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Preface. 
Matric algebra is a mathematical abstraction underlying many 

seemingly diverse theories. Thus bilinear and quadratic forms, linear 
associative algebra (hypercomplex systems), linear homogeneous trans­
formations and linear vector functions are various manifestations of 
matric algebra. Other branches of mathematics as number theory, 
differential and integral equations, continued fractions, projective 
geometry etc. make use of certain portions of this subject. Indeed, 
many of the fundamental properties of matrices were first discovered 
in the notation of a particular application, and not until much later re­
cognized in their generality. 

It was not possible within the scope of this book to give a completely 
detailed account of matric theory, nor is it intended to make it an 
authoritative history of the subject. It has been the desire of the writer 
to point out the various directions in which the theory leads so that the 
reader may in a general way see its extent. While some attempt has 
been made to unify certain parts of the theory, in general the material 
has been taken as it was found in the literature, the topics discussed 
in detail being those in which extensive research has taken place. 

For most of the important theorems a brief and elegant proof has 
sooner or later been found. It is hoped that most of these have been 
incorporated in the text, and that the reader will derive as much plea­
sure from reading them as did the writer. 

Acknowledgment is due Dr. LAURENS EARLE BUSH for a critical 
reading of the manuscript. 

CYRUS COLTON MACDuFFEE. 
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I. Matrices, Arrays and Determinants. 
1. Linear algebra. A linear algebra 2{ of order n over a field ~ is 

composed of two or more numbers 0.;, {J, y, . .. and three operations, 
addition (+), multiplication (.) and scalar multiplication such that 
0.; + {J, 0.;. {J, 0.; a , ao.; are uniquely defined numbers of 2{, where a is 
in b-. It is further assumed that addition is commutative and asso­
ciative, and that multiplication is distributive with respect to addi­
tion. If a and b are in b- it is assumed that 

ao.; = 0.; a , a(bo.;) = (ab) 0.;, (ao.;) (b{J) = (ab) (0.;{J) . 

(a + b) 0.; = aiX + bo.; , a(iX + {J) = ao.; + a{J. 

Finally it is assumed that 2{ contains a finite number of numbers 
8 1 ,82 , ... , 8n such that every number of 2{ is of the form 

a1 8 l + a2 82 + ... + an 8n , 

where the a's are in b- l . 

2. Representation by ordered sets. If 

iX = a1 8 l + a2 82 + ... + an 8n 

is a number of 2{, and if the ordered set 

[aI' a2 , ••• , an] 

of numbers of b- be made to correspond to 0.;, addition, multiplication 
and scalar multiplication for such sets can be so defined that they 
give a representation of 2{. Thus if 

0.; <Xl [aI' a2 , ••• , an], {J <Xl [bl , b2 , ••• , b,,]. 

then by definition 

0.; + {J <Xl [al + bl , a2 + b2 , ••• , an + bn], ao.; <Xl [aal , aa2 , •• " aa,,]. 

If 

then 
iX' {J = ~ ai8i' ~ bj 8j = ~ (aibj) • (e.j8j) = ~ ai bj CijI' 13k 

so that 
cx..{J<Xl[~aibjCijl' ~aibjCij~' ... , ~aibjCijn]' 

For every choice of the n3 numbers Cijk of b- an algebra over b- is ob­
tained 2• 

1 DICKSON, L. E.: Algebren und ihre Zahlentheorie, p.23. Ziirich 1927. 
2 HAMILTON, W. R.: Elements of Quaternions. 
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2 1. Matrices, Arrays and Determinants. [354 

If in particular the algebra is associative, then 

(Ci' Cj) • Ck = ci' (Cj' Ck) • (i, j, k = 1, 2, ... , n) 

This means that the n3 numbers Cijk are subject to the n4 conditions 

(2.1) J:kCikrCjSk = J:kCijkCksr' (i, j, r, S = 1, 2, ... , n) 

If Ri denotes the ordered set of numbers 

Cill Ci21 Cinl 

Ri= (Cis,) 
Ci12 Ci22 G.in2 

-

Ciln Ci2n Cinn 

and if multiplication and scalar multiplication of such sets are defined by 

Ri R j = (Cisr) (Cjsr) = (J:k Cikr CJ'sk) , 

aRi = (acisr) ' 

then (2.1) may be written l 

Ri R j = J:k Cij k Rk . 

Thus the sets Ri combine under multiplication in the same manner 
as the basis numbers Ci of ~. If the sets Ri are not linearly independent 
with respect to IT, the sets Ri obtained by bordering Ri above with a 
row of O's and on the left with bri (KRONECKER'S b), are linearly inde­
pendent and are isomorphic with the ci under multiplication 2. 

If, finally, addition of sets is defined by the identity 

Ri + R j = (Cisr + Cjsr) , 

it is evident that these sets give a representation of the algebra 3. 

rt is interesting that in the same year that POINCARE'S note was 
published, SYLVESTER wrote: "The PEIRCES (subsequently to 1858) 
had prefigured the universalization of HAMILTON'S theory, and had 
emitted an opinion to the effect that probably all systems of algebraical 
symbols subject to the associative law of multiplication would be even­
tually found to be identical with linear transformations of schemata 
susceptible of matricular representation. .., That such must be the 
case it would be rash to assert, but it is very difficult to conceive how 
the contrary can be true 4. " 

3. Total matric algebra. The considerations of § 2 suggest that 
a linear algebra of order n 2 over IT can be so defined that every algebra 
of order n over IT will be isomorphic with one of its proper sub-algebras5• 

1 SCHUR, 1.: Uber eine Klasse von Matrizen, p. 59. Berlin 1901. 
2 DICKSON: Algebren und ihre Zahlentheorie, p. 35. 
3 POINCARE, H.: C. R. Acad. Sci., Paris Vol. 99 (1884) pp. 740-742. 

WEYR, E.: S.-B. bohm. Ges. Wiss. Prague (1887) pp.616-618. - STUDY, E.: 
Ene. math. Wiss. I A Vol. 4 (1904) § 10. 

4 SYLVESTER: Amer. J. Math. Vol. 6 (1884) pp.270-286. 
5 VAN DER WAERDEN: Moderne Algebra Vol. I p.37. Berlin 1930. 
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1. :tlatrices, .\rrays and Determinants. 3 

More generally we define the total matric algebra 9), of order n 2 over 
a ring ffi to consist of the sets of n 2 number each of the type 

subject to the following operations and postulates: 
Two sets A = (ars) and B = (brsl are equal if and only if ars = b,s 

for every rand s. 
The operation of addition is defined by 

A + B = (ars + brs) • 

Evidently the sets form an abelian group with respect to addition, 
since the same is true of the elements of the ring ffi. The identity set, 
whose elements are all 0, will be denoted by O. 

The operation of multiplication is defined by 

AB = (.Ei ari bis) , 

that is, by "row by column" multiplication of the sets. The product 
is evidently unique, and OA = AO = 0 for every A. 

:\1ultiplication in me is associative, since multiplication in ~J( is as-

sociative. (A B) C - (.E. ·(a . b··) c· ) --- ~~J rt tj .}8 

= (.Eij ardbij Cjs)) = A (B C) . 
:vIultiplication in [l, is distributive with respect to addition, for the 

same IS true in ffi. 
(A + B) C= (.Ei(ari + bri ) Cis) 

(.E,(ariC;s + bric;s)) = AC + BC. 

Similarly C(A + B) = CA + CB. 
Theorem 3.1. The total matric algebra 0/ order n 2 over a ring ffi is 

itself a ring. 
Nothing is gained in this connection by specializing ffi, for multi­

plication in 9']( remains usually non-commutative even when ffi is a com­
mutative ring, and the inverse as to multiplication of A ~ 0 does not 
always exist even for a ring without divisors of zero. If, however, 
~R is a ring with the unit element 1, then the matrix I = (6 r8 ) (KRON­
ECKER'S delta) is such that AI = IA = A for every A, and :lJI is a ring 
with unit element I. 

We define a matrix over ffi to be a number of a total matric algebra 
over ffi. 

Suppose A = (ars)' B = (bys ), AB = C = (c rs ) to be n-rowed matri­
ces. Let A and B be separated into blocks: 

A= C= 
ell C12 

('21 C22 
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where All has i rows and j columns, Ell has j rows and k columns, 
and ell has i rows and k columns. It is readily verified that 

(r, s, i = 1, 2) 

where the rectangular blocks A ii , Eii are multiplied "row by column". 
This holds for all separations of the matrices into blocks, provided the 
rows of E are separated in the same ways as the columns of A. 

We shall use the word array to mean an ordered set of k elements 
such that two arrays are equal if and only if each consists of the same 
number of elements and if corresponding elements are equal. If 
k = mn, the array can be arranged in the form of a rectangle. Under 
certain circumstances the sum or product of two arrays may have 
meaning, for instance when they are matrices or as in the last paragraph 
when they are blocks cut from matrices, but no such operations are 
implicit in the definition of array. 

A matrix is an instance of an array of n 2 elements, but it is much 
more than that, for it is a member of a total matric algebra for which 
the operations of addition and multiplication are defined. The importance 
of the matric theory derives from the rules of combination of matrices, 
while the fact that they may be represented by square arrays is in­
cidental. 

Sir THOMAS MUIR recently remarked: "One of the first of such ex­
tensions of usage was entirely uncalled for, especially in England, 
namely to make it (the word matrix) take the place already satisfactorily 
occupied by the word array. How satisfactory this was will be readily 
seen on looking through textbooks of determinants like SCOTT'Sl. A 
capable historian. .. would certainly add further to his credit if in 
the course of his work he made manifest by precept and example an 
irreproachable mode of using in each other's company the terms array, 
determinant, matrix 2." 

Writers are far from agreed on a consistent terminology. The word 
"matrix" was first used by SYLVESTER 3 to denote a rectangular array 
from which determinants can be formed. The concept of a matrix as 
a hypercomplex number is due in essence to HAMILTON but more directly 
to CAYLEy 4• CHATELET, among others, uses "matrix" for a rectangular 
array and "tableau" for a member of a matric algebra 5. But the es­
sential point, to which CHATELET agrees, is to differentiate the concepts. 

1 SCOTT, R. F.: A treatise on the theory of determinants. Cambridge 1880. 
2 MUIR, THOMAS: Trans. Roy. Soc. S. Africa Vol. 18 III (1929) pp.219-227. 
3 SYLVESTER: Philos. Mag. Vol. 37 (1850) pp. 363-370 - Coll. Works Vol. I 

p.145. 
• CAYLEY: Trans. London Phil. Soc. Vol. 148 (1858) pp. 17-37 - Coil. \Vorks 

Vol. II pp.475-496. 
5 CHATELET: Les groupes ab6liens finis. Paris 1924. 
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4. Diagonal and scalar matrices. A matrix of the type 

kl 0 0 0 
I 

0 k2 0 0 

I = [kl' k2' ... , k"J D= 0 0 k3 0 

0 0 0 kn 

is called diagonal. From the definitions of addition and multiplication 
of matrices it follows that 

[kl' k2' ... , kn] + [11' l2' ... , InJ = [kl -+- 11' k2 + 12, ... , kn + In] , 

[kl' k2' ... , knl ell' 12 , .•• , lnl = [kIll' k212' ... , knl,.l. 

A diagonal matrix all of whose diagonal elements are equal is called 
scalar 1. 

If S" denotes [k, k, ... , kJ, then Sk + S[ = Sk+[' S"S[ = Ski, 
So = O. 

Thus 
Theorem 4.1. The scalar matrices of \)), constitute a subring of 9)( iso­

morphic with ffi. 
It is customary to write k for S" and kA for SkA. If ffi is a ring with 

unit element 1, then SI = I. 
Theorem 4.2. If ffi is a commutative ring with unit element, and if 

AX = XA for every X in 9)(, then A is scalar. 
For if X/ik in 

IS replaced by ()hP ()"q, there results 

L ari ()iP()sq "~.2: ()rp()iq ais, arp ()sq = ()rp a qs ' (r, s, p, q = 1,2 .... , n) 

For q = sand r P this gives a,p = 0, while for q = sand r = p 
it gives arr = ass. 

5. Transpose. Symmetric and skew matrices. The matrix AT = (a,t) 
obtained from A = (ars) by changing rows to columns is called the 
transpose 2 of A. A matrix S such that ST = S is called symmetric, 
a matrix Q such that QT = -Q is called skew 3 (skew-svmmetric, or 
alternating) . 

1 SYLVESTER: Amer. J. :\Iath. Vol. G (1884) pp.270-286 - Call. Works 
Vol. IV pp. 208-224. 

2 Or conjugate. Many different notations for the transpose have been used. 

as A', A, A, A*, AI' fA. The present notation is in keeping with a systematic 
notation which, it is hoped, may find favor. 

3 CAYLEY: j. reine angew. :--lath. Yol. 32 (1846) pp. 119-123 - Coil. \\'arks 
Vol. I pp. 332336. LAGUERRE: ].l~c()\e polytechn. Yo/. 25 {18(,iJ I'p. 215 to 
264 - CEllVTtcS Vol. T pp.228-2.l.l. 

357J 1. Matrices, Arrays and Determinants. 5 

4. Diagonal and scalar matrices. A matrix of the type 

kl 0 0 0 
I 

0 k2 0 0 

I = [kl' k2' ... , k"J D= 0 0 k3 0 

0 0 0 kn 

is called diagonal. From the definitions of addition and multiplication 
of matrices it follows that 

[kl' k2' ... , kn] + [11' l2' ... , InJ = [kl -+- 11' k2 + 12, ... , kn + In] , 

[kl' k2' ... , knl ell' 12 , .•• , lnl = [kIll' k212' ... , knl,.l. 

A diagonal matrix all of whose diagonal elements are equal is called 
scalar 1. 

If S" denotes [k, k, ... , kJ, then Sk + S[ = Sk+[' S"S[ = Ski, 
So = O. 

