Bau und Berechnung der Dampfturbinen

Von

Franz Seufert

Zweite Auflage

Bau und Berechnung der Dampfturbinen

Eine kurze Einführung

von

Franz Seufert

Studienrat a. D. Oberingenieur für Wärmewirtschaft

Zweite, verbesserte Auflage

Mit 54 Textabbildungen

Springer-Verlag Berlin Heidelberg GmbH 1923

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

ISBN 978-3-662-36223-5 ISBN 978-3-662-37053-7 (eBook) DOI 10.1007/978-3-662-37053-7

Copyright by Springer-Verlag Berlin Heidelberg Ursprünglich erschienen bei Julius Springer in Berlin 1923.

Vorwort zur ersten Auflage.

Mit diesem Werkchen wollte ich dem Lernenden eine Grundlage für das Verständnis der Wirkungsweise der Dampfturbinen geben und den künftigen Dampfturbinenkonstrukteur für das Studium umfassender Werke, wie Stodola, Pohlhausen usw., vorbereiten. Der Schwierigkeiten wohl bewußt, auf kleinem Raum das Wesentliche zu bringen, mußte ich einerseits manche Vernachlässigung begehen und auf eingehende Behandlung wichtiger Theorien verzichten. andererseits aber manche Vorgänge, die nach Formeln nicht ohne weiteres verständlich sind, durch Zahlenbeispiele näher erläutern. Die Berechnung der Laufradscheiben, obwohl sie etwas verwickelt ist, glaubte ich nicht weglassen zu dürfen, dagegen habe ich die beschreibenden Teile nach Möglichkeit abgekürzt. Aus diesem Grunde habe ich die Ausführungen von nur einigen wenigen Firmen gebracht, denen ich für die Überlassung der Abbildungen auch an dieser Stelle meinen besonderen Dank zum Ausdruck bringe.

Stettin 1919.

Seufert.

Vorwort zur zweiten Auflage.

Das Werkchen ist im ganzen dasselbe geblieben, wie in der ersten Auflage; von einer Erweiterung wollte ich absehen, da es doch nur eine kurze Einführung sein soll. Einige Fehler sind beseitigt; manches wurde etwas schärfer gefaßt.

Homberg (Niederrhein) 1923.

Seufert.

Inhaltsverzeichnis.

Efster Teil.

	Wirkungsweise der Dampfturbinen.	Seite
Ι.	Allgemeines	1
II.	Wirkung des Dampfes auf die Laufradschaufel	3
III.	Unterschied zwischen Gleichdruck- und Überdruckturbine	4
IV.	Mehrstufige Turbinen	5
	a) Überdruckturbine mit Druckstufen 7. b) Gleichdruckturbine	
	mit Druckstufen 9. c) Gleichdruckturbine mit Geschwindigkeits-	
	stufen 10.	
	Übersicht über die Turbinenbauarten	13

Zweiter Teil.

Aufbau der Dampfturbinen.

I.	Allgemeines	16												
II.	Hauptteile	17												
	a) Welle und Laufzeug 17. b) Gehäuse mit Leitapparaten und													
	Stopfbüchsen 20. c) Lager 25. d) Regelung 26. e) Ölpumpen 31.													
	f) Kondensation 31.													

Dritter Teil.

Berechnung der Dampfturbinen.

Ι.	Formeln aus der Wärmelehre des Wasserdampfes	-33
II.	Die Lavalsche Düse	35
	a) Ohne Berücksichtigung der Dampfreibung 35. b) Mit Be-	
	rücksichtigung der Dampfreibung 40.	
III.	Energie-Umsatz im Laufrad.	41
	a) Verluste 42. b) Indizierter Wirkungsgrad 43. c) Effektiver	
	Wirkungsgrad und Dampfverbrauch 47. d) Berechnung der ein-	
	stufigen Gleichdruckturbine 47. e) Berechnung der Gleichdruck-	
	turbine mit Geschwindigkeitsstufung 50. f) Berechnung der Gleich-	
	druckturbine mit Druckstufen ohne Geschwindigkeitsstufung 53.	
	g) Berechnung der Gleichdruckturbine mit Druckstufen und vor-	
	geschaltetem Geschwindigkeitsrad 58. h) Berechnung der mehr-	
	stufigen Überdruckturbine mit vorgeschaltetem Geschwindigkeits-	
	rad 59.	
	Vierter Teil.	

Berechnung wichtiger Einzelteile.

I. Welle .				• .																							64
II. Laufrad	•				•	•	•	•						•	•	•	•	•	•	•	•	•	•	•	•	•	68
Fünfter Teil. Turbinen für besondere Zwecke.																											

1.	Abdampfturbinen	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	79
II.	Gegendruckturbinen			•																	80
III.	Schiffsturbinen		•		•			•	•	•	•						•	•			82

Erster Teil.

Wirkungsweise der Dampfturbinen.

I. Allgemeines.

In den Kolbenmaschinen gibt der Dampf sein Arbeitsvermögen dadurch ab, daß er infolge seines Überdruckes einen Kolben hin und her bewegt, der durch ein Kurbelgetriebe die Arbeit auf eine

umlaufende Welle überträgt. Die potentielle Energie des Dampfes, vermindert um die unterwegs durch Reibung der Getriebeteile, Kondensation und Abwärme entstehenden Verluste, erscheint als lebendige Energie an der Kurbelwelle. In den **Dampfturbinen** dagegen wird dem Dampf lebendige Energie unmittelbar entzogen und durch ein Schaufelrad auf eine Welle übertragen. Der Grundgedanke einer Dampfturbine von einfachster Form ist in Abb. 1 dargestellt. Auf dem Umfang einer Scheibe sitzen radial stehende, gebogene Schaufeln; die Abwicklung des Schaufelkranzes zeigt der Grundriß. Ein Dampfstrahl strömt aus einem feststehenden Leit-

apparat mit der Geschwindigkeit c unter dem Winkel α seitlich gegen den Radkranz. Durch die Biegung der Schaufeln wird der Dampf gezwungen, seine Geschwindigkeit nach Richtung und Größe zu ändern und dadurch an das Laufrad den Teil seiner lebendigen Energie abzugeben, welcher der Änderung der Größe seiner Geschwindigkeit entspricht, natürlich abzüglich der Reibungsverluste.

Bezeichnet man mit

 λ den Wärmeinhalt von 1 kg Dampf,

 $\frac{1}{A} = 427$ mkg das mechanische Wärmeäquivalent,

dann könnte 1 kg Dampf eine theoretische Arbeit von

$$L=rac{\lambda}{A}=427\,\,\lambda\,\,{
m mkg}$$

leisten.

Seufert, Dampfturbinen. 2. Aufl.

Beispiel: Die theoretische Arbeit von 1 kg Sattdampf von 11 at Überdruck ist für

$$\lambda = 668 \text{ WE},$$

 $L = 427 \cdot 668 \circ 285\,000 \text{ mkg};$

also für eine sekundliche Dampfmenge von 1 kg

$$N = \frac{L}{75} = \frac{285\,000}{75} = 3800$$
 PS.

Die wirklich erreichbare Leistung ist wegen der Verluste viel kleiner.

Würde der Dampf reibungslos mit der Geschwindigkeit c in das absolute Vakuum ausströmen, dann würde sich sein gesamtes Arbeitsvermögen in lebendige Energie umsetzen; die lebendige Energie von 1 kg Dampf würde also

$$L = \frac{1}{g} \cdot \frac{c^2}{2}$$

sein, welcher Wert mit der aus dem Wärmeinhalt oben berechneten Arbeit

$$L = \frac{\lambda}{A}$$

übereinstimmen müßte. Durch Gleichsetzung der beiden Werte für L

$$\frac{1}{g} \cdot \frac{c^2}{2} = \frac{\lambda}{A}$$

ergibt sich eine Gleichung zur Berechnung der theoretischen Ausströmgeschwindigkeit c aus dem Leitapparat; also

$$c = \sqrt{\frac{2 g \lambda}{A}}$$

Beispiel: Für das obige Beispiel wird

$$=\sqrt{2 \cdot 9.81 \cdot 668 \cdot 427} = 2370$$
 m/sek.

Praktisch wird, wie später gezeigt wird, c viel kleiner, weil der Dampf nicht in das absolute Vakuum ausströmt und Reibungsverluste erfährt.

Bezeichnet man die absolute Eintrittsgeschwindigkeit des Dampfes in das Laufrad, die mit der Ausströmgeschwindigkeit aus dem Leitapparat identisch ist, mit c_1 und die absolute Austrittsgeschwindigkeit aus dem Laufrad mit c_2 , dann ist

 $L_1 = \frac{1}{g} \cdot \frac{c_1^2}{2}$ die lebendige Energie von 1 kg Dampf vor dem Eintritt in das Laufrad,

 $L_2 = \frac{1}{g} \cdot \frac{c_2^2}{2}$ die lebendige Energie, die 1 kg Dampf beim Verlassen des Laufrades noch besitzt.

Demnach gibt 1 kg Dampf die Arbeit

$$L = L_1 - L_2 = rac{c_1^2 - c_2^2}{2 \ g}$$

an das Laufrad ab.

Beispiel: Es sei die wirkliche Eintrittsgeschwindigkeit

 $c_1 = 1000 \text{ m/sek}$,

ferner dann ist

$$c_2 = 200 \text{ m/sek};$$

 $L = \frac{1000^2 - 200^2}{2 \cdot 9.81} \sim 49\,000 \text{ mkg}$

Strömt sekundlich 1 kg Dampf in die Turbine, dann ist ihre Leistung

$$N = \frac{49\,000}{75} = 653$$
 PS

und der stündliche Dampfverbrauch für 1 PS

$$D = \frac{1 \cdot 3600}{N} = \frac{3600}{653} = 5,5 \text{ kg}.$$

II. Wirkung des Dampfes auf die Laufradschaufel.

Diese geht in ihrer einfachsten Weise aus Abb. 2 hervor.

Die absolute Geschwindigkeit des unter dem Winkel α_1 gegen die Laufradebene eintretenden Dampfes sei c_1 , die Umfangsgeschwindigkeit des Schaufelkranzes u. Durch Zeichnen eines Parallelogramms ergibt sich die relative Dampfeintrittsgeschwindigkeit w_1 . Soll der Dampf ohne Stoß auf die Schaufel eintreten, dann muß die Schaufel so gebogen sein, daß die Richtung w_1 Tangente an dem Schaufelanfang wird (Winkel β_1). Der Dampf gleitet an der Schaufelfläche entlang mit der Relativgeschwindigkeit w_1 , die sich wegen der Reibung des Dampfes an der Schaufel um einen geringen Betrag auf w_2 vermindert. Zeichnet man an der Dampf-Austrittsstelle mit den Seiten w_2 und u ein Parallelogramm, dann ergibt sich als Diagonale die absolute Austrittsgeschwindigkeit c_2 des Dampfes. Durch entsprechende Wahl des Austrittswinkels β_2 läßt sich c_2 ziemlich beliebig einrichten.

Aus Abb. 2 geht außerdem hervor:

- a) Der Verlauf des Dampfdruckes p. Im Leitapparat expandiert der Dampf vom Kesseldruck p_1 auf Kondensatordruck p_2 und durchströmt die Schaufelzelle mit dem unveränderten Druck p_2 .
- b) Der Verlauf der absoluten Dampfgeschwindigkeit c. Diese wächst im Leitapparat von c = o auf c_1 und nimmt im Schaufelkranz auf c_2 ab.
- c) Der Verlauf der relativen Dampfgeschwindigkeit w, die von w_1 auf w_2 abnimmt.... Ohne Reibung wäre $w_1 = w_2$.

III. Unterschied zwischen Gleichdruck- und Überdruckturbine¹).

Bisher war vorausgesetzt, daß der Dampf schon im Leitapparat bis auf den Kondensatordruck expandiert, also mit der größten, überhaupt möglichen Geschwindigkeit in das Laufrad eintritt. In der mechanischen Wärmetheorie²) wird bewiesen, daß die Strömungsgeschwindigkeit c von dem Verhältnis $p_1: p_2$ der Dampfdrücke vor und hinter dem Leitapparat abhängt und daß c seinen größten Wert für ein bestimmtes Druckverhältnis erreicht, das für

trocken gesättigten Dampf
$$rac{p_1}{p_2}=0.577$$
,
Heißdampf $rac{p_1}{p_2}=0.545$

beträgt.

Dieses Verhältnis wird kritisches Druckverhältnis und die zugehörige Geschwindigkeit kritische Geschwindigkeit genannt.

¹) Früher auch Aktions- und Reaktionsturbine genannt.

²) S. a. des Verfassers "Technische Wärmelehre der Gase und Dämpfe", 3. Aufl. Springer, Berlin 1923.

Ist z. B. $p_1 = 12$ at abs., dann ist für Sattdampf der zugehörige kritische Druck $p_2 = 0.577 \cdot 12 = 6.9$ at abs. Sinkt der Expansionsenddruck unter 6,9 at abs., dann nimmt die Ausströmgeschwindigkeit nicht mehr zu, sondern bleibt dieselbe wie für 6.9 at abs. Sie hat jedoch noch nicht den für das neue Druckverhältnis aus dem Wärmegefäll sich ergebenden Wert erreicht. Die Erreichung der vollen Geschwindigkeit ist nur dann möglich, wenn der Leitapparat die Form einer Düse erhält, deren Querschnitt sich senkrecht zur Strömungsrichtung allmählich in bestimmter Weise erweitert (Lavalsche Düse)¹). Damit ist es möglich, den Dampf im Leitapparat auf Kondensatordruck expandieren und mit der vollen, dem gesamten Druckunterschied entsprechenden Geschwindigkeit in das Laufrad einströmen zu lassen; in letzterem erfährt der Dampf keine weitere Druckverminderung mehr, wie aus Abb. 2 hervorgeht. Der Druck vor dem Laufrad ist also derselbe wie hinter dem Laufrad. Eine derartige Turbine nennt man Gleichdruckturbine zum Unterschied gegenüber der Überdruckturbine. Bei dieser expandiert der Dampf nicht nur im Leitapparat, sondern auch in den Schaufelzellen des Laufrades, er tritt z. B. mit $p_1 = 12$ at abs. in die Leitkanäle ein, expandiert darin bis auf $p_2 = 2$ at abs., tritt mit dieser Spannung in das Laufrad ein und expandiert beim Durchströmen. der Laufradkanäle auf Kondensatordruck, z. B. 70 cm Vakuum = 0.08 at abs. (bei 760 mm Barometerstand). In diesem Falle ist also der Druck vor dem Laufrad größer als hinter demselben. Der Dampf hat deshalb das Bestreben, das Laufrad in Richtung der Welle zu verschieben (Axialschub). Aus diesem Grunde muß eine Überdruckturbine besondere Einrichtungen zur Aufnahme dieses Axialschubes erhalten. Die Druck- und Geschwindigkeitsveränderungen ergeben sich aus Abb. 3. Der Dampf strömt mit der dem Druckverhältnis $p_1: p'_1$ entsprechenden absoluten Geschwindigkeit c_1 in das Laufrad. Die Schaufel setzt wie bei Abb. 2 wieder tangential an die Relativgeschwindigkeit w_1 an. Im Laufradkanal expandiert der Dampf von p'_1 auf den Kondensatordruck p_2 und die Relativgeschwindigkeit nimmt von w_1 auf w_2 zu, während die absolute Dampfgeschwindigkeit wieder von c_1 auf c_2 abnimmt, wie aus dem Austrittsparallelogramm hervorgeht.

IV. Mehrstufige Turbinen.

Die bisher betrachtete Gleichdruckturbine war eine einstufige Lavalsche Turbine, während die Überdruckturbine in dieser ein-

¹⁾ Näheres siehe; Dritter Teil.

fachsten Form nicht ausgeführt wird. Auch die einstufige Lavalturbine eignet sich nur für kleinere Leistungen, wie aus folgender Überlegung hervorgeht:

Im dritten Teil wird dargelegt, daß eine einstufige Turbine am günstigsten arbeitet, wenn die Umfangsgeschwindigkeit des Laufrades etwa 1/2 bis 1/3 der absoluten Dampfeintrittsgeschwindigkeit beträgt.

Nimmt man im letzten Beispiel mit c = 1000 m/sek die Umfangsgeschwindigkeit

$$u = 400 \text{ m/sek}$$

und den Durchmesser des Laufrades der Reihe nach zu

d = 0.5 m 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m

an, so ergibt sich aus

$$u=\frac{d\pi n}{60}$$

die minutliche Drehzahl zu

 $n = 15\,300$ 7650 5100 3825 3060 2550.

Also werden bei kleineren Durchmessern die Drehzahlen so groß, daß sie nur mit Zwischenschaltung eines Zahnräderpaares praktisch verwendbar sind; will man dagegen mit den üblichen, etwa 3000/Min. betragenden Drehzahlen arbeiten, so ergeben sich so große Raddurchmesser, daß sie wegen der Fliehkraftwirkung unausführbar werden. Aus diesem Grunde werden größere Turbinen stets mehrstufig gebaut. Dem Dampf wird seine Energie stufenweise entzogen. Dadurch erzielt man in jeder Stufe verhältnismäßig kleine Geschwindigkeitsunterschiede zwischen Dampfein- und austritt und damit auch bei sehr großen Leistungen praktisch unmittelbar brauchbare Umdrehungszahlen. Letztere richten sich nach der Art der anzutreibenden Maschine (Dynamo, umlaufende Luft- oder Wasserpumpe usw.) und betragen zwischen 1500 und 3000/Min.

Man kann folgende Grundarten der Stufenbildung unterscheiden:

- a) die mehrstufige Überdruckturbine mit Druckstufen (Parsonsturbine),
- b) die mehrstufige Gleichdruckturbine mit Druckstufen (Zoellyturbine),
- c) die mehrstufige Gleichdruckturbine mit Geschwindigkeitsstufen (Curtisturbine).

Die erstgenannte wird in ihrer ursprünglichen Form nicht mehr ausgeführt, wohl aber in Verbindung mit der unter c erwähnten Grundart; am häufigsten ist eine Verbindung von Grundart c mit b. Die Wirkungsweise jeder Grundart soll im folgenden für sich besprochen werden.

a) Überdruckturbine mit Druckstufen.

Die Wirkungsweise ist in Abb. 4 schematisch dargestellt. Die Laufschaufeln sind am Umfang einer Trommel befestigt. Zwischen je zwei Laufkränzen sitzt ein Leitkranz, der im Gehäuse befestigt

ist. Die Dampfeinleitung erfolgt durch die Schaufelzellen des ersten Leitkranzes L_1 ; der Deutlichkeit wegen ist hier, wie auch bei den folgenden Kränzen, stets nur eine Schaufel gezeichnet. Die Vorgänge am Umfang der einzelnen Kränze sind folgende:

- 1. Leitkranz L_1 : Der Dampf expandiert vom Druck p_1 auf p'_1 , die absolute Dampfgeschwindigkeit wächst von o bis c_1 .
- 1. Laufkranz R_1 : Der Dampf tritt unter dem Winkel α_1 gegen die Schaufelebene mit der absoluten Geschwindigkeit c_1 ein, welche mit der Umfangsgeschwindigkeit u_1 vereinigt die Relativgeschwindigkeit w_1 ergibt, in deren Richtung (Winkel β_1) die Lauf-

- radschaufel tangential ansetzt, um einen Dampfstoß beim Eintritt zu vermeiden. Der Dampf expandiert vom Druck p'_1 auf p_2 , infolgedessen nimmt die Relativgeschwindigkeit von w_1 auf w_2 zu. Letztere ist unter dem Winkel β_2 zur Schaufelebene gerichtet und gibt mit der Umfangsgeschwindigkeit u_1 vereinigt die absolute Austrittsgeschwindigkeit c_2 , welche kleiner als c_1 ist. Die diesem Geschwindigkeitsunterschied entsprechende lebendige Dampfenergie wird hier, abgesehen von Verlusten, in mechanische Arbeit umgesetzt. Da das Druckgefälle p_1-p_2 nur ein Teil des verfügbaren ist, wird c_1 verhältnismäßig klein; dadurch ergeben sich kleine günstigste Umfangsgeschwindigkeiten und ohne Zwischengetriebe verwendbare minutliche Drehzahlen (1500-3000).
- 2. Leitkranz L_2 : Der Dampf strömt unter dem Winkel α_2 mit der absoluten Geschwindigkeit c_2 ein, expandiert vom Druck p_2 auf p'_2 und strömt mit der absoluten Geschwindigkeit c'_1 unter dem Winkel α'_1 aus in den
- 2. Laufkranz R_2 , in dem sich die Vorgänge von R_1 wiederholen.

Diese Wiederholung setzt sich so lange fort, bis schließlich im letzten Laufkranz die Dampfspannung auf Kondensatordruck gesunken ist. Da durch die Expansion das Dampfvolumen allmählich wächst, werden die radial gemessenen Schaufelhöhen zweier aufeinander folgender Kränze immer größer gewählt und die Trommeldurchmesser sprungweise vergrößert. Letzteres ist in Abb. 4 dadurch ausgedrückt, daß die Umfangsgeschwindigkeit von R_3 ab mit $u_2 > u_1$ bezeichnet ist. Der Dampfdruck ist auf der Vorderseite jedes Laufkranzes größer als auf der Hinterseite; dies hat zur Folge, daß

- a) ein Axialschub in Richtung der Dampfströmung entsteht, der durch besondere Einrichtungen aufzunehmen ist, und
- b) ein Teil des Dampfes unausgenützt zwischen den Laufschaufeln und der Gehäusewand hindurchströmt.

Wegen des Überdruckes der Vorderseite gegenüber der Hinterseite der Leitschaufeln strömt ebenfalls ein unausgenützter Teil des Dampfes zwischen den Innenkanten der Leitschaufeln und der Trommelwandung hindurch, auf der die Laufschaufeln befestigt sind. Um diese Verluste klein zu halten, werden:

- a) möglichst viele Stufen verwendet, damit die einzelnen Druckunterschiede nicht zu groß werden,
- b) die Spielräume möglichst klein ausgeführt.

