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1. Introduction.

The subject of diffusion is one of great practical and theoretical
importance in the biological sciences. Every cell, of every organism,
at every moment of its existence, is dependent upon this process for
supplying it with necessary materials from its surroundings, for distri-
buting these and other materials within its boundaries, and for removing
to a safe distance metabolic products which if allowed to accumulate
would be injurious. However slightly different cells may resemble one
another in other respects, they all show a common dependence upon
this, the most widespread of all cellular activities.

Visible evidence of the universal importance of diffusion processes
is furnished by many details of cytological structure — in particular,
by the small size of the ultimate physiological units of organisms, by
which such processes are facilitated, and by the universal presence
in these units of differentially permeable membranes, by which the
same processes are limited and controlled. In all parts of the bodies
of the higher organisms special structural adaptations associated with
diffusion are the rule rather than the exception. As examples, chosen
almost at random, may be mentioned the peculiar shape of the mam-
malian erythrocyte (HARTRIDGE 1920, PONDER 1925, 1926); the spacing
of the capillaries in the tissues (KrRoGH 1919b); the thin walls and
enlarged surfaces of organs of respiration in general, whether lungs,
gills or insect tracheae; the expansion of absorptive surfaces by struc-
tures as unrelated as the intestinal villi of mammals and the leaves
and root-hairs of plants — in short, almost no organ of importance
in either animals or plants fails to betray by at least some feature
of its structure an intimate relation to diffusion processes.

Though the practical aspects of diffusion are the ones most usually
emphasized by biologists, the process is also one of peculiar theoretical
and even philosophical interest. Diffusion is one of the chief means
by which, in accordance with the second law of thermodynamics,
the distribution of matter and energy in the universe tends constantly
to become less and less orderly and more and more of the sort that
would result from the operation of the laws of chance. From this point
of view, even the simplest organism is an almost incredibly improbable
accumulation of matter, which might be expected when it changes
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at all to change in the direction of increasing probability of arrangement.
Progress in the latter direction is, indeed, the rule after death, just
as it is in the inorganic world. But in living organisms, though indi-
vidual diffusion processes are found to occur in the expected manner,
the sum-total of all such processes is typically in the opposite direction.
Not only does the highly improbable arrangement of materials found
in the fertilized ovum give place to enormously less probable ones as
the development of the individual proceeds, but living matter, in
general, seems in the course of centuries and of geological epochs
constantly, and with only rare exceptions, to assume forms which
from the standpoint of the distribution of matter are likewise less and
less probable. It is somewhat paradoxical that individual development
and the evolution of the race should alike be so utterly dependent
upon diffusion processes, which in their fundamental nature are dia-
metrically opposed to both. The manner in which living organisms
_have succeeded in harnessing, so to speak, these essentially destructive
processes and in utilizing them. for constructive purposes is, in fact,
one of the major mysteries of Biology.

Historically, there has always been a close relation between the
study of diffusion and the biological sciences. The earliest experiments
in this field (NorLier 1748, Fiscuer 1822, MaGNus 1827, Poisson
1827, DuTROCHET 1827, JERICHAU 1835, BRUCKE 1843, VIERORDT 1848,
Lupwic 1849, JorLy 1849, etc.) had to do chiefly with the diffusion
of water and solutes across animal membranes, and in most cases
they admittedly had as their object the explanation of certain physio-
logical processes in plants and animals. These early experiments with
membraries prepared the way for the epoch-making work on osmotic
phenomeria of the plant-physiologist PFEFFER (1877) which was destined
to have such far-reaching effects, not merely in plant and animal
physiology, but in physical chemistry as well. In the meantime, the
same early studies of diffusion across membranes undoubtedly stimul-
ated the work on ‘“free diffusion” of Granam (1850a, b; 18514, b,
1861, 1862a, b) and of Fick (1855), with which the modern history
of diffusion processes may be said to have begun.

Another very important point of contact between the biological
sciences and the subject of diffusion processes grew out of the observ-
ation of an English botanist, RoBertr BrowN (1828), that certain
granules of vegetable origin under the microscope exhibit a continuous
irregular movement which has since received his name. After a long
history, whose details must be omitted for lack of space, BRownian
movement was definitely shown by EINSTEIN (1905), V. SMOLUCHOUSKI
(1906), PERRIN (1909), SVEDBERG (1912) and others to be a visible
manifestation of the mechanism of diffusion. In recent years, biologists
have again become interested in BrRownian movement, this time as
a useful tool for the investigation of some of the fundamental physical

1*
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properties of protoplasm; references to some of this work will be
given below (p. 111).

Because-of the long and intimate relation between diffusion processes
and the biological sciences, it is not inappropriate that a discussion of
this subject should appear in the , Ergebnisse der Biologie‘. It should
be noted that excellent treatises on diffusion and the closely related
subject of heat conduction, written primarily from the point of view
of the physicist, are already in existence (for example, BYErRLY? 1803,
InGeERsoLL and ZoBEL 1913, CARSLAW 1921, FURTH 1927 ¢, 19314, etc.),
but as far as the author is aware none of these has been prepared with
the peculiar needs, and, in particular, with the limited acquaintance
with higher mathematics of the average biologist in mind. The present
review is therefore designed to fill an existing gap in the literature.
Though it may itself at first sight appear unduly mathematical for a
biological journal, it will be found on closer examination to contain
nothing not readily intelligible to anyone who has mastered the general
principles of the differential and integral calculus. In this respect,
and in its frank selection of material because of its biological rather
than of its mathematical or physical interest, it differs from its prede-
cessors, for which it is in no sense intended to be a substitute, and to
which, it is hoped, it may in many cases serve as an introduction.

To workers in the so-called exact sciences it may perhaps appear
rash and even presumptuous for a biologist to attempt, with so little
mathematical equipment, to deal with diffusion processes in living
systems. Such systems are enormously more complicated than the
relatively simple artificial ones usually studied by physicists, whose
mathematical resources they frequently tax to the limit. It is, however,
the very fact that living systems ar¢ so complex that justifies the
type of treatment here adopted. The justification is, in fact, a twofold
one. In the first place, it is utterly hopeless for the biologist with the
means at present at his disposal, to reduce the variables that enter
into his problems to the small number usually encountered in physical
investigations. He is compelled, therefore, regretfully but of necessity,
to be content with a lesser degree of precision in his results than that
attainable in the so-called ‘“‘exact sciences”. .1t follows that in dealing
with most biological problems it is not only useless, but actually
unscientific, to carry mathematical refinements beyond a certain point,
just as it would be both useless and unscientific to employ an analytical
balance of the highest precision for obtaining the growth-curve of a rat.

In the second place, the field of biology, comprising as it does so
many millions of species of plants and animals, among which are to
be found the utmost conceivable differences in structure and activity, is

1 The author is indebted to this excellent work for important parts of
the mathematical treatment of the subjects dealt with in sections 6, 10
and 12.
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so vast that the biologist is still in the position of an explorer in a
newly discovered continent. His first task is to map out more or less
roughly the main topographical features of the country — its rivers,
lakes and mountains — after which accurate geodetic surveys may
profitably be undertaken. In discovering a new mountain range the
possession of accurate surveyor’s instruments is not only of little assi-
stance but may even be a handicap. Remembering, therefore, that
the biologist is still for the most part an explorer rather than a sur-
veyor, and that what he needs most at present — to continue the
figure of speech — is not complicated instruments so much as an ax, a
rifle and a compass, this simplified mathematical treatment of the
subject of diffusion processes is presented without further apologies.

2. Diffusion and probability.

Experience has shown that whenever local concentration dif-
ferences are found to exist in an otherwise uniform body of solution,
sufficiently large to permit its study by ordinary chemical methods,
these differences tend with time to become less and less pronounced,
and finally to disappear. This spontaneous process, which in a homo-
geneous system must ultimately bring about uniformity of concentration
everywhere within the system, is called diffusion, and the final state
of the system one of diffusion equilibrium. Experience shows further
that when diffusion equilibrium has been attained, local concen-
tration differences of appreciable magnitude never again appear in the
system without the expenditure of energy from external sources.
Diffusion as commonly observed is, therefore, a typical one-sided,
irreversible process illustrating in a visible form the second law of
thermodynamics.

If we inquire more closely why diffusion always takes place in
certain types of systems and why, after once having occurred, the
process is irreversible, we are led to an explanation which is essentially
mathematical rather than physical. There is, in fact, no purely physical
reason why diffusion must proceed in the commonly observed direction
and why the process can never under any circumstances undergo a
spontaneous reversal. The question is merely one of mathematical
probability, with the odds so overwhelmingly in favor of the occurrence
of the process in the usual manner that nobody has ever seen, or could
reasonably expect to see, in a region of considerable size, any departure
from the so-called diffusion laws.

In the case of very minute systems, however, in which the number
of molecules involved is small, the case is different. If such a system
could be studied in detail, it would be found that equalization of con-
centration in it does not proceed smoothly towards a final permanent
equilibrium, but rather that it occurs irregularly, with frequent reversals
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of direction, and that the final state is characterized, not by permanence,
but by continual fluctuations about a purely statistical equilibrium
position. Cases of this sort are of some theoretical interest to the
biologist, since the possibility has been seriously suggested that devi-
ations from the usual so-called ‘‘laws” of diffusion in very minute regions
of a living cell might conceivably have appreciable physiological
consequences (FREUNDLICH 1919, DoNNAN 1927). Strictly speaking,
of course, there is no fixed size above which large systems become
different from small systems. What is true of the latter is true of the
former except for a difference in the magnitude of the deviations that
may be expected to occur.

The general question of the statistical basis of diffusion processes
is of such fundamental scientific and even philosophical importance
that it may be profitable to consider it in a somewhat more concrete
manner. Imagine a very small spherical or other symmetrical region
filled with water and containing at first only 10 solute molecules. It
is obvious that in such a system we could never with any certainty
predict the positions of these molecules. At room temperature they
would, if of ordinary size, move with an average velocity of the order
of magnitude of 100 meters per second or more. In an aqueous medium,
in every second, each one would collide with countless millions of
water molecules, and with each collision the direction and velocity
of its movement would be altered. The path of an individual molecule
under such conditions is utterly unpredictable; it is in fact an almost
perfect cxample of the operation of the laws of pure “chance”; and the
laws of ‘“‘chance’ applied to onc or a few molecules can give very little
useful information. As the number of units dealt with increases,
however, these same laws increase in value, until finally, with the
unimaginably large numbers of molecules that enter into ordinary
diffusion processes, they lead to a degree of certainty scarcely exceeded
in any other phase of human experience.

Returning to the simple case of 10 molecules, we have to do with
a very small region and with velocities comparable to those of a rifle
bullet. We may, therefore, assume that any effect of an initial distri-
bution would so quickly be obliterated that at the time of an imaginary
first observation the probability that a given molecule would be found

in, say, the upper half of the region would be exactly %, and the same
that it would be found in the lower half. It follows that the probability
of finding all the molecules in one specified half of the system at any
chosen instant would be (g)w or T in 1024, -and the likelihood of finding

any other number can readily be calculated by the theory of per-
mutations and combinations. Assuming that no distinction is to be
made between individual molecules, the number of chances in 2" of



Diffusion Processes. 7

finding a number, 7, when the total number is # is given by the
formula n
rip—r"
Applying this formula and tabulating the results, we have for the
case in question

Even in this simple system we might begin Number| Number of ohances
to see, though in a very crude way, some indi-

cation of the laws of diffusion. If, for example, 10 I
at some given.time we happened to observe, 9 10
say, 0 molecules in the upper and one in the 8 45

S . 7 120
lower half of the region in question, we should 6 210
probably find at the next observation, assuming 5 252
the passage of sufficient time to permit thorough 4 210
,,mixing*‘, that a decrease in the upper and an 3 120
increase in the lower half had occurred, i.e., f ‘I‘g
that a tendency towards an equalization of ° I

concentration in the two regions had been

manifested. There is no physical reason why a change in this direction
must occur; but with only one chance in 1024 of a change in the opposite
direction, and only 10 in 1024 of no change at all, the probability that
we should observe ‘“diffusion’ of material from a region of higher to
one of the lower concentration even in this simple hypothetical case
is very great indeed; we might, in fact, repeat such an observation a
considerable number of times without observing an exception to what
we might, therefore, be tempted to speak of as a ‘“law’.

There is no fundamental distinction between the hypothetical case
just described and systems of the sort that come under actual scientific
observation; the only difference is one of probability. It is instructive
to make certain further calculations in connection with a kind of
system that might actually be studied in practice. Suppose, for example,
that I cc. of a molar solution of dextrose be introduced without mixing
below I cc. of water in a cylindrical vessel. We wish to consider the
subsequent behavior of such a system from the standpoint of prob-
ability alone, purposely neglecting the factor of the time required for
diffusion, which has no effect on the direction and the position of
equilibrium of the process, and which could in any event be regulated
at will by altering the diameter of the vessel. The number of solute
molecules is so large (i. e., 6 X 10%) that the improbability that they
could ever again spontaneously congregate in one half of the solution
after an approximate equality of distribution had been attained by
mixing or by diffusion becomes, practically speaking, an impossibility.
The mathematical chance of their doing so amounts, to be exact, to

( % )6 X 10 °_ While, therefore, by human agency we may readily start
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with an arrangement of molecules of the sort mentioned, we should
not expect that by diffusion processes alone it could ever be restored
after the two halves of the solution had in any way become mixed.

Of more interest is the fact that even a barely detectable increase
of concentration in one half of the vessel after equilibrium has been
attained is likewise so improbable as, practically speaking, to be im-
possible. Noting that in the case of 10 molecules the probabilities of
the different possible arrangements are all given by the successive

. . . 10 ]
terms of the binomial expansion (% + —z—> , the same relation can be

used, in principle, for a very large number by taking ddvantage of the
%)n, as n increases indefinitely,
the coefficients of the successive terms approach more and more nearly
to the values of a series of equidistant ordinates of the normal prob-

ability curve

fact thatin the binomial expansion (% +

a2

1 e‘-ZUZ

y:

cy2m

where o, the so-called standard deviation of the statistician, must
be properly determined to fit the case in question. Since it may readily
be seen from the tabulated values of the probability integral that
random variations greater than 3 ¢ occur only about three times in a
thousand, it follows that greater variations than this would scarcely
ever be encountered in an ordinary series of ‘observations.

Now it is shown in all the standard works -6n statistical methods
that if n events be considered, and it the probability of a success (in
this case the presence of a molecule in a selected half of the solution)
be represented by p and of a failure (i.e., its absence in the same region)
by ¢, then - = ]/npq.

In the present case p=¢g= %, and # = 6 X 1020, so ¢ is equal to

1.22 X 10¥ and 3 ¢ to approximately 3.7 X 10¥. Variations greater
than this, i.e., greater than 0.000,000,012% of the theoretical equi-
librium value of 3 X 102, which would be utterly inappreciable by any
available methods of chemical analysis, could scarcely be expected
to occur.

While it is true that we should only rarely expect variations of
more than 3 o, there is a remote possibility of much larger ones. How
remote is the possibility of encountering a variation great enough to
be detected by chemical methods? Suppose that by some method
of analysis we could measure a difference of concentration of 1 part
in 100,000 or 0.00I per cent from the equilibrium concentration. In
the present case this would mean the detection of a deviation of 3 X 10%
molecules from the mean equilibrium number of 3 X 102 per cc. This
deviation amounts roughly to 250,000 times o. The probability that
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by chance alone a variation could exceed 250,000 o, while almost
infinitesimally small, can nevertheless be calculated so long as the
normal probability distribution may be assumed to hold. Strictly
speaking, this distribution implies an infinite rather than a very large
though finite number of molecules, but except for much larger deviations
than the one in question it is permissible to employ the usual formula
for such cases, namely,
e— 7% 1 1.3

where 2 is the deviation divided by ¢ V2. Applying this formula to
a deviation of 250,000 o, P proves to be approximately 1 divided by
a number of the order of magnitude of 1 followed by 13,000,000,000
zeros — a number which if printed in the type used on this page would
cover a distance of approximately 23,000 kilometers.

Calculations such as these explain perhaps better than is possible
in mere words the fundamental nature of diffusion processes — the
reason why such processes occur, the reason why they approach a
definite predictable equilibrium and the reason why this equilibrium
when once reached seems to be maintained indefinitely without further
change. They also serve to emphasize the important fact, already
mentioned, that the laws of diffusion, in their last analysis, are based
upon mathematical rather than upon purely physical principles.

3. FIicK’s law.

The inevitability of the transfer of material from one region to
another in homogeneous systems showing concentration gradients is
obvious from the principles discussed in the preceding section. The
manner in which this transfer takes place may next be examined.
The modern theoretical treatment of diffusion may be said to have
begun with the clear recognition by Fick (1855) that this process is
analogous in most respects to the conduction of heat in solids, which
had already been treated mathematically by Fourier. The same
idea had much earlier been expressed in rather general terms by
BerTHOLLET (1803), but Fick was the first to give it real definiteness,
and in particular, to put it to the test of experiment. The fundamental
assumption of Fick was that the rate of diffusion across any plane at
right angles to the direction of diffusion bears a simple linear relation,
which may be quantitatively defined by a constant, called by him the
diffusion constant, to the concentration gradient across the plane in
question.

Stated in mathematical terms, Fick’s law is
ou
dQ=—DA- % dt (1)

where d( represents the amount of material diffusing in the time dt,
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during which all conditions may be considered to remain constant,
across a plane of area A at right angles to the direction of diffusion,

. . . 0 .
the concentration gradient at the plane being 3—1: Throughout this

paper, following many earlier authors, concentration will be represented
by the symbol # rather than ¢, since the latter letter is so frequently
employed as a constant, and since in order to apply diffusion equations
to the flow of heat, and vice-versa, it is desirable to use a terminology
which fits either case equally well. The symbol D appearing in equa-
tion (1) was represented by Fick by % and was assumed by him to
be a constant for all values of %, though experimental work soon showed
that this assumption is justified at best only as a somewhat rough
approximation; for this reason the term diffusion coefficient is prefer-
able, and will hereafter be used in this paper. D evidently represents
the amount of material that in unit time and with unit concentration
gradient would cross a plane of unit area at right angles to the direction
of diffusion.

The unit of concentration, #, may be defined as one unit of quantity
in unit volume. For the latter, the cubic centimeter is used rather
than the liter, and if, as is generally the case, concentrations in a given
problem are originally expressed in mols per liter they must first be
divided by 1000 before being introduced into Fick’s equation. Since
the unit in which @ is measured, whatever it may be, also enters into
the definition of the unit of concentration, the same numerical value
of D must obviously apply to all cases of diffusion regardless of whether
measurements are made in terms of mols, grams, number of individual

molecules, etc. per cc. It will be observed that D has the dimensions
cm?

unit of time’

determined data, we have the general relation

since on applying FicKk’s equation to any experimentally

D= a units of quantity -
(b cm?) (¢ units of time) d units of quantity fcm
ecm?®

aef

= cm? per unit of time.
bcd p

The unit of time employed in connection with diffusion coefficients is
sometimes the second, less frequently the minute, and most commonly
the day, because of the slowness of diffusion in vessels of the sizes gene-
rally used for determinations of D. A final important point about
Fick's equation is the negative sign appearing before D, which in
published discussions of diffusion problems is occasionally, by over-
sight, omitted. Such an omission is serious if further mathematical
use of the equation is to be made, since diffusion necessarily occurs
in the direction of decreasing rather than of increasing concentrations,
and a positive sign before D would indicate the reverse to be the case.
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At first sight, Fick’s law of a direct linear relation between the
rate of diffusion and the concentration gradient appears not unreason-
able; but it is, in fact, only the form assumed for infinitely dilute
solutions by a much more complicated law or series of laws. It bears
the same relation to the more general law that Bovie's law for perfect
gases does to those governing actual gases, or that van't Horr's law
of osmotic pressure does to those actually obeyed by concentrated
solutions. This similarity between the laws of Fick, Bovie and
vaN'T HoFF is more than a superficial one, since the three are in reality
related to one another, and similar factors may be responsible for
deviations from all of them.

The theoretical basis for Fick’s law, as well as the reasons for its
limited applicability, are perhaps best brought out by a method of
treatment used by NErNsT (1888) and later by EinsTeIN (1908, 1922).
The latter author will here be followed fairly closely except for the
use of a somewhat different definition of the term ‘‘osmotic pressure’.
Imagine a case of diffusion in one dimension parallel to the long axis
of a vessel or tube, which for simplicity may be considered to have
a cross section of unity. The effects of gravitation may be neglected,
and uniformity of temperature and of all conditions other than con-
centration may be assumed to exist. Select any layer, taken across
the vessel at right angles to the direction of diffusion, and of infinitesimal
thickness, dx. This layer, having unit cross section, will also have
the volume dx. Let the concentration of solute within it be % mols
per cc; the number of solute molecules it contains will therefore be
uNdx, where N is the number of molecules in one mol.

