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GENERAL PREFACE 
During the active life of the Guggenheim Fund for the Promotion 

of Aeronautics, provision was made for the preparation of a series of 
monographs on the general subject of Aerodynamic Theory. It was 
recognized that in its highly specialized form, as developed during the 
past twenty-five years, there was nowhere to be found a fairly comprehen­
sive exposition of this theory, both general and in its more important 
applications to the problems of aeronautic design. The preparation and 
publication of a series of monographs on the various phases of this 
subject seemed, therefore, a timely undertaking, representing, as it is 
intended to do, a general review of progress during the past quarter 
century, and thus covering substantially the period since flight in heavier 
than air machines became an assured fact. 

Such a present taking of stock should also be of value and of interest 
as furnishing a point of departure from which progress during coming 
decades may be measured. 

But the chief purpose held in view in this project has been to provide 
for the student and for the aeronautic designer a reasonably adequate 
presentation of background theory. No attempt has been made to cover 
the domains of design itself or of construction. Important as these 
are, they lie quite aside from the purpose of the present work. . 

In order the better to suit the work to this main purpose, the first 
volume is largely taken up with material dealing with special mathe­
matical topics and with fluid mechanics. The purpose of this material 
is to furnish, close at hand, brief treatments of special mathematical 
topics which, as a rule, are not usually included in the curricula of 
engineering and technical courses and thus to furnish to the reader, 
at least some elementary notions of various mathematical methods and 
resources, of which much use is made in the development of aerodynamic 
theory. The same material should also be acceptable to many who from 
long disuse may have lost facility in such methods and who may thus, 
close at hand, find the means of refreshing the memory regarding these 
various matters. 

The treatment of the subject of Fluid Mechanics has been deve­
loped in relatively extended form since the texts usually available to 
the technical student are lacking in the developments more especially 
of interest to the student of aerodynamic theory. The more elementary 
treatment by the General Editor is intended to be read easily by the 
average technical graduate with some help from the topics comprised 
in Division A. The more advanced treatment by Dr. Munk will call 
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for some familiarity with space vector analysis and with more advanced 
mathematical methods, but will commend itself to more advanced 
students by the elegance of such methods and by the generality and 
importance of the results reached through this generalized three-dimen­
sional treatment. 

In order to place in its proper setting this entire development during 
the past quarter century, a historical sketch has been prepared by Pro­
fessor Giacomelli whose careful and extended researches have resulted in 
a historical document which will especially interest and commend itself 
to the study of all those who are interested in the story of the gradual 
evolution of the ideas which have finally culminated in the developments 
which furnish the main material for the present work. 

The remaining volumes of the work are intended to include the 
general subjects of: The aerodynamics of perfect fluids; The modi­
fications due to viscosity and compressibility; Experiment and research, 
equipment and methods; Applied airfoil theory with analysis and dis­
cussion of the most important experimental results; The non-lifting 
system of the airplane; The air propeller; Influence of the propeller 
on the remainder of the structure; The dynamics of the airplane; Per­
formance, prediction and analysis; General view of airplane as com­
prising four interacting and related systems; Airships, aerodynamics 
and performance; Hydrodynamics of boats and floats; and the Aero­
dynamics of cooling. 

Individual reference will be made to these various divisions of the 
work, each in its place, and they need not, therefore, be referred to in 
detail at this point. 

Certain general features of the . work editorially may be noted as 
follows: 

1. Symbols. No attempt has been made to maintain, in the treatment 
of the various Divisions and topics, an absolutely uniform system of 
notation. This was found to be quite impracticable. 

Notation, to a large extent, is peculiar to the special subject under 
treatment and must be adjusted thereto. Furthermore, beyond a few 
symbols, there is no generally accepted system of notation even in any 
one country. For the few important items covered by the recommen­
dations of the National Advisory Committee for Aeronautics, symbols 
have been employed accordingly. Otherwise, each author has developed 
his system of symbols in accordance with his peculiar needs. 

At the head of each Division, however, will be found a table giving 
the most frequently employed symbols with their meaning. Symbols 
in general are explained or defined when first introduced. 

2. General Plan of Construction. The work as a whole is made up 
of Divisions, each one dealing with a special topic or phase of the general 
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subject. These are designated by letters of the alphabet in accordance 
with the table on a following page. 

The Divisions are then divided into chapters and the chapters into 
sections and occasionally subsections. The Chapters are designated by 
Roman numerals and the Sections by numbers in bold face. 

The Chapter is made the unit for the numbering of sections and the 
section for the numbering of equations. The latter are given a double 
number in parenthesis, thus (13.6) of which the number at the left of 
the point designates the section and that on the right the serial number 
of the equation in that section. 

Each page carries at the top, the chapter and section numbers. 

Stanford University, California 
January, 1934. 

w. F. Durand 
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NOTATION 
The following table comprises a list of the principal notations employed in 

the present Volume. Notations not listed are either so well understood as to 
render mention unnecessary, or are only rarely employed and are explained as 
introduced. Where occasionally a symbol is employed with more than one meaning, 
the local context will make the significance clear. 

DIVISION J 

x, Y 
x, y 

Axes, usually longitudinal and transverse 
Coordinates along axes of X and Y 

b 
c 
t 
l 
S 

f3 
y 
e 
(j , 
V 
u 
v 
w 
Wx 

Wz 

r 
D 
Di 
Dr 
L 
M 
Mq 
L: 
P 

Half span of airfoil or wing 
Chord of airfoil 
Height of camber, II 2 
Length 
Surface or area in general 
Angle of incidence 
Special angle in connection with 
Inclination of oblique motion, 
Angle of decalage, III 10 
Angle of a circular are, II 2 
Angle of dihedral 
Velocity in general 
Axial velocity, IV 2 
Lateral velocity, IV 2 
Induced or downwash velocity 
Angular velocity of roll 
Angular velocity of yaw 
Circulation 
Drag 
Induced drag 
Residual drag 
Lift 
Moment 
Rolling moment 
Lateral force, IV 3 
Force 

p Pressure 
q Dynamic pressure = (1/2) I] f72 
W Weight 
I] Density 
'V Kinematic viscosity 
aD Drag coefficient 
at Coefficient of friction 
a L Lift coefficient 
a L 0 Lift coefficient for oc = 0 
aD r Coefficient of residual drag 

Joukowski sections, 
IV 1 

II4 



XIV 

O]}f 
O]}f 0 

OM q 
OJ; 
e 
~ 

~ 

x, Y,Z 
Y 
2b 
l 
R 
S 
IX 

r5 
V 
w 
r 
rp 
D 
L 

NOTATION 

Moment coefficient 
Moment coefficient referred to focus of lift parabola, II i) 

Coefficient of rolling moment 
Coefficient of lateral force, IV 3 
Lift-drag ratio, III 4 
Special coefficient, II 3, III 2, V 10 
Used for 2 x/c, II 1 also y/b III i) 

DIVISION K 

Axes of reference 
Distance along axis of Y, in general along span of wing 
Span of wing 
Length in general 
Radius 
Maximum cross section or area in general 
Angle of incidence 
Special angle 
Velocity in general 
Induced velocity 
Circulation, vorticity 
Potential 
Drag 
Lift 

q Dynamic pressure = (1/2) e V2 
o D Drag coefficient 
o L Lift coefficient 
OF Coefficient of friction 
O]}f Moment coefficient 
K L, K D, K M Special coefficients 
n Normal to a surface or line 
v Kinematic viscosity 
!! Density 

x 
x 
o 
c 
D 
H 

l' 
rp 
(j 

DIVISION L 

Radial coordinate = r/R 
Used for ratio Q r/V 
Area of wind tunnel section 
Chord 
Diameter of propeller 
Pitch of propeller 
Radial distance 
Gap between vortex sheets, VII 4 
Disc area of propeller 
Sectional area of wake 
Angle of incidence 
tan-1 (ODjCL) 
Angle of inclination of W to plane of rotation 
Blade angle, usually reckoned from plane of rotation 
Axial velocity through propeller disc 
Axial velocity in ultimate wake 
Velocity outside of wake 



v 
W 

10 

W 
V 
J 
Q 
(J) 

K 
p 
p' 
Ho 
E 
T 
Q 
p 
L 
D 
A 
CD 
CT 
CQ 
Cp 
Tc 
Qc .. 
kD 
CN 
b 
1) 

a 
a' 
b 
a 
B 
k 
A 
n 
lY1 
Nc,Nv 
q 
A,B,C 
F,G,H 
F, f 
h, k 
()( 

A 
<5 

f.1 
a .. .. 
v 

NOTATION 

Radial component of velocity 
Tangential velocity, VI 3 
Total induced velocity 
Velocity of blade element relative to fluid 
Forward speed of aircraft 
VjnD 
Angular velocity of propeller 
Induced angular velocity 
Circulation about blade 
Pressure 
Pressure added at airscrew 
Total pressure head of original stream 
Kinematic energy 
Thrust 
Torque (moment) 
Power 
Lift 
Drag 
Aspect ratio 
Drag coefficient 
Thrust coefficient 
Torque coefficient 
Power coefficient 
Special thrust coefficient 
Special torque coefficient 
Special thrust coefficient, IX 
Special drag coefficient, XII 3 
Normal force coefficient 
Mean value of CD/2 
Efficiency 
Axial interference factor 
Rotational interference factor 
Axial slipstream factor 
"Solidity" of airscrew = Sjn R2, also Bcj2 n r 
Number of blades 
Special ratio, VII 1 
"Speed ratio" V-+- Q R 
Number of revolutions per second 
Special parameter, X 
Special parameters, IX 
Special parameter, III 2 
Special factors, VIII (3.6) 
Special factors, VIII (5.7), (5.8) 
Special factors, XII 4 
Special factors, VIII (5.6) 
Special factor, IX (2.9) 
Special factor, VI (4.3) 

xv 

Corrective factor for transforming CD to infinite aspect ratio V 5 
Used for u/Q R 
Special factor, IX (2.9) 
Corrective factor for transforming ()( to infinite aspect ratio, V 5 
Special factor, VI (6.15) 
Kinematic coefficient of viscosity 
Density 



XVI NOTATION 

DIVISION M 

£:, 
o 

As prefix implies change due to influence of propeller 

x, y, z 
x, r, () 

As subscript usually implies absence of influence of propeller 
Rectangular coordinates for axes X, Y, Z 

(!, {} 

tt' t2 
Z; 
t 
b 
c 
D 
n 
R 

Cylindrical coordinates 
Special radial coordinates, II i) 
Special rectangular coordinates II a 
Used for a complex number or coordinate 
Special complex coordinate II a 
Half span of wing 
Chord of wing 
Diameter, also drag 
Distance along a normal 
Radius of propeller 
Radius of slipstream boundary 
Surface or area in general, also velocity factor 
Geometrical angle of attack 
Effective angle of attack 
Induced angle of attack, I 13 
Special variable angle, II 1 
Velocity of undi'lturbed flow 
Local velocity, I 12 
Components of disturbance velocities due to propeller 

1(', V, 'W Components of disturbance velocities due to causes other than the 
propeller 

vx, Vt, Vr Components of disturbance velocities in cylindrical coordinates 
Q Angular velocity 
r Circulation 
([1, rp Potential 
L Lift 
D Drag, also diameter 
Di Induced drag 
ill Pitching moment 
T, Q Thrust and torque of propeller 
p Pressure 
q Dynamic head = (1/2) I! V2 
X Force per unit volume along axis of X 
a Axial inflow velocity factor 
a' Angular inflow velocity factor 
an, bn , rLn Coefficients in Fourier series 
a, b, c, d, e, f Factors, I 21, 22, also parts of the flow 
Co, C1 Factors in the expression for lift coefficient, 
CL, CD, CM Coefficients of lift, drag and pitching moment 
CT, kT Thrust coefficients 
C Q, kQ Torque coefficients 
8, S Velocity factors, I (2.1) 
,.1. Special coefficient, II (5.8) 
n Revolutions per second 
!! Density, also radial coordinate 

I, 14 
I 12 



DIVISION J 

APPLIED AIRFOIL THEORY 

By 

A. Betz, 
Gottingen 

EDITOR'S PREFACE 

Basic aerodynamic theory, as developed in Volume II, Division E 
of this series, furnishes the broad foundation for further advance in 
aeronautics, and in its applications to the practical problems of safe 
and economic air-transport. However, between the development of a 
broad and general body of theory and its application to the needs of 
aeronautic industry, there lies a very considerable domain which may 
properly be called "Applied Aerodynamics" and which must be con­
cerned largely with experimental tests, full scale and model, guided on 
the one hand by basic theory and on the other by the continuing accumul­
ation of the results of such experimental work. 

The present Division is concerned with this middle ground between 
theory and practice. In Chapter I general properties of the wing are 
considered with special reference to the characteristics of lift, drag and 
moment, maximum lift and methods of increasing the same, distribution 
of pressure over the profile, and control of such distribution through 
suitable choice of profile forms. 

In Chapter II the properties of profiles of various forms are discussed 
in detail with the results of numerous experimental observations on 
representative profile forms. 

In Chapter III, Part A, the single wing or monoplane is considered 
with reference to the several variables which may affect its performance, 
and including the effects of slots, gaps, and other secondary features. 

In Part B combinations of wings or of wings and control surfaces 
(fins, stabilizers, rudders, elevators) are considered with reference to their 
mutual reaction, stability of combination and other features of signi­
ficance in their practical use. Consideration of the biplane, as a particular 
form of such combinations, naturally finds its place under this heading. 

In Chapter IV consideration is given to various phenomena in con­
nection with actual flight, divided under the two major types of unsym­
metrical motion, side-slip and rotation. These phenomena, and including 

Aerodynamic Theory IV 1 
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pitching, rolling, yawing, spins and autorotation, are discussed with 
reference to the basic characteristics due to which they may arise, 
together with their mutual interactions, one upon another, all as related 
to stability and safety in flight. 

Included with the considerable amount of experimental data pre­
sented in the text will be found refe;ences to several extended series of 
experimental observations on wing profiles and on other aspects of the 
problems here considered. These references, together with the results 
here presented, will furnish to the interested reader a broad domain of 
experimental data as a source of information regarding practical problems 
with which he may be concerned. 

The work of translating this Division from the German has been 
carried out chiefly by Dr. Louis Rosenhead, Professor of Applied 
Mathematics at the University of Liverpool and Fellow of St. John's 
College, Cambridge, to whom special acknowledgments are here made 
for this valuable assistance. 

W. F. Durand. 

INTRODUCTION 

In application to practice, airfoil theory must be able to solve for 
the designer, the problem of how airfoils must be shaped and placed in 
order to obtain certain desired properties of the airplane. Pure airfoil 
theory, as set forth in Division E, cannot completely answer this question, 
since certain of the phenomena on which these aeronautical properties 
depend cannot be given complete theoretical expression. For example, 
in pure airfoil theory, the resistance due to the form of the airfoil (profile­
resistance) is neglected in comparison with the lift, yet this resistance 
is a very important quantity when the motive power is considered. 
Again, pure airfoil theory is able to say nothing as to the value of the 
maximum attainable lift on which depend the velocities of take off 
and landing. 

Therefore, in order to realize the practical value of pure theory it 
is necessary to supplement it by experiment and by qualitative consider­
ations of a theoretical nature. It is then necessary to deduce from the 
theory those consequences which are of practical importance. Inaddition 
it is often valuable to consider purely theoretical arguments from 
a somewhat different standpoint, where, with reference to practical 
applications, intuitive deductions may be set before strict proofs. In 
short it i~ an "applied airfoil theory", an airfoil theory adapted to 
practical needs, which is to be developed in the following chapters. 

In continuation of Division E II, we shall first consider various airfoil 
cross-sections, that i~, cases in which plane flow occurs, and we shall 
leave three-dimensional flow for discussion at a later stage. 
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CHAPTER I 

GENERAL PROPERTIES OF THE WING 
1. Lift and Moment. The connection between the shape of the cross­

section of airfoils and the lift can be treated in considerable detail by 
theory; for simplicity the effect of the angle of incidence is included 
in the effect ascribed to "shape". In airplanes the lift is generally by 
far the predominating force; all the moments which occur depend essenti­
ally upon the lift and can therefore be calculated in great detail. The 
results of these theoretical considerations are discussed in Division E. 
In this place it is only necessary to consider the practical bearing of 
the results there obtained and to discuss the deviations from the pre­
di,ctions of pure theory. 

Two methods of attack are important in the theoretical treatment: 
1) the method of conformal transformation, and 2) the method of vortex 
fields (Division E). The first method gives exact results concerning the 
distribution of pressure and velocity on the surface and in the neigh­
borhood of wings of some definite cross-section. Although this procedure 
could in principle be applied to a wing of any type its application is 
only convenient for the so-called Joukowski-profiles. The second proce­
dure gives approximate results only; in addition to estimating velo­
cities in the neighborhood of the airfoil it is particularly suitable for 
the recognition of general relations between the shape of the wing and 
force effects (due for example, to curvature and S-shapes, cross-sections 
with fixed centers of pressure, etc.). 

The theoretical discussion of the cross-section of airfoils is based upon 
the assumption that the flows along the upper and lower sides of an 
airfoil meet again exactly at the trailing edge. This hypothesis is 
reasonably accurate for airfoils with good lift-drag ratio, but is never­
theless, not exact and deviations from the predictions of theory are for 
the most part due to this circumstance. These deviations will be 
considered in detail. 

2. Resistance (Drag) of the Airfoil. Airfoil theory has but little 
to say concerning the resistance of the airfoil (profile-drag) and re­
garding the maximum attainable lift. Here it is necessary to rely 
chiefly on the results of experiment. Nevertheless, provided the cross­
section is not too thick, statements can be made regarding the drag, 
which, in this case, is produced chiefly by surface friction. The laws 
of surface friction are better known than the considerably more com­
plicated laws of the remaining resistances of bodies (see Division G); 
so that much has been attained if the drag can be reduced largely to 
surface friction. This fact is particularly important when determining 
the effects of the Reynolds number (see Division G) on the drag of the 
airfoil. It must not be forgotten, however, that our experimental 

1* 
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knowledge concerning the drag of airfoils is derived for the most part 
from experiments with models (Division I) and it is well known that 
the drags of actual airfoils of sufficiently smooth surface are nearly 
always considerable lower than those obtained by transforming the 
results obtained from models in accordance with the law of kinematic 
similitude. 

With thin plates, well sharpened towards the front, and lying exactly 
along the direction of flow, drag coefficients l are obtained whose 
dependence .on the Reynolds number is shown in Figs. 1 and 2 (see 
also Division G). These diagrams show likewise the drag coefficients 
for two airfoils at several angles of incidence 2 • It can be seen that for 
airfoils whose position and shape differ only slightly from those of thin 
plates lying in the direction of flow, the drag coefficients obtained are 
not very different from those for thin plates. However, drag coefficients 
which deviate considerably from those for thin plates when the Reynolds 
number is small, approximate more closely to the case of simple surface 
resistance as the Reynolds number increases. This circumstance is very 
fortunate since it inspires a hope that the relations obtained at high 
Reynolds numbers, which are very important in practice but difficult 
to obtain experimentally, may in time receive theoretical treatment. 

The chief method adopted for the experimental determination of the 
drag (profile) of large airfoils consists of measurements of the loss of 
momentum behind the airfoil (Division G 28, 29). Unfortunately there 
is very scanty experimental material on this point and the available 
material is rather inexact. It would be extremely valuable if research 
in this domain could be carried on more actively. Another possible 
method for obtaining experimental results at high Reynolds numbers 
consists in the employment of high-pressure wind-tunnels (Division I). 
It should be noticed that the drag of thin airfoils like surface friction, 
exhibits minimum values for Reynolds numbers Vel'" ~ 5 X 105• This 
Reynolds number occurs precisely in the region where many experiments 
with models are carried out (at G6ttingen for example the standard 
experiments on airfoil cross-sections are carried on at Velv = 4 X 105). 

We must however take into account the fact that if measurements on 
models give extremely small values of drag deviating only slightly from 
the values of surface friction, then these drags will first increase with 
increasing Reynolds number, and then decreasing will only reach the 

1 The drag coefficient 0 D = Die S V2/2 and the coefficient of surface friction 
Of = Die a V2/2 must be carefully distinguished. The first refers to a single surface 
of the corresponding plate (for example, for a rectangular plate, S = length times 
breadth) while the second refers to the entire surface of the plate, so that each 
side must be included separately. For a thin plate moving in its own plane, the 
two values of D are the same and a = 2 S, whence OD = 2 Of. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu Gottingen, III. Lief., 
p.87 (Oldenbourg, Munich, 1927). 
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values obtained from experiments on the model when the Reynolds 
number has been increased to ten or perhaps one hundred times its 
first value. 

In general, the drag of an airfoil is greater than the surface friction. 
The extra resistances superimposed on the simple surface friction, are 
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Figs. 1 and 2. Drag coefficient as a function of Reynolds number V cjv, for two wing forms 
at certain angles of incidence. For comparison also, the drag coefficient due to frict,ion 
for a thin plate. Curve 1 for turbulent boundary layer, curve 2 for laminar boundary 
layer, and curve 3 for turbulent boundary layer over the rear part and laminar boundary 

layer over the front of the profile. 

chiefly due to the roughness of the surface (rivet heads, fittings, uneven­
ness, etc.) and by unfavorable flow patterns (too large a curvature of 
the upper side of the wing, too large angles of incidence, etc.), which 
thicken the boundary layer or produce separation in front of the usual 
position and thereby produce added drag. 
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Sometimes a single irregularity, insignificant in itself, such as a 
fitting or strut, can produce an inordinately large drag 1 (see also 
Division K). This is the case when the airfoil has a shape such that 
when no disturbance occurs the boundary layer separation is very 
small or negligible but the small disturbance is just sufficient to produce 
separation. We therefore see that the connections of the airfoil to the 
body of the plane deserve particular attention (Division K). The extra 
drag produced by the ends of the airfoil (induced drag) does not 
depend on the form of the airfoil and will therefore be considered 
separately in a later section. 

3. Maximum Lift. Even less is known regarding maximum lift than 
regarding drag. In general maximum lift increases with the Reynolds 
number so that results obtained by measuring models should be on the 
right side. Unfortunately there are also cases in which the maximum 
lift noticeably decreases as the Reynolds number increases. So far this 
abnormal behavior of the maximum lift has not been completely ex­
plained; presumably the shape of the leading edge of the airfoil may 
have some effect 2. 

The following general remarks can be made regarding the causes 
which limit the maximum lift. The typical pressure distribution on the 
upper side of the airfoil is approximately represented in Fig. 3. A marked 
decrease of the pressure and a corresponding increase of velocity, in 
accordance with Bernoulli's equation (Division B) near the leading edge 
of the airfoil, is followed by a gradual increase of the pressure and 
a corresponding decrease of velocity towards the trailing edge, until 
values are reached which do not differ greatly from the pressures and 
velocities of undisturbed flows. The layers of air in the immediate 
neighborhood of the upper surface of the airfoil are retarded by friction 
so that their kinetic energy is no longer sufficient to carry them forward 
against the increase in pressure. In normal circumstances, however, they 
are towed forward by the outer and faster layers through viscosity or 
exchanges of momentum (Division G). The towing effect produced by 
neighboring layers is, however, only effective if the retarded layer 
(boundary layer) is sufficiently thin and the increase of pressure not 
too great. 

1 The converse case where under certain conditions an irregularity of the 
surface may lower the drag, as may occur in the case of spheres, scarcely comes 
into the question for wing sections. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu G6ttingen, I. Lief., 
p. 54ff. (Oldenbourg, Munich, 1921). Some work of E. Gruschwitz (Die turbulente 
Reibungsschicht in ebener Str6mung bei Druckabfall und Druckanstieg. Ingenieur­
Archiv, Vol. II, p. 321,1931) has brought the whole question of calculating the 
separation effect considerably nearer to a solution. It is now possible to obtain 
a picture, at least qualitatively correct, of the causes of the varying effects of 
Reynolds numbers. 
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Whenever an increase of the angle of incidence on an airfoil prpduces 
an increase of lift this is chiefly due to the fact that the sub-pressure 
on the upper side is made still lower. This, however, always increases the 
rise in pressure from the point of minimum pressure to the trailing edge, 
and a limiting case is reached when the entraining effect of the outer 
flow is eventually no longer sufficient to carry the boundary layer along 
against the steepened pressure gradient. If this is the case, the direction 
of boundary flow on the upper side of the airfoil is reversed, while the 
outer stream breaks off or "separates", thus altering the entire disposition 
of the flow (Fig. 4). This type of flow is characterized by a considerably 

Fig. 3. Typical pressure distribution over 
a wing profile. 

Fig. 4. Flow about a wing without and 
with separation. 

extended region of "turbulent wake" and considerably increased drag in 
consequence. Moreover, the separation is usually accompanied by a 
decrease in the lift. There are also cases where the "separation" does 
not occur so suddenly, but permits a more or less continuous transition 
from normal flow to flow with separation (see Fig. 22). In such cases 
the lift may increase continuously; a fact which is important for the spin 
characteristics of airfoils. In most cases, however, the separation occurs 
rather suddenly, and if the angle of incidence is decreased, the normal 
conditions appear again only for angles of incidence smaller than those 
for which separation began. For if separation is once effected, it is 
much more difficult to dispose of the considerable quantity of turbulent 
air produced than it was to maintain the flow without mixed turbulence 
such as existed before the disturbance occurred. In most cases there is 
therefore a definite range of the angle of incidence where for each angle 
it is possible to have two states of flow with different values for the 
lift and drag. Of these, one state, that with the large lift and the smaller 
drag, is observed if the angle of incidence is varied by continuously 
increasing it from small values to larger ones; the other, when starting 
with the condition of separation, the angle of incidence is continuously 
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decreased. Very often another phenomenon can be observed in the 
period of transition between normal and disturbed flow, the two states 
of affairs continually interchanging, presenting rapidly alternating forces 
(jolting) whose mean value will lie neater to the one or the other of 
the two boundary values of the force, according to the frequency of 
either the first or the second state of affairs. 

If the theoretical distributions of pressure around a wing-section are 
calculated by the usual methods (conformal transformation for example), 
it is found, particularly in the case of cross-sections which are not too 

thick, that large angles of inci­
dence produce extreme but sharply 
localized minima of pressure near 
the nose of the section (see the 
sharp point on the dotted curve 
in Fig. 5). The powerful increase 
of pressure which results usually 
forces the flow to separate locally, 
with displacement of the local 
pressure condition (see the con-
tinuous line of the same figure). 

Fig. 5. ;Local separation at Beyond this local disturbance 
the leading edge. which lies adjacent to the more 

sharply curved part of the profile, 
the flow usually remains in con­
tact with the surface. The local 
disturbance does not in general 

involve the complete break-away of the flow provided the increase of 
pressure in the remaining portions of the upper side of the wing is 
within moderate bounds. Nevertheless, the maximum lift is decreased 
(see II 1, thin plates). 

It has been seen that the separation is chiefly due to a too rapid 
increase of pressure on the upper side of the airfoil, which in turn depends 
upon the maximum sub-pressure in the neighborhood of the leading edge. 
There are however, limits to the order of magnitude of this maximum 
sub-pressure and experience shows that pressure on an ordinary airfoil 
does not sink much below something like - 3 e V2j2, so that the velocity 
does not increase very much above twice the value of the velocity of 
general stream flow. 

The sub-pressure and hence the increase of pressure are both propor­
tional to V2 (V = general stream velocity). But the entraining effect 
of the flow on the boundary layer also increases approximately as V2, 
so that the limits of the separation are not materially influenced by 
changes of velocity. However, this proportionality is not exact, so that 
the Reynolds number does in general have some effect on the separation. 
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If the velocity is kept constant and the airfoil is uniformly increased in 
size, the pressure gradient per unit length decreases in inverse propor­
tion to the chord of the wing. At the same time however, in consequence 
of the longer distance over which friction acts, the boundary layer 
becomes thicker (when compared at corresponding points of the two 
cross-sections), and the entraining effect is reduced approximately in 
the same measure as the pressure gradient. However, this adjustment 
is not complete so that the Reynolds number still has an effect. 
Since these deviations from the proportionality between the entraining 
effect on the one hand and V2 or l/e., on the other hand, can be represented 
as a function of the Reynolds number and therefore as a function of Ve. 
it follows that the laws of deviation produced by respective alterations 
of velocity and size are connected. The effect of a change in V is similar 
to the effect of a change in e.. However, the deviations depend further 
on "roughness" which does not obey the laws of similitude. 

All these considerations relate to steady motion. If the motion is 
not steady (as in the case of rapid increase of the angle of attack) lift­
coefficients considerably higher than those previously mentioned can be 
produced 1. For a discussion of abnormally high lift-coefficients for 
approximately rectangular airfoils (see III 7). 

4. Artificial Methods for Increasing the Maximum Lift. The remarks 
made in the preceding sections concerning the limits of the lift apply 
only to ordinary wings. The maximum lift can be considerably increased 
above the usual values by using special measures. For several reasons 
there is much need for such means of lift increase; for one thing an 
increase of lift produces a decrease in the velocity of take-off and landing. 
The required effects however, are only attained if the increase of maximum 
lift does not at the same time produce a corresponding increase of the 
minimum lift best adapted to the available motor output, for otherwise 
the same effect could be attained quite simply by increasing the wing­
chord. Wings with short chord and powerful lift have two advantages 
over wings of larger chord; the shorter the chord of the wing the smaller 
is the range over which the center of pressure moves, and on account 
of the larger angle of incidence, the shorter the chord the smaller is the 
change of lift produced by a change in the angle of incidence, and hence 
the less the sensitiveness to gusts. This last circumstance may, it is 
true, be unwelcome when large variations of angles of incidence are 
employed in order to produce needed changes in lift. A further advantage 
is found in the fact that, through increase in the maximum lift, separation 
of the airflow may be avoided and therewith many connected phenomena, 
falling into a spin for example. 

1 KRAMER, M., Die Zunahme des Maximalauftriebes von Tmgfliigeln bei plOtz­
licher AnstellwinkelvergroBerung (Boeneffekt). Zeitschr. f. Flugtechnik u. Motor!. 
23, p. 185, 1932. 
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Three methods are known at the present time for increasing the 
maximum lift: 

1. The slotted wing. 
2. Suction of the boundary layer. 
3. Movement of the surface of the wing (rotating cylinder). 
5. The Slotted Wing. Of the three methods mentioned above only 

the slotted wing has at the present time been utilized to any great 

"'""~;::;:::------l 
Sa er Pr~Sure-_ 

Sub Pressure 

Fig. 6. Change of pressure distribution resulting 
from the mutual influence of two profiles. a) Ori­
ginal distribution: thin full line. b) Changed 
distribution at the same angle of incidence: 
broken line. c) Distribution with increased 
angle of incidence: heavy full line. At the 
rear wing, curves a) and c) become the same. 

extent in practical appli­
cations. 

In the year 1920 
Handley Page demon­
strated a new type of 
wing provided with slots, 
and showing a maximum 
lift considerably greater 
than with those of con­
ventional form 1. 

In 1918 G. Lachmann 
in Germany had applied 
for a patent on a type of 
construction the same in 
principle, but in view of 
unfavorable conditions, 
the matter was not 
followed up immediately. 
This type of airfoil has 
therefore been called both 
the Lachmann wing and 

the Handley-Page wing. The phenomenon attracted much attention at the 
time of its discovery. The following2 may serve as an explanation of 
the effects produced by slotting a wing. 

The arrangement to be first considered consists of two approximately 
equal wings as in Fig. 6. The forward one itself ~ould have had a pressure 
distribution represented by the continuous line a on the left of the 
diagram. When the other wing, which by itself would have had approxim­
ately the same pressure distribution, is brought near to the first one, 
the trailing edge of the forward wing is in a region of greater velocity 
and correspondingly smaller pressure, produced by the other wing. The 
head of the forward wing however, on account of its greater distance 
from the second wing, is in a region where the air is considerably less 

1 PAGE, HANDLEY, The Handley Page Aeroplane Wing. Engineering 111, 
p.274, 1921. 

2 BETZ, A., Die Wirkungsweise von unterteilten Fliigelprofilen. Berichte u. 
Abh. der wissensch. Ges. f. Luftfahrt, Heft 6, 1922. 
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disturbed and the pressure is approximately normal. Hence, the presence 
of the after wing produces no important difference at the leading edge, 
but lowers the pressure at the trailing edge of the forward wing. The 
distribution of lift over the forward wing thus obtained is roughly 
represented by the broken line b in the diagram. 

In consequence of this alteration of the pressure curve the increase 
of pressure on the upper side is much more gradual than before. However, 
it is known that the limiting values of the lift are determined by the 
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Fig. 7. Results of measurement. on a wing with slot, auxiliary wing in different locations. 
Curve 3 d gives results for same location as for 3c but with slot filled np. 

steepness of the pressure curves; hence the angle of incidence can be 
increased again until the gradient of the pressure curve reaches its 
limiting value (see the continuous line c of the diagram). Since the 
velocity has increased at all points, the pressure curves can rise even 
more steeply than before. It is at once obvious that the lift which is 
represented by the area enclosed by this curve has been considerably 
increased. 

Exactly corresponding phenomena occur at the after wing. The front 
wing produces a diminution of velocity and hence a reduction of the 
sub-pressure at the nose of the rear wing, while the trailing edge remains 
almost unaffected. This produces an increased pressure, chiefly on the 
upper side and in the neighborhood of the leading edge of the wing. 
The strong sub-pressure is reduced so that here too a more gradual 
increase of pressure occurs (dotted line b). Increasing the angle of 
incidence will again produce the former curve a. On the whole, this 
leaves the lift of the back wing sensibly unaltered, and altogether the 
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two wings, connected in this way, produce a greater maximum lift than 
if they were separated. If has been seen that this increase is to be 
found almost entirely at the front wing. 

In order that these things should develop in the manner described, 
it is also necessary that the boundary layer on the upper side of the 
rear wing should not be disturbed by the boundary layer material 
leaving the after edge of the front wing. We know that whether the 
g stream of air on the upper side 'I 

" 1J-r!8.f g separates or remains attached to 2 
ia,~1- /l3.1J l1 ~t-r g the wing, depends on whether 0 
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the turbulent air as formed is 
entrained away in sufficient 
quantities. Considering the work 
necessary to produce this effect 
for the rear section of the divided 
wing it is at once obvious that 
the work involved, which may 
be viewed either as pumping or 
suction work, must be supplied 
by the thin layer of air which 
has passed through the slot. This 
work is derived from the kinetic 
energy of this band of air, and 
if the slot is made too small the 
band finally becomes so narrow 
that its kinetic energy is not 
sufficient to produce its effect 

over the entire surface of the rear section. The air itself, issuing from the 
slot becomes entangled with the layers of mixed turbulence above and 
below, and passes into this condition itself. If the phenomena just described 
are considered from this standpoint they appear in quite a different 
light. The cross-section can now be considered as a single unit obtained 
from an ordinary cross-section by making connecting slots between the 
upper and lower sides; and this is, of course, the usual way of looking 
at the matter. The effect of the slots is that new energy is supplied 
to the boundary layer of the upper side which has been retarded by 
friction, thus increasing its velocity and preventing the formation of 
mixed turbulence. The stream of air coming from the slots has the 
same effect as a jet pump and thus aids the stream of air sliding along 
the upper side of the wing to sweep away the dead air (mixed turbulence). 
Since the production of lift is bound up with the output of this pumping 
work, and the maximum lift depends upon the restricted possibility of 
eliminating dead air, it is obvious that an increase of the pumping 
output will raise the lift-maximum. The last consideration gives a general 
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indication as to the width of slot necessary, while from the previous 
statement the increase in lift can be deduced 1. 

The slotted-wing is usually used in the following way: the front 
wing, usually called the auxiliary wing, is movable, and the slot is 
opened at landing and starting but closed during swift flight. The 
auxiliary wing is moved either by hand, or, as in the latest applications, 
automatically. If the angle of· incidence is increased the result is to 
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Fig. 9. Pressure distribution for a slotted wing. 

~ 

produce a stronger and stronger negative pressure at the nose of the 
wing. This change of pressure can then be used to move the auxiliary 
wing hinged suitably on the principal wing in such manner as to open 
the slot automatically at some specific angle of incidence. 

The values of the lift and resistance for a divided wing with one and 
with several slots are reproduced 2 in Figs. 7 and 8. Fig. 9 shows the 
distribution of pressure on the principal and auxiliary parts of a divided 
wing 3. 

A method developed by A. Baumann is really connected with the 
phenomena associated with the slotted wing. The method employed is 
to blowout a stream of air at suitable points on the upper side of the 

1 An attempt to give a theoretical discussion can be found in the article by 
G. LACHMANN, Die Str6mungsvorgange an einem Profil mit vorgelagertem Hilfs­
Hugel. Zeitschr. f. Flugtechnik u. Motorl. 14, p.71, 1923. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu G6ttingen, II. Lief., 
p.58 and 64 (Oldenbourg, Munich, 1923). 

3 PAGE, HANDLEY, The Handley Page Aeroplane Wing. Engineering 111, p. 276, 
1921. 
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wing in order to accelerate the boundary layer. In theory the effect 
of this stream of air is the same as that of the stream which passes in 
the divided wing from the positive pressure side (lower) to the negative 
pressure side (upper). There is the difference however, that in Baumann's 
procedure the velocity of the stream of air can be chosen at will whereas 
in the slotted wing it depends upon the velocity which arises from the 
difference of pressure between the two sides of the wing. On the other 
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- hand Baumann's method involves the com­
plications arising from the special fittings 
required for producing the air blast . 

6. Suction of the Boundary Layer. The 
second method for increasing the lift beyond 
its normal value consists in sucking the boun­
dary layer into the inside of the airfoil at 
those points on the upper side where it be­
comes sufficiently thick to induce separation. 
The new boundary layer produced at these 
places is at first thin enough to be drawn along 
by the outer part of the flow. If the pressure 
increases rapidly, suction must be repeated at 
several points of the upper side in order to 

02 all IJ.G 0.8 preserve a sufficiently thin boundary layer. 

Ci· C'e This method has the same disadvantage as 
~ that of Baumann, previously described, in : . ~ ~> that it requires a special fan with pipes and 

k--250~ other auxiliary fittings. Compared with that 

Fig. 10. Lift and efficiency 
coefficients for a wing with 
boundary layer removed by 

procedure it appears to be more effective 
and to require a smaller power output; but 
too few experimental results are known for suction. 

a fair judgment to be possible. 
The two procedures could, of course, be combined by arranging that 

the air which has been sucked away and which must after all be disposed 
of, should emerge in such a way as to accelerate the boundary layer. 
The utilization of such a procedure with airplane wings should be 
thoroughly practicable, but thus far it does not seem to have been 
applied for such purposes. 

Fig. 10 sets forth the results of experiments on a wing employing 
suction in the manner just described 1. Owing to the abnormal circum­
stances the usual method of representing experimental results is no longer 
useful and must be modified accordingly. 

The first point to be noticed is that in considering the output required 
during flight, the pumping output Ws , for the suction of the boundary 

1 SCHRENK, 0., Versuche mit einem Absaugefliigel. Zeitschr. f. Flugtechnik 
u. Motor!. 22, p. 259, 1931. 
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layer, is needed in addition to the propeller output W p' The propeller 
output is used up in overcoming the drag and can be calculated from 
the drag coefficient 0 D according to the formula 

W -0· evas 
p- D 2 

o D can therefore be regarded as an output index which determines 
the propeller output. In order to allow for the pumping output for 
wings with suction, 0 D may be replaced by an output index Oe which 
has the same relation to the total output (Wp + Ws) that the drag 
coefficient 0 D has to the propeller output. Hence 

e vas 
Wp + Ws = Oe-2-

The induced drag (due to finite span of the wing and to the finite 
diameter of the wind-stream) is extremely large because the lift coefficient 
is large. It is therefore useful at the present stage, to consider only 
the profile-drag, the value of which can be directly determined by the 
momentum method (see Division G 28, 29). The coefficient OeOC! thus 
obtained is shown in Fig. 10. 

On account of the deviation of the air flow at the wing, the lift is 
appreciably inclined to the direction of undisturbed flow (the cause of 
induced resistance). The component acting at right angles to the general 
direction of flow, and which thus appears as lift, is therefore diminished 
in the ratio of the cosine of this angle of inclination. In ordinary wings, 
owing to the smallness of the angle of inclination, this has no appreciable 
effect. Nevertheless, in order to obtain the correct relations for infinite 
span and infinitely extended streams of air, a corresponding correction 
for the lift must be introduced. The lift coefficient 0 L 00 corresponding to 
the corrected lift is r«presented in Fig. 10. 

The experiments are performed in the following manner: While the 
number of revolutions per minute of the suction apparatus, built into 
the wing, is kept constant, the angle of incidence is increased by intervals 
of 6° until separation occurs. Since the pumping output is thus kept 
more or less constant and is usually large in comparison with the profile 
drag output, the points corresponding to anyone fixed number of re­
volutions per minute are approximately in a vertical line where Oem is 
constant. Since the measurements take place only at intervals of 6°, 
there is a possibility of an error of 6° in the determinations of the angle 
and the lift for which separation occurs. On the average, separation 
will take place at 3° beyond the last angle to be measured before the 
separation occurs. The limiting values of the attainable lift, estimated 
in this way, with a possible error of ± 3°, are connected by the broken 
line in Fig. 10. This curve plays the same part in estimating the effect 
of the wing with suction as does the polar curve of an ordinary wing 
corrected for infinite span. 
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7. Rotating Cylinder. The third procedure to prevent the separation 
of the boundary layer thereby producing larger lift-coefficients, consists 
of setting the surface of the wing into motion with approximately the 
same velocity as that of the general air stream. This eliminates the 
friction between the air and the surface of the wing, and hence the 
formation of the boundary layer and its separation. This procedure can 
hardly be realized in practice unless the wing is made in the form of 
a cylinder (circular cross-section) and is rotated about its axis (Magnus 
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Fig. 12. Lift coefficients for a rotating cylinder as Fig. 13. Lift and drag coefficients 
a function of the ratio between the surface velocity for a rotating cylinder. 

of the cylinder u and the wind velocity v. 

effect). This procedure is in itself by far the most effective since lift­
coefficients of over lO are obtained as compared with 1.5 for normal 
and something like 2 to 4 for slotted and suction wings respectively. 
Nevertheless, such procedure can scarcely be carried out in practice since 
in order to obtain such lift-coefficients the surface velocity of the cylinders 
must be of the order of three times the velocity of the airplane. This 
involves such high velocities of rotation in airplanes moving with the 
high speeds now usual, that the technical difficulties make the solution 
of the problem very difficult if not impossible. 

The strong sub-pressure heads on the upper side of the rotated 
cylinder produce a strong tendency for air to be sucked in sideways 
at the ends of the cylinders. In order to prevent this effect the cylinder 
ends must be provided with end shields whose diameter is greater than 
that of the cylinder (Fig. 11). Without these precautions the air sucked 
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in would dislodge the main flow from the surface of the cylinder, and 
would hinder the production of the extremely high lift values. Figs. 12 
and 13 show the results of experiments with the cylinder l represented 
in Fig. 11; Fig. 12 shows the relation between the lift-coefficient and 
the ratio ujV of surface velocity of cylinder (u) to wing velocity (V); 
Fig. 13 shows the lift and drag coefficients. 

8. Effect of the Drag on Deviations From the Theoretical Lift. A po­
tential flow produces no resistance, and the actual drag is due to the 
deviations of the actual flow from the 
potential flow. On the other hand, the 
theoretical discussion of lift assumes a 
potential flow, and the effect of the 
deviations of the actual flow from that 
theoretically postulated is to give, in 
practice, a somewhat smaller lift than 
as suggested by theory. The deviations 
from the potential flow involve only a 
minor correction of the theoretical value 
of the lift, whereas the drag depends 
entirely on the existence of these devia­
tions. Since both phenomena, drag and 
deviation of the actual from the theo-
retical lift, can be reduced to the same 

Fig. 14. Ohange in the flow about 
a wing due to "dead-water" on one 
side: Above, potential flow: below, 

flow with "dead-water". 

cause, viz. deviations from the potential flow, it is to be assumed 
that a numerical relation connects the two. 

It is possible to obtain a qualitative idea of the nature of this 
connecting relation from the following theoretical considerations. The 
deviations from the pure potential flow which produce both the drag 
and the diminution of the lift are due chiefly to the fact that the layers 
of air streaming past the wing lose a part of their energy through 
retardation by surface friction. These portions of the fluid produce 
a domain of diminished velocity behind the wing, the so-called turbulent 
wake. There is a comparatively simple relation between the drag on 
the one hand, and the extension of this wake and the diminution of 
velocity on the other 2. In consequence of the higher velocities on the 
upper side of an airfoil experiencing lift, the loss of energy on that side 
is considerably greater than on the other side; hence the turbulent 
wake, for the most part, starts from the after part of the upper side 
(Fig. 14). Since the velocity is diminished in this region, less air passes 

1 BUSEMANN, A., Messungen an rotierenden Zylindern. Ergebnisse der Aero­
dynamischen Versuchsanstalt zu G6ttingen, IV. Lief., p. 101 (Oldenbourg, Munich, 
1932). 

2 For the calculation of the drag from the turbulent wake in accordance with 
Betz' procedure, see Division G 28, 29. 

Aerodynamic Theory IV 2 
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than in the potential flow; the consequence is that neighboring stream­
lines are rather more separated than in pure potential flow. In conse­
quence of the unsymmetrical arrangement of the turbulence at the wing, 
the separation between the stream-lines is greater on the upper than 
on the lower side. The stream-lines behind the wing are therefore on 
the average shifted upward. The lift has approximately the same value 
as if the stream-lines of the pure potential flow met again, but at a point 
on the suction side instead of at the back edge of the wing (Fig. 14, 
broken stream-lines). Such a flow has, however, less circulation and 

llieorefic(l/ ---­
cxperimen/(l/ --

Fig. 15. Comparison between a measured 
pressure distribution (full line curve) and 
the theoretical distribution (dotted liue) 
giving the same lift. The after stagnation 
point of the theoretical flow lies on the 
suction side with a flow about the sharp 

following edge where the pressure 
(theoretical) would be - 00. 

\ . ...... ------------------, 

lheoretic(l/ ---­
Experiment(l/--

Fig. 16. Measured and theoretical pressure 
distribution without flow about tbe 

following eage. 

therefore also less lift than that predicted in accordance with the 
theoretical distribution in which the stream-lines join together exactly 
at the after edge. 

The fact that the effect of the turbulent region can be fairly well 
reproduced by shifting the stagnation point to the upper side of the 
wing can also be obtained by comparing the theoretical and observed 
distributions of pressure for the same lift and the same angle of incidence. 
Fig. 15 shows the theoretical and the experimental distributions. The 
rear stagnation point is so arranged in the theoretical calculation that 
the same lift is obtained as in the observations 1. It is then necessary 
to allow a flow around the back edge which lowers the pressure in the 
theoretical calculations to - co. The divergences between theory and 
actual measurement are now concentrated in the neighborhood of the 
back edge where the extreme theoretical values for the pressure must 
be neglected. For the rest of the wing the two curves agree very well. 
For purposes of comparison the same observed pressure curve is 
reproduced in Fig. 16 together with the theoretical curve uncorrected 
by a displacement of the stagnation point. 

1 BETZ, A., Untersuchungen einer Schukowskyschen Tragflache. Zeitschr. f. 
Flugtechnik u. Motorl. VI, p. 173, 1915. 
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The quantitative cOIDlection between the loss of lift and the drag 
has not as yet been obtained. A rule which has been often used, in 

accordance with which OL = ~ OL theor. (8.1) 

(see Division E I 8) should still be useful for those orders of magnitude 
which occur for the most part in practical applications. 

C. Wieselsberger has investigated this matter in greater detail and 
obtained a very simple result!. He used an airfoil with four degrees 
of roughness on the upper side. 
The roughness simultaneously in­
creases the drag and lowers the 
lift. The results of the measure­
ments are reproduced in Fig. 17, 
where the four polars have been 
recalculated for an infinite aspect 
ratio (see Division E IV). The 
values found for equal angles of 
incidence (the points shown) lie, 
with good approximation, in par­
allel lines. Wieselsberger was also 
able to show that extrapolation to 
zero drag supplied almost exactly 
the lift required by the theory of 
frictionless flows. This indicates 
the following relation between On, 
the drag coefficient, and 6. 0 L the 
decrease in the lift coefficient 

6. OL = 7.5 On (8.2) 

This result of Wieselsberger's in­
vestigation refers only to one specific 

Fig. 17. Lift and drag coefficient for Ii wing 
with varying degrees of roughness on the 
suction sIde. Tho points whioh beleng to the 
same angle of incidence lie nearly on straight 

lines. 

airfoil the drag of which was altered in a certain definite manner, the 
angles of incidence used all lying in a comparatively small region. It is 
easy to see that this simple result cannot hold for all cases. Considerations 
of symmetry show that for a symmetrical airfoil for example, 6. 0 L must 
change its sign with the angle of incidence (or the lift) yet this is not 
permitted by (8.2) in which 0 L is always positive. A more recent 
investigation 2 of this point for which Joukowski airfoils were employed 
and the measured values of the lift were compared with the theoretical 

1 WIESELSBERGER, C., Die wichtigsten Ergebnisse der Tragfliigeltheorie und 
ihre Priifung. Vortrage aus dem Gebiete der Hydro-Aerodynamik (Innsbruck 
1922). Published by Th. von Kanlltln and T. Levi-Civita. Berlin: Julius Springer 
1924. 

2 BETZ, A., and LOTZ, 1., Venninderung des Auftriebes von Tragfliigel durch 
den Widerstand. Zeitschr. f. Flugtechnik u. Motor!., 1932. 

2* 
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values, revealed a relation between 6. CL and CD as shown in Fig. 18 
for two airfoils of equal mean curvature. On the whole the curves lie 
symmetrically about a curved mean line whose shape depends upon the 
airfoil curvature; this mean line for symmetrical cross-sections is straight 
and coincides with the CD axis. 

If the formation of a turbulent wake diminishes the lift, the question 
arises, does this alteration shift also the lift center of pressure, and if 

gOr---------~----------. 

1.0~----~~_+--~------~ 

-~Meon !tile 

so, to what extent ~ On comparing 
the measured moment with the theo­
retical value for the same lift coeffi­
cient the actual measurements of the 
force always produce smaller moments 
than as required by theory. On the 
other hand, Schrenk 1 found, for Jou-
kowski wings at least, in a domain 
where separation has not occurred, 
that for the same angle of incidence, 
lift and moment are reduced in ap­
proximately the same proportion when 
compared with the theoretical values. 
This means that for the same angle 
of incidence the center of pressure is 
not essentially altered. It is also per-

112 missible to deduce that in consequence 
of the formation of a turbulent wake, 
the pressure distribution curve is on 
the whole reduced approximately in 
terms of a constant ratio (see ;Fig. 16). 

Fig. 18. Decrease of the lift coefficient 
as a function of the drag coefficient 
for two Jonkowski profiles with the 
same mean camber (flc = 0.1) but 
with different thickness (die = 0.05 
and 0.15), where d is approximately 
the thickness of the profile at the 
middle point of the chord. Wie8. = 
due to the formula of Wieselsberger. 9. Distribution of Pressure. The 

distribution of pressure over the sur­
face of a wing is of the utmost importance for the drag, and above 
all for the maximum lift. As already emphasized in the discussion on 
maximum lift (see 3), as the pressure increases, the retarded boundary 
layer must be carried along by the outer flow against the increase of 
pressure. If, however, the pressure increases too quickly, the entraining 
effect is not sufficient, the boundary layer gathers together into mass 
turbulence, producing vortices with increased resistance and eventually 
leads to the separation of the stream. 

In general, large lift-drag ratios and high maximum lifts are desirable 
for airplane wings. In order to obtain a large lift-drag ratio, the surface 
friction for a given lift must be kept as small as possible. This in general 

1 SCHRENK, 0., Systematische Untersuchungen an Joukowski-Profilen. Zeitschr. 
f. Flugtechnik u. Motorl. 18, p.225, 1927. 
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also makes the drag component of the normal pressure smalP. At any 
point on the upper side the lift contribution is the same as the sub­
pressure at that point. On the pressure side the positive pressure is 
a measure of the lifting force. Since the sub-pressure is connected with 
increased velocity and the positive pressure with diminished velocity 
in accordance with Bernoulli's equation (Division B), and since for equal 
thicknesses of the boundary layer and similar distributions of velocity 
the surface friction is approximately proportional to the square of the 
velocity, it follows that a favorable effect on the lift-drag index is 
obtained if the lift is effected as much as possible by pressure on the 
pressure side rather than by suction on the upper side. In practice, 
however, the greater part of the lift must be obtained by suction on the 

Fig. 19. Distribution of velocity in 
the boundary layer with pressure 

rise, just before separation. 

-~~ 
'-" "-'> 

Fig. 20. Profile with sharp down turn at 
trailing edge. 

upper side. For the maximum over pressure, e V2(2, occurs only at 
the stagnation point while a lower pressure occurs at all other points. 
Hence the lift which can be produced by the pressure on the pressure 
side is very limited. On the suction side however, the maximum negative 
pressure can be increased by a multiple of e V2(2. Hence for fairly 
large lifts the larger part must be supplied from the suction or upper side. 

However, to obtain large maximum lift some attempt can be made 
to employ the pressure side as- much as possible; but as already men­
tioned, this can be carried out to only a limited extent, and the maximum 
exploitation of the suction side is on the whole more important. If the 
pressure at the trailing edge is regarded as given, the largest area for 
suction is obtained if the pressure gradient toward the after edge is 
chosen to be everywhere as great as possible; that is, if at every point 
separation is almost taking place. Unfortunately we lack information 
regarding this favorable distribution of pressure for at the present time 
we have no theoretical discussion of this state. For the present we 
are forced to depend on practical experience which shows that certain 
specific distributions of pressure are favorable. The behavior of such 
a distribution of pressure can be obtained from Fig.21 (IX = 11.60). 
The theoretical discussion so far described does however reveal the fact 

1 For an approximate separation of the resistance into friction and pressure 
components see the article by A. BETZ, Untersuchungen einer Joukowski'schen 
Tragflache. Zeitschr. f. Flugtechnik u. Motorl. VI, p. 173, 1915. 
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that at any rate a continuous pressure distribution is to be desired on 
the upper side, since every irregularity (buckling of the curve) implies 
an earlier separation at such a point. 

The pressure gradient can be increased, without separation of the 
boundary layer, until a limiting value is reached for which the velocity-
gradient at the surface becomes zero. 1.0. 

A further increase of the pressure 
gradient would produce a reverse 
current and separation. The general 001-----------------:=--' 
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Fig. 2l. Pressure distribution for profile 389 (Fig. 23) with varying angles of incidence. 

distribution of air velocities in the boundary layer will then be as shown 
in Fig. 19. It is perhaps significant that in this limiting case the surface 
friction is also zero, because it is proportional to the velocity gradient. 
This indicates that the distribution of pressure which produces the most 
favorable maximum lift will also produce a favorable effect on the 
friction. It must however be borne in mind that a strong pressure 
gradient produces a comparatively large region of mixed turbulence 
which will increase the drag due to pressure distribution, thus more 
or less balancing the gain with respect to surface resistance. 
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In certain special cases where increase of drag and an awkward 
position of the center of pressure are not objectionable, the maximum 
lift can also be increased by lowering the pressure at the trailing edge. 
The effect of this is that for equal increase of pressure per unit length, 
the values of the sub-pressure on the upper side of the wing are corre­
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spondingly lowered (see Fig. 6). One 
method of producing this result is 
to give a sharp aileron tilt (Fig. 20), 
thus producing a drag with dead 
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Fig. 22. Pressure distribution for profile 382 (Fig. 24) with varying angles of incidence. 

air turbulence and reduced pressure. This device also produces an 
increase of pressure on the pressure side, thus giving a further increase 
of total lift 1. 

1 During the preparation of the manuscript for printing, there have appeared 
reports on several extended researches bearing on these matters: 

GRUSCHWITZ, E., and SCHRENK, 0., Uber eine einfache Moglichkeit zur Auf· 
triebserhOhung von Tragfliigeln. Zeitschr. f. Flugtechnik u. Motorl. 23, p. 597, 1932. 

WEICK, F. E., and HARRIS, TH. A., The Aerodynamic Characteristics of a Model 
Wing Having a Split Flap Deflected Downward and Moved to the Rear. U.S. 
N.A.C.A. Technical Note No. 422, 1932. 
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Figs. 21 and 22 show the distributions of pressure for two profiles 
with various angles of incidence 1. 

Figs. 23 and 24 show the two profiles with the points at which pressures 
were measured, and the polar curves thus obtained. 'The aspect ratio 
for these airfoils was 5. The values of the angle of incidence and resistance 
have not been recalculated for an infinite aspect ratio. The distribution 
of pressure for airfoil 389 (oc = 11.6°) represents approximately for 
a good profile the limiting case just before separation, and should 
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Figs. 23 and 24. Profiles 389 and 382 with points for pressure measure and the corresponding 
poiars. 

approximately correspond to the favorable distribution of pressure 
aimed at in the discussion just above. When the angle is increased 
to 14.6°, the flow has already separated over the larger part of the 
suction side; the suction has collapsed and the measurements of force 
(Fig. 23) reveal a strong increase of the profile drag. For smaller angles 
of incidence the drag is less than at 11.6°. This results from diminished 
sub-pressure and air velocity on the suction side, but at the same time 
the lift is considerably diminished. For oc = - 6.0° the lift is approxim­
ately zero. The distribution of pressure results in a negative lift at the 
front part and a positive lift at the back part of the airfoil (the stagnation 
point is here situated on the suction side). The airfoil is therefore subject 

1 Ergebnisse der Aerodynarnischen Versuchsanstalt zu G6ttingen, II. Lief., p. 43 
(Oldenbourg, Munich, 1923). 



SECTION 10 25 

to an appreciable turning moment, a phenomenon which can also be 
observed on the thicker airfoil (382) in Fig. 22 when rf.. = - 6.1°. But 
the last mentioned wing does not exhibit the characteristic favorable 
distribution of pressure since the flow commences to separate at the 
after part of the airfoil before powerful suction has been obtained over 
the forward part (rf.. = 8.60). If the angle of incidence is still further 
increased, the position where separation occurs is shifted still further 
forward (rf.. = 1l.5° and 14.5°). Measurements of the forces for these 
angles show a gradual increase of the drag in agreement with this 
statement. 

10. Control of the Pressure Distribution by Suitable Choice of the 
Profile Shape of an Airfoil. The problem of simultaneously obtaining 
high lift and low drag is determined by the broad features of the 

Fig. 25. Flow along a wavy surface. 

distribution of pressure, a fact which however does not prevent the 
possibility of comparatively extensive variations depending on the shape 
of the airfoil (see Figs. 21 and 22). It is important in practice to know 
how specific alterations of the pressure distribution can be produced 
by suitable choices of airfoil profiles. 

The simplest rule in this connection is obtained by regarding the 
pressure and suction (sub-pressure) respectively at the surface of the 
airfoil as produced by the centrifugal forces of the air currents streaming 
by in curved paths. For if the matter be regarded in this light it follows 
that to increase a convex curvature at any point of the airfoil will 
decrease the local pressure and to reduce such a curvature (or by 
application of a concave curvature) will increase the local pressure. 
This simple and easily comprehended rule unfortunately does not suffice 
for an exact calculation of the necessary alteration in shape. In order 
to obtain an approximate notion of the effect of alterations of shape 
it is useful to bear in mind the pressure distribution for the case of flow 
past a gently corrugated wall (Fig. 25). Let the shape of the wall be 

given by the equation 
. 2n x 

Y = Yostn-l- (10.1) 

If the air flows past with mean velocity Vo, its velocity is least in the 
valleys, greatest on the ridges and is given by the equation 

V V (1 2 n . 2 n X) 
~ ° +Yo-l-s~n-l- (10.2) 
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The maximum differences between the velocities in the valleys or ridges 
and the mean velocities are given by 

V-Vo~±Vo2nJ!t- (10.3) 

The positive and negative pressures have therefore the limiting values 

(10.4) 

The alteration in pressure produced by a ridge therefore depends, in 
addition to the stagnation pressure, on the ratio of the elevation of 
the ridge (Yo) to its length (lj2). 

More exact information on the effect of alteration of shape can be 
obtained by a conformal transformation of the airfoil cross-section to 
a circle. Reproduction of the alteration in the original cross-section, 
suitably modified by the conformal transformation, produces the so-called 
"almost circular" figure l which lends itself to further treatment with 
comparative ease (see Division E II 21). 

A more difficult problem is that of finding what form of profile is 
required to produce a given distribution of pressures. This problem has 
been solved 2 by the use of hodographs but the procedure involved is 
very laborious. It may be assumed, however, that other methods will 
become practically feasible 3. 

CHAPTER II 

PROPERTIES OF TYPICAL PROFILES 
1. Thin Flat Plates. Thin flat plates are scarcely used for lifting 

purposes in practical applications since not only have they comparatively 
unfavorable aerodynamic properties but their low rigidity introduces 
technical difficulties in construction. The knowledge of their aerodynamic 
properties is nevertheless of great importance. It is important in the 
first place because a whole series of cross-sections, symmetrical cross­
sections in particular, behave in many respects like flat plates, but 
above all it is important on account of the fact that many characteristics 
which are also present in less simple forms can be more easily understood 
in the case of thin flat plates. Such plates can in many respects be 
regarded as typical representatives of airfoils and it is often convenient 
to discuss features of importance using flat plates and then pass to 
other forms by providing a rule of transformation between such forms 

1 See also recent paper by TH. THEODORSEN, Theory of Wing Sections of 
Arbitrary Shape. U.S. N.A.C.A. Report No. 411, 1931. 

2 WEINIG, F., Widerstands- und Tragfliigelprofile mit vorgeschriebener Ge­
schwindigkeitsverteilung an der Oberflache. Z. f. angew. Math. u. Mech. 9, p. 507, 
1929. 

3 BETZ, A., Anderung der Profilform zur Erzielung einer vorgegebenen Ande­
rung der Druckverteilung. Luftfahrtforschung 11, p. 158, 1934. 



SECTION 1 27 

and the equivalent flat plate. A discussion in some detail, of the case 
of thin flat plates is therefore necessary. 

The flat plate can be easily treated by either of two theoretical 
methods: conformal transformation (Division A III 13) and the Method 
of Vortex Fields (Division E II 7). The relation obtained between 
the lift coefficient C L and the angle of inci­
dence (Y. is 

CL = 2 'll sin (Y. R:; 2 'll (Y. (l.l) 

(For the derivation of this formula and of the 
two which follow see Division E II.) 

If c is the breadth of the plate, y the dis­
tance of a point from the middle of the plate, 
and; = 2 yjc, the distribution of lift over the 
breadth of the airfoil can be approximately ex­
pressed by the equation 

dOL _ 20L l/l-~ 
---a:y-cn V l+~ (1.2) 

c iiCt 
(Jx 

Fig. 26. Lift distribution 
and resulting lift for a 
plate placed oblique to the 

flow. 

(see Fig. 26). The resultant of this distribution is at a distance of cj4 
from the front edge of the airfoil; and consequently the coefficient of 
moment calculated for the front edge 1 is 

C 1 C ;or;. 
'M ="4 L = 2" stn (Y. 

The theoretical discussion neglects the surface 
friction so that the forces deduced originate from 
pressure on the surface of the body. In the 
case of the flat plate the entire surface lies in 
one plane so that since the pressures are normal 
to the surface it must follow that the force 
produced by a frictionless flow over a flat plate 
acts perpendicularly to the surface (P in Dia­
gram 27). This force for a finite angle of mCl­

dence (Y. would have a drag component 

D = Psin(Y. 

(1.3) 

Fig. 27. Lift as resulting 
from normal pressure P 
and suotion S. Decrease 
of suction results in an 

increase in drag. 

(1.4) 

in the direction of flow. This result however, contradicts the fact that 
in a potential flow, there can be no loss of energy and consequently 
no resistance to motion. In fact the force deduced by theoretical 
considerations should act perpendicularly to the direction of motion. 

1 If the point at a distance cf4 from the leading edge is chosen as center of 
moment, then OM = O. On account of the resulting simplicity, the "moment point" 
is often taken, particularly in American writings, not at the leading edge of the 
profile, but at a distance cf4 from it (see II 6). 
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This apparent contradiction may be explained in the following manner!. 
The theoretical discussion commences by assuming that the air flows 
smoothly off the trailing edge. If, however, as in the case of thin plates, 
there is a forward edge, it is no longer possible to control the manner 
in which air streams toward this edge and in general a flow around 
it must be allowed. (It is indeed the back edge which practically 
determines the amount of circulation, the flow at the front edge being 
only of minor importance in this connection.) 

High velocities and correspondingly low pressures occur at the 
curved part of a rounded edge (Fig. 28). The sub-pressures produce a 

corresponding force S at the curved region. 
The smaller the radius of curvature, the higher 
the velocities and in consequence the lower the 
pressures become. The sub-pressures vary in­
versely as the radius of the curvature so that 
the force of suction, which consists in the Fig. 28. Explanation 

of suction atleading edge. main of the product of su b-pressure and radius, 
remams constant as the radius is decreased, 

and has a finite value even for an infinitely small radius of cur­
vature (sharp edge). 

In accordance with these considerations therefore, the flow, as 
theoretically calculated, will have a force of suction P s at the leading 
edge of the plate (Fig. 27), which compounds with the force PN acting 
normally to the surface of the plate to produce the lift L acting 

in a direction perpendicular to the 

~========::: direction of flow. In the actual state 
_____ of affairs no infinitely large sub-
-------------------------~ pressures can appear, and instead, the 

Fig. 29. vortex formation at the sharp I leading edge of a thin plate. f ow separates at the sharp front edge. 
In that domain a small vortex region 

appears, restricted to the neighborhood of the front edge (Fig. 29) 
and therefore without any considerable effect on the remaining flow. 
This eliminates the suction force S in the calculated flow so that if the 
surface friction is neglected, the resulting force is perpendicular to the 
surface of the plate. At the same time the vortices formed at the front 
edge with the correlated phenomena of intermixing involve a loss of 
energy which is to be connected with the output of work required to 
overcome the drag. 

From Fig. 27 the magnitude of the suction force is 

P s = Lsin oc (1.5) 

1 KUTTA, Uber eine mit den Grundlagen des Flugproblems in Beziehung stehende 
zweidimensionale Striimung. Sitzungsbericht d. Kgl. bayer. Akad. d. Wissen­
schaften, Math.-phys. Kl., 2. Abh., pp.25 and 42, 1910. 
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The drag produced by the sharp front edge is 

D= Pscosrx=Lsinrxcosrx~Lsinrx 

CD ~ C L sin rx = 2 n sin2 rx 

29 

(1.6) 

(1.7) 

In addition allowance must be made for the effect of surface friction. 
This discussion has shown that the front edge of a flat plate introduces 
an additional drag, which is comparatively small only for small angles 
of incidence and correspondingly small coefficients of lift. It will therefore 
be desirable, when using airfoils whose 
shapes approximate to those of flat 
plates, i. e. thin surfaces with somewhat 
sharp front edges, to use only small 
angles of incidence if small drag is 
desirable (e. IJ. as in the case of tail 
planes). The additional drag calculated 
in (1.6) only reaches the value there 
given in the case of infinitely thin plates 
with sharp front edges. The finite thick-
ness, which plates must always have in Fig. 30. Thin arched plate. 

practical applications, introduces only 
a minor improvement if the front edge is sharpened off, whereas 
rounding off the front edge considerably reduces the drag (see the 
results of experiments, 6). 

The formation of vortices at the front edge not only eliminates the 
force of suction P s but also produces a diminution of lift, since it 
prevents the formatiop of the strong suction which occurs close to the 
front edge in the potential flow. 

2. Thin Plates in the Form of Circular Arcs. This type of airfoil 
can also be treated quite easily by the methods of conformal trans­
formation and vortex fields. The theoretical discussion (Divisi.on E 
II lOa) provides the following equation between the lift coefficient CL 

and rx the angle of incidence 

sin(a+()/4). ( . 2/) 
CL =2n cos (()/4) ~2ns~n(rx+eI4)~2n s~nrx+c (2.1) 

In this formula e is the angle at the center, f the height of camber, 
and c the chord of the circular arc (Fig. 30) 

e=sL ~~ c 

The lift vanishes for an angle of incidence 

() 21 
rxo=-T=-c (2.3) 
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The direction of this "null axis" of the profile is obtained by joining 
the middle of the profile to the back edge (Fig. 31). For the angle of 
incidence IY. = 0, the lift coefficient is given by 

OLO = 2ntane_R::3~ (2.4) 
-1 2 

The lift is, in that case, symmetrically distributed over the chord of 
the airfoil in accordance with the approximate equation 

d_CLO = CLO ~ ,/1- ~2 (2.5) 
d x c n V 

The resultant lift therefore passes 
through the middle of the cross-section. 
For an angle of incidence IY. there is 
an additional lift approximately equal 

Fig. 31. Angle ofincidcnce for an arched to the lift of a thin flat plate of the 
plate with lift zero. 

same chord and angle of incidence: 
OLrx = 2nsinlY.R::2n(7. (2.6) 

and also having approximately the same distribution of lift as in the 
case of the flat plate [see (1.2)] and thus acting at a distance of c/4 
from the front edge (Fig. 32). The force resulting from these two com­
ponents is given by OL = OL~ + OL(1. (2.7) 
Its point of application is at c/2 when (7. = 0; it approaches c/4 as IY. 

increases and for negative values of IY. shifts to the right toward co, 
which it reaches for IY. = - ()/4 with OL = O. The moment about the 
front edge is accordingly 

OM R:: ; sin ( (7. + ~) R::; (sin (7. + 4cf ) (2.8) 

I~ 
iJe/.o 

tC01Tlllll ~(}X 

Fig. 32. Separation of the lift dis­
tribution and of the resulting lift, 
in parts, due each to camber (OL,) 
and to angle of incidence (0 L (1.)' 

For curved plates, the same as in the 
case of flat ones, a loss OCCurS at the 
front edge when the angle of incidence 
is not zero; and the magnitude of this 
loss agrees approximately with the value 
for the flat plate with the same angle of 
incidence. There is this difference however, 
that curved plates already have a lift 
when the angle of incidence is 0 deg.; 
the position of least profile drag therefore 
moves toward larger values of 0 L as the 
curvature increases. However, on account 
of the existence of lift and the dead air 
region at the rear end of the wing which 
produces the drag, there is an unsym­
metrical disposition of the stream-lines, 

and therefore a diminution of the theoretical lift (see I 8), and 
therefore the smooth flow at the leading edge does not occur exactly 
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at rt. = 0 but at a somewhat higher value. Therefore in estimating 
the position of least profile drag, it is useful to start from the lift rather 
than from the angle of incidence and to employ the approximate rule 
for airfoils in the shape of circular arcs, that the least profile resistance 
occurs approximately for 0 L 0 = 2 n sin fJ/4 = 4 n tic. This rule is suf­
ficiently exact for most practical purposes although in strongly curved 
airfoils the least drag has a rather lower position on account of the 
other drag component. 

The preceding statements regarding thin plates apply also with good 
~pproximation to moderately thick cross-sections of equal mean curvature. 
Here again the amount of loss at the front edge depends very much 
on the extent to which it is rounded off. 

3. Thin Plates with Arbitrary Curvature. The application of the 
method of conformal transformation to the case of cross-sections other 
than plane or circular form involves many~ . 
difficulties. These however, are due to the ~ 
additional complexity of the application of "'t1JJJY 
the method and not to any difficulties of ~ 
principle in the theoretical discussion. ~ 

The other method, employing vortex fields, Fig. 33. Lift distribution for 

Permits of a simpler extension to this general a profile with S-form with 
resultant zero lift. 

case. In addition to the previous form-com-
ponents, an S-shaped form must now be included. In the simplest case 
this is given by the equation 

y =~u(£_~) 
2 3 2 

(3.1) 

which corresponds to a distribution of lift over the airfoil chord in 
dOL ,I--

accordance with de = - 2 u,; V 1 - ';2 (3.2) 

(see Fig. 33). The lift resulting from this component is zero and it only 
provides a pure moment, the coefficient of which is 

OJli = -~~ 
8 

(3.3) 

This moment, when in conjunction with a circular curvature, produces 
a ·shift of the lift due to the circular curvature (OLO = 2 n . 2 tic) away 
from the middle of the span. This shift has the value 

(3.4) 

If the lift be shifted in this manner to a point cf4 from the front edge 
it coincides in position with the component provided by an increasing 
angle of incidence, so that in this case alteration of the angle of incidence 
produces no displacement of the point of application. The cross-section 



32 J II. PROPERTIES OF TYPICAL PROFILES 

thus obtained is a so-called "fixed center of pressure" profile, the 

condition required being 

It follows that 

and 

68=~ 
4 

8f 
Uo =() =­

c 

Yo = ~ () ( ~ - ; ) 

(3.5) 

(3.6) 

(3.7) 

It should be observed that the S-shaped profile of (3.1) which 
has no resultant lift, but a pure moment, has however, an angle of 
incidence (see Fig. 33), of amount 

" rxs=6 (3.8) 

The more general cross-sections obtained by superimposing this cross­
section on to a circular arc profile of angle of incidence zero will also 
have an angle of incidence rxs. In order to have the ordinates still 
measured from the chord, it is therefore necessary to subtract the 
ordinates z = - (1/2) c rxs ~ of a flat plate with angle of incidence rxs' 
Similarly in obtaining the values of the forces and moments for an 
arbitrary angle of incidence rx (superposition of a flat plate) it is necessary 
to observe that only the difference rx - rxs = rx - uI6 is effective as an 
additional angle of incidence. For a cross-section whose shape is composed 
of a circular arc of curvature tic = ()/8 and an S-section of constant u, 
the preceding discussion supplies the equation: 

Y = -~ [! (1- ~2) + u (;; - ; +!)] = 1J (3.9) 

= _~_ [! (1- ~2) + ; (~3 _~)] 
and the following coefficients of lift and moment for an angle of 

incidence rx: OL = 2 n (8in rx + ! - ~) (3.10) 

where () = 8 tic. 

OM = ; (8in rx + : - : - ~) l 
= ; (8in rx + : - ~;) 

(3.11) 

The superposition of the S-shape on the circular arc displaces the 
position of greatest camber height and in the shapes used in practical 
applications, where it is desirable to make the movement of the center 
of pressure as small as possible, this displacement always takes place 
forward. The camber height at the middle of the cross-section is not 
affected by the symmetricalS-shape and is simply a measure of the amount 
of the circular curvature, so that the camber height to be taken in the 
above formulae is not the maximum value, but the value at the middle 
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of the cross-section. The curvature of the cross-section decreases 
continually from the front to the back, and eventually may even become 
negative (S-shape). The difference between the angles 'ljJ and cp (see 
Fig. 34) at the forward and after edges of the profile may be taken as 
a measure of the S component of the profile, while the sum 'ljJ + cp is 
a measure of the circular curvature. The following equations here apply 

4 
'ljJ -cp = '" + 2IXs = -3'" (3.12) 

'ljJ + cp = e =.!L (3.13) 
c 

The condition that a cross-section should have fixed center of pressure 

is '" = e, giving 

or 

3('ljJ-cp)=4('ljJ+cp) 

'ljJ=-7cp (3.14) 

~
/, 

/;/ ............ 

«-. - '".... 
~- _/.~ '-

Fig. 34. End tangents for profile form. Fig. 35. Profile with fixed center of pressure. 

A cross-section of this type and having fixed center of pressure is 
represented in Fig. 35. It has a point of inflection at x = c/8. The 
greatest camber height occurs at 

c (1 "l (W) c 
X = -;f 4 - V 48 ~ = 2 (0.38) 

The introduction of the angles cp and 'ljJ, which are made by the 
tangents at the ends of the cross-section with the line joining these 
ends, has the disadvantage that even if their values are fixed we are 
still left with a range of possible shapes which the cross-section may 
have, and this range is too wide to allow the properties of the cross­
section to be specified with any reasonable accuracy. Given the tangents 
at the ends, it is possible to draw different cross-sections having very 
different properties. The question therefore arises whether it is possible 
to find magnitudes characteristic of the cross-section which have a 
more closely determining effect on its shape. This can be effected 

by choosing the directions of the tangents at the points ~1 = - (1/2) f3, 
~2 = 0, ~3 = (1/2) {3" as characteristics of the shape and position of the 
cross-section. If a contour of the fourth degree be superimposed upon 
the given contour of the third degree and if it be so chosen that it 
gives neither a lift nor a moment, it can be shown that such a super­
position leaves the tangents at the three points mentioned unaltered. 
If y be the angle made by tangent and chord at the point ~ = 0, and 

7'1,7'2 those made by the tangents at the points ~ = ± (1/2) 1;-3 respectively 

Aerodynamic Theory IV 3 
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with the tangent at ~ = 0 (see Fig. 36), the following relations hold and 
can be easily obtained by differentiating (3.7) 

Yo 

Y=3 (3.15) 

- ~ ,f'l3 --L ~ 
'1 - 4 V" I 4 X (3.16) 

'2 = ! i3-! x (3.17) 

These angles determine the shape of the cross-section but the ends of 
the profile, and hence the chord, are not quite fixed. Hence the most 
important quantity for the values of the force is not the usual angle 
of incidence oc between the wind direction and the chord, but rather 
1-1------/ _ the position of the tangent 
L~4= . ~-::1~2-;==- at the point ~ = O. The 

I I I' - chord would be decisive if 
CJ£,87C I-<M33c __ a'l33c.,.."tl0W -

Fig. 36. Characteristic tangents for a profile. 
the shape of the cross-section 
were represented by (3.9), in 

which case y = x/3; but if the shape of the cross-section deviates 
somewhat from that indicated by (3.9) the position of the chord is 
different. It is however possible to imagine an auxiliary chord drawn 
to correspond to the form of (3.9) by subtracting an angle y' = x/3 
from the tangent at the point ~ = O. For a cross-section having an 
angle of incidence oc, the tangent forms the angle (oc + y) and the 
auxiliary chord lies at the angle, 

(3.18) 

with the direction of the wind. Here y is the true angle between the 
tangent and chord, but on account of the uncertainty of the position 
of the chord it does not belong to the magnitudes which characterize 
the cross-section. It must therefore not be used for calculating the 
magnitude x which does characterize the airfoil, but only for readjusting 
the angle of incidence. The quantities x and () are to be calculated from 
the characteristic angles 't1 and 't2 and have the values 

2 
() = V 3 ('1 + '2) (3.19) 

2 
x = 3 ('1-'2) (3.20) 

Hence we have the following formulae for lift and moment 

G L R:; 2 n ( sin oc' + ! - ~ ) R:; 2 or ( oc + y - ; + ! - ~ ) = 1 
= 2 or [oc + y + 2 ~3 ('1 + '2) - ! ('1 - '2)] I 

(3.21) 
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C n [..L U + (J 5u ] - l 1II=2 a I Y-3 2- 12 -

= ~ [a + y + -/3 (i1 + i 2) -- ~ (i1 -- i 2)] J 
(3.22) 

Cross-sections with fixed centers of pressure satisfy the condition 

" = e or i1 - i2 = y'3 (i1 + i 2) 

whence i2 = - (2 - y'3) i1 = - 0.27 i1 (3.23) 
If the shape of the cross-section is expressed in this way by means of 
the angles T1 and T2, and the angle of incidence a is corrected by the 
angle y, the properties of the cross-section are already largely determined, 
even if the cross-section has not quite the shape expressed by (3.9). 

As in the case of flat plates an additional drag occurs at the front 
edge of these cross-sections if the entering flow is not smooth (without 
shock). Smooth entering flow is to be expected for an angle of incidence 

u 1() 32 a1 = "6 = 9" i 1 - i2 ( . 4) 

and the lift coefficient 
() f 

CL = n 2 = 4nc (3.25) 

There is no difficulty in calculating the properties of any arbitrarily 
given cross-section by the method of vortex fields. In particular there 
are the general expressions furnished by Munk's integrals (Division E II 9). 

+1 

C = 2na + 2JJL d1; 
L c (1-1;) VI-1;2 

(3.26) 

-1 

+1 
C =~+2 {JL 1-1;+1;2 dt 

1II 2 } c (1-1;) Vl-1;2 '> 
(3.27) 

- 1 

Munk's integral especially adapts itself to the case of a given cross­
section whose shape deviates considerably from the normal and whose 
properties are to be estimated. If however the problem to be solved 
consists of finding a cross-section, or altering the shape of a given cross­
section in order to obtain certain desired properties, the previously 
described procedure of superposition of typical forms is more suitable. 
For by employing that method the shape and properties of the cross­
section can be defined for many requirements by the use of a small 
number of parameters (e. g., T1 and T2 as in the example above). 

In using this method however, it must be remembered that the 
actual value of the lift is always somewhat less than the calculated 
value, on account of the formation of a wake of mixed turbulence (for 
the connection to the drag see I 8); moreover this method can only 
be applied to shapes which have small drag. 

3* 
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4. Profiles of Finite Thickness. If a cross-section of finite thickness 
is treated by the method of vortex fields, the same approximations 
being made as in the case of thin plates, the results obtained are the 
same as those for a thin plate whose shape coincides with the middle 
line of the cross-section. Thus in order to estimate approximately the 
properties of a cross-section of finite thickness it may be replaced by 
a thin plate lying along its middle line. 

It will however, be desirable to discuss in broad outline the respects 
in which the properties of thick cross-sections differ from those of thin 
cross-sections. If a circle be conformally transformed (without altering 
the conditions at infinity) into a straight line or a circular arc, it is 
found that the length of the line is exactly, and that of the circular 
arc is nearly, twice that of the diameter of the circle. By transforming 
the same circle into a cross-section of finite thickness it is possible to 
produce all the transitions between a circular section and a thin plate. 
The thicker the cross-sections the more nearly they approach the circle; 
the thinner they are, the more they approximate to thin plates. It 
follows directly from this that the eross-sections derived from the same 
circle, and therefore having the same lift, become shorter as they grow 
thicker. This means that a thick cross - section must be somewhat 
magnified before it is replaced by its middle line, or in other words, 
that the lift of a thick cross-section is rather more than that of its middle 
line. This effect is, however, compensated to some extent, since the 
drag of the cross-section increases with its thickness thereby lowering 
the actual lift as compared with the calculated value. 

The effect of thickness in shifting the position of the center of pressure 
is more important. The lift of a thin plate curved into the form of 
a circular arc passes through the middle for angle of incidence zero and 
moves toward the point c/4 as the angle of incidence increases. For 
a circle, the center of the lift always passes through the center. For 
thick cross-sections between these two extreme cases, the shift of the 
center of pressure is greater than for the circle, but less than for the 
thin plate. In order to obtain a thick cross-section with a fixed center 
of pressure, a smaller S component is required for the middle line than 
in the case of a thin cross-section. 

A point which deserves special notice in the case of thick cross­
sections is the definition of the angle of incidence, which is usually 
referred to the chord of the section. Although the simplest relations 
of the properties of thin cross-sections are based on the use of angles 
of incidence referred to the chord of the section, thickening of the 
section, especially when achieved by rounding off the front edge, shifts 
the chord considerably. In order to apply the simple laws for thin 
profiles to give approximate values for sections of finite thickness, the 
difference in the angle so produced must be taken into account. 
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The relations which obtain can be best realized by considering 
a J oukowski cross-section. If a circle a is transformed into a circular 
arc a' (Fig. 37) the somewhat larger circle b transforms into the Joukowski 
cross-section b', a contour surrounding a'. In this case the arc a', the 
so-called skeleton of the Jonkowski section, is obviously the aerodynamic 
mean line with reference to the angle of incidence. It has already been 
mentioned that a thin cross-section equivalent to a J oukowski cross­
section must be rather larger. Especially important with reference to 
the angle of incidence, is the position of the foremost point relative 
to the after edge. The head of the Jonkowski section surrounds the 
front end of its skeleton approximately in the shape of a parabola whose 

~ -'-\if---

Fig. 37. Jonkowski's transformation. Fig. 38. Skeleton of the head of a profile. 

focus is at the front edge of the skeleton (Fig. 38). If r is the radius 
of curvature of the leading edge of the section, the skeleton begins at 
a distance of rl2 behind the leading edge. If the deepest point of the 
parabola measured from the chord of the skeleton is denoted by 6 k, 
then in accordance with known properties of the parabola (see Fig. 38) 

6h=2:f3 8tn 
(4.1) 

where fJ denotes the angle at which the front edge of the skeleton cuts 
the X axis (the chord of the skeleton). For skeletons in the shape of 
a circular arc (e. g. Joukowski profiles) fJ = (J12, where (J denotes, as 
before, the angle subtended by the circular arc at the center. But for 
more general cross-sections having S components, this simple relation 
does not hold. 

The difference, 6 ('/.. between the theoretical angle of incidence referred 
to the chord of the skeleton (X axis) and the usual angle of incidence 
referred to the chord of the cross-section, is obtained from the difference 

of height 6"k: 6 ('/.. Po; 6. h = __ r. _" (4.2) 
c 2 C 8tn f3 

This approximate formula holds reasonably well if flc > tIc, where t means 
the camber of the skeleton and t the thickness of the profile. More exact 
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values for the difference can be obtained by drawing the corresponding 
cross-sections from case to easel. 

5. The Characterization of Profiles of General Form. It was found 
in previous paragraphs, when discussing thin cross-sections by the 
method of vortex fields, that the lift can be divided into two components, 
of which one represents the effect of curvature and the S-shape of the 
section and is independent of the angle of incidence, while the other 
is proportional to the angle of incidence and is applied at a point c/4 
from the front edge. The moment about this point is constant for all 
angles of incidence, since the component which depends on the angle 
of incidence always passes through it and contributes nothing to the 
total moment. Investigations due to von Mises 2 (see Division E II 20) 

have shown that this peculiarity 
is only a special case of a far 
more general law of airfoil pro­
perties. This generalized law 
holds not only for thin cross­
sections but for boundaries of any 
shape, and provided a potential 
flow is postulated, its statement 

Fig. 39. Characteristic parabola for a profile. is exact and not merely approxi-
mate. Every cross-section has a 

point about which the moment of the lift forces is constant, i. e., inde­
pendent of the angle of incidence. The lines of action of the lift forces 
form the envelop of a parabola whose focus is the point about which the 
moment is constant 3 (Fig. 39, focus F). Since the lift acts perpen­
dicularly to the direction of flow and since each direction gives only 
one tangent to the parabola, it follows that if the parabola is known, 
the direction and line of application (but not the magnitude) of the 
lift force in every direction of flow, i. e. for every angle of incidence, 
is known. The parabola itself is fixed if the position of the focus in 
the cross-section, the direction of its axis, and its focal length, are 
known. For a direction of flow perpendicular to the axis of the para­
bola, the lift is parallel to the axis and therefore moves off to in­
finity and becomes zero (direction of zero lift, first axis of the cross­
section). If the focal length of the parabola becomes infinitesimally 
small, all the forces of lift pass through the focus and the cross-section 
then has a fixed center of pressure. 

1 O. SCHRENK has calculated these differences of angle for a series of Joukowski 
cross-sections. Ergebnisse del' Aerodynamischen Versuchsanstalt zu G6ttingen, 
III. Lief., p. 15 (Oldenbourg, Munich, 1927). 

2 MrSES, R. VON, Zur Theorie des Tragflachenauftriebes. Zeitschr. f. Flug­
technik u. Motor!. 8, pp.11 and 157, 1917; 11, pp. 68 and 87, 1920. 

3 See Division E 10. 
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A quantity characterizing the size of the cross-section is necessary 
in order to determine the magnitude of the forces of lift. In theoretical 
work the quantity frequently used for this purpose is the radius of 
the circle into which the cross-section can be conformally transformed 
with unaltered conditions at infinity, or some other quantity connected 
with this transformation. For practical applications however, it is 
convenient to use some more obvious quantity, as for example the 
chord cf of an equivalent flat plate (see 1). 

The lift coefficient is then 

(5.1) 

where c is the actual chord of the cross-section and lXo the angle between 
the direction of zero lift (perpendicular to the axis of the parabola) 
and the chord of the cross-section, so that (IX + ()(o) is the angle between 
the direction of flow and the direction for zero lift. The constant 
coefficient of moment referred to the focus F is 

cf a 
CMO = 2n-2 c 

where a denotes the focal length of the lift parabola. 

(5.2) 

The practical applications of these important relations are chiefly 
connected with the solution of two problems. First, the investigation 
of the properties of a given cross-section, i. c. it is required to find the 
characteristic lift parabola and the equivalent chord of a given cross­
section. Second, the construction of a cross-section with given properties 
i. c. it is required to find the cross-section corresponding to a given 
parabola and equivalent chord. The latter problem has no unique 
solution since any number of cross-sections can be constructed with 
the given properties. From these a selection must then be made in 
accordance with considerations regarding which theory has nothing to 
say. Theory assumes a potential flow in which no losses occur and 
has for example nothing to say regarding drag and maximum lift. Of 
the cross-sections which theoretically have the same properties, those 
will be selected which in practice have small drag and high maximum 
lift. The distribution of pressure obtained in accordance with theoretical 
considerations (see I 9) is, however, useful for obtaining approximate 
values of the properties. 

The methods employed in solving the above mentioned problems 
are described in Division E II 20, 21 so that no further discussion is 
required here 1. 

1 See also the following articles connected with the investigations of V. MrSES: 
W. MULLER, Ebene Profilstromung mit Zirkulation. Zeitschr. f. angew. Math. u. 
Mech. Vol. 3, p. 117, 1923. - Zur Konstruktion von Tragflachenprofilen. loco cit. 
Vol. 4, p. 213, 1924. - "Ober die Form und Auftriebsinvarianten fUr eine besondere 
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In order to obtain at least some idea of the connection between these 
characteristic profile magnitudes and the shape of the profile, their 
values will now be given for the case of a thin section with an S com­
ponent, as already treated. Such an example is characterized by the 
angle e = 8 f/c for the circular arc component and the magnitude x of 
the S component. For thin cross-sections c' R:; c. The focus, i. e. the 
point through which the part of the lift which is dependent on IX acts, 
lies at a distance c/4 from the front edge. The lift is 

L = ~ V2 C 2 n (IX + : - ~ ) (5.3) 

and the direction of zero lift is accordingly 
() " 

OCo = 4 - (\ (5.4) 

The axis of the parabola is inclined to the chord at an angle 
:n; :n;" () 
2- OCo = 2 + 6-4 (5.5) 

The moment about the focus is 
e V2 n 

M = -2- c2 8" (e - x) (5.6) 

Hence the focal length is 

a = 106 (e - x) (5.7) 

Conversely, the constants of the thin section can be expressed in terms 
of the constants of the parabola 

a 
X = 12oco-48- (5.8) 

o 
a e = 12 OCo - 32 - (5.9) 
o 

6. Results of Experimental Observations on Airfoils. Many types of 
airfoil profiles have been investigated in aerodynamic laboratories 1. 

Unfortunately these experiments are often concerned with shapes which 

Klasse von Fliigelprofilen. loco cit. Vol. 4, p.389, 1924. - Die Ermittlung von 
Auftriebsinvarianten vorgegebener Profile. loco cit. Vol. 5, p.397, 1924. 

F. HOHNDORF, Verfahren zur Berechnung des Auftriebes gegebener Tragflachen­
profile. loco cit. Vol. 6, p.265, 1926. 

THEODORSEN, TH., Theory of Wing Sections of Arbitrary Shape. U.S. N.A.C.A. 
Report No. 411, 1931. 

1 See for Example U.S. N.A.C.A. Reports Nos. 93, 124, 182, 244, 286, 315, 
Aerodynamic Characteristics of Airfoils (General Survey). Report 352, Large 
Scale Aerodynamic Characteristics of Airfoils as Tested in the Variable Density 
Wind Tunnel (General Survey). 

PRANDTL, L., and BETZ, A., Ergebnisse der Aerodynamischen Versuchsanstalt 
zu G6ttingen, Lief. I-IV (Oldenbourg, Munich 1921, 1923, 1927, 1932). In the 
following briefly noted as "Ergebnisse". 

JURIEFF, B. N., and LEssNIKowA, N. P., Aerodynamical Investigations, Trans­
action of the Central Aero-Hydrodynamical Institute No. 33, Moscow, 1928 (Russian). 

CROCCO, G. A., Elementi die Aviazione, Vol. 1 (General Survey). 



SECTION 6 41 

have accidently arisen for specific purposes and are not sufficiently 
distinct from one another to permit of inferences regarding the effect 
of individual alterations of form. In the paragraphs which follow, a select­
ion from the great mass of experimental results will be indicated from 
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among those observations where the influence of systematic changes of 
form can be detected. Where results obtained with the variable density 
wind tunnel of the U.S. N.A.C.A. are available, they have been preferred 
for inclusion, on account of the large Reynolds numbers Vely involved. 
These measurements have occasionally been undertaken with various 
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Reynolds numbers so that the effect of the Reynolds number can be 
detected. Where measurements with the variable density wind tunnel 
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Fig. 42. Maximum lift and minimum drag for the 
symmetrical profile as a function of thickness ratio. 
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Fig. 43. Maximum lift and mini­
mum drag for the symmetrical 
.J oukowski profile as a function 

of the thickness ratio. 

are not available, results obtained at the Gottingen Aerodynamic Labora­
tories have been included. For the former, the profiles are denoted by 
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Figs. 44 and 45. Profiles with the same mean camber but different thickness: V c/v = 420,000. 

the symbols used in the N.A.C.A. reports, and for the latter, by the 
numbers used in the Gottingen publication, preceded by a G. The 
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measurements taken are naturally with finite aspect ratio (Gottingen 
5: 1, N.A.C.A. 6: 1). Instead of recalculating the results to apply to 
a ratio 00: 1 (two-dimensional flow) the parabola of the induced drag 
of IV (2.10) of Division E has been introduced. The profile drag is 
therefore the difference between the given measurements and the parabola. 
The correction necessary on account of the finite diameter of the air jet 
has been allowed for in all cases, the adjustment being made directly 
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Figs. 46 and 47. Profile with the same thickness but with different mean camber: 
Vel. = 420,000. 

on the measurements provided by the Gottingen results and by altering 
the parabola of the American results which therefore correspond to an 
aspect ratio of 6.86: 1 instead of 6: 1. 

The position of the "moment point" (i. e. the point about which 
the moment of the lift is taken) is defined as follows in the two sets 
of results: Gottingen: the point of the chord which lies under the nose 
of the cross-section (see Division E I 4); N.A.C.A.: a point of the chord 
cf4 behind the forward edge. A moment tending to increase the angle of 
incidence is called positive in the Gottingen results and negative in the 
N.A.C.A. results. There is therefore the following connection between 
the values of the moment in the two cases (CMG, Gottingen; CM.A' 
American results) On 

CMG = -CM.A + 4 
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where en R:; C L is the dimensionless coefficient of the normal force 
perpendicular to the chord. 
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Figs. 40 and 41 show two symmetrical profiles with different thickness. 
A further profile of this series is the American M 2 (N.A.C.A. Report 
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ratio, as a function of the mean camber. 

No. 221). A similar series of symmetrical Joukowski profiles is furnished 
by the G6ttingen G. 429, 537, 538, 539, 540, 639, 640 (Ergebnisse, 
Vols. III and IV). These latter are distinguished from the former series 
especially by the thin extended trailing edge. 
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The line chosen as axis of reference for the angle of incidence is 
in these cases the axis of symmetry. These figures assist in establishing 
the fundamental law that the maximum lift increases as the thickness 
increases but only up to a certain limiting value. In the case of thin 
cross-sections the maximum lift appears to be restricted by the state 
of affairs at the front edge (see I 3). The profile drag is least at rJ. = 0° 
and increases only moderately up to the neighborhood of the maximum 
lift. The smallest profile drags increase with the thickness. Figs. 42 
and 43 show the nature of the dependence of maximum lift and least 
profile drag on the thickness 1. (For the drag of thin cross-sections see 1, 2.) 
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the mean camber. 

Next follows a series of profiles having the same mean curvature 
but various thicknesses. Of these, two examples are given in Figs. 44 
and 45. To the same series belongs also the intermediate· profile form 
G.450. Corresponding Joukowski forms are found in the Gottingen 
"Ergebnisse", V ols. III and IV. Essentially the same effect of thickness 
is shown here as in symmetrical cross-sections, but the position of least 
profile resistance lies not at 0 L = 0, but at a point with finite lift (see 
the case of the plate in the form of a circular are, II 2). As the thickness 
increases, the minimum drag increases somewhat, but so does the region 
in which the drag is small. 

Figs. 46 and 47 show two profiles of equal thickness but of different 
curvatures. Between these two is also found the Gottingen profile 
G. 447, with a corresponding series of Joukowski profiles shown in the 
Gottingen "Ergebnisse", Vols. III and IV. As the curvature increases, 

1 A similar recent investigation of symmetrical cross-sections in the variable 
density wind tunnel can be found in Technical Note of the U.S. N.A.C.A. No. 386. 
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the position of minimum drag shifts toward positions with higher C L> 

while at the same time the minimum drag and the maximum lift both 
increase. Figs. 48 and 49 show the relation between the two quantities 
last mentioned and the mean curvature. An intermediate position 
between the last two series is shown by the group of American profiles! 
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Figs. 51 and 52. Profiles of fixed center of pressure with different camber and thickness: 
Velv ~ 3,860,000 and 3,370,000. 

u.s. N.P.S., Nos. 1-6. These are profiles having a plane for the 
pressure side but with the ordinates of the other side changed in constant 
ratio, so that the thickness and mean curvature are altered simultaneously 
and in the same ratio (thickness = 2 times mean height of camber). 
The polars accordingly show the simultaneous effects of the alterations 
in thickness and curvature. Fig. 50 shows the maximum lift and minimum 
drag of these cross-sections as a function of their mean camber. 

Of especial importance is the series N.A.C.A.-M., which gives 
results for profiles with constant center of pressure (Report No. 221). 
The symmetrical profiles Ml to M3 of this series have already been 
noted (see Figs. 40 and 41). The remaining members of this series are 

1 U.S. N.A.C.A. Report No. 259, 1927. 

I 
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divided among groups with the same mean camber line but with three 
different thicknesses. If certain profiles are to be distinguished among 
others for small change of the center of pressure, the following groups 
with increasing mean camber may be noted-MI to M3 (symmetrical); 
MIO to M12 ; M16 to MIS; M22 to M 24• In Figs. 51 and 52, two examples 
with average thickness are shown. 

CHAPTER III 

AIRFOILS OR WlNGS OF FINITE SPAN 

A. Single Wing Monoplane 

1. General Phenomena. The two-dimensional flow around a wing 
of finite span is disturbed at the ends of the wing. This is due to the 
fact that the difference of pressure between the upper and lower sides 
disappears at the wing boundaries and must therefore diminish to zero 
toward the tips. The consequent fall of pressure accelerates portions 
of the flow across the main direction of flow; particles above and below 
the wing move inward and outward respectively and form the so-called 
"marginal vortices". 

These phenomena have the following important practical con­
sequences: 

1) There is a diminution in the difference of pressure between the 
two sides of the wing toward the ends, and hence dimini8hed lift and 
circulation at and near these points. 

2) Additional disturbing air movement8 are generated about and 
near the wing. 

3) There is a lo88 of energy, which shows itself as an increased drag. 
The latter can be deduced either from the energy of the disturbing 
velocities or, alternatively, as a direct effect of the disturbing velocities 
on the airfoil itself, since it follows from the Kutta-Joukowski theorem 
that the combination of the vertical components of the disturbing 
velocities and the circulation about the airfoil produces a force in the 
direction opposite to that of the flow, i. e. a drag. This additional 
resistance is called the induced drag. 

The theory of the phenomena described above is discussed in detail 
in Division E IV, and it will be sufficient to summarize here the 
most important results of that discussion. If r = r (y) is the cir­
culation along the span of the airfoil, the component vertically down­
ward of the disturbing velocity at the point YI of the airfoil is given 

by the formula 
+b J or dy 

W = BY 4:n;(Yl-Y) 
-b 

(1.1) 
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At a distance behind the airfoil these disturbing velocities increase to 
twice the value given by the above formula. If L is the lift on the airfoil, 

+b 

L=I2VJrdy (1.2) 
-b 

the induced drag Di is 
+b +b+b 

D - J r d - e J J r 8 r d Y d Yl 
i -12 w(n) (n) YI - 431: (YI) 8y(y) Yl- Y (1.3) 

-b -b-b 

The distribution of the circulation r is deduced from the shape of 
the airfoil and the value of the disturbing velocity w. These factors 
are connected by the formula 

r = n V c' ( cx - CXo - ;) (1.4) 

in which c' is the equivalent profile chord length c' = (c/2 n) 0 CLio CX 

[see II (1.1)1, cx the angle of incidence ofthe profile at the point y, and CXo 
the corresponding angle of incidence for zero lift. When the shape of 
the airfoil is known, the two unknowns rand w can be calculated 
from (1.1) and (1.4). This involves the solution of an integral equation. 
It is much simpler to deduce the shape of airfoil corresponding to any 
given distribution of circulation. For, having solved for w by a simple 
integration of the right-hand side of (1.1), the equivalent chord length c' 
can be calculated from (1.4) by choosing arbitrary values for cx and CXo• 
Conversely, of course, c' may be determined arbitrarily and the corre­
sponding values of cx calculated. In neither case is the solution unique 
for there is an infinite number of possible airfoil forms which can produce 
a given distribution of lift. 

These forms must however satisfy some additional conditions which 
~estrict the multiplicity of possible solutions. Even in the absence of 
all other restrictions cx would be chosen inside a range for which the 
lift drag ratio of the wing is fairly good. Sometimes, the selected values 
of cx will be as large as possible in order to minimize variations of force 
due to changes in the angle of incidence, while in other cases, the angle 
of incidence will be taken small in order to obtain large changes of force 
for small changes of angle or, again, in order to be sufficiently far from 
the maximum lift. Such varying standpoints furnish, however, only 
general qualitative criteria; they leave open a large field of possible 
values of cx and are the deciding factors in selecting the average angle 
of incidence rather than the distribution of the angle of incidence across 
the span. There are, however, other considerations which provide more 
definite restrictions on the distribution of the angle of incidence (wing 
warping) over the span. 

One is the behavior of the wing with respect to alterations in the 
total angle of incidence. If, for example, 'the effective angle of incidence 



SECTION 2 49 

(a - ao) together with the chord length of the wing are so arranged 
that the former is constant across the span while the latter has a value 
satisfying (1.4), the change in circulation for a change in the angle of 
incidence of the entire wing is proportional to the circulation itself. 
The curves of distribution of circulation for various angles of incidence 
can be transformed into one another simply by multiplying the ordinates 
by some constant. This is easily seen if it is realized that, according 
to (1.1), if the ordinates of the distribution of circul["tion are increased 
in a constant ratio, FI = u r, while the velocity V is unchanged, the 
ordinates of the w distribution are increased in the same ratio, i. e. 
WI = U w. If this new value be substituted for w in (1.4) the requisite 
circulation distribution (rl = u F) can be obtained only by changing 
(a - a o) into u (a - ao). Since rotation of the wing as a whole can 
only alter the effective angle of incidence (a - ao) by the same amount 
at all points of the profile, a constant proportional increase of (a - cxo) 
is only possible if (a - ao) is constant at all points. If this is not the 
case, an alteration in the angle of incidence alters the character of the 
circulation distribution curve. If, for example, the effective angle of 
incidence (a - cxo) decreases toward the ends of the wing, the curve 
of circulation distribution with increase in the angle of incidence will 
become more full toward the ends, and with decrease in the angle, 
more lean. 

2. l\'linimnm Values (see Division E I 11). If the lift L, span 2 b, 
velocity of flight V, and air density e are given, the condition that 
the induced drag should be a minimum is that the lift (and hence 
the circulation) should have an elliptic distribution over the span, viz. 

(2.1) 

The lift is then such that 

L=eVrob-~- (2.2) 

d D·-~ an the induced drag , - 4 n q b2 (2.3) 

where q = (1/2) e V2. The corresponding coefficients of lift and drag 

satisfy the equations 0 L = rv ~ b (2.4) 

and dis 
On; = n(2bjil (2.5) 

respectively. Here 8 denotes the surface area and (2 b)2/8 is the aspect 
ratio l ; if the mean chord length is Cm' then Cm = 8/2 b so that 
(2 W/8 = 2 b/cm . 

1 The reciprocal of this quantity, i. e. S/(2b)2 is also sometimes referred to as 
the aspect ratio. 

Aerodynamic Theory IV 4 



50 J III. AIRFOILS OR WINGS OF FINITE SPAN 

With these values the downwash velocity w over the airfoil is constant: 
CL 8 L 

w = V n (2b)2 = V nq (2 b)2 (2.6) 

Since the induced drag of (2.3) and (2.5) is a minimum, its amount 
is not greatly altered by small divergences of the lift from the most 
favorable distribution represented by (2.1). Moreover, variations of the 
airfoil from the most favorable shape are followed only partially by 
the lift distribution. In general, therefore, airfoils which diverge con­
siderably from the most favorable shape (e. g. a rectangular wing of 
constant angle of incidence as compared with a wing of elliptic contour 
and constant angle of incidence) may be accompanied by lift distributions 
not much different from the elliptic distribution, and hence by an induced 
drag differing only slightly from the minimum values as given by (2.3) 
and (2.5). (For the magnitude of the divergence see 5.) The simple 
form of the minimum drag given above can therefore be used as a good 
approximation for almost all types of wings which occur in practice. 
Cases where the divergence is considerable are discussed below in 5. 
We shall first consider some deductions from the formulas giving the 
minimum values. 

3. Calculations of the Change in Drag Produced by Change of Aspect 
Ratio (see Division E I 12). The formulas for the minimum induced 
drag are chiefly used for calculating the change in drag produced by 
alteration of the aspect-ratio. In doing so it is assumed that the coefficient 
of drag of the profile depends only on the coefficient of lift, OL, so 
that if 0 L is kept constant, any alteration in the total coefficient of drag 
is due to the induced drag alone. If 0 D I is the coefficient of drag of 
a wing of aspect ratio (2 bl)2jSI' the coefficient of drag for a wing having 
the same profile, and the same coefficient of lift, 0 L' but aspect ratio 
(2 b2)2jS2 is given by the formula 

OD2 = ODI + C!, ((2~:)2 - (28';1)2) (3.1) 

[Division E I (12.7)]. It should be borne in mind that alteration of 
the downwash velocities also changes the effective angle of incidence, 
so that the value of the latter must be adjusted in order to produce 
the same lift. If the angle of incidence of the initial wing is IXI the 
corresponding angle for the wing of altered span must be such that 

.IX2 = IXI + ~L ((2~:)2 - (2~:)2 ) (3.2) 

[Division E I (12.6)], the angles being measured in radians. If however, 
the angles are expressed in degrees the correction must be multiplied 
by 57.3°. 

The following relation connects OLand (X for a two-dimensional flow 
around an equivalent flat plate [see II (1.1)]: 

OL=2nIX 
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For finite width of span on account of change of direction of relative 
. w· . CL S ) 

air flow, CL =2n(ex- V ) =2n(ex-n (2b)2 (3.3) 

The value of the coefficient of lift for a given angle of incidence ex is 

therefore, 
2ncx 

CL = -:C--S-· 
(1+2(2b)2) 

(3.4) 

The only modification that this equation needs in order to apply to an 
airfoil of arbitrary profile is the multiplication of the right hand side 
by the ratio of c', the equivalent chord length (see II 1), to the actual 
chord length c, so that the equation becomes 

C _c/ 2ncx 
L-- S 

c (1 + 2 (2 b)2 ) 

(3.5) 

Hence the lift of a wing of finite span is reduced in the ratio 
1: (1 + 2Sj(2b)2). 

Fig. 53 represents the polar curves 1 measured for seven wings of the 
same profile (G. 389) all of rectangular contour but of various aspect 
ratios. The same experimental results are reproduced in Fig. 54 after 
transformation to an aspect ratio 5 in accordance with (3.1) above. 
It is seen that the measured points now lie quite satisfactorily on a single 
curve. Systematic divergences are shown only by the values derived 
from airfoils of aspect ratio 1 and 2 respectively, the divergences in the 
latter case being somewhat smaller. Since the formulas were obtained 
by replacing a wing by a line bearing the whole lift, the observed 
divergences of forms having approximately square contours are not 
surprising; on the contrary, it is astonishing that the transformation 
formulas apply so well for such small aspect ratios. Airfoils of very 
large chord length are further discussed in 7. 

Also the transformation of the angle of incidence in accordance 
with (3.2) is found to give good agreement with the results of experiment. 
In the same reference (see below) are given the results of plotting the 
lift coefficient CL on the angle of incidence ex. After transformation 
of the angle to correspond to a uniform value of the aspect ratio of 5, 
the points fall very well on the same curve, with the exception of those 
for ratios 1, and 2, for which the departures are somewhat greater. 

In accordance with the postulates which underlie the theories under 
discussion, the effect of the ends of the wing is to alter the direction 
of approach of the flow. The effective angle of incidence remains the 
same for equal lifts and hence the point of application of the resultant 
force due to the air and the magnitude of its moment about the leading 

1 Figs. 53 and 54 together with others giving further confirmation of the 
transformation formula are from "Ergebnisse der Aerodynamischen Versuchsanstalt 
zu Gottingen", I. Lief., pp.50 to 52 (Oldenbourg, Munich, 1921). 

