Versuche an Dampf-Maschinen, -Kesseln, -Turbinen und VerbrennungskraftMaschinen

Von

Franz Seufert

Siebente Auflage

Anleitung

zur Durchführung von Versuchen an Dampfmaschinen, Dampfkesseln, Dampfturbinen und Verbrennungskraftmaschinen

Zugleich Hilfsbuch für den Unterricht in Maschinenlaboratorien technischer Lehranstalten

Von

Franz Seufert

Oberingenieur für Wärmewirtschaft, Studienrat a. D.

Siebente, erweiterte Auflage

Mit 52 Abbildungen

Springer-Verlag Berlin Heidelberg GmbH 1925 Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

ISBN 978-3-662-27878-9 ISBN 978-3-662-29380-5 (eBook) DOI 10.1007/978-3-662-29380-5

Vorwort zur siebenten Auflage.

Die ungeheure wirtschaftliche Not, unter der die ganze deutsche Industrie leidet, fordert gebieterisch die äußerste Sparsamkeit bei der Erzeugung und Verwendung von Wärme. Das wichtigste Mittel hierzu ist die sachverständige Untersuchung von Feuerstellen und wärmeverbrauchenden Maschinen und Anlagen auf etwaige Fehler und die unermüdliche Betriebsüberwachung durch geeignete Meßgeräte.

Große Industrieverbände, wie, um nur ein Beispiel herauszugreifen, der Verein deutscher Eisenhüttenleute in Düsseldorf, haben Überwachungsstellen zur Verbesserung ihrer Wärmewirtschaft gegründet und durch besondere Lehrgänge die Ausbildung von "Wärmeingenieuren" gefördert. Jedes größere Werk hat heute eine Wärmeabteilung zur Betriebsverbesserung und Gewinnung von Grundlagen zur Selbstkostenberechnung eingerichtet.

In dem vorliegenden Buch bin ich schon seit vielen Jahren bestrebt gewesen, die einfachsten, betriebsmäßigen Untersuchungsmethoden vorzuführen und durch meist der Praxis entnommene Beispiele zu ergänzen; der immer raschere Absatz der einzelnen Auflagen bewies mir, daß für ein solches Buch ein Bedürfnis vorhanden ist; besonders die fünfte Auflage war überraschend schnell vergriffen. Die vorliegende Auflage berücksichtigt noch mehr als bisher die wachsende Verwendung selbsttätiger Meßinstrumente zur Betriebsüberwachung.

So möge denn die siebente Auflage ihr bescheidenes Teil zur Verbesserung unserer Wärme- und Energiewirtschaft und damit auch zum Wiederaufbau unserer schwer bedrängten Industrie beitragen.

Homberg (Niederrhein), Januar 1925.

F. Seufert.

Inhaltsverzeichnis.

Einleitung
Erster Teil.
Dampfmaschinen-Untersuchung.
Gegenstand der Untersuchung
1. Abschnitt. Die Prüfung der Steuerungsorgane.
Einleitung
a) Der Kosenkranz-Indikator 3
b) Der Crosby-Indikator
II. Außenfeder-Indikatoren
Allgemeines
d) Der Lehmann-Indikator 9
e) Der Rosenkranz-Indikator
III. Indikatoren für Sonderzwecke
Anbringung der Indikatoren
Prüfung der Indikatorfedern
Prüfung der Indikatorfedern
2. Abschnitt. Die Ermittlung der indizierten Leistung.
Einleitung
Das Ottsche Planimeter
Berechnung des mittleren Druckes
Simpsonsche Regel
Simpsonsche Regel
3. Abschnitt. Die Ermittlung der Nutz- oder effektiven
Leistung.
Backenbremse
Andere Bremsen
Andere Bremsen
4. Abschnitt. Die Ermittlung des mechanischen Wirkungs-
grades
5. Abschnitt. Die Ermittlung des stündlichen Dampf- und
Wärmeverbrauches für eine Pferdestärke 41
Musterbeispiele zum 1. bis 5. Abschnitt:
A. Leistungsversuche an einer Einzylinder-Dampfmaschine ohne Kondensation
B. Dampfverbrauchsversuch an einer Heißdampf-Verbund-
Kondensation
6. Abschnitt. Die Ermittlung des Arbeitsbedarfes der ange-
triebenen Arbeitsmaschinen
Musterbeispiel
Anhang Rankinisieren der Diagramme einer Verbundmaschine. 55

Zweiter Teil.

Dampfkessel-Untersuchung.	Seite
Gegenstand der Untersuchung	. 58
1. Abschnitt. Ermittlung der Verdampfungsziffern.	
Brutto-Verdampfungsziffer	. 58
Probenahme	. 59
Erzeugungswärme des gesättigten Dampies	. 6Ë
Zahlentafel für gesättigte Wasserdämpfe	. 61
Speisewassertemperatur	. 62
Erzeugungswärme des überhitzten Dampfes	. 63
2. Abschnitt. Stündliche Dampfleistung auf 1 qm Heiz	-
fläche und stündliche Kostbeanspruchung von 1 qn	a
Rostfläche	. 64
B. Abschnitt. Berechnung der Wärmeausnutzung und de	r
Wärmeverluste.	
Wärmeausnutzung	. 65
Verluste: a) durch Verbrennliches in den Ruckstauden	. 66
b) ,, die in den Abgasen enthaltene Wärme	. 67
Orsatapparat	. 69
Beurteilung der Analysen	. 75
Selbsttätige Apparate	. 82
c) durch Strahlung, Leitung usw	. 84
(Temperatur der Abgase.	. 85
Sonstige Messungen: Temperatur der Abgase . Zugmessung Rauchbeobachtung	. 86
(Rauchbeobachtung	. 87
4 Abschnitt Der Damnt = nnd Wärmenreis	90
Mustorboispiel. (Versuchsaufschreibungen	. 91
Versuchsergebnisse	. 92
Musterbeispiel: { Versuchsausschreibungen	. 94
Dritter Teil. Größere Versuche an Dampfmaschinen- und Kesselanlage Allgemeines	. 97 . 101 . 102
- i D. versuchsergennisse	110
I. Ergebnisse der Kesselversuche II. Ergebnisse der Maschinenversuche	. 110
(11. Ergeonisse der Maschinenversuche	. 120
Vierter Teil.	
Dampfturbinen-Untersuchung.	
Elektrische Leistung.	122
Dampfverbrauch	122 125
Waster berspiel. \ Versuchsaufschreibungen	125

Fünfter Teil.

Dieselmaschinen-Untersuchung.	Seite
Gegenstand der Untersuchung	127 127 128
3. Abschnitt. Ermittlung des indizierten Arbeitsbedarfes der Luftpumpe	128
grades	129 130
6. Abschnitt. Berechnung der Wärmeausnutzung und der Verluste	132 134 137 139
Sechster Teil. Gasmaschinen-Untersuchung.	
•	140
Gegenstand der Untersuchung	143
verbrauches für eine Pferdestärke	143 143 148 151
Wärmeverluste	152 156
Versuch an einer 5000 PS-Koksofen-Gasmaschine mit Abhitzekessel Hauptergebnisse des Versuches	160 160 162

Einleitung.

Der Zweck der folgenden Untersuchungen besteht entweder darin, festzustellen, ob bei neuen Maschinenanlagen die vom Erbauer gegebenen Zusicherungen erfüllt sind (Garantieversuche), oder darin, in vermutlich unwirtschaftlich arbeitenden Anlagen Maßnahmen zur Abhilfe zu treffen (Informationsversuche), oder darin, Unterlagen für statistische und Selbstkostenberechnungen zu gewinnen (Aufgabe der Wärmeabteilungen größerer Werke).

Maßgebend für die Durchführung dieser Versuche sind die vom Verein Deutscher Ingenieure, dem Internationalen Verband der Dampfkessel-Überwachungsvereine und dem Vereine Deutscher Maschinenbauanstalten aufgestellten Normen, welche insbesondere die für Garantieversuche wichtigen Abmachungen über Zahl und Dauer der Untersuchungen sowie über die zulässigen Schwankungen enthalten.

Erster Teil.

Dampfmaschinen-Untersuchung.

Gegenstand der Untersuchung einer Dampfmaschine kann sein:

- 1. die Prüfung der Einstellung der Steuerung und des Dichtheitszustandes der Steuerungsorgane durch den Indikator,
- 2. die Ermittlung der indizierten Leistung Ni,
- 3. die Ermittlung der Nutzleistung oder effektiven Leistung N_e ,
- 4. die Ermittlung des mechanischen Wirkungsgrades $\eta_{\rm m} = \frac{N_{\rm e}}{N_{\rm i}}$,
- die Ermittlung des stündlichen Dampf- und Wärmeverbrauches für 1 PS_i oder 1 PS_e,
- die Ermittlung des Arbeitsbedarfes der angetriebenen Arbeitsmaschinen.

Im folgenden soll gezeigt werden, welche Hilfsmittel und welche Beobachtungen zur Lösung dieser Aufgaben erforderlich sind, und wie man die Beobachtungsergebnisse verwertet und beurteilt.

Erster Abschnitt.

Die Prüfung der Steuerungsorgane.

Diese erfolgt durch Abnahme eines oder mehrerer Diagrammsätze mit Hilfe des Indikators. Aus der Form der Diagramme zieht man Schlüsse auf die Richtigkeit der Einstellung der Steuerung, auf die Dichtheit der Dampfeinlaßorgane und nur in besonderen Fällen auf die Dichtheit der Dampfauslaßorgane und des Kolbens.

Man unterscheidet Indikatoren

- 1. mit innenliegender Feder,
- 2. mit außenliegender Feder.

Die zurzeit gebräuchlichsten Indikatoren älterer Bauart besitzen innenliegende Federn; bei Neubeschaffungen sollte man jedoch stets dem Außenfeder-Indikator den Vorzug geben. Die Gründe dafür sind bei der Besprechung der letzteren angegeben. Der Ersatz der älteren Indikatoren durch neue mit Außenfeder erfolgt wegen der verhältnismäßig hohen Kosten nur allmählich. Aus diesem Grund seien zunächst zwei ältere, sehr verbreitete Bauarten beschrieben:

- a) der Indikator von Dreyer, Rosenkranz und Droop in Hannover,
- b) der Crosby-Indikator (H. Maihak in Hamburg).
- Als Beispiele der 2. Gruppe werden hier beschrieben
- c) der Maihak-Indikator,
- d) der Indikator von Lehmann und Michels in Hamburg,
- e) der Außenfeder-Indikator von Dreyer, Rosenkranz und Droop.

I. Innenfeder-Indikatoren.

a) Beschreibung und Handhabung des Rosenkranz-Indikators.

Der in Abb. 1 dargestellte Indikator entspricht dem noch viel gebrauchten sog. großen Modell mit Dampfmantel. Der Indikator besteht aus dem Zylinder a, dem Kolben b mit der

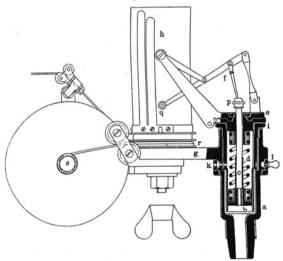


Abb. 1.

Kolbenstange c und der Feder d, dem Deckel e mit dem Schreibzeug f und dem Verbindungsarm g mit der Papiertrommel h. Der Zylinder enthält einen mittels des Deckels i einschraubbaren Einsatz, in dem der Kolben sich bewegt. Dadurch wird um die Lauffläche des Kolbens ein Dampfmantel gebildet, der den Zweck

hat, eine ungleichmäßige Ausdehnung des Zylinders und damit ein Klemmen des Kolbens zu verhindern. Die Kolbenstange ist mit einem Bund versehen, der bei einer etwaigen übermäßigen Zusammendrückung der Feder oben anstößt. Um in dem Raum über dem Kolben stets atmosphärischen Druck zu erhalten, sind einige Ausblaselöcher angebracht, welche mit einer ringsum laufenden Nut des Einsatzes und mit einer zweiten, ebenfalls ringsum laufenden Nut des Mantels in Verbindung stehen. Durch den mittels des Knöpfehens l drehbaren Ring k, der ebenfalls mit Ausblaselöchern versehen ist, kann der austretende Dampf nach jeder gewünschten Richtung gelenkt werden. Das Schreibzeug ist mittels des nachstellbaren Kugelgelenkes p mit der Kolbenstange verbunden und trägt am Ende des Schreibhebels den Schreibstift q.

Der Indikator ist in Verbindung mit der Hubverminderungsrolle dargestellt; bevor man die letztere anbringt, löst man die Flügelmutter der Achse der Papiertrommel; dann wird das Befestigungsauge der Hubrolle übergeschoben und mit der Sechskantmutter festgeklemmt. Die Diagrammlänge beträgt etwa 100 mm; um die Hubrolle für alle Maschinenhübe brauchbar zu machen, sind mehrere Röllchen s vorhanden, welche mit der Maßzahl des größten für jedes Röllchen zulässigen Maschinenhubes versehen sind. Man wähle das Röllchen lieber etwas zu klein als zu groß, um das Anstoßen der Indikatortrommel sicher zu verhindern. Vor dem Festschrauben der Hubrolle ist darauf zu achten, daß die Führungsröllchen an der Indikatortrommel so stehen, daß die später durchzuziehende Schnur senkrecht und nicht schräg auf das Hubröllchen aufläuft.

Jede Indikatorfeder trägt zwei Bezeichnungen, z. B. 6 kg und 10 mm, d. h. die Feder darf bis zu einem Druck von 6 kg/qcm verwendet werden und einem kg/qcm entspricht ein Schreibstifthub von 10 mm, oder mit anderen Worten, der Federmaßstab beträgt 10 mm. Der auf jeder Feder angegebene Federmaßstab ist nur als ungefährer Anhalt zu betrachten, weil er sich im Laufe der Zeit ändert. Bei genauen Versuchen muß deshalb für jede zu verwendende Feder der Maßstab mit Hilfe eines Federprüfungsapparates¹) ermittelt werden. Das Einsetzen einer neuen Feder in den Indikator geschieht wie folgt: Man löst das Kugelgelenk p (Abb. 1) und schraubt den Deckel e mit dem Schreibzeug heraus. Damit nun nicht gleichzeitig mit dem Deckel i auch der Zylindereinsatz herausgeht, muß letzterer immer sehr fest mit dem jedem Indikator beigegebenen Stiftschlüssel

¹⁾ S. 17.

angezogen werden. Hierauf nimmt man den Kolben mit der Kolbenstange heraus, schiebt die gewählte Feder d (Abb. 2) über die Kolbenstange c und verschraubt ihr unteres Ende e mit der Nabe des Kolbens. Dabei fasse man die Feder nahe an ihrem unteren Ende, um Verbiegungen und Lockerungen der Lötstelle zu vermeiden, und ziehe sie endlich mit der Hand oder, wenn nötig, mit dem Hakenschlüssel an ihrem unteren Lötende fest. Dann schiebt man die Kolbenstange durch den Deckel und verschraubt das obere Ende der Feder mit dem Deckel; hierauf wird die Verbindung mit dem Schreibzeug hergestellt, indem man den Deckel e (Abb. 1) so einschraubt, daß er nur lose auf dem Zylinder-

ende aufliegt, und das Kugelgelenk p wieder mit der Kolbenstange verschraubt. Nach Gebrauch sind die Federn stets sorgfältig abzureiben und einzuölen, damit sie nicht rosten, was auch eine Veränderung des Maßstabes zur Folge haben würde.

Eine neue Schnur wird eingezogen, indem man die Trommel abzieht, die Schnur durch ein passendes Loch der Schnurrille r (Abb. 1) zieht und innen mit einem festen Knoten versieht.

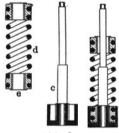
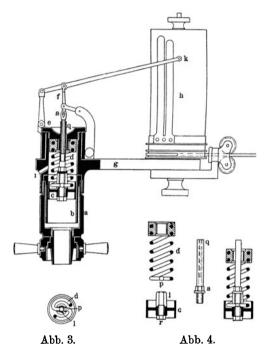


Abb. 2.

Neuere Bauarten besitzen in jeder Schnurrille je einen Schlitz mit einem entsprechend weiten runden Loch, durch das der Knoten von außen eingeschoben wird, ohne daß die Trommel abzunehmen ist.


Das Aufstecken des Papieres erfolgt dadurch, daß man das Papier an einer Schmalseite etwa um 10-15 mm umfaltet, das umgefaltete Ende etwas unter die längere Lamelle der Trommel schiebt, hierauf das Papier um die Trommel legt und das andere Papierende unter die kürzere Lamelle schiebt; dann faßt man das Papier an zwei gegenüberliegenden Seiten und zieht es stramm anliegend auf die Trommel.

Nach beendigter Indizierung ist der Indikator sorgfältig zu reinigen, besonders der Zylindereinsatz, der zu diesem Zweck am besten herausgenommen wird, der Kolben, die Kolbenstange und die Kolbenstangenführung im Deckel. Alle Eisenteile, die der Wirkung des Dampfes ausgesetzt sind, müssen eingeölt werden.

b) Beschreibung und Handhabung des Crosby-Indikators.

Derselbe ist in Abb. 3 dargestellt und unterscheidet sich vom Rosenkranz-Indikator hauptsächlich durch eine andere Anordnung des Schreibzeuges und durch die Feder, welche nur ein Lötende besitzt. Der Indikator hesteht aus dem Zylinder a mit dem Einsatz b, zwischen denen sich ebenfalls ein Dampfmantel befindet, dem Kolben c mit dem geschlitzten Fortsatz l, der Feder d, dem Deckel e, den die Kolbenstange q durchdringt, dem Schreibzeug f mit dem Schreibstift k, dem Trommelarm g und der Papiertrommel h. Zur Erhaltung des atmosphärischen Druckes über dem Kolben sind die Ausblaselöcher i vorhanden.

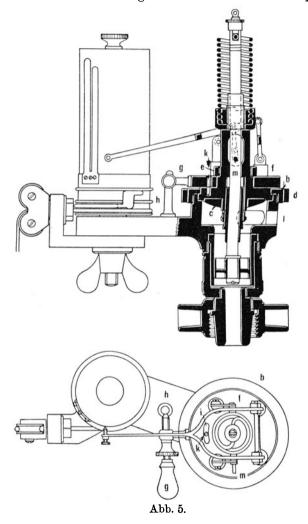
Das Einsetzen einer neuen Feder geschieht nach Abb. 4 folgendermaßen: Man schiebt das untere Ende der Feder d mit

dem Kugelgelenk p in den Schlitz des Fortsatzes l des Kolbens c, zieht das Schräubehen r etwas zurück, steckt die Kolbenstange q durch die Feder, schraubt ihr unteres Ende durch Anziehen des Sechskantes s mit dem dem Indikator beigegebenen Hohlschlüssel in den Fortsatz l des Kolbens, bis es fest auf letzterem aufliegt; dann klemmt man die Kugel p mittels des Schräubehens r so fest, daß sich das Kugelgelenk gerade noch etwas drehen läßt, ohne jedoch toten Gang zu besitzen. Hierauf steckt man die Kolbenstange durch den Deckel e (Abb. 3) und zieht gleichzeitig

die Verschraubung der Feder und die in die Richtung der Kolbenstange fallende Verlängeruug des Schreibzeuges fest. Wenn das Lötende der Feder fest auf der Innenseite des Deckels aufliegt, dreht man den Kolben mit dem Deckel so lange weiter, bis das unterste Gelenk s des Schreibzeuges ebenfalls fest aufsitzt. Hierauf verschraubt man den Deckel mit dem Zylinder. Sollte sich hier beim Indizieren von Kondensationsmaschinen herausstellen, daß die Ausströmlinie zu nahe an den unteren Rand des Diagrammpapieres kommt, dann schraubt man den Deckel samt dem Schreibzeug wieder heraus, dreht den Deckel eine oder zwei Umdrehungen links herum und schiebt dadurch das Schreibzeug etwas nach oben; dann wird der Deckel wieder auf den Zylinder aufgeschraubt.

Im übrigen gilt auch hier das über den Rosenkranz-Indikator Gesagte.

II. Außenfeder-Indikatoren.


Allgemeines: Die innenliegende Feder erwärmt sich häufig beim Gebrauch; ihre Temperatur ist verschieden, je nachdem der Hochdruck- oder Niederdruckzylinder einer Dampfmaschine oder eine Diesel- oder andere Verbrennungskraftmaschine oder eine Pumpe indiziert werden soll. Wird nun der Federmaßstab durch Prüfung¹) bei Zimmertemperatur festgestellt, so ist dieser Wert nicht mehr richtig, sobald die Feder in warmem Zustand gebraucht wird. Prüft man dagegen die Feder im angewärmten Indikator, so ist es schwierig, die Temperatur zu treffen, die die Feder beim Indizieren annimmt. Die Außenfeder-Indikatoren sind frei von diesen Unsicherheiten, weil sich ihre Federn beim Gebrauch fast gar nicht über die Raumtemperaturen erwärmen.

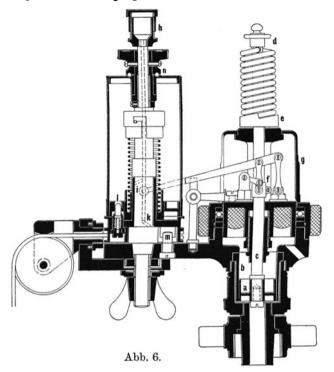
c) Beschreibung und Handhabung des Maihak-Indikators.

Der in Abb. 5 dargestellte Indikator besitzt eine nach Lösung des Schräubchens a frei abschraubbare, im Betriebe auf Zug beanspruchte Feder, deren oberes Ende einen Kugelknopf enthält und beim Aufschrauben zwischen der geschlitzten Verlängerung der Kolbenstange und dem Schräubchen a festgeklemmt wird. Der Verlängerungsschlitz dreht sich dabei in einem Kugellager, so daß Kolben und Kolbenstange beim Aufschrauben der Feder in Ruhe bleiben. Das Gestänge des Schreibzeuges hat die Grundform des Crosby-Indikators und ist doppelt ausgeführt, damit jeder einseitige Gelenkdruck vermieden wird. Der Deckel b ist

¹⁾ Siehe S. 17.

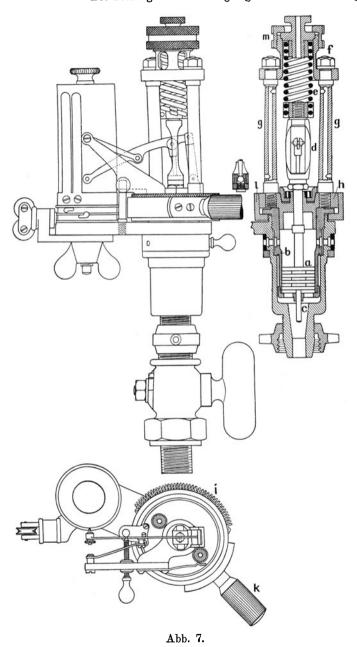
innen mit einer wärmeabhaltenden Hartgummischeibe c und außen mit einem grob geriffelten Hartgummiwulst d versehen, der sich im Betrieb nur wenig erwärmt und daher ein bequemes

Abschrauben gestattet. Auf dem Deckel b ist die mittels der Sechskantmutter e leicht beweglich befestigte Scheibe fangeordnet, die den einstellbaren Handgriff g enthält, der sich gegen den Anschlag h legt. Um das gänzliche Herumschlagen des Schreibzeuges zu verhindern, besitzt die Scheibe f einen Schlitz i, in dem ein Stift k sitzt. Nach Lösen des Deckels b kann man die Scheibe mit dem Schreibzeug vollständig herumdrehen, was besonders bei wechselndem Gebrauch für Rechts- und Linksmaschinen angenehm ist. Durch die Öffnungen l wird die Oberseite des Kolbens mit der Atmosphäre in Verbindung gehalten. Der Kolben besteht aus Stahl und bewegt sich in einer dampfgeheizten Büchse. Zur Hubbegrenzung bei sog. Schwachfederdiagrammen 1) und zum Schutz gegen Überspannung der Feder dient ein verstellbarer Anschlag der Kolbenstange. Die Kolbenstange kann zur Reinigung nach unt en herausgezogen werden, wenn man die Feder abschraubt und den Querstift m seitlich herauszieht.


Zur Verwendung der Federn für die Indizierung von Kondensationsmaschinen legt man vor dem Aufschrauben der Feder beigegebene kleine Unterlegscheiben auf den Federträger, wodurch die atmosphärische Linie höher gerückt wird.

d) Beschreibung und Handhabung des Lehmann-Indikators.

Der Kolben a des in Abb. 6 (auf S. 10) dargestellten Indikators ist aus Stahl und in eine mit Dampfmantel versehene Die Kolbenstange kann nach Ab-Büchse b eingeschliffen. schrauben der Schlußschraube d und der Feder e und nach Lösen der Klemmhülsenschraube f nach unten herausgezogen Durch Verschieben der Kolbenstange innerhalb der Klemmhülse ist eine beliebige Einstellung der Höhe der atmosphärischen Linie möglich. Das Schreibzeug ist zur Vermeidung einseitiger Gelenkdrücke doppelt ausgeführt und zum Schutze mit einer übergestülpten Hülse g versehen, die mit zwei in die Seitenteile des Federträgers einschnappenden federnden Stiften festgehalten wird. Der Zylinderdeckel, der auf Kugeln läuft, enthält innen eine Ausfüllung und außen einen besonders breiten, kräftig geriffelten Überzug aus Hartgummi. Dadurch wird einerselts die Wärmeableitung nach der Feder wirksam verhindert, andererseits läßt sich der Deckel von dem heißen Indikator bequem abschrauben. Die Trommel läuft bei n ebenfalls auf Kugeln. Bei länger dauernden Versuchen kann man durch die Schmierbüchse h Fett an die Reibungsflächen bei i und k bringen. Die Mitnahme der Trommel durch die Schnur-

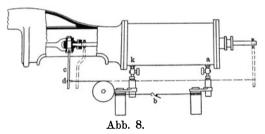

¹⁾ Diese entnimmt man von Verbrennungskraftmaschinen, um bei dem größeren Maßstab die Ansauge- und Ausströmlinie deutlicher zu erkennen.

rille erfolgt durch den einschnappenden, federnden Stift 1; den Anschlag für den Rückgang der Trommel bildet die Schraube m.

e) Beschreibung und Handhabung des Rosenkranzschen Außenfeder-Indikators (Abb. 7).

Der Kolben a ist mit tiefen Nuten als sog. Lamellenkolben ausgeführt und läuft in einer mit Dampfmantel versehenen auswechselbaren Büchse b. Die tiefen Nuten sollen eine gleichmäßige Ausdehnung des Kolbens erzielen, eine bessere Abdichtung nach Art der Labyrinthdichtung bewirken, etwaige Schmutzteilchen aufnehmen und damit die Reibung verringern. Die Kolbenstange ist nicht nur im Zylinderdeckel, sondern auch bei c im Boden der Einsatzbüchse geführt. Das Schreibzeug ist einfach ausgeführt und durchdringt zur Vermeidung einseitiger Kräfte die Kolbenstange in einer besonderen Aussparung d. Die Feder e ist eine doppelt gewundene Druckfeder. Der Federträger f ist mit zwei hohlen Säulen gg am Deckel befestigt, wodurch die Wärmeübertragung

vom Zylinder zur Feder verhindert wird. Besonders einfach ist das Lösen und Festschrauben des Deckels mittels des patentierten Augenblicksverschlusses. Das Gewinde bei h besitzt an 3 Stellen Unterbrechungen. In der im Grundriß gezeichneten Lage fassen die Gewindestücke des Deckels in die entsprechenden Gewindestücke des Ringes l. Diese Lage wird durch die Spannung der Feder i gesichert. Beim Lösen dreht man den Griff k um etwa 45° im Sinne des Uhrzeigers, wodurch die Gewindestücke des Deckels außer Eingriff kommen und der Deckel samt Kolbenstange, Kolben und Feder herausgezogen werden kann. Unabhängig davon kann man die Feder allein nach Lösen der Schraube m auswechseln.


III. Indikatoren für Sonderzwecke.

Für viele in der Praxis vorkommende Fälle reicht der Indikator für Einzel-Kolbenwegdiagramme nicht mehr aus. z. B. Walzenzugmaschinen, Dampffördermaschinen und andere Maschinen. deren Belastung dauernd wechselt. Indiziert man eine solche Maschine mit einem gewöhnlichen Indikator, so erhält man auf einem Blatt eine Vielheit von Diagrammen verschiedener Größe, deren Untersuchung und Auswertung fast unmöglich ist. In solchen Fällen wählt man Indikatoren, die gestatten, auf einem Streifen eine Anzahl von deutlich unterscheidbaren Diagrammen aufzunehmen, für die die Firma Dreyer, Rosenkranz u. Droop die Bezeichnung "Wanderdiagramme" eingeführt hat. Diagramme liegen je nach Bauart des Indikators entweder nebeneinander oder übereinander verschoben und zwar in geschlos-Doch auch hier wird die Beurteilung und Aussener Form. wertung manchmal schwierig; dann wendet man solche Indikatoren an, die sämtliche Diagramme in offener Form in einem Linienzug nebeneinander aufzeichnen; außerdem werden diese Diagrammstreifen mittels besonderer elektrischer Vorrichtungen mit Totpunkt- und Sekundenmarken versehen. Will man die Vorgänge im Zylinder zu Anfang und zu Ende jedes Hubes genauer untersuchen, dann versagt auch das gewöhnliche Kolbenwegdiagramm, wenn der Indikator vom Kreuzkopf der Maschine angetrieben wird, weil die Drehgeschwindigkeit der Indikatortrommel proportional der Kolbengeschwindigkeit der Maschine ist und sich daher die Vorgänge in der Nähe der Totlagen auf sehr kurze Wege zusammendrängen. Hier hilft der Indikator für offene Zeitdiagramme ab. Das Papierband wickelt sich mit gleichbleibender Geschwindigkeit ab und die Diagramme erscheinen nebeneinander in offener, allerdings im Vergleich mit den Kolbenwegdiagrammen verzerrter Form.

Das Indizieren von Lokomotiven während der Fahrt, das bei Anwendung von gewöhnlichen Indikatoren mit Gefahren verbunden ist, kann durch Indikatoren von besonderer Bauart vom Führerstand aus erfolgen. Der Indikator schreibt geschlossene, seitlich verschobene Wanderdiagramme für die beiden Kolbenseiten auf einem Blatt. Die Steuerung des Indikatorhahnes erfolgt mittels Zugstange und Drahtseilen. Ein elektrisches Schaltwerk bewirkt das Fortschreiten des Papierstreifens zwischen je zwei Diagrammen, ein zweites elektrisches Schaltwerk das Andrücken des Schreibstiftes 1).

Bei der Indizierung von Verbrennungskraftmaschinen oder anderen Maschinen mit hohem Druck setzt man auf die Kolbenstange einen kleinen Kolben, dessen Fläche je nach dem Höchstdruck ¹/₂, ¹/₅, ¹/₁₀, ¹/₂₀, ¹/₃₀ oder ¹/₅₀ der normalen Fläche beträgt; ferner schraubt man statt der normalen Zylinderbüchse die zu dem gewählten Kolben passende kleinere Büchse ein. Damit vermindert sich der Federmaßstab in demselben Verhältnis wie die Kolbenfläche.

Anbringung der Indikatoren an der Maschine. In Abb. 8 ist die gewöhnliche Art der Anbringung der Indikatoren mit Hubverminderungsrolle dargestellt. In jeden der beiden Indikatorstutzen k (Kurbelseite) und a (Außenseite) wird ein Hahn

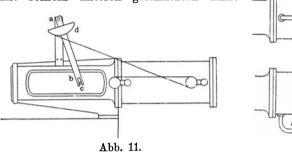
eingeschraubt, nachdem man zur Abdichtung um den letzten Gewindegang jedes Hahnes etwas Hanf gewickelt hat; wenn das Gewinde des Indikatorhahnes mit dem Gewinde des Indikatorstutzens nicht übereinstimmt, so müssen Zwischenstücke eingeschaltet werden. An jeden Hahn wird ein Indikator angesetzt, von denen man einen mit der Hubverminderungsrolle versieht. Der Antrieb der letzteren erfolgt durch einen in den Kreuzkopf der Maschine eingeschraubten Mitnehmer c, mit welchem die Schnur mittels des Hakens d verbunden wird. Die Verbindung

¹⁾ Bezüglich der Ausführung aller Indikatoren für Sonderzwecke sei auf die Drucksachen von Dreyer, Rosenkranz u. Droop verwiesen.

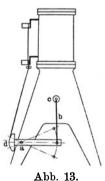
der beiden Indikatoren geschieht durch den in Abb. 9 besonders dargestellten Schnurspanner b. Wenn der Kreuzkopfzapfen keine Bohrung für den Mitnehmer besitzt und wegen zu großer Härte nicht angebohrt werden kann, verwendet man als Mitnehmer ein mittels einer Schelle entweder vorn oder hinten an die Kolbenstange geklemmtes Flacheisen; dabei ist durch etwaige Abkröpfung dafür zu sorgen, daß beim Gang der Maschine das Flacheisen nirgends anstößt. Für alle Fälle empfiehlt es sich, nach der Anbringung des Mitnehmers die Maschine einmal herumzuschalten.

Das Ansetzen der Indikatoren selbst kann während des Ganges der Maschine erfolgen, wobei sich die Einhaltung nachstehender Reihenfolge der Arbeiten bewährt hat: Die Indikatoren, von denen man den vorderen oder den hinteren mit der Hubrolle

verschraubt, werden mit den Hähnen verbunden; hierauf steckt man das dem Maschinenhub entsprechende Röllchen auf die Hubrolle und wickelt die Schnur des Indikators einmal um das Röllchen, bevor man sie festklemmt. Ein etwa vorstehendes Schnurende ist abzuschneiden, damit es bei der Drehung der Hubrolle nicht unter die auflaufende Schnur gelangt und so die Diagrammlänge fälscht. Dabei sieht man nach, in welcher Richtung sich das Röllchen beim Anziehen der Hubrolle dreht; ferner beachte man, daß so viel Schnur auf die Schnurrille des Indikators aufgewickelt ist daß die Trommel eine volle Umdrehung beschreiben kann. Die Schnur muß dabei tangential von der Schnurrille ablaufen, wie in Abb. 10 a dargestellt ist, und darf nicht etwa die Lage b annehmen, welche ein zu kurzes und verzerrtes Diagramm ergeben würde. Ist der mit der Hubrolle verbundene Indikator vollständig in Ordnung, dann schließt man mittels des Schnurspanners den zweiten Indikator an, um dessen Rille ebenfalls so viel Schnur gewickelt sein muß, daß seine Trommel eine volle Umdrehung machen kann und die Schnur stets tangential abläuft. Die Verbindungsschnur ist stets etwas gespannt zu halten und darf über keinen Indikator- oder Maschinenteil hinweggleiten; deshalb muß der zweite Indikator häufig nach oben oder unten gedreht werden. Von der Hubrolle muß die Schnur so ablaufen, daß ihr Ablaufpunkt in gleicher Höhe mit dem Mitnehmer liegt, die Schnur also parallel zur Kolbenstange


Läßt sich diese Bedingung nicht erfüllen, so sucht man die Schnurlänge vom Mitnehmer bis zur Hubrolle möglichst groß zu nehmen, indem man die Hubrolle nach hinten verlegt: dadurch wird der durch schräge Lage sich ergebende Fehler der Schnur Den Haken für den Mitnehmer befestigt man so vermindert. an der Schnur, daß er bei der hinteren Totlage der Maschine noch etwas Abstand vom Mitnehmer besitzt; vor dem Einhängen probiert man, ob er etwas über die vordere Totlage der Maschine hinausgelangen kann. Hierauf hängt man den Haken ein und überzeugt sich durch Befühlen der Trommeln, ob keine Indikatortrommel anstößt: ferner sieht man nach, ob nicht etwa Schnüre übereinander laufen, oder sich an Maschinen- oder Indikatorteilen reiben, oder nach Abb. 10 b ablaufen. Dann schmiert man die Trommel- und Hubrollenachse mit Knochenöl und beginnt mit dem Einsetzen der Federn und der Schreibzeuge. Man bläst beide Indikatoren durch Öffnen der Hähne gut aus¹), bringt etwas Zylinderöl auf die Kolben und setzt dieselben mit den gewählten Federn und den Schreibzeugen ein. Hierauf läßt man die Schreibzeuge durch Öffnen der Hähne auf und ab spielen und schmiert dabei die Kolbenstangen mit Knochenöl. Dann stellt man den Handgriff des Schreibzeuges so ein, daß der Stift die Trommel sanft berührt, und zieht das Papier auf. Vor der Entnahme jedes Diagrammsatzes läßt man erst das Schreibzeug einige Male spielen, um die Feder und den Indikator in Wärme-Beharrungszustand zu bringen; hierauf schreibt man das Diagramm und dann nach dem Schließen des Hahnes die atmosphärische Linie.

Bei großem Maschinenhub und bei höheren Umdrehungszahlen bereitet das Einhängen des Schnurhakens in den Mitnehmer Schwierigkeiten. Manche Indikatoren besitzen deshalb besondere Anhaltevorrichtungen, welche gestatten, das Papier abzuziehen und aufzustecken, ohne den Schnurhaken auszuhängen. Dabei läuft jedoch der ganze Mechanismus während der ganzen Versuchsdauer mit und nutzt sich dadurch weit mehr ab, als wenn er nur während der Entnahme der Diagramme zu laufen braucht. Man pflegt deshalb bei großen Maschinenhüben und hohen Umdrehungszahlen Hebelübertragungsvorrichtungen anzuwenden. Bei einer vollkommenen Hebelübertragung²) muß die Übertragung des Kreuzkopfes in kleinerem Maßstab genau nachgebildet werden. Solche Vorrichtungen sind ziemlich umständlich und kostspielig und müssen sehr genau ange-


Beim Indizieren von Verbrennungskraftmaschinen und Kältemaschinen ist das Ausblasen zu unterlassen, bei Pumpen unzweckmäßig.
 Zeitschrift des Bayer. Revisions-Vereines, 1902, S. 150.

paßt werden. Man nimmt deshalb häufig der Einfachheit wegen einen praktisch belanglosen Fehler in den Kauf und wendet in allen Fällen, in denen die Erreichung des höchstmöglichen Genauigkeitsgrades nicht notwendig ist, vereinfachte Hebelübertragungen an. Eine bewährte Vorrichtung für liegen de Maschinen

ist in Abb. 11 dargestellt. Ein um einen festen Punkt a drehbarer Hebel b greift mit seinem unteren geschlitzten Ende

ohne toten Gang in den mit dem Kreuzkopf verbundenen Mitnehmer c und trägt ein Holzsegment d. dessen Radius dem Maschinenhub und der Diagrammlänge entsprechend bemessen ist

und an welchem die Indikatorschnur so eingehängt wird, daß sie stets tangential abläuft.

Abb. 12.

Abb. 12 zeigt eine Einrichtung, welche man dann verwendet, wenn nur ein Indikator zur Verfügung steht. An die beiden Indikatorstutzen kommen zunächst zwei Rohrkrümmer a a von etwa 20 mm lichter Weite. welche durch einen Dreiwegehahn b verbunden werden; an diesen Dreiwegehahn setzt man, wenn erforderlich unter Verwendung eines passenden Zwischenstückes, den Indikatorhahn c mit dem Indikator d. Kurbel- und Außenseite der Maschine werden abwechselnd indiziert. Die Diagramme

beider Kolbenseiten können entweder gekreuzt auf einem Blatt oder, wie sonst üblich, getrennt geschrieben werden. Eine Hebelvorrichtung für stehende Maschinen ist in Abb. 13

abgebildet. Ein um einen festen Punkt a schwingender Hebel ist mittels des Stängchens b mit dem Mitnehmer c des Kreuzkopfes verbunden und am anderen Ende mit einem Holzsegment d versehen, in welches die Indikatorschnur eingehakt wird. Diese Art der Verbindung mit dem Kreuzkopf kann natürlich auch bei der in Abb. 11 dargestellten Einrichtung angewandt werden.

Allgemeines. Als Indikatorschnur ist nur geflochtene und gewachste, sog. Angelschnur, auf keinen Fall gewöhnlicher Bindfaden zu verwenden. Da die Schnüre sich im Gebrauch dehnen, ist es bei Garantieversuchen zweckmäßig, neue Schnüre vorher einige Tage hindurch mittels Gewichtsbelastung zu strecken. Drähte sind zum Indikatorantrieb nicht zu empfehlen 1).

Da manche Indikatoren mit Blei- und Metallstiften, andere nur mit Metallstiften versehen sind, seien einige praktische Erfahrungen mit beiden Arten von Spitzen wiedergegeben.

Metallstifte haben den Vorteil, daß sie lange Zeit hindurch nicht nachgespitzt zu werden brauchen und nicht abbrechen, dagegen den Nachteil, daß ihre Verwendung besonderes, teures, sog. Metallpapier erfordert und daß die mit ihnen geschriebenen Diagramme nach einiger Zeit fast bis zur Unleserlichkeit verschwinden, besonders wenn man sich bemüht hat, durch recht sanftes Andrücken des Schreibstiftes feine Diagrammlinien zu bekommen. Bei zu scharfer Spitze reißt das Papier leicht ein.

Bleistiftspitzen, deren Härte etwa Nr. 4 entsprechen soll, müssen zur Erzielung sauberer Diagramme häufig nachgeschärft werden und brechen bei unvorsichtiger Handhabung leicht ab; dagegen haben sie den Vorteil, daß man jedes beliebige Papier verwenden kann und daß die damit geschriebenen Diagramme unbegrenzt haltbar sind. Die Schreibzeuge mancher Indikatoren sind nicht gerade bequem zum Einschrauben von Bleistiften eingerichtet. Mustergültig ist in dieser Beziehung das Schreibzeug des Rosenkranz-Indikators, das in gleich praktischer Weise die Anwendung von Metall- wie von Bleistiften gestattet. Wer auf die Verwendung von Bleistiften Wert legt, stellt der Indikatorfirma zweckmäßig die Bedingung, daß das Schreibzeug mit bequem einsetzbaren Bleistiften versehen wird.

Prüfung der Indikatorfedern. Für Versuche, bei denen auf besondere Genauigkeit Wert zu legen ist, z. B. Garantieversuche, sind nur geprüfte Federn zu verwenden. Es empfiehlt sich überhaupt, den Maßstab einer Feder von Zeit zu Zeit festzustellen, weil er sich bei längerem Gebrauch allmählich ändert; eine plötzliche bedeutende Änderung läßt auf die Lockerung einer Lötstelle oder auf einen beginnenden Bruch schließen.

Der Verein Deutscher Ingenieure hat nach mehrjährigen Vorarbeiten seiner Federprüfungskommission im Einvernehmen

¹⁾ Dreyer, Rosenkranz und Droop empfehlen neuerdings Schnüre mit Drahte in lage.

der Physikalisch-technischen Reichsanstalt folgende Bestimmungen über die Feststellung der Maßstäbe für Indikatorfedern aufgestellt:

- 1. Jeder Indikator, dessen Federn geprüft werden sollen, ist vorher auf seinen Zustand, insbesondere hinsichtlich Kolbenreibung, Dichtheit und auf toten Gang des Schreibzeuges zu untersuchen.
- 2. Die Indikatorfedern sind durch Gewichtsbelastung zu prüfen.
- 3. Die Federn sind in Verbindung mit dem Schreibzeug zu prüfen.
- 4. Jede Feder, die beim Gebrauch des Indikators höhere Temperaturen annimmt, ist im allgemeinen kalt und warm, und zwar bei etwa 20°C (Zimmertemperatur) und bei 100° C¹) zu prüfen.
- 5. Die Federn sind mit mehrstufiger Belastung zu prüfen, und zwar in mindestens 5 Stufen oberhalb der atmosphärischen Linie und in wenigstens 3 Stufen unterhalb derselben. In den Prüfschein sind alle Einzelwerte der Untersuchung aufzunehmen.
- 6. Der Durchmesser des Indikatorkolbens wird bei Zimmertemperatur gemessen.

Die Ausführung einer Federprüfung²) geschieht in folgender Weise: Der Indikator mit Feder und Schreibzeug wird an einem Gestell³) vertikal befestigt; auf die Trommel zieht man ein Diagrammblatt und schreibt durch Anziehen der Indikatorschnur und Andrücken des Schreibzeuges die atmosphärische Linie. Hierauf wird am Ende der Kolbenstange des Indikators ein Bügel festgeklemmt, der als untere Fortsetzung eine senkrechte Stange zur Aufnahme der Belastungsgewichte trägt. Diese werden unter Berücksichtigung des Gehängegewichtes so bemessen, daß sie in regelmäßiger Abstufung eine Steigerung erfahren, welche einer Zunahme des beim Indizieren auf den Indikatorkolben treffenden Gesamtdruckes von je 1 at. oder einem bestimmten Bruchteil einer Atmosphäre entspricht. Bei einem Kolbendurchmesser von 20 mm sind demnach für je 1 at. 3,14 kg aufzulegen. die einzelnen Belastungsstufen werden unter Erschütterung des Indikators durch Klopfen mit einem Holzhammer wagerechte Diagrammlinien gezogen. Die Untersuchung wird mit abnehmender Belastung wiederholt. Zeigt sich dabei zu große Reibung, dann kann der Kolben herausgenommen werden; die Kolben-

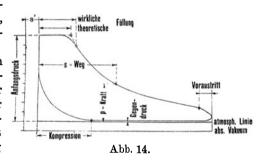
¹⁾ Geschieht durch Anwärmen mit Dampf.

Näheres siehe Zeitschrift des Bayer Revisions-Vereines, 1901, S. 64, 76 und 94; 1905, S. 218; 1906, S. 96.

3) Zu beziehen von Dreyer, Rosenkranz & Droop in Hannover

und einigen anderen Firmen für Indikatorbau.

stange ist dann durch eine andere zu ersetzen, welche so eingerichtet ist, daß die Feder mit ihr fest verbunden werden kann.

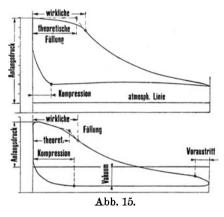

Wenn der Hub des Schreibstiftes genau proportional der Zusammendrückung der Feder ist, und wenn der Maßstab der Feder, d. h. der Hub des Schreibstiftes für jede Atmosphäre Druckänderung, bei jedem Druck derselbe ist, dann besitzen die horizontalen Diagrammlinien genau gleiche Abstände. Da dies jedoch nur in Ausnahmefällen zutreffen wird, muß man aus den Ergebnissen der Prüfung den mittleren Maßstab berechnen. Sind die Abweichungen nicht zu groß, dann kann man den mittleren Maßstab erhalten, wenn man den Abstand zwischen der atmosphärischen und der obersten Diagrammlinie durch den zugehörigen Druck in Atmosphären dividiert. Beträgt z. B. dieser Abstand 65,3 mm und entspricht die Summe der angehängten Gewichte einem Druck von 8,0 at., dann ist der mittlere Maß-

stab f = $\frac{65,3}{8}$ = 8,16 mm/kg/qcm. Federn mit erheblichen Ab-

weichungen der Linienabstände sollen bei genauen Versuchen nicht verwendet werden. Gebraucht man sie bei Versuchen, für welche eine mäßige Genauigkeit genügt, dann reicht dieses Verfahren ebenfalls zur Berechnung des mittleren Maßstabes aus.

Beurteilung der Diagramme und Einstellen der Steuerung. In Abb. 14 ist das normale Diagramm einer Einzylinder-Auspuffmaschine dargestellt. Die Begriffe: theoretische Füllung,

wirkliche Füllung, Voraustritt, Gegendruck, Kompression, Anfangsdruck, schädlicher Raum s' ergeben sich aus der Abbildung. Dazu kommt noch der Dampfvoreintritt, der sich jedoch in den meisten Diagrammen nicht oder nur sehr wenig bemerkbar macht, weil



er kurz vor der Totlage erfolgt. Abb. 15 zeigt das normale Diagramm einer Verbundmaschine mit Kondensation. Abweichungen von diesen Diagrammformen können verursacht sein:

- 1. durch Fehler des Indikators und seiner Anbringungs- und Bewegungsvorrichtungen;
- 2. durch Fehler in der Dampfverteilung der Maschine. Beide Gruppen von Fehlern sind scharf auseinander zu halten.

Im folgenden werden einige Diagrammfehler gezeigt, welche im Indikator, seiner Anbringung und seinem Antrieb begründet sind.

Abb. 16 stellt ein Diagramm dar, das entsteht, wenn die Indikatorschnur zu lang ist, die Indikatortrommel also auf

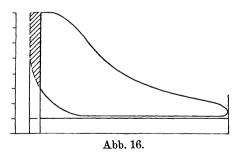
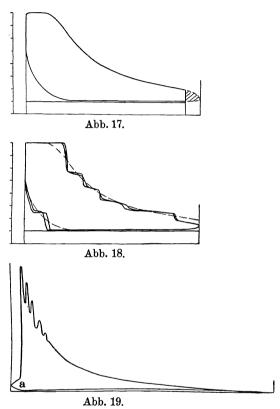

einer Seite anstößt. Die Diagrammfläche erscheint dadurch um das schraffierte Stück zu klein.

Abb. 17 zeigt ein Diagramm, bei dessen Entnahme die Indikatortrommel auf der anderen Trommel angestoßen hatte.

Allgemein ist zu bemerken: Wenn ein Diagramm an einem seiner beiden Enden scharfe Ecken ohne abgerundete Übergänge zeigt, kann man in den meisten Fällen auf ein

Anstoßen der Indikatortrommel schließen, welcher Fehler natürlich vor der Entnahme weiterer Diagramme durch Veränderung der Schnurlängen oder auch durch Einsetzen eines kleineren Hubröllchens zu beseitigen ist.

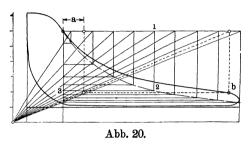
In Abb. 18 ist ein Diagramm dargestellt, welches ein Indikator liefert, dessen Kolben zu große Reibung besitzt; die Expansionslinie zeigt die Bildung von sog. Treppen, welche manchmal



auch bei der Kompressionslinie auftreten. Kennzeichnend für ein derartiges
Diagramm ist der nahezu
senkrechte Absatz am
Ende der Füllung. Der
Indikatorkolben bleibt infolge seiner großen Reibung so lange in seiner
obersten Lage, bis der
Druck unter ihm genügend weit gesunken ist.

Läßt sich die Treppenbildung durch Reinigung des Indikatorzylinders und Kolbens auch bei reichlicher Schmierung nicht beseitigen, so ist der Indikator für genaue Versuche unbrauchbar.

Mit der Treppenbildung nicht zu verwechseln ist das Auftreten von regelmäßigen, allmählich ausklingenden Schwingungen, wie sie Abb. 19 zeigt. Solche Schwingungen entstehen


am Anfang des Diagrambesonders dann. mes wenn keine Kompression vorhanden ist, der Druckwechsel also plötzlich erfolgt, und bei hohen Umdrehungszahlen und sind Kennzeichen eines guten, besonders reibungsfrei arbeitenden Indikators: sie erschweren jedoch die Beurteilung der Expansionslinie und das Planimetrieren. man sie verringern oder ganz vermeiden, dann braucht man nur eine stärkere Feder einzusetzen. Außerdem zeigt Abb. 19 eine eigentümliche Ecke bei a, welche davon herrührt, daß ein Kolbenring der Maschine gegen Ende des Hubes über die Indikatorbohrung im Zvlinder hinausglitt und dadurch den Weg des Dampfes zum Indikatorzylinder abschnitt.