Now suppose that each free surface of the layer is readily permeable
to water, but completely impermeable to the solute. By the known
properties of osmotic systems, there must be a movement of water
through such a layer from the more dilute to the more concentrated
solution, and if external forces be absent, the layer itself will be moved
in the opposite direction until conditions on its two sides have become
completely equalized. It is possible, however, to stop the flow of water
and therefore the movement of the layer at any time by applying an
appropriate external pressure to the more concentrated of the two
adjacent solutions. Osmotic pressure may be defined (see Lewis
1923, WASHBURN 1921, etc.) as the pressure which must be applied
to a given solution under some given conditions to make the escaping
tendency of the solvent which it contains equal to that of the pure
solvent under the same conditions, and the osmotic pressure as thus
defined may be taken as equal to p for the solution in immediate contact
with the layer on the one side and to p -+ dp for that on the other, the
corresponding values of x being ¥ and x + dx. Under these conditions,
water will tend to pass in the positive direction and in consequence to
move the layer in the negative direction, the effective pressure available
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for this purpose being the difference between the two osmotic pressures.
Since the area of the layer is unity, pressure and force will be numeric-
ally equal.

Now the total force exerted on the layer may be imagined to be
applied to the transport of the number of molecules, #Ndx, contained
within it. The driving force, %k, acting on a single molecule in the

ap

positive direction is therefore — ——=">—. Suchaforce would transport

the molecule with some velocity, v, equal to k/f, where f is the frictional
resistence encountered by the molecule at unit velocity, which for the
present need not be further defined than by the relation just stated.
Substituting the value of k2 given above, we have
1 dp
uNf dx’

Now in a vessel of unit cross-section the rate of transport of material
in mols per unit of time, i.e., d(Q/dt, will be equal to #v. Furthermore,
if the solution be assumed to be very dilute, or to obey the same laws as
dilute solutions, then by van't HorF's Law, p = # R T and the equation
becomes

U=

aQ RT du

2F =T Nfdz- (2)
Equation (2) is seen to be the same as Fick’s equation (1) for diffuston
across unit area except that D is now replaced by R7/Nf. This relation
is of great importance, particularly when the magnitude of f can be
determined experimentally or can be calculated. The latter possibility
frequently exists, since according to Stokes’ law, for a sphere of
radius # (which must not be too small in comparison with that of the
surrounding molecules) and a viscosity » of the liquid medium

f=06mnyr
For any case to which Stokes’ law is applicable we therefore have
p—RT 1 (3)
T N  b6anr’ 3

This important equation is commonly known as the EINSTEIN or the
STOKES-EINSTEIN equation (EINSTEIN 1905), though it was obtained
independently somewhat earlier by SUTHERLAND (1904, 1905). A
similar equation differing only in the presence of a numerical factor,

7—2—‘7‘—, was also derived by a different method about the same time by

v. SMOLUCHOWSKI (1906); but, according to LaNGevIN (1908) who
repeated v. SMoLUCHOWSKI's calculations, this factor ought not to
appear, and in any case the SUTHERLAND-EINSTEIN equation is in
much better agreement with the known facts, and was used by
v. SMoLucHOWSKI himself in his later work.

The SUTHERLAND-EINSTEIN equation has very often been used to
obtain information about the radii of the diffusing molecules or colloidal
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particles from the observed values of their diffusion coefficients. A
typical case of this sort, of physiological interest, has recently been
discussed by NorturoP and ANsoN (1929). By a method described
below (p.66) they obtained experimentally a value of D for hemo-
globin of 0.0420 cm?/day. The other quantities appearing in equa-
tion (3) with the exception of » are known; the following are the values
used for purposes of calculation: R = 8.3 X 107, N = 6.06 X 10%,
T = 278, n = 0.01519. The value of » as thus calculated proves to
be 2.73 X 1077 cm. Assuming that the hemoglobin molecule is spherical
and that its specific gravity, g, is the same as that of crystalline hemo-
globin, i.e., 1.33, the molecular weight calculated by the formula

m = %nr'“’gN

proves to be 68,500 4+ 1,000.

Similar applications of the law in question have been made with
varying degrees of success by other workers. In many cases, even
where it might not be expected to hold, the law seems to give good
results, but in general it must be used critically and with due regard
for complicating factors not taken into account in its derivation. Thus,
both theory and experience indicate that it is strictly applicable to
single molecules only if these are fairly large in comparison with the
molecules of the solvent. In the case of most ordinary substances there
seems to be a closer inverse proportionality between D and the square
root of the molecular weight than between D and the radius of the
molecule, which might be expected in turn to be roughly proportional
to the cube root of the molecular weight. In fact, the relation,

D)YMW = K has been much used in diffusion studies, though it
shows many exceptions, particularly when the substances compared
are not closely related chemically. The question of the relation of D
to the molecular weight and the radius of the diffusing molecule is
discussed among others by Riecke (1890), EuLeEr (1897), THOVERT
(1902, 1910), Onorm (1910, 1912b), ZEILE (1933), etc.

A further relation deducible from the SUTHERLAND-EINSTEIN
equation is that for the same substance in different media or at different
temperatures the product of the diffusion coefficient by the viscosity
of the medium ought to be constant. While this relation has been
found to hold very satisfactorily in many cases, THOVERT (1904, 1914),
Onowrwm (1912¢), ConEN and Bruins (1923b), it is by no means universal
(OmoLm 1913, MIiLLER 1924) and it must therefore be applied with
caution. In general, however, the relation is an important one and
seems to be chiefly though by no means wholly responsible for the
values assumed by the temperature coefficients of diffusion processes
in aqueous media, which are roughly of the order of magnitude of those
associated with the viscosity of water (for fuller data see Onorm 1912b).
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A very important point connected with the use of equation (3),
sufficiently obvious at present, but until recently largely overlooked,
is that it is not permissible to apply this equation to the calculation
of the radii of diffusing particles in colloidal systems if these particles
are ions and are accompanied by other ions of much smaller size. As
will be shown below, the observed diffusion coefficient of an electrolyte
depends upon the behavior of both of its ions, and it follows that the
readily measured rate of diffusion of, for example, the colored ion of
an organic dye-salt is, in itself, of little use as a basis for calculating
of the radius of the dye molecule. Indeed, Bruins (1931a) and others
have recently obtained with certain colloids diffusion coefficients
which would seem absurdly great, exceeding as they do those of many
crystalloids, were the presence and the contribution to the observed
effect of the ‘“Gegenionen’ neglected. Since this important principle
was not taken into account by most of the earlier workers, a large
proportion of the published applications of the SUTHERLAND-EINSTEIN
equation to questions of molecular and particle size in colloidal systems
is of doubtful value. For further discussion of this point see BRUINS
(1931a, b, ¢, 1932), HARTLEY and RosinsoN (1931), Samec, Knop
and Pawovid (1932), McBaiN and DawsoN (1934), and McBaIn,
DawsonN and BARKER (1034).

The question of the exact behavior of electrolytes in diffusion pro-
cesses, particularly when their concentrations are high, or when several
electrolytes diffuse simultaneously, is much too complex to fall within
the scope of the present paper. A general introduction to this question
is given by NERNST (1926), and many further details will be found in the
following incomplete list of references to the original literature: NERNST
(1888), ARRHENIUS (1892), WIEDEBURG (1892, 1899), BEHN (1897), BosE
(1899), ABEGG and Bose (1899), THOVERT (1902b), HaskeLL (1908),
OsBORNE and JACKSON (1914), v. HEVEsY (1913a, b), WALPOLE (1915),
GorpscuMIDT (1929), HARTLEY (1931), McBaIN and collaborators
(1931—1934), SiTTE (1932), ONsaGER and Fuoss (1932), Davies (1933).

Only one question concerns us here, namely, the fact that an elec-
trolyte, though dissociating into two or more ions, behaves in a manner
that can be described by a single diffusion coefficient, which, in the
case of sufficiently dilute solutions, may be calculated with a very fair
degree of accuracy by means of the so-called NErNST equation. The
original treatment of this problem by NErNsT (1888) for the case of
a uni-univalent electrolyte may be somewhat simplified in a manner
very similar to that already followed above for a non-electrolyte (see
NErNsT 1926 and TAYLOR 1924). For a more general treatment of the
behavior of electrolytes whose ions have any valences, the discussion
by A.A.Noves quoted by HaskeLL (1908) may be consulted.

It is known from studies of the electrical conductance of solutions
that different ions have different mobilities, which depend upon their
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masses, degrees of hydration, etc. Let the mobilities of the two oppo-
sitely charged ions of a uni-univalent electrolyte of concentration u
be U and V, respectively. Because these mobilities are, in general,
different, one ion will tend to diffuse more readily than the other, but
the electrostatic forces so: set up will prevent any complete separation
of the two sorts of ions, and the net effect will be that the rate of diffusion
of the more slowly moving ion will be accelerated by that of its more
rapid partner, and vice versa, giving a single rate of diffusion, repre-
sented by an appropriate diffusion coefficient, for the salt as a whole.

Suppose now that diffusion is occurring parallel to the long axis
of a vessel of uniform cross-section, which for simplicity may be taken
as unity. Consider as before (p. 11) a movable elementary layer having
the thickness dx, lying at right angles to the direction of diffusion,
and let the concentrations and osmotic pressures on the two sides of
this layer be # and p, and # + du and p + dp, respectively. The volume
of the layer is dx and the amount of salt which it contains is udx
mols; this amount is supposed to be completely dissociated. By applying
exactly the same principle as that already used in deriving the Ein-
STEIN equation for non-electrolytes, it is seen that the force acting

on one mol of salt in the positive direction is ——% Zi . This force,
if the two kinds of ions were free from each other’s influence, would
therefore tend to produce movements in the positive direction in the
time 4t of ——Uu(I dp)dt and —Vu(I dp)dt.
% d u dx

Such movements, however, would set up electrostatic forces which
would act in the same direction as the osmotic forces for the one ion
and in the opposite direction for the other. Representing in the proper
units the electrostatic potential by E, its effect on the movements
of the two ions would be, respectively,

adE dE
-— U'Ltﬂdi and -+ Vu—d7dt.
With equal rates of diffusion of the two ions it follows that
—U(gh+u)ai=—v (L —ult)ai=ag.
By the elimination of — E and the substitution of p = u R T, since the

solution is assumed to be very dilute
20V

dQZ_U+VRT “dt. (4)
On comparing this equation with Fick’s law, it follows that
20V
D=+ 7 RT. (5)

This simple and important relation has been shown to hold with a
very satisfactory degree of accuracy for dilute solutions of electrolytes.
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See in this connection OHOLM (1905) and among more recent workers
ULLMANN (1927), ForTH and ULLManN (1927) and ZUBER and SITTE
(1032).

Equations (2) and (4) not only furnish a theoretical basis for Fick’s
law, but they serve at the same time to indicate its limitations. For
example, the assumption made in deriving both equations thatp = # R T
is known not to be strictly correct for any actual solution of finite
concentration; while for solutions of high concentration it ceases to
be even approximately true. The osmotic laws applicable to concen-
trated solutions, particularly to those of electrolytes, are in fact
complex and vary from substance to substance. It would be unrea-
sonable, therefore, to expect a constancy of D in cases where the relation
of osmotic pressure to concentration is itself subject to change with
concentration.

Furthermore, the frictional resistance, f, in equation (2) and the
mobilities of the two ions in equation (4) which may be considered to
be constant in sufficiently dilute solutions are by no means so under
other conditions. In the case of non-electrolyte solutions, attractive
forces between the individual solute molecules are assumed to be absent
in infinitely dilute solutions, just as they are in the case of an imaginary
“perfect gas”, but with increasing concentration they begin to appear,
and may lead in extreme cases to ‘‘association’” and polymerization,
with changes in the radii of the diffusing molecules, and in any event
to effects which prevent the individual molecules from diffusing
entirely freely as the theory demands that they should. At the same
time, changes in ‘“hydration” may also occur, which in some cases
may take the form of fairly definite changes in the effective radii of
the diffusing molecules, and in others may be limited to a less sharply
defined influence on the surrounding water molecules, which never-
theless tends to affect the rate of diffusion.

Effects of both sorts are particularly striking in aqueous solutions
of strong electrolytes in which the electrostatic forces of repulsion and
attraction between ions of the same and of different sign, respectively,
and between the ions and the surrounding water dipoles are so complex,
even in solutions of -moderate concentration, that it has only been in
recent years that attempts to deal mathematically with such systems
have been even partially successful. The most cursory examination
of recent papers dealing with applications of the DeBve-HUcKEL
theory of strong electrolytes to problems of diffusion (ONsaGer and
Fuoss 1932, SitTE 1932, etc.) will show the unlikelihood, not merely
of finding constant values of D for an electrolyte over any considerable
range of concentration, but even of finding values of D which change
with concentration according to any simple law.

From time to time efforts have been made to determine the laws
of diffusion that apply to systems in which it is impossible to treat
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the diffusion coefficient as a constant. Attempts to deal mathematically
with cases of this sort were made by Hausmaninger (1882), WIEDE-
BURG (1890) and especially by Borrzmann (1894) who derived an
equation which has been employed by a considerable number of recent
workers, among them KriGeEr and GrUNSKY (1930), GERLACH (I1931),
MuUNTER (1931), FrRANKE (1932), ZUBER (1032), ZUBER and SITTE
(1932), etc., but inasmuch as it is scarcely possible to apply these rela-
tively complex methods of treatment to biological systems, such
methods will receive no further attention here.

In concluding this discussion of Fick’s law, it may be said that
while the limitations of the law are serious and must constantly be
kept in mind, it may usually be employed, with reservations, in the
mathematical treatment of most of the problems of diffusion with
which physiologists at present have to deal. This is true, partly because
other unavoidable sources of uncertainty are always present in bio-
logical material, which render a very high degree of mathematical
refinement meaningless, and partly because the range of concentrations
encountered in living organisms is usually much narrower than that
present in the cases in which physicists have found it advantageous
to abandon the simple law and to search for more complex ones.
Remembering, therefore, that Fick’s law is only an approximation,
though a sufficiently accurate one for most practical physiological
purposes, it will be made the basis of the treatment which follows.

4. The principle of independent diffusion streams.

There are several important corollaries of Fick’s law; one of these,
of great practical usefulness, may now be described. If the diffusion
coefficient within a given concentration range can be treated as if
it were a constant, it follows that the solute molecules can have no
appreciable influence on each other’s movements, since otherwise
absolute concentrations as well as concentration gradients would need
to appear in the diffusion equation. But if the diffusing molecules are
essentially independent of one another, then it becomes possible to
deal separately with several diffusion processes occurring simultane-
ously in the same system, either in the same or in different directions.
Such a case would, for example, be represented by a system in which
very low concentrations of two or more non-electrolytes are involved;
in it, each solute, to the extent that its behavior is accurately described
by Fick's law, could be treated independently.

Sometimes it is convenient to consider the simultaneous existence
in the same system of two or more diffusion streams of the same sub-
stance. An important example of this condition arises in connection
with the so-called “reflection principle” of SteEran (1879). Suppose
that a layer of solution be placed at the bottom of a vessel filled with

Ergebnisse der Biologie XII. 2
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water and infinite in height; diffusion will occur in accordance with
laws that will be discussed below. Suppose now that with the same
initial arrangement of the solution the column of water be changed
to one of finite height. In this case, the diffusing molecules moving
upward and encountering the upper surface of the water, which they
cannot pass, will be reflected downward and will move in the new
direction according to exactly the same laws as if they had continued
to move upward in the infinite column. The fact that they will be
moving against the main diffusion stream makes no difference; each
stream can be considered entirely separately. On reaching the bottom
of the vessel the downwardly directed stream will again be reflected
upward, and so on indefinitely. This method of treating diffusion in
a closed finite system leads to the same numerical results as the use
of FouriERr’s method of analysis described-below, but has the advantage
that the necessary calculations are considerably easier to make.

This principle may be applied somewhat more in detail to a very
important practical case. In one of the most used methods of deter-
mining diffusion coefficients, a layer of solution is placed in a cylindrical
vessel and is covered with a layer of water of three times its own thick-
ness (see p. 39). At the end of any desired time, the contents of the
vessel are then removed in four equal layers, either by siphoning from
the top, or otherwise, with a minimum of mixing of the different layers.
Suppose that in using this method it is required to calculate the amount
of solute contained in each layer at the end of the experiment. By a
method described below (p.93), it is easy to find the theoretical
distribution of material at any time in an infinite number of layers,
each of the thickness of the four under consideration. By the reflection
principle, the contents of each of the actual layers, I to IV inclusive,
must be equal in amount to the sum of the contents of the layers of the
same thickness, in an imaginary infinite system, which are represented
by the Arabic numerals in the following diagram.

IV 445+ 12+ 13
1 34+64+ 114 14
II 247410415
I 1484+ 9 etc

This principle was employed by Steran (1879) for the calculations on
which the early tables of ScHEFFER (1888) and the later much-used
ones of KawaLki (1894), are based.

The reflection principle may even be applied to a purely imaginary
diffusion stream, in the following important case. Suppose that dif-
fusion occurs in a system similar to that just described, but that the
upper boundary of layer IV is kept in contact with constantly renewed
pure water. It is required to détermine from the calculated data for



Diffusion Processes. 19

an infinite system the distribution of material at any time in layers I
to IV of the actual system. It is obvious from the purely random
nature of molecular movements that in an infinite system half of the
diffusing molecules that reach the upper boundary of layer IV will go
forward and the other half backward; in the closed system just dis-
cussed, all must go backward; in the system now under consideration
nonc will go backward. Evidently, therefore, by keeping the outer
boundary constantly at the concentration zero, a backwardly directed
stream exactly like the forwardly directed one which can be observed
in layers 5, 6, 7, etc., of an infinite system is, in effect, removed. It
follows that to find the amounts of material in layers I to IV inclusive
it is necessary to subtract rather than to add the amounts calculated
for layers 5 to 12 of an infinite system.

The situation is exactly as if a negative stream proceeded into
the body of the solution from its boundary, equal except in sign to
the positive stream which in an infinite system moves in the opposite
direction. This negative stream might, for clearness, be thought of as
composed of actual molecules having a negative sign, which algebraic-
ally could neutralize an equal number of positive molecules. Such a
stream would evidently be reflected at the bottom of the vessel, but at
the top of the vessel, which is open, not only would it not be reflected,
but even half of it would fail to return as in an infinite system. By
exactly the same principle as before, therefore, it would be necessary
to subtract the negative stream that would theoretically pass from
the vessel into an undisturbed infinite column of water; this is evidently
equal except in sign to the positive stream that in the original infinite
system would pass from layer 12 to layer 13. But since the effect of
subtracting a negative stream is the same as adding a positive stream,
we should have finally:

IV 4—5—12+4 13
III 3—6—11+4 14
I 2—7—10+4 15
I 1—8— ¢ etc

Another example of the principle of independent diffusion streams
of considerable physiological interest is the following: Suppose, to
take a concrete case, that a muscle originally possessing a uniform
internal concentration, &, of lactic acid be placed in an unstirred solution
entirely free from this substance. Diffusion of the lactic acid from
the muscle to the solution will occur in a decidedly complex manner,
which will be discussed below, and need not be considered in detail at
this point. Suppose now that a similar muscle also having an internal
concentration of @ be placed in another unstirred solution whose volume
is equal to that of the first solution, but whose initial lactic acid con-
centration is & (where a >b). In view of the known complexity of

2%
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diffusion processes, it may perhaps not be immediately obvious that
the amounts of lactic acid that will escape from the two muscles in any
given time, must always bear to each other the simple numerical
relation a/(a — b). That this is the case, however, provided that Fick’s
law applies, follows at once from the principle of independent diffusion
streams. ’

The molecules inside the second muscle may be divided into two
imaginary groups, one having a concentration of & and the other a
concentration of @ — b. The first group will be in exact equilibrium with
the molecules of the same substance outside the cell, and while indi-
vidual molecules can be exchanged between the two groups, no transfer
of material between them can lead to visible concentration differences.
There is left, therefore, only the unbalanced concentration, a — &,
within the cell to be considered. If the relation between the two effective
concentrations be: @ = 1 (¢ —b), we may think of diffusion in the
first muscle as composed of 7 independent streams each exactly like
the single stream in the second muscle. It makes no difference therefore
how complex the actual process of diffusion may be in each case; under
otherwise equal conditions the losses of lactic acid from the two muscles
must always be in the simple proportion a/(a — ).

This principle has recently been put to practical use in determining
the actual concentration within a muscle of diffusible creatine and
urea (EGcGLETON 1930) and phosphates (SEMEONOFF 1931). For such
cases, two other methods have for a long time been available. The
first is to allow diffusion to occur between the muscle and a known
external solution until equilibrium is practically reached, and then
from the amount of material transferred and the quantity of water in
the muscle to estimate the concentration originally existing in the
latter. This method requires an inconvenient amount of time, and may
also permit unknown and uncontrollable changes to occur within the
muscle during the course of the experiment. The other older method
is to find by trial a solution in which neither gain nor loss of material
occurs. This method has the advantage of involving only a short
exposure of the muscle to the solution, but the disadvantage of some-
times requiring a considerable number of solutions and, even worse,
a considerable number of muscles. The method of EGGLETON has the
double advantage of permitting the desired concentration to be deter-
mined in a relatively brief time, and with the employment of only two
external solutions and a pair of symmetrical muscles from the same
animal. The precautions necessary in using the method are merely to
make the comparison between two muscles that are as similar as pos-
sible, and to keep the external volumes and all other conditions equal
in the two cases.