Letzterer Umstand hat zur Folge, daß die Turbine vor dem Anlassen sehr sorgfältig angewärmt werden muß, damit keine Schaufel anstreift und infolge der großen Umfangsgeschwindigkeit Veranlassung zum Bruch einer großen Zahl von Schaufeln gibt. Diese Gefahr vermindert sich mit abnehmender Dampftemperatur, weshalb diese Bauart heute nur als Niederdruckturbine ausgeführt wird.

b) Gleichdruckturbine mit Druckstufen.

Die Wirkungsweise ist schematisch aus Abb. 5 zu ersehen. Die Laufschaufeln sind auf dem Umfang einzelner Räder befestigt,

Abb. 5.

die auf der Welle aufgekeilt sind. Die Leitschaufeln jeder Stufe sind in den ringförmigen Zwischenraum zwischen einer Radscheibe und einem konzentrischen vollen Außenring eingegossen. Die Nabe der Radscheibe umfaßt möglichst dampfdicht die Nabe der Laufradscheibe (Labyrinthdichtung), der volle Ring ist dampfdicht in das Gehäuse eingepaßt. Die Leitradkränze sind wieder mit L, die Laufkränze mit R bezeichnet. Die Vorgänge in den einzelnen Kränzen sind folgende:

- 1. Leitrad L_1 : Der Dampf expandiert vom Druck p_1 auf p_2 und strömt unter dem Winkel α_1 mit der absoluten Geschwindigkeit c_1 in das
- 1. Laufrad R_1 ein; c_1 ergibt wieder mit u die Relativgeschwindigkeit w_1 . Der Druck p_2 bleibt im Laufkranz R_2 derselbe; deshalb strömt der Dampf entlang der Schaufelfläche mit der Relativgeschwindigkeit w_1 , die sich wegen der Reibung um einen kleinen Betrag auf w_2 verringert. Damit auch bei Leistungsschwankungen der Druck p, sich nicht ändert, ist die Radscheibe mit einigen großen Löchern zum Druckausgleich versehen. Da hier kein Spaltverlust zu befürchten ist, kann der Spielraum zwischen Laufschaufeln und Gehäusewand beliebig groß gemacht und die Turbine ohne Anwärmen angelassen werden. Dagegen kann Dampf an den Stellen durchströmen, an denen die Naben der Leiträder die Naben der Laufräder umfassen. Hier läßt sich weder Undichtheit noch Heißlaufen während des Betriebes feststellen. Die Relativgeschwindigkeit w_2 setzt sich mit u zur absoluten Austrittsgeschwindigkeit c_2 zusammen. Die Arbeitsleitung des ersten Laufrades entspricht wieder dem Unterschied der lebendigen Energie des Dampfes beim Eintritt und Verlassen des Schaufelkranzes.
- 2. Leitrad L_2 : Der Dampf expandiert vom Druck p_2 auf p_3 und strömt unter dem Winkel α'_1 mit der absoluten Geschwindigkeit c'_1 in das
- 2. Laufrad R_2 ein, in dem sich die Vorgänge des ersten Laufrades wiederholen usw., bis der Kondensatordruck erreicht ist.

Der Dampf expandiert also nur in den Leitkränzen, nicht aber in den Laufkränzen. Da der Druck auf der Vorderseite jedes Laufkranzes derselbe ist wie auf der Hinterseite desselben, hat die Turbine keinen Axialschub. Wegen des mit fortschreitender Expansion wachsenden Dampfvolumens nimmt die radiale Schaufelhöhe von der Dampfeintrittsseite nach der Kondensatorseite hin stetig zu. Wegen des stoßfreien Eintritts gilt auch hier das unter a) Gesagte.

c) Gleichdruckturbine mit Geschwindigkeitsstufen.

Nach Abb. 6 erfolgt der Dampfeintritt durch eine oder mehrere Lavalsche Düsen, die den

1. Leitkranz L_1 ersetzen. Hier expandiert der Dampf vom Druck p_1 sofort auf Kondensatorspannung p_2 und erreicht damit seine größte Geschwindigkeit c_1 , mit der er unter dem Winkel α_1 in den

1. Laufkranz R_1 einströmt. Die Umfangsgeschwindigkeit u vereinigt sich mit c_1 zu der noch sehr beträchtlichen Relativgeschwindigkeit w_1 , mit der der Dampf die Schaufel entlang gleitet; w_1 vermindert sich wegen der Reibung auf w_2 , die sich mit u

zurabsoluten Austrittsgeschwindigkeit c_2 zusammensetzt. Die Arbeitsleistungentspricht wieder dem Unterschied der lebendigen Dampfenergie für c_1 und c_2 .

- 2. Leitkranz L_{2} . Der Dampf strömt entlang der Schaufel mit der Geschwindigkeit c_2 , die sich wegen der Reibung um einen geringen Betrag auf c'_1 vermindert. Der Leitkranz hat hier nur die Aufgabe, die Strömungsrichtung des Dampfes so umzulenken, daß alle Laufkränze denselben Umlaufsinn erhalten.
- 2. Laufkranz R_2 . Die Vorgänge im 1. Laufkranz wiederholensich, indem der Dampf seine absolute Geschwindigkeit von c'_1 auf c'_2 verringert und die entsprechende Arbeit an das Rad abgibt usw.

Diese allmähliche Geschwindigkeitsabnahme dauert so lange an, bis die

Abb. 6.

absolute Dampfaustrittsgeschwindigkeit auf einen Wert gesunken ist, der sich mit der Bemessung der Austrittsquerschnitte vereinigen läßt (50-100 m/sek).

Auch diese Turbine hat keinen Axialschub, und die Spielräume können beliebig groß gemacht werden. Wegen des stoßfreien Eintritts müssen auch hier die Laufschaufeln unter dem Winkel der relativen Eintrittsgeschwindigkeit w_1 , die Leitschaufeln unter dem Winkel der absoluten Austrittsgeschwindigkeit c_2 ansetzen.

Um zu große Dampfgeschwindigkeiten zu vermeiden und gleichzeitig durch Verminderung der Stufenzahl die Baulänge zu verkürzen, kann man nach Abb. 7 den Dampf im 1. Düsensatz nur

um einen Teil seines Druckes von p_1 auf p_2 expandieren lassen und ihm die ereichte Geschwindigkeit c_1 bis auf den Rest c_2 in zwei (wie gezeichnet) oder drei Geschwindigkeitsstufen unter Zwischenschaltung eines bzw. zweier Leitkränze entziehen. Hieran schließt sich ein zweiter Düsensatz, in welchem der Dampf von p_2 auf p_3 expandiert und die Geschwindigkeit c_1 erreicht, die ihm auf dieselbe Weise entzogen wird. Dasselbe Verfahren kann mit einer dritten Druckstufe wiederholt werden.

Aus diesen Darlegungen ergibt sich folgende

Übersicht über die Turbinenbauarten.

- A. Gleichdruckturbinen:
 - I. einstufige (Laval, Abb. 2),
 - II. mehrstufige:
 - a) ohne Druckstufung (Curtis, Abb. 6);
 - b) mit Druckstufung, ohne Geschwindigkeitsstufung (Zoelly, Rateau, Abb. 5);
 - c) mit Druckstufung, mit Geschwindigkeitsstufung (Schiffsturbine, Abb. 7);
 - d) Hochdruckteil: Gleichdruckrad mit Geschwindigkeitsstufung (Curtis-Rad),
 - Niederdruckteil: mit Druckstufung ohne Geschwindigkeitsstufung (Abb. 8).

B. Überdruckturbinen:

I. einstufige (wird nicht ausgeführt, Abb. 3),

II. mehrstufige (Parsons, Abb. 4).

C. Gemischte Turbinen:

Hochdruckteil: Gleichdruckrad mit Geschwindigkeitsstufung (Curtis-Rad),

Niederdruckteil: mehrstufige Überdruckturbine (Brown, Boveri & Co., Abb. 9).

Dazu kommen noch die später behandelten:

- D. Turbinen für Abdampf- oder Heizdampfverwendung:
 - I. Abdampfturbinen,
 - II. Zweidruckturbinen (mit Frischdampf und Abdampf zugleich betrieben),
 - III. Gegendruckturbinen (der Abdampf wird zu Heizzwecken verwendet),
 - IV. Anzapfturbinen (Dampf aus einer Zwischenstufe wird zu Heizzwecken verwendet).

,,

- E. Nach der Beaufschlagung läßt sich auch folgende Einteilung treffen:
 - a) axial beaufschlagte Turbinen,
 - b) radial ", "

Letztere mögen hier unberücksichtigt bleiben; oder

- a) ganz beaufschlagte Turbinen,
- b) teilweise ,,

Zweiter Teil.

Aufbau der Dampfturbinen.

I. Allgemeines.

Weitaus die meisten Dampfturbinen dienen zum unmittelbaren Antrieb von Wechsel- oder Drehstrommaschinen, deren Welle mit der Turbinenwelle durch eine Scheibenkupplung verbunden ist; deshalb richten sich ihre Umdrehungszahlen nach den üblichen Perioden-

Abb. 10.

und Polzahlen. Die gewöhnlichste minutliche Drehzahl ist 3000; nur bei sehr großen Leistungen (über 10 000 KW) geht man auf 1500 und 1000 herab. Die äußere Ansicht einer Turbodynamo gibt Abb. 10¹) wieder. Beide Maschinen ruhen auf einer gemeinsamen, aus einem Stück gegossenen Grundplatte; für große Leistungen wird diese mit Rücksicht auf Herstellung, Versand und Zusammen-

1) Görlitzer Maschinenbauanstalt (im folgenden mit GMA. bezeichnet).

Hauptteile.

bau, aus mehreren Teilen bestehend, ausgeführt und zusammengeschraubt. Da die Dampfturbine nur umlaufende und keine hin und her gehenden Triebwerksteile enthält, erfordert sie keinen besonderen schweren Fundamentklotz, sondern sie kann auf I-Träger gestellt werden; der dadurch unterhalb der Turbine freiwerdende Raum wird zur Unterbringung der Kondensationseinrichtung ausgenutzt. Der Platzbedarf der letzteren ist immer größer, als die für die Turbodynamo notwendige Grundfläche, jedoch weit geringer, als für eine entsprechende Kolbenmaschine. Abb. 11¹) zeigt den senkrechten Längsschnitt durch eine reine Zoellyturbine. Der Dampf tritt durch einen ringförmigen Wulst links vom Laufzeug ein und verläßt die Turbine in einem ringförmigen Wulst von entsprechend größerem Querschnitt, um durch einen angegossenen Stutzen nach dem Kondensator abzuströmen.

II. Hauptteile.

Die Turbine besteht außer der schon erwähnten Grundplatte aus folgenden Hauptteilen:

- a) Welle mit Kupplungsflansch und Laufrädern,
- b) Gehäuse mit Leitapparaten und Stopfbüchsen,
- c) Lager,
- d) Regelung,
- e) Ölpumpen für Lagerschmierung und Regelung,
- f) Kondensationseinrichtung,
- g) Hilfsapparate.

a) Welle und Laufzeug.

Die Welle besteht aus hochwertigem, meistens Tiegelgußstahl und ist so stark bemessen, daß ihre kritische Umdrehungszahl²) bedeutend oberhalb der normalen liegt. Die Beanspruchung auf Biegung und Verdrehung ist deshalb sehr gering, besonders wenn die Laufräder so gut ausgewuchtet sind, daß ihr Schwerpunkt in die Drehachse fällt. Bei Turbinen mit 3000 minutlichen Drehungen wird auch häufig die Betriebsdrehzahl oberhalb der kritischen gelegt. Die Naben der Laufräder sind einzeln aufgekeilt und werden durch eine gesicherte Mutter zusammengehalten. Die Welle durchdringt das Gehäuse in zwei Stopfbüchsen und ist außerhalb des Gehäuses in zwei Lagern gehalten. Das linke Lager enthält außer den gewöhnlichen Schalen noch ein Kammlager zur Sicherung gegen etwaige axiale Schwankungen des Laufzeuges. Am Kopfende der

¹) GMA. ²) Siehe vierter Teil.

Seufert, Dampfturbinen. 2. Aufl.

Welle befindet sich der Schneckenradantrieb des Reglers. Die Welle mit den beschaufelten Laufrädern ist in Abb. 12¹) besonders dargestellt, während Abb. 13¹) ein einzelnes Laufrad wiedergibt, welches mehrere Bohrungen enthält: diese dienen zum Ausgleich geringer Druckunterschiede, die bei Belastungsschwankungen entstehen können. Die Schaufeln werden nach Abb. 14¹) durch besondere Aussparungen mit ihren | -förmigen Füßen in eine ringsumlaufende Nute des Radkranzes eingeführt und durch eingeschobene Zwischenklötzchen in der richtigen Entfernung gehalten. Die Aussparungen werden dann besonders sorgfältig verschlossen. Außerdem werden längere Schaufeln durch einen umlaufenden Ring gehalten. In diesen Ring werden die Schaufeln entweder mit vorstehenden Enden eingenietet oder der Ring wird durch die umgebogenen Enden der Schaufeln selbst gebildet. Eine andere Versteifung besteht darin, daß ein ringsumlaufender Draht in Bohrungen der Schaufeln eingesteckt und darin festgelötet wird. Die Laufräder erfordern wegen der hohen Beanspruchung durch die Fliehkraft besonders guten Baustoff und werden deshalb aus Siemens-Martinstahl geschmiedet. Die Laufschaufeln bestehen, wenigstens im Gebiet des Heißdampfes, aus Nickelstahl, im Niederdruckteil dagegen häufig aus Bronze. Die Herstellung erfolgt entweder einzeln durch Fräsen oder durch Abschneiden von gefrästen Profilstäben oder gebogenen Streifen.

b) Gehäuse mit Leitapparaten und Stopfbüchsen.

Das Gehäuse ist in der wagerechten Ebene geteilt und durch kräftige Flanschen mit Schrauben zusammen gehalten. Eine weitere Teilung erfolgt meistens in einer senkrechten Ebene und zwar, wie in Abb. 11 am Kondensatorende, oder in Abb. 15¹) am Kopfende. Das Gehäuse enthält die Leiträder, die ebenfalls in der Horizontalebene geteilt sind. Jedes Leitrad besteht aus der Leitradscheibe mit der geteilten Nabe, den Leitschaufeln und dem äußeren Ring; Scheibe und Ring sind aus Gußeisen, die Schaufeln aus gebogenem Nickelstahlblech. Bei der Herstellung werden die Schaufeln mit einer besonderen Formmaschine in die Radform eingesetzt, so daß sie sich beim Gießen mit dem Radkörper verschweißen. Bei nur teilweise beaufschlagten Radkränzen (in den ersten Stufen der Zoellyturbine) sind an verschiedenen Stellen des Leitrades die Zwischenräume zwischen Scheibe und Ring voll ausgegossen. Der äußere Ring schließt sich dampfdicht an die Gehäusewandung an. während die Naben gegen die Laufradnaben durch Labyrinth-Dich-

Hauptteile.

tung abgedichtet sind. Diese Abdichtung ist notwendig, weil der Dampfdruck auf der Vorderseite des Leitrades größer ist als auf der Hinterseite. Zur Verringerung der Spannungen sind die Leitradscheiben kegelförmig durchgedrückt. Wird der obere Gehäuseteil abgehoben, dann hebt sich die obere Hälfte des Leitapparates mit ab, so daß das Laufzeug frei zugänglich wird. Die Stopfbüchsen bestehen aus einzelnen Kammern aus Metallringen; in jeder Kammer befindet sich ein geteilter Ring aus Preßkohle, der durch eine Schlauchfeder gegen die Welle gedrückt wird. Kohle ist das einzige Dichtungsmittel, das sich bei Turbinenstopfbüchsen bewährt hat; sie bedarf weder Schmierung noch Kühlung und besitzt nur geringe Reibung. Da infolgedessen kein Öl in das Innere der Turbine kommt, ist das Kondensat ganz ölfrei und als Speisewasser für die in großen Anlagen heute ausschließlich verwendeten Wasserrohrkessel besonders geeignet, ein Vorzug gegenüber der Kolbenmaschine. Zur Verkleidung und Wärmeisolierung erhält das Gehäuse einen Mantel, bestehend aus einem gußeisernen Eckring, einer Stirnplatte und einem Zylinder aus Glanzblech.

Eine Zoellyturbine mit vorgeschaltetem zweikränzigem Geschwindigkeitsrad zeigt Abb. 16¹), die im übrigen mit Abb. 15 übereinstimmt. Der ringförmige Dampf-Einströmungsraum enthält in seiner oberen Hälfte die Düsen, die durch vom Regler beeinflußte Doppelsitzventile satzweise ab- und zugeschaltet werden.²) Im Folgenden sind die bezeichneten Teile von Abb. 15 und 16 zusammengestellt:

A Welle,

- B Laufrad des mehrstufigen Niederdruckteils,
- C zweikränziges Geschwindigkeitsrad,
- D Leitrad des Niederdruckteils,
- E Kammlager,
- F Kupplung,
- G Grundplatte,
- HH Stopfbüchsen,
 - J Austrittswulst,
 - K Schneckenräder für den Reglerantrieb,
 - L wagerechte Reglerwelle.

Den zugehörigen Querschnitt (längs der Reglerwelle) zeigt Abb. 17³), die später noch näher behandelt wird. Aus Abb. 16 geht hervor, daß bei dieser Anordnung kein Laufrad- und Gehäuseteil höheren Dampftemperaturen ausgesetzt ist, als dem Dampfzustand beim Verlassen der Düsen entspricht.

¹⁾ Maschinenfabrik Augsburg-Nürnberg (im folgenden mit MAN. bezeichnet).

²) Siehe "Regelung". ³) MAN.

Abb. 17.

c) Lager.

Die beiden Turbinenlager sind unmittelbar auf der Grundplatte befestigt, so daß vom Gehäuse aus keine Wärme auf sie übertragen werden kann. Das am stärksten belastete mittlere Lager (zwischen Turbine und Dynamo) besitzt Kugelbewegung und besonders lange Schalen. Die Schmierung erfolgt durch Drucköl, das durch eine Zahnradpumpe geliefert wird. Diese besteht nach Abb. 18 (Querschnitt) und Abb. 17 (Längsschnitt Q) aus zwei langen Zahnrädern, die sich so dicht als möglich an die Wandung des Pumpengehäuses anschließen. Bei dem gezeichneten Drehsinn nehmen die Lücken ider Zähne das Öl aus dem Eintrittsraum e mit und drücken es in den Austrittsraum a. Von hier gelangt es in eine ringsumlaufende

Aussparung der Lagerschalen, drückt sich nach beiden Seiten des Lagers hindurch und fließt aus dem Lagerkörper durch ein Rohr nach dem Innern der Grundplatte, die eine Einrichtung zur Kühlung und Filtrierung des Öles enthält. Das so gekühlte und gereinigte Öl wird von der Zahnradpumpe wieder angesaugt, um den Kreislauf von neuem zu beginnen. Zur ständigen Beobachtung der Öltemperatur im Lagerkörper sind Thermometer angebracht; diese soll möglichst unter 100° bleiben.

Abb. 18.

Die Berechnung des Lagers stellt folgende Forderungen:

- a) genügende Festigkeit des Zapfens,
- b) Geringhaltung des Flächendruckes p,
- c) sichere Ableitung der Reibungswärme.

Bezeichnet man mit

- P den Zapfendruck (Gewicht plus Fliehkraft durch exzentrische umlaufende Massen),
- p den spezifischen Flächendruck in kg/qcm Schalenprojektion,
- d den Zapfendurchmesser in cm,
- l die Länge der Lagerschale in cm,
- μ den Zapfen-Reibungskoeffizienten,
- v die Umlaufgeschwindigkeit des Zapfens in m/sek,
- t_1 die Temperatur der Lagerschale,
- t_2 die Lufttemperatur,

Ar die Reibungsarbeit für 1 qcm Schalenprojektion in mkg/sek,

dann ist

$$\begin{aligned} r &= t \, a \, p, \\ A_r &= \mu \, p \, v \text{ oder} = \mu \, p \, \frac{d \, \pi \, n}{100 \cdot 60} \\ &\equiv A_z \, (t_1 - t_2), \end{aligned}$$

р

1.1 ...

worin A_z die für 1° Temperaturunterschied und 1 qcm Schalenprojektion sekundlich wirklich ableitbare Wärmemenge in mkg umgerechnet bedeutet.

Von diesen Größen sind als bekannt vorauszusetzen: P, v, A_z , t_1 , t_2 . Zu den genannten 3 Gleichungen kommt die aus Versuchen von Lasche abgeleitete Beziehung

Setzt man

$$\mu \, p \, \frac{d \, \pi \, n}{100 \cdot 60} = A_z \, (t_1 - t_2),$$

 $\mu p t_1 = 2.$

dann wird mit $\mu p = \frac{2}{t_1}$

$$\frac{d \pi n}{100 \cdot 60} = A_z (t_1 - t_2) \frac{t_1}{2};$$

hieraus

$$d=\frac{3000}{\pi\cdot n}A_{z}\left(t_{1}-t_{2}\right)t_{1};$$

hier bedeutet d den größten Zapfendurchmesser für eine angenommene Lagertemperatur t_1 , während $A_z \sim 0,002$ bis 0,004 je nach Größe der Ausstrahlungsfläche gewählt werden kann.

Wird der Zapfendurchmesser nach den Regeln der Festigkeitslehre berechnet, dann läßt sich hieraus die voraussichtliche Temperatur t_1 der Lagerschale berechnen.

Die Zapfenlänge $l = \frac{P}{d p}$ ist so zu bestimmen, daß p etwa = 3 bis 6 kg/qcm wird. Der Anteil der Fliehkraft an P ist zu schätzen.

d) Regelung.

Die Regelung wird auf 2 Arten ausgeführt:

1. als reine Drosselregelung: Der Regler beeinflußt ein Drosselventil, die Turbine gibt ihre Normalleistung, wenn dieses ganz geöffnet ist. Zur Überlastung ist häufig noch ein besonderes, entweder von Hand oder auch vom Regler betätigtes Ventil vorhanden, welches Frischdampf in eine spätere Expansionsstufe leitet.

Hauptteile.