Nun folgen einige Diagramme, deren Fehler durch Mängel in der Dampfverteilung verursacht sind.

Abb. 20 zeigt das Diagramm einer Einzylindermaschine ohne Kondensation, deren Schieber undicht sind. Die Undichtheit von Steuerorganen, soweit sie den Dampfeinlaß beeinflussen, erkennt man aus dem Diagramm, wenn man in dasselbe vom Füllungsendpunkt aus eine gleichseitige Hyperbel (von manchen auch fälschlich Mariottesche Linie genannt) einzeichnet. Zu diesem Zweck zieht man im Abstand des schädlichen Raumes von der Anfangsordinate eine Senkrechte, dann um den Federmaß-

stab von der atmosphärischen Linie entfernt die absolute Vakuumlinie und bezeichnet den Schnittpunkt beider als den Anfangspunkt. Durch den Endpunkt der wirklichen Füllung zieht man eine Wagrechte, von beliebigen Punkten derselben mehrere Senkrechte, z. B. 1, 2, dann verbindet man die Punkte 1 mit dem Anfangspunkt, zieht durch den Füllungsendpunkt eine Senkrechte und durch die Schnittpunkte 3 dieser Senkrechten mit den durch den Anfangspunkt und die Punkte 1 gehenden Strahlen die Wagrechten 3, 2. Die Schnittpunkte 2 dieser Wagrechten mit den

durch die Punkte 1 gehenden Senkrechten sind die Punkte der gesuchten Hyperbel.

Die Erfahrung hat nun gezeigt, daß bei einer mit gesättigtem Dampf arbeitenden Maschine bei dichten Steuerungsorganen die Expan-

sionslinie mit dieser Hyperbel zusammenfällt. Erhebt sich die Expansionslinie, wie in Abb. 20, über die Hyperbel, so tritt mehr Dampf hinter den Kolben, als der Füllung entspricht; man kann demnach mit Bestimmtheit auf eine Undichtheit der Dampf-Einlaßorgane schließen. Konstruiert man aus dem Expansionsendpunkt b nach dem oben angegebenen Verfahren den zugehörigen Füllungsendpunkt rückwärts, so findet man, daß durch die Undichtheit die eingetretene Dampfmenge um das Maß a vergrößert ist.

Bei Betrieb mit überhitztem Dampf fällt die Expansionslinie steiler aus als die eingezeichnete Hyperbel, und zwar um so steiler, je höher die Dampftemperatur ist. Verläuft dagegen die Expansionslinie bei gesättigtem Dampf wesentlich unterhalb der Hyperbel, so kann man bei Schiebermaschinen auf Undichtheit des Kolbens, bei Ventilmaschinen auf Undichtheit des Kolbens oder der Auslaßventile schließen. Sind Kolben und Schieber zugleich undicht, dann kann die Hyperbel oberhalb oder unterhalb der Expansionslinie liegen.

Aus diesem Grunde ist der unmittelbaren Dichtheitsprüfung der Vorzug zu geben. Um die Schieber oder die Einlaßorgane auf Dichtheit zu prüfen, bringt man die Maschine in eine solche Stellung, daß der Kolben von seiner Totlage aus einen größeren Weg zurückgelegt hat, als der größten Füllung entspricht, spreizt das Schwungrad ab und öffnet das Anlaßventil und auf der zugehörigen Kolbenseite den Indikatorhahn. Da bei dieser Kolbenstellung die Steuerung so steht, daß weder Dampf in den Zylinder eintreten, noch aus dem Zylinder austreten kann, darf auch aus dem Indikatorhahn kein Dampf entweichen, wenn die Einlaßorgane dicht sind. Die Prüfung wird zweckmäßig auf der anderen Kolbenseite wiederholt. Zur Prüfung des Kolbens auf Dichtheit nimmt man den hinteren (oberen) Zylinderdeckel heraus und schaltet die Maschine in die vordere (untere) Totlage. Da bei dieser Kolbenstellung die Steuerung den Dampfzutritt schon freigibt, der schädliche Raum auf der Kurbelseite also nach Öffnen des Anlaßventiles mit hochgespanntem Dampf gefüllt ist, macht sich eine Undichtheit des Kolbens durch Austreten von Dampf am Umfang des Kolbens bemerkbar. Gleichzeitig läßt sich auch eine etwaige Undichtheit der Einlaßorgane erkennen.

Die folgenden Diagrammfehler sind durch unrichtige Stellung der Steuerungsorgane infolge Abnützung äußerer Steuerungsteile oder verkehrter Einstellung verursacht. Ursachen haben teils verspätetes, teils verfrühtes Eintreten der 4 Steuerungsmomente: Füllungsschluß, Voraustritt, Kompressionsanfang und Voreintritt zur Folge. Im allgemeinen hat man bei der Einstellung von Ventilsteuerungen größere Freiheit als bei der von Schiebersteuerungen, weil bei letzteren die Änderung eines Steuerungsmomentes andere mit beeinflußt; ferner läßt sich der gleiche Fehler, z. B. verspäteter Dampfeintritt oder verspäteter Dampfaustritt, wenn er auf beiden Kolbenseiten bemerkbar ist, bei einer Schiebersteuerung nicht einfach durch Verschieben des Grundschiebers beseitigen, sondern nur durch Änderung der Überdeckungen, wenn dies überhaupt möglich ist, oder durch Änderung des Voreilwinkels, also andere Aufkeilung des Exzenters. Ist bei einer Doppelschiebersteuerung außer einem oder mehreren Fehlern in den vom Grundschieber beeinflußten Steuerungsmomenten: Voreintritt, Voraustritt und Kompression noch eine Ungleichheit der Füllung auf beiden Kolbenseiten vorhanden, dann muß man mit der Richtigstellung des Grundschiebers beginnen, weil dabei der Grundschieber seine relative Lage zum Expansionsschieber ändert und dadurch die Ungleichheit der Füllung von selbst sich entweder mildert oder verstärkt; dann erst stellt man den Expansionsschieber richtig.

In der folgenden Tafel sind die hauptsächlichsten Diagrammfehler und die Maßnahmen zur Abhilfe bei einer Doppelschiebersteuerung mit äußerer Einströmung angegeben (S. 24).

Tafel zur Einstellung einer Doppelschieberstenerung.

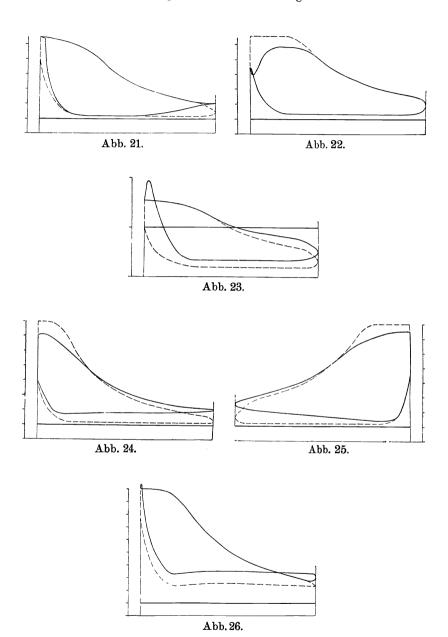
	Verkleinerung	AS	VA	Ko, VE	Ko	VA	Ko, VE	VA	1	Ko, VE	VA	Ko, VE	VE	VA	1	1
Beeinflussung	Verkle	KS	Ko	VA	VA	VE, Ko	.	VE, Ko	VE, Ko	Λ	VE	VA	VA	VE, Ko	1	l
Gleichzeitige Beeinflussung:	Serung	AS	VE, Ko	VA	VA	Ko	VA	Ko, VE	Ko, VE	. 1	VE, Ko	VA	VA	VE	1	1
	Vergrößerung	KS	VA	Кo	VE, Ko	VA	VE, Ko		VA	VE, Ko	Λ	ΛE	VE, Ko	VA		1
Abhilfe			Grundschieberstange verkürzen	,, verlängern		" verkürzen	" verlängern	" verkürzen		" verlängern	verkürzen	verlängern			ExpSchieberstange ,,	" verlängern
Kolben- seite			KS	:	AS	8	KS	r	\mathbf{AS}		KS	;	ĄS		KS	£
Fehler			zu früh	spät	früh	spät.	, früh	" spät	früh	" spät	oroß	klein	" oroß	" s-	groß.	" klein
Steue- rungs- moment		VE				ν̈́Α	:	` :		χ	ì	£ :	£ :	Ë	£	

Abkürzungen: VE = Voreintritt. Ex = Füllung. VA = Voraustritt. KS = Kurbelseite. Ko = Kompression. AS = Außenseite.

Die Tafel enthält auch die durch die Beseitigung eines Fehlers eintretenden Nebenwirkungen, z. B. aus der 1. Zeile geht hervor, daß bei verfrühtem Dampfeintritt auf der Kurbelseite die Grundschieberstange zu verkürzen ist; gleichzeitig wird jedoch auf der Kurbelseite der Voraustritt und auf der Außenseite der Voreintritt und die Kompression vergrößert, auf der Kurbelseite die Kompression und auf der Außenseite der Voraustritt verkleinert. Wenn man also den verfrühten Dampfeintritt auf der Kurbelseite verbessern will, dann müssen diese Steuerungsmomente diese Veränderungen vertragen können, ohne daß neue Fehler in das Diagramm hineinkommen.

Für Schieber mit innerer Einströmung gilt in bezug auf die Worte "verlängern" und "verkürzen" sinngemäß das Umgekehrte. Im Zweifelsfalle mache man eine Probe mit einem Zeunerschen oder Müllerschen Schieberdiagramm.

Die Formen von fehlerhaften Diagrammen sind aus den Abbildungen auf S. 26 ersichtlich.


Abb. 21 zeigt das Diagramm einer Einzylinder-Auspuffmaschine, bei der auf der Kurbelseite die Dampfeinströmung zu früh, die Dampfausströmung verspätet erfolgt. Dieser Fehler, der durch unrichtige Stellung des Grundschiebers verursacht ist, wird durch Verkürzen der Grundschieberstange beseitigt.

Das in Abb. 22 dargestellte Diagramm wurde dem Hochdruckzylinder einer Verbundmaschine mit Ventilsteuerung entnommen, deren Steuergestänge so stark abgenutzt war, daß die Dampfeinströmung verspätet erfolgte und einen erheblichen Arbeitsverlust verursachte. Nach der Einstellung der Steuerung ergab sich das gestrichelte Diagramm.

Das Diagramm der Abb. 23 entstammt dem Niederdruckzylinder einer Verbundmaschine, bei welchem ein Einlaßventil undicht war; dadurch konnte auch während der Ausströmperiode Dampf nachströmen, wodurch das Vakuum bedeutend verringert und zugleich die Kompression übermäßig erhöht wurde.

Die beiden Abb. 24 und 25 zeigen die Diagramme einer Einzylinder-Auspuffmaschine mit Schiebersteuerung, die zwar auf beiden Kolbenseiten annähernd richtig eingestellt ist, wenn man von der Ungleichheit der Füllung absieht; jedoch sind die Steuerungskanäle zu eng bemessen, deshalb erfährt der Dampf beim Eintritt eine starke Drosselung und er verläßt die Maschine mit zu hohem Gegendruck.

In Abb. 26 ist das Diagramm des Hochdruckzylinders einer Verbundmaschine dargestellt; die Expansions- und die Austrittslinie bilden eine Schleife, die davon herrührt, daß die

Füllung des Niederdruckzylinders zu klein eingestellt ist und dadurch sich der Aufnehmerdruck erhöht; der hohe Aufnehmerdruck hat zugleich ein Hinaustreten der Kompressionslinie über die Eintrittslinie zur Folge. Durch Vergrößerung der Füllung des Niederdruckzylinders läßt sich das gestrichelte Diagramm erzielen.

Zweiter Abschnitt.

Die Ermittlung der indizierten Leistung Ni.

Unter der indizierten Leistung versteht man die sekundlich an den Dampfkolben abgegebene mittlere Arbeit.

In Abb. 27 ist das normale Diagramm einer Einzylinder-Auspuffmaschine nochmals dargestellt. Die Abszisses jedes Diagrammpunktes bedeutet den jeweiligen Kolbenweg, die zugehörige Ordinate p den zugehörigen Druck. Demnach bildet der Flächeninhalt des

Diagrammes ein Maß für die während eines Hubes an den Dampfkolben abgegebene Arbeit. Verwandelt man nach Abb. 28 die Diagrammfläche in ein Rechteck von gleicher Grundlinie, so erhält man als Höhe dieses Rechteckes den mittleren

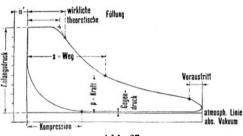
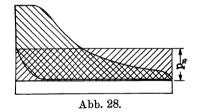



Abb. 27.

Druck pm, den man sich als während des ganzen Hubes gleichmäßig wirkend denken kann.

Bestimmung des mittleren Druckes p_m . Diese erfolgt am einfachsten und sichersten mittels des Planimeters. Die zur Auswertung von Dampfdiagrammen am meisten gebrauchten Planimeter werden von folgenden Firmen hergestellt:

A. Ott, Kempten, und

J. Amsler-Laffon, Schaffhausen.

Beide Bauarten werden in der gleichen Weise gehandhabt, und unterscheiden sich nur durch konstruktive Einzelheiten. Deshalb genügt hier die Besprechung des

Ottschen Planimeters.

Das in Abb. 29 dargestellte Instrument besteht im wesentlichen aus dem Fahrarm mit dem Fahrstift, dem verschiebbar mit dem Fahrarm verbundenen Meßrädchen mit Nonius und dem Polarm, dessen Drehachse in dem verschiebbaren Teil des Fahrarms gelagert ist. Der Fahrarm ist mit einer genauen Teilung, die darauf verschiebbare Hülse mit dem zugehörigen Nonius zur scharfen Einstellung versehen. Ferner trägt der Fahrarm an verschiedenen Stellen besondere Striche, welche bei bestimmten Einstellungen mit dem bei a befindlichen Strich der Hülse zusammenfallen müssen. Die genaue Einstellung erfolgt mittels einer Mikrometerschraube. Der Pol ist eine kleine Kugel, welche

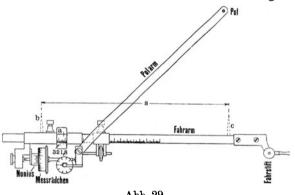


Abb. 29.

in einem schweren Messingfuß gelagert und mit einem Gewicht-Beim Amslerschen Planimeter ist der chen beschwert wird. Pol als scharfe Spitze ausgebildet, die man in das Papier einsticht. Fahrarm und Hülse tragen je eine nach oben gerichtete Spitze¹); bei der jetzigen Ausführung der Planimeter steht die eine Spitze in der Verlängerung des Fahrstiftes, die zweite in der Verlängerung der Drehachse des Polarmes. Die Spitzen sind durch aufgeschraubte Hülsen geschützt. Bei älteren Planimetern kann man, wie Abb. 29 zeigt, die Spitzen b und c nachträglich anbringen; sie stehen richtig, wenn ihre Entfernung s gleich der Entfernung des Fahrstiftes vom Drehpunkt des Polarmes ist; die Spitze c darf dann niemals verschoben werden.

Der Umfang des Meßrädchens ist in 100 gleiche Teile geteilt, der zugehörige Nonius erlaubt die Ablesung von Zehnteln dieser

¹⁾ S. 31.

Teile. Von der Welle des Meßrädchens wird mittels einer Schnecke ein Zählrädchen angetrieben, durch welches in Verbindung mit einem feststehenden Zeiger die Anzahl der Umdrehungen des Meßrädchens festgestellt wird.

Das Planimeter hat folgende Eigenschaft: Umfährt man bei festgehaltenem Pol eine geschlossene, ebene Figur, so ist der Flächeninhalt dieser Figur proportional der Abwälzung des Meßrädchens oder mit anderen Worten proportional der Differenz aus der Rollenablesung nach der Umfahrung und der vor der Umfahrung¹).

Die Größe der Rollenabwälzung ist natürlich von der jeweiligen Einstellung der Fahrarmhülse abhängig. Deshalb wird jedem Planimeter eine Zahlentafel zur Einstellung beigegeben, z. B. folgende:

A. Ott. Kempten	Verhält- nisse	Einstellung des Nonius am Fahrstab	Wert der Nonius- Einheit	Konstante	
(Bayern). Planimeter Nr. 1782.	1:1000 1:1000 1:1250 1:1500 1:2500 1:5000	321,8 172,4 214,2 288,4 261,8 142,4	10 qm 5 10 20 5 10 7 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	17 482 — — — — — —	

Die Zahlen der ersten Zeile haben folgende Bedeutung: Umfährt man ein Flächenstück eines im Maßstab 1:1000 gezeichneten Planes und ist dabei der Nonius des Fahrarmes auf die Ziffer 321,8 eingestellt, so entspricht jeder Einheit des Nonius des Meßrädchens eine Fläche von 10 qm. Da nun die Diagramme im Maßstab 1:1 geschrieben sind, entspricht jeder Noniuseinheit

ein Flächeninhalt von
$$\frac{10}{1000 \cdot 1000} = 0,000010 \, \text{qm} = 10 \, \text{qmm}$$
.

Die weiteren Angaben der Zahlentafel haben für das Planimetrieren von Diagrammen keine Bedeutung.

Handhabung des Planimeters. Der Nonius des Fahrarmes wird für den Maßstab 1:1000 und den Flächeninhalt 10 qm, im vorliegenden Falle also auf 321,8 eingestellt. Die Lage des Poles wähle man so, daß der Fahrarm und der Polarm aufeinander senkrecht stehen, wenn sich der Fahrstift in der Mitte der zu umfahrenden Fläche befindet. Dann befestige man das Diagramm auf einer glatten Ebene, z. B. auf einem auf ein Brett

¹⁾ Elementare Theorie des Planimeters siehe: Gramberg, Technische Messungen; Brand, Technische Untersuchungsmethoden.

aufgespannten Zeichenpapier mittels Reißnägeln, umfahre die Fläche probeweise und sehe zu, ob das Meßrädchen nicht über das Papier hinausgleitet oder anstößt, und ob man die Fläche vollständig umfahren kann. Hierauf sticht man die Spitze des Fahrstiftes in einen Punkt der zu umfahrenden Linien, bezeichnet dadurch den Anfangspunkt und liest die Stellung des Zähl- und Meßrädchens ab. Manche pflegen das Meßrädchen auf 000 zurückzustellen, was jedoch nicht notwendig ist. Die Fläche wird nun so umfahren, daß sie stets rechts von der Fahrrichtung Hat ein Diagramm Schleifen (siehe Abb. 26), welche negativen Arbeiten entsprechen, so subtrahieren sich die Flächeninhalte dieser Schleifen dadurch von selbst, daß sie beim genauen Verfolg der Diagrammlinie links von der Fahrrichtung liegen. Ist der Fahrstift wieder am Anfangspunkt angelangt, dann liest man die zugehörige Stellung des Zähl- und Meßrädchens wieder ab und subtrahiert von dieser Ablesung die vor der Umfahrung gemachte Ablesung. Die Differenz beider Ablesungen gibt, mit 10 multipliziert, den Flächeninhalt der umfahrenen Figur in qmm.

Der Kontrolle wegen ist jede Planimetrierung zweimal zu machen und aus beiden Ergebnissen, die um höchstens 1% voneinander abweichen dürfen, das Mittel zu nehmen.

Um die mittlere Höhe eines Diagrammes zu finden, ist der mittels Planimeters festgestellte Flächeninhalt durch die Diagrammlänge zu dividieren.

Beispiel: Flächeninhalt 2310 qmm Diagrammlänge 120 mm Mittlere Höhe =
$$\frac{2310}{120}$$
 = 19,2 mm.

Um den in Abb. 28 eingezeichneten mittleren Druck p_m zu finden, ist die mittlere Höhe durch den Federmaßstab zu dividieren.

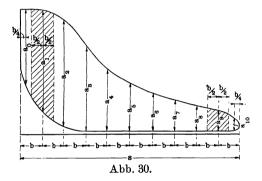
Beispiel: Mittlere Höhe 19,2 mm Federmaßstab 8 mm/at. Mittlerer Druck
$$p_m = \frac{19,2}{8} = 2,40$$
 at.

Die Richtigkeit der Einstellung und der Angaben eines Planimeters kann man durch Umfahren einer Fläche von bekanntem Inhalt, z. B. eines Quadrates von 100 mm Seitenlänge, prüfen.

Planimetrieren mit Spitzeneinstellung. Hat man viele Diagramme, deren Länge annähernd gleich ist, zu planimetrieren, so ist die sog. Spitzeneinstellung vorzuziehen. Stellt man die Entfernung s (siehe Abb. 29) der beiden Spitzen b und c so ein, daß sie gleich der Diagrammlänge wird, so erhält man die mittlere Höhe des Diagrammes dadurch, daß man die Differenz der Ablesungen vor und nach der Umfahrung durch die Planimeterkonstante dividiert. Diese Konstante ist jedoch nicht identisch mit der auf S. 29 angegebenen Konstanten, sondern wird nach folgendem Verfahren ermittelt. Ein Quadrat von genau 100 mm Seitenlänge wurde bei Spitzeneinstellung (s = 100 mm) 5 mal umfahren, wobei man nachstehende Noniusablesungen erhielt.

									Differenzen
vor	der	1.	Umfahrung	; .				0000	
nach	,,	1.	,,					1497	1497
,,	,,	2.	,,					2998	1501
,,	,,	3.	,,					4493	1495
,,	,,	4.	,,					5987	1494
,,	,,	5 .	"					7479	1492
		Su	mme der I)iff	erei	ıze	n		7479
		Mi	ttelwert M						1459,8
K	ons	tan	te $C = \frac{1}{10}$	M 00	=	14	,958	oder r	und 15,0.

Das benutzte Planimeter hat demnach bei Spitzeneinstellung die Konstante 15.0.


Beispiel für die Ermittlung des mittleren Druckes, wenn die Planimetrierung mit Spitzeneinstellung ausgeführt wurde:

Bemerkung: Dabei benutzte man dasselbe Diagramm wie oben bei der Planimetrierung mit Einstellung auf 10 qmm; diese Planimetrierung hatte einen mittleren Druck von 2,40 at. geliefert.

Hat man kein Planimeter zur Verfügung, so bestimmt man den mittleren Druck mittels der

Simpsonschen Regel,

wie in Abb. 30 angegeben ist. Man teile die Diagrammlänge s durch die Ordinaten $a_1, a_2, \ldots a_9$ in 10 gleiche Teile b, b . . . b und ziehe die Ordinaten a_0 und a_{10} in einer Entfernung von b/4 von jedem Diagrammende. Diese Teilung kann mittels eines den Indikatoren meist beigegebenen Teillineals oder Rostrates geschehen. Dadurch ist das Diagramm in eine Anzahl senkrechter Streifen zerlegt, die man mit genügender Genauigkeit als Trapeze betrachten kann. Jede der gezogenen Ordinaten

sieht man als Mittellinie eines Trapezes an, und zwar die Ordinaten a₁, a₂...a₉ als Mittellinien von Trapezen mit der Höhe b und die Ordinaten a₀ und a₁₀ als Mittellinien von Trapezen mit der Höhe b/2; dann ergibt sieh die mittlere Höhe des Diagrammes zu

$$a_m = \frac{1}{10} \Big(\! \frac{a_0}{2} + a_1 + a_2 + \cdots + a_9 + \frac{a_{10}}{2} \! \Big) \cdot \\$$

Mit dem Federmaßstab f mm/kg wird der

mittlere Druck
$$p_m = \frac{a_m}{f} \, kg/qcm$$
.

Beispiel: Das für die obigen Planimetrierungen benutzte Diagramm lieferte folgende Werte:

\mathbf{a}_0	a ₁	$\mathbf{a_2}$	a ₃	a ₄	\mathbf{a}_5	a ₆	a. ₇	a ₈	a ₉	a ₁₀
31,3	42,0	33,6	25,2	19,5	15,7	12,9	10,8	9,0	7,6	6,0

Hieraus berechnet sich die mittlere Höhe zu

$$\mathbf{a_m} = \frac{1}{10} \left(\frac{31,3}{2} + 42,0 + 33,6 + 25,2 + 19,5 + 15,7 + 12,9 + 10,8 + 9,0 + 7,6 + \frac{6,0}{2} \right) = 19,5 \text{ mm}$$

und der

mittlere Druck
$$p_m = \frac{19.5}{8} = 2.44$$
 kg/qcm.

Bemerkung: Bei genauen Versuchen müssen die Diagramme stets planimetriert werden.

Zur Berechnung der indizierten Leistung sind außer dem mittleren Druck noch folgende Angaben erforderlich:

- a) der Zylinderdurchmesser D,
- b) der Durchmesser der Kolbenstange d (bzw. d1),
- c) der Kolbenhub s.
- d) die minutliche Drehzahl n.
- a) Der Zylinderdurchmesser ist an der betriebswarmen 1) Maschine unmittelbar nach dem Öffnen des hinteren Zylinderdeckels mittels eines Stichmaßes zu messen. Das Stichmaß ist ein Rundeisen von etwa 10 mm Stärke und mit zugespitzten Enden; seine Länge wird schon vorher ungefähr gleich dem Zylinderdurchmesser gemacht und nach dem Öffnen des Deckels durch Abfeilen der Spitzen oder Strecken des Schaftes richtig gestellt.
- b) Der Durchmesser der Kolbenstange wird mittels einer Schublehre gemessen.

Dann kann man die wirksame Kolbenfläche F berechnen, dieselbe beträgt:

 bei durchgehender Kolbenstange, wenn beide Seiten denselben Durchmesser d besitzen:

$$\mathbf{F} = \frac{\mathbf{D^2}\pi}{4} - \frac{\mathbf{d^2}\pi}{4};$$

 bei durchgehender Kolbenstange, wenn eine Seite derselben den Durchmesser d, die andere den Durchmesser d₁ besitzt:

$$\mathbf{F} = \frac{\mathbf{D^2}\pi}{4} - \frac{1}{2} \left(\frac{\mathbf{d^2}\pi}{4} + \frac{\mathbf{d_1^2}\pi}{4} \right) \cdot$$

¹⁾ Der jetzt vorliegende Entwurf der neuen "Regeln" verlangt die Messung an der Maschine in kaltem Zustand.

Will man die Leistung jeder Kolbenseite für sich berechnen, was bei genauen Versuchen stets zu empfehlen ist, dann setzt man:

$$egin{align} F_{ ext{(KS)}} &= rac{D^2\pi}{4} - rac{d^2\pi}{4} \ ext{und} \ F_{ ext{(AS)}} &= rac{D^2\pi}{4} - rac{d_1^2\pi}{4} \ ; \end{array}$$

3. bei einseitiger Kolbenstange:

$$egin{aligned} F &= rac{D^2\pi}{4} - rac{1}{2}rac{d^2\pi}{4} \ ext{oder} \ F_{ ext{(KS)}} &= rac{D^2\pi}{4} - rac{d^2\pi}{4} \ ext{und} \ F_{ ext{(AS)}} &= rac{D^2\pi}{4}; \end{aligned}$$

- c) Den Kolbenhub mißt man am einfachsten und genauesten längs der Kreuzkopf-Gleitbahn. Man schlägt am Kreuzkopfschuh eine Marke ein, schaltet die Maschine auf den einen Totpunkt und bezeichnet die Stellung der Marke durch einen Riß an der Gleitbahn; hierauf schaltet man die Maschine auf den zweiten Totpunkt und bezeichnet die jetzige Stellung der Marke. Der Abstand der beiden Risse ist der Kolbenhub. Bei Verbundmaschinen ist der Hub beider Maschinenseiten zu messen.
- d) Die minutliche Drehzahl ist bei genauen Versuchen mittels eines mit einem bewegten Maschinenteil verbundenen umlaufenden oder hin und her gehenden Umdrehungszählers festzustellen. Die Angaben dieses Zählers werden innerhalb gleicher Zeiträume abgelesen, z. B. aller 15—60 Minuten. Die mittlere Drehzahl ergibt sich, wenn man die Differenz aus der ersten und der letzten Ablesung durch die genau in Minuten gemessene Beobachtungszeit dividiert.

Beispiel:

Zeit	Ablesung	Differenz	n
722	38 055		
8^{22}	47 590	9535	158,9
9^{22}	57 120	9530	158,8
10^{22}	66 637	9517	158,6
11^{22}	76 181	9544	159,1
12^{22}	85 718	9537	159,0
1^{22}	95 255	9537	159,0

Hieraus berechnet sich die mittlere Drehzahl zu

$$\mathbf{n} = \frac{95225 - 38055}{\text{Zeit von } 7^{22} - 1^{22}} = \frac{57200}{360} = 158,9.$$

Bei weniger genauen Versuchen kann man sich damit begnügen, die Drehzahl möglichst häufig, etwa aller 5 oder 10 Minuten mittels eines in ein Körnerloch einzusteckenden Handtachometers oder durch unmittelbares Zählen mit Hilfe einer Uhr zu ermitteln.

Wenn nun alle genannten Messungen gemacht und alle Beobachtungen auf einen Zeitraum ausgedehnt worden sind, dessen Länge vom Zweck des Versuches abhängt, berechnet man aus den Beobachtungsergebnissen die Mittelwerte und erhält die indizierte Leistung

$$N_i = \frac{\mathbf{F} \cdot \mathbf{p_m} \cdot \mathbf{s} \cdot \mathbf{n}}{30 \cdot 75}$$
 Pferdestärken (PS).

Dabei ist F in qcm, p_m in kg/qcm und s in m einzusetzen. Bei genauen Versuchen berechnet man die Leistung jeder Kolbenseite für sich und erhält N_i als Summe $N_{i(KS)} + N_{i(AS)}$; es ist

$$\begin{split} N_{i_{(KS)}} &= \frac{F_{(KS)} \cdot p_{i_{(KS)}} \cdot s \cdot n}{60 \cdot 75} \ \mathrm{und} \\ N_{i_{(AS)}} &= \frac{F_{(AS)} \cdot p_{i_{(AS)}} \cdot s \cdot n}{60 \cdot 75} \cdot \end{split}$$

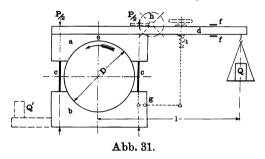
Bei Gruppenindizierungen¹) ist es zweckmäßig, alle Konstanten zu einer einzigen Konstanten C zusammenzufassen und die indizierte Leistung durch Multiplikation der für alle Gruppen bei der gleichen Drehzahl n geltenden Konstanten C mit dem Planimeterwert Pl zu berechnen²). Setzt man $p_i = \frac{Pl}{15 \cdot f}$ in die Gleichung für N_i ein, so erhält man als Leistung einer Kolbenseite:

$$N_{i} = \frac{F \cdot \frac{Pl}{15 \cdot f} \cdot s \cdot n}{60 \cdot 75} = C \cdot Pl,$$

es ist also die Konstante:

$$C = \frac{\mathbf{F} \cdot \mathbf{s} \cdot \mathbf{n}}{15 \cdot \mathbf{f} \cdot 60 \cdot 75}.$$

¹⁾ S. 51.


²⁾ indizieren mit Spitzeneinstellung und Planimeterkonstante 15,0.

Dritter Abschnitt.

Die Ermittlung der Nutz- oder effektiven Leistung N_e.

Unter der Nutzleistung versteht man die von der Kurbelwelle der Maschine abgegebene Arbeit; dieselbe ist um den Betrag der Eigenwiderstände der Maschine kleiner als die indizierte Leistung und wird am genauesten mittels einer Bremse festgestellt.

Die in der Abb. 31 dargestellte Bremse ist eine Backenbremse und besteht aus den beiden Bremsbacken a und b, die durch 2 Schrauben c c verbunden sind, dem Bremshebel d mit der Länge 1 (Meter) und der Wagschale mit dem Bremsgewicht Q; die Bremse ist auf eine Bremsscheibe aufgesetzt, deren Durch-

messer D m beträgt. Um das durch den Hebel und die Wagschale hervorgerufene einseitige Übergewicht auszugleichen, kann ein Gegengewicht Q' angebracht werden. Zur Bestimmung der Größe und des Hebelarmes dieses Gegengewichtes nimmt man die Bremse ab, legt sie bei e auf eine Schneide oder hängt sie bei e auf und bringt sie ins Gleichgewicht; oder man steckt die Bremsscheibe auf eine besondere Achse, die möglichst wagerecht und reibungsfrei gelagert wird. Bringt man kein Gegengewicht an. so läßt man bei dieser Prüfung die frei gelagerte Bremse mit dem Hebelarm 1 auf eine Wage drücken; das hierdurch ermittelte einseitige Übergewicht ist dann jedesmal bei der Bemessung der Bremsbelastung zu berücksichtigen. Die Schrauben der Bremse sind so anzuziehen, daß der Hebel stets zwischen den Anschlägen f f frei schwebt. Statt die Schrauben unmittelbar anzuziehen, kann man bei der Bremsung größerer Leistungen eine Hebelübersetzung g oder ein Schneckengetriebe hanwenden. Zur Vermeidung größerer Schwankungen ist es zu empfehlen, eine Feder i einzuschalten oder unter die Muttern der Anzugschrauben

Gummiplatten zu legen. Die Reibungsfläche der Bremsscheibe ist durch mäßige Schmierung etwas fettig zu halten, ferner ist bei Versuchen von längerer Dauer die erzeugte Wärme dadurch abzuführen, daß man auf die Innenseite des Scheibenkranzes Wasser laufen läßt.

Aus dem Bremsgewicht, dem Hebelarm und der zu beobachtenden minutlichen Umdrehungszahl berechnet sich die Nutzleistung wie folgt:

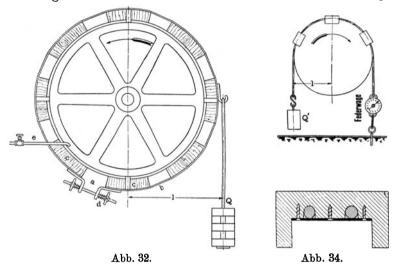
Die Bremse sei so angezogen, daß in jeder Schraube eine Kraft P/2 wirkt; die Bremsklötze werden also mit der Kraft P gegen die Schraube gepreßt. Die am Umfang der Scheibe entstehende Reibungskraft beträgt, wenn man den Reibungskoeffizienten mit μ bezeichnet: $R = P \cdot \mu$; demnach die Reibungsarbeit, d. h. die in Reibungswärme umgesetzte Nutzleistung der Maschine:

$$A = \frac{\mu \cdot P \cdot D \cdot \pi \cdot n}{60} \, mkg \ oder \ N_e = \frac{\mu \cdot P \cdot D \cdot \pi \cdot n}{60 \cdot 75} \, PS.$$

Da die Größen μ und P sich der unmittelbaren Messung entziehen, muß eine Beziehung zwischen diesen Größen und den unmittelbar meßbaren Größen Q und l gesucht werden. Wenn der Bremshebel frei schwebt, halten sich die Reibungskraft R und das Belastungsgewicht Q das Gleichgewicht, also müssen die statischen Momente dieser Kräfte in bezug auf die Drehachse der Bremsscheibe einander gleich sein; demnach ist D

$$R \cdot \frac{D}{2} = Q \cdot l$$
. Setzt man wieder $R = P \cdot \mu$, so erhält man

 $P \cdot \mu \cdot \frac{D}{2} = Q \cdot l$. Man kann demnach in der obigen Gleichung für N_e die Gruppe $P \cdot \mu \cdot D$ durch die gleichwertige Gruppe 2 Q1 ersetzen, die Nutzleistung ergibt sich dann zu


$$N_e = \frac{Q \cdot l \cdot \pi \cdot n}{30 \cdot 75} \text{ PS.}$$

In diese Formel ist Q in kg und l in m einzusetzen.

Andere Bremsen. Abb. 32 zeigt eine besonders bei Versuchen an Lokomobilen sehr häufig verwendete Bremse, die sich bei Leistungen bis 200 PS bewährt hat; sie besteht aus einem bei a geteilten Stahlband b, das auf der Innenseite mit Holzklötzen c c besetzt ist und mittels des Schraubengetriebes d unter Zwischenlage von kräftigen Federn angezogen wird. Die Gewichtsscheiben sind zum bequemen Aufbringen und Abnehmen geschlitzt. Die Kühlwasserzufuhr erfolgt durch zwei auf beiden Seiten angebrachte Rohre e. Die Bremse wird unmittelbar auf

das Schwungrad aufgesetzt und durch an den Holzklötzen befestigte Flacheisen vor dem Herabfallen geschützt. Sie muß durch fest verankerte Seile, die während der Bremsung stets lose hängen müssen, gegen Herumschleudern der Gewichte gesichert werden.

In Abb. 33 ist eine Seilbremse dargestellt, die für kleinere Leistungen bis etwa 20 PS brauchbar ist und keine Bedienung

erfordert. Sie besteht aus zwei etwa 12 bis 15 mm starken Hanfseilen, die um den halben Umfang einer geeigneten Scheibe geschlungen und mittels mehrerer Holzklammern mit Blechbeilagen nach Abb. 34 zusammengehalten sind. Das eine Seilende wird mit einer fest verankerten Federwage verbunden, am anderen Ende wird das Belastungsgewicht Q' eingehängt. Die Federwage ist vorher auf ihre Richtigkeit zu prüfen; als Bremsgewicht Q ist die Differenz zwischen Q' und der Angabe q der Federwage in die Rechnung einzuführen; also

Belastung
$$Q = Q' - q$$
.

Die Seile sind vor ihrer Verwendung in Talg auszukochen. Vor dem Abstellen der Maschine sind entweder die Gewichte abzunehmen oder die Federwage ist auszuhängen, weil die letztere sonst beschädigt werden kann.

Ermittlung der Nutzleistung auf elektrischem Wege. Während bei kleineren Maschinenleistungen die Selbstherstellung oder Beschaffung, sowie die Handhabung einer geeigneten Bremse kaum Schwierigkeiten verursachen dürfte, steigen dieselben bei größeren Leistungen ganz bedeutend.

In dem Falle, daß von der zu untersuchenden Dampfmaschine eine Dynamomaschine angetrieben wird, läßt sich die Nutzleistung der Dampfmaschine sehr bequem durch Messung der Spannung und der Stärke des abgegebenen Stromes feststellen. Voraussetzung ist dabei, daß man den Wirkungsgrad der Dynamo bei der betreffenden Leistung kennt, oder noch besser, daß der Wirkungsgrad in Abhängigkeit von der Leistung in Form einer Kurve gegeben ist. Die zu verwendenden Instrumente (Ampère- und Voltmeter) müssen entweder geeichte Präzisionsinstrumente sein oder mit solchen Instrumenten verglichen werden. Bezeichnet man bei einer Gleichstrommaschine die Spannung mit V, die Stromstärke mit J und ihren Wirkungsgrad bei der genannten Belastung mit η , so beträgt die von der Dampfmaschine an die Dynamo abzugebende Leistung

$$W = \frac{V \cdot J}{n} Watt,$$

oder da 736 Watt = 1 PS sind,

$$N_{\rm e} = rac{\mathbf{V} \cdot \mathbf{J}}{736 \cdot \eta} \, \mathrm{PS}.$$

Beispiel: Es seien V=221 Volt und J=85,4 Amp. die Mittelwerte einer Reihe von Beobachtungen, ferner sei der Wirkungsgrad η der Dynamo bei dieser Belastung zu 0,88 ermittelt, dann beträgt die Nutzleistung der Dampfmaschine

$$N_e = \frac{221 \cdot 85,4}{736 \cdot 0.88} = 29,1 \text{ PS.}$$

Diese Rechnung ist dann richtig, wenn die Dynamo mit der Dampfmaschine unmittelbar gekuppelt ist. Bei Riemen- oder Seil- übertragung ist der Arbeitsbetrag mehr zu leisten, den die Übertragung verzehrt. Man pflegt bei solchen Versuchen den Verlust durch die Übertragung = 2 % von der Nutzleistung der Dampfmaschine anzunehmen; die an die Dynamomaschine abgegebene Arbeit beträgt demnach 98 % von dieser Nutzleistung; dann wird

$$N_e = \frac{V \cdot J}{736 \cdot \eta \cdot 0.98} \text{ PS.}$$

Im obigen Beispiel erhält man demnach

$$N_e = \frac{221 \cdot 85,4}{735 \cdot 0.88 \cdot 0.98} = 29,7 \text{ PS.}$$

Vierter Abschnitt.

Die Ermittlung des mechanischen Wirkungsgrades $\eta_{\rm m}$.

Unter dem mechanischen Wirkungsgrad versteht man das Verhältnis der Nutzleistung Ne zur indizierten Leistung Ni; also ist

Wirkungsgrad
$$\eta_{\mathrm{m}} = \frac{\mathrm{N_{e}}}{\mathrm{N_{i}}};$$

in allen Fällen, in welchen man sowohl Ne als auch Ni ermittelt, kann demnach $\eta_{\rm m}$ ohne weiteres berechnet werden.

Man kann jedoch mit genügender Genauigkeit den Wirkungsgrad auch ohne Ermittlung der Nutzleistung feststellen. indiziert die Maschine bei abgenommenem Riemen usw. und ermittelt dadurch die Leerlaufarbeit N_l, welche die eigenen Reibungswiderstände der Maschine darstellt; dann ist

$$N_i = N_e + N_l$$
 oder $N_e = N_i - N_l$;

streng genommen müßte zu N1 noch ein Betrag Nz addiert werden, weil anzunehmen ist, daß die Eigenwiderstände bei normaler Belastung der Maschine etwas größer sind als beim Leerlauf, diese sog. zusätzliche Reibungsarbeit könnte man aus der Gleichung

$$N_e = N_i - (N_i + N_z)$$

ermitteln; wenn man Ne, Ni und NI festgestellt hat, dann würde $N_z = N_i - (N_e + N_l)$

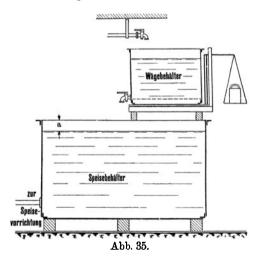
werden.

N_i, N_e, N₁ und N_z sind auf die gleiche Umdrehungszahl bezogen gedacht.

Versuche, Nz auf diese Weise zu ermitteln, haben zu keinerlei brauchbaren Ergebnissen geführt, Nz hat sich sogar schon als negativ herausgestellt. Dies erklärt sich folgendermaßen: In der obigen Gleichung wird Nz als Differenz von 2 Größen berechnet, von denen jede ein Vielfaches von Nz ist und natürlich mit den unvermeidlichen Messungsfehlern behaftet ist. Hat man nun infolge dieser Messungsfehler die erste Größe zu klein, die zweite zu groß erhalten, so kann die Differenz positiv, 0 oder negativ werden. Es ist deshalb zulässig, den Wirkungsgrad unter Vernachlässigunng vo N_z zu berechnen, nach der Gleichung $\eta_m = \frac{N_i - N_1}{N_i} .$

$$\eta_{\rm m} = \frac{\rm N_i - N_1}{\rm N_i}$$

Der mechanische Wirkungsgrad vergrößert sich bei steigender Belastung.


Fünfter Abschnitt.

Die Ermittlung des stündlichen Dampf- und Wärmeverbrauchs für eine Pferdestärke.

Der stündliche Dampfverbrauch für die Pferdestärke ist ein Maß für die Wirtschaftlichkeit einer Dampfmaschine und wird bei Neulieferungen gewöhnlich vertragsmäßig gewährleistet (Dampfgarantie). Aufgabe des Versuches ist es, nachzuweisen, ob die Garantie erfüllt ist oder nicht. Als Dauer eines Dampfverbrauchsversuches sind durch die "Normen" mindestens 8 Stunden vorgeschrieben; nur wenn die zu untersuchende Anlage durchaus gleichmäßig beansprucht ist, genügt ein kürzerer, aber mindestens 6 stündiger Versuch.

Die Ermittlung des Dampfverbrauches kann entweder durch Wägung des Speisewassers oder bei Oberflächenkondensation durch Wägung des im Kondensator niedergeschlagenen Dampfwassers erfolgen. Erstere Versuchsart ist die bei Kolbendampfmaschinen gebräuchlichere, während bei

Dampfturbinen Dampfverbrauch meistens durch Wägung des Kondensates festgestellt wird. wägt mittels der in Abb. 35 dargestellten Einrichtung das in den Kessel gespeiste Wasser. Mindestens 10 Minuten vor Beginn und ebenso vor Schluß des Versuches darf der Kessel nicht mehr gespeist werden. Nach dem Stillsetzen der Speisevorrichtung vor Versuchsbeginn füllt man den Speise-

behälter auf und mißt den Abstand a des Wasserspiegels von einem Festpunkt. Die Wage mit dem Wägebehälter ist mit Roststäben u. dgl. (Gewichte sind zur Verhütung von Verwechslungen zu vermeiden) so ausgeglichen worden, daß sie einspielt, wenn der Wasserspiegel bis zur gestrichelten oder einer mittels

Marke festgelegten höheren Linie gesunken ist. Hierauf setzt man ein der jedesmal zu wägenden Wassermenge entsprechendes Gewicht auf und füllt den Wägebehälter, bis die Wage wieder Etwa 10 Minuten nach dem Stillsetzen der Speisevorrichtung kennzeichnet man den Wasserstand im Kessel durch einen um das Glas gebundenen Faden und mißt gleichzeitig den Abstand des Wasserstandes von einem Festpunkt, um eine etwaige Verschiebung des Fadens während des Versuches richtigstellen zu können. Die Zeit, zu welcher der Wasserstand im Kessel und die Markierung zusammenfallen, ist der Versuchs-Damit beginnt die Abnahme der Diagramme, welche aller 10-15 Minuten erfolgen soll, die Tätigkeit der Speisevorrichtung, die regelmäßige Wägung des Speisewassers und die sonstigen Beobachtungen, wie Dampfdruck im Kessel, vor der Maschine, minutliche Drehzahl, Vakuum usw., die in den weiter unten folgenden Musterbeispielen enthalten sind. Den Wasserstand im Kessel hält man stets 10-15 mm über dem anfangs festgestellten Stand. Etwa 10 Minuten vor dem beabsichtigten Versuchsschluß wird die Speisevorrichtung abgestellt, der Speisebehälter bis zum Maß a aufgefüllt und das beim Auffüllen im Wägebehälter zurückgebliebene Wasser zurückgewogen. wartet man, bis der Wasserstand im Kessel bis zur Marke zurückgegangen ist. Dieser Zeitpunkt ist das Ende des Versuches. Damit kein Irrtum entsteht, schreibt man jede Wägung stets dann auf, wenn man den unteren Hahn des Wägebehälters öffnet. gleichzeitig notiert ein zweiter Beobachter jede Wägung durch einen Kreidestrich. Auch die letzte Wägung wird für voll aufgeschrieben: dann wird die nach dem Auffüllen des Speisebehälters zurückgewogene Wassermenge von der Summe sämtlicher Wägungen abgezogen. Als Behälter kann man jeden Bottich, Faß oder dgl. verwenden, nur müssen die Behälter dicht und nicht zu klein sein und genügend große Ablaufhähne haben. Bei großen Maschinen macht häufig die Beschaffung einer geeigneten Wage Schwierigkeiten; in diesem Falle kann man sich dadurch helfen, daß man statt des Wägebehälters einen großen Behälter verwendet. dessen Fassungsraum man durch Wägung bis zu einer bestimmten Marke geeicht hat. Statt nun während des Versuches das Wasser zu wägen, füllt man iedesmal diesen Behälter bis zur Eichmarke. Hatte das zur Eichung verwendete Wasser eine andere Temperatur als das Speisewasser während des Versuches, so ist der Inhalt des Behälters nach dem Temperaturunterschied zu berichtigen.

Das in der Dampfleitung vom Kessel bis zur Maschine niedergeschlagene Dampfwasser wird aufgefangen, gewogen und von der Speisewassermenge abgezogen. Das innerhalb der Maschine, also in den Dampfmänteln, im Aufnehmer usw. niedergeschlagene Dampfwasser pflegt man bei genauen Versuchen ebenfalls zu wägen; es gehört jedoch zum Dampfverbrauch der Maschine und darf vom Speisewasser nicht abgezogen werden.

Art der Speisevorrichtung. Eine von der Maschine, der Transmission oder einem Elektromotor angetriebene Pumpe ist ohne weiteres zulässig. Verwendet man eine Dampfpumpe, so muß sie ihren Dampf entweder aus einem anderen Kessel beziehen oder man muß den Abdampf in einer gekühlten Rohrschlange niederschlagen, auffangen, wägen und vom Speisewasser abziehen. Wird mit einem Injektor gespeist, so muß das Schlabberwasser desselben in den Speise behälter zurückgebracht werden.

Damit nur gewogenes Wasser, und zwar alles in den Versuchskessel gelangt, nur als Dampf aus dem Kessel entweicht und dieser nur in die Maschine gelangt, sind alle für die Versuche nicht benutzten, an die Versuchs-Speiseeinrichtung und an den Kessel angeschlossenen Speise- und Dampfleitungen durch Blindflanschen abzuschließen; ferner ist auch die Ablaßleitung des Kessels mit einem Blindflansch zu versehen. Eine Ausnahme von dieser Regel ist nur dann zulässig, wenn die Dichtheit eines Absperrorganes in anderer Weise, z. B. durch ein frei ausmündendes Rohr, genügend sicher erscheint.

Berechnung des Dampfver brauches. Bezeichnet man mit

a die Versuchsdauer in Stunden,

b " Gesamt-Speisewassermenge in kg,

c " Menge des Leitungswassers in kg,

 N_i ,, indizierte Maschinenleistung, N_e ,, Nutzleistung der Maschine,

so beträgt der stündliche Dampfverbrauch

für die Indikatorpferdestärke

$$D_i = \frac{\mathbf{b} - \mathbf{c}}{\mathbf{a} \cdot \mathbf{N}_i} \text{ kg,}$$

für die Nutzpferdestärke

$$D_e = \frac{\mathbf{b} - \mathbf{c}}{\mathbf{a} \cdot \mathbf{N_a}} \text{ kg.}$$

Berechnung des Wärmeverbrauches. Seit der Einführung der Dampfüberhitzung genügt die Kenntnis des Dampfverbrauches allein nicht mehr zur Beurteilung der Wirtschaftlichkeit einer Dampfmaschine, weil zur Erzeugung von 1 kg Heißdampf ein größerer Wärmeaufwand notwendig ist, als für 1 kg

Sattdampf von derselben Spannung, und weil dieser Wärmeaufwand mit zunehmender Dampftemperatur wächst, während der Dampfverbrauch gleichzeitig abnimmt. Der stündliche Wärmeverbrauch W für 1 PS_i oder 1 PS_e ist das Produkt aus dem stündlichen Dampfverbrauch für dieselbe Leistung und dem Wärmeinhalt λ_0 für 1 kg des Versuchsdampfes; also

der Wärmeinhalt λ_0 ist gleich der Summe der Wärmemenge, die zur Erzeugung von 1 kg Sattdampf aus Wasser von 0° erforderlich ist, und der Wärmemenge, die zur Überhitzung dieses Dampfes von der Sättigungstemperatur t_s auf die Dampftemperatur t_d verwendet wird. Der erste Summand λ_s wird aus der Dampftafel S. 61 entnommen. Bezeichnet man die mittlere spezifische Wärme des Dampfes innerhalb der Temperaturen t_s und t_d mit c_p , dann ist der Wärmeinhalt

$$\lambda_0 = \lambda_s + (t_d - t_s) c_p;$$

die jeweiligen Werte für c_p sind in der folgenden Zahlentafel¹) zusammengestellt:

Mittlere spezifische Wärme cp für die Überhitzung von ts auf td ° C.