Thus 
Theorem 4.1. The scalar matrices of \)), constitute a subring of 9)( iso­

morphic with ffi. 
It is customary to write k for S" and kA for SkA. If ffi is a ring with 

unit element 1, then SI = I. 
Theorem 4.2. If ffi is a commutative ring with unit element, and if 

AX = XA for every X in 9)(, then A is scalar. 
For if X/ik in 

IS replaced by ()hP ()"q, there results 

L ari ()iP()sq "~.2: ()rp()iq ais, arp ()sq = ()rp a qs ' (r, s, p, q = 1,2 .... , n) 

For q = sand r P this gives a,p = 0, while for q = sand r = p 
it gives arr = ass. 

5. Transpose. Symmetric and skew matrices. The matrix AT = (a,t) 
obtained from A = (ars) by changing rows to columns is called the 
transpose 2 of A. A matrix S such that ST = S is called symmetric, 
a matrix Q such that QT = -Q is called skew 3 (skew-svmmetric, or 
alternating) . 

1 SYLVESTER: Amer. J. :\Iath. Vol. G (1884) pp.270-286 - Call. Works 
Vol. IV pp. 208-224. 

2 Or conjugate. Many different notations for the transpose have been used. 

as A', A, A, A*, AI' fA. The present notation is in keeping with a systematic 
notation which, it is hoped, may find favor. 

3 CAYLEY: j. reine angew. :--lath. Yol. 32 (1846) pp. 119-123 - Coil. \\'arks 
Vol. I pp. 332336. LAGUERRE: ].l~c()\e polytechn. Yo/. 25 {18(,iJ I'p. 215 to 
264 - CEllVTtcS Vol. T pp.228-2.l.l. 



6 1. Matrices, Arrays and Determinants. [358 

Theorem 5.1. 

(A + B + ... + Kf = AT + BT + ... + KT. 

Theorem 5.2. 1/ ffi is a commutative ring (AB ... K) T = ~ ... BT AT. 
For (AB)T = (L aribis)T = (~birasi) = BTAT. The general theorem 

follows by induction 1. 

Theorem 5.3. 1/ ffi is a ring in which 2x = a is solvable tor every a, 
every matrix 0/ mover ffi is uniquely expressible as a sum 0/ a symmetric 
and a skew matrix 2. 

Assume 

Then AT = ST + QT = S _ Q so that S = A + AT, Q = A - AT. 
2 2 

Conversely for every A it is possible to form a symmetric matrix Sand 
a skew matrix Q in the above manner. 

6. Determinants. Let m be an algebra of n-rowed matrices with 
elements in a field ~. It is desirable to have associated with every 
matrix A of m a number O(A) of ~ which would serve the purpose of 
an absolute value. This end would be attained by finding a scalar 
function O(A) of the elements ars of a general matrix A such that. 

1. For every A, O(A) is a non-constant rational integral function 
of the arB of lowest degree such that 

2. O(AB) = O(A) O(B). 
It follows directly from (2) by taking B = I that O(A) = O(A) 0(1), 

and since O(A) is not constant, 0(1) = 1. If B = 0, (2) gives 0(0) 
= O(A) 0(0). Again because O(A) is not constant, 0(0) = O. 

When n = 3, for instance, let 

v= 1 o 0 , 

o 1 o 
W(t) = ~ ~ ~ II , T(t) = ~ ~ ~ 

o 0 1 II 0 0 1 o 0 1 

V2 = I, W(t) W( -t) = I, T(t) T(1/t) = I. 

Since O(W(t)) O(W(-t)) = 1, it follows that O(W(t)) is independent 
of t, otherwise the left member of the above equation would be of 
degree >0 in t. Hence O(W(t)) has for every value of t the same 
value that it has for t = 0, namely 

O(W(t)) = 1 . 
Consider 

0 1 0 0 0 0 1 0 1 0 0 
1 0 0 0 1 0 1 0 0 0 t 0 

0 0 1 0 0 1 0 0 1 0 0 1 

1 CAYLEY: Philos. Trans. Roy. Soc. London Vol. 148 (1858) pp. 17-37 -
Coli. Works Vol. II pp.475-496. 

2 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) pp. 1-63. - CAYLEY: 1. c. 
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or VT1V = 1'2' Since 8(V) = ±1, 8(Tl) = (}(T2)' Since (}(1'(t)) 8(T(1jt)) 
= 1 and 8(T(t)) is of the same degree ), in t that (}(T(1lt)) is in 11t, it 
follows that ()(T(t)) must be a monomial a}/ in t. Since 8(T(1)) = 1, 
a;. = 1. We now invoke the minimum principle (1) and assume that 
A = 1. This is justified by actually obtaining under this restriction a 
function satisfying the given requirements. Then 

8(1';) = t. 
Consider 

1 0 0 1 0 1 0 0 0 1 0 0 0 

-1 1 0 0 1 0 -1 1 0 1 0 0 -- ! 0 -1 0 

0 0 1 0 0 1 0 0 1 0 0 0 0 

or W1 W 2 W1 V= 1'(-1). Hence 

8(V) = -1. 

If A is a general matrix, (}(TA) = ttJ(A) so that 
1'. The function tJ(A) is a polynomial in the elements ali which 

IS homogeneous and linear in the elements of each row. 
Since tJ(V A) = -tJ(A), it follows that 
2'. 0 (A) merely changes sign when two rows are permuted. 
3'. 0(1) = 11. 
The three properties just stated were called by WEIERSTRASS the 

characteristic properties of a determinant. By 1'. 

n 

8(A) = ~ ch,h, ... hna1h,a"h, ... anh"' 
h_, h" ...• hn ~ 1 

Permute rows 1 and 2 and add, whence by 2', 

2.: (Chlh, ... hn + Eh,h , ... hn) alh, a2h 2 ••• anhn =, O. 

Hence in general ch,h, ... lin is 0 if two subscripts coincide, while if 
the h's and k's are all distinct, ch,h, ... hn = ~ ck,k, ... kn according as 
the substitution 

is even or odd. 
in general 
(6.1 ) 

(hi k> ... hn) 
kjk:! ... kn 

Since tJ (J) = 1, it follows that Cl, 2 •... , n == 1. Hence 

where the summation is over all permutations (hI' h2 , ... ,hn ) of 
(1,2, ... ,n), and ch,h, ... hn is 1 or -1 according as the permutation 
is even or odd 2. 

1 This treatment is due to K. HENSEL: J. reine angew. Math. Vol. 159 (1928) 
pp.246-254. 

2 \VEIERSTRASS-GUNTHER: Zur Determinantentheorie. 1886 - 1887- \\'erke 
Vol. III pp. 271-286. - KRONECKER: Vorlesungen tiber die Theorie der Deter­
minanten VoL 1 p.291 et. seq. Teubner 1903. 
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That this function e (A) satisfies the demands of HENSEL will follow 
from Corollary (7.9). 

It is possible to develop the entire theory of determinants from the 
characteristic properties of WEIERSTRASS l • 

7. Properties of determinants. As CAYLEY remarked, "the idea 
of matrix (or square array) precedes that of determinant" 2. A determin­
ant is a number associated in a precise way with an array of n 2 ordered 
numbers. This point of view seems to have been clear to CAUCHY who 
gave the first systematic treatment of determinants, a treatment which 
can scarcely be improved upon today 3. Unfortunately the word "deter­
minant" is often used today to mean both an array and a number 
associated with that array. (Note the remarks of MUIR in § 3, and 
BENNETT'S criticism of BOCHER4. For a very clear statement of the 
ordinary determinant theorems from the present point of view, see 
HASSE, Hahere Algebra I, de Gruyter 1926.) 

There is no room in the present tract for an extended treatment 
of determinant theory. A practically complete bibliography is given 
in MUIR's "Theory of determinants in the historical order of develop­
ment", 4 v., Macmillan 1906-23. The early history is attractively 
presented by KRONECKER, "Vorlesungen tiber die Theorie der Deter­
minanten", Teubner 1903, p.1-9. An excellent reference book is 
G. KOWALEWSKI'S "Einfiihrung in die Determinantentheorie", Leipzig 
1909. 

Let Abe a square array with elements in a field lJ and let d (A) or 
IA I be its determinant. A few important theorems are listed for future 
reference. 

Theorem 7.1. d(AT) = d(A). 
Theorem 7.2. I I B is obtained Irom A by the interchange 01 two rows 

or 01 two columns, d(B) = -d(A). 
Theorem 7.3. I I two rows or two columns 01 A are identical, d (A) = O. 
The usual proof of this result, namely in noting that the hypothesis 

gives 2d (A) = 0 and hence d (A) = 0, fails when lJ has the character­
istic 2. The proof can be modified to include this case 5 or the result 
can be proved otherwise. 

Theorem 7.4. II B is obtained Irom A by multiplying any row or 
any column 01 A by k, then d (B) = kd (A). 

Theorem 7.5. II A is a square array each element of whose kth row 
1S a sum 

(s=1,2, ... ,n) 

1 ILIOVICI: Rev. Math. spec. Vol. 37 (1927) pp. 433-436 and 457-458. 
2 CAYLEY: J. reine angew. Math. Vol. 50 (1855) pp.282-285. 
3 CAUCHY: J. Ecole polytechn. Vol. 10 (1815) pp.51-112. 
4 BENNETT, A. A.: Amer. Math. Monthly Vol. 32 (1925) pp.182-185. 
5 RYCHLIK, K: J. reine angew. Math. Vol. 167 (1932) p. 197. 
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then 
d(A) = d(Al) + d(A2) + ... + d(Am) , 

where Ah is the array obtained by replacing the elements of the kth row 
by dk1h , dk2h , . .. , dknh . Similarly for columns. 

Theorem 7.6. If B is obtained from A by adding to any row (or column) 
a linear combination of the other rows (columns), then d (B) = d (A). 

If A is a square array of n rows, 

a"l81 ar18z ar,Sk 

Ar"" rk -
ar281 ar282 ar,S!, 

81 .. ' Sk 

arkSl arkS, arkSk 

is called an Howed minor array of A . A;: ::: ~~ is a principal minor array. 
Theorem 7.7. 

d(A) = ...... ±d (A~l ... rk) d (A~k+l '" ~.), 
..:". \ h ... tk 'M + 1 '" tn 

where the summation is over the (~) ways of selecting the k numbers iI' ... , ik 
from among the numbers 1, ... , n without regard to order, and the sign 
is + or - according as the substitution 

(1, 2, ... , k, k + 1, ... , n) 
rl ,r2 ,···,rb rk+l, ... ,rn 

is even or oddi . 

In particular d(A~) = ars ' Let Ars denote ±d(A~: ::::~:::~:~:::~: ::::~), 
the sign being + or - £i4tcording as 

(r, 1, ... , r-1, r+1, ... , n) 
s, 1, ... , s - 1, s + 1, ... , n, 

IS even or odd. Call Ars the cofactor of ars in A. 
Theorem 7.S. 

where /Jpq is KRONECKER'S delta. 
Theorem 7.9. Let A and B be n-rowed matrices with elements in a 

field ~. Let Mt'::: f=' be an m-rowed minor matrix of the product AB. 
Then 

d (ll1kl ... km) = ...... d (A~l ... ~m) d (Bil ... im), 
It ... 1m ,.:.. 'h ... tm It ... 1m 

where the summation is over all (:) selections of iI' ... , im from 1, ... , n 
without regard to order2. 

Corollary 7.9. d(AB) = d(A)d(B). 

1 LAPLACE: Mem. Acad. Sci. Paris 1772. 
2 DICKSON: Modern algebraic theories, p. 49. Chicago 1926. 
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8. Rank and nUllity. If A is an m· n array with elements in a 
field ~, the rank e of A is the order of a minor square array of A of 
maximum order whose determinant is not zerol. If A is square of 
order n, then n - e is called the nullity of A. 2 

Theorem 8.1. If A is a square array of order n, with elements in a 
field ~, of nullity x and rank e = n - x, there exist exactly x linearly 
independent linear relations among the rows (columns) of A, and con­
versely. 

Rearrange the columns of A so that the first r are linearly independent 
while each remaining column is linearly dependent upon these. Call 
the resulting matrix B. Then evidently e (A) = e (B). There are 
exactly n - r independent relations 

khl bkl + k"2 bk2 + .,. + kh[! bkc = bkh 
(k=1,2, ... , n; h=r+1, ... , n) 

among the columns of B. By Theorems 7.5 and 7.4 every (r + 1)­
rowed minor of A has a determinant which can be written as a linear 
combination of determinants each having at least two equal columns, 
and hence vanishes. Thus Q:S r. 

Now suppose that 

bll bI[! bll bI !! blh 
:±co 

b[!1 bill! bf2I bCQ bl!h 
=0 

bkl bkl! bkh 

for every hand k. By Theorem 7.8 

bPI Bk(11 + bP2 Bk(~1 + ... + bpi! Bk(~ + bph Bk(~1 = 0 

for every p and k. But the cofactors B~~ are independent of k, so there 
is a relation 

bPl Clk + bP2 C2h + ... + bpi! Ci!h + bph Chh = 0 

for every p and h. Moreover for h > e, C h h d: 0 since B is of rank e. 
Thus the number n - r of linearly independent linear relations among 
the columns of B is at least n - e, so r < e. Hence e = r, n - r = x. 

Corollary 8.2. If BC = 0, e (B) + e (C) < n. For every B there 
exists a C such that e (B) + e (C) = n. 

A solution X of the equation AX = 0 of rank n - e (A) is called 
a complete solution. Denote by (x) the vector or one-column array 
(Xl' x2 , ••• , xn). Then (y) = A (x) can be written for 

(i, j=1, 2, ... , n). 

1 FROBENIUS: J. reine angew. Math. Vol. 86 (1879) pp. 1-19. The concept 
of rank seems to be implicit, however, in a paper by I. HEGER: Denkschr. Akad. 
Wiss. Wien Vol. 14 (1858) pt. 2 pp.1-121. 

2 SYLVESTER: Johns Hopkins Univ. Circulars Vol. III (1884) pp.9-12 -
Call. Works Vol. IV pp. 133-145. 
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If B is a complete solution of the equation AB = 0, and if (x) is an 
arbitrary vector, then (y) = B (x) is the most general solution of the 
equation A (y) = O. 