4* 
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edge must remain the same!. It is therefore to be expected that the 
curves connecting the coefficient of moment with the coefficient of lift 
are identical for all aspect ratios, while the curves connecting the 
coefficient of moment with the angle of incidence vary with the aspect 
ratio. (The curves in the latter case would also coincide if the angle 
of incidence were transformed to apply to a single aspect ratio.) The 
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refer to the aspect ratio 2 bjc. 

correctness of this conclusion is also shown on the basis of research 
measurements in the reference referred to in the footnote of p. 5l. 

4. Influence of the Aspect Ratio on Wing Performance. The most 
important result of the considerations regarding minimum values is the 
fact that the drag on the wing depends to a great extent on the aspect 
ratio (2 b}2jS, and can be reduced by increasing the aspect ratio (increase 
of span in comparison with chord). 

1 This simple argument however, must be corrected on account of the fact 
that the downwash velocities increase from the leading edge of the wing to the 
trailing edge. The wing is therefore in a curved flow whose effect is approximately 
equivalent to a decrease in the .curvature of the wing. This effect is more noticeable 
with smaller aspect ratios. 

a 
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Difficulties of construction, and in particular, consideration of the 
strength and rigidity of the wing, set limits to the possible increase in 
this direction. In order to estimate a suitable value for the aspect ratio 
it must be noted that only a part of the drag, i. e. the induced drag, 
depends on the aspect ratio, and is supplemented by the profile drag 
and, in a complete airplane, by the resistance of the remaining parts. 
In order to investigate the relations involved we separate the coefficient 
of drag, 0 D of the entire airplane into the coefficients of induced drag, 
o D i and residual drag 0 Dr so 1.5r--r-.,...-...,.--;-...,.-,...,.-....... ---.---,----, 

that 

OD = 0Di + ODr (4.1) 

The relation between 0 D; and 
o L can be shown graphically for 
various aspect ratios in accor­
dance with (2.5); the curves 
obtained are parabolas (Fig. 55). 
If the value of 0 Dr is plotted 
from the zero point in the same 
diagram but in the direction 
opposite to that of 0 D i, the sum 
0Dr+ODi can be read off im­
mediately as a distance. Since 
changes in the value of the angle 
of incidence produce only slight a1 I --,;",cnr 0 I a1 
alterations in ODr the latter may IE Co----...;·~I 

O.1l 

be taken as constant for any Fig. 55. Combination of induced and residual 
drags. 

given airplane and the diagram 
can be used to indicate the effects of various aspect ratios. Thus by 
drawing a tangent to the parabola corresponding to the given aspect 
ratio it is possible to determine the maximum lift-drag ratio and the 
value of the lift coefficient for which the latter is reached. An example 
is shown in Fig. 55: the value of ODr is given as 0.08, and (2 b)2jS = 6. 
The maximum value of the lift-drag ratio is then found for 0 L = 1.23 
and OD = 0.16 or (OLjOD)max= 7.7. From a well known property of 
the parabola, this condition is always· found for 0 D i = 0 Dr. 

The weight W of a given airplane is essentially constant and there­
fore in level flight (cruising) it must have the same value as the lift. 

Hence for this condition (4.2) 

When flight occurs in the neighborhood of the maximum lift-drag ratio, 
then this ratio, which may be designated bye, is approximately constant, 
i. e., independent of the angle of incidence. Hence the drag under these 

conditions, D = ~ (4.3) 
s 
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is also approximately constant and the required propeller output, 

P = D V = LV (4.4) 
e 

is directly proportional to the speed. 
It should be observed that, for larger deviations from the maximum 

lift-drag ratio, the law connecting the induced drag Di with the velocity V, 
or the dynamic pressure q = (1(2) e V2, is quite different in form from 
the corresponding law for the residual resistance Dr. In fact, 

D. - L2 (45 
,- nq(2b)2 . ) 

while Dr = CDr q S (4.6)1 

(J 1 
-%; 

2 

Fig. 56. Relation between induced, residual and Fig. 57. General (non·dimensional) dia-
total drags, and stagnation pressure. gram of the dependence of drag and 

output on Ftagnation pressure. 

If it is assumed, as previously, that CDr is approximately constant, it 
is seen that the residual drag is directly proportional while the induced 
resistance is inversely proportional to the dynamic pressure. Hence the 
product of the two resistances is independent of this pressure, and hence 
also of the velocity, and is a magnitude characterizing the airplane 
under consideration. Thus, 

L2 S 
DiDr= n(2b)2 CDr S=L2CDr n(2b)2 (4.7) 

The total resistance is 
L2 

D=Di+Dr . 'nq(2b)2 +CDrqS (4.8) 

and will be a minimum (with maximum lift drag ratio) for the particular 

value, 1/ L2 . 1 
ql = V n(2b)2 • CDrS (4.9) 

which gives, 

____ D_ii = Drl = CDr ql S = 11 n~2b)2 CDrS = VDiDr 

1 The magnitude CDr S, characteristic of the particular airplane considered, 
is also termed the surface of equivalent drag, s.r. 
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Hence the minimum drag satisfies the equations 

,/-- ,/CDr S 
D min = 2 v DiDr = 2L V -n (2b)2 (4.10) 

The above relationships are represented graphically in Fig. 56. 
A diagram applicable to all airplanes is obtained on making the drags 
and dynamic pressures non-dimensional. This is done by dividing these 
quantities by Dmin and ql respectively [(4.9) and (4.10)]. In accordance 
with this representation, reproduced in Fig. 57, 

D _ 1 q1 + 1 q (4.11) 
Dmin -2q 2q; 

In order to apply these results to any specific case it is only necessary 
to obtain from (4.9) and (4.10) the magnitudes ql and Dmin characterizing 
the airplane in question. 

The value of the cruising output (propeller output needed for level 
flight) satisfies the equations 

L2 va 
P = V (Di + Dr) = n(2b)2(e-V/2) + GDr S (! 2 (4.12) 

and is a minimum for the particular value, 

qz = V n~~)2 3C~S- = ql V! (4.13) 

or when Di = 3Dr (4.14) 

The minimum output is such that 

Pm'n~;':;D,ylKX~:~ II 

= 4L V 3n(2b)2(e/2) V 3n(2b)2 

( 4.15) 

The output for the best possible lift drag ratio is given by the formula 

,/ L ~/ CDrS-
PI = 2 L V n (2W(e/2) V n (2 b)2 (4.16) 

If the propeller output and the dynamic pressure are reduced to 
non-dimensional quantities by division by PI [(4.15)], and ql [(4.9)] re­
spectively the form of the relation between them is independent of the 
type of airplane used1 . The resulting curve is reproduced in Fig. 57. 

;1=~(~lr2+-~-(:lr2 (4.17) 

1 For examples of further applications of the above and of similar lines of 
development see M. SCHRENK, "Zur Berechnung der Flugleistung ohne Zuhilfe­
nahme der Polare". Zeitschr. f. Flugtechnik u. Motor!. 18, p. 158, 1927; and "Einige 
weitere flugmechanische Beziehungen ohne Zuhilfenahme der Polare". loco cit. 18, 
p. 399,1927. Helmbold has shown that the limitation, that CDr' should be inde­
pendent of the angle of incidence, is unnecessary provided the symbols used are 
interpreted somewhat differently. (H. B. HELMBOLD, "Die generalisierten Koordi­
naten der Flugmechanik". Zeitschr. f. Flugtechnik u. Motor!. 18, p.516, 1927.) 
The diagram of Fig. 57 remains valid for all aircraft provided the following changes 
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5. Influence of the Contour. From considerations of firmness and 
rigidity, a form of airfoil is preferred in which the chord decreases 
toward the wing tips (trapezoidal wing). One advantage of this is that 
with a given lift and given span the bending moment at the wing root 
is made smaller by the fact that the lift is concentrated toward the 
middle and the arm of the bending moment is thus made smaller. On 
the other hand the larger profile allows of a greater resisting moment 
due to the spars at the middle of the wing, at exactly the place where 
the bending moment is greatest. Naturally with such a contour we 
depart from the elliptic distribution with its minimum induced resistance, 
and we must discuss in somewhat closer detail the aerodynamic con­
sequences of such deviations. 

For any given airfoil the procedure developed by 1. Lotz (Division E 
IV 12) provides a moderately easy method for calculating the distribution 
of lift and hence the remaining quantities characterizing its aerodynamic 
behavior l . For present purposes, however, it is simpler to choose 
a suitable distribution of lift as a starting point and from it to determine 
the associated types of airfoil. We consider the case of a distribution 
6f circulation characterized by the equation 

(5.1) 

containing an undetermined parameter a, different values of which can 
be used in investigating various types of airfoil. 

are made; qi denotes as before the dynamic pressure at which the induced drag 
is equal to the residual drag (but is now no longer the dynamic pressure for which 
the total drag is a minimum) ; CD ,(" the coefficient of residual drag, now varies 
with the dynamic pressure ; CD 1 is the value of CD '(' when the dynamic pressure 
is qi and DI is the total drag for the same pressure; 

q must be replaced by !L 11 CCD T 
qi qi D 1 

D D l/CDI 
Dmin by DI V CDr 

P P VCDT 
PI by PI CDI 

L 
where, qi = 2 b v' .n S CD 1 

L2 l/CDI S 
DI = 2 .n qI(2 b)2= 2 L V-.n- (2 b )2 

V· L VCDIS 
P I =2L .n(2b)2e/2 .n(2b)2 

I KONING, C., and BOELEN, A., Aerodynamische Eigenschaften der Quasi­
Trapezfliigel mit verschiedener Breite des prismatischen Teiles. Zeitschr. f. Flug­
technik u. Motorl. 24, p. 43, 1933. 

HUEBER, J., Die aerodynamischen Eigenschaften von doppeltrapezfiirmigen 
Tragfliigeln. Zeitschr. f. Flugtechnik u. Motorl. 24, pp. 249, 269. 
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The formula for the lift due to the above distribution is found on 
calculation to be 

+b 

L=eV J rdy=eVro b ~ (1+ :) (5.2) 
-b 

so that if L is to be constant the circulation at the center of the wing 
must satisfy the equation 

ro = ne Vb2(f+a/4) (5.3) 
In order to have a constant basis of comparison, the airfoil considered 
will always be compared with an airfoil of equal span and lift, but of 
elliptic distribution. Symbols referring to the latter case will be 
distinguished by the suffix "ell". Reference to (5.1) above shows that 
a = 0 for an elliptic distribution, so that at the middle of the wing 

in the elliptic case 
2L 

ro(em = ne Vb (5.4) 

If, as a standard of comparison for the circulation, we take TO(ell) i. e. 
the circulation at the middle of an elliptic airfoil of equal width of span 
and lift, (5.3) and (5.1) can be written 

r - Toi~~ 
0- 1 +a/4 

. ~--- ( I + a (y/b)2 ) 
r = ro(eU) 11'1- (yjb)2 -1 + al4 

(5.5) 

(5.6) 

This type of distribution of circulation is illustrated in the upper part 
of Diagram 60 for parameter values a = I, 1/2, 0, - 1/2, - 1. The 
downwash velocity on the airfoil at the point Yl is now determined 
oy the equations 

+b 

w (y ) = j 0 T ~dJL__ = 
loy 4n(YI-Y) 

-b 

+b 

- .-£Lj y/b [2a ~ 1- 3a (bY )2] d Y 
- 4nb (Yl-y)vl-(y/b)2 

-b 

= To_ [1- ~ + 3 (Yh..)2] = To (ell) [1- a.j2 + 3 a (Yl/b 2]_ 
4b 2 a b 4b (l+a/4) (5.7) 

and the induced drag by 
+b +b 

Di = ejwrdY= e~~j 11'1-( ~ y [1+ a(tY][I-; + 3a( ~ y]dy 
-b -b 

= nes
T '5 (I + a2 + a4

2 ) = n e T'5(ell) I + a,j2 + a2/4 (5.8) 
S - (1 + a/4)2 
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For elliptic distributions of lift the induced drag satisfies the formula 
L2 n e r5 (ell) 

Di (min) = 2 e V 2 n-/)2 = 8 (5.9) 

and hence for given lift L and given span 2 b 
Di _ I + aj2 + a2j4 

Di(min) - (I + aj4)2 (5.10) 

This equation is shown graphically in Fig. 58. 

The equation of the airfoil contour which corresponds to a distribution 
of lift satisfying (5.1) is calculated as follows: For simplicity we introduce 

as before ~ = ~ (5.H) 

1-----+--+-a5"I-----+----1 

and also replace the actual- angle of 
incidence and chord length by the 
corresponding values for the equi­
valent flat plate (II 1). The new 
quantities are connected with those 
they replace by the equations 

('/.' = ('/. - ('/.0 (5.12) 
, c bOL 

C = 2n --;roc (5.13) 

Two expressions can be obtained 
-1.0 -a5 0 ao ttl for the circulation, for, by (1.4), its 

-a 
value in terms of the effective angle 

Fig. 58. Relation between induced drag 
and lift distribution. of incidence, (('/.' - W I V) and the 

chord length, c', is such that 

r = V c' n (('/.' - ~) = V c' na' [1- 2Qf1:ntTC(' I-~/~ :j!a~2] (5.14) 

and, again, from (5.1) and (5.3) 

2L ,/--
r = eYnb(I +itj4) VI - ~2 (1 + a ~2) (5.15) 

Then from the two equations just obtained, 

c' 2 L I VI - ~2 (I + a ~2) 16 
b=eV2n627nI+a/4-(L/2eV2nb2C(')(I-a/2+3a~2) (5. ) 

The corresponding equation for the chord at the middle of the wing 
(~ = 0), for an elliptic distribution of lift (a = 0) on an airfoil of equal 
span and equal angle of incidence is 

C~(ell) 2L I I 
-b - - e V2' n bi-~;· n I - L/2 e VZ n b2 C(' (5.17) 

The mean or average chord of such an elliptic wing is 

I S n, 
cm (ell) = 2b = -:rco (ell) (5.18) 
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On comparing the chord length, c' of (5.16) with the mean chord length 
of the elliptic wing, it is seen that 

c' 4 ,/--- I-L/2e V2 nb2 oc' 
c~(eIl) = n V 1- $2 (1 + a$2) 1 + oc/4-L (l-a/2 + 3a~2)/2e V2nb2oc' (5.19) 

From (5.17) and (5.18), we have 
L c~(ell) 

2 12 V2 n b2 oc' - b (I + c~ (e11)1 b) 
(5.20) 

(4/n) Vl- ~2 (I + a ~2) c' 
and hence c~(ell) 3 c' 

1 + ~ + -- a _,,1,(e1l) (1- 4 ~2) 
4 2 2 b 

(5.21) 

The parameter 2 b/c'", (ell) occurring in the last expression is the aspect 
ratio of the elliptic wing of equal lift, span and angle of incidence. 

In Figs. 59 to 61 three values of the aspect ratio, viz., 2 b/C'",,(ell) = 4, 
8, 12, have been selected and the values of c'/C'",,(ell) pertaining to the 
corresponding airfoil contours for a = -1, -1/2, 0, + 1/2, + 1, plotted 
in each case. The lift distributions r/rO(ell) which are the same for the 
different aspect ratios, are shown in the upper part of Fig. 60. It is seen 
that the deviations of the lift distribution from the elliptic form (a = 0) 
are always considerably less than the deviations of the corresponding 
contour from the elliptic form. Moreover, it can be seen that this 
difference between lift distribution and contour increases in magnitude 
as the aspect ratio 2 b/C'",,(ell) decreases. 

In Fig. 62 the distribution of the downwash velocity wand the 
induced drag e w r corresponding to the five parameters a are plotted 
against the span. The quantities wand!! w r have been reduced to 
zero dimensions by division by r O(ell)/4 band e r~(ell)/4 b respectively. 
The curves vary with the parameter a but are independent of the aspect 
ratio 2 b/C'",,(ell). A notable feature of these diagrams is the powerful 
concentration of the induced drag toward the ends or toward the middle 
of the airfoil respectively, according as the airfoil is more or less full 
than the elliptic pattern. 

The simple rectangular airfoil of constant angle of incidence also 
exhibits a distribution of lift deviating from that for the elliptic (see 
Division E IV 5). The theoretical distribution of lift and induced drag 
is reproduced in Figs. 63 and 641 • Fig. 65 shows the deviations of the 
induced drag from the minimum value 1 . It has not as yet been possible 
to verify by trustworthy experiments the value of this deviation, for 
its amount is too small to be measured unless the aspect ratio is very 
large, and it is very difficult to construct wings of large aspect ratio 
sufficiently rigid against torsion to permit of reliable measurement of 
the small quantities involved. 

1 From A. BETZ, Tragfliigeltheorie. Berichte und Abhandlungen der wissen­
schaftlichen Gesellschaft fiir Luftfahrt I, Part 2, 1920. 
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Further data regarding the 
influence of the form of wing 
contour, including a series of 
wings of varying contours, have 
been developed at Gottingen 
and to the report of which 
reference may be made l . There 
is no noticeable difference in the 
behavior of the polars of the 
rectangular and elliptic wings 
respectively apart from the 
differences in induced drag and 
angle of incidence due to the 
different aspect ratios. Nor do 
the airfoils with rounded ends or 
of trapezoidal form produce any 
marked increase in drag. The 
only striking feature is the in­
crease of the maximum lift in 
the airfoils with rounded ends. 
This phenomenon is probably 

1 Ergebnisse der Aerodynamischen 
Versuchsanstalt zu Gottingen, 1. Lief., 
p. 63, Figs. 47 -53 (Oldenbourg, 
Munich, 1921). 
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due to the small value of 
the Reynolds numbers at 
the ends of the elliptic wing, 
and would probably dis­
appear if larger airfoils were 
used. An airfoil with point­
ed ends produces far less 
favorable results than those 
already mentioned. The dis­
tribution of lift for such 
forms is approximately para­
bolic. The higher induced 
drag in this type of air­
foil is, however, insufficient 
to account entirely for the 
increase in drag, the cause 
of which must be looked 
for in the large decrease 
in Reynolds number toward 
the ends of the airfoil, while 
the lower maximum lift is 
explained by the increased 

o a1 a2 as al/ a5 a6 a7 I1S aD 1.0 angles of incidence at the 
__ .x~ ends of the airfoil and the 

Fig. 64. Distribution of the induced drag Q w r 
acrosS the span· of rectangular airfoils of constant 
profile and angle of incidence for various aspect 
ratios. A = (21,,) (2blc'). The lift is constant = 

QV 1'0 ell. (it b/2). 
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Fig. 65. Relation between the induced drag and aspect ratio of a rectangular airfoil with 
fixed profile and angle of incidence. 

6. Wings with Gaps, Longitudinal Slots or other Disturbing Factors. 
Interference with the lift distribution in the middle of the wing involves 
more danger of increasing the drag than does interference at the ends 
of the wing. Such interference with the distribution of lift is, for example, 
often produced by cutting out portions of the wing in order to provide 
accommodation for the pilot or to improve his vision. It may also 



SECTION 6 63 

occur on the upper side of the wing, e. g. by engine nacelles in multi­
engined aircraft. The case of the complete separation of the wing 
into several adjacent portions by slots in the direction of the flight 
(longitudinal slots) though scarcely occurring at the present time, will 
also be discussed in the following paragraphs since the phenomena 
involved are simpler than for the more usual construction, and for 
the understanding of which they provide a useful foundation. 

It might be thought possible to proceed by analogy with the previous 
section, i. e. to consider simple distributions of lift containing a depression 
at the central portion and then to calculate the corresponding shapes 
of airfoil. It appears however that 
in the present instance the value 
of the induced drag is modified so 
considerably by slight deviations 
from the basic distribution assumed, 
that this method gives for any 

__ ...--__ 0 

lw 
Fig. 66. Above: aiJfoil with longitudinal 
slot; below: the sheets, of vorticity at the 

rear of the wings. 

Fig. 67. Above: steady two-dimensional 
flow across a slotted plate;- below: a Con­
formal transformation of the same in which 
tile two airfoil surfaces become two parallel 

surfaces along the direction of flow. 

specified wing form, no useful results concerning the induced drag. 
Results of more practical value are obtained by commencing with certain 
boundary conditions determined by the shape of the airfoil, and then 
seek to determine the minimum induced drag under these conditions. 
The case which best lends itself to theoretical discussion by this method 
is that of a wing with longitudinal slot. 

If, for example, the wing has a longitudinal slot at the center 
(Fig. 66a) two layers of vortices are formed behind the wing; and when 
the lift distribution is such that the induced drag is a minimum, the 
two vortex layers descend like rigid bodies with constant velocity w 
(Fig. 66b). This motion can be treated as steady by regarding the 
surfaces of discontinuity as being at rest in a flow approaching with 
velocity w (Fig. 67 a). A method 1 exists for the solution of the latter 
case by transforming conformally the two surfaces at right angles to 
the flow into surfaces along the line of flow (Fig. 67b). The separation 

1 GRAMMEL, R., Die hydrodynamischen Grundlagen des Fluges, p. 84ff. (Bruns­
wick, F. Vieweg, 1917). 
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of a wing of span 2 b by a longitudinal slot into two halves which are 
kept at a distance s (Fig. 66) increases the induced drag by a factor %. 

The calculations indicated provide the following pairs of simultaneous 
values l for s/(2b +s) and u: 

s/(2b + 8) 0 0.001 0.01 0.1 1 

1.00 1.312 1.480 1.763 2 

These results show that extraordinary increase in drag is produced even 
by very narrow slots. It should however be observed that the finite 
thickness of the wing with other influences, in practice somewhat reduce 
the increase of drag estimated by the simple theory here suggested 2. 

The fact remains, however, that such discontinuities in the wing greatly 
increase the drag. Some physical insight into this important effect is 
obtained by remembering that the effect of the difference of pressure 
between the two sides of the wing is to cause air to flow with great 
velocity through any such opening in the wing and that the kinetic 
energy thereby lost appears as drag. 

In the same manner as for longitudinal slots, any disturbance of 
the smooth distribution of lift produces a very great increase of drag. 
Such disturbance may be produced by the presence of gaps or openings 
in the wing form (Fig. 70). As long, however, as the flow does not 
separate from the connecting form across the gap, the harmful effect 
of the latter is small. In fact, if the distribution of lift shows only 
a slight local reduction the disturbing velocities produced at such a point 
are directed upward. Thus, the connecting bridge has larger effective 
angles of incidence than the rest of the profile and its lift is therefore 
comparatively large in spite of the diminished chord length; hence only 
slight deviation from the elliptic distribution results. The increased 
angles of incidence at the bridge, however, produce in general, premature 
separation of the flow, and once this condition has developed, the 
induced velocities upward can no longer balance the effect of reduced 
chord, since increase in the angle of incidence in the region of separation 
results in no marked increase of lift. Under such conditions there results, 
through the marked decrease in lift, a very considerable increase in 
induced drag; furthermore, separation is found to increase the profile 
drag of the bridge. 

1 PRANDTL, L., BETZ, A., Vier Abhandlungen zur Hydrodynamik und Aero­
dynamik, p.52, G6ttingen, 1927. 

2 MUNK, M., and CARIO, G., Fliigel mit Spalt in Fahrtrichtung. Techn. Berichte 
der Flugzeugmeisterei, Vol. I, p.219. 

BETZ, A., Uber die Vorgange an den Schaufelenden von Kaplanturbinen. 
Hydraulische Probleme. Berlin. V-D-I-Verlag, p. 161, 1926. 

FLACHSBART, 0., Spaltverluste an Tragfliigeln. Zeitschr. f. angew. Math. u. 
Mech. 11, p. 411, 1931. 
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The magnitudes involved in these phenomena can be discussed 
mathematically as follows l . The lift in the separated portion of the 
flow at the bridge is approximately constant, i. e. independent of the 
angle of incidence and therefore of the induced velocities also. Over 
the remaining portions of the wing, the effect of the induced velocities 
is to build up a certain distribution of lift, for which the induced drag 
does not greatly exceed the minimum value for the most favorable 
distribution of lift over these two portions of the wing. The lift at the 
connecting bridge must therefore be considered apart from that over 
the remaining part of the wing since the two magnitudes are subject 
to different laws, the first being 
constant while the second can be 
evaluated by the usual methods of 
airfoil theory. The decomposition 

Fig. 68. DecomPosition of the lift of a wing 
with a. notch in the contour into an elliptic 

part and two residues. 

Fig. 69. An airfoil notched contour replac· 
ed by an elliptic airfoil lying in front of an 

airfoil with slot. 

will be made by imagining the wing divided into two parts lying one 
behind the other2 and such that the foremost has an elliptic distribution 
of lift whose maximum, at the middle of the wing, coincides with the 
value of the lift at the connecting bridge (hatched portions of Fig. 68). 
Let Ll be the total amount of lift from this elliptic distribution. The 
residual lift (total amount L 2 , say) has a gap at the location of the 
bridge and can be produced by introducing an auxiliary wing with 
a longitudinal slot (Fig. 69). The latter is in the downwash of the wing 
with elliptic flow in front of it. But the downwash is constant over the 
entire span so that the resulting distribution of lift on the auxiliary 
slotted wing is that produced by a uniform flow of somewhat different 
angle of incidence. Hence the known values for the induced drag on 

1 LOTZ, 1., Theorie von Fliigeln mit Ausschnitten. Zeitschr. f. Flugtechnik 
u. Motorl. 23, p. 410, 1932. 

2 In accordance with Munk's theorem any part of the lift may be arbitrarily 
displaced in the direction of motion without producing any alteration in induced 
drag, provided the magnitude of the lift and its distribution across the span is 
thereby unaltered. For both the lift and drag (or loss of energy) can be calculated 
from the field of induced velocities far behind the wing [the lift is calculated from 
the momentum, the loss of energy from the kinetic energy-Division E I (11.1) 
and (11.3)]. But the disturbing velocities are independent of their distance from 
the wing so that the end result of the calculations is unaffected by shifting in the 
direction of flow those portions of the wing which produce vortices. M. MUNK, 
Isoperimetrische Aufgaben aus der Theorie des Fluges. Dissertation, G6ttingen, 
1919. 

Aerodynamic Theory IV 5 
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a longitudinally slotted wing can be directly applied. This drag must 
be supplemented by a component produced by the mutual effect of 
the two wings, on account of the fact that the one to the rear is subject 
to a downwash of magnitude 

V 2L1 
W = ~q(2b)2 

~100-'. 

~~--------------~ 

if------L---I! mr~t -------ll , , 
... , c<-----------1000 ,,' 

(6.1) 

Fig. 70. Various airfoils either with gaps in contours or with longitudinal slot along the 
middle. The dimensions of the airfoils are 100 x 20 cm. The edges of the gaps are rounded 

off in all the airfoils except that labelled Vb. 

The total induced drag is therefore made up of three components 

D - Li (62) 
1 - ~q (2 b)2 . 

L2 
D2 = X ~q(~b)2 (6.3) 

D - ~L.JL2_ (6.4) 
3 - ~q(2b)2 

Apart from gaps in the wing, alterations in the normal distribution 
of lift are most often produced by disturbing bodies on the upper side 
of the airfoil, e. g. by motor supports, gondolas, etc. Such disturbances 
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are often deliberately introduced to lower the lift drag ratio in order 
to allow steeper landing 1. 

In Figs. 70 to 72 measurements are shown which were made by 
J. Ackeret 2 on wings containing gaps or openings either at the leading 
or the trailing edge as well as on a wing with longitudinal slot. Openings 
at the leading edge produced a considerable increase in drag as soon 
as the flow had separated at the connecting bridge (Fig. 71). When, 
however, a wing with longitudinal slot was used, the increase of drag 
became manifest and conti­
nued to grow from the posi­
tion of smallest lift. The 
fact that for larger lifts the 
curves for wings with gaps 
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or openings approach or even 
intersect the curves for the 
wings with the longitudinal 
slot, can be accounted for a 
by the considerable profile c;, 
drag produced by the bridge 1 a 
in the latter case, which must 
be added to the induced a 
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the profile drag (Fig. 72) with 

a 2 

a 

2 no separation at the bridge. -a 
This is due to the fact that J\ the bluntness of the trailing -a 

, 

Ii; 
VI 
Vi 

'-S 

/ 
V 

V I ...... r-
V .0... 

/ " ~ :;....-
~ 

~ I ;I ..? ~ 
~ I / -::; ~ l/ 

~ V ~ /'" ~ 

~ 
--- Wing WIThout flAP 
- Wing with flAP I 
- Wing with flAP II 
- Wing withlongit. slol 

~ a1 
I ai a3 

~ 
I - "'Co 

I 
edge increases the drag and Fig. 71. Results of measurements made on wings 

either with longitudinal slots or notched on leading 
hence, as already seen in I 9, edge as shown in Fig. 70. 

increases the maximum lift 
(see remarks in connection with Fig. 72). 
the maximum lift at the bridge in spite 
chord, falls only slightly 3. 

The consequence is that 
of the shortening of the 

If the bridge is extended in such a way that, in spite of its smaller 
chord, its lift is equal to that of the adjacent portion of the wing, it 
is possible to a great extent to avoid even the harmful effects of gaps 
at the leading,edge. To this end it is necessary first to give to the bridge 

1 HUBNER, W., and PLEINES, W., Das DVL-Gleitwinkelsteuer (Bauart 
W. Hubner). Zeitschr. f. Flugtechnik u. Motorl. 23, p.455, 1932. 

2 Ergebnisse der Aerodynalnischen Versuchsanstalt zu G6ttingen, III. Lief., 
p. 92 (Oldenbourg, Munich, 1927). 

3 Messungen an Profilen mit abgeschnittener Hinterkante. Ergebnisse der 
Aerodynamischen Versuchsanstalt zu G6ttingen, III. Lief., p.82. 

5* 
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a larger angle of incidence to compensate for its smaller chord, and next, 
to take precautions that its maximum lift in relation to its chord is 
correspondingly higher. If the remainder of the wing has a comparatively 
thin and slightly curved profile of low C L max the last condition can be 
satisfied simply by choosing for the bridge form a thicker and more 
strongly curved profile. If on the other hand the profile of the main 
wing is already thick and of high maximum lift, the artificial means 
noted in I 4 can be applied successfully in order to raise the maximum lift. 
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Fig. 72. Results of measurements on wings notched 
on trailing edge as shown in Fig. 70. 

The accuracy of this re­
asoning has been proven 
through experimental research 
by H. Muttray 1. These in­
vestigations showed further 
that another consideration 
needs attention in the attempt 
to produce an undisturbed 
transition of the lift distri­
bution: the bridge must not 
be shifted too far in the di­
rection of flight relatively to 
the remainder of the wing; 
the vortex lines which re­
present the distribution of 
lift over the wing must be 
able, in a measure, to pursue 
their course smoothly. The 
need for this condition can 
best be understood by con­
sidering an extreme case. If 
the bridge is imagined shifted 

so far back that it no longer has any connection with the two 
remaining portions of the wing, three detached wings are obtained 
(Fig. 73a). At the boundary of each wing the lift falls to zero and 
the lift distribution is, approximately, of the form shown in the 
lower part of Fig. 73b. If the bridge is not totally disconnected from 
the remainder of the wing but is shifted comparatively far in the 
direction of flight, the lift does not fall absolutely to zero at the 
transition points, but suffers a considerable decrease with consequent 
additional induced drag. The effect of shifting the middle of the wing 
in this manner, without alteration of chord has also been investigated 

1 MUTTRAY, R., Neuere Messungen an Fliigeln mit Ausschnitten. Zeitschr. f. 
Flugtechnik u. Motor!. 20, p.161, 1929; and Ergebnisse der Aerodynamischen 
Versuchsanstalt zu G6ttingen, IV. Lief., p. 85, 1932. 
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by Muttray 1. It is however, impossible to state with certainty whether 
the harmful effect observed can be traced back to unfavorable angles 
of incidence on the portions displaced. 

The disturbing effects of adventitious structures on the wing are 
illustrated by several researches carried out in the G6ttingen Laboratories 
and to the reports of which reference may be made 2• It will be recognized 
that disturbances on the upper side have a particularly unfavorable 
effect since they tend to produce separation and diminution of lift. 

7. Wings of Large Chord. An initial assumption in the usual theory 
of induced drag is that the span of the wing is large compared with 
the chord. It is worthy of note, however, that the theoretical conclusions 
are also true with reasonable accuracy for wings with span approximately 

'--_---'I ,-I __ -,I a 

o 

Fig. 73. Lift distribution on an airfoil the 
middle portion of which has been displaced 

toward the rear. 

equal to the chord (square contour). 
This can be verified by reference 

Fig. 74. Normal component of the velocity 
of approach of a plate of large chord 

dimension. 

to Figs. 53 and 54. If the chord is large compared with the span, the 
effect of the flow in planes parallel to the plane of symmetry is of lesser 
importance than the effects of the flow at the side boundaries. In the 
extreme case, if the chord length is very large in comparison with the 
span, the flow in the longitudinal direction need be taken into account 
only in the neighborhood of the leading and trailing edges and even 
this can be neglected in comparison with the other effects on the 
remainder of the wing. If however, the leading and trailing edges are 
at a sufficient distance for their effects to be negligible, a two-dimensional 
transverse flow is obtained which can easily be treated by mathematical 
methods as follows. Let us assume that we are dealing with a flat wing: 

If a; is the angle of incidence on the wing and V the velocity of 
approach, the air has a normal velocity (see Fig. 74) 

V' = V sin a; (7.1) 

toward the wing, and exerts a force upon it of amount, 

p = ~ e S V'2 CD = --} e V2 S CD sin2 a; (7.2) 

1 MUTTRAY, R., Messungen an einem Fliigel mit versetztem Mittelteil. Ergeb­
nisse der Aerodynamischen Versuchsanstalt zu G6ttingen, IV. Lief., p.88, 1932. 

2 Beeinflussung von Tragflachen durch Motorgondeln. Ergebnisse der Aero­
dynamischen Versuchsanstalt zu G6ttingen, III. Lief., p. lI5 (Oldenbourg, Munich, 
1927). 
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This force is normal to the plane of the wing and can be decomposed 

into a lift component L = P cos (J.. ~ P (7.3) 

and a drag component 

D = Psin(J.. = ~-e V 2 SODsin3 (J.. (7.4) 

In the above equations 0 D is the coefficient of drag of a long flat plate 
so that 0 D is approximately equal to 2. In addition, we must consider 
the effect of surface friction. The additional resistance is DR where 

DR = e V2 S 0t cos2 (J.. (7.5) 
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Fig. 75. Force and moment coefficients of a flat rectangular plate of aspect ratio (2b)'IS = 5. 

where OJ is the coefficient of surface friction 1 : cos 2 a. is generally 
replaced by l. 

If the effect of surface friction is neglected the drag lift ratio has the value 
D y=rJ. (7.6) 

On calculating the most favorable drag lift ratio by applying airfoil theory to (2.3), 
(7.2) and (7.3) the value obtained is 

( D) -0. 2 S Y 'min - D 8m rJ. n (2 b )2 (7.7) 

Since S/(2b)2 may be large, the theoretical minimum thus obtained is considerably 
higher than the minimum obtained in actual practice. This apparent contradiction 
is due to the fact that airfoil theory postulates a "line" airfoil. In the case under 
discussion, however, the projection of the wing in the direction of motion has 

1 0t is a function of the Reynolds number. The chord length is not, however, 
the predominating factor in determining the value of the latter for, on account 
of the transverse flow, the direction of flow is not along the wing but aslant from 
the middle of the wing toward the edges. In this case therefore the Reynolds 
number of predominating effect is a function of the span and of the angle of 
incidence. 
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a considerable vertical extension since the trailing edge is considerably lower than 
the leading edge. In airfoil theory a wing of this kind corresponds rather to 
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a "multi-plane" as discussed in Division E IV 14. The height of the multi-plane 
is h = c sin C(.. If h > > b the induced drag lift ratio becomes 

(D) L 1 
L min = 2eV2 h.2b = 4;" ODC(. (7.8) 

and this result is consistent with (7.6) above. 
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Figs. 75 to 77 show the polars for flat plates! of aspect ratios 1: 5, 
1 : 1 and 5: 1. It is noteworthy that the maximum lifts for wings of 
approximately square contours are extraordinarily high. Exactly similar 
results are obtained with circular discs. There is as yet no satisfactory 
theoretical explanation of this abnormal phenomenon. The effect 
described should, however, be useful in the construction of tail-planes 
where premature separation must be avoided if at all possible (see 11). 

B. Combination of Wings 
8. Preliminary Remarks. The combination of several wings in a single 

system results in peculiar properties for the system which, by proper 
use, may be made of great value in the problems of aircraft construction. 

Fig. 78. The vortex system of an airfoil of 
finite span formed from the corresponding 
system of infinite span (I) by the addition 
of the vortex systems II and III. The arrow 
in this diagram and also in Figs. 79 and 81 
indicates the sense of the vortex rotations. 

II 

III · 7111 
--.,.......- ~ 

.II If 

Fig. 79. Formation of the vortex system of 
an airfoil of finite span out of the bound 

vortex I' and the system of free 
vortices II. 

The members of the system are usually arranged so closely that mutual 
interactions occur, the flow around each wing being disturbed by the 
presence of its neighbors by an amount which, as a rule, is too large 
to be negligible. Various contributory factors in this effect must be 
considered separately: in the first place, a wing of infinite span gives 
rise to a field of disturbance which influences the working of neighboring 
wings. Moreover, the fact that span is actually finite introduces a second 
disturbing field due partly to the vortices generated at the ends of the 
wing and partly to the termination of the wing at these ends (see Fig. 78 
where these three factors are indicated by three systems of vortices, 
I, II and III, which characterize their principal respective effects). 
Instead of separating the three factors viz. infinite wing, generation 
of vortices, absence of the prolongations of the wing, in this fashion, 
it is possible to combine the first and last and to calculate the effect 
of a finite portion of wing (see Fig. 79 where l' = I + III). Such 
a procedure must dispense with the results of the comparatively extensive 
researches which have been concerned with two-dimensional flows around 
combinations of wings (Division E II). Whether or not it is advisable 

1 FLAcHSBART, 0., Messungen an ebenen und gewOlbten Platten. Ergebnisse 
der Aerodynamischen Versuchsanstalt zu G5ttingen, IV. Lief., p. 96 (Oldenbourg, 
Munich, 1932). 
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to take account of the results of these researches depends upon the 
extent of their influence on the total phenomena. In general, the relative 
importance of the two-dimensional flow increases as the distance between 
mutually interacting wings decreases in comparison with their span. 
When the latter ratio increases, the finite length of span becomes the 
more influential factor and the results obtained for two-dimensional 
flow find diminishing application. 

The field of disturbance for a given body can be constructed by 
a known procedure out of sources, sinks and vortices. The effects of 
singularities which occur in pairs with opposite signs (a sink plus a source, 
a pair of vortices with opposite sense of rotation) diminish with distance 
very rapidly as compared with the effect of a single source or a single 
vortex. (In a two-dimensional flow, for example, the field velocity of 
a source or vortex varies as llr, while that of a sink-source arrangement, 
or a vortex doublet, as llr2 for large values of r 1.) In the case of flow 
a,round an airplane wing, single vortices occur in connection with the 
circulation around the wing. Hence at large distances the disturbing 
field of an airfoil is identical with that due to a vortex having circulation 
equal to that around the wing. At smaller distances the effects of 
singularities occurring in pairs and determined by the exact shape of 
the wing must also be taken into account, but in the more usual cases, 
e. g. biplanes, the latter effects remain small in comparison with those 
produced by the circulation, and are usually neglected. If, however, 
it is desired to consider the special effects of the shape of the wing 
section, it is permissible to dispense with sources, sinks and vortices, 
for the shape is important only at small distances from the wing, 
and as the flow at some distance is sufficiently like a two-dimensional 
flow to be treated as such, the usual methods of two-dimensional fluid 
mechanics, e. g. conformal transformation may be employed. 

Groups of wings in combination can be divided into two classes, 
according as the wings are arranged in fore and aft order or above and 
below. The first includes the so-called tandem wings (two approximately 
equal wings arranged in fore and aft order) which are practically obsolete 
at the present time but are interesting in view of their bearing on the 
mutual interaction of wing and tail-plane. If the distance between two 
such wings is made very small, arrangements are obtained which are 
equivalent to the combination of wing and aileron, or of fin and rudder. 
Although the examples given can also be treated as single wings of broken 
profile and might therefore have been included in the discussion of 
airfoil profiles in Chapter I, it has seemed more profitable, in view of 
their intimate connection with the combination of wing and tail-plane, 
to discuss them together in the present context. Slotted wings can 
also be regarded as combinations of wings but have already been discussed 

1 Division B II 7 and IV 10. 
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in I 5. The most important member of the second class is the biplane. 
This case is closely connected with that of flight close to the ground, 
a state of affairs which is made amenable to calculation by the method 
of images (Division E IV Part C). 

9. Stability of Wings Arranged in Tandem. If two wings are arranged 
fore and aft, the resultant force is the vector sum of the forces acting 
separately on the wings (Fig. 80). Let the two wings be assumed rigidly 
connected; rotation of the entire system then alters the angles of 
incidence on each wing always by the same amount. If the effect of 
this is to alter the forces on the two wings in the same ratio, the point 
of application of the resultant shifts only to the extent determined by 
the shifts of the two component forces (shift of the center of pressure 

L on each wing). If however, increasing the 
angle of incidence increases the force on the 
rear wing by a factor greater than on the 1 -.l other, there will be a shift of the resultant to 
the rear in addition to that produced by the 

._. .-. change in position of the centers of pressure 
on the wings. Conversely, if the force on the 

Fig. 80. Forces on two airfoils 
in tandem and their resultant. forward wing increases in relatively greater 

proportion than that on the rear wing, then 
the additional shift of the resultant will be forward. Since the forces 
on each wing are practically proportional to their effective angles of 
incidence (oc - oco) [II (5.1)], it follows that neglecting the mutual 
interaction of the wings and any subsidiary phenomena, the wing for 
which the effective angle of incidence is smaller will show the greater 
proportional change in force. Hence the arrangement of two wings 
with appropriate decaZage, that is with different angles of incidence for 
the two wings, will provide a very effective means of control for the 
shift of the center of pressure of the system. The shift of the center 
of pressure is a decisive factor in determining the stability of an aero­
plane (Division N). 

If subsidiary effects such as propeller thrust, drag, height of the 
center of gravity above the wings are neglected, a necessary condition 
for equilibrium is that the line of action of the lift shall pass through 
the center of gravity, i. e. the center of gravity must lie on the line of 
the resultant of pressure. For if this is not the case, gravity and lift 
together exert a couple on the airplane. If an alteration of the angle 
of incidence shifts the center of pressure, equilibrium is disturbed and 
can be restored only by manipulating the elevator until the center of 
pressure and the center of gravity come again to the same vertical line. 
If the elevator is not used, and an increase of the angle of incidence 
shifts the center of pressure toward the trailing edge, the resulting couple 
tends to decrease the angle of incidence and equilibrium is automatically 
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restored. If, however, an increase of the angle of incidence carries the 
center of pressure forward, or a decrease carries it in the opposite 
direction, the resulting couple increases the initial change in the angle 
of incidence, and an airplane in this condition would not regain equilibrium 
without the use of the horizontal tail surfaces. The state of equilibrium 
is therefore stable or unstable according as an increase of the angle of 
incidence from the position of equilibrium shifts the center of pressure 
backward or forward. The greater the shift of the center of pressure 
for a given change of angle the greater the stability or instability as the 
case may be. If for a change in the angle of incidence the center of 
pressure and the center of gravity remain on the same vertical, the 
system is in a state of neutral equilibrium. In general it is desired 
to obtain a state of stable equilibrium. In general, wings by themselves 
are unstable, especially when lift-drag ratios are high, i. e. with increase 
of the angle of incidence the center of pressure moves forward. A condition 
of stable equilibrium can however, be obtained by setting the two 
component wings at an angle (decalage). To this end the rear wing 
must have a smaller effective angle of incidence than the forward wing. 
The magnitude of the compensating effect so produced increases with 
the distance between the wings and with the angle between them. 

The above description of the effect of setting the two wings at an 
angle is, however, not quite accurate quantitively, since the mutual 
interaction of the wings has been neglected. The circulation around 
a wing produces an induced field in the neighborhood such that for 
positive lift induced velocities are produced the direction of which is 
upward in front of the wing and downward behind. As a result of the 
absence of indefinite lateral extension, wings of finite span give rise to 
induced velocities which are smaller than those produced by wings of 
infinite span. Vortices originating at the ends of the wing are responsible 
for an additional downward velocity inside a rectangular region whose 
width coincides with the span. In front of the wing this velocity is 
smaller than that on the wing itself; behind the wing it is larger. 
Moreover for a given angle of incidence, the finite span reduces the 
lift of the disturbing wing (3.4) and hence reduces the magnitude of 
the interference effect. 

10. Measures for Obtaining Stability. In order to obtain certain 
general ideas on the question of stability, we shall commence with some 
relatively simple examples. For simplicity the actual wings will be 
replaced by equivalent plane wings (II 1) which will be assumed to 
have fixed centers of pressure, so that any shift of the resultant center 
of pressure must be ascribed to the arrangement of the component 
members of the system. We first choose two wings with span large 
compared with their mutual distance l, so that the effect of finite span 
may be neglected, and we have simply to consider the problem of 
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keeping the center of pressure at a fixed point between the wings. If 
the mutual interactions are neglected it follows that the wings must 
have the same angle of incidence, i. e. a decalage of 0°, and the surface 
areas of the two wings must be in a fixed ratio. Let the surface area 
of the front wing be 8~, of the rear wing 8;, and let the chord lengths, 
G~, G~ respectively, be constant for each wing so that 8~ = 2 bl G~ and 
8~ = 2 b~ G~. We must next investigate as to how the angles of incidence 
and the chords must be changed in order to obtain the same effect if 
the mutual interaction is taken into account. If the angle of incidence a. 
is 0° the lift of each wing is zero; hence there is no interaction, no 
correction is required on that account and the decalage remains zero. 
Moreover, no restriction can be set on the chords at this angle since 
the lift remains zero for every possible value. If the angle of incidence 
is now increased to a finite value a. each wing has lift .and, aside from 
the effect of induced velocities, the coefficient of lift for each wing 
[II (l.I)] would be C'z, = 2 n a. 

and the circulations r 1 = ; C'z, V c~ = n ex; V c~ I 
(10.1) 

for the front wing and r2 = ; C'z, V c; = n a. V c; 
for the rear wing. The induced velocities associated with these cir. 
culations produce changes in the effective angles of incidence of amounts 

WI r 2 occ~ I .6a.l=-Y= 2nVl =2r 
r (10.2) 

d W2 1 OCC; 
an .6ex;2 = -y = -2""nVT =-2r 

respectively, so that the lift on the front wing increases while that on 
the rear wing decreases. In order to obtain the basic values of the 
circulation and the corresponding lifts for each wing, the chord of the 
forward wing must be decreased to cl and that of the rear wing increased 
to C2• The values of these quantities can be obtained from the equations 

r l = n (ex; + .6 ex;l) V ~ = n a. V G~ } (10.3) 
r2 = n (ex; +.6 ex;2) VG2 = na. VG; 

On substituting the values for .6 a.l and .6 ~ from (10.2) the following 

equations are obtained: ex; ( 1 + ;~l) cl = ex; c~ (10.4) 

so that 
(10.5) 

and similarly 

The spans 2 bl and 2 b2 respectively remain unchanged so that the 
necessary surface areas 81 = 2 c1 bl and 8 2 = 2 c2 b2 are changed in the 
same ratio as the chords. 
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The ratio of the corrected to the original chords is independent of 
the angle of incidence oc. Allowance for the mutual interaction of the 
two wings can therefore be made for all angles of incidence by replacing 
the chord lengths c1 and c2 by c~ and c~ respectively and assuming 
that the corrected wings have no interaction. 

So far it has been required to hold the center of pressure at a definite 
point; in the case now to be considered, it is required to arrange the 
combination of wings so as to produce a specified shift of the center 
of pressure. Let 8' be the decalage (angle between the wings) necessary 
when mutual interaction is neglected; then with the previous notation, 

OCl = OC2 + 8' (10.6) 

Let the surface areas obtained when mutual interaction is neglected 
be, as above S~ = 2 c~ bl and S~ = 2 c~ 62 for the front and back wings 
respectively. Since the angles of incidence of the wings now differ there 
will be no position where both wings have zero lift and hence no position 
without interference. When OC2 = 0, OCl becomes 8' and the coefficient 
of lift and circulation of the front wing have the values 

eLl = 2n8' 

r l = n8' Vc~ 

(10.7) 

(10.8) 

This wing suffers no interference since its partner has zero angle of 
incidence and therefore zero lift. The flow around the rear wing is, 
however, diverted downward by an angle 

(10.9) 

The back wing must thereforeobe adjusted to have an angle of incidence 
6 2 = 8' c~/2l in order to have zero lift. Similarly for zero angle of 
incidence at the front wing, the back wing will have an angle of incidence 
OC2 = - 8' and negative lift, inducing a downward flow at the front 
wing. Hence the angle of incidence on the front wing must be increased to 

[:;, _ Cl c~ 
1 - 2l (10.10) 

Since the angles of incidence have been increased by 6 1 and 6 2 respec­
tively the alteration in decalage is 68, where 

'( , ') 1\ _ 1\ _ 1\ _ C C2 - C1 
L1 8 - L11 L'.2 - 2 l (10.11) 

The required decalage is therefore 

8 = 8' + 6 8 = 8' ( 1 + c~ 2l c't) (10.12) 

The mutual interaction of the wings due to decalage therefore has no 
effect if c~ = c~, i. e. if the original chord lengths uncorrected for inter­
action are equal. If this is not the case the decalage must be decreased 
or increased according as the chord of the front wing is greater or less 
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than the chord of the rear wing. The two possibilities are exemplified 
by the usual wing and tail plane type and by the "canard" type (see 13) 
respectively. 

The requisite chord values, c1 and C2, can be obtained by using the 
condition that for all angles of incidence the calculated values of the 
circulations must agree with those obtained by neglecting interaction. 
The equations thus obtained are: 

where 

and 

T1 = n (1)(1 + 6 1 + 61)(1) V C1 = n 1)(1 V C~ 
T2 = n (1)(2 + 6 2 + 6 1)(2) V C2 = n 1)(2 V C~ 

(10.13) 

(10.14) 

If the latter value for 61)(1' and the value of 6 1 from (10.10) are inserted 
III (10.13), it follows that 

( 1)(1 + s' ~\ + 1)(2 ;;r) C1 = 1)(1 C~ (10.15) 

Hence, since 1)(2 + S' = 1)(1 ( 1 + it) c1 = c~ (10.16) 

c~ I c1 = (1 + c~/2l) 
c' (10.17) 

and similarly C2 = (1- :~/2l) 
as in the arrangement without decalage. 

In the theory of the preceding paragraphs the effect of finite span 
and varying chord length were eliminated by postulating constant chord 
lengths and spans so large that the end effects were negligible. Allowance 
may now be made for these neglected factors by multiplying the 
magnitudes hitherto used by suitable coefficients. Whereas the lift of 
a wing of surface area S', large span, at angle of incidence 1)(' was 
expressed by the formula 

L = (1/2) e V2 S' 2 n 1)(' (10.18) 
the corresPQnding formula for a wing of finite span becomes 

L = (1/2) e V2/1: S' 2 n 1)(' (10.19) 
where /1: expresses the reduction of lift produced by loss at the ends 
of the wing. For elliptic distributions, in accordance with (3.4) above 

, 1 

fl = (1 + 28'/(2 b)2) 

where 2 b denotes the span as hitherto. 

(10.20) 

The previous formula for the induced velocity w at a distance l 
before or behind the wing of great span and constant chord length was 

r L 
w==F 2nl ==F 4neVbl (10.21) 
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If a downward induced velocity is regarded as positive, the negative 
sign must be chosen for the value in front of the wing and the positive 
for that in the rear. 

Furthermore, this velocity along the span of the disturbed wing 
was constant; for finite span, however, this is no longer the case. It is 
necessary in fact to replace the induced velocity w of (10.21) by a mean 
value W so chosen that the change of lift produced by postulating 
a constant velocity w, equals the actual change as obtained by more 
detailed calculation based on actual values [see (11.3)]. 

The required mean value can be related to formula (10.21) by 
multiplying the w of that formula by a correcting factor u, thus, 

- xL 
w = 1= 4 n e Vb l (10.22) 

The values of u are discussed in detail in the following section but 
attention may be drawn at this point to two qualitative results con­
cerning these values. In front of the wing the induced velocity is 
decreased by the end effect, the reverse in general being true behind 
the wing. It should also be observed that outside a strip of width equal 
to that of the span, the induced velocity due to the trailing vortices 
is opposite in direction to that within the same region. If, therefore, 
the span of one wing is considerably less than that of the other, the 
mean velocity w induced by it upon its neighbor is very small. Thus, 
for example, the interference effect of the tail-plane upon the main 
wing can generally be neglected. 

If allowance is made for the effect of the ends of the wing, the same 
method which led to (10.12) and (10.17) will now give 

, [1 + 1 ( , S~ S~ )] 
B = B 2[ U 2 112 2 b2 - U 1 III 2 bl 

(10.23) 

III 8 1 = . S ) 
( 1 + x 2 p,; ~ 

4 b2 l 

p,~S~ It282 = (10.24) 
( 1- X,P,~S~ ) 
, 4 bll 

Changing the surfaces S~, 8; into 81> 8 2 respectively also changes the 
aspect ratios so that the coefficient Il needs modification, as can be 
seen from (10.20) for elliptic distribution. The factor III therefore differs 
from Il~ and 112 from Il; but the amount of the difference in general 
is so small that in practice it scarcely needs consideration. 

11. The Induced Field in Front of and Behind a Wing: Theory. 
If r (y) is the distribution of circulation across the span, a vortex of 
strength (8 Tj8 y) dy must originate between y and y + dy. If such 
trailing vortices are combined with those represented by the circulation 
around the wing, it is possible to regard the entire vortex system as 
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constructed of line vortices of which a representative is of strength 
(0 Fjo y) dy, bent at right angles at the points ± y (see Fig. 81). The 
field of such a vortex, bent at right angles at the points ± Yl' induces, 
according to the Biot-Savart law (Division B III 2) at a point P behind 
the wing (Fig. 82) a downward velocity of amount dw2 • If the coordinates 
of Pare (Y2' l) then dW2 is given by the formula 

or 1 [1 1. 1 
dW2 = aYl -;1;;; T (cosq; + cos1p) + (Yl + Y2) (I + smq;) J 

+ ( 1 ) (I + sin 1p)] d YI 
YI-Y2 

where 

11 Ill! 
Fig. 81. Resolution of the complete vortex 
system of an airfoil into partial vortices at 

right angles. 

. l 
s~n'I' = 

T Y(YI-Y2)2+P 

Fig. 82. 

(11.1) 

If the point P is situated in front of the wing l must be written with 
a negative sign. The interference effect w2 at P, of the entire wing, 
is found by integrating with respect to YI over the half span hI' 
If P is a point on the profile of the other wing of equivalent chord 
length c (c = the chord length of the corresponding flat plate) a portion 
of that wing of width d Y2 suffers a diminution of lift of magnitude 
d f:" L = w2 2 11: c (1/2) (} V d Y2' The whole of wing 2 lying at distance l 
behind wing I experiences a (negative) increase of lift of magnitude 

+ b, 

f:"L = -211:(1/2) (} V jW2 c2 dY2 (11.2) 
-b, 

The value then obtained for the mean induced velocity of the previous 
+ b, 

section is 

+ b;l 

w2 = ~2 J W 2 c2 d Y2 
-b, 

(11.3) 

where 8 2 = j c2 d Y2 and denotes the surface area of the rear wing. 
-b, 

The mean velocity WI of the front wing under the influence of its partner 
can be found in similar fashion. In most cases which occur in practice 
the span of one of the two wings (horizontal tail surfaces) is small in 
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comparison with the other, and (11.1) may then be materially simplified 
by replacing the interference velocity W 2 (or WI as the case may be) 
by its value in the plane of symmetry. If this is done it follows that 

. . 1 
8zncp = 8zn'1j1 =-==, 

yl2 + Y; 
and hence 

b, 

C08 cp = C08 '1j1 = Yl 
Vl2 + yj 

W -w - j'}T _~ [ 1 (Jb+_l ) +~] dy (11.4) 
2 - 2 - 0 Yl 2 n Vl2 + Yi 1 . Yl Yl 1 

- b, 

This integral has been evaluated by H. B. Helmbold 1 for elliptic 
lift distribution. He found that the velocity (reckoned positive downward) 
could be expressed as 

2L 
w2 = n e V (2 b)2 [l + cp (lib)] (11.5) 

in the region behind the wing. The corresponding formula in front of 
2L 

the wing is WI = n e V (2 b)2 [1- cp (lib)] (11.6) 

I always being reckoned positive. The factor 2 Lin (] V (2 b)2 (which 
corresponds to l = 0) represents the downward velocity at the wing 
itself [see (2.6)]. Let Wo now denote the velocity for an infinitely long 
wing, as obtained in (10.21). Then 

r L 
Wo = =F 2nTlT = =F 4n-e vb lll (1l.7) 

A comparison of this formula with (11.5) and (11.6) shows that 

"1= :: =2lf-[CP(llb)+I]j 
(11.8) 

"2 = ~ = 2 Lbll [cp (lib) -':""1] 
Wo 

The values of the function cp (lib) can be obtained from the Table of 
Division E VI 6 where (I + cp) is denoted by CP1,lcp. The curve marked I 
in Fig. 83 represents" as a function of lib, the values being derived 
from those of cp in the table mentioned. The portions of the curve to 
the right and left of the origin represent respectively "1 (interference 
on the rear tail-plane by the wing in front of it) and "2 (interference 
on the forward tail-plane by the wing behind it). 

In calculating the interference field it has been assumed that the 
vortices trailing from the wing move, as shown in Fig. 81, in straight 
lines in the direction opposite to the direction of flight. This hypothesis 
is justified when the interference velocities produced by the wing are 
very small in comparison with the velocities of flight. This assumption 
is usually made in applications of airfoil theory and is sufficiently near 

1 HELMBOLD, H. B., Uber die Berechnung des Abwindes hinter einem recht­
eckigen Fhigel. Zeitschr. f. Flugtechnik u. Motorl. 16, p. 291, 1925. See report 
on this paper in Division E VI 6. 

Aerodynamic Theory IV 6 
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to the facts for nearly all problems which arise; it is not, however, 
sufficiently accurate for the case at present under consideration, i. e. the 
problem of the mutual interaction of two airfoils. The chief reason for 
this exception is the fact that the band of vortices proceeding from 
the wing rolls up into two single vortices whose interference field differs 
from that of the band which existed before rolling up occurred (Divi­
sion E VI 6). This effect will be understood more clearly by considering 
the simple case of an airfoil with elliptic lift distribution. We shall 
consider the effect at a point in the plane of symmetry lying 

r--------------6.0r----,-----,---.~ 

-1.5 1.0 1.5 

Fig. 83. Ratio of the induced velocity at the 
middle of a wing of finite span to the same velo­
city on a wing of infinite span but with equal lift 
per length of span .. I, for elliptic lift distribution 
without rolling UP of the vortex surfaces; II, for 
elliptic lift distribution with i=ediate rolling up 
of the vortex surfaces; III. for rectangular lift 

distribution. 

so far behind the airfoil that 
the induction due to vortices 
attached to the wing itself can 
be neglected and that the 
length of the trail of free 
vortices extending in front of 
the point may be taken as 
infinite in the calculations. If 
L is the lift of the wing, the 
band of vortices before rolling 
up produces an induced velo­
city of amount [see (2.6)] 

W= 2L V 
;n;q(2b)2 

After rolling up there are two 
single vortices with opposite 
sense of rotation and with cir­
culation (2.2) 

L 
r O =e V (2b);n;/4 

At any instant these vortices lie at the "centers of gravity" of the two 
halves of the unrolled vortex band which produce them, i. e. at a distance 

from the middle, b'-~b - 4 (11.9) 

[Division E VI (5.5)]. A vortex pair of this kind produces an induced 
velocity in the plane of symmetry of arilOunt 

w' = 2~ = 2L . V.~ (11.10) 
2b';n; ;n;q(2b)2 ;n;2 

so that the rolling up process has reduced the induced velocity by 
about 20 per cent. This result is, however, only true in the plane of 
symmetry and the value increases toward the sides, a fact which must 
be considered when tail-planes of comparatively large span are used. 
Fig. 84 shows the velocity distribution before and after the appearance 
of single vortices, the first being shown by a dotted and the second 
by a continuous line. 
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If the individual vortices developed very quickly the calc:ulations 
could be performed simply by replacing the actual wing and its actual 
lift distribution by a wing with rectangular lift distribution and corre­
spondingly concentrated trailing vortices. Unfortunately, in most cases 
occurring in practice the transition into individual vortices occurs precisely 
in the region occupied by the horizontal tail surfaces [see Kaden's 
investigations, Division E VI (5.9)J. Hence the values of the downwash on 
the horizontal tail surfaces always lie between those for the unrolled vortex 
band and those for the developed vortex pair. In Fig. 83 the curves mark­
ed I and II represent the function x, constructed by analogy with (U.S), 
for the two extreme cases of vortex bands which, from their very com­
mencement, are respectively unrolled and rolled up into a vortex pair. 

Since the lift distribution of a wing 
is generally somewhat fuller than the 
ellipse, the trailing vortices before rol­
ling up are usually concentrated more 
strongly at the boundary than in the 
example considered; this reduces the 
difference in the downwash before and Fig. 84. Distribution of the downwash 

across the span. 
after rolling up without, however, ren-
dering it small enough to be negligible. The reader may be referred 
for a more exact account of the phenomena occurring with rectangular 
airfoils to the paper by H. B. Helmbold already mentioned (see foot­
note p. 81 and report in Division E VI 6). The limiting case for 
which the lift distribution is constant over the entire span is shown 
by curve III in Fig. 83. Since rolling up occurs only behind the wing 
the change in the induced field thereby produced is only of considerable 
effect in that region itself. In the space occupied by the wing and even 
more so in the space in front of the wing the effect of the rolling up 
is generally so small that it may be neglected. 

12. Experimental Values Characterizing the Downwash Behind Wings. 
In consequence of the uncertainty attaching to the initial suppositions 
of the theory sketched in the preceding sections due, in particular, to 
the rolling up of the vortex layer behind the wing, the theoretical values 
of the induced velocities are not yet sufficiently reliable. Unfortunately, 
moreover, the experimental determination of the so-called downwash 
is rather difficult owing to the small values which have to be measured, 
and but few results have been obtained. One method is to measure 
the downwash at various points behind (or in front of) the wing by 
using some means for indicating the direction of flow 1. Another is to 

1 The simplest, though not very accurate, procedure is to insert light threads 
into the flow which arrange themselves in the direction of flow and are then 
photographed. An exploration of the field behind a wing, conducted in this fashion, 
is published in the Technische Berichte der Flugzeugmeisterei, Vol. III, p.l0 

6* 
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introduce small test surfaces, and to deduce the downwash from the 
forces exerted upon them. The first method has the disadvantage that 
all accidental local interferences are included in the indications and 
measurements must be taken at a great many points in order to eliminate 
this source of error. The second method on the other hand has the 
disadvantage that the measurements obtained are mean values of the 
pressures over the testing surfaces so that alterations of the downwash 
in small regions, e. g. behind the ends of the wing, cannot be followed. 
If the size of the test surface is reduced, the diminished exactitude of 
the angular settings and the decrease in the magnitude of the forces 
considerably increase the difficulty and reduce the accuracy of the 
measurements. Also the direction sensitivity of such test surfaces is, 
in general, less than that of other means for direction indication. 

A comprehensive survey of downwash by means of a testing surface 
has been made in England using a model wing of 18 inches span and 
3 inches chord, and with a test plane 2-1/2 inches by 1/2 inch 1. 

13. Wing and Tail-Plane. In the construction of airplanes it is 
usual, for reasons dictated both by considerations of strength and 
facility in steering, to concentrate the greater part of the lift on one wing 
(or otherwise, as in a multiplane, on several wings arranged in a vertical 
series) and to make the second wing considerably smaller in order to 
serve chiefly as an auxiliary stabilizing element. In general the stabilizing 
wing is put at the rear of the main wing but may also, as in the "canard" 
type, be located in front of the main wing. The "elevator" wing is 
usually connected to the "stabilizer" wing, the whole arrangement 
forming the horizontal tail structure, of which the fixed portion is the 
stabilizer or tail plane. If the elevator is fixed, stabilizer and elevator, 
i.e. the entire system of horizontal tail surfaces, work together as 
a stabilizing wing. It is often of interest to know the behavior of 
the airplane when the elevator is free to move; for details of the 
calculations of the forces on the tail-plane in the latter case, reference 
may be made to the following sections. 

It has already been seen that the tail surface, if located behind the 
main wing must have a smaller effective angle of incidence than the 
latter. The greater this difference of angle (decalage) between the two 
wings the more effective is the stabilization and the smaller need be the 
area of the stabilizing wing or its distance from the main wing (advantages 
in construction). In the extreme case the stabilizing wing can be so 

(M. MUNK, and G. CARIO, Luftstromneigung hinter Fliigeln). A more accurate 
procedure involves the measurement of pressure differences by using, e. g. the 
"double tube" and the "triple tube". c. f. R. KRONER, Dissertation, Berlin (Tech­
nische Hochschule), 1915 (printed 1919). 

1 PIERCY, N. A. V., On the Flow in the Rear of an Aerofoil at Small Angles 
of Incidence, Br. A.R.C. R. and M.578, 1918, 1919. 
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arranged as to give a negative lift (i .e. a downward force) during normal 
flight; the center of gravity of the airplane must then be situated in 
front of the center of pressure of the main wing. With such an arrange" 
ment, however, part of the lift is lost through the negative lift on 
the tail surfaces and there is also increased drag due to the induced 
drag of a wing with negative lift; hence the lift-drag ratio is diminished. 
It is more usual therefore to arrange the tail surfaces for a nearly zero 
lift in normal flight; small deviations from zero are comparatively 
unimportant and may be permitted in order to secure other favorable 
structural features (e.g. the position of the center of gravity relative 
to the main wing). Since the lift on the tail surfaces is in most cases in 
the neighborhood of zero, thin symmetrical or nearly symmetrical 
profiles are used in its construction. 

One very important factor to be taken into account in determining 
the shape of the tail surfaces at the rear is the fact that the critical angle 
of incidence for which the lift is a maximum must first be reached at the 
main wing. Otherwise the separation of the flow at the tail surfaces 
would destroy its stabilizing effect and the airplane would become 
unstable for all larger angles of incidence. The thin, approximately 
symmetrical, tail surface profiles in general use are favorable in this 
respect since they have no marked critical angle of incidence. With 
this fact in mind the contour is frequently chosen to have an aspect 
ratio differing but little from one, since the lift then continues to increase 
for angles of incidence considerable larger than with more usual airfoil 
aspect ratios (Fig. 76, square plate). The large induced drag usually 
associated with small aspect ratios is not of importance here since the 
lift on the wing in its normal state is approximately zero. Often the 
critical angle is raised still further by the use of slots. Since the tail 
surfaces must work well for both positive and negative changes of angle, 
the normal arrangement of a slotted wing (Fig. 61) cannot be applied 
and instead, the space already present between stabilizer and elevator 
is generally used as the slot. 

The working of the elevator at the rear of the main wing can be 
adversely affected not only by the downwash due to the circulation 
around the main wing, but also in serious degree by the dead air wake 
(mixed turbulence). In normal flight however, this wake is not of great 
extent and in general it is not difficult to arrange that the tail plane shall 
lie always outside this region. Nevertheless attention must be paid to 
this point since otherwise the tail surfaces may refuse to act over a given 
range of values of the angle of incidence. In stalled flight, however, it 
is much more difficult to secure for the tail surfaces a location outside 
the wake. In this type of flight, the flow separates from the main wing 
and the wake is of comparatively wide extent. It is, however, of great 
importance to meet this condition. At large angles of incidence the 
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tail-plane gives usually a positive lift. If then, as a result of separation 
of the flow at the main wing the tail surfaces enter suddenly into this 
"dead air" wake, the lift on these surfaces is decreased and an additional 
couple is produced tending to increase the angle of incidence. Hence 
in general it will not be possible to decrease the angle of incidence by 
manipulation of the elevator, and hence impossible, in this way, to 
emerge from the stalled condition. Correct choice of the position of the 
tail is made even more difficult 0 

by the condition that in a rapid I 
spin about the vertical axis (flat 
spin), the vertical tail surfaces 
should not be shielded by the hori­
zontal tail surfaces. The wake 
may also give rise to a condition 
of tail flutter with possible con­
sequent structural damage and 
casualtyl. 

Figs. 85 and 86 show the po­
sitions of the wake 2 at various 
angles of incidence of a model 
wing. The former diagram shows 
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Fig. 85. Distribution of the stagnation pressure in the plane of symmetry behind a 
rectangular wing of aspect ratio 8. 

the distribution of dynamic pressure as a function of height. Values 
are given for various angles of incidence at two distances in the plane 
of symmetry (2.32 c and 3.26 c where c = chord length). The airfoil 
had a rectangular contour of dimensions 736 X 92 mm. 3 (29 X 3.6 in.) 
and profile G.387. The distribution curves are plotted relative to the 
airfoil (not relative to the wind direction) Fig. 86 indicates between 

1 DUNCAN, W. J., ELLIS, D. L., SCRUTON, C., FRAZER, R. A., FALKNER, V. M., 
Two Reports on Tail Buffeting, by the aerodynamics staff of the National Physical 
Laboratory. Br. A.R.C. R. and M. 1497, 1932. 

BIECHTELER, C., Versu,ohe zur Beseitigung von Leitwerkschiitteln. Zeitschr. 
f. Flugtechnik u. Motorl. 24, p. 15, 1933. 

2 According to E. PETERSOHN, Abwindmessungen hinter Tragfliigeln mit 
abgerissener Stromung. Zeitschr. f. Flugtechnik u. Motorl. 22, p.289, 1931. 

3 The original paper includes results for a rectangular airfoil 1: 4 and a 
trapezoidal airfoil. 
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lines of the same character, the boundaries of the wind shadow (wake) 
in the plane of symmetry, i. e. the region which is to be avoided for 
the location of the tail surfaces. 

The stabilizer and elevator surfaces can also be arranged in front of 
the main wing ("canard" type)1 and must then have a greater angle 
of incidence than the main wing, i.e. comparatively high lift in the normal 
state. Well curved profiles may therefore be used to advantage in such 
case, in place of those 
of nearly symmetrical 
form. It is then easy to 
ensure that the flow 
shall separate earlier 
and more completely at 
the control surfaces than 
at the main wing, and 
it is, therefore, almost 
impossible to stall such 
an airplane.. This po­
sition has also the ad­
vantage that it can 
never be deprived of 
its stabilizing effect by 
entrance into the wake. 
In landing also, the 
ground can be approach­
ed at much greater ang­
les of incidence and 
overturning is almost 

Fig. 86. Boundaries of wind shadows. 

out of the question. The chief disadvantages lie in certain structural 
inconveniences (decreased visibility, installation of motor and propeller). 

A report of research work in England 2 gives the results of extended 
tests on a model biplane carried out on the plane as a whole, on the plane 
without control surfaces and on the control surfaces alone. Reference 
to this report will show that the pitching moment for the entire model 
is not obtained by simple addition of the moments of the model minus 
tail surfaces and of the tail surfaces alone. The effect of the tail surfaces 
is less when in combination with wing than when alone, since the 
downwash behind the wing diminishes the lilt of these surfaces (see 11). 

1 KrEL, R. G., Statische Langsstabilitat der Entenbauart. Zeitschr. f. Flug­
technik u. Motorl. 21, p. 601, 1930. 

2 BRAMWELL, F. R., Experiments to determine the lift, drift and pitching 
moment on a model biplane and their variations with wind speed. R. and M. 
No. 111 (Technical Reports of the British 1913-1914), London, 1915. 
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14. Wing and Flap, Fixed and Control Surface. If a wing and tail­
plane, as considered in the last section, are brought so close together 
that they are in contact, a combination is obtained which is essentially 
that of a wing with flap attached or a fin with rudder attached. The 
conclusions previously reached can therefore be partially extended to 
these parts of an airplane. There is however an essential difference due 
to the fact that the reduced distance between the two elements greatly 
increases their mutual interaction. A combination of this kind can 
therefore be regarded as a single airfoil of somewhat unusual profile as 
e.g. in the theoretical discussion of Division E II 11, where the combination 
is idealized into a bent flat plate. 

For experimental results of tests on this combination, reference may 
be made to a comprehensive report 1 on the working of a flap on the 
profile N.A.C.A. M6, carried out in the variable density tunnel at Langley 
Field and under a Reynolds number of about 4,000,000. The flap ran 
along the entire span and its chord was 20 per cent of the combined 
chord (see IV 17 for corresponding experiments with ailerons on the 
outer part of the wing). Similar experiments on stabilizer and elevator 
combinations have also been carried out in the G6ttingen research 
laboratory, and to the reports on which, reference may be made 2. These 
experiments were carried out on three combinations with varying 
proportions of elevator to total area, but all have the same overall form 
(contour and profile) for zero deflection of the elevator. The results are 
also compared with the theoretical values calculated with the help of 
Munk's integral (see II 3 and Division E II 9). This comparison is made 
for the angle of incidence (()(o) at which the lift vanishes, and the agreement 
is good for small deflections of the elevator but for large values additional 
deflection produces far less effect than theory predicts, a fact which 
must be ascribed to separation of the flow at the rear of the wing. Similar 
results are found for the theoretical and measured values of the moment; 
the agreement is good only for small angles of incidence and small 
deflections of the flap. 

In addition to the usual quantities, CL , Cn , CJI!I for the tail-plane 
structure as a whole, the moment about the axis of the elevator as well 
as the moment coefficient 

ME 
CE =SECE(e/2) V2 (14.1) 

are also given. Here ME is the moment about the axis of the elevator, 
BE and cE the surface area and chord of the elevator calculated from the 

1 HIGGINS, G. J., and JACOBS, EASTMAN N., The Effect of Flap and Ailerons 
on the N.A.C.A. M6 Airfoil Section. Rep. 260 (Techn. Rep. of the National 
Advisory Committee for Aeronautics, Washington, 1927, 1928). 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu Gottingen, III. Lief., 
p. 102 (R. Oldenbourg, Munich, 1927). 
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axis to the trailing edge. This moment is important because it determines 
the force which must be exerted by the pilot in moving the elevator. 

For convenience of calculation in practical cases Blenk 1 has arranged 
results of this experiment in the following manner. The component 
of the force perpendicular to the plane of symmetry of the stabilizer, 
i.e. the so-called normal force N, and its non-dimensional coefficient 
Cn = N/(1/2) e v2 B can be expressed with good approximation by the 

equation Cn = k (rx -" (3) (14.2) 

where f3 is the angle between stabilizer and elevator (see Fig. 89). Since 
the normal force is almost equal to the lift, k represents essentially the 
known connection between the 1.0 

coefficient of lift and the angle of 
incidence of ordinary airfoils. It 
follows from (3.4) that the fol- ao 
lowing equation is approximately 
true: 

211: 
k=~----

(1 + 28/(2 b)2) 
(14.3) 
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The value ofi depends on the ratio 
of the surface of the elevator area 
to the total area of the tail-plane 
structure. From the results of 
these experiments it is possible to 
derive a curve connecting" and 
BE/B as shown in Fig. 87. For 
any given tail-plane combination, 
" is a characteristic constant. 

Fig. 87. Relation between the effect of the 
elevator on the lift and the relative surface 

of the elevator. 

The moment of the air force about the elevator axis can be expressed 
approximately by the formula 

ME = kl (f3 -"I rx) (14.4) 

where "I rx is the angular movement of the elevator for which the moment 
vanishes. The values of "lrx are shown in Fig. 88 for the three different 
tail-plane combinations investigated. If the angle of incidence is not too 
large (rx < about 12°) "I rx is approximately proportional to the angle 
of incidence so that inside of this domain of values for rx, "I is a constant 
characteristic of the tail-plane. The value of this constant depends in 
chief degree on the surface ratio BE/B, and a very crude approximation 
is "1 ~ BE/B. 

Since definite stability is often required when the elevator is free, 
its location, in such cases, must be investigated. Stability results from 
the combined effect of the forces due to air and the forces otherwise 

1 BLENK, H. (see footnote p.90). 
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acting on the elevator. The relations involved have been investigated 
in detail by H. Blenk 1 • Apart from forces due to the air the elevator 
is chiefly under the influence of gravitational (and possibly also inertial) 
forces. Insofar as these forces are due to the weight of the elevator 
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Fig. 88. Elevator displacement angle for which the moment about its axis of rotation 
vanishes. 

itself, their moment about the axis depends on the position of the elevator 
with respect to the vertical (or with respect to the direction of mass 
forces) that is, it depends on the angle p - e. Here p, as hitherto, denotes 
the elevator deflection (angle between elevator and stabilizer) and e the 

J.... angle between the stabilizer and the horizontal (Fig. 89) 
80~' ~\ nfl, Apart from the weight of the elevator itself the weight L il\ ij of the connecting parts, e. g. of the control stick must 

- I _~ also be considered. Since the stick 
-------{--::=::-:::::::..- ~~ and rudder are usually in gear, the 
Fig. 89. Illustrating the effect of gravity deflection of the former corresponding 
on the moment about the elevator's axis to a deflection p of the latter will 

of rotation. 
be "p. When the elevator and 

stabilizer are at their zero position, i. e. e = p = 0, the stick will have 
an inclination r:; to the vertical; hence the gravitational moments about 
the elevator axis can be expressed in the following form: 

(14.5) 

1 BLENK, H., Uber die Stabilitat eines Flugzeuges mit losgelassenem Hohen­
steuer. Zeitschr. f. Flugtechnik u. Motorl. 21, p. 189, 1930. 
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This moment due to the actual weights or masses must be balanced by 
the moment of the forces due to the air when the rudder is free. The 
latter moment is given by the formula 

MA = CE ! e V2 BE CE (14.6) 

and hence it is necessary that 

Ma+MA=O (14.7) 

If the angles occurring in the above formulae are small so that the sine 
of an angle may be replaced by the angle and the cosine by 1, it follows 
that, in equilibrium, the elevator deflection Po is such that 

p _ ['-1 (X - md.s -8) - m2] (14.R) 
0- (l-xm1) 

where lIf1 d M2 (149) 
m l = (1/2) Q V2 k1 SE CE an m2 (1/2) Q V2 kl SE CE . 

In high speed aircraft special attention must be paid to the strength 
of the joints of the elevator since they are often subject to violent stresses 
caused by high negative pressures l in their neighborhood during quick 
maneuvers. 

15. Biplane. Whereas the induced drag on two airfoils arranged in 
horizontal sequence is, in accordance with Munk's displacement theorem 
(I 5), independent to a first approximation of the relative arrangement 
of the wings (deviations being produced by the rolling up of the free 
vortices) an entirely different state of affairs exists when the wings 
are arranged one above the other. The distance between the two wings 
(gap) is here an essential factor in determining the induced drag of two 
wings arranged in the latter fashion. A detailed description of the 
attendant phenomena would however be superfluous at this point since 
the theory and calculations involved are given in detail in Division 
E IV Part B. It may however be mentioned that the induced drag on 
a biplane of span 2 b may be put equal to that on a monoplane of span 
2 b', the two arrangements having the same induced drag for the same 
lift. The value of the ratio bjb' of the spans depends upon the relative 
arrangement of the two wings of the biplane and also upon their lift 
distributions. In order to characterize the essential properties of a biplane 
the square of the ratio mentioned above is used more often than the 
ratio itself, viz., x = (bjb')2. If the reciprocal of the biplane's aspect 
ratio is Bj(2 b)2 then for the equivalent monoplane we shall have 

S S 
(2b')2 = X (2b)2 (15.1) 

The most favorable allocations of the total lift between the two component 
wings, with the corresponding values of x, are tabulated in Tables 11 b 

1 RHODE, R. V., The Pressure Distribution Over the Horizontal and Vertical 
Tail Surfaces of the F66--4 Pursuit Airplane in Violent Maneuvers, Rep. 307. 
U.S. N.A.C.A., 1928. 
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and 11 a respectively of Division E IV 23. Both wings are assumed to 
have elliptic lift distributions. 

In calculating the connection between angle of incidence and lift 
of a biplane it must be noticed that in addition to the eristence of a mean 
deviation of the flow (whose value is a predominating factor in the 
induced drag) this deviation is characterized by being smaller in front 
of the wings than behind them, so that they must be considered as 
acting in a curved flow. The effect of this is approximately the same as 
a diminution in the curvature of the wing profile. Hence for a given 
angle of incidence the effect of the presence of a neighboring wing is to 
cause the lift to decrease more rapidly than would be expected by analogy 
with the equivalent monoplane. In calculating angles of incidence the 
factor " mentioned above must be replaced by a somewhat different 
factor, ,,', the values of which have been calculated theoretically by 
N. K. Bose l . The following Table compares the theoretical and experi­
mentally observed values of " and ,,' for unstaggered biplanes having 
the same wings above and below [g = distance between the wings (gap) 
c = chord, S = combined surface of both wingsJ2. 

In addition to the in-
fljc 12 (b )2jS 1 Utheor. Uexp. I utheor.1 u~xp. duced drag another impor-

I tant feature of the biplane 
0.8 3.0 0.794 0.852 I 1.447 1.221 requiring attention is the 
l.l 3.0 0.754 0.819 1.110 1.049 degree of stability exhibited, 
1.4 3.0 0.721 0.754 0.9345 0.967 although in this respect the 
1.113 2.4 0.722 0.761 0.9925 0.949 
1.113 1.44 0.649 0.676 0.8115 0.803 mutual action of the two 

wings plays a smaller part 
than in the tandem arrangement. A marked effect on the stability of the 
combination is produced if the wings are staggered, i. e. if, instead of one 
being exactly above the other, the upper wing projects slightly forward. 
A relative inclination of the wings (decalage) then affects the stability 
in the same manner as for the tandem arrangement. The conclusions 
for that case remain unchanged provided that the stagger l (here) Fig. 90, 
is put for the gap between the wings. The quantitative determination 
of the mutual interaction is however somewhat different in this case 
(for details see Division E IV Part B). 

The following difficulties arise in connection with a staggered biplane 
(the same as in the tandem arrangement of two wings): the front wing 
is exposed to a rising current of air, the rear wing to a descending current; 
hence in order to work with approximately equally effective angles of 
incidence, the forward wing should have a geometrically smaller angle 

1 BOSE, N. K., and PRANDTL, L., Beitrage zur Aerodynamik des Doppeldeckers. 
Zeitschr. f. angew. Math. u. Mech. 7, p. 1, 1927. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu Gottingen, II. Lief., 
p.39, and III. Lief., p. 13 (correction in IV. Lief., p. 148). 
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of incidence than its neighbor. This however entails a relative inclination 
of the wings with considerable consequent instability. If, however, the 
relative inclination is arranged so as to increase the stability, the front 
wing has then a considerably higher effective angle of incidence than 
the rear. This effect may be measurably allowed for by choosing for the 
front wing a profile of greater curvature than for the rear wing, and hence 
the front wing will exhibit its most favorable properties at larger angles 
of incidence. That is, in order to obtain in a biplane favorable stability 
characteristics and a good lift-drag ratio at the same time, each wing 
must have a different profile. The choice of profiles is therefore somewhat 
restricted and no use can be made of the 
extreme properties of many profiles. It is 
however often desirable on other grounds 
to employ different profiles. Thus, for 
example it is possible to mitigate somewhat 
the effects of separation of the flow beyond 

T--\ I 
~ f..l~ 1 __ 1 __ 

Fig. 90. Staggered biplane. 

the maximum lift by arranging that separation does not occur simul­
taneously on both wings. This diminishes the tendency to spin (see IV 11) 1. 

A comparison of theory with the results of experiment has been made 
based on the results of an experimental investigation of a series of biplane 
models in the Gottingen laboratory 2. In addition to the measured polars 
are given also the values computed from a monoplane of the same pro­
file and in accordance with the theory set forth in Division E IV 23. 
The results show the diminution of induced drag resulting from an in­
crease in the distance between the wings. The cause of the divergences, 
(generally small) between the theoretical and observed curves can perhaps 
be ascribed to the fact that whereas the theory is based on the assumption 
of elliptic lift distributions for each wing, these distributions may, in 
practice, diverge considerably from this form. This is especially the case 
if the two wings have unequal spans. In this case also the differences 
between theory and experiment are notably larger. In order to ascertain 
whether the altered lift distribution is in fact the chief cause of the 
divergences between the calculated and observed values, a further 
experiment was conducted with the same arrangement of the wings, but 
with unequal spans and with the wings so twisted as to give an ap­
proximately elliptical lift distribution for C L = 0.8. From the results 
of the measurements on these distorted wings, it can be seen that the 
divergences have for the most part disappeared. 

1 FUOHS, R., and SOHMIDT, W., Stationarer Trudelflug. Luftfahrtforschung, 
Vol. III, Part I, 1929. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu G6ttingen, II. Lief. 
(Munich, 1926), p. 35. See among others A. BETZ, Auftrieb und Widerstand eines 
Doppeldeckers. Zeitschr. f. Flugtechnik u. Motorl. IV, p. 1, 1913 (measurements 
taken with extensively varied arrangements). Further J. C. HUNSAKER, Stable 
Biplane Arrangements. Engineering 7 and 14, January, 1916. 
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16. Airplane Wings Near the Ground 1. The influence of the ground 
(considered as a flat surface) on a nearby airplane wing may be investigated 
by the method of images (see Division E IV Part 0)- A wing near the 
ground and at distance h from it therefore corresponds to a wing in a 
flow extending to infinity at a height 2 h above an exactly similar wing 
image (Fig. 91). The effect of the ground can therefore be calculated 
in exactly the same fashion as for the mutual interaction of the two 
wings of a biplane. It must however be observed that the position of 
the image wing is that of the underwing of a biplane when reversed, 

=='l 71llI ml1777lmnmmimlJllll 
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so that the effect of the flow will be 
of opposite sign. Moreover this method 
of approach will not apply to the cases 
of biplanes involving stagger, with dif­
ferent spans of the two wings, or with 
different lifts, since the image wing 
naturally lies vertically beneath the 

Fig. 91. The ground replaced by the actual wing and has the same span and 
image of an airfoil. 

equal but opposite lift. 
A comparison of theory with experiment in connection with 

this problem has been made in the Gottingen laboratory 2, based on 
an experimental test of a model comprising wing, fuselage and tail 
surfaces. The aspect ratio of the wing was (2 b)2jS = 9.2. The model was 
tested first in an unrestricted air current and then near the ground. The 
ratio of h, the distance from the ground, to the span in the latter case was 
hj2 b R: 0.12. It was found that the induced drag is greatly diminished 
in the neighborhood of the ground. The theoretical polars were calculated 
from the measurements in free air and corrected according to theory 
for the influence of the ground. For the greater part of the polar curves 
the theoretical amount of decrease agrees very well with experiment 
and the two curves diverge only for very high lifts. This divergence 
is due to the fact that in flow near the ground, separation commences 
somewhat earlier than for flow in an unrestricted air current. 

CHAPTER IV 

UNSYM1llETRICAL AND NON-STEADY TYPES OF 
MOTION 

1. Preliminary Remarks. The airplane and airplane combinations 
discussed in the previous chapter were such that all motions took place 

1 BETZ, A., Die gegenseitige Beeinflussung zweier Tragflachen. Zeitschr. f. 
Flugtechnik u. Motor!. V, p.253, 1914. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu G5ttingen, II. Lief., 
p.41 (Munich, 1926). See among others A. BETZ, Auftrieb und Widerstand einer 
Tragflache in der Nahe einer horizontalen Ebene (Erdboden). Zeitschr. f. Flug­
technik u. Motor!. III, p. 217, 1912. 
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in planes parallel to an existing plane of symmetry. The resulting forces 
in such cases have their lines of action in the plane of symmetry and 
are uniquely determined by three independent quantities. For this 
purpose the magnitudes usually chosen are the lift, drag and moment; 
alternatively, it is possible to take magnitude, point of application on 
the chord, and direction of the resultant force, as the three independent 
quantities. A state of asymmetry can arise through the action of an 
unsymmetrical air flow upon a symmetrical airfoil or otherwise due 
to the asymmetry of the airplane structure itself. The condition of 
asymmetry in an airplane results chiefly from the use of the rudder 
and ailerons. However, even in such case, there is a preferred plane of 
reference, namely the major plane of symmetry with ailerons and rudder 
undeflected. This plane is called the principal plane of the airplane. 
In asymmetric configurations the forces which have been previously 
referred to as lying in the principal plane, are supplemented by further 
forces whose lines of action are not in that plane. These additional 
forces can again be determined from the values of three further data, 
e. g. the force components perpendicular to the principal plane and the 
moments about the vertical axis and about the longitudinal axis of the 
airplane. To specify the system of resultant forces completely, in 
magnitude, direction and point of application, six quantities are needed 
and these may be the components of force along the three axes of 
a chosen coordinate system and the moments about these axes. 

In Chapters I, II and III we have considered those symmetrical 
motions of the airplane which affect the forces and moments without 
producing rotation of the airplane; such motions can be characterized 
by two magnitudes, the velocity and angle of incidence (i. e. the inclination 
of the velocity with respect to an axis fixed in the airplane). In defining 
these motions these two magnitudes may also be replaced by others, 
e. g. the two velocity components parallel and perpendicular to the axis 
of the airplane. The forces and moments are, however, not functions 
of these magnitudes alone and may be affected by the values of many 
other magnitudes connected with the motion, e. g. the acceleration of 
the two velocity components. In general, very little is known of these 
effects and in most cases their magnitudes are probably small. The 
effect of the angular velocity about the transverse axis is however of 
extreme importance. This factor comes then as a third magnitude which 
must be included in symmetrical motion in addition to the two velocity 
components mentioned above. In general, when the motion is un­
symmetrical, three further principal magnitudes are required: the velocity 
components normal to the principal plane and the angular velocities 
about the vertical and longitudinal axes. The general case of unaccelerated 
motion is therefore determined by six quantities, which may be con­
veniently arranged by selecting the velocity components parallel to the 
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three axes of coordinates in conjunction with the angular velocities about 
these axes. In discussing dynamical problems of flight it is useful to 
have the coordinate axes coincide with the principal inertia axes of the 
airplane. In purely aerodynamic problems, though the axes may be 
chosen in any arbitrary positio.ns, it is again more advisable to place 
two of them in the principal plane. A motion in which the three velocity 
components remain unaccelerated is a steady motion. In accordance 
with this definition, rotation about an axis parallel to the direction of 
flight is a steady motion. On the other hand rotations about other 
axes taken in conjunction with a forward velocity are not in general 
steady, for if the airplane is turning relative to the direction of motion, 
the angle of incidence of the flow on an axis fixed to the airplane changes 
with time. Rotation about the lateral axis (pitching) for example, 
changes the angle of incidence, and rotation about the vertical axis 
(yawing) changes the angle of yaw. But even in such cases the motion 
may be steady if the airplane describes a curve such that the change in 
angle of its path exactly balances that produced by its rotation; for 
then the angle between the path and an axis fixed in the airplane remains 
constant. 

Since the six components of force, or moment, may each be a function 
of the six velocity components and, in the event of rapid changes of 
velocity, a function of the accelerations also, the resulting relations 
between the velocities and the forces which may arise are extraordinarily 
complicated and it is necessary from the very beginning to consider 
only the most important phenomena. Fortunately, in general, some of 
the velocity components have comparatively little influence on the force. 
or moment components, so that in any given case it is possible to restrict 
consideration to the predominating influences. In such a procedure it 
may easily happen however, that the underestimation of certain effects, 
leading to their neglect, may result in wrong conclusions. Additional 
simplification is possible, however, if the unsymmetrical motion is small 
in comparison with the principal motion (flight in a slowly curving 
path), for the effects of unsymmetrical motions can then be treated as 
linear functions of these motions and the effects of the various velocity 
components can thus be investigated separately and compounded by 
simple superposition. 

We will classify the motions considered according as to whether 
they do, or do not, involve rotation. Included in the latter are motions 
with a lateral velocity component, or side-slip, and those produced by 
asymmetric arrangements of rudders or ailerons. These phenomena can 
be investigated in wind tunnels with the help of the so-called "six 
component balance", air being directed upon a model attached to the 
balance in the usual way. Motions involving rotations of the airplane, 
however, cannot be imitated by stationary models immersed in air 
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currents. The model itself must be set in motion and the resulting 
inertial forces considerably increase the difficulty of taking measurements. 
We direct attention first to the effects of side-slip, and then, after 
a consideration of the phenomena bound up with rotational motion, 
conclude by examining the effects of the rudder and the associated 
questions of airplane steering. 

A. Side-Slip 
2. Side-Slip of a Simple Rectangular Wing. By analogy with the 

discussion of symmetrical flow, we begin by considering the potential 
flow around an airfoil profile set obliquely to the air flow. If the airfoil 
is of large span, the middle portion of a normal flow is two-dimensional. 
If, upon this normal flow of velocity u, we 
superimpose a velocity v parallel to the span 
of the airfoil, we obtain an oblique motion 
with angle of inclination y (Fig. 92) where 

v 
tany =-u 

and the resultant velocity V 
equation, 

is given by the 

V = '/u2 + v2 = _u_ 
V COB Y 

Fig. 92. Rectangular wing 
in side·slip. 

The flow parallel to the span of the wing is ~ pure parallel flow of 
constant velocity v, undeflected by the wing except for a slight effect 
due to the thickness of the wing and ref;tricted to its ends. The super­
position of the transverse velocity v produces, therefore, no alteration 
of the pressure distribution in the region of the two-dimensional normal 
flow and hence no alteration in the force exerted on a given area in 
this region. If an airfoil of large span, therefore, is subjected to an 
oblique flow under an angle y, the lift over its principal portion is 
independent of y and equals the value obtained by a flow normal to the 
span under constant velocity u. If, on the other hand, the resultant 
velocity V is kept constant, the force is proportional to u2 = V2 cos2 y 
and therefore for oblique flows diminishes directly as cos2 y. The latter 
case arises, for example, if the wing is rotated about its vertical axis 
in a given stream of air. Failing a specific statement to the contrary, 
it will always be assumed in what follows that this is, in fact, the 
type of case considered; that is, the resultant relative velocity is 
constant. 

Let us now consider the quantities connected with losses of energy, 
viz., the drag and maximum lift. The surface friction is constant for 
all angles if we omit consideration of the somewhat larger Reynolds 
number (due to increased profile chord for oblique flows A B' > A B 
in Fig. 92, and certain other minor effects, for the area of the surface 

Aerodynamic Theory IV 7 
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remains the same, the increased chord length being balanced by the 
diminished width of the projection of the span in the direction of motion. 
Since obliqueness of the flow reduces the lift, constant surface friction 
results in a decrease in the lift-drag ratio. The boundary layer phenomena 
may be similarly treated by assuming that they are not essentially 
modified by the superposition of a transverse flow v. A similar argument 
then shows that the component of drag arising from the surface pressures 
also decreases as cos2 y. A similar qualitative conclusion can be obtained 
by the following considerations: If it were assumed that the drag is 
proportional to the front elevation area (projected area in the direction 
of motion, corresponding to the mid-ship section in ships) it would 
follow from the decrease of the projection with increasing obliquity 

that the drag should decrease as cos y; but it 
should be noted that the chord length of the 
profile is increased in the ratio Ijcos y for 
an oblique flow (Fig. 92 AB' = AB/cos y). 
Further, since the thickness of the profile is 
unchanged, the profile for oblique flow is elong­
ated in comparison with the profile for normal 
flow, and hence the coefficient of drag referred 
to the area of front elevation should be decreased. 

Fig. 93. Wing with vortices If thl' s diminution is proportional to the elong­generated under side-slip. 

. ation ratio, i. e. proportional to cos y, the re­
duction of drag becomes proportional to cos2 y as in the first argument. 
Unfortunately, there are almost no known experimental results bearing 
on these questions so that practically nothing is known as to the influence 
of oblique flow on the separation phenomena and profile drag. But 
the experiments on which Figs. 97 to 105 are based, performed on 
a "sweepback" airfoil, indicate that the influence of obliquity of flow 
on the drag is comparatively small. 

Similar results are obtained by considering the maximum lift, also 
connected with the separation of the boundary layer. The previous 
considerations show that the decrease in maximum lift for varying angles 
of approach might be expected to be proportional to cos2 y, but the 
assumption that the superposition of a transverse velocity v does not 
materially affect the separation phenomena, is somewhat uncertain, 
with corresponding uncertainty in the conclusions obtained. Experi­
mental evidence seems to show that the decrease of maximum lift is 
somewhat less than the previous reasoning would suggest; but here 
also the data are too few and too unreliable for conclusions to be 
deduced with confidence. 

More important than the alteration of the properties of the profile 
are the changes in the disturbances produced by vortices originating 
at the wing edges (see III 11). Unfortunately, very little is known on 
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this topic also!. It is, however, possible to say, with some certainty, 
that the side of the wing which faces the oncoming stream (Fig. 93) 
is affected more strongly than the other side so that a couple arises 
which rotates the first side downward. According to Blenk 2, however, 
supplementary forces probably arise on the shaded triangular areas at 
the ends of the wing in Fig. 93 and these forces have a moment in the 
opposite sense. In addition, the vortices originating at the front half 
of the wing are displaced more strongly downward under the influence 
of circulation than vortices at the other side. Hence their influence 
on the downward disturbing velocities is reduced and the lift increased. 
This would produce a rolling moment tending to raise the forward wing. 
In addition to all these effects others are often important, especially 
for large angles of incidence; such are the 
effects connected with separation phenomena 
at the ends of wings in oblique flow, which 
may complicate seriously the resulting state of 
affairs 3. In consequence of these various and 
oppositely directed forces, it is difficult to 
estimate theoretically the actual resultant mo­
ment. The experimental results given in Fig. 100 
show that the sense of the resultant moment 

-~­i . 
Fig. 94. Wing with dihedral. 

is such as to raise the front side of the wing. 

3. The Forces and Moments on a Wing with Dihedral in Side-Slip. 
Effects of side-slip clearer and more marked in character are obtained 
if the simple rectangular wing is replaced by a wing with dihedral or 
sweepback, for in such cases the two halves of the wing are influenced 
in different ways by the transverse flow. We shall first consider the 
wing with dihedral (Fig. 94). An approximation to the values of the 
force on each half of the wing can be obtained by considering each 
separately and uninfluenced by the other. As previously, in the case 
of the simple wing, the flow in a plane perpendicular to the front edge 
of the wing is the predominant factor in determining the lift. For 
a side-slip angle y, as in the simple wing, the velocity component of 
approach u varies as cos y (provided the dihedral is small) and the lift 
therefore varies as cos2 y. In consequence of the dihedral however, there 
is the additional fact to be considered that the relative direction of 

1 In order to calculate the magnitudes here involved it is, in general, necessary 
to introduce the lift distribution across the chord into the calculations which are 
otherwise vitiated by the infinite disturbing velocities which arise. A computation 
of this kind has been made by Blenk: BLENK, R., Der Eindecker als tragende 
Wirbelflache. G6ttingen, Dissertation, 1923 (in Mas. only). Extract in Zeitschr. f. 
angew. Math. u. Mech. 5, p.36, 1925. 

2 BLENK, R., loco cit. 
3 PROPoSTO, S. DEL, Uber das VerhaIten von Tragflachen bei Seitenwind, 

Aachen, Ed. Wedler and Co., 1933. 

7* 



100 J IV. UNSYMMETRICAL AND NON-STEADY TYPES OF MOTION 

approach in this plane is changed. If the angle of incidence is oc for 
a symmetrical flow, the corresponding angle for an asymmetric approach 

with angle of yaw y is oc' = oc ± Ty (3.1) 

where T is the angle of the dihedral (Fig. 94) and y and T are assumed 
to be smalll [(+) for the leading wing, (-) for the following]. If L is 
the total lift of the wings in a symmetrical flow, each half contributes Lj2. 
If lXo denotes the angle of incidence for zero lift, then the lift for any 
other angle of incidence IX is proportional to (IX -lXo) (see II 2). Change 
of the angle of incidence from IX to IX' changes the lift from Lj2 to 

.£ + to. L = .£ ~ 0:0 =~- (1 + 0:' - 0: ) (3.2) 
2 2 0:- 0:0 2 0:- 0:0 

Hence the lift on the forward wing increases by 
L 0:'- 0: L 

to.L = 2 0:-0:0 = 2(0: -0:0 ) ry (3.3) 

while the lift on the other wing is reduced by the same amount. The 
difference of lift on the two wings produces a moment about the 
longitudinal axis tending to raise the forward wing. The value of this 
rolling moment 2 for rectangular lift distribution is M q where 

M = bto.L = Lb "1' (3.4) 
q 2 (0: - 0:0 ) 

and the moment coefficient is 
Mq eM q = ""'I--=--

2f!S V2 c 
(3.5) 

but on account of the decrease of lift toward the ends, the actual value 
of the moment is somewhat smaller than that indicated by the formula. 
In elliptic distributions for example the center of gravity of the lift 
distribution is at a distance 4 bj3n ~ 0.425 b from the plane of symmetry. 
The moment for such a lift distribution is 15 per cent smaller than for 
a rectangular distribution in which the distance is 0.5 b. The experi­
mental results represented in Fig. 101 show that the actual influence 
of the dihedral is some 20 per cent less than as indicated 3 by (3.5). 
This difference is inter alia intimately connected with the effects on 
the velocity field of vortices generated at the wings (see the corresponding 
effects described in 15). 

1 The corresponding formula for arbitrary values of the angles is 
0:' = 0: ± tan-1 (tan y sin .. ). 

2 Since CL/(O:-O:o) ~ 2 n (see 112), i. e., is independent of the angle of incidence 0:, 

both Mq and CMq are also independent of the angle of incidence. The same is 
true of the cross-wind force ~l in (3.6) and (3.7). 

3 Even the dihedral .. = 0 produces, in consequence of side-slip, moments and 
transverse forces. The values obtained for the moments and forces in accordance 
with the above considerations must be added to those already present when .. = o. 
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Since the lift components of the two wings are nearly perpendicular 
to the wings, i. e. are directed inward by angular amount l' (see Fig. 95), 
the changes of lift ± /':, L produce transverse components of force 
which in each wing are .directed from the front to the back (toward 
the right in Figs. 94 and 95). Let us consider this direction as negative 
for forces. The sum of these two horizontal components is 

r2 
~1=-2/':,Li=-L --y (3.6) 

cx - CXo 

and the corresponding coefficient of cross-wind force is 
r2 

Cn = - CL --y (3.7) 
cx - CXo 

There is in addition a further lateral force connected with the flow 
around the boundaries of the wing. The difference of pressure between 
the upper and lower sides of the 
wing produces a flow around the 
side boundaries which prolongs it­
self behind the wing as the well­
known field of trailing vortices 
(see III 1 and Division E III). If Fig. 95. Forces on a wing with dihedral. 

the distribution of lift is elliptic, 

i. e. r = ro 1/1 - (yjb)2 [see III (2.1)] the decrease in circulation near 
the boundary of the wing [(b - y) «b] is 

or -ro 
oy bV2(b-y)/b 

The circulation of the vortices between y and y + d y in the vortex 
band behind the wing is (0 Fjo y) dy. When the flow associated with 
this vortex band occurs around a rigid body instead of around a free 
vortex band, the vortex distribution produces a suctional force at the 
edge of the surface, of amount per unit length 1 

:IT, r~ 
z = T(!2/i (3.8) 

The lift of the wing is [see II (2.2)] 

(3.9) 

L2 L S 
and hence z = 2nePb3 = TCLiiP- (3.10) 

Flow around the boundaries of the wing develops only gradually. At 
first its amount is zero at the foremost point of the profile, but increases 
along the chord in proportion as the lift along the chord increases. 

1 If the band of vortices is free, this suction is not met by a resistance and 
produces the unfolding of the vortex band at the boundary. See KADEN, H., 
Aufwicklung einer unstabilen Unstetigkeitsflache. Ing.-Arch. 2, p. 140, 1931 
(Division F IV 19 and 20). This paper also contains a derivation of the magnitude 
of the suction which leads to (3.8) above. 
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And, in accordance with this, the suction at the boundary of the wing 
also increases from front to back, ultimately reaching at the rear edge 
the value determined by (3.8). Calculation of the total suction on the 
boundary therefore involves multiplication of z by a fraction of the 
chord length o. Usually, however, the lift distribution is not elliptic 
but rather fuller in form so that the consequent increase in the value 
of z as compared with (3.8) allows us to approximate to the total suction 
by writing Lo = z o. Lifts on the two halves of the wing of amount 
Lj2 + D. Land Lj2 - D. L respectively, correspond then approximately 
to the decrease in lift of entire wings of lifts L + 2 D. Land L - 2 D. L 
respectively. Hence the suctions on the two boundaries are greater or 

BE L·2/':::,.Lc 
less by amounts D.L=±&L 2 D.L=± neV2 b3 (3.U) 

The difference between the suctions therefore produces a resultant lateral 

force of magnitude 2: = 2 L /':::,. L ~ (3.12) 
21 V2b2b 

2ne 

directed toward the leading wing, i. e. in the positive direction. Sub­
stitution of the value of 6. L from (3.3) leads to the equations 

(3.13) 

and (3.14) 

The total lateral force therefore satisfies the equation 

2: = 2:1 +2:2=L (2!- ~ ~ -7:) rt T rtoY (3.15) 

and the coefficient of lateral force has the value 

E (OL S C ) T C:2] = =CL -2--7: ~~Y 
~e V2S n b b rt-rto 
2 

(3.16) 

The reader should notice that C E 1 is proportional to C L .2 while C E 2 is 
proportional to C1.. On account of the different effects of Ll and L2 
this result is rather inexact, but as regards order of magnitude it agrees 
very well with the results of the experiments shown in Fig. 98. Similarly, 
it is possible to derive the value of a yawing moment from the direction 
of the component lifts but this moment is so strongly affected by other 
factors, especially by the change in profile drag, that the theoretical 
approximation is of small value. 

4. Influence of Sweepback in Side-Slip. If the wings are arranged 
in sweepback form, the axes of the wings are inclined at an angle (J on 
each side of the direction normal to the plane of symmetry (see Fig. 96). 
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As pointed out in 2 the lift of a wing in oblique approach decreases 
approximately in proportion to the square of the cosine of the angle 
of obliquity. If the lift of each half of the wing is L' when isolated in 
a normal flow, then from 2 the corresponding lift in the sweepback 
formation will be L' cos2 a. The lift of the combined wing formation 
is therefore Lo = 2 L' co.s2 a. If such an arrangement is set obliquely 
at angle y to the flow, the angle of yaw of the forward portion is 
decreased from a to a - y and that of the other correspondingly increased 
from a to a + y. The lift on the forward half is then 
Ll = L' GOS2 (a-y) = L' (cos a cosy + sinasiny)2 

~ L' (cos2 a GOs2 y + 2 sin a sin y cos a GOS y) (4.1) 

and on the other 

L2 = L' cos2 (a' + y) = L' (cos a cos y - sin a sin y)2 
~ L' (cos2 a cos2 y - 2 sin a sin y cos a cos y) (4.2) 

The total lift is theref ore 

L = Ll + L2 ~ 2 L' cos2 a cos2 y = Lo cos2 Y (4.3) 
and thus decreases as the square of the 
cosine of the angle of yaw, the same as for 
a straight wing. 

Of more importance than the change in 
total lift is the difference of lift on the two 
portions of the wing, of amount ± 2L' sin a 
sin y cos a GOS y, which produces a moment 
about the longitudinal axis in the sense tending Fig. 96. Wingwithswcepback. 

to raise the leading wing (the left in Fig. 96). 
The value of this moment, on the assumption of rectangular lift 
distribution on each wing portion is given by the formula 

M q = 2 L' b sin a sin y cos a cos y = Lb tan a tan y 

and the moment coefficient by the formula 

C Mq C b 
Mq= (lj2)e V2S () = Lctanatany 

(4.4) 

(4.5) 

Experimental results (Fig. 102) are of the same order of magnitude but 
other factors (disturbances at the ends of the wings, for example) 
apparently produce comparable or even greater effects so that agreement 
with (4.5) is not as good as for the corresponding formula for a wing 
with dihedraL 

Elementary arguments similar to those used in discussing the wing 
with dihedral show the existence of a lateral force and a moment about 
the vertical axis, but other influences are so powerful that the formulas 
obtained are of little practical use. 

The chief purpose in using dihedral or sweepback is to produce a 
moment about the longitudinal axis in side-slip. Though this can be 
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achieved by either form, the effects so obtained differ somewhat. It must 
be observed in the first place, that with dihedral the moment is inde­
pendent of the angle of incidence or lift, since L/(IX -lXo) is approximately 
constant. This is not so in the sweepback formation where the moment 
is proportional to the lift. With dihedral, moreover, a lateral force 
is produced opposing the side-slip, while the corresponding force with 
sweepback is smaller in magnitude or may even act in the opposing 
direction. During side-slip the effect of the fin is to give the airplane 
a yawing moment tending to turn it into the direction of motion. If the 
airplane hangs laterally, the side-slip with dihedral is restricted by the 
action of the cross-wind force and does not produce a serious yawing 
moment. On the other hand if use is made of sweepback, the side-slip 
and yawing moment are larger. There are different circumstances for 
which one or the other of these properties may be regarded as the more 
desirable (see 19). With dihedral the moment is obtained by changing 
the angles of incidence of the two component wings. In the condition 
where the lift is near its maximum, the leading wing with dihedral may 
easily pass beyond this condition, with the result that the moment about 
the longitudinal axis suddenly decreases sharply, and in certain cases 
may even become negative. Consequently the forward wing tends to 
dip, the side-slip increases, and with such a state of affairs occurring near 
the ground, the result is usually a crash of the plane. With the sweep back 
formation, on the other hand, the moment is obtained by changing the 
velocity components, the values of which are the predominating factors 
determining the lift. This increases the lift of the forward wing, without 
introducing the danger of premature separation. 