2. als Füllungsregelung: Der Regler betätigt außer dem Drosselventil mehrere kleinere Ventile, durch deren Öffnung eine Anzahl von Düsen satzweise zugeschaltet werden.

1. Reine Drosselregelung.

Die Anordnung ist in Abb. 19 schematisch dargestellt: Zwischen den Regler und das zweisitzige Drosselventil V ist ein sog. Servomotor M eingeschaltet, der aus einem Zylinder mit Kolben und einem Kolbenschieber S besteht, der von dem Stellzeug AB des Reglers gesteuert wird. Der Eintrittsstutzen e der Steuerung steht mit der oben erwähnten Zahnrad-Ölpumpe in Verbindung; der Zylinder M und der Schieberraum von S sind mit Drucköl gefüllt.

In der gezeichneten Stellung schließt der Kolbenschieber sowohl den Kanal e für den Öleintritt als auch die Kanäle a_1 und a_2 für den Austritt ab, und der Kolben von M und damit das Drosselventil V werden in einer bestimmten Lage festgehalten. Sinkt die Belastung der Turbine. dann nimmt zunächst die Umdrehungszahl etwaszu und der Regler

geht hoch. Das Štellzeug dreht sich um A, die Muffe B geht nach B', C nach C' und nimmt den Kolbenschieber S mit. Dadurch wird das von e kommende Öl durch a_1 auf die Oberseite des Kolbens von M geleitet, während das Öl von dessen Unterseite durch den frei gegebenen Kanal bei a_2 abfließt. Der Kolben bewegt sich nach unten, drosselt das Ventil V ab und würde es ganz schließen, wenn der Kolben nicht zum Stillstand käme. Sobald der Kolben anfängt zu sinken, bildet B' den Drehpunkt des Hebels AB, der Punkt A kommt nach A' und C' gelangt auf C zurück. Damit hat der Kolbenschieber seine Mittellage wieder erreicht und sämtliche Ölkanäle abgeschlossen. Der Kolben bei M, also auch das Ventil V können nicht weiter sinken und bleiben in einer neuen Gleichgewichtslage stehen, bei welcher der durch das Drosselventil V eingestellte Dampfdruck der neuen Turbinenleistung entspricht. Bei einer Zunahme der Belastung spielt sich der umgekehrte Vorgang ab. Die Ober- und Unterseite von S sind durch einen Umlaufkanal unter sich und mit dem Ölrücklauf ver-

Abb. 20.

bunden. Der Öldruck beträgt 5 bis 6 at und wird an einem Manometer abgelesen. Abb. 20¹) zeigt die praktische Ausführung eines derartigen Reglers, der auch eine Einrichtung T zur Verstellung

¹) GMA.

Hauptteile.

der Drehzahl um \pm 5% enthält. Das geschieht entweder von Hand oder mittels eines eingebauten Elektromotors von der Schalttafel aus. Aus Abb. 11 ist zu ersehen, daß im Gehäuse ein ringförmiger Kanal ausgespart ist, durch den bei Überlastung der Turbine Frischdampf in das dritte Leitrad eingeführt wird.

2. Füllungsregelung.

Diese ist besonders geeignet für Turbinen mit vorgeschaltetem Geschwindigkeitsrad. Die Ausführung der MAN. geht aus dem schematischen Bild (Abb. 21) hervor. Der Regler R besitzt eine wagerechte Welle und wirkt mittels des Stellzeuges $GD_{2}FD_{1}$ mit Hilfe der Druckölsteuerung N und des Kolbens K auf das doppelsitzige Drosselventil V_1 in der vorhin beschriebenen Weise. Mit der Kolbenstange ist bei D_1 ein Winkelhebelzug verbunden, der eine Schubkurvenstange bewegt. Die Schubkurven sind so versetzt, daß mit sinkender Reglermuffe, also bei abnehmender Drehgeschwindigkeit der Turbine, die Ventile V_2 , V_3 , V_4 , V_5 der Reihe nach geöffnet werden. Durch Öffnen jedes dieser Ventile wird dem Dampf der Zutritt zu einer Anzahl von Düsen (gezeichnet je 4) freigegeben. Der Querschnitt des Drosselventiles V_1 ist so bemessen, daß nach Öffnen des ersten Düsenventiles V2 der Dampf nicht mehr gedrosselt wird, sondern mit voller Spannung in die Düsen gelangt. Sinkt die Belastung der Turbine, so werden die Ventile $V_5 V_4 V_3 V_2$ der Reihe nach geschlossen, und dann erfolgt bei weiterer Belastungsabnahme die Dampfdrosselung durch V_1 . Um die Drehzahl um +5% ändern zu können, läßt sich der Gestängepunkt T von Hand oder mittels einer elektrischen Schaltvorrichtung von der Schalttafel aus in den Pfeilrichtungen verschieben. Der Einbau des Reglers in die Turbine geht aus Abb. 17 hervor. W ist das elektrische Schaltwerk, das durch Drehen einer Schraubenspindel und Verschieben der Muffe M den Gelenkpunkt V verschiebt.

Außer dieser Regelung, die die Dampfmenge der augenblicklichen Leistung anpaßt, besitzt jede Dampfturbine noch einen Sicherheitsregler zur Verhütung des Durchgehens. Bei den ohnehin großen Umdrehungsgeschwindigkeiten ist eine weitere Steigerung derselben infolge der schnell wachsenden Fliehkräfte besonders gefährlich. Der Sicherheitsregler hat die Aufgabe, bei Überschreitung der Drehzahl um 10-15% der normalen, das Hauptventil zu schließen und dadurch die Turbine stillzusetzen. In Abb. 21 wird der Sicherheitsregler S von der wagerechten Reglerwelle angetrieben. Bei zu großer Drehgeschwindigkeit stößt ein bisher durch eine Feder zurückgehaltener Stift an den oberen Schenkel des Winkelhebels K, der das darunter befindliche Gestänge freigibt;

CANN GEL.Z 03462

Hauptteile.

dadurch kommt die Druckfeder F zur Wirkung und zieht ihre Stange hoch, die mittels des untersten Hebels das Absperrventil A schließt.

e) Ölpumpen.

Die in Abb. 18 schematisch dargestellte Ölpumpe liefert das Drucköl sowohl für die Lager, als auch für den Servomotor der Regelung. Sie wird häufig zweistufig ausgeführt; das Öl der ersten Stufe kommt in die Lager, während die zweite Stufe das Drucköl in die Steuerung des Reglers fördert.

Zur Schmierung beim Anlassen und Abstellen der Turbine ist eine Hilfsölpumpe erforderlich, die nach Erreichung der vollen Drehzahl abgeschaltet wird. Als Hilfsölpumpe kann dienen:

- 1. Handpumpe,
- 2. Schleuderpumpe, entweder durch kleine Dampfturbine oder durch Elektromotor angetrieben,
- 3. schwungradlose Dampfpumpe nach Art der Kesselspeisepumpen.

f) Kondensation.

Der wirschaftliche Hauptvorzug der Dampfturbine liegt in der Ausnutzung des Vakuums, d. h. niedriger Expansionsenddrücke, die tiefer liegen als bei der Kolbenmaschine. Andererseits beeinflußt jedoch eine Verschlechterung des Vakuums den Dampfverbrauch ungünstiger als den der Kolbenmasedine. Deshalb ist auf die Durchbildung einer guten Kondensationsanlage und die dauernde Erhaltung eines hohen Vakuums der größte Wert zu legen. In weitaus den meisten Fällen wird Oberflächenkondensation angewandt, die eine Wiederverwendung des heißen, kesselstein- und ölfreien Kondensates zur Kesselspeisung gestattet. Der Kondensator der GMA ist in Abb. 22 mit abgenommenem rechtsseitigen Deckel dargestellt. Er besteht aus einem genieteten Blechzvlinder, den beiden Rohrböden, welche durch eine Anzahl dünnwandiger Rohre verbunden sind, und den Deckeln. Durch Scheidewände wird erreicht, daß das Kühlwasser die Rohre reihenweise abwechselnd in verschiedener Richtung durchströmt, während der Dampf die Rohre umspült. Luft und Dampfwasser werden meistens getrennt abgeführt. Als Luftpumpen verwendet man:

- a) umlaufende Naßluftpumpen durch Hilfsturbine oder Elektromotor angetrieben,
- b) trockene Kolbenluftpumpen mit getrennter Kondensatpumpe, elektrisch angetrieben,
c) Naßluftpumpen mit Kolben, die Luft und Wasser gemeinsam absaugen und ebenfalls durch Elektromotor angetrieben werden.

Abb. 22.

Als Kühlwassserpumpen kommen fast ausnahmslos nur Schleuderpumpen in Frage, deren Antrieb entweder durch Hilfsturbine oder elektrisch erfolgt. In besonderen Fällen, wenn z. B. Kühlwasser in unbegrenzter Menge zur Verfügung steht, verwendet man auch Strahlkondensatoren. Das Kühlwasser wird fast immer durch Kühltürme zurückgekühlt; das verdunstete Wasser ist durch Frischwasser zu ersetzen. Damit letzteres in den Kondensatorrohren keinen Kesselstein absetzt und dadurch das Vakuum verschlechtert, empfiehlt es sich, es durch eine Reinigungsanlage nach Art der Kesselspeisewasser-Reinigung gehen zu lassen.

Dritter Teil.

Berechnung der Dampfturbinen.

I. Formeln aus der Wärmelehre des Wasserdampfes¹).

Vorausgesetzt werden folgende Formeln:

1. Dampfgeschwindigkeit

$$c = \sqrt{2 g \frac{k}{k-1} p_1 v_1 \left[1 - \left(\frac{p}{p_1} \right)^{\frac{k-1}{k}} \right]}.$$

2. Kritische Dampfgeschwindigkeit

$$c_0 = \sqrt{2g \frac{k}{k+1} p_1 v_1}.$$

Hier bedeutet:

- p_1 den absoluten Dampfdruck vor der Expansion in kg/qm,
- p den absoluten Dampfdruck nach der Expansion in kg/qm,
- k das Verhältnis der spezifischen Wärmen, welches zu setzen ist
 - a) für Naßdampf: k = 1,035 + 0,1 x, wobei mit x die spezifische Dampfmenge bezeichnetiist;
 - b) für trocken gesättigten Dampf: k = 1,135 (mit x = 1,0);
 - c) für Heißdampf: k = 1,3,
- v_1 das spezifische Dampfvolumen in cbm/kg, welches zu entnehmen ist
 - a) für Naßdampf und trocken gesättigten Dampf aus der Zahlentafel für Wasserdampf S. 36, im ersteren Fall mit Berücksichtigung des Wassergehaltes;
 - b) für Heißdampf aus einer der drei Zustandsgleichungen des überhitzten Dampfes:

¹) Entwicklung s. des Verfassers "Technische Wärmelehre der Gase und Dämpfe", 3. Aufl. Berlin: Springer 1923.

Seufert. Dampfturbinen. 2. Aufl.

Berechnung der Dampfturbinen.

 $\alpha) \text{ Zeuner: } p v = R T - C p^n,$ p = absoluter Dampfdruck in kg/qcm, worin R = 0,00509,C = 0.193, n = 0.25. T = absolute Dampftemperatur; $\beta) \text{ Tumlirz: } p(v+C) = \mathbf{R} \cdot T,$ worin R = 0.00471, C = 0.016, im übrigen wie α); γ) Callendar: $p\left[v+c\left(\frac{273}{T}\right)^n\right]=R T$, worin R = 0,0047,c = 0.075, $n=\frac{10}{3}.$

Für trocken gesättigten Dampf wird dann

$$c_0 = 3,23 \sqrt{p_1 v_1}.$$

Für Heißdampf ergibt sich

$$c_0 = 3,33 \ \sqrt{p_1 v_1}.$$

3. Kritisches Druckverhältnis

$$\frac{p_0}{p_1} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$$

welches für trocken gesättigten Dampf

$$\frac{p_0}{p_1} = 0,577$$

und für Heißdampf

$$\frac{p_0}{p_1} = 0,545$$

wird.

4. Die sekundlich durch den Querschnitt / qm strömende Dampfmenge

$$G = f \sqrt{2 g \frac{k}{k-1} \frac{p_1}{v_1} \left[\left(\frac{p}{p_1} \right)^2 - \left(\frac{p}{p_1} \right)^{\frac{k+1}{k}} \right]},$$

34

welche beim kritischen Druckverhältnis sich ergibt zu

$$G_{0} = f \sqrt{2 g \frac{k}{k+1} \left(\frac{p_{0}}{p_{1}}\right)^{2} \frac{p_{1}}{v_{1}}}$$

Die erstere Formel vereinfacht sich

a) für trocken gesättigten Dampf zu

$$G=1,99\,f\Big]\Big/\frac{p_1}{v_1},$$

b) für Heißdampf zu

$$G=2,09\,f\Big/\frac{p_1}{v_2}.$$

Dazu kommt

5. das Molliersche J-S-Diagramm für Wasserdampf¹).

II. Die Lavalsche Düse.

a) Ohne Berücksichtigung der Dampfreibung.

Die theoretische Form der Düse ist in Abb. 23 dargestellt. Der senkrecht zur Dampfströmung gemessene Querschnitt ist kreis-

förmig oder besser quadratisch oder rechteckig. Die Überleitung des Querschnittes aus der Dampfkammer in den engsten Querschnitt f_0 erfolgt allmählich; f_0 ist nach der kritischen Geschwindigkeit zu bemessen und erweitert sich unter dem Winkel γ zum Austrittsquerschnitt f_2 . Die strichpunktierte Linie und die Schräffur geben an, wie die Düse hinter dem kritischen Teil begrenzt und

schräg abgeschnitten ist, um den Eintrittswinkel α für die Dampfgeschwindigkeit zu erreichen.

Vor der Düse sei der Dampfzustand bestimmt durch

- a) absoluten Druck p_1 ,
- b) absolute Temperatur T_1 .

Dazu ist jetzt berechenbar das spezifische Volumen v_1 .

¹) Die Verlagsbuchhandlung J. Springer hat s. Zt. auf meine Anregung eine für den praktischen Gebrauch recht handliche Molliersche J-S-Tafel in Sonderdruck herausgegeben.

							· · · · · · · · · · · · · · · · · · ·	
Absol.	Tempe-	Flüssig- keits-	Verdampfungs- wärme für 1 kg		Gesamt-	Spezif.	Spezif.	
Druck	ratur	wärme	warme fur i kg		wärme	Gewicht	Volumen	
	}	für 1 kg	innere	äußere	TUFIKg			
kg/qcm	°C	<i>q</i>	e	Apu	λ.	kg/cbm	cbm/kg	
0.02	17.3	17.3	553.6	31.91	602.9	0.01468	68,126	
0,02	28.8	28.8	546 3	33 15	608.3	0.02826	35 387	
0,04	26,0	26,0	541 7	33 09	611.6	0.04142	24 140	
0,00	41.2	<i>30,0</i>	538.9	34 40	614 1	0.05432	18 408	
0,00	45.6	45 7	535.4	34 94	616.0	0.06703	14 920	
0,10	40,0	40.3	533 1	35 39	617 7	0.07956	12,568	
0,12	537	538	530 1	35 79	619.7	0,01990	10,190	
0,15	50.9	50.0	596 1	36 49	622 4	0 12858	7 777	
0,20	64 6	64 8	599 0	36 02	624.6	0,1286	6 307	
0,20	69 7	69.0	520,9	37 34	626.4	0,1980	5 316	
0,30	79.9	795	517.8	37,34	628 0	0.9174	4 600	
0,30	755	75.7	515.6	20,10	620,0	0.9463	4,000	
0,40	20,0	21.0	519.0	38,02	631 7	0,2405	3 2040	
0,50	00,9	01,2 95 9	508.8	30,50	632 7	0,3030	3,2340 9 7770	
0,00	80,0	80,8	506.1	20,01	625.2	0,3001	2,1110	
0,70	89,0	09,9 09 F	500,1	29,39	626.9	0,4100	2,4040	
0,80	93,0	93,5	501.6	39,73	620.1	0,4713	2,1210	
0,90	90,2	90,7	301,0	40,05	620.2	0,5202	1,9003	
1,0	99,1	99,0	499,4	40,30	039,3	0,0007	1,7220	
1,1	101,8	102,3	497,5	40,00	641.9	0,0349	1,0701	
1,2	104,2	104,8	495,7	40,78	041,3	0,0887	1,4021	
1,4	108,7	109,4	492,6	41,18	043,1	0,7900	1,2071	
1,6	112,7	113,4	489,7	41,04	044,7	1,0069	1,1090	
1,8	116,3	117,1	487,1	41,85	040,0	1,0002	0,9939	
2,0	119,6	120,4	484,7	42,14	047,2	1,1104	0,9000	
2,5	120,7	127,7	479,4	42,74	049,9	1,3080	0.6162	
3,0	132,8	133,9	474,9	43,23	052,0	1,0224	0,0105	
3,5	138,1	139,4	470,8	43,00	000,0	1,0740	0,0000	
4,0	142,8	144,2	407,2	44,01	050,4	2,1209	0,4708	
4,5	147,1	148,6	403,9	44,33	000,8	2,3710	0,4217	
5,0	151,0	152,0	400,8	44,01	650.9	2,0177	0,3620	
5,5	154,6	156,3	458,0	44,87	009,2	2,8024	0,3494	
6,0	157,9	159,8	455,3	45,10	000,2	3,1038	0,3420	
6,5	161,1	163,0	452,8	45,32	001,1	3,3481	0,2987	
7,0	164,0	166,1	450,4	45,51	002,0	3,3891	0,2780	
7,5	166,8	168,9	448,2	45,67	662,8	3,8294	0,2611	
8,0	169,5	171,7	446,0	46,86	663,5	4,0683	0,2458	
8,5	172,0	174,3	443,9	46,02	664,2	4,3072	0,2322	
9,0	174,4	176,8	441,9	46,17	664,9	4,5448	0,2200	
9,5	176,7	179,2	440,0	46,30	665,5	4,7819	0,2091	
10,0	178,9	181,5	438,2	46,43	666,1	5,018	0,1993	
11,0	182,1	185,8	434,6	46,67	667,1	5,489	0,1822	
12,0	186,9	189,9	431,3	46,88	668,1	5,960	0,1678	
13,0	190,6	193,7	428,2	47,08	668,9	6,425	0,15565	
14,0	194,0	197,3	425,2	47,26	669,7	6,889	0,14515	
15,0	197,2	200,7	422,4	47,43	670,5	7,352	0,13601	
16,0	200,3	203,9	419,7	47,58	671,2	7,814	0,12797	
18,0	206,1	210,0	414,6	47,85	672,4	8,734	0,11450	
20,0	211,3	215,5	409,8	48,08	674,4	9,648	0,10365	

36 Zahlentafel für gesättigten Wasserdampf nach Mollier.

Man kann zunächst annehmen, daß die Expansion des Dampfes adiabatisch erfolgt. Da die Adiabate im Mollierschen J.S.Diagramm durch eine senkrechte Gerade dargestellt ist, sucht man nach Abb. 24 in diesem den Punkt A_1 , der dem Dampfzustand $p_1 T_1$ entspricht und geht senkrecht herunter bis zu dem Punkt A_I , der dem gewünschten Expansionsenddruck p_2 entspricht. Liegt dieser oberhalb der Grenzkurve, dann ist der Dampfzustand

hinter der Düse bestimmt durch

- a) absoluten Druck p_2 ,
- b) absolute Temperatur T_2 ; dazu v_2 berechenbar.

Liegt der Expansionsenddruck unterhalb der Grenzkurve (Abb. 25), dann ist der neue Dampfzustand bestimmt durch

a) absoluten Druck p_2 ,

b) spezifische Dampfmenge x; dazu v_2 berechenbar.

- Die Form und Länge der Düse ergibt sich aus
- a) dem Erweiterungswinkel $\alpha \sim 10^{\circ}$,

b) dem Erweiterungsverhältnis $\frac{I_2}{I_0}$. Letzteres hängt vom Druckverhältnis $\frac{p_1}{p_2}$ ab; nach Zeuner kann angenommen werden:

a) für trocken gesättigten Dampf:

$$\frac{p_1}{p_2} = 1,732$$
 2 4 6 8 10 20 50 80 100
 $\frac{f_2}{f_0} = 1$ 1,015 1,349 1,716 2,069 2,436 3,966 7,980 11,55 13,80,

b) für Heißdampf:

$$\frac{p_1}{p_2} = 1,832$$
 10 20 50 100
 $\frac{f_2}{f_2} = 1$ 2,075 3,214 5,958 9,680.

Die Dampfgeschwindigkeit beim Austritt aus der Düse wird aus dem adiabatischen Wärmegefäll mit Hilfe des Mollierdiagrammes wie folgt berechnet:

Der Wärmeinhalt beim Eintritt sei i_1

, ,, ,, Austritt ,, i₂,

dann ist das adiabatische Wärmegefäll $= i_1 - i_2$, das mit Berücksichtigung des Maßstabes unmittelbar in WE abgemessen werden kann (Strecke A_1A_I in Abb. 24 oder 25).

Die Energie von 1 kg Dampf beträgt demnach

$$\begin{split} L &= \frac{1}{A} \left(i_1 - i_2 \right) \text{WE}; \\ L &= \frac{c_1^2}{2 g} \text{mkg ist, so folgt} \\ &= \frac{1}{A} \left(i_1 - i_2 \right) = \frac{c_1^2}{2 g}, \end{split}$$

da auch

hieraus die Dampfgeschwindigkeit

$$c_1 = \sqrt{2g \frac{i_1 - i_2}{A}} = 91,5 \sqrt{i_1 - i_2}.$$

Die dem Wärmegefäll $(i_1 - i_2)$ entsprechenden Dampfgeschwindigkeiten können auch aus der dem Mollierdiagramm beigegebenen Skala unmittelbar abgegriffen werden.

