STELLINGEN

I

De door Heisenberg en Pauli gegeven definitie van dif-
ferentiatie van een veelterm in g-getallen naar een dezer g-getallen
is onbruikbaar voor de ontwikkeling van een algemeene quantum-
theorie voor golfvelden.

Z. Phys. 56, 1, 1929.
I1

Ten onrechte meent Schonberg, dat een uitbreiding van de
kanonieke theorie der gequantiseerde golfvelden van Heisenberg
en Pauli tot het geval van velden van deeltjes, die de Fermi-
Dirac statistiek volgen, onmogelijk is.

111

De wijze, waarop Novobatzky het electromagnetische veld
quantiseert, verschilt sn wezen niet van de methode van Fermi,
doch om de nevenvoorwaarden te vermijden, waaraan volgens
den laatste de situatiefunctie zou moeten voldoen, wordt de

relativistische covariantie van het formalisme opgegeven.
Z. Phys. 111, 292, 1938.

Physica 5, 961, 1938.

Iv

Er zijn redenen om aan te nemen, dat het voorschrift, volgens
hetwelk in de golfmechanica uit den operator F,, van een
waarneembare grootheid de gemiddelde waarde dezer grootheid
wordt berekend, bij z.g. tweede quantiseering der golfvelden slechts
dan tot den juisten operator voor de gemiddelde waarde dezer
grootheid zal voeren, indien de lading-getransformeerde en de

ladlng inverse van F,, elkanders tegengestelde zijn.
F. J. Belinfante, proefschr. Leiden 1939, blz. 34.

\%

Het is mogelijk, een algemeen voorschrift te geven, volgens
hetwelk men uit de Lagrangiaansche functie een symme-
trischen energie-impuls-dichtheidstensor kan afleiden zonder ge-

bruik te maken van de methode van Hilbert.
Gottinger Nachr. 1915, 395.



VI

Het ware wenschelijk, proeven over adiabatische demagneti-
satie ook met waterhoudende ceriumzouten uit te voeren.

VII

Het ware van belang, de temperatuur-afhankelijkheid van de
ferromagnetische anisotropie van kubische kristallen ook in het
temperatuurgebied van vloeibaar helium te kennen.

VIII

Het ware wenschelijk, bij het onderwijs in de natuurkunde
aan de scholen voor voorbereidend hooger en middelbaar onderwijs
de beginselen der quantum-theorie te bespreken aan de hand van
eenige demonstratie-proeven.

IX

Het verdient aanbeveling, bij het onderwijs in de wiskunde aan
de scholen voor voorbereidend hooger en middelbaar onderwijs
meer aandacht te besteden aan vraagstukken met strijdige, over-
bodige of onvoldoende gegevens.

X

Voor niet te groote waarden van het natuurlijke getal N kan men
op eenvoudige wijze door nacijferen de juistheid vaststellen van de
N . . 2N . . .
formules T (*NZ7) (¥) =4Y en T (—:) (NZ7) (V) =47 (%).
j=o0 j=o0
Indien deze formules algemeen geldig zijn, schijnen zij niet'een-
voudig te kunnen worden bewezen door volledige inductie.

X1

Het feit, dat voor nieuw ontdekte deeltjes namen als "’positron”,
“mesotron”’, ”deuton” e.d. in de litteratuur opduiken, wijst op de
wenschelijkheid van meer overleg tusschen physici en classici.

XII

Het gebruik van Esperanto voor wetenschappelijke doeleinden
is in beginsel mogelijk en zou de doeltreffendheid van internationale
wetenschappelijke congressen kunnen verhoogen.
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VOORWOORD

Bij deze bijzondere gelegenheid is het mij een behoefte, een woord
van dank te richten tot al degenen, die hebben bijgedragen tot mijn
vorming.

Het voortreffelijke onderricht van den heer H. Corver op het
Nederlandsch Lyceum te 's-Gravenhage deed een sluimerende liefde
voor de natuurkunde bij mij ontwaken. Zijn lessen, doch ook een
voordracht van wijlen prof. dr. P. Ehrenfest aan deze school
en de raad van den toenmaligen rector prof. R. Casimir, bepaal-
den mijn latere studierichting.

In mijn eerste studiejaren aan de universiteit te Leiden had in het
bijzonder de kinetische gastheorie mijn belangstelling, waarin mevr.
dr.G. L. de Haas-Lorentz college gaf. Ik was nog een jaar
lang in de gelegenheid, de levendige colleges van prof. Ehren-
fest tevolgen, die een diepen indruk op mij maakten.

Toen prof. Ehrenfest onsin 1933 zoo onverwacht ontviel,
waart gij het, mijn waarde prof. dr. H. B. G. Casimir, die, toen
nog assistent, een jaar lang als ,,invaller”” het college golfmechanica
hebt gegeven. Hiervoor, maar nog meer voor de vriendelijke welwil-
lendheid, waarmee gij mij gedurende mijn geheele studie te Leiden in
wetenschappelijke moeilijkheden hebt willen helpen, ben ik U van
harte dankbaar.

U, hooggeachte Promotor, hooggeleerde Kram ers, benik veel
dank verschuldigd voor de belangstelling, waarmee U mijn studie
hebt gevolgd en gestimuleerd. Veel heb ik van U geleerd: op Uw
college, uit Uw college-dictaat, uit Uw boek over golfmechanica, op
het door U ingestelde ,,seminarium’’ voor theoretische natuurkunde,
maar het meest nog tijdens mijn assistentschap bij U uit gesprekken
en uit de studie, waartoe zulke gesprekken steeds weer aanleiding
gaven.

Een woord van dank past mij aan mijn ouders, die mij in de ge-
legenheid stelden, een wetenschappelijke opleiding te genieten en te
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voltooien. Het is ondoenlijk, hier verder al degenen te noemen, die
aan mijn vorming en opvoeding hebben meegewerkt. Mogen echter
zij allen overtuigd zijn van mijn erkentelijkheid.

In 1938 werd ik door stipendia van de Nederlandsch-Amerikaan-
sche Fundatie en van het Lorentz-fonds in staat gesteld, den zomer-
cursus aan de Unsversity of Michigan te Ann Arbor (Mich., U.S.A.) te
volgen. Door colleges van prof. dr. H. A. Bethe en prof. dr. G.
Breit maakte ik hier kennis met het onderwerp, dat in dit proef-
schrift wordt besproken. Prof. dr. H. A. Kramets stelde mij tot
probleem, de vergelijkingen voor het zware quantum neer te schrij-
ven in een vorm, analoog aan de z.g. ,,photon”’-vergelijkingen uit
De Broglie’s ,neutrino-theorie” van het licht. De onderzoekin-
gen, die hierop volgden, leidden niet alleen tot het ontstaan van dit
proefschrift, maar ook tot het publiceeren in het tijdschrift , PaYSI-
CA’’ van een artikel over het spin-impulsmoment van golfvelden, en
tot verdere studién, die ik in de komende tijden hoop te mogen vol-
tooien.

In het eerste hoofdstuk van dit proefschrift wordt het formalisme
behandeld van de ,,undor-rekening’’ ; het derde hoofdstuk bestudeert
de algemeene theorie der zware quanta. Het tweede hoofdstuk vormt
hiertusschen de schakel. Ik ben den uitgever en de Redactie van
. PHYSICA”, in het bijzonder prof. dr. A.D. F ok k e r, zeer erkente-
Iijk voor de door hen geschapen mogelijkheid, de eerste twee hoofd-
stukken te laten verschijnen als artikels in dit tijdschrift.

F.J. B.



UNDOR CALCULUS AND CHARGE-CONJUGATION

Zusammenfassung

Grossen, welche sich transformieren wie Produkte 4-komponentiger
Dirac scher Wellenfunktionen, werden ,,Undoren’’ genannt. Zu jedem
Undor ¢ kann durch Linearkombination der Komponenten seines kom-
plex Konjugierten {* ein neuer ,ladungskonjugierter” Undor {* gebil-
det werden. Wenn ¢ = Lp*’-, wird die Wellenfunktion ¢ ein , Neutrettor”
genannt. Undoren zweiter Stufe entsprechen gewisse Tensoren, Neutretto-
ren zweiter Stufe entsprechen reelle Tensoren. Mit Hilfe eines ,,metri-
schen’”’ Undors zweiter Stufe werden , kontravariante’” Undoren definiert,
welche sich kontragredient zu den gewdhnlichen (, kovarianten”) Undo-
ren transformieren. Endlich wird der , Gradient-Neutrettor”’ eingefiihrt.

Resumo

Kvantojn, kiuj transformigas kiel produtoj de kvar-komponantaj
Diracaj ondofunkcioj, ni nomas ,undoroj”. El &iu undoro ¢ per
unuagrada kombinado de la komponantoj de §ia komplekse konjugito ¢*
nova ,%arge konjugita” undoro (£ povas esti konstruata. Se ¢ = ¢®, ni
nomas la ondofunkcion {§ ,nelitretoro”. DuaStufaj undoroj reprezentas
certajn tensorojn, duadtufaj neiitretoroj reprezentas realajn tensorojn.

2

Per ,,metrika’” undoro dua$tufa ,kontraiivariantaj”’ undoroj estas difi-
nataj, kiuj transformigas kontraiipaSe al la ordinaraj (,kunvariantaj”)
undoroj. Fine la ,gradiento-netitretoro” estas prezentata.

§ 1. Introduction. It is well known that — with respect to the
restricted Lorentz group, excluding spatial reflections through
the origin — tensors can be expressed in terms of spinors?) ?). As
soon as spatial reflections are taken into account, however, it is
necessary to consider pairs of spinors transforming one into the
other by a reflection through the origin. An example of such a pair
of spinors is the wave function of the Dirac electron.

In the following we shall investigate the properties of quantities
transforming like products of such D ira ¢ wave-functions #). Such



2 F. J. BELINFANTE

quantities we shall call “undors” *). They form a generalization of
Dirac wave-functions in the same sense as tensors form a genera-
lization of vectors. Just as the representations of the Lorentz
group by the transformations of most tensors are not ausreduziert, so
the representations by most undors are likewise reducible.

In particular we shall discuss, in the following, the relation between
undors of the second rank and tensors, and the analogon in undor-
calculus to real tensors: “neutrettors” ¢). Finally we shall deduce the
metrical undor and define the gradient undor. The whole set of
mathematical relations will be built up in such a form, that we shall
be able to apply it later on to the theory of mesons and neutret-
tos %) 9 7) 9 9).

§ 2. The D ir ac wave-function (undor of the first vank). The D i-
r a c-equation of a positive particle (a positon or a proton according
to the value of x = mc/%) can be written in the following form:

X - —>
{ox + (v.D) + BDy} y =0, (1)
if we put
- -
Y = Pe, (2
= = e = 10 e

Here ¢ is the elementary charge (¢ > 0) and 51), % is the potential
four-vector of the electromagnetic field. As in (1) the interaction
with heavy quanta is neglected, this equation does not account for
the anomalous magnetic moment of the proton 19) 3) 8) 11),

We shall call quantities transforming like the four-component
Dir ac wave-function U, four-spinors or undors of the first rank. In
the following we shall often use a representation of them, which is
ausreduziert with respect to the group of restricted Lorentz
transformations, and in which the first two components of a four-
spinor transform like the two-component quantity called a covariant
conjugated spinorby Van der Waerden?), Laporte and
Uhlenbeck?, and called a regular spinor by Kramers?1?),
whereas thelast two components transformlike the spin-conjugated 1)

*) Derived from unda = wave.
1) See II. A. Kramervs, loc. cit. 1), page 2¢3.
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of such a quantity, called a contravariant regular spinor by Van
der Waerden?) and others2). Explicitly:

¥ =z v.I)jzuplcos%«i—apzisin%
/ . p o
y' = ycos ¥ + zsin ¥ upzﬂq;lzsm +¢zcos§
=2 (4a)
, - . S R
2= —ysind + zcos ¥ ¢3=¢3COSET¢4¢s1n§
, , ) 9
=t ¢4=¢3¢51n§+¢4cos§
x' = xCos @ + ysin g Y = O, €2
)/ = — xsin ¢ + y cos D, 12
Y ¢ T ycosg - b2 =4, | (4b)
# =z 1 = o 64"
¢ =1 Y = gy o9
X =x 1 = dy/r
Y =y b2 = s “
— = ¢
2 V1 — (vfe)2 =z — vt U3 = 1, )
¢ V1 — (v)c)2 =t — 2v/c® Ui = Yuf7,
where

T—+l/ii_z

If we require that (1) is L ore nt z-invariant, we find that the
Dirac matrices are given in the representation (4) by

— —
a = p,0 (5)
and
= (A + BPZ)PX: (6)
if we denote by

—_
Px Py, Pz and o {oy, oy, G}
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the Pauli matrices '¥) operating on the discrete arguments » and
s of the four-spinor

78! by
‘L‘—% % 2
‘-I)s,'r = ' = = ‘-P . (7)
%,—% s *
L N 7
From @2 = 1 we deduce 42 — B2 = 1, therefore,
0O 0 20
0O 0 0
=— s 8
B I/ 0 00 ®)
0 1600

with A=4 4 B = 1/(4 — B).
Apart from a numerical factor the transformation-matrix of ¢ for
a spatial reflection through the origin %) must be equal to B:

4"(‘— ¥ —y —z )=7p y(x, v, 2, ). 9)

As a double reflection should not change the geometrical meaning
of the four-spinor, 7 must be a square root of 4-1:

=41 (10)

By (4) a representation of the complete Lorentz group by

transformations of ¢ is not yet uniquely given. If we complete (4) by

making a definite choice for the representation of reflections, the

matrix $ will be fixed by (9), (10) apart from a square root of 4 1.
On the other hand we may choose A = 1, that is,

B = ex; (1)
the representation by ¢ of the Lorentz group including reflec-
tions is then given by (9), (10) together with (4), apart from the same
factor 7 in the reflection.

In the following we shall denote the conjugate complex of a ma-
trix by an asterisk *; by a cross 1 the adjoint (“Hermitian
conjugate”) of a matrix. For instance

by b
_% *_%k A N N
¢ = - YF= * and ¢f = |F O3 ¢ |
s 3

o
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Further, we put
Qf* = Q0 (Q* = Qf°9); (12)
for instance:
U2 = |y o g .

We introduce the normalization- or demsity-matrix &, which is
defined apart from a real numerical factor by

- —
B9 = 9B, o'% —=9q, 9 =9 (13)

Further, we shall postulate that under a linear transformation
by a non-singular matrix S to another representation:

Y =S¢, P =yrst, (14)
B =SS!, a = S«S, (14a)
the real expression
YRy

shall be invariant, so that
9 = St—19S-L (14d)
The definitions (13) are indeed invariant under these transformations
(14a, b).
In our particular representation (4), in which

- =

o =a, (15)
we have on account of (13), apart from a numerical factor,
[t/A] 0 0 O
0 J1/A] O O
9= 1A ; (16)
0 0O A O
0] 0 0 |3

after the choice (11) of @ we have, therefore,
9 =1 (17)

The density operator will remain unity so long as, starting from
the representation (4), (5), (11), (17), we admit only unitary trans-
formations, for which

SSt = 1. (18)
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In the particular representation (5), (11) it is easily verified that,
with regard to the complete L orentz group,

VoY (19)

s a scalar, and that

Tle = 9 ey with p — 8¢ (20)

—
together form a four-vector (like » with ¢#), which satisfies the conti-
nuity equation

—
divy'—}—%i—:O (21)
as a consequence of (13) and the Dira c equation (1):

div (19 ag) + (4»*34))

=(?¢' L% ey pyre(a vl D) -

c

= (B9 — Y19BY) - (.o — B)P (U @ — By —o.

—>
It is, therefore, possible to regard j and p as the probability cur-
rent-density and we shall normalize c-number solutions of (1) in
one-particle wave mechanics by

JI] dx dy dz (4'94) = 1. (22)

In the following we shall confine ourselves mainly to those repre-
sentations, in which (17) is fulfilled, and we shall therefore drop &
practically throughout. As regards the representation (4), this
restriction (17) means taking 4 = A*, B = — B*in (6) and |A| = 1
n (8), so that

Br=p (17a)
becomes a Hermitian matrix. As regards transformations by

{14) to other representations, it means restriction to unitary trans-
formations (18).
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§ 3. Charge-conjugation of four-spinors. A matrix £ is defined
apart from a complex unity factor ¢ by *)

— —
YE= — £y*, BE=— £P%, ££*=1; (23)
so
— - —
af ==£L£a* ¢f=—E£g* (23a)
where
6x = — loya,, cycl, (24)
so that in the representation (5), (6)
- =
¢ = o. (25)

In this representation (5), (8) this matrix £ is equal to
0 0 0 —]

0 0 | O

0 |1/2] O 0
—|1x] 0 O 0
therefore the restriction (17) makes it equal to
£ = ¢'C . pyoy (27)

, (26)

in the representation (4), (5), (8).
In the following the particular representation (4), (5), (11), (17),
(27) with ¢ = 1 will be called the Kramers?%) representation:
— —

- -
a=p,0 B=¢gx, £=py0y,, ¥=1, ¢=0. (28)

By means of the matrix £ we construct from the conjugate com-
plex ({*) of the four-spinor wave-function () of a positive particle
(1), another four-component quantity

48 = . (29)
From (1), (3) and (23) we can easily deduce that {* satisfies the
equation 19)
. - —
{ix + (v . D*) + BDYL* =0, (30)
that is, the wave equation for a negative particle (a negaton or a
hystaton 1) according to the value of %). For this reason {* is called

*) This matrix £ is identical with the matrix C* introduced by Pauli, loc. cit. 14).
+) Hystaton (antiproton) is derived from boTatog = last; proton from mpwtog = first,
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the charge-conjugated 1%) of . From (30) we can conclude 14) that —
with respect to restricted L orentz transformations — the charge-
conjugated of an undor of the first rank is again an undor ).

As regards reflection: from (30) we can conclude only that the
transformation of {* must be again of the form (9). But the repre-
sentations of the complete Lorentz group by the transforma-
tions of ¢ and by those of {* might be different with respect to the
sign of j. In order to examine this, we compare the charge-conjugated
four-spinor in the reflected system of co-ordinates, which is defined
by

W=yt = ey = jrepry, (31)
with the charge-conjugated four-spinor {* in the original system of

co-ordinates. This last, (29), will be transformed into (31) by (9)
with perhaps a different value of j, — say j®:

V= OBy = B Eyr. (@2
From (31), (32) and (23) we find
& = — (33)

The charge-conjugated of an undor of the first rank is therefore
itself an undor with respect to the complete Lorentz group
(G =), if

§ = — 7* (so that { = + 7 on account of (10)). (34)

We can also prove directly that ¢ is an undor with the choice (34)
of 7, without making use of the equation (30). Let A be the linear
operator of some Lorentz transformation of the undor {. Then ¢*
transforms like an undor if

¢ = A5 (35)
or
EA* LY = ALY, (354)
that is, if
AL = £A*, (36)

Indeed this condition is satisfied for the restricted Lorentz
transformations on account of (234). For the reflection (9) it is satis-
fied, if
IBE = £7*B%, (37)
or, on account of (23), if
j=—7" (34)
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This result of Majorana? and Racah?% means that it
serves a useful purpose to define the reflection of a Dirac wave-
function in such a way that a double spatial reflection through the
origin inverts its sign. In the following we shall see that this same
definition enables us to describe the Proca field (that is, a field

—
consisting of a four-vector A, V and an antisymmetrical tensor of

the second rank E, }—I>) by means of a symmetrical undor.

Since according to (34) {* can now be regarded as a regular undor,
it is natural to postulate that by a transformation (14) to another
representation of undors, the undor {* shall be transformed in the
same way as all other undors . This means that

Ll"£l = ¢/£ — £,‘<I/* — £’S*"b* (38@)
must be obtained from {* (29) by a transformation (14):
¥ = S = Sgg* (380)

This holds independently of the choice of {, if £S* = S&, or
£ =SgS*1. (14¢)

Under the transformation (144, ¢) the definitions (23) are indeed in-
variant, thatis to say, if £ is defined in one representation in accord-
ance with (23) and is then transformed to another representation
according to (14c), the relations (23) will hold again between the
transformed charge-conjugator £ and the transformed Dirac

matrices B’, o, etc. In the same way the relation
9L = £2°9* = (B £)°°, (238)

which is valid in Kramers' representation, is invariant by a
transformation (149, ¢) and in consequence holds in every represen-
tation of undors.

It follows from (27) that

£ = go° (170)

holds in the representation (4), (17); and from (14c) we deduce that
this relation (17b) holds in all representations (17), for which the density
matrix is unity, because (17b) is invariant by a unitary transforma-
tion (ST = S—1, S = §*—1):

£00 — St-lgeogoe — SEGH—I — ¢
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If F is an operator, which operates on four-spinors, we can define
a charge-transformed operator F* by

(F)* = F*¢*, (39)
S0
F* = £F*g*, (40)

On the other hand, if F depends on the electric elementary charge
e, we can define the charge-inverse FL of F by

{Flo} = F(—e). (41)
Then we can summarize the connection between (1) or
Hop = il o = €, (1a)
and (30) or
Hy (= €, = — 5,4 (30a)
by stating that
ng = pr: goLp = - gfp- (42)

Kramers?® has pointed out that a description of electrons by
means of ¢ and H,,, and a charge-conjugated description by means of
¢# and HE, should be equivalent. It can be shown that the meson
theory shows a similar kind of charge-invariance.

§ 4. Neutrettors of the first rank. We shall call self-charge-conjugated
four-spinors

=y (43)

neutrettors of the first rank *). These quantities are adequate for the
description of the neutral particles of the theoryof Majorana 9.
It can easily be shown that Majorana’s “real” Dirac wave-
functions are exactly what we call neutrettors. Proceeding by a
transformation (14) with

S =St1= (1 +ipyo,)/V2 (44)

*) The name “neutrinors” (in analogy to spinors proposed by me in a Letter to the
Editor in Nature 3)), seems to be less adequate, since it suggests that neutrinos can be
described by these quantities. By neutrettors, however, only photons and neutrettos are
described.
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from the Kramers representation (28) to a Majorana
representation

Lyag =1, Ouay=1, (45)
we deduce from (23):
* - — % — - —
BMAJ =—Bumay, Yiraj=—Ymaj, Opaj=0ma], Syaj= —6mMa] (454)

This is indeed the characteristic of the representation discussed by
Majorana*). Four-spinors, which are self-charge-conjugated,
are on account of (29) and (45) realtn a M ajoramna representa-
tion. According to M ajorana?) nzutrettors can describe neutral
particles 1).

For the purpose of building up a canonical theory of Majora-
na particles the Kramers representation is very convenient.
Denoting in this representation (28) the first two components of ¢ as
a Kramers spinor by

o)== (e o

and the last two components as the spin-conjugated v¥ of another
Kramers spinor v by

(i:j e (Z:;) = <_ ;?)*: (ZY (46b)

we can write (29) in the following form:

e luwlf v 47)
YT s T u*l ’
SO
v B ju
JEE — \ = = {. 48
o e = s
This four-spinor is a neutrettor, if
[ 2 b .
=¢ = = , that means, if # = v. (49)
v8 u® |

*) The representation actually used by Majorana is obtained from (28) not by
(44), but by taking S = } /7. {px(1 —ay) + pz(1 + oy} in (14).

+) Note added in proofs. The Majorana theory of neutral particles and the
transformation properties of £ have also been investigated by W. H. Furry, Phys.
Rev. 54, 56, 1938.
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In other words, a neutrettor of the first vank consists of a two-spinor
and its spin-conjugated and can be written as

d;:dﬁ:"% (50)
| ;s

ina Kramers representation.

In a canonical theory of neutral particles only the two-spinor «
should be regarded as a canonical variable like ¢ in Dirac’s
theory; u* takes a place comparable with that of ¢* in Dirac’s
theory and #% can be expressed in terms of u*.

§ 5. Undors of the second rank. We shall call a sixteen-component
quantity

\Pklkz = 1Fs,rl,szrz (kl’ k2 =1,2,3,4; S1, 71, S2, ¥ = + %r - %) (51)

transforming like the product ¢, ¢; = {s, , s, of two four-
spinors an undor of the second rank. With respect to the undor-indices
we regard it as a matrix with one colummn and 16 rows. Still, we shall
write it as a square matrix with 4 X 4 elements:

¥y ¥ ¥ Yy

v, Wy Wy Wy Wy
Bk, —

1{J‘:Bl \F32 \FSB \F34

Wy Vo Yy Yy

(52)

— - >
Matrices like p{, p{®, p{®, o, B, yin g cm G g S0
etc. are assumed to operate on the argument %, of ¥, Taking
these operators as unity matrices with respect to the index, on which
they do not operate, we can regard them as matrices with 16 rows
and 16 colums.
With respect to the restricted L orentz group an undor of the
second rank represents one regular spinor, one conjugate complex
spinor and two mixed spinors of the second rank; it represents,

therefore 2) 12), two four-vectors %, K° and_I: L° (transforming like

—
7, ct), two scalars Fj, and G, one regular complex three-vector (the
Kennzahlen of an antisymmetrical self-dual tensor 2))

—

—> =
.F:—_Hl_iEl (53ﬂ)
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and one conjugate complex three-vector
— — =
G = H, + iE,, (53b)
- — — = . .
where E,, H, and E,, H, form two antisymmetrical tensors of the

second rank. Generally all these quantities are complex. In the
Kramers representation (28) we can write:

v, ¥, ¥, ¥, .~ F,—iF, Fy—F, K,—iK, —K°—K,
Vo Yoo Woo Wou| _ , |=Fo—F, —F,—iF, K°'—K, —K,—iK, (54
Wy Wap Was Wao| °| L,—iL, L[°—L, —G,+iG, G,+G,|
Yy Wy Ve Py —L°—L, —L,—iL, —G,+G, G,+1G,

In an arbitrary representation of undors obtainable from (28) by a
transformation (14) we should replace the left hand member ¥ of

(54) by
S S@= r — g, (55)

By spatial reflection through the origin the undor ¥ will transform
according to (9) by
P = 2R, (56)

In the representation (28) used by us we have BUR® = pp@)
so that this transformation {56) can be written, on account of (54),

as
— — — —
K' =L, K =— 2L° F' = — G, F,=j2G,,
N N N . (57)
L' =K, L% = — 2K° G = — j2F, G} = j2F,.
Putting
— — — .
K = (A + B)jji, K°= (V 4 W)j/i,
L = (& —Byijj, L°=(V—W)jj
= —_— 1 , et —_— 1 7’
7 ‘ ] (58)
9 9 .9 . e . .
F = H —1E)j/i, Fo=(—S—1iY)j/i,
9 9 9 . . - . .
G = H +E)ifj, G,= (S —1Y)iJj,

—>

— ——>
the new quantities A, V; B, W; E, H; S and Y are still tensors with
respect to restricted L orent z transformations (two four-vectors,
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an anti-symmetrical tensor and two scalars), whereas we can now
write (57) in the following form:

— — —> — —> —
Al=—A V=4V, E=—E, H=+H;
N N (59)
B=4+B W=—-W; Y= -Y;,8 =+ S.
With respect to the complete Lorentz group including reflec-
tions, an undor of the second rank consists therefore of a regular
—>
scalar S; a regular four-vector A, V; an antisymmetrical tensor of
— —>
the second rank E, H (which can be regarded as a pseudo-tensor of the
— —>
second rank H, E); a pseudo-four-vector (that is, an antisymmetrical
—>
tensor of the third rank) B, W, and a pseudo-scalar (anti-symmetric-
al tensor of the fourth rank) Y.
It is often assumed ®) that the meson field can be regarded as a
—>
P roca field 17, that is, a field consisting of a four-vector A, V and
— —>
a six-vector E, H only (case (b) of K e mm er ). Such a field can
be described by an undor of the second rank satisfying the relations
Wi, =Wy, Vo= ¥y

| | | o (60)
Vig=—7?Ws, Yu=—7"Wy, Yu=—7"Vs, Vyu=—7%p.