The effects of dihedral and sweepback are shown 1 in Figs. 98 to 106. 
The measurements in these diagrams refer to a rectangular wing at 
constant angle of incidence, having 100 cm. span, 20 cm. chord and 
profile G. 387. In considering the sweepback form it must be remembered 
that the component wings are not actually obtained by rotation of 
a normal wing as assumed in the theoretical discussion, but by a parallel 
translation of the separate profiles. The initial profile in these models 
is obtained by taking a section parallel to the plane of symmetry and 
not by a section perpendicular to the leading edge. Figs. 97, 100 and 103 
respectively show the lateral force, the rolling moment and the yawing 
moment for a simple rectangular wing with various angles of yaw. 
Figs. 98, 101 and 104 show the effect of dihedral and Figs. 99-102 
and 105 that of sweepback on these forces and moments. In addition 
to these factors, the effect of an aileron deflection of amount {J is 
represented by thin lines (see 17). 

1 BLENK, H., G6ttinger Sechskomponentenmessungen an Fliigeln mit V-Form, 
Pfeilform und Verwindung. Jahrbuch der Deutschen Versuchsanstalt fUr Luftfahrt, 
1929, p. 183; or Luftfahrtforschung, Vol. 3, p.27, 1929. 
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5. Effect of Side-Slip on an Airplane!. In addition to the effects 
of side-slip on the wings as discussed in 2, 3 and 4 above, there are, in 
a complete airplane, further effects produced on the fuselage, including 
the landing gear and other projecting parts, and especially on the vertical 
tail surfaces. The rolling moment is somewhat influenced by the position 
of the tail-plane and the landing gear or floats, though this effect, due 
chiefly to the relatively small moment arms of the forces acting on these 
parts, is not very considerable when compared with the moment due 
to the forces on the wings. The non-lifting system however, has a very 
considerable effect upon the lateral force and the yawing moment. 

Fig. 106. Stream-line bodies with round and square sections. 

The magnitude of the cross-wind force acting on the fuselage is very 
powerfully affected by the form of its cross-section. In Fig. 107 are 
shown the lift coefficients and drag coefficients of two stream-lined bodies 
shown in Fig. 1062 • The distribution of the cross-sectional area along 
the axis is the same for both bodies. One body (an airship model) has 
however, a round cross-section while the other has a square cross-section. 
The latter body was rotated out of the wind direction, once about an axis 
parallel to a side of the square and once about an axis parallel to the 
diagonal of the square. In both cases considerably larger forces were 
found to act upon the angular body than upon the round one. 

It is known that when an airship without stabilizing fins is subject 
to an oblique flow, the transverse force produced acts through a point 
well toward the front of the body of the airship. This produces a powerful 
moment tending to increase the angle between the airship axis and the 
direction of approach and hence to produce instability. A similar state 
of affairs develops in sharply rounded airplane bodies. The lateral force 
generally acts in front of the center of gravity and must be balanced 
by a sufficiently large side fin. Increasing angularity of the fuselage 

1 MATHIAS, G., Die Seitenstabilitat des ungesteuerten Normalfluges und ihre 
technischen Vorbedingungen .. 272. Bericht der Deutschen Versuchsanstalt fur Luft­
fahrt. Zeitschr. f. Flugtechnik u. Motorl. 23, p. 193 and 224, 1932. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu Gottingen, Vol. II, p. 68 
\Oldenbourg, Munich, 1923). 
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shifts the point of application of the lateral force toward the back of the 
airplane. This is especially the case for fuselages which transform aft 
into a nearly vertical face which itself acts as a fin, thus shifting the 
point of application of the lateral force very considerably toward the tail. 

The object of the designer is, in general, to ensure that the resultant 
lateral force acting upon the whole airplane in side-slip shall have its 
point of application aft of the center of gravity.· In such case, during 
side-slip, the airplane experiences a yawing moment which tends to turn 
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Fig. 107. Coefficients of lift and drag for the streamlined bodies of Fig. 106. 

it like a weather-cock into the wind. Such an airplane is said to be 
statically stable with regard to its vertical axis; such stability is also 
known as "weather-cock stability". While an airplane possessing this 
kind of stability eliminates side-slip automatically, in so doing it changes 
its direction. Directional stability of such a kind that the airplane tends 
to remain in its course, cannot be obtained by purely aerodynamic 
measures; for since none of the various conrses possible has a critical 
relation with respect to the directions of airflow which may arise, an 
alteration of course cannot induce a correcting effect. Directional 
stability can therefore only be achieved by special apparatus controlled 
by the compass (in particular by a gyroscopic compass). Nevertheless 
aerodynamic measures may have a powerful effect on the tendency of 
the airplane to deviate from its conrse (see 15 and 19). 

As a result of side-slip, a rolling moment is generally produced 
(see 2 to 4) which inclines the airplane in such fashion that the side-slip 
decreases under the combined action of lift and gravity. As the result 
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of weather-cock stability, however, side-slip produces a yawing moment 
and that in turn a rolling moment in the opposite sense (see 15). On 
this account, weather-cock stability must not be too greatly increased. 
Other properties of the airplane which influence this state of affairs 
are discussed in 19 below. 

B. Phenomena Associated with Rotations of the Wing. 

6. Preliminary Survey. If the motion of a wing consists of a rotation 
about the center of gravity as well as motion of the center of gravity 
itself, the change in the direction of the forces acting on the wing produced 
by such rotation will, in general, alter the course, and the center of 
gravity will describe a curved path. Typical examples of such motion 
are the change in the climbing angle produced by manipulating the 
elevator (especially in flattening out from a dive) and alterations in 
course produced by moving the rudder. The effect of displacing an aileron 
is first to roll the airplane, but the turn and the consequent asymmetry 
of the gravitational forces produces a side-slip with resultant yawing 
and a curved path of flight. If the roll is very rapid, these secondary 
effects are small and the center of gravity of the airplane describes 
a spiral path differing but little from a straight line. The same is true 
to an even greater extent when the mean path of the airplane is vertical 
(vertical dive or spin) for the effect of gravity in altering the direction 
of motion is eliminated in such cases. Motions of this sort, in which 
the center of gravity describes an approximately straight line while the 
airplane simultaneously executes a rotation about this line can be imitated 
with comparative success in wind tunnels. The model is fixed to an 
axis parallel to the wind direction and is made to rotate about this axis 
in the wind stream. If the axis of rotation passes through the center 
of gravity no asymmetry arises, either from centrifugal effects or moments 
due to gravity, thus disturbing the smooth rotation about the axis. In 
general, however, the axis of rotation will not coincide with a principal 
axis of inertia of the model, so that the motion will produce centrifugal 
moments about an axis perpendicular to the wind direction which will 
not only disturb the smoothness of the motion, but will interfere with 
measurements of the moments about this axis. It is therefore necessary 
to counterpoise the model so that as far as possible the axis of rotation 
may coincide with a principal axis of inertia in order to eliminate 
centrifugal moments. Clearly, the addition of counterpoises may also 
be used to shift the center of gravity, thus making possible the study 
of motions about axes which do not pass through the original center of 
gravity. The application of such a procedure is limited by the fact 
that the space available is usually comparatively small; often it is not 
even possible to balance the centrifugal moments completely. 



SECTION 7 111 

In view of the fact that the axis of rotation is fixed in position, no 
attempt is usually made to measure the three force components, attention 
being restricted to the most interesting features of the situation, viz., 
the moments about the three axes. The moment about the axis of rotation 
itself is the one that can be measured most easily. The question as to 
whether rotation tends to fade out or initiates of itself in the wind 
stream (autorotation) is of extreme importance; the answer is closely 
connected with the tendency ~f the plane to go into a spin. 

It is scarcely possible to reproduce in wind tunnels the type of 
motion noted at the beginning of the section, viz., that in which the 
center of gravity of the plane describes a curved path; for in such 
case it would be necessary to cause the center of gravity to execute an 
accelerated motion. So far, the method usually followed 1 has consisted 
in causing the model airplane in the wind tunnel to oscillate about the 
vertical or the lateral axis, and to then measure the resulting moments 
about the various axes. Such a procedure yields information as to 
the effect of the rotation but ignores that due to the acceleration of 
the center of gravity. Another difficulty also, lies in the fact that the 
angular velocity of the rotation itself is not constant. 

If the curvature of the path and the rotation of the airplane combine 
to produce a steady motion (see 1) it is possible to investigate the associ­
ated phenomena with the help of a "whirling table" (see 15). 

7. Pitching Moment Due to Pitching. A rotation of the airplane 
about the lateral axis involves a change in the angle of incidence and the 
higher maximum lift which can thereby be obtained has been noted in 
13. Since a rotation of this kind is a motion in the plane of symmetry, 
the only moment which can arise is the pitching moment, the component 
forces of which lie in this plane. The yawing and rolling moments are 
naturally unaffected by this motion. The pitching moment due to the 
wing alone is small compared with that due to the horizontal tail surfaces. 
This follows from the length of the chord and the relatively short lever 
arm of the forces arising from the wing. If the airplane rotates about 
its center of gravity in such manner as to increase the angle of incidence IX, 

then Ii [= (dlXfdt)] is positive and the center of pressure of the horizontal 
tail surfaces moves with velocity lli downward. Here l is the distance 
of the center of pressure of the tail-plane from the center of gravity 
of the airplane (Fig. 108). The consequence of this additional downward 
velocity with a flight velocity V is to increase the relative angle of 

incidence by 61X = l; (7.1) 

Consequent on this change in the angle of incidence follows a change 
in the magnitude of the forces on the tail-plane. Since this change is 

1 Br. ,A.R.C. R. and M. 78,1912/13; 787, 1921/22; 809,1921/22; 848,1922/23. 
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produced not by rotating the tail-plane but by rotating the direction 
of air approach, the lift and drag alter their directions as well as their 
magnitudes, for the lift and drag must be calculated in directions 
perpendicular and parallel to the approaching air flow. These changes 
are illustrated in Fig. 108. The lift changes from L to L', the drag from 
D to D' and the moment about the center of gravity involves consideration 
of the force components perpendicular to the distance l. The contribution 
to the lift is 6 L = L' - L and the rotation of its direction (6 oc:, which 
may be assumed to be small) has a negligible effect. The change in the 
drag, on the other hand, is negligible while its rotation provides an 

IE l.--~ 
_~~ ________ .~,v~~~«~~~~ ____ __ 

1
«' , -- ----- l« 

i 
Fig. 108. velocities and forces on the horizontal 

tail surfaces during pitching motion. 

of increase of the coefficient of lift with 
dence, the following relation is obtained: 

effective contribution /::, oc:. 
Altogether, the total addi­
tional force so obtained, the 
direction of which is upward, 
is given by the equation 

/::,P=/::,L+D/::,oc: (7.2) 

If S is the area of the hori­
zontal tail surfaces, C n the 
coefficient of drag of these 
surfaces, and d CLld oc: the rate 
respect to the angle of inci-

1 (dO .) /::, P = 2 e S V 2 d ocL + C n /::, oc: (7.3) 

The force /::, P exerts a moment about the center of gravity measured by 

(7.4) 

The sense of this moment is opposed to the rotation so that a damping 
effect is produced. If, however, the flow separates from the tail, so that 
(d cLla oc: + Cn) is negative, a moment arises, the sense of which is 
the same as that of the rotation, tending therefore to augment the latter. 
Regard for the reliability of the elevator and stabilizer will however 
be reason for keeping them sufficiently far from the critical angles of 
incidence for which separation occurs; for the same reason types of tail­
planes are preferred for which a CLI a oc: remains positive or only slightly 
negative even after eeparation. Hence the above mentioned possibility 
of unstable pitching is seldom of practical significance. 

The above considerations, however, imply rotation about the center 
of gravity while it is moving in a straight line. The lift on the main wing 
of an airplane in flight is considerably increased by an increased angle 
of incidence and the center of gravity is accelerated upward in conse­
quence. It follows that, in addition to the rotation, an associated lateral 
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motion of the center of gravity is produced, which in turn involves 
changes of relative angle of incidence and hence of force l . The coupling 
of these two motions may produce undamped oscillations. A theoretical 
explanation of these phenomena was first given by C. Runge 2. Another 
cause of undamped oscillations may be due to the fact that the horizontal 
tail surfaces, or the elevator, may not be attached with sufficient rigidity 
to the main structure. An increase of the oscillations may also arise as 
a result of a coupling between the elastic oscillation of the tail-plane 
and the rotational oscillations of the airplane. These dynamic phenomena 
are discussed in Division N. 

Some notion of the order of magnitude of the damping moments 
which arise in such cases may be obtained by reference to an experiment 
performed in England some years ago with a model Bleriot monoplane 3. 

The model was arranged to permit of rotation about a transverse axis 
through its center of gravity. It was caused, in a wind stream, to perform 
oscillations about its equilibrium position and the magnitude of the 
damping moments could then be deduced from the rate of decrease of the 
amplitude. 

8. Rolling Moment Due to Rolling, and Autorotation. If in addition 
to its normal forward motion, a wing rolls about the longitudinal axis 
of the airplane, each end of the wing will have an additional velocity, 
one up and the other down. At one end, therefore, the angle of incidence 
of the profile relative to its direction of motion will be diminished, at 
the other, increased. With such changes of angle are associated changes 
of the impressed forces at the ends of the wings. These changes are, in 
general, of opposite sign, and hence a rolling moment may either increase 
or, as more usually, damp the rotation. The relations of the various 
aerodynamic quantities over a cross-section of the wing are quite similar 
to those arising on the horizontal tail surfaces, as discussed in the last 
section. The relative velocity V of the rectilinear flight is supplemented 
by a vertical velocity due to the rotation. This is of amount 

(8.1) 

where Wx denotes the angular velocity of the rotation, and y the distance 
of the profile from the plane of symmetry. The sign chosen for w is such 
that it is positive for a descending wing. A result of this supplementary 
velocity is to change the angle of incidence of the air flow upon the 

1 See the theoretical and experimental investigations of F. W. LANCESTER in 
"Aerodonetics", London, Archibald Constable and Co., 1908. 

2 RUNGE, C., TIber die Langsschwingungen der Flugmaschinen. Zeitschr. f. 
Flugtechnik u. Motor!. 2, pp. 193 and 201, 1911. 

3 BAIRSTOW, L., and MACLACHLAN, L. A., The Experimental Determination of 
Rotary Coefficients. National Physical Laboratory, R. and M. 78, 1913. 

Aerodynamic Theory IV 8 
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profile. If the original angle of incidence is IX then the rotation increases 

itt to IX' where IX' = IX + 6. IX 

Here 6. IX = ~ = y Wx (8.2) 
V V 

If the wing is assumed to be attached to an axis of rotation fixed in 
the direction of the wind, as is the case in experiments on autorotation, 
the forces determining the couple about this axis are the components 
perpendicular to the axis. The change in the value of this moment, due 
to the changed direction of flow, is obtained in a fashion similar to that 
already used in discussing the pitching moment due to pitching. The 
change of force 1 on a portion of a wing of chord c taken between the 
distances y and y + d y from the plane of symmetry is of amount 

d P ~ ~ e V2 (ddOexL + OD) 6. (1. C d y (8.3) 

The rolling moment is deduced by multiplying by the arm y and inte­
grating over the span. On substituting from (8.2) for the value of 6. IX 

IJ 

we find that Mq={-eVwxf(ddO: +OD)y2 C dy 
-b 

(8.4) 

In the normal working state the lift increases with the angle of incidence 
and d 0 Lid IX is positive. Since 0 D is always positive the quantity 
(d OLld IX + 0D) which is a measure of the autorotation, is also positive. 
The induced angular moment is therefore opposed to the rotation, and 
damps it. 

If, however, the angle of incidence is increased to such an extent 
that the lift maximum of the wing profile is passed (stalled flight), the 
lift decreases with increasing angle of incidence and d 0 Lid IX is negative. 
If this is the case, the quantity d CLld IX + OD may become negative. 
The upward forces are then smaller on a descending wing than upon 
one which is ascending; the resulting moment increases the rotation and 
a wing arranged so as to permit rotation about an axis parallel to the 
direction of the wind, spins around like a windmill and gives an example 
of autorotation. 

In contrast to the corresponding state of affairs in pitching, the 
conditions leading to an increase in the rolling motion after the position 
of maximum lift has been passed, are often satisfied. On account of other 
flight properties, most profiles are designed to have small drag and high 
o L max; but with most profile forms the lift falls off rapidly after the 
critical angle of incidence has been passed. 

1 On account of the diminution of lift at the ends of the wing, the change of 
inclination L;, ex does not produce the same effect at the ends as on those parts 
lying nearer the middle. Hence d ° Lid ex falls off toward the ends in much the 
same way as the lift on an untwisted wing. 
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The quantity d G Lid rf. + G D can be replaced by either of two good 
approximations, v'iz. d Gnld rf., the rate of change of the coefficient of 
normal force 1 (force normal to the wing chord) with respect to angle 
of incidence or d GRid rf., the rate of change of the coefficient of the 
resultant force 2, either of which is a good alternative criterion of the 
tendency to autorotation. If these quantities are positive, damping 
occurs; if negative, an increase of the rotation is to be expeted. 

M. Knight 3 has investigated the tendency of various wings to 
autorotation with reference to the shape of their polars and has compared 
his results with the results of experiments on rotation. He marks two 
regions of the angle of incidence in the polar diagram; one in which 
d GRid rf. is positive, and one in which experiments on autorotation show 
the wing to be unstable (i.e. where arbitrarily small initial rotations are 
sufficient to induce autorotation). In most cases, these two regions 
coincide with fair accuracy. In conducting experiments on autorotation 
several possible states of affairs require consideration; the preceding 
paragraphs with Knight's experiments deal with the question of deciding 
whether a wing or an airplane has a tendency to change from rectilinear 
flight to autorotation or spin. Knight has called the state of affairs 
in which such a tendency exists, "rotary instability". After autorotation 
has set in, the angular velocity at first increases until it reaches some 
limiting angular velocity; the condition of steady rotation thus reached, 
he te~ms, "stable autorotation". It may also occur that while the airplane 
shows no tendency to increase small angular velocities, which therefore 
die away spontaneously, forced angular velocities greater than a certain 
definite value may possibly increase of their own accord up to a certain 
equilibrium value. The limiting state of affairs in which this instability 
is first shown he terms "unstable autorotation". 

9. Stalled Flight and Normal Spin. We have seen in the preceding 
section that a wing in stalled flight, that is, when the maximum lift 
has been passed, is unstable with respect to motion about its longitudinal 
axis. It inclines very easily to one side or the other. This state of affairs 
often occurs when an airplane takes off too suddenly. A side-slip ending 
in a crash nearly always results. If the airplane is stalled at a greater 
height, the side-slip develops into a vertical downward motion with the 
machine turning more and more about its longitudinal axis (normal 
spin). Unstable rotation may even occur when the angle of incidence 
is near the value corresponding to the position of maximum lift but has 

1 FUCHS, R., and SCHMIDT, W., Luftkrafte und Luftkraftmomente bei groBen 
Anstellwinkeln und ihre Abhangigkeit von der Tragwerksgestalt. Zeitschr. f. Flug­
teehnik u. Motor!. 21, p. 1, 1930. 

2 KNIGHT, M., Wind Tunnel Tests on Autorotation and the "Flat Spin". U.S. 
N.A.C.A. Report No. 273, 1927 .. 

3 KNIGHT, M., loco cit. 

8* 
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not yet passed it; for in such a situation, there is required only the 
action of a sufficiently powerful impulse, as for example by the movement 
of an aileron 'Causing an increase in the angle of incidence of the descending 
wing to the point of flow separation (see 8, "unstable autorotation"). 

In addition to the phenomena described in the above discussion on 
autorotation, it usually happens that the center of gravity itself describes 
a spiral path while the wing rotates about it, so that the axis of rotation 
does not pass through the center of gravity. More important than this 
eccentric position of the axis of rotation is the fact that the direction of 
motion of the center of gravity does not usually lie in the plane of 

symmetry so that in the motion one end of 
the wing is usually ahead of the other. A side­
slip is thus superimposed upon the rotary 
movement, and provides an additional moment 
which may increase both the domain and the 
intensity of the unstable rotary motion. This 
has been shown, inter alia by M. Knight and 
J. C. Wenzinger 1 . 

One way of opposing unstable rotation is 
by the use of the ailerons. This however, is 
limited by the condition that the aileron in 
the region of flow separation has no flow along 
the upper side and its effect is, in consequence, 

Fig. 109. IlIustrationof the so seriously impaired that it becomes practic-
distribution of weight on an 11 1 f h d T 

airplane. a y use ess or t e require purpose. 0 a 
certain point this difficulty may be overcome 

by slotting the aileron, fitting it with auxiliary flaps or by similar 
measures (see III 6 and 13). 

A second method for emerging from a normal spin is to diminish 
the angle of incidence by means of the horizontal tail surfaces. (This 
is done by pushing the stick forward.) This again is opposed by 
centrifugal moments which arise in the course of rotation and tend 
to increase the angle of incidence. In Fig. 109 the distribution of 
mass is represented schematically by the four masses M I , lJII2 , M3 and 
M 4 • The two masses MI and M2 are large and at some appreciable 
distance, so as to correspond to the considerable elongation of the 
fuselage along the longitudinal axis; Ma and M4 on the other hand are 
relatively small and close together. If the principal axis of inertia does 
not coincide with the axis of rotation, the masses are eccentrically 
situated with regard to the latter axis and provide centrifugal forces 
in the directions shown by the arrows. As shown in the diagram, the 
effect of the masses Ml and M2 is to increase the angle of incidence. The 

1 KNIGHT, M., and WENZINGER, J. C., Rolling Moments Due to Rolling and 
Yaw for Four Wing Models in Rotation. U.S. N.A.C.A. Report No. 379, 1931. 
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moment of the forces due to the remaining masses M3 and M 4, though 
opposite in sense, is of subordinate influence on account of the com­
parative smallness both of the forces involved and of their lever arms. 
The moment of the inertia forces increases as the square of the angular 
velocity. It may therefore happen that the airplane obeys the elevator 
as long as the rotation is small, but can no longer be controlled when the 
angular velocity has reached a certain value. 

The tendency of an airplane to spin can be affected in three ways: 
1) by distribution of the masses, 2) by the characteristics of the wing 
and 3) by the characteristics of the control system. 

As regards the first of these, the aim should be to keep the difference 
between the moments of inertia about the vertical and longitudinal 
axes as small as possible, that is, to keep the masses Ml and M2 (Fig. 109) 
as close together, and the masses M3 and M4 as. far apart as possible. 
It should also be added that the tendency of an airplane to spin decreases 
as the center of gravity is moved forward. As regards the control system, 
the end to be sought is that both elevator and aileron should be as 
effective as possible. For their properties reference may be made to 
III 14 and IV 18. The properties of the wing which are concerned in 
the question of stability are discussed in detail in 11 and 12 below. 

10. Flat Spin. Flat spin is distinguished from the normal spin 
discussed in the preceding section by the fact that it occurs at much 
larger angles of incidence and for angular velocities which are much 
greater in comparison with the velocity of flight. It is not so easy to 
reproduce flat spin by autorotation experiments in wind tunnels. The 
large angular velocity and large centrifugal forces produced in conse­
quence make considerable demands upon the rigidity of the model, 
demands which are increased by the fact that a high angular velocity 
must first be induced by an initial impulse in order to secure continuous 
rotation (unstable autorotation, see 8). Hence the available information 
concerning flat spin is not as reliable as that on normal spin. Essentially 
however, it should be possible to trace flat spin to the same causes as 
those operative in the following experiments described by Lanchester 1, 
Riabouchinsky 2 and others. 

A bar, plane on one side and curved on the other, is arranged so as 
to be able to rotate about an axis perpendicular to its flat side (Fig. llO). 
If a current of air is directed parallel to the axis of rotation toward the 
bar on its flat side, the system is symmetrical and there is no reason 
why the bar should rotate. If however, it is given a small initial rotation 
in either sense it continues to turn in this direction as a windmill; that 

1 LANcRESTER, F. W., Aerodynamics, p.44. London, Constable, 1907. 
2 RIABOUCHINSKY, D., Recherches sur la rotation des plaques synImetriques 

dans un courant aerien et sur la determination de la pression qu'elles supportent. 
Bulletin de l'Institut l'Aerodynamique de Koutchino, Fasc. I, p. 18, Moscow, 1912. 
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is, it develops autorotation. The explanation is as follows (see Fig. 111): 
Let the velocity of approach along the axis be u. If one end of the bar 
is moving with velocity v then it is, effectively, in a flow which has one 
velocity component u and another component - v at right angles to 
it. If v is sufficiently large in comparison with u the direction of the 
resultant velocity of approach V makes a small angle with the plane 
side of the profile. With regard to this velocity the profile acts like 
a wing profile. The ensuing lift L is perpendicular to the velocity of 
approach V and if the drag D is small enough the resulting impressed 
force R is such that there is a component 
in the direction of motion of the profile 
and the velocity increases. 

-i-
Fig. 110. Rod capable of executing auto·rotation. 

v -v 

Fig-. 111. Velocities and forces on 
the profile of a rod in auto· 

rotation. 

In unstaggered biplanes, or biplanes with negative stagger, a very 
powerful tendency to flat spin is produced by the fact that at large angles 
of incidence the upper wing is screened by the lower. An airplane of this 
kind, rotating about an axis which coincides with the direction of motion, 
is so situated that the descending end of a wing has a much larger 
relative angle of incidence than the ascending end so that the descending 
side of the upper wing may enter the wake of the lower wing. If this 
occurs, the air forces on this side are considerably diminished and the 
rotation is accelerated. As in the case of normal spin, supplementary 
side-slip may increase the moments which arise; the centrifugal moments 
act in the same sense in either case (see Fig. 109 where the angle between 
the direction of motion and the principal axis of inertia is now considerably 
increased). Centrifugal moments, in fact, hinder attempts to restore the 
normal angle of incidence by the use of the elevator. An essential aid 
in fighting flat spin is provided by the vertical tail structure which can 
be used to diminish the angular velocity of the airplane. Screening of 
the vertical tail surfaces by the stabilizer structure may, however, 
adversely affect the efficiency of such measures (see III 13). The same 
is true if the vertical tail structure enters the "dead water" wake of 
a wing with separation of flow. 

11. Influence of Wing Profile on the Tendency to Autorotation. 
Since autorotation arises from the decrease of lift consequent upon 
separation, it is obviously possible to reduce a tendency toward 
autorotation and spin by a choice of profiles for which this decrease is 
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as moderate as possible. In thin symmetrical or nearly symmetrical 
profiles, the values of the quantities deL! d ('/. + CD (or d Cnl d ('/. or 
d C Rid ('/. respectively) which are the criteria for autorotation, are mostly 
positive, so that the danger of autorotation in such profiles is small 
or non-existent. Such profiles, however, have unfortunately the 
disadvantage that the maximum lift is small and they are associated 
with comparatively large drag. This disadvantage can be somewhat 
ameliorated by employing normal curved profiles in the middle of the 
wing and flat profiles only near the ends; for the forces near the middle 
of the wing have a smaller lever arm and playa smaller part in affecting 
the tendency to autorotation. 

According to a proposal made by W. Schmidt!, perforated profiles 
arranged at the extreme ends of the wing as in Fig. 112 are especially 
suitable for producing freedom from auto-
rotation. ~~.]~r.::~ 

A sharp fall in the lift can be a voided in 
biplanes by setting the two wings so that they Fig. 112. W~~~fir;;.th perforated 

both do not reach their positions of maximum 
lift simultaneously. The fall in lift of one wing after the maximum is 
reached is then balanced by increase of the other wing where separation 
has as yet not occurred. By the time that the latter arrives and passes 
its position of maximum lift the first wing is in a region where the fall 
in lift is more gradual or where a further increase in lift may occur. 

Another means of hindering a tendency to autorotation is to use the 
devices for increasing the maximum lift as describ~d in I 4. Use of the 
slotted wing for example prevents separation until much larger angles 
of incidence are reached. Slots at the ends of the wing automatically 
opening at large angles of incidence have been found especially effective 
for this purpose. The effect of such a slot is shown, for example, by 
English experiments on an R.A.F. 31 biplane 2. When the slot is closed 
strong positive moments tending to increase rotation arise for angles 
of incidence greater than 15°. If, however, the slot at the end of 
the wing is open, the moments remain negative, that is they tend to 
damp rotary motion, up to comparatively high angles of incidence 
(about 350). 

Suction of the boundary layer provides also a specially simple method 
for diminishing a tendency to autorotation 3. At the ends of the wing, 

, 1 SCHMIDT, W., Beitrag zur Entwicklung eines autorotationsfreien, steil land­
baren Flugzeuges. Berlin, Dissertation, 1930. 

2 IRVING, H. B., BATSON, A. S., MEIDENS, A. L., Rolling and Side-Slip Experi­
ments on a Model Slotted Biplane of R.A.F. 31 Section. Br. A.R.C. R. and M. 
1240, 1929-30. 

3 SCHRENK, 0., Eine Miiglichkeit zur Unterdruckung der Autorotation von 
Tragfliichen. Zeitschr. f. Flugtechnik u. Motorl. 20, p.553, 1929. 
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slits in the upper side are arranged and prolonged so as to meet in the 
interior of the wing (Fig. 113). If the flow separates at one side of the 
wing there is a less powerful negative pressure at the slit on that side than 
at the other side; hence air flows through the slits and through their 

Fig. 113. Wing with slits for equalizing 
pressure. 

connecting passage in the wing's 
interior, air being sucked into the 
slit on the side where separation 
occurs. It follows that there is a 
tendency to pull back a separated 
boundary layer or at least to 
prevent a boundary layer from 
separating as early as it otherwise 

would. On the other side of the wing, air streams out from the slit, 
disturbing the flow and tending to produce separation or at least to 
diminish the lift. The slits therefore effectively equalize the conditions 
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of the flow at the two ends by 
increasing the lower and decreasing 
the greater lift. On account of the 
decrease of pressure at the ends 
of the wing, flow occurs through 
each slit even in normal flight, 
air being drawn in at the outer end 
and expelled at the inner end. This 
produces an undesired increase in 
drag which can, however, be 
reduced by subdividing the slits 
and joining symmetrically situated 
portions by special channels (indic­
ated by dotted lines, Fig. 113). 
Fig. 114 gives the results of auto­
rotation experiments on a wing 
similar to that shown in Fig. 113, 
first without, and then with, slits. 
The figure displays the relation 

ooo..~ between the ratio of the circulating 
w m M ~ ~ $ & @O 

J \ r\. 

--« velocity in stable autorotation (v) 
Fig. 114. Effect upon auto-rotation of slits to the wind velocity (u), as depen­
for equalizingpreSsl~~:) slits closed, b) slits dent variable, and the angle of in-

cidence as independent variable. 
Where autorotation did not of itself develop (rotary instability) it was 
initiated by forced higher revolutions (unstable autorotation) and the 
tendency to autorotation investigated. From the figure it is clear that 
the effect of the slits was to restrict considerably both the velocity of 
rotation and the range of values of the angle of incidence for which 
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autorotation was possible. In the wing with slits, it was possible to 
balance the small residual unstable moments by movements of the 
aileron. In the wing without slits, this was not the case. 

12. Influence of the Wing Contour on the Tendency to Autorotation. 
In addition to the effects due to shape of profile, the tendency of a wing 
to autorotation may be affected by the change of the profile along the 
span. It has already been mentioned in the preceding section that it 
is advisable to arrange for normal curved profiles at the middle of the 
wing and to change to thinner symmetrical profiles toward the ends. 
In the present section we shall consider, somewhat in general, the 
influence of this distribution of profile along the span, and in particular 
the influence of the form of the contour. As explained in 8, autorotation 
arises because the flow separates from the wing on one side so that the 
lift there decreases with increasing angle of incidence. The danger of 
this increases as the magnitude of the lift coefficient C L at the ends 
of the wing becomes larger in comparison with the mean value for the 
wing as a whole. Conversely, the danger is diminished if the lift coefficients 
are smaller at the ends than in the middle. If we assume equal values 
of C L max for equal wing profiles, then in the latter of the two cases 
above noted, separation will first occur at the middle part of the wing 
and will, therefore, produce no considerable rolling moment. The effect 
of diminished lift, the horizontal tail surfaces remaining unchanged, 
is a tendency to reduce the angle of incidence, and the probability that 
this angle will increase sufficiently to produce separation at the ends 
is thereby very much reduced. Moreover, the strong concentration of 
lift over the two separated regions at the ends of the wings increases 
the magnitude of the induced downward velocities in these regions and 
thereby reduces the effective angle of incidence. The distribution of the 
lift coefficient is principally determined by the contour of the wing. For 
elliptic lift distribution and elliptic wing boundary, the chord is exactly 
proportional to the lift per unit length of span so that the lift coefficient 
is constant. If the contour of the wing is somewhat fuller than an ellipse 
and the angle of incidence is constant across the span, the fullness of 
the lift distribution curve will not increase as rapidly as that of the 
contour (see III 5 Figs. 59-61). The ratio of the chord to the lift per 
unit length increases therefore toward the ends of the wing, while the 
lift coefficient decreases in the same direction. For constant angle of 
incidence, the opposite is true if the fullness of the wing contour is less 
than that of an ellipse (trapezoidal form). The wing with fuller contour 
shows, therefore, less tendency to autorotation than one less full. In 
twisted wings the corresponding relationships are rather more difficult 
of analysis. It is possible to so arrange the twist of the wing that in spite 
of trapezoidal contour the coefficient of lift is smaller at the ends than 
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in the middle. The relationships involved and their influence on the 
induced drag have been investigated in detail by J. Hueber!. 

13. Influence of the General Arrangement of the Airplane Parts on 
the Tendency to Autorotation. The dominant factors influencing the 
tendency of an airplane to execute autorotation at usual angles of 
incidence are the wing profile and contour; these are therefore the 
dominant factors in determining a tendency toward normal spin. For 
excessive angles of incidence, corresponding to flat spin, the dominant 
factors are, on the other hand, the general arrangement of the wings 
and tail-plane structure. It has already been noted that screening of 
the upper wing by the lower wing of a biplane may produce a marked 
tendency toward flat spin. A further important factor is the damping 
of yaw by the fuselage and vertical tail surfaces. From the aerodynamic 
standpoint a large rudder and fin at a great distance from the center 
of gravity are advantageous in preventing flat spin. It should, however, 
be observed that increase in the area of the vertical tail surfaces will 
in general also increase the mass and the moment of inertia about the 
vertical axis, and this will increase the tendency to spin. Similarly, 
any lengthening of the fuselage intended to increase the distance of 
the tail-plane structure from the center of gravity involves a like 
unfavorable increase in the moment of inertia. Another important factor 
is the relative position of rudder, fin, stabilizer and elevator; for since 
with autorotation at large angles of incidence the tail unit is under 
oblique flow from beneath and from the side, the danger arises that 
the vertical tail surface may enter the wake of the elevator and stabilizer 
and thereby become ineffective. On this account it is advisable to have 
the rudder and fin project at least partially beneath the elevator and 
stabilizer and to see that ~he elevator is given a gap to permit of this 
arrangement.' . 

14. Yawing Moment Due to Yawing. If an airplane is yawing as for 
example, during flight in a horizontal curve, the outer end of the wing 
has a larger velocity than the inner one. It follows that all impressed 
forces (lift and drag) are increased at the outer end, and decreased at 
the inner. The change in drag produces a moment opposed to the 
motion and therefore increases the difficulty of producing the desired 
turn at the same time damping undesired rotary movements. If in 
normal flight at speed Vo, the drag on a surface element ody of the wing 
at distance y from the plane of symmetry is denoted bydDo= (8Do/8y)dy, 
its value for a different velocity V is approximately 

dD = dDo (;J2 (14.1) 

1 HUEBER, J., Der verwundene Trapezfliige!. Zeitschr. f. Flugtechnik u. Motor!. 
24, p.307, 1933. 
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The change of drag is therefore given by the formula 
V2 V2 dD-dD = dD - " (14.2) o 0 I'll 

In calculating the yawing moment the change of drag must be multiplied 
by y, the distance of its line of action from the plane of symmetry. 

If further there is an angular velocity W z about the vertical axis, then 

V = Vo + YWz (14.3) 
and the following expression is obtained for the yawing moment 

b 

M = f8~o [(1 + Y;:zr-l]ydy (14.4) 
-b 

For small angular velocities (y wz/Vo « 1) we have 
b 

M=f2-~ Wz y2 dy (14.5) 
8 Y Vo 

-b 

If the total drag of the wing is therefore given we see that the moment 
increases according to the extent to which the drag is concentrated at 
the ends of the wing. The distribution of induced drag across the span 
(see III) is of special importance in this respect. It should, however, 
be noted that yawing changes the distribution of lift and hence also 
the vortices which are sent off, so that the effect of the various velocities 
considered above must be supplemented by the effect due to the variation 
of lift distribution. The latter produces a diminution of the yawing 
moment (see Wieselsberger's investigations mentioned in the following 
section). 

In complete airplanes the rudder and fin assist the wing very 
considerably in hindering yawing motion. The effect is very similar 
to that of the elevator and stabilizer in pitching (see 7). 

15. Rolling Moment Due to Yawing. The rolling moment which 
arises in yawing is more important than the more or less pronounced 
damping moment which is brought into play. As mentioned in the 
preceding section the greater velocities of the outer end in a yawing 
turn have the result that all forces, including the lift, are increased 
at the outer, and decreased at the inner, end. These alterations of lift 
produce a wIling moment tending to raise the outer end. This property 
is connected with lateral instability, discussed in 19. This rolling moment 
can be eliminated by ensuring angles of incidence for negative lift in 
the neighborhood of the ends. These parts of the wing are then subject 
to increased negative lift when the velocity increases and therefore 
produce a rolling moment in the opposite sense. On account of the larger 
leverage of forces at the ends of the wing a comparatively small negative 
lift is sufficient to compensate the moment due to the rest of the wing 
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so that the resulting lift is positive even when the rolling moment is 
completely balanced. Nevertheless this procedure decreases the lift-drag 
ratio very considerably and in general no attempt is made to do more 
than reduce the angles of incidence near the ends of the wing. The 
"Etrich-Taube" wing! designed after the seed of the Zanonia showed 
this feature very clearly. T:he splendid stability properties of this wing 
are well known. It had, however, to be abandoned with increased 
demands on the output of airplanes. 

In determining the theoretical value of the rolling moment, an 
approximation can be obtained by using the lift distribution in rectilinear 
flight as a basis and assuming that the lift at any point during curvilinear 
flight is proportional to the square of the velocity at this point. If y is 
the distance of a point from the middle of the wing and r (y) is the 
distribution of the circulation along the span in rectilinear flight, it 
follows that if the velocity of the middle of the wing is V 0 and the 
velocity of yawing is W z then the radius of curvature of the path in 
steady flight is R where R = Vo/wz. Further, the velocity V (y) at 
any point y is given by the equation 

. ( Y )' V(y) = Vo+wzy= Vo l+lf (15.1) 

and hence the lift on an element between y and y + d y is given by 
the expression 

dL=eVor(y)(l+ W;~1jr~eVor(Y)(1+2 W;oY) 

= e Vo r (y) (1 + 2 ~ ) (15.2) 

and the rolling moment is therefore of amount 
+ b b b 

Mq = J y d L = 2 e W z J y2 r (y) d y = 2 e i; J y2 r (y) d y (15.3) 
-b -b -b 

b 

In this expression e Vo J y2 r (y) d y is the moment of inertia of the 
-b 

lift distribution along the span. 
The assumption on which the above is based, viz., that the 

circulation is directly proportional to the velocity, and therefore 
that the lift varies as the square of the velocity, is not quite accur­
ate, for as the circulation is changed it affects the inducing field 
of the vortices proceeding from the wing and this reacts upon the 
distribution of circulation. In consequence, the lift and circulation 
vary to a smaller extent than was assumed and hence the actual value 

1 ROZENDAAL, J., Die "Etrich-Taube". Zeitschr. f. Flugtechnik u. Motorl. 4, 
pp. lO3, 192, 258, 271, 1913; and 6, pp.39, 182, 204, 1914. 
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of the moment is smaller than as given by (15.3). In attempting to 
calculate the reaction of the variation of circulation upon the circulation 
distribution according to the usual methods of airfoil theory, it must 
be observed that the vortices leaving the wing travel, not in straight 
lines, but in paths curved to correspond to the airplane's path. Hence 
a more marked decrease in the effect on the circulation and also a smaller 
moment are produced in curved flight than in rectilinear flight. The 
theory of the relations involved has been developed by C. Wieselsberger 1 

for a wing of elliptic outline with constant profile and angle of incidence; 
comparison with experimental results produced tolerable agreement. The 
decrease of moment was found to depend upon the aspect ratio of the 
wing. The calculated decrease for the wing used in Wieselsberger's 
experiments and having 81(2 b)2 = 0.2 (7(,/4) was 14-1/2 per cent while 
the actual observed diminution had an average value of 19 per cent. 

16. Yawing Moment Due to Rolling. We have seen that if an airplane 
has a rotation about its longitudinal axis in addition to its principal 
motion, the relative angle of incidence is increased for the descending 
and decreased for the ascending wing. Such a change of angle of incidence 
produces a yawing moment in addition to the rolling moment. The 
former arises through the variation of profile drag with angle of incidence 
and on account of the fact that the oblique approaching flow changes 
the direction of the lift on the profile, producing a component in the 
direction of motion. Considerations similar to those previously used in 
determining the rolling moment due to rolling show that the yawing 
moment due to rolling is 

1 f (dOD ) MR=2eVwx ~-CL y2 cdy (16.1) 

If (dCDld ex. - CL ) is positive, the yawing moment tends to rotate the 
descending wing backward. For high values of the lift-drag ratio, 
generally C L > d C Did ex. and hence the discriminant (d C Did (J. - C L) is 
negative. It becomes positive almost without exception, however, for 
large angles of incidence in the neighborhood of the lift maximum. 
Hence the yawing moment due to rolling changes its sense when the 
angle of incidence has increased sufficiently. This expression may also 
become positive for small angles of incidence accompanied by corre­
spondingly small values of CL . In such cases, however, the drag 
diminishes somewhat with increasing angle of incidence, d C Did ex. is there­
fore negative, and dCDld ex. - CL is still for the most part negative. 
Experimental results may be found, for example, in a report made 

1 WIESELSBERGER, C., Zur Theorie des Tragfliigels bei gekriimmter Flugbahn. 
Zeitschr. f. angew. Math. u. Mech. 2, p. 325, 1922. For further experiments see 6. g. 
the English report L. W. BRYANT, A. T. HALLIDAY, Measurement of Lateral 
Derivatives on the Whirling Arm. Br. A.R.C., R. and M. 1249, 1929. 
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by Irving and Batson 1. This report was especially concerned with 
the differences shown by wings of varying thickness. It appeared that 
in thicker wings the yawing moment changes sign at angles of incidence 
somewhat smaller than for thinner wings; the amount of yawing moment 
then increases rapidly, reaching values much higher than those corre­
sponding to thinner wings in the same conditions, and then falls very 
quickly. 

17. Effect of Ailerons. Fundamentally, an aileron is a special 
asymmetric arrangement of the wings with flaps as,described in III 13. 
Each half of the wing has its own special flap which in most cases 
extends only along the outer part of the wing. Both flaps are manipu­
lated in opposite directions so that the lift is increased on one side and 
decreased on the other, thus producing a rolling moment under the 
control of the pilot. The difficulty of obtaining a quantitative estimate 
of the effect of ailerons is increased by the fact that their efficiency 
falls away at their ends. At the outer parts, in fact, the effect of ailerons 
diminishes approximately in proportion to the lift of the wing itself. 
In order to estimate the decrease at the inner ends it is possible to 
consider an infinitely long wing having a discontinuity in the angle 
of incidence at one point. The theory of the lift distribution in the 
neighborhood of such a discontinuity is available 2 (Division E IV 11). 
It has not been possible to deduce, however, from the knowledge of 
single end effects any sufficiently reliable rule for calculating the combined 
result of two such effects 3. For a theoretical discussion of this matter, 
consideration must be given to the effect of all irregularities in the 
form of the wing and to this class the ailerons when in action belong. 
This problem can be solved without serious difficulty, in view of the 
development by 1. Lotz of a practicable procedure for calculating the 
lift distribution of wings with arbitrary distribution of chord and angle 
of incidence 4 (Division E IV 12). Information concerning the relation 
between the size of ailerons and the magnitude of their effects has been 
supplied by experiments of Heald and Strother 5; and further results 

1 liVING, H. B., and BATSON, A. S., Rolling Experiments on an Airfoil of R.A.F. 
32. Section. Br. A.R.C., R. and M. 1182, 1928. 

2 BETZ, A., PETERSOHN, E., Zur Theorie der Querruder. Zeitschr. f. angew. 
Math. u. Mech., Vol. 8, p.253, 1928. 

3 PETERSOHN, K, Theoretische und experimentelle Untersuchung der unter 
Einwirkung von Querrudern an Tragfliigeln auftretenden Momente. Luftfahrt­
forschung, Vol. 2, p. 40, 1928. 

4 LOTZ, 1., Berechnung der Auftriebsverteilung beliebig geformter Fliigel. 
Zeitschr. f. Flugtechnik u. Motorl. 22, p. 189, 1931. 

5 HEALD, R. H., and STROTHER, D. H., Effect of Variation of Chord and Span 
of Ailerons on Rolling and Yawing Moment in Level Flight. U.S. N.A.C.A. Rep. 
298, 1929. 
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concerning the effects of ailerons are contained in the results of ex­
periments on flaps and ailerons 1 mentioned in III 14. 

Since use of the ailerons usually also causes an airplane to side-slip, 
it is of interest to known how far the action of the ailerons is interfered 
with by side-slip. Information on this point may be obtained from the 
experimental results represented in Figs. 97 to 105 (thin line curves). 

18. The Working of the Vertical Tail Structure (Rudder and Fin). 
Considered by itself the vertical tail structure works in much the same 
way as the horizontal tail structure (elevator and stabilizer) and as 
described in III 14. There is an appreciable difference, however, when 
one considers the effect of this unit in relation to the whole airplane. 
The horizontal structure almost always acts in conjunction with a com­
paratively large main wing. If the airplane is turned about the lateral 
axis by the use of the elevator, very large changes of lift appear even 
with small changes of angle of incidence. These changes of lift incline 
the path of the airplane either up or down in such fashion that the 
relative angle of incidence is only slightly changed. In side-slip, however, 
the lateral forces appearing are generally relatively small. With use 
of the rudder, a lateral force appears on the tail-plane, which accelerates 
the airplane in a lateral direction and produces, in reaction with the 
inertia of the airplane, an angular moment about the vertical axis. 
The airplane is actually turned in direction out of its path as a result 
of the action of this moment; but for want of sufficient lateral force, 
it continues to move, in general, in its old direction; a side-slip is thus 
produced. The effect of this is that the vertical tail structure is subjected 
to a strong lateral flow and the action of the projecting rudder is more 
or less nullified. In this case therefore the airplane is only very slightly 
influenced by the rudder. In order to produce the considerable lateral 
force necessary to balance the centrifugal force which arises when an 
airplane executes a curved path in a horizontal plane, the plane must 
be turned about its longitudinal axis so that lift and gravity produce 
a resultant in a horizontal direction. This lateral inclination which is 
necessary for lateral steering, can be produced at will by the pilot by 
moving the ailerons. As already noted, however, a moment about the 
longitudinal axis almost always occurs in side-slip, and this automatically 
produces a lateral inclination in the direction necessary for lateral steering. 
It was seen also that this effect can be increased by using dihedral or 
sweepback dispositions of the wings. In addition to this, a moment 
which increases the lateral inclination is produced by the fact that 
the outer wing, in a turn, has a higher velocity than the inner wing, 
and therefore experiences a larger lift (see 15). 

1 HIGGINS, G. J., and JACOBS, EASTMAN N., The Effect of Flap and Ailerons 
on the N.A.C.A. M-6 Airfoil Section. U.S. N.A.C.A. Rep. 260, 1927. 
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19. Lateral Stability. After we have analyzed the effects of the 
individual components of motion arising in an asymmetrical flight, we 
have still to form an estimate of the resultant effect of all these influences. 
It should, however, be emphasized that the resultant effect of various 
concurrently effective causes cannot in many cases be obtained by 
simple superposition; for the combination of such causes may involve 
supplementary effects. Usually, however, these additional effects are 
of moderate magnitudes and it is therefore possible by superposition 
to obtain at least a general idea of the resultant effect. The smaller 
the unsymmetrical movements are in comparison with the symmetrical 
ones, the more accurate will be the picture developed in this manner. 

It was stated in 15 that the rolling moment due to yawing may 
easily tend to produce instability of course. We shall now examine 
this condition in more detaiF. Let the airplane be supposed to have 
a small lateral inclination to the left. Lift and gravitation give then 
a resultant directed toward the left causing the airplane to side slip 
in the same direction. As a result of weather-cock stability, the side­
slip entails a yawing turn to the left, and this in turn produces a rolling 
moment due to yawing and thereby increases the initial lateral inclination. 
The consequence of such a chain of effects would be continual increase 
of the unsymmetrical movement, i. e. marked instability. Two other 
effects are, however, also involved, viz. the rolling moment due to yaw 
and the yawing moment due to yawing, both of which oppose the 
instability. In consequence of the side-slip, the first of these moments 
acts to diminish the initial lateral inclination, i. e. to oppose the rolling 
moment due to yawing. Its magnitude increases with the angle of yaw. 
The latter is diminished by weather-cock stability (yawing moment 
due to yaw) but is maintained at a definite value in consequence of the 
damping of the motion (yawing moment due to yawing). In accordance 
with this, yawing moment due to yaw and rolling moment due to yawing 
are destabilizing factors, while the opposite is true of rolling moment 
due to yaw and yawing moment due to yawing. Lateral stability is 
present when the product of the first two moments is greater than that 
of the other two. As long as the moments are linear functions of the 
angle of yaw, or of the velocity of yaw, this criterion of stability' is 
independent of the particular values of these quantities and is therefore 
a quantity characteristic of the airplane. If the condition noted is 
satisfied, so that the airplane is laterally stable, it will recover from 
a disturbance and return to rectilinear flight without the use of the 
controls. If the condition is not satisfied, however, a small initial 
disturbance tends toward continual increase, unless controlled by suitable 
use of the controls. 

1 MATHIAS, G., Die SeitenStabilitl1t des ungesteuerten Normalfluges und ihre 
technischen Vorbedingungen. 272. Bericht der DeutschE'n Versuchsanstalt fur Lnft­
fahrt. Zeitschr. f. Flugtechnik u. Motorl., Vol. 23, p.193, 1932. 
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Regarding this criterion of stability, the following points should be 
especially noted. In order to produce lateral stability, it is necessary 
to make the yawing moment due to yawing large and the yawing 
moment due to yaw small. An increase in the size of the rudder and 
fin increases both moments however, and thus defeats the intention of 
increasing one while decreasing the other. On the other hand, it is 
possible to increase the yawing moment due to yaw by modifying the 
forces on the fuselage (see 5). If a large rudder and fin are chosen in 
combination with a fuselage having pronounced negative weather-cock 
stability, the yawing moment due to yaw is the difference of the moments 
due to tail and fuselage, while the fuselage does little to alter the damping 
effect of the yawing moment due to yawing. Hence the latter moment 
is large as a result of the part played by the rudder and fin, while the 
former is small on account of the negative contribution from the fuselage. 

As seen previously, it is advisable, in order to produce static lateral 
stability, to keep the weather-cock stability small. If too small, however, 
phenomena of dynamic instability often result. When this occurs the 
airplane performs lateral oscillations. 

This subject is treated in more detail in Division N (Dynamics of 
the Airplane). 
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DIVISION K 

AIRPLANE BODY (NON LIFTING SYSTEM) DRAG 
AND INFLUENCE ON LIFTING SYSTEM 

By 

C. Wieselsberger, 
Aachen, Germany 

EDITOR'S PREFACE 

The present Division is concerned with those features of the airplane 
structure which, though necessary from the requirements of structure, 
purpose and utility, may be and usually are harmful from the standpoint 
of aerodynamic efficiency. Under the conditions of conventional design 
an airplane has a body for the accommodation of a power plant and for 
pilot, personnel and pay load; and likewise a landing gear to enable it 
to take off from and return safely, to the ground. Structurally it will 
have combinations of struts, wires, etc., as required for strength, but 
which take relatively a heavy toll in terms of increased drag and its 
consequences. 

The Division opens with a general discussion of the problems pre­
sented by the presence of these non-lift producing elements of the 
structure, and including in particular a consideration of the added drag 
and methods for its reduction to a minimum. 

One of the important items under this general heading is the influence 
of the airplane body on the wings and in Chapter III of the Division, 
consideration is given first to a theoretical approach to this problem, 
followed by a statement of experimental results. 

From the nature of the effects due to such features as struts, wires, 
landing gear, etc., the chief reliance must be on experimental results 
and throughout the Division will be found a considerable amount of 
such information together with references to the original sources of 
the more important investigations of this character. 

w. F. Durand. 

CHAPTER I 

DRAG OF THE BODY. 

1. Introduction. The body of an airplane cannot, as a rule, be formed 
with complete reference to the conditions for small resistance. The reason 
for this is found in the fact that the fuselage or body, in most cases, 
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carries the power plant of the structure and that the conditions for 
a satisfactory operation of the engines fix special requirements which 
are usually inconsistent with the conditions for minimum body resistance. 
In cases where the engines are carried in special nacelles, these particular 
requirements apply to the form and construction of such nacelles. In 
particular, the cooling of the engines requires that the part of the engine 
to be cooled or the cooling installation be exposed in the free airstream. 
This requirement which, with water cooled engines, means the installation 
of a radiator, or, with air cooled engines, either the projection of the 
cylinders beyond the body into the free streaming air, or provision for 
a flow of fresh air over the cylinders, has always given rise to an additional 
resistance of very considerable magnitude. As these matters will receive 
consideration in Division T, it will not be necessary here to go further 
into the subject. 

There are, moreover, other controlling conditions which may fre­
quently make impossible the realization of a body form with the best 
aerodynamic characteristics. An extreme case is, for example, the body 
or hull of a flying boat, for the form of which hydrodynamic conditions 
must largely control; because in such case, good conditions for take 
off and return to the surface of the water as well as provision for the 
necessary stability in a sea-way are absolutely essential. 

In the design of the body form, due regard must also be given to 
those parts of the structure which connect therewith or which extend 
therefrom, such as wings, landing gear, empennage. Furthermore, 
conditions for good visibility for the pilot as well as protection for his 
body, place further requirements on the form of the airplane fuselage. 
There results, in consequence, in the design of an airplane, a body form 
departing more or less from that of a streamlined, geometrical form 
of revolution-the ideal from the viewpoint of least resistance. 

If a comparison be made between the fuselage form of a number 
of different aircraft, even when these craft serve the same purpose and 
are of nearly the same size, a very great variety of fuselage form will 
be found with corresponding great differences in the air resistance. 
It thus appears that it is not possible to make any statements generally 
valid regarding the magnitude of the resistance of the airplane body. 
Furthermore, the character of the body is influenced and its resistance 
is modified by interaction with the wings, the propeller, and other parts 
of the structure. Moreover it must be noted that even in case the 
resistance of individual elements were known, the resistance of the 
structure as a whole cannot be determined by a simple addition of these 
individual values. The former may be greater· or less than the latter. 
A satisfactory determination of the body resistance is to be found only 
by direct experimental means for each particular case. In many cases, 
then, when it is a matter of model experimentation, it is preferable to 

9* 
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deal with a model of the entire structure, because, as noted above, the 
mutual interference of the various elements renders unreliable any simple 
addition of the resistance of the individual elements. 

The aircraft designer may often desire, in a preliminary way and 
without recourse to experimental research, to set up an approximate 
schedule for the drag of the structure. For this purpose it may be 
desirable to give, in the following paragraphs, some general statements 
and rules which may be employed for such purpose. On account of 
the large amount of material of this character available, the choice 
must be limited to a relatively small number. 

2. The Ideal Fuselage. The ideal airplane body, which with certain 
groups of aircraft (racing craft, for example) may be very nearly realized, 
comprises a streamlined form symmetrical about the longitudinal axis, 
similar to approved forms for airships. The resistance coefficients for 

~ 
such forms are extremely small. 

C "f3!Cm2~ Let 
~~" - D=drag. 

. v = 18.Sm/sec I 
, q = dynamic pressure = - (! V2 

~l::--~-.+ --~l S = max. cros~ ~ection. 2 

~-----+- 8tem " 

Fig. 1. Stream-line body with circular and 
square cross-section. 

CD = drag coeffICIent. 

Then we have, 
D 

CD = qs- (2.1) 

In this form, experiment with models gives values of this coefficient 
down even as low as 0.045. Such a form of streamlined body is shown 
as in Fig. 1, in one case with 

Vito 0. circular and in the other - Circular Sedion -e-
/ -Square Sedion ~ 
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Fig. 2. Lift and drag of two stream-line bodies. 

with square cross section. 
The form with square sec­
tion is so related to that with 
circular section, that at each 
point the section areas are 
the same. 

In Fig. 2 are given the 
results of wind tunnel mea­
surements, carried out at a 
wind velocity of 18.5 mis, 
showing the relation be­
tween the drag coefficient as 
above and the lift coefficient 

(CL = L/q S, where L = lift) for various angles of attack. The model 
with square section was turned (for change of incidence) once in a plane 
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parallel to a side and once in a plane parallel to a diagonal. As the diagram 
shows, the form with circular section has the smaller resistance and 
experiences also a notably smaller lift than the form with square section. 
These indications were derived from model measurements. With full scale 
forms, on account of higher Reynold's numbers, somewhat lower values 
for the drag coefficients are to be anticipated. A formula giving 
approximately the reduction of drag for increase in Reynold's number 
is given in the following section. 

3. Scale Effect. Let V denote the velocity and l some characteristic 
dimension of the airplane. Then, in accordance with a proposal of 
W. S. DiehP the resistance D of the body may be expressed in the 

following form: D = Kn (V l)" (3.1) 
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Fig. 3. Correction factor for scale effect. 

where K D is a constant peculiar to the form of the body and n is an 
exponent which also, in general, is different for different bodies. However, 
experiments show that for fuselages, engine nacelles, seaplane floats 
and bodies of similar form, the exponent n varies but slightly and holds 
a value close to 1.9 so that, for such bodies, we have: 

D = Kn (V l)1.9 (3.2) 

For practical use, however, it is more convenient to write this formula 

in the form: ( Vl )2 
D = KgDm Vmlm (3.3) 

wherein, Dm, V"p lm relate to the model and D, V, l to the full scale body. 
In this form of the equation, Kg is not a constant, but can be expressed 
as a function of the ratio V ljV m lm and values can be taken in accordance 
with the diagram of Fig. 3. In this manner, having given the model 
resistance and conditions of test, the value of the full scale resistance 
for the proposed conditions is readily found, having regard to the influence 

1 Tests on Airplanes, Fuselages, Floats and Hulls, U.S. N.A.C.A. Report No.236. 
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of scale effect. Researches regarding the clifference between the resistance 
of full scale bodies and of models have also been carried out in Russia!. 

4. Actual Airplane Body. The actual airplane fuselage, on account 
of its less favorable form and especially on account of various projecting 
parts, will have a notably greater drag than the ideal form above 
considered. If to a given fuselage any other form of construction be 
added, there develops a reciprocal influence and, as already noted for 
such cases, the resultant overall drag cannot be found, having given 
simply the drags of the individual parts. Indeed it may be said that 
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Fig. 4. Effect of appendage on a st.ream-line body. 

by the addition of such a part of the existing fuselage, an entirely new 
body has been formed, the drag of which can only be determined by 
special research on this body itself. In order to indicate in some further 
detail the nature of this reciprocal influence, the results of Gertain 
researches on the subject may be given. 

These researches show that in the case of an element of construction 
(appendage) added to a well formed streamlined body, the resultant 
drag will be notably increased, even to a value greater than the sum of 
the individual drags. The Aeronautical Research Committee has carried 
out at Teddington 2 measures on a streamlined body to which was added 
at various points, a small flat disk normal to the surface. The disk 
was so adjusted as to just touch the body; its area was about 1/30 the 
maximum section of the body and the individual drags of the body 
and of the disk were approximately the same. 

1 MARTYNOV, A. K., Comparative Tests on a Full-size Fuselage and its Model. 
Transact. of the Centro Aero-Hydrodyn. Institute Moscou No. 430, 1931. 

2 Technical Report of the Aeronautical Research Committee, 1928-29, p.44. 
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For most of the locations of the disk, the resultant overall drag 
was greater than the sum of the individual drags. In the location of 
greatest increase-just aft of the maximum body section-this additional 
drag amounted to 1.8 times the drag of the disk itself in a free air stream. 

The observation that the overall drag, in such a case is maximum 
when the added body is located just aft of the major section of a stream­
lined form, has also been noted as the result of measurements made 
at the Aerodynamic Institute at Aachen, under a velocity of 30 m/s. 
The form of the body as well as the results of tests are shown in Fig. 4. 
To a streamlined figure of revolution 1360 mm. in length and 290 mm. 

c ---
~ No.3 c_ I 

No.1 <1= =--=====-~ 

c __ ;:::: :J C ~ 
No. 'I 

No.8 

c[ ~ 
==========-c 

Fig. 5. Forms of fuselage. 

in diameter was attached an appendage cylindrical in form 75 mm. in 
diameter, with axis at right angles to the direction of flow. This 
appendage was located first near the forward end and then at points 
every 50 mm. toward the after end. For each of these locations the 
overall drag D was measured and thence the value of the equivalent 

2D 
drag surface Fs = e V2 (4.1) 

was found. As is seen, the overall drag varies with the location of the 
cylindrical appendage. It is greatest when the location is about 3/4 the 
length of the body from the forward end. The individual drags of stream­
lined body and of cylinder are also given and from these it is seen that 
a simple addition of the individual values in no case gives the correct 
result. 

In Fig. 5 are shown certain fuselage forms as they must develop 
in practice, in part moreover with built in motors, although without 
other drag producing parts!. Model wind tunnel measurements show 
for these forms, drag values as given in Table 1 (p. 136). 

1 DIEHL, W. S., Engineering Aerodynamics, p.81. 
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TABLE 1. 

Dimensions Measured 
Drag at I Cross Length section 40 mijhr 

lb. ft. sq. ft. 

1.668 0.0459 0.050 
1.669 0.0472 0.012 
1.663 0.0550 0.021 
1.662 0.0662 0.068 

SIdion B -B 

Fig. 6. 

Absolute 
Drag 

Coeffi-
cient 
On 

0.266 
0.062 
0.094 
0.251 

------=~ -<2 d_ 

Fig. 7. 

-- ---=--30--Ed 
Fig. 8. 

Fig. 9. 

The large value of the drag 
for model No.1 is to be ex­
plained by the abrupt non­
rounded form of the nose of 
this model. 

Especially notable are the 
results of tests made in the 20 ft. 
wind tunnel at Langley Field 
on an airplane body full scale 
of about 20ft. length 1. A Wright 
Whirlwind air cooled engine was 
installed in the fuselage and the 
investigation was directed to­
ward a study of the extent to 
which the overall drag could be 
reduced through forms of cowl­
ing or shrouding about the 
engine. The fuselage and cowl­
ing are shown in Figs. 6-9. 
In Fig. 6 the engine is uncowled 
and freely exposed. Following 
this, the motor was, to an increas­
ing degree, covered by cowling 
and the nose rounded off, see 
Fig. 7. In Fig. 8 the nose is 
pointed and the propeller hub is 
provided with a spinner. Finally 
the engine was surrounded by 
a ring with airfoil section, see 
Fig. 9, so that the cylinders of 
the engine were placed in a ring 
formed channel through which 
the air streamed from front to 
rear. It has been shown that 
such a ring which is often known 
as N.A.C.A. cowling or the Tow­
nend Ring from the English 
form of this device, may in 
certain cases bring about a 
most notable reduction in the 

Figs.6-9. Full scale tests with an airplane body. overall drag. In comparison with 
the drag with the uncowled 

1 WEICK, F. E., Drag and Cooling with Various Forms of Cowling for a "Whirl­
wind" Radial Air-Cooled Engine, II. U.S. N.A.C.A. Report No. 314. 
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motor, Fig. 6, such a ring may cause a decrease in the drag of about 
50 per cent. 

It is clear, however, that in all cases where it is desired to thus 
reduce the drag due to the engine, regard must be given, not alone to 
the reduction of the drag, but also caution must be exercised that the 
cooling of the engine be not unfavorably affected. Experimental research 
thus far carried out, together with experience gained from practical 
applications, show that by the use of cowling devices of the character 
referred to, a satisfactory cooling of the motor can be realized and 
abundant use of these devices in aircraft of all types has shown that 
such use is very advantageous. It has, however, been noted that the 

TABLE 2. 

Fig. I 
Fuselage and Absolute 

drag 
No. Cowling engine drag coefficient 

I kg at 100 mph CD 

I 
! 

1 6 Engine uncowled I 64 0.52 
2 7 Nose rounded 62 0.50 
3 8 Spinner 60 0.48 
4 9 Complete cowling (ring) 

I 
33 

I 

0.27 
5 - Engine and wind shields I 12.8 0.10 

removed and cockpit covered, 

reduction in the drag is not, in all cases, as great as above indicated. 
With certain body forms, the addition of such a ring has brought only 
a small reduction in the drag. In any case it is very important that, 
through special examination, the form and proportions of such an 
installation be adapted to the fuselage on which it is to be placed 1. 

The principal results with the fuselage above referred to are given 
in Table 2. The drag is here expressed in relation to the principal 
section of the fuselage which had an area of 10.7 sq. ft. It will be seen 
that the two changes noted under 2 and 3 produced but little effect, 
while the complete cowling ring as shown in Fig. 9 reduced the drag 
to about one half the uncowled value. 

The notable decrease in the resistance of a circular disk fitted with 
a Townend ring is shown by a report of experiments carried out by 
the inventor of the ring2. The form of the ring and the decrease in the 
resistance, expressed as the ratio of the resistance of the disk with 
ring (R) to the resistance without ring (Ro) is shown in Fig. 10. It may 

1 GOUGH, M. N., Effect of the Angular Position of the Section of a Ring 
Cowling on the High Speed of an XF7C-l Aeroplane. U.S. N.A.C.A. Technical 
Note No. 355. 

2 TOWNEND, H., The Townend Ring. Journal of the Royal Aeronautical 
Society, Vol. XXXIV, October, 1930. 
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be seen, from this diagram, that the best results are reached when the 
radius of the ring is about 1.5 times that of the disk. In this case, the 
reduction of the disk resistance is about 63 per cent. It may also be 
noted that the addition of a wind­
shield and an open cockpit to a smooth 
body surface without motor (see No.5 
of Table) for which the drag at 100 mph 
is 28 lbs., causes an increase of drag 
of 141bs., that is, of 50 per cent of 
the smooth body drag. 

8 

'I~ 

~ lTT E--f!---
¥ 

0 
to t? t¥ f.Il 1.8 

R r 
Fig. 10. 

Circular disk fitted with Townend ring. 

eo 

Orag of fllselage 

Increase in drag due fo engine 

" n ()()cKpif 
• "windshield 

• n lail plane 

Orag oflanding gear 

Fig. 11. Measurements of the fuselage 
of a Sperry Messenger plane. 

A similar research regarding the influence of various forms of wind­
shield on body drag has also been carried out by E. P. Warner and 

Haximum C'fVJss-$eclionallll'ea o.f86sq:fl. 

Fig. 12. 

to which reference may 
be made l . 

Further measurements 
on the fuselage of a 
Sperry Messenger plane, 
full scale, have also been 
carried out in the 20 ft. 
N.A.C.A. tunnel at Lang­
ley Field 2. The fuselage, 
about 17.7 ft. in length, 
was fitted with an air 

cooled three cylinder radial engine and was further fitted with 
landing gear and empennage. These measurements are of especial 
interest and value because they serve to indicate in what manner the 
overall drag is made up from the drags of the individual elements. 

1 WARNER, E. P., Wind Tunnel Tests of Fuselages and Windshields, U.S. 
N.A.C.A. Technical Note No. 226. 

2 WEICK, F. E., Full Scale Drag Tests on Various Parts of Sperry Messenger 
Airplane, U.S. N.A.C.A. Technical Note No. 27l. 
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The proportionate shares of the various parts, taken at a wind velocity 
of 80 mph, are shown schematically in Fig. 11. Especially notable is 
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the high value of the drag due to the landing gear which represents 
nearly 40 per cent of the total. Likewise it is seen that the increase 
in the drag due to the engine is very considerable. 
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Further measurements of airplane bodies, full scale, have been carried 
out in the 20 ft. wind tunnel by E. F. Weick!, O. W. Schey 2 and 
W. H. Herrnstein 3 giving further data of interest and value regarding 
fuselage drag. 

In the case of flying boats the body or hull, due to hydrodynamic 
requirements, must be given a notably different form as compared with 
that for land aircraft, and in consequence different values of the drag 
are to be anticipated. The British Advisory Committee for Aeronautics 
has carried out at Teddington a number of wind tunnel measurements 
on models of flying boats 4 of which a brief abstract will here be given. 

The models which were 35 to 48 inches long were tested almost 
entirely at a zero angle of incidence (line A B, Fig. 12 parallel to the 
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Fig. 17. Resistance of flying boat hulls. 

wind). The side elevation and sections of the boat are shown in 
Figs. 12-16. The drag coefficient Cn (computed with reference to the 
principal section) in relation to velocities of the wind over the range 
from 20 ft/sec. to 80 ft/sec. are given in the diagram of Fig. 17. As may 
be noted, the values of the drag coefficient are relatively good-a result 
which may be referred to the smooth form without projecting parts, 
and in particular to the excellent rounded form at the bow. With 
reference to the hydrodynamic characteristics of flying boats and of 
floats, see Division S. 

1 WEICK, F. E., The Drag of a J-5 Radial Air-Cooled Engine, U.S. N.A.C.A. 
Technical Note No. 292. 

2 SCHEY, O. W., JOHNSON, E., and GOUGH, M. N., Comparative Performance 
Obtained with XF7c-l Airplane Using Several Different Engine Cowlings, U.S. 
N.A.C.A. Technical Note No. 334. 

3 HERRNSTEIN, W. H., Full Scale Drag Tests on Various Parts of Fairchild 
(FC-2W2) Cabin Monoplane. U.S. N.A.C.A. Technical Note No. 340. 

4 JONES, R., and PELL, G. N., The Air Resistance of Flying Boat Hulls, Br. 
A.C.R. R. and M. 461, 1918-19. 
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CHAPTER II 

PARASITIC RESISTANCES 1 

141 

1. Drag Due to Various Parts of the Structure. In the complete 
structure of an aircraft are found various parts either of the structure 
or of the equipment which, like the body, take no part in the development 
of lift and the drag of which may be grouped under the general head 
"parasitic". A knowledge of the value of such elements of the total 
drag is, for the purpose of the predetermination of the performance, 
of very great importance. Such parts of the structure as cables, wires 
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Fig. 18. Resistance of a sphere and related bodies. 

and struts belong in this category. Among items of equipment mention 
may be made of searchlights, generators, machine-guns, etc. As such 
items are usually of complicated form, their drag can, in general, be 
found only for each special case by wind tunnel measurements. For 
the purposes of an approximate estimate, however, effective use may 
frequently be made of a knowledge of the drag of geometrically 
simple bodies. To this end it will be of interest to note the drag 
coefficients of a few bodies of simple geometrical form. In Fig. 18 are 
given the values of such coefficients plotted on Reynold's number for 
a sphere, a prolate spheroid, an oblate spheroid and a circular disk. 
In the case of the disk, the value is nearly independent of the Reynold's 
number, while for the other forms there exists a so-called "critical" 
value of the number at which the value of the coefficient changes more 
or less abruptly. In the case of plane surfaces rectangular in form, 
placed normal to the direction of wind flow, the coefficient is closely 

1 See also Division 0 Chap. II. 
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dependent on the ratio of breadth to length. This relation is given in 
the diagram of Fig. 19. While for square plates (bll = 1.0) the coefficient 
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has a value approximately 1.1, 
the value increases for long 
rectangular· plates and for very 
long narrow forms (biZ "-l 0) it 
may reach the extraordinarily 
high value of 2.0. 

Next in the diagram of 
Fig. 20 is given the value of the 
coefficient as a function of the 

Fig. 19. Resistance of a rectangular plate. 

1.0 Reynold's number for the case 
of a cylinder with circular sec­
tion placed with its axis normal 
to the direction of the wind flow. 

The upper curve relates to the case of a cylinder of infinite length 
(dll "-l0) while for the lower curve the ratio is dll = 1/5. The coefficient 
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Fig. 20. Resistance of a cylinder (axis normal to wind direction). 

is seen to vary in marked degree with the Reynold's number, and the 
same as for the sphere, there seems to exists a critical value of the 
number. The drag of cables made up of individual wires is not far from 
that for smooth wires of the same diameter. In Fig. 21 are given the 
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results of certain Russian measurements for two cables! on the value 
of the drag coefficient as a function of the air speed. One of the cables 
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Fig. 21. Resistance of two cables. 
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had a diameter of 3.3 mm. and was composed of twelve single wires 
of a diameter of 0.7 mm. twisted over a core of hemp. The other had 
a diameter of 3.75 mm. and was 
composed of six single wires of a 
diameter of approximately 1.3 mm. 
twisted together. 
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Fig. 22. Resistance of a cylinder (axis 
parallel to wind direction). 

Fig. 23. Resistance of stream-line wires. 

In the case of cylinders placed with the axis parallel to the direction 
of stream flow, the drag depends on the ratio of length to diameter. 
For lengths up to about half the diameter, the drag is the same as 
for a disk. If the length is increased, the drag decreases up to a length 
of about 2~ diameters. Beyond this the drag increases with the length. 
In Fig. 22 are given the results of an investigation by G. Eiffe12 showing 
the ratio of the drag for a cylinder to that for a disk as a function of 
the ratio, length of cylinder to diameter. 

1 JURIEFF, B. N. and LEsllNIKOWA, N. P., Aerodynamical Investigations. 
Transactions of the Central Aero-Hydrodynamical Institute No. 33, 1928. 

2 EIFFEL, G., La resistance de I'air et l'aviation, Paris, 1910. 
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Since the drag of wires of circular cross-section is relatively high, 
use is now almost universally made, for all such tension members, of 
wire with a stream-line section-so-called stream-line wire. Values of 
drag coefficient for a few examples of stream-line wire are given in the 
diagram of Fig. 23 and it may be seen that through the use of such 
form of cross section the drag may be reduced to something like 1/4 the 
value for corresponding wire of circular section. These values, naturally 
hold only for the case where the long axis of the section is parallel to 
the direction of wind flow. For the case of oblique flow at an angle 
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Fig. 24. Stream·line wire in oblique now. Fig. 25. Forms of airplane struts. 

of incidence oc, the drag is much increased as is shown by the diagram 
of Fig. 24. However, the change in the values up to an angle of 5° is 
not significant, and then for greater values of oc, the value of the drag 
increases rapidly. Regarding the drag of stream-line wire including end 
connections-terminals or turn-buckles-reference may be made to data 
given by W. S. Diehl!. 

Airplane struts form an important item of the structure. Many 
different forms have been developed and their drag investigated. In 
many cases, forms of least resistance have been developed through 
empirical means, such as the American Navy strut No.2, the German 
strut T.B. No. 53 and the English strut 2 of which the profile is given 
in Fig. 25. The values of the drag coefficient with symmetrical flow are 
given in Fig. 26. The coefficient is reckoned with reference to the area 
of a front elevation and the Reynold's number with reference to the 
thickness of the strut. To the same end, R. H. Smith has developed 

1 Engineering Aerodynamics, New York, 1928. 
2 PANNELL, J. R., and LAVENDER, T., Experiments on the Forces Acting on 

an Aeroplane Strut. Br. A.R.C. R. and M. 183, 1915. 
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forms of strut by the use of Rankine's method of combined sources 
and sinks 1. The use of this method makes possible practically the 
determination of the velocity field in the neighborhood of the strut 
and the pressure distribution along the length of the strut. One of 
these forms of strut (Smith I) is also shown in Fig. 25 and the corre­
sponding drag coefficient in Fig. 26. By comparison it is seen that this 
strut is as good as the others. Other measures of the airforces on 
struts have been made by Cowley, Simmons and Coales 2, by Powell 3 

and by A. S. Hartshorn 4. In these references will be found also in­
formation regarding wind forces in the case of oblique position of 
the struts with reference to the direction of wind flow. A large 
number of results of measurements on the drag of cylinders, stream-
line-wire, struts, etc. are also to afi 

be found in the above noted report CO 
No. 33 of the Central Aero-Hydro­
dynamic Institute at Moscow. afo 

Under the head of parasite resis­
tance must also be included the aoa 

resistance due to surface friction. 
Since the laws of frictional resis-

aoo tance are elsewhere considered (see 

¥ 
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~ 

--...: ff.&.M.189 
"-'.dB.58 --

/VClI{f#ai ~ Smith I 

Division G) it will be necessary here 
only to deal with actual numerical ao 

¥ 
values with special reference to 
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those surfaces which find special 
application in aircraft construction 

Jld v-
Fig. 26. Resistance of airplane struts. 

1¥ 

and first with reference to fabric covered surfaces treated with "dope" 
or some like substance. We may write friction drag Dli' in the form: 

S'V2 
Dli' = Oli' e -2- (1.1) 

wherein S' = total surface in question. The coefficient of friction Oli' 
is to be determined by experiment and is dependent on the Reynold's 
number. In accordance with investigations on this matter made at 
G6ttingen 5 the coefficient Oli' for fabric covered surfaces treated with 
six coats of dope has the value 

( V) 0.15 
Oli' = 0.0375 Vl 

1 SMITH, R. H., Aerodynamic Theory and Test of Strut Forms, U.S. N.A.C.A. 
Technical Reports Nos. 311 and 335. 

2 Windforces on Aeroplane Struts and Wires. Br. A.R.C. R. and M. 256, 1916. 
3 The Resistance of Struts. Br. A.R.C. R. and M. 416, 1918. 
4 Wind Tunnel Tests of Seven Struts. Br. A.R.C. R. and M. 1327, 1929-30. 
5 PRANDTL, L., Ergebnisse der Aerodynamichen Versuchsanstalt zu Gottingen, 

1. Lief., p. 123. 

Aerodynamic Theory IV 10 
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where l is the length in the direction of flow, ')J = kinematic coefficient 
of viscosity, V = velocity. 

In Fig. 27 are given values of OF as a function of the Reynold's 
number on a logarithmic scale. 

~llllllllllllllllllllllllfl 
3 'I 6 MiJ5106 6 "6 8xl06 

{f-
Fig. 27. Coefficient of surface friction. 

2. Drag of Landing Gear and Floats. The presence of landing gear 
on land aircraft causes a notable increase in the parasite resistance, 
and the same result develops from the presence of floats of seaplanes. 
The forms of construction in actual practice are, however, so varied 
that it is hardly possible to lay down any general rules for the determin· 
ation of its value in any particular case. Since a rough practical figure, 
which may serve for an approximate estimation of value, may however, 

Fig. 28. Full scale landing gear. 

be of use, it may be assumed that the drag of the landing gear, in 
normal flight, will be some 15 to 20 per cent of the total drag of the 
entire construction. This may be supplemented by values of the actual 
drag of certain forms of landing gear which have been tested full scale 
in a wind tunnel. 

The normal type of landing gear shown in Fig. 28 was tested in the 
Gottingen Laboratory!. The drag surface F s = Djq as dependent on 

1 Technische Berichte, Bd. III, p. 275. 
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dynamic pressure is given in Fig. 29, once for the landing gear entire 
and once for the gear with the wheels removed. It is seen that the 
drag with the wheels is nearly double that for the landing gear otherwise. 
The drag of the wheels again is naturally dependent on the manner of 
side shrouding or fairing employed. Investigations on this subject have 
been made by E. A. Griffiths 
and J. D. Coales 1 • These in­
vestigations gave, for the wheel 
of Fig. 30 and with different 
forms of fairing, results as follows: 

(1) Wheel without fairing CD = 
0.70. 

(2) Wheel with the usual fairing 
from hub to rim (B-Fig. 20) 
CD = 0.43. 

(3) Wheel with complete fairing 
from hub to edge of tread 
(C-Fig.20) CD = 0.23. 

0.30 
~-.... ~rcorriage wilh IYhel?/8 

""'-0-

""-r--
\" 

0.05 
tJnderyrriagl? wilhfullYhfl?ls 

o 10 20 30 '10 50 80 70 80 
I{ynamic Pressure, rr, (kgjm2) 

Fig. 29. Resistance of a landing' gear. 

The coefficient is reckoned with reference to the area of front elevation 
of the wheel. Certain other forms of wheel fairing have also been 
investigated in the Government laboratories at Amsterdam and to which 
reference may be made 2. 

From the diagram of Fig.29 
it is seen that with a dynamic 
pressure of 60 kg/m 2 (V = 

31 m/s) the drag surface of the 
landing gear, Fs = 0.175 m2• 

Similar results are given by 3'-71//''-.' ------'--~ 

French measurements 3 on the Fig. 30. Wheel with different forms of fairing. 

landing gear of a Spad 30 
and of a Spad 40 whence areas of drag surface were found equal 
to 0.20 m2 and 0.22 m2 respectively. 

If the total drag of complete landing gear be denoted by unity, 
Bairstow 4 gives for the individual parts as follows: 

Wheels 0.39 
Axle 0.10 
Struts 0.10 
Wires 0.02 
Shockabsorber and resis-
tance of joints, etc. 0.39 

1.00 

1 Br. A.R.C. R. and M. 207, 1915. 
2 Verslagen en Verhandelingen van den Rijksstudiedienst voor de Luchtvaart, 

4. Teil, 1927. 
3 Bulletin technique No. 28, Aug., 1925. 
4 BAIRSTOW, Applied Aerodynamics, p. 181. 

10* 
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Further note may be made of the results of measurements on the 
landing gear of a large airplane, the half of which is shown in Fig. 31. 

0.3. 
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0.10 
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Fig. 31. Landing gear of a large airplane. 
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The resistance area for this 
landing gear is given in re­
lation to dynamic pressure, 
and for the two cases with 
and without wheels, see 
Fig.32. 

Fig. 32. Resistance of a landing gear. 

In the case of seaplanes, 
floats take the place of the 
landing gear and for the 
designer it is of importance 
to know the air forces to 
which these floats are sub­
jected. In Fig. 33 are shown 
five floats of different forms 
which at the G6ttingen 

Fig. 33 (1). Forms of seaplane floats. 

laboratories have been subjected to measurement for air resistance!. 
The length of the model was 1.2 m and the wind velocity 30 m/s. The 

1 PRANDTL, L., Ergebnisse del' Aerodynamischen Versuchsanstalt zu Giittingen. 
1. Lief., p. 130. 
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polar and moment curves for these floats are shown in Figs. 34--38. 
The engle of incidence is reckoned with reference to the upper edge 

Oimensions in mm 

lJimensions in mm 
Fig. 33 (2-5). Forms of seaplane floats. 

and the moment with reference to the forward point of the float. As 
characteristic length for the computation of the moment coefficient, 
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the float length 1.2 m was employed. As the capacity of a float for 
supporting a load on the water depends on its volume, it is more 
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commonly preferred for the comparison of floats of different form, 
to make use of a coefficient which does not depend on the area of 
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the principal section of the float, but rather on its volume. For this 
reason it is necessary to relate lift and drag to the 2/3 power of the 
volume in order to bring out the coefficient in dimensionless form. 
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Fig. 38. Lift, drag and moment of seaplane floats. 

If the volume of float be denoted by J, the new coefficients K L> 
K D, KlJ![ are then defined through the following equations 

Lift L = KL J213 q 
Drag D = KD J213 q 
Moment M = KlJ![J q 

Between these new coefficients and those derived from the principal 
section S are the following relations 

S 
KL = OL J2/3 

S 
KD = OD J2/3 

Sl 
KlJ![ = OlJ![--r 

These new coefficients K L> K D and K lJ![ may in a simple manner be 
derived from the more familiar. coefficients OL> OD and OlJ![. The volume, 
area of principal section 
and float length are to 
be taken from Table 3. 

In the same man­
ner, naturally, the air 
resistance coefficients 
for a flying boat may 
be related to the vo­
lume of the boat. 

Float I VolumeJ 

No. cm2 

1 15798 
2 15719 
3 10644 
4 

I 
14021 

5 16584 

TABLE 3. 

J2/3 \ Max. cross I Length t sectionS 
cm2 cm2 em 

629.6 216.2 120 
627.5 200.8 120 
483.9 141.7 120 
581.5 

I 
180.3 120 

650.3 209.6 120 
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CHAPTER III 

INFLUENCE OF THE AIRPLANE BODY ON THE WINGS 

1. Theoretical Development for Long Bodies l • The subject of the 
mutual influence between airplane body and wings was first investigated 
by J. Lennertz 2• In order to render the problem practicable, assumption 
must be made of a highly idealized form of airplane body. In most 
cases, a cylinder was assumed with circular section with axis in the 
direction of flight and with ends extending infinitely beyond the wings 
in both directions. With these assumptions and for the case of a body 
long in comparison with the wing chord it may be permissible to take 
the flow in the neighborhood of the wings as given approximately correct. 

In the development of the treatment, the methods of the Prandtl 
wing theory were followed. The wing area was displaced by a lifting 
line which produces a circulation flow of the stream around the wing 
area. The free vortices leaving the following edge of the wing area 
form a vortex band which can be taken in accordance with Prandtl's 
theory. The motion of the fluid is then, outside the wing area and of 
the free vortex band, known to be a potential flow. At the vortex 
band there is a sudden change in the potential which is constant along 
a vortex line and equal to the circulation around the wing element 
from which this vortex line issues. 

The vortex system due to the wing induces on the body a velocity 
of which the component normal to the surface does not, in general, 
vanish. Therefore the action of an additional stream flow is necessary 
which causes the normal component of the velocity to vanish at the sur­
face; but of which the influence disappears at an infinite distance from the 
body. This additional flow has, outside the body, a velocity potential. Since 
the action of this additional stream flow, for the ordinary form of airplane 
body is very complicated, an idealized form of the body must be taken 
in place of the actual. It is for this reason, that, as noted, a form of 
body is taken comprising a cylinder with axis in the direction of motion 
and stretching infinitely in both directions. The air force acting on the 
body is then given by application of Bernoulli's law. With the assumption 
of a cylindrical body of infinite length, the body will admittedly ex­
perience a lift. The influence of body on the wing arises from the fact 
that the additional stream flow, conditioned by the body, will in general 
produce a downward component of velocity on the wing surface. It will 
thus result that the body will cause a change in the effective angle of 
incidence of the wings as well as a supplementary drag for the same. 

1 This section has been contributed by Dr. Lennertz. 
2 LENNERTZ, J., Beitrag zur theoretischen Behandlung des gegenseitigen 

Einflusses von Tragflache und Rumpf. Abhandlungen aus dem Aerodyn. Inst. 
d. Techn. Hochschule Aachen, Heft 8. 
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We take a Cartesian system of axes as follows. The X axis lies along 
the length of the body and positive in the direction of flight. The Y axis 
lies in the direction of the width and the Z axis upward, or in the 
direction of the lift. 

In a simple manner, then, we may find the distribution of lift over 
the span as well as the total lift by application of the impulse and 
energy laws. In a plane stretching far behind the wing, the free vortices 
induce a movement about the body section. The impulse per second 
of this stream is equal to the lift and the rate of change of the energy 
is equal to the work of the air forces. We thus have, for the lift: 

L=-eVff~~dYdz (1.1) 

and for the drag 

D=- ~f f[(!:r+ (~~r]dydz (1.2) 

in which e = density of the air, V the velocity of the basic flow and ffJ 
the potential function at a point far behind the plane of the wing. 
The integration is to be carried out over the entire plane outside the 
body and vortex band cross-section. 

For the case of a uniform distribution of lift across the span, the 
free vortices are liberated only at the ends. The flow about the cylindrical 
body at a great distance behind the wing can then be found by the 
use of images of the free vortices relative to the body surface. Let the 
span be 2 b, the radius of the infinitely long cylindrical body be R, the 
height of the wing above the axis of the body, (z) be e, and the circulation 
about the wing, r. At a great distance behind the wing the values of 
the circulation at points y = + b, z = e; y = - b, z = e will have the 
values + rand - r respectively. The potential function for the stream 
flow due to these vortices is 

ffJ1 = in [tan-I; ~ - tan-I; +~] 
The images of the free vortices in the cylindrical body give two 

vortices of opposite sign at the points 
R2 R2 

Y = ± b b2 + e2 , z = e b2 + e2 

The potential function for these images will be 

r l -z - e b2 ~ e2 _ z - e b2 ~ ez] m = -- tan 1 -tan 1 ___ _ 
T2 2n W W 

y-bb2+e2 y+bb2 +e2 

The function ffJ = ffJl + ffJ2 is then the complete function in the plane 
at a distance behind the wing. 
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The lift is given by (1.1). First the integration for z is carried out. 
This gives the distribution for L' as follows: 

L' = 0 for I y I > b 

L' = e V r for R ::;; I y I ::;; b 

L' = V r [1-!- tan-1 4 b (b2 + e2 - R2) ,;~ 1 e 11; (b2+e2)2+RC2R2(b2-e2)-4(b2+e2) (R2_y2) (1.3) 

(for - R ;;S I y I ;;S + R) 
Integration relative to y then gives the full lift 

L = e V r 2 b ( 1- b2! e2 ) (1.4) 

The results of actual measurements show that the influence on the 
lift of the height of the wing relative to the body is small. If for 

Figs. 39-40. 
Effect of fuselage 

on lift distribution. 

I 

OJ 
I 

Fig. 39. 

1=1 

Fig. 40. 

lift of the body is, as appears from 
the corresponding part of the wing. 

the airplane body, wing 
area of equivalent lift be 
substituted, the effective 
breadth for the total lift is 
found to be such that the 
actual span breadth is re­
duced by the distance be­
tween the fuselage images 
of the end points of the 
wing. For the case e = 0 
(lifting line and body axis 
intersecting) and for a ratio 
Rib = 1/6, the distribution 
of lift over the body width 
is shown in Fig. 39. The 

the diagram, less than that of 

The question as to the overall drag finds, through the assumption 
of uniform distribution of the circulation, no satisfactory solution. 
In accordance with the equation of energy, the drag should be infinitely 
great because the velocity of concentrated vortex threads is infinitely 
large. However, it is possible to compute the change of wing drag as 
well as the change in the angle of incidence due to the influence of the 
body. The vortex filaments parallel to the length axis and within the 
body representing the images of the free vortices, induce, in fact, a flow 
with vertical component relative to the wing surface. The vertical 
velocity, by application of the Biot-Savart law, results as: 

(b2 + e2)2 b2 + e2 
r b2+e2 ~~(y2_e2)+2~e2_ (b2 + e2 ) 

Wz = - -2 b -R2 [(b2 2)2 b2 2 ] 2 (b2 2)2 (1.5) 
11; + e (2 2) 2 + e 2 b2 2 4 + e 2 b2 R4 Y + e - -----w- e + + e - ---w- y 
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The effective angle of incidence on the wing will, therefore, be changed 
by the value 8 = - We/V. Then since for any element of the wing we 
have dD = 8 dL, the resultant effect of the body on the wing drag 
will follow as the result of an integration over the span. When the wing 
is located above or below the axis of the body, the result of the influence 
of the body is a small decrease in the wing drag. In such case, in fact, 
there will be an upward velocity in the middle of the wing caused by 
the vortex (image) in the interior of the body and as a consequence 
an increase in the angle of incidence. The largest value of the drag due 
to the influence of the body is found in the case where the body axis 
and the wing axis intersect, or otherwise for e = O. This drag has the 

value 12 rz (b + R)4 
D = -4n log (bZ + RZ)Z (1.6) 

From (1.1) and (1.2) the distribution of the circulation over the wing 
can be found in such manner as to give, for a stated value of the lift, 
the minimum value of the drag and especially for the case where the 
body axis and wing axis intersect. If, through the use of Stokes theorem, 
the surface integrals (1.1) and (1.2) be transformed into line integrals, 

+b 

we find L = - e V f (CPo - CPn) d Y 
-b 

Here (tpo - tpn) is the abrupt change in the potential between the 
upper and lower points on the body and vortex band section along 
a line y = const. This abrupt change along a vortex line of the vortex 
band is equal to the circulation. r. The drag results in the form 

D = -~fm()(p d8 
2 T Bv 

K 

The integration must be taken around the boundary K of the vortex 
band and body section, where also v denotes the normal outward at 
the boundary K. Then at the body, we shall have 8cp/8 v = O. If then 
n denotes the normal upward at the vortex band, 8tp/8 n will remain 
the same for passage through the vortex band. Again remembering 
that by reason of the symmetry of the flow r (y) = r (- y), the value 

b 

of the drag becomes: D = -ef r~: d y (1.7) 

R 

The integral given above for the value of the lift can also be brought 
within the same field of integrati.on. By the use of the images of the 
free vortices in the body, we may derive the condition that 8tp/8 v 
vanishes at the body surface. If we put 

r'= dr 
dy 
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we shall have also, 

and 

R2) r(y) =r (y 
( R2) F' (y) = - F' -:y 

From (1.4) it follows that the element of lift develops from a horseshoe 
formed vortex of breadth 2 y and circulation d r and having the value 

( R2' 
dL = 2e Vydr l- Y2 ) 

The lift is accordingly 
b 

L = - 2 e V f F'(y) (y - ~2) d y 
R 

Through integration by parts we find 
b 

L = 2 e V f r(y) ( 1 + ~:) d y 
R 

(1.8) 

A change fJ r in the circulation will then give a change in the drag 
b 

and in the lift 

fJD = -2e f fJr ~: dy 
R 
b 

fJ L = 2 e V f fJ r ( 1 + ~: ) d y 
R 

The minimum value of the drag will then result, for any value of fJ r, 
if we make the condition fJ D = A fJ L. 

~=_AV(I+R2) We must also have en y2 (1.9) 

The flow corresponding to these conditions can be developed in the 
following manner. 

A motion is determined which streams about the vortex band and 
the body and at a great distance has a constant velocity upward c = A V. 
Then a flow about the body is superimposed, which at a great distance 
has a velocity c downward. The combined flows fulfill then the condition 
of (1.9). Such a field of flow will give, for any form of body cross­
section a minimum value of the drag. In the preceding case where the 
body and wing axes intersect, and the body section is a circle, the field 
of flow about the body and vortex band results in such form that the 
outer surface region, outside the boundary of the body and vortex band 
section becomes conformally transferred into the region outside a circle. 
Here only the results of this method are given. 

The distribution of the circulation over the wing area is 

L'rr b2 + R2 1/ b2 (y2 + R2)2 
e V =r(y)=rmb2_R2 VI-(b2+R2)2' y2 (1.10) 
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The distribution of the lift over the width of the body follows in 
the form: 

(1.11) 

In this formula, r m is the circulation at the point of connection 
between the body and the wing. The distribution of the lift for various 
values of the ratio RIb is shown in Fig. 40. 

The induced drag in relation to lift is furthermore given by the 
1 L2 b2 

equation D = "2 e V211; (b2 _ R2)2 (1.12) 

The ratio of the body lift to the total lift, for various values of the 
value of blR is given in the following Table. The figures in parenthesis 
give the corresponding values for the case of uniform distribution of 
circulation. 

2 

LR 0.371 
-y;- = (0.333) 

4 

0.228 
(0.200) 

In connection with the 
overall lift and its distribution 
over the span, Lennertz has 
also carried through compu­
tations regarding the distri­
bution of the lift along the 
length of the body. 

The principal results only 
of this somewhat complicated 
computation will here be 
noted. In Fig.41 is shown 
the distribution of the lift 

a 

6 

0.168 
(0.143) 

8 

0.133 
(0.111) 
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along the body for two dif- Fig.41. Distribution of lift along cylindrical body. 
ferent cases, for the ratio 
RIb = 0.1 with constant circulation over the span (full line) and for 
the ratio RIb = 0.5 with the distribution of the circulation in accor­
dance with the requirement for minimum drag. For values of the 
ratio RIb between 0.0 and 0.1 there is found no sensible difference. 

2. Theoretical Development for Short Bodies and Engine Nacelles. 
For the preceding theoretical development of the mutual influence of 
wing and body, use was made of a body of cylindrical form, circular 
section and of infinite length. In order now to free the discussion from 
this last assumption which limits the application of the resulting 
numerical values to very long airplane bodies, we shall now approach 
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the problem in a different manner which will give results applicable 
to airplane bodies of reduced length and in particular when applied to 
the case of engine nacelles built into the wing structure, will be able 
to furnish (as shown by actual experience) distinctly useful results. 

The foundation of this method is found in the fact that the body 
(in particular a nacelle) may be viewed as a part of the wing and as 
such, is concerned also in the development of lift. The longitudinal 
sections through the body (sections given by vertical planes parallel to 
the axis of the body) are then to be considered as wing sections, of 
which the profile, angle of incidence and depth relative to the wing proper 
are variable. The problem then becomes one of finding the distribution 

of the lift for such a wing with variable o-t85o 750 
• Thi bl d' f ..... --- rio--I!.." 0 sectIOn. s pro em a mlts 0 

,/~ ,: ': I' ),{5 solution by the use of the already 
/ I ': I: I I / l '\ I{5O 

/ I Ii ! / X Y r~-K50 established principles of wing theory. 
/ il:,',y/~)/r ! \200 It must first be assumed that 

I 1/1/ I ..... 1 I ..... -

I ""'/ /' /1 ,-t-, , the nearly plane flow in the neigh-
I I/~t?{-~"''''T : [ l \ 'J'--: ' , , , '0 borhood of the middle of the wing 

,I I 0 
9 8 ~ 8 5 'I .1 31 will not be disturbed by the presence 

Fig.42. Wing with two built-in nacelles. of the body-that is, that the trans-
verse component induced by the 

presence of the body may be neglected. For the wing, the span of 
which we again denote by 2 b, a rectangular plan form is assumed. 
The distance of any point of the span width from the center of the 
wing may be denoted by y. It is, moreover, convenient to relate the 
coordinate y with the angle (j through the relation, see Fig. 42. 

y = b cos (j (2.1) 

The angle (j varies from 0 to n as y passes through all values from 
+ b to - b. In this manner each point of the span is, through the 
angle (j singly determined. Also let V = velocity and r the circulation 
about the wing. Then any desired distribution of the circulation over 
the span can be expressed in the form of a Fourier series 

00 

r = 4 b V 2.: An sin n (j 

n~l 

(2.2) 

The unknown coefficients An must be so determined that they fulfil 
the conditions of wing theory. The most important of these conditions 
is that at each point of the span the geometrical angle of incidence IX 

shall equal the sum of the effective angle IXe and the induced angle w/V, 
where w is the induced vertical velocity at that point on the wing. 

We must then have: (2.3) 
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But the induced vertical velocity is a function of the distribution 
of the circulation. At any given point Xo it will stand, with the circulation, 
in the following relation: 

+b 
1 j dr d x 

w (xo) = -,rn d x x-xo 
-b 

Now if we substitute for x in terms of the variable b and for r put 
the expression in (2.2), the expression for the induced vertical velocity 

" 
becomes W (0) = ~ j 1:JnAncosn.5 db 

o n cos .5-cos .50 
o 

The integration of the expression 

has the principal value1 

" J-j cosn.5 db 
- cos ° - cos 00 

o 

J sinn 00 
- :n;---cc--~ 
- sin 00 

This gives for the induced vertical velocity, 

w (bo) = V L; n An 8i~ n.50o 
s~n 0 

(2.4) 

This expression must then be put into (2.3). However, before 
proceeding to this, it will be convenient to express the effective angle OCe 

in another form. We shall first note especially that the angle of incidence 
is always to be measured with reference to that attitude for which the 
lift vanishes. The lift coefficient CL is then directly proportional to the 
effective angle as denoted by the equation 

CL =2koce (2.5) 

In this equation, k is a constant of which the value for very great 
span and for the usual form of section is not far from :n; (oce is to be 
expressed in angular measure). 

If then c denotes the wing chord, the value of the circulation can, 
by the Kutta-Joukowski formula, be expressed as 

r - OL VC - 2 

and by use of (2.5) and (2.2) there follows: 
00 

r 4b ~A . ~ 
OCe = k V c = kC'::::" n8~nn u 

n=l 

1 GLAUERT, H., The Elements of Aerofoil and Airscrew Theory, p. 92. 
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If now this value of IXe and the value of w from (2.4) be inserted 
in the conditional equation (2.3), there results the following: 

where 

2: An sin n b (n fl + sin b) = ,u IX sin b 
kc 

ft =4r) 

(2.6) 

The equation must hold for all values of b between 0 and n. Aside 
from the coefficients An> all quantities in the equation are known. 
Practically the number of coefficients must be limited and because of 
the symmetry of the distribution of lift with reference to the mid point 
of the wing, only coefficients of odd order, AI' As, A 5 • •• • A i will enter. 
It thus results that the basic equation can be fulfilled only at i points 
of the span, bll bs .... bi . If then we set up the basic equation for the 
angles bl , b2 , •••• b;, including an equal number of coefficients AI' As, 
.... Ai' there will result i linear equation with i unknowns from which 
the values of All As .... A i may be found. Practical application to 
a specific case has shown that it is desirable to extend the basic equation 
to the end values b = 0 and b = n. If substitution for these values 
be made in this equation, there results for the wing ends 

2: n 2 An = IX 

We have thus in fully written out form, the following system of 
equations for the determination of the coefficients AI .... Ai' 

Al + 9 A3 + .... + i2 Ai = IXI 

Al sin bl (ft + sin bl ) + As sin 3 bl (3 ft + sin bl ) 

+ ... . A i sin i bl (i ft + sin bl ) = ft IX3 sin bl 

Al sin bi (ft + sin bi ) + A3 sin 3 bi (3 ft + sin bi ) 

+ ... . A i sin i bi {i ft + sin bil = ft IXi sin bi 

(2.7) 

The solution of these equations then makes possible the determination 
of lift distribution for a wing of any plan form, with any distribution 
of profile and with any angle of incidence. The angle of incidence of 
the profile under consideration appears on the right hand side of (2.7) 
and the wing chord c is contained in the equation ft = k c/4 b. Further­
more this expression embodies a characteristic of the profile at the 
point considered, namely the magnitude 

k- (dOL) 
- drY. b=oo 

It should also be noted that with a lift distribution symmetrical 
about the longitudinal axis of the plane it is only necessary to carry 
out the computations for one half of the wing. 

In accordance with this method computations were carried out on 
a wing with two built in nacelles as shown in Fig. 42 while at the same 
time, in order to test the accuracy of the method, model tests in a wind 
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tunnel were earried out 1. The points 1, 2 .... 8 to which the basic equation 
was applied are also shown in the figure. The presence of a nacelle 
is represented by a single point only, No.7. As a rough approximation 
it may be assumed that the breadth of the nacelle is determined between 
the mid points of the segments 6-7 and. 7-8. We cannot hope that 
in this wayan exact solution of the problem can be obtained, but to 

Fig. 43. Section of wing and nacelle. Fig. 44. Effect of nacelles on distribution of lift. 

a good approximation the change in the lift distribution due to the 
nacelle will result. The cross sections of the wing and nacelle are shown 
in Fig. 43. The results of the computation, shown as the distribution 
of the lift along the span, are 1.¥ 

given in Fig. 44. It is thus seen 0-
that, through the presence of the f.2 

nacelle, the lift distribution in the 
case assumed undergoes a marked to. 

change-in particular two zones 
of marked decrease at the points 0.0 

where the nacelles are located. 
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This characteristic is in notable 
contrast with the distribution for 
the wing alone as indicated by the 
dotted line. The dimensions of the 
nacelle in this case were, on the 
whole, rather large in comparison 
with the wing and there resulted an 
unduly large measure of influence 
on the lift distribution. The de-

Fig. 45. Effect of nacelles on polar curve. 

parture of the lift distribution from that for the wing alone, causes 
also an additional induced drag, the magnitude of which, however, as 
the computation shows, is not of serious importance. In Fig. 45 is 
shown dotted the polar curve for the wing with two nacelles, deduced 
by theoretical means from the simple wing. The wind tunnel investigation 
gave the points indicated by the small circles and it is seen that the 
agreement between theory and experiment is quite good. Only in the 

1 WIESELSBERGER, C., Der EinfluB von eingebauten Motorgondeln auf die 
Luftkrafte eines Tragflugels. Paper No. 203 read before the Internat. Engineering 
Congress, Tokyo, 1929. 

Aerodynamic Theory IV 11 
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vicinity of the maximum lift is any marked difference to be noted. 
The same method can naturally be employed for an investigatIon of 
the influence of an airplane body on the lift distribution over the wing. 

One disadvantage of the method is to be noted, in that the width 
of the body or of the nacelle is not definitely indicated. In the case 
employed for illustration, as already noted, the nacelle was represented 
only by the single point No.7 (Fig. 42) and any change in the width, 
even an approach to points 6 or 8, would make no change in the results. 
Theoretically by an increase in the number of the points 15, the width 
of the nacelle may be limited more and more closely. This requires, 
however, an increase in the number of equations to be solved and in 
consequence an excessive increase in the numerical computations involved. 

A method which does not have this objection and in which the 
basic equation is satisfied at all points of the span has been developed 
by S. B. Gates 1. This method, in which the width of the body is exactly 
represented, leads likewise to a system of linear equations which admit, 
of relatively ready solution. 

Still another method in which the basic equation is also satisfied 
for all points of the span has recently been developed by 1. Lotz 2• This 
method may be viewed as an improvement of the one described above 
and is distinguished by the fact that the geometrical angle of incidence (1,. 

and the wing chord c, both for any point yare developed in series. 
To this end we may put, for the angle (1,. (y) multiplied by sin 15, 

(1,. (y) sin 15 = 1: (1,.n sin n 15 

and for the product of colc (y) by sin 15 

C~~) sinD=1:Y2vcosvD 

wherein Co denotes the chord of the wing at the point y = 0, and ~, 
yz v the generalized coefficients in the two developments. These coeffi­
cients are then determined by means of the given wing form. The 
carrying through of this development involves, in certain cases, con­
siderable labor; it yields, however, a notable simplification in the later 
computations and leads to a system of equations, which, by the method 
of "iteration", may be readily solved. 

3. Experimep.tal Results. Regarding the influence of the airplane body 
on the wings, a large number of wind tunnel measurements have been 
made and from these it has appeared that through the presence of the 
body the drag of the wings is increased and in many cases at the same 
angle of incidence the lift is decreased. The increase of the drag comprises 

1 GATES, S. B., An Analysis of a Rectangular Monoplane with Hinged Tips, 
Br. A.R.C. R. and M. No. 1175, 1928-29. 

2 LOTZ, I., Berechnung der Auftriebsverteilung beliebig geformter Flugel. 
ZFM, 1931, p. 189. 
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in general two elements. The first element develops from the fact that 
by the presence of the body the flow about the wing is so changed 
that the profile drag of the wing is no longer the same. The second 
element arises from the change in the induced drag of the wing. This 
element develops from the fact that through the presence of the body 
the distribution of the lift along the wing undergoes a change and in 
consequence, as a general rule, the induced 
drag is increased. 0, 
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Fig. 46. Effect of wing position. Fig. 47. 

We may consider next the experimental results! which show the 
influence of change in the relative locations of wing and body. In 
connection with an airplane body form as shown in Fig. 46, a wing 
was fitted in five different locations as shown 
A .... E, in each case with measurement of 
the polar curve. The coefficient C'n for the 
difference in drag between the combination 
wing plus body and wing alone is shown in Wing 

Fig. 47 plotted on values of the lift coefficient 
Fig 48 Fillet between wing Cv It is seen that the arrangements Band .. and body. 

C give the smallest increase of drag, while 
the arrangement E in which the wing and body are separated by an 
opening, gives the greatest increase. A large number of researches with 
different forms of body and wings have been carried out by H. Muttray 2. 

Among many other results of interest, these researches have shown that 
with a low wing plane with rounded body cross-section, a notable decrease 
in the resistance is realized when the wedge shaped space between body 

1 Ergebnisse der Aerodynamischen Versuchsanstalt zu G6ttingen, I. Lief., 
p. US, 1925. 

2 MUTTRA1", H., Untersuchungen tiber die Beeinflussung des Tragfltigels eines 
Tiefdeckers durch den Rumpf. Luftfahrtforschung, Bd.2, Heft 2, 1925. 

U* 
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and upper side of wing (Fig. 48 left) is filled in (Fig. 48 right) and in 
such manner that the filleting is more marked toward the following 
edge of the wing. M. N. Gough has also investigated full scale the 

--E=: -- ---- -::=:::s 
-s~ 

influence of fillets between wing 
and body on drag and on pro­
peller efficiency in the 20 ft. wind 
tunnel at Langley Field 1. 

Fig. 49. Effect of wedge shaped space A. Fig. 50. Various forms of engine nacelles. 

