entries were put in the wrong place in the
tables.

In referring to nineteenth century tables mention should be made of the
huge manuscript table of KuL1x 3 which extends from 4 000 000 to 100 330 201,
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This is a type 3 table arranged exactly like Burckhardt’s tables, except that the
two horizontal partitions which divide the page into three parts are missing.
Kulik used a system of one- and two-letter symbols to represent the primes,
so that no entry requires more space than two letters. In this arrangement the
use of stencils was feasible up to p =997, the “multiple method” being used for
4-digit primes.

Early in this century D. N. Lehmer began the construction of his monu-
mental Factor Table for the First Ten Millions (D. N. LEEMER 1), which ap-
peared in 1909. This is a type 4 table with a simpler arrangement than that
used by Burckhardt, Glaisher, and Dase; that is to say, the arrangement is
simpler for construction, but less simple for use. Entries in the same column,
but in adjacent rows, refer to numbers differing by 210=2-3.5-7. There are
naturally ¢(210) =48 columns. This arrangement enabled the use of stencils
throughout the construction of the table. The user will find it a little more
troublesome to enter this table than, for example, Burckhardt’s. An auxiliary
sheet enables one to find the exact row and column in which the least factor
of one’s number is given. This loose sheet, entitled “Auxiliary Table,” which
is reproduced on the reverse side of page 0, is apparently missing by now in
many copies, since many writers contend that in order to enter the table it is
necessary to divide the given number by 210, the quotient giving the page and
line numbers, and the remainder giving the column number. Although this is
not necessary, it is certainly sufficient and those users, to whom an electric
calculating machine with automatic division is available, will find this method
very effective where frequent use of table is required. The user can be turning
to the proper page while the machine is operating. No error has as yet been
found in the 2 372 598 entries of Lehmer’s table.

A manuscript table for the sixteenth million was computed by DURFEE 1.
The table, which is on 500 sheets of heavy paper, appears to have been copied
from a type 5 table. Those numbers, whose least factor is 11, were later inter-
polated in red ink. The result is a type 4 table.

GoLUBEV 1 computed manuscript tables of the eleventh and twelfth mil-
lions.

Cunningham and Woodall have published many short tables beyond 10
million incidental to their determination of successive high primes. These
tables will be cited under f; where these lists of primes are described. Similarly,
Krarrcaik and HoppenoT 1 have two factor tables for the ranges from 102
to 1012+ 10% These are of type 1, and give only the least divisor. The first of
these from 102 —10* to 10'2 was reproduced in Krarrcaix 12.

es. Tables of factors of numbers of special form

The factorization of numbers defined in some special way has been the
subject of countless investigations. In many cases short tables giving the re-
sults of a particular investigation have been published, mostly in periodical
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literature. Sometimes these results are used to obtain further factorizations.
Often, however, each entry represents a great deal of hard work, in no way
lessened by the existence of the other entries of the table. Occasionally, the
complete factorization of a certain number is not known, but only one or two
small prime factors are given. Again, there are often gaps in the table where
even the prime or composite characters of the corresponding numbers are un-
known, and may well remain so for centuries to come. It would therefore be
difficult, and perhaps valueless, to give a precise account of just what factoriza-
tions are given in each of the many ancient and modern tables of factors of
numbers of special form. Fortunately, writers have a tendency to reproduce
the old tables along with their new entries. Thus it has been possible to neglect
quite a number of historically interesting tables and to cite in each case the
two or three modern ones by which a particular class of tables has been super-
seded.

By far the majority of tables of factors of numbers of special form deal
with what are, in the last analysis, the factorization of certain cyclotomic
functions. The Fermat numbers 22°+41, the Mersenne numbers 27—1, and
more generally the numbers 2*+1, 10"+ 1, ¢*+ 1, a"+ b*, the Fibonacci num-
bers, the functions of Lucas and their generalizations comprise the class of
numbers referred to.

If we denote by

Qa(2) = 2™ 4 ... = II (2™ — 1)s(®
&/n

the irreducible cyclotomic polynomial whose roots are the ¢(#) primitive sth
roots of unity, so that we have the factorization

*—1=1 Ql(x)t *
. 8/n

then the tables referred to may be said to give the factors of x*—1, when «
is integral or rational, or (when x is algebraic) of the norm of x*—1 taken with
respect to the field defined by x or a subfield of that field. In all cases Qa(x) or
its norm is the essential factor, the other factors Q;(x) (8 <#) having appeared
before in the table. These other factors are quite often given separately and
are called the algebraic or imprimitive factors; occasionally they are omitted
entirely and only the factors of Qa(x), styled as the irreducible or primitive
factors are given.

To begin with, up-to-date tables of the factors of the Fermat numbers
2241 are given in CuNNINGHAM and WoopALL 10 (p. xvi) and in KrAITCHIK
5, 6 (p. 221). These give one or more factors of 22"41 for n=5, 6, 9, 11, 12, 15,
18, 23, 36, 38,and 73. For n=0, 1, 2, 3 and 4, 22°+1 is a prime as noted by
Fermat. The numbers 22'+1 and 2241 are composite, but no factor of either
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number is known. Another table, lacking the entry for #=15, is given in
Krarrcuik 3 (p. 22).

A table of the latest results on Mersenne numbers 2?—1, where p is prime,
is given in ArcHIBALD 1. Here the reader will find a history of the problem
with complete references to the original sources. A short table giving merely
the number of prime factors of 2?2—1 for p <257 known in 1932 appears in
D. H. LEaMER 4. Older tables of the factors of Mersenne numbers are in
CunNINGHAM and WoopaLL 10 (p. xv), CUNNINGHAM 19 and WoopaLL 1.
This last table includes the forms of the factors of the numbers not then com-
pletely factored. KrarrcHIk 4 (p. 20) gives a list of small factors of 27 —1 for
59 primes p, 79 < p <1000, together with a list of the 85 primes p between 100
and 1000 for which no factor of 2?—1 is known.

Tables of the factors of the numbers 2"+ 1 really begin' with LANDRY 1,
reproduced in Lucas 1 (p. 236), who gave in 1869 the complete factorization
of 2»+1 for all values of # <64, except 251+ 1 and 2%+1. Recent tables are
due to CunNINGHAM and WoobaLL 10 (p. 1-9), and KrarrcHix 7 (p. 84-88).
The first of these gives all information known in 1925 as to the factors of
2*+1 for n odd and <500, and of 2*4-1 for % even and =< 500. Naturally, for
such large ranges of # many entries are incomplete or even blank. However no
factor <300 000 has been omitted. The table really gives the factors of Q.(2)
for » odd and <500, and for » even and <1000. The KrarrcHix 7 (1929)
table is an extension of one given in Krarrcaik 3 (1922) and gives complete
factorization of 2*+ 1 as follows:

2"—1 nodd, n=1-77, 81, 87, 89, 91, 93, 99, 105, 107, 117,
127.
2*4+1 modd, n=1-65,69,75,77,81, 83, 87,91, 97, 99, 105,
' 111, 135.
23kl 2k+14 1 4k4-2=2-138, 150, 154, 162, 170, 174, 182, 198,
210, 270, 330.
2k+1p o+ 4k4-2=2-130, 138, 146, 150, 154, 162, 170, 174,
182, 186, 190, 198, 210, 234, 258, 270.
24k41, 4k=4-84, 96.
Primitive and algebraic factors are given separately. The facts that
2101 — 1, 2103 - 1’ 2109 — 1’ 21'7 —_ 1' 2139 — 1, 2257 J— l, 2128 + l’ 2256 + 1

24k+24 1

are composite are also entered in the table. No factors of these numbers are
known. Three factors of 2!12—1 are also given.

1 The comparatively insignificant table of REuscHLE 1 (p. 22) antedates this by 13 years.
[29]
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This table has been brought up to date in 1938 in Krarrcrix 13. Fac-
torizations are given here of

2 —1 for n =79, 85, 95%, 111.
2» 4+ 1 for n = 73, 93, 95.
1 = * *
pobi 4 1 { 25hHL — 2L 4 1 for 4k + 2 = 146%, 186%, 190%, 234%, 250*.
2L ok | for 4k + 2 = 142, 158%, 222,

24k 41 for 4k = 88, 100*, 108, 120.

where * indicates that there is some doubt that certain large factors of these
numbers are actually primes. The number 2241 —1 is given as composite but
without known factors, but there is no mention of the fact that the number
2'49—1 belongs in the same category. A table giving the factors of 2441 for
4k=4-—88, 96 appeared in KrarrcHIk 8. A table (p. 24-26) of KrAITCHIK 4
gives all prime factors <300 000 of 2*+ 1 for » odd and <257 and of 24¥+241
for 4k+2 <500 in those cases where the complete factorization of these num-
bers had not then been found.

Next to the numbers 2*—1, the numbers 10*—1 have been most frequently
under consideration. These correspondingly larger numbers are especially in-
teresting from the point of view of repeating decimals. The rational fraction
k/p has a decimal expansion of period # if and only if p divides 10— 1. This
period is “proper” only in case p is a primitive factor of 10*—1.

An early table of factors of 10*—1 is due to REUSCHLE 1. It is limited to
n=42, and is naturally incomplete in many of its entries. Another old but
readily accessible table is due to SHANKS 2, which gives all factors <30 000
of 10»—1 for # <100. Actually only the factors of Q.(10) are given. In twenty-
five cases »# is marked with an asterisk to indicate that the factorization is
complete. As a matter of fact it is also complete for n=19, 23, 25, 26, 27, 34,
36, 38, 46, 48, 50 and 62. Similar tables are found in BickMoRE 1, 2, and
GERARDIN 1. In 1924 KrarTcHIK 4 (p. 92) gave the complete factorization
of 10*—1 for n odd, n=1-21, 25, 29 and of 10*+1 for n=1-17, 21, 23 and
25. CunNiNGHAM and WoopaLL 10 give all factors <120 000 (if any) of 10+ 1
for n odd and <109 and of 10*+1 for n even, < 100. There are of course many
incomplete entries. Many new complete factorizations have been discovered
since the publication of this table.

The most up-to-date tables of the complete factorizations of 107+ 1 are in
KrarrcaIk 7 (p. 95). These give all prime factors of 10»—1 for all odd <29,
and of 10*+41 for n=1-21, 23-25, 27, 30, 31, 36 and 50. (The case of
10%—1 is in doubt.)

Besides the numbers 2*—1 and 10*—1 other numbers of the form a»—1
have been the subject of factor tables. Thus REUSCHLE 1 gives the factors of
e*—1fora=3,5,6,7, for n =42, and similar tables by BICkMORE 1 give corre-
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sponding results for 6=3, 5, 6, 7, 11, 12 for n < 50. (Both these tables deal also
with a=2 and 10 as mentioned above.) These tables are far from complete.

The most extensive tables of this kind are CuNNINGEAM and WoopaALL 10,
reproduced in Krarrcuixk 7. For the bases 6=3, 5, 6, 7, 11 and 12 Cunning-
ham and Woodall give, together with many complete factorizations, all prime
factors p <100 000 dividing either a*+ 1 for » odd and =109, or a"+41 for
n even and S100. Only the factors of Q.(a) are given. For these bases little
attempt to factor individual numbers was made by the authors, the results
being obtained indirectly from tables of exponents. As a result a goodly num-
ber of blank entries have now been filled in by various computers since the
volume appeared. Most of these for the bases 3, 5, 6, 7, have been included in
KrarrcHIK 7 (p. 89-94). This gives the complete factorization of a"+1 as
follows:

3»—-1 n odd, = 1-41, 45, 47, 49, 51, 75, 105.

. n # 6k + 3, = 1-31, 35, 37, 40, 41, 42, 47, 48, 60, 84.
+ l{ n=6k+ 3, = 3-117, 135, 165.

| 7 odd, = 1-29, 33, 35, 45, 75.

S*+1 n = 1-22, 24, 25, 27, 30, 34.

6" — 1 7 odd, = 1-23.

6~ + 1 n = 1-22, 24, 26, 28, 30, 33, 35, 42.
-1 n odd, = 1-17, 27.

41 n = 1-16, 18, 21, 22, 35.

A small separate table giving the latest information on the factors of 641
appears in Krarrcuik 11. This gives the complete factorization of 6*+1 for
n=1-32, 42.

For the bases g from 13 to 30 (exclusive of 16, 25 and 27) CUNNINGHAM 37
has given as far as known the factors of a»+ 1 for all n <21.

Thus far we have spoken of tables of factors of numbers of the form ¢+ 1
in which @ may be thought of as small and fixed while n ran to high limits.
There is also another set of tables in which » is small and fixed, while g varies.
Obviously the numbers in these tables do not increase as rapidly as those in
the tables in which ais fixed and » varies. On the other hand less information
about the possible factors of these numbers is available.

The first table of this sort is due to EuLER 2 (1762). This is a factor table
for numbers of the form 4241 extending to a <1500. Only factors <1000 are
given as the table was constructed by a sieve process.

Surprisingly enough, this is the only factor table of its sort ever published,
although other such tables have existed in manuscript from which have been
extracted lists of primes of the form 2?41 to be mentioned under f;. There are

[31]



e DESCRIPTIVE SURVEY

two tables giving factors of a?-+1 for very large but scattered values of a. The
first of these is Gauss 8, which gives the complete factorization of a%-+1 or of
(a2+1)/2 for 712 values of 6 <14 033 378 718, in those cases in which no prime
factor exceeds 200. This table is only one of a set of 9 tables giving the factors
of a2-+b2 to be described presently.

The other special table of factors of 4241 is CUNNINGHAM 8. If (x, y) isa
solution of the Pell equation x?— Dy?= —1, then the factors of ¥*-+1=Dy? are
obtained from those of D and y. A list of the 97 values of x between 10* and
102 for which the factorization of 2?41 is thus possible (for D<1500) is
given, together with the factorizations of the corresponding D’s and y’s. This
table is extended and greatly ramified in CuNNINGHAM 28 (p. 106-112).

Tables of factors of ¢*+ 1, with #>2 and fixed, occur in REuscHLE 1 for
6<100 and # <12, with many gaps.

The largest collection of such tables occurs in the first, second, third and
fifth volumes of Cunningham’s Binomial Factorisations: CUNNINGHAM 28, 30,
32, 33. Many of these tables are extremely special and short. The essential
factor Q.(a) of a»—1, though an irreducible polynomial in ¢, may become re-
ducible as a polynomial in x when 4 is replaced by any one of a large number of
appropriate functions of x. Thus we get cases of relatively easy factorizations
of numbers of the form Q,(a) where a is of special type. The 185 factorization
tables in these four volumes are largely of this special type. Nineteen refer to
Qa(a) and are in no way special. Their extent and location are given as follows:

n limit of & volume pages
5 1000 2 106, 108, 110, - - - 118
7 250 3 154-158
8 1000 1 113-119
9 250 3 178-181
10 1000 2 107,109, - - - 119
11 100 S 104-105
12 1000 1 157-163
13 100 S 113-114
14 250 3 154-158
15 200 2 185-188
16 200 1 140-141
18 250 3 178-181
20 200 2 177-178
21 40 3 172
22 100 S 104-105
24 200 1 215-216
26 100 5 113-114
30 200 2 185-188
36 54 3 191

There are also tables where » is a multiple of the »’s listed above, but these are
more than half blank.

Most of those entries in the above tables which are complete factorizations
have been reproduced, with a few additions, in a more compact form by
KrarrcuIk 7. Here one finds tables of the factors of Q.(a) for 6 <100 and for
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n=1-12, 14, 15, 16, 18, 20, 24, 30 (p. 96-107), with some gaps, together with
many supplementary results for other values of # up to 60. Numerous tables
are given of the factorization of z»+ 1 (really of Q.(x) and Q:a(x)) for values of
71 <50. These are without gaps and extend to various limits of x as indicated
in the following scheme. This description includes special tables in which the
factorization of Q.(x) is rendered easier for the special values of x indicated,
on account of an algebraic decomposition as mentioned above. A simple ex-
ample of this phenomenon is

012(2a?) =(26?)*— (26%)*+1=(40*—4a*+ 242 — 20+ 1) (4a6*+ 40+ 202+ 2a+1).

Factorization of

=—1 =41
general special = general special z

— — 25409 (p. 116-117) —

2<400 (p. 118-119)| x=S5a%, 3 5100

(p. 122-123)| x<400 (p. 120-121) —

—_ £<400 (p. 126-127) | x=2a%,6<130 (p. 128-9) }

x=6a%,a<70

550 (p. 130-131) x=7a%,a<20 (p.130)

%532, 34,36 (p. 132) —_

2550 (p. 132-133) x=3a%, 6521 (p. 134)

2560 (p. 135) x=2g%,6<25 }
x=10q%, ¢ <8 (p. 135)

2550 (p. 130-131)

OOV~ O Wk

2550 (p. 132-133)

—

For larger values of #, in fact for n=11-16, 18, 21, 22, 24, 26, 27, 30, 33, 35, 39,
42, and 49 there are small tables with many gaps. For further addenda in
Cunningham’s tables see BEEGER 5 and HoppENOT 1.

There are several tables giving factors of numbers of the form p=+1. We
have already pointed out that several tables of primitive roots give in addition
the factorization of p—1. These are described in d,. Similarly, Cunningham’s
tables of quadratic partitions (described under js) also give this information.
These tables are found in CUNNINGHAM 7, p. 1-240, and CUNNINGHAM 36,
p. 1-55. These lists have been useful in discussing primes of the form kn+-1.

CunnNiNGHAM and CrEAK 1 (p. 1-91) give all divisors of p—1 (except 1
and p—1) for p <10% EuLER 1 gave factorizations of ¢(p=) = (po+tt—1)/(p—1)
as noted under bs. A more extensive table is in Krarrcuix 7 (p. 152-159).
This gives factors of p=+ 1 for a < 15, as also noted under by. Two small special
tables may be noted. GERARDIN 2 gives a table of the factorization of those
numbers of the form (p+1)(p2+1), p <1000, all of whose factors are less than
1000. GLArsHER 21 gives the factors of p®—(—1)@ D/ for all <100, ex-
cept p=79 and 83.

Finally, there are two small tables of factors of #"—1. Lucas 1 (p. 294)
gives the complete factorizations of (2m)?»—1 for m=7, 10, 12, 14 and 15,
while CuNNINGHAM 24 gives factors of y¥+ 1 for y <50, many incomplete.
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Turning now to more general numbers a*+5* with b>1, we find a few
tables of their factors. The earliest is a special table of Gauss 8 for n=2, al-
ready referred to in connection with g*4-1. The complete table gives for 2452
numbers of the form 2482, b <9 their complete factorization. The numbers a
are so chosen that all the prime factors of ¢*+-b* are less than 200. For each
value of b there is an inverse table showing for each possible p all those a’s
for which the greatest prime factor of a*+b?is p. The fact that the number of
these a’s appears to be finite in each case must have led Gauss to conjecture
for the first time that the largest prime factor of 22+ 4 tends rapidly to infinity
with z, a fact established by Ivanov in 1895. However, this table was really
intended to be used in discovering arccotangent identities.

Numerous small tables of factors of a*+b* occur in Cunningham’s Bi-
nomial Faclorisations as follows:

form v. pages form v. pages

P4y 1 99 g2t 5 106, 107, 109, 111

E o 1 149-150, 152, 221 B4 y12 1 217

E o 1 120-129, 220 2B 418 5 115-116

ah—yp 2 120-123, 130, 133-146, U444 3 169-171
148, 154,158 U —qis 2 189,193

Pl 2 124-129, 131-133, ZB4-y8 2 192-193
147-149, 155, 159 Zib-y18 1 143

28445 1 164-171,174-179, z2184-418 3 191-192
181-189, 220 aflfyn 3 173-174

2'+y? 3 160-168 28448 S 112

234y 1 142-143 2N — g 3 193

2ty 3 185-187, 189 ok o 2 195

Z104- 410 2 179, 183

Krarrcuik 7 (p. 107-109) contains the complete factorization of 3+ 2%
as follows:

3» — 2", modd, = 1-27, 33, 35, 105
3» 4 2n, n = 1-27, 29, 30, 31, 33, 35, 36, 42, 45, 54, 63, 70 and 75.

CUNNINGHAM 26, which is an extension of CUNNINGHAM 17, contains tables
of the factors of x*+ (x—1)*forn=3, 5,7, 9, 11, and 15, with x <100, 100, 50,
50, 40, and 40, respectively. CUNNINGHAM 27 gives factors of x* + (x—n)" for
n=3,5,7,9, 11, and 15 and for x<74, 187, 60, 74, 43, and 49 respectively,
with some gaps. Both of these tables reappear in Binomial Factorisations as
noted above.

A short table of the factors of x*¥+ y*¥ for 15 pairs (%, y) is given in CUN-
NINGHAM 24 (p. 74).

The essential factor a*(™Q,(a/b) of a®—b" can, by a formula of Aurifeuille,
be expressed in the form X2—ngb¥3, where X and ¥ are certain homogeneous
polynomials in ¢ and b, tables of whose coefficients are described under o.
In case , ¢ and b are so chosen that nab is a perfect square this essential factor,
generally irreducible, breaks up into two factors. Tables of factors of a»+b*
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in this case have been given by KrarrcHik 2. Here b, ¢ < 100, and # is usually
less than 50. Quite a large number of factorizations are within the range of
factor tables. There are comparatively few blank entries.

The technique of factorization developed for ¢* + b" is also applicable, with
slight modifications, to the function U,=(a*—8")/(a—p) of Lucas (and its
generalizations) in which a, 8 are algebraic integers. For example the Fibonacci
series

1, ls 21 3, 5’ 8, 13, 211 341 55, 89,---, UM Tt U»+l = U+ Un—l»

where a=(14+/5)/2, 8=(1—+/5)/2, has been the subject of factor tables.

The first such, due to Lucas 1 (p. 299), gives the complete factorization
of U, for n<60. KrarrcHIK 4 (p. 77-80) gives the factors of both U, and
Va=Usa/ U, as follows:

Ua, n odd, = 1-71, 75, 81, 85, 87, 95, 99, 105, 129
Va # # 5 (mod 10), = 1-72, 77, 78, 80, 81, 84, 87, 90, 93, 99, 102, 111, 120
Va 7 = 5 (mod 10), = 5-17§, 195, 205, 215, 225.

Another factor table of what is essentially a Lucas function is due to
D. H. LeaMER 2, and gives for #<30 the factors of y,, where 23—2y3=1,
(%, ¥») being successive multiple solutions of this Pell equation.

The Fibonacci series increases more slowly than the series of numbers
2*—1, and hence more terms can be factored before the numbers become too
large. A more slowly increasing series than the Fibonacci series has been fac-
tored by Hair 1. Here the complete factorization of the norm N(a*—1), a
function introduced by T. A. Pierce, in the field defined by the root a of
?—x—1=0, is given for n < 100.

Still slower series are factored by PouLET 3. In case f(x) is an irreducible
reciprocal equation, the norm N(a”—1) taken with respect to the field defined
by the root a of f(x) =0 will be a perfect square. The sequence Un=+/N(a"—1)
is a recurring series of order at most 27, where 2r is the degree of f(x), and the
possible factors of U, are restricted to certain linear forms nx--b, permitting
the factorization of quite large numbers U,, especially when U, increases
slowly. POULET 3 has published a number of series U, and Va=Uss/ U, the
terms of which are completely factored. He gives

7 series of order 2 (Lucas’ functions)

7 series of order 4

1 series of order 8 to 138 terms

1 series of order 16 to 250 terms

1 series of order 32 to 382 terms

1 series of order 64 to 230 terms.
The least rapidly increasing of these is the series of order 32 defined by the
reciprocal equation
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204 2% — 27 — 28— ¥ — 2t — 2P x4 1=0.

In fact Usa=360 429 381 874 489=16199093-22249973. The average value
of Uay1/Us is only about 1.0845. The author mentions the construction of
about 40 other series of this sort and gives many algebraic formulas of use in
constructing such series. The conjectured parts of this memoir have been
proved by the present writer.

We turn now to the consideration of tables which give factors of binomials
which are not cyclotomic, such as for example ka"+1 or g*+45b%. Some of the
methods and tables employed in the cyclotomic case are applicable here also.
KrAITCHIK 6 (p. 222-232) has given a complete factor table of all numbers of
the form k241 lying between 10® and 10'* with 2 <1000. Only the least fac-
tor is given. This is an extension of the previous table, Krarrcaix 4 (p. 12-13),
for numbers of this form between 2-10% and 1012, with <100, and 21 <% <38
with some gaps.

D. H. LeaMER 10 gives factors of numbers of the form 22*—1for 2=3, 5, 7,
and 9, and #<50 with some gaps. Factors of 6*s+1 have been given by
BEEGER 6.

CunNINGHAM and WoODALL 1 gave a table of factors of 1025+ 1 for 6 £ 10,
2530 (with gaps) and for several higher values of ¢ and x. CUNNINGHAM 2§
gives the factors of x¥ + y* for 128 pairs of integers (x, y).

CUNNINGHAM AND WooDALL 9 has considered the factors of 2°+¢ and
of g271+1. All factors are given for ¢=<66. For 67 <¢<260 only small factors
are given of ¢2¢F 1. These numbers are remarkable for being nearly all com-
posite.

CuUNNINGHAM 21 has tables of factors of y¢+ 2 and of 2y*+ 1. These extend
to y<100, and to several higher values of y.

A short table in KrAITcHIK 4 (p. 14) gives the complete factorization of the
numbers p;ps - - - pat 1, where p, is the nth prime, for all n <8.

LEBON 1 contains a table (part II) of all factors of numbers of the form
Ny=2-3-5-7-11-13k+1 for such values of k<4680 as make N; composite.

Tables of factors of numbers not associated with binomials are as follows:

CunniNGHAM and WOODALL 8 contains the factorization of numbers of the
form 2212+ 1 for x <a <27, and several higher numbers of this form.

VANDIVER 1 gives a list of small factors of Bernoulli numbers B,. All values
of n<(p—3)/2 are given for which the numerator of B, is divisible by p for
317=p=617.

ALLIAUME 1 has published decompositions of n! for all # < 1200. In Table I
he gives the factorization of ! into products of powers of primes, while in
Table II, n! is expressed as a product of powers of “prime factorials”
P1ds - - - P, where p, is the rth prime. This table is useful in computing values
of log n!. PETERS and STEIN 1 have a table of the canonical factorization of the
binomial coefficients up to those of the 60th power.

Finally, we may cite the table of CUNNINGHAM 36 (p. 162-170) which gives
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canonical factorizations of all numbers <108, all of whose prime factors are
< 13. This table has a number of interesting uses, especially in connection with
the calculation of logarithms and the binomial congruence. Tables of the same
sort, but very much more extensive, are given in WESTERN 4, together with
tables showing the mere number of numbers N having small prime factors
only, for many very large values of N. MiLLER and LopGE 1 gives the number
of numbers < 10° having a given prime  as least (and also greatest) prime fac-
tor for all possible primes p.

f. Lists oF PRIMES AND TABLES OF THEIR DISTRIBUTION

Tables of this sort naturally fall into two groups according as the primes
considered are consecutive or not. Tables giving information on distribution
phenomena are mostly concerned with consecutive primes. Lists of primes
themselves have mainly two uses: 1) they may enable one to decide whether
a given number is a prime or not, and 2) they serve as a source of statistical
information about properties of primes. In spite of the existence of ordinary
factor tables, the first use, whose importance is often not fully appreciated by
those interested in distribution phenomena, is perhaps the best reason for the
publication of lists of primes. Here, again, lists of consecutive primes are more
useful than lists of primes of special form.

fi. Consecutive primes

Lists of consecutive primes are of two sorts, those giving all primes less
than a given limit, and those giving all primes between two high limits. Most
lists of primes of the first sort occur as arguments in numerous tables, such as
those of the binomial congruence (d,, d,), and certain “quadratic partition”
tables cited under j;. Among the more extensive of these lists we may cite for
example KRAITcHIK 4 (p. 131-191), giving a list of primes to 300 000. The
tables of SiMONY 1 and SucHANEK 1 contain a list of primes to 2!4=16 384,
and from 2!4 to 100 000 respectively. These tables give the primes also in the
binary scale, or rather in a condensed form of binary scale in which, for ex-
ample, the prime 2243 instead of being written 100011000011 is abbreviated to
.3242, the dot being the symbol for 1.

Among those lists of primes which are not the incidental arguments of
other tables, many small ones are to be found in textbooks on the theory of
numbers, and even in certain handbooks for engineers. J. GLAISHER 1 has a
convenient list of primes to 30 341, giving also a column of differences which
occasionally is useful. LEBESGUE 1 has given a list of primes to 5500 at the
same time showing how each prime may be represented by a pair of symbols,
a device similar to that employed by Kulik in his factor table.

By far the most extensive list of primes is Lehmer’s list of primes from 1
to 10 006 721 (D. N. LemMER 2), which appeared in 1914. This list, containing
665 000 primes, 5000 on each page, is based on his Factor Table (mentioned
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under €,), and on previous factor tables. The arrangement makes possible the
rapid determination of # when the prime p, is given; the user should be careful
to note that here 1 is counted as a prime.

Other fairly extensive lists of primes are VEGA 1, for primes from 102 001
to 400 313, and PoLETTI 2 (p. 3-67) for primes under 200 000. The latter, being
in a handy pocket size, is quite convenient for occasional use.

We turn now to lists of consecutive primes between high limits (beyond
10 million). There are, surprisingly enough, as many as 69 such lists. Most of
these cover only a short range of natural numbers and all but 8 of them have
their lower limit < 100 000 000.