The theory of the method is as follows: Let the initial concentration
of the diffusing substance in the muscle be Cyp. Suppose that in the
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first experiment the external concentration change from C; to a final
average value of C,. The amount of material that has entered the
muscle must, therefore, be (C;— C,) V, the assumption of course
being made that V' remains constant. Represent the same quantities
in the second experiment in which the time is the same as before, by

1, Cs and (C;—C3) V. By the principle of independent diffusion
streams, a part of the external concentration in each case may be
thought of exactly balancing the initial internal concentration C,,
while a sécond part whose concentration is C;— Cp and C7— Cyy,
respectively, diffuses into the muscle as if no other solute were present.
If the numerical value of C;— Cy be n times that of ] — Cy we can
think of diffusion in the former case as composed of % separate streams,
each due to an independent concentration of €7 — Cy and the amount
diffusing in time ¢ must consequently be % times as great for C;— Cy,
as for C;— Cy. We may therefore write

Q (€, —CyV _ C,—Cm

=

0 (Ci—Cy)V = Ci—Cu
which by a suitable transposition gives
Car = G, C—C, (Y (6)

(Ci—Cy) — (G —Cy) -~
This is the same as EGGLETON’s equation except for somewhat dif-
ferent symbols and for a difference in sign caused by the fact that in
the present case C; and C, are both taken as greater than Cj while
EceLETON considered (', to be greater and C, less than Cy,.

As an example of the use of this method, the following typical
case may be mentioned. In one of EGGLETON’s experiments, a sym-
metrical pair of sartorius muscles from the frog were placed in two
equal quantities of RINGER's solution containing different amounts
of creatine. The concentration of creatine in the first solution, measured
in mg./100 g. was then found to decrease from 108 to 98, while during
the same time the concentration in the second solution increased from
34 to 39. Applying equation (6), we have for the calculated concen-
tration within the muscle

108 X 39— 98 X 34
Cu= (108_98)t(?_3—9) = 50 mg./IOO g
5. The general diffusion equation; initial and boundary
conditions.

Fick’s equation (p.9), while a concise mathematical statement
of his law of diffusion, is not, as it stands, directly applicable to the
solution of most diffusion problems. Among other disadvantages, it
contains four variables, O, %, x, and ¢. The number of these variables
can, however, be reduced to three, and a partial differential equation
can be obtained whose solution for many particular problems is easy.
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This latter equation, sometimes known as Fick’'s second equation,
and here referred to as the general diffusion equation, is fundamental
for the mathematical treatment of diffusion problems, and will now be
derived. Though most of the cases of diffusion later to be considered
involve only one dimension, it will be advantageous first to obtain
the more general three-dimensional equation, which may then be
modified to fit any special simpler cases as they arise.

In any general case of diffusion that obeys Fick's law, consider
the behavior of a rectangular element of the region involved, with
infinitesimal sides dx, dy and dz, and having at its center the concen-
tration #. However complicated the process of diffusion may be, it
can for the element in question be resolved into three streams at right
angles to each other and parallel to the three coordinate axes. By
Fick’s law, the rate of flow into and out of the element will be propor-
tional to the concentration gradients associated with the three diffusion
streams; for simplicity it will be assumed that the proportionality can
be expressed by a single constant, D, for all concentrations. Under
these conditions the rate of flow across the middle of the element in

the x-direction will be — D g—z dyda.

For the inflow into the element in the same direction, the same law
will be followed, but the gradient will be slightly different. Since the

o (o
gradient is a function of x, its rate of change with x will be 5 <a1;)

and through the infinitesimal distance de within which this rate of

change must, as a limiting condition, be constant, the change will be

2u d .
3 :2 2% . The rate of inflow a9 will thereforebe -D (6_}1,: ! Z;d x) dyadz.

) dt,
0
Similarly the rate of outflow will be — D (6Z %%dx) dy dz.

Subtracting the latter rate from the former we have for the rate of
accumulation associated with the stream in the x-direction:

o2 .
D a; dxdydz. Going through the same procedure for the other

two dimensions, we obtain similar expressions involving y and 2 in
place of x; the sum of the three is the total rate of accumulation. Now
the rate of accumulation may also be expressed in a different way.
For an infinitesimal element, within which the concentration may be
considered to have the single average value u, this rate will be equal
to the rate of change of concentration multiplied by the volume, i.e.,

tO — d x dy dz. Equating the two expressions for the rate of accumul-

atlon, and cancelling out the common factor dxdydz, we obtain
the general diffusion equation for a constant diffusion coefficient,
namely,

oun %y %u

Gr=D(gw+ ot 5. (7)
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When diffusion is in one dimension only, this equation assumes
the simpler form du Pu
57 =Dz (8)
It will be noted that equation (8) contains only three variables. For
the important cases of diffusion in cylinders and in spheres, which
will be discussed below, it is necessary to retain all three dimensions,
but the coordinates may advantageously be changed from the rectangu-
lar to the cylindrical and the spherical systems, respectively. The
methods by which this change can be accomplished, which are found
in the standard mathematical text books, need not be discussed here,
but the resulting equations will be useful for reference and may there-
fore be presented without further comment. In the order mentioned
they are

ou 2un I du 1 u 0% u
S =D(Fw+ 757 ﬁ“a_«pﬁ?ﬁ)- (9)
on DJo ou 1 0 . ou 1 Pu

i [ﬂ <72'a7> + 56 30 <S‘n0?9’) + Sty ’3715_] - (19)
For the special cases of diffusion processes which are symmetrica
about the axis of a cylinder or the center of a sphere, these equations
assume much simpler forms which will be treated in some detail below
(p. 114).

Most of the subsequent mathematical discussion of diffusion pro-
cesses will be based upon equation (8), and it will therefore be profitable
to consider some of its general properties. This equation is a concise
mathematical statement of what all diffusion processes in one dimension,
which are governed by Fick's law, possess in common. Translated
into words, its meaning is that the rate of change of concentration at
any level is proportional to the rate of change of the concentration
gradient at that level. That this should be true is obvious from the
fact that the rate of accumulation of diffusing material depends upon
the difference between the rates of inflow and of outflow into an element
of infinitesimal thickness, and this, in turn, depends upon the rate at
which the concentration gradient changes. When expressed in this
way in non-mathematical language, the information supplied by the
equation may seem to be disappointingly meagre, and much too general
for application to the solution of some particular problem. In a sense,
this is true. It is a characteristic of partial differential equations that
the information they convey is always of a very general nature, in
itself far removed from the limitations imposed by actual systems.
But by appropriate mathematical methods, what is general in the
diffusion equation can be combined with the special information avail-
able about any given problem in such a way as to lead to a solution
which completely fits this particular problem.

In general, in order to obtain a solution of a problem of diffusion
in one dimension, three special.pieces of information are necessary.
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The first of these is a description of the initial distribution of the dif-
fusing material in the system; this is the so-called nitial condition.
Since, by hypotheses, diffusion is restricted to one dimension, %, no
concentration gradients can occur in any other dimension, and % must
therefore have the same value everywhere in the system for the same
value of x. The initial condition may, therefore, always be represented
by an equation of the type

u=1f(x) when t=0.

In addition to the initial condition, it is necessary in a case of
diffusion in one dimension to have information about the properties
of the two boundaries of the system that cross the axis of diffusion,
which in all the cases here considered will be assumed to cross it at
right angles. Since, by hypothesis, diffusion occurs in no other direction,
and since, therefore, no other boundaries of the system can have any
influence on its general progress, two so-called boundary conditions
are all that are needed. The absence of diffusion in the directions
represented by y and 2z may mean either that the system is closed or
that it is infinite in these directions; in either case there can be no
gain nor loss of material except through the boundaries mathematically
represented by the planes x = 0 and x = H, H here and elsewhere
being used to represent the height or thickness of the system in the
direction of diffusion.

Boundary conditions are of different sorts; one of the commonest
takes the form of a statement as to the concentration of the diffusing
substance that exists at a significant boundary of the system throughout
the time under consideration. Two boundary conditions of this sort
can be stated in the following manner

u=7[,(t) when x =0
u=1[,(t) when ¥ =H.

While %, as indicated in these equations, may theoretically vary in
any manner with time at either or both boundaries, most of the cases
that have so far found practical applications in physiology involve
constant conditions only. The more difficult general case is treated
in the text books on heat conduction, and arises in certain important
physical problems, but it will be omitted here.

A second very important type of boundary condition is that in
which no material crosses the boundary. This condition applies not
only to the bottom of an ordinary vessel in which diffusion is occurring
from below upwards, but to the upper surface of the liquid as well,
unless the solute be a volatile substance which can escape from such
a surface. In all cases where a boundary is closed, i. e., is impermeable
to the solute, and Fick’s law is true, equation (I) shows that an absence
of diffusion and a gradient of zero must always go together. The
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mathematical representation of this type of boundary condition for
a completely closed system is therefore.

ou

—— =0 when x =0
0x
a—u=0Wher1x=H.
ox

The solution of problems of diffusion in one dimension in finite
systems requires a knowledge of one initial and of two boundary con-
ditions. In infinite systems in which no boundaries cross the axis
of diffusion, or in semi-infinite systems in which only one such boundary
crosses it, the necessary information takes a different form. In these
cases, instead of information about the concentrations existing at
certain boundaries, the information is merely given that such boun-
daries are non-existant.

Certain special cases may arise in which less than a complete solution
is desired, and in which a knowledge of the initial condition is not
necessary. One such case has to do with the distribution of material

at equilibrium. If the system be closed, i.e., if g—z = 0 for x = 0 and

for x = H, then, since material can neither enter nor leave the system,
we know that whatever its initial distribution may have been, at
equilibrium its concentration must everywhere be equal to the total
amount originally present divided by the volume of the system. For
such a case the final concentration obviously will be

%/Hf(x)dx.

However, in order to find the concentration at equilibrium, it is not
at all necessary that the form of f(x) be known, provided that in
any other way we can secure information about the total quantity of
diffusible material present in the system. Similarly, if one boundary

. .0 .
condition be %: 0 and the other be u = ¢, or if both be u = ¢,

we know that at equilibrium # must everywhere be equal to ¢ regardless
of the initial distribution. A commonly encountered case of this sort
is the one in which ¢ has the value of zero.

An interesting and very important case arises when we have the
two boundary conditions # = ¢; when ¥ = 0 and # = ¢, when x = H.
In such cases, a true equilibrium is evidently impossible, since the
concentration within the system cannot at the same time become
equal to both ¢; and ¢,. Under these conditions, what happens is the
same thing that occurs when a reservoir containing water at one fixed
level is connected with a second reservoir containing water at another
fixed level: a steady and constant stream tends to become established
between the two fixed regions. Such a condition may be called a
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steady state to distinguish it from a true equilibrium in which the level
is everywhere the same. A steady state in diffusion resembles an

equilibrium in that %—1: = 0 for both; but whereas in the simple type

e - . . 0 .
of equilibrium here under discussion % = 0 as well, in a steady state

this is not the case. Steady states are of such importance in the study
of diffusion processes that they will be discussed in some detail below
(p. 61); what concerns us here is merely that the character of such
a state depends only on the two boundary conditions and not at all
on the initial condition.

In considering boundary conditions, it is very important to remember
that they apply to the region in which diffusion actually takes place
and not to some adjacent medium or media. Thus, to cite a concrete
case, suppose that diffusion is occurring between two stirred aqueous
solutions of concentrations ¢; and ¢, respectively, through a region
of thickness H, to which certain appropriate equations apply. The
character of the diffusion process represented by these equations is
obviously dependent upon the conditions existing at the planes x =0
and ¥ = H, which must be thought of as belonging to the region
covered by the equations. Whether these conditions are or are not
substantially identical with those an infinitesimal distance away in
the two contiguous media depends entirely upon the nature of the
system.

If the region separating the two external media be a capillary tube
filled with water, and so small in diameter that convection currents are
not set up in it by the stirring necessary to maintain constant external
concentrations, then for practical purposes it is correct to use for such
a system the boundary conditions # = ¢; when ¥ = 0; # = ¢, when
x = H. The same would be true of an artificial membrane prepared
by a cementing together side by side hundreds of fine glass tubes,
each of known cross section (DaBROWSKI 1912), or of the porous sintered
glass and alundum membranes used by NorTHROP and ANSON (1929)
through which fairly large continuous aqueous channels are also
available for diffusion. It would likewise be substantially true of
so-called moist collodion membranes and of agar-agar or gelatin gels of
not too great concentration!. It would not, however, in general, be

1 Tt is impracticable in the present paper to discuss in detail the simil-
arities and dissimilarities between diffusion processes in gels and in purely
aqueous media. The similarities are frequently so great that the diffusion
coefficients obtained in the two media differ only slightly from one another;
in other cases, however, relatively great differences may appear. In general,
the higher the molecular weight of the diffusing substances and the greater
the concentration of the gel, the more will diffusion tend to be retarded as
compared with its rate in water, but other factors are also involved and the
details of the relation are by no means simple. The following references
selected from the very voluminous literature on the subject will give access
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even approximately true of dried collodion membranes or of tissues
or of other media which interpose definite phase boundaries between
the regions of known concentration and the region covered by the
diffusion equation.

While it lies beyond the scope of the present paper to consider in
more than a very superficial way processes of diffusion across phase
boundaries, it may be useful merely to mention several of the various
special problems that such boundaries raise. The first and simplest,
as well as the most important practically, is that caused by a difference
in the solubility of a diffusing substance in two dissimilar adjacent
phases. This difference in solubility, except at a boundary at which a
concentration of zero exists, gives rise to a differential distribution or
partition between the two phases, which, over the relatively small
ranges of concentration encountered in physiological phenomena, may
usually be represented with sufficient accuracy by a constant “‘partition
coefficient”.

The importance of partition coefficients in discussions of cell perme-
ability and related phenomena is too well known to require special
emphasis at this point — see, for example, the recent papers by Cot-
LaNDER and BARLUND (1933) and OsTERHOUT (1933). It has sometimes
been objected (Brooks and Brooks 1932) that since partition is an
equilibrium phenomenon it cannot properly be used for the purpose
of predicting rates of diffusion. In reply, however, it may be pointed
out, as has been done by CorLaNDER and BArRLUND, OsTERHOUT and
others, that the rate of diffusion across a non-aqueous phase depends
on the difference rather than on the ratio of the concentrations of the
diffusing substance on the two sides of this phase. If, therefore, the
concentrations of the diffusing substance in the two aqueous media
be ¢, and ¢,, respectively, and the partition coefficient between the
non-aqueous medium and water be S, the effective concentration

gradient across the interposed layer, under equilibrium or nearly equi-
. o Se¢,—S . ..
librium conditions, must be —ﬂ?ﬂ — in other words, the partition

effect will multiply the gradient that would otherwise exist by S and,
other things being equal, will increase the rate of diffusion to the same

to much interesting information: Granam (1861), CHABRY (1888), VoIigT-
LANDER (1889), REFORMATSKY (1891), PRINGSHEIM (1895a, b), HAGENBACH
(1898}, CaruGareaNU and HEeNRI (1901), NELL (1905), BECHHOLD and
ZIEGLER (1906a, b), MEYER (1906), DuMANSKI (1908), YEGOUNOW (1906,
1908), OnoLM (1913), VANZETTI (1914), FURTH and Busanovic (1918a, b),
FortH, BAUER and PiescH (1919), GRaHAM and GRaHAM (1918), STILES
(1920, 1921, 1923), STILES and ADAIR (1921), ADAIR (1920), TRAUBE and
SHIKATA (1923), AUERBACH (1924), MANN (1924), FRICKE (1925), AFFONSKY
(1928), FRIEDMAN (1930a, b), FRIEDMAN and KRAEMER (1930), RICKETTS
and CULBERTSON (1931), EPPINGER and BRrRANDT (1932), HATSCHEK (1932),
MagisTris (1932), KLEMM and FRIEDMAN (1932).
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extent. This point is further discussed by NorTarOP (1929) who used
the principle in question in a discussion of the manner of passage of
gases through dried collodion membranes. It is scarcely conceivable,
even though partition equilibrium across phase boundaries were ap-
proached with only moderate rapidity, which seems to be a gross
understatement of the case, that high values of S could fail to have an
important or even a predominant influence in determining rates of
diffusion in systems characterized by such boundaries.

Because of the phenomenon of partition at phase boundaries it
is obviously impossible to measure the true diffusion coefficient of a
substance in, for example, a non-aqueous membrane separating two
known aqueous media, or in an aqueous membrane separating two
known gaseous phases, without a knowledge of partition or solubility
coefficients for the phases in question. Sometimes these coefficients
may be experimentally determined and then used in an appropiate
manner to formulate the true boundary conditions for the region under
investigation. At other times it is easier, or for other reasons preferable,
to determine what are sometimes called permeability coefficients as
contrasted with true diffusion coefficients.

Thus, in physiological work, it is more convenient to deal with the
tensions of oxygen and other gases than with their actual concentrations
in the liquids of the cells and tissues. For this reason the important
numerical coefficients determined by Krocu (1919a) for various
tissues are expressed in terms of the amount of gas in c.c. that in a
given time would pass through an area of 1 ¢m.? with a concentration
gradient represented by a difference in partial pressure of one atmo-
sphere per micron. The true diffusion coefficient for the tissue in
question could obviously be found at any time, by dividing Krocu’s
constant, after changing the unit of distance, by the solubility coefficient,
«, of the gas in the tissue, since a gradient of 1 atmosphere per cm.
across the tissue is evidently the same as a gradient of « units of amount
per cm.? per cm. of distance within the tissue itself. For example,
HiLy (1928) assuming that the solubility of oxygen in tissues is the
same as that in water, i.e., 0.031 at 20° C, obtained on dividing by
this quantity KroGH’s constant of 1.40 X 1073 a true diffusion coef-
ficient of 4.5 X 107* cm.?/minute. In view of the fact that solubility
coefficients were, for convenience, purposely omitted in the calculation
of KroGH's constants, it is not surprising that these constants for
different gases should bear to one another a numerical relation showing
not only the expected influence of the square roots of the molecular
weights of the different gases, but that of their solubilities in water
as well. Exactly the same relation in essentially the same type of
experiment had previously been found for different gases by ExNER
(1875) and also appears in the physiological studies of TESCHENDORF
(1924).
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A second factor that must theoretically enter into the formulation
of the proper mathematical boundary conditions for some given part
of a heterogeneous system is the rate at which the molecules of the
diffusing substance cross a given phase boundary and in this way tend
to bring about equilibrium between adjacent layers on the two sides of
the interface. This rate, in itself, seems to be enormously great, though
it is always more or less obscured by the existence, in liquid or partially
liquid systems, of unstirred layers within which the conditions are
not those postulated for the body of liquid as a whole. For many
years the question, of great interest to physiologists, has been dis-
cussed as to whether the ‘‘invasion’” of a liquid by a gas, or the converse
process of “evasion”, is one which has a measurable rate distinct
from that of the diffusion processes which always accompany it. Bonr
(1809) obtained experimentally ‘‘evasion coefficients” indicating a
relatively slow, or at all events a measurable, rate of escape of gases
from water surfaces. KroGH (1910) later obtained a much more rapid
rate which he believed might itself be too low.

Stilllater KroGH (1919a) made certain observations on the diffusion of
gases through animal tissues which were opposed to the view that the time
of invasion and evasion can be of appreciable magnitude. These observ-
ations were, first, that the same diffusion coefficient is obtained with
membranes of different thicknesses and, second, that the same coefficient
is obtained when the same membrane is exposed on the one hand to an
atmosphere of gas, and on the other hand to a liquid previously brought
into equilibrium with the same atmosphere. He also carried out special
experiments which led him to the conclusion that it isimpossible by exist-
ing methods to measure the rate of invasion, and that in any case the
process is one which ““is so rapid that it can be left out of account alto-
gether in dealing with the rate of absorption of gases in animal tissues”.

More recently, by a very beautiful and convincing method, DIRKEN
and Mook (1930) have shown that the time required for CO, to pass
into the surface of a moving column of water is inappreciable, and
that the time required for the absorption of a given amount is only
that necessary for the diffusion of the gas into the interior of the liquid.
Guver and ToBLER (I934) have also come to the conclusion that
the rate of escape of gases from relatively large liquid surfaces is deter-
mined almost solely by diffusion processes within the body of the
liquid, and that evasion as such must occur almost instantly. On the
other hand, McKav (1930, 19324a) has found that while the absorption
of moisture by leather immersed in water follows the simple diffusion
laws, conditions are much more complex when the leather is exposed
to a moist atmosphere. Even in cases involving the direct exposure of
gels to water, McKay (1932b) has reported significant departures from
the classical laws of diffusion connected with special surface conditions,
which he has investigated mathematically.
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A third factor, of importance in heterogeneous systems containing
liquids, namely, the presence of unstirred layers, has already been
mentioned. The thickness of these layers, even with vigorous stirring,
is surprisingly great. Thus, according to Davis and CRANDALL (1930),
“for water stirred underneath at 1000 r.p.m. the effective thickness
is about 0.0045 cm., which is over a hundred thousand times the
diameter of the water molecule”. According to the same investigators,
solid particles of freshly precipitated BaSO, may be seen under the
microscope, not only at the surface but for a short distance beneath
it, to behave as if they were in “‘a separate medium of their own which
slips along the water like a thin skin”. (See in the same connection,
Lewis and WHITMAN 1924, and, in general, the extensive literature
dealing with the problem of chemical reaction velocities in hetero-
geneous systems.)