The plane was a high wing monoplane. The filleting was in con­
sequence fitted on the pressure side of the wings and on this account 
only a small decrease in the drag was noted. 
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When the wing, as in Fig. 49, is so fitted to the under side of the 
body that between the suction side and the under side of the body, 
a wedge shaped space A is formed, a notable increase in the drag will 

1 GOUGH, M. N.: The Effect of Fillets Between Wings and Fuselage on the 
Drag and Propulsive Efficiency of an Airplane, U.S. N.A.C.A. Technical Note 
No. 299. 
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result. In such case, it is to be recommended that this space be 
eliminated by means of a section cut out from the wing, as indicated 

1.¥r-----r----.--~~----_,----_,----_.----_, 

0, 

u~----~--~~~~~--_4--~_4~.__+----_1 

----0--- lYing alone 

------ lYing witl! upPt?1' PaM of 80& I --/--------1 

" 
I£ 

I£a -+------{ 

III 

O~~~~--_+----_r----+_----t_--___l----_1 
aa Co 

-a2L---~~~~----~----~----~----~-----J 

Fig. 52. 

~'r---_,-----r __ ~,-----,_----,_--_,r_--_, 
0, 

am--f~~--_7q-----+-----+_----+_----+_--_4 

--o---Iv'iflf/ alone 

----Milg will! complete Boc(y I 

Fig. 53. 

n JT 

n 

n 

JTa 

11I 

Figs. 51-53. Effect of engine nacelles on polar curve. 

in the plan view of the sketch. The section cut out, however, should 
not be too large lest the aerodynamic characteristics of the wing be 
injuriously affected. 
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A series of researches also directed to a study of the influence of 
varying relative location of body and wing have been carried out by 
Shatswell Oberl. Here again, the minimum drag was found for the 
case where the wing was located directly on the upper side of the body 
(arrangement A of Fig. 46). Further it was shown that in the case of 
arrangement B (parasol type) the opening between wing and body can 
be filled in without causing thereby any marked change in the drag. 

In similar fashion as by an airplane body, the airforces on the wings 
will be influenced by engine nacelles in the case of multimotored planes. 
Again here' a distinction must be drawn between the case where the 

Fig. 5,L Engine nacelle tested at 
Langley Field. 

nacelles are built in as part of the 
wing structure or are separate there­
from and only connected by struts 
with the wings. A systematic series 
of researches with built-in nacelles has 
been carried out at the Gottingen 
Laboratories, the chief results of which 
may be indicated as follows. 

In connection with a wing of 
about 100 cm. span and 20 cm. chord, 
nacelles of circular cross-section and 
varying diameter were, fitted (see 
Fig. 50). Measures were then taken 
of the' polar curve for the three 
cases-upper half of the nacelle fitted 
to the wing, lower half fitted to 

the wing and finally the entire nacelle fitted to the wing. The results 
of these measurements are given in Figs. 51-53. It is seen that the 
arrangement in which the half nacelle is fitted on the suction side of 
the wing causes a very much greater increase of drag than when fitted 
on the pressure side. It is also seen that the form with rounded nose, 
II a, is notably better than that with flat nose of the same diameter 
when they are fitted on the suction side of the wing, because in this 
case the separation of flow on the upper forward edge of the nacelle 
does not occur. 

A similar series of researches, in which arrangements were tested 
wherein the nacelle was separated from the wing and connected therewith 
by struts, has been carried out at Langley Field by E. N. Jacobs 2. 

These researches were carried out in the variable density tunnel with 
a model as shown in Fig. 54, in which the wing had a span of 36 in. 

lOBER, SHATSWELL, Some Studies on the Aerodynamic Effect of the Gap 
Between Airplane Wings and Fuselages, U.S. N.A.C.A. Technical Note No. 327. 

2 JACOBS, E. N., The Drag and Interference of a Nacelle in the Presence of 
a Wing. U.S. N.A.C.A. Technical Note No. 320. 
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Figs. 55-56. Effect of engine nacelles on lift and drag. 
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Lift and drag were measured for several values of the angle of incidence. 
In the diagrams of Figs. 55 and 56, is shown, not the overall drag, but 
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the difference between the combination wing plus nacelle and wing 
alone, plotted on lift. Fig. 55 shows especially the influence of change 
in the relative position of wing and nacelle in the case where the two 
are completely separated. In the combinations of Fig. 56, wing and 
nacelle are joined in a single unit and there resulted, through a suitable 
union of the two forms, a most notable reduction in the increase of 
resistance chargeable to the nacelle (see Fig. 56) combinations J, K, L. 

Bibliography. 

In addition to the numerous references given throughout the text, the follow­
ing references of a more general character may be of interest. 

On fluid mechanics: 
DRYDEN, MURNAGHAN, BATEMAN, Rep. of Committee on Hydrodynamics. 
W. WIEN U. F. HARMS, Handbuch der Experimentalphysik, Band IV, Hydro- und 

Aerodynamik. 

On Aeronautics (in general): 

Bibliography of Aeronautics, U.S. National Advisory Committee for Aeronautics, 
Washington (annual volumes). 

On Aerodynamics: 
H. GLAUERT, The Elements of Airofoil and Airscrew Theory. Cambridge 1926. 
PRANDTL-TIETJENS, Hydro- und Aeromechanik, Berlin 1931. 
E. PISTOLESI, Aerodinamica, Torino 1932. 
FUCHS, HOPF, SEEWALD, Aerodynamik, Berlin 1934. 



DIVISION L 

AIRPLANE PROPELLERS 

By 

H. GIanert, 
Farnborough, England 

EDITOR'S PREFACE 

The earlier theories of the action of the screw propeller date back 
to the pioneer work of Rankine and Wm. Froude, the contributions 
of the latter continued and enlarged by R. E. Froude. These studies 
all related naturally to the screw propeller as applied to the problems 
of marine propulsion. However, there is, of course, no difference in 
basic theory between the propeller in its action on water and on air, 
and these earlier studies of Rankine and of the Froudes furnish a natural 
and logical historical starting point for a discussion of the theory of the 
screw propeller for aeronautic purposes. 

The Author of the present Division, therefore, after some general 
introductory material in Chapter I, begins in Chapter II his treatment 
of the subject proper with a resume of the Rankine-Fr01;tde axial 
momentum theory, leading to expressions for the ideal efficiency of a 
propeller as determined by the conditions of its operation. This is 
followed in Chapter III by a more generalized form of the momentum 
theory and in Chapter IV by a broader and more general discussion of 
propeller efficiency. 

Then turning to more recent developments of the subject, Chapters V 
and VI are devoted respectively to a discussion of the blade element 
theory as developed especially by Drzewiecki, and of the vortex theory 
based on the developments in general airfoil theory due to Prandtl and 
his school during the past two decades. This is followed in Chapter VII 
by a discussion of propellers of the highest efficiency and of the condi­
tions for realizing such values. 

Then follows an important Chapter on body and wing interference, 
in which is presented a general discussion of the influence of the airplane 
body and wings on the performance characteristics of the propeller. 
This is followed in Chapter IX by a discussion of the experimental study 
of propellers, including reference to wind tunnel interference, scale 
effect and the influence of the compressibility of the medium. 
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In Chapter X is presented a general discussion of the theory of the 
helicopter screw, a field in which the pioneer work of the author will 
be remembered. This is followed in Chapter XI by a discussion of the 
theory of windmills and fans, with special reference to their aeronautic 
applications. The Division then closes in Chapter XII with brief discus­
sions of certain special problems relating to the screw propeller, including 
with others, tandem propellers, the vortex ring state of the propeller, 
the effect of side-slip and pitching, and the effect of downwash behind 
a propeller. 

The aeronautic world learned, with the most profound sorrow, of 
the tragic and untimely death by accident of the Author of the present 
Division on August 4, 1934. This sad loss to the cause of the advance 
of theoretical aerodynamics, to which he had been many years a most 
fruitful and brilliant contributor, has made necessary the preparation 
of this Preface by the general Editor instead of by the Author himself. 
Likewise the Division as printed has not had the benefit of a proof 
reading by the Author; but in this respect the Editor desires to acknow­
ledge with special appreciation, the reading of the entire proof by the 
wife of the Author with the collaboration of Mr. R. McKinnon-Wood, 
for many years Head of the Aerodynamics Department at the Royal 
Aircraft Establishment, Farnborough, England, both of whom have been 
entirely familiar with the scientific work of the Author for many years. 
In addition it may be noted that, at the request of the Editor, the Author 
had, shortly before the manuscript was sent to the printer, re-read, with 
a few minor changes, his own copy of the work prepared somewhat 
earlier. The Editor believes, therefore, that the Division in its present 
form represents, in all important aspects, the development of this subject 
as it would have been left by the Author had he had an opportunity 
for a last revision in the Proof. W. F. Durand. 

CHAPTER I 

AIRSCREW THEORY 

1. Introduction. The propulsion of an aircraft is usually achieved 
by means of one or more propellers whose thrust overcomes the drag 
of the wings and structure in horizontal flight and also provides the 
additional force necessary to balance the component of the weight when 
the aircraft is climbing along a flight path inclined to the horizontal. 
The motion of the propeller through the air is composed of the angular 
velocity Q of the blades about the axis of the propeller and of the 
forward speed V of the aircraft which is approximately in the direction 
of this axis. The aerodynamic reaction on the blades of the propeller 
gives a forward thrust T along the axis of rotation and a moment Q 
about it. The moment must be balanced by the torque of the engine 
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which drives the propeller, and the thrust provides the necessary force 
to propel the aircraft through the air. Since the power given by the 
engine and absorbed by the propeller is Q Q and since the useful work 
done by the thrust is V T, the efficiency of propulsion is 

VT 
1} = Q Q (1.1) 

A propeller is only one form of a more general class to which the 
term airscrew may be applied. An airscrew may be defined as any 
type of mechanism with radial blades designed to rotate about its axis 
during its motion relative to the air, and such airs crews may be used 
for a variety of purposes. The principal types of airscrew are: 

(1) Propeller. An airscrew used for propulsion and designed to give 
a high thrust power V T for a given torque power QQ. 

(2) Windmill. An airscrew used to absorb power from its axial 
motion relative to the air. It is necessary to distinguish between 
a windmill mounted on an airplane where the drag is of importance 
and the axial velocity is high, and a windmill mounted on the ground 
where the drag is unimportant and the axial velocity is low. 

(3) Fan. An airscrew used to give a current of air. 
(4) Anemometer. An airscrew used to determine the relative axial 

velocity by measurement of the rate of rotation. 
These types of airscrew all operate normally with their axes pointing 

in the direction of motion through the air. The propeller of an airplane, 
however, is fixed in position and its axis will coincide with the direction 
of motion at one angle of incidence only of the airplane: at other angles 
of incidence the relative velocity is inclined at a small angle to the 
axis of the propeller, and a complete account of propeller theory must 
therefore include the effect of such small inclinations on the characteristics 
of the propeller. Moreover there are types of airscrew which do not 
normally move through the air in the direction of their axes. These 
comprise the helicopter, which is an airscrew driven by an engine and 
used for sustentation, and the autogyro which is a freely rotating airscrew 
used for the same purpose. Even the cup anemometer, as used by 
meteorologists to determine the velocity of the wind, may be regarded 
as a special type of airscrew, and it may be noted that the cupanemo­
meter has occasionally been used on an airplane as a source of power 
instead of a conventional windmill. 

In the development of the general theory of the airscrew it is 
convenient to concentrate mainly on the propulsive airscrew or propeller. 
The theory of an airscrew follows the same lines, whatever the purpose 
for which it is intended, and it is proposed therefore to develop the 
theory of the propeller in detail and then to consider the modifications 
necessary for the special operating conditions of the other types of 
airscrew. 
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A propeller normally consists of a number of equally spaced identical 
radial blades which are maintained in uniform rotation about the axis 
of the propeller by the torque of the engine. The section of each blade 
at any radial distance has the form of an airfoil section, and each 
element of a blade in its motion through the air experiences the lift 
and drag appropriate to the airfoil section. These lift and drag forces 
combine to form the thrust and torque which are respectively the 
resultant axial force and moment experienced by the propeller. The 
reaction of these forces on the air produces a slipstream comprising 
all the air which has passed through the circle swept by the rotating 
blades of the propeller and whose motion has been modified by the 

Ii----- p 

- II 

6--------- p 
Fig. 1. 

reaction of the thrust and torque. 
In fact the thrust of the pro­
peller is obtained by imparting 
a backward linear momentum 
to the air of the slipstream, and 
similarly the torque is obtained 
by imparting a rotational motion 
to the slipstream. The direct 
action of the thrust, however, 
is to give an increased pressure 

to the air immediately behind the disc of the propeller and a reduced 
pressure in front of it: the air is therefore sucked towards the front of 
the propeller and driven away from the back of it by the pressure system 
maintained by the rotating blades. The maximum axial velocity is 
attained only at some distance behind the propeller, but some increase 
of axial velocity occurs in front of the propeller. Owing to the gradual 
increase of the axial velocity, the slipstream contracts as it passes back­
ward from the propeller and the type of flow can be represented 
diagramatically as in Fig. 1. In this figure P P represents the disc 
of the propeller, PSis the boundary of the contracting slipstream in 
which the air also has a rotational motion about the axis, and A P 
is the boundary of the column of air which is approaching the disc 
of the propeller. 

The diagram of Fig. 1 represents the normal operating condition of 
a propeller but other types of flow can be obtained by changing the 
velocity V with which the propeller is advancing through the general 
mass of air. The complete cycle of states of operation of an airscrew l 

is illustrated in Fig. 2, where the airscrew is assumed to be at rest in 
a stream of air of velocity V. The front of the airscrew is to the left 
and (b) represents the normal type of operation as a propeller. As the 

1 The first discussion of the complete cycle appears to be due to G. DE BOTREZAT, 

U.S. N.A.C.A. Technical Report No. 29, 1919. 
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velocity of the stream increases, the thrust of the airscrew decreases 
and ultimately becomes a drag: the slipstream is then of the type (a), 
expanding behind the airscrew, and the airscrew acts first as a brake 
and then as a windmill. Type (c) represents the flow for zero velocity, 
which is the limiting condition of the normal type (b), but a different 
type of motion occurs when the stream is directed on the back of the 
airscrew, a vortex ring being formed as shown by type (d). As the 
velocity V increases, the flow changes to type (e) and then to type (f): 
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the former represents the condition when the airscrew gives rise to 
a turbulent wake and the latter represents a return to the initial type (a) 
but in the opposite direction. The type of flow in the vortex ring state 
has been investigated experimentally by C. N. H. Lock l by means of 
light streamers and the succession of types of flow illustrated in Fig. 2 
is fully confirmed by these experiments. 

2. Non-Dimensional Coefficients. The thrust T and the torque Q of 
an airscrew can be expressed as functions of the axial velocity V, the 
number of revolutions in unit time n, and the diameter D; and the 
state of operation of the airscrew is defined by the advance per revolu­
tion Vln. It is preferable, however, to express the characteristics of 
an airscrew in a non-dimensional form. The state of operation is therefore 
defined by the advance-diameter ratio 

J=~ 
nD 

(2.1) 

1 Br. A.R.C. R. and M. 1167, 1928. 



174 L 1. AIRSCREW THEORY 

and the thrust and torque are represented by the non-dimensional :F en~"1 
Q en2D5 

coefficients 
(2.2) 

where (! is the density of the fluid. At times it is useful to replace the 
torque Q by the power P absorbed by the airscrew, and the corresponding 

non-dimensional coefficient is 0 - ~p~- (2.3) p - en3D5 

Since the power P is equal to 2 n n Q, the power and torque coefficients 
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are related by the equation 
Op = 2nOQ. 

Finally the efficiency of the air­
scryw is 

1] = VpT = J g~ (2.4) 

The preceding set of standard 
non-dimensional coefficients retains 
the same values whatever system of 
units is used to measure the indivi­
dual quantities involved, but it is 
necessary to use a consistent system 
of units. Thus, for example, if the 
conventional engineering units are 

used, measuring the thrust in pounds, the diameter in feet, and the time 
in seconds, then the velocity must be expressed in feet per second, the 
power in foot-pounds per second, and the density in slugs 1 per cubic foot. 
A set of typical curves of thrust coefficient 0 T, power coefficient 0 p, and 
efficiency 1] against the advance-diameter ratio J are shown in Fig. 3. 

Many other forms of non-dimensional coefficients have been used 
by different authors, involving the use of the angular velocity Q instead 
of n, of the forward speed V instead of n D, and of the disc area n D2j4 
instead of D2. The standard set of non-dimensional coefficients, as 
defined above, represents the system which has been found by experience 
to be most suitable for the application of propeller characteristics to 
aerodynamic calculations, but for the development of the theory it is 
preferable to use the following system: 

V 
A= QR 

p 

(2.5) 

1 The slug is the unit of mass on which a force of one pound causes an acce­
leration of one foot per second per second. 
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where Q is the angular velocity of the propeller and R is its radius, 
so that Q R is the rotational velocity of the tips of the propeller blades. 
In this system A is the ratio of the forward speed V to the tip speed Q R, 
which may be called the speed ratio of the propeller, and the torque 
and power coefficients are identical. Also the efficiency of the propeller 

becomes 
ATe 

'YJ=~ (2.6) 

This system of non-dimensional coefficients will be used in the 
development of the theory, and all results will be given in terms of these 
coefficients. Conversion to the standard system of non-dimensional 
coefficients can easily be made by means of the relationships: 

J=nA=3.14A 
n3 

C T = 4 Te = 7.75 To 

n3 
CQ = 8 Qo = 3.88 Qc 

31;4 

C P = 4 Qo = 24.35 Qo 

(2.7) 

In the discussion of these non-dimensional coefficients it has been 
assumed that the characteristics of a given propeller are functions of 
the single parameter J or A, but the application of dimensional analysis 1 

to the problem of the propeller shows that they may also depend on 
the Reynold's number of the motion and on the ratio of the tip speed 
to the velocity of sound. The Reynold's number represents the effect 
of the size or speed of the propeller in relation to the viscosity of the 
fluid in which it operates, and may be taken to be A R2/V, where v is 
the kinematic coefficient of viscosity. Experience shows that the "scale 
effect" on propellers is not important in the normal states of operation, 
but it may become noticeable when the blades of the propeller are 
operating near their critical angles or when the thrust is very small. 
The other parameter, the ratio of the tip speed Q R to the velocity 
of sound, represents the effect of the compressibility of the air on the 
characteristics of the propeller: this effect is unimportant with slow 
running propellers, but becomes increasingly important as the tip speed 
approaches the velocity of sound. Theory is not yet capable of dealing 
adequately with the effects of these two parameters and it is necessary 
to rely almost entirely on the results of special experimental investigations 
to assess their importance. 

S. Airscrew Design. In defining the non-dimensional coefficients 
which represent the performance of an airscrew, the only geometrical 
constant used in the formulae was the diameter D or the radius R, 
but in order to describe an airscrew more fully it is necessary to specify 

1 Divisions A IV and H I 3. 
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also the number, B, of the blades and their geometrical shape. Apart 
from tilt or sweep-back of the blade as a whole, a blade can be described 
by considering in turn: 

(1) The shape of the airfoil section at any radial distance r from the 
axis and its variation along the blade; 

(2) The plan form of the blade, or the variation of the chord of the 
airfoil sections along the blade; 

Fig. 4. 

to use airfoil sections 
usually thinnest near 
thickness towards the 

(3) The blade angles, or the inclination 
of the airfoil sections to the plane of rota­
tion of the airscrew. 

The airfoil sections used in airscrew design 
tend to be thicker than those used for air-
plane wings and there has been a tendency 

with a flat undersurface. The airfoil section is 
the tip of the blade and increases steadily in 
root of the blade where it merges into the boss 

co::=_~ m==_h __ J 

of the airscrew. A typical series of air­
foil sections for an airscrew blade is 
shown in Fig. 4, which represents the 
blade of an airscrew of conventional 
design. In recent metal airs crews the 
thickness of the blades tends to be re-c0= _____ c___ duced but the airfoil sections remain 

_ ~ of the same general type. 
The plan form of the blade has 

d varied widely during the development 

[ @ _ ~ of aviation and a few typical forms are 
_ _ -------- shown in Fig. 5. The first of these forms 

Fig. 5. is an old type of blade with constant 
chord over the principal part of the 

blade; the second is a blade form proposed by N. E. Joukowski, and 
the last two are modern forms of wooden and metal propellers re­
spectively. Experience indicates that the plan form, unless of a very 
peculiar design, exerts only a small influence on the characteristics of 
an airscrew, and the form is usually determined from structural rather 
than from aerodynamic considerations. Often it is not necessary to 
consider the exact plan form of the blade, but it is sufficient to specify 
merely the total blade area. It is then convenient to define the solidity a 
of the airscrew as the ratio of the total blade area to that of the circular 
disc swept by the blades. 

The angles at which the blade sections are set to the plane of rotation 
determine the pitch of the airscrew. If the blade section were simply 
a straight line set at an angle () to the plane of rotation and the motIon 
of the airscrew were that of a screw in a rigid medium, the blade section 
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would advance a distance 2 n r tan () during each revolution of the 
airscrew and this length would be the pitch of the section. In order 
to obtain a constant pitch H along the whole blade, the variation of 
blade angle () must be adjusted according to the equation 

2 n r tan () = H or tan () = Hj2 n r 
The blade angle is therefore smallest at the 
tip of the blade and increases steadily towards 
the root as indicated in Fig. 6. 

In an airscrew the blade angle () is usually 
specified as the angle which the tangent to 
the lower surface of the airfoil section makes 
with the plane of rotation, and if the angles 
so defined vary along the blade in accordance 
with (3.1), the airscrew is said to have a 
constant geometrical pitch H. Often, however, 

Fig. 6. 

(3.1) 

the variation of angle along the blade does not obey the law of (3.1) and 
the geometrical pitch is then defined arbitrarily as the pitch of one 
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or its ratio to the diameter of the airscrew is a useful parameter 
for defining the members of a family of airs crews in which the blade 
angles are increased in some systematic manner, but in itself it has no 
aerodynamic significance. It would perhaps be more significant if it 
were based on the no lift. axes of the airfoil sections instead of their 
tangent chords. The important aerodynamic feature is the advance per 
revolution at which the thrust of the airscrew becomes zero, and this 
advance per revolution is called the experimental mean pitch of the 
airscrew. Typical curves of efficiency and power coefficient for a family 
of airs crews with increasing pitch are shown in Figs. 7 and 8, the 

Aerodynamic Theory IV 12 
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numbers on the successive curves being the values of the geometrical 
pitch-diameter ratio HID. 

In general terms the form of an airscrew may be defined by specifying 
the number of blades, the solidity, and the pitch-diameter ratio; and 
for many purposes this description suffices. For more exact analysis 
it is necessary to specify also the shapes of the blade sections used along 
the blade, the plan form of the blade, and the variation of the blade angle. 

4. The Development of Airscrew Theory. Though differing so much 
in appearance and construction, the airscrew and the marine propeller 
are fundamentally identical in their modes of operation, and in con­
sequence the early stages of the development of airscrew theory must 
be sought in the history of ship propulsion. From an early period the 
development of the theory followed two independent lines of thought, 
which may conveniently be called the momentum theory and the blade 
element theory respectively. 

In the momentum theory attention is directed mainly to the motion 
of the fluid, and the forces acting on the propeller are determined as 
those necessary to impart this motion to the fluid. The momentum 
theory was initiated by W. J. M. Rankine l in 1865 and was further 
developed by R. E. Froude 2 • It still forms a sound basis for estimating 
the ideal efficiency of a propeller, which is the extreme upper limit 
that could be obtained by the best propeller under the given conditions 
of operation. An important feature of the momentum theory is the 
conclusion that the axial velocity u of the fluid through the disc of the 
propeller is higher than the speed V with which the propeller is advancing 
through the fluid, and is in fact the arithmetic mean of the speed V 
and the increased axial velocity in the slipstream far behind the propeller. 
An extended form of the momentum theory, including the effects of the 
rotational motion of the slipstream, has been developed by A. Betz 3 . 

The momentum theory can also be extended to include the effects of 
the frictional drag of the propeller blades and of the interference of the 
body or ship on which the screw is mounted, and an estimate of these 
effects was included in Rankine's original paper. The defect of the 
momentum theory is that it gives no indication of the shape of propeller 
required to produce the reactions considered. 

The principle of the blade element theory is to consider the forces 
experienced by the blades of the propeller in their motion through the 
fluid, and this theory is therefore intimately concerned with the geo­
metrical shape of the propeller. The theory was initiated in a rather 
crude form by W. Froude 4 in 1878, but it owes its development mainly 

1 Transactions Institute of Naval Architects, Vol. 6, p. 13, 1865. 
2 Ibidem, VoL 30, p~ 390, 1889. 
3 Zeitschr. f. Flugtechnik u. Motorl. 11, 105, 1920. 
4 Transactions Institute of Naval Architects, Vol. 19, p.47, 1878. 
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to the work of S. Drzewiecki 1 and finds its complete expression in his 
book "TMorie generale de l'Mlice" (Paris, 1920). The basis of the 
analysis is that the blade of the propeller is divided into a large number 
of elements along the radius and that each of these elements is regarded 
as a small airfoil moving with a velocity determined by the constant 
axial velocity V of the propeller and the rotational velocity Q r, which 
varies from element to element along the blade. The unsatisfactory 
feature of this theory is the uncertainty as to the characteristics which 
must be assumed for the airfoil sections. In the early stages of the 
theory it was not perhaps realized that the characteristics of an airfoil 
vary with its aspect ratio, but with increasing knowledge of the behavior 
of airfoils and with more accurate experimental results, it became evident 
that it was not sufficiently accurate to assume some rather arbitrary 
aspect ratio for the blade elements. The question of interference between 
the adjacent blades of a propeller also arose, and to resolve all these 
uncertainties Drzewiecki proposed to derive his airfoil characteristics 
by analysing the observed performance of a special series of propellers. 
The blade element theory of a propeller was also developed by F. W. Lan­
chester2 in association with his theory of the airfoil, and he endeavored 
to represent the mutual interference of the blades of a propeller by 
the analogy of an infinite staggered series or cascade of airfoils. 

Apart from the incomplete solution offered by the momentum theory 
and the uncertainties involved in the blade element theory, there was 
one important point in which the theories appeared to be irreconcilable. 
The momentum theory determined an upper limit to the efficiency of 
a propeller, depending only on the thrust per unit disc area at a given 
speed of advance, but the blade element theory suggested that the 
efficiency of any propeller would tend to unity as the drag of the blades 
tended to zero. Also the blade element theory, using airfoil characteristics 
corresponding to a moderate aspect ratio, was found to represent the 
observed behavior of a propeller correctly in general form, but failed to 
give accurate numerical results. Drzewiecki hoped to overcome this 
difficulty by deducing his airfoil characteristics from tests of special 
propellers; but in Germany and England an attempt was made to 
modify the blade element theory by incorporating in it the conception, 
indicated by the momentum theory, of an increased axial velocity 
through the disc of the propeller. This increased axial velocity was 
used instead of the speed of advance of the propeller to estimate the 
force experienced by any blade element, and the effect of this modi­
fication was to decrease the effective angle of incidence at which the 
blade element operated. In Germany the effective axial velocity 
experienced by the blade element was taken to be the velocity determined 

1 Bulletin del' Association Technique Maritime, 1892 et seq. 
2 Aerodynamics; London, 1907. 

12* 
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by the momentum theory, and in his statement of the theory A. Betz 1 

remarks that the appropriate aspect ratio for determining the lift and 
drag coefficients of the blade element is higher than that of an ordinary 
wing, tending to infinite aspect ratio but depending also on the shape 
of the blade: to resolve the uncertainty it is necessary to rely on 
experimental results. In England, on the other hand, the airfoil 
characteristics were still chosen to correspond to a moderate aspect 
ratio (usually 6), and the inflow theory of A. Fage and H. E. Collins 2 

was based on an empirical estimate of the axial velocity: this theory 
was given in a more complete form, including also a rotational inflow 
velocity, by L. Bairstow 3• The propeller theory of G. de Bothezat 4 is 
also in effect another statement of this inflow theory, using axial and 
rotational inflow velocities estimated in accordance with the momentum 
theory, but since he did not proceed to the conception of using airfoil 
characteristics corresponding to infinite aspect ratio, de Bothezat too 
was compelled to advocate tests of a special series of propellers to 
determine these characteristics. 

In order to avoid the empiricism of the inflow theory, R. McK. Wood 
and H. Glauert 5 tried to develop a propeller theory on the conception, 
originally propounded by Lanchester, that the mutual interference of 
the propeller blades was analogous to that of a staggered cascade of 
airfoils; but this theory also suffered from an inadequate appreciation 
of the importance of aspect ratio in determining the characteristics of 
an airfoil or series of airfoils. 

Modern airscrew theory, which reconciles and explains the discordances 
of the old momentum and blade element theories, rests fundamentally 
on the conception that the lift of an airfoil is due to a circulation of the 
flow around its contour. As a logical consequence of this conception, 
free vortices must spring from the blades of a rotating propeller and pass 
down stream in approximately helical paths, and it is these vortices 
which constitute the slipstream of the propeller. This conception of 
the mode of operation of a propeller was propounded by Lanchester 6, 

and is confirmed experimentally by Flamm's photographs 7 of the wake 
of a marine screw. The induced velocity due to this system of trailing 
vortices was investigated by N. E. J oukowski 8, but owing to the 
complexity of the analysis he was obliged to pass to the simplifying 

1 Zeitschr. f. Flugtechnik u. Motor!. 6, 97, 1915. 
2 Br. A.R.C. R. and M. 328, 1917. 
3 Applied Aerodynamics; London, 1919. 
4 U.S. N.A.C.A. Technical Report No. 29, 1919. 
5 Br. A.R.C. R. and M. 620, 1918. 
6 loco cit. 
7 Die Schiffschraube; Berlin, 1909. 
B Soc. Math. Moscou, 1912; reprinted in "TMorie Tourbillonnaire de l'Mlice 

Propulsive"; Paris 1929. 
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assumption of an infinite number of blades. The theory then reverts 
to the form of the inflow theory, using axial and rotational inflow 
velocities in accordance with the momentum theory but based in fact 
on the more reliable conception of the vortex system of the slipstream. 
Joukowski also proposed to employ airfoil characteristics obtained for 
a suitable cascade of airfoils of infinite aspect ratio, and his theory, as 
finally developed in 1918, is therefore in full agreement with modern 
airfoil and airscrew theory. 

The vortex system of the slipstream was analyzed in detail by 
A. Betz 1 in 1919, and by assuming a lightly loaded frictionless airscrew 
he succeeded in establishing the system which would give the minimum 
loss of energy; assuming also a large number of blades, the analysis 
determined the best distribution of thrust along the blade. In an 
appendix to this paper L. Prandtl gave an approximate correction to the 
thrust distribution curve to represent the effect of a small number of 
blades, and recently S. Goldstein 2 has given a more accurate solution 
of this problem. More generally, however, the vortex theory of airscrews 
has been developed on the assumption that the number of blades is large 
and that the periodicity of flow associated with a small number of blades 
may be neglected. General airscrew theories, based on the fundamental 
conceptions of the vortex theory and on Prandtl's airfoil theory, have 
been developed by H. Glauert3, E. Pistolesi4, and S. Kawada 5 and the 
optimum distribution of thrust along the blade, as modified by the 
profile drag of the blade elements, has been determined by H. B. Helm­
bold6, and by Th. Bienen and Th. von Karman7• The important features 
of these developments are that, by applying the conception of induced 
velocity derived from Prandtl's airfoil theory, the inflow velocities at the 
airscrew disc have been established on a more reliable basis than was 
possible in the old inflow theory, and that the airfoil characteristics 
to be used in association with these velocities are the characteristics 
corresponding to an airfoil of infinite aspect ratio. 

Apart from the development of the general theory, attention has 
constantly been devoted to the special problems associated with heli­
copters, windmills, tandem propellers, and the mutual interference 
between propeller and airplane. The analysis of these problems has not, 
however, modified the course of development of the general theory, but 
has rather followed in its wake, each successive advance in the general 
theory leading to a more adequate analysis of the specialized problems. 

1 Gottinger Nachr. 1919, p. 193. 
2 Roy. Soc. Proc. (A) 123, 440, 1929. 
3 Br. A.R.C. R. and M. 786 and 869, 1922. 
4 Vortrage aus dem Gebiete der Hydro- und Aerodynamik, Innsbruck, 1922. 
5 Tokyo Imperial University, Aero. Res. Inst., No. 14, 1926. 
6 Zeitschr. f. Flugtechnik u. Motorl. Hi, 150, 1924. 
7 Zeitschr. V.D.I. 68, 1237, 1924. 
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CHAPTER II 

THE AXIAL MOMENTUM THEORY 
1. The Rankine-Froude Theory. The function of a propeller or of any 

similar propulsive system is to give a forward thrust along its axis, and 
this thrust is obtained by imparting a backward motion to the fluid in 
which it operates. The production of the thrust is therefore inevitably 
associated with a certain loss of energy which is represented by the 
kinetic energy of the motion of the fluid. Additional sources of loss of 
energy are the rotational motion imparted to the fluid by the torque 
of the propeller and the frictional drag of the propeller blades in their 
motion through the fluid. In a first estimate of the behavior of a propeller, 

30----- however, it is convenient to ignore 
~ __ -!:8:!.1 these additional sources of loss of 

_------- __________ energy and to develop a theory for an 
V ~e//er u UI ideal propeller which operates without 

IBe __ any frictional drag on the blades and 
----- without any rotational motion in the 

Fig. 9. 
slipstream. Also in this first estimate 

the thrust of the propeller will be assumed to be uniformly distributed 
oyer the circular disc swept by the blades of the propeller. 

Consider a propeller of disc area 8 advancing through the air with 
the velocity V along its axis of rotation. Let P be the power required 
to drive the propeller and let T be the thrust along its axis, so that the 
useful work done by the propeller is V T and the efficiency of propulsion is 

VT 
TJ = -p (l.l) 

By the principle of relative motion, the reaction between the propeller 
and the air is the same as if the propeller were rotating at a fixed point 
in a stream of velocity V directed along its axis, and it is convenient to 
consider the motion in this alternative form. Due to the reaction of the 
thrust on the air, a slipstream of increased axial velocity is formed 
behind the propeller and the general nature of the axial flow is of the 
form shown in Fig. 9. Let U 1 be the axial velocity in the ultimate wake, 
where the pressure of the air has regained its original value, and let 
81 be the cross-sectional area of the wake. Then if e is the density of the 
air, the mass flow in unit time in the slipstream is 81 e u1 and, by equating 
the thrust of the propeller to the increase of axial momentum in 

unit time, T = 81 e u1 (u1 - V) (1.2) 

Also, since the propeller has been assumed to be at rest, the thrust does 
no lJseful work and the power P absorbed by the propeller must be equal 
to the increase of the kinetic energy of the slipstream in unit time, or 

P = ! SleUl (ui - V2) (1.3) 
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Alternatively, if the air is assumed to be at rest while the propeller 
advances with the axial velocity V, the useful work done by the thrust 
is VT and the kinetic energy imparted to the slipstream in unit time is 

E = ! 81eUl (u1 - V)2 (1.4) 

since the mass flow in unit time is 81 e u1 and the velocity imparted 
to the slipstream is (u1 - V). On this basis the power absorbed by the 

propeller is P = V T + E (1.5) 

and it can easily be verified that this expression is consistent with the 
previous equations. Finally the efficiency of propulsion is: 

VT 2 V 
'Y} = ]> = U 1 + V (1.6) 

The preceding results are all expressed in terms of the dimensions 
and axial velocity of the ultimate wake behind the propeller, but if U is 
the axial velocity through the propeller disc the condition of continuity 

of flow requires that 8 U = 81 u1 (1.7) 

Also, regarding the propeller as at rest in a stream of velocity V, the 
work done on the air by the thrust of the propeller is U T in unit time, 
and this work must be equal to the power P absorbed by the propeller 
and to the kinetic energy imparted to the slipstream in unit time. 
But from (1.2) and (1.3) 

1 
P = 2 (ul + V) T = U T 

and hence (1.8) 

showing that the axial velocity at the propeller disc is the arithmetic 
mean of the axial velocity V and the slipstream velocity u1. Also the 
efficiency of the propeller may now be expressed as 

V 
'Y} = U (1.9) 

The conclusion that half the ultimate increase in the axial velocity 
has been attained when the air passes through the propeller disc may 
be derived in an alternative manner by a suitable application of Bernoulli's 
equation. Far in front of the propeller all the air has the same pressure Po 

( 
I . 

and velocity V and hence also the same total pressure head . Po + 2 e V2) . 

This value of the total pressure head will be retained by the air which 
passes outside the slipstream, whereas the air in the wake has the same 
pressure Po but the higher velocity U I , and hence the total pressure head 

of the air in the slipstream has been increased by ! e (u i-V 2). 

Proceeding now to the points immediately before and behind the propeller 
disc, this increase of total pressure head will be manifested simply as 
an increase of pressure since there can be no discontinuity of velocity 
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as the air passes through the propeller disc. It appears therefore that 
there is a sudden increase of pressure behind the propeller disc and this 
increase of pressure, acting over the whole disc, represents the thrust 
of the propeller. Thus the application of Bernoulli's equation gives 

1 
T = 2 8 e (u.i - P) (1.10) 

and this equation, taken in conjunction with the previous equations 
(1.2) and (1.7), leads to the conclusion that the axial velocity U is the 
arithmetic mean of the velocities V and u1. 

The representation of a propeller by a disc at which there is a sudden 
increase of pressure without any discontinuity of velocity was introduced 
by R. E. Froude 1 and is generally known as Froude's actuator disc. 
A physical representation of this actuator disc may be obtained by 
considering a close pair of tandem propellers rotating in opposite directions 
and so designed that the element of torque at any radial distance from 
the axis has the same value for each propeller, in order that there shall 
be no rotational motion in the slipstream: also each propeller must be 
assumed to have a large number of frictionless blades and to have the 
blade angles suitably chosen to give a uniform distribution of thrust 
over the whole propeller disc. 

For some purposes it is convenient to present the results of the 
preceding analysis in a modified form. Writing 

U = V (1 + a) } 

u1 = V (1 + b) 
(1.11) 

where a is the axia:l interference factor and b is the axial slipstream 
factor, (1.8) shows that a is one half of b and the expressions ,for the 
thrust, power and efficiency of the propeller become 

T = 28 e V2 (1 + a) a 
P=28eV3(I+a)2a 

1 
'r)=T-t=a 

(1.12) 

2. The Momentum Equation. In developing the simple Rankine­
Froude theory it has been assumed that the thrust of the propeller 
is uniformly distributed over the whole propeller disc and that the axial 
velocity of the air has a constant value over this disc and over a cross­
section of the ultimate wake. Also the momentum equation for the 
propeller has been taken to be 

T = 81 e u 1 (U1 - V) (2.1) 

on the basis that the right hand side of this equation represents the 
total increase of momentum and that the resultant pressure force on 

1 FRoUDE, R. E., On tlie 'Part Played in Propulsion by Differences of Fluid 
Pressure. Trans. Inst. Nav. Arch., Vol. 30, p. 390, 1889. 
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the whole fluid is zero. To proceed further with the development of the 
theory it is necessary to consider the form of the momentum equation 
as applied to individual annular elements of the propeller, i. e. to the 
fluid which passes through the propeller disc between the radii l' and 
(1' + dr), and as a preliminary step it is necessary to examine more 
critically the momentum equation as applied to the whole propeller. 
The fluid which has passed or will pass through the propeller disc forms 
a cylindrical column whose cross-sectional area contracts from So far 
in front of the propeller to S at the propeller disc and finally to S1 in the 
ultimate wake (see Fig. 9). The system of forces acting on the column 
of fluid bounded at the ends by the two sections So and S1 far before and 
behind the propeller comprises the 
thrust T, the pressure Po (So - S1) 
over the ends of the column and 
an axial force X due to the pres­
sure on the lateral boundary of 
the column which will be regarded 
as positive when it opposes the 
thrust T. The momentum equation 
for the column of fluid can now 
be expressed quite generally as 

Po 

Tunnel Wall 

Fig. 10. 

T - X + Po (So - S1) = J e U1 (~- V) dS1 

--­uf 

(2.2) 

where the integral extends over the cross-section of the wake and the 
velocity u1 may have different values for different annular elements. 
In order to establish the validity of the previous equation (2.1) it is 
necessary to show that the axial 'pressure force X on the lateral boundary 
of the column of fluid is equal to the pressure force Po (So - S1) over 
its ends. 

Consider a propeller operating in a cylindrical tunnel whose cross­
section is a circle of area C. The system of velocity and pressure will 
be as illustrated in Fig. 10. The axial velocity V increases to u at the 
propeller disc and to u1 in the wake, while the velocity outside the wake 
will decrease to u2 in order to maintain the continuity of flow. The 
pressure far behind the propeller will have a constant value P1 across 
the whole tunnel but this value will be greater than the original pressure Po 
owing to the drop of velocity outside the slipstream. Also the velocity u2 

must have the same value at all points of the section outside the 
slipstream, but the velocities u and U 1 may have different values for 
different annular elements. 

The condition of continuity, applied in turn to the flow inside and 
outside the slipstream, gives the equations 

and 
VSo = J udS = J u1 dS1 

V (C - So) = u 2 (C - S1) 

(2.3) 

(2.4) 
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Also if Ho is the total pressure head of the original stream, Bernoulli's 
equation applied to the flow outside the slipstream gives 

H 0 = Po + -} e P = PI + ! e u~ 
or 1 (V2 2 PI-PO = -2"e -U2) (2.5) 

Inside the slipstream the total pressure head is increased to HI owing 
to the sudden increment of pressure pi which occurs at the propeller 
disc without any change of velocity. Considering any annular element, 
let v be the radial component of the velocity at the propeller disc and 
let P be the pressure immediately in front of the disc. Then from 
Bernoulli's equation applied to the flow just before and behind the 

1 
propeller, Ho = P + 2 e (u2 + V2) 

and HI = P + pi + ! e (u2 + V2) 

1 0 

= PI +2eui 

Hence finally p' = HI-HO = ! e (ui-u~) (2.6) 

and the thrust of the propeller is 
T = f pi d8 (2.7) 

Now if X is the axial pressure force on the lateral boundary of the 
column of fluid forming the slipstream, the momentum equation for the 
flow outside the slipstream is 

X + Po (0 - 8 0) - PI (0 - 81) = e V (0-80) (u2 - V) 
from which it is possible to eliminate u 2 and PI by means of the equations 
(2.4) and (2.5). Thus . 

X = Po (80-81) + (PI-PO) (0-81 ) - e V (0-80) (V -u2 ) 

1 
= Po (80 - 8 1) + 2 e (V -u2 ) [(V + u 2 ) (0- 8 1) -2 V (0 - 8 0)] 

= P (8 - 8 ) + }- e P (80 - 8 1)2 
o 0 1 2 0- 81 

and as the size of the tunnel becomes very large this equation gives the 
limiting value X = Po (80 - 81) (2.8) 

Similarly the momentum equation for the flow inside the slipstream is 

T - X + Po 8 0 - PI 81 = f e Ut (u1 - V) d 81 

or 

T - f eUI (u1 - V) d81 = Po (80 -81) + ! e VZ (80=~)2 Po 8 0 + P1 8 l 

( 8 1 V2 (80 -81 )2 
= PI-PO) 1 + 2 e 0-81 

= ~ () (V2 _ u2 ) 8 + ~ () V2 (80 - ~1~ 
2 <:: 2 1 2 <:: 0-81 

_ ~ P (80 - 8 1 ) [0 (80 + 8 1)-280 81] 

- 2 e (0-81)2 . 
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and as the size of the tunnel becomes very large this equation gives 

the limiting value T = J e U 1 (u1 - V) d 8 1 (2.9) 

Thus, by considering the flow in a tunnel and then proceeding to the 
limiting condition of a tunnel of very large radius, it has been possible 
to establish the validity of the momentum equation applied to the 
propeller as a whole. This simple line of argument does not suffice to 
establish the form of the momentum equation applied to the separate 
annular elements of the propeller, but in the development of the theory 
it is customary to replace the integral (2.9) by its differential form 

d T = e U 1 (u1 - V) d 81 } (2.10) 
= e U (u1 - V) d 8 

The validity of this equation has not been established 1 and its adoption 
may imply the neglect of the mutual interference between the various 
annular elements, but the actual deviations from the conditions re­
presented by (2.10) are believed to be extremely small in general. 

3. The Ideal Efficiency of a Propeller. The analysis of the preceding 
section has established that the element of thrust on an annular element 
of a propeller can be expressed either in terms of the increase of pressure 
at the propeller disc or in terms of the axial velocity in the wake as 

d T = p'd 8 = ~ e (ui - V2) d 8 (3.1) 

since the velocity U 2 in the expression for p' given by (2.6) of the pre­
vious section becomes identical with the undisturbed velocity V when 
the propeller is operating in an unlimited fluid. Also the momentum 
equation has been accepted in the form 

d T = e u (u1 - V) d 8 (3.2) 
1 

Hence the equation u = 2 (u1 + V) (3.3) 

which was previously established for the whole propeller, IS also true 
for each individual annular element. Writing 

u = V (1 + a) (3.4) 

where a is the axial interference factor, the slipstream velocity U 1 becomes 

u1 = V (1 + 2 a) (3.5) 

and (3.1) and (3.2) for the element of thrust both reduce to the same form 

d T = 2 e V2 (1 + a) a d 8 (3.6) 

or for the whole propeller 

T = 2 e V2! (1 + a) ad 8 (3.7) 

1 A discussion of this question has been given by D. THOMA, Zeitschr. f. Flug­
technik u. Motorl. 16, 206, 1925. 
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The increase of kinetic energy in the slipstream in unit time, which 
represents a loss of energy of the propulsive system, is now 

E = J ~ e U (U1 - V)2 d S I (3.8) 

= 2e V8 J (1 + a)a2 dS 

and the ideal distribution of thrust over the disc of the propeller will 
be that which gives a minimum value of the energy loss E for a definite 
value of the useful work VT. To determine this best distribution of 
thrust, the axial interference factor a must be regarded as a function 
of the radial distance r of the annular element and the form of the 
function must be determined so that E is a minimum while VT remains 
constant. 

Assume that this best distribution of thrust over the disc of the 
propeller has been found, so that no alteration of the distribution can 
reduce the loss of energy. Suppose now that the addition of a small 
element of thrust a T on any annulus produces a loss of energy a E: 
if the value of a E varies with the radial distance of the annulus it is 
possible to obtain a new distribution of thrust with a reduced loss of 
energy by adding an element of thrust a T where the corresponding 
value of a E is small and by subtracting an equal element of thrust 
where a E is large. Hence the condition for the best distribution of 
thrust over the propeller disc is that the ratio of a E to a T shall have 
the same value for all annular elements of the propeller. 

Now the thrust of an annular element of area d Sis 

d T = 2 e V2 (1 + a) adS 

and the corresponding loss of energy is 

dE = 2 e va (1 + a) 0,2 d S 

Increasing the axial interference factor a by L1 a, the corresponding 
increments of thrust and energy loss are 

a (d T) = 2 e V2 (1 + 2 a) a adS 
a (d E) = 2 e va (2 0,+ 30,2) L1 adS 

The condition for the best distribution of thrust over the disc of the 

propeller is therefore that 2;':::2 should be constant, and this implies 

that the axial interference factor a is constant. Hence the minimum 
loss of energy for a given thrust occurs when the thrust is uniformly 
distributed over the whole propeller disc. The conditions are therefore 
identical with those assumed in the simple Rankine-Froude theory, and 
the thrust and power of the propeller are respectively 

T = 2 S e V2 (1 + a) a } 
P = 2 S e V3 (1 + 0,)2 a (3.9) 
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The efficiency of the propeller with this best distribution of thrust 
represents the highest efficiency which can be obtained with a propeller 
of disc area S advancing with the speed V and absorbing the power P: 
it is therefore the ideal efficiency of the propeller and will be denoted 
by rho The value of the ideal efficiency is 

VT 1 
ril = -p = 1 + a (3.10) 

By means of (3.9) and (3.10) it is possible to eliminate the axial 
interference factor a and to express the thrust and power of the propeller 
in the form 1. 

BI\ 
\ 

(3.11) 0. 

.~a 90 
and for a propeller of radius R the disc ~ 

85 
area S is simply n R2. Table 1 gives 1;;0. 

the numerical values of the thrust and ~ 
power coeffioients defined by (3.11) for 

80 a wide range of values of the ideal a 
efficiency, and the relationship between 
the efficiency and the power coefficient 
is also shown in Fig. 11. The import­
ance of the relationship exhibited in 
this figure is that the ideal efficiency 

7l 0. 0 

I\. 

" " '" ""-
~ 

0.8 to 

Fig. 11. 

'Y}1 represents the highest efficiency which could possibly be attained 
with any propeller of radius R absorbing the power P at the speed V. 
It will be noticed that the efficiency falls, as the power per unit disc 
area increases or as the speed decreases. On the basis of the axial 
momentum theory therefore the diameter of a propeller should be as 
large as possible. 

TABLE 1. Ideal Efficiency. 

'11 TJnR2 (! V2 PfnR2 e va '71 TJnR2 e V2 PJnR2 (! va 

0.98 0.0416 0.0425 0.82 0.5354 0.6529 
0.96 0.0868 0.0904 0.80 0.6250 0.7812 
0.94 0.1358 0.1445 0.75 0.8890 1.185 
0.92 0.1890 0.2055 0.70 1.225 1.749 
0.90 0.2469 0.2743 0.65 1.657 2.549 
0.88 0.3099 0.3522 0.60 2.222 3.704 
0.86 0.3786 0.4402 0.55 2.975 5.410 
0.84 0.4535 0.5399 0.50 4.000 8.000 

The results of this general analysis can also be represented in another 
interesting manner. The power of an engine is a simple function of the 
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rate of revolution for given conditions of pressure and temperature, and 
it is therefore convenient to express the efficiency of a propeller in terms 
of a torque or power coefficient Qc defined by the equation 

Q P 
Qc = 'JT, R2 (! f.J2 R3 'JT, R2 (! [J3 R3 (3.12) 

where Q is the angular velocity of the propeller. Denoting also the ratio 
of forward speed to tip speed of the propeller by A, so that 

f.OO,---..,---,---==;----r=--, V 
),= QR (3.13) 

1ft 

the relationship between power and ideal 
efficiency becomes 

(3.14) 

ailOH-H'-t---f----t----+-----j 
This equation has been used to calculate 
the relationship between A and 'Y)1 for a 
series of values of the torque coefficientQc' 

The numerical values are given in Table 2 

Ideal Effiden CVf'ves 

o at D.5 and are shown graphically in Fig. 12. 
These curves show the variation of ideal 

Fig. 12. efficiency with forward speed of a pro-
peller which rotates at a definite tip speed 

Q R and absorbs a definite power P. Each curve therefore represents 
the highest efficiency which may be anticipated from a variable pitch 
propeller which is driven by constant power and is adjusted to run 
at a constant rate of revolution. The efficiency rises with the speed 
ratio A, rapidly at first and then more slowly, and tends to unity as 
a limit. 

TABLE 2. Values of A. 

111 I Qc = 0.001 I 0.002 I 0.004 I 0.008 0.012 

0.20 0.017 0.021 0.027 0.034 0.039 
0.40 0.038 0.047 0.060 0.075 0.086 
0.60 0.065 0.081 0.103 0.129 0.148 
0.65 0.073 0.092 0.116 0.146 0.168 
0.70 0.083 0.105 0.132 0.166 0.190 
0.75 0.095 0.119 0.150 0.189 0.216 
0.80 0.109 0.137 0.172 0.217 0.249 
0.85 0.127 0.160 0.202 0.254 0.291 
0.90 0.154 0.194 0.244 0.308 0.352 
0.92 0.169 0.214 0.269 0.339 0.388 
0.94 0.191 0.240 0.302 0.381 0.436 
0.96 0.223 I 0.281 0.354 0.446 0.510 
0.98 I 0.287 I 

I 0.361 0.455 - -
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CHAPTER III 

THE GENERAL MOMENTUM THEORY 
1. General Equations. The axial momentum theory of the previous 

chapter was developed on the assumption that there was no rotational 
motion in the slipstream and that the propeller could be replaced by an 
actuator disc which produced a sudden increase of pressure in the fluid 
without any change of velocity. More generally the slipstream will have 
a rotational motion imparted to it by the reaction of the torque of the 
propeller and this rotational motion implies a further loss of energy. 
To extend the theory to include the effects of this rotational motion it 
is necessary to modify the qualities of the actuator disc by assuming 
that it can also impart a rotational component to the fluid velocity while 
the axial and radial components remain unaltered. 

Let r be the radial distance of any annular element of the propeller 
disc, and let u and v be respectively the axial and radial components 
of the fluid velocity. Let P be the pressure immediately in front of the 
propeller and let p' be the increase of pressure behind the propeller, 
associated with an angular velocity w. In the final wake let PI be the 
pressure, ~ the axial velocity and WI the angular velocity at a radial 
distance r1 from the axis of the slipstream. 

The condition of continuity of flow for the annular element is 

u l rl d rl = 1H d r (1.1) 

and the condition for constancy of angular momentum of the fluid as 
it passes down the slipstream is 

(1.2) 

Also, since the element of torque of the propeller is equal to the angular 
momentum imparted in unit time to the corresponding annular element 

of the slipstream, d Q = e u w r2 d S (1.3) 

Bernoulli's equation, applied in turn to the flow before and behind 
the propeller, gives 

and 

Hence 

Ho = Po+ ! e V2 

1 
=P +2:e(U2+V2) 

1 
HI = P + P' + 2: e (u2 + v2 + w 2 r 2 ) 

(1.4) 

which shows that the increase of total pressure head on passing through 
the propeller disc exceeds the thrust per unit area p' by a small term 
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representing the kinetic energy of the rotational motion imparted to the 
fluid by the torque of the propeller. 

The expressions for the total pressure head also give 

PO-PI = ~ e(Ui-V2)+ ~eWiri-(HI-Ho) 

= ~ e (Ui - V2) + + e (wiri -w2r2) -p' (1.5) 

And in general the pressure PI in the slipstream is less than the external 
pressure Po owing to the rotation of the slipstream about its axis. But, 
applying Bernoulli's equation to the flow relative to the propeller blades 
which are rotating with the angular velocity Q, the relative angular 
velocity decreases from Q to (Q - w) and hence the increase of 

pressure is P' = ~ e [Q2 - (Q - W)2] r2 \ 

( 
l' (1.6) 

=e Q-Tw)wr2 

Finally, combining this result with the previous equations (1.2) and (1.5), 
the drop of pressure in the wake is 

PO-Pl= ~e(ui-V2)-e(Q--}WI)WIri (1.7) 

The pressure gradient in the wake balances the centrifugal force 
on the fluid and is governed by the equation 

dpi _ 2 
-d- - e WI r i (1.8) 

r! 

And then differentiating (1.7) relative to r1 and equating to (1.8) 
a differential equation is obtained connecting the axial and rotational 
velocities in the wake, 

1 d (2 V2) _ d [( n 1 ) 2] 2 T dr! U I - - dr! ~<l"-TWI wi r i -wiri 

= (Q - WI) -dd (WI ril (1.9) 
r! 

The equation of axial momentum for the propeller, which can be 
established rigorously by a simple extension of the analysis of II 2, is 

T = f e u1 (u1 - V) d 81 - f (Po - PI) d 81 (1.10) 
and this equation is generally accepted in the differential form 

d T = e u1 (Ur - V) d 81 - (Po - PI) d 81 (1.11) 

Also from the pressure increment at the propeller disc 
dT = p'd8 

= e (Q - ~ W) wr2d8 (1.12) 

and then combining (1.1), (1.7), (L11), and (1.12) 

(Q - {- W) W r2 = U (ui - V) - :! [~ (ui - P) - (Q - ~ WI) WI ri] 

or 
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UUl (Ul-V) - ; U (ui - V2) = Ul (Q- ; W) wr2-u (Q-! WI) w1ri 

Q--w Q--Wl 
which gives finally [1 1 1 

1 ( V2- 2 2 2 -2 u l - ) - - ulwlr1 (1.13) 
U U 1 

These equations!, though rather complex in form, suffice to determine 
the relationship between the thrust and torque of the propeller and the 
flow in the slipstream. If, for example, the angular velocity WI is known 
as a function of the radius rl in the wake, (1.9) determines the axial 
velocity U l and then (1.13), taken in conjunction with (1.1) and (1.2), 
determines the axial and rotational velocities at the propeller disc. The 
thrust and torque of the propeller are then obtained from (1.12) and 
(1.3) respectively. Owing to the complexity of the equations, however, 
it is customary to adopt certain approximations based on the fact that 
the rotational velocity in the slipstream is generally very small. 

2. Constant Circulation. An exact solution of the general equations 
of the preceding section can be obtained when the flow in the slipstream 
is irrotational except along the axis. This condition implies that the 
rotational momentum W r2 has the same value k for all radial elements 2, 

~. e. WI ri = W r2 = k (2.1) 

Then by virtue of (1.9), the axial velocity u l is constant across the wake 
and it can be shown that (1.13) is satisfied by a constant value of the 
axial velocity U across the propeller disc: for if U and u l are constant, 
the equations of continuity (1.1) and (1.2) give 

!:'l = !:'2 = r2 = R2 (2.2) 
U w ri Ri 

and (1.13) then becomes 

-~ (ul - V)2 = U1-U Q k 
2 U 

(2.3) 

Now put V 
.1.= QR 

(2.4) 

and (2.3) becomes (2.5) 

1 The complete series of equations appears to have been given first by N. K 
JOUKOWSKI, Travaux du Bureau des Calculs et Essais Aeronautiques de l'Ecole 
Superitmre Technique de Moscou, 1918; republished in book form as "TMorie 
Tourbillonnaire de l'Mlice Propulsive"; Paris, 1929. 

2 This condition was used by N. E. JOUSKOWSKI as the basis of design for 
his special type of propeller. 

Aerodynamic Theory IV 13 
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Also from \ (1.7), since PI is equal to Po immediately inside the 
boundary of the slipstream, 

_~ (u2 - V2) = (Q __ k_) k 
2 1 ,,2R~ 

= (Q- 2kR~IU) k 

OJ;' ~(1I.2_12) = (1_Jttl)!L 
2 1""1 2 tt2 tt 

and elimmating q b'y means of (2.5) 
, ~ (/~2 _ 12) = [1- ttl (ttl - l)2] tt (ttJ _},)2 

2 ("'1 4 (ttl -Il) 2 (Ill -Il) 

or finally . I 4 (1-'1'-1-') (21-' -1-'1 - A) = I-' (1-'1 -A)3 (2.6) 

"Equations (2.5) and (2.6) determine I-' and 1-'1 in terms of A and q. 
Also' '(2.6) may be written in the form 

1 Il(PI-l)3 
1-'=2-(1-'1+ 1)+ 8(IlI-pf 

which shows that in the case under consideration 
1 

u>2(u1 + V) 

Thus the conclusion obtained in Chapter II that the axial velocity u at the 
propeller disc is the arithmetic mean of the axial velocity V and the 
slipstream velocity ~ is not true in general when rotation also occurs 
in the slipstream. 

Adopting the usual notation 
I-' = A (1 + a) 

1-'1 = A (1 + b) 
the expression for I-' furnishes the relation 

_ 1 [ l2(1 +a)b2 ] 

a- 2 b 1+ 4(b-a) 

(2.7) 

The second term in the bracket is generally small and it is legitimate 
to replace b by its approximate value 2 a. Thus 

1 
a=2 b [1+12 (1+a)a] 

or alternatively, to the same degree of approximation, 

b = 2£1, [1 - A"2 (1 + a) a] 
, . l3 (1 + a)2 b2 

Also from (2.5) q = - ... --
2 (b-,-a) 

and on the same basis of approximation 
q=2 A3(1,+a)2a 

·The torque of the airscrew is obtained from the 'equation 
dQ 
(fT' = 2n12uwr3 

=2nl2ukr 

(2.8) 

(2.9) 
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and on integration, remembering that u and k are constant along the 

blade, Q = n R2 e u k 

The corresponding torque coefficient is 

Q uk 
Qc = :n; R2 f! .02 R3 = .02 R3 

and so the parameter q defined by (2.4) and determined approximately 
by (2.9) is the torque coefficient of the propeller. 

It is now possible to obtain an estimate of the amount by which 
the ratio bja differs from the value 2 as determined by the axial momentum 
theory. Assuming for the torque coefficient Qc or q the value 0.012, 
which is larger than any value generally obtained from a propeller, the 
following values of the parameter it and of the ratio bj2 a are deduced 
from (2.8) and (2.9): 

.1= 
bJ2a = 

0.352 
0.985 

0.249 
0.980 

0.148 
0.976 

The deviation of the ratio bja from the value 2 is therefore quite small 
even in this rather extreme case, and for the smaller values of the torque 
coefficient which are more usually obtained the deviation is quite 
negligible. 

The condition of constant circulation k along the blade, which has 
been the basis of the preceding calculations, cannot be fully realized in 
practice since it implies that near the roots of the blades the angular 
velocity imparted to the air is greater than the angular velocity of the 
propeller itself. In any practical application of the analysis it is therefore 
necessary to assume that the effective part of the propeller blades 
commences at a radial distance not less than V kjD at which w is equal 
toQ. 

3. Approximate Solution. In general the angular velocity w imparted 
to the slipstream is very small compared with the angular velocity 
Q of the propeller, and it is therefore possible to simplify the general 
equations by neglecting certain terms involving w2• On this basis of 
approximation the pressure PI in the wake is equal to the initial pressure 
Po of the fluid and the increase of pressure p' across the propeller disc 
is equal to the increase of total pressure head (HI - Ho). The relationships 
connecting the thrust and axial velocity are then the same as in the 
simple axial momentum theory, the axial velocity u at the propeller 
disc is the arithmetic mean of the axial velocity V and the slipstream 
velocity u I , and the element of thrust is 

il T = 2 e u (u - V) il S 
= 4n e V2 (I + a) a r il r (3.1) 

13* 
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Alternatively from (1.6) 

and writing 

d T = p' dS 

=2ne(Q-! w)wr3 dr 

w=2a,'Q 

this alternative expression is 

d T = 4 n e Q2 (1- a') a' r3 d r 

(3.2) 

(3.3) 

A comparison of the two expressions for the element of thrust shows 
that the axial and rotational interference factors a and a' are connected 

by the equation V2 (1 + a) a = Q2 r2 (1 - a') a' 

Finally the element of torque is obtained from (1.3) as 

dQ=euwr2dS 
= 4 n e V Q (1 + a) a' r3 d r 

(3.4) 

(3.5) 

and it is in these forms that it is customary to accept the equations for 
the thrust and torque of an ideal frictionless propeller. 

4. Minimum Loss of Energy. When the rotational motion in the 
slipstream is ignored, the minimum loss of energy is obtained by 
distributing the thrust uniformly over the whole disc of the propeller 
and by maintaining a constant value of the axial interference factor a. 
The additional loss of energy due to the rotational motion is small in 
general, but it exerts an important influence on the best distribution 
of thrust over the propeller disc. 

In the preceding paragraph the elements of thrust and torque have 
been obtained in the form 

dT= 4n e V2 (I+a)ardr 
and dQ=4neVQ(I+a)a'r3dr 

while the axial and rotational interference factors have 
to be related by the equation 

V2 (1 + a) a = Q2 r2 (1 - a') a' 

or alternatively V (1 + a) d T = Q (1- a') d Q 

Writing this equation again as 

Q d Q - V d T = Va d T + Q a' d Q 

been shown 

(4.1) 

(4.2) 

the left hand side represents the excess of the power absorbed by the 
propeller over the useful work done by the thrust, and the right hand 
side is an expression for the work done on the air or for the loss of 
energy. Thus 

dE = V a d T + Q a' d Q 
=QdQ- VdT 
= 4 n e V (1 + a) [Q2 r2 a' - V2 a] r d r (4.3) 



Now put 

and (4.1) becomes 

SECTION 4 

A. = nV:l[ I 
Qr 

x =----v-
x2 (1 - a') a' = (1 + a) a 

while the efficiency of the annular element [see (3.3), (3.5)] is 
I-a' a 

1] = 1 + a = a' x2 

Thus a = X21] a' 

= x21] [1 -1] (1 + a)] 
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(4.4) 

(4.5) 

(4.6) 

and the interference factors a and a' can therefore be expressed in terms 

1 + X2 1)2 (4.7) 
of x and 1] as a = x2 1)(I-1)) I 

a' = 1-1) 
1 + X 2 1)2 

The best distribution 1 of thrust over the propeller disc is determined 
by the condition that the increment of loss of energy ~ E corresponding 
to an increment of thrust ~ T has the same value for all annular elements 
of the propeller, and since 

dE=QdQ-VdT 

the increment of torque ~ Q can be used instead of the increment of 
energy ~ E. For an· annular element of area d S the increments are 

~ (d T) = 2 e V2 (1 + 2 a) ~ adS 
~ (d Q) = 2 e V Q r2 [a' ~ a + (1 + a) ~ a'] d S 

and the condition for the best distribution is therefore that 
X2 [a' ~ a + (1 + a) ~ a'] 

(1+2a)~a 

has a constant value 0 for all values of the radial parameter x. But 
from (4.6), by taking finite differences ~ a and ~ a', 

x2 (1 - 2 a') ~ a' = (1 + 2 a) ~ a 

and hence the condition becomes 
x2 a' 1 + a 

1+2a +1_2a'=O 

or in terms of the efficiency 1] of the annular element 
x2 (1-1)) l+x21) 

1 + X2 1) (2-1)) + 21)-1 + X2-~2 = 0 (4.8) 

This condition is equivalent to the result obtained by A. Betz 2, 

who establishes the relationship between the axial interference factor a 

1 See II 3. 
2 Eine Erweiterung der Schraubenstrahltheorie. Zeitschr. f. Flugtechnik u. 

Motor!. 11, 105, 1920. 
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and the radial coordinate x and shows the variation of the interference 
factors a and a' along the propeller blade in a series of diagrams. The 
condition can, however, be simplified by assuming that the thrust per 
unit disc area of the propeller is small and that the efficiency is only 
a little less than unity. Writing 

'Y}= 1-8 

where 8 is small, condition (4.8) becomes 

__ ~_Il ___ ....L 1 + xZ (I-e) 
l+x2(I-eZ) I (l+xZ)(1-2e)+x2e2 

and to the first order of the small quantity 8 

1+28=C 

=c 

(4.9) 

Thus to this order of approximation the best distribution of thrust over 
the propeller disc is such that the efficiency 'Y) has the same value for 
all annular elements. This simple condition applies only to a lightly 
loaded propeller and more generally the best distribution of thrust is 
determined by the condition (4.8), but there is no important difference 
in the variation of the interference factors a and a' along the propeller 
blade between the exact and the approximate solutions. 

5. Constant Efficiency. The elements of thrust and torque of 
a propeller are respectively 

dT -a:r = 4 nr e V2 (1 + a) a 

~~- = 4 nr3 eV.Q (1 + a) a' 

and the interference factors a and a' are connected by the relationship 

x 2 (1 - a') a' = (1 + a) a [see (4.5)] 

where Dr 
x=~ 

V 

Also the efficiency of the annular element is 
I-a' a 

'Y}= 1 +a =XZa' 

and, in accordance with the analysis of the preceding paragraph, the 
loss of energy of a lightly loaded propeller is a minimum when the 
efficiency 'Y} has a constant value along the blade. 

Now a = x 2 'Y} a' = x 2 'Y} [1 - 'Y} (1 + a)] 

and hence 
xZ'I'}(I-'I'}) 

a= l+xz'I'}z 

a' = 1-'1'} 
1 + XZ'I'}2 

which are two equations expressing the interference factors a and a' 
in terms of the constant efficiency 'Y} and the radial parameter x. Using 
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these expressions, the thrust and torque of the propeller are obtained 

in. the form ~. ~({ = dT = n R2 e V2 2}.2 (1-1)) G (x 'Yl) 
}. R d x d X 1)2' ./ 

V 
where }, = DR 

and 

The particular form chosen for the function G (x, 1]) is the one which is 
most convenient in the subsequent analysis, and in particular the 
limiting value at large values of x is simply 2 x, which is independent 
of the efficiency 1]. 

This function G (x, 1]) defines the thrust and torque distribution 
along the propeller blade. Numerical values of a, a', xa' and G are given 
in Table 3 for two values of the efficiency 1] and the distribution curves 
in one case are shown in Fig. 13. It will be noticed that the value of 
the axial interference factor a rises rapidly from zero at the boss and 
then remains nearly constant over the outer part of the blade, while 
the rotational interference factor a' is very small except near the boss. 
The curve of x a', which represents the rotational component of the 
velocity, is also shown in Fig. 13. The variation of G with the radial 
parameter x is shown in Fig. 14 for the same value of the efficiency: 
the load rises slowly at first near the boss of the propeller and then 
increases linearly with the radius. 

TA.BLE 3. Values of a, a', and G. 

1) = 0.75 1) = 0.90 
x 

a I a' I xa' G a a' xa' G 
I 

0.5 .041 I .219 .llO 0.10 .019 .083 .042 0.15 
1.0 .120 .160 .160 0.60 .050 .055 .055 0.85 
1.5 .186 .1l0 .165 1.49 .072 .035 .053 1.87 
2.0 .231 .077 .154 2.56 .085 .024 .047 2.98 
2.5 .260 .055 .138 3.68 .093 .016 .041 4.11 
3.0 .278 .041 .124 4.80 .098 .012 .036 5.21 
4.0 .300 .025 .100 7.02 .103 .007 .029 7.37 
5.0 .311 .017 .083 9.18 .106 .005 .024 9.48 
6.0 .318 .(H2 .071 11.30 .107 .003 .020 11.57 
8.0 .324 .007 .054 15.47 . .109 .002 .015 15.67 

10.0 .328 .004 .044 19.56 .110 .001 .012 19.73 

On in~\:lgration the thrust of the propeller gives the relation 

T _ 2(1-1)) H(2 ) 
nR2 e V2 -'Y)2. ,1] 

l/). 

where H (J" 1]) = 22J G d x 
o 



200 L III. THE GENERAL MOMENTUM THEORY 

and, by comparison with the formulae of the axial momentum theory, 
it will be seen that H (A, 'fJ) represents the correction factor to the thrust 
at a given efficiency due to the rotational motion. Similarly for the 
power absorbed by the propeller we have 

P 2(1-1)) 
nR2eva =~-H(J..,1}) 

and the torque coefficient of the propeller is 
P 2A,3(1-1]) 

QC=nR2e[J3R3=-~-:ry3- ····H(J..,1}) 

To evaluate the function H (A, 'fJ), put 

s = x 2 'fJ2 

'1'IA' 

and then A,2 J (1] + 8) 8 
H (J..,'fJ) = -:rt (1 + 8)2 ds 

o 

which gives finally 

./ 
V 

/ 
/ 

'I G 

:r:=~r 
Fig. 14. 

H(J.. )=I+A,2(1-1])_A,2(2-1])l A,2+1]2 
, 'fJ A,2 + 1]2 1]2 og A,2 

/ 
/ 

1j=a75 

8 10 

By means of these equations the torque coefficient Qc can be calculated 
as a function of A and 'fJ, and then by drawing curves of 'fJ against Qc for 
a range of values of A it is possible to obtain the efficiency 'fJ as a function 
of Qc and A. The numerical values deduced in this manner 
are given in Table 4. The curves of 'fJ against A are also shown in Fig. 15 
and may be compared with the corresponding curves of Fig. 12, which 
were obtained from the axial momentum theory. The loss of efficiency 
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due to the rotational motion increases with the torque coefficient Qc' 
For a moderate torque coefficient 0.004 the loss of efficiency is 2 per cent 
at most and for the exceptionally large r--,--,--==::::=:f""'=== 

1 f tOO 
torque coefficient 0.012 the oss 0 effi- 1) 

ciency rises to 4 per cent. Thus the 
0~'~--~~~-7~--~--~ 

loss of efficiency due to the rotational 
motion is quite small in a properly 

o~~~v-~+---+--~--~ 

TABLE 4. Propeller Efficiency. 

Qc= 0.001 I 0.002 [ 0.004 I 0.008 [ 0.012 Efficient;)' ['urYl!s 

A=O.l 0.763 0.669 0.570 0.475 0.422 
0.2 0.935 0.893 0.828 0.739 0.680 
0.3 0.978 0.958 0.922 0.865 0.820 01 03 as 
0.4 0.989 0.978 0.958 0.924 0.893 
0.5 0.994 0.988 0.975 0.951 0.930 

A=;b 
Fig. 15. 

designed propeller, but it may become more important if the load distri­
bution curves depart noticeably near the boss from the form illustrated 
in Figs. 13 and 14. 

CHAPTER IV 

PROPELLER EFFICIENCY 

1. The Energy Equation. The analysis of the two preceding chapters 
has been developed on the assumption of an ideal propeller which 
operates without any loss of energy due to the friction or drag of the 
propeller blades in their motion through the air, but the analysis can 
be extended without any difficulty to include this additional source 
of loss of energy. Ignoring the small drop of pressure in the wake 
owing to the rotational motion, the elements of thrust and torque of 
the ideal propeller have been obtained as 

dT ---a:r = 4nre V2 (1 + a) a 

and ~~ =4nr3 eV.Q(1+a)a' [see III (3.1), (3.5)] 

and the corresponding energy equation is 

(1- a') .Q!:.!{ = (1 + a) V d T [see III (4.2)] (1.1) 
dr dr 

When the drag of the propeller blades is no longer neglected, the 
expressions for the elements of thrust and torque, being derived from 
a consideration of the momentum in the slipstream, remain unaltered, 
but the energy equation, (1.1), must be modified to include the loss 
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of energy due to the drag of the propeller blades. The energy equation 
may now be written as 

(I-a')Q~ = (1 + a) V dT + dE (1.2) 
dr dr ar 

where E is the additional loss of energy in unit time. Now assume that 
the propeller is formed of B identical blades and that c is the chord of 
any blade at the radial distance r. Then if W is the velocity of this 
blade element relative to the fluid and if CD is the drag coefficient, 
the drag of the element extending a distance dr along the blade is 

jCDce W 2 dr 
and the loss of energy in. unit time from the B blade elements at the 

1 
radial distance r is dE = "2 CD Bee W3 d r 

dE _ 1 C B W3 or ([T -"2 D ce (1.3) 

Now the axial velocity at the propeller disc is u or V (1 + a), and 
the rotational velocity changes from zero in front of the disc to . w r 
.~ behind it. Thus the mean rotational velo­

city relative to the blades, which are 
IY Y(f+a) rotating with the angular velocity Q, is 

(Q-tw) r or Qr (I-a'). The flow 
. relative to the blade element at radial 

D ;~~.~::) distance r can be represented as in Fig. 16, 
and if cp is the angle of inclination of the 

resultant velocity W to the plane of rotation 

Wsincp = V(1 +a) 

W coscp = Qr (I-a') 
(1.4) 

The velocity W is therefore known in terms of the interference factors a 
and a', and the loss of energy due to the drag of the blades can be 
determined from (1.3). 

2. Approximate Solution. If it be desired to obtain the minimum 
loss of energy of an ideal propeller, it is necessary that the axial and 
rotational interference factors shall vary along the blade in the manner 
shown in Fig. 13, but it is to be noted that the chief variation in these 
factors is confined to a small region near the boss of the propeller. 
In deriving an approximate equation for the efficiency of a propeller 
it is legitimate therefore to assume mean values of a and a' along the 
whole blade and to replace the equations for the elements of thrust 
and torque by their integral forms 

T = 2 n R2e V2 (1 + a) a (2.1) 

and P = Q Q = n R2 e V Q2 R2 (1 + a) a' (2.2) 
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The efficiency of the propeller then is 

VT 2J.2 a 
'Y} = -p = ----0:- (2.3) 

where 

To proceed further it is necessary to evaluate the loss of energy E 
due to the drag of the propeller blades. In most conventional shapes 
of propeller blades the chord e increases slowly from the boss to 
a maximum value in the outer half of the blade and then decreases 
again towards the tip of the blade. The drag coefficient CD of the 
blade section will generally have its minimum value over the principal 
working sections of the blade where the chord is large and will increase 
both towards the root owing to the increasing thickness of the blade 
section and towards the tip owing to the less efficient conditions of 
operation and possibly also to high tip speed. Thus as an approximation 
it is legitimate to assume a constant value of the product of chord and 
drag ,coeffici.ent along the blade. On this basis put 

Be C· (J 
2nR D = a (2.4) 

R 

where anR2 = f Bedr (2.5) 
o 

so that (J is the ratio of the total blade area to the propeller disc area 
and may be called the solidity of the propeller, while 2 Cl is the effective 
mean value of the drag coefficient CD. The loss of energy due to the 
drag of' the propeller blades may then be calculated as 

R 

E = f -}CDBce W 3 dr 

o 
R 

= aClnRe f W 3 dr 
o 

Now referring to Fig. 16, let q;l be the value of q; at the tip of the 
blade, and then 

Q r (1- a') tanq; = V (1 + a) 
= Q R (1- a') tanq;l 

or r = R tanq;l cot q; 

while the resultant velocity W is 

W = V (1 + a) eosecq; 
= Q R (1 - a') tanq;l eosecq; 
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With these substitutions the integral for the loss of energy becomes 

E = (f 0 n R2 e [23 R3 (1 - a')3 f (lJ?l) (2.6) 
:n/2 

where f (lJ?l) = f tan 4 IJ?l cosec5 IJ? d IJ? 
'P, 

and on evaluating this last integral l 

as 

0.'1 

r---

0. f 

1 3 l-COBqJ 
f (lJ?l) = 8 (2 + 5 tan2 IJ?l) sec IJ?l - 16 tan4 IJ?llog 1 + COB qJ: (2.7) 

/ 
'/ 

I--

Numerical values of f (lJ?l) as a function of tanlJ?l 
are given in Table 5 and are shown graphic­
ally in Fig. 17. Also the angle IJ?1 which occurs 
in this formula can be expressed in terms of 
the interference factors a and a' by the equation 

V (l + a) 1 + a 
tanlJ?l = QR(I-a') = A I-a' (2.8) 

o 0.1 0.2 0.3 0.11 as TABLE 5. 

tan qJl 0 II 0.10 I 0.20 I 0.30 
f (qJl) 0.250 0.258 I 0.282 0.325 

Ton 'PI 
Fig. 17. 

3. Propeller Efficiency. The energy equation for the propeller, on the 
assumptions adopted, is 

(I-a')[2Q = (1 + a) V T + E (3.1) 

and the efficiency of the propeller is 
VT 

'Y)= QQ 

It is convenient to express this efficiency 'Y) as the product of three factors 

'Y) = rl1 'Y)2 'Y)3 (3.2) 

1 1 'Y)l = 1 +a 
'Y)2 = I-a' 

where 
(3.3) 

and 'Y)3 represents the additional efficiency factor due to the drag of 
the propeller blades. With these definitions the torque coefficient of 
the propeller is obtained from (2.2) as 

p 
Qc = n R2 e Q3 R3 (3.4) 

and then the equation for the thrust gives 

Q _ AT _ 2A3 (1-1h) 
'Y) c- C - 'YJI 

1 This integration is performed by means of the standard formulae 

J n-2 J 2 COB rp cosecn - 1 rp 
cosecn rpd rp = n-l cosecn - rpd rp - n-l 

and I 1 l-cosrp 
cosec rp d rp = 2" log 1 + cos rp 
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or alternatively, putting 1] = rh 1]21]3 

_ 1 (111)3 
1]1- I- 2 Qc1]21]3 T 

Finally the energy equation, (3.1), becomes 

1]2 p = !l. P + E 
rh 

E 
and hence 1]2 (1 -1]3) Qc = n R2 e Q3 R3 

= 1]~ a 13 f (rp1) 

or 1]3 = 1- ~! at3f(rpl) 
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(3.5) 

(3.6) 

These last equations suffice to determine the efficiency of a propeller 
when the values of (f 13, Qc and A. are known. The shape of the propeller 
is not determined and the result must be regarded as the highest efficiency 
which can be obtained from a propeller of solidity (f designed to give 
the torque coefficient Qc at the speed ratio A. when the mean drag 
coefficient of the blade sections is 2 13. To perform the calculation the 
equations are rewritten as 

1]2 = 1- !bcQc [see (3.4)] 
). 

A 
tanrp] =--

. 1]11]2 
[see (2.8)] 

1]3 = I-~~ at3 f (rpl) 

1]1 = 1 -! Qc 1]2173 ( ~ r 
I (3.7) 

Starting with any assumed value of 171/). and given values of (f 13 and Qc' 

these equations determine in turn 1]2' tan rp1' 1]3' and 1]1' from which 
the values of 1] and). are finally obtained. 

The preceding analysis is based on a consideration of the action of 
the propeller blades and in any exact comparison with experimental 
results it is necessary to make a further allowance for the drag of the 
propeller boss. If Eo is the radius of this boss, which is usually of the 
order of one tenth of the radius of the propeller, the drag of the boss 
may be estimated roughly as 

D = 0.5 n E~ e V2 
and this drag must be subtracted from the thrust of the propeller. The 
drag of the boss can therefore be represented approximately by an 
additional efficiency factor 174' determined by the equation 

or 

T-D 
1]4 = --T-

1]4 = 1 _ ~ ( Ro )2 ~_ 
4 R 1-1]1 

A3 (RO)2 
= 1- 2YJQc R (3.8) 
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In theoretical discussions, however, it is best to ignore the drag of the 
boss of the propeller and to regard the aerodynamic action of the 
propeller as that of the blades only. 

4. Numerical Results. The equations (3.7), of the preceding section, 
have been used to determine the efficiency of a propeller for a suitable 

TABLE 6. Calculation of Propeller Efficiency (a J = 0.0016, Qc = 0.004). 

0.15 I 0.973 0.154 
I 

0.269 0.898 0.482 0.072 0.421 I 
0.20 

I 

0.980 0.204 0.283 0.892 0.782 0.156 0.683 
0.25 0.984 0.254 0.302 0.883 0.889 0.222 0.773 
0.30 0.987 0.304 0.327 0.873 0.936 0.281 0.807 
0.35 I 0.989 0.354 0.358 0.860 0.960 0.336 0.816 
0.40 

I 

0.990 0.404 0.396 0.845 0.974 0.390 0.815 
0.45 0.991 0.454 I 0.439 0.828 0.982 0.442 0.805 
0.50 r 0.992 0.504 

I 
0.493 0.804 0.987 0.494 0.787 

range of the three parameters a 15, Qc' and I,. The solidity a of a propeller 
with blades of conventional shape usually ranges from 0.08 for a propeller 
with two blades to 0.16 for a propeller with four blades, and the value 

o OJ 

An(Jlysis of 
I'ropellel' Elflcienqr 

Fig. 18. 

Q(,=o.OO'l 
lTO =0.00'8 

as a5 

of 15, which is half the mean profile 
drag coefficient On, may vary from 
0.005 for thin blade sections under 
favorable conditions to 0.010 or more 
for thicker sections under less favor­
able conditions. The range of values 
chosen for a 15 has therefore been 

TABLE 7. Effect of Propeller Boss. 

}. 'YJ 'YJ4 'YJ'YJ4 

0.072 0.421 0.999 0.421 
0.156 0.683 0.993 0.678 
0.222 0.773 0.982 0.759 
0.281 0.807 0.966 0.779 
0.336 0.816 0.942 0.769 
0.390 0.815 0.909 0.741 
0.442 0.805 0.866 0.697 
0.494 0.787 0.808 0.636 

from zero to 0.0024. The torql,le coefficient Qc of a propeller rarely 
exceeds 0.006 but the calculations have been extended to the large 
value of 0.012; and the range of It considered has been from 0.1 to 0.5. 
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Details of the calculations in one case are given in Table 6 in order 
to show the varying importance of the three efficiency factors, and in 
Table 7 the additional loss of efficiency due to a boss of radius 0.1 R is 
also given. These results are illustrated in Fig. 18, the successive curves 
showing the values of rJl' rJl rJ2' rJ, and rJrJ4' Thus the top curve shows 
the ideal efficiency when all sources of loss of energy other than the 
axial momentum are ignored, and the distance between the following 
curves show the additional loss of efficiency due respectively to the 
rotational motion of the slipstream, the drag of the propeller blades 
and the drag of the boss. The chief loss of efficiency at low values 
of A is due to the axial motion of the slipstream, but this loss becomes 
very small at higher values of A. The loss of efficiency due to the 
rotational motion of the slipstream is always small and does not exceed 
2 per cent. The loss of efficiency due to the drag of the propeller blades 
is always important, rising from 10 per cent at low values of A to 
20 per cent at the higher values. Finally the additional loss of efficiency 

TABLE 8. Propeller Efficiency. Values of 1) in Per Cent to Nearest 0.5 Per Cent. 

a/j A Qc = 0.001 0.002 I 0.004 I 0.008 I 0.012 I 

0 0.10 76 66-1/2 58 48 43 
0.15 89 82-1/2 73-1/2 64 58-1/2 

0.20 94 89-1/2 83-1/2 75 69-1/2 

0.25 96-1/2 93-1/2 89-1/2 82-1/2 77_1/2 
0.30 98 96 93 87-1/2 83 
0.40 99 98 96 93 90 
0.50 99-1/2 99 97-1/2 95-1/2 93-1/2 

0.0008 0.10 63 61 55-1/2 47 42 
0.15 71 74-1/2 70-1/2 63 57-1/ 2 
0.20 73-1/2 80-1/2 79 73-1/2 68-1/ 2 
0.25 74 83 84-1/2 80-1/2 76 
0.30 73 83-1/2 87 85 8P/2 
0040 68 82-1/2 88-1/ 2 89-1/2 87-1/2 

0.50 61 79-1/2 88 91 91 

0.0016 0.10 48 54-1/2 55 46-1/2 41 
0.15 53 65-1/2 67 61 56 
0.20 53 71 74-1/2 71 67 
0.25 51 72 79-1/2 78 75 
0.30 47-1/2 7P/2 81 82 80 
0040 

I 
37 67-1/2 81 86 86 

0.50 22 60.1/2 78-1/2 86-1/2 87 

0.0024 0.10 33-1/2 49-1/2 51 45-1/2 4J-1/2 
0.15 34 58-1/2 64 60 55.1/2 
0.20 32 61 71 69-1/2 66 
0.25 28 61 74 75 73 
0.30 22 59-1/2 75-1/2 79 78 
0040 6 52 74 82-1/2 83 
0.50 - 41 69 8P/2 83-1/2 
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due to the propeller boss is negligible at small values of ). but becomes 
very important at the higher values and reduces the maximum efficiency 
from 81-1/ 2 per cent to 78 per cent. 
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Figs. 19 a-d. Propeller efficiency curves for constant Qc. 

From detailed calculations of the type given in Table 6 curves of 
the efficiency 1] against the speed ratio). are obtained for chosen values 
of the two parameters (f ~ and Qc, and from these curves the values 
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of the efficiency to the nearest 0.5 per cent have been read and are 
recorded in Table 8 above. The results are also shown graphically in 
Fig. 19 and Fig. 20. Fig. 19 shows the variation of the efficiency '1J 
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Figs. 20a-d. Propeller efficiency curves for constant a~. 

with the torque coefficient Qc for each of the four chosen values of (] fl. 
When (] fl is zero the highest efficiency is obtained when the torque 
coefficient is smallest, but as the value of (] fl increases the loss of 

Aerodynamic Theory IV 14 
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efficiency is greatest for the lower values of the torque coefficient,and 
for any chosen values of a !5 and It there is a best value of the torque 
coefficient which gives the highest efficiency. The effect of an increase 
of a !5 on the efficiency is shown more clearly in Fig. 20, and from curves 
of this type it is possible to estimate the efficiency for any intermediate 
value of a !5. 

The curves of Fig. 19 for a !5 = 0 may be compared with the previous 
curves of Fig. 15, and it can be verified that the assumption of mean 

values of the interference factors a 
and at along the blades instead of 
the best distribution has not made 
any important difference in the 
efficiency calculated for given values 
of It and Qc' 

In Fig. 21 the efficiency r; is 
plotted against the torque coeffi­
cient Qc for the speed ratio A = 0.25 
and for a range of values of a!5. 
A constant value of A means a 
constant ratio of forward speed to 
tip speed, and so the curves of 

Fig. 21. this figure show the variation of 
efficiency with the torque coeffi­

cient when the forward speed and tip speed of the propeller remain 
constant. Curves of this type can therefore be used to determine 
the best diameter of a propeller when gearing is introduced in order 
to maintain a constant tip speed. Assuming an engine of 500 b.h.p., 
a tip speed of 800 f.p.s. and a forward speed of 200 f.p.s., the following 
optimum conditions are obtained, the range quoted corresponding to an 
efficiency which does not fall more than 0.5 per cent below the maxi­

aij I max. 1] I 
0.0008 0.845 
0.0016 0.795 
0.0024 0.755 

mum possible value. 
Best Qc I Best diameter These numerical val-

0.0024 to 0.0045 
0.0035 to 0.0061 
0.0051 to 0.0080 

8 to II ft. 
7 to 9 ft. 
6 to 7_1/2 ft. 

ues show that it is 
best to use an airscrew 
of large diameter and 
small solidity. 

In Fig. 22 the efficiency r; is plotted against the torque coefficient Qc 
for a !5 = 0.0008 and for a range of values of the speed ratio A. Curves 
of this type can be used to determine the best diameter of a propeller 
advancing with a definite velocity V, rotating with the angular velocity Q 
~nd absorbing the power P. Assuming an engine power of 500 b.h.p. 
and a forward speed of 200 f.p.s. as in the previous numerical example, 
and taking a constant value of 200 for Q (1900 r.p.m. approximately), 
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the following numerical values are derived. It appears that the best 
diameter is approximately 8 ft. for the assumed conditions of power 
and speed. 

At this stage of development of 
the theory it is possible to make 
a first rough comparison with ex­
perimental results. In Figs. 7 and 8 
some experimental results are re­
produced for a series of propellers 

0.15 
0.20 
0.25 
0.30 

I Diameter !I 

13-1/3 ft. 
10 ft. 
8 ft. 
6-2/ 3 ft. 

0.00035 
0.0015 
0.0045 
0.0112 

0.480 
0.785 
0.840 
0.825 

of solidity 0.095, and on examining these curves it appears that the 
maximum efficiency of each curve occurs approximately where Qc = 0.01l J.. 
In Fig. 23 these maximum efficiencies are plotted against A together 
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with the calculated curves of efficiency when Qc = 0.010 A for two 
values of a (j. It is evident that the calculated and experimental curves 
are of the same shape and that the experimental results correspond to 
a value of (j in the neighborhood of 0.010; and this value of (j would be 
a reasonable estimate for the blade sections used in the design of the 
propellers. 

CHAPTER V 

THE BLADE ELEMENT THEORY 

1. The Primitive Blade Element Theory. The momentum theory of 
the propeller, which has been developed in the previous chapters, is 
based on a consideration of the mean axial and rotational velocity in 
the slipstream, and determines the thrust and torque of a propeller 
from the rate of increase of momentum of the fluid. The theory 
determines an upper limit to the efficiency of any propeller, depending 

14* 
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on its rate of advance and on the power absorbed, but it gives no 
indication of the form which must be given to the propeller to achieve 
this result. An alternative method of analyzing the behavior of a propeller 
is to estimate directly the forces experienced by the blades of the 
propeller due to their motion through the air. A crude attempt to estimate 
the force on the blade was made by W. Froude!, but the development 
of the blade element theory in its true form is due almost entirely to 
the work of S. Drzewiecki 2• 

Consider an element of a blade extending over a length d r of the 
radius at a distance r from the axis of rotation as shown in Fig. 24. 
The cross-section of this element has the shape of an airfoil section 
whose chord. is inclined at an angle () to the plane of rotation of the 

Fig. 24. 

propeller, and the motion of this ele­
ment is the resultant of the forward 
velocity V of the aircraft and the ro­
tational velocity Q r corresponding to 
the angular velocity Q of the propeller. 
The resultant velocity W of the element 

through the air and the angle of inclination fP of this velocity to the 
plane of rotation are therefore determined by the equations 

and 

W2= V2+Q2 r 2 

V 
tanfP = [iT 

(1.1) 

(1.2) 

Also the apparent angle of incidence oc of the airfoil section is the excess 
of the blade angle () over this angle fP, or 

oc = ()-fP (1.3) 

The development of the blade element theory of the propeller is 
based on the assumptions that the aerodynamic force acting on the 
blade element can be estimated as the force on a suitable airfoil of the 
same cross-section, advancing through the air with the uniform linear 
velocity W at the angle of incidence oc, and that the force on the whole 
blade can be derived by adding the contributions of all the elements 
along the blade. The theory clearly admits of no interference between 
the successive blade elements, except in so far as such interference 
modifies the characteristics assumed for the airfoil section; and the 
validity of the theory depends intimately on the airfoil characteristics 
adopted for the blade elements. The discussion of this important question 
will be deferred to a later stage, and for the present it will be assumed 
that the lift and drag coefficients of each blade element are known as 
functions of the angle of incidence and of the shape of the cross-section. 

1 Transactions Institute of Naval Architects, Vol. 19, p.47, 1878. 
2 Bulletin de l'Association Technique Maritime, 1892 et seq. 
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Referring to Fig. 25, the blade element will experience a lift force d L 
at right angles to the direction of motion and a drag force d D opposing 
this motion. Resolving at right angles to the plane of rotation, the 
thrust on the blade element is 

d T = d L cosq; - d D sinq; 

and similarly, resolving in the direction of the rotational velocity, the 
torque opposing the rotation of the propeller is 

d Q = (d L sinq; + d D cosq;) r 

Also, if c is the chord of the blade element, the elementary lift and 
drag forces can be expressed in terms of the corresponding non-dimen-

1 
sional coefficients as d L = -2- OLe W2 cdr 

and 

Then, adding the contributions of the corre- Fig. 25. 

sponding elements on each of the B blades 
of the propeller, the elements of thrust and torque become 

~; = ~ Bee W2 (OL cosq; - OD 8inq;) (1.4) 

and (1.5) 

These two equations represent the complete solution of the behavior 
of a propeller according to the primitive blade element theory, and 
they suffice to determine the characteristics of any given propeller. 
The propeller is defined by the number B of its blades, by the variation 
of the chord c and blade angle () along the blade, and by the shape of 
the blade sections: also the lift and drag coefficients of each of these 
blade sections are known as functions of the angle of incidence cr.. The 
state of operation of the propeller is defined by the speed ratio A or 
VIQ R, and hence the angle rp is known for each successive blade element, 

V AR 
since tan rp = Q r = -r-

The angle of incidence is then derived from (1.3) and the velocity of 
the blade element from (1.1), and finally the thrust and torque of the 
propeller can be obtained by integration of (1.4) and (1.5) along the 
blade. In general this integration must be performed graphically and 
it is only in certain special cases 1 that direct analytical integI'ation is 
possible. 

1 For examples of direct integration see S. DRZEWIECKI, "TMorie Generale 
de I'Helice"; Paris, 1920. 
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2. Efficiency of the Blade Element. Since the useful work done by 
the thrust on a blade element is V d T and the power absorbed by 
the element is Q d Q, the efficiency of propulsion is 

VdT 
r; = Qd Q 

and on substituting the expressions for the elements of thrust and torque 
V (OL cos tp - On sin tp) 

r;= Qr(OLsintp+Oncostpf (2.1) 

It is now convenient to express the ratio of the drag and lift coeffi­

On 
cients as OL =e=fany (2.2) 

and the formula for the efficiency of the blade element then becomes 

or alternatively 

l-etan tp 
r;-- l+ecottp 

tan tp 
r;=tan(tp+y) 

(2.3) 

(2.4) 

This form of expression for the efficiency of a blade element appeared 
first in the writings of W. Froude. 

Numerical values of the efficiency deduced from this formula are 
given in Table 9 below, and the curves of efficiency against radial 

to TABLE 9. Efficiency of Blade Element. 
1j E=/q 

I e=0.025 1 0.050 0.100 
ftr 

0.8 
Q r = 0.1 

i 0.748 0.498 
V 0.2 0.871 0.743 0.490 

aD 0.5 0.938 0.878 0.762 

(fidem;r or Blwe Elements 
1.0 0.952 0.905 0.818 
2.0 0.940 0.886 0.792 

a'lo 3.0 0.922 0.855 0.744 
5 4.0 0.903 0.823 0.696 

5.0 0.885 0.792 0.653 
Fig. 26. 

distance in the form Q rlV are shown in Fig. 26. For any value of the 
drag-lift ratio e, the efficiency is zero at the radius e VIQ, rises rapidly 
with the radius to a maximum value, and then decreases steadily. 
The maximum efficiency occurs at the value of ffJ determined by the 

condition !-.!L = 0 dtp 

and by logarithmic differentiation of (2.4) this condition becomes 

sin 2ffJ = sin 2 (ffJ + y) 

or (2.5) 
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Thus the maximum efficiency occurs where the angle cp is slightly less 
than 45°, corresponding to a radius slightly greater than VjQ. It would 
therefore appear to be desirable to concentrate the principal working 
parts of the propeller blades about this radius, and every increase of 
radiJls of the propeller above this value will imply a reduction in the 
average ,efficiency of the propell.er. The primitive blade element theory 
therefore indicates that the efficiency of a propeller decreases as the 
diameter increases above a certain optimum value, and this conclusion 
is an absolute contradiction of the conclusion drawn from the ideal 
momentum theory that the efficiency should increase with the diameter 
of the propeller. This discordance 

0.03 
with the momentum theory, which Tc 
is based on the fundamental laws 
of motion, suggests the necessity 0.03 

for a critical examination of the 
basis of the blade element theory. aUf 

, That the blade element theory 
o in its prinlitive form is not a satis­

factory method of calculating the 
behavior of a propeller can be illus- O,Q06 

trated also by a direct appeal to gc 
exp~rimentalresults. Fig. 27 shows Q(J()II 

the thrust and torque coefficients 1 

of a, series of propellers with an 0.003 

increasing number of identical 
blades, corresponding to the same, 
speed ratio 0.162 in every case. 
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5 6 

The simple blade element theory 
would predict that the thrust 
and' torque' should be directly proportional to the number of blades, 
and'the calculated relationship is also shown in the figure.' There is 
a consistent discrepancy between the theoretical lines and'the experi­
mental curves, which suggests that the primitive blade element theory 
is not a complete' and satisfactory explanation of the behavio~ of a 
propeller. 

,3~ Blade Interference. The blade element theory is based on certain 
assnmptions regarding the behavior of the' blades, and in, a critical 
survey- of, the theory it is, convenient to consider in turn the following 
three points:-

(I) The assumption that the behavior of an element is not affected 
by the adjacent elements of the same blade. 

l:F~o~ T~ble V of Br. A.R.C. R. and>M. 639;· 1919., 
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(2) The assumption that the effective velocity of the element through 
the air is the resultant of the axial velocity V and the rotational 
velocity Q r. 

(3) The airfoil characteristics to be adopted for the element. 
The independence of the blade elements, assumed in the primitive 

blade element theory and also in all later developments of the theory, 
is analogous to the assumption adopted in the momentum theory that 
the thrust on an elementary annulus of a propeller may be expressed as 

d T = 2 e u (u - V) d S 

In the discussion of II 2 it was pointed out that this equation could 
not be established rigorously, but that the error introduced by its 
adoption was believed to be very small. Similarly, in the blade element 
0.'1 theory, it is not possible to give a 

af~--+-~~~-+---~-~ 

rigorous proof of the independence 
of the blade elements and the 
validity of the assumption must 
be justified by an appeal to suit­
able experimental results. If the 
assumption is valid, the thrust on 
the blade element at radial dis­
tance r with the blade angle () 
should be independent of the vari­
ation of the blade angle along the 

to remainder of the blade. A check 
of the assumption can therefore 
be obtained by taking two pro­

pellers of different pitch with blades of the same plan form and sec-

o a¥ as 
x=f 

Fig. 28. 

aD 

tion, and by rotating the blades of one propeller so that the blade 
angles of the two propellers have the same value at a chosen radial 
distance r. The thrust distribution along the blades should then show 
the same element of thrust on the blade elements under examination. 
By means of a series of experiments of this nature C. N. H. Lock! has 
established the independence of the blade elements over the principal 
part of the blades, and a typical set of his experimental curves is re­
produced in Fig. 28. 

The next points to examine are the effective velocity of the blade 
element through the air and the airfoil characteristics to be adopted 
for the element. The momentum theory led to the conclusion that the 
axial velocity of the air relative to the propeller was increased from 
V to V (1 + a) at the propeller disc, with a corresponding modification 
due to the relative rotational velocity, and it might be argued that 

1 Experiments to Verify the Independence of the Elements of an Airscrew 
Blade, Br. A.R.C. R. and M. 953, 1924. 
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the effective velocity of the blade element should be estimated in terms 
of these modified velocities. For simplicity the following discussion will 
be confined to the axial component of the velocity, but the conclusions 
will apply, with appropriate modifications, to the rotational compo­
nent also. 

Drzewiecki 1 maintained that there was no logical connection between 
the velocity u of the momentum theory and the velocity experienced 
by the blade element. In his opinion the velocity u represented only 
the mean value of a periodic flow, and the increased velocity at the 
disc of the propeller was not a general increase experienced by all the 
blade elements, but only a local increase concentrated around the blade 
elements and representing the disturbance created by them: it should 
not therefore be used in estimating the force experienced by the blade 
element. Drzewiecki therefore used the undisturbed axial velocity V 
and rotational velocity Q r in estimating the force on the blade elements, 
and when it was found that the application of the theory failed to give 
accurate numerical predictions of the behavior of a propeller, he sought 
the cause of the discrepancy in the airfoil characteristics used for the 
blade elements. 

In the early stages of the development of the theory no clear concep­
tion was possible of the airfoil characteristics to be used for the blade 
elements, since the true nature of the variation of these characteristics 
with the aspect ratio of the airfoil was quite unknown. Experimental 
results, however, showed a variation of these characteristics with aspect 
ratio and it was necessary to assign some suitable aspect ratio to the 
propeller blade in order to define the airfoil characteristics: this aspect 
ratio was commonly chosen to be the ratio of the length of the blade 
to the maximum chord and was usually in the neighborhood of 6. 
When his theory failed to give accurate results, Drzewiecki suggested 
that there might be a change in the airfoil characteristics· due to the 
variation in thickness of the section along the blade, and he proposed 
to derive the appropriate characteristics from tests of a specially designed 
series of propellers. 

A different mode of attack was adopted in other countries and 
several authors tried to develop a more accurate theory by incorporating 
the conception of an increased axial velocity. A. Betz 2 and G. de Bothe­
zat 3 in their presentation of the blade element theory, both used the 
axial velocity u as determined by the momentum theory, while A. Fage 

1 TMorie generale de l'HeIice; Paris, 1920. 
2 Die wichtigsten Grundlagen fUr den Entwurf von Luftschrauben. Zeitschr. 

f. Flugtechnik u. Motorl. 6, 97, 1915. 
3 The General Theory of Blade Screws. U.S. N.A.C.A. Technical Report 

No. 29, 1918. 
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and H. E. Collins l used an empirical fraction of the increase of velocity. 
It was generally recognized that the disturbance of flow at a blade 
element consists of one part due to the local action of the element and 
of another part due to the remoter action of the whole propeller, and 
that only this latter part should be introduced into the theory, since 
the local disturbance was equally present in the airfoil tests from which 
the airfoil characteristics were derived. This conception was sound, but 
the correct division of the disturbance into its two parts was impossible 
until the development of Prandtl's airfoil theory gave a clear explanation 
of the induced velocity caused by an airfoil. The theories therefore 
remained on an empirical basis, either as regards the magnitude of the 
interference flow to be adopted or as regards the appropriate airfoil 
characteristics to be used. Betz, using the axial velocity of the .momentum 
theory but omitting any rotational interference flow, remarked that 
the appropriate aspect ratio was higher than that of an ordinary airfoil 
and tended towards infinite aspect ratio, depending on the shape of 
the blades; and de Bothezat, who used the same increased axial velocity 
and also introduced the rotational interference flow, adopted Drzewiecki's 
plan of special propeller tests to determine the airfoil characteristics. 
Fage and Collins, on the other hand, retained airfoil characteristics of 
aspect ratio 6 in their calculations and were compelled to adopt a purely 
empirical value for the effective axial velocity experienced by the blade 
element. 

This general state of confusion and empiricism was inevitable until 
the development of a sound airfoil theory enabled a clear conception 
to be formed of the induced velocity experienced by an airfoil of finite 
span. The primitive blade element theory of Drzewiecki and the various 
modified theories, though correct in general structure could only be 
used in an empirical form, and they have now been replaced by the 
vortex theory which depends fundamentally on the conception that 
the lift of an airfoil section is associated with a circulation of the flow 
around its contour. 

4. The Vortex System of a Propeller. According to modern airfoil 
theory the lift L per unit length of an airfoil section in two-dimensional 
motion is related to the circulation K around its contour by the equation 2 

L=(!VK (4.1) 

where (! is the density of the fluid and V is the uniform linear velocity 
of the airfoil through the fluid. Also if c is the chord of the airfoil section, 

1 FAGE, A., and COLLINS, H. E., An Investigation of the Magnitude of the 
Inflow Velocity of the Air in the Immediate Vicinity of an Airscrew with a View 
to an Improvement in the Accuracy of Prediction from Airfoil Data of the Per­
formance of an Airscrew. Br. A.R.C. R. and M. 328, 1917. 

2 Divisions B V 7 and E III 30. 
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the lift can be expressed in terms of the non-dimensional lift coefficient as 
1 

L = 20£12 Pc 

and hence 
1 

K=--OLVC 2 
(4.2) 

Applying this concept of airfoil theory to the problem of the propeller, 
it is evident that there must be a circulation of the flow around the 
blades of the propeller in order to produce the aerodynamic force 
experienced by the blades. In general the circulation K around the 
blade element will vary along the blade, but to explain the mode of 
action of the propeller it is simpler to assume as a first step that 
the circulation is constant along the whole blade. The existence of 
this circulation can be expressed also by the statement that there is 

a vortex line of strength K, bound ~ ?i6-
to the blade and running along it / -----;.< 
from root to tip. But a vortex line Q _ 

cannot begin 0' ,nd ab"'ptly; unI", I ~ I 
it forms a closed curve in the body, \ 'e \.. \. '8 
it must be continued as a free vortex Fig. 29. 
line in the fluid, and in this latter 
form it follows the general motion of the fluid as a trailing vortex behind 
the body. Thus the bound vortex K running along the blade of a propeller 
must be continued by two free vortices in the fluid, one springing from 
the root of the blade and the other from its tip. The free vortex springing 
from the roots of the propeller blades will be a straight line along the 
axis of the propeller and its strength will be B K for a propeller with 
B blades. The tip vortices, each of strength K, will be of helical shape 
and will trace out roughly the paths described by the tips of the propeller 
blades. The system of trailing vortices of a propeller with two blades 
is shown diagramatically in Fig. 29. The figure represents a right hand 
propeller and the sense of rotation of the axial vortex is the same as 
that of the propeller, while the rotation of the tip vortices is of the 
opposite sense. These vortex lines constitute the slipstream of the 
propeller, arid the motion of the fluid in the slipstream can be calculated 
as the induced velocity of this vortex system. The sense of rotation 
of the vortex lines is such that the fluid in the slipstream has an increased 
axial velocity and a rotational velocity in the same sense as the rotation 
of the propeller. The general nature of the flow is therefore of the same 
type as that postulated in the momentum theory of the propeller. 

The preceding descriptive account of the vortex system of a propeller 
has been based for simplicity on the assumption that the circulation 
along the blade is constant. More generally, however, the strength of 
the circulation will vary along the blade, and indeed it has been shown 
in III 2 that the condition of constant circulation along the whole blade 
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is physically impossible. Due to the variation of the circulation along 
the blade, trailing vortices will arise, not only at the root and tip of the 
blade, but from every point of its trailing edge. If () K is the increase 
of circulation between the points rand (r + () r) of the blade, then 
the strength of the helical vortex springing from this element will be 
- () K, the positive sense of rotation of the vortex line being that shown 
in Fig. 29. The vortex lines springing from one blade of the propeller 
form a vortex sheet in the form of a screw surface, and there will be 
one such surface for each blade of the propeller. The slipstream of the 
propeller consists of these vortex sheets and of the fluid contained 
between them. Owing to the contraction of the slipstream behind the 
propeller, the vortex sheets experience some distortion on leaving the 
propeller but they settle down eventually to a regular helical form in 
the final wake. 

The disturbance of the flow caused by a propeller can be represented 
as the induced velocity of the complete vortex system, comprising the 
bound vortices of the propeller blades and the free vortex sheets of the 
slipstream, and the motion of the fluid relative to the propeller is the 
resultant of the axial velocity V and this induced velocity. It is now 
possible to determine the nature of the airfoil characteristics which 
should be used in the blade element theory of the propeller. According 
to the theory of airfoils of finite span developed by L. Prandtl, the 
behavior of an element of an airfoil is the same as in two-dimensional 
motion if due allowance is made for the induced velocity of the system 
of free vortices which spring from the airfoil. On the same basis therefore 
the behavior of any element of a propeller blade will be the same as in 
two-dimensional motion if the relative velocity of the fluid at the element 
is derived by including the induced velocity of the system of trailing 
vortices. This principle is the basis of the modern vortex theory of 
the propeller, which has' superceded the primitive blade element theory 
and the empirical inflow theories. In many aspects the vortex theory 
is very similar to the inflow theories of Betz and de Bothezat, but it 
rests on a more reliable and more logical basis. 