The following list has been kindly prepared by Dr. N. G. W. H. Beeger,
who is the best authority on large primes. In each case are given the upper and
lower limits of the range in which all the primes are determined. If, in addition,
the author includes a factor table for the range considered, this fact is indicated
by an asterisk.

reference
10 000 000- 10 001 020* CunNINGHAM and WOODALL 5
10 000 000~ 10 100 000 PoLETTI 1
10 000 000~ 10 100 009 PoOLETTI 2
10 076 676~ 10 078 712* CUNNINGHAM 35
10 088 152- 10 088 651 CUNNINGHAM 35
10 324 364 10 324 517 CUNNINGHAM 16
10 761 411- 10 761 949* CuUNNINGHAM 16
11 000 000- 11 000 250 CunNINGHAM 20
11 110 889- 11 111 333 CuUNNINGHAM and WOODALL §
11 184 451- 11 185 169 CunNINGHAM and WoODALL 4
11 184 451- 11 185 169 CunNINGHAM and WOODALL 2
12 093 036— 12 093 435 CUNNINGHAM 35
12 201 521- 12 201 702 CUNNINGHAM 16
12 206 762- 12 207 301* CuNNINGHAM 16
12 499 750- 12 500 250 CunNINGHAM and WOODALL 5
13 421 558 13 421 988 CunNINGHAM and WoOODALL 6
13 450 870- 13 451 536 CUNNINGHAM 35
14 285 429- 14 286 000 CunNINGHAM and WOODALL §
14 285 715~ 14 300 000 PoLETTI and STURANI 1
14 347 889- 14 349 923* CunNINGHAM and WOODALL 4
14 912 970~ 14 913 191 CUNNINGHAM 16
15 116 295~ 15 116 794 CUNNINGHAM 35
16 275 683~ 16 276 399* CUNNINGHAM 16
16 666 334— 16 667 000 CunNINGHAM and WOODALL §
16 776 197- 16 778 233* CunNNINGHAM and WOODALL 4
16 776 197- 16 778 233 CuNNINGHAM and WoopALL 3
19 173 819- 19 174 103 CUNNINGHAM 16
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19 486 153-
19 999 600-
20 155 059-
20 176 304~
21 522 822-
22 369 263-
24 413 524~
24 999 500-
26 843 346-
30 232 589-
32 258 065—
33 332 667-
33 553 417-
33 553 417-
34 482 759~
40 352 608-
43 045 643-
43 478 261-
44 738 910-
48 827 047-
49 999 000-
52 631 579-
58 823 530-
60 465 177-
61 621 560-
67 107 787-
76 923 077-

134 216 729-
999 999 001-

19 488 187*
20 000 400
20 155 725
20 177 303
21 523 899*
22 369 980*
24 414 600
25 000 500
26 843 745
30 233 587
32 261 290
33 334 000
33 555 451*
33 555 451
34 486 206
40 354 606*
43 047 800*
43 482 608
44 739 575
48 829 201*
50 001 000
52 636 842
58 829 411
60 467 175*
61 711 650*
67 109 941*
76 930 769
100 002 000*
100 001 000
100 001 000
100 001 699
100 005 000
100 010 011
100 100 000
134 218 727*
000 119 119*
001 000

f

reference
CUNNINGHAM 35
CuNNINGHAM and WOODALL 5
CUNNINGHAM 35
CUNNINGHAM 35
CUNNINGHAM 16
CuNNINGHAM and WOODALL 6
CUNNINGHAM 16
CuUNNINGHAM and WOODALL 5
CUNNINGHAM 16
CUNNINGHAM 35
POLETTI 2
CunNINGHAM and WOODALL §
CuNNINGHAM and WOODALL 4
CunNINGHAM and WoODALL 3
POLETTI 2
CUNNINGHAM 35
CUNNINGHAM 16
PoLETTI 2
CUNNINGHAM 16
CUNNINGHAM 16
CuNNINGHAM and WOODALL 5
PoLETTI 2
POLETTI 2
CUNNINGHAM 35
BEEGER 9
CuNNINGHAM and WOODALL 6
PoOLETTI 2
CuNNINGHAM and WOODALL 5
KrAITCHIK 4 (p. 10)
CUNNINGHAM 36 (p. 76)
W.Davis 1
PAGLIERO 1
PoLETTI 2
PoLETTI and StUrANI 1
CUNNINGHAM 16
BEEGER 9
KrarrcHik 4 (p. 10)
PoLETTI1
PoLETTI 2
KrarrcHik and HopPENOT 1
KraircHix 12
Krarrcuik and HorPENOT 1
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Tables having to do with the distribution of consecutive primes p, are of
5 types.

(A) Tables of x(x), the number of primes <z, with or without the corre-
sponding values of some approximating function.

(B) Tables of x(nk)—x{(n— 1)A}, i.e., tables of the number of primes in
each successive interval of length 4 of the natural numbers.

(C) Frequency tables, giving the number of centuries having a prescribed
number of primes in each of a series of intervals.

(D) Tables of anomalies in the distribution of primes.

(E) Tables ofz,p"” and of I, (1—p71).

In tables of type A values of x(x) usually have been extracted from lists
of primes and factor tables. Meissel and Bertelsen have however evaluated
x(x) independently for use in checking factor tables. As already mentioned,
isolated values of x(x) for x <107 can be determined at a glance from D. N.
LEHMER 2. A graph of x(x) for x <12000 is given in STAGER 1, 2. A small table
of x(x) for consecutive integers x is included in GraM 1, where x(x) is tabulated
along with the function

¥(z) = L log p
p*S3
for all <300, and for x = p2, 300 < p= < 2000.

All other tables give x(x) for wide intervals of x. The best such table is
D. N. LEEMER 2, where x(x) is tabulated for x= 50 000(50 000)107 and for
x=k-10", k=2, 9, 10, 100. These last four entries, due to Bertelsen and
Meissel, are compared with the corresponding values by Riemann’s formula

=, u(n) Li (2V/
P(x)=z.;n() (#47)
All other entries of this table are compared not only with Riemann’s formula,
but also with those of Chebyshev and Legendre, which are

f "9 e z tivel
2 logx an log x — 1.08366 respectivery:

Other tables of x(x) may be cited and described briefly as follows:

GiraIsHER 16. This gives x(x) for x=100 000(100 000)9 000 000 compared
with formulas of Riemann, Chebyshev and Legendre. This table is repro-
duced in J. GLAISHER 3. GLAISHER 5 gives (k- 10%) for k=.25(.25)4 compared
with various modifications of Legendre’s formula.

GraAM 2 gives x(x) for x=£%- 108, £=.1(.1)1(.025)3(.1)7(.05)9(.1)10, as well
as k=20, 90, 100, 1000. These values due to Bertelsen as already mentioned
were computed directly by Meissel’s method. All but the last four were verified
by direct count in Lehmer’s Factor Table. PoLETTI 2 (p. 243) gives x(x) for
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x=Fk-10% k=.2(.2)1(1)10 and k=20, 90, 100, and 1000, with comparisons with
the formulas of Riemann, Legendre, Chebyshev, and Cesiro.

Tables of type B are more numerous than those of type A and are more
indicative of the average density of primes in the region under consideration.
The scope of each type B table which gives the number of primes in each suc-
cessive interval of k natural numbers between the limits ¢ and  may be given
the following tabular description:

reference e k b
GAvuss 6 1 1 000 1 000 000
1 000 000 10 000 3 000 000
1 000 000 1 000 000 3 000 000
GLAISHER 1 1 50 000 1 000 000
8 000 000 50 000 9 000 000
GLAISHER 3 1 10 000 100 000
. 100 000 50 000 400 000
400 000 100 000 3 000 000
GLAISHER 2 6 000 000 100 000 9 000 000
GLAISHER 6 1 250 000 3 000 000
6 000 000 250 000 9 000 000
GLAIsHER 11 3 000 000 10 000 4 000 000
1 250 000 4 000 000
GLAISHER 13 4 000 000 10 000 5 000 000
1 100 000 5 000 000
1 250 000 5 000 000
GLAISHER 14 5 000 000 10 000 6 000 000
1 100 000 9 000 000
1 250 000 9 000 000
1 1 000 000 9 000 000
Husquin 1 1 1 000 000 10 000 000
DurrEeE 1 15 000 000 100 16 000 000

Tables of type C date from Gauss 6 and give for all possible # the number
of centuries containing »# primes in each successive interval of & natural num-
bers between the limits a and b, and the total number of such centuries for the
whole range a to b. The distribution always has a single mode about which
there is a vague symmetry. The frequency tables in Gauss 6 are due to Gold-
schmidt and, though inaccurate, are more detailed than any published later.
There are 20 tables, each covering a range (g, b) of 100 000 between 1 000 000
and 3 000 000 for which k=10 000, and two summarizing tables for the sec-
ond and third million in which & is now 100 000. Other tables of type C may
be given the following description:
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reference e ] b
GLAISHER 7 { 1 106 3-10¢
10¢ 9-10¢
GLAISHER 3 1 10¢ 3-10¢
GLAISHER 2 6-10% 10¢ 9-10¢
GLAISHER 11 3-10¢ 108 4-10%
GLAISHER 13 4-10¢ 10¢ 5-108
1 10¢ 5-10¢
GLAISHER 14 1 10¢ 9.10¢
KrAITcHIK 4 (p. 16) 1 10¢ 10°
Husquin 1 1 10¢ 107
KrarrcHix and HoppENOT 1 1012—104 102 1012
KrarrcHix and HorPENOT 1 101 108 10124104
KRAITCHIK 12 1012 102 10124104

The table of HusQuin 1 and that of GLAISHER 13 show several discrepan-
cies. Presumably this is due to errors in old factor tables.

Tables of type D mainly relate to large gaps in primes, that is, long series
of consecutive composite numbers. A few tables relate to the distribution of
“twin primes” differing by 2, “triplets,” etc.

GLAISHER 7 gives for the ranges 1-3 000 000 and 6 000 000-9 000 000
all those gaps of 99 or more (79 or more for the first million) in the list of primes.
Gaps of 111 or more for the same millions are given in GLAISHER 6. Gaps of
99 or more for the fourth million are listed in GLAISHER 11, for the fifth million
in GLAISHER 13, for the sixth million in GLAISHER 14, where one also finds the
largest gap in each of the first nine millions. Finally in GLAISHER 16 all gaps
greater than 130 in the nine millions are given, arranged in order of length of
gap. The largest gap in the first 10 millions is 153, following the prime
4 652 353. DurrEE 1 discovered an equally large gap following the prime
15 203 977.

All the tables of types A-D cited so far that are due to Glaisher have
been reproduced by J. GLAISHER 1, 2, 3 in the introductions to his factor tables
of the fourth, fifth and sixth millions. Tables relating to the full 9 millions ap-
pear in the introduction to the last of these volumes.

WESTERN 3, using in part the data of Glaisher, constructed a table of those
primes p,< 107 whose difference p,— pna—1 exceeds that of all smaller primes.
This useful table has been reproduced by CrowLa 1. The first 13 such primes
had been listed by KrarrcHIK 4 (p. 15).

There are a few tables giving facts about the distribution of twin primes.
GLAISHER 8 gives the number of twin primes in each successive chiliad (1000)
in each of the first hundred chiliads of the first, second, third, seventh, eighth,
and ninth millions. There is also a companion table giving the number of these
chiliads containing a prescribed number of twin primes. A summary of these
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results in GLAISHER 9 gives the number of twin primes in each of the ten suc-
cessive myriads of the first 100 000 numbers of the above mentioned millions.

PoLETTI 2 (p. 244-245) gives the number of twin primes in each of the first
10 myriads beyond 10* for £=0, 5, 7,and 9.

STACKEL 1 gives the number of twin primes not exceeding x for
2=1000(1000)100 000, while SurTOoN 1 tabulates the same function for the
same values of x and for the more extensive range x=10 000(10 000)800 000.

Short tables relating to twin primes and triplets appear in HARDY and
LirtLEWOOD 1.

Five tables of type E, which date from Euler, may be cited. MERRIFIELD 1
gives 15-place values of

Z.= 2 p™ for 1 <n=35.
?

This table is reproduced in GraM 1 (p. 269). GLAISHER 20 gives 24-place values
of Zsx and of (1/k)Zs for 2<2k<80. The corresponding entries Z, for # odd
have been supplied by H. T. Davis 1, where Z, is given to 24 decimals for
all integers n from 2 to 80.

There are only 2 tables of the function

Px) = II (1 = 7.
PSSz
In LEGENDRE 1, 2P(x) is given to 6 decimal places for x=1229, except in
LEGENDRE 1,, where < 353. In GLAISHER 22, P(x) and its common logarithm
are given to 7 decimals for x<10 000.

fs. Primes of special form

As in the case of consecutive primes, lists of primes of special form often
occur as arguments of tables giving further information about these numbers.
Thus in giving primitive solutions of the binomial congruence

z* = 1 (mod p)

one needs to consider only those primes that are of the form kn+-1. Lists of
these primes therefore occur in tables cited under d,, especially in CuNNING-
HAM 28-34, 38, 39, where lists of primes of the form kn+1, for n <17, are given
up to p<100 000, and for many larger values of # up to p <10 000. These
lists are sometimes useful in searching for small factors of numbers of the form
a*—Db*.

Other lists of primes of the form kn4-1 are in GLAISHER 17 for p=4n+1
<13 000, and KrArTcHIK 4 (p. 192-204) for p=>512n+1<10 024 961.

Other important special forms of primes are those linear forms associated
with a given quadratic residue. Those primes p for which the Legendre symbol
(D/p) has a given value (+1 or —1) belong to certain linear forms depending
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on D, tables of which are described under i;. Tables of “quadratic partitions”
of primes p=2x2—Dy* naturally extend over those primes p for which
(D/p)=+1. Hence such tables (described under js) give incidentally lists of
these primes. In particular the tables of CunNINGHAM 7, 36 give at a glance
those primes $ <100 000 and 100 000< p < 125 683 respectively, for which the
symbols (—1/9), (—2/p), (—3/p) have given values, taken separately or to-
gether. The factor stencils of D. N. LEEMER 3, 4 (described under g) give, in
effect, all those primes <48593 and < 55073 respectively for which (D/p) has
a given value for | D| <239, and | D| <250 respectively.

A rather special table relating to primes belonging to linear forms is due to
Dickson 1. This gives all sets of 3 primes which for a fixed value of # <10,
are values of ain+by, aan+by, asn+b; for 64 selected sets of three such linear
forms.

Tables giving the number of primes belonging to given linear forms and
less than certain limits date from ScHERK 1 (1833). This table gives the num-
ber of primes belonging to each of the forms 4n + 1 in each chiliad up to 50 000.
GraisHER 12 gives this information for each myriad between k-10° and
k-10°410% for k=0, 1, 2, 3, 6, 7, 8. These results are summarized in GLAISHER
10. GLAISHER 9 gives this information for 2=0, 1, and 2 only.

CUNNINGHAM 14 gives for n=4, 6, 8, 10, 12 the number of primes <10%
of each of the forms nx+a; (=0, 1, - - - ) for each a;<n and prime to n.
For the special form nx+1 and for =2k <60, and 15 higher values <210,
the number of primes < x of this form is given for x=10* and 10%. For n=_8p,
100< » <250, the same information is given for x=10° and 5-10%. These re-
sults extend those given in CUNNINGHAM 7. These numbers are compared with
x(x)/¢(k). The number of primes in each successive myriad up to 10® and be-
longing to the form kn+-1 for all 5 from 1 to 30, for all even n from 30 to 60,
and for 19 other values >60 is given in CUNNINGHAM 23.

PoLETTI 2 (p. 244-245) gives the number of primes > 5 of each of the 8 pos-
sible forms 30n+r (r=1, 7, 11, 13, 17, 19, 23, 29) in each of the 10 successive
myriads beyond 10* for £=0, §, 7, 9.

Tables of the number of primes of each of the forms 6n+1, 10n+1, 10n+3
in the first and second 100 000 numbers, and of the form 4n+1 and 8n41
in the first myriad appear in Krarrcuix 4 (p. 15-16), where also is given the
number of primes of the form 512%+1 in each 100 000 numbers and in each
million from 1 to 10?. Krarrcaix and HorPENOT 1 give the number of primes
of each possible form (modulo m) in each chiliad between 10'3—10* and 102
for m=4, 6, 8, 10 and 12. The same information for the range 102 to 10!2410*
is given in Krarrcaik and HoppENOT 1 and also in KrarTcHIK 12.

Twin primes (p, p+2), p> 35, are of three sorts, according as p =10n-1,
10n+7 or 10n+9. The number of twin primes of each sort in the 100 000
numbers beyond 10* for k=0, 7 and 9 is given in PoLETTI 2 (p. 246).

We turn now to lists of primes of the form a*+ b* or prime factors of such
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numbers. These are in large part by-products of factor tables of numbers of
this form (described under e,).

Under this heading come lists of primes of the form p=a2+b? already
mentioned under the “quadratic partitions” tables of js, to which section of
the report the reader is again referred. The special case in which =1 is, how-
ever, particularly interesting, and more extensive lists of these primes have
been prepared. These date from EULER 2, who gave a list of all primes p=a?+1
less than 2 250 000 as well as all values a <1500 for which (a*+1)/k is a
prime for =2, 5, and 10.

CUNNINGHAM 6 gives lists of all primes beyond 9- 10° of the forms a*+41 and
(a*+1)/2 with a < 5000. KraI1TCHIK 4 (p. 11) lists the 312 numbers a for which
a*+1 is a prime <107,

WESTERN 1 gives the number of primes of the form 4241 less than x for
various values of x up to x=225 000 000 as compared with Hardy’s conjec-
tured formula: .68641 Li(x'/?)

Many lists of high primes dividing a*+b* appear in Cunningham’s Bi-
nomial Factorisations. These may be given the following tabular description:

form limit no. of primes v. pages
2241 225-10° 4430 1 238-244
21 225-10° 4884 1 245-252
»—y 10t 472 1 259-260
gt 1010 778 1 253-255, 281-284
£+1 1010 1565 2 200-210
2B+ 1010 1065 1 256-257, 261-264,
285-288
2ty 1010 183 3 196-198, 203
x84yt 4.101 9 1 258
219 1010 182 3 200-202
x104-410 1010 87 2 211-212
all4 g1t 1010 42 S 119
134 y12 1010 20 1 258
e d 101 172 2 211-214
Some of these lists have been published separately as follows:
form limit reference
(a*—1)/(a—1) 16 000 000 CUNNINGHAM 6
a*—(a—1) 1 000 000 CUNNINGHAM 17
a*+b4, a®+b® 1010 CUNNINGHAM 10
att bt 1010 CUNNINGHAM 13
a+1 25 000 000 CUNNINGHAM 3

We now turn to lists of primes which are binomials other than of the cyclo-
tomic form a* 15" just considered.
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Lists of primes represented by the binary quadratic form 22+ Dy?, in which
x and y are also given, are listed under j,. However, we take this occasion to
cite the list of 188 primes of the form x2+41848y? lying between 10 000 000
and 10 100 000 of CuUNNINGEAM and CULLEN 1, reproduced in CUNNINGHAM
36 (p. 74-76).

Three tables have been published of large primes of the form %-2*41.
KrArTcHIK 4 (p. 53) gives 43 primes of the form %-2"41 between 2-10% and
102 with 3<% <100. This was later extended in KrarrcHIx 6 (p. 233-235) to
include all such primes between 10® and 10'? with % <1000. CUNNINGHAM 36
(p. 56-73) gives a list of primes of the form %-2*41, 9<% <21 up to various
high limits <108,

DinNEes 1 has lists of 2 and 5,6 <k < 10, for which 6*s+ 1 are primes for all s
less than 100, and in some cases 400. Certain cases left in doubt have been dis-
posed of by BEEGER 6.

All primes of the form 223v5*4-1<107 have been given by KRAITCHIK 4
(p. 53). The 184 sets (x, , 2) corresponding to these primes appear on p. 9-10.

Poletti, Sturani and Gérardin have constructed by a sieve process factor
tables up to high limits of numbers of the form An*+Bn+C (n=1,2,---)
for different choices of A, B, C, from which they have extracted long lists of
high primes. The actual primes are not always given, but instead the values
of n for which the function An*+Bn+C is a prime are tabulated. The chief
interest in such tables lies in the empirical information which they give con-
cerning the distribution of primes of this form. Whether their number is finite
or not is an unsolved problem.

The first such table is due to PoLETTI 2 (p. 249-255), and gives all primes
of the form n?—n—1 up to 10 400 000. PoLETTI 3 gives all primes between
10 018 201 and 24 123 061 of the form 5#%<5n-+1. POLETTI and STURANI 2
list those n’s for which either of the two numbers 2n*+2n+1 is a prime
<250 000 000. A table is given of the number of primes in each 1000 terms of
the series

2n+1, n<4+n+1, m*4+2n £+ 1

up to n=11 000.

PoLETTY 4 gives all primes <121 millions of the form n#*+n+1 with a
table of their distribution. POLETTI 5 contains a table of nearly 17 200 primes,
arranged in increasing order, and extracted from the series n?+nt1,
n24-2n+1, nt+n+41, 41n2+n41, 602+ 6n+431.

In attempting to construct quadratic functions containing more primes
than Euler’s E(n) =n%+n-+41, Lehmer and Beeger have suggested

L(n) =n*+n+ 19421, B'(n) = n* + n+ 27 941, B (n) = n*+ n+ 72 491,

Poletti has investigated the frequency of primes in all four functions and his
results are given in BEEGER 7 (p. 50), where is found the number of primes
represented by each function for n<z, x=1000(1000)10 000. These facts
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would suggest that B’(n) and B’/(n) are more, and L(n) less, fruitful sources
of primes than E(sn).

PoLETTI 7 gives all primes represented by L(n), B’(n), and B’/(n) between
107 and 2-107.

POLETTI 6 contains primes represented by about 200 different quadratic
functions An*+Bn+C, 107<$<3-10°,

GE£RARDIN 6 contains over 2000 values of n for which An®*+Bn+4C is a
prime > 107 for the following polynomials and ranges of n

m*+2n+1 for 15800 < n < 23239
10in2 4+ 20n 4+ 1 for 315=n< 1542
122n* + 22n + 1 for 286 = n < 1369

10n2 £ 6841 for 3161 <n < 4620
26m* + 10n +1 for 1216 s n < 1774.

High primes represented by the trinomial 2*+2%+1 for x<a<27 and
many more pairs (x, «) are given in CUNNINGHAM and WooDALL 8.

KRAITCHIK 9 gives a list of the 94 largest primes known, and in KraITCHIK
10is a list of 161 primes exceeding 10'2.

8. TABLES FOR FACILITATING FACTORING AND IDENTIFYING PRIMES

Besides factor tables and lists of primes there are tables available for the
easy application of known methods of factoring and tests for primality.

For instance, the method of factoring depending on quadratic residues, as
described by Legendre, makes use of certain lists of linear forms or “linear
divisors” of quadratic forms x*— Dy*. These are described in detail under is.
To render this method still more effective, D. N. LEEMER 3, 4 devised the
factor stencils. These give in place of the linear forms an actual list of the
primes belonging to these forms. More particularly, in D. N. LEEMER 3, all
the primes <48593 belonging to linear forms dividing 22— Dy?, or what is the
same thing, all the primes having D for a quadratic residue are given for
| DI <239. Actually the primes for each D are not printed but are represented
by holes punched in a sheet of paper. Since the primes for D= k2D, are the
same as those for D), only the D’s without square factors, of which there are
195, need be considered. Each of the 195 sheets is ruled in 5000 square cells,
25 to the square inch, 50 columns by 100 rows. A cell, by virtue of its row and
column number, represents one of the first 5000 primes p, and if (D/p)=+1, it
is punched out. All factors < 48593 of a given number N having D as a quadratic
residue are among those primes whose corresponding cells are punched out of
the stencil for D. Having found a suitable number of quadratic residues D
of N, the mere superposition of the corresponding stencils reveals only a few
open holes, among which the factors <48593 of N must then lie. In this way,
the discovery of all factors of N (if any) below this limit is reduced to the dis-

[47]



g DESCRIPTIVE SURVEY

covery of a certain number, not exceeding ten or a dozen, of quadratic residues
less than 239 in absolute value. Thus the device will handle completely all
numbers less than the square of 48611, i.e., 2 363 029 321, and, of course,
can be used in factoring much larger numbers.

In D. N. LEEMER 4, the same method is used in a different form. Here use
is made of Hollerith cards of 80 columns and 10 rows. For each D there are
7 cards of different color, each color dealing with 800 primes. By superposing
cards of the same color for different D’s, all prime factors of N less than 55 079
may be found. Besides extending the number of primes from 5000 to 5600
Elder has extended the range to | D| <250. The new edition has been entirely
recomputed by Elder and, in addition to being more reliable, is more con-
venient to use than the old, especially when N is comparatively small, so that
only two or three colors are needed.

The tables of D. H. LEEMER 6 and POULET 4 serve to test for primality
any number # below 10® in 20 to 25 minutes at most. These tables give lists
of composite numbers # for which 2*=2 (mod n) together with a factor of n.
The table of Lehmer is restricted to contain only such entries #> 107 as have
their least factor > 313, while the more extensive table of Poulet contains all
possible #’s up to 10%. In using the Poulet table one notes first if the given
number # is in the table. If so, a factor of » is given. If not, then 2*=2 (mod #)
is a necessary and sufficient condition for primality of . Whether this congru-
ence holds or not can be decided quickly by a method of successive squarings
described in D. H. LEEMER 6. In using Lehmer’s table, there is the additional
possibility that s contains a small factor <313. If so, this factor can be quickly
discovered by a greatest common divisor process therein described.

Factorization methods, depending upon the representation of the given
number by quadratic forms such as x*—y?, 22+ 52, x*— Dy3, are greatly facili-
tated by the use of certain tables cited and described under i,.

The list of 65 Idoneal numbers D (such that the unique representation of n
by x*+ Dy? insures the primality of ») is given for example in MATHEWS 1 and
CunNINGHAM 36 (p. ii).

SEELHOFF 1 contains lists of binary quadratic forms especially devised for
factorization purposes.

Tables giving the final digits of squares are sometimes used in factoring
small numbers. These are cited under i; and i;. A table of this sort, especially
designed for representing » by 22+ y* with x<y<2500, is given in KuLik 1
(p. 408-418).

A table of reciprocals of primes <10 000 to 8 significant figures with differ-
ences is given in PETERS, LoDGE and TERNOUTH, GIFroRD 1. This is intended
to replace trial divisions by a series of multiplications by the given number,
and is useful when the available computing machine has no automatic division
or no keyboard.

The detailed account of the application of commercial and specially made
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computing devices to the problem of factoring numbers and identifying primes
will appear in another report of the Committee: Z.
h. TABLES OF SOLUTIONS OF LINEAR DIOPHANTINE
EQuATIONS AND CONGRUENCES
The solution of the general linear Diophantine equation

1%+ Gs%a + - - + GaZa = &
depends ultimately upon the solution of
(1) ex +by=c

and tables of solutions of such equations with more than 2 unknowns are non-
existent. A solution (x, y) of (1) gives at once a solution z of the linear congru-
ence

2 ax = ¢ (mod b)

and conversely, a solution of (2) gives a solution of (1) with y=(c—ax)/b.
The equation (1), if it has a solution, can be reduced by cancelling common
factors of a and b to the case in which ¢ and b are coprime. All solutions
(x, y) of (1) are then given by the formulas

x=kb+ &
y= — ka+ e,
where k is any integer, and (¢, 1) is any solution of
(©) ot + by = 1.
Hence it is sufficient to tabulate a solution of (3) or of the congruence
@) at = 1 (mod b).

CreLLE 3 gives a solution of (3) for each coprime pair (a, b) with b<a =120.
A similar table by CuNNINGHAM 36 extends to ¢ <100, < 100.

Tables of solutions of the linear congruence (4) may be found in WERTHEIM
S, KrarrcHIK 4 (p. 27), and CUNNINGHAM 36. In these tables b is taken as a
prime p, the composite case being readily reducible to this case. In Wertheim’s
table ¢ <  <100. It is even possible to restrict a to be a prime, and this is done
in Kraitchik’s table where @, < 100, and are both primes. Cunningham’s table
(p. 158-161) gives for each prime p<100 solutions of both congruences
at=+1 (mod p) for every a<p.

KraAIrcHIK 4 (p. 69) has a table for the combination of two linear congru-
ences, whose moduli are 2» and 5*. In fact the two congruences
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N = ry (mod 2%)
N = rg (mod 5%)
give when combined
N = Asrs + Agrs (mod 10%).

The coefficients 4; and 4; are tabulated for 5 < 16.

For the combination of many linear forms, a problem which arises in many
different ways, graphical and mechanical methods are available. These are dis-
cussed in another report of this Committee (Z).

A special table due to J. L. BELL 1, useful in checking Bernoulli numbers
Bsy= N3s/ D, gives for each n <62 a solution (a., ba) of the congruence

a.N -1 = b»DQ-q-iu—l (mOd q)v

where ¢ is any odd prime not in the set of excluded primes there listed.

i. CONGRUENCES OF THE SECOND DEGREE

i1, Solutions of quadratic congruences

The general quadratic congruence in one unknown may be reduced by a
linear substitution to one of the form

(1) x? = D (mod m).

When m is not too large, this congruence, when possible, is easily solved'.
Nevertheless, it is very convenient in many applications to have these solu-
tions tabulated. Existing tables are of two sorts: according as m is a power of
10, or a prime (or prime power). Tables of the first sort occur in tables of the
endings of squares. KuLIKk 1 gives for each possible D, the two solutions of
x2= D (mod 10%), which are <2500 from which all solutions may be discovered.
Similar tables for the moduli 10* and 10* occur in CUNNINGHAM 36 (p. 90-92).