0,5	1	2	4	6	8	10	12	14	16	18	20
80,9	99,1	119,6	142,9	158,1	169,6	179,1	187,1	194,2	200,5	206,2	211,4
0,473 0,471 0,470 0,470 0,469 0,469 0,469 0,470 0,470 0,471	0,483 0,480 0,478 0,476 0,475 0,474 0,474 0,474 0,474	0,496 0,491 0,488 0,486 0,485 0,484 0,483 0,482 0,482		0,544 0,534 0,526 0,519 0,514 0,510 0,508 0,505	0,576 0,561 0,548 0,538 0,530 0,525 0,521 0,517	0,590 0,572 0,558 0,548 0,540 0,534 0,530	0,623 0,599 0,580 0,567 0,556 0,548 0,543	0,660 0,629 0,605 0,588 0,575 0,565			0,738 0,694 0,660 0,637 0,619 0,606
0.473	0,477 0,478 — — —	0,483 0,483 0,484 0,486 0,489	0,494 0,494 0,494 0,495 0,497	0,504 0,503 0,503 0,503 0,504	0,514 0,512 0,511 0,510 0,510	0,524 0,522 —	0.535	0.548	0.560	0.574	0.587
֡	80,9 0,478 0,473 0,471 0,470 0,469 0,469 0,469 0,469 0,470 0,471 0,472 0,473	80,9 99,1 0,478 0,487 0,473 0,483 0,471 0,480 0,470 0,478 0,469 0,475 0,469 0,474 0,470 0,474 0,470 0,474 0,471 0,475 0,472 0,476 0,473 0,477 	0,478 0,487 0,501 0,473 0,483 0,471 0,480 0,496 0,475 0,488 0,469 0,475 0,486 0,469 0,474 0,482 0,470 0,474 0,482 0,473 0,474 0,482 0,473 0,474 0,482 0,473 0,474 0,482 0,473 0,474 0,482 0,473 0,474 0,482 0,473 0,474 0,482 0,473 0,474 0,482 0,473 0,475 0,484 0,486 0,488 0,478 0,488 0,478 0,488 0,478 0,488 0,478 0,488 0,478 0,488	0,478 0,487 0,501 0,528 0,473 0,483 0,491 0,471 0,480 0,496 0,470 0,478 0,486 0,509 0,469 0,475 0,486 0,509 0,469 0,475 0,486 0,509 0,469 0,474 0,482 0,497 0,470 0,474 0,482 0,497 0,470 0,474 0,482 0,497 0,470 0,474 0,482 0,496 0,473 0,475 0,476 0,483 0,494 0,473 0,475 0,478 0,483 0,494 0,475 0,475 0,478 0,483 0,494 0,475 0,478 0,483 0,494 0,476 0,484 0,494 0,476 0,486 0,495 0,476 0,489 0,497 0,486 0,495 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497 0,489 0,497	0,478 0,487 0,501 0,528 0,555 0,473 0,483 0,491 0,521 0,470 0,478 0,491 0,521 0,470 0,478 0,481 0,505 0,565 0,469 0,475 0,486 0,509 0,534 0,469 0,475 0,485 0,505 0,526 0,469 0,474 0,484 0,501 0,519 0,470 0,474 0,482 0,499 0,514 0,470 0,474 0,482 0,497 0,510 0,470 0,474 0,482 0,495 0,508 0,471 0,475 0,482 0,494 0,504 0,473 0,477 0,483 0,494 0,504 0,473 0,477 0,483 0,494 0,504 0,473 0,475 0,488 0,494 0,504 0,475 0,478 0,483 0,494 0,504 0,475 0,478 0,483 0,494 0,504 0,476 0,488 0,494 0,504 0,476 0,488 0,494 0,504 0,476 0,488 0,494 0,504 0,484 0,494 0,503 0,484 0,494 0,503 0,484 0,494 0,503 0,484 0,494 0,503 0,484 0,494 0,503 0,489 0,497 0,504 0,489 0,497 0,504	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ Nach Knoblauch und Winkhaus, Z. d. V. d. I., 1915, S. 403.

Beispiel: Der stündliche Dampfverbrauch für die Pferdestärke sei ermittelt zu $D_i = 5,12 \ kg$ und $D_0 = 5,63 \ kg$; der Dampfdruck vor der Maschine sei zu 11,0 at. Überdruck = 12,0 at. abs.¹) und die Dampftemperatur an derselben Stelle zu 263° C festgestellt.

Nach der Dampftafel S. 62 ist die Erzeugungswärme des gesättigten Dampfes $\lambda_s = 668,1$ WE, nach der obigen Tafel ist die Sättigungstemperatur $t_s = 186,9^{\circ}$ C und die mittlere spezifische Wärme (zwischen 260° und 280°) c_p zwischen 0,567 und 0,556 zu setzen. Durch Interpolation erhält man

$$c_p = 0.567 - \frac{0.567 - 0.556}{20} \cdot 3 = 0.567 - 0.002 = 0.565;$$

also

$$\lambda_0 = \lambda_s + (t_d - t_s)c_p = 668.1 + (263 - 186.9) \cdot 0.565 = 711.1 \text{ WE.}$$

Danach berechnet sich der auf Speisewasser von 0° C bezogene stündliche Wärmeverbrauch für die Indikatorbzw. Nutzpferdestärke zu

$$W_i = D_i \lambda_0 = 5.12 \cdot 711.1 = 3641 \text{ WE und}$$

 $W_e = D_e \lambda_0 = 5.63 \cdot 711.1 = 4004 \text{ WE.}$

Erst diese Zahlen ermöglichen einen einwandfreien Vergleich der Wirtschaftlichkeit verschiedener Heißdampfmaschinen.

Zur Veranschaulichung der bei Maschinenversuchen erforderlichen Aufschreibungen und der Auswertung der Ergebnisse dienen die auf S. 46 bis 51 angeführten Musterbeispiele.

Aus der Zahlentafel B sind die

Hauptergebnisse des Versuches

wie folgt hervorzuheben bzw. zu berechnen:

Versuchsdauer	 Std. 5,68
Anzahl der Diagramme	92
Minutliche Drehzahl	139,8
Dampfüberdruck vor der Maschine	at. 11,0
Dampftemperatur " " "	°C 263
Anfangsdruck im Hochdruckzylinder	 at. 10,9
Füllung " "	% 25
Anfangsdruck im Niederdruckzylinder .	 at. 1,10
Füllung " " .	 % 44
Vakuum " " .	 at. 0,83

¹⁾ S. 62.

Muster-

(für Abschnitt

Hauptmaße:

A. Leistungsversuche an einer

Zylinderdurchmesser $D=241.2 \text{ mm} \ (=24.12 \text{ cm}).$ Durchmesser der Kolbenstange $d=40.0 \text{ mm} \ (=4.00 \text{ cm}),$ einseitig. Wirksame Kolbenfläche F = $\frac{24,12^2 \pi}{4} - \frac{1}{2} \cdot \frac{4,00^2 \pi}{4} = 450,7 \text{ qcm}$ oder $F_{(KS)} = \frac{24,12^2 \pi}{4} - \frac{4,00^2 \pi}{4} = 444,4 \text{ qcm},$ $F_{(AS)} = \frac{24,12^2 \pi}{4} = 457,0 \text{ qcm}.$

Kolbenhub

s = 331 mm = 0.331 m.

1. Beispiel.

	No.	Mi D	inutlich rehzah	ne l	dr	npf- uck t.	Auswertung der Diagramme:							ie:
Zeit	Diagramm	Ablesung	Differenz	n	$_{ m Kesssl}$	vor der Maschine	dru	ings- ick t.	Wirkl. Füllung		dri	gen- ick it.	Pla met wer	er-
	Dia	Abl	Diff		K,	vor Mas	KS	AS	ĸs	AS	KS	AS	KS	AS
815 830 845 900 915 930 945	1 2 3 4 5 6 7 8	17 449 — — 26 756 — —	_	 155,1 	10,1 10,1 10,1 10,0 10,0 10,0 10,0 10,0	10,1 10,1 10,0 10,0 10,0 10,0 10,0	9,6 9,6 9,5 9,5 9,5 9,5 9,5	9,6,6,5,5,5,5,5,5,5,5	22 21 20 21	21 22 21 21 20 20	0,00 0,00 0,00 0,00 0,00	0,07 0,07 0,07 0,07 0,07 0,07 0,07	225 228 226 220 222 225 225 229	223 224 226 222 223 220 218 222
10 ¹⁵ 10 ³⁰	9 10	36 072 —	9 316	155,3 —	10,0 10,0	10,0 10,0	9,5 9,5	9,5 9,5	21 21	21 21	0,00 0,00	0,07 0,07	223 224	220 219
10^{45} 11^{00}	$\begin{array}{c} 11 \\ 12 \end{array}$	$\frac{-}{43055}$	6 983	$\frac{-}{155,2}$	10,0 10,0	10,0 10,0	9,5 9,5	9,5 9.5	20 21			$0,07 \\ 0,07$	220 223	$\begin{array}{c} 219 \\ 223 \end{array}$
Sumi	me:		25606	_					251	252	_	_	2677	2659
Mittel	wert:	_	_	155,2	10,0	10,0	9,5	9,5			•	0,07	223	222
											Beisp:			
730 745 800	$\frac{2}{3}$	38 055 	_	_	10,0 10,1 10,0	10,0 10,1 10,0	9,6 9,5	9,6 9,7 9,6	11 9	10 10	$0,05 \\ 0,05$	$0,05 \ 0,05 \ 0,05$	145 140	134 132
815 830	$\begin{array}{c c} 4 \\ 5 \end{array}$	 47 590	9 535	 158.9	10,0 10,0	10,0 10,0	9,5 9,5	9,6 9,6	10 10			$0,05 \\ 0,05$		135 134
845	6	_	—		10,3	10,3	9,8	9.9	10			0,05		134
900	7			-	10,2	10,2	9,7	9,8	9			0,05		131
915	8		0.500	1500	10,0	10,0	9,5	9,6	10			0,05		133 134
930 945	9 10	57 120 59 500	2 380	158,8 158.7	10,1 10,0	10,1 10,0	9,6 9,5	$9,7 \\ 9,6$	11 10			$0,05 \\ 0,05$	146 144	136
Sumi			21 445			100,7							1429	
Mittel	_			158,8		10,1	9,6			_	-	0,05		134

¹⁾ Mit Spitzeneinstellung.

beispiele.

2--5).

Einzylinder-Dampfmaschine ohne Kondensation. Versuchsaufschreibungen

Versuchsauf	schreibungen.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Beispiel. Versuchstag
Indizierte Spannung pi at. KS AS KS	Berechnung der Ergebnisse. 1. Beispiel. pi (KS) = $\frac{223}{15 \cdot 4.0} = 3,72$ at. pi (AS) = $\frac{222}{15 \cdot 4.0} = 3,70$ at. pm = $\frac{3,72 + 3,70}{2} = 3,71$ at. Ni = $\frac{\mathbf{F} \cdot \mathbf{pm} \cdot \mathbf{s} \cdot \mathbf{n}}{30 \cdot 75} =$
3,72 3,70 38,2 172,7 0,954 35,7 0,93	$= \frac{450,7 \cdot 3,71 \cdot 0,331 \cdot 155,2}{30 \cdot 75} =$ $= 38,2 \text{ PS}$ $N_e = \frac{Q1 \cdot \pi \cdot n}{30 \cdot 75} =$ $= \frac{172,7 \cdot 0,954 \cdot \pi \cdot 155,2}{30 \cdot 75} = 35,7 \text{ PS}$ $\eta_m = \frac{N_e}{N_i} = \frac{35,7}{38,2} = 0,93.$ 2. Beispiel (mit Berücksichtigung beider Kolbenseiten).
2,38 2,23 24,3 101,8 0,954 21,5 0,88	$\begin{aligned} & \text{pi (KS)} = \frac{143}{15 \cdot 4.0} = 2,38 \text{ at.} \\ & \text{pi (AS)} = \frac{134}{15 \cdot 4.0} = 2,23 \text{ at.} \\ & \text{Ni (KS)} = \frac{444,4 \cdot 2,38 \cdot 0,331 \cdot 158,8}{60 \cdot 75} = \\ & = 12,35 \text{ PS} \\ & \text{Ni (AS)} = \frac{457,0 \cdot 2,23 \cdot 0,331 \cdot 158,8}{60 \cdot 75} = \\ & = 11,98 \text{ PS} \\ & \text{Ni = 12,35 + 11,98 = 24,33 } \bigcirc \text{ 24,3 PS} \\ & \text{Ne = } \frac{101,8 \cdot 0,954 \cdot \pi \cdot 158,8}{30 \cdot 75} = \text{21,5 PS} \\ & \eta_{\text{m}} = \frac{21,5}{24,3} = \text{0,88.} \end{aligned}$

B. Dampfverbrauchsversuch an einer KS | AS druck 290 mm Hauptmaße: Zylinderdurchmesser: Hochdruck Zylinderdurchmesser:

Niederdruck
Niederd $F_{(KS)} = 632.2 \text{ qcm}; F_{(AS)} = 642.4$ $Niederdruck F' = \frac{54^2 \pi}{4} - \frac{1}{2} \left(\frac{6.0^2 \pi}{4} + \frac{4.8^2 \pi}{4} \right) = 2266.8$ $F'_{(KS)} = 2261.7 \text{ qcm}; F'_{(AS)} = 2271.9$ Zylinderverhältnis: 637.3:2269.8 = 1:3.57. Kolbenhub: Hochdruck s = 450 mm Niederdruck s' = 450 ,

Speisew	asser	Mi	nutliche	Dreh	zahl	£.	Dan Druck at.		akuum im ondensator	Schalttafel- Ablesungen	
Zeit	kg	$oldsymbol{Z}$ eit	Ablesung	Differenz	n	Zeit	vor der Maschine		es Vaku	Volt	Amp
926 938 949 959 1008 1016 1027 1038 1048 1100 1116 1130 1146 1203 1219 1233 1246 100 113 126 139 154 208 224 Summe:	150 150 150 150 150 150 150 150 150 150		19 900 28 292 36 679 45 066 54 157 61 847	8 387 8 387 9 091	139,9 139,8 139,8 139,9 139,8	926 945 1000 1015 1030 1145 11200 1145 1290 1245 1000 125 1300 245 300	11,0 11,0 11,0 11,0 11,0 11,0 10,9 11,0 11,0	225 248 240 272 270 271 272 275 274 274 271 268 268 264 265 272 268 270 268 272 268 272 268 272 268 272 268 272 268 272 268 272 275 274 274 274 274 274 274 275 275 276 276 276 276 276 277 277 277 277 277	68,5 68,5 68,5 68,5 68,5 68,5 69 69 69 69 69 69 69 69 69 69	221 225 221 223	323 328 323 323 323 328 326 336 328 328 327 328 327 329 338 316 326 330 325 327 329 328 327 329 328
	0000			419//	-		1 44 6		100		
Mittel:					139,8	l	11,0	263	69	223	328

Heißdampf-Verbund-Kondensationsmaschine.

Versuchsaufschreibungen:

Versuchstag

Beginn 926 | Dauer 5 Std. 41 Min. = 5,68 Std.

Wasserstand im Glas 150 mm.
" Speisebehälter 150 mm.
Indikatoren: Hochdruck KS | AS | Niederdruck KS | AS 10,0 10,0

	Diagramm-Auswertung:															
er		Hock	idrud	kzyl	inder		Niederdruckzylinder									
Nummer	Anf druc	angs- ek at.	Fül	lung // ₀	Plan w	imeter- ert ¹)		angs- ek at.	Füllung $^{0/0}$		Vakuum at.		Planin wer	Planimeter- wert 1)		
_	KS	KS AS KS AS KS AS		KS	AS	KS	AS	KS	AS	KS	AS					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	10,8 10,9 10,9 10,7 10,7 10,9 10,8 10,9 10,9 10,9	10,8 10,9 10,9 10,9 10,7 10,8 10,9 10,9 10,9 10,9 10,9 10,9 10,9 10,9	24 25 24 25 25 25 25 26 24 25 26 24 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	25 25 25 24 24 24 25 25 25 25 25 25 24 25 24 25 26 25 25 25 24 25 25 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	183 180 182 183 181 182 183 184 180 184 185 183 183 181 183 185 184 181 183 185	180 181 180 180 180 181 183 184 182 183 184 183 185 183 183 183 181 183 183	1,10 1,08 1,11 1,09 1,10 1,10 1,10 1,10 1,10 1,10	1,10 1,10 1,09 1,10 1,10 1,10 1,10 1,10	konstant 44 º/o	konstant 44 º/o	konstant 0,80	konstant 0,85	142 140 142 141 140 140 140 140 140 140 140 140 140	150 150 150 150 151 150 152 150 151 151 151 151 151 150 150 150 150		
	2498	2495	565	573	4201	4292	25,27	25,24			Γ		3234	3461		
	10,9	10,9	25	25	183	182	1,10	1,10	44	44	0,80	0,85	140	150		

¹⁾ Mit Spitzeneinstellung.

Vakuum im Kondensator 69 cm ¹) = $\frac{69}{73.5}$ =	at.	0,94
Vakuum im Kondensator bei 757 mm 69		-,
Barometerstand $\dots \frac{75.7}{75.7} =$	%	91
Füllung im Hochdruckzylinder bezogen auf Niederdruck $\dots \dots \frac{25}{3,57} =$	%	7,0
$\begin{array}{l} \text{Mittlerer Druck im Hoch-} \\ \text{druckzylinder} \\ \end{array} \begin{cases} p_{i_{(KS)}} = \frac{183}{15 \cdot 3.5} = \\ p_{i_{(AS)}} = \frac{182}{15 \cdot 3.5} = \end{array}$	at.	3,49
$ m druckzylinder m igg p_{i_{(AS)}} = rac{182}{15 \cdot 3.5} =$,,	3,47
$\begin{array}{c} \text{Mittlerer Druck im Nieder-}\\ \text{druckzylinder} \end{array} \middle \begin{array}{c} p_{i_{(KS)}} = \frac{140}{15 \cdot 10,0} = \\ p_{i_{(AS)}} = \frac{150}{15 \cdot 10,0} = \end{array} \right.$	at.	0,93
druckzylinder $p_{i(AS)} = \frac{150}{15 \cdot 10,0} =$,,	1,00
Indizierte Leistung:		
$N_{i_{(KS)}} = \frac{632,2 \cdot 3,49 \cdot 0,45 \cdot 139,8}{60 \cdot 75} =$	PS	30,9
$ \begin{array}{l} \text{a) im Hoch-} \\ \text{druck-} \\ \text{zylinder} \\ \text{N}_{i_{(\text{KS})}} = \frac{632,2 \cdot 3,49 \cdot 0,45 \cdot 139,8}{60 \cdot 75} = \\ \text{N}_{i_{(\text{AS})}} = \frac{642,4 \cdot 3,47 \cdot 0,45 \cdot 139,7}{60 \cdot 75} = \\ \text{N}_{i_1} = 30,9 + 31,2 = \\ \end{array} $	"	31,2
$(N_{i_1} = 30.9 + 31.2 =$,,	62,1
	"	29,4
$N_{i_1} = 30,9 + 31,2 = 0$ $N_{i_{(KS)}} = \frac{2261,7 \cdot 0,93 \cdot 0,45 \cdot 139,8}{60 \cdot 75} = 0$ $N_{i_{(AS)}} = \frac{2271,9 \cdot 1,00 \cdot 0,45 \cdot 139,8}{60 \cdot 75} = 0$ $N_{i_2} = 29,4 + 31,8 = 0$,,	31,8
	,,	61,2
c) indizierte Gesamtleistung $N_i = 62,1+61,2 =$,,	123,3
Elektrische Leistung:		
Spannung	Volt Amp.	223 328
$223 \cdot 328 =$	Watt	73 200
Leistung \cdots $N_{\rm el} = \frac{73200}{736} =$	$\mathrm{PS}_{\mathrm{el}}$	99,3

 $^{^{1)}}$ Erfolgt die Ablesung des Vakuums in cm Q.S., so verwandelt man die cm in atm., indem man die Ablesung durch 73,5 (= Höhe einer Quecksilbersäule mit dem Druck 1 at) dividiert.

Nutzleistung der Dampfmaschine, wenn der Wirkungsgrad der Dynamo zu $\eta_d=0.90$ und der Riemenverlust zu 2% angenommen wird,

$$N_e = \frac{N_{el}}{\eta_d \cdot (l - 0.02)} = \frac{99.3}{0.90 \cdot 0.98} = PS 112.5$$

$$\begin{array}{c} \textbf{Mechanischer Wirkungsgrad} \\ \textbf{der Dampfmaschine} \end{array} \left\{ \eta_{m} = \frac{112,5}{123,3} = 0.91 \right.$$

Speisewasserverbrauch:

a) im ganzen	kg	3600
b) in der Stunde $\dots \frac{3600}{5,68}$,,	634
c) in der Stunde für 1 PS_i $\frac{634}{123,8}$ =	,,	5,12
d) " " " " 1 $PS_e \cdot \cdot \cdot \cdot \cdot \cdot \frac{634}{112,5} =$,,	5,63
Wärmeinhalt von 1 kg Dampf:		
$668,1 + (263 - 186,9) \cdot 0,565 = 1$	WE	711.1

Wärmeverbrauch in der Stunde:

für	1	PS_i							$5,12 \cdot 711,1 = WE$	3641
	1	PS_{\bullet}			_			_	$5.63 \cdot 7111 = $	4004

Sechster Abschnitt.

Die Ermittlung des Arbeitsbedarfes der angetriebenen Arbeitsmaschinen.

(Gruppenindizierung.)

Wenn es sich darum handelt, den Arbeitsbedarf einzelner Arbeitsmaschinen oder Maschinengruppen festzustellen, dann kann man in folgender Weise verfahren: Man indiziert die Dampfmaschine zunächst bei leerlaufender Transmission, indem man etwa 5—10 Diagrammsätze abnimmt. Die hieraus sich ergebende, auf die normale Drehzahl der Dampfmaschine umgerechnete Leistung sei N_t. Dann wird die erste Arbeitsmaschine eingerückt und die Dampfmaschine wieder indiziert; die Zahl der Diagramm-

sätze richtet sich nach den mehr oder weniger großen Schwankungen der Beanspruchung; im allgemeinen reichen 10 Sätze aus. Die hieraus bestimmte Leistung sei bei normaler Drehzahl N_1 . Dann rückt man, wenn möglich, diese Maschine aus und die nächste Maschine oder Maschinengruppe ein usw. Die berechneten Leistungen seien N_2N_3 usw. Ist es möglich, den Hauptantriebsriemen der Dampfmaschine abzuwerfen, dann kann man durch Indizieren auch die Leerlaufsarbeit derselben bestimmen; sie betrage, auf die normale Drehzahl umgerechnet, N_1 PS.

Hieraus ergibt sich folgende Zusammenstellung:

Der Arbeitsbedarf jeder Arbeitsmaschine und der Transmission ergibt sich durch Differenzbildung wie folgt:

In der Praxis liegen jedoch die Fälle nicht immer so einfach, wie dieser Rechnungsgang es voraussetzt. Um die möglichst größte Genauigkeit zu erzielen, wähle man die einzelnen Gruppen von Transmissionen und Arbeitsmaschinen, während deren Betrieb man indiziert, stets so, daß der zu berechnende Arbeitsbedarf sich als Differenz von verhältnismäßig kleinen Größen ergibt, oder daß die Differenz einen bedeutenden Teil der voneinander zu subtrahierenden Größen beträgt. Man vermeide es möglichst, zu einer schon indizierten Gruppe eine neue hinzuzuschalten, ohne die erstere auszurücken, weil infolge der Vergrößerung der voneinander zu subtrahierenden Größen wegen der unvermeidlichen Versuchsfehler die Differenz relativ ungenauer wird.

Weil bei der Berechnung der einzelnen indizierten Leistungen

alle Größen mit Ausnahme der Planimeterwerte konstant sind, kann man diese Größen (nach S. 35) zu einer Gesamtkonstanten zusammenfassen und dadurch die Bechnung vereinfachen.

Musterbeispiel.

In einer Lack- und Farbenfabrik wurde wegen einer beabsichtigten Betriebsvergrößerung eine 25 pferdige Heißdampflokomobile aufgestellt. Der Arbeitsbedarf der zurzeit vorhandenen Arbeitsmaschinen sollte möglichst im einzelnen ermittelt werden.

Hauptabmessungen und Konstante.

	Hochd	lrZyl.	Nieder	drZyl.
	KS	AS	KS	AS
Zylinderdurchmesser mm	16	80	20	30
Kolbenstangendurchmesser ,	32	_	32	30
Nutzbare Kolbenfläche F qcm	194	201	523	524
Kolbenhub s m	0,8		0,	33
Normale minutliche Drehzahl		16	-	
Maßstab der Indikatorfeder f mm/kg/qcm	8,0	8,0	25,0	25,0
Planimeterkonstante		1	Ď .	
Maschinenkonstante (bei $n = 165$) C_{1-4})	0,0195	0,0202	0,0169	0,0169
Indizierte Leistung ²) PŠi	$C_1 \cdot P1$	\mathbf{C}_{2} ·Pl	$\dot{\mathbf{C}}_{3}$ ·Pl	$C_4 \cdot P1$

1) Indizierte Leistung einer Kolbenseite.

$$N_n = \frac{F \frac{Pl}{15 \cdot f} \cdot s \cdot n}{60 \cdot 75} = C \cdot Pl., \text{ hieraus}:$$

Maschinenkonstanten bei n = 165:

Hochdruckzylinder KS:
$$C_1 = \frac{194 \cdot 0.33 \cdot 165}{15 \cdot 8 \cdot 60 \cdot 75} = 0.0195$$

AS: $C_2 = \frac{201 \cdot 0.33 \cdot 165}{15 \cdot 8 \cdot 60 \cdot 75} = 0.0202$
Niederdruckzylinder KS: $C_3 = \frac{523 \cdot 0.33 \cdot 165}{15 \cdot 25 \cdot 60 \cdot 75} = 0.0169$
AS: $C_4 = \frac{524 \cdot 0.33 \cdot 165}{15 \cdot 25 \cdot 60 \cdot 75} = 0.0169$

2) Pl = Planimeterwert bei Spitzeneinstellung.

Indizierte Leistungen bei Betrieb der einzelnen Gruppen.

	Mittlere Plani- meterwerte				Indizierte Leistungen PS				Gesamt- Leistung	
Benennung der Gruppen	Hoch- druck		Nieder- druck		Hoch- druck		Nieder- druck		Ges Leis	
	KS	AS	KS	AS	KS	AS	KS	AS	PS	
I. Maschine + leerlaufende						{				
Transmission	171	24	98	93	3,3	0,5	1,7	1,6	7,1	
Kollergang	181	83	108	154	3,5	1,7	1,8		9,6	
III. Wie I + Knetmaschine a IV. " III + Knetmasch. b	182 221		155 227			1,7 2,5	2,6 3,8	2,5 3,6	10,3 14,2	
V. " I + kleiner Koller-	160		105		'	'	1,8	1,7	7,7	
VI. Wie I + Farbenknet-	1				<i>'</i>	1,1	′			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	157	55	105	104	3,0	1,1	1,8	1,7	7,6	
maschine	157	50	100	90	3,0	1,0	1,7	1,5	7,2	
VIII. Wie I + 3 Farbmühlen + Harzmühle	157	60	108	100	3,0	1,2	1,8	1,7	7,7	
IX. Wie I + leerlaufende Schleudermaschine+Luft-										
pumpe	159	55	105	93	3,1	1,1	1,8	1,6	7,6	
X. Wie I + Gesamthe- trieb	259	180	320	298	5.0	3.6	5,4	5,0	19,0	
XI. Leerlauf der Dampfma-	1		ļ					′	1 .	
schine	107	13	60	101	[Z,I	U,3	1,0	10,9	I 4,5	

Arbeitsbedarf der Arbeitsmaschinen.

Gruppen

	•	n uppon				
1.	Transmission	I-X	=	7,1 -	4,3 = PS	2,8
2.	Neu aufgest. Kollergang	II-I	=	9,6-	7,1 = ,	2,5
3.	Knetmaschine a	III-I	=	10,3 -	7,1 = ,	3,2
4.	Knetmaschine b	IV-III	=	14,2-1	10,3 = ,	3,9
5.	Beide Knetmaschinen .	IV-I	=	14,2—	7,1 = ,	7,1
6.	Kleiner Kollergang	V-I	==	7,7 —	7,1 = ,	0,6
7.	Farbenknetmaschine	VI-I	===	7,6 —	7,1 = ,	0,5
8.	Walzenreibmaschine	VII-I	=	7,2 -	7,1 = ,	0,1
9.	3 Farbmühlen + Harz-					
	mühle	VIII-I	=	7,7 -	7,1 = ,	0,6
10.	Leerlaufende Schleuder-					
	maschine + Luftpumpe	IX-I	=	7,6 -	7,1 = ,	0,5
11.	Gesamtbetrieb (ein-					
	schließlich Transmission	$\mathbf{X} - \mathbf{X}$	I =	19,0 —	4,3 = ,,	14,7
12.	Posten 6 bis 10 zus. 14,7 -	-(2,8+2)	,5 +	3,2+	3,9)= ,,	2,3

Eine bedeutende Genauigkeit darf man von den Ergebnissen einer Gruppenindizierung nicht fordern, weil die Versuchsfehler infolge der Differenzbildung sich relativ vergrößern, wie folgendes Beispiel zeigt: In der obigen Zusammenstellung sei in der 1. Zeile die Leistung I = 7,1 PS um nur 1% zu groß, müßte also $\frac{7,1}{1,01} = 7,03$ PS sein; die Leistung XI = 4,3 PS sei um 1% zu klein, müßte also $\frac{4,3}{0,99} = 4,34$ PS sein. Die Differenz I—XI müßte demnach 7,03-4,34 = 2,69 PS betragen und weicht gegenüber der oben berechneten Differenz um $\frac{2,8-2,69}{2,69} \cdot 100 = 4,1\%$ ab.

Noch größer wird der Unterschied bei einem ebenso großen Fehler in der 6. Zeile, nämlich

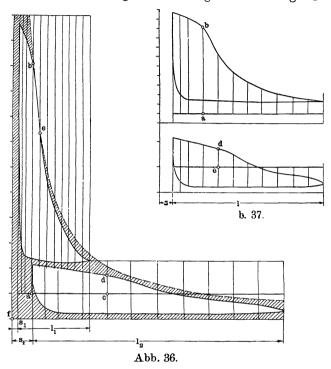
$$V-I = \frac{7.7}{1,01} - \frac{7.1}{0.99} = 7.6 - 7.4 = 0.4 \text{ PS oder}$$

$$\frac{0.6 - 0.4}{0.6} \cdot 100 = 33\%.$$

Abweichungen der unmittelbar festgestellten indizierten Leistungen von nur 1% können also einen sehr beträchtlichen Fehler bei der Berechnung des Arbeitsbedarfes zur Folge haben. Aus diesem Grunde sind die Ergebnisse der Zeilen 6—10 unsicher und wurden bei Zeile 9 Gruppe VIII mehrere kleinere Maschinen zusammengenommen.

Anhang.

Rankinisieren der Diagramme einer Verbundmaschine.


Diesem nach seinem Erfinder Rankine benannten Verfahren liegt folgender Gedanke zugrunde:

Der in den Hochdruckzylinder eintretende, dort expandierende, dann in den Niederdruckzylinder eintretende und nochmals expandierende Dampf könnte theoretisch dieselbe Arbeit leisten, wenn er mit seiner Eintrittsspannung unmittelbar in den Niederdruckzylinder eintreten und dort seine Gesamtexpansion ausführen würde.

Das Verfahren des Rankinisierens ist aus Abb. 36 ersichtlich. Die beiden zusammengehörigen 1) Hoch- und Niederdruckdia-

¹⁾ Bei einer Verbundmaschine mit voreilender Niederdruckkurbel gehören zusammen: Hochdruck-Kurbelseite und Niederdruck-Kurbelseite; bei einer Verbundmaschine mit voreilender Hochdruck-Kurbel und bei einer Tandemmaschine gehören zusammen: Hochdruck-Kurbelseite und Niederdruck-Außenseite.

gramme enthält Abb. 37. Beide Diagramme sind auf einen gemeinsamen Druckmaßstab umzuzeichnen. Die Länge l_1 des umgezeichneten Hochdruckdiagrammes ist gleich der Länge l_2 des

Niederdruckdiagrammes, dividiert durch die Zylinderverhältniszahl λ (Verhältnis der beiden Kolbenflächen), also

$$l_1 = \frac{l_2}{\lambda};$$

die ursprünglichen Verhältnisse waren:

Länge beider Diagramme 1 = 60 mm, Zylinderverhältnis $1: \lambda = 1:3,57$,

Maßstab des Hochdruckdiagrammes 3,75 mm, Maßstab des Niederdruckdiagrammes 10,0 mm.

Die Länge l₂ des rankinisierten Niederdruckdiagrammes wurde zu 200 mm angenommen, dann beträgt die Länge des rankinisierten Hochdruckdiagrammes

$$l_1 = \frac{l_2}{\lambda} = \frac{200}{3.57} = 56 \text{ mm};$$

der schädliche Raum betrage 8%, also wird

$$s_1 = 56 \cdot 0.08 = 4.5 \text{ mm};$$

der schädliche Raum des Niederdruckzylinders betrage ebenfalls 8%; dann wird

$$s_2 = 200 \cdot 0.08 = 16 \text{ mm};$$

damit sind die Längen der Diagramme festgelegt.

Nun teilt man beide Diagramme (Abb. 37) in 10 gleiche Teile, halbiert den ersten Teil (wegen der Kompression) zweckmäßig nochmals und multipliziert die Ordinaten des Hochdruckdiagrammes mit dem Verhältnis des gewählten Maßstabes zum Hochdruckmaßstab. Wählt man z. B. im rankinisierten Diagramm den Niederdruckmaßstab zu 20 mm, so sind die Ordinaten des Hochdruckdiagrammes mit $\frac{20}{3,75} = 5,33$ zu multiplizieren; z. B. die Strecke ab = 34,4 mm in Abb. 37 ist mit $5,33 \cdot 34,4 = 183$ mm in Abb. 36 zu übertragen.

Die Ordinaten des Niederdruckdiagrammes sind mit dem Verhältnis des neuen Niederdruckmaßstabes zu dem des ursprünglichen Diagrammes multipliziert zu übertragen, im vorliegenden Falle also mit $\frac{20}{10}=2{,}00;$ z. B. die Strecke cd = 7,8 mm in Abb. 37 ist mit $2\cdot7{,}3=14{,}6$ mm in Abb. 36 zu übertragen,

Bemerkung: Die Abb. 36 ist im Verhältnis zu Abb. 37 um das Doppelte verkleinert dargestellt; deshalb erscheint cd in Abb. 36 = cd in Abb. 37.

Zieht man nach dem S. 22 angegebenen Verfahren durch einen am Anfang der Expansionslinie des Hochdruckdiagrammes gelegenen Punkt e für gesättigten Dampf eine gleichseitige Hyperbel mit dem Mittelpunkt f, für Heißdampf eine Adiabate mit der Gleichung pv^{1,3} == const., so kann man aus dem Abstand des Niederdruckdiagrammes von dieser Kurve und vom Hochdruckdiagramm durch Vergleich mit anderen rankinisierten Diagrammen Schlüsse auf die mehr oder weniger gute Ausnutzung des Dampfes in der Maschine ziehen.

Das Verhältnis der Diagrammflächen zur Summe der Diagrammflächen und der schraffierten Flächen nennt man Völligkeitsgrad.

Zweiter Teil.

Dampfkessel-Untersuchung.

Gegenstand der Untersuchung einer Dampfkessel-Anlage ist die Ermittlung:

- 1. der Brutto- oder rohen Verdampfungsziffer x und der auf Normaldampf bezogenen Verdampfungsziffer x_n ;
- 2. der stündlichen Dampfleistung auf 1 qm Heizfläche und der stündlichen Rostbeanspruchung auf 1 qm Rostfläche;
- 3. der Wärmeausnutzung und der Wärmeverluste;
- 4. des Dampf- und Wärmepreises.

Erster Abschnitt.

Ermittlung der Verdampfungsziffern.

Bezeichnet man die in einer bestimmten Zeit erzeugte Dampfmenge mit D, die in derselben Zeit verheizte Kohlenmenge mit K, so ist die

Brutto-Verdampfungsziffer
$$x = \frac{D}{K}$$
;

diese gibt also an, wieviel Kilogramm Dampf durch Verbrennung von 1 kg Kohle erzeugt wurden; zu ihrer Feststellung wird sowohl das in einer bestimmten Zeit verdampfte Speisewasser als auch die zu seiner Verdampfung erforderliche Kohlenmenge gewogen. Die Speisewasserwägung wird nach den auf S. 41 gemachten Angaben durchgeführt; außerdem ist die Temperatur des Speisewassers regelmäßig zu beobachten. Damit die gewogene Kohlenmenge wirklich der innerhalb der Versuchszeit erzeugten Dampfmenge entspricht, muß -das Feuer zu Anfang des Versuches sich in demselben Zustand befinden wie am Ende des Versuches; dies erreicht man folgendermaßen: Eine bestimmte Zeit, z. B. eine Stunde vor dem beabsichtigten Versuchsanfang, wird ausgeschlackt; kurz vor Versuchsanfang, also während der Ein-

stellung des Wasserspiegels, läßt man das Feuer etwas niederbrennen, so daß man deutlich übersehen kann, wie der Rost bedeckt ist. Dann erst stellt man den Wasserstand fest und beginnt den Versuch durch Aufwerfen von Kohle aus einem abgewogenen Vorrat. Gleichzeitig wird der Aschenfall ausgeräumt. Das letzte Ausschlacken erfolgt um denselben Zeitraum vor dem beabsichtigten Versuchsschluß, wie das erste vor dem Versuchsbeginn. Vor dem Abstellen der Speisepumpe hält man den Wasserstand im Kessel um so viel über der Marke, als er nach dem Abstellen der Pumpe, während das Feuer niederbrennt, sinken wird. Dieses Maß kann man sich während des Versuches aus der Verdampfungsoberfläche des Kessels und der überschlägig ermittelten Dampfleistung ausrechnen. Ist der Wasserspiegel an der Marke angelangt, dann soll das Feuer ebensoweit niedergebrannt sein wie zu Anfang des Versuches. Damit ist der Versuch beendigt. Ist das Feuer schon niedergebrannt, bevor der Wasserspiegel erreicht ist, so wird vorsichtig noch etwas Kohle aufgeworfen. Ist der Wasserspiegel schon erreicht, lange bevor das Feuer niedergebrannt ist, so muß nachgespeist werden. Dadurch verlängert sich jedoch die Versuchszeit unter Umständen ganz bedeutend. weil nach den Bestimmungen der "Normen" mindestens 10 Minuten vor Schluß nicht mehr gespeist werden darf. Man muß also gegen Schluß des Versuches den Wasserstand und den Feuerzustand aufmerksam beobachten. Am Ende des Versuches wird der Aschenfall wieder ausgeräumt. Die während des Versuches angefallenen Rückstände: Schlacken und Asche sind zu wägen. Ferner ist darauf zu achten, daß der Dampfdruck zu Ende des Versuches derselbe ist wie zu Anfang. Als Versuchsdauer bestimmen die "Normen" 10 Stunden, bei gleichmäßiger Beanspruchung der Kesselanlage mindestens 8 Stunden.

Zur späteren Feststellung des Heizwertes der Kohle ist während des Versuches eine **Durchschnittsprobe** zu nehmen. Über die Probenahme bestimmen die "Normen" folgendes:

"Von jeder Ladung (Karre, Korb u. dgl.) des zugeführten Brennstoffes wird eine Schaufel voll in ein mit einem Deckel versehenes Gefäß geworfen. Sofort nach Beendigung des Verdampfungsversuches wird der Inhalt des Gefäßes zerkleinert, gemischt, quadratisch ausgebreitet und durch die beiden Diagonalen in 4 Teile geteilt. Zwei gegenüberliegende Teile werden fortgenommen, die beiden anderen wieder zerkleinert, gemischt und geteilt. In dieser Weise wird fortgefahren, bis eine Probemenge von etwa 10 kg übrig bleibt, welche in gut verschlossenen Gefäßen zur Untersuchung gebracht wird."

Wenn das Gewicht der Herdrückstände mehr als 5 % des Kohlengewichtes beträgt, oder wenn die Rückstände augenscheinlich viel Verbrennliches enthalten, so empfiehlt es sich. auch den Herdrückständen eine Probe zu entnehmen und untersuchen zu lassen. Dabei ist zur Vermeidung von Fehlern folgendes zu beachten: Werden die Rückstände trocken gewogen, so kann die Probenahme zu jeder beliebigen Zeit erfolgen, und die Probe braucht nicht luftdicht verschlossen oder sonst vor Feuchtigkeit bewahrt zu werden, weil später doch nur der auf trockene Rückstände bezogene Kohlenstoffgehalt in Rechnung zu ziehen ist. Erfolgt dagegen die Wägung der Rückstände in abgelöschtem Zustand, so muß die Probe sofort nach der Beendigung des Versuches genommen und luftdicht verschlossen werden. Dann hat die Probe bei der chemischen Untersuchung denselben Wassergehalt wie bei der Wägung, und es entstehen bei der Umrechnung auf trockene Rückstände keine Fehler.

Besondere Sorgfalt ist bei Versuchen an Kesseln mit Wanderrosten auf die richtige Einstellung der Kohlenschicht im Fülltrichter zu verwenden, weil bei der großen Oberfläche der Trichter beträchtliche Fehler entstehen können. Es empfiehlt sich, den Versuch mit tiefer Lage der Kohlenoberfläche anzufangen, die Kohlenoberfläche eben und wagerecht auszugleichen. ihren Abstand vom Trichterrand zu messen und ihre Lage durch einen ringsumlaufenden Kreidestrich zu bezeichnen. Dann sind alle Bedingungen gegeben, um beim Schluß des Versuches die Kohlenschicht so einzustellen wie beim Beginn. Außerdem muß natürlich die Höhe der Brennschicht auf dem Rost und die Rostgeschwindigkeit bei Versuchsanfang und Versuchsschluß die gleiche sein. Um alle genannten Fehlerquellen möglichst gering zu halten. soll die Versuchsdauer möglichst lang sein, also bei durchgehendem Betrieb 24 Stunden.

Beispiel: Bei einem Verdampfungsversuch wurden in 6 Stunden 26 Minuten 464,3 kg Kohle verheizt und 4200 kg Wasser verdampft. Die Brutto-Verdampfungsziffer beträgt $x=\frac{4200}{464,3}=9,05$; das Gewicht der Rückstände betrug 17,0 kg = $\frac{17\cdot 100}{464,3}=3,66$ % der verheizten Kohlenmenge, also weniger als 5%. Da die Rückstände augenscheinlich viel Verbrennliches enthielten, entnahm man denselben eine Probe (Ergebnisse siehe im 3. Abschnitt).

Unter Normaldampf versteht man Dampf von 100° (= 1 at. abs.), der aus Wasser von 0° erzeugt wurde. Die Erzeugungswärme für 1 kg Normaldampf beträgt $\lambda_n = 639.3$ WE.

Für gesättigten, aus Wasser von 0° erzeugten Dampf kann die entsprechende Erzeugungswärme λ_s der folgenden Zahlentafel¹) (S. 61 u. 62) entnommen werden. Weil aber 1 kg Speisewasser von τ° C für je 1° C seiner Eigentemperatur 1 WE enthält, welche im Kessel dem Wasser nicht mehr zugeführt zu werden braucht, sind von λ_s so viele WE zu subtrahieren, als zur Erwärmung des Speisewassers von 0° auf τ° erforderlich waren; die in Rechnung zu setzende Erzeugungswärme ist also

$$\lambda = \lambda_s - \tau$$
.

Absol. Druck	Tempe-	Flüs- sig- keits-		npfungs- für 1 kg	Gesamt- wärme	Spezif. Gewicht	Spezif. Volumen	
Didox	latur	wärme fürl kg	innere	äußere	für 1 kg	Gewicht	4 Olumen	
kg/qcm	°C	q	ę	Apu	λ	kg/cbm	cbm/kg	
0,02	17,3	17,3	553,6	31,91	602,9	0,01468	68,126	
0,04	28,8	28,8	546,3	33,15	608,3	0,02826	35,387	
0,06	36,0	36,0	541,7	33,92	611,6	0,04142	24,140	
0,08	41,3	41,4	538,2	34,49	614,1	0,05432	18,408	
0,10	45,6	45,7	535,4	34,94	616,0	0,06703	14,920	
0,12	49,2	49,3	533,1	35,32	617,7	0,07956	12,568	
0,15	53,7	53,8	530,1	35,79	619,7	0,09814	10,190	
0,20	59,9	59,9	526,1	36,42	622,4	0,12858	7,777	
0,25	64,6	64,8	522,9	36,92	624,6	0,1586	6,307	
0,30	68,7	68,9	520,2	37,34	626,4	0,1881	5,316	
0,35	72,3	72,5	517,8.	37,70	628,0	0,2174	4,600	
0,40	7 5 ,5	75,7	515,6	38,02	629,4	0,2463	4,060	
0,50	80,9	81,2	512,0	38,56	631,7	0,3036	3,2940	
0,60	85,5	85,8	508,8	39,01	633,7	0,3601	2,7770	
0,70	89,5	89,9	506,1	39,39	635,3	0,4160	2,4040	
0,80	93,0	93,5	503,6	39,73	636,8	0,4713	2,1216	
0,90	96,2	96,7	501,6	40,03	638,1	0,5262	1,9003	
1,0	99,1	99,6	499,4	40,30	639,3	0,5807	1,7220	
1,1	101,8	102,3	497,5	40,55	640,7	0,6349	1,5751	
1,2	104,2	104,8	495,7	40,78	641,3	0,6887	1,4521	
1,4	108,7	109,4	492,6	41,18	643,1	0,7955	1,2571	
1,6	112,7	113,4	489,7	41,54	644,7	0,9013	1,1096	
1,8	116,3	117,1	487,1	41,85	646,0	1,0062	0,9939	

(Fortsetzung auf Seite 62.)

¹⁾ Nach Mollier.

Absol.	Tempe-	TOIO2		npfungs- für 1 kg	Gesamt- wärme	Spezif. Gewicht	Spezif. Volumen
DIUOR	14001	wärme für 1 kg	innere	äußere	für 1 kg	dewicht	Volumen
kg/qcm	° C	q	Q	Apu	λ	kg/cbm	cbm/kg
2,0 2,5 3,0 3,5	119,6	120,4	484,7	42,14	647,2	1,1104	0,9006
2,5	126,7	127,7	479,4	42,74	649,9	1,3680	0,7310
3.0	132,8	133,9	474,9	43,23	652,0	1,6224	0,6163
3,5	138,1	139,4	470,8	43,65	653,8	1,8743	0,5335
4,0	142,8	144,2	467,2	44,01	655,4	2,1239	0,4708
4,5	147,1	148,6	463,9	44,33	656,8	2,3716	0,4217
5,0	151,0	152,6	460,8	44,61	658,1	2,6177	0,3820
5,5	154,6	156,3	458,0	44,87	659,2	2,8624	0,3494
5,5 6,0 6,5	1 57,9	159,8	455,3	45,10	660,2	3,1058	0,3220
6,5	161,1	163,0	452,8	45,32	661,1	3,3481	0,2987
7,0	164,0	166,1	450,4	45,51	662,0	3,5891	0,2786
7,5	166,8	168,9	448,2	45,67	662,8	3,8294	0,2611
8,0 8,5	169,5	171,7	446,0	45,86	663,5	4,0693	0,2458
8,5	172,0	174,3	443,9	46,02	664,2	4,3072	0,2322
9,0	174,4	176,8	441,9	46,17	664,9	4,5448	0,2200
9,5	176,7	179,2	440,0	46,30	665,5	4,7819	0,2091
10,0	178,9	181,5	438,2	46,43	666,1	5,018	0,1993
11,0	183,1	185,8	434,6	46,67	667,1	5,489	0,1822
12,0	186,9	189,9	431,3	46,88	668,1	5,960	0,1678
13,0	190,6	193,7	428,2	47,08	668,9	6,425	0,15565
14,0	194,0	197,3	425,2	47,26	669,7	6,889	0,14515
15,0	197,2	200,7	422,4	47,43	670,5	7,352	0,13601
16,0	200,3	203,9	419,7	47,58	671,2	7,814	0,12797
18,0	206,1	210,0	414,6	47,85	672,4	8,734	0,11450
20,0	211,3	215,5	409,8	48,08	673,4	9,648	0,10365

Beispiel: Bei dem oben genannten Verdampfungsversuch betrug der mittlere Dampfüberdruck 10,9 at., die Temperatur des Speisewassers 50.5° C; wie groß ist die Erzeugungswärme für 1 kg Dampf? Die Manometer geben stets den Dampfdruck als das den atmosphärischen Druck übersteigende Maß an; der Zahlentafel ist jedoch der absolute Druck, also Überdruck +1 at. zugrunde gelegt.

Für den absoluten Druck 11,9 at. beträgt demnach

$$\lambda_{\rm s} = 668,1 \; {
m WE} \; {
m und}$$
 $\lambda = \lambda_{\rm s} - au = 668,1 - 50,5 = 617,6 \; {
m WE}.$

Bemerkungen über die Speisewassertemperatur Wird das Speisewasser im Speisebehälter vorgewärmt und mit

einer Pumpe unmittelbar in den Kessel befördert, so ist die im Speisebehälter ermittelte Temperatur in Rechnung zu setzen. Dient ein Injektor als Speisevorrichtung, dann muß die Temperatur ebenfalls im Speisebehälter, also vor dem Injektor gemessen werden: denn die Temperaturerhöhung erfolgt durch Kondensation des Injektordampfes, der mit seinem Wärmeinhalt dadurch dem Kessel zum größten Teil wieder zugeführt wird und wieder verdampft, zum geringeren Teil mit dem Schlabberwasser in den Speisebehälter gelangt. Bei genauen Versuchen verbieten die "Normen" die Speisung mit einem Injektor. Wird das Speisewasser erst durch einen Vorwärmer gedrückt, der mit Abdampf oder Frischdampf geheizt wird, so gilt als Speisewassertemperatur die Temperatur hinter dem Vorwärmer. Bei Lokomobilen ist meist ein derartiger Vorwärmer angebracht, und es wäre deshalb ein großer Fehler, wenn man die Wassertemperatur im Speisebehälter in Rechnung setzen wollte; man erhielte dann fälschlich eine zu große Wärmeausnutzung des Kessels. Geht das Speisewasser durch einen Ekonomiser. (Rauchgasausnutzer), dann ist die Speisewassertemperatur vor dem Ekonomiser zu setzen (außer wenn man in der Wärmebilanz¹) den Anteil des Ekonomisers an der nutzbar gemachten Wärme besonders zum Ausdruck bringen will).

Bei überhitztem Dampf ist zur Erzeugungswärme noch die Überhitzungswärme²) zu addieren. Die Berechnung der gesamten Erzeugungswärme erfolgt ebenso wie die Berechnung des auf Wasser von 0° bezogenen Wärmeinhaltes von 1 kg Heißdampf, nur muß natürlich die Speisewassertemperatur abgezogen werden.

Beispiel: Bei unserem Verdampfungsversuch wurde die mittlere Dampftemperatur zu $232^{\rm o}$ C festgestellt; die Erzeugungswärme beträgt demnach

$$\lambda = 617.6 + (232 - 186.9) \cdot 0.589 = 617.6 + 26.6 = 644.2 \sim 644$$
 WE.