5. The Induced Velocity. Owing to the difficulty of calculating the 
induced velocity of the system of helical vortex sheets which constitute 
the slipstream of a propeller, the induced velocity is usually calculated 
on the assumption that the propeller has a very large number of blades. 
This assumption implies that the vorticity of the slipstream is distributed 
throughout the whole of the fluid instead of being concentrated on 
a few vortex sheets, and the vorticity can then be assumed to be grouped 
in the following manner. Considering first the condition of constant 
circulation along the blades, the boundary of the slipstream is a cylindrical 
vortex sheet as shown in Fig. 30. In place of the helical vortex lines 
covering the surface, the vorticity of the sheet may be considered as 
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a close succession of vortex rings R R whose vorticity represents the 
increased axial velocity of the slipstream, and a surface of vortex 
lines LL whose vorticity represents the rotation of the slipstream: 
the vortex system is completed by the axial vortex AA. More generally, 
with circulation varying along the blades of the propeller, the whole slip­
stream must be considered as full of vortex systems of this simpler type. 

The induced velocity of the vortex system in the ultimate wake 
far behind the propeller will be an axial velocity (u1 - V) and an 
angular velocity 0)1' which will be functions of the radial coordinate r1• 

In this wake the induced velocity of the bound vortices of the propeller 
blades is negligibly small. At the t 
propeller disc also the bound vortices '\-~n~~\ -_!:.":.-. 
cannot give any component td,the II - I -8---11-
axial velocity owing' to the. symmec, / R 
trical distribution of this vorticityie~:'\ /, 
lative to any arbitrary point of the ' 
disc, and hence the axial induced 

Fig. 30. 

velocity (u ~ V) will be due wholly to the trailing vortex system. To 
satisfy the condition of continuity of flow the axial velocities u und 
U 1 must be connected by the equation 

u r dr = u1 r1 dr1 (5.1) 

Also, if the contraction of the slipstream can be ignored in calculating 
these induced velocities, it can easily be seen that the axial induced 
velocity at the propeller disc is half that in the ultimate wake; for the 
vortex system is then simply a long cylinder extending indefinitely in 
one direction from the propeller disc, and the induced axial velocity 
at a point of the wake, where the cylinder extends indefinitely in both 
directions, must clearly be double that at the corresponding point of 
the propeller disc. 

Thus I 
u - V = 2 (u1 - V) 

or I 
u = 2(U1 + V) (5.2) 

which is the well known equation of the momentum theory. 
The induced angular velocity 0) immediately behind the propeller 

disc can be related to the corresponding angular velocity 0)1 in the wake 
by considering the constancy of circulation of the fluid. The ring of 
fluid of radius r immediately behind the propeller disc has the circulation 
2:n; 0) r2, and by the laws of hydrodynamics this circulation must remain 
constant as the ring of fluid passes down stream. In the wake the radius 
of the ring has contracted to r1 and there must therefore be an increase 
of the angular velocity governed by the equation 

(5.3) 
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Immediately in front of the propeller disc there can be no such circulation, 
since the fluid approaching the propeller is in irrotational motion. Also 
the bound vorticity of the propeller blades must cause equal and opposite 
induced angular velocities ± w' immediately before and behind the 
propeller disc, and hence the induced angular velocity of the trailing 
vortex system must have the value w' at the propeller disc in order 
to cancel the effect of the bound vortices in front of the disc. It follows 
that the total induced angular velocity immediately behind the propeller 
disc is 2 w', and this is the angular velocity previously denoted by w. 
Hence the induced angular velocity of the trailing vortices at the 

11 d · . 1 prope er ISC IS "2 w. 

It is now possible to describe the velocity experienced by the blade 
element. The motion of the blade element is the resultant of the axial 

B velocity V and the rotational velo-

~ 
city Q r, which are represented in 

JY C' A Fig. 31 by N A and ON respectively. 
, 1/ The induced velocity w of the fluid is 

IJ~N represented by BA, and the effective 
relative velocity TV of the blade ele­
ment through the fluid is therefore re­

presented by 0 B. The components of the induced velocity ware (u - V) 

Fig. 31. 

1 
parallel to the axial velocity V and "2 w r parallel to the rotational 

velocity Q r, and hence the components of the effective velocity TV are 

respectively u and (Q--~-w) r. Writing as before 

u = V (1 + a) 1 
w = 2Q a' J 

(5.4) 

and denoting by cp the angle of inclination of the effective velocity to 
the plane of rotation, these velocity components are 

TV sincp = u = V (1 + a) 

TV cos cp = (Q - -} w) r = Q r (1- a' ) I (5.5) 

6. The Airfoil Characteristics. Using the system of velocities as 
defined in the previous section, the airfoil characteristics must be chosen 
to correspond to two-dimensional motion or infinite aspect ratio, and 
a consideration of the implications of this conclusion explains the diffi­
culties encountered in the primitive blade element theory and in the 
later inflow theories. Thus de Bothezat, using effectively the induced 
velocities of the vortex theory, found that airfoil characteristics of a wing 
of an ordinary aspect ratio were unsuitable, and was compelled to 
advocate special propeller tests to determine the appropriate charac­
teristics; Fage and Collins, retaining airfoil characteristics corresponding 
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to an aspect ratio 6, were unable to retain the full values of the inter­
ference velocities and were compelled to reduce these velocities by an 
empirical factor; and Drzewiecki, who admitted no interference velocities 
in his theory, was also reduced to the expedient of special propeller 
tests, and the airfoil characteristics appropriate to his theory would 
have corresponded to an aspect ratio less than that of an ordinary wing. 

Airfoil characteristics are usually determined from tests of a rect­
angular airfoil of aspect ratio 5 or 6, and before using these characteristics 
in propeller calculations it is necessary to correct them to infinite aspect 
ratio. The necessary transformation formulae have been determined 
by the theory of airfoils of finite span 1 but it is important that the trans­
formation shall be made on the basis of the best known formulae for 
rectangular airfoils and not on the simpler hypothesis of elliptic lift 
distribution across the span of the airfoil. Denoting the aspect ratio 
of the rectangular airfoil by A and the values corresponding to infinite 
aspect ratio by the suffix (0), the appropriate transformation formulae 2 are 

0,:0 = 0,:- :~ (1 + r) .j 
0 2 (6.1) 

Cno = Cn - nA (1 + 0) 

where the angle of incidence is expressed in circular measure, and the 
corrections to the angle of incidence and to the drag coefficient are 
made at definite values of the lift coefficient. The coefficients i' and 0 
are zero for a wing with elliptic loading, but for a rectangular airfoil 
they have the values given in Table 10. In 
this Table 80 and 8 denote respectively the TABLE 10. 

I f deL f ·nf·· . d Transformation Constants. va ues 0 ([OC or 1 Illite aspect ratIO an 

for the rectangular airfoil of aspect ratio A. 
For an airfoil of aspect ratio 6, the value 
of A/8o is approximately unity and thus, 
compared with the transformation formulae 
for elliptic loading, the correction to the 
angle of incidence is increased by 17 per cent 
and that to the drag coefficient by 5 per cent. 

A/so 

0.50 
0.75 
1.00 
1.25 
1.50 

A/s 

0.85 
1.11 
1.37 
1.63 
1.89 

I .. I (j 

0.10 0.019 
0.14 0.034 
0.17 0.049 
0.20 0.063 
0.22 0.076 

The latter is probably unimportant, but the correction to the angle of 
incidence will lead to noticeable discrepancies unless the correct formulae 
for rectangular airfoils are used. 

Table 11 gives the results of applying the transformation formulae 
to a typical airfoil section 3 suitable for a propeller blade, and the 

1 See Division E IV 6. 
2 See Division E IV (6.7), (6.10). 
3 Aerofoil No.3 of Br. A.R.C. R. and M. 322, 1917. 
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TABLE 11. Transformation of .Airfoil Characteristics. 

.Aspect Ratio 6 
Infinite .Aspect Ratio 

I 
Elliptic Loading Rectangular .Airfoil 

CL I 0( I CD 0(0 I CDo I 8 0(0 I CDO I 8 

0.094 --40 0.0294 --4.30 0.0289 0.308 -4.30 0.0289 0.308 
0.248 -2 0.0210 -2.8 0.0177 0.071 -2.9 O.oI76 0.071 

. 0.392 0 0.0222 -1.2 0.0141 0.0360 -1.4 0.0137 0.0350 
0.548 2 0.0278 0.3 0.0119 0.0217 0.1 0.0112 0.0204 
0.702 4 0.0382 1.9 0.0120 0.0171 1.5 0.0108 0.0154 
0.845 6 0.0515 3.4 0.0137 0.0162 3.0 0.0119 0.0141 
0.980 8 0.0664 5.0 0.0154 0.0157 4.5 0.0131 0.0134 
1.125 10 0.0841 6.6 0.0170 0.0151 6.0 0.0139 0.0123 
1.228 12 0.1034 8.3 0.0234 0.0190 7.7 0.0196 0.0159 

numerical values show clearly the importance of using the correct trans­
formation formulae, more particularly in deducing the angle of incidence. 
The Table can also be used to examine another point of interest. In order 
ao'! to simplify calculations relating 

llerofM Character/slics to a propeller, it is frequently 

<S' ~ 

assumed either that the profile 
drag coefficient CD 0 is constant 
or that the drag-lift ratio e is 
constant. The numerical values 
in this Table and the curves of 
Fig. 32 suggest that the assump­
tion of a constant profile drag 

lO.02 

... 

o fl25 a50 

Fig. 32. 

a75 

coefficient is valid over a wider 
range than that of a constant 

tOO t:L U5 drag-lift ratio, and that neither 
assumption is quite satisfactory. 

7. Multiplane Interference. The vortex theory of the propeller is based 
on the assumption that the blade of a propeller may be divided into 
a large number of elements and that each of these elements, which 
have the form of airfoil sections, may be regarded as in uniform linear 
motion through the fluid and subject to the induced velocity of the 
trailing vortex system of the slipstream. The velocity of a typical blade 
element is the resultant of an axial component V, the forward speed 
of the propeller through the fluid, and of a rotational component Q r, 
corresponding to the angular velocity Q of the propeller about its axis. 
This second component is not strictly a linear velocity, since the blade 
element is describing a helical path on the surface of a cylinder of 
radius r, whose axis is the axis of rotation of the propeller. If this 
cylinder is unrolled and represented on a flat surface as in Fig. 33, the 
elements of the blades of the propeller appear as a series of airfoil 
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sections along an axis A A. The distance between consecutive airfoil 
sections is 2 'It riB and, to represent the system correctly, the set of B 
airfoil sections representing the B blades of the propeller must be repeated 
again and again so as to form an infinite series or cascade of airfoils. 
The axis A A represents the plane of rotation of the propeller and hence 
the airfoil sections are inclined to this axis at the angle e, which is the 
blade angle of these elements of the propeller blade. 

The motion of the blade elements, which are members of this cascade, 
is composed of a velocity Q r along the axis of the cascade and of 
a velocity V normal to this axis, but in 
order to represent the behavior of the /I ~ /I 
blade elements correctly by the two-
dimensional flow past the cascade it is 
necessary to modify this system of velo­

Fig. 33. 

cities in one respect. In the two-dimensional problem the mean velocity 
normal to the axis of the cascade retains a constant value in order to 
satisfy the condition of continuity of flow, but in the actual flow past 
the propeller, which the cascade is to represent, there is a radial con­
traction of the circular annulus with a corresponding increase of the 
axial velocity. The two-dimensional cascade can therefore only be used 
to represent the flow immediately before and behind the propeller, and 
the velocity normal to the axis of the cascade must be taken to be 
the axial velocity u through the propeller y 
disc and not simply the forward speed V of 
the propeller. The system of velocities rela­
tive to the airfoil sections of the cascade 
then assumes the form shown in Fig. 34. In 
front of the cascade the resultant velocity WI 

(il-w)r 
has the components u normal to the axis A A 
and Q r parallel to it. The normal velocity 

Fig. 34. 

u 
/I 

retains the same value behind the cascade, but the tangential component 
is reduced to (Q - (J)) r and the resultant velocity W 2 is therefore less 
than the initial velocity WI' This reduction of velocity implies an increase 
of pressure and the cascade experiences a normal force Y, which corre­
sponds to the thrust of the blade elements of the propeller. Also the 
change in the tangential component of the velocity is associated with a 
corresponding force X, so that Xr represents the torque of the blade elements. 

By considering the behavior of a cascade of airfoils it is possible 
to deduce the behavior of the corresponding blade elements of a propeller 
in terms of the axial velocity through the disc of the propeller. The 
analysis determines the rotational velocity (J) imparted to the slipstream, 
but it is necessary to revert to the true cylindrical form of the slipstream 
in order to determine the relationship between the normal velocity u 
used in the cascade analysis and the axial velocity V of the propeller. 

Aerodynamic Theory IV 15 



226 L V. THE BLADE ELEMENT THEORY 

8. Cascade of Airfoils. Consider first a cascade of frictionless airfoils, 
around each of which there is a circulation K; let u be the component 
of the velocity normal to the axis of the cascade, and let the tangential 
component change from WI in front of the cascade to W 2 behind it. 
Also let s be the distance between consecutive airfoils of the cascade, 
and let X and Y be respectively the tangential and normal components 
of the force on each member of the cascade. In the corresponding 
propeller problem, which is represented by this cascade, the tangential 

y Wf velocities would be 

Wa 
];'ig. 35. 

where B is the number 

WI =Qr 

W 2 = (Q- w) r 
(8.1) 

and the elements of thrust and torque 
would be respectively 

~~ = BY I 
and !!I = BXr 

dr 

of the propeller blades, and where 
Bs = 2nr 

(8.2) 

(8.3) 

Applying Bernoulli's equation to the flow relative to the cascade, 
the increase of pressure behind the cascade is obtained immediately as 

_ _ 1 (2 2) P2 PI- 212 U'! -W2 

and the normal force Y on each member of the cascade is represented 
by this pressure over a length s of the axis. Hence 

1 
Y = 212 (wi -w~) s (8.4) 

The mass flow per unit length of the cascade is 12 u and this fluid 
receives a component of velocity (WI - w2) parallel to the axis of the 

~ 
cascade. Hence the tangential force per unit 

t M length of the cascade is 12 u (WI - w2) and the 
HI IY.t U force on each member of the cascade is 

II't wffJlYt: X = 12 u (WI -W2) 8 (8.5) 

Fig. 36. These components X and Y of the force on 
each member of the cascade can also be derived 

by considering the circulation K around the section and the correspond­
ing lift force L. The resultant velocities WI and W 2 in front of and 
behind the cascade can be represented as in Fig. 36, and the resultant 
velocity W experienced by the airfoil section will be intermediate between 
these two values. The circulation around each airfoil section is simply 

K = (W1 -W2) s 

and hence the lift L per unit length of each airfoil section is 

L = 12 W (WI - 11)2) 8 
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The components of this force are respectively 

X = I} U (WI - W 2) 8 

and Y = I} W (WI - W 2) 8 

This value of the tangential component X agrees with the previous 
expression (8.5), and a comparison of the value of the normal component 
with the previous expression (8.4) leads to the conclusion that 

1 
W = 2 (WI + w2) (8.6) 

Thus the effective tangential component of the velocity experienced 
by the airfoil section is the mean of the values before and behind the 
cascade, and the effective resultant velocity W is the vectorial mean 
of the resultant velocities WI and W 2• 

Applying these results to the problem of a propeller by means of 
the relationships (8.1), (8.2), and (8.3), the circulation around the blade 

2n 
element is K = - w r2 (8.7) 

B 
and in terms of this circulation the element of thrust per unit length 

of blade becomes dT (1 ) dT = BI}K D--2 w r 

= Be K (Qr- :n~) (8.8) 

while the corresponding element of torque per unit length of blade 

is simply ~~ = BeKur (8.9) 

This system of equations must be completed by an additional equation 
expressing the relationship between the axial velocity u through the 
propeller disc and the forward speed V of the propeller. This equation 
is the well known axial momentum equation 

dT dr = 4nl}~l (u - V) r (8.10) 

The system of equations (8.8), (8.9), and (8.10) suffice to determine 
the thrust and torque of a propeller when the distribution of circulation 
along the blade is known, but further analysis is necessary to relate this 
circulation to the shape and blade angle of the airfoil section and to 
allow for the profile drag of the blades. Since the lift of an airfoil section 
per unit length is L = e W K 
and since this lift can also be expressed in terms of the usual non­
dimensional lift coefficient C L as 

1 
L = 2CLI} W2 e 

the circulation K is related to the lift coefficient C L by the equation 

K = -~CL We (8.11) 
2 

15* 
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If this substitution is made in (8.8) and (8.9), the expressions for the 
elements of thrust and torque assume the forms 

dT 1 
dr = 2 Bee W2 0 L eo8fj! 

and ~~ = ~ Be r e W2 0 L 8in fj! 

where t u 
an fj! = (.Q _ ~ OJ) r 

These are the usual equations as derived in the blade element theory 
of the propeller with the drag of the blades omitted. 

When the effect of the profile drag of the airfoil sections is included 
in the analysis, there win be a certain loss of total pressure head p' 
as the air passes through the cascade and the equation (8.4) for the 
normal force will assume the modified form 

Y 1 (Q 2) I (8 12) = 2 e Wi-W2 8-p 8 . 

while the equation (8.5) for the tangential force is unaltered. Also if K 
is the circulation around each of the airfoil sections, the lift will still be 

L=e WK 
but it is no longer possible to determine this circulation as (WI - W 2) 8, 

since the tangential velocity imparted to the air as it passes through 
the cascade is due partly to the lift of the airfoil sections and partly 
to their drag in the proportion of the components of these two forces 
parallel to the axis of the cascade. 

If D is the drag of each airfoil section, the normal and tangential 
components of the resultant force are respectively 

X _ uL+wD 
- W 

and Y= wL-uD 
W 

Eliminating the lift from these two equations and substituting for X 
.and Y from (8.5) and (8.12), the drag is obtained in the form 

WD=wX-uY 

= e u (WI - W2) 8 [W -{ (WI + W2)] + u p' 8 

But W D represents the rate of loss of energy due to the drag of each 
airfoil section and u p' 8 is simply another measure of this loss of energy 
in terms of the loss of total pressure head of the air on passing through 
the cascade. Hence" with the other term zero we have 

1 
W = -2- (WI + w2 ) 

as previously obtained for the ideal cascade. 
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Finally, in terms of the lift and drag coefficients of the airfoil section, 
the elements of thrust and torque of the propeller are obtained in their 
usual forms 

dd~ =BY= ~BceW2(CLcostp-CDsintp) 

and :!:d~ = BXT = ~ Bcre W 2 (CL sintp + CDcostp) 

9. Airfoil Characteristics in a Cascade. The discussion of the behavior 
of an infinite cascade of airfoil sections has led to the same form of 
equations for the thrust and torque of the blade element of a propeller 
as was derived previously by considering a single blade element, but 
it is necessary to examine whether the airfoil characteristics for the 
blade element in two-dimensional motion 
are the same for a cascade of airfoils as 
for a single airfoil. The general theoretical 
solution of this problem is not known, 

~. £~ 
s s S 

Fig. 37. 
but the results for a cascade of straight 
line airfoils are available and were in fact used by J oukowski 1 in his 
propeller theory. 

Let c be the chord of each straight line airfoil, set at an angle () to 
the axis of the cascade, and let s be the spacing of the airfoils along 
the cascade. Also let W be the effective velocity experienced by each 
airfoil at· an angle of incidence CI.: this velocity W, in accordance with 
the previous discussion, is to be taken as the vectorial mean of the 
velocities in front of and behind the cascade. Then the lift L of each 
airfoil can be expressed in terms of the standard non-dimensional lift 

coefficient C L in the form L = ~ C L e W2 c 

and this lift coefficient is determined by the equation 2 

OL 2 tanh x 
2 n sin (J. n (f sin () 

(9.1) 

where () is the blade angle and a is the ratio of airfoil chord c to spacing s 
along the axis of the cascade, or in terms of the dimensions of the 

c Be 
a=-=---

s 2 nr propeller, (9.2) 

Also the subsidiary parameter x is determined in association with two 
additional parameters p and q by the set of equations 

sin p = cos () sin q I 
sinh x = sin () tan q 

~a=xsin()+pcos() 
(9.3) 

1 Travaux de la Section de Physique de la Societe des Amis des Sciences 
Naturelles; Moscow, 1915. 

2 These formulae are derived from Joukowski's paper with slight modification 
and change of notation. 
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For a single airfoil in two-dimensional motion the ratio C £12 n sin oc 
would be unity!, and the importance of this analysis is to determine 
how far the value of this ratio is modified by the mutual interference 
of the airfoils in the infinite cascade. Numerical results have been 
deduced from these formulae and are shown in Fig. 38 jas curves of the 
ratio CL /2 n sin oc against the solidity (J for various blade angles (see 

1.10,----,..----,----, 

8=00 

1.051----+---+-

~l~ 
I~ 
1.001-1IIII!!!~::::::=-t-----±~ 

Fig. 38. 

also Table 12). The ratio never differs 
from unity by more than 5 per cent in 
the range considered, and for the usual 

TABLE 12. Values of 2 01": __ . 
1(; 8tn IX. 

(J= 0 I 150 I 300 450 

G= 0.05 1.002 1.002 1.001 1.000 
0.10 1.008 1.007 1.004 1.000 
0.15 1.019 1.016 1.009 1.000 
0.20 1.033 1.029 1.016 1.000 
0.25 1.051 1.047 1.025 1.000 

600 

0.999 
0.996 
0.991 
0.984 
0.975 

combination of solidity and blade angle the divergence is quite small. 
In view of these numerical results, therefore, it appears to be legitimate 
to neglect the multiplane interference between the successive blades of 
a propeller and to adopt simply the airfoil characteristcs of a single 
airfoil in two-dimensional motion. 

CHAPTER VI 

THE VORTEX THEORY 
1. The Propeller Blades. The vortex theory of the propeller is based 

fundamentally on the conception that trailing vortices spring from the 
rotating blades of the propeller and pass down the slipstream in the 
form of helical vortex sheets. The interference velocity experienced by 
the blades of the propeller must be calculated as the induced velocity 
of this vortex system, and the aerodynamic reaction on any blade 
element is derived from this modified system of velocities in association 
with airfoil characteristics corresponding to two-dimensional motion. 
The calculation of these induced velocities is very complex and the 
analysis is therefore usually based on the assumption that the propeller 
has a large number of blades. As a consequence of this simplifying 
assumption the velocity has a uniform value around any annulus of the 
propeller disc and the vortex theory becomes essentially identical with 
the blade element theory, including the interference velocities as deter­
mined by the general momentum theory and using airfoil characteristics 

1 See Division E II (7.4). 
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corresponding to two-dimensional motion. The effect of the periodicity 
of the flow, which actually occurs with a propeller of a small number 
of blades, may be estimated subsequently as a correction to this simplified 
form of the theory. 

Consider an element of a propeller blade at the radial distance r from 
the axis of rotation. The effective velocity W of this blade element 
relative to the fluid is the resultant of an axial component u, which 
exceeds the forward speed V of the propeller owing to the axial induced 
velocity of the vortex system of the slipstream, and of a tangential 

component ([2 - ~ w ) r where [2 is the angular velocity of the propeller 

and w is the angular velocity imparted to the air immediately behind 
the propeller disc. Introducing the 
axial and rotational interference fac­
tors a and a', the effective velocity 
of the blade element may be illustrated 
as in Fig. 39 and may be defined by 
the equations [see V (5.5)] 

Fig. 39. 

W 8in cp = U(' 1 ' = V (1 + a) I 
(1.1) 

WC08CP= Q--2-w)r=[2r(l-a') J 

The corresponding speed ratio A of the propeller is then obtained 
V r I-a' 

directly as }, = Q j[ = R 1 + a tan cp (1.2) 

The blade element experiences a lift force normal to the direction 
of the resultant velocity Wand a drag force parallel to this direction. 
Expressing these forces in terms of the usual lift and drag coefficients, 
resolving parallel and normal to the propeller axis, and summing over 
all the B blades of the propeller, the elements of thrust and torque 
contributed by all the blade elements at the radial distance r are obtained 
in the same form as in the simple blade element theory. Thus 

-~F = ~ B C (! W2 (C L C08 cp - CD 8in cp) (1.3) 
'~', 

and (1.4) 

These equations are expressed more conveniently in a non-dimensional 
form. For this purpose the chord c is replaced by the solidity, 

Be 
a = 2nr (1.5) 

which expresses the ratio of the total blade width of all the blade 
elements at radius r to the circumference of the circle on which they 
lie, and the thrust and torque coefficients are defined by the equations 

T = Tc 7C R2 (! [22 R2 I 
Q = Qc 7C R2 (! [22 R3 I (1.6) 
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Cx = CL sinrp + CD cosrp 1 
Cy = CL cosrp - CD sinrp 

(1.7) 

for the components of the aerodynamic force normal and parallel to 
the axis of the propeller, the expressions for the elements of thrust 
and torque become 

R _dd~c = a (~ r (1- a')2 C y sec2 rp (1.S) 

and R dd~C. = a(~r (1--a')2Cx sec2rp (1.9) 

Finally the efficiency of the blade elements at radial distance r is 

V d T V d Tc 
dr dr 

'YJr=-dQ = 
Q_ QRdQc 

dr dr 

and on substituting from the preceding equations this efficiency become!> 
V Cy I - a' tan cp 

'YJr= Qr-O;;= l+a tan (cp+y) 
.(l.lO) 

where CD = CL tan y 
These equations express the characteristics of the propeller in terms 

of the effective flow experienced by the blade elements, and it is necessary 
to introduce additional equations to determine the interference factors a 
and a', which represent the induced velocities at the blade elements 
due to the vortex system of the slipstream. The present analysis is 
developed on the basis that these induced velocities may be calculated 
on the assumption of a propeller with a large number of blades, and 
the appropriate equations can therefore be derived from a consideration 
of the energy and momentum of the air in the slipstream. 

2. Energy and Momentum. The balance of energy for a propeller 
is considered most conveniently by assuming the propeller to be rotating 
with the angular velocity Q in a stream of velocity V directed along its 
axis. Considering only the blade elements at distance r from the axis 

of rotation, the power put into the propeller is Q ~ ~. This power must 

be equated to the work done on the air by the thrust and torque of 
the propeller and to the loss of energy due to the profile drag of the 
blade elements. The thrust operates on air moving with the axial 

velocity u and does the work u ~ ~ in unit time. Similarly the torque 

operates on air moving with the angular velocity ! OJ and does the 

k Id Q . ·t t· H ·f dE. f I f wor 2" OJ a:r rn urn Ime. ence Id r IS the rate 0 oss 0 energy 

of the system, the energy equation becomes 

Q!!!{=u dT +l_OJdQ +dE 
dr dr 2 dr dr 

(2.1) 
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or, in terms of the interference factors a and a', 

dE = Q (I-a') dQ _ V (l + a) dT 
dr dr dr 

[ 1 dQ dT.] = W --co8q;--8~nq; 
r dr dr 

233 

[see (1.1)] 

Substituting the expressions for the elements of thrust and torque from 
the previous section, the rate of loss of energy becomes 

dE _ I B waC Tr-2 ce D (2.2) 

which is the expression for the rate of loss of energy due to the profile 
drag of the blade elements moving with the resultant effective velocity W. 

The energy of the air is represented by its total pressure head, 
which has a constant value H 0 in front of the propeller and is incr~ased 
to a higher value HI in the slipstream. As the air passes through the 
propeller disc it receives an increase of pressure p' and an angular 
velocity w without any change in the axial and radial components of 
the velocity, and hence the increase of total pressure head is 

HI-HO = p' + -;-ew2r2 (2.3) 

This increase of energy of the air is due to the action of the thrust and 
torque of the propeller. Considering an annulus extending a distance dr 
along the blades, the energy imparted by the thrust and torque is 

(UdT + ; w dQ), and this energy is given to a volume of air 271 r U dr. 

Hence u-+--w-=271ru p +-ew2r2 dT I dQ (, I ) 
dr 2 dr 2 

But the element of thrust is clearly equal to the increase of pressure 

over the annulus, or dT 2 ' Tr = nrp (2.4) 

and the element of torque is equal to the angular momentum imparted 
to the air in unit time, or 

~~ = 2nreuwr2 (2.5) 

These two expressions are consistent with the previous equation for the 
increase of energy and show that the two terms in the expression (2.3) 
for the increase of total pressure head are due respectively to the thrust 
and torque of the blade elements. 

Expressing (2.5) in its non-dimensional form 

R dd~c = 4 ( ~ ) 8 2 (1 + a) a' 

= 4 ( ~ ) 4 (1-a') a' tan q; 
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and equating this expression for the element of torque to the previous 
expression (1.9), the rotational interference factor a ' is determined by 

the equation 
a' rJ Ox 

1 - a' = 4 sin q; cos cp 
(2.6) 

In order to determine the axial interference factor a it is necessary 
to consider the flow in the ultimate wake far behind the propeller. 
Denoting values in this wake by the suffix (1), the conditions of 
continuity of flow require that 

u r dr = 711 r1 dr1 

wr2 =w1 r i (2.7) 

Also in the ultimate wake the pressure is governed by the equation 
dp 
__ 1 = (!w2r 
dr1 1 1 

and the total pressure head is 

H - H + 1 (2 V2) + 1 2 2 1 - 0 -2- e Y' l - 2 eWl r 1 

(2.8) 

(2.9) 

Owing to the contraction of the slipstream r1 is less than rand, 
by virtue of the second equation (2.7), WI is greater than wand wi ri 
is greater than w2 r2. Thus, on comparing the two expressions (2.3) 
and (2.9) for the total pressure head, it appears that as the air passes 
down the slipstream the rotational energy is increased: the excess pressure 
behind the disc of the propeller is converted mainly into increased axial 
velocity but partly into increased angular velocity. Also the increase 
of pressure through the propeller disc can be expressed as 

P' = ; e (ui - V2) + ~ e w r2 (WI - w) (2.10) 

The axial momentum equation can be derived strictly for the whole 
propeller only, and is [see III (1.10)] 

R, R, 

T =.r 2 n 1'1 (! u1 (u1 - V) d 1'1 - .r 2 n (Po - PI) 1'1 d r 1 (2.11) 
o 0 

The solution of this system of equations is very complex but can be 
derived in certain special cases 1. In general, however, the rotational 
motion in the slipstream is small and it is possible to neglect the angular 
velocity term in (2.10) and the pressure term in (2.11). With this 

1 
simplification pi = 2 e (ui - V2) 

and, substituting in (2.4), 

~~ = nre (ui- V2) (2.12) 

1 See III 2. 
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Now, if the contraction of the slipstream is ignored in calculating the 
induced velocities, the axial induced velocity (u - V) at the propeller 
disc is half the corresponding velocity (ul - V) in the wake; and on 
this basis, which is essentially the same as that adopted in simplifying 
(2.10), equation (2.12) for the element of thrust becomes 

dT dr = 4nreu (u- V) 

or R ~~e = 4 ( ~ ) 22 (I + a) a (2.13) 

This result can also be derived from the axial momentum equation, 
(2.11), by neglecting the pressure drop in the wake and by assuming 
that the equation can be applied to the individual annular elements 
of the propeller disc. Thus 

aT = 2nrl QUl (ul - V) arl 
and then by virtue of (2.7) 

dT 
dr = 2nreu (ul - V) 

By comparison with (2.12) 
I 

U = -2 (ul + V) 

which is the conclusion reached previously by considering the magnitude 
of the induced velocities. 

Finally, combining (2.13) with (1.8), the axial interference factor a 
is determined by the equation 

4 ),2 (1 + a) a = a (~ r(I-a')2 Cy sec2 tp 

or, by virtue of (1.1) and (1.2), 
a (JOy 

1 + a = 4s"?'n2Q; (2.14) 

3. Propeller Characteristics. The equations of the two preceding 
sections suffice to determine the thrust and torque of any propeller 
defined by the number of blades B and by the variation of chord c and 
blade angle () along the blade. The airfoil characteristics of the blade 
sections must also be known, i. e. the lift and drag coefficients of the 
blade sections in two-dimensional motion as functions of the angle of 
incidence ce. The complete system of equations may be summarized 

as follows:- R dd~c = a (~ r(l-a')2 Cy sec2 tp 

R ddt- = a (~ r (1-0,')2 Cx sec2 tp (3.1) 

r I-a' 
2 = R- I + a tantp 
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where Be 1 
C:: ;-;-;~nrp + CDcosrp f 
Cy = CL cos rp - CD sin rp 

(3.2) 

and 
a.' aCx 

1 
I-a' 4 sin 1p cos 1p 

Ct aCy 
I+a 48in2~ 

(3.3) 

These equations have been developed by assuming the propeller to 
have a large number of blades and by ignoring the contraction of the 
slipstream in calculating the axial induced velocity. They apply strictly 
therefore only to a lightly loaded propeller with a large number of 
blades, but experience has shown that they may be used with reasonable 
accuracy for any propeller. An approximate method of correcting the 
equations for a propeller with a small number of blades is considered 
later in Chapter VII. 

The equations have been derived by considering the mode of operation 
of a propeller, but they are valid also for other working states of an 
airscrew. The equations can be applied without modification to determine 
the characteristics of a windmill, but in this application the thrust 
and torque, and hence also the axial and rotational interference factors, 
are negative. Special care must be taken in applying the equations 
to an airscrew with a negative rate of advance. The equations (3.1) 
and (3.2) are valid under all conditions, since they represent simply 
the aerodynamic forces on the blade elements moving relative to the 
fluid with a velocity whose axial and tangential components are 

respectively u = V (1 + a) 
I . 

w = (Q - -2- (J) ) r = Q r (1 - a') 

The equations (3.3), on the other hand, are not universally true, since 
they have been derived on the assumption that a slipstream of normal 
type exists behind the airscrew, and there are certain states of operation 1 

of an airscrew in which this condition is not satisfied. 
In order to examine this question, it is convenient to consider the 

behavior of an ordinary propulsive airscrew or propeller at different 
rates of advance. In the ordinary state of operation the thrust of the 
propeller creates a slipstream of increased velocity behind the propeller. 
As the speed of advance increases, at the same rate of rotation, the 
thrust of the propeller falls to zero and then becomes negative, and 
shortly afterwards the torque also becomes negative. The airscrew is 
then operating first as a brake and then as a windmill, and a slipstream 

1 See I 1 and Fig. 2. 
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of reduced velocity is formed behind the airscrew. The general equations 
(3.1), remain valid, but the interference factors a and a' become negative. 

When the speed of advance is reduced to zero, the limiting condition 
of operation as a propeller is reached; the airscrew rotates without 
advancing through the fluid, and the application of the general equations 
leads to the conclusions that the air is being driven backwards through 
the disc of the airscrew and that the axial velocity in the ultimate 
slipstream is double that through the disc. If now the airscrew is assumed 
to move backwards slowly (V small and negative) or if a stream of 
low velocity is directed on the back of the airscrew, the direction of flow 
through the airscrew disc will still be in the same sense as in the static 
condition and will therefore be opposite to the direction of the general 
stream. The airscrew then operates in the vortex ring state, the air 
passing through the airscrew disc and returning backwards outside 
its circumference as illustrated in Fig. 2. In this condition no true 
slipstream is formed, and it is no longer possible to apply the equations 
of axial and rotational momentum as developed in VI 2. The analysis 
of this state of operation rests on a purely empirical basis and is 
considered later in Chapter XII. 

As the speed of backward motion is increased, a condition is reached 
in which the axial velocity through the airscrew disc becomes zero, 
and the airscrew then acts as a centrifugal fan, sucking air towards 
its disc from both sides and expelling it radially. Beyond this state, 
at higher negative rates of advance, the flow is wholly from the back 
to the front of the airscrew and, I? 

after a temporary condition of turbu­
lence, the flow passes to the same 
type as at high positive rates of 
advance. The airscrew acts as a 
brake, the thrust and torque are both 

u'=Y'r1+a) 

Fig. 40. 

positive, and a true slipstream is again formed downstream of the 
airscrew. The flow past a typical blade element in this state of operation 
with a stream of velocity V' directed on the back of the airscrew is 
illustrated in Fig. 40, where W' is the resultant effective velocity 
experienced by the blade element and R is the corresponding aerodynamic 
force. The general equations, (3.1), still represent the aerodynamic 
behavior of the blade element, but the axial velocity u or V (1 + a) 
is now negative, being equal in magnitude to the velocity u' of Fig. 40 
but of the opposite sign. In the momentum equations, however, the 
velocity of flow through the airscrew disc is now u' , the angular momentum 
equation, (2.5), must now be expressed as 

d Q = 2 n r 0 u' (I) r 2 

dr " 
= - 2 n r (! 11, {II r 2 
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and the axial momentum equation becomes 

d T 4 I (V' ') --- = nreu -u 
dr 

= -4nreu(u- V) 

This result is due to the fact that, in the ordinary form of the axial 
momentum equation [see (2.13)], (u - V) represents the increase of 
velocity measured in the opposite direction to that of the thrust, while 
u represents the velocity through the airscrew disc and must be re­
garded as positive, whatever be the actual direction of the flow. At 
negative rates of advance of an airscrew, T and (u - V) remain posi­
tive, but u is negative, and hence a negative sign must be introduced 
in the momentum equation. 

The modification necessary to the momentum equations is therefore 
simply a change of sign, and it follows that the general equations, (3.3), 
must receive a similar correction and must be written as 

a' (J Ox 1 
1 - a' 4 sin q; cos q; 

1 ~ a -4~i~~q; f 
(3.4) 

In these equations the angle ({I is negative and in general G x and G yare 
both positive. Thus the rotational interference factor a' will be positive, 
and the axial interference factor a will be negative. 

With the substitution of equations (3.4) in place of the previous 
equations (3.3), the general equations can be used to calculate the 
performance of an airscrew at a negative rate of advance, provided 
that this rate of advance is sufficiently rapid to avoid the vortex ring 
and turbulent states of operation. The criterion that this condition is 
satisfied is obtained by considering the value calculated for the axial 
interference factor a. With a negative axial velocity V', the axial 
velocity through the airscrew disc is 

u' = V' (1 +a) 
and the axial velocity in the ultimate slipstream will be 

u~ = V' (1 + 2 a) 

The momentum equation presumes that the velocities V', u', and 1-t ~ 
are all of the same sense, and hence the analysis is valid only if 

1 
a > -~r (3.5) 

Whenever the application of (3.3) or (3.4) leads to a value of the axial 
interference factor which is more negative than this limiting value, the 
equations cease to be valid, and it is then necessary to turn to the 
empirical analysis described in Chapter XII. The conditions of the 
successive states of operation may be summarized as followR:-
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State of 
Operation V a T I Q 

w indmill . positive, large - -

I 

-

Brake positive - - + 
Propeller. positive o to 00 + 

I 
+ 

Vortex ring. negative, small - 00 to -1 + I 
T 

Turbulent negative - 1 to -1(2 + 
I 
+ 

Brake negative, large -1(2 to 0 + + 
4. The Application of the Vortex Theory. The general equations of 

the vortex theory suffice to determine the performance of a propeller 
throughout its whole range of operation. To perform this calculation 
a few typical blade elements are chosen, suitably distributed along the 
blade of the propeller, and the thrust and torque of each of these blade 
elements is determined as a function of the speed ratio A. Using the 
values of these elementary forces at any chosen value of A, the thrust 
and torque distribution curves along the blade can be drawn, and the 
total thrust and torque of the propeller are then obtained by graphical 
integration. . By repeating this integration at a series of values of A, 
the complete curves of the thrust and torque coefficients of the propeller 
can be obtained. 

In order to illustrate this application of the vortex theory, calculations 
have been made for a propeller with two blades of the shape shown in 
Fig. 41, and of constant pitch-diameter ratio 0.80. Five sections have 

been chosen along the blade, and 
TABLE 13. Blade Shape. for convenience of the numerical 

Section rlR I () I c/R I a 

A 0.304 400 0.147 0.153 
B 0.500 27 0.183 0.117 
C 0.700 20 0.165 0.075 
D 0.833 17 0.128 0.049 
E 0.950 15 0.083 I 

0.028 

~lJ r--h ::::::::::::::=~--R ---------- -- .---~ 
I 

Fig. 41. 

work the exact positions have been chosen by reference to the blade 
angle () rather than to the radial coordinate }". Details of these sections 
are given in Table 13, and in addition it may be noted that the solidity 
of the propeller, i. e. the ratio of the total blade area to the disc area 7r: R2, 
is 0.086. The characteristics of each of these sections have been calculated 
according to the system of equations summarized at the beginning of 3, 
and full details of the calculation for the section C are given in Table 14. 
Starting with a series of values of the angle of incidence oc, for which 
the lift coefficient C L and the drag coefficient CD of the section are 
known, the first step is to calculate Cx and Cy according to the equations 

C x = C L 8in cp + CD C08 cp I 
Cy = CL C08cp-CD8incp I (4.1) 
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The interference factors a' and a are next derived from the equations 

aOx 1 
c~ a' 4 sin cp cos cP I 

a aOy 
1 + a 4 sin2 cP 

a' 

(4.2) 

and finally the speed ratio A and the elements of thrust and torque are 
derived from the equations 

(4.3) 

As a result of this calculation for each of the five chosen sections 
of the propeller blade it is possible to draw the curves of the elements 

r 
TABLE 14. Section 0 of Propeller. R = 0.700, () = 20°, a = 0.075. 

OL I OD I Ox I Oy 
I 

a' 
I I 

A I R dTe I R dQe tl 

I 1 

a 
dr dr 

0 0 0.035 0.033 -0.012 I 0.0020 -0.002 0.255 -0.0003 0.00067 
2 0.22 0.020 0.087 0.203 I 0.0055 0.042 0.217 0.0057 0.0017l 
4 0.43 0.014 0.132 0.409 0.0095 0.113 0.179 0.0112 0.00254 
6 0.62 0.012 0.162 0.599 0.0130 0.238 0.139 0.0160 0.00302 
8 0.80 

1
0.013 0.179

1 

0.780 
I 0.0165 1 0.511 0.097

1 

0.0203 0.00327 
lO 0.97 0.016 0.185 0.952 0.0200 1.470 0.049 0.0243 0.00330 

of thrust and torque against the speed ratio A as shown in Figs. 42 
and 43, and then, reading from these curves at any chosen value of A, 
it is possible to draw the thrust and torque distribution curves along 
the blade of the propeller. An example of these curves, for A = 0.175, 
is shown in Fig. 44. The two curves are very similar in shape, rising 
slowly at first with the radius and reaching a maximum value at 
approximately four-fifths of the extreme radius. Integration of the 

thrust and torque distribution cur­
TABLE 15. Propeller Characteristics. ves determines the thrust and torque 

0.100 
0.125 
0.150 
0.175 
0.200 
0.225 

0.114 
0.0101 
0.0085 
0.0066 
0.0047 
0.0025 

0.00179 
0.00174 
0.00163 
0.00145 
0.00120 
0.00083 

0.636 
0.722 
0.782 
0.800 
0.783 
0.680 

coefficients of the propeller, and by 
repeating the calculation for a series 
of values of the speed ratio A, the 
cparacteristics of the propeller can 
be determined for any range of ope­
ration. Numerical values are given 
in Table 15, and Fig. 45 shows the 



thrust and torque coefficients 
of the propeller and the corre­
sponding efficiency of propul­
sion. The curves show that the 
maximum efficiency of the 
propeller is 0.80 and that the 
thrust vanishes at the speed 
ratio 0.256, while the torque 
vanishes at the slightly higher 
value 0.265. Thus the experi­
mental mean pitch-diameter 
ratio of the propeller is 0.256 n 
or 0.805, which is very slightly 
greater than the geometrical 
pitch-diameter ratio 0.800. This 
difference is negligibly small, 
and the larger difference which 
is generally found in experi­
mental tests of propellers is due 
to the fact that the geometrical 
pitch of the propeller is de­
fined by reference to the chords 
of the blade elements instead 
of the no lift axes. 
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Thrust Elements 

~~ 
"" aOl0r----t---.:r---.;;:-~-k::--~,...,I---I 

A 

~fOO 0.150 
Fig. 42. 

aM35r---,-----r---.-----r---~ 

aOOBor_--+----"'...,..::----t-~...-~'_<_-l 

~k. 
Fig. 46 shows the variation ~ aOOf5r_--+---t----t--~r_-----''''rl 

of the interference factors a 
and a' along the blade for the 
speed ratio 0.175. Except at 
the innermost section of the 
blade, the rotational inter­
ference factor a' is less than 
2 per cent and is unimportant 
compared with the axial inter­
ference factor a, which has its 
greatest value over the principal 
working parts of the blade and 
falls to zero at the boss and at 
the tip. 

The calculation of the cha­
racteristics of a propeller by the 
detailed method described above 
is lengthy and laborious, and for 
comparative purposes it is often 
sufficiently accurate to consider 

Aerodynamic Theory IV 

aOOfO 

aOO05 

~fOO 

0.03 

0.08 

aOf 

0 

II 

afB5 

a9 7' a6 to 
7r 

Fig. 44. 
16 
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only one typical section of the propeller blade. This typical section 
is suitably chosen at the radius 0.7 R (Section G of Table 13) 

aMr---~----_r----~----r_--~----~ 

1J 
P!'(lpe//er ChO'lYlciel'isilcs 

o.~r_---+----_r--~+-----~---+----~ 

o.~r_---+---.~----+-----~-4-+----~ 

aOf5�_---t--/---+-----+-'''''---j-----t+----_j 

and a comparison of the 
results for this section 
with those for the whole 
propeller shows that the 

~aOfOI---+-t----+~~+-----~~-t------j 

thrust and torque coeffi­
cients of the propeller 
are approximately 0.57 
times the corresponding 
elements of thrust and 
torque for this typical 
section. Thus, as a rough 
approximation, it is legi-~ 

'" IS 
~aoosr_I--+----_r----+-----"'.~--~f__--~ 

timate to calculate the 
characteristics of the blade 
element at the radius 
0.7 R and then to assume 

0.05 a10 0.15 O.iO 

Fig. 45. 

O'f5.-----~----_r----~----r_--_, 

''dO'fOI----+----~----+-----t__''..----_l 

~ 
'd 
a~I_---t-----+----+_----j----~ 

aso for the whole propeller 

Tc = 0.57 R dd~c I 
(4.4) 

Q = 0.57 R dQc 
c dr 

The value of the numerical 
factor will, of course, depend 
on the shape of the blade and 
on the variation of angle along 
the blade. It is valid only for 

0.6 aa f.O blades of the shape shown 
f in Fig. 41 with constant pitch 

o 0.2 

Fig. 46. along the blade. 

5. The Effect of Solidity and Pitch. Slight changes of the plan form 
of a propeller blade and of the variation of angle along the blade exert 
only a small influence on the characteristics of the propeller, and hence, 
to appreciate the performance of different types of propeller, it will 
suffice to consider blades of constant pitch and of the shape shown in 
Fig. 41 and defined by the numerical data of Table 13. There remain 
then two parameters to specify any particular propeller:-

(1) The pitch-diameter ratio. 
(2) The solidity, defined as the ratio of the total blade area to the 

disc area :rr; R2. 

The increase of solidity may be obtained by increasing the number 
of the blades or by increasing the width of the blades while the ratio 
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of the chords along the blade remains unchanged, since the theory 
indicates that these two modifications produce identical results. 

In order to illustrate 
the influence of solidity 
and pitch on the cha­
racteristics of a propeller, 
calculations have been 
made for propellers of 
two and four blades of 
the form shown in Fig.41 
and for a range of pitch- ~~ 
diameter ratio. The cor- '" 
responding solidities are 
respectively 0.086 and 
0.172. For simplicity the 
calculations have been 
confined to the typical 
blade section at the ra­
dius 0.7 R and the angle 
at this section has been 
increased by steps of 50; 

o at aa 
Fig. 47. 

the corresponding values of the pitch-diameter ratio are given in Table 16. 
The calculations were made by the method described in the previous 
section and the resulting 
values of the thrust and 

TABLE 16. 

() = 1100 \150 \200 I 250 

HID = 10.39 0.63 0.8011.03 

torque coefficients are 
shown in Figs. 47 and 48, 
where the full lines refer 
to the propeller with two 
blades"and solidity 0.086, 
and the broken lines refer 
to the propeller with four 
blades and solidity 0.172. 
If there were no induced 

aooa 

a002 

aoo t -

-----, 

--- r---.. ... , 
"' 

-~ 
~ 

"' 
~ r< 

To""ve ~cienl 

~ 
-8=3 
--8=~ 

" "" ,,~ 
,!<So , 

~ 300 "\ 
'~ 

.~ 

~o 

"'~ 

" 
'l~ 

velocities, the thrust and 0 a1 at A 0.3 

torque of a propeller Fig. 48. 

would be proportional to 
the solidity, and it is convenient therefore to plot the thrust and torque 
per blade of the propeller instead of the total thrust and torque. This 

16* 



244 L VI. THE VORTEX THEORY 

method of plotting has been used in Figs. 47 and 48, and the deviation 
of the two sets of curves represents the effect of the induced velocities. 
The curves show only the elements of thrust and torque on the blade 
section at the radius 0.7 R, but in accordance with the previous dis­
cussion the total thrust and torque of the propeller may be taken to 
be approximately 

Tc = 0.57 B ( ;~d~'"- ) 

Qc = 0.57 B (; dd ~ ) 

The efficiency curves for the series of propellers are shown in Fig. 49, 
which may be compared with the set of experimental curves shown 
in Fig. 7. The efficiency of the propeller increases with its pitch, and 

a~r--~---r--~--r---.---' 

there is a marked drop in 
efficiency when the solidity 
of the propeller is in­
creased, but this drop is 
relatively less important 
for the high pitch pro­
pellers. The speed ratio, 
at which the maximum 
efficiency of any propeller 
is attained, appears to 
depend only on the pitch 
of the propeller and to 
be sensibly independent 
of the solidity. 

1J 

aJol-----I.'fM-'---..ljl--;:---+---\---4----1 

C'uryes ()f Efffcient;}' 

·~~-4---~--+------B=8 

- - -B='I- These curves can be 
used to indicate the change 

L----L.--+.----'-----:~---I..-,.<~-;!a3 in design of a propeller 
Fig. 49. which is necessary when 

the speed of advance is 
altered without any change in the rate of rotation or diameter of the 
propeller. Assume, for example, that a propeller of pitch-diameter 
ratio 0.80 (fJ = 20 0 at 0.7 R) and of solidity 0.172 (B = 4) is operating 
at the speed ratio 0.180 which corresponds to its maximum effi­
ciency of 72 per cent. The corresponding value of the torque coeffi-

cient R dd ~c is 0.00107 B or 0.0043. If now the forward speed is to 

be increased by 35 per cent and if the propeller is to be redesigned 
to give the same. rate of rotation and to give its maximum efficiency 
under these new conditions, it will be necessary to increase the pitch 
of the propeller so that its maximum efficiency occurs at the speed 
ratio 0.243. The pitch-diameter ratio required is therefore obtained 
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from Fig. 49 as 1.03 (0 = 25 0 at 0.7 R), and from Fig. 48 the re­
lationship between torque coefficient and solidity is as follows;-

B 

2 
4 

0.086 
0.172 

R dQc 
BdT 

0.00180 
0.00155 

R dQc 
dr 

0.0036 
0.0062 

If the propeller is to run at the correct rate of rotation, the torque 
coefficient R (dQcldr) must retain its previous value 0.0043, and hence 
by interpolation the solidity must be reduced to O.ll approximately. 
Thus the modification of the propeller to operate at the higher speed 
is to increase the pitch-diameter ratio from 0.80 to 1.03, which is 
approximately the same percentage increase as that of the forward 
speed, and to reduce the solidity from 0.17 to 0.11. In practice this 
would imply changing from a propeller with four blades of the standard 
shape to a propeller with two blades, each of which is increased in width 
by approximately 25 per cent. Although this modification has been 
worked out only as a special numerical example, the general conclusion 
is valid universally under the conditions assumed, i. e. that the propeller 
is to absorb the same power at the same rate of rotation and at the 
same tip speed. 

6_ Approximate Method of Solution. The calculation of the character­
istics of a propeller by means of the general equations of the vortex 
theory is a straight forward process, but, owing to the nature of the 
equations, it is necessary to start the calculation of the characteristics 
of any particular blade element by assuming a series of values of the 
angle of incidence 0(, and the corresponding values of the speed ratio A 
are obtained as one of the results of the calculation. The characteristics 
of the propeller are then determined for a range of values of the speed 
ratio A. But this method of calculation is unduly elaborate if the aim 
of the calculation is to determine the characteristics at one chosen value 
only of the speed ratio. Also, if the width of the blades is increased in 
order to absorb more power, it is necessary to repeat the whole series 
of calculations from the beginning. 

An approximate method of calculation, which avoids some of these 
difficulties, has been developed by E. Pistolesi 1 on the basis that the 
axial and rotational interference factors a and a' are approximately 
constant over the principal working part of the propeller blade. Now 

r I-a' 
in general A=7.f l+a tancp [see (4.3)] 

and if a and a' are assumed to be constant, the angle cp appropriate 

1 Neue Ansatze und Ausfiihrungen zur Theorie der Luftschrauben. Vortrage 
aus dem Gebiete der Hydro- und Aerodynamik, Innsbruck, 1922. 
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to any blade element is given in terms of these constant interference 
factors and of the speed ratio A by the equation 

r 1 + a I 
Iftanrp = A- I-a' = A- (6.1) 

where A' is a constant. The first step in the approximate calculation 
is to obtain the characteristics of the propeller for the speed ratio X, 
ignoring entirely the interference velocities which actually occur. The 
thrust and torque, which will be denoted by accented letters, are derived 

dT' ')3 
from the equations R d'r C = a ( ~ Cy sec2 rp I

J (6.2) 
d Q~ ( r ')4 R -----a;r = a If C x sec2 rp 

which are the general equations for the elements of thrust and torque 
with the factor (1 - a')2 omitted. Since the value of the angle rp at 
any radius is determined from (6.1), this calculation can be made at 
once for any chosen value of the parameter A', and after integration 
the thrust and torque coefficients of the propeller will be obtained in 

the form T~ = (10 IT (A') } 
(6.3) 

Q~ = (10 I Q (X) 

where (10 is the solidity of the whole propeller, i. e. the ratio of the 
total blade area to the disc area. On this simple basis the thrust and 
torque coefficients are simply proportional to the solidity of the propeller, 
and the curves of 11' (X) and I Q (X) against X apply to any propeller 
with the same distribution of blade angle and chord ratio along the 
blade, whatever the actual width or number of the blades may be. 

In order to pass to the actual characteristics of the propeller, as 
modified by the interference velocities, it is necessary first to read the 
values of IT (A') and I Q (X) from the curves at the abscissa 

A-'= I+a A-
I-a' 

(6.4) 

and then to reduce the thrust and torque coefficients so derived by 
the factor (1 - a')2 which was omitted in (6.2). Thus 

Tc (A) = (10 IT (A') (1 - a')2 I 
Qc (A) = (10 I Q (A') (1 - a')2 f (6.5) 

The appropriate values of the interference factors a and a' are derived 
from the momentum equations for the whole propeller, which are 

T = 211: R2 e V2 (1 + a) a 

and Q = 11: R4 e V.Q (1 + a) a' 

or, in terms of the thrust and torque coefficients, 

Tc = 2 A2 (1 + a) a 

Qc = A (1 + a) a' 
(6.6) 



SECTION 6 247 

Combining these equations with the previous expressions (6.5) for' the 
thrust and torque coefficients and with the equation (6.4), the inter­
ference factors are determined as 

a ao IT (A') 
1 + a 2-Yz- (6.7) 

and 1 a' a' = ao/~y') (6.8) 

Now, starting with any value of ).! for which the values of t l' and t Q 

are known, (6.7) and (6.8) determine the interference factors a and a' 
for any chosen solidity (f 0' and then the corresponding values of A, T c 

and Qc are derived from (6.4) and (6.5). In general the rotational inter­
ference factor a' is very small and, unless results of high accuracy are 
required, it suffices to calculate only the axial interference factor a 
from (6.7) and then to take approximately 

A = l:a 1 
Tc(A) =OotT(A') (6.9) 

Qc(A) =ootQ(I.') 
This approximate method of calculation has no advantage over the 

more general method developed and applied in 4 unless results are 
required for a series of propellers of constant pitch and increasing 
solidity. By a slight modification of Pistolesi's analysis, however, it 
is possible to derive an approximate method of calculating the effect 
of a change of solidity on the characteristics of a propeller. To develop 
this method, consider two propellers of the same pitch, with blades of 
the same type, but with different solidities (fl and (fz. Comparing the 
two propellers at the same value of A', the ratio of the thrust and torque 
coefficients is obtained from (6.5) as 

Tc(A2) Qc(A2) a2(1-a;)2 

Tc (AI) Qc (AI) ad1- a~)2 
(6.10) 

where Ao 1 + a~ = A 1 + al 
. I-a; ll-a~ 

(6.11) 

and the suffixes (1) and (2) denote values appropriate to the two propellers. 
Also from the equations (6.7) and (6.8) 

while the interference 

from the equations 
and 

~-~~ 1 1 + a2 - al 1 + al 

~-~~ J 
1 - a~ - al 1 - a~ 

(6.12) 

factors for the first propeller can be calculated 

Tc (AI) = 2 Ai (1 + all al 
Qc (AI) = Al (1 + all a~ [see (6.6)] 

Thus, starting with any value of the speed ratio Al and the appropriate 
thrust and torque coefficients, the first step is to calculate the corre· 
sponding interference factors a l and a;. The interference factors a2 and a~ 
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for the second propeller are then calculated, and finally (6.10) and (6.11) 
determine the corresponding speed ratio A2 and the thrust and torque 
coefficients. 

The approximation on which this method of calculation is based is 
the assumption of constant values of the interference factors a and a' 
along the blade, and it should therefore be used only for estimating 
the effect of a small change of solidity. The rotational interference 
factor a' is always very small, and it is then legitimate to make the 
further approximation of neglecting the rotational interference factors 
entirely, since these factors appear in the transformation formulae only 

as the ratio 
I-a; 
I-a~ 

which will rarely differ from unity by as much as 1 per cent. With 
this approximation the transformation formulae become 

Tc (,1.2) Qc(A2) a2 (6.13) 
Tc (,1.1) = Qc (AI) = a-; 

and 

Also if 

the axial interference factor a1 can be expressed as 

(1 + 2 a1)2 = 1 + i 
and hence 1"1 + .-1 

~-~--~-----

1"1 +. + 1 

(6.14) 

(6.15) 

The corresponding axial interference factor a2 for the second propeller 
is then obtained from (6.12) 

a2 a2 (Vl+T- 1) 

I+a 2 a1 (1"I+.+I) 
and (6.14) for the speed ratio becomes 

or 

,1.2 1 + a1 
)'1 I+a2 

= a1 (Vl+T + 1) -a2 (1"1 + .-1) 
2 a1 

~ = 1_~2-a1 (VI + t-l) 
Al 2 a1 

(6.16) 

Now, starting with any value of the speed ratio Al and the corre­
sponding thrust and torque coefficients of the first propeller, the first 
step is to calculate i from (6.15). The thrust and torque coefficients 
of the second propeller are obtained, according to (6.13), by multiplying 
by the factor a2/a1 , and the appropriate value of the speed ratio A2 is 
derived from (6.16). If Tela and Qcla are used instead of the actual 



SECTION 7 249 

thrust and torque coefficients, the calculation is even simpler, since the 
only correction required is to plot these coefficients at a different value 
of the speed ratio A. As an example of this method of calculation, 
the propeller whose char- a90,---,---,---.,-----,---,---, 

acteristics are given in 1J 

Table 15 and Fig. 45 has 
been taken as basis, and a75 

Table 17 gives the calcu­
lation for deriving the char- a601---t-----.6'I-----" ....... -1--_\-4--+-____\ 
acteristics of a propeller 
with 20 per cent increased 
solidity. The correspond- aOfS 

ing curves are shown in 
Fig. 50, and it appears that '-'a01ol--++----+-~~-t----c:-_\~"':__+-____\ 
the maximum efficiency ~ 
has fallen 1_1/2 per cent 1l 
which is quite consistent :tao051-1--+---+----1----"'-'I~-~-----\ 
with the drop of 7 per 
cent shown in Fig. 49 when 
the solidity was doubled. o at ag 003 

Fig. 50. 

TABLE 17. Propeller of 20 Per Cent Increased Solidity. 

First Propeller (a = 0.086) Second Propeller (a = 0.103) 

}. Tc , Qc I T A I Tc I Qc I I I 

0.100 0.0114 0.00179 2.28 0.092 I 0.0137 0.00215 
0.125 0.0101 0.00174 1.29 0.119 0.0121 0.00209 
0.150 0.0085 0.00163 0.755 0.145 0.0102 0.00196 
0.175 0.0066 0.00145 0.430 0.172 0.0079 0.00174 
0.200 0.0047 0.00120 0.235 

I 
0.198 0.0056 0.00144 

0.225 0.0025 0.00083 0.099 0.224 0.0030 0.00100 

7. Effective Aspect Ratio of the Blades. In the discussion of the 
primitive blade element theory and the subsequent inflow theories in 
Chapter V, it was pointed out that one of the difficulties of the analysis 
was the uncertainty of the aspect ratio which should be assigned to the 
propeller blades in order to define their aerodynamic characteristics. 
This uncertainty can be resolved by examining the problem in the light 
of the vortex theory, and, by means of some suitable approximations, 
Pistolesi 1 has obtained a simple expression for the appropriate aspect 
ratio. 

The system of velocities relative to the blade element of a propeller 
can be represented suitably as in Fig.51. Here Wo is the undisturbed 

1 Vortrage aus dem Gebiete der Hydro- und Aerodynamik, Innsbruck, 1922. 
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velocity far in front of the propeller, W is the velocity experienced by 
the blade element, and WI is the velocity in the ultimate wake. The 
effective velocity W is derived from the original velocity Wo by the 
addition of the induced velocity w, and this induced velocity, being 

Fig. 51. 

due to the reaction of the resultant 
force on the blade element, will be 
in the same direction as this force. 

Consider now an ideal frictionless 
propeller. The force on the blade ele­
ment, extending a distance dr along 
the blade, is then simply the lift dL 

at right angles to the velocity Wand appropriate to the angle of inci­
dence IX, which is the angle between the chord of the airfoil section 
and the direction of the velocity W; and the induced velocity w is at 
right angles to the velocity W. The element of thrust contributed by 
the blade elements of the B blades of the propeller is 

dT 1 
-iir = 2: B c e W2 C L cos rp 

and the momentum equation for the thrust is 
dT 
dr = 4 :n; r e (V + w cos rp) w cos rp 

= 4:n; e Q r2 w sin rp 

Hence 
w Be WCL 
W 8 n Q r 2 tan 'P 

and, since the rotational interference is always small, it is legitimatc 
to replace Q r by W cos rp approximately in this equation. On this basis 

w BeCL 
W 8 n r sin 'P 

(7.1) 

If the problem is considered on the lines of the primitive blade 
element theory, the blade element is assumed to be in the stream Wo, 
whose velocity is sensibly equal to the velocity W if the induced velo­
city w is small, and the angle of incidence is taken to be 

w 
lXo = IX + W (7.2) 

Now an airfoil of aspect ratio A, giving the same lift coefficient CL as 
an airfoil of infinite span, requires a larger angle of incidence, determined 

CL 
by the equation I IXo = IX + nA (7.3) 

and oli comparing the last two equations, the effective aspect ratio of 
the blade element is obtained as 

A = CL_W 
n w 

1 See Division E I (12.5). 
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Substituting from (7.1) for the induced velocity w this aspect ratio 

becomes A = ~r8inp 
Be 

(7.4) 

This formula represents the aspect ratio which ought to be used in 
the primitive blade element theory to define the appropriate airfoil 
characteristics, and it is evident at once that this aspect ratio varies 
both with the position of the element along the blade and with the 
state of operation of the propeller. To illustrate these variations, consider 
a propeller with constant chord along the blade, and assume small 
interference velocities so that the angle f{! may be determined approxi-

mately by the equation tan f{! = £r 
Then A = ~_ r ___ V - -

nO'o R VV2 + !J2r2 
(7.5) 

where ao is the solidity of the propeller defined by the equation 
Be 

ao = nR 

The form of (7.5) shows that the effective aspect ratio A is zero at the 
boss of the propeller and increases along the blade. The value at the 

tip of the blade is A - _8_ Jc (7.6) 
o - n 0'0 VI + Jc2 

where, as usual, A denotes the value of VjQ R. Numerical values of Ao 
are given in Table 18 for two values of the solidity, corresponding 
respectively to ordinary propellers with two and four blades, and it is 
evident that the assumption of an aspect ratio 
depending only on the shape of the blades 
would fail to represent correctly the behavior 
of the propeller. According to the conceptions 
ofthe primitive blade element theory, the appro­
priate aspect ratio would be Ric, or Bin ao. 
The aspect ratio, corresponding to the nume­

TABLE 18. 
Effective Aspect Ratio. 

Jc = 0.2 I 0.3 0.4 

O'u = 0.08 6.2 II 9.2I U .8 
0.16 3.1 4.6 5.9 

rical values of Table 18, would therefore be approximately 8 according 
to the primitive blade element theory, and this value is correct for 
one state of operation of the propeller with two blades, but is always 
too high for the propeller with four blades, and the primitive blade ele­
ment theory would therefore overestimate the efficiency of the propeller. 

CHAPTER VII 

PROPELLERS OF IDGHEST EFFICIENCY 

1. Minimum Loss of Energy. The analysis of the preceding chapter 
was directed mainly to the development of a method of calculatmg 
the characteristics of a given propeller; but another problem of great 
interest is the determination of the design of propeller which will give 



252 L VII. PROPELLERS OF HIGHEST EFFICIENCY 

the highest efficiency. The object of a propeller is to convert the power P 
or torque Q of the engine into an axial thrust T. If Q is the angular 
velocity of the propeller and V is its forward speed, the power absorbed 
is Q Q and the useful work is V T, and hence the efficiency of pro-

VT 
pulsion 'Y} is 'Y} = -Ii Q (1.1) 

This efficiency depends mainly on the power absorbed, on the speed 
of advance, and on the diameter of the propeller, but other factors 
which modify the efficiency are the distribution of thrust along the 
blades of the propeller, the number of the blades, and the profile drag 
of the blade elements. Approximate formulae for the efficiency of 
a propeller have been developed in Chapter IV on the basis of the general 

. ~ 
Fig. 52. 

momentum theory, but it is now necessary 
to examine, in the light of the vortex theory, 
the conditions which will lead to the highest 
efficiency of a propeller of given diameter, 
absorbing the power P at the forward speed V . 
For simplicity this problem will be considered 
first for an ideal frictionless propeller, and the 

influence of the profile drag will then be introduced as a correction to 
the analysis. The solution of this problem for a frictionless propeller 
has been obtained by A. Betz first for a lightly loaded propeller! of 
small thrust, and then more generally for any propeller 2. 

Consider the blade element at a distance?: from the axis of rotation. 
This element has the motion composed of the axial velocity V and of 
the tangential velocity Q r, and experiences a resultant force dF. 
Neglecting the profile drag of the blade section and the induced velocities 
associated with the system of trailing vortices, the force dF would be 
normal to the direction of motion of the element and there would be 
no less of energy. Also in terms of the circulation K around the blade 
section, the elements of thrust and torque would be 

dT = eKQrdr} 
(1.2) 

dQ = eK Vrdr 

The induced velocities, which actually occur, cause a change in direction 
of the flow relative to the blade element, and, exactly as with an airfoil, 
cause an induced drag and a corresponding loss of energy. This loss 
of energy can be calculated from the circulation around the blade element 
and the appropriate induced velocities, or alternatively it can be cal­
culated from the energy communicated to the slipstream of the propeller, 

1 Schraubenpropeller mit geringstem Energieverlust. Gottinger Nachr. 1919, 
p.193. 

2 Handbuch der Physik, Vol. 7, p.256, 1927. 
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and the optimum conditions which lead to the minimum loss of energy 
can be derived most conveniently by considering the conditions in this 
ultimate wake. 

In order to determine the optimum condition, consider the effect 
of increasing the circulation around the blade element at the radius r by 
a small amount ilK. This increase of circulation, produced by an increase 
of chord or blade angle, will modify the force experienced by the blade 
element itself and may also react on the other parts of the propeller, 
resulting in an increase of thrust Il T and of torque Il Q. Thus the 
useful work is increased by V Il T and the power absorbed by Q Il Q, 
and it is convenient. to denote the ratio of these increments by k, or 

VllT k=---­
QllQ (1.3) 

Now assume that the increment of circulation ilK is chosen to give 
a definite value to the increment of power Q Il Q. If then the ratio k varies 
with the radius r at which the circulation is added, it is possible to keep 
the power constant and to increase the efficiency of the propeller by 
increasing the circulation around an element where k is large, and by 
reducing the circulation around an element where k is small. Thus the 
condition for the optimum distribution of circulation along the blade 
is that the ratio k shall have a constant value along the blade. 

The calculation of the ratio k is simplified by use of Munk's dis­
placement theorem 1, according to which it is legitimate to assume that 
the small increment of circulation is added in the ultimate wake instead 
of at the propeller disc. This theorem depends on the fact that the 
thrust and energy loss of a propeller can be calculated from the flow in 
the ultimate wake· and are not modified if the elements of the blade 
are moved backward along the trailing vortices without change of 
circulation. In fact a blade element with circulation K extending 
a distance dr along the blade gives rise to two trailing vortices of 
strength K, and the whole vortex system of the slipstream can be built 
up by superimposing these elementary vortex systems for all the blade 
elements. Clearly the ultimate slipstream will not be changed if any 
one of these blade elements is moved backward along the lines traced 
by its trailing vortices, provided the circulation around this blade element 
and all the other elements of the propeller remains unaltered. 

By virtue of this displacement theorem, the increment of circula­
tion ilK is assumed to be added at a point of the wake far behind the 
propeller. The propeller then experiences no interference from this 
element of circulation, and the increments of thrust and torque are due 
wholly to the element of circulation ilK, situated in the velocity field 

1 Isoperimetrische Aufgaben aus der Theorie des Fluges. Gottingen, Disser­
tation, 1919. See also Vol. II. Division E, p. 136. 
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of the slipstream of the propeller. Now assume that the increment 
of circulation is added on an element of length dr at the radius r in the 
wake, where the induced velocities due to the propeller are v and w r. 
The element moves with the velocities V and [2 r of the propeller, 
and hence the velocity of the element relative to the fluid has the 
components (V + v) and ([2 - w) r, which are represented by N' A' 
and ON' in Fig. 53. Also the motion of the element is represented by 
OA and the motion relative to the fluid by OA', while A' A represents 
the resultant induced velocity experienced by the element. 

The increments of thrust and torque due to the element in this 

velocity field are ~ T = e ~ K ([2 - w) r dr 

and ~ Q = e ~ K (V + v) r dr 

and hence 

or 

VAT V(.Q-w) k = -~- = -- - ------
.QAQ (V+v).Q 

V+v V V+v' 
(.Q~w)r k.Qr Dr (1.4) 

where (V + v') is the velocity represented 
by N B in Fig. 53. The optimum condition 
demands that k shall have a constant value 
at all radii. Thus v' is constant and since the 

j/ line 0 A forms a true screw surface of constant 
H' IV pitch, so also will the line 0 B. If there were 

A--;;,-L-;--~-"--w-r-' no induced velocities, the trailing vortices 
Fig. 53. would lie on the screw surface formed by OA, 

and under the optimum conditions the trailing 
vortices pass over to the screw surface formed by a B. The optimum 
condition for a propeller can therefore be represented by the statement 
that the trailing vortices in the ultimate wake lie on a screw surface 
of constant pitch. 

The induced velocity w is not completely determined by the optimum 
condition, which requires only that the point A' shall lie on the line 0 B. 
If wn is the component of w normal to 0 B, then the optimum condition 
determines the value of wn as 

, l-k 
Wn = V C08rp = --fc V C08rp (1.5) 

This condition is satisfied if the vortex sheets represented by 0 B in 
Fig. 53 form a rigid screw surface of constant pitch, which moves with 
the velocity v' along the axis of the propeller. A propeller with given 
thrust or power has minimum loss of energy and highest efficiency if 
the vortex sheets, after an initial limited deformation, move axially 
backward as rigid screw surfaces. This is Betz's general condition for 
a propellcr of highest efficiency. 
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2. Lightly Loaded Propellers. The optimum condition determined by 
Betz establishes a relationship which must be satisfied by the trailing 
vortices in the ultimate wake far behind a propeller, but its application 
to the propeller itself is by no means simple. The condition can, however, 
be reduced to a simple form if the propeller is assumed to have a large 
number of blades and a small thrust. If the thrust is small, the con­
traction of the slipstream behind the propeller can be neglected, the 
trailing vortices from any element lie on the surface of a circular cylinder, 
and the system of trailing vortices can be represented as in Fig. 54. 
These vortex sheets are assumed to be 
rigid surfaces, moving backwards with the 
uniform velocity v'. The motion imparted 
to the air between these surfaces will have 
axial and rotational components, and in 
the outer parts of the slipstream there 
will also be a radial component owing to 
the tendency of the air to flow around 

Fig. 54. 

the edges of the surfaces. If, however, the propeller has a very large 
number of blades, the surfaces will be close together and the radial 
component of the flow can be neglected. 

The motion imparted to the air will be normal to the vortex sheets, 
and since the inclination of the surface at the radius r is given by the 

equation 
V 

tancp = -Dr 

this normal velocity is v' coscp, and the axial and rotational components 
of the induced velocity are respectively 

_ I 2 _ I Q2r2 
Wa - V cos cp - V V2 + Q2f.2 (2.1) 

and Wt = v' sin cp C08 cp = V' V2 :-Q~ r2 (2.2) 

Also the circulation K arolmd each of the B blades of the propeller is 

obtained as K = 2 n r Wi = (2 n v' ) V Q r2 (2.3) 
B B V2+Q2 r2 

The velocities wa and Wt are the induced velocities in the ultimate 
wake far behind the propeller and, on the assumption of zero contraction 
of the slipstream, the interference velocities experienced by the blades 
of the propeller will be half these induced velocities. Hence, in the 

usual notation, 
Wa v' Q2r2 

a = 2V = 2 V V2 +-.Q2 rZ-

and , Wt v' V2 
a = 2 Qr = 2V V2 +.Q21.2 

The efficiency of the element at radius r is 
I-a.' 

rJ = i+-a 

(2.4) 

(2.5) 
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and on substituting the expressions for the interference factors a and a', 
this efficiency becomes approximately 

I 1 
17 = I -L a + a' =---v' (2.6) 

I 1+~n7 

Thus the efficiency of the element is constant along the blade, and the 
optimum condition for a lightly loaded propeller with a large number 
of blades reduces simply to the condition that the efficiency is constant 
along the blade. 

Writing 
Dr 

x=V (2.7) 

the distribution of circulation along the blade is obtained from (2.3) 

{ 0 

a 8 

/ 
/ 

,,/ 

2 / 

) 
Q 

o 

and 

Also 

/" ~ 

9 

-Jtl-
Fig. 55. 

in the form 
BKD (2.8) 

2 n Vv' 1 + x2 

which is shown graphically in Fig. 55. 
This optimum distribution of circulation 
can also be derived 1 directly from the 
expression for the elements of thrust 
and torque in terms of the circulation 
around the blade element. Thus if u is 
the axial velocity relative to the blade 
element and w is the angular velocity 

5 of the air behind the propeller disc, the 
expressions for the elements of thrust 
and torque are respectively 

~~ = B K e ( Q - ~) r 

:~ = BKe ur 

(2.9) 

(2.10) 

BK=2nwr2 (2.11) 

and an alternative expression for the thrust is obtained from a consider­
ation of the axial momentum as 

dT 
dr = 4nreu(u- V) (2.12) 

By equating the two expressions for the element of thrust, it appears 
that the axial and rotational velocities are related by the equation 

I' w' 
u (u- V) = 2 (Q -2) wr2 (2.13) 

1 HELMBOLD, H. B., Zur Aerodynamik der Treibschraube. Zeitschr. f. Flug­
technik u. Motor!. la, 150, 1924. 

KAWADA, S., Theory of Airscrews. Tokyo Imperial University, Aeronautical 
Research Institute, Report No. 14, 1926. 
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and finally the loss of energy due to the action of the blade elements 
under consideration is 

dE=QdQ_V dT 
dr dr dr 

= BKer[Q(U- V) + ; V] (2.14) 

Passing now to the approximation of a lightly loaded propeller, 
(2.13) may be taken to be 

1 
V (u- V) = 2Qwr2 

BKD 
or, by virtue of (2.11), ~t = V + 4n V (2.15) 

and (2.9) for the element of thrust becomes approximately 
dT dr =BKeQr (2.16) 

Also, by virtue of (2.11) and (2.15), equation (2.14) for the loss of 

energy becomes dE =BK [BKD2 +BKV]r 
dr e 4nV 4nr2 

= B2K2eD[Dr +~] 
4n V Dr (2.17) 

BKD 
y = 2nV2 Writing (2.18) 

these last two expressions become 

V dT 2ne V4 I 11i"= D yx 
dE 2neV4 l+x2 
I1i" = D y22X 

(2.19) 

The optimum condition is now derived from the condition that the 
ratio of the increments of V T and E, due to an arbitrary small increase 
of y at any radius, must be independent of the radial coordinate x. 
The condition is ther~fore 

1 + x2 
y--=Ax 

x 

where A is a constant, and this condition reduces immediately to 
BKD _ -A X2 
2 n V2 - Y - 1 + x2 (2.20) 

which is identical with the previous result (2.8) if v' is replaced by A V. 
These results may be compared with the earlier analysis of Chapter III 

which was based on the general momentum theory of a propeller. 
The optimum condition derived from the earlier analysis is given by 

III (4.8) and is 
x2(1-1]) + l+x21] = 3-21]0 

l+x21](2-1]} 21]-I+x21]2 1]0(2-1]0) (2.21) 
where 'fJ. is the efficiency o~ the blade element at the radius r or x riD 
and 'fJo is the limit towards which 'fJ tends as x tends to infinity. In 

Aerodynamio Theory IV 17 
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III 5 this exact condition was replaced by the approximation of constant 
efficiency along the blade, which is derived from the exact condition (2.21) 
when the efficiency differs very little from unity, and the subsequent 
analysis on the basis of this approximation determines the characteristics 
of a lightly loaded propeller with the optimum distribution of thrust 
and torque along the blade. 

It is interesting to examine the exact condition (2.21) and to determine 
the variation of efficiency along the blade. At the boss (x = 0) the 
efficiency is given by the equation 

2'Y) - 1 = _1]0 (2 -:- 1)oL 
3-21]0 

or (2.22) 

which leads to the numerical values of Table 19. There is therefore 
a noticeable increase of efficiency towards the root of the blade, but 

TABLE 19. 

1)0 = 0.900 0.800 0.700 0.600 . i I I 
.1] (x = 0) = 0.91310.84310.784 0.733 

this increase is generally con­
fined to a small fraction of the 
blade. Table 20 gives the nume­
rical relationship between x and 
'Y) when the limiting efficiency 'Y)o 

has the value 0.80. The efficiency is 0.843 at the boss, but has fallen 
to 0.81 when x = 2.2. If a propeller is operating at the speed ratio A, 
the tip of the blade is represented by the coordinate Ij). and, except 
for very high pitch propellers, this value is at least 5. Thus the im­
portant variation of efficiency is confined to a small part of the blade, 
and the approximation of assuming the optimum condition to be re­
presented by constant efficiency along the blade is satisfactory unless 
the propeller has a very high pitch or a very low efficiency due to a 
heavy disc loading. 

~ 
IV 

u 
.rp 

TABLE 20. 
Variation of Efficiency Along the Blade. 

1]0 = 0.80 

Fig. ;')6. 

./'}'= I 0.843 
X= 0 

0.84 II 0.83 II 0.82 II 0.81 II 0.805 
0.32 0.79 l.30 2.21 3.38 

£b (n-jw)r 

3. The Effect of Profile Drag. The preceding analysis has been based 
on the assumption of a frictionless propeller. The introduction of the 
profile drag, assuming the same distribution of circulation along the 
blades, will reduce the thrust and increase the torque of the propeller, 
and will thus lead to a lower propulsive efficiency; but a more detailed 
analysis shows that the optimum distribution of circulation along the 
blade is also modified by the existence of the profile drag. If W is the 
effective velocity of the typical blade element relative to the. fluid; 
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if G is its chord, and if en is its drag coefficient, then the loss of energy 
due to the profile drag is 

dEn _ I B wac ----;rr - "2 G e n (3.1) 

and the thrust of the element can be expressed in the usual manner as 

~~ = ! BGe W2(CLGOSCp-Cnsincp) (3.2) 

As a first approximation the effect of the profile drag on the thrust 
may be ignored, the angle cp may be assumed to be small, and the 
velocity W may be assumed to be equal to Q r. Then, if e denotes the 
drag-lift ratio of the blade section, the loss of energy due to the profile 
drag may be expressed approximately by the equation 

dEn = eQr dT (3.3) 
dr dr 

Returning now to (2.16) and (2.17), the expression for the thrust 
in terms of the circulation is still 

dT 
Tr=BKe Qr 

but the total loss of energy becomes 

dE = B2K2eQ (Qr +~) + eBK Q2 r2 
dr 4n V Qr e 

or, in terms of the parameters x and y, 

V dT _ 2neV4 
Tr- Q yx 

dE _ 2 n e V4 [ 2 1 + x2 + 2] rf:r- Q Y 2X eyx I (3.4) 

The optimum (listribution of circulation along the blade is now 
derived from the condition that the ratio of the increments of V T and E, 
due to an arbitrary small increase of y at any radius, must be independent 
of the radial coordinate x. The, condition is therefore 

1 + x~ 
y--+ex2 =Ax 

x , 

where A is a constant, and this condition reduces immediately to 
BKQ ' (A-ex)x2 

2 n V2 = Y = 1 + x2 {3.5) 

Thus the effect of the profile drag is to replace the constant A by 
(A - e x) in the formula for the circulation previously obtained for 
a frictionless propeller. Since e is usually small, the variation of circulation 
along the blade is not changed near the root of the blade, but the 
circulation now reaches a maximum value as x increases and then 
falls to zero when x attains the value A/e. The tip of the propeller, 
however, is usually reached at a lower value of ,x than that at which 

17* 
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the circulation falls to zero. A comparison of the circulation with and 
without profile drag is shown in Table 21 and Fig. 57. 

TABLE 21. A = 0.5, e = 0.05. 

x 0.5 I 1 I 2 I 4 I 6 I 8 I 10 

Ax2 
0.100 0.250 \ 0.400 0.471 \ 0.487 0.4921 0.495 

1 + x2 

(A-e x) x2 

0.095 0.2251 0.320 0.284\ 0.195 0.099\ 0 1 + x2 

The efficiency of the plade element is obtained from the equation 
dE _ 1-1) VdT 
dT--~- dT 

and, by virtue of (3.4), 
1-1) l+x2 
-1)- = Y 2 x2- + eX 

Then, substituting from (3.5), 

or finally 

3 

1 -1) = ~ (A - e x) + e x 
1) 2 

1 
=2(A + eX) 

1 
'Y} = -----c1;-----

1 + 2(A + e x) 

(3.6) 

'I G 8 
.q;:-

Fig. 57. 

which is identical with the result ob­
tained by Th. Bienen 1 by a some­
what different method of analysis. To 
the order of approximation adopted, 

aeo 
1J 

0.75 

a70 

~ 
-......... 

2 

~ 
........... 

1/ G 
z=-'F 
Fig. 58. 

....... 
'-...... 

8 fO 

the efficiency is constant along the blade when the profile drag is 
neglected, but decreases outwards along the blade when this correction 
is introduced. Table 22 and Fig. 58 illustrate this effect by a numerical 

1 Die giinstigste Schubverteilung ffir die Luftschraube bei Beriicksichtigung 
des Profilwiderstandes. Zeitschr. f. Flugtechnik u. Motor!. 16, 209, 1925. 
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example. It may perhaps seem anomalous that the efficiency should 
have fallen only to 0.667 at the point x= 10 where the circulation is 
zero, but it must be remembered that the analysis has been developed 
on the assumption of a constant drag lift ratio B. Thus the drag and 

TABLE 22. A = 0.5, e = 0.05. 

X= I 0 I 0.5 I 1 2 I 4 I 6 I 8 I 10 

1]= 10.800 1 0.7921 0.7841 0.7691 0.741 I 0.7141 0.69010.667 

lift vanish simultaneously with the circulation, and at this point the 
thrust and torque are both zero. The variation of efficiency along the 
propeller blade due to the profile drag is most important at low rates 
of advance when x extends to a large value, and the effect increases 
with the efficiency of the propeller. 

4. The Effect of Number of Blades. According to Betz's analysis 
the optimum condition for a propeller is obtained if the trailing vortices 
in the ultimate wake lie on a regular screw surface, and the appropriate 
velocity system of the slipstream is obtained if this vortex sheet is assumed 
to be a rigid membrane which moves backwards with a constant axial 
velocity v'. In the interior of the slipstream the velocity imparted to 
the air by the successive sheets of this membrane, as shown in Fig. 54, 
will have important axial and rotational components but the radial 
component will be negligibly small. Near the boundary of the slipstream, 
however, the air will tend to flow around the edges of the vortex sheets 
and will acquire an important radial velocity also. An approximate 
method of estimating the effect of this radial flow has been given by 
L. Prandtll. 

Replace the system of vortex sheets by a series of parallel lines at 
a regular gap 8 and extending indefinitely to the left as in Fig. 59. 
The gap 8 represents the normal distance, at the boundary of the 
slipstream, between the successive vortex sheets, and hence 

2nR • 2nR A 
8 = ---:s- 8tnfPl = ---:s- VI + 042 

(4.1) 

where B is the number of the blades of the propeller and fPl is the angle 
of the screw surface at the boundary of the slipstream, defined by the 

V 
equation tan fPl = [J R = A 

The flow around the edges of the vortex sheets of the slipstream may 
then be estimated approximately from the flow around the edges of this 
system of straight lines, when the whole system moves downward at 
right angles to the lines with the uniform velocity Vi. 

1 Appendix to Betz's paper, Gottinger Nachr., p. 193, 1919. 
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In an upward stream of velocity Vi the velocity field can be expressed 
in terms of the complex coordinate Z as 

• v'enZ/s 
u - ~v = --::==== VI - e2nZ/s 

(4.2) 

This is a suitable form according to the general theory of flow in terms 
of the complex variable, it has the correct periodicity, and it gives zero 
normal velocity on the surface of the lines. The general type of flow 
is as shown in Fig. 60. Between the lines, far from the edges, the fluid 
is at rest, but near the edges there is a small upward flow. 

IY 

~ 
A I Vi 
f 
W 

Ip, IAr I 'pI IA x I 1---I' 
I 

Fig. 59. Fig. 60. 

To obtain the mean upward flow on the line pi PI (Fig. 59), let 
</> (P Q) denote the increase of the velocity potential from the point P 
to any other point Q. Then the integral of the vertical velocity v 
from P' to PI is 

= </> (PI A) + </> (AAI) + </> (AI PI) 

But </> (AI PI) is equal to </> (A P), and </> (A AI) is equal to Vi s. Hence 
s 

J vdy = Vi 8 -</> (P A) -</> (A P') 
o 

= v' s-2</> (PA) 

since the horizontal velocities at corresponding points of P A and pi A 
are equal in magnitude and opposite in sign. Also, if a denotes the 

length of P A, 

a 

([> (PA) = VI! en x/sd x 

VI - e2nx/s 

-a 

This integral can be evaluated by substituting cos (j for en xis, and 
v's becomes ([> (PA) = - arc C08 e- na/s 

:n; 

Then finally the mean vertical velocity on the line pi PI is 
s 

! J vd y = v' [1- ! arccose- na/s] 

o 

(4.3) 
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Now superimpose a downward velocity v' on the whole system and 
thus obtain the flow due to the motion of the system of lines. The mean 
downward velocity on the line P' PI is then 

15 = ~v' arc cos e- "als (4.4) 
n 

In this formula a denotes the distance of the section under consideration 
from the edge of the lines, and must be replaced by (R - r) in applying 
the result to the system of vortex sheets of the slipstream. Write 
therefore, in accordance with (4.1), 

and 

t_na_BR-r 
--8--2~R~ 

2 F = -arc cos e- f 
n 

(4.5) 

(4.6) 

If the lines of Fig. 59 extended indefinitely in both directions, the 
whole of the fluid would be carried downward with the velocity v' of 

0 
the system, but owing to the flow 
around the edges the actual mean ; 
velocity on .the line P' PI is less 
than v'. In fact F represents are. a8 

duction factor and can be inter­
preted as expressing the fraction QO 

of the velocity v' which is imparted / 
'/ 

-----/'" 

/" 

IIpprorml1~ Corcl!lm iclol' \ 

to the air of the section P' Pl' In Q¥ 

the corresponding propeller analogy, 
therefore, F is a reduction factor Q3 

which must be applied to the mo­
mentum equation for the flow at 0 

radius r, since it represents the 
fact that only a fraction F of the 

a5 to 1.5 20 gsf 3.0 
Fig. 61. 

air between the successive vortex sheets of the slipstream receives the 
full effect of the motion of these sheets. Applying this correction to 
the earlier analysis of 2, the optimum distribution of circulation along 

BK Q x2 F 
2nVv' 1 + x 2 

the blades becomes 

where F is given by (4.6) and t may be eX:(lressed as 

f = B (1- A x)"]!T+J.2 
2,1 

(4.7) 

(4.8) 

The relationship between F TABLE 23. Reduction Factor F. 

and f is given in Table 23 and F I t F f F f 
Fig. 61, and some examples of 
the optimum distribution of 0.10 1 0.012 0.60 I 0.531 0.92 2.08 

circulation along the blade, as 0.20 0.050 0.70 0.790 0.94 2.36 
0.30 I 0.115 0.80 11.174 0.96 2.77 

modified by the factor F, l),re 0.40 0.2121 0.85 1.455 0.98 3.46 
shown in Fig. 62. 0.50 0.346 0.90 1.855 0.99 4.15 
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Owing to the radial flow near the boundary of the slipstream there 
is a drop of circulation and thrust corresponding to any chosen value 
of v' of the velocity of the system of vortex sheets, and hence the 
efficiency of the propeller, which depends only on the value of v', is 
associated with a lower value of the thrust. This result may be represented 

to in another way by replacing the 

0.8 

/ 

j 
lL 

0.2 

o 

~ 
~ 

I 
V 

2 3 
!l1' 
T 

Fig. 62. 

'" 
8=00 

~¥ 

l\\ 
~ 

5 

propeller with a finite number B 
of blades and the thrust T by 
an equivalent propeller with an 
infinite number of blades and with 
the same thrust but with a smaller 
radius Re. In order to calculate 
this effective radius, consider again 
the system of parallel lines shown 
in Fig. 59. If the lines were in­
definitely close together, the fluid 
between the lines would be carried 
downward with the velocity v' of 
the lines and the fluid outside the 
lines would be at rest. Actually 
some fluid flows upward around 

the edges of the lines and, if v is the velocity of this upward flow on 
the axis of x, the effective length of the lines is reduced by a, where 

00 

v' a = J v d x 
o 

But from the flow function (4.2), on which a downward velocity v' must 
be imposed 

v 

and hence 

a =/ [ e"xls .. -1]dX 
Ve2nxls_l 

o 

To evaluate this integral, put 

and then 
en xis = cosh () 

00 

na J -8- = (1- tanh ()) d () 
o 

. 00 

= [() - log cosh ()] 
o 
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Now at the lower limit this expression is zero, and when () is large 
1 

log cosh () = lo,g 2 eO 

and hence 

= ()~log2 
8 

a = -log 2 = 0.2207 s 
n 

(4.9) 

Applying this result to the analogous problem of the propeller, the 

effective radius is Re = R - 0.2207 s 

and, substituting for s from (4.1), 

He = 1_~86 A 
B B VI + ,12 

Numerical values of this ratio are given in Table 24. 
Under ordinary operating conditions the ratio of 
the effective radius to the actual radius is of the 
order of 0.85 for a propeller with two blades 
and 0.93 for a propeller with four blades. The 
ratio decreases as the speed ratio of the propeller 
increases, and thus the tip losses of a propeller 
increase with its pitch-diameter ratio. 

(4.10) 

TABLE 24. 
Effective Radius. 
Values of Be/B. 

0.2 
0.3 
0.4 

0.864 
0.801 
0.743 

0.932 
0.900 
0.871 

Prandtl's method of estimating the tip losses of a propeller due to 
the finite number of the blades by the analogy of a system of parallel 
lines is approximate only, and a more accurate analysis of the problem 

3 'I 5 G 7 8 
01' 
T 

Fig. 63. 

has been developed by S. Goldstein 1 by the use of Bessel functions. 
Goldstein's solution is a rigorous representation of Betz's optimum 
condition but, since it ignores the contraction of the slipstream, refers 
only to lightly loaded propellers. The analysis determines the circulation 
along the blade as a function of the radial coordinate x and the speed 

1 On the Vortex Theory of Screw Propellers. Roy. Soc. Proc. (A) 123,440,1929. 
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ratio A for propellers with two or four blades, but a complete reconsider­
ation of the analysis is required when the number of blades is changed. 

A comparison of the distribution of circulation for a propeller with 
two blades as given by Goldstein's detailed analysis and by Prandtl's 
approximate formula is shown in Fig. 63, where the full lines represent 
the exact and the broken lines the approximate solution. The agreement 
is satisfactory for low speed ratios (Q rjV large), but there is an increasing 
divergence as the speed ratio increases. It is remarkable that this 
discrepancy is not confined to the outer parts of the propeller blade, 
bu t that there is a consistent difference also near the root of the blade, 

f.O..---"""'T'"--.,----,---,-----, 

3 5 

~ 
Fig. 64. 

where the approximate formula 
gives no correction to the curve 
for an infinite number of blades. 

Fig. 64 shows a similar com­
parison for propellers with two and 
four blades and for a single value 
of the speed ratio. The difference 
between the exact and approxi­
mate solutions decreases rapidly 
as the number of blades increases, 
and in the light of this comparison 
it would appear that Prandtl's 
approximate formula is a suffi­
ciently accurate representation of 
the tip losses of a propeller with 
four blades operating at an ordinary 
rate of advance, but that it is less 

reliable for propellers with two blades and for high rates of advance. 
The approximate formula does, however, give an indication of the tip 
losses which can be easily applied to any propeller, whereas Goldstein's 
exact analysis is too complicated for general use. 

o. Applications of Prandtl's Formula. The object of the preceding 
analysis has been to determine the distribution of the circulation along 
the blade of a propeller which will lead to the minimum loss of energy 
or to the highest efficiency for a given thrust and for given conditions 
of operation of the propeller. In the course of this analysis a formula 
has been obtained which represents approximately the losses which 
arise due to the finite number of the propeller blades, and it is now 
necessary to consider the application of this result to the propeller 
theory which has been developed previously on the assumption of a large 
number of blades. . 

The development of the momentum theory in Chapters II and III 
led to expressions for the efficiency of a propeller in terms of the power 
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absorbed, of the disc area, and of the operating conditions; and the 
modification of this analysis to represent the effect of the finite number 
of the propeller blades is simply to replace the actual radius R of the 
propeller by the effective radius Re which is defined by the equation 

.. Be _ 1-1.386 __ ~).~ (5.1) 
B - B VI + }.2 

In order to illustrate the magnitude of this correction, consider the ideal 
efficiency of a propeller as determined by the axial momentum theory. 
According to II (3.11) this ideal efficiency rll is determined by the equation 

1-171 p 
-1fi- = 2 n R2e va (5.2) 

and an ideal efficiency of 0.90 is obtained if P is equal to 0.274 n R2 e V3. 
This value refers to a propeller with an infinite number of blades, and 
the corresponding ideal efficiency of a propeller with B blades must 
be derived from the equation 

I 7)r 7)1 = 0.137 (:J2 

Assuming a speed ratio of 0.2, i.e. a forward speed V of one fifth of the 

. d Q R (5 1)' Re 1 0.272 tIP spee ,. gIves R = - -B-

and the relationship between the ideal efficiency and the number of 
blades is:-

B= 2 
7) = 0.877 

4 
0.889 

00 

0.900 

Thus the efficiency drops 1 per cent for a propeller with four blades 
and 2_1/4 per cent for a propeller with two blades. This drop of efficiency 
would be doubled if the speed ratio were 0.4, and it also increases as the 
ideal efficiency decreases. Except for high speed ratios, however, the 
correction due to the finite number of the blades is always small. 

Another application of the formula for the losses at the blade tips 
is to provide an approximate correction to the system of equations 
summarized in VI 3 for calculating the characteristics of any given 
propeller. The physical fact represented by the tip correction is virtually 
that the maximum increase of axial velocity, (u1 -V) or 2 a V, in the 
slipstream occurs only on the vortex sheets and that the average increase 
of axial velocity in the slipstream is only a fraction F of this velocity. 
Thus, to the order of approximation of the analysis, the corrected form 
of the axial momentum equation may be taken to be 

dT 
(J;;:- = 4nr e V2 (1 + a) aF (5.3) 

The factor F has been derived for a frictionless propeller with optimum 
distribution of circulation along the blade, but it may probably be used 
also with reasonable accuracy for any propeller, since the distribution 



268 L VII. PROPELLERS OF HIGHEST EFFICIENCY 

of circulation along the blade will not depart widely from the optimum 
distribution in general. Similarly also the angular momentum equation 
may be assumed to be 

~~ =4 nr3 eV.Q(I+a)a'F (5.4) 

The expressions for the elements of thrust and torque in terms of the 
aerodynamic forces on the blade sections remain unaltered, and the 
only modification to the system of equations summarized in VI 3 is 
that the axial and rotational interference factors a and a' must now 
be determined from the equations 

a' aCxF 1 
1 - a' = 4 sin <P cos <P 

a aCyF J 
1 + a = 4 sin2 <P 

The approximate formula for the factor F is 
2 F = -arc cos e-f 
n 

. B R-r 
where f-- 2 R sin <Pl 

(5.5) 

(5.6) 

and qJI is the value of the angle qJ at the blade tip. This form is not 
very convenient for use in the method of calculating the characteristics 
of a propeller which is developed in VI 4, since the calculations for the 
typical blade element proceed without a knowledge of the corresponding 
value of qJI at the tip of the blade. In general, however, it will be 
sufficiently accurate to modify the expression for f by writing r sin qJ in 
place of R sin Pl' With this modification the approximate expression 

for f becomes (5.7) 

The calculations then proceed exactly on the lines described in VI 4, 
and the effect of the tip correction is to reduce slightly the thrust and 
torque contributed by the elements near the tips of the blades. The 
effect is, however, quite small. Applied to the propeller whose characte­
ristics are calculated in VI 4, the change in the thrust distribution at the 
speed ratio .Il = 0.175 is given in Table 25. The difference due to the 
finite number of the blades would hardly be noticed in Fig. 44, but 

TABLE 25. Thrust Distribution (A = 0.175). 

r 0.304 0.500 0.700 0.833 0.950 
R 

dTc 
Ra:;:- (B = <Xl) 0.0034 0.0083 0.0112 0.0115 0.0097 

R dTc (B = 2) 
dr 0.0034 0.0082 0.0108 0.0109 0.0090 
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it represents a reduction of approximately 4 per cent in the thrust 
coefficient. There is a corresponding but smaller reduction in the torque 
coefficient, and hence a small drop in the efficiency of the propeller. 
The correction due to the tip losses increases with pitch-diameter ratio 
of the propeller, and in general may be neglected except for high pitch 
propellers with only two blades. 

A method of applying Goldstein's more accurate analysis to determine 
the values of the factor F has been proposed by C. N. H. Lock l using 
a series of curves for F instead of the equation (5.6). 

CHAPTER YIII 

BODY AND WING INTERFERENCE 

1. Propeller Characteristics. Hitherto the behavior of a propeller has 
been considered apart from the disturbing influence of any adjacent 
bodies, but in practice a propeller is always attached in front of or behind 
an airplane body or engine car. If the diameter of this body is small 
compared with that of the propeller, there will be no important 
disturbance of the flow and the behavior of the propeller will be sensibly 
in accordance with the theory developed in the preceding chapters. More 
generally, however, the diameter of the body is comparable with that 
of the propeller and there is an important mutual interference: the 
flow around the body modifies the conditions under which the propeller 
operates, and the flow generated by the propeller augments the drag 
of the body. This mutual interference may be complicated also by the 
proximity of the wings of the airplane, whose lift is modified by the 
slipstream of the propeller. 

The interference experienced by a ship's propeller was appreciated 
at an early date, and Rankine's original paper 2 contains an allowance 
for the disturbed conditions under which the propeller operates. Rankine 
also remarked that the change of pressure produced in the water by the 
action of the propeller is transmitted to some part of the ship's bottom 
and alters the resistance of the ship, and he gave a rather crude method 
of estimating this change of resistance. The problem of the mutual 
interference of a ship and its propeller differs very considerably from 
the analogous problem for the airplane. The ship's propeller is very small 
compared with the ship, and the thrust of the propeller is essentially 
equal to the drag of the ship. An airplane'S propeller on the other hand has 
a diameter comparable with and generally greater than that of the body 
or car to which it is attached, and the drag of the body is only a fraction 
of the total drag which must be overcome by the thrust of the propeller. 

1 Br. A.R.C. R. and M. 1377, 1930. 
2 Transactions Institute of Naval Architects, Yol. 6, p.13, 1865. 
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As a first step in the elucidation of the interference experienced 
by a propeller, consider the behavior of a propeller which is situated in 
the neighborhood of a large body and in a region where the velocity of 
the air relative to the body has been reduced from its original value 
V to a lower value V' by the interference of the body. If the region in 
which this lower velocity V' occurs is large compared with the size of 
the propeller, the behavior of the propeller will be sensibly the same as 
if it were situated in a uniform stream of this reduced velocity. Now, 
according to the simple momentum theory of Chapter II, the ideal 
efficiency 1h of a propeller is determined as a function of the speed V, 
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the power P, and the disc area S 
of the propeller by the equation 

p = I-1h 
2 S eva rJY 

(1.1) 

and this relationship is shown 
graphically in Fig. II. For the 
present purpose, however, it is 
more convenient to express this 
relationship in the alternative form 

'YJl = f (X) 
where 

(1.2) 

o 0.5 1.0 1.5 20 
I/~)~ 

8.0 
In a stream of reduced velocity V', 

Fig. 65. 
the ideal efficiency would be simply 

'YJ~ = t (X') 

where X' = V' --" =nX ( 2 S n )113 
p 

and V' =n V (1.3) 

This efficiency, however, represents the ratio of the useful work V'T 
to the power P, whereas, under the conditions assumed in the present 
discussion of body interference, the useful work done by the propeller 
is V T. Thus the efficiency of the propeller, operating in a region of 
reduced velocity, is apparently 

'YJa = -;,'YJ~ = ~ t (nX) (1.4) 

Tp.e ideal efficiency 'YJl increases with the speed coordinate X and hence, 
if n is less than unity, 'YJ~ will be less than 'YJl; but, since the decrease 
is less rapid than that of the speed, the apparent efficiency 'YJa will be 
greater than the free efficiency 'YJl. The relationship between the ideal 
efficiency 'YJl and the speed coordinate X is shown in Fig. 65, and two 
curves of apparent efficiency have been added, corresponding respectively 
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to an increase and to a decrease of speed of 25 per cent. These curves 
show in particular that it is possible to obtain an apparent efficiency 
greater than unity if the propeller operates in a region of reduced velocity. 
This seemingly paradoxical result is due to the fact that the reaction 
of the propeller on the body causes an increase of drag which has been 
ignored in this estimate of the behavior of the propeller. 

The increase of apparent efficiency of a propeller operating in a region 
of reduced velocity can be illustrated in another way by considering 
the characteristic curves of the propeller-thrust coefficient, torque 
coefficient, and efficiency lOO afB 

as functions of the ad- 1) 

vance-diameter ratio. In 
a free stream of velocity a90f--------I-~~-=o;;;t--+::;_o~_.(_-___j 

V these characteristics 
,. afll , 

\ 

ala 
~~ 

$! 

are represented by cur­
ves of the type shown by 
the full lines of Fig. 66. 
In a stream of reduced 
velocity V' or n V the 
thrust and torque coeffi­
cients are obtained by 
taking the corresponding 
values from these curves 
at the reduced value 

alo~ 
" 

of the advance-diameter 
ratio J' or n J, but a'l°o 
to obtain the apparent 
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efficiency it is necessary, in accordance with the argument developed 
in the previous paragraph, to increase the efficiency read from the 
curve at the abscissa nJ by the factor lin. This process may be expressed 
symbolically by the equations 

T a (J) = T (nJ) l 
Qa (J) = Q (nJ) 

'YJa (J) = ~ 'YJ (n J) 

(1.5) 

In Fig. 66 the broken lines show the result of this calculation for 
a reduced velocity of 0.9 V, and it will be noticed that the maximum 
efficiency has risen from 0.81 to 0.90 and occurs at a higher value of J. 
The comparison between the characteristics of the propeller in a free 
stream and in a local stream of reduced velocity has been made on the 
basis of the same advance-diameter ratio J, but another int~resting 
method of comparing the results is to consider the same conditions of 
flow through the propeller disc. On this basis of comparison the blade 
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elements of the propeller clearly experience the same forces, the propeller 
develops the same thrust and torque, but the advance-diameter ratio 
and the apparent efficiency of the propeller in the disturbed stream are 
higher by a factor lin than the corresponding values for the free propeller. 

A typical example of some experimental curves l obtained from 
a propeller in front of an airplane body is shown in Fig. 67 together 
with the corresponding curves for the free propeller, and an inspection 
of these curves shows that the general nature of the interference 
experienced by the propeller must be as 
of the type assumed in constructing 1J 
the curves of the previous Fig. 66. a7 
The shift of the curves in Fig. 67 
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suggests that the propeller was effectively operating in a region where 
the velocity was reduced some 4 per cent by the interference of the body. 
It would appear therefore that it is possible to represent the interference 
experienced by a propeller in the presence of a body by a reduction in 
the effective velocity of advance of the propeller, but owing to the 
proximity of the body this effective velocity will vary for different 
annular elements of the propeller and the assumption of a mean effective 
velocity experienced by the whole propeller can only be a first rough 
approximation to the real conditions. Moreover, a complete solution 
of the problem must include also an estimate of the reaction of the 
propeller on the body, since, as has been suggested already, the increased 
apparent efficiency of the propeller finds a counterpart in an increased 
drag of the body. 

1 FAGE, A., and COLLINS, H. E., An, Investigation of the Mutual Interference 
of an Airscrew and Body of the Tractor Type of Airplane. Br. A.R.C. R. and M. 
344, London, 1917. 
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The most suitable method of allowing for this increased drag of the 
body is to subtract from the thrust of the propeller, operating in front 
of a body, the increased drag caused on the body and any other structural 
parts which come within the influence of the propeller's slipstream. 
When the efficiency corr~sponding to this reduced thrust is compared 
with the free efficiency of the propeller, it is found that the presence 
of the body causes a small decrease of the maximum efficiency. Some 
typical experimental curves 1 are shown in Fig. 68, and in this example 
the maximum efficiency has been reduced by 3 per cent. The experimental 
curves also show that the interference of the body increases the apparent 
aerodynamic pitch of the propeller, since the thrust and efficiency fall 
to zero at a higher value of the advance-diameter ratio. Throughout 
the usual working range of the propeller the efficiency is reduced by 
the interference of the body, but at higher rates of advance there is an 
increase of efficiency and at some rates of advance the propeller with 
body interference may give a positive thrust whereas the propeller alone 
would experience a drag or negative thrust. 

2. Propeller-Body Interference. An examination of the experimental 
results shown in Fig. 67 has suggested that the interference experienced 
by a propeller at the front of an airplane body can be represented 
approximately as a decrease of the effective velocity of advance of the 
propeller. To obtain an estimate of the interference experienced by 
the body it is convenient to consider first the action of a propeller on 
a body placed in its slipstream so far downstream that the slipstream 
has developed its full velocity and that the body exerts no appreciable 
interference on the characteristics of the propeller. The thrust of the 
propeller then retains its undisturbed value T and the velocity V (1 + 2 a) 
in the slipstream can be calculated from the momentum equation 

T = 2 n R2 e V2 (1 + a) a 

or (1 + 2a)2 = 1 + n;2~ V2 (2.1) 

The body experiences this increased velocity V (1 + 2 a) and hence 
the drag D which it would experience in a stream of velocity V is 
increased to a higher value Da according to the equation 

Da = D (1 + 2 a)2 

or Da = D [ 1 + n R~ ~ V2 ] (2.2) 

The thrust of the propeller has not been influenced by any interference 
from the body, but it is reasonable to debit the propeller with the 
increased drag which it causes on the body. The object of the thrust 

1 DURAND, W. F., and LESLEY, E. P., Comparison of Tests of Air Propellers 
in Flight with Wind Tunnel Tests on Similar Forms. U.S. N.A.C.A. Technical 
Report No.220, 1925. 

Aerodynamic Theory IV 18 
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of the propeller is to overcome the drag of the body and of any other 
parts of the aircraft situated outside the influence of its slipstream. 
If the propeller is placed in such a position that it increases the drag 
of the body or of any other parts of the aircraft, the thrust available 
for propulsion is not simply the gross thrust of the propeller but only 
this thrust less the increased drag caused by its slipstream. It is con­
venient therefore to define the propulsive thrust of the propeller as the 
apparent thrust, which is the resultant axial force on the propeller 
itself, less the increase of drag of the aircraft due to the interference of 
the propeller. When this increased drag is represented by (2.2) the 

propulsive thrust is Tp = T - (Da - D) 

(2.3) 

Since the drag D is proportional to the square of the velocity V, the 
propulsive thrust is a constant fraction of the apparent thrust on the 
assumptions made in this analysis. 