Tables of the second sort date from EuLER 2, who gave solutions +x of

2 22+ 1 = 0 (mod p%) (1)

for all primes p=4k+1 up to p=<2000. A table of solutions of (2) with a=1,
and p=4%k+1<1000 is given in KrarTCHIK 4 (p. 46) and for $ <100 000 in
CUNNINGHAM 28, 29.

The quadratic residue tables of GERARDIN 4 and CUNNINGHAM 36 give
solutions + x of (1) with m=p, for all possible D (mod p) and for p <100. The
latter table contains in addition solutions of (1) for m=p2 <125, (a>1).

There are several very useful tables of solutions of quadratic congruences
in two unknowns. The first of these is due to GAuss 10 and gives all solutions
(2, ) (mod p) of the congruence fx* 4+ gy? = 4 (mod p)

1 Especially if one uses the new stencil device of RoBINSON 1.
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for all possible congruences of this sort with  <23. KuLIK 1 gives solutions x
of the congruence

x* + y* = N (mod 104).

That is to say, the last four digits of possible numbers x in the equation
N =21 y? are given for all possible four-figure endings of N. A similar table
for 3-digit endings is given in BipDLE 1.

KrarrcHIK 3 (p. 187-199) gives tables of all solutions g, b, z, ¥, s, ¢ of the
congruences

2 — y* = N (mod p°), a® + b* = N (mod p%), 22 + rw? = N (mod p%)

and £2-+n9*=N (mod p°) for all possible N (mod $=), where r is any quadratic
residue, and n# any quadratic non-residue (mod p¢) for all primes p <50, and
all p=<128, except 121. An abridged table (p. 200-204) gives solutions x of
the congruence

©)) z* 4+ Dy* = N (mod p°)

for all possible D and for N=1 and n (mod p=), where # is the least non-residue
(mod p°), for p <100, and for all powers of 2, 3, 5, 7, 11 up to 212, 3%, 54 72
and 112,

A short table showing all solutions x of (3) with D= —1 in case certain
numbers R are known to be quadratic residues of N occurs in Kra1TcHIK 4
(p. 87). The moduli considered are p==8, 16, 32, 3, 5, 7, 11 and 13, while the
values of R are —1 and +2, when p is even, and (—1/)p, when p is odd. A
more complete table of the solutions of (3) with D= —1 occurs in KRAITCHIK 6.
Here are found the solutions # for all possible N and for all primes p <67. The
table is in two parts, thus separating the two cases (N/p)=11. In case
(N/p)=+1, half the solutions x are impossible if it is known that (—1/$)p
is a quadratic residue of N.

CunNINGHAM 36 (p. 103-123) gives, for all possible ¥, solutions x of (3)
for D=—1,1,2, 3, forall p<41, and p= =64 (a>1), as well as for the modulus
100.

D. H. LEHMER 8 gives, in effect, all solutions x of

ax? 4+ bx 4+ ¢ = y* (mod p°)

for all possible 4, b, ¢, (mod p=) and for all p= =128 with the exception of 125
and 127.

All these tables are, of course, designed for the application of Gauss’
method of exclusion and serve to reduce such problems as the representation
of a number by a given binary quadratic form to the mere combination of
linear forms, and thus to make applicable a certain graphical and mechanical
technique fully described under another report of this Committee: Z.
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is. Quadratic residues and characters and their distribusion

There are many small tables of quadratic residues giving for the first few
primes p the positive quadratic residues of p arranged in order of their size.
The more extensive of these may be described as follows:

BurTEL 1 gives for each p <101, the list of its quadratic residues and non-
residues. FroLoV 1 gives quadratic residues for all p <97, omitting, for $ =23,
those residues which are actual squares. CUNNINGHAM 36 (p. 100-102) gives
quadratic residues and non-residues for all primes #<131. KrAITCHIK 3
(p. 205-207) gives quadratic residues for all p < 200. CUNNINGHAM 36 (p. 93-95)
gives lists of residues (mod p=) for » <100, and $==<169. These are arranged
in the order of their least positive square roots.

Since the even powers of a primitive root of p= are the quadratic residues
of p=, while the odd powers are the quadratic non-residues, a table of powers
of a primitive root gives in particular a table of residues and non-residues.
Such tables were cited and described under d;. Quadratic residues and non-
residues for =< 1000 are thus obtainable from Jacosr 2.

There are several tables of quadratic residues modulo 10*. These are usu-
ally described as tables of “square endings,” since they give the possible last &
digits of squares. These are of two kinds: those which list all the actual end-
ings in order of magnitude, and those tables which enable the user to decide
at a glance whether a given ending is a square ending or not.

A list of all 159 three-digit square endings appears in ScEADY 1. KULIK 1,
ScrADY 1, and THEBAULT 1 list all the 1044 four-digit square endings. In
Schady’s table with each four-digit ending are given all possible fifth digits.
Thus the entries - 2489 and g4676, for example, indicate respectively that any
digit may precede 2489, while only even digits may precede 4676.

CunNINGHAM 1 has a one page table showing at a glance whether a pro-
posed 1, 2, 3, or 4-digit ending is a square ending or not. This table is repro-
duced in CUNNINGHAM 36 (p. 89). A similar table of three-digit square endings
to the base twelve, due to Terry, appears in E. T. LEAMER 2.

A few tables give the values of the Legendre symbol (a/b) of quadratic
character. Gauss 1 gives the value of (a/q) for every odd prime ¢<100, and
for every prime a <100, as well as a= — 1. This table is extended in Gauss 4
to ¢=503 and 4<1000. In both these tables a dash indicates either that
(e/g9)=+1 or that a=gq, while the absence of any entry indicates that
(a/q)=—1.

A small table in WERTHEIM 5 gives (p/q) for all $ <100 and ¢< 100, and
is intended to give a graphic representation of the Law of Reciprocity.

A. A. BENNETT 2 gives for all odd primes p =317 and for all positive num-
bers n<p, the value of x in (n/p)=(—1)=. That is, the table gives x=0 or
%=1 according as # is or is not a quadratic residue of p.

D. N. LEBMER 3, 4 give the values of (a/g) for all ¢=<48 593 and ¢=<55073
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and for | a| <239, and | 8| <250 respectively. In fact in the stencil (or stencils)
for a the nth cell is punched out or not according as ¢ is or is not a quadratic
residue of the nth prime.

Finally four tables relating to the distribution of quadratic residues may
be cited.

Gauss 3 gives the number of quadratic residues in each of the r intervals
of length p/r of the numbers from 1 to p for the following values of r and the
corresponding ranges of p:

r=4 p=4n+1<400
r= 8, p < 400
r=12, p=4n+1<275.

For r=4 the actual number of quadratic residues in each quadrant is not
given, but follows at once from the given values of m by the formula
(p—1—(—1)*4m)/8, where k=1, 2, 3, 4, is the number of quadrant.

A. A. BENNETT 3 gives the number of consecutive quadratic residues and
non-residues for all primes p < 317.

KrAITCHIK 4 (p. 46) gives for each p <47 the least non-square N, of the
form 8n+1 which is a residue of all odd primes < p. This table is extended to
#=61in D. H. LEEMER 1.

D. H. LesuMER 7 gives for each r <28, the positive integer N,=8n-3 such
that — N, is a quadratic non-residue of all odd primes not exceeding the rth
prime p,. Also Ngp>5-10°.

is. Linear forms dividing x*— Dy?

The term linear divisor of x*— Dy? is due to Legendre, who published the
first real tables of such forms. These linear forms are nothing more nor less
than the arithmetic progressions in which lie all primes p for which (D/p) =41,
these being the only primes which will divide numbers of the form x?— Dy?,
in which x is prime to Dy. The linear forms dividing x?— k2D,y? are clearly
those dividing x?— Dyy?, so that tables of these forms deal only with those D’s
which have no square factor >1. In general we may speak of the linear di-
visors of any binary quadratic form f as the set of arithmetic progressions
to which any prime factor of a number properly represented by f must belong.
The tables of LEGENDRE 1 list the linear forms for each of the reduced (classi-
cal) quadratic forms of determinant D for — 79 < D < 106. If all such forms for
a fixed D are taken together we obtain the set of linear divisors of x2— Dy2.
Legendre’s tables are the only ones in which this separation of the linear di-
visors of x?— Dy? is attempted. The tables of CHEBYSHEV 1 really give a part
of this information, however; in fact for each D <33 are given the possible
forms (mod 4D) of those numbers which are properly represented by the
forms x%— Dy? or Dy*—x2.
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The tables of Legendre were reproduced and extended somewhat by
CHEBYSHEV 2, who gave all linear forms dividing x?*— Dy? for | D| <101,
carrying over most of the many errors in Legendre’s table. Chebyshev’s table
is reproduced in CAHEN 1 with more errors.

Krarrcuix 3 published a table of linear forms for |D| <200. When D >0,
the form 4D+« is always accompanied by the form 4D —x so that only those
x’s which are <2D are given with the understanding that both +x are to be
taken. This table is extended in KrArTcHIK 4 where 200< | D| < 250.

These are the only large tables of linear divisors published. Unfortunately
all contain numerous errors. D. N. LEEMER 5 extends to | D| =300 and was
used by him and Elder in the preparation of the factor stencils (D. N. LEEMER
3,4).

Three small tables of linear forms may be cited. Lucas 4 gives the linear
forms dividing x*— Dy? for | D| <30. WERTHEIM 5 has a similar table for
| D| <23. The table of CAHEN 3 gives linear forms mx+r (m=2D or 4D)
dividing x*— Dy? for | D| <50. This table is peculiar in that the r’s are chosen
to be absolutely least (mod m) and are arranged according to increasing ab-
solute values.

CuUNNINGHAM 36 gives a small table of linear divisors and non-divisors of
x?— Dy®. That is to say, the forms of primes for which (D/p)=+1 and
(D/p)=—1 are listed for | D| <12. The tables of LEVANEN 2 give for 62 se-
lected binary quadratic forms of negative determinant > —385 the corre-
sponding linear divisors.

j. D10PHANTINE EQUATIONS OF THE SECOND DEGREE

The solution of a large number of interesting problems in the theory of
numbers, algebra and geometry may be made to depend on Diophantine or
“indeterminate” equations. Problems resulting in equations which are of the
second degree are particularly interesting, and solutions of such equations
have been subjects of a great many tables. These tables fall naturally into
three classes: those giving information about the equations

(¢)) x*~Dy*=9, o=1=%1,14,

where D is a positive non-square integer, those dealing with the more general
equation

(2) x* — Dy = N,

and those dealing with quadratic equations involving more than two unknowns
such as x?4y?=322 The equations (1) have long been recognized as funda-
mental and are known as Pell equations, although the term “Pell equation”

is sometimes restricted to the case of s =1, and sometimes generalized to cover
(2). The equations (1) and those equations (2) for which N <+/D are inti-

[54]



DESCRIPTIVE SURVEY i

mately connected with the continued fraction expansion of /D, tables of
which are cited and described under m.

ji. The Pell equations x*— Dyt=¢g, o=+1, +4

Although these equations, especially with o=1, have a very long history,
the first tables of their solutions (x, y) were given by Euler. Since Euler’s time
the importance of the Pell equation to the theory of binary quadratic forms
and of quadratic fields K(v/D) has been fully realized and Euler’s original
tables have been greatly extended.

The first sizable table of the solutions of

2*—Dy'=+1

appeared in LEGENDRE 1 in 1798. The table extends to non-square D’s < 1003,
except in the second edition of LEGENDRE 1, where D < 135. The fundamental
solution of

3) #*—Dy*= —1
is given whenever possible, otherwise of
4) x? — Dy = + 1.

A glance at the final digits of z, y and D tells which of these two equations is
satisfied by the given z, y. This table for D < 1003 is reproduced in LEGENDRE
15, 1s.

Table 1 of DEGEN 1 gives solutions of (4) for D= 1000. Table 2 gives solu-
tions of (3) for all possible D not of the form #2+1, in which case the funda-
mental solution is obviously the trivial one (x, y) =(n, 1). Unlike Legendre’s
table, Degen’s Table 1 contains also the elements of the continued fraction
for v/D.

CAYLEY 6 may be considered as a continuation of Degen’s Table 1 for
1000< D <1500, except that when (3) has a solution, that solution is given in
place of the solution of (4) as indicated by an asterisk. This table was com-
puted by Bickmore.

WHITFORD 1 gives for 1500< D <1700 solutions of (4) and also of (3) if
possible, the latter being easily distinguished by their relative smallness. The
corresponding continued fraction developments are given separately for
1500< D=2012.

These are the main published tables of the solutions of (3) and (4). D. H.
LeaMER 9 gives these solutions for 1700 <D =<2000. An announced table,
GERARDIN 7, up to D=3000, is probably incomplete.

There are 6 small tables giving the solutions of (3) and (4) for non-square
D’s <100. These are CAYLEY 6 (p. 75-80), WERTHEIM 5, CUNNINGHAM 7,
PErrON 1, CAHEN 3 and KrarrcHik 4 (p. 48-50). The tables of Cayley and
Perron give in addition the continued fractions for v/D. The tables of Cayley
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and Cunningham give solutions of (4) and also of (3) when possible. The
others give solutions of (3) when possible, and otherwise of (4).

A special table of NIELSEN 1 gives solutions of (4) for those D’s of the
form g?+b? for which the expansion of the continued fraction for v/D has
an odd period with D <1500.

INCE 1 gives solutions of (3) or (4) with Dsk2D, whenever

() x?—Dy*= 44

has no coprime solutions (x, y) for D <2025.

The omission of the solutions of (4) when (3) has a solution (z, y) is not
important since the fundamental solution of (4) is in that case (2x2+41, 2xy).

The problem of telling “in advance” whether or not (3) is solvable has
never been satisfactorily solved. Three small tables give information on this
question. SEELING 3 gives the list of all those D’s <7000 for which (3) is
solvable. A similar list only for D<1021 appears in Krarrcmixk 4 (p. 46).
NAGELL 1 gives the number B(n) of D’s not exceeding n for which (3) has a
solution together with the number A(n) of non-squares <#n which are
sums of two coprime squares, and also the difference A(n)—B(n) for
n=100, 500, 1000(1000)10 000.

Thus far we have been speaking of fundamental (or least positive) solu-
tions of (3) and (4). If (21, y1) is such a solution of (4), the successive multiple
solutions of (4) are given by (xa, ¥a), where

%a+ VD ys = (z1 4+ VD y)* r=12---)
and are connected by the second order recursion formulas
Tnpl = 2X1%p — Zp—1
Ynt1 = 2%1Yn — Yn-1.

If, on the other hand, (1, y1) is the fundamental solution of (3), then (23a, y2)
and (Xan+1, Y2n41) are all the solutions of (4) and (3) respectively.

Only two tables give multiple solutions of (3) and (4). CUNNINGHAM 7
gives the first multiple solutions of both equations for D<20. A table of y,
in 23—293=+1is given for <30 in D. H. LEAMER 2.

Four tables give solutions of (5) and of

6) 22 — Dyt = — 4,

These are used in constructing automorphs of indefinite binary quadratic
forms, or the units of the real quadratic field K(\/D).

Equation (5) is always possible since a solution is (2%, 2y) where (z, y)
is a solution of (4) and by the same device (6) may be solved when (3) is pos-
sible. These solutions are uninteresting, however. For some D’s (5) and (6)
have no coprime solutions. In fact it is necessary that D=0, 4, or 5§ (mod 8).
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The first two cases are uninteresting since, if D=4D;, a solution (z, y) of (5) or
(6) implies and is implied by the solution (x/2, y) of (4) or (3) respectively
(with D= D,). Therefore tables of the solutions of (5) and (6) are concerned
solely with D=35 (mod 8). The first such table is ARNDT 2 which gives solutions
of (6) when possible, otherwise of (5) if possible for D < 1005. A similar table
for D=997 is due to CAYLEY 1. Solutions of (5) and (6) are given whenever
possible with 1005 <D <1997 in WHITFORD 2. INCE 1 gives solutions of (5) or
(6) whenever possible for D <2025 as units of the field K(v/D).

If (6) has a fundamental solution (x, y) (for D=5 (mod 8)) the solutions of
(5), (3) and (4) are respectively

(2 + 2, zy), ((=* + 3x)/2, y(2* + 1)/2)
and
((2* + 6x* + 92 + 2)/2, y(x* + 1)(2* + 3x)/2).

If (5) has a fundamental solution (x, y) with D=5 (mod 8), then that of (4)
is ((#3—3x)/2, y(x*—1)/2). Hence these tables may be used to find solutions
of (3) and (4) if necessary.

Many writers have suggested methods for solving Pell equations, which
avoid the explicit use of continued fractions. It is safe to say however that
those methods which are practical for solving isolated equations like, for ex-
ample, x*—1141y%=1 in which x and y have 28 and 26 digits, are equivalent
to the continued fraction method. The application of the continued fraction
algorithm by modern mechanical methods will be treated in another report of
the Committee: Z.

js. Other equations of the form x*+ Dy*=+ N

Besides the tables of the Pell equations, there are tables of solutions of the
equation

(1) 22 =Dy*=% N (N =1, 4).

These are of two kinds, according as D is positive or negative. In tables of the
former kind, N is comparatively small. Those of the latter kind extend over
prime values of N up to high limits for a very few negative values of D.

An important special case of (1) for D>0 is that in which N<+/D. In
this case the continued fraction development of /D will disclose whether or
not (1) is possible. In fact, by a theorem of Lagrange, + N will appear in the
denominator of a complete quotient (when these are taken with alternating
signs) if and only if (1) is possible, and the corresponding convergent z/y will
be the solution of (1). Hence tables of the continued fraction developments of
V/D (cited and described under m) give information for solving (1) in this case.

The table of KrAITCHIK 4 gives the least positive solution (z, y) of (1) for
N<+V/D, and for D<100. CAYLEY 6 gives for each non-square D<100 the
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least positive solution of (1), where + N are the denominators of the complete
quotients in the continued fraction of /D taken with alternating signs, so
that N <2+/D. For larger values of N the continued fraction method is no
longer applicable. There remains however the multiplicative property implied
by the formula

(41 — Dy1)(#3 — Dy3) = (%122 £ Dy1ys)* — D(x1ys + 22y1)?

known to Brahmagupta. This product to which Cunningham has given the
descriptive name “conformal multiplication” enables one to derive from solu-
tions of

x?—Dyf=N1 and x;—Dyg=Ng
a pair of solutions of
23 — Dys = N\l
In particular from the infinity of multiple solutions of
2 — Dyt =1,

we can derive an unlimited number of solutions of (1) from a single initial
solution. Conformal multiplication is the basis of the extensive tables of solu-
tions of (1) prepared by Nielsen. His largest table is NIELSEN 4 (p. 1-195)
which gives small solutions of (1) for ¥ <1000 and for 2< D <102, and for
several larger D’s up to 401. NIELSEN 2 contains a smaller table for N <1000
and for D=34, 79, 82 and 101, and certain products of these numbers by
squares. NIELSEN 3 gives similar results for D =30, 41, 51 and 130.

Information about the solvability of (1) is given in NIELSEN 5, which lists
for each N <10, all those D’s <10 000 for which (1) has a solution. With
each D is given a solution (¢, ) of #*— Nu?=D.

A small table of solutions of the equation (1) appears in OETTINGER 1,
where fundamental and five multiple solutions are given for D <20, and

N=1,2,---,10, 3% 5% 7* with 1Sk =<4.
Conformal multiplication is also applicable to equations of the type
(2) Ax*— By*= N (4B = D),

which become of type (1) on multiplication by 4.
Three tables of solutions of such equations have been given. ARNDT 1 gives
solutions (x, y) of

Ax* — By* =2 (4B = D)
when possible, otherwise of
Az - By'=1
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for all D<1003 which have no square factor, nor are primes or doubles of
primes of the form 4n+-1. That pair of factors (4, B) of D is chosen which
gives the smallest solution (z, ).

NIELSEN 4 (p. 199-234) gives small solutions (x, y) of (2) with N <1000
and AB=D ranging over composite numbers from 10 to 346 with some gaps.
This is an extension of the smaller table in NIELSEN 3, where A B= 30, 41, 51
and 130, mentioned above.

Turning now to tables of the second kind in which D is negative, we find
that in almost all cases N is a prime. This is permissible in view of conformal
multiplication. These tables give the solutions (x, y) of

3) B4 yr=9p p=4m+1
4) 224 2y2=p p=8m+4+1,3
(5) x4+ 3yt=9p p=6m+1
(6) 224 21y'=4p p=6m+ 1.

These representations or “quadratic partitions” (to use Cunningham’s termi-
nology) of p are possible if and only if p is of the linear form (or forms) indi-
cated, and when possible, are essentially unique (in (3) it is customary to
insist that y be even). These quadratic partitions are chiefly used in determin-
ing the character (a/p)a for n=3, 4, 8, 16 for small bases a, especially =2,
and have been a great aid as a preliminary to finding the exponent of a
(mod p). The distribution of quadratic residues (mod p), and certain class
number and cyclotomic problems also depend upon these partitions.

The first extensive tables of quadratic partitions were published by Jacost
3 in 1846, and were computed by Zornow and Struve. These give the partitions
(3) for p=11981, (4) for p=5953 and (5) for p=12007. A table of the parti-
tions of (3) for p=<10 529 occurs in KuLIk 1.

REUSCHLE 1 gave the partitions (3) and (4) for <12 377 and for all those
primes p from 12 401 to 25 000 of which 10 is a biquadratic residue. The parti-
tion (5) is given for p =13 669 and for all those primes from 13 669 to 50 000 of
which 10 is a cubic residue. The partition (6) is given for p <5743.

CUNNINGHAM 7 gives all four partitions for p <100 000. This table is ex-
tended from 100 000 to 125 683 in CUNNINGHAM 36, where also are found
several other tables giving quadratic partitions of primes of special form as
follows. On p. 5669 are given the partitions (3), (4) and if possible (5) of all
primes of the form 2*w+4-1, 229 up to high limits L depending on % as follows:

k l 9 10 11 12 13 14

Ll 10 1.25-108 2.5-108 5100 8.5-108 9-108

On p. 70-73 are given the partitions (3) and if possible (5) of all primes p
of the form 2*w+1, k29, 107<p<10% These tables were used in factoring
Fermat’s numbers 2t"+1.
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A similar table occurs in KrArrcHik 4 (p. 192-204) where the partition (3)
and if possible (4) and (5) are given for all primes p=2%+1=<10 024 961.
As a matter of fact a, b, c, are given in the equations

24 (40 =p, 2+24B)=p, 24 3(4)'=p.

CuNNINGHAM 36 also gives partitions (3) and (4) whenever possible of all
primes between 10® and 1084 102. The representation of all possible primes p
by the idoneal form

p = 2?4 1848y for 10" < p < 107 4 10°

appears on p. 74-76. Actually (x, 2y) is tabulated. All solutions (x, y) are given
of

22+ y*=n and 224 3y?=n?
for all possible # <3000 together with the corresponding partition of # when n
is composite (p. 77-87).

Other tables of quadratic partitions different from (3), (4), (5) and (6)may
be given the following tabular description. These give the least solutions (¢, %)
of

£ — Du? = kp

for the values of 2 and D indicated, and for all possible primes p not exceeding
the limit L:

Reference D k L
CUNNINGHAM 7 2 1 25 000
3 1 10 000
TANNER 2 5 4 10 000
CUNNINGHAM 7 5 4 10 000
-5, +£6, +7, +£10, 11 1 10 000
11 4 10 000
+13,+14 1,2 1 000
+15, +17 1,9 1 000
+19 1,4 1 000
BickMorE and WESTERN 1 2 1 25 000.

In the last mentioned table, p is restricted to the form 8n+1, and ¢ to the form
4x+1. This paper also contains a small table giving all the representations of
each possible number less than 1000 as the sum of two squares.

js- Equations in more than 2 unknowns, rational triangles
All but a few tables of this sort have to do with rational triangles, and most
of these are lists of rational right triangles. Many such lists have been given
in obscure places, and have been superseded by larger lists in more readily
available sources.
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It is well known that the sides of all integral right triangles are given by
the formulas

a = 2mn, = m? — n?, h = m? 4+ n?,

where & is the hypotenuse, and where m and »n are integer parameters. If one
wishes to exclude the less interesting non-primitive right triangles in which
8, b, and k have a common factor one restricts m and n to be coprime, and to
be of different parity. There remains only the question of arranging the list of
triangles thus generated.

Two extensive tables arranged according to values of m and »# may be cited.
The first, BRETSCHNEIDER 1 gives all primitive triangles generated with
n<m<=25. With each triangle is given also its area and its acute angles to the
nearest 10th of a second. A more extensive list is given in MARTIN 1 (p. 301-
308). This contains864 triangles arranged according tom and» with n <m <65,
and is the largest list of rational triangles ever published. With each triangle
is given its area.

An old list of 200 right triangles was published by ScHULZE 1 in 1778. These
are arranged according to the size of the smallest angle of the triangle. The
tangent of half this angle is made to assume every rational value between 0
and 1 whose denominator does not exceed 25.

The arrangement most frequently used is according to increasing values of
the hypotenuse. Such tables for <1109 are given in SaorcIo 1 and Sang 1.
The latter gives also the angles to within 1/100 of a second. The most ex-
tensive tables with this arrangement are found in MARTIN 2 and CUNNINGHAM
36. Both these tables give all 477 primitive triangles whose hypotenuses k& do
not exceed 3000. The Cunningham table is in two parts in which 4 is respec-
tively prime and composite. This same arrangement is used in KRAITCHIK 6
which extends only to #< 1000 however. CUNNINGHAM 28 (p. 190-194) has
another table complete to s=2441 with 28 other A’s <3000.

A table of TEBAY 1 (p. 111-112) gives a list of right triangles arranged ac-
cording to their area 4 up to 4 =934 800. This table is reproduced in HALSTED
1 (p. 147-149) with nine additions.

BaHIER 1 (p. 255-258) gives a list of all primitive triangles one of whose
legs has a given value <300.

A table of KrisuNAswaMI 1 is arranged according to semi-perimeters and
lists all primitive right triangles whose semi-perimeters do not exceed 5000.

References to other tables of right triangles, mostly small and obscure, are
given in MARTIN 2.

Several small tables giving special right triangles may be mentioned.
MarTIN 1 (p. 322-323) gives 40 right triangles whose legs are consecutive
integers and 313 triangles whose hypotenuses exceed one leg by 1 or by 2.
Bamier 1 (p. 260-261) gives the values of certain recurring series for use in
solving such problems. There is also given (p. 259) the list of 67 triangles one of
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whose sides is 840. WoEPCKE 1 has given for each of the 33 primitive right
triangles with 4 <205, 12 associated congruent numbers. MARTIN 2 contains
many sets of right triangles with special properties too numerous to mention.

There are a few tables of rational triangles which are not right triangles.
TeBAY 1 (p. 113-115) lists 237 rational triangles arranged according to area,
the greatest area being 46 410. This table is reproduced in HALSTED 1 (p. 167-
170) and amplified in MARTIN 1 by 168 additions. SiMERKA 1 lists all 173
rational triangles with sides <100. There is also given the area, the tangents
of the half angles and the coordinates of the vertices of each of these triangles.
Sanc 1 gives the list of 137 triangles, one of whose angles is 120°, and whose
largest side is less than 1000.

CorpuT 1 has listed all primitive rational isosceles triangles (a, @, ¢) of
altitude 4,and base angles 4, arranged according toafroma=25toa <160 000.
The table gives for each triangle the values of v/a, ¢/2, k/24, tan (4/4),
va cos (4/2) and v/a sin (4/2). PARADINE 1 gives 1120 triangles, each having
integral sides and one integral median.

Finally we cite tables of solutions of diophantine equations of the second
degree in more than 2 unknowns which do not refer to triangles.

CunNINGHAM 28 (p. 185-189, 194) gave solutions of x?=y?— 322 arranged
according to y complete to y=<1591 with 99 more y’s <2774. EELLs 1 has
tabulated 125 solutions of x24y%4-32=4a? for various a’s from 13 to 88 621.
Jorre 1 has given a complete list of 347 solutions of this equation for
1<a=100. BisconcinI 1 has given 50 solutions of

2 2 ] 2
x4+ 24 3= 24
k. NoN-BiNoMIAL CONGRUENCES OF DEGREE 23

Very few tables exist in this category. The term non-binomial is used here
in its technical rather than its strict sense. That is to say, tables of solutions
of such congruences as

(s —1)/(x*=-1) =2+ 2z*4 1 = 0 (mod p)

have been classified under the binomial congruences (d.) in spite of the fact
that it is a trinomial congruence of the eighth degree.

We may cite here however the table of REuscHLE 3 which gives not only
the primitive solutions of the congruence

z* — 1 = 0 (mod p),
but also the solutions of
F(x) = 0 (mod p)

where F(x) are the polynomials whose roots are the several sets of “periods”
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of the nth roots of unity (described more fully under o) for all »=2-100, 105,
120 and 128, and for all $ <1000.

Another table having to do with cyclotomy may be cited here also. JacoB1
3 gives for each m<p—1 and different from (p—1)/2 a number m’ such that

1+ gm =g (mod ),

where g is a given primitive root of p for 7= p<103. This table has been ex-
tended by Dickson 10 to $ <500, and for those primes between 500 and 700
which are not of the form k¢4 1, where ¢ is a prime and k=2, 4, 6, 12.

