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PREFACE

The problem of moments is of fairly old origin, but it received its first syste-
matic treatment in the works of Tchebycheff, Markoff, Stieltjes, and, later,
Hamburger, Nevanlinna, M. Riesz, Hausdorff, Carleman, and Stone. The
subject has an extensive literature, but has not been treated in book or mono-
graph form. In view of the considerable mathematical (and also practical)
interest of the moment problem it appeared to the authors desirable to submit
such a treatment to a wide mathematical public. In the present monograph
the main attention is given to the classical moment problem, and, with the
exception of a few remarks concerning the trigonometrical moment problem, no
mention is made of various generalizations and modifications, important as
they may be. Furthermore, lack of space did not permit the treatment of
important developments of Carleman and Stone based on the theory of singular
integral equations and operators in Hilbert space. On the other hand, a special
chapter is devoted to the theory of approximate (mechanical) quadratures,
which is intimately related to the theory of moments and in many instances
throws additional light on the situation.

The bibliography at the end of the book makes no claim to completeness.

The authors wish to acknowledge with gratitude the help received from Brown
University and the University of Pennsylvania (through its Faculty Research
Committee) in preparing this manuscript for publication.

In the second printing the theorem of §4, page xiii, has been corrected by
R. P. Boas, and a supplementary bibliography has been added.
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INTRODUCTION

1. Brief historical review. In 1894-95 Stieltjes published a classical paper:
“Recherches sur les fractions continues” containing a wealth of new ideas;
among others, a new concept of integral—our modern ‘‘Stieltjes Integral”. In
this paper he proposes and solves completely the following problem which he
calls “Problem of Moments”:

Find a bounded non-decreasing function ¥(z) in the interval [0, =) such that

its “moments”’ f z"dy(z),n =0,1,2, -, have a prescribed set of values
(]

) f, @) = pa, =012 .

The terminology “Problem of Moments” is taken by Stieltjes from Mechanics.
[Stieltjes uses on many occasions mechanical concepts of mass, stability, etc., in
solving analytical problems.] If we consider dy(z) as a mass distributed over

[z, z + dx] so that l ’ dy(t) represents the mass distributed over the segment
[0, z]—whence the modern designation of ¢(z) as ‘““distribution function”—then
f ) z dy(z), f ) z° dy(z) represent, respectively, the first (statical) moment and
t;xe second mooment {moment of inertia) with respect to 0 of the total mass

l dy(z) distributed over the real semi-axis [0, ). Generalizing, Sticltjes

calls _/; z" dy/(z) the n-th moment, with respect to 0, of the given mass distribu-

tion characterized by the function ¢ (z).
Stieltjes makes the solution of the Moment-Problem (1) dependent upon the
nature of the continued fraction ‘‘corresponding” to the integral

I( ‘) d¢ (y) Ko H1 M2 K3 Ce
~ __J __| I

larz * |a2  |asz

1]

+___+’
| as

and upon the closely related “associated’’ continued fraction

S Y R T
|z + e |z + ¢ |z + cs

derived from (2) by ‘“‘contraction’:

@ s | ___aB
(1 |z—1n z— B+

()]




viii THE PROBLEM OF MOMENTS

Making use of the theory of continued fractions Stieltjes shows that in (2) all
a; are positive (which results in the positiveness of all A; and ¢; in (3)).*

He further shows that this necessary condition is also sufficient for the existence
of a solution of the Problem of Moments (1). In terms of the given sequence
{un} this condition is equivalent to the positiveness of the following deter-
minants

Ho [ Hn
K M2 B4l
n
(4) An= ................. El#€+5|i'.’°; n=0’1,2’...,
HBa Ha4l H2n

1331 M2 *tc KB Hatl
o H3 * Hnd4l Hn42
(5) Ap = |crereneiriiiiiniiienn = | pigje R0 ] n=2012---.

Hn+l Mag2 °°° Hoin H2n4l

The solution may be unique, in which case we speak of a ‘“‘determined Moment-
Problem’’; or there may be more than one solution in which case there are, of
necessity, infinitely many solutions; our Moment-Problem is then ‘‘indeter-
minate”. Stieltjes illustrates the latter case by a remarkable example. He
further gives an effective construction of certain solutions of the Moment-
Problem (all, of course, essentially the same in case of a determined problem)
which in the indeterminate case turn out to possess important minimal proper-
ties. Here the denominators of the successive approximants to the continued
fractions (2) and (3) play an important role. In passing Stieltjes introduces an
important new proposition dealing with the convergence of series of functions
of a complex variable (now known as the Stieltjes-Vitali Theorem) which leads
to a complete solution of the problem of convergence of the continued fraction
(2) in the complex z-plane. Here Stieltjes shows that the Moment-Problem
(1) is determined or indeterminate according as the continued fraction (2) is
convergent or divergent, that is, according as the series Y 1 a; diverges or con-
verges. The interesting fact that the continued fraction (2) may converge for
certain z (to the value I(z, ¥)), while the series Y o (—1)'u;z""" diverges for all
z is demonstrated.

* In the subsequent discussion we write

S dely)  me, m m
j;z—y : Tatat
8o that the corresponding and associated continued fractions (2) and (3) are replaced re-
spectively by

1], 1, 1] S PR R

=1 LI BT d - -
[hz " |l 7 | + o lz—a |lz—a |z-a

where all l;;,; are positive, all ly; are negative, and \; and ¢; are positive.

- sse




INTRODUCTION ix

Stieltjes was not the first to discuss either the Moment-Problem, or the con-
tinued fraction (3). The first considerations along these lines are due to the
great Russian mathematician Tchebycheff who in a series of papers started in

I;(y_)-‘i]y, where p(z) is non-negative in

1855 discusses integrals of the type [

© 3
(—e, @), and sums of the type 3 b
-~ — X
by a Stieltjes Integral). Tchebycheff’s main tool is the theory of continued
fractions which he uses with extreme ingenuity. However, Tchebycheff was
not interested in the existence or construction of a solution of the Moment-

Problem,

5 0 > 0 (both cases are now covered
L]

(6) -[ p(2)z" dz = ., n=2012---,

but mainly in the following two problems: a) How far does a given sequence of
moments determine the function p(z)? More particularly, given

[ p(z)z" dz = -[ " dz, n=2012--;

can we conclude that p(z) = ¢, or, as we say now, that the distribution
characterized by the function p(t)dt is a normal one? This is a fundamental

problem in the theory of probability and in mathematical statistics. b) What
are the properties of the polynomials wa.(z), denominators of successive ap-
proximants to the continued fraction (3)? This opened a vast new field, the
general theory of orthogonal polynomials, of which only the classical poly-
nomials of Legendre, Jacobi, Abel—Laguerre and Laplace—Hermite were
known before Tchebycheff. In the work of Tchebycheff we find numerous
applications of orthogonal polynomisals to interpolation, approximate quadra-
tures, expansion of functions in series. Later they have been applied to the
general theory of polynomials, theory of best approximations, theory of proba-
bility and mathematical statistics.

Another work which preceded that of Stieltjes is the classical work of Heine
(1861, 1878, 1881). Here we find a brief discussion of the continued fraction

. . ® p(y) dy . . . .
associated with f z—3’ where the given function p(z) is non-negative in

(a, b), and also an application of the orthogonal polynomials w,(z) to approx-
imate quadratures.

One may venture the opinion that the use of this integral and of continued
fractions was suggested to Stieltjes by the work of Tchebycheff and Heine.
We must emphasize the importance of the new analytical tool, the Stieltjes
Integral, which made it possible to treat the Problem of Moments in its most

general form, namely,

(7) [‘$"d¢($)=“,,, n=01172)°"'



X THE PROBLEM OF MOMENTS

One of the most talented pupils of Tchebycheff, A. Markoff, continued the
work of his teacher applying it, in particular, to the theory of probability
(““method of moments’ applied to the proof of the fundamental limit-theorem),

d
and to the closely related problem of finding precise bounds for f dy(z),

a <c¢ < d < b, where the function ¥(z) is non-decreasing in (a,b), its first
n + 1 moments being given. This important problem was proposed and its
solution, based on the now celebrated “Tchebycheff inequalities”, was given
without proof by Tchebycheff in 1873. The proof was supplied by Markoff in
his Thesis in 1884. It is interesting to note that Tchebycheff inequalities have
been proved simultaneously and in the same manner by Stieltjes. Markoff
further generalizes the Moment-Problem (1896) by requiring the solution
p(z) to be bounded:

f I"p(x)dz:.“n’ "’=0)1a27"') with 0§P(x)§L-
In his investigations, as in those of his teacher, continued fractions play a
predominant role.

As often happens in the history of science, the Problem of Moments lay
dormant for more than 20 years. It revived again in the work of H. Ham-
burger, R. Nevanlinna, M. Riesz, T. Carleman, Hausdorff, and others.

An important approach to, and extension of, the work of Stieltjes to the
whole real axis (— «©, =) was achieved by H. Hamburger (1920, 1921). This
extension is by no means trivial. The consideration of negative values of z
introduces new factors in the situation. Hamburger makes extensive use of
Helly’s theorem of choice. He fully discusses the convergence in the complex
plane of both the associated and the corresponding (if it exists) continued
fractions. He shows that a necessary and sufficient condition for the existence
of a solution of the Moment-Problem (7) is the positiveness of all determinants
A, in (4), and also gives criteria for the Moment-Problem (7) to be determined
or indeterminate. A curious fact is revealed, namely, that the Moment-
Problem (7) may be indeterminate while the corresponding Stieltjes Moment-
Problem (1), with the same u, , is determined.

R. Nevanlinna (1922) makes use of the modern theory of functions and
exhibits the solutions of the Moment-Problem (7) and their properties in terms
of the functions

< dy(y

)
wioy’ z complex.

I(z;¥) =
To him is due the important notion of “extremal solutions’’.

About the same time (1921, 1922, 1923) M. Riesz solved the Moment-Problem
(7) on the basis of “quasi-orthogonal polynomials”, i.e. linear combinations
Anwa(2) + A.2wni(z). He also showed the close connection between the
Problem of Moments and the so-called “closure property” (Parseval Formula)
for the orthogonal polynomials w,{z).
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Carleman (1923, 1926) shows the connection between the Problem of Moments
(7) and the theories of quasi-analytic functions and of quadratic forms in infi-
nitely many variables (through the medium of the asymptotic series D¢ piz™* ).
To him is due the most general criterion, so far known, for the Moment-Problem
to be determined.

Hausdorff (1923) gives criteria for the Moment-Problem (7) to possess a
(necessarily unique) solution in a finite interval, that is, when ¢(z) in (7) is
required to remain constant outside a given finite interval. An effective con-
struction of the solution is given and criteria are derived for the solution to
have specified properties—continuity, differentiability, etc.

The interest in the Problem of Moments remains strong up to the present day.
Among the most important contributions we may mention the work of Achyeser
and Krein (1934). They have generalized the work of Markoff, making use of
the tools of the theory of quadratic forms; they also extended the theory to the
“trigonometric Moment-Problem”

27 .
) Le"‘d¢(z)=p,, n=0,1,2 .

Compare, in this connection, the work of S. Verblunsky (1932).

Carleman, and later, Stone developed a rather complete treatment of the
Moment-Problem on the basis of the theory of Jacobi quadratic forms and sin-
gular integral equations and operators in Hilbert space. Finally, Haviland
and Cramér extended M. Riesz’ theory to the case of several dimensions.

Various generalizations have been made to the cases where the set of functions
{z"} is replaced by a more general set {¢.(z)}, or the integrals by more general
linear operators in abstract spaces. These generalizations, however, will not
be considered in the present monograph.

The discussion in the first two chapters follows the work of M. Riesz and
R. Nevanlinna, in chapter III that of Markoff, Achyeser and Krein, and Haus-
dorff.

We shall now state explicitly, but mostly without proof, some fundamental
facts which will be used in various places in the follow’ng chapters.

2. Distribution functions. Let R, be a k-dimensional Euclidean space. A
function &(e) of sets e in Ry is called a distribution sel-function if it is non-negative,
defined (and finite) over the family of all Borel sets in R, and is completely
additive:

g;@(e.-) =¢(§e«), eie; =0, if 7.

The spectrum &(®) of a distribution set-function ®(e) is defined as the set of all
points z ¢ R« , such that #(G) > 0 for every open set G containing z.

The point spectrum of @ is the set of all points z such that ®((z)) > 0.

By an interval I C R: we mean the set of points z = (z;, 22, - - - , z:) whose
coordinates satisfy conditions a¢; < z; £ b;, 7 = 1, 2, ---, k, with obvious
modifications in the case of an open or closed interval.
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An interval I is an interval of continuity of the distribution set-function &
(or more generally, for an additive function ®(I) defined over all intervals) if,
on introducing

If: e Fs<zSbiks, i=1,2-,k
we have
o(I7) — o), as §—0.

Two distribution set-functions are said to be substantially equal if they have
the same intervals of continuity and their values coincide over all such intervals.

Let ¥(I) be a non-negative set-function defined (and finite) over all intervals
I in R and satisfying the condition

¥(I) S 2, ¥(l;), whenever I =2 I, II;=0 for i j.
=] =]
It is always possible to extend ¥(I) to a distribution set-function ®(¢) defined at
least for all Borel sets having the same intervals of continuity as ¥(7), and coin-
ciding with ¥(I) for such intervals.
A necessary and sufficient condition that two distribution set-functions

&, and ¥, be substantially equal is that j; F(t) do, = L J(¢) d®: for any continuous
k k

function f(¢) which vanishes for all sufficiently large values of | ¢ |.

In the one-dimensional case a distribution set-function ®(e) generates a point-~
function y¥(¢), which may be defined, for instance, by setting ¢(t) = ®(,) + C,
where I, is the infinite interval — o < z < ¢, and C is an arbitrary constant.
This point function is increasing and bounded in (— =, «) and is determined
uniquely at all its points of continuity, up to an additional constant. Con-
versely, every point function which is increasing and bounded generates a dis-
tribution set-function which is determined substantially uniquely.

For this reason any bounded increasing point-function may be called simply
a distribution function.

Two distribution functions are said to be substantially equal if they have the
same points of continuity and if their values at common points of continuity
differ only by a constant. A function y¥(¢) which is increasing and bounded in a
finite closed interval [a, b] can be extended over the interval (— «, «) by
setting ¥(t) = ¢¥(a), t < a, ¥(t) = ¢(b), t > b. It then becomes a distribution
function. Two functions y¥;(¢), ¥2(¢) which are increasing and bounded over a
finite closed interval [a, b] are said to be substantially equal if they have the
same interior points of continuity and if their values at these points, and also
at the end-points ¢ = a, t = b, differ by a constant. Analogous considerations
hold, of course, in the general k-dimensional case.

For proofs we refer to {Bochner, 1; Haviland, 2].

3. Theorems of Helly. A sequence of additive functions of intervals {¥.(I)}
is said to converge substantially to a function of intervals ¥ () if lim ¥, (I) = ¥(I)

n-sw

for all (finite) intervals of continuity of W.
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“First THEOREM ofF HELLY”. Given a sequence {¥.(I)] of non-negative
additive and uniformly bounded functions of intervals, then there exists a subse-
quence {¥,,\I)} and a distribution function ® to which this subsequence converges
substantially. Furthermore, if the sequence {¥,} ilself does mot converge sub-
stantially to &, then there exists another subsequence {W.:(I)} converging sub-
stantially to another distribution function &' which is not substantially equal to .

“Seconp THEOREM oF HELLY”. Given a sequence {¥,.(I)} of non-negative
additive and uniformly bounded functions of intervals, which converges substan-
tially to a distribution function ®. Then

. v, =
lim f-. 1) d j; f0 de
for any function f(t) continuous in R, and such that, as Iy T R, f f@)ay, —
N

f f(t) d¥, uniformly in n.
Ry

In the one-dimensional case this theorem may be easily restated in terms of
sequences of uniformly bounded increasing point-functions, instead of functions
of intervals. For the proof see [Bochner, 1].

4. Extension theorem for non-negative functionals. Let MM be a linear
manifold* of real-valued functions z(t) defined on any abstract space Q, t € Q.
Let My be a linear sub-manifold of M and let fo(z) be a () non-negative additive
and homogeneous functional defined on My, that is

Jo(zy + z2) = fo(z1) + fo(z2), Zi, 22 e Mo,
fo(CI) = Cf(z)» Te€ EDEO ’
fo(z) =2 0, whenever z(t) = 0 for all teQ < Q.**

Let My have the following property: (1) For every y e M there exist =’ and z” of M,
such thatz’'(t) S y(t) S 27 (t) on Q. Then the functional fo(z) can be extendea to an
additive, homogeneous and (Q,) non-negative functional f(z) defined on the whole
manifold M so that f(z) coincides with fo(z) on M, .

Assume My € M and 1 ¢ M — M, . Consider the linear manifold M, deter-
mined by MM, and y . The elements z; of M admit of a unique representation
21 = zo + uy, where z, is any element of M, and u is any real number. Intro-
duce the functional f(z,) defined on M, by

f@) = f(zo + ) = fo(xo) + un, n = f(y).

It is clear that this functional is additive and homogeneous, and that it coincides
with fo(z) when z ¢ ‘.,U?o. It’l"emains to determine 7, so that f will be (Q,) non-
negative. Take any zo and z, such that zo < 11 < zo on Q. Then the condition

* That is, a set of functions z(¢) which contains cz(¢), z(t) + y(t), whenever z(t), y(t)
belong to the set, and c is a real constant.
** Q,is any given set in Q; in particular, Q, may coincide with Q.



xiv THE PROBLEM OF MOMENTS

that fo(z) is (Q) non-negative implies that fo(zo) < fo(zs). Take r to satisfy
sup fo(z’) £ n S inf fo(z”), where sup and inf are taken over all z’ £ y; and
z” 2 y1, respectively. Then f will be (Q,) non-negative. For, if 2o + uyn = 0
on Qand u > 0, then y1 2 —u~'zoand son = f(—u'zy), i.e. f(zo) + ur, 2 0;
similarly, if ¥ < 0, —u~'zy 2 31, and so f(—u'zy) = n, i.e. f(zo) + un = 0.
Thus fo(z) is extended to the linear manifold IR, . The extension to the whole
linear manifold M can now be performed by the method of transfinite induction.

The proof above proceeds along the same lines as a proof by Kantorovich {1},
Compare also Haviland [4, 5). The condition (1) was suggested by a result of
Krein and Smulian [1]; it was omitted in the first printing. The proof in the first
printing tacitly assumed that inf fo(z,) for zo — 11 = 0 on Q, is not — «. Nothing
in the original statement guarantees this, and if it is not true the extended
“functional” would not be finite-valued. In the application on the next page to
the proof of Theorem 1.1, condition (1.3) ensures the validity of (t).

b. Stieltjes inversion formula. Let ¢ (f) be any function of bounded varia-
tion on (—», ©). The integral I(z) = I(z; ¢¥) = _[ :M_—(Qt is an analytic
function of z in the upper and in the lower half-planes, its values being conjugate
at two conjugate points. The function y¥(f) can be expressed in terms of I(2)

by the following formula:

Hv(a + 0) + ¢(t — 0)] — 3¥(le + 0) + ¥(bo — 0)]
= lim — %1 ‘: (¢ + de) — It — de)] dt.

e—+0

(Cf. Stone, {1]). Thus, ¢(f) is substantially uniquely determined by I(z; ¢).
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CHAPTER 1
A GENERAL THEORY OF THE PROBLEM OF MOMENTS.

1. Let R be a k-dimensional Euclidean space. Let there be given an infinite
multiple sequence of real constants
Hirig--ix» jI’jZ) e )j" = 0) 1, 2) .

We are interested in finding necessary and sufficient conditions that there shall
exist a k-dimensional distribution function ® whose spectrum S(®) is to be con-
tained in a closed set &, , given in advance, and which is a solution of the “prob-
lem of moments’” [Haviland, 4, 5]

(LD e, = f,z{' R d®, G d, e, e=0,1,2

To abbreviate we call this problem simply the (&) moment problem. We say
that the moment problem is determined if its solution is substantially unique;

otherwise we call it indeterminate.
To simplify we shall discuss only the two-dimensional case, ¥ = 2. There
is no difficulty in extending the results to the case of any number of dimensions.

Let P(u, v) be any polynomial in %, v in R,
P(u,v) = }: niyu'e’,
L3
where z;, y; are real- or complex-valued constants. Introduce the functional
u(P) defined by
u(P) = Z’: Wi Ti Y5 .

In particular,

u(u'v’) = pij.

TueorEM 1.1. A mnecessary and sufficient condition that the (S,) moment
problem defined by the sequence of moments {ui;} shall have a solution s that the
Sunctional u(P) be (&,) non-negative, that s
(1.2) p(P) 2 0, whenever P(u,v) 20 on .

This theorem is an immcdiate application of the theorem on the extension of
non-negative functionals (Introduction, 4). Let I be the linear manifold of
all single-valued functions y = y(u, v) which admit of an estimate
(1.3) lyGe, v)] S A" + ") + B,

1
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where A, B are non-negative constants and r is a non-negative integer. Let
Mo be the linear sub-manifold of M, consisting of all polynomials P. It is clear
that all functions 7 = A + v*") + Barein Mo .

Now if our (&,) moment-problem has a solution ®, then whenever P = 0
on &, we obviously have

u(P) = f' P(u, v) d® = L P(u, v) de 2 0.

Thus the condition (1.2) of Theorem 1.1 is necessary. To prove its sufficiency,
suppose (1.2) is satisfied. Then u(P) appears as a homogeneous additive (&)
non-negative functional defined on M. By Introduction, 4, this functional
can be extended over the whole manifold I, with preservation of all these proper-
ties. In particular, we may define u(y;), where y; is the characteristic function
of any two-dimensional interval I, since clearly y; ¢ M. Thus we obtain a
function ¢(I) = u(y,) of intervals, which possesses the properties

@) w(I)' 2 o,

since y; = 0 and u is non-negative;

(ii) whenever I = J_ I;, LI; =0 for ¢ j then
=]
WD) = 3 v,

since  is additive and y; = 2 yr, ;
t=-1
(iii) ¥(I) is bounded,

since
) S ¥(R) = ulys) = u(l) = pw.

The conditions of Introduction, 2, are thus satisfied, and we can construct the
associated distribution function & which is substantially equal to ¥(I). This
function ¢ is a solution of our (&,) moment problem. To prove this we have
only to establish that

(1.4) @) < &,
(1'5) f uivjdcb = Kiy, 1’.7 =0,12,-
R

To prove (1.4) it suffices to show that (uo, vo) e ® — S, implies (uo, vo) e R —
S(®). Let (uo, vo)) e R — Sy and let Iy < N — S, be a common interval of
continuity of ¢ and ¥ containing (uo, vo) in its interior. Since y;,, = 0 on S
we may write yr, < 0, yr, 2 0on S, whence u(yr,) £ 0, u(yr,) 2 0, and u(yr,)
= 0. Thus ¢(In) = wp(y;,) = 0, which implies ®(I,) = 0; hence (uo, o) ¢
N - S@).
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It remains to prove (1.5). Let ¢, & be two given positive numbers. Let
I, be again a common interval of continuity of ® and y, so large that for a suit-
able choice of r

|uv’| < €@ + ") on R —I,.

The integers 7, j, and r will be now fixed. LetI,, Iz, ---, I, be a finite sequence
of common intervals of continuity of ® and y, disjoint and such that

Io=Il+Iz+"'+Iu:

while the oscillation of u'v’ on each I,, » = 1,2, 3, -+, nis less than . In
each I, select a point (u,, ») and introduce a simple function
uwi on I,, v=12 -+ ,n,
altt v) = {0 elsewhere.
It is clear that

yo(u, v) = E uvlys, .

Since

Yo(u,v) — & < uv’ < yu,v) +&4 on I,, v=12 .- n,
while

—e(W” + ") < uv < e’ + ") on R — I,
we have everywhere in R
Yy, v) — @ +0™) — & < u'V’ < yolu, v) + @ + V) + @.
In view of the (&) non-negativeness of the functional u, we have
ulyo(u, v) — @™ + o™ — @] S wluh) S plyely, v) + @ + V™) + &,

B(yo) — e(paro + poar) — e S pi; S pYo) + e(urro + mo2r) + €pow.

But

n(yo) = E u,vlu(ys,) = E wviy(l,) = Z: ui vl &(I,).

If we allow here ¢ — 0 and max | I, | — 0, we see that
f VP — e(prro + mos) S pij S f u'v’ d® + e(uaro + por).
Ig Ip

On allowing here ¢ — 0 (and I, — %) it readily follows that u'v’ is absolutely
integrable over i with respect to ¢ and that

ns;=f'u‘v’d<b, ,j=012--
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2. Theorem 1.1 can be readily applied to derive necessary and sufficient con-
ditions for the existence of solutions of various specialized moment problems
characterized by a special choice of &, .

(a) HAMBURGER MOMENT PROBLEM. Here &, coincides with the axis of
reals. Hence u;; = 0forj = 1, so that we have a simple sequence of moments

B = pBno, n=012---,

and the problem reduces to that of determining a one-dimensional distribution
function ¥(u) such that

(1.6) = [ wdw, =012

Thus it suffices to consider polynomials and functions of u alone, and to define
the functional u by

(1.7) u(Py) = )_: wz,  Palw) = g zv.

Theorem 1.1 states now that a necessary and sufficient condition for the
existence of a solution of (1.6) is that u(P) = 0, whenever P(u) = 0 for all
real values of u. If we take for P(u) the particular polynomial P(u) =
(zo + 71 + -+ + zau")’, z; real, we have

(1.8) p(P) = ‘;_:o Bitr Zi T = Qa(z)

(Hankel quadratic form). Thus a necessary condition for the existence of a
solution of (1.6) is that the quadratic forms Q.(z),n = 0, 1,2, - - - , be non-negative.
This condition is also sufficient.

In fact [Pélya und Sgegé, 1, Vol. II, p. 82] any polynomial P(u) = 0 for all
real 4 can be represented by

P(u) = py(u)' + pa(u)’,
where p;(u), ps(u) are polynomials with real coefficients, whence
u(P) = u(pl) + u(p?) 2 0,

ifQu(z) 20, =0,1,2,:--.,
Let ¢(u) be a solution of (1.6). Since

@) = wh) = [ sl
it is clear that if &(y¥) is not reducible to a finite set of points, we always have
(1.9) Qu(z) = ,‘Zo B Ziz; > 0, n=0,12---,

AL g

provided not all 2o, 2, , - - - , z, are zero, which will be assumed in what follows.
From the theory of quadratic forms it is well known that conditions (1.9) are
equivalent to

Ap = | pirj| fimo > 0, n=012---.
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On the other hand, if there exists a solution y¥(u) whose spectrum consists
precisely of (k + 1) distinct points (we shall see later [3, Corollary 1.1] that the

moment problem is then determined), ¢, f2, -+, tx41, then it is readily seen
that for eachn = k + 1, Q.(z) = 0 for a suitable choice of zp, 21, *+ -, zn,
which implies A, = 0,n =k + 1,k + 2, ---,while 4, >0, ---,A:>0. It

can be proved, conversely, that if these conditions are satisfied, then there
exists a uniquely determined solution of the moment problem with the property
mentioned above [Fischer, 1; Achyeser and Krein, 1, 6].

All these results can be stated in

THEOREM 1.2. In order that a Hamburger moment problem
(1.6) = rd, m=012-,

shall have a solution it 18 necessary that
(1.10) Au=|“l'+ilzi-°g0) n=2012,---.

In order that there exist a solution whose spectrum 18 not reducible to a finite set of
points it 18 necessary and sufficient that

(1.11) an > 0, n=012-.--.

In order that there exist a solution whose spectrum consists of precisely (k + 1)
distinct points it 18 necessary and sufficient that

(1.12) B > 0,:--,A: > 0, Apyr = Apy2 = -+ = 0.
The moment problem s determined in this case.

(b) STIELTIES MOMENT PROBLEM. In this case &, coincides with the posi-
tive part of the axis of reals, « = 0. As in the preceding case, we have to
consider only moments u, = un0 , and only polynomials and functions of a single
variable. The moment problem reduces to

“u=[t”d¢s n=012:-.-,

and a necessary and sufficient condition for the existence of a solution is that

w(P) = X wz; 20,
1=0

whenever
Pu)=z+2ziu+ -+ +zu"20 for u=0.

An application of this condition to the two special polynomials (zo + zyu + - --
+ zu™), u(zo + 2w + -+ + z.u")? yields at once

Q@) = 3wzt 2 0,

n=012-",

n
QY () = .Eo Birin 2T 2 0,
$, g
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which is equivalent to
An = |piss| P02 0, AL = |pi4sn|i020, n=012 .
As in the preceding case, we derive

THEOREM 1.3. A necessary condition for the existence of a solution of the
Stieltjes moment problem

(1.13) “.=L rdy, n=012- -,
8 that
(1.14) A = |piss| 2o 2 0, A = | besssr| S0 20, n=0,1,2---.

In order that there exist a solution whose spectrum 18 not reducible to a finite set of
points it 18 necessary and sufficient that

(1.15) A>0 AP >0, n=012:--.

In order that there exist a solution whose spectrum consists of precisely (k + 1)
points distinct from t = 0 1t 18 necessary and sufficient that

Ao> 0’ -..)A.) O,Ab+1 = Ak+3= ces =0’
(1.16) ) m ) )
A" >0, ,A" >0 4048 = Ay = --- =0,

while in order that there exist a solution whose spectrum consists of (k + 1) points,
one of them being at t = 0, it 18 necessary and sufficient that

8 >0, ,8: >0 App1 = Apga=+++ =0,
AP >0, -, 8 >0, 80 = A, = ... =0,
In the last two cases the problem s determined.*

(¢) TRIGONOMETRIC MOMENT PROBLEM. Here the set &, is the circumference
of a circle which, without loss of generality, can be taken as the unit circle.
Since in this case u = cos 6, v = sin 6, and every polynomisl of degree » in cos 6,

»

(1.17)

sin 6 can be written as P,(8) = 2. ze™’, and conversely, where z, are complex
——n

numbers, we again may replace the double sequence of moments u,; by a simple
sequence {un},n =0, % 1, % 2, -+, uo = j., and introduce the “trigono-
metric moment problem”,

2T
U = f e™ do, n=0, =1, £2, -, Bon = fin.
o

Theorem 1.1 shows that a necessary and sufficient condition for the existence
of a solution of the trigonometric moment problem is that

P.(6) = .Z' e 20 forall ¢

* Here we have used the fact that a polynomial P(u) & 0 for 4 2 0 can be written in
the form pi(u)? + ups(u)t.
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implies

pPa) = 2, mm20, n=012" -,
=

Since, on the other hand, a general representation for a non-negative trigono-
metric polynomial P.(6) is [Pélya und Szegs, 1, Vol. II, p. 82]

Pn(a) = |h..(2) lz’ hu(z) = g zizj’ z = 6“,

the expression u(P,) = pu(| ha(z) |!) = u(“ZO z;e % e'“’) reduces to the Her-

mitian form
2w Tk
§21=0

(Toeplitz form), and we obtain
THEOREM 1.4. A necessary condition that the trigonometric moment problem

¥
I‘n=[ el.ﬁd(p’ n=0,=*xl1,£2 .- Bon = jin,
0

have a solution is that all Toeplitz forms

Z Bi-1Zi4 2 0, n=012:.--,
3. im0
or else that all determinanis
8n=l“‘—f|€-i-°got n=011)2,"'-

For the existence of a solution whose spectrum is not reducidle to a finite set of points
1t 18 necessary and sufficient that

8, > 0, n=2012---.

We shall see later that the trigonometric moment problem is always determined.

Using an analogous argument it can be shown [Achyeser and Krein, 6] that
a necessary and sufficient condition for the existence of a solution of the moment
problem

y,=_[e‘"'dd>, n=0=%xI1, £2, ---; bBon = fin, 0<r<m,
1 4

18 that uo = 0, and all the forms

» n—-1
_;o BT, 4y, izl:o(m—m — 2 €087 pj—t + pi-i-)TiE
2y 8= » o

be non-negative. It is easy to show that this criterion reduces to that of Theorem
1.4 when 7 = =.
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(d) THE HAUSDORFF ONE-DIMENSIONAL MOMENT PROBLEM. The set &, re-
duces here to the closed interval [0, 1] of the axis of reals. Using the notation

1

(1.18) y.,.=f " do, n=2012.--,
0

(1.19) #@O=§m% 1mw=§n%
j= i=

we conclude that a necessary and sufficient condition for the existence of a solu-
tion of (1.18) is that

(1.20) P,(u) 20 on [0,1] implies u(P,) = 0.

