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wherea, = 1 + 22;. On the other hand let us take

1/; when n = l.m, m even,
pr = 4 1 whenn = lim, m odd,
O otherwise,

The “product” is the function Y C,z", where

n=0

1 when » = lim, m even,
— 1 when n = I.m, m odd,
| O otherwise.

Cn=

1
This function is equal to ﬁ-—z—’ , and is therefore regular at z = 1.

Putting the coefficients p, equal to one or to zero, we obtain as a corollary
to our theorem:

““A power series having only one singular point 2, on its closed circle of
convergence is such that all its sub-series having the same circle of con-
vergence are singular at z,.”

A METHOD OF OBTAINING NORMAL REPRESENTATIONS FOR
A PROJECTIVE CONNECTION
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Normal representations for a projective connection, II, are charac-
terized by the equations

Pysid =0, (1.1)

where Pjg., are the components of II in the normal representation z + 2°;
(Greek letters, used as indices, will take the values o, ... 7, and Roman
letters the values 1, ... n). In a paper in a forthcoming issue of the
Annals of Mathematics we give a construction for obtaining such represen-
tations. In the introduction to that paper we give a brief historical account
of generalized projective geometry, in which references to the literature
may be found.

In this note we give an alternative method depending on solutions to the
partial differential equations.
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0% o0 _; i
where IIg, are the components of the connection II in the representation
x + x°% and X is an affine vector defined as follows. Let y° be affine
normal codrdinates for IIj;—treated as the components of an affine con-
nection—the codrdinate system x, and a given point ¢. Then X is to be
the affine vector whose components in y are y°. At any point near g, there-
fore, X touches the path joining that point to g.

If we put Z = 6, the equations (1.2) may be written

Zigiy VeV =0, (1.3)

~ where the semicolon denotes projective differentiation with respect to II,
and V is any projective vector such that V¥ = X*. The identities Z B0 =
Z.y;y = 0 arise out of the conditions ITg, = 5. The equations (1.3) are
invariant under all changes of representation, and so any solution Z
is a projective scalar of index unity. We shall show that these equations

admit a unique solution Z = ¢*9(x), where 8 depends only on %!, ... x",
satisfying the initial conditions
(.?_g__) = qa
248 /q &

where ag are any given constants, and ¢ a given point, together with a
value, ¢°, of the factor.
We take the (z + 1) solutions Z* determined by the conditions .

(%Z;:) -5 (14)

and show that the normal representation for ¢ and x + x° is given by
(20 =20 — ¢° + log 6°
.6
12’ = (1.5)

We shall do no more than establish this result, as a geometrical discussion
of these representations, with further developments of the theory, are given
in the paper to which we have referred.

2. We shall need the following lemma.

Let Ay = Ay be ”_(’%1) analytic functions of % . . . &, which can be ex-

panded about x = 0 in power series, convergent for l « [ <édandlta,... a,
be arbitrary constants. Then the equation
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(azgxk —y A,-,,) W = 0 @.1)

will admit a solution y(x), regular near x = 0, which is uniquely determined
by the initial conditions

Y0 = @ (2) _—a
bx x=0

Suppose such a solution y(x) exists, and let y; .. &, denote
9y
ok, . k.
Then

o o .
o g 2 ik — ¥ App)a’x* =0,

P

where p is any positive integer. From these identities we have

o? .
{yjkn b T 3 one (vA;) }x’. ..xr =0,
and so
{1, — DA e 4} 2mo = 0, (22

where the comma denotes partial differentiation, and p/ B,... kp) stands

for the sum of the quantities obtained by permuting the indices in all
possible ways.
Let each set of numbers, except a;. . .a, which are arbitrary,

Aoy Ajy -« -y ajkzl.”lp, e
be derived from those preceding it by the equations (2.2). If the series
° 1
Y=t X ok, W 23)
=1 P *
converges for some value of &* other than zero, it will represent a solution of
the equations (2.1), which is regular near x = 0, and which will be uniquely
determined by @, ... a@,. The lemma will, therefore, be established if only

we can show that the series (2.3) converges.
Expanding 4, as a power series about x = 0, we have

1
Lo
A = Aj + ﬂE P, A . 1x0. . X2,
=1 .

There exists, therefore, a number M such that
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A, | <3 2.4
for all positive integral Vaiues of . In the expansion of
O'uvy
o, ..ot
there will be p/Tr—,-_p)—/ terms in which % and v are differentiated, re-
spectively, p and (r — p) times, i.e., terms of the form
u ] 0%

. ox? o
where a; ... a, are the integers 1, ... r. If we write \,, for the greatest
of the moduli Iak1 e km |, where a, ... , are defined by (2.2), we have,

from (2.2) and (2.4)

! m! (m — 1)!
x’"+2<M{'—”-x+ . M.
™ N m— 11 et
+ m! (m — p)!)\ + + )\m}
p!(m _ p)! . 8"5—? p e o 0
- M m! 2 o™
- (xo+xla+ﬁ+ +§"—).
o 2! m!
Writing these inequalities
M& w+ ...+ u,
u <
mt2 + 2 m + 1
g
where %, = )“'IB , we have
q!
Ms _
U < Um

m -2 m + 2

where %,, is the greatest of uy, ..., %,,. If we chose an integer m, so that
M 8

< I , we have

mg ‘+ 2
Ut -1 <Umg—1 gﬁ,,,,

um.l.z < ﬂm.