The most symmetrical method to achieve this and at the same
time the one and only possibility to achieve (60) in a way which is
independent of the representation of undors, that is, invariant under
the transformation

P = SISy, (554)
is to postulate that the undor describing the P roca field must be

symmetrical with respect to its two indices, and at the same time
that for undors 42 in (9), (10) must be equal to minus unity:

IFklkz = ‘szkl: (6])
=1 (61a)

Indeed, in general a symmetrical undor of the second rank repre-
sents:

(). aregular 4-vector X V and a 6-vector iff2=—1;

(62)

= f"%

—>
JH, i

— —
(c). apseudo-4-vector B, Wand a 6-vector E, H, 1

if 2 =+ 1;
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whereas an antisymmetrical undor of the second rank represents:

(d). apseudo-4-vector 1_3), W,ascalar Sand a pseudo-scalar Y,
if2=—1;

- (624)

(a). aregular 4-vector A, V, ascalar S and a pseudo-scalar Y,
if 2=+ 1.

Here (a), (8), (c), (d) refer to the tensors composing the field in
the four cases considered by Kemmer 9).

Now we define the charge-conjugated of an undor of the second
rank by

WE, = £ £R (P, )* (63)
and its charge-adjoint by
Wior, = Vis, = £V €2 (T, )% (63a)
Then
Wb = (WhW?* (630)

is a self-charge-adjoint undor of the second rank. Now we can express
the tensors represented by ¥*® in terms of those represented accord-
ing to (54), (58) by ¥. In this way we find from (28), (54) and (58):

— — — —> —
A® = A* V& = V*; Ef = E* H® = H*:
N . (64)
B? = B*, W& = W*; Y® — Y*; S® — S*

We observe that by the choice of constants made in (58) we have
achieved that the tensors represented according to (54), (58) by the
charge adjoint ¥* of an undor of the second rank ¥, are the conju-
gate complex of the tensors represented by the undor ¥ itself *).

If now a wneutrettor of the second rank is defined as a self-charge-
adjoint undor of the second rank, it represents by (54) and (58)
according to (64) a set of real tensors. Such neutrettors are therefore
adequate for the description of the Maxwellian field 2 and of
K emm er’s neutretto field 7). A specimen of a neutrettor of the
second rank is given by 4% {; (63b).

> > >
*) The constants in the definition by (54), (58) of the tensors $; A, V; E, H; B, W
and Y in terms of the components of the undor ¥ are uniquely determined by the condi-
tions (59) and (64) apart from arbitrary real numerical factors to these tensors, which are
all chosen equal to unity in (58).
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Taking
]=1 (34a)

in the following, in accordance with (34) and (61a), all factors j/i and
i/j vanish from (58).

§ 6. Covariant undor calculus. The fact that the linear combina-
tions (29) (and, apart from linear combinations differing from (29) by
a numerical factor, only these) of the components of a conjugate
complex undor ¢} form again the components of a regular undor {;,
enables us to define a metrical undor g, that is, an undor of the
second rank, which connects contravariant and covariant undors with
each other.

Since, on account of (19), (23) and (13), the expression

TORY = LIRSy = ;i Ui (B9, = ;u“k(%“" BRI {4y =
— kzk (O*B*)H I, = T Yy (65)

is a scalar, we can regard

yF =3 (9% B ) f (66)

k

as a regular contravariant undor. We shall connect with this y* an
ordinary covariant undor y, by

n=28uy =X g, (9*@*)M4¢7 . (67)
k k,k

Since y; shall be a regular undor and its components are linear
combinations of those of ¢}, the undor y;, must be equal to (J*),
apart from some numerical factor, for which we shall choose
unity:

7 = . (68)

As this result should be independent of ¢, we find

gy (3*3*)kk = £zk: or g¥*pR* = & (69)
k

We conclude:

g = £p*O*1, (70)
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In Kramers representation (f = px, £ = pyoy) the
metrical undor g, takes the following form:

0—1 00
) 1 0 0O

g =— 1Pz0y = 0 0 0 110’ (71)
0O 0—120

that is, ,
b= — % b =¢!, dg =14 dy=— ¢ (71a)
We observe that in this representation the metrical undor is an#i-
symmetrical just as the metrical spinor is in spinor calculus and unlike
the metrical tensor in tensor calculus (which is symmetrical) :
g0 =—8 (8u= — 8u) (72)
This property of the metrical undor is invariant under transforma-
tions (14) to other representations. This follows from (70), (14a, b, ¢):

gll/k/ == £I [3'*3'*_1 - S£p*‘3‘*_l SN - SgSN == 1213 Sl/l glk Sk/k. (14d)

A consequence of this antisymmetry of g is
2o =—udh (73)

Conjugate complex contravariant and covariant undors are con-
nected by the conjugate complex meirical undor

g5 = (8w)* = kE £14 (B )t (74)
This undorisin Kramers’ representation given by
0—-1 00
. 1 0 0O
g = 0 0 0 1 (74a)
0 0-—-10
and transforms to another representation by
g* = S*g*St, (14e)
The contravariant metrical undor g is determined by
zk: 88" = o (79)

or
g =gl gt =g (754)
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In Kramers' representation we find from (71) and (74a)

010 O 010 O
—100 O .. —100 O
R kkm __ A 76
g 000—1’rg - 000 —1 (76)
001 O 001 O

Transformation to another representation changes the contravariant
metrical undors g*” and g**” according to (144, ¢) and (754).
Co- and contravariant undors are now connected by
4 = % i $i = Z gik 4/**",
o
ka =3 gkm q)m: ‘L*k =3 g*km Y‘I);i .
p” -

"

Here the summation must always be carried out with respect to
the last index of the metrical undor.
From (65), (68), (73) it follows that

Y OBY =Ty = — Ty (19a)
In the same way we derive

POBY =T i = — Ty (19%)
For the current-density four-vector (20) we can derive similar
expressions, for instance *)

= ey
fle =Z ¥ vl d, o =T B} (20a)
Inserting (46a, b) into (71a) we findin Kramers’ representa-
tion
Pl =us, (= —uj, {° = — v82, {* = 08!, (78)
therefore, following Van der Waerden’s notation!) and

(u )
2 /”2

o)

-C-

u !

-G

(R
by w? ot %)

#) Compare P. A. M. Dirac, loc. cit. 8), and W. Gordo n, loc. cit. 19},

Il

w
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The difference between our undor calculus and Van der
Waerden’s spinor calculus is, that we have taken care from the
beginning that the transformations of “contravariant’ undors should
indeed be contragredient to those of “covariant’’ undors by all trans-
formations of the complete Lorentz group including spatial
reflections.

We might have derived (14¢) and (76) in a simpler way. Making
use of our knowledge of Van der Waerden’s metrical spinor,
we conclude that the contravariant metrical undor g*” must have
the form

0a0 O
—a00 0
(76a)
000 —b
00b O

in Kramers’ representation, in which the first two components
of a four-spinor behave like the components of a conjugate complex
covariant Van der Waerden two-spinor and the last two
components like a regular contravariant Van der Waerden
spinor. The ratio (4/b) is now determined by the condition that, if ¢
and ¢ are two arbitrary regular covariant undors, the expression

o 8% 4 = o™ g7 Y (79)
shall be a scalar with respect to the spatial reflection (9), (10) (as
well as it was, on account of (76a), a scalar by restricted Lorentz
transformations). In Kramers’ representation we find from
(76a), (9) and B = p, (28):
alpr 2 — 92 ¥1) — bl by — @4 a) =

= a(pi b2 — 92 ¥1) — bl bs — s d3) =
= a 7%(ps Ya — @aba) — 0720y b2 — 92 ¢y),
therefore,

alb = — 2 = — 1/2. (76b)

Choosing j according to (34) we find 4 = b and (76a) becomes

identical to (76) for Kramers’ representation (28).
If, now, we postulate that the scalar (79) shall be an invariant under
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transformation (14) to another representation, we find
(871" =Setgt ST (147)
in accordance with (144).
A still shorter way of deriving (71) is by making use of (54) and
(58). Since the metrical undor is supposed not to change its form by
Lorentz transformations and spatial reflections, it must repre-

sent a scalar. Therefore it must have, according to (54), (58), the
following formin Kramers’ representation:

0O—-S 0 0
S 0 00
gkl:%- .
0] 0O 0 S
0 0-S 0

Taking S = 2 we find (71).

We remark that g is a neutrettor of the second rank on account of
the special definition (634) given for the charge-adjoint of an undor
of the second rank.

In the literature use is often made of an abbreviated notation for

the contravariant charge-conjugated of a regular undor ¢, or ¥, ;. :
kIJ'”ek — "IJTQ‘Q = y+’

(80)

Yehk — Pt 9192 BURR) = Pt

Further, we shall denote by a* and y* (u = 0, 1, 2, 3) the matrices

—_—
{a, o, at ={al, 0, 0} =a, a®=—a, =1,
N N (2a)
{Yl’ Y2, YS} = {Yl’ Y2’ YB} =Y = pa’ YO = Yo = p

The probability density and current of a Dirac electron are
then given by
UL =10 =10 =p; =0T ¥d. (200
The relations (13), (23) and (234) can now be written as
B9 =98, o' =9 a”,
YE = — LyH¥, ot = Lat* (®1)

In undor calculus the gradient four-vector V¥ is, according to (54),
(58), (60), (64), represented by a symmetrical neutrettor. In K r a-



UNDOR CALCULUS AND CHARGE-CONJUGATION

21

mers’ representation this gradient neutrettor has the following

form:
0 0 vV, — iV, cla%—vz
] 0 0 _ 10%— V., —V.—iv,
. V. — 1V, —Cla%—vz 0 0
cla% -V, —V,—1V, 0 0

= Vi, (82)

The Dirac equation of a free electron can now be written in

covariant undor-notation:
{l-’/. -+ Y#V#}q) =0 —> i‘/.l.pk -+ Vkl’\lJl = 0.

(13)

I am much indebted to Prof. Kramers for many discussions

on the questions treated in the present paper.
Received July 14th, 1939.
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THE UNDOR EQUATION OF THE MESON FIELD

Zusammenfassung

Die Meson-Gleichung von Proca, Kemmer und Bhabha
wird mittels Undoren zweiter Stufe dargestellt. Eine Verallgemeinerung
der Gleichung fiihrt zu einer neuen Meson-Gleichung, welche im wesent-
lichen aus einer Kombination der Fille () und (d) von Kemmer ba-
steht. Die Neutretto-Gleichung wird in dhnlicher Weise erweitert. — Das
magnetische Moment der Mesonen wird abgeleitet.

Die ladungskonjugierten Wellenfunktionen geniigen einer Gleichung, in
welcher die Vorzeichen aller Ladungen umgekehrt sind. Wenn man postu-
liert, dass sich bei Beschreibung des physikalischen Geschehens mittels
der ladungskonjugierten Grossen fiir alle physikalisch sinnvollen Gréssen
dieselben Werte ergeben sollen, lisst sich folgern, dass Teilchen mit ganz-
zahligem Spin der Einstein-Bose-Statistik, und Teilchen mit
halbzahligem Spin dem Ausschliessungsprinzip geniigen miissen.

Resumo.

La mezona ekvacio de Proca, Kemmer kaj Bhabha estas
prezentata per dua$tufaj undoroj. Pligeneraligado de la ekvacio donas
novan mezonan ekvacion, kiu ¢efe konsistas el kombinajo de la kazoj (b)
kaj (d) de K e m m e r. La neiitreta ekvacio estas plivastigata en la sama
maniero. La magneta momanto de la mezonoj estas kalkulata.

La Sarge konjugitaj ondofunkcioj kontentigas ekvacion, en kiu la
antatsignoj de ¢iuj Sargoj estas inversaj. Se oni postulas ke Ce priskribo de
la fizikaj okazajoj per la Sarge konjugitaj grandoj por Ciuj observebloj
devas rezulti la samaj valoroj, oni povas konkludi ke korpuskloj kun
entjera spino devas obei la statistikonde Einstein kaj Bose, kaj
ke korpuskloj kun entjerplusduona spino devas obei la statistikon de
Fermi kaj Dirac.

§1. The Proca-Kemmer meson equation in undor notation.
The usual meson equations of Kemmer?), Bhabha? and
Y ukawas3) can be written in the following form:

x(t.p.v—fb%[w) :D[;L Pn ED}L o, — D, P » (l)
K(CPV + gb vv) = Dl‘ C[.LV; (P-:V = O) 1: 2; 3)‘
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Here » can be expressed in terms of the mass m of the meson by
% = mcfh; u,, is an antisymmetrical tensor and v, is a four-vector
given by *):
Uy = (/2) . UX Y1 Yo bps vy = YN Yy ¥p;
Wt =4¢'B; y*=pga*; (v=0,1,273).
By ¢y and ¢ we denote the wave-functions of the fields of neu-
trons and protons, so that after superquantization the expressions
(2) represent operators which possess non-vanishing matrix elements

for transitions of a proton into a neutron. The operators D, in (1)
are defined by [U.C. (3)]:

(2)

e 10
DH,:VM—{—%QIF_; VO:—-VO:?ﬁ;

We shall now write the Proca-Kemmer equations (1) in

vector notation. For this purpose we put

Cao = Coa = Ea; Cbc - ch = Hu; Cpa.: Aa; — Qo = (PO = V; (4)
(a, b, ¢ being a cyclic permutation of 1, 2, 3).

Further, we put
MM—_—M“O:ea, —ubc:Mcb:ha; U, = Qg, vo:v’ (5)
so that

¢ = — YfiBa, B =—y'oy; a=ah V=yY (6
Then, the equations (1) read f)

wB £ £,0) = — VV — (2/ctt) A — (efific) (AV — BA),

«(H + f, 1) = rot A + (efifc) (%, Al, -
oK + g8 = — ot H + (3)c) B — (efihe) (%, H] + BB,

WV +g,v) = — divE — (¢fific) (U . B).

In order to write these equations in undor notation we can make
use of the Kramers representation of undors [U.C. (28)], in

*) For the notation used in the present paper we must refer to the preceding paper of
the author on undor calculus 4). References to formulae from that paper will be indicated
by [U.C.]. In (2), (6) and (12) we have put & = 1 [U.C. (17)].

1) rot =curl.
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—
which the Dirac matrices a, § occurring in (6) are given by

01 0 O 0 —i 00 1 0 00
10 0 0 i 0 00 0—1 00
=100 0—1" ®*Tlo 0o o0il *T|0o 0o—10)
00—1 0 0 0 —i0 0 0 01
0010
000 1
“{1o0o00f ®)

0100

and the charge-conjugated ¢# of a Dirac wave-function ¢ is
given by

000 —1

= s, €= 001 O' o)
’ 010 O
—100 O

In this representation the components of the tensors represented
by an undor of the second rank are related to the components of this
undor by [U.C. (54), (58), (34a)]:

F,—iF, F,—F, K,—iK, —K —K,
—F,—F, —F,—iF, K°—K, —K,—iK,

2Wp, = L,—iL, L[°—L, —G,+1G, Go + G,
—I°—L, —L,—iL, —Gy+G, G, +1G, | (10)

- — — — — —

K=A+B, K°=V+W, F=H—(E, F,=—S8 —1iY,

— — — — — —

L =A—B, [°=V—W, G=H+E, G,=S8—1Y.

. — — —> . —
Here S is a scalar, A, V a four-vector, E, H a six-vector, B, W a
pseudo-four-vector and Y a pseudo-scalar. In particular the undor of
the second rank

Xk1k2 = 2@;% ‘«Pkg (11)
represents, according to (10), the following tensors
> - + - > > -
a=olay, v=o'y; e=—¢'iay, h=—o'Bol;
e . (12)
b=—9¢'ad, w=—0olys}; y=0TivsB; s=0¢'By.
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Here we have put
Oy = — a0, cycl.; y5 = — togod,. (13)

— — —
From (10) we see that the Proca field A, V; E, H can be repre-
sented by a symmetrical undor

sym .
Prn, = 3 {Vhp, + Pt = § Vo) (14)
Writing out the meson equations (7) with the help of (10)—(12) in

sym
terms of the undor components of ¥, , and of

sym

kakz = "l)%kl "l)sz + ('I’)?sz qJka = 4’{%/:1 L1’11‘:’]32}’ (1461)
and collecting the ten equations into one undor equation, we find,
on account of (8) and (13):

sym

. sym > >
sz(l}rklkZ + fop Xklkz) + {p(l) (a(l)D + DO) +
+ @O (@D + DY), =0, (15)
where
fop = 3 {ls + &) + (s — &) Y'Y2} (16)

is a scalar operator which, operating on an undor of the second rank

(10), multiplies in this undor B, H, Y and S by /, and A, V and B, W
by g;- By an index in brackets we have here distinguished Dirac
matrices operating on each of the indices %, and £, of the undor.

We remark that (15) and (16) are invariant by transformation to
another representation of undors 4).

Putting
0 0 D,—iD, Dy—D,
0 0 —D,—D, —D,—iD,
Dy = D,—iD, —Dy—D, 0 0 =Du (17)
Dy—D, —D,—iD, 0 0

we can write (15) at once in covariant undor notation 4) (compare

rU.C. (82), (18)]):

sy

. sym sym sym sym
200 (W, + fk,k:llz Xy1) + Dy, lFl‘k2 + Dy, le,l“ =0, (18)

where f, , i are the matrix elements of the scalar interaction oper-
ator f,, (16). '
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This interaction operator would take a particularly simple form, if
the constants f, and g, should happen to be equal:

» =& (7) (19)
A preliminary interpretation !) ?) of the binding energy of the
deuteron in the (triplet) ground state and the attraction potential in
the singlet state, on which experimental:data are available, seemed
to indicate that | f,/g, | did not differ much from unity indeed, but
later investigations ¢), which accounted for the charge-independence
of the nuclear forces between heavy particles 7), gave a different
result. The simplification (19) seems, therefore, not to be allowed
for the moment and we strall not make use of it in the following.

§ 2. The generalized meson equation and the neutretto equation. In
the preceding section we have discussed the equation for the Pr o-
ca-Kemmer meson field (case (b) of Kemmer?)). This field

was described by a Symmetrlcal undor ‘P'k ¢, and it interacted with

the symmetrical part Xklk, of the undor X, , = 2¢Nqu;pk It s
plausible now to consider the generalization of the equations (15)

and (18) by replacing these symmetrical undors s‘ylj'nklkz and Sﬁlkz by
the unsymmetrized undors ¥, ;, and X, ;.. The operator f,, can then
be replaced by a more complicated scalar operator which, operating

on an undor of the second rank (10), multiplies S by 7,; K, Vby g;
—
i‘z ffby /» B, Wby g, and Y by /,. The generalized meson equation

206 F s, + op (20, b, )} + (7 2. D) +
+ (BY + B@) Do} Wiy, = 0 (20)

can then be written, according to (8)—(13), in vector notation:

(S +/,8) =0; (210)
(A +ga) =Dy E—[DH, xV+gv) ——0. 7(2”))_
«(E +/y8) =—DoA—DV, wH-+fh) =I[D,Al;
(W + g, w) = — D, Y. B +g,b)=DY; 21d)

Y +fiy) =DoW+ (D.B).
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Apart from the first equation (210), which defines the field compo-
nent S in terms of the components of the field of heavy Dirac
particles, these equations represent exactly the cases (b) and (d) of
Kemmer, that is, the meson field suggested by Mgller and
Rosenfeld?. The Proca field () describes mesons with a
spin angular momentum 7%, whereas the “pseudo-scalar field” ()
describes spinless mesons ®).

According to Kemmer$) the neutretto equation is obtained
from the meson equation by changing ¢} ¢p into F($F ¢p — & dy)
and D, into V,; and by postulating that the tensors representing the:
neutretto field ®, ;, shall be real. Thus (20) changes into

206{@pp, + fop VB, b, — U, I )} + (V) +¥2) V¥ By, =0 (22)
with the additional condition (see [U.C. (64)]) that
Dy, = £ £@ (Dpp)* = (szkl = (Dk2,k2 (23)

is a neutrettor of the second rank.

The compatibility of the condition (23) with the equation (22)
must be shown. For this purpose we multiply the conjugate complex
of (22) by — £ £@ and find, on account of — £0 yi* — y £
[U.C. (81)] and £M £2 (®, ,)* = ®F, [U.C. (634)]:

20{ DL, + EVED [ (U, dp, — Uk, b)) + (V) 4 ¥2) VROR, =
or, interchanging %, and &,:
2 (D4, + [ (U, Ve, — Uy bve)D + (YD +¥2) VF DL, =0, (24)

where we have put (compare U.C. (40)):

ff? — £ £ /z; £2% i1k (25)
so that
(f op \Fk,kz)£' = f'fp \Ff,kvz- (26)

Now f,, only multiplies the tensors represented by WY, by the
constant factors f,, ¢, f», g4 and f;, whereas, according to [U.C. (63},
(€3a), (64)], charge- con]ugatlon of an undor of the second rank char.-
gesthe tensors S; A v; E H B W and Y, repre:ented by it accord-
ing to (10), into —S*, * V*. E*, H*, — B*, — W* and — Y*,
We conclude therefore from (26) that /%, is the scalar operator multi-
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plying the tensors by the conjugate complex of the factors £, g, f3,
g4, f4- Now, assuming that these constants are real

fo:f;k:gb:g;k’fb:f;k:gd:g:ik:fd:f;‘: (27)
we find
= fop. (27a)

If we make use of the fact that {f {;, is a neutrettor of the
second rank [U.C. (63b)], the equation (24) turns into

2ix {(b§1k2 + fnp ( %kl “})sz - kal "IJNkz)} + (Y}(l-l) + Y}(l-z)) A q)kglkz =0. (28)

This equation for @f,, is identical with the original equation (22)
for @, ,,, so that the condition @, , = ®%,, (23) is indeed compatible
with (22), if the interaction constants (27) are real *).

§ 3. The charge-conjugated meson equation. Kramers19) has
shown that if ¢ is a solution of the Dirac equation for positive
particles, then ¢* is a solution of the equation for negative particles,
that is, of the equation following from the Dirac equation by
changing ¢ into (— ¢). In the present section we shall show that the
meson and the neutretto equations possess similar properties and
that, if W is a solution of the equation (20) for positive mesons
(“theticons’ 1)), then W* [U.C. (63)] is a solution of the equation for
negative mesons (“arneticons’ t)).

For this purpose we proceed in a similar way as in the preceding
section; only this time we shall not interchange the indices %, and %,.
In this way we derive from equation (20):

200 (Wi, + 215, (U8, dn, )} + (v + 1Y) D* ¥E,, =0, (29)

where we have made use of
£(1) £(2) (CPfl Pp ) * = £2 4,;}2 s ‘Pfx* = fg Pr, - (30)
Comparing (29) with (20) we observe that W%, satisfies an “arne-
ticonic”’ equation (29) differing from the “theticonic” equation (20)

for ¥}, by the inversion of the sign of ¢ (as D is replaced by D*)
and by the change of

fop (W, 0p,) into /% (U8, b, ). 1)

*) If neutrettors of the second rank were defined by ® = @£, instead of by ® = O, it
would have been necessary to take gp and fp real, but fo, g4 and /4 purely imaginary.
+) These names are derived from 9eTix05 = positive and &pvnTizos = negative. 3
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The electromagnetic potentials, being real, are not changed.

We must now remember that the interaction of mesons with heavy
particles, as described by the equations, should consist in the possi-
bility of the absorption of an arneticon or the emission of a theticon
by a proton which changes into a neutron, and vice versa. That is to
say, the wave-functions in the equations (20) and (29) should be
superquantized *).

If the wave-functions of anti-protons and neutrons (¢% and {y)
are assumed to be anticommutative with each other (an assumption
which simplifies the discussion of the canonical theory of quantized
wave-fields and which enables us to introduce the formalism of the
isotopic spin in a natural way), we can express (31) by stating that,
in order to change the equation for ¥ into that for ¥*%, not only
should ¥ be replaced by W* and the electric charge e by

ek = — ¥, (32)

but at the same time the “mesic’” charges f,, g;, etc. should be
replaced by

]%:“—f;k) gg:"—g;k) ]%:“ﬁ)k: etc., (32%)
and % by ¢y and ¢p by ¢§. There is no need to change the poten-
tials of the Maxwellian field occurring in the meson equation
(20). This field can be described by a symmetrical neutrettor of the
second rank, so that it is equal not only to its own charge-adjoint,
but also to its charge-conjugated.