Lemna 8.3. If the vector (z) ranges over the solutions of the equation 
AB (z) = 0, then B (z) represents exactly e (B) - e (AB) linearly in­
dependent vectors. 

For among the "( = n - e (AB) independent solutions of the equation 
AB (z) = 0 belong the (J = n - e (B) solutions (z'), (z"), .. " (z(u») of the 
equation B (z) = O. If these are extended by the solutions (z(a+l»), .. " (z«») 
to a complete system of "( solutions, the "( - (J = e (B) - e (AB) 
vectors B(z(a+l»), ... , B(z«») are independent. For a relation 

Cu+lB(Z(u+l») + ... + C<B(z«») = B(Cu+1 (z(a+l») + ... + C(z«»)) = 0 

would imply 

Ca+dZ(a+l») + ... + C«z«») = C1 (z') + ... + Cu(z(a»), 

and hence C1 = ... = C< = O. 
Theorem 8.3. If A, B, C are three matrices of order n with elements 

in ~, 
e(AB) + e(BC) <e(B) + e(ABC). 

In the lemma replace B by BC. Then A = e (BC) - e (ABC) IS 

the number of vectors (y'), (y"), .. . for which ABC(y) = 0 and the 
vectors B C (y'), B C (y") , ... are independent. Then (z') = C (y'), 
(z") = C (y") , . .. satisfy the equation AB (z) = 0, and the vectors 
B (z') = B C (y'), B (z") = B C (y"), ... are independent. But since there 
are not more than e (B) - e (AB) such vectorsl (z') , (z") , ... , 

A < e (B) - e (AB) . 

Corollary 8.3. The nullity of the product of two matrices is at least 
as great as the nullity of either factor, and at most as great as the sum of 
the nullities of the factors 2. 

For when C = 0, FRoBENIUs' theorem gives e (AB) < e (B); when 
A = 0 it gives e(BC) < e (B); and when B = I, it gives 

e(A) + e(C) ~n + e(AC). 

If A is an n-rowed square matrix with elements in a domain of 
integrity 'l) containing the field ~ as a sub-variety, the column-nullity 
of A with respect to ~ is the number of linearly independent linear 
relations among the columns of A with coefficients in ~. The column­
nullity may not equal the row-nullity 3. 

1 FROBENIUS: S.-B. preuJ3. Akad. Wiss. 1911 pp.20-29. 
2 SYLVESTER'S "Law of nullity". Johns Hopkins Univ. Circulars VoL 3 (1884) 

pp. 9-12 - ColI. Works Vol. IV pp. 133-145. 
3 MAC DUFFEE, C. C.: Ann. of Math. II VoL 27 (1925) pp. 133 - 139. 

Ergebnisse der Mathematik. Il/S. l\lacDuffee. 2 
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Theorem 8.4. II A is a matrix 01 rank e, and d(A;::::::) is denoted 

by bi ; (i, i = 1,2, ... , m; m = (;)), then the m-rowed square matrix 

B = (b'B) is 01 rank 1.1 

Suppose the rows and columns of A arranged so that bll =1= O. The 
last n - e rows are linear combinations of the first e rows, so if suitable 
linear combinations of the first e rows are added to each of the last 
n - e rows, these latter may be made to consist exclusively of o's. 
This process does not alter the rank of A or the rank of B. Now b'B = 0 
except when r = 1, so the ratio 

bn : bi2 : ... : bim 
is independent of i. In other words, 

bll =1= 0. 

Theorem 8.5. In a symmetric matrix 01 rank e there is at least one non­
singular principal minor 01 order e.2 

Suppose A symmetric of rank e. By Theorem 8.4 set 

bij = miPJ = bji = mjp" (i = 1,2, ... , m) 

where some Pi, say Pk, is not O. Set bltklPk 2 = m. Then bi ; = mPiP;, 
If m were 0, A would be of rank <e. Hence bkk =1= O. 

Theorem 8.6. The rank 01 askew matrix is even 3. 

Suppose A of odd rank e and b'B = -b8,. Set 

bij = mi'h, bj ;, = mjPi = -miPj, h =1= o. 
For m = -bkklh2 this implies 

bii = mPiPJ = ~mPJPi' 

Hence every bi; = 0, contrary to the assumption that the rank of A 
was e.' 

9. Identities among minors. Theorem 9.1. Among the minors 01 
order m 01 a symmetric matrix A 01 order n there exists the relation 5 

la,.1 = Eklailtl 
r = 1, 2, ... , m; s = m + 1, m + 2, ... , 2 m; h = m + 1, ... , 2 m; 
i=1, 2, ... , m-1, h; k=m+1, ... , h-1, m, h+1, ... , 2m. 

Let A have independent elements. Let I a" I = a. The operation 

~ a'J a:', [~ a._ a:~.l 
1 KOWALEW&KI: Einfuhrung in die Determinantentheorie, p. 124. 
2 KRONECKER: J. reine angew. Math. Vol. 72 (1870) pp.152-175. 
3 JACOBI: J. reine angew. Math. Vol. 2 (1827) pp.347-357. 
4 The last three proofs are by G. A. BLISS: Ann. of Math. II Vol. 16 (1914) 

pp.43-44. 
6 KRONECKER: S.-B. preuB. Akad. Wiss. 1882 II pp.821-844 - Werke 

Vol. II pp. 389- 397. 
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first replaces the elements of column h by elements with the same first 
sUbscript but with the second subscript m, and then replaces the elements 
of the last row of the new determinant by elements with the same second 
sUbscript but with the first subscript h. Consequently 

2m 2m m 

:2 ~ ahj CJ:mj ~ alm :a:~ = :2l ai k l. 
h=m+l j=m l=1 h 

The left member is equal to 
2m 

:2 2m [m 1 2m :2:2 CJ2a :2 CJa 
ahj aim CJ CJ + ahm -,,--. am} alh vamh 

h=m+l j=m+l l=1 h=m+l 
CJa . --"- • h d . F h' CJ2 a Since-,,- = 0, J ,m III t e secon SUmmatIOn. or =J, CJ CJ = O. 

vamm am} alh 
Now consider A to be symmetric. The coefficient of ahj' h =f= j, is 

m 

~ (CJ2a CJ2a) 
..-...; alm CJamj CJa'k + CJamA CJal j • 

1=1 
Since the interchange of columns hand j does not alter this expression, 
it vanishes. Hence the entire left member reduces to 1 

2m 

~amh"CJa =a • 
...::;.; varnA 

h=m+l 
A formal proof of KRONECKER'S identities was given by L. SCHEN­

DEL2. H. S. WHITE3 proved them from known identities in algebraic 
invariant theory. R. MEHMKE 4 stated that they are implied in GRASS­
MANN'S "Linealen Ausdehnungslehre" 1862, p.131, 

C. RUNGE 5 proved that all linear relations among the minors of a 
symmetric matrix are linearly dependent upon those of KRONECKER, 
and found linearly independent systems. He also proved that no such 
relations exist for skew matrices. His results are significant in con­
nection with the generalizations of KRONECKER'S identities by MUIR 6, 

and HELEN BARTON 7. 

METZLER8 gave some complicated identities among the minors of 
a matrix which include KRONECKER'S in the symmetric case. A very 
complete account of the identities among the minors of a matrix was 
recently given by R. A. BEAVER 9. 

1 STOUFFER, E. B.: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp.63-64. 
2 SCHENDEL, L.: Z. Math. Physik Vol. 32 (1887) pp.119-120. 
3 WHITE. H. S.: Bull. Amer. Math. Soc. II Vol. 2 (1896) pp. 136-138. 
4 MEHMKE, R.: Math. Ann Vol. 26 (1886) pp.209-210. 
5 RUNGE. C.: J. reine angew. Math. Vol. 93 (1882) pp.319-327. 
6 MUIR: Philos. Mag. Vol. 3 (1902) pp.410-416. 
7 BARTON. HELEN: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp.393-396. 
8 METZLER: Trans. Amer. Math. Soc. Vol. 2 (1901) pp. 395-403. 
9 BEAVER, R. A.: Amer. Math. Monthly Vol. 39 (1932) pp.266-276. 
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1 STOUFFER, E. B.: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp.63-64. 
2 SCHENDEL, L.: Z. Math. Physik Vol. 32 (1887) pp.119-120. 
3 WHITE. H. S.: Bull. Amer. Math. Soc. II Vol. 2 (1896) pp. 136-138. 
4 MEHMKE, R.: Math. Ann Vol. 26 (1886) pp.209-210. 
5 RUNGE. C.: J. reine angew. Math. Vol. 93 (1882) pp.319-327. 
6 MUIR: Philos. Mag. Vol. 3 (1902) pp.410-416. 
7 BARTON. HELEN: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp.393-396. 
8 METZLER: Trans. Amer. Math. Soc. Vol. 2 (1901) pp. 395-403. 
9 BEAVER, R. A.: Amer. Math. Monthly Vol. 39 (1932) pp.266-276. 
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MACMAHON!, and MUIR2 showed that there are just n2 -n + 1 
independent principal minors of a matrix. STOUFFER3 showed that (Ai), 
(A ii), (Alii) constitute such a system, the subscripts indicating deleted 
rows and columns. STOUFFER4 gave a method for expressing the deter­
minant of a matrix of any order in terms of not more than 14 of its 
principal minors of lower order, and later5 showed that the determinant 
of a matrix of order n is a function of four minors of order n -1 and one 
of order n - 2. A general theorem on the expression of a determinant 
in terms of its subdeterminants was proved by W. W. FLEXNER6• 

10. Reducibility. Theorem 10.1. If A is either a general matrix or 
a general symmetric matrix, there is no identity 

d (A) = f (a';j) g (a';j) , 
where f and g are polynomials in the elements of A neither of which is 
a constant. 

Suppose the elements of A independent and d (A) == f· g. Since 
d (A) is linear in every element, if an occurs in f it does not occur in g. 
No term of d(A) contains aHarl, hence g is of degree 0 in every arl' 

Since no term of d (A) contains arsarl> g is of degree 0 in every ars and 
is therefore constant. Only a slight modification is required to extend 
the proof to the general symmetric matrix7• 

This is a special case of the theorem that the determinant of an 
irreducible group matrix is an irreducible function of the variables 8. 

Theorem 10.2. The determinant of the general skew matrix of even 
order is the square of a rational function of its elements. 

The theorem is obvious for n = 2, and the proof follows by induction. 
At :::: ~::~ is skew of odd order and hence its rank is n - 2 at most. 
(Theorem 8.6.) Let A(?'! be the cofactor of a·· in Al.···,n-l. As "J ~1 1, ... , n-l 
in the proof of Theorem 8.5, 

Al1 = mPiPj, 

where Pi is a rational function of the elements of A. By assumption 
A~~) is the square of a rational function of the aii' so the same must 
be true of m, which may be taken as 1. By the LAPLACE development 

d(A) = E i ,jA;1 ain ajn = (E,;p,;a'n)2. 
The following more general theorem was proved by E. ZYLINSKI 9• 

Let A be a matrix obtained from A = (ars) by replacing a certain 

1 MACMAHON: Philos. Trans. Roy. Soc. London Vol. 185 (1893) pp. 111-160. 
2 MUIR: Philos. Mag. V Vol. 38 (1894) pp.537-541. 
3 STOUFFER: Trans. Amer. Math. Soc. Vol. 26 (1924) pp.356-368. 
, STOUFFER: Amer. Math. Monthly Vol. 35 (1928) pp. 18-21-
5 STOUFFER: Amer. Math. Monthly Vol. 39 (1932) pp.165-166. 
6 FLEXNER, W. W.: Ann. of Math. II Vol. 29 (1927) Pp.373-376. 
7 B6cHER: Introduction to higher algebra, p. 177. Macmillan 1907. 
8 DICKSON: Modem algebraic theories, p. 259. Chicago 1926. 
9 ZYLINSKI, E.: Bull. into Acad. Polon. Sci. 1921 pp. 101- 104. 
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number of elements by O. Let A * be a matrix obtained from A by 
replacing by O's those of the elements which do not actually figure 
in the development of d (.If). A necessary and sufficient condition for 
the irreducibility of d (A *) is as follows: Starting from one element 
ars of A*, one can reach each of the other elements (not 0) by a closed 
polygon each side of which is limited by two elements ars belonging 
to the same row or to the same column of A *. 

L. GEGENBAUER1 proved that if the rows of a matrix are cyclic 
permutations of the first, in the field of the roots of unity the deter­
minant is a product of linear factors. W. BURNSIDE 2 generalized this 
to the case where the successive rows proceed from the first by the 
permutations of an abelian group of order n. 

FROBENIUS 3 proved that if the elements of the matrix X are in­
dependent variables, and those of the matrix Y linear functions of 
these variables, and if d(X) = cd(Y), c =t= 0, then either Y = AXE 
or Y = AXTE where A and E are constant matrices. For n> 1 only 
one of these relations can hold; A and E are unique up to scalar factors. 

1. SCHUR4 generalized the above theorem as follows: Let X be an 
array of m rows and n columns whose mn elements are independent 
variables. Let Y be an array of the same type whose mn elements Yrs 
are linear homogeneous functions of the elements xrs of X. If for a 

fixed r, 2 <:: r <:: m, 2 <:: r "':;; n, it is known that the N = C~) (:) minors 
of order r of Yare linearly independent linear homogeneous functions 
of the N minors of X, then for m =!= n the array Y is of the form AXE 
where A and E are non-singular constant square arrays of orders m 
and n respectively. If m = n, either Y = AXE or Y = AXTB. 