The table of FLECHSENHAAR 1 gives for each prime p=6m-1 from 7 to
307 a pair of numbers (b, ¢) such that

be = 1 (mod p)
b+ 1= (b + 1)° (mod p?)
¢4+ 1= (c+ 1)? (mod p?).
BaNG 1 gives a list of primes p=mx+1<1000 for which the congruence
a™ 4+ b™ — ¢™ = 0 (mod p)

has solutions for m < 25.
A rather special table of KrarrcHIK 4 gives for each n <1019, except 4, 5,
and 7 a number g, and a prime p such that

n! 4+ 1 = a (mod ), (%)=—1,

thus showing that except for =4, 5, and 7 the diophantine equation
nl4+1=m
has no solutions (n, m) with n<1019.

1. D1oPHANTINE EQUATIONS OF DEGREE >2

Actual tables of solutions of Diophantine equations of degree d>2 exist
only for d=3 and 4, although short notes giving occasional solutions of such
equations with d> 4 are scattered throughout the literature on the subject.

A list of about 6000 solutions of equations of the form

z* + y* = D,

arranged according to | D|, with | D| <2000, is found in G£RARDIN 3.
A table of all integral solutions (x, y), when possible, of

B —9yt=D

with 1=2#=<101 and D<1024 is given in BRUNNER 1 together with the class
number & (\/—D).
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Rational solutions of such equations are given in BrLLING 1. “Base points”
are given here from which all rational solutions of

yr=2x—Ax—B 1s|4]=<3 1=|B|=3

y*=2'—B | B| = 25
¥ =2t — Ax |4] = 50
may be generated.

KuLIk 1 gives solutions (x, y) of
n=2x—y' and n=23x'+4y
for all possible odd » not exceeding 12097 and 18907 respectively.

The rare table of LENHART 1 gives, for more than 2500 integers
A <100 000, solutions of

24y = A
in positive integers. A small table of solutions of this equation for each of the

22 possible A’s =50 is given in FADDEEV 1.
Two tables of Delone relate to the integral solutions of the binary cubic

(1) ax? + bxty + cxy* 4+ dy' =1

with a negative discriminant D. DELONE 1 gives all solutions (x, y) of (1) for

all non-equivalent equations with —300<D<0. This table is reproduced in

DELONE 2, where also are given all sets of integers (n, p, g) for which the dis-

criminant D of the cubic #*—nx?— px—q has a given value with —172< D<0.
The ternary cubic

x* 4+ Dy® 4 D*® — 3Dxyz = 1,
like the Pell equations, has an infinity of solutions. A table of solutions (x, y, 5)

for each positive non-cube D<100 is given in WoLFE 1.
A list of 16 solutions of

in OETTINGER 1 may be cited.
CunNINGHAM 28 (p. 229) gives 44 solutions of
2 — g3 = g
and (p. 234-235) solutions of
2 + cy? = g
for c=100.

A. A. BENNETT 1 gives a table of solutions of what is in effect a ternary
cubic equation
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arccot x; -+ arccot xs = arccot y; -+ arccot ys.

All solutions are given in which 0 <423 <2S.
Finally the quaternary cubic equations

Bttty t+32=0

are considered in RicEMOND 1. All solutions (¢, x, ¥, 2) in which the variables
do not exceed 100 are given.

Turning to quartic equations we find only a few tables. CUNNINGHAM 15
gives all solutions (x, y, 8) of

zt 4+ yt = ms?
in which the right member does not exceed 107, and all solutions in which

x=1, and y<1000.
CUNNINGHAM 28 gives two or more solutions of

2t + kyt = + 3t k = 100 (p. 230, 236),
and of
x4 — kxly? 4 yt = g2 k < 200 (p. 232-233).
OETTINGER 1 gives 16 solutions of
2t — y? = gt

VEREBRIUSOV 1 tabulates all non-trivial solutions of

x‘+y‘+z4= x:+y:+z:
in which the variables do not exceed 50. This table is reproduced in VERE-
BRIUsOV 2.
m. DIoPHANTINE CONTINUED FRACTIONS
A number of useful tables of the continued fraction developments of alge-

braic irrationalities have been published. Most of them refer to the regular
binary continued fraction

o + 1 1 1
= Qo -_— -_— -
! ntetapt+---
and, of these, nearly all refer to the case in which # is a pure quadratic
surdv/D.
If we write

tw=0=q+ 1/x 0 = [6]
w=q+ 1/ @1 = [x]
e = qr + 1/%e11 g = [x]

[65]



m DESCRIPTIVE SURVEY

then the x; are called complete quotients, and the g incomplete (or partial)
quotients of 6, and

for every £>0.
In case 6=+/D the complete quotient x, takes the form

= (VD + Py)/Qs

where P: and Q. are integers such that

0s P <D
0 < Q: <2vD.

Several tables give Q as well as gx. The numbers Q: are important in many
applications, especially in connection with the question of solving the equation

* — Dy? = N.

The numbers P; are less useful, and have (with one exception) never been tab-
ulated. They may be obtained from the Q’s by the formula

Py =D — QQia

and have been used for solving quadratic congruences (mod D). All three se-
quences Py, Qx, qi, are periodic for 2> 0.

The main tables of the continued fraction development of /D are DEGEN
1, CaYLEY 6, and WHITFORD 1. Each table gives both ¢ and Qi up to the
middle of the period, about which point the period is symmetric.

The table of DEGEN 1 extends from D=2 to D=1000, that in CAYLEY 6,
which was computed by Bickmore, from D=1001 to D=1500, while that of
WHITFORD 1 extends from 1501 to 2012.

The table of SEELING 2 gives for D <602 the first half of the period of the
partial quotients gi, but not Q. In addition it gives in each case the number of
terms in the period of the continued fraction, a function about which little
is known. Lists of D’s are given which correspond to periods of given length
and type.

Those D’s <7000, which have an odd number of terms in the expansion of
/D, are listed in SEELING 3.

A tabular analysis of the continued fraction for /D arranged according to
the length of the period is given for D <1000 in KrAITCHIK 6, where also is
given a similar analysis of (—14+/44+41)/2 for 4 <100. Only the partial
quotients are given.
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The table of ROBERTS 1 gives partial quotients only for the expansion of
/D for D a prime of the form 4n+ 1 not exceeding 10 501.

Another special table is that of voN THIELMANN 1, which gives partial
quotients for v/pq where both p and g are primes of the form 4k+1, and
£9<10 000. The trivial cases pg=x2+1, x2+4 are excluded. The table is
in two parts, the first of which contains expansions with an odd number of
terms in the period.

NIELSEN 1 gives for D<1500 and the sum of two squares both ¢: and Qs
for the expansion of v/D in case the period has an odd number of terms.

A small table of the partial quotients in the first half of the period for /D
is given in PERRON 1 and extends to D <100.

INCE 1 gives in effect Py and Q:, but not ¢i in the expansion of /D for all
D<2025 of the form D=4k+2, 4k+3, and without square factors. These
occur in the first cycle of reduced ideals. Thus for D=194, the first cycle given
is

1,13~ 25,12~ 2,12

This may be taken to indicate that P, and Qx have the values

k 0 1 2 3 4 5 6 7 8

Py 0 13 12 12 13 13 12 12 13

O 1 25 2 25 1 25 2 25 1

The other cycles, if they exist, correspond to certain irregular continued frac-
tions for v/D. For D=4n+1 the corresponding information is given for
(1+vD)/2.

Those convergents 4./ Ba to continued fractions which satisfy the equation
A*—DB*= +1, 14 occur in tables of the Pell Equation as described under j,.
Other convergents are given only rarely. A small specimen table in CAYLEY 6
gives all convergents in the first period of /D for D<100.

SEELING 1 gives expansions of many higher irrationalities such as /D for
D=2,3,4,6,7,9, 10, 15 and several other numbers of the form DV* up to
k=13. Since by a theorem of Lagrange none of these expansions can be periodic
the entire expansions cannot be given, so that only the beginnings of the ex-
pansions are found. Complete as well as partial quotients are given.

Daus has published three tables of the expansion of cubic irrationalities
in a ternary continued fraction (Jacobi’s algorithm). Such expansions are
ultimately periodic. In place of partial quotients g, we have partial quotient
pairs (px, ¢x) which determine the expansion. Daus 1 gives a table of partial
quotient pairs in the expansion of /D for D<30. Similar expansions of the
largest root of the cubic equation

B+gr—r=0 lgl =9, 1=sr=9
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occur in Davus 2. Daus 3 gives expansions of cubic irrationalities in certain
cubic fields with a minimal basis. The fields are defined by a root 8 of the
cubic equation

P —prtg=0 ol <9 |qls9
in which (1, 0, 6%) is not a basis.

n. NoN-LINEAR ForMs, THEIR CLASSES AND CLASS NUMBERS

The theory of forms, especially of binary quadratic forms, has a number of
applications in other parts of the theory of numbers. Tables having to do with
the application of forms have been cited under other sections of this report,
in particular under bs, e,, f3, g, i, j, 1, 0 and p.

There remains however a large number of tables without view to immediate
exterior application, giving information about the theory of forms itself. To
the amateur number-theorist, not an expert in the arithmetical theory of
forms, most of the tables about to be described will doubtless appear to be
sterile, if not useless. If so, the writer has been successful in his classification
of these tables, as the tables here described are of interest mainly to experts.

Existing tables refer to four sorts of forms: binary quadratic, ternary quad-
ratic, quaternary quadratic, and binary cubic forms.

The theory of binary quadratic forms arose from the problem of solving
Diophantine equations of the second degree, and early tables reflect this origin.
We have on the one hand the tables of the Pell equations

2= Dy'= +1,

fully described under j;, and on the other hand tables for the representation of
a large number N by the form

%2 — Dy*= N,

described under g, i;, is, and js.

This latter problem was at once seen to be a key to the question of factoring
large numbers N and it was with this application in mind that Gauss began
his epoch-making investigation into the theory of binary quadratic forms.
Among the many by-products of this research three may be mentioned as
being the source of tables described elsewhere. These are the theory of the
number of representations of a number by a binary quadratic form, the repre-
sentation of cyclotomic functions as binary quadratic forms, and the theory of
quadratic fields.

Tables of the functions E(n), H(n) and J(») have been cited under by
and are contained in GLAISHER 15, 17, 18, 19, 24, 25 and 26. These functions
are related to the number N(n=f(x, y)) of representations of # by the binary
quadratic form f(x, y) as follows:
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N(n= x4+ y?) = 4E(n)
N(n = 22 4 2y?) = 2J(n) (» odd)
N(n = x? 4 3y*) = 2H(n) (n odd).
GLAISHER 19 also contains a table of the function
G(n) = N(n = (62)* + (6y + 1)) = N(n = (6x + 2)* + (6y + 3)?)

for n=12k4+1=<1201.
Tables of the coefficients of the polynomials ¥ (x) and Z(x) in the represen-
tation of the cyclotomic function

4(x» — 1)/(x — 1) = V¥(z) — (= 1)="V13pZ%(x)

and related tables are cited under o and begin with Gauss 1.

The theory of quadratic fields is of course very closely related to that of
binary quadratic forms, their difference being largely one of nomenclature.
Hence many of the tablescited under p are instances of tables related to binary
quadratic forms.

Tables of reduced binary quadratic forms begin with LEGENDRE 1. Table I
gives all reduced forms

ay? 4 2bys — c3?

of determinant 4 =b*4-ac for all possible 4 <136. Table II gives similarly re-
duced forms

Ly* 4+ Mys + Nz* (M odd)
with 0< M2*—4LN =305. Tables III, IV, VI, and VII list the reduced forms
ay? + 2bys + cs?

of determinant A = *—ac with —106=< 4 S 79 together with the corresponding
linear forms of the odd divisors of #—au? (as described under i;). Similarly
Table V gives for the reduced forms

Ly* 4+ Mys 4+ Nz?

with a=4LN—M?* or LN—M?*/4, according as M is odd or even, for
0<ae=4k—1=103.

Gauss must have constructed extensive tables of reduced forms but never
published any. He in fact considered the publication of such tables as unneces-
sary since any isolated entry can be so easily obtained directly. His table of
the classes of binary quadratic forms to be cited presently was published post-
humously.

CAYLEY 2 tabulated the representatives of each class of forms of non-
square determinant D with their characters and class group generators for
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| D| <100 together with 13 irregular determinants D between —100 and
—1000 noted by Gauss. For D>0, the periods of the reduced forms are given.
This table was continued from D= —100 to D= —200 by CooPER 1.

CAHEN 3 gives a table of primitive classes of positive definite forms of dis-
criminant D <200 omitting those cases in which there is but a single class.
There is a similar table for indefinite forms of discriminant > —200.

WziGHT 1 has given an interesting table of reduced forms ax*+2bxy-+-cy?
of determinant —A with A<150, and 800 <A < 848 arranged so that b and ¢
can be read on entering the tables at a, A. The values of b are periodic functions
of A for each fixed a. This table has been extended to A <1200 in Ross 1.

Two tables of indefinite binary quadratic forms are included in Ross 1.
The “basic” table gives reduced forms (a, b, —¢) with 0<a=c and 2b=¢, for
determinants up to 1500. A second table lists the periods of reduced forms, as
in CAYLEY 2, for determinants from 100 to 1000.

Gauss 7 gave extensive tables of the number of classes for mostly negative
determinants. More definitely the determinants considered are — D for all D’s
of the nth century for n=1-30, 43, 51, 61-63, 91-100, 117-120 and, in another
arrangement, for D’s of the 1st, 3rd and 10th chiliad and for D of the form
—(152+47) and — (1558+13), n<800. The positive determinants considered
are those of the nth century forn=1, 2, 3, 9, 10.

For each group of determinants above mentioned are listed those determi-
nants which have a prescribed number of genera (I, II, IV, VIII, - - - ),and a
prescribed number of classes in each genus. Under each specified number of
genera are given the number of determinants having that number of genera,
and the total number of classes. At the end of each group these numbers are
combined to give the total number of genera and classes in that group together
with the number of improperly primitive classes and the number of irregular
determinants, the latter being indicated in the tables by asterisks, and in most
cases the index of irregularity is also given.

E. T. BELL 1 contains a table of the number of odd classes of binary quad-
ratic forms of determinant — D for D<100.

SURYANARAYANA 1 gives a list of primes D of the form 4n4-3 for which the
class number of D is 2 and 0< D < 5000.

For the purpose of factoring large numbers N or proving their primality,
forms which have only a few classes in each genus are advantageous to use in
representing the given number N. The 65 “idoneal” forms

2t + Ayt A>0

of Euler are such that each genus contains but a single class. The idoneal A’s
have been given in numerous places such as MATHEWS 1 and KRAITCHIK 6
(p. 119). Besides these idoneal forms, SEELHOFF 1 has given 105 others for
which each reduced form in the principal genus is of binomial type ax?*4-cy?
to be used for factoring as mentioned under g. Forms of practical use in fac-
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toring are not confined to definite ones. CHEBYSHEV 1 has given for each indefi-
nite form x?— Dy? (0<D<=33) limits on x and y depending on N between
which it is sufficient to look for representations of N.

The applications of the theory of binary quadratic forms to elliptic modu-
lar functions have produced tables of class invariants and other tables relating
to the complex multiplication theory. These tables will be described in another
report of this Committee under G: Higher Algebra.

We turn now to the consideration of tables related to ternary quadratic
forms.

Interest in such forms originated from the problem of representing binary
quadratic forms by ternary forms, and the earliest table involving ternary
forms is concerned with this problem, and is found in LEGENDRE 1. Table VIII
(in the first edition Tables VIII and IX) lists for all possible ¢< 251, the re-
duced forms

py® + 2qys + r3t, c=pr — ¢*

and expresses each of these as a sum of three squares of linear forms.

SEEBER 1 gave the first table of reduced ternary forms. This gives the
classes of positive ternary forms of odd Gaussian determinant — D for D<25.
This table was revised by E1sENSTEIN 1 who gave the characters and classes in
each genus. EISENSTEIN 2 gives a table of primitive reduced positive ternary
forms of determinant — D for all D <100 as well as D= 385. EISENSTEIN 3 lists
all automorphs of positive ternary forms. These are given also in DiCksoN 6
(p. 179-180).

Borisov 1 gave a table of properly and improperly primitive reduced (in
the sense of Selling) positive ternary forms for all determinants from 1 to 200,
assigning to each representative form a type and the number of automorphs.

Tables, due to Ross, of reduced (in the sense of Eisenstein) positive ternary
forms, both properly and improperly primitive of determinant d <50, giving
also the number of automorphs, occur in D1cksoN 6 (p. 181-185). Forms with-
out “cross product” terms are listed separately. With each form is given the
number of automorphs. This table has been extended to d <200 by JonEs 1.

Jones and Pairr 1 list all 102 so-called regular forms f=ax?4by*+-cs2.
These are reproduced in DicksoN 9 (p. 112-113) where also are given in each
case the numbers not represented by f.

A special table giving certain arithmetic progressions and generic char-
acters of reduced positive ternary forms whose Hessian does not exceed 25
appears in Haprock 1.

Only three tables of indefinite ternary forms have been published. The first
is due to EISENSTEIN 3 and lists non-equivalent indefinite forms whose de-
terminants have no square factors and are less than 20.

Markov 1 tabulated reduced indefinite ternary forms, not representing
zero, of determinant =< 50. This table was recomputed and extended to determi-
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nants <83 by Ross and appears in DicksoN 6 (p. 150-151). A similar table
for determinants 4% <124 occurs in Ross 1.

CHARVE 1 lists all positive quaternary quadratic forms reduced in the sense
of Selling of determinants = 20. A similar table of such forms reduced in the
sense of Eisenstein for determinants <25 is given in TowNEs 1.

There are a few tables of binary cubic forms, all with negative discrimi-
nants. Two of these by DELONE 1, 2 have been described under 1.

ARNDT 3 gave all reduced binary cubics of negative discriminant — D, their
classes and characteristic binary quadratic forms for all possible D <2000.

CAYLEY 3 reproduced part of this table in revised form. His table gives the
reduced forms with their order, characteristic and composition for the follow-
ing values of the discriminant D:

0>D=4k>—400 and 0>D=4k+12 —99

and D= —4k, k=243, 307, 339, 459, and 675.
MAaTHEWS 2 contains a table due to Berwick of all non-composite reduced
binary cubics with discriminant — D, D <1000.

0. TaBLES RELATED T0 CyYCLOTOMY

The problem of dividing the circle into an equal number of parts, or what
is the same thing, the study of the roots of the binomial equation x*=1 would
seem at first sight to have little connection with tables in the theory of num-
bers. Gauss was the first to recognize, however, the intimate connection be-
tween cyclotomy and various branches of number theory, when he showed
that the construction of regular polygons by Euclidean methods depends ulti-
mately on the factorization of Fermat’s numbers 22"41. A list of the 32 regular
polygons with an odd number of sides known to be constructible with ruler
and compasses is given in KRAITCHIK 4 (p. 270). The theory of cyclotomy is of
much wider application to number theory, however, and tables described un-
der by, b, d, e,, fs, i, §3, 0, p and q, either depend upon cyclotomy or are of use
in its applications.

We have in fact already introduced in various connections the cyclotomic
polynomial

0uz) = IT (s = e,

where u is Mébius’ function and & ranges over the divisors of n#, which has for
roots all the primitive nth roots of unity. This polynomial is often loosely
spoken of as “the” irreducible factor of x*—1, and is often written as X, and
Fa(x). Tables of coefficients of Q.(x) are scarce. REUSCHLE 3 gives Qa(x) for
n=3-100, 105, 120 and 128 with the exception of n=4k+2 for which
Qurya(x) = Qary1(—=). SYLVESTER 1 gives Q.(x) for all #<36. KrRAITCHIK 7
gives, for all products # of two or more primes not exceeding 105 (except 77),
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the coefficients of Qa(x) or of Qu(—x) = Qsa(x) according as n=4%+1 or 4k +3,
and for n=2p¢=< 102, those of Qs ().
The need for tables of Qa(x) is not acute since for any particular n, Q.(x)

may be readily found from the application of one or more of the following
formulas:

0p(x) =271+ 2724 --- +x+1
Qn(2) = Qn(=™)

Q1(2) = Qa(— %), (n odd)
Onp(%) = Qu(2)/Qn()

where n=nm and n, is the product of the distinct prime factors of n, and
where 7 is not divisible by the prime .

Several tables give data on the “f-nomial periods” of the primitive nth
roots of unity where ¢(n) =e-f. The most elaborate such table is REUSCHLE 3,
which gives for every divisor f of ¢(n) the set of fundamental relations between
the f-nomial periods which express the product of any two of them as a linear
combination of the periods for n=1-100, 105, 120, 128, except n=4%k+2. In
most cases the irreducible equation of degree ¢ satisfied by the periods is given
also, though when # is composite and e is large this equation is not given.

SYLVESTER 1 gives the polynomials whose roots are the binomial periods
n=a+a!, where a are the primitive nth roots of unity, for all <36, and
12 other polynomials whose roots are the f-nomial periods, /> 2, for n=15, 21,
25, 26, 28 and 33.

D. H. LEBMER 3 contains a table of all irreducible polynomials of degree
=10, whose roots are of the form a+a~!+42, where a are the primitive nth
roots of unity, n<4k4-2.

CAzEY 1 contains tables of the coefficients in the linear expressions for the
squares and products of two f-nomial periods of imaginary pth roots of unity
for all primes p <500 and for e=(p—1)/f=3, 4, and 5.

TANNER 1 gives for each p=10n+41<1000 the quintic equation for the
five (p—1)/5-nomial periods.

Many tables give the representation of Q.(x) as a quadratic form. The first
of these is due to Gauss, who discovered the polynomials ¥,(x) and Z,(x) of
degrees (p—1)/2 and (p—3)/2 respectively such that

@) 427 — 1)/(z — 1) = V(%) — (— 1)-D13pZ3(2).

These are tabulated in Gauss 1 for < 23. Dirichlet and Cauchy later pointed

out that (2) can be generalized to the case of p, replaced by a composite num-
ber n, as follows:

©) 40u(2) = V() — (= D)DinZ}(2),
where # is a product of distinct odd primes. (A quadratic form exists in the
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case of a perfectly general n, as may be seen at once from (1) by replacing x
in (3) by +a™).

Tables giving ¥.(x) and Z.(x) may be given the following tabular descrip-
tion, where by “general” we mean prime or the product of distinct odd primes
(the trivial case of p=3 is usually not given).

reference character of n range of »
Gauss 1 prime $=23
MaTHEWS 1 prime p=31
KrarrcHik 2 (p. 3) prime p=37
KrarrcHIK 4 (p. 126) prime p=37
HoLpEN 1, 2 general n< 57 (with gaps)
PockrLINGTON 1 prime 41<p=<61
Lucas 2 general n=>5-41, 61
Gouwens 1 prime 67<p<97
TEeEGE 1 general n=<101
KrAITcHIK 7 (p. 2-4) general n<101
Grave 1 prime 235 p=4m+3=<131
GRAVE 2 prime 295 p=4n4+1<197
GOUWENS 2 prime 101 £ <223.

For some reason Gauss and his followers failed to discover another quad-
ratic form representing Q.(x) which is, for some applications, more important
than (2) or (3). The existence of polynomials T's(x) and U,(x) such that

On(2) = Ta(x) — (— 1)-Ditgaa(z)

was discovered 70 years after Gauss’ discovery of (2) by Aurifeuille. Tables
of the coefficients of T, and U, were first published by Lucas 2 for odd n<41
not divisible by a square, as well as for n=>57, 69 and 105. Lucas 3 gives in
effect the coefficients of the polynomials V,.(x) and W.(x) such that

Ou(z) if n=4k+1
Qu(x) if n=4k+ 2 0r3

for all n < 34, having no square factor. This table was reproduced by CuNNING-
HAM 23 with the additional entries for 34 <n <42, and =46, and also by
KraircHIK 2 (p. 6), and KrarTcHIK 4 (p. 88), where in both tables the addi-
tional entries n=35, 39, 42 and 51 are given.

Lucas 2 gives in reality the coefficients of the polynomials R.(x) and Sa(x)
in the identity

V:(x) - an:(x) = {

Qu(%) = Ra() — 2naSh(x)

for odd n=<35, as well as n=39, 51 and 57. The importance of Aurifeuille’s
formula lies in the fact that for suitably chosen x, Q.(x) becomes the difference
of two squares, and hence decomposable into rational factors.
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P. TABLES RELATING TO ALGEBRAIC NUMBER THEORY

Algebraic number theory, like the theory of forms, is a rather technical
subject. The more extended parts of the theory are so ramified that tables are
apt to be little more than mere illustrations of theorems. In fact, many ar-
ticles on the subject contain numerical illustrations too numerous, too special
and too diverse to permit description here. Although these numerical illustra-
tions serve to make more real the abstract subject matter being considered,
they cannot fairly claim to be described as useful tables.

Tables described under other sections of this report are of use in parts of
algebraic number theory. In fact, the theory of binary quadratic forms is prac-
tically identical with quadratic field theory, and many tables relating to the
former subject (described under n) are applicable in the latter, and conversely.
Other sections containing tables useful in various parts of algebraic number
theory are by, by, d, ey, f, i3, j, 1, m and o. Other useful tables, more algebraic
than number theoretic, such as tables of irreducible polynomials (mod ),
modular systems, Galois field tables, class invariants, singular moduli, etc.
will be described in another report of this committee under G. Higher Algebra.

Tables relating to algebraic numbers may be classified according to the
degree of the numbers considered. Many tables pertain to quadratic number
fields.

The tables of SOMMER 1 contain tables of both real and imaginary quadratic
fields K(v/D) for | D| <100, and not a square, giving in fact for each such D
a basis, discriminant, principal ideal, the classes of ideals, genera and char-
acters. The fundamental unit is given when D>0.

A more comprehensive account of real quadratic fields is given by the table
of INCE 1. This table gives data on the fields K(v/m) for all m <2025 having
no square factor. Ideals (@, b+w), where w=+/m for m=2, 3 (mod 4) and
w=(14+/m)/2, when m=1 (mod 4), are written simply a, 5. Reduced ideals
fall into classes of equivalent ideals, and the ideals in any one class form a
periodic cycle which is palindromic. The table lists the first half of these cycles.
In addition the table gives the number of genera in the field, and the number
of classes in each genus, their generic characters and finally the fundamental
unit e=zx+y\/m or (x+y\v/m)/2, also written in the form (¥+ow)?/n, when-
ever possible.

The table of SCHAFFSTEIN 1 gives the class number of real quadratic fields
whose discriminant is a prime p(=4k+1) for $ <12 000, 10*< p <10°+-10% and
10°< < 1084107,

A number of tables refer to the Gaussian numbers a+b\/ —1, and their
powers.

The first such table occurs in GAuss 2 and gives for each of 19 complex
primes p=a+ib with norm a2+ 52 < 157 those complex numbers (mod p) which
have each of the 4 different biquadratic characters (mod p).

Gavuss 9 has a table of indices for 45 complex primes p = a--7b. This table
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was extended to all prime and composite moduli in K(v/—1), whose norms do
not exceed 100, by G. T. BENNETT 1.
BELLAVITIS 1 contains a table of powers

(a + ib)* (mod p, x* + 1)

of a primitive root a+ib for p=4m+3=<67, for k=r(p+1), s(p—1) and
s(p—1)+1, wherer=1,2,--- (p—1)/2,s5=1,2,-- - (p+1)/4.

The table of VoroNo 1 gives for each prime $ <200, a pair of companion
tables, one of which gives the powers (mod p) of a primitive root E=a+id,
where i*=N (mod p), N being the least positive quadratic non-residue of p.
The other table gives the index of that power of E whose real part is specified
and whose imaginary part is positive.

GLAISHER 17 has tabulated three functions which depend on “primary”
Gaussian numbers, that is, numbers of the form

(_ 1)(o+b—l)l’(a + ib)

where ¢>0 is odd and b is even.

Let Si(n) denote the sum of the kth powers of the primary Gaussian num-
bers whose norm is #. Glaisher denotes the functions Si(n) and S:(n) by x(n)
and A(n) respectively. In fact x(s) is tabulated for odd # <1000, and for all
primes and powers of primes < 13 000, while \(n) is tabulated for 2 < 100. The
function So(n) is designated by E(n), several tables of which are described
under bs.

Tables relating to cubic fields are much less numerous than those for quad-
ratic fields.

The tables of REID 1, 2 are in two parts. Part 1 gives for each reduced cubic
equation

B+ px+g=0, |p|s91s¢59

the discriminant of the field thus defined, the class number, a basis and a sys-
tem of units as well as the factorization of certain small rational primes in the
field. Part II gives the same information for 19 other cubics of the general form

x4+ b2+ cx+d (b = 0).

The tables of Daus 2, 3 (described under m) give the units in the cubic
fields under consideration.

DELONE 1, 2 give information about units of cubic fields of negative dis-
criminant. In particular DELONE 2 lists all fields with discriminant — D with
D<172.

Extensive tables of relative cubic fields are given in ZAPOLSKATA 1.

Quartic field tables are all of special type. DELONE, SoMinski and
BiLEvICH 1 give a list of all totally real quartic fields with discriminant
not exceeding 8112. With each such field is given a basis.
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The tables of TANNER 1, 2 refer to the quartic field defined by w, a primi-
tive 5th root of unity. These give the “coordinates” g¢; of the “simplest” com-
plex factor

fw) = go + g + qaw? + ga® + guw*

of a prime p=10n-+1 as well as the coordinates of the “simplest primary”
factor and the “reciprocal” factory(w), thelatter being such thaty(w)y¢(w=1) = .
In TANNER 1, p<1000 while in TANNER 2 the information is given for
$<10 000 except that the reciprocal factor is tabulated only for 1000<p
<10 000.