To transform this condition we have to discuss the representation of poly-
nomials non-negative on [0, 1]. Let f(t) be any function-single-valued and finite
on [0, 1]. The polynomial of degree n,

B.(t; f) = Z::,’ ;1’1)(:‘):'(1 — ™

is called the Bernstein polynomial of degree n associated with f(t). [S. Bern-
stein, 1].

An important property of Bernstein polynomials is expressed by the following
statement.

If P.(2) is a fixed polynomial of degree m, then

m—-1
Ba(t; Pa) = Pa(t) + 2 1%(0,

=]

where the polynomials p...(t) do not depend on n (and are = 0 in case Pn(t) =
const.).

It is easy to show now that the condition (1.20) is equivalent to
(1.21) w(@1 - 0" 2 0, v=0,1,:,n; n=201,---.

Indeed, ¢"(1 — &)™ clearly is 20 on (0, 1) so that (1.20) implies (1.21). Con-
versely, assume (1.21) to be satisfied and let Pa(t) be any polynomial of degree
m, non-negative on (0, 1). Construct
me—1
Bu(t; Pa) = Pa(d) + 3 P,

nl

Then we have

m—1

#(Ba) = p(Pm) + ;1 p(Pmdn” = p(Pa) + O(1/n).

On the other hand, since B, is a linear combination, with positive coefficients,
of expressions of the form ¢t"(1 — &), we see that (1.21) implies u(B,) = 0.
On allowing here n — « it follows that x(P,) = 0.*

* A shorter proof could be based on a known representation of polynomials non-negative
on (0, 1) (P6lya und Szegé, 1, Vol. II, p. 82). However, the proof in the text (due to
Hildebrandt and Schoenberg [1]) can be extended to any number of dimensions without
any essential modifications.
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Introducing the differences
Ao“r = ey
All‘r = By T B4,

-----------------------

= p, — <]1c> br1 + (g) paz o (=D e = w(Q = 0,

we may state (1.21) in an equivalent form:

THEOREM 1.5. A necessary and sufficient condition that the one-dimensional
Hausdorff moment problem

[

»
¥
|

1
(1.18) y.=j; rde, n=012--,

shall have a solution 1s that all differences
A%, 20, kv=012---.

() THE HAUSDORFF TWO-DIMENSIONAL MOMENT PROBLEM. [Haviland, 4, 5].
Here the set & is a rectangle in the (u, v)-plane, which, without loss of gener-’
ality, may be taken as the unit square 0 S ¥ = 1,0 S v £ 1. By introducing
the Bernstein polynomials in two variables associated with a given function

J(u, v),
. Y 1'_ l n\fm 0 - n—i_j — g\
Bualw i) = 3 3 5(%, m)(,)( ™t - W - )
and the double differences of moments,
A; A; My = Z E (n>(m)(—1)'+.#i+r.i+o ’
r=0 s=0 \7 8
we can immediately extend the preceding considerations to prove

THEOREM 1.6. A necessary and sufficient condition that the two-dimensional
Hausdorff moment-problem

1o
[l.‘j=f f u'v’dlb, ‘i,j=0, 1, 2,"',
0 J0 '

shall have a solution 13 that all differences
ArA;'#.','gO; n,m=0,1,2,---; ‘i,j=0,1,2,"'.

As we shall see later one- and two-dimensional Hausdorff moment-problems are
always determined.

3. We now turn to a discussion of the uniqueness of the solution of the (&)
moment-problem. We have agreed to say that the problem is determined if the
difference of any two solutions is substantially equal to a constant. Again let
N be the manifold of single-valued functions y(u, v) which admit of the estimate
(1.3). Let M, be the sub-manifold of M consisting of all polynomials, and let
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Mc be the sub-manifold of continuous function of M. We also admit complex-
valued functions as members of M. In this case we denote by M the sub-
manifold of all complex-valued continuous functions of M. We reserve letters
p, P, with various subscripts, to designate members of I .

Let y be an arbitrary element of M. Introduce two functionals

4(y) = sup w(p), &A@y = iof u(p).

pSvon @, pavon
It is clear that these functionals are quasi-homogeneous:
ulcy) = cu(y),  Aley) = cily), ¢=20,
while
s+ ) 2 ) + uln), B+ ye) S B() + E@).

It is also obvious that

4(y) s i(y).

THEOREM 1.7. Assume that the (&,) moment-problem has a solution ®. Let

Yo be a fized function of Mc. The range of values assumed by the integral
(1.22) j; Yo(u, v) dd,

when & ranges over all possible solutions of the (S,) moment-problem, 1s the closed
interval [4(yo), E(yo)). Thus a necessary and sufficient condition that the (S,)
moment problem be determined 13 that

(o) = i(yo) forall yoeMc.

The integral (1.22) is an extension of the non-negative functional u(P) to the
linear manifold M¢. Thus

k() = f.yo a® = a(y).

On the other hand, let ! be an arbitrary number such that
) = I s i(y).

In applying the extension theorem (Introduction, 4), if y, is not a polynomial,
we may start our extension with g, defining

u(yo) = L.

We have only to repeat the arguments given on p. 3, replacing u'v’ by yo(u, v),
to prove the existence of a solution of the (&,) moment problem such that

[ votw 01 a2 = uy) = 1.

The necessity of the condition of Theorem 1.7 for the moment problem to be
determined is obvious. If it is satisfied, then if ¢, , & are any two solutions,
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we must have f Yodd, = f Yo dP; for any function yo e M, in particular,
R ®

for any continuous function vanishing outside a sufficiently large sphere. By

Introduction 2, it follows that &; and &. are substantially equal.

CoOROLLARY 1.1. If a k-dimensional moment problem has a solution whose
spectrum 18 a bounded set, then the moment problem is determined.

Indeed, any function y, of Mc can be approximated by two polynomials,
Py, P, so that in a fixed closed sphere,

Py £ Yo S P, Py — P < ¢

where ¢ is an arbitrarily given positive number. If we take this sphere so large
that it contains the spectrum of the solution &, of the moment problem in
question, and if we allow ¢ — 0, then it is readily seen that

u(yo) = a(yo).
Since o is an arbitrary element of M, it follows that our moment problem is
determined.

REMARK. In the case of the Hamburger or Stieltjes moment problem let

(o) = sup  up), &)= inf u(p),
pSvoon Pavoon €y

where sup and inf are taken only over the set of polynomials p of degree not
greater than 2n, and where '™ (), 5™ (o) are to be replaced by — », +
in case there is no polynomial of degree not greater than 2n which is respectively
Stoor 2y on & . For sufficiently large values of 7 both numbers 4™ (y,),
#* (o) are finite and

V@) T @), A7) | i), asnl w.

An analogous remark, of course, could be made for more general two- or many-
dimensional moment~problems.

Theorem 1.7 can be readily extended to the case of a complex-valued function
Yo € ﬂR‘c .

THEOREM 1.8. Let
%, 1) = yolu, v) + W (u, v)
be any given element of the manifold M . Let D(yo) be the range of values of the
iniegral f. Yo d® when & ranges over all solutions of the (&,) moment-problem.

Then D(yo) 13 a bounded convex and closed set. More precisely, if for any angle
6,0 = 60 < 2x, we define

u(® = u(y{; cos 6 + yﬂ' sin 6), i(0) = ﬁ(y.'; cos 8 + y{,' sin 6)
and for a given 6, construct the closed strip in the (X, Y) plane,
(Seo) u(6) < X cos 6 + Y sin 6 S il6),
then D(yo) 18 the common part of all strips Sy, , 0 < 6y < 2.
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That D(yo) is bounded is obvious. That it is convex follows from the fact
that if &,, &, are any two solutions of a (&) moment problem, then
ab, + (1 — a),0 S a S 1, is also a solution. Finally, that D(ys) is closed is
readily proved on the basxs of theorems of Helly and of the estimate (1.3).

We now pass to the second part of Theorem 1.8. Let Z = X + 7Y be a point
of the set D(y) and let & be a corresponding solution of the (&,) moment-
problem. Thus

Z=X+iv = [yae+if ofae
] ®
and

X cos 6 + Ysin0=f. (¥0 co8 8 + o' sin 8) dd

must lie between y4(8) and E(6). Since this holds for all 8, we conclude that
D) g D, where D is the common part of all strips S, in question. It remains
to prove the converse statement, D g D(yo).

Let Z = X 4+ 1Y be any point of ©. Thus, for all 8

¥(0) S X cos 8 + Y sin 8 S (o).
In particular, for 6 = 0,
@)= sup w()=Xs _inf up),

PSy;0on € pRyjon@g

and the functional u can be extended from the manifold of polynomials M,
to the linear manifold 9, , determined by M, and s in such a way that

pyo) =

We proceed to prove t.hat p can be now extended to the linear manifold I,
determined by T and yo’ in such a way that

w(yo) = Y.
In the proof we assume that
MO C Eifl, .

(The treatment of exceptional cases where some of these manifolds coincide may
be left to the reader.) Since every element of I, is uniquely represented as
p + ayo , we have only to prove, in view of Introduction, 4, that

m = sup sP)SY < inf u(p) =

’+"6 Sv")’ on &g ptay] zy(,’ on €

Given any two real numbers £, 5, put

u(t ) = sup u(p),
pSvittvi‘von €
ﬁ(E’ "7) = , inf #(P)-

pav ity on €
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We can characterize the domain D as the common part of all closed strips
u(Em) = XE+ Yo S B n).

Thus, given ¢ > 0, there exists a polynomial p, and a real number «, such that

Pe+ oo SyonS, p+ ay;) >m-— e
But for all (¢, 7)

R 1) S XE+ Yy S B¢ n).
For (¢, ) = (—a., 1) we have
sup p(p) = u(—ai, 1) £ —a X + 7,

PS—ayty,’ on €

and since p. < —ayo + y;' on &, we have u(p) S —a,X + Y, whence
m — € < u(pe) + an(yo) = p(p) + aX S Y.

Allowing here ¢ — 0 we obtain m < Y. By a similar argument we deduce that
Y = M. We have thus proved that the functional u can be extended so that
uyo) = X, y(y,’,’) = Y. A repetition of the arguments used on page 3 shows the

existence of a solution & of our (&;) moment problem such that
X = uh) = [vode, ¥ =u) = [ 4ae,
which proves that the point X cos 8 + Y sin 6 actually belongs to D(y.).

4. We now concentrate our attention on the Hamburger moment problem
(1.6) and on the corresponding functional (1.7) and its extension. We assume

that a solution exists. Take the complex-valued function i ; and put
= dy(t
(1.23) I9) = [ 20

The previous discussion shows that a necessary condition in order that the

problem (1.6) be determined is that the domain ‘D(

; 1 t) reduces to a single

point for each non-real 2. We have, however, a stronger
THEOREM 1.9. In order that the problem (1.6) be determined 1t 1s necessary and

sufficient that the domain iD(z gy’

of values of z which has a non-real limit point z, .
The condition of the theorem is clearly necessary. To prove that it is also

consist of a single point for a sequence {z,}

sufficient assume that 13( ) reduces to a single point, for a sequence {z,}

2y — 1
of values of z such that z, — 2z, , and z isnot real. Let ¢, (£), ¥2(f) be two solutions
of (1.6). Assume for definiteness zo = zy + %y, ¥ > 0, and consider two
functions of z, I(z; 1), I(z; ¥2), analytic in the upper half-plane 3z > 0. Since
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2 is in the interior of their domain of analyticity, and since by assumption
I(zn, ¥1) = I(za, ¥2), it follows from the Vitali theorem that I(z, 1) = I(z, ¢»)
for 3z > 0. Since, by Introduction, 5, ¥ is determined by I(z; ) substantially
uniquely, it follows that the difference ¥, — . is substantially a constant, so
that the problem (1.6) is determined. As we shall see later (II, 13), the condition

of the theorem could be replaced by the condition that 1)( ) consist of a

Z0 — L
single point for just one non-real value z of .
Letagainz =z + 1y, y2a > 0. Wehave

I ) =‘[:f¢'___(‘)¢=[:d¢(t)[zl+z—t,+ +‘-T+—‘—"—]

2" Mz — )

®

+

u]g

P+ BT+ R ),

«N
»

where

Russv) = [ LHO,

On introducing the “absolute moments” of ¥(t),
wiw) = [ 1P a®,  wie =,

we see that
pa(¥) < pa(¥)

lz]*y = [z]"a’

. U
|Ra(z;¥) | S 77y L{tl dy(t) =

Let ¢, ¥ be two solutions of the problem (1.6). Then for each n
pa(fn) + wngs)

lz["a

(1.24) |I(z;¥1) — I(z;¢3) | = |Ra(z;91 — ¥2) | S
On putting
J@) = I(z9) — I(z;91), |z]=r,
I-‘:(V’I) + ﬂ:(“’!) = My,
we see that f(z) is analytic in the half-plane 3z > 0 and

@IS for Zeza>0, n=01,2.

6. We proceed to discuss sufficient conditions on the sequence of constants
{m.} under which we may conclude that f(z) satisfying these conditions is
identically zero (Cf. Ostrowski [1]). It is clear that such conditions on {m,}
will lead to conditions on {u,} sufficient that the problem (1.6) be determined.

Without loss of generality we may assume a = }, mo = }; then f(2) is analytic
in3z> 0and [f(2) | S 2mo = 1 for 8z = 4. The line y = 1/2 is represented
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by the equation |2 — z| = | z |, and the half planey 2 1/2by ¢ — 2| S | z].
Introduce a new complex variable z’ 4+ iy’ = 2’ = i/2,z = i/z’. Then the line
above is mapped onto the circle | 2 — 1| = 1 and the half-plane ¥y = 1/2 onto
the interior of this circle, while the half-plane y > 0 becomes the half-plane
z’ > 0. Call (y) the interior and v the circumference of this circle. Dropping
the primes, we are led to consider the class of functions f(z) satisfying the follow-
ing conditions:

(1)  f(2) is analytic in (y) and on v, except perhaps at z = 0;
(1.25) (@) |f@] = 1in (v);

(iii) |f(z)| £ Cm." in (y) and on v, except perhaps at z = 0;
n=123:;|z|=r

Introduce the function
1.28 T(o) = sup 2. .
(1.26) (0) sup o

For some values of p, T'(p) may be infinite, and for p sufficiently large, T'(p) = 1.
LemMaA 1.1, If f(z) satisfies the conditions (1.25) and if

[ 108 TG dp = =,
then f(z) s identically O.
It will be sufficient to prove that if f(z) # O satisfies (1.25), then
[ log T(r)r *dr < .
1

From the definition of 7T'(p) it follows that for each p > 0 and ¢ > O there
exists a value of n such that

T G—) —e< 1 .
Ma p®
In view of (1.25), we see that in (y) and on v, except perhaps at z = 0,
7@ | = Cmar™ < C/(T(A/7) = o),

and since e was arbitrary,

1
|7 ] = C/TQ/7), T(1/r)/C s oIk

and finally,
log T(1/r) S log U—(};)—' +

where C' is another constant. Thus the condition

flog 1/17@) |1dz| < = implies fxog T(/r)|dz| < .
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By a well known theorem [Pélya und Szego, 1, vol. I, p. 119] the assumption
that f(z) # 0 in (y) implies that

[ og ans@nd < «,
so that also
[ rog T/ fdz) = 2 tog /) |dz| < o,
v 7'

where v’ is the upper half of the circle y. Now, on v’

r=lz|=2cos6 |de|=2]|dd|, "”‘l e
so that
f log T(1/r) | dz| = [ log T(1/r)dr gf l
7’ T
Sy /2
2 f log T(1/r) dr )z l: log T(1/r) dr
= j; log T(p)p ™" dp.
Hence

[ 10 TG dp < .
The next step is to express the condition of Lemma 1.1 in terms of the con-
stants m,. Let my" = g, , and denote by
(1.27) ﬁ:=infﬁ., n=12--,

the “Faber minorant” of the sequence {8.}.

LEmMa 1.2. The integral j: ) log T(p)p dp and the series Z:l 1/8% converge
or diverge simultaneously.

If lim B, < =, it is clear that g 1/8% = . But then there exists a con-
stant R and a sequence {n:} such that 8, = (m.,)"'™ < R, m,, < R™, and

n
L > (—E) , forall p> 0.
me, \RE

This implies T(p) = « for all p > R 80 that the integral also diverges. Now
assume S, — ©, so that (1.27) may be written as

s = min 8, .
ran
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It is clear that
Bt < Buforalln, g1,

2 1/82 2 X 1/
For any p > 0 let n(p) be the number of the 85 < p. Then B, < p, and n(p)
is a step function assuming only integral values and such that n(p) = 0 for
0‘§ p < Bt . Forany given p > 0 there exists an integer n,(p) = n(p) such that
BD(P) = 67.] (p) Thus
Buwio =Bmoims  m(p/e) =m 2 n(p/e).

We now have

n pn pnx P n

iy 2=

T() = E‘;‘,’m,. sup — = - (ﬁ )

n21 By ny "y

_ {p‘p }ﬁx > {ﬂ‘p }n(plc) > (——)n(plo) »(olo)’
n(s/e) n(ole) ple
whence
(1.28) log T(p) 2 n(p/e).

We now introduce the function

Vip) = I n(®) dt = n(p) log p — .L log t dn(t)

(o) n(p)

=n 1 - 1 :=l .___p____,
(¢) log o §l iy ogﬁx.ﬁ: o Bt

and consider the sequence

=i A
poeeBaf \8TBY B

Since 8 < pfor v S n(p), B > pfor v > n(p), and B T «, the maximum
element of this sequence is

pl(a)

BrBs +* B
On the other hand, for each n,
BiBs -+ B2 = (BR)" S B2 = m.,

o" o"
BrBs +-- B & o
Hence
su p" _ pn(p) n T(p)
R R
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so that

(1.29 V) =1 o log T(p)

1.29) = log w———— 2 log T(p).
BLBY -+ Brw

We also have

2 bl‘: = [n p ! dn(p) = [ n(p)p " dp.

nwl

Indeed, for any R > 1,

[ 57 dne) = B0 + [ 26 d,

so that, if

[ ot ant) = tim [ 5 ane) < w,
then also
(1.30) [n(p)p_' dp < ®,

Conversely, if (1.30) is satisfied, then

| " 5 dn(e) — [ wo)ido = 2B = n) [“ 5 do 5 [ niele dy,

sothat’-fg—zR—)—»OasRﬁ @,

Similarly
(1.31) [ eave) = [ ne)do = [ Ve as.
Now, if

[ 1o 7)o < =,
then, by (1.28),
[ n6/oas < =,

which clearly implies
l ne)tdp = [ dnGo)™ = 2 1/8% < =.

Conversely, if Zl: 1/8% < « then, by (1.30) and (1.31),

j;. P dn(p) = '[ n(p)p " dp = [’ Vo dp < ,
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and, by (1.29),

[ 108 TG) do < .

6. We are now ready to state an important result due to Carleman [1, 2, 3].

TueEOREM 1.10. A sufficient condition that the Hamburger moment problem be
determined s that

(1.32) i pia™ = o,

A=l

More generally, it is sufficient that

(1.33) Yia = ®,

where
724 = inf (pg.)”".

Since u}f" 2 72, it suffices to prove only the second condition. Now, in view

of (1.24) and of Lemmas 1.1, 1.2, if ¥,(¢) and ¥»(¢) are any two solutions of (1.6),
the function f(z) = I(z;¥1) — I(z; y2) will be identically zero, that is, the problemn

(1.6) will be determined, whenever the series 3 1/8% diverges, where
=1
Ba = inf ;@) + wr "

Since y:..(\h) = m'..(\bz) = g, , it is obvious that Br S 2van , So that the di-

vergence of 2 1/4s implies that of 3 1/8% , and hence Theorem 1.10 is proved.
ne=]

n=l

The Stieltjes moment problem
b = _[ fde(t), n=012"-,
may be considered as a Hamburger moment problem
u’..=_[:t"dw(t), n=2012": -,
where

Yo for t> 0,

o = {-—;.p(z’) for ¢ <0,

so that

’ ’
Ham = Maon, Hinel = 0: n = 0) 1’ 2’ '
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This leads to

THEOREM 1.11. A sufficient condition that the Stielljes moment problem be
determined 1s that

©
2 ™M = o,

nesl

Theorems 1.10 and 1.11 contain as special cases many other results previously
obtained by various authors. As examples-we mention the following criteria:

lim W < o, [M. Riess, 3]
li 1y < o [Perron, 2]
..._7‘;1‘,‘;“1-‘ [} ’

lim 111 pin® < =, [Hamburger,1,Stridsberg, 3],

for the Hamburger moment problem, and analogous criteria for the Stieltjes
moment problem.
We indicate some other consequences of Theorems 1.10 and 1.11.

CoRroLLARY 1.2. If the Hamburger moment problem has a solution ¢(t) =
t
[ o at, where o) 2 0 ana

(1.34) [ toore' at < =,

for some g = 1 and & > 0, then the problem 1s determined. An analogous conclusion
holds in the Stieltjes case, when (1.34) 18 replaced by

[ le@®))%" dt < w.

[Hardy, 1a].

We shall discuss only the Hamburger case; an analogous discussion in the
Stieltjes case is left to the reader. Observe that (1.34) with ¢ > 1 implies,
by an easy use of Hélder’s inequality, (1.34) with ¢ = 1. Assuming the latter
inequality, we write

o = [ e dt = [ e()e! e g,

—olcltz

The function e " is positive and even, and its maximum value is

(2)" = oo,
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attained at ¢ = :i:g;. Hence,

pra S max(e”") [' oM dt < C(%z)"‘,

pia™ < An,

and the series (1.32) diverges.

7. Our next application is to the theory of many-dimensional moment prob-
lems.
THEOREM 1.12. Let the k-dimensional moment problem corresponding to the
momends {pj s -i)y 1y Je, -3k =0,1,2, -, have a solution. Let
Mn = p2n00--0 + Mosno...o + -+ + Hoo-..02m.

A sufficient condition for the moment problem to be determined s that
(1.35) A = o,
nel

As we know [Cramér, 1; Haviland, 2, 3], the k-dimensional distribution func-
tion ®(E) determines, and is substantially determined by, the one-dimensional
distribution function F(u; t) = ®(H,,.) where H,,, is the half-space (¢, z) =
try + --- + ez S u. Thus, if F(u; t) is a solution of a Hamburger moment
problem which is determined, $(E) will be the solution of a determined moment
problem. Consider the moments of the distribution function F(u; t), where ¢
is any vector different from 0. We have

ma(F) = [: u" dF(u;t) = _L (t, z)*" do.

But, by Hélder’s inequality,
G| =]t + -+ | St|(|n|+ - |n])
§ ,t! (x:u + . + x:'l)l/?nkl—(l/hn)

Hence,

“in(F) é ltllnkzn—lj; [z:n + - + x:u] d@ = It|2nk2n—l)\2"’
and it is immediately seen that (1.35) implies
Ex [yzu(p)]-lnu = o

for any vector ¢ == 0. This shows that if the condition (1.35) is satisfied, the
function F(u; t) is substantially uniquely determined for each ¢t = 0; hence, so is
®(E), and the moment problem is determined. (Cf. a recent paper by Hedge
(1.
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8. We close this chapter by quoting some examples of moment problems which
are indeterminate. An easy application of the Corollary 1.2 (or of the Carle-
man criterion directly) to the moments

(1.36) Y = [ reit g a1,
650, n=0,1,2---,
(1.37) b = l fetd, az1/2

shows that the corresponding moment problems are determined. It is readily
shown that these assertions are no longer true if « < 1 in the case (1.36) and
a < 1/2 in the case (1.37). Using the formula

fo YAy =bT(c), ¢>0, b=k+i, k>0,
and putting
c=n:-1, n=012--;
we get

=tanar, 0<a<1l1/2 y=2%

& e~

l: 2" sin (kz"tanar)dz =0, n=0,1,2, -

Similarly, for

_2n+41 _ l_ ar
c= ! n=201,2, ; E—tani,
0<a= 2 8 integer > 0 = z°
28+l) g ’ y H
we get

[ zhe cos(kz' tan "2—0') dz = 0, n=012 ..

This clearly shows that each of the moment problems (1.36), (1.37) has infinitely

many solutions.
Another example is given by the function [Stieltjes, 5]

%1 + Asin 2rlog?)), [4]S1,
since

j; %! sin(2x log &)t" dt

= [- e'("*'"_’tl)z sin Zr(u + n___-;- 1) e(“*':;l) »e"‘“:.%:l du

CEY " o
= Ze\ ? _[e“sm2rudu=0, n=012 :--.
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CHAPTER 1I
THEORY OF THE HAMBURGER MOMENT PROBLEM.

1. Let ¢(t) be any solution of the Hamburger moment problem

@1) w= [ av, n=01,2--.
In the preceding chapter we have shown the fundamental role which the integral
o) = [ WO
I(Z, !lf) - wz —1

plays in the discussion of the problem (2.1). In the present chapter I(z; ¢)
will be investigated in detail and it will be shown how the general solution of the
moment problem, and also various criteria for this problem to be determined,
can be obtained by constructing sequences of certain rational functions which,
on the one hand, are represented by integrals of the form I(z; y.), where ¢, — ¢
substantially, and, on the other hand, can be developed in power series in nega-
tive powers of 2, approximating in a certain sense the series

2.2) Moy By ey

2 zntl

which is the formal expansion of I(z; ) in powers of z.

2. First we investigate the relationship between I(z; ¢) and this power series
and begin by establishing some important lemmas.

The function —1(z; ¥) is a special case of a function f(z) which is analytic in
the half-plane &z = y > 0 and is such that 3f(z) = 0 in this half-planc. The
following lemma gives an integral representation of such functions.

LemMma 2.1. If f(z) is analytic in the half-plane y > 0 and if Jf(z) = 0 for
y > O then there exists a bounded increasing® function a(t) such that

@3) f&) = Az + [ EZ @+,

wtl—2z
where A and c ure real constants,and A 2 0. Furthermore,
(2.4) f(z2)/z—> A, as z—
in gny sector
(2.5) 0<esSargzsSr®—¢ 0 <e<a/2

¢ By ‘‘increasing’’ we mean non-decreasing.
23
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Consider a function g({) analytic in |{| < 1 and such that Jg(f) 2 0 in
| £| < 1. It is well known [Herglotz, 1 and F. Riesz, 1] that such a function can

be represented by the integral

2r 0
06) =i [ ST dse) +
o e?
where 8(6) is an increasing bounded function. The transformation
_z—1 _;1+¢
(2.6) {—z+i’ z 11_‘_,
maps | { | < 1 onto 3z > 0, while
l—1 _
t= cot 2, m =€ ,
maps the circumference | { | = 1 onto the axis of reals in the z-plane. If §is an
arbitrarily small positive number and if we take g(t) = f(z), we may write
4§ 10
o =o0) =i [ SHao+i[ S aw

+[m’1+uda<t)+ ¢

where a(t) = 8(6). Letting § — 0 we get

1+§' l+lz

{ﬂ(+0) BO)+8@m) - R —0) + | ;—

fle) =15 S da) +¢,
which, by (2.6), is the desired formula (2.3).
To prove the second part of Lemma 2.1, let z, be any fixed point in the sector

(2.5). Then

f(2) = f(z0) £ +1
. =4 —— " da(t).
@7 z— 2 +L(¢ =)(¢—zo)da()
Since
£+1 |14
(t—2)(t — 2) sin3 ¢

when z remains in the sector (2.5), it is readily proved by splitting the integral
into two parts f , where T is arbitrarily large but fixed, that the

st >

integral term in (2.7) tends to 0 as z — oo ; thus it follows that f(z)/z — A.
Lemma 2.2, If f(2) s analytic in the half-plane y > 0 and 3f(z) = 0, and if,
in addition, there exists a finite limit

(2.8) ¢ = lim 2zf(2), eSargz S x—¢

s=em®
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then for y > 0,

®dy()
.ot—-z’

J) =

where v(t) is bounded and increasing, while co must be real and

[: dv(t) = —oc.

Lemma 2.1 shows that in the present case A = 0. Hence

1
1= 2 +e.
We now have

®(—i) = [ LEED 141

w 49y w1l 4+ 8/y?

da(t) = ———— daf(?).

25

Since the left-hand member tends to a finite limit as y — «, we see that there

exists a constant M such that for all valuesof y = % > 0,
® (1 + &) da(t)

s iFayp M
Let T be any positive number. Then
T 2
(1 4 &) da(t) <M,

r 14 &/y?

and, allowingy — «,

T
[ (1 + ) da(t) S M.
T
This shows the existence of [ ¢ da(t), so that the function

10 = [+ ) datn)

L ]
is bounded and increasing. Moreoyer, the existence of [ ¢ da(t) implies that
L

of [ t da(t), so that we may write

f(z)=c—[:tda(t)+[:gj(—t)=c;+ 10

t— 2z ut—l.

But

MO _[Cao+ [ L ao,

wl—2
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and since in the sector (2.5) | t/(t — z)| < (sin €)™, it is readily seen that

" dv(®)

‘t_z—-»—‘[‘dv(t), as z — ©,

In view of the condition (2.8), this shows that ¢;, = 0 and ¢o = — [ dvy ().
Lemma 23, If f(z) 18 analytic in y > 0, and Jf(z) = 0, and if in any sector

(2.5) eSargz S * — ¢ 0<¢<;—,

S(2) admits of the representation
1@ = a0+ 2 + R),

where ay 18 real and
R(z) = o(1/2), as z— o,

then either Bo = 0 and f(z) = ap, or 8o > 0 and, when z ranges over the half-plane
y > yo > 0, w = f(2) remains in the interior of the circle C in the lower half-plane
Sw = 0, of diameler Bo/yo, which is tangent to the axis of reals at ao. This also
holds when z = zy = x, + tyo 18 on the line y = y, , except in the case

Bo

’
zZ = a

@) = a0 +

where a; 1s another real constant. In this case w = f(z) lies on C. The linear
Junction w = ay + z——ﬂ"—a— maps the half-plane y 2 0 onto the half-plane Jw < 0
- a
and the straight line y = y, onto the circle C.
It is clear that the condition 3f(z) < 0 implies 8o = 0. If now B, = 0, then,

by Lemma 2.2, f(z) = ap. If By > 0, we must have 3f(z) < Ofory > 0. Then
the function

0e) =t = "
7o =~ BT ERG

is analytic in the half-plane y > 0, and satisfies the conditions
Jg(z) >0 for y >0, g(2)/z = 1/Bo,
as z — « in the sector (2.5). Thus, by Lemma 2.1,

gle) = ;;—o + (),

where 3¢1(2) 2 Ofory > 0. It follows that

39(2) 2 Jz/80,
and since f(z) = ao + 1/g(z), the first part of Lemma 2.3 is proved. If at a point
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2 = To + o, Jg1(2) = 0, then gi(z) reduces to a real constant, say —%
0

This proves the last statement of the Lemma 2.3.
The following lemma has been proved by the preceding argument.

LemMma 24. If f(2) s analyticiny > 0 and 3f(z) < 0fory > 0, and if
16) = o + 2 4 Re2),

where 8y > 0 and R(z) = 0(1/z) as z — « 1in the sector (2.5), then the function

ﬂ

==t

18 also analyticiny > 0, and Jfi(z) = 0

3. In general, if we have a formal power series

ﬂ°+‘i,‘+...+f:+...
z  z

zu+l

and a function F(z) analytic in an infinite domain D and such that

Rl(z)=f(z)_(£:£+"'+a;—l) (zn), n=1’2v"'v

as z — o« remaining in D, we say that F(z) is asymptotically represented in D
by X a.z "

n=0

The following theorems show the relationship between I(z; ¥) and the power
series (2.2).

THEOREM 2.1. If ¢(t) 18 any solution of the moment problem (2.1), then I(z;y)
isanalyticiny > 0, 3 (z¥) < 0, and I(z; ¥) is asymptotically represented by the
series Qg unz " in any sector (2.5).

Conversely, if f(z) 1s analyticiny > 0, 3f(z2) < Oiny > 0, and if f(2) is asymp-
totically represented by the series Z;’ un2 " tn any sector (2.5), then there ezists a
unique solution Y(t) of the moment problem (2.1), such that f(z) = I(z; ¥).

The last relation expresses a one-to-one correspondence between the elements
of the above class of functions f(z) and those of the class of solutions y¥(¢) of the
moment problem (2.1). In this correspondence all functions ¥(¢) which are
substantially equal are not considered as distinct.

Theorem 2.1 shows that the problem of finding all solutions of the moment
problem (2.1) is equivalent to that of determining all functions f(z) with the
following properties: (i) f(z) is analytic in the half-plane y > 0; (ii) S‘f(z) S O
for y > 0; (iii) f(z) is asymptotically represented by the series D ¢ .z~
any sector (2.5).