11. Arrays and determinants of higher dimension. The notion of 
extending the theory of determinants to cubic arrays and arrays of 
n dimensions has occurred to many writers, beginning with CAYLEy 5 • 

L. GEGENBAUER, M. LEcAT and L. H. RICE, among others, have written 
extensively in that field. LEcAT 6 gave a chronological list of 50 papers, 
and in 1926 brought the list up to date 7• An excellent exposition was 
recently given by RICE 8. The subject seems to lie much closer to tensor 

1 GEGENBAUER, L.: S.-B. Akad. Wiss. Wien (I, 2) Va!. 82 (1880-81) pp.938 
to 942. 

2 BURNSIDE, W.: Mess. Math. II Vol. 23 (1894) pp.112-114. 
3 FROBENIUS: S.-B. preuB. Akad. Wiss. 1897 pp. 994-1015. 
4 SCHUR,!.: S.-B. preuB. Akad. Wiss. 1925 pp.454-463. 
6 CAYLEY: Trans. Cambro Philos. Soc. Vol. 8 (1843) pp. 1-16 - Col!. Works 

Va!. I pp. 75-79. 
6 LECAT, M.: Abrege de la theorie des determinants it n dimensions. Gand. 

Haste 191t. 
7 LECAT, M.: Ann. Soc. Sci. Bruxelles Va!. 46 (1926) pp. 1-39. 
8 RICE: J. Math. Physics, Massachusetts lnst. Techno!. Vol. 9 (1930) pp. 47 

to 71. 
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analysis than to the theory of matrices, as was clearly shown by 
C. M. CRAMLETI. 

A matrix is often considered as a linear vector function. J. D. BAR­
TER 2 investigated homogeneous vector functions of degree p. He states 
that no analogue for characteristic root exists for the generalized matrix. 

No success has as yet been attained in extending to higher dimensions 
the concept of matrix in the sense of hypercomplex number in which 
it is used in this book. Since every associative system can be represented 
in terms of two-dimensional matrices, this lack of success is not sur­
prising. But n-dimensional arrays have received some attention in 
connection with multilinear forms and tensor analysis. Their impor­
tance lies in the various generalizations of rank which can be a,Pplied 
to them 3. 

12. Matrices in non-commutative systems. Determinants of ma­
trices whose elements are quaternions were discussed by HAMILTON'. 
J. M. PIERCE5 defined a determinant of a matrix of quaternions by 
writing the elements of each term in the order of their column indices. 
J. BRILL 6 represented biquaternions and triquaternions as matrices with 
quaternion elements. E. STUDY 7 gave a brief discussion of matrices 
of quaternions. 

Matrices whose elements belong to a division algebra or non-com­
mutative field attain considerable importance from the theorem of 
J. H. M. WEDDERBURN 8 that every simple algebra can be represented 
as a total matric algebra whose elements belong to a division algebra 9• 

Determinants of matrices over a division algebra in connection 
with the solution of systems of linear equations were considered by 
A. R. RICHARDSON 10, A. HEYTINGll, and O. ORE12. The latter defines 
the right-hand determinant by 

la,.11 = allA1(1) + a 21 A 1(2) + ... + an1A1(n), 

where the A 1(i) are a set of solutions of the homogeneous left-hand 
system n 

1: aijA1(i) = O. (f=2, ... ,n) 
i=l 

1 CRAMLET, C. M.: Amer. J. Math. Vol. 49 (1927) pp.89-96. 
2 BARTER, J. D.: Univ. California Publ. Math. Vol. 1 (1920) pp.321-343. 
3 HITCHCOCK, F. L.: J. Math. Physics, Massachusetts Inst. Technol. Vol. 7 

(1927) pp.39-85. - RICE, L. H.: Ibid. 1928 PP.93-96. 
4 HAMILTON: Elements of quaternions (Appendix). London 1889. 
5 PIERCE, J. M.: Bull. Amer. Math. Soc. II Vol. 5 (1899) pp.335-337. 
6 BRILL, J.: Proc. London Math. Soc. II Vol. 4 (1906) pp.124-130. 
7 STUDY, E.: Acta math. Vol. 42 (1920) pp.1-61, 
8 WEDDERBURN, J. H. M.: Proc. London Math. Soc. II Vol. 6 (1908) p.99. 
9 See DICKSON: Algebren und ihre Zahlentheorie, p. 120. Zurich 1927. 

10 RICHARDSON, A. R.: Mess. Math. Vol. 55 (1926) pp.145-152 - Proc. 
London Math. Soc. II Vol. 28 (1928) pp.395-420. 

11 HEYTING, A.: Math. Ann. Vol. 98 (1927) pp.465-490. 
12 ORE, 0.: Ann. of Math. II Vol. 32 (1931) pp.463-477. 
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Two matrices are said to be right-equivalent if their right determinants 
vanish together. Two matrices A and B are right-equivalent if they 
differ by the interchange of two rows or of two columns; or if A is 
obtained from B by multiplying the elements of a column on the left, 
or the elements of a row on the right, with k =f= 0; or if A is obtained 
from B by adding one row to another row or one column to another 
column. 

II. The characteristic equation. 
13. The minimum equation. If A is a matrix of order n over a 

field ~, the matrices I, A, A 2, ••• , An' constitute n 2 + 1 sets of n 2 

numbers each, and hence are linearly dependent in ~. Thus A satisfies 
some equation 

m (l) = l,u + m1l",-1 + ... + m", = ° 
with coefficients in ~ of minimum degree p,. We shall call p, the index 
of A. The index of a scalar matrix is 1. Every matrix except 0 has 
an index. 

Theorem 13.1. If f(A) = 0, m(l) Jf(l),l 
Write f (l) = q (l) m (l) + r (l) where r (l) = ° or else r (l) is of 

degree <p,o Since f(A) =m(A) =0, r(A) =0. Since p, was minimal, 
r(l) = 0. 

Corollary 13.1. The minimum equation m (l) = 0 is unique. 
The constant term of the minimum equation will be called the norm 

of A, written n(A). 
14. The characteristic equation. The matrix obtained from A = (arB) 

by replacing every arB by the cofactor Asr of a,r is called the adjoint 
of A, written 

AA = (ABr). 

If d(A) =f= 0, the matrix AA/d(A) is called the inverse of A, written 
Alar A-I. By Theorem 7.8, 

Theorem 14.1 
AAA = AAA = Id(A), 

AlA = AAI = I. 

Theorem 14.2. If A satisfies an equation 

P(l) = Colk + C1lk-l + ... + Ck = 0, 

A and the C's being n-th order matrices with elements in a field ~, then A 
satisfies the equation d p (A) = 0 whose coefficients are in ~. 

Evidently p (A) can be considered as an n-th order matrix whose 
elements are polynomials in A of degree <k. Its adjoint 

PA(A) = D oAk (n-l) + D1).k(n-l)-1 + ... + Dk(n-l) 

1 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) p.1-63. 

369J II. The characteristic equation. 17 

Two matrices are said to be right-equivalent if their right determinants 
vanish together. Two matrices A and B are right-equivalent if they 
differ by the interchange of two rows or of two columns; or if A is 
obtained from B by multiplying the elements of a column on the left, 
or the elements of a row on the right, with k =f= 0; or if A is obtained 
from B by adding one row to another row or one column to another 
column. 

II. The characteristic equation. 
13. The minimum equation. If A is a matrix of order n over a 

field ~, the matrices I, A, A 2, ••• , An' constitute n 2 + 1 sets of n 2 

numbers each, and hence are linearly dependent in ~. Thus A satisfies 
some equation 

m (l) = l,u + m1l",-1 + ... + m", = ° 
with coefficients in ~ of minimum degree p,. We shall call p, the index 
of A. The index of a scalar matrix is 1. Every matrix except 0 has 
an index. 

Theorem 13.1. If f(A) = 0, m(l) Jf(l),l 
Write f (l) = q (l) m (l) + r (l) where r (l) = ° or else r (l) is of 

degree <p,o Since f(A) =m(A) =0, r(A) =0. Since p, was minimal, 
r(l) = 0. 

Corollary 13.1. The minimum equation m (l) = 0 is unique. 
The constant term of the minimum equation will be called the norm 

of A, written n(A). 
14. The characteristic equation. The matrix obtained from A = (arB) 

by replacing every arB by the cofactor Asr of a,r is called the adjoint 
of A, written 

AA = (ABr). 

If d(A) =f= 0, the matrix AA/d(A) is called the inverse of A, written 
Alar A-I. By Theorem 7.8, 

Theorem 14.1 
AAA = AAA = Id(A), 

AlA = AAI = I. 

Theorem 14.2. If A satisfies an equation 

P(l) = Colk + C1lk-l + ... + Ck = 0, 

A and the C's being n-th order matrices with elements in a field ~, then A 
satisfies the equation d p (A) = 0 whose coefficients are in ~. 

Evidently p (A) can be considered as an n-th order matrix whose 
elements are polynomials in A of degree <k. Its adjoint 

PA(A) = D oAk (n-l) + D1).k(n-l)-1 + ... + Dk(n-l) 

1 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) p.1-63. 



18 II. The characteristic equation. 

has polynomial elements of degree <k (n -1). Then 

dP(A) = poAkn + PIAkn - 1 + .. , + hn 
has coefficients in 6. Since 

PA(A) 'P(A) = dP(A)I, 
k(n-I) k kn 
1: D/c(n_I)_i Ai1: Ck_j }! = 1: hn_h AhI , 
i=O j=O h=O 

k(n-l) k kn 
1: Dk(n-l)-i 1: Ck- j Ai+J = "X. Pkn-h Ah I. 
i=O j=O h=O 

[370 

This holds for A indeterminate. By equating coefficients of the powers 
of A, kn + 1 equations are obtained. If the h-th equation is multiplied 
on the right by Ah and the results added, the sum may be written 

kn k(n-l) [ k ] 1: hn-h Ah = 1: Dk(n-l)-i 1: C/c-J A.i Ai = 0, 
h=O i=O j=o 

or dP(A) = O. 
This is a special case of a theorem of H. B. PHILLIPS I who proved 

that if AI' ... , Ak are n-th order matrices, and BI, ... , Bk are matrices 
commutative in pairs such that 

AIBI + ... + AkBk = 0, 

and if P(fJI"'" Pk) = d(A I Pl + ... + AkPk) where PI' ... , Pk are in­
determinates of 6, then 

P(BI , ... , Bk) = O. 

The proof which we have given is similar to FROBENIUS' 2 proof for 
the linear case. FROBENIUS attributes the idea to PASCH 3. 

Corollary 14.21. Every matrix satisfies its characteristic equation 
d(H - A) = O. 

This is the famous HAMILTON-CAYLEY theorem, established for 
quaternions by W. R. HAMILTON 4, and proved for n = 2, 3 by A. CAY­
LEy 5 who stated the theorem in the general case with the comment 
that it was not necessary to undertake its proof. Many proofs, more 
or less satisfactory, have been given 6. A. R. FORSYTH 7 applied difference 
equations to the proof. A. BUCHHEIM made the proof essentially in 
the manner of FROBENIUSs, stating that it was taken in concept from 
TAIT'S Quaternions, p. 81. 

1 PHILLIPS, H. B.: Amer. J. Math. Vol. 41 (1919) pp.266-278. 
2 FROBENIUS: S.-B. preuB. Akad. Wiss. 1896 p.606. 
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In connection with Theorem 14.2, it should be noted that BUCH­
HElMI stated that the roots of the equation I U - A I = 0 are roots 
of Ip(A) 1= o. 

Corollary 14.22. The index fl of A is <no 
The name characteristic equation of A for the equation I AI - A I = 0 

is due to CAUCHy2. The left member is called the characteristic function 
of A. 

Theorem 14.3. If 

f(A) = J.n - tI}.n-I + t2 An- 2 - ••• ± tn = 0 

is the characteristic equation of A, then ti is the sum of all the principal 
i-rowed minors of A. 

For the coefficient of }.n-i in I AI - A I = 0 is the sum of the deter­
minants of all minors obtained by suppressing n - i rows of -A 
and the corresponding columns. 

The first coefficient ti = t (A) = an + ... + ann is called the trace 
of A. It is a scalar function of A second only in importance to ± tn = d (A). 

Theorem 14.4. Every equation of degree n with coefficients in ~ is 
the characteristic equation of some matrix of order n with elements in ~. 

Let the given equation be 

The matrix 
f (A) = An + bi An -1 + ... + bn = o. 

B= 

o 
o 

1 

o 
o 
1 

o 
o 

-bn -bn- I -bn- 2 -bi 

has f (A) = 0 as its characteristic equation. For if in the matrix AI - B 
one multiplies the last column by}, and adds to the (n - 1)-th, multiplies 
the (n - 1)-th column of the new matrix by A and adds to the (n - 2)-th 
and so on, there results 

o -1 0 0 

o 0 -1 0 

f(A) * * * 
By the LAPLACE development, the determinant of this matrix is seen 
to be ±f (A).3 

1 BUCHHEIM: Proc. London Math. Soc. Vol. 16 (1884) pp.63-82. 
2 CAUCHY: Exercises d'analyse et de physique matMmatique Vol. 1 (1840) 

p.53 - <Euvres II Vol. 11 pp.75-133. 
3 GUNTHER, S.: Z. Math. Vol. 21 (1876) pp.178-191. - LAISANT, C. A.: 

Bull. Soc. Math. France Vol. 17 (1889) pp.104-107. - RADOS, G.: Math. Ann. 

Vol. 48 (1897) pp.417-424. 
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A. LOEWy1 called B (or its negative) a "Begleitmatrix". We shall 
take the liberty of calling it the companion matrix of the equation 
I(A) = o. 

If 1 (A) is completely reducible in ty, say 
1 (A) = (A - A})/, ... (A - Ak)lk , 

where the Ai are distinct, let 
J1 0 0 

I= 0 J2 0 

0 0 ... h 
where ~ 1 0 0 

Ii = 0 ~ 1 0 

o 0 0 ~ 

is of order Ii' It is evident that d (AI - J) = 1 (A). This matrix I will 
be called a JORDAN matrix 2. 

15. Determination of the minimum equation. Theorem 15.1. Let 
1 (A) = 0 be the characteristic equation 01 A, and let h (A) be the greatest 
common divisor 01 the (n - i)-rowed minors 01 AI - A. Then 

g(A) = I(A)/h(A) = 0 

is the minimum equation 01 A.3 
Let AI - A = C (A) . Then CA (A) = h (A) K (A) where the elements 

of K (A) are relatively prime. Since 1 (A) I = C (A) CA (A) , 

g(l) h(A) 1= C(l) h(l) K(l) , 
and, since h (l) =1= 0, 
(15.1) g(l)I= C(l)K(A). 

