

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.
1938

DECIMAL TABLES

FOR THE

REDUCTION OF HINDU DATES

FROM THE DATA OF THE
SŪRYA-SIDDHĀNTA BY

W. E. VAN WIJK

Springer-Science+Business Media, B.V. 1938

TABLES FOR THE REDUCTION OF HINDU DATES

By the same autbor:

On Hindu Chronology, Acta Orientalia 1922-1926
De Gregoriaansche Kalender, Maastricht 1932
Le Nombre d'Or, The Hague 1936

Chevalier JEAN BAPTISTE FRANÇOIS DE WARREN (John Warren)

Born at Livorno (Leghorn), September 21, 1769
Died at Pondichéry, February 9, 1830
FOUNDER OF HINDU CHRONOLOGICAL RESEARCH
Reproduced by kind permission after a painting in oil in the possession of Comte Reginald de Warren of Grasse (France)

DECIMAL TABLES

FOR THE

REDUCTION OF HINDU DATES

FROM THE DATA OF THE
SŪRYA-SIDDHĀNTA BY
W. E. VAN WIJK

Springer-Science+Business Media, B.V. 1938

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-94-017-5814-7 ISBN 978-94-017-6251-9 (eBook)
DOI 10.1007/978-94-017-6251-9

Copyright 1938 by Springer Science + Business Media Dordrecht Originally published by Martinus Nühoff in 1938. Softcover reprint of the hardcover 1st edition 1938 All rights reserved, including the right to translate or to reproduce this book or parts thereof in any form.

If it be considered that the doctrines on which these bumble Kalendars are calculated, have from time immemorial ruled the Cbronology of many civilized and wealthy nations, the subject may not be deemed undeserving of the attention of the votaries of science.

John Warren
This little book is intended to be useful to epigraphists and interesting to students of technical chronology. I have spared no pains in endeavouring to render the Explanation as intelligible and concise as the subject would allow, and I advise readers not to try to make use of my Tables without having thoroughly studied it.
If the demand for this work proves sufficient I intend to publish a second part dealing with yogas, naksatras, Jovian cycles and reduction to other Siddbantas.

For the mathematical foundations of the Tables I refer to my articles on Hindu Chronology in the Acta Orientalia of the years 1921-26. All calculations have been effected to at least five significant figures; I am indebted to the Dutch Oriental Society for a subvention which enabled me to have part of the work done by others under my supervision. The trouble which my young friends H. W. Verheyen, astronomical computor, and A. Kurpers have taken over the calculatory work and the diagram illustrating the Explanation deserves full appreciation.

My special thanks are due to the good friends who rendered publication possible, to Dr. Johan van Manen, secretary to the Oriental Society of Bengal, and to Mr. J. G. Вотн, for procuring me the fine collection of Indian pañcängas which forms the foundation of my investigations on the subject: and, not least, to my friend Alexander Stols, who has again enhanced his printing fame by the fine execution of this small but complicated piece of expert workmanship.
W. E. van Wijk

CONTENTS

FOREWORD
BOOKS AND ARTICLES CONSULTED I
EXPLANATION
Introductory 3
Solar reckoning 4
Lunisolar reckoning, Mean System 6
Lunisolar reckoning, True System 10
The Auxiliary Tables 22
PRACTICAL EXERCICES 26
INDEX 27
THE PROBLEMS ANSWERED 33
TABLES

BOOKS AND ARTICLES CONSULTED

$W_{\text {altherus, }}$ Theodorus, Doctrina temporum indica cum paralipomenis,
Euler, Leonard, De Indorum anno solari astronomico, forming the appendix to Th. S. Bayerus, Historia regni Graecorum Bactriani ... Petropoli 1738 in 4°.
Gatterer, Iohannes Christophorus, Chronologia Brahmanvm, forming the preface to I. G. Frank, Novvm Systema Chronologiae fvndamentalis, Goettingae, 1778 in fol.
Marsden, William, On the Chronology of the Hindoos. Phil. Trans. Vol. 8o, read June 24, 1790. 4°.
Jones, W., On the Chronology of the Hindus. Diss. a. minor pieces rel. to History of Asia, I, 9, 1792 with Supplement, ibid. I, 101792 in 8°.
Warren, John, KALA SANKALITA, a collection of memoirs on the various modes according to which the nations of the southern parts of India divide time... Madras, 1825 in 4°.
Sûrya Siddhânta, translation by Rev. Ebenezer Burgess, formerly missionary of the A.B.C.F.M. in India, with notes (by William D. Whitney) and an appendix Journ. Am. Or. Soc., New Haven 1860. *)
Biot, J. B., On the translation of the Súrya-Siddhánta, Journ. d. Sav. 1860 in 4°.
Súrya Siddhinta, translation by Pundit Ba'pu' Deva Sa'stri, Calcutta, 186 i in 8°.
Spottiswoode, William, On the Súrya-Siddhánta and the Hindu method of calculating eclipses. Journ. R. As. Soc. 1863 in 8°.
Albêrônî, 'Abû-Alrathân Muhammad Ibn 'Ahmad, India, an accurate description of all categories of Hindu thought, English by E. C. Sachau, Trübner's Oriental Series, London, 1888, 2 voll. in 8°.
Delbos, Léon, L'Astronomie aux Indes Orientales, Bull. Sc. math. 1893.
Jacobi, Hermann, The computation of Hindu dates in inscriptions, etc. Epigraphia Indica 1892.
Jacobi, Hermann, Tables for calculating Hindu dates in true local time, ibid. 1894.
Sewell, Robert and Sankara Bâlkrishna Dîkshit, The Indian Calendar with Tables for the conversion of Hindu and Muhammadan into A.D. dates and vice versa. With Tables of eclipses visible in India by Robert Schram, London 1896 in 4°.
Sewell, Robert, Continuation of the „Indian Calendar", Eclipses of the Moon in India, London 1898 in 4°.
Thibaut, G., Astronomie, Astrologie und Mathematik; Grundriss d. Ind. Ar. Phil. u. Altertumskunde begr. v. G. Bühler, III, 9 , 1899 .
Velandai Gopala Ayyer, The Chronology of ancient India, i-st and 2-nd series, Madras 1901 sm . in 8°.
Sri Kalinath Murherji, Popular Hindu Astronomy, Part I, Taramandalas and Nakshatras, Calcutta 1905 sm . in 8°.
Barhaspatyah (pseud. f. Lála Chhota Lál), The obscure text of the Jyotisha Vedanga explained. Allahabad 1907 in 4°.
Schram, Robert, Kalendariographische und Chronologische Tafeln, Leipzig 1908.
Dewan Bahadur L. D. Swamikannu Pillat, Indian Chronology, solar, lunar and planetary. A practical guide, Madras 1911. With eye-table in plano.
Sewell, Robert, Indian Chronography, an extension of the "Indian Calendar" with working examples, London 1912 in 4°.
Dewan Bahadur L. D. Swamikannu Pillat, An Indian Ephemeris, A. D. 1800 to A. D. 2000 showing . . . the ending moments of tithis and nakshatras, Raijapuram, Madras, ig1s in 4°.
${ }^{*}$) A new edition, ed. by Phanindralal Ganguly with an introduction by Prabodchandra
Sengupta and published by the Calcutta University has appeared in 1935.

Books and articles consulted

Venkatasubbiah, A., Some Saka dates in inscriptions, a contribution to Indian chronology, Mysore 1918.
Kirfel, W., Die Kosmographie der Inder nach den Quellen dargestellt, Bonn und Leipzig, 1920 in 4°.
Venkatesh Bapuji Ketrar, Indian and foreign Chronology, Journ. Royal Asiatic Soc., Bombay branch, Bombay and London 1923.
Sewell, Robert, The Siddhantas and the Indian Calendar being a continuation of the author's „Indian Chronography" with an article by the late J. F. Fleet on the mean place of the planet Saturn. Reprinted from Epigraphia Indica, Calcutta 1924, 4°.
Dewan Bafadur L. D. Swamikannu Pillai, Comprehensive Tables for Indian chronology condensed from the author's larger work „Indian Ephemeris" A.D. 700 to A.D. 2000. Madras 1924 fol.
Jyotis Chandra Ghatak, The Conception of the Indian astronomers concerning the precession of the equinoxes, Journ. a. Proc. As. Soc. of Bengal 19, Calcutta 1924.
Kaye, G. R., Hindu Astronomy, Mem. Arch. Survey of India, Calcutta 1924 in 4°
Süryasiddhānta, Sanskrit text. ed. by Mahāmahopādhyāya Sudhākara Dvivedī and provided with a commentary called Sudhāvarṣini, z-nd ed., Bibl. Indica 1925.
Vencatasubbaramiah, C., Handbook of Astrology, s.d.n.l. (Madras 1926).
Varāha Mihira, The Panchasiddhāntikả, Text, original commentary in Sanskrit, English translation and introduction by G. Thibaut and Mahämahopādhyāya Sudhäkara Dvivedī, Benares 1889. Reprinted by Motilal Banarsi Dass, Lahore 1930.

Page from an actual pañcäniza calculated by Shiva Shanker Panday in Rajasthani language in Sanskritic script, showing the bright half of pürnimãnta Vaisäkba of the year 1981 of the Vikrama Era, Saka 1846 ($=1924 / \mathrm{s}$ A.D.). The second titbi is repeated, the 15 -th suppressed. The upper part of the page contains prescriptions as to bathing and offerings: „On the third day of the white Moon in the month of Vaisäkba one should plunge in the holy Ganges and offer the prescribed things as sacrificial fee etc." In the middle part the first column gives the duration of the solar day, in ghatikās, palas and vipalas, the the moments of sunrise, sunset meridian passage of the sun and its , motion" (minutes and seconds of arc travalled in I day); the last column denotes the hours for performing specific rites and offerings on the preceding tithis. The lower part of the page shows the celestial figures for two moments of the month, which are useful in casting horoscopes. The text in the middle contains more sanitary rules and prescriptions concerning offerings and rites.

The numbers in the first column refer to the paragraphs of the Explanation.