 $\mathbf{DieaufNormaldampfbezogeneVerdampfungsziffer} \mathbf{x}_n$ berechnet sich nach dem Ansatz:

¹⁾ S. 84.

Beispiel:
$$x_n = \frac{9.05 \cdot 644}{639} = 9.12$$
.

Das Produkt $x \cdot \lambda$ ist zugleich die von 1 kg Kohle nutzbar gemachte Wärmemenge; denn für die Erzeugung von je 1 kg Dampf müssen dem Kessel λ WE zugeführt werden. 1 kg Kohle erzeugt aber durch seine Verbrennung x kg Dampf, also werden durch die Verbrennung von 1 kg Kohle $x \cdot \lambda$ WE an den Kesselinhalt übertragen, d. h. nutzbar gemacht.

Zweiter Abschnitt.

Die stündliche Dampfleistung auf 1 qm Heizfläche und die stündliche Rostbeanspruchung auf 1 qm Rostfläche.

Bezeichnet man die Kesselheizfläche mit H qm und die Versuchsdauer mit a Std., so beträgt die

stündliche Dampfleistung
$$\frac{D}{a \cdot H} \, kg/qm$$
.

Beispiel: Unser Versuchskessel hatte eine Heizfläche von 53,0 qm; beim Versuch, der 6 Std. 26 Min. = 6,43 Std. dauerte, betrug demnach die

stündliche Dampfleistung
$$\frac{4200}{6,43\cdot53,0} = 12,3 \text{ kg/qm}.$$

Die normalen Dampfleistungen für die hauptsächlichsten Kesselbauarten enthält folgende Zusammenstellung:

Mehrfacher Walzenkessel	$12 \div 16$ kg.
Flammrohrkessel	$16 \div 20$ "
Heizrohrkessel	$10 \div 15$,
Wasserrohrkessel: gewöhnliche.	
Hochleistungskessel	bis 40 ,,
Lokomobilkessel	$10 \div 15$ "
Doppelkessel	$10 \div 13$ "

Als Kesselheizfläche gilt derjenige Teil der Kesseloberfläche, der einerseits von den Heizgasen, andererseits von Wasser bespült ist; die Heizfläche ist nach dem Kesselgesetz bei Landkesseln auf der Feuerseite, bei Schiffskesseln auf der Wasserseite zu messen.

Bezeichnet man die stündlich verheizte Kohlenmenge mit K und die gesamte Rostfläche mit R, so beträgt die

stündliche Rostbeanspruchung
$$\frac{K}{a \cdot R} kg/qm$$
;

diese Ziffer wird auch Brenngeschwindigkeit genannt.

Beispiel: Unser Versuchskessel hatte eine Rostfläche von 0.70 qm, demnach betrug die

Brenngeschwindigkeit
$$\frac{464,3}{6,43 \cdot 0.70} = 103,1 \text{ kg/qm.}$$

Für Steinkohle beträgt die normale Brenngeschwindigkeit etwa 80—100 kg/qm, je nach der verfügbaren Zugstärke und nach der Neigung der Kohle zur Bildung von Schlacken; für Braunkohle liegt die normale Brenngeschwindigkeit zwischen 100 und 200 kg/qm.

Als Rostfläche ist beim Planrost das Produkt aus Rostlänge mal Rostbreite, beim Schräg- und Stufenrost das Produkt aus Rostbreite mal der Länge des geneigten Teiles einzusetzen, etwaige Schweelplatten gehören nicht zur Rostfläche.

Dritter Abschnitt.

Berechnung der Wärmeausnutzung und der Wärmeverluste.

Unter Wärmeausnutzung versteht man das Verhältnis der von 1 kg Kohle zur Dampferzeugung (und Dampfüberhitzung) nutzbar gemachten Wärmemenge zum Heizwert der Kohle. Bezeichnet man die rohe Verdampfungsziffer mit x, die Erzeugungswärme mit λ und den Heizwert mit W, dann ist mit Beziehung auf S. 64 die

Wärmeausnutzung
$$\eta = rac{\lambda \cdot x}{W} \cdot$$

Beispiel: Bei unserem Versuch wurde Ruhr-Stückkohle von der Zeche Mathias Stinnes verheizt, deren Heizwert 7726 WE betrug, demnach berechnet sich die Wärmeausnutzung zu

$$\eta = \frac{\mathbf{x} \cdot \lambda}{\mathbf{W}} = \frac{9,05 \cdot 644}{7726} = \frac{5828}{7726} = 0,754 \text{ oder } 75,4\%.$$

Die Wärmeausnutzung soll bei guter Kohle nicht unter $70\,\%$ betragen.

oder

Die Wärmeverluste sind folgende:

- a) Verluste durch Verbrennliches in den Herdrückständen,
- b) " die in den Abgasen enthaltene Wärme,
 - e) ,, ,, Strahlung, Leitung, Ruß und unverbrannte Gase (Restverlust).

Man berechnet diese Verluste für 1 kg verheizte Kohle und stellt sie mit der nutzbar gemachten Wärme in einer sog. Wärmebilanz zusammen.

a) Verluste durch Verbrennliches in den Herdrückständen.

Betragen die trocken gewogenen Herdrückstände p% von der verheizten Kohlenmenge und enthalten die Herdrückstände in trockenem Zustand q% reinen Kohlenstoff, dessen Heizwert stets zu 8100 WE angenommen wird, so ist der auf 1 kg Kohle bezogene Verlust

$$V_h = \frac{p}{100} \cdot \frac{q}{100} \cdot 8100 \text{ WE.}$$

Dividiert man V_h durch den Heizwert der verheizten Kohle, so erhält man den prozentualen Anteil dieses Verlustes an der Gesamtwärmemenge.

Beispiel: Bei unserem Versuch betrugen die Rückstände p = 3,66 0 / $_{0}$ von der verheizten Kohlenmenge; nach der chemischen Analyse enthielten sie q = 67,03 0 / $_{0}$ Kohlenstoff; daher berechnet sich der Verlust V_{h} zu

$$\begin{split} V_h &= \frac{3.66}{100} \cdot \frac{67,03}{100} \cdot 8100 = 0,\!0366 \cdot 0,\!6703 \cdot 8100 = \textbf{199 WE} \\ V_h' &= \frac{199}{7726} = 0,\!026 = \textbf{2,6}\,\%_0. \end{split}$$

Rechnungsgang bei feuchten Rückständen.

Fall 1. Die Rückstände sind trocken gewogen und wurden feucht untersucht. Das Ergebnis sei beispielsweise folgendes:

Kohlenstoff							46,37%.
Reinasche .							29,86 ,,
Wasser							23,77 ,,
						-	100.00%.

Der Kohlenstoffgehalt der trockenen Rückstände berechnet sich nach dem Ansatz:

100-23,77=76,23 Teile trockene Rückstände enthalten 46.37 Teile Kohlenstoff, 1 Teil trockene Rückstände enthält

 $\frac{46,37}{76,23}$ Teile Kohlenstoff, 100 Teile trockene Rückstände enthalten $\frac{46,37}{76,23}\cdot 100$ Teile Kohlenstoff, zu:

$$q = \frac{46,37}{76,23} \cdot 100 = 60,8\%;$$

diese Zahl ist in den Ausdruck für Vh einzuführen.

Fall 2. Die Rückstände sind feucht gewogen und unter Beobachtung der im 1. Abschnitt angegebenen Vorsichtsmaßregeln untersucht worden; das Ergebnis sei wieder folgendes:

Kohlenstoff							46,37%
Reinasche .							29,86 ,,
Wasser							23,77 ,,

Ferner betrage das Gewicht der feuchten Rückstände 6,73% von der verheizten Kohlenmenge. Von diesen 6,73% sind jedoch 23,77% Wasser; also beträgt die Menge der Rückstände, die ja in trockenem Zustand aus dem Feuer gezogen wurden, nur

$$p = 6.73 - \frac{6.73 \cdot 23.77}{100} = 6.73 - 1.60 = 5.13\%;$$

außerdem ist wie oben

$$q = \frac{46,37}{76,23} \cdot 100 = 60,8\%$$

in die Rechnung einzuführen; demnach erhält man

$$V_h = 0.0513 \cdot 0.608 \cdot 8100 = 252 \text{ WE}.$$

Bemerkung: Will man nur den Verlust berechnen und nicht auch das Verhältnis der Herdrückstände in trockenem Zustand zur verheizten Kohlenmenge, so kann man (aber nur im Fall 2) die für feuchte Rückstände ermittelten Zahlen für p und q in die Formel für V_h einsetzen; in unserm Beispiel wird

$$V_h = 0.0673 \cdot 0.4637 \cdot 8100 = 252 \text{ WE (wie oben)}.$$

b) Verlust durch die in den Abgasen enthaltene Wärme.

Dieser Verlust ist bei den meisten Kesselanlagen der größte und läßt sich bei unwirtschaftlich arbeitenden Kesseln durch geeignete Maßnahmen vermindern; seine Größe erhält man, wenn man die von 1 kg Kohle erzeugte Rauchgasmenge mit ihrer spezifischen Wärme und dem Temperaturüberschuß der Abgase gegenüber der zugeführten Luft multipliziert. Um die von 1 kg Kohle erzeugte Rauchgasmenge annähernd zu berechnen, sei nachstehende Betrachtung angestellt. Die Kohle enthalte

C% Kohlenstoff,
H, Wasserstoff,
(O+N), Sauerstoff + Stickstoff,
S, Schwefel,
A, Asche und
W, Wasser.

Von diesen Bestandteilen kommen nur C, H und W in Frage, während O, N und S vernachlässigt werden können.

In reinem Sauerstoff würde der Kohlenstoff zu Kohlensäure verbrennen nach der Gleichung

$$C + O_2 = CO_2$$
 oder $12 + 32 = 44$,

d. h. aus 1 kg Kohlenstoff entstehen $\frac{44}{12}$ = 3,667 kg Kohlensäure; mit dem spezifischen Gewicht 1,977 für 1 cbm Kohlensäure bei 0° und 760 mm Barometerstand ergeben sich aus

1 kg Kohlenstoff
$$\frac{3,667}{1,977} = \frac{1}{0,536}$$
 cbm CO_2 ,

folglich geben C% Kohlenstoff $\frac{1}{0.536} \cdot \frac{C}{100}$ cbm CO₂.

Die Verbrennung erfolgt jedoch in atmosphärischer Luft, und zwar mit Luftüberschuß, deshalb enthalten die Heizgase auch Stickstoff und Sauerstoff; durch die Untersuchung der Heizgase sei deren Kohlensäuregehalt zu k% ermittelt worden. Die aus C% Kohlenstoff erzeugte trockene Heizgasmenge G (cbm) berechnet sich dann aus der Proportion:

$$\left(\!\frac{1}{0,\!536}\!\cdot\!\frac{C}{100}\!\right)\!:G=k\!:\!100,$$

hieraus

$$G = \frac{C}{0.536 \cdot k}$$
 cbm (bei 0° und 760 mm).

Der Wasserstoff verbrennt nach der Gleichung

$$H_2 + 0 = H_20$$
 oder $2 + 16 = 18$,

d. h. 1 kg Wasserstoff erzeugt $\frac{18}{2}$ = 9 kg Wasserdampf, also geben H% Wasserstoff $\frac{9H}{100}$ kg Wasserdampf; dazu kommt noch das

ursprünglich in der Kohle vorhandene Wasser (W %), das ebenfalls als Wasserdampf in den Rauchgasen erscheint: also gibt

1 kg Kohle
$$\frac{C}{0,536 \cdot k}$$
 cbm Rauchgas und $\frac{9 \, H + W}{100}$ kg Wasserdampf.

Nimmt man die mittlere spezifische Wärme des trockenen Rauchgases zu 0,32 für 1 cbm und des Wasserdampfes zu 0,48 für 1 kg an, hat man ferner die Temperatur der abziehenden Heizgase zu T und die der zugeführten Luft zu t festgestellt, so erhält man als Verlust durch die Abgase (Schornsteinverlust)

$$V_s = \left(0.32 \frac{C}{0.536 \cdot k} + 0.48 \frac{9 H + W}{100}\right) (T - t).$$

Die Verwendung dieser Bunteschen Formel kann jedoch bei sehr schwankendem Kohlensäuregehalt zu unrichtigen Ergebnissen führen; man verwendet dann besser die hieraus abgeleitete Formel¹)

$$V_{\rm s}\!=\!rac{0.32}{0.536}\!\cdotrac{{
m C}m{\Sigma}rac{{
m T}-{
m t}}{{
m k}}}{{
m n}}\!+0.48rac{9{
m H}\!+\!W}{100}\!\left({
m T}-{
m t}
ight);$$

wobei der Quotient $\frac{T-t}{k}$ für jede einzelne Beobachtung zu berechnen, und dann, wie das Zeichen Σ andeutet, die Summe dieser Einzelwerte einzusetzen ist; n bedeutet die Anzahl der Beobachtungen.

Siegertsche Formel: Für überschlägige Rechnungen kann man auch die Formel

$$V_{\mathrm{s}}' = \frac{\mathrm{T} - \mathrm{t}}{\mathrm{k}} \cdot 0.65$$

verwenden, wodurch man jedoch den Schornsteinverlust nicht in WE, sondern gleich in Prozenten des Kohlenheizwertes erhält, ohne letzteren zu kennen. Diese Formel liefert für Kohlen unter 10% Wassergehalt brauchbare Werte, für Kohlen mit höherem Wassergehalt ist sie nicht zu empfehlen.

Die Bestimmung des Kohlensäuregehaltes der Heizgase wird mittels des

Orsatschen Apparates,


der in Abb. 38 schematisch dargestellt ist, in folgender Weise durchgeführt. Man saugt unter Wasserabschluß 100 Raumteile Rauchgas in eine in 100 stel geteilte Bürette, leitet die angesaugte Gasmenge in ein mit Kalilauge (Ätzkali in Wasser: $K_2O + H_2O$

¹⁾ Zeitschrift des Bayer. Revisions-Vereines, 1902, S. 25.

= 2 KOH) gefülltes Absorptionsgefäß; die Kalilauge absorbiert die Kohlensäure nach der Gleichung:

$$2 \text{ KOH} + \text{CO}_2 = \text{K}_2 \text{CO}_3 + \text{H}_2 \text{O};$$

hierauf leitet man das Gas in die Bürette zurück. Die Volumabnahme in 100stel ist gleich dem Kohlensäuregehalt des Rauchgases in Prozenten. Leitet man nach dieser Absorption das Gas mehrmals in ein zweites, mit einer Mischung von Kalilauge

und Pyrogallussäure $(C_6H_3(OH)_3)$ gefülltes Gefäß, so wird durch diese Lösung der Sauerstoff absorbiert, und die nach Zurückleitung des Gases in die Bürette festgestellte weitere Volumabnahme ist der Sauerstoffgehalt des Rauchgases. Die Bürette ist zum Schutz gegen Temperaturschwankungen mit einem Wassermantel umgeben, der jedoch nicht unbedingt erforderlich ist.

Handhabung des Orsatapparates.

I. Füllen der Absorptionsgefäße. Die Gefäße a₁ und a₂ werden bei geöffneten Hähnen h₁ und h₂ mittels eines Glastrichters mit den Absorptionsflüssigkeiten bis etwa ²/₃ ihrer Höhe gefüllt, hierauf wird die Niveauflasche mit Wasser gefüllt und mittels eines etwa 70 cm langen Gummischlauches mit dem unteren Ende der Bürette verbunden. Dann schließt man die Hähne h₁ und h₂, füllt die Bürette durch Hochheben der Niveauflasche bis zur oberen Marke mit Wasser und stellt hierauf den Dreiwegehahn h₃ so, daß die Kapillarröhre r abgeschlossen ist. Durch Öffnen des Hahnes h₁ und langsames Senken der Niveauflasche

zieht man die Kalilauge im Gefäß a₁ nach oben bis zum Hahn h₁, welcher dann geschlossen wird. Durch Wiederholung dieses Verfahrens zieht man den Inhalt des Gefäßes az ebenfalls nach oben bis zum Hahn.

II. Absaugen des Gases. In den letzten Feuerzug vor dem Rauchschieber steckt man ein oben zugespitztes 3/8" rohr so ein, daß das untere Ende etwa in die Mitte des Gasstromes kommt. Das obere Ende verbindet man durch einen Gummischlauch mit dem Filter des Apparates. Um auch diesen Schlauch vor Verrußung zu schützen, kann man ein nach Abb. 39 aus Messingblech hergestelltes und mit Watte gefülltes Filter einschalten. Zweckmäßig wird das Absaugerohr für die Gasproben, das Rohr für den Zugmesser und das Thermometer mit Draht zusammengebunden, in das bei der Meßstelle vorhandene oder sauber zu schlagende Loch geschoben und sorgfältig durch Verstopfen des Loches mit Lehm oder Schamottemörtel gegen eindringende Luft geschützt. Will man an derselben Stelle häufiger messen, dann empfiehlt sich die feste Einmauerung eines 2" Gasrohres, dessen inneres Ende mit dem Mauerwerk abschneidet und das bei Nichtgebrauch mit

einem Holzstopfen verschlossen wird. Werden die Rohre durch Isolierschichten hindurchgesteckt, so sind sie hauptsächlich gegen das innere Mauerwerk abzudichten, weil sonst durch etwaige Risse im äußeren Mauerwerk und durch die Isolierschicht Luft eingesaugt wird. Liegt das ganze Bündel nicht wagerecht, dann ist es durch Festbinden mit Draht oder mittels einer Schraubklemme gegen Hineinrutschen zu sichern. Läßt sich die Mitte des Gasstromes nicht durch Messung feststellen, dann bestimmt man sie zweckmäßig mittels einer Holzlatte durch Ansengen, wobei jedoch auf etwa wechselnde Schieberstellung zu achten ist. Der Verbindungsschlauch ist vor der Ausführung jeder Gasanalyse mit frischem Gas zu füllen, was auf folgende Arten geschehen kann:

1. Man stellt nach dem Füllen der Bürette mit Wasser den Hahn h₃ so, daß er das Filter mit dem Rohr r verbindet und den Stutzen b abschließt, und saugt das Gas durch Senken der Niveauflasche in die Bürette. Hierauf verbindet man durch Drehen des Hahnes h₃ die Röhre mit dem frei ausmündenden Stutzen b und treibt das Gas durch Heben der Niveauflasche wieder aus. Durch mehrmalige Wiederholung dieses Verfahrens läßt sich eine genügende Gasmenge ansaugen.

- 2. Mit einer etwa 8 cm weiten Gasometerglocke mit Wasserabschluß.
- 3. Mit einem aus zwei in verschiedener Höhe aufgestellten Glasflaschen bestehenden Aspirator. Das obere Gefäß ist ganz mit Wasser gefüllt, sein Verschlußstöpsel enthält zwei Glasrohre, von denen das eine mit der Unterseite des Stöpsels abschneidet, das zweite fast bis zum Boden des Gefäßes reicht. Das erste Rohr wird mit der Gasabsaugestelle verbunden, durch das zweite Rohr läßt man durch einen Gummischlauch mittels Heberwirkung das Wasser in das untere Gefäß laufen. Dieses ist in genau gleicher Weise mit Stöpsel und Glasrohren versehen. Das Wasser läuft durch das lange Glasrohr ein, die Luft entweicht durch das kurze. Absaugen einer genügenden Gasmenge vertauscht man die Höhenlage der beiden Gefäße, stellt die Verbindung der gasgefüllten Flasche mit dem Orsat her, drückt erst einen Teil des Gases durch das Filter und den Dreiwegehahn h₃ nach dem Stutzen b hinaus, stellt den Dreiwegehahn um und leitet dann das Gas in die Meßbürette.
- 4. Mittels der dem Orsat meistens beigegebenen Gummipumpe. Dieses Verfahren ist jedoch nur dann zu empfehlen, wenn die Ventile ganz dicht sind. Zur Prüfung der Dichtheit dieser Ventile stülpt man über den Druckstutzen (unten) einen Gummischlauch, den man unter Wasser ausmünden läßt; dann müssen beim Zusammendrücken Gasblasen entweichen.

Will man Sammelproben entnehmen, dann kann man entweder

- a) nach Verfahren 3 arbeiten und das Absaugen mittels einer Schraubklemme verlangsamen oder
- b) einen Aspirator mit Uhrwerk (z. B. Dittmar und Vierth, Hamburg) verwenden.

Zur Beurteilung des Ganges einer Feuerung sind zahlreiche Einzelproben vorzuziehen.

III. Entnahme der Gasprobe. Hat man genügend Gas durch den Verbindungsschlauch des Apparates mit dem Kessel hindurchgesaugt, dann füllt man die Bürette nach dem unter II. 1. oder 3. angegebenen Verfahren bis etwas unter die unterste Marke mit frischem Gas, schließt den Hahn h3 und untersucht durch Gleichstellen des Wasserspiegels der Niveauflasche und der Bürette, ob letzterer genau auf die unterste Marke einspielt. Steht der Wasserspiegel in der Bürette tiefer, dann drückt man den Überschuß nach Drehen des Hahnes h3 durch den Stutzen b

hinaus; steht er höher, dann muß nach entsprechender Hahnstellung bei h_3 noch etwas Gas hereingesaugt werden; nun schließt man mit dem Hahn h_3 die Röhre r ab.

IV. Ausführung der Gasanalyse. Man öffnet den Hahn hı und treibt die Gasprobe durch langsames Heben der Niveauflasche in das mit Kalilauge gefüllte Gefäß, das zur Vergrößerung der absorbierenden Oberfläche mit Glasröhrchen gefüllt ist, bis der Wasserspiegel in der Bürette an der obersten Marke angelangt ist; hierauf wird die Niveauflasche gesenkt, dadurch das Gas wieder in die Bürette zurückgeleitet und die Absorptionsflüssigkeit wieder bis zum Hahn emporgezogen, welcher dann geschlossen wird. Dieses Verfahren ist der Sicherheit wegen zu wiederholen. Dann stellt man in der Bürette atmosphärischen Druck her, indem man die Niveauflasche so weit hebt, daß die Wasserspiegel in der Flasche und in der Bürette in dieselbe Ebene kommen, und liest den Wasserstand in der Bürette ab, der unmittelbar den Kohlensäuregehalt der Gasprobe in Volumprozenten angibt.

In der gleichen Weise erfolgt die Bestimmung des Sauerstoffgehaltes, nur muß man wegen der trägeren Wirkung der Pyrogallussäure die Absorption 5—10 mal wiederholen. Manche Apparate enthalten ein drittes Absorptionsgefäß zur Bestimmung des Kohlenoxydgehaltes mittels ammoniakalischer Kupferchlorürlösung, der sich jedoch infolge seines meistens geringen Betrages mit dem Orsatapparat nicht genügend zuverlässig ermitteln läßt.

V. Dichtheitsprüfung des Apparates und der Schlauchleitung. Man klemmt den Schlauch unmittelbar hinter dem Entnahmerohr zu, stellt den Dreiwegehahn h3 so, daß er das Filter mit dem Rohr r verbindet und den Stutzen b abschließt und hebt die Niveauslasche. Der Wasserspiegel in der Bürette wird etwas steigen und muß, wenn man die Flasche in einer bestimmten Höhe festhält, stehen bleiben. Steigt der Wasserspiegel langsam weiter, so ist eine Undichtigkeit vorhanden, die vor der Ausführung der Analysen zu beseitigen ist.

VI. Herstellung der Lösungen. Man löst etwa 60 g (6 Stängchen) Ätzkali in der für die Füllung eines Gefäßes erforderlichen Wassermenge auf. Diese Lösung ist haltbar und kann während mehrerer Versuchstage verwendet werden. Absorbiert sie nicht mehr genügend, d. h. beobachtet man, daß sie nach 2 maligem Einleiten derselben Gasprobe bei einer dritten Überleitung noch weiter CO₂ aufnimmt, so wird sie verstärkt. Wird sie sehr trübe, dann ist sie zu erneuern. In eine gleiche Lösung bringt man so viel pulverförmige Pyrogallussäure, daß sie sich

ganz dunkelrot färbt. Ob die Lösung, die man vor der Ausführung von Analysen erst erkalten lassen muß, genügend konzentriert ist, erkennt man daran, daß der Apparat bei der Untersuchung von atmosphärischer Luft nach 10—15 maliger Absorption etwa 21 % Sauerstoff angeben muß. Diese Lösung verdirbt durch Aufnahme von Sauerstoff aus der Luft und ist bei längerem Versuchen spätestens jeden zweiten Tag zu erneuern. Etwas Schutz gegen Verderben der Lösung gewährt das Aufstecken einer Gummiblase auf das hintere Aufnahmegefäß; diese kann jedoch, wenn sie beim Hochziehen der Absorptionsflüssigkeit zu leer gesaugt wird, bei der Analyse hinderlich sein.

Statt der Pyrogallollösung kann man zur Absorption des Sauerstoffes auch gelben Phosphor in Stängchenform benutzen; der Phosphor muß bis nahe an den oberen Stutzen des Absorptionsgefäßes reichen; als Sperrflüssigkeit dient Wasser. Zur Absorption setzt man das Gas etwa 3 Minuten der Einwirkung des Phosphors aus, wobei sich weiße Dämpfe von Phosphorpentoxyd nach der Gleichung $2P_2 + 5O_2 = 2P_2O_5$ bilden. Phosphor ist stark giftig, gerät an der Luft leicht in Brand, darf nur mit der Pinzette angefaßt, nur unter Wasser zerschnitten und der Luft nur so lange ausgesetzt werden, als zum Überführen in das mit Wasser gefüllte Absorptionsgefäß notwendig ist. Er absorbiert am besten bei etwa 20° und versagt schon bei $+7^\circ$ vollständig. Die Anwesenheit von Kohlenwasserstoffen (ausgenommen CH₄) und Ammoniak hebt seine Wirkung fast ganz auf

Genauere Vorschriften zum Ansetzen der Lösungen:

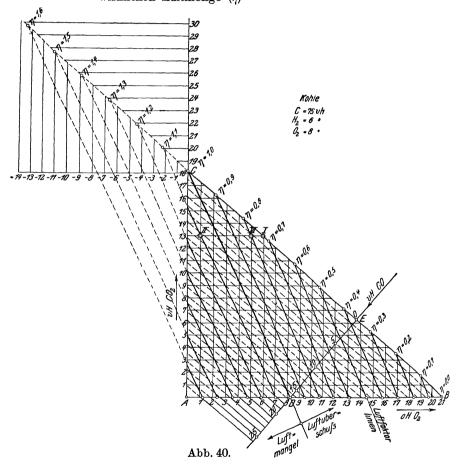
a) Für CO₂: 200 Gewichtsteile destillierten Wassers,

100 " Ätzkali.

- b) Für O₂: 200 ccm Kalilauge (wie unter a), 35 g pulverförmiges Pyrogallol.
- c) Für CO: 2 Lösungen hintereinander zu benutzen:
 - Kupferchlorür Cu₂Cl₂ in Salzsäure (HCl) gelöst (saure Lösung).
 - 2. 100 g Kupferchlorür Cu₂Cl₂
 750 ccm destillierten Wassers
 250 g Salmiak NH₄Cl
 VorGebrauch gemischt mit gesättigter Ammoniaklösung (Salmiakgeist, NH₃ in Wasser) im
 Verhältnis 3:1

Absorptionsgefäß mit Kupferspiralen füllen. Erst die saure, dann die ammoniakalische Lösung benutzen. VII. Pflege des Apparates. Die empfindlichsten Teile sind die eingeschliffenen Glashähne, welche bei unvorsichtiger Behandlung, besonders in staubigen Kesselräumen, sich leicht so festsetzen können, daß sie durch kein Mittel wieder gangbar werden. Deshalb sind sie am Schluß jedes Versuchstages ebenso wie die Hahngehäuse mit reiner Putzwolle zu reinigen und mit einem Schmiermittel leicht einzufetten, das man durch Zusammenschmelzen von gleichen Teilen Talg und Vaseline bereitet. Die Ablesungen erfolgen zweckmäßig am unteren Meniskus des Wasserspiegels. Wird dieser durch Ansätze in der Bürette unklar, dann spült man sie mit Chromsäure (Lösung von doppeltchromsaurem Kali in verdünnter Schwefelsäure) aus.

Wenn durch Unvorsichtigkeit auch nur Spuren von Kalilauge in das Sperrwasser der Bürette gelangt sind, dann wird wegen Aufnahme von CO₂ durch das Sperrwasser die Analyse falsch, und der Apparat muß durch öfteres Durchspülen mit Wasser und Erneuerung des Sperrwassers gereinigt werden. Das Übertreten der Absorptionsflüssigkeiten in das Sperrwasser wird bei manchen Bauarten durch selbsttätige Glasverschlüsse verhindert; letztere bleiben jedoch manchmal hängen oder geben Veranlassung zum Ansetzen von Gasblasen. Färbt man das Sperrwasser mit etwas Methyl-Orange, dann hebt sich der Meniskus besser von der Skala ab, und das Sperrwasser verfärbt sich beim Eintritt von Kalilauge.


Beurteilung der Analysen.

Der Kohlensäuregehalt soll bei guter Kohle unter normalen Verbrennungsbedingungen etwa $10\div14\%$ betragen. Enthalten die Heizgase erheblich weniger als 10% CO₂, dann arbeitet die Feuerung mit zu großem Luftüberschuß, der durch Beschränkung des Zuges oder auch Verkleinerung des Rostes zu vermindern ist. Beträgt der CO₂-Gehalt mehr als 14%, so liegt die Möglichkeit vor, daß die zugeführte Luftmenge zu gering ist, also die Abgase Unverbranntes enthalten und Rauchbildung eintritt. Im allgemeinen muß eine gasreiche Kohle mit größerem Luftüberschuß verheizt werden als eine gasarme. Die Summe CO₂ + O₂ soll bei festen und flüssigen Brennstoffen etwa 19 bis 20% betragen.

Zur genauen Beurteilung von Abgasanalysen eignen sich besonders die Abgasschaubilder¹): Sind von den vier Größen:

¹⁾ Siehe Wa. Ostwald, Feuerungstechnik 1919, S. 53, sowie des Verfassers Aufsatz in der Zeitschr. d. Ver. d. Ing. 1920, S. 505.

- a) Kohlensäuregehalt (CO₂)
- b) Sauerstoffgehalt (O2)
- c) Kohlenoxydgehalt (CO)
- d) Luftfaktor = Verhältnis der theoretischen Luftmenge zur wirklichen Luftmenge (η)

nur zwei, z. B. CO₂ und O₂ durch Analyse festgestellt und ist die chemische Zusammensetzung des Brennstoffes bekannt, dann sind die beiden anderen Größen eindeutig bestimmt. Trägt man nach Abb. 40 in einem rechtwinkligen Koordinatensystem O₂ als Abszisse und CO₂ als Ordinate auf, so läßt sich ein schiefes

Koordinatensystem mit CO und η darüber legen, woraus die letztgenannten Größen für jeden durch CO₂ und O₂ festgelegten Punkt abgelesen werden können. Der Eckpunkt B ist durch den größten, überhaupt möglichen O₂-Gehalt 21% bei ∞ großem Luftüberschuß, also $\eta = \frac{1}{\infty} = 0.0$, der Eckpunkt C durch den bei theoretischer Luftmenge ($\eta = 1.0$) und vollkommener Verbrennung entstehenden CO₂-Gehalt k_{max} % festgelegt. Die Hypotenuse BC entspricht demnach der vollkommenen Verbrennung, bei der aller C zu CO₂ und der H₂ zu H₂O verbrennt; die Abszissenachse AB entspricht der unvollkommenen Verbrennung, bei der aller C nur zu CO (also CO₂ = 0) und der H₂ vollständig zu H₂O verbrennt.

Zur Berechnung des Schaubildes dienen folgende Formeln¹):

1) Für feste und flüssige Brennstoffe:

1 kg Brennstoff enthalte:

$$\begin{array}{l} c_1 \text{ kg C} \\ h_1' \text{ , } H_2 \\ q_1 \text{ , } O_2; \text{ also} \\ h_1 = h_1' - \frac{q_1}{8} \text{ verfügbaren } H_2. \end{array}$$

Für vollkommene Verbrennung ist:

Trockene Abgasmenge von 1 kg Brennstoff

$$G=1,866\,c_1+O_{\min}\left(rac{4,76}{\eta}-1
ight)\mathrm{cbm}.$$
 On Cabalt den Abraca $R=0$ (2)

CO₂-Gehalt der Abgase =
$$k = \frac{186,6 c_1}{1,866 c_1 + O_{min} \left(\frac{4,76}{\eta} - 1\right)}$$
%.

 $^{^{1)}}$ Der Gehalt des Brennstoffes an S und $\rm N_2,\ sowie$ das Verbrennliche in den Rückständen seien vernachlässigt.

$$O_2 ext{-Gehalt der Abgase} = q = rac{100\cdot O_{min}ig(rac{1}{\eta}-1ig)}{1,866\,c_1 + O_{min}ig(rac{4,76}{\eta}-1ig)}\%.$$

Die Werte für k und q für $\eta=1,0,\ 0,9,\ 0,8\ldots 0,0$ berechnet, liefern die Punkte der Geraden CB; für $\eta=1,0$ erhält man

$$k_{max} = \frac{186,6\,c_1}{1,866\,c_1 + 3,76\,O_{min}} \, \cdot \,$$

Durch Einsetzung von $\eta=1,1,\ 1,2\ldots$ ergeben sich Werte von $k>k_{max}$ und q<0, die keine sachliche, sondern nur mathematische Bedeutung haben und nur zum Ziehen der Luftfaktorlinien dienen.

Für unvollkommene Verbrennung ist:

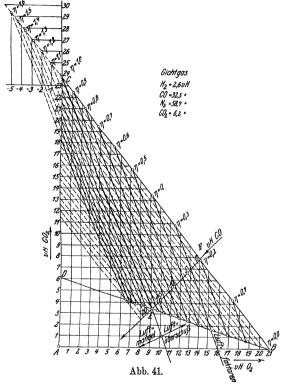
Theoretische O₂-Menge für 1 kg Brennstoff

$$\Omega_{\rm min} = 0.933 \, {\rm c_1} + 5.55 \, {\rm h_1} \, {\rm cbm} \, {\rm bei} \, 0^{\rm o} \, {\rm und} \, 760 \, {\rm mm}.$$

Wirkliche O₂- und Luftmenge wie bei der vollkommenen Verbrennung.

Trockene Abgasmenge von 1 kg Brennstoff

$${
m G'} = 1{,}866\,{
m c_1} + rac{4{,}76}{\eta}\,{
m O_{min}} - {
m \Omega_{min}}\,{
m cbm}.$$


$$O_2$$
-Gehalt der Abgase $= q = rac{\left(rac{1}{\eta}\,O_{\min}-arOmega_{\min}
ight)100}{1,866\,c_1 + rac{4,76}{\eta}\,O_{\min}-arOmega_{\min}} \%.$

CO-Gehalt der Abgase =
$$p = \frac{186,6 \, c_1}{1,866 \, c_1 + \frac{4,76}{\eta} \, O_{min} - \Omega_{min}} \%$$
.

Die Berechnung von q, für die früheren Werte von η durchgeführt, liefert die Punkte der Abszissenachse AB. Die zu gleichen Werten von η gehörigen Punkte von AB und BC liefern verbunden die Linien gleichen Luftfaktors. Die CO-Teilung erfolgt zweckmäßig auf dem Lote DE, das vor dem auf der Abszissenachse liegenden O_2 -Punkt D (für $\eta=1,0$) nach BC gefällt wird. Die Länge DE muß dem für $\eta=1,0$ berechneten CO-Gehalt entsprechen. Die Luftfaktorlinie für $\eta=1,0$ trennt das

Dreieck in das Gebiet des Luftüberschusses (rechts) und das des Luftmangels (links).

Anwendung des Schaubildes: Einige Abgasanalysen mögen ergeben haben:

Punkt I: $\text{CO}_2=13.0~\%,~\text{O}_2=6.0~\%.$ Das Schaubild zeigt $\text{CO}=0,~\text{Verbrennung vollkommen},~\eta=0.724,~\text{Vielfaches der}$ theoretischen Luftmenge $\frac{1}{\eta}=1.39.$

Punkt II: $CO_2=13.0$ %, $O_2=1.0$ %. Das Schaubild zeigt CO=6.5 %, $\eta=1.1,\frac{1}{\eta}=0.9$; also Verbrennung unvollkommen wegen Luftmangel.

Punkt III: $CO_2 = 13.0 \%$, $O_2 = 5.0 \%$. Das Schaubild zeigt CO = 1.2 %, $\eta = 0.6$, $\frac{1}{\eta} = 1.25$, Verbrennung unvollkommen, jedoch nicht wegen Luftmangel, sondern wegen ungenügender Mischung von Brenngasen mit Luft oder zu niedriger Temperatur im Verbrennungsraum.

2) Der Vollständigkeit wegen seien auch die Formeln für gasförmige Brennstoffe und ein zugehöriges Schaubild für Gichtgas (Abb. 41) angegeben.

1 cbm Frischgas enthalte:

$\mathbf{h_1}$	\mathbf{cbm}	H_2	$\mathbf{k_1}$	\mathbf{cbm}	CO_2
$\mathbf{p_1}$,,	\mathbf{CO}	$\mathbf{q_1}$,,	O_2
$\mathbf{n_1}$,,	N_2	r ₁	,,	C_2H_4
∇_1	,,	CH_4	81	,,	C_2H_2 .

1 cbm trockenes Abgas enthalte:

Für vollkommene Verbrennung ist:

Theoretische O₂-Menge für 1 cbm Frischgas

$$O_{min} = 0.5 h_1 + 0.5 p_1 + 2 v_1 + 3 r_1 + 2.5 s_1 - q_1 \text{ cbm}$$

bei 0° und 760 mm.

Wirkliche O2-Menge für 1 cbm Frischgas

$$O_{\mathbf{w}} = \frac{1}{n} O_{\min}$$
 cbm.

Wirkliche Luftmenge für 1 cbm Frischgas

$$L=rac{1}{0,21\,\eta}\,O_{min}.$$

Trockene Abgasmenge von 1 cbm Frischgas

$$\begin{split} G &= p_1 + v_1 + k_1 + 2 \, r_1 + 2 \, s_1 + n_1 + O_{min} \left(\frac{4,76}{\eta} - 1 \right) \\ &= A + n_1 + O_{min} \left(\frac{4,76}{\eta} - 1 \right) \text{ cbm.} \end{split}$$

CO₂-Gehalt der Abgase =
$$k = \frac{100 A}{A + n_1 + 0_{min} \left(\frac{4,76}{\eta} - 1\right)}$$
%.

O₂-Gehalt der Abgase =
$$q = \frac{100 \cdot O_{min} \left(\frac{1}{\eta} - 1\right)}{A + n_1 + O_{min} \left(\frac{4,76}{\eta} - 1\right)}$$
%.

Für unvollkommene Verbrennung ist:

Theoretische O₂-Menge für 1 cbm Frischgas

$$\Omega_{\min} = 0.5 \, \text{h}_1 + 1.5 \, \text{v}_1 + 2 \, \text{r}_1 + 1.5 \, \text{s}_1 - \text{q}_1 \text{ cbm bei } 0^{\circ} \, \text{und } 760 \, \text{mm}.$$

Wirkliche O2- und Luftmenge wie oben.

Trockene Abgasmenge von 1 cbm Frischgas

$$\begin{split} G' &= k_1 + p_1 + v_1 + 2 r_1 + 2 s_1 + n_1 + \frac{4,76}{\eta} O_{min} - \Omega_{min} \\ &= k_1 + B + n_1 + \frac{4,76}{\eta} O_{min} - \Omega_{min} \text{ cbm.} \end{split}$$

$$\text{CO}_{\text{2}}\text{-Gehalt der Abgase}^{\text{1}}) = k = \frac{100 \text{ k}_{\text{1}}}{\text{k}_{\text{1}} + \text{B} + \text{n}_{\text{1}} + \frac{4,76}{\eta} \text{ O}_{\text{min}} - \Omega_{\text{min}}}\%.$$

$$O_2\text{-Gehalt der Abgase} \,=\, q \,=\, \frac{100 \left(\frac{1}{\eta}\,O_{min} - \varOmega_{min}\right)}{k_1 + B + n_1 + \,\frac{4,76}{\eta}\,O_{min} - \varOmega_{min}} \,\%.$$

CO-Gehalt der Abgase
$$= p = \frac{100\,B}{k_1+B+n_1+rac{4,76}{\eta}\,O_{min}-\Omega_{min}}\%$$

Gasproben, die gleichzeitig an verschiedenen hintereinander liegenden Meßstellen derselben Feuerung abgesaugt werden, sollten die gleichen Analysenwerte ergeben; meistens nimmt jedoch der CO₂-Gehalt nach dem Schornstein hin ab, während der O₂-Gehalt zunimmt infolge der durch Undichtheit des Mauerwerkes und etwaiger Verschlüsse nachgesaugten Luft.

¹⁾ herrührend vom CO₂-Gehalt des Frischgases.

Um die Güte der Verbrennung zu beurteilen, ist die Analyse der Gase unmittelbar hinter dem Feuerraum vorzunehmen, als Absaugerohr jedoch nur Schamotte-, Porzellan-, Quarz- oder Tonrohr zu verwenden, weil ein glühendes Eisenrohr die Gaszusammensetzung ändert. Zur Berechnung des Schornsteinverlustes dagegen ist die vor dem Schieber genommene Gasprobe maßgebend.

Beispiel zur Berechnung des Schornsteinverlustes. Bei unserem Versuch wurde folgendes ermittelt: Kohlensäuregehalt der Heizgase $11.5\,^0/_0$, Abgangstemperatur derselben $211\,^\circ$ C, Lufttemperatur $15\,^\circ$ C; die Kohle enthielt $80.22\,\%$ Kohlenstoff, $4.92\,^0/_0$ Wasserstoff und $2.34\,^0/_0$ Wasser, demnach beträgt der Schornsteinverlust:

$$\mathbf{V_s} = \left(0.32 \cdot \frac{80,22}{0.536 \cdot 11,5} + 0.48 \cdot \frac{9 \cdot 4.92 + 2.34}{100}\right) (211 - 15) = 860 \text{ WE}$$

oder auf den Heizwert 7726 bezogen

$$V_s' = \frac{860}{7726} = 0.111 = 11.1 \%$$
.

Nach der Siegertschen Formel erhält man

$$\mathbf{V}'_{s} = \frac{211 - 15}{11,5} \cdot 0.65 = \mathbf{11.10}/_{0}$$
 (wie oben).

Selbsttätige Apparate zur Bestimmung und Aufzeichnung des CO2-Gehaltes. Diese Apparate eignen sich weniger als Hilfsmittel bei der Ausführung von Verdampfungsversuchen. sondern mehr alsInstrumente zur Betriebskontrolle und finden, da die meisten größeren Werke seit einigen Jahren zur wärmetechnischen Überwachung des Betriebes besondere Wärmeabteilungen eingerichtet haben, in der Praxis eine ausgedehnte Anwendung. Sie arbeiten wie der Orsatapparat durch Absorption von CO₂ z. B. in Kalilauge. Das Absorptionsgefäß ist mit einem Schreibzeug verbunden, welches das Ergebnis jeder Absorption auf einem mit wagerechten Teillinien versehenen Diagrammblatt in Form eines senkrechten Striches aufzeichnet; das Diagrammblatt wird auf den Mantel einer durch Uhrwerk bewegten Trommel gezogen. Das Absaugen des Gases, die Überführung zum Absorptionsgefäß usw. werden meistens mit Einige bei sorgfältiger Bedienung recht Wasser bewirkt. zuverlässige Apparate sind:

a) der "Ados"-Apparat¹) der Ados-Gesellschaft m. b. H.
 in Aachen (wird auch zur gleichzeitigen Absorption von
O₂ eingerichtet),

Prüfungsergebnisse: Zeitschrift des Bayer, Revisions-Vereines, 1901, S. 82.

- b) der Ökonograph¹) der Feuertechnischen Gesellschaft m. b. H. in Berlin,
- c) der Rauchgasprüfer von J. C. Eckardt in Cannstatt,
- d) " Rauchgasprüfer von J. Pintsch in Frankfurt a. M.,
- e) "Mono"-Apparat von H. Maihak in Hamburg,
- f) ""Debro"-Apparat von De Bruyn in Düsseldorf,
- g) ""Gefke"-Apparat der Gesellschaft für Kohlenersparnis in Köln.

Außer diesen werden neuerdings andere Apparate viel verwendet, die nicht auf der Absorption der CO₂ durch Kalilauge beruhen; davon sind die bekanntesten:

- h) der Apparat von Siemens und Halske,
- i) "Ranarex" der A.E.G.

Bezüglich Beschreibung und Handhabung dieser Apparate sei hier auf die Drucksachen der genannten Firmen verwiesen.

Wenn eine Kesselanlage mit selbsttätigen CO₂-Apparaten ausgerüstet werden soll, sind eine Reihe von Vorsichtsmaßregeln zu beobachten, die einen ungestörten und zuverlässigen Betrieb gewährleisten. Die eingemauerten Absaugerohre sind zum Durchstoßen einzurichten, indem sie am Kopf ein T-Stück erhalten. von dem der eine Schenkel mit einem dichtschließenden Gewindestopfen versehen ist, während der abzweigende Schenkel mit der Gasleitung verbunden wird. Alle Rohre sollen nahtlos sein, alle Verbindungsstellen sind sorgfältig abzudichten. Die Anordnung ist so zu treffen, daß die Gassaugeleitungen von der Entnahmestelle bis zum Filter steigen, und von da ab bis zum Apparat Wenn das infolge örtlicher Verhältnisse nicht möglich ist, erhalten die tiefsten Stellen Syphons (einseitig offene U-Röhrchen), die mit Glyzerin gefüllt werden, damit sich keine Wassersäcke bilden. Die Wartung der Apparate ist einem zuverlässigen "Wärmeingenieur" zu unterstellen, der die Apparate genau kennt, selbst die geringsten Störungen sofort beseitigt und die Apparate von Zeit zu Zeit mit dem Orsat nachprüft. Die Gasleitungen sollen täglich auf Dichtheit geprüft werden. Bei der Anlage sind Anschlüsse an Dampf- oder Preßluftleitungen vorzusehen, damit die Rohre öfter durchgeblasen werden können. Die Filter sind frostsicher anzulegen.

¹⁾ Prüfungsergebnisse: Mitteilungen der Dampf-und wärmetechnischen Versuchsanstalt in Wien 1910. Nr. 1.

c) Der Verlust durch Strahlung, Leitung, Ruß und unverbrannte Gase

heißt Restverlust und wird als Differenz:

Heizwert — (nutzbare Wärme + Herdverlust + Schornsteinverlust)

berechnet. Er soll bei guter Einmauerung, normaler Beanspruchung und guter Verbrennung höchstens $10-12\,\%$ des Kohlenheizwertes betragen.

In unserem Beispiel betrug

die nutzbare Wärme $75,4\%$ 00 der Herdverlust $2,6\%$ 00 der Schornsteinverlust $11,1\%$ 0, folglich der
der Herdverlust 2.6°
die nutzbare Wärme

Die Zusammenstellung der nutzbar gemachten Wärme und der Wärmeverluste nennt man Wärmebilanz.

Hat man bei unvollkommener Verbrennung den CO-Gehalt der Abgase genau zu p%, sowie den CO₂-Gehalt zu k% festgestellt, dann kann man den Verlust durch unverbrannte Gase für sich angenähert berechnen nach der Formel:

$$V_u = p \frac{1,866 \cdot C}{100 k} \cdot 3000 \text{ WE.}$$

Hier bedeutet C den Kohlenstoffgehalt des festen oder flüssigen Brennstoffes und 3000 den Heizwert von 1 cbm CO.

In roher Annäherung bedeutet $1\,\%$ CO einen Verlust von $4\,\%$ des Kohlenheizwertes.

$$\begin{array}{lll} \mbox{Beispiel: CO-Gehalt } p = 0.5\,\%_0, \\ & \mbox{CO}_{2^-} & , & k = 15\,\%_0, \\ & \mbox{C-} & , & \mbox{der Kohle} = 75\,\%_0, \\ & \mbox{Heizwert} & , & , & = 7726\mbox{ WE}, \\ & \mbox{Vu} = 0.5\,\frac{1.866\,\cdot\,75}{100\,\cdot\,15} \cdot 3000 = 140\mbox{ WE oder} \\ & = \frac{140}{7726} \cdot 100 = 1.8\,\%_0. \\ & \mbox{Angen\"{a}hert } \mbox{Vu} = 4 \cdot p = 4 \cdot 0.5 = 2\,\%_0. \end{array}$$

$$V_8 = \left(0.32 \frac{C}{0.536\,(k+p)} + 0.48\,\frac{q\,H+W}{100}\right) (T-t)\,.$$

Sonstige Messungen. Die Temperatur der Abgase wird an derselben Stelle, an der die Gasproben entnommen werden, gemessen ¹).

Für einfachste Untersuchungen im Fuchs und bei normaler Abgastemperatur, z. B. bei Dampfkesseln, genügen:

a) Quecksilberthermometer mit Stickstoffüllung, so lang, daß die Ablesung möglich ist, ohne daß das Thermometer herausgezogen werden muß (1,5 bis 2 m). Schutzhülse aus Messing mit zweiseitiger Durchbrechung an der Skala (von hinten zu beleuchten), Verstärkungen der langen Stege, Bohrungen bei der Quecksilberkugel, oben mit Ring zum Aufhängen. Die Durchbrechungen der Schutzhülse müssen so lang sein, daß der Nullpunkt der Skala jederzeit sichtbar ist und nachgeprüft werden kann. Brauchbar bis 550°, leicht nachprüfbar, etwas träge, empfindlich gegen unvorsichtige Behandlung.

Sind höhere Temperaturen der Abgase zu erwarten (was bei manchen Feuerungen vorkommt, aber stets unnötig große Verluste bedeutet), so kommen in Betracht:

- b) Graphitpyrometer mit Zeigerskala bis 1000°, sehr träge und häufig auch ungenau; genügt für angenäherte Messungen und zur Probe, ob ein Q-S-Thermometer verwendbar ist oder nicht; ist derb gebaut und verträgt etwas unvorsichtige Behandlung, ist aber nicht bruchsicher gegen Stöße;
- c) Stahlrohr-Quecksilberthermometer mit Manometerfeder und Zeigerskala, liegt in seinen Eigenschaften zwischen a) und b).

Gut, aber teuer sind:

d) Elektrische Widerstandsthermometer bis 900°; ihre Wirkungsweise beruht darauf, daß der Widerstand einer in die Meßstelle eingebrachten, in Quarzglas einschmolzenen Platinspirale sich mit steigender Temperatur vergrößert. Den Strom liefert eine Batterie von Trockenelementen oder Akkumulatoren, seine Stärke wird an der in Thermometergrade eingeteilten Skala eines Galvanometers abgelesen. Vorteile: Messung an sonst schwer zugänglichen Stellen möglich, für mehrere Meßstellen genügt ein Galvanometer mit Umschalter. Empfindlichkeit etwa gleich der eines Quecksilberthermometers.

¹⁾ S. Mitteilung Nr. 6 der "Wärmestelle Düsseldorf".