Since C(A) = 0, g(A) = 0 and m(A) 19(1) where m(A) = 0 is the mini­
mum equation of A. 

From m(A) - m(",,) = (A- ",,)k(A, ",,), we obtain 
m(l) I - m(A) = m(lI) - m(A) = C(A)k(AI,A) . 

But m(A) = O. Hence 
CA(l) m(A) = 1 (A) k(lI, A), 

h(A) K(A) m(A) = h (l) g(l) k (U, A) . 

Since h (l) =1= 0, it may be canceled. Since g (l) divides every element 
of K(l)m(l), and the elements of K(l) are relatively prime4, g{l) Im(l). 

1 LOEWY, A.: S.-B. Heidelberg. Akad. Wiss. Vol. 5 (1918) p.3 - Math. Z. 
Vol. 7 (1920) pp.58-125. 

B JORDAN, C.: Traite des Substitutions et des Equations Algebriques, Livre 2 
pp. 88-249. Paris 1870. 

3 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) pp.1-63. 
4 Proof by O. PERRON: Math. Ann. Vol. 64 (1906) pp.248-263. 
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Corollary 15.1. If B is the companion matrix (or I the JORDAN matrix) 
of f (},) = 0, then f (A) = ° is the minimum equation of B (or J). 

Since Bn! = 1, the minimum equation of B is likewise its char­
acteristic equation. 

By crosing out of H - I the first column and last row of Hi - Ii, 
a minor of order n - 1 is obtained whose determinant is free of }, - Ai' 
Hence the g. c. d. of the (n - 1)-rowed minor determinants of H - I is 
1, and the minimum equation of I is likewise its characteristic equation. 

Theorem 15.2. The distinct factors ot the characteristic function f (l) 
of A which are irreducible in {5- coincide with the distinct irreducible factors 
of the minimum function m (}.) . 

As in the proof of Theorem 15.1, 

f(A) = m(A)h(A). 

Hence every root of m (}.) = ° is a root of f (A) = 0, so every irreducible 
factor of m(A) divides f(}.). From (15.1) 

C (J.) K(l) = m(J.) I. 

Taking determinants, f(J.)dK(J.) = [m(J.W. 

Hence every root of f (A) = ° is a root of m (J,) = 0, and every irreducible 
factor of f (A) divides m (}.) .1 

Corollary 15.2. If either d (A) or n (A) vanishes, both vanish. 
Hence a matrix A is singular or non-singular according as n (A) = ° 

or n(A) =f= 0. 
A matrix is called derogatory 2 if its index fl is less than n. 
Theorem 15.3. If A is non-singular of order n and index fl, A I is 

a polynomial in A of degree fl- 1.3 

Let the minimum equation of A be 

m(J.) = l,u + m1l,u-l + .. , + m,u_1l + n(A) = o. 
Set B = _(A,u-l + m1 A,u-2 + ... + m,u_1I)/n(A). 
Then AB=BA=I. But AAl=AIA=I, so AB=AAl, 

AlAB = AIAAl, B = AI. 
Theorem 15.4. It A is singular of order n and index /1" there exists 

a matrix B expressible as a polynomial in A of degree /t - 1 such that 
AB=BA =0. 

For if B= - (A,u-l+m1A,u-2+ ... + m,u_1I) , AB=BA =n(A)I =0. 
Corollary 15.4. Every matrix is either non-singular or a divisor of zero. 
Theorem 15.5. If m(l) = ° is the minimum equation of A. then 

df(A) = ° if and only if m(J.) and f(A) have a common factor of 
degree >1:" 

1 See L. E. DICKSON: Algebren und ihre Zahlentheorie. p. 21. Zurich 1927· 
2 SYLVESTER: C. R. Acad. Sci., Paris Vol. 981 (1884) pp.471--475. 
3 LAGUERRE: J. Ecole polytechn. Vol. 25 (1867) pp.215-264. 
4 HENSEL, K.: J. reine angew. Math. Vol. 127 (1904) pp. 11(,-16(,. 
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Suppose m (l) = h (l) k (l), f (l) = h (l) l (l), h (},) of degree > 1. Then 
k (l) is of degree < fl and k (A) =f= O. Then 

m(A) = 0 = h(A) k(A), 

and h (A) is singular. Then f (A) is also singular. 
Let h (l) be a g. c. d. of m (l) and f (l) so that 

Then 
h(l) = P(l) m(l) + q(l) f(l). 

h(A) = q(A) f(A). 

If f(A) is singular, h(A) is also singular, and h(l) is not a constant. 
156 L ( ) P(x,y,z, ... } b . [ 

Theorem .. et r x, y, z, . .. = ( ) e a ratwna q x, y, z, ... 
function of the scalar indeterminates x, y, z, ... , where p and q are poly­
nomials. Let A of index l, B of index fl, C of index v, ... be commutative 
matrices such that q (A , B, C, ... ) is non-singular. Then r (A , B, C, ... ) 
is uniquely delined, and can be represented as a polynomial of degree 
<l in A, of degree <fl in B, of degree <v in C, ... 

A polynomial in A, B, C, ... is built up by the operations of ad-
dition, multiplication and scalar multiplication. Since A, B, C, .. . 
are commutative, the result at each step is unique. Since q (A, B, C, ... } 
is non-singular, qI exists and is a polynomial in q, and therefore in 
A, B, C, . .. Hence pqI = qlp, and r is uniquely defined. By using 
the minimum equations of A , B, C, .. " the degree of r may be reduced 
as stated. 

16. Characteristic roots. Let A be a matrix of order n with elements. 
in a field ~, and let f (l) = IU - A 1 be its characteristic function. 
Let ~' be an extension of ~ in which f (l) = 0 is completely reducible. 
The n roots in ~' of f (l) = 0 are called the characteristic roots l . 

Theorem 16.1. Let A, B, C, ... be commutative matrices, and let 
f (x, y, z, ... ) be any rational function. The characteristic roots av ... , an of 
A, b1 , ••. , bn of B etc. can be so ordered that the characteristic roots of 
f(A, B, C, ... ) are f(a l , bl , c1 , •• • ), ••• , f(an , bn , cn , •. . ). This order­
ing is the same for every function f. 2 

Let ;. 
(%, (w) = II (w - a;) , 

i=1 

f' 
fJ (w) = II (w - bj ), 

1=1 

" 'Y (w) = II (w - Ck) , 
k=1 

be the minimum equations of A, B, C, ... respectively. Write 
f(x,y, z, ... ) - I(a;, bj , Ck, ... ) = [f(x, bj , Ck, ... ) - f(ai' bj , Ck, ... )J 
+[f (x, y, c"" ... ) - f(x, bj , C"" ., .)] + ... = (x - ai) lijk ... + (y - bj)gijk ... 
+ (z - c",) hijk .... Therefore 

II [f (x, y, z, ... ) - f(ai' bj , C"" ... )] = K (%, (x) + LfJ (y) + My (z) + ... > 
i,j,k, ... 

i = 1, ... , ')., j = 1, ... , fl, k = 1, ... , 'V, •.• 

1 Or latent roots, SYLVESTER. 

2 FROBENIUS: S.-B. preuB. Akad. Wiss. 1896 I pp.601-614. 
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Since A, B, C, ... are commutative, these two polynomials give equal 
matrices when x = A, y = B, z = C, . .. Hence 

II [w - I(ai, bj , Ck> ••• )] = 0 
i,j,k, .. . 

is satisfied by the matrix 1 (A, B, C, ... ). Therefore the mllllmum 
function of 1 (A , B, C, ... ), of degree (J ~~ n, is equal to a product of 
(J linear factors 

By Theorem 15.2 these include all the distinct factors of the characteristic 
equation. The roots of A, B, C, ... are ordered by calling the i-th 
root of IwI - 1 I = 0 1 (ai, bi , ci, ... ). 

The above process can be carried through when j is a polynomial 
in x of degree Ie - 1, in y of degree fk - 1, in z of degree }. - 1, ... 
with indeterminate coefficients, and an ordering of the roots of 
A, B, C, ... so obtained. By Theorem 15.6 every rational function 
of A, B, C, . .. can be obtained by specializing the coefficients of 
this I. Hence the ordering is the same for all rational functions 1. 

C. W. BORCHARDT 2 proved that the characteristic roots of An are 
the n-th powers of the characteristic roots of A. The special case for A 
symmetric was rediscovered by J. J. SYLVESTER 3• W. SPOTTISWOODE4 
knew that the roots of A I are the reciprocals of the roots of A. G. FRO­
BENIUS 5 proved Theorem 16.1 first for a single matrix and later in the 
form above 6. SYLVESTER rediscovered SPOTTISWOODE'S7 result and 
FROBENIUS'8 theorem of 1878. 

T. J. I'A. BROMWICH9 noted that FROBENIUS' theorem need not 
hold when 1 is not a rational function. 

Theorem 16.2. The characteristic roots 01 AB are the same as those 
oj BA ,10 

By Theorems 14.3 and 7.9 the coefficient of ±len- i in the character­
istic equation of AB is 

t. = '" Arl, ... ,ri Bhlo ... ,hi 
t ~ hI , .•. , hi r1,' .. , ri ' 

1 Proof by 1. SCHUR: S.-B. preuB. Akad. Wiss. 1902 I pp. 120-125. 
2 BORCHARDT, C. W.: J. reine angew. Math. Vol. 30 (1846) pp. 38-46 

J. Math. pures appl. I Vol. 12 (1847) pp.50-67. 
3 SYLVESTER, J. J.: NOllv. Ann. math. Vol. 11 (1852) pp.439-440. 
4 SPOTTISWOODE, W.: J. reine angew. Math. Vol. 51 (1856) pp. 209-271 and 

328-381-
5 FROBENIUS, G.: J. reine angew. Math. Vol. 84 (1878) pp.1-63. 
6 FROBENIUS, G.: 1. c. 
7 SPOTTISWOODE: C. R. Acad. Sci., Paris Vol. 94 (1882) pp.55-59. 
B FROBENIUS, G.: Philos. Mag. V Vol. 16 (1883) pp.267-269. 
9 BROMWICH, T. J. I' A.: Froc. Cambridge Philos. Soc. Vol. 11 (1901) pp. 75 

to 89. 
10 SYLVESTER: Philos. Mag. V Vol. 16 (1883) pp.267-269. 
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where both (r}, ... , ri) and (h}, ... , hi) range over all (7) selections 

of i distinct numbers of the set 1, 2, ... , n without regard for order. 
The theorem follows upon interchanging the summation indices. 

SYLVESTER stated the theorem without proof. A proof based upon 
considerations of continuity was given by H. S. THURSTON}. A proof 
is sketched by H. W. TURNBULL and A. C. AITKEN2. 

A. CHATELET3 noted that the theorem of FROBENIUS affords an 
easy method of applying a TSCHIRNHAUSEN transformation. Let it 
be required to find the equation whose roots are the rational function cp 
of the roots of 1 (x) = o. Let B be the companion matrix of 1 (x) = o. 
Then I y I - cp (B) I = 0 is the required equation. 

If 1 (x) = 0 has algebraic integral roots, the elements of B are rational 
integers. If cp is a polynomial with rational integral coefficients, cp (B) 
has rational integral elements, so that the roots of I y I - cp (B) I = 0 
are algebraic integers. This is a short proof that a polynomial function 
with rational integral coefficients of an integral algebraic number is 
integral. 

AI-' = I if and only if the characteristic roots of A are roots of unity'. 
If in the series A, A 2, A 3, ... the same matrix appears more than 

once, then the system contains I. If 'V is the minimum integer for which 
A v = I, then the only different matrices in the set are I, A, ... , A 1'-1.6 

A. RANUM6 gave a method for expressing all the powers of A as 
linear combinations of I, A, ... , An-}. 

If for some 'V NV = 0, then d (N + A) = d (A) .7 

17. Conjugate sets. If the characteristic equation of the n-th order 
matrix A} is 1 (l) = 0, a set of matrices A 2 , ••• , An form with A} a 
complete set 01 coniugates if 

1. They have the same characteristic equation, 
2. They are commutative, 
3. The elementary symmetric functions of these matrices are mul­

tiples of I by the corresponding elementary symmetric functions of 
the algebraic roots of I(l) =0.8 If the elementary divisors of U -A} 
are linear, the conjugates always exist. 

The product of the conjugates A 2A 3 • •• An is A/. A. A. BENNETT9 

1 THURSTON, H. S.: Amer. Math. Monthly Vol. 38 (1931) pp.322-324. 
2 TURNBULL, H. W., and A. C. AITKEN: An introduction to the theory of 

canonical matrices, p. 181. London 1932. 
3 CHATELET, A.: Ann. Ecole norm. III Vol. 28 (1911) pp.105-202. 
4 LIPSCHITZ, R: Acta math. Vol. 10 (1887) pp.137-144. 
5 KRONECKER, L.: S.-B. preuB. Akad. Wiss. 1890 pp.1081-1088. 
6 RANUM, A.: Bull. Amer. Math. Soc. II Vol. 17 (1911) pp.457-461. 
7 FROBENIUS: S.-B. preuB. Akad. Wiss. 1896 I pp.601-614. 
8 TABER, H.: Amer. J. Math. Vol. 13 (1891) pp.159-172. 
9 BENNETT, A. A.: Ann. of Math. II Vol. 23 (1923) pp.91-96. 
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called A2 + ... + An the adjoint-trace of AI' since its sum with Al 
is t(AI)I. 

P. FRANKLINI modified the definition of conjugate set by the omis­
sion of the first condition, and showed that for every Al a set of generalized 
conjugate matrices exists, not always uniquely, however. Later 2 he gave 
a systematic method for finding all sets of conjugates for a given matrix. 

J. WILLIAMSON3 noted a particular matrix B such that Wi B form 
a complete set of conjugate matrices in the sense of TABER, where w 
is a primitive n-th root of unity. 