In estimating the drag D in the formula (2.3) it is necessary to allow 
for the contraction of the slipstream behind the propeller and to include 
only those parts of the airplane structure which lie within the circum­
ference of the slipstream. As a refinement also, it may be noted that 
the thrust is not uniformly distributed over the whole disc of the propeller. 
It is more accurate to use, instead of the radius R of the propeller, the 
effective radius! Re which depends on the number of the blades of the 
propeller, and also to allow for a region of lower velocity around the boss 
of the propeller. The former of these two corrections is the more 
important and its effect is to increase the numerical factor 2 which occurs 
in the formulae (2.2) and (2.3). The increase varies with the number 
of the blades of the propeller and with the rate of advance, but an average 
value of the numerical factor for a propeller with two blades is from 
2.5 to 3.0. 

In the light of this discussion the following definitions and notation 
will be adopted as a suitable basis for considering the behavior of 
a propeller in the presence of a body:-

T the free thrust of the propeller without any interference. 
D the free drag of the body without any interference. 
Ta the apparent thrust of the propeller in the presence of the body. 
Da the apparent drag of the body in the presence of the propeller. 
Tp the propulsive thrust of the propeller, defined as the apparent thrust less 
the increase of drag of the body due to the action of the propeller, or 

Tp = Ta-(Da-D). 

Instead of the propulsive thrust it is sometimes more convenient to use 
the net thrust (Ta -Da) of the combined system, which can suitably 

1 See VII 4, Table 24. 
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be compared with the excess of the free thrust over the free drag (T - D) 
in order to assess the merit of the combination. 

The analysis hitherto has been based on the assumption that the 
body is far behind the propeller and exerts no interference on it, but 
in practice the body is situated immediately behind the propeller or even 
includes the boss of the propeller within its nose. As the body approaches 
the propeller from behind, it comes under the influence of a pressure 
gradient, since the pressure is high immediately behind the propeller 
and decreases down the slipstream. The drag of the body is increased 
by this pressure gradient in the slipstream, and at the same time the 
disturbance of the flow caused by the body reacts back as an interference 
on the propeller. In order to analyze the nature of this mutual inter­
ference it is convenient to consider two types of body which may be 
called respectively stream-line and irregular bodies. In a perfect fluid no 
body, whatever its shape, would experience any drag owing to its motion 
through the fluid, and a stream-line body is one which approximates 
to these ideal conditions in a real fluid. The drag of a stream-line body 
is due mainly to the frictional force over its surface and there is only 
a very weak turbulent wake behind it. At the other extreme, the drag 
of a bluff body is due mainly to the formation of a strong turbulent wake 
and the surface friction is almost negligible in comparison. Bluff bodies 
are not normally used in association with propellers, but if the body 
is of irregular shape, due to projecting engine cylinders or open cockpits, 
the drag will be due largely to the formation of eddies, as in the case 
of a bluff body, and it is this condition which distinguishes the irregular 
bodies from the stream-line bodies. 

An ideal body would experience no drag in the ultimate slipstream 
of a propeller, but if placed close behind the propeller in the region 
of decreasing pressure, a drag force will occur even in a perfect fluid. 
The drag due to a uniform pressure gradient can be calculated theoretic­
allyl, but the pressure gradient behind a propeller varies in intensity 
and it is necessary to rely on experimental determinations of the pressure 
drag. The behavior of a stream-line body approximates to that of an 
ideal body; the drag of the body in a uniform stream is low, but there 
may be an important pressure drag when the body is placed close behind 
a propeller. Also the periodic and rotational nature of the flow in the 
slipstream may disturb the flow over the surface of the body and so in 
effect convert the stream-line body into an irregular body. 

An ideal body, again, causes no loss of energy in the fluid and hence 
the wake far behind the propeller-body combination must be exactly 

1 MUNK, M., Some New Aerodynamical Relations. U.S. N.A.C.A. Technical 
Report No. 114, 1921. 

GLAUERT, R., The Effect of the Static Pressure Gradient on the Drag of 
a Body Tested in a Wind Tunnel. Br. A.R.C. R. and M. 1158, 1928. 

18* 
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the same as that due to the propeller alone. If T a is the thrust of the 
propeller in front of the body and if Da is the drag of the body, the net 
thrust of the combination is (T a - D a); and if this net thrust is equal 
to the free thrust T of the propeller alone, the combined system will 
cause the same loss of energy in the wake and will therefore have· the 
same efficiency of propulsion. This argument shows that if the apparent 
thrust of the propeller is reduced by the pressure gradient drag of the 
body, the corresponding efficiency of propulsion will be the same as 
that of the free propeller. The combined system of a propeller and 
a stream-line body will nevertheless be less effective than the free 
propeller and free body owing to the increased frictional and eddying 
drag of the body in the slipstream. 

The interference experienced by an irregular body is of the same 
general nature but the relative importance of the different components 
of the drag is completely changed. The frictional drag of the body 
is unimportant compared with the drag caused by the irregular shape 
and protuberances, and the action of the slipstream, instead of spoiling 
.a good shape, may even secure a better conformity of the flow to the 
surface of the body. There will still be a mutual reaction between the 
propeller and body associated with the pressure gradient behind the 
propeller, but the predominant factor is the increase of drag due to the 
increased velocity in the slipstream. 

3. Analysis of Apparent Thrust and Drag. In the light of the 
preceding general discussion the mutual interference between propeller 
and body may be divided into the following three elements:-

(1) The increase of body drag due to the increased velocity in the 
slipstream. 

(2) The mutual reaction between the body and propeller due to the 
pressure gradient in the slipstream. 

(3) The shielding of the nose of the body or the inclusion of the boss 
of the propeller inside the body. 

The first effect, due to the increased velocity in the slipstream, 
is of the form given by (2.2) and may be expressed more generally as 

aD = 11 ~2TaV2 (3.1) 
:rr: 12 

where 11 is a numerical factor. Assuming a propeller with a large number 
of blades and a body situated in the ultimate wake, this numerical 
factor 11 has the value 2. When the body is immediately behind the 
propeller the full effect of the increased velocity in the ultimate wake 
will not be experienced by the body and the value of It will tend to 
fall, whereas the effect of the finite number of the blades of the pro­
peller is to increase its value. 
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The second effect, which would occur even with an ideal frictionless 
body, causes equal increments of the propeller thrust and of the body 
drag, and these increments may be presumed to be proportional to the 
apparent thrust T a of the propeller and to the maximum cross-sectional 
area S of the body. Thus 

D.. T = D.. D = I S Ta (3.2) 
2 nR2 

where 12 is a numerical factor depending mainly on the shape of the 
nose of the body and probably independent of its drag. 

The third effect is usually of minor importance and would disappear 
if the free thrust of the propeller were obtained from the forces on the 
blades and did not include the drag of the boss. If DB is the drag of the 
boss, the interference appears either as a reduction of the body drag 
or as an increase of the propeller thrust according as the propeller is 
mounted in front of the body or has its boss enclosed within the body. 
Adopting the former alternative as the more usual practice, the 

correction is D.. D = - DB (3.3) 

Accepting these formulae as representing the total mutual inter­
ference between the propeller and body, the apparent thrust of the 

propeller becomes Ta = T + 12 ~~~ (3.4) 

and the corresponding apparent drag of the body is 

D D D +1 DTa +1 STa 
a= - B 1 nR2eV2 2 nR2 

which can be expressed conveniently in the form 

D =D[A+B~a..---] a nR2 e V2 

where A = 1- DB 
D 

and 

B= 11 + 3 
D 

C=SeV2 

(3.5) 

(3.6)1 

In this formula C is the drag coefficient of the body in terms of the 
maximum cross-sectional area S: it is small for a stream-line body and 
larger for an irregular body, and hence the value of the coefficient B may 
be expected to increase as the drag of the body decreases. Also the 
coefficient A may be expected to be slightly less than unity in general, 
but if the body is of good stream-line shape and if the presence of the 
propeller disturbs the smooth flow over the body, there will be an 

1 In the development of this analysis it is convenient to adopt the English 
definition of drag coefficient in terms of e V2 instead of the more usual definition 
in terms of (1/2) e V2. 
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increase of drag which will be represented by an increase of this coefficient 
A above the value given by this formula. 

The form of the coefficient B appears to have been suggested first 
by R. McK. Wood!, who obtained an upper limit to the value of the 
coefficient 12 by assuming that the increase of pressure, which occurs 
immediately behind the propeller, acts on the whole front half of the 
body. The increase of pressure from the front to the back of the propeller 
is Ta/7C R2, and thiS appears half as reduced pressure before the propeller 
and half as increased pressure behind it. The pressure force on the 
body was therefore estimated to be S T a/27C R2, and by comparison 
with (3.2) the corresponding value of 12 is 1/2. Wood's estimate for 
the upper limit of the coefficient B was therefore 

1 
B=2+ 20 

Adopting the expressions (3.4) and (3.5) for the apparent thrust and 
drag, the propulsive thrust of the propeller becomes 

Tp = Ta-(Da-D) 

= T + DB-it 3l;~2~aV2 (3.7) 

or, ignoring the drag of the boss and replacing the apparent thrust by 
the free thrust in the small correction term, 

T p = T (1 - h C) (3.8) 
Thus the propulsive thrust is approximately a constant multiple of the 
free thrust of the propeller. The propulsive thrust is the force which 
is available to overcome the drag of the airplane, estimated without 
any propeller interference, and the term 11 C T represents the loss due 
to the mutual interference of the propeller and body. The drag coeffi­
cient C would be zero for an ideal body and there would be no loss of 
thrust due to the interference, and the loss which actually occurs is 
directly proportional to the drag of the body. It must be remembered, 
however, that the interference of the body will also cause a change in 
the torque coefficient of the propeller at a given value of the advance­
diameter ratio, and that it is therefore necessary to modify the shape 
of the propeller slightly in order to absorb the full engine power at the 
correct rate of rotation. 

4. Experimental Results. The validity of the analysis of the apparent 
thrust and drag, as developed in the previous section, may be examined 
by reference to experimental results on the interference between propeller 
and body. Numerous experiments have been made to determine the 
increased drag of a body behind a propeller and the results, expressed 

Da A B Ta 41 in the form 15 = + 3l; R2 (! VB ( . ) 

1 Br. A.R.C. R. and M. 830, 1922. 
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have been analyzed by W. G. Jennings 1 to determine the relationship 
between the coefficient B and the drag coefficient of the body. The 
previous theoretical discussion has suggested the form 

B = 11 + ~ (4.2) 

where C is the drag coefficient (DIS e V2) of the body, and the analysis 
of the experimental results in this form led to the numerical result 

! B = 3.1 + 0.~23 

or B = 2.43 + 0.~5i (4.3) 

Thus the value of 11 is rather greater than the value 2 suggested in 
the theoretical discussion, due probably 
to the reduced effective diameter of :.-----r---,---,.----::,....., 
the propeller which must be used to 
represent the losses at the tips of the 
blades, and the value of 12 is only half 
the maximum possible value suggested 
by R. McK. Wood. The accuracy of 
this method of representing the in­
creased drag of the body is illustrated 
in Fig. 69 which shows the experi­
mental results 2 for a series of bodies 

8~--+--~'--+--~ 
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of increasing drag. 

Fig. 69. 

The experimental values of the coefficient A are also reasonably 
consistent with the theoretical ideas developed in the previous section. 
The value suggested for this coefficient, when the propeller boss shields 

DB 
the nose of the body, was A = 1- -D- (4.4) 

If the propeller boss is included in the nose of the body A should be 
unity, but in either case the value of A may be higher for a body of low 
drag if the presence of the propeller spoils the stream-line flow. Experi­
ments 3 with a propeller in front of a airplane body gave values of A 
in the neighborhood of 0.85, experiments 4 with the propeller boss inclosed 
in the body gave values ranging from 1.0 to 1.1, and experiments 5 using 
a propeller with a very large boss in front of a stream-line body gave 
values ranging from 1.1 to 1.5 or even higher. 

1 JENNINGS, W. G., The Effects of Body Interference on Airscrew Performance. 
Br. A.R.C. R. and M. 1046, 1926. 

2 Br. A.R.C. R. and M. 1030, 1926. 
3 Br. A.R.C. R. and M. 334, 1917; and 393, 1918. 
4 Br. A.R.C. R. and M. 1030, 1926. 
5 Br. A.R.C. R. and M. 830, 1922. 
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When the propeller is mounted in front of the body, the mutual 
interference depends on the width of the gap between the boss of the 
propeller and the nose of the body. This point has been examined 
experimentally by W. F. Durand 1 and by C. N. H. Lock and H. Bateman 2 

The latter tested a propeller in front of a body with gaps of 0.06 R 
and 0.17 R, and as the gap was increased the thrust and torque de­

-a02 o(Jap 

+ Gap af7R 

Fig. 70. 

creased owing to the weaker 
interference exerted by the body, 
but the excess of thrust over 
drag (T a - D a) remained un­
changed. The experimental re­
sults are reproduced in Fig. 70: 
the experimental points are 
rather scattered, but they show 

r ~ 
~C :::==b 
~C ~ 

Fig. 71. 

clearly the change in the apparent thrust and drag and the constancy 
of the net thrust. An analysis of the body drag gave the following 
values for the coefficients A and B of the formula (4.1): 

Gap 

0.06R 
0.17 R 

A 

1.56 
1.36 

B 

11.5 
12.3 

These results are in accord with the general ideas developed in the 
previous section. The interference of the body on the propeller becomes 
weaker as the propeller is moved forward, but the reduction of the 
apparent thrust is balanced by an equal reduction of the apparent drag. 
The decrease of the value of A possibly indicates that the propeller 
exerts less disturbance on the stream-line flow around the body when 
the gap is increased. 

1 Interaction Between Air Propellers and Airplane Structures. U.S. N.A.C.A. 
Technical Report No. 235, 1926. 

2 The Effect of Gap Between an Airscrew and a Tractor Body. Br. A.R.C. 
R. and M. 921, 1924. 
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Another interesting series of experiments by A. Fage and H. E. Collins1 

shows the effect of fairing the nose of an airplane body. Fig. 71 shows 
the three systems examined: the propeller was mounted in turn in front 
of a body with a stream-line nose and with a blunt nose, and then 
a stream-line nose piece was fitted in front of the second combination. 
The results showed that the apparent efficiency of the propeller in the 
system (a) was sensibly the same as 0.7 

that of the free propeller without any 1J 
body, the apparent efficiency in the as 
system (b) was 3 per cent higher owing 
to the body interference, and this 

0.5 
efficiency rose another 3 per cent in 
the system (c) owing to the shielding 
of the propeller boss by the. stream- 0.'1 

line nose. The combined system of 
propeller and body, however, showell as 
little difference between the systems (a) 
and (b) since the increase of apparent 0.1 

thrust in system (b) was exactly ba­
lanced by the increase of apparent a 
drag. The system (c) was superior 

1 

to the others owing to the improve­
ment in the shielding of the propeller 
boss. These experimental results are 
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shown in Fig. 72 in the form of curves of net efficiency against net 
thrust coefficient for the three combined systems. 

5. Apparent Thrust and Efficiency. Hitherto the interference ex­
perienced by a propeller mounted in front of a body has been discussed 
only in general terms, and it has been suggested that there is an increase 
of the apparent thrust of the propeller due to the fact that its blades 
operate in a region of reduced velocity. In (3.4) the apparent thrust was 

represented in the form Ta = T + 12 ! i~ (5.1) 

where S is the maximum cross-sectional area of the body and 12 is 
a numerical factor depending on the shape of the nose of the body. 
In order to determine the magnitude of this increase of thrust it is 
necessary to examine the problem in greater detail and to determine 
the variation along the blades of the effective velocity experienced by 
the propeller. A general theory of this nature, supported by a special 
experimental investigation, has been developed by C. N. H. Lock. In 2 

1 An Investigation of the Mutual Interference of an Airscrew and Body of 
the Tractor Type of Airplane. Br. A.R.C. R. and M. 344, 1917. 

2 Analysis of Experiments on an Airscrew in Various Positions Within the Nose 
of a Tractor Body. Br. A.R.C. R. and M. ll20, 1927. 
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this theory the force on any blade element of the propeller is calculated 
by using the local velocity as reduced by the interference of the body, 
the magnitude of this interference being obtained by analysing the 
experimental results; and in a later paperl the local velocities were 
calculated theoretically by replacing the nose of the body by a suitable 
spheroid. A similar method of calculation has been used by Th. Troller 2, 

who represented the nose of the body by a simple distribution of sources 
and sinks, and calculated the performance of the blade elements in the 
velocity field of this system. 

Consider a body whose nose is of a good stream-line shape so that 
the deflection of the air in the neighborhood of the propeller takes place 
without any loss of energy or total pressure head. Further back the 
body may have excrescences or irregularities of shape which cause loss 
of energy, and in any case there will be some such loss owing to the 
frictional drag of the surface. The drag which the body experiences 
owing to the pressure gradient behind the propeller would occur also 
with an ideal body and occurs without any loss of energy of the fluid. 
If then D a denotes as before the total drag of the body in the presence 
of the propeller, and if X denotes that part of the drag which occurs 
without loss of energy, it follows that the total drag Da must be inserted 
in the equation of axial momentum, but that only the part (D a - X) 
should be inserted in the equation of energy. The momentum equation 
for the system of propeller and body may therefore be expressed as 

Ta - Da = J e U (ul - V) dS (5.2) 

where dS is an element of the propeller disc, U is the axial velocity 
through the disc, and ul is the corresponding axial velocity in the ultimate 
wake. Also, since the increase of total pressure head in the wake is 
(1/2) e (1~i - V2), the energy equation is 

Ta - (Da - X) = J 1/2 e (ui - V2) dS (5.3) 

In order to apply the usual methods of analysis of the propeller 
characteristics, it is necessary to replace these integral equations by 
their differential equivalents, and in so doing it is necessary to assume 
that some appropriate fraction of the drag forces Da and X may be 
associated with each annular element of the propeller disc. With this 
assumption the two equations become 

d T a - dD a = e U (Ul - V) dS 

and dTa - dDa + dX = (1/2) e (ui - V2) dS 

(5.4) 

(5.5) 

1 The Application of the Theoretical Velocity Field around a Spheroid to 
Calculate the Performance of an Airscrew Near the Nose of a Streamline Body. 
Br. A.R.C. R. and M. 1239, 1928. 

2 Zur Beriicksichtigung des Rumpfes beim Luftschraubenentwurf. Zeitschr. 
f. Flugtechnik u. Motorl. 19, 325, 1928. 
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Now let dX=adTa l 
dDa = kdTa J 

(5.6) 

and V = u (I-G) 

u1 = u (1 + H) 
(5.7) 

Also, from the usual form of calculation for the force on the blade elements 
of a propeller, the thrust may be expressed in the form 

dTa=2Feu2dS (5.8) 

where, in the usual notation, 
F _ (](CLCOSrp-C~_si:!!.5fl 

- 4sin2 rp 

With these substitutions (5.4) and (5.5) become respectively 

2 F (1 - k) = G + H 

and 4F(I-k+h)=(G+H)(2-G+H) 

and then on eliminating H, 

G =F(I-k)-_h­
l-k 

(5.9) 

(5.10) 

The coefficients a and k are zero for a free propeller and these 

equations give the result F = G = H 
Thus the speed of advance V is determined as a function of the velocity u 
through the disc by the equation 

V=u(I-F) 

The interference of the body on the propeller is represented by replacing F 
by G in this last equation, and from the form of (5.10) it is evident 
that G is less than F. Thus V differs less from u when the body is 
present than for the free propeller. 

As a first approximation when F, a and k are small, (5.10) may 

be expressed as G = F - a 
or, to the same order of accuracy, 

V(I-a)=u(I-F) 

In this form the equation suggests that the annular element of the 
propeller is behaving exactly as if it were situated in a local stream 
of reduced velocity V (1 - a), and the analysis is therefore the same as 
the original simple treatment of the problem, except that the reduced 
velocity is now regarded as varying along the blade of the propeller 
instead of being represented by a general mean value. 

If the body is of a good stream-line shape the drag of the body is 
due mainly to the pressure gradient, and the coefficients a and k are 
approximately equal. With this approximation (5.10) becomes 

h 
G=F(l-a)-l_h (5.11) 



284 L VIII. BODY AND WING INTERFERENCE 

The values of 11, were determined by Lock from this equation by analysing 
the observed distribution of thrust along the blade of a propeller, and 
the values so determined were reasonably consistent with the theoretical 
distribution of velocity around the nose of a spheroid representing as 
closely as possible the nose of the body. These values of 11, depend only 
on the shape of the body and can be used to calculate the performance 
of any propeller mounted in front of the body. 

Hitherto the part of the body drag represented by the term X has 
been defined solely by the condition that this part of the drag occurs 
without any loss of energy. If, however, 11, V represents the reduction 
of velocity of the local stream in which the propeller operates, it would 
follow from the previous general discussion that f hd T a will represent 
the increase of thrust and the equal increase of drag of an ideal body 
due to their mutual interference. This drag is represented mainly by 
an increase of pressure over the nose of the body and hence X may 
be estimated as the pressure force on the front part of the body, extending 
as far as the maximum cross-section. This conception was adopted by 
Lock and was confirmed by a further series of experiments 1. 

More generally it is convenient to define the effective thrust of the 
propeller by the equation 

Te = Ta- X = f (l-h) dTa (5.12) 

Previously the propul8ive thrust was defined as 

Tp = Ta-(Da-D) 

and for an ideal body of zero drag the effective and propulsive thrusts 
are identical. In the general discussion of 3 the apparent thrust Ta 
was expressed in the form 

Ta = T + f2 ~~~ (5.13) 

where the second term represents the increase of thrust due to the 
interference of the body and is balanced by an equal increase of drag. 
By comparison with (5.12) it would appear that the effective thrust 
should be sensibly the same as the free thrust of the propeller without 
any interference, and this conception also was confirmed by Lock's 
analysis when the comparison was made on the basis of a definite torque 
coefficient. 

In the light of this analysis it is possible to lay down the guiding 
principles for estimating the performance of a propeller mounted at 
the front of a body whose nose is of a reasonably stream-line shape. 
As a basis for this calculation it is necessary to know the appropriate 

1 LOCK, C. N. R., and JOHANSEN, F. C., Pressure Plotting a Streamline Body 
with Tractor Airscrew Running. Br. A.R.C. R. and M. 1230, 1929. 
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airfoil characteristics of the blade sections of the propeller and the drag 
of the body without interference. The calculation then proceeds by the 
following steps:-

(1) Estimate the axial velocity V (1 - h) as a function of the radial 
distance in the plane to be occupied by the propeller. This velocity may 
be obtained from a test of the flow past the body, from a theoretical 
calcl,llation replacing the nose of the body by a spheroid which fits it 
as closely as possible, from a theoretical calculation representing the 
nose of the body by a suitable distribution of sources and sinks, or from 
a comparison with any available information concerning the velocity 
distribution around bodies of similar shape. 

(2) Calculate the thrust and torque for each annular element of 
the propeller in turn as if it were operating in a stream of velocity 
V (1- h). Integration along the blades then gives the apparent thrust T a 

and the apparent torque Qa . 

(3) Calculate the part of the body drag due to the pressure gradient 

behind the propeller as f h d T a 

and the increase of body drag due to the velocity of the slipstream, 
in accordance with the discussion of 4:, as 

I Ta 
1-;:cJi2 e V2 

where 11 may be taken to be 2.43. The apparent drag of the body is then 

Da = D [1 + 'JT, ~2:aV2 ] + f h d T a [see (4.1)] (5.14) 

Alternatively this apparent drag may be estimated from (4.3) as 

Da = D [1 + 'JT, ;~';r2 ] [see (3.5)] (5.15) 

where B = 2.43 + O.~54 

and C is the drag coefficient of the body in terms of its maximum cross­
section S, defined by the equation 

D= CS e V2 

(4) The propulsive thrust of the propeller IS obtained finally in 

the form Tp = Ta - (Da - D) 

As an alternative course it is possible to calculate directly, in place 
of the apparent thrust T a' the effective thrust Te as defined by the 

equation Te = f (I-h) dTa 

This effective thrust, used in conjunction with the apparent torque Qa' 
will lead to an efficiency sensibly equal to that of the propeller in free 
air. The drag of the body to be used in conjunction with the effective 

thrust is simply D [1 + 11 Ta] [see (4.1)] 
'JT, R2 e V2 
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and in these formulae it is generally legitimate to replace the apparent 
thrust Ta by the effective thrust Te. The final expression for the 
propulsive thrust is then 

Tp=Te[l-n~;~V2] [see (2.2)] (5.16) 

and this form of expression is identical with the formula (2.3) which 
was obtained for a propeller and a body in the ultimate wake. The 
only point of difference in the two results is that the corresponding 
torque of the propeller must be calculated to include the effects of the 
interference of the body. 

Although in detailed calculations it is necessary to use values of 
the parameter h which vary along the blade of the propeller, for many 
purposes it is sufficiently accurate to use a suitable average effective 
value of h for the whole propeller. The estimation of the behavior of 
the propeller as modified by the interference of the body then follows 
quite simply from the characteristics of the undisturbed propeller by 
the method described in 1 and defined by (1.5) of that section. The 
apparent thrust and torque of the propeller in the presence of the body 
and at the advance-diameter ratio J are determined as the free thrust 
and torque of the propeller at the lower advance-diameter ratio (1- h) J 
and at the same rate of rotation. In applying this simplified method, 
however, it must be remembered that the average value of h associated 
with any definite body will decrease as the diameter of the propeller 
increases, and that this average value will also depend on the position 
of the propeller relative to the nose of the body. Experience suggests 
that, for the usual combination of propeller and body, the average 
effective value of h is approximately 0.1. 

Finally one point may be noticed in connection with the design of 
a propeller to operate in front of a body. The reduction of velocity 
due to the presence of the body is greatest close to the surface and is 
usually negligible at the tips of the propeller blades. Thus the inner 
part of the propeller is virtually operating at a lower rate of advance 
than the outer parts: it should therefore have relatively smaller blade 
angles and wider blades, and, compared with a good propeller designed 
to operate in free air, a propeller in front of a body should have a less 
rapid variation of blade angle along the blade and wider chords toward 
the root of the blade. 

6. Propeller Behind a Body. The analysis hitherto has been developed 
on the assumption that the propeller operates in front of the body, 
but a similar line of argument can be followed when the propeller is 
mounted behind a body or engine car. The propeller operates in a region 
where the velocity has been reduced by the interference and by the 
drag of the body, and hence, at a definite rate of advance of the propeller, 
the apparent thrust and torque are increased above the values which 
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would occur in a free stream. Fig. 73 shows some typical curves obtained 
from wind tunnel tests 1 of a propeller behind a body, and a comparison 
with the previous Fig. 67 shows that the interference experienced by 
the propeller is of exactly the same nature, whether the propeller is 
in front of or behind the body. The drag of the body is increased by 
the pressure gradient which is caused by the propeller, but the body, 
being in front of the propeller, does not experience the full force of 
the increased velocity of the slipstream. 

To analyze the interference between a body and a propeller mounted 
behind it, consider first an ideal body which causes a deviation of the 
flow in its neighborhood but, having aoor--..,.--...,--.,...---....,----, 
no drag, causes no permanent distur- 7J - Propel/era/one 

bance in its wake. If the propeller a701-_t:---4c=_-,:+O,_'eh_if7,_o'_B.t-ody_-l 

is far behind the body, it will cause 
no disturbance of the flow around 
the body and will itself experience 
no interference from the body. When 
the propeller is placed close behind 
the body, it operates in a region 
where the local velocity has been aOG 

~ modified by the presence of the body, ~ 

\ 
\ 

and in general this disturbance is ~ aO'lI--+--f\-:""-k-~-+--! 
represented by a reduced axial velo- ¢ 

city. Simultaneously the body is a031---+---t--~--'~j----o..---I 

situated in a region where there is 
a pressure gradient, owing to the 
reduced pressure in front of the 
propeller, and this pressure gradient 

Fig. 73. 

acts as a suction on the rear of the body. The mutual interference 
between the body and propeller thus causes a drag force on the body 
and an increased apparent thrust of the propeller, and the increase of 
the thrust of the propeller is exactly equal to the drag of the body. 

Passing next to the conditions which occur with a real body, the 
drag of the body causes a wake of reduced velocity and in this wake 
the air has lost some of its energy owing to the frictional forces on the 
surface of the body. The apparent thrust and torque of the propeller 
are therefore slightly higher than they would be with an ideal body 
of the same shape, and there is no corresponding reaction on the body, 
similar to the increased velocity over the surface which occurs when 
the body is behind the propeller. This argument suggests that there 
is a definite advantage when the body is in front of the propeller, but 
this conclusion must be accepted with caution. It has been derived by 

1 FAGE, A., and COLLINS, H. E., An Investigation of the Mutual Interference 
of Airscrews and Bodies of the Pusher Type. Br. A.R.C. R. and M. 305, 1917. 
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considering the behavior of a definite propeller in free air and behind 
the body, but the same propeller is not really suitable for these two 
conditions of operation. When the propeller operates behind the body, 
its torque coefficient at a definite rate of advance is increased, and 
hence the propeller, driven by a given engine, will run at a slower rate 
of rotation and will fail to develop the full engine power. In order to 
obtain the correct rate of rotation it is necessary to reduce the pitch 
of the propeller blades and to increase the width of the blades. These 
wider blades will experience a correspondingly higher frictional drag, 
and in this way some part of the advantage of mounting the propeller 
behind the body is lost. Also in practice a 'body in front of a propeller 
is almost invariably of a worse aerodynamic shape than a body behind 
a propeller and has a higher drag. 

The apparent drag of the body in the presence of the propeller can 
again be represented in the form 

Da = D [A + B n R~; V2 ] (6.1) 

and for a body in front of a propeller the coefficient A should be unity 
since there is no shielding of the nose or spoiling of the flow such as 
may occur when the body is behind the propeller. Also, following the 
same line of argument which was used for a body behind a propeller, 
the form anticipated for the coefficient B is 

(6.2) 

where 

and S is the area of the maximum cross-section of the body. In this 
expression 11 represents the effect of the increased velocity experienced 
by the body. At the propeller disc the increase of axial velocity is half 
that in the ultimate wake, but this increase occurs in a very short 
distance in front of the propeller and the effective increase of velocity 
experienced by the body is very small .. Consequently 11 may be expected 
to be very small also. The coefficient 12 represents the reduced pressure 
in front of the propeller, which acts as a suction on the rear of the body. 
This effect acts with full force and the value of 12 may be anticipated 
to be sensibly the same as for a body behind a propeller. Thus, by 
comparison with the empirical formula (4.3) the value of the coefficient B 
for a body in front of a propeller would be predicted to be approximately 

B = 0.254 (6.3) 
o 

Experimental results for bodies mounted in front of a propeller are 
very scanty, and in general the bodies tested have also been of very 
bad aerodynamic shape. The results available, however, are in genera] 



SECTION 7 289 

agreement with the ideas developed above. Thus, for example, tests 
of two pusher bodies 1 led to the values 

A = 0.97, B = 0.8, C = 0.20 
and A = 1.07, B = 1.9, C = 0.12 

which do not differ too widely from the values suggested by the previous 
general discussion; but a reliable general formula, similar to that derived 
for tractor bodies, cannot be obtained until further experimental results 
are available. 

A detailed analysis of the experimental results by C. N. H. Lock and 
H. Bateman 2 suggests that some part of the increased drag can be 
explained by the suction at the rear of the body caused by the rotation 
of the slipstream. When the propeller is at the front of the body this 
rotation is reduced by any excrescences on the surface of the body, 
and the suctional drag is greatest if the body is smooth or if the propeller 
is mounted toward the rear of the body. The adverse effect can be 
reduced by fitting radial vanes behind the propeller to check the rotation 
of the slipstream. 

7. Propeller-Wing Interference. The interference experienced by the 
propeller of an airplane is due mainly to the body on which it is mounted, 
but some additional interference arises also from the proximity of the 
wings, undercarriage or any other structural parts. The interference 
between the body and propeller has been considered in the previous 
sections and it has been tacitly assumed that the axis of the propeller 
was in the direction of motion and that the body was symmetrical 
about this axis. If this symmetry does not exist, the propeller may 
experience periodic aerodynamic forces, since the interference will vary 
with the angular position of the blades. The interference exerted by 
the wings of an airplane on the propeller is usually of this asymmetrical 
character, but the periodic fluctuations of the thrust and torque are 
negligible, and it suffices to consider the mean interference effects. 

Regarding the wing first as an additional source of drag behind the 
propeller, it may be anticipated that the interference caused by the 
wing will be similar in character to that caused by the body but less 
in magnitude. The interference would then be represented by a slight 
reduction of the axial velocity experienced by the propeller, but there 
may be a small additional effect due to the fact that a wing behind the 
propeller will tend to check the rotation of the slipstream and this may 
react back on the propeller to some small extent. Some typical experi­
mental curves 3 of the wing interference on the thrust and torque 

1 Br. A.R.C. R. and M. 305, 1917. 
2 Br. A.R.C. R. and M. No. 1445, 1931. 
3 FAGE, A., and COLLINS, H. E., An Investigation of the Mutual Interference 

of the Airscrew, Body, and Wings of the Tractor Aeroplane BE2E. Br. A.R.C. 
R. and M. 393, London, 1918. 

Aerodynamic Theory IV 19 
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coefficients of a propeller are shown in Figs. 74 and 75. There is a small 
increase of the thrust coefficient due to the presence of the wings, but 
no appreciable change of the torque coefficient. This conclusion is 
confirmed by other experiments!, but at times there is also a small 
increase of the torque coefficient. These results were all obtained 
0.20 with the propeller axis in the 
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direction of motion and at 
one angle of incidence of the 
wings, and it may be anti­
cipated that the interference 
would increase if the wing 
were set at a larger angle of 
incidence. 

In practice the propeller 
axis is set at a definite angle 
to the chord of the wings and 
this axis can coincide with 
the direction of motion at 

one angle of incidence only. As the angle of incidence of the airplane 
is increased, the axis of the propeller will be inclined at an angle to 
the direction of motion, and the change of the characteristics of the 
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propeller will be due partly 
to the increased interference 
of the wings and partly to the 
inclination of the propeller 
axis. Figure 76 shows the 
change of the torque coeffi­
cient of a propeller in front of 
a model airplane 2 as the angle 
of incidence is increased. The 
torque coefficient increases • WJY? WJngs 

~G a7 as 0.9 to 1.1 J t2 rapidly with the angle of 
Fig. 75. incidence, but this increase is 

due more to the inclination 
of the propeller axis than to the interference of the wings. The change 
of the characteristics of a propeller due to the inclination of the axis, 
apart from any interference effects, is considered later in Chapter XII. 

1 FAGE, A., and COLLINS, H. E., An Investigation of the Mutual Interference 
of Two Model Airscrews and a Model of the Sopwith Dolphin Aeroplane. Br. 
A.R.C. R. and M. No. 572, 1919. 

WEICK, F. E., Full Scale Tests of Wood Propellers on a VE-7 Airplane in the 
Propeller Research Tunnel. U.S. N.A.C.A. Technical Report No. 301, 1928. 

2 RELF, E. F., and JONES, L. J., Measurements of Lift, Drag, and Pitching 
Moment on the 1/5 Scale Model of the Bristol Fighter with Airscrew Running. 
Br. A.R.C. R. and M. No. 937, 1924. 
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Hitherto the wing has been regarded merely as an additional source 
of drag behind the propeller, but the interaction between the wing and 
the propeller is modified in an important manner by the lift of the wing. 
The effect on the propeller is due to the fact that the lift of the wing 
is associated with a circulation of the flow around the wing and with 
an upward inclination of the stream-lines in front of the wing. The 
propeller is therefore placed in a region where the flow is inclined to 
the direction of motion, and the effective inclination of the propeller 
axis is greater than the geometrical angle between the axis and the 
direction of motion. In this way 
the lift of the wing causes an 
additional increase of the thrust 
and torque coefficients of the a0201----+-----''''''<?~c;----+_-__I--_l 

propeller, and the experimental 
results shown in Fig. 76 must be aOf51----+--4---""'-1'r----I---l 

regarded as the combined effect 
of the inclination of the propeller 
axis to the direction of motion, aOfof---+---\---+-'tt--Tt---j 

of the upwash due to the lift of 
the wings, and of the retardation 
of velocity due to the drag of the 0.00. 

body and wings. 
The interference of the pro­

peller on the wings is of a very 
complex nature, since the in­

Fig. 76. 

creased velocity of the slipstream augments both the lift and the drag 
of the wing. Also the increased lift is associated with increased induced 
drag, and, since the slipstream acts over a small part only of the wing, 
the distribution of lift across the span is altered, and this alteration 
usually implies an additional increase of the induced drag. It is not 
proposed to discuss here the details of the interference experienced by 
the wing!, but it is necessary to examine whether it is possible to 
extend the conception of propulsive thrust, which was used in analyzing 
the propeller-body interference, and to debit the thrust of the propeller 
with the increased drag of the wing. 

If the extreme condition be considered of a large propeller with 
a small wing situated wholly in the slipstream far behind the propeller, 
the lift and drag of the wing will both be increased in the same ratio. 
By analogy with the method used in analyzing the propeller-body inter­
ference, the thrust of the propeller might be reduced by the increase 
of the drag, but this course is clearly unreasonable since it ignores the 
beneficial increase of the lift, and the increase of the drag is due mainly 

1 See Division M. 

19* 
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to the increase of induced drag which is inevitably associated with this 
increase of lift. An altenlative method would be to compare the free 
wing and the wing in the slipstream on the basis of the same lift, 
reducing the angle of incidence of the wing in the slipstream to achieve 
this result. At small angles of incidence this comparison might be useful, 
but this method also breaks down because it ignores the fact that the 
wing in the slipstream has a higher maximum lift coefficient. 

The conditions for an actual wing, which extends far beyond the 
boundaries of the slipstream, are even more complex, and it appears 
to be hopeless to attempt any separation of the propeller-wing system 
into its component parts. The whole question has been discussed in 
detail by A. Betz 1, and his conclusion is that the action of the propeller 
in the presence of a wing must be represented in a vector diagram. 
On this basis the apparent thrust T a is reduced by the increase of drag 
(Da - D) to obtain the propulsive thrust 

Tp=Ta-(Da-D) (7.1) 

but in addition the propeller must be credited with a lift force Y at 
right angles to the thrust and equal to the increase of lift (La - L) 

of the wing: Y=La-L (7.2) 

These two forces may next be converted into "efficiencies" in terms 

of the apparent torque as 
VTp 

1)x = Q Qa (7.3) 

VY 
and 1)y = Q Qa (7.4) 

and these two components may be plotted as coordinates of a vector 
diagram. The component 1)x is comparable with the usual efficiency 
gO of a propeller, but the other component 'YJy 

1J!I 

o 1Jx 
Fig. 77. 

f.() 

is not an efficiency in any true sense 
and may have a value many times larger 
than 'YJx' The vector efficiency ('YJx, 1)y) is 
merely a convenient method of represent­
ing in one diagram the force on the 
propeller and the increased force on the 
wing due to the interference of the pro­

peller. In general this vector efficiency is a function of two para­
meters, the angle of incidence of the wing and the advance-diameter 
ratio of the propeller, and its complete representation requires a double 
set of curves. A diagramatic sketch of the type of curves obtained 
is shown in Fig. 77, where (IXIIX21X3) and (AI }'2 A3) represent increasing 
values of the angle of incidence and of the speed ratio (VjQ R) re-

1 Der Wirkungsgradbegriff beim Propeller. Zeitschr. f. Flugtechnik u. Motorl. 
19, 171, 1928. 



SECTION 1 293 

spectively. No generalization of these results is possible, since they 
depend intimately on the relative size of the propeller and wing, on 
the shape of the wing and its center section, and on the inclination 
of the propeller axis to the wing chord. The object of the preceding 
discussion has been merely to explain the nature of the mutual inter­
ference between propeller and wing, and to suggest a suitable method 
of representing the experimental results for any particular combination 
of the two. 

CHAPTER IX 

THE EXPERIMENTAL STUDY OF PROPELLERS 

1. Experimental lUethods. During the course of the development 
of the theory of the propeller, reference has been made from time to 
time to experimental results, either to illustrate the significance of some 
aspect of the theory or to obtain empirical relationships to supplement 
the theoretical formulae. These experimental results are derived for 
the most part from wind tunnel tests of model propellers and it is 
necessary to consider the scope of these tests and the validity of applying 
them to deduce the characteristics of full scale propellers. 

The simplest test of a propeller is the determination of the thrust 
and torque at different rates of advance, since it depends only on the 
measurement of the force and moment transmitted through the propeller 
shaft. Other methods of experiment seek to determine the distribution 
of thrust and torque along the blade of a propeller, either by investigating 
the distribution of pressure over a number of sections suitably spaced 
along the blade, or by investigating the pressure and velocity of the 
air behind the disc of the propeller. The experimental study of the 
pressure distribution over the blades of a rotating propeller is more 
complex than the corresponding experiment with a rigid wing, but it 
has been successfully made both on a model propeller in a wind tunnel 1 

and on a full scale propeller in flight 2. Apart from the complex and 
laborious nature of the work, this method of experiment suffers from 
the defect that it determines only the forces due to the pressure over 
the surface of the blades and gives no measure of the frictional forces 
experienced by the propeller. An alternative method of determining 
the distribution of thrust along the blade, proposed originally by 

1 FAGE, A., and HOWARD, R. G., A Consideration of Airscrew Theory in the 
Light of Data Derived from an Experimental Investigation of the Distribution 
of Pressure Over the Entire Surface of an Airscrew Blade, and also Over Aerofoils 
of Appropriate Shape. Br. A.R.C. R. and M. 681, 1921. 

2 JONES, E. T., The Distribution of Pressure Over a Section of an Airscrew 
Blade in Flight and the Variation of Lift Coefficient with the Speed of the Section. 
Br. A.R.C. R. and M. 1256, 1929. 
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T. E. Stanton!, is to measure the increase of total pressure head behind 
the propeller, and by an extension of this method of investigation it 
is possible also to determine the distribution of torque along the blade. 
These experimental methods, which can be used either in a wind tunnel 
or in flight, are considered more fully in 3. 

The interpretation of the tests of model propellers raises at once 
the question of dynamical similarity 2. In a frictionless incompressible 
fluid the thrust and torque coefficients of a propeller of given shape 
would depend only on the state of operation of the propeller, and would 
be functions of a single parameter which is usually taken to be the 
speed ratio VIQ R or the advance-diameter ratio VlnD. This parameter 
corresponds in fact to the angle of incidence of a wing and defines the 
attitude of the propeller blades relative to the air through which the 
propeller is advancing. When, however, the actual physical properties 
of the air are considered, it is apparent that the characteristics of a 
given propeller may depend also on the viscosity and compressibility 
of the air. 

The viscosity of the air is expressed conveniently by the kinematic 
coefficient of viscosity 'V, which is the ratio of the coefficient of viscosity fJ, 

to the density e and has the dimensions of a length multiplied by 
a velocity. In order to maintain dynamical similarity of the flow it is 
necessary to maintain a constant value of the Reynolds' number or 
viscosity parameter, which may be expressed in the form 

N _lW 
v- ')! 

where l is some typical length and W is some typical velocity of the 
propeller. Choosing this length to be the radius of the propeller and 
the velocity to be the tip speed Q R, the Reynolds' number becomes 

QR2 
N v = -- (1.1) 

')! 

Clearly it is impossible to satisfy this condition of constant Reynolds' 
number in any model tests, since the radius R is always less than the 
corresponding full scale radius and the tip speed Q R is usually less 
than the full scale tip speed. Thus the use of model propellers may 
involve the existence of a scale effect in the characteristics of the 
propeller, and this scale effect can be determined only by a suitable 
series of comparative experiments. 

The compressibility of the air can be expressed by the speed of 
sound Vs' which is the speed of propagation of pressure disturbances 

1 STANTON, T. E., and MARSHALL, D., On a Method of Estimating, from 
Observations on the Slipstream of an Airscrew, the Performance of the Elements 
of the Blades and the Total Thrust of the Screw. Br. A.R.C. R. and M. 460,1918. 

2 Divisions A IV and H I 3. 
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through the air, and the effect of this compressibility on the character­
istics of a propeller can be expressed in terms of another non-dimensional 

W 
parameter N c = v-; 
where W is again some typical speed of the propeller. This speed is 
suitably taken to be the tip speed Q R, and hence the compressibility 
parameter will be taken to be 

N - DR (1.2) 
c - VB 

The effect of the compressibility of the air on the characteristics of 
an airfoil are known to be negligibly small unless the speed rises above 
one half of the speed of sound, but the tip speed of a propeller almost 
invariably exceeds this value and frequently rises as high as the speed 
of sound itself. It is necessary therefore to investigate the effect of the 
compressibility of the air on the characteristics of a propeller rotating 
with a high tip speed, and this effect introduces also another distinction 
between the behavior of model and full scale propellers, since the model 
propeller usually has a lower tip speed. 

In spite of the uncertainty due to the unknown magnitude of the 
scale effect and of the compressibility effect, wind tunnel tests have 
provided the principal experimental method of studying the characteristics 
of a propeller, since these tests are comparatively easy to make and 
since they give more consistent results than any alternative method. 
The construction of the twenty foot propeller research tunnel! of the 
National Advisory Committee for Aeronautics at Langley Field has 
greatly extended the value of these wind tunnel tests and has gone 
a long way to eliminate the uncertainty associated with model experi­
ments. Even with this tunnel, however, it is not possible to realize 
the actual flight conditions of the propeller of a high speed airplane, 
since the maximum speed in the tunnel is no m.p.h. and falls short 
of the speed of the airplane. The wind tunnel tests are usually straight 
forward in principle, but in interpreting the results it is necessary to 
consider whether the limited extent of the stream exerts any constraint 
on the behavior of the propeller. Moreover the conditions of test of 
a propeller, apart from the aircraft, frequently involve a small guard 
body to house the driving mechanism and, unless this body is very small, 
it may introduce a systematic difference between the experimental results 
and the performance calculated for the propeller alone. 

As an alternative to the wind tunnel, a whirling arm may be used 
to test either a model or a full scale propeller, but although valuable 
results have been obtained in the past by this method, it appears to 

1 WEICK, F. E., and WOOD, D. H., The Twenty Foot Propeller Research Tunnel 
of the National Advisory Committee for Aeronautics. U.S. N.A.C.A. Technical 
Report No. 300, 1928. 
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have fallen out of use completely. A whirling arm operating in a building 
suffers from the defect that the air develops a circulation which com­
plicates the interpretation of the experimental results, and a whirling 
arm in the open air is subjected to irregular air currents even on a fairly 
calm day. The same criticism applies also to a spinning tower which 
would otherwise provide a satisfactory method of determining the 
characteristics of a propeller at zero rate of advance. 

Finally there remains the possibility of testing the propeller in flight 
on an aircraft, but such tests are difficult to make and rarely yield 
results comparable in accuracy with the wind tunnel tests. Measurements 
of the performance of an airplane are of no value since the characteristics 
of the propeller are inextricably entangled with the drag of the airplane 
and the power of the engine. It is necessary therefore to measure 
directly the thrust and torque transmitted by the propeller shaft, and 
although instruments have been designed from time to time for this 
purpose, they have rarely yielded results of sufficient accuracy. Moreover 
these instruments have been used to determine the power of the engine 
under different atmospheric conditions and the drag of the airplane 
rather than to determine the characteristics of the propeller. The 
investigation of the distribution of pressure over the blades of a propeller 
in flight is extremely difficult and laborious, but the alternative method 
of determining the distribution of thrust and torque along the blade 
by measuring the pressure and velocity behind the propeller disc can 
be applied in flight and should be capable of giving valuable results. 

2. Wind Tunnel Interference. The problem of the constraint imposed 
on a propeller by the limited extent of the air stream of a wind tunnel 
is approached most conveniently by considering first the behavior of 
a propeller in a wind tunnel with a closed working section, and the 
magnitude of this constraint has been determined 1 by an interesting 
application of the axial momentum theory. The flow past the propeller 
is constrained by the walls of the tunnel and the uniform axial velocity V 
which occurs in front of the propeller in the wind tunnel differs from 
that which would occur in free air when the propeller is giving the same 
thrust and torque at the same rate of rotation. The interference may 
be represented in terms of an equivalent free air speed V', corresponding 
to the tunnel speed V. Ignoring the rotational motion of the slipstream, 
the thrust and torque of the propeller are determined by the axial 
velocity u through the propeller disc, and the equivalent free air speed V' 
is determined by the condition that this axial velocity u shall have 
the same value in the tunnel and in free air. In general the equivalent 
free air speed V'is less than the tunnel speed V. 

1 WOOD, R. MoK., and HARRIS, R. G., Some Notes onthe Theory of an Airsorew 
Working in a Wind Channel. Br. A.R.C. R. and M. 662, 1920. 
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Consider a propeller of disc area S, Fig. 78, operating in a cylindrical 
tunnel whose cross-section is a circle of area 0; let u be the axial velocity 
through the propeller disc and U 1 the axial velocity in the slipstream 
where the cross-section has contracted to SI; and let U 2 be the axial 
velocity in the tunnel outside the slipstream. Then the conditions of 
continuity of the flow in the slipstream and in the region surrounding 

it are respectively U1 S1 = uS 

~t2 (0 - SI) = V 0 - uS 

The total pressure head remains con-
stant outside the slipstream, and the _-_V ___ _ 

(2.1) 

increase of total pressure head in the E 
slipstream is obtain~d from the wake as -v :----u,-'-s.7"t 

HI -Ho = 21! (u~ -u~) Po S Pt 

This increase of total pressure head Fig. 78. 

is equal to the increase of pressure 
through the propeller disc, and hence the thrust of the propeller is 

1 
T = 2S I! (uI-u~) (2.2) 

Finally the momentum equation for the whole flow, both inside and 
outside the slipstream, is 

T - (PI - Po) 0 = SI I! u1 (u1 - V) - (0 - SI) I! u2 (V - u2 ) (2.3) 

and the increase of pressure in the wake is 
1 

PI-PO = 21! (V2-u~) (2.4) 

T 
Now let i=--

Se P 
(2.5) 

and on eliminating the velocities u2 and u1 by means of (2.1), expression 
(2.2) for the thrust becomes 

20" V2Si (0 - SI)2 = u2 S2 (0 - SI)2 - (VO - US)2 Si 
= 2 uS (uS - V SI) 0 (0 - SI) - (~tS - V SI)2 0 2 

and similarly expression (2.3) for the thrust becomes 

20" V2SS1 (0 - SI)2 = 2 uS (uS - V SI) (0 - SI)2 
- 2 (V 0 - uS) (u S - V SI) SI (0 - SI) 
+ [V2 (0 - SI)2 - (VO - US)2] OS, 
= 2uS (uS- V S1) 0 (0 -S1)-(US- V S1)20S1 

Eliminating in turn the two terms on the right hand sides by suitable 
combinations of these two equations for the thrust coefficient 0", the 
following pair of equivalent equations is obtained 

20" V2S1 (S-S1) (0-S1) = (uS- VS1)20 } 
0" V2S1 (OS - Si) = uS (uS - V S1) 0 (2.6) 



298 L IX. THE EXPERIMENTAL STUDY OF PROPELLERS 

The equivalent free air speed V' has been defined as the speed which 
corresponds to the same values of the thrust T and of the axial velocity u. 

But in free air T = 2 S e u (u - V') 

or (2u- V')2 = 2 T + V'2 
eS 

= 2-r V2 + V'2 

and putting V=nV' 

x2 = I + 2-rn2 

tOOr~~E::3===+==~~~=~ L (/'=0.0. 
v' 

at. 

Mor----+----+---~~--_F~a~~~--~ 

M~~--~a~5----f.~.0~--~f.5~--~2~0----~~~~ 

1/= ptH~vi! 
Fig. 79. 

(2.7) 

the free air condition be­
comes 

(x + I) V 
u=--2n- (2.8) 

Substituting these ex­
pressions for -r and uj V in 
terms of x and n in (2.6), 
and writing also for sim-

plicity S = IX C} (2.9) 
Sl=aS 

the wind tunnel relationships become respectively 

4 (X2 -I) a (1- a) (I-IX a) = (x + 1-2 n a)2 

and 2(x-I)a(I-lXa2)=(x+I-2na) 

(2.10) 

(2.11) 

Squaring the second of these equations and dividing by the first, an 
equation is obtained to determine x as a function of IX and a, 

x-I (I-a) (1- cw) 
x + 1 a(i _-~ a2)2 ~ (2.12) 

Then from the second wind tunnel equation (2.U) 

n= I + (X-I)IX02- (2a-;1~X-l (2.13) 

and finally from (2.7) 
x 2-1 

i =2n2" (2.14) 

By means of these last three equations the fraction n, which is the 
ratio of the wind tunnel speed V to the equivalent free air speed V', 
can be determined as a function of IX, the ratio of the disc area S to 
the tunnel area C, and of -r, the thrust coefficient of the propeller 
referred to the wind tunnel speed V. The method of calculation is to 
assume a series of suitable values of a and to calculate in turn x, n, and -r. 
Numerical values obtained from these equations are given in Table 26 
and are shown graphically in Fig. 79 for a suitable range of the para­
meters IX and -r. The usual size of propeller tested in a wind tunnel with 
closed working section corresponds to a value of IX of 0.15 approximately. 
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Since rx is usually small, an approximate formula for the equivalent 
free air speed can be derived from the general equations by retaining 
only the first power of rx. On this basis (2.12) gives 

x-I I-a 
x+ 1 =-a-[l +rxa(2a-1)] 

or x(2a-1)=1+2rxa2 (1-a) 

TA.BLE 26. Values of V'/V. 

.= 0.5 1.0 1.5 I 2.0 I 2.5 

ex. = 0.05 0.992 0.985 0.980 0.978 0.975 
0.10 0.983 0.971 0.962 0.954 0.949 
0.15 0.973 0.956 0.942 0.930 0.921 
0.20 0.963 0.940 0.922 0.906 

I 
0.893 

0.25 0.956 0.924 0.899 0.880 0.865 

Then from (2.13) n-1 =rxa2[22(!=~)]-rxa(l-a) 
ex. a(l- a) 
"2(1-1-

x2 -1 
=rx 4X 

and to the order of accuracy required in this equation 
x2 =1+21' 

Hence n - 1 = -~ • 
2 11'1 + 2. 

3.0 

0.973 
0.943 
0.912 
0.882 
0.851 

or finally ~ = 1-~ • (215) 
V 2 VI + 2. . 

If l' = 3.0 and 0: = 0.25, this approximate formula gives the value 
"V' = 0.858 V, which differs by less than 1 per cent from the true value, 
and thus the approximate formula is sufficiently accurate for most 
practical applications. 

This method of correcting the characteristics of a propeller determined 
in a wind tunnel has proved quite satisfactory in practice, but unfortun­
ately it cannot be applied when the propeller is operating in front of 
a body. Reverting, however, to the problem of operating in a wind 
tunllel, the mean axial velocity u' in the plane of the propeller but 
outside its circumference is given by the equation 

u' (O-S) = VO-uS 

l-ex.~ 
orapproximately ~ - 1-: =1-0:(;-1) 
Assuming rx to be small, the value of u/V in this equation may be 
estimated from free air conditions which give 

1'=2;(;-1) 
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or ~ = ! (1 + VI + 2 r) 
and hence the equation for the velocity u' becomes 

> ~ = 1-; (vr+2r-1) (2.16) 

and on expanding the expressions (2.15) and (2.16) in ascending powers 
of T, which is generally a small quantity, it appears that u' and V' are 
equal to the first power of T and differ only in the higher powers. This 
analysis suggests that a good approximation to the equivalent free air 
speed can be obtained by measuring the axial velocity in the plane 
of the propeller near the wall of the tunnel. The application of this 
method has proved to be satisfactory for a propeller alone and also 
for the combination of a propeller and body, and the accuracy of the 
method has been confirmed by a special series of experiments 1 in a four 
foot and in a seven foot tunnel. 

Passing next to the problem of a propeller in a wind tunnel of the 
open jet type, the condition to be satisfied is simply that the pressure 
is constant over the boundary of the jet. The application of the axial 
momentum theory would suggest that there is no tunnel constraint on 
the characteristics of a propeller tested in an open jet, while a closer 
analysis of the problem 2 reveals a correction which is of the order (1.2 

and is small compared with the corresponding correction in a tunnel 
with a closed working section. This conclusion is fully substantiated 
by experimental evidence 3. Tests of a propeller in jets of decreasing 
diameter showed no tunnel constraint until the ratio of propeller diameter 
to jet diameter rose to 0.67, and another series of tests with propellers 
of increasing diameter showed no appreciable constraint even when the 
ratio rose to 0.73. Thus in an open jet it is possible to test, without 
any correction, a propeller whose diameter is 0.6, or perhaps even 0.7, 
of the diameter of the jet, while an appreciable correction must be 
applied if the diameter of a propeller tested in a closed wind tunnel 
is 0.4 of the diameter of the tunnel. 

No crucial experimental test of the theoretical formula for the 
constraint in a closed wind tunnel has been made. Comparative tests 4 

of one propeller in a closed tunnel and in an open jet showed excellent 

1 LOCK, C. N. H., and BATEMAN, H., The Effect of Wind Tunnel Interference 
on a Combination of Airscrew and Tractor Body. Br. A.R.C. R. and M. 919, 
1924. 

2 GLAUERT, H., and LOCK, C. N. H., On the Advantage of an Open Jet Type 
of Wind Tunnel for Airscrew Tests. Br. A.R.C. R. and M. 1033, 1926. 

3 DURAND, W. F., Experimental Research on Air Propellers. U.S. N.A.C.A. 
Technical Report No. 14, 1917. 

4 TOWNEND, H. C. H., and WARSAP, J. H., Tests of a Metal Airscrew in a Closed 
Tunnel for Comparison with American Tests in an Open Jet Tunnel. Br. A.R.C. 
R. and M. 1137, 1927. 
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agreement, and similar tests 1 of a propeller in a closed tunnel and on 
a whirling arm also confirm the accuracy of the wind tunnel tests, but 
in neither case was the tunnel correction sufficiently large for the 
experiments to provide a check on the accuracy of estimating the 
magnitude of the constraint. The method of correction has, however, 
proved to be entirely satisfactory for the size of propeller which it is 
customary to test in a closed wind tunnel. 

3. Thrust and Torque Distribution. The most direct method of 
measuring the distribution of the aerodynamic force along the blade 
of a propeller is the determination of the pressure distribution around 
a number of sections suitably spaced along the blade. This investigation 
is very laborious, and the experimental technique is complicated owing 
to the necessity of transmitting the pressure from each observation point 
through the rotating boss of the propeller to a suitable manometer. 
Moreover the pressure distribution determines only one part of the 
aerodynamic force and gives no measure of the tangential frictional 
force on the blade section. Owing to this defect the pressure distribution 
cannot be used to determine the torque of the propeller, but it does 
give a good estimate of the thrust of the propeller and its distribution 
along the blade. The chief value of the experiment, however, is the 
confirmation which it provides of the assumption, implicit in the develop­
ment of the general propeller theory, that the blade sections may be 
regarded aerodynamically as equivalent to airfoil sections in uniform 
linear motion. Owing to the complexity of the experiment it has been 
adopted only for a few special investigations, and the distribution of 
the aerodynamic force along the blade of a propeller is determined more 
generally by other experimental methods. 

The thrust of a propeller is obtained by imparting an increased 
pressure to the air as it passes through the propeller disc, and hence 
the thrust of the propeller can be determined by measuring this increase 
of pressure. Experimentally it is more convenient to measure the total 
pressure head rather than the static pressure, and this is the method 
usually adopted. If p' is the increase of pressure at any radius rand 
if w is the angular velocity imparted to the air immediately behind 
the propeller disc, then the increase of total pressure head 2 is 

H1-Ho = p' + ! e w2 r2 (3.1) 

and the corresponding element of thrust is 

dT 2 ' ---a:r = nr p 

1 Reproduced in Br. A.R.C. R. and M. 1033, 1926. 
2 See III 1. 

(3.2) 
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Thus the increase of total pressure head is slightly greater than the 
increase of static pressure, but the difference is negligibly small in 
practice. 

The experimental application of this method of investigation is 
simplified by the fact that the original total pressure head Ho can be 
measured at any convenient point in front of the propeller, but the 
measurement of the total pressure head HI requires more care. If the 
observation is made at some distance behind the propeller, it is necessary 
to obtain an estimate of the contraction of the slipstream in order to 
relate the observed pressure to the corresponding section of the propeller 
blade. If, on the other hand, the observation is made immediately 
behind the propeller disc, the pitot tube may fail to record a correct 
mean value owing to the sudden fluctuation of the velocity and direction 
of the flow as the propeller blades pass in front of the pitot tube. The 
method of experiment relies on the fact that the reading of a pitot 
tube is not affected by a moderate angle of yaw, but immediately behind 
the propeller disc the fluctuations of angle may be excessive. In spite 
of these difficulties the method appears to give satisfactory results, 
and the integrated values of the thrust along the blade agree well with 
the direct measurements of the thrust. 

An analogous method of investigation can be used to determine the 
distribution of torque along the blade of a propeller. If u is the axial 
component and if w or OJ r is the rotational component of the velocity 
immediately behind the propeller disc, the element of torque is 

dQ 
~ = 2nr2 (!uw (3.3) 

The determination of the torque therefore depends on the measurement 
of the mean value of the product uw, and if W is the resultant velocity 
and 1jJ is the angle of yaw, this product is 

uw = ; W 2 sin21jJ (3.4) 

The value of this product can be determined experimentally by means 
of a yawmeter, and two methods are available:-

( 1) To measure the difference of pressure between the two arms of 
the yawmeter. 

(2) To rotate the yawmeter until the pressure difference is zero, 
and to determine the velocity W by means of a pitot tube. In a steady 
stream both methods would be satisfactory, but owing to the fluctuations 
of velocity and angle which occur behind a propeller, the first method 
is satisfactory only if the pressure recorded by the yawmeter is pro­
portional to W2 sin 2 1jJ, and the second method only if a pitot tube 
records a pressure proportional to W2 cos 21jJ. Actually the calibration 
of a pitot tube does not satisfy this latter condition and so the second 
method is unsatisfactory. The first method has, however, been used 
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successfully! by designing a suitable yawmeter with tubes inclined at 
± 45 0 to the axis of the instrument. Thus it is possible to obtain 
a direct measurement of the distribution of torque along the blade of 
a propeller. The method, however, suffers from the same difficulties 
as the determination of the thrust distribution, and due allowance must 
be made for the contraction of the slipstream in assigning the measured 
element of torque to the appropriate element of the propeller blade. 

4. Scale Effect. Wind tunnel tests of model propellers, suitably 
corrected when necessary for the constraint of the tunnel walls, have. 
hitherto been the principal experimental method of studying the char­
acteristics of different types of propeller. In general the tip speeds of 
the model propeller and of the corresponding full scale propeller are 
not sufficiently high to introduce any important change in the character­
istics due to the compressibility of the air, but owing to the lower tip 
speed and smaller diameter of the model propeller there may be a notice­
able change due to scale effect. In order that the model should correctly 
reproduce the characteristics of the full scale propeller it is necessary 
to produce ~he same Reynolds' number or viscosity parameter, which 

is defined by the equation N", = D:- (4.1) 

Clearly this condition cannot be fulfilled, since the model has a smaller 
radius and tip speed than the actual propeller, while the kinematic 
coefficient of viscosity is not changed. 

A propeller consists essentially of a number of radial blades whose 
cross-sections have the form of airfoils, and the scale effect of a propeller 
is therefore intimately related to the scale effect of an airfoil. Now the 
scale effect of a typical airfoil section shows the following characteristics: 
as the Reynolds' number increases, the drag coefficient of the airfoil 
decreases and the lift coefficient remains sensibly constant, except at 
very low angles of incidence where it may increase slightly, and near 
the critical angle where it usually increases steadily but sometimes 
increases to a maximum and then decreases. These changes are most 
noticeable at relatively small values of the Reynolds' number and may 
disappear almost completely on approaching the values which occur 
with actual aircraft. The changes in the characteristics of the airfoil 
sections lead to similar changes in the characteristics of a propeller. 
Fig. 80 shows a rather extreme example2 of the scale effect on a propeller 
tested at Reynolds' numbers of O.8xI06 and I.4xl06• The scale effect 
shown in this figure is very large, but the lower value of the Reynolds' 

1 DOUGLAS, G. P., and COOMBES, L. P., The Measurement of Torque Grading 
Along an Airscrew Blade. Br. A.R.C.R. and M. 992, 1925. 

2 Ergebnisse der Aerodynamischen Versuchsanstalt zu GOttingen, m. Lief., 
p.125. 
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number is unusually low, since a typical full scale value is 20 X 106 and 
a value of at least 2 X 106 is usually attained in model tests. The experi­
mental result does, however, demonstrate the importance of making 
the scale of the model tests as high as possible. 

0,0 The construction of the large 
1J propeller research tunnel of the 
0.7 National Advisory Committee 

o 0.05 0.10 o.f5 

for Aeronautics has eliminated 
almost entirely the problem of 
scale effect, since it is possible 
to test the full scale propellers 
at a speed very little short of 
that realized in flight. The com­
parison of a propeller tested in 
this tunnel 1 with similar tests 
of a model propeller is shown 
in Figs. 81 and 82. The scale 
effect is small but noticeable, 
and is consistent with the type 
of scale effect which is ex­
perienced by the airfoil sections. 

Fig. 80. 
Fig. 81 shows that the power 

coefficient increases with the scale of the test, particularly at low values 
of the advance-diameter ratio J owing to the increase of the lift coeffi­
cient of the airfoil sections near the critical angle, and also at larger 
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values of J owing to the 
increase of the lift coeffi­
cient near the angle of zero 
lift of the airfoil sections. 
In the intermediate region 
a small increase of the 
lift coefficient seems to be 
balanced by a decrease 
of the drag coefficient. 
Fig. 82 shows the corre­
sponding scale effect on 

f.0 J f.2 the thrust coefficient and 
Fig. 81. efficiency of the same pro­

peller, and it is to be noted that the increase of the thrust coefficient 
with scale in the intermediate range, where the power coefficient was 
constant, is due to the fact that the small increase of the lift coefficient 

1 WEICK, F. E., Full Scale Tests of Wood Propellers on a VE-7 Airplane 
in the Propeller Research Tunnel. U.S. N.A.C.A. Technical Report No. 301, 
Washington, 1928. 
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and the small decrease of the drag coefficient of the airfoil sections 
now combine to increase the thrust coefficient. The final result of the 
scale effect is that the maximum efficiency of the propeller is increased 
by 2 per cent and that the experimental mean pitch-diameter ratio 
at which the thrust vanishes is increased from 1.10 to 1.16 owing to 
the increase of the lift coefficient of the airfoil sections near the angle 
of zero lift. 

The propeller whose characteristics are shown in Figs. 81 and 82 
has also been tested in flight and the results agree as reasonably as 
can be expected with the tests a1B 

in the propeller research tunnel cr 
when allowance is made for the 

• rull SctJle 

~ 0.1'1 
difficulty of obtaining reliable 
results in flight. The flight tests 
do, however, tend to give rather 0.13 

higher values of the thrust 

a Hodel 

"-
-....... 

and power coefficients than the afO 

wind tunnel tests, and this dis­
crepancy can be ascribed to a 0.08 

difference in the experimental 
conditions which occurs almost 0.0 

invariably in such comparative 
tests. A propeller is usually 0.0 

tested in a wind tunnel with 
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speeds the axis of the propeller is inclined at an angle to the direction 
of motion, and wind tunnel tests, which are discussed more fully in 
Chapter XII have shown that the effect of this inclination of the axis 
is to increase the thrust and torque of the propeller. Flight tests of a 
propeller can therefore be compared rigorously only with special wind 
tunnel tests in which the inclination of the axis of the propeller is 
varied in the same manner. 

Since the scale effect of a propeller is due essentially to the scale 
effect of the airfoil sections which form its blades, the Reynolds' number 

flR2 
N v=--

1l 

is not an entirely satisfactory parameter, and for some purposes it is 
more significant to consider an alternative parameter 

flRe 
N~ = (4.2) 

1l 

Aerodynamic Theory IV 20 
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where e is the maximum chord of one of the blades. The principle of 
dynamical similarity can be applied strictly only to two propellers 
which are geometrically similar in every respect, and it is then immaterial 
which of the alternative forms of the Reynolds' number is used. The 
general theory of the propeller, however, has suggested that, apart from 
a small effect due to losses at the tips of the blades, the characteristics 
of a propeller depend only on the product Be and not on the number 
of blades B or on the chord c independently. If now two propellers 
with different numbers of blades but the same value of Beare considered, 
the propeller with the larger number of blades will have the smaller 
value of the parameter N~ and will therefore operate effectively at 
a smaller scale. It may be anticipated therefore that, of two such 
propellers, the one with the larger number of blades will tend to have 
a lower maximum efficiency and a lower experimental mean pitch­
diameter ratio, and this scale effect may more than balance the effect 
of the tip losses which would make the maximum efficiency increase 
slightly with the number of the blades. This scale effect complicates 
the interpretation of experimental results designed to test the validity 
of the theoretical suggestion that the characteristics of a propeller depend 
essentially on the product Be rather than on B or c separately, and the 
observed variation 1 of the experimental mean pitch-diameter ratio is 
to be ascribed purely to scale effect. 

In this discussion of scale effect the terms "full scale" and "model" 
have been used rather loosely to describe the variation of scale between 
the actual propellers used in flight by modern aircraft and the smaller 
propellers which are tested in ordinary wind tunnels of diameter 7 ft. 
at most. To obtain a more precise conception of the difference of scale, 
it may be noted that with airfoils a Reynolds' number c Vlv of 106 is 
a convenient mark for dividing the usual model and full scale ranges, 
and that the important variation of the characteristics of an airfoil 
with scale occurs mainly in the model range so defined. If a Reynolds' 
number of 106 is attained in the test of an airfoil, it is improbable that 
there will be any important scale effect at the higher values which may 
occur with larger or faster airplanes. Turning now to the propeller 
and considering a typical section of a blade at 0.7 of the extreme 
radius, the Reynolds' number corresponding to the arbitrary dividing 
point chosen for the airfoils is 

0.7 [JEc = 106 

11 

and since the chord is usually of the order of one sixth of the radius, 

1 LOCK, C. N. H., and BATEMAN, H., Experiments with a Family of Airscrews. 
Analysis of the Family of Airscrews by Means of the Vortex Theory and Measure­
ments of Total Head. Br. A.R.C. R. and M. 892, 1923. 
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the Reynolds' number separating the model and full scale range of 
operation of a propeller may be taken to be approximately 

(4.3) 

If this value is attained, important changes of the propeller characteristics 
with a further increase of scale are improbable, but model tests usually 
attain a Reynolds' number of the order of 2 X 106 only and do not there­
fore eliminate the possibility of further scale effect. 

5. Compressibility Effect. The characteristics of a propeller at a 
definite rate of advance depend on the viscosity and on the com­
pressibility of the air. The effect of the viscosity, which can be represented 
in terms of the Reynolds' number of the flow, has been discussed in the 
preceding section, and it is now necessary to consider the effect of the 
compressibility of the air. In an incompressible fluid any increase of 
pressure is transmitted instantaneously throughout the whole fluid, but 
in a compressible fluid the disturbance travels with a definite speed, 
which is the speed of sound in the fluid. The speed of sound can therefore 
be used as a measure of the compressibility of the fluid, and in air this 

speed is approximately 66 Va ft. per sec., where () is the absolute 
temperature in the Centigrade scale. At the standard ground temperature 
of 15° C, the speed of sound is ll20 ft. per sec. 

The effect of the compressibility becomes noticeable only when the 
speed of a body through the air is an important fraction of the speed 
of sound. Thus, for example, the dynamic pressure recorded by a pitot 
tube, which is 1/2 e V2 at low speeds, increases slowly at higher speeds 
owing to the effect of the compressibility of the air, and if this effect 
is ignored the speed deduced from the dynamic pressure exceeds the 
true speed by an amount which increases from 0.5 per cent at 150 miles 
per hour to 2 per cent at 300 miles per hour. This examplE) suggests 
that the effect of compressibility can be safely neglected at the speeds 
which are usually encountered by the wings of an airplane, but may 
become important at the higher speeds experienced by the blades of 
a propeller. 

The effect of the compressibility of the air on a propeller can be 
estimated from the effect on the airfoil sections of its blades. Theory 
is of little assistance in determining this effect, but it does suggest that 
the effect of the compressibility becomes apparent first as an intensific­
ation of the force experienced by the airfoil, the lift coefficient increasing 
with the speed as (1- n2)-lJ2, where n is the ratio of the speed of the 
airfoil to the speed of sound. This approximate formula is valid only 
at comparatively low speeds and breaks down as soon as the local 
velocity at any point of the airfoil rises to equality with the speed of 
sound. At higher speeds it is necessary to rely wholly on experimental 

20* 
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results. These experimental results have been obtained either by direct 
tests of very small airfoils in a high speed jet, or by analyzing the 
o bserved distribution of thrust and torque along the blade of a model 
propeller of low pitch rotating with a high tip speed. Unfortunately 
the exact significance of these results is by no means certain. The direct 
measurements are made with airfoils extending across a diameter of 
the jet and, owing to the limited extent of the jet, they do not correspond 

a&.----.----,----,----, 
it lin &efficienl 
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Fig. 83. 
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strictly to two-dimensional motion 
or infinite aspect ratio, but they do 
provide a valuable indication of the 
variation of the airfoil characteristics 
at high speeds. The derivation of 
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the airfoil characteristics from the test of a model propeller is even 
more complex, the experiments are difficult to make, and the analysis 
depends on the assumption that the ordinary propeller theory, which 
has been ~eveloped for an incompressible fluid, may be used to analyze 
the behavior of a propeller whose tip speed exceeds the speed of sound. 

In spite of these uncertainties the general nature of the variation 
of the characteristics of an airfoil is now fairly well known and may 
be summarized as follows. The first effect of increasing speed is a gradual 
increase of both the lift and the drag coefficients, but with a further 
increase of speed the lift coefficient begins to fall and the drag coefficient 
increases more rapidly. These features may be illustrated by reference 
to the tests of airfoils in a high speed jet!. Fig. 83 shows the variation 
of the lift coefficient of a typical airfoil, and Fig. 84 shows the corre­
sponding values 'Of the drag coefficient. These figures illustrate the slow 
increase of the lirt and drag coefficients at the lower speeds, followed 

1 BRIGGS, L. J., and DRYDEN, H. L., Aerodynamic Characteristics of Twenty 
Four Airfoils at High Speeds. U.S. N.A.C.A. Technical Report No. 319, 1929. 
See also Division I, Part II. 
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bya drop of the lift coefficient and a rapid rise of the drag coefficient. 
The increase of the lift coefficient at the lower speeds has also been con­
firmed in flight by pressure plotting over one section of a propeller bladel. 

The model experiments also show that airfoil sections of the 
Joukowski type are more efficient than the conventional propeller 
sections with flat undersurfaces, and that thin sections maintain their 
lift to higher speeds than thick sections. Fig. 85 shows the variation 
of lift coefficient at one angle of incidence for typical airfoil sections 
of varying thickness (0.04 c, 0.08 c, and 0.12 c), and Fig. 86 shows 
the variation of the minimum 
drag coefficient of these three air- 0.'00 

foil sections and of three con- C'f) Minimum Drag Coefficient 

ventional propeller sections. 
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The behavior of a propeller rotating at high tip speeds can be 
estimated by considering the effect of these changes in the characteristics 
of the airfoil sections. At comparatively low speeds the lift and drag 
coefficients both increase, and in consequence the torque coefficient of 
the propeller also increases, while the thrust coefficient remains sensibly 
constant since the increases of the lift and drag coefficients produce 
opposite effects on the thrust of the propeller. This conclusion has been 
confirmed by flight tests 2 which showed no change of the thrust coefficient 
and an increase of the torque coefficient. At higher speeds the thrust 
coefficient would decrease owing to the decrease of the lift coefficient, 
but this collapse can be avoided by using thin blades of good section, 
and experiments in the propeller research tunnel 3 have shown no com-

1 JONES, E. T., The Distribution of Pressure Over a Section of an Airscrew 
Blade in Flight and the Variation of Lift Coefficient with the Speed of the Section. 
Br. A.R.C. R. and M. 1256, 1929. 

2 JENNINGS, W. G., Full Scale Determination of the Effect of High Tip Speeds 
on the Performance of an Airscrew. Br. A.R.C. R. and M. 1173, 1928. 

3 WEICK, F. E., Full Scale Tests of a Thin Metal Propeller at Various Tip 
Speeds. U.S. N.A.C.A. Technical Report No. 302, 1928. 
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pressibility effect on a propeller with thin blades. In practice, however, 
the use of thin blades may introduce the danger of flutter of the blades, 
and some increase of the torque coefficient and some decrease of the 
thrust coefficient must be anticipated at high speeds. 

CHAPTER X 

HELICOPTER AIRS CREWS 

1. Introduction. A helicopter may be defined as a type of aircraft 
in which the rigid lifting wings of a conventional airplane are replaced 
by one or more lifting airscrews. The primary object of a helicopter 
is to obtain vertical ascent, but if the helicopter ever becomes a practical 
type of aircraft it must also be capable of horizontal flight at a reasonable 
speed. The conception of the helicopter is very old; Leonardo da Vinci 
appears to have devoted some attention to its possibilities and to have 
experimented with simple models, and the last 150 years have seen 
a succession of experiments both with model and with full scale heli­
'Copters. Frequently the helicopters have succeeded in rising from the 
ground, but in general the stability and lateral control have been 
inadequate to ensure a safe flight of any prolonged duration. Moreover 
the reserve of power was usually small and the helicopter was capable 
of rising only a few feet from the ground. 

The scope of the present discussion will be confined to the character­
istics of the helicopter airscrew, and no attempt will be made to discuss 
the design, stability and control of the complete aircraft. A helicopter 
airscrew, when supporting the aircraft in the air, is merely a propeller 
operating at the condition of zero rate of advance, but to fulfill its 
specialized functions the helicopter airscrew must be designed with a large 
diameter and with a small pitch-diameter ratio, and owing to these 
special features it is possible to make some simplifications in the analysis 
of its characteristics. The thrust and torque of the helicopter airscrew 
will be expressed in terms of the same non-dimensional coefficients 
which have been used for the propeller, and as defined by the equations 

T= TcnR2eQ2R2 } 

Q = Qc n R2 e Q2 R3 
(l.l) 

but the efficiency of propulsion is now essentially zero and ceases to 
have any useful application. The merit of a helicopter airscrew can, 
however, be defined by a suitable non-dimensional parameter which is 
obtained by considering the relationship between the thrust of the 
airscrew and the power necessary to drive it. The thrust of the airscrew 
is equal to the weight which can be supported, and the power absorbed 
is the energy which must be expended to achieve this result. The ratio 
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of the thrust to the power does not provide a suitable parameter, since 
T T Tc/Qc 
p= QQ =QT (1.2) 

and the ratio T/ P varies inversely with the tip speed Q R for a given 
design of airscrew. A suitable non-dimensional form can however, be 

obtained by writing M = ~ -V n:2 e = ~~2 (1.3) 

and the parameter M so defined will be called the figure of merit of the 
helicopter airscrew. The introduction of a coefficient of this type was 
due originally to C. Renard 1, but his definition involved an empirical 
value for the drag of a flat plate. The figure of merit is inversely 
proportional to the power required 
to lift a weight T by means of ~o 
a helicopter airscrew whose disc 
loading is T/nR2. Thus an increase 0.75 

of the figure of merit implies a 
reduction of the power required to 0.50 

lift a given weight, or an increase 
of the weight which can be lifted 
by use of an engine of given power. 0.25 

Also the form of the expression 
(1.2) shows that, with a helicopter 
airscrew of given design, the weight 
per horse power increases as the 
tip speed decreases, while the ex­
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pression (1.3) shows that the power to support a given weight decreases 
as the radius increases. It is therefore advantageous to use a helicopter 
airscrew of large diameter rotating with a low angular velocity. 

The horizontal flight of a helicopter can be achieved either by means 
of a propeller as in a conventional airplane or by inclining the axis of 
the helicopter airscrew to give a horizontal component of thrust. In 
either case the helicopter airscrew now has a translational velocity at 
right angles to its axis of rotation, and it was noticed by H. S. Maxim 2 

that this translational velocity increased the thrust of the helicopter 
airscrew for a given power input. This increase of the figure of merit 
was confirmed experimentally by D. Riabouchinsky 3 and is an important 
factor in the horizontal flight of a helicopter. Riabouchinsky's experi­
mental results are shown in Fig. 87. Owing to the translational motion 

1 Sur la qualite des helices sustentatrices. Comptes Rendus, Vol. 137, p.970, 
1903. 

2 Screw Propellers Working in Air. Aeronautical Annual, 1897. 
3 Recherches sur l'helice aerienne se mouvant dans un courant aerien dirige 

perpendiculairement it l'axe de l'helice. Bull. de l'Institut Aerodynamique de 
Koutchino I, 13, 1906. 
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the blades of the helicopter airscrew operate under different conditions, 
the advancing blade experiences a higher relative velocity than the 
retreating blade, and an aerodynamic rolling moment is experienced 
by the helicopter. In order to maintain equilibrium it is necessary to 
balance this rolling moment, and this result may be achieved by any 
one of the following systems, all of which have been tried in actual 
designs:-

(1) Two superimposed airs crews rotating in opposite senses about 
the same axis. 

(2) Two axes rotating in opposite senses about parallel axes. 

(3) Periodic variation of the blade angles during the course of each 
revolution. 

(4) Blades hinged at the root to allow an up and down flapping 
motion. 

The elimination of the rolling moment in the first two systems occurs 
automatically if the two airscrews give the same thrust and operate 
under similar conditions. In the third system the blade angle must be 
reduced where the relative velocity is high and conversely. Since the 
amplitude qf this variation will increase with the horizontal speed of 
the helicopter, it must be under the control of the pilot and will thus 
provide a form of lateral control of the aircraft. The fourth system 
operates in a similar manner but is automatic in its action: the blades 
are hinged close to the axis of rotation and hence no rolling moment 
can be transmitted to the aircraft. Where the relative velocity is high, 
the blade rises rapidly and thus reduces its effective angle of incidence, 
and the amplitude of this flapping motion also will increase with the 
horizontal speed of the aircraft. In discussing the horizontal motion 
of a helicopter airscrew it will be necessary to examine the details of 
these alternative systems in so far as they affect the figure of merit 
and the horizontal drag experienced by the helicopter. 

2. The Ideal Helicopter. If u is the axial velocity through the disc 
of the helicopter airscrew and if a' is the rotational interference factor, 
the momentum equations for the elements of thrust and torque are 

respectively d T = 4 n e u2 rdr 

and dQ = 4neuQa'r3dr 

Also the energy equation for the element is 

(l-a')Q dQ = udT 

Putting := ~~l 
-R 

(2.1) 
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dTc =4,u2 xdx I 
d Qc = 4 fl a' x3 d x 
(1 - a') a' x2 = fl2 

313 

(2.2) 

These are the three fundamental equations for determining the character­
istics of a helicopter airscrew by means of the momentum theory. 

The simplest case to consider is that in which the rotational motion 
of the slipstream is ignored. The angular momentum equation for the 
torque is then ignored and the analysis is based on the two equations 

d T = 4 n e 1t2 T dT 

QdQ = udT 

or, in the non-dimensional form, 

d T c = 4 fl2 X d x 
dQc = 4fl3 xdx 

The best distribution of axial velocity is obtained when fl is constant, 
as in the more general case of a propeller \ and on this basis 

Tc = 2 fl2 

Qc = 2 fl3 

and the figure of merit becomes 

M = y'2 = 1.414 (2.3) 

This value of the figure of merit is the highest which can possibly be 
obtained with any helicopter airscrew, since it neglects the additional 
energy losses which actually occur owing to the rotational motion of 
the slipstream and to the frictional drag of the blades. 

When the rotational motion of the slipstream is no longer neglected, 
the analysis must be based on the general momentum equations, (2.2). 
The optimum distribution of axial and rotational velocities will be 
considered shortly, but by analogy with the analysis for a propeller 
as developed in III 4 and III 5, it may be anticipated that this optimum 
distribution will not differ greatly from that determined by the condit,ion 

that 1 fl a' is constant along the blades. Writing 

where n is a constant, the third of (2.2) gives 

a' x2 = (I-a') n2 

and hence 

1 See II 3. 

, n 2 

a = n2 + x2 

n x2 

fl = n2 + x2 

(2.4 ) 
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Also 

and hence 
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dTc =4f-l2 x dx 
1 

TC = J 4f-l2 xdx 
o 

which gives after integration 1 

'5 1.'1. 

'" 
!,110 "-

2 n 2 (1 + 2 n 2 ) 1 + n 2 

Tc = 1 +n2 -4n4log~ (2.5) 

Ideal 

Finally the torque coefficient is 
obtained frolll (2.2) as 

'" " 1.3 
and hence 

tI f.3 

1.2'5 

'0 
o.Of 

n 2 0.0050 
Tc 0.0095 
M 1.380 

~ Optimum 

~Cbns~ 

ngUI of'Merit 

~ 

Qc = n Tc I 
M = v'~c 

(2.6) 

aoa a08 ao'l Tc ao'5 

NUlllerical values of the thrust 
coefficient and figure of lllerit 
are given in Table 27 and the 
curve of M against Tc is shown 
in Fig. 88. 

Fig. 88. 

TABLE 27. ft T-=-- a' constant. 

0.0100 0.0150 I 0.0200 0.0250 0.0300 0.0350 
0.0184 0.0266 0.0345 0.0419 0.0490 0.0558 
1.355 1.333 1.313 1.295 1.278 1.262 

The OptilllUlll distribution of the axial and rotational velocities can 
be deterlllined by the lllethod used in III 4. Starting frolll (2.2), the 
arbitrary increlllents of the thrust and torque coefficients are 

AdTc = 8f-lAf-lxdx 

Ad Qe = 4(a' Af-l + f-lAa') x3 dx 

and the increlllents of !t and a' are related by the equation 

(1-2a') Aa' X2 = 2f-lAf-l 

1 Since 
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The optimum distribution is determined by the condition that the ratio 
of the increments of thrust and torque shall be independent of the radial 
coordinate x, and this condition is obtained as 

p 2p, 
1- a' + 1 - 2 a' = constant (2.7) 

The analysis can now be pursued by expressing first fl and a', and then 
T e and Qc, in terms of this constant, but it becomes very complicated 
and the final results, which are shown in Fig. 88, differ very little from 
those derived from the previous simpler assumption. At a thrust coeffi­
cient of 0.050, which is very high for a helicopter airscrew, the optimum 
distribution gives a figure of merit only 0.6 per cent higher than the 
simpler assumption defined by (2.4), and hence this simple assumption 
suffices for all practical purposes. 

3. The Effect of Profile Drag. The additional loss of energy due to 
the frictional drag of the blades can be estimated quite simply by the 
method previously used for a propeller. The rate of loss of energy E is 
obtained from IV (2.6) as 

E = (J /j n R2 (! Q3 R3 (1 - a')3 f (911) 

and the values of f (911) are given in Table 5. As a further simplification 
the rotational interference factor a' will be ignored and the value of 
f (911) will be taken to be 0.250, since the value of tan 911 is rarely as large 
as 0.15 for a helicopter airscrew and is usually less than 0.10. Thus the 
non-dimensional coefficient of the rate of loss of energy due to the 
drag of the blades becomes simply 

1 
EC=4o/j (3.1) 

When the rotational interference factor a' is ignored, the best distribu­
tion of thrust over the disc of the airscrew is obtained with a constant 
value of the axial velocity u, and the thrust of the airscrew is 

T = 2n R2 (! u2 

or Te = 2 fl2 (3.2) 

Also the energy equation is 
QQ=uT+E 

and hence (3.3) 

Finally the figure of merit of the helicopter airscrew is obtained from 
1 Qe 1 a/j 

the equation M = T~J2 = V2 + 4 T~J2 (3.4) 

If the profile drag of the blades were zero, the figure of merit would 

be f2, and the effect of the profile drag is to reduce this figure of 
1 ,= a /j 

1 + (2 Te)3/2 

merit by the factor (3.5) 
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Numerical values of the factor C are given in Table 28. If a helicopter 
is designed with two coaxial airscrews rotating in opposite directions, 
the rotational motion in the slipstream can be avoided and the figure 

of merit should approximate 12 c. More generally, when the rotational 
motion occurs, the figure of merit previously obtained and given in 
Table 27 must be reduced by the factor C to allow for the effect of the 

TABLE 28. Values of C. 

f.00'1--""'~~7""~=----+---1------i 
ao= 0.0010 I 0.0020 I 0.0030 

Tc = 0.005 0.500 0.333 0.250 
0.010 0.738 0.586 0.485 
0.020 0.889 0.800 0.728 

EffecI of ProfTIe /Jf'([g 0.030 0.936 0.881 0.830 
0.040 0.958 0.919 0.882 

a01 a03 005 0.050 0.969 0.941 0.913 
Fig. 89. 

profile drag. The numerical values of the figure of merit estimated in 
this manner are given in Table 29 and are shown graphically in Fig. 89. 
These curves show that the effect of the profile drag is most important 

at small values of the 
TABLE 29. Values of M. thrust coefficient, and that 

Tc = 0.005 
0.010 
0.020 
0.030 
0.040 
0.050 

o I 0.0010 I 0.0020 0.0030 to obtain a high figure 
I of merit it is necessary 

1.393 
1.378 
1.353 
1.330 
1.307 
1.285 

0.696 
1.017 
1.203 
1.245 
1.252 
1.245 

0.464 
0.808 
1.082 
1.172 
1.201 
1.209 

0.348 
0.669 
0.985 
1.l04 
1.153 
1.173 

to use either an airscrew 
with a large thrust coeffi­
cient, which implies an 
airscrew of large solidity, 
or a well designed air­
screw of small solidity. 

Experimental values of the figure of merit obtained with different 
designs of helicopter vary widely, and the highest recorded value appears 
to be that claimed for the Pescara helicopter l . The experimental results 
indicate a figure of merit of 1.26, obtained in association with a thrust 
coefficient of 0.064 by the use of a multiple airscrew of very large solidity. 
The helicopter comprised two coaxial biplane airscrews rotating in opposite 
directions, and the figure of merit therefore appears to be reasonably 
consistent with the theoretical estimates. 

4. Blade Element Theory. The detailed calculation of the performance 
of any given helicopter airscrew can be made on the lines of the usual 
propeller calculations, but owing to the fact that the pitch-diameter 

1 Sur les resultats des essais recents d'un helicoptere. Comptes Rendus, Vol. 172, 
p. 845, 1921. 
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ratio of the airscrew is always small, it is possible to simplify the analysis 
in several ways and to obtain approximate formulae for the figure of 
merit. By the use of such approximations H. Glauert 1 has determined 
the figure of merit for a helicopter airscrew of constant chord and blade 
angle, and for one of constant pitch; and O. Flachsbart 2 has determined 
the best distribution of the thrust along the blades to obtain the highest 
figure of merit. Flachsbart's analysis shows that the figure of merit 
obtained under the best conditions does not differ appreciably from that 
obtained when the thrust is uniformly distributed over the disc of the 
airscrew, and it will therefore suffice to examine the analysis when this 
condition is satisfied. 

The momentum equation for the element of thrust is 
dT 
- = 4n n u 2 r (4.1) d l' 0: 

and the condition of uniform distribution of thrust over the disc of the 
airscrew implies that the axial velocity u has a constant value. Also 
the blade element equations 3 for the thrust and torque may be expressed 
in the approximate forms, assuming cp to be small, 

dT = -LBc n Q2 r2CL (4.2) 
d r 2 0: 

dQ 1 . 
and rrr = 2 BceQ2r3 (Cn + cpCL) 

1 
= 2: B ceQ r2 (Q r C n + u C L) (4.3) 

On integrating (4.1), the thrust is obtained as 

T = 2n R2 e u2 

or Tc=2fJ2 

as in 2. 
Also (4.3) for the torque becomes 

Q d Q = d T (Qr Cn + u) 
dr dr CL 

and if the drag-lift ratio C nlC L has the constant value B along the blade 
this equation can be integrated at once to give 

4 
QQ = 3Bn R3 eu2Q +2n R2(!U3 

or 

Finally the figure of merit is obtained as 

V2 4 e 
¥= 1 + 3 V2T-';- (4.4) 

1 On the Vertical Ascent of a Helicopter. Br. A.R.C. R. and M. 1132, 1927. 
2 Theorie der Hubschraube. Zeitschr. f. Flugtechnik u. Motorl. 19, 177, 1928. 
3 See VI 1. 
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This result may be compared with the previous formula (3.4), which 

. 12 (J{) 
gIves M = 1 + (2 Tc)3 12 (4.5) 

and, although the two expressions differ in form, it can be shown that 
they are approximately equivalent. Turning to (4.2) and integrating 
on the assumption of a constant chord c and a mean value of 0 L along 
the blade, the thrust is 

or 

tOO 

0.75 

/ 
V 

/ 

/ 
o 

1 
T= (fBceQ2R30L 

1 
TC=(fUOL 

~ 
f..---"'1 

0/ 
V 

oEXper(mental ~'fue8 

(4.6) 

where (J is the solidity B cln R of 
the airscrew. Using this result 
and remembering that fJ is half 
the mean drag coefficient or 
1/2 e Ov formula (4.5) becomes 

12 =l+~_e_ 
M 2 12Tc 

and the second term in this ex-
pression is 9/8 times the corre-

aooa f:f:U:, coJ,::m a008 at)fO sponding term in the formula 
(4.4). Thus the two methods of 
calculation lead to approximately 

the same results, but the figures of merit determined from (4.4) according 
to Flachsbart's analysis are slightly higher than those calculated in 
the previous section and shown in Fig. 89. 

Fig. 90. 

The validity of the approximate analysis is confirmed by the 
comparison 1 of theory and experiment shown in Fig. 90, where a calcul­
ated curve of figure of merit against thrust coefficient is compared 
with the corresponding experimental points for an airscrew of solidity 
0.09 with blades of constant chord and blade angle. The agreement 
is quite good and shows that the theory is able to represent the experi­
mental results reliably. 

5. Horizontal Motion. Hitherto the helicopter airscrew has been 
considered as rotating about its axis without any translational motion 
relative to the general mass of air, thus representing the condition when 
the aircraft is hovering at a fixed point. The vertical ascent of a helicopter 
requires no special study since the airscrew then has a slow motion along 
its axis and its performance can be estimated by the usual methods of 
propeller theory. The horizontal motion of a helicopter however, 

1 Taken from Br. A.R.C. R. and M. 1132, 1927. 
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introduces some new features into the analysis 1. In general the horizontal 
flight of a helicopter will be achieved with the axis of rotation inclined 
at a small angle to the vertical, but it will suffice to examine the rather 
simpler condition when the axis of rotation remains vertical and the 
helicopter is moving horizontally with the velocity V. In addition to 
the thrust and torque, the helicopter airscrew then experiences a horizontal 
drag H opposing the translational motion, and a rolling moment L tending 
to raise the advancing blade and to depress the retiring blade. 

Owing to the horizontal velocity V, 
the slipstream of the airscrew no longer -y 
passes vertically downward, but is de-
flected laterally, and it is necessary to 
consider the form assumed by the mo­
mentum equation under these modified 

Fig. 91. 

conditions. Assuming a uniform axial velocity u over the 
of the airscrew, a suitable form for this equation appears 

T=2nR2 e Wu 

whole disc 
to be 

(5.1) 

where W is the resultant of the horizontal velocity V and of the axial 
velocity u, or W 2 = V2 + u2 

No rigid proof of this equation has been given, but it reverts to the 
correct form T = 2 n R2 e u2 

when the horizontal velocity is zero; and at the other extreme, when 
the horizontal velocity V is large compared with 
the induced axial velocity u, it becomes 

T=2nR2eVu 
which is the standard form for the induced velo- Y 

city due to an airfoil of semi-span R carrying the 
lift elliptically distributed across its span. The 
formula (5.1) may therefore be accepted as a 

n 

Fig. 92. 

plausible hypothesis for determining the induced velocity. Writing 

V = .1.Q R } 
u = flQ R 

(5.2) 

the equation gives Tc = 2 flY .1.2 + fl2 (5.3) 

Consider now the behavior of the blade element at distance r along 
the blade which is at an angle 1p to the downwind position. The horizontal 
component of the velocity normal to the radius is 

U = Q r + V sin 1p 

= Q (r + A R sin 1p) 

and the corresponding vertical component is simply 
u=fl rJR 

1 GLAUERT, H., On the Horizontal Flight of a Helicopter. Br. A.R.C. R. 
and M. 1157, 1928. 
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The inclination cp of the resultant velocity to the plane of rotation IS 

given by the equation 
u 

tan cp = u 
and the analysis will be developed on the assumption that this angle cp 
is small, though this approximation clearly breaks down toward the 
roots of the blades. Also the radial component (V cos 'If) of the velocity 
will be ignored. 

On this basis of approximation the blade element is assumed to 
experience a velocity W at an angle of incidence (0 -cp), and the force 

Fig. 93. 

experienced by the blade element will be esti­
mated on the assumption that the lift coeffi­
cient C L may be taken to be 

CL = 6<x = 6 (O-cp) 
and that the drag coefficient CD has a con­

stant value 2 t5 along the blade. The element of thrust on the typical 
blade element is then 

d Tl 1 U2 . ----a:;:- = 2" c e ( + u2) (CL cos cp - CD s~n cp) 

or approximately 
dT a;!- = 3(0-cp) ce U2 

= 3ce.Q2 [0 (r2 + 2Ar Rsin'IjJ + A2 R 2sin2'IjJ)-

-flR(r + A Rsin'IjJ)] (5.4) 
and the corresponding element of torque is 

d Q1 1 2 • 
Ii""r = 2 c r e (U + u2) (CL s~n cp + CD cos cp) 

or approximately 
d Q1 -" Ii""r = [u + 3 (0 - cp) cp] c r e U2 

= c e.Q2 [t5 (r3 + 2J.r2 R sin'IjJ + A2 r R2 sin2 'IjJ) 

+ 3 flO R (r2 + Ar R sin'IjJ) -3fl2 r R2] (5.5) 

The elements of rolling moment and horizontal force are then derived as 

and 

dL I . d TI 
a;r = rsm'IjJa;r 

dH I sin 1fJ d Q1 
a;r -r-a;r 

(5.6) 

(5.7) 

These equations represent the forces and moments on a single blade 
of the airscrew, and to obtain the corresponding results for the whole 
airscrew it is necessary to add the contributions of all the blades in 
their appropriate angular positions. 

6. Rigid Airscrew. Consider first a helicopter airscrew with rigid 
blades of constant chord c and blade angle O. The necessary integration 
can then be performed quite simply, and, in the summation over the 
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B blades of the airscrew, all terms involving odd powers of sin 'If' 
disappear while the mean value of sin2 '1f' is 1/2. Thus for the one blade 

Tl=ce.Q2R3[e(I+3lsin1p+3l2sin21p)-fh(; +3},sin1p)] 

and for the whole airscrew 

T=BceQ2R3[e(I+: l2)_+fh] 

from which the thrust coefficient is derived as 

T c =a[e(I+-:-l2)-{fh] (6.1) 

This equation, taken in conjunction with the previous formula 

Tc = 2fh ,1l2 + fh2 (6.2) 

determines the values of fh and Tc for any given values of (/, () and A. 

Similarly for the torque of the airscrew 

Ql = ce.f.J2R4 [~( ! + +lsin'!jJ + ! l2 Sin21p) + 

( 3 '3] +fh e 1+Tlsin'lf')-Tfh2 

and hence 

Q = Bce.Q2R4 [! ~ (1 + l2) + fhe-: fh2] 

or Qc = ! a ~ (l + l2) + a fh ( e - : fh) 

Also the rolling moment becomes 

( 3' 
L = B c e Q2 R4 e - "4 fh) J. 

or Le = a ( e - ! fh) J. 

and the horizontal force becomes 

H = B c e Q2 R3 ( ! ~ + : It e) i, 

1 
or He =2a(~ + 31tep 

(6.3) 

(6.4) 

(6.5) 

Numerical results can be derived from these equations for any 
airscrew defined by the values of the solidity (/ and the blade angle e. 
The coefficient ~ may be regarded as a constant or, more accurately, 
it may be assumed to increase with the thrust coefficient of the airscrew, 
since an increase of this coefficient implies an increase of the mean lift 
coefficient of the blade elements. The subsequent numerical results 
are all based on the assumption that 

~ = 0.0050 + 0.25 (~C)2 
Aerodynamic Theory IV 21 
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which represents the drag coefficient of a typical symmetrical airfoil 
section. Table 30 gives the calculated characteristics of a helicopter 
airscrew of solidity 0.25 and blade angle 0.10 for a range of values of A. 
The figure of merit rises rapidly with the horizontal motion of the 
helicopter, and the calculations thus provide an explanation of the 
experimental results shown previously in Fig. 87. The drag of the 
helicopter airscrew in the range considered is increasing slowly, but 
is only a small fraction of the thrust or lift of the airscrew. The rolling 

M 
HIT 

LITR 

o 

0.67 
o 
o 

TABLE 30. 

0.10 0.20 

1.24 ! 2.06 
0.025 0.029 
0.185 0.281 

0.30 

2.81 
0.032 
0.364 

moment increases with the hori­
zontal speed. The ratio LIT R re­
presents the lateral displacement of 
the line of action of the thrust, and 
the numerical values show that this 
displacement is an important frac­
tion of the radius of the airscrew. 

The saving of power represented by the increase of the figure of 
merit in Table 30 is to some extent fictitious since it would be more 
economical to use a larger blade angle at the low translational velocities. 
A more practical comparison is given by the numerical values of Table 31 

}, 0 

(j 0.220 
M 1.16 

HIT 0 

TABLE 31. 

I 0.10 I 0.20 I 0.30 I 0.40 

0.185 0.135 I 0.107 0.089 
1.46 2.19 2.84 3.29 
0.032 0.033 I 0.033 0.034 

I 0.50 

0.075 
3.57 
0.035 

which is based on the 
assumption of a con­
stant thrust coefficient. 
The increase of the 
figure of merit, though 
less rapid than in the 
previous case, is still 

quite important and shows that the power required for sustentation 
falls off rapidly as the speed of horizontal flight increases. The drag 
of the helicopter airscrew is approximately constant in the range of 
speed considered and is roughly one thirtieth of the lift of the airscrew. 

7. Periodic Variation of the Blade Angle. A rigid helicopter airscrew 
experiences a rolling moment in horizontal flight, which must be balanced 
by suitable control surfaces or by the use of two airs crews rotating in 
opposite directions. An alternative scheme is to vary the blade angle 
of the airscrew periodically during the course of each revolution, reducing 
the angle where the thrust on a blade tends to be high and increasing 
it where the thrust tends to be low. 

Reverting to the equations of 5, it can be shown that the rolling 
moment can be eliminated if the blade angle () varies periodically according 

to the equation () = ()o - ()lsin "p (7.1) 

and if the magnitude of the variation in angle is suitably chosen. On 
substituting this value of () in (5.4) and (5.5), integrating along the 
blade, and adding the contributions of all the blades, the characteristics 



SECTION 7 323 

of the helicopter airscrew with periodic variation of the blade angle are 

found to be l'c = u [00 ( I + ~ },2) - ~ It - ; J. 01] 

1 (3 3 ) QC=4 ub (I+J.2)+ult 00-2"1t- 4 J.0 1 , (7.2) 

1 3 
Hc= Tu(b + 30olt)).-4UOllt 

and the condition for zero rolling moment is 

01 ( I + ~ },2) = : (00 - ! It) J. (7.3) 

Numerical calculations, based on these equations and on the 
assumption of a constant thrust coefficient, have been made for com­
parison with the previous results given in Table 31. These results are 

TABLE 32. 

A 0 0.10 0.20 0.30 0.40 0.50 

80 0.220 0.189 0.152 0.140 0.140 0.143 
81 0 0.035 0.059 0.082 0.105 0.125 
M 1.16 1.44 2.02 2.52 2.88 3.14 

HIT 0 0.006 0.009 0.013 0.019 0.025 

given in Table 32 and the comparison of the two sets of results in Figs. 94 
and 95 shows that, though the figure of merit with periodic variation 
of the blade angle does not rise so rapidly as that of the rigid airscrew, 
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the horizontal drag is much lower. The method of variable blade angle 
is thus a satisfactory and economical method of eliminating rolling 
moment. The amplitude of the variation of angle increases with the 
horizontal speed, and the capacity for varying this amplitude provides 
a method of lateral control of the aircraft. 

21* 
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An alternative method of eliminating the rolling moment, which 
would occur with a rigid airscrew, is to hinge the blades freely at their 
roots and to allow them to flap up and down under the action of the 
aerodynamic forces. Where the thrust of the blade would be high with 
a rigid airscrew, the blade rises rapidly and so reduces the effective angle 
of incidence of the blade elements. The comparison between the method 
of operation of the flapping blade and the varying blade angle is shown 
in Fig. 96. The blade element is chosen on the advancing blade when 

Jlar,ying Angle 

u+wr 

Fig. 96. 

Flapping Blade 

!2r+1I 

at right angles to the 
direction of flight, and 
the angular velocity OJ of 
the flapping motion is 
adjusted so that the two 
blade elements operate 
at the same effective 

angle of incidence oc and therefore experience the same lift L. In 
each case the lift is inclined backward and gives a component to 
the horizontal force H on the airscrew, but the angle of inclination 
is greater for the flapping blade than for the blade with varying angle. 
Thus the device of flapping blades, though effective in eliminating 
the rolling moment, gives an increased drag force. Since the flapping 
blade is also incapable of providing lateral control for the aircraft, the 
method of periodic variation of the blade angle is to be preferred 
aerodynamically, though the structural details may present more 
difficulties than the system of flapping blades. 

CHAPTER Xl 

WINDMILLS AND FANS 

1. Types of Windmill. A windmill is an airscrew which is used to 
draw energy from the surrounding air and convert it into a useful form. 
In a propulsive airscrew or propeller the motive power supplies the 
torque which is necessary to maintain the rotation, and the reaction 
of the air on the rotating blades gives a forward thrust along the axis 
of rotation. In a windmill, on the other hand, the signs of the thrust 
and of the torque are reversed, and the aerodynamic reaction of the 
air on the rotating blades gives a drag force tending to check the relative 
axial motion and a torque which tends to increase the rotation of the 
windmill and which can be used as a source of power. An ordinary 
propeller acts as a windmill when the rate of advance is so high 
that the thrust and torque have both become negative, but the blade 
elements then operate inefficiently at negative angles of incidence. 
In a true windmill therefore the blades are redesigned so as to present 
their lower surfaces to the relative air stream, but in other respects 
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a windmill is essentially similar to a propeller in its design and in 
its mode of operation. 

In discussing the characteristics of a windmill it is necessary to 
distinguish between a windmill mounted on an airplane as a subsidiary 
source of power and driven by the motion of the airplane through the 
air, and a windmill mounted on the ground and driven by the wind. The 
problem of a windmill on an airplane is very similar to that of a propeller. 
If D is the drag of the windmill at a speed V and if P is the power 
delivered by the windmill at this 
speed, the efficiency is 

p 
1] = VD (1.1) 

since V D is the work done by the 
airplane in carrying the windmill 

Fig. 97. 

through the air and P is the useful power obtained from the windmill. 
Owing to the high speed of the airplane there is no difficulty in obtaining 
as much power as is required, but it is important that the efficiency 
shall be high. The efficiency is therefore the main criterion for assessing 
the merit of a windmill on an airplane, and this efficiency can be 
calculated by a direct application of the usual propeller theory, but if 
the equations are used in their usual forms, the thrust, torque, and 
interference factors will all be negative. 

A windmill mounted on the ground presents a different problem. 
The drag of the windmill is of no importance, unless it becomes so high 
as to endanger the structure, and hence the efficiency is no longer 
a measure of the suitability of the windmill. The important factor 
is the cost of erection and maintenance, and since this cost increases 
with the size of the windmill it is desirable to obtain the maximum 
possible power from the windmill under given conditions of operation. 
Owing to the irregularity of the direction and strength of the wind it 
is necessary to provide means of regulating the windmill for the different 
conditions which it experiences, and owing to the occurrence of calm 
days it is necessary to provide means of storing sufficient energy to 
cover the periods during which the windmill is idle. Another difficulty 
in the use of a windmill as a source of power is that the rate of rotation 
of the windmill is usually low, and gearing must therefore be introduced 
into the system in order to obtain the higher rates of rotation which 
are required for the effective use of the power, particularly if the 
windmill is used to generate electricity. 

The aerodynamic characterisitcs of a windmill are expressed con­
veniently in terms of the ratio X 1 of the tip speed 12 R to the relative 

lOwing to the different range of operation of a windmill it is more convenient 
to use Q RjV as parameter in place ofVjQ R which has hitherto been used for 
a propeller. 