To what extent unstirred layers will complicate a given diffusion
problem depends of course on the nature of the system. If no phase
boundaries are present, and if the diffusion coefficient is the same
throughout the system, the effect of an unstirred layer is merely to
increase the length of the region in which diffusion occurs by an amount
which may or may not be significant, according to the relative pro-
portions of the two regions. In heterogeneous systems, on the other
hand, unstirred layers are of the greatest importance and may even
determine the entire behavior of the system (see in this connection
OsTERHOUT (1933). Their importance in connection with questions
of invasion and evasion has already been mentioned.

It is evident, from this brief discussion that the complicating
factors present in cases of diffusion in heterogeneous systems must
greatly increase the difficulties encountered in dealing mathematically
with physiological diffusion processes. Undoubtedly these factors will
more and more be taken into account in future work, and for the
present their existence and possible importance should never be for-
gotten. But since a large number of problems of physiological interest
can be dealt with fairly successfully by methods applicable to simple
homogeneous systems, and since these methods must in any case be
thoroughly mastered before the use of others of greater complexity
can profitably be undertaken, it is believed that the limitation of the
present discussion to methods of the former type is not without justi-
fication.

6. Solution of the diffusion equation.

Before the diffusion equation can be put to practical use it must
be solved; that is, a relation must be found between finite values of
the variables which it contains. Like partial differential equations
in general, equation (8) has many mathematical solutions, and the
chief difficulty lies not so much in finding relations between the variables



Diffusion Processes. 31

which satisfy it as in selecting from among all the possible relations
of this sort the one which fits any particular diffusion problem. The
simplest possible solution of the equation (8) arises when, in a homo-
geneous system in the absence of all external influences not provided
for by Fick’s law (such as for example gravitation), equilibrium is
established. Under these conditions, % is everywhere equal to zero,
and we have as a first solution

u=c. (11)
That (11) is in reality a solution of (8) is obvious from the fact that the
substitution of ¢ for # in the latter equation leads to an identity.

A second and almost equally simple solution arises in the case of
0 b7} .
a steady state where 3—1:= 0 but where a—:~¢ 0. From the first of

these two conditions we have (discontinuing the notation of partial
differentiation when there are no longer two independent variables)
atu
a x?

This on integration gives

du

dx
where a is a constant which cannot have the value zero. On integrating
a second time we have

u=ax-+b. (12)
That (12) is likewise a solution of (8) is again obvious from the fact
that the substitution of ax -+ b for % in (8) leads to an identity, regardless
of the values assigned to the constants @ and b. The particular values
which these constants assume, however, in special problems is a matter
of great importance. Suppose, for example, that the boundary condi-
tions are # = ¢;, when x =0, and u = ¢, when x=H, (¢, > u > ¢,);
on making these substitutions in (12) we obtain the necessary values
of the constants, and the equation becomes

C1— 0

U=c —

x. (13)

This is the equation of a straight line; evidently the gradient represented

by the coefficient of x changes neither with time nor with distance

and it may, therefore, be introduced into equation (1) even for finite

times and quantities of diffusing material, thus
DA (c,—c,)

g=2Al—a (14)

This equation is one of very great usefulness and will receive further
attention below.

The two solutions of the diffusion equation so far obtained are
extremely simple owing to the fact that in both cases the independent
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variable ¢ disappears, and the resulting ordinary differential equations
in two variables can be solved by direct integration. When, as is
usually the case, however, three variables must be dealt with simul-
taneously, the problem becomes more complex, and the special methods
applicable to the solution of partial differential equations must be
employed. The general method of procedure in such cases is to find
certain particular mathematical solutions of the original equation
which individually may not, and usually do not, fit the special problem
under consideration but which, when properly combined, furnish the
desired solution. Two steps are therefore involved: first, the finding
of particular solutions and, second, the selection and proper combination
of these solutions.

There is no fixed and infallible method for finding particular solu-
tions of partial differential equations; in general, any method is permis-
sible that leads to results which on trial are found to satisfy the original
equation. In the present instance, we may in a purely tentative way
assume that a solution of equation (8) may be found which has the form

u=XT (15)
where X is any function of x alone and T is any function of ¢ alone.
If this hypothesis leads to a satisfactory solution, it may, like any
other scientific hypothesis, be considered to be justified by its results;
if not, it may be discarded in favor of another hypothesis.

On the assumption that (15) is a solution of (8) we may perform
on the former the operations indicated in the latter, obtaining after
a rearrangement of the terms

1 0T 1 X

DT or X G4 (16)
Since, by hypothesis, the right-hand side of (16) does not involve ¢
nor the left-hand side x, the equation can be true for all values of x
and ¢ only if each side be equal to a constant, which cannot have the
value zero without limiting the solution to the steady state which has
already been considered. The constant in question may be represent-
ed by any desired symbol, and reasons will appear later for assigning
to it the form — 2 To save space this will be done at once and we have

arT
and ax

These differential equations, each involving only two variables, are of
types whose solution is very easy by purely routine methods. By the
application of these methods the following general solutions involving
the proper number of arbitrary constants are obtained

T = Ce—#D?

and X=2A4sin pux+ B cos ux.
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For present purposes, however, it is best to break the second of these
solutions into two particular solutions by placing 4 and B successively
equal to zero. Substituting these latter values in (15) we have finally
as hypothetical solutions of the diffusion equation

u=a sin y xe—#D? (18a)
u=="0 cos uxe +D (18b)
A test of these two solutions shows that they do, in fact, satisfy equation
(8), and further work with them will show that together with the

solutions already found, they provide the necessary means for dealing
with a great variety of problems.

It will be noted that (18a) and (18b) are equally valid as solutions
of (8) for all values of a, b and p. Furthermore, any number of these
particular solutions added together are also a solution of (8) since the
operations indicated in the latter equation, which is linear, do not in
any way destroy the independence of the individual members of a series
of such terms. We therefore have available an infinite number of sine-
exponential and cosine-exponential terms differing from one another
with respect to the constants @, b and g. It remains to select from this
infinite number of possibilities those appropriate to some given problem,
and by combining them in a series to obtain the desired solution. The
general method of procedure is first to select the types of terms that
fit the two boundary conditions, and then by a further choice from
among these selected terms to obtain a series which will satisfy the
initial condition as well. Such a solution, in the form of an infinite
series is, subject to the convergency of the series obtained, a complete
solution of the problem.

This method of procedure may be illustrated by several examples.
Consider first the boundary condition # = 0 when x = 0. It is obvious
that since sin 0 = 0 while cos 0 = I, terms involving sines rather than
cosines will be needed in this case. On the other hand, for the boundary

.. 0
condition ’az
than sines are required. It was in order to permit this choice that the
general solution of equation (17b) above, involving both sines and
cosines, was broken up into two particular solutions in which the
two functions appear separately.

= 0 when ¥ = 0, it is equally obvious that cosines rather

Having satisfied the first boundary condition by selecting for
further use either sine or cosine terms, as the case may be, the second
boundary condition is next satisfied by an appropriate choice from
among all the possible values of u. Suppose that u = 0, not only
when x = 0, but when ¥ = H as well. By takingu = ﬂHl where 7 1s

any integer, sin g x must evidently become equal to zero when x is
Ergebnisse der Biologie XII. 3
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given the value /7. Both boundary conditions will therefore be satisfied
simultaneously by a solution of the form

"= n:n®Dt
. nmwTxy — 2
U = E (ansm 7€ H ) (19)

n=1
where the summation symbol &' has its usual significance and where
the constant coefficient a, of each term is yet to be determined. It will
be noted that when ¢t = oo this solution reduces to # = 0, as it should in
view of the fact that equilibrium cannot be established until the internal
concentration has reached that maintained at the two boundaries of
the system. It was for this reason that in solving equations (17a)
and (17b) above the constant was taken as having the form — u?
which for all values of y must have a negative sign and must therefore
cause the resulting expression in equation (19) to vanish when {= co.

Suppose next thatg—z = 0, not only for x = 0 but for x = H as
well. By exactly the same procedure as before a solution of the following

type results = WD
MNAX — gz
u=by + E (b,,cos e ) (20)
n=1

It will be observed that a constant term, b, has been introduced into
this equation. The presence of such an added constant is of course
mathematically permissible, since # = by is itself a solution of the
diffusion equation. In this case it is needed to show that when { = «,
the equilibrium concentration is not zero, since by the nature of the
two boundary conditions no material can escape from the system. The
term, in fact, represents the average concentration of diffusible material,
i.e., its total amount divided by the volume of the system. For an
initial distribution u = f (%)

bOZ%/Hf(@dx-

It may also be noted that whenever a general series of cosine terms is
used such a constant term must be taken into account for mathematical

. nmx . . nnTx
reasons, since b, cos 5 unlike a4, sin 5 does not reduce to zero

when n = o.

The case represented by the pair of boundary conditions # = 0

0
when x = 0; % = 0 when ¥ = H and that that represented by the

.0 . _
pair, % = 0 when ¥ = 0; # = 0 when x = H, are dealt with similarly,

though a different choice of 4 must be made. For example, suppose
that terms containing sin u x have been selected in order that they

. ou ... .-
may reduce to zero when x = 0. Since - will involve cos u x, it is
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necessary, if expressions of the latter type are to reduce to zero when

x=H, tolety= (_224}1_1)7£ where p can have the values 0, I, 2, 3, etc.
The solution of (8) in this case therefore assumes the form
i 29+ 1)*n* Dt
. 2pd Ay —
U= E (a,,sm Y B 48 ) (21)
p=0

Similarly, for the other case

u:2<anOSM€_ 4 H?

Y1 (22)

n=1
In neither of these solutions does a constant term appear, since in both
there is an open boundary at which the concentration zero is main-
tained, and the equilibrium concentration must therefore also be zero.

Having satisfied the first boundary condition by the selection of
either sine- or cosine-containing terms, and the second boundary con-
dition by choosing appropriate values of y, the initial condition still
remains to be dealt with. To satisfy it we have at our disposal an
infinite number of values, of a, and b, in equations (19) to (22) inclusive,
from which any desired selection may be made. It will be noted that
when ¢t = 0 the exponential parts of all the terms disappear, and
what is left is merely a series of sines or of cosines as the case may be,
each term provided with a coefficient to which any desired constant
value that meets our needs may be assigned. It is shown in detail in
the special works on FOURIER's series (BverLY 1803, EAGLE 1925, etc.)
how the proper coefficients may be introduced into infinite series of
sine or cosine terms like those in question to make such a series represent
a given function over a given range. It will be sufficient here merely
to indicate the general method of procedure.

In the first place, it may be noted that subject to certain conditions,
discussed at length in the special treatises, and fulfilled in all cases
likely to be of physiological interest, a given function can be represented
between ¥ = 0 and x = H by either a series of sines of the form

n= o

2 s nITx

n=1

or of cosines of the form

n =
2 (bn cos an>
n=1
together in certain cases with an added constant. The form of the
function between — H and 0 will depend on whether sines or cosines
are used, but since this region is of no significance in problems involving
only positive values of x, its behavior need not in any way influence
our choice as between sines and cosines. In general in the case of a

3*
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sine series, the symmetry is such that within the limits + H, f (x) =
— f (— %), while for a cosine series within the same range f(x) =
f(—x). Since sine and cosine series are periodic in nature, with a
period for the cases under discussion of 2 H, it of course follows that
all conditions existing between — H and + H will be repeated between
+ H and + 3 H and so on.

Without attempting a formal proof that f (x) in a given diffusion
problem can be represented by a FoURIER'’s series of sines or of cosines,
respectively, let us assume this to be the case and proceed on such
an assumption to find what values the coefficients of the successive
terms must assume. As an illustration, the form assumed by equa-
tion (19) when ¢ = 0 may be selected; in this case the coefficients ay, a,,
etc., must be so chosen that

fle) = aysin G+ aysin 7= 4+ ansin "t ansin gt 4

If we multiply each side of this equation by sinn—gidx, where we

may temporarily think of # as being some particular integer, and
integrate between 0 and H, all the integrals that appear fall under
three general forms, namely,

H H
. nNITX . mmnx . naox
ff(r) sm—H—dx am/sm sin ——d x
0 0

H H

and
H

a,,/sin2 i;;—xdx.
0
Of these, the first can be evaluated only when f (x) is known, so it will
be allowed to stand without change. The second, as may readily be
seen by consulting any table of standard integrals, must reduce to zero
whatever the values of m and n may be, provided that they are dissi-
milar integers. The third integral, on the other hand, assumes the

simple value a, H/2. We therefore obtain as the appropriate value of
a, for all integral values of »

H
. A
an=77 [ (W)sin 25~ di
0

where, in order to avoid possible confusion later, a different variable
of integration, 4, which does not in any way alter the value of the
definite integral, has been substituted for x. On introducing this value
of a, in equation (19) we obtain a complete solution of the problem
under consideration, namely,
n=o [ papy ¥ 1
u =%2 e ' sin n;xff(l) sin n;_;. aij. (23)

n=1 0
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This equation, as it should, satisfies the fundamental diffusion equation
and the two boundary conditions for all values of ¢ and all values of x
lying between 0 and H, while for ¢t = 0 it reduces to a FOURIER’s series
equal to f(x), thereby satisfying the initial equation as well. It is
therefore a complete solution of the problem.

The second case, involving a cosine series, is dealt with in exactly
the same way except that the FOURIER’s cosine series contains a con-
stant term, by, which has already been introduced into the equation
for purely physical reasons. In order to represent f (x) by a cosine
series all values of b, are obtained by multiplying both sides of the
equation
f(x)=by+b, cos * 10, coszgx—i- +b,,cos Xt bacos®ZZ H ‘4.
by cos 2 gﬁ dx and integrating as before between 0 and H. The inte-
grals now obtained fall into the four types

H
xd ’ b n
f]‘ cos = x 06/ cos

and

H

b mnx nnxd
m [ COS —g—cos—p—d %,
0

H
b,,/cos2 %;x dx
0

The second and third of these types reduce to zero and we have, as
before

H
= 5 [1 () cos 22 an.
0

To find b,, both sides of the equation are multiplied by dx and inte-
grated between 0 and H. All integrals of the type

H
nmx
by / cos——d x
0
reduce to zero, while that associated with b, takes the value H, and

we therefore have "
= [t(da
0

This value is evidently the same as that given above for the average
concentration existing within the system when ¢t= 0; it is also the
equilibrium concentration when ¢{= c. Introducing the appropriate
values of b, and b, into equation (20) above, we obtain finally, as a
complete solution of the second case, which satisfies all the conditions
of the problem

H

n’n Di
A
H/]‘ dl—I—HZ cos"ﬁxff(l)cos an ar). (24)

n=1 0
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The two cases mentioned above, each involving one open and one
closed boundary may, if desired, be reduced to a single one merely
by reversing the direction in which x is measured, i. e., by exchanging
the positions of ¥ = 0 and ¥ = H. For completeness, however, it will
be useful to treat the two cases separately, beginning with the one

. " 0
having the boundary conditions # = 0 when ¥ = 0 and % = 0 when

¥ = H. For this case, the solution, as has already been shown, has
the form of equation (21) above. It will be observed that the sine

series that results when ¢ = 0, unlike those already considered, involves

terms of the form sin WZon in which # can have only odd values. To

find the coefficients of a FoURIER's series of this type requires a proce-
dure slightly different from already described. To change the deno-
minator, A, to 2 H, it is merely necessary to make the length of the
period twice as great as before, that is, to find a Fourier's series for
f (x) between — 2 H and + 2 H instead of between — H and + H
The elimination of the even terms of the series must next be ac-
complished. It has already been mentioned that in problems such
as those under discussion, the only physically significant part of the
period represented by the FOURIER's series is that from 0 to H; it
follows, therefore, that not only may the region from — H to o be
treated in a way that corresponds to no physical reality, as has already
been done by arbitrarily choosing a series consisting of either sines
or cosines alone, but that the region from H to 2 H is also at our disposal
in the same way. Advantage may be taken of this fact to eliminate
the even terms of the complete series. Let the artificial mathematical
function over the entire range — 2 H to 2 H be represented by F (x).
Between 0and H it is to coincide with f (x) but need not do so elsewhere.
By exactly the same methods as those previously used, with the sub-
stitution of F (x) for f(x), 2 H for H and m for n we obtain

2H
A
a,,:T;f/F(l)sm W;Z. di
This may be written 0
H i 2 H X
I . I . mm
a,,=ﬁ/f(l)sm%:rdl+ﬁil/g(l)sm i 4A. (25)

0

. . mmwx . . nnwx
Consider now the nature of sin —7—. By analogy with sin —

which has # complete periods between — H and + H it must have m
complete periods between — 2 H and + 2 H. If m be odd, then the
curve represented by the sine function can easily be seen by constructing
a simple graph to have an even symmetry about A = H, that is, to
have the same values for 4 and for 2 H— 2. If, on the other hand,
m be even, then the symmetry about H is of such a nature that the
values corresponding to 4 and to 2 H — A are equal but of opposite
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sign. Now choose g (1) between H and 2 H so as to make it equal to
f (2 H— ). Itisevident that under these conditions the second integral
in (25) will be exactly equal to the first when m is odd, but that it will
be equal and of opposite sign, and the two will therefore cancel, when
m is even. By this arbitrary choice of a function, therefore, within a
region that has no physical significance, a Fourier’s series having
the desired properties over the significant region may be obtained;
and representing odd values of m, as before by 2 p -+ 1, the complete
solution for this case becomes

P==f @p+1:a*Dt

u—HZ i 'M/f 51nmdl .(26)

Fmally, for completeness the equatlon may be given for the case
0 . .
where % =0 when ¥ =0, and # = 0 when x = H. Its derivation

is exactly the same as that of (26) except that cosine terms must now
be used, while to obtain a series involving only odd values of m, g (2)
must be taken equal to —f(2 H—A). The equation so derived is

_ @p+ 122Dt

HZ R CSM/f COSM“ (27)

Equatlons (23) (24) (26) and (27), Wthh represent general solutions of
the diffusion equation for any desired initial condition and for four
important pairs of boundary conditions, will now be applied in greater
detail to various concrete problems of practical importance.

7. One-dimensional diffusion processes in closed systems.

Among the various methods available for the measurement of
diffusion coefficients, the ones most commonly employed in the past
have been those in which diffusion takes place within a closed system
of fairly limited extent. These methods, which differ considerably in
their details, nearly all start with the same type of initial distribution,
namely, a layer of solution in a vessel of uniform cross section overlaid
by another layer of pure solvent. The most frequent proportions for
the depths of the layers of solution and solvent, respectively, are 1: 1
and 1:4, though in the early experiments of Granam (1861), who
was the first to use the method, they were 1: 8; and other proportions
are occasionally mentioned in the literature. The subsequent behavior
of such systems may be followed in a large number of different ways,
all of which must be supplemented by appropriate mathematical
treatment before the observed results can be put to any very practical
use. It will be advantageous, therefore, to derive the equations neces-
sary for dealing with such cases, after first considering briefly certain
further details concerning the more important experimental methods.
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In general, observations on diffusion in closed systems take the
form either of measurements of the concentrations existing at given
times and at given levels, or of the amounts of substance contained at
some given time in regions lying between two chosen levels. The
former type of measurement can be repeated at will throughout the
period of observation; the latter type is usually made once for all at
the conclusion of an experiment. Corresponding to these two types
of measurement, two kinds of equations will be needed, the first
relating the concentration # to the diffusion coefficient D and the
variables x and t, and the second relating the amount of substance,
QOu, x, lying between the levels x; and x,, to D and ¢. Rarely, in the
case of closed systems, an equation may be useful which permits the
calculation of the amount, @, : which would diffuse across some
chosen level in the system within a given time.

Of the numerous methods which permit the observation of changes
in concentration in situ without the interruption of the experiment,
the most important are optical in character. When the diffusing
substance is colored or may be made visible by means of fluorescence
or by the absorption of ultraviolet light (SvEDBERG 1925), the general
procedure is obvious. For other substances, an early suggestion made
by SimmiLER and WiLp (1857) and actually carried out by Voir (1867)
and JonannNisjanz (1877) was to allow diffusion to occur in a prism-
shaped vessel and to estimate the concentrations at different levels
by the refraction of a horizontal beam of light. Unfortunately, this
method failed to take into account the fact, noted many years earlier
by WorrastoN (1800) and later emphasized by STeEFaNn (1878D), that
in a system showing concentration differences there is a bending of
a transverse beam of light in the direction of the region of greater
concentration. This bending at a given level is approximately pro-
portional to the concentration gradient at that level. While this
circumstance prevents the use of the simple refraction method first
suggested, it makes possible another method which has been rather
extensively used (WIENER 1893, THOVERT 1901—I1914, HEIMBRODT
1904). More recently, refraction methods have also been employed
by LitrrLEwoop (1922), Crack (1924), Lamm (1928) and MUONTER
(1931). Attempts to measure concentrations at different levels by the
methods of polarimetry were made by HopPe-SEYLER (1866) and by
Vorr (1867) but are open to the same objections as the earliest appli-
cations of the refraction method. Perhaps the most satisfactory of
all optical methods is the one recently introduced by ZUBER (1932)
in which advantage is taken of the relation between the concentration
of a solution and the occurrence of total reflection of light in an appro-
priately constructed diffusion vessel.

Another group of methods for following concentration changes
in situ employ electrical measurements of various sorts. Thus, WEBER
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(1879) used the changes in the potential difference between two metal
electrodes in a solution of a salt of this metal as a quantitative measure
of diffusion. His method has, however, been criticized by Serrz (1898)
and by HoevLTzENBEIN (1924). Procoriu (1918) also employed a
different form of the potential difference method. Another type of
electrical method depends upon measurements of electrical conductance
between appropriately placed electrodes (HaskeLL 1908, MINES 1910).