T. A. PIERCE 4 proved that the field generated by the roots of any 
cyclic equation is isomorphic with the field generated by the matric 
roots of this equation. 

18. Limits for the characteristic roots. In this paragraph 0: is 
the complex field. Let AC denote (iirB), obtained from A by replacing 
every element by its conjugate complex number. 

The matrix H is hermitian if H = HCT.5 A real hermitian matrix 
is symmetric. 

The matrix K is skew-hermitian if K = _KeT.6 A real skew­
hermitian matrix is skew. 

The matrix U is unitary if UI = UCT.7 A real unitary matrix is 
orthogonal. 

A matrix V is involutory if VI = V, i. e., if V2 = 1.8 
Theorem 18.1. It a matrix has two ot the three properties in a set, 

it has all three. 
1. Real, orthogonal, unitary. 
2. Symmetric, orthogonal, involutory. 
3. Hermitian, unitary, involutory. 
The first of these is due to AUTONNE9, the last two to H. HILTON 10. 

Theorem 18.2. Every matrix is uniquely expressible A = H + K 
where H is hermitian and K is skew-hermitian. 

The proof is like that of theorem 5.3-
Theorem 18.3. It A = H + K where H is hermitian and K is skew­

hermitian, and it a, h, k, are the maxima ot the absolute values ot the 

1 FRANKLIN, P.: Ann. of Math. II Vol. 23 (1923) pp.97-100. 
2 FRANKLIN, P.: J. Math. Physics, Massachusetts lnst. Technol. Vol. 10 (1932) 

pp.289-314. 
3 WILLIAMSON, J.: Amer. Math. Monthly Vol. 39 (1932) pp.280-285. 
4 PIERCE, T. A.: Bull. Amer. Math. Soc. Vol. 36 (1930) pp.262-264. 
6 HERMITE, C.: e. R. Acad. Sci., Paris Vol. 41 (185.5) pp.181-183. 
6 LOEWY, A.: J. reine angew. Math. Vol. 122 (1900) pp.53-72. 
7 AUTONNE, L.: Rend. eirc. mat. Palermo Vol. 16 (1902) pp.104-128. 
8 Voss, A.: Math. Ann. Vol. 13 (1878) pp. 320-374. - PRYM, F.: Abh. Ges. 

Wiss. Gottingen Vol. 38 (1892) pp.1-42. 
9 AUTONNE: Bull. Soc. Math. France Vol. 30 (1902) pp.121-134. 

10 HILTON, H.: Homogeneous linear substitutions. Oxford 1914. 
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elements ot A, H, K, respectively, and it a = £x + Pi is a characteristic 
root ot A, then 

lal<na, 1£xI<nh, IPI<nk. 

Since A - a I is singular, there exists a vector (x) = (Xl' ... , xn) 
whose coordinates are not all ° such that (A - a I) (x) = 0. Hence 

ax, = EjaijXj' (i, j = 1, 2, ... , n) 
It then follows that 

a E,x,x, = E"j a~j Xi Xj' 

aE,xixi = E"jajiXi x,. 

Hence, adding and subtracting, 

(18.1) 
iii 

(18.2) 
i, i 

Now 
1 al~ Xi Xi < 41 ai,I·1 Xil·IXj I s: a ~lx,I'IXjl = a [2'IXil]2. 

~1 ~ 

From the inequality 
(18.3) (kl + ... + km}2 < m(k12 + ... + k~), 
it follows that 

Similarlyl 
[~IXiD2 < n~xixi' 

I£x I <nh, 

lals:na. 
IPI<nk. 

Corollary 18.31. The characteristic roots ot an hermitian matrix are 
all real. 

For if A is hermitian, K = 0, k = 0, and every IPI = 0. 
The first proof that the roots of a real symmetric matrix are all 

real is due to A. CAUCHy2. Many later proofs have been given by 
JACOBI, SYLVESTER, BUCHHEIM etc. The extension to matrices such 
that AT = AC was made by HERMITE 3 and resulted in such matrices 
being named for him. 

Corollary 18.32. The characteristic roots ot a skew-hermitian matrix 
are all pure imaginaries'. 

For in this case h = 0, 1£x1 = 0. 
This theorem was proved for skew matrices by A. CLEBSCH5 and 

later by WEIERSTRASS 6• 

1 Theorem and proof by A. HIRSCH: Acta math. Vol. 25 (1901) pp. 367-370. 
2 CAUCHY, A.: Anciens Exercises. 1829-1830 - ColI. Works II Vol. 9 pp. 174 

to 195. 
3 HERMITE: C. R. Acad. SeL, Paris Vol. 41 (1855) pp.181-183. 
4 SCORZA, G.: Corpi numerici e Algebre pp. 133-179. Messina 1921. 
5 CLEBSCH, A.: J. reine angew. Math. Vol. 62 (1863) pp.232-245. 
6 WEIERSTRASS: S.-B. preuB. Akad. Wiss. 1879. 
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Theorem 18.4. If H in the last theorem is real, then 

I P' I -::; V ~J n 2~ 1) k . 

From (18.2), 

P' ~ Xi Xi = ~ [~iL~~ji] [Xi Xj : Xi Xj ] , 
i i<i . 

1P'I~XiXi ~ k ~XiXj: XiXj. 

i i<i 

27 

Since (xixi-xix,)/i are all real, the inequality (18-3) may be applied 
to give 

...::.. -'--{T"-~ I -::= - --2---"'::" (Xi Xj - Xi Xj )2 [ 
~ I X·X· - X'X' IJ2 n(n - 1) ~ -

i<i i<, 

- --- X'X" - X· • x·2 < --- X'X' _ n(n -1){[~ _12 ~ 2 ~-} n(n -1) [~ _]2 
2 ' 'J ' , 2 ' , . 

Hence IP'I < tz(n; 1) k. 1 

The case when A is real was proved by I. BENDIXSON 2, and the 
paper of BENDIXSON seems to have inspired the work of HIRSCH. 

Theorem 18.5. Let (J = ex + i P' be a characteristic root of A = H + K. 
Then m < ex <M where m is the least and M the greatest of the char­
acteristic roots of H. 

Let the elements of the hermitian matrix H be denoted by hrs ' 

By (18.1) ex is a value of the ratio 

f (x) = ~ hij XiXjl ~ Xi Xi , 
i, j i i 

where the Xl' ••• , Xn are independent complex variables. The greatest 
and least values which f (x) assumes are characteristic roots of H, for 
upon setting Xi = Uj + iv" the conditions 

of of 
";;- =:;- = 0 (j= 1,2, ... , n) 
ClUj uVj 

lead to the equation 
~ hi} Xi Xj - f L, XJ:i = 0 . 
i, j i 

Hence m is the minimum value which f (x) assumes and M is the maxi­
mum value. Then m < ex < M .3 

BROMWICH 4 found an explicit expression for ex and P' from which 
HIRSCH'S inequalities may be derived. 

I. SCHUR 5 derived the inequalities by another method. 

1 This theorem and proof are by A. HIRSCH: 1. c. 
2 BENDIXSON, I.: Acta math. Vol. 25 (1901) pp. 359- 365. 
3 The real case by BENDIXSON, the complex case by HIRSCH: 1. c. 
4 BROMWICH: Acta math. Vol. 30 (1906) pp.295-304. 
fi SCHUR, I.: Math. Ann. Vol. 66 (1909) pp.488-510. 
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and least values which f (x) assumes are characteristic roots of H, for 
upon setting Xi = Uj + iv" the conditions 

of of 
";;- =:;- = 0 (j= 1,2, ... , n) 
ClUj uVj 
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~ hi} Xi Xj - f L, XJ:i = 0 . 
i, j i 

Hence m is the minimum value which f (x) assumes and M is the maxi­
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BROMWICH 4 found an explicit expression for ex and P' from which 
HIRSCH'S inequalities may be derived. 
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1 This theorem and proof are by A. HIRSCH: 1. c. 
2 BENDIXSON, I.: Acta math. Vol. 25 (1901) pp. 359- 365. 
3 The real case by BENDIXSON, the complex case by HIRSCH: 1. c. 
4 BROMWICH: Acta math. Vol. 30 (1906) pp.295-304. 
fi SCHUR, I.: Math. Ann. Vol. 66 (1909) pp.488-510. 
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28 II. The characteristic equation. [380 

E. T. BROWNE l proved that if A is a characteristic root of A and if m 
is the least and M the greatest characteristic root of the hermitian 
matrix AA CT, then m <:: Al <:: M. 

FROBENIUS 2 proved that if the elements of A are all real and positive, 
it has a characteristic root which is real, positive, simple, and greater 
in absolute value than any other characteristic root. 

Theorem 18.6. The roots of the minimum equation of an hermitian 
matrix are distinct. 

If the hermitian matrix H has the minimum equation 

m (A) = (A - AI)k h (A) , 
where k >" 1, define 

ml (A) = (A - }'l)k-l h (A) . 

Then m (A) I [ml (A)J2. The matrix HI = (h,s) = ml (H) is hermitian, and 
Hl2 = 0 so that t(HI2) = O. But 

t(HI2) = 1: hijhji = 2: hijhij , 
it j i, j 

so that HI = 0 and ml (H) = O. But ml (A) is of lower degree than 
m (A). Hence the assumption k > 1 leads to a contradiction 3. 

19. Characteristic roots of unitary matrices. Theorem 19.1. The 
characteristic roots of a unitary matrix are of absolute value unity. 

If x is a characteristic root of the unitary matrix U, x + 1/x is a 
root of the hermitian matrix U + UI = U + UCT, and x - 1/x is 
a root of the skew-hermitian matrix U - UI = U - UCT by Theorem 
16.1. Hence by Corollaries 18.31 and 18.32, 

x + 1/x = 2r, 

where rand s are real. That is, 

x-1/x=2is, 

x=r+is, 1/x=r-is, 
whence r2 + S2 = 1.4 

Another short proof was given by R. BRAUER5• If U = (urs) is 
unitary, l:iurJiri = 1, so the elements of U are bounded in absolute 
value. The same is therefore true of the coefficients of the characteristic 
equation of U, and of its roots. But UI and Uk are likewise unitary, 
and the characteristic roots of UI are the reciprocals of those of U, 
the characteristic roots of Uk are the k-th powers of those of U.6 Unless 
each characteristic root of U were of absolute value unity, some positive 
or negative power of it could be made arbitrarily large, thus leading to 
a contradiction. 

1 BROWNE, E. T.: Bull. Amer. Math. Soc. Vol. 34 (1928) pp.363-368. 
2 FROBENIUS: S.-B. preuB. Akad. Wiss. 1908 pp.471-476. 
3 WEDDERBURN, J. H. M.: Ann. of Math. II Vol. 27 (1926) pp.245-248. 
4 ARAMATA, H.: T6hoku Math. J. Vol. 28 (1927) p.281. 
5 BRAUER, R.: T6hoku Math. J. Vol. 30 (1928) p. 72. 
6 Theorem 16.1. 
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If U is unitary, and if VVC T = VCTV, and if e is a root of 1 U - e VI = 0, 
then I tIl > 1/le I.::::: I t21 where t1 is the greatest in absolute value and 
t2 the least in absolute value of the characteristic roots of V. Each 
characteristic root of a principal minor of a unitary matrix is :s 1 in 
absolute value l . 

Corollary 19.1. The complex characteristic roots of an orthogonal 
matrix occur in reciprocal pairs 2• 

Since the characteristic equation of an orthogonal matrix has real 
coefficients, the complex roots occur in conjugate pairs, which by 
Theorem 19.1 are reciprocal pairs. 

Other proofs of this theorem have been given by A. E. RAHUSEN 3 

and A. COLuccr 4• In connection with this latter paper see also G. VITAU 5• 

P. BURGATTI 6 proved that if IA + xII = 0 has reciprocal roots, A 
is either orthogonal or involutory. 

L. TosCANo7 proved that if the coefficients equidistant from the 
ends of the characteristic equation of A are equal, I A + k'" + x I I = 0 
has all real roots, while 8 if these coefficients occur in pairs with opposite 
signs, I A - A A + x I I = 0 has all real roots. 

III. Associated Integral Matrices. 
20. Matrices with elements in a principal ideal ring. A commutative 

ring without divisors of zero is called a domain ot integrity. A domain 
of integrity with unit element 1 in which every pair of elements not 
both 0 has a greatest common divisor representable linearly in terms 
of the elements is called a principal ideal ring 9• 

In a principal ideal ring ~, a number which divides 1 is called a 
unit. The relation a = ub where u is a unit is reciprocal, and two 
numbers a and b so related are called associates. A set of numbers of 
~ no two of which are associated but such that every number of ~ 
is associated with one of them is called a complete set of non-associates 
in ~. Thus the positive integers and 0 constitute a complete set of non­
associates in the ring of rational integers. 

A number a of ~ neither 0 nor a unit is prime or composite according 
as a = bc implies or does not imply that b or c is a unit. 

1 LOEWY, A., and R. BRAUER: T6hoku Math. J. Vol. 32 (1929) pp.44-49. 
2 BRIOSCHI, F.: J. Math. pures appl. Vol. 19 (1854) pp.253-256. 
3 RAHUSEN, A. E.: Wiskundige Opgaven Vol. 5 (1893) pp. 392-394. 
4 COLUCCI, A.: floll. Un. Mat Tt81 Vol. Ii (1927) pp.258-21iO. 
5 VITALI, G.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp. 1-7. 
6 BURGATTI, P.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp.65-69. 
7 TOSCANO, L.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp. 664-669. 
S TOSCANO, L.: T6hoku Math. J. Vol. 32 (1929) pp.27-31. 
9 VAN DER \\'AERDEN: ;Vloderne Algebra Vol. I pp. 39 and 60. Berlin: Julius 

Springer 1930. 
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An important instance of a principal ideal ring is a euclidean ring 
defined by the following properties: 

1. Associated with every element a (except possibly 0) of the ring, 
there is a positive or 0 integer s (a) called the stathm of a. 