Beispiel: Die Abmessungen einer Lavalschen Düse sind zu berechnen für

$$p_1 = 13$$
 at abs.
 $p_2 = 0,15$ at abs.
 $G = 0,3$ kg/sek;

a) für Sattdampf (k = 1,135),

b) für Heißdampf von $t = 300^{\circ}$ (k = 1,3).

a) Für Sattdampf:

Kritischer Druck $p_0 = 0.577 \ p_1 = 0.577 \ \cdot 13 = 7.51$ at. abs. Spezifisches Volumen $v_1 = 0.156$ cbm/kg (aus der Dampftafel). Kritische Geschwindigkeit $c_0 = 3.23 \ \sqrt{p_1 v_1} = 3.23 \ \sqrt{130} \ 000 \ \cdot 0.156 = 460$ m/sek. Kleinster Querschnitt: Aus der früheren Formel (S. 35)

$$G = 1,99 f \Big/ \frac{p_1}{v_1}$$

$$\frac{0,3}{z \sqrt{120000}} = 0,000 \,165 \,\mathrm{qm} = 1,65 \,\mathrm{qcm}.$$

folgt

$$f_0 = \frac{G}{1,99} \frac{Q}{\sqrt{\frac{p_1}{p_1}}} = \frac{0,3}{1,99} \frac{Q}{\sqrt{\frac{130\,000}{0,156}}} = \frac{1,99}{1,99} \frac{Q}{\sqrt{\frac{130\,000}{0,156}}} = \frac{1}{1,99} \frac{Q}{\sqrt{\frac{130\,000}{0,156}}} =$$

Druckverhältnis

$$\frac{p_1}{p_2} = \frac{13}{0,15} = 86,6.$$

Erweiterungsverhältnis $\frac{f_2}{f_0} = \frac{13,802 - 11,55}{20} \cdot 6,6 + 11,55 = 12,20^{1}$). Größter Querschnitt $f_2 = 12,20 f_0 = 12,20 \cdot 16,5 = 20,1$ qcm. Austrittsgeschwindigkeit c_1 : Aus dem Mollierdiagramm ergibt sich $i_1 - i_2 = 163,9$ WE;

also

b) Für Heißdampf:

 $c_1 = 91,5$ $\sqrt{i_1 - i_2} = 91,5$ $\sqrt{163,9} = 1170$ m/sek.

Kritischer Druck: $p_0 = 0.545 \ p_1 = 0.545 \cdot 13 = 7.08$ at abs. Spezifisches Volumen: Aus der Zeunerschen Zustandsgleichung

$$p \ v = R \ T - C \ p^{n}$$
ergibt sich $v_{1} = \frac{R \ T - C \ p^{n}}{p_{1}} = \frac{0,005 \ 09 \ (273 \ + \ 300) \ - \ 0,1925 \ \cdot \ 13^{0,25}}{13} = 0,196 \ \mathrm{cbm/kg.}$

Kritische Geschwindigkeit $c_0 = 3,33 \sqrt{p_1 v_1} = 3,33 \sqrt{130000 \cdot 0,196}$ = 533 m/sek.

Kleinster Querschnitt
$$f_0 = \frac{G}{2,09 \sqrt{\frac{p_1}{v_1}}} = \frac{0,3}{2,09 \sqrt{\frac{130\,000}{0,196}}} = 0,000\,176\,\,\mathrm{qm}$$

= 1,76 qcm.

Druckverhältnis wie oben $\frac{p_1}{p_2} = 86,6.$

Erweiterungsverhältnis $\frac{f_2}{f_0} = \frac{9,680 - 5,958}{50} \cdot 3,66 + 5,958 = 8,688.$ Größter Querschnitt $f_2 = 8,688 \cdot f_0 = 8,688 \cdot 1,76 = 15,3$ qcm. Austrittsgeschwindigkeit c_1 : Aus dem Mollierdiagramm ergibt sich $i_1 - i_2 = 184$ WE;

also

$$c_1 = 91,5$$
 | $\overline{i_1 - i_2} = 91,5$ | $\overline{184} = 1240$ m/sek.

¹) Zwischen $\frac{f_2}{f_0} = 80$ und 100 interpoliert.

b) Mit Berücksichtigung der Dampfreibung.

Infolge der Reibung des Dampfes an der Wandung der Düse vermindert sich die von jetzt an mit c_I zu bezeichnende theoretische Dampfgeschwindigkeit beim Austritt aus der Düse auf die wirkliche Geschwindigkeit c_1 . Der Düsenverlust h_d betrage für 1 kg Dampf einen bestimmten Bruchteil ξ_d der theoretischen lebendigen Dampfenergie $\frac{c_I^2}{2g}$; dieser Verlust ist ferner gleich dem Unterschied

$$\frac{c_I^2}{2\,g} - \frac{c_1^2}{2\,g}$$

der theoretischen und der wirklichen Dampfenergie; also

$$h_d = \xi_d \frac{c_I^2}{2g} = \frac{c_I^2}{2g} - \frac{c_1^2}{2g}.$$

Die diesem Verlust entsprechende Wärmemenge geht als Reibungswärme wieder an den Dampf über.

Aus der letzten Gleichung folgt:

Wirkliche Dampfgeschwindigkeit $c_1 = c_I \sqrt{1 - \xi_d}$.

Setzt man

$$c_1 = \varphi_d c_I,$$
$$\omega_d = \sqrt{1 - \xi_d}.$$

dann ist

Der Energieverlust durch Reibung beträgt je nach Länge der Düse 5—15%, im Mittel
$$10\%$$
 der theoretischen Ausströmungsenergie, also

 $\xi_d = 0.05 - 0.15$, im Mittel 0.10,

also $\varphi_d = \sqrt{1 - 0.05}$ bis $\sqrt{1 - 0.15} = 0.975$ bis 0.92, im Mittel 0.95.

Der Düsenverlust wird nach Abb. 26 wie folgt in das Mollierdiagramm übertragen: Der dem Dampfzustand $p_1 T_1$ entsprechende Punkt sei A_0 ; der adiabatischen Expansion auf den Druck p_2 entspricht die Senkrechte $A_0 A_I$, also das Arbeitsvermögen des mit der Geschwindigkeit c_I ohne Reibung aus der Düse strömenden Dampfes

 $A_0 A_I = i_1 - i_2$ in WE oder $\frac{c_I^2}{2 g}$ in mkg für 1 kg Dampf.

Durch die Reibung werde der Betrag

$$A_I m = \xi_d rac{c_I^2}{2 \ g} ext{ in mkg}$$

in Wärme zurückverwandelt. Bezeichnet man den wirklichen Wärmeinhalt von 1 kg des austretenden Dampfes mit i'_2 , dann beträgt der Reibungsverlust

$$A_I m = i_2' - i_2 \text{WE}.$$

Zieht man durch m eine Wagerechte, dann wird die p_2 -Kurve in A_1 , dem wirklichen Expansionsendpunkt geschnitten. Die Expansion ist also nicht mehr rein adiabatisch, sondern folgt der Kurve

 A_0A_1 , deren Form für die Berechnung gleichgültig ist, weil es nur auf den Endpunkt A_1 ankommt. Das in Arbeit umgesetzte Wärmegefäll ist also

$$A_0 m = i_1 - i'_2 .$$

Die Reibungswärme ist dazu verwendet worden, die spezifische Dampfmenge x_I auf x_1 zu erhöhen, also einen Teil des im Dampf enthaltenen Wassers zu verdampfen.

Beispiel: Gegeben: $p_1 = 10$ at abs.,

 $p_2 = 0.1$ at abs., $t_1 = 230^\circ$; also $T_1 = 503^\circ$.

Gesucht: c_1 , v_2 und x_1 . Theoretisch ist nach Abb. 26

$$A_0 A_1 = i_1 - i_2 = 175 \text{ WE}$$

hieraus $c_I = 91.5 \sqrt{175} = 1210$ m/sek.

In Wirklichkeit wird für den angenommenen Energieverlustsatz

 $\xi_d = 0,1$ und

 $\varphi_d = 0,95,$

 $c_1 = 0.95 c_1 = 0.95 \cdot 1210 = 1150 \text{ m/sek.}$ Die spezifische Dampfmenge ist

Die spezifische Dampfmenge ist theor

wirklich
$$x_I = 0.83$$
, wirklich $x_1 = 0.86$.

also wird das spezifische Dampfvolumen, das für Sattdampf von 0,1 at abs. 14,92 cbm/kg beträgt,

$$v_2 = 0.86 \cdot 14.92 = 12.8 \text{ cbm/kg}.$$

III. Energieumsatz im Laufrad.

In Abb. 27 sind die Geschwindigkeitsverhältnisse nochmals dargestellt. Der Dampf tritt unter dem Winkel α_1 in das Laufrad ein, strömt mit der aus der absoluten Eintrittsgeschwindigkeit c_1

und der Umfangsgeschwindigkeit u sich ergebenden Relativgeschwindigkeit w_1 die Schaufel entlang (Schaufelrücken tangential an w_1 anschließend, Winkel β_1), und verläßt die Schaufel mit der

Relativgeschwindigkeit w_2 (Winkel β_2 , ohne Reibung wäre $w_2 = w_1$), die sich mit u zur absoluten Austrittsgeschwindigkeit c_2 zusammensetzt (Winkel α_2). Die Geschwindigkeitsparallelogramme werden nach Abb. 28 zweckmäßig durch Dreiecke ersetzt, wobei zu beachten ist, daß bei der Konstruktion von Relativgeschwindigkeiten die Umfangsgeschwindigkeit uentgegen der Drehrichtung anzutragen ist (-u). Zugleich sind hier die Komponenten c_{1u} , sowie c_{2u} und c_{2a} , w_{1u} und

 w_{2u} eingetragen. Zur praktischen Aufzeichnung von Geschwindigkeitsplänen schlägt man nach Abb. 29 das Austrittsdreieck nach der linken Seite herum, was dann besonders zweckmäßig ist, wenn $\beta_2 = \beta_1$ gemacht wird.

a) Verluste.

Die lebendige Energie von 1 kg Dampf beim Eintritt in das Laufrad ist theoretisch

$$H_{\rm I}=\frac{c_I^2}{2\,g}.$$

Davon ist abzuziehen:

a) der oben berechnete Düsenverlust h_d ,

- b) der Schaufelverlust h_s ,
- c) der Austrittsverlust h_a ,
- d) der Radreibungs- und Ventilationsverlust $h_r + h_v$.
- a) Der Düsenverlust beträgt

$$h_d = \xi \, rac{c_I^2}{2 \, g}$$
 .

b) Der Schaufelverlust entsteht durch Reibung des Dampfes an den Laufradschaufeln und bewirkt die Verminderung der Relativgeschwindigkeit w_1 auf w_2 ; es ist also

$$egin{aligned} h_s &= rac{w_1^2}{2\,g} - rac{w_2^2}{2\,g} = \xi_s rac{w_1^2}{2\,g} ext{ in mkg} \ &= A \ \xi_s rac{w_1^2}{2\,g} ext{ in W E} \end{aligned}$$

oder

gesetzt. Hieraus folgt

$$w_2 = w_1 \sqrt[]{1-\xi_s} = \varphi_s w_1$$

gesetzt.

Angenäherte Zahlenwerte für ξ_s und φ_s :

1. für $w_1 > \text{kritische Geschwindigkeit}: \xi_s = 0.55 \sim 0.41$,

 $\varphi_s=0,67\sim 0,77\,,$

2. für $w_1 < \text{kritische Geschwindigkeit}: \xi_s = 0.41 \sim 0.25$, $\varphi_s = 0.77 \sim 0.87$.

Auch dieser Verlust erscheint als Reibungswärme im Dampf wieder.

c) Der Austrittsverlust ist die lebendige Energie des mit der Geschwindigkeit c_2 austretenden Dampfes, also

$$h_a=\frac{c_2^2}{2g}.$$

d) Der Radreibungsverlust h_r entsteht durch Reibung des Laufrades an dem Dampf, der die Zwischenräume zwischen Laufrad und Gehäuse erfüllt.

Der Ventilationsverlust h_v entsteht durch Wirbelbildungen des Dampfes.

Da die beiden letztgenannten Verluste nur klein sind und in der Schätzung der übrigen Verluste doch eine gewisse Unsicherheit liegt, seien sie ganz vernachlässigt.

b) Indizierter Wirkungsgrad.

Zieht man die Verluste von der verfügbaren theoretischen Arbeit H_I ab, so erhält man die sog. indizierte Arbeit L_i , die natürlich nur wegen der Analogie mit der indizierten Leistung der Kolbenmaschine als indiziert bezeichnet wird; also

$$\begin{array}{ll} L_i = (H_I - h_d) - h_s - h_a \\ \mathrm{oder} & \quad L_i = \left(\frac{c_I^2}{2\,g} - \frac{\xi_d\,c_I^2}{2\,g}\right) - \left(\frac{w_1^2}{2\,g} - \frac{w_2^2}{2\,g}\right) - \frac{c_2^2}{2\,g} \\ & \quad = \frac{1}{2\,g} [c_I^2 \,(1 - \xi_d) - (w_1^2 - w_2^2) - c_2^2]; \end{array}$$

da nach einer früheren Gleichung

 $c_I \sqrt{1-\xi_d} = c_1 =$ wirkliche Eintrittsgeschwindigkeit ist, so folgt:

$$L_i = \frac{1}{2g} \left[c_1^2 - (w_1^2 - w_2^2) - c_2^2 \right].$$

Der Quotient

$$\eta_i = rac{ ext{Indizierte Arbeit}}{ ext{Verfügbare Arbeit}} = rac{L_i}{H_I}$$
 heißt indizierter Wirkungsgrad.

Der Ausdruck für L_i läßt sich mit Beziehung auf Abb. 29 wie folgt umformen:

1. Aus dem mit c_1 , u und w_1 gezeichneten Geschwindigkeitsdreieck ergibt sich:

$$w_1^2 = c_1^2 + u^2 - 2 c_1 u \cos \alpha = c_1^2 + u^2 - 2 c_{1u} \cdot u.$$

2. Aus dem zweiten Geschwindigkeitsdreieck geht hervor:

$$\begin{split} c_2^2 &= u^2 + w_2^2 - 2 \ u \ w_2 \ \cos\beta_2 &= u^2 + w_2^2 - 2 \ u \ (c_{2u} + u); \\ \text{hieraus} \qquad w_2^2 &= c_2^2 - u^2 + 2 \ u \ (c_{2u} + u) \,. \end{split}$$

Die Werte für w_1^2 und w_2^2 werden in die Gleichung für L_i eingesetzt:

$$\begin{split} L_i &= \frac{1}{2g} \left[c_1^2 - \left(\left[c_1^2 + u^2 - 2 c_{1u} \cdot u \right] - \left[c_2^2 - u^2 + 2 u \left(c_{2u} + u \right) \right] \right) - c_2^2 \right] \\ &= \frac{u}{g} \left(c_{1u} + c_{2u} \right), \end{split}$$

Damit wird

$$\eta_i = \frac{L_i}{H_I} = \frac{\frac{u}{g} (c_{1u} + c_{2u})}{\frac{c_I^2}{2g}} = \frac{2 u}{c_1^2} (c_{1u} + c_{2n}).$$

Ist c_{2u} nach der entgegengesetzten Seite gerichtet, dann ist in der obigen Gleichung für c_2^2 einzusetzen:

$$w_2\coseta_2=u-c_{2_u}$$
 ;

d. h. in den Gleichungen für L_i und η_i erhält c_{2u} das negative Vorzeichen; es ist also allgemein:

$$L_i = \frac{u}{g} \left(c_{1_u} \pm c_{2_u} \right)$$
$$\eta_i = \frac{2 u}{c_I^2} \left(c_{1_u} \pm c_{2_u} \right).$$

und

Es ist noch zu untersuchen, wie groß die Umfangsgeschwindigkeit u im Verhältnis zur Dampfeintrittsgeschwindigkeit c_1 und der Eintrittswinkel α_1 zu wählen ist, damit η_i möglichst groß wird.

Gewöhnlich macht man Ein- und Austrittswinkel der Laufschaufeln gleich; also

$$\beta_1 = \beta_2 \, .$$

Ferner ist nach Abb. 29

$$c_{1u} = c_1 \cos \alpha_1;$$

$$c_{2u} = w_2 \cos \beta_2 - u = \varphi_s w_1 \cos \beta_1 - u = \varphi_s (c_1 \cos \alpha_1 - u) - u \text{ und}$$

$$c_1 = \varphi_d c_I; \text{ also } c_I = \frac{c_1}{\varphi_d}.$$

Die Werte für c_{1_u} , c_{2_u} und c_I werden in die Gleichung für η_i eingesetzt:

$$\begin{split} \eta_i &= \frac{2 u}{\left(\frac{c_1}{\varphi_d}\right)^2} \left[c_1 \cos \alpha_1 + \varphi_s \left(c_1 \cos \alpha_1 - u \right) - u \right] \\ &= \frac{2 u \varphi_d^2}{c_1^2} c_1 \left[\cos \alpha_1 + \varphi_s \left(\cos \alpha_1 - \frac{u}{c_1} \right) - \frac{u}{c_1} \right] \\ &= 2 \varphi_d^2 \cdot \frac{u}{c_1} (1 + \varphi_s) \left(\cos \alpha_1 - \frac{u}{c_1} \right). \end{split}$$

Setzt man

$$2 \varphi_d^2 \left(1 + \varphi_s\right) = a$$
 , $rac{u}{c_1} = x$

 $\cos \alpha_1 = b$,

und dann wird

$$\eta_i = a \ x \ (b - x) = a \ b \ x - a \ x^2$$
.

Diese Gleichung stellt eine Parabel mit senkrechter Achse dar, deren Abszissen $x = \frac{u}{c_1}$ und deren Ordinaten η_i sind (Abb. 30). Den größten

Wirkungsgrad erhält man durch Differenzieren der Funktion η_i nach x und Nullsetzen des Differentialquotienten:

$$rac{d\ \eta_i}{d\ x} = a\ b\ -2\ a\ x = 0$$
; $x=rac{b}{2}$,

hieraus:

oder nach Einsetzen der früheren Werte:

$$\frac{u}{c_1}=\frac{\cos\alpha_1}{2}.$$

Mit diesem Wert wird

$$egin{aligned} \eta_{i\max} &= 2\cdot rac{\coslpha_1}{2} \, arphi_d^2 \, (1+arphi_s) \left(\coslpha_1 - rac{\coslpha_1}{2}
ight) \ &= rac{arphi_d^2}{2} \cos^2lpha_1 \, (1+arphi_s) \, . \end{aligned}$$

Im Grenzfall würde $\alpha_1 = 0$, $\cos \alpha_1 = 1$ und damit

$$\frac{u}{c_1} = \frac{1}{2}$$

werden; mit wachsendem α_1 nimmt u und η_i ab; gewöhnlich wählt man die Umfangsgeschwindigkeit gleich der Hälfte bis $\frac{1}{3}$ der Dampfeintrittsgeschwindigkeit, also

$$\frac{u}{c_1} = \frac{1}{2} \operatorname{bis} \frac{1}{3}.$$

Eine Übersicht über die Verhältnisse gibt folgende Zahlenrechnung:

Für reibungsfreie Strömung ($\varphi_d = \varphi_s = 1$) wird mit

für

$$c_{1} = 1000 \text{ m/sek}$$

$$\alpha_{1} = 0^{\circ} \quad 10^{\circ} \quad 20^{\circ}$$

$$\eta_{i \max} = 1 \quad 0.97 \quad 0.89$$

$$\frac{u}{c_{1}} = 0.5 \quad 0.49 \quad 0.47$$

$$u = 500 \quad 490 \quad 470$$

Läßt man, da diese Geschwindigkeiten unausführbar sind, als größte Umfangsgeschwindigkeit 330 m/sek zu, also $\frac{u}{c_1} = \frac{1}{3}$, dann wird für $\alpha_1 = 10^\circ$ 20° $\eta_i = 0.87$ 0.81

Diese Zahlen haben nur theoretischen Wert, da die Verluste nicht berücksichtigt sind.

Weitere Zahlenangaben enthält das später durchgerechnete Beispiel.

c) Effektiver Wirkungsgrad und Dampfverbrauch.

Zu den bisher betrachteten Verlusten kommen noch die Triebwerksverluste, also Lager- und Stopfbüchsenreibung, Arbeit des Reglers, der Ölpumpen usw., die ihren Ausdruck im mechanischen Wirkungsgrad η_m finden; es ist

$$\eta_m = \frac{L_e}{L_i}$$
,

wobei L_e die an der Welle gemessene Arbeit ist.

Man bezeichnet das Produkt aus dem indizierten und dem mechanischen Wirkungsgrad als effektiven oder ther mod ynamischen Wirkungsgrad

$$\eta_{e} = \eta_{i} \cdot \eta_{m} = \frac{L_{i}}{H_{I}} \cdot \frac{L_{e}}{L_{i}} = \frac{L_{e}}{H_{I}}$$

Beträgt das stündliche Wärmeäquivalent für 1 PS 632 WE und der stündliche Dampfverbrauch für 1 PS G_{std} kg, dann kann man setzen

$$egin{aligned} L_e &= 632 \ \mathrm{WE} \ , \ H_I &= G_{\mathrm{std}} \ (i_1 - i_2') \ ; \ \eta_e &= rac{632}{G_{\mathrm{std}} \ (i_1 - i_2')} \, , \end{aligned}$$

also

hieraus der stündliche Dampfverbrauch für 1 PS

$$G_{\rm std} = rac{632}{\eta_e (i_1 - i_2')}.$$

Dann wird bei der Leistung N_e in PS die sekundliche Dampfmenge $G_{\rm sek}$

$$G_{\rm sek} = rac{632 N_e}{\eta_e (i_1 - i_2') 3600}.$$

Drückt man die am Wattmeter gemessene Leistung in KW aus und bezeichnet man den Wirkungsgrad der Dynamo mit η_d , dann ist die sekundliche Dampfmenge $\frac{1,36}{\eta_a}$ mal so groß.

d) Berechnung der einstufigen Gleichdruckturbine.