A third group of methods depends on the changes in density that
occur within the liquid medium during the course of diffusion. An
early but crude application of this principle was made by Fick (1855),
who used a glass bead suspended from the beam of a balance to measure
specific gravities at different levels in his diffusion systems. A better
method, since it avoids convection currents, is to introduce into the
system at the beginning of the experiment a number of small floats of
different specific gravities; the subsequent positions of these floats
give a fairly accurate picture of the course of diffusion. Among those
who have employed this method are TuouLeT (1891), WILKE and
STRATHMEYER (1926) and GerracH (1931). This list by no means
exhausts the methods available for studying diffusion in situ, but is
at least sufficient to illustrate their variety. For fuller details and for
additional references to the literature ForTH (1931a) and WILLiAMS
and Capy (1034) may be consulted.

Though, in theory, methods involving a considerable number of
observations of concentration are preferable to those in which a single
chemical analysis, or other measurement of quantity terminates a
given experiment, methods of the latter type have been much more
used in the past, chiefly because of their greater simplicity. Beginning
with Grauam (1861) and continuing almost to the present day, by
far the most commonly employed method for the quantitative study
of diffusion has been the so-called method of layers. In this method,
after diffusion has progressed for some suitable time, the entire body
of liquid is separated into a convenient number of layers, which are
then subjected to chemical analysis, and the general distribution of the
material in the system is thus determined.

In Gramam’s original experiments, the observed data were not
given any further mathematical treatment, and a fairly large number
of layers (16) was thought necessary to give an accurate picture of the
character of the diffusion process. Following the theoretical discussion
of these results by STEFAN (1879), however, it was realized that fewer
layers suffice for the determination of a diffusion coefficient, which
concisely and quantitatively describes the nature of the process. A very
early method involving only two layers was that used by Loscamipt
(1870a, b), STEFAN (1871), and OBERMAVYER (1880—1887) in the study
of the diffusion of gases, but while it is still sometimes employed in
studies of diffusion in solutions, it has been largely replaced by a
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standardized four-layer method which is somewhat more accurate. A
further reason for the greater popularity of the four-layer method,
which has been much more frequently used than any other diffusion
method, was the preparation by ScHEFFER (1888) and particularly
by Kawarki (1894) from calculations originally made by STEFAN
(1879) of tables to fit this particular case. By means of these tables,
diffusion coefficients can be determined directly from the observations
with a minimum of mathematical labor. Among the large number
of workers who have employed the four-layer method and who, with
the exception of the first three mentioned, have evaluated their results
by means of KawALKI's tables may be mentioned: SCHEFFER (1888},
ARRHENTUS (1802), ABEGG (1893), Kawarkr (1894, 1896), OxoLm
(1905—1913), HERZOG (190742, b), HERZOG and KasarNouskI (1908),
SVEDBERG (1909), SVEDBERG and ANDREEN-SVEDBERG (IQII),
v. Hevesy (1913a, b), HEerzoc and Pororzry (1914), RoNa (1918,
1920), ConEN and BRuUINs (1923a, b, 1924), MILLER (1924), JANDER
and Scuurtz (1925), GroH and KEeLp (1925), MucHiN and FAERMANN
(1926), BURRAGE (1932), ctc. The papers of these workers may be
consulted for practical details as to the best methods of bringing
together and separating the various layers of liquids, etc.

In dealing with observations of the continuous type, an equation
is needed which gives for any value of D the relation between finite
values of #, %, and ¢; or which, conversely, enables D to be calculated
from observed values of these three variables. Such an equation, for
a system in which a layer of solution of depth % is initially covered
by a layer of water of depth H — %, may readily be obtained from
the more general equation for closed systems [(24), p. 37]. It is only
necessary to introduce into the latter equation the proper initial con-
dition # = %y from x =0 to x=hand u =0 from x=h to x =H
when ¢ = 0. (If desired, ¥ may be measured from the top instead of
the bottom of the vessel; in that case the problem is treated in essen-
tially the same manner, though slightly different equations will be
obtained.)

Since the initial distribution of diffusible material within the
system is discontinuous, two separate integrals must be used to cover
the range from 0 to H; and as the second one, with limits 4 and H,

has the value zero, we obtain immediately
h

h n=o n®n2Dt .
__ uo 2ug - nITX nml
U= H/dl—l———H <e oS —f7 /cos 7 dl)
0 0

n=1

which after the integrations have been performed becomes

h n = h ”2nth
__ o 2 U i .. nn nmwTx - T H5
U=+ = E . Sin —p—cos ——e . (28)

n=1
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From this equation # may be calculated for any given values of #, ¢
and D. It will be noted that when ¢ = oo, u assumes, as it should, the
average equilibrium value obtained by dividing the amount of solute,
initially present in the layer of solution, i. e., #y2 A4, by the volume of
the entire system, H A, where A is the cross section of the vessel.

The usefulness of equation (28) will of course depend upon the
rapidity with which the infinite series of trigonometric-exponential
terms converges; obviously large values of ¢ and D and small ones of
H will favor convergence. In other words, the more nearly the diffusion
process has been completed, whether because the solute is one that
diffuses rapidly, or because the time that has elapsed has been long,
or because the distance to be covered is small, or because of any com-
bination of these three factors, the easier it will be to employ equa-
tion (28). Fortunately, in cases where the effect of these factors to-
gether would give a slowly converging series, i. e., when the process
has proceeded only a small part of the way towards its completion, it is
permissible to treat the system as if the layer of solvent were infinite in
height. The necessary calculations may then be made with ease by
a method to be discussed below (p. 92). It is always possible, there-
fore, by one method of calculation or the other, to obtain with any
desired degree of accuracy the value of % corresponding to any given
values of x, ¢t and D.

It should be noted that by the proper choice of experimental con-
ditions it is frequently possible to save considerable mathematical
labor. Thus, if % in equation (28) be taken as equal to H/2, i.e., if
columns of equal thickness of solution and water be employed, then

. mmuh . .
sin —— assumes the simple series of values: 1, 0, — 1, 0, 1, etc., and

half of the terms of the resulting equation disappear, with a correspon-
dingly more rapid convergence of the series. The equation for this
particular, very important case may be written in the form

1 H
It may also be noted that starting with equal columns of solution
and of water, if observations of # be made, not at random but at certain
properly selected levels, an even greater mathematical simplification
of equation (28) results. Thus for x = H/6 and x = 5 H/6, the third as
well as the second term of the original series disappears, because of

” 2u ¥ m D¢ 1 3w 9n2Dt
_ M 0 nx T TE 1 X T THE
u=-r+ <cos e 3 CosSg—e + .. ) (29)

the fact that cos ; and cos i} are each equal to zero. Since the fourth

term of the original series disappears for the same reason as the second,
and since the fifth and subsequent terms are very small, except during
the earliest stages of the process, the first term alone may, under these
conditions, frequently be sufficient for all practical purposes of cal-
culation.
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It will also be apparent from an examination of equation (29) that
if observations be made at the level x = H/2, i. e., at the original junction
of the two solutions, a concentration of #y/2 ought to be found at that
level for all values of ¢, since under these conditions all the cosine terms
assume the value zero. The same result is obtained in the consideration
of infinite systems (p.95), and has certain important practical conse-
quences which will be mentioned later (p. 131). With finite systems,
this relation will of course not be obtained when the initial layers of
solution and water are of unequal thickness.

While equations (28) and (20) enable all cases to be dealt with
which involve measurements of concentrations at different levels and
times, it has already been mentioned that the commonest closed-
system methods depend upon chemical determinations at the end of
the experiment of the quantities of the diffusing substance contained in
layers of finite thickness. The equations necessary to evaluate this
type of experimental data are very readily derived. It is obvious that
the amount of substance contained in an elementary layer lying between
x and x + dx is uAdx, where A is the area of the layer, and where u
can be obtained from equation (28). The total amount lying between
any two finite values of x can therefore be found by the integration of
uAdx between the values of # in question. In order to have an equation
that will be generally applicable, it is best to use 0 and x as the limits
of integration; the amount, Qx, x,, lying between the levels x;, and x,
can then always be obtained by subtracting O, » from 0y, x.

The necessary integration presents no difficulties, since each term
of the series in equation (28) is independent of all the others and may
be integrated separately after having been multiplied by Adx; ¢, of
course, under the conditions in question behaves as a constant. The
equation obtained in this manner is

H=0o n:nt Dt
ug Ahx  2u,AH 1 .. unh . nax — 2
Qox=—"F—+—"3 E <~n-zsstmTe H > (30)

n=1

From this equation might be calculated such a table as that of KawaLk1
(1894), though in actual practice this particular calculation may more
easily be made, and was in fact made by STEFaN (1879), by a different
method (see p. 93).

Equation (30) assumes a considerably simpler form when layers
of equal thickness of solution and of solvent are employed, and when
the final separation for chemical analysis is also made along the original
boundary plane between these two layers. For this particular case,
in which 2= HJf2, and x = H/2 equation (30) becomes

D1 9Dt
g A H g [ -=2t o =D i
QZOT[I:J:?(B A +33 H +---)}, (31)
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where the positive sign applies to the lower, and the negative sign to

the upper half of the vessel. It will be seen from this equation that

when {= o, i.e., at equilibrium, the amounts of diffusible material in the

two halves of the system, as they should be, are the same, and are equal

in each case to half of the total amount of substance originally present
n2

in the system. Furthermore, when¢ =0 (since I+ %—}—%—{— ce.= _'8‘> ,

the amount in the lower half of the vessel is equal to M”ﬁ H and that
in the upper half to zero—again as they should be.
A yet simpler equation may be obtained by dividing the difference
between the amounts of substance in the two halves, of the system,
e., 01— Oy, by their sum, Q; + Q,, the latter being the total amount
of substance present in the system. The value of this ratio gives rise
to the useful equation
Dt 9n®Dt
giJrgf:%(e Rl +) (32)
For all except very small values of Dt/H? the series of exponential
terms on the right-hand side of the equation converges so rapidly that
only the first member need be taken into account. Under these con-
ditions the following very simple equation becomes available for the
calculation of D from experimental data
H? 8 +
0= S 20 e
Equation (32) was first employed by Loscumipt (1870a, b) in
studies on the diffusion of gases and was later used, among others, by
SteFan (1871), OBERMAYER (1880—1887), RaMSTEDT (1919) and
apparently by Epcar and Dices (1916), though an error seems to have
been made in the ecquation actually published by the latter authors.

De |8 (% x -4 | De|s (—% 1
0 | a2 9e +... e |2\ € 98 + ...

0.001 0.929 0.04 0.549

0.002 0.899 0.05 0.486

0.003 0.876 0.06 0.449

0.004 0.857 0.07 0.406

0.005 0.840 0.08 0.368

0.006 0.825 0.09 0.333

0.007 0.811 0.1 0.302

0.008 0.798 0.2 0.113

0.009 0.785 0.3 0.042

0.0I 0.774 0.4 0.016

0.02 0.681 0.5 0.006

0.03 0.609

When, for any reason, it is necessary to use more than the first
exponential term appearing in equations (31) and (32), a table of values
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of 1 — —5;(3‘" —i—»;e“’” + .. ) prepared by McKay (1930) for values of
o ranging by steps of 0.001 from v = 0 to v = 3.509 will be found to
save much unnecessary labor. In the absence of a more elaborate

table the very brief one given above will sometimes be helpful for
making rough calculations.

Reference was made above to the optical methods which involve
. . b7 . .
the determination of values of % by measuring the bending of a

transverse beam of light towards the more concentrated part of the
solution. The use of such methods requires a knowledge of the relation

between % and x, t and D. This is readily found by differentiating
equation (28) with respect to x, giving

cu 2u nah nay — ma D
[t 0 M . He
77 = T H Z SIn—pg—smn—pg—e : (34)

n=1

As was pointed out by TuOVERT (1901), this equation may be
made more useful by taking 2= H/2 and by measuring %— either

at x=H/[3 or x=2 H/3. Inboth cases, the second third and fourth terms
of the original series drop out, and the fifth and succeeding terms are
small enough to be neglected, except for very small values of £. A simple
equation therefore results from which D may readily be calculated.
By a mathematical artifice the series can be reduced, practically

speaking, to a single term, even for very small values of ¢. The artifice in

question is to take the sum of the values of % for x = HJ2 and x = H/6,

respectively, and to add to this sum /3 times the corresponding value for
x = HJ3. From the total, not only the terms mentioned, but all terms

through the tenth of the original series also disappear, leaving after the
12172 Dt

first term no other until ?Ile ® s reached; this and subsequent
terms are almost always negligibly small.
. on . .

Having the value of %, it 1s very easy to calculate the total amount
of substance that in a given time would cross any plane at right angles
to the direction of diffusion. By Fick’s law, the amount, dQ, that
would pass the level x in time dt is obtained by multiplying equa-
tion (34) by — DAdt. The amount Q,, that would pass between the
beginning of an experiment and the time ¢ is then obtained by inte-
grating the resulting expression term by term between 0 and ¢, «x in
this case being treated as a constant. The equation so obtained is

f?=oc

*ntDt

AH . ) ==t

Qo.t=iu—(;zz—— [%sm—”—;;—hsm ng{x (I—e H >} (3)
n=1
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This equation could equally well be used to obtain the same results
as those given, for example, by equation (31) above. It would merely
be necessary in this case to subtract from or to add to the amount of
solute originally contained in either half of the vessel the amount shown
by equation (35) to have crossed the boundary plane between the two
halves in time t.

8. One-dimensional diffusion processes in systems with
one open boundary,

Though closed systems of the type described in the preceding
section are of much practical importance in the determination of
diffusion coefficients, they are of less interest to the physiologist than
those in which one or both boundaries are ““open”, i.e., in which they
are capable of being actually crossed by diffusing materials. Though,
logically, systems with one and with two open boundaries seem suf-
ficiently distinct, they are in reality very closely related, and many
of the equations derived for one type of system may, with slight changes,
be applied to the other as well. For this reason, both types are fre-
quently treated together, as will be done here to some extent, though
for mathematical and other reasons a formal separation of the two
will be preserved.

It is of interest to note that the earliest method employed for the
quantitative study of free diffusion, namely, the so-called first method
of GRanaM (1850 a), involved the use of a system with one open and
one closed boundary. In the simplest form of this method, a small
vessel with an open top is filled with a solution of the substance whose
diffusion is to be measured and the vessel is then surrounded and
covered by a large quantity of water contained in an outer vessel.
Because of the higher specific gravity of the solution, no mixing theo-
retically occurs except by diffusion, and, furthermore, since materials
of greater density must settle to the bottom of large vessel, the top
of the small vessel is kept in contact with practically pure water at
all times. The boundary condition for this surface of the system is
therefore # =0 when ¥ = H, or # =0 when x = 0, according to
whether distance is measured from the bottom or from the top of the

. . . 0 .
vessel. The other boundary condition is evidently _E)% = 0, since no

material can cross the bottom of the vessel. The initial condition may
represent any distribution of the diffusible substance in the inner
vessel at the beginning of the experiment. Frequently the initial
concentration is uniform throughout the vessel, i.e., f (%) = %y when
t =0, though Granam found it practically more convenient to fill
the inner vessel partly with solution and partly with water; and SIMMLER
and WiLp (1857) pointed out certain mathematical advantages of



48 M. H. Jacoss:

this arrangement, provided that the quantities of solution and solvent
be properly chosen.

In GravaM’s experiments, and in the somewhat similar ones of
MarigNac (1874), PickeriNGg (1893) and several other workers, the
rates of diffusion of different substances were estimated merely by
determining what proportions of their original amounts remained in
the inner vessel at the end of some arbitrarily chosen time. Obviously,
the more rapid the rate of diffusion, the greater must be the loss in a
given time; and by using a series of similar vessels containing different
substances and determining by chemical analysis the amount of each
that after a given time still remains in its respective vessel, the sub-
stances can be arranged in the order of their diffusion rates. It is
incorrect, however, to assume, as has somectimes been done, that the
amounts of the different substances escaping in this manner furnish
a quantitative measure of fundamental diffusion rates. This point
will be dealt with in a more mathematical manner below, but the fallacy
of such an assumption is obvious from the fact that if very long times
be selected for the comparison—and the choice of the time for a given
experiment is purely arbitrary—all substances must show approximately
the same loss from the inner vessel, namely, nearly the total amount
present in each case. The longer the time chosen for comparison, there-
fore, the more nearly must all substances, if compared by this invalid
method, appear to diffuse at the same rate.

Data so obtained, however, when mathematically treated in the
proper manner, are capable of yielding fairly accurate diffusion coef-
ficients. Such a treatment was first furnished by SiMMLER and WILD
(1857) soon after GrRaHAM had made the experiments mentioned above,
though unfortunately it was not applicable to GRAHAM's experiments
because his small diffusion vessels were not uniform in cross section.
The equations derived by SiMMiLER and WiLp have, however, been
used to very good advantage by SCHEFFER (1882, 1883), SCHEFFER
and ScHEFFER (1916) and others, who have employed Granawm’'s first
method in a somewhat improved form. The same equations have
also frequently been applied to the case of diffusion in either direction
between liquids of constant composition and masses of agar-agar
or other water-saturated gels contained in tubes closed at one end.
[A more complicated, but practically important, case in which the com-
position of the liquid in contact with the gel is not constant but is gradu-
ally increased by outward diffusion has been treated by MarcH and
WEAVER (1928).]

The general diffusion equations for systems with one open and
one closed surface have been given above [numbers (27) and (26)]. It
remains merely to introduce into these equations the appropriate
initial conditions. For the most important case in which f(x) = u,
when ¢ = 0, the equations in question lead to
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p=c @p +1)*2* Dt

U, —1)? 24 1)y — (g
u=4n" (ip_}_)lcos( PZH)——e ¢H > (36)

=0
and

=*® (2P +1)*a2 D¢

U I . 2 I)Tt X — iz
u=4_n“‘2<2p+1 sin ( ij) e 4H ) (37)

respectively, according to whether the bottom or the top of the vessel
is chosen as the origin for the measurement of x, i.e., according to
whether the closed boundary is represented by x =0 or by x = H.
From either equation the concentration at any level of the inner vessel
may be found for any desired values of x, ¢t and D. Because of the
general similarity of these two cases, further mathematical treatment
will here be based upon equation (36) only, though corresponding
methods could equally readily be applied to the second one.

Before proceeding farther it is important to note that equations (27)
and (36), though derived for cases involving only one open boundary,
may equally well be used for systems with two such boundaries, pro-
vided that the two boundary conditions are identical and that the
initial distribution of diffusible material is symmetrical about the
mid-plane of the system. This follows from the fact that these equations
involve only cosine terms, and cos ¥ = cos (— x). If, therefore, the
origin be taken at the mid-plane of a system of thickness 2 H, equa-
tion (36), enables % to be calculated for all values of x lying between
—H and 4 H. This is, in fact, the form of the equation for a system
with two open boundaries preferred by many investigators, and
several examples of its use in connection with physiological problems
will be given below.

In systems of this sort, it is frequently advantageous to be able
to find the rate at which the solute escapes from the inner vessel at
any time ¢. This rate is evidently equal to the concentration gradient
at the open boundary multiplied by — D A. The gradient in question
is found by differentiating either (36) or (37) term by term with respect
to x and substituting x = H or x = 0, as the case may be. The result,
except for sign, is the same in both cases, namely,

on 2 U, -Zh — 2D
W::;:H°(e LHY g 4H +> (38)
The total amount that would escape between the times ¢ =0 and

t =t is then obtained by integrating equation (38) between 0 and ¢,
after first having multiplied it by — D Ad¢ or by D Ad¢, as the case

2 .
may be, remembering that 1 + % —1—2—15 4. = fg— The result is

g [ =Pt _ 9=D
Qo,:=u0AH[1—F<e 4Hz—I—Ee ¢H —i—)] (39)
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On comparing this equation with number (40) which gives the amount
of material contained in the vessel it will be observed that the sum
of the two at any time is ugAH, i.e., the total amount in the system,
as it should be. It is also apparent from (39) that the amount of solute
that escapes from an open diffusion vessel is by no means directly pro-
portional to D, as has sometimes erroneously been assumed, even
when ¢t and H are kept constant, but that for all values of D, as t becomes
very large, Op,: tends to approach the same limiting value, namely
ugAH. Obviously, therefore, the amount of substance that escapes
from an open vessel in a given time can be of no significance as a quanti-
tative measure of diffusion.