EXPLANATION

§ i. TIME. At first sight Hindu chronology seems an intricate matter to the European mind. To explain in a simple way what is necessary for understanding and dealing with the following tables the graphical method seemed to me most expedient. We shall represent TIME by a straight line, without beginning or end. Any inch of that line may stand for a day as well as for a thousand years, for a second as well as for an aeon.
§ 2. EPOCH. Time is measured by man in units comprehensible to the human mind, as days, months and years. Chronology arises when a point of that line is accepted as a starting point to count from; such a starting point is called an EPOCH and the years counted from that epoch form an ERA.
§ 3. EXPIRED AND CURRENT YEARS. The years of an era may be counted in two different ways: the year beginning at the epoch may be considered as year o or as year 1 of the era. Both systems are in use in Hindu as in other chronology. The Hindus call the years counted in the first way expired (gata) years, in the second way current (vartamana) years.

ILLUSTRATION: We count the years of human life in expired years. A child of seven years has already lived for more than seven years; but on the famous 18 Brumaire de l'An VIII de la République Franfaise une et indivisible only 7 years and 47 days of the French Era had elapsed.
Our tables are constructed primarily for expired years of the astronomical era used by the Sürya Siddhänta, called the Kali Yuga.
§4. EPOCH OF THE KALI YUGA. The Sürya Siddbänta accepts 365d25875648i for the astronomical duration of the year. Many different eras are in use, the one with the remotest epoch and therefore embracing all others being the Kali Yuga. The epoch of the Kali Yuga coincides with midnight between the 17 -th and 18 -th day of February of the year 3102 BC ($=$ year -3101 in astronomical reckoning) for the meridian of Laik \bar{a}. In these tables the days are assumed to begin at mean sunrise, assumed to be $6 \mathrm{a} . \mathrm{m}$. mean Lank \bar{a} time; therefore 48 d 75 of the year -3 ror had elapsed at the moment when the Kali Yuga began.

NOTE: The astronomical year of the Hindus is a sidereal year; modern authors on Hindu chronology call it an anomalistic year, but the anomalistic year - according to the Sürya Siddhänta - measures odoo0032721I more than the sidereal.
The tropical year, which is the astronomical foundation of the Christian era, measures 365 d 242546 .
The civil year, which always counts a whole number of days, can be a good deal longer or shorter than the astronomical year, as will become clear in the course of this explanation.
Lanked is a fictitious place on the equator, on the meridian of Ujjayini, the Avanti mentioned in the Sürya Siddhänta (I, 62); its longitude is $75^{\circ} 46^{\prime} 6^{\prime \prime}$ East from Greenwich.

Explanation

§ s. BASE. For practical reasons these tables are not based on the epoch of the Kali Yuga itself but on a moment which precedes it by 32 d $\$ 234665$. . By successively adding 365 d 258 . . we get a series of points on the ,,timeline", each preceding the astronomical beginning of a year of the Kali Yuga by 32 d 523 . These moments we shall call the BASES of the years. It is easy to find the equivalents of these bases in the Julian calendar. The first of them is day $48.750-32.523=$ day 16.227 of the year -3 IOI; the second is day $\left.16.227+365.259-365^{*}\right)=16.227+0.259$ of the year -3 101 $+1=-3100$; the third $16.227+2 \times 365.259-365-366 *)=$ $16.227+2 \times 0.259-1$, of the year -3 101 +2 , etc. ${ }^{* *)}$) To prevent the subtraction of a unit each year after a bissextile the tables accept 15.722 instead of 16.227 as starting point which compels us to increase the numbers for the odd years in column B of Table II by i. Therefore Table I must always be used in conjunction with Table II.

EXAMPLE: Required the base for the years K.Y. exp. s000 and soor.

Table I
Table II

A	B	A	B
5000	59.009	5000	59.009
00	1.000	OI	1.259
5000	60.009	5001	60.268
3101		3101	
1899		1900	

NOTE: Our BASE is the moment of the true Mina samkränti, which is the nearest moment always to precede the beginning of the Caiträdi Hindu civil year. It is chosen with the aim of keeping all calculations with these tables additive on principle.

SOLAR RECKONING

§ 6. SAMKRANTIS. Two different forms of year are in use among the Hindus, the first based only on the movement of the sun, the second taking also the moon into account. I shall deal first (in this paragraph and the next) with the solar year.

The Hindu zodiac is divided into 12 signs or rāsis and the moment in which the sun in its yearly course enters one of these rāsis is called a samkranti. A solar year is the time elapsing between two consecutive moments in which the sun enters the same sign; in most cases the Mesa samkranti is considered the astronomical beginning of the year, and such a year is called a Mesādi year. But Simbädi and Kanyädi years also occur.

Before about 4000 K.Y. the samkräntis were placed in equal distances on the time-line (therefore each $1 / 12$ th of a sideral year $=30{ }^{\circ} 438$ removed

[^0]
Explanation

from the next) but afterwards increased knowledge of the astronomical phenomena enabled the calendar-makers to calculate the exact time which the sun needs to proceed 30° in longitude in its course. The distances of these MEAN and TRUE samkräntis from the base are given in Section A of Table III; e.g. the mean Dhanus samkranti falls 276 dO 29 after the base, the true $276 d 672$, etc.
It is now also possible to find the equivalent of a samkranti in the Julian calendar. E.g. we found that the base for the year K.Y. exp. 500 corresponds to day 60.268 of A.D. 1900; therefore the true Dhanus samkranti of that year falls on day $60.268+276.672=336.940$ of A.D. 1900 .

If we wish to know the corresponding date, we have to use Section E of Table III; the year 1900 being a leap year in the Julian calendar, we find $336-335=1$ December 1900, od 940 after mean suntise at Lañkä.

If the Gregorian equivalent is wanted we have - according to Section F of Table III - to add 13 d, finding, therefore, December 14 A.D. 1900.
§ 7. SOLAR MONTHS. The solar year is divided into 12 solar months, which receive their names from the samkrantis, or from the lunar months which end after these samkrantis. The names of these lunar months are also to be found in Section A of Table III. In most cases the first day of the solar month begins at the sunrise next following the samkränti.

For other rules for the first day of the solar month see Section E of the first auxiliary table.

EXAMPLE: Required the Julian equivalent for 24 Karka K.Y. exp. 4372,

 true system.
which implies that day I begins at sunrise of day 179 and day 24 at suntise of day $179+23=202$. The year 1271 being a common year, this number according to Sect. E of Table III - corresponds to $202-18 \mathrm{I}=2 \mathrm{I}$ July.

LUNISOLAR RECKONING

§ 8. LUNISOLAR YEAR AND MONTHS. The second year form is the lunisolar, and is based on the movements of the moon as well as of the sun. The lunisolar year consists of lunar months or lunations, a lunar month being the time elapsing between two consecutive moments of New Moon. The mean duration of the lunar month is called the synodic period of the moon; according to the Sürya Siddbänta it amounts to $29{ }^{\text {d }} 5305879$. . In

Explanation

most cases the lunation which ends first after the Mesa samkranti is considered the first of the lunar months of the year; this lunation is called Caitra.

Again there are two sytems of lunisolar reckoning: the lunations may be considered as having all the same duration, viz. that of the synodic period, or they may be taken as actual intervals between consecutive moments of true conjunctions of sun and moon. The first system, using mean (madhyama) lunations is the oldest; the true (spasta) system became prevalent roughly about 4000 K.Y. We have to deal with the mean system first, as the true system presupposes a thorough knowledge of the mean reckoning.

The names of the lunisolar months are given in Section A of Table III.

LUNISOLAR RECKONING. MEAN SYSTEM

§ 9. DISTANCE OF MEAN NEW MOONS FROM BASE. If the distance of the first New Moon from the base is known for a year, all the other New Moons of that year are equally known, as they follow each other at a distance of 29 d 93 I . The distance of the first New Moon from the base is found by means of columns C of Tables I and II, whilst the multiples of the synodic period are given in Section G of Table III.
As the distance of the first New Moon from the base always must be less than $29^{\text {d }} 531$, that number must be subtracted from the sum of the numbers in columns C of the Tables I and II as soon as this sum exceeds that number. For this reason it appears for convenience sake over column C in Table II.

EXAMPLE: Required the Julian equivalent of the time of the 4-th mean New Moon in the year K.Y. exp. 3874 .
Table I 380048.501 ${ }^{16.413}$
Table II
A.D. 773 dis

The year A.D. being a common year the result stands for $145-120=25$ May A.D. 773 , od 994 after mean sunrise at Lañkä.

NOTE: The serial numbers in brackets in Section G of Table III are only to be used in certain rare cases of true reckoning. See $\S 20$.
§ io. NOMENCLATURE OF LUNAR MONTHS. The lunar month which ends with the first New Moon after the Mesa samkranti is called Caitra, that which ends with the first New Moon after the Vrsabba samkränti is called Vaisákba, etc., as tabulated in Section A of Table III.

Explanation

As however the mean synodic period of the moon - viz. 29 ${ }^{\text {d }} 53 \mathrm{I}$ - is shorter than the distance between two mean samkrantis - this distance being $30{ }^{2} 438$, as stated in $\S 6$-it happens from time to time, that a lunation which has begun shortly after a samkränti ends before the next samkränti. Such a samkranti-less lunation is added to the next lunation, which obtains its regular name, according to the rule given at the beginning of this paragraph.

The two homonymous lunations are distinguished by the prefixes prathama ($=$ first) and dvitīya ($=$ second) or by the prefixes adbika ($=$ added) and nija (= regular).

NOTE I: The sidereal year evidently contains $\frac{365.25875648 \mathrm{I}}{29.530587946}=12.3688277 \ldots$ synodic periods, which implies that there must be about 369 mean added months in 1000 years. Robert Sewell, who calculated the mean intercalations for the period 3400 till 4200 of the K.Y., found within these 800 years 296 mean added months, which result is in accordance with this calculation. The fraction 3688277 . . being nearly equal to $7 / 19(=0.3684210)$, about the same repetitions reappear after each period of 19 years. NOTE 2: The names of the lunar months have been derived from certain asterisms (naksatras) in the moon's track.
§ ir. MEAN ADDED MONTHS. If the distance of the first mean New Moon from the base is known, the position of all other mean New Moons with regard toall meansamkräntisisequally known. The inferiorlimits determining if a month has to be added, and if so, which, are given in Section B (upper part) of Table III. We found e.g. in $\S 9$ that the first mean New Moon of the year K.Y. exp. 3874 falls 7 d 753 after the base; this implies that a month Aśvina has to be added. By way of illustration we shall discuss another.