An analogous situation exists in the case where the moment problem (2.1)
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is replaced by the “reduced moment problem”
(2.9) w= [ e, v=01,-,2m,

and the above class of functions by the class of functions f(z) analytic iny > 0,
3f(z) £ 0, and, in addition,

(2.10) f@) =2+ - + L+ Rune),

where Rin41(2) = o(z™*"™),

THEOREM 2.2. If Ya(l) 15 any solution of the reduced moment problem (2.9),
then I(z, y.) 1sanalyticiny > 0,3 (z,¢a) S 0iny > 0, and f(z) = I(z, ¥u)
salisfies condition (2.10).

Conversely, if f(z) 1s analytic in y > 0, 3f(z) < 0, and if, in addition, (2.10)
13 satisfied for a fized value of n, then there exists a unique solution Y.(t) of the
the reduced moment problem (2.9) such that

@) = I(z; ¥n).

Thus we again have one-to-one correspondence between the class of func-
tions f(z) satisfying the above conditions and the class of solutions y.(t) of
the reduced moment problem (2.9).

We shall give a proof of Theorem 2.2 only, since Theorem 2.1 can be proved
in a similar and even simpler way.

Let ¢ (t) be any solution of the reduced moment problem (2.9). The facts
that I(z; ¢.) is analytic in y > 0 and that 3I(z; ¢») < 0in y > 0 are clear.
Furthermore,

I(z; ¥a) =

a8 z — « in any sector (2.5). This is shown by

. 20)

cz_t
© 1 ) tln—l t!n t2n+l
- [[++ 0 + %+ a0

Ho , B Bl |, B 1 = dya(t)
=Tttt tEmt el o

so that it remains to prove that

.[ t!ai-l dv’u(t)

Tz -t
as z — =« in a sector (2.5). But in this sector

t |g L
z —¢ sin €’

z—1t]  sine

__z_.ls_l__

so that for any positive T we may write

| [0 g L [T + g [ [+ [ a0 ]

z2—1t | T |z|sine sin €
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First, choose T so large that the second term on the right is less than §/2, then
| z | so large that the first term is also less than §/2.

To prove the converse statement of Theorem 2.2, assume that f(z) is analytic
iny > 0, that 3f(z) < 0iny > 0 and that

R25+1(2) = f(Z) - ';"o ™ t_""l = o(z—%—l),

as z — o remaining in the sector (2.5). Since zf(z) — uo, Lemma 2.2 shows
the existence of an increasing bounded function y¥,(t) such that

1@ = [(#O = [ a0,

ez—t’

It remains to prove that
(211) [ ta00=u, »=12-, 2

Assume that formulas (2.11) have been proved for v = 1, 2, ---, 2k, k < n,
and prove their validity also for » = 2k + 1,2k + 2. Write

2k — tu+1 dwn(t)
I(z;¢'n) = gl‘vz ! z”““.[ .

Tz -1t
If we put here z = 1y and take into consideration (2.10), we have

TETA0) e pma o
w Wy —1 Yy Yy

On taking the real parts we see that

£ d\"u(t) Baky2 2
‘[ zz + y’ = + + (y ),

= dya(t)
w 1 + t’/‘y’

and an application of the same argument as used in the proof of Lemma 2.2

(2.12)

= pary2 + o(1),

shows the existence of _[ £***dy.(t) and also that this integral equals us.: .

The integral _[ | #* | dy.(t), and hence [ £+ 4y, (1) also exist. On multi-
plying (2.12) by 7y and allowing ¥y — «, we prove lastly that

‘[- E da(t) = pua.

Finally, the uniqueness of the solution ¥,(t) follows from the Stieltjes inversion
formula (Introduction, 5).
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4. We thus naturally come to the following problem.

ProBLEM (N,). Determine all functions f(z) which are analytic in the half-
planey > 0, 3f(z) S 0, and such that, for a fized value of n = 0,

J(z) = a0 +£z-9+§;+ et :‘::1 + Renii2),

where oy 18 a real constant, and
Renia(2) = o(z™""™"),
as z — ® 1in any sector (2.5).
We clearly must have uo = 0. If 4o = 0, then, by Lemma 23, f(2) = a,

so that yy = -+ = pa = 0. If, however, po > 0, then necessarily 3f(z) < 0
for y > 0, so that the functxon f( ) is analytic in ¥ > 0 and also has a non-
positive imaginary part. Now wrlte Bo instead of uo and consider the function
B0
2z + 2, 2) = a +
S o) ) = ot

By Lemma 2.4, f1(2) is analytlc iny > 0and 3f1(z) £ 0. Furthermore, it is
readily seen that f,(z) admits of an expansion
(1) m

(2.13) fi(2) = ay + “L +5 LI pin-s + R{_\(2),

22n~l

where a; ,pé” y Tty pit)_; are real and uniquely determined by a0, uy, * - , uza,

and
* RiY-1(2) = o(z™*"),

as z — o in the sector (2.5). The coefficients ay, us" , -, usi_» are deter-
mined in the simplest way if we introduce the expression

2n
821 = E Kz
r=0

find the expansion of
(1) (1)

- = a4+ 4 RE),

82n +1 z!u—l

where R(z) = o(z™*"*'), and observe that
ey B _ _ B Bo Rani1(2)
BE) =2 = 27D T Thn T e — )

Conversely, if fi(z) is any function analytic in y > 0, 3/1(2) < 0, and admits
of the expansion (2.13), where ay , us" , - -+ , uin-2 are determined as above, and

Ri\)_\(z) satisfies (*), it is seen immediately that

- Bo
J2) = a + —

is a solution of our problem (N,).
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The same argument can be now applied to fi(z). We must have pi® = 0.
If i§® = 0, then, by Lemma 2.3,fi(2) = ay. If u” > 0, then we write uf o B,
and introduce the new function

_ B
fa(2) = P +z

analytic in ¥ > 0, 3f2(z) = 0, which admits of an expansion

(2)
file) = e + -+ - + Bat R o)

zﬂn—l

where az , us> , +- -, usD_¢ are real and uniquely determined, while
Ri)L(2) = o),

as z — o in the sector (2.5). We can continue this argument until either we
reach a constant 8,3 = 0,0 S k S n — 1,whilef > 0, ---, 8 > 0, or until
we reach the value k = nwithallg,,8:, -+ ,8, > 0. Aslongaswehavef, >0
and the functions f,(2), - - - fx(z), & < n, have been constructed, we can construct
the next function

funle) =2 4 P, fle) = e B

z - fH-l(z)
analytic in ¥y > 0, 8/k+1(2) = 0, which admits of an expansion
(E-H)

1)
4o+ Hindhs + RiEA(2),

zh—ﬁ—l

fen(e) = apn + £

and where, in the sector (2.5),
REE () = oY), for k <n,
while, for k = n,
Janr(2) = 0(2).

This finally leads to

TrEOREM 2.3. In order that problem (N.) have a solution it is necessary and
sufficient that, in the above algorithm, either
(i) Bo>0,8>0,:-+,B:> 0, but fryy = 0, for a'certatn k < n — 1, or
(ii) all constants By, By, -+, Bn > 0.

In the case (i) the solution is uniquely determined and is given by the con-
tinued fraction

ﬁol ﬁl| B I

- |z2- |z — arqr’

f(Z) = ao + |Z

This is a rational function, and the corresponding series (2.2) is not only asymp-
totic but actually convergent for | z | sufficiently large.
In the case (ii) all solutions of problem (N,) are given by continued fractions

Bo I_ B | o Bn ‘

f(z)=a°+|z_al |z—-ag lz+fn+l(z)’
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where f,,1 (£) is an arbitrary function analytic in ¥y > 0 and satisfying the
conditions

3fas1(2) S0, fory > 0,

fas1(2) = 0(z), asz — = in any sector (2.5).

5. We now apply the results obtained to prove
THEOREM 2.4. For the existence of a function f(z) which 18 analytic in y > 0,
satisfies the condition

3f(z) =0, fory >0,

and 18 asymptotically represented by the series Do uz " in any sector (2.5) it 18
necessary and sufficient that either (i) for a certain value of n,

p°>0)ﬂl>o).'-)ﬁl>O,ﬁu+1=0

(this case has been already discussed in Theorem 2.3.), or (ii) all constanis
Ba,n=0,1,2,---, are > 0.* In this case all functions f(z) are asymptotically
represented by the series Do w2z " not only tn any sector (2.5), but in every half
plane 3z =y 2 yo > 0.

We observe that if such an f(z) exists then it is a solution of problem (¥,) for all
values of n. Hence, either for some n we shall have the case (i) which needs no
further discussion, or for all values of n we shall have 8, > 0. Thus, if we do
not have (i), condition (ii) appears as a necessary condition. To prove its
sufficiency we start with an arbitrary function f(z) = fo(z) and construct the

infinite sequence of functions fi(z), f2(2), - - - fi(2), - - - , by the above algorithm
(2.14) funle) = 2 + P, k=012

From the argument which has been used in the proof of Theorem 2.3 it is clear
that in order to establish that f(z) is represented asymptotically by the series

ow2"" in any given infinite domain D it suffices to prove that, for each value
of n, or even for values of n belonging to some infinite sequence {n.},

fa(2) = 0(z), a8z — = in D,

Now let f(z) be a function with the properties stated in Theorem 2.4. Then,
for each n, the corresponding function f,(z) will be analytic in the half-plane
y > 0, will satisfy the condition 8f.(z) < 0 for y > 0 and will admit of an ex-
pansion

Ba

Ja(z) = aa +‘? + R(2),

* For a better understanding of this result it should be observed that conditions (i) and
(ii) are respectively equivalent to the conditions Ao > 0, - , 8 > 0, Anj1 = Apya = -+ 0,

or Ay > Oforalln = 0,1, --- [see below, footnote on p. 47], so that we have obtained the
same result as that of Theorem 1.2.
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where R(z) = o(1/z) in any sector (2.5). But then, when z ranges over the
half-plane y 2 y > 0, by Lemma 2.3, w = f,(z) will remain in the closed circle
of diameter 8,/yo which is in the half-plafie 3w < 0 and is tangent to the axis
of reals at the point «, . Thus we see that the condition f,(z) = o(z) is satisfied
when z — « not only in any sector (2.5), but in any half-plane ¥y = 3 > 0, so
that the series 3 o w,2 "' asymptotically represents f(z) in every half-plane of
this type.

To complete the proof of Theorem 2.4 it remains to prove that if 8, > 0,
n=20,1,2, ---, then there exists at least one function with the properties stated
in Theorem 2.4. For this purpose construct the sequence of functions

Bo | Br | . B

- =192 ...
- |Z - Qg lz—a,.’ " 1 ’

f(n)(z) = ap + ‘z

Instead of a, we might have substituted here any function f{*(z) analytic in
y > 0, 3/{”(z) s 0, and which satisfies the condition fi™(z) = o(z) in any
sector (2.5). We have 3f™(2) < 0, y > 0, so that, by the Vitali theorem, we
can extract a subsequence {f'™’(z)} which converges to a limit function f(z)
uniformly in every bounded domain of the half-plane y > 0. This function
f(2) clearly is analytic in ¥ > O and also satisfies the condition Jf(z) < 0, for
y > 0. Hence, it remains to prove that f(z) is asymptotically represented by
the series 2 ¢ u,2 " in any sector (2.5). As has been observed above, this will
be proved if we show that for each &, £, (2) = 0(z), a8 z — = in (2.5), where f., (z)
is obtained from f(z) by means of the algorithm (2.14). To do this, construct,
by the same algorithm, for each function f () p = 1,2, ---, the corre-
sponding function f{}**”(z). It is clear that each of these functions is analytic
fory > 0, that 3741+ (2) < 0, fory > 0, and that each admits of an expansion

-:i“")(z) = Qu, + % + R.(Z), v = 1) 2) ]

where R,(z) = 0(1/z), as 2 — « in (2.5). Since, a8 » — o, f™**(z) - f(z) in
the half-plane y > 0, it is obvious that f;**”(z) — f.,(z) in the same half-
plane. On the other hand, as z ranges over any half-planey 2 y > 0, by Lemma
23, w = f:.',:”" (2) ranges over the fixed circle of diameter B.,/yo in the lower
half-plane 3w £ 0, which is tangent to the axis of reals at z = a,, . The same
is true for the limit function f.,(2), so that f.,(z) = o(z), as z — = in any half-
plane ¥y 2 ¥ > 0, and certainly in any sector (2.5). Theorem 2.4 is now com-
pletely proved.

8. In the subsequent discussion, unless explicitly stated to the contrary, it
will be assumed that the Hamburger moment problem (2.1) has a solution with
an infinite spectrum, so that all determinants A, > 0. Then also all 8, > 0
[ef. foot-note on p. 47] and the algorithm (2.14) can be continued indefinitely.
Consider the “generalized approximsat” of the associaied continued fraction,

Bo | B | B l

Iz—a1—|z—a2 |z—a..+1—r’
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where r is any real constant, including + = =+ «. This is a rational fraction
which, for | z | sufficiently large, by Theorem 2.3, admits of an expansion

(2.15) L‘z.°+ . 4 +“'-+1+...,

z’l"-l z‘l +2

Thus we naturally come to the problem of determining all rational fractions
p(2)

(@)
admit of an expansion of the type (2.15), with the same po, = - , pza -

We treat this problem using a symbolic notation which is a modification of
that used in the previous chapter. If P(z) is any polynomial, we shall denote
by P(u) the functional u(P). The meaning of symbols such as u"P(u), P(u)Q(u)
is clear. We have to distinguish between the symbol P"(u) which means
P[ .- P(x)] and P(u)" which is simply the n-th power of the quantity P(u).

Now take a polynomial ¢(z) of degree = (n + 1), and consider the formal
power series product

whose denominators are of degree not higher than (» + 1), and which

q(2) (L‘z_o + E’; 4 oo 4 B Han + ) = p(z) + 9(#) + I‘Q(I‘) .,

z2n+ 1

where p(z) represents the integral part of this product. The polynomial p(z) is
uniquely determined and will be called the numerator corresponding to the
denominator q(z). If q(z) = ao + Gz + - -+ Gapiz™*, we have

p(Z) = z"a,..“ﬂo + z”—l(ani-lﬂl + auI‘O) +
+ 2" (@nsrr + Gutts + Guoiio) + -+ +(Gnn + o+ +aun),
which also can be represented by

o) = [ 20— 40y,

where ¢(¢) is any solution of our moment problem or even only of the reduced
moment problem

‘[ rdy = py, v=20,1,---,n
Symbolically this may be written as
p(z) = (2) Q(“)
zZ—p

We also have

p@) _ 1 [®q(t)dy(t)
I 9) = @ @le z=1¢ "

If we impose the conditions
(2-16) Q(“) = 0) MI(P) = 0; ttty ﬂ"_lQ(ﬂ) = 09
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the polynomial ¢(z) will be called a quasi-orthogonal polynomial, of order (n + 1)
(associated with the sequence {ua}) [M. Riesz, 3]. It will be proved that ¢(z)
must be at least of degree n. If q(2) is of degree (n + 1), then we have, for
| z | sufficiently large,

p(2) ._“_°+ e 4 Han +I‘;n+1+

¢z 2z P ST ’
2.17) 7® )
B g(p),
an+l !

F;M-l = Hondl —
but if g(z) is of degree n, then

P(z)_# Han— I-lln v n
(2.18) R“z)——z?+'..+':T‘+7:§:_ﬂ+.“! ”2n—ﬂza_“——gf“).

If ¢(z), in addition to (2.16), satisfies also the condition
(2.19) k') =0,

then it will be called the orthogonal polynomial, of degree (n + 1), associated
with the sequence {u,}. Equations (2.16) and (2.19) determine the orthogonal
polynomial of degree (n + 1) uniquely, up to a constant factor. These equa-
tions are equivalent to the statement that

[ aoryave = o,

for each polynomial A(t), of degree < n, and for each solution of the reduced
moment problem (2.9).

The orthogonal polynomial of degree n also satisfies conditions (2.16). There-
fore, it can be considered also as a quasi-orthogonal polynomial of order (n + 1),
as well as one of order n. Since it is determined by (2.16) uniquely, up to a con-
stant factor, it follows that the case (2.18) occurs if and only if ¢(z) is the ortho-
gonal polynomial of degree n. The sequence of orthogonal polynomials can be
normalized by the condition

«®
7w = [ la@Pao =1,
together with the requirement that the coefficient of 2" be positive. The corre-
sponding sequence of ortho-normal polynomials associated with the given sequence

of moments {us} is uniquely determined by the moments. In the subsequent
discussions it will be denoted by {wa(2)}, so that

(220) wioi) = [~ a@uOH©O = 8, 5i=01,--n,

for any solution of the moment problem (2.1) or (2.9). The numerator p(z) is a
polynomial of degree one less than that of g(z).
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7. We proceed to state a few properties of quasi-orthogonal polynomials
which may be immediately derived from (2.16).

LemMA 2.5. The degree of a polynomial satisfying conditions (2.16) is not
less than n

If q(2) is of degree < n, we obtain a system of » homogeneous equations satis-
fied by the coefficients of g(z), whose determinant | uiy;| j=0 > 0, so that all
coefficients vanish, and ¢(z) = 0.

LEmMMA 2.6. Any three quasi-orthogonal polynomials of order (n + 1) are
linearly dependent, in other words, if qi, g2 are two linearly independent quasi-
orthogonal polynomials of order (n + 1), then any gquasi-orthogonal polynomial
g(2) of order (n + 1) can be expressed as

q(z) = Aqu(2) + A2q:(2).

Conversely, every expression of this type is a quasi-orthogonal polynomial of
order (n + 1). In particular, every quasi-orthagonal polynomial of order (n + 1)
can be expressed as a linear combination of two orthogonal polynomzals, of degrees
nand (n + 1). Thus, the general quasi-orthogonal polynomial depends only on
two parameters.

It is clearly possible to find three constants A,, As, A;, not all zero, such
that the polynomial A1q:(2) + A2¢2(z) + Asq(z) is of degree < (n — 1). Since
it is also quasi-orthogonal (that is, satisfies conditions (2.16)), it reduces identi-
cally to zero. The assumption that ¢, ¢. are linearly independent implies
As # 0.

LeEMMA 2.7. (i) Given any value z, (real or complezx), there always ezists a quasi-
orthogonal polynomial q(2) of order (n + 1) such that q(z0) = 0. This polynomial
1s completely determined up to a constant factor. (ii) Two linearly independent
quast-orthogonal polynomials of order (n + 1) have no roots in common.

Statement (i) follows from the fact that equations (2.16), together with g(z) =
0, determine ¢(z) up to a constant factor, since the determinant | u;4; | 2720 > 0.
Statement (ii) is an immediate consequence of (i).

Lemma 2.8. A quasi-orthogonal polynomial q(z) with real coefficients has all
rools real and distinct. A quasi-orthogonal polynomial q(z) whose coefficients can
not be made real by dividing by a common constant factor has all roots either in the
half-plane y > 0 or in the half-plane y < 0.

To prove the first part of Lemma 2.8 it is sufficient to show that ¢(z) has at
least n distinct real roots of odd multiplicities. If this were not the case, it
would have been possible to construct a polynomial h(z), of degree < (n — 1),
such that g(z)h(z) is always = 0. In view of the positiveness of the functional
u, then also g(u)h(u) > 0, in contradiction with (2.16). Passing to the second
part of the Lemma, we observe that a quasi-orthogonal polynomial g(z) with
non-real coefficients can be written as g(2) = ¢i1(2) + g:(2z), where ¢, and ¢; are
quasi-orthogonal polynomials with real coefficients. From the first part of the
lemma it follows that the ratio Z—‘—g; cannot be real at a non-real point; hence, the

2
imaginary part of this ratio maintains a constart sign in the half-plane y > 0
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and the opposite constant sign in the half-plane y < 0; this shows that g:(z) +
1¢2(z) can vanish in one of these two half-planes only.

LemMmA 2.9. The zeros of any two real linearly independent quasi-orthogonal
polynomials of the same order are mutually separated.

Letzo, 21, - ,zZm,m = norn — 1, be the roots of the real quasi-orthogonal
polynomial ¢2(2). Then if ¢:(2) is another real quasi-orthogonal polynomial, we
have the expansion

W) A+ B+ T T, 4B yireal,

q2(2) i=0
Since, by the preceding proof, 3‘?(—(‘3 is of opposite constant signs in the half-
2

planes y > 0, ¥ < 0, this implies that all the coefficients v: must be of the same
sign, which in turn implies that the roots are mutually separated, that is, between
any two consecutive roots of one of these polynomials there is one and only one
root of the other. Indeed, the preceding formula shows that sgn gi(z; + 0) =

— 8gn qi(zit1 — 0).

8. The definition (2.16) of quasi-orthogonal polynomials reveals other proper-
ties important for the construction of formulas of approzimate quadratures.*
Let g(z) be a quasi-orthogonal polynomial of order (n + 1) and of degree (n + 1).
Let zo, 71, -+, Zn be its roots. Put

q(t)
t — z)q' ()’

For any function f(¢) defined in (— ®, ) construct the corresponding La-
grange interpolation polynomial L.(¢;f) which coincides with f(f) at ¢ =
To,Zry 5 Tn,

q:(t)-': j=0,l,"',ﬂ.

L) = 3 000,

If a(t) is any solution of the reduced moment problem (2.9), we may construct
the corresponding approximate quadrature formula for the function f(¢),

@) = [ LGN #0 = X 1) [0 dalt

- ; ) f(z) = 4_‘: onl() 1),

where
pa(@) = q;w)y J=0,1,---,n

* ¢« Appreximate’’ quadratures seems to us more appropriate than ‘‘mechanical’’ quadra-
tures, as used by European writers.
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In Chapter IV we give a detailed discussion of the convergence properties of such
approximate quadratures. Here we observe only that the precise formula

(221) [ 60 an®) = 66) = Q@) = X sz
holds for any polynomial G(t), of degree < 2n. Indeed, for such a polynomial
we have

60 = g0 + X, 606,

where h(¢) is a polynomial of degree £ (n — 1), so that, in view of (2.16), g(u)h(u)
= 0, and

Glu) = ); L (WG(x,).

Conversely, if ¢(z) is a polynomial of degree (n + 1) such that the approximate-
quadrature formula (2.21) is exact for any polynomial G(¢) of degree not exceed-
ing 2n, then ¢(z) is a quasi-orthogonal polynomial of degree (n + 1). Indeed,
ifin (2.21) we put G(¢) = ’q(t),» = 0,1, - - - ,n — 1, we see at once that G(z;) = 0,
j=20,1---,n, s0 that u’qu) =0,»=0,1,---,n — 1. If we substitute
G(t) = (g:(t))* in (2.21), we have ¢i(z;) = &, so that

@) = qiw) >0, 1=0,1,---,n
If we substitute G(t) = 1, ¢, -+-, " in (2.21), we get

(2.22) 2 en(T)Z] =, v=0,1,---,2n.

Jom

It should be observed that when g(z) is the orthogonal polynomial of degree
(n 4+ 1) the approximate-quadrature formula (2.21) holds for all polynomials
G(t) of degree < (2n + 1). Hence, we may add to (2.21) the relation

n
Zo pa ()T} = poni.
&

However, (2.21) can not hold for all polynomials of degree = 2n + 2, as is easily
shown by considering the polynomial [g(t)]".

Expanding Z—(%) in partial fractions we have
LION S TR 1
qz) =tz —z; ozt
where

Wy = 2 7%
. =5
On the other hand, by definition (2.18),

P@) _ o M M

q@) z Z2n+1 ZIn+2
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sothat g, = w,,» =0,1, ---,2n. On comparing this with (2.22), we see that
vi = pa(z;). Hence,

ﬁz_) = - Pn(xi)
q(2) oz — 1z

Observe that from (2.23) we have

p(z;) .

7 ) = 0) 17 *
q'(z,)
We have already proved that all p,"z;) > 0. This, in connection with (2.24),
immediately yields

LemMa 2.10. If ¢(2) ¢s a real quasi-orthogonal polynomial of degree (n + 1)
and p(z) the corresponding numerator, then p(z) has all roots real and distinct, and
the roots of p(z) and q(z) are mutually separated.

(2.23)

(2.24) pa(z) =

..,n.

9. The quadrature coefficients p.(z;) have an extremal property which is very
important for the subsequent discussion.

LemMA 2.11. Let z, be any real number which is not a root of the orthogonal
polynomial of degree n; let Pn(z) be any polynomial with real coefficients, of degree
not exceeding n, such that

(2.25) Pu(z0) = 1.
Then
(2.26) p(z0) = min Pi(u) = min [ (Pu(0F d¥a()

where Ya(t) is any solution of the reduced moment problem (2.9)*. If 2, 1s a root of
the orthogonal polynomial of degree n, then

@.27) o) = min Pra() = min [ [PasOF dbasl®)

In fact, let go(z) be the quasi-orthogonal polynomial, of degree (n + 1), whose
roots are zo, 1, - - , T» . Then, in view of (2.21) and (2.25),

Piu) = }_: on(Z)Pa(5;)! 2 pu(z).

q0(2)

————— , we get
(z2 = Z0)go(%0)

On the other hand, on putting here P,(z) =

Pi(u) = g Pa(Zi)0; = pn(To).

This proof assumes that x, is not a root of the orthogonal polynomial of degree n.
It suffices to replace n by (n — 1) to complete the proof in the case when z, is a
root of such a polynomial.

* The value of the integral does not depend on the choice of the solution.
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Lemma 2.11 leads to another important expression for p.(r,) and to an exten-
sion of the definition of pn(z,) for complex values of z; . Introduce the sequence
of ortho-normal polynomials {w.(z)}. Assuming again that z, is any number
(real or complex) distinct from the roots of w.(z) and using the notation P.(z)
for any polynomial, real or complex, of degree n, satisfying the condition

Puz) = 1,
let us find

min Puu)P(s) = min [ [ Pa(®) |* dba).
Py Pa o
We have the expansions

Pu) = Lo, 6= w(WPals) = [ arlOPa() dald),
P.(u)Pals) = 2 | oo [*
Thus, our problem is to find min Zo [ e, | ? for all ¢, which satisfy the relation

(2.28) g crwy(20) = 1.
Using Cauchy’s inequality we get from (2.28)
183 lel Sl P,
where the equality sign occurs if and only if
& = Molz), A= 1/2 | w(20) .
This shows that
PuwPa) = S0l 2,

so that min P, (u)P.(x), under condition (2.28), equals A, and is attained if and
P,
only if

Pu) = 3 aonts) [ 35 e .

We now introduce the notation

(2.29) Ku(z, 20) = Zo @, (20)w(2),

yom

2.30) Ka(z) = ):o | wn(zo) [* = Knlzo, 20),
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and consider a modified extremum problem namely: instead of keeping fixed the
value of P.(2) and looking for min P, () P.(u) let us fix the value of P.(0)P.(u)
and look for the maximum of | P.(z) |. It is clear that this maximum is the
reciprocal of the minimum of the preceding problem, and therefore is equal to
1/\ = K.(2). The changes in the argument which are necessary in the case
when 2 is a root of w.(z) are obvious. We thus arrive at the following important
theorem.

THEOREM 2.5. Let {wa(z)} be the sequence of ortho-normal polynomials asso-
ciated with the given sequence of moments {ua}. Let zo be any number, real or com-
plex, which is not a root of wa(z) and let Pa(z) be any polynomial, of degree < n.
Then

2 _ Pa(u)Palp)
| Pn(zo) l = ——;ZZT)— N
where
(2.31) P—éTo) = Ka(20) = ; | wn(20) %,

and where the equality occurs if and only if P.(z) coincides, up to a constant factor,
with the polynomial K.(z, ).

When z, is real, p.(2o) coincides with the quadrature coefficient of the approxi-
mate-quadrature formula determined by the quasi-orthogonal polynomial of
degree (n + 1) which has z fog its root. Finally, if 2, is real and a root of w,(2),
the statement of the theorem holds true if P, is replaced by P,_;. Then

1
Pn-1(20)

and pa_1(20) appears as the quadrature coefficient of the approximate-quadra-
ture formula determined by w.(z).

= K”(Zo) = Kn—l(zO)l

CoRoLLARY 2.1. If Gun (2) ts a non-negative polynomsial, of degree < 2n, and
2o 18 any point which 18 not a root of wa(z), then

G?n(“)
pal20)

In case z, 18 a root of wa(2), the inequality (2.31) holds +f n is replaced by n — 1.

(2.32) | Gan(20) | =

This follows immediately from Theorem 2.5 if we observe that the general
non-negative polynomial G;.(z) of degree < 2n can be represented as

Gan(2) = (P1a(2))’ + (P2a(2))’ = | Pul2) | %, Pu(2) = Pin(z) + iPua(2), where
Py.(2), P:a(2) are real polynomials of degree < n.

Observing with Stieltjes, [5], that ya(zo + 0) — ¥u(zo — 0) is one of the ele-
ments of the integrand in (2.26), it is readily seen that p.(z0) = Yu(re + 0) —
¥a(zo — 0), the equality being attained if and only if ¥,.(¢) is a solution with the
mass pa(zo) concentrated at Ta, wa(zo) # 0. Now let ¢(t) be any solution of the
moment problem (2.1) and let dy’(¢) = h(t) dy(t), where k(t) is non-negative and
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integrable with respect to ¢ (t). Applying the same reasoning as above and
allowing n — «, we readily get p’(zo) = h(zo)p(zo), where p’(z) corresponds to
ay’(t).
Further important properties of p.(z0) follow immediately from (2.31).
THEOREM 2.6. Fora fized z, p.(2) does not increase when n increases (and cer-
tainly decreases if z is not a root of wa(2)). Hence, p(z) = lim p.(z) = 0 exists for

allz. For a fixed n, p,(z) decreases when y = 3z increases in absolute value, while
xr = Nz 1s kept fized.

The first part of Theorem 2.6 is obvious. The second part also can be readily
established if we remember (Lemma 2.8) that

w@) =a ][] - z), a, > 0, z; real,
Je=1
so that

Loz +i9) [ = a, I_I (@ — 2 + o)

is an increasing function of |y |. The same holds for K.(z) = 2 |w.(2) |* =
y=(
I/Pn(-’-)-

10. Formula (2.22) shows that the monotonic function ¥,(t) whose spectrum
reduces to the finite set of points zo, 21, + -+ , Zn, with jumps p.(z;) at ¢ = z;,
is a solution of the reduced moment problem (2.9). This leads to the following

DEFINITION. A solution Y, (t) of the reduced moment proolem (2.9), whose spec-
trum consists of precisely (n + 1) points zo, 2, - -+, Zn, 18 called a distribution
function of order n, assoctated with the given sequence of moments {u,}. A distribu-
tion function of order n + k, k > 0, or a solution of the moment problem (2.1) will
be called ssmply a distribution function of order higher than n.*

Lemma 2.12. A distribution function of order n is uniquely determined by a
single point of its spectrum. To each real value z, there corresponds one and only
one distribution function of order n or of order (n — 1), which contains z, in its
spectrum; it 1s of order n, if zo is not a root of the orthogonal polynomial of degree
n, and of order (n — 1) otherwise. There is one to one correspondence between the
distribution functions of order n and quasi-orthogonal polynomsials of degree (n + 1).
The jumps (or the concentrated masses) of any distribution function of order n
coincide with the quadrature coefficients pa(x;) of the approximate quadrature
SJormula determined by the corresponding quasi-orthogonal polynomial of degree
(n + 1).

The proof is obvious.

* According to Hamburger’s definition, y.(¢) should be called a distribution function of
order (n + 1).
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11. We now turn to important inequalities stated by Techebycheff {1] and
proved almost simultaneously and by the same method by A. Markoff (1] and
Stieltjes [3].

Lemma 2.13. (TCHEBYCHEFF INEQUALITIES). Let x;be a point of the spectrum
2y < 1 < -+ < 1, of any distribution function y,.(t) of order n; let y(l) be a dis-
iribution function of order Z n, distinct from y.(t). Let these two funclions be
normalized by the condition Y.(— ©) = Y(— =) = 0. Then

(2.33) Yalz; — 0) < ¢(z; — 0) < ¢(z; + 0) < ¢ulz; + 0).
Here we have to write
(234) Ynu(z; —0) =y¢{z;—0) or  Y(z;+ 0) < Yu(x; + 0),

according as ; = To OT T; = T .
The inequalities (2.34) are obvious because we always have

0SY(l) S, -ws=StSw

?

0 fort <z,
\l’n(t) =

wo fort > z,.