Das verfügbare Wärmegefäll $H_I = i_1 - i'_2$ ist aus dem Mollierdiagramm zu entnehmen; nach Wahl der Koeffizienten ξ_d und φ_d für die Düsen ergibt sich die wirkliche Eintrittsgeschwindigkeit c_1 . Die Umfangsgeschwindigkeit u wird so gewählt, daß η_e möglichst groß wird, aber stets u < 400 m/sek. Ferner kann man annehmen:

Eintrittswinkel $\alpha_1 = 10^\circ$ bis 20°,

Laufraddurchmesser aus

$$u = \frac{d \pi n}{60}$$
$$d = \frac{60 u}{\pi n},$$

zu

wenn n gegeben ist. Axiale Schaufelbreite b = 8—15 mm. Radiale Schaufellänge 1 = 12—25 mm. Krümmungsradius der Schaufeln r = 0,55 b bis 0,65 b.

Schaufelteilung
$$t = \frac{\gamma}{2 \sin \beta}$$
 mit

$$\beta_1=\beta_2=\beta,$$

Spaltweite = 2—3 mm (nicht zu eng wegen der Gefahr des Anstreifens).

Beispiel: Eine Laval-Auspuffturbine mit $N_e = 25$ PS und n = 15000 ist für anfänglich trocken gesättigten Dampf von 13 at abs. zu berechnen.

Verfügbares adiabatisches Wärmegefälle nach dem Mollierdiagramm (Abb. 31) zwischen 13 at abs. (auf der Grenzkurve x = 1) und 1 at abs. $H_I = i_1 - i'_2 = 104$ WE.

Hieraus theoretische Dampfgeschwindigkeit $c_I = 930$ m/sek.

Damit wird der indizierte Wirkungsgrad

$$\eta_i = 2 \varphi_d^2 \frac{u}{c_1} (1 + \varphi_s) \left(\cos \alpha_1 - \frac{u}{c_1} \right)$$

= 2 \cdot 0,92² \frac{1}{4} (1 + 0,67) \left(\cos 20^\circ - \frac{1}{4} \right) = 0,49

Der effektive Wirkungsgrad

 $\eta_e = \eta_i \cdot \eta_m = 0,49 \cdot 0,85 = 0,42$.

48

Bei verschiedenen Annahmen von $\frac{u}{c_1}$ ergibt sich in ähnlicher Weise folgende Zusammenstellung:

$\frac{u}{a} = 0,225$	0,25	0,275	0,3	0,325
$u^{c_1} = 192$	214	235	557	278
$\eta_i = 0.46$	0,49	0,52	0,54	0,57
$n_{e} = 0.39$	0,42	0,44	0.46	0,48
	. <u>n.</u>		Q-h-mf-1	

Mittlerer Laufraddurchmesser (bis zur radialen Schaufelmitte)

$$d = \frac{60 u}{\pi n} = \frac{60 \cdot 214}{\pi \cdot 15\,000} = 0,27 \text{ m} = 270 \text{ mm}.$$

Wegen sonstiger Verluste sei der effektive Wirkungsgrad nicht wie oben zu 0,42 sondern zu

$$\eta_{e} = 0,35$$
angenommen.
Dampfverbrauch für 1 PS-Std.

$$G_{std} = \frac{632}{\eta_{e}(i_{1} - i'_{2})} = \frac{632}{0,35 \cdot 104}$$

$$= 17,4 \text{ kg.}$$
Sekundliche Dampfmenge

$$G_{sek} = \frac{G_{std} \cdot N_{e}}{3600} = \frac{17,4 \cdot 25}{3600}$$

$$= 0,12 \text{ kg.}$$
Abb. 32.

Aus dem Geschwindigkeitsplan (Abb. 32) ergibt sich noch:

Berechnung der Verluste, die in das Mollierdiagramm (Abb. 31) eingetragen werden:

Die sonstigen Verluste werden als Restverlust gegenüber 100% berechnet = Strecke $m_3 m_4$.

Hieraus entsteht folgende

	%	WE
Nutzleistung	35,0	36,4
Düsenverlust	15,0	15,6
Schaufelverlust	27,3	28,4
Austrittsverlust	8,4	8,7
Sonstige Verluste (Rest)	14,3	14,9
Wärmegefäll H_I :	100,0	104,0

Wärmebilanz:

Seufert, Dampfturbinen. 2. Aufl.

Düsenberechnung wie früher. Radiale Schaufellänge l = 20 mm. Axiale Schaufelbreite b = 15 mm. Krümmungsradius der Schaufeln 0,6 $b = 0,6 \cdot 15 = 9$ mm. Schaufelteilung $t = \frac{r}{2\sin\beta} = \frac{9}{2\sin27} = 10$ mm. Anzahl der Schaufeln $z = \frac{d\pi}{t} = \frac{27,0 \cdot \pi}{1,0} = 85$. Aus dem Mollierdiagramm ergibt sich ferner die spezifische Dampfmenge x und das spezifische Volumen v wie folgt: a) bei Verlassen der Düsen (Punkt A_1): x = 0.89 x = 0.80 + 1.722 = 1.52 obm/kg.

 $\begin{array}{cccc} x_1 = 0{,}89 & v_1 = 0{,}89 \cdot 1{,}722 = 1{,}53 \ {\rm cbm/kg}; \\ {\rm b) \ bei \ Verlassen \ des \ Laufrades \ (Punkt \ A_2):} \\ x_2 = 0{,}945 & v_2 = 0{,}945 \cdot 1{,}722 = 1{,}63 \ {\rm cbm/kg}. \end{array}$

e) Berechnung der Gleichdruckturbine mit Geschwindigkeitsstufung.

Ihre Wirkungsweise ist im 1. Teil auseinandergesetzt. Der Schaufelplan und die Geschwindigkeitsdreiecke für drei Geschwindigkeitsstufen sind mit den in der folgenden Berechnung angewandten Bezeichnungen in Abb. 33 nochmals dargestellt.

Wie S. 44 entwickelt, war der indizierte Wirkungsgrad $\eta_i = \frac{2 u}{c_i^2} (c_{1_u} + c_{2_u}).$

Mit den Umfangskomponenten $c'_{1u} c'_{2u}$ usw. ergibt sich für die mehrstufige Turbine sinngemäß:

$$\eta_i = \frac{2 u}{c_I^2} \left(c_{1_u} + c_{2_u} + c_{1_u}' + c_{2_u}' + c_{1_u}'' + c_{2_u}'' + \cdots \right),$$

Das jeweils letzte Glied c''_{2u} usw. kann auch negativ werden.

Die Verluste werden für die Düsen, Laufschaufeln und Umkehr- (Leit-) Schaufeln nach den früher angegebenen Formeln einzeln berechnet, also

Düsenverlust $h_d = \xi_d \frac{c_I^2}{2g} \cdot A$ in L_I , 1. Schaufelverlust $h_{s_1} = \xi_s \frac{w_1^2}{2g} \cdot A$ in R_I ,

1. Umlenkverlust
$$h_{s_2} = \xi_s \frac{c_2^2}{2g} \cdot A$$
 in L_{II} ,

2. Schaufelverlust
$$h_{s_s} = \xi_s \frac{w_1'^2}{2g} \cdot A$$
 in R_{II} ,

2. Umlenkverlust
$$h_{s_4} = \xi_s \frac{c_2'^2}{2g} \cdot A$$
 in L_{III} ,

3. Schaufelverlust
$$h_{s_5} = \xi_s \frac{w_1''^2}{2g} \cdot A$$
 in R_{III} usw.

Austrittsverlust
$$h_a = \frac{c_2''^2}{2 g} \cdot A$$
.

Im übrigen ist der Rechnungsgang wie bei der einstufigen Turbine, nur die Umfangsgeschwindigkeit wird bedeutend kleiner gewählt.

Beispiel: Die Turbine des letzten Beispiels ist als dreikränzige Curtis-Turbine zu berechnen mit n = 3000.

Es ist wie früher:
$$N_e = 25 \text{ PS}$$

 $H_I = 104 \text{ WE}$
 $c_I = 930 \text{ m/sek}$
 $c_1 = 855 \text{ m/sek}.$

Die Umfangsgeschwindigkeit sei angenommen zu

$$u = \frac{c_I}{10} = \frac{930}{10} = 93$$
 m/sek.

Mittlerer Laufraddurchmesser:

$$d = \frac{60 u}{\pi n} = \frac{60 \cdot 93}{\pi \cdot 3000} = 0,59 \text{ m} = 590 \text{ mm}.$$

Hierauf folgt Aufzeichnung des Geschwindigkeitsplanes (Abb. 34) und Berechnung der Verluste mit angenommenen Koeffizienten ξ und φ . Düsenverlust:

$$h_d = \xi_d \cdot H_I = 0,15 \cdot 104 = 15,6$$
 WE.

Verlust im 1. Laufkranz:

$$\xi_{s_1} = 0.45; \ \varphi_{s_1} = \sqrt{1 - 0.45} = 0.74 \text{ angenommen}$$

$$h_{s_1} = \xi_s \frac{w_1^2}{2g} A = 0.45 \frac{740^2}{2g} \cdot \frac{1}{427} = 29.5 \text{ WE}$$

$$w_2 = \varphi_{s_1} \cdot w_1 = 0.74 \cdot 740 = 548 \text{ m/sek.}$$

Austrittsverlust:

$$c_2'' = 65 \text{ m/sek},$$

 $h_a = \frac{c''^2}{2g}A = \frac{65^2}{2g} \cdot \frac{1}{427} = 0.5 \text{ WE}.$

Summe sämtlicher berechneten Verluste:

$$\begin{split} \boldsymbol{\Sigma} \, \boldsymbol{h} &= h_d + h_{s_1} + h_{s_2} + h_{s_3} + h_{s_4} + h_{s_5} + h_a \\ &= 15.6 + 29.5 + 7.2 + 3.1 + 1.1 + 0.2 + 0.5 = 57.2 \text{ WE,} \\ \text{oder in } \% \text{ des theoretischen Wärmegefälles } H_I \end{split}$$

 $\Sigma h_{0/0} = \frac{\Sigma h}{H_I} \cdot 100 = \frac{57,2}{104} \cdot 100 = 55,0 \%.$ $\eta_{i_{\text{theor}}} = 1 - 0,55 = 0,45.$

Also

Mit Berücksichtigung nicht berechneter Verluste sei geschätzt

$$\eta_i = 0,40$$
$$\eta_m = 0,90$$

angenommen.

Damit wird $\eta_e = \eta_i \cdot \eta_m = 0.40 \cdot 0.90 = 0.36$. Stündlicher Dampfverbrauch für 1 PS:

$$G_{\text{std}} = \frac{632}{\eta_e (i_1 - i'_2)} = \frac{632}{0,36 \cdot 104} = 16,9 \text{ kg.}$$

Sekundliche Dampfmenge:

$$G_{\rm sek} = rac{G_{
m std} \ N_e}{3600} = rac{16.9 \cdot 25}{3600} = 0.12 \
m kg.$$

Berechnung der Düsen und der Beschaufelung wie früher.

f) Berechnung der Gleichdruckturbine mit Druckstufen ohne Geschwindigkeitsstufung.

Zunächst ist wieder nach dem Mollierdiagramm das verfügbare Wärmegefäll $H_I = i_1 - i'_2$ zu ermitteln.

Der mechanische Wirkungsgrad wird angenommen zu

 $\eta_m = 0.9$ bis 0.95.

Der effektive Wirkungsgrad beträgt nach Versuchen für Leistungen zwischen 1000 und 4000 KW

$$\eta_e = 0,65$$
 bis 0,7.

Hieraus ergibt sich der indizierte Wirkungsgrad zu

$$\eta_i = \frac{\eta_e}{\eta_m} = 0,68$$
 bis 0,78.

Mit der Beziehung

$$A_{\mathbf{0}}C = \eta_i \left(i_1 - i_2' \right)$$

läßt sich in Abb. 35 der Endpunkt B der gesamten Zustandsänderung in das Mollierdiagramm eintragen.

Die Stufenzahl z wird möglichst gering gewählt, doch soll in jeder Stufe die kritische Geschwindigkeit nicht überschritten werden (z = 6 bis 12). Die Umfangsgeschwindigkeit beträgt

u = 100 bis 150 m/sek;

das Verhältnis $\frac{u}{c_1}$ ist dem günstigsten möglichst zu nähern.

Der Laufraddurchmesser, bezogen auf die mittlere radiale Schaufelhöhe, wird jetzt meistens für alle Stufen gleichgroß gewählt. Das auf eine Stufe treffende theoretische Teilgefäll ist

gleich der Summe der theoretischen Teilgefälle

 $H_{I}(1+p),$

wobei p der Prozentsatz der durch Reibung an den strömenden Dampf übergehenden Wärme ist (p = 0.05 bis 0.08), dividiert durch die Stufenzahl z.

Der Geschwindigkeitsplan (Abb. 36) ist für alle Stufen derselbe und braucht demnach nur einmal entworfen zu werden. Als Verlustkoeffizienten können angenommen werden:

 $\xi_d = 0,1; \ \varphi_d = 0,95$ für die Leitschaufeln, $\xi_s = 0,28 \sim 0,36;$ $\varphi_s = 0,85 \sim 0,8 \cdot$ für die Laufschaufeln.

Der Plan enthält auch die Axialkomponenten c_{1a} und c_{2a} .

Der Austrittsverlust jeder Stufe kann voll in Rechnung gesetzt werden, d. h. die Austrittsenergie wird durch Wirbelbildung vernichtet.

Die theoretischen Teilgefälle und die Verluste sind für jede Stufe einzeln in das Mollierdiagramm einzutragen. Kommt man mit dem Austrittsverlust des letzten Laufkranzes nicht in die Nähe des vorher bestimmten Punktes *B*, dann ist die Rechnung mit etwas veränderten Annahmen zu wiederholen.

Da die Turbine in den ersten Stufen nicht voll beaufschlagt ist, ist aus dem Volumen des aus dem ersten Leitrad austretenden Dampfes der beaufschlagte axiale Querschnitt zu berechnen. Für die Schaufelstärke wird etwa 1/8 des beaufschlagten Bogens zugegeben.

Beispiel: Eine Zoellyturbine ist für $N_e = 1500$ PS, $p_1 = 13$ at abs. Anfangsdruck, 300° Anfangstemperatur, 0,05 at abs. Enddruck und n = 3000 zu berechnen. Adiabatisches Wärmegefäll $H_I = i_1 - i'_2 = 218$ WE

 $\eta_e=0,65; \quad \eta_m=0,92$

$$\eta_i=\frac{\eta_e}{\eta_m}=\frac{0,65}{0,92}\cong 0,7.$$

Stündlicher Dampfverbrauch für 1 PS:

$$G_{\rm std} = \frac{632}{0,65 \cdot 218} = 4,46 \, {\rm kg}.$$

Sekundlicher Gesamt-Dampfverbrauch:

$$G_{\rm sek} = \frac{4,46 \cdot 1500}{3600} = 1,86$$
 kg.

In Abb. 35: $A_0 C = \eta_i (i_1 - i_2) = 0.7 \cdot 218 = 153$ WE.

Damit Punkt B gefunden mit x = 0.94.

Stufenzahl z = 9

angenommen.

Mit u = 150 m/sek wird der mittlere Laufraddurchmesser

$$d = \frac{60 u}{\pi n} = \frac{60 \cdot 150}{\pi \cdot 3000} = 0,955$$
m.

Teilgefälle für eine Stufe für p = 0.06:

$$\frac{H_I(1+p)}{z} = \frac{218 \cdot (1+0.06)}{9} = 25.7 \text{ WE.}$$

Theoretische Austrittsgeschwindigkeit aus den Leiträdern:

 $c_I = 91,5 \sqrt{25,7} = 463 \text{ m/sek}.$

Angenommen:

Der Geschwindigkeitsplan ergibt nach Abb. 36 mit $\alpha_1 = 20^\circ$ und $\beta_1 = \beta_2$ die axialen Komponenten:

sowie
$$c_{1a} = 163 \text{ m/sek}$$
 und $c_{2a} = 127 \text{ m/sek}$
 $w_1 = 315 \text{ m/sek}; \quad w_2 = \varphi, w_1 = 0.8 \cdot 315 = 252 \text{ m/sek};$
 $c_2 = 144 \text{ m/sek}; \quad \beta = 30^{\circ}.$

Der indizierte Wirkungsgrad nach S. 45

$$\eta_i = \frac{2 u \varphi_d^2}{c_1} (1 + \varphi_s) \left(\cos \alpha_1 - \frac{u}{c_1} \right)$$

kann jetzt nachgeprüft werden; also

.

$$\mu = \frac{2 \cdot 150 \cdot 0.95^2}{450} (1 + 0.8) \left(\cos 20 - \frac{150}{450}\right) = 0,66$$

gegenüber der obigen Annahme $\eta_i = 0,7.$

Eintragungen in das Mollierdiagramm für die 1. Stufe (Abb. 35): Adiabatisches Wärmegefäll $A_0 a_I = 25.7$ WE.

Düsenverlust $h_d = 0, 1 \cdot 25, 7 = 2, 6$ WE liefert Punkt a_1 ; diesem entspricht ein

Kammerdruck $p_2 = 8,3$ at abs.

und Temperatur
$$t_2 = 250^{\circ}$$

Den Düsen-, Schaufel-, Austritts- und sonstigen Verlust berechnet man am einfachsten mit Hilfe des eben festgestellten Wertes von η_i und des Teilgefälles:

 $h = h_d + h_s + h_a + h_r = (1 - \eta_i) \cdot 25,7 = (1 - 0.66) \cdot 25,7 = 8,7$ WE.

Dieser Gesamtverlust senkrecht abgetragen, liefert den Punkt b_1 als Anfangspunkt der 2. Stufe.

Das spezifische Dampfvolumen für $p_2 = 8,3$ at abs. und $t = 250^{\circ}$ ist nach der Zeunerschen Zustandsgleichung

$$v = \frac{R T - C p^{m}}{p} = \frac{0.00509 \cdot (273 + 250) - 0.1925 \cdot 8.3^{0.25}}{8.3}$$

Der axiale Austrittsquerschnitt des 1. Leitrades ergibt sich zu

$$f_{1a} = \frac{G \cdot v}{c_{1a}} = \frac{1,86 \cdot 0,282}{163} = 0,003\,22 \text{ qm} = 32,2 \text{ qcm}.$$

Dazu wegen der Schaufeldicke 1/8 Zuschlag, also

$$f_{1a} = \frac{9}{8} \cdot 32, 2 = 36, 2$$
 qcm.

Nimmt man die radiale Schaufelhöhe zu 8 mm an, dann wird die beaufschlagte Bogenlänge 36.2

$$l = \frac{30,2}{0,8} = 45,3$$
 cm,

oder im Verhältnis zum mittleren Umfang

$$\frac{45,3}{95,5\cdot\pi}=0,15.$$

Diese Berechnungen sowie die Eintragungen in das Mollierdiagramm werden für alle Stufen wiederholt; der letzte Punkt b_9 kommt in befriedigende Nähe von *B*. Die berechneten Werte enthält folgende Zusammenstellung, S. 57.

Mit der 5. Stufe wird die Grenzkurve überschritten. Die Dampfvolumina sind von hier an der Dampftafel zu entnehmen und mit der spezifischen Dampfmenge zu multiplizieren.

Von der 6. Stufe an sind die Laufräder voll beaufschlagt, deshalb genügt die Schaufelhöhe 8 mm nicht mehr, sondern sie muß für jede Stufe aus dem axialen Austrittsquerschnitt berechnet werden; z. B. für die 7. Stufe wird die

Schaufelhöhe =
$$\frac{f_{7a}}{d\pi} = \frac{743}{95,5\cdot\pi} = 2,5$$
 cm.

56

lung.
nstell
nme
Zusar

6	0,06		30,95	22,7	2910	1	1,0	9,7		10,2	13,1
œ	0,13	1	0,95	11,78	1510	1	1,0	4,4		4,9	6.3
7	0,27	ł	0,97	5,79	743		1,0	2,5		3,0	3,9
9	0,55		0,98	2,97	381		1,0	1,3		1,8	2,3
5	1,0	100	1,0	1,72	219	274	0,91	0,8		1,3	1,3
4	1,8	138	ł	1,06	136	170	0,57	0,8		1,3	1,3
m	3,2	176		0,635	81,5	102	0,34	0,8		1,3	1,3
67	5,3	213		0,411	52,7	65,9	0, 22	0,8		1,3	1,3
1	8,3	250		0,282	36,2	45,3	0,15	0,8		1,3	1,3
Stufe	Kammerdruck at abs.	Temperatur ° C.	Spezifische Dampfmenge x	Spezifisches Dampfvolu- men cbm/kg · · · · ·	Axialer Austrittsquer- schnitt $+ \frac{1}{8}$ Zuschlag qcm $\cdot \cdot \cdot$	Beaufschlagte Bogenlänge cm · · · · · · · · · ·	Desgl. im Verhältnis zum Umfang	Radiale Höhe der Leit- schaufeln cm	Desgl. der Laufschaufeln:	a) beim Eintritt cm	b) beim Austritt cm

57

Die Schaufeln der Laufräder werden 3 bis 5 mm höher als die der Leiträder ausgeführt. Bei den voll beaufschlagten Laufrädern muß der axiale Austrittsquerschnitt im Verhältnis der axialen Dampfgeschwindigkeitskomponenten $\frac{c_{1a}}{c_{2a}}$ größer sein als der axiale Eintrittsquerschnitt; z. B. für die 7. Stufe wird die Schaufelhöhe des Laufrades beim Austritt:

$$3,0 \frac{c_{1a}}{c_{2a}} = 3,0 \frac{163}{127} = 3,9 \text{ cm}.$$

g) Berechnung der Gleichdruckturbine mit Druckstufen und vorgeschaltetem Geschwindigkeitsrad.

Die Berechnung des Hochdruckteiles (Curtisrad mit 2 bis 3 Geschwindigkeitsstufen) erfolgt nach S. 50. Der Expansionsenddruck

> der Düsen wird zu 2 bis 2,5 at abs. angenommen. Daran schließt sich die Berechnung der Gleichdruckturbine mit 6 bis 8 Druckstufen nach S. 53, nur mit dem Anfangsdruck 2 bis 2,5 at abs. Das zugehörige Mollierdiagramm ist in Abb. 37 schematisch wiedergegeben.