The amount of solute contained at any time ¢ in a system of the
sort under consideration may readily be found by multiplying equa-
tion (36) by Adx and integrating term by term between 0 and H. The
resulting equation is

n*Dt 9Dt

Qo n =20 H (e" I ) (40)

For calculating O, » for given values of ¢, D and H the brief table on
p. 45 or the much more extensive one given by McKay (1930) will
be found helpful. The infinite series, in general, converges rapidly,
and frequently a single term will give results of sufficient accuracy.
It is often necessary to deal with cases in which diffusion is not
from the system under consideration to water, but from an external
medium of some constant concentration ¢ into a system originally at
a concentration of zero. This case may, for the sake of brevity, be
included in the more general one in which the constant external con-
centration is ¢ and the initial uniform internal concentration is u,;
the latter concentration may of course have the particular value zero.
Equations for this most general case are obtained by an obvious appli-
cation of the principle of independent diffusion streams discussed
above (p.17). It is merely necessary to treat the problem as one
of diffusion from a concentration of uy— ¢ with a basal “level” of c.
This treatment is valid for all values of #, and ¢, but when u, < ¢,

it is convenient to write the resulting equations in the following
form

_@p+172aDe

p=o
—_ —1)p + i X
u:c—4(cn“") 2<£p21cos(2p2é)nxe 4 ) (41)

p=0

AH 8 (c—uy) 'S 1 _—(2p4;222n2Dt
Qo = AH e — =5 D e - 42

and

Equation (42) may be used to obtain several types of information
of physiological importance. For example it is sometimes desirable
to know the average concentration, #, existing within a sheet of tissue
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of thickness H exposed on one surface to the entrance of a given sub-
stance, or within a sheet of thickness 2 A exposed on both surfaces
to the entrance of the same substance. This value is found for both
cases by dividing both sides of equation (42) by the volume AH, and
after an obvious transformation the following very useful equation
is obtained.

— n* Dt _ 92*Dt

Y% :I—%(e— 4 —I—%e 4B +) (43)

c— 1y

This equation gives the ratio of the increase of the average concentration
above the basal level #, to the greatest possible increase of concen-
tration that can occur. For the very common particular case in which
g 1s O, the ratio in question represents simply the degree of saturation
of the system. For calculations of degrees of saturation which are not
infrequently required, a graph prepared by Hirr (1928, p. 70) will be
found useful.

Hirr (1928, p. 68) has also constructed a table for a special case
of physiological interest, namely, that of the diffusion of oxygen into
muscle tissue, the value of D for this case at 20° C being taken as
4.5 X 107* cm.2/minute (see p. 28). Some of his values are as follows:
Evidently, for a muscle I mm. thick exposed on

: . . .
Too BT Satnge one side, or 2 mm. thick exposed on both sides,
saturation with oxygen, if diffusion alone were
g'g g'igg concerned, without any consumption of the dif-
I 0.239 fusing substancg by the tissue, would be 73 per
3 0.414 cent complete in 10 minutes and 99 per cent
5 0.534 complete in 40 minutes, etc. If the muscle were
;0 g?i half as thick, the same values would be reached
42 O:ggo four times more rapidly; if twice as thick, four

times more slowly, etc.

An interesting application of equation (43) has recently been made
by Roucuron (1932). In earlier experiments by HARTRIDGE and
RoueHTON (1927) it was found that the time required for the uptake
of a given quantity of oxygen by hemoglobin is many times as great
when the hemoglobin is contained in erythrocytes as when it is merely
present in solution. The question arises whether it is necessary to
postulate a slowing of absorption by a relatively low permeability of
the cell membrane to oxygen or whether the observed delay might
be accounted for by the time required for diffusion to take place within
the interior of the cells. The equation.employed by RouguToN for the
necessary calculations was the same as (43) except that partial pressures
of oxygen were substituted for concentrations, and the diffusion coef-
ficient, originally expressed in terms of pressure differences, was con-
verted into a true diffusion coefficient by dividing it by the solubility
coefficient of oxygen in the interior of the corpuscle. The latter value
was taken as 4.1 X 1079 c.c. of Oy per c.c. of corpuscle contents per mm.

4*
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of Hg, and the uncorrected diffusion coefficient as § X 107 c.c. of O,
per second per c¢cm.? per mm. Hg per cm. The average thickness
of the corpuscle, 2b, in ROUGHTON's equation, was estimated to be
1.4 X 107% cm.

For practical purposes, after the introduction of RoucuTON's

symbols, equation (43) may be simplified in two different ways. When
D =n? . .
o 4B > 04 all terms except the first may be neglected with an error
lying within 0.4 per cent, whence
— D a2
b—po :I—-—B—B FRrT I
i ) 2
where p; is the tension of oxygen in the blood, p, its initial tension in
the corpuscle, and p its average tension in the corpuscle at the time &.

D n? .
When ?an—2< 0.4, then according to INGHAM, whom RouGHTON quotes
(see also in this connection p. 102)
p—pPo _ 2 Di
pr—p, b %
within 0.2 per cent. By means of these two relations the values of the
average saturation of the erythrocyte are calculated at different times,

Po here being taken as equal to zero. Some of the values which RouGn-
TON obtained in this way are the following:

Time | Degres of Taking now values of p, equajl to 75 mm. Hg
(seconds) | Saturation  and of p, equal to zero, respectively, it appears
0.0001 | 0.554 from the table that in 0.0004 seconds—this being

0.0002 0.755 a suitable time for the calculation—the degree of
0.0003 0.366 saturation obtainable if there were no combination
0.0004 0.928

of oxygen with the hemoglobin would be 92.8 per
0-0005 | 0.960 cent. Theamount of gas dissolved in the corpuscle
0.0006 0.978
0.0007 0.988 would therefore be 0.0028 c.c. per c.c. of cell, and
the average internal tension, p, would be 70 mm.
Hg. From the earlier data of HaARTRIDGE and RouGHTON on the rate
of combination of oxygen with hemoglobin in a homogeneous system,
it is known that in 0.0004 seconds, at the tension in question, a degree
of saturation of 18.7 per cent would be reached. Estimating the gas-
combining capacity of the corpuscle as 0.4 c.c. per c.c. of cell, this
amounts to 0.075 c.c. of oxygen per c.c. of cell. Since this is 25 times
as great as the amount that could enter the corpuscle by diffusion
in the same time, it follows that the latter process must be an im-
portant limiting factor in the rate of uptake of oxygen by the intact
erythrocyte.

Another physiological application of equations of this general type
has been made by IneraHaM, LomMBaRD and VisscHER (1933), who
wished to determine whether during the process of ultrafiltration
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there is time for the theoretical membrane equilibrium to be estab-
lished before the filtrate passes from the region in which diffusion
processes can be effective. They used what is essentially equation (43)
and calculated by means of it the theoretical ratio of the average
concentration difference produced in time ¢ over a distance x, to the
equilibrium concentration difference over the same distance. A graph
is given by them which shows the relation between the time and the
distance over which diffusion equilibrium is practically (i.e., 95 per
cent) complete, the diffusion coefficient of NaCl having been used
as a typical value for purposes of calculation. In the same figure there
is also indicated the distance which the filtrate could flow in the same
time. A comparison of the two sets of values shows that the movement
of the filtrate could scarcely be expected to interfere to a significant
extent with the establishment of the membrane equilibrium.

An additional use of the same equation was made by WRIGHT
(1934), who determined the diffusion coefficient of carbon dioxide in
sheets of frog’s skin by measuring by a volumetric method the amount
of gas that had entered the sheet at various times as fractions of the
amount that could enter it at equilibrium. The value of the diffusion
coefficient obtained in this way, namely, 6.5 X 107 is in fairly good
agreement with that of 5.7 X 107 obtained by a different method.
It should be noted that & in WrIGHTs equation 3 represents half the
thickness of the tissue if the exposure be made on both sides and the
entire thickness if the exposure be made on one side only.

g. One-dimensional diffusion processes in systems with
two open boundaries.

This case is one of very great physiological importance, and arises
so frequently in practical work that it will be treated with especial
fullness. For convenience, it may be dealt with under the following
subheadings: systems with two identical boundary conditions, systems
with two dissimilar boundary conditions, steady states, and diffusion
across thin membranes. It must be emphasized that the treatment
here given will apply merely to the diffusion process as it occurs within
the limits of a system for which the boundary conditions are known.
Except for a few simple cases involving an entirely straightforward
and uncomplicated use of partition coefficients, the assumption will
generally be made that conditions at the two boundaries of the system
under consideration are the same as those known to exist in the
adjacent liquid media. Such an assumption seems very frequently to
be justified and indeed necessary in physiological work, but it should
not be forgotten that it is usually not the whole truth and may some-
times be very far from the truth. For the treatment of certain more
complicated cases, see McKay (1930, 1932a, b).
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a) Boundary conditions identical.

A typical physiological example of a system with two open boun-
daries and subject to two identical boundary conditions is a flat muscle,
such as the sartorius of the frog, or a sheet of tissue of any kind exposed
on both sides to the same well-stirred medium. Assuming homogeneity
of the tissue, it is evident that in a case of this sort diffusion will occur
symmetrically from the two exposed faces, and that two identical
diffusion streams, which by the principle discussed above (p. 17) may
be considered completely independent, will meet and cross one another
within the tissue. The system as a whole will, therefore, behave exactly
as if each stream had been reflected backwards from an impermeable
partition half way between its two boundaries. For this reason, as
has been shown in the preceding section, cases of symmetrical diffusion
in systems with two open boundaries may very conveniently be dealt
with by means of equations intended primarily for systems with only
one open boundary. Several examples of such treatment have in fact
already been given.

In order, however, to avoid any limitation to symmetrical initial
distributions of the diffusing material, as well as to bring out certain
additional mathematical principles of interest, there will be considered
in the present section the case involving the two true boundaries of the’
system at ¥ = 0 and x = H, respectively. This case is covered by
equation (23) on p. 36 which may be employed for any initial distri-
bution, u = f (x). It will be sufficient by way of further illustration
to deal merely with the two cases of greatest physiological interest,
namely, those in which there is an initial uniform internal concentration
of #, and an external constant concentration of zero or (assuming a
partition coefficient of unity) an initial internal concentration of zero
and a constant external concentration of ¢. The equation covering
the former case is derived by substituting in equation (23) f () = u,,

giving =2 Dt 92Dt
4 Uy . aTx —HE i - 3nxy — — e
U= <sm ] + Jsinsge + .. > (44)

The symmetry of the system represented by this equation is obvious
from the fact that the same value of u# is always obtained whether x or

H — x be introduced into it, since for odd values of #, sin T—’%_x)'—

sin %f. In other words, with the postulated initial distribution

of material, the concentration must always be the same at equal
distances from the two boundaries. It follows, therefore, that a system
with one open and one closed boundary, might, if desired, be treated
merely as a half of a system of the sort to which equation (44) is applic-
able. For example, for the boundary conditions: # = 0 when x = 0;
% = 0 when ¥ = H, an appropriate equation could be obtained from
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(44) by merely changing H to 2 H and then considering only the values
of x lying between ¥ = 0 and ¥ = H. On making this substitution it
is seen that the resulting equation is identical with (37), which in the
preceding section was derived by an entirely different method [see in
this connection ADpAIR (1920)].

For the equally important case in which the initial internal concen-
tration is zero and the constant external concentration is ¢ (remembering
the qualification as to the partition coefficient) the appropriate equation
is derived by the method already described (p. 50). It is

_ =Dt _ o= D:

u:c[l——-%(sin%e H +~;)—sin3;;xe LS —i—)] (45)
This equation has been used, among others, by McBain (1909) und
Hiir (1910). Another case of possible practical importance is that
in which with a constant external concentration of ¢ there is an initial
uniform internal concentration of #, This case is readily dealt with,
as before (p.17), by the principle of independent diffusion streams.
It obviously involves a “level” represented by a constant term which
is the smaller of the two values, ¢ and #,, and a process of diffusion in
which the effective concentration is the difference between these two
values. Or, if desired, the sum may be taken of two processes to which
equations (44) and (45), respectively, are applicable.

It is frequently of physiological importance to know about the
concentration of a diffusing substance in the innermost regions of a
tissue exposed to it. For example, information might sometimes be
desired as to the lowest concentration of oxygen that with a known
external tension would at a given time be found anywhere in a flat
sheet of tissue exposed to it. Assuming for simplicity that no con-
sumption of the diffusing substance takes place—this limitation will
later be removed (see p. 137)—the problem resolves itself into a

calculation of # for any given values of f and D for x = —? For this

value of x, equation (45) assumes the simpler form

|: 4 <_ﬂ:=Dt I - 9ntD¢ 1 - 250t D¢t
u=cll—Ile H ___¢ 2 —e He ——)} 6
- 3 + (46)

An analogous relation for the maximum concentration existing at
any time within the tissue is obtained from equation (44).

From equation (44) the concentration gradient for any value of %
is readily found by differentiation. The gradients of most practical
importance are those at the two boundaries of the system, namely,
those for x = 0 and x = H. Since these values are equal, though
opposite in sign, they may be represented in a single equation. That
derived from (44) is

D¢ 9ntDt

2 -5, e
(%)bounduy ==+ 471;0‘ (L’ " Te ot ) (47)
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0 .. H .
The value of 5;1, similarly calculated for x = — s equal to zero,

as could have been foreseen from the nature of the case.

The total amount of material that leaves the half of the system
with the negative concentration gradient between the times ¢ = 0 and
t =t may be found by multiplying the gradient, by — D Ad¢ and
integrating. The amount for the entire system will be twice as great,
namely,

9a2Dt

a* Dt _
QO,,:quH[I—%<e— H? —l—%e B —{-)} (48)

This equation derived from (44) applies to outward diffusion; the

corresponding one, derived from (45), for inward diffusion, is the same

with the substitution of ¢ for u, It will be noted that in the case of
2

the first equation whent =0, Q=0 <since 1 -{—%-{—2—15—{— o= T)

while for t = o Q = uyAH; in other words, in infinite time, all the
material in the system will escape. In the case of inward diffusion
the final value of Q will be ¢ AH, that is, a condition of saturation will
have been attained in which the external concentration exists through-
out the entire volume. For many purposes it is of interest to know
the relative amount of diffusing material in the system, that is, the
ratio of the amount actually contained in it at any given time to the
amount it originally contained or is capable of containing. In the case
of inward diffusion this ratio may be called the average degree of
saturation and is evidently

@ g ( -5 1 -2ZP
?=I—;2—<e He —{——g-e H +) (49)

Equation (48) could equally well be obtained by calculating the
total amount of material contained at time ¢ between the levels x = 0
and ¥ = H and subtracting this amount from the known initial amount
of material in the system. Such a calculation involves merely the
multiplication of both sides of equation (45) by Adx, followed by
integration between the appropriate limits in the manner already
discussed (p. 44).

The similarity of equations (48) and (49) to (39) and (43) in the
preceding section will be noted. It is indeed obvious that the same
degree of saturation, for example, must be attained in the same time
whether the system have a thickness of H and one open boundary or,
in the case of a symmetrical diffusion process, a thickness of 2 H and
two open boundaries. In dealing with equations of this type, the short
table on p. 45 or the much fuller one prepared by McKay (1930)
will be useful.
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b) Boundary conditions different.

The case just discussed, involving two open boundaries with identical
boundary conditions, is exceeded in interest by the similar case in which
the two boundary conditions are different; this case includes all pro-
cesses of diffusion across membranes, of which innumerable examples
occur both in the physiology of entire organisms and of single cells.
In the latter case, and sometimes in the former, the membranes are so
thin that important simplifications of the mathematical treatment are
possible; however, it is best to begin with no limitations as to the
thickness of the region in which diffusion occurs, and to treat the
special case of thin membranes in a section by itself. A different sort
of simplification results with membranes, or other regions, of greater
thickness, after a steady state has been established; this very important
special case may likewise be dealt with separately after the more general
treatment has been completed.

For the most general case involving constant but dissimilar boundary
conditions, we have to solve the diffusion equation for the initial con-
dition # = f (x) when ¢= 0 and for the boundary conditions % = ¢,
when ¥ = 0 and # = ¢, when x = H. It will be assumed that ¢; > ¢,,
though if the reverse were the case the same equations, by taking
proper account of signs, would still be applicable. The origin for the
measurement of distance may be taken at either boundary of the
system, and for completeness the equations for both forms of solution
will be presented, but the derivation of only the one mentioned above
will be given in detail. The most general case of diffusion across a
membrane involves some initial distribution of the diffusing material
within the membrane. The problem may, however, be somewhat
simplified by applying the principle of independent diffusion streams
and dealing separately with two different processes. Thus, the molecules
originally within the membrane may be thought of as leaving this
region as if no others were present outside while those on the outside
may be thought of as diffusing across the membrane as if its initial
internal concentration were zero. The actual value of u, therefore,
for any given values of x and ¢ will be the algebraic sum of the values
determined for the two streams separately. But since an equation is
already available for the outwardly directed stream [number (23), p. 36],
this stream may be neglected, and it is necessary merely to obtain
an equation for a stream across an originally empty region. The problem
to be dealt with here, therefore, is to find a solution of the diffusion
equation which reduces to ¢; when ¥ = 0, to ¢, when ¥ = H and to
zero when ¢ = 0.

Such an equation may readily be obtained by using sine-exponential
nin?Dt
terms of the form sin nIa;x e H*  which become equal to zero for

x =0 and for ¥ = H, and then by adding other terms of a different
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sort, which are likewise solutions of the diffusion equation (8) but
which permit the boundary conditions to be satisfied. A few trials
lead to an equation of the form

"o _ mwaDe
u:cl—%x#- §<ansin"§xe B ) (50)

n=1

which evidently satisfies both boundary conditions. It is obvious
that in order that the initial condition may also be satisfied it is neces-

sary to choose the coefficients a, so as to give rise, when ¢t =0, to a

FoURIER series equal to —¢; + 0—12—5—2— x. This is very easy todo by

finding the FOURIER sine series for unity and multiplying it by — ¢,

then the corresponding series for ¥ and multiplying it by i%-ci and

finally taking their sum. The values of a, so obtained, when sub-
stituted in (50) give a complete solution of the problem, for the equation
now reduces to zero for ¢t = 0, and the initial as well as the two boun-
dary conditions are satisfied. The solution obtained in this way is

c c x n*Dt 9nt D¢
01— 2 4 1 . T »—_Hg— I . 37!/‘( _T
U=C1— 55— X——\SIN——¢ - Sin N

_ nt Dt 472Dt
+ 2a=c (01;62) (sin%xe ES —»;—sin Q;Ix e T4 ) ‘

For the special case where ¢; = ¢, = ¢, equation (51) passes over
into equation (45), previously obtained in a different manner. As
has already been mentioned, the effect of any initial distribution
within the membrane, other than a uniform concentration of zero, can
be provided for by adding to equation (51) equation (23) with the
substitution of the proper form of /(x). For the very common and
relatively simple case where # = 0 when {= 0, u = ¢ when x = 0,
and # = 0 when x = H, the necessary equation is obtained by sub-
stituting in (5I) ¢, == ¢ and ¢, = 0, giving

cx 2cC ax Dt I 2nX 4Dt
—e ¥ _ 20 TF T 1 208~ m
u=c n<smHe + Ssin=p~e +...).(52)
It is also easy to show that the following equation replaces (52) when
the origin is taken at the boundary where u = 0 instead of at that
at which u =¢

cxX 2C

H

oy D 4nDt

. -Tm— 1 . 2mx

sin —— | e )

7 ¢ S Sin——e + (53)

Both equations (52) and (53) reduce to # = 0 for t=10 and to u = ¢
and # = o for x = 0 and ¥ = H, respectively, or vice-versa. In addition,
when = oo, both become equations of straight lines as they should
when a steady state has been attained (see p. 31).
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From equations (52) and (53) other equations analogous to those
already derived for amounts of material rather than concentrations
may readily be obtained. Since no new principle is involved, it will
be sufficient merely to give without discussion two of the most useful,
namely, one for the amount of substance that leaves the membrane
between the times t==0 and ¢={, which is

n=c® nn*Di
DAct AH (—1)” - 3
S (]

n=1

and one for the total amount of substance contained in the entire
membrane at any time ¢, which is
nw*a*Dt 9n*D¢t

Qo =4 4l <e ol T ) (55)
Equation (52) has been employed by Steran (1878a) and by
WUsTNER (1915) and equation (53) by Davnes (1920). The latter
author extends the theory so far given to include an additional point
of considerable interest and possible physiological importance. It has
been mentioned that in diffusion between two aqueous solutions across
a non-aqueous membrane, the true mathematical boundary conditions
are not furnished by the concentrations existing in the aqueous solutions,
but rather by those in the adjacent external layers of the membrane.
These, in general, can be found only when the partition or solubility
coefficient for the diffusing substance is known, and in the absence
of this information it is usually necessary to be content with a perme-
ability coefficient rather than with a true diffusion coefficient. In the
case studied by DAvNEs, however, which was the diffusion of hydrogen
through a rubber membrane, it was possible from a single set of experi-
ments to determine both the solubility coefficient and the diffusion
coefficient. This was accomplished by working under conditions
where the concentration of the cscaping gas was kept practically at
zero in a collecting vessel but where by a sufficiently delicate method
its very low and increasing concentration in this vessel could be accur-
ately measured.

In a system such as that studied by DaynEs, in which independent
experiments showed (1) that Fick’s law holds inside the membrane,
(2) that absorption of a given gas is proportional to its partial pressure,
(3) that there is no appreciable resistance at the surface of the mem-
brane to the passage of the gas, and (4) that different gases do not
impede each other’s progress in the membrane, the amount of gas that
would pass through unit area of the membrane from a region where
its partial pressure is p to one where it is practically zero, after the
establishment of a steady state, would be

DS
=5 69
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where p is the partial pressure and S is the absorption cocfficent,
which here takes the place of the partition coefficient. From observ-
ations of the steady state alone D and S cannot be separated from
one another; they can, however, both be obtained in the following
manner from measurements of the rate at which the steady state is
approached.