Hence, in the following discussion we may assume z; # z,, z.. Construct a
polynomial P,.(t), of degrec = 2n, which satisfies the following conditions

Py(x0) = Pon(m) = -+ = Pau(x;) = 1, Paulzjp) = -+ = Pulz,) =0,
Pia@) = -+ = Pa(Ei) = Pia(zm) = -+ = P(z) = 0.
It is readily seen that
in (=, 2y, P.(t) 21, and P() > 1, itz 2, -, 25,

in [.’E,', w), Pzn(t) g O, and Pg,.(l) >0, ift#l‘;.u,"' s Tn o
By the quadrature formula (2.21),

[ Py @0a) = ulz) + -+ + palz) = ¥l + O
On the other hand, since the order of ¥(¢) is not less than that of y.(¢),
[ P din® = [ Puty aver.

Let A = 0 be the jump of ¢(¢) at ¢ = z;. Using the fact that the spectra of
¥a(t) and ¢(t) are distinct, it is readily scen that

i+ 0 = [ L@@ = [ Pa@ @O+ 4+ [ P g0

zj~0
> [ aww + 4 = v + 0,
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which gives the desired inequality ¢(z; + 0) < ¥.(z; + 0). The other in-
equality, yu(x; — 0) < ¥(z; — 0), may be established in a similar way, by con-
structing a new polynomial P,,(¢) satisfying the conditions

Py(x0) = -+ = Poa(xj1) = 0, Poa(z)) = -+ = Pa(za) = 1,
Pia(m) = -+ = Pa(®;n) = Pin(zjn) = -+ = Paa(z) = 0.
The following important corollaries are deduced immediately from Lemma 2.13.

CoroLLARY 2.2. If (a, b) is an interval of constancy of the function y(t), then
¥a(l) can have no more than one point of its spectrum in the closed interval [a, b].

CoRroLLARY 2.3. Let zo be a fized real number, and denote by
o KL Ty K Tl < K Tpo = 2T < Ty < 00 < T < 00

the spectrum of the distribulion function of order n which has a jump at z,. If,
Jor a certain value of n, the points xn,_., Ta, exist, they will exist for all values
n+1,n+2 -, and

Zn,—r < Tngl,—r < .- <10 »
xn.c > Zn+l,e > e > o,
so that

lim z,, . < %, lim 2., = 2o.

n-—ve0 " =00

CoRoOLLARY 2.4. The quantity p.(zo) 18 the largest mass which can be concen-
trated at a given point x, by any solution of a reduced moment problem of order =
n (or = n — 1, if 2o 15 @ root of wa(2)).

If \b',. (), ¥u(t) are any two solutions of the reduced moment problem (2.9), then
[¥a®) = ¥u®) | S pa0).
If t lies in (c, d), where c and d are any two successive roots of wa(2), then
[¥a®) = ¥a(®) | £ pale) + pa(@).
If y'(t), ¥ (t) are any two solutions of the moment problem (2.1), then
(2.35) [ ¥/ (z0) — ¥ (@0) | S p(20) = lim pn (z0).

The largest mass which can be concentrated at a given point xo by any solution of the
moment problem (2.1) 1s p(xo), and there always exists a solution which has the mass
p(z0) concentrated at zo. This solution is uniquely determined so that the mass
concentrated at zo by any other solution will be actually less than p(z,).

The statements of the Corollary 2.4, except for the two last ones, follow imme-
diately from

\"(IO + 0) - \p(.’l:o - O) < “’n(zo + 0) - Wn(xo - 0) = Pu(Io)
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and from the fact (Theorem 2.6) that lim p.(z) = p(zo) exists. To prove the

existence of a solution with the mass p(z,) concentrated at z, it suffices to apply
the First Helly Theorem (Introduction, 3) to the sequence of functions {ya(t)}.
We may extract a subsequence {y»,(t)} which converges substantially to a mono-
tonic function y(t), a solution of the moment problem (2.1), so that

¥(zo + 0) — ¢(zo — 0) = p(z0).

On the other hand, let & > 0 be such that z, &= & are points of continuity of
v(t). Then

Y(zo + 8) — ¥(z0 — 9)

]

li:n w/n,,(l?o + 6) - 'Pu}(xﬂ - 5)]

= li;n pni(T0) = p(Z0),

and, letting 6 — 0,
Y@ + 0) — ¥(z0o — 0) 2 p(z0).

It remains to prove that the solution y(¢) for which ¢(z, 4+ 0) — y(zy — 0) =
p(zo) is uniquely determined. Assume that there exist two distinct solutions,
¥(t) and ¢/(t), satisfying this condition. Let ¥, (¢) and w;(t) be the functions
obtained from () and ¢’ (t), respectively, by removing the mass p(z,) at the point
Zo. The resulting moments will be obviously

#9)=#n"x:P(IO)) n=2012---.

Let p” (o) be the maximum mass which can be concentrated at z, by any solu-
tion of this new moment problem. We shall prove that p’(z;) = 0. In view
of the criterion to be proved later (Theorem 2.9), this will imply that the new
moment problem is determined, that is, the solutions y,(t) and \&{(t) are sub-
stantially equal, which occurs if and only if the original solutions y(¢) and ¢’(¢)
are substantially the same, while we have assumed that they were distinct.
Now, if we assume that P (z0) > 0, by the part of Corollary 2.4 which has al-
ready been proved, there exists a solution-y; (f) of the new moment problem
with the mass p"”(zo) > O concentrated at z,. If we place back the mass
p(zo) at this point we obtain a solution ¢’’(t) of the original moment problem
which has a mass p'” (zs) + p(z0) > p(z0) concentrated at zo , which, as we know
is not possible. Corollary 2.4 now follows directly.

CoRroLLARY 2.5. The sequence {Ya(t)} of distribution functions of order n,
which all have a mass at a fixed point x, , converges, as n — =, to the solution Y (t)
of problem (2.1) which has the maximum possible mass p(zo) at z,. In particular,
this holds for the sequence of distribution functions corresponding to the sequence of

wa(A)
Wn—1 (x)

quast-orthogonal polynomials {wa(z) —

wa(A\) #= O forn = ny.

CoRoLLARY 2.6. If Y(x) is the solution of the determined moment problem (2.1),
then p(z) = 0 at all points of continuity of Y (z) and equals the jump of Y(z) at a

w,._;(z)}, where N\ is fizred and
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point of discontinuily. In particular, if Y (x) s the solution of the moment problem
for a finite interval (a, b), then p(z) = 0 outside (a, b).

12. We now return to the function
_ [T _ 4.
1@ = [ 20 < 165),

where ¢(¢) is any solution of the moment problem (2.1). We still maintain the
assumption A, > 0,n = 0,1,2, --- . We have seen that f(z) is asymptotically
represented by the series Q¢ u,z”" " in any half-plane 3z = y = y > 0, and
that, for each value of n, f(z) is a solution of the problem (N,) and hence is repre-
sentable in the form

1(z) = Bo | B | ) Bn |

|z — ay lz — ap - —|2"fn+l(2) ’

where f.;1(z) is analytic in the half-plane y > 0, 3fau(z) £ 0, and f.n(2) =
o(z), as z — = in any half-plane y 2 y, > 0. Now consider the associated con-
tinued fraction

ﬁo l Bl J ﬁn !

|Z—dl —fz“az |z—a,.+1

(2.36)

and let

= Pa(®
Q)
where Q.(z) is a polynomial of degree n with the highest coefficient 1, be its

n-th approximant. From the general theory of continued fractions, [Perron, 1]
we know that

Pn+l(2) _ P,.(Z) = Bo - Ba

Qn+l(z) Qn(z) Qn(z) Qn+1(z) )
The right-hand member can be expanded, for sufficiently large | z |, in a series
B . 675

o *
z!n-H

of negative powers of z, starting with the term . This shows that the

P P.(z)
expansion of 0.@)

Z? wz "', which, in turn, implies that Q.(z) is the orthogonal polynomial of
degree n and differs only by a constant factor from w.(z). Since the polynomial

. . . -1 -2 . .
coincides in terms 2z, -+, z " with the formal series

1 in
Q) = Al I Milbid1 *°° Hign2 lo +
satisfics the conditions w'Q(u) = 0, » = 0, 1, - -+, n, and has the highest coeffi-

cient 1, we have

1 .
Quii2) = A | Mikisr = * BignZ' |5‘+l-
n
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If a, is the highest coefficient of the ortho-normal polynomial w,.(z), it now fol-
lows that a, = (A,_I/A,.)*. It is also readily found [Perron, 1] that*

2

2
_ Ga1 _ As24, . _a _ A 1
= S aw "EE ORSGEEe hensh

Ap = BoB1 +** Bn.

The constants a, in (2.36) are also easy to determine [Perron, 1]
The polynomials P,(z), @a(z) satisfy the recurrence relations

Quii(2) = (2 — @2 1)Qn(2) — BaQn-1(2),
0,1,2--

S
i

Paii(z) = (z — an41)Pn(z) — BnPaxl(2),
where
Q) =1,Q.4(2) =0,Py(z) =0, P4(z2) = — 1.
It is also known from the theory of continued fractions that
(2.37) Pp1(2)Qn(2) — Qus1(2)Pn(z) = Bo -+ Ba.

With this notation, the general solution of problem (N,.) can be written in the
form

f(Z) = [z - fﬂ+l(z)]Pl(z) — B Pu-l(z)
[z — far1(2)]Qn(2) — BaQn-i(2) ’

or, replacing fa11(2) by aas1 + (fasa — an41), in the form

_ Pani(z) — [fani2) — an]Pa(2)
(2.38) 1) 0@ = onl) = oo

In particular, the generalized approximants, that is, the continued fractions

‘z—f"—m)—,z—f’?zl—----z_aﬂ:!_’_, r a real parameter,

are represented by

Ppi(z) — 7Pu(2)
2. > =
(2:39) Q@ = 70.)
On the other hand, the general quasi-orthogonal polynomial of degree (n + 1),

with real coeflicients, can be written as Q.4;(z) — 7Qa.(z), and the corresponding
numerator as P.,1(2) — 7P.(2); thus, it is clear that to each real value of 7 in

Cani(z; 7).

* These formulas show that the condition 8 > 0, n = 1, 2, ... implies A, > 0, n = 0,
1, 2, ---, and conversely. Finally, the conditions 8o > 0, -+, fa > 0, Bas1 = Busz =
--. = 0 imply the existence of the solution of the moment problem which is unique and has
precisely (n 4+ 1) points in its spectrum. Then we know that 40 > 0, -+, 4, > 0, Apyy =
Any2 = --- = 0. The converse is also readily verified. This gives a direct proof of the
equivalence of the conditions of Theorems 1.2 and 2.3.
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(2.39), admitting also the value + = «, there corresponds just one fraction
@)
q(2)
order (n + 1), and conversely.

, where g(z) ranges over the class of all quasi-orthogonal polynomials of

13. Let z be a fixed point in the half-planey > 0. Consider two complex vari-
ables { and {,1 related by the linear transformation formula

Ppy1(2) = $ar1 Pa(2)

Qn+1(z) - rn-H Qu(z) ’

For n > 0, this transformation maps the axis of reals of the {,+1 plane onto the
circumference of a certain circle C,,1(2) situated in the lower half-plane &¢ < 0
in such a way that the points of the half-plane 3.1 < 0 are mapped onto the
interior of this circle. The same is true if n = 0, with the exception that the
circle C,(2) is tangent from below to the axis of reals at the origin. Comparing
this transformation with formulas (2.38) and (2.39), we arrive at

THEOREM 2.7. For a fized z, 3z > 0, the range of values which are assumed by
solutions of problem (N,) is the closed circle Cny1(2). To each point on the circum-

Serence of C,11(2) there corresponds a unique solution of (N,) of the type ;%:—)) , Where
g(2) s a quasi-orthogonal polynomial of order (n 4+ 1). To each point interior to

Cn+1(2) there correspond infinitely many solutions.

“=

Indeed, a point on the circumference of Cn41(2) is of the type (2.38), where
has a real value (including r = ), so that in this case fn41(2) = as41 + 7, and
the corresponding solution f(z) is uniquely determined. To a point { in the
interior of C,41(z) there correspond infinitely many solutions f(z) — all those
for which fai1(2) — an41 = tn41 — and it is obvious that there exist infinitely
many functions fa+1(z) satisfying the above requirements and assuming at z
the given value an4y1 + Caqr-

THEOREM 2.8. The circles {Cn(z)} of Theorem 2.7 decrease, as n increases, in
such a way that Cp41(2) 18 inside C.(z) and touches Cn(z) from inside. The radius
Ta41(2) 0f Cni1(2) 18 given by

(2.40) nmm=”£l t=z+iy, y>0.

The statement that C,,,(z) is inside C,(z) follows from the observation that
the class of solutions of problem (¥,) for any given n is more inclusive than that
for the next value (n 4+ 1). The two circles must have a point in common since
the orthogonal polynomial of degree n is a quasi-orthogonal polynomial of order
n, as well as of order (n + 1), and the corresponding point must lie simultaneously
on the circumferences of C,4,(z) and of C,(z). To determine the radius of C,,,(2)
it suffices to determine the radius of the circle described by ¢, when ¢, describes
the axis of reals. The theory of complex linear transformations gives

| Pasi()Qa(2) = Quas()Pa(d) |
23(Qus1(2)0n @)

rati(2) =
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The numerator of this fraction is equal to 8s8: - - Ba, by (2.37). As to the de-
nominator, the recurrence relations yield

3Qnui1@)@n(@)] = ¥ Qu(2) | * + BaS(@n(2)Qus(2)] = - --

2.41 n~—1
( ) = y[l Qn(z) |2 + ;, ﬁn ﬁu—-l tet ﬁk+l , Qk(z) lz],

so that finally
o =y T LGOL e

27‘,.+1(Z) kw0 ﬁo .
=y g [wi(@) | = y/pal2),

which is the desired result.

By Theorem 2.2, every solution f(z) of problem (N,) can be represented as
f(z2) = I(z;ya), where ¢, (t) is a solution of the reduced moment problem (2.9),
and conversely. Hence, the closed circle C,,1(2) represents the range of values
of I(z; yu) for a fixed z, 3z > 0, when ¢, ranges over all solutions of the reduced
moment problem (2.9). As n increases, C,,1(2) decreases and tends either to a
point or to a limiting circle C(z). The radius r(z) of C(z) is given by

P(z) 1 2,
(2.42) rz) = % @ ; w(2) %

It reduces to O if and only if the series 2 | w,(z) |* diverges.
r=0

On the other hand, it is readily seen that C(z) is the range of values of I(z; ¥),
when z is fixed, 3z > 0, and y(t) ranges over all solutions of the moment problem
(2.1). Indeed, if ¥(¢) is such a solution, it is also a solution of all reduced mo-
ment problems for any n, so that I(z; ¢) must be in C(z). Now, any point {, in
C(z) lies in all C,41(2), so that for each n we can find a solution ¢'™ (¢) of the re-
duced moment problem of order n such that I(z; ¢'”) = & . On applying the
Helly Theorems to the sequence {¢‘™(¢)}, we can extract a subsequence {¢'"* (1)}
which tends substantially to a monotonic function ¢(¢). By Introduction, 3,

= I(z¥'™) — I(z). It remains to prove that y(t) is a solution of the mo-
ment problem (2.1). Since, for a fixed j and sufficiently large k,

[ Pasowy = u;,
it is sufficient to prove that
f g™ () — [ Pdy(t), ask — w.

This, however, follows from Introduction, 3, and from the fact that, for afixed

J, the integrals f t’dy'™® (t) converge absolutely and uniformly in k. In-
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deed, if 2j, is the smallest even number which is larger than j, we have

f t"dw(")(t) s Ti—linf t”"dll(")(t) < “’,_.Ti—iio, = jo,
T T

-T

an analogous estimate being true also for [ Cdy'™(2).

Thus, C(z) is the range of I(z; y), when ¥(t) ranges over all solutions of the
moment problem (2.1). Since I(z;¥) is a continuous function of z for all com-
plex z, it is now clear that C(z) depends continuously on z, which imples, in
particular, that p(z) is a continuous function of z when z is complex. It also
follows that the condition that C(z) reduces to a single point for all complex ¢,
with 3z > 0, is a necessary and sufficient condition that the moment problem
(2.1) be determined. This condition will be satisfied if it holds for a sequence of
values of z which has a limiting point in the half-plane y > 0. But, by.Theorem
2.6, p(2) increases when z approaches the axis of reals moving on a vertical line.
Hence, the moment problem is determined if p(z) = 0 or, which is the same,

> | w2) |? = o, at a single point, real or complex. We may now state

reel

THEOREM 2.9. For each complex z the circle C(z) = lim Ca(z) i3 the range of

values of I(z; y), when y(t) ranges over all solutions of the moment problem (2.1).
C(z) depends continuously on z. In order that the moment problem (2.1) be deter-
mined 1t 18 necessary and sufficient that

(2.43) p(z) =0, or 'Z:olw,(z) f=w

at every complezx point 2. For this it 1s sufficient that (2.43) be satisfied at one point,
real or complez. .

CoRroLLARY 2.7. If the moment problem (2.1) is indeterminate, then, for all z,
p@) >0, or 2 |w@)| < =.
y0

14. Taking into consideration the generalized approximants C,,i(z; 7), we
proceed to show that Theorem 2.9 can be restated in a different form, as first
stated by Hamburger, [3].

DEFiNITION 2.2, The associated continued fraction

B | B | _
(2.44) [z—ar |2 — a,
18 said to converge completely at a given point z if, at this point, the sequence of its
generalized approzimants {C.,i(z; )} converges to the same limit for all real
(tncluding + = «) and uniformly in r.
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TaEOREM 2.10. A necessary and sufficitent condition that the moment problem
(2.1) be determined s that the associated continued fraction (2.44) shall converge
completely for all complez z.

Indeed, since C.;1(z; 7) describes the circumference of Cn.i(z) when 7 ranges
from — « to + «, it is clear that the complete convergence of the continued
fraction (2.44) is equivalent to the condition that C(z) = lim C.(z) reduces to

a single point.

COROLLARY 2.8. If the moment problem (2.1) is determined, then p(z) = 0 at
all complex z and also at all real 2, except perhaps for at most a denumerable set of
points.

Only the second part of this corollary requires discussion. If the moment
problem (2.1) is determined, then its solution y(z) is substantially unique, and
the point spectrum of ¥(t) is at most a denumerable set. On the other hand, by
Corollary 2.4, we can always construct a solution of our moment problem which
has a concentrated mass p(z) at any real z, and so, if the set of points where
p(z) > 0is not finite or denumerable, we arrive at a contradiction.

16. In the subsequent discussion we shall treat in more detail the case of an
indeterminate moment problem, and hence assumc that, in addition to the
conditions of existence of a solution, A, > 0, n = 0, 1, --- , we also have
p(z) > Oforall z. Two sequences of generalized approximants C,4.1(2; 7) of the
continued fraction (2.44) are particularly valuable for our discussion. They
are obtained by giving 7in (2.39) the values I—;')'—;%()()l) and Qéﬁé%) respectively.
Thus we obtain two sequences of functions

Pn1(2)Pa(0) — Pa(2)Pnin(0)

(1) =
en+l(z) Qn+l(z)Qn(0) — Qn(z)Qn+l(o) )
€D, (z) = Ern®)n(0) = Pa()0n11(0)

Qn+1(2)@n(0) — Qu(2)@n+1(0)
Introducing four sequences of polynomials
Ana(z) = (B - - B) " [Pas1(2)Ps(0) — Pa(2)Pnin(0)),
(2.15) JBH-:(Z) = (BoB1 - * Bn) ' [@n+1(2)Pa(0) — Qa(2)Pr41(0)],
C..+1(2)'= (ﬁoﬁl v Bn)_l[PnH(z)Qn(O) - Pn(z)Qn+l(0)]1
LDn+1(2) = (3031 s 5n)‘l[Qn+!(z)Qn(0) - Q..(Z)Qn+1(0)],

we may write

(1) _ Anni(@) (2) _ Cana(2)
en-lrl(z) = Bon(®’ en-H(z) = D::.;(z) .

Let x.(z) be the numerator corresponding to the denominator w,(z), the n-th
orthonormal polynomial. Using the recurrence relations, it is readily found
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that

( n -

Aun(z) = 2 );.', P.(0O)P,(2)(Bo -+~ B =2 § % (0)x:(2),

Bui(®) = =1+ 23 POREGs - ) = =1+ 2 32 x,0)a.(a),
(2.46) . .

C,..”(Z) =142z ;0 Q.(O)P-(z)(ﬁo e ﬁ-)_l =1 + z 'Z:o wr(o)x'(z)i

| Duste) = - 3 QOREE -- 8 = 2 3 w0

From (2.37) it is also immediately found that
(247) Ans1(2)Dpa(2) = Cuyr(2)Bra(z) = 1.
A fundamental result is expressed now by
THEOREM 2.11. If the moment problem (2.1) is indeterminate, that 1s, ifﬁ(z) >0

Jor all z, then in the whole z-plane

1 §(r)r
2.48 — =€, z|=r,
(2.48) p(z) M
where 5(z) 18 a generic notation for a function which is bounded and s o(1), as
r— o, The polynomials Ani1(2), Bat1(2), Casi(2), Dati(z) converge, as n — »
(uniformly in every bounded domain), to entire functions A(z), B(z), C(2), D(2),
respectively. These entire functions are at most of order 1 and of minimal type,
that s

[A@) |, |B@) |, 1C@) |, | D@) | = .
They also satisfy the relation

(2.49) A(@)D(z) — B(2)C(2) = 1.
The series

1 _ < 2
(2.50) ol 2 |w@]

also converges uniformly in every finite domain and is a continuous function of z.
Introduce the polynomial
Fn1(2) = Bayi(2)Daia(2).

The proof of Theorem 2.11 is based on two facts. We first establish the exist-
ence of positive constants L, , L, such that, for any valueof z, 3z = y > 0,
Lir + L.r* _ Lir + L.t
<
pn(2) p(2)

Yo ¥
(2.51) L< A S P <
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Using this we establish, in the second place, that

w log
0]
2.52) [ < =,
The proof of Theorem 2.11 will be then readily concluded.
Ani(2) and Cani(2)
Bani(2) Dpi(2)

approximants of (2.44) and therefore their values lie on the circumference of the
circle Cn41(2) of radius ro;(2) = £a(2) . The absolute value of the difference of

To prove (2.51) observe that the fractions are generalized

2y
these two fractions cannot exceed the diameter of Cn41(2z), which yields
Annr(2) _ Cana(2)| _ 1 < p,(z).

Boyi(2) ) )] B {Fasa(2)| = ¥
This, together with the obvious inequality pa(z) < po(z) = mo, establishes the
first two inequalities (2.51). On the other hand, if we apply the Cauchy in-
equality to (2.46), we get respectively

T’ r!

2
D1 2 S < s00m@

' (ﬁ: | x,(0) I’) r
i Bau@['s2f1 43> __ 7

pa(2)

Since all the roots of x,(z) are real, we have for any fixed o > 0, | x,(0) | <
| %-(wo) |, while, by (2.23),

. . S Ho I w.(iyo) ' .
| xotiyo) | S —
Thus we see that
n 2 n 2
(2.53) 3 O] s 5‘% 2 lwln [ < 2
ye0 Yo »=0 OP("'yO)

On substituting this and estimating the product | Ba11(2)Da41(2) |, we obtain
the two remaining inequalities (2.51).

We now pass to the proof of (2.52). Take any value % > wo. Then, by
(2.51),

log | Faia(z + ty0) | > log —(sz—) > log Yo > 0.

Since all roots of F,,,(z) are real, it is readily seen by the Poisson formula
[Titchmarsh, 2, p. 124], that

log Faui(i + ty0) = - [ log F”l"izz‘:‘ yo) dz,
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whence, comparing real parts,
iz + )| o
1+ 22 '

But, by (2.51), the left-hand member here is bounded asn — . The same will
be true for the right-hand member and, again by (2.51), for

.. 1 (“log|F
log | Fari(Z + tyo) | = ;_[_ o8 |

© dz
1 Yo .
L, o8 pa(T + ty0) 1 + 2°

Since the integrand is an increasing function of n we conclude that the integral

.[n log Ko dz
w p(z+ o) 1+ 2°

converges, and finally, since p(z + 7y) increases when ¥ | 0, we see that this
integral converges for all yo = 0, and in particular, that

® Ho dr
Lk’gp'(?) Txz ™

which is the desired result.
Now, for any real z = z, we see from (2.51) that

log | Fayi(z)| < log Mt log (1 42+ L,
p(z)

where L is a suitable positive constant. Hence, by the Poisson formula, for any
z =2+ 1,y > 0, we have

. _Y ® log an-H(t)!
log | Fasi(t + 1y) | = - ‘[” t=2 + o dt

alogﬂ—+log(1+t2)+L

y p(t)
< TL_ T dt.
In the sector (2.5) we have, for [¢]| = 1,
2 2
— z)? O +¢ = 1 2
(t=a2y +y = sin?e ~ 2sin’e M(1+l)'

Thus, forany T = 1,

. 1 7 Mo 2
log | Fana(z + 2y) | £ Fyf_r[bg,m+103(l +L)+L]dt

log 2% + 1 :
ogp(t)-'r- og(1+1¢)+L

oY ( [; + f:) - dt.

Given an arbitrarily small positive 5, we first select T' (independent of y) so large

that the second term is smaller than 2—/29 , and then y so large that the first term is
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also less than %5 It follows that in the sector (2.5), for | z| = r sufficiently

large,
IOg l FI-H(Z) ' < 5T,

and, in view of (2.51), also

log — -()

Using the fact that p.(z) decreases when | y | increases and z is fixed, we see that
in either of the two sectors

0=

arg 2z S ¢, r —eSargz2 S,
we have, for r sufficiently large,

1 or

log %) < cos ¢

By reflecting in the axis of reals we obtain the same inequalities in the lower
half-plane ¥ = 0, and finally, on allowing n — «, we see that, with no restriction

on the location of z,

log‘%z) < &(nr, 5(r) = o(l), as r— o,

PTA‘B = ; |w,(2) P < €.

If, now, we observe that Z | x,(0) |* < = and use Cauchy’s inequality, we see
y=0

at once that the limits
B(z) = lim Bopi(2) = —1 4 2 Zo x»(0)w,(2),

D(z) = lim Dpi(2) = 2 f% w, (0w, (2)

exist everywhere and are entire functions which admit of estimates analogous
to (2.48). To establish the same properties for

A®) = lim Apus(s) = 2 );; 2 (0)x(2),

142 Z @, (0)x:(2),

C(2) = lim Capi(2)
it is sufficient to show that

Zo va(z) IZ < e&(r)r.
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This, however, follows from the fact that, for 3z = y = 0,
1
%) < — la(2)],

Lyl
so that

S lu@f s A3 le@
v Y° rm0

and also from the fact that the left-hand member of the preceding inequality
is an increasing function of |y |, for a fixed ®2 = z. The uniform convergence
of all these series is now obvious, while (2.49) is implied by (2.47). Finally, the
continuity of 1/p(z) is implied by the continuity of the circle C'(z), and the uni-

form convergence of . | w,(z) |* then follows from a well-known theorem of
y=0
Dini.
The following result is easily derived from Theorem 2.11.

CoRroLLARY 2.9. A necessary and sufficient condition that the moment problem
(2.1) be determined is that the equation

(2.54) k(F) = a(F)

hold for any fixed function F(t) of the manifold M. , distinct from a polynomial *
Thus, (2.54) holds either for all elements of Mc or for none distinct from a poly-
nomial,

The necessity of (2.54) is trivial. To prove its sufficiency we show that if
(2.1) is indeterminate, then (2.54) implies that F(f) is a polynomial. Now, if
(2.54) is satisfied, there exist two sequences of polynomials {Py(t)}, {Pa(t)},
n=1,2 --., such that

P.) S Ft) £ Pult)y n,m=12--,
while
u(Py) = u(F),  w(Pm) — a(F),
so that
0 < u(Pm—Po)=em—0, a3 n,m— =,

Using Corollary 2.1, we conclude that, for any z, real or complex,

” ’. €nm
| Pm(z) — Pa(2) ] ROk

Thus, both sequences {P',.(z)}, {P4(z)} converge to the same entire function
F(2) which coincides with F(¢) for real values of z and which admits of estimates

[Fz)| < &, lz] =7,
|F(t)'=0(|t|k), as Itl-—oco,

* For the notation used, see p. 10.
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An easy application of the Phragmen-Lindeléf theorem [Titchmarsh, 2, p. 176)
shows now that F(z) is a polynomial,

16. We are now able to derive the general form y(t) of any solution of the
moment problem (2.1) in the indeterminate case, and the general form of the
corresponding function f(z) = I(z; ¥).

THEOREM 2.12. If the moment problem (2.1) is indeterminate, then the general
form of the function I(z; ¢) is

Tdyt) _ 4, _ A(2) = o(2)C(2)
ez — Iz ¥ = B() — «(z)DG)’

where A(z), B(z), C(z), D(z) are the entire functions of Theorem 2.11 and o(2) ts an
arbitrary function (including the case o(z) = «), analytic in the half-plane y > 0
and satisfying the condition Sa(z) < 0,3z > 0. To each solution y(t) of the mo-
ment problem there corresponds just one function o(z) determined by (2.55). Con-
versely, lo each function o(z) satisfying the above conditions there corresponds
substantially one solution ¢ (t) of the moment problem given by the Stieltjes inver-
ston formula. For each fixed non-real value of z the function

A(z) — oC(2)

B(z) — oD(2)

describes the circumference of the circle C(z) when the real parameter o describes
[— o, ©). Thevalue of I(z; ) ts always either on the boundary or in the interior
of C(z). To each point o of the circumference of a circle C(2o) there corresponds a
substantially unique solution of the moment problem y(t) such that I(z, ; ¢) = & .
It is given by the formula (2.55), with o (2) replaced by the constant o, determined from

= A(Zo) - a'oC(zo)

B(Zo) _— d'oD(Zo) )
The set of solutions which so correspond to all points of the circumference of C(zo)
does not depend on z,.  To each point ¢y interior to the circle C(z) there correspond
continuously many solutions (t) such that I(z; ¥) = & .

Assume that ¥(¢) is a solution of the moment problem (2.1). Then f(z) =
I(z; ¢) is a solution of problem (N,) for all values of 7, and hence is represented by

= Pon(z) — [fwx(z) - an-{-l]!)_n_(f_)

Qn+1(z) - [fﬂ+l(z) - an+1]Qn(z) ’
where fa41(2) is analytic in y > 0, 3fa11(2) = 0 and, in addition, f.+.1(2) = o(2),
as z — « in any sector (2.5). On introducing the function o,4:(z) determined
from

(2.55)

(2.56)

$o

(2.38) f(2)

— _ P"-H(O) - Qn+1(0)o'..+1(z)
fn+1(2) Appl = P..(O) — Qn(O)U,H.[(Z)

we can write (2.38) in the form

J@) =

Anpi(2) — 6u+1(2)qu+1(2)
Bn-H(z) - 0n+l(z)Dn+l(z) ’
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On allowing here n — «, g.41(2) — o(z), where o(z) has the properties stated
in the theorem, and

_A@@) — o(2)C(2)
1@ = B = ()D&

Conversely, take any function f(z) of this form, where ¢(z) is analyticiny > 0,
Je(z) = 0. For each n put

_ P, 1(0) — Qn4i(0)a(2)
far1(2) — anp1 = ;"(0) — Q.(0)e(2)

and consider the function

f(n)(z) — Po(2) — [fux(z) — ant1)Pa(2)
Qni1(2) = [fat1(2) — ann]Qu(2)’

which can be written also as

(n) = Pn(z) - [fn(z) - au]Pn—l(z)
I = 50 =) = e’

where

Bn

z = fan(z)’

In view of the relation (2.6), it is seen that the transformation

Pn+1(0) - Q»-H(O)w
Pn(O) - Qn(o)w

maps the axis of reals of the w-plane onto the axis of reals in the {-plane, and the
half-planes 3w 2 0 onto the half-planes 3¢ 2 O respectively. Hence, the func-
tion fa4+1(2) is analytic in y > 0 and 3fas1(z) = 0. The same holds for f,(2)
and, in addition, f.(z) = o0(z), a8 z — =« in the sector (2.5). It follows that
™ (z) is a solution of problem (N,) forn = 2, 3,---. But f™() — f(2),
as n — o, and a repetition of the argument used on pp. 49-50 shows that
f(z) = I(z; ¢), where ¥(t) is a solution of our moment problem. The statements
of the theorem concerning the relationship of ¢(z) and y(t) are clear from the
previous discussion. The circle described by (2.56) is the limiting position of
the circle

fn(z) = an +

¢ =

Ania(z) = aCpi(2)

Boul@) — Do)’ ° T
which coincides with the circle
Pui(2) — 7Pa(2) T real,

Qni1(2) — 7Qn(2)’

that is, with the circle C,,;(z) which, as we know, tends to C(z), as n — o,
The statements concerning the case where ¢, is on the boundary of the circle
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C(z) need no further discussion, while the final statement of Theorem 2.12 is
implied by the fact that there exist continuously many distinct functions o(z)
which satisfy the above requirements and assume a given value at a given point.