326 L XI. WINDMILLS AND FANS 

wind speed V, and of the solidity which is the ratio of the total blade 
area to the disc area n R2. Windmills therefore fall into different classes 
according to the value of the ratio X at which they operate. Slow 
running windmills may operate at a value of X of the order of I or 2, 
and with the fastest running windmills in use the value of X may rise 
to 4. A fast running windmill requires a smaller solidity to deliver the 
same power as a slow running windmill, and is therefore simpler in 
construction. It resembles an ordinary propeller with rather wide blades, 
whereas a slow running windmill must be fitted with a larger number 
of blades. The fast running windmill also has the advantage of a high 

S/QW Running /Vlnrlmll1 

Fig. 98. 

rate of rotation and requires 
less gearing, but on the 
other hand the frictional 
drag of its blades is high 
and the blades are sub­
jected to a large centri­
fugal force. A fast running 
windmill therefore requires 

fiTsl Running /'lim/mill more careful aerodynamic 
and structural design than 
a slow running windmill. 

Another point of importance is the starting torque experienced by 
the windmill when it is at rest in a stream of air. The windmill may 
come to rest during a lull of the wind, and in order that it shall come into 
operation rapidly as the wind rises again and that it shall operate in 
light winds it is important that the starting torque shall be reasonably 
high and sufficient to overcome the internal friction of the system. 
The starting torque is highest for the slow running windmills and this 
feature may be the deciding factor in the choice of a windmill which is 
required to operate in light and variable winds. 

2. The Ideal Windmill. If u is the axial velocity through the disc 
of the windmill and if OJ is the angular velocity imparted to the slipstream, 
the momentum equations for the drag and torque are respectively 

and 

Writing 

dD 
~=4nreu(V-u) [see V (8.10)] 

d Q = 2 n r3 Il ~t OJ [see VI (2.5)] dr <;; 

u = V (I-a) 

OJ = 2Da' 
these equations become 

dD I ~ = 4nre V2(I-a)a 

~~ = 4nr3e V.Q (I-a)a' 
(2.1) 
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Also the energy equation is 

or 

where 

(1 +a').Q dQ = (I-a) V dD 
dr dr 

(1 + a') a' x2 = (1- a) a 
Qr 

X=--
V 
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(2.2) 

(2.3) 

If the rotational motion of the slipstream is ignored the analysis must 
be based on the axial momentum equation 

dD 
fiT = 4nre V2 (l-a)a 

and on the energy equation which now takes the form 
dP dD 
71-;'- = (I-a) V fiT 

=4nre V3(I-a)2a 

Exactly as with a propeller, the best result is obtained when the axial 
interference factor a is constant over the whole airscrew disc, and then 

D = 2 n R2 e V2 (1 - a) a 1 
P = 2 n R2 eva (1- a)2 a I (2.4) 

The efficiency of the windmill, which is the ratio of the power P to the 
work V D done against the drag, is simply 

1] = 1 - a (2.5) 

The power attains a maximum value when a is 1/3 and when 1] is 2/3, 
and this maximum power of an ideal windmill is 

P _ 8 R2 va 
m--27 n e (2.6) 

A useful measure of the performance of a windmill is the ratio of the 
power P to the maximum power Pm which would be given by an ideal 
windmill of the same diameter at the same speed. This ratio is 

P 27 P 
C = Pm = 8 :n R2 (! va (2.7) 

and the ideal relationship between the ratio C and the efficiency 1] is 
given in Table 33 and in Fig. 99. The analysis is valid only when the 
axial interference factor a is less than 1/2 and when the efficiency 1] is 
greater than 1/2. 

The efficiency 1] is the important criterion for deducing the merit 
of a windmill mounted on an airplane, and the power ratio C for deducing 
that of a windmill on the ground. If the windmill created no disturbance 
of the flow, the kinetic energy of the air passing through its disc in unit 

1 
time would be E = 2n R2 e va 
and hence C is 27/16 times the ratio of the power P absorbed by the 
windmill to this kinetic energy E. 
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Returning now to the more general condition when the rotational 
interference factor a' is retained in the analysis, the power given by the 
windmill is obtained from (2.1) as 

or 

where 

1.0 

C 
0.8 

0.6' 

0.2 

~.-.-

/ 
/ 

II 

I 

L I I 

i 

R 

P = f 4 7C e V [22 (1- a) a' r3 dr 
o 

x 

n R~ va = -iz J (1 - a) a' x3 d x 
o 

~ 
1------I--

X _ DR 
- V 

a 

0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

TABLE 33. 

1] C 

1.00 0 
0.95 0.305 
0.90 0.547 
0.85 0.732 
0.80 0.864 
0.75 0.949 
0.70 0.992 
0.65 0.998 
0.60 0.972 

~o 0.9 0.8 0.7 0.6' 1] 0.5 

Fig. 99. 

0.45 
0.50 

0.55 0.919 
0.50 0.844 

(2.8) 

(2.9) 

Pin R2 f! va 

0 
0.090 
0.162 
0.217 
0.256 
0.281 
0.294 
0.296 
0.288 
0.272 
0.250 

In order to obtain maximum power for a given speed ratio X the 
factors a and a' must be related by the equation 

while (2.2) gives also 

da' 
(l-a)~=a' 

da' (1 + 2a') X2~ = 1-2a 
da 

and hence (1 + 2 a') a' x2 = (1 - a) (1 - 2 a) 

Combining with (2.2) 
1 + 2a' 1-2a 
1 + a' a 

or 
, 1-3a 

a = 4a-f 

and then substituting back in either of (2.2) or (2.10) 

a' x2 = (1- a) (4 a-I) 

(2.10) 

(2.11) 

(2.12) 

These last two equations determine the variation of the factors a and a' 
with the coordinate x along the blade of the windmill. This relationship 
is given in Table 34. For large values of x the factor a is slightly less 
than 1/3 and a' is very small, and for small values of x the factor a 
decreases to 1/4 and a' increases rapidly. Inserting these values of the 
interference factors in (2.8) the power given by the windmill can be 
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derived by graphical integration. The values of the power coefficient 
and of the ratio C of the power to the maximum possible power are given 
in Table 35 and the relationship between C and the speed ratio X is also 
shown in Fig. 100. In order to obtain a large fraction of the possible 
power it is necessary that Q Rj V shall not be too small. The speed 
ratio used in practice ranges from 1 to 4, 
and in this range the ratio C increases ~o 
from 0.70 to 0.95. 

/r-
/ 

I 
I 

a8 

TABLE 34. 

a a' a' x2 x ali 

0.26 5.500 0.0296 0.073 a 'I 
0.27 2.375 0.0584 0.157 
0.28 1.333 0.0864 0.255 a 2 

0.29 0.812 0.1136 0.374 
0.30 0.500 0.1400 0.529 
0.31 0.292 0.1656 0.753 0 2 If Ii 8 to 

S2R 
0.32 0.143 0.1904 1.15 -V 
0.33 0.031 0.2144 2.63 Fig.100. 

TABLE 35. 

Q R/V I t; I Pin R2 Q val Q R/V t; I P/nR2 e va 
0.5 0.486 0.144 2.5 

1 0.899 0.266 
1.0 0.703 0.208 5.0 0.963 0.285 
1.5 0.811 0.240 7.5 0.983 0.291 
2.0 0.865 0.256 10.0 0.987 0.292 

Consider next, the aerodynamic force on the blades of the windmill. 
The velocity experienced by the typical blade element has the components 
V (1 - a) and Q r (1 + a') as shown in Fig. 101 and, ignoring still the 
profile drag of the blades, the elements of drag and torque are 

where 

~~ = ~ Bce W 2 CL COScp 1 IY 

I (2.13) 
dd ~ = ! B C r e W2 C L sin cP :Iji 

I-a V 
tan cp = 1 + a' Q r (2.14) 

!2r(fi-a'j 

Fig. 101. 

, Y(f-a) 

Comparing these formulae with the previous momentum equations (2.1), 
the interference factors a and a' are obtained as 

(2.15) 
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Be 
where a = -- (2.16) 

2:nr 

and eliminating a and a' from (2.14) by means of these formulae 

x (4 8in 2 cp + a CL C08 cp) = 8in cp (4 C08 cp -a CL ) (2.17) 

In order to obtain maximum power under given conditions of operation 
the factors a and a' must be related by (2.11). After substituting from 
(2.15) this condition can be reduced to 

a CL = 4 (1- C08cp) (2.18) 

and then combining with the previous (2.17) 

x = sin tp (2 COB tp - 1) (2.19) 
(1 + 2 COB tp) (1- COB tp) 

This equation determines the optimum variation of the angle cp along 
the blade of a windmill, and (2.18) determines the corresponding values 

TABLE 36. 

·1 x 
BcQ 0 
2:n V L ·1 x BcQ 0 

2:n V L 

600 0 0 200 l.73 0.418 
50 0.35 0.497 15 2.42 0.329 
40 0.62 0.556 10 3.73 0.228 

o S x 8 

Fig. 102. 

30 l.00 
i 

0.536 5 7.60 0.116 

of a C L- The analysis does not determine the shape of the blade uniquely 
but only the product of the chord and lift coefficient in the form 

~ c Q 0 L = X a C = 4 Bin tp (2 COB tp - 1) 
2:nV L 1+2coBtp 

(2.20) 

Table 36 gives the numerical values determined by these equations, and 
the relationship is also shown graphically in Fig. 102. This curve 
represents the shape of the blade if the blade angles are adjusted to give 
a constant lift coefficient. For a slow running windmill, whose blade 
tip is represented by x = 1, the chords should increase outward along 
the blade, but for a fast running windmill, whose blade tip is represented 
by x = 4, the chords should decrease outward along the blade except 
in the innermost quarter of the blade. 

The total blade area S of the windmill is also defined by (2.20) if the 
lift coefficient has a constant value along the blade. This area is 

R 

S = J Bcdr 
o 

x 
= 2:nV2 f BcQOL dx 

Q20L 2:n V 
o 
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and hence the solidity of the windmill is 

Numerical values of ao C'L are given in Table 37 and these are the values 
of the solidity when the lift coefficient C'L is unity. The solidity increases 
from roughly 0.2 for a fast running windmill (X = 4) to 1.0 for a slow 
running windmill (X = 1). Thus the fast running windmill will re­
semble an ordinary propeller 
with rather wide blades, while 
the slow running windmill 
must have a large number of 

x= 

blades with large blade angles. ao CL = 

I 1 

10.98 

TABLE 37. 
, I 
i 2 I 3 I 4 I 5 

I 0.48 I 0.29 I 0.19 I 0.14 

3. Windmill Characteristics. The discussion of the preceding section 
has indicated the performance which may be expected from ideal 
windmills of different type, but in practice the characteristics of 
a windmill are modified in an important manner by the frictional drag 
of its blades. The performance of any windmill can be calculated by the 
standard method used for a propeller if due allowance is made for the 
change of sign of the axial and rotational interference factors, or alter­
natively an approximate estimate can be made of the loss of power due 
to the profile drag of the blades by means of the analysis developed in 
Chapter IV. The appropriate equation for a windmill is 

where 

E = ao 0 n R2 e Q3 R3 (1 + a')3 f (<PI) 

V I-a 
tan <PI = Q R 1 + a' 

(3.1) 

and ao is the ratio of the total blade area to the disc area of the windmill. 
The values of f (<PI) are given in Table 5. As a rough approximation the 
interference factors a and a' may be neglected in this equation and the 
approximate expression for the loss of power due to the profile drag of 
the blades then becomes 

~-Ji!-=a OX3f(_I) 
nR2eV3 0 X (3.2) 

where X denotes Q RjV. Assuming 0 to be 0.01 and taking the values 
of the solidity from Table 37 for a lift 
coefficient C'L of 0.8, the numerical values 
of the loss of power are derived as in 
Table 38 and these typical numerical values 
suggest that the loss of power due to the 
profile drag of the blades is roughly pro­
portional to the speed ratio X at which 
the windmill is designed to operate. 

X 

2 
3 
4 
5 

TABLE 38. 

0.488 
0.345 
0.302 
0.282 

0.023 
0.034 
0.046 
0.062 
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No systematic series of experiments are available to test the accuracy 
of these theoretical calculations, but Fig. 103 shows the observed 
performance of two typical model windmills 1 compared with the ideal 
curve of Fig. 100. The fast running windmill gives 75 per cent of the 
maximum possible power at its best operating condition and the 
efficiency of the windmill is 52-1/ 2 per cent. The corresponding values 
for the slow running windmill are 60 per cent of the maximum possible 
power and 29 per cent efficiency. Thus a fast running windmill is to be 

030 
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preferred, particularly for use on 
an airplane where the efficiency 
is important, but the slow runn­
ing windmill may be more suit­
able on the ground since it has 
a larger starting torque, owing 
to its larger blade angles and 
blade area, and will therefore 
operate in lighter winds. 

I 
/ 

1\, 
/\ 

',--"Slow Running Windmill / 
/ I 

1\ powePfo~cle~ 
/? 3 'f 5 

lJlI --y 
Fig. 103. 

Model tests of windmills are 
not completely satisfactory since 
the models cannot reproduce cor­
rectly all the minor details of 

8 the system and since the results 
may suffer from an important 
scale effect. Full scale tests on 
the other hand are almost im­

possibly difficult owing to fluctuations of the wind velocity which cannot 
be accurately determined. The power delivered by a windmill depends 
on the cube of the velocity and the instrument which measures the 
mean velocity is quite unsuitable for determining the performance of 
a windmill. No reliance can therefore be placed on full scale tests unless 
they are based on a continuous record of the fluctuations of the wind 
velocity, but such tests as are available 2 seem to confirm the con­
clusions of the preceding general analysis. 

4. The Lifting Windmill. A windmill used to generate power operates 
with its plane of rotation at right angles to its direction of motion relative 
to the air, but a windmill can also be used for sustentation in place of 
the wings of a conventional airplane if its plane of rotation is inclined 
at a small angle to the direction of motion. The proposal to use a windmill 
for sustentation is due to J. de la Cierva3 , and the application of this 

1 Ergebnisse der Aerodynamischen Versuchsanstalt zu Gottingen, III. Lief.,p. 139. 
2 The Use of Windmills for the Generation of Electricity. lnst. Agric. Eng., 

Univ. of Oxford, Bull. No.1, 1926. 
3 The Development of the Autogyro. Journal of the Royal Aerona.utical 

Society, Vol. 30, p.8, 1926. 
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idea has led to a novel type of aircraft which possesses several valuable 
features but is inferior in general performance to an airplane with fixed 
wings. No attempt will be made to discuss the special qualities of the 
aircraft, which lie outside the domain of airscrew theory, and the following 
analysis is confined to the determination of the characteristics of a lifting 
windmill. 

A lifting windmill resembles in form a propeller of very low pitch 
with small blade angles, but it operates as a windmill, since its rotation 
is maintained solely by its translational motion through the air. The 
angle of incidence i of the windmill may be defined as the angle at which· 
the axis is inclined backwards from the normal 
to the direction of motion, and the windmill 
may operate at any angle of incidence from 
a very small lower limit up to 90°. The angular 
velocity Q of the windmill is determined as a 
function of the translational velocity V and of 
the angle of incidence i by the condition that 

Fig. 104. 

o 

/I 

the torque Q about its axis is zero. The force experienced by the wind­
mill may be expressed by the thrust T along its axis and by the 
normal component H, or alternatively by the lift L and the drag D as 
shown in Fig. 104. The appropriate non-dimensional coefficients which 
describe the characteristics of the windmill are defined by the equations 

V 
.1= QR 1 

T = Ten R2 e Q2 R2 J 
H = HcnR2eQ2R2 
Q = Qc n R2 e [22 R3 

(4.1) 

but the lift and drag are expressed more suitably in terms of the trans­
lational velocity V instead of the tip speed Q R, and hence 

L =~l C L n R2 e V21 
(4.2) 

D = 2" CD n R2 e V2 
These lift and drag coefficients are related to the previous coefficients 

by the equations ; .12 C L = Tc cos i-He sin i I 
(4.3) 

; .12 CD = Tc sin i + He cos i 

The analysis of the performance of a lifting windmill! resembles 
very closely the analysis for the horizontal motion of a helicopter which 

1 GLAUERT, H., A General Theory of the Autogyro. Br. A.R.C. R. and M. 
llll, 1926. 

LOOK, C. N. H., Further Development of Autogyro Theory. Br. A.R.C. R. and M. 
1127, 1927. 
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is developed in Chapter X, the only important difference being that 
the axial velocity of the air through the disc of the airscrew is upwards 
for the windmill and downwards for the helicopter. This axial velocity n 
will be assumed to be constant over the whole disc and will be expressed 
non-dimensionally by the equation 

u 
fk = {FR (4.4) 

The analysis for the aerodynamic force on the blades of a helicopter 
in horizontal motion can then be applied directly to the lifting windmill 
if the sign of fk is changed and if A is replaced by A cos i to represent 

~>5. /fcos z 

the component of the translational velocity 
normal to the axis of the airscrew. 

The equation for the induced velocity 
caused by the airscrew also needs recon­
sideration. The thrust of the windmill causes 
an induced velocity v normal to the plane 

Fig. 105. 

of rotation, and hence the axial velocity 'u through the disc is 

n = V sin i-v 

In accordance with the previous discussion of X 5, the induced velocity 
will be determined by the equation 

T=2nR2 eWv 

where W is the resultant of the components 1t and V cos ·i as shown in 
Fig. 105. Hence 

or 

and this 
copter. 

T = 2 n R2 e (V sin i - n) V n2 + V2 cos2 i 

1 .. + Te 
f. s~n ~ = fk -=~--=~ 

2 11 ft 2 + ).2 cos2 'i 
(4.5) 

relationship replaces X (5.3) which was obtained for a heli-

The analysis is simplest if the windmill is assumed to be a rigid 
airscrew, but, as with a helicopter, there is then a rolling moment on 
the aircraft. The appropriate formulae are derived at once from X (6.1), 
(6.3), and (6.5) and are 

To = a [e (1 + ; },2 cos2 i) + {- fk] 

1 . ( 3' 
Qe = 4 a 0(1 + },2 cos2 i) - a fk e + 2 ft) (4.6) 

He = ~ a(o-3pO)Acosi 

Since the torque of the lifting windmill is essentially zero, the relationship 
between fk and A cos i is determined by the equation 

-}o (I +}hOS2i) = fk(O+; p) (4.7) 
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Starting with a series of values of It cos i, for given values of () and b, 
this equation determines the corresponding values of ft. Equations (4.6) 
then determine the values of T c and H C' and (4.5) determines the angle 
of incidence i. Finally the lift and drag coefficients are derived from (4.3). 
A typical numerical solution of this system of equations is given in 
Table 39 and the lift and drag coefficients are plotted in Fig. 106. The 
calculation extends from an angle of incidence of 45° down to the angle 
at which the speed ratio It is 0.5. Below this angle the approximations 
of the analysis cease to be valid, and 1.25'.----r---;------.--.,.------, 

above an angle of incidence of 45° 

TA.BLE 39. Rigid Windmill. 
l.()()\---+----l---,H--¥-----1 

f) = 20, a = 0.20, 15 = 0.006 t3,(J.75\---+---A---+-/--+------1 

Tc I CL I CD ~ 
~a~~-+'~~-'~--T-~ 

4.90 0.502 0.0256 0.0172 0.136 0.013 
9.1 0.304 0.0234 0.0149 0.319 0.054 

16.2 0.208 0.0226 0.0142 0.628 0.186 
a85'~-f+--7'l---t--t---

24.5 0.165 0.0224 0.0139 0.930 0.429 
33.3 0.144 0.0223 0.0138 1.120 0.742 
41.8 0.134 0.0222 0.0137 1.138 1.020 

() 10 80 3() '10 
Angle of Incidence -lJegr>ees 

46.9 0.13210.0221 0.0137 1.080 1.160 Fig. 106. 

the analysis is also unsatisfactory. The curve shows that the lift coefficient 
increases linearly with the angle of incidence at small angles and reaches 
a maximum value in the neighborhood of 400. The drag is low at small 
angles of incidence but then increases rapidly and becomes equal to 
the lift at an angle of 450. 

Owing to the fact that a rigid airscrew experiences a rolling moment, 
it is necessary to adopt a device similar to that suggested for a helicopter 
and to incorporate in the design a periodic variation of the blade angle, 
or to hinge the blades freely at their roots and to allow them to flap 
up and down under the action of the aerodynamic forces. The appropriate 
equations for periodic variation of the blade angle can be derived from 
the equations of X 7 by changing the sign of!t and by writing It cos i 
in place of It. In particular the equation for the coefficient Hc becomes 

Hc=! a (0-3 ()oft)A cos i+ ! a()lft 

and there is therefore an increase of this force over that for the rigid 
windmill which leads to a corresponding increase of the drag. The drag 
is increased still further if the device of flapping blades is used, and 
the maximum lift-drag ratio of a lifting windmill with flapping blades 
does not exceed 8 for reasonable values of the solidity and of the profile 
drag coefficient of the blades. 
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Experimental results for lifting windmills through a large range of 
angle of incidence are rather scanty, and tests of small scale models 
are subject to an important scale effect, since a comparatively small 
increase of the profile drag coefficient of the blades exerts an important 
influence on the condition of operation of the windmill. Figure 107 shows 
the result of one test! of a small model windmill with flapping blades. 
The results are inferior to the calculated values of Fig. 106 owing to 

~o------~------------~ 

2251----!----+---+----+-_+----I 

1.00~---l----+----+---+-~---+---~ 

the small scale of the test and 
to the flapping motion of the 
blades, but they clearly indicate 
that the theory is a satisfactory 
explanation of. the general be­
havior of a lifting windmill. 

t.:>' 
la~~-~--~~~----~--~--~ 5. Windmill Anemometer. A 

freely rotating windmill can be 
used to measure the velocity of 
a current of air. Ignoring any 
friction of the bearings, the air­
screw will run at the value of 
VjQ R at which the torque is zero, 
and hence the rate of rotation 
is directly proportional to the air 
speed. Any propeller or windmill 

~ 

o f5 30 ¥5 {f0 75 
IIng/eor Incidence-Degrees 

Fig. 107. 

can be used in this manner, but in order to obtain satisfactory operation 
it is desirable that the airscrew shall respond rapidly to any changes 
of the air speed, and this condition can be used to determine the most 
suitable form of anemometer. 

If a propeller is operating near the condition of zero torque, the 
torque coefficient may be expressed approximately as 

where 

and 

Qc = dd ~.c (J. - }'1) 

Q = Qc nR2 (!Q2R3 

V 
}.= QR 

and Al is the value of A at which the torque is zero. The torque of 
a propeller is positive when it opposes the rotation of the propeller, 
and the torque coefficient decreases as the speed ratio A increases, so 

that ~ ~c is negative. In an air stream of varying speed the equation 

of motion of the anemometer will be 

I d Q __ Q __ R2 rl2 R3 d Qc (1 1 ----a:t -- - -- - n (! ~& ~ I'. - /'1) 

1 CAYGILL, L. E., and NUTT, A. E. W., Wind Tunnel and Dropping Tests of 
Autogyro Models. Br. A.R.C. R. and M. 1116, 1926. 



SECTION 5 337 

where I is the moment of inertia about the axis of rotation. This equation 
can be 

where 

expressed in the form 
1 dQ 
-~=a(V-kQ) 
Q dt 

11: R4e d Qc I a=-----
1 d)' 

k = R Al = (~)1 

(5.1) 

(5.2) 

The coefficient k is the calibration constant of the anemometer and the 
speed recorded in steady motion is 

W=k,Q (5.3) 

The equation of motion, (5.1), may therefore be taken to be 

~ dd~ =a(V-W) (5.4) 

and this equation expresses the relationship between the air speed V 
and the corresponding speed W recorded by the anemometer. 

In a steady stream the angular velocity of the anemometer determines 
the speed, but the usual method of using the instrument is not to obtain 
instantaneous readings of the angular velocity but to record the number 
of revolutions in a definite interval of time. Thus the anemometer is 
virtually an air log which records the distance travelled through the 
air, and the speed is derived by dividing this distance by the time 
interval of the measurement. In a stream of varying velocity the distance 
recorded by the anemometer is 

whereas the true distance is 

and by virtue of (5.4) 

or finally 

t 

r=jWdt 
o 

t 

8=/Vdt 
o 

t 

8 = J ( W + a ~ dd ~ ) d t 
o 

= r + ! [logW]: 
1 W 8=r+-log--
a Wo 
1 Q 

=r+-log-
a Q o 

(5.5) 

This result shows that the difference between the true distance 8 and 
the recorded distance r depends only on the ratio of the initial and 
final angular velocities of the anemometer, and is independent of the 
intermediate conditions. In order to obtain accurate readings of a fluc­
tuating velocity the coefficient a should be large and, by reference 

Aerodynamic Theory IV 22 
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to (5.2), it appears that the instrument should be of a light construction 
with a small value of I/R4 and should have a rapid variation of torque 
coefficient with speed ratio. This second condition can be achieved by 
designing the anemometer with a large number of blades and with a high 
pitch-diameter ratio. The anemometer Will. then run at a low value 
of Q R/ V and is analogous to a slow running windmill. This form also 
has the advantage of a large starting torque and will therefore respond 
readily to low wind velocities. 

The preceding discussion has ignored the frictional torque of the 
anemometer, but very similar conclusions can be derived when . the 
frictional torque QF of the bearings is included in the analysis. The 
general equation of motion is now 

I d [J = _ n R2 fl [J2 R3 d Qc (A - AI) - QF 
dt 0:: d)" 

and if the frictional torque QF is proportional to the angular velocity [J 
this equation may be written as 

1 d[J 
[Fa:t = a(V -k[J-/-l) (5.6) 

where 

and the calibration of the anemometer is now 

W=kQ+/-l 

With this modification the distance travelled becomes 
t 

or 

8 = J Vdt 
o 

t 

= f (k[J + /-l + a1
[J dd~ )dt 

o 
t 

J' 1 [J 
= Wdt + a- wg [Jo 

o 
1 [J 

8=r+-log7) 
a ."0 

(5.7) 

(5.8) 

(5.9) 

which is identical with the previous (5.5). It is clearly desirable that /-l 
shall be small, and this is another reason for using an anemometer with 
a large number of blades and a high pitch-diameter ratio. 

6. Fans, A fan is an airscrew which is used to produce a current of 
air. and its mode of action is identical with that of a propulsive airscrew 
or propeller. The thrust of any type of airscrew is obtained by imparting 
momentum to the air which passes through its disc, and the distinction 
between a fan and a propeller is merely· that attention is directed to 
the slipstream caused by the thrust rather than to the thrust itself. 
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An ordinary ventilating fan operates at a fixed point in the air and 
its characteristics may therefore be calculated by the usual theory of 
a propeller at zero rate of advance or of the helicopter airscrew, but 
the most suitable form for the fan depends on whether it is desired 
to obtain a large flow of air or to obtain a high speed in the slipstream. 
In either case the suitability of the fan can be expressed in terms of 
the figure of merit M which was introduced in the study of the helicopter 
airscrew and defined by the equation 

M = -~ -V n12 e (6.1) 

If u is the mean axial velocity through the disc of the airscrew, the 
momentum equation for the thrust is 

T = 2 n R2 e u2 (6.2) 

and the rate of flow of air down the slipstream is 

F = n R2 u (6.3) 

Eliminating the thrust and the axial velocity from these equations, the 
flow is obtained as a function of the power, disc area and figure of 

merit, in the form F = :2 ( P :Y.J (n R2) t (6.4) 

and similarly the mean axial velocity through the disc of the fan 
can be expressed in the form 

1 (PM)} 5 
W = i2 n R2 e (6. ) 

In order to obtain a large flow of air the fan should have a large disc 
area and a high figure of merit, but in order to obtain a high speed 
the disc area should be small. Since the fan 
operates under the same conditions as a 
helicopter airscrew, the most suitable design 
to obtain a high figure of merit can be deriv­
ed from the analysis given in Chapter X. 

Different conditions of operation occur 
when a fan is used to maintain the flow of 
air in a wind tunnel. Assuming a cylindrical 

Po P, 

Fig. 108. 

tunnel of constant radius with a uniform axial velocity V, the conditions 
of operation differ from those of a ventilating fan or of a propeller, 
since there can be no acceleration of the air behind the fan. The thrust 
of the fan appears solely as an increase of pressure, while the torque of 
the fan produces a rotation of the stream in the same sense as the 
rotation of the fan. Far in front of the fan there is a uniform axial 
velocity V and a uniform pressure Po' Behind the fan there is the same 
axial velocity V with an angular velocity OJ and a pressure PI which 

22* 
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vary with the radius r. The pressure in this wake is governed by the 

equation ~~1 = e 0)2 r (6.6) 

and the elements of thrust and torque of the fan are respectively 

and 

Fig. 109. 

the blade element, 

aT a::r = 2 nr (PI- Po) (6.7) 

a Q = 2 n fl V 0) r3 (6.8) ar 0: 

If fJ is the angular velocity of the fan, 
y the velocity experienced by the typical blade 

element at the radius r is the resultant of an 
axial component V and a rotational component 

(fJ - i 0)) r. Neglecting the profile drag of the 
blades and assuming a circulation K around 

the thrust and torque of the fan are respectively 

aa~ = B K e (fJ - ! 0)) r 
aQ 
a;r=BKeVr (6.9) 

and by comparison with the previous equations (6.7) and (6.8) the 

circulation is K = 2 n ;r2 (6.10) 

and the increase of pressure is 

PI-PO = e (fJ- ! 0))0) r2 

Also the increase of total pressure head behind the fan is 

HI-Ho = PI + ! e 0)2 r2_ po 

= efJ O)r2 

(6.11) 

(6.12) 

Returning now to (6.6) and substituting for the pressure from (6.11) 

0)2 r = : r [( fJ - ! 0) ) 0) r2 ] 

= 2 (fJ - ! 0)) 0) r + (fJ - 0) r2 ~ ~ 

or (fJ-O) [20)r + r2 aa~] = 0 

and since 0) is essentially less than Q 
aoo r2a;r + 20)r = 0 

or cO r2 = constant = k (6.13) 

Equations (6.10) and (6.12) then show that the circulation must be 
constant along the blades of the fan and that there is a uniform increase 
of total pressure head throughout the wake. 
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If the fan is designed to have constant circulation along the blades, 
the power absorbed by the fan is obtained at once from (6.S) as 

P = QQ = n R2 (! V Q k 
and hence the increase of total pressure head behind the fan is 

P 
HI-Ho=(!Qk= nR2V (6.14) 

In practice the behavior of a wind tunnel fan deviates from the 
ideal conditions represented by the preceding analysis owing to the 
profile drag of the blades which constitute the only source of loss of 
energy, and the effect of this profile drag can be estimated for any 
fan by applying the methods of the standard propeller theory. An 
approximate estimate of the loss of energy can also be derived by the 
method developed in IV 2. Ignoring the small rotational motion of the 
wake and assuming VjQ R to be small,. the approximate expression for the 

1 
loss of energy is E = "8 CD S (! Q3 R3 (6.15) 

where S is the total blade area and CD is the mean profile drag coefficient 
of the blades, and economy of power is thus obtained by reducing the 
tip speed of the fan and by using a fan of relatively large solidity 
and high pitch. 

CHAPTER XII 

MISCELLANEOUS AIRSCREW PROBLEl\IS 

1. Tandem Propellers. When an airplane is driven by a large number 
of engines it is often convenient to mount the engines in pairs one 
behind the other, and the propellers driven by these engines then form 
a tandem system. The rear propeller 
operates wholly or partly in the slip­
stream of the front propeller, and the 
behavior of the front propeller is also 
modified by the indraught caused by the 
rear propeller. If the axial distance be­
tween the two propellers is very small, 
the tandem system is equivalent to a 
single propeller absorbing the total power 

PIS e V3 

0.2 
0.4 
0.6 
0.8 
1.0 

TABLE 40. 

I 1) I 1)' 

10.922 
0.870 
0.829 
0.797 
0.771 

0.870 
0.797 
0.748 
0.712 
0.682 

\1)-1)' 

0.052 
0.073 
0.081 
0.085 
0.089 

of the two engines and the efficiency of the system can be calculated by 
the usual methods. In order to obtain a rough estimate of the loss of 
efficiency due to the use of a tandem system of propellers, Table 40 
gives the ideal efficiency according to the axial momentum theory for 
a single propeller ('fj) and for a tandem system ('fj') absorbing double 
the power through the same disc area S. The appropriate values of 
the efficiency can be derived from the equation [see II (3.11)], 

P 2(1-1) 
SeV3= 1)3 (1.1) 
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or may be read from the curve of Fig. II. The drop of ideal efficiency 
depends on the power loading but is of the order of 6 per cent in general. 

Each member of a tandem system of propellers is usually driven 
by its own engine, but occasionally two propellers are mounted in close 
proximity on the same shaft and are driven by a single engine. The 
relative angular positions of these two propellers should then be adjusted 
so as to secure equal spacing of the blades relative to the air flow. 
If the two propellers were in the same plane, the blades would be equally 
spaced around the disc, but if the second propeller is at a small distance x 
behind the front propeller it is necessary to modify the relative angular 

positions of the two propellers in 
If order to obtain the best results. 

In Fig. 110 two successive blade 
elements of the first propeller are 

p r N gn Propeller shown at Al and A 2 , and the 
Fig. 110. lines LI and L2 represent the flow 

relative to these blade elements. 
The blade element BI of the second propeller should be situated midway 
between the lines LI .and L 2 , and hence the angle 'IfJ at which the blade 
element BI follows the blade element Al is determined by the equation 

nr 
'lfJr = B + xcotrp 

where B is the number of the blades of ea,ch propeller. As a rough 

approximation 
V JR 

tanrp = Qr = nr 

and hence (1.2) 

The angular displacement of the two propellers from the position which 

they would occupy when rotating in the same plane is therefore ~ ~ , 
which is independent of the number of blades and of the radial co­
ordinate r, but varies with the rate of advance of the propeller. The 
validity of this formula is confirmed by some experiments 1 with two 
propellers, each with two blades, at an axial distance 0.115 R apart. 
The efficiency of the system at the rate of advance J = 0.62 for various 
values of the angle 'IfJ were as follows:-

"p = 0 450 900 1350 

f/ = 0.640 0.630 0.655 0.645 

According to the formula (1.2) the highest efficiency should be obtained 
when 'IfJ = 123 0 and the lowest efficiency when 'IfJ = 33 0, and this pre­
diction is consistent with the experimental results. 

1 FAGE, A., and COLLINS, H. E., An Investigation of the Mutual Interference 
of Airscrew Blades. Br. A.R.C. R. and M. 316, 1917. 
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Hitherto the two propellers of the tandem system have been assumed 
to be in close proximity, but more generally the propellers are separated 
by a distance of the order of the propeller diameter. If the propellers 
are separated by a large distance and if the rear propeller operates 
wholly in the slipstream of the front propeller, it is possible to obtain 
simple expressions for the efficiency of the tandem system. With this 
wide separation the front propeller does not experience any interference, 
but the rear propeller operates in a region of increased velocity and hence 
has a lower efficiency. An 
ideal system of this type is 
shown in Fig. Ill. The front 
propeller has a disc area 31 y 
and the rear propeller has a 
smaller disc area 3 2 in order 1_--1/'-1-

----
to fit into the slipstream of Fig. 111. 

the front propeller. The axial 
velocity V increases to u at the disc of the first propeller and to V' 
in its wake; the second propeller operates effectively in a stream of 
velocity V' and the velocity rises to u' at its disc. The ideal efficiency 
of the front propeller according to the axial momentum theory is de-

P 2 (1-171) 
termined by the equation - --'-----0;--'-'''-

Sle va - rlf 
(1.3) 

and the fundamental equation for the rear propeller, assumed to absorb 
the same power P, is 

P = u' T2 = 2 e 3 2 U'2 (u' - V') 

The cfficiency of the propeller is 
VT2 V 

1]2 =-p=-;u;-

and hence 

But 

and 

or 
rll 172 

(1.4) 

and on eliminating 3 2 and V' from (1.4) by means of these relationships, 
the equation for the efficiency 1]2 of the rear propeller is obtained in 

the form P - 2 [1-'1/2 2(1-'1/1)] (1.5) 
Sle Va - '1/1'1/2 -~- '1/1 

Numerical values derived from (1.3) and (1.5) are given in Table 41 
which shows that the efficiency of the rear propeller is much lower than 
that of the front propeller. The efficiency of the tandem system is the 
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arithmetic mean of the efficiencies 171 and 112' and corresponds to the 
efficiency of a propeller of intermediate size absorbing the total power. 

An improvement of the efficiency of the tandem system would be 
obtained by increasing the diameter of the rear propeller to that of 
the front propeller, but any estimate of the efficiency of the system 
is then complicated by the fact that the inner parts of the rear propeller 
experience the slipstream velocity V' of the front propeller while the 
outer parts experience the lower velocity V. 

TABLE 41. 

P/S1 (!V3 1)1 1)2 

0.2 0.922 0.804 
0.4 0.870 0.704 
0.6 0.829 0.637 
0.8 0.797 0.589 
1.0 0.771 0.554 

11)1-1)2 

0.118 
0.166 
0.192 
0.208 
0.217 

Another method of improving the 
efficiency of a tandem system of pro­
pellers becomes apparent when the rota­
tional motion of the slipstream is con­
sidered. The loss of efficiency due to 
this rotational motion has· been con­
sidered in III 5; it depends on the 
torque coefficient of the propeller but 
is usually of the order of 2 per cent. 

This loss may be avoided in a tandem system if the two propellers 
rotate in opposite directions and if the torque distribution along the 
blades of the rear propeller is adjusted so as to be equal to that along 
the blades of the front propeller and to leave no rotational motion 
in the final wake. 

When the distance between the two propellers is reduced, the front 
propeller experiences some interference owing to the acceleration of the 
air in front of the rear propeller, but at the same time the interference 
on the rear propeller is reduced since the slipstream velocity of the front 
propeller has not yet attained its full value. If the final wake behind 
the tandem system is unaltered, the efficiency of the system will also 
remain unaltered, but the separate efficiencies of the two ·propellers 
will differ less than is indicated by the numerical values of Table 41. 

The characteristics of a tandem system, taking account of the profile 
drag of the blade elements, .can be calculated by the standard methods 
of propeller theory, but unless the two propellers are widely spaced it 
is difficult to assign correct values to the mutualinterference'and therefore 
to design the propellers with the best blade angles. It is clear, however, 
that the rear propeller, which operates in a region of increased axial 
velocity, should be of higher pitch than the front propeller, and in order 
to absorb the same power the rear propeller must also have rather 
narrower blades. 

2. Propeller with Stalled Blades. If a propeller has a high pitch­
diameter ratio the angles of incidence at which the blade elements 
operate tend to rise above the critical angle at low rates of advance, 
and this fact constitutes a real difficulty in the use of propellers of 
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high pitch-diameter ratio, since the thrust of the propeller at low rates 
of advance may be insufficient to enable the airplane to take off from 
the ground or water. It is of some interest therefore to examine the 
behavior of a propeller whose blades are fully stalled. 

When an airfoil is operating above its critical angle, the aerodynamic 
force experienced by the airfoil is approximately at right angles to 
the chord, and if this condition is assumed to occur on all the blade 
elements it is possible to obtain a simple relationship between the 
thrust and torque of the propeller. Let ON 
be the normal force coefficient on the blade 
element, which experiences the effective 
velocity W as shown in Fig. 112. Then 
the expressions for the elements of thrust 
and torque of the propeller become simply 

dT 1 a;r = 2" Bc e W20NCOSO 

and dd~ = ~ Bcre W2 0 NsinO 

Fig. 112. 

(2.1) 

(2.2) 

If now the propeller has constant geometrical pitch H along the blades, 
the blade angle 0 is governed by the equation 

2 'J'C r tan 0 = H (2.3) 
and on substituting this relationship in (2.1) and (2.2) it appears that 

H dT =2'J'C dQ 
dr dr 

ft . t - t· H T 2 (2 4) or a er m egra IOn Q= 'J'C . 

-This simple relationship for a propeller of constant pitch has been 
obtained on the sole assumption that the aerodynamic force on each 
blade element is normal to the chord, and it is quite independent of 
the diameter of the propeller, of the shape of the blades, and of the 
rate of advance. Since, however, the blades will be fully stalled only 
for a propeller of high pitch-diameter ratio operating at a low rate of 
advance, the formula is of value mainly as an estimate of the static 
thrust of a propeller of high pitch-diameter ratio. The torque of -an 
engine is approximately constant under ordinary conditions of operation, 
and hence the formula (2.4) suggests that the static thrust which can 
be obtained from such an engine driving a propeller with stalled blades 
depends only on the pitch of the propeller and is not affected by any 
change of the diameter or solidity. 

As a check on the validity of the formula (2.4), Fig. 113 shows the 
values of H T/Q at zero rate of advance for a series of propellersl plotted 

1 TOWNEND, H. C. R., WALKER, W. S., and WARSAP, J. R., Experiments with 
the Family of Airscrews in Free Air at Zero Advance. Br. A.R.C. R. and M. 
1153, 1928. 
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against the pitch-diameter ratio. The value of H TjQ increases with 
the pitch-diameter ratio of the propeller to a maximum value depending 
on the solidity of the propeller, and then falls slowly. It would appear 
that the limiting value suggested by the theoretical formula (2.4) would 
be reached when the pitch-diameter ratio rose above the value 2. 

3. Drag at Zero Torque. The propeller of an airplane normally 
provides the forward thrust which is necessary to maintain the mDtion 

f.5,...---.--,.------,---,----, 

tOt------b~-...po..o;:::_--t---+-----; 

of the airplane, but when the 
engine is switched off, the pro­
peller itself experiences a drag 
which increases the drag of the 
airplane and increases its gliding 
angle. The drag of the propeller 
depends on the exact state of 
operation of the engine, but it 

L---:o.sl::---t:l::o---f.ts::----;!-;;----:gS is useful to have some standard 
of reference and this standard 

Fig. 113. is provided conveniently by the 
condition of zero torque, which 

assumes that the engine is developing just enough power to overcome 
its own internal mechanical torque. 

If the rotation of the propeller is stopped, the drag experienced by 
the propeller is approximately equal to that of a flat plate of the same 
projected area. Wind tunnel experiments with several model propellers 
have given drag coefficients ranging from 0.51 to 0.57 with a mean 
value of 0.55, and hence the drag coefficient of a stopped propeller may 

be taken to be kD = 'JI; R~ V2 = 0.55 (J (3.1) 

where (f is the solidity of the propeller. 
When a propeller is rotating at the condition of zero torque, the 

energy equation is u D = E 

where u is the axial velocity through the disc, and E is the energy 
absorbed by the profile drag of the blades. In this state of operation 
the axial interference velocity is very small and may be neglected in 
an approximate estimate of the drag of the propeller. On this basis 

the energy equation becomes V D = E 

and the loss of energy E is derived from the analysis of IV 2 as 

.E = (f ~ 7t R2 e Q3 R3 t (l) 
where t (l) is a function of the speed ratio l or VjQ R, and numerical 
values are as follows:-

l= 
t (l) = 

o 
0.250 

0.10 
0.258 

0.20 
0.282 

0.30 
0.325 

0.40 
0.393 

0.50 
0.488 
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According to this analysis the drag coefficient of the propeller at 

zero torque will be kD = lJ ala (A) (3.2) 

but in applying this formula it must be remembered that the coefficient 
~ may vary with the pitch-diameter ratio of the propeller. In order that 
the torque of a blade element shall be zero, the lift and drag coefficients 
of the element must satisfy the equation 

0L sinq; + 0D cosq; = 0 
CD 

or approximately 0L =-;:-
The value of A increases with the pitch-diameter ratio of the propeller, 
and the lift coefficient 0L becomes less negative. Now with ordinary 
airfoil sections the profile drag coefficient increases fairly rapidly as the 
lift coefficient becomes more negative, and thus it would appear that 
a high pitch-diameter ratio propeller will have a lower value of ~, which 
is the mean value of 1/2 OD' than a low pitch propeller. This effect will 
tend to neutralize the increase of f (A) with the pitch of the propeller, 
and experimental results appear to suggest that in practice the product 
~ f (A) is approximately constant. 

In obtaining an empirical formula from experimental results it is 
convenient to use the value of VID R corresponding to zero thrust rather 
than to zero torque, since the speed ratio at which the thrust vanishes 
is determined almost 
exactly by the pitch TABLE 42. 
of the propeller blades 
measured from the no 
lift axes of the blade 
sections. Denoting this 
value of the speed ratio 
by A1, Table 42 gives 
the experimental values 
of A~ kD/.a for two series 

A1 

0.214 
0.282 
0.379 
0.550 

B=2 

kD I A~ kD/lJ 

0.0456 0.0056 
0.0216 0.0061 
0.0076 0.0052 
0.0018 0.0038 

A1 

0.212 
0.280 
0.377 
0_553" 

B=4 

i kD A~ kD/lJ 

0.0992 0.0059 
0.0442 0.0061 
0.0175 0.0059 
0.0066 0.0070 

of model propellers 1. It will be noticed that there is no systematic 
variation with the pitch of the propeller, and it is therefore sufficiently 
accurate to adopt the mean value defined by the equation 

k _ 0.0057 lJ 
D- Ai (3.3) 

or k 0.175 lJ 
D= Ji (3.4) 

The numerical value of this coefficient has, however, been derived from 
tests of model propellers and may be somewhat lower for full scale 
propellers. 

1 FAGE, A., HOWARD, R. G., and BATEMAN, H., Experiments with a Family 
of Airscrews. Br. A.R.C. R. and M. 829, 1922. 
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4. The Vortex Ring State of an Airscrew. The different states of 
operation of an airscrew were discussed briefly in Chapter I and are 
shown diagrammatically in Fig. 2, but the general aerodynamic theory 
has been developed essentially for a propulsive airscrew or propeller, 
and the possibility of applying the same system of equations to the other 
states of operation has been considered in VI 3. The development of 
the theory depends on the assumption that a true slipstream is formed 
behind the airscrew, and between the states of zero advance and of a high 
rate of negative advance of a propeller there exists a region in which this 
condition is not satisfied. If a propeller is moving backward slowly, ct the direction of the flow through the pro­

peller disc will be in the same sense as at 

~
- - - - - -- zero rate of advance and will be opposite 

to the direction of the general stream 
relative to the propeller. The propeller 
then operates in the vortex ring state, 

Fig. 114. the air passing through the propeller 
disc and returning backward outside its 

circumference as shown in Fig. 114. When the speed of negative ad­
vance is increased, the direction of flow through the propeller disc is 
reversed, but a state of turbulence occurs before a true slipstream is 
again formed. The general equations of the propeller theory cannot 
be applied in the vortex ring state or in the turbulent state, since 
no true slipstream is formed and since the usual equations for the 
axial and rotational momentum cease to be valid. In fact no complete 
representation of the vortex ring state is possible without introducing 
the viscosity of the air by means of which the angular momentum 
of the rotating vortex core is transmitted to the general stream. No 
theory has been developed to explain the action of a propeller in these 
abnormal conditions, but it is possible to develop a semi-empirical 
method of analysis l . 

By considering the aerodynamic force on the blades, the element of 
thrust may be expressed as 

dT err = 4nr(!u2 F (4.1) 

where F = ~ CLCOS qJ-CD sin rp 
8 nr sin2 rp 

(4.2) 

and 
u 

tancp = .or (I-a') (4.3) 

1 LOCK, C. N. E., BATEMAN, E., and TOWNEND, E. C. E., An Extension of 
the Vortex Theory of Airscrews with Application to Airscrews of Small Pitch, 
Including Experimental Results. Br. AR.C. R. and M. 1014, 1925. 

GLAUERT, E., The Analysis of Experimental Results in the Windmill Brake 
and Vortex Ring States of an Airscrew. Br. AR.C. R. and M. 1026, 1926. 
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In an approximate analysis the small rotational interference factor a' 
may be ignored, and with this simplification the above three equations 
determine the thrust of a propeller in terms of the axial velocity ~t through 
the propeller disc, but it is necessary to obtain another condition to relate 
this velocity u to the speed of advance V. If 

dT 
~ = 4nr Il V2 f (4.4) dr <;: 

the problem is in fact to determine a relationship between the velocities 
u and V, or between the coefficients F and f. In the usual propeller 
theory this relationship is derived from the axial momentum equation 

From (4.1) and (4.5) 

and then 

or 

~~ = 4nreu (u- V) (4.5) 

V=u(I-F) 

!'-. = V2 = (I-F)2 
f u2 

F 
f = (I_F)2 (4.6) 

In order to extend this analysis to other states of operation in which 
a true slipstream is still formed, some special care is necessary with 
regard to the signs of the various quantities. The simplest method of 
generalising the analysis is to regard F and T as essentially positive, 
so that they represent the magnitude of the axial component of the force 
on the propeller irrespective of sign. The coefficient f is then also positive 
and the axial momentum equation must be expressed in the form 1 

dT 
dr = 4nre I u (u- V) I (4.7) 

In the ordinary state of operation of a propeller the velocities u and 
V are both positive, and u is greater than V. Equation (4.7) is then 
identical with (4.5), and the relationship between the coefficients F and 
t is given by (4.6). When the propeller operates as a windmill the velo­
cities u and V may both be positive or both negative, and u is numerically 
less than V. ~hus (4.7) becomes 

dT ar = 4nreu (V -u) 

and then by virtue of (4.1) and (4.4) 

V = 'U (1 + F) 

and F 
f = (1 +F)2 (4.8) 

The propeller relationship (4.6) is valid in the range of V from zero to u, 
or in the range of F from zero to unity. The windmill relationship (4.8) 
is valid in the range of V from u, which marks the transition from propeller 

1 Note that I x I denotes the numerical value of x .irrespective of sign. 
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to windmill, to 2 u, where the velocity in the final wake falls to zero and 
the slipstream breaks up into turbulence, and the corresponding range 
of F is again from zero to unity. 

The relationships (4.6) and (4.8) are shown graphically by the full 
lines of Fig. 115, where Iff is plotted against IfF since this is the most 
convenient method of exhibiting the characteristics in the region of large 

B 

ZdJI 
values of F which represent the 
vortex ring and turbulent states of 
an airscrew. The broken curve of 
Fig. 115 represents an empirical ex­
tension of the characteristic curve 
in the region where the theory fails, 
and is based on the analysis of 
experimental tests of propellers at 
negative rates of advance. The ex­
tension of the windmill curve into 
the turbulent state is fairly well 
established since it is based on ex­
periments in an open jet wind tunnel, 
but the form of the curve in the 
vortex ring state is less reliable; the 
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If 5 experiments were made in a closed 
tunnel and the magnitude of the 
tunnel constraint is very uncertain. 

By means of the empirical characteristic curve of Fig. 115 it is possible 
to estimate the performance of an airscrew in any state of operation. 
Starting with any value of the axial velocity u through the airscrew disc, 
the value of the coefficient F is calculated from the aerodynamic 
characteristics of the blade element, the corresponding value of f is 
obtained from Fig. 115, and then the axial velocity V of the airscrew 
is calculated from the equation 

V=u-V~ (4.9) 

1?~"~" Vortex /(117g II'Indml71 

In order to decide whether the 
upper or the lower branch of 
the characteristic curve shall 
be used, it is sufficient to note 
that in the windmill and tur­
bulent states F and u are of 

Fig. 116. the same sense, and that in 
the propeller and vortex ring 

states they are of opposite senses. The possible combinations which 
occur in the different states of operation of an ordinary propeller are 
illustrated· in Fig. 116. The velocity V is of the same sense as u in 



SECTION 5 351 

every state of operation except the vortex ring state, in which V and u 
have opposite signs. 

5. The Effect of Sideslip and Pitching. In the development of the 
general theory of a propeller it has been assumed that the forward motion 
of the propeller through the air is in the direction of the axis of rotation, 
but, as has been already stated in VIII 7, the propeller of an airplane 
can operate in this manner at one angle of incidence only, and more 
generally the axis of rotation is inclined at a small angle to the direction 
of motion. A similar effect occurs if the airplane is sideslipping; 
while in turns or rolls the propeller is subjected to an angular velocity 
which may also modify its behavior. It is necessary therefore to 
examine the influence of small lateral or angular 
velocities on the characteristics of a propeller. 
The theoryl is developed in an approximate 
manner for small disturbances, and for more 
extreme conditions it is necessary to rely on 
experimental results. 

Consider. a right handed propeller and choose 
the system of axes shown in Fig. 117 where 
the propeller is viewed from behind. The axis 

y 

z 
Fig. 117. 

of x is taken forward along the axis of rotation, the axis of y to the 
right, and the axis of z downwards. Let 0 P represent one blade of the 
propeller at an angle 1p from Oy, and let the aerodynamic force on the 
typical element of this blade have the components Fdr parallel to the 
axis of x, and Gdr normal to the blade in the plane Oyz and in the sense 
to oppose the rotation of the propeller. Then the components of the 
resultant force and moment experienced by the propeller may be 
expressed as 

X = L: f Fdr 

y= L:fGsin1pdr 

Z=-L:f Gcos 1pdr 

L = - L: ! G r dr I 
M = L: f Frsin1pdr 

N = -L:! Fr cos'ljJdr 

(5.1 ) 

where the integration extends along the whole blade and the summation 
extends over all the blades of the propeller. 

In uniform axial motion the thrust and torque of the propeller are 

respectively T = X = B ! F dr } 
Q = -L = B r Gr dr (5.2) 

More generally F and G are functions of the angular velocity of the 
blade element relative to the adjacent air and of the speed ratio A, and 

1 HARRIS, R. G., Forces on a Propeller Due to Sideslip. Br. AR.C. R. and M. 
427, 1918. 

GLAUERT, H., The Stability Derivatives of an Airscrew. Br. A.R.C. R. 
and M. 642, 1919. 
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are both of the form £22 f (A). The increments of F and G due to any 
small changes III the relative velocities can therefore be expressed in 

the form 
(5.3) 

In these expressions (j Q represents the increase of angular velocity of 
a blade element relative to the adjacent air and may be due either to 
a change of the angular velocity of the propeller or to a linear velocity 
at right angles to the blade in the plane of rotation. In the subsequent 
analysis the angular velocity of the propeller will be assumed to be 
constant, and the effects of any radial component of velocity along the 
blade will be ignored. 

Consider now the effect of a velocity v of sideslip along the axis of y. 
The appropriate increments of Q and A are determined by the equations 

r(jQ=-vsin1jl 

and 
(j A (j V (j Q v sin ljl 
T=V--~= Qr 

Hence according to (5.3) 

or 

J: F ~ _ 2 v sin ljl (F 1 1 0 F ) 
U - Qr -T"a;: 

(j F = - 2 v;;; ljl A F 1 
(j G = - 2 v~i; ljl A G 

where A denotes the differential operator defined by the equation 

A=l-~A~ 
2 0 J. 

(5.4) 

(5.5) 

If V Xv is the increment of the axial force due to sideslip and if similar 
expressions are used for the other force and moment components, (5.1) 
and (5.4) now lead to the expressions 

Xv=-AX! 2Fsinljl dr Qr 

Y v = -AX! 2Gsin2 ljl dr 
Qr 

Zv = AX! 2Gsinljlcosljl dr 
Qr 

Lv = AX ! 2G~nljl dr 

Mv = -AX! 2F~n2ljl dr 

N v = A X J 2 F sin;: cos ljl d r 

(5.6) 

If the propeller has more than two blades, the expressions involving 
sin 1jl or sin 1jl cos'IjJ disappear after summation over all the blades and 
E sin2 1jl is equal to 1/2 B. If the propeller has only two blades, E sin1jl cos 'IjJ 

and X sin2 1jl contain certain periodic terms whose mean values during 
each revolution of the propeller are zero. These periodic terms are quite 
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unimportant and will be neglected in the subsequent analysis. On 
this basis the effect of sideslip as determined by (5.6), is to produce 
a lateral force derivative 

Y" = - ~ Il J ~ dr 

and a pitching moment derivative 

M,,=-~IlJFdr 
By virtue of (5.2) this second expression can be evaluated at once as 

M __ IlT __ ~[l __ A._dTc] (5.7) 
,,- Q - Q 2 Tc dA. 

but in order to evaluate the expression for Y" it is necessary to know 
the form of G as a function of r. This evaluation is considered at a later 
stage of the analysis, and it appears that 

BJ G d - AIQ 
r r- R2 

Y Al Il Q Al Q [1 A. d Qc ] or " = - Q R2 = - Q R2 - 2 Qc ---;n:-
where Ai has the value given in Table 43. 

(5.8) 

If the sense of rotation of the propeller is reversed, the signs of 
Q and Q must be changed, and then Y" is unaltered but the sign of M" 
is changed. The effect of sideslip may therefore be described by the 
statement that the propeller experiences a side force opposing the 
sideslip, and a pitching moment whose sign is determined by assuming 
the centroid of the thrust to move towards the point of the circumference 
where the blade tip is mo-ring in the direction of the sideslip, since the 
sideslip increases the effective angular velocity of the blade at thi.s point. 
The effect of a normal velocity w along the axis of z can be deduced 
directly from these preceding results. The propeller experiences a normal 
force opposing the normal velocity and a yawing moment due to a lateral 
displacement of the centroid of the thrust. 

Turning next to the effect of an angular velocity q of pitch about 
the axis of y, the typical blade element shown in Fig. 116 experiences 
simply an increment of axial velocity 

~ V = qr.sin1{J 

and hence ~ Q is zero and 
~). qrsintp 
T= V 

Then from (5.3) ~F = qrsintp A of I 
V 0 A. 

~G = qrsintp A~ 
V OA. 

(5.9) 

Aerodynamic Theory IV 23 
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and the corresponding force and moment derivatives are obtained from 
(5.1) as 

X =). ~ E J F r sin 1p d 
q OA V r 

Y = 1 ~ '" J Gr sin21p d 
q "OAkJ V r (5.10) 

Z =_)'~EJGrSinycoS1p dr 
q OA V 

For a propeller with more than two blades the expressions involving 
sin'ljJ or sin'ljJ (;Os'ljJ disappear after summation over all the blades, and 
the effect of the pitching of the propeller is simply to produce a lateral 

BA 0 J force derivative Yq = 2 V -liT Grdr 

and a pitching moment derivative 

M - BA & JF 2d q-2VaT r r 

By virtue of (5.2) the lateral force derivative becomes 

A 0 Q Q ( A d Qc ) 
Yq = 2 V TI = V 2 Qc ,rr (5.11) 

Also the form of F as a function of r, which is discussed below, leads 

to an expression B JF r2 d r = A2 T R2 

and hence M = A2 R2 A 0 T_ = A2 T R2 (_A_d Tc ) (5.12) 
q 2 V 0 A V 2 Tc d A 

where A2 has the values given in Table 43. Since Qc and Tc both 
decrease as it increases, these results show that the propeller experiences 
a lateral force in the direction of rotation of the blades where their 
forward velocity is increased by the pitching, and a pitching moment 
which opposes the pitching. Similar results can be deduced for the 
effect of an angular velocity of yawing, which produces a normal force 
and a yawing moment on the propeller. 
. In order to determine the values of the numerical coefficients At 

and A2 which have been introduced in the preceding analysis, it suffices 
to consider an ideal frictionless propeller with circulation around the 
blades defined by VII (2.3). Thus 

where 

x 2 

K =Ko 1 + x2 

Dr 
x=--y 

and Ko is a constant along the blades of the propeller. Ignoring the 
small rotational component of the induced velocity, the thrust per unit 

dT 
length of the blade is a:r = e K Q r 

or 
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and it is convenient to write this expression in the form 
dT x3 

(J;"T=1]AI+x2 

where 1] is the efficiency, which is constant along the blades, and A is 
another constant. The corresponding expression for the torque per unit 
length of the blades is then simply 

dQ V dT Xi 
---=--=rA--
dr 'T}Q dr l+x2 

Then by comparison with equations (5.2) 

BF="lAI~x21 
x2 

BG=A 1 + x2 

The thrust of the propeller is 
R J X3 

T=1]A l+x2dr 
o 

or finally 

and similarly 

Using these expressions 
R l/). 

A1Q _JBG d =J~d R2 - r r l+x2 x 
U u 

= i-A [log (1 + X2)] ~/)' 
I 1+1.2 

=2Alog~ 

(5.13) 

(5.14) 

(5.15) 

and hence the expression for the coefficient Al which occurs in the 
formula (5.8) for Y v becomes 

(5.16) 

23* 
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Similarly after integration 
R 

A2 T R2 = f BFr2 dr 
o 

II}. 

j 1]A va x5 

= ----na 1 + x2 d x 
o 

= 1]AQR4 [~-~2(1-A2l 1+),2)] 
2 V 2' , og ),2 

and hence the coefficient A2 which occurs in the formula (5.12) for Mq 

~ _),2 (1-}.2 1og 1 ~/2) 
becomes A. = (5.17) 

- 1 '21 1 +}.2 

}. 
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0.40 
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~ 

'" ~¥ 
~ 

3 

TABLE 43. 

Al A2 

6.09 0.505 
4.84 0.514 
3.73 0.535 
3.23 0.555 
2.90 0.573 

-r. og~ 

Numerical values of the coefficients Al and A2 
are given in Table 43 and are shown graphi­
cally in Fig. U8. These values of Al and A 2 , 

though derived in an approximate manner for a 

Ejector Yaw 

0#0 Yaw 

+ 5° Yaw 

aO¥i------+-----+--T--T+----l 

~~---a~1~-~~7---~M~-l'-~a¥ 

Fig. lIS. 

~~¥----~a6~----M~----~~-r--1~· 

Fig. 119. 

frictionless propeller, are sufficiently accurate for determining the force 
and moment experienced by a propeller due to sideslip or pitching. 

One conclusion which follows from the preceding analysis is that 
the thrust and torque of a propeller are not altered by a small velocity 
of sideslip or angle of yaw. This conclusion is confirmed by experimental 
results I. Fig. U9 shows the thrust and torque coefficients of a model 

1 BRAMWELL, F. R., RELF, E. F., BRYANT, L. W., Experiments to Determine 
the Lateral Force on a Propeller in Sidewind. Br. A.R.C. R. and M. 123, 1914. 
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propeller, and the corresponding thrust coefficients when the propeller 
axis was set at 5° to the wind stream. Fig. 120 shows the side force on 
the propeller, and the experimental points agree well with the theoretical 
curve deduced from (5.8). Although no experimental confirmation of 
the other formulae is available, it would appear from this comparison 
that the theory is probably a suffi-
ciently accurate representation of the 0.030..----.----,.---,----, 

actual conditions. 16 
At larger angles of yaw the analysis o.0251----'~;:----+---_t_-__l 

ceases to be valid. Figure 121 shows 
the torque curve of a propeller tested 
at large angles of yawl, and it appears o.0201----+-->~..+-~-_t_-__l 

that there is a noticeable increase of 
the torque coefficient when the angle o.Of51----+---+-~_'<_+_'.__--l 

o.fO 
I I 

.side f'orce f)ue to Yaw 

~ 
~ .. 

+ Observed 

- Calculated 

a8 

Fig. 120. 

... + 

OL-_~ __ ~ __ ~~-J. 
0.9 0.6 0.8 1.0 

Fig. 121. 

of yaw is 10° and that the torque coefficient increases rapidly with 
a further increase of the angle of yaw. 

6. Downwash Behind a Propeller. When a propeller operates with 
its axis along the direction of motion, the effect of the thrust is simply to 
create a slipstream of increased axial velocity, but when the axis is in­
clined to the direction of motion the propeller produces also a deflection 
of the air stream, and thus the propeller of an airplane may modify the 
angle of downwash which is experienced by the tailplane. If the axis 
of the propeller is inclined at a small angle () to the velocity V, the thrust 
of the propeller is not altered but there is a small lateral force Y, and 
it is the resultant of the thrust T and of the lateral force Y, resolved 
normally to the direction of motion, which determines the angle of 
downwash. 

Considering first the action of the thrust only, the system of velocities 
is as shown in Fig. 122. The thrust is associated with an added velocity 
2 w along the axis of the propeller and the velocity in the wake is, the 

1 RELF, E. F., and JONES, L. J., Measurements of Lift, Drag, and Pitching 
Moment on the 1/5 Scale Model of the Bristol Fighter with Airscrew Running, 
Br. A.R.C. R. and M. 937, 1924. " 
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resultant of this added velocity and of the original velocity V. Hence 
the angle of deflection 1'1 of the stream in the wake is determined by the 

equation 
2w V 

sin 6 1 sin (8-6tl 

or approximately 
61 2w 
If V+2w 

where, according to the axial momentum equation, 

T = 2:n; R2 e (V + w) w 

Writing as usual w = a V 

the angle of downwash becomes 
6 1 2a 
If=T-t-2(i 

where (1 + 2 a)2 = 1 + 2 i 1 
i= nR;e V2 ! and 

y 

T 

o 
Fig. 122. 

(6.1) 

(6.2) 

Fig. 123. 

These formulae ignore the fact that the existence of the sideforce Y 
implies an increased angle of downwash. If 

Y=fJT 

the system of velocities will be as shown in Fig. 123, where W represents 
the resultant velocity at the propeller disc and W1 the corresponding 
velocity in the wake. From the triangles 0 A Band 0 A C the angles 
of downwash at the disc and in the wake are now obtained in the form 

and 

w a 
8+fJ = V+w = l+a 

2w 
V+2w 

2a 
1+2a 

The lateral force Y is due to an effective angle of yaw (8 - e) of the 
propeller, and according to the analysis of 5 this lateral force is of the form 

Y=K(8-1') 

where K = A1AQ [1 __ A_ d Qc ] 
R 2 Qc d A 
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But from the previous definition 

Y=f3 T 

and hence (3 = k (8-8) 

where k = Al AQ [1- _A_ d Qc] 
T R 2 Qc d). (6.3) 

Substituting back this expression for (3 in the equations for the angle 
of downwash, the final formulae become 

s 
T 

a (1 + k) 

1 + a (1 + k) (6.4) 

2 a (1 + a) (1 + k) and 
(1 + 2 a) [1 + a (1 + k)] 

(6.5) 

The importance of the factor k in these formulae depends on the 
speed ratio at which the propeller is operating, and in general k 
increases with the speed ratio. a5 

The angles of downwash for e 
7) 

one propeller, calculated accord-
ing to these formulae, are shown all 
by the curves of Fig. 124, and 
a few experimental points 1 are a3 
added for comparison. The ex­
perimental values represent the 
mean angle of downwash obse- aa 
rved by means of a tailplane in 
the wake of the propeller, and, a 
although the points are rather 
scattered, the comparison of 

f 

~ 
+ 

~ + 

~ + 

'" -....... 

I I 
+ Experimenlol Values 

~ rZ:ake 

~ " "'-~c + + 

........... 
+ 

Fig. 124 suggests that the slip- fb.5 afl a7 aa aD J to 
stream velocity had not yet Fig. 124. 

attained its full value. In any 
case it is difficult to attach a precise meaning to the angle of down­
wash behind a propeller, since the direction of motion varies across 
the slipstream owing to the rotation caused by the torque. Moreover 
the propeller is usually situated in front of the wings of the airplane 
and the slipstream suffers a further deflection on passing the wings. 
The ultimate deflection, due to the propeller and wings, is of a very 
complex nature and it is necessary to rely wholly on experiments 
to determine the direction and velocity of the flow experienced by 
the tailplane of an airplane. 

1 SIMMONS, L. F. G., and OWER, E., Investigation of Downwash in the Slip­
stream. Br. A.R.C. R. and M. 882, 1923. 
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DIVISION M 

INFLUENCE OF THE PROPELLER ON 
OTHER PARTS OF THE AIRPLANE STRUCTURE 

By 

C. Koning, 
Amsterdam, Holland 

EDITOR'S PREFACE 

The ideal presented by the more general treatment of wing and 
airplane theory contemplates an airplane or airfoil moving relative to 
a body of undisturbed air. In the actual case with the usual disposition 
of the propeller, a part of the wings and most or all of the control sur­
faces will be under the influence of an additional velocity, more or less 
turbulent in character, and formed by the wake of the propeller. Moreover 
even outside the wake proper the action of the propeller will be accom­
panied by a change of the flow and hence of the forces acting on a part 
of the airplane. Obviously no complete theory, including in detail the 
effects of a turbulent wake, can at present be hoped for and in order 
to secure any approach to a theoretical discussion of the influence of 
the propeller on the remainder of the structure, various simplifying 
assumptions must be made. 

The present Division is concerned with a discussion of these problems 
based on such assumptions as can reasonably be made and by means 
of which the treatment becomes possible without involving too extreme 
a complexity of detail. 

In the approach to a discussion of this problem it must be re­
membered that not only does the propeller affect the remainder of the 
airplane structure, but in turn is affected by it. The interaction is mutual, 
but here only those questions will be discussed in which the influence 
on the propeller of the part of the airplane considered may be neglected 
or at least supposed to be known. The other side of the problem, the 
mutual interference between the propeller and the parts of the airplane 
in its neighborhood, has been treated in Division L. 

Chapter I opens with a discussion of the flow about a propeller in 
the absence of other bodies, followed by a consideration of the influence 
of the simplifying assumptions introduced and then by a general discus­
sion of the theory of its action on the wing system. The treatment of the 
latter problem is based on the vortex theory of the airfoil. 
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In Chapter II the applications of this theory to various problems 
are considered in detail. This discussion covers both the wing of finite 
span in different positions relative to the propeller and the wing of 
infinite span crossing the slipstream boundary, together with a com­
parison of theoretical and experimental results. 

This is followed by closing sections on c~rtain interference effects not 
covered by the theory of Chapter I and by a consideration of the in­
fluence of propeller action on the control surfaces, especially as affecting 
stability and controllability. W. F. Durand. 

CHAPTER I 

DEVELOP1\lENT OF THEORETICAL ASPECTS 
OF THE PROBLEM 

A. Introduction 
1. The Problems to be Diseussed. A propeller, introduced in a flow 

of air, will change this flow by its action. This change will be called 
the disturbance of the flow caused by the propeller. If there are other 
bodies present, the change of the flow will be accompanied in general 
by a change of the forces acting on them. This change may be called the 
influence of the propeller on the bodies. On the other hand the intro­
duction of a body will change in general the forces acting on the propeller. 

The problems concerning the interference between the propeller and 
the other parts of the airplane may thus be divided into two groups. 
The first is formed by those cases in which the attention is directed 
primarily to the influence of other bodies on the propeller, whereas the 
second includes those relating to the influence of the propeller on other 
parts of the structure. Problems belonging to the first group can be 
attacked satisfactorily only by considering the mutual interference 
between the propeller and other adjacent bodies, and must be treated 
in close connection with the theory of the propeller. As these questions, 
the most important of which is the interference between the propeller 
and the fuselage or nacelle placed just behind or in front of it, have 
been treated already in Division L of this work, no special attention 
will be paid to them here. 

The most important problem, which remains after elimination of 
that of the propeller-body interference, for the reason noted, is that 
of the influence of the propeller on a wing. This problem is the only 
one of the second group a theoretical discussion of which may be given 
for the moment. It will be seen that it is not only important from the 
point of view of the influence on the wings of the airplane, but that 
it has also a bearing on its stability. 

Besides this, a short discussion of some other questions will be given. 
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2. Coordinates and General Notations. According to the special pro­
blem to be treated, rectangular coordinates x, y, z or cylindrical coordi­
nates x, r, e, as indicated respectively in Figs. la and Ib, will be used. 
In both cases the origin coincides with the center of the propeller disc. 
The axis of x is directed downstream parallel to the direction of the 
undisturbed flow. The positive sense on the other axes is chosen such 
as to have a right hand system of coordinates. In the case of the isolated 
propeller, the direction of the axes of y and z is arbitrary. On the other 
hand, in discussing the influence of the propeller on a wing, the axis 
of y, or with cylindrical coordinates the axis e = 0, will be taken parallel 
to the wing, whereas the axis of z is directed downward. 

~ 

4~-----,"" 
?,"ib 

z 
Fig. 1. Coordinates and components of velocity: a) rectangular, b) cylindrical. 

Though a list of symbols is given at the beginning of this Division, 
it may be well to note here the meaning of certain of them to be used 
most frequently. 

The velocity of the undisturbed flow will be indicated by V; the 
components of the disturbance velocity, due directly to the action of the 
propeller by vx , Vy and vz , rectangular coordinates being used. On the 
other hand, the components of any other deviation from the undisturbed 
flow, e. g. caused by the presence of a wing, will, for these coordinates, 
be denoted by u, v and w. If cylindrical coordinates are used, the 
components of any disturbance velocity will be indicated by vx , Vt and v,.. 

The axial component vx , as defined above, may, for any point in 
the slipstream, be given also in the form 8 V and the sum of this com­
ponent with V by S V. This gives the relation, 

S = 1 + 8 (2.1) 

The value of 8 at the propeller disc being important as a reference 
quantity, the special symbol a will be used for it. 

The thrust and torque of the propeller will be given by T and Q 
respectively and may be expressed in non-dimensional coefficients by 

means of: T = CT (! V2D2 } 
(2.2) 

Q = CQ (! V2D3 

in which, apart from the quantities defined already, (! is the density 
of the air and D the diameter of the propeller. 
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Occasional reference will also be made to coefficients kT and kQ 

defined as follows: T = kT e n2 D4 1 
Q = kQ e n2 D5 J 

These C and k coefficients are related thus: 

kT = C:J.' (VjnD)2 kQ = CQ (VjnD)2 

(2.3) 

Lift, drag and pitching moment of a wing will be denoted by L, D 
and M respectively!, the non-dimensional coefficients for these quantities 
being defined in the usual way by: 

1 
L = CLze V2 S 

1 
D= CDze V2S (2.4) 

1 
M = C JtI '2 e V2 S c 

Here S denotes the wing area and c the chord of the wing. 
Properties, related to the case in which the propeller is absent will 

be indicated by the suffix 0, whereas the prefix 6. will be used to denote 
the change in a~lY property caused by the action of the propeller. 

B. The Flow Around a Propeller in the Absence 
of Other Bodies 

3. The "Ideal Propeller". The best way to study the change of the 
flow associated with the action of a propeller is to realize that this 
change is caused by the forces which it exerts on the air. The problem 
in its most general form is very complex, for, the propeller being a solid 
body, the exact solution would have to satisfy certain conditions at 
its boundary. But what is wanted here is rather a simple approximate 
solution, such that its general characteristics only are the same as those 
of the real flow. Such a solution may be obtained, neglecting the con­
ditions mentioned above, if the system of external forces acting on the 
air is similar, again in its main properties only, to that for the real propeller. 

Since the most important function of the propeller is to give a force 
in the direction of its axis, it is to be expected that the axial components 
of the general force system will dominate and be mainly responsible 
for the character of the flow. Now going a step further in simplification 
by supposing that there are only axial forces acting over a thin disc 
substituted for the propeller, and that they have a constant value per 
unit area over the whole airscrew circle, we come to the so-called "ideal 
propeller", a notion introduced for the first time by Froude. 

In general the simplified picture of the flow, obtained in this way, 
will approximate the real flow sufficiently close to be used as a basis 

1 The use of the same symbol D to denote both diameter and drag will not 
be found to introduce any confusion, since both will not occur in the same equation. 
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for the solution of various problems. But, owing to the assumptions 
introduced, there will be differences between the idealized flow and the 
real one which may be of some importance. A short discussion of these 
will be given in 8 and 9. 

4. The Flow Around the Ideal Propeller. General Solution I. In the 
following discussion the influence of the viscosity and compressibility 
of the air will be neglected and the disc, representing the propeller, 
will be taken to be normal to the direction of the undisturbed flow. 

If now the components of the change in velocity, caused by the 
action of the propeller, are supposed to be small compared with the 
velocity V of the undisturbed flow, the equations of motion take the form: 

V oV:c =-~+X e ox ox 
V f)Vy __ op_ 

e ox - oy 
Il V OVI3 =_~ 
0: ox OZ 

. 0 VIc + f) Vy + 0 VI3 = 0 
ax oy OZ 

(4.1) 

(4.2) 

According to the assumptions discussed in 3, the external forces 
will have the component X only, which moreover will be zero everywhere 
except in the region occupied by the disc. 

Integration of the first of (4.1) over a line parallel to the axis of 
x from Xl to X 2 leads to 

2 

e V (V:c2 -V:cl) = - (P2 - PI) + JX d X 
1 

If the point 1 is taken just in front and the point 2 just behind the 
propeller disc and the latter is supposed to be infinitely thin, then for 
reasons of continuity, V XI will be equal to V:C2' so that 

2 

P2-PI = JX dx 
1 

The expression (P2 - PI) represents a sudden increase in pressure, 
2 

observed in passing through the propeller disc and J X d X is the 
1 

total amount of axial force acting per unit area. The latter having 
a constant value over the whole disc and the sum of all axial forces 
being equal to the thrust T of the propeller, the pressure difference may, 
if the first of (2.2) is used, be given by: 

T 8 
P2-PI =-R2 =-OTq (4.3) n n 

1 A more exact discussion of this problem is given by J. M. BURGERS in Proc. 
Kon. Ak. v. Wet. Amsterdam, Vol. 32, No.9, p.1278, 1929. 
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In the region outside the disc the pressure will be continuous, all 
external forces being absent. By eliminating v x , Vy and Vz from (4.1) and 

02p 02p oZp 
~J..~-+-~-O ex2 I oy2 OZ2-(4.2), the equation (4.4) 

is obtained. Being identical with the equation of Laplace, it shows 
that P will be a potential function. From the discussion given above, 
it follows that at the propeller disc this function will show a sudden 
increase of (P2 - PI) in passing from the negative to the positive side 
of the disc. 

As is known from general theory \ such a potential may be obtained 
by covering the surface of the disc with double sources (doublets) distri­
buted continuously and having the intensity (P2 - PI) per unit area. 
Now at any point A, which is not situated on the disc, the value of P 

will be given by P = -+- P24:PI f oOn (~) dS 
s 

in which n denotes the positive normal to the disc and w the distance 
from any point of the disc to the point A. The integral above is to be 
taken over the whole disc. 

By introducing cylindrical coordinates, so that Xl = 0, rl , 81 indicate 
any point of the disc and X, r, 8, the point A, the result is then obtained 
in the form 

R 2" 

P= P24:PI f frlo~I (~)drld8l= 
o 0 

R 2" 
(4.5) 

P2 - PI f ( x r 1 d rId {}I 
= 4n- . [ri + r2 + x2 - 2 r l r cos ({}I~-=- {})]3/2 

o 0 

Now P being determined, the values of the components v x , v y , Vz 
might be calculated with the aid of the equations (4.1). 

It may be proved, that both inside and outside the slipstream 
boundary, the flow has a velocity potential. This "slipstream boundary" 
is a surface of revolution, extending in the positive direction from the 
edge of the propeller disc to infinity, at which Vx shows a discontinuity. 

The solution obtained does not lend itself to an easy application 
in the problems to be treated afterward. Therefore in the next section 
an approximation will be given, derived from it by introducing certain 
simplifying assumptions. This simplification will be based on the fact 
that within the slipstream boundary the values of Vx will be relatively 
large and in any cross-section, they will not differ greatly from that 
on the axis r = O. 

1 See Riemann-Webers Differenbialgleichungen der Physik, Vol. I, Chap. XIV, 
Braunschweig, 1925. 
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Use will be made of one result only obtained here, that for the value 
of P at r = 0, which is, 

R 2n 

P2-Pl J Jxr1 drl d 81 
P = 4 n (ri + x2y3/2 = 

o 0 

In this expression the roots are to be taken positive, so 
result may be given in the form; 

r = O,x <0 

r = 0, x> ° 
P= P2;Pl (-I-VR2x+X2) I 
P = P2 2 PI ( + 1 - V R2 : X2 ) 

that the 

(4.6) 

o. The Flow Around the Ideal Propeller. Approximate Solution. The 
axial component Vx of the velocity due to the action of the propeller 
must vanish at x = - ro and be continuous at the propeller disc. So, 
from the first of (4.1) and equations (4.6) it may be seen at once that 
for r = 0, it is given by 

-ro<x<+ro; v = J!J. - PI (1 + __ X_) 
x 2eV VR2+ X2 

By introducing the value of Vx (x = 0) = a V at the airscrew disc, 
the so-called "inflow velocity", as the governing factor instead of 
(P2 - PI)' this result may be written in the form; 

Vx = a V (1 + ,/ x --=) (5.1) 
yR2 + X2 

With the aid of (4.3) the following relation between a and the thrust 
coefficient aT may be obtained; 

a = P2-Pl = ~a 
2e V2 n T 

(5.2) 

Owing to the simplifications introduced above, this value of a is 
only approximate. In general, therefore, it will be better to use the 

more exact value a = ~- (-1 + VI + ~ aT) (5.3) 

as given by the momentum theory of the propeller I. 

Now the simplifying assumption is made that (5.1) not only gives 
Vx for r = 0, but for each point of the slipstream as well. The name 
"slipstream" is to be taken here in the generalized sense, indicating 
the region occupied by the fluid which has passed or is to pass through 
the propeller disc. 

Tangential forces being absent, the velocity will have no tangential 
component, so that, both inside and outside the slipstream, 

Vt = ° (5.4) 

1 This relation may be obtained by introducing the first of (2.2) in the first 
of equations (1.12) of Division L II. 
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The radial component v,. of the velocity in the slipstream may be 
found by using the equation of continuity: 

~_o_ (rv)' + ~_oV( + oVx = ° 
r or ,. r of) ox 

and introducing in it the values for Vx and Vt given by (5.1) and (5.4). 
As Vr must vanish at r = 0, we shall have 

1 a V R2 r 
v,. = -2 (R2 + X2)312 (5.5) 

The determination of the components Vr and Vx in the region outside 
the slipstream is based on the conditions that here the flow shall have 
a potential and that at the boundary of the slipstream the radial 
component of the velocity must be equal to that given by (5.5). Taking 
the diameter 2 Rl of this boundary equal to that of the propeller disc 
(2 R) everywhere, these conditions will be satisfied by the flow due to 
a sink of intensity 2 n R2 a V at the origin. Hence the disturbance 
flow in the region considered will have the potential 

a V R2 
cp= 

2 v' x2 + r2 

and the components of its velocity are 

Vx = - ~ a V R2 (X2 +X1'2 )3/2] 

1 VR2 r (5.6) 
v,. = -2 a (x2 + r2)3/2 

Taking the results given by (5.1) to (5.6) together and introducing 
rectangular coordinates, the components of the velocity of the flow due 
to the action of the propeller, are: 

inside the slipstream [(y2 + z2) < RiJ : 

Vx = a V (1 + V x ) 
, R2+X2 

Vy = -~- a V (R2! ;2)3/2 (5.7) 

1 R2 Z 

VZ = - 2 a V (R2 + X2)3/2-

outside the slipstream [(y2 + Z2) > RiJ : 
1 R2 x 

V = - - a V --;-;;----;--.---, 
,J; 2 (X2 + y2 + Z2)3/2 

1 R2y 
v1J = -2 a V (X2 + y2 + Z2)3/2 

(5.S) 

1 R2 Z 
VZ = -2a V (x2+ y2 +Z2)3/2 

The boundary of the slipstream is a surface of revolution with the 
axis r = 0. Its radius Rl at any section x may be determined by 
considerations of continuity, since the volume of fluid flowing through 
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it must be the same as that which has passed the airscrew disc. So by 
introducing Vx from the first of (5.7) we get: 

nRi (V + vx ) = n Ri V [1 + a (1 + x )] = nR2 V (1 + a) 
-VR2 + x2 
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1.0 
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'/ 
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t ,.v 

/ • -':.'5.0 -1/.0 -3.0 -Z/J -10 0 to Z/J 3.0 '1.0 5.0 tiO 
-"'A> 

Fig. 2. The pressure p and the velocity component "x of the propeller flow in the propeller 
axis (,. = 0). 

or, taking account of the fact that second and higher powers of a may 
be neglected, 

R =Rli l+a _ ~R(l_ax,-,-=) (5.9) 
1 V 1+a(1+x!VR2+x2)~ 2VR2+X2 

~v 

-8.0 110.; -nn.; 

,/// >-~~,I~~~ I"" -w 

~: ~ ~ ! v.v 
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i ""'-
'--.:V I'~V l/;/ 

".v • " '::..5.{/ -'1.0 -3.0 -2.0 -to 0 to 8.0 3.0 '1.0 5.0 o 6: 

Fig. 3. The axial component "x of the velocity of the propeller flow in the plane y = O. 

6. Numerical Values. As an illustration of the results obtained in 5 
the numerical values of the most interesting quantities are given in 
Figs. 2-5. 

Aerodynamic Theory IV 24 
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Figure 2 shows the pressure and axial velocity for the line r = O. 
According to the first of (4.1) there is a close relation between these two 
quantities. The main differences in character are, that Vx has no 

1\ \~~~17·' 

":::.'in -11.0 -8.0 -/1.0 -1.0 o to 
-"'/R 

/1.0 £0 '1.0 8.0 

Fig. 4. The component 'Vz of the velocity of the propeller flow in the plane y ~ o. 

discontinuity at the propeller disc (x = 0) and converges at large positive 
values of x to a value twice that at the disc. For both quantities the 
gradient is steepest in the neighborhood of the propeller. 

'Z; ~V-
L//--r.!!!p~ 

f'\, ,/ 

( If C\ ) 
t:lc"U 

\" l~ ~-L/ } 
,/ 1(( t-)\' r''\ 
( "'-v. ) 

II \'. 
)'--_. .V ~qp§/ 

~lJ;n -1£0 -8.0 -z.o -to 0 to gO .xO 1£0 50 6: o 

Fig. 5. The component 'Vz of the velocity of the propeller flow in the plane y ~ 1.1 R. 

In Fig. 3 the values of vx , the axial component, are given for the 
plane y = O. Mter the discussion of Fig. 2, little need be said regarding 
the slipstream region. Outside this region, the values of Vx are much 
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smaller, vxJa V amounting here to something more than 0.15 at most. 
From the character of the flow in this region (due to a sink at the 
origin) it is evident that Vx changes sign in passing through the plane 
x = 0 and decreases rather rapidly for increasing distances from the 
propeller. 

The values of vz, the other component of importance, are given 
in Figs. 4 and 5 for the planes y = ° and y = 1.1 R respectively. In 

0.12 both cases, as in the whole flow, 
Vz is symmetrical about the plane 
x = 0, and anti-symmetrical about K 

the plane z = 0, being positive in t' 
the region above the propeller axis. 
The largest values occur at the edge 

0.10 

0.08 ~ . ~. 
(I.Ul1 

o_ 
110a 

of the propeller disc in the plane "1100 

3.0 ' y = 0, vzla V being here 0.50. In the 
plane y = 1.1 R, the curves show a 
character similar to that of those in ';til:,! 
the plane y = 0, but the values of ~t 
Vz are much smaller. 
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Fig.3 shows a discontinuity in 
velocity at the slipstream boundary 
both in front and behind the pro­
peller. In the first region this dis­
continuity is fictitious and due to the 
simplifications introduced. There is a 
some similarity with the real flow, in t 
that, in front of the propeller, the 
discontinuity in Vx is in general rather 
small compared with that behind it. 0.0. 

7l1J o.¥ 115 0.8 fl7 0.8 flO 

Thus far the values of (P2 - PI) -%0 
and a have been left out of the dis- Fig. 6. Values of (p, - p,) and a for a 

cussion. To give' an idea of these 
quantities, they are shown in Fig. 6, 

two-bladed propeller with pitch P = 0.7 D 
and maximum blade width c = O.082D. 

together with the corresponding values of the thrust coefficients C T and loT' 

The values of the latter are taken from experiments by Fage, Lock, 
Howard and Bateman1 with the model of a propeller which may be 
considered as representative of those in normal use (two blades with 
constant pitch P = O.70D and a maximum blade width of 0.082 D). 
For a both the exact value calculated from (5.3) and the approximate 
one according to (5.2) are given, showing that there may be a rather 
important difference between these two. The normal working range of 
a propeller, such as is considered here, will be from about VJnD = 0.4 

1 Experiments with a Family of Airscrews, Part 1. Br. A.R.C. R. and M. 829, 
Vol. I, 1922-23. . , " 

24* 
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to VjnD = 0.8. Hence the greatest value of a to be expected here 
under normal conditions, will be about 0.26, a value which justifies the 
assumption that in most cases the disturbance velocity, due to the 
action of the propeller will be small compared with V. 

7. Experimental Results. As rather drastic simplifications have been 
introduced in developing the theory of the flow around the ideal propeller, 
it is desirable to compare the results obtained with those of experiments. 

As will be discussed in 8 and 9, the 
0.8 general assumptions, especially those 11 x/n=-D.3'1'1 - 1 
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Fig. 7. Calculated and experimental values 
for the axial component Vx of the velocity 
of the propeller flow. Continuous line-

calculated, broken line--experimental. 
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Fig. 8. Calculated and experimental values 
for the radial component vr of the velocity 
of the propeller flow. Continuous line-

calculated, broken line--experimental. 

relating to the forces acting on the air, will cause some fundamental 
differences, but in many of the problems to be treated their influence 
is small or negligible. For the moment, therefore, attention will be paid 
rather to the question of prime importance, namely, whether there is 
a sufficient agreement in the mean values of the velocity components 
Vx and Vr • 

For a satisfactory quantitative comparison the results of the 
exploration of the whole flow around an isolated propeller are needed. 
But, thus far, exact measurements of the components of the velocity 
have been made in the neighborhood of the propeller only, the purpose 
being rather to check the performance calculation of the propeller. 
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Experiments of this kind have been made by Lock and Bateman 1 with 
a model propeller which was closely related to that mentioned in 6, 
the only difference being that here a four-bladed model was nsed. The 
experimental values of Vx and Vr for a plane in front and a plane behind 
the propeller are given in Figs. 7 and 8, together with the corresponding 
calculated values. The experiments were made with a body behind the 
propeller, the diameter of which was about 1/3 D. A primitive correction 
has been applied for its influence by subtracting from the values 
measured, those for the body without propeller. It will be evident, that, 
due to interference effects, even with such correction, the experimental 
and calculated values are not comparable in the strict sense. Bearing 
this in mind the agreement may, however, be called satisfactory. Though, 
owing to the fact that more exhaustive experimental information is 
lacking, the check of the calculated values is very incomplete, it will 
be assumed that, apart from the differences to be discussed in 8 and 9, 
the flow around the ideal propeller may be considered as a satisfactory 
approximation to the real flow around an isolated airscrew. Hence it 
may be used as a basis for the determination of the influence of the 
propeller on the parts of an airplane, if only the form and situation of 
these parts are such that their interference with the action of the 
propeller is not important and that the influence of other parts of the 
airplane is negligible. 

8. Influence of the Simplifying Assumptions. Besides possible dis­
crepancies in the mean values of Vx and Vr , some of the assumptions 
introduced may lead to differences in character between the real flow 
and the calculated one. The main causes of these differences are the 
assumptions relating to the axial forces and the omission of the effects 
due to viscosity and the tangential forces. 

For the real propeller the axial force will in general be a non-constant 
function of r and even change sign in the region occupied by the boss. 
This will result in a value of Vx which in the slipstream is a function 
of r too, but for the problems to be treated here this deviation will, in 
general, be of secondary importance. 

Somewhat more serious is the fact, that, due to the finite number 
of blades, the forces are concentrated on a number of rather narrow 
strips moving with the angular velocity of the airscrew. Hence the flow 
will not be steady but will have a periodic character. This phenomenon 
has been investigated by Townend 2 and by Lock and Yeatman 3, 

respectively from the experimental and the theoretical sides. It has been 

1 The Measurement of Airflow Around an Airscrew. Br. A.R.C. R. and M. 955 
Vol. II, 1924-25. 

2 Hot Wire and Spark Shadowgraphs of the Airflow Through an Airscrew. 
Br. A.R.C. R. and M. 1434, 1931-32. 

3 Periodic Flow Behind an Airscrew. Br. A.R.C. R. and M. 1483, 1932-33. 
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shown by the latter authors that there is a good agreement between 
the Teal flow and that due to a certain system of vortex sheets. This 
system is a simplification of the helical vortex sheets springing off the 
trailing edges of the blades, the existence of which may be predicted 
from the circulation theory of the airscrew (see Division L VI). Moreover 
there will be other causes tending to destroy the steadiness of the flow, 
such as the vorlices related to the profile drag of the blades and the 
0.010 0.10 resistance of the boss. The gene-

Ke::~i!='.:;t'e ~~t~:C~!i:~.e latter vo~tice~ is d~e t aOf} ~~~ -----------c, ~. -~11IJII t Another effect of VISCOSIty will 
o.oa e 0.02 be observed at the boundary of the 
0.000 0.00 slipstream. Whereas the theory of 
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Fig. 9. Values of ("t!V)max and (Vtla V)max 
for a two-bladed propeller with pitch 
P = 0.7 D and maximum blade width 

c = 0.082D. 

the ideal propeller assumes a surface 
of discontinuity, in the real flow, 
instead of such a surface, a region 
will be observed in which the velo­
city changes more or less rapidly. 
Due to the diffusion of vorticity, the 
radial thickness of this region will 
increase with increasing distance 
behind the propeller . 

9. Influence of the Simplifying 
Assumptions (Continued). The for­
ces in a tangential direction, exerted 
on the air by the real propeller, 
will cause a rotation of the slip­
stream. As was indicated by Taylor 1 

for the first time, the circulation in 
any fluid line which has not passed 
through the propeller disc will be 
zero. Hence, both in front of the 
propeller and in the region behind 

it but outside the slipstream, the mean value of the tangential velocity 
will be zero likewise. To obtain a rough approximation of the tangential 
velocity in the slipstream, the following calculation may be made, based 
on the assumption that the whole mass of air which has passed through 
the airscrew disc rotates like a solid cylinder. 

The angular velocity of the airscrew b~ing Q = 2 n n, that of the 
cylinder may be taken in the form 2 a' Q, whereas the axial velocity of 
the air at the propeller disc is (1 + a) V. The torque of the propeller 

1 The "Rotational Inflow Factor" in Propeller Theory, Br. A.R.C. R. and M. 
765, 1921-22. 
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will be equal to the moment of momentum impressed on the air passing 
through it per unit time; hence, 

R 

Q= !2a'Qr.r·e(l+a)V.2nrdr= ~ eQVD4(1+a)a' 
o 

or, by introducing the coefficient CQ from the second of (2.2) 

a'= 16Q =~~~ 
n e Q V D4 (1 + a) n 2 1 + a nD 

The maximum value of the tangential velocity Vt will occur at the 
slipstream boundary, and hence will be given approximately by 

, n 16 CQ 
Vtmax = 2a ~4R = ~-1 + V n a, (9.1) 

or, to make this result directly comparable with the velocities for the 
ideal propeller, as in 6, 

16 CQ 
n a(1 +a) 

(9.2) 

In Fig, 9 the values of Vt max/V and Vt max/a V are given together with 
the corresponding values of the coefficients kQ and C Q for the same 
propeller, the results of which 0.'1 

have been discussed already 
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The absolute value of vt/V is $­
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increasing values of V/n D, 0. 

but its relative importance 
(compared with a) increases, 0. 

slowly at first, but more ra­
pidly in the neighborhood of 
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the point of zero thrust. As 
is known from 6 (Fig. 4), the 
maximum value of the com­

Fig. 10. Calculated and experimental values for 
the tangential component Vt of the velocity of the 

propeller flow. Continuous line-calculated, 
broken line--experimental. 

ponent Vz in the flow around the ideal propeller is 0.5 a V. The maxi­
mum value of Vt may therefore surpass it greatly. 

A comparison between the values of Vt, calculated in the manner 
indicated above and those taken from the experiments of Lock and 
Bateman 1 is given in Fig. 10. It shows that the calculated results are 
a rough approximation only, but that the maximum values, though 
occurring at quite different values of r, do not differ greatly. 

The rotation in the slipstream will be accompanied by a pressure 
gradient along the radius which will cause a negative change of the 
pressure in its interior. 

1 See footnote, p. 373. 
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C. The Influence of the Propeller on the Wing System 

10. Introduction. In the preceding Part B, it appeared practical to 
divide the disturbances of the flow, due to the action of the propeller, 
into two groups. The reason for this was that, by introducing certain 
simplifications, the problem took a form admitting of an approximate 
numerical solution. This solution may be regarded as representing the 
first and most important part of the disturbances mentioned. For the 
second part, including all differences between the idealized flow and 
the real one, such a solution is not possible. For a part of these differences, 
only a rough approximation could be given, and for a part, even this 
is impossible. 

As a consequence, in analyzing the influence of the propeller on the 
wing system, a similar division of the effects is desirable. For, numerical 
results on the flow around the ideal propeller being available, we have 
the opportunity to study in some detail its influence on the properties 
of a wing. On the other hand, no consistant numerical values on the 
disturbances included in the second group are available. Hence it is 
evident that it is not possible to give even an approximate numerical 
treatment of the effects caused by them; moreover, such a treatment 
would involve other serious difficulties. 

It should be remarked that the boundary line between the two 
groups of phenomena chosen here, is not entirely in accord with that 
introduced in treating the flow around the propeller, as effects due 
to changes in pressure will be excluded from the first group here. 

This division of the effects, prescribed by the possibility of analytical 
treatment, is somewhat parallel to a division based on their practical 
importance. The effects of the first group will exist in every case and 
may be important. On the contrary, those of the second group will in 
general be less important or exist only in special cases, such as wings 
at a large angle of attack. 

In dealing with this subject, the theory of the influence of the ideal 
propeller on the wing system will be given first, 12-26, followed in 
Chapter II, Part A, by its application to the problem in the different 
forms in which it may be encountered, together with a comparison 
with some experimental results. Whereas in the present chapter the 
form of the wing system will be arbitrary and the influence of the pro­
peller on lift, drag and pitching moment will be considered, in Chapter II, 
Part A, for the sake of brevity, the discussion will be restricted mainly 
to wings of a special, simple form, and to the lift only, the latter 
furnishing the most interesting aspect from a theoretical point of 
view. Finally in Chapter II, Parts Band C certain questions will be 
discussed which are not covered by the theory developed in the present 
chapter. 
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11. statement of Problem. The treatment of the problem will be 
based on the three-dimensional airfoil theory, as it has been developed 
in Division E III, IV. A summary of the assumptions taken from that 
theory is given in 12. 

Anticipating the more exact formulation of the problem to be treated 
here, which will be given in 14, it can be characterized best by indicating 
the fundamental difference which exists between it and the similar one 
which is solved by airfoil theory. The latter theory supposes the wing 
system to be situated in a flow of air in which, in its absence, the velocity 
would have the same magnitude and direction at every point. On the 
other hand, we must here deal with a flow in which, even in absence 
of the wing system, the velocity is varying from point to point both 
in magnitude and direction. 

The problem in its most general form, that is to say that of the wing 
in an arbitrary flow, presents serious difficulties, but there are circum­
stances here which make it unnecessary to attack it in this general form. 

In the absence of the wing and without the action of the propeller, 
the velocity. of the flow is constant both in magnitude and direction. 
As has been indicated already in Part B, the changes in velocity due 
to the action of the propeller, may be supposed to be smalL This will 
result in simplifications, being similar to those encountered in the theory 
of the lightly loaded wing. 

Here, as in the latter theory, the disturbance velocities due to the 
action of the wing will play an important role in the determination of 
the circulation for a wing of given form. If now the changes in flow 
caused by the action of the propeller were small, but otherwise arbitrary, 
it would be difficult to determine these velocities. On the other hand, 
the flow in the absence of the wing being such as to have a continuous 
velocity potential everywhere, these difficulties would disappear entirely 
and in calculating the velocities mentioned, use could be made of the 
methods known from airfoil theory. Now our problem lies midway 
between these two extreme cases, since here we have to do with two 
regions, in both of which a velocity potential exists, but which are 
separated by a surface of discontinuity. Hence we shall have to investigate 
the influence of such a discontinuity, which will show itself to be im­
portant, as it not only exists in the case in which the wing crosses the 
slipstream boundary, but also in that for the wing situated entirely 
within or without such boundary. 

12. General Assumptions. Although most of the assumptions are taken 
from basic airfoil theory and so have been discussed in Division E, it 
may be well to summarize them here. 

The change of the undisturbed flow, caused by the action of the 
wing, is identical with that related to a system of vortices. This system 
consists of two parts: a rectilinear line vortex, taking the place of the 
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wing, the so-called "lifting vortex" and a layer of "trailing vortices" 
extending from the lifting vortex to infinity. The lifting vortex will 
be normal to the plane x z, whereas the trailing vortices are parallel 
to the axis of x. The vortex strength of the lifting vortex will in each 
point be equal to the circulation around the corresponding element of 
the wing. The total strength of the trailing vortices, starting from any 
part of the lifting vortex, will correspond with the change in circulation 
of the latter in the part considered. 

The distance from the wing to the point in which the velocity is 
to be determined, being rather large, the vortex system thus indicated 
may be replaced by a more simple one, the so-called "horseshoe vortex", 
consisting of a lifting vortex of constant strength and two trailing line 
vortices extending from its ends. 

The velocity caused by the action of the wing will be so small that, 
if any function of its components is expanded in a power series, only 
the lowest powers need be taken into account. 

The force acting on an element of the wing will, apart from its 
dimensions and aerodynamic properties, depend on the local velocity 
only. This "local velocity" is the component, normal to the axis of y, 
of the velocity which would exist in the point at which the element 
is located, if this element were taken away but everything else left 
unaltered. The components of the force, normal and parallel to the 
local velocity, are equal respectively to the lift and drag which would 
act on it if it formed part of a wing of infinite span in two-dimensional 
flow. In the latter case, the angle of attack and the velocity, taken 
in the usual sense, should be equal respectively to the aerodynamic 
angle of attack and the local velocity for the element considered. A defi­
nition of the "aerodynamic angle of attack" is given in 13. 

The component dL of the force normal to the local velocity, may 
be expressed either in terms of the circulation around the element, or 
in terms of its lift coefficient. 

The first relation is given by the generalized law of Kutta-Joukowski: 
dL oo = (! Vtr dy (12.1) 

the second by dL oo = GLoo (1/2)(! Vlcdy (12.2) 
in which 

dLoo = component of the force considered; 
e = mass density of the air; 
r = circulation around the element; 
Vt = local velocity; 
dy = "span" of the element; 
c = chord of the element; 
OLe¥) = 0 0 + 0 1 rxoo = lift coefficient for the wing of infinite span at the same 

aerodynamic angle of attack, 0 0 and 0 1 being constants, depending 
on the properties of the wing section only. 
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The component dD oo of the force parallel to the local velocity, being 
the profile drag of the element, will be small compared with the normal 
component and independent of the angle of attack. 

For each element of the wing the axis about which the pitching 
moment dM is defined, may be taken such as to make it independent 
of the angle of attack. 

Besides these well-known assumptions the following new ones will 
be here introduced. 

The ratio between any of the components of the velocity due to 
the action of the propeller and the undisturbed velocity, will be small 
compared with unity. Hence, if any regular function of them or of 
the "inflow factor" a is expanded in a power series, only the terms of 
the order zero and one are to be retained. 

In working out the results of the theory, the components of the 
velocity will be introduced in the form given in 5. On the other 
hand in the general discussion, use will be made of the fact that 
the exact solution for the disturbance flow due to the action of the 
propeller, will have a velocity potential both inside and outside the 
slipstream boundary (see 4). 

13. Some General Definitions. For the sake of brevity the name 
"airfoil theory" will be used to indicate that part of this theory 
which treats the wing in an 
unbounded parallel flow and 
which is based on the assump­
tions discussed in 12. 

F Fig. 11. Angles of attack. et = geometrical; 
or the same reason, the etc = aerodynamic; ai = induced. 

system of vortices which may 
be substituted for the wing (see 12), will be called the "vortex system 
of the wing". Likewise the name "cross components" will indicate 
the components of any velocity in a plane normal to the axis of x. 

The prefix "induced", taken from airfoil theory, will be used here 
in a more general sense. In airfoil theory its meaning is, that the property 
considered, resistance for example, is related to the change of flow caused 
by the action of the wing. Here it will be used to indicate a property 
related to all disturbances taken together. For instance, in calculating 
a component of the induced velocity, the summation should be taken 
of the components due to the disturbances caused by the action of both 
the wing and the propeller. 

Taking the "induced angle of attack" (f..i in this sense, such as to 
give at any element of the wing the angle between the direction of the 
undisturbed flow and of the local velocity, it is evident that the relation 

(f..i + (f..e = (f.. (13.1) 
is still valid here (see Fig. 11). The "aerodynamic angle of attack" (f..c 

is the angle between the local velocity and a reference line fixed to 
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the wing section, e. g. the chord. The "geometrical angle of attack" IX 

is the angle between this reference line and the direction of the un­
disturbed flow. 

An "element of the wing" will always be the part of the wing situated 
between two planes normal to the axis of y, their separation being dy. 

14. General Discussion of the Problem. After the introduction given 
in the preceding sections, a more exact statement of the problem can 
be given than was possible in 11. The resulting flow which will exist, 
both the propeller and the wing being present, may be decomposed 
into different parts. To distinguish them, the following names will 
be used: 
a) "undisturbed flow": the flow in the absence of wing and propeller, being 

a parallel flow with constant velocity V; 
b) "propeller flow": the difference between a and the flow which would exist if 

the propeller were acting in absence of the wing; 
c) "airfoil flow": the change in flow caused by the action of the wing when intro· 

duced into a, the propeller being absent; 
d) "additional airfoil flow": the disturbance flow, related directly to the change 

in circulation around the wing, caused by the action of the propeller; 
e) "additional flow": the difference between the resulting flow f and the flow 

which would be obtained by simple superposition of a, b, c and d; 
f) "resulting flow": the flow existing with both propeller and wing present and 

in action. 

It should be remarked at once, that this decomposition has only 
a kinematic character and does not assume that each part can exist 
as an independent flow. 

As to the meaning of the three first mentioned parts, little need 
be said. Flow b is the change in flow due to the action of the propeller, 
as discussed in 4-6, whereas flow c is the disturbance flow considered 
by airfoil theory. The vortex system of the wing being given, the velocity 
of the latter flow at any point may be calculated by using the well­
known formula of Biot and Savart. 

In the absence of the propeller, the flow around the wing consists 
of parts a. and c only. Introduction of the propeller action leads to 
a change in flow, which, the form of the wing being unaltered, will in 
general result in a change in the circulation for each element of the wing. 
The resulting vortex system may be considered as consisting of two 
parts; the first is identical with the original ("original vortex system"), 
whereas the second part ("additional vortex system") incorporates all 
changes due to the introduction of the propeller action. The character 
of these two systems is the same, the only differences arising from 
a different distribution of the circulation along the lifting vortex and 
a corresponding difference in the strength and distribution of the trailing 
vortices. Now, starting from the additional vortex system, a flow may 
be constructed, related to it in exactly the same way as the airfoil 
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flow to the original vortex system, and this will be the additional air­
foil flow d. 

But, as will be discussed in more detail in the next section, the flow 
obtained by a superposition of a to d cannot exist. So, to obtain the 
resulting flow f, still another, the additional flowe, must be added. 

The circulation being known, the calculation of the aerodynamic 
properties of the wing will not present fundamental difficulties. Hence 
the main problem will be the determination of the change in circulation. 
This change, depends directly on both the propeller flow and the 
additional flow; the determination of the latter is important and is 
to .be first considered. 

15. The Superposition of Potentials with Singularities. In the theory 
of irrotational fluid motion, use is often made of the superposition of 
potentials l . Such a superposition is always permitted, if only in the 
region considered, both CPI and CP2 are free from singularities. 

A discussion of the different kinds of singularities which may be 
encountered in hydrodynamic theory may be omitted here, as we shall 
have to deal with two kinds only, which are closely related. Either the 
singularities will be situated on a line or on a surface. In the first case 
their character is such that, in approaching the line, the value of the 
velocity tends to infinity, whereas the circulation around the line differs 
from zero (line vortex). In the second case, the velocity has a finite, 
but different value and/or direction on the two sides of the surface, so 
that a discontinuity in velocity occurs here (vortex sheet, surface of 
discontinuity) . 

If now the potential functions have singularities, the question whether 
superposition is permitted requires special attention. 

In some of these cases, it may be shown that superposition is indeed 
permitted, but that the existence of the flow having the potential ob­
tained in this way, will only be possible if external forces are applied 
to the fluid. A well-known example is the following case which is of 
direct present interest. Both the undisturbed flow a and the airfoil 
flow c, as they have been defined in 14, have a potential. The potential 
CPa of the first flow has no singularities whatever, whereas that of the 
second, CPC' has singularities coinciding with the vortex system of the 
wing. As is known from airfoil theory, the flow obtained by super­
position can exist only if certain external forces act on the fluid in the 
line occupied by the lifting vortex. 

If now the propeller flow b is superposed, the situation is altered. 
The fact that the vortex system of the wing is changed does not pre­
sent a fundamental difficulty, as the flow related to it (the additional 
airfoil flow d) has exactly the same character as the original airfoil 

1 See Division A VII 2. 
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flow c. Hence an addition of its potential CPd will result only in a change 
of the forces necessary to act in the lifting vortex. A more important 
point is the fact that the potential CPb of the propeller flow has its sin­
gularities also, located on the boundary of the slipstream, the surface 
on which there is a discontinuity in tangential velocity. This surface 
may be considered as a vortex layer, but here the introduction of external 
forces would conflict with the physical meaning of the problem. Hence 
we must approach from a different direction, by investigating what 
mechanical conditions (boundary conditions) are to be satisfied for an 
element of fluid situated on the boundary. 

In general, the flow given by the potential CPl' which is obtained by 
a simple addition of CPa' CPb, CPc andcpd (uncompensated potential) will 

not satisfy these conditions. We therefore 
ok make use of the possibility of superposing still pr+rJJz another potential CPe (additional potential). 