From equation (53) the value of % may readily be found. It is
= nin2Dt
Sp 2Sp (—1)" n=n NEE
T a2 (‘ﬁ g eos e ¥ )

For the boundary, x = 0, at which gas is passing into the containing
vessel, this expression assumes a much simpler form, and when this
is multiplied by D it gives the rate at which gas crosses unit arca. This

value is
‘2—?: D;p [I + 22 <(—I)"e_ : Zim)}.

Nn=—1

Now let z be the low concentration, which can be continuously measured,
in the collecting vessel, in which the volume associated with each unit

of area of the membrane is /. Then Vﬁdt' = gg and
n=o y _ mmDi
_Dsp {sz( S (R ))}

As t increases, the value which 2 approaches is

DSp QY (— 1)
VH [H‘ Dnzz 72—}'

n =1
But since I —— + -- — =™ this may be written
T T T
z—PfP ¢ H
T VH \" 6D)"

This is the equation of a straight line which cuts the axis 0 — ¢ at a
time, /%6 D, which may be called the lag and may be designated
by L. By plotting concentrations against times until the graph becomes
practically a straight line the numerical value of L can be obtained.
But a quantity, P, called by DayNEs the permeability, and defined as
the amount of gas which in the steady state crosses unit area in one
second may also be readily measured; by equation (56) it is equal to

DSp/H. Therefore, PL = fgS and S has been separated from the

product DS in equation (56), from which D may now likewise be
obtained.
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c) Steady states.
o) Rapidity of approach to the steady state.

It will be noted that when ¢t= o, equation (51) reduces to
C1—0C

U=0c;— x.

This equation is identical with equation (13) which was obtained by
solving the general diffusion equation for the conditions defining a

0; g{f = 0. Furthermore, by partial diffe-
rentiation of equation (51) with respect to x and to ¢, it appears that

ou
steady state, namely, 2=

with increasing values of ¢, -gii approaches a constant value which is

independent of x, and%approaches the value zero. It is evident,

therefore, that in diffusion across any membrane between regions of
unlike concentration a steady state must always be approached, though
it is never actually reached in a finite time.

It is of considerable practical importance to be able to determine
how closely the steady state has been approached in a given system
at any given time. One reason why such information is desirable is
that the steady state provides a very simple method, both theoretically
and practically, for the measurement of diffusion coefficients. The
chicf obstacles in the way of its more extensive use for this purpose
have been the long times required in ordinary diffusion systems for its
practical establishment, and the supposed difficulty in deciding when
to consider it as having been attained. A simple mathematical treatment
of the problem, however, suggests means of overcoming both of these
difficulties.

Consider equation (52) which furnishes the information necessary to
calculate the concentration at any distance x from one of the surfaces
of a membrane of thickness H across which diffusion is occurring from
the constant concentration ¢ to the constant concentration 0. Follow-
ing the general method of DaBrowskr (1912) we first obtain from
equation (52), by partial differentiation with respect to #, the concen-
tration gradient at any given level. Multiplying the latter by — Dd¢
we then obtain the rate at which the solute would cross unit area, at
right angles to the direction of diffusion. This rate proves to be

a9 D¢ < nax —TEDE]
— Z’ i
dt = H ll 2 (COS H ¢ > :
n=1

For the plane x = 0, i.e., the boundary of the membrane in contact
with the solution this reduces to

%:%[1+2<e_%+e-%+...) (57)
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while for the plane x = H, i.e., the boundary in contact with the
pure solvent the corresponding equation is

n*Dt 472Dt
a0 _Del, (w0 )] sy
The difference between (57) and (58) would give the rate of accumul-
ation of solute in the membrane, if this were desired. What concerns
us here, however, is the closeness of the approach of the diffusion
process at any given time to the theoretical steady state. For this
state, obviously,

idQ D¢
dt T H *

As a measure of the divergence of the system from its final state we
may use the difference between the limiting rate and the actual rate,
divided by the former, to give a fraction whose value will approach
zero with increasing time. The measure of divergence, which may be
designated by ¢, therefore, has the value, for the surface at which
material is leaving the membrane

2Dt 47*Di

e:z(e H e H +>
When % is fairly large, as it must be when the steady state is closely

approached, all but the first exponential term may be neglected, and
we obtain the relation

2

L P (59)
The time, therefore, required to reach a rate of escape of material
differing from the theoretical limiting rate by a fraction, ¢, of the latter
is seen to be inversely proportional to the diffusion coefficient and
directly proportional to the square of the thickness of the membrane
but not to depend in any way on the concentration of the solution
from which diffusion is taking place. (See also in this connection
DoMBROWSKY 10925.)

=

DyH? e It is instructive to tabulate certain values of ¢
which show the divergence of the system from

0.3 010%24 the steady state for different values of Dt/H2
O. 0.0 ] . . .
Og O_OE 438 It is even more instructive, however, to calcu-

0.6 |o.00536 late from equation (59) the times required to
0.7 | 0.00200 approach with some given degree of closeness the

g‘g o.ggggz steady state for a fixed value of D and different
. C. .
Lo o.00010 Valuesof H. For convenience, D may be so chosen

that #2D = 10; it happens that the value of D
which satisfies this relation is approximately that of the diffusion
coefficient for NaCl or urea at or slightly below 20° C, so the hypo-
thetical case is an entirely typical one.
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Values of ¢ for different values of H and ¢ for #2 D = 10.

£

\ 0.01 0.001 0.0001
H
10 cm. 52.98 days 76.01 days 99.04 days
1 cm. 12.72 hrs. 18.24 hrs. 23.76 hrs.
I mm. 7.6 min. 10.9 min. 14.25 min.
100 u 4.56 sec. 6.54 sec. 8.55 sec.
10 u 0.046 sec. 0.065 sec. 0.086 sec.
1pu 4.6 X 107* sec. 6.5 X 107* sec. 8.6 X 107 sec.
0.1 pu 4.6 X 1078 sec. 6,5 X 107% sec. 8.6 X 107% sec.

It will be seen from this table that with the diffusion coefficient
in question, it would require 53 days to approach the limiting rate
of escape within one per cent, if the distance of diffusion were 10 cm.
Evidently, therefore, steady state experiments are impracticable in
systems of this order of magnitude. The case is very different, however,
for smaller distances. In a system having a thickness of 1 mm., for
example, which considerably exceeds the thickness of the membranes
used by NorTHROP and Anson (1029), a few minutes would suffice
for the attainment of a practically constant rate of escape of the
diffusing substance. Steady state methods may therefore be employed
with entire confidence with systems of these dimensions. In the case
of membranes of the sort encountered in living cells, where a thickness
of 1 4 may be considered extraordinarily great, and one of less than
0.1 g not unusual, steady states under otherwise appropriate conditions,
could be established practically instantaneously.

B) Practical applications of steady state methods.

Steady states have played an important part historically in the
study of diffusion processes. The earliest experimental test of Fick'’s
law, made at the time of its formulation (Fick 1855), was carried out,
after attempts to use a more general method had failed, by measurements
in a system in which a steady state had been established. Fick’s
procedure was as follows: A diffusion vessel of constant cross-section
was placed in communication at its lower end with a reservoir containing
a saturated salt solution, whose concentration was maintained by the
presence of salt crystals. The upper open éend of the diffusion vessel
lay below the surface of a body of water contained in a larger outer
vessel. Because of its greater specific gravity, the diffusing solution
left the upper end of the diffusion vessel immediately on escaping from
it, thereby maintaining at this end of the vessel a concentration of zero.
After the practical attainment of the steady state, which could be
hastened by filling the diffusion vessel with layers of salt solution of
decreasing density instead of with water or with a solution of uniform
concentration, Fick determined in situ by means of a glass bead sus-
pended from the beam of a balance the specific gravity of the solution
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at different levels in the diffusion vessel. Doubtless the rather poor
agreement of his observations with the theory was due to the un-
avoidable convection currents set up by this somewhat crude method
of measurement. The results he obtained did, nevertheless, point
clearly to a linear relation between concentration and distance from
the bottom of the vessel, as was demanded by such an equation as (13).
Because of the historical importance of these results, the following
partial list of figures obtained by Fick may be presented.
Equation (14) suggests a second method

Distance below — by which the steady state method may be
the surface of the| Lx¢ess of specific , : £
diffusion vessel |BFaViLy over that used to test Fick's theory. Since the rate o
in mm. ° i escape of the solute in the system just de-
Io 0.009 scribed must, by the theory in question, be
32.2 0.032 proportional to the concentration gradient,
54.4 0.053 c/H, it follows that it must be exactly in-
76.6 0.073 versely proportional to the length of the dif-
98.8 0-093 fusion vessel. Experiments by Fick with
121.0 0.115 ]
143.2 0.135 vessels of three different lengths showed that
165.4 0.152 this relation was, in fact, obtained. Ficx de-

termined from his steady state experiments
a diffusion coefficient for NaCl, which he expressed in units different
from those now employed; his figures, however, as recalculated by
STEFAN (1878b) in spite of the crudity of his methods, are of the
right order of magnitude. '

Following Fick, other workers have used the steady state method
for studying free diffusion processes. One of the first was STEFAN
(1878a) who employed it for measuring the diffusion coefficient of
carbon dioxide in water and in alcohol. The principle of the method
was to allow the gas to diffuse from a known tension in the closed end
of a capillary tube through a freely movable layer of water in the
same tube to a constantly maintained tension of practically zero
(ordinary air). By measuring the rate of movement of the layer of
water and making the necessary corrections for the absorption of air,
which is, however, slow in comparison with that of carbon dioxide,
the rate of diffusion of the gas in the liquid is obtained, and from it
the diffusion coefficient may be calculated. STEFAN’s experiments
showed clearly and quantitatively that the rate of diffusion is in-
versely proportional to the thickness of the layer in which the steady
state of diffusion exists, and his value of D, obtained in this way, is
in good agreement with that which he and other workers found by
other methods.

An extensive and very careful set of determinations of diffusion
coefficients of various salts has been made by CrLAcCK (1908—1924)
chiefly by the steady state method. An important innovation intro-
duced by this investigator is the measurement of the rate of escape of
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the solute from the diffusion vessel into a surrounding body of water,
not by chemical analysis of the latter, as in Fick’s experiments, but
by continuous observations of the decrease in the specific gravity of
the diffusion vessel as salt escapes. For an accurate determination of
diffusion coefficients by this method it is necessary to take into account,
as Crack has done, the slow inflow of water into the diffusion vessel
which makes good the loss of volume caused by the escape of salt. This
effect, which is not provided for in Fick’s law, has been investigated
in detail by GrirritHs (1898, 1899, 19162, b) who has even made it
the basis of a unique method for determining diffusion coefficients.
In general, the results obtained by this last method, by a steady state
method involving chemical analyses (GrirriTHs, Dickson and GRIF-
FITHS 191I6), and by CrLack'’s specific gravity method are in excellent
agreement. One great advantage of the steady state method is that
in Crack’s hands it has permitted the determination of definite diffusion
coefficients for fixed concentrations; this is not usually possible with
the methods commonly employed, which merely give a sort of average
value for the entire range of concentrations present in the region of
diffusion.

In recent years, interest in the steady state method has shifted
from cases of free diffusion to cases of diffusion across membranes of
a particular type, which permit ordinary diffusion coefficients for
water to be obtained indirectly. The membranes in question have a
coarsely porous structure, and while they are able to prevent con-
vection currents between two stirred solutions which they separate,
they offer little opposition to the diffusion of even large molecules. It
had very early been shown by STeFan (1878a) that convection currents,
which had proved so troublesome in the work of WROBLEWSKI (1877,
1878), can almost be prevented by allowing diffusion to take place in
capillary tubes I mm. or less in diameter. DaBrowski (1912) took
advantage of this fact to construct artificial membranes of known
thickness and known cross-section with respect to their aqueous chan-
nels by cementing together large numbers of capillary glass tubes.
Such membranes furnish an excellent connecting link between cases
of free diffusion and those of diffusion across ordinary membranes.
Since the total area available for diffusion—which is however con-
siderably less than the total area of the membrane—can be measured
directly, the ordinary diffusion equations can be used with them after
the substitution of the proper calculated value of 4. It should be
noted, however, that this treatment is justified only if the solutions
between which diffusion is occurring are stirred, since the rate of
diffusion through sufficiently separated capillary tubes into an unstirred
region is proportional not to the total cross-section of the tubes but to
the sum of their diameters. This principle, incidentally, is one of much
importance in plant physiology in connection with the functions of

Ergebnisse der Biologie XII. 5
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the stomata of the leaves of the higher plants (BrowN and EscoMBE
1900, Brown 1001, 19I8).

Though, in theory, the type of membrane used by DaBROWSKI
leaves little to be desired, since its exact structure is known, it has
not proved to be a very practical one for actual experimental purposes.
Various workers have therefore used other porous membranes of
unknown structure and have then standardized them in some way
in order that conclusions might be drawn about diffusion in their
aqueous portions. HUFNER (1897, 1808), for example, used thin sheets
of the mineral hydrophane, which, after the absorption of water,
contains aqueous channels available for diffusion. By methods which
he describes in his original paper, HUFNER was able to find a water
equivalent for a given thickness of hydrophane and so to obtain dif-
fusion coefficients for water alone. Somewhat later JABLCZYNSKI
(1909) used as a porous membrane ordinary cigarette paper and stan-
dardized it by measuring the rate of diffusion through it of some
substance whose diffusion coefficient is already known.

Recently, a very useful method has been introduced by NorTHROP
and ANsoN (1929), and this method is at present one of the most satis-
factory of all those employed for the measurement of diffusion coeffi-
cients. It originally consisted in the measurement of the constant
rate of diffusion, after the attainment of the steady state, between a
stirred solution of the diffusing substance and a stirred body of water
through a thin membrane of sintered glass or alundum. This membrane
is sufficiently porous to permit the free passage of molecules of proteins,
enzymes, etc., but it completely eliminates convection currents. While
the total cross-section and other characteristics of its pores cannot
be determined by direct observation, the membrane may be standardized
by measuring the rate of diffusion through it of some substance such
as HCl whose diffusion coefficient in water is accurately known. In
this way a constant for any particular membrane can be obtained,
which, when applied to the passage through it of some other substance,
permits the determination of the diffusion coefficient of the latter. By
means of this method, NorTHROP and ANSON obtained the value of
the diffusion coefficient of hemoglobin already mentioned above
(p- 13).

The same method has since been employed to very good advantage
in studies on the diffusion of such substances as the following: pepsin
(NorTHROP 1030), trypsin (Norturorp and Kunitz 1932, ScHERP
1933), hydrogen peroxide (STERN 1933), catalase (ZEiLE 1933). The
method has also been adapted to a variety of important problems by
McBaiN and his co-workers (1931—1034). One modification of the
original steady state method made by McBain is that after an approxi-
mately linear concentration gradient has been attained across the
membrane no attempt is made to maintain a constant concentration
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difference between the two sides of the membrane, but an appropriate
equation similar to one derived but not used by NorTHROP and ANsoN
(1929) is employed for the calculation of D from the observed concen-
tration changes. A theoretical justification for this procedure has
recently been furnished by BARNEs (1934).

The steady state method of determining diffusion coefficients is
of particular importance in physiology since it was by means of this
method that Krogu (1919a) obtained the diffusion coefficients of a
number of physiologically important gases through various tissues. It
will be noted that in KrogH's experiments what was desired was not
the diffusion coefficient of a given gas in water, using a membrane
merely as a convenient means of eliminating convection currents,
but rather the diffusion coefficient of the gas in the membrane itself.
The method employed was to separate two chambers by a membrane
of as uniform thickness as possible. In one chamber, the gas was
kept at a known tension, either as a gas at a known partial pressure
or in a solution previously brought into equilibrium with the gas at
this pressure, which, as experience showed, leads to the same result.
In the other chamber, the tension was kept approximately at zero;
in the case of CO, by absorption with NaOH and in the case of O,
and CO by absorption by means of hemoglobin. The rate of diffusion
under these conditions was then obtained after the establishment of a
steady state, which, with the thin membranes -employed, must have

been attained very quickly. In the following table are given the values
obtained with several animal tis-

sues and other materialsby Krogu ~Water . . . . . . 0.34 (HOFNER)
for oxygen at 20° C. (The unit Gelatin. . . . . . 028
f difference is here taken Muscle . . . . .. o0I4
oL pressure diliere . Connective tissue . 0.115
as I atmosphere per micron of Chitin . . . . . . o.013
thickness of the tissue.) KroGH’s Rubber . . . . . . 0.077

constant for carbon dioxide is ap-

proximately 35 times as great as that for oxygen. The steady state
method has also recently been used by WRIGHT (1934) to determine
the diffusion coefficient of carbon dioxide in frog’s skin. His value is
of the order of magnitude of that found by KrogH.

y) Steady states in systems of varying cross section.

It has been mentioned above that the solution of certain diffusion
problems, whose general mathematical treatment would be difficult,
becomes easy when a steady state may be assumed to exist. One such
problem is that of diffusion in a vessel of variable cross-section. It
arose very early; in fact, it appeared in the original experimental tests
which Fick (1855) made of his theory. As an illustration of the prin-
ciples involved, this particular case may be discussed with a somewhat

5*
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fuller explanation of the successive mathematical steps than was
given by Fick. In the experiments in question, the situation may be
described (using as far as possible the symbols already employed) as
follows. At the small end of a funnel-shaped vessel, the radius of the
vessel here being #;, a concentration of ¢ is constantly maintained.
At the large end of the vessel where the radius is 7, and the distance
is H from the small end, the concentration of the diffusing substance
is kept at zero by the difference in the specific gravities of the diffusing
solution and pure water. After a steady state has been established, it
is required to find the concentration at any level of the vessel, and the
constant rate at which the solute leaves the vessel.

Consider an elementary volume of thickness dx at right angles to
the direction of diffusion. The rates both of the entrance of the diffusing
substance into, and of its escape from, this element are governed by

. . 0
Fick’s law. However, not only does the concentration gradient 61;

change with distance but the cross-section of the vessel changes as well.
The rate of entrance into the elementary volume, as before, will be

-—DA g;i The rate of escape, however, will be

' dA ou 2u
—D(4+ G5 dx) (55 + Tadx).
The difference between the two rates, i. e., the rate of accumulation,
is obtained by subtracting the rate of escape (after dropping infinitesi-

mals of a higher order than the first) from the rate of entrance. The
rate of accumulation may also be expressed as 9;: multiplied by the

volume of the element. Again dropping infinitesimals of higher order,
we obtain an expression which, when equated to the first, after the
removal of the common factor dx, gives the desired equation, namely
ou 2u + 1 o0u d4d
T o2 T A 8x dx > ’
. . . . . . ., d4
Equation (8) is evidently a special case of equation (60) in which Tx
is equal to zero. It will be noted that the notation of partial diffe-

rentiation is not applied to A, since this variable does not change with
time but only with distance.

Equation (60) may now be applied to the funnel-shaped vessel
by imagining the latter to be extended beyond its smaller end until
its radius has become zero, i. e. until a complete cone has been produced;
x is then measured from the tip of the cone in the direction in which
diffusion is occurring. Let the distance of the small end of the funnel
from the origin be 4 and that of the large end  + H; H, as previously,
representing the distance through which diffusion actually occurs.
Let the concentration at the small end of the funnel be ¢ and that
at the large end be 0. Represent by m the ratio 7/x, i. e. r = mx, where

(60)
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m is the tangent of one-half the angle between opposite sides of the
vessel. We have, therefore
A=nam?x?* and a4 _ 2amex.
ax

Substituting these values in equation (60) and remembering that for

0 . . . .
the present case 6—1: = 0 we obtain the differential equation for the

steady state of diffusion in a funnel

dtu |z du _
d x? xdx —
This equation may readily be solved by introducing a new variable
p= % The resulting equation
dp

2
dr TzP=0
is linear and of the first order and its solution, obtained by using the
integrating factor x% is C,
2

p="z-
Next substituting for p its value d—z and again integrating we obtain

#=Cy— % .

The constants of integration in this equation are evaluated from the
information that when x =%, u = ¢ and when x=H + h, u= o.
Introducing the proper values of the constants the equation becomes
h(H+h)c he
MLehe b o
Equation (61) may be used to find the concentration corresponding to
any value of x lying between x = % and x = k + H. It was doubtless
by means of an equation such as this, though details are not given, that
Fick calculated the theoretical concentrations at different levels,
which on comparison with those which he observed by the specific
gravity method showed a satisfactory agreement, thereby giving sup-
port to his theory.

The amount of substance that in a case of this sort would leave
the vessel, or cross any plane at right angles to the direction of dif-

U =

fusion, in a unit of time is obtained by differentiating to find %— and
then multiplying by — D A. Remembering that 4 = zm?x* we obtain

in this way dQ _ Damich(H+h) 6

ar T H . (62)
But mh =7, and m (H 4 k) = 7,; equation (62) may therefore be
written in its most useful form which applies to finite values of 0 and ¢

Dmcryv,t
0ot = ———

T (63)
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It is apparent from equation (63) that just as in a steady state
in a vessel of constant cross-section, so here, the amount of substance
that crosses any given level in unit time is directly proportional to D
and to ¢ and inversely proportional to H. The close relation of the
two cases is seen by placing 7; equal to 7,, when equation (63) becomes
identical with (14). A further point of interest about equation (63)
is that it shows that the rate of diffusion would be exactly the same
in the steady state if the large and the small ends of the funnel were
interchanged. Finally, by a simple application of the principle of
maxima and minima, it is easy to show that for the same average radius
of the vessel, i.e. for any fixed value of #; 4 7, the rate of diffusion is
greatest when r; = 7,.