17. Some properties of the solutions ¥(¢) of the moment problem (2.1) are
readily derived either directly or by analyzing formula (2.55). We mention here
two properties referring for the proofs and also for some other properties to
Stone [1].

1. Let A be the closed set on the axis of reals consisting of points in every
neighborhood of which lie roots of infinitely many ortho-normal polynomials
wa{z). Then for any solution ¥(t) of the moment problem (2.1)

inf S(¥) < inf A < sup A < sup &),
while, in case the moment problem is determined,
S(¥) = A.

2. Let the moment problem (2.1) be indeterminate. The function o(z) of
(2.55) can be written, by Lemma 2.1, as

o(z) = Az +c+ 1?% da(t),
where «(t) is a bounded increasing function, A and ¢ are real constants, and
A = 0. With this representation the derived set of &(y) coincides with the
derived set of ©(«). Hence, in the indeterminate case we can find solutions of
the moment problem with spectrum, the derived set of which coincides with an
arbitrarily given closed set.

The following criteria are due to Carleman [2].

1. The moment problem (2.1) is determined if the series
Zo B diverges.
This follows from the inequality

B S W len@ P+ @ ), z=z+14y, y>0,

which itself follows from (2.41).
2. If the continued fraction

Bo | ﬂxl_ ﬁz,__n_

Z—ea [z2—a [z— o

converges completely (that is, the corresponding moment problem is deter-
mined), then the following two continued fractions also converge completely:

Bo | By | _ - | _ .
lz—(@m+a) [z—(ea+a3) [z— (as+ o3) ’
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provided 8, > 0 and the sequences {a, ], {8)"* — 8.""*} are bounded, and
Bo | _ B | - B2 | -
[z —=vias  Jz=ma |[z—ma ’

provided there exist two positive constants [, L such that
lsvwsL v=12" ..

18. Assume that the moment problem (2.1) is indeterminate. Then Theorem
2.12 introduces a remarkable family of meromorphic functions (2.56) depending
on the real parameter ¢. In view of the relation (2.49), the functions correspond-
ing to different values of o are distinct. Thus, to each value of ¢ (including
¢ = = x) there corresponds a substantially uniquely determined solution of the
moment problem (2.1) which we denote by ¢,(¢). These functions y,(t) are
called extremal solutions {Nevanlinna, 1] of the moment problem (2.1), in view
of a certain extremal property which is stated in

THEOREM 2.13. Let the moment problem (2.1) be indeterminate. Consider the
family of meromorphic functions (2.56) and the corresponding solutions {y.(t)},
80 that for each real value of o, including ¢ = + =,

A@z) - oC(2)
B(z) — oD(2)

Then y.(t) is a step function; its spectrum coincides with the sel of zeros of the
denominator B(z) — oD(z), and the mass concentrated at each point z;(¢) of the
spectrum precisely equals p(z (o)), and hence is larger than the mass concentrated
at this point by any other solution of the moment problem (2.1).

The numerator and the denominator of the meromorphic function I,(z) have each
infinitely many zeros which are all real and simple, and mutually separated; further-
more, the smallest (largest) root of the denominator, in case such exists, is smaller
(larger) than the smallest (largest) root of the numerator. The roots of two denomi-
nators corresponding lo two distinct values of o are also mutually separated. For
any given real value z, there always exists a (unique) real value oy (which may be
infinite) such that the corresponding function Yo(t) has x, in its spectrum with
concentrated mass p(z;). The poles of I,(z), or, which is the same, the points of the
specirum of y,(t), are monotonic (analytic) functions of o. If

= I(z; ¢,) = L(2).

v I—Z(—m)! x—l(—w)y IO(—w) = Ox xl(_w))

are the roots of the function D(z), then, as o ranges over (— =, =) the root z;(s)
of B(z) — oD(z) continuously increases from z,(— =) to 2,4,(— =).

For a proof we refer to Stone, [1]. Using Corollaries 2.3 and 2.4, the proof
of Stone can be readily completed to yield the statements concerning the mass
concentration at z;(¢) and z, .

Theorem 2.13 shows that in the indeterminate case the moment problem (2.1)
has always discontinuous extremal solutions, which form a family of solutions
depending on a real parameter 0. By multiplying the extremal solution by a
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suitable factor depending on o and integrating with respect to o it is always
possible to find infinitely many continuous, and even absolutely continuous,
solutions of the moment problem [Hamburger, 3].

19. A remarkable property of extremal solutions of the moment problem (2.1)
was discovered by M. Riesz, [4]. The present section will discuss this property.
Let {wa(z)} be the sequence of ortho-normal polynomials determined by the
sequence of moments {u.}. Let ¢(f) be any solution of the moment problem
(2.1). We consider the class of complex-valued functions f() of the real variable
t which are measurable with respect to ¢(t) and for which

(2.57) [1rorao < «.

Denote this class of functions by L} and the value of the integral (2.57) by
[1f1v. Every function f e L} generates the sequence of its Fourier coefficients
relative to {wa(2)},

fom [10mO a0, n=013,
and the corresponding formal Fourier series
,i% Srwn(t),
the (n 4+ 1)-th partial sum of which will be denoted by
() = 5a(0) = 8a() = 3 fran(l).
It is well known (Bessel’s inequality) that
I 13 = S U5l s [ 1707 00,
and that for any polynomial P, , of degree <n,
1f = sally = I = Pally + || Pa — &ally,
so that
1 = oally = [ 1716 = S 140 = min 17 - Pl

The problem now is to find conditions on ¥ under which this minimum tends to 0,
as n — o, for every function f ¢ L:, , or, in other words, to find conditions under
which the Parseval formula

S5k = [ 1o rao

holds for all functions f ¢ L, . The solution of this problem is given by
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THEOREM 2.14. A necessary and sufficient condition that the Parseval formula
hold for every function f ¢ L}, is that either the moment problem (2.1) be determined,
or, tf it 18 indeterminate, that ¢ (t) be an extremal solution.

We first show that the class L:, can be replaced by the much more restricted
subclass of functions of the type t—%— , where z, is any non-real number. This
= 40

will follow from

LeEMMA 2.14.  The linear manifold §D‘l< ) determined by the functions ]

i8 dense tn L}, .
Assume that Lemma 2.14 is proved. It is trivial that the validity of the

t"‘Zo -2

Parseval formula for all functions of L} implies its validity for all functions i _1_ o

, with 2z,

Now assume that the Parseval formula holds for all functions h 1 .
= %0

non-real, and prove that it holds then for the whole class L, . First, it is clear

, it will also hold for

that if the Parseval formula holds for any function i 1

every element of the manifold SUE(t——l—z) If now 9)2( ) is dense in L},
— 2 —
given ¢ > 0, we can find a g.(¢) ¢ M =2 such that
= 40
€
17 = 0ully <5

Furthermore,

1= 8D llv = 1S = gells + 11 ge = sa(gd) [y + || 5a(9s) = sa(f) [lv .

Here the first term on the right is less than ; , and the same is true of the third

term, in view of

I 8a@e) — s 1% = Il salge = NIZ = llge = SII}.

, if n is taken sufficiently

)
t—ZQ )

The second term on the right can be made less than g

large, since we have assumed that the Parseval formula holds for g, ¢ 9]?(

Thus

“f - sn(f) ”J' < g

for n sufficiently large, which establishes the Parseval formula for the general

element f e L}, .
We now pass on to the proof of Lemma 2.14. A general element of L} can
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be approximated arbitrarily closely in L} by a function vanishing outside a finite
interval and being continuous together with its first derivative. Hence, it
suffices to consider only such elements of L} . Let g(t) be such an element.
Consider the two functions

al) = y@) + g(—0), @0 =1 ‘2*;‘ o) — g(—1)].

They are both continuous, vanish outside a finite interval, and depend only on
#. It is easy to show that functions of this type can be approximated uniformly

in (— «, «©) by linear combinations of fractions b # 0 and real. This

_1
£+ b’
leads to a uniform approximation of g(f) by a linear combination of fractions

__1__=L(_1___1_)
24062 26\ —7b t+ b
and

Co_af 1L
t+b 2\t—1b  t+ 1)’
which are of the desired type.
Now let g(¢*) be a function which is continuous and vanishes outside a finite

interval (—a!, a'). On setting * = z we obtain a function g(z) which is defined
for £ 2 0, is continuous, and vanishes for z > a. Since (0, «) is transformed

1 .
Tt a’ functions of the above type can be
approximated uniformly in (0, ) by polynomials in

1

(z + a)f %0 be approximated uniformly by

into (0, a) by the transformation u =

Since, however,

r +a’

1/[ﬁ(x+a.~)]=i = a*a, a>0,

il =z +a’

1
T+a can be uniformly approximated by a linear combina-

tion of fractions of the type

every polynomial in

1
T+ a which, for a function of the type g(¢’) above,

. . . 1
gives a uniform approximation by fractions of the type b b = 0 and real.

This proves our assertion and also completes the proof of Lemma 2.14.

20. We have proved that a necessary and sufficient condition that the Parseval
formula hold for any function f e L} is that it holds for any function of the type
1/(t — 2z0), 2o non-real.

Now let z, be any fixed non-real number, and let

sa(t) = s,.(t,t __{ Zo) .
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We wish to find necessary and sufficient conditions in order that

e = [ s — WO
tends to 0, as n — «. Observe that
. = mi © 1 2
P =min[ |~ p0 @,

where the minimum is taken over all polynomials p.(t), of degree <n. Inas-
much as

Put) = 1 = (¢t — 20)pa(t)

can be considered as an arbitrary polynomial of degree S n 4+ 1 which assumes

the value 1 at ¢ = 2, the minimum problem which determines py(2) coincides

with that treated on pp. 39—41, where n is replaced by (n 4+ 1) and the distribution
ay(t)

dy(t) is replaced by =

and that the condition p‘(zo) = 0 is necessary and sufficient that the moment

ol Thus we may say that pa(z) — p*(2), 887 —

3
problem with the distribution (z)o k be determined. Thus, a necessary and

[t~
sufficient condition that the Parseval formula hold for every function f eLyis

_ay@)

that the moment problem with a distribution of masses given by ——— =]

be determined for every fixed non-real z, .
This condition, in turn, is equivalent to the following one: an increasing
bounded function y’(t) satisfying the conditions

Ldyt) _ [T ()
(2.58) _[ It—zol’ '[Olt-—_—"T” n=0,1,2,...,

must be substantially equal to ¢(f). Conditions (2.58), however, are equiva-
lent to

(2.59) [ " dy(t) = [ Cape), n=012 -,
with the additional condition
d!/f(t) ® dy'(t)

w0 20 — t w2 — )
Indeed, if we write (2.60) in the form

R KGR
[[e- = - PEL

(2.60)

and observe that

P o= 0= O
l2o —¢2
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it is immediately seen that (2.58) implies (2.59) and (2.60). Conversely, let
(2.59) and (2.60) be satisfied. Let 2o = zo + 2y, 3o # 0. By separating real
and imaginary parts in (2.60), we easily prove (2.58) forn = 0, 1. To prove
the conditions (2.58) forn = 2, 3, - - -, it is sufficient to observe that

lz0—t]'= (20— ) +u
is a polynomial of the second degree in ¢, so that
= |Zo - t]an—i(t) + Ant + Bny

where P,_2(t) is a polynomial of degree (n — 2) and A, and B, are constants.

Thus, our necessary and sufficient conditions are equivalent to the statement
that, given an arbitrary non-real z,, whenever we have a solution y/(t) of the
moment problem (2.1) which satisfies, in addition, condition (2.60), then y¥'(f)
is substantially equal to y(f). This means, however, that either problem (2.1)
is determined, or, in case it is not, I(z, ; ¥) lies on the boundary of the circle
C(2z) (there is clearly no loss of generality in assuming that 3z, > 0), which
implies that ¢(¢) is an extremal solution. The proof of Theorem 2.14 is now
complete.

Suppose that the moment-problem (2.1) is indeterminate, that y(¢) is a solu-
tion of (2.1) and that f(¢) is any fixed element of the class L} . If {f.} are the
Fourier coefficients of f(t) relative to the ortho-normal set {wa(2)}, the series

3|7~ |* converges, and in view of Corollary 2.7 and Theorem 2.11, it is clear
n=0

that the series J, fawn(z) converges in L} on the axis of reals, and also uniformly
nw=0

in every bounded domain of the complex z-plane to an entire function f*(z),
which admits of an estimate

=" |z|=r, ) =o0(l), as r— .

The function f*(z) will have the same Fourier coefficients as f(z), and it is easily
seen that

[isorae = Eimr+ [1r -1 avo.

It follows that a necessary and sufficient condition that the Parseval formula hold
for a given function f(t) is that f(t) be equal to the sum of its Fourier series,f*(t),
except perhaps at a set of points of Y-measure 0.

It should also be observed that functions of the type f*(t), or, which is the

same, the sums of series Z anwa(t), where Z | an |* < o, are such that the

value of [ F*(t) dy(t) dees not depend on the choice of the solution y(¢)of (2.1).

In Chapter IV we shall sec other examplesof functions possessing this property.
A complete determinaticn of the class of functions which have this property is
still an unsolved problem.
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In discussing the validity of the Parseval formula in the Stieltjes case we may
use arguments analogous to and even simpler than those used in the Hamburger
oase, with the conclusion that a necessary and sufficient condition that the Parseval

dy(t)
t — 2

Jormula holds in the Stieltjes case is that the distribution correspond to a

determinate Hamburger moment problem for any z < 0.
Thus, in the Stieltjes case, the Parseval formula holds or does not hold ac-
cording as
T 2 dy(t)
lim min || (Pua®)' G205 = 0 or >0,
where the minimum is taken over all polynomials P,,;(t), of degree £ n + 1,
which assume the value 1 at ¢ = z, for all negative z.
On observing that, for suchzand 0 < ¢ < «, (¢ — z)* is greater than each of
the quantities (—z)°, {((—z), {’, (—z)(t — z) it is obvious that, in the Stieltjes
case, the Parseval formula holds whenever one of the following distributions

ay(t) ay(t) ay(t)
t

’ e’ i —=z

ay(t),

corresponds to a determined Hamburger moment problem.

21. We have already established necessary and sufficient conditions that the
moment problem (2.1) be determined or indeterminate. Various other criteria
were established by Hamburger, {3] and proved in a simpler way by Nevanlinna
[1] and M. Riesz [1, 2, 3]. Here our exposition follows in general the line of
argument of M. Riesz. We shall need a few more properties of quasi-orthogonal
polynomials.

As was stated in Lemma 2.7, all quasi-orthogonal polynomials of order (n + 1)
which have a common root z, differ only by a constant factor. A quasi-ortho-
gonal polynomial of order (n + 1) which has a given root x, can be immediately
given by

1 [ n
(J(Z) = Z—|2 Toft " * Hign—i lo .

This is readily proved by verifying the condition g(x,) = 0 and the conditions of
quasi-orthogonality

I-‘iq(/‘)=0r i=0)1""rn_1-

In particular, a quasi-orthogonal polynomial of order (n + 1) which vanishes
at the origin is, up to a constant factor, given by

1 ] n+
(2.61) q(Z) = A fz Bilirl 0 Mignot |1 "

Hence, the polynomial D,4:(z) in (2.46) can differ only by a constant factor
from the above expression. 'We prove that

1
A,

n+l

Dyii(z) = |2 wipsr -+ Mot
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It suffices to verify that the values of the corresponding numerators at a single
point coincide. Now, formulas (2.45) show that the numerator corresponding
t0 Day1(z) is Cppai(z) and that (see (2.46))

Cn+l(0) =1,

The numerator corresponding to the polynomial (2.61) is obtained if we replace
in (2.61) z°* by the polynomial
2 — y\'

Py =2+ 2w+ - oz + i

This shows that if p(2) is the numerator corresponding to ¢(z), then p(0) = 1=
Cn41(0). Thus, Dpyi(z) = ¢(2).

The polynomial B,,1(z) of (2.45) assumes the value (—1) at z = 0. Hence,
the general quasi-orthogonal polynomial ¢(z) of order (n + 1) which assumes the
value (—1) at z = 0 can be represented by Baii1(2) + p_1D.41(2), where u_;
is an arbitrary parameter. To determine the value of u_, it is sufficient to pre-
scribe the value of the numerator p(z) corresponding to ¢(z) at a given point,
for instance, at the origin. By (2.45),

Pp@) = Aan(@) + paCani(z), p0) = pa.
On the other hand, the polynomial

1 .
- ETRY TR e
n

is clearly quasi-orthogonal of order (n + 1), assumes the value (—1) atz = 0
and depends on the parameter ;. Moreover, by the above method, it is
readily found that the numerator corresponding to this polynomial assumes
precisely the value u_, at z = 0. This proves that

1 () n
Qui1(z; p-1) = Bana(2) + w1 Daps(2) = e |2 picaps + o« dimar [0
in particular,
1 0 w m Bn-1
1 .
Bus) = —L[F o m m o
e P R
Now, on setting
_ D
Wa(z; po1) = 27 (Basa(2) + 1) + p ”:1(2) = z‘];[Qn+l(z; po) + 1],

we see from (2.46), (2.45) that the Fourier coefficients of W,(z; u_;) relative to
the orthonormal set {w,(z)} are x,(0) + u_1w,(z). Hence,

5 = Balus) = WA(s; uy) = 2_:0 [o(0) + uosw (O]

The sequence {4.} is clearly increasing.
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Let 2o, 7, - - - , 2. be the roots of Q.1(z; u_;) and let ¥u(¢; u—1) be the cor-
responding distribution function of order n, so that the set {x,, 21, -- -, z.} 18
the spectrum of ¢.(f; u_;). Then

P“l(z; #-—1) = ® dwn(t; F-l) = i Pn(xj)

Qu+i(2; 4-1) v z—1 imz—z’
and since Qn4+1(0; u—y) = —1, while Pr41(0; u_;) = u_,, we have
- = pal(Z;) _ [m dya(t; s-1)
(2-62) H-1 ,Z; _—1:' - _——t

On the other hand, on applying the quadrature formula (2.21) to the polynomial

1
W2 (z; u_1) which assumes the value 2 at the point z;, we get
1

(2.63) =2 P:;(:_-z)
s

22. We are now prepared to prove the following three theorems.

THEOREM 2.15. A necessary and sufficient condition that the moment problem
(2.1) be determined ts that at least one of the two sequences {1/p.(0)} and {5,.(u_)},
for some value of the parameler u_, , should diverge to

THEOREM 2.16. A necessary and sufficient condition that the moment problem
(2.1) be indeterminate is that, for two distinct values uly , uly of the parameter u_, ,
the sequences [5,.(“:.1)}, {6,.(#'_'1)] should converge.

TreOREM 2.17. A necessary and sufficient condition that the moment problem
(2.1) be determined 1s that at least one of the two series

(2.64) 3 w, (0, 3 x(0)

yu0 ym0

should diverge.

To prove Theorem 2.15 we observe first that if 1/p.(0) — « or p,(0) — 0,
then the moment problem (2.1) is determined. Therefore we assume that
1/pa(0) converges to a finite limit and prove that, if for some value of u_;
8.(u-1) also converges to a finite limit, or, which is the same, remains bounded,
then the problem (2.1) is indeterminate. We know that if p(0) = lim p,(0) 5= 0,

there exists a solution ¢(t) of the moment problem (2.1) with the mass p(0)
concentrated at { = 0. On the other hand, for a given ¢ > 0, we have

(2.65) Vale) — Yal—€) S € 2 palz)zi? S €5,
I=ilse

where § = lim §,(u—1) < . By the Helly Theorem, there exists a subsequence

{¥ni()}] which tends substantially to a solution ¢’(t) of the moment problem
(2.1). If now (—¢, ¢ is an interval of continuity of ¢'(t) then wemust have

Vi) — ¥(—e) £ €5,
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which shows that y/(f) is continuous at ¢ = 0, and hence distinct from ¥(¢).
Thus, the moment-problem (2.1) is indeterminate.

If, however, 8.(u_;) — «, then the moment problem (2.1) is determined since
we know [15] that in the indeterminate case both series

2 «,(0), Z x:(0)?

you y=0

converge, and therefore

= lim 8,(u2) = 3 16:0) + a1 < .

To prove Theorem 2.16 we observe that if, for any value of p_y, 8.(s_1) — =,

then the problem (2.1) is determined, as we have just seen. Assume now that
Sa(u_y) = 8(u_y) < oo, for two distinct values u_; = uli, wy. This clearly is
equivalent to the assumptxon that both series (2.64) converge. Then the
argument used in connection with (2.65) shows the existence of two solutions
V'(t), ¢''(t) of the moment problem (2.1), continuous at ¢ = 0, which are limit
functions of two subsequences extracted from {¥a(t, u1)}, {¥a(t, u"1)} respec-
tively. It remains to show that ¢/(t) and ¢"(¢) are distinct. This will be done
if we prove the possibility of passing to the limit in the relation (2.62), where
4.1 is equal to either of the two values aa s uy . Indeed, this will show that

@), a _ [Td"(t)
t ““_L t

h1 =

Let (—¢, ¢) be a common interval of continuity of the functions ¢'(t), ¢"'(t),
arbitrarily small but fixed. It is obviously possible to pass to the limit under

the sign of both integrals [ , / , and it remains to investigate [ .

By Schwarz’ inequality, we have
[l g e ) = (el [ [ 2t “—*’] < e,

so that the contribution of the interval (—e¢, ¢) is uniformly O(e), which justifies
the passing to the limit in (2.62). This completes the proof of Theorem 2.16.
The proof of Theorem 2.17 is also contained in the previous argument.

Another criterion was initially proved by Hamburger (3], and a simpler proof
of it was given by M. Riesz, [1]. We consider, together with p,(0) and p(0) =
hm p(0), the quantities p“’(O), p?(0) = hm p2(0), which are determined by

the sequence of moments (uz, us, ---) in the same way as p.(0), p(0) are de-
termined by the sequence (uo , 41, w2, - --). Hamburger’s criterion is expressed
by the following theorem.

THEOREM 2.18. A necessary and sufficient condition that the moment problem
(2.1) be determined 1s that at least one of the quantities

p(0) = lim p,(0), p®(0) = lim ,2(0)
be equal to zero.
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Indeed, if p(0) = 0, we know that (2.1) is determined. If p®(0) = 0, then
the moment-problem corresponding to the moments (uz, w3, ---) must be
determined, and therefore (2.1) must also be determined. This proves the
necessity of our condition. The sufficiency follows from the important inequality

(2.66) 1/6(t) < 41000 4+ £2/6%(0)),

where ¢ is any real number and

_ o — p(0)\}
1= (amg) >0

Indeed, this inequality shows that if p(0) > 0, p®(0) > 0, then o(t) > 0 and
hence p(z) > O for all z, so that the problem (2.1) is indeterminate. We refer
to M. Riesz [1] for an elegant proof of (2.66). M. Riesz [2] gave also a direct
proof of the equivalence of conditions of Theorems 2.15 and 2.18.

23. In Theorem 2.5 p.(20) was defined as
":in P.(1)Pn(n)

for all polynomials P.(z), of degree < n, which assume the value 1 at z = 2.
On setting z, = 0 and

Po(z) = 20 + ;2 + -+ + z,2",

we see that p,(0) is the minimum of the quadratic form

8"(10 y L1y ° In) = ZO Hig; LIy
1=
on the plane xo = 1. Hamburger (3] introduces the formal quadratic form in
infinitely many variables

oc

Fxo, 21, --°) = Z Bij Ti Xy
1=
all of whose sections §a = §a(%o, 1, - - -, Ta) are positive definite, in view of
our basic condition &, > 0,n = 0, 1, -+ -, and calls § (o, - - -) improperly or
properly definite, according as the minimum of its n-th section §. on the plane
ro = 1,85 n — =, tends to zero or to a positive quantity. With this notation
Theorem 2.18 can he restated in the following form:

A necessary and sufficient condition that the moment problem (2.1) be determined
is that al least one of the two quadratic forms

0

£
E Kit) T Xy, Z b2 Ti T

1,7=0 1,10

be improperly definite.
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The conditions of Theorems 2.15, 2.16, 2.18 can also be expressed in terms of
certain determinants. We start with the quantity 8.(u_;) and observe that

O mx po B ccr pam
1 1 po  m B2t pa

W,.(z;;;_,) = W..(z) = —A— zZ W H2 H3 St Batl|,

' Ba Batl Bag2 Tt M2n
so that
Walu) = pa.
We also have

Wu(z) = zvn—l(z) + Wn(0)7

where
0 poy B0 Baa
0 wo m - pa
1 1 M1 K2 R 1T ¥8 |
V —1 Z) = - et
wi( A, | 2 B2 p Bnie
n—1
z HKn  Hasl H2n
Thus

Wa(e) = Wa@)zVau(2) + Wa(0)] = [Quui(2) + 1]Van(z) + Wa(2)W.(0),
and, since Qn41(2) is a quasi-orthogonal polynomial,
On = W:(ﬂ') = Vn—l(l‘) + Wn(l‘)Wn(O)

= Vn—l(“) + B W,.(’” = —Al_ “:).l :::l

§,jm0

To obtain a determinant expression for pa(z0), where 2z, is any given real or
complex number, we observe that, by definition,

pa(20) = min P.(u)Pn(n),

where the minimum is taken over all polynomials, of degree < n, which assume
the value 1 at z = 2. Let S.(z) be the minimizing polynomial. Then we

can write
Pa(z) = Sa(2z) + Apa(2),

where p.(z) is an arbitrary polynomial, of degree < n, vanishing at z = 2z,
and A\ = re” is a parameter. The minimum condition can now be written in
the form

Sa(w)Sn(s) < [Salw) + Apa(w)](Saln) + Apa(n)]
= Sa()S.(k) + ASa(w)pa(s) + ASa(w)Palk) + 7Pu(p)pa(n).
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In order that this inequality be satisfied for an arbitrary A = 0 it is clearly
necessary and sufficient that

Sa(u)paln) = 0,

whenever p,(z,) = 0, or whenever ;(z-o) = 0.
Since p.(z) can be written as a linear combination of

2 2 n n
2 — 2, z2 — 2, N 2" — 2z,
the last condition is equivalent to the set of conditions
#’S“(“) = zc')Sn(#), J = 1, 2’ P ,77,,

which, together with the condition S.(z) = 1, determine S.(z) uniquely. We
easily find that

i |n j In
Sn(Z) = (.).' z / 2‘ % .
20 Hitjlije=0 20 Hitg im0
Since
Sa()Sa(n) = Sa(20)8al) = Saln),
we finally have
pn(20) = Sa(p)S,(u) = _An/l(-)i z .
20 Miyj im0
In particular,
Ho Hi Hn B2 KBl
pn0) = | coeeeee S
Bn Byl " M2n Basl H2on
In the same way we find
. B2 Hn ' , Be Hn42
PDO) = | veveeeeee | ) e
Hn " M2n HBny2 H2n

Substituting this in Theorem 2.18 and taking the product p,(0)p>:(0), we ob-

tain finally

THEOREM 2.19. A necessary and sufficient condition that the moment problem
(2.1) be determined s that the monotonically decreasing ratio of two determinants

/

24. Without going into an exposition of the classical memoir of Stieltjes, [5],
we shall mention here very briefly some distinctions between the theories of the
Stieltjes and of the Hamburger moment problems.

........................

tnd to zero, asn — o,
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We assume here that the Stieltjes moment problem corresponding to the
sequence of moments {un}, 7 = 0, 1, - - - | has a solution whose spectrum is not
a finite set, so that not only

Aﬂ=l“"+il:"-i—0>01 n=0:1)2y"';
but also
m

=‘“|'+J'+1I:vi-°>oy n=01112;""

Then using some well known facts from the theory of continued fractions [Per-
ron, 1] it is readily shown that the associated continued fraction

Bo | B | B | _ .

zZ—aw |z—ar |[z2—as

can be transformed into the corresponding continued fraction

R B N D
Tz 0wt T T
where
2 2
D) 67) Anl An2 H1
@ m: 1
= 2= 0, =12 " ; L=—.
lz“” n—lAn> " ! Ho

xa(2)

o) are its approximants of

This continued fraction is such that the fractions

even order, while the fractions Cani(2)
D n+l (Z)
way of proving this is to use the quasi-orthogonality properties of the polynomials
wa(2) and Day(2).

Write

are approximants of odd order. A simple

Xn(z) = X;n(z) n=012 ...
_w,.(z. ) w;n(Z) ’ y Ly & »
Cn+l(z) _ X;n.n(z)
=2 , =012 ---.
Duii(2)  winpa(2) "

wa(2) = wan(2),

Dn+l(z) = w;n+l (2),

Again, by using simple properties of continued fractions, Stieltjes proves* that

li ’
for a negative z the sequence {M} is decreasing, the sequence {xf"“(z) } is
wza(2) wzn41(2)

* We do not reproduce Stieltjes’ proof here since we siiall give another proof, based on a
different principle, in Chapter IV. It should be observed that Stieltjes considers expres-

“ dy(t
sions of the type f » ‘:E )t' so that his functions are related to those discussed here by the
]

general transformation formula —f(—2z).
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increasing, and each term of the second sequence is less than each term of the
first. From this and from the fact that each of these sequences is uniformly
bounded in every domain of the complex plane which is at a positive distance
from the segment [0, <), by an application of the Stieltjes-Vitali theorem, it is
easy to show that each of the above two sequences converges separately on the
whole plane cut along the segment [0, ©) On the other hand, let ¥(¢) be any
solution of the Stieltjes moment problem. We have two identities [Perron, 1]:

ohn(@) [ 2 _ o) [ L) —onll) gy

[T s wanl(2) — waa(t) T wa(t)
[ w2t e gy - [ aw o),

z—t

w;...,,;(z)zj; (:!P_(lz _ w;n+x(2)j; wzu+x(zi : ‘:2n+!(t) dy ()

wi’n+l(z) _ ‘*’;H-l(t)

—zj; wte(t) ——— L ay)

[T wren(t) d¥(R)
=z -L. t z—1t

Let z = z, be any negative number. Then, using the quasi-orthogonal proper-
ties of the polynomials w2n(2), wrns1(z) and the integral representation of the
corresponding numerators we immediately conclude that [Perron, 1]

" dY(t) _ xaal20) __1 [ ® wm(®)’ dy(t) <0
t )

o 20— w;u(zo) («’;n(zo)2 0 20 —
X;n+l(7f°) ® dy(t) _ 2 © w;u«u(t)z ay(t)
-7 - = T 2 < 0.
wzwx(zo) o 20— wz,._H(Zo) 0 t 29 — ¢

Thus we see that the Stieltjes moment problem corresponding to the sequence
of moments {u.}, n = 0, 1, 2, --- , is or is not determined according as the

’ 7
sequences {x—f"(—z)}, {X%ﬂ(i)} converge to the same limit or not, for all z which
wan(2) win41(2)

are not in the interval [0, «), or, which is the same, according as the correspond-
ing continued fraction converges or does not converge for these values of z.