2. For every pair of numbers a and b, b =F 0, there exist two numbers 
rand q such that a = bq + r, and either r = 0 or else s (r) < s (b). 

Thus for the GAUSSIAN complex numbers a + i b, a stathm is 
a2 + b2• For the polynomial domain ~ (x) of a commutative field ~, 
the degree of the polynomial serves as a stathm. For the trivial instance 
of a field, s (a) may be taken as 1 for every a. A euclidean greatest 
common divisor process exists in every euclidean ring. 

The euclidean ring Q; is proper if it is not a field and if a stathm 
can be determined such that s(ab) = s(a) s(b) for every a and b. Since 
s (0 . b) = s (0) s (b) , either s (b) = 1 for every b so that division is always 
possible and Q; is a field, or else s (0) = o. Conversely let s (a) = o. 
Either a = 0 or else for every b, b = q a, and Q; is again a field. 

Since s(1· b) = s(1) s(b), either s(b) = 0 (and Q; is a field) or 
s(1) = 1. Let u be a unit, and uv = 1. Then s(u) s(v) = 1 so that 
s(u) = 1. Conversely if s(a) = 1,a is a unit, for the stathm of the 
remainder upon dividing any number by a must be < 1 and hence be o. 
Thus in a proper euclidean ring s (a) == 0 if and only if a = 0, s (u) = 1 
if and only if u is a unit, and s (a) = s (b) if and only if a and bare as­
sociatedl. 

Let we constitute the set of all n-th order matrices whose elements 
belong to a principal ideal ring S,jS subject to the operations of addition 
and multiplication as in § 3. we is a ring but not a principal ideal ring. 

A matrix U of we is called unimodular or a unit matrix if and only 
if there exists a matrix U' of we such that UU' = I. 

Theorem 20.1. U is a unit matrix if and only if d (U) is a unit of S,jS. 
For UU' = I implies d (U) d (U') = 1 so that d (U) is a unit of S,jS. 

Conversely if U is in we and d (U) is a unit of S,jS, then UI is in we and 
serves as the U' of the definition. 

Theorem 20.2. A matrix A of we is a divisor of zero if and only if 
d(A)=O. 

For if A is in we, the matrix B of Theorem 15.4 (such that AB 
= BA = 0) is also in we. 

A matrix A neither a divisor of zero nor a unit is called prime if 
every relation A = BC implies that either B or C is a unit. Matrices 
neither divisors of zero nor units nor primes are called composite. 

Theorem 20.3. A composite matrix can be expressed as a product of 
at most a finite mtmber of primes. 

For A = AlA2 Aa ... , 
1 See J. H. M. WEDDERBURN: J. reine angew. Math. Vol. 167 (1931) pp. 129 
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where no Ai is a unit matrix implies 

d(A) = d(AI) d(A2) d(Aa) ... , 

where no d (Ai) is ° or a unit. That is, each element in the sequence 

d (AI) d (A2) d (Aa) ... , d (A2) d (Aa) ... , d (Aa) ... 

is a proper divisor of the preceding. Such a sequence can contain but 
a finite number of elements l • 

21. Construction of unimodular matrices. Theorem 21.1. Let 
a l , a2, ... , an be numbers of a principal ideal ring ~ with greatest com­
mon divisor dn. There exists a matrix of determinant dn having a l , a2 , ••• , an 
as its first row 2. 

The theorem is evidently true for n = 2. Suppose it true for n - 1, 
and let Dn- 1 be a matrix which has aI' a2, ... , an- I as its first row, and 
whose determinant is the g. c. d. dn- 1 of aI' a2 , ••• , an-I' Determine p 
and q so that pdn- I - qan = dn. Consider the matrix Dn obtained by 
bordering Dn- 1 on the right by an, 0, ... , 0, ° and then below by 
a1q/dn- l , a2q/dn- I , ... , an_I q/dn- I , p. Then d(Dn) = dn'a 

Other proofs have been given by K. WEIHRAUCH 4, BIANCHI 5, and 
H. HANCOCK 6• 

HERMITE' proved more generally that a matrix can be found with 
a given last row anI' an2, ••• , ann and a determinant kl anI + k2an2 + ... 
+ knann where the k's are arbitrary. 

The theorem has been generalized as follows. A p. n array of rational 
integers is given, p < n, and the g. c. d. ofthe p-rowed minor determinants 
is d. It is always possible to add n - p rows of integers to this array so 
that the resulting square array shall be of determinant d. H. J. S. SMITHS 
and T. J. STIELT}ES 9 proved this theorem and determined all possible 
borders. BLOCH a gave a short proof by induction. 

22. Associated matrices. Two matrices A and B are called left 
associates if there exists a unit matrix U such that A = UB. The 
notation A L B will be used to express this relationship, which possesses 
the prerequisites for an equality relationship, namelylO: 

1 VAN DER WAERDEN: Moderne Algebra Vol. I p. 64. Berlin: Julius Springer 1930. 
2 For rational integers, n = 3, G. EISENSTEIN: J. reine angew. Math. Vol. 28 

(1844) pp.289-374. For any n, C. HERMITE: J. Math. pures appl. I Vol. 14 
(1849) pp. 21- 30. 

3 BLOCH, A.: Bull. Soc. Math. France Vol. 50 (1922) p.l00-11O. 
4 WEIHRAUCH, K.: Z. Math. Physik Vol. 21 (1876) pp.134-137. 
5 BIANCHI: Lezioni sulla Teoria dei Numeri Algebrici, pp. 1--7. 
6 HANCOCK, H.: Amer. Math. Monthly Vol. 31 (1924) pp.161-162. 
7 HERMITE: J.reine angew.Math. Vol. 40 (1850) pp.261-278. 
8 SMITH, H. J. S.: Philos. Trans. Roy. Soc. London Vol. 151 (1861-1862) 

pp.293-326. 
9 STIELTJES, T. J.: Ann. Fac. Sci. Univ. Toulouse Vol. 4 (1890) pp.1-103. 
10 ORE, 0.: Bull. Amer. Math. Soc. Vol. 37 (1931) p. 538. 
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L 
1. Determination. Either A L B or A =1= B. 
2. Refiexivity. A LA. 

3. Symmetry. A L B implies B LA. 

4. Transitivity. If A L Band B L C, then A L C. 
A similar theory holds for the relation A R B, or A = BU. 
The following elementary operations upon the rows of a matrix can 

be accomplished by multiplying the matrix on the left by an elementary 
matrix, namely the matrix obtained by performing the elementary 
operation under consideration upon the identity matrix I. 

1. The interchange of any two rows. 
2. The multiplication of the elements of a row by a unit u of $. 
3. The addition to the elements of any row of k times the cor­

responding elements of any other row, where k is in $. 
Every elementary matrix is a unit matrix whose inverse is an 

elementary matrix of the same type. If B is obtainable from A by a 
finite number of elementary transformations, B L A.1 

Theorem 22.1. Every matrix A with elements in $ is the left associate 
of a matrix having O's above the main diagonal, each diagonal element 
lying in a prescribed system of non-associates, and each element below the 
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1 See L. KRONECKER: M.-B. preua. Akad. Wiss. 1866 pp. 597-612. 
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385J III. Associated Integral Matrices. 33 

be unimodular. Then U1A 1 has O's above the main diagonal in the last 
column, dn- I in the (n - 1, n - 1)-position, and each element above 
dn - I divisible by dn - 1 , so that these can be made equal to 0 by elementary 
transformations. The process is continued until a matrix is obtained 
which has only O's above the main diagonal. 

In order to make aii lie in any prescribed system of non-associates, 
it is at most necessary to multiply it by a unit. This is accomplished 
by an elementary transformation of the second type. 

By subtracting a multiple of the (n - 1)-th row from the n-th 
row, an. n-l can be made to lie in any prescribed residue system modulo 
an-I, n-I' Similarly every element can be reduced modulo the diagonal 
element above it. It is understood that a == b mod 0 if and only if 
a = b. 

Theorem 22.2. If d (A) de: O. the normal form of HERMITE is unique. 
The proof will be made for n = 3, but the process is general. Suppose 

In l12 l13 an 0 0 bu 0 0 

l21 l22 l23 a21 a22 0 b21 b22 0 

l31 l32 l33 aal a32 aa3 bal b32 b33 

where both A = (ars) and B = (brs) are in normal form and L (lrs) 
is unimodular. 

bla = ll3a3a = 0, b23 = l23a33 = O. 

Since d (A) =t= 0, aaa =t= 0 and l13 = l2a = O. Similarly every element 
of L above the main diagonal is O. 

Since d (L) is a unit of 1.13, ll1' l22' l33 are all units of 1.13. Then 
liiaii = bii , and since aii and bii belong to the same system of non-asso-
ciates, Iii = 1. Then b - I a + a 

32 - 32 22 32 • 

Since ba2 and a32 lie in the same residue system modulo a22 , la2 = O. 
Then b31 = lal an + aa1 ' 

and similarly lal = O. Thus L = I. 
Corollary 22.2. Every non-singular matrix whose elements are 

rational integers is the left associate of a matrix whose diagonal elements 
aii are positive, ari = 0 for r < i, and 0;;;:; ari < aii for r > i. This 
form is unique1. 

Theorem 22.3. If A has elements in a euclidean ring @, the reduction 
to normal form can be accomplished by elementary transformations. 

Let A = (ars) have elements in ct. Either every element of the last 
column is 0 or there is at least one non-zero element with minimum 
positive stathm which by an interchange of the rows can be put into 
the (n, n)-position. If ann does not divide some ain' set 

(s(r) < s(ann )) 

1 HERMITE, C.: J. reine angew. Math. Vol. 41 (1851) pp.191-2Hi. 
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Then by an elementary transformation of the third type, ain can be 
replaced by r. Again interchange rows if necessary so that the element 
in the (n, n)-position is of minimum stathm and proceed as before. 
Eventually ann will divide every ain' The proof now proceeds as in 
Theorem 22.1. 

Theorem 22.4. Every unimodular matrix with elements in a euclidean 
ring Q; is a product of a finite number of elementary matrices. 

Let U be unimodular. By Theorem 22-3 there exist elementary 
matrices Ei such that 

E1E2 ... EkU = U', 

where U f is unimodular and reduced. Since d(U f ) is a unit of Q;, each 
diagonal element of U f is a unit of Q;, and may be taken to be 1. Since 0 
constitutes a complete system of residues modulo 1, U f = I. Then 

U = Ek1 E/_ 1 ••• E21 Ell, 

where each El is an elementary matrix. 
Corollary 22.4. Every unimodular matrix with elements in a euclidean 

ring having but a finite number of units is a product of a finite number 
of matrices of a certain finite set. 

This was proved for rational integers by KRONECKER 1. 

Theorem 22.5. Every unimodular matrix with elements in a euclidean 
ring Q; is a product of matrices of the types 

o 0 

1 0 

o 0 

o 0 

1 k 

o 1 

o 0 

o 0 

o 1 

o 0 

o 0 

1 0 

o 0 

o 0 

1 

o ~ II 

o 1 

1 0 

o 0 

o 0 

B 0 

o 1 

o 0 

o 0 

o 0 

o 0 

1 0 

o 1 

o 0 

o 0 

1 0 

o 1 

The effect of U 1 is to permute the rows cyclicly. The effect of U 2 

is to interchange the first two rows. By repeated use of these two 
operations any two rows of a matrix can be brought into positions 
one and two. Then by use of U 2 or U 3 or U 4 the desired elementary 
operation can be performed, and the rows then restored to their original 
positions. 

This theorem is essentially that of A. KRAZER 2 who proved that 

1 KRONECKER: M.-B. preuB. Akad. Wiss. 1866 pp. 597-612. 
2 KRAZER, A.: Ann. Mat. pura appl. II Vol. 12 (1884) pp.283-300. 
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every matrix with rational integral elements and of determinant 1 IS 

a product of just three, namely 

1 1 0 I 0 -1 

o 1 o 1 o 
o 
o 

o 0 

1 0 
o (-1)"11 
o 0 . 

II· 
o 0 1 o o 1 o 0 ... 1 . ~ II 

23. Greatest common divisors. If three matrices with elements 
in a principal ideal ring '.IS are in the relation A = CD, then D is called 
a right divisor of A, and A is called a left multiple of D. A greatest com­
mon right divisor (g. c. r. d.) D of two matrices A and B is a common 
right divisor which is a left multiple of every common right divisor of A 
and B. A least common left multiple (l.c.l.m.) of two matrices A and B 
is a common left multiple which is a right divisor of every common 
left multiple of A and B. 

Theorem 23.1. Every pair of matrices A and B with elements in '.IS 
have a g. c. r. d. D expressible in the form 

D= PA +QB. 
Consider the matrix 

F=II; ~ II 
of order 2n. As in the proof of Theorem 22.1, a unimodular matrix U 
of order 2n can be found such that the g.c.d. of the elements of the 
n-th column of F is in the (n, n)-position in UF. Then elementary 
transformations will reduce to 0 every element of this column below ann. 

This process may be continued to obtain an equation 

(23.1) II Xn X1211 II A 0 II = III D 0 ,ii, 
X 21 X 22 BOO 0 II 

where the first factor X is unimodular. Thus 

XnA + X 12B = D 
so that every common right divisor of A and B is a right divisor of D. 
Since X is unimodular, there exists a matrix Y = Xl with elements in '.IS 
such that 

II 
A 0 II = llYn Y 1211 II DOli, 
BOil Y 21 Y 22 0 0 

whence 

Hence D is a g.c.r.d. of A and B. 
Corollary 23.11. If the 2n· n array (~) is of rank n, the matrices A 

and B have a non-singular g.c.r.d. 
Corollary 23.12. If A and B have a non-singular g. c. r. d. D, every 

g.c.r.d. of A and B is of the form UD where U is unimodular. 
For if Dl is another g. c. r. d., 

D=PD1 , Dl=QD, D=PQD, PQ=I. 
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Theorem 23.2. Every pair of non-singular matrices A and B with 
elements in ~ have a 1. c.l. m. M unique up to a unit left factor. 