A similar table for the quartic field defined by a primitive 8th root of unity
is given in BickMORE and WESTERN 1. This gives the coordinates of a canoni-
cal complex prime factor of every prime p=8n+41<25 000.

These tables really belong under cyclotomic fields, concerning which ex-
tensive tables were published by Reuschle, and are in fact extensions of similar
tables occurring in REUSCHLE 2, 3. REUSCHLE 2 gives the complex factors of
rational primes p in the cyclotomic field K(exp 2xi/n) and the subfields gener-
ated by the periods for p=kn+1<1000 and for all primes n# from 7 to 29 as
well as for n=5 and p=10k+1<2500. These tables are superseded by
REUscHLE 3 where n=3-100, 105, 120, 128 (n>4k+2). For n a prime <20
two factors of p <1000 are given, one “simple” and one “primary” after Kum-
mer. For other values of # only “simple” factors of p are given. In many cases
complex factors of p= are given where a> 1 is the index of ideality. In all cases
$<1000. For n large and composite many of the tables pertaining to the sub-
fields are wanting.

q. TABLES RELATING TO ADDITIVE NUMBER THEORY

Of the many and varied problems of additive number theory, three have
been the source of tables. These are the problem of partitions or the represen-
tation of numbers as sums of positive integers of no special type, the problem
of Goldbach, or the representation of numbers as sums of primes, and the
problem of Waring, or the representation of numbers as sums of powers.

Q1. Theory of partitions

Tables relating to partitions are of two types according as the parts con-
templated are or are not restricted in some way as to size or number. We take
up the unrestricted partitions first.

The actual partitions of a number # into the parts 1, 2, - - - , n, giving for
n=>35, for example, the 7 entries (11111), (1112), (113), (122), (14), (23), (5)
occur as arguments of tables of symmetric functions and other algebraic tables
to be considered in another report of the Committee under G. Higher Algebra.
We may cite here, however, a table of all partitions of n for <18 due to
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CaYLEY 4. Theparts 1,2, 3, - - - are represented by the letters g, b, ¢, - - - and
the 7 entries under n=35 thus appear as a®, a%, a’c, ab?, ad, b, e.

The theory of partitions is concerned more with the mere number p(n)
of partitions rather than the actual partitions themselves. The function p(n)
increases so rapidly that Cayley’s table could not be carried much farther.
For n=30, for example, it would have 5604 entries.

The first real table of p(n) occurs as a by-product of the table of EULER 3
and is there denoted by n(™ and tabulated for < 59. This table was not ex-
tended until 1917 when the analytic researches of Hardy and Ramanujan made
it desirable to examine the magnitude of p(n) for large n. MacMahon accord-
ingly computed p(n) for n<200, his table being published by Harpy and
RAMANUJAN 1. GUPTA 1 has given p(n) for <300 and for 301 <7< 600. The
complete table for # < 600 is reproduced in GupTA 7.

Two tables give values of p(n) (mod p). GurTaA 3 gives p(n) (mod 13) and
(mod 19) for n<721. MacMaHON 1 lists those values of #<1000 for which
p(n) is even.

Thanks to recent investigations the asymptotic series of Hardy and
Ramanujan now offers an effective and reliable method of obtaining isolated
values of p(n). This series contains certain coefficients A.(n), tables of which,
as functions of n, are given in HArDY and RaMANUJAN 1 for £<18. D. H.
LEHMER 5 contains a table of actual values of A:(n) for #=<20, and for all #,
(since Ax(n+Ek)=Ai(n)), the number of decimal places being sufficient for
computing p(#n) for # up to three or four thousand. This table is reproduced in
GurTA 7.

In investigating an approximate formula for (), HARDY and RAMANUJAN
1 have given the value of

.9 Logy p(n) — V10 + n
for n=10* and 3-10* (¢=0,1,---, 7).
The generating function for p(n) is the modular function
f@) =TI = 2?1t = 14+ 3 p(n)z~.
A=l A=l
The coefficients of the related function

2{f()}4 = )f:l«n)r

have been studied to some extent and are given for # <30 in RAMANUJAN 2.

Turning now to tables of the number of partitions in which the parts are
restricted in some way we find two tables of the function ¢(n) which may be
regarded either as the number of partitions of # into distinct parts or as the
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number of partitions of # into odd parts, so that g(5)=3. The first table is
due to Darling and is published in HARDY and RAMANUJAN 1 (Table V), and
gives ¢(n) for n<100. WATSON 1 extends this table to n<400, and gives for
the same values of # the function go(n), which denotes the number of par-
titions of # into distinct odd parts. UMEDA 1 gives for n< 100 the values of the
function

l n
—— 2 mpu(n
p(n) E #=(%)
where p.(n) denotes the number of partitions of n into exactly m parts.

A small table of CAYLEY 5 gives for # < 100 the number of partitions of n
into the parts 2, 3, 4, 5, and 6.

Other tables of restricted partitions are double entry tables. The first of
these is EULER 3, which gives the number #™ of partitions of # into parts <m,
or what is the same thing, the number of partitions of # into not more than m
parts for <59, m <20. The differences ‘™ —n(=—1 are also tabulated.

The table of GUPTA 7 gives the number (, m) of partitions of # in which
the smallest part is precisely m, so that p(n)=(n+1, 1). Table II (p. 21-79)
gives (n, m) for n<300 and 2<m= [n/5]. On p. 81 is a table giving the num-
ber of partitions of # into parts exceeding [#/4] for n< 300.

A small table of Tart 1 gives the number of partitions of # into parts =2
and Srforn<32andr=17.

GiGLI 1 gives the number N,(r) of partitions of n into precisely r distinct
parts not exceeding 10 for r <10 and all possible values of #.

The subject of partitions is of course not to be confused with the so-called
quadratic partitions discussed under j;, giving the actual partitions of numbers
into several squares, all but one being equal. In this connection we may cite a
table of GAuss 3 having to do with the number R(n) of representations of n
as a sum of two squares. Gauss tabulates the sum

A
D> R(n) for A=%-10" k<10, m = 2,3, and 4.
=l

This is also the number of lattice points inside a circle of radius /4.

qs. Goldbach’s problem

Goldbach’s, as yet unproved, conjecture is that every even number >2
is the sum of two odd primes! > 1. Tables have been constructed to test the
validity of this conjecture as well as to obtain some information as to the order
of magnitude of the number G(x) of representations of 2x as a sum of two
primes.

CANTOR 1 gives all decompositions of 2% into a sum of two primes by listing

1 Some writers admit 1 as a prime, however.
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the lesser of the two primes in each case for 21 < 1000. The number of such
decompositions is also given.

HAussNER 1 gives the same information as CANTOR 1, but for 21 <3000,
and in addition gives the number of decompositions of 2n=p;+ ps (1< ps) for
2n55000. As an auxiliary table the values of P(n)—2P(n—2)+P(n—3) and
of P(n), the number of odd primes <=, are given for each odd » =< 5000.

PrprING 1 lists for each even number 27 <5000 the smallest and largest
primes < which enter into the representation of 2% as a sum of two primes,
together with the value of G(21), the number of pairs of primes (#;, ps) such
that p+ps=2n, the pairs (P, p2) and (ps, $1) being reckoned as distinct if
17 pa.

PiprING 2 gives G(2n) for 2262 <2n <2360, 4902 < 2n < 5000 and 29 982
<2n<30 080 together with the corresponding values of two approximating
functions. PrppING 3 gives G'(2n), the number of decompositions of 2n as a
sum of two primes in Haussner’s sense in which 2n= p;+ ps= ps+ p are reck-
oned as one decomposition, for the same values of 2» as occur in PIpPING 2,
and also the values of G(25) for 120 072=<2n1<120 170.

HAUSSNER 4 has a table of the number of representations of 2z as a sum of
two numbers divisible by no prime < p,, where $7<2n<p},, for 25 <500, and
eleven other values of 21 between 4000 and 4166.

STACKEL 1 has a similar table due to Weinreich for n=6k <16 800.

P1pPING 4 has a table of those even numbers 21 which exceed the largest
prime less than 2n— 2 by a composite number for S000 < 21< 60 000. With each
such number 2# is given the least prime p such that 2n—p is also a prime.

GRAVE 3 gives G'(2n) for 2n < 1500.

Two tables give verifications of Goldbach’s conjecture at isolated points
up to high limits. '

CunNINGHAM 10 has tested the conjecture for even numbers 2 of the
form k-2, k=1,3,5,7,9,11,

127, 20™, 2-10™, 6™, 10™, 14™, 18", 22m, 2m(2™ + 1)

and also 2- k%, k=3, 5,7, 11 and 2(2"+r), r< 11 and odd, up to, in some cases,
21200 000 000.

SHAH and WILsON 1 give the number of decompositions of 2n into the sum
of two primes, and also into the sum of two powers of primes for 35 values of 2n
from 30 to 170 172.

A curious table of SCHERK 1 expresses the nth prime p, in terms of all
previous primes as a sum of the form

n—1
ta=1+2 ape
k=1

where €=1 for k<n—1, while e,,=1o0r 2.
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Qs. Waring’s problem

The eighteenth century conjecture of Waring that every number is the sum
of at most 9 positive cubes, at most 19 fourth powers and so on, has given rise to
a large number of tables. The Waring problem has been generalized in many
ways, but almost all tables refer to the problem of representing numbers as
sums of positive kth powers.

These tables are of two sorts: basic tables dealing with the representation
of numbers from 1 to N as sums of some limited number of kth powers, and
special tables giving such information for miscellaneous ranges of numbers be-
tween certain high limits. Tables of this latter type are more recent and owe
their existence to attempts to connect with results obtained analytically prov-
ing a “Waring theorem” for all large numbers, say #> N, and thus to prove the
Waring theorem completely. The practical importance of many of these tables
has been greatly reduced due to refinements in the analytical methods and a
consequent lessening of the number N, a process which is likely to continue in
the future.

Tables relating to Waring’s problem for kth powers naturally classify
themselves according to the value of &, and begin with k=3.

Tables of this sort for cubes date from 1835, when ZorNow 1 gave the least
number of cubes required to represent each n=< 3000, together with the number
of numbers between * and (r+1)* which are sums of no fewer than a specified
number of cubes, for 1<r<13.

This table was recomputed and extended by Dase to n<12 000, and pub-
lished in JacoBr 4. Besides the corresponding distribution tables there is also
the list of those numbers <12 000, which are sums of 2 cubes and sums of
not less than 3 cubes.

The table of STERNECK 3 gives the minimum number of cubes required to
represent every number <40 000 as a sum of cubes. There also appears a
table of the number of numbers in each chiliad which require a specified num-
ber of cubes from 1 to 9.

A. E. Western has made a special study of the numbers represented as a
sum of 4 or § cubes. In particular, he has determined for each n=9k+44
<810 000, whether the number of representations by 5 cubes is 0, 1 or >1.
These results, and others for selected ranges between 4-10°and 4- 10° are sum-
marized in WESTERN 2, where the densities of the various numbers in various
ranges are given and compared with empirical formulas.

DicksoN 12 is a manuscript table extending STERNECK 3 from 40 000 to
270 000. DicksoN 13 is a manuscript table of the sum of 4 cubes from 270 000
to 560 000. From 300 000 on the minimum number of summands required to
represent such numbers is indicated.

A small table of Ko 1 gives the representation of every n< 100, except 76
and 99, in the form a®+4-y°4-22%, where z, y, and s are integers, positive, nega-
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tive or zero. The cases n=6k are omitted from the table, since in this case we
have (z, y, 3)=(k+1, k—1, — k).

Three tables on fourth powers may be mentioned. BRETSCENEIDER 2 gives
“minimum decompositions” for numbers n < 84=4096. If s is the least number
of biquadrateswhose sum is  then all decompositions involving s biquadrates
are given. Those numbers # whose minimum decompositions are derived
merely by adding 14 to those of the preceding number are omitted from the
table. A second table lists all numbers representable by s, but no fewer than s
biquadrates for s=2, 3, 4, - - - , 19. A more elaborate table for the same range
is D. H. and E. T. LEBEMER 1. This gives all decompositions of each number
<4096 into a sum of not more than 19 biquadrates. A table sufficient for find-
ing one minimum decomposition into fourth powers for 4096 <n <28 561 to-
gether with a summarizing table appears in CHANDLER 1.

A special table of Sparks 1 is used to prove that every number <4184 is
represented by the form x}+4x3+ 23+ x4+ 225+ 225+ 4234 725

Three tables of fifth powers may be cited. WIEFERICE 1 shows the least
number of 5th powers required to represent each number #<3011. DicksoN 7
gives a minimum decomposition into Sth powers for all <150 000, and the
minimum number of such decompositions for n<300 000.

DicksoN 11 gives a minimum decomposition into sums of fifth powers for
the ranges 839 000 to 929 000,and 1 466 800to1 600 000. This information
for the range 3 470 000 to 3 500 000 is given in DicksoN 8 (p. 84-154). On
p. 154-257 are given the minimum numbers of fifth powers required to repre-
sent all numbers between 3 500 000 and 3 600 000.

Tables relating to Waring’s problem for higher powers are all very special
and may be cited as follows:

For sixth powers—SHOOK 1; seventh powers—YANG 1, MaucH 1 and
DicksoN 8 (p. 25-81); eighth powers—Sucar 1; tenth powers—Dickson 8
(p. 1-7); thirteenth powers—ZUCKERMAN 1; fifteenth and seventeenth powers
—Dickson 8 (p. 8-24).

Harpy and LiTTLEWOOD 2 give values or lower bounds for the number
I'(k¥) which is the least number s such that every arithmetic progression
contains an infinity of numbers which are sums of at most s positive kth
powers, for k< 200.

Finally, there is the table of PrLrLar 1, which gives for each <100, the
values of 2*, /, and r, in the equation

"= ln2' + Tny

quantities which are important in Waring’s problem for nth powers.

Gupta has published 4 tables dealing with the representation of numbers
by sums of like powers of primes. In this case 1 is counted as a prime.

GUPTA 2 has a table showing that every number <100 000 is a sum of not
more than 8 squares of primes. GUPTA 6 has a special table for this problem of
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all integers <2000 of the form A = (p*—1)/120, B=($*—49)/120, C=A4+B,
where p is a prime. GUPTA 4 gives the least number of cubes of primes required
to represent each number <11*=1331, and a list of 150 numbers between 112
and 20 828 which require 6 or fewer cubes of primes. GurTA 5 gives tables
showing that every number <20 875 (except 1301) is a sum of not more than
12 cubes of primes.

Waring’s problem with polynomial summands is responsible for a number
of special tables due to Dickson and his pupils. The summands in question are
polygonal numbers and certain cubic functions. For polygonal numbers we
may cite DICKSON 5, ANDERSON 1, GARBE 1, and for cubics, BAKER 1, and
HABERZETLE 1.
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ERRATA
ArNDT 2.
Insert 397 3447:173
BarrLow 1.
—_————. -, —
" read » read " read
465 3-5-31 4364 2.1091 7668 2371
1431 3853 5598 2-3-311 7795 5-1559
1917 31 5798 2-13-223 7894 2-3947
2140 2-5-107 5912 28-739 7936 2831
2799 3311 6517 19 7964 2-11-181
2862 2-38-53 6660 2-38.5-37 8560 2¢-5-107
2956 2-739 6786 2-3%-13-29 8618 2-31-139
3580 2-5-179 6868 2-17-101 8728 231091
3718 2-11-13 7160 28-5-179 9244 2.2311
3834 2-3-71 7322 2-7-523 9275 5-7-53
4280 28.5-107 7436 2-11-13
(ConNINGHAM 41(a), P. 27)
BEEGER 1.
» for read
109 5947 5934
109 3936 3n7
179 16614 15427
197 2768 2668
(MEISSNER 2, p. 96)
BEEGER 2.
? for read ? for read
127 W= 51 n 223 w= 56 167
127 w=107 117 223 - +
167 W=115 21 227 + -
173 W= 16 106 241 W= 34 196
211 w= 90 121 263 - +
211 - + 21 wm=194 77
2711 -
(BEEGER)
BickMoRE 1.
» column for read
47 2»—1 2251 2351
16 S§»—1 11439 11489
2 6*—1 5-7 7
49 6~—1 8832 z
16 12»—-1 26053 260753
20 12»—1 z -z
4 12»—1 2697 -z 2377-3697 - =

(CUNNINGHAM, Messenger Math. v. 26, 1896, p. 38)
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BICKMORE 2-BURCKHARDT 1, [ds] ERRATA
BICKMORE 2.
» read
29 43037
33 1344 62821 03132 98373
64 504 00685 44932 21107 80706 61761
(HERTZER, Arckiv Math. Phys., s. 3, v. 13, 1908, p. 107)
Borisov 1.
» for read
184 (3,8,9, —4, —1,0) (3, 8, 10, —4, —1, 0)
193 7,750, —1,-2) 7,17,50, -1, =3)
(Jones 1, p. 6; see also Scripta Malh., v. 4, 1936, p. 104)
Bork 1.
» ] » ] » ] ] ] » ]
1753 3 46229 7 49831 110 78031 10 87881 40
41221 5 46489 4 50221 9 82307 14 87973 6
41651 7 48679 38 51341 17 84067 6 89041 28
42491 7 49069 9 51767 181 84653 2 90067 6
43051 7 49787 62 53327 13 85639 6 93151 10
45767 7 49801 8 57191 38 86923 22
(CunNINGHAXM 40, p. 154)
BRETSCHNEIDER 2.
page number for read
977 0,6,0,11 0,6,0,1,1
4 1134 0,0,1 0,0,1
S 1289 3,0,5,5,1 3,0,51,1
1610 0,0,9,11 0,091,1
6 2067 013,20 01,3201
2323 not listed 3,0,0,4,0,1
01,3301
7 2384 0,4,0,49,1 0,40,4,0,1
2516 010,004 0,1,0,0,4
2532 0,2,0,0,0,4 0,20,0,4
8 3025 0,6,1,1,0,1 0,6,1,1,0,2
10 3522 00,2302 0,023,02
3541 0,4,0,1,2 0,040,1,2
3603 0,0,3,3,0,1 0,0,3,3,0,2
11 3723 0,010,2,0,1,1 0,0,10,2,0,0,1
12 4011 5001 500,1,6
page table for read
16 \'2 4 3424 3524
22 XVIII 379 479
(CranDLER 1, p. 10)
BURCKHARDT 1, [dy].
» for read » for read
911 450 455 1979 1976 1978
1213 1212 202 1993 1992 664
1597 266 133 2311 462 231
1831 915 305 2437 2436 1218
1951 390 195 3467 3466 1733
(SmANKS 1, p. 202)
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ERRATA BURCKHARDT 2-CAEEN 1, [d,]

1, [&].
. for read . for read
9899 blank 19 854651 prime 7
307849 11 211 854647 7 prime
446021 573 577 895339 7 17
446023 197 193

(D. N. LEauER 1, col. xi)
BURCKHARDT 2.

. for read » for read
1019681 17 13 1504741 41 7
1037051 53 17 1556257 prime 37
1130023 881 prime 1588633 23 17
1130323 prime 881 1618087 1069 prime
1138027 prime 11 1619173 prime 151
1207517 blank 229 1623703 prime 151
1233473 37 prime 1627081 169 167
1249843 23 7 1748209 101 19
1250111 57 53 1782899 1153 1151
1270471 223 prime 1785169 147 149
1307377 1013 1019 1787471 prime 7
1330001 1123 prime 1793023 7 prime
1359233 277 prime 1793029 prime 7
1397647 589 87 1857997 14 41
1411679 11 prime 1916683 prime 193
1412047 13 7 1936159 1123 prime
1420847 97 prime 1979687 73 47
1459699 499 49 1984891 797 prime
1496693 prime 1 1996399 83 67

(D. N. LEauez 1, col. xi)
BURCEKHARDT 3.

— —

" for read " for read
2012603 prime 887 2755189 63 163
2071301 69 79 2763907 1213 1297
2077529 prime 131 2768683 449 prime
2114693 103 7 2868407 683 prime
2193923 1429 1433 2882699 blank 19
2214413 31 37 2891813 2 23
2214931 31 37 2903591 1697 1699
2222417 1129 1123 2913833 29 13
2501261 prime 7 2915899 prime 7
2511893 2 29 2954939 prime 13
2518817 17 7 2976227 549 547
2542283 1197 1193 2976881 311 prime
2619887 7 17 3026279 79 prime

(D. N. LeauzR 1, col. xi)
CAEEN 1, [di].

page » for read
3717 59 57 56
384 137 8 3
384 137 62 67
387 173 96 76
389 191 snsert 175
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Ca=EN 3, [d]

l) [dQ]

s ¥
w

379

gg

382

BEEEERER

1, [is].

17

79
101
101
109
149
157
163
163
193
193
193

2 i b g %

Contains all errors of CHEBYSHEV 24, and also

A
31
74

CAEHEN 3, [d4].
page

888

55

for

27

17
19

37

41

59

79
101
101
103
103
109
109
131
131
131
131
139
139
149
157
163
163

read

+
29

1021
2161
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15

41
81
25
101
118
72

78
24

47
m”
101

for g

14

15
19

31
27

41
81

14
25
37

113

136
101
118

72

for

74
62

82

22
131
137
161
191
14

for

879

for

37
32
74

11
37

y3

117
102

57
82
22
131
137

ERRATA

137
191

161
184

137



ERRATA CARMICHAEL 2—-CAYLEY 1,
3, [da].—continued

page ? table argument for read
51 167 N 164 84 162
52 179 I 109 133 113
52 181 N 56 17 170
52 181 N 66 61 67
52 181 N 76 155 102
52 181 N 86 109 4
52 181 N 96 93 25
52 181 N 106 174 111
52 181 N 116 92 15
52 181 N 126 32 139
52 181 N 136 19 9
52 181 N 146 164 1
52 181 N 156 120 114
52 181 N 166 26 79
52 181 N 176 72 177
53 191 N 170 51 52
53 193 I 58 161 191
53 193 I 78 191 161
53 193 N 24 144 184
3, [is].
[ for read e for read
26 9 -38 12,35 13, —35
-29 -55 55 -39 -33 -23
-30 7 -7 —42 -39 -19
=31 -2 -3 —-43 35 31
-33 —47, —57 47, 65 —-43 -5
-4 —13 —46 41
35 +53 +17
CARMICHAEL 2.
#(m) for read insert delete
768 1785, 3570
792 2384 2388
880 1043, 2086
888 1043, 2086
960 1309, 2618
972 1467, 2934
(GLAISHER 27, p. vii)
CAYLEY 1,.
D for read
253 1177: 74 1861:117
597 7949:399 9749:399
645 203: 8 127: §
917 1181: 31 1181: 39
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CAYLEY 2,~CHEBYSHEV 2, [d,] ERRATA

CAYLEY 2.

page D changes
144 -17 Erase the long bar under 1, 0, 17
144 -20 For2,0,5 read 4,0, 5
144 -34 For7,—1,7vead 5, -1, 7
145 -40 Insert a short bar under 0, 40
145 —-40 Insert a short bar under 0, 8
145 —40 In cols. of 3, ¢, enter ++ inl. 1, —— in L 2, enter +— inl. 3.
—+inl 4
145 —40 Cancel all entries in col. of e
145 -56 For 2, —1,19 read 3, —1, 19
147 —88 Insert a short bar under 0, 88
147 -88 Insert a short bar under 0, 11
147 —88 In col. of 8, enter +, —, — es 1,2, 3,4
149 29 thhepenodshouldbeis , 5, 2
149 37 L. 3, reverse the period, thus —3, 5 3, 7,
149 41 L.2 the period should be 2, 5, —8, ,4, y 438,5,—2,
583—4543—852
150 50 Inool ofc,en‘cr+mll+m
150 50 Cancel the entries in col. of 3¢
151 65 L. 1, the period should be I, 8, —1, 8,1
152 91 L.2,for 3,7, —14 read 3,7, =14
(CunNINGHAM 42, p. 59-60)
CAYLEY 6;.
pege e for read
76 29 1, -6, 5, 3,2, -1 1, —4,5,-5,4, -1
76 1014 146246
76 1051 z,9 "z
109 1361 a=1361 a=1361*
1366 61 98787 71121 28467 93128

64853 64042
(CunNNINGHANM 42, p. 67 and D. H. LeauEe 11, p. 550)

CHEBYSHEV 1,, [i,].
p. 273, 28—1193, for N=44n+27 read 44n+-25, 27; this is correct in 1,.

CHEBYSHEV 24, [d;].

» table argument for read
13 I 12 - 6 (also in 2;)
17 I 15 3 2 .
109 N 2 66 69}‘”‘“"" to 29
24’ [ill'
form insert delete
4 42y 157 159
24 61y 215
234+ 66y n 7
=t 7o = »
B34 775 159, 237 119, 143, 297
e 4 L
234 914 115, 297 7,189
2241012 281, 309, 317, 325, 333 287, 305, 313, 321, 329
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ERRATA CHERNAC 1-CrELLE 1, [dy]
24, [is].—continued

form insert delete

22— 38y 21,131 23,129

2= 62 107, 141 103, 145

23— 87y 25, 323 91, 257

22— 91y 33, 55, 73, 89, 97, 267 17, 63, 115, 143, 175
275, 297, 309 189, 221, 245, 249, 347

2= 95y 161, 219 29, 351

2*—1015* 71,79, 87, 95, 309 75, 83, 91, 99, 305
317, 325, 333 313, 321, 329

All these errors (except the misprint in 23+89%) occur also in 2, and 2; while none is in 2,.

CHERNAC 1.

L. J. Coumiz found (PETERS, LODGE and TERNOUTH, GIFForp 1, p. ix) misprints in the
factors of 66 011=11-17-353 and (in some copies) of 44393 =103-431. RPB has two edi-
tions of this table, one with the correct factors, and one with the factors 10- 3431.

number factors suthority
19697 prime CUNNINGHAM
19699 prime CUNNINGHAM
38963 47-829 CUNNINGHAM
39859 23-1733 BURCKHARDT
65113 19-23-149 BURCKHARDT
68303 167 -409 BURCKHARDT
68303-68399  raise each line of factors one line up BURCKHARDT
68987 149-463 CUNNINGHAM
76769 7-11-997 CUNNINGHAM
354029 13-113-241 BURCKHARDT
469273 7-7-61-157 CUNNINGHAM
494543 7-31-43-53 CUNNINGHAM
545483 prime BURCKHARDT
580807 prime BURCEHARDT
637447 prime BURCKHARDT
769469 prime BURCKHARDT
783661 prime BURCKHARDT
795083 prime BURCKHARDT
795089 67-11867 BURCKHARDT
795091 11-11-6571 BURCKHARDT
931219 29-163-197 BURCKHARDT

(CUNNINGHANM 41, v. 34, p. 26 and v. 35, p. 24; BUurckHARDT 1, p. 1)
CrELLE 1, [d,].

page col. live for read
52 8 101 . 101
52 57 61 61 .
52 s7 67 . 67
52 65 83 89 .
52 65 89 . 89
Same errors in CreLLE 2, Tafel III.
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CUNNINGHAM 4, [d;]-28 ERRATA

CUNNINGHANM 4, [d,].

page ’ argument for read
10 139 -1 2-69 2-3-23
60 547 =435 102 192
104 773 z=0699 873 3
120 839 =315 541 548
122 853 R {300 {300
210 310
127 859 2= 526 776 770
147 947 R {910 910
820 920

(CuNNINGHAM 42, p. 68)

CUNNINGHAM §.

page 174, table of p%m +1 (mod 71%) for pltm60 read 5030
page 177, table of p*=m 41 (mod 53%) read
752, 895, 1689, 460, 413, 1586, 1656, 925, 1777, 2029, 521, 1341.
table of r*m —1 (mod 53%) read
2057, 1914, 1120, 2349, 2396, 1223, 1153, 1884, 1032, 780, 2288, 1468.
(CunNINGHAM, Messenger Math., v. 30, 1900, p. 60, v. 43, 1914, p. 155)

CUNNINGHAM 7, [es].

? for read
87481 8-5-27-81 8-27-81-5
96661 4-5-27-1719 4-27-5-119
7, (il
Interchange a and b for

p=45289, 55633, 70289, 77549, 79609, 80809, 95101.
p=060169, read A, B=37, 140; L, M =383, 59.
(CunNINGHANM 42, p. 69)

CuUNNINGHAM 10.

page 169 for p=38124461 read 8124161
(CUNNINGHAM, Messenger Math., v. 40, 1910, p. 36)

CUNNINGHAM 24, [0].
n=42, coefficients in Q, read 1, 7, 15, 14,1, —12, —12, 1, 14,15, 7, 1.

CUNNINGHAM 28.

page H] y for read
143 15 snsert 257
B 152 3.2 20 155 393 61- 330413
163 984 14877921 114877921
217 12 7681 - 40609 - 592734049
281 1 n 12708841 12705841
B 284 line 6 12084217 12004217

(WoopALL and BEEGER S; errata marked with “B,” BEEGER)
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ERRATA

CUNNINGHAM 29.

P- 86 in heading, for (y"+1) read (¥+1)

CuNnNINGHAM 30.

page s

145 "
183 81

183 49

185

193 64
193 9

214

CUNNINGHAM 31.

72

32

75
125

p. 81, prime 9901, for 5004 read 5304

CUNNINGHAM 32.

page
166
174
189

CUNNINGHAM 33.

page 112 bottom for 29105 - - -
page 115 ym=2, y=12, for 29105 - - - read 39105 - - -

CunNINGHANM 35, [fi].

page 7 for 19487569 read 19487579
page 7 for 19487969 read 19487959

CUNNINGHAM 37.

page y
80 22
80 28

CUNNINGHANM 38.