In the same way the neutretto equation for ®;,, is changed into
the equivalent equation for ®f, . This is seen at once by interchang-
ing in (28) again &, and %, and by making use of the anticommu-
tativity of ¢% with ¢p and of ¢§ with ¢y. Formally the infinities of
the 3-functions from the commutation rules of protons and of neu-
trons cancel each other.

§ 4. The charge curvent-density and the magnetic moment of mesons.
Proca?) and Bhabha? have derived the electric charge
density and current. of mesons with a spin 7 froma Lagrangian,
which was chosen in such a way that the Proca equations
and the equations for the Maxwellian field could both be
deduced from it.

*) The question of the possibility of quantization of the fields in such a way that the
relativistic invariance of the theory is maintained, is not discussed in the present paper.
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In a similar way one can proceed for the generalized meson field ?).

If the field is normalized according to Kemme r?) in such a way

— — — —

that A*, — E* Y* and — W* are the canonical conjugates of E, A,

W and Y respectively, the expressions for the electric charge density
and current take the following from ®) 12):

— (efif) {(A* . E) — (E* . A) +Y* W — W* Y}——e‘F*pop‘F
e Jo = (efif) ({A* H] + [H*, A] + S

—{—V*E E*V+Y*B B*Y}——(e/c) pt DI,‘F.

Here p,, and Zl,/c are determined by *)

BY 4 B
Pop = pgp — 91 9@ S
z B o - B2 o e
fole = Tifo = 90 90 = B
or, in tensor notation, _
(p 2)n
o =1 = B0 9@ g0 pw YL LY (34a)

These expressions are invariant by a transformation [U.C. (14),
(14a, b)] from the Kramers representation to any other repre-

—
sentation of undors. The matrices g,, and j,,/c take the place here

-
of the matrices & and ®a (that is, #By*) in the caseof the Dirac

_électron. In analogy to [U.C. (208)] it is convenient to write here
(see [U.C. (80)])

@
. Y—;“hY— ¥, (334)

The main difference between the density matrices of electron and
meson is that p,,, being a singular matrix, cannot be made unity by
transformation to any representation. A consequence of this singula-
rity of p,, is that the meson equation (20) contains so called identities
between the field components (differential equations not containing

*) Compare L. de Broglie, loc. cit. !3), page 22. The factor (1/2#) is a consequence
of Kemmer’s?!) way of normalizing the meson wave-function and of our choice of the
constants in (10). For instance, if the factor 2 in (1C) is removed, the factor (1/2%) changes
into (1/8%) 12).
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derivatives with respect to the time), viz. the equations in the right
hand column of (21).

We can split up (20) into the proper equations of motion and the
so-called identities by operating on it by (1 + BVg®@)/2. Abbrevia-
ting again by X,, = 2y%, Up, and splitting up ¥, and X,
according to

lelkz =Y ilkz + ‘Fisz,
W= (14 p0ee) W= g — popeyy,
we find the proper equations of motion of ¥:

2ix (IIJ‘I + fop XI) + (Y(I) -+ -F>2) —5) gyl + (p(l) -+ p(2)) DO\IM =0, (36)
and the so-called identities:
— —
2ie (¥ + f,, X)) + YV 4+ ¥@ . D) ¥ = 0. (37)
Comparing (36), (37) with (21) we observe without further calcula-

—
tion that ¥’ represents the field components I—E), A WandY, and

W the field components S, V, Hand B. Only of ¥/ the components
can be regarded as canonical variables, whereas the components of ¥/
must be regarded as derived variables, defined by the equations (37)
(like § = rot A in quantum-electrodynamics).

If for the present the interaction of mesons with heavy particles
is neglected, the meson equation (20) takes the form

(2ix + T, D ¥ =0, (T, =v +y2). (38)

Putting y{! —y{ = I'{"~ and operating on (38) by (1/2ix) . T{"D*
we find

T DAY + (1/2i%) T T, DAD* ¥ = 0. (39)

From
Y = a0 v = - 20 (40)

we find
Iy T,=0, (41)

so that from (39) follows
IO DMWY = (i/8x) . (T r,—ToT) (D)D* — D+ DY ¥,  (42)
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From the definition (3) of D* follows
D) D¢ — D# D) = DX DM — (efihic) . VA UM = (efific) . ™, (43)

where § denotes the Maxwellian field. The equation (42) can
therefore be written in the following form:

I DM = (¢/8xic) . M Ty LY = (e/4me?) HM I LY. (44)
Adding (44) to (38) we find the following “equation of motion” for ¥,
from which 0¥ /0 can be solved by multiplication by B:

(% + Y D) ¥ = (¢/8me?) . ¥ T T, . (45)

The left hand member has the form of a “Dir a c equation” for
the first index %, of the undor V.

If this equation is iterated like the ordinary Dirac equation,
we find (compare (40) and (43)):

(e/8me?) . (— % + ¥\ DF) (¥ IO T, Y =
= {2 + + vl Y DA D 4§ ¥ ) DP DM} P =
= {(m2*/#?) — D, DA — Yioll) . (efihc) H¥I I, (46)
where we have put
Yoo Y = — 2i0),. (47)

If only a magnetic field is present (—(33> = 0), we have

— — — — — =
%cf\’z H¥ = (6™ . ) — i(a™ . €) = (H . a™). (48)
Adding to (46) the corresponding equation with cg‘;l (where in the

left hand member I'{™ occurs with the opposite sign), we find after
multiplication by 7#2/2

T Te—

(26 + pyp? — (ehf20) . (9 . 6V + o@)} P =
= (er?/16me?) . T\ DP (¥ T T W), (49)
where
pr = (B[i) . Dy (50)
is the operator of the kinetic momentum. In non-relativistic ap-
proximation we put

op' = me + T = — cpa, (51)

so that T is the operator of the non-relativistic kinetic energy. If,
further, according to Yukawa?), the right hand member
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I’;f) e F”DP(@"'“‘F).(eW/ 16mc?) of (49) is neglected in non-rela-
tivistic approximation, this equation can be written asa Schr 6-
dinger equation (T <€mc?):
(Eprrt — eBY)Y =TY =
—_—— s
— {p%/2m — (hj2me) .} (@D £ 0@ G ¥, (52

so that the magnetic moment of the meson

— >

Bop = (¢2m0) . 11 (6% + 6%) = (e2me) . Sy (53)

. N
is (¢/2mc) times its spin angular momentum 9) Sijl,}.

Since the energyisgiven by?) € = [W1o,, €, ¥, the non-relativistic
value of the magnetic moment is actually given by

- >
o=/ 00 top V. (54)
As the value of the spin angular momentum is given in the same

Ny + _)”}
way by ?) & = [¥1p, 8,/ ¥, the statement

— —

w = (¢e2mec) . & (55)
holds for the values of these quantities as well as for the operators
occurring in (53).

§ 5. Charge-invariance and statistics. It is well-known that in the
hole theory of electrons (superquantized theory of the Dirac
electron) there is an infinite c-number difference between the g-
number e (obtained by superquantization of the wave-function
¢ from the expression for the electric charge density e¢'{ following in
the usual way from the Lagrangian of unquantized wave-
mechanics) and the g-number representing the correct (observable)
electric charge density. If the meson field is quantized, (33) must also
be corrected by addition of infinite c-numbers.

We have mentioned that to one description of Dir a ¢ particles,
mesons, neutrettos and the electromagnetic field by undor wave-
functions [U.C. (1)], (20), (22) there is an equivalent charge-conjuga-
ted description, in which some constants like ¢, f and g are replaced by
er, f* and g* (32), (324), whereas every quantized undor *) is replaced
by its charge-conjugated [U.C. (30)], (29). This suggests a kind of

*) We assume that all fields are described by undors (reflection &’ = i@, [U.C.(9),
(34)]) and not by “quasi-undors” (reflection ¢’ = Bd).
3
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symmetry between both ways of describing physical situations *).
By way of hypothesis one might assume that such a symmetry is a
fundamental property of nature. We shall call this possible property
the “charge-invariance” of the physical world (not to be confused,
however, with the principle of conservation of electric charge!).

Therefore we shall postulate that every physically significant
quantity in quantum-mechanics (that is, every g-number correctly
representing the value of an observable) is invariant by transition
from one description of the fields of wave-functions to the charge-
conjugated description, or, in shorter terms, is charge-invariant.

This postulate can serve to distinguish between wave-mechanical
expressions, which after quantization cannot have a physical mean-
ing any longer, and other analogous expressions, which may repre-
sent observables. For the present we shall leave #his question out of
consideration, but we shall show here that the postulate of charge-
invariance implies directly that photons and neutrettos must be
neutral, that Dirac electrons must obey Fermi-Dirac sta-
tistics and that mesons must obey Einstein-Bose statistics.
The interesting fact is that this statistical behaviour of particles and
quanta follows much more directly from the postulate of charge-
invariance then from postulates concerning the positive character
of the total energy of free particles or quanta t).

From the Lagrangian of any kind of particles or quanta we
can always deduce expressions for the electric charge density, the
electric charge current, the total momentum and total energy of
these corpuscles.

The terms of the Lagrangian function depending on the
derivatives of the field quantities ¥" have always §) the form of °)

iIKYIBT, V*Y. (56)

If ¥ is an undor **) Wy, ., of rank N, then [U.C. (12)]:

N N
B=B'=IIB"; I, =ZX¢,y", (¢, =4 1); B¥['* =T B*>; (57)
n=1 n=1
so that, if we put
N
WE— gk £ — £ = [[£M: £+ £ — 1, (58)

n=1
‘ *) Compare H. A. Kramers, loc. cit. 19),
1) Compare for instance H. A, Xramers!) and M. Fierz13),
§) This and the following considerations apply at least to all particles and quanta
discussed by Dirac and Fierz!®) and by Kemmer!?).
**) In the following, we confine ourselves to representatiouns, for which § = 1 (compare

[U.C. (17), (17a-b))).
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we have
Bef=(—1DV"£B* Tg=—£T* (59)

From (56) we find that the electric charge density, if it exists, is
equal to

ep = (eK/he) . WTBIYW, (— infinite c-number). (60)

In the charge-conjugated description this expression is turned, on
account of (32), into

elol = (— eK/hic) . V¥ BT ¥# (— infinite c-number), (61)
therefore, on account of (57)—(59):
elol = (— )V . (eK[hc) . YT **°B**¥* (— infinite c-number). (62)

If the expressions (60) and (62) for the electric charge density are
postulated to be equal, the components of the wave-functions ¥ and
¥* occurring in (60) and (62) must be commutative (apart from an
infinite c-number term) if N is even, and must be anti-commutative
if N is odd.

It is not true, of course, that the commutation rules follow rigo-
rously from

ep = elpl, (63)
since in (63) the sum is taken over the undor indices, and only the
wave-functions ¥ and W* in one and the same point of space are
multiplied with each other. In this case the 3-function appearing in
the commutation rules becomes infinite; its value corresponds for-
mally to the sum or the difference of the two infinite c-numbers in
(60) and (62). Since the infinite c-number in (62) must be the charge-
conjugated analogon of the infinite c-number in (60), this may be of
some help in the “evaluating” of such infinite c-numbers.

For photons and neutrettos it follows from (23) and from the
symmetry of the operator p,, with respect to both undor indices,
on which it operates, that

o =Wo, ¥ =W, ¥ = ¥, W& = oL (64)

On the other hand we find from (63) and (32) for any particles or
quanta

p=—¢" (€5)

Comparing (64) with (65) we conclude that the electric charge

density of the fields of neutrettos and photons must vanish, if it is
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a charge-invariant expression. In a similar way we derive that by
means of neutrettors of the first rank only neutral patricles %) can be
described. It does not follow from this, however, that neutral par-
ticles should necessarily be described by neutrettors!

For electrons we deduce from (65) that

=9 —C (66)
must be opposite equal to
ot = PHgE — (66a)

where CT takes the place of the infinite c-number C in the charge-
conjugated description. From this we deduce

I + PIPE = QTP 4 Pt = 2 () s 4 Dale)* =
= C 4 CL = c-number. (67)

Similar relations can be deduced by postulating the charge-
invariance of the quantized expressions for electric charge current,
total momentum and total energy. For instance, from

f‘l’*?—-;‘l’*cz/‘l‘”%;q’g—@ :/¢N?_V>¢**CL:

Crh o>
follows

— —

—> —>
ST (V) + (V)2 §*} = [Z{ ) * (Vi) + (Vi) ($)*) =
_ !
R
It is obvious that relations like (67) and (68) are consistent with
the anticommutativity relations of Fermi-Dirac statistics
$r(®)* Y (8) + Y (a) Yp()* = S 3(x — 1), (69)
but not with Einstein-Bose statistics.
In a similar way we find for mesons from

(C — CY) = c-number. (68)

(6}] (2)
— ’r& _ {

and "
L it g R@ i L
- C (70a)
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that
(1) (2) (1) ()
¢ B + B9 st B+ BY e L
v 7 L AR 4 o v C 4+ C*h. (71)

Applying (57) —(59) we find

or, on account of (35),
Wt (0, B1) — (pop ¥1)™° W'* = C + CL = c-number.  (73)

Again, in (73) the sum must be taken with respect to the undor
indices, as in (67) and (68). It is obvious that (73) is consistent with
Einstein-Bose commutativity relations between the compo-
nents of ¥/ and w'*:

i, (0* Fho e, (8) — Wi, (8) Wi, (%)* = c-number,  (74)
and not with Fermi-Dirac anticommutativity relations.

The commutation rules for the components of ¥/ must be derived
from those for ¥/ by means of the so-called identities (37), so that it
is not very alarming that we do not find any indication of them from
(71)— (74). '

For neutral particles, indication of the commutation rules can be
derived in this way from the expressions for the total momentum
and the total energy, which are also obtained directly from the Lag-
rangian. Generally we can postulate that the fotal Lagrangian
itself (integrated over space and time) shall be charge-invariant on
account of the commutation rules of the field components. It is
therefore not necessary to investigate the sign of the energy in order to
derive the statistical behaviour of the corpuscles concerned 14) 15),

It is true, however, that charge-invariance of the quantized
expression for the total energy implies that by quantization
according to the scheme of Pauli and Weisskopfl? the
so-called “states of negative energy” of free corpuscles (depen-
ding on the time by a factor ¢*?™) can be interpreted, on ac-
count of the commutation relations (which do not need specifica-
tion here!), as states of positive energy *) of corpuscles with oppo-
site electric charge. We can understand this in the following way. By
charge-conjugation of the quantized wave-function these states pass
into charge-conjugated states of positive energy. If, now, the expres-
sion for the total energy is charge-invariant on account of the (un-

*) For the corpuscles under consideration states with ¢e—27* are of positive energy.
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specified) commutation rules of the g-number amplitudes a (J o r-
dan-Wigner or Jordan-Klein matrices), the terms in this
expression arising from the so-called states of negative energy are
automatically equal to the terms in the charge-conjugated expres-
sion arising there from states of positive energy of the charge-conju-
gated corpuscles (which are described with the help of the charge-
conjugated g-number amplitudes b = a*). Using the latter (charge-
conjugated) expression for the description of these terms in the total
energy, the energy is given as a sum of only positive energies with
amplitudes a*a or b*b.

We observe that both the statistical behaviour of corpuscles and
the possibility of describing so-called states of negative energy (of
free corpuscles) as states of positive energy of charge-conjugated
corpuscles follow directly from the postulate of charge-invariance of
quantum-mechanical theories. The relation between the positive
character of the energy of free corpuscles and the charge-invariance
of energy seems to be still closer than that between charge-invariance
and statistics.

I wish to thank Prof. Kramers for his interest in this work.
Received July 15th 1939.
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THE HFAVY QUANTA THEORY OF NUCLEAR
AND COSMIC RAY PHENOMENA

§ 1. Introduction. In 1935 Y ukawa suggested in a paper in
the Proceedings of the Physico-Mathematical Society of Japan?)
that the exchange forces between heavy particles (protons and neu-
trons) must be attributed to the action of an intervening field and, in
particular, may be regarded as a second order effect due to the
consecutive emission and absorption of charged “Aheavy quanta’, just
as the electromagnetic interaction between two charged particles can
be described by the quantized electromagnetic field. In order to
explain the range of about 2 X 10713 cm of the nuclear forces, he
assumed that this quantum had a mass about 200 times as large as
the electron mass: m a 200 m. In his original theory this field was
tentatively regarded as a scalar field. Then, however, it turned out 2)
that, if the energy of the field of heavy quanta was assumed to be
positive, the exchange force between a proton and a neutron became
repulsive in a 3S state, in contradiction to the fact that this is the
ground state of the deuteron. Since in the mean time experiments on
cosmic ray phenomena 3) 4) %) ¢) had suggested the existence of a
charged particle just having a mass of the order of magnitude 200 #,
which might be identified with the quantum of Yukawa’s
theory 7), Yukawa expressed his intention to investigate whether
this difficulty with the sign of the proton-neutron force could be
removed by introducing a non-scalar heavy quantum field 2).

Then, from 1937 on, the non-scalar theory of heavy quanta was
gradually developed. In January 1938 its main ideas and applications
were announced by Kemmer?8 and Bhabha?) in Letters to
the Editor in Nature. It.is this theory, partly in a generalized
form 19) 11) 12) 'which will be subject of the present dissertation.

As a name for the heavy quantum of nuclear physics were suggest-
ed “heavy quantum”, “U-particle”, “yukon”, “dynaton”, “bary-
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t(e)ron”, and for the particle composing the penetrating component
of the cosmic rays: “heavy electron”, “penetron’ and “mesot(rjon”.
The last name was shortened afterwards to the more correct form
“meson’’ 13) 14). Though it seems to the author that the correct name
for a particle of intermediate mass should not be “meson”, but
“metrion’’, and though from a theoretical point of view the meson is
no intermediate electron, but only a heavy *) quantum, (that is, a
heavy Einstein-Bose particle), the name “meson” seems to
be already generally adopted, so that we shall use it in the following.

§ 2. The four types of meson fields proposed by K e m m er and the
simplified deuteron problem. In an important paper in the Proceedings
of the Royal Society of London 19) K e m m e r has discussed four
different types (4, b, c and d) of a heavy quantum field satisfying the
Klein-Gordon equation

(00— =0, (00 =A — &2/ =V, V*; » =mefh), (1)

if all interactions with other fields are neglected. In all four cases the
field consists of an antisymmetrical tensor of rank #, the potentials,
and another antisymmetric tensor, of rank (#-1), the field strengths.
In the absence of other fields interacting with the heavy quantum
field, the field strengths are the (generalized) curl of the potentials
(like in the Maxwellian theory), and the potentials are the four-
dimensional divergences of the field strengths (unlike the theory of
the electromagnetic field).

In Kemmer’s casesa, b, c and 4 the number # isequal to 0, 1, 2
and 3 respectively. Case (a) is identical with the field of quanta
discussedby Pauli and Weisskopf?¥) andusedby Y uka-
w a in his original papers 2). Case (b) is identical with the field dis-
cussed by Proca?f) and quantized by Durandin and Er-
schow?!), Kemmer), Bhabha?!) andothers **) following
the same procedureof Pauli and Weisskopf?). The proper-
ties of the field of case (c) differ from those of the Proca field (b)
only with respect to the laws of transformation of the field compo-
nents by a spatial reflection. As a consequence of these different
transformation laws, however, the interaction of the heavy quanta
with the heavy particles (the proton-neutron, or “nuclon’, as we

- *) | Baryteron”’ = heavier.
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shall call it briefly) must be introduced in a different way. Similarly,
case (d) differs from (a) only with respect to the reflection, as long as
no interactions are taken into account.

The interactions of these four types of heavy quanta with heavy
particles (nuclons) are then introduced by adding to the L a-
grangian function scalar terms, in which no derivatives appear;
they contain only inner products of the wave-functions of protons,
neutrons and heavy quanta. (We have called this a “F e 7 m i-An-
satz”’ in the following). The coefficients of the terms, in which the
potentials ¢ of the heavy-quantum fields occur, are called g,, g, g,
g, in the four cases, whereas the coefficients f,, 7;, /. and f;, appear
in the interaction terms containing the field strengths €. The field
equations then take the following form:

(@, — faa,,) = (1) Vi en, a0 2
w(on .., + g n) = VO

Here [2y2;...2,] denotes the sum over all even permutations of
hoM - ..k, minus the sum over all odd permutations; the #)  are
linear combinations of the products ¢§¢p of the components of the
wave-function {p of protons and the conjugate complex ¥ of the
wave-function of neutrons.

From (2) we conclude that in Kemmer’s theory ¢ and ¢ play
an equivalent part, contrary to the Maxwellian theory, where
the potentials cannot be derived from the field strengths and are not
uniquely determined by them (possibility of a gauge transforma-
tion). In the original paper of Bhabha ?) the interaction described
by the term with f did not appear.

Kemmer calculated the proton-neutron force in each of the
cases (a), (0), (¢) and (4), and found in non-relativistic approximation
the following expression for the effective potential W(z, 2) describing
the second order znteraction between two nuclons I and 2 through the
medium of the field of (charged) mesons 19):

—

-
W(r,2) = $(=z{'<@ + =) x?){4 + B(c!).e?) +
N O
+ (C/?) (6. V) (6@ .V )} (e [r,). (3)
Here ©@), <", (¥ are the dsofopic spin operators operating on the
wave-function of the #™ particle; the meaning of the suffixes %, y, 2
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is only that these operators have the same form as the Pauli
matrices ) oy, oy, 6,; they have nothing to do with the co-ordina-
tes of space. We assume that ¢p and Jy are eigenfunctions of =,
belonging to the eigenvalues © = + 1 and © = — 1 respectively.

The constants 4, B and C in (3) can be expressed in terms of the
coefficients f and g occurring in the meson equations (2). If all types
of meson fields are present, in interaction with the nuclons, these
coefficients turn out to be equal to 19)

4 = (odfaz) (— 18> + 8 ),
B = (e*/4m) (/s 2 — 1.1 (4)
C = (e/n) (— |h1> + 1P — 18P + gl

It must be pointed out that in (3) some interaction-potentials of the
form of a 3-fumction have been omitted (compare § 7). In the
literature it is often tried %) 2!) to eliminate these 8-function inter-
actions by adding to the I.a gran gian some terms, which give
rise to a first order interaction between protons and neutrons. It is
of interest to remark that, though by these attempts the 3-functions

arising in the calculation from
—

A(l/r)y = — 4=d(r) = — 4= 3(x)3(v) 8(2) (5)

are taken into account, those arising from *)

—_ > > —> s
(4 .V)(B.V)(1[r) = —4n X 4; B; 8;(r) +
v _ = > —> — >

+r5B3(A.N(B.7)— (A.B)r3 (5a)

have been forgotten 18) 2) (compare § 7). For the present problem
these 3-function interactions are of little importance 22). Though
similar terms in the Lagrangian (which for the sake of
simplicity can be introduced in exactly the same form as the terms
yielding a direct (3-function) interaction between nuclons) are of
importance for the theory of B-disintegration, only the terms with
ordinary 3-functions (5) give rise to a direct (first order) Ferm i-
interaction between the nuclon field and the field of light particles ),
whereas the terms of the form of (54) can be neglected theze (§ 11).

The terms with 4 and B in the expression (3) for the effective
second order potential between two nuclons are commutative with

*) For the definition of the longitudinal 3-function Bi?w(r) we refer to the foot-note on

REVAvE _ long; >, 5 (s 2%
page 72. Generally: V;Vj(1/r) = — 48 8(r) + »5(3xixj — r28ij).



THE ORIGINAL SIMPLIFIED DEUTERON THEORY 43

independent rotations of the spatial and the spin co-ordinates, so
that the energy levels of the two-particle problem can be character-
ized by quantum numbers I, s, j, m;. The last term of (3) (with C),
however, is commutative only with a sémultaneous rotation of spatial
and spin co-ordinates, so that this term will give rise to a coupling of
states with different quantum number /. As (3) is invariant with
respect to permutation of the ordinary spin operators, states with
different quantum number s are not coupled. Finally (3) is invariant
with respect to permutation of the isotopic spin operators, so that the
1S, 3P, 'D, 3F. ... states, which are antisymmetrical functions of the
spatial and spin co-ordinates and thus symmetrical functions of the
isotopic spin co-ordinates, are not coupled with the 3S, 'P, %D, 1F . . ..
states, which are just antisymmetric in the isotopic spin co-ordinates.
We conclude that the !S state of the deuteron is not coupled with
any other state by the term with C, but that the S state is coupled
with the °D, state. We shall discuss this question afterwards and, to
start with, we shall with Fréhlich, Heitler and Kemmer??)
neglect this coupling. Then we can write (3) in the form (compare § 8)
WO (2,2) = bel o) + ) (A + B(e . D (e )r),
B'=B+ iC.

The effective potentials for the 3S and the !S state of the deuteron
are now given by

S W) = — (A4 + BYe)r,
IS: W)=+ (4 — 3B)e™/r.

(6)

7)

The Schroédinger equation of the simplified deuteron
problem is given by
(€ + BIM)A + He ™}y =0; (x = mcfh). (8)
Here
M =2MyMp/(My + Mp) = 1'672; X 102, 9)
The eigenvalue problem (8) was numerically solved by Wil-
son?) andby Sachs and Goeppert-Mayer 2). The for-
mer calculated
b = (HM W)
as a function of

a = (— EM[IPn?);



44 HEAVY QUANTA THEORY OF NUCLEAR AND COSMIC RAY PHENOMENA

the latter calculated
alb = (— €[Jx)
as a function of . The results of Wilson can be represented to a
good approximation by
a = 023, X (b — 170), (10.W)
those of Sachs and Goeppert-Mayer by
a = 0193 x (b — 1°683)?, (b < 270), (10.5-GM)

The actual value of b for the 3S ground state of the deuteron is in the
neighbourhood of 2-8. Weremark that (10.W) and (10.5-GM) do not
fit exactly in this region.