EXAMPLE: Is - in the mean system - a month added in the year K.Y. exp. 3926; if so, which?

We find		$D-\odot$
Table I	3900	19.875
Table II	$\underline{26}+$	12.122
	3926	31.997
		29.53 I
2.466 and this being >2.085 Caitra is an added month. In fact, as the mean Mesa samkrānti falls $32 \mathrm{~d}_{923}$ after the base (and therefore the mean samkränti preceding it $32.523-30.438=2$ d 085 after the base) and the second New Moon $2.466+29.53 \mathrm{I}=31 \mathrm{~d} 997$ after the base, the year contains a lunation without a samkränti, which becomes an added lunation.		

NOTE: Instead of added month or lunation, the term intercalated (praksipta) is often used in chronological treatises.
§ i2. THE SERIAL NUMBER OF A LUNATION. We shall call a year with no month added a common year. A common year contains i2 lunar months, the serial numbers of which are the same of those of the samkrantis. We find these serial numbers in the top row of Section A of table IV.

Explanation

But in the case when the year contains an added month, the serial numbers of the lunations show a certain shift. E.g. when the year contains an added Caitra, the first lunation of that year is adbika Caitra (cf. the example after § ir above), the second nija Caitra, the third Vaisakba, etc. These serial numbers are given in Section A of Table IV. The number, given in days and decimals of a day, which has to be added to the distance of the first New Moon from the base to find the beginning of the successive months is always found in Section G of table III, headed „Multiples of synodic period of the Moon".

As an example, we shall calculate the New Moon marking the beginning of the month Kärttika in the expired years of the K.Y. 3873 and 3874; the first of these two years is a common year, the second contains an added Aśvina (See § II):

§ 13. DAYS AND TITHIS. A mean lunation, that is, the time elapsing between two consecutive mean New Moons, is divided into 30 tithis; all mean tithis have the same duration of $1 / 30$ of the synodic period, therefore of 0 d 984 .

The days of the lunar months derive their serial numbers from those of the tithis, in that the day gets the serial number of the tithi which is current (i.e. which has already begun) at the moment of the sunrise which marks the beginning of that day.

A mean tithi however is $1.000-0.984=0$ dor6 shorter than a day; if therefore a mean titbi begins <odor6 after mean sunrise, it will end before the next sunrise, and as it is not current at any sunrise cannot convey its serial number to a day. E.g. if the third tithi of a certain month begins shortly after sunrise and ends before the next sunrise, the days of that month will be counted: $1,2,4,5$. etc. A tithi which does not convey its serial number to a day of the month is called a lost (ksaya) titbi.

Explanation

The tithis of each month are counted in two groups; the first fifteen forming together the bright half of the month (sukla paksa), the second fifteen the dark half (krsna paksa). The tithis of both halves are distinguished by their sanskrit numerals, with the exception of the fifteenth of the bright half, which ends with the Full Moon and is therefore called pürnimä, and the fifteenth of the dark half, with ends with the New Moon and is called amāvāsyā. The titbi amā̀āsyä always gets 30 as its serial number (instead of krsna is).

The names of the tithis are to be found in columns I of Section B of Table IV.

NOTE: A sidereal year contains $\frac{365.2587565}{0.9843529}=371.064$ tithis, or 5.805 more tithis than days, which implies that the number of kesaya tithis in the mean system must always be s or 6 in each year.
§ 14. CALCULATION OF THE TIME OF BEGINNING (and ending) OF A MEAN T'ITHI. Section B of Table IV gives the numbers to be added to the distance of the mean New Moon from the base to get the times of beginning of the mean titbis reckoned from the base. By adding to the sum the number called the ,base" of the year, we find the time the titbi begins according to the Julian calendar.

EXAMPLE: Required the Julian equivalend of the time of beginning of the tithi saptami krṣ̣a Mägba K.Y. exp. 3565.

$$
\begin{aligned}
& \text { A.D. } 464 \underline{20.671} \text { tithi } 7 \text { krṣna. } \\
& 352.30 \\
& \frac{47.693}{400.002}+\text { base. } \\
& 397 . \\
& 3.002 \text { A.D. } 465 \text {. } \\
& \text { The result is now that the 7-th titbi of the dark half of the month Mägba of the year } \\
& \text { K.Y. exp. } 3565 \text { begins on the third day of February of the year A.D. 465, odoo2 } \\
& \text { after mean sunrise Laikea. As this is less than odoi6 after sunrise, the tithi will } \\
& \text { end before the next sunrise, and therefore cannot convey its serial number (7) } \\
& \text { to a day of the month. The days of the month Mägha are now numbered: . . . 4, } \\
& 5,6,8,9,10 . . \text { etc. of the dark half. } \\
& \text { NOTE: Each decimal reckoning is an approximation; the last figure is always } \\
& \text { uncertain. If we had therefore found, for the beginning of the tithi, odoor instead } \\
& \text { of od } 002 \text { after sunrise, our tables would have told us that either the } 7 \text {-th or the } \\
& \text { 6-th of the dark half of Mägha, K.Y. exp. } 3565 \text { had to be considered a ksaya one. }
\end{aligned}
$$

Explanation

\oint 15. KAR $A N A S$. In addition to the division of the lunar month into tithis, the Surya Siddbänta also knows of a division into karanas. A karana is defined as the time which the moon needs to travel 6° from the sun. A mean karana is therefore the $1 / 80$ th part of the synodic period; the names of the karanas and the numbers to be added to the distance of a New Moon from the base to ascertain the moment at which they start are given in columns 2 and 3 of Section B of Table IV.

The Hindu calendars or pañängas note the ending moments of the karanas, but as a rule only of those which are current at sunrise.

EXAMPLE: Using the figures obtained in the example after $\int 14$ we note that the karana vanija was current at sunrise on the third of February A.D. 465. It ended od ${ }_{002}$ after mean sunrise of that day.

LUNISOLAR RECKONING. TRUE SYSTEM

§ 16. MEAN ANOMALY AND EQUATION OF THE CENTRE. In the true system the times when the tithis and the karanas begin are derived from the values found in the mean system by applying two corrections, which are called: the equation of the centre of the sun, and the equation of the centre of the moon.

The equation of the centre of the sun is a function of the sun's mean anomaly, the equation of the centre of the moon is a function of the moon's mean anomaly. The values of the anomalies at the bases are found by means of columns D and E of the Tables I and II, the corresponding values of the equations are found on the folding leaves, those for the sun on the lefthand, those for the moon on the righthandone.

The anomalistic period of the sun is practically equal to its sidereal period (cf. $\S 4$ Note), viz. $365 d 259$; the anomalistic period of the moon is 270.555 ; as soon as values for the anomalies surpassing these numbers appear in our calculation, they have to be decreased by the amounts given. To find the equations of the centre with a sufficient degree of accuracy it is necessary to work to one decimal place in the values for the sun's anomaly and to two decimal places in the values for the moon's anomaly.

The equations of the centre are positive or negative; for convenience' sake, to prevent the alternation of additions and subtractions, the negative values have been replaced by their arithmetical complements, which necessitates the subsequent subtraction of a unit; in other words: instead of subtracting x, we add ($-x+1$) and afterwards subtract I from the sun. As the absolute value of the equation never surpasses ods this cannot give rise to confusion, and it greatly facilitates the reckoning.

The Tables of the equations of the centre give values for each whole day of the sun's mean anomaly and for each tenth of a day of the moon's

Explanation

mean anomaly. In the calculations the mean anomalies appear with one decimal more; therefore to find the equations for the intermediate values of the anomalies an interpolation is required.

If e.g. the equation of the centre is wanted for the anomaly $D=12.83$, we have to proceed as follows:

For an. $\mathcal{1 2 . 8 0}$ the equ. according to the table $=0.908-\mathrm{r}$
For an. D 12.90 the equ. according to the table $=0.917-1$
therefore for the an. 12.83 :

$$
\begin{aligned}
& 0.908-1+0.3 \times(0.917-0.908)= \\
& 0.908-1+0.3 \times 0.009= \\
& 0.908-1+0.003=0.911-1=
\end{aligned}
$$

The difference between two consecutive values of the equations never surpasses \pm o.010, which implies that the interpolation is always easily effected. For convenience' sake I have added a small table of proportional parts, in which the unit stands for the third decimal. I advise careful interpolating.

EXAMPLE: Required the moment of beginning of the ro-th titbi of the dark half of the ro-th lunation of the year K.Y. exp. 5037.

K.Y.exp. base	$D-\odot$	An. \odot	An. D
Table I 5000 ¢9.009	28.422	71.7	4.38
Table II $\quad 37+$	$10.435+$		12.82
5037 60.583	38.857	71.7	17.20
3101 period	29.531	$298.7+$	298.73
A.D. 1936	9.326	370.4	315.93
Table III, Section G roth lunation	265.775	period 365.3	303.10
Table IV, Section B tithi io krṣna	$23.624+$	An $\odot \quad 5.1$	An $\mathrm{D}^{12.83}$
Mean beginning of tithi	298.725		
With argument 5.1 find equ. of the centre \odot.	0.016		
With argument 12.83 find equ. of the centre D.	$0.911{ }^{1}$		
Base, found above	$\begin{array}{r} 298.652 \\ 60.583 \\ \hline \end{array}$		
True beginning of tithi Table III, Section E, leap year	$\begin{aligned} & 359.235 \\ & 335 \end{aligned}$		
Result: A.D. 1936, December	$24 \quad{ }_{k a}^{\mathrm{d}_{23}}{ }_{k a}$	after mean sunr ne.	rise mean Lain-

Table III, Section F, Gregorian calendar.

$$
\cdot \cdot \cdot \frac{13}{37}+\text { January } 6 \text { A.D. } 1937
$$

NOTE 1: The Sürya Siddbänta assumes that the sun moves in a circular orbit, the earth in its centre, at a speed which varies from moment to moment but sways round a mean value. To account for this variability of velocity and to render the

Explanation

calculation of the sun's true place in its orbit possible for any moment, the Siddhänta accepts two points moving in the same orbit with different, but for either of them constant, speeds, in the same (easterly) direction. The first of these two points is called the mandocca (which we shall render by apsis in accordance with the editors of the translation by Burgess), the other the mean sun. The apsis completes its revolution in more than II-million years, the mean sun in a period of $365 \mathrm{~d}_{258756 \dot{4} 8 \mathrm{i} \text {, which period is called a sidereal year. At the end of the creation }}$ the sun, the mean sun, and the mandocca were in the same point of the orbit, which point is situated in the intersection of the orbit, with a straight line which joins the immovable earth with a certain point in the skies; this zero-point of the sphere is situated near the principal star of the asterism Revati, which we call now ζ-Piscium.
After each sidereal year the apsis advances a fraction of a second in the orbit, and when after millions and millions of years the Kali Yuga began, the mean sun was in the zeroline and the apsis had completed a certain number of revolutions (175) plus 77° of another revolution.
The apsis is attached to the sun by cords of air and, according to its nearness, it draws the sun backward or forward; the distance of the sun from the mean never surpasses $2^{\circ} 10^{\prime} 3 \mathrm{I}^{\prime \prime}$. It is this deviation of the sun's place from that of the mean sun which is called equation of thecentre.