Den Widerstandsthermometern stehen etwa gleich:

- e) Thermoelektrische Pyrometer, bestehend aus zwei zusammengelöteten, von einander elektrisch isolierten Drähten aus verschiedenen Metallen, die einen mit der Temperatur an der Lötstelle an Spannung steigenden Thermostrom erzeugen, dessen Stärke mit einem Galvanometer gemessen wird. Die Isolierung und der Schutz der Lötstelle richtet sich nach der zu messenden Temperatur. Fast gleichzeitiges Messen an mehreren Stellen wie bei d) möglich.
 - Kupferkonstantan-Element bis 350°. Lötstelle braucht nicht geschützt zu werden. Isolierung durch Umwickeln mit Asbestschnur, das Ganze in Eisenrohr gesteckt. Die Skala eines beliebigen, aber genügend weit ausschlagenden Galvanometers wird durch Vergleich der Ausschläge mit den Angaben eines Quecksilberthermometers geeicht, dessen Kugel mit der Lötstelle zusammen in einem auf 350° erhitzten Ölbad steckt. Eichung nur bei fallender Temperatur vornehmen, Quecksilberfaden darf nur wenig herausragen. Das Pyrometer folgt den Temperaturschwankungen fast augenblicklich.
 - Eisenkonstantan-Element bis 800°. Eigenschaften ähnlich wie bei 1.
 - 3. Nickel-Nickelchrom-Element bis 1100°. Isolierung durch Quarzrohr in Eisen- oder Schamotte-Rohr. Trägheit etwas größer als bei 1. und 2. Die freien Enden sind durch sog. Kompensationsleitungen aus demselben Material so weit zu verlängern, daß sie dem Bereich von höheren Temperaturen entzogen werden.
 - Platin-Platin rhodium Element bis 1600°.
 Isolierung durch Rohre aus Quarz oder Marquard-scher Masse in Schamotterohr. Trägheit wie bei 3.

Die Elemente unter 2. bis 4. gibt es nur in Verbindung mit dazu passendem, in Grade geteiltem Galvanometer.

f) Optische Pyrometer kommen nur bei Untersuchung glühender Körper in Betracht.

Bauarten: Wanner, Holborn und Kurlbaum, Strahlungspyrometer.

Zur Ermittlung der Zugstärke bringt man ein zweites Gasrohr an die Gas-Entnahmestelle und verbindet es durch einen Gummischlauch mit einem Zugmesser. Ein sehr einfacher und zuverlässiger Zugmesser ist in Abb. 42 dargestellt. Er besteht aus einem auf einem Holzbrettchen befestigten, U-förmig gebogenen Glasröhrchen, hinter welchem eine Millimeterskala auf das Brettchen aufgeklebt ist. Um das Einfallen von Staub zu verhüten, kann man den offenen Schenkel des Glasröhrchens

nach unten umbiegen. Das Röhrchen wird halb mit Wasser gefüllt, das man durch Auflösung eines Körnchens Fuchsin besser sichtbar machen kann; vor dem Anschluß an den Gummischlauch hängt man das Brettchen so auf, daß die beiden Wasserspiegel auf eine Die Ablesung wird erleichtert, Linie fallen. wenn die Einteilung der Skala von 0 mm an mit Ziffern bezeichnet und das U-Röhrchen verschiebbar angeordnet wird. Alle anderen im Handel befindlichen Zugmesser sind wohl bequemer abzulesen, doch empfiehlt es sich, ihre Angaben von Zeit zu Zeit mit denen dieses einfachen Wassermanometers zu vergleichen.

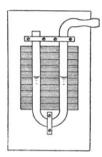


Abb. 42.

Diese einfachen Zugmesser geben den Druckunterschied der Heizgase an der zu messenden Stelle gegenüber der Atmosphäre an, lassen aber keinen Schluß auf die Geschwindigkeit der Heizgase, oder auf die Beanspruchung des Kessels ziehen. Dieser Satz läßt sich durch folgende Versuche nachweisen.

- 1 Schließt man den Rauchschieber hinter dem Zugmesser, dann wird die Rauchgasgeschwindigkeit zu Null und die Flüssigkeit in beiden Schenkeln des Zugmessers stellt sich gleich hoch ein.
- 2. Öffnet man den Rauchschieber wieder und schließt man die Aschenklappe des Feuergeschränkes, dann wird die Rauchgasgeschwindigkeit ebenfalls zu Null, aber der Zugmesser zeigt die größte, sog. statische Zugstärke des Schornsteins an.
- Stellt man Schieber und Aschenklappe normal und öffnet man den Schieber weiter, dann ziehen zweifellos mehr Heizgase durch die Züge, die Wassersäule des Zugmessers nimmt zu.
- 4. Öffnet man bei normaler Stellung von Schieber und Aschenklappe die Feuertür, dann werden ebenfalls mehr Gase durchziehen, die Wassersäule des Zugmessers wird aber kleiner werden.

Dieselben Veränderungen der Rauchgasgeschwindigkeit, auf verschiedene Art vorgenommen, äußern also verschiedene Wirkungen auf einen gewöhnlichen Zugmesser.

Der Widerstand, den die Luft bzw. die Heizgase zu überwinden haben, setzt sich zusammen aus dem Rostwiderstand und dem Widerstand in den Feuerzügen und im Schornstein. Die Zugstärke an jeder Stelle der Feuerzüge ist gleich der statischen Zugstärke vermindert um die Heizgaswiderstände von der Maßstelle bis zur Schornsteinmündung. Konstruiert man einen Zugmesser so, daß er nur den Widerstand in den Feuerzügen mißt, dann sind seine Angaben ohne weiteres ein Maßstab für die Geschwindigkeit der Heizgase. Diese Aufgabe kann durch Anbringung zweier Zugmesser gelöst werden, von denen der eine mit dem Feuerraum, der zweite mit der Maßstelle vor dem Schieber in Verbindung steht. Der Unterschied der Anzeigen beider Zugmesser ist der Differenzzug in den Feuerzügen und ein Maß

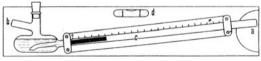
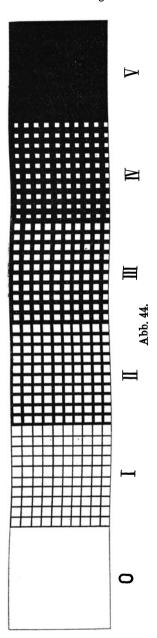



Abb. 43.

für die Heizgasgeschwindigkeit. Der in Abb. 43 dargestellte Krellsche Zugmesser vereinigt beide Zugmesser in einem Instrument. Der Stutzen a wird mit der Meßstelle vor dem Schieber, der Stutzen b mit dem Feuerraum verbunden. Das Meßrohr c ist geneigt, damit kleine Druckunterschiede genauer abgelesen werden können. Der Apparat ist mit einer Wasserwage d versehen, damit die Neigung des Meßrohres immer auf dieselbe eingestellt werden kann, wie bei der Eichung. Als Sperrflüssigkeit dient rot gefärbter Alkohol.

Ist ein Kessel gleichmäßig beansprucht und hat man mit Hilfe des Orsat-Apparates den günstigsten Differenzzug festgestellt, dann kann der Krellsche Zugmesser einen selbsttätigen Apparat für Heizgasuntersuchung ersetzen; der Heizer muß dann den Rauchschieber immer so stellen, daß der Differenzzug derselbe bleibt, d. h. bei frisch geschlacktem Rost mit der tiefsten Stellung anfangen und den Schieber mit zunehmender Verschlackung immer höher ziehen. Bei sehr genauen Verdampfungsversuchen leistet der Krellsche Zugmesser gute Dienste zur Herstellung des Beharrungszustandes in der Feuerung.

Ähnlich in der Wirkungsweise ist der Differenzzugmesser von Fueß, Berlin-Steglitz, mit verstellbarer Neigung.

Stellt man mit einem Differenzzugmesser die oben genannten vier Versuche an, dann zeigt sich folgendes:

- 1. Zugstärke gleich Null:
- 2. ebenso;
- 3. Zugstärke nimmt zu;
- 4. ebenso.

Dieselben Veränderungen der Rauchgasgeschwindigkeit, auf verschiedene Art vorgenommen, äußern also gleiche Wirkungen auf einen Differenzzugmesser.

Für die Beurteilung von rauchvermindernden Feuerungen ist eine objektive, d. h. von einer mehr oder weniger willkürlichen Schätzung des Beobachters unab-

hängige Feststellung der Rauchstärke von großem Wert. Ein einfaches und fast streng objektives Verfahrenwurde von Ringelmann

ves Verfahren wurde von Ringelmann angegeben. Man zeichnet sechs Quadrate von je 100 mm Seitenlänge (Abb. 44) nebeneinander, teilt die Seiten derselben mit Ausnahme des ersten Quadrates in je 10 gleiche Teile und zieht die senkrechten und wagerechten Teillinien. Dann werden die Teillinien so verstärkt (Abb. 45), daß folgende Strichstärken a und weißbleibende Quadrate mit der

2. Quadrat a = 1.0 mm, b = 9.0 mm,

Seitenlänge b entstehen:

6. "
$$= 10.0$$
 " $= 0.0$,

Betrachtet man diese Skala aus einer Entfernung von mindestens 15 m, dann erscheinen die auf das erste folgenden 5 Quadrate als immer dunkler werdende gleichmäßig graue Felder. Beim Versuch hängt man die Skala an einer geeigneten Stelle in der Nähe des Schornsteins auf. Die Färbung des dem Schornstein entsteigenden Rauches wird mit der Farbe dieser Felder verglichen, und es wird aller 1-2 Minuten die dadurch ermittelte Ziffer für die Rauchstärke aufgeschrieben. Nach diesen Ziffern kann man die mittlere Rauchstärke berechnen oder eine zeichnerische Darstellung des Verlaufes 1) der Rauchentwicklung machen.

Die Abstufungen, die der Ringelmannschen Skala zugrunde liegen, lassen sich wie folgt rückwärts nachrechnen, indem man den Flächeninhalt der weißgebliebenen Teile bestimmt.

1.	Quadrat				Weiße	Fläche	=		10000	qmm
2.	,,				,,	,,	=	$100 \cdot 9,0^2 =$	8 100	,,
3.	,,				,,	,,	==	$100 \cdot 7,7^2 =$	$\boldsymbol{5939}$,,
4.	,,				,,	,,	=	$100 \cdot 6,3^2 =$	3 969	,,
5.	,,				,,	,,	=	$100 \cdot 4,5^2 =$	2025	,,
6.	••				•	••	==	0 =	0	,,

Also verhalten sich für die Rauchstärken 0 his 5 die weißen Flächen wie 10000:8100:5939·3969:2025:0 ~ 5:4:3:2:1:0. Streng objektiv werden die Rauchbeobachtungen deshalb nicht, weil die Färbung des Rauches, abgesehen vom Brennstoff, auch davon abhängt, ob der Hintergrund durch blauen Himmel oder durch Wolken gebildet ist; zur genauen Beobachtung ist deshalb einige Übung erforderlich.

Vierter Abschnitt.

Der Dampf- und Wärmepreis.

Unter dem Dampfpreis versteht man die Kohlenkosten zur Erzeugung von 1000 kg Dampf; diese Ziffer ist hauptsächlich bestimmend für die Wahl des Brennstoffes.

Der Preis für $100~\mathrm{kg}$ Kohle sei a M., die Brutto-Verdampfungsziffer x; dann kostet

¹⁾ Zeitschrift des Bayer. Revisions-Vereines 1901, S. 103, 1902, S. 139.

l kg Kohle
$$\frac{a}{100}$$
 M., ebenso x " Dampf $\frac{a}{100}$ M. (weil 1 kg Kohle x kg Dampf erzeugt), 1 " " $\frac{a}{100 \cdot x}$ M. 1000 " " $\frac{1000 \cdot a}{100 \cdot x} = \frac{10 \cdot a}{x}$ M.

Beispiel: Von unserer Versuchskohle kosten 100 kg in der Zeche beispielsweise 2,50 M., deshalb beträgt

der Dampfpreis
$$\frac{10 \cdot 2,50}{9.05} = 2,76 \text{ M}.$$

Als Kohlenpreis sind natürlich die Gesamt-Kohlenkosten, also einschließlich Fracht- und Anfuhrkosten, einzusetzen.

Stehen an einem Verwendungsort mehrere Kohlensorten zur Verfügung, dann ermittelt man durch Versuche, die aber mit den verschiedenen Kohlensorten unter gleichen Verhältnissen durchzuführen sind, diejenige Kohle, für welche der Dampfpreis am geringsten wird.

Zur genaueren Feststellung des wirtschaftlichen Wertes einer Kohlensorte kann man aus dem Heizwert und dem Kohlenpreis auch den Wärmepreis berechnen. Man versteht unter Wärmepreis die in Mark ausgedrückten Kosten für 100 000 WE.

Beispiel: Unsere Versuchskohle, von der 100 kg in der Zeche beispielsweise 2,50 M. kosten, hatte einen Heizwert von 7726 WE. Der Wärmepreis berechnet sich nach dem Ansatz:

7,726 WE kosten
$$\frac{2,50}{100} = 0,025$$
 M.
 $100\,000$,, ,, $\frac{0,025 \cdot 100\,000}{7726} = 0,323$ M.

Musterbeispiel.

Im folgenden sind die bei einem Verdampfungsversuch erforderlichen Aufschreibungen enthalten und in der folgenden Zahlentafel sind die oben schon erledigten Ausrechnungen übersichtlich zusammengestellt.

\mathbf{K} ohle			ise- sser	Rück- stände	Zeit	Dar	npf	Speise- Wasser- temperatur		Heize dem		ber	o Luft- O temperatur
Zeit	kg	Zeit	kg	kg	22616	at.	° C	S C Went	CO_2	$^{\mathrm{CO_2}}_{+\mathrm{O}}$	Т	Zug mm	O tem
1045 1226	100 100	1045 1057	150 150		1045 1100	11,0 11,1	215	 46	11,0	19,0	 196	_ 6	_ 12
128	100	1105	150		1115	10,9	238	43	11,8	10,0	210	10	
252	100	1113	150		1130	11,2	240	45	11,4		210	10	l _
422	100	1120	150		1145	11,1	245	52	10,9		220	10	l —
<u> </u>		1135	150		1200	11,0	239	52	11,5	19,5	210	10	13
	500	1145	150		1215	11,0	224	50,5	11,0		200	10	l –
zurück	35,7	1206	150	l	1230	11,0	240	50,5	11,5		210	10	I —
ver- heizt	464,3	1221	150		1245	11,0	247	50,5	11,5		225	10	 -
neizt	,-	1237	150	l	100	10,9	249	50,5	12,5	18,7	230	11	15
		1257	150		115	11,0	243	50	11,9		225	11	l –
		105	150		130	10,8	244	51	11,8		220	11	-
		120	150		145	10,9	242	50	11,5	10.0	210	10	1
		132	150	1	200	10,9	235	50,5	11,7	19,0	205	10	15
		145	150	•	215	10,9	227	50	10,5		200	10	l –
	1	156	150	ŀ	230 245	10,9 10,9	219 223	50	12,0		200 205	10 10	-
		209 222	150 150	1	300	11,0	225	51 50	11,0 11,8	18,8	205	10	17
		238	150	1	315	11,0	229	51,5	11,5	10,0	210	10	1.
		254	150		330	10,9	225	51,5	12,5		210	10	
		309	150		345	10,9	225	50	12,0		210	10	
		323	150	}	400	10,9	230	50	11,5	18,5	220	10	17
		336	150		415	10,9	237	52,5	10,8	10,0	200	10	_
		349	150	1	430	10,8	218	52,5	11,5		200	10	I _
		400	150	1	445	10,8	217	52,5	11,8		200	10	I
		412	150	1	500	11,0	224	53	11,0	19,5	205	10	15
		435	150	1	515	11,0	-	-	_	<u>-</u>	_	-	I —
		458	150	1		1		i	l			1	1
		<u> </u>	4200	17.0	1	10,9	232	50,5	11,5	19,0	211	10	15

Versuchsergebnisse.

Versuchstag	
Heizfläche des Versuchskessels qm	53
" "Überhitzers "	
Rostfläche "Versuchskessels "	0,7
Verhältnis der Rostfläche zur Heizfläche.	1:76
Dauer des Versuches Std.	6,43
Brennstoff: Sorte: Ruhrstückkohle der Zeche	
Mathias Stinnes	
verheizt im ganzen kg	464,3
" in der Stunde"	72,2
" " " " auf 1 qm Rostfläche "	103,1

Herdrückstände: im ganzen k in Prozenten des verheizten	g	17,	,0
	%	3,	66
in dencelhen	,,	3 67 42 6 1 5 1 23 618+2 1 1	03
	κg	420	00
	,,	68	53
	"c		2,3),5
Dampf: Überdruck	at.),9
Temperatur hinter dem Überhitzer	C	232	_
Erzeugungs- + Überhitzungswärme V		l	
Heizgase: Kohlensäuregehalt	%		l,5 7,5
	c.	211	
Verbrennungsluft: Temperatur	,,	18	5
Zugstärke: am Kesselende mm Wassersät	ıle	10)
b) desgl. auf Normaldampf be-	χg),05),12
TO	" M.		2,50
Dampfpreis: für 1000 kg Dampf nach a .	,,	2	2,76
	"		2,74
Wärmepreis: für 100 000 WE P	ig.	32	2,3
Wärmeverteilung für 1 kg Kohle			%
Nutzbar gemacht: zur Dampfbildung 9,05 · 61:	8 = 1		72,4
" Dampfüberhitzung 9,05			3,0
Insgesamt 9,05 · 644	1	5828	75,4
Verloren: a) im Schornstein durch freie Wä der Rauchgase ,		860	11,1
verbranntes ,	[199	2,6
c) durch Strahlung, Leitung, Ruß unverbrannte Gase	und	839	10,9
Heizwert des Brennsto	offes	7726	100,0
	•		

Anhang.

Bestimmung des Heizwertes von Kohle.

Der Heizwert von Kohle wird durch Verbrennung einer genau abgewogenen, fein gepulverten Kohlenmenge (etwa 1 g) bestimmt. Die Verbrennung erfolgt in verdichtetem Sauerstoff (etwa 25 at.) in einer sog. Bombe¹), die sich in einem gegen Wärmeverluste gut isolierten, mit Wasser gefüllten Kalorimeter befindet. Aus der bekannten Wassermenge und der gemessenen Temperaturerhöhung des Wassers wird die von der abgewogenen Kohlenmenge erzeugte Wärmemenge ermittelt und auf 1 kg Kohle umgerechnet. Es gibt verschiedene Bauarten von Bomben; im folgenden soll das bei der Berthelot-Mahlerschen Bombe einzuschlagende Verfahren behandelt werden.

Die Richtigkeit des Ergebnisses hängt wesentlich von der Probenahme ab; denn die etwa 1 g wiegende, zur Verbrennung gelangende Kohlenmenge soll wirklich den Durchschnitt der beim Verdampfungsversuch verheizten Kohlenmenge darstellen. eingesandte Probe wird zunächst auf einem Blech ausgebreitet, sofort gewogen und einige Tage im Zimmer stehen gelassen. Der festzustellende Gewichtsverlust, den sie dabei erleidet, ist die grobe Feuchtigkeit. Bei Kohlensorten, die wenig Wasser enthalten, kann diese Bestimmung wegfallen. Hierauf wird die Kohle, möglichst unter Luftabschluß (Kugelmühle), fein gemahlen und durch fortgesetzte Anwendung des auf S. 59 angegebenen Verfahrens die zu verbrennende Probe genommen, die man nach genauer Wägung mittels einer Spindelpresse zu einem zylindrischen Brikettchen preßt, in das gleichzeitig ein sehr feiner abgewogener Stahldraht mit eingepreßt wird, dessen beide Enden aus der oberen Stirnfläche des Preßlings herausragen. Letzterer kommt in ein Quarzglasschälchen, das mit zwei dicken Drähten am Deckel der Bombe befestigt ist. Die Enden des Stahldrähtchens werden mit diesen Zuleitungsdrähten elektrisch leitend verbunden und letztere an die Pole eines Akkumulators angeschlossen. Hierauf schraubt man den Deckel auf und füllt nach dem Austreiben der Luft die Bombe mit Sauerstoff bis zu einem Druck von etwa 25 at. Dann setzt man die Bombe in das Kalorimeter, das man vorher mit einer genau gewogenen Wassermenge gefüllt hat. Die Wassertemperatur stimmt man so ab, daß sie um etwa ebensoviel unterhalb der Zimmertemperatur liegt, als sie nach der Verbrennung voraussichtlich

¹⁾ Neuerdings aus Kruppschem rostfreiem Stahl hergestellt.

über diese kommt. Nun wird das Rührwerk in Tätigkeit gesetzt und man beobachtet das Wasserthermometer mittels einer Lupe alle Minuten, bis die infolge des Wärmeüberganges von außen eintretende Temperatursteigerung konstant geworden ist (Vorversuch). Hierauf schließt man den Strom, der Stahldraht und die Kohle verbrennen plötzlich. Während dieser Zeit beobachtet man das Thermometer in Zwischenräumen von je einer halben Minute, so lange, bis keine Temperaturzunahme mehr eintritt. Damit ist der Hauptversuch beendigt. Nun beobachtet man alle Minuten das fallende Thermometer so lange, bis die Temperaturabnahme konstant geworden ist (Nachversuch).

Während der Verbrennung erwärmen sich jedoch nicht nur das Kalorimeterwasser, sondern auch die Metallteile des Kalorimeters. Man muß deshalb für jedes Kalorimeter feststellen, wie groß die Wassermenge ist, deren Temperaturerhöhung bei Zuführung einer bestimmten Wärmemenge ebenso groß ist wie die Temperaturerhöhung der Metallteile. Diese Wassermenge nennt man den Wasserwert des Kalorimeters, der durch Verbrennung einer gewogenen Menge einer Substanz, deren Heizwert genau bekannt ist, z. B. chemisch reinen Zuckers oder Salizylsäure, ermittelt wird.

Beispiel: Kohlengewicht 1,0189 g, Gewicht des Stahldrähtchens 0,007 g (die Verbrennungswärme des Stahldrahtes beträgt 1600 WE/kg), Wassergewicht 2606 g, Wasserwert des Kalorimeters 694 g, oder zusammen 2606 + 694 = 3300 g = 3,300 kg.

Vorv	Vorversuch:		versuch:	Nachversuch:			
° C	Differenz	° C	Differenz	° C	Differenz		
22 538 22,540	0.002	22,543 23,000	0.457	24,487 24,482	0,005		
22,54 2	0,002	24,370 24,479	1,370 0,109	$24,478 \\ 24,474$	0,004 0,004		
		24,487 24,489	0,008 0.002		_		

Die Temperaturbeobachtungen lieferten folgende Werte:

Die Temperaturerhöhung beim Hauptversuch betrug demnach 24,489—22,543 = 1,946°. Bei genauen Versuchen sind hier noch einige Berichtigungen anzubringen, die vom Kaliberfehler und dem Gradfehler des Therometers und von dem Wärmeaustausch des Kalorimeters mit seiner Umgebung herrühren.

Bei Vernachlässigung dieser Berichtigungen ergibt sich die vom Kalorimeter aufgenommene Wärmemenge zu 1,946 · 3,300 = 6,422 WE. Hiervon wird die vom Stahldraht erzeugte Wärme-

menge $\frac{0,007\cdot 1600}{1000}=0,012$ WE abgezogen, dann erhält man die von der Kohle abgegebene Wärmemenge zu 6,422-0,012=6,410 WE für 1,0189 g. Also hat 1 g lufttrockene Kohle einen Heizwert von $\frac{6,410}{1,0189}=6,291$ WE oder 1 kg einen Heizwert von 6291 WE.

Nun enthält die lufttrockene Kohle immer noch Wasser, ferner verbrennt der Wasserstoff der Kohle zu Wasser; das während der Verbrennung verdampfende Wasser schlägt sich nieder, wobei seine Verdampfungswärme frei wird.

In den Heizgasen eines Kessels ist aber das Wasser in Dampfform vorhanden, und seine Verdampfungs- und Flüssigkeitswärme kann nicht ausgenutzt werden; deshalb muß bei der Heizwertbestimmung die beim Niederschlagen des Wasserdampfes an das Kalorimeterwasser abgehende Wärme subtrahiert werden. Den vorhin ermittelten Heizwert nennt man den oberen Heizwert. Der untere Heizwert ergibt sich durch Abzug des Wärmeinhaltes des Wasserdampfes, den man zu 600 WE für 1 kg annimmt.

Der in der Bombe enthaltene Wasserdampf wird wie folgt ermittelt: Man treibt den gasförmigen Inhalt der Bombe mittels eines Aspirators durch ein genau gewogenes Chlorkalziumrohr, wobei die Bombe im Ölbad erwärmt wird. Die Gewichtszunahme des Chlorkalziumrohres ist die aus der verbrannten Kohle entstandene Wassermenge.

In unserem Beispiel lieferte 1 g Kohle 0,5834 g Wasser; daher sind $\frac{600 \cdot 0,5834}{1000} = 350 \text{ WE}$ in Abzug zu bringen.

Der untere Heizwert der lufttrockenen Kohle beträgt daher 6291-350=5941 WE.

Die grobe Feuchtigkeit, d. h. der Gewichtsverlust der ursprünglichen Kohle beim mehrtägigen Liegen an der Luft, wurde zu 6,85 % festgestellt; um den Heizwert der ursprünglichen Kohle zu erhalten, ist der Heizwert der lufttrockenen Kohle mit $\frac{100-6,85}{100}$

zu multiplizieren und davon die zur Verdampfung von 6.85%Wasser erforderliche Wärmemenge $600 \cdot 0.0685 = 41$ WE abzuziehen.

Man erhält:

Heizwert der ursprünglichen Kohle

$$= 5941 \cdot \frac{100 - 6,85}{100} - 41 = 5493 \text{ WE}.$$

Dritter Teil.

Größere Versuche an Dampfmaschinenund Kesselanlagen.

Allgemeines. Die Durchführung derartiger Versuche sei an einem Beispiel gezeigt, für das die hauptsächlichsten Aufschreibungen und Ergebnisse in den folgenden Zahlentafeln zusammengestellt sind. Das Beispiel läßt ferner den Einfluß der Überhitzung sowie des Umbaues einer Dreizylindermaschine in eine Zweizylindermaschine erkennen.

Die Versuche I bis III wurden im Jahre 1898 an zwei Mac-Nicol-Kesseln mit Überhitzern und einer liegenden Dreifachexpansionsmaschine mit drei Zylindern in einer Spinnerei als Garantieversuche durchgeführt. Die Aufschreibungen geben die üblichen Schwankungen des praktischen Betriebes wieder. Bei Versuch III waren die Überhitzer ausgeschaltet. Der Versuch IV wurde im Jahre 1912 ebenfalls als Garantieversuch durchgeführt, nachdem Hoch- und Mitteldruckzylinder der Maschine durch einen neuen, für hochüberhitzten Dampf gebauten Hochdruckzylinder ersetzt worden waren.

Zu den einzelnen Messungen ist im allgemeinen folgendes zu bemerken:

Die Speisewassermessung erfolgt in großen Anlagen, weil häufig die Beschaffung einer genügend großen Wage und eines geeigneten Wägebehälters Schwierigkeiten macht, durch Messung in einem Behälter, dessen Fassungsraum man durch eine Summe von Einzelwägungen bis zu einer bestimmten Marke geeicht hat. Bei der Eichung achte man darauf, daß das Wasser dieselbe Temperatur hat, die auch beim Versuch zu erwarten ist. Aus der voraussichtlichen Maschinenleistung und dem geschätzten Dampfverbrauch für 1 PS₁-Std. berechne man, wie oft der Behälter stündlich zu füllen ist und ob die Größe der Zu- und Ablaufvorrichtungen die berechnete Zahl der Füllungen zuläßt. Dieselbe Vorsichtsmaßregel gebrauche man auch für den Fall, daß das Wasser während der Versuche unmittelbar gewogen werden kann. Die Zahlentafeln zeigen, daß bei Versuch I bis III, während welcher das Speisewasser in einem geeichten Be-

hälter gemessen wurde, stündlich 2 bis 3 Füllungen mit je 2691 kg notwendig waren, während Versuch IV stündlich etwa 7 Wägungen zu je 900 kg erforderte.

Auch für die Kohlenwägung mache man einen Überschlag über die Zahl der stündlichen Wägungen. Wenn der Raum vor den Kesseln es gestattet und wenn die Lufttemperatur nicht so hoch ist, daß durch Austrocknen der Kohle der Heizwert und das Gewicht der Kohle sich ändern können, dann kann man auch einen Kohlenvorrat vorwägen, der aber, besonders bei Garantieversuchen, sorgfältig zu beobachten und von nicht gewogenen Kohlen streng getrennt zu halten ist. Ist, wie bei Versuch I bis III, ein Kohlengemisch zu verheizen, so wird am besten von jeder Kohlenart eine Probe zur Feststellung des Heizwertes entnommen und der Gesamtheizwert aus dem Mischungsverhältnis berechnet. Um an Untersuchungskosten zu sparen, kann man statt dessen eine Gemischprobe untersuchen lassen, die natürlich dasselbe Mischungsverhältnis, wie die beim Versuch verheizte Kohle haben muß.

Die Untersuchung der Heizgase wird, wie früher behandelt, durchgeführt. Sind die Abgase von zwei oder mehreren Kesseln zu untersuchen, so stellt man entweder hinter jedem Kessel einen Orsatapparat auf oder man führt von jedem Kesselfuchs eine Schlauchleitung nach einem in der Mitte der Reihe angebrachten Apparat. Ein gewandter Beobachter genügt für 3 Kessel, besonders wenn man sich darauf beschränkt, die Kohlensäurebestimmungen für jeden Kessel aller 10 Minuten und die Sauerstoffbestimmungen jede halbe Stunde durchzuführen. Auf iede CO2-Bestimmung entfallen dann 3 Minuten, eine Zeit, die auch bei 8stündiger Versuchsdauer nicht zu kurz ist. Die Untersuchung von Sammelproben, die mittels gleichmäßig saugender Aspiratoren entnommen werden, ist nur bei annähernd gleichmäßigem Betrieb zweckmäßig und führt bei stark schwankendem CO₂-Gehalt zu falschen Mittelwerten.

Gleichzeitig mit dem Indizieren der Maschine nehme man auch eine vorläufige Planimetrierung der Diagramme vor, deren Ergebnis in eine Zahlentafel eingetragen wird; die zu jedem Planimeterwert gehörige Leistung kann ebenfalls mit aufgeschrieben werden. Wegen Zeitmangels begnügt man sich jedoch meistens mit der Ausrechnung des Mittelwertes der Leistung aus dem Mittel der Planimeterwerte für den weiter unten besprochenen Zwischenabschluß (S. 122 u. 125) und den Hauptabschluß am Ende des Versuches zur vorläufigen Feststellung des Versuchsergebnisses. Ein Beobachter kann aller 10 bis 15 Minuten zwei Zylinder

indizieren, also 4 Indikatoren bedienen, den Umdrehungszähler ablesen und die Diagramme vorläufig mit einmaliger Umfahrung planimetrieren, wenn die Instrumente so gut untersucht und vorbereitet werden, daß keine Störungen durch Reißen von Schnüren, Brechen von Trommel- oder Hubrollenfedern, Auswechseln von Indikatorfedern, Lösen und Abfallen von Hubröllchen, Lockerung des Mitnehmers, Hängenbleiben des Umdrehungszählers usw. vorkommen. Wenn man ganz sicher gehen will, besonders bei Garantieversuchen, verwende man für 2 bis 3 Zylinder zwei, für 4 Zylinder drei Beobachter, besonders wenn neben den Dampfdrücken auch die Dampftemperatur gemessen werden soll.

An Beobachtern und Hilfsleuten sind demnach bei größeren Versuchen erforderlich:

- a) 1 Versuchsleiter, der je nach der Örtlichkeit und Größe der Versuchseinrichtungen noch folgendes übernehmen kann: Entweder die Kohlenwägung und Probenahme, die Messung des Dampfdruckes und der Lufttemperatur im Kesselhaus, oder die Wasserwägung und die Messung der Wassertemperatur. Bei sehr ausgedehnten Versuchen sollte sich jedoch die Arbeit des Versuchsleiters auf die Vorbereitung der Versuche, die Überwachung der Beobachter und der Versuchseinrichtungen, die Feststellung der Anfangs- und Endbedingungen, die Herstellung etwaiger Zwischenabschlüsse, die vorläufige Berechnung der Ergebnisse, sowie bei Garantieversuchen auf die Klärung etwaiger Meinungsverschiedenheiten zwischen den beteiligten Parteien beschränken.
- b) 1 Beobachter für die Kohlenwägung und die Probenahme, sowie die Wägung der Rückstände; ihm sind 1 bis 2 Mann zum Kohlenfahren und zum Auf- und Abheben der Gewichte beizugeben; einer von diesen bezeichnet an oder neben der Wage jede Kohlenwägung durch einen Kreidestrich. In Kesselhäusern mit selbsttätiger Kohlenförderung und Rostbeschickung sind die Schieber der zu den Kohlentrichtern der Versuchskessel führenden Schläuche zu schließen; von einem Schlauch aus kann durch einen aus Brettern hergestellten Hilfsschlauch die Kohle bequem nach der Wage geleitet werden.
- c) 1 Beobachter für die Wasserwägung, dem ein Hilfsmann zur Bedienung der Wage und der Zu- und Ablaufvorrichtungen beizugeben ist; letzterer bezeichnet, wie bei der Kohlenwägung, den Beginn des Ablaufes jeder Füllung durch einen Kreidestrich am Wägebehälter. Diese Kreidestriche sind für den Versuchsleiter ein bequemes und übersichtliches Mittel zur Überwachung der Wägungen und ein Schutz gegen Irrtümer. Wenn der Beobachter der Kohlenwägungen zu sehr beschäftigt ist,

100

übernimmt der Wasserwäger die Aufschreibung von Druck und Temperatur des Dampfes.

- d) 1 bis 2 Beobachter für die Untersuchung der Ab-Der Standort des Orsatapparates ist so zu wählen, daß das Licht von der Seite oder von hinten kommt, damit die Skala gut ablesbar ist. Auch die Aufhängung einer elektrischen Glühlampe an einem über das Kesselmauerwerk gelegten Schüreisen hat sich gut bewährt. Wenn der Raum in der Nähe des Schiebers zu klein, dunkel oder sehr warm ist, dann kann man den Apparat auch vor den Kesseln an einer den Durchgang nicht behindernden Stelle anbringen. Die Schläuche werden dann ziemlich lang, am besten über die Kesseldecke, verlegt und vor der Berührung mit heißen Teilen durch untergelegte Ziegelsteine oder Holzstücke Bei langen Schläuchen muß man vor der Analyse 10 bis 20 mal absaugen oder das S. 72 angegebene Aspirationsverfahren anwenden, um frisches Gas in den Apparat zu bekommen. Zur Messung der Rauchgastemperatur muß der Beobachter allerdings seinen Arbeitsplatz verlassen, so daß zur Ausführung einer vollständigen Messung mehr als 3 Minuten erforderlich sind.
- e) 1 bis 2 Beobachter für das Indizieren, vorläufiges Planimetrieren, die Beobachtung der Dampfdrücke und Temperaturen vor und innerhalb der Maschine, sowie für die Messung der Umdrehungszahl. Bei Verwendung mehrerer Indikatoren ist peinlich darauf zu achten, daß nicht Teile eines Indikators in einen fremden Kasten geraten und dadurch verwechselt werden. Um sich vor solchen Fehlern zu schützen, stellt man längs jeder Maschinenseite je einen Tisch auf und legt die Indikatorkästen in derselben Reihenfolge auf die Tische, in der die Indikatoren an der Maschine sitzen.
- f) 1 Hilfsmann zur Wägung des Dampfwassers aus der Leitung und den Mänteln. Jede Wägung ist von einem der genannten Beobachter, dem es seine sonstige Arbeit und sein Standort gestattet, oder auch von dem Versuchsleiter zu prüfen und aufzuschreiben.

Jeder Beobachter erhält das Gerippe einer Zahlentafel für seine Messungen. Diese Zahlentafeln sind auf S. 102 bis 117 zusammengestellt. Um Raum zu sparen, sind hier einzelne Aufschreibungen weggelassen, aber deren Mittelwerte oder Summen in die Berechnung der Ergebnisse eingetragen worden. Die weggelassenen Aufschreibungen betreffen: Anfangsdrücke in den drei Zylindern, Füllungen des Mittel- und Niederdruckzylinders, Vakuum im Kondensator, Wägung des Dampfwassers aus der Leitung und den Mänteln, Temperatur des zu- und abfließenden Kühlwassers, Barometerstand, Heizgasuntersuchung des Kessels II.

A. Versuchsaufschreibungen.

I. Hauptabmessungen und Konstante.

a) Für die Zweizylindermaschine.

	Hocho Zyli	lruck- nder		rdruck- inder
	KS	AS	KS	AS
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	150,0 4479,9 1,5 3654 3,62 0,02750	3653 3,62 0,02750	150,0 15217 1,8 2 2973 18,17 0,01862	i '

b) Für die Dreizylindermaschine.

	Hocho Zylii			druck- nder	Niederdruck- Zylinder		
	KS	AS	KS	AS	KS	AS	
Zylinderdurchmessermm		20		49		98	
Kolbenstangendurchm. mm	148,5	184,5	184,5	149,5	149,5	150,0	
Nutzb.KolbenflächeF=qcm	2845,9	2751,7	8375	8467	15174	15173	
Kolbenhub $s = \dots m$	l 1.8	5 0 0 ′	1.5	600		000	
Normale minutl. Drehzahl n=	, ,		. /_	2	,-		
Indikator Nr	2572	2573	1 303	636	3001	3000	
Federmaßst. $f = mm/kg/qcm$	4,94	4,844	14.30	13.93	25,38	24.43	
Maschinenkonstante 1 C1-6			0.01301	0.01351			
Indizierte Leistung einer	, ,	-,	-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Kolbenseite $N_i = PS_i$	Cr. Pl. n	Ca. Pl. n	Ca. Pl. n	$C_4 \cdot Pl \cdot n$	Cr. Pl. n	Ca. Pl. n	
Kurbelstellung	101 11.11	02-11-11	03.11.11	04.11.1		heilend	
Zylinderverhältnis		i	! 3	0,		42	
ZJIMOOI VOIHAIUHIS				,•	. ,	**	

1) Aus der Gleichung:

Indizierte Leistung einer Kolbenseite =
$$\frac{F \cdot \frac{Pl}{x \cdot f} \cdot s \cdot n}{60 \cdot 75}$$
folgt:
$$\min C = \frac{F \cdot s}{x \cdot f \cdot 60 \cdot 75}$$
$$Ni = C \cdot Pl \cdot n;$$

hier bedeutet: Pl den Planimeterwert, x die Planimeterkonstante bei Spitzeneinstellung (hier x=15) oder die Diagrammlänge bei Einstellung auf qmm.

II. Aufschreibungen füra) Erster Versuch

	Minut	liche Dre	hzahl	I -	ne n		В	ochd	ruck	zylino	ler	
				uck	schi	Κυ	ırbels	eite	Αι	ıßens	eite	gun
${f Z}$ eit	Ablesung am UmdrehZähler	Differenz	n	Dampfdruck im Kessel	Dampftemperatur vor der Maschine	Füllung	Plani- meterwert	Indizierte Leistung	Füllung	Plani- meterwert	Indizierte Leistung	Indizierte Gesamtleistung
	UI			at.	°C	0/0	a	PSi	0/0		PSi	PS_i
900	78967			12,0	209	24	267	207	23	277	212	409
10				12,1	206	23	262	203	23	285	218	421
20	1				205	23	260	201	23	277	212	413
30				12,2	224	23	271	210	23	272	208	418
40				11,8	208 204	24 23	270 278	209 215	23 23	275 293	210 224	419 439
50 1000	82546	3579	59,7	11,9	203	22 22	272	211	23	300	229	440
1000	02040	5015	55,1	11,9	208	26	280	217	27	287	219	436
20					208	25	276	214	26	300	229	443
30			1	11,7	207	25	267	207	26	287	219	426
40				11,3	204	25	288	226	26	291	222	448
50					216	29	303	235	26	328	251	485
1100	86198	3652	60,9	12,2	224	34	322	250	41	330	252	502
10				11,9	222	33	307	238	34	320	245	483
20					225	34	313	242	35	323	247	489
30				12,0	226	30	300	232	35	323	247	479
40				11,8	199	32	305	236	32	315	241	477
50	00000	9091	00.5	100	234	36	300	232	33	314	240	472 497
1200 10	89829	3631	60,5	12,0	233 231	33 35	310 307	240 238	36 33	336 328	257 251	489
20				11,7	230	35	318	246	36	335	256	502
30				12,3	232	34	315	244	37	335	256	500
40				11,7	228	38	315	244	36	335	256	500
50					228	38	315	244	40	345	264	508
100	93434	3605	60,1	11,8	224	38	309	239	40	348	266	505
10			- ' '	12,1	226	34	320	248	41	340	260	508
20			- 1		224	38	315	244	37	331	253	497
30			I	11,6	221	38	320	248	41	344	263	511
40			1	11,6	220	35	315	244	41	340	260	504
50	OFFORCE	9000	20.0	100	222	37	322	249	38	338	258	507
200 10	97036	3602	60,0	12,0	225	36 37	319 309	247 239	40	340 327	260 250	507 489
20		İ	- 1	12,2	223 218	34	304	236	38 41	331	253	489
30			ı	11,4	227	37	302	230	36	324	247	477
40				11,9	197	39	305	236	43	330	252	488
50				11,0	208	35	313	242	38	346	264	506
300	00654	3618	60,3	11,8	224	36	301	233	39	333	254	487
10		-5220	55,5	11,6	226	38	314	243	43	338	258	501
20					228	34	318	246	38	340	260	506
30				11,1	230	40	300	232	45	330	252	484
4 0				12,0	223	35	310	240	39	340	260	5 00
50			- 1		225	37	310	240	41	340	260	500

die Maschinenversuche. (mit Überhitzung).

	Mittel	druck	zyline	ler	Ī	N	ieder	druck	zylind	er			, m
Kurl	belseite	Auße	enseite	ng	K	urbelse	ite	A	ußense	ite	ng	sato	tun,
Plani- meterwert	H Indizierte	Plani- meterwert	d Indizierte	H Indizierte	r Vakuum	Plani- meterwert	H Indizierte	t.	Plani- meterwert	d Indizierte	H Indizierte G Gesamtleistung	B Vakuum E im Kondensator	Indizierte Gesamtleistung der Maschine
		i –		i 	 	 	i	<u>. </u>		1	<u></u>	<u>.</u>	<u>' </u>
81 83 77 76 77 81 77 80 86 81 85 117 110 110 110 110 110 110 110 110 112 112	64 65 61 64 61 63 68 64 67 92 98 87 79 87 84 90 84 97 95 90 91	84 82 79 85 82 84 78 82 87 112 110 110 101 101 100 104 105 111 111 111 101 101 101 101 101 101	68 67 65 70 67 69 64 67 71 72 94 90 92 84 90 85 86 86 86 91 93 95 91 88 88 94 88 88 88 88 88 88	133 132 126 130 128 133 125 130 139 134 138 184 192 171 169 171 170 176 177 176 177 176 177 178 177 178 178 172 178 172 173	0,85 0,85 0,84 0,85 0,84 0,84 0,84 0,84 0,84 0,84 0,84 0,84	215 230 215 210 210 204 211 212 222 213 225 221 270 267 261 248 249 263 278 281 278 283 287 289 289 292 296 298 299 296 299 299 296 299 299 299 299 299	172 184 172 168 169 170 170 180 176 216 216 2216 2216 220 2216 220 220 220 230 230 231 229 240 234 237 238 233 233 239 239 239 249 240 234 237 238 239 239 249 249 249 249 249 249 249 249 249 259 269 279 279 279 279 279 279 279 279 279 27	0,85 0,85 0,86 0,86 0,86 0,86 0,85 0,84 0,83 0,83 0,83 0,82 0,83 0,82 0,83 0,82 0,83 0,81 0,81 0,83 0,83 0,83 0,83 0,83 0,83 0,84 0,84 0,84 0,84 0,84 0,84 0,84 0,84	217 226 212 218 216 215 216 214 274 273 265 269 269 276 290 298 304 306 306 306 306 306 306 306 298 308 301 299 269 295	181 189 177 177 182 181 180 182 180 181 179 229 226 221 216 208 225 225 241 242 241 247 252 254 256 259 257 259 257 259 249 225 247	353 373 345 345 350 350 350 361 355 445 442 430 415 407 467 463 473 482 492 487 483 494 490 483 494 490 483 479	dauernd 72	894 926 888 893 892 925 925 925 921 941 1114 1133 1098 1065 1053 1079 1139 1139 1149 1156 1193 1156 1193 1179 1179 1179 1179 1148 1117 1155
105 108	83 85	104 108	85 88	168 173	0,82	301	241	0,82	307	257	498		1154
112	88	93	76	164	0,82 0,82	289 300	231 240	0,83 0,83	294 302	246 252	477 492		1156 1143
125 111	99	105	86	185	0.82	286	237	0.83	310	259	496		1182
$\frac{111}{120}$	88 95	100 105	82 86	170 181	0,81 0,82	293 304	234 243	0,83 0,83	299 309	250 258	484 501		1160 1166
115	91	105	86	177	0,81	298	238	0,83	300	251	489		1166
118	93	106	87	180	0,81	299	239	0,83	307	257	496	i 1	1176

a) Erster Versuch (mit Über-

						~, ~				- (**		
	Minut	liche Dre	hzahl		tur ine		H	ochd	ruck	zylino	ler	
				uck	schi	Κυ	rbels	eite	Αι	ßens	eite	augun
Zeit	Ablesung am Umdreh,-Zähler	Differenz	n	p Dampfdruck er im Kessel	o Dampstemperatur O vor der Maschine	% Füllung	Plani- meterwert	Theistung	o Füllung	Plani- meterwert	H Indizierte	H Indizierte S Gesamtleistung
400 10 20 30	04338	3684	61,4	11,8 11,6 — 11,3	228 225 226 228	37 36 34 40	312 317 317 300	242 246 246 233	41 40 38 43	335 346 346 332	256 256 264 254	498 502 510 487
40 50 500	08016	3678	61,3	11,6 11,0	220 225 226	39 39 40	310 310 300	240 240 232	43 43 45	333 330 320	254 252 245	494 492 477
Mittel	1	29049	60,5	11,8	222	33	302	234	35	323	246	480
								b) 2	Zwe	iter	Ver	such
730 40 50	17711	_	_	11,7 11,6	231 228 231	26 38 35	308 312 306	241 245 240	44 43 41	342 340 335	265 263 259	506 508 499
800 10 20 30 40 50	21398	3687	61,5	12,1 11,8 — 12,0 11,9	234 231 228 228 228 228 229	36 29 32 31 32 31	317 292 291 292 297 292	249 229 228 229 233 229	42 33 34 35 35 35	355 311 314 328 323 326	275 241 243 254 250 252	524 470 471 483 483 481
900 10 20 30 40 50	25109	3711	61,9	11,9 12,0 — 11,7 11,6 —	230 228 228 231 233 235	29 28 27 31 29 44	296 282 292 286 293 277	232 221 229 224 230 217	34 33 32 36 33 51	316 313 318 307 316 312	244 242 246 236 244 241	477 463 475 460 474 458
1000 10 20 30 40 50	28790	3681	61,4	10,1 11,9 — 11,5 11,5	218 226 230 228 230 228	45 36 37 36 33 31	270 303 295 294 291 295	212 238 231 231 228 231	52 40 42 40 36 34	305 333 325 329 312 320	236 258 251 254 241 247	448 496 482 485 469 478
1100 10 20 30 40 50	32486	3696	61,6	11,9 12,0 — 11,8 11,7 —	228 230 229 228 227 228	33 32 33 33 28 33	296 302 297 295 279 288	232 237 233 231 219 227	37 36 37 37 32 37	329 325 329 323 307 310	254 251 254 250 237 240	486 488 487 481 456 467
1200 10 20 30	36183	3697	61,6	12,0 11,2 — 11,9	226 228 226 223	32 36 33 32	304 291 300 295	238 228 235 231	36 43 37 35	323 322 325 315	250 249 251 244	488 477 486 475

hitzung). Fortsetzung von Seite 102/103.