We shall put

m = 100 Em, (E ~ 175 -+ 25?) (11)

and calculate J?/%ic as a function of £. Writing (10.W) and (10.5-GM)
in the form

a = ao(b — bo)?, (10)
we can express b as a function of £ by
b=b,+ (1/100Emc) . V — EMJa,.
"From the definitions of 4 and » we now deduce
JJhe = 100 by (m/M)E + v/ — E]Mc3ay,
Putting here M = 16725 X 10724, m = 0909, X 10-%, ¢ =2'9979, X
% 10'°, and for the triplet ground state of the deuteron — 3¢ =
(= 217, MeV) = 345, x 10~ (erg), we find for the coefficient J7
in the potential of the 3S state:
3J{[hc = 0-05434 . by + 0-0479/+/ . (12)
Substituting for @, and &, the values from (10.W) and (10.S-GM)
we find
SH|he = 0:092,% + 0098, = 0:092, (£ + 1-065)  (12.W)
and
SH e = 0:0915€ + 0110 = 0°0915(€ + 1-20). (12.S-GM)

So the difference between (10.W) and (10.S-GM) is equivalent with
an incertitude of a little more then ten electron masses in the mass m
of the meson.
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From experiments on scattering of neutrons by protons we know
that the virtual 'S level has an energy, which is small (~ 0:05 MeV)
in comparison with the binding energy of the deuteron (= 2-17,
MeV). We conclude that a has for the 'S level only about 1/40 of the
value, which it has for the 3S level, and the opposite sign. Now, the
virtual levels of the Schrédinger problem (8) have not yet
been determined. If we tentatively assume that for a < 0 (virtual
levels) an equation of the same kind as (10) is valid:

la| ~ 02 X (b — 168)2, (10a)

we find for the 'S level b &~ 1-5,. In the literature the value of b for
the S level is usually supposed to be equal to b, ~ 168, that is, the
energy of the IS level is entirely neglected ?*) 25). This may be a little
dangerous, since for virtual just as for real levels, (b — b,) may be
very sensitive for the exact value of a, if the latter lies in the neigh-
bourhood of zero. This, indeed, would follow from (10a). From this
formula one finds (putting '€ ~ 0:05 MeV):

LH lic = 1008, (m/M)& — V1E/Mc?ay ~ 009, — 001, (13)
Neglecting '€ entirely one finds:
WH he ~ 0-09,E. » (13a)
If £ ~ 1'75, the difference between (12.W) and (12.5-GM) is about
319, and that between (13) and (13a) is as much as 109,.
Comparing (13) with (12) we find
CH — ') [he ~ 0115, (13.W); ~ 012, (13.S-GM),

if (10a) is valid. Here we have put '€ ~ 005 MeV again.
Putting £ ~ 175 in (12) and (13), we find from (7):

Alhc ~ 016, B'/lic ~ 0°10.

From (4) and (6) we see that among Kem m e r’s cases () — (d)
only (b) offers the possibility of making alone both 4 and B’ positive.
This was the reason why K e m m e r and most other authors have
investigated this case in more detail, that is, they consider the meson
field as a pure P r o ca field. Of course it is also possible to consider
the meson field as a composition of several cases. The advantages of
doing so 11} will be discussed afterwards (§ 8).

We remark that the scalar field, originally discussed by Y uk a-
w a ?) (case (@), gives the wrong sign for 4 (compare (4)).
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§ 3. The charge-dependence of nuclear forces. In a theory of charged
mesons the proton-proton force and the neutron-neutron force are
obtained only in a fourth approximation. For a field of Proca-
mesons the calculation was performedby Fréhlich, Heitler
and K e m m e ). The effective potential in the !S state turns out
to be repulsive and very strong for » < 1/2x. The range is smaller than
that of the second order forces of the preceding section (§ 2). A simi-
lar short-range strong repulsion is found between a neutron and a
proton. This indicates that the theory does not allow to determine
the exact form of the effective potential between nuclons for small
values of 7, by taking into account a finite number of successive
approximations yielded by the perturbation method.

Experimental data on the scattering of protons by protons 26) #7)
can be explained very well 28), if one assumes that the proton-proton
IS potential, in as far as not of electromagnetic origin, is (within 19%,)
equal to the proton-neutron 'S potential 2). It is obvious that the
meson theory as we have presented it until now does not explain this
fact. For this reason several authors have assumed the existence of
neutral mesons. One argument of B h a b h a '8) for the existence of
these hypothetical neutrettos was, that it would make the theory
“more symmetrical”’: charged and neutral particles would exist with
small, intermediate and large masses. We shall see, however, that
this argument is hardly tenable. Indeed, the neutrettos actually
introduced by the theory cannot be compared with neutrons or neu-
trinos, since the corresponding anti-neutrettos do not exist *°). There is
more reason to draw a parallel between neutrettos and photons. If
the arguments of Bhabha were reversed, we should have to
expect the existence of “charged photons”.

A theory of mesons and neutrettos and their interaction with
nuclons was developed in a very elegant way by Kemmer ).
According tohim, neutrettos are just as photons emitted and absorb-
ed by particles jumping from one state into ths other without chang-
ing their charge. If an antineutretto existed, it would be absorbable
by those particles that can emit neutrettos, and vice versa. It is
obvious that such a particle would behave exactly like a neutretto
behaves itself. Therefore it seems to be prudent, not to introduce two
kinds of neutral heavy quanta, which cannot be distinguished at all,
but to assume, just as in the case of the electromagnetic field, that

the neutretto field is to be described by real tensors ®}, or, in an
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“undor” terminology 3!), by means of “neutrettors” 1?). In a sym-
bolic way we may say that the antineutretto is identical with a neu-
tretto, just as an antiphoton is a photon again. (The Jordan-
Klein matrixina Fourier analysis of the quantized photon
field, which should describe the antiphoton, is identical with one of
the Jordan-Klein matrices describing the photons; compare
§ 6).

The quantities fuy  and g, in (2) have the form of
3 g,V w(tx — i1y) ¥, where { is the wave function of a nuclon and w
is a combination of D ir a ¢ matrices; g, denotes the constants / and
g. The neutretto field g, ¢ should satisfy equations of the same kind
as (2), only fuy. and gu,_ in these equations should now be of
the form of 4{'w(a, + b, 7,)¥. If T and ¢ are real and if w is a
self-adjoint (Hermitian) matrix (w = w'), we must assume 3°)
(compare [M.F. (27)] *)) that all a,, and b, are real:

a¥ =a, b*¥=10,. ' (14)

The effective (second order) potential between two nuclons, due to
the interaction through the meson field, turns out (compare § 7) to
be a sum of terms, which are proportional to

ote ) + i) 7@ — iz togtg @ + 7@ ) —ixlh
mon 2 2 nom 2 2

In the mnom-velativistic approximation, only terms with m = #»
occur, so that the terms of this effective potential are simply pro-
portional to

0 7@ 4 TP TP, (15)

This would still be true in the “relativistic’’ approximation t), ¢f
we assumed that it is possible to make all g, real at the same time by
a choice of the phase of the meson field:

gn = 8&n (16)

It is easily seen that the effective (second order) potential, due to

*). By {U.C.] will be referred to formulae from the paper of the author on undor cal-
culus 31) (first chapter of this thesis); by [M.F.] to formulae from the paper of the author
on the undor equation of the meson field !?) (second chapter of this thesis).

) In Kem mer’s papers 19) 30) terms with #m # » do not appear at all, so that for
him the condition (16) is not essential in this connection. Compare § 7.
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the interaction through the neutretto field, will be a sum of terms,
which are proportional to
ay 4 Ups) a + b | a4y biv? a, + b,y
2 2 2 2
In non-relativistic approximation again there are only terms with

m = n, so that in this case the terms of the effective potential due to
the interaction through the neutretto field are simply proportional to

Hla,? + 3@k by + a,00) (70 + w2) + 16,2 w20 =)

The total non-relativistic interaction is then a sum of terms pro-
portional to

a2 4 [ 20 . 72) £ (15, — g0 )i +
+ 3 (a;," b, + ('nb,”,‘) (1'(,1) -+ 1.'(,2))}. (17

Now, the proton-proton and the proton-neutron interaction in
states, which are antisymmetrical with respect to the spatial and spin

_+ —» .. . . o
co-ordinates (so that (V) . ©/@) = 1), become equal in this approxi-
mation, if we assume

|Bul2— 1gu [ + 3 (@} by + a,b¥) = O.

From nuclear physics we know that the non-electromagnetic proton-
proton forces are also approximately equal to the neutron-neutron
forces, so that

$(a¥ b, + a,b%) < a, [> + 6,2
These two conditions are satisfied, if we choose
|6,1> = |g.[%; a}b, = purely imaginary.

Now, in order to avoid in our theory the existence of antineutrettos,
we have already assumed in (14) that all a, and b,, are real. Thus we
conclude:

by =1gul, 4,6, =0, (18)
so that there are only two possibilities:
1°. the “symmetrical theory”, proposed by Kemmer30):
a, =0, b, =gl (19)
2°. the “neutral theory”, proposed by Bethe??):
b, =g, =0. (19a)
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In the latter theory, the nuclon interaction is entirely due to the
(electromagnetic and the) neutretto field, and mesons do not inter-
vene (g, = 0). Since from cosmic ray phenomena seems to follow
that the interaction between nuclons and charged heavy quanta
cannot be neglected, we shall mainly confine ourselves in the follow-
ing to Kemmer’'s symmetrical theory. Then, the second order
effective potential between nuclons is proportional to

- —
(zV . 7)., (20)

The heavy quanta forces between nuclons are now independent of
the charge of the nuclons.

Comparing (20) with (15) we deduce from (3) the new form of the
non-relativistic effective second order potential between two nu-
clons:

- = —

W(z,2) = §(xV . 1@){4 4+ B(sV . 6?) +
— — = —

+ (C/2) (6. Vi) (6@ . V)} e m/r,)  (21)
Here A4, B and C are still given by (4). The potentials for a pure 3S
state and for the 'S state of the deuteron are now given (compare

(6)—(7)) by
St W)= —3(A+ B)e ™/,
IS: W@) =+ (4 — 3B e ™/r,
so that for £ = 1'5 ~ 2:0 we find (assuming (10a) and (13.W) or

B'=B+1iC, (22

(13.5-GM)):
m = H 150 m ' 175 m \ 200 m
(Wilson) 0-05 0-05 0-05
Afhe — ’ ’ ’ (23)
(Sachs-G M) 006, | 006, | 006,
B’ /e = 010, { o1, | 013,

Comparing (22)—(23) with (4) and putting
g =g | Veiijdn, g = |l Velfan, g = |gi| Verdan (24)
we find for a combination of the cases (b) and (d) of Kemmer:
@fic = Affe, (26 + g3)3hc = B'Jhe,

so that g4/ficis of the order of magnitude 1/17 or 1/16, and g3/%c of the
4
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order of magnitude + ~ 4, if g3 =0, and of the order of magni-
tude + ~ 4, if g3 ~ gy. In the latter case (g2 + 2g3)/3hc is of the
order of magnitude 1/10. It must be remembered, however, that we
have here entirely neglected the coupling of the 3S state with the 3D,
state by the term with C (compare § 8).

With Kemmer?) we shall now assume that the g, are real
indeed (16). Then gu) _and gity . take according to (19) the form of

gu = gl (e — i1y) Y = gl wip;

- (25)
g = $gd' wny = fg(hwdr — Phwdy).
Putting in a symbolic way 3°)
YV =@, —i®y,,
¥ =&, (26)

Y = &, + i P,

(where ¥ is the meson field, ¥*¢ its charge-adjoint 3) and ¥ the
neutretto field), we can write the Lagrangian*)

I = —K/{¥'B(2x — i)Y + ¥B(2x — i,V T +
20 [FTB. fop U (tx— 1, ) U+ F1B.. f,, UET,0+conj. compl.]+ ...} (27)

in symbolic vector notation in the form of
— . -
L'=—K/f{&®.B2x — WV &) +

1 2u[(®. £*Bf,, 4 v y) + conj.compl] + ....}, (28)
where
S(D;:lke = £(1) £(2) q);kzlh = q)fzk‘ = (Dkgikz‘ (29)

K e mm er?) has pointed out that, if (16) is assumed, the effect-
ive potential between two nuclons in any higher than second order
approximation of perturbation calculus can, on account of the
“invariant” vector form of (28), be written as

- =
W + (z . x@) W', (20a)

—
where W’ and W'’ are potentials depending on 7, and the spin co-
ordinates of the two nuclons only.

§ 4. Quantization and relativistic invaviance of the theory. In 1929
Heisenberg and Pauli®)3%) have developed a quantum

*) Compare the notation in [M.F.] 12).
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theory for wave fields and have demonstrated its relativistic in-
variance. In this theory a4/l components of a set of quantities ¢(x)
transforming irreducibly among each other by Lorentz trans-
formations are assumed to be canonical co-ordinates, as soon as one
of these quantities ¢ is a canonical co-ordinate. Thus, if for instance
one component of a four-vector is a canonical co-ordinate, all com-
ponents are so. For this reason Kemmer'), Bhabha?)1)
and Yukawa? 2) built up their theory in such a way that all
components of ¢ in (2) were regarded as canonical co-ordinates q(x).
Apart from some possible normalization factor, the canonical conju-
gates of ), . are then given by p(pan,..) = {ha,...; the canonical
conjugates of ¢y = by L, Particularly by Bhabha?s)
the quantization of the meson field was performed in a logical way
starting from this point of view.

Then, however, a difficulty arose. From the antisymmetry
of %, it follows that g, . does not possess a canonical
conjugate at all. Thus the scheme of Heisenberg and Pauld
cannot be applied. For in both proofs, given by them 33) 34) for the
relativistic invariance of each of the commutation relations, an
essential use was made of the commutation rules holding for the
other co-ordinates ¢(x) transforming together with the co-ordinate in
question. The commutation relations assumed by Heisenberg
and Pauli, however, do not hold between ¢y, . and the other
canonical variables, if the meson equations are regarded as g-number
relations.

For instance, no 3-function is yielded by the commutator of
®o,.. With its canonical conjugate, since the latter, being zero,
is (anti)commutative with any quantity. A similar difficulty appeared
in quantum-electrodynamics. There it can be removed in a natural
way 3%) 36) by assuming that the canonical conjugate & of the electric
potential is not identically equal to zero, but is a g-number which,
operating on the situation function, multiplies the latter by a
constant factor only, for instance by zero. This g-number must be
introduced as a new variable.

One may try, of course, to proceed in a similar way in the meson
theory. There it is possible, indeed, to introduce similar help-quanti-
ties U in such a way that finally every canonical co-ordinate g(x)
possesses a conjugated momentum. If ¢ is of rank #, we must
introduce a set of tensors U of rank (» — 1), (® — 2), ...., 1, 0 for
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this purpose *). In this way it is possible to find a consistent set of
commutation relations, the relativistic invariance of which follows
automatically by an application of the arguments of Heisen-
berg and Pauli It must be bornein mind, however, that these
commutation rules ave not identical with those, which are in use in the
current theory. Now, for instance, ¢ . is commutative 1) with
oxh,.., and the “identities” expressing the Qor,.. and @ . in
terms of the T and ¢* are no longer valid as g-number relations.
Thus the meson equations are affected and they can only be valid as
a condition imposed on the situation function (like in quantum-
electrodynamics), if we postulate that U, operating on the situation
function, multiplies the latter by a constant factor (for instance zero)
only. The advantage of such a procedure would be, that there would
exist some possibility of separating a part of the nuclon-nuclon
forces by a canonical transformation 1) 37), like this is done in quan-
tum-electrodynamics, where the static Coulomb force is sepa-
rated and the longitudinal electromagnetic field is eliminated from
the theory 38) 3¢) (compare § 5).

However, such a procedure is impossible in the theory of heavy
quanta, since from the condition “U = constant” imposed on the
situation function would follow that the situation function vanishes
ttself. This is a consequence of the fact that in the meson theory U
will not be commutative with its own derivatives with respect to the
time (contrary to & in quantum-electrodynamics), as ¢, appears
itself in the left hand member of the field equation 31i/3p,),. =
— — U replacing the “identity” 3Li[3¢p, . = 0. From a non-velati-
vistic point of wview, again, this occurrence of g, . in the corre-
sponding Lagrangian field equation (identity) means that the
introduction of help-quantities U 1is entively superfluous. The identity
can be regarded as a definition of g, in terms of the other
canonical variables and can be used directly for the derivation of the
commutation relations of ¢u .. Thus ¢, . is no longer treated
as an ordinary canonical variable, but only as a “derived variable”,
in analogy to § in quantum-electrodynamics, and not fo the electric po-

*) For Kemmer’s case (b) this reduces to a single scalar (and its conjugate com-
plex). If in this case, instead of @) and @, the C/\I‘« and CR are regarded as canonical
co-ordinates, one must introduce a four-vector and a scalar. If @) and Z)\y_ are regarded
as canonical co-ordinates, like it would be natural in an u#ndor theory of mesons, one must
even introduce two scalars and a four-vector.

1) This is ene-of the conditions, indeed, on which an application of the scheme of
Heisenberg and Pauli is possible. It is not realized in the current meson theory.
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tential B. In this way we find the commutation relations, which are
actually in use in the literature. Indeed this treatment seems to be
the more natural one. But its relativistic invariance has never been
proved, though there seems not to be a particular reason to doubt its
existence. Perhaps the proof can be given on the basis of a suitable
generalization of the theoryof Heisenberg and Pauli

Since by Kemmer, Bhabha and Yukawa only the
components of ¢ and ¢* are regarded as independent variables in
the Lagrangian variational principle, the other quantities
then must be “defined” by (2) in terms of these variables. Thus, the
L agrangian function,regarded as a function of the independent
variables only, is of the second degree in the gradient operator V. One
may call this an “L(VV)-theory”. The field equations following from
such a theory are of the second order; the first order equations are
arrived at by assuming some of them as definitions.

Although the elegance of such a procedure is questionable even in
electrodynamics, it can be defended there, since the field strengths
are uniquely determined, if the potentials are known as functions of
%, v, z, t. In these “definitions’’ the variables describing other fields
do not occur. The potentials, on the other hand, cannot be expressed
in terms of the field strengths.

We have already seen that this is not the case in the meson theory.
There, of course, it is possible to introduce with K e m m e r 1%) and
Bhabhat8) the quantities y = ({ — fu), which can be expressed
directly in terms of the ¢; but the possibility remains of expressing
@ or at least (¢ + gu) = v in terms of the {. So it is not clear why
imna Lagrangian variational principle one of the sets of quan-
tities ¢ and € should be treated differently from the other.

For this reason it seems to be more elegant to derive directly the
complete set of first orvder equations froma Lagrangian, which
is linear in the V operators, like the Lagrangian in the wave-
mechanical theory of electrons. We shall call this an “L(V)-theory”’.

A more serious objection against an L(VV)-theory of hardly known part-
icles seems to be the following. Since we know that the interaction of
Dirac particles with the Maxwellian field can be described by
changing in the L agrangian functionVyinto Dy = V) + (e/ific) ¥y,
whereever it operates on the wave-function describing the annihilation of
a positively charged particle or the creation of a negative particle, and by
Dff = V) — (e/ific) U, whereever it operates on the conjugate wave-



54 HEAVY QUANTA THEORY OF NUCLEAR AND COSMIC RAY PHENOMENA

function describing the creation of positive and the annihilation of nega-
tive particles, we are accustomed to use the same scheme of introducing
the interaction with the electromagnetic field, for any hitherto unknown
particles. One might desire that this scheme is uniquely determined.

This happens to be the case, if L is linear in the gradient operators, like
the Lagrangian used as a rule for the electron wave field (L(V)-
theory), but in an L(VV)-theory the above-mentioned prescription
(V— D) is not sufficient to determine a unique interaction with the
Maxwellian field. We shall show this for Dira c particles.

Instead of deriving the Dir ac-equation froma Lagrangian

L) =if§'Blix + v, VM, (Yu = Bay), (30)
we can derive it frdm the (second order) Klein-Gordon equation #9) *)
2 —0)¢ =0, (0 =V,H, (31

which is derived from a Lagrangian
L(VY) = [ $1B62 — Oy, (32)
= L(VV) = [4TB (—ix + vaV?) (ix + VM) L. (33)
On account of y,y, + Y»Yp = — 28y the integrands appearing in the

two expressions (32) and (33) are identical; their difference is equal to
(—i/2) 41 Boy, (VAVE — VEVA 4 = 0. (20, = iypY). (34)
If only first order derivatives are allowed, we can integrate (32) and (33)
by parts:
L(VV) =2 [UBY + [ (VLT R (VAY), (32a)
= LV) =¥y — [V OB, V). (33a)
Now changing V) ¢ into D) {, the second order equations following from
(32a) are given by
(»2 —D?) ¢ = 0, (320)

and those following from (33a) are given by
—- > = >
3% — D? — (¢fihc) ($ .6 —iG . )} = O. (33b)
Thelatter equation describesa Dirac particle with a magnetic moment,
as it should be; but the former equation can at most describe a particle,
which does not possess a magnetic moment, though it has a spin angular
momentum ).

Generally the interaction of a particle with the electromagnetic field is
not determined by the prescription V — D, so long as there is a possibility
of introducing some terms with (V)V, —V,V,) before applying that
prescription. The procedure of starting froman L(VV) seems to be especial-

*) Generally from (31) follows dxd + vy, VE ¢ = ix@ + v,V ) = 0, where @ is another
undor. If the total field of the quantities satisfying the first order equations consists of
one undor only, we can conclude that either § = ¢ or { = — o.
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ly dangerous since the (wrong) expression (32) seems to be simpler than
the (right) expression (33). '

The ambiguity here discussed can be removed by inserting D in the
place 0f V in the first order equations instead of inthe Lagrangian
itself. This, however, may be dangerous, since some first order equations,

such as for instance div H = 0 and div A + V/c = 0 in the case of the
meson field in empty space, may possess a character different from that
of the regular field equations (compare [M.F. (44)—(45)]!), and this can be
verified only by examining whether the equations in question can be
derived, without introducing auxiliary variables, froma Lagrangian
function that is linearin V.

Since no direct experimental data exist on the interaction between
mesons and the electromagnetic field, it seems to be necessary — at least
for a satisfactory theoretical derivation of an expression for this inter-
action — to derive the first order meson equations (2) from a L.agran-
g ian, which islinear in the gradient operators, L(V). We shall see that
in this way we arrive exactly at the equations given explicitly by
Bhabha %) and Yukawa?). This is not very surprizing, since
they have changed V into D in the right first order equations.

So long as the theory of Heisenberg and Pauli hasnot
yet been generalized, there is as little direct proof for the relativistic
invariance of the procedure of quantization by starting from L(V), as
there was for the L(VV)-method used by the cited authors. When a
more general relativistic quantum theory of wave fields will be
formulated, it should be formulated in such a way that the invarian-
ce of the L(V)-method is generally warranted. Since this method
leads to the same Hamiltonian (quadratic in V) as the L(VV)-
method, the proof of relativistic invariance of both methods will be
substantially identical.

So we shall regard in the following both ¢ and ¢ and their conju-
gate complex as independent variables in the Lagrangian
function L(V); the @ua, ., ¢Xa. > Soa,.. and L&, (@), @, ... =
=1, 2, 3) will turn out to be the canonical variables ¢ and ¢,
and the variables ¢q,, ., 9., Copanay.. and L, ., can be expressed
in terms of the canonical variables. The commutation relations
for these “derived variables” are then derived from those for the
canonical variables, so that, if the interaction between mesons and
nuclons is taken into account, the derived variables of the meson field
will no longer be commutative with the wave-function of the nuclon field.
This is exactly the way, in which Kemmer, Bhabha and
Y ukawa actually quantize the meson field. The only difference
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with the treatment of Bhabh a®) is, that we shall treat ¢,
from the beginning in the same way as the other derived variables
Caaa,..., Whereas this is done by Bhabha only after some
special arguments, which seem to be superfluous, since they do not
prove the relativistic invariance of the theory.

We shall now write down the Lagrangian function L(V)
describing the fields of nuclons and light D ir ac particles, mesons
and neutrettos in interaction with each other and with the M a x-
wellian field. In the preceding dissertation of the author on the
undor equation of the meson field '?) a formal argument was given
for treating the cases (b) and (d) of Kemmer fogether. We shall
return to this question afterwards when we are able to discuss the
physical properties of such a generalized meson field (§ 8); only
experimental data can decide if the spinless ) mesons of case (d)
exist or not. For the present we shall introduce these spinless mesons.
Afterwards they can always be eliminated again, if it would turn out
that we do not need them, by putting /, = g, = 0.

We shall make a “Fermi-Ansatz”’ (compare page 41) for the
interaction between mesons and light D ir a ¢ particles, that is, we
shall assume that this interaction is given by adding to f# and gu in
(2) similar expressions f'»’ and g'»’, where the %' are linear combina-
tions of the 4 x4 components of ¢ {,. Here ¢, is the wave-function
of a positon = and ¢, is the wave-function of the particle v called a
neutrino in the original theory of Fermi%) and called an anti-
neutrino by other authors 4?) ). If | is the 8-component wave-
function of the light particles, we can write

u = Jfod, = P Twlty — ity (35)

As for the interaction of light particles with neutrettos, we shall
make again the “C.I.”” (charge-independency) assumption of K e m-
mer’s “symmetrical theory” %) (compare § 3: (25)):

V= ({rob, — Yod) = ey (354)

*

In the literature #’ is usually expressed in terms of the wave
functions { = £ of the negaton ¢ and ¢, = ¢f of the anti-
particle o of the (anti)neutrino v. It is easily shown, however, that,
apart from some signs (which can be added to the constants /" and g’),
this does not make any difference, since on account of [U.C. (12),
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(23), (29)] *) we have

Pbr = POLFELE = 0EF = () ¢,
> - — —
Pad, = PeoL*aldd =  FPa*F = (—) ¢lad,, (36)

B, = YSoE*BEYE = — (9°B*E = — (—) YIBY,, etc.