In the figure the dimensions of the epicycles and of the amount of contraction in the odd quadrants have been exaggerated. To calculate this equation for any given moment, the Sürya Siddbänta avails itself of an epicyclic system; in a circle having a radius of $14 / 360$ of that of the sun's orbit and having the mean sun as its centre, a point revolves at constant speed. The time of its revolution is equal to that elapsing between two consecutive passages of the mean sun through the apsis (viz. the anomalistic period) and its direction is opposite to that of the mean sun in the orbit. The point of intersection of the line joining the earth and this point revolving on the epicycle with the orbit marks the true place of the sun.
The calculation is complicated by the next assumption, viz. that the dimensions of the epicycle undergo a contraction which reaches its maximum value in the odd quadrants of the anomalistic revolution, amounting there to $1 / 42$ of the value in the even quadrants.
The position of the directional point in the epicycle is found by a simple goniometric proportion; the table of sines, however, which the Sürya Siddbänta contains, differs considerably from that of the natural sines, the chief difference being that

Explanation

the values are only given for each 225^{\prime} in the quadrant, the others being found by linear interpolation.
The true places of the moon are determined in a similar way; the dimension of the epicycle are here ${ }^{32} / 360$ with a contraction to $1 / 86$ of this amount. The anomalistic period is 27 d 555 .
The radius of the suns' orbit is accepted to be 13.36 times that of the moon's orbit For particulars about the construction of the tables and about the formulae used in the calculation of the tables of the equations of the centre I refer to parts i and 2 of my article on Hindu Chronology.
NOTE 2: It follows from the text of this paragraph that the values for the equations of the centre must be found with the arguments: mean anomalies of sun and moon for the moment of true beginning of the tithi. But as we do not know this moment beforehand (else we should not need to calulate it) we use the moment of mean beginning. The example of the calculation given at the end of the paragraph has therefore the character of a first approximation. As a matter of fact, this first approxiamtion is amply sufficient in most cases. If, however, a greater degree of accuracy is desired, we can come a little nearer by entering the result of this approxiamtion in our calculation. E.g. we found for the total correction to be applied to the mean value, in the last example, $0.016+0.911-1=$ 0.927 - I. Applying this value to the anomalies found for the mean beginning of the titbi, they have to be corrected to resp.: $5 . \mathrm{I}+0.9-\mathrm{I}=5.0$ for the sun and $12.83+0.93-1=12.76$ for the moon. The corresponding equations of the centre are now 0.016 (unaltered) and 0.904 - 1 (instead of 0.911 - 1); the total equation now becomes $0.920-1$; the distance of the true beginning of the tithi from the base; $298.725+0.920-1=298.645$, and the Julian equivalent 359.228 . A second repetition is hardly ever of any value.
The equations of the centre have from the nature of things always to be read from the mean values.
NOTE 3: From a chronological point of view the substitution for the mean calendaric system of one based on the true movements of the sun and the moon, was anything but an improvement, as it destabilized the foundations of the timereckoning. Indeed, the system may have had the charm of adapting daily life as nearly as the astronomical knowledge permitted to the movement of the heavenly bodies, but on the other hand it broke the ties with history, as there was no unity either of elements or systems. The very complexity of the system is a proof of its primitiveness.
The transition from the mean system to the true occurred about A.D. 1000.
§ 17. BIJ A. The values for the moon's mean anomaly are often corrected by applying to them a correction called bija, which is based on a slightly different assumption for the period of the moon's anomalistic revolution. It was not introducted before about 4500 of the Kali Yuga. In our Table I its amount is given as if it had existed from the beginning, to give an insight into its progress.
§ i8. DURATION OF TRUE LUNAR MONTHS. The joint effect of the two equations, that of the sun and that of the moon, causes the lunar months to be of unequal length. Calculated with the data of the Surrya Siddhanta this duration is found to lie between the limits $299^{d} 30$ and 29d812.

The time elapsing between two consecutive true samkräntis varies from

Explanation

29d 318 to 3 Id 644 . Accordingly, it is possible in the true system for a lunar month to remain without a samkranti, as well as to contain two samkrantis. In the first case a lunation is added in a similar way to that we have described already when explaining the mean system ($\$ \S$ IO and ir).

In the second case a month is suppressed.
The months Pausa and Mägha never appear as added months, whilst no other months can be expunged but Märgaśirssa, Pauṣa and Mägha. Phälguna occasionly figures as an added month but only in years from which a month has been suppressed.

We shall treat of the true intercalations and suppressions of months in detail in the two following paragraphs.
\int 19. TRUE ADDED MONTHS. The variability in the duration of the lunar months renders it impossible to tell with certainty from the value found for $D-\odot$ at the base of a given year if a month has to be intercalated in that year and if so, which. Only the inferior limits determining the possibility of a certain month's being intercalated can be given; these limits are tabulated in the lower part of Section B of Table III. E.g. if we find for a certain year that $D-\odot$ at the base amounts to 6.100 it is highly probable that a month Srävana has to be added to that year, it is possible that not Srävana but A ṣädba has to be intercalated, but it is impossible that the year is to contain an additional Bbädrapada. To make sure, the exact determination of the distance of one true New Moon from the base as mentioned in Section C of Table III is wanted for each month. In the case under consideration a true New Moon occurring 124d 354 after the base would show Srâvana to be the added month but one occurring 124.350 after the base would indicate $A s a d h a$.

EXAMPLE: Is a month added - and if so which - in the year K.Y. exp. 4899?

	$D-\odot$	An. \odot	An. ${ }^{\text {d }}$	
4800	21.499	71.7	27.42	
99	14.353	-.-	8.98	
4899 (35.852	124.4	124.44	
	29.531	196.1	160.84	
	6.321		137.77	1) Intercalation of Srâvaṇa possible.
	118.122		23.07	${ }^{2}$) Find in Section G of Table III the
	124.443			number, which added to ${ }^{1}$) brings the sum as near as possible to
	0.959			124.352
	0.353			
A second approximation (See $\rrbracket 16$ Note 2) is not needed; it becomes necessary when the result differs less thans ${ }_{0}{ }_{0} 03$ from the limit.				

§ 20. TRUE INTERCALATION OF CAITRA. A true New Moon soon after the base determines an intercalation of Caitra. If therefore

Explanation

$D-\odot$ at the base is found to be a little more than o (see the limits in the lower part of Section G of Table III), the joint effect of the two equations may cause the true New Moon to fall just after or just before the base (which we recollect to be the true Mina samkranti); in the first case Caitra is intercalated, in the second case Pbalguna of the preceding year (which implies besides the suppression of a month, as will be shown in the next paragraph).

But it is also possible for a mean New Moon to fall just before the base; we find then $D-\odot$ nearing 29.53I. Again the joint effect of the two equations may cause the true New Moon to occur now before or soon after the base. The first of these two cases determines an intercalation of Pbalguna of the preceding year, the second however an intercalation of Caitra. To attain certainty here, we might calculate the last true New Moon of that preceding year; we gain our object sooner however by calculating the exact moment of the true New Moon, derived from a mean New Moon preceding the first mean New Moon of the year (as shown by $D-\odot$) by 29 d 93 . To prevent working with negative numbers we add instead: od 469 - 30 .

If in this case a true New Moon is found soon after the base the year contains an intercalary Caitra and shows the peculiarity that its first mean New Moon falls before the base; we have to use in such a year those serial numbers for the synodic periods which are shown in brackets in the first column of Section G of Table III.

NOTE: The last case is a rare one; it occurs only in the years following those marked with an asterisk in Section A of the first auxiliary Table.

EXAMPLES:			
Case I. K.Y. exp. $\begin{array}{r}4642 \\ 4600 \\ 42\end{array}$	$D-\odot$	An. \odot	An. D
	14.575	71.7	22.92
	15.038	-.-	20.51
	$29.613+$	0.15	$\underline{0.08}+$
	29.53 I	71.8	43.51
	0.082		27.55
	$\odot 0.169$		15.96
	D $0.198{ }^{0.1}$		
	0.449 Caitra	intercalated.	
Case 2. K.Y. exp. 4379			
4300	4.191	71.7	2.38
79	$25.473+$	-.-	5.78
	$29.664+$	0.1	0.13
	29.531	71.8	8.29
$\bigodot_{0}^{0.133} \begin{aligned} & 0.169 \\ & 0.607-1 \\ & \end{aligned}$			
	0.909-1	Caitra not intercalated (but Pbälguna of preceding year, cf. ist auxiliary Table, Sect. A).	

Explanation

§ 21. TRUE SUPPRESSIONS OF MONTHS. The values for D- \odot at the base which serve as limits for the eventual intercalation of Aśvina and following months, and for the suppression of months, show only small differences, and can even overlap each other.
If we find, therefore, that $D-\odot$ at the base for any year lies between 10.0 and ir.50 we have to determine a series of true New Moons to establish the sequence of months in that year. This work is not difficult but it requires time. To prevent this trouble I collected in a special table (First auxiliary Table, Section A) all the years between K.Y. 3100 end 5300 (A.D. o till 2000) from which a month has to be expunged. This table I have good reason for believing to be correct and exhaustive.
A year from which a month has been expunged always contains one of the three months Asivina, Kärtika or Märgasïrsa as an added month and may contain besides an intercalary Pbälguna. Märgasïr saa and Pbälguna never appear as added months in a year from which no month is expunged.