This continued fraction can be written [Perron, 1] as
1| 1| 1

—I—llz }—'lz [—l;z l—l4

+...’

and if z is negative, a well known [Perron, 1] necessary and sufficient condition
for the convergence of such a fraction is simply that the series 3 |l [ = ©. We
ne=l

thus arrive at the following fundamental theorem of Stieltjes.
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THEOREM 2.20. The Stieltjes moment problem corresponding lo a given se-
quence of moments {u.},n = 0,1, 2, ---, (for which it is assumed lo have a solu-
tion) is determined or not according as the series 3 |l | is divergent or convergent,

ne]

where the 1, are given by (2.67). It is assumed here that A, > 0, AY) > 0,n =
0,12, ---.
By an argument quite similar to that used in 9 Stieltjes proves that

I(z;9) — X1n(Z)

w;n(z)

— min f Pty 2O
Py 0 t—=z
(2.68) @
I ; _ X2n+1(Z
(=;¥) wWzn41(Z)
where z < 0 and the minimum is taken over all polynomials P,(t), of degree < n,

assuming the value 1 at ¢ = «z.
As was pointed out above, in the Stieltjes case, if z < 0, both sequences

14 ’
{x’z,.(:r)}’ {xf"“(z) }, of the odd and even approximants of the corresponding
wan(T) w2n41(T)

continued fraction, converge. On the other hand, by (2.68), a necessary and
in(l')
wan(ZT)
to a determined Hamburger moment problem. This, combined with a sufficient
condition for the validity of the Parseval formula in the Stieltjes case (p. 66)
and with Theorem 2.14, shows that the distribution function corresponding to
wa(z) = w2n(2) tends, as n — o, to an extremal solution of the moment problem
(2.1). The same holds for the sequence of distribution functions corresponding
to the quasi-orthogonal polynomial wins1(2), as follows from Corollary 2.5, if we
take there A = 0. As a consequence of this, if we denote by ¥(t) any one of these
two solutions, the Parseval formula holds for every function f e L}, .

|z

-min [P0 {22,

sufficient condition that — I(z;y) is that the distribution :ii_(%): correspond

26. The following result [Hamburger, 3] should be compared with the result
on p. 70.

A necessary and sufficient condition that the Stieltjes moment problem correspond-
ing to the sequence of moments {un},n = 0, 1,2, --- | be determined is that at least
one of the definite forms

.Zc BiyiZiZy E Hitjr1 Ti T
$, )= A1 has
be improperly definite.

Thus, in the case of the Stieltjes moment problem the simple convergence of
the corresponding continued fraction plays the same role as the complete con-
vergence of the associated continued fraction in the case of the Hamburger
moment problem. It may well happen that a given sequence of moments {u.},
n =20,1,2 ---, corresponds to a determined Stieltjes moment problem, and
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to an indeterminate Hamburger moment problem.* We refer to Stieltjes, [5)
for numerous examples of developments in continued fractions, and to Stieltjes,
(5] and Hamburger [3] for the discussion of various cases of convergence of con-
tinued fractions which are not completely convergent, or which present various
other interesting convergence phenomena.

Another interesting distinction between the theories of the Stieltjes and the
Hamburger moment problems is in the evaluation of the largest possible con-
centration of mass at a given point z,. We know that in the case of the Ham-
burger moment problem the largest mass which can be concentrated at a point
To is p(zo). Stieltjes proves that if his moment problem is indeterminate, this

estimate should be compared with the estimate zl p'"(20), where p™ (z,) is deter-
0

mined by the sequence of moments {u.}, n = 1, 2, --- | in the same way as
p(zo) is determined by the sequence {u.},n = 0,1, 2, --- . In fact, Stieltjes
proves that the estimate p(z,) holds when z, is in one of the intervals [0, \,],

1 .
(6, , \2), (62, \s), - -+ , while the estimate ;o 20’ (zo) holds when z, is in one of the

intervals (A;, 61), (A2, 62), (\s, 63), - - - ; these estimates coincide when z, = 1, ,
O,N,0,,---. Here0 < 6, < 6, < --- are the roots of the entire function

qi(2) = lim D, 4.1(2),

while \; € A2 < A\; < --- are the roots of the entire function

=1 wa(z) -
9(e) = lim 275
* Such is the case of the continued fraction
1] 1 1 | 1| 1| 1 |
e T[T Y[=a: Tz t[=e: T[13

which was communicated orally to the authors by J. V. Uspensky.
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CHAPTER I1I

VARIOUS MODIFICATIONS OF THE MOMENT PROBLEM.

1. Part of this chapter is devoted to the exposition of some problems stated
by Tchebycheff and solved later by A. Markoff. The first of these problems
may be stated as follows:

ProBLEM (M). Given (n + 1) constants us, p1, - - - , in , for which the reduced
moment problem

1
(3.1) [1 dy(t) = p, y=0,1,2 ---,mn,

admits of a solution y(t). Let x be a given point of the interval (—1, 1), and f(t)
a given function. Determine

@2) int [f0 a0, s [ 10 w0,
v L1 v J-1

when Y (t) ranges over all solutions of the reduced moment problem (3.1).

We give here a brief exposition of a solution of this problem which is due to
Possé [1] who somewhat simplified the original proof of Markoff [1]. In a later
paper Markoff extends his results to the case of an infinite interval [15] (Cf.
also Achyeser and Krein, [6]). It is clear that the case of a general finite inter-
val (a, b) can be reduced to that treated here by a simple linear transformation.

We first derive necessary and sufficient conditions for the existence of solu-
tions of the moment problem (3.1), in a form different from that used
in Chapter I.

THEOREM 3.1. A necessary and sufficient condition that the moment problem
(8.1) have a solution is that, in case n = 2m, both quadratic forms

(3-3) Z Biti TiZj Z (Biti — Bitise) Ti Z;

1, j=0 1,70

be non-negative, while in case n = 2m — 1, both quadratic forms

m—1
(3.4) 2 (wigs + pisr) 735, 20 (i = pigier) T

1,0 1,5=0

be non-negative.
The proof is based on the fact [Pélya-Szegé 1, vol. II, p. 82] that a polynomial
which is non-negative on the interval [—1, 1] admits of a representation

(Z:; z.-z")z +@1-1 (}':_:: y.-e")z,

7
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if it is of degree 2m, and of a representation
m—1 m—1 2
(1 + t)(Z; m) +(- t)(): yit )

if it is of degree 2m — 1. Since this proof goes along the same (and even simpler)
lines as in Chapter I, it may be omitted.

2. The sequence (uo, - - , un) ts called positive (non-negative) if the fact that
P.(t) is a polynomial, of degree < n, which s not identically zero and is = 0 on
[—1, 1), implies that u(P,) > O(u(P,) = 0). [Hausdorff, 1]. It is clear that in
order that the sequence (u, - - -, ua) be positive (non-negative) it is necessary
and sufficient that the corresponding quadratic forms be also positive (non-nega-
tive). The condition of positiveness will be assumed in the following discussion
unless explicitly stated to the contrary. Otherwise the solution y(¢) of (3.1)
is uniquely determined and the case does not present any interest.

Let ¢(t) be any solution of the moment problem (3.1). We shall have to
discuss the ortho-normal polynomials

W@, @@, e,  wsli’(),

determined respectively by the continued-fraction expansions of the integrals

tay(t) [(Ht)d@ [‘(l—odw(e) f“ £) dy(t)

1z—1t’ z—t z—t z—t

We denote the corresponding numerators, respectively, by

@),  xv'@),  xaPE),  xE50e).
As we know, the polynomial w.(z) is completely determined by the moments
Mo, M1, -, Mam— . Observe, further, that the »-th moment of the distributions

(l + t) d¢(t) (1 - t) d¢(t) (1 - tz) dlﬁ(() iS, respectively, B+ Bugr, By — Hr+1,
u, — mys2. It readily follows that w{*’(z) is completely determined by the
moments o, p1, - - , Han, a0d wai (2) by o, w1, v, Heeos .

In the preceding chapter we have proved the reality and simplicity of roots of
quasi-orthogenal polynomials. Here, using the same method as in the proof of
Lemma 2.8, it can be proved, in addition, that the roots of orthogonal poly-
nomials are always in the interval (— 1, 1), the same being also true for quasi-
orthogonal polynomials with the possible exception of at most one root. Thus,
the roots of wa(2), ws 2(2), Wi’ (2), wiTi"(2) are all in (—1, 1). By analogous
methods it can be shown that the roots of w\ ”(z) are separated by those of
(z — Dwi™(2), the roots of wi™(z) are separated by those of (z + 1)wi ™ (2),
the roots of wn(z) are separated by those of (z* — 1)w'=i”(z) and that the roots

of wi3i"(z) are separated by those of wa(2).

3. An important step in solving problem (3f) is the proof of the existence of
certain special solutions of the moment problem (3.1) which are step-functions
such that the spectrum of each contains the given point z.
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LEMMA 3.1. Let z be a given point in (—1, 1) distinct from the roots of w.(z),
(2), wi™(2), wii(2). Consider the moment problem (3.1), and let q(z) de-
note one of the following four polynomials

" E+ DenP@, (= Don()
@+ Dos@, (- Des@) |
if n = 2m and sgn w5 " (z) = sgn 0l (z),
. \ w,(,.—l)(Z), (+l)(z)
(ll) (Z -1 wf:”(x), w,("‘"”(;;) [}
if n = 2m and sgn ws (z) = —sgn wh(z)
wm(2), (z — Donli®(2)
] ,
WD - nere

if n = 2m — 1 and sgn wa(z) = sgn wi i (z)’
wm(2), (2 + Dwai"(2)
on(@), (2 + Doii’@) |

if n = 2m — 1 and sgn wm(z) = —sgn wisi"(z):

(iv) (-1

Let p(z) be the numerator corresponding to q(z), {z;} the sequence of roots of q(z), and

_ p(=)
q'(z;) ’

i

The sequence {z;} always includes z, and may include also one or both
end-points + 1.

We always have H; > 0. The step-function whose spectrum coincides with
{z;} and which has the mass H; at z; is a solulion of the moment problem (3.1).
Finally, +f ¥(t) is any solution of (3.1), the approximate quadrature formula

(3.5) [P0 av) = T HiPuG@)

holds for an arbitrary polynomial F,(t), of degree = m.

We sketch a proof of Lemma 3.1 only in the case (i); other cases can be treated
by similar methods, and we refer for proofs to Possé {1]. By Lemma 2.7, we
can always find a quasi-orthogonal polynomial ¢(z), of degree (m + 1), which
P( ) p(x,)

q(z) q9(z;)

concentrated at other roots z;, :--, z,, of g(z), and such that formula (3.5)
holds for any polynomial P,,(z) of degree = 2m. It remains to investigate
under what conditions all the roots z;, - -+, =, will be in [—1, 1]. From the
preceding we know only that all these roots, except possibly one, satisfy this

has a mass —— = pn(z) = H concentrated at z, and masses ——% = pn(z;) = H
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condition. Now, since the polynomials (z + Do ™M (2), (z — Dw&P(z) are quasi-
orthogonal polynomials of degree (m + 1), we may write, by Lemma 2.6,

z + Don (), = Don™(2)

@+ Dos @), (@ — Do) |

and a necessary and sufficient condition that all roots of ¢(z) should be in (-1, 1)
is, clearly,

@3.7) sgn (—1)"*'g(—1) = sgn ¢(1).
In view of the obvious inequalities
@ - Dws (1) <0, (=1)""(z + Dua’(-1) <0,

formula (3.6) shows that condition (3.7) is equivalent to the condition

(3.6) q(2) =

sg0 ws P (z) = sgn & V(2),

which is precisely our condition in the case (i).

We also need the following lemma due to A. Markoff 1] (See also Possé [1]).

LemMma 3.2. Let f(t) be continuous in [a, b], together with its (m + 1) first
derivatives and let

0 >0,f0 20, k=1,2---, (m+1),in [a, b]. Let Pu(t) be a poly-
nomial, of degree < m, and ¢ a given point in (a, b). Let m, be the number of
roots in (a, c) of the equation f(t) = Pu(t) and m, the number of roots in (c, b) of the
equation Pn(t) = 0. Thenmy + ms S m + 1. Here multiple roots are counted
according to their multiplicity.

This Lemma is readily proved by a repeated application of Rolle’s theorem.

4. We are now in a position to give a solution of problem (M), at least when
the given function f(t) is subjected to certain restrictions.

TuEOREM 3.2. Let f(t) be a given function continuous on [—1, 1] together with
its first (n + 1) derivatives, and let
38) f&)>0, [fP®M20, k=12--,@+1), in[-1,1]

Let y(t) be any solution of the moment problem (3.1). Then
(3.9) > Hi@) s [ f0d s T Hi).
z <z 1 zjSz

Again we shall give a proof only in the case (i) of Lemma 3.1 and refer to Possé
(1] for analogous proofs in the remaining cases (i, iii, iv). Assume that condi-
tions of the case (i) are satisfied and that f(¢) is a given function continuous to-
gether with the derivatives f*'(¢), k = 1,2, --+, 2m + 1, in [—1, 1], and such
that

f®>0 fPO=zo0 k=12 --,@m+1), in[-1,1]
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Denote by
L << <K< <Hirn< - < Ip,, -1<z<zu <1

all roots of the equation q(z) = 0. The cases where z < z; or z > z,, are treated

in a similar manner.
Construct two polynomials ®,(z), :(z), each of degree = 2m, such that

®i(t) < f(t) < B&() in (-1, 7],
&(t) S0in(z, 1], () 20 in|z, 1],
and
&, (t) = f(2), fort =z;,22, -+, 2,
&.(2) = f(2), fort=z,,22, -, 2, z,
& (t) = &) = 0, fort = Zppn, -  , Tm .

Assuming, for the moment, the possibility of this construction, we have
1 1 1
[awa s [ rows [ awaw,
1 1 1

from which, by (3.5), (3.9) follows, so that Theorem 3.2 is proved.
Now let

8@ =Y —30 1) eP@) =Y — 90 qa

z;<z (z - z,-)q’(z,-) zjsz (z — xi)q'(z:‘)
&1(z) = 8°(2) + ¢(2)PLU(z),  Bu(z) = 9 (2) + q(z)PLu(2),

where P32 (z), P&4(z) are polynomials, of degree < (m — 1), determined,
respectively, by the conditions

q):'(xi) = [ (zj), z; <z, .
, 1 =1,2
Qi(xi) = 0) 2:,' > x,

Consider, to be definite, the polynomial ®:(z). The equation f(z) = $.(z) has
roots z, , Z2, - - -, Zx , of multiplicity = 2, and the root z of multiplicity = 1,

while the equation ;(z) = O hasroots zy41, - -+ , Zm , of multiplicity = 2. Since
2k +1+4+ 2 (m — k) = 2m + 1, we see, by Lemma 3.2, that z,, - -, 7 are
double roots of the equation f(z) = ®.(z) in (0, z), ZTx41, - - - , T= are double roots

of the equation #:(z) = 0in (z, 1), z is a simple root, of the equation f(z) = ®.(z),
and that the equations in question have no more roots in the corresponding in-
tervals. Now ®y(zis1) — f(@k+1) = —f(ze41) < 0, so that &:(t) — f(t) < 0in

(, Trsr). Since z = z is a simple root and z,, - - - , z; are doublerootsof the
equation ®:(z) — f(z) = 0, we see that ®,(¢) — f(t) = 0 in the whole interval
[=1, z]. On the other hand, ®,(z) > 0in (z, zx,,), and since Zx4y, - - , Tn are

double roots of the equation ®,(z) = 0, it follows that ®;(z) = 0 in the whole
interval [z, 1]. Thus, the polynomial ®.(z) has all desired properties, and the
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same can be proved in a similar manner for the polynomial #;(z). This completes
the proof of Theorem 3.2.

Analogous results hold in the case where z is a root of one of the polynomials
wm(2), @), 0V (2), wSiP(2) or z = = 1 [Possé, 1).

By specifying the function f(¢) and the point z in the above discussion, we may
obtain various inequalities useful in applications to probability and statistics.
An interesting case is f(t) = t"*!, z = 1, which yields bounds for the moment
i1 Of a distribution function in terms of the preassigned moments up, g1, - - -,
4n. These bounds are best derived by means of Theorem 3.2. Thus, for in-
stance, in case (a, b) = (-1, 1),

pa(uo — p2) — malm — pa) o u > papz — po) + m(pr + we) |
Bo — == po + m ’

Recently, A. Wald [1] has generalized the problem concerning bounds for the
moments and also Tchebycheff inequalities. (Cf. also M. Fréchet, [1]).

6. Another class of problems in which Markoff was much interested deals
with conditions for the existence of an absolutely continuous distribution
dy(t) = (t)dt of a moment problem (for a finite or infinite interval, and also for
the trigonometric moment problem), where ¢(¢), in addition to integrability, is
subject to various additional restrictions [Markoff, 10, 11, 13, 14]. The results
of Markoff have been modernized and extended in several papers by Achyeser
and Krein [2, 4] and also in their recent book [6] to which we have already re-
ferred (see also papers by Verblunsky (2, 3, 4, 5], which apparently were written
without the knowledge of the previous work of Markoff and of Achyeser and
Krein). We give here a brief exposition of one typical problem following the
treatment by Achyeser and Krein, and referring for a systematic treatment of
the whole subject to their book [6]).

THEOREM 3.3. A necessary and sufficient condition that the reduced moment
problem
(310) by = f t'(o(t) dt’ v =0, 1: R 2"1 Mo > 0:

admit of an integrable solution ¢(t) satisfying almost everywhere the condition
(3.11) 0=et)<L
1s that the sequence of moments
po(L), =+, ua(L)
defined by the expansion

7\

Ly " \
3.12) exp[%(.';_“.{_ +z:‘::l)] RIS R (L)

z z!n+l
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be positive over (—1, 1), or, which s the same, that the quadratic form

(3.13) E piri (L) 25

$,jue0
be positive.

First, we prove the sufficiency of the above condition. If the quadratic form
(3.13) is positive, then for every N < L and sufficiently near to L, the quadratic
form

E piri (N 5

i,jm0
is also positive. Fix the value of N and write
FV(N)=“:y v=07172)"'12n-

We have seen in I1.8 that we can always find a quasi-orthogonal polynomial
q(2), of degree (n + 1), and the corresponding distribution function y.(¢) of
order n, determined by the sequence {u:} such that y.(t) is a step-function which
has points of increase at the roots xo, 1, 22 - - - , z, of g(z) with the concentrated
masses pn(Zo) , - -+, pa(Ts) respectively. We have, then,

3 pu@)a] = uty v =01, 2n,
n(Z;) s(2) Ho u;..
1+§zp-},=ﬁj =1+2+ -+ 25+ -
If we write
g@) =(@~z) - (z—z), 8(&)=1(z—w) - (z— yn)
it is readily seen that
YU < <n<n<- - <yYsa<zZn.

Now introduce the step function assuming, except for removable discontinuities,

only values 0 and N,
on(t) = '5{1 sgn q(t)}

For a sufficiently large positive z we have

® on(t) dt s(z)
-[u z—1 N log )"

On the other hand, on replacing L by N in (3.12) and taking logarithms,

b b H2n M M Han
SR R Nlog[1+°+‘+ +22m+---],
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which, compared with the preceding results, shows that

N lo sgz; ‘[:¢N(t)dt=;ﬂ>+£1+_”+

M2n
z -t z 22 ziu+l + ¢

Thus
by = _[ t’wﬂ(t) dtv v = 0) 1) Tty 2”"

and ¢y(t) is therefore a solution of our reduced moment problem (3.10) satisfying
the condition (3.11). We pass to the proof of the necessity of the condition of
Theorem 3.3. Assume that the reduced moment problem (3.10) admits a solu-
tion ¢(t) satisfying (3.11). We wish to prove that under this condition the
quadratic form (3.13) is positive. We first prove that it is non-negative. In-
troduce a positive number 7' and set

T
#Sr) = _[ Co(t) dt, v=0,12,---
T

Let {u{™(L)},» = 0,1, ---, 2n, be the quantities determined by {x{™} in the
same way as {u,(L)} are determined by {n,}. We obviously have
“ST) - U, I-‘ST)(L) d “'(L)a v = 01 17 ) 2"’: as T — o,

It is clear that for | 2| > T

o(t) dt S o pin
1 4 B 4 B
L.[rz—t + 2 + 22 + +z’“+‘+ ’

so that

o - o3[ 209

is analytic when z is not in the interval [— T, T] and can be expanded in a power
series

f@) =1+ 52— + -

+ + 2n+l

" @) . m" (L) uin (L)
zz

convergent for |z | > T. It is easy to prove that
(3.14) 3f(z) £ 0, when3z > 0.

Indeed, if we write z = z + 1y, y > 0, we have
T
ye(t) dt
) = /@] sm{ A y,}
Here, in view of (3.11),

ye(t) di ® ydt
L(x— 0 + g <L(z_+—t)2—-7-7

=W,
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which implies (3.14). An easy application of Lemma 2.2 shows now that there
exists an increasing function ¢(t, T') which is constant outside of [— T, T] and
which yields the representation

&) =1+

’

Tdy(t, T)
r z—1¢
whence

T
“ir)(L) = [ t'dll/(t, T), v =0’ 1,2’ ...,2n_
T
This clearly implies that the quadratic form

2 wih (L)

ALY A

is non-negative, and, on allowing T — «, that the quadratic form (3.13) is also

non-negative.
To prove that the form (3.13) is positive we use a Lemma due to E. Fischer

[1], for the proof of which we refer to Achyeser and Krein [6], also to Fischer, [1].

Lemma 3.3. If the quadratic form

n

Z Hiti T Xy

L
18 non-negative and if
Ao>0)"'7Ak—l>O; Ak="'=Aﬂ=Oy kény
then there exists a representation (uniquely determined)
k
“'=Zpi£:1 v=0,1,---,2n—1,
fm=]
(3.15) .
Mon = Z pl'E?nA + AI: M = 0,
tem]l
where &, -+ -, & are real numbers, p,, - -+, pr are posttive and M = 0 in case
k = n.

Assume now that the form (3.13) is only non-negative. Then, using the
representation (3.15), with u,(L) instead of g, , and introducing the polvnomiuals

gz) = (z— &) --- (z — &),
si(2) = qu(2) + pe(2) = (2 — m) -+ (2 — m),

analogous to those used in the proof of sufficiency, we construct the function

=Ll - s 80
ei(l) = 3 {1 sgn Qk(t)}’

and prove, as before, that

L) = [ Com®d, »=0,1,,20 1,
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with the added relation
i) = [ euyat, it k=n
We then have, whether k < nork = n,
_[: [era(t) = e(O]sa(t)ga(t) dt = 0.

On the other hand, in view of (3.18),
8gn [p.a(t) — o()] sgn [s:(t)gu(t)] < 0.

Therefore we must have almost everywhere ¢(t) = ¢..4(t), which is certainly
not possible since ¢(f) < L while ¢..x(f) = L on intervals.

Another theorem of the same kind as Theorem 3.3 can be proved by using
practically the same methods as above, with the additional use of Helly’s
theorem.

THEOREM 3.4. A necessary and sufficient condition that the moment problem
#-=[ Uo(t) dt, v=20,12 ---,

have a solution ¢(t) which satisfies the condition
0s¢(®) =L
almost everywhere, is that the sequence {u,(L)}, v = 0, 1, 2, -- - | determined by

1 (1o M1 = “_o(l’_,) ‘.‘_1.@
expl:I—J<;+;,+ )]—1+ z + 22 +

be non-negative in (— o, «),

For a proof we refer again to Achyeser and Krein [6].

6. We now return to the one-dimensional Hausdorff moment problem and
proceed to discuss the remarkable relationship which Hausdorff’s solution estab-
lishes between the theory of moment sequences and moment functions on one
hand and the theory of completely monotonic functions on the other. We
shall operate with the following fundamental notions.

A sequence of constants {u.}, n = 0, 1, 2, - - -, is called completely monotonic
if all differences

. k k
Akﬂn = Up — (1) Mn41 + <2> Mn 42 + et +(—1)k“n+k g O)

where k, n are any non-negative integers, and A%, = o

Similarly, a function f(¢) is said to be completely monotonic in the interval
(c, ) if it is defined there and if all differences

810 = 1) - ('f)f(z + B+ (’;)fa +2) + o (=D + kh) 2 0,
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for all non-negative integers k and all ¢ > c and A > 0, where
a() = 1@

The function f(t) is said to be completely monotonic in the interval [c, =) if it
is completely monotonic in (¢, =) and if, in addition, f(c) is defined and f(¢) is
continuous (on the right) at ¢ = ¢, that is, if

fe) = f(c + 0)*.

A sequence {u,},n = 0,1, 2, ---, or a function u(z), z = 0, is called respec-
tively a moment sequence or a moment function if there exists a distribution
function ¢(¢) in [0, 1] such that respectively

1
/J,.=ftnd¢(t), n=0)1s2,"'9
0

1
wa) = [ & aua), zz0.

A fundamental result of Hausdorff [1] is expressed by

THEOREM 3.4. The class of functions completely monotonic in [0, =< ) is identical
with the ciass of moment functions whose distribution functions are continuous
at t = 0.

The proof of this theorem is based on the following facts.

(i) A necessary and sufficient condition that a sequence {u.}, 7 =0,1,2, --- |
be a moment sequence is that it be completely monotonic.

This statement is but a rephrasing of the necessary and sufficient condition
for the existence of a solution of the moment problem

l‘u=‘£tnd¢’(t)’ n=011)2y"',

which was proved in Chapter I.

(ii) If {ua},n =0,1,2, --.,is a completely monotonic sequence and p is any
positive integer, it is always possible to construct a new sequence {u\”’}, n =
0,1,2, ---, by interpolating (p — 1) terms between any two consecutive terms

of {us) in such a way that the sequence

#5.’), “S\’p) = Bn, n=012":.--,
be also completely monotonic. The sequence | 1P’} is uniquely determined.
Let {ua}, n = 0, 1, 2, --- , be completely monotonic. Then, by (i), there
exists an increasing distribution function such that

h
y,=ft"d¢/, n=2012 ---.
o

* The sequences and functions defined above are completely monotonic; the class of
absolutely monotonic sequences and functions is obtained by reversing the order of terms
in the differences. In the following we deal only with completely monotonic sequences
and functions.
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Consider the moment function
1
u(z) = fo £ dy.

We obviously have u(n) = p,. For any z = 0 and A > 0, the se-

quence {u(xo + nh)}, n = 0,1, 2, .-, is also completely monotonic. This
follows immediately from the formula

1
Ak u(zo + nh) = fo £ — Py 2 0.

. n . .
For r, = 0. h = 1/p, we obtain the sequence {”(5)} which obviously possesses
the properties required in (ii). It remains to prove that the sequence {x4”’} in

. . . . * .
question is uniquely determined. Assume that w,'*"' is another completely

. * . - . . .
monotonic sequence such that uny” = u.. By (i), there exists a distribution

function y,(t) such that

3
i‘:(p) = f u” dyp(u), n=012---,
0

or, by setting u-= "',

1
R j; 17 dg(£17).

On. substituting here np instead of n and observing that u:‘,”“ = u,, we get
1 1
[ rasem = [ cavwy, n=012,
n 0

Since the moment problem corresponding to the sequence {u.} is determined,
we conclude that y,(t"'?) is substantially equal to ¥(t), so that

*(p) ! n/p n
Wl =£z W@=#G>

which establishes the uniqueness of the interpolated sequence {u$?'}.
(it) If f(t) is completely monotonic in (¢, =), it is also continuous there*.
This is a well known property which f(¢) shares with all monotonic and convex
functions.
Finally, we leave to the reader the proof of
(iv) In order that the moment function

1
mw=£fwm

be continuous at x = 0 it is necessary and sufficient that ¢ ({) be continuous
at ¢t = 0.

* In fact, f(¢) is analytic in (¢, =), but here we do not need this stronger statement.



VARIOUS MODIFICATIONS OF MOMENT PROBLEM 89

We are now ready for the proof of Theorem 3.4. If x(z) is any moment func-
tion then we know that all sequences {u(zo + hn)},n =0,1,2,---, 3 = 0,
h > 0, are completely monotonic; moreover, if the distribution function y(t) of
u(z) is continuous at ¢ = 0 then, by (iv) above, u(z) is continuous at z = 0;
hence u(z) is completely monotonic in [0, ). It remains to prove the converse
statement. Let u(z) be a function completely monotonic in [0, ). This im-
plies that all sequences {u(zo + nh)},n =0,1,2, --- ;20 = 0, h > 0, are com-
pletely monotonic, and, in particular, so is the sequence {u(n)}. Thus, there
exists a distribution function ¢(¢) such that

1
(3.16) u(n) = [o fdy, n=012-

1
The sequences {“(Z)}’ { Ll ld d,p}, n=0,1,2 .-, are both interpolating se-

quences considered in (ii). Therefore they must coincide, so that

1
d = nlp = ve
p(;))—-j;t dy, n=0,12 .

1
Thus, the functions u(z) and _L' t* dy/(t) which are both continuous for z > 0

[for u(z) this follows from (iii)], coincide for all rational values of z > 0; there-
fore they coincide for all z > 0, and

p(z) = j; r dy(t), z > 0.

By (3.16), this equality holds also for z = 0, and since, by assumption, u(z) is
continuous at z = 0, ¥(¢) must be continuous at ¢t = 0, by (iv).

7. Theorem 3.4. can be stated in a different form.

TueoreM 3.5. The class of functions completely monotonic in [0, « ) is identical
with the class of functions which are represented by Laplace-Stieltjes integrals

(3.17) _/; e da(u),
where a(u) ts any distribution function in [0, ©). The integral (3.17) converges

absolutely for all x with Rz = 0.

To each function y(¢), bounded and increasing in [0, 1] and continuous at
¢t = 0, there corresponds a function a(u) bounded and increasing in [0, =), by
the formula

a(u) = ¢(1) — (™).

Using this fact, it is seen immediately that forallz = 0

j; Edp() = lim ﬁ e ap) = lim j; " dafu) = fo " da(u).
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The first proot of Theorems 3.4 and 3.5 is due essentially to Hausdorff [1].
Other proofs were given subsequently by various writers [S. Bernstein, 2; I. J.
Schoenberg, 2; J. D. Tamarkin, 1; D. V. Widder, 2].

THEOREM 3.6. The class of functions completely monotonic in the open interval
(0, =) s dentical with the class of functions represented by integrals (3.17), where
a(u) s increasing but not necessarily bounded and such that (3.17) converges abso-
lutely for Rz > 0.

That a function represented by (3.17) is completely monotonic in (0, =) is
immediately clear from the formula

Abf(z) = fo " AKE ™) dalu) = j; T — Y da(u) 2 0,

To prove the converse, let f(z) be completely monotonic in (0, «). Then f(z)
is completely monotonie in [c, 0) where ¢ > 0 is arbitrary, and, by Theorem 3.7,

(3.18) flz) = fo ) e " da (u) = j; ) e eV da(u), z2=c

where a.(u) is bounded and increasing in [0, =), and the integral converges
absolutely for z = ¢. We may assume «.(0) = 0. On introducing the function

i) = [t

which is increasing but not necessarily bounded in (0, «), relation (3.18) can
be written in the form

f(z) = f e ™ df.(u), z ZC.
0
For any value of ¢;, 0 < ¢; < ¢, we also have
j@) = [ e dpa),  zza,
o

so that, by the uniqueness theorem of the Laplace integral representation, we
must have 8.(t) = B, (t) substantially. Thus, there exists an increasing function
a(t) to which all 8.(¢) are substantially equal and which gives the representation
(3.17) with all desired properties.

8. In the case of a finite interval there exist several methods for obtaining an
explicit representation of the solution of the moment problem in terms of the
moments. The problem appears to be considerably more difficult in the case
of an infinite interval.

For a finite interval, reduced to (0, 1), we start with an elegant solution due to
Hausdorff [2]. In dealing with the solution of the moment problem

1
(319) HBn = j; & d'ﬁ(t); n=0,]1, 21 B}
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there is no loss of generality if ¥(¢) is assumed to be normalized so as to satisfy
the conditions
(320) ¢(0) =0, v =14¥t+0)+y(t—-0)], 0<t<Ll

Now consider the sequence of Legendre polynomials

1d . . _
L“(t)_f-l_id_t"[t (1 t)]; n—Oy 172) .
These polynomials satisfy the relations
. 0, t 7,
j’ L@LWdt={ .
o Em ’ t=2

and are related to the classical Legendre pnlynomials X,(¢) for the interval
(=1, 1) by Ln(f) = Xa(2t — 1). Put

An = pu(Ly) = _/: Ll(‘) dy, n=2012-

It is clear that A, is a linear combination of the moments uo, - - - , ua , and that,
conversely, the moment u, is a linear combination of Ay, ---, A,. With' this
notation we have

THEOREM 3.7. If the moment problem (3.19) has a normalized solution y(t),
then it is represented everywhere in [0, 1] by the series

3.21) v = g @ + DA, '£ L) du,

It is clear that formula (3.21) holds fort = 0 and ¢ = 1. We may therefore
assume that ¢ is a fixed inner point of the interval (0, 1). From the theory of
Legendre series it is known that ¥(¢), which is of bounded variation and normal-
ized, can be expanded in the everywhere convergent series

W = 3 @ + N LO,
where

Y = fo L, (u)(u) du.

Using the relations
@ + DL(O) = 3 Lowa(®) = Lia®), v 21,

u(P) = f. P(t)dp() = woP(1) — f P(ty(t) dt,

where P(t) is an arbitrary polynomial, it is readily found that

(@2 + DA, fo ' Liw)du = 2, (20 + DA L) + ani La(t) + 3AnLana(l).