0) Steady states of diffusion across two dissimilar layers.

Another problem of some practical importance is the following.
Suppose that diffusion occurs, not through a single homogeneous
medium in which the diffusion coefficient is constant, but first through
a layer of one substance, of thickness %, in which the diffusion co-
efficient is D; and immediately thereafter through a layer of some other
substance of thickness %, in which the diffusion coefficient is D,. Cases
of this sort are frequently encountered in physiology, diffusion occurr-
ing through membranes composed of two dissimilar layers such as,
for example, frog skin. A similar principle might have been used in
the standardization of the hydrophane membranes employed by
HurNER (1897, 1898) for measuring the diffusion coefficients of gases.
Provided that a steady state may be assumed to exist, all such cases
can readily be dealt with as follows. (Partition effects are here neglected
but could readily be introduced if desired.)

For simplicity, assume that the cross-section of the system is unity.
Let the free boundary of the first substance, for which the symbols %,
and D, are employed, be maintained at the concentration @, and the
free boundary of the other substance at the concentration & (@ > b).
For a steady state, the gradient within each medium must be uniform,
but will in general be different for the two media; the gradients in
question may be represented by g, and g, respectively. Furthermore,
since in a steady state the rate of movement of the solute is everywhere
the same, we have by Fick’s law

D
D,gy=D,yg, or g1:D—jg2~
But
higi+Fheogo=0b—a.
Therefore
D, (a—0b)

o D, (a—b)
82~ Dl + Doy

nd =8 =D D
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From either value of g we obtain the rate at which the solute would
pass through the two-layered system, namely,

iQ DD,

AT Dkt Doty @Y (64)
When D; = D, equation (64), as it should, reduces to the simple form
already given above [(14), p. 31)].

To find the concentration at any level in the first layer at a dis-
tance x from its outer boundary it is necessary merely to use the
relation # =a 4 g; % or

(a—0b) Dy x
—D1h2+D2hl. (65a)
Similarly at any distance x from the outer boundary of the second
layer the concentration is b — gy % or

- _(a—b) D, x
zL—b+D1h2+D2h1. (65Db)
If desired, more complicated cases of this sort may be dealt with in
a similar manner. FUrRTH (1927c) has discussed the most general
possible case involving an indefinitely large number of layers.

u=a

¢) Steady states and variable diffusion coefficients.

Though the diffusion coefficient appearing in Fick’s law has so
far been treated as if it were a constant, it is in reality known to show
a considerable variation with changes in the concentration of the
solutions used in its determination as may readily be seen by con-
sulting any extensive tables such as the LANDOLT-BORNSTEIN Tabellen
or the International Critical Tables. While the values published in
these tables demonstrate clearly the wvariability of the diffusion co-
efficient with changing concentrations, they do not give an exact idea
of its value at any single concentration, since when diffusion is allowed
to occur into water from some given initial concentration, the distri-
bution of the diffusing material at any time must depend in a complic-
ated way on simultaneous diffusion processes involving all concen-
trations between the initial concentration and zero. The wvalue of
D obtained from experiments of this sort is therefore really a sort
of composite or average value, and not one which is precisely defined
for a single concentration. Only by making the difference between
the initial layer of solution and the remainder of the system extremely
small could a truly definite value of D be obtained from experiments
of the usual sort, but the practical difficulties of working with systems
of this sort would be very great.

By the steady state method, however, it is possible on the assumption
that the rate of diffusion is directly proportional to the concentration
gradient, and that the constant of proportionality varies with the
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concentration, to calculate precise values of D for definite concen-
trations. This has been done by Crack (1914, 1916, 1921) whose first
approximate treatment of the subject, with the omission of his later
allowances for the convection currents caused by volume changes,
will suffice to illustrate the principles involved. As before, to avoid
confusion, the symbols employed in the present paper Wlll be used
rather than those of CLACK.

" Suppose that the amount of material, (, that in unit time crosses
a region of unit area and of thickness H under the conditions of a
steady state be measured. Let the fixed concentrations between which
passage of material occurs be ¢ and 0, respectively, and let the dis-
tance ¥ be measured from the boundary where the concentration is
zero. On the assumption of a single diffusion coefficient and a uni-
form concentration gradient we should have the relation for unit time

c
Q :ODC_E

where, following CLACK, the symbol (D, is used to represent the theo-
retical diffusion coefficient calculated in the usual manner on these
assumptions. In reality, in the actual system we have to do with a
series of different diffusion coefficients for all concentrations from ¢
down to zero. Let the true diffusion coefficient for any concentration %
be represented by D,. Then, since in a steady state the rate of
passage of material must everywhere be the same, and must obey
Fick’s law, the concentration gradient cannot be uniform but must
vary with D, in the following manner

du
Q= Du dx
where Q has the same value as before. From this equation it follows that
dx
Du = Q W .

Suppose now that different values of ;D. be determined experi-
mentally for a series of decreasing values of ¢ and let the results be
plotted in the form of a curve. From this curve, by drawing tangents,

d (oDc)

the value of — —"- can be determined for any value of ¢. But each

of the values of ¢ so chosen exists in the system first studied as the
value of # corresponding to some particular value of x. Since Q is
constant we may write

Q=°D“_Z_ or QOx=oD;u

where # has one of the chosen values of ¢. Therefore, after diffe-
rentiating with respect to ¢ and substituting the value of D, given
above we obtain finally

N R (66)
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From this relation D, may readily be obtained from Concen- |
the observed data. The following are typical values 25
of D, calculated in this way for KCl at 18.5°C. (Crack 0.05 | 1.388

Dy

1914). o.10 | 1.430
. 0.20 1.467

d) Thin membranes. o0.40 | 1.403

Inasmuch as the subject of membranes has re- 0.60 | 1.504
cently been dealt with in this journal (Krijesman CI"(S)g ig;;

1932), no attempts will be made here to enter into 1.50 | 1.555

the more general aspects of the question, involving 2.00 | 1.584

as they do an enormous literature in such important

fields as the structural, electrical and other physical properties of mem-
branes, theories of membrane and cell permeability, osmotic pheno-
mena, membrane equilibria, etc. The present discussion will be confined
to certain mathematical aspects of diffusion across regions of relatively
small thickness, which may for convenience be called membranes, but
which will for the most part be considered to be homogeneous in struc-
ture and to be governed by known boundary conditions. In systems
which may with sufficient accuracy be assumed to possess these cha-
racteristics the necessary mathematical treatment becomes greatly
simplified and certain new and otherwise difficult problems may be
attacked with success.

a) Diffusion of a solute alone.

By the methods discussed in the preceding sections, the course of
diffusion of a solute across membranes of any thickness can readily
be dealt with when the two boundary conditions remain constant.
When, however, one or both of these conditions are subject to change
with time, the problem becomes far more difficult, and an elementary
treatment of it is usually impracticable except in the case now to be
considered, in which the membrane is assumed to be very thin. Fortun-
ately, many biological membranes are of this character; indeed the
membranes occurring in single cells, from the point of view of diffusion
processes, are always so. It has already been shown that in membranes
whose thickness is of the order of magnitude of one micron or less a
steady state may for all practical purposes by considered to be estab-
lished almost instantly. Under these circumstances, the non-con-
stancy of the boundary conditions presents no mathematical diffi-
culties.

After a steady state has been established across a membrane, the
diffusion gradient within the membrane is everywhere the same, namely
du c,—¢

Tr=— (67)
where ¢; — ¢, is the concentration difference between the two sides
of the membrane and H is its thickness. If, now, the value of ¢; — ¢,
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be changed, a new steady state could again be approached at a rate
that increases rapidly with the thinness of the membrane. With a
very thin membrane it is reasonable to suppose that even if ¢;— ¢,
were changed continuously, there would at all times be maintained
an almost linear fall of concentration across the membrane, represented
at least as a close approximation by equation (67). That this is, in
fact, the case, even for considerably thicker membranes than those
here under consideration, has recently been shown by Barnes (1934)
by a mathematical analysis too complicated for reproduction here.
Advantage of this fact has been taken by McBaix and his collaborators
(see p.76), who after establishing an initial linear fall of concen-
tration across membranes of alundum and sintered glass similar to
those first used for diffusion studies by NorTHROP and Anson (1929)
have then permitted the gradient across the membrane to change
with the further progress of diffusion.

When the thinness of a membrane permits the assumption of
a single linear fall of concentration across the region of diffusion, the
way is opened for a simple treatment of a great variety of diffusion
problems. One of the most useful is the following. Suppose that two
bodies of stirred liquid of volumes V; and V', respectively, be separated
by a thin membrane of thickness H. Let the amounts of the diffusing
solute initially present in the two volumes, in the order above mentioned,
be @ and & (where @ > &) and let Q be the amount of solute that has
at the time ¢ passed from V; to V,. By Fick’s law, for a system of
this sort

a9 cg—c¢y DA <a—Q_b—|—Q)
= PATg =g v, v, )
This equation when simplified and integrated (the integration constant
being evaluated from the information that 0 = 0 when t = 0) becomes
DAt _ VaVs aVy—bV,
H ~ ViV, Y av,—oV,— (V,+ V90 (68)

This with the use of slightly different symbols is the same equation
as that derived by NorrtHrROP and Anson (1929).

It is frequently convenient, for any given membrane, to combine
D, H, and A4 and sometimes a partition coefficient, which may or may
not be known, to form a single permeability constant, K; so long as
the same membrane is used this constant suffices to define the relative
rates of diffusion across it of different substances; though to obtain
absolute values of these rates, or even to obtain the same numerical
values with different membranes, it is necessary to employ true dif-
fusion constants. In the case of cell membranes, for which 4 can be
measured but for which, in general, H cannot, and in which the role
of partition factors is more or less obscure, it is advantageous to incor-
porate D, H and if necessary, S, into a single constant while keeping 4



Diffusion Processes. 75

separate. A permeability constant of this type, while of no value for
measuring physical diffusion rates as such, may be of great usefulness
for comparing the permeabilities of different cells to different sub-
stances under otherwise comparable conditions. Such a constant, here
represented for a penetrating solute by %, is a numerical measure of
the amount of material that in unit time would cross unit area of the
membrane, not with a concentration gradient of unity across the
membrane, but with a unit difference in concentration on the two
sides of the particular membrane. If as is frequently the case, the
concentrations measured are those in aqueous solutions adjacent to
the membrane, and passage across the membrane involves solution
in some non-aqueous phase, a knowledge of the partition coefficient
of the diffusing substance between the two phases as well as of the
thickness of the membrane is needed to obtain the true diffusion
coefficient from the permeability coefficient. If, on the other hand,
diffusion is through pores, then a numerical factor is needed to convert
the over-all surface of the membrane into the surface actually available
for diffusion.

It is fortunate that in the very cases in which the thickness of
membranes is most difficult to measure with accuracy, and in which
it is almost impossible to determine the extent to which partition
factors are involved in the diffusion process, namely, in studies on
single living cells, it is usually more important to know how permeable
different cells may be under the same conditions, or how permeable the
same cell may be under different conditions, than the exact physical
reason why in a given experiment some particular degree of perme-
ability is found. Though it would be most interesting to be able to
analyze cell permeability into separate factors having to do with struc-
ture, thickness, solubility, etc., it must be frankly admitted that such
an analysis is not likely in most cases to be possible in the near future;
in the meantime, valuable information may be accumulated concerning
the actual magnitude of the exchange between the cell and its sur-
roundings under properly standardized conditions and for this pur-
pose the permeability constant, as defined above, is most useful.

Equation (68) assumes a simpler form in special cases. Thus, when
b =0, i.e., when solute diffuses into a region originally filled with
water, we have

v,V avV,
A A A AR AT (©9)

Kt=

and with the further simplification that V; =TV,=1

Ki=ln — 5. (70)

This is essentially the equation used by Lunpscaarp and Hossir
(1926) for quantitative measurements of the permeability of collodion
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membranes; for a given solute such as dextrose, these investigators
found over considerable periods of time a very satisfactory constancy

of In

a—a2Q’ indicating the applicability of equation (70) to the case
in question. JaBrLczYNSKI (1909), Brooks (1925) and McBain and

Liu (1931) have also used the same equation.

A very important case, which has received extensive application
in physiological and chemical work is that in which the concentration
on one side of the membrane is maintained at a constant value, while
it is allowed to vary on the other. For such a case, according to
Fick’s law

d D4

—5 =5 w—y) (71)
where # is the variable concentration of the solution from which
diffusion is occurring whose volume, V/, remains constant, ¢ the con-

stant external concentration and Q the amount of solute that crosses
the membrane.

One important application of this equation is found in connection
with the quantitative measurement of the permeability of cells to
diffusing solutes. An early suggestion that an equation of this type
be employed for the purpose was made by RunNsTrROM (1911) and
was later carried out by BARLUND (1929). Certain qualifications as to
the applicability of the equations of RuNnNsTROM and BARLUND are
discussed by Jacoss (1933a, p. 429). The most extensive and satis-
factory use yet made of an equation of this type to the problem of cell
permeability appears in a recent paper by COLLANDER and BARLUND
(1933) who worked with cells of the plant Chara. This investigation
indicates very clearly the applicability of Fick’s law to phenomena
of cell permeability, and serves at the same time to justify certain
simplifying assumptions commonly made in all mathematical treat-
ments of this subject. The most important of these assumptions in
the present case is that the delay in diffusion is very slight in other
regions than across the cell membrane and that therefore the solute
may be considered at any time to be uniformly distributed throughout
the entire cell volume.

Another set of physiological phenomena to which equation (71)
has been applied have to do with the diffusion of gases from an enclosed
space into the body of a large organism. For these applications, concen-
trations rather than amounts will be used and Q will therefore be
expressed in terms of #. Representing the presumably constant volume
of the space from which diffusion occurs by V' and writing — V'du in
place of d(Q, we have

du DA

— a5 =g #—¢) =K (u—c).
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On integration, remembering that when ¢= 0, u = u, we obtain
- u—=c —
——Kt:lnuo_c or  #=c+ (ug—c)e X" (72a)
If ¢ be greater than u, and the diffusion, therefore, be in the reverse
direction, the same equation is written

= c— (c—up) e~ K. (72b)
FEquations of this type, though derived and expressed in a somewhat
different manner, were found by McIver, REDFIELD and BENEDICT
(1926) to describe very satisfactorily the process of diffusion in either
direction of various gases between the stomach and intestine of the
dog and the circulating blood. Not only did diffusion follow the ex-
ponential law indicated in the equations, but the process was found
to have an actual velocity of the order of magnitude to be expected
from the measured values of 17 and A together with Krogu’s value
of the diffusion coefficient for a similar tissue and a reasonable estimate
of H, which cannot be measured very exactly.

If in equations (72a) and (72b) ¢ be given the value zero, they
assume a simpler form. Expressed logarithmically

K— 1n7/;1—1nu2. (73)

e

This is the equation used by KrogH and KrocH (1910) in studying
the absorption from the lungs of a gas (carbon monoxide) whose tension
in the blood could be considered to remain practically at zero throughout
the experiment. By measuring at two different times the tensions of
this gas in the lungs of a human subject who had inhaled a small quan-
tity, £ could readily be calculated. Since, in the case of the human
lungs, it is very difficult to measure accurately any of separate quantities
that enter into the permeability constant, this constant can be said
merely to define the amount of the gas in question that would enter
the lungs of a given individual under the conditions of the experiment,
in unit time, if the tension of the gas in the alveoli of the lungs were
maintained at unity and that in the blood at zero.

Information of this sort, while of comparatively little physical
value, might be of very great physiological usefulness. For a gas such
as oxygen, for example, it is usually not so important to know the
respective parts played in its intake by such factors separately as
the total area, the thickness, etc., of the alveolar walls as how much
oxygen would, in fact, be taken up under some given conditions. In-
formation of the latter sort is given by the constant, £ Other things
being equal, an individual in whom % is large would be expected to
fare better at high altitudes, where the effects of oxygen-lack tend to
appear than one in whom £ is small. That such a relation exists is
indicated by the work of BARCROFT et. al. (1922). It is true that in
the case of oxygen, direct determinations of % by the method described
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above are usually impracticable because its tension in the blood is
not only not zero, but it is not even constant in different parts of the
capillary bed where absorption occurs. By an application, however,
of the law discovered by ExNERr (1875) that the rates of diffusion of
two gases through a membrane are directly proportional to their solu-
bilities and inversely proportional to the square roots of their molecular
weights, M. KroGH (1915) was able from actual determinations of %
for CO to obtain a calculated value of O,; it is this calculated value
that is usually employed, though BARCROFT et al. (1920) obtained a
rough estimate of such a value by a more direct method.

In recent years the rate of diffusion of solutes from a given quantity
of solution through a membrane into pure water has been used in
investigating the factors governing thc permeability of membranes.
Fujita (1926) in a study of this sort measured the relative amounts.
of different substances, as compared with a standard substance, urea,
that crossed a dried collodion membrane in a given time. This method
of comparison of diffusion rates is unsatisfactory, however, except for
the purposes of arranging substances in the order of their diffusibility,
since the ratios so obtained obviously depend upon the time arbitrarily
selected for the measurements; all such ratios must approach unity
as the time is indefinitely increased. A much better method of com-
parison is to apply equation (72) above to the case where the external
concentration ¢ is kept approximately equal to zero. The equation for
this case becomes K

u=uge= "t (74)

This equation with the substitution of 4 (called the dialysis constant)
for K has been extensively used by BrRINTZINGER (1927-—1932). The
important fact appears in BRINTZINGER’s work that in many cases the
dialysis constant bears the same relation to the molecular weight as.
does the true diffusion coefficient, D. Where this relation holds, the
dialysis method has many practical advantages as compared with the
method of free diffusion. It must be remembered, however, that a simple
relation between 4 and D can be expected only when no factor is present
which has not been taken into account in the derivation of the equation.
If, for example, in a porous membrane the pores, or some of them, are
sufficiently small to exclude, or to admit with difficulty large mole-
cules, while not hindering to the same extent the diffusion of small
ones, then the observed rates of dialysis of different substances might.
greatly exaggerate the differences shown by the method of free diffusion.
This is, in fact, what BRINTZINGER, in agreement with Fujita, finds
to be the case with certain types of membranes and substances.

p) Diffusion of water alone.

The diffusion of water through membranes is of enormous impor-
tance, both in the physiology of the cell and of the entire organism,
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but it cannot be treated by means of Fick’s law, which relates the
rate of diffusion to the concentration gradient of the diffusing sub-
stance. It will be remembered that, strictly speaking, this law can be
expected to hold accurately only for very dilute solutions, in which
the molecules of the diffusing substance are not merely distributed
in a discontinuous manner, but in which they are so far separated as
to have no influence on each other’s movements. In the case of water,
however, the concentration in the solutions ordinarily dealt with in
physiology is very high — of the order of magnitude of 56 M — and the
individual molecules are so close together that they form a continous
body, which because of the cohesive forces in the liquid is capable of
behaving in certain respects as a single unit. To attempt to treat
a case of this sort by laws appropriate to dilute solutions would clearly
be unwarranted. It happens, however, that an equation very similar
to Fick’s, in which osmotic pressure takes the place of concentration,
can be applied under these conditions.

Such an equation may very readily be derived for the case that
has been studied most thoroughly, namely, that of a watersoaked mem-
brane separating two solutions of a solute to which the membrane is
impermeable. Let the thickness of such a membrane be H and assume
that it is so rigid that it can undergo no volume changes. Let the
osmotic pressure of the more concentrated solution be p, and that
of the more dilute solution p,. In such a system the escaping tendency
of the water will be highest in the water-soaked membrane itself,
and water will therefore tend to pass from that region into both of the
others. But, by hypothesis, the volume of the membrane is fixed,
and the cohesive properties of water are such that forces of the magni-
tudes involved cannot create a vacuum within the system. It follows,
therefore, that the force tending to cause a passage of water outward
from the membrane into either solution must at the same time tend
to bring water inward from the other solution; the observed effect
will be the resultant of the two sets of forces. The forces in question
can be measured by determining the magnitudes of opposing forces
which would just balance them. Since osmotic pressure may be defined
as the pressure required to make the escaping tendency of the solvent in
a given solution equal to that of the pure solvent under otherwise
similar conditions, and since pressure is force per unit area, a knowledge
of the osmotic pressures of the two solutions gives a measure of the
effective driving force within the system. 'If the amount of water acted
upon by this driving force be equal to the volume of the membrane
multiplied by the fraction of this volume, ¢, occupied by water and
by the number, 1, of units of quantity of water contained in unit
volume, we have for the force exerted on one unit of quantity, (since
the area, A, cancels out) ba—11

~ Hung
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The velocity of movement, v, of the entire amount of water in the
membrane is equal to /R where R is the resistance against which
each unit of quantity moves at unit velocity. The amount that will
cross the boundary of the membrane in unit time is therefore equal
to v4 en and we have finally

a9 _ A pr—p

a ~ R H - (75)

This equation resembles one form of Fick’s equation given above [(14),
p. 3I] but, unlike it, is entirely general, and is not limited to very
thin membranes or to steady states in thick ones. The reason for the
wider applicability of equation (75) is that in the diffusion of water
across a membrane the diffusing substance is continuous and behaves
as a single unit, instead of consisting of a very large number of completely
independent units.
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