It was for these reasons that I distinguished the months Asvina, Kärttika and Märgasïrsa in Section B of Table III by the sign ! and put Märgasïr sa in brackets.

Explanation

EXAMPLES: I give the complete calculation for two years of different type for which $D-\odot$ at the base is found to lie between ro and II.50 to wit: 3608 and 4801:

3608	$D-\odot$	An. \odot	An. ${ }^{\text {d }}$
3600	9.490	71.7	0.38
${ }^{08}+$	$\underline{1.458}+$	---	${ }_{1.28}+$
3608	10.948	71.7	1.66

Calculate the true New Moons beginning with the one determining an intercalation of Asvina.

Calculate the true New Moons, again beginning with the one determining an intercalation of Asvina.

Explanation

Inspection of Section A of the first auxiliary Table makes all calculations for the year 3608 unnecessary and reduces those for the year 4801 to the determination of the first two true New Moons.

If there are only two consecutive New Moons to be calculated the process may be shortened a little thus:
$\mathbf{1}^{\text {st }}$ true N.M. $\quad 2^{\text {nd }}$ true N.M.

$$
\bigodot^{\boldsymbol{1}} \begin{gathered}
187.79 \mathrm{x} \\
0.827-1 \\
0.83 \mathrm{r}-1 \\
187.449
\end{gathered}+
$$

$$
\begin{aligned}
& 217.322 \\
& 0.827-1 \\
& 0.683-1 \\
& 216.832
\end{aligned}+
$$

NOTE: As perhaps the reader may wish to have the complete order of the serial numbers of the months for different types of years, I add here a schedule containing the serial numbers for a common year (cf. $\$ 12$), and for the two years which we have investigated in the two examples just given. This schedule is only an illustration of how to apply the table given in Section A of Table IV.

N°	Comm. Year	3608	480I
1	Caitra	Caitra	Caitra
2	Vaisákba	Vaisákba	Vaisákba
3	Jyestba	Jyestba	Jyestba
4	Asādba	Asādba	Asädba
5	Srāvana	Srāvana	Srāvana
6	Bhädrapada	Bbädrapada	Bbādrapada
7	Ásina	Ásina	Asvina
8	Kärttika	Kärttika	Asvina II
9	Märgasìrsa	Kärttika II	Kärttika
10	Pausa	Märgasirrsa	Märgasirrsa
11	Mägha	Pausa	Pausa
12	Pbälguna	Pbälguna I	Mägha
13		Pbälguna II	Pbälguna

$$
\begin{aligned}
& \begin{array}{c}
D-\bigodot \\
10.607 \\
\frac{177.184}{187.791}+ \\
\frac{29.531}{217.322}+
\end{array} \\
& \text { An. } \odot \\
& \text { An. D } \\
& \begin{array}{r}
6.92
\end{array} \\
& \begin{array}{c}
10.607 \\
177.184 \\
\hline 187.791
\end{array}+\quad \begin{array}{r}
71.7 \\
187.8
\end{array}+\begin{array}{r}
6.92 \\
\hline 259.5
\end{array} \begin{array}{l}
197.79 \\
\hline 194.71
\end{array} \\
& \frac{29.5}{289.0}+ \\
& \begin{array}{r}
192.88 \\
1.83
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rr}
- & 187.8 \\
\text { \& } & \begin{array}{r}
71.7 \\
\text { K }
\end{array} \\
\hline
\end{array} \\
& \begin{array}{r}
217.3 \\
71.7 \\
\hline 289.0
\end{array} \\
& \begin{array}{r}
246.9 \\
71.7 \\
\hline 318.6
\end{array}+\begin{array}{r}
276.4 \\
71.7 \\
\hline 348.1
\end{array}+
\end{aligned}
$$

Explanation

§ 22. TRUE TITHIS. A tithi is the time, which the moon needs to travel 12° from the sun. A true titbi conveys its serial number to the weekday in the manner of the mean tithi ($\$ 13$), viz. the day of the month gets its serial number from that titbi which is current, i.e. which has already begun, at the sunrise marking the beginning of the day. Calculated from the data of the Sürya-Siddbanta, the duration of the shortest tithi is found to be od 896 and of the longest, idogr.

It is therefore possible for a tithi beginning shortly after sunrise to end before the next sunrise; such a titbi, on which the sun does not rise, cannot convey its serial number to a day and e.g. a day 3 of a month is followed by a day 5 . As we have seen when treating of the mean titbis, such a titbi is called a lost (ksaya) tithi.

But in the true system it may also happen that a tithi which has begun shortly before sunrise lasts till after the following sunrise; it conveys its serial number to two consecutive days of the month and e.g. a day Monday No. 4 is followed by a day Tuesday No. 4. Such a $t i t b i$ is called a repeated (adbika) tithi.

The calculation of the beginning of a true tithi has already been described in the example given with $\S 16$.

It is impossible to give meanlimits for the suppression or repetition of true tithis, that is to say: the value found for $D-\odot$ at the base gives no clue for the distribution of the tithis in the course of the year. We have always to calculate the exact moment of beginning of the tithi, and in cases where we wish to make sure of a repetition or omission, the end as well. The end of one $t i t h i$ is the beginning of the next. We can only state that a true tithi:
beginning more than od ${ }^{103}$ after suntise cannot end before the next sunrise, which implies that it cannot be expunged,
beginning less than od909 after sunrise cannot end after the sunrise of the following day, which implies that it cannot be repeated.

EXAMPLES:

I. Required the Julian equivalent of the beginning of tithi sukla 13 , month Aṣädha, K.Y. exp. 3585.

K.Y.exp.	base	$D-\odot$	An. \odot	An. D
3500	45.874	6.028	71.7	1 I .91
$85+$	$1.994+$	$19.184+$	一.-	20.51
${ }_{3585}+$	${ }_{47.868}+$	25.212 +	$125.6+$	$129.62+$
3101	Asädba, $4^{\text {th }}$ month	88.592	197.3	198.04
A.D. 484	tithi 13 sukla	11.812		137.77
		129.616		20.27
	\odot	$0.955-1$ 0.412		
		$\underline{0.412}+$		
	base	125.983 47.868		
		${ }_{173.851}+$		
	leap year	192.		
	A.D. 484, June	21,0d8¢I	mean sunri	mean Laink

Explanation

II. An adbika titbi: Titbi sulkla 2 Vaisäkba, K.Y. exp. so2s.

True beginning of titbi $\overline{112.936}$, the fraction being >0.909 the titbi might be adbika. To check calculate its end as well (= beginning of next titbi).

Therefore tithi 2 is current at sunrise of days 113 and 114 and day 114 also receives the serial number 2 of the month Vaisákba.

The tithi corresponds to days May s and 6 A.D. 1924, Gregorian style.
III. A ksaya tithi. Pūrṇimā (= 1s) Vaisäkha K.Y. exp. 5025.

$$
\begin{aligned}
& \stackrel{\odot}{0.127} \begin{array}{l}
0.197 \\
\hline 65.540
\end{array} \\
& \text { base } \quad 60.478+
\end{aligned}
$$

might be ksaya. To check, calculate its ending moment as well ($=$ beginning of next titbi).

Explanation

The titbi begins after and ends before sunrise on day 126 ; titbi 14 is current at sunrise of day 126 and titbi 16 at that of day 127, and no day in Vaisäkha K.Y. exp. 502 s has is as its serial number.
§ 23. TRUE KAR ANAS. A karana is the time which the moon needs to travel 6° from the sun. The beginning and end of a true karana are calculated in the same manner as those of the tithi. The values to be added to those for the mean New Moons are given in columns 2 and 3 of Section B of Table IV.

EXAMPLE: Which karana is current at sunrise of day 10 of the month Bbädrapada in the year K.Y. exp. 4995?

End (necessary only in close cases):

Therefore a karana taithla is current at sunrise of day 24c, corresponding to September io A.D. 1894, Gregorian style.

THE AUXILIARY TABLES

§ 24. $V A R A$ or WEEKDAY. The seven day week does not appear in Indian inscriptions before the second half of the fifth century A.D. Section B of the first auxiliaty Table offers a simple means of ascertaining the weekday without reducing the result to European date.

We find e.g. in the example at the end of $\S 23$ that a certain karana begins on day 239 in the year K.Y. exp. 4995. Here the number 239 stands for day No. 239 of the Julian year of which the beginning falls in the year K.Y. exp. 4995. This day is August 27 of the Julian calendar, or September 9 of the Gregorian calendar, in the year A.D. i894; and perpetual calendars showing the weekday for any given date of the Christian calendar are to be had in abundance. But, if we do not need the European equivalent of the date, we can ascertain the weekday straight away in the following manner:

Section B, left hand part, gives for the argument $49 \ldots$ index 7 ; the right hand part gives under the index 7 , with the argument $95 .$. Roman numeral VII. This result means that day No. I of the year K.Y. exp. 4995 is a day VII. In the lower part of Section B the septuples are tabulated, augmented by $\mathbf{~}$. The serial number of the given day, 239, happens to be among these, which means that day 239 is also a day VII, according to Section C a Saturday or śanivāra.

This method has the additional advantage that it is the same for common years and leap years.

NOTE: The variants for the names of the weekdays in the Index to this book are chiefly borrowed from Sewell and Dikshit's Indian Calendar, page 12.
$\oint 25$. VARIOUS ERAS. For reasons given in $\int 4$ we have used in our tables the era called the Kali Yuga. This era is however only seldom used in actual inscriptions, which implies that a given year, expressed in years of another era has to be reduced first of all to an expired year of the K.Y. For the principal eras the necessary data are to be found in Section D of the first auxiliary Table, which needs little explanation. If we read e.g.:

Vikrama exp. 3044 (curr. 3043) Kärttikädi and Caiträdi,
this stands for:
An expired year of the Vikrama era is turned into an expired year of the K.Y. by adding 3044. If - in exceptional cases - the year of the Vikrama era were given as a current year, we should have had to add 3043 to find the expired year of the K.Y. The years of the Vikrama era are considered as beginning with the month Kärttika or Caitra.