P- 125, line 3 from bottom, for 38014 read 38012

for

12207171
98068509
15801871

read 39105 - - -

P+1
Y41
P+

CunNINGHAM and WooODALL 7, [d,].

for p=2241 read 2341
for pm40152 read 40153
for p=44029 (bis) read 44089

for p=27551 for v=10 read »=>50.

CUNNINGHAM 29-CUNNINGHAM and WooDALL 7, [d,]

(CuNNINGHAM 39)
for read
4.193051 4193051
10730221 10730021
15543281 1143281
180801 100801
10545971 151-211-331
25437261 125437261
25613261 25813261
(BeEGER 5)
(CuNNINGHAM 39)
read
15450197
127-211-3697
15801571
(BEEGER S)
(BEEGER S)
(BeeGER)
for read
4-121 5-97
28481 24481
(J. C. P. M1LLER)
(CuNNINGHAM 39)

(CunnINGHAM and WOODALL, Messenger Math., v. 54, 1924, p. 73)
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CuNNINGHAM and WooDALL 10-DASE 2 ERRATA

CuNNINGHAM and WoobALL 10.

page [ for read
3 155 2»—1 snsert 31
14 19 48713705353 48713705333
16 25 delete 29251
M 22 25 12~ —1 delete entry
M 23 22 12741 6836860537 68368660537

(Errata marked with “M,” J. C. P. MrLLxR)
CuNNINGHAM, WoODALL and CREAK 1.

page 26, p=8011, for g=13 read g=14
page 108, p=14009, base 7, for =8, read =824
page 120, p=19009, for g= 429, —29 read g= +23, —23.
(CunNINGHAM and WooDALL, Messenger Matk., v. 54, p. 180)

CuNNINGHAM, WooDALL and CREAK 2.

page 353, p=8011, for g=13, read g=14
page 356, p=19009, for g= +29, —29, read g=+23, —23.

(WoopaALL)
Dask 1.
number for read number for read
6027133 blank 7 6408679 33 83
6036637 blank prime 6722999 217 127
6075451 21 421 6736409 7 7
6403117 9 7
(D. N. LeauEr 1, col. xi)
Dask 2.

number for read number for read
7022623 prime 1913 7614461 prime 2539
7040029 prime 1627 7680451 prime 1811
7047113 1997 prime 7732871 prime 1783
7047413 prime 1997 7741093 41 prime
7110881 prime 1861 7790381 prime 2311
7141793 prime 2617 7802999 prime 2179
7220819 prime 1877 7810963 prime 1847
7224053 1143 2143 7820201 prime 1831
7295077 prime 2683 7845427 prime 1901
7295081 2683 prime 7855549 29 13
7324523 prime 2467 7856147 prime 13
7345979 1801 prime 7857343 prime 13
7346279 prime 1801 7860931 101 13
7366739 13 23 7861517 prime 2383
7384631 prime 2179 7861529 prime 13
7385993 prime 1933 7863323 107 13
7410421 173 179 7864519 prime 13
7412899 23 13 7865117 prime 13
7430573 prime 2089 7866911 prime 13
7489961 prime 181 7868107 prime 13
7548199 553 353 7887931 67 367
7556213 prime 1949 7918819 31 131
7556573 1949 prime 7927501 prime 1879
7576799 prime 149 7933649 prime 2341
7601003 prime 2437 7941047 prime 1831
7601303 2437 prime

(D. N. Leauez 1, col. xii)
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ERRATA DASE 3-Davis 1

Dask 3.

The eatries for 8236079 and 8245589 are given correctly in some copies and incorrectly in
others. Two copies, one correct and one incorrect, are in RPB.

number for read number for read

8057743 prime 2617 8513101 prime 2617
8068211 prime 2617 8523569 prime 2617
8083913 prime 2617 8525317 prime 877
8136253 prime 2617 8528803 prime 2617
8162423 prime 2617 8536319 13 11

8167657 prime 2617 8560057 31 11

8167987 prime 181 8560207 prime 2617
8169797 prime 181 8562461 23 43
8170159 prime 181 8593507 43 13
8209529 prime 2617 8626981 41 11

8236079 23 73 8633483 prime 2617
8245589 41 11 8636011 11 3

8277571 prime 2617 8638717 prime 2617

8282197 prime 7 8654419 prime 2617

8288039 prime 2617 8670121 prime 2617
8293273 prime 2617 8684609 prime 233

8318393 73 43 8684903 233 prime
8324677 prime 2617 8685823 prime 2617

8340379 prime 2617 8696291 prime 2617

8350847 prime 2617 8711993 prime 2617
8382251 prime 2617 8717227 prime 2617

8397953 prime 2617 8748631 prime 2617
8409631 9 379 8754887 2627 1627
8409917 7 17 8759099 prime 2617

8418889 prime 2617 8783693 5171 571
8427193 97 67 8783699 49 149

8429357 prime 2617 8788069 prime 2017

8431151 prime 1613 8790503 prime 2617

8431169 1613 prime 8795737 prime 2617

8450293 prime 2617 8821907 prime 2617

8456059 prime 239 8827141 prime 2617

8477669 prime 1361 8869013 prime 2617

8477671 1361 prime 8874247 prime 2617

8478889 233 prime 8916119 prime 2617
8486449 227 277 8930137 1949 1049
8491187 769 569 8931821 prime 2617
8496181 1123 1223 8964901 13 11
8499737 prime 829 8965801 11 13
8499763 829 prime 8984161 prime 2617
8500853 227 2717 8995513 2767 prime
8507867 prime 2617 8995517 prime 2767

(D. N. Leauzr 1, col. xii)

W. Davis 1.

delete 10840013, 0391, 0657, 0723, 1221, 1353, 1549, 1647.
(CunnNGEAM and WOODALL S, p. 78)
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DEGEN 1-DESMAREST 1, [dy]

DEGEN 1.

4

853
929

238
277
421
437
613
641

653
672
751
823
919
945
949
951

read

Jor 10th entry of upper line 14, not 15.
30: 2, 11,1, 2: 3, 2: 7’ S, (2’ 2))

1,29, 5, 40, 19, 16, 25, 8, 11, (23, 23)
y=756

2=159150073798980475849
y=189073995951839020880499780706260
x=4599
y=18741545784831997880308784340
x=2609429220845977814049
y=103066257550962737720
x=10499986568677299849

x=337
x=7293318466794882424418960
2=235170474903644006168
y=147834442396536759781499589
2=275561
y=19789181711517243032971740
x=224208076

DESMAREST 1, [dy].

ERRATA

(D. H. LeauEr 11)

?» for read ? for read ? for
3 . 2 3517 2 4 5519 1
217 2 4 3541 59 177 5557 4
317 2 4 3547 1 2 5827 1
397 2 4 3637 1 4 6101 2
409 1 2 3677 4 2 6277 2
449 2 14 3769 4 2 6287 2
787 1 2 3821 2 1 6781 1
1409 1 44 3911 1 2 6997 2
1657 6 3 4049 4 2 7001 2
1733 4 2 4397 28 14 7127 14
1889 32 16 4621 1 5 7481 2
1997 4 2 4651 2 1 7561 2
2087 8} 7 4943 2 1 m7 2
2087 9 5081 2 4 741 3
3253 12 6 5107 1 2 7841 20
3373 6 4 5407 6 3 7853 .
3413 4 2 5479 1 2 8011 6

Primes misprinted or ‘ read

4167 4157

5871 4871

8421 6421
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8087
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8681
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9397
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9629
9649
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—
—
L
(=)
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(CunmiNGHAM 40, p. 151)



ERRATA DiIcksoN 2, [by}-Gauss 6

DicksoN 2, [bs].
Table III, add 2750, 2990, 3250, 3430.
Table V
o(m) for read o(m) for read
224 233 223 1440 — 1195
240 158, 135 135, 158 (add) 1524 — 704, 1083, 1523
289 a(n) 288 1536 — 1023
372 - 305 1620 —_ 1513
468 196 198 (add) 1776 — 1022, 1095, 1329
1170 1069 _ 2400 1068 1064
1248 993 933 2448 1513 1515
1344 — 546 2736 1587 1582
1368 814, 735 73S, 814 2880 —_ 1434
1404 —_— 1165
TABLE V1
a(n) =280, for 106 read 108

add o(n) =399 196, 242
add o(n)=1374 914, 1373
delete entries under 1124, 1134, 1304 and 1524.

Table VII
add o(n)=1134 544
a(n)=1862 for 1571 read 1573
delete entries under 372, 399, 1151, 2860.
(GLAISHER 27, p. vii)

Dickson 6.
page 184, d=47, for 1, 3,6, —1, 0,0 read 1, 3, 16, —1, 0, 0.
(Jones 1, p.6)
DiINEs 1.
page 114 range 10 delete 53
(BEEGER 6)
DuURrreE 1, [e,].
n=15485303 for prime read 109
EuLEr 1,
[ o(m) factors of ¢(s)
T 329554457 1123-293459
3n 52060 2-5-19-137
61% 230764 23-31-1861
insert 79 80 2.5
snsert 79 6321 3-1-43
insert 798 499360 28-5-3121
(PouLET 2, p. 10)
Gawuss 6.
Contains many errors.

(GLAISHER)
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GAvss 7

Gauss 7.

451
451
451
451
451
451
451
452
452
452
452
452

457

459
459
459
459

461
461
461
461

462

cent.

© 1000 Y 0
R RSC S SRR 22 2 2R R R RN NN B e e R rra NS08 0cw00annn

ERRATA

negative determinanis
for read
II. 9 459* 1I. 9 459 (*3%)
1v. 4 468 Iv. 4 468 (*2*)
1v. 4 485 1v. 5 485
1v. 4 544 1v. 4 54 (2%
L 9 547 I 9 547 (3%
1I. 9 557 I 13 557
L 25 647 I. 23 647
1v. 6 894 1v. 7 894
II. 9 931 1I. 9 931 (*3%)
Iv. 3 933 1v. 4 933
1v. 4 993 1v. 3 993
Iv. 9 1116 1v. 6 1116
I 10 1261 1v. 5 1261
I. 27 1367 I 25 1367
1v. 7 13% II. 14 139%
1v. 8 1508 IV. 8 1508 (*2*)
1v. 8 1598 1v. 8 1598 (*2%)
II. 9 1683 1I. 6 1683
Iv. 9 1701 1v. 9 1701 (*3*)
VIIL 4 1725 VIIL. 4 1725 (*2%)
Iv. 10 1796 II. 20 1796
Iv. 9 1836 1v. 9 1836 (*3%)
VIII. 4 1872 VIIIL. 4 1872 (*2%)
1v. 8 1940 IV. 10 1940
VIII. 5 2085 VIIIL. 4 2085
centas 2 (at top) centas 22
1I. 9 2188 II. 9 2188 (*3%)
Iv. 12 2196 IV. 12 2196 (*2%)
Iv. 16 2180 IV. 16 2180 (*2*)
Iv. 11 2204 Iv. 13 2204
Iv. 12 2331 IV. 12 2331 (%2%)
1v. 8 2304 1v. 8 2304 (*2%)
VIII. 4 2320 VIII 4 2320 (*2%)
VI 4 2448 (*29) VIII. 4 248
II. 33 2636 Im 33 2636 (*2%)
IVv. 12 2900 IV. 12 2900 (*2¢)
VIIIL. 8 6032 VIIIL. 8 6032 (*2%)
IV. 24 6068 IV. 24 6068 (*2°)
IL. 27 6075 (*3%) Im. 27 6075 (*9%)
IV. 12 6084 IV. 12 6084 (*2°)
Iv. 8 6148 Iv. 8 6148 (*2%)
IVv. 20 6176 IV. 20 6176 (*2°%)
IV. 32 9104 (*2%) Iv. 32 9104
VIIL. 4 9108 VIII. 4 9108 (*2%)
VIIL 8 9156 VIIIL 8 9156 (*2%)
VIII. 12 9324 VIIL. 12 9324 (*2*)
VIII 8 9513 (*2%) VIII. 8 9513
IV. 40 9554 IV. 40 9554 (*2°)
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ERRATA E. Grrrorp 1

GAUss 7T—continued

positive determinants
page cent. for read
475 1 G 1V 1 99 G 1v. 2 9
475 2 G 1v. 1 136 G 1v. 2 136
475 2 G VIII. 1 150 G 1IV. 1 150
475 2 G IV 1 156 G 1vV. 2 156
475 2 G 1II 1 174 G 1v. 1 174
475 3 [at head of table] excidunt 3
475 3 omitted G 1v. 1 208
475 3 omitted G I 1 209
475 3 G 1II 1 229 G 1II 1 227
476 9 G 1V. 1 850 G 1v. 2 850
476 9 G 1v. 1 885 G 1v. 2 885
476 10 G 1v. 1 904 G 1v. 2 904
(CUNNINGHAM 42, p. 55-56)
E. Grrrorp 1.
N for read N for read
121 11X11 112 54353 13X31 X113 13X37X113

4193 7X559 7X599 553 too low

8477 TX7X173 nX173 57553 674889 67859
20567 121 X157 131 X157 613 too low
21329 7X11X227 7X11X277 64643 113 X509 127509
22331 127163 137X 163 65069 292099 312099
26413 61233 61433 660 too low
26443 31253 31853 69781 31X 3251 312251
26567 31X257 31857 71801 19X3719 19X3779
28733 59 X457 59487 75293 1743 X101 17X43X103
28873 132201 132221 76879 11X19X241 11X29X241
289 too low 79237 17X%51X79 17X59X79
29351 X559 X599 79439 1931 X113 19X 37X113
30523 121233 131233 79583 7X10369 7X11369
30589 132781 132181 82081 731039 79X 1039
32131 11X127X23 11X23X127 82477 651231 67x1231
32671 37853 37883 87203 29X 3007 29X31X97
39931 — 73X 547 90493 13X 6161 136961
39937 73X547 — 90571 136167 13X 6967
43589 7X6197 7X13X479 91681 17X5303 17X5393
46711 TX6673 7X6673 99433 175894 175849
47081 23X23X89 23289 99731 19X29X281  19X29X181
50059 103 X443 113 X443 100051 17X14293 7X14293

(This previously unpublished list of errata was furnished by L. J. CoMzrIE after comparison
with PETERS, LODGE and TERNOUTH, GIFFORD 1, and is believed to be complete. Dr. Coumre
notes also the following two errors in Mrs. Girrorp’s “Errata”: for “9307” read 93; after
50519, for 731039, read 73X1031.)
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J. GrAIsEER 1, [e;}~GOLDBERG 1 ERRATA

J. GraisHER 1, [ey].

number for read number for read
3039709 5 53 3234043 57 157
3043027 1 13 3347717 199 109
3063523 127 1277 3464011 223 233
3081121 1 31 3539017 prime 1699
3081733 46 467 3539021 1699 prime
3082109 S 53 3543737 181 prime
3083273 1 17 3563659 1 11
3083561 1 13 3621197 prime 1097
3085219 57 577 3621199 1097 prime
3089489 1 13 3776569 1789 prime
3093503 blank 7 3776579 prime 1789
3230309 53 59 3826601 373 prime
3230317 prime 1721 3826607 prime 373
3230321 1721 prime 3903341 19 13

(D. N. LEauER 1, col. xi)
J. GLAISHER 2, [ey].

number for read number for read
4610243 1 1 4801751 prime 167
4782811 1 11 4905281 4 41
4793477 1 13 4986869 prime

29
(D. N. LEaMER 1, col. xi)
J. GLa1sHER 3, [ey].

number for read
5580421 23 7
5581823 3 13
5581829 1 11

(D. N. LEBMER 1, col. xi)
J. W. L. GLAIsHER 9.

Second million, first myriad for 391,362 read 390,363;
third million, third myriad for 349,344 read 350,343. .
(GLAISHER 12, p. 193)

J. W. L. GraisHER 15.

page 106, insert E(802) =2, E(922)=2.
page 107, column “sum of values”

at 800-899 for 73 read 75

at 900-999 for 79 read 81
(GraArsHER 25, p. 66, and 27, p. 185)

GOLDBERG 1.
page for read page for read page for read

5 4367 4267 27 22669 23669 4 38139 38239
5 5387 4387 38 33347 33247 47 K 41193 41093
6 5939 5039 39 K 34389 34289 48 K 42953 42053
7 5369 5569 40 K 54571 34571 50 42507 43507
9 7973 7073 40 34093 35093 51 K 45641 45041
13 10667 10867 43 37517 37417 54 56939 46939

15 12237 13237 43 K 39547 37547 55 48627 48629
26 21687 22687 43 37899 37799 5§56 K 38793 48793
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ERRATA GOLDBERG 1

GOLDBERG 1—continued

page for read page for read page for read
60 53313 52313 159 K110111 140111 225 K188973 198973
60 K 32861 52861 162 K443269 143269 227 200834 200831
67 K 58159 59159 166 146437 146537 228 K211583 201583
70 91321 61321 167 K147979 147079 229 251893 201893
15 65599 65699 168 K147959 147859 231 253539 203539
75 K 63813 65813 169 148781 148789 233 K235933 205933
76 K 69529 66529 170 K449797 149797 234 206638 206639
76 K 69553 66553 172 131409 151409 234 207001 207007
76 69883 66883 176 K455357 155357 235 907463 207463
77 X 67751 67651 178 156691 156697 236 207943 207947
78 K 69401 68401 182 K166559 160559 236 298073 208073
80 70627 70727 186 K463763 163763 236 K298661 208661
81 71197 71297 187 164776 164779 237 209329 209323
83 12889 72889 189 166872 166873 237 K200341 209341
83 73919 73019 191 169703 168703 238 K210263 210269
86 K 65371 75311 192 166813 169813 238 KS510503 210503
87 76051 76951 193 K176407 170407 239 K240733 210733
91 79729 79829 194 171084 171083 239 110767 210767
93 82481 82181 194 K151587 171587 240 411673 211673
94 92733 82733 195 472121 172121 240 211781 211711
9% K 34757 84757 196 172754 172751 240 211791 211781
97 K 35183 85183 196 172929 172927 241 312407 212407
98 K 68333 86333 197 K473581 173581 242 212914 213913
100 K 67653 87653 198 K177877 174877 244 215301 215303
108 95079 95077 201 K777527 177527 245 246733 216733
108 95329 95429 202 K478687 178687 247 517811 217811
109 93917 95917 204 K179141 179641 253 223278 223273
109 96123 96023 204 480377 180377 255 225470 225479
114 K199409 100409 206 191511 181511 256 325863 225863
115 K106967 100967 207 K162539 182539 256 225597 225997
118 204027 104027 207 K162711 182711 258 227668 227669
118 104287 104387 207 182848 182849 259 223329 228329
121 106181 106183 208 188407 183407 259 228403 228409
123 408127 108127 209 134673 184673 259 258673 228673
123 K103373 108373 210 195213 185213 260 K329531 229531
123 K408521 108521 210 175431 185431 261 230928 230923
124 409241 109241 210 485471 185471 262 231311 231317
126 119857 110857 211 155837 185837 262 K281361 231361
133 117438 117433 211 168373 186373 262 221467 231467
134 418367 118367 211 86697 186697 262 321793 231793
139 112419 122419 212 187138 187139 263 KS531863 231863
145 138159 128159 212 157157 187157 263 232250 232259
145 K138161 128161 215 189364 189367 264 332739 232739
146 K138419 128419 218 792511 192511 264 332801 232801
153 K434819 134819 218 192760 192769 264 238877 232877
154 125409 135409 219 198681 193681 264 232801 232901
154 185673 135673 220 191339 194339 264 333077 233077
154 125809 135809 222 106213 196213 265 293741 233741
154 126241 136241 223 K197993 196993 265 K234043 234049
156 K127461 137461 223 196017 197017 265 294091 234091
157 198541 138541 223 191129 197129 266 233067 235067
157 188871 138871 224 147881 197881 267 236112 236113
158 439001 139001 225 198434 198439 267 K336221 236221
159 K138849 139849 225 188791 198791 268 336507 236507
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GOLDBERG 1—continued

ERBATA

page for read page for read page for read
268 K337031 237031 273 241468 241469 278 245407 245497
269 337671 237671 274 241840 241849 279 246917 246017
270 238061 238081 275 245143 243143 280 347043 247043
2711 238971 238981 277 244241 244249 283 249917 249919
273 240820 240829 277 K241811 244811 284 K280789 250789
273 241009 241007 278 K345381 245381 284 250937 250931
273 241274 241271 278 245497 245407 285 K221387 251387
corrected corrected corrected
number factors number factors number factors
5951 11-541 77371 71579 122483 53-2311
8891 17-523 K 79679 17-43-109 123763 23-5381
9571 17-563 80357 107-751 124763 17-41-179
9937 19-523 81617 17-4801 K127801 227-563
11429 11-1039 84797 19-4463 128527 72-43-61
13559 7-13-149 86483 197-439 128851 269-479
17651 19-929 89987 298- 107 133429 29:43-107
18361 7-43-61 90419 7-12917 134057 7-11-1741
19907 17-1171 K 90721 257-353 138379 71-1949
20009 11-17-107 K 91877 79-1163 K138761 7-43-461
22919 13-41-43 93547 139-673 K139621 17-43-191
23047 19-1213 94001 23-61-67 K139829 67-2087
23441 11-2131 94831 11-37-233 140519 83-1693
24173 23-1051 94987 43-4743-47 141187 §9-2393
27347 23-29-41 in some copies] 142769 11-12979
28259 7-11-367 95567 227-421 143311 7-59-347
29597 17-1741 96301 23-53-79 144859 11-13-1013
29971 17-41-43 96631 71-1361 K145597 19-79-97
32477 47-691 96883 17-41-139 146189 29-712
37631 112-311 96937 31-53-59 146591 17-8623
48719 11-43-103 K 97481 432267 147017 13-43-263
50813 7-17-61 K 98099  263-373 147389 11-13399
51209  41-1249 K 99769 19-59-89 147581 7-29-727
52693 23-29-79 99997 192-277 148613  353-421
53011 7-7573 101857 7-14551 149593  227-659
53021 37-1433 102283 29-3527 149603 prime
53041 29-31-59 104303 37-2819 152573 271-563
53071 73-121 105473 29- 3637 K154447  41-3767
53293 137-389 K105919 11-9629 154813 23-53-127
53731 prime K105961 17-23-271 155011 379-409
53761 37-1453 108619 7-59-263 155489  61-2549
55033 11- 5003 108809  53-2053 156263  307-509
58729 11-19-281 109939 17-29-223 157117  §9-2663
K 58993 11-31-173 111523 229-487 157453 19-8287
59807 11-5437 113627 37-83 157663 112-1303
61807 19-3253 K114733 172-397 158273 163-971
63631 17-19-197 114959 13-37-239 158503 31-5113
64199  43-1493 116093 17-6829 158899 13-17-7119
64277 17-19-199 118559 7-16937 160261 43-3727
K 65639  7-9377 118859 13-41-223 160283 295527
71623 67 -1069 119287 7-17041 160693 13-47-263
K 74191 132-439 119669 112-23-43 161299  23-7013
74461 19- 3919 119843 37-41-79 162667 47- 3461
76729 27n 121033 11-11003 165997 13-1132
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ERRATA GouweNs 1

GOLDBERG 1—continued

corrected corrected corrected
number factors number factors number factors
166249 83-2003 198053 23-79-109 K225121 13-17317
166573 11-19-797 198401 74049 225871 107-2111
169907 131-1297 198547 367- 541 K225899 223-1013
170951 11-15541 198617 31-43-149 225901 13-17377
172231 29-5939 198947 7-97-293 226249 61-3709
172339 23-59-127 200167 11-31-587 226279 41-5519
172891 23-7517 203917 7-29131 227689 7-11-2957
174247 163- 1069 204853 112- 1693 228967 101-2267
174643 7-61-409 204901 17*-709 229471 11-23-907
176879 73-2423 207107 71-2917 229537 7-112-271
K177467 prime 207167 223-929 229579 7-32797
K179183 59-3037 207413 211-983 229907 149-1543
179467 197-911 207557 7-149-199 230261 19-12119
179597 11-29-563 K208349 892341 231601 312-241
179711 7-25673 210217 7-59-509 232427 13-19-941
181561 473863 211459 103-2053 K233263 19-12277
182117 13- 14009 K213251 107-1993 233927 223-1049
182177 prime 213793 439-487 235093 17-13829
182399 7-711-367 213871 7-30553 235801 37-6373
182527 349-523 215101 17-12653 236099 229-1031
184423 311-593 215171 11-31-631 236281 277-853
184937 173-1069 215441 17-19-23-29 K237949 17-13997
186083 53-3511 K215729 31-6959 238271 1121661
186313 211-883 216581 19-11399 239603 7-13-2633
186517 37-712 216737 73-2969 K240329 17-67-211
187537 7-73-367 217039 172751 241399  283-853
187829 31-73-83 217897 193-1129 242611 19-113*
191423 107-1789 219209 223-983 242791 97-2503
191839 41-4679 219379  431-509 K245743 397-619
192203 11-101-173 219859  43-5113 246863 43-5741
192449 223-863 220087 7-23-1367 247019 19-13001
193781 7-19-31-47 220439 17-12967 247109  29-8521
195151 11-113-157 220993 223-991 247751 7-35393
K195671 7-27953 221029 83-2663 247979 17-29-503
196301 7-29-967 K223109 47*-101 248029  97-2557
196411 59-3329 223459 192-619 249241 47-5303
197041 13-23-659 K224647 277-811 251587 7-127-283
197501 23-31-277 224719 11-31-659 K251593 43-5851
224729 prime

(Practically all corrections in this list were given in Dr. Jr¥f KavAN’s MS. list, but those with-
out a “K” were first given, 190405, in CUNNINGHAM 41, KAVAN added 94 new corrections.
Mr. H. J. WoopaLL has pointed out that 54131=7-11-19-37; the broken type for the first
factor makes it uncertain.)

GOUwWENS 1.
p=97, in Y for 446 read 466.
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GRAVE 1-HArDY and RAMANUJAN 1;, 15

GRraVE 1.
? for coefficient of
59 s
59 M
67 o
n F
79 ¥
GRAVE 2.
? for coefficient of
113 i
157 P
197 »
GravE 3, [d,].
page 377, p=131, insert 57
page 380, p=149, insert 32, delete 35
3: [01].
page 330, n=9899 for — read 19
3, [a:].
p. 21-22
'A for read
1230 56 55
1232 27 29
1234 26 25
1236 41 42
1240 36 34
1242 42 44
1244 23 22
HALSTED 1.

ERRATA

read

+35

-1

+4

-5

+69

read

353

1084

353
A for read
1252 24 23
1254 50 51
1272 41 40
1274 25 26
1396 25 24
1398 44 45

page 149, for 330, 644, 725, 107226 read 333, 644, 725, 107226; also change order of entry.

page 149, for area 863550 read 934800
page 167, for 21, 61, 65, 420 read 14, 61, 65, 420

HarpYy and

RAMANUJAN 1, 1.

Table I. log ws,e/x5. for —27/32 read 5/32
log wns,1e/xi. for 27/32 read —5/32
Table II. In Ay for —x/90 read 89x/90

In Ay for 4+27x/32 read —5x/32
Jor Au(n)=0 (nm1, 2, 3, 5, 7 (mod 11)) read An(n)=0 (nm1, 2, 3, 5, 8 (mod 11))
Jor Ay(n)=0 (sm0 (mod 2)) read As(n) never vanishes

for Au(n) never vanishes read Ay(n) =0 (nm1, 2 (mod 5)).
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ERRATA HAUSSNER 1

HAussNer 1.

[ for read omit insert for 9= read

670 103 281 eee
1014 171 47
1026 433 41
1038 131,337 38
1040 413 313
1060 506 503

1106 83 97
1108 103 131 47 4 25
1126 19 17
1136 393 24 23
1146 433 39 38
1164 587 577
1170 89 83
1184 193,277
1186 593
1232 157
1244 613
1284 47
1380 499
1454 601
1568 97
1584 151
1606 5
1664 53 43
1690 137 36 37
1696 27 28
1722 691 631
1726 903 503
1790 181 36 37
1808 41 29 28
1818 41 52 53
1824 887 58 59
1840 227 36 37
1842 233 223 227 55 54
2020 829 929
2026 1 179
2050 147 149
2102 227 32 31
2104 227 34 35
2136 489 389
2142 433 81 82
2228 67 27 28
2238 67 60 59
2262 1061,1069,1091 72 15
2304 1097 1091
2402 233 223

Poas!

20
29
23
47
61
27
26
59

P BENReENgEE!