758 MATHEMATICS: J. H. C. WHITEHEAD Proc. N. A. S.

Hence %, = Umet1 = ... = Upgpqg = - .-
and so

for a suitable choice of K, and every positive integer N. From the defini-
tion of u,, and from (2.5), it follows that

M K

m!  bp,

b

or that the power series expansion of

y(x)= ’ "
l_x +.$.+x

. ]
dominates the series (2.3), which converges, therefore, for | +* | < 5, Hence

the function y(x), given by (2.3), satisfies the conditions of the lemma.

3. We shall now return to our problem. We are given a representation
x + x° and are setting out to prove the existence of a representation,
2z + 29 which is uniquely defined by the conditions

[ P32 =0
" { (g—;)w =5 (3.1)

Lz"‘ = 0 for x* = ¢%,

where ¢’ are the coordinates of a point, ¢° a value of the factor, and P§, are
the components of the connection, II, in 4 2°
In case II were flat, the differential equations -

0°Z oZ _,

—— —— 05, =0 3.2
o’ o 8.2)
would be completely integrable, and would yield solutions, Z° ... Z"
such that
bZ"‘)
) =5 3.3
<b:>c‘a g g ©.3)

for x* = ¢*. From the condition II5, = &5 we have
Z* = 70 (%),

n

were 6° (x) depend only on x1, ... x". Let Pg, be the components of =
in the representation given by
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20 = log 2°
= x% — q° + log #°
1 # =2, (3.4
_E
L e
Then we have
Z' =
02 g0 (3.5)

0Z=
From (3.3) and (3.5) it follows that Z* = §§ and 3 = og for x = ¢*.

Since the expressions on the left-hand side of the equations (3.2) are the
components of a projective tensor, we have

2z _or

2%z  dZ°

P35, =0, (3.6)

where Z* are given in terms of z 4 2° by (3.5). It follows that
Py = 0. 3.7

In the general case we shall establish the existence of solutions to (1.3)
which satisfy (1.4), and make the same use of projective invariance to ob-
tain the conditions (3.1). In the equations (1.3) we may change to any
representation, provided we know its relation to x + x° We shall start
with the representation y -+ y° where y° = x° — ¢° and y‘ are affine
normal cobrdinates for II;:,,, the point g, and the cooérdinate system x.
For x™ = ¢” we have, therefore,

N

— = 8.

of  F

Let TI3, be the components of 7 in y + »°. Then in y + »° the compo-
nents V* are, by definition, y'. We have, therefore.

IV V* = my's* = 0,

y* =0,

and the equations (1.2) will become

0% = ) Pk
— — 0IL;; |y’ y° = 0. 3.8
By our lemma we know that these equations admit a unique set of solutions
6%, ..., 6", such-that, writing Z* = %",
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aza> ( aza)

—_— = [ — = 8“ . .

(b:)c‘9 7 * /o g 3.9)

We also have Z7,, = Z%., = 0, and therefore Z* satisfy the equations
Z%, VPV = 0.

Let P, and V. be the components of I and V in the representation
given by '
((Z°= log 2°
=x" — ¢" + log §°
Zi
Pz
_e
[

(3.10)

‘Then by the same argument as that used in the flat case
PRVVE = 0. (3.11)
To find the equations, in 2, to the paths through g, we have to solve

dF  —;
= =V 3.12
= (3.12)
But on any path we have »
a2 ; deF dz’) dz’ (dzzj . dZt dz’) d7
L 4+p2= =(22 4+ pj, =222,
(da2 t P % i VR, 3] 4

do
and so from (3.11) and (3.12), we have, on the paths through g,
d*dy = d*d7

d . —. .
On these paths, therefore, 2 = 2* f(s), and so V* are proportional to z'.

The conditions (3.11) may, therefore, be written

P3eid =0,
and from (3.9) and (3.10), we have
bz"‘) .
— ) = & and 2* = 0, for x* = ¢*.
(bxp q # 1

The conditions (3.1), therefore, are satisfied by z + 2°.

The functions 8% are the only solutions to (3.8) which satisfy (3.9), and
from (3.10) it follows that the representation z + 2° is uniquely determined
by the conditions (3.1).