If a year does not begin with Caitra the correspondence is meant for that part of the year which begins with the initial month mentioned. E.g. a date in the month Mägha of the current Kärttikädi year 100 of the Vikrama era corresponds to a date in the month Mägba of the expired year of the

Kali Yuga ($100+3043$); but a date in a month preceding Kärttika corresponds to a date in K.Y. exp. 3142 . For the meaning of the word krsna at the end of the data for some of the eras, see the description of Section F of the first auxiliary Table in $\rrbracket 26$.

NOTE: The name of the era, the way of counting, and the beginning of the years, is hardly ever mentioned in inscriptions, which gives rise to frequent confusions. The mention of the weekday often gives a clue to the correctness of the reduction.
§ 26. $A M A N T A$ AND PORNIMANTA RECKONING. We assumed in all our calculations and examples that the months began at the moment of mean or of true New Moon; this is in accordance with the common usage. But months are not infrequently assumed to commence at mean or true Full Moon, especially in the Northern countries of India.

Months commencing at New Moon are called amanta months, those commencing at Full Moon are called pürnimänta months.
The correspondence between amänta and purnimānta months is such that the sukla paksas of homonymous months are identical. In the pürnimanta scheme the sukla paksa is the second half of the month; therefore the Kr \quad ṣna paksa of Caitra in a year counted by this scheme belongs to a year preceding the year counted by the amanta scheme which we use in our tables. E.g. a date in the krrsna paksa of Caitra in the year K.Y. exp. 100, counted by the pürnimänta system, belongs to the year K.Y. exp. 99 when counted in the manner of our tables.

The correspondence may be immediately read off from Section F of the first auxiliary Table.

In Section D of the same table, the eras in which the purnimanta reckoning usually obtains are denoted by the word krṣna. However, many variants are used.

NOTE: Intercalations and suppressions of months are calculated throughout in the amänta system; the correspondence of the paksas to those of the nija months is retained in cases where intercalations occur. The sequence of the krs na and sukla pakṣas is therefore interrupted in a pürnimänta month by an entire adbika month.
§ 27. Up to this point all our calculations and examples have been expressed in mean time for the meridian of Lank \bar{a}.

Mean time is the time the sundials would show if the sun travelled along the equator at unvarying speed; for all places on the same meridian the sun would rise at the same moment. When the sun rises on the meridian of Laik \bar{a} it has already risen an hour before on a meridian 15° to the East of Lank \bar{a}. The people living in places on that other meridian call $o^{\text {h }}$ the moment the sun rises on their meridian. Therefore $o^{\text {b }}$ Lanika mean time is I^{h} for places on a meridian 15° East of Laik \bar{a} etc.

The moment of beginning of a certain tithi is the same everywhere, but only the people living on the same meridian give this moment the

Explanation

same name. E.g. a titbi beginning at o^{h} on the meridian of Laikka is thought to begin at I^{h} by those living on a meridian which is 15° East of that of Lainka, etc., if they are all using mean time.

The sun, however, does not travel at unvarying speed, and it does not travel along the equator.

The fact that the sun's speeds is variable causes the actual sun to be always ahead of, or behind, the mean sun; the difference, expressed in minutes of time, is called the equation of time; its amount is a function of the distance of the mean sun from the apsis (see $§ 16$ Note 1) and does not exceed about is minutes of time.

The fact that the sun does not travel in the equator, but in orbits parallel to it, causes the days to be of unequal lengths. In the Northern hemisphere the sun rises later in winter than in summer, which implies that for each latitude the time of actual sunrise varies as the distance of the sun from the vernal equinox; in other words, the retardation or acceleration of sunrise is a function of the sun's tropical longitude.

The Indian pañcängas give all titbi-endings in true local time, and in this lies the weakest feature of their whole chronological system. The rules the Surrya Siddbänta gives for calculating the time of true sunrise are exceedingly complicated and lengthy, and inapplicable in practice. Even if these rules could be reduced to a form allowing us to determine the moment of true local sunrise within a reasonable time little would be gained, as we do not know how a pañcaniga-maker in bygone days acquired his knowledge of the terrestrial longitude and latitude which were required in his calculations. We only know that his methods must have been rough and may have contained errors of many degrees.

For these reasons I adopted another method in constructing the simple tables collected in the second auxiliary Table and meant for the reduction to true local time of results in mean Lank \bar{a} time. It is evident that the native methods cannot have yielded results containing very gross errors, as sunrise is a phenomenon which it is not difficult to observe. My tables here are only abbreviations of modern tables as they may be found in the works of Neugebauer and Schoch, arranged for arguments derivable from the results of the mean time calculations, or to be found on any ordinary atlas.

If now our mean time calculation gives a result which differs little from the information offered by a pañcänga we wish to check, or from the data mentioned in a given inscription, e.g. if the inscription mentions a 4 -th tithi as adbika, whilst we have found the third or the fifth, or if our answer is one day out, giving for example a Sunday where the inscription gives Saturday or Monday, we can see from this second auxiliary Table whether the discrepance may be caused by the difference between mean time Laik \bar{a} and true local time. If this proves to be the case, we are justified in

Explanation

accepting the information of the pañcänga or the inscription as correct. This is all we can do; Hindu chronology is not free from a certain amount of uncertainty. This does not apply to the intercalations and omissions of months; if the Siddbanta that has been followed is known, these can be established without a shadow of doubt. As sunrise does not enter in the calculations of intercalations and expunctions, they must be the same everywhere in the world.

To turn the time when a tithi begins, determined by our tables in mean Laikk \bar{a} time, into true local time, we use Sections $\mathrm{A}-\mathrm{D}$ of the second auxiliary Table.

> EXAMPLE: We found that a true tith i began in K.Y. exp. 3585 on day 173.851 (cf. example I in $§ 22$) expressed in mean time Lankä. What is the beginning of that same tithi in true local time for Eran, when the longitude of that place is $78^{\circ} 40^{\prime}$ East of Greenwich, and its latitude 24° ?
> We find in the second auxiliary Table:
> in Section A at the argument $782 / 3$. +0.008
> in Section B at the arguments 174 and 3600 +0.000
> in Section D at the arguments ($\mathrm{I} 74-5$) and 24°. +0.034
> The number $\triangle=-s$ has been found in Section C with the argument 3600
> Total equation 0.042
> Mean beginning 173.8 I I
> Beginning of tithi in true local time at Eran 173.893
> EXAMPLE 2: A tithi ended in K.Y. sori on day 182.876; when does it end at Madras (lat. 13°, long. $80^{\circ} \mathrm{E}$. of Gr.)?
> Sect. A, arg. 80 +0.012
> Sect. B, arg. $183 / 5000$. - 0.004
> Sect. D, arg. $13 /(183+5) ; \Delta=s$ acc. to Sect. C +0.017
> Total equation 0.025
> Mean end of tithi 182.876
> End of tithi in true local time at Madras 182.901
> NOTE: The above examples have been chosen for comparison, as they appear in modern works on Hindu chronology. Venkatesh and Swamikannu both find for the total equation in Ex. I odo39, although they do not quite agree as to the coordinates of Eran. In the second example Swamikannu finds odo25, whilst his final result differs again odors from the information the Madras "College Panchang" gives for that year.
> Apart from special cases I advise the reader not to aim at closer figures for the determination of true local suntise than our second auxiliary Table gives.

PRACTICAL EXERCISES

The answers are on page 33 .

I. ((5). Find the base for K.Y. exp. 3029.
2. What does the answer to the first question stand for?
3. ((6). Find the true Kumbha samkränti for K.Y. exp. 4635 .
4. Find the equivalent Julian date and the time of day. (see Aux. Table II, Sect. E).
4. Find the equivalent Julian date and the time of day.
5. Find the Gregorian equivalent and the time (in ghatikäs and palas [see aux. Table II, sect. E]) of the mean Mina samkeranti in K.Y. exp. 4932.
6. (§7). Find the Julian equivalent of 24 Karka K.Y. exp. 4372, using the true samkeranti and the Orissa rule.
7. (§9). Find the distance of the first mean New Moon from the base in K.Y. exp. 577^{2}.
8. The same for K.Y. exp. 4227.
9. Find the distance of the 11 -th mean New Moon from the base in K.Y. exp. 5000 .
10. Find the Gregorian equivalent of the same.
II. ($(\mathbb{I}$). Is a mean month added in K.Y. exp. 3687; if so which?
12. Find how much time elapsed between the beginning of the mean intercalated month found above and the samkränti immediately preceding it, and how much time elapsed between the end of the same lunation and the next samkeanti.
13. ((12). Find the mean New Moon marking the beginning of mean Mägha in K.Y. exp. 3687.
14. ($\$ 14$). Find the Julian equivalent of the beginning of the mean titbis sukla Kärttika K.Y. exp. 4035.
15. ($\$ 16)$. Find the mean anomaly of the sun for a moment roodo after the first mean N.M. after the base in K.Y. exp. 1234.
16. The same for the mean anomaly of the moon in K.Y. exp. 432 I.
17. Find the equation of the centre for the sun for the mean anomaly 200.0.
18. The same for the mean anomaly 200.4.
19. Find the equation of the centre of the moon for the mean anomaly 14.10.
20. The same for the mean anomaly 14.13.
21. ((17). Find the mean anomaly of the moon as in problem 16 , this time taking the bija into account.
22. (§ 19). Is it possible for a true month to be added in K.Y. exp. soi 3 ; if so, which? Is it in fact added?
23. The same for K.Y. exp. so08.
24. ((21). Is a month expunged in K.Y. exp. 4454?
25. Is a true month added in K.Y. exp. 4454? If so, which?
26. ($\$ 22$). Find the beginning and end, and the Julian equivalents, of the true tithi 9 krṣna Pbälguna K.Y. exp. 4303. To which day or days does it correspond?
27. (first aux. Table, Section B). Find the weekday corresponding to day 433 of the the Julian year commencing in K.Y. exp. 4303.
28. (ibid. Sect. D). Find the year K.Y. exp. corresponding to Saka 1000 curr.

INDEX AND GLOSSARY

The arabic numerals refer to the paragraphs of the Explanation, the roman numerals to the Tables and Sections. $\odot=$ Sunday $D=$ Monday $\delta=$ Tuesday $\gamma=$ Wednesday $4=$ Thursday $\quad \uparrow=$ Friday and $\mathrm{h}=$ Saturday.