=0 [
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On the other hand, since | L,(t) | £ 1in [0, 1],

M| =

1
LLwaﬂgm,
while L.(t) — 0, as n — o, for every fixed ¢ in (0, 1). Hence
@ L o
> @+ D j; L) du = 32 (& + DN L) = w0,

which completes the proof of Theorem 3.7.

It is evident that no changes would be necessary in the above argument if it
were assumed only that y(t) is of bounded variation, and that an analogous
method could be applied in the case where the polynomials L.(t) are replaced
by more general orthogonal polynomials, such as Jacobi polynomials.

An analogous method was used by Widder [4] to obtain an inversion formula
for a moment function u(z) instead of a moment sequence {u.} as discussed
above.

THEOREM 3.8. If a moment function u(z) admits of the representation
(3.22) u(z) = '£ ¢ da(t),

where a(t) is bounded, increasing and normalized, and a(0) = 0, then, everywhere
in [0, =),

@ H
(3.23) all) = 2N, f To(u) du,
re=0 0
where L.(u),n = 0, 1, - -+ , 15 the sequence of Laguerre polynomials defined by
-y () (=2 -
L,.(I) - bgo (k) k! ) n = 0: 11 21 ’
and

I

n (k)
_ n\u" (1)
An Z%(k) K

Since (3.23) holds for ¢ = 0, we may assume { > 0. From (3.22) it readily
follows that

A = j: e ' La(t) da(t), n=20,12 ---.
On the other hand, from the theory of Laguerre series it is known that
al) = SN L),
where

A = fo e L(w)a () du.
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Now, using the formula

j: L) du = L(t) — L), »=01,2 -,
we have

o = j; ¢ Lot)a(t) dt = AY,

while, forv = 1,

N = Moy = f et L(Da(l) dt = A,
0
Hence
n ¢ n
S f L(w)du = S A L(t) = A Loa(d).
ye=( 0 yu=()

The conclusion of Theorem 3.8 now follows if we observe that
A= 0(Q1), Luon(t) = 0@™), asn— .

The above proof may be applied if «(t) is to be of bounded variation over [0, =)
and the polynomials L.(t) are replaced by generalized Laguerre polynomials.

As observed by Hille (1], Theorems 3.7 and 3.8 may be considered as special
cases of a more general inversion formula for the Laplace integral

f(z) = f ¢ F(u) du,
o
which is obtained whenever we have a generalized expansion
e = ) Ba(u)¥a(2).
nm=]

9. There are several methods for obtaining the solution of the moment prob-
lem (3.19) as a limit of a convergent sequence of step-functions having a finite
or an infinite number of steps. Such is, in the first place, the method used in
Chapter II, where the solution y(t) was obtained as the limit of a sequence of
distribution functions ¥.(t) of finite orders. These distribution functions were
characterized by the condition that they have their first (2n + 1) moments the
same as y(t) itself. Here we mention different methods due to Hausdorff [2] and
to Widder [3], where the approximating function is not required to have the
same initial moments as the solution y(¢).

In the theory of Hausdorff the quantities

n! n—y n n—r»
Xﬂ' = — 14 = »
sy (,,) AT
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play an important role. We observe that, if ¢(f) is a solution of the moment

problem (3.19), then

(n+ D!

Wiin — »)!

appears as a certain weighted average of the distribution characterized by ¢ (f).
Hausdorff introduces the normalized step function x.(t) defined as follows:

(n + DAy = / £ — 0" dy

Xn(o) = 0) x"(l) = Z:;' xnr = Mo,
and, for0 <t <1,
Xt —0) = 2 My,  xalt4+0)= 2 Aa,

r<nt rsnt
Xn(t) = %[Xn(t + 0) + le(t - 0)]

He proves that xa(t) converges to the solution ¥/(t) of the moment problem (3.19)
for all ¢ in [0, 1].

To explain the method used by Widder, assume first that the moment problem
(3.19) has an absolutely continuous solution so that dy(t) = ¢(t)dt, and hence

(n + 1)!

(n + D = S0

f P = 1 o) dt.

The maximum of the factor {'(1 — £)"" is attained at { = % Thus, if we fix

the value & in (0, 1) and select » as function of » and & so that % = {; approxi-

mately, we may expect that (n + 1) \,, = o(k), asn — . Changing notation,
replacen — v by k. We then get the expression

v+k+ D!,
TRL A ke
where A -:;_ - must approximately equal &, . This requirement is satisfied if we
take » = [lk_—tt] We thus naturally obtain Widder’s operator*
_v+k+ D! _ kt
Lk.l(#) = k! A By v = 1_——t .

* Widder introduced this operator by analogy with the operator

Lulp) = 2 f‘"()c)m

{ ]
which he used in the inversion theory of the Laplace-Stieltjes integral f(z) = f e dall).
0

The first idea of using such an operator for this purpose is apparently due to Stieltjes
[6, 2 (383)).
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We now state some of the results of Widder, referring for the proofs to Wid-

der [3].
Let
v+ k+ 1) [ ke
L = O D, =[]
5 R
Seu(p) = — e '_2.21 TR A .
Then:
@) if

1
I"u:.Ltnd‘h n=2012--,

where ¢(t) is of bounded variation in [0, 1] and is normalized by the conditions
v(1) =0, y@) =4yC+0)+yt—-0)], 0<t<]1,
we have
Pm Sia(u) = ¢(t), 0<t< 1
(ii) if
1
“"=ftu¢(t)dt; n=011!21'“)
0

where ¢(t) is integrable in (0, 1), we have
lim Ly(p) = o(t)
almost everywhere in (0, 1).

On introducing the operator

Tw+k+2) . _ K
Tw+ DIk + 1) P

Lip) =
where
Ay, = [ w(l — u)o(u) dy,
Widder proves further that if
p..=.[u"¢p(u)du, n=20,12 -+,

where ¢(u) is analytic in the circle |u — } | < §, then for any ¢ in this circle

lim Liw) = ().
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We also mention various results of Widder concerning the number of changes
of sign in the sequences {A*u.},n = 0,1,2, - - -, in their relation to the number
of changes of trend of y(t).

10. In the case of the Stieltjes moment problem a formal solution was given
by LeRoy [2]. It was put on a rigorous basis by Hardy [1s]. (For a slightly
different treatment see Titchmarsh, |1]).

Suppose that the moment problem

= [ rewa, n=01,2-
has a solution ¢(t) such that
(3.24) [ 1e@eva< o

for a certain k > 0 (in the case where ¢(f) = 0 we know, by Corollary 1.1, that
the problem is determined). It is readily seen that the function

3.25) 0@ = [ oOIol2V/E) at

is analytic for z > 0 and is represented by the power series expansion

0@ = 3 S ke

= T (n)e

for | z | sufficiently small. This follows from (3.24) and from the expansion for
the Bessel function

L@V = 3 S

n=0 (n ')2

Thus, to find ¢(t), it remains to solve the integral equation (3.25). It turns out
that almost everywhere

o = [ Jol2v/low) dy,

where the integral on the right in general does not converge, but must be evalu-
ated by some of the known summability methods, as, for instance,

lim | e " Jo[2V/ly}g(v) dy,
or

hm = f (Y = y)Wol2V ty}g(y) dy.
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Another method proposed by Hardy {1.] is to construct the series

re) = 35 e 0 o [0 con (v

a=0 (2n)!
so that
H(u) = [' e’h (g) dz = [. e(t) dt [. e’ cos {z(ﬁ)m}df.
" up(t) dt
t+u’

and to find ¢(f) by applying the inversion formula, [Introduction, 5] to the
equation

H@) _ [ o) d
u t+u’

In case ¢(t) satisfies the condition
[leolea<a, k>0

instead of (3.24), the problem of finding ¢(t) reduces to that of inverting a Laplace
integral, for we may put

g(z) = 2 (_—_'Eﬂ‘;" = [- ¢(t)e"‘ dt.

am0 n!

(See also Titchmarsh [1]).

11. In the present section we discuss various moment-problems which differ
from those which we have discussed on preceding pages by the removal of the
requirement that the solution shall be an increasing function. (We have met
such modified problems in some isolated instances before). Thus we shall deal
with moment problems of the type

(3.26) F.=£ltﬂw’, n=0,1,2,-..’

where ¢(t), instead of being assumed increasing, is now assumed to belong to
more or less restricted sub-classes of the general class of functions of bounded
variation. An important fact is revealed by

THEOREM 3.9. A solution of bounded variation of the moment problem (3.26),
if it exists at all, s substantially unique.

Indeed, assuming that (3.26) has two solutions ¥4 (), ¥a(t), of bounded varia-
tion, we may write

() = () — '),  valt) = ¥alt) — ¥2(0),
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where ¥1(t), ¥1 (£), a(t), 1 (t) are bounded increasing functions. Our assump-
tion yields, forn =0,1,2, ---,

1 1
j; " dWit) + va(t) = 1: " dWA) + Vi(D).

Thus, two bounded increasing functions y1(f) + ¥s (¢), va(t) + ¥1(t) have the
same moments of all orders over the finite interval (0, 1) and therefore must be
substantially equal, which, in turn, implies the substantial equality of the
functions y4(t) and ¢.(t).

Introduce again the quantities

820 = (M2 = (7) [ - 07w = wowi,

where
(3.28) Ane(t) = (:‘) ra - o).

We start with a lemma [Hausdorff, 2].
LemMa 3.4. If p is any number = 1, then the expression

n+ 1" 2 (Al
y=0

ts an increasing function of n.

Since

m+1DA@) = +1—»Apa(t) + (v + DAnt1r41(2),
we have
(n + l)knr = (n +1- ”)xn+l.r + (l’ + l)xn+l,’+l )

which can be written in the form

n+l, _n4l—y v+ 1
mxnr = W xn+l.'+ mkvﬂ-l.ﬂ-l

and gives, by an easy application of Holder’s inequality,

1 P + 1 — 1
(::—i—z> Pl 8 5 D 4 235 Do 1

from which Lemma 3.4 is easily derived if we sum over » from 0 ton + 1.
n 1/p
It follows that (n + 1)'~%/® (Z | Anv I”) is increasing when n increases, and
ya=(0

this holds truc also in the limiting case p = « if we replace the expression in
question by (n + 1) max |\, |. Thus,

n i/p
lim (n + 1)"‘"”(2 | An I’) or lim {(n 4+ 1) max |\ |}
re=() n—s0 v

n-*w0

exists (as a finite or infinite number) for 1 < p £ «; it will be denoted by A, .
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We may now state our main theorem.

THEOREM 3.10. A necessary and sufficient condition that the moment-problem
(3.26) have
(1) a solution Y (t) of bounded variation, is that M, < =.
¢

(1) a solution Y(t) = f o(u) du, where o(t) € L,(0,1),p > 1, isthat M, < .
(]

]
(iii) @ solution (1) = L o(u) du, where o(t) is bounded, is that M_ < .

Furthermore, #f the conditions of cases (i, ii, iii) are satisfied, then we have re-
spectively:
1

@ f Ldy(t) | = M., provided y(1) is normalized,
0
1 1/p
(i) (fn le® l”dt) = M,,

(iii) esssup |o(t)| = Mw.
0ztgl
In all cases the solution is unique.

We start with the case (i). If problem (3.26) admits of a solution y(t) of
bounded variation, then

> Al =3 (")
ye=( yum0 \V

| ra - o dw)!

<3 (n) j; va - oo | = | e

ye=0

so that

n 1

Mi=1lim Y [Aa| < f ()| < =,
n y=0 0

which proves the necessity of the condition of the theorem. Assume now that

this condition 1s satisfied. Then, if P(¢) is an arbitrary polynomial, of degree £,

and if B.(¢{, P) is the corresponding Bernstein polynomial, of degree n, we

have [1.2]

PW) = But; P) + &n) e = 3 P28

=1 n'

so that
u(P) = u(Bn) + ulen),

;)

| Plle = max |P(t)].
0sts1

Mr + | ulen)| S |[Plle M1+ O(1/n),

ye=0

where
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On allowing n — «, we get
uP) | = || Plle My,

which shows that u(P) is a linear functional defined on the linear subspace M,
(the manifold of all polynomials) of the space C of functions continuous in
[0, 1] and that the norm of u(P) does not exceed M,;. By Introduction, 4,
u(P) can be extended over the whole space C so as tb remain linear and with
preservation of the norm. But it is well known [Banach, 1] that the general
form of such a functional is

(3.29) u(X) = [ X0 dp(0),

where X = X(t) is any element of the space C and y/(¢) is a function of bounded
variation. Furthermore, it is known that if Y(¢) is normalized by the condition

v() = §¥( + 0) + ¢t — 0)], 0<t<1,
(which does not change the value of the integral in (3.23)), then the norm of
1
p(X) will be precisely f |d¢()|. Thus
0

j:ldw(t)ile,

and since clearly
1
f"‘dw(t)=“‘, n=012---,
0
it follows that ¥(t) is the solution of bounded variation of the moment problem
1
(3.26), and that f ldy@) | = M,.
0
In the case (i) let 1 < p < = and let
dy(t) = o(t) dt, e eL,0, 1),

be a solution of the moment problem (3.26). Then, using the notation (3.27),

(3.28), we have, on writing p’ =

p—1

[ WORO) dt’ < ( [ Aol | 0(8) |° d:)”’ ( j; et dt)w

= ([ wotewra) ()"
since

[wa=(C)[ea-oma-(C)Rrleort 0y,

| Awr| =
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Thus, on writing

lells = ([ 1o @),
we have

a0 Sl s [ 2 (T)ea - oo ra=liels,
y=0 0 »=0 \V
and finally,
” 1/p
(n + 1V (z e w) <M, < llolls,

which shows the necessity of the condition of the theorem in the case (ii).
Assume now that this condition is satisfied. Then, with the notation used
» p'\1/p’
< M,{ > !

in the case (i), we have
o v v
; P(ﬁ) Ans n+ 1= P(r_b) f

Since B,.(t; P) — P(t) uniformly in [0, 1], as n — «, and since the expression in
brackets in the right-hand member of the preceding inequality tends to

{[ | P@) | dt}”p' , we see that
'#(P)I s Mp”P“n'

so that u(P) appears as a linear functional defined on the linear subspace D,
of the space L,(0, 1). Using the fact that the general linear functional on
L,(0, 1) is given by

I “(Bn) l =

1
[ x0e0d,  eeL,0,),
an argument analogous to that used in the case (i) readily shows that
1
wP) = [ PO dt,
o
whence
1
y,.=ft"¢p(t)dt, n=012---.
0

The argument to be used in the case (iii), which is the limiting case of (ii), as
p — «, i8 quite analogous to that used in the case (ii), and may be left to the
reader.

The case (i) of Theorem 3.10 can also be restated in the following form:

A necessary and sufficient condition that the sequence {pn}, n = 0,1, 2, -+,
be a sequence of moments [over the interval (0, 1)] of a function of bounded varia-
tion, 18 that it be a difference of two completely monotonic sequences.
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The argument used in proving Theorem 3.10 in the case (i) can be readily
extended to any number of dimensions. Thus we may state the following
result (using the notation of Chapter I):

A necessary and sufficient condition that the moment problem

LIS
B = f j u'v’ do
0 Jo

have a solution of bounded variation is the existence of a fired number M such that

>3 (")(’J") | APAT uiy| £ M,

im0 j=0 \?

for all values = 0 of the integers m, n.

12. There are other methods of obtaining criteria for the existence of a solu-
tion of the moment problem (3.26). They consist in applying various summa-
bility methods to the explicit representation (3.21) of the solution and then
proceeding along the lines familiar from the theory of orthogonal expansions
[Kaczmarz und Steinhaus, 1]. We refer to these sources and also to [Hausdorff,
1] for proofs of statements which follow.

Let the matrix

(b bue bim,

b21 b?? b‘.‘m,
W

bnl bn2 bnm.

................

correspond to a regular definition of summability, and let

2 + 1
2

@n(f, u) = g bnk Lk(t)Lg(u) = <l>..(u, t)

be the n-th transform of the n-th Legendre kernel

Z:jo 2 ;’ ! L OL.w).

It is assumed that there exists a fixed constant A* such that
1
fl@..(t,u){duéA, 0stsl, n=012: .
0
Let
ﬁon(u) = “I{Qn(t) ’U.)l,
* This assumption is automatically satisfied when ®,(¢, k) 2 0, which includes cases

treated by Hausdorfl, when the transformation 7 is (C, 2) or a de la Vallée-Poussin trans-
formation.
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where u. means that the functional u is taken relative to the variable t. Then
a necessary and sufficient condition for the moment problem (3.26) to have a
solution y(t) of one of the following types:

(i) bounded and increasing,
(ii) of bounded variation
]
(iii) of the form y(t) = j; o(w) du, ¢ € L,(0, 1), p > 1,
(iv) of the same form as in (iii), with ¢(u) essentially bounded,
(v) of the same form as in (iii), with ¢ € L, (0, 1),
is respectively:

(i) eaw)20, O0Susl, n=012---;

1
(ii)f loaw) [du S M, n=0,1,2 -;

0
(iii) || ¢n ||, = M, n=0,1,2, -
(iv)esssupr’n(u)léM’ n=011|2;' ‘

[ FXF 4
(v) “ en(t) — om(u) ”1 —0, as n,m— o,

Here M denotes a fixed constant.

13. The situation in the case of an infinite interval is essentially different from
that of a finite interval, as is shown by the following theorem [Boas, 3]

THEOREM 3.11. Given an arbitrary sequence of real constants, {u.},
= 0, 1, - -+, there exist infinitely many functions ¢(t) of bounded variation over

(= », »), for which
l‘u=[ " dy, n=2012---.

The same 18 true for the Stieltjes moment problem.

Following the ided of Boas, we give a proof for the first (Hamburger) part of
the theorem only. The modifications necessary for the second (Stieltjes) part
are obvious. Theorem 3.11 will be proved if we can show that an arbitrary given
sequence { /.4.,}, n = 0, 1 2, ---, can be represent.ed in mﬁmtely many ways in
the form u, = u,., where the constants s and un are such that all de-

terminants
By = |pisiltimo,  Aw = |pi4illm0, n=0,12,-
are positive. This statement is clear for » = 0. Assume it proved for

0,1,2, ---,n — 1, and prove its validity forn. Thus assume that the constants
Ho y Tt pan_z and po, - - - , pza_s have been selected in such a way that

po— s =p,, v=0,1---,2n—2
Ar>0, A/ >0, »=01,---,n—1.

Now select Hin_1, M2s_1 arbitrarily, sub]ect only to the requirement that
Hini — Ham—1 = mam_1. We have to select u:,. and p2a 50 that

A,.>0, An > 0.
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This is always possible if we take y;,. , Boa. sufficiently large since they enter in
the first degree in the expansions of A',., A, , with coefficients An_y, A',:_l ,
respectively, which, by assumption, are positive. It remains to select Mon
uza in such a way that pz, — usn = wea , which is always possible.

Pélyva [3] gave an entirely different proof of Boas’ theorem, which enabled him
also to show that the solution can be made to be either (i) a step-function with
the pointsof increase at an arbitrarily prescribed sequence of distinct real numbers
{v,}, v =1, 2, - -+, with no finite limit point, or (ii) an entire transcendental
function. Poélya also points out that the case (i) is essentially contained in an
older result of Borel [1].

14. Another modification of the classical moment problem consists in replacing
the function ¢" by ¢**. In the paper [1] Hausdorff extends his methods to this
more general situation. Let

(3.30) ke=0<bk <k < -+ <ka<:--
be a given sequence of real numbers. Let
Qn(t) = (t - kO)(t —ky) - (t - kn), Q_l(t) =1

Hausdorfl considers the moment problem

1
(3.31) e = f trdy(t), n=012- -,

0
where ¥(¢) is a hounded increasing function. He introduces the quantities

Ay = Q4 (ko) Z

Q, (ko) i= Q, (k)
which reduce to those discussed above in the case ko = 0, ky, = 1, -+,
k. = n, --- . The sequence {u.} is called completely monotonic relative to the
sequence {k,} if
)\",;0, n=0v1v2v"'; y=0,l,

[A sequence completely monotonic relative to the sequence {0, 1,2, - - -} is what

we have previously called simply a completely monotonic sequence]. It is
established that the existence of a fixed constant A such that

Elx,..tSA

=0

is a necessary and sufficient condition in order that the sequence [u.} be the
difference of two sequences completely monotonic relative to {k,}. If, in addi-
tion, it is assumed that

(3.32) IRV IR

then it is proved that a necessary and sufficient condition for the existence of a
solution of the problem (3.31) is that the sequence {u.} be completely monotonic
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relative to {k.}, in other words, that \,, = 0. It is also proved that, under the
condition (3.32), the problem (3.31) is always determined.

Hausdorfi’s investigations have been continued by Hallenbach [1] in the case
when the series 3 I—;— < . In this case the condition of being completely

n=1 An

monotonic is necessary but not sufficient for the existence of a solution of (3.31).
There exists, however, another condition which is equivalent to that of being
completely monotonic in the case (3.32), and which turns out to be both neces-

sary and sufficient if we assume only (3.30). Consider all “polynomials”
Po(t) = 2ol + -+ + zat™
and the functional
B(Pa) = Zopo + -+ + Zaptn .

This functional is said to be positive (non-negative) if the condition P,(f) = 0
in [0, 1] and P.(t) # 0 (P.(¢) = 0in [0, 1]) implies u(Pn) > 0 (u(P,) = 0). On
introducing this notion, it is proved by a simple modification of methods used in
Chapter I, that a necessary and sufficient condition for the existence of a solution
of the moment problem (3.31) is that the functional x(P,) be non-negative.
Some of the methods used in Chapter II in treating the question of deter-
minedness can be also extended to the present case. Let, for a fixed & in [0, 1],

p,,(lo) = n:in I“(Pll):

where the minimum is taken over all polynomials P,(t) = 0 in [0, 1] and such
that P,(t) = 1. It is proved that a necessary and sufficient condition for the
modified moment problem (3.31) to be indeterminate is that there exist a sub-
interval of the interval [0, 1] and a positive number & such that, in this

subinterval,

() = lim p,(t) = 6 > 0.
Hallenbach also extends several results of Hausdorff to the case of two dimen-
sions. Hausdorff’s problems for one and two dimensions are also treated in
Hildebrandt and Schoenberg [1]. There they appear as special cases of a more

general theory of certain linear equations.
The case of a modified Stieltjes moment problem

I‘n=./; tk”dlﬁ(l), n=20,12---,

has been treated recently by Boas [2].
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CHAPTER 1V
APPROXIMATE QUADRATURES.

1. This chapter is devoted to a detailed study of the approximate quadrature
formula (I1,8)

(4.) [ 108 ~ Z maas@,
where ¢(t) is any solution of the moment problem (2.1), the abscissas

T = Zjm, Zon < Tia < '+ < Tan
are the roots of the quasi-orthogonal polynomial
4.2) gn+1(2) = was1(z) + Anwal2),
A. is constant, and the coefficients
pn(z;) =p;i=pjn, J=012 -+ ,n,

are given (cf. II, 8, 9, 10) by

_ © Jn. 1(‘) d¢ — . = _l____
(4.3) Pi = L - a;:-.)q’m(z,-.) = o) = R

The function f(¢t) is assumed to be finite for all ¢ and integrable with respect to
the function y() in question.
We rewrite (4.1) as

1) = [ 10 = E nf@) + Baslh)
(4.4) " ! i
= Q) + Ray(f), @) = ; pif ().

Observe that
(4.5) R, (Pi,) = 0,

where P,(t) is an arbitrary polynomial, of degree < s, and that Q.(f) is indepen-
dent of the choice of y(¢), even if the moment problem (2.1) is indeterminate.

We wish to study the conditions on f(¢) and ¢(t) under which (4.4) converges,
that is,

(4.6) lim R.y(f) = 0,
106
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or, more generally,
(4.7) lim R, 4(f) = 0,

for a certain infinite sequence of positive integers
n < N << n <+ n, — o,

Whenever we wish to cover simultaneously both the Stieltjes and Hamburger
cases we write (4.4) as

«8) L) = [ 108 = Q) + Ruslh),

where a = 0 or — . In the Stieltjes case it is assumed that all roots of ga41(2)
lie in [0, o).

We shall write Q¥ Q¥*?), in case the summation is extended over all
Z;s in [c, d] or outside [c, d] respectively.

Taking
wat1(Z0)

Wa (IO) w'l(z))

(4.9) Ini1(2) = wann(2) —

where z, is real and is not a root of w,(z), we have an approximate quadrature

formula with a preassigned abscissa z, .
The following two particular cases of (4.4) deserve special consideration.

Case A. q..+x(2) = wﬁl(z)-

Case C. gn1(2) = wapa(2) — wa::z(()())) wa(2).

These polynomials are, up to constant factors, the denominators, Nas,2(2),
N2.41(2), of the even or odd approximants, respectively, of the corresponding
continued fraction C(z), whose numerators will be denoted by Z.(z). The
polynomials wn4+1(2) = wa1(2; @, ©; dy¥) are also propartional to the de-
nominators of the successive approximants of the associated continued fraction
(1(z). In the Stieltjes case the polynomials of case C always exist since w,(0) = 0,
n=1,2 ---. In the Hamburger case ¢(z) may not exist. Then we choose
z = X such that w,(A) # 0,n = 1,2, ---. By the substitution z’ = z — A
we get a transformed moment problem, with moments {u,}, such that
Z;’ unz "' admits both the associated and the corresponding continued frac-
tions. Thus we may say that in both the Stieltjes and Hamburger cases we
have two approximate quadrature formulas based respectively upon the roots

Zsn Zon-
of the denominators of the even{ ! (z)} or odd { 2 l(z)} approximants of the

Naa(2) Nzni(2)
corresponding continued fraction C(z). We use the following notation.

4100  L() = >; Anfen) + BAL) = @A) + RALD,



108 THE PROBLEM OF MOMENTS

where ¢, = ¢,,,7=0,1, ---, n, are the roots of w.4,(z), and
Zomsa(k) 1 1
@10 A = Ninalt) = Konile) ~ Kaey) ~ 28

412) 1) = ; Cinf(nn) + RES(f) = QS() + RE4(F),
where 7; = 7;,,7 =0, 1, ---, n, are the roots of Nj,4,(z), and

_ Zyn(n)
(4.13) Cin = N__;nﬂ(ﬂi).

Observe that
(4.14) R y(Pins1) = Roy(P) = 0.

We shall have occasion to refer to the moment problem
(4.15) '/;.t"d¢=p.‘+1, n=01,- -
Here we use the superseript 1: dy'(t), A}n, wa(2), --+ . Since
[ NownoPrst v = 0,

we have

(4.16) Nans1(2) = constant-zwh(z).

Consider, first, the Stieltjes case. Here dy'(t) = ¢ dy¢(t) yields a distribution
function, so that

0= Nom << Nin < - < Nan
whence, making use of (4.3),

1
@17) G =Rt o Lol i=1,2 -0

Njin

In the Hamburger case ¢'(t), as introduced above, is not constantly increasing
in (—», ). Formulas (4.17) still hold, but A}_;._; has the sign of 7.,
7 =12 ..., n, and is not necessarily positive.

In view of (4.3) and of (I1,8), we have

(4.18) in)=ﬁ$8’ in)=ﬁ$$~

2. The following results are readily established for the coefficients and abscissas
of the approximate quadrature formulas.

(i) A linear transformation of the orthogonality interval (a, b) does not change
the coefficients A ;, .

(ii) In the “symmetric case’’, uy = us = pg = --- 0, [Shohat, 5]
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@19) &= —brin;  Ain=Awin; F=01-,n
win(z; —®, ©;dY) = wa(e'; 0, o; dy), ddu(t) = 2d¥(V1), t =0,
(4.20) {wzu“(Z; — o, w;dy) = 20.(z"; 0, ©; dY), d¥a(t) = 2t dY(\V1),
L n=2012- --.
It follows, with obvious notations, that
Ajoni(—o, ©;d¢) = 34,10, = ; d1)

A;n(0, »; dys)
2,a-1(0, ©; dys)

. _ 1 _ 1
Anan(= =, =i W) = G e w d)  Ka0;0, %1 d0)

a2 { Am(—=, =) =

(iii) The interval [z;. , 2;11.»] formed by any two consecutive roots of ga.:(2)
contains at least one root of g,4x(2), ¥ > 1. In particular, between any two
consecutive roots of w.4i(2) lies at least one root of wn4i(z), & > 1 [ef. IL,7,
I11,2].

Indeed, if [z;x, Z;4+1,»] contains no roots of q.4+x(z), then it is an interval of
constancy for ¢¥,.i(t), and, by Corollary 2.2, z,, and z;,1.. could not have been

roots of gu41(2).
In (I1,7) it was shown that

(422) a < Eo.n < Eo.n—l < El,n < El.n—l <. < Eu—l.n—-l < En.u < b.

By a similar reasoning, it is shown that in the Stieltjes case

(4.23) 0 < fon < fom < f1n < B <+ < fan < Erns

Finally observe that for the polynomial (4.2)

Zon < EOn < Tin < A < Znn < Enny if An > O,

(4.24) ‘ .
£0n < Zom < Eln < - - < £nu < Zan, if An < 0.

(iv) The following properties of the coefficients A ;. are readily derived from
(4.3) upon observing that Ky, (z) = 23 o* wi(z)wi(z) is positive (negative)
for > En,n(x < EO.’I):

1
Ao.n > AO.uH > AO.M—! > 0 > m = Pﬂ(a)
(4.25)

Apn > Anpinr > Appangr > o0 = pn(b).

1
> K.
Hence,

lim Ao 2 p(a), lim Ane 2 p(b).
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3. We now turn to the study of the convergence properties of the approximate
quadrature formulas. With the notation of Chapter II, we introduce the func-
tion ¥a(t) = y2(1), special cases of which are ya(t), ¥5(f) in (4.10) and (4.12)
respectively. We have

(4.26) = [ foHt =120,
(4.27) Ii:(th) = M, k=01,--,2n+1,
(4.28) L = m, k=0,1,---,2n,

p,.(z) ( 1 ) Zz»+2(z) - ( 1 )
g(2) “lu\;T3) Waa - M
Zanr(2) _ = Ic ( 1 )
Ngn+1(2) ve -t/
We see that in (4.8), (4.10) or (4.12) we may take for ¢(¢) any solution of the
reduced moment problem

(4.29)

(4.30) f ttdy = m, k=0,1,---,2n or 2n + 1 respectively.

We see further that the convergence of the approximate quadrature formulas
is equivalent to

(4.31) lim I, (f) = Li(f).

Limit-functions of convergent subsequences {y3,(t)}, {¥a,(®)}, (¢S, ()} will
be denoted by ¥(t) = ¥°(t), ¥*(t), ¥°(t) respectively The following theorem is
now readily established

THEOREM 4.1. The following three statements are equivalent:

a) Ya,(t) converges substantially;

B) Qn,(z.—_l_) converges for z not on [a, ©];

v) P, (( )) converges for z not on [a, =].
. . 1
4. To extend convergence from the special function f(t) = T 1 to a wider

class of functions we use M. Riesz’ approximation theorem (cf. I1,19), combined
with the following lemmas which are direct consequences of the positive linear

character of the operator Q,.(f) and of the relation Z Pin = Mo.
For brevity we shall write f ¢ FS , F4,, Fa,, if, respectwely, Q.,(f), @a. (),
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Q%,(f) converges. If no emphasis is laid on Q, A, C we write simply f ¢ F,, or

evenfeF

The following results are obvious.

(i) f ¢ F and ¢ ¢ F implies af + By ¢ F, where a and 8 are constants.

(i) | f1(t) — f2(t) | < ein[a, ) implies | Ray(fi — f2) | < 2u0e.

(iii) If f(¢) can be approximated on [a, =) arbitrarily closely and uniformly
by a linear aggregate of functions of a certain type g(t) and if each g(¢) e F,
then f(t) ¢ F.

We shall say that f(¢) is continuous in [a, «) if it is continuous in every closed
finite subinterval and tends to a finite limit as ¢ becomes infinite. Applying
M. Riesz’ approximation theorem and using Theorem 4.1, we get

LemMa 4.1,  If f(t) 18 continuous in [a, ), then: (i) there exist convergent sub-
sequences {Qn,(f)} of the approrimate quadrature formula (4.8); (ii) Qn,(f) con-

verges for all { if and only if Pn,(2) } converges (z not on [a, «)) or, which is the

ny

same, if and only if ¥3,(t) converges; if ¥3,(t) — ¥°(2), then Qa,(f) — Lya(f).

d
Lemma 4.2. If f J(t) dy° exists, where c, d are two finite points of continuity
of ¥°(1), if (t) = f(t) in [c, d] and = O elsewhere, then o(t) € Fq, .