The minus signs in brackets result from the anticommutativity of
¢& and ¢,, the other from [U.C. (23)]. Comparing (36) with [M.F. (11),
(12)] and [U.C. (62), (62a)] we observe that the tensors (¢}w{,)
arising from the symmetrical part of {5, %k are changed into
(—) (Yle,), whereas those arising from the antisymmetrical part
change into (—) (— Jiwd,).

In the following we have called o a neutrino and v an antineutrino,
following Konopinski and Uhlenbeck). If a positon
is regarded as the counterpart of a profon, then the counterpart of a
neutron is called an anérneutrino, in this terminology. With this con-
vention a neutrino and a negative electron are regarded as two states
of one and the same particle. Something can be said for returning to
the original terminology of Fermi#), but here we have not
done so.

A“Konopinskis-Uhlenbeck Ansatz” for the interaction
of mesons with light particles, involving derivatives of the neutrino
wave-function, was tentatively tried by Y uka wa 2). We shall
return to this question in the discussion of the spontaneous meson
disintegration (§ 10).

We shall introduce at once the Fermi-variable &, in order
to avoid the difficulties with the commutation rules of a general
quantum-electrodynamical theory, in which gauge transformations
would be possible 34) 43) 44), The total Lagrangian function
then reads:

L = /K(¥'BL.V*Y + YIBT V"‘P’) + ihe T TRy, VEY —

(P,N,mv)
— (1/47) (D VFA + GVAL,) — 2K (PIBY + PIBZ +
+ Z'BY + Z'BC,,Z + ¥'BY + W'BZ + Z'BY + Z'BC,,Z) —
= Z mARY + (1/87) (A9 D + &) + (eK/he) BT A +

(P,N,m

+ e(PE )LIJTpYMQI’U'LH. (37)

*) Compare the tirst foot-note on page 47.
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Here the notation is the following: V# denotes {d/ox, 8/0y, ¢/oz,
— 0/cot}; ¥ is the undor of the second rank describing according to

[M.F. (10)] the components S; K V; E ﬁ ﬁ W; Y of the general-
ized meson field; ¥ is the neutrettor descrlblng the neutretto field.
(Thus ¥* and ¥ cannot be varied independently). B = ('@,

Fu=Y0 4+ v2; Yo =Boay; ap = — 1. (PZ)IS a summation over

the wave-functions ¢ of the particles mentioned under the summation
sign. §,, and A describe the electromagnetic field in the usual way
®12=9: HD10=C,, A=A, A =—A=1B); Sisthe Fermi
variable.

Z is an undor of the second rank

Tk, = 2o, Yoy, + 2oVl b, (38)

representing according to [M.F. (10)] the following tensors (compare

IM.F. (11) — (12))):

A= gllels +glabn V= glibs +glide
- > e —> — , —
€= — fbkwvzpw-lip — fbhliliﬁa%, h=— fb%ﬁc% - beI)I,BGnI),,;
—_ t LA R —g____ T—> . /T_é . (39)
w gabhYsbp ga¥iYsa, gabholp galiodn;
Y= fadhivsBlpt fidlivsBla s = [iBlr + [obiBUn.

(vs = — too0,.)
In a similar way Z represents the real tensors

=
a

—> - - L -
a=a*=Ig({badpr — Yhady) + tgWlal, — $fay,); etc. (39q)

We assume that all constants f,, g, etc., are real (16).

N
The scalar operators C, op and C, o multiply the tensors s; a, v;
- —> —
e,h;b,wandyinZ, ands; a v;etc. in Z, by the constant factors

Co, C 1, Cy, Cs, Cy, and C,, C 1, etc., respectively. These constants can
still be arbitrarily chosen. It is a special assumption, that in the
terms with C,, and Eop only products of the combinations (39)—
(39a) occur. This assumption is not essential for the theory. For
instance, one might have introduced the products of the types
(U5 Uw) (G ) {65 In) (@1 4n) + (WH0) (@ Up)} and (9] ) (U )
with three different coefficients. For the sake of simplicity we have
not done it here.
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K in (37) is the normalization constant of the heavy quantum field.
In the literature this constant is not always chosen in the same way.
We shall make here a definite choice and put this constant according
to Kemm er9) equal to (¢c/2) in the following.

The Lagrangian function (37) can be written easily in
vector notation. This should be done in order to remove at once the
superfluous quantity ¥'t, Integrating the terms, in which derivatives

>

of E, I;jI: or Y occur, by parts, It = [ L dx dy dz dt takes the following
form (fletches over the vectors are here omitted; rot = curl; K is
put equal to ¢/2):
L= [L'dxdydzdt; (40)
— L' =c{A*.(xA +rot H — Efc) — V*(xV + div E) 4
+ E*. (xE 4+ VV + AJe) — H* (H —rotA)+
+ W*(W + Y/e) — B*. (xB — VY) +
+ Y*(xY — d1v B — Wjc) — xS* S} +
-+ 2c{E (VV -+ A/c) + H.rotA—Y (div B -+ W/c
—|—cx(A2—V2+E2—H2+W2—B2—}—Y2——S2)+
1 (1) 4n) {G. (VB + A/c) + 9 . rot A + & (div A + Be)} +
+(1/8m) (€% — §* — &) +
+ 3 Y (mc?B— thc o . V—17 0/0F) — ; 2 dﬁ (o0, A—B/)

(P,N,m,v)
+ (efih) {E* . AV — V*U.E + A*, [%[, H] + H*.[%, A] —
—Y*A.B - B*.AY — E*.BA + A* . BE —
— W*QY 4 Y*BW} -
+ cx{A¥.a — V*v - E*.e — H*.h + W*w — B*.b
+ Y*y — S*s 4 conj. compl.} +
42cx{A.a—Vv+E.e—H.h+Ww—B.b4Yy—Ss} +
4 cx {Ci(a*.a — v*v) + Cy(e*.e — h*.h) 4
+ C; (w*w — b*. b) 4 C, y*y — Cy s*s +
+Cy(@2—V?) + Cye? — B?) + Cy(w2 — b2) + C y2 — Cos?.
Now using (40) instead of (37) asthe Lagrangian function
we can regard
AEWY; AW, U %B; ¢p, by; drandd, (41)
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asthecanonical co-ordinates g(x) ; the canonical conjugated momenta
p(x) are then given (on account of K = ¢/2) by

— E*, A* Y*, — W*; — 2E, 2§;
— Glanc, — ©jdmc; hF, ihdE; hfE and hfF.  (41a)

The commutation relations between these canonical variables are
now given by
[9:(%); ¢i(x)]— = @) g;(x") — ¢;(*") qi(x) = O;
[pi(x); pi(*")I—=0; [q:(x); pi(x")] - =1h8;3(x — 1)
for AJE,W,Y; K, W; A, B, and their canonical conjugates; by
[9:(%); ¢;(x)]+ = qi(x) Qj(xl),_lL" %’(x") g:(x) = 0; (42.F-D)
[pi(%); (¥ = 0; [qu(x); §;(¥")]+ = D 3; 3(x — x)
for Yp, Yy, ¥, ¥, and their canonical conjugates. Each of the cano-
nical Einstein-Bose variables is assumed to be commutative

with each of the canonical Fermi-Dirac variables.
The quantities

S,S* V, V¥ H H* B,B* S,V H,B and (43)

must be regarded as derived variables. They do not possess canonical
conjugates, nor are they canonical conjugates of other variables.
Varying these derived variables in

dfLdxdydzdt=0 (44)

we find the following “identities”, which may be regarded as the
definitions of the devived variables:

#»(V + v) + div E 4 (efihc) (A.E) =0,
»(H + h) — rot A — (efihic) [A, A] =0,
%B + b) — VY — (¢/ific) AY =0, »(S +s)=0,
and conjugate complex equations; (45)
»(V + v) + divE =0, »(B
»(H + h) — rot A =0, (S
$ = rot .

From (42) and (45) the commutation relations for the derived
variables follow. :

(42.E-B)

— VY =0,

~—

,+_
+

@ |
=
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The Hamiltonian function is now given by
Spj—L = H'.
This H' should be expressed in terms of the p and ¢, that is, the other
variables should be eliminated by means of (45). First, however, we
shall give a short expression for H’, in which this elimination has
not yet taken place. Since (40) is linear in the ¢ and does no more
contain any p, we find H’ by omitting from (40) all terms containing
derivatives with respect to the time. Now making use of (45) and
integrating by parts we can write the result in the following form *):

H = [ H dx dy dz; (46)
H=cx{S*S+A* A4+ V*V4+E*. E4+H* H4-W*W-+B*.B-+Y*Y
+ 824 A?4 V2 + B2 H2 4 W2 + B? 4 Y%} +
+ (1/8m) {€2 4 9% + (1/47) {(div A — § &) &+ B (4mep — divE)} +
+EYme B+ o L) b+ S B+ e LA G+
+ cx {A*.a + E*. e -~ W*w —{—> Y*y + conj. compl.} -+
+2x{A.at+E.e + Ww - Yy} +
+ e {C, (a*.a —v*v) + C, (e*. é— h*. h) +
+ C; (W*w — b*.b) + C, y*y — Cys*s +
4y @2 V) Ca (08— ) - T (W B9+ C, ¥ — G
Here we have put o
Pop = — ihV; Pl — — BV — (o) 2, (47)
and

¢ = e Y'Y + (¢fih) (A*.E — EX. A + Y*W — W*Y).  (49)
P,)

- The physical situation is described by a situation function y, which
can be regarded — like this was originally done for instance by
F e rmi3)3) —as a functional depending on the actual c-number
values of the field components; but it is simpler, to regard it as a
function of an infinite set of partition numbers (,, Besetzungszahlen’)
Ny, N, ...., denoting the numbers of particles or quanta in differ-
ent states 1,2, .....

*) H# X pg—L; [H =[(Zpg—L).
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According to F erm i) %) the situation function satisfies the
special condition

S(x,v,2,t) =0, (49)
so that
VS = AGy, = 0; Sy =6r=6r=....=0. (50)

The derivatives of the g-number field components with respect to the
time can be expressed in terms of the field components themselves
and their gradients, by means of the canonical field equations, which
can be obtained either from the Lagrangian wvariational
principle, or by

ih J = [F; HL, (51)

making use of the commutation relations (42). In both ways we find

div € = dmep — B,

. (52)
rot § — €/c = 4rnej/c + VE,

and
€ =— V8 — U,
€ = div¥ + B/e.

(53)

In (52) we have pﬁt
cile = ¢ 3 yfad + (i) {{H*A] + [A%H] +
’ + V*E — E*V 4 Y*B — B*Y}. (48a)
The continuity equation
o+ divji=0 (54)
follows directly from (48), (48a) and the field equations for the wave-

functions of protons, electrons and mesons, as shownby Bhabh a.
From (52), (53) and (54) we deduce:

Slc = 4mep — div G, 55
Gl2 =A8, &3 = ABe, etc.
so that

06 =o. (56)
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From (50), (52) and (53) we find
Sy = (div¥ + BJe)y =0, (57)

and
(— &lo)y. = (div & — 4neg)y = O,

. (58)
V&y = (tot § — €/c — 4nejjc)y = 0.

From (55) and (42) we conclude that & and its derivatives with
respect to time are commutative, so that the conditions (50) are
compatible with each other. From (55) we see that the relations (50)
do not impose other conditions on the situation function than the
relations (57) and (58).

The expectancy value of an observable J/(¢) is given by

F) = S0 1. (59)
(Summation over all possible values of the partition numbers.)

For actual calculations it is often more convenient to regard the

field components as matrices, which do not depend on the time; then

J’7(t) is given by

F) = = 740 J o), (60)
where ¥ (¢) is determined by
ihy(t) = H y(2). (61)
The condition (49) now takes the form of
G, v, 2) x(t) = 0. (62)
In order to find out, how / operates on the function () of the
arguments ¢, N;, N,, .... in (61), we must express H in terms of the

canonical variables ¢(«x) and p(x), and express these variables in terms
of Jordan-Wigner and Jordan-Klein matrices operat-
ing on ¥(N;, Ny, ....). This has been done explicitly for K e m-
mer’s case ()) by Bhabha'®) and by Kobayasi and
Okayama?).

Before we proceed to this treatment of the Hamiltonian,
however, we shall first eliminate from it the longitudinal electro-
magnetic field and the help-quantity &.
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§ 5. Elimination of the longitudinal electromagnetic field. F e r-
mi%8) 3%) has shown how to eliminate the longitudinal electro-
magnetic field from the Hamiltonian. Here, we shall apply
his method tothe Hamiltonian given by (46).

For this purpose it is convenient to introduce the following nota-
tion. Let the operator (1/V), operating on an irrotational (longitudi-

nal) vector field ﬁlong(x), be defined by
1 = "x—> > — —
ﬁ . QIlong (x) = X(x> :u/ 9’[long A8 —— VX = QIlong- (63)
o]

Let in the same way (1/div), operating on a scalar field p(x), be
determined by

1 — e —
——p(®) = X(x) —> divE=yp, rot X =0. (64)
div
The operator (1/div) is identical with the operator — (1/4x) New of
G ibbs %), Finally we put

ror_1
Vidiv o AT
This operator is identical with the operator — (1/4r) Pot of Gibbs.

Splitting up € into a longitudinal and a transversal field, we can

write

(65)

1 +
é;/ @ =g [ 6+ o [ G (66)
Since from (52) follows
@ "~ 4me
cglong + le c - HR/_ P> (67>
we derive by an “integration by parts”:
" 4rx &\2
—1 o —
2V/ ep A ep = [<@long + le C)
1 & 1 [816
gl Gt g G e g [y o (@

Here, we have made use of the commutativity of
Slc = dnep — div € with G,
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From (68) we find

Ly (LS, 20 &, & (el el)
S , € p(x) plx
ol G = (5 T+ o m) T4 5/ ==

On account of (50) the first term of the right hand member of this
equation, if operating on the situation function y, does not give any
contribution. Such a term we shall call a zero-term. Now, all real *)
zero-terms O inthe Hamiltonian are of no physical interest,
since the contributions given by such terms O to the commutators of
any observable f7 with I—f, have no matrix elements between states
satisfying Oy = zero, which do not vanish. This follows from

o2 L Ole = B 0 J1Oka) — (O)* b = zero. (70)

For this reason we may change (1/8xr) /€%, in the Hamilto-

nian intothestatic Coulomb interaction

& [ ex) o)
7] / = (694)
% — 7|

For the same reason the term (1/4w) (div % — 1&)& may be
omitted fromthe Hamiltonian (46). Indeed these zero-terms
are of importance only in the Lagrangian function, where
they must serve for the construction of a consistent theory, but for
practical purposes they are of no interest.

The electrostatic potential occurs in the Hamiltonian in
the terms

(1/4x) [ B(drep — div €) = f BE/4nc. (71)

Also these terms can be omitted.

In order to remove the longitudinal vector-potential from the
Hamiltonian we perform a canonical transformation, which
was indicated by F e r m i 38) 3¢). This transformation is given by

yo=efy, oyt =yreiF, (72)
so that .
= eTiF FeitF =3 (1/nl) [{F}; (] (73)
n=0

*) A g¢g-number is called real, if it is a self-adjoint (Hermitian) matrix with
respect to the partition numbers N, N,, .. ...
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Here we have put

F=UF) iF]©, LF, iF]_ = [{_F}; iF]O,
generally : 74)
[{LF}; F]™; iF)_ = [{J7}; iF]eFD,
Then

e B oy oy == % % oy
J N,,Nz,...x J?X Nl,Nz,..?C J % (75>
so that the physical situation can be described by f/ and :/ as well as

by f’and y. According to F e r m i3) 36) one must put
F=F+ 5 (76)
1

. . 1 .
iFr= (610) [ 6 < Yowg = (e]i) [ g g2, (760)

iF, = (i/4mhe) /% div Wy = (1)4mirc) / Wy . VB, (76D)

In order to eliminate Ny, from the Hamiltonian, thetrans-
formation with £, is sufficient. We shall calculate, how the variables
stilloccurringinthe Hamiltonian aretransformed by it.

For this purpose we must calculate the high-order commutators
occurring in the last member of (73). We remark that, among the
variables occurring in the Hamiltonian, only the wave-
functions of charged particles and mesons do not commute with (76a).
Thelongitudinal electric field strength, which does not commute with
Njong » has already been eliminated from the Hamiltonian in
the foregoing.

Now, from 40)

eo = (/i) = pg (77)
, (P, mes)
(summation over all canonical co-ordinates ¢(x) describing the anni-
hilation of protons, positons or positive mesons, or the creation of
antiprotons, negatons or negative mesons), we deduce with the help
of the commutation relations (42):

[2(%); p(¥)]— = 3(x — ¥) q.(x),
[Pe(%); p(x)]— = — 3(x — &) p.(¥),

for all canonical co-ordinates ¢, describing a decrease of the total
electric charge by ¢, and their canonical conjugates p, describing an

(78)
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increase by e. Thus, we find the recursion formulae

(.05 7D = — (L ) g i,
(79)

[P} SFIOHD = (oo W) TR 47,
so that (73) yields

A i A .
quglqe; Pe:pe61;

(80)
— (e/hc) (1/V) . Wpong -

These formulae can be applied to 4p, 4, A, E, Y, W and their cano-
nical conjugates. From the fact that the wave-functions of the neu-
trons and neutrinos are not transformed at all it can be deduced that
s,v,a, ....,as defined by (39), transform like the ¢, according to
(80), whereas s*, v*, . ..., transform like the p,.

The derived variables were defined by the “identities” (45), which
contain the gradient operator and the vector potential in the com-
binations

{V + (e/ihic) A} g, and {V — (efitic) A} P, (81)

only. By the transformation (72), (76a) these expressions change on
account of (80) into

(V + (efihe) W3 g, = "V + (efilic) A ¢, + (V) . g, =
= gil {V _|_ (g,/z'hc) QIW} Qe; (82)

— (efitic) Wy p, = ((V — (efihc) W} p,) e

Thus the longitudinal vector-potential 9,,,, is eliminated from these
expressions. In a similar way it disappears from the expression Pk" .
The transformed Hamiltonian

H =/ cx{$*S + Ax. A+ . . , (46a)

in which the derived variables are “defined” by the transformed
identities

A A

w(V -+ V) + (V + (efihe) % . B) =0, etc. (454)
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can now be expressed in terms of the original matrices U, A, E, ... .,
by inserting the expressions (80) and (82) for the transformed vari-
ables into (46a)—(4Ea). Then all factors ¢~* and e* arising from
(80) and (82) cancel each other. The longitudinal vector potential
disappears entively. Thus we find the transformed Hamiltonian
H expressed in terms of the original canonical variables, but the
matrices &, B, & and A,,,, do no longer occur in it.

It must be pointed out, however, that, if we want to calculate the
matrix element of some observable by means of the transformed
situation function )2 , we must use, according to (75), the transformed
g-numbers, and not the original matrices occurring now in the
Hamiltonian.

For instance, € is changed by the transformation (72)—(73)—
(764) into *) G =6+ (4me/div) . Since from this expression the
original matrix of the longitudinal field €,,, has not yet been
eliminated, it is impossible to calculate the expectancy value or a
matrix element of the electric field, if (1°} the dependence of the
situation function on the partition numbers denoting the numbers of
longitudinal “photons”, or (2°) the way, in which €, operates on
this situation function, is not known. This means that, though the
longitudinal field does no more occur in the Hamiltonian, it
has not yet been eliminated entively from the theory.

For this purpose, the transformation with €7 was introduced by
F e rmi38) 3% It is easily seen from (73) and (76b) that among the
canonical variables only @, and & are changed by this second
transformation. It turns out that by the combined transformation
(76) €,y and © are changed into *)

Grong = Crone + VB + (4me/div) p = (drme/div) g — Iypngfc. (83)
& =6 —divd = B (84)
From (83) and (52) we find

A

€ = div Wiy (85)
* Now, from (72) —(73) and (5C) follows

4

&y =6y =0, (86)

*} Compare the foot-note on page 72.
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so that we find from (84) and (85)

A

By = 0, (87)

div ;g 7 = 0. (88a)

Since rot QI,OM = 0, we can write — always on account of (49) —:

Wiong 7. = O. (88)

This means that by a description of the physical situation by
means of the transformed situation function, the original matrices of
the scalar potential and the longitudinal vector-potential, if opera-
ting on the new situation function, multiply it by a quantity, which
does not depend on the time. Now the electromagnetic field strengths
are given by (compare (45), (83))

é = rot QA[” = rot %[”’ (89)

¢ = (4re/div) p + 9, /c,

where we have omitted from (83) the term with Q'Ilo,,g, which on account
of (88) has only vanishing matrix elements between states satisfying
(49) or (86). If only A, 9, and ¢ are expressed in terms of Jor-
dan-Wigner and Jordan-Klein matrices operating on a
situation function, the dependence of which on the partition numbers of
the longitudinal field is not known, we still can compute the total
electromagnetic field strengths from (89), so that we may say that we
have succeeded in eliminating the longitudinal “photons’” completely
from our calculations *).

This was possible only since we had the extra condition (49) on the
sttuation function at our disposal. Since such an extra condition does
not exist for any of the field components of the meson field, a com-
plete elimination of some part of the meson field seems to be impos-
sible 11) 37) (compare § 4).

*) That is to say, for the calculation of the matrix elements of ¥ and Wjong themselves
—— which are not transformed at all by the Fermi transformation (72)—(76) — it
would be necessary to know the dependence offi on the numbers of longitudinal photons.
However, these quantities, which according to (87) and (88) are constants, are of no
interest for physical problems.
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§ 6. Discussionof the Hamiltonian Nowwecan insert (45)
and (69) into the Hamiltonian H (46), omit all real zero-
terms (compare (70)), transform by (72) — (76) and express the trans-
formed g-numbers in terms of the original ones by means of (80) — (82).
In this way we find the transformed Hamiltonian expressed
in terms of the original canonical variables. The result can be written
in the following form (we write H instead of & in the following):

H = [ H dx dy dz;
H=H,+H:+H,+H,+H,+H,+H,. %0)
Hy = cx {A*.A + E*.E 4 W*W L Y*Y - A2 E2 + W2 4 Y2 -
+ (¢/x) {(rot A*. rot A) + div E*. divE + (VY*. VY) +
+ (rot A)2 + (div B)? + (VY)3 +
+ (1/8w) {€2 + (rot A% —{(—P,Eﬂ’%ﬁ(mﬁp + co. P .

—_
x) plx’)
>

; (ep is given by (48)).

H, =—eN, .70,
effc = e T Yfay + (e/ifin) {{A*, rot A] + [rot A*, A] +
(P,m)

+ E*div E — div E* .E 4 Y*VY — VY*.Y}.
H,, = (/cx7?) {(U.E*) (A.E) — (A.A%) (A.A) + W2(A*. A L Y*Y)},
H, = cx{A*.a+E*.e+ W*w+Y*y{a* Ate* ELwW*W-Ly*Y} |

+ ¢ {divE* v — (rot A*.h) — (VY*.b) 4+ v*divE —
— (h*. rot A) — (b*.VY)} +
+ 2cx{A.a+E.e--Ww+Yy}+2¢[vdivE— (h.rot A)— (b. VY)}.

Hg= cx{(1-Cp)s*s+C a*.a+(1—C))v¥v +Ce*.e4-(1—Co)h*.h+
+Cw W (1—C3)b*b+Cy*y -+
+ (1=Cys2+Cia2  +(1—C)v? +Cpe2 +(1—Chz -
+Cw?  +(1—Cy)b?  +C,y3.

Heg =—¢ QItr'f.g/c;
elg/c = — (e/ih) {{A*,h] + [h* A]—E*v + v*E4 Y*b—b*Y}.
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For a discussion of this Hamiltonian we expand all cano-
nical variables in series of plane waves. For this purpose we introduce
for every Fourier component of the field a set of complex unit

-
vectors c% defined by

> > —>#* - > > s > 977] —>77
h=p/p; E*=c3F; (cBF. ¥ i [eS, ] = — inch;
» /p ) b (p p) Lt [p 3 3

1)
A i ;= — g ( 1,0, 1 L)
CL5, ¢ =1 N L= — (5] w=—1, R = .
[P $ % -5 S K

As usual we shall expand the field components in a hypothetical
cube (volume = Q), in which the fields are assumed to be periodic:

-~ 1 >
A(x):\/_?; D A G

N 1 1 -

A*(x)——m §#=Z—1 A%;L c%*e e

1 2
W(x) =75 é W;, (if#) .
W*(x)—% = W3 e mET
4

In a similar way the amplitudes of E and Y will be called E, and

N P

Y?;- The real fields A, E, W, Y, A,,, €, will be expanded according to

- 1 1 — > — —
Alx) =—=2Z T A, cheimrr, (A =—AL);
Q 2 p=—1 Pp b b —bip
— 1 —>—> — —_
W(x) = Vio) § W},’ il p.% : (Wi:, =L W_;) (93)
4
—Qz,(x) = L by a ?’_Le“'/“?-?; (a¥ =—a . );etc
VQ S =1 Bm P X “Bm

From the commutation relations (42.E-B) between these canonical
field components, the commutation relations between the amplitudes
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can be easily derived, since *)

Thus we find :

- =
E., ; _—E* ; — = ih :O(p—P);
[ by P’#’] [ A?',w] " S’L_’: 8(;{)_) )
W Y21 = [W—} Yo =13 —1);
— e
[E?’ ; A:, #’]_ = [A_p w E ]_ = (1/2) SW, 3p — p'); (95)
—_ — —
[W_P,, Yi;,,]_ = [W? ;Y _,] = (th/2) 3(p — P');
— —
L a0k 1 =laLs e, ] =d4nihcs,, S(p— p);
[eM ab'm’] [a—ﬁ’ﬂl’ eMJ tC Sy 8( )

all other pairs being commutative with each other.
Following the methodof Pauli and Weisskopf 13 we put

/
h — %
Wh) - f *—> y - = fl—) - - * ,
? ! V2(a;+c_p) : T 4(m;, m—p)
1 1/h v L /b
Y—> —_ P > T *—> » > =g —> *—> y
p f; V2 (ap c—p) ’ f; 4(m1> ™ m_p)
A, —f Vi(b d*, ), A, —f @(n —n*, )
2o ol 2V B0 5,0 0 ?,0]/4 7,0 3,0
. _ %)
1 1/7 — 1 Vh (
A, = — 1|/ =(b, —d*, , AL = ~(n, —n*,
TS S ]/ 2( b —M) s I, F 4 (npn —p,n)
. _ P.,"] =
1 h - 1 h
E_, = /_ - %* — it ! *
$,0 f_p)ol/2(bp0+d—>); E;O fgo“/ll»(n;’o_rn;;’o)’
E, =if l/ﬁ (b +d*,), E, —if Vﬁ(n +n*, )
s bl 20 Ao 2 TR wal 4 pa e

1 _
a, = — A 2nhc(l, —1I*, ), e, wz_, 2hcl + I, ).
27 g;n\/ & (M -M) 2.1 g \/ T b —m)

A A
*) For calculations like that of ¢ (83) and & (84) in the preceding section, it is con-
venient to introduce the longitudinal and the transversal 3—functions defined by

870,”g x—; = 2 (e C— 1/7;)1) x—-—x') and
Lo (3 — ) Q;(p>7,(p>7 i

Blo8 (v — %) + 8, (v — %) =

Compare Novobatzky, loc. cit. 47), formula (28).

i S(x — x%).
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Here L, f,, 1, 1,1, ,f, and g» (n =+ 1) are real con-
PO b b P

stants depending on ;b (and » respectively) and satisfying

f’ =ft,, L =f,; g =g5. 97

% tn et Sia T 83 7)
We shall choose them afterwards in a convenient way. On account of
(95)—(96) the matrices a, b, , c) d, , L, , m,and n,

b Dy ] 4 b
satisfy the following commutat10n relat1ons
[m; a»]_ = [ca, ci]_ [m m»]_ = 8(? P’ ),
b. ;b d ; S, 8(p— 1), (98
[ Zu’ ]~ ]: ,/L P’#’]_ [n—> ’ n—>’ ,]—— ! (?_P )’( )
G 'f»,n,i——sw Bp—#): (ww' == 1,013 g =% 1);

all other pairs commuting with each other.