Abjavãra

 Dadded months 10

- - mean II
- true 19
adbika added
Adi (tamil) Karka
Adivāra\odot
Adityavära \odot
Agbran (bengali) Märgasírs saAbarpativāra\odotAbaskaravära\bigcirc
amanta- and pürnimänta schemes - correspon-dence of$I^{\text {st }}$ aux. Table F
reckoning or -scheme 26
amävāsyā 13
titbi 30 IV B
Añgārakavära ${ }^{\star}$
Angirasavāra 4
Ani (tamil) Mitbuna
anomalistic period D. 16
- year 4 note, 16
anomaly cf. mean anomalyapsis16 note 1
Arkavära \odot
Arunavära \odot
Asädba, $4^{\text {th }}$ month III A, IV A
Astami titbi 8, IV B
Asivina, $7^{\text {th }}$ month III A, IV A
Ati (tamil) Asädba
Avani (tamil) Siniba
Avantī. 4 notebadikrsna
babula krsna
Bandhavära ४
base 5
Bava, karana śukla 2. 9. 16. 23. 30 krrṣa 7. 14. 21 IV B
Besa (tamil) Vaiśákba
Bhadra, karana śukla 8 IV B

Index and glossary

Bhädrapada, $6^{\text {th }}$ month III A, IV A
Bhānuvara\bigcirc
Bbärgavavàra 9
Bbāskaravàra. \bigcirc
Bbattārakavãra \odot
Bhaumavāra ${ }^{\circ}$
Bengal San, era $\mathrm{I}^{\text {st }}$ aux. Table D${ }^{\text {st }}$ aux. Table E
bija 17
Bontelu (tamil) Aśvina
Bradbnavãa\odot
Brihaspativāra 4
bright half 13
Bhriguvàra ㅇ
Budhavara ళ
Caitra, I-st month 8, III A, IV A

- , particulars of true intercalation of 20
Caitrāadibeginning with Caitra
Caturdasi tithi 14, IV B
Caturthi tithi 4, IV B
catuspäda, karaṇa krrṣna 30 IV, B
Cbandramasvāra D
Cbandravãa D
Chedi, era I-st aux. Table D
common year 12
current years 3
Daityaguruvara ㅇ
Daksināyana samkeranti Karka
dark half 13
Daśamī tithi 10, IV B
day 13
Dhanus, samkeranti 9 III A
Dhiṣanavãra 4
distance of mean New Moon from base 9
duration of true lunar months 18
Dvädaśi tithi 12 , IV B
dvitīyasecond, nija, regular
Ekadasí tithi II, IV Btithi 2, IV B
epicycle 16, note I
epoch2
- of the Kali Yuga 4
equation of the centre 16
- - time 27
expired years 3
Index and glossary
expunction of months 21
- - tithis, mean I 3
- - - true 22
expunged months - Table of ${ }^{\text {st }}$ aux. Table, A
Gara, karana śukla s. 12. 19. 26, kr!̣̣na 4, 11, 18, 1s IV B
gata expired
Gregorian calendar III, F
Gupta, era $\mathrm{I}^{\text {st }}$ aux. Table D
Guruvära 4
halfs - bright and dark 13
Induwära D
intercalated added
Iṣa Aśvina
Jarde (tamil) Kärtika
Jyesttha 3^{d} month III A, IV A
Julian calendar 24
Kali Yuga, era 3, $4 \mathrm{I}^{\text {st }}$ aux. Table D
Kanyä, samkrañti 6 III, A
Kanyädi beginning with Kanyā
karanas - meanIs
- - true 23
Karka, samkrānti 4 III A
Kartelu (tamil) Jyestha
Kärttika, $8^{\text {th }}$ month III A, IV A
kaulava, karana sukla 4, 11, 18, 25, krs sna 2, 9, 16, 23 IV B
Kavivära, Kavyavära 안
Kimptugbna, karaṇa śukla \mathbf{I} IV B
Kollam, era I $^{\text {st aux. Table }} \mathrm{D}$
krsna paksadark half
Ksapäkaravära D
ksaya lost
- months 21
- tithis 13, 22
Kumbha, samkranti II III A
Lankāa 4 notelunationlunar month
lunisolar reckoning 8
- - , mean 9-15
- - , true 16-13
- months III A
Mädhava Vaisákba
Madbu Caitra
madhyamamean
Mägha, $\mathrm{II}^{\text {th }}$ lunar month III A, IV AMabisutavara${ }^{1}$

Index and glossary

Makara, samkreānti io III A
Mandavära h
mandocca apsis
Mangalavära ठ
 III A, IV A
Mayi (tamil) Mägha
mean added months II

- anomalies I and II, D and E
- karanas Is
- reckoning 8
- samkrāntis 6
- sun and moon note $1 ; 27$
- sunrise 27
- time 27
- tithis 14
Mesa, I ${ }^{\text {st }}$ samkrañti III A
Mesädi beginning with Mesa
Mina, samkrañti 12 III A
- - , true = base 5
Mitbuna, samkrānti 3 III A
months - expunction of 21
- , mean added II
- , nomenclature of lunar 10
- , solar 7
— , true added 19
multiples of anomalistic period D III H
Nabbas III G
Srāvana
Nabhay
Nabbaya Bhädrapada
Näga, karana kr!̣na 29 IV B
naksatras Io note
Navanū, titbi 9 IV B
nijaregular
Nirnala (tamil) BbädrapadaNiṣpativäraD
nomenclature of lunar months 10
Orissa rule $\mathrm{I}^{\text {st }}$ aux. Table E
Paggu (tamil). Caitra
paksa 13
Pañcamī, titbi 3 IV B
Pausa, ${ }^{\text {th }}$ month III A, IV A
Perarde (tamil) Märgasir $\underset{a}{ }$
Phälguna, $\mathbf{I 2}^{\text {th }}$ month III A, IV Afirst, adbika, added
Pratipadā titbi I sukla, IV B

Index and glossary
Puntelu (tamil) Pausa
pürnimá 13
—, , titbi sukla 1 s. IV B
pürnimānta reckoning or-scheme 26
rāsí 6
krsna
Raubineyavāa Y
Ravivära \odot
repeated intercalated, added
true tithis 22
Revatī i6 note I
Robitanigavära o
Sabas Mārgasírṣa
SahasyaPausa
Saka, eraist aux. Table D
samkräntis 6, III A
Sakuni, karana krrṣa 28 IV B
San, era - Bengal ist aux. Table D
Sanivarah
Saptamī, titbi 7 IV B
Saptarsi, era ist aux. Table D
Sasti, tithi 6 IV B
Saumyavara Y
Sauramāsa solar month
Saurivära h
serial numbers of lunations IV A
sidereal year 4 note
sign of the equation of the centre 16
Simba, samkränti s. III A
Simbädibeginning with Simba
solar months 7

- reckoning 6-7
Somavãra D
Sona (tamil) Srāvana
spasta true
Srävana, $5^{\text {th }}$ month III A, IV A
Suci.Aṣädba
śuddba, sudi śukla
Suggi (tamil) Pballguna
sukla paksa bright halfSukraJyeṣtha
Sukravara ㅇ
Suracharyavāra 4
Sürya Siddbanta page 1 , year 1860
synodic period 8

Index and glossary

synodic period, multiples of III G
Taitila, ķaraṇásukla 5, 12, 19, 26 krs!̣a 3, 10, 17, 24 IV B
Tapas Mägha
Tapasya Pbälguna
time - graphical representation of I
tithis - lost, ksaya 13, 22

- mean I3, 14
- names of IV B
true 22
Trayodaśī, tithi 13 IV B
Tritīya, tithi 3 IV B
tropical longitude of the sun 27
year 4 note
true expunction of months 21
- added months 19
- intercalation of Caitra 20
- karanas 23
- local time 27
- reckoning 8
- repeated tithis 22
- samkerantis 6
- sunrise 27
- titbis 22
Tulä, samkrānti 7 III A
Ujjayini 4 note
Urja Kärttika
Uśanasvāra 9
uttarāyana samkeranti Makara
Vãcaspativära 4
vadi, vadya krsna
Vaisákha, ${ }^{\text {nd }}$ month III A, IV A
Välava, karaña sukla 3, 10, 17, 24, krrṣna 1, 8, 15, 22 IV B
Vanija, karaṇa śukla 7, 14, 21, 28, kr! IV B
vära weekday
vartamana current
Vikrama, era $I^{\text {st }}$ aux. Table DVilayati, era$I^{\text {st }}$ aux. Table D
Viṣti, karaṇa sukla 8, 15, 22, 29 krs!̣na 6, 13, 20, 27 IV B
Vrścika, samkrañti 8 III A
Vrsabba, samkrañti 2 III A
weekday 24, ist aux. Table B
year - anomalistic 4 note
- - civil 4 note
- - common. 12
- - current 3

Index and glossary

year - expired	3	
- - sidereal	4 note
- - tropical		4 note	

THE PROBLEMS ANSWERED

1. 43.000; 2. Mean sunrise in Lankā mean time of day 43 of the Julian year 3029-3101 $=-72$; 3. 392.000; 4. January 27 A.D. 1535 at mean sunrise mean Lainkā time; 5. March i3 A.D. 183245 gh .25 p . after mean sunrise mean
 10. January 30 A.D. 1900, od 737 after mean sunrise, mean Lavikā time; in. Yes; Bbädrapada; 12. od 267 and od 641 ; 13. January 14 A.D. 587 , od 988 after mean sunrise, mean Lainkä time; 14. October 14 A.D. $934,0{ }_{9}{ }^{983}$ after mean sunrise, M.L.T.; 15. 200.4; 16. 14.13; 17. $0.947-1 ; 18 . \quad 0.946-1 ; 19.0 .031 ;$ 20. 0.034; 21. 14.24; 22. Yes. Asädba. Yes; 23. Yes. Caitra. Yes; 24. No, as shown by Section A of the first auxiliary Table; 25. Yes. Bbädrapada (not Asvina); 26. 432.072 and 433.134 A.D. 1203, March 9; 27. Sunday; 28. K.Y. exp. 4178.

ERRATA

In the diagram opposite page 3 read in no. 21 Kumbba in stead of Kumba.