Kurbel	Igoita		zylind	ier		N1	ederd	lruckz	ylinde	er		片	50
I	IDCITO	Auße	nseite	ing.	Ku	ırbelsei	te	A	ıßensei	ite	ıng	m nsate	rte hine
Plani- meterwert	Indizierte Leistung	Plani- meterwert	Indizierte Leistung	Indizierte Gesamtleistung,	Vakuum	Plani- meterwert	Indizierte Leistung	Vakuum	Plani- meterwert	Indizierte Leistung	Indizierte Gesamtleistung	Vakuum im Kondensator	Indizierte Gesamtleistung der Maschine
#]	PSi	Ħ	PS_i	PS_i	at.	Ħ	PS_i	at.	Ħ	PS_i	PS_i	cm	PS_i
112 118 122 120 132 100 115	88 93 96 95 104 79	108 110 85 106 110 100 100	88 90 70 87 90 82 82	176 183 166 182 194 161 173	0,80 0 80 0,81 0,82 0,81 0,81 0,82	305 302 291 301 291 290 300	244 242 233 241 233 232 240	0,83 0,84 0,81 0,82 0.82 0,82 0,82	306 302 308 310 307 306 313	256 252 257 259 257 256 262	500 494 490 500 490 488 502	dauernd 72	1174 1179 1166 1169 1178 1141 1152
106	84	101	83	167	0,83	270	216	0,83	276	231	447	72	1094

(mit Überhitzung).

t upe	erhitz	zung).									
102	117	97	199	0.83	294	239	0,83	304	257	496		12 01
112	119	99	211	0,81	304	248	0,83	320	271	519		1238
98	117	99	197	0,83	293	239	0.83	298	250	489		1185
108	109	90	198	0.82	304	248	0.83	310	262	510		1232
88	100	83	171	0.85	265	216	0,85			449		1090
84	96	80	164	0,85	262	213	0,84					108 0
90	100	83	173	086	260	212	0,86					1094
89										435		1084
86				0,85								1077
87				0,84								1067
				0,84								1037
				0,85								1052
80												1040
											32	1066
											g	1117
				0,82							r.	1142
											ne	1165
											da	1143
							0,85				Ť	1129
				0,84			0.85		227			1095
				0,84								1088
												1114
		83										1114
												1104
				0.83								1108
				0,85								1041
				0.85								1070
				0,84			0,84					1115
				0,82								1129
												1131
85	105	87	172	0,84	270	220	0,84	268	227	467		1094
	102 112 98 108 88 84 90 89 86 87 85	102 117 112 119 98 117 108 109 88 100 84 96 90 100 89 92 86 95 87 98 85 90 80 95 80 100 84 98 104 115 105 120 96 114 102 112 103 104 87 107 91 98 93 100 93 100 81 99 92 97 89 110 89 110 81 99 92 97 89 110 89 115 89 115 89 111	102 117 97 112 119 99 98 117 99 108 109 90 88 100 83 84 96 90 100 83 85 90 79 87 98 81 85 90 79 80 100 83 84 98 81 104 115 95 105 120 99 96 114 93 97 104 86 87 107 89 91 98 81 93 102 83 91 108 89 94 100 83 81 99 82 92 97 80 89 110 83 81 99 82 92 97 80 89 110 83 81 99 82 92 97 80 89 110 83 81 99 82 92 97 80 89 115 95 89 115 95 89 112 93	102 117 97 199 112 119 99 211 98 117 99 197 108 109 90 198 88 100 83 171 84 96 95 79 165 86 95 79 165 87 98 81 168 85 90 75 160 80 95 79 159 80 100 83 163 84 98 81 165 104 115 95 199 105 120 99 204 96 114 190 102 112 93 195 97 104 86 183 87 107 89 176 91 108 89 180 94 100 83 176 91 108 89 180 94 100 83 177 81 99 82 163 92 97 80 172 89 110 93 115 95 188 89 112 93 182	102 117 97 199 0,83 112 119 99 211 0,81 98 117 99 197 0,83 108 109 90 198 0,82 88 100 83 171 0,85 84 96 80 164 0,85 89 92 76 165 0,86 86 95 79 165 0,86 86 95 79 165 0,84 85 90 75 160 0,84 80 95 79 159 0,85 80 100 83 163 0,84 84 98 81 165 0,84 84 98 81 165 0,84 104 115 95 199 0,82 105 120 99 204 0,82 96 114 94 190 0,81 102 112 93 195 0,84 97 104 86 183 0,84 87 107 89 176 0,84 93 102 85 178 0,84 93 100 83 176 0,84 93 100 83 176 0,84 93 100 83 177 0,83 81 99 82 163 0,85 92 97 80 172 0,85 89 110 93 182 0,83 89 112 93 182 0,83 89 112 93 182 0,83 102 93 182 0,83 102 93 182 0,83 103 183 0,82 89 112 93 182 0,83 100 83 176 0,84 93 115 95 188 0,82 89 112 93 182 0,83 100 0,84 93 115 95 188 0,82 89 112 93 182 0,83 100 120	102 117 97 199 0,83 294 112 119 99 211 0,81 304 98 117 99 197 0,83 293 108 109 90 198 0,82 304 81 100 83 171 0,85 265 84 96 80 164 0,85 262 90 100 83 173 0 86 260 89 92 76 165 0,86 261 86 95 79 165 0,85 259 87 98 81 168 0,84 253 85 90 75 160 0,84 249 80 95 79 159 0,85 253 80 100 83 163 0,84 249 84 98 81 165 0,84 252 104 115 95 199 0,82 274 105 120 99 204 0,82 293 96 114 94 190 0,81 289 96 114 94 190 0,81 289 97 104 86 183 0,84 278 87 107 89 176 0,84 265 93 102 85 178 0,84 269 93 100 83 176 0,84 269 94 100 83 177 0,83 272 81 99 82 163 0,85 255 92 97 80 172 0,85 259 98 110 91 180 0,84 279 89 110 91 180 0,82 283 89 112 93 182 0,83 279	102 117 97 199 0,83 294 239 112 119 99 211 0,81 304 248 98 117 99 197 0,83 293 239 108 109 90 198 0,82 304 248 88 100 83 171 0,85 265 216 84 96 80 164 0,85 262 213 90 100 83 173 0 86 260 212 89 92 76 165 0,86 261 213 86 95 79 165 0,85 259 211 87 98 81 168 0,84 253 206 85 90 75 160 0,84 249 203 80 95 79 159 0,85 255 206 80 100 83 163 0,84 249 203 84 98 81 165 0,84 252 205 104 115 95 199 0,82 274 223 236	102 117 97 199 0,83 294 239 0,83 112 119 99 211 0,81 304 248 0,83 98 117 99 197 0,83 293 239 0,83 108 109 90 198 0,82 304 248 0,83 88 100 83 171 0,85 265 216 0,85 84 96 80 164 0,85 262 213 0,84 90 100 83 173 0 86 260 212 0,86 89 92 76 165 0,86 261 213 0.86 86 95 79 165 0,85 259 211 0,86 87 98 81 168 0,84 253 206 0,86 85 90 75 160 0,84 249 203 0,86 85 90 75 160 0,84 249 203 0,86 80 100 83 163 0,84 249 203 0,85 84 98 81 165 0,84 252 205 0,86 104 115 95 199 0,85 253 239 0,83 102 112 93 195 0,84 286 225 0,83 96 114 94 190 0,81 289 235 0.84 102 112 93 195 0,84 265 216 0,87 93 102 85 178 0,84 269 219 0,85 93 100 83 176 0,84 269 219 0,85 93 100 83 177 0,83 272 222 0,85 89 110 91 180 0,84 279 227 0,84 93 115 95 188 0,82 283 230 0,86 92 97 80 172 0,85 255 208 0,86 93 176 0,84 279 227 0,84 93 115 95 188 0,82 283 230 0,86 93 176 0,84 279 227 0,84 286 217 0,85 93 100 83 177 0,83 272 222 0,85 89 110 91 180 0,84 279 227 0,84 93 115 95 188 0,82 283 230 0,88 89 112 93 182 0,83 279 227 0,84 265 216 0,87 227 0,84 238 238 0,88	102 117 97 199 0,83 294 239 0,83 304 320 98 117 99 197 0,83 293 239 0,83 298 108 109 90 198 0,82 304 248 0,83 310 88 100 83 171 0,85 265 216 0,85 276 84 96 80 164 0,85 262 213 0,84 278 278 276	102 117 97 199 0,83 294 239 0,83 304 257 112 119 99 211 0,81 304 248 0,83 320 271 98 117 99 197 0,83 293 239 0,83 298 250 108 109 90 198 0,82 304 248 0,83 310 262 88 100 83 171 0,85 265 216 0,85 276 233 84 96 80 164 0,85 262 213 0,84 274 232 239 0,83 297 228 239 0,83 298 250 200 100 83 173 0,86 260 212 0,86 267 226 226 233 0,84 274 232 236	102 117 97 199 0.83 294 239 0.83 304 257 496 112 119 99 211 0.81 304 248 0.83 320 271 519 98 117 99 197 0.83 293 239 0.83 298 250 489 108 109 90 198 0.82 304 248 0.83 310 262 510 88 100 83 171 0.85 265 216 0.85 276 233 449 84 96 80 164 0.85 262 213 0.84 276 233 449 84 96 80 164 0.85 262 213 0.84 276 232 245 238 239 241	102 117 97 199 0,83 294 239 0,83 304 257 496 112 119 99 211 0,81 304 248 0,83 320 271 519 98 117 99 197 0,83 293 239 0,83 298 250 489 108 109 90 198 0,82 304 248 0,83 310 262 510 88 100 83 171 0,85 265 216 0,85 276 233 449 84 96 80 164 0,85 265 213 0,84 276 233 445 200 100 83 173 0 86 260 212 0,86 267 226 438 89 92 76 165 0,86 261 213 0,86 263 222 435 86 95 79 165 0,85 259 211 0,86 260 220 431 87 98 81 168 0,84 253 206 0,86 255 216 422 85 90 75 160 0,84 249 203 0,86 255 216 422 85 90 75 160 0,84 249 203 0,86 255 214 417 84 98 81 165 0,84 252 205 0,86 263 222 427 104 115 95 199 0,82 274 223 0,83 280 237 460 105 120 99 204 0,82 293 239 0,83 297 251 490 96 114 94 190 0,81 289 235 0,84 298 244 479 96 114 94 190 0,81 289 235 0,83 285 241 466 97 104 86 183 0.84 278 226 0,85 278 235 461 87 107 89 176 0,84 265 216 0,87 262 222 438 93 102 85 178 0.84 265 216 0,87 262 222 438 93 100 83 176 0,84 269 219 0.85 273 231 450 93 100 83 176 0,84 269 219 0,85 273 231 450 93 100 83 177 0.83 272 222 0.85 270 228 450 81 99 82 163 0,85 255 208 0,86 253 214 422 92 97 80 172 0,85 255 208 0,86 253 214 422 92 97 80 172 0,85 255 201 0,84 266 227 447 93 15 95 188 0,82 283 230 0,83 277 234 464 89 110 91 180 0,84 279 227 0,84 279 236 463 89 112 93 182 0,83 279 227 0,84 279 236 463

106

b) Zweiter Versuch (mit Über-

				_								
	Minut	iche Dre	hzahl		ur		Н	ochd	ruck	zylino	ler	
	Te .			ruck	perat	Ku	rbels	eite	Αυ	ßens	eite	e ung
${f Z}{ m eit}$	Ablesung am UmdrehZähler	Differenz	n	Dampfdruck im Kessel	Dampftemperatur vor der Maschine	Füllung	Plani- meterwert	Indizierte Leistung	Füllung	Plani- meterwert	Indizierte Leistung	Indizierte Gesamtleistung
	Un			at.	۰C	0/0	8	PSi	º/o	a	$PS_{\mathbf{i}}$	PS_i
1240				11,6	220	35	297	233	40	325	251	484
50	1			11,0	218	27	280	220	30	296	229	449
100	1			119	218	25	273	214	27	288	223	437
10	l			11,9 11,8	222	25	270	212	29	295	228	440
20	ł				228	26	280	220	27	290	224	444
30	39854	3671	61,2	120	220	26	278	218	29	292	227	445
40	00001	0011	01,2	12,0 11,8	226	26	275	216	28	290	224	440
50	ł				228	25	278	218	28	293	227	445
200	ì			117	221	26	278	218	29	290	224	442
10				11,7 11,8	224	36	310	243	40	336	260	503
20	Ì				220	34	291	228	36	319	247	475
30	43535	3681	61,4	11,8	224	34	306	240	37	331	256	496
40	10000	0001	01,1	11,8	220	34	295	231	37	316	244	475
50					222	34	300	235	37	326	252	487
300		1		11,6	225	34	292	229	40	330	255	484
10	l			12,0	224	33	300	235	38	332	257	492
20	l				220	31	297	233	36	324	251	484
30	47213	3678	61,3	12,0	221	29	295	231	34	321	247	478
Mittel		29502	61,4	11.8	226	32	292	229	36	318	246	475

c) Dritter Versuch

730	60976			11,6		35	294	230	34	313	242	472
40				11,7		40	293	230	43	316	244	474
50						33	305	239	39	329	262	501
800				11,9		36	315	247	39	319	247	494
10				11,5		32	303	238	35	317	245	483
20						34	298	234	40	321	248	482
30	64570	3594	59,9	12,2	l i	32	312	245	36	315	244	489
40			'	11,7		33	299	234	35	318	246	480
. 50				<u> </u>		33	307	241	34	323	250	491
900				11,8		33	308	241	35	323	250	491
10				11,9		33	310	243	35	320	247	49 0
20	ŀ					33	297	233	35	324	251	484
30	68212	3642	60,7	12,0		32	300	235	34	325	251	486
40			·	12,0		33	296	232	36	320	247	489
50				_	1	34	300	235	28	320	247	482
1000				12,0	1	28	274	215	31	295	228	443
10				11,9		29	278	218	29	299	231	449
20				-		28	288	226	29	291	225	451
30	71932	3720	62,0	12,0	1	29	299	234	31	311	240	474

hitzung). Fortsetzung von Seite 104/105.

	Mittel	druck	zylind	ler		Ni	iederd	lruckz	ylind	er		or	50
Kurk	elseite	Auße	nseite	gun	Κι	irbelsei	ite	Aı	ıßense	ite	e ung	m	rte stun
Plani- meterwert	d Indizierte	Plani- meterwert	Indizierte	H Indizierte Ø Gesamtleistung	at.	Plani- meterwert	d Indizierte	akuum A	Plani- meterwert	H Indizierte Z Leistung	ப் Indizierte ஜ் Gesamtleistung	S Vakuum B im Kondensator	Indizierte Gesamtleistung der Maschine
118 100 94 92 97 95 90 85 94 120 117 112 123 125 127 122 118 120	94 80 75 73 77 76 72 78 75 96 93 89 98 100 101 97 94 96	118 92 80 88 93 77 84 91 87 114 106 103 109 110 118 106 110	98 76 66 73 77 64 70 75 72 94 88 85 90 91 91 98 88 91	192 156 141 146 154 140 142 153 147 190 181 174 188 191 192 195 182 187	0,84 0,85 0,86 0,86 0,86 0,86 0,85 0,85 0,84 0,85 0,85 0,85 0,85 0,85 0,85	278 245 230 226 226 229 223 225 225 264 269 273 269 330	226 200 187 184 184 187 182 183 183 207 219 215 211 215 219 222 219 269	0,86 0,87 0,88 0,87 0,87 0,86 0,86 0,84 0,84 0,84 0,84 0,84 0,85 0,85 0,85 0,85	278 248 229 231 232 233 225 232 229 258 270 264 271 270 279 280 266 266	235 210 194 195 196 198 190 196 194 218 228 229 228 229 228 237 225 225	461 410 381 379 380 385 379 377 425 447 438 440 443 455 459 444 494	dauernd 72	1137 1015 959 965 978 970 954 977 966 1118 1103 1103 1121 1131 1146 1110
113	90	103	85	175	0,84	265	216	0,85	267	225	441	72	1091

(ohne Überhitzung).

98	107	89	187	0,84	275	224	68,0	265	224	448	1	1107
111	115	95	206	0,81	307	250	0,82	316	267	517	i	1197
108	108	89	197	0,82	301	245	0,82	312	264	509		1207
108	120	99	207	0,83	310	252	0,81	318	270	522		1223
93	105	87	180	0,83	289	235	0,84	292	247	482		1145
104	114	94	198	0,83	292	238	0,83	292	247	485		1165
97	105	87	184	0,83	296	241	0,83	289	244	486	1	1159
100	108	89	189	0,82	289	235	0,83	283	239	474	22	1143
93	109	90	183	0,82	286	238	0,83		239	477		1151
100	122	101	201	0,82	293	239	0,79	288	244	483	ŭ	1175
91	105	87	178	0,82	284	231	0,82	285	241	472	ler	1140
94	103	85	179	0,82	279	227	0,82				lar	1132
87	96	80	167	0,82	291	237	0,83	278	235	472	ا ،	1125
86	106	88	174	0,83	288	235	0,83	285	241	476		1129
92	105	87	179	0,83	293	239	0,83	291	246		1	1146
72	85	70	142	0,84	259	211	0,85	262	222			1018
73	86	71	143	0,83	255	208	0,84	252	213			1014
73	76	63	136	0,85	249	203	0,84	245	207			997
84	`97	80	164	0,83	269	219	0,82	266	225	444		1082
	111 108 108 93 104 97 100 93 100 91 94 87 86 92 72 73 73	111 115 108 108 108 120 93 105 104 114 97 105 100 108 93 109 100 122 91 105 94 103 87 96 86 106 92 105 72 85 73 86 73 76	111 115 95 108 108 89 108 120 99 93 105 87 104 114 94 97 105 87 100 108 89 93 109 90 100 122 101 91 105 87 94 103 85 87 96 80 86 106 88 92 105 87 72 85 70 73 86 71 73 76 63	111 115 95 206 108 108 89 197 108 120 99 207 93 105 87 180 104 114 94 198 97 105 87 184 100 108 89 189 93 109 90 183 100 122 101 201 91 105 87 178 94 103 85 179 87 96 80 167 86 106 88 174 92 105 87 179 72 85 70 142 73 86 71 143 73 76 63 136	111 115 95 206 0,81 108 108 89 197 0,82 108 120 99 207 0,83 93 105 87 180 0,83 104 114 94 198 0,83 97 105 87 184 0,83 100 108 89 189 0,82 93 109 90 183 0,82 91 105 87 178 0,82 91 105 87 179 0,82 87 96 80 167 0,82 86 106 88 174 0,83 92 105 87 179 0,83 72 85 70 142 0,84 73 86 71 143 0,83 73 76 63 136 0,85	111 115 95 206 0,81 307 108 108 89 197 0,82 301 108 120 99 207 0,83 310 93 105 87 180 0,83 299 104 114 94 198 0,83 296 100 108 89 189 0,82 289 93 109 90 183 0,82 286 100 122 101 201 0,82 293 91 105 87 178 0,82 293 94 103 85 179 0,82 291 86 106 88 174 0,83 288 92 105 87 179 0,83 293 72 85 70 142 0,84 259 73 86 71 143 0,83 255 73	111 115 95 206 0,81 307 250 108 108 89 197 0,82 301 245 108 120 99 207 0,83 310 252 93 105 87 180 0,83 292 238 104 114 94 198 0,83 292 238 97 105 87 184 0,83 296 241 100 108 89 189 0,82 289 235 93 109 90 183 0,82 286 238 100 122 101 201 0,82 293 239 91 105 87 178 0,82 284 231 94 103 85 179 0,82 291 237 86 106 88 174 0,83 288 235 92 105	111 115 95 206 0,81 307 250 0,82 108 108 89 197 0,82 301 245 0,82 108 120 99 207 0,83 310 252 0,81 93 105 87 180 0,83 292 238 0,83 104 114 94 198 0,83 292 238 0,83 97 105 87 184 0,83 296 241 0,83 100 108 89 189 0,82 289 235 0,83 93 109 90 183 0,82 286 238 0,83 100 122 101 201 0,82 293 239 0,79 91 105 87 178 0,82 293 239 0,79 94 103 85 179 0,82 291 237	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111 115 95 206 0,81 307 250 0,82 316 267 108 108 89 197 0,82 301 245 0,82 312 264 108 120 99 207 0,83 310 252 0,81 318 270 93 105 87 180 0,83 299 235 0,84 292 247 104 114 94 198 0,83 292 238 0,83 289 247 97 105 87 184 0,83 296 241 0,83 289 244 100 108 89 189 0,82 289 235 0,83 283 239 93 109 90 183 0,82 286 238 0,83 283 239 93 109 90 183 0,82 293 239 0,79 288 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111

c) Dritter Versuch (ohne Über-

					_				_		_=	
	Minut	liche Dre	hzahl		i e		H	ochd	ruck	zylino	ler	
				uck	erat	Κυ	rbels	eite	Αt	ßens	eite	ng
Zeit	Ablesung am UmdrehZähler	Differenz	n	Dampfdruck rt im Kessel	 Dampftemperatur O vor der Maschine 	% Füllung	Plani- meterwert	d Indizierte	% Füllung	Plani- meterwert	d Indizierte S Leistung	H Indizierte
1040				11,3	1	34	293	230	38	313	242	472
50	1		ĺ		İ	32	290	227	36	211	240	467
1100	i			12,0		28	291	228	32	305	236	464
10	1			11,7		31	294	230	34	318	246	476
20	i					27	284	223	31	300	232	455
1130	75634	3702	61,7	12,2	l	26	280	219	28	305	236	455
40]			11,7		25	284	223	30	305	236	459
50	ì			_		28	291	228	33	308	238	46 6
1200	t			12,2	l	28	298	234	32	313	242	476
10	j			11,7	1	30	291	228	34	309	239	467
20	50004	9000	04 5	1	l	31	291	228	33	315	244	472
30 40	79324	369 0	61,5	11,8		31	301	226	33	316	244	480
40 50	1			11,9		34	293	230	35	318	246	476
100	1			101		32	295	231	35	325	251	482 487
100	l			$12,1 \\ 11,4$		32 31	301 296	236 232	34 35	325 321	251 248	480
20	İ			11,4		32	285	223	34	306	237	46 0
30	83002	3678	61,3	12,2		28	300	235	31	306	237	472
40	05002	5010	01,5	12,0		31	292	224	35	330	255	479
50	1			12,0		31	294	230	33	308	238	468
200	1			12,0		30	292	224	33	323	240	474
10				11,4		33	285	223	38	320	247	470
20						29	285	223	31	306	237	460
30	86692	3690	61,5	11,8		31	303	238	35	325	251	489
40			,-	12,1		$2\overline{5}$	284	223	28	303	234	457
50						27	275	216	30	295	228	444
300				12,0		26	290	227	29	308	238	465
10				11,6		27	275	215	31	303	234	44 9
20			ı			26	280	219	26	300	232	451
30	90394	3702	61,7	11,8		27	278	218	30	299	231	449
Mittel		29418	61,3	11,9		31	293	230	33	313	242	472

d) Vierter Versuch (mit Über-

750				11,8	348	239	414	243	420	834
800	39888		i — '	11,9	350	228	395	220	381	776
10			1	11,8	352	241	417	248	429	846
20				12,0	351	241	417	244	422	839
30	41776	1888	62,9	12,0	347	249	431	255	441	872
40			'	12,0	348	236	408	239	414	822
50			l	11,4	338	234	405	237	410	815

hitzung). Fortsetzung von Seite 106/107.

I	Mittel	druck	zylind	er		N	iederd	lruckz	ylind	3r		10	ga 60
Kurk	elseite	Auße	nseite	ga	Ku	ırbelse	ite	Αι	ıßensei	te	guı	n 18at	te hin
Plani- meterwert	d Indizierte	Plani- meterwert	H Indizierte	H Indizierte G Gesamtleistung	at.	Plani- meterwert	H Indizierte Z Leistung	mnnyeA at.	Plani- meterwert	H Indizierte	H Indizierte Ç Gesamtleistung	S Vakuum B im Kondensator	H Indizierte G Gesamtleistung der Maschine
121 119 106 107 103 97 100 112 100 109 115 112 114 113 110 115 111 100 115 111 109 117 105 116 98 94 90 90 93	97 95 85 82 78 89 80 87 89 89 91 90 88 88 92 89 89 87 75 76 77 72 74	105 101 100 100 92 92 92 97 95 97 104 107 100 106 108 97 102 85 92 86 87 85 84	87 83 83 76 75 80 79 80 83 88 88 88 88 70 76 77 71 71	184 179 168 168 158 159 159 167 175 180 173 171 182 171 182 171 181 169 179 148 151 159 144 142 145	0,83 0,82 0,83 0,83 0,86 0,85 0,85 0,85 0,85 0,82 0,82 0,82 0,85 0,82 0,82 0,83 0,83 0,83 0,84 0,84 0,84 0,85 0,86 0,86 0,86 0,86 0,86 0,88 0,88 0,88	279 290 276 280 269 264 264 260 292 284 281 281 274 275 276 276 276 260 254 254 254 254 254 256 254 256 256 256 256 256 276 277 277 277 278 278 278 278 278 278 278	227 236 225 228 219 219 218 215 212 223 228 238 231 229 229 229 223 224 222 223 224 222 225 212 2212 212 212 212 213 224 225 227 227 228 229 229 229 229 229 229 229 229 229	0,80 0,82 0,83 0,83 0,83 0,83 0,83 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82	281 292 277 263 267 262 275 272 275 272 280 281 289 295 295 295 289 289 289 289 289 261 267 260 260 260 248	238 247 234 234 222 226 213 233 233 233 233 233 233 233 233 247 244 247 248 248 247 244 248 247 244 241 217 220 210	465 483 459 462 441 448 448 448 469 475 469 478 465 479 464 474 462 469 473 469 474 462 469 473 481 462 463 474 463 475 469 474 469 474 469 475 469 476 476 477 469 477 469 477 469 477 469 477 469 477 469 477 469 477 478 478 479 479 479 479 479 479 479 479 479 479	dauernd 72	1121 1129 991 1106 1054 1053 1045 1083 1077 1086 1109 1113 1131 1125 1131 1140 1112 1083 1125 1125 1109 1105 1125 1109 1105 1109 1105 1109 1105 1109 1105 1105
111	89	100	82	171	0,83	276	226	0,82	279	236	462	72	1105

hitzung, Zweizylindermaschine).

			233 207 252 252 248 219 226	273 242 295 295 290 256 265	221 192 234 229 230 205 213	258 224 273 267 269 240 249	531 466 568 562 559 496 514	dauernd 72	1365 1242 1414 1401 1431 1318 1329
--	--	--	---	---	---	---	---	------------	--

d) Vierter Versuch (mit Überhitzung, Zwei-

	Minut	iche Dre	hzahl		le dr		Н	ochdr	uckz	ylind	er	
	H			uck sel	erat schi	Ku	rbelse	eite	Au	Bens	eite	gun
$oldsymbol{Z}$ eit	Ablesung am UmdrehZähler	Differenz	n	Dampfdruck im Kessel	Dampftemperatur vor der Maschine	Füllung	Plani- meterwert	Indizierte Leistung	Füllung	Plani- meterwert	Indizierte Leistung	Indizierte Gesamtleistung
	ν. Ω			at.	° C	0/0	P	PS_i	0/0	P	PS_i	PS_i
900				11,5	331		239	414		244	422	836
10	44289	251 3	62,8	11,8 11,8	346		246	426 427		251 250	434 433	860 860
20 30 40	45546	1257	62,9	11,8 12,0 11,9	354 360 359		247 250 259	433 448		254 263	439 455	872 903
50 1000	47427	1881	62,7	11,8 $12,0$	348 355		247 246	427 426		252 250	436 433	863 859
10 1020			ĺ	11,9 11,8	355 346		246 237	426 410		249 243	431 420	857 830
30	49313	1886	62,9	12,0	353		253	438		260	450	888
40 50				12,0 11,7 12,0	352 350		239 235	414 407		248 240	429 415	843 822
11 ⁰⁰	51827	2514	62,9	12,2 11,8	362 357		241 236	417 408		244 238	422 412	839 820
20	01021	2014	02,0	12,0 12,0	343		234	405		233	403	808
30 4 0				11,6	350 347		240 255	415 441		250 261	433 452	848 893
50 1200	54970	3143	62,9	12,0 11,5	353 346		252 247	436 427		260 256	450 443	886 870
10	34910	2143	02,3	11,7	340		255	441		263	455	896
20 30	56844	1874	62,5	11,8 11,9	355 357		258 260	446 450		265 268	458 464	904 914
4 0 5 0	00022		,,-	12,0 11,9	355 348	l	241 241	417		244 242	422 419	839 836
100	58731	1887	62,9	12.1	351		247	427		248	429	856
10 20				12,0 11,4	357 340		252 244	436 422		254 247	439 427	875 849
30	04040	0545	00.0	12,1	352	i	239	414		242	419	833
4 0 50	61248	2517	62,9	12,5 12,1	370 365		242 237	419 410		239 236	414 408	833 818
200 10	62509	1261	63,0	11.9	343 341		242 246	419 426		245 248	424 429	843 855
20				12,0 12,0	354		248	429		251	434	863
30 40	64396	1887	62,9	11,9 12,0	356 353		248 246	429 426	1	253 247	438 427	867 853
50	66004	100#	co e	11,9	352		241	417		245 250	424	841 862
300 10	66281	1885	62,8	12,0 12,1	351 358		248 247	427]	250	433	860
20 30	68172	1891	63,0	12,0 12,0	355 355	1	248 239	429 414		255 239	441	870 828
40	00112	1091	00,0	12,0	356		245			248		.853
Mittel		28284	62,9	11,9	351	34	244	423	36	248	429	852

zylindermaschine). Fortsetzung von Seite 108/109.

III. Aufschreibungen

Versuch Versuchsbeginn ,, schluß dauer Std.	ΙI	II	III	IV
Versuchsbeginn · ·	900	730	730	746
" schluß · ·	501	333	333	351
dauer Std.	8.017	8.05	8.05	8.08

a) Erster Versuch

		Koł	ıle			Rü stär					Dai	mpf			
Zeit	R Braun-	R Stein- Roble	Zeit	F Braun- F kohle	Stein- se kohle	Zeit	kg	Zeit	p Druck	Tem I lesseM	Kessel II $\dot{\vec{c}}$	Zeit	a Druck	Kessel I em	Kessel II .
830—9 905 15 25 40 1000 10 20 30 40 50 1100 20 30 40 50 1200 1200 1200 20	600 150 150 150 150 150 150 150 150 150 1	300 75 75 75 75 75 75 75 75 75 75 75 75 75	1240 100 20 30 40 50 200 200 30 40 50 300 40 50 300 40 50 300 40 50 300 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 40 50 40 40 50 40 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40	150 150 150 150 150 150 150 150 150 150	75 75 75 75 75 75 75 75 75 75 75 75 75 7	315 515 630	140 110 330	15	12,0 12,1 11,2 11,8 11,9 11,7 11,3 11,9 12,0 11,7 12,3 11,7 12,3 11,7 11,8 12,1 11,6 11,6 11,6 11,6 11,6	277 260 270 280 274	346 340 345 340	45 300 15 30 45 400 15 30 45 500	11,4 11,9 11,8 11,6 11,1 12,0 11,8 11,6 11,3 11,6 11,0		
30 Summe	150	75	55	22	3450		580	15	12,2	256	350		11,8	979	3/3

b) Zweiter Versuch

730	300	150	1105	150	75	230	136	730	11.7	1 1	130	12.0	1 1	
40	150	75	10	150	75	400	398	45	11.62	252 306	45	11.8	1	
50	150	75	20	150	75	430	103	800	12,1		200	11,7	250	340
55	150	75	30	150	75	l		15	11,8		15	11.8		
800	150	75	40	150	75			30	12,0		30	11,8		
10	150	75	45	150	75			45	11,92	246 302	45	11,8	242	338
15	150	75	50	150	75	l		900	11,9		300	11,6		
20	150	75	1200	150	7 5	1		15	12.0		15	12,0		
30	150	75	10	150	75	1		30	11,7		30	12,0		
40	150	75	20	150	75	l		45	11,6	238 300		'	.	
50	150	75	30	150	75	1		1000	10,1				1	

für die Kesselversuche.

	$\mathbf{Versuch}$	I	II	III	IV
	Wasserstand in	l			
	d. Gläsern mm	150/124	105/140	77/133	145/145
	Wasserstand im			·	·
(mit Überhitzung).	Behälter mm	121	118	100	200

Sp	eisewa	sser			В	[eizg	ase	vor	dem	Schi	eber				ft- ratur
Z eit	kg	Temp. °C	Zeit	CO_2	$\begin{array}{c} \mathrm{CO_2} \\ + \mathrm{O} \end{array}$	Kessel I m	Kessel II .	gn Zng	Zeit	$\mathrm{CO_2}$	CO ₂ + O	Kessel I Lessen	Kessel II .	gnZ g	Luft- O temperatur
932 55 1032 1101 25 520 44 110 40 207 25 43 314 33 408 21 47 510	2691 2691 2691 2691 2691 2691 2691 2691	29 33 33 31 33 32	905 15 25 35 45 55 1005 15 30 40 50 1105 15 30 40 50 1200 15 25 55 1005	7,1 12,7 6,0 7,1 8,3 7,0 6,5 9,7 11,1 18,7 19,2 7,8 12,0 9,2 12,0 9,2 12,0 9,2 12,0 9,2	19,0 18,4 19,8 20,6 19,4 20,1 19,2 18,8 19,0 19,0	275 276 276 270 272 278 279 280 281 282 282 282 284 301	341 355 345 325	~ 20	110 20 30 40 50 2200 05 15 25 35 45 55 35 45 55 45 55 45 55 35 40 50 50 50 50 50 50 50 50 50 50 50 50 50	8,99 7,93,99,8,3,1,21,3,22,7,9,2,7,8,9,2,7,8,9,4,0,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1	18,6 18,9 19,0 19,3 18,8 19,6 18,9 19,2 18,9 19,0 20,2 19,0 18,8 19,0 18,8 19,0 18,8 19,0 18,8 19,0	328 314 325 324 320 320 321 322 319 318 319	325 344 335 341 341 335 342 330 351 341 336 333 333		dauernd 17
	48813	31,5								8,3	19,0	299	328	20	17

(mit Überhitzung).

•		c,								
745	2691 30	730 110,6	19,0	280 282	12	00 8,2	19,4	304 336	1	
811	2691 28	40 8,4	19,1	321 320		15 7,9	19,8	308 320		
34	2691 32	50 8,0	19,2	1 1	- 11	35 10,2	19,0	310 317		
907	2691 34	800 8,2	19,8	318 319	I	45 11,4	17,8	318 304		17
33	2691 33	15 7,3	19,4	309 310	S 1	00 7,2	19,5	311 821	ଛ	
1014	2691 33	20 9,1	18,7		64	10 8,4	19,0	308 317	~	dauernd
31	2691 36	35 8,0	19,5	308 338	(20 6,9	20,1		(e
50	2691 36	45 7,9	20,0	325 310		30 7,8	19,4	312 320		38.
1110	2691 36	55 6,6	20,6			40 9,7	19,2	319 326	ı	
38	2691 34	900 10,7	18,9	312 309	2	00 8,9	18,9	330 337	- 1	
1200	2691 34	10 8,4	19,5		- 11	15 7,8	19,3	321 333	- [
S	enfert Ar	leitung 7	Δ mfl					8		

Seufert, Anleitung. 7. Aufl.

114 Größere Versuche an Dampfmaschinen- und Kesselanlagen.

b) Zweiter Versuch (mit Über-

		Koh	le			Rüc stän					Da	mpt			
Zeit	g Braun-	g Stein- kohle	Zeit	g Braun- se kohle	g Stein- kohle	Zeit	kg	${f Z}$ eit	at Druck	Kessel I E	$\mathbf{Z}_{\mathbf{eit}}$	at Druck	Kessel I essex	Kessel II .	
900 10 20 30 40 50 1000 10 20 30 40 50 1100	150 150 150 150 150 150 150 150 150 150	75 75 75 75 75 75 75 75 75 75 75	1140 50 100 10 20 30 40 50 200 10 50 300	150 150 150 150 150 150 150 150 150 150	75 75 75 75 75 75 75 75 75 75 75			1015 30 45 1100 15 30 45 1200 15 30 45 100 15	11,9 12,0 11,8 11,7 12,0 11,2 11,9 11,6		310 312			Management of the contract of	
Summ	Summe u. Mittel 720												11,8	257	308

c) Dritter Versuch

730	300	150	1050	150	75	210	131	730	11,6	1 1	145	12,0	1
40	150		1100	150	75	415	482	45	11,7) i	200	12,0	
45	150	75	10	150	75	1		800	11,9		15	11.4	
50	150	75	20	150	75	1		15	11,5		30	11,4 11,8	
55	150	75	30	150	75	1		30	12,2		45	12,1	
800	150	75	40	150	75	1		45	11,7		300	12,0	
10	150	75	50	150	75			900	11,8		15	11,6	1
15	150	75	1200	150	75	l		15	11,9		30	11,8	1
20	150	75 75	10	150	75	l		30	12,0			1	ł
25	150	75	20	150	75			45	12,0			1	
30	150	75	30	150	75			1000	12,0			Į.	
40	150	75	40	150	75			15	11.9		1	l	
50	150	75	50	150	75			30	12,0			1	Ì
900	150	75	100	150	75			45	11,3		1		
10	150	75	10	150	75			1100	12,0				
15	150	75	20	150	75			15	12,0 11,7		1		
20	150	75	30	150	75			30	12,2				
30	150	75	40	150	75			45	11.7				
40	150	75	50	150	75			1200	12,2				1
50	150	75	200	150	75	1		15	12,2 11,7				
1000	150	75	20	150	75			30	11,8				
10	150	75	30	150	75	l		45	11,9				
20	150	75	50	150	75			100	12,1				.]
30	150	75	300	150	75	1		15	11,4				1
40	150	75	10	104	30	Ι		30	12,2				
Summ	e u. M	littel		7604	3780		613					11,9	

hitzung). Fortsetzung von Seite 113/114.

Sp	eisewa	sser			н	eizgs	se v	or ·	dem	Schie	eber				tur
Zeit	kg	Temp.°C	Zeit	CO_2	CO ₂ + O	Kessel I an	Kessel II .	g Zug		CO_2	CO ₂ + O	Kessel I E	Kessel II .	gnZ g	• Luft- O temperatur
1236 103 23 45 218 53 311 30 zu-rück	2691 2691 2691 2691 2691 2691 2691 51129 2302	31 32 31 32 31 32 35	920 30 45 55 1015 20 30 45 1100 10 25 35 45	9,3 7,4 6,9 8,7 9,4 8,9 7,9 10,9 8,4 7,9 8,7	18,9 19,1 20,2 19,0 19,6 20,1 19,2 18,9 19,1 20,2 18,9 19,3 19,1	289 275 317 318 324 304 310 316	306 290 273 320 310 327 306 316 333 328 330	~ 20	225 35 45 55 310 20 30	10,3 9,6 8,4 6,2 9,4 8,7 10,7	19,0 19,2 20,1 19,1 19,0 18,0	320			dauernd 17
	48827	32,5			•					8,5	19,3	310	318	20	17

(ohne Überhitzung).

•														
742	2691 29	735	8,9	19,0	310	336		1230	7,9		336	341	i	
805	2691 29	45	9,2	18,9	355	355		40	8,3	18,9	341		- 1	
30	2691 34	55	9,2 7,8	19,3		352		50	10,7	19,0			- 1	
48	2691 35	810	10,3	19,8		356		100	9,7		344	360		
915	2691 28	20	9.7	19,0				15	8.9	19,0	346			
45	2691 36	30	8.4	20,0	340	335		25	8,9 9,3	18,7	342		1	
1007	2691 35	40	6.8	19,7		357		35	11,2	19,0				
25	2691 36	50	9,7 8,4 6,8 7,3 9,0	19,0				45	12,6	18,2	342	349		
46	2691 35	905	9.0	20,3	338	342		55	9,0	18,9	334			
1111	2691 31	15	7.2	19,8	333	337		210	8,7	19,0	343	369	- 1	_
32	2691 29	80	9.2	18.9	345	363		15	-,	,-				15
1209	2691 32	40	7,2 9,2 8,4	19,7		355	8	30					ಜ	q
32	2691 32		10.3	18,9			_	45						dauernd
57	2691 31	1000	11,4 7,5 8,3	19,0	336	365	7	300			345	372	₹	9
126	2691 32	10	7.5	20,0		350		15			310	350		da
45	2691 28	25	8.3	19,6		324		1						
203	2691 33	35	9,7	19,0				11			1			
25	2691 31		7.9	18,9	340	295		ll						
50	2691 35	1100	8,7 9,8	19,0	349	346		11			1			
315	2691 35	15	9,8	18,7		353		ll			i			
33	2691 31	30	10,7	18.9		358								
	56511	40	7,1	19,3	336	357								
zu-	1 1	50	7,1 8,7	19,1	1									
rück	2561	1200	9,3	18,7	341	355								
		20	10,4	18,9	324	365		ij.	i			i I		
	53950 32		Ī		T	İ		}	9,1	19,1	222	354	20	15
	100000		1	I	ı	1	I	H	, 0,1	10,1			20	1.0
											5	*		

116 Größere Versuche an Dampfmaschinen- und Kesselanlagen.

d) Vierter Versuch

		Kol	hle			Rück- stände						
Zeit	kg	Zeit	kg	Zeit	kg	nicht gewogen	Zeit	Druck	Temp.	Zeit	Druck	Temp.
								at.	۰C		at.	° C
	100	1004	100	100	100		746	101	907	1190	10.4	051
752 56	100	1004 08	100	109 15	100		57	12,1	327 342	11 ³⁰	12,4	351 334
59	100 100	41	100 100	25	100 100		805	11,6	360	50	12,1 12,7	356
802	100	44	100	34	100		15	12,1 12,8	420	1200	12,1	328
08	100	48	100	37	100		20	12,6	365	10	12,1	348
09	100	52	100	40	100		30	12,3	335	20	12,1	357
12	100	1107	100	200	100	1	40	12,6	344	30	12,4	344
16	100	14	100	03	100		50	12,0	316	40	12,5	357
20	100	22	100	05	100	1	900	12,1 11,8	337	50	12,3	351
23	100	27	100	21	100		10	12,2	352	100	12,7	374
33	100	31	100	25	100		20	12,2	359	10	12,5	351
37	100	52	100	34	100	1	30	12,4	360	20	11.9	319
49	100	1204	100	38	100		40	12,4	342	30	11,9 12,3	397
58	100	07	100	41	100		50	12,2	340	40	12,9	425
905	100	10	100	45	100		1000	12,4	352	50	12,6	336
08	100	14	100	305	100		10	12,4	336	200	123	325
12	100	25	100	08	100		20	12.2	336	10	12.4	342
40	100	31	100	10	100		30	12,5	355	20	12.5	358
44	100	34	100	22	100		40	12.2	340	40	12.5	360
47	100	45	100	37	100		50	12,1	343	300	12,4 12,5 12,5 12,5 12,5	360
51	100	51	100	42	100		1100	12,5	378	20	12,4	353
55	100	58	100	47	45		10	12,2	338	40	12,6	360
1001	100	104	100			1 1	20	12,2	356	51	12,4	343
Sum	ne u. I	Mittel			6745		1				12,3	352

(mit Überhitzung).

			Sp	eisewa	sser				\mathbf{H} eizgase
Zeit	kg	Temp.	Zeit	kg	Temp.	Zeit	kg	Temp.	nicht untersucht
		°C			°C			∘c	
751	900	1221)	1112	900	130	238	900	135	
57	900	/	24	900	100	47	900	100	
807	900		33	900	128	55	900	130	
16	900	126	40	900	1-0	305	900	100	
23	900		56	900	130	12	900	134	
31	900	121	1203	900	100	22	900	104	
42	900		15	900	135	29	900		
53	900	128	22	900	100	39	900		
913	900		28	900			000		
22	900	132	34	900	134				
28	900		45	900		1			
32	900	128	53	900	136				
41	900		101	900					
51	900	130	12	900	138				
59	900		24	900				- 1	
007	900	128	30	900	130			į	
17	900		35	900				1	
27	900	129	42	900	137		į	ł	
36	900		42	900				1	
46	900	130	201	900	134			1	
52	900		15	900				1	
59	900	128	24	900	134				
105	900		32	900					
		 i				1	48190	101	

¹⁾ Hinter dem Rauchgasvorwärmer.

B. Versuchs-

I. Ergebnisse der

Versuchstag
Heizfläche der Versuchskessel
Uberhitzer
Rostfläche "Versuchskessel"
Verhältnis der Rostfläche zur Heizfläche
Market and the second
Donon den Wesselle
Dauer der Versuche Std.
Brennstoil: Versuch I Dis III: 2/3 Bonmische Braunkonie, 1/3 Kunr-
Dauer der Versuche
ım ganzen
verheizt in der Stunde,,,
auf 1 am Pastflächa
Herdrückstände: im ganzen,
in Prozenten des verheizten Brennstoffes 0//0
Varbrannlighes (Kohlangtoff) in dengalban
Speisewasser: verdampft im ganzen kg
" in der Stunde "
Temperatur°C
Temperatur
pampi: Oberdruck at.
Temperatur hinter den Uberhitzern º C
Erzeugungs- + Überhitzungswärme WE
Heizgase: Kohlensäuregehalt
Temperatur vor dem Schieber
Zugstärke mm
Verbrennungsluft: Temperatur
Verbrennungsluft: Temperatur
1) January C Manuscal January Language // C90 W/L/\
Brennstoffpreis: für 100 kg im Kesselhaus
Brennstoffpreis: für 100 kg im Kesselhaus
Dampipreis: fur 1000 kg Dampi nach a),
" 1000 " " " b)
Wärmepreis: für 100000 WE Pf.1)
Wärmeverteilung für 1 kg Kohle
warmever contains rur i kg Monte
Nutzhan gamachte gun Domnfhildung
Nutzbar gemacht zur Dampfbildung
" Damprubernitzung
Insgesamt
Verloren: a) im Schornstein durch freie Wärme der Rauchgase
b) in den Herdrückständen durch Unverbranntes
c) durch Strahlung, Leitung und unverbrannte Gase
c, durch Stramung, Delitting and univerbranate Gase
Heizwert des Brennstoffes
1) Die Zahlen entsprechen den zur Zeit der Ausführung der Versuche
gültigen Werten.

Ergebnisse.

Kesselversuche.

		l 		= 470 = 120 2 = 10 45	,4 	.,		1912 300 70 7,0 1:43
mit	I Über- zung 8,017	mit	I Über- ung 8,05	ŀ	- II .6,067	hitz	I Über- ung 8,5	IV mit Über- hitzung 8,08
58 1 4881 608 30 70	94 14,0 5,6 8,8 8,8 11,5 11,8 12,95 11,8 12,8 12,95 14,7 14,7 16,0 16,0 17,7 18,0 18,	1 4882 600 1 3 1 288 68	38 19,0 17 5,9 5,6 17 15 2,9 22,5 1,8 13 17 18,8 18 17 18,8 18 17 18 18 18 18 18 18 18 18 18 18	121 9764 607 1 3 1 299 69	.6 .6,5 .7 .5,75 .8,6 .0 .7 .2,93 .2 .1,8 .5 .5 .8,6 .0,4 .4 .4 .0 .7 .7 .4 .6 .0 .7 .7 .4 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	61 5395 670 1 3 1 - 63 34 2	4 6,0 3 5,38 8,8 0 2 4,26 2 1,9 7 9,2 9,8 6 0 5 4,738	6745 835 119,3 — — 48190 5964 19,55 131 12,3 352 — — — — — — — —
2	1,585 3,37 29,8	1,585 3,50 29,4		1,585 3,44 29,6		1,585 3,35 29,6		_ _ _
WE	0/0	WE	º/o	WE	0/0	WE	º/o	
2998 306	56,4 5,8	2882 231	53,5 4,3	2940 269	54,9 5,1	3017	53,3	
3304 1296 83 636	62,2 24,4 1,5 11,9	3113 1233 88 953 5387	57,8 22,9 1,6 17,8	3209 1264 86 794	60,0 23,6 1,6 14,8	3017 1312 81 948	56,3 24,5 1,5 17,7	
5319	5319 100,0		100,0	5353	100,0	5358	100,0	1

II. Ergebnisse der

Versuchstag	1898
Dauer der Versuche	Std
Anzahl der Diagramme	Dia.
Minutliche Drehzahl	• • • •
Dampfdruck; in den Kesseln	
vor der Maschine	,,
Anfangsdruck im Hochdruckzylinder	,,
" " " Mitteldruckzylinder	,,
", "Niederdruckzylinder	,,
Dampftemperatur: hinter den Uberhitzern	°C
vor der Maschine	,,
Vakuum: im Niederdruckzylinder	at.
"Kondensator"	
,	. at.
Temperatur des Einspritzwassers	°C
Barometerstand	• • • • • • • • • • • • • • • • • • • •
Füllung: im Hochdruckzylinder	0/0
" Mitteldruckzylinder	,,
" Niederdruckzylinder	,,
Mittlerer Druck: im Hochdruckzylinder	at.
" Mitteldruckzylinder	,,
"Niederdruckzylinder	
Indizierte Leistung: im Hochdruckzylinder	PS
" Mitteldruckzylinder	,,
der linken Maschinenhälfte	,,
im Niederdruckzylinder = rechte Maschinenhälf	te ,,
indizierte Gesamtleistung	.,
Wassermessung: a) Speisewasser	,",
b) Dampfwasser aus der Leitung	. тв
a) Gesent Demofreshrench der Meschine (c. h)	
c) Gesamt-Dampfverbrauch der Maschine (a—b)	
d) Dampfverbrauch der Maschine für 1 PSi-Std	• ,,
e) Stdl. Dampfwasser aus Hochdruckmantel un	
-Deckel	g u. %
	,,, .,
", ", Niederdruckmantel . "	,, ,,
", ", allen Mänteln,	77 77
Kohlenverbrauch: im ganzen	. kg
für 1 PS _i —Std	
Kohlenkosten: für 1 PSi-Std	Pfg.

Maschinenversuche.

I mit Über- hitzung	II mit Über- hitzung	I + II	III ohne Über- hitzung	IV mit Über- hitzung 1912
8,017 294 60,5 11,8	8,05 294 61,4 11,8	16,067 588 61,0 11,8	8,05 294 61,3 11,9	8,08 192 62,9 12,3
11,3 2,20 0,45 307 222	11,5 2,15 0,41 283 228	11,4 2,18 0,43 295 225	11,2 2,13 0,29	11,9 11,9 — 1,01
0,83 72,0 0,98 5,0	0,85 72,0 0,98 5,0	0,84 72,0 0,98 5,0	0,83 72,0 0,98 5,0	352 0,65 — — —
28,0 743 34 44 43	28,0 749 34 44 43	28,0 746 34 44 43	28,0 749 32 44 43	35 — 52
4,28 0,492 0,675 480 167	4,16 0,511 0,712 475 175	4,22 0,497 0,694 478 171	4,13 0,501 0,744 472 171	4,53 — 0,853 852 —
647 447 1094 48813 231,1	650 441 1091 48827 237,5	649 444 1098 97640 468,6	643 462 1105 53950 242,5	544 1396 }
48581,9 5,54 188.1 3.10	48589,5 5,53 207,8 3,46	97171,4 5,535 198,4 3,28	53707,5 6,02 217,8 3 ,28	4,27
122,5 2,02 158,5 2,62 469,1 7,74 10372 1,18 1,875	127,1 2,10 152,4 2,53 488,2 8,09 10772 1,22 1,93	124,8 2,06 155,4 2,57 478,6 7,91 21144 1,20 1,91	132,9 2,00 252,3 3,80 603,0 9,08 11384 1,28 2,06	 6745 0,60 1,26

Vierter Teil.

Dampfturbinen-Untersuchung.

Gegenstand der Untersuchung einer mit einer Dynamomaschine verbundenen Dampfturbine ist gewöhnlich:

- 1. Die Ermittlung der elektrischen Leistung in KW,
- die Ermittlung des stündlichen Dampf- und Wärmeverbrauches für 1 KW.

Häufig lassen sich die Versuche ähnlich wie bei der Kolbenmaschine durchführen. Bei Gleichstrombetrieb wird, wie S. 39 angegeben ist, die elektrische Leistung durch Messung von Spannung und Stromstärke festgestellt. Die Leistung einer Wechseloder Drehstrommaschine ermittelt man durch Beobachtung eines Wattmeters. Bei genauen Versuchen sind nur geeichte Präzisionsinstrumente oder mit solchen verglichene Instrumente zu verwenden.

Der stündliche Dampfverbrauch für 1 KW wird entweder durch Wägung des Speisewassers mit Berücksichtigung aller S. 43 angegebenen Vorsichtsmaßregeln oder (nur bei Oberflächenkondensation) durch Wägung des Turbinenkondensates ermittelt.

In letzterem Falle verwendet man zweckmäßig 2 Wagen mit je einem genügend großen Behälter, in welche abwechselnd durch Schwenkrohr oder Schlauch oder besondere Rohr- und Ventilanordnungen das Wasser geleitet wird. Jeder Behälter und seine Ablaufvorrichtung muß so bemessen sein, daß er in kürzerer Zeit leerläuft, als der andere sich füllt. Statt das Wasser zu wägen, kann man es auch in Behälter laufen lassen, deren Inhalt man bis zu einer bestimmten Marke durch besondere Wägung geeicht hat. Zur Prüfung des Beharrungszustandes und der Gleichmäßigkeit des Versuchsganges empfiehlt es sich, etwa jede Stunde einen Zwischenabschluß zu machen; die zugehörigen Zeiten sind dabei auf Sekunden genau abzulesen. Das folgende Musterbeispiel zeigt die bei einem vollständigen Versuch erforderlichen Aufschreibungen und die Berechnung der Ergebnisse.

Hauptergebnisse des Versuches.

Versuchstag	1910	
Versuchsdauer: 179 Min. 52 Sek. =	Std.	2,997 3404
	i	11,0
Dampf: a) Überdruck vor der Turbine b) Temperatur vor der Turbine	at.	3 23
c) Erzeugungswärme (auf Speise-	· ·	020
wasser von 0° bezogen) $\lambda = 668.1 +$		
$(323-186,9)\cdot 0.542 = \ldots$	WE	741,9
Barometerstand	mm	705
Vakuum im Ausströmrohr	m Q-S	67,5
$=\frac{67.5}{73.5}=\cdots\cdots$	at.	0,92
67.5		
$=\frac{67.5}{70.5}\cdot 100 = \dots \dots$	%	96
Kühlwasser-Temperatur: Zufluß	°C	4,0
Abfluß	,,	13,5
Lageröl: Überdruck	at.	1,77
Temperatur	°C	45
Elektrische Leistung: Gesamtleistung Arbeitsbedarf der Luft-	KW	557
und Kühlwasserpumpe	,,	10,2
$=\frac{10,2}{557}\cdot 100 = \dots$	%	1,9
Kondensat: a) Temperatur	°C	13,5
b) Gesamtmenge	kg	12800
c) in der Stunde $\frac{12800}{2,997} = \dots$	"	4270
d) in der Stunde für 1 KW $\frac{4270}{557}$ =	"	7,66
Wärmeverbrauch f. 1 KW-Std. = 7,66.741,9	$\mathbf{W}\mathbf{E}$	5683

Zu den noch nicht erwähnten Aufschreibungen ist folgendes zu bemerken:

Die minutliche Drehzahl wird gewöhnlich an dem an der Turbine vorhandenen Tachometer abgelesen.