Soa*a.,,b* b, ,cxc.,d* d, ,I* L, ,m»m»andn» n.
? o b P B D bu B DM P b Dt

possess the eigenvalues0,1,2,3, .. .. and the ¢- numbers introduced
by (96) can be regarded as ordinary Jordan-Klein matrices.
We shall now expand the particle wave fields ¢ in series of plane
waves according to 43)
—

; * e @mer (O
LIJ(}V) \/Q E Uzj:l (v—;ro_ M_p),o + w__g’a M——p),tr) € , ( 9)

where the %, are normalized four-component “spin-functions”

?,0

(undors of the first rank 31)), which satisfy

{mcP + (Z. ;3} G = 4 V(mo)?+pru,
- —> p.o 4 (IOO)
V) ”—5 :GP“—;U ; (o=x1);

so that the charge-conjugated %) 31) of u 2 satisfies

{mcB + (p.a)} uf_p,o = — V(me)2 + 2. u£ ¥

o (100%)

(p.o) v, = op wf?o

The matrices v, and w. are ordinary Jordan-Wigner
P,O' ‘ g

matrices, since from (42.F-D) follows
- >
(v, ,v», ,'+ =uv., v», ) +v1’,/ U = 850 8(p — $');
po’ o ho P p.0" b (101)

—>
Lw—’;o; w—;, U,J'+ = Ogqr 8(75 —9);
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all other pairs of Fermi-Dirac amplitudes being anticommu-
tative with each other.

Fromthe Lagrangian function (37)—(40) we can derive the
total linear momentum, the (orbital) angular momentum, the spin
angular momentum and the total electric charge in the ordinary
way 49). Since the termsinthe Lagrangian (37) describing the
interactions do not contain derivatives, the expressions for these
quantities in terms of the canonical variables do not contain inter-
action terms. Inserting into these expressions ) the expansions (92),
(93), (99) of the wave-functions and substituting (96), we find the
following expression for the total momentum of the field:
=

b= Ep{m&+2b* b, —{—c»c_,—i—Zd d* -

p=—1 Dt bDipt p=—1 D¢t Dt
(102)
+ (m»m%—#m%m%)—}— Z 3n% n, +n, n% )+
» P u=—1"" bp b PR D
E l*l L T 2 (vXuv, —w, wt)
+ ( ,n+ o PW)—*(—P,N,W,V) o‘=i£ b0 o b0 p,o)}

Ina s1m11ar way the total electric charge is found to be equal to

e—eZ{mm+2b* b, -+ X X v* v,}—
P ;r—lmu 1 (Pym) o=+1 0,0 0 (103)

——eE{c_,c%—i— E d, d —3X Z w, wf}
p=—1 PF- b (Pm) o=+1 D0 PO

The total spin angular momentum can be written as a sum

—> 1 —
—P) p=—1 9 P

where S, can be expressed in terms of the amplitudes v_> W
i
._).

a,, b}, , b_P, , etc. v_P, , etc., belonging to the momentum p only.
4 0 4 ,G

We shall calculate only the spin-component parallel to the mo-
mentum

S, = Z th{b* b —}~d L +3in* n, +n, n%¥)}+
b0 pu=—I Dit P bp by b by
+ Znh{g(lf, L + L )+
P,N,mv) a—i ?,0
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Finally we shall compute the contribution to the total energy
from the term Hyofthe Hamiltonian (90). We find

H, = CME{(W*W_,—i—A* A, + T E* E, +w +A2 A+
b0 p=+1 M PO

+ T B2 ) (1492123 (YXY,+EX E + P> A% A +
=41 7 p P p,0 +1 7

+?%+Ez + = A2 )}+ (106)

=1
+ (1/8m) X X {e2 + (p¥h?) ai } +
—; n=+1 o7 oM

+c¢c X T X (v%X v, —w_;owiga) vV (me)? + p2.

(P,N,mv) ——; o=41 »,0  p,0
Inserting (96) we find a simple expression, if we choose

£, =1, =f'_5=f'; = V1 + p2)i%2 (= Ve, /mcd);

s b (107)
g;ﬂ? = \/P/h
We put
aP:c\/(mc)2+p2' WEN = ¢V (Mc)? + 25 (108

= \/(mc) + $2; W = eV (ue)? + ?;
where M , m, m and u denote the masses of nuclons, heavy quanta,

electrons and neutrinos respectively. Then H, takes the following
form:

c»—f—Ed d* -+

P pu=—1 Dp Pl

+
3 I3
1
—|—%(m1:m_;—{—m; H;:E_ Hn% n, 4+n, n% )}+

4 b bop bt Pt
L Sep DL + L I%) (109)
2 =1 b b7 pm M
+ X XW,E (v v, —w, wi)
(P, N, m,v) —p» o=4+1 P00 P00 p,0  b,0

From (98), (101), (102), (103), (105) and (109) follows the usual
interpretation of the operators ai’;,a_ﬁ,, etc. as numbers of particles in

different states. The matrices @, .... and v, , .... describe the
. . . P . P,G' .
annihilation of a quantum or a particle; the matrices a%, .... and
. . e 3
v* , ....its creation.
1,0

Now the Hamiltonian (90) can be interpreted. H, is the
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energy when neglecting all interactions. H is the static Coulom b
interaction between protons, electrons and mesons. It contains the
infinite electrostatic self-energies of the particles; for instance:

/ Vi) wx) V) )
3 ] =

—
!

x— |

e 0"%(@ V) ) bole) 4 f/vp<x>8<x Dbel) (110)

o lx — x'| [x—«x’|

The first term of the right hand member represents the ordinary
Coulomb forces together with the electrostatic exchange forces;
the second term is the infinite self-energy. H, is well known from
radiation theory. Here some terms are added to it, representing the
radiation of the moving mesons. This part ofthe Hamiltonian
gives rise to the creation or the annihilation of a photon (%(,,) under
transition of a charged particle or a charged heavy quantum from
one quantum state into another or under creation or annihilation of
a pair of charged particles or heavy quanta (¢*¢ or ¥'*¥).

The term H,, gives rise to direct two-photon effects, by which a
meson jumps from one state into another, or by which a pair of
mesons is created or annihilated. Inthe Dira c theory of electrons
such a term does not occur.

H, describes the interaction between heavy quanta and matter.
It gives rise to the following processes (Y ™ denotes a theticon or posi-
tive meson; Y~ an arneticon or negative meson; Y° a neutretto; P*
denotes a proton, P~ an anti-proton (hystaton), N+ a neutron and
N~ an antineutron; = a positon, € a negaton, v an “antineutrino”
(compare § 4) and o a “neutrino’’; finally Av a photon):

Annihilation or creation of: (P~+N*4+Y ") or (PT+N—+4+Y™) or
(Pt+P~+Y% or (N*+N—4+YO or (e+v+Y") or (m+0+Y™) or
(r+e+YO) or (v+0+Y?). Further:

Pt= Nt +Y*; Nt=2 P +Y—; Yt Pt +N—;
P-=2N—+Y; N—=P + Y+, Y-= P~ + N+;
T 2v +Y*; v =271 +Y; Y= 4o ;
e 20 +Y; o =2 +YT; Y—=2¢ +v

Further: emission or absorption of a neutretto by a nuclon or by a
light particle jumping from one state into another without changing



INTERPRETATION OF THE HAMILTONIAN 77

its charge; and creation of a pair of nuclons or of light particles from
a neutretto or annihilation of such a pair tc a neutretto.

Especially the interaction between the nuclons and the heavy
quanta is of much interest, since the corresponding coefficients are
so large.

I—fgg describes a direct interaction of nuclons with nuclons, of
nuclons with light particles and of light particles with light particles.
To some extent it can be compared with H, since both terms in the
Hamiltonian donotgiverise to the creation or annihilation of
a photon or a heavy quantum. This term I—[g',g gives a first order
contribution to the p-disintegration of instable nuclei:

Pt - N+t 4 n & o, Nt — Pt 4 ¢4 v

The term P[eg is of much importance. This term was given expli-
citly for the first time by Bhabh a8, though also Kemmer
drew attention to it in a foot-note 19). It gives a first order contribu-
tion %5) to the matrix element for the “photomesic” processes

Yt 4 N+=2 Pt 4y, Y+ PNt 4y,

which couple the “soft”” and the “penetrating’’ components of cosmic
radiation %°). According to unpublished calculations the effect of this
first order term seems to be to compensate for a good deal the strong
second order transitions, in which first a photon is emitted by the
heavy quantum, and only “afterwards” the latter is absorbed by the
nuclon (compare § 12).

If (96) and (107), (108) are inserted into (92) and (93), one finds:

]/h z{e “”*V“"z +2 "]//n:ib ) +
0 P

Y a3

vV me2 50 N e, b’ (111

A me? TN JRBE L gE otk g P
rot A(x)= 27&Q2w — E v{b C_P,fz : Td;nc% e 1,

E(x —z]/vz{w‘w ;]/’—ra‘—?—zb%ﬁz@]/i

2Q7 me?

b, )

M

_g—(i/h)p.x (_%?]/ZT ds L3 C”*]/ b d* ),

$,0 mcz 28/
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divE(x) V2hQZ|75|V_{b 1/h)px —f—d_, — 1/h)px}

V 5 ] / _{a, e b | ¢k g—mhE,
me2' 3 5 (111)

7 L Lo
2 (TP ¥ g—liW px
Y(x) = VZQ { >¢ cze 1,
E)Y(x)——i Losip @{a_,—c)" QTP ek (0 My
- ] ZhQZ l € b P I b

and in a similar way:

= e o2
A(x)_—_VZz)Z{e(‘/” ‘”‘(c_> n, —I—vc_, % n, )+

L m02 5,0 € b
/ 2
—l—e*“/”””’(c_,]/ St +2&)/nsy, (12
me2 5o g b
T

V—V(x)_—.i] EZ mcz{me<t/h>ﬂx — m3e PR ete.,

%, (x) Vzﬂc VIMZ{L LR 41 c"* R (113)

The expansions (1 12) for the neutretto field are obtained from those
for the meson field (111) by changing V1/2Q into V7/4Q and by
changing ainto m, ¢ into —m, and b and d both into n.

The conjugate complex of (111) are obtained in a similar way by
changing b into d and d* into b*; a into —c and ¢* into —a*.
Nothing else should be changed.

The expressions (112) and (113) are real themselves.

Cross sections @ for any of the cosmic-ray reactions discussed in
the foregoing are calculated in the usual way °9):

®uy= 25 ol) . ZIQF, (14)
1w
(summation over all admitted final states);
0= I—[,,+ZF[F[ +eens (115)

& —€
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Here v is the relative velocity of the impacting particle or quantum
and the “targets”; H, .» etc., are matrix elements of the pzrturba-
tions Hy, H,, H,,, I—fg, I—fgg and hfge (Born approximation); a, ¢
and / denote the initial, intermediate and final states. &€, denotes
the energy of the situation #.

e(€)d(€; — €,) is the number of final states with an energy in
the interval d€;, which can be reached directly or through the inter-
mediate states ¢ from the initial state . We have written d(&; — &)
in order to indicate that it may be necessary to vary the initial state
together with the final state in order to ensure a non vanishing
matrix element between both, if the creation of an antiparticle is
described as the vanishing of a particle from the so-called continuum
of states of negative energy.

The ratio between the contributions to the “matrix element” Q for
a given process from the #n* and the (» + 2)* approximation has
the order of magnitude

3 Hivsrin - iy . (116)
irt i Co— € )(E0— &)

The summation over ¢, and ¢,,, will often have the form of an
integral over a continuum of intermediate states z,. In that case it

gives rise to a factor
o0

’c{ (4mQ/c?h3)pede, (117)

where ¢ and p represent the energy and momentum of an extra
quantum emitted and absorbed again in the higher order process.
The factor Q will be cancelled by a factor (1/Q) from H;n aqin Hiyin
The dependence of the matrix elements H;,; on the energy ¢ will
generally not be sufficient to ensure convergency of the integral over
the intermediate states, which will diverge on account of the factors
in (117). Therefore high order calculations will often diverge, if a conti-
nuuw of tntermediate states is possible.

The ratio between the probability of a multiple process, in which
(n + 1) quanta are created, and the probability of amultiple process,
in which only # quanta are created, can bz estimated, if one assumes
that th= lowest order of approximation giving rise to such processes
will give a result of the right order of magnitude. Then, the creation
of (n + 1) quanta will b2 found by an approximation, which is one
order higher than that for the creation of # quanta. The intermediate
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states are now determined (apart from their order of sequence and
the polarizations) by the final state, and the ratio of probability is
only of the order of magnitude

M n47t;'>sds HVQ
' j hec? | A€

The factor M denotes the number of possible polarizations of the
(n -+ 1)" emitted quantum; the integral has to be taken over all
energies ¢ of this extra quantum that are allowed by the conserva-
tion laws. The momentum of the quantum corresponding to ¢ is
denoted by p. A€ is the difference between the energies of the addi-
tional intermediate state and the initial (or final) state. In most
cases [ede/|AE|? will be of the order of magnitude 1. Then the
ratio in question is given by

2

(118)

@, /0, ~ |H[2Q . pM/2n2hc2. (119)
For the emission of photons we find from (90) and (113):
|\H Q| ~ eheV2n/pe, (120)
so that
D, /0, ~ (M/r) (¢*/hc) ~ 2/137. (121)

For the emission of heavy quanta, however, we find from (90) and
(111) that the matrix elements |[F{;»/Q| are not all of the same or-
der. Those arising from Xt,, E,ong and Y are only of the order of
magnitude
ghcV 2xfe, (122)

where g is one of the constants g, g,, g; defined by (24). So these
terms would yield a ratio

O, /D, ~ (3/27) (g2/h), (123)
if we take ¢ ~ 2pc, M = 3. If we insert into (123) the values of
(¢%/hc) found in § 3, we find in this way

Q,.,/0, ~ {5 ~ 1'%
. . _% —» .
The terms, however, arising from Ay E, and W, have matrix
elements JP:Q,V/Q |, which are larger by a factor (g,/mc?), and the
N

—> —
matrix elements of the terms with rot A, div E and VY are larger
than (123) by a factor (p/mc). We conclude that these terms may give
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vise to the production of an appreciable number of showers of heavy
quanta of high energy (s, — mc? = 1C8 eV), if the available amount
of energy is large enough #).

Finally it is useful to compare the matrix elements in (111)
describing the annihilation (creation) of a positive meson with a

—_
momentum p, and those describing the creation (annihilation) of
—_

a negative meson with a momentum — p, since in a summation
over different intermediate states both effects will often occur in
terms, which must be added together. It must be remarked that

generally both terms will possess a different denominator (€, — &),
but in approximative calculations these denominators may sorne—

times be put equal to each other. Then we remark that in A rot A
and their conjugate complex the matrix elements given by the

terms with b, and d*, (or with % and d ) are (on account
3 - bt
N EG . 2
of cf‘_’:, = — (k) opposite equal to each other, Whereas they are
- b

— —
exactly equal in E, div E and their conjugate complex. Ina similar
way the matrices a and ¢*.,. (or @% and ¢ ) occur with the same

i p -p

coefficient in W and W* but with opposite coefficients in Y, VY and

their conjugate complex.
Thus the product of the matrix elements describing creat10n and

subsequent annihilation of a theticon with a momentum 15 and a
polarization p will exactly be equal to the corresponding product
describing the creation and subsequent annihilation of an arneticon

with the same polarization but with a momentum — ;b Only the
sign can be different. A different sign appears only, if the creation
and the annihilation are described by ] ordan-Klein matrices,

of which one orlglnates in (111) from E (or its d1vergence) and the
other from A* (or its curl), or one from A (or rot A) and the other
from_E)* (or div—ﬁ*). For instance, if the creation of the arneticon is
described be and its annihilation byf*, the product of the matrix
elements is opposite equal to that corresponding to the creation of a
theticon described by E)* and its subsequent annihilation described
by X If, however, creation and annihilation are described for in-

L= —> — . =
stance by div E and E* (and E* and div E respectively), the pro-
6
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ducts of matrix elements for both processes are exactly equal.

A similar rule holds for Y and W.

These rules will enable us to avoid some frequent but substantial
errors 1n sign %) 4%) in calculations like that of the second order con-
tribution to the matrix element Q of the photomesic and the meso-
photic effects:

Y=(3)+P+(0) g e NG, (124
DY) LY H— ) NG 7 '
b= +h

where the difference between the products H}I H, and H; uH . is
of the above-mentioned nature and where the denominators
(€, — &) are equal in a non-relativistic approximation.

§ 7. The heavy quanta interaction between nuclons. In the preceding
sections we have developed a quantum theory of the field of heavy
quanta. We shall now apply it to a number of important problems.
The first one we shall deal with is the force between proton-neutrons.

There are mainly two methods leading to the purpose. The first
one is that of a perturbation calculus; it was performed by several
authors 10) 19) 18) Tn these calculations the “recoil”’ of the nuclons by
the emission and absorption of heavy quanta was neglected. Assu-
ming Kemmer’s “symmetrical” theory of mesons and neutret-
tos %) an attraction between nuclons was found in the second appro-
ximation. A fourth order calculation %) yielded a strong repulsion at
small distances (» < 1/2x). It is not certain, however, that calculations
of the successive higher order effects, if they give converging results
at all, will not yield still stronger interactions, the sign of which is
problematic. That much is certain that for small values of the dis-
tance between the nuclons the result of a perturbation calculus of
finite order is not trustworthy.

The other method was used by Y uk a w a 2). This method has
almost the form of a classical calculation, in which only “static’’
interactions of the “static”” parts of the nuclon fields are taken into
account. This method can also be used for the derivation of the
Breit interaction between electrons ). There, the “static’ inter-
action through the medium of photons takes the place of a similar
interaction through the heavy quantum field in our case.
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Fromthe Hamiltonian H the equation of motion for the
quantized nuclon wave-function is derived according to (51). (It can
also be obtained directly from the L agrangian by variation of
its canonical conjugate). The Hamiltonian contains the
nuclon variables in the terms H, H; and H;,g. These terms are of
the form of

=Y HGY + [ e {Ti o) + (T olh) Tt +
+/Z G el w,d). (125)

Here w, are some matrices operating on the undor-index and the
isotopic spin co-ordinate of ¢, whereas ¥, denotes the components
of the heavy quanta field and their derivatives with respect to the
spatial co-ordinates.

Now, it is well known that generally a superquantized Hamil-
tonian of the form of

H = [N H(2)op Y1) + 3 [/ WD) 6(2) W (1,2)0p b(2) $(7) (126)
yields an equation of motion for the quantized wave function
(1) = [$(z); H]_ = {(H°(1)op + [ §1(2) W (1,2)5" $(2)}9(2), (127)
whereas the equation of motion (61) of the situation function y now

is equivalent toa “Schrodinger equation” for the # particle
problem of the form of

(T2, ..., ) = (S HO (R)op + = W (RDZD (1,2, - ..., n). (128)
k=0 k>1
Here we have put
Wk = 3 W (kD)o + WLE)}: (129)
$(1,2, ....,n) denotes the antisymmetric situation-(wave)function

of the # body problem; so it is a c-number, contrary to the g-number
(1) in (126)—(127).
Though the actual Hamiltonian (125) hasthe form of (126)

with W(1,2),, = Z g2 w{{V wﬁf)S(_V)lQ) — if we neglect an infinite
sa2lf-energy X g2 [/ {1 (1) w0}V 8(1,2) 02 ¢(2)8(712) — we cannot identify
Hy + H, with the first term of the right hand member of (126) and
conclude to (128). For the field ¥, occurring in H; is not a given
external field, but is generated again by the nuclon field, as can be
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seen from the equations (2), or better from the second order equa-
tions, which are obtained from them by iteration. These second order
equations read, if all interactions with the electromagnetic field are
neglected:

(D %) A = —V(div a + Vv/c) — x(roth — e/c) + x’a
»})E = rot(rot e -+ hjc) — x(V v + a/c) + »%,
( — W)W = — div(VW + bjc) — xyjc -+ »®w,
)Y = x(div b 4+ w/c) + »?y;

(130)

and:

(0 — »?) A = — V(diva + v/c) — x (rot h — e/c) + x?a, etc. (130a)

From these equations the heavy quanta fields ¥',(x, y, z, £) can be
solved, if the nuclon field {(x, y, z, ) is given ). Following the
method of Y ukawa, however, we shall now neglect all deriva-
tives with respect to the time in (130) and solve these equations only
for the static case. Then, these equations take the form of

(A — ¥ = — 4n U, (131)

where U denotes combinations of s, v, a, e, h, efc., g, ;/, etc., and
their first and second order derivatives with respect to the spatial
co-ordinates. The solution of (131) is given by

V(1) = fdz. U(2)e*"r,,, (132)

where the gradients occurring in U can be eliminated by an integra-
tion by parts
Jfdz VU (2)}e ™ "ury = — [dz . U'(2) Va (e *"fry,).  (133)
Here V, denotes differentiation with respect tothe set of co-ordinates
(1) OF %, Vs 2
The expressions (132)—(133) can be substituted into (125). Then,
however, it must be remembered that in (125) ¥ was essentially
commutative with ¢ and {*, whereas the expression (132) does not
commute with them, since U contains both {* and ¢. This is a result
of the omission of the derivatives with respect to the time from (130).
After the substitution of (132)—(133) into (125), the latter expres-
sion seems to take again the form of (126). Now, by the substitution,
hfg seems to become a part of the term with W(z1,2),, in (126). We
should make an error of a factor 2 in H; however, if we would



DISCUSSION OF THE METHOD OF YUK A WA 85

conclude from this new expression to the corresponding Schr 6-
dinger equation (128). The cause of this error is again the fact
that by the substitution of (132) into (125) the commutator of H'with
Y, which was essential for the derivation of (127) (thus of (61)—
(128)) from H, is affected.

In order to avoid this difficulty it is more convenient to make use
of the commutation relations before substituting (132) into the H a-
miltonian?). Then (132) is inserted into the field equation
(127) instead of intothe Hamiltonian (125). By this substitu-
tion a part (I—[g) of the first term of (127) becomes a part of the
interaction term with W(z,2)3” again. The sum of this new con-
tribution to W(r,2);%" (from I—fg) and the original interaction term
W(z1,2)$™ then can be regarded as the effective interaction operator
W (z.2)%.

The Hamiltonian (126) can be regarded as a convenient
expression, from which can be derived the wave equation (127)
describing the motion of ¢ in interaction with the field of heavy
quanta. This field of heavy quanta, however, does not interest us for
the present. We want to know only the motion of ¢ in interaction
(through the field of heavy quanta) with itself. This is described by
our new equation (127¢ff) of the form of (127), from which, however,
¥ was eliminated, so that W$}” was replaced by W¢.

This new equation (127¢ff), on the other hand, can be obtained
directly from another effective “Hamiltonian”, differing from
(125) since H, does no more occur in it and since W,, has been
replaced by W¢]. We remark that the transition from (127¢ff) to this
effective Hamiltonian (126¢ff), in analogy to the transition
from (127) to (126), takes place by adding the factor f{f(z) to the
first term, but a factor § /(1) to the last term of (127¢ff). Since this
last term was obtained from H, by omitting the factor / {!(z) and by
substituting (132)— (133) for ¥, we find that the effective H a m i I-
tonian differs from the expression obtained from the terms (125) of
the original Hamiltonian by only inserting (132)—(133), by an
additional factor } to the term H,.

The “physical meaning” of such a factor { is that, if the action of
one particle through the field on the other particle has been taken
into account by a term of the form of a direct interaction between
both particles tothe Hamiltonian, itisnomore necessary to
take into account the action of the second particle on the first, since
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this reaction is already contained in the term describing the first
action *).

The effective Hamiltonian hasbeen chosen in such a way
that (51) remains valid for the nuclon field. So we can proceed from
(51) to (61) and from (61) to the Schrédinger equation (128), in
which now the effective interaction potential takes the place of W,

We must still remark that the procedure here discussed is allowed
only if the expression for W¢j, obtained from (127) by (132)—(133),
is automatically symmetric in the co-ordinates of the two particles,
since an asymmetrical expression in the equation of motion can never
be interpreted as an effective interaction operator taking the place of
the automatically symmetric operator Wiy in (127)—(128). It is not
allowed to symmetrize the effective operator afterwards, since (1)
and §(2) play a different part in the equation (127).