Ein wesentlicher Vorteil dieser Anordnung besteht

darin, daß der größte Temperatursprung in den Hochdruckdüsen erfolgt und daher die Gehäusewandung nur niederen Dampftemperaturen ausgesetzt ist; expandiert z. B. der Dampf in den Düsen von 13 at abs. und 300° auf 2,5 at abs., so liegt der Endpunkt im Mollierdiagramm schon unterhalb der Grenzkurve. Für das Geschwindigkeits-

rad kann man annehmen

$$\eta_i = 0.5 \text{ bis } 0.5$$
$$\frac{c_I}{v} = 6 \sim 8;$$

Für den Niederdruckteil $\eta_i = 0.6$ bis 0.7

Abb. 37.

$$\frac{c_I}{u} \sim 3.$$

Der effektive Gesamtwirkungsgrad kann zu

$$\eta_{e} = 0.6$$
 bis 0.65

geschätzt werden.

h) Berechnung der mehrstufigen Überdruckturbine mit vorgeschaltetem Geschwindigkeitsrad.

Diese Anordnung besitzt gegenüber der reinen Überdruckturbine folgende Vorteile:

- 1. Das Gehäuse ist der hohen Dampfeintrittstemperatur entzogen.
- 2. Die Stufenzahl wird weit geringer, weil zur Geringhaltung des Spaltverlustes die Turbine im Hochdruckgebiet sehr viele Stufen erhalten müßte; dadurch wird auch die Baulänge kürzer.

3. Der Axialschub wird kleiner.

Die Berechnung des Geschwindigkeitsrades erfolgt wie bisher; die Berechnung des Überdruckteiles geschieht so, wie bei der reinen Überdruckturbine, wie folgt:

Es werde zunächst eine Stufe betrachtet. Nach Abb. 38 und 39 steht für die Stufe eine Wärmegefäll $A_0 A_{II} = i_0 - i_{II}$ zur Verfügung. Der Dampf expandiert

1. im Leitrad vom Druck p_1 auf p'_1 . Das zugehörige Wärmegefäll ist theoretisch $A_0A_I = i_0 - i_I$,

wirklich $A_0C_1 = i_0 - i_1;$

die zugehörige Geschwindigkeit:

theoretisch $c_I = 91,5 \ \sqrt{i_0 - i_I}$, gibt mit *u* die Relativgeschwindigkeit w_I ; wirklich $c_1 = 91,5 \ \sqrt{i_0 - i_1}$,

gibt mit u die Relativgeschwindigkeit w_1 .

Der Leitschaufelverlust ist

$$h_d = \xi_d rac{c_I^2}{2 \, g}$$

oder mit $c_1 = \varphi_d c_I$ und $\xi_d = 1 - \varphi_d^2$ (nach S. 43)

$$h_d = (1 - \varphi_d^2) \frac{c_1^2}{2 \varphi_d^2 g} = \frac{c_1^2}{2 g} \left(\frac{1}{\varphi_d^2} - 1 \right).$$

2. im Laufrad vom Druck p'_1 auf p_2 ; das zugehörige theoretische Wärmegefäll ist

Die Dampfeintrittsgeschwindigkeit ist w_1 ; die theoretische Austrittsgeschwindigkeit w_{II} ergibt sich aus der Gleichung

$$i_1 - i_{II}' = rac{A}{2 g} (w_{II}^2 - w_1^2),$$

entsprechend dem Zuwachs an lebendiger Energie durch Steigerung der Geschwindigkeit von q_1 auf w_{II} . In Wirklichkeit wächst jedoch die Geschwindigkeit nur auf

$$w_2 = \varphi_s w_{II}$$

und der Laufschaufelverlust wird (ähnlich wie oben der Leitschaufelverlust)

$$h_s = \frac{w_2^2}{2 g} \left(\frac{1}{\varphi_s^2} - 1 \right).$$

Dazu kommt der Austrittsverlust

$$h_a = \frac{c_2^2}{2 g};$$

folglich beträgt die an Radumfang gemessene Arbeit einer Stufe

$$L_z = \frac{c_1^2}{2 g} + \frac{w_2^2 - w_1^2}{2 g} - \frac{c_2^2}{2 g}.$$

Hier ist

 $\frac{c_1^2}{2 g} \text{ der durch Aktion abgegebene Teil der Arbeit,}$ $\frac{w_2^2 - w_1^2}{2 g} ,, ,, \text{ Reaktion },, ,, ,, ,,$ $\frac{c_2^2}{2 g} ,, \text{ Austrittsverlust.}$

60

Das Verhältnis y der Reaktionsarbeit zur Gesamtarbeit nennt man Reaktionsgrad; also _ 9

$$y = rac{w_2^2 - w_1^2}{c_1^2 + w_2^2 - w_1^2 - c_2^2};$$

wöhnlich $y = rac{1}{2};$ dann wird $c_1^2 - c_2^2 = w_2^2 - w_1^2$ $c_1 = w_2$ $c_2 = w_1,$

oder und

man wählt ge

damit werden die Geschwindigkeitsdreiecke (Abb. 40), sowie die Leit- und Laufschaufeln einer Stufe kongruent.

Mit diesen Werten für w_1 und w_2 wird

$$L_{z}=rac{c_{1}^{2}-c_{2}^{2}}{g}$$
 ;

aus Abb. 40 folgt:

 $c_2^2 = c_1^2 + u^2 - 2c_1 u \cos \alpha_1 = c_1^2 + u (u - 2c_1 \cos \alpha_1)$ oder $c_1^2 - c_2^2 = u (2 c_1 \cos \alpha_1 - u);$

 $L_z = \frac{u}{a} (2 c_1 \cos \alpha_1 - u).$ damit wird

Theoretisch wird entsprechend der obigen Gleichung

$$L_z = rac{c_I^2 - c_2^2}{g}; \ c_1 = arphi_s \, c_I \quad ext{und} \quad \xi_s = 1 - arphi_s^2; \ L_z^{\,\prime} = rac{1}{g} \left(rac{c_1^2}{1 - \xi_s} - c_2^2
ight);$$

oder mit

setzt man mit einer kleinen Vernachlässigung

$$\frac{1}{1-\xi_s} = 1 + \xi_s,$$

$$L'_z = \frac{c_1^2}{q} \left(1 + \xi_s - \left[\frac{c_2}{c_1}\right]^2\right).$$

dann wird

Damit berechnet sich der Wirkungsgrad einer Stufe am Radumfang zu T. 11 19 0. 000 0 ~· \

$$\frac{L_z}{L_z'} = \eta_i = \frac{u \left(2 c_1 \cos u_1 - u\right)}{c_1^2 \left(1 + \xi_s - \left[\frac{c_2}{c_1}\right]^2\right)};$$

aus

folgt
$$(\frac{c_2}{c_1})^2 = 1 + (\frac{u}{c_1})^2 - 2(\frac{u}{c_1})\cos \alpha^1,$$

welcher Ausdruck, oben eingesetzt, gibt:

$$\eta_i = \frac{2\frac{u}{c_1}\cos\alpha_1 - \left(\frac{u}{c_1}\right)^2}{\xi_s + 2\frac{u}{c_1}\cos\alpha_1 - \left(\frac{u}{c_1}\right)^2};$$

der größte Wert für η_i ergibt sich für

$$\frac{u}{c_1}=\cos\alpha_1.$$

Während man bei der Gleichdruckturbine die Stufenzahl und die Teilgefälle wählt und hieraus die Geschwindigkeiten berechnet, wählt man bei der Überdruckturbine umgekehrt die Geschwindigkeiten (mit den Werten

$$egin{array}{lll} \xi_s = 0.15 \sim 0.3 \ arphi_s = 0.93 \sim 0.88 \end{array}$$

zunehmend mit wachsender Geschwindigkeit) und berechnet hieraus das theoretische mittlere Teilgefäll einer Stufe. Mit Rücksicht auf durch Dampfreibung zurückgewonnene Wärme wird (wie S. 54) die Summe der Teilgefälle

 $H_I(1+p) = (i_0 - i_{II})(1+p)$ mit $p = 0.03 \sim 0.08$.

Die Stufenzahl z wird in einzelne Gruppen geteilt, deren Stufenzahlen $z_1, z_2...$ sein mögen. Die Trommeldurchmesser je zweier aufeinander folgenden Gruppen steigen im Verhältnis $1:\sqrt{2}$; u steigt etwa von 80 auf 100 m/sek, $\frac{u}{c_1}$ bleibt konstant. Setzt man den Spaltverlust einer Stufe

$$=2\,\xi_lrac{c_1^2}{2\,g}, \hspace{0.2cm} ext{wobei} \hspace{0.2cm} \xi_l=0.03\div 0.06 \hspace{0.2cm} ext{ist},$$

dann wird

$$L_{z} = \frac{c_{1}^{2} - c_{2}^{2}}{g} - \xi_{l} \frac{c_{1}^{2}}{g} = \frac{c_{1}^{2}}{g} \left[1 - \xi_{l} - \left(\frac{c_{2}}{c_{1}}\right)^{2} \right];$$

oder in WE ausgedrückt das mittlere Teilgefäll einer Stufe

$$A L_{z} = \frac{A c_{1}^{2}}{g} \left[1 - \xi_{l} - \left(\frac{c_{2}}{c_{1}} \right)^{2} \right].$$

Bezeichnet man die Teilgefälle der einzelnen Gruppen mit $L_1 L_2 \ldots$, dann ist offenbar

$$A \ L_{z} = \frac{z_{1} \ L_{1} + z_{2} \ L_{2} + \cdots}{z} = \frac{z_{1}}{z} \ L_{1} + \frac{z_{2}}{z} \ L_{2} + \cdots$$
$$\frac{z_{1}}{z}, \ \frac{z_{2}}{z} \cdots$$

und

wird angenommen; z. B. für 3 Gruppen

$$\frac{z_1}{z} = 0,4; \quad \frac{z_2}{z} = 0,3; \quad \frac{z_3}{z} = 0,3$$

und aus der letzteren Gleichung die gesamte Stufenzahl z berechnet. Im Mollierdiagramm (Abb. 41) werden die Stufen einer Gruppe zusammengefaßt. Die Strecken

 $b_1 m_2, b_2 m_3 \cdots$

sind je das Produkt der Stufenzahl einer Gruppe mal dem mittleren Teilgefäll. Die Austrittsenergie h_a des letzten Laufrades jeder Gruppe wird wegen der sprungweisen Steigerung des Trommeldurchmessers durch Wirbelbildung in Wärme umgesetzt; deshalb fängt die zweite Gruppe nicht bei a_2 , sondern bei b_2 an.

Da alle Schaufelkränze voll beaufschlagt sind, müßte wegen des ständig zunehmenden Dampfvolumens bei gleicher Axialgeschwindigkeit die radiale Schaufelhöhe ständig zunehmen. Wegen der Einfachheit der Herstellung zieht man es jedoch vor, eine Anzahl von Schaufelkränzen gleichhoch zu machen und die Höhe sprungweise zunehmen zu lassen.

Bezeichnet man die aufeinander folgenden gleichen axialen Querschnitte mit

 $v_1: v_2: v_3: \dots = \sin \alpha_1: \sin \alpha_2: \sin \alpha_3: \dots;$ d h dio Sinus der Fintritteninkel enfeine

d. h. die Sinus der Eintrittswinkel aufeinander folgender Schaufelkränze müssen sich verhalten wie die zugehörigen Dampfvolumina. Der mittleren Stufe jeder Reihe gibt man immer die aus dem Geschwindigkeitsdreieck berechneten Werte, die übrigen Stufen werden nach der letztgenannten Regel abgeändert.

Vierter Teil.

Berechnung wichtiger Einzelteile.

I. Welle.

Während bei langsam laufenden Wellen eine etwaige exzentrische Lage des Schwerpunktes der umlaufenden Teile ohne wesentlichen Einfluß auf die Beanspruchung der Welle ist, muß dieser Umstand bei den sehr rasch laufenden Turbinenwellen sorgfältig berücksichtigt werden.

In Abb. 42 sei eine senkrechte Welle mit einer umlaufenden Masse M = G/g dargestellt, deren Schwerpunkt S um das Maß e von der Drehachse entfernt liegt. Dreht sich die Welle mit der Winkelgeschwindigkeit ω , dann biegt sich infolge der Fliehkraft C

die Welle um das Maß / seitlich aus (Abb. 43); es ist dann

$$C = M (e + f) \omega^2;$$

beträgt P die Kraft, die notwendig ist, um die Welle um 1 cm durchzubiegen, dann ist zur Durchbiegung um f cm eine Kraft $P \cdot f$ notwendig, also ist auch

 $C = P \cdot f;$

beide Gleichungen werden verbunden:

$$M(e+f)\omega^2 = P \cdot f;$$

hieraus

$$f = \frac{e \ M \ \omega^2}{P - M \ \omega^2} = \frac{e}{\frac{P}{M \ \omega^2} - 1}.$$

Mit zunehmendem ω wird der Nenner immer kleiner; wird schließlich

$$\frac{P}{M\omega^2} = 1 \quad \text{oder} \quad \omega_k = \left| \frac{P}{M} \right|,$$

Die Welle.

dann würde $f = \infty$ werden, d. h. die Welle würde brechen, wenn sie nicht durch Begrenzungen innerhalb der Lager gestützt würde. Diese Winkelgeschwindigkeit wird die kritische genannt. Mit Hilfe der Beziehung

$$\omega = \frac{\pi n}{30}$$

erhält man die kritische Umdrehungszahl

$$n_k = \frac{30}{\pi} \sqrt{\frac{P}{M}}$$

oder mit dem Gewicht G der umlaufenden Massen

$$n_k = rac{30}{\pi} \Big/ \! \left/ rac{\overline{g \ P}}{G}
ight.$$
 ,

wobei $g = 981 \text{ cm/sek}^2$ zu setzen ist; also

$$n_k = 300 \sqrt{\frac{P}{G}}.$$

Wird die Winkelgeschwindigkeit $\omega > \omega_k$, was möglich ist, wenn man die Welle an der Ausbiegung hindert, dann wird f negativ, d. h. die Durchbiegung kommt auf dieselbe Seite wie e (Abb. 44) und wird mit weiter wachsendem ω immer kleiner. Die Welle besitzt jetzt eine freie Achse und damit eine neue Gleichgewichtslage.

Die Kraft P hängt ab vom Trägheitsmoment J des Wellenquerschnittes und der Art der Belastung; z. B. für eine im Abstand lfrei gelagerte und in der Mitte belastete Welle wird mit dem Elastizitätsmodul E P

$$f = \frac{l^3}{48} \cdot \frac{P}{EJ} = 1 \text{ cm};$$
$$P = \frac{48}{l^3} \frac{EJ}{l^3};$$

hieraus

hieraus J berechnen und d nach Zahlentafel aufschlagen.

Aus Festigkeitsrücksichten muß die Welle aushalten:

- a) das Biegungsmoment M_b ,
- b) das Drehmoment $\dot{M}_d \doteq 71\,600\,\frac{N_i}{n}$;

also muß der gefährliche Querschnitt der Gleichung genügen:

$$M_i = rac{d^3 \pi}{32} k_i = 0.35 \ M_b + 0.65 \ \sqrt{M_b^2 + M_d^2},$$

wobei k_i bis 500 kg/qcm betragen kann.

Seufert, Dampfturbinen. 2. Auflage.

Beispiel: Eine 1000 PS-Turbine mit a) n = 3000, b) n = 1500 sei nach Abb. 45 gelagert. Der Schwerpunkt des einschließlich Welle auf 1000 kg geschätzten Laufzeuges befinde sich in der Mitte der beiden Lager. a) Die kritische Drehzahl sei in genügender Entfernung von der

normalen Drehzahl n zu $n_k = 4000$ angenommen.

Aus

$$n_{k} = 300 \left| \frac{P}{G} \right|$$
folgt

$$P = \frac{n_{k}^{2} \cdot G}{300^{2}} = \frac{4000^{2} \cdot 1000}{300^{2}} = 178\,000 \text{ kg.}$$
Aus

$$P = \frac{48 JE}{l^{3}} = 178\,000 \text{ kg.}$$
ergibt sich

$$J = \frac{l^{3}P}{48E} = \frac{250^{3} \cdot 178\,000}{48 \cdot 2\,200\,000} = 25\,200 \text{ cm}^{4}$$

$$d = 26,5 \text{ cm}$$

$$W = \frac{d^{3}\pi}{32} \approx 1800 \text{ cm}^{3}.$$

$$M_{b} = \frac{1000 \cdot 250}{4} = 62\,500 \text{ cmkg}$$

$$M_{d} = 71600 \frac{1000}{3000} = 23\,900 \text{ cmkg}$$
Abb. 45.

$$M_{i} = 0,35 \cdot 62\,500 + 0,65\,\sqrt{62\,500^{2} + 23\,900^{2}}$$

$$= 65\,400 \text{ cmkg.}$$
Aus

$$M_{i} = \frac{d^{3}\pi}{32} k_{i}$$
folgt

$$k_{i} = \frac{65\,400}{1800} = 37\,\text{ kg/qcm.}$$
b) $n_{k} = 2000$ angenommen.

$$P = \frac{2000^{2} \cdot 1000}{300^{2}} = 44\,400\,\text{ kg}$$

$$J = \frac{250^{3} \cdot 44\,400}{48 \cdot 2\,200\,000} = 6580\,\text{ cm}^{4}$$

$$d = 19\,\text{ cm}$$

$$W = 673\,\text{ cm}^{3}.$$

$$\begin{split} M_b &= 62\,500 \,\,\mathrm{cmkg} \\ M_d &= 71\,600\,\frac{1000}{1500} = 12\,000 \,\,\mathrm{cmkg} \\ M_i &= 0.35\,\cdot\,62\,500\,+\,0.65\,\sqrt{62\,500^2 + 12\,000^2} = 63\,300 \,\,\mathrm{cmkg} \\ k_i &= \frac{63\,300}{673} = 94\,\,\mathrm{kg/qcm}\,. \end{split}$$

Dazu kommt die Beanspruchung durch die Fliehkraft infolge etwaiger Exzentrizität der umlaufenden Massen. Die anfängliche Exzentrizität sei e = 0.5 mm = 0.05 cm; nach S. 64 würde die Durchbiegung durch die Fliehkraft werden:

$$f = \frac{e}{\frac{P}{M_{\omega}^2} - 1};$$

hier ist einzusetzen: e = 0.05 cmBeispiel a) $P = 178\,000 \text{ kg}$ $M = \frac{G}{\sigma} = \frac{1000}{981} \sim 1,02 \text{ kg/cm/sek}^2$ $\omega = \frac{\pi \cdot n}{30} = \frac{\pi \cdot 3000}{30} = 314;$ $f = \frac{0,05}{\frac{178\,000}{1.02 \cdot 314^2} - 1} = 0,065 \text{ cm}.$ also Die zugehörige Kraft ist: $P' = \frac{48 \text{ f } E \text{ J}}{l^3} = \frac{48 \cdot 0,065 \cdot 2200\ 000 \cdot 25200}{250^3} = 11000 \text{ kg},$ so daß die gesamte biegende Kraft $P + P' = 1000 + 11\,000 = 12\,000$ kg, und das Biegungsmoment $M_l + M'_l = \frac{12\,000 \cdot 250}{4} = 750\,000 \text{ cmkg}$ wird. $M'_i = 0.35 \cdot 750\,000 + 0.65\,\sqrt{750\,000^3 + 12\,000^3} = 750\,000\,\,\mathrm{cmkg}$ $k_i = \frac{750\,000}{1800} = 417 \text{ kg/qcm}.$ e = 0.05 cmBeispiel b) $P = 44\,400 \text{ kg}$ $M = 1.02 \text{ kg/cm/sek}^2$ $\omega = \frac{\pi \cdot 1500}{30} = 157;$ $f = \frac{0,05}{\frac{44\,400}{1,02 \cdot 157^2} - 1} = 0,065 \text{ cm}.$ also $P' = \frac{48 \cdot 0,065 \cdot 2\,200\,000 \cdot 6580}{250^3} = 2900 \text{ kg}$ P + P' = 3900 kg $M_i + M'_i = \frac{3900 \cdot 250}{4} = 244\,000 \text{ cmkg } M'_i$ $k_i = \frac{244\,000}{673} = 363 \text{ kg/qcm}$.

Diese Beispiele zeigen, daß eine sehr gering erscheinende Exzentrizität doch eine große Steigerung der Spannung hervorruft. Deshalb sind die umlaufenden Teile sorgfältig auszuwuchten. Die Messung eines etwaigen Übergewichtes geschieht mittels besonderer, sehr empfindlicher Wagen; das Übergewicht wird durch Ausbohren der Scheiben beseitigt.
II. Laufrad.

Man denkt sich nach Stodola aus dem vollen Rad ein unendlich kleines Kreisring-Sektorstück herausgeschnitten (Abb. 46). Es sei

r der innere Radius,

b die innere axiale Dicke,

 $d \varphi$ der Winkel der beiden Seitenflächen.

Vernachlässigt man die Schubspannungen, dann sind zur Aufstellung der Gleichgewichtsbedingungen folgende Kräfte anzu-

Abb. 46.

bringen: Die Radialkraft R an der inneren Ringfläche,

die Radialkraft R + d R an der äußeren Ringfläche,

die Tangential \bar{k} raft T an jeder der beiden Seitenflächen,

die Fliehkraft Cam Schwerpunkt.