Muster-Leistungs- und Dampfverbrauchs-

	Minutliche Drehzahl	ampf- lruck vor Turbine	ampf- ratur vor Turbine	m im imrohr	Kü was tempe	ser-	nsat- eratur	Lag	eröl	Elektrische Gesamt- Leistung
Zeit	Minutlich Drehzahl	Dampf überdruck der Turbi	Dampf- temperatur der Turbi	Vakuum im Ausströmrohr	Zu- fluß	Ab- fluß	Kondensat- Temperatur	Druck	Temp.	Elektrische Gesamt- Leistung
	n	at.	٠C	cm Q-S	°C	° C	°C	at.	°C	kw
830	3000	8,1	297	67,4	4,0			1,98	44	543,5
835		7,2	299				l	l		467
840	3000	6,4	301	67,7			1	l		438
845	2005	6,8	306	a= a			l	l		475
850	3005	7,7	314	67,6				1		546
855	0000	9,4	328	05.5		40.5	40.5			584
9 00	3000	10,8	337	67,5		13,5	13,5	1,85	45	548
905 910	3000	11,0	343	077 5			İ	ì		586,5
915	5000	11,0 11,6	344 341	67,5			ł			594
920	3005	11.6	339	67,4			l	I		540 570,5
925	5005	12,7	338	61,4						568
930	3010	12,9	337	67,5	4,0			1,6	45	565,5
935	3010	12,3	335	01,5	4,0			1,0	40	584,5
940	3010	11,6	327	67,5				l		535
945	3010	11,3	320	01,0				l .		572
950	3010	12,0	319	67,4				l		564.5
955	0010	12,8	321	01,1	l		1	1		565,5
1000	3010	12,4	324	67,5			1	1,6	46	540,5
1005	0010	10,8	326	01,0			l	1,0	10	569,5
1010	3000	9,8	327	67,5			l			563
1015		9,9	327				l	ŀ		574,5
1020	3010	11.8	305	67,4				l		584,5
1025		12,5	306	,-	ŀ		i	l		530
1030	3010	12,5	301	67,5	4,0	13,4	13,5	1,8	46	565
1035		12,4	325	Í	,.	,	l ′	l ′		580
1040	3000	11,5	324	67,4			l	l		575
1045		11,5	323				1	l		548
1050	3000	11,8	328	67,4						569
1055		12,1	320				Ì			587
1100	3000	10,4	317	67,5			1	1,8	46	547
1105	ا ۔ ۔ ۔ ا	10,7	318					l		574,5
1110	30 00	11,6	322	67,5				,		590
1115	0000	12,8	331	a= -		40.5	40.5	i		574,5
1120	3000	12,4	339	67,5	4,0	13,5	13,5			582
Summe:										
Mittel:	3004	11,0	323	67,5	4,0	13,5	13,5	1,77	45	557
11110001.	3004	11,0	020	31,5	₹,0	10,0	10,0		70	1 001
									1	l
	l l	l i	ı						l .	I

Beispiel. Versuch an einer Dampfturbine.

	Ko	ndensatm	essung			
	1			Abschlüsse		der Küh mpe
Diff.	kg	Kon- densat	Dauer	Mittlere Leistung	Dampf- verbrauch für	Verbrauch der Luft- und Kühl- Wasserpumpe
Min. u. Sek.		kg	Min. u. Sek.	ĸw	1 KW-Std.	ĸw
14' 12" 9' 58" 12' 30" 9' 50" 12' 45" 9' 45"	900 700 900 700 700 900 700	3200	46′ 30″	532,2	7,75	
12′30″ 9′30″	900 700	3200	44′ 30″	562,5	7,67	
12' 25" 9' 45" 12' 30" 9' 30" 12' 10" 9' 40" 12' 38" 9' 54"	900 700 900 700 900 700 900 700	3200	44' 30"	565,5	7,64	
179′ 52″	12 800			557	7,65	10,2
	Min. u. Sek. 14' 12" 9' 58" 12' 30" 9' 50" 12' 45" 12' 30" 9' 30' 12' 25" 9' 45" 12' 30" 9' 30" 12' 10" 9' 40" 12' 38" 9' 54"	Diff. kg Min. u. Sek.	Diff. kg Kondensat Min. u. Sek. kg	Diff. kg Kondensat Dauer Min. u. Sek. kg Min. u. Sek.	Diff. kg Kon-densat Dauer Mittlere Leistung Min. u. Sek.	Diff. kg Kon-densat Dauer Mittlere Leistung Verbrauch für KW-Std.

Häufig wird auch der Arbeitsbedarf der für Wechsel- und Drehstrom notwendigen Erregermaschinen durch Messung der Stromstärke und Spannung festgestellt.

Der Arbeitsbedarf der Luft- und Kühlwasserpumpe, die gewöhnlich durch besondere Elektromotoren angetrieben werden, läßt sich ebenso messen; er wird aber bei Garantieversuchen gewöhnlich nicht von der Gesamtleistung abgezogen, weil häufig diese Pumpen nicht von derselben Firma wie die Turbine bezogen werden und ihre Leistung vielfach von örtlichen Verhältnissen, z. B. Verwendung von Heberleitungen, Strahlkondensatoren usw. abhängt.

Fünfter Teil.

Dieselmaschinen-Untersuchung.

Gegenstand der Untersuchung einer Dieselmaschine kann sein:

- 1. die Ermittlung der indizierten Leistung Ni,
- 2. die Ermittlung der Nutzleistung Ne,
- die Ermittlung des indizierten Arbeitsbedarfes der Luftpumpe,
- 4. die Ermittlung des mechanischen Wirkungsgrades $\eta_{\rm m}$,
- 5. die Ermittlung des stündlichen Brennstoff- und Wärmeverbrauches für 1 PS_i oder 1 PS_e,
- die Berechnung der Wärmeausnutzung und der Wärmeverluste.

Erster Abschnitt.

Die Ermittlung der indizierten Leistung.

Diese erfolgt ähnlich wie bei der Dampfmaschine¹). Aus einer genügenden Anzahl von Indikatordiagrammen wird der mittlere Druck p_m berechnet. Außerdem ist die Messung folgender Größen erforderlich:

- a) Zylinderdurchmesser D,
- b) Kolbenhub s,
- e) minutliche Drehzahl n.
 Bei doppeltwirkenden Maschinen tritt noch hinzu:
- d) der Durchmesser der Kolbenstange.

Bezeichnet man die wirksame Kolbenfläche mit F, dann ist die indizierte Leistung jedes Zylinders einer einfach-wirkenden Viertaktmaschine

$$N_i = \frac{F \cdot p_m \cdot s \cdot n}{120 \cdot 75}$$
 Pferdestärken.

Bei einer doppeltwirkenden Maschine wird nach dieser Formel die Leistung jeder Zylinderseite für sich berechnet. Bei einer

¹⁾ S. 33.

Zweitaktmaschine beträgt die indizierte Leistung jeder arbeitenden Kolbenseite

$$N_i = \frac{F \cdot p_m \cdot s \cdot n}{60 \cdot 75} \text{PS}.$$

Bemerkung: Um bei den hohen Drücken keine zu starken Indikatorfedern verwenden zu müssen, setzt man meistens in die Indikatorzylinder besondere Einsatzzylinder und Kolben von kleinerem Durchmesser ein. Der Maßstab der Feder f wird dann wie folgt berechnet:

Der Durchmesser des ursprünglichen Kolbens sei 20 mm, der des Einsatzzylinders 7 mm, und der Federmaßstab 8 mm; dann ist

$$f = 8 \cdot \frac{7^2}{20^2} = 8 \cdot \frac{49}{400} = 0.98$$
 mm.

Die Kolbendurchmesser müssen mit größter Genauigkeit, am besten mit Mikrometerschrauben gemessen werden.

Zweiter Abschnitt.

Die Ermittlung der Nutzleistung.

Genau wie bei der Dampfmaschine¹).

Dritter Abschnitt.

Die Ermittlung des indizierten Arbeitsbedarfes der Luftpumpe.

Die Luftpumpe ist meistens zweistufig ausgeführt, der Hochdruckkolben als einfachwirkender Tauchkolben, der sich unmittel, bar daranschließende Niederdruckkolben vielfach doppeltwirkend, so daß seine wirksamen Flächen Ringflächen sind. Ist z. B. bei einer stehenden Maschine

¹⁾ S. 36.

dann ist die wirksame Kolbenfläche vom

Hochdruckzylinder:
$$f_2 = \frac{d_2^2 \pi}{4},$$

Niederdruckzylinder (oben):
$$f_0 = \frac{d_1^2 \pi}{4} - \frac{d_2^2 \pi}{4}$$
,

(unten):
$$f_u = \frac{d_1^2 \pi}{4} - \frac{d_u^2 \pi}{4}$$
.

Die gleichzeitige Indizierung beider Zylinder erfordert demnach 3 Indikatoren; der Indikator des Hochdruckzylinders wird wegen des hohen Druckes in gleicher Weise wie der Indikator des Arbeitszylinders mit einem Zylindereinsatz und kleinem Kolben versehen.

Ist s der gemeinsame Hub beider Kolben und sind durch Indizierung und Planimetrierung für jede Kolbenseite die mittleren Drücke p_{m_2} , p_{m_10} und p_{m_1u} festgestellt, dann ist der indizierte Arbeitsbedarf des

Hochdruckzylinders:
$$N_{i_2} = \frac{f_2 \cdot p_{m_2} \cdot s \cdot n}{60 \cdot 75}$$
 PS,

Niederdruckzylinders (oben):
$$N_{i_{10}} = \frac{f_0 \cdot p_{m_10} \cdot s \cdot n}{60 \cdot 75}$$
 PS,

(unten):
$$N_{i_1u} = \frac{f_u \cdot p_{m_1u} \cdot s \cdot n}{60 \cdot 75}$$
 PS.

Demnach beträgt der indizierte Gesamt-Arbeitsbedarf der Luftpumpe

$$N_{iu} = N_{i_2} + N_{i_10} + N_{i_1u}$$
.

Vierter Abschnitt.

Die Ermittlung des mechanischen Wirkungsgrades.

Der mechanische Wirkungsgrad soll kennzeichnend für die Güte der Bearbeitung und des Zusammenbaues der bewegten Teile sein. Weil aber der Arbeitsbedarf der Luftpumpe hierauf keinen Einfluß hat, versteht man hier nicht, wie bei der Dampfmaschine unter dem mechanischen Wirkungsgrad den Quotienten

$$\eta_{\rm m} \! = \! \frac{{
m Nutzleistung}}{{
m Indizierte~Leistung}} \! = \! \frac{{
m N_e}^{1}}{{
m N_i}},$$

sondern den Quotienten

$$\eta_{\mathsf{m}} = \frac{ ext{Nutzleistung}}{ ext{Indizierte Leistung} - ext{indiz}. Luftpumpenarbeit}$$

oder

$$\eta_{\mathrm{m}} = \frac{N_{\mathrm{e}}}{N_{\mathrm{i}} - N_{\mathrm{lu}}} \cdot$$

Wie groß der Unterschied beider Berechnungsweisen werden kann, zeigt folgendes

Beispiel: Es sei an einer zweizylindrigen Maschine festgestellt:

$$\begin{array}{ll} N_i = 261 & PS \\ N_e = 198 & , \\ N_{lu} = & 13,6 & , , \, . \end{array}$$

Nach der ersten Formel würde sich ergeben:

$$\eta_{\rm m} = \frac{N_{\rm e}}{N_{\rm i}} = \frac{198}{261} = 0.76,$$

während der wirkliche Wert nach der zweiten Formel sein muß:

$$\tau_{l^{m}} = \frac{N_{e}}{N_{i} - N_{lu}} = \frac{198}{261 - 13.6} = 0.80 \; . \label{eq:tau_lum}$$

Der Vergleich mit einer Dampfmaschine würde bei Verwendung der ersten Formel zuungunsten der Dieselmaschine ausfallen.

Fünfter Abschnitt.

Die Ermittlung des stündlichen Brennstoffverbrauches für eine Pferdestärke.

Der Brennstoffverbrauch muß, weil es sich infolge der zulässigen Kürze der Versuchszeit (1 bis 1½ Stunden) um verhältnismäßig kleine Mengen handelt, mit besonderer Genauigkeit durch Wägung festgestellt werden. Man bringt nach Abb. 46 an dem vorhandenen Entnahmebehälter nach Abnahme des Deckels oder an einem besonders für den Versuch bestimmten Behälter mit nicht zu großer Oberfläche eine senkrechte Nadel an und füllt vor Anfang des Versuches den Behälter so auf, daß die untere Nadelspitze etwas eintaucht, nachdem man vorher

¹⁾ Streng genommen müßte bei Kondensations-Dampfmaschinen ebenfalls der Arbeitsbedarf der Luftpumpe von Ni abgezogen werden.

den Schwimmerzulauf gut abgeschlossen hat. Der Zeitpunkt, zu welchem der Flüssigkeitsspiegel von der Nadelspitze abreißt, ist der Versuchsbeginn. Nun füllt man regelmäßig genau gewogene Ölmengen nach. Um zu prüfen, ob bei gleichmäßiger Belastung die Maschine in gleichen Zeiten gleichviel Öl verbraucht, ist es zweckmäßig, immer gleiche Ölmengen nachzufüllen und jedesmal mit der Uhr die Zeit festzustellen, wann der Ölspiegel abreißt. Der letzte dieser Zeitpunkte ist der Versuchsschluß.

Sollten die Ölpumpen tropfen, so ist das Tropföl aufzufangen, zu wägen und vom gewogenen Ölverbrauch in Abzug zu bringen.

Zur Ermittlung des stündlichen Wärmeverbrauches Wi für 1 PSi oder We für 1 PSe ist die Kenntnis des Brennstoffheizwertes W¹) erforderlich. Ist Bi bzw. Be der stündliche Brennstoffverbrauch für 1 PSi bzw. 1 PSe, dann ist

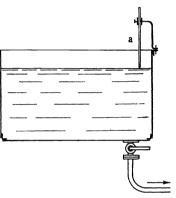


Abb. 46.

Beispiel: Es sei während einer Versuchsdauer von 67,5 Minuten gemessen: $N_i=261~\mathrm{PS_i},~N_e=198~\mathrm{PS_e},~\mathrm{Gesamt\text{-}Brennstoffverbrauch}$ 42,0 kg, Heizwert $W=9810~\mathrm{WE/kg},~\mathrm{dann}$ ist

$$\begin{aligned} \mathbf{B_1} &= \frac{42,0}{67,5 \cdot 261} \cdot 60 = \mathbf{0,143 \ kg,} \\ \mathbf{B_e} &= \frac{42,0}{67,5 \cdot 198} \cdot 60 = \mathbf{0,189} \ , \\ \mathbf{W_1} &= 0,143 \cdot 9810 = \mathbf{1400 \ WE,} \\ \mathbf{W_e} &= 0,189 \cdot 9810 = \mathbf{1850} \ , \end{aligned}$$

Um einen Vergleich mit verschiedenen Brennstoffen auf gemeinsame Grundlage zu bringen, kann man $B_{\rm e}$ auf einen Heizwert von 10000 WE/kg umrechnen; man erhält dann

$$B_{e}' = \frac{B_{e}}{10000} \cdot 9810 = 0.185 \text{ kg.}$$

¹⁾ S. Anhang.

Sechster Abschnitt.

Die Berechnung der Wärmeausnutzung und der Wärmeverluste.

Unter Wärmeausnutzung oder wirtschaftlichem Wirkungsgrad versteht man das Verhältnis

$$\eta_{\rm w} = \frac{{\rm für~1~PS_{e^{-}}Std.~theor.~notw.~W\ddot{a}rmemenge}}{{\rm wirkl.~W\ddot{a}rmeaufwand~f\"{u}r~1~PS_{e^{-}}Std.}}$$

Die für die stündliche Nutzpferdestärke theoretisch notwendige Wärmemenge wird wie folgt berechnet:

$$1 \text{ mkg/sek} = \frac{1}{427} \text{ WE/sek}$$
 (mechanisches Wärmeäquivalent).
$$1 \text{ mkg-Std.} = \frac{1}{427} \cdot 3600 \text{ WE,}$$

1 PS-Std. = 75 mkg-Std. =
$$\frac{1}{427} \cdot 3600 \cdot 75 = 632$$
 WE.

Also ist beispielsweise mit einem durch den Versuch festgestellten Wärmeverbrauch $W_e = 1850 \text{ WE/PS}_e\text{-Std}$.

$$\eta_{\rm w} = \frac{632}{{
m W}_{\rm o}} = \frac{632}{1850} = 0.342; {
m d. h.}$$

34,2 % des Heizwertes des Brennstoffes werden in Nutzarbeit verwandelt.

Die Wärmeverluste sind folgende:

- a) Verlust durch die Eigenreibung der Maschine,
- b) Verlust durch Luftpumpenarbeit,
- c) Verlust durch die mit dem Kühlwasser abgeführte Wärme,
- d) Verlust durch die mit den Abgasen abgeführte Wärme,
- e) Restverlust: Strahlung, Leitung, unvollkommene Verbrennung, Summe der Versuchsfehler.

Man berechnet diese Verluste für 1 PS_e-Std. und stellt sie mit der nutzbar gemachten Wärme in einer Wärmebilanz zusammen (wie bei der Dampfkesseluntersuchung).

a) und b) Den Reibungs- und Luftpumpenverlust faßt man gewöhnlich zusammen.

Die Summe dieser Verluste beträgt N_i — N_e , also für jede Nutzpferdestärke $\frac{N_i-N_e}{N_e}$ PS, oder, da jeder PS 632 WE entsprechen,

$$V_1 = \frac{N_i - N_e}{N_e} \cdot 632 \text{ WE},$$

oder

$$V_{1^{0}/_{0}} = \frac{V_{1}}{W_{e}} \cdot 100 \, \%.$$

Beispiel: Für $N_i = 261 \, \text{PS}$ und $N_e = 198 \, \text{PS}$ wird

$$V_1 = \frac{261 - 198}{198} \cdot 632 = 201 \text{ WE,}$$

oder in Prozenten von We = 1850 ausgedrückt.

$$V_{1^{0}/_{0}} = \frac{V_{1}}{W_{0}} \cdot 100 = \frac{201}{1850} = 10,9^{0}/_{0}.$$

c) Beträgt die Kühlwassermenge, die hinter dem Ausflußrohr durch Wägung oder Messung mittels eines großen, durch
Einfüllen gewogener Wassermengen geeichten Behälters erfolgt, für
1 PSe-Std. K kg, die Eintrittstemperatur t₁ und die Austrittstemperatur t₂, dann ist die stündlich für 1 PSe abgeführte Wärmemenge

$$egin{aligned} V_2 &= K(t_2 - t_1) WE, \; ext{oder} \ V_{2^{\circ}/_0} &= rac{V_2}{W_0} \cdot 100 \, \%. \end{aligned}$$

Beispiel: Die in 64 Minuten durchgeflossene Kühlwassermenge betrage 1860 kg, $N_e = 198$ PS, $t_1 = 9^{\circ}$ C und $t_2 = 55,5^{\circ}$ C, dann ist $K = \frac{1860}{64 \cdot 198} \cdot 60 = 8,8 \text{ kg},$

$$\begin{split} \mathbf{K} &= \frac{1860}{64 \cdot 198} \cdot 60 = 8.8 \,\mathrm{kg}, \\ \mathbf{V}_2 &= 8.8(55.5 - 9) = \mathbf{408} \,\,\mathbf{WE} \,, \\ \mathbf{V}_{20/0} &= \frac{408}{1850} \cdot 100 = 22.00 /_0. \end{split}$$

d) Zur Feststellung des Abgasverlustes ist erforderlich: die Messung des Kohlenstoff- und Wasserstoffgehaltes des Treiböles, des Kohlensäuregehaltes und der Temperatur der Abgase und der Temperatur der angesaugten Luft. Die Untersuchung der Abgase wird ähnlich wie beim Dampfkessel¹) durchgeführt. Man setzt in das Auspuffrohr möglichst nahe an der Maschine ein hoch grädiges Thermometer so ein, daß die Quecksilberkugel sich in der Mitte des Gasstromes befindet, ferner ein 3/8" Gasrohr mit einem Hahn, den man durch einen Gummischlauch mit einem Halse einer dreihalsigen Wulffschen Flasche verbindet. Vom zweiten Halse derselben führt man einen Gummischlauch nach einem Orsatapparat, mit dem aller 2-3 Minuten eine Kohlensäurebestimmung vorzunehmen ist. Der Überdruck der Abgase entweicht durch den dritten Hals der Flasche, an dem man zur Luftabschließung einen dritten Gummischlauch ansetzen und in einen mit Wasser gefüllten Eimer ausmünden lassen kann.

¹⁾ Siehe S. 67.

Muster-

Leistungs- und Verbrauchsversuch an einer stehenden

Hauptmaße:

Arbeitszylinder: Durchmesser D = 450 mm = 45,0 cm
Kolbenfläche F =
$$\frac{D^2 \pi}{4} = \frac{45^2 \pi}{4} = 1590$$
 qcm
Kolbenhub s = 680 mm = 0,68 m.

Luftpumpe: Durchmesser des Niederdr.-Kolb.
$$d_1=145 \text{ mm}=14.5 \text{ cm}$$

Kolbenstangen-Durchm. oben $d_0=d_2=60 \text{ mm}=6.0 \text{ cm}$

where
$$d_0 = d_2 = 0$$
 and $d_0 = 0$ and $d_$

Durchmesser d. Hochdruck-Kolbens $d_2 = 60 \text{ mm} = 6.0 \text{ cm}$ Kolbenfläche $f_2 = \frac{d_2^2 \pi}{4} = \frac{6.0^2 \pi}{4} = 28.27 \text{ qcm}$

Hub beider Kolben s' = 204 mm = 0.204 m.

Brenns	stoff			Au	swe			r Dia Zylir		ne d	er		ttafel- ungen
Zeit	kg	Zeit	n	Kompress. Enddruck at.	Planimeter- kert 1)	Mittl. Druck pm	1	8.4	Planimeter- wert ¹⁾	Mittl. Druck pm	N _{i2} PSi	Volt	Amp.
238 300' 30'' 323 345 30''	 14,00 14,00 14,00	300	160,4 160,0 160,0 160,0 160,4 160,4	34,9 35,0 34,7 35,0	100 103 102 102 103 103			35,5 35,3 35,9 36,1 35,8 36,2 36,7 36,2	103 101 103 103 102 102 102 104			231 229,5 230,5 228,5 228 230,5 229 225,5	568,5 582,5 583 568 575
Summe:	42,0		961,2	280,5	816			287,7	820			1832,5	4625, 0
Mittel	wert		160,2	35,1	102	6,75	130	36,0	102,5	6,80	131	229	578

¹⁾ Mit Spitzeneinstellung.

Beispiel.

zweizylindrigen einfachwirkenden Dieselmaschine.

Versuchsaufschreibungen:

									I:		torm: = mm	aßstäb /at.	e
Vers Beob	achte	r					 					oben	unten
			-	Schlu Daue Beg Sch	nn 234 r 67,4 rinn 2 luß 3	5/ 30// 5 Min 39 43			Zyl. 1 Zyl. I Luftr N. Zy H. Zy	f = N: f = 1. N: f = 1. N:	= 1 r	5,007 5,005 0,731	- - - - 5,00
Aı	ıswer	tung	der]	Diagr	ammo	e eine	r Lu	ftpun	npe	Zuflu		lwasse peratu	
Nic	derdr oben	uck	Nie	derdr unten		Niı	Ho	chdr	uck			Abflu	stemp. C
Pl1)	рm	Ni ₁₀	Pl 1)	рm	Ni ₁ u	PS_i	Pl 1)	рm	N _{i2} PS _i	Zeit	kg	Zyl. I	Zyl, II.
123			120				178			239 244 252	230 240	52	55,5 57,5 52,5
119			120				176			301 310 319	230 230 230	56 54,5	53,5 55,5 60,0
120			121				189			328 336 343	240 240 220	55	60,5 55 55
362			361				543				1860	496,0	505,0
121	1,61	1,6	120	1,60	1,8	3,4	181	16,50	3,4			5 5	56

Dann wird zunächst der Verlust V₃ für 1 kg Treiböl ebenfalls (jedoch mit Fortlassung des Wassergehaltes W) nach der S. 69 angegebenen Formel berechnet:

$$V_3' = \left(0.32 \frac{C}{0.536 \cdot k} + 0.48 \frac{9 H}{100}\right) (T - t) WE.$$

Der Verlust V's für 1 PSs-Std. wird dann durch Multiplikation mit dem stündlichen Brennstoffverbrauch Be für 1 PSc erhalten, also

$$egin{aligned} V_3 &= V_3' \cdot B_e \mathrm{WE} \ \mathrm{oder} \ V_{3^0/_0} &= rac{V_3}{W_e} \cdot 100 \, \%. \end{aligned}$$

Beispiel: Es sei festgestellt:

$$\begin{array}{l} V_3' = \left(0.32 \, \frac{85,76}{0,536 \cdot 8,5} + 0.48 \, \frac{9 \cdot 11,71}{100}\right) (460 - 20) \, = \, 287,5 \, \, \mathrm{WE} \\ V_3 = 2875 \cdot 0.189 = \, 544 \, \, \mathrm{WE} \end{array}$$

$$V_3 = 2875 \cdot 0,189 = 544 \text{ WE}$$

$$V_{30/0} = \frac{544}{1850} \cdot 100 = 29,40/0.$$

e) Der Restverlust wird als Unterschied

$$W_e$$
 — (ausgenützte Wärme + (a + b + c + d))

Wenn alle Beobachtungen genau ausgeführt sind berechnet. und die Maschine mit vollkommener Verbrennung arbeitet, darf er nur wenig von Null abweichen, manchmal hat er sich infolge zufälliger Summierung kleiner Versuchsfehler auch negativ ergeben. In den meisten Fällen genügt es, die Verluste d und e als Restverlust zusammenzufassen.

Die vollständige Wärmebilanz unseres Be	ispiels	lautet
dann:	WE	%
Nutzbar gemacht	632	34,2
Verloren:		
a) Reibungsverlust b) Luftpumpenarbeit $V_1 = \cdots$	201	10,9
c) Kühlwasserverlust $V_2 = \dots$	408	22,0
d) Abgasverlust $V_3^2 = \dots$	544	29,4
e) Restverlust	65	3,5
Wärmeaufwand für 1 PS _e -Std	1850	100,0

Das Musterbeispiel S. 134 zeigt die Zusammenstellung der erforderlichen Versuchsaufschreibungen und ihre Auswertung.

Aus dieser Zahlentafel sind die

Hauptergebnisse des Versuches

wie folgt hervorzuheben bzw. zu berechnen:

wie loigt hervorzuneben bzw. zu berechnen.		
Versuchsdauer: a) für den Brennstoffverbrauch b) " " Kühlwasserverbrauch .	Min.	67,5 64
Anzahl der Diagramme		
a) Arbeitszylinder	,,	16
b) Luftpumpenzylinder	,,	9
Minutliche Drehzahl	,,	160,2
Kompressions-Enddruck: a) Zylinder I	$\mathbf{at}.$	35,1
b) " II	,,	36,0
Mittlerer Druck p_m : a) Zylinder I	,,	6,75
b) " II	,,	6,80
c) Luftpumpe:		
Niederdruck oben	,,	1,61
" unten	,,	1,60
Hochdruck	,,	16,50
Indizierte Leistung:		
a) Zylinder I:		
$N_{i_1} = \frac{F \cdot p_m \cdot s \cdot n}{120 \cdot 75} = \frac{1590 \cdot 6,75 \cdot 0,68 \cdot 160,2}{120 \cdot 75} = $	$\mathbf{P}\mathbf{S}_i$	130
b) Zylinder II:		
$N_{i_2} = \frac{1590 \cdot 6,80 \cdot 0,68 \cdot 160,2}{120 \cdot 75} = \dots \dots$		101
$N_{i_2} \equiv {120 \cdot 75} \equiv \dots \dots$,,	131
c) Indizierte Gesamtleistung $N_i = N_{i_1} + N_{i_2}$	"	261

Indizierter Arbeitsverbrauch der Luftpumpen:

a) Niederdruckzylinder:

$$\begin{split} N_{i_10} = & \frac{f_o \cdot p_m \cdot s \cdot n}{60 \cdot 75} = \frac{136,9 \cdot 1,61 \cdot 0,204 \cdot 160,2}{60 \cdot 75} = & PS_i & 1,6 \\ N_{i_1u} = & \frac{153,8 \cdot 1,60 \cdot 0,204 \cdot 160,2}{60 \cdot 75} = & , & 1,8 \\ N_{i_2} = & N_{i_1o} + N_{i_1u} = 1,6 + 1,8 = & , & 3,4 \\ \end{split}$$

b) Hochdruckzylinder:

$$\begin{split} N_{i_2} &= \frac{28,27 \cdot 16,5 \cdot 0,204 \cdot 160,2}{60 \cdot 75} = & PS_i & 3,4 \\ c) \text{ Für eine Luftpumpe } N_{lu} &= N_{i_1} + N_{i_2} = \\ &= 3,4 + 3,4 = \\ d) \text{ Für beide Luftpumpen: } 2 \cdot N_{lu} = 2 \cdot 6,8 = \\ &= \\ N_{lu} &= 2 \cdot 6,8 = \\ &= \\ N_{lu} &= 2 \cdot 6,8 = \\ &= \\ N_{lu} &= 2 \cdot 6,8 = \\ N$$

Nutzleistung der Dieselmaschine, wenn der Wirkungsgrad der Dynamo zu $\eta_d = 0.91$ angenommen wird:

$$N_e = \frac{N_{el}}{\eta_d} = \frac{180}{0.91} = PS_e \quad 198$$

Mechanischer Wirkungsgrad:

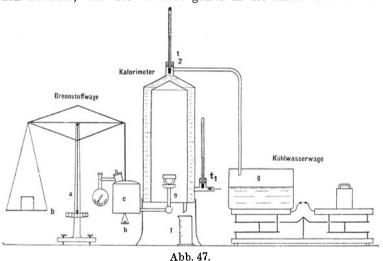
$$\eta_{\rm m} = \frac{N_{\rm e}}{N_{\rm i} - N_{\rm in}} = \frac{198}{261 - 13.6} = 0,80$$

$$\frac{0,189 \cdot 9810}{10000} = \dots \dots , \quad 0,185$$

Kosten: a) für 100 kg beispielsweise.... M.
$$10.-$$

b) für 1 PS_e-St.
$$\frac{0,189}{100} \cdot 10 \cdot 100 = Pf.$$
 1,87

Kühlwasser:		
a) im ganzen	kg	1860
b) in der Stunde $\frac{1860}{64}\cdot 60 = \ldots$,,	1740
c) " " " für 1 $PS_i \frac{1740}{261} = \dots$,,	6,7
d) " " " " 1 PS_e $\frac{1740}{198} = \dots$,,	8,8
Temperatur: a) Zufluß	$^{\mathbf{o}}\mathbf{C}$	9
b) Abfluß	,,	55,5
Wärmeaufwand in der Stunde		
a) für $1 \text{ PS}_i : \mathbf{W}_i = 0.143 \cdot 9810 = \dots$	WE	1400
b) " 1 PS_e : $W_e = 0.189 \cdot 9810 =$,,	1850
Wärmeverteilung für 1 PS _e -Std.	WE	%
Nutzbar gemacht	632	34,2
Verloren: a) durch Reibung und Luftpumpenarbeit		
$rac{N_{ m i}-N_{ m e}}{N_{ m e}}\!\cdot\!632=\ldots\ldots$	201	10,9
d) durch die Abwärme des Kühlwassers		
$8,8 (55,5-9) = \dots \dots \dots$	408	
c) in den Abgasen und Restverlust	609	32,9
Wärmeaufwand für 1 PS_e -Std. =	1850	100,0


Anhang.

Bestimmung des Heizwertes flüssiger Brennstoffe.

Diese Bestimmung sei hier an Hand des Junkersschen Kalorimeters¹) beschrieben. Die in Abb. 47 schematisch dargestellte Einrichtung besteht aus der Brennstoffwage mit Zeiger a und Skala b, dem Brennstoffbehälter c mit dem Manometer d und dem Brenner e, dem eigentlichen Kalorimeter, dem das Kühlwasser bei t₁ zu- und bei t₂ abläuft, den beiden zugehörigen, mit Lupen ablesbaren Thermometern, dem Meßzylinder f für das

¹⁾ Junkers & Co., Dessau.

aus dem Wasserdampf der Verbrennungsgase niedergeschlagene Kondenswasser, der Kühlwasserwage und einem daraufstehenden Auffangbehälter g. Innerhalb des Wasserraumes befinden sich zur Erzielung einer genügend großen Heizfläche senkrechte Röhrchen, die in der Abb. weggelassen sind. Die Handhabung der Einrichtung und die Durchführung einer Messung ist folgende: Man schraubt den Brennstoffbehälter auf, nimmt das Manometer ab und gießt etwa 150—200 ccm des zu untersuchenden Brennstoffes in den Behälter. Dann setzt man das Manometer wieder an und verschraubt unter Zwischenlage von Dichtungen den Behälter wieder. Hierauf stülpt man das Kalorimeter so über den Brenner, daß der letztere genau in der Mitte des Kalori-

meters hängt, und bringt die Wage durch Gewichte auf der linken Seite ins Gleichgewicht; nun muß der Brenner, ohne anzustoßen, mit der Wage auf und ab schwingen. Jetzt wird der Brenner von der Wage abgehängt, das unter dem Brennerkopf befindliche Schälchen mit Spiritus (nicht Benzin) gefüllt und entzündet. Wenn der Spiritus fast verbrannt und dadurch der Brennerkopf stark erhitzt ist, drückt man mit einer kleinen Fahrradpumpe durch den Verschluß des Brennstoffbehälters Luft ein, wodurch der Brennstoff in den Brenner aufsteigt, im Brennerkopf vergast wird und durch eine sehr feine Düse gegen den heißen Brennerkopf ausströmt. Das ausströmende Gas entzündet sich an der Spiritusflamme und erhält den Brennerkopf

glühend, auch wenn der Spiritus ausgebrannt ist. Wenn kein Gas ausströmt, dann ist die Düse verstopft und muß mit der jedem Apparat beigegebenen Reinigungsnadel durchstoßen werden.

Der am Manometer zu messende Luftdruck soll etwa 150 bis 200 mm Quecksilbersäule betragen; sinkt der Druck während des Versuches, dann muß nachgepumpt werden. Nun wird das Kalorimeter durch einen Gummischlauch mit der Wasserleitung verbunden, und erst, wenn das Wasser bei t2 abzulaufen beginnt, darf der Brenner wieder unter das Kalorimeter gebracht und an die Wage gehängt werden. Nun begrenzt man mit dem bei t1 befindlichen Hahn die durchlaufende Wassermenge so, daß der Temperaturunterschied t2-t1 etwa 20°C be-Wenn der Beharrungszustand eingetreten ist, kann der Versuch beginnen. Man richtet nun durch Auflegen eines kleinen Gewichtes auf die unter dem Brennstoffbehälter einzuhängende Schale h oder durch Abnehmen von Gewichten von der linken Wagschale die Wage so ein, daß der Brennstoffbehälter mit einigen Gramm das Übergewicht erhält. Unterdessen tariert man den Kühlwasserbehälter auf seiner Wage aus und läßt das bei fabtropfende Kondenswasser in ein nicht zum eigentlichen Versuch zu benutzendes Gefäß fließen.

Der Versuch beginnt, sobald der Zeiger der Wage, die durch das allmähliche Aufzehren von Brennstoff wieder ins Gleichgewicht kommt, durch den Nullpunkt der Skala hindurchgeht. Genau von diesem Augenblick ab fängt man das Kühlwasser durch Hereinschwenken eines bei t2 angeschlossenen Schlauches auf, schiebt den Meßzylinder f unter und beginnt mit den Temperaturablesungen bei t1 und t2, die regelmäßig alle Minuten wiederholt werden. Nun gibt man dem Brennstoffbehälter durch Auflegen von B = 10, 15 oder 20 g das Übergewicht. Der Versuch ist beendigt, wenn die diesem Übergewicht entsprechende Brennstoffmenge verbrannt ist und der Zeiger der Wage wieder durch den Nullpunkt der Skala hindurchgeht. In diesem Augenblick entfernt man den Schlauch aus dem Kühlwassergefäß und den Meßzylinder f; dann wird das Kühlwassergewicht Wkg und die Kondenswassermenge w ccm festgestellt.

Der obere Heizwert ist die von 1 kg Brennstoff an das Kühlwasser abgegebene Wärmemenge

$$H_0 = \frac{W(t_2 - t_1)}{B} \cdot 1000 \text{ WE.}$$

Den unteren Heizwert erhält man durch Subtraktion des auf 1 kg Brennstoff bezogenen Wärmeinhalts des Kondenswassers, den man für jedes kg Wasser genügend genau zu 600 WE annehmen kann. Die aufgefangene Kondenswassermenge betrage w ccm.

Also

$$H_u = H_o - \frac{600 \cdot \text{w}}{\text{R}} \, \text{WE}.$$

Die bei einem solchen Kalorimeterversuch erforderlichen Aufschreibungen und Ausrechnungen zeigt folgendes Beispiel:

Brennstoff	Kühlwasser	Kondens- wasser	Kühlwassertemperatur		
В д	W kg	w ccm	t ₁ t ₂		
			16,25 16,10 15,95 15,80 15,70 15,60 15,49 15,40	40,20 40,82 41,85 41,70 41,20 41,93 41,78 41,50	
10,0	4,177	11,0	15,80	41,37	

$$\begin{aligned} \text{Oberer Heizwert H_0} &= \frac{4{,}177\,(41{,}37-15{,}80)}{10{,}0} \cdot 1000 = 10680\,\text{WE} \\ \text{Unterer Heizwert H_u} &= 10680 - \frac{600 \cdot 11}{10{,}0} = 10020\,\,\text{WE}. \end{aligned}$$

Der Brenner wird durch Öffnen der über dem Manometer befindlichen Verschlußschraube abgestellt. Nach dem Gebrauch ist der Brennstoffbehälter gut mit Benzin zu reinigen. Vor einer neuen Untersuchung ist er mit einigen cem des zu untersuchenden Brennstoffes auszuspülen. Benzin darf nicht in der Nähe offener Flammen eingefüllt werden.

Sechster Teil.

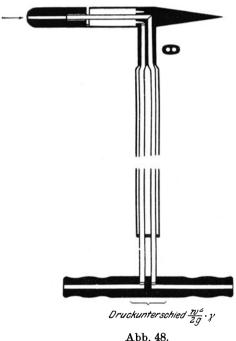
Gasmaschinen-Untersuchung.

Gegenstand der Untersuchung einer Gasmaschine kann sein:

- 1. Die Ermittlung der indizierten Leistung Ni.
- 2. Die Ermittlung der Nutzleistung Na.
- 3. Bei Zweitaktmaschinen die Ermittlung des Arbeitsbedarfes der Luft- und der Gaspumpe.
- 4. Die Ermittlung des mechanischen Wirkungsgrades $\eta_{\rm m}$.
- Die Ermittlung des stündlichen Gas- und Wärmeverbrauches für 1 PS_i oder 1 PS_e.
- Die Berechnung der Wärmeausnutzung und der Wärmeverluste.
- 7. Wenn ein Abhitzekessel vorhanden ist, die Ermittlung der in diesem nutzbar gemachten Abwärme.

Die unter 1. bis 4. genannten Arbeiten erfolgen wie bei der Dampf- und Dieselmaschine. Bei Hochofengebläsemaschinen kann die Nutzleistung durch Indizieren der Windzylinder festgestellt werden.

Erster Abschnitt.


Die Ermittlung des stündlichen Gas- und Wärmeverbrauches für eine Pferdestärke.

Die hierzu notwendigen Messungen erstrecken sich auf

- a) die Gasmenge,
- b) die Gaszusammensetzung,
- c) den Gasheizwert.

a) Messung der Gasmenge.

Bei kleineren Maschinen schaltet man in die Gasleitung einen Gasmesser ein, den man vorher mittels eines Gefäßes von bekanntem Inhalt mit Luft eichen kann. Bei Versuchen an größeren Maschinen füllt man eine große Gasometerglocke, deren Inhalt für die ganze Versuchsdauer ausreichen muß, mit Gas und ermittelt den Gasverbrauch dadurch, daß man an einer Skala mit Zeiger die Senkung der Glocke während des Versuches feststellt. Das Produkt aus der gemessenen Senkung der Glocke in m und dem mittleren Querschnitt der Glocke in qm ist der Gasverbrauch in cbm. Zur Vermeidung einer ungleichmäßigen Temperaturverteilung im Innern der Glocke darf letztere während des Versuches nicht von der Sonne bestrahlt oder starkem Wind ausgesetzt sein. Druck und Temperatur des Gases in der Glocke werden regelmäßig gemessen und der ermittelte Gasverbrauch für die PS- oder KW-Std. wird auf

0° und 760 mm umgerechnet. Da nur wenige Werke derartig große Gasbehälter besitzen¹), werden solche Versuche selten ausgeführt, und man mißt die Gasmenge mit

- dem Staurohr (nach Prandtl oder Brabbée),
- 2. der Düse.
- 3. dem Staurand.
- 4. dem Venturirohr.
- 1. Das Staurohr (Abb. 48) mißt in Verbindung mit einem Differential Manometer den dynamischen Druck $p = h \cdot \gamma$ in mm Wassersäule und gestattet aus der Gleichung:

$$w = \sqrt{2gh} = \sqrt{2g\frac{p}{\gamma}}$$

die Geschwindigkeit w

des Gases in der Leitung zu berechnen, wenn γ das spezifische Gewicht des Gases in kg/cbm bedeutet. Da die Gasgeschwindigkeit in der Rohrmitte am größten ist und gegen die Wandung hin etwas abnimmt, tastet man die Geschwindigkeit auf einer Anzahl von Punkten desselben Rohrquerschnittes ab, am besten auf zwei zueinander senkrechten Durchmessern, und ermittelt

¹⁾ Siehe Zeitschrift "Glückauf" 1919 S. 1—56: Bericht über das Gasraftwerk der Zeche Bergmannsglück in Buer.

hieraus die mittlere Geschwindigkeit wm. Diese Messungen müssen sehr rasch hintereinander ausgeführt werden, weil durch Änderung der durchströmenden Gasmenge Fehler entstehen.

Das sekundliche Gasvolumen beträgt dann

$$V = F \cdot w_m \text{ cbm}.$$

Zur Umrechnung dieses Volumens auf 0° und 760 mm Q-S ist noch die Temperatur t und der Druck des Gases zu messen. Letzterer betrage q' mm W-S Über- oder Unterdruck gegenüber dem Barometerstande B mm Q-S; dies gibt, in mm Q-S umgerechnet, einen Druckunterschied von $\pm rac{ ext{q}'}{13.6}$ (mit 13,6 kg/cdm spez. Gewicht des Quecksilbers), also einen absoluten Druck von $q=B\pm {q'\over 13.6}$. Das auf 0° und 760 mm Q-S umgerechnete sekundliche Gasvolumen ist dann nach dem vereinigten Gay-Lussac-Mariotteschen Gesetz:

$$V_{\text{o}} = V \, \frac{273}{273 + t} \cdot \frac{\mathrm{q}}{760} \cdot$$

Beispiel: Lichter Rohrdurchmesser D = 600 mm

B = 752 mm Q - S q' = 50 mm W - S $t = 20^{\circ}$ Barometerstand Gasüberdruck

Gastemperatur $t=20^{\circ}$ Spezifisches Gasgewicht $\gamma=1,29~{
m kg/cbm}$ (aus der Gaszusammensetzung, der Temperatur und dem Druck be-

Eine Messung von p ergab p = 12 mm W-S.

Hieraus

$$w = \sqrt{2g\frac{p}{\nu}} = \sqrt{2 \cdot 9.81 \frac{12}{1.29}} = 13.55 \text{ m/sek.}$$

Durch Abtasten habe sich ergeben:

$$\mathbf{w_m} = 13{,}00 \; \mathrm{m/sek}$$
 .

$$\begin{split} w_m &= 13,00 \text{ m/sek} \,. \\ \text{Sekundliches Gasvolumen V} &= \frac{D^2\pi}{4} \cdot w_m = \frac{0,6^2\pi}{4} \cdot 13,0 = 3,68 \text{ cbm} \,. \\ \text{Sekundliches Gasgewicht } G &= V \cdot \gamma = 3,68 \cdot 1,29 = 4,75 \text{ kg} \,. \\ \text{Auf 0° und 760 mm Q-S umgerechnet mit} \\ q &= B + \frac{q'}{13,6} = 752 + \frac{50}{13,6} = 756 \text{ mm Q-S} \,, \\ V_0 &= V \frac{273}{273 + t} \cdot \frac{q}{760} = 3,68 \frac{273}{273 + 20} \cdot \frac{756}{760} = 3,42 \text{ cbm} \,. \end{split}$$

Bei längeren Versuchen setzt man das Staurohr an die Stelle des Querschnittes, an der man beim Abtasten die Geschwindigkeit übereinstimmend mit der mittleren Geschwindigkeit gefunden hat.

In ähnlicher Weise kann man auch mittels eines Schalenkreuz-Anemometers messen.

Letzteres Meßgerät sowie das Staurohr eignen sich nur für gut gereinigtes Gas und für Luft, da sie leicht verschmutzen, haben iedoch den Vorzug, daß sie einen sehr geringen Druckverlust in der Gasleitung ergeben.

Für die unter 2 bis 4 genannten Meßgeräte¹) gilt allgemein die Beziehung

$$V = f_0 k \sqrt{2g\frac{p}{\gamma}} cbm \text{ oder}$$

$$= f_0 k \sqrt{2gp\gamma} kg.$$

In dieser bedeutet fo den Querschnitt an der engsten Stelle in qm, k einen Beiwert, der von dem Verhältnis m $=\frac{f_0}{F}$ des engsten Querschnittes des Gerätes zum Rohrquerschnitt und der Art des Gerätes abhängt und p den gemessenen Druckunterschied in mm W-S. Beim Durchgang des Gases durch die engste Stelle tritt eine mehr oder weniger große Einschnürung des Strahles ein. Wird die Strahlgeschwindigkeit in der engsten Stelle der Einschnürung mit w bezeichnet, so herrscht in der engsten Stelle des Meßgerätes die kleinere Geschwindigkeit μ w, der Beiwert μ ist eine Zahl ≤ 1 , die man Kontraktionszahl nennt und die von dem oben erwähnten Verhältnis m und der Art des Gerätes abhängt und deren Werte. soweit sie sich auf den Staurand beziehen, aus folgender Zahlentafel²) zu entnehmen sind:

Die Kontraktionszahl µ.

	<u> </u>							
-	$m=rac{f_0}{F}$	$\sqrt{m} = \frac{d}{D}$	für Wasser	μ für Luft				
	0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0	0,0 0,316 0,447 0,548 0,632 0,707 0,774 0,836 0,894 0,948 1,000	0,615 0,620 0,635 0,650 0,665 0,690 0,735 0,785 0,855 0,925 1,000	0,635 0,637 0,642 0,653 0,668 0,689 0,717 0,756 0,808 0,883 1,000				

Ausführliches über ihre Theorie s. Mitteilung Nr. 40 der "Wärmestelle" Düsseldorf, sowie Seufert, Verbrennungslehre und Feuerungstechnik, 2. Aufl., 1923. Berlin: Julius Springer.
 S. auch A. O. Müller, Forschungsheft 49 (Verein deutsch. Ingenieure).

2. Für die Düse (Abb. 49) gilt, wenn sie als Normaldüse¹) mit $\sqrt{m} = 0.4$ ausgeführt wird, in der Gleichung

$$V = f_0 k \sqrt{2g \frac{p}{\gamma}}$$
 die Beziehung:

a)
$$k = \frac{1}{\sqrt{1 - m^2}}$$
, wenn die Messung

des Druckunterschiedes p unmittelbar am Flansch erfolgt (Abb. 49);

b)
$$k = \frac{1}{1-m}$$
, wenn für den gemes-

senen Druckunterschied $p = p_1 - p_2$ die Meßstelle für p_1 etwa um den doppelten Rohrdurch-

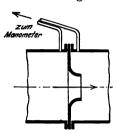


Abb. 49.

messer vor dem Meßflansch und die Meßstelle für p₂ etwa um den 8 fachen Rohrdurchmesser hinter dem Meßflansch liegt²). Ferner ist

 f_0 der lichte Querschnitt der Düse und $\mu=1$. Die Normaldüse gibt verhältnismäßig großen Druckabfall; zur Vermeidung dieses Umstandes kann man auch Düsen mit größerem Öffnungsverhältnis m verwenden. Der Einbau ist teuer und umständlich, die Zuverlässigkeit des Ergebnisses ist ziemlich

3. Der Staurand wird nach Abb. 50 ausgeführt und nach Abb. 51 eingebaut. In den Gleichungen

gut, die Empfindlichkeit gegen Staubablagerung gering.

$$egin{aligned} V &= f_0 \, k \, \sqrt{2 \, g \, rac{p}{\gamma}} \, \mathrm{cbm} & \mathrm{oder} \ &= f_0 \, k \, \sqrt{2 \, g \, p \, \gamma} \, \mathrm{kg} & \mathrm{ist} \ \mathrm{a)} \, \, \mathrm{k} &= rac{\mu}{\sqrt{1 - \mathrm{m}^2 \mu^2}}, \end{aligned}$$

wenn die Messung des Druckunterschiedes p unmittelbar vor und hinter dem Staurand erfolgt (ähnlich wie bei Abb. 49),

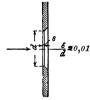


Abb. 50.

b)
$$k = \frac{\mu}{1-m\mu}$$
, wenn die Messung von p nach Abb. 51 Abb. 51.

2) S. auch Abb. 51.

¹⁾ S. Regeln für Leistungsversuche an Ventilatoren und Kompressoren 1912 (Verein Deutscher Ingenieure) S. 45.

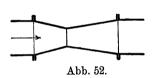
Beispiel:

Lichter Rohrdurchmesser D=600 mm (F = 0,283 qm) Innerer \bigcirc des Staurandes d=420 ,, (fo = 0,138 ,,) Gemessener Druckunterschied p=15 ,, WS (nach Abb. 51). Spezifisches Gasgewicht $\gamma=1,29 \text{ kg/cbm}$.

Hieraus

Fraus
$$m = \frac{f_0}{F} = \frac{0,138}{0,283} = 0,49,$$

$$\mu = 0,689 \text{ (nach Zahlentafel S. 146)},$$


$$k = \frac{\mu}{1 - m\mu} = \frac{0,689}{1 - 0,49 \cdot 0,689} = 1,04,$$

$$V = f_0 k \sqrt{2g \frac{p}{\gamma}} = 0,138 \cdot 1,04 \sqrt{2 \cdot 9,81 \cdot \frac{15}{1,29}} = 2,16 \text{ cbm/sek},$$

$$= f_0 k \sqrt{2g p \gamma} = 0,138 \cdot 1,04 \sqrt{2 \cdot 9,81 \cdot 15 \cdot 1,29} = 2,80 \text{ kg/sek}.$$

Der Einbau ist verhältnismäßig billig und leicht, die Zuverlässigkeit des Ergebnisses ziemlich gut, die Empfindlichkeit gegen Staubablagerung mäßig.