The actual way of calculation is now the following: In ffg we
insert the solutions (132)—(133) of (131); we verify whether the
operator operating in the resulting expression on {(r){(2), can be
written in a symmetrical form. It will turn out that, if derivatives
with respect to the time are neglected not only in the left hand
members, but also in the right hand members of (130), this is
possible indeed. Then we multiply this operator by }, and add it to
the corresponding operator in ngg, which is of the form of

—
2 g2 wfV (@ §(r,,) (see above). The result represents the (effective)

interaction operator ) to be inserted at once in the Schrédin-
g et equation (128).

As regards the infinite self-energy neglected from Pfgg in the fore-
going, it would give an infinite additional term to H;, which does
not interest us for the moment. It represents the static part of the
“mesic self-energy”’ of the nuclons. In a complete theory, this term
is hoped to explain the heavy mass of the nuclons, like the mass of
the electron is hoped to be explained as representing the electro-
magnetic self-energy of an electron. However, it is not clear, then,

*) Compare H. A. Kramers, loc. cit. 53), p. 301.

1) The same result can also be obtained by inserting (132)—(133) into the fofal H a-
miltonian including the meson terms in H,. Then no factor 4 is required, since
exactly half the term I‘[g is cancelled by the terms of I—/; describing the heavy quanta.
The fact that both methods yield the same result indicates that by transition from (125)
to (126eff) the total energy of the meson field generated by the nuclons is accounted for
as interaction energy of the nuclons themselves.
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why the mass of a neutron should be larger than that of a proton.

We shall now give the result of the discussed calculation, if it is
performed for the Hamiltonian given by (90). Here and in
the following we shall put (compare (24)):

fo=Kfo & =Kg &=Kh g=FKeu g =K (134)
K=+ Veldn
Then, making use of
N
(x2 —A) (e7[r) = 4= 3(r), (135)
we can write the resulting effective potential in the following form:
W(z,2)op = 3(e% -1(2))[53?{1 — (@ . a®) — (1)) (V. V) (@ . Vo)} +-
+ (182 {BV([a"", a®] . V}) + BD([a®,aV] . V) +
B V) + iem( @ . V))} +
+ (BB (0. o)+ (1/2)BIRR (a1.V ) (6. V) —
— (1p2)RpVRA (V. V )( Vz)} -
— (6/%)(aV.V))(a?.V,) — (osg4/%){w5”ﬂ (6'.V,) +
+ PR (. V) + (136)
+ BB (i) +
+ (e v®) (4re)?) [g8(1 — Co)RIRP —
— giC{1 — («V.a®)} —
— B2{C,BIRA (. 6?) 4 (C, — 1)BVB (aV. )} +
+ (1 — Co){(a"a®) — vy} —
—
— g3Cs BIYEIBA 13 ().

The symmetry of this expression is obvious. Comparing it with the
expressions obtained by Kemmer) by perturbation calculus
we observe that in his expressions the terms with g,g, and with g;g,
are lacking.

In order to ensure charge-independency of the nuclear forces
(compare § 3) even with regard to the 3-function interactions, we

have put
Cop = Cop (137)

in (136). The choice of these operators made by Kemmer) and
by Bhabha in the first section of his paper ), was C; =0,
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C,= — 1. Later on, Bhabha changed his choice 8 into that of
Yukawa?), viz. C; = C, = 0, hoping to avoid in this way the
3-functions entirely. From the formalistic point of view of (37) the
latter choice seems to be the more natural one. (Also C,, = 1 would
seem a reasonable choice from this point of view). It must be pointed
out, however, that even in the non-relativistic approximation

BN =R@ =1; al) =a? =y{l =yP=0 (138)
this choice (C, = C, = 0) does not eliminate all 3-functions, since
(compare (54))

(1/22)(aV . V) (6@ . Vo) (67" frp) =
. —
— {G(a", 0®) — (o' . 6®)}e—)r + (4m/x?) T oVa® Bers(r), (139)
2%

where we have put
—- > > >

G@ 0 =3{e. b) — (@.NE. i1 + Bwr) + @522} (140)
Inserting (139) and

—um%wwm=um€wwm:u+uum@Mrwm(MU

r =7 —1)
into (136), we find
W (1,2)op=(50.2) [H1— (& . o) — Glal?, a®)}—
—GEalB([, a®].) B (o), alV]7)
— B ) - B (1] -+ (1)} +
+ BB (a1V.6?) + G (61V,6@) + 1 (aV.ot®) — G (o), al®)} -
1@ .6?) — G(aM, 6?)} —
— 22 {iYs B (a®.r) —iyP B (V) (1 1) {1+ (1 /nr)} +
+lvs" BB P (e fr) + (142)
(022 () (1 — CBIB—giC (1 — (e @)}
—g3C,B B (a.a?) + (02 — 1)BIBA) (V. ?)} -
31— Cf(oV.0) iy — g BB ) —
—3(x . @) (4m/%’) ? [gso'i o) gl o +
- BB o — ).
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No choice of Cy, Cy, Cy, Cy, Cy will eliminate the 3-functions from this
zxpression. If we choose
Co=1, C;=0, C;=0, C3=1, C,= arbitrary, (143)

the ordinary 3-functions disappear at least from the non-relativistic
approximation (138). This choice, however, does not eliminate the
terms with the longitudinal 3-functions.

The expression given by Breit?5!) for ths interaction between
charged particles through the electromagnetic field was a reasonable
approximation since only retardation effects and non-secular high-
frequency effects are neglected in its derivation. Since we have
neglected not only the (0%/0£?)-term of the left hand member of (130),

e
but also the derivatives with respect to the time of s, v, a, e, h, etc.,
the approximation of the nuclon interaction given by (142) is much
worse. Indeed, the “velocity’’-dependence given by the terms with

ann hardly be regarded as well justified by such a derivation. The
velocity-independent part of (142), obtained by (138), will be a good
approximation for the effective potential between slow nuclons,
however. This non-relativistic approximation yields, if we ignore the
d-functions, which — according to Kemmer 2) — give “only”’
an infinite contribution to the levels of the deuteron:
W(1,2)0 ~ 3(xV.2@) {4 + B'(6V.6?) + C’ G(aV), 6@} e [r;
4=g(20), B =3%g+14g(=0), (144)
C'=g —g((20).

It should be hoped that it will be possible to explain by this
interaction the experiments on scattering of neutrons by protons
and the binding energy, the magnetic moment and the electric
quadrupole moment 3¢) of the deuteron. If this shall bz possible, the
term with G (e!V, 6*?), which couples the 3S state with the 3D, state
(compare § 2), cannot be neglected. It should be possible to calculate
the strength of the coupling directly from the measured electric
quadrupole moment and the magnetic moment of the deuteron.
Compare, however, the following section.

It cannot be expected that the force derived in this section will
give an exact explanation of the binding energies of other nuclei than
the deuteron, since the triple and multiple forces arising from a
“multiple exchange” of heavy quanta between nuclons *) may be
of considerable importance there.
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It is hoped by Bhabha'®) and Iwanenko?? that an
entirely classical treatment of the heavy quanta field will yield an
expression for the interaction between nuclons, in which the velocity
of the nuclons will have been taken into account.

The solution of equations like

(O0—)¥Y=—4rU (145)
is not given by (132) with “retardation” of U(2). The equation (145)
has been solved by Iwanenko ).

§ 8. The deuteron problem. Inserting (144) into (128) we find the
(non-relativistic) Schrddinger equation of the deuteron:

(€ + (7R12M8) A, + (2[2MB) Dy — W(Z, 2),} Uz, 2) = 0. (146)
Here M,, is given by

1 —x,

1+ 1,

My = Mpr by - 2 (147)
so that
1 z 1 — z
1M,y = (1/Mp) —5 4 (1M) — 5 (148)

We shall introduce the relative co-ordinates

e
T=0p— T (X=X — X, Y =Y — Vo, 2= 2y — 2}, (149)

and the co-ordinates of the centve of gravity

— > -
ro(MY + M2y =, M) + v, M3, (150)
so that
- — - -
_ntn My—Mp rn—r, o) —1? (151)
o= 73 My +r M, 2 '~ 2

Differentiation with respect to these new co-ordinates is defined in
the usual way (as if M) and M2 were constants). We shall put

2 1 1 _ My —Mp
N vt e g, (199
en
o e o o -
8x%#8xé 0%, axé ox (153)
yields

) — g2

Z%p()(l q:SM——Z———)i?- (154)
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Putting
o2 02 e? o2 0? 0?
A:W+aigz2+ﬁ’ Ay 2+8v8+322 (155)

we can write (146) in the following form:
) 1 @
(€4 (14 3 T (A1) — (2.2 42,2 =0, (156)
Since the Wave -function of a deuteron is an eigenfunction of the
operator (t{!) 4+ 12): ‘
() + 12) Y(1,2) = O, (157)
the isotopic spin operators vanish from the kinetic energy operator
in (156) and we can separate the co-ordinates of the centre of gravity :

#2 - - =
{5 + A — 3z, 1@) [4 + B'(aV . ¢?) +

M
- e K
+ €' Glo™, o))}y =0, (158)

where
b= Tz, 7). ¥, 9,2 0, 0). (159)
By 6, and 1, we denote the ordinary and the isotopic spin cc-
ordinate of the #n” particle. In the 3S — 3D state of the deuteron the
isotopic spin function 77is given by the antisymmetrical “singlet spin
function” 'y, (t, 72); in the !S state of the deuteron it is given by the
symmetric “triplet spin function” 3y4(z;, 7,). The singlet and triplet
spin functions wmy,, are given by

Singlet: 'yo(sy, 67) = \/2 {o(ay) Bloa) — alsy) Blsy)},

Triplet: *yo(o1, 62) = 7/_2 {o(o1) B(o2) + «(o2) Blo1)}, (160)

Su(o1, 02) = afoy) afsa), - *y—i(o1, 02) = B(ay) B(s2),
where
a(o) = 84, Blo) =8_ 0, (161)
so that «(t) denotes the isotopic spin function of a single proton and

B(r) that of a neutron.
In the 'S state of the deuteron the wave-function (159) takes the

form of

4)(15) = 3yo(71, T2) - Yolo1, 62) I‘FO’)- (162)
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Making use of
(—>(1) 72)) 3 ) + 3 ( )
T TY) YolTy, T2) = Lo(T1 T2)s
) en 1 ) o2y 1 (163)
(o '.a!?) olo1,62) =—3 y0(01,05), (G(aV, a! ) %olo1, 02) =0,

we can reduce the Schrodinger equation for this !S state of
the deuteron to

rm} () — 0. (164)

{18 + %2 A — (4 — 3B

Comparing this equation with (8) we find
IH =3B — 1A (22a)

again. We have mentioned (§ 2) that the Schrédinger equa-
tion (164) has been solved numerically 24) 2%) for those values of 1J7,
which yield a real level. Then, it is usually assumed that the actual
value of !J{ is approximately equal to that value, for which the
energy of the level becomes zero. However, it is not impossible (see
§ 2) that this assumption introduces an error, which may amount to
perhaps 109, of the value of 'J{ (compare (13) with (13a)).

The eigenfunctions for the 3S — 3D, state of the deuteron 23) are
linear combinations of those of a “pure” 3S state:

ws — @ (o1, o), (165)

and those of a “pure” °D;, state (j = 1):

a0
YR = ~—(7—) DD (%, 0, 01, 53),
1 (166)
(Di(p :’U:E_?mﬂ Yi2‘_l"’ (S: CP)’ 3X;L’ (61) 62)-
Here the functions Y7* (with |m | < [) are eigenfunctions of the
orbital angular momentum operators JM? and M, belonging to the
eigenvalues 72(l 4 1) and 7im respectively:

- W1 o ; 6 i
AYP = — g Yy, ADY :_—7—2CD;1). (167)

If they are normalized according to

Vi T
Jdo[sin9ay | Yy [P =4r, (168)
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they are given by 5%) %)

Yi= (Y;3)*= 1 %SSin2 9. %9,
B 1/15 ‘
Yi=—(Y;1)*=— —2—s1n%}cos%.e‘¢‘, (169)
0 5 2
g = Z(3cos 9 —1).

The triplet spin functions %, are given by (160). They are eigen-
functions of the spin angular momentum operators 82 and 8, be-
longing to the eigenvalues 2%4? and p/# respectively. From (166) we
conclude that the *D,-functions ®{) as well as the triplet spin func-
tions 3y, satisfy the relations

o) g2y 3 & (el . @) B — O
(6. 6?) 3y, =3, (cV.c?)d) = 0. (170)
The coefficients ali), in (166) are now chosen in such a way that

the @ are eigenfunctions not only of J, = M, + &, belonging (on
account of (166)) to the eigenvalue 7y, but also of

" J2 e M2 L 8§21 oM. S) |
belonging to the eigenvalue 7%%(j -+ 1). For j = 1 this choice of the
coefficients a)), is given by

w o= l — 1 } ¢} ' 1
- 1 /3 6
S Vio |_* Vo () (171)
- 4 3 = Q-
e o | VS e [ vy T
' 6 3 1
b= bt TV | TV

We have “normalized’’ these coefficients in such a way that the @)
are normalized, just as the %, according to
2m T
> O/dcpfsin 9 dy OD*OY = 4§y, . (172)
0,0, 0
The spin functions %, and the spin-angular functions ®{}) satisfy
the relations :
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Now, the triplet solution of (158) will be a linear combination of (165)
and (166):

34)# == 1X0(T1, '."2) . SlF’L; 3‘F;L S lI}’SS) + lFSDl). (174)

Inserting (174) with (165) and (166) into (158) and making use of

(167,) (170) and (173) we find the following equations for the radial
functions #(¥) and v(r) 2):

W odu s €7 , 3 3 e .
*Mﬁz“{" Eu + 2 7 M—C(\1+;7+x21'2) 7 0v2=0,
B dv 6v s s €
M(W‘?)+ Cot*H—-v+ (175)
O (142t ) S —uy2) =0
’ wy x272) ¥ (v —uy2) =0

Here we have put again
SH=4B +3A4. (220)

Since the last terms of (175) are proportional to 1/7° these equa-
tions cannot be solved in the usual way by expansion in powers
of #. This does not necessarily mean that the eigenvalue problem
(175) has no solution at all. But if first the potential is “cut off’’ at
some distance 7,, the ground level will tend to — oo forz, — 0.

If (175) is not to be regarded as the limiting case for #,— O of a
potential, which is cut off at #,, it would perhaps be possible to
ignore entirely the solutions of (175), which do not converge for
7 — 0. Then, in the ground state of the deuteron the terms with 1/
should necessarily have the character of a strong repulsion, making
the wave-function and its derivatives zero for » — 0. Though it may
be possible to remove the difficulty entirely in this way, the proce-
dure seems to be not very satisfactory since there are many reasons
why the interaction potential (144) is questionable for small distan-
ces. h '

First of all we have neglected all high order interactions, since
we have solved the meson field acting on the nuclons from (131), but
we have ignored the derivatives with respect to the time in the right
hand members of the original equations (130). Now, we know from
perturbation calculus ) that the higher approximations yield inter-
actions, which for » — 0 become much stronger than the first order
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interaction, so that the theory cannot be trusted at all in this region.
Further it is quite possible that quantum mechanics, in their present
form, are not competent for the discussion of problems, in which
distances r < 7, (< 1/x) are involved %7).

Thus one can hardly trust any conclusion from the theory, for
which the form of the potential for small values of 7 is essential.
Then, it seems to be reasonable to “cut off”” the potentials entirely
at some distance 7y(< 1/x) and to regard the ground level of the in
this way corrected equations (175) as the actual ground state of the
deuteron (though this state disappears for 7, — 0).

The cutting off radius 7, then should be chosen of the order of
magnitude of } or § of the “range”” 1/x of the nuclear forces, since in
this region the high order effects become strong. In the ground state
the interaction with 1/7> may now have the character of an attraction.

In the way indicated here the deuteron problem was solved by
Bethe?3? for the special case

g1 =g =0. (176)

Then, the effective potential (144) takes a simple form. The two
remaining parameters g, and », were chosen by Bethe insucha
way as to adjust the singlet and the triplet level of the deuteron. The
calculation was performed for K e m m e r’s “symmetrical theory”
of mesons and neutrettos as well as for the “neutral theory” dis-
cussed in § 3. Further the cutting off was made in two different ways,
viz. W(r) = 0 or W(r) = W(r,) for » < 7,. The mass of the heavy
quantum was assumed to be equal to 177 electron masses, the triplet
level of the deuteron to be —2:17 MeV. The !S level was not put
equal to zero, but calculated from the cross section for the scattering
of slow neutrons by protons, which was assumed to be equal to
18:3 x 1072* cm?. The results are the following 32):

Neutral theory Symmetrical theory
Cut off: zero straight zero - ’ straight
g2/he*) | 0-162, | 0160, 0-500 0-308 (177)
%7, 0-320 0-436 1-679 1733
Q 273 2:-67 —24-7 —17-8
o 6-88 6:68 23-46 18-52

*) The constant g, of Bethe corresponds to g,/4/2 in our notation.
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Here & is the percentage of °D wave-function contained in the
eigenfunction *¥ of the triplet level; Q is the electric quadrupole
moment of the deuteron in units 1072 cm?. From experimental data
was calculated Q = + 2'5, but this value 32) is uncertain since use
was made of approximate wave-functions of the hydrogene mole-
cule 54).

Comparing the figures in (177) we remark that Q < O for the
symmetrical theory, Q > O for the neutral theory. Since Q is defined

i

as the average value of (322 — #?), if the z-axis has the direction of
in the 3S — ®D, state, Q > 0 means a “cigar shape” and Q <0 a “pill
box shape” 32). These signs of Q can be understood by a simple con-
sideration about the region where the character of the potential will
be attractive and where the wave-function will be large (compare
Bethe, loc. cit. 32)). This region turns out to be more concentrated
at small values of 7 for the neutral theory, so that it can be under-
stood why this theory yields smaller values of Q. Essential for these
considerations is the assumption. B’ = 4C’ > 0, introduced by (176).

We remark that, if C’ had been chosen negative, just the neutral
theory would have yielded a deuteron of a pronounced “pill box”
character, whereas the symmetrical theory then would lead to a
“cigar” shape. Introducing the field of spinless heavy quanta, that is,
choosing a convenient value for the constant g;, we can change the
sign as well as the value of the electric quadrupole moment predicted by
the theory. In this way theory and experiment can be fitted even in
the symmetrical theory. This seems to be the main advantage of the
generalized meson theory proposed by Mgller and Rosen-
feld ™). For, indeed, the symmetrical theory seems to be preferable
to the neutral theory, in view of the cosmic ray phenomena.

It is reasonable to expect that the percentage of 3D;-wave-func-
tion in the triplet state can be calculated from the surplus magnetic
moment of the deuteron due to this D-state. The orbital magnetic

— —
moment p can be expressed in terms of the mechanical moment M.
Neglecting the difference of My and M p we find for a deuteron by a
simple consideration
orb __ 1 ¢

B = 2o pC
The extra factor 1 is a consequence of the fact that in the system, in
which the centre of gravity is at rest, the radius vector of the charged

-
M. (178)
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particle is only half the distance 7 of the nuclons. Generally we have,
on account of (148), (149), (151) and (154):

— = > — —> — = — —>
M =[ry, pi] + [72, 2] = [70, Po] + [7, $] (179)
and
T L[, 1E 1 T4y 1 > >y
:2c{<e' 2 >M5,;,>[y"p‘]+<e' 2 )J T2 Paly =
1 ! 1 - —
R TR -
(zl) (12)\ — 1 — ;1) i(!2) —> > —> =
= 3o 1 L) 8 S (A~ e )
() _ ) = —> .
b (o ] — 930 o)) | (180)

The expectancy value of this expression for the ground state of the
deuteron is given exactly by (178).
The magnetic moment in the direction of the total angular mo-

—
mentum _J is now easily calculated putting the quantum number ;
equal to j = 1. From (166) — (171) we find for the total magnetic

—>
moment of the 3D, state of the deuteron in the direction of j:

\ eh
H(DDI)Z%ZMPC—%(HN“FHP)- (181)

If now the wave-function of the ground state is expressed in terms of
normalized 3S and °D, functions:

W — (PO 4 PPN VT - o2, (182)
o = &/(100 — &),
oo (183)

o = f vidr f [udy,

then the effective magnetic moment ., of this state is given, in units
of (en/2Mpc), by

o = 7 + ——5 [y +pp 2 G — S ). (184)
Taking pp = 2'78 and pp = 085 38), we calculate from (184):
To? = Wy + B — o _ py+ 1193 (185)

Wy + p + 20p— 13 py + 2987
7
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Taking for wp the value of Estermann, Simpson and
Stern?®) (wp= 246), and the value of Farkas®?) for
wp/tp (= 3°8), we find pp = 0°65 and

2 E.LN—.L 18i
T gy 2267

1ot

(185a)

o

The magnetic moment py of the neutron was measured by the
method due to Bloch®) and improved by Frisch, Von
Halban and Koch®). Thus, uy was found ¢2) to be in the
neighbourhood of — 2. So if the formulae (184)—(185) can be
trusted, we must conclude that « is small and that the actual value
of | py | lies a little below 193 (or below 1-81).

Then, it should be hoped that by a convenient choice of the con-
stants g;, g, and gz in (144) and of the cutting off radius 7, not only
the energy levels, but also the electric quadrupole moment @ and the
magnetic moment of the deuteron can be fitted with experiment, and
that the cutting off radius #,, determined in this way, will turn out
to have a value between (1/x) and (1/10%). For this purpose calcula-
tions of the deuteron states for a choice of g, g, and g; different from
(176) will be of great interest. Calculations of this kind exist for
potentials of the the form of a “square well”” 82).

Even if it is possible to fit in this way theory with experiment, we
must bear in mind that, if some of the calculated quantities 3¢, 1€,
Q, &, .... will turn out to be sensitive to the value of 7, within the
interval 1/x ~ 1/10x, the value of such a quantity following from
the theory can hardly be believed to be reliable, ¢f no physical
meaning is given to the parameter 7,.

It is not certain, however, whether the fitting of the magnetic
moment Will be possible at all. If it is true that new measurements of
| wy | vield a value, which is still higher than 2, there must be some
error in the derivation of (185).

In this connection it is of interest to remark that the charge density
and the charge current distribution [M.F.(33)] of the mesic field gener-
ated by the nuclons on account of (130)—(132) vanishes in the case of
the deuteron. Generally, this charge distribution is given by the g¢-
number

ol1) = § [fd2d3 . y"(2)¥"(3) Q(z; 2, 3) ¥(3) ¥(2), (186)
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where Q is given in a non-relativistic approximation by

glgz % g*"(’m’*”m) ( 1 )( 1 >
. - e 1
Q(I' 2, 3) hc 87'C 7’%27%3 1 + A ED) + ~¥3 X
— — - —
X ({6 + 69} . [y, 735)) (¢ 2 — P Q) = Q (15 3, 2). (187)

The expectancy value (59) of this g-number (1) for the N body
problem is given by %)
on)y=/...fdMz,2, ..., N).ZQ(z;m,n).y(1,2,...,N). (188)

m<n

For the deuteron it is easily seen that (z{!)%{? — ={Vz{?) possesses
non-vanishing matrix elements only for transitions from anti-
symmetrical states to symmetrical states and vice versa. Thus (188)
does not contribute anything to the charge distribution (and to the
electric quadrupole moment) of the deuteron in the ground state.

In a similar way it can be proved that the electric current density
of the meson field generated by a deuteron tn the ground state must
vanish.

§ 9. The neutron-proton scattering. The cross section for the scat-
tering of neutrons by protons %) 2) is related to the situation of the
energy levels of the deuteron by the generalized formula ) of
Bethe and Peierls?®). This formula, however, does not give
the right dependence of the cross section on the energy of the im-
pacting neutrons.

If the form of the effective interaction potential is known, the
scattering cross section can be calculated directly. For potentials of
the form of a square well ora G a uss error function this has been
done by several authors %) 6%). A meson potential of the form of
(— JL. e [r) for the singlet state was used only for a comparison
of the scattering of protons and of neutrons by protons 28).

By a direct perturbation calculus the cross section for neutron-
proton scattering for slow as well as for high energy neutrons was
calculated by B habh a18). Here, g; was put equal to zero. In the
extreme relativistic case he finds the following differential cross
section for scattering through the angle 9, in the system of co-ordi-
nates, in which the centre of gravity of the proton and neutron is at
rest:

\2
IDER) o, ;@4;;63‘54 mpzoc (1)(1+cos%}0)2dc0580 (189)
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Here p, denotes the momentum of each of the collising particles in
the system of the centre of gravity, m is the mass of the mesons. The
calculation has been performed for an “asymmetrical’”’ meson theory
(without neutrettos), so that the particle scattered through an angle 9,
is changed from a neutron into a proton.

The factor p3 of (184) ensures large cross sections for high energies.
We shall see in the following, however, that for large energies the
cross sections for many other processes increase. This is connected
with the phenomenon of showers, which was discussed in § 6. If
quantum-mechanics must not be modified 57) at high energies
(> 108 eV), we can only say that, according to the theory, high
energy particles will give rise to a large number of very probable
effects, which manifest themselves as showers and nuclear explosions.

§ 10. The spontaneous disintegration of heavy quanta. In § 6 we
have mentioned that the term H,of the Hamiltonian posses-
ses non-vanishing matrix elements for the following transitions:

Yt>n+o Y >e+v, YO>v+o Yo m+e (190

Here o is a neutrino, ¢ is a negative electron and v and = are the neu-
tral and the charged state of the corresponding light antiparticles
(antineutrino and positon). Y*, Y—and Y%area theticon, an arneti-
con and a neutretto respectively.