Conouwanr 41. () lim Q) = [ 10 4417 ¢ 4 G lim Q"™ =

f " dy°, hm Q't‘ '"(t ) = f " dy® + j; t™ dy°, where m i3 any positive integer
orzero. In partwular,

d e ©
tim 4 g, = [ 9% im T, = [0 + [ aye.

From Lemma 4.2 we derive in the same manner as in case of a finite interval
[Shohat, 8]

LeEmMma 4.3. Any interval [c, d] which is not an interval of constancy of ¥°(t)
contains at least one z;n, , for v sufficiently large. In other words, if infinitely
many gn,(2) have no roots in [c, d], then Y°(t) is constant in [c, d]. Moreover, if

f dy® > 0 for every [a, B) C [c, d) then the roots of g.,(2) are dense in [c,d]. In

any such [c, d] the distance between the conseculive 7008 2;, , 2410, , ad also be-
tween the end-point and the nearest root, tends to zero, as v — .

It follows that every point of the spectrum of v°(2) 18 a limit point of the roots of
{gn,(@)}.

Lemma 4.4. To any ¢ > O there corresponds a Gy = Go(e) > 0 with the following
property: for any fizred G, 2 G, such that +G, are points of continuity of ¥°(t), a
positive integer vy = vo(G1, €) may be chosen so that

[ Lio(f) — Q5 () | < e for »2 m.



112 THE PROBLEM OF MOMENTS

-a
First, choose Go = Ga(e) so that [ 10 | + < 3, for

any G, 2 Gy. Now fix G, = G, so that =G are points of continuity of ¢°(t),
and take fi(t) = f(t) in [—- Gy, G,] and =0 elsewhere. By Lemma 4.2, », =
vo(G1 , ¢) may be found such that

[ Iye(fi) — @u, ()] =

[ rwa-esmap| <z vzm

CoRrOLLARY 4.2. A mnecessary and sufficient condition for the convergence of
Qn,(f) to I,a(f) is that to any given ¢ > 0 there correspond sufficiently large G, and
vo such that y°(t) is continuous at £G, , and | Q" (f) | < eforv 2 w.

CoroLLarY 4.3. (i) Ifw(t) 2 0for|t| 2 toandif f(t) = O(w(t)) as|t|— =,
then w(t) ¢ F implies f(t) e F.

Gi)) If f(&) = [fil®)f2(t), then f(t) eF.,, provided |fi(t)|° eF., and
QL) = 0W, a8y — @, 2 42, =

(iil) f(¢) € F is implied by any one of the following conditions: a) | f(t) |° € F,
p 2 1;8) f(&) = O t|™), where m > 0 is fized; v) Q'™*"'(| (1) |”) = 0Q1),
p > 1

Statements similar to those in Corollaries 4.2 and 4.3 have been given, under
more restrictive conditions, by Jouravsky, whose considerations have certain
points in common with those developed here [Jouravsky, 1].

Another direct consequence is the following theorem frequently used in the
subsequent discussion.

THEOREM 4.2. If, for |t | sufficiently large and for v 2 w, f(t) and R., 4e(f)
keep the same constant sign (zero values not excluded), then f(t) ¢ Fa,. Analogous
results hold in the Stieltjes case [Shohat, 3).

Assume, without loss of generality,
(4.32) JO 20, R.ua(f)20, for |t|2t, vZw.
In Lemma 4.4 take Go > & . Then
QUMY + Buyya(f) = | La(N = QSN [ < vz,
and the result follows since both terms on the left are positive.

COROLLARY 4.4. Let f(t) = 0 1in [a, ©). If there exists a solution ¢'(t) and
a certain sequence lnﬁl such that Qu;(f) — Iy (f), then for any y°(t) = lim ¢2 (t),

(n) < {m), La(f) S L.
We have R., yo(f) = Lo(f) — Qu,(f) = Lia(f) = L'(f). If Lie(f) > Li(f),
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then R,,ye(f) > 0, » 2 w, and Qn,(f) —-Iya(f), which contradicts the hypoth-
esis

lifn Q) = 1i’m Qu:(f) = 1y(f).

6. We proceed to study the behavior of the abscissas, as n — «. The ine-
qualities (4.22) show that

(4.33) lim £on = a1 2 a, Hm gpn = b £ .

This implies that [a,, b;] is the ‘“true interval” of orthogonality for the ortho-
normal polynomials {w.(z)}. This means: there exists a solution yu(t) of the
moment problem (2.1) which is constant outside [a, , b1}, while no solution of the

d
moment problemf t"dYy = pua,n=0,1, -, exists if [c, d) C [a,, bi].

Observe that any y“(t) is a solution of the moment problem (2.1),
with spectrum in [a,, b)].

Since we are dealing with approximate quadratures pertaining to an infinite
interval we assume from now on that one, at least, of the extreme roots of
ws(z) increases indefinitely in absolute value. Thus, in the Stieltjes case a, = 0,
by = «. Stieltjes [5] has shown that the number of £;, which tend to infinity,
as n — =, is either zero or infinite and the number of £, which tends to @, is
either one or infinite. It follows, by (4.23) and (4.24), that in the Stieltjes
case

’
Tpn — @, Ean — o ;
En > ap, 1=0,1, implies #.. —a and zo.— a;, if A, <O.
fon—a; and &.—a’>a; implies &H.—al, 0Sa <al=<da.

The reasoning of Stieltjes may be extended to (— =, =) and shows that the
number of roots of wa(z) which — =+ «, as n — o, is zero or infinite. Thus, in
the Hamburger case at least one of the quantities | &n | , | £xn | tends to infinity.
Furthermore,

fan — o implies z,, — «; t;n — — o implies z,, —» — .

Next we study the dependence of the roots of gn+1(2) = wni1(2) + awa(2)
on the real parameter a, for a given n. Let ¢ be such a root. By Darboux’
formula [Shohat, 5]

Gn

Ka(®) = = [0nni(@)on(e) = wa(@unn(@)],

we have

(4.34) de _ _ G oh®) _ o

da an1 Ka(§)
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It follows that the roots z,, are decreasing functions of «. More precisely,

Tow = — ©;  Zin=jictwa, J=12,:--m, fa=+4 o;
ZToa < @, $itm < zZjn < €in,y J =1, 2: TN, ifa > - N“ES) !
. . b
fin < ZTjn < a1, i=01,-,n=1,2u%>b, fa < 'w:&(»));
Zin = Ejm1, j=011r"'7n—1) Zan = + @, fa=— .
as= — wat1(0) or -— wat1(b) implies Tos =G or z.. =b respectively.
wu(a) wl(b) "

Thus, a necessary and sufficient condition for all roots of ga41(2) to lie in the
wni1(a) > S wn+1(b)

orthogonality interval [a, b] (finite) is: — ona) = az — o)) In the
Stieltjes case all roots of q,.+1(z) lie in [0, =) if and only if — ”"+(‘(()())) = It
also follows that pa(Ton) = e ( ) decreases and pn(zn,) = Kz (z,,,,) increases, as

« increases.

The effect of the variation of the moments {u.} on the roots {{;s} has been
studied by Markoff in the Stieltjes case. His result is {Markoff, 7]:

If the even moments po, pa, --- , psa do mol increase and the odd moments
Wi, M3, ', Han+1 G0 mol decrease, then Ay, Ay, :--, A, do not increase and
AsY LAY, oo, ALY do not decrease as long as they all remain positive. Moreover,
each root ki ,j = 0 1, -+, n, tncreases. It follows that the addition of a mass at
t = 0 increases all A, and decreases all AY; also each &, decreases.

6. We now turn to the coefficients.

THEOREM 4.3. Let ¢, d be points of continuity of y°(t). Denote by {x:.,) the
subsequence of the roots {z;.,} which, for v Z v, remain in [c, d], by {pa,} the
subsequerwe of the corresponding coefficients {p;.n,}. Then either the largest of the
Pm, > S0Y, pr, , tends to 0 as v — ©, or else, if hm p.., p > 0, then there exists

at least one point a in [c, d] where Y(a + 0) — 'p(a —0) 2 p.
The proof follows that of [Fejer, 1] and may be omitted.
CoROLLARY 4.5. If y°(t) is continuous in [a, =), then lim pim, = 0 uniformly
forj =0,1,:-- 'm,, ’
By 4.5,
Lott) = m, k=01,---,2n,
whence

(4.35) PimTrm, <, =01, ,n,
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Choose G > 0 s0 large that & G’ < e. Our statement is proved by (4.35) and

Theorem 4.3, (t) being continuous in {—G, G). The continuity of ¥(f) is essen-
tial a3 was shown in the case of a finite interval [Shohat, 8].

Much light is thrown on the behavior of the {p;n} and of a solution y(t) by
Tchebycheff’s inequalities {Lemma 2.13]. We write them in full, denoting by
¥(?) any solution of the moment problem (2.1) or of the reduced moment problem
{2.9) and by [a, b} the interval of orthogonality.

(1. pon+ 1+ *++ + picim

zin—0 Zint0 .
= d¢§L B S ot ot Fomy, j=1,2 0

2e+1,0—0 zgnt0
2. W2 ot pnt o tomz [ a4, k>

Zi+1,a+0 #{n—0
zoa+0 b

3. f d‘/’éﬂh, f °d¢§Pnu-
Ziv1, a0 z,,.+0

4. f dw > Pin P
Tjm1,nt0 ':-"0

j=0,1,---,n,  zTa.=@, Zapa=0b.

zj+9.0—0 zi+1,0+0

5. ay = Pin + Piy1n 2 i ay.

(4.36) 4 Zj=1,at0 zin—o

6. Y(Tin—0)Soin=pin+ o+ - +pin £ ¥(ZTit1.a +0),
i=01,-,n-1
7. Oin = \P(o:‘n)» ZTin S 0in S Tirlm) Pin = ¢(0in) - ‘p(ai—l-n):

if ¥(¢) is continuous in (a, b).

8 pmtomttpanS [ WS omtont o,

if 2j 1 £ @ S Zja.

B8
0. pirrnF putat o ForanS [ S ot pnt ot o,

| friinSaSzm and Zj0a S8 = Tjm, J > 1.

These inequalities, combined with the preceding statements, yield the follow-

ing results.
(i) Let ¥(t) be continuous in the finite interval [¢, d] C [a, b]. Denote by
Zkm, s Thalm, s " °° » Ti,n, the roots of gu,4:1(z) which are in [¢, d], for v 2 »

Zitl,n,

(k, 1 eventually depending on n). Then hm f dy = 0, uniformly for

Tin,
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i=kk+1,---,1— 1. Inparticular, if y°() is continuous in [a, b], this limit-
ing relation holds uniformly for¢ = 0,1, --- ,n ~ 1.

(ii) Let ¢°(t) be continuous in the finite subinterval [¢, d] which contains no
interval of constancy for ¢%(t). If, for any infinite subsequence {n,} and for a
fixed 7, Zi_1.n, , Ti41.n, remain in [c, d] for v = v, then lim p;,a, = 0.

We may obtain various other inequalities for the coefficients by specifying
¥(t) in (4.36). Thus, for y(t) = yan(t), we get

Aonyt < Aon < Agnpt + A1nt1 <A+ A1 < - < Agnpt+ -+ + Aanta
<Aont o +Aan=Adoarn+ - + Aot .

More generally, take in (4.36) ¢(t) = Val(t), ¥a(d), corresponding respectively
to q:.“(z) = wp41(2) + a’w.(2) and q',f+,(z) = wa1(2) + a”’wa(z). In view of the
dependence of {z;a} On a, as stated above, we get

. . n ’ " ” ! 7
a’ > o’ implies pos < pon < pon + pra < pon T p1n <
1 ? ! 143
< pon + SN Pr—-1.n, Pan < Pan .

_ Wn41 (0)
w.(0)

o’ <0 implies Aon < pon < Aon + A1n < pon + pin <
< pomt r F paim < Ao+ o+ Ann, Pun < Aun ;

a’ >0 implies pon < Aon < pon + pin < Aon + A1n <
<A+ oo+ Anciny,  Awn < pun;

In particular, taking '/ = 0, or ¢’ = 0 and o'’ =

, we have

(lhq.l(O)

wn(0) < Awm < Con + Cia

<0 implies Co =

K@)
<Aon+A1n<"'<A0n+"'+An—l,n, Avm<Cnn;

wat1(0)

on(0) > 0 implies Aoy < Con =

<Am+ Ain <Con + Cin

..(O)
<"'<C0n+"’+Cn—l.n, Cnn>Avm-

Thus, in the Stieltjes case, by (4.17),

1 1 A; n—1
—_— < A < ——+ =
Ka©0) " T Ka0) | Ebea

1 Atl) n—1 A: n—-1
+ Pt 4 S < < Aot o F A
K.0) &y Elaa ’ '

1 A(l’ n—-1 :;—l n—1 A:-—! n-1
Tr AN + - tte + - = “ ’ A’Iﬂ < - .
Ka0) B P Bt

< Al)n +Aln

(4.37)
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We see that

”n 1
(4.38) Z:m=m_&&me—Mw

The right-hand member is the value of the associated continued fraction @'(z)
at 2 = 0. We supplement (4.25) by

THEOREM 4.4. Let lim &, = a1, lim ¢, = by, Then lim 4o, = p(a,) and
Im Aan = p(by).

It suffices to give a proof for 4o, . If a; = — =, the statement follows from
the inequality
Aom < —‘:—2 .
£0u

If a, is finite, we use the inequalities

. . 1 1 1 =
tu>bn>a, if k>n’ KE(EO-E) > Kk(£0n) > Kn(fOn)

_ 1 1 1
p(a) = lim o < pay < Kooy

The desired result follows if we choose k so large that

Aon,

1 €
0<m—P(‘11)<§,
and then choose no > k so large that
1 1 €

0< n=n > k.

(o) Ki(a) <3

7. We now turn to a discussion of () and of the associated and correspond-
ing continued fractions. On putting A\ = 0in Corollary 2.5, we get

THEOREM 4.5. The sequence of odd approximants to the corresponding con-
tinued fraction C(z) always converges (and yields the extremal solution of the moment
problem (2.1) with mazimal mass at ¢t = 0).

The reason for this fundamental result of Stieltjes and Hamburger [Stieltjes,
5; Hamburger, 3] lies in the fact that all ¢5(¢) have a concentrated mass at the
fixed point t = 0.

Regarding convergence of the even approximants of C(z) (i.e. of the asso-
ciated continued fraction (¥(z)), nothing definite can be said in the general
Hamburger case. In the Stieltjes case they also converge for z not on [0, =)
[Stieltjes, 5]. This we shall prove later on the basis of approximate quadratures.

The convergence of @'(z), for z = 0, was previously stated. We give here a
proof of convergence for z not on [0, « ).
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From the known relations

Xn(z) Z14(2)
wn(z) Na(@)’

N!u-l(z) = Az“’ n-1 (z)l

where A is constant, and
_ [® Na(2) — N.(t)
(4.39) Z.(2) = j; ——z-_'__—t——d%
we get readily
w 1 1
A—l Z!n_l(Z) - l wn-—l(l) wn—-l(t) dwl + I‘Owi—l(z)

z—1
(4.40)
Zaon- 1(2) 1 xhoa(2)

N?n—l(z) ; ; _1(2)
This relation connects the odd approximants of C(z) with the approximants of

@'(z). The convergence of @' (z) now follows from Theorem 4.5. It also follows
that

“do) _ 1 ["dyt )

o 2 — I zh z—1t

resw) = oty = e - )

+ﬂ’ z not on [0, =),
(4.41)

8. We now return to the study of the approximate quadrature formulas.
We need expressions for the remainders Ra ., RS, . We assume that f(¢) has
all derivatives needed, and use the relations

(4.42) Riv(f) = Rau(f — Pun);  Rau(f) = RIS — Pa).

Take the polynomials Pza.1(t) and Ps,(t) so that

(4.43) Poii(tin) = fEin),  PraniEin) = f'(¢m), J=01,n;
(4.44) P2n(0) = f(0), Pen(njn) =f(nin), Paalnin) =f(nin), j=1,2,+++,n
The following observation is due to Markoff [3]. Applying (4.10) to Psai(t)
in (4.43) (Hermite interpolation polynomial) we get an expression of the form

[ Punway = ; Ef&) + }_: Dif (&),

where the constants E£; and D; do not depend on f(t). The explicit expression
of D, shows at once that all D, vanish if and only if the §; are the roots of wa41(2).

A similar remark applies to (4.12). Making use of (4.17), we write, with
obvious notations,

(4.5 ‘) = @10 + @5 (1),
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and employ on the right an interpolation polynomial P.,_(¢) analogous to (4.43).
Formula (4.43) leads to the following interpolation formula with remainder,

= ___gfw_l(ﬁ_ (2n+2) . ©
f(t) - P2n+1(t) + (2n + 2)!0,1,“]‘ (f)r Eln [a) )

A similar formula can be written for (4.44). This gives at once desired re-
mainders in the approximate quadrature formulas (4.10), (4.12), namely,

PPN M ()
(4.46) Bae) = (2n + 2)!03-4-1 ’
@4 R = L ® g,

(2n + D)!(ah)*’
¢ = £00%) 1) — 10) .f(O) _
(4.48) Roy(f) = e (@)’ @) = a=0.
We now state
LeEMMA 4.5. For any f(t), the two approzimate quadrature sums Qn(f) and

At (f (t)) converge or diverge simultaneously. More precisely,

lim [Qﬁ(f) . (“T")] = 1(0)(0).

The following relations are direct consequences of (4.46), (4.47):
Can Con
RAV(Prss) = 175 RSu(Paan) = 12, @=0,
Q+l (aﬂ)
where ¢, is the highest coefficient of P,(¢);

j;‘thdw—j;ntz'd¢:>o, sz a4l
[t-dw—[t'dw:>o, 82 2n + 2;

[t‘dw - j:t’d\bﬁ >0, s 2+ 1.

These inequalities have been used by Uspensky (2] and Jouravsky [1] in the
study of Qa(f).

DEeFINITION 4.1. A function f(t) is said to belong to the class (1, n,) or (2, n,)
in [a, ©]if f(t) and, respectively, an infinite sequence {f*""*" (1)} of its odd deriva-
tives or |f*""*P (1)} of its even derivatives keep the same and constant sign in [ty , )
(which we may take as positive, zero values not excluded), where t, 2 0 is sufficiently
large,ifa = 0,and ity = — o, ifa = — =,

Combining (4.46), (4.47), (4.48), Theorem 4.2 and Lemma 4.5, we arrive at
the following fundamental convergence theorem.
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Tueorem 4.6. Let f(t) = O(G(t)) as t becomes infinite. Then (i) G(t) € (2, n,)
implies (1), | f(t) | € Fa, ; (ii) G(t) € (1, n,) implies f(t), | f(t) | ¢ F5,, @ = 0;

(Gii) ‘ﬁ’)_tG_(‘QE @, n,) in [c, =) implies f(1), | (1) | e FA, ¢ 2 a = 0.
0

We give a few examples of functions which belong to (1, n) or (2, n).
f@) = €, k > 0, belongs to both (1, n) and (2, n) in [0, ©). The integral

transcendental function f(t) = 3 cat*" belongs to (2, n) in (— », =), if all
ne=0

¢, = 0. If f(t) is completely monotonic in [0, =), then f(f) € (2, n), as is seen
from the canonical representation

10 = [ e da(z), 20,

where a(z) is bounded and non-decreasing in [0, «).

O =2 d2m m 0,=), c<0
[ = L) in 0,°), ¢<0
f(t) = e(2 n) in [0’ w)) P P O)

(1 + t)°

for, T(o)f(t) = fo T

More generally, if f(t) is completely monotonic in [¢, =), ¢ 2 0, then
J@) € (2,n)in (¢, ©). Thus,

el
@49 JO = Ty g™ A+ 0log ™ (1 +0 - loga= (1 + 9™
in [¢, ], ¢ sufficiently large, p = 0; p1, p2, -, pm > 0,

for f(t)e”* is completely monotonic in (¢, =) [Hausdorff, 1, I].

9. We now state the following theorem which supplements Theorem 4.2.

THEOREM 4.7. The function f(t) being unrestricted as to sign, assume that
R.. 4(f) has a constant sign for all n, and all Y. If there exists a solution ¥ such
that Q.,(f) — I,.(f), {n,} C {n.}, then I,.(f) gives the minimum (or mazimum) of
I,(f), according as Ra:4(f) 18 =2 0or £ 0.

In fact,
S Ra,u(f) = Li(f) — @u,(f) = L) — Iy(f).
We state a further result where it is assumed that f(¢) = 0.

Lemma 4.6. If there exists a sequence {n,} such that Rn;ya(f) = 0 for y° =
lim y2,, {n,] C {n.}, then I,o(f) has the same value for all such ¢:° Moreover,

Qu:(f) — Le(f).
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Extract from {yn;} any two convergent subsequences {¥,}, {¥» ], with limit
functions ¢/, ¢'’ respectively. By theorem 4.2, Q,.(f) — Iy (f), Q. (f) —
I, (f). Moreover,

Ryyr(f) = Ly (f) = lim Q. (f) = Lew(f) = Iv()) 2 0
Ry y(f) = Iy(f) = Li(f) 2 0

The preceding general considerations may be applied to functions of classes
(1,n,), (2,n,), for which the remainder in the approximate quadrature formulas
(4.10), (4.12) keeps a constant sign.

TueorREM 4.8. If (1) f(t) € (2,m)) in [a, =) or (ii) either f(2) ¢ (1,n,) or _f_(‘)‘_tf(o)
€ (2, n)) in [0, =), then I a(f) has the same value for any ¢* = lim ¢4, {n,} C
{n:} in (i), or I,c(f) has the same value for any ¢ = lim ¢, in (;i), and accord-
ingly, Qa:(f) converges to I,a(f), while Q5;(f) converges 'to Iic(f). The minimum
of 1,(f), is given, correspondingly, by Iya(f) or Iyc(f).
THEOREM 4.9. In the Stieltjes case the sequence { 5::8} of even approximants

Zan1(2)
and the sequence { N 2)

fraction C(z) both converge at any point 2, real or complex, not on [0, =). In
other words, both sequences {Ya}, (Y5} converge.

The proof of this fundamental result of Stieltjes (5] is a direct application of

Theorem 4.8 to the function f(¢) =

} of odd approrimants of the corresponding continued

First, let z be real and negative.

* d

Then f(t) € (2,7n) in [0, ). Hence f Z_W/'_[ has the same value for any y*(¢),
b 2z —

and the convergence of {{a(f)}, which is equivalent to that of Q(z), now follows

2n— 1()

directly. The statement concerning {N @ )} follows, by applying similar
2n—1(2

in [0, ),z < 0. Theorem 4.9 now follows, by

considerations to f(f) = ; }_ ,
the Vitali Theorem.
In Theorem 4.8 take f(t) = ;

:¢(1)<0 $¢<1)>0 2 <0,
we get

THEOREM 4.10. For any solution ¢ (t) and for any z < 0,

Zzn—x(Z) ® dy*t Z2n(2)
Nzn—1(2) o z—t</z-—t o z—t<Nzu(2)'

i : and use (4.18). Since, by (4.46) and (4.47),
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This shows immediately that the Stieltjes moment problem is determined if
and only if C(z) converges.

In the Stieltjes case we also have the following result.

If, for a certain {n,},f® ") = 0and f*"*"(t) £ 0in [0, =), then Q.,(f) >
Iec(f) = L({) > Qa(f). In particular, this holds, {n,] = {nr}, if f(t) is com-
pletely monotonic in [0, «).

10. We return to approximate quadratures. Theorem 4.6, combined with
the example (4.49), shows that (i) Qa(f) based on the roots of Laguerre poly-
[
e

nomials L{¥(z) converges, if f(t) = O , as
(=) ges, of S * log'** ¢ logy ™t -+ - logh "™t
t— oo;m =1 p,m, ", 0m > 0. (i) Qa(f) based on the roots of Hermite
¢
e

[t] log™™ f¢] - logl-“"ill)'
This includes the results of Uspensky [2], as well as those of Jouravsky [1],
obtained in a different manner. In order to obtain more general results we need

polynomials H,(z) converges, if f(t) = O

LEmMma 4.7. Let f({) = 2 cu" be an integral transcendental function with
n=0
non-negative coefficients, and let ¢ (t) be an arbitrary solution of the Stieltjes moment

problem. A necessary and sufficient condition for the existence of j: ) J(t) dy isthe
convergence of ; UnCn .  Moreover, j; ) J ay = "2: uaCs , hence, does not depend
on the choice of ¢. Analogous resulls hold in (— <, x) for f(t) = gcntz",
¢n = 0, and the series ”E:O UanCn -

Consider sections fo(t) = co + et + -+ + ¢ut”,n = 0,1, --- . Evidently,

fa(t) — f(¢), increasingly with respect to n, for any ¢ in [0, =). Hence, by
Lebesgue’s Theorem,

S e =lim [ 0y = [ impas= [ soav.

The proof for (— =, «) is quite similar.
COROLLARY 4.6. In the Stieltjes case, Qa(f) and QS(f) both converge for any

integral transcendental function f(t) = Z cal” with non-negative coefficients, for

o0
which Z uiCi converges, and

f=0

I@mm=@mm=QM@£ﬂM¢



APPROXIMATE QUADRATURES 123

Furthermore, if, as t — ®, fo(t) is dominated by a function f(t) of the above type,
then

QU — [ SO, Q- [ A0 v,

For the interval (— «, «) Jouravsky([l] has obtained a convergence crite-
rion under the following conditions

pm = O[(2n + p)' 17}, I, p > 0 fixed, ¥(¢) absolutely continuous

(here the moment problem is determined, by Carleman’s criterion):

THEOREM 4.11. Let f(1) be an integral transcendental function Z cal"y o 2 0,

n=0

and, as |t| = =, let
= 1)

s = 2k + 20, k a positive integer,0 < o < 1. Assume further that Z R Cnsk
ne=0

converges. Then fo(t) ¢ F*.

We pass now to the Hamburger case. Here we cannot go as far as previously.
In fact, although we know that {y5(f)} converges, we do not have an adequate
expression for R 4(f); on the other hand, an adequate expression is available for

4+(f), but {¥a(t)} does not converge in the general case.

The following results of a more particular character are derived from the pre-
ceding discussion, by reasoning quite similar to that developed in the Stieltjes

case.

() If f(¢) = D c.*" is an integral transcendental function with non-negative
n=0

coefficients, such that . uuc; converges, then QA(f) converges to 2 uuc; =
1m0

[ ]
_[ f(¢) dy, where ¢(¢) is an arbitrary solution of the moment problem.
Indeed, I,(f) exists and f(¢) € (2, n), hence, Q4(f) is bounded. If now y*(t) =
lim ¥4, (¢), then, by Lemmas 4.6 and 4.7, Q2,(f) converges to the value 3 uzc; =
» 10

[ 0a.

(ii) If fo(t), as | t| — oo, is dominated by f(t) of (i), then Qa,(fo) — Iv4(fo),
where {ya,(f)} is a convergent subsequence, with y*(¢) as its limit function.

11. Approximate quadrature formulas give rise to an interesting application
to the following problem: how wide can be an interval known to be free of roots
{zin}, Jor a given n?
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Consider, first, the case of a finite orthogonality interval [a, b]. Assume
that (¢, d) C [a, b} contains no roots of ¢.(r). Define

(z — ¢)*(d — )% in [c, d],
{0 elsewhere,

(4.50) f(z) =

where 4 is 4 positive integer to be specified later. We readily verify the tollowing
relations:

J'lf(z)léf(c;d)=(d——;—c>u=7“, 7=d—c. asz=b

7€) | < 284"-k!.

The last inequalitv is derived by means of elementary properties of Legendre
polynomials. Hence [Jackson, 1] there exists a polynomial P,(z), of degree
n>hk - 1,suchthatina £ r b

(4.51)

(4.52) ) — Pu) | < [mn(b - a)] ’

n

where £ is an absolute constant. Moreover, a simple computation shows that
|f/(x) | is maximum at

_ctad _ v
2 Vo —1
Consider now the subinterval
Jetd_r  ctd v
I [ 2 1k’ g T 4k]
or one half of it if (¢ — a)(d — b) = 0. The points &, £ certainly full outside
I for k sufficiently large. Hence,

=c+d ¥

b 2 TVt

&

2%—1
1y < 7 <‘Y =c+d_l
|f(I)|=f(Io)= 9 To 2 1L’ zel,

et 2%
c+d

4 0<s(FE) o = s s [ e s T

_é 72&
4 ’
Apply now the approximate quadrature formula (4.4) to the function (4.50).
We have

zel.

1@) = f) > (1 IE

d
Ras() = [ 1(2) dy = Ras(f = P0)
(4.54) ‘

b b
- f [f(z) = Pa@ldv = [ 1f@) = Pawsidp.
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By (4.51), (4.52) and (4.53),
3 u 28%kv(b — a) T _
(4.55) 17 ./:dwé '/;f(x)d¢§ 2uo[——~——n——-——- , n>k-—1.
Assume now
r+l
(4.56) f dy 2 ml,

where [r, 7 4 ] is any subinterval of [c, d] and m > 0 does not depend on r, I.
This is certainly satisfied, if

(4.57) dy(z) = h(z) dz, h(z) 2m >0 in (c, d).

Taking in (4.55) k ~ log n, we get the desired result

d_c<rlogn
pant

Here, and in the subsequent discussion, we generally denote by r a properly
fixed positive quantity, independent of ¢, d, =.

The above analysis is applicable to any formula of approximate quadrature,
with a positive dy(z), which is exact for polynomials, provided the sum of the
absolute values of its coefficients remains bounded with respect to n. It follows
that if z;_;,» , Z;,» both lie in an interval [k, k;] where (4.56) is satisfied, then

rlogn

(4.58) Tim — Ticin < n

By means of Tchebycheff’s inequalities (4.36), this yields

(4.59) pin < ”‘:f L8 i Zism, Zim, Tinn all e in [k, k).

If Zi 2 5 Ticiin s Tin, Tit1,a are allin [k, ki) and z;_;.» < a < z;,., then for any
two solutions ¢'(z), ¥’/ (z) of the reduced moment problem (2.9)

| [ v - et p | < 82
(4.60) ® « rlogn
[ f ' (z) —£ ay'(z) | < B2,

The above considerations have many points in common with those of [Krawt-
chouk [1, 3] (cf. also [Netzorg, 1]). They apply to a general class of quasi-
orthogonal polynomials, while finer results may be obtained in special cases.
Thus, if d¢(z) = h(z) dr, where 0 < m < h(z) £ M < = in [a, b), then, accord-
ing to Erd6s and Turén, [1], we have, for [a, b] = [—1, 1],

ain—oi—l.n<£; Ein=10c080jn, j=1,2+-+,m.

Estimates of ¢, — £;-1,» based on the asymptotic expression for the correspond-
ing orthogonal polynomials are given by Szego [2]. The case of the interval
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(— =, ») may be treated in a similar manner. Again introduce the function
f(r) as in (4.50) and an interval [—A., A4.,] increasing indefinitely with n and
such that [—A,., A.] D [Ton, L), There exists a polynomial P,(z), of degree
n > k — 1, such that
D k
If(x)_Pn(I)l §[g%1él‘] ’ —A.§I§.4n,

whence

k
(4.61) | Pa(z)| S Lky* in [d,4,] and [—A,.,d, I = (4311;‘4") .
We now apply to the polynomial P,(z) the following inequality of Tchebycheff:
| Pa(z) | S M on [a, B8] implies, for ¢ outside [a, 8],

26 —a—B+2vVE-—a)E-B)]I '
+ 2 —a-8-2vVE-a)t—B)
B—=a)

|Pa(@) | < %

Using (4.61), we readily get
|P,.(:z:)|<h7"(A4——_d>|:rl",- lz| 2 4., 0sc<d< A,.
For R, ,(f) we now write a relation analogous to (4.54), which vields

d
0 < Boy() = [ f@)d¥ S liv*@uo + do),

e G [ e ]

Assume that (4.56) is satisfied in any subinterval of [c¢, d], where now ¢, d, m
eventually depend on n. By a reasoning quite similar to that emploved for a
finite interval, we get

AN - L 2
d—c< rk(f)mm 1 (2u0 + da)T,
whence, taking k£ ~ log n and assuming that m and d, are bounded with respect
ton,
A,
(4.62) d—c¢< T log n.

log n
n

The inequalities (4.58), (4.59) and (4.60) now follow, with replaced by

‘i'llon
n BT

12. We refer to [Krawtchouk 8, 9] for a discussion of an upper bound for
X b 4
[awe - [ aro

first N moments are “approximately’’ equal.

, where ¢’ and ¢’/ are two distribution functions whose
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