Printed by A.A.M. Stols
Maastricht (Holland)
January 1938

Additional information of this book
(Decimal Tables for the Reduction of Hindu Dates from the Data of the Surya-Siddhanta; 978-94-017-5814-7; 978-94-017-5814-7_OSFO1) is provided:
http://Extras.Springer.com

A	B	C	D	E	A	B	C	D	E
		29.53 I					29.531		
Years	Base	$D-\odot$	\odot	D	Years	Base	$D-\odot$	\odot	D
$\bigcirc 0$	1.000	0.000		0.00	50	0.938	16.496		21.79
$\bigcirc 1$	1.259	18.639		7.05	51	1.197	5.604		1.29
$\bigcirc 2$	0.518	7.747		I 4.10	52	1.455	24.243		8.34
$\bigcirc 3$	0.776	26.386		21.15	53	1. 714	13.352		15.38
$\bigcirc 4$	1.035	1 5.494		0.64	54	0.972	2.460		22.43
05	1. 294	4.603		7.69	55	1. 232	21.099		1.93
06	0.553	23.242		14.74	56	1.490	10.207		8.98
$\bigcirc 7$	0.8 II	12.350		21.79	57	I. 749	28.846		16.03
$\bigcirc 8$	1.070	1.458		1. 28	58	1.008	17.954		23.08
$\bigcirc 9$	1. 329	20.097		8.33	59	1.267	7.063		2.57
10	-0. 588	9.205		15.38	60	1.528	25.701		9.62
I I	-. 846	27.844		22.43	61	I. 784	14.810		16.67
12	1.105	16.953		1.92	62	I. 043	3.918		23.72
13	1. 364	6.061		8.97	63	1. 302	22.557		3.21
14	0.623	24.670		16.02	64	1. 560	11.665		10.26
15	$\bigcirc .88 \mathrm{I}$	13.808		23.07	65	I. 8 I 9	0.774		17.31
16	I. 140	2.916		2.56	66	1. 078	19.412		24.36
17	1. 399	21.555		9.61	67	1. 337	8.521		3.85
18	0.658	10.663		16.66	68	1.595	27.160		10.90
19	0.916	29.302		23.71	69	I. 8 ¢ 4	16.268		17.95
20	I. 175	18.4 I I		3.21	70	1.113	5.376		25.00
21	I. 434	7.519		10.26	7 I	1.372	24.015		4.49
22	0.693	26.158		17.30	72	1.630	13.123		11.54
23	0.951	15.266		24.35	73	1. 889	2.232		18.59
24	1.210	4.374		3.85	74	I. 148	20.87 I		25.64
25	1.469	23.013		10.90	75	1. 407	9.979		5.13
26	0.728	12. 122		17.95	76	1.665	28.6 I 8		12.18
27	0.986	1. 230		24.99	77	1.924	17.726		19.23
28	1. 245	19.869		4.49	78	I. 183	6.834		26.28
29	1.504	8.977		11.54	79	1.442	25.473		5.78
30	0.763	27.616		18.59	8 ○	1.701	14.582		12.82
31	1. 021	16.724		25.64	8 I	1.959	3.690		19.87
32	1. 280	5.833		5.13	82	1.218	22.329		26.92
33	1. 539	24.472		12.18	83	1.477	11.437		6.42
34	0.798	13.580		19.23	84	1.736	0.545		13.47
35	1.056	2.688		26.28	85	1.994	I 9. I 84		20.51
36	1.315	21.327		5.77	86	1.253	8.292		0.01
37	1. 574	10.435		12.82	87	1.512	26.93 I		7.06
38	0.833	29.074		19.87	88	1.771	16.040		14.11
39	1.092	18.182		26.92	89	2.029	5.148		21.16
40	1. 350	7.291		6.41	90	1. 288	23.787		0.65
4 I	1. 609	25.930		13.46	91	1. 547	12.895		7.70
42	0.868	15.038		20.51	92	1.806	2.003		14.75
43	1. 127	4.146		0.00	93	2.064	20.642		2 I .80
44	1. 385	22.785		7.05	94	1.323	9.751		1.29
45	1. 644	11.893		14.10		1. 588	28.390		8.34
46	0.903	1.002		21.15	96	1.841	17.498		1 5.39
47	1. 162	19.641		0.65	97	2.099	6.606		22.44
48	1.420	8.749		7.69	98	1.358	25.245		$\text { 1. } 93$
49	1.679	27.388		1 4.74	99	1.617	14.353		8.98

Additional information of this book
(Decimal Tables for the Reduction of Hindu Dates from the Data of the Surya-Siddhanta; 978-94-017-5814-7;
978-94-017-5814-7_OSFO2) is provided:
http://Extras.Springer.com

A	
Long. East fr. Gr.	Correction for terrestrial longitude o,
65	-030
70	-016
71	-O13
72	-010
73	-008
74	-005
75	-002
76	+001
77	003
78	$\bigcirc 06$
79	$\bigcirc 09$
8 ○	$\bigcirc 12$
8 I	015
82	-17
83	$\bigcirc 20$
84	023
85	$\bigcirc 26$
90	$\bigcirc 40$

d resp. $d+\triangle$	equation of time		Sunrise in apparent time					
	3000	5000		10°	$\left\|\varphi=20^{\circ}\right\|$	$\varphi=22^{\circ}$	$\varphi=24^{\circ}$	$\underline{p=26^{\circ}}$
	argument d		$$			O,	O,	O,
\bigcirc	-005	-006	-	$\bigcirc \bigcirc 8$	021	023	026	$\bigcirc 29$
10	- 8	- 8	-	6	19	21	24	27
20	- 10	- 10	-	5	17	18	20	23
30	- 12	- 10	-	3	13	15	16	18
40	- 12	- 9	-	1	10	11	13	14
50	- II	- 8	-	\bigcirc	6	7	8	10
60	- 10	- 6	-	\bigcirc	2	3	3	4
70	- 8	- 4	$+$	2	2	2	2	2
80	- 5	- 2		4	5	6	6	6
90	- 3	-000		6	10	10	11	12
100	$\bigcirc 00$	+001		8	14	19	16	17
110	+ 2	2		10	17	18	20	22
120	4	3		12	20	22	24	26
130	S	2		13	23	25	28	31
140	5	000		14	25	28	31	34
150	5	000		15	27	30	33	36
160	4	-001		15	28	31	34	37
170	3	- 3		14	28	31	34	37
180	1	- 4		13	27	30	33	36
190	$\bigcirc 00$	5		13	25	28	30	33
200	- 1	- 5		12	23	25	28	30
210	- 2	- 4		10	20	22	24	26
220	- 2	- 2		8	17	19	20	22
230	- 1	$\bigcirc 00$		6	14	15	16	17
240	$\bigcirc \bigcirc \bigcirc$	+ 2		4	10	10	11	12
250	+ 2	5		2	6	6	7	7
260	4	7		1	2	2	2	2
270	5	9	-	1	2	3	3	4
280	8	10	-	3	6	7	8	9
290	9	11		4	10	11	12	14
300	10	11	-	6	13	15	17	18
310		10	-	8	16	I 8	20	23
320	8	8	-	9	19	2 I	23	26
330	6		-	10	21	23	25	28
340	4	2		10	22	25	28	30
350	$\bigcirc 00$	-001	-	10	23	25	28	31
360	- 1	- 5	-	9	22	24	27	30
370	7	- 7	1 -	8	21	23	26	28

Second decimal :					2	3	4	5	6	7	8	9	
				gh. p\|gh. p			gh. p ${ }^{\text {g }}$,	gh. p	P	gh. p	gh. pl	gh. p
A Table for converting decimals of the day into ghatikäs and palas. E.g. $0.769=$$\begin{array}{r} 45^{8} 36 \mathrm{P} \\ \hline 46 \quad 32 \\ \hline 468 \end{array}$								30				524	
		-	60	636	71	748	8	90	936	1012	10 48	II 24	
		3	120	1236	13121	13481	1424	150	If 26	1612	1648	1724	
			180	1836	19 I2	1948	2024	210	2136	2212	2248	2324	
		4	240	2436	2512	2548	262	270	2736	2812	2848	2924	
				30		3148		330	3336			3524	
		6	36	36		3748		390			4048	4124	
		7	420	4236		4348		450	4536	64612	4648	4724	
			48 ○	4836		4948	50	51	¢1 36	6212	¢ 548	5324	
		9	540	5436	S5 1215	5548	56	7	5736	6812	58	5924	
third decimal :			$\bigcirc \circ$	$\bigcirc 4$	$\bigcirc 7$	$\bigcirc 11$	014	$\bigcirc 18$	O22	025	- 29	0	

Index and glossary

year - expired	3	
- - sidereal	4 note
- - tropical		4 note	

THE PROBLEMS ANSWERED

1. 43.000; 2. Mean sunrise in Lankā mean time of day 43 of the Julian year 3029-3101 $=-72$; 3. 392.000; 4. January 27 A.D. 1535 at mean sunrise mean Lainkā time; 5. March i3 A.D. 183245 gh .25 p . after mean sunrise mean
 10. January 30 A.D. 1900, od 737 after mean sunrise, mean Lavikā time; in. Yes; Bbädrapada; 12. od 267 and od 641 ; 13. January 14 A.D. 587 , od 988 after mean sunrise, mean Lainkä time; 14. October 14 A.D. $934,0{ }_{9}{ }^{983}$ after mean sunrise, M.L.T.; 15. 200.4; 16. 14.13; 17. $0.947-1 ; 18 . \quad 0.946-1 ; 19.0 .031 ;$ 20. 0.034; 21. 14.24; 22. Yes. Asädba. Yes; 23. Yes. Caitra. Yes; 24. No, as shown by Section A of the first auxiliary Table; 25. Yes. Bbädrapada (not Asvina); 26. 432.072 and 433.134 A.D. 1203, March 9; 27. Sunday; 28. K.Y. exp. 4178.

ERRATA

In the diagram opposite page 3 read in no. 21 Kumbba in stead of Kumba.

[^0]: *) The year -3101 must be considered a common year, -3100 a leap year, etc.
 **) Reference to Tables I and II, columns A and B, will give the Julian equivalent of the base of any year of the Kali Yuga, calculated in this way.