The transitions (190) are allowed by the conservation laws of
momentum and energy, so that we must expect that there exists a
transition probability for these first order effects. The probabilities
per unit time are easily calculated according to

w=""0).2|QP (114a)

where the “matrixelement” ) isobtained directly from (90) with (111).

For Proca-Kemmer quanta the calculation was performed
by Y uk *wa in his third paper ). The probability is calculated
in the system, in which the meson is at rest, so that the terms with
derivatives with respect to the spatial co-ordinates in H, can be
omitted. In (114a) a summation is performed over both directions of
the spin of each of the created light particles of positive energy. In
the expression for the energy of these light particles the mass terms
can be neglected since $mc?> mc?. Then the calculation becomes
extremely simple.
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The density of final states g(€) is easily calculated. The number
of states for one of the emitted light Dirac particles (with a
momentum p of about 1mc and an energy cp approximately), the
momentum of which is situated in the interval between p and p + dp
and has a direction within a solid angle dw, is given by

m2c?
32r3h3

Now, the differential of the energy of the final state is two times that of
one of the emitted particles (since the conservation of momentum
requires that an increase of the momentum of one of the light par-
ticlesis coupled with exactly the same increase of the momentum of
the other emitted particle), so that

p(é’)dé’:Q%zdpdm:Q dp de. (191)

d€ = 2cdp. (192)
From (191) and (192) we obtain
mZ

In this way we find for the probability of disintegration per unit
time:
fora Proca-Kemmer meson at vest:

1 2g12 + g2 mc?
o 6hc W (194a)
" for a spinless meson at rest:
2 2
L= £ M (1945)

To - th ) 71
For neutrettos the probabilities of disintegration have exactly the
same value ; the probabilities for each of the processes Y° — v + o or
Y?— n 4+ ¢ apart have half the value of (194).
In (194) we have introduced the notation
go=Kf, g1=Kg, =K g=Ka g=KQ
(K= + V ex3[4).

If the heavy quantum is moving with a velocity » with respect toa
system A, the probability per unit time with respect to (an observer
in) 4 is given by the Lorentz transformation of the time co-
ordinate, so that

(134a)

Wy
V1 =22

Il

w == (195)

t
T
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(probability per umit time proportional to the kinetic energy of the
decaying heavy quantum).

We remark that the formulae (1944) and (195) for a Proca-
Kemmer mesonweregivenby Y ukawa inhis third paper ).
In his fourth paper #) Yukawa has considered it necessary to
change (194a) by adding a factor 2. This is due to an error in the
interpretation of p(€). If we describe the process like Yukawa
by saying that by annihilation of a meson one light particle with a
momentum p and a negative energy — cp is changed into another
light particle with the same momentum p, but with a different isoto-
pic spin co-ordinate and with a positive energy - cp, the law of
conservation of momentum requires that the energy of the initial
state (&,), (which, from this point of view, is one among a conti-
nuum of states, like the final state), is varied together with the
energy of the final state (€;). So in this description we have (com-
pare § 6):

p(€)d (& — &) = 2p(E)dE; (196)
with
d€; = cdp. (197)

The difference of a factor fwo between (192) and (197) is thus com-
pensated by an additional factor 2 in (196), which was overlooked by
Y uk awa. This error is continued in the publication of Y uk a-
w a on the mass and mean life time of the meson ).

Instead of the “F ¢ 7 m i-Ansatz”’ of § 4 for the interaction between
heavy quanta and light Dira c particles, Yukawa 2) hasalso
investigated the consequences of a “Komnopinski-Uhlen-
beck Awnsatz’, in which derivatives of the neutrino wave-function
with respect to the spatial and time co-ordinates occur. Though the
formula given by Y uk a wa 2) for the disintegration probability
of a meson in consequence of such an interaction is not entirely
correct *), it remains true that the expression for this probability

*) If again the mass term in the energy of the light particles is neglected, the equation
(68) of the paper of Y uk a w a ) should read:
2% me? me? g . .m . .m
W= 5— —— (7§ + 7:)\2_"%!%!2 + 3 |lJ-1—'7t.Uoz + 12—”1 7\2|2}.
If the mass term is taken into account, the ,,K.U.” interaction is corrected by a term of
the order of magnitude of the uncorrected term resulting from the ,Fermi” inter-
action. T amindebtedto Dr. Podolanski forthese results.



THE “FERMI’’ AND THE “KONOPINSKI-UHLENBECK’’ INTERACTION 103

possesses a factor (m/m)? in addition to factors of the kind of those
appearing in (194). This means that, if the constants g’ are chosen of
such an order of magnitude that the theoretical expression (194) for
the disintegration probability is in agreement with the experimental
data on this spontaneous decay of the heavy quanta ?°) %), which
yield a value of about 1, &~ 2 X 107° sec, the constants g’ must be
chosen much smaller, if a “K.U.” interaction is assumed, than if the
“Fermi” interaction of Kemmer isassumed. The difference
corresponds to a factor 3 X 1075 This means that the value of g’
resulting from a “K.U.”’-Ansatz would yield a probability for the 8-
disintegration of instable nuclei (compare § 11), which is too small by
a factor at least 72) of the same order of magnitude 23). Thus it seems
that it can hardly have any sense to introduce this complicate inter-
action into the meson theory *), since the original K.U.-Ansatz 4?)
was introduced only as a possible explanation of the phenomena of
B-disintegration. For this reason we shall not discuss this interaction
in the following section, but refer to the paper of Yuk awa %).
If we put 15 &~ 2 X 107 sec. and m = 100 € m, we find from
(194):
(2¢12 + g2 [3%ic ~ (1:3JE) x 10717 (1984q)
and
g?lhe ~ (1:38) x 1074, (198b)

if we assume that the disintegration probabilities of spenless and of
Pyoca-Kemmer heavy quanta are of the same order of magni-
tude (an assumption, which does not necessarily follow from the
experimental data!). Thus we find, taking m ~ 175 m:

g?hc ~ 3 X 10717, g ~ 1} x 10717, (199)

§ 11. The B-disintegration of instable nuclei. Like the nuclon-
nuclon interaction, the g-disintegration is partly a first order effect
due to H;g, partly a second order effect due to I-fg In the same way
as in the discussion of the nuclon interaction (§ 7) we can according
to Yukawa?) replace again the second order interaction
between heavy and light particles by an effective Hamiltonian
term of the same type as I—fgg. Then, the first and second order inter-
actions are described fogether by means of an operator, which can be

*) Of course, the arguments given here do not exclude the possibility of introducing the
K.U.-Ansatzin the terms Fgg only,
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transformed into an expression of the same type as the ordinary
interaction term of Fermi#) (see below).

The calculation was performed by Y uk a wa 2) for a combined
K.-U. and Fermi interaction, but we shall confine ourselves to
the latter (see § 10). The calculation runs exactly in the same way as
in§7. Only we now must take into account the interaction between
mesons and light particles as well as that between mesons and
nuclons. Thus

3 /] H(1,2) gnd!(1) @], (1) 4(1) . g.47(2) @,(2) y(2) + conj. compl.

of (125) and (126e¢ff) of § 7 (where f(1,2) = f(2,1)) is now replaced by
(compare (38})
LIS H(3.2){gmd (1) 00,4(1) + gad"1 (1) @l (1)}Ead"(2) wad(2) +
+ g (2) w0 (2)} + conj. compl. (2C0)
where ¢ denotes the wave-function of the nuclons and {’ that of the
light particles.
We are now interested in matrix elements describing for instance
the reaction
N+t— Pt 4 e+ v. (201)

These matrix elements arise from the terms
L2t () =T G gt = G ) +

T + 1Ty, ~ P T — 1Ty ~ .,
+ed'(2) ZL T S0 gt () T G, (D)) (202)
of (200). Here @,, and @, are self-adjoint D ir a ¢ matrices operat-
ing on the undor indices of the wave-functions only. Now, it is easily
seen that, on account of the symmetry of W(z,2)¢in § 7 the required
matrix elements can be deduced directly from (136) by omitting the

factor (= (el 7 .7@) and by taking the matrix element of the operators
there denoted by V) between the states of the vanishing neutron N
and the created proton P; and of the operators denoted by
between the charge-conjugated of the state of the created negaton ¢
(that is, a positonic state of negative energy; compare (100)) and the
state of the created antineutrino v.

We shall now make use of the relation (135) in order to eliminate
from (136) all terms without a gradient operator, which possess a
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factor (¢e7*"/r). In that way we achieve that only two types of terms
remain: those containing a gradient operator V or A acting on a
factor (e7*/r), and those containing a &-function. All matrix
elements are integrals over the co-ordinates of the heavy (! and the
light @ particles. All gradient operators V; can still be replaced by
— V,, since they operate on a function of 7}, only. Then integrating
by parts over the co-ordinates of the light Dira c particles @, the
integrand can be changed into one, in which all gradient operators
operate on the wave-function of the involved light particles only.

Now, if the terms with gradient operators are compared with those
without a gradient operator but still proportional to (¢=*/r), (i.e.
those terms, which were eliminated by means of (135)), we first
remark that each of the gradient operators is accompanied by a
factor (1/x) = %/mc. The gradient itself multiplies the matrix element
by the momentum p of one of the emitted light particles divided by
h, so that each factor (1/x) V is equivalent to a factor p/mec. Now, the
momenta of the light particles actually emitted by B-active elements
are of the order of magnitude of at most 10 mc. Since me is at least
100 mc (170 or 180 mc seems to be more probable), the factor /mc is
at most about 1/10 (or 1/20). We shall neglect these terms.

This means that we assume that the wave-functions of the emitted
light particles are nearly constant in a region of the order of magni-
tude (1/x), that is, inside the nucleus. Thus we can replace these
wave-functions by a constant.

Since the neutrino can be considered to be free, its wave-function
can be assumed to be a normalized plane wave. Then this wave-
function is, apart from the four-component “spin-function”, inside
the nucleus equal to the normalization factor 1/4/Q only, where Q
is the volume of a large cube, in which all wave-functions are assumed
to be periodic.

The emitted electron cannot be regarded to be free, on account of
the Coulomb field of the nucleus (charge Ze). A reasonable
assumption is 41) that the wave-function inside the nucleus (where
the electric field decreases towards the centre) is equal to the value,
which the wave-function of an electron in the Coulomb field of
a hypothetical point charge Ze would have at a nuclear radius
distance from this point charge. The wave-function should be one of
the continuum of states with an energy W > mec. If these wave-
functions are normalized in such a way that the density-in-phase of
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states is again equal to Q/7®, the value of these wave-functions will,
apart from the “spin-function”, be a function of the energy (W) of the
emitted electron and of the charge (Ze) of the nucleus after the
emission. This function v/f(Z, W)/Q can be taken from one of the
papers on the B-decay theory %) 42) ) 74),

The terms remaining in the matrix element derived from (136) are
now of the form of

, > > > > . - 1 ~
gnn JI drydr3(r1s) (Yb(r1) 0m dn(r) o VIZ, W) (uf 00,u8) = (203)

N — >~ —> ~
= (8ngalQ) VHZ, W) [dr, (§b(r1) @ bn(r)) - () w,%¢).

Here #, is the four-component spin function of an antineutrino of
positive energy, #£ that of a positon of negative energy (that is, the
charge-conjugated of the spin function #. of a negaton of positive
energy; compare (99)—(100)).

Since the heavy particles in the nucleus can be treated in non-
relativistic approximation, we may in the factor with w,, replace @

- - - —
by 1; ys, a and Ba by O; Be by 6 (compare (138)).

The probability per unit time of a disintegration, by which the
electron is emitted with a momentum between p and p + dp in a
solid angle dw, and the antineutrino with a momentum between
p" and p' + dp’ within a solid angle d’, is given by (114a). Here we
must put:

e(E) dE = (Q)c*h®)2 p W AW dew p' W dW' de’ (204)
where
(We)? = (me)? + p2; (W'je)? = (we)? + p2, (108a)
and
d€ = d(W + W’), (so that AW dW' = dW d€).  (205)

Further, on account of (203) and (136)—(135):
Q = (4nw*Q) VI(Z, W) . {(1 — Co) gogo(wi Bric) [ Yy +
+ (1 —C) gugi (u) 1) [ by +
, o —> e —>
+(1—=Cy)gags(ulBoug) . [ Yhodn+ (1 —Ca)gags(ulone) . [bay}.  (2C6)
We remark that just those matrix elements, which yielded a po-

tential of the form of a 8-function for the nuclon-interaction, and
which were omitted in § 7, since they gave “only’’ an infinite contri-
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bution to the binding energy of the deuteron 22), correspond to the
terms, which give rise to a B-disintegration *). Thus, by a convenient
choice of the constants C,, Cy, C, and Cj it will always be possible to
fit the total disintegration probability with the experimental data
without influencing the deuteron problem.

Ttisinteresting toremark that the terminthe Hamiltonian
with gog¢ (which usually does not enter into calculations, as a conse-
quence of the special part played in the theory by S) yields a contri-
bution here to the B-decay. It isa term of the same type as the origin-
al Ferm i-interaction ), which appears in our theory with the
constant (4nggi/%?).

The probability per unit time P(Z, W) dW for a disintegration, by
which the electron has an energy between W and W + dW, is now
calculated in the ordinary way. The sum must be taken over both
directions of the spin of the emitted light Dirac particles; over
the solid angles dw and de’ we have to integrate independently. The
summation over the spins brings in a new factor depending on the
energy of the emitted electron. Especially the (non-vanishing) cross
products of different terms of (206) are of interest, since they can
make the B-spectrum a little more asymmetric than the Fermi-
distribution either for positon-emitters, or for negaton-emitters.
Putting

Wime =w, (1 — C)gugifhc = ghand M, = [ hwly (207)
we obtain the following expression for P(Z, W):
P(Z,W)adW =
= (mc?/h) G2 |M(w) PwVeP—1 (w,—w)V (wo—w)>— (ujm)? dw, (208)

where

4
G2 1mw) 1 = ()|t + ¢ 13432

+ (822 + &9 |Ma|2}{l —“/—’fw)} +

w(w,

2 N M 2 o IZG 2 1 H/m 1 209
4+ 20{go g1 | My > + 8245 | ¢r|}#_—‘—_'1- (209)
w Wy — W
*) It should be remarked that it is possible to choose the constants C different in the
terms with nb?;',de);;d)p and with abﬁq;N,p:‘gb,., in Lagrangian and Hamil-
tonian.
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Here m and yp are the masses of electron and neutrino respectively ;
wois the total energy available for the emission of particles, expressed
in units of mc2. Finally vjisequal to + 1:

7 = + 1 for positon-emitters, (210)
n = — 1 for negaton-emitters.

As for the relative sign of g5 and g7, and of g5 and g3, we refer to
the equations (36). Thus, if in (39) gdfwp + g'{lwy, is changed
into gyfwlp + g'Plwy,, the signs of gigi and of gjg; are changed.
Then, however, we must also reverse the signs of » in (210); so that
the result is exactly the same, as it should be.

If we assume p. = 0, the factor | M(w) |2 in (208)—(209) may be
written as

| M(w) [ = (A + 7Blw), (211)
where w > 1 and | B | < A. From (211) we conclude that, if ggg}
and gg5 are both positive, the spectrum becomes a little more
asymmetric and the total disintegration probability a little higher
for all positon-emitters (S > 0), whereas these effects will be just
inverse for all negaton-emitters; or vice versa for gigi < 0> ghgs
(B < 0). If, however, gig! and gygs have different signs, the sense of
the deviation of the spectrum from the original Ferm1i spectrum

will depend on the relative value of the matrix elements A/, and ﬁ o

In order to investigate whether it is necessary to make use of the
possibility of choosing the constants C different from zero, we now
calculate

G5 = (8/m) (m/m)* (g/hc) (¢"%/hc). (212)
From s ) o
g?hec ~ (9]78) x 10717, (1980)
(m = 100 § m),
we find
elhe= | 1fs |10 ‘ 1/16
(213)

0% G3 | 268) | 1BE) [1/68)
From the decay constants of light elements one can deduce 73)
G? | M(w) 2, ~ 12 X 10725, (214)

Since in (209) several matrix elements occur, we conclude that,
roughly,
G2, ~ 6 X 10725, (214a)
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This means that only for small values of £ (m ~ 55 m) G2 is of the
right order of magnitude #). For £ ~ 1%, however, we find from
(213): G2 ~ 002 X 107%. In this case, which seems to be the more
probable one 7%), the spontaneous meson disintegration in the nu-
cleus is not sufficient 72) in order to explain the order of magnitude
of the B-radioactivity, and it seems to be necessary to add “direct
Fermi terms” by a convenient choice of the constants C in the
Lagrangian and the Hamiltonian (I—fgg) This argu-
ment, however, is not conclusive since, after all, the radioactivity
may be due to a large value of one of the constants gj or g3, which
were of no interest in the discussion of the deuteron problem and do
not enter into the expression for the probability of the spontaneous
meson disintegration.

Summarizing we can say that any serious disagreement between
the theory and reliable experimental data can at present be avoided
by a convenient choice of the constants.

§ 12. Scattering and absorption of mesons by nuclei. In this section
we shall briefly mention some processes of “scattering’ or absorption
of mesons by nuclear particles.

Passing through the Cownlom b field of a nucleus a meson can
emit photons (Bremsstrahlung) or be deflected (Rutherford
scattering). The theoretical cross section for Bremsstrahlung is smal-
ler by a factor 10~ or 10~ than the corresponding effect of elec-
trons 2). The effect is calculated from the terms H, and H of the
Hamiltonian; it can be regarded as an ordinary Ruther-
ford scattering coupled with the emission of a photon.

The cross section for Ruther ford scattering is obtained in a
similar way as the corresponding expression for electrons. A differ-
ence arises from the fact that the expression for the electric charge
density of the field of the scattered particle, which enters into the
formulae, is more complicate for mesons than for electrons (compare
(48)). Laporte ™) hasshown that as a consequence of this fact
already in the first B orn approximation an azimuth-dependence of
the differential cross section for Rutherford scattering of trans-
versal linearly polarized mesons into a given direction appears. This
effect, however, is very small for slow mesons (fourth order in v/c).

The meson can be virtually absorbed itself by a nuclon and be re-
emitted. The cross section for this “anomalous scattering” %) or



110 HEAVY QUANTATHEORY OF NUCLEAR AND COSMIC RAY PHENOMENA

“Compton scattering of mesons” 2?) was calculated by Heit-
ler®) and Bhabhats). The former simplified the calculation
by computing the cross section only for momenta, which are small in
comparison with Mc¢ (~ 10 mc). For a longitudinal meson impacting
with a momentum $ and an energy < on a nuclon at rest, by which it
can be absorbed, (that is, a proton for the scattering of arneticons,
and a neutron for the scattering of theticons), Heitler obtained
in this “non-relativistic’’ approximation the following differential
cross section for scattering into a given solid angle dw:

ADELR) = (1/%)? (g/he) {(g? + 289 [he} (| me)* dwo. (215)
This result was obtained after summation over the three possible
directions of polarization of the scattered meson. If the incident
mesons are transversal, the factor (g%/ic) must be replaced by
(&3/c).

A relativistic formula was derived by B h a bha 1%). The compli-
cate formula, which was found by him for scattering of unpolarized
mesons through an angle &, ¢n the system of the centre of gravity into a
given solid angle dw,, tends according to him to
ADEE = 6(1/%) {(g1 + g2)*/he}* {Mm/(M +m) (2M +m)}dey (216)
for the non-relativistic case p, < mc, and to
ADYla = & (1/%)?{(g7 + 283) e} (po/mc)? (1 + cos Do) deog - (217)
for the extreme-relativistic case p, > Mc; both expressions are diffe-
rential cross sections for scattering by a nuclon capable of absorbing
the meson (proton or neutron). Here p, is smaller than the correspon-
ding  in (215), since Bhabha takes the momentum with respect
to the centre of gravity.

Comparing (216) with (215) we remark that the expressions do not
agree with each other, so that there must be some error. The extreme
relativistic equation of Bhabha (217) shows more similarity to
the formulaof Heitler (215) than Bhabha’s non-relativistic
approximation (216).

Taking m ~ 175m (so that 1/x ~ 2:2 X 107¥cm) and g?/ic ~ },
we find by integration over angles the following total cross sections:

OWR) A 3 X 1072 X (p2/me)? cm? (215a)
DWEN ~ 13 X 1072 cm?. (216a)

OER), ~ 3 X 1072 X (p/mc)? cm?. (217a)
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Bhabha himself states that his non-relativistic cross section
(216a) is of the order of magnitude 1072 cm? Heitler statesthat
his expression yields a cross section corresponding to an average
range of 2 ~5 cm of lead for p ~ mec, ¢ ~ 2me? This result is
wrong by a factor 13 ~ 2} on account of too high a value of (g2/%c)
used by him in that early stage of the theory (before Kemmer’s
neutretto-hypothesis, compare § 3) and still by a factor 8 by a slip in
the calculation. According to (2154) the range in lead for p ~ mcis
about

207 167 x 1072 1

MNoT 82 I )

~ 35 cm (218)

for theticons (positive mesons), which are scattered by neutrons; and
for arneticons (negative mesons), which are scattered by protons:

207  1-67 x 1072 1
N e T @
According to the (“non-relativistic’’) equation of Heitler or
the (extreme relativistic) equation of Bhabha the range would
decrease for high energies proportional to 1/e2. Then, however,
according to § 6 the probability of the creation of showers would
increase and the range would decrease even more strongly. The
probability of a third order effect

Y+ 4+ N+ (> P+ N+t L Y#) > P+ L Y-+ Y+ (219)

A ~ 50 cm (of lead). (218a)

was estimated by Heitler #). According to a “non-relativistic”
calculation (p <€ Mc¢ ~ 10 mc) the ratio of the cross sections for this
process (219) and for the single “anomalous scattering” (215a) would
be equal to

D@10/ P 215 ~ (3/57) (g2/7c) (g/mc?)2. (220)
Taking ¢?/fic ~ } we find
D519/ P 215 ~ (g 63 mc?)2 (220a)

For high energies, however, the calculation is not reliable.

The cross section for the “C o m p t o n scattering” of the original
“yukons” (scalar mesons) was calculated by Yukawa?. For
these particles the cross section tended to zero for increasing energy.
For this reason it would be of interest to calculate the cross section
for high energy spinless mesons (cased of Kemm e r).
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Slow mesons may be very well absorbed by an atomic nucleus with
subsequent emission of a nuclon (the analogon of the photo-electric
effect). The calculation was performed by Y ukaw a2 for yukons
andby Sakata and Tanikawa?) for Proca-Kemmer
mesons. The cross section for the latter process is given by 77

1\2 g2+ 2¢2 me? me e \(I\"
D ~ 64r . (I) ALt g gL (% +2°5 W) (‘g) . (221)

Here $ is the momentum of the impacting meson, and its energy
e = V/(mc?)? + (cp)? is assumed to be small in comparison with the
rest energy of a nuclon (me® <e < Mc?). I (~ 107 eV <) is the
binding energy in the nucleus of the nuclon emitted in the process.
For slow mesons we can write

e~ M2, p/me ~ vje < V2m/M, (222)
so that we find (taking g?/ic = §, m = 175 m and I = 107 eV):
® ~ 1072, (c/v) cm? (per absorbing nuclon in the nucleus). (223)

Thus we find an absorption probability proportional to {1/v). For
v/c = 1/50 the range in lead for theticons has decreased to only about
5 cm. Very slow mesons are absorbed quickly. The arneticons are again
a little more penetrating than theticons in heavy elements, since the
latter contain less protons than neutrons.

Another important effect is the mesophotic effect and its reverse,
the photomeszc effect (124). The possible intermediate states are

=7 +h:

o NP + YH(— ) + Y—(p) <>
| P+ Y=(p) + (k) <
P+(0)+Y~(p) 3 = N (§)+hv(F)
> (B + PR Y]
< PHO) £ P+ NP <
and (224)
s PP + Y(— 2+ Y+_(:)) s
N <~—> N*+(0) + Y*(p) + hv(k) <«— N N
N*(0)+ Y (7 - P (p) 4 |
<~ P*(p) <>
N*(0)+ Y*() +P—(—p)+ PH(p") + (k)
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The first order contributions (from ;) to the matrix elements Q
for these processes (115) are of the same order of magnitude as the
second order contributions, but of opposite sign, so that some of the
terms in the differential cross sections tending to infinity for e — oo
are cancelled.

The calculation was performed in non-relativistic approximation
by Heitler). Then in (224) the lower two intermediate states
can be neglected in both cases. The first order effect, however, was
overlooked by Heitler, so that his results cannot be trusted.
Moreover, there was a slip in the calculation, so that in the matrix
element given by the formula (58) of his publication %) the vector

—
#"’ in the first term should change its sign. Then, in the first formula

on page 534 the terms with (p/p") (;g’ .;)> do no longer cancel.

It is noticeable that the same error in sign slipped into the calcula-
tion of the photomesic effect performed by Kobayasi and
Ok a y.am a*), though they started from the right matrix element.
The considerations of § 6 (page 81 —82), however, show that the terms
in the matrix element Q arising from E* div E in H,H, cannot can-
cel each other by summation over the two first intermediate states
in(224). — Kobayasiand Okayama took into account the
first order contribution from H;g 15),

It is interesting to calculate separately the cross sections of longi-
tudinal and of transversal Proca-Kemmer mesons for the
mesophotic effect, since the non-relativistic cross sections for these
two polarizations of the meson (p < Mc) depend on the energy in a
different way. Making the same approximations as in the calculations
of Heitler®) andof Kobayasi and Okayama %) (for
instance neglection of the recoil of the nuclon) one finds for the cross
section for longitudinal mesons a non-relativistic expression, which
for increasing energies ¢ of the impacting meson increases proportio-
nal to €2; but for transversal mesons the non-relativistic cross section
increases only with the logarithmus of €. In the former case the term
with €2 is due to a contribution of the first order effect, from which
the high powers in ¢ are #of cancelled by a corresponding contribu-
tion of the second order effect to the matrix element Q. In the case of
transversal mesons the “high powers” of ¢ are cancelled, and the
logarithmical increase is due to the contribution of scattering through
angles & — 0. It must still be mentioned that, in order to get a not

8
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