17 37 36
2406 17 n 72
2442 53 75 76
2444 233 223
2446 1193 41 40
2448 337 73 74
2470 1071 1061
2472 1192 1193
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HAUSSNER 1—continued

] for

2510 233
2530 vee
2532 .es
2584 1123
2598 eee
2606
2616
2630
2636
2646
2654
2656
2664
2666
2674
2684
2688 ees
2692 151
2698 .
2802
2804
2808
2810
2814 .ee
2856 2956
2870 ..
2900

. for read
1026 41 42
1038 38 40
1108 24 25
1136 24 23
1146 39 38
1184 18 20
1186 19 20
1232 30 29
1244 22 23
1284 46 47
1380 60 61
1454 26 27
1568 25 26
1584 58 59
1606 29 30
1690 36 37
1696 27 28
1790 36 37
1808 29 28
1818 52 53
1824 58 59
1840 36 37

read
223

1223

251

ErpaTA
omit insert for pm read
229 .. 75 74
v 229 4 45

1213 ... 56 S5
.. 1061, 1093,1213 68 n
... 5 70 n
157 e 36 35
vee 157 7n 72
... 487 45 46
313 e 35 34
e 313 80 81
733 ces 36 35
733 e 42 41
een 733 72 73
vee 733 36 37
571 ... 49 48
cee 571 42 43
571 . 90 89
571 e 43 42
e 1 72 73
1217 v 36 35
139 e 9 90
eee 139 50 51
1217 96 97
... 73 63 64
1427 eee 52 51
(Table II)

. for read . for read
1842 55 54 2654 36 35
2102 32 31 2656 42 41
2104 34 35 2664 72 73
2142 81 82 2666 36 37
2228 27 28 2674 49 48
2238 60 59 2684 42 43
2262 72 75 2688 90 89
2404 37 36 2698 43 42
2406 1 72 2802 72 73
2442 75 76 2804 36 35
2446 41 40 2808 91 90
2448 73 74 2810 50 51
2508 75 14 2814 96 97
2510 4 45 2870 63 64
2530 56 55 2900 52 51
2532 68 7n 3036 91 92
2598 70 n 3038 45 4
2606 36 35 3102 93 92
2616 7 72 3108 101 100
2630 45 46 3112 47 46
2636 35 34 3210 110 111
2646 80 81 3228 84 86
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ERRATA HEerTZER 1

HAUSSNER 1—continued

. for read . for read . for read
3264 88 89 4018 65 66 4664 n 69
3268 47 46 4056 108 109 4674 122 123
3288 17 78 4098 101 102 4690 96 95
3332 56 55 4100 68 67 4692 119 120
3352 4 45 4104 105 104 4708 66 65
3392 45 46 4110 138 139 4710 147 148
3408 87 86 4114 60 61 4718 61 60
3418 49 50 4144 63 64 4724 58 57
3480 122 123 4172 61 62 4734 119 120
3492 84 85 4178 54 53 4736 59 58
3528 103 104 4188 103 104 4738 56 57
3584 57 56 4190 65 64 4740 151 154
3588 107 108 4198 52 53 4746 138 139
3594 90 89 4200 164 165 4754 61 60
3598 57 58 4206 104 105 4764 113 114
3610 67 66 4216 55 54 4782 107 108
3612 111 112 4222 55 56 4792 61 60
3614 54 53 4242 122 123 4808 52 51
3616 47 48 4248 105 106 4814 62 61
3646 51 52 4258 54 53 4816 73 15
3658 46 47 4284 133 132 4818 128 129
3688 45 46 4308 101 100 4854 113 114
3710 80 79 4310 67 68 4884 125 126
3712 48 49 4350 143 144 4894 61 60
3714 94 93 4352 56 55 4900 95 94
3724 60 62 4374 102 103 4902 121 123
3772 55 54 4388 49 48 4904 . 58 59
3774 102 103 4398 106 107 4908 104 103
3804 94 93 4422 113 114 4914 149 150
3808 65 64 4428 110 108 4916 53 54
3810 129 130 4438 68 70 4918 56 57
3814 48 49 4444 61 60 4920 152 153
3818 45 44 4446 124 125 4930 83 84
3828 108 109 4470 148 147 4942 72 73
3840 127 128 4474 56 57 4944 121 122
3844 51 50 4522 76 77 4950 166 167
3846 97 98 4608 116 117 4956 143 145
3852 93 94 4618 58 57 4972 67 68
3882 97 98 4628 60 59 4986 116 117
3954 101 100 4638 107 108 4990 83 84
3958 52 53 4640 1 70 4996 62 63
4008 106 105 4642 64 65 5000 76 71

4662 135 136
’ (PrerING 1, p. 2-5)

HEerTZER 1.

p=101009 read g=16
add p=106321, g=4, and p=109873, g=17.
(CuNNINGHAM 40, p. 155)
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INGHIRAMI 1;

INGHIRAMI 1,.

In these tables a prime number is denoted by a dot (.). The following 55 primes (p. 17
is not considered) do not have a dot clearly printed:

1867 3593 5879 10909 14243
36191 41257 41983 46747 47629
55127 56809 57131 56993 61223
69959 72901 75619 77081 79337
78191 84347 90947 91129 95813
95279 97231 98101 99523 98867

page number for read

1 4241 1 .

3 8249 -3 73

5 15707 13 113

7 18703 39 59

7 B23641 77 47

8 B20159 18 19

9 B29327 3 .

9 B29427 . 3
11 B30531 13 3
13 B36843 . 3
13 B36943 3 .
15 B42431 15 151
15 B47507 7 .
15 47539 37 137
16 B42583 17 97
16 44579 , .
16 45383 19 13
19 48457 37 47
19 51377 33 83
19 B53693 3 .
19 B53793 . 3
20 N =49
20 B55101 . 3
20 B55201 3 .
20 55609 3 .
21 55473 7 3
21 55573 3 7
21 B55793 3 .
21 B55893 . 3
21 55979 . 7
21 B59069 3 .
21 B59463 7 3
21 B59563 3 7
22 B61129 3 .
22 61329 . 3
22 62321 3 7
22 62421 7 3
22 B65703 . 3
22 65723 . 7
22 B65847 7 3
22 65939 223 233
22 B65947 3 7
23 B60471 7 3
23 B60571 3 7
23 60587 42 43

ERRATA

12479 17393 21001 29819 35831
42169 43063 43579 44159 47699
63149 64433 61291 70001 69463
82207 82241 82507 83003 83231
91757 92387 92959 93559 94463
(Mrs. Jirf KAVAN)

page number for read
23 62087 43 47
4 B72001 39 89
25 66481 18 19
25 68353 19 29
25 68771 3 .
25 68871 . 3
25 B70467 7 3
25 B70567 3 7
26 72209 103 163
26 B74607 . 3
26 B74707 3 .
26 B74907 . 3
26 75009 7 3
26 76221 7 3
26 76321 3 7
26 76701 . 3
26 76801 3 .
26 77819 17 7
26 78041 3 .
27 74351 148 149
27 74367 . 3
27 74773 13 23
27 75471 . 3
27 75571 3 .
27 B77699 3 .
27 B77799 . 3
27 B77999 3 .
28 80837 129 229
28 82739 11 17
28 B84047 3 .
29 83099 11 23
29 83357 7 .
29 B83573 17 7
30 84641 83 53
30 B86849 . 7
31 84157 213 23
31 84653 1 .
31 B85377 7 3
31 B85477 3 7
31 89881 1 11
31 89979 13 3
32 B91839 . 3
33 N=58 N=59
33 B90287 117 17
33 91887 7 3
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ERRATA

INGHIRAMY 15—continued

page
33
33
34
34
34

number
91987
96089
96109

B96749

B96849

for

Jacosr 2, [da]-3,, 3
page number for read
34 98941 103 163
35 B96173 3 7
35 B96273 7 3
35 B96459 . 3
35 97183 137 157

(The errata marked with “B” were given by T. BARINAGA in Revista Matem. Hispano-
Americana, v. 3, 1921, p. 27—these and the others (except four by Dr. CoMrIE) were found
by Dr. Jiiif KavAN. There were errors in BARINAGA’S errata for 55609 and 55709, and the
correction for 42583 was not given. Errors on p. 17, duplicating p. 16, not considered.)

Jacosr 2, [d,].
contains the same errors as BURCKHARDT 1 [dy]

2: [dl, d’]-
Numbers Indices
page ? argument for read page ?» argument for read
61 449 219 374 364 116 677 35 368 308
62 457 453 325 320 139 757 565 168 468
64 463 134 2 29 222 25 14 8 6
82 557 503 427 437 224 169 33 41 )|
225 243 12 206 208 228 361 122 43 93
228 361 131 169 165 228 361 216 87 78
234 841 192 233 223 228 361 353 144 174
232 729 196 204 304
193 929 Col. I 91 90 234 841 353 394 694
193 929 Col. 1 92 91 { 61 61
193 929 Col. I 93 92 237 961 Col. N 61 62
Value (p—1)
63 461 p-1 2 2 Cancel this correction in Jacobi’s corrigenda
245 571 109 190 109
76 523 -1 3-87 329
77 523 ?—1 3-87 329
219 997 -1 23 2

Jacosr 3,, 35, partly corrected in 35, [ja].

Table I of (s, b)
read p= 2357; 3253; 3469; 3529; 5693;
instead of 2457; 2253; 3459; 2529; 5093;

Omissions, Table I

?
197
2713
6997
11173

4
5261
8609

1
3
39
97

Corrigends of o, b

19
47

14
52
74
42

80

[151]

(CUNNINGHAM 42, p. 59, and VANDIVER)

Table II of (4, B)

read 3631; 6427; instead of
2631; 6433;

Omissions, Table IT
4

4
883
6427
11311

4
80

106

Corrigends of 4, B
A4

(CuNNINGHAM 41, p.

41

17

wnw

B
40

132-133)



KAvVAN 1;, 1,-KRAITCHIK 3, [is] ERRATA

KaAvAN 11, 13.

page 32, N=15280 for 2¢-3 - 191 read 2¢-5- 191
page 39, argument left hand column, for 1800 read 1870

(J. C. P. MmLLER)
KrarrcHixk 2, [o].
page 6, =29 for X read 1, 15, 33, 13,15, - - -, 15, 13, 33, 15,1
KraITcHIK 3, [d;].
page 214, N=199, for p=197 read 127
page 215, N=293, col. 37, for 23 read 230.
3 ) [il]-
pages 188-189
N fors= read z= N for x= read x=
73 167 157 601 49 69
89 191 91 641 193 191
233 21 11 745 21 11
265 233 253 841 167 157
385 243 193 1001 21 11
489 21 11
page » N for read
193 17 9 =3 =6
195 31 5 a= 8 a=11
195 31 S =11 = 8
199 47 6 t=10 =11
199 47 34 =19 =22
[is].
D for read D for read
+ 38 59 53 +157 107 109
— 38 116 117 —157 471 529
- 42 55 53 +165 112 113
- 42 159 157 —166 473 477
+ 69 5S 53 —-173 655 309
- 86 89 87 +174 203 61
-102 147 145 —181 359 357
-103 67 79 —181 491 461
—103 177 179 —-181 719 721
-105 57 67 —18§ 661 253
—106 73 1 +190 119 197
—-107 191 193 +191 173 17§
—109 333 103 +191 271 275
—-110 39 49 +193 155 129
-110 207 217 —193 541 155
-113 397 11 -193 617 231
+122 195 199 +194 41 47
—~138 163 169 —194 453 455
—141 413 415 —-197 191 199
+146 77 119 +199 309 257
—146 m” 303 —199 309 257
—-149 367 365 -199 insert an
4151 183 189
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ERRATA KRAITCHIK 4, [dy]

KraITcHIK 3 [i3]—continued

Correct Tables for D= +182
D=+182 D=—182

728n+ 1 9 15 19 25 33 728#s+4 1 3 9 11 23 25
37 41 43 51 S5 59 27 3t 33 31 41 4
61 69 1 73 81 83 61 67 69 73 75 79
85 87 89 93 97 101 81 85 89 93 95 97
103 107 109 113 115 121 99 101 109 111 113 121
135 141 145 149 151 155 123 127 131 139 141 145
157 159 171 173 179 181 149 157 163 167 173 181
187 197 199 201 211 225 183 191 197 201 207 215
227 233 235 237 239 241 219 223 225 233 237 241
253 265 269 285 289 297 243 251 253 255 263 265
307 311 317 319 333 335 267 269 271 275 279 283
337 341 347 353 359 361 285 289 291 295 297 303

317 323 327 331 333 337
339 341 353 355 361 363
369 379 381 383 393 407
409 415 417 419 421 423
435 447 451 467 471 419
489 493 499 501 515 517
519 523 529 535 541 543
549 551 557 563 569 573
§75 577 591 593 599 603
613 621 625 641 645 657
669 671 673 675 677 683
685 699 709 711 713 723
(D. H. Leauer, Am. Math. So., Bull. v. 35, p. 866-867)

KRAITCHIK 4, [d,].

pages 55-58, 61
art. » delete insert art. » delete insert
129 3 2003 5347 132 7 2593
129 3 2383 7867 133 10 2593 6337
129 3 5153 9043 133 10 6793
129 3 9413 133 11 1511
129 3 9967 133 11 8231
130 5 1753 2083 133 12 7841
130 5 5167 2383 133 13 7841

130 5 5347 5153 133 13 8231

130 5 6793 133 17 1559 8089
130 5 7867 133 17 8191
130 5 9043 133 19 1559
130 5 9413 133 19 5711
130 S 9967 133 23 1511

131 6 6337 5167 133 29 5711

132 7 8089 1753 133 29 8191

[153]



KRAITCHIK 4, [d)] ErrATA
4, [di]—continued

primes misprinted
art. for read
128 3213 3203
129 6251 6151
129 6877 6977
135 2093 2099
135 8763 8663
(CuNNINGEAM and WOODALL, Messenger Math., v. 54, 1924, p. 181)
4, [di].
pages 131-145
? for p read p ? for p read p» ? for p read p
9257 2 3 16633 S 15 24181 6 17
10369 11 13 16921 13 17 25261 6 7
10487 2 -2 16927 3 6 25309 15 13
10631 2 -2 17209 7 14 25321 1 19
10639 2 -2 17293 6 7 25759 10 -10
11251 7 13 17401 7 11 26083 3 7
11491 -7 7 18049 7 13 26161 7 13
12007 3 13 18121 7 23 26317 35 6
12703 -3 3 18233 5 3 26431 -10 3
12973 6 14 18307 7 11 26641 2 7
13841 3 6 18397 5 6 26681 3 6
14281 13 19 19081 7 17 26701 6 22
14407 7 19 19477 5 6 27031 -5 6
14449 11 22 19843 -7 19 27109 30 7
15277 5 6 20011 3 12 27241 13 17
15601 7 23 21283 3 11 27281 3 6
15679 -7 11 21787 -7 23 27409 11 13
16061 7 12 22279 2 3 27427 10 -10
16111 -5 7 23609 3 6 27457 5 7
16249 11 17 24007 7 17
(CuNNINGHEAM and WOODALL, Messenger Math., v. 54, 1924, p. 185)
4, [ds].
pages 63-65
art. ? forz read = for read for mod read mod
138 571 107 105
138 797 569 563 .. s
139 457 449
139 449 457
140 cee blank 3 blank 3 blank 2
140 569 - v vee cee 568 284
140 769 241 141
140 eee 893 883 892 882

(CUNNINGEAM and WoODALL, Messenger Math., v. 54, 1924, p. 183)
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ERRATA KRAITCHIK 4, [dy]

4, [di}—continued
pages 131-145
v of base 2
? for read ? for read ? for read
947 2 1 34519 1 6 65543 1 2
1609 4 8 34543 1 2 68099 2 1
9257 1 2 34897 2 16 71503 1 2
10487 1 2 35671 1 2 74143 1 2
10631 1 2 36847 1 2 74729 4 8
10639 1 2 36929 1 2 77041 1 2
18451 15 25 37529 1 2 78259 2 1
18859 2 1 42187 1 3 80239 1 2
222719 1 2 49033 1 2 90019 6 3
24943 1 2 50951 1 2 93871 7 70
26641 1 2 53609 1 2 97849 1 2
27551 10 50 58679 1 2 98543 1 2
29671 1 2 61057 1 2 99839 1 2
31649 16 32 61631 1 2 99871 1 2
31849 1 2 63671 2 10 250867 2 1
255071 1 2
«' of base 10
? for read ? for read ? for read
197 2 4 21739 2 3 25667 1 2
15601 4 40 22343 2 1 25759 1 2
(CUNNINGEAM AND WOODALL, Messenger Math., v. 54, 1924, p. 184)
4, [ds].
page 219
N =293, col. 37, for 23 read 230
N =509, col. 47, for 270 read 207.
4, [di].
pages 59-64
art. base » for read
134 2 2 1999 1993
134 2 2 3773 3793
134 2 2 blank 4583
134 2 2 5279 omit
134 2 3 7669 1699
134 2 3 9723 9739
134 2 6 1993 1999
134 2 14 6957 6959
134 2 17 1427 1429
134 2 56 6557 6553
136 10 2 7273 7243
137 10 6 7551 7351
137 10 6 7573 omit
137 10 12 blank 7573
137 10 76 4673 4637

(CuNNINGEAM and WoODALL, Messenger Matk., v. 54, 1924, p. 182)
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KRAITCHIK 4, [e] ERRATA
4, [ed].
page . 2n+1 for read
20 163 .. 160287 150287
24 163 160287 150287
24 177 174081 184081
24 253 vee 85009 blank
25 . 177 12097 12037
4, [f1].
page 10, art. 23, for 961 read 963
4, [f1].
pages 131-191
for p read for p read » for p read for p read p
17623  17923C 116537 116437K 179489 179989 K 234381 234383
27289  27299C 118047 118043 183253 183259 234809 234893
65331 65831 C 126069 126079 192111 192611 K 240171 240173
68097 68099 C 136643 136649 192669 192667 258723 258733
69041 69941 C 138153 138157 154747 194749 262101 262103
74141  74143C 147797 147793 201213 201233 262251 262253
78257 78259 C 150167 150169 204527 204557 263757 263759
80241 80251 C 153429 153929 K 204713 204719 274343 274349
92957  92857C 169443 169343K 205011 205111 K 280551 280561
100557 100559 171837 171937K 209577 209579 281133 281153
103383. 103387 172083 172093 210961 210967K 283511 283501K
104797 104707K 174479 174469 211019 211039 284687 284689
106183 106181 174973 174673K 211613 211619 286559 286589
106263 106273 176387 176389 215151 215153 290969 290999
106657 106957K 176679 176699 221901 221909 292891 292841
113443 113453 179063 179083 224949 224947 295557 295553
227847 227947

(CuNNINGHAM and WOODALL, Messenger Math., v. 54, 1924, p. 184, and KrarrcHIK 7, p. 182)

4, [fs].

page 15, art. 30, inferchange entries 2115 and 2414.
page 11, insert 1736, 2646, 2960.

for P
128441
414259
498629
938353

Table II

[156]

read

125441
414209
498689
932353
insers P=3911681

KrAITCHIK 7, p. 182)



ERRATA KRAITCHIK 6, [ds]

4, [i].
D for read D for read

+211 287 289 +230 23 33
=217 319 317 -233 915 925
—-218 533 535 -241 607 357
+222 929 95 —241 697 693
-222 483 485 —-241 731 733
—-226 375 373 —246 387 389
-226 385 395 —247 105 449
—226 387 397 -249 197 695
+227 241 261 —249 301 799
-229 197 199

4: [] 1]'

page 49, A =61, D=4, for —39, 4 read —39, 5.
page 50, A =76, D=1, for 57769 read 57799 (S. A. Joffe).

41 [J!]'

page » fora read

192 15361 15 30

193 890881 234 179

193 918529 115 215

197 insert 3911681 385

(KrArrcHIx 7, p. 182)

4, [o].

page 88, n=29, for X read 1, 15, 33, 13, 15, - - -, 15, 13, 33, 15, 1.

KraArrcaix 6, [ds].
page 233, add entry k=115, n=20, j=4

6, [es].
page 224, k=115, n=20, for 379 read prime

6’ [ill'

page 159, p=59, n=23, for x=14 read x=15
page 159, p=59, n=44, for x=14 read x=17

6’ [j’]'
page 242, line 1, column 4, for s=541 read 5= 841

6, [m].
4 read
19
45

296
498
514
590
649
700
725

it S

Bl
O NN O\ N
DA TNS
NN
-
-l
w
3
[

N= B NNTINDW
g
~

, 16, 6, 3, 4 (29 termes)

-
-

-
N
)
-
-
-
-

-

-

-

-
[T

0 N W e N

N
-
TR

-
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KRAITCHIK 7, [by]
6, [m].—continued

4 read
813 1,1,18
994 1,1,8
539 4,1,1,1
808 2,2,1,5,1,1,1,1, 13 (17 termes)
814 1,1,7,1,1,1,5,18,1,5,2, 1, 1,
927 2,4,5,3
939 1,1,1, 4, 20 (9 termes)
116 1,3,2,1,4
369 4,1,3,2,7,4 (11 termes)
415 2,1,2,4,6,1,1,3
99  1,1,1,1,5,6,1,5, 2 (17 termes)
KraArrcHIk 7, [bs].
page 153, column (p44-1)/2, p=79, for 233 read 433
7, [es].
page line column
84 n=G67
86, 87 94,114,150
88 n=56
88 n=120
95 n=4]
9% 6=26 -1
a—1
97 a=18 last
1) G
o o=24 -t
a—1
u_
97 a=42 -1
a—1
a'—-1
97 =44
¢ &1
a*—1
=61
a=6 &1
98 a=52
99 a=75 first
99 a=85 first
99 a=40
a'+1
100 - _
o=123 #+1
6041
105 a=58 o]
105 am68 Ll
a*+1
106 a=19
106 =19
127 60 8
137 x=79 N
140 =19 M
143 a=10 M
144 y=11

[158]

ERRATA

(KrArrcmix 7, p. 182-183)

for read
19370721 193707721
interchange primitive factors
3153 5153
1851 - - - 521 394783681 - 46908728641

delete entry

2641 8641

61 601

13467047 134367047

5942675703 5942675707

13 19

603870199 903870199

152987077 152787077

10922367593 109- 22367593

193 163

338839937 7879999

2711117 271- 1117

41-941 41941

106177 196117

537 5237

35533211573 35533-211573

106117 196117

x=81

537 5237

341 - 334661 541 - 534661
insert 51329



ERRATA

7, [es] —continued

KRAITCHIK 9-LEGENDRE 1,, [ji]

page line column for read
145 o= 6 207544361 20754361
146 x=40 N 338839937 7879999
147 =12 M 1377 2377
149 middle of page z=1,23 a=1,2,3
149 a= 1 99151 991651
153 =19 first 233 433
(BEEGER, Nieww Archief v. Wiskunde, s. 2, v. 16, no. 4, 1930, p. 42;)
7, [o].
page 2, n=41, for Y=1,1, ,4, -read1124-'-
page 3, n=97, for Y=1,1, 5,9, 17, 30, 40, 69 - read 1,1, 5,9, 17, 30, 44, 69, -
KRAITCHIK 9.
no. for read
38 760765 - - - 760965 - - -
52 549767 - - - 549797 -
n 160242 - 166242 -

(BEEGER, Mathematica, Cluj, v. 8, 1934, p. 212)

LEGENDRE 1,, [is].

form for read form for read
£#—2942 3 7 84774 89 61
113 101

£—384 23 21
129 131 149 153
#—6112 see below 257 237
#4912 7 115

£#—624 103 107
8410148 305 309
s—T7u 53 137 313 317
255 17 321 325
329 333

8—61u?read 122011, 3, 5, 9, 13, 15, 19, 25, 27, 39, 41, 45, 47, 49, 57.
(D. N. LEBMER, Am. Math. So., Bull., v. 8, 1902, p. 401-402)

11’ []l]'

N read N read
133 x=2588599 718 z=8933399183036079503
214 x= 695359189925 722 x=22619537

y= 47533775646 y=841812
236 x=561799 753 y=11243313484
301 y=339113108232 m x=2989136930
307 x= 88529282 y=107651137
331 x=2785589801443970 801 z= 500002000001
343 x2=130576328 y=17666702000
y= 7050459 806 2=6166395
34 y=561 809 x=433852026040
355 y=50676 y=15253424933
365 x=3458 833 x=9478657
397 x=20478302982 851 x= 8418574
y=1027776565 856 x=695359189925
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LEGENDRE 13, [ji]-1s, 14, [is] ERRATA

1, [j1].—continued

N read N read

526  x=84056091546952933775 y=23766887823
y=3665019757324295532 865  z=m348345108

532 z=2588599 871 x=19442812076

613  z=481673579088618 y= 658794555

619  x=517213510553282930 8718  x=9314703
y=20788566180548739 y=314356

629  z=7850 886  y=260148796464024194850378

655  x=737709209 M4 zm561799
y=28824684 965  x=14942

664  y=66007821 ym481

673  z=48813455293932 995  z=8835999

694  x=38782105445014642382885 1001  x=1060905
y=1472148590903997672114

(D. H. LesuER 11, p. 548-549)

LEGENDRE 1, [ig].

form for read form for read
£—20u2 3 7 o4+ 11wt 89 61
84 T 113 101

£—384 23 21 84 714t 113 117
£#—-38u 129 131 84 772 119 153
f—-61u? see below 84+ 77 149 159
84 T 257 237

2+ 18 102 103

£—62u2 103 107 84 9t 7 115
8134 99 69 £410152 305 309
2410132 313 317

871wt 53 137 £#+4101u® 321 325
255 171 410142 329 333

£—614* read 1228+ 1, 3, 5, 9, 13, 15, 19, 25, 27, 39, 41, 45, 47, 49, 57
(D. N. Leauer, Am. Math. So., Bull., v. 8, 1902, p. 401-402)

LEGENDRE 1, 1; [is].

form for read form for read
£—144* Six 56x
£—-348 123 127
£—384 23 21 #4 61u® 215
#—384 129 131
£#—51u 13 31 84 7748 119 159
£#—61u2 see LEGENDRE 1,
84+ 774 297 237
£—62u8 103 107 £+ 9148 7 115
£#—-13u* 99 69 £410122 305 309
£410142 313 317
B8-T774 53 137 £+410142 321 325
B—TTut 255 171 £+4101s2 329 333

(D. N. Leauzz, Am. Math. So., Bull., v. 8, 1902, p. 401-402)
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ERrATA LeEHMER 4-Lucas 3
13, 1, (1]

N read N read

94 2=2143295 667 y=4147668

116 z=9801 749 2=1084616384895

149 y=9305 751 2= 7293318466794882424418960

271 2=115974983600 809 x=433852026040

308 x=351 823 x=235170474903644006168

479 y=136591 1001 z=1060905

629 z=7850

D. H. LEHMER 4.

(D. H. LeauER 11, p. 550)

move n=233, 241 to next higher classifications.

D. H. LEBEMER S.
Jor Ax(n) read An(n+S5)
D. N. LEEMER 2.
page col.
11 13
14 30
99 20

D. N. LEBEMER 3,.

In D. N. LeauMER 35 about 1200 errors of this edition have been corrected.

LEVANEN 2.
D= —77, for 297 read 237

Lucas 2.
table of page col.
Y,z 165 Y
165 VA
165 Z
165 Z
Y, Zy 168 Z
168 Zy
168 Y
168 Y,
168 Y,
168 Zy
168 Zy
Lucas 3.
table of page
Y,z 6
6
6

incof »

23
11
21
19

23
33

41
41
69,

}

line for read
1 8151 8051
55 51 47
heading 224 724
(J. D. ELDER)
for read
cee=7-2] cee—7-4
[143] [140]
[14+141] (1-1+41]
14+1-1-2] [140-141)
[141] [1-1]
[+« 147 [---1=7]
[+ —32-19] [«:-~—32-59]

(14154334154 - - - [14+15+33+134+154 - -+
(14214574 - (14214674 - -

Interchange the lines of n=41 and 69
(CUNNINGHAM 42, p. 65)

lineof s for read
22 Fatyt +11z8%
33 — 195544 — 59285 —
29 +15x11y3 +13511y3
(CUNNINGHAM 42, p. 65)

[161]



MEezrIrFIELD 1-POULET 2

ERRATA

MEeRzrIFIELD 1.
page 10, w=3, for 17096 - - - , read 17476 - - - .

OSTROGRADSKY 1.

numbers indices .
? argument for read 9 argument for read
127 105 107 108 n 16 15 22
116 31 1 26 22 15
137 108 88 87 83 25 8 80
181 78 94 64 167 §7 128 28
193 155 173 174 173 57 72 92
181 16 165 172
26 172 165
(Jacos1 2, p. 243)
PacGLIERO 1.
delete 100 004 539
(BEEGER)
POLETTI 2, [e4].
number for read number for read
667 23-39 23-29 26243 7-23163 7-23-163
17 7-11-13 7-11-23 26527 41-467 41-647
2563 11-223 11-233 29729 7-13-137 7-31-137
5239 13#-21 13-31 30667 7-13-137 7-13-337
5243 -207 7107 33943 7-13-173 7-13-373
8483 7-499 17-499 34561 11-19-107 17-19-107
9299 15-547 17-547 34621 83-389 89- 389
9401 7-17-19 7-17-79 35329 7103 7-103
12299 751 7251 37939 13-3449 11-3449
13181 r-69 7269 42511 7-6063 7-6073
17303 112-13 113-13 42601 12-29-113 13-29-113
18193 7-23-313 7-23-113 43423 171-251 173-251
18271 112-251 112-151 44671 11-31-141 11-31-131
19339 82-233 83-233 46699 41-67-17 17-41-67
20293 7-13-123 7-13-223 48739 47-17-61 17-47-61
25009 29-281 89-281 49067 139- 343 139-353
2: [fl]'
page for read
7 9867 9967
19 44903 44909
31 82863 82963
63 186833 186883
97 100 000 961 100 000 963
9798  delete 10842271, 4291, 4909, 7129, 8709, 8793, 9891, 10011
98 insert 100 010 017
101 delete 10°4-46617, 50307, 55293, 70327, 86809, 94219
101 insert 104-2149, 47989, 53053, 94881
(BEEGER, Boll. di Mat. (CoNnTi), v. 21, 1925, p. Ixv-Ixvi and S. A. Jorre)
PouLET 2.
page line D for read
15 2 21.30.5. .. 21.36.§...
68 11 from bottom (3-5-15299) (2-5-15299)
70 6 3412776 3212776
70 last correct entry is 290504024 (23-17-41- 53 - 983)
72 § from bottom, 50th term should be 1635524 result incorrect

(PoutrzT 3, p. 187-188)
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ERRATA ' POULET 4,~-REUSCHLE 1, [d,]

POULET 4.
page line ool for read
7 31 9 831045 831408
78 35 L] 976587 976487
49 10 409 109
9 2 8 4178 4177
81 28 1 953683 953673
4 3 887421 877421
82 3 3 39016841 39016741
83 1,2 snsert *56052361 631
83 16 S 739073 729073
16 6 578 577
(POULET 43)
POULET 4.
page 51, insert *56052361 631.
(BEEGER)

RAMANTUJAN 1;.

page 360, insert 293 318 625 600
(RAMANUJAN 13, p. 339)

REvuscHLE 1, [di].