Die Kräfte T geben als Resultierende

$$T_r = 2 T \sin \frac{d \varphi}{2}$$

Gleichgewicht besteht, wenn die Summe sämtlicher radial gerich-

teter Kräfte = 0 ist, also

oder

$$+ R + d R - R - T_r = 0$$
$$C + d R - T_r = 0.$$

Zur Berechnung von C sei mit

C

 γ das spezifische Gewicht und mit

 ω die Winkelgeschwindigkeit

des Scheibenelementes bezeichnet; dann beträgt die Masse dieses Elementes

$$d M = \frac{\gamma}{g} \cdot r \cdot d \varphi \cdot b \cdot d r$$

und seine Fliehkraft

$$C = d \ M \cdot r \cdot \omega^2 = rac{\gamma}{g} \cdot r \cdot d \ \varphi \cdot b \cdot d \ r \cdot r \cdot \omega^2$$

 $= rac{\gamma}{g} \cdot b \cdot r^2 \cdot \omega^2 \cdot d \ \varphi \cdot d \ r.$

Bezeichnet man die auf l qcm bezogene Radialspannung mit σ_t und die Tangentialspannung mit σ_t , dann ist

$$\begin{split} R &= (b) \cdot (r \ d \ \varphi) \cdot \sigma_r, \\ d \ R &= b \cdot r \cdot d \ \varphi \cdot d \ \sigma_r + b \cdot d \ r \cdot d \ \varphi \cdot \sigma_r + d \ b \cdot r \cdot d \ \varphi \cdot \sigma_r, \\ T &= (b) \cdot (d \ r) \cdot \sigma_t, \\ T_r &= 2 \ T \sin \frac{d \ \varphi}{2} \text{ oder mit unendlich kleiner Vernachlässigung,} \\ &= T \ d \ \varphi = b \cdot d \ r \cdot \sigma_t \cdot d \ \varphi. \end{split}$$

Die Werte von C, d R und T_r werden in die obige Gleichgewichtsbedingung eingesetzt:

$$rac{\gamma}{g} \cdot b \cdot r^2 \cdot \omega^2 \cdot d \ arphi \cdot d \ r + b \cdot r \cdot d \ arphi \cdot d \ \sigma_r + b \cdot d \ r \cdot d \ arphi \cdot \sigma_r + d \ b \cdot r \cdot d \ arphi \cdot \sigma_r - b \cdot d \ r \cdot \sigma_t \cdot d \ arphi = 0;$$

mit $dr \cdot d\varphi$ dividiert, ergibt sich die allgemeine Differentialgleichung:

$$\frac{\gamma}{g} \cdot b \cdot r^2 \cdot \omega^2 + \frac{r}{dr} (b \cdot d\sigma_r + db \cdot \sigma_r) + b(\sigma_r - \sigma_t) = 0.$$

Diese ist mit dem Grundgesetz der Elastizität

$$\varepsilon = \frac{\sigma}{E}$$

zu verbinden, worin ε die spezifische Dehnung und E den Elastizitätsmodul bedeutet.

Durch die Spannung σ_r wird das Scheibenelement in radialer Richtung um $\frac{\sigma_r}{E}$ verlängert; die Spannung σ_t erzeugt jedoch in radialer Richtung eine Querzusammenziehung, welche von dieser Verlängerung den Betrag $\frac{m \sigma_t}{E}$ aufhebt; die gesamte radiale Verlängerung beträgt also

$$\varepsilon_r = \frac{\sigma_r - m \, \sigma_t}{E}$$

Ähnlich ergibt sich die tangentiale Dehnung

$$\varepsilon_t = \frac{\sigma_t - m \,\sigma_r}{E}$$

Beide Gleichungen werden nach σ_r und σ_t aufgelöst:

$$\sigma_r = \frac{E}{1 - m^2} (\varepsilon_r + m \varepsilon_t),$$

$$\sigma_t = \frac{E}{1 - m^2} (\varepsilon_t + m \varepsilon_r).$$

Diese Dehnungen lassen sich auch durch die Verschiebung ρ' ausdrücken, die ein Punkt B des Elementes erfährt (Abb. 47). Der innere Umfang des Ringes mit dem inneren Durchmesser r (Punkt A) ist $2 r \pi$; der Radius dehne sich um ρ aus, dann ist der neue Umfang $2(r + \rho)\pi$, also die spezifische Dehnung in Richtung des Umfanges

$$\varepsilon_t = \frac{2(r+\varrho)\pi - 2r\pi}{2r\pi} = \frac{\varrho}{r}.$$

Ein ursprünglich im Abstand r + dr befindlicher Punkt B

$$d r' = (r + d r + \varrho') - (r + \varrho) = \varrho' - \varrho + d r;$$

der eben berechnete Wert von ϱ' wird eingesetzt:

 $dr' = d\varrho + dr.$ Abb. 47.

Die spezifische Dehnung ist dann

$$\varepsilon_r = \frac{d r' - d r}{d r} = \frac{d \varrho}{d r}$$

Die berechneten Werte von ε_r und ε_t werden in die für σ_r und σ_t aufgestellten Gleichungen eingesetzt:

$$\sigma_r = \frac{E}{1 - m^2} \left(\frac{d \varrho}{d r} + m \frac{\varrho}{r} \right)$$
$$\sigma_t = \frac{E}{1 - m^2} \left(\frac{\varrho}{r} + m \frac{d \varrho}{d r} \right).$$

Die oben entwickelte allgemeine Differentialgleichung läßt sich integrieren, wenn man die veränderliche Scheibendicke b durch eine Funktion, z. B.

$$b = c \cdot r^{\beta}$$

ersetzt, in der c und β Konstante sind; die Differentialgleichung geht dann über in:

$$rac{\gamma'}{g} \cdot c \cdot r^{eta} \cdot r^2 \, \omega^2 \cdot + rac{r}{d \, r} (c \cdot r^{eta} \cdot d \, \sigma_r + c \cdot eta \cdot r^{eta - 1} \cdot d \, r \cdot \sigma_r) + \ + c \cdot r^{eta} \cdot (\sigma_r - \sigma_t) = 0, \ rac{\gamma}{q} \cdot r^2 \cdot \omega^2 + r \, rac{d \, \sigma_r}{d \, r} + (eta + 1) \, \sigma_r - \sigma_t = 0 \, .$$

oder

In diese Gleichung werden eingesetzt:

1. die beiden obigen Werte von σ_r und σ_t ,

2. der aus dem Ausdruck für σ_r sich ergebende Differentialquotient: 7 7 \ 17 / 10 7

$$\begin{aligned} \frac{d}{d} \frac{\sigma_r}{dr} &= \frac{E}{1 - m^2} \left(\frac{d^2 \varrho}{dr^2} + m \cdot \frac{r \, d \, \varrho - \varrho \, d \, r}{r^2 \, d \, r} \right); \\ \text{also} \qquad \frac{\gamma}{g} \cdot r^2 \cdot \omega^2 + r \cdot \frac{E}{1 - m^2} \left(\frac{d^2 \varrho}{dr^2} + m \cdot \frac{r \, d \, \varrho - \varrho \, d \, r}{r^2 \, d \, r} \right) + \\ &+ (\beta + 1) \frac{E}{1 - m^2} \left(\frac{d \, \varrho}{d \, r} + m \frac{\varrho}{r} \right) - \frac{E}{1 - m^2} \left(\frac{\varrho}{r} + m \frac{d \, \varrho}{d \, r} \right) = 0; \end{aligned}$$

oder vereinfacht und geordnet:

$$\frac{d^2\varrho}{dr^2} + \frac{\beta+1}{r} \cdot \frac{d\varrho}{dr} + (m\beta-1)\frac{\varrho}{r^2} + \frac{1-m^2}{E} \cdot \frac{\gamma}{g} r \, \omega^2 = 0 \, .$$

Zur Eliminierung des letzten Gliedes mit r sei gesetzt:

also

$$\begin{aligned}
\varrho &= z + a r^{3}; \\
\frac{d \varrho}{d r} &= \frac{d z}{d r} + 3 a r^{2} \\
\frac{d^{2} \varrho}{d r^{2}} &= \frac{d^{2} z}{d r^{2}} + 6 a r,
\end{aligned}$$

worin a eine noch zu bestimmende Konstante ist.

$$\begin{split} \frac{d^2 z}{d r^2} &+ 6 \, a \, r + \frac{\beta + 1}{r} \left(\frac{d \, z}{d \, r} + 3 \, a \, r^2 \right) + \frac{m \, \beta - 1}{r^2} \left(z + a \, r^3 \right) + \\ &+ \frac{1 - m^2}{E} \cdot \frac{\gamma}{g} \cdot r \, \omega^2 = 0 \,, \end{split}$$

oder geordnet:

$$\frac{d^2 z}{d r^2} + \frac{\beta + 1}{r} \cdot \frac{d z}{d r} + \frac{m \beta - 1}{r^2} \cdot z + 8 a r + a \beta r (3 + m) + \frac{1 - m^2}{E} \cdot \frac{\gamma}{g} \cdot r \omega^2 = 0.$$

Das letzte Glied mit r fällt weg, wenn

$$8 a r + a \beta r (3 + m) = -\frac{1 - m^2}{E} \cdot \frac{\gamma}{g} \cdot r \omega^2$$

gesetzt wird; hieraus die Konstante

$$a = -\frac{1-m^2}{E} \cdot \frac{\gamma}{g} \cdot \frac{\omega^2}{8+\beta (3+m)}.$$

Die Differentialgleichung geht also über in:

$$\frac{d^2z}{dr^2} + \frac{\beta+1}{r} \cdot \frac{dz}{dr} + \frac{m\beta-1}{r^2} \cdot z = 0$$

Zur Auflösung dieser Gleichung sei:

 $z = c \cdot r^{\varphi}$

gesetzt; also

$$\frac{dz}{dr} = c \cdot \psi \cdot r^{\psi - 1}$$

und

$$\frac{d^2 z}{d r^2} = c \cdot \psi (\psi - 1) \cdot r^{\psi - 2};$$

es wird dann nach Einsetzung dieser Werte:

$$c\cdot\psi(\psi-1)\cdot r^{\psi-2}+rac{p+1}{r}\cdot c\cdot\psi\cdot r^{\psi-1}+rac{meta-1}{r^2}\cdot c\cdot r^{\psi}=0$$

oder vereinfacht und geordnet:

$$\psi^2 + \beta \psi + m \beta - 1 = 0$$

Hieraus

$$\psi_1 = -\frac{\beta}{2} + \sqrt{1 - m\beta + \frac{\beta^2}{4}},$$

$$\psi_2 = -\frac{\beta}{2} - \sqrt{1 - m\beta + \frac{\beta^2}{4}}.$$

Nach Einsetzen dieser Werte in die obige Gleichung für z ergibt sich folgende allgemeine Lösung der letzten Differentialgleichung:

$$\varrho = a r^3 + c_1 \cdot r^{\psi_1} + c_2 \cdot r^{\psi_2}$$
 ,

worin a, ψ_1 und ψ_2 die oben berechneten Werte haben und c_1 sowie c_2 die aus den Grenzbedingungen zu ermittelnden Integrationskonstanten sind.

Aus der letzten Gleichung ergibt sich

$$\frac{d \varrho}{d r} = 3 a r^2 + c_1 \psi_1 r^{\psi_1 - 1} + c_2 \psi_2 r^{\psi_2 - 1}$$

Dieser Wert für $\frac{d \varrho}{d r}$ sowie der zuletzt berechnete Wert von ϱ

werden in die beiden letzten für σ_r und σ_t berechneten Ausdrücke eingesetzt:

$$\begin{split} \sigma_r &= \frac{E}{1 - m_2} \left[3 \ a \ r^2 + c_1 \ \psi_1 \ r^{\psi_1 - 1} + c_2 \ \psi_2 \ r^{\psi_2 - 1} + \\ &+ \frac{m}{r} \left(a \ r^3 + c_1 \ r^{\psi_1} + c_2 \ r^{\psi_2} \right) \right], \\ \sigma_t &= \frac{E}{1 - m^2} \left[\frac{1}{r} \left(a \ r^3 + c_1 \ r^{\psi_1} + c_2 \ r^{\psi_2} \right) + \\ &+ m \left(3 \ a \ r^2 + c_1 \ \psi_1 \ r^{\psi_1 - 1} + c_2 \ \psi_2 \ r^{\psi_2 - 1} \right) \right]. \end{split}$$

Durch Vereinfachung entsteht:

$$\sigma_r = \frac{E}{1 - m^2} \left[a r^2 (3 + m) + c_1 r^{\psi_1 - 1} (\psi_1 + m) + c_2 r^{\psi_2 - 1} (\psi_2 + m) \right],$$

$$\sigma_t = \frac{E}{1 - m_2} \left[a r^2 (1 + 3 m) + c_1 r^{\psi_1 - 1} (1 + m \psi_1) + c_2 r^{\psi_2 - 1} (1 + m \psi_2) \right]$$

Der Schnitt durch die Radscheibe erhält die Gestalt nach Abb. 48 und wird in eine Anzahl, z. B. 6, Teile I bis VI mit den Radien r_0 bis r_6 geteilt. Die kleinste Stärke b_3 wird angenommen und zunächst gradlinig begrenzt bis zum Wellenmittel auf b_0 zunehmend aufgezeichnet; letztere Dicke kann nach der im folgenden dargestellten Berechnungsweise einer Scheibe gleicher Festigkeit angenommen werden:

Die Bedingung für eine solche Scheibe ist

$$\sigma_r = \sigma_t = \sigma = \text{konst.}$$

Durch Einführung dieser Bedingung in die allgemeine Differentialgleichung (S. 69) geht diese über in:

$$\frac{\gamma}{g} \cdot b \cdot r^2 \cdot \omega^2 + \frac{r}{dr} \left(b \cdot d \sigma + d b \cdot \sigma \right) + b \left(\sigma - \sigma \right) = 0$$

oder mit $d \sigma = 0$ und mit σ , b und r dividiert:

$$\frac{\frac{\gamma}{g} \cdot \frac{r \,\omega^2}{\sigma} + \frac{1}{b} \cdot \frac{d \,b}{d \,r} = 0}{\frac{d \,(\log \operatorname{nat} b)}{d \,r} = -\frac{\gamma}{g} \cdot \frac{r \,\omega^2}{\sigma};}$$

oder

$$\log \operatorname{nat} b = -\frac{\gamma}{g} \cdot \frac{\omega^2}{\sigma} \cdot \frac{r^2}{2} + k';$$

hieraus

$$b = e^{-\frac{\gamma}{g} \cdot \frac{\omega^2}{\sigma} \cdot \frac{r^2}{2} + k'} = \frac{e^{k'}}{\frac{\gamma}{g} \cdot \frac{\omega^2}{\sigma} \cdot \frac{r^2}{2}} = \frac{k}{\frac{\gamma}{e^g} \cdot \frac{\omega^2}{\sigma} \cdot \frac{r^2}{2}}$$
gesetzt.

Da diese Gleichung für alle Radien, also auch für r = 0 gilt, so läßt sich mit r = 0 die Integrationskonstante k bestimmen; aus

 $b_{0} = \frac{k}{e^{0}}$ $b_{0} = \frac{k}{e^{0}}$ $b_{0} = \frac{k}{e^{0}}$ $b_{0} = \frac{k}{e^{0}}$ $b_{0} = \frac{k}{e^{0}}$ worin b_{0} die gedachte Scheibendicke im Wellenmittel bedeutet; es wird demnach $b = \frac{b_{0}}{\frac{\gamma}{e^{\frac{\gamma}{g}}} \cdot \frac{\omega^{2}}{\sigma} \cdot \frac{r^{2}}{2}} \quad \text{oder} \quad b_{0} = b \cdot e^{\frac{\gamma}{g}} \cdot \frac{\omega^{2}}{\sigma} \cdot \frac{r^{2}}{2}$

Nimmt man, wie oben angegeben, $b_3 = b$ an, so läßt sich b_0 mit $r = r_3$ berechnen.

Nun fehlt noch eine Gleichung für die größte zulässige Kranzstärke δ (Abb. 49), die so zu bemessen ist, daß im Querschnitt ABdie vorher angenommene Spannung σ nicht überschritten wird. Der Kranz wird zunächst als frei umlaufender Ring betrachtet, die tangentiale Zugspannung seines Querschnittes sowie die radiale Verschiebung seiner Innenseite (an AB) berechnet und letztere gleich der radialen Verschiebung der Scheibe bei AB gesetzt.

Die Spannung σ_u eines rotierenden Ringes berechnet sich nach Abb. 50 wie folgt:

Am Ringelement $r_k \cdot d \alpha \cdot b_5 \cdot \delta$ greift die Fliehkraft

$$d C = \left(\frac{\gamma}{g} \cdot r_k \cdot d \alpha \cdot b_5 \cdot \delta\right) \cdot r_k \cdot \omega^2$$

an. Nimmt man DE als gefährliche Querschnitte an, so wird die Summe der zu DE senkrecht gerichteten Komponenten

$$C = \int dC \cdot \sin \alpha = \int_{\alpha=0}^{\alpha=\pi} \frac{\gamma}{g} \cdot r_{\mathbf{k}}^2 \cdot b_5 \cdot \delta \cdot \omega^2 \cdot d\alpha \sin \alpha = 2 \frac{\gamma}{g} \cdot r_{\mathbf{k}}^2 \cdot b_5 \cdot \delta \cdot \omega^2.$$

Die beanspruchten Querschnitte haben die Größe

$$F = 2 b_5 \delta;$$

also Spannung

$$\sigma_u = \frac{\gamma}{g} u^2.$$

Abb. 50.

es∙sinα'

 σ_u hängt demnach nur von der Umfangsgeschwindigkeit des Ringes ab.

Dazu kommt die Fliehkraft der Schaufeln, die auf 1 qcm des Umfanges die radial gerichtete Spannung σ_s erzeugen möge; die zugehörige, auf einem Bogenelement $r \cdot d \alpha'$ wirkende, senkrecht zu DE gerichtete Komponente dieser Fliehkraft beträgt

$$r \cdot d \alpha' \cdot b_5 \sigma_s \cdot \sin \alpha'$$

Ihre Resultierende ergibt sich durch Integration über den Halbkreis zu

$$C_s = \int_{\alpha'=0}^{\alpha=\pi} r \cdot d \alpha' \cdot b_5 \cdot \sigma_s \cdot \sin \alpha' = 2 b_5 r \sigma_s.$$

Die dadurch in den Kranzquerschnitten DE erzeugte Spannung beträgt

$$\frac{C_s}{F} = \frac{2 b_5 r \sigma_s}{2 b_5 \delta} = \frac{r}{\delta} \sigma_s;$$

also die Summe der Kranzspannungen für den frei rotierenden Ring

$$\sigma'_k = \sigma_u + \frac{r}{\delta} \sigma_s.$$

Der Kranz rotiert jedoch nicht frei, sondern hängt mit der Scheibe in einer Dicke b' nach Abb. 49 (oder b_3 nach Abb. 48) zusammen. Die hier herrschende Spannung σ erzeugt eine auf DEwirkende Kraft von der Größe

$$2 b' r \sigma$$
,

welche in den Querschnitten DE die Spannung um

$$\frac{2 b' r \sigma}{2 b_5 \delta} = \frac{b'}{b_5} \cdot \frac{r}{\delta} \cdot \sigma$$

vermindert. Also beträgt die gesamte, durch den Kranz erregte Spannung

$$\sigma_k = \sigma_u + \frac{r}{\delta} \sigma_s - \frac{b'}{b_5} \cdot \frac{r}{\delta} \cdot \sigma.$$

Die zugehörige Dehnung beträgt

$$\varepsilon_k = \frac{\sigma_k}{E}$$

und die radiale Verschiebung eines Punktes auf der Innenseite des Kranzes angenähert (wie S. 70)

$$arrho_{m{k}} = arepsilon_{m{k}} \cdot r = rac{r}{E} \left(\sigma_u + rac{r}{\delta} \ \sigma_s - rac{b'}{b_5} \cdot rac{r}{\delta} \cdot \sigma
ight).$$

Die radiale Verschiebung eines Punktes der Scheibe an derselben Stelle wurde nach S. 70 zu

$$\varrho = \varepsilon_t \cdot r = \frac{\sigma_t - m \, \sigma_r}{E} \cdot r,$$

also mit

$$\sigma_t = \sigma_r = \sigma$$
$$\varrho = \frac{1 - m}{E} \cdot r \cdot \sigma$$

berechnet.

zu

Beide Verschiebungen werden gleichgesetzt; also

$$\varrho_{k} = \varrho$$
oder
$$\frac{r}{E} \left(\sigma_{u} + \frac{r}{\delta} \sigma_{s} - \frac{b'}{b_{5}} \cdot \frac{r}{\delta} \sigma \right) = \frac{1 - m}{E} \cdot r \cdot \sigma;$$

hieraus größte Kranzstärke

$$d_{\max} = \frac{\frac{b}{b_5}\sigma - \sigma_s}{\sigma_u - (1 - m)\sigma} \cdot r.$$

Nach diesen Darlegungen gestaltet sich der Berechnungsgang für ein Laufrad mit Beziehung auf Abb. 48 wie folgt: Die kleinste Scheibendicke b_3 wird angenommen, etwa $b_3 = 0.01 \times \text{Raddurch-}$ messer, kleinster Wert $b_3 = 10$ bis 12 mm, das Scheibenprofil wird zunächst gradlinig begrenzt, die größte Scheibendicke im Wellenmittel beträgt nach S. 74

$$b_0 = b_3 e^{\frac{\gamma}{g}} \cdot \frac{r_3^2 \omega^2}{2 \sigma},$$

wobei σ bis 1200 kg für SM-Stahl eingesetzt werden kann.

Die Flichkraft der Schaufeln beträgt bei einem gesamten Schaufelgewicht von Q kg und einem mittleren Radius R des Schaufelkranzes

$$C'_{s}=rac{Q}{g} R \omega^{2};$$

also die durch C's erzeugte Spannung am äußeren Kranzumfang

$$\sigma_s = \frac{C'_s}{2 r_6 \pi b_5};$$

$$\sigma_u = \frac{\gamma}{g} u^2;$$

ferner nach S. 75

demnach $\delta_{\max} = \frac{\frac{b_3}{b_5}\sigma - \sigma_s}{\sigma_s - (1 - m)\sigma} \cdot r,$

wobei m = 0,3 sowie b_5 anzunehmen ist.