The latter may have quite a different character t5kI r in the regions situated inside and outside the 
_~ ____ 8ou'!!!.ary_ slipstream boundary, but in both it should 

ok 11 be free from singularities. On the other hand, 
2 singularities at the boundary will be permitt-

@!...).Q} ed and even necessary. Moreover it is to be 
PJr-tarijJI chosen such that the potential of the result-

Fig. 12. Pressure condition at . . 
the boundary. mg flow, CPt (compensated potentIal) = CPl + CPe 

satisfies the boundary conditions. 

16. Conditions at the Boundary of the Slipstream: General Form. 
The conditions to be satisfied at the boundary of the slipstream may 
be given in the following form: 

a) the pressure shall have the same value on each side of the boundary, 
b) the component of the velocity, normal to the boundary, shall 

be the same on both sides and in our special case, in which the flow will 
always be supposed to be steady, equal to zero. 

The necessity of equality of pressure may be demonstrated in the 
following way. Let us take an element of fluid, bounded by a small 
cylindrical surface crossing the boundary (Fig. 12). The base of this 
cylinder is taken parallel to the boundary, whereas its generating lines 
are normal to it. The height of the cylinder is 0 k. External forces 
being absent, the equation of motion of the element in the direction 
of the normal n to the boundary will contain inertial and pressure terms 
only. The inertial terms will be all proportional to ok, the pressure 
terms take the form: 

-PI+PII-[(:~)II+(:~)I] 82h 
The suffixes 1 and 11 indicate respectively whether the property 

considered is related to the region outside or inside the boundary: If 



SECTION 17 383 

now 0 h converges to zero, it will be seen at once that, if (p II - PI) 
was not equal to zero, the acceleration of the fluid would be infinite 
at the boundary. Hence the first boundary condition is 

PI = PII (16.1) 

The second condition is one of continuity and has the meaning that 
at the boundary no fluid should disappear or be generated. The boundary 
being a surface of revolution the normal 
component of the velocity is (see Fig. 13) 

at side I: V nl = V r I COS fJ + V x I sin fJ 
at sidell: VnII = VrIIcosfJ+ VxIIsinfJ 

in which fJ is the angle between the normal 
n to the boundary and a plane normal to 
the axis of x. The symbol V is used here to 
indicate the total value of any component 
of the velocity for the flow considered. 

As noted above, both V n I and V n II 
must be equal to zero, which, by elimi. 
nation of fJ, results in the second boun­
dary condition 

(16.2) 

n 

I 
I-----===-l:fr 

----__ Ilot///o! 

----~ ---

Fig. 13. Condition of continuity at 
the boundary. 

17. Conditions at the Bonndary of the Slipstream: Special Form. By 
(16.1) and (16.2) the boundary conditions are given in their most general 
form for a steady flow, but another form will be more suitable for the 
solution of the problem indicated in 15. 

To obtain this form, the somewhat simplified case will be considered 
in which the propeller flow b consists only of a constant increase 
(VII - VI) in axial velocity inside the slipstream boundary. Moreover 
in the absence of the wing, the latter will be a circular cylinder with 
radius R1, the axis of which coincides with the axis of x and which 
extends from x = - co to x = + co. Hence the flow (a + b) will be 
a parallel flow with the velocity V = V I outside and V n inside the 
slipstream boundary. 

Introduction of the wing will influence the form of this boundary; 
but, the disturbance velocities being small, it will deviate only slightly 
from the original form specified above. Hence it will be permissible 
to seek a solution for which the boundary conditions are not satisfied 
at the real boundary, but at the idealized one represented by the cylinder. 

Both inside and outside the slipstream, the flow will be irrotational, 
so that the pressure is given by: 

1 
P + "2 e [( V + u) 2 + v2 + w2 ] = C 
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Here, in distinction from the general use, V indicates the velocity 
of the flow (a + b). C will be constant both inside and outside the 
slipstream, but will have a different value in these two regions. 

The velocities tt, v and w will be small, so that their squares may 
be neglected. Moreover at x = - OJ, uI and un will vanish and PI 

and PII will have the value Po. Hence the pressure equation may be 
reduced to the form 

outside: PI = Po - e VI uI 

inside: PII = po-e VnUII 

By substitution of these results, (16.1) becomes 

r = Rl : VI UI = VII ttII (17.1) 

The flow existing in the absence of the wing and having the potential 
(fPa + fPb)' satisfies the boundary conditions. Hence, in introducing the 
potential in these conditions, only the part (fPc + fPd + fPe) (see 14) need 
be considered, and (17.1) may be written in the form 

-R· V O(rpc+tpd+rpe)I - V C(tpc+tpd+tpe)n 
r- 1· I ox - II ox (17.2) 

Now the relation 
x, 

fP (Xl) = f ~: d X + fP (- OJ ) 

- 00 

may be used. Owing to the fact that the cross components v and w 
of the velocity will vanish at X = - OJ, fP (- OJ) will be an arbitrary 
constant here, independent of y and z. Hence in integrating (17.2) 
fP (- OJ) may be omitted as having no physical meaning and the first 
boundary condition is obtained in the form 

r = Rl : VI (fPc + fPd + fPeh = VII (fPc + fPd + Pcb (17.3) 

The velocity U being small, it may be neglected in the second boundary 
condition (16.2), so that this becomes 

r = R l : (;) I = ( ; ) II 

or, again introducing the potential, 
_ R . V 0 (tpc + tpd + tpe)I _ V 8 (tpc + tpd + tpe)II 

r - 1· II or - I 8r (17.4) 

18. Determination of the Additional Flow. The result of the dis-
cussion in the preceding sections may be summarized as follows. The 
flow obtained by superposing on the undisturbed flow a the disturbances 
caused by the action of the propeller (propeller flow b) and that of the 
wing (airfoil flow G + additional airfoil flow d) cannot exist. The cause 
of this is the fact that the mechanical conditions which should be satisfied 
for each element of the fluid are violated at the boundary of the slip­
stream. Hence another flow (additional flow e) must be added. The 
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latter must satisfy the following conditions: Both inside and outside 
the boundary mentioned, it must have a velocity potential, which, except 
at this boundary, has no singularities. If the boundary is supposed to 
have the special form introduced in 17, this potential should be determined 
such that, together with those of the airfoil flow and the additional 
airfoil flow, it satisfies conditions (17.3) and (17.4). At a large distance 
from the wing, the velocity of the airfoil flow vanishes, except in the 
region behind the wing. Hence this should also be the case with the 
velocity of the additional flow. 

Potential theory provides means by which a complete solution of 
this problem might be obtained, if such a solution were wanted. But 
it will be shown here, that owing to certain peculiarities of our special 
problem, a partial solution will be sufficient. 

Though similar questions are encountered in airfoil theory, a short 
discussion of them, in view of their importance, will be given here. 

For simplicity the lifting vortex of the wing is supposed to be 
situated in the plane x = 0, an assumption which does not introduce 
any restriction. 

The behavior of an element of the wing depends only on the magnitude 
and direction of the local velocity. Moreover the value of the velocity 
component u of the airfoil flow (and likewise of the additional airfoil 
flow) is small, so that its influence may be neglected. Owing to the 
relation between airfoil flow and additional flow, this will also be the 
case for the component u of the latter. Hence the component w of the 
velocity of the additional flow in the plane x = 0 is the only quantity 
required. 

Moreover, as will be shown in the next section, both for the potential 
and for the cross components of the velocity, an important and simple 
relation exists between their values at corresponding points in the planes 
x = 0 and x = + en. The name "corresponding points" indicates here, 
as in the following discussion, points having the same values of y and z. 

19. Determination of the Additional Flow (Continued). The vortex 
system of the wing being given, the velocity of the airfoil flow may 
be determined by means of the formula of Biot and Savart. As given 
by this formula, the element of induced velocity due to a rectilinear 
part of a vortex line is parallel to a plane normal to this line. Hence 
in calculating the component 7£, only the lifting vortex need be taken 
in account, the trailing vortices contributing to the cross components 
of the velocity only. As a consequence the values of u will be symmetrical 

about the plane x = 0: u (- x) = u (+ x) (19.1) 

Of course u is a function of the coordinates y and z also, but the 
omission of these in the notation will indicate that corresponding points 
are considered. 

Aerodynamic Theory IV 25 
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Now the difference between the value of the potential at two arbitrary 
points Xl and X 2 situated on a line parallel to the axis of x is 

X2 X2 

q? (X2)-q? (xl) = J~~dx= JUdx (19.2) 
X, 

Bearing in mind the result given by (19.1), it follows at once that, 
for any value of x, we have the relation 

q? (0) -q? (- x) = q? (+ x) -q? (0) 

or q?(+X) = 2q? (O)-q? (-x) (19.3) 

If in (19.2) either Xl or X 2 tends to infinity, this expression remains 
valid, as it may be shown that for large values of x, 1~ takes the form x- n , 

in which n is larger than unity. The same is true for (19.3) and it becomes 

q?(+ en)=2q?(0)-q?(-en) 

At x = - CD the cross components of the velocity will vanish, so 
that cp (- CD) will be a constant, independent of y, z. As a constant 
term in the potential has no physical meaning, it may be omitted with 

the result cp (+ en) = 2 cp (0) (19.4) 
This relation is valid for each set of values of y and z. Hence for 

the cross components of the velocity, being the derivatives of the 
potential, the analogous relations will exist. For instance for the most 
important components of the velocity, we have 

w (+ en) = 2 w (0) } 
(19.5) 

vr (+ en) = 2 v,. (0) 

In this discussion no special assumptions were made regarding the 
vortex system of the wing, so that results (19.4) and (19.5) are valid 
both for the airfoil flow and the additional airfoil flow. Now considering 
the boundary conditions as they.are given by (17.3) and (17.4), it is 
obvious that for the additional flow, the analogous relations will exist 
between the values of the potential and of the components of the velocity 
in the planes x = 0 and x = + en. 
. At large values of x both u and its derivative au/ax will vanish. 
Hence at x = + en, the potentials of the airfoil flow, the additional 
airfoil flow and the additional flow will be functions of y and z only, 
which moreover satisfy the equation 

82 82 
~'~-O 8 y2 T OZ2 -

and hence are two-dimensional potential functions. 
Summarizing the results obtained, the conclusion is that the problem 

of the influence of the additional flow is reduced to the determination 
of the component w of a plane potential flow, satisfying the boundary 
conditions (17.3) and (17.4). This reduction is an important one, as 
now the more simple and powerful means provided by two-dimensional 
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potential theory may be used. One of these, leading in many cases to 
a simple method for calculating the velocity component w of the 
additional flow, the so-called "method of images", will be discussed in 
some detail in the following sections. 

20. Method of Images (Introduction). In the preceding section the 
question of the influence of the additional flow for the simplified case 
introduced in 17, has been reduced to an investigation of this flow in 
the plane x = + CD. In this plane both the airfoil flow and the additional 
airfoil flow, which should be "compensated" by it, have the character 
of a plane potential flow related to a layer of vortices (or, in simplified 
cases, a set of line vortices) the axes of which are perpendicular to it. 
Hence a general solution will be found easily, if only the additional 
flow related to an isolated line vortex is known. 

The similarity of this problem with that of the influence of the walls 
of a wind tunnel, as treated by airfoil theory, suggests the use here of 
the method of images, a method which, in the former case, has led to 
simple results. 

First, some general definitions and formulae may be given. 

The "image" of a line vortex (original vortex) parallel to the axis 
of x and crossing the plane considered at a point A, is a similar vortex 
crossing that plane at the point which is the "image" of A. Stress should 
be laid here on the fact that this definition does not include anything 
regarding the vortex strength of the image. For the circle with radius R1, 

the center of which coincides with the point Y = 0, Z = 0, the relation 
between the coordinates of the point A (Y1' Z1) and those of its image 
(Yi' Zi) may, by using complex coordinates, be given in the form 

(_ Ri 
t- ~ 

(20.1) 

in which I;i = Yi + iZi 

1;1 = Yl- iZ1 

Hence, returning to rectangular coordinates, those of the image are 

Ri Yl 1 
Yi = yi + zi 

Ri Zl J 
Zi = yi + zi 

(20.2) 

As may be shown without difficulty, both (20.1) and (20.2) indicate 
that the point A and its image are interchangeable. 

In the following discussion, it will be assumed that Zl = 0, so that 
the coordinates of the image are: 

R2 
Yi = 1t; Zi = ° (20.3) 

an assumption which does not introduce any restriction in the problem. 

25* 
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The potential of the flow around a line vortex through the point 
Y = Yv z = 0; the circulation of which is + 1, is: 

(/> = -~ tan -1 --~-
I 2 n Y-YI 

(20.4) 

In considering the boundary conditions, the value of the potential and 
of its normal derivative are wanted for the circle r = RI . They are: 

(/> _ = + _1_ tan- I ~in ~_ (20.5) 
I (r - R , ) 2 n RI cos e - Yl 

( B WI ') 1 YI sin e 
ar l' ~ R, = - 2n Ri + Yl- 2 RI Yl cos e (20.6) 

() being the angular coordinate given in Fig. 1 b. These results are valid 
independent of whether YI < RI or YI > Rv and hence both for a vortex 
lying inside or outside the slipstream boundary. 

By introducing Yi = Ri/YI for Yl' the potential is obtained for the 
image of the vortex, its strength being supposed for the moment to 

be + 1 also: m _ 1 -1 Z 
'V2 - -2 tan RQ/ n Y - i Y, 

(20.7) 

At the boundary, its values and that of its normal derivative a;re 

(20.8) 

(20.9) 

Still a third potential will be needed, that of a vortex coinciding 
with the axis of x, again with circulation + 1. Here Yl being equal 

to zero, this potential is (/> = _1_ tan _1.Z_ 
3 2 n Y 

and the values at the boundary are 

(20.10) 

(20.11) 

(20.12) 

Between the results given by (20.4) to (20.12) two relations exist, 

the first being (/>1(1' ~ R t ) + (/>2 (1' = R,) = (/)3 (1' ~ R,) (20.13) 

This may be proved easily by using the well-known trigonometric relation 

(X. + (J = tan - 1 tan oc + tan {3 
1 - tan oc tan {3 

and substituting 

CI. = 2'J!(/>I(1'~R,), 

By comparing (20.6) and (20.9), the second relation is seen at once 

to be: (~B~!)r=Rt=(BB~2)1'=Rt (20.14) 
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21. Method of Images (Vortex Outside). If the original vortex is 
situated outside the boundary of the slipstream (Yl > R1) and has 
a circulation r = + 1, let us suppose that the potential of the additional 
flow may be given by: 

~u~side (r::::, Rl): qJeI = a(/>2 + b (/>3 } 

mSlde (r ~ R1): qJeII = C (/>1 
(21.1) 

Here f/Jl' f/J2 and f/J3 have the values given by (20.4), (20.7) and (20.10) 
respectively, whereas a, band c are constants to be determined with 
the aid of the boundary conditions. 

As the singularities of f/J1 are situated outside, and those of f/J2 and f/J3 

inside the slipstream circle, the potential of the additional flow, given 
in the form (21.1), satisfies the condition that it should be free of 
singularities in both regions. 

For the reason given in 17, in considering the boundary conditions, 
the potential of the undisturbed flow and of the propeller flow may 
be left out of account, so that the uncompensated flow may be taken 
to be that around the original vortex and to have the potential: 

outside (r:::: R1): } = (/> 
inside (r:::; R1) : (qJc + qJd) I: II 1 

(21.2) 

Introduction of (qJc + qJd) and qJc' as they are given by (21.2) and 
(21.1), and of S = VII/VI in the boundary conditions (17.3), (17.4), 
leads to: 

(S + S c -1) ([>1 (r~R,)- a(/>2 (1"~ R ,) - b (/>3 (1' ~RI) = 0 

(S-C-l)(~i\) +as(Orp2') +bs(orpa) =0 
or r~R, ,or r~RI or r~RI 

or, taking account of the relations (20.12), (20.13) and (20.14): 

(S - b + S c -1) (/>1 (1' ~ R I ) - (a + b) (/>2 (1' ~ R ,) = 0 

(S + S a-c-l) (Orpl) = 0 
, or r~R, 

Now the latter conditions are to be satisfied at each point of 

the boundary. As (/>1 (1' = R , ) , f/J2 (1' = R I ) and (0 ",rpl) _ are non-constant 
ur ,,1"- RI 

functions of e, and as the first two are linear independent, this will 
only be possible if a, band c satisfy the equations: 

b-Sc = + S-1 
a+b =0 

Sa -c=-S+I, 

the solution of which leads to: 
8 2 _1 8 2 _1 

a=-82 +1; b=+82 +1; 
(8 _1)2 

c=- 8 2 +1 
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The result obtained may be summarized as follows: the uncompensated 
flow being that around a line vortex with circulation + T, the potential 
of the additional flow takes the form: 

outside (r 2'; R I ): f(!el = -11 (8) Tf/12 + 11 (8) Tf/13 

inside (r:S R1): f(!elI = -/2 (8) Tf/11 

(21.3) 

(21.4) 

in which f/1v f/12 and f/13 have the values given by (20.4), (20.7) and (20.10) 

8 2 -1 
respectively, whereas 11 (8) = + 82 + 1 (21.5) 

(8 _1)2 
12 (8) = + 82 + T (21.6) 

The vortex system of any wing may be considered as composed of 
a number of horseshoe vortices, so that at x = + 00, we shall have 
to do with pairs of vortices with equal circulation, but having opposite 
signs. As a consequence, the term containing f/13' which is the potential 
of the flow around a vortex situated always in the axis of x, is of no 
practical importance and may be left out of account. 

Now considering the other terms, it is seen that outside the boundary, 
the compensated flow, as far as the direct influence of the original 
vortex is concerned, is unaltered and the additional flow has the character 
of that around an image of the original vortex. The strength and sign 
of this image depend on the value of 8 and hence on the ratio between 
the original velocity inside and outside. On the other hand, inside the 
boundary, the resulting flow has the character of the flow around the 
vortex coinciding with the original one, the circulation of which is 
changed from + T to + [1-/2 (8)] r. As the value of 12 (8) will be 
always positive (except for 8 = 1), the boundary decreases, for the region 
inside it, the influence of a vortex situated outside. 

There are three values of 8 which may be used for checking the 
results obtained. For 8 = 1, the additional potential will vanish, as 
there is no boundary. For 8 = 00 and 8 = 0 the boundary is identical 
with a rigid one and with a "free jet surface" respectively, and the 
results are in accordance with those known for these two cases from 
the theory of tunnel wall interference. 

22. Method of Images (Vortex Inside; Summary of Results). For the 
original vortex with T = + 1 situated inside the boundary, the potential 
of the additional flow may be given in the form: 

outside (r 2'; R1) ( f(!e 1 = d f/11 + e f/13 

inside (r ::; R1): f(!elI = I f/12 

(22.1) 

(22.2) 

As, compared with the foregoing case, the original vortex and its 
image have changed their position, here again the condition of freedom 
of singularities is satisfied. 
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Now introduction of (21.2), (22.1) and (22.2) in the boundary con· 
ditions leads, in the same way as in 21, to the equations: 

d+e =+S-1 
e-SI = 0 

Sd -/=-S+ 1 

having the solution: 
(8 _1)2 

d = - S2+ 1 ; 

Hence, for the uncompensated flow around a line vortex with 
culation + T, the potential of the additional flow will be here: 

cir-

outside (r ~ R1): f/JeI = - 12 (S) TtP1 + SI1 (S) TtP3 

inside (r;'S R1): f/JeJI = + It (S) TtP2 

(22.3) 

. (22.4) 

tPl' tP2 and tP3 have here again the values given by (20.4), (20.7) 
and (20.10) respectively, whereas h (S) and 12 (S) are the functions 
defined by (21.5) and (21.6). 

The meaning of this result is similar to that discussed in 21. For 
the region in which the original vortex is situated, the additional flow 
is that around a vortex, which is the image of the original one. In the 
other region, leaving the potential tP3 out of discussion for the reason 
mentioned already, the resulting flow has the same character as that 
around the original vortex, but at each point the value of the potential 
and so that of the velocity, is decreased by the influence of the boundary. 

Here too the results may be checked by the introduction of S = 1, 
S = 0, and S = 00, but it should be remarked that, owing to the meaning 
of S, the physical interpretation of the cases S = 0 and S = 00 is 
interchanged. 

The results obtained are indicated schematically in Fig. 14. This 
figure gives, from left to rig4,t, the uncompensated flow, the compensated 
flow outside the slipstream boundary and the compensated flow inside 
the boundary. In each case the flow is indicated by the vortices, to 
which it is related. Vortices, situated in the region considered are 
indicated by full line, the others by dotted arrows. 

Thus far, both in the deduction of the boundary conditions and in 
the determination of the additional flow, S has been considered an 
arbitrary constant. As in applying the results it will be assumed that 
(VII- VI) is small compared with Vb S will differ only slightly from 

unity. Now introducing S = 1 + 8 

and neglecting second and higher powers of 8, we get: 

11 (S) = + 8; 12 (S) = 0; Sit (S) = + 8 

and the results, given in their general form by (21.3), (21.4) and (22.3), 
(22.4) take the following simplified forms: 
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The uncompensated flow being that around a vortex with circulation 
+ rand 8 = (V IIfV I) - 1 being smail, the potential f{Je of the additional 
flow is given: 

a) If the original vortex is situated outside the boundary of the 
slipstream, by: 

outside (r ~ R1): f{JeI = - 8 rW2 + 8 rW3 
inside (r :S R1): f{Je II = 0 

(22.5) 

(22.6) 

b) If the original vortex is situated inside the boundary men­

(22.7) 
(22.8) 

tioned, by: outside (r ~ R1): f{JeI = + 8 rW3 
inside (r:S R1): f{JeII = + 8 rW2 

yow (jncompenstrled Compensafed Compenstrled 
Orig.l~ //Oriel( Inside and Outside outside Inside 

Outside 0 .) @ ) 0 a£ ... / 
+F +F 

hside Q (j) j") Q 
Fig. 14. Images of vortices 

Continuous line = vortices in the region considered 

:) 
c'" 

-, 
~ 

J" 

Broken line = vortices outside the region considered 
a = + I, (S) r d = + SI, (S) r 
b = - I, (S) r e = + [1 - 12 (S)] r 
c = + [1-/2(S)]r f = +/,(S)r 

Here, as before, WI> W2 and W3 indicate the potentials, as they are 
• given by (20.4), (20.7) and (20.10) respectively. Hence, for small values 

of 8, the influence of the images in the region in which the original 
vortex is situated remains, but that of the boundary on the flow in 
the other region vanishes. 

23. The Equation for the Change in Circulation. General Form. In 
treating the influence of the ideal propeller on the properties of the 
wing, the central part of the problem is the determination of the change 
in circulation. The fundamental equation for this change will be derived 
here; the way in which a solution may be obtained will be given later 
in discussing the different forms of the problem. 

After the foregoing discussion leading to the introduction of the 
additional flow, it is evident that it is not allowable to calculate the 
change in circulation by considering only the change in local velocity 
which is directly related to the propeller flow. 
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To derive the equation for the change in circulation, let us start 
with the problem of a wing situated in an arbitrary flow, which in its 
absence, would have the velocity components V + V x , Vy and Vz• No 
restrictions bearing upon the magnitude of these components or the 
general character of the flow will for the moment be introduced. 

The dimensions, aerodynamic properties and geometrical angle of 
attack CY. of an element of the wing being given, the force acting on it 
depends on the direction and magnitude of the local velocity only. 
As has been noted in 13, the angle CY. is the sum of the induced and 

effective angles of attack: CY. = CY.i + CY., (23.1) 

The induced angle of attack has to be taken in the generalized sense, 
as was indicated in 13, and is given by: 

.-t _1 vz + W (T) (9.3.2) 
CY., - an V + Va; -

The symbol w (r) calls for some explanation. It is used to represent 
the velocity component w at the point considered, as it is caused by 
the action of the wing in the resulting flow. Hence, using the terminology 
introduced in 14, it is equal to the sum of the components w of the 
airfoil flow, the additional airfoil flow and the additional flow. It will 
depend both on the vortex system of the wing (in the resulting flow) 
and on the values of v x , Vy and Vz throughout the entire field of flow. 
Moreover it will be a function of the coordinates of the wing element. 

The effective angle of attack CY.e may be expressed by the circu­
lation r around the element, bearing in mind that on the one hand the 
force normal to the local velocity is equal to: 

dLoo=(!rVtdy 
on the other to: 

dLoo = CL 00 (1/2) (! Vr c dy = (Co + C1 CY.") (1/2) (! Vr c dy 
as noted in 12. Equating these expressions we have, 

2r 0 0 
CY.e = C;VtC - C-; (23.3) 

Introduction of (23.2) and (23.3) in (23.1) leads to the general 
equation for the circulation: 

tan-1 Vz + w (r) + ----'!:!'_ = CY. + ~ (23.4) 
V + Vx 0 1 Vt c 0 1 

It should be remarked that in the symbol w (r), r indicates the 
whole vortex system of the wing, whereas in the second member it 
means the circulation at the point considered. 

24. The Equation tor· the Change in Circulation. Special Form. In 
the foregoing deduction, the velocity components vx , Vy and Vz were 
considered to be arbitrary. Now coming to the case in which they are 
the velocity components of the propeller flow, we know from the 
discussion given in 5, that they are proportional to a parameter a. 
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Hence they may be given in the form (vx/a) a, (vy/a) a and (vz/a) a, the 
fractions (vx/a) , etc. being functions of the coordinates x, y, z and the 
propeller radius R only. Moreover the values of these fractions are 
finite at every point. 

It follows that rand W (T) will be functions of a also and we will 
suppose that these functions are regular in the neighborhood of a = 0, 
so that they may be expanded in power series of a. For the circulation 
this series takes the form: 

r = To + r l a + ... higher powers of a (24.1) 

In expanding W (T), account should be taken of the fact that both 
the vortex system, indicated by r, and the relation between a given 
vortex system and the velocity component w, as indicated by the 
functional operator W ( ), depend on a. This results in a series of the form: 

W (T) = Wo (To) + WI (To) a + Wo (TI ) a + ... higher powers of a (24.2) 

The meaning of the symbols introduced here is the following: 

Wo (ro): the component W of the disturbance velocity due to the action of the 
wing, a being zero, in the absence of the propeller, and ro indicating 
the vortex system of the wing in this case; 

wdro)a + Wo (rI)a: the total change of w caused by the action of the propeller 
for small values of a, a change which may be decomposed into the two 
parts: 

WI (ro)a: the change of w which would occur if the propeller was introduced, but 
the vortex system of the wing was left unaltered; 

Wo (rI)a: the change of w in the case that, in the flow without the propeller, the 
vortex system of the wing was changed in such a way as to make it 
identical with that in the resulting flow with the propeller. 

Or again, speaking in the terminology introduced in 14, Wo (To) is 
the velocity component w of the airfoil flow, Wo (TI ) a that of the 
additional airfoil flow and WI (To) a that of the additional flow. As to 
the latter, it should be remarked that only the influence of that part 
of the additional flow is taken in account which is related to the airfoil 
flow. The second part, depending on the additional airfoil flow is 
neglected as it depends on second and higher powers of a only. 

25. The Equation for the Change in Circulation. Special Form (Con­
tinued). As is known from 6, a may be considered a small quantity, so 
that its second and higher powers may be here neglected. Moreover, 
for the same reasons as in airfoil theory, w (T) may also be taken to be 
a small quantity. 

Now first expanding (Xi from (23.2) in terms of Vx and Vz and afterward 
introducing their values and that of w given in 24, we find: 

(X. - w(T) + yz __ w(T) v = ~wo(ro)- wo(r~~a+ 1 
t - V V V2 x V V2 a (25.1) 

1 Vz 1 1 
+ V--u,-a + VW1 (To) a + VWo (Tl)a+ ... 
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As, according to the definition given in 12, 

Vt = [(V + Vx + U)2 + (vz + W)2]112 = V + C~) a + ... 
expansion of ae from (23.3) leads to: 
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(25.2) 

2 ro 0 0 2 r 1 2 ro (vx) 
ac = o-;:C V - c;- + 0 1 G Va - 0 1 G 172 a a + . . . (25.3) 

Now, putting (25.1) and (25.3) in (23.1) and separating the terms 
in 1 and a, we obtain, instead of equation (23.4), the two equations: 

(25.4) 

(25.5) 

As was to be expected, the first of these is identical ~th that given 
by airfoil theory for the determination of the circulation of a given _Wing, 

Comparison of (25.4) and (25.5) leads to the conclusion that the change 
in circulation caused by the action of the propeller is identical with that 
which would result from a certain change in the angle of attack for the 
wing located in the undisturbed flow. 

Equation (25.5) being linear in rv the influences of vx , V z and WI (ro) 
may be treated separately. 

In treating the different forms in which the problem may be en­
countered, the methods of solution for (25.5) will be discussed. In advance, 
the following should be noted here. Whereas Vx and Vz are independent 
of ro, this is not the case for WI (ro)' Hence, to obtain a complete solution 
for rv it is necessary first to determine the solution of the equation 
(25.4) or at least a vortex system which will approximate sufficiently 
that for the wing in the absence of the propeller. This being done, 
WI (ro)' being a component of the additional flow, is to be determined 
by a method based on the principles given in 18-22. 

26. The Changes in Lift, Drag and Pitching Moment. According to 
12 the component normal to the local velocity, of the force acting on the 

element is given by: d Loo = e r V t d y 
and its component parallel to that velocity, by d Doo- The angle between 
local and undisturbed velocity is ai' As this angle is small and moreover 
d Doo is small compared with d L oo , the lift d L and drag d D, being 
the components respectively normal and parallel to the undisturbed 

velocity, are: dL=erVtdy (26.1) 

dD=erVtCljdy+dDoo (26.2) 

When the second and higher powers of a are neglected, introduction 
of rand Vt> as they are given by (24.1) and (25.2) in (26.1) leads to: 

dL=eFo Vdy+e(F I V+ Fo ~)ady 
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The lift in the absence of the propeller is: 

dL = eTo V dy 

So the total change in lift, caused by the action of the propeller, is 

given by d L. L = e ( r 1 V + r 0 1:) a dy (26.3) 

This result shows that the change in lift consists of two parts, 
the first of which is related to the change in circulation, whereas the 
second depends directly on the component Vx of the propeller flow. As 
is indicated by equation (25.5) the change in circulation is a function 
of Vx too, so that, unlike Vz, this quantity influences the lift in two 
different ways. 

The drag of the element, as it is given by (26.2) is composed of two 
parts: the induced resistance d Di = e T Vt tI.i dy and the profile drag 
d Dp = d Doo. ' 

The change in induced resistance may be obtained in the following 
way. According to (25.1) tI.i may be written in the form: 

in which: 
Wo (ro) . 

r:t.io=-V-' 

r:t.i = r:t.'iO + r:t.il a, 

r:t.. = _woi~02 Vx + ~~ + Wi (ro) + WO(r1) 
t1 V2 a Va V V 

By introducing this result, together with the values of T and Vt from 
(24.1) and (25.2), and neglecting once more the second and higher powers 
of a, we have, 

dDi = ero V tl.iody + e (ro :'" r:l.io + ro V r:l.il + r 1 V tl.io) ady 

The original induced resistance being 

dDiO= eTo Vtl.iody 
the change in this part of the drag, caused by the action of the propeller, 
becomes, 

dL.Di=dDi-dDiO=e(rO ::tl.io+ro Vtl.il+rl Vr:l.io)ady (26.4) 

As the profile drag is independent of the angle of attack, the change 
in this quantity will be equal to 

d L. Dp = (;~-1) dDoo = 2 :: -~ dD", (26.5) 

Considering the changes in the two parts of the drag as they are 
given by (26.4) and (26.5), we come to the conclusion that the change in 
total resistance may be decomposed into three parts: 

a) both the induced resistance and the profile drag are increased by 
the increase in local velocity due to Vx [(26.5) and first term in (26.4)] ; 

b) the induced resistance is increased owing to the fact that the force 
acting originally on the element is turned backward through an angle 
r:t.il a [second term in (26.4)]; 
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c) the induced resistance is increased by the increase of the normal 
force, the latter being taken in its original direction [third term in (26.4)]. 

In this latter discussion it was supposed that vx , lXil and TI are 
positive; otherwise, signs should be changed accordingly. 

In analogy with the increase of the lift, here the part c) depends 
partly on Vx ' This is an explanation of the fact that, whereas the 
increase of the profile drag contains the factor 2, the part a) of the 
increase of induced resistance does not. 

For an element of the wing the axis about which the pitching moment 
is determined may be always chosen such as to make this moment 
independent of the angle of attack. In this case, the change of the 
pitching moment will, by analogy with that of the profile drag, be 

d6 M = 2 Vx ~dM (26.6) 
a V 

It should be remarked that in general for the different elements of the 
wing, the axes defined above will not coincide. Hence the change in 
pitching moment for the whole wing must be calculated from the changes 
in the lift and moment for the elements as they are given by (26.3) and 
(26.6). 

CHAPTER II 

APPLICATIONS OF THEORY AND EXPERIMENTAL 
RESULTS 

A. Application to Influence on Wing 

1. General Method of Solution for the Wing of Finite Span. The cir­
culation To in the absence of the propeller and the change in circulation 
6 T, due to its action, are determined by the equations: 

Wo (ro) + _2_ ro = IX + .!.Z!. (l.la) 
V 0 1 C V 0 1 

wo(6 T) + _2_ 6 £ = (IX +.!.Z!.) !,,,,-_~_ awdro) (l.Ib) 
V Ole V 0 1 V V V 

Whereas the first one is I (25.4), the second is obtained by multiplying 
I (25.5) by a, introducing 6 T = a Tl and changing the right hand 
member with the aid of I (25.4). 

Both these equations being identical with the equation for the 
circulation of a wing, the form and angle of attack of which are given, 
the method of Lotz (see Division E IV 3) may be used for their solution. 

The discussion will be here restricted to the special case of the 
elliptic wing with constant geometrical angle of attack. . Moreover only 
the change in lift will be considered, but an extension of the method to 
other wing forms and to other aerodynamic properties will not present 
difficulties. 
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First, the variable 1jJ is introduced, defined by 

y=-bcos1jJ 

in which b is the semi-span of the wing. 
+b n 

As w (F) - _1_J d To ~ _ _ 1_J d To __ d_tp_I __ 
o 0 - 4 n d YI Y - YI - 4 n b d tpi cos tpl - cos tp 

- b 0 

and C = Co sin 1jJ 

(1.2) 

in which Co is the chord of the median section of the wing, the solution 
of (1.1a) is found to be 

Fo=! VCOC18b!bcoOI Cx+ g:)sin1jJ (1.3) 

This result leads to the lift Lo and lift coefficient C L 0 for the wing 
in the absence of the propeller 

n 

Lo = J e F 0 V b sin 1jJ d 1jJ = : e V2 b Co C 1 8 b ! ~o 0 1 (0( + g:) 
o 

CLO = __ L_o __ = C1 8b (0( +~) (1.4) 
~ e V2~ CO b 8 b + Co °1 , 0 1 
2 2 

By introducing (1.4) in (1.3), ro may be written in the form 

Fo = ! V Co CLO sin 1jJ (1.5) 

a form which will be used in the following. 

Equation (1.1 b) is solved in an analogouf! way by introducing 
00 

L. F = ; V CO C1 2: an sin n 1jJ 
1 

<» 

[(0(+ g:) v; - ~_aWliTol]sin7p= 2:~sinn1jJ 
1 

in which 
n 

2 J [( !-- 0 0 ) Va; Vz a WI (Tol]. . d 
~ = n IX - 0; V-V--v--- s~n7ps~nn'IfJ 1jJ 

o 
Equation (1.1 b) now takes the form, 

<» <» 00 

COOl ~. ~. ~. 
87) ~ nans~nn1jJ + ~ ans~nn'IfJ = ~ ~stnn'IfJ 

1 1 1 

so that for each value of n, the coefficient an is given by 

8b 
an = 8 b + nco 01 ~ 

(1.6) 

(1. 7) 

(1.8) 
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For the determination of the lift, only the first term of the series (1.6) 
is of interest. Hence, making use of (1.6), (1.8), (1.7) and (1.4), /::" r may 
be written in the form, 

" 
/::" r = ~ V cosin'ljJ [CLO JV; sin2'ljJ d'ljJ-

o 
" 

_(ddCrJ.L)oJ(~ +aw\~To))sin21pd'ljJ]+ (1.9) 

o 
00 

+ ~ VCoCl~anSinnlp 
2 

it should be remembered that the meaning of (d CLid rJ.)o is the 
change in lift coefficient with geometrical angle of attack for the wing 
of finite span and without propeller. 

From I (26.3) it is known that the increase of lift consists of two 
parts, which for the moment will be indicated by /::" A Land /::" B L, being 
given for the element by 

d /::"A L = (! Vb /::"rsinlpdlp 
d /::" B L = (! Vx b ro sin 11' d 11' 

For the wing the value of the first part is obtained by introduction 
of /::" r from (1.9) and integration over the span: 

" 
/::"A L = ~ (! V2 b Co [CLO J ~ sin2 'ljJ d 11'-

o 
" 

(1.10) 

- ( dd :L ) 0 J (~ + a W1JTo)) sin2 'ljJ d 'ljJ ] 

(j 

the second by introduction of ro from (1.5) and integration: 

6 B L = ~ (! V2bcoCLO J v; sin2'ljJd'ljJ (loU) 
u 

Taking the two parts together and proceeding to the lift coefficient, 
the final result is obtained 

" 
(1.12) 

_(ddC:)oJ (V; + aWv(To))sin2'ljJd'ljJ] 
o 

Comparison of (1.10) and (loU) shows that, so far as the influence 
of Vx is concerned, just one half of the increase in lift is caused by the 
change in circulation, the other half directly by Vx . 
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The right hand member of (1.1 b) has been supposed to be known, 
but the determination of a WI (To) is still to be discussed. The character 
and importance of the influence of this component of the additional 
flow depend on the relative position of the wing and slipstream boundary. 
Three cases, in which this position is fundamentally different, will be 
treated here separately: the wing in front of the propeller plane (see 2), 
the wing behind the propeller plane, but outside the slipstream boundary 
(see 3), and the wing crossing the slipstream boundary (see 8). As an 
introduction to the latter case the more simple problem of the wing 
of infinite span will be first considered (see 4---7). 

2. The Wing in Front of the Propeller Plane. In contrast with the 
approximate solution for the propeller flow given in I 5, the real flow 
will be continuous in the entire region in front of the propeller. Hence 
the surface of discontinuity, which according to the discussion in I 15 
is responsible for the existence of the additional flow, is situated entirely 
behind the wing. Now this part of the flow may be considered to be 
related to a change in the vortices which form the boundary of the 
slipstream. Hence its component W will die out rather rapidly upstream 
of the propeller. Moreover, for the wing which does not cross the surface 
of discontinuity, in general the influence of the additional flow will not 
be very important compared with the direct influence of Vx and Vz . 

Together this gives sufficient reason for the assumption that for the 
wing in front, the influence of the additional flow may be neglected 
altogether, so that here we may write aWl (To) = 0. 

From I 5 it is known that both Vx and Vz have a quite different 
form in the regions r > R1 and r < R1. Hence in calculating the change 
in lift coefficient, as in (1.12), it is practical to separate these two regions, 
thus leading to 

6 CL = 6 1 CL + 6 2 CL + 6 3 CL + 6 4 CL (2.1) 

in which the parts are respectively due to: Vx in the region r > R1 (61 CL ), 

VX in the region r < R1 (62 CL ), V Z in the region r > R1 (63 CL ) and Vz in 
the region r < R1 (64 CL). This notation will be maintained and extended 
in the following. 

Taking the coordinates of the centre of the wing to be xo' 0, zo, 
introduction in (1.12) of the values of Vx and vz , as they are given by 
the first and last equations of I (5.7) and (5.8) leads to 

6 1 CL = - 2 a CL 0 (xf+b:+z~)1/2 11 (xo, ZO, b, R, 1fJ1) 

6 2 CL = 48 CL 0 12 (1fJ1) 

6 3 CL = a (ddO~)o (xg + b:U+ zg)1/2 11 (xo, ZO, b, R, 1fJ1) 

6 4 CL = a (d dO~ )0 (R2~: ;g)3/2 12 (1fJ1) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 
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V'l 

F (k, '!pI) = J.ll dk-'21jJ,-,-~~ 2-
V - 8tn IjJ 

o 
V'l 

E(k,'!pl) = !d'!pVl-k28in2'!p 
o 

b2 

k2 = x~ + 62 + Z~ 
(B2 z")l/! 

111 - COS- 1 ~ - COS- 1 ~o_ 
'1'1 - b - b 

S = a [1 + (B2 :oX6)1/2] 
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YI is the value of Y for the point in which the wing cuts the circle 
r = RI and '!pI is the corresponding value of '!p. 

H i Zo I > R1, so that the wing is situated entirely outside the region 
r 5. RI> 6 2 CJ~ and L\ 4 CL are zero and '!pI should be taken equal to n/2. 

3. The Wing' Behind the Propeller Plane and Outside the Slipstream 
Boundary. For the wing behind the propeller plane and I Zo I > RI, as 
before, the partial changes in CL due to Vx and Vz are respectively equal 
to 6 1 CL and 6 3 C L as they are given by (2.2a) and (2.2c) with'lfJI = n/2, 
whereas 6 2 C Land 6 4 CLare zero. 

In contrast with the case treated above, the influence here of the 
additional flow must be taken into account. To make it possible to 
calculate the corresponding part of the change in C L> we will assume 
that the influence of the real boundary is the same as that of a cylindrical 
boundary coaxial with the original one and extending from x = - 00 

to x = + 00. The radius of this cylinder is equal to RI> the change 
in axial velocity s V at its surface, become vx , as given by I (5.9) 
and the first of I (5.7) respectively for the section x = Xo' 

Now according to the discussion given in 119-22, the component w 
of the velocity of the additional flow may be calculated for any distribu­
tion of the circulation ro by considering the images of the trailing 
vortices of the wing. But, to simplify the calculation, we will replace 
the vortex system of the wing by a horse-shoe vortex, the latter having 
the same span 2 b and a circulation r = (nI8) C L 0 V Co such as to make 
the lift equal in both cases. Hence in the plane x = + 00 the com­
ponent w considered is due to a pair of vortex images with the coordinates 

Aerodynamic Theory IV 26 
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Yi = ± Ri b/(b2 + z5), Zi = + Ri zo/(b2 + zg) 
and the circulation r i = (n/8) 8 GLO V Co (see I 20 and 22). This gives 

W = ri [ Y - Yi _ Y + Yi ...] 
2:rr, (y - Yi)2 + (zo - Zi)2 (y + Yi)2 + (zo - Zi)2 

whereas according to the first equation of I (19.5), 

aWl (ro) = (1/2) W 

Introduction of this result in (1.12) leads to the change in lift 
coefficient due to the additional flow: 

with 

in which Ci is the complex number given by 

Ci = Yi - i (zo - zi) 

and R (i ~--- cD is the real part of i V b2 ~~. 

(3.1) 

Moreover Yi and Zi have the values as above, both having positive signs. 
The case of the wing, situated entirely inside the slipstream boundary 

has not been considered here, but it might be treated in Ii, similar way. 

4. The Wing of Infinite Span Crossing the Slipstream Boundary. In 
the determination of the velocity component W of the additional flow 
for the wing outside the slipstream boundary, only the influence of the 
trailing vortices had to be taken in account. As a consequence, for 
a wing of infinite span with constant circulation and hence without 
trailing vortices, the additional flow will vanish and there will be no 
influence of the slipstream boundary. 

If the wing crosses the slipstream boundary, the situation is changed. 
Even if the wing is such as to have a constant circulation at each 
section, the mere fact that at both sides of the boundary the circulation 
and hence the velocity component u has the same value, violates the 
boundary condition of equal pressure [see I (17.1)]. The latter will 
be satisfied only by a flow in which a sudden change in circulation 
occurs at the boundary, such that the circulation is inversely proportional 
to the velocity. This involves the existence of an additional flow having 
a corresponding change in w. 

Before treating the more complicated problem of the wing of finite 
span, a simple case will be discussed, as indicated schematically in 
Fig. 15a. The wing of infinite span, the lifting vortex of which coincides 
with the axis of Y, is prismatic. The propeller flow has the simplified 
character introduced in I 17. Hence the slipstream boundary is a circular 
cylinder, extending from x = - CXl to x = + CXl, with its axis coinciding 
with the axis of x, its radius being RI . The velocity component Vz is 
zero everywhere and the component va; is zero in the region outside 
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the boundary, whereas inside, it has the constant value 8 V, 8 being 
small compared with unity. 

The determination of the circulation will be based on the results 
obtained in I 19, which enable us to reduce the problem to one of 
a two-dimensional flow in the plane x = + co. 

From airfoil theory it is known that on a surface behind the wing, 
formed by lines parallel to the axis of x and extending from the wing 
to infinity, the potential of the flow shows a discontinuous change equal 
to the circulation for the corresponding section of the wing (see Divi­
sion E I 7). This surface of discontinuity and the slipstream boundary 
divide the plane x = + co into four regions (see Fig. 15b). To dis­
tinguish the potential in these regions double suffixes will be introduced: 

Iu 

-00 

~---+----~--~~~ 

It 

Z a Iz " Fig. 15. The wing of infinite span crossing the slipstream boundary' 
a) the plane x = 0, b) the plane x = + "'. 

I and II indicate whether the part considered is situated outside or 
inside the slipstream boundary, whereas u ("upper") and l ("lower") 
are used for the region respectively above or below the surface of 
discontinuity behind the wing. 

At the boundaries z = ° and r = RI the potential has to satisfy 
certain conditions which lead to eight relations from which it is to be 
determined. 

The first two relations, which are obtained at once from the condition 
that the normal velocity shall be continuous at the boundary z = 0, are: 

R . 8 fPlu _ 8 fPn 
z = 0, r> l' ---az- -~ 

° r<R '. 8fPllu = 8fPIIl 
Z=, 1 8z 8z 

(4.1a) 

(4.1b) 

The second set of two relations may be derived from the equation 
for the circulation [see I (23.4)]. As w (r) is small and Vz zero, it may 
be written in the form, 

w(I'L + __ 2~_ oc+ 0 0 

V + Va; 0 1 c (V + Va;) - . 0 1 
(4.2) 

As indicated above, between the circulation and the change in 
potential there exists the relation, 

r = (rpu -rpl)z = 0 (4.3) 

26* 
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Moreover it follows from the first equation of I (19.5), that 
1 1 [) , 

W(r)=W(O)=2 W (+ <X)~2-( [)~u),,=o (4.4) 

Introduction of these results in (4.2) leads to 

z = 0, r> R . _1_ 0 'Plu + ~{'Plu~_'PIl) = (J. + 0 0 

l' 2 V 0 Z 0 1 C V 0 1 
(4.1c) 

1 o'PIIu 2 ('PIIu-'PIIl) (- 0 0 ) 
z = 0, r < R1 :2'V---o-z-- + --C;GV - = (l + 8) (J. + 0 1 

(4.1d) 

The remaining four conditions, which are to be satisfied at the 
boundary of the slipstream, follow from the boundary conditions 
I (17.3) and (17.4). The potential indicated by «({Jc + CPd + CPc) is 
identical with the potential cP as it is used here. Hence they result in 

r = RIo 0< e < n: CPn = (1 + 8) CPIIl (4.1e) 
r=R1,n<e<2n: CPlu=(1+8)CPIIu. (4.1£) 

R ° < e [) 'PIIl = (1 + 8) !!'<pIZ (4.1 g) r = l' < n: OJ' or 

r = R 1 , 7[ < e < 27[: [)'P!.IU = (1 + 8) 0 'Plu (4.1h) or or 
5. The Wing of Infinite Span Crossing the Slipstream Boundary (Con­

tinued). If 8 is zero, the conditions (4.1) are satisfied by: 

(5.1a) 

(5.1b) 

the suffix 0 indicating, as before, the absence of slipstream influence. 
According to (4.3), the circulation will be, 

(5.2) 

For the general case, in which 8 differs from zero, cP is introduced 

in the form cP = CPo + 6 cP (5.3) 

of which the first part is equal to the value of CPo given by (5.1). The 
value of 8 being small, D cp/CPo will be small of the same order. Hence, 
after expansion of the conditions (4.1) in power series of 8 and D cp/CPo, 
only the terms of order 0 and 1 are to be retained, so that two sets 
of equations are obtained. The first set contains only CPo and as it leads 
again to the solution (5.1), no further discussion of it is needed. As 
(8 CPo/8 r)r = R, is zero for all regions, in using the results (5.1) and 
(5.2) the second set takes the form: 

0,6. 'Plu [) ,6. 'PIl 
z = Or> R : -~- = --- -

, 1 OZ OZ (5.4a) 

z = ° r < R : ~A 'PII"':. = 0,6. 'P IIi 
, 1 OZ OZ (5.4b) 
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r = R I , 0 < 0 < n: (5.4 e) 

(5.4f) 

r = Rv 0 <0 <n: 
a 6. ({JIll a 6. 'I'll 

aT -8r - (5.4g) 

r = R I , n < 0 < 2 n: a 6. 'PIlu a 6. ({JIll 
---

T ar (5.4h) 

From these conditions D cp is to be determined. This is done most 
conveniently by taking the plane x = + 00, considered thus far, to 

Fig. 16. The transformation' = - R, (t + i)/(i t + 1); 
a = C plane, b = t plane. 

be the plane of the complex variable !; = y + i z and transforming it 
in the plane of the variable t = tl + it2 by: 

Now the real axis of the!; plane ("wing") becomes the circle with 
radius 1 and centre t = 0 in the t plane and the circle with radius R 1 

("slipstream boundary") the real axis. The relation between the different 
regions in both planes and between certain points which are of interest, 
is indicated in Fig. 16. 

For the real axis z = 0 of the!; plane, (5.5) takes the form 

cos {} 
y = -RI 1 . {} 

-s~n 
(5.6) 

in which {) is the angular coordinate in the t plane, whereas here the 
absolute value of the differential coefficient of the transformation 

function is I
, d t I _ 1 - sin {} 
dE --R---;- (5.7) 
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In the conditions (5.4), both e 6. IfJler and e 6.lfJlez are the differential 
coefficients of 6.1fJ in the direction normal to the boundary considered. 
Moreover, taking in account (5.7), for z = ° this coefficient will be 

o6'P = l!!.i I 06 'P = ~ (1-sin#) 06 'P. 
o z d 1:, 0 e Rl 0 e 

e being the radial coordinate in the t plane (see Fig. 16b). 
Hence the conditions to be satisfied by 6 IfJ in the t plane result 

from (5.4) as follows: 

06 'PIu e = 1;0<# <n: ----ae- (5.8 a) 

fl= 1'n<#<2n: 06 f£IIU =06'PIIl "" oe oe (5.8b) 

e=1;0<#<n: 21(1-sin#) O~:IU +6.IfJIu-6.lfJn=O (5.8c) 

1 • o6'PIIu 
e = 1; n< # <2 n: 2A(1-s%n#) oe +6.IfJIIu-6.cpIn=SrO 

1 
# = O,n;e > 1: 6.lfJn- 6.CPIIl = -2srO 

1 
# = 0, n; e < 1: 6.IfJIu- 6.CPIIu= + 2 srO 

06 'PIIl 06 'PIl 
# = O,n;e > 1:--~ = of} 

o6'PIIu _o6'PIU 
#=0,n;e<1:·~o~--~ 

with A = 0 1 cl8 RI · 

We now introduce 6. IfJ in the form: 

6 CPI l = S r 0 ( ao + ~ an e- n cos n -& + ~ bn e- n sin n -& ) 

6.cpIn = sro (! + a o + ~ ane-ncosn-& + 

+ ~ bne- n sin n-& ) 

6. CPIu = s r 0 ( - a o - ~ an en cos n -& - ~ bn en sin n -& ) 

(5.8d) 

(5.8 e) 

(5.8f) 

(5.8g) 

(5.8h) 

(5.9a) 

(5.9b) 

(5.9c) 

6.IfJIIu = sro (-! -ao-~ anencosn-&-~bnenSinn-&) (5.9d) 

a form which satisfies both the differential equation of Laplace: 
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8Z 6rp + 82 6rp ~.~(-86rp)· + 82 6rp =0 
8 ti 8 t~ e 8 e e 8 e e2 8 iF 

and the conditions (5.8a), (5.8b) and (5.8e), (5.8f), (5.8g), (5.8h). 
The coefficients a and b are to be determined from the remaining 

conditions (5.8c, d). The latter may be considered as one condition 
which is to be satisfied in the interval 0 < f} < 2 n. Introduction of 
(5.9) and separation of the parts which are symmetrical and anti­
symmetrical about f} = n leads to 

a o + ~ (nA + 1) ancosn{}-
1 

00 

-},sinf} "2 nbnsinnf} = - ! 
1 

O<{}<2n 

O<f}<n 1 
n<{}<2n J 

(5.10a) 

I (5.10b) 

It follows from the general character of the problem, that 6. q; will 
be symmetrical about the axis y = 0 (see Fig. 16a). Hence the solution 
in the form (5.9) must be symmetrical about {} = n/2 and {} = 3 n/2, 
with the result that the coefficients an will be zero for all odd values 
of n and the coefficients bn for all even values of n. 

Taking this into account and introducing 

00 2. I+! O<{}<n 
L;(2n_1)n s%U(2n-l){}= 1 

1 -2 n<{}<2n 

the following set of equations is obtained for the determination of the 

coefficients 2 ao - A bl = - 1 

2 A a2 + 2 (A + 1) bl = + i. 
n 

2(2n},+ l)a2n+A(2n-l)b2n-1-
-}, (2 n + 1) b2n + 1 = 0 

n~1 -}, 2na2n+},(2n+2)a2n+2+ 
4 

+2[A(2n+l)+I]b2n + 1 =+ (2n+1)n 

(5.11) 

Taking the question strictly, both the number of equations and of 
unknown coefficients is infinite. But for practical application, it will 
be sufficient to consider the set formed by the first m equations only, 
m being a finite number fixed by the degree of approximation desired. 
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Now the number of unknowns is (m + 1), a fact, which may be used 
to choose a value for one of them, say ao or b1, such as to obtain good 
convergence. 

6. The Wing of Infinite Span Crossing the Slipstream Boundary (Con­
tinued). The changes in the aerodynamic properties of the wing due 
to the influence of the slipstream may be calculated from I':, ffJ as it 
is given by (5.9). Attention should be paid to the fact that in the latter 
formulae, 6. ffJ is given in the coordinates (! and {} of the t plane. As 
has been discussed above, (! will be equal to 1 for any point of the wing, 
the relation between y and {} being given by (5.6). 

In analogy with (5.3) T may be decomposed into To and I':, r. Now 
introduction of (5.3), (5.2) and (5.9) in (4.3) results in 

r> R1:l':,jr = -2sro (ao + ~ ancosn{) + ~ bnSinn{}) (6.1a) 

r <Rl: I':,JIr = - 2 s ro (-!- + ao + ~ancosn{) + ~bnSinn{}) (6.1 b) 

According to the assumptions introduced in 4, Vx is zero outside 
the slipstream, whereas inside its value is s V. Hence I (26.3) leads 
to the change in lift d I':, L for the element d y : 

r> R1 : d 1':,1 L = (! V 1':,1 r d y = l 
=-2(!SVro (ao + ~ancosn{)+ ~bnSinn{})dY (6.2a) 

r < R1 : d 6.JI L = (! V (I':,JI r + s ro) d y = 1 
= -2(!s V ro (ao + ~ an cos n{) + ~ bnSinn{}) dy I (6.2b) 

The total increase in lift I':, j L for the part of the wing situated 
outside the slipstream is: 

-RI + 00 

I':,jL = J dl':,jL + j dl':,jL 
+R, 

After introduction of (6.2a) and the variable {} instead of y, use 
is made of the relation, 

00 00 

ao + 2: an cos n {) + .2: bn sin n {} = 

1 1 

~-) (l-'in~)( ~ na,,0O8n 0 + ~ n b."nn~) 
obtained by introduction of (5.9a), (5.9c) in (5.8c). The result is: 



SECTION 6 409 

6 r L = - 2es V rORI j(ao + ~ ancosnf} + 
o 1 

+ ~ bn sin n f}) I d!n 1} = 

= 2e s V rORI A j(~nancosnf} + (6.3a) 
o 1 

-+-~ nbnsinnf} )df} = 

00 00 

= 4 e s V r 0 R1 }. ~ bn = 2 SA Lo II .2 bn 

1 1 

in which LOII = 2e V ro Rl is the lift on the part of the wing situated 
inside the slipstream in the absence of the latter. 

In a similar way the total increase in lift 6 n L for the part of 
the wing inside the slipstream is shown to be: 

6 n L = 4e8 V rORI (1- i.~bn) = 28Lon (l-}.~bn) (6.3b) 

Taken together, (6.3a), (6.3b) give the change in lift L for the whole 
wing 6L = 6 I L + 6nL = 2sLon (6.4) 

This shows the remarkable result, that the total increase in lift is 
equal to that, which would be obtained by elementary calculation taking 
into account only the direct influence of v X ' On the other hand (6.3a), 
(6.3 b) indicate that the distribution of this increase in lift is different 
here, as both the parts of the wing inside and outside the slipstream 
contribute to it. Such a deviation from the results of the elementary 
calculation is only possible if 10 differs from zero. Its value may be 
calculated either from (0 6 epio e) Q = 1 or from the change in lift given 
by (6.2a), (6.2b), either way leading to the result: 

r> R1 : WI = .~. ~~~ (ao + ~anC08nf) + ~bn8innf}) = 

= 4~~~ (ao + ~anC08nf) + ~bn8innf}) 
(6.5a) 

. _ I 8 To ( ~"'T f) ~ . ) _ r<R I .wn-2R-;;" 1+ao++an co8n +~bn8tnnf} -

= 4 ~~~. (I + a o+ ~ an C08nf)+ ~ bn8innf}) 

(6.5b) 
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This quantity W is not identical with the velocity component aWl (To) 
of the additional flow, but is this component together with the corre­
sponding one of the additional airfoil flow (see I 14). The value of 8 

being small, the induced angle of attack is, for both regions, 
w 

C4=y (6.6) 

in which W has the value given by (6.5). 
As tXiO = 0 and tXila = tXi, I (26.4) leads here to the induced resistance 

for the element dDi = d 6. Di = e To V tXidy (6.7) 

Introduction of (6.6) and (6.5a), (6.5b) and integration over the 

whole wing results in Di = 6. Di = 0 (6.S) 

As squares and higher powers of 8 have been neglected, this result 
does not indicate that Di is exactly equal to zero, but only that if this 
quantity is expanded in a power series of 8, the term in 81 will vanish. 

7. The Wing of Infinite Span Crossing the Slipstream Boundary. 
Numerical Results. The equations (5.11) show that the values of the 
coefficients an, bn depend only on the parameter It = 01 ejSRl . Now, 
as may be seen from the results given in 6, these coefficients determine 
the character of the changes in the aerodynamic properties of the wing. 
Hence it will be sufficient to consider here these changes for some values 
of It which are of practical interest. As such were chosen, It = 1, 2, 3. 
Taking 01 to have the normal value 5, the range of ej RI covered by them 
is from 1.6 to 4.S. 

The coefficients an and bn have been calculated up to n = 40 and 
introduced in (6.1)-(6.5). The results are given in Figs. 17 and IS. 
For comparison there has been included the results obtained by taking 
the circulation proportional to the local velocity ("elementary cal­
culation"). 

At the slipstream boundary the circulation (Fig. 17 a) shows the 
sudden change which has been predicted in 4. For the part of the wing 
inside the boundary the circulation is much lower than would be expected 
from the results of the elementary calculation. For It = 2 or 3 it 
even falls below To in the whole region; for It = 1, this is only the case 
in the neighborhood of the boundary. On the other hand outside the 
boundary the circulation is increased. 

In contrast to 6. T the lift (Fig. 17 b) is continuous, whereas its 
increase is positive for the whole wing. Compared with the result of 
the elementary calculation the lift curves show a considerable flattening 
out due to induction, resembling that observed for a wing having 
a sudden change in the angle of attack along its span. This effect in­
creases wit4 increasing values of It. Its importance is still better shown 
in Fig. IS which gives the total increase of the lift for the two parts 
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of the wing separately. It shows that the share of the outer part is 
important and that it even surpasses that of the inner part for A> 1.4. 

The values of W (Fig. 17 c) are representative for IX; and dDi also, 
as is shown by (6.6) and (6.7). As to the signs it should be remarked 
that IX; and dDi will be positive for positive values of w. 
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Fig. 17. Changes in circulation, lift and induced velocity due to the action of the slipstream; 
A:A= 1, B:A = 2, C:A = 3, D:elementary. 

Besides the effects considered thus far, the change in aerodynamic 
angle of attack accompanying OCi may be important from another point 
of view (see 13). It may be calcula.ted by using I (13.1), (6.6) and (5.2): 

/\ s ( 0 0 ) 0 1 C 
uOCe =- OCi=-2 OC+ 0 1 sToW (7.1) 

Now Fig. 17 c shows that, for the values of A considered here, (G1 c/sFo)w 
ranges from - 1.5 to + 3. Introduction of these values, together with 
s = 0.4 and (oc + GO/G1) = 10° in (7.1) leads to the result that changes 
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in the aerodynamic angle of attack from about - 6° to + 3° may be 
found in normal cases. 

In treating the wing of finite span, use will be made of the values 
of W obtained here. As the form in which they are given is too complicated, 
the following approximations will be used: 

, I R ro * (' y , ') i Y > 1: WI = 8 4R WI R-' '" 
, 1 . 1 

(7.2a) 

I I R · - ro * (Y ") Y < 1· WII - 8 4Rl WII,"R-;" Ii. (7.2b) 

m which w; (yjR1' A.) = b2 I (R1jy)2 + b4 I (R1jy)4 (7.2 c) 
(7.2d) WI; (yjR1' A.) = bo II + b2 II (yjR1)2 + b4 II (yjR})4 

b2I = -1.320 + 0.590..1 - 0.086..12 

b4I = -,0.183 + 0.326..1 - 0.072..12 

bOII = + 1.149 - 0.415..1 + 0.057..12 

b2II = + 0.381- 0.235..1 + 0.04U2 

bOI = + 0.633 - 0.433..1 + 0.077..12 

The values of the coefficients were obtained in the following way. 
For the region I they were calculated for each value of A. separately, 

8.0 
1 tJl 
$ lOJI 

~1~1.5 
f tJrl 

so as to make the exact and approximate 
values equal at the points {} = 0 0 , 30°, corre­
sponding with yjR1 = ± 1, ± 1.732. After that 
they were expressed in polynomials of A.. For 
the region I I the procedure was the same, 
the points considered being {} = 270°, 330°, 
360° (yjR1 = 0, ± 0.577, ± 1). 

~I" 

/ 
/~ 

t to 
V YT;;ii 

8. The Wing of Finite Span Crossing the 
Slipstream Boundary. For the wing of finite 
span crossing the slipstream boundary the 
change in lift coefficient, due to the direct 

i---
a5 

1 tJ.ul 
s lOJI 

influence of Vx and Vz may be calculated by 
the method developed in 1. This calculation 

o " leads again to .61 CL> .62 CL> .63 CL and .64 CL> 
as they are given respectively by (2.2a, b, c, d). 

Fig. 18. Increase in lift on 
the part of the wing outside 
([;'1 L) and inside (i':,II L) the 

boundary. 

The question of the influence of the term 
aWl (ro) in (1.1 b) or as it may be called, the 
influence of the slipstream boundary, is more 
complicated. After the discussion in 4-7, it 

is evident that the fact that the wIng crosses the boundary will cause 
an effect of the same character as in the case of the wing of infinite 
span. But, apart from this "direct influence" of the boundary, there 
will still be another effect "indirect influence", as here the original 
vortex system of the wing has trailing vortices, which will interact 
with the boundary. 
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Treating the latter question first, we introduce again the assumptions 
given in 3 in discussing the same subject for the wing outside the slip­
stream boundary. Thus the boundary is replaced by a cylinder extending 
from x = - 00 to x = + 00 and the original vortex system of the wing 
by a horse-shoe vortex. The trailing vortices of the latter will be situated 
outside the boundary. From I 22 it is known that in this case the value 
of aWl (To) in the region outside the boundary may be calculated by 
making use of the images of the trailing vortices, whereas inside the 
boundary it is zero. A rather lengthy calculation along the lines indicated 
already in 3 leads to the change in lift coefficient 6.5 C L, due to the 
indirect influence of the boundary on the part of the wing situated 

outside it, 6.5 C L = - 8 CLO (ddOexL )0 ~ tdzo, b, RI, "PI) (8.1) 

with: 
t 5 (zo' b, R I, "PI) = 

= _1_1_ 2. + R [,lb2_ J.'!l (Ci yb2-=--' Y~ + YI yb2 qt]1 
8 :n; b I Y~ "P 1 " <,~ og b2 M - q) r 

in which, as in 3: 'i = Yi - i (zo - zi) 

R~b 
Yi = 62 + z5 

R~ ZO 
Zi = b2-+Z~· 

R [ ] = real part of the complex number between brackets. 
The change in lift coefficient ,66 CLl due to the indirect influence 

of the boundary on the part of the wing inside it, is always 

6.6 CL = 0 (8.2) 

The calculation of the direct influence of the boundary will be based 
on the results given in 7 for the wing of infinite span. The velocity 
component W given there is the sum of the components of the additional 
flow and of the additional airfoil flow, corresponding with the terms 
Wo (6. T) + aWl (To) in (1.1 b). 

As it is not possible to separate the two parts, we have to deviate 
from the way followed thus far and introduce the somewhat bold 
assumption that the quantity W is the same for the w:ing of finite span 
"wing a" and for the wing of infinite span "wing b" under the following 
conditions. For wing b the relative situation of wing and boundary 
is that given in 4, but the radius RI of the boundary is equal to YI' being 
the value of Y for the point at which wing a crosses the boundary. The 
circulation To and chord c of wing b are equal to that of wing a at the 
section Y = YI' Moreover 8 has the value calculated from the first 
equation of I (5.7) by introduction of the coordinate Xo for the centre 
of wing a. 
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Now the change in lift coefficient 6 7 CL> due to the direct influence 
of the boundary on the part of the wing outside it, is determined in 
the following way. 

According to our assumptions, equation (l.I b) takes the form: 
2 
-67 r=-WI 
OIC 

Introduction of the value of WI given by (7.2a) with 

ro ~ ro (Yl) = ~. CL 0 VCo sin "PI 

Rl ~ Yl = b cos "PI 

leads to 67r=-I~-SCLOCl-iVcotan"Plwj(:I'A)sin"P 
in which w1 (Y/Yl' t1.) has the form given by (7.2c). 

From this result the increase 6 7 L is obtained by multiplication 
with 12 V and integration over the parts of the wing outside the boundary, 
resulting in the change in lift coefficient, 

6 7 CL = S CLO C1 ~o 17 ("PI> A) (8.3) 

in which 

17 ("PI' A) = - 41n [b2I (I-cos 2 "PI-"PI sin 2 "PI) + 

+ 112 b4I (3 - 4 cos 2 "PI + cos 4 "PI) ] 

and the coefficients b2I and b4I have the form given in 7. 
The change in lift coefficient los C L, due to the direct influence of 

the boundary on the part of the wing inside it, is determined in the 
same way, the difference being only that wn and W/I from (7.2b, d) 
are used and the change in lift is integrated over the other part of 
the wing. The result 1S: 

los CL = S CLO C1 ~o Is ("PI, A) (8.4) 

with 

Is ("PI, A) = - sIn tan "PI {bon [2 (; -"PI) + sin 2 "PI] + 

+ ~ !:{~1[4(;-"Pl)+sin4"P1]+ is !~:~1[12(;-"PI)-
- 3 sin 2 "PI + 3 sin 4 "PI + sin 6 "PI]} , 

the coefficients b having again the form given in 7. 
It should be remarked that, according to the assumptions introduced 

above, the value of t1. is here to be calculated from 

(8.5) 

9. Summary of the Results for the Wing of Finite Span. The dis­
cussions given in 2, 3 and 8, have shown that, in the most general case, 



SECTION 9 415 

the increase in lift coefficient 6 CL , due to the action of the propeller, 
may be decomposed into eight parts, indicated by £::1 CL to 6 8 CL . 

It may be useful to sum up the causes to which these parts are related: 

6 1 CL , 6 2 CL : direct influence of vx , 

6 3 CL , 6 4 CL : direct influence of vz, 

6 5 CL , 6 6 CL : indirect influence of the slipstream boundary, 
6 7 CL , 6 8 CL : direct influence of the slipstream boundary. 

Odd suffixes indicate the part contributed by the part of the wing 
situated outside the region r < R1, even suffixes that by the part inside 
this region. 

The formulae by which the different parts are to be calculated, are 
indicated in Table 1. 

TABLE 1. 

Wing in front of Wing behind the 
the propeller plane propeller plane 

~ -----
IZol>R1 IZol<R1 IZol>R1 I IZol<R1 

,0,1 CL 
n 

(2.2 a), 'P1 = -2 (2.2a) 
n 

(2.2a), 'P1 = "2 (2.2a) 

,0,2 CL 0 (2.2b) 0 (2.2b) 

,0,3 CL 
n 

(2.20), 'P1 = "2 (2.20) n 
(2.20), 'P1 = "2 (2.20) 

,0" CL 0 (2.2d) 0 (2.2d) 
,0,. CL 0 0 (3.1) (8.1) 
,0,6 CL 0 0 0 0 
,0,7 CL 0 0 0 (8.3) 
,0,8 CL 0 0 0 

i 
(8.4) 

The numbers in parenthesis relate to the formulae in question. If 
necessary the value of 'lfJ1> which is to be used in the special case, is added. 
Any part being zero, it is indicated by O. 

The meaning of the symbols in the formulae was explained as they 
were introduced, but it may be desirable to draw attention to two points 
of interest. The coordinate Yl fixes the point at which the lifting vortex 
of the wing crosses the circle r = R1, at which point the character of 
the velocity components changes (see I 5), whereas "PI is determined 
by "PI = G08-1 Yl/b. Again, a and 8 are the values of the ratio vx/V, 
respectively at the propeller disc and at the plane x = Xo through the 
lifting vortex. 

For practical application it is important that the parts ,03 CL and 
6 4 CL do not depend on CLO' whereas the others are proportional to 
it. Hence the total increase in lift may be written in the form: 

6 CL = bo + b1 CLO . (9.1) 
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in which 
bo = ,63 CL + ,64 CL 

b1 = O~O (61 CL + 6 2 CL + 6 5 CL + 6 6 CL + 6 7 CL + 6 8 CL ) 

If now, for the wing in the absence of the propeller, C L is given by: 

CLO = ao + a1 rx (9.2a) 

the influence of the propeller changes it into 

CL = (ao + bo + aOb1 ) + a l (1 + b1 )rx (9.2b) 

Two quantities which will be used in comparing experimental and 
calculated results, may be derived at once. They are: 

The lift coefficient for the angle of attack at which CL 0 is zero 

(9.3a) 

and the change in slope of the lift, 

6 ilOL _d6.0L -b a (9.3b) 
drY. - drx. - 1 1 

It should be remarked that, of course, the coefficients a, b used here, 
have nothing to do with those introduced in 5. 

10. Experimental Results. Most experiments with propeller and plane 
together, have been carried out with models in which a body was present, 
so that they do not give the influence of the propeller on an isolated 
wing, the theory of which has been developed in the foregoing sections. 
Hence only a few experimental results are available to check this theory. 

The most complete series is that described by Wieselsberger 1 . These ex­
periments were made with a rectangular wing (2b = 0.960 m, C = 0.160 m) 
and a propeller, the diameter of which was rather large (D = 0.265 m). 
The wing was situated at a normal distance either in front of or 
behind the propeller. The distance Zo from the wing to the propeller 
axis, which was always parallel to the direction of the undisturbed flow, 
varied from about - 0.2 m to + 0.2 m in both cases. Apart from the 
measurements without propeller, the latter was acting at one value of 
C1, only. 

For comparison with the calculated results, the experimental results 
were considered in the range over which the relation between C Land rx 
is linear (in general about - 9 0 < rx < + 9 0). 

Though the theory might be extended to the case of the rectangular 
wing without fundamental difficulties, the comparison will be based 
here on the assumption that the influence of the propeller is equal to 
that on the elliptic wing with equal span and aspect ratio (Sjb2 ). The 
lifting vortex is taken at one quarter chord behind the leading edge. 
For some quantities which varied slightly in the experiments, mean 

1 Ergebnisse der Aerodynamischen Versuchsanstalt zu Gottingen. I. Lief., 
p. 112, 1921. 
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values were introduced in the calculations which are given in Table 2, 
For the experimental results, the values of ZO' showing small variations 
with Ot, were taken constant and equal to their value at Ot = o. 

In Figs. 19-23 both the experi­
mental and the calculated results are 
given for the quantities (0 L) C 

Lo = 0 
and [:, (dOL/dOt) [see (9.3a), (9.3b)], 
which are representative of the in­
fluence of the propeller on the wing 
in the range of Ot here considered. 
For the case in which the elementary 
calculation (taking only the direct 
influence of the increase in velocity 

a 
8 

TABLE 2. 

Wing 

in front 

-0.170m 
0.201 
0.115 
0.024 

behind 

+ 0.105m 
0.196 
0.112 
0.182 

in the slipstream into account) leads to a result differing from zero, 
this result has been included for comparison (Fig. 22). 

The first impression of these figures is, that there is a quite satis­
factory agreement in [:, (dOL/dOt) for the wing behind the propeller 

0.08 

0.0'1 

?0.02 
~ 
~ ~0.00 

t-0.02 
,. -

~I::::"~ -- -7+ 

1/ V 

+ ,., 

ztk 
II"",," 

r"" ...... - - ~.1 tl 

a t 'I 
---b - -\--

I 
-0.0 

+ C 

'6 I I 
-0.!!.0.20 -0.18 -0.12 -0.88 -11.1/'1 0 0.01/ 0.08 0.12 0.18 /WI 

-EO 

Fig. 19. Wing in front of the propeller, (CL)CLo = 0 
a, b = calculated. c = experimental. 

and crossing the slipstream boundary (Fig. 22), whereas there are rather 
large discrepancies in some other cases. But, as the experimental results 
given are the small differences between relatively large quantities, these 
discrepancies may, at least partly, be attributed to the unavoidable 
inaccuracy of the experiments. The fact that the experimental points 
are rather scattered, points in the same direction. 

Hence the final conclusion is that, though a more elaborate experi­
mental check is urgently needed, the theory, for the moment may be 
considered as giving a picture of the real phenomena sufficiently accurate 
to serve as a basis for further investigation. 

To give an impression of the relative importance of the different 
parts in which [:, OL may be decomposed (see 9), their values are 

Aerodynamic Theory IV 27 
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included in the figures, except in Fig. 22, in which case they are given 
separately in Fig. 23. As was to be suspected in the latter case, 
6 2 (dCLldrx) which is equal to the result of the elementary calculation 
indi~ated above, dominates. Both .6.1 (dCLldrx) and 6 5 (dCLldrx) are 
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Fig. 20. Wing in front of the propeller, J::,. (dOLlda) 
a, b = calculated, c = experimental. 

relatively unimportant here. Hence the main cause of the deviation 
between the results of the elementary and exact calculation is the differ­
ence between 6 7 (dCLldrx) and ,08 (dCLldrx), which for Zo = 0 is equal 
to about 30% of the total value of [;; (dCLldrx). 
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Fig. 21. Wing behind the propeller, (OL) 0 
Lo = 0 

a, b = calculated, c = experimental. 

Considering again the results given in 7 this effect may be explained 
somewhat superficially in the following way. For the wing of infinite 
span, the increase in lift on the outer and the decrease on the inner 
part of the wing, corresponding respectively to 6 7 CL and 6 8 Cv 
balance each other so as to make the total increase equal to the result 
of the elementary calculation. Now the wing of finite span may be 
considered to be derived from the wing of infinite span by cutting off 
its extreme ends. Though this will result in other minor changes in 
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6. r too, the dominant fact will be, that 6.7 C L decreases, whereas 
6.8 C L remains nearly unaltered. 

The result that 6. CL may be much less than would be predicted 
by the elementary calculation is confirmed by experiments of Bradfield 1 

and also by some experiments by the Rijks-Studiedienst voor de Lucht­
vaart, the results of which have not yet been published. 

As to (CL)OLO = 0 it may be remarked, that here its maximum values 

of 0.026 (wing in front) and 0.044 (wing behind) correspond with changes 
in the angle of attack for the wing without propeller of about 0.35 0 

and 0.6 0 respectively. 

B. Interference Effects on Wings not Covered by the 
Theory of I C 

11. Introduction. The theory developed in I C and II A starts from 
simplifying assumptions bearing upon both the properties of the propeller 
flow and those of the wing. Hence there may be discrepancies due to 
these simplifications between the results, the calculation of which is 
based on the theory and the experimental results. Though but little 
in the way of consistent experimental values are available on this subject 
a short discussion of the matter may be of interest. 

The main differences between the real propeller flow and the sim­
plified flow, on which the theory is based, have been discussed already 
in I 8 and 9. It will therefore be sufficient here to sum them briefly. 
They are: differences in the axial and radial components of the velocity, 
rotation in the slipstream, periodicity and eddying character of the flow, 
presence of a boundary region of finite thickness between the slipstream 
and the outer region. Another point, passed over without discussion 
thus far, is the fact that in general the propeller axis will not be parallel 
with the direction of the undisturbed flow. Moreover, the changes in 
pressure, due to the action of the propeller, have been left out of account. 

As to the airfoil, it has been assumed that the aerodynamic properties 
of the wing section will not be changed by the influence of the propeller 
(see I 12). Even if this assumption is valid at small angles of attack, 
it is doubtful whether it is true at large angles, at which separation 
occurs. This question being the one of greatest interest it will be dis­
cussed separately (see 13) after some remarks on other effects (see 12). 

12. Effects Not Connected with Separation. The fact that the propeller 
axis is not parallel to the direction of the undisturbed flow may be of 
practical importance. The main problem to be solved in extending the 
theory in this direction is the determination of the changes in the propeller 
flow due to this cause and the approximation of the results in such 

1 Preliminary Tests on the Effect on the Lift of a Wing of the Position of the 
Airscrew Relative to It: Br. A.R.C. R. and M. 1212, 1928-29. 
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a form that they may be used in calculation. The first part of this 
problem has been treated already by MisztaP both from the theoretical 
and experimental side; but, as his calculation is rather long, starting 
from the blade element theory of the airscrew, reference may preferably 
be made to the original publication. 

Before proceeding to the influence of the other differences between 
the real and the calculated flow, a remark should be made on their 
general importance. As, together with another effect which will be 
indicated in 13, these differences are responsible for discrepancies between 
calculated and experimental values, the results discussed in 10 may 
be considered to give an indication that in normal cases they will not 
be of prime importance. 

The differences in the values of the veloCity components, including 
those due to the rotation in the slipstream and to the gradual change 
in velocity at the slipstream boundary, will affect three different sides 
of the problem. 

First of all they conflict with some of the assumptions on which the 
theory is based, e. IJ. that of the flow having a velocity potential 
everywhere except at the surface of discontinuity. But, if the propeller 
flow is not too irregular in this sense, this question will be of theoretical 
interest only. 

A second point is the assumption that the properties of the wing 
section are equal to those of the same section in a parallel flow (see 
112). It is evident that these properties may be altered by the propeller 
influence, as now both the magnitude and the direction of the velocity 
change from point to point. But it appears that the resulting effect 
will not be serious, if only the situation of the lifting vortex representing 
the wing is taken such as to give suitable mean values for the velocity 
components. As such, the position at one quarter chord was quite 
satisfactory in the case described in 10. 

The remaining point is the direct influence of the differences in the 
values of the velocity components to be introduced in the calculation. 
The most serious point in this respect is the fact, indicated already 
in I 8 that Vx will not be constant over the propeller disc, but may fall 
off sharply in the neighborhood of its axis. A first step to comply 
with this peculiarity is the following: The slipstream is considered to 
be composed of a central core, surrounded by the slipstream proper, 
both coaxial with the propeller. In the core, corresponding with the 
region of the propeller disc [r < (1/2) D1], occupied by the boss and 
less effective parts of the blade roots, Vx is zero. In the outer part, 
as before, Vx depends on a, which is constant in this region. As may 
be shown without difficulty, the latter quantity may be calculated from 

1 Zur Frage der schrag angeblasenen Propeller. Abh. a. d. Aerodyn. Inst. a. d. 
Techn. Hochsch., Aachen, Heft 11, 1932. 
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I (5.3) if only instead of C T the value of the ratio C T: [1- (Dl/D)2] 
is introduced. This leads to an increase of Vx for that part of the wing 
which is situated in the outer region of the slipstream, but the effect 
may be partly balanced by the influence of the core in which Vx is zero. 
If we take Dl = 0.3 D, a rather large value, the result will be an 
increase of about 10 per cent in a and a corresponding increase of 
roughly 10 per cent in 6 CL , the wing being taken as situated out· 
side the central core. 

As has been indicated in I 9 the change in the velocity component vz , 

due to the rotation in the slipstream, may surpass the value of this 
component in the idealized propeller flow. But as it will be anti. 
symmetrical and occur in the slipstream region only, its influence, at 
least on the lift, will be negligible. 

Though it is possible that the periodic and eddying character of the 
flow may influence the properties of the wing section, for the moment 
there are no results known which clearly show such an effect at small 
angles of attack. 

The pressure gradient due to the action of the propeller will result 
in a kind of buoyancy, so that the resulting force depends on the volume 
of the body. Now for a wing the volume of the part situated in the 
region in which large pressure gradients exist, will be relatively small 
so that this effect may be left out of account. 

Though lying somewhat outside of the problems discussed here, 
another interference effect should be mentioned. It is the influence 
of a stopped propeller on the lift and drag of a wing behind it. The 
results of experiments by Perring and Callen 1 show that this effect is 
most marked for the propeller directly ahead of and parallel to the 
wing, but that it exists also when the propeller is placed above or below 
the wing. 

13. The Influence of the Propeller on Separation. The general 
characteristics of the phenomenon known under the name "separation" 
and the conditions which govern it, have been discussed in Division G. 
We may therefore start at once with the special points which are of 
present interest. 

The flow around the wing in the presence of the propeller embodies 
three features which may influence separation: changes in angle of 
attack, changes in pressure gradient and turbulence. 

In the absence of the propeller, separation will start at a certain 
angle of attack and a further increase of that angle for the whole wing 
leads in general to an increase of the region over which it takes place. 
If now the aerodynamic angle of attack of only a part of the wing is 

1 The Influence of a Stopped Airscrew on the Lift and Drag of an Aerofoil. 
Br. A.R.C. R. and M. 1347, 1930·31. 
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increased, a similar effect is to be expected. It should be remarked that 
this statement does not imply that the separation at any element of the 
wing depends only on its aerodynamic angle of attack, as it is influenced 
also by the flow around the elements in the neighborhood. Hence, as 
the interference effects involve local changes in the angle of attack, we 
have to face the possibility that the separation is influenced by them. 
The changes mentioned may result from different causes, such as the 
contraction of the flow, the ____ ,-----___ ,--___ ,--__ --, 

20~ 

rotation in the slipstream _---k::!~8" 
I--x--- '>_ and the effects indicated by '5 -- IX -"':'-~-I-----l 

the terms "direct" and "in- x~ ___ ---- I--:S_-t~x 
direct" influence of the slip- '0 t: T --L---+ 
stream boundary (see 8). «i 

""-+ 

The general theory of sepa- 5_4-----1-----1-----1------1 

ration shows that it depends IX a 
on the pressure gradient along t 01------1-----1-----+----1 

the surface of the body, a 
positive increase of pressure 15 x~ I---~-:::-~..;.-::::",.I-x-x 
stimulating the separation. ag 

10'1----,==--.. ~+= ~ _,,-So the negative pressure gra- +""'"--r-J;--- ~+-+- t::: __ 

dient, due to the action of 51------1-----+----+----1 
the propeller (see I, 6), may 
delay separation. 

As has been pointed out by -~2 
von Karman \ turbulence of 
the flow around the wing may 
change the character of the 
flow in the boundary layer and 
so influence the separation. 
This has been confirmed by 

-0.1 

b 
0.1 0.11 

Fig. 24. 
Influence of the propeller on 
separation. a) wing in front, 
b) wing behind. Continuous 

"-----,l,-----},,------ line-with propeller. Broken 
«t «2 line-without propeller. 

the experiments of Millikan and Klein 2. The results of these tests which 
were carried out with different degrees of turbulence, show clearly its 
important influence at those angles of attack at which separation occurs. 
The irregularities in the flow around the propeller may differ from the 
small and rapid fluctuations usually called turbulence, but this does 
not exclude the possibility that they may cause similar effects. 

Since theoretical considerations lead to the conclusion that the 
propeller may influence separation, it is desirable to examine some 
experimental results from this point of view. Here again the results 
given by Wieselsberger3 are used. From them the values of IXl and IX2 

1 Quelques problemes actuels de l'aerodynamique. Journees Tech. Intern. de 
l'Aeronautique, 1932. 

2 The Effect of Turbulence. Aircraft Engineering, p. 169, August, 1933. 
3 See footnote, p. 416. 
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were determined, being respectively the angle of attack at which the 
deviation from the linear relation between C L and IX starts, and that 
angle at which CL reaches its maximum value. As the distance between 
successive angles of attack, for which the results are given, is rather 
large, the values obtained, especially for 1Xl> are somewhat uncertain. 
Hence they will represent the general character of the effect only. The 
results given in Fig. 24 show clearly that here the propeller influences 
both IXI and 1X2' an effect which, for the latter angle, is most marked 
for the wing in front of the propeller and close to its axis. For Zo = 0 
the angle 1X2 even falls outside the region covered by the experiments. 
Though it is not possible to say what part of the effect should be attributed 
to the different causes discussed above, the results for the wing in front 
give ground for the belief that the influence of the pressure gradient 
may be important. 

In this respect it is interesting to note the coincidence of large values 
of 1X2 (Fig. 24) and of large discrepancies between the experimental and 
calculated results at small angles of attack (Fig. 20) for the wing in 
front at Zo = 0 and Zo = - 0.08. These features suggest the possibility 
of attributing such discrepancies to the influence of the pressure gradient 
on the properties of the wing section. 

The results of experiments made at the Rijks-Studiedienst voor de 
Luchtvaart by van der Maasl, indicate that at full scale also, the propeller 
may have an influence similar to that discussed above. In these ex­
periments the maximum value of C L was determined both in gliding 
flight and at full throttle. In some cases these two values show diffe­
rences much larger than would be predicted from the theoretical results 
given in Part A. 

C. Influence of Propeller on Remaining Parts of Structure 
14. Introduction. The influence of the propeller on those parts of 

the airplane which have not been considered thus far, will be due to 
the same causes as those which influence the wing structure, but their 
relative importance may be greatly different. So, for instance, the 
influence on tail-plane will show a marked resemblance with that on 
a wing, whereas in other cases, such as airplane bodies, the direct in­
fluence of the increase in axial velocity and effects due to the pressure 
gradient will dominate. 

Here, more than in the problem treated previously, the question 
is important, whether the propeller flow may be represented by the 
simplified picture developed in I B. For, in the region behind the 
wing structure, the flow may be disturbed greatly by the influence of 

1 Unpublished. 
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the wings and body. Fig. 25, giving a result of early experiments at 
the Royal Aircraft Factory, Farnborough 1, illustrates this statement. 
It gives the square of the ratio (total velocity/airplane velocity) in a plane 
in front of the tail-plane for a single engined tractor airplane at low 
velocity and full throttle. Though in modern clean airplanes the flow 
may be less irregular, it still represents a condition which should not 
be overlooked. 

Fig. 25. Change in velocity (Vt/V)' in front of the tail-plane due to 
the action of the propeller. 

15. The Influence of the Propeller on Stability and Controllability. 
Though, as has been indicated in the preceding section, the flow in the 
neighborhood of the tail-planes may be very irregular, it still remains 
attractive to investigate what may be learned from the theory developed 
in I C. Its applicability is based on the faet that, in their general 
behaviour, tail-planes are identical with wings. As this problem has not 
yet been worked out in detail, the discussion must be restricted to some 
general remarks. 

First of all the influence of the propeller in a "skeleton airplane", 
consisting of a tail-plane and a propeller only, will be considered. As 
the tail-plane is far behind the propeller, it may be assumed to be at 
infinity. So, from the idealized flow around the propeller, as described 
in I 5, only the increase in axial velocity (vx ) need be taken into account. 
Other factors which may influence the action of the tail-plane are: the 
change in the propeller flow due to the obliquity of the propeller axis, 
the rotation in the slipstream and the eddying character of the flow 
(see 12, and I 9 and 8). The increment Vx will increase the normal 
force on the part of the tail-plane situated inside the slipstream. But, 
due to the influence of the boundary, this increase will be less than 

1 Exploration of the Airspeed in the Airscrew Slipstream of a Tractor Machine. 
Br. A.R.C. R. and M. 438, 1917-18. 
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would be expected from elementary calculation (see Fig. 26a). On the 
other hand, the boundary causes an increase in normal force for the tail­
plane outside the slipstream (see Fig. 26b, c). Thus the boundary influence 
results in a flattening out of the effects, somewhat similar to that dis­
cussed previously for the wing (see 7). A change in angle of the elevator 
(or rudder) being accompanied by a change in normal force, a similar 
effect is to be expected in the action of the controls. Whether this 
part of the interference is important and whether it will increase or 
decrease the stability of the airplane are questions which for the moment 
cannot be definitely answered. 

The most important change in the propeller flow due to the obliquity 
of the propeller axis is the existence of a velocity component Vz in the 
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Fig. 26. Influence of the slipstream boundary on the tail-plane. 
a) tail-plane inside, b), c) tail-plane outside. 1. tail-plane, 2. slipstream boundary. 

slipstream. For positive "angles of attack" of the propeller axis, Vz will 
be positive and so its influence on the tail-plane will be identical with 
that due to an increase in downwash. As this effect will increase with 
the angle of attack, it results in a decrease of the longitudinal stability. 

The influence of the rotation will be most marked for a tail-plane 
(for instance the fin) situated eccentrically in the slipstream. 

The less favourable form which the section of a tail-plane may have 
when the control angle differs from zero, has given rise to the suspicion 
that such a section might be more liable than one of normal form to 
changes in its properties caused by the eddying character of the flow. 
Experiments in this direction made by the author have, however, failed 
to confirm this supposition. 

In the complete airplane, the direct influence of the propeller on 
the tail-plane will be similar to that discussed above. But, as the propeller 
wing interference causes a change of the flow also, still other effects 
are to be considered here. As has been discussed in I 14:, this change 
of flow may be decomposed into two parts, the additional airfoil flow d 
and the additional flow e. For the sake of brevity, the corresponding 
parts of the interference effect for the tail-plane will be indicated here 
by d and e also. The effect d depends on the additional vortex system 
of the wing, so that it may be calculated only after this system has been 
determined in detail. As to the effect e, the problem is less complicated. 
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The relative increase in velocity in the slipstream (8) being smail, it 
is sufficient to consider only the additional flow related to the original 
vortex system of the wing; and then a further simplification may be 
obtained by substituting the corresponding horse-shoe vortex for this. 
Applying the results given in I 22, it is seen that inside the slipstream, 
the effect considered here is zero, whereas outside it this effect may be 
determined by using the images of the tip vortices of the wing. Fig. 27 
indicates the result in the latter case: for the tail-plane above or below 
the slipstream (Fig. 27 a), W will be negative and if situated at the side 
(Fig. 27b), it will be positive. Since here r and hence the absolute value 
of W increase with the angle of attack, the additional flow has the 

r:-F 3 +F:') G-F 8 +F U 

~, 
a b 

Fig. 27. Influence of the additional flow of the wing on the tail-plane. 
a) tail-plane above } l' t 
b) tail-plane sideways of s IPS ream. 

1. tail-plane, 2. slipstream boundary, 3. wing. 

tendency to increase the stability in the case mentioned first (tail-plane 
above or below) and to decrease it in the latter case (tail-plane at the 
side). It should be remarked that in the exact calculation, the position 
of the tail-plane relative to the slipstream will enter and as it changes 
with the angle of attack, this introduces a new element influencing the 
stability. 

16. The Influence of the Propeller on Stability and Controllability 
(Continued). Experimental results on the influence of the slipstream 
on longitudinal stability have been compiled by Bradfield 1 . They are 
analyzed in such way as to express the changes in downwash and in 
velocity at the tail-plane. After the discussion in the preceding section, 
it is evident that these changes will be apparent ones and that in general 
they need not agree with the mean values which would be obtained 
by direct measurement. This question has been discussed in some 
detail by Koning and Boelen 2, who give a method for determining 
these quantities from test results by using measurements with dif­
ferent elevator settings. 

1 Wind Tunnel Data on the Effect of Slipstream on the Downwash and Velo­
city at the Tail Plane. Br. A.R.C. R. and M. 1488, 1932-33. 

2 The Influence of the Aeroplane on the Action of the Tail Plane. Report A 363, 
Verslagen en Verhandelingen. RSL, Amsterdam. Vol. VI, p.129. 
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The results given by Bradfield, including those of tests on twelve 
models of different type, always show an increase in downwash and in 
velocity due to the action of the propeller; that in downwash increasing 
with the angle of attack. The first effect will decrease the stability, 
whereas in general the latter tends to increase it. So these two will 
balance each other partly. The sign and value of the resulting effect 
will not only depend on the form and relative disposition of the parts 
of the airplane, but also on its angle of attack. A change in the latter 
may even result in a reversal of sign. 

Some tests with models of two and three engined airplanes made 
by the author, the results of which are not available for publication 
at the moment, clearly show a decrease in longitudinal stability, due 
to the influence of the slipstream. 

Thus far, static stability, a measure of which is the change in pitching 
moment with angle of attack at a constant value of CT , bas been con­
sidered. If instead of this criterion of stability, the stability of control, 
as introduced by van del' Maasl, is used, the direct influence of the 
propeller thrust should be taken into account. For, as here the change 
in moment coefficient with the angle of attack (and so with flight velo­
city) is considered at constant throttle, the value of C T will not be 
constant and there will be a change in the part contributed by the thrust 
in the pitching moment. 

The dynamic stability may be influenced by the action of the propeller 
in different ways, as both the forces and moments acting on the propeller 
and the slipstream influence on the remaining part of the airplane will 
show changes due to the motion of the airplane. Instead of entering 
here upon a discussion of these questions, reference may be made to 
the publications of the Royal Aircraft Establishment 2, Glauert3 and 
Hartshorn, Hirst and Midwood 4 dealing with these problems. 

17. Miscellaneous Questions. After the discussion on the influence 
of the propeller on the wing and tail-plane, little need be said regarding 
its influence on the remaining parts of the structure, since, for reasons 
already mentioned in the introduction, the propeller-body interference 
is left out of present account. The modern trend toward "cleaner" 
design leads to a reduction of the number and size of the parts considered 
here and thus makes the question of the influence of the propeller on 

1 Elevator Curves, Their Determination by Means of Flying Tests and Their 
Significance for the Judgment of the Stability. Verslagen en Verhandelingen, RSL, 
Amsterdam. Vol. V, p. 140. 

2 The Behaviour of the Slipstream on a Phugoid Oscillation. Br. A.R.C. 
R. and M. 464, 1918-19. 

3 The Stability Derivatives of an Airscrew. Br. A.R.C. R. and M. 642, 1919-20. 
4 Wind Tunnel Tests on a Model of the "Wapiti" Including the Effect of 

the Slipstream on Certain Derivatives, Br. A.R.C. R. and M. 1419, 1931-32. 
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them one of lesser importance. As a consequence, this influence will in 
general be of interest only for those parts which are situated in the 
slipstream, this being the region in which the changes in the flow due 
to propeller action are most marked. 

It is evident that there will be an increase in drag over these parts, 
due to increased velocity. Furthermore the body considered being of 
good stream-line shape and having its plane or axis of symmetry parallel 
to the direction of the undisturbed flow, the change in direction due to 
the propeller action may, by spoiling the flow, cause a considerable 
increase in resistance. In this respect special attention should be paid 
to the rotation in the slipstream. 

Experiments such as those by Dryden and Kuethe 1 and Lyon 2 have 
shown that turbulence of the flow may influence the drag of a stream-line 
body considerably, an effect due to a change in flow in the boundary 
layer. There is, therefore, a possibility that a similar effect may result 
from the irregularities in the propeller flow, but there is no experimental 
evidence confirming this. It is true that the results of tests of Lock and 
Johansen 3 and of Bateman and Johansen 4 on propeller body inter­
ference together with the analysis by Lock and Bateman 5 show the 
existence of a spoiling effect, but this may be due to quite different 
causes. First of all, the rotation in the slipstream may result in a rather 
high suction on the tail of the body, causing an increase in its resistance. 
The importance of this effect is demonstrated by the experiments of 
Johansen 6 in which the rotation was decreased by radial vanes, leading 
to a definite decrease in body drag. 

Moreover, if in these cases a part of the spoiling effect is due to an 
influence of the propeller on the flow in the boundary layer, it should be 
noted that we have here to do with two questions which are fundament­
ally different. In the experiments mentioned, the blade roots of the 
propeller crossed the boundary layer of the body and so influenced it 
directly. On the other hand the possible effect, ascribed above to the 
eddying character of the flow, would not be due to a solid body in direct 
contact with the boundary layer, but to the irregularities of the flow 

1 Effect of Turbulence in Wind Tunnel Measurements, U.S. N.A.C.A. 
Technical Report No. 342, 1930. 

2 The Effect of Turbulence on the Drag of Airship Models. Br. A.R.C. R. and 
M. 1511, 1932-33. 

3 Pressure Plotting a Streamline Body with Tractor Airscrew Running. Br. 
A.R.C. R. and M. 1230, 1928-29, and R. and M. 1284, 1929-30. 

4 Pressure and Force Measurements on Airscrew-Body Combinations. Br. 
A.R.C. R. and M. 1380, 1931-32. 

5 Analysis of Experiments on the Interference Between Bodies and Tractor 
and Pusher Airscrews. Br. A.R.C. R. and M. 1445, 1931-32. 

6 Improvement of Airscrew Body Performance by Means of Radial Vanes. 
Br. A.R.C. R. and M. 1495, 1932-33. 
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caused by the presence of a body (here the propeller) at some distance. 
It is evident, that in these two cases the effect may be quite different. 

Thus far, in discussing the influence of the propeller on the parts 
of the airplane, it has been assumed tacitly that these parts behave 
like isolated bodies. But in the actual airplane, even in absence of the 
propeller, there will be interference effects among these parts. A.s to 
the question how these effects are influenced by the propeller, little 
is known for the moment. The only experiments made with the special 
aim of investigating this part of the propeller airplane interference are 
those by Ower, Warden and Jones1• They were carried out with a model 
consisting of a stream-line body, propeller and wing, the latter in different 
positions. The results of these tests which were restricted to small angles 
of attack, show that the propeller did not alter .the interference effects 
greatly. For the positions of the wing showing bad interference effects 
without propeller, it caused a slight improvement. On the other hand 
there are indications that the propeller may spoil the flow for other 
positions of the wing. Moreover a spoiling effect, due to the rotation 
in. the slipstream, was observed. It is thought that the improvement 
due to the propeller action may be caused by the negative pressure 
gradient in the slipstream preventing separation. 

1 The Effeot of a Tractor Airscrew on Body-Wing Interference. Br. A.R.C. 
R. and M. 1512, 1932-33. 
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Turbulenz. Physikalische Statistik und Hydrodynamik. Von Dr. Hans 
Gebelein, VDI, Stuttgart. Mit 40 Textabbildungen. VIII, 177 Seiten. 1935. 

RM 12.50; gebunden RM 14.-
Das vorliegende Werk ist das Ergebnis von Forschungen iiber das Turbulenzproblem, 

uie del' Verfasser 1932 in Gottingen bei Professor Prandtl in Angriff genommen hat. Das 
Ziel war, durch Heranziehung statistischer SchluJ3weisen, die in den letzten Jahrzehnten 
auf vielen Gebieten der Physik mit groJ3em Erfolg angewendet worden sinu, die theoretische 
Hydrodynamik so zu ent"ickeln odeI' zu begriinden, daJ3 sie die Erscheinungen del' Tur­
bulenz umfaJ3t. Bei den vorliegenden Untersuchungen el'scheint daher die Hyurodynamik 
als ein Zweig der physikalischen Statistik. Daher wechseln in diesel' Abhandlung Abschnitte 
mehr statistischen Inhalts und solche mehr hydrodynamisehenInhalts miteinander ab. 
Das mathematische Riistzeug sind in erster Linie uie Methoden der Wahrschein­
lichkeitsrechnung. Da die WahrscheinIichkeitsrechnung bis heute in den Ingenieur­
wissenschaften noch kaum Anwendung gcfunden hat, konnen ihre Grundtatsachen nicht 
als bekannt vorausgesetzt werden. Daher bringt das erste Kapitel eine kurze Einfiihrung 
in die 'Vahrscheinlichkeitsrechnung. 1m zweiten Kapitel schlieJ3t sich dann eine 
Darstellung del' Grundlagen der physikalischen Statistik an, wobei im Mittelpunkt 
der Untersuchungen das Ploblem des Zusammenhanges zwischen deterministischer Mechanik 
unu physikalischer Statistik steht. Nachdem auf diese Weise die Grundlagen fiir die 
Behandlung del' Stromungsvorgange in statistischer Auffassung gewonnen sind, wird in 
uen folgenden drei Kapiteln die statistische hydrodynamische Theorie entwickelt. 
Del' s),stematische Aufbau fiihrt zu drei hydrodynamischen Theorien, die sich gegenseitig 
erganzen und deren Gilltigkeitsbereiche in klar erkennbarer Weise einander ablOsen. Es 
ist dies die Theorie der idealen, del' zahen und der turbulent flieJ3enden Fliissig­
kei t. Die Theorie der idealen Fliissigkeit entsteht durch AuJ3erachtlassen del' statistischen 
Streuungen, die Theorie der zahen Fliissigkeit aber durch deren Berechnung mit Hilfe 
der Vorstellungen des Maxwell-Boltzmannschen Gasmodells. Die dritte, neue Theorie 
endlich entsteht auf Grund einfacher hydrodynamischer Tatsachen, die zur Theorie des 
Turbulenztensors und zu den Grundgleichungen del' "statistischen Hydrodynamik" 
fiihren. So sind als Ergebnis des fiinften Kapitels Gleichungcn gewonnen, von denen 
vermutet werden kann, daJ3 sie die turbulenten Stromungsvorgange umfassen. Dies nach­
zuweisen ist eine der Anfgaben del' nachsten beiden Kapitel, in denen nun die Verbindung 
mit der experimentellen Tnrbulenzforschung hergestellt wird. Dabei wird in erster 
Linie in Kapitel VI auf die umfangreichen Versuche im Kreisrohr Bezug genommen. 
Besonders goben die Experimente auch AufschluJ3 iiber diejenigen Konstanten, die in die 
Theorie eingehen, so daJ.l die Untersuchungen bis zu einem gewissen AbschluJ3 gefiihrt 
werden konnen. 

Das Gebiet del' turbulenten Stromungsvorgange, das von del' Theorie dcr "statisti­
schen Hydrodynamik" beherrscht wird, erweist sich als ein Erscheinungsgebiet mit durch­
aus eigenen GesctzmaJ3igkeiten. Zu ihnen den Weg zu zeigcn und dieses bisher geheimnis­
volle Gebiet del' theoretischen Erkenntnis zu erschlieJ3en, ist das Ziel dieser Untersuchungen. 

Theorie der Luftkriifte. Von Professor Dr. Richard Fuchs, Berlin. 
Mit 224 Abbildungen im Text und in einem Anhang. VIII, 310 und 24 Seiten. 
1935. Gebunden RM 30.­

Inhaltsiibersicht: Mathematische HilfsmitteI. - Ergebnisse der klassischen Hyuro­
dynamik. - Zweidimensionale Stromungsvorgange. Del' Tragfliigel von unendlicher Breite. 
Besondere Tragfliigelprofile bei zweidimensionaler Stromung. - Del' Tragfliigel von end­
Hcher Breite. - Auftriebsverteilung bei gegebener Tragfliigelgestaltung. - Der Mehr" 
decker. - Theorie des 'Viderstandes ohne Berilcksichtigung der Reibung. Entstehung der 
Zirkulation. - 'Viderstand und Zahigkeit. - NaIT.en- und Sachverzeichnis. - Abbildungs­
anhang. 

Mechanik des Flugzeugs. Von Professor Dr. L. Hopf, Aachen. 
Unter teilweiser Mitwirkung von S. del Proposto. Mit 268 Textabbildungen. 
VIII, 339 Seiten. 1934. Gebunden RM 30.-
(Band II und I des Werkes: "Aerodynamik" von R. Fuchs, L. Hopf und 
Fr. Seewald.) 

Hydro- und Aeromechanik nach Vorlesungen von L. Prandtl. 
Von Dr. phil. O. Tietjens, Mitarbeiter am Forschungs-Institut del' Westing­
house Electric and Manufactnring Co., Pittsburgh Pa., U.S.A. Mit einem 
Gdeitwort von Professor Dr. L. Prandtl, Direktor des Kaiser Wilhelm-Insti­
tutes fiir Stromungsforschung in GOttingen. 
Erster Band: G1eichgewicht und reibungslose Bewegung. Mit 178 Text-

abbildungen. VIII, 238 Seiten. 1929. Gebunden RM 15.-* 
Zweiter Band: Bewegung reibender Fliissigkeite n und technische Anwendungen. 

Mit 237 Textabbildungen und 28 Tafeln. VIII, 299 Seiten. 1931. 
Gebunden RM 23.-

* The books published before July 1, 1931 are sold with a price reduction of 10%. 
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Die Grundlagen del' Tragfliigel- und Luftschl'auben­
theorie. Von H. G1auert, M. A., Fellow of Trinity College Cambridge. 
Ubersetzt von Dipl.-Ing. H. HolI, Danzig. Mit 115 Textabbildungen. VI, 
202 Seiten. 1929. - RM 12.75; gebunden RM 13.75* 

IIweck des Buehes ist eine Darstellung del' TragfHigel- und Luftschraubentheorie 
aueh fiir so\ehe Leser, die keine stromungstechnischen Vorkenntnisse bcsitzen. Das \Verk 
beginnt daher mit fiiill Kapiteln Einfiihrung in die Stromungslehre; es folgt die konforme 
Abbildung, die ebene Tragfliigelstromung. del' EinfluB del' \Viderstandswirbel und del' 
Ziihigkeit, sowie die Gren~sehichtthcorie und die ZirkuJation, sodann die \Virkung del' 
\Virbelzopfe bei versehicdenen Formen des Eindeckers, die gegenseitige Beeiilliussung 
von Tragfliigeln und (lie Storungen durch den \Yindkanal. - FlIT die Treibschraube wird 
die StrahJtheorie, die TragfHigeltheorie und das Verhalten im Windkanal betrachtet. -
Die Darstellun~ ist klar und leicht lesbar, die Obersetzung so gut, daB man nul' gelegentlich 
die englisehe Quelle spiirt..... "Nachrichten fiir Luftfahrer." 

(German translation of H. Glauert, The elements 01 aemloil awl airscrew theory. 
Camb1'idge, 1926.) 

Angewandte Hydromechanik. Von Dr.-Ing. Walther Kaufmann, 
o. Professor der Mechanik an del' Technischen Hochschule Miinchen. 
Erster Band: Einfiihmng in die Lehre yom Gleichgewicht und von der RI'­

wegung der Fliissigkeiten. Mit 146 Textabbildungen. VIII, 232 Seitcn. 
1931. RM 12.50; gebunden RM 14.-* 

_Zweiter Band: Ausgewiihlte Kapitel aus del' technischen StI·omungslehre. 
Mit 210 Textabbildungen. VII, 293 Seiten. 1934. 

RM 16.50; gebunden RM 18.-
-------- ---- ---------- ----

Mathematische Stromnngslehre. Von Dr. Wilhelm llIiiller, Privat­
dozent an der Technischen Hochschule Halmover. Mit 137 Textabbildungen. 
IX, 239 Seiten. 1928. RM 18.-; gebunden RM 19.50* 

--------- --------

VOl'trage aus dem Gebiete del' Aerodynamik und 
verwandten Gebieten (Aachen 1929). Herausgegeben von A. Gilles, 
L. Hopf, Th. v. Karman. Mit 137 Abbildungen im Text. IV, 221 Seiten. 1930. 

RM 18.50; gebunden RM 20.-* 

Vortrage aus dem Gebiete del' Hydro- und Aero­
dynamik (IImsbruck 1922). Herausgegeben von Th. v. Karman lmd 
T. Levi-Civita. Mit 98 Abbildungen im Text. IV, 251 Seiten. 1924. 

RM 18.-* 
------~------

Theorie des Segelfluges. Von Dr.-Ing. W. Klemperer. ("Abhalld­
lungen aus dem Aerodynamischen lnstitut an del' Technischell Hochschule 
Aachen", Heft 5.) Mit 17 Abbildungen im Text. 78 Seiten. 1926. RM 6.90* 

Aufgaben ans del' Flngzeugstatik. 1m Auftrage del' Dent­
schen Versuchsanstalt fiir Luftfahrt, E. V., Berlin-Adlershof, heraus­
gegeben von Professor Dr.-lng. K. Thalau und Dr.-Ing. A. rreiehmann, Berlin­
Adlershof. Mit 90 Einzelaufgabell, 106 Tabellell und 291 Textabbildullgen. 
XI, 345 Seiten. 1933. RM 26.50; gebunden RM 28.--

* The books published before July 1,1931 are sold with a price reduction of 10 %. 
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