? read w= for » ted ml‘é-d‘ !
3221 10 5457 3457
3251 6 3901 3907
3301 6 7923 7927
3361 22 11491 (bis) 11497
3739 7 12511 (bis) 12541
3881 13 12801 12809
4099 2 blank 14731
4231 3
4729 17
4969 1
(WERTHEIM 4, p. 153)
1, [ds].
pages 42-46
?» base . " ? base ] "
179 7 178 ven 523 3 58 9
193 6 cen 2 739 6 369 2
n 2 155 . 757 7 189 4
311 3 155 vee 821 5 410 eee
311 s 155 vee 821 6 410 cee
311 10 155 ves 821 7 410 ves
313 2 156 ven 919 7 vee 1
367 7 61 6 939 3 369 vee
409 6 17 24 947 3 e 2
457 7 114 4 997 2 332 vee
463 7 154 3 997 5 332 .
503 5 502 eee 997 6 332
523 2 eee 1



REUSCHLE 1, [d,]
1, [da]—continued

base 2

’ [ i ]
1487 743 2
1613 52 31
1747 1
2053 2052
2161 1080
2293 2292
2473 618
2677 2676
2753 1376
3079 1539
base 10

» . »
1163 581
2687 - 2686
3301 3300
3347 1673
3671 367 10
3697 1232
3797 949
3851 710 s
4139 4138
4157 2078
4391 2195
4397 314 14
4637 61 76
5647 1882
5779 5778 1
6133 1533
6299 9% 67
6359 3179
6373 1062
6379 2126
6421 2140
6491 1298 5
6529 1088 6
6581 1316 5
6761 1690 4
6763 161 42
6899 6898

F [ »
3169 1584
3191 58 58
3221 644 L
3251 650 5
3259 1086
3301 660 5
3739 534 7
3881 388 10
3919 1959
4051 81
14 . "
7129 594
7561 1890 4
7823 7822 1
7923 not prime
7927 7926 1
8387 599 14
8521 710 12
8681 868 10
8689 2172 4
8893 2223
8929 14 62
9151 1525
9277 4638
9613 267 36
9661 1380
10343 10342
10433 10432
10597 5298
11047 11046
11113 3704
11173 5586
11423 11422 1
11491 766 15
11801 2950 4
11839 5919
12043 2007 6
12071 355 34
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ERRATA
? . L]
4099 4098 1
4139 4138
4271 308
4339 1446
4391 2195
4597 1532
4663 m
4751 475 10
4831 2415
4993 624
? . .
12119 6059 2
12149 12148
12289 384 32
12301 2460 5
12421 12420
12637 3159
12721 2120
12791 6359
12853 459 28
13151 1315 10
13487 13486
13553 1936 7
13627 6813
13687 4562
13697 13696
13729 3432
13757 362 38
14081 1760 8
14221 2844 5
14533 519 28
14551 485 30
14731 14730 1
14741 14740 1
14827 2471 6
14929 1866 8
14983 4994



ERRATA REUSCHLE 1, [&]-1, [ja]

1, [ed].

pages 42-61

Errata occur in factors of (p—1) for p=
101 2539 3989 7687 9049 10651 11827 12853
601 2617 4231 7723 9257 10831 11887 12923
937 2717 4397 7927 9277 10903 11933 12959
977 2969 4409 7937 9349 10939 11953 13553

1597 3259 5647 8039 9781 11071 12097 13687

1879 3547 5897 8447 9901 11383 12113 14149

1973 3697 6379 8461 10039 11549 12289 14593

2029 3719 6389 8563 10093 11597 12487 14713

2237 3739 6581 8747 10151 11677 12539 14731

2309 3793 6763 8893 10369 11681 12553 14779

2347 3197 6823 8969 10343 11719 12613

2503 3877 7669 8971 10427 11813 12757
(CuNNINGHAN 40, p. 151-153)

1’ [j!]'
pages 23-32
corrigenda in p insert omissions corrigenda in L, M
for red 9 A B » A B “» L M
17136 17137 883 4 17 25453 95 74 139 23 1

25183 25189 11311 106 S 25747 160 7 397 34 4

5579 25579 12553 101 28 27631 166 5 1123 35 1
26459 26479 12739 8 65 32353 1715 24 2377 19 1
30763 30703 12967 110 17 33037 65 98 213 103 3
51051 31051 12973 65 54 34519 38 10§ 4003 107 13
32553 32353 12979 76 49 35437 65 102 4339 128 6
40659 40759 13477 107 26 37699 68 105 5437 146 4
49277 49279 13537 113 16 39181 191 30 5503 148 2

19891 104 55 43201 1 120

20443 100 59 44563 200 39 omission
214999 68 75 883 47 7
corrigenda in 4, B
? A B ?» A B » A B
313 11 8 18427 100 53 27691 104 75
5011 56 25 18481 127 28 29059 128 65
5653 19 42 18553 35 76 29179 152 45
8293 91 2 19423 130 29 30529 23 100
8707 92 9 19477 35 78 35257 53 104
9871 38 53 20071 86 65 37363 20 111
10957 47 54 21391 146 5 37507 160 63
12211 56 55 22651 76 75 38449 193 20
12823 106 23 23557 37 86 45307 212 11
16561 127 12 25147 140 43 45361 193 52
18301 7 78 26317 145 42

pages 26, 31, omit the non-primes 6433 and 41197
pages 26, 27, inser! asterisk after p=8167, 8317
pages 29-32, omit the primes 16561, 18301, 18481, 23557, 35257, 45307, 45361
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REUSCHLE 3 ERRATA

1, [js]—continued

pages 32-41
Primes misprinted—Table IVa, page 34; for 3459 read 3469

Table IVb, page 40; for 29893 read 23893
Primes wrongly inserted—Table IVb, pages 39, 40; omét 12697, 16981, 19381, 21101 with
their @, b as (10/p)s= —1
Table IVc, page 41; omit 16649 with its ¢, d, as (10/p)¢=—1
Asterisks omitted or superfluous—
Table IVa, b, pages 3341, insert one * after p=733, 2213, 2477, 2677, 2729, 3169, 3373,
6997, 11117, 14293, 14929, 17317, 20357, 21613, 21649, 22277, 23293, 24733
Table IVa, pages 34-38, insert two ** after p=2161, 12289
Tables IVa, b, pages 33-40, omit the * after p=1213, 2437, 16649, 22093
Table IVa, pages 34-38, omif one * after p=2129, 6761, 7561, 8521, 8689, 11801, 12329
Table IVc, page 41, insers one * after p=14081, 15601, 15641, 15761, 17489, 17729, 19489,

24809, 24889
Table IVc, page 41, omit the * after p=13729, 14321, 15361, 16249, 17209, 17449, 18329,
19289, 20681, 23561
Tables IVa, b, pages 3241 Table IVa, pages 32-38 Table IVc, page 41
omissions corrigenda in 6, b corrigenda in ¢, d corrigenda in ¢, d
?» ' b ?» ' b . 9 3 o ?» 13 é
197 1 14 421 65 14 17 3

1173 97 42 14009 115 28 1777 25
12269 13 110 15361 3t 120 4177 55
12301 99 50 16249 43 120 6553 55
12373 103 42 17317 129 26 6653 —
12973 83 78 18289 135 8 7481 57
15493 97 78 19489 105 92 8969 63
16253 37 122 21613 147 2 11057 105
17077 119 54 23197 101 114 11113 49
17117 91 94 23561 131 80 11329 31
17929 125 48 24281 155 16 12049 41

14009 69 68
14081 117 14
14369 111 32
14929 121 12
17489 99 62
17729 111 52
19001 123 44
19489 133 30
23929 139 48

RERNNEn88 | BRRu~

18517 119 66 12097 107 omission
21493 87 118 12161 63 22129 77 90
22129 1S 148 12281 27 76
(CuNNINGHANM 41, p. 134-135)
REevuscaLE 3.
page P9 table ?» for read auth.

2 5 I 691 a=+4220 +320

8 1 I 199 od=— 69 - 60

8 11 I 199 al¥=— 73 - 78

8 11 1 331 o=+ 55 + 85

8 11 1 661 o= —214 —204
193 18 I 881 p= 881 811
199 21 I 463 Wl — 44 - 14
226 39 I 541 p= 541 547 (in 3 places)
239 45 I 631 = 71 +121 CREAK
239 45 I 631 Y= 4223 -1 CrEAX
273 57 1 457 W= 7 - 6
273 57 I 457 =230 —-227
285 63 1 379 wl¥m= —132 —-112 CrEAX
285 63 I 757 W= 4202 —202 CrEAX
285 63 I 631 W= — 26 - 24 CrEAK
285 63 1 157 o= —203 —183 CrEAX
285 63 1 883 o= 4 18 -355 CREAK
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ERRATA ROBERTS 1-SARMA 1
REUSCHLE 3—continued
page p Y table » for read auth.
446 16 1 113 w=— 43 — 48
450 32 1 257 wm=4 85 + 15
461 128 1 641 W= —275 —-305
461 128 I 769 W= —138 — 38
476 24 I 601 wit= —306 +295
495 40 1 641 wi?= 4324 317
513 48 I 97 W= — 10 -1
513 48 1 337 W= —174 +163
513 48 I 337 wllem 4 57 + 38
513 48 1 337 w¥=—154 —153
533 56 1 673 W= — 83 - 85 CRrEAK
635 96 1 577 W= —197 —196
643 100 I 701 wi¥m= —353 +348
643 100 I 601 W= — 46 - 26
643 100 I 601 b= 4-341 +241
page e table ? for read auth.
3 5 1 601 5—a'+2a4 S—at42a4 TANNER
3 S I 751 1242a+5a+9®  1242a+8a*+9® TANNER
3 L 1 821 4+4a—4a*+3a* 14+4at4a+3a®  TANNER
3 5 I 881 4—5Sa+5at 4— 50845t TANNER
5 7 I 491 a+3at Cancel this entry  BICKMORE,
WESTERN
5 7 I 547 2—a+2a842a8 o+ 3at BICKMORE,
WESTERN
37 29 v 64+m 84+m WESTERN
106 43 e A=43 [at top] A=67
108 67 VI Tab. VI. Tab. VIIIL.
108 67 Vi ... p=2,7,11,31 $=2,7,11,13, 31
176 25 I 401 fl@)=1—ad—at fla)=1—ad+ot WESTERN
187 49 ... cee A=89 [at top] A=49
249 51 cee [line 4] 107 -409 103-409 WESTERN
282 57 Vi1 FPtw—14=0 W —w—14=0
487 28 I wt—20'+4=0 wt—3wt+4=0
511 44 VI Tab. VI. (line 2] Tab. IV.
511 44 wv,1 p=40m—5, +7  p=4dm—S5, +7
546 56 v, 4 wi—49=0 wt+49=0
621 68 vee 7n=08 [at top] n=88
628 76 e n=76 [at top] n=88
(CuNNINGHAM 42, p. 61-62)
ROBERTS 1.

page 107, n=1553, col. 2n+-1, for 17 read 18
in denominators, after 9 read (3, 3).
page 108, n=1777, col. 2n+1, for 61 read 43
in denominators, after 27 read 2, (1, 1).
(CUNNINGHAM 42, p. 66)

Sane 1.
page 760, add entries
576 943 1105
744 817 1105
SARMA 1.

All entries contain last figure errors.
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SCHULZE 1-SHANKS 1, 3 ERRATA
ScruULZE 1. —
for read for read
6° 43’ 58° 6° 43’ 59 38° 21’ 28" 38° 21’ 29"
12 1 4 12 1§ 50 41 33 50 41 32
12 40 50 12 40 49 55 6 2 55 6 20
13 25 10 13 25 11 61 10 29 61 9 30
15 11 24 15 11 21 61 55 57 61 S5 39
16 16 24 16 15 37 64 56 32 64 56 33
17 28 35 17 29 32 68 45 39 68 45 38
17 56 4 17 56 43 70 39 21 70 37 21
21 13 38 21 14 22 72 56 16 72 56 18
21 33 55 21 4 7 74 48 38 74 48 39
23 45 22 23 46 38 78 45 54 715 45 O
24 32 14 24 31 46 8 12 4 78 11 16
25 35 25 25 36 31 7 8 50 719 7 10
26 59 25 26 59 29 79 35 S6 79 36 40
33 23 54 33 23 S5 81 12 2 81 12 9
35 2 4 35 3 4 81 49 43 81 49 4
for read
- perp. hyp. bas. perp. hyp. bas.
12° 1V 4 78 —_ - 76 —_ —
13 4 8 _ 308 317 —_ 317 308
30 30 37 23 —_ —_ 33 —_ —
42 4 28 203 - _ 207 —_ —_
60 30 46 - 183 - —_ 193 -
70 30 28 _ 929 —_ —_ 949 —
71 40 31 476 — —_ 468 — —_
for tan fe read for tan fw read
0,2608691 0, 2608696 0, 6086965 0, 6086957
0,2941179 0,2941176 0,6956526 0,6956522
0,3076938 0,3076923 0,7058823 0,7058824
0,3157363 0,3157895 0,7619047 0,7619048
0, 5909001 0, 5909091 0,9523809 0,9523810
(BRETSCHNEIDER 1, p. 100)
SHANKS 1, 3.
for p read insert fnsert »
2670 2671 6311 25999
9199 6199 6917 28949
11137 15137 19553 29243
11559 15559 22013 29387
12539 18539 22963
r————— P ———— A
? ¢ » ¢ » ¢ » ¢
4517 2258 19777 6592 22963 11481 28663 9554
5779 57718 19841 64 23041 1152 28687 28686
6311 3155 20071 3345 23599 437 28751 575
6917 3458 20143 20142 24443 12221 28843 759
10193 1456 20353 6784 25667 12833 28049 28948
10753 512 20359 10179 25759 12879 29243 14621
14437 7218 21277 1182 25999 12999 29387 2099
19423 6474 21821 21820 27427 13713 29443 14721
19553 19552 22013 5503 27739 27738 29527 1554
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ERRATA SoMMER 1;, 15-TEBAY 1
SOoMMER 1, 1,.
in K(+/31)
(1) pop
Jor {(3, 1—-4/=31) J J’} read (1) 1 1
3, 14+4/-=31) J J
(H. H. MITCHELL)

VON STERNECK 1.

page 969

» for read . for read
106553 —-28 -26 106561 -28 -30
106554 -29 =27 106562 =27 -29
106555 -30 -28 106563 -26 —-28
106556 -30 —-28 106564 —-26 -28
106557 =31 -29 106565 =25 =27
106558 -30 -28 106566 -26 -28

(voN STERNECK 2, p. 1058)

VON STERNECK 3.

n=32822 for 4 read 3
(D1cxsoN 9, p. 125)

SYLVESTER 1,.

[ for read [ for read

9 -1 +1 23 361° 3617

10 +1 -1 25 —Su +5u

14 +2u —2u 29 2848 2848

18 +1 -1 30 #8—=9%4 -+ - +1 Wt —-dt—4ut1
19 102 —202° 31 —4u —8u

22 +1 —1 33 -1 +1

22 —3u +3u 36 9t 9yt

(D. H. LEBMER, Annals of Math., s. 2, v. 31, 1930, p. 436)

SYLVESTER 2,, 2,.

n=688 for 536 read 336.
(GLAIsHER 27, p. vii)

TANNER 2.
page 257, in reciprocal factor of p=2161, for g;=14, read 24

page 258, the prime 3371 is missing. Insert line
? P ¢ Y 33Xy simplest primary reciprocal Q

31 127 23 2 3,1,1,2,6 0,54,2,8 6846,1516 S5
(CuNNINGHAXM 42, p. 66)

TEBAY 1.
page 111, for 34, 143, 145, 1716 read 24, 143, 145, 1716
(HALsTED 1)
page 112, for 330, 644, 725, 107226 read 333, 644, 725, 107226
also change order of entry.

page 112, for area 863 550 read 934 800
(MarTIN 2, p. 309, 321)

page 113, for 21, 61, 65, 420 read 14, 61, 65, 420
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TEEGE 1-WHITFORD 1 ERRATA

TEEGE 1.

in n=41, coefficient of «* in s, for 1 read 2
in n=97, coeficient of 27 in 2, for 40 read 44

VEGA 1;, 1, [e1].

N factors N factors

27293 7-7-557 82943 7-17-17-41
33293 13-13-197 90983 37-2459

41779 41-1019 93137 11- 8467

55403 17-3259 95017 13-7309

55517 7-7-11-103 95623 11-8693

57103 17-3359

(ConNINGHAM 41, p. 27)
11, 12, [fl]'
delete 173279, insert 177347

(CHERNAC 1; correction of the corresponding table in Vega’s Logarithmisch-irigonometrische
Tafeln, v. 2, Leipzig, 1797, reprinted in VEGA 1;, 15.)

VEREBRiGSOV 1.

for read
32,19, 1: 29, 26, 1 32,19, 1: 29, 26, 11
49, 28, 3: 41, 37,6 49, 28, 3: 41, 37, 36
insert 44,12,2 38, 36, 8
WERTHEIM 2.
delete asterisk on p=1213, 1993, 2437, 2729
snsert asterisk on p=2731, 2887
(WERTHEIM 4, p. 157)
pags ? for g= read
316 1013 2 3
1021 7 10
318 2161 14 23
2593 10 7
319 2999 7 17
WERTHEIM 4.
page 4 for g= read
154 3181 11 7
3191 17 11
3631 21 15
185 3967 13 6
4111 17 12
4657 S 15
4751 37 19
WHaITFORD 1 [m].
4

1733  The 6th partial quotient should be 3 and not 2.

1822  The 23d partial quotient and denominator of the 23d complete quotient are missing,
They are 1 and 54 respectively.

1852  The 29th partial quotient should be 20 and not 16.

1963  The entry here should be:
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ERRATA

WIEFERICH 1

WHITFORD 1—continued

4 3 3 1 2 3 2 22 9 1 4 3)
27 22 s 29 23 38 3 9 66 17 (26)

1549  y=12223 09542 82674 74959 34242 68334 63805-
08818 07626 31786 81966 09867 28279 63220
1566  y=308792110
1615  y=81732
1669 y= 572 84717 32803 87374 12405 68998 80229 34138 39259 82496 64340
(D. H. Leauzz 11, p. 548, 550)
WierERICH 1.
75
page for read
232...239 17...24 232...238 17...23
240...250 8...18 239...250 6...17
264...271 18...25 264...270 18...24
272...282 9...19 271...282 7...18
291...303 3...15 291...302 3...14
304...314 10...20 303...314 8...19
323...335 4...16 323...334 4...15
336...346 11...21 335...346 8...20
355...367 S...17 355...366 5...16
368...3718 12...22 367...378 10...21
387...399 6...18 387...398 6...17
400...410 13...23 399...410 11...22
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INDEX

Abundant numbers 5, 8

Algebraic numbers 75-77
fields 28, 35, 75-77

Aliquot series 6

Alliaume 36, 85

Amicable numbers, 5, 8

Anderson 83, 85

Anjema 9, 25, 85

Arccotangent identities 34, 65

Archibald 5, 29, 85

Arndt 57, 58, 72, 85, 127

Asymptotic formulas 9, 40, 41, 45, 78

Aurifeuille 34, 74

Backlund 7, 85
Bahier 61, 85

Barlow 25, 86, 127

Base 12

Basis 68, 76

Beeger 10, 16, 21, 33, 36, 38, 39, 46, 86, 127,

134, 135, 139, 159, 162, 163

Bell, E. T. 70, 87

Bell, J. L. 50, 87

Bellavitis 12, 76, 87

Bennett, A. A. 52, 53, 64, 87

Bennett, G. T. 76, 87

Bernoulli numbers 10, 36, S0
polynomials 10

Bertelsen 40

Berwick 21, 72, 87

Bickmore 30, 55, 60, 66, 77, 87, 127, 128, 167

Biddle 51, 87

Bilevich 76, 96

Billing 64, 88 .

Binary cubic forms 72
quadratic forms 8, 48, 53-60, 68-74
scale of notation 12, 37

Binomial coefficients 11, 36
congruence 7, 12-24, 37
equation 28, 69, 72-74

Bisconcini 62, 88

Borisov 71, 88, 128

Bork 15, 88, 128

Brahmagupta 58

Bretschneider 61, 82, 88, 128, 168

British Ass. Tables 97, 103, 106, 115

Brunner 63, 88

Burckhardt 15, 26, 27, 88, 128, 129, 133, 151
Buttel 19, 52, 89

Cahen 13, 14, 18, 25, 54, 55, 70, 89, 129-131
Cantor 79, 80, 89
Carey 73, 89
Carmichael S, 6, 89, 131
Carr, 26, 89
Cauchy 7, 73, 89, 90
Cayley 2, 55, 57, 66, 67, 69, 70, 72, 78, 79, 90,
131,132
Cesiro 41
Chandler 82, 90, 128
Characters generic 70, 71, 75
higher 22, 23, 59
quadratic 17, 47, 48, 51-54
Charve 72, 91
Chebyshev 13, 18, 40, 41, 53, 54, 71, 91, 130,
132, 133
Chernac 26, 91, 133, 170
Chowla 42, 91
Class number 59, 63, 70, 75
Computing machines 13, 18, 48-51, 57
Comrie 133, 141
Congruences, binomial 7, 12-24, 37
linear 49, S0
higher non-binomial 62, 63
quadratic 50-54, 66
Continued fractions 55-58, 65-68
70, 91
Corput 62, 91, 92
Creak 14-16, 20, 33, 94, 95, 136, 166, 167
Crelle 7, 13, 20, 49, 92, 133
Cubic Diophantine equations 63-65
fields 35, 68, 76
forms 64, 72
Cullen 46, 94
Cunningham 10, 12-16, 18-23, 27-34, 36, 38,
39, 43-52, 54-56, 58-62, 64, 65, 74, 80, 92—
95, 127, 128, 132-138, 141, 145, 149, 151,
154-156, 161, 165-170
Cyclotomic fields 77
polynomials 28, 69, 72-74
Cyclotomy 28, 59, 62, 63, 69, 72-74, 77

Daling 79, 95

Dase 26, 27, 81, 95, 136, 137
Daus 67, 68, 76, 95
Davis, H. T. 43, 96

Davis, W. 39, 96, 137

Decimals, periodic 11, 12, 15, 30
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INDEX

Diophantine equations, cubic 63-65
linear 49-50
quadratic 54-62, 66
quartic 65
Dirichlet 73
Divisors, linear 53, 54
number of 89
sum of 8-9
Durfee 27, 41, 42, 98, 139

Eells 62, 98

Eisenstein 71, 72, 98

Elder 48, 54, 111, 161

Elliptic functions 8, 71

Escott 5, 24, 98

Eulex589133133434546505570
78,79, 98,99, 139

Euler’s totient functxon ¢ (») 6, 7, 13, 16, 20,
28,73 .

Exclumon 51

Exponent 11, 13, 15-17, 31, 59

Factor tables 24-39
Factorization methods 47, 48, 68, 70, 71
Factors of 2+ +1 28-31
10~+1 28, 30
a*+1 28, 30-33
a~ b~ 28, 34, 35, 43, 44
Lucas functions 35, 36
other binomials 36
special numbers 36-37
Faddeev 64, 99
Farey series 8
Fermat’s last theorem 10, 21, 22
numbers 28, 59, 72
quotient 10
theorem, converse of 23, 24
Fibonacci series 10, 17, 28, 35
Fields, algebraic 28, 35, 75-77
cubic 35, 68, 76
cyclotomic 77
quadratic 57, 69, 75, 76
quartic 76, 77
Figurate numbers 11
Fitz-Patrick 98
Flechsenhaar 63, 99
Forms, binary cubic 72
binary quadratic 8, 48, 53-60, 68-74
linear 47, 49, 50, 53 54
quaternary quadnt:c 72
quartic 65
ternary quadratic 71, 72

, 711, 72, 81-83,

Frolov 52, 99

Functions, elliptic 8, 71
modular 71, 78
numerical 6-11, 25
symmetric 10, 77

Garbe 83, 99

Gauss 11, 12, 17, 22, 32, 34, 41, 50-53, 68, 69,
70, 72—74 5, 79 99 100 139-141

Géraxdm212330334647505563100
101

Gifford 24-26, 48, 101, 115, 133, 141

Gigli 79, 101

Glmher12627 37, 40, 42, 101, 142

GlusherJWL6-101216253340—44,
68, 69, 76, 101-103, 131, 139, 142, 169

Goldbach s Problem 79-80

Goldberg 14, 26, 103, 142-145

Goldschmidt 41

Golubev 27, 103

Goodwyn 8, 12, 16, 103

Gosset 23, 94, 103

Gouwens 74, 103, 145

Gram, 9, 40, 43, 103

Grave 13, 18, 26, 74, 80, 104, 146

Gupta 78, 79, 82, 83, 104

Haberzetle 83, 104

Hadlock 71, 104

Hall 10, 35, 104

Halsted 61, 62, 104, 146, 169

Hardy 43, 45, 78, 79, 82, 104, 105, 146
Haussner 10, 16, 80, 105, 147-149
Heaslet 18, 123

Henderson 24

Hertzer 15, 105, 128, 149

Hessian 71

Highly composite numbers 8

Holden 74, 105

Hollerith cards 48, 50

Hoppenot 21, 27, 33, 39, 42, 44, 105, 108
Hotiel 12, 18, 105, 109

Husquin 41, 42, 106

Ideals 67, 75

Idoneals 46, 48, 60, 70

Indeterminate equations 49-50, 54-66
Index 12, 17-20, 75, 76

Index of perfection 5

Ince 56, 57, 67, 75, 106

Inghirami 26, 106, 150, 151

Inverse totient 6

Inversion function u () 7, 9, 10, 28, 72
Ivanov 34

Jacobi 13-15, 18, 19, 21, 52, 59, 63, 67, 81, 106,
151, 162

Joffe 62, 107, 162

Joncourt 11, 107
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INDEX

Jones 71, 107, 128, 139

Kausler 11, 107

Kavén 25, 107, 1485, 151, 152

Kavén, Mrs. 150

Kesaler 15, 107

Ko, 81, 107

Korkin 14, 19, 107

Knaitchik 6, 8, 10, 14, 15-17, 19, 22, 23, 27-37,
39, 4247, 49-57, 60, 61, 63, 66, 70, 72, 74,
108, 152-159

Krishnaswami 61, 108

Kulik 13, 14, 19, 26, 27, 37, 48, 50-52, 59, 64,
109

Kummer 77

Lagrange 57, 67
Laisant 10, 109
Landry 29, 109
Lawther 22, 109
Lebesgue 12, 18, 26, 37, 109
Lebon 36, 109
Legendre 40, 41, 43, 47, 53-55, 69, 71, 110,
159-161
Legendre’s symbol 17, 43, 44, 47, 51-54, 63
Lehmer, D. H. 10, 24, 29, 35, 36, 46, 48, 51,
53, S5, S6, 73, 78, 82, 109-111, 132, 138,
146, 153, 160, 161, 169, 171
Lehmer, D. N. 27, 37, 40, 44, 47, 48, 52, 54,
109, 111, 129, 136, 137, 142, 159-161
Lehmer, E. T. 10, 52, 82, 110, 111
Lenhart 64, 111
Leviinen 19, 54, 111, 161
Lévy 120
Lidonne 26, 111
Linear congruences 49, 50
Diophantine equations 49, 50
divisors 53, 54
forms 47, 49, 50, 53, 54
Littlewood 43, 82, 104
Lodge 24, 25, 37, 48, 113, 115, 133, 141 -
Logarithms 37
Logarithmic integrals 40, 45
Lucas 6, 10, 17, 29, 33, 35, 54, 74, 112, 161
Lucas’ functions 28, 35

MacMahon 78, 112

Markov 71, 112

Martin 61, 62, 112, 146, 169
Maser 100, 110

Mason 5, 6, 89, 112
Massarini 91

Mathews 48, 70, 72, 74, 112
Maties 22, 113

Mauch 82, 113

Mechanical computing 13, 48-51, 57
Meissel 40

Meissner 10, 16, 21, 113, 127
Merrifield 43, 113, 162

Mersenne numbers 28, 29

Mertens 7, 9, 113

Miller 6, 37, 113, 138, 136, 152

Mitchell 169

Mitra 24, 113

Mabius inversion function 7, 9, 10, 28, 72

Modular functions 71, 78

Moreau 7, 113

Moritz 10, 113

Multiply amicable numbers §, 8
perfect numbers S, 8

Nagell 56, 113
Nielsen 56, 58, 59, 67, 114
Niewiadomski 22, 114
Norm 28, 35, 75, 76
Numbers, abundant 5 8
algebraic 75-77
amicable 5, 8
Bernoulli 10, 36, 50
Fermat 28, 59, 72
figurate 11
highly composite 8
Mersenne 28, 29
multiply amicable §, 8
multiply perfect 5, 8
perfect §
polygonal 83
sociable 6
triangular 11
Number of divisors 8, 9
Numerical functions 6-11 25

Oettinger 58, 64, 65, 114
Ostrogradsky 13, 18, 114, 162

Pagliero 39, 114, 162
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