Das Radprofil ist in 6 Teile zerlegt; die einzelnen Teile werden durch Kurven von der Form

$$b = c r^{\beta}$$

begrenzt; die Werte von β werden wie folgt festgelegt:

I. Teil: Nabe mit der konstanten Breite b_1 :

$$\begin{split} \beta_I &= 0 \\ a_I &= -\frac{1-m^2}{E} \cdot \frac{\gamma}{g} \cdot \frac{\omega^2}{8} \qquad (\text{nach S. 72}) \\ \psi'_1 &= +1; \ \psi'_2 &= -1 \qquad (\text{nach S. 72}). \end{split}$$

Die Integrationskonstanten c'_1 und c'_2 werden aus den S. 73 fett gedruckten Formeln für σ_r und σ_t berechnet. Es sind hier einzusetzen:

a) $\sigma_{r_0} = 0$,

b) die oben berechneten Werte für a_I , ψ'_1 und ψ'_2 .

In den sich ergebenden Ausdrücken für c'_1 und c'_2 erscheint σ_t vorläufig als Unbekannte.

II. Teil: r_2 und b_2 werden nach Abb. 48 angenommen. Die **Profilgleichung liefert**

$$b_{1} = c r_{1}^{\beta_{II}} \quad \text{und} \quad b_{2} = c r_{2}^{\beta_{II}};$$
$$\frac{b_{1}}{b_{2}} = \left(\frac{r_{1}}{r_{2}}\right)^{\beta_{II}};$$
$$\log b_{1} - \log b_{2}$$

hieraus

also

 $\beta_{II} = \frac{108 \, r_1}{\log r_1 - \log r_2} \, .$ Danach sind a_{II} , ψ_1'' und ψ_2'' wie beim I. Teil zu berechnen und in die Ausdrücke von σ_r und σ_t einzusetzen. Dieselben Gleichungen sind auch mit r_1 , a_I , ψ'_1 und ψ'_2 zu bilden, so daß man sowohl für σ_r als auch für σ_t je 2 Gleichungen erhält. Nach Elimination von σ_r und σ_t bleiben 2 Gleichungen, die nach c''_1 und c''_2 aufgelöst werden und nur noch σ_{t_0} als Unbekannte enthalten.

Ebenso werden die Konstanten $c_1^{\prime\prime\prime}$ und $c_2^{\prime\prime\prime}$ für den dritten und jeden folgenden Teil berechnet. Jede dieser Gleichungen enthält noch σ_{t_0} .

Um σ_{t_0} zu berechnen, setzt man in die Spannungsgleichung

$$\sigma_r = \frac{E}{1-m^2} [a r^2 (3+m) + c_1 r^{\psi_1 - 1} (\psi_1 + m) + c_2 r^{\psi_2 - 1} (\psi_2 + m)]$$

die Werte des 6. Teiles, also a_6 , r_6 , c_1^{VI} , c_2^{VI} , ψ_1^{VI} , ψ_2^{VI} , sowie als Randspannung $\sigma_{r_6} = \sigma_8$ die durch die Fliehkraft der Schaufeln erzeugte Spannung ein und löst die erhaltene Gleichung nach σ_{t_0} auf. Diesen Wert setzt man in die Ausdrücke für die Integrationskonstanten c_1 , c_2 , c'_1 , c''_2 usw. ein und erhält letztere als Zahlenwerte. Durch Einsetzen derselben in die Spannungsgleichungen für σ_t und σ_t ergaben sich die in den einzelnen Querschnitten herrschenden Spannungen. Durch Anbohrungen können an einzelnen Stellen die Spannungen erheblich steigen.

Fünfter Teil.

Turbinen für besondere Zwecke.

I. Abdampfturbinen.

Einer der Hauptvorzüge der Dampfturbine gegenüber der Kolbenmaschine ist die gute Ausnutzung eines hohen Vakuums. An den Stellen, wo genügend Abdampf von atmosphärischer Spannung zur Verfügung steht, ist deshalb die Dampfturbine vorzüglich geeignet, das Wärmegefühl dieses Abdampfes bis zum Kondensatordruck herab zu Kraftzwecken auszunutzen. Solche Stellen sind ortsfeste Maschinen, die aus praktischen Gründen nur mit Auspuff betrieben werden können, z. B. Dampfhämmer, Förder- und Walzenzugmaschinen. Das Mollierdiagramm zeigt, daß im Abdampf dieser Maschinen recht beträchtliche Wärmemengen enthalten sind. Expandiert z. B. trocken gesättigter Dampf von 1 at abs. adiabatisch auf 0,05 at abs., so stehen in jedem Kilogramm Dampf 103 WE zur Verfügung. Läßt man zum Vergleich 1 kg Dampf von 12 at abs. und 300° auf 1 at abs. adiabatisch expandieren, dann beträgt das Wärmegefäll 120 WE, also nicht viel mehr.

Wegen der ungleichmäßigen Abdampflieferung und der Betriebspausen der genannten Auspuffmaschinen leitet man jedoch den Abdampf nicht unmittelbar in die Turbine, sondern zunächst in einen Wärmespeicher (Dampfakkumulator). Dieser ist eine mit Wasser oder auch nur mit Dampf gefüllter geschlossener Zylinder oder nach Art eines Gasbehälters gebaute Glocke oder auch ein dünnwandiger Dampfkessel, in dessen Wasserinhalt der Abdampf sich niederschlägt. Im Beharrungszustand ist der Druck im Innern des Wärmespeichers gleich dem normalen Auspuffdruck und der Dampf tritt mit diesem Druck in die Turbine ein.

Liefert die Auspuffmaschine mehr Dampf, als die Turbine augenblicklich gebraucht, dann steigt der Druck im Wärmespeicher etwas. Die Drucksteigerung ist um so kleiner, je größer der Wasserinhalt des Speichers ist. Liefert dagegen die Auspuffmaschine weniger Dampf, als die Turbine augenblicklich gebraucht oder steht sie gerade still, dann gibt der Wärmespeicher aus seinem Vorrat den Dampf für die Turbine ab, wobei der Druck natürlich etwas abnimmt. Um ein zu hohes Steigen des Speicherdruckes zu verhindern, ist ein Sicherheitsventil erforderlich; zum Schutz gegen Entstehung eines Vakuums im Speicher bei zu geringer Dampflieferung dient ein Rückschlagventil.

Eine in dieser Weise arbeitende Turbine ist eine reine Abdampfturbine, die sich in ihrer Bauart nur wenig von den gebräuchlichen Turbinen unterscheidet. Sie beginnt wegen des fehlenden Hochdruckteiles mit größeren Querschnitten, enthält auch deshalb weniger Stufen und wird sowohl als Gleichdruck- wie auch als reine Überdruckturbine ausgeführt. In letzterem Fall wird häufig zur Aufnahme des Axialaschubes und zur Ermöglichung der großen Austrittsquerschnitte der Dampfstrom geteilt (Doppelturbine): Der Dampf tritt in der Mitte der Schaufelung der Lauftrommel ein und strömt nach beiden Seiten in axialer Richtung nach den beiden Anschlußstutzen zum Kondensator oder umgekehrt.

Schwankt die Leistung der dampfliefernden Maschine zu sehr oder hat man mit längeren Betriebspausen derselben zu rechnen, dann schaltet man nach Abb. 51^{1}) der geteilten Niederdrucktrommel einen mit Frischdampf betriebenen Hochdruckteil vor (**Zweidruck**turbine von Brown, Boveri & Co., Mannheim), die wie folgt arbeitet: Für gewöhnlich ist nur der Niederdruckteil in Betrieb. Das Einlaßventil unterhalb A wird durch eine Feder belastet, auf die von unten eine mit der Ventilspindel verbundene Platte drückt; auf letztere wirkt Öldruck, der sich durch den Regler bei steigender Turbinenbeanspruchung erhöht und damit das Einlaßventil weiter hebt.

Steigt bei ganz geöffnetem Einlaßventil die Turbinenleistung weiter, oder genügt die Abdampfmenge nicht mehr, dann wirkt der steigende Öldruck auf die Federplatte des Einlaßventiles C des Hochdruckteiles, dessen Ventilfeder B auf stärkeren Druck eingestellt ist und läßt Frischdampf in den Hochdruckteil eintreten.

II. Gegendruckturbinen.

Wie bei den Kolbenmaschinen läßt sich auch bei Turbinen der Abdampf zu Heizzwecken ausnützen, besonders in chemischen Fabriken, Papier-, Zuckerfabriken, Brauereien usw. Die Verwendung von Abdampf ist wirtschaftlicher als die von gedrosseltem

¹⁾ Nach Stodola, Die Dampfturbinen.

Frischdampf, weil hier ein Teil der durch Drosselung vernichteten Energie in nutzbare Arbeit umgesetzt wird.

Die reine Gegendruckturbine ist wie eine gewöhnliche Turbine ohne Niederdruckteil gebaut. Zur Gleichhaltung des Gegendruckes ist ein Druckregler erforderlich, der gewöhnlich als

Seufert, Dampfturbinen. 2. Aufl.

Quecksilberventil ausgebildet ist und bei zu hohem Gegendruck, d. h. großer Leistung der Turbine oder geringem Bedarf an Heizdampf den überschüssigen Dampf ins Freie entweichen läßt. Wird jedoch die Leistung der Turbine im Verhältnis zur erforderlichen Heizdampfmenge zu klein, dann sinkt der Gegendruck und der Druckregler läßt gedrosselten Frischdampf in die Heizleitung.

Will man der Turbine Heizdampf von verschiedenem Druck, z. B. 1-2 at und 3-5 at gleichzeitig oder überhaupt Dampf von höherer Spannung entnehmen, so verwendet man vorteilhaft eine Anzapfturbine, im ersten Fall also eine Anzapf-Gegendruckturbine, in letzterem Falle eine Anzapfturbine mit Kondensation. Der Dampf von höherem Druck wird dabei einer mittleren Gefällstufe entnommen. Wenn kein Heizdampf entnommen wird, arbeitet die Anzapfturbine wie eine gewöhnliche Turbine; wird dagegen nur Heizdampf von niederer Spannung gebraucht, dann ist ihre Arbeitsweise gleich der einer Gegendruckturbine. An der Anzapfstelle befindet sich zur Gleichhaltung des Zwischendruckes ein Überströmventil.

III. Schiffsturbinen.

Der Bau von Turbinen zum Antrieb von Schiffsschrauben bietet zwei Schwierigkeiten:

- a) Die Schiffsschraube verlangt zur Erzielung eines guten Wirkungsgrades verhältnismäßig geringe Umlaufzahlen, während die Turbine nur bei verhältnismäßig hohen Drehzahlen mit günstigem Wirkungsgrad arbeitet;
- b) die Dampfturbine ist bis jetzt noch nicht mit praktischem Erfolg umsteuerbar gebaut worden; deshalb ist eine besondere Rückwärtsturbine notwendig, an deren Wirtschaftlichkeit allerdings nicht die hohen Ansprüche der Marschturbine gestellt zu werden brauchen.

Man teilt durch Verwendung von zwei bis vier Schrauben mit Einzelantrieb die Gesamtleistung und gibt den Turbinenrädern möglichst große Durchmesser und viele Stufen, um bei großer Umfangsgeschwindigkeit die Umlaufzahl herabzudrücken; gleichzeitig erhält man kleinere Schraubendurchmesser, die höhere Drehzahlen vertragen. Zur Verkürzung der Baulängen legt man beim Vierwellen-Antrieb Hoch- und Niederdruckturbine auch nebeneinander und treibt mit jedem Teil eine Welle an. Als Hochdruckteil werden mehrfach hintereinandergeschaltete Curtisräder, als Niederdruckteil die vielstufige Gleich- oder Überdruckturbine verwendet. Die normalen minutlichen Drehzahlen bewegen sich zwischen 200 und 500. Schiffsturbinen.

Die Rückwärtsturbine läuft gewöhnlich im Vakuum leer mit und erhält bei der Rückwärtsfahrt ihren Dampf durch ein besonderes Ventil, während die Vorwärtsturbine im Vakuum leer mitläuft. Die erstere besitzt viel weniger Stufen als die letztere.

Um gleichzeitig die günstigste Umlaufzahl der Turbine mit derienigen der Schraube zu verbinden, ist die Einschaltung einer Übersetzung ins Langsame erforderlich. Die Westinghouse-Gesellschaft hat den Versuch gemacht, 3000 PS durch Zahnräder zu übertragen. Größere praktische Erfolge hatte jedoch der vom

Abb. 52.

Abb. 53.

Stettiner Vulkan ausgeführte Föttinger-Transformator, der zugleich umsteuerbar ist und wie folgt arbeitet: Auf einer gemeinsamen Welle sitzt die Dampfturbine und eine Kreisel-Wasserpumpe. Auf einer zweiten Welle, deren Achse in die Verlängerung der ersten fällt, sitzt eine Wasserturbine und die Schiffsschraube. Das Druckwasser der Kreiselpumpe strömt in die Wasserturbine und von da in die Kreiselpumpe zurück. Die Umsteuerung erfolgt entweder durch Anordnung zweier Kreisläufe, von denen die eine Turbine die Schraube für Vorwärtsfahrt, die zweite für Rückwärtsfahrt antreibt und die durch einen entlasteten Steuerschieber abwechselnd eingeschaltet oder entleert werden oder mit einem einzigen Kreislauf, einem verschiebbaren Leitrad und zwei Laufschaufelsystemen der Wasserturbine für entgegengesetzte Drehrichtungen. Letztere Ausführung ist in Abb. 52 und 531) dargestellt: I ist die Welle der Dampf-

¹) Nach Stodola, Die Dampfturbinen.

Schiffsturbinen.

turbine und der Kreiselpumpe A, II die Welle der zweistufigen Wasserturbine und der Schiffsschraube; die Wasserturbine ist zweistufig: die Leitschaufeln sind in einem verschiebbaren Gehäuse angeordnet. Bei der Schaltung Abb. 52 wirken die Leitschaufeln B auf die erste Stufe mit den Laufschaufeln C und die Leitschaufeln Dauf die zweite Stufe mit den Laufschaufeln E. Die Rückwärtsschaltung erfolgt durch die Hebelverbindung LJK, welche nach Abb. 53 die Leitschaufeln verschiebt. Jetzt wirken die Leitschaufeln Fauf die erste Stufe mit den Laufschaufeln G und die Leitschaufeln Hauf die zweite Stufe mit den Laufschaufeln E. Eine Ausführung mit zwei getrennten Kreisläufen zeigt Abb. 541), S. 84, aus der auch die Gesamtanordnung der Dampfturbine hervorgeht. Der Vorwärtskreislauf A B C D besitzt eine zweistufige Wasserturbine. A ist die Kreiselpumpe. B sind die Laufschaufeln der ersten Stufe. C die Leitschaufeln für die Laufschaufeln der zweiten Stufe D. E ist die Kreiselpumpe für den einstufigen Rückwärtskreislauf, dessen Leitschaufeln mit F und dessen Laufschaufeln mit G bezeichnet sind. A. C. E und F sind mit der Welle der Dampfturbine fest verbunden und drehen sich mit dem Gehäuse, D ist auf der Schraubenwelle festgekeilt. D, B und G sind unter sich verbunden und drehen sich mit der Schraubenwelle. Der Steuerschieber leitet das Wasser durch die Kanäle P und N in den Vorwärtskreislauf, durch die Kanäle Q und O in den Rückwärtskreislauf.

¹⁾ Nach Stodola, Die Dampfturbinen.

Anleitung zur Durchführung von Versuchen an Dampfmaschinen, Dampfkesseln, Dampfturbinen und Verbrennungskraft-

maschinen. Zugleich Hilfsbuch für den Unterricht in Maschinenlaboratorien technischer Lehranstalten. Von Studienrat Oberingenieur Franz Seufert in Stettin. Sechste, erweiterte Auflage. Mit 52 Abbildungen. 1921. GZ. 3.5

- Bau und Berechnung der Verbrennungskraftmaschinen. Eine Einführung von Studienrat a. D. Franz Seufert, Oberingenieur für Wärmewirtschaft. Dritte, verbesserte Auflage. Mit 94 Textabbildungen und 2 Tafeln. 1922. GZ. 2.8
- Technische Wärmelehre der Gase und Dämpfe. Eine Einführung für Ingenieure und Studierende. Von Oberingenieur, Studienrat Franz Seufert in Stettin. Zweite, verbesserte Auflage. Mit 26 Textabbildungen und 5 Zahlentafeln. 1921. GZ. 2.1

Verbrennungslehre und Feuerungstechnik. Von Oberingenieur, Studienrat Franz Seufert in Stettin. Mit 19 Textabbildungen, 15 Zahlentafeln und vielen Berechnungsbeispielen. 1921. GZ. 2.8

Leitfaden der technischen Wärmemechanik. Kurzes Lehrbuch der Mechanik der Gase und Dämpfe und der mechanischen Wärmelehre. Von Professor Dipl.-Ing. W. Schüle. Dritte, vermehrte und verbesserte Auflage. Mit 93 Textfiguren und 3 Tafeln. 1922. GZ. 5

Technische Thermodynamik. von Professor Dipl-Ing. W. Schüle.

- Erster Band: Die für den Maschinenbau wichtigsten Lehren nebst technischen Anwendungen. Vierte, neubearbeitete Auflage. Mit 225 Textfiguren und 7 Tafeln. Berichtigter Neudruck 1923. Gebunden GZ. 15
- Zweiter Band: Höhere Thermodynamik mit Einschluß der chemischen Zustandsänderungen nebst ausgewählten Abschnitten aus dem Gesamtgebiet der technischen Anwendungen. Mit 228 Textfiguren und 5 Tafeln. 1923. Gebunden GZ. 15
- Graphische Thermodynamik und Berechnen der Verbrennungsmaschinen und Turbinen. von M. Seiliger, Ingenieur-Technolog. Mit 71 Abbildungen, 2 Tafeln und 14 Tabellen im Text. 1922. GZ. 6.4; gebunden GZ. 8
- Der Einfluß der rückgewinnbaren Verlustwärme des Hochdruckteils auf den Dampfverbrauch der Dampfturbinen. von Privatdozent Dr.-Ing. Georg Forner in Berlin. Mit 10 Textabbildungen und 8 Zahlentafeln. 1922. GZ. 1.5

Die Grundzahlen (GZ.) entsprechen den ungefähren Vorkriegspreisen und ergeben mit dem jeweiligen Entwertungsfaktor (Umrechnungsschlüssel) vervielfacht den Verkaufspreis. Über den zur Zeit geltenden Umrechnungsschlüssel geben alle Buchhandlungen sowie der Verlag bereitwilligst Auskunft. Kolbendampfmaschinen und Dampfturbinen. Ein Lehr- und Handbuch für Studierende und Konstrukteure. Von Professor Heinrich Dubbel, Ingenieur. Sechste, vermehrte und verbesserte Auflage. Mit 566 Textfiguren. 1923.

Gebunden GZ. 11

- Technische Untersuchungsmethoden zur Betriebskontrolle, insbesondere zur Kontrolle des Dampfbetriebes. Zugleich ein Leitfaden für die Übungen in den Maschinenbaulaboratorien technischer Lehranstalten. Von Professor Julius Brand in Elberfeld. Mit einigen Beiträgen von Dipl.-Ing. Oberlehrer Robert Heermann. Vierte, verbesserte Auflage. Mit 277 Textabbildungen, 1 lithographischen Tafel und zahlreichen Tabellen. 1921. Gebunden GZ. 9
- F. Tetzner, Die Dampfkessel. Lehr- und Handbuch für Studierende Technischer Hochschulen, Schüller höherer Maschinenbauschulen und Techniken sowie für Ingenieure und Techniker. Siebente, erweiterte Auflage von Studienrat O. Heinrich in Berlin. Mit 467 Textabbildungen und 14 Tafeln. 1923. Gebunden GZ. 8
- Wasserkraftmaschinen. Eine Einführung in Wesen, Bau und Berechnung neuzeitlicher Wasserkraftmaschinen und -Anlagen. Von Dipl.-Ing. L. Quantz in Stettin. Vierte, erweiterte und verbesserte Auflage. Mit 179 Textfiguren. 1922. GZ. 3
- Kreiselpumpen. Eine Einführung in Wesen, Bau und Berechnung neuzeitlicher Kreiseloder Zentrifugalpumpen. Von Dipl.-Ing. L. Quantz in Stettin. Mit 109 Textabbildungen. 1922. GZ. 38
- Hilfsbuch für den Maschinenbau. Für Maschinentechniker sowie für den Unterricht an technischen Lehranstalten. Unter Mitwirkung von Fachgelehrten heraus-gegeben von Oberbaurat Fr. Freytag †, Professor i. R. Se chste, erweiterte und ver-besserte Auflage. Mit 1288 in den Text gedruckten Figuren, 1 farbigen Tafel und 9 Kon-Gebunden GZ, 12 struktionstafeln. 1920.
- Die Technologie des Maschinentechnikers. Von Professor Ingenieur Karl Meyer in Köln. Fünfte, verbesserte Auflage. Mit 431 Textfiguren, 1920. Gebunden GZ. 9

- Einführung in die Mechanik mit einfachen Beispielen aus der Flugtechnik. Von Professor Dr. Th. Pöschl in Prag. Mit 102 Textabbildungen. 1917. GZ. 3.2
- Lehrbuch der technischen Mechanik für Ingenieure und Studierende. Zum Gebrauche bei Vorlesungen an Technischen Hochschulen und zum Selbststudium. Von Professor Dr.-Ing. Th. Pöschl in Prag. Mit 206 Abbildungen. 1923. Erscheint im Frühjahr 1923
- Grundzüge der technischen Mechanik des Maschineningenieurs. Ein Leitfaden für den Unterricht an maschinentechnischen Lehranstalten. Von Professor Dipl.-Ing. P. Stephan, Regierungs-Baumeister. Mit 283 Textabbildungen. 1923. GZ. 2.5
- Technische Elementar Mechanik. Grundsätze mit Beispielen aus dem Maschinenbau. Von Professor Dipl-Ing. Rudolf Vogdt in Aachen. Zweite, verbesserte und erweiterte Auflage. Mit 197 Textfiguren. 1922. GZ. 2.5

Die Grundzahlen (GZ.) entsprechen den ungefähren Vorkriegspreisen und ergeben mit dem jeweiligen Entwertungsfaktor (Umrechnungsschlüssel) vervielfacht den Verkaufspreis. Über den zur Zeit geltenden Umrechnungsschlüssel geben alle Buchhandlungen sowie der Verlag bereitwilligst Auskunft.