4. Das Venturirohr (Abb. 52) ist ein langes Doppelkegel-Rohr. Die eine Meßstelle befindet sich am Eintrittsflansch, die

zweite Meßstelle amengsten Der Anschluß Querschnitt. der Meßrohre erfolgt ringsumlaufenden Wulsten, die mit den Meßstellen durch Lochkränze ver-In der Gleichung bunden sind.

$$V=f_{0}k\sqrt{2grac{p}{\gamma}}$$
 ist $k=rac{C}{\sqrt{1-m^{2}}},$

worin C eine durch Eichversuche zu bestimmende Konstante ist¹).

Der Einbau ist sehr teuer und umständlich, die Zuverlässigkeit des Ergebnisses gut, die Empfindlichkeit gegen Staub sehr gering.

Alle unter 1 bis 4 genannten Geräte verlangen zur Erzielung genauer Ergebnisse ein möglichst langes gerades Rohrstück ohne Querschnittsänderung.

b) Ermittlung der Gaszusammensetzung²).

Diese erfolgt am einfachsten in einem erweiterten, mit einer mit Palladiumasbest gefüllten Verbrennungsröhre versehenen Orsat-

¹⁾ angenähert: C = 1.

²⁾ Näheres s. Mitteilung Nr. 61 u. 62 der "Wärmestelle" Düsseldorf.

apparat oder in einem dazu besonders gebauten Apparat 1). Die Bestimmung erstreckt sich auf

Die Sperrflüssigkeit in der Niveauflasche und im Sperrgefäß für die Verbrennung muß gesättigte Kochsalzlösung sein. Nach der Absorption der schweren Kohlenwasserstoffe ist der Gasrest zur Entfernung der Schwefelsäuredämpfe nochmals in die Sind CO₂, CnHm und O₂ absorbiert, Kalilauge überzuführen. dann treibt man einen Teil des Gasrestes G1 ins Freie und behält etwa $G_2 = 30$ bis 50 ccm übrig (die kleinere Zahl gilt für reiche Gase, die größere für arme) und saugt dann soviel Luft nach, daß in der Bürette wieder genau 100 ccm vorhanden sind. Der O₂-Gehalt der nachgesaugten Luft wird berechnet (= 0,209 mal nachgesaugte Luftmenge). Dieses Gemisch wird mehrmals durch die mittels einer Spirituslampe gut angewärmte Verbrennungsröhre in das mit gesättigter Kochsalzlösung gefüllte Sperrgefäß getrieben, wobei CO, H2 und CH4 verbrennen, und dann in die Bürette zurückgedrückt. Der abgelesene Volumunterschied ist die Kontraktion c. Zur Ermittlung der bei dieser Verbrennung entstehenden CO2 treibt man den Gasrest zweimal in das mit Kalilauge gefüllte Absorptionsgefäß; die jetzt festgestellte Volumabnahme ist $b = CO_2$. Den überschüssigen Sauerstoff bestimmt man durch Einleiten des Gasrestes in Pyrogallol oder Phosphor. Durch Abzug des überschüssigen Sauerstoffs von dem in der nachgesaugten Luft enthalten gewesenen Sauerstoff berechnet man die zur Verbrennung erforderlich gewesene O_2 -Menge = a ccm.

Im Gasrest G₂ waren dann enthalten

I. Wasserstoff
$$H_2 = c - a$$
 ccm

II. Methan $CH_4 = a - \frac{b+c}{3}$ ccm

III. Kohlenoxyd $CO = b - CH_4$ ccm.

Um die im Gasrest G_2 enthaltenen Volumina (= % im ursprünglichen Gas) zu erhalten, multipliziert man die aus I, II und III berechneten Volumina mit $\frac{G_2}{G_1}$.

¹⁾ Z. B. Deutzer Apparat von Siebert und Kühn, Kassel.

Die Verbrennung ist nur dann vollständig, wenn nach der Verbrennung noch überschüssiger Sauerstoff vorhanden ist. Zeigt die Untersuchung keinen überschüssigen Sauerstoff, dann war der angewandte Gasrest zu groß, d. h. die nachgesaugte Luftmenge zu klein; man wiederholt dann zweckmäßig die ganze Analyse mit einer neuen Probe und verwendet zur Verbrennung einen kleineren Gasrest.

Im übrigen gilt auch hier das im 2. Teil 3. Abschnitt über die Untersuchung von Verbrennungsgasen und den Orsatapparat Gesagte.
Beispiel einer vollständigen Gasanalyse.

Gasart:	G	Generatorgas		
Absorption:	Ablesung	Differenz		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 100,0 \\ 94,4 \\ 94,4 \\ G_1 = 94,2 \end{array} $	$ \begin{array}{c c} 100 - 94,4 = 5,4 \\ 94,4 - 94,4 = 0,0 \\ 94,4 - 94.2 = 0,2 \end{array} $		
Verbrennung:	Ablesung	O_2		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	40,0 100,0 60,0	$60,0 \cdot 0,209 = 12,6$		
	Ablesung	Differenz		
Kontraktion (c) cem CO_2 (b) , O_2 (Überschuß) , , ,	85,7 74,4 71,7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 11,3 \\ 14,3 \\ = 9,9 \\ = 4,4 \\ + 14,3 \\ = 1,4 \\ = 9,9 \end{array} $		
Zusammensetzung des trockenen Gases:				
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	5,6 0,0 0,2		
Wasserstoff $H_2 = $,	$4,4\cdot\frac{G_1}{G_2}=$	$4.4 \cdot \frac{94.2}{40.0} = 10.4$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	= 3.3 $= 23.3$ $= 57.2$		
	1	100,0		

c) Ermittlung des Gasheizwertes.

Diese erfolgt entweder rechnerisch (für Überschlagsrechnungen) oder kalorimetrisch.

Der untere Heizwert für 1 cbm Gas bei 0° und 760 mm Q-S beträgt annähernd¹)

 $H_u = 2580 H_2 + 3050 CO + 8530 CH_4 + 14000 CnHm WE$

wobei die Gasbestandteile H₂, CO usw. in Bruchteilen eines cbm Gasgemisches einzusetzen sind. Die Zahlenwerte sind die unteren Heizwerte von je 1 cbm des betreffenden Bestandteiles.

Beispiel. Für das Generatorgas des letzten Beispiels war gefunden worden:

$$\begin{array}{lll} H_2 &= 10.4\,^0/_0 = 0.104 \; \mathrm{cbm} \\ \mathrm{CO} &= 23.3 \;\; , &= 0.233 \;\; , \\ \mathrm{CH_4} &= 3.3 \;\; , &= 0.303 \;\; , \\ \mathrm{CnHm} &= 0.0 \;\; , &= 0.000 \;\; , \end{array}$$

Also

 $H_u = 2580 \cdot 0,104 + 3050 \cdot 0,233 + 8530 \cdot 0,303 + 14000 \cdot 0,0 = 1247 \text{ WE/cbm}.$

Zur Umrechnung des Heizwertes auf t^o und $B \ mm \ Q-S \ (H_u')$ berechnet man das Volumen v, das $1 \ cbm$ Gas von 0^o und $760 \ mm$ Q-S bei t^o und $B \ mm$ Q-S einnimmt und dividiert den obigen Heizwert durch v. Es ist

$$\begin{split} v &= 1 \cdot \frac{273 + t}{273} \cdot \frac{760}{B} \ und \\ H_u' &= H_u \, \frac{273}{273 + t} \cdot \frac{B}{760} \, . \end{split}$$

Beispiel: Das obige Generatorgas hat bei 15° und einem bei 750 mm Barometerstand gemessenen Überdruck von 50 mm W-S (B = 750 + $\frac{50}{13,6}$ = 754 mm Q-S) einen Heizwert von

$$H_{u'} = 1247 \frac{273}{273 + 15} \cdot \frac{754}{760} = 1170 \text{ WE}.$$

Die kalorimetrische Heizwertbestimmung erfolgt mittels des in Abb. 47 dargestellten Junkersschen Kalorimeters in ähnlicher Weise, wie bei flüssigen Brennstoffen. Als Brenner dient eine einfache, nichtleuchtende Bunsenflamme. Die während des Versuches verbrannte Gasmenge G wird mittels eines Gasmessers ermittelt. Die Kühlwassermenge W kann ebenfalls gewogen werden; in vielen Fällen genügt das Auffaugen des Kühlwassers in einem bis 21 geteilten Meßzylinder. Die Umrechnung des

¹⁾ Mit Vernachlässigung des im Gas enthaltenen Wasserdampfes.

ermittelten Heizwertes auf 1 cbm Gas von 0° und 760 mm Q-S erfolgt wie oben. Die Temperatur des Gases sei tg, sein Druck q' mm Wassersäule.

Beispiel: Gichtgas; Mittelwerte aus einer Anzahl von Beobachtungen:

Gas			K	ühlwass	er	Kondens-	Barometer- stand	
Gı	tg°C	q'mm W-S	Wkg	t ₁ °C	t ₂ °C	wasser w ccm	B mm Q-S	
38,6	20	100	2,0	15,2	36,5	9,7	758	

Gasüberdruck
$$q = \frac{q'}{13,6} = \frac{100}{13,6} = 7 \text{ mm Q-S}.$$

Oberer Heizwert bei Versuchsumständen:

$$H_0 = \frac{W(t_2 - t_1)}{G} \cdot 1000 = \frac{2,0(36,5 - 15,2)}{38,6} \cdot 1000 = 1130 \text{ WE/cbm}.$$

Unterer Heizwert bei Versuchsumständen:

$$H'_{u} = H_{0} - \frac{600 \cdot w}{G} = 1130 - \frac{600 \cdot 9.7}{38.6} = 979 \text{ WE/cbm}.$$

$$\begin{array}{c} \text{Unterer Heizwert bezogen auf 0° und 760 mm Q-S:} \\ H_u = H_u' \cdot \frac{273 + t_g}{273} \cdot \frac{760}{B+q} = 979 \, \frac{273 + 20}{273} \cdot \frac{760}{758+7} = 1046 \, \, \text{WE/cbm.} \end{array}$$

Zweiter Abschnitt.

Berechnung der Wärmeausnutzung und der Wärmeverluste.

Bezeichnet man wie bei der Dieselmaschine die für 1 PS_e-Std. aufgewandte Wärmemenge (Gasmenge für 1 PSe-Std. mal dem unteren Heizwert des Gases) mit We, dann beträgt die Wärmeausnutzung oder der wirtschaftliche Wirkungsgrad

$$\eta_{\mathrm{w}} = \frac{632}{\mathrm{W_a}}$$

Wenn es nicht möglich ist, die Nutzleistung Ne, sondern nur die indizierte Leistung Ni zu ermitteln, dann kann man die Wärmeausnutzung auch auf N_i beziehen $\left(\eta_i = \frac{632}{W_i}\right)$ und η_i mit dem geschätzten mechanischen Wirkungsgrad ($\eta_{\rm m} \sim 0.75$ bis 0.85) multiplizieren, also

$$\eta_{\mathbf{w}} = \eta_{\mathbf{i}} \cdot \eta_{\mathbf{m}}$$

Die Wärmeverluste sind folgende:

- a) Verlust durch die Eigenreibung der Maschine,
- b) Verlust durch Luftpumpenarbeit (nur bei Zweitaktmaschinen),
- c) Verlust durch die mit dem Kühlwasser abgeführte Wärme,
- d) Verlust durch die mit den Abgasen abgeführte Wärme,
- e) Restverlust: Strahlung, Leitung, unvollkommene Verbrennung, Summe der Versuchsfehler.

Die Verluste werden für 1 PS_e -Std. berechnet und mit der nutzbar gemachten Wärme in einer Wärme bilanz zusammengestellt.

Die Berechnung der unter a bis c sowie unter e genannten Verluste erfolgt wie bei der Dieselmaschine; zur genauen Berechnung des Abgasverlustes sind folgende Messungen erforderlich:

- 1. Analyse des Frischgases.
- 2. Untersuchung der Abgase auf CO₂ und O₂,
- Temperatur der Abgase ta am Auspuffstutzen.
 Während dieser Messung muß eine etwaige Wassereinspritzung abgestellt werden, oder die Messung muß vor der Wassereinmündung erfolgen.
- 4. Temperatur der zugeführten Luft t.

Der untere Heizwert des Gases ist kalorimetrisch zu bestimmen und zum Vergleich aus der Frischgasanalyse nachzurechnen.

Beträgt das auf 0° und 760 mm Q-S bezogene Abgasvolumen von 1 cbm Frischgas G cbm, die spezifische Wärme derjenigen Gasmenge, die bei 0° und 760 mm Q-S. in 1 cbm Abgas enthalten ist, bei der zu T° gemessenen Abgastemperatur c_{pr} und die Lufttemperatur t° , dann beträgt der Abgasverlust für 1 cbm Frischgas

$$V_3' = Gc_{p_n}(T-t)$$
 WE.

 $c_{p_{_T}}$ kann nach der Zusammensetzung des Abgases berechnet werden; es genügt jedoch, $c_{p_{_T}}\!=0.32~WE/cbm/^o\,C$ anzunehmen.

Bezeichnet man den stündlichen Brennstoffverbrauch in cbm für 1 PS_i oder 1 PS_e mit B_i bzw. B_e und den unteren Gasheizwert mit H_u , dann ist der stündliche Wärmeverbrauch

$$\begin{aligned} & \text{für 1 } PS_i \colon W_i = B_i \cdot H_u \quad \text{und} \\ & \text{,, 1 } PS_e \colon W_e = B_e \cdot H_u; \end{aligned}$$

ferner der Abgasverlust

$$\begin{split} \text{für 1 PS}_i : V_{3i}' &= B_i \cdot \operatorname{Gc}_{p_T}(T-t) \text{ WE } \quad \text{oder} \\ V_{3i} &= \frac{V_{3i}' \cdot 100}{W_i} \, \% \text{ von } W_i; \text{ ferner} \\ \text{für 1 PS}_e : V_{3e}' &= B_e \cdot \operatorname{Gc}_{p_T}(T-t) \text{ WE } \quad \text{oder} \\ V_{3e} &= \frac{V_{3e}' \cdot 100}{W_a} \, \% \text{ von } W_e. \end{split}$$

Das Abgasvolumen G setzt sich aus dem trockenen Volumen G_t und dem Volumen des durch Verbrennung des H_2 entstehenden Wasserdampfes G_w zusammen¹). Man zeichnet mit den Werten der Frischgasanalyse nach den S. 80 gemachten Angaben ein Abgasschaubild auf und ermittelt aus den Werten CO_2 und O_2 der Abgasanalyse den zugehörigen Wert des Luftfaktors η .

Das trockene Abgasvolumen beträgt dann nach S. 81:

$$G_t = p_1 + v_1 + k_1 + 2 r_1 + 2 s_1 + n_1 + 0_{min} \left(\frac{4.76}{\eta} - 1\right).$$

Das Wasserdampfvolumen beträgt:

$$G_w = h_1 + 2v_1 + 2r_1 + s_1.$$

Beispiel: Bei einem Versuch an einer Gichtgasmaschine habe sich folgendes ergeben:

Indizierte Leistung	$N_i = 2050 \text{ PS}_i$
Nutzleistung	$N_e = 1660 \text{ PS}_e$
Stündlicher Gasverbrauch für 1 PSi: 1	$B_i = 2.27 \text{ cbm}$
,, ,, 1 PS_{e} : 1	$B_e = 2.80$,
Frischgasanalyse:	$H_2 = 2.6\%; h_1 = 0.026 \text{ cbm}$
($CO = 32.5$, $p_1 = 0.325$,
1	$N_2 = 58,7$, $n_1 = 0.587$,
($CO_2 = 6.2$, $k_1 = 0.062$,
Unterer Heizwert:	$H_u = 1020 \text{ WE/cbm} \text{ bei } 0^{\circ}$
	$\mathbf{und} 760 \mathbf{mm} \mathbf{Q-S}$
Abgasanalyse:	$CO_2 = 19,5\%$
	$O_2 = 3.6$,
Abgastemperatur:	$T = 525^{\circ}$
Lufttemperatur: t	$ m t_l = 20^o$
Stündlicher Kühlwasserverbrauch	
für 1 PS_e :	K = 20,7 kg
Kühlwassertemperatur: Eintritt . t	$t_1 = 10^{\circ}$
Austritt . t	$t_2 = 55^{\circ}$

¹⁾ Der ursprünglich im Frischgas enthaltene Wasserdampf sei vernachlässigt.

Berechnet:

Wärmeaufwand für 1 PSe-Std. '
$$W_e = B_e \cdot H_u = 2,80 \cdot 1020 = 2860$$
 WE.

Wirtschaftlicher Wirkungsgrad
$$\eta_{\rm w}=\frac{632}{{
m W_e}}=\frac{632}{2580}=0{,}221.$$

Verluste:

1. Reibungsverlust:

Mechanischer Wirkungsgrad
$$\eta_{\rm m} = \frac{N_{\rm e}}{N_{\rm i}} = \frac{1660}{2060} = 0.81$$

$$\begin{array}{l} \text{Reibungswärme} \ V_{1}' = \frac{N_{i} - N_{e}}{N_{e}} \cdot 632 = \frac{2050 - 1660}{1660} \cdot 632 \\ = 149 \ WE/PS_{e}\text{-Std.} \end{array}$$

$$V_1 = \frac{V_1' \cdot 100}{W_e} = \frac{149 \cdot 100}{2860} = 5.2\%.$$

2. Kühlwasserverlust:

$$V_2' = K(t_2 - t_1) = 20,7(55 - 10) = 932 \text{ WE/PS}_e$$

$$V_2 = \frac{V_2' \cdot 100}{W_e} = \frac{932 \cdot 100}{2860} = 32,6 \%.$$

3. Abgasverlust:

$$O_{min} = 0.5 h_1 + 0.5 p_1 = 0.5 \cdot 0.026 + 0.5 \cdot 0.325 = 0.176 \text{ cbm}.$$

Aus dem Schaubild ergibt sich für
$$k = 19.5\%$$
 und $q = 3.6\%$, $\eta = 0.70$.

Trockenes Abgasvolumen von 1 cbm Frischgas

$$\begin{aligned} G_t &= p_1 + k_1 + n_1 + O_{min} \left(\frac{4,76}{\eta} - 1 \right) \\ &= 0.325 + 0.062 + 0.587 + 0.176 \left(\frac{4,76}{0.70} - 1 \right) = 1.994 \text{ cbm}. \end{aligned}$$

Wasserdampfvolumen von 1 cbm Frischgas:

$$G_w = h_1 = 0.026 \text{ cbm}$$

Gesamtabgasvolumen:

$$G = G_t + G_w = 1.994 + 0.026 = 2.02$$
 cbm bei 0° und 760 mm,

$$V_3' = G \cdot c_{p_{\pi}}(T - t_l) = 2,02 \cdot 0,32(525 - 20) = 326 \text{ WE/cbm}$$

$$V_{3e}' = B_e \cdot V_3' = 2,80 \cdot 326 = 913 \text{ WE/PS}_e\text{-Std.}$$

$$V_{3e} = \frac{V'_{3e} \cdot 100}{W_{0}} = \frac{913 \cdot 100}{2860} = 31.9\%.$$

4. Restverlust:

$$\begin{array}{l} V_4' = W_e - (632 + V_1' + V_2' + V_{3e}') \\ = 2860 - (632 + 149 + 932 + 913) = 234 \text{ WE/PS}_e\text{-Std.} \\ V_4 = \frac{V_4' \cdot 100}{W_e} = \frac{234 \cdot 100}{2860} = 8,2 \,\%. \end{array}$$

Wärmebilanz für 1 PSe-Std.:	WE	%
Nutzbar gemacht	632	22,1
Verloren: a) Durch Reibung	149	5,2
b) Durch die Abwärme des Kühlwassers	932	32,6
c) in den Abgasen	913	31,9
d) Restverlust		8,2
Wärmeaufwand für 1 PS _e -Std	2860	100,0

Dritter Abschnitt.

Die Ermittlung der in einem Abhitzekessel nutzbar gemachten Abwärme.

Zu diesem Zwecke muß ein vollständiger Verdampfungsversuch durchgeführt werden. Der Abhitzekessel besteht aus einem mit Isoliermasse umkleideten Röhrenkessel, einem Überhitzer und einem darüber oder daneben angeordneten Speisewasser-Vorwärmer. Die Abgase durchströmen erst den Überhitzer, dann den Kessel und zuletzt den Vorwärmer.

Entsprechend den im ersten und zweiten Teil genannten Messungen ist hauptsächlich folgendes festzustellen:

- a) die Speisewassermenge in kg
- b) ,, temperatur t_e (Eintritt) und t_a (Austritt)
- c) ,, Dampfspannung in at
- d) " " temperatur t_d
- e) " Temperatur Tu der Abgase vor dem Überhitzer
- f) " " T_{∇} " hinter dem Vorwärmer.

Bezieht man die erzeugte Dampfmenge auf 1 PS_e der Gasmaschinenleistung und bezeichnet man diese mit D, dann ist die von den Abgasen jeder PS_e

1. an den Kessel überhaupt abgegebene Wärmemenge:

$$W_k = G_a \cdot c_{p_T} (T_{ti} - T_v) WE/PS_e$$
-Std.

worin G_a die stündliche Abgasmenge für 1 PS_e in cbm bei 0° und 760 mm und c_{p_T} die spezifische Wärme der Abgase = 0,32 WE/cbm bedeutet,

- 2. an das Speisewasser und den Dampf nutzbar abgegebene Wärmemenge $\mathbf{W}_{\mathtt{d}} \text{:}$
 - a) zur Speisewassererwärmung $D(t_a t_e)$ WE/PS_e-Std.
 - b) " Dampferzeugung $D(\lambda t_a)$ WE/PS_e-Std.
 - c) " " überhitzung $Dc_p(t_d-t_s)$ WE/ PS_e -Std.,

worin c_p wie früher die spezifische Wärme des überhitzten Dampfes und t_s seine Sättigungstemperatur bedeutet, also Summe a bis c

$$W_d = D[(\lambda - t_e) + c_p(t_d - d_s)] WE/PS_e-Std.$$

Beispiel: Bei einem Versuch an einer Gichtgasmaschine (s. auch letztes Beispiel) sei festgestellt:

Stündlicher Gasverbrauch . . .
$$B_e = 2,80 \text{ cbm/PS}_e\text{-Std.}$$

Unterer Gasheizwert $H_u = 1020 \text{ WE/cbm}$

Nutzleistung N_e = 1660 PS_e

Stündliche Speisewassermenge .
$$= 1145 \text{ kg}$$

" D =
$$\frac{1145}{1660}$$
 = 0,69 kg/P S_e-Std.

Speisewassertemperatur: Eintritt
$$t_e = 15^{\circ}$$

Austritt
$$t_a = 155^{\circ}$$

,, temperatur
$$\dots \dots t_d = 320^{\circ}$$

Lufttemperatur.....t_l =
$$20^{\circ}$$
 Abgastemperatur:

 $ext{Vor dem Überhitzer}$. . $ext{T}_{ ext{ti}} = 525^{ ext{o}}$

Hinter dem Vorwärmer
$$T_v = 200^{\circ}$$

Abgasmenge von 1 cbm Frischgas G =
$$2.02$$
 cbm bei 0° u. 760 mm für 1 PS_e -Std. . . . G_a = $2.02 \cdot B_e$ = $2.02 \cdot 2.80$

 $= 5,65 \,\mathrm{cbm} \,\mathrm{bei} \,0^{\mathrm{o}} \,\mathrm{u}.\,760 \,\mathrm{mm}$

Ferner ist:

Sättigungstemperatur d.Dampfes $t_s = 190,6^{\circ}$

Erzeugungswärmed. Sattdampfes $\lambda = 669 \text{ WE/kg}$

Spezif. Wärme des Heißdampfes $c_p = 0.55 \text{ WE/kg/}^{\circ}\text{C}$.

Also wurden von den Abgasen einer PS_e stündlich überhaupt an den Kessel abgegeben:

$$W_k = G_a \cdot c_{p_x} (T_{tt} - T_v) = 5.65 \cdot 0.32 (525 - 200) = 587 \text{ WE}.$$

Ferner im Kessel nutzbar gemacht:

$$W_{\rm d} = D[(\lambda - t_{\rm e}) + c_{\rm p}(t_{\rm d} - t_{\rm s})]$$

$$= 0.69 [(669 - 15) + 0.55 (320 - 190.6)] = 500 \text{ WE},$$

oder in Prozenten des Wärmeverbrauches We für

$$1 \; PS_{\text{e}}\text{-Std.} = \frac{500}{W_{\text{e}}} \cdot 100 = \frac{500 \cdot 100}{2,80 \cdot 1020} = 17.5 \,\%.$$

Also Verlust durch Strahlung usw.

$$= W_k - W_d = 587 - 500 = 87 \text{ WE/PS}_e\text{-Std.}$$

oder

$$=\frac{87\cdot 100}{2.80\cdot 1020}=3.0\%.$$

Von je 5000 WE des Wärmeinhaltes des Gichtgases wurden an Dampf erzeugt:

$$\frac{D}{B_e \cdot H_u} \cdot 5000 = \frac{0,69}{2,80 \cdot 1020} \cdot 5000 = \textbf{1,21 kg.}$$

Der Abgasverlust berechnet sich zu

$$\begin{split} G_{a} \cdot c_{p_{_{T}}}(T_{v} - t_{l}) = 5,65 \cdot 0,32 & (200 - 20) = 326 \text{ WE oder in \%} \\ \frac{326 \cdot 100}{2,80 \cdot 1020} = 11,4\%; \end{split}$$

In den Abgasen verfügbare Wärme

$$egin{aligned} \mathrm{G_{a}\,c_{p_{_{\mathbf{T}}}}}(\mathrm{T_{ti}\,-\,t_{l}}) &= 5.65\cdot0.32\,(525\,-\,20) = 913~\mathrm{WE/PS_{e}\text{-}Std.} \\ &= rac{913\cdot100}{2.80\cdot1020} = 31.9\,\% \end{aligned}$$

(wie im letzten Beispiel).

Hieraus entsteht folgende Wärmebilanz für 1 PS_e-Std. für den Abhitzekessel:

	WE	$\% \operatorname{von} 2860$	% von 913
Nutzbar gemacht:	500 326 87		54,8 35,7 9,5
Wärmeinhalt der Verbrennungsgase vor dem Überhitzer		1	100,0
Wärmeverbrauch der Maschine $= 2,80 \cdot 1020 = \dots$	2860		

Die vollständige, mit dem letzten Beispiel (S. 154) vereinigte Wärmebilanz lautet demnach für 1 PSe-Std.:

	WE	<u>%</u>
Nutzbar gemacht:		
a) in der Maschine	632	22,1 17,5
b) im Abhitzekessel	5 00	17,5
Verloren:		
a) durch Reibung	149	5,2
b) durch die Abwärme des Kühlwassers	932	32,6
c) in den Abgasen	326	11,4
d) Restverlust: α) für die Maschine	234	8,2
eta) " den Abhitzekessel	87	3,0
Wärmeverbrauch der Maschine	2860	100,0

Anmerkung:

Zusammenstellung der Wirkungsgrade1):

1a. Theoretischer thermischer Wirkungsgrad der Maschine:

$$\eta_{\rm th} = \frac{Q_1 - Q_2}{Q_1} = \frac{2860 - 913}{2860} = 0,68.$$

1b. Theoretischer thermischer Wirkungsgrad von Maschine und Theoretiscner block in the state of the sta

$$\eta'_{\rm th} = \frac{2860 - 326}{2860} = 0.88$$

2. Indizierter thermischer Wirkungsgrad:

$$\eta_{i} = \frac{632}{B_{i} H_{u}} = \frac{632}{2,27 \cdot 1020} = 0,273.$$

3. Mechanischer Wirkungsgrad:

$$\eta_{\rm m} = \frac{N_{\rm e}}{N_{\rm i}} = \frac{1660}{2050} = 0.81.$$

4. Gütegrad der Maschine:

$$\eta_{\rm g} = \frac{\eta_{\rm i}}{\eta_{\rm th}} = \frac{0.273}{0.68} = 0.402.$$

 $\eta_g=\frac{\eta_1}{\eta_{\rm th}}=\frac{0.273}{0.68}=0.402.$ 5. Wirtschaftlicher Wirkungsgrad der Maschine:

$$\eta_{\mathbf{w}} = \frac{632}{B_{0} \cdot H_{u}} = \frac{632}{2,80 \cdot 1020} = 0,221.$$

6. Wirkungsgrad des Abhitzekessels:

$$\eta_{\rm k}=0.548$$
 (s. Bilanz des Kessels S. 158).

In ähnlicher Weise lassen sich auch die Wirkungsgrade der Diesel-maschine beim Versuch S. 134 zusammenstellen, wenn die für die Berechnung des Abgasverlustes erforderlichen Messungen gemacht sind.

¹⁾ S. auch des Verfassers: "Verbrennungskraftmaschinen", 3. Aufl., S. 113. Springer, Berlin, 1922.

In	übersichtlicher	Zusammenfassung	sei	im	folgenden	be-
handelt		G			Ü	

Versuch an einer 5000 PS-Koksofen-Gasmaschine mit Abhitzekessel¹).

Je	$\mathbf{z}\mathbf{w}\mathbf{e}\mathbf{i}$	hintereina	nder a	\mathbf{ngeord}	\mathbf{nete}	doppeltwirker	ide Viertakt	-
	\mathbf{Z}	ylinder zu i	beiden	Seiten	einer	Drehstromdy	namo.	

Hauptabmessungen: Zylinderdurchmesser	
Kolbenstangendurchmesser	300 ,,
Kolbenhub	1300 "
Minutl. Drehzahl	94
Kessel- und Vorwärmer-Heizfläche	180 qm
Überhitzer-Heizfläche	40 ,
Dampfspannung	12 at.

Leistungsschilder:

Delstungsschlider.	
Drehstromdynamo:	3150 Volt, 840 Amp., $\cos \varphi = 0.7$,
•	50 Perioden, 4600 KVA, 94 Umdreh.
Erregermaschine:	220 Volt, 345 Amp., 975 Umdrehungen.
Kolbenkühlwasserpumpe:	3150 Volt, 28 Amp., 122 KW,
	1450 Umdr., 360 Volt Rotorspannung.
Zylinderkühlwasserpumpe:	
	1450 Umdr., 295 Volt Rotorspannung.
Warmwasserpumpe ²):	3150 Volt, 35 Amp., 143 KW,
	725 Umdr., 415 Volt Rotorspannung.
Die Messense des Ce	amanga amfalata mittala sinas amaßan

Die Messung der Gasmenge erfolgte mittels eines großen Gasbehälters nach S. 143 bei geeignetem Wetter.

Hauptergebnisse des Versuches:

Versuchsdauer																							6,0 Std.
---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----------

Mittelwerte der Beobachtungen:

a) Gasmaschine:

Minutliche Drehzahl
Mittlerer indizierter Kolbendruck 4,157 at.
Gasdruck vor der Maschine 135 mm W-S
Gastemperatur vor der Maschine 30°
Lufttemperatur
Abgastemperatur hinter der Maschine 530°
Abgasanalyse: Kohlensäure CO ₂ 4,1 %
Sauerstoff O_2 11,7%

Zeche Bergmannsglück, Buer i. W. 1920.
 Zur Förderung des warmen Kühlwassers auf den Kühlturm.

b) Kühlwasser: 24,4° Austrittstemperatur 39.3° 500 mm W-S 175 cbm c) Gasmessung: Gasanalyse: $CO_2 = 1.7\%$; also $k_1 = 0.017$ cbm, $C_2H_4 =$ 1.4%; also $r_1 = 0.014$ cbm CO = 4.5 , $p_1 = 0.045$, $O_2 = 2.4$, $q_1 = 0.024$, $H_2 = 46.5$, , $\bar{h}_1 = 0.465$, $N_2 = 20.4$, , $n_1 = 0.204$, $CH_4=23.1$ " $v_1=0.231$ " Summe=100.0%; $=1.000\,\mathrm{cbm}$ Spezifisches Gewicht (bezogen auf Luft = 11) 0,52 bei 0° und 760 mm Q-S 0,657 kg/cbm aus der Analyse berechnet 0,605 Unterer Heizwert bei 0° und 760 mm Q-S (kalori-Unterer Heizwert aus der Analyse berechnet . . 3604 8° Gastemperatur im Gasbehälter Gasdruck im Gasbehälter 135 mm W-S Verbrauchtes Gasvolumen bei 0° und 760 mm Q-S 17228 cbm Stündliches 2871 " d) Abhitzekessel: Speisewassertemperatur vor dem Vorwärmer. . . 10° 180° hinter dem Vorwärmer. Stündliche Speisewassermenge 3239 " auf 1 qm Heizfläche 9,0 ,, 10,3 at. 356° 749 WE/kg Abgastemperatur vor dem Überhitzer 496° hinter dem Überhitzer 431° 232° vor dem Vorwärmer ,, hinter dem Vorwärmer 167°

¹⁾ Mit dem Schillingschen Apparat durch Vergleich der Ausströmzeiten von Gas und Luft gemessen.

²⁾ Aus dem Abgasschaubild, Verbrennung fast vollkommen.

e) Elektrische Messungen:

Hauptmaschine:	Spannung	3100 Volt
_	Stromstärke	777 Amp.
	KVA	4170
	$\cos \varphi$	0,814
	Elektr. Leistung $4170 \cdot 0.814 =$	3395 KW
	Wirkungsgrad (geschätzt)	0,95
Erreger-Energie:	Kraftverbrauch (Drehstromseite)	34 KW
	Kraftabgabe (Gleichstromseite) .	$25~\mathrm{KW}$
Elektrische Leis	tung abzüglich Erreger-Energie	
3395 - 34	=	3361 KW
Kraftbedarf der	Kühlwasserpumpen	100 KW

Berechnete Werte:

a) Gasmaschine:

Indizierte Leistung

$$N_i = 8 \frac{\left(\frac{125^2\pi}{4} - \frac{30^2\pi}{4}\right) 4,157 \cdot 0,130 \cdot 97}{120 \cdot 75} = 5400 \ PS_i$$

Nutzleistung (aus der elektrischen Leistung der Dynamo und ihrem Wirkungsgrad berechnet)

$$N_e = \frac{3395}{0.95 \cdot 0.736} = \dots 1855 \text{ PS}_e$$

Mechanischer Wirkungsgrad

Gasverbrauch für 1 PS_e-Std.

$$=\frac{2871}{4855}=0.591$$
 cbm bei 0° und 760 m

Wärmeverbrauch für 1 PSe-Std.

$$= 0.591 \cdot 3729 = 2205 \text{ WE}$$

Reibungsverlust für 1 PSe-Std.

$$=\frac{5400-4855}{5400}\cdot 632=64 \text{ WE}$$

b) Abhitzekessel:

Theoretische Sauerstoffmenge für 1 cbm Frischgas

$$\begin{array}{l} O_{\min} = 0.5 \, h_1 + 0.5 \, p_1 + 2 \, v_1 + 3 \, r_1 - q_1 = \\ = 0.5 \cdot 0.465 + 0.5 \cdot 0.045 + 2 \cdot 0.231 + 3 \cdot 0.014 - 0.024 = \\ = 0.735 \, \text{cbm}. \end{array}$$

Wirkliche Sauerstoffmenge für 1 cbm Frischgas

$$O_{w} = \frac{1}{\eta} O_{min} = \frac{1}{0.47} \cdot 0.735 = 1.565 \text{ cbm}.$$

Wirkliche Luftmenge für 1 cbm Frischgas

$$L = \frac{O_w}{0.21} = \frac{1,565}{0.21} = 7,46 \text{ cbm}.$$

Trockene Abgasmenge von 1 cbm Frischgas

$$\begin{aligned} V_t &= p_1 + v_1 + k_1 + 2 r_1 + n_1 + O_{min} \left(\frac{4,76}{\eta} - 1 \right) \\ &= 0.045 + 0.231 + 0.017 + 2 \cdot 0.014 + 0.204 + 0.735 \left(\frac{4,76}{0.47} - 1 \right) = \\ &= 7.24 \text{ cbm}. \end{aligned}$$

Wasserdampfvolumen von 1 cbm Frischgas

$$H_2O = h_1 + 2v_1 + 2r_1 = 0.465 + 2 \cdot 0.231 + 2 \cdot 0.014 = 0.955 \text{ cbm}$$
 bei 0° und 760 mm Q-S.

Gesamtes Abgasvolumen von 1 cbm Frischgas

$$V_g = V_t + H_2O = 7.24 + 0.955 = 8.20 \text{ cbm bei } 0^o \text{ und } 760 \text{ mm Q-S}.$$

Desgl. für 1 PS_e-Std.

$$V_g' = 0.591 \cdot V_t = 0.591 \cdot 8.20 = 4.85 \text{ cbm}.$$

Wärmeinhalt der Abgase von 1 PS_e-Std. (mit $c_p = 0.32$ WE/cbm)

- a) hinter der Maschine $0.32 \cdot 530 \cdot 4.85 = 823 \text{ WE}$
- b) vor dem Überhitzer $0.32 \cdot 496 \cdot 4.85 = 770$
- c) hinter dem Überhitzer $0.32 \cdot 431 \cdot 4.85 = 670$,
- d) vor dem Vorwärmer $0.32 \cdot 232 \cdot 4.85 = 360$
- e) hinter dem Vorwärmer $0.32 \cdot 167 \cdot 4.85 = 259$ "

Verlust im Verbindungsrohr (a-b) = 823-770 = 53WE

Abgegeben im Überhitzer (b-c)=770-670=100 "

Abgegeben im Kessel (c-d) = 670 - 360 = 310 , = 511 WE

Abgegeben im Vorwärmer (d-e)=360-259=101 "

 $egin{array}{lll} ext{Verloren im Auspuff} & ext{e} & = & 259 \end{array},$

Stündliche Dampfmenge für 1
$$PS_e$$
-Std. = $\frac{3239}{4855}$ = 0,668 kg.
Desgl. für Normaldampf (mit λ = 639 WE) = $\frac{0,668 \cdot 749}{639}$ = 0,783 kg.
Wärmeaufnahme für 1 PS_e -Std.

$$\begin{array}{lll} \text{im Vorw\"{a}rmer} & 0.668 \cdot (180-10) &= 114 \text{ WE} \\ \text{im Kessel} & 0.668 \cdot (667-180) = 325 \\ \text{im Überhitzer} & 0.668 \cdot 92 &= 62 \end{array} \right\} = 501 \text{ WE}.$$

Die nutzbar aufgenommene Wärmemenge müßte in allen Teilen natürlich kleiner sein als die von den Heizgasen abgegebene; die Widersprüche sind wahrscheinlich auf kleine Ungenauigkeiten der Messungen oder der Instrumente oder auf Rechnungsabrundungen zurückzuführen; der Strahlungsverlust des Kessels muß jedenfalls sehr klein gewesen sein.

Hieraus entsteht folgende Wärmebilanz für 1 PS_e-Std. für den Abhitzekessel:

	WE	% von 2205	% von 770
Nutzbar gemacht: Zur Vorwärmung "Dampferzeu-	114	5,2	14,8
gung	325	14,7	42,3
" Überhitzung	62	2,8	8,1
Im ganzen	501	22,7	65,2
Verloren: Durch Abwärme	259	11,7	33,6
" Strahlung usw	10	0,5	1,2
Wärmeinhalt der Verbrennungsgase vor dem Überhitzer	770 2205	34,9	100,0

c) Mit dem Kühlwasser für 1 PS_e-Std. abgeführte Wärme:

$$=\frac{175000}{4855}$$
 (39,3-24,4) = 538 WE.

Hieraus ergibt sich folgende

Gesamtwärmeverteilung für 1 PS_e -Std.

Nutzbar gemacht:	WE	%
a) in der Maschine ¹)	632	28,6
b) im Vorwärmer	114	5,2)
c) im Kessel	325	$ $ 14,7 \rangle 22,7
d) im Überhitzer	62	2,8)
Verloren:		
a) durch Reibung	64	2,9
b) im Kühlwasser	538	24,4
c) in den Abgasen \dots	259	11,8
d) durch Leitung und Strahlung		
α) am Abhitzekessel	10	0,5
β) an der Maschine (Rest)	201	8,9
Wärmeverbrauch für 1 PS _e -Std	2205	100,0

 $^{^{\}mbox{\scriptsize 1})}$ Wärmeverbrauch für Erregung und Kühlwasserpumpen ist nicht abgezogen.

Technische Wärmelehre der Gase und Dämpfe

Eine Einführung für Ingenieure und Studierende

Von

Oberingenieur Franz Seufert

Studienrat a. D.

Dritte, verbesserte Auflage

Mit 26 Textabbildungen und 5 Zahlentafeln. (85 S.) 1923 1.80 Goldmark

Verbrennungslehre und Feuerungstechnik

Von

Oberingenieur Franz Seufert

Studienrat a. D.

Zweite, verbesserte Auflage

Mit 19 Abbildungen, 15 Zahlentafeln und vielen Berechnungsbeispielen (132 S.) 1923

2,60 Goldmark

Bau und Berechnung der Dampfturbinen

Eine kurze Einführung

Von

Oberingenieur Franz Seufert

Studienrat a. D.

Zweite, verbesserte Auflage

Mit 54 Textabbildungen. (89 S.) 1923

2 Goldmark

Bau und Berechnung der Verbrennungskraftmaschinen

Eine Einführung

Von

Oberingenieur Franz Seufert

Studienrat a. D.

Dritte, verbesserte Auflage

Mit 94 Textabbildungen und 2 Tafeln. (128 S.) 1922 2,50 Goldmark

- Maschinentechnisches Versuchswesen. Von Professor Dr.-Ing. A. Gramberg.
 - Band I: Technische Messungen bei Maschinenuntersuchungen und zur Betriebskontrolle. Zum Gebrauch an Maschinenlaboratorien und in der Praxis. Fünfte, vielfach erweiterte und umgearbeitete Auflage. Mit 326 Textfiguren. (577 S.) 1923. Gebunden 18 Goldmark
 - Band II: Maschinenuntersuchungen und das Verhalten der Maschinen im Betriebe. Ein Handbuch für Betriebsleiter, ein Leitfaden zum Gebrauch bei Abnahmeversuchen und für den Unterricht
 an Maschinenlaboratorien. Dritte, verbesserte Auflage. Mit 327
 Figuren im Text und auf 2 Tafeln. (619 S.) 1924.

 Gebunden 20 Goldmark

- Technische Untersuchungsmethoden zur Betriebskontrolle insbesondere zur Kontrolle des Dampfbetriebes. Zugleich ein Leitfaden für die Übungen in den Maschinenbaulaboratorien Technischer Lehranstalten. Von Oberlehrer Professor Julius Brand, Elberfeld. Mit einigen Beiträgen von Dipl.-Ing. Oberlehrer Robert Heermann. Vierte, verbesserte Auflage. Mit 277 Textabbildungen, 1 lithographischen Tafel und zahlreichen Tabellen. (385 S.) 1921. Gebunden 12 Goldmark
- Technische Thermodynamik. Von Professor Dipl.-Ing. W. Schüle. Erster Band: Die für den Maschinenbau wichtigsten Lehren nebst technischen Anwendungen. Vierte, neubearbeitete Auflage. Mit 225 Textfiguren und 7 Tafeln. (569 S.) 1921. Berichtigter Neudruck. Gebunden 18 Goldmark 1923.
 - Zweiter Band: Höhere Thermodynamik mit Einschluß der chemischen Zustandsänderungen nebst ausgewählten Abschnitten aus dem Gesamtgebiet der technischen Anwendungen. Vierte, erweiterte Auflage. Mit 228 Textfiguren und 5 Tafeln. (527 S.) 1923.

Gebunden 18 Goldmark

- Der Wärmeübergang an strömendes Wasser in vertikalen Rohren. Von Dr.-Ing. Waldemar Stender. Mit 25 Abbildungen im Text. (86 S.) 1924. 5,10 Goldmark
- Die Wärme-Übertragung. Auf Grund der neuesten Versuche für den praktischen Gebrauch zusammengestellt von Dipl.-Ing. M. ten Bosch in Zürich. Mit 46 Textabbildungen. (127 S.) 1922. 5 Goldmark
- Die Grundgesetze der Wärmeleitung und des Wärmeüberganges. Ein Lehrbuch für Praxis und technische Forschung. Von Oberingenieur Dr.-Ing. Heinrich Gröber. Mit 78 Textfiguren. (279 S.) 9 Goldmark
- Handbuch der Feuerungstechnik und des Dampfkesselbetriebes mit einem Anhange über allgemeine Wärmetechnik. Von Dr.-Ing. Georg Herberg, Stuttgart. Dritte, verbesserte Auflage. Mit 62 Textabbildungen, 91 Zahlentafeln sowie 48 Rechnungsbeispielen. (350 S.) 1922. Gebunden 11 Goldmark

- Die Maschinistenschule. Vorträge über die Bedienung von Dampfmaschinen und Dampfturbinen zur Ablegung der Maschinistenprüfung. Von Regierungs-Gewerberat F. O. Morgner, Leiter der Heizer- und Maschinistenkurse in Chemnitz. Zweite, vermehrte und verbesserte Auflage. Mit 140 Textfiguren. (186 S.) 1924. 2,70 Goldmark
- Die Heizerschule. Vorträge über die Bedienung und die Einrichtung von Dampfkesselanlagen. Ein Lehrbuch zur Ablegung der staatlichen Heizerprüfung. Nach den vom Reichswirtschaftsministerium aufgestellten Richtlinien von Regierungs-Gewerberat F. O. Morgner, Leiter der Heizer- und Maschinistenkurse in Chemnitz. Vierte, umgearbeitete und vervollständigte Auflage. Mit 165 Abbildungen.

 Erscheint im Frühjahr 1925
- Die Dampfkessel nebst ihren Zubehörteilen und Hilfseinrichtungen. Ein Hand- und Lehrbuch zum praktischen Gebrauch für Ingenieure, Kesselbesitzer und Studierende. Von R. Spalckhaver, Regierungsbaumeister, Professor in Altona a. E. und Fr. Schneiders †, Ingenieur in M.-Gladbach (Rhld.) Zweite, verbesserte Auflage. Unter Mitarbeit von Dipl.-Ing. A. Rüster, Oberingenieur. Mit 810 Abbildungen im Text. (489 S.) 1924. Gebunden 40,50 Goldmark
- F. Tetzner, Die Dampfkessel. Lehr- und Handbuch für Studierende Technischer Hochschulen, Schüler Höherer Maschinenbauschulen und Techniken, sowie für Ingenieure und Techniker. Siebente, erweiterte Auflage von O. Heinrich, Studienrat an der Beuthschule zu Berlin. Mit 467 Textabbildungen und 14 Tafeln. (422 S.) 1923. Gebunden 10 Goldmark
- Die Leistungssteigerung von Großdampfkesseln. Eine Untersuchung über die Verbesserung von Leistung und Wirtschaftlichkeit und über neuere Bestrebungen im Dampfkesselbau. Von Dr.-Ing. Friedrich Münzinger. Mit 173 Textabbildungen. (174 S.) 1922.

 4 Goldmark; gebunden 6 Goldmark
- Höchstdruckdampf. Eine Untersuchung über die wirtschaftlichen und technischen Aussichten der Erzeugung und Verwertung von Dampf sehr hoher Spannung in Großbetrieben. Von Dr.-Ing. Friedrich Münzinger. Mit 120 Textabbildungen. (150 S.) 1924.

 7,20 Goldmark; gebunden 7,80 Goldmark
- Die Kondensation bei Dampfkraftmaschinen einschließlich Korrosion der Kondensatorrohre, Rückkühlung des Kühlwassers, Entölung und Abwärmeverwertung. Von Oberingenieur Dr.-Ing. K. Hoefer in Berlin. Mit 443 Abbildungen im Text. (453 S.) 1925. Gebunden 22,50 Goldmark
- Die Abwärmeverwertung im Kraftmaschinenbetrieb mit besonderer Berücksichtigung der Zwischen- und Abdampfverwertung zu Heizzwecken. Eine wärmetechnische und wärmewirtschaftliche Studie, Von Dr.-Ing. Ludwig Schneider. Vierte, durchgesehene und erweiterte Auflage. Mit 180 Textabbildungen. (280 S.) 1923.

 Gebunden 10 Goldmark

- Schnellaufende Dieselmaschinen. Beschreibungen, Erfahrungen, Berechnung, Konstruktion und Betrieb. Von Professor Dr.-Ing. O. Föppl, Marinebaurat a. D., Braunschweig, Dr.-Ing. H. Strombeck, Obering., Leunawerke und Professor Dr. techn. L. Ebermann, Lemberg. Dritte, ergänzte Auflage. Mit 148 Textabbildungen und 8 Tafeln, darunter Zusammenstellungen von Maschinen von AEG, Benz, Daimler, Danzinger Werft, Deutz, Germaniawerft, Görlitzer M.-A., Körting und MAN Augsburg. (246 S.) 1925. Gebunden 11,40 Goldmark
- Ölmaschinen, ihre theoretischen Grundlagen und deren Anwendung auf den Betrieb unter besonderer Berücksichtigung von Schiffsbetrieben. Von Marine-Oberingenieur a. D. Max Wilh. Gerhards. Zweite, vermehrte und verbesserte Auflage. Mit 77 Textfiguren. (168 S.) 1921. Gebunden 5,80 Goldmark
- Schiffs-Ölmaschinen. Ein Handbuch zur Einführung in die Praxis des Schiffsölmaschinenbetriebes. Von Direktor Dipl.-Ing. Dr. Wm. Scholz in Hamburg. Dritte, verbesserte und erweiterte Auflage. Mit 188 Textabbildungen und 1 Tafel. (276 S.) 1924.

 Gebunden 13,50 Goldmark
- Anleitung zur Berechnung einer Dampfmaschine. Ein Hilfsbuch für den Unterricht im Entwerfen von Dampfmaschinen. Von Professor R. Graßmann, Geheimer Hofrat, Regierungsbaumeister a. D., Karlsruhe i. B. Vierte, umgearbeitete und stark erweiterte Auflage. Mit 25 Anhängen, 471 Figuren und 2 Tafeln. (658 S.) 1924.

 Gebunden 28 Goldmark
- Kolbendampfmaschinen und Dampfturbinen. Ein Lehr- und Handbuch für Studierende und Konstrukteure. Von Professor Heinrich Dubbel, Ingenieur. Sechste, vermehrte und verbesserte Auflage. Mit 566 Textfiguren. (530 S.) 1923. Gebunden 11 Goldmark
- Die Steuerungen der Dampfmaschinen. Von Professor Heinrich Dubbel, Ingenieur. Dritte, umgearbeitete und erweiterte Auflage. Mit 515 Textabbildungen. (399 S.) 1923. Gebunden 10 Goldmark
- Taschenbuch für den Maschinenbau. Bearbeitet von Fachleuten. Herausgegeben von Professor Heinrich Dubbel, Ingenieur, Berlin. Vierte, erweiterte und verbesserte Auflage. Mit 2786 Textfiguren. In zwei Bänden. (1739 S.) 1924. Gebunden 18 Goldmark
- Freytags Hilfsbuch für den Maschinenbau für Maschineningenieure sowie für den Unterricht an Technischen Lehranstalten. Siebente, vollständig neubearbeitete Auflage. Unter Mitarbeit von Fachleuten herausgegeben von Professor P. Gerlach. Mit 2484 in den Text gedruckten Abbildungen, 1 farbigen Tafel und 3 Konstruktionstafeln. (1502 S.) 1924. Gebunden 17,40 Goldmark