The relation X A + X B - 0 
21 22-

follows from (23.1). Therefore 

M = X 21 A = -X22B 

is a common left multiple of A and B. If M 1 is another c.l. m. their 

g.c.r.d. M2 = PM + QM1 

is a c.l.m., so there exists a c.l.m. M2 such that M = HM2. Sl1-ppose 

M2=KA=LB. 
Then 

and since A and B are non-singular, 

Xu = HK, X 22 = -HL. 

But I = X 21 Y12 + X 22Y 22 = H[KY12 - LY22], so H is a unit matrix, 
and M is a right divisor of M 1 .1 

Lemma 23.3. Let A denote an n-th order matrix with elements in a 
proper euclidean ring @. For every element m of @ there exist matrices Q 
and R such that either (1) A = mQ or else (2) A = mQ + R where 

0< s[d(R)] < s(m"). 

By multiplying A on the left by a unimodular matrix, it can be 
put into HERMITE'S normal form. Determine Q = (q'B)' R = (rrB) such 
that 

where 0 < s (rij) < s (m) for i > i, while 0 < s (rij) < s (m) for i = i. 
Unless every s (rii) = s (m) , 

s[d(R)] =s[rn r22 ... r",,]":"'- s(rn)s(r22) ... s(r",,) < [s(m)]" = s(m"), 

md ALmQ+R 
is in form (2). 

If every s (rii) = s (m) and every other element of R is 0, R = mE 
where E is diagonal, and 

AL m(Q + E) 
is in form (1). 

If every s (rii) = s (m) and some element of R below the main diagonal 
is not 0, e.g., o 

1 The proofs of the last two theorems are due in essence to E. CAHEN: Theorie 
des nombres Vol. I. Paris 1914, and in the form here presented to A. CHATELET: 

Groupes abeliens finis. Paris 1924. 
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it is always possible to obtain form (2). Let the last column having a 
non-zero element below the main diagonal be the i-th, and let rki be 
the first such element in that column. Add row k to row i. Then 
UR = R] + mE] where s[d(R])] < s(mn). 

If A _L_ mQl + R 1 , then A = m UQl + URI where s[d (URI)] < s (mn). 
Theorem 23.3. It A and B are matrices with elements in a proper 

euclidean ring (2;, and if. d (B) + 0, there exist matrices Q and C such 
that A = QB + C and either C = 0 or else 0 < s[d(C)] < s[d(B)]. 

By the lemma there exist matrices Q and R such that 

ABA = bQ + R, b = d (B) , 

and either R = 0 or else 0 < s[d (R)] < s (bn). If R = 0, A = QB and 
the theorem holds with C=O. If R=FO, R=ABA-bQ=AH"-QBBA 

= (A - QB) BA == CBA. Then 

ABA = bQ + CBA, 

A = QB + C. 

But s[d(R)] = s[d(C)] s[d(BA)] = s[d(C)] s[bn - 1] = s[d(C)] [s(b)r-1. 

Therefore 
0< s[d(C)] < s(b) = s[d(B)]. 

The lemma and theorem were proved for rational integers by L. G. DU 

P ASQUlER 1, who proceeded by this means to establish the existence of 
the g. c. r. d. 

24. Linear form moduls. Let,\3 be a linear form modul of order 
n with respect to a ring ffi. That is, ,\3 consists of all numbers of the 
form 

a1 e1 + a2 e2 + ... an en , 

where the a's range independently over ffi, and the e's are linearly 
independent with respect to ffi. The c's are called a basis of ,\3. 

The basis is not unique, for any other set 

(i,f = 1, 2, ... , n) 

where U = (urs) is unimodular with elements in ffi is also a basis for ,\3; 
for every linear combination of the c's is a linear combination of the 
e"s, and vice versa. Conversely, every two bases of a linear form modul 
are related by such a transformation. The following discussion is relative 
to a fixed basis Cl' C2' ... , cn of ,\3. 

Let ,\31 be a linear form submodul of order n of ,\3,2 and let ,\31 have 
the basis }'1' A2 , ••• , }'n' Then 

(i,f=1,2,oO.,n) 

1 DU PASQUIER, L. G.: Vjschr. naturforsch. Ges. Zurich Vol. 51 (1906) pp. 55 
to 129. 

2 If ffi is a principal ideal ring, every submodul of 2 is a linear form lllodul. 
VAN DER WAERDEN: Modernc Algebra Vol. II p. 121. Berlin: Julius Springer 1931. 
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n with respect to a ring ffi. That is, ,\3 consists of all numbers of the 
form 

a1 e1 + a2 e2 + ... an en , 

where the a's range independently over ffi, and the e's are linearly 
independent with respect to ffi. The c's are called a basis of ,\3. 

The basis is not unique, for any other set 

(i,f = 1, 2, ... , n) 

where U = (urs) is unimodular with elements in ffi is also a basis for ,\3; 
for every linear combination of the c's is a linear combination of the 
e"s, and vice versa. Conversely, every two bases of a linear form modul 
are related by such a transformation. The following discussion is relative 
to a fixed basis Cl' C2' ... , cn of ,\3. 

Let ,\31 be a linear form submodul of order n of ,\3,2 and let ,\31 have 
the basis }'1' A2 , ••• , }'n' Then 

(i,f=1,2,oO.,n) 

1 DU PASQUIER, L. G.: Vjschr. naturforsch. Ges. Zurich Vol. 51 (1906) pp. 55 
to 129. 

2 If ffi is a principal ideal ring, every submodul of 2 is a linear form lllodul. 
VAN DER WAERDEN: Modernc Algebra Vol. II p. 121. Berlin: Julius Springer 1931. 
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where G1 = (g,s) is a non-singular matrix with elements in ffi. We 
shall say that the matrix G1 is associated with the basis A), A2 , ••• , An 
of 53. Every non-singular matrix G1 determines in this way a basis 
of a linear form submodul of 53. 

If 532 with basis 111' 112' ... , I1n is a linear form submodul of order 
n of 531 , every number of 53 2 is in 531 , and 

l1i = 1: Cij).j = 1: Cij gjk 8k' 

The matrix G2 associated with the basis 11), 112' ., ., I1n of 532 is C G), 
where C is a non-singular matrix with elements in ffi. This proves 

Theorem 24.1. 53) contains 532 it and only it G1 is a right divisor 

ot G2 • 

Corollary 24.1. Two moduls 531 and 53 2 are equal it and only it 
G) L G2 • 

For if G2 = C)G) and G) = C2G2 , then C1C2 = I so that C) and C2 

are both unimodular. 
We shall say that the matrix G) corresponds to the modul 53) (G1 '" 53)), 

understanding that G) is determined only up to a unit left factor. 
Now specialize ffi to a principal ideal ring~. The set of numbers 

common to two moduls 53) and 532 constitute a modul 53d called the 
greatest common submodul (or logical product) of the two moduls 531 

and £2' It may also be defined as that submodul of £} and £2 which 
contains every common submodul of £) and £2' 

The set of all numbers contained in either £) or £2 or both, to­
gether with their sums and differences, constitutes a modul £m called 
the least common supermodul (or logical sum) of 53} and 532 , It may also 
be defined as that modul containing £} and 532 which is contained in 
every modul containing £} and £2' 

Theorem 24.2. Let G1 ", 53}, G2 ", £2' Gd C'V £d' Gm C'V 53m • Then Gd 

is the g.c.r.d. ot G} and G2 , and Gm is the l.c.l.m. of G) and G2 • 

I t is proper to speak of the g. c. r. d. and 1. c.l. m. for each is determined 
up to a unit left factor, the same latitude of definition as that of Gd 

and Gm • The proof follows directly from Theorem 24.1. 
The application of matrices with rational integral elements to the 

theory of moduls is in large part due to A. CHATELET1. His work is 
summarized in two books, Le<;ons sur la theorie des nombres, Paris 
1913, and Groupes aMliens finis, Paris 1924. 

25. Ideals. Let ffi be a ring with unit element, and let It) be a linear 
form modul with respect to ffi which is also a ring, and whose elements 
are commutative with those of ffi. An instance of such a system is a domain 
of integrity of a linear associative algebra in the sense of DICKSON2. 

1 CHATELET, A.: e.g., Ann. Ecole norm. III Vol. 28 (1911) pp. 105-202 -
C. R. Acad. Sci., Paris Vol. 154 (1912) p.502. 

2 DICKSON, L. E.: Algebren und ihre Zahlentheorie, p. 154. Zurich 1927. 
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As in § 1 let the constants of multiplication of 6 be Cijk, and define 

Ri = (CiST) . 

A submodul of 6 which is closed under multiplication on the left 
by numbers of 6 is called a left ideal!. Similarly there may be defined 
right ideals and two-sided ideals. 

Theorem 25.1. A modul B of 6 is a left ideal if and only if its cor­
responding matrix G satisfies the conditions 

GR?=DiG, (i=1,2, ... ,n) 

where the Di are matrices with elements in ffi. 
Assume that A!, }'2' ... , An constitute a basis for a left ideal ~, where 

Ai = ~ gij8j. 

Every number k of ~ is of the form 

k = ~ kiAi = ~ ki gij 8j, 

while every number s of (5 is of the form 

s = ~SZ81' 

Since skis in ~ for every sl and ki , there exist numbers dr of ffi such 
that 

s k = ~ Sl ki gij Clj h 8h = ~ d, grt lOt . 

Since the 8'S are linearly independent, 

~ sZkigijCljh = ~ d,grh' 

In particular there exist values dpqr of d, when Sl = (jIP and ki = (jiq' 

For these values 

or 
(P = 1, 2, ... , n) 

Conversely, the condition is sufficient. Let dpqr and gqj be numbers 
of ffi satisfying the above conditions. Define 

}'i = ~ gij 8j . 

The set of numbers k = L: k;J.i is evidently a modul. Let s be any number 
of 6. Then 

s k = ~ Sz ki gij Cl j , '" = 2: Sz ki dli8 As 

IS again in the modul, which is therefore a left ideal 2, 

CHATELET 3 set up a correspondence between ideals in an algebraic 
field and matrices with rational integral elements. If }.l' }'2' .. . ,},n 

1 VAN DER WAERDEN: Moderne Algebra Vol. I p. 53. 
2 MAC DUFFEE, C.c.: Trans. Amer.Math. Soc. Vol. 31 (1929) pp.71-90. 
a CHA.TELET: Ann. Ecolcllorm. III Vol. 28 (1911) pp. 11>5-202. 
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are the conjugates of A in ~(A), and E = [AI' A2 , ••• , An] is a diagonal 
matrix, he proved that a necessary and sufficient condition that AEA I 
be integral is that A, apart from a diagonal matrix as a factor, corre­
spond to a basis of an ideal. 

N ow specialize m to a principal ideal ring \13. If two left ideals 01 
and 02 of 6 have bases AI, ... , An and 111' ... , I1n respectively, the set 
of numbers 

~ dij Ai I1j , 

where dij range over \13 is evidently a modul. Since \13 is a principal 
ideal ring, it is a linear form modul. It is readily seen to be closed under 
multiplication on the left by a number of (5, so it is a left ideal. The 
ideal so defined is called the product of the ideals 01 and 02 in that order. 

H. POINCARE 1 set up a correspondence between matrices and quad­
ratic ideals which is an instance of the correspondence of this paragraph, 
and called the matrix corresponding to the ideal product the second 
product or commutative product of the matrices corresponding to the 
factors. He noted the isomorphism of ideal multiplication with com­
position of quadratic forms. 

The matrix corresponding to the product of the two left ideals ~h 
and 02 is the g. c. r. d. of the matrices 

(i=1,2, ... ,n) 

where G2 corresponds to 02' and AI' A2 , ••• , An is a basis of 11•2 

If !Xl' ••• , !Xk are numbers of an algebraic field of order n, a minimal 
basis of the ideal (!Xl' •.. , !Xk) is readily determined from its associated 
matrix A, which is a g. c. r. d. of 

IV. Equivalence. 
26. Equivalent matrices. Let A = PBQ, where each matrix has 

its elements in a principal ideal ring \13. Then A is a multiple of B.4 
Theorem 26.1. If A is a multiple of B, the g.c.d. di of the i-rowed 

minor determinants of B divides the g.c.d. d/ of the i-rowed minor deter­
minants of A. 

This follows immediately from Theorem 7.9. 
Two matrices A and B with elements in \13 are equivalent (A ~- B) 

if there exist two unimodular matrices U and V such that A = UBV. 

1 POINCARE, H.: J. Ecole polytechn. Cah.47 (1880) pp. 177-245. 
2 SHOVER, GRACE, and C. C. MAC DUFFEE: Bull. Amer. Math. Soc. Vol. 37 

(1931) pp.434-438. 
3 MAC DUFFEE, C. C.: Math. Ann. Vol. 105 (1931) pp.663-665. 
4 HENSEL, K.: J. reine angew. Math. Vol. 114 (1894) pp.109-115. 
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The relation of equivalence is determinative, reflexive, symmetric and 
transitive. (Cf. § 22.) The present chapter has to do with those properties 
of matrices which are invariant under this relationship. 

Corollary 26.1. If AX B, every g.c.d. di of the i-rowed minor deter­
minants of B is associated with every g. c. d. di of the i-rowed minor deter­
minants of A.1 

Elementary operations on the rows of a matrix are defined as in § 22, 
each being accomplished by multiplying the matrix on the left by a 
unimodular matrix. Elementary operations on the columns are defined 
in an analogous manner, each being accomplished by multiplying the 
matrix on the right by a unimodular matrix. The inverse of an elemen­
tary operation is an elementary operation of the same type. 

Theorem 26.2 Every matrix A of rank e with elements in I,l3 is equiv­
alent to a diagonal matrix [hI' h2 ,.·., hI!' 0, ... , OJ where hi ]hi+l· 2 

This diagonal form will be called SMITH'S normal form. 
If A is of rank e, the rows and columns can be shifted by elementary 

transformations so that the minor determinant of order e in the upper 
left corner is =1= 0. Then as in the proof of Theorem 22.1, the element 
in the (1, 1)-position can be made =1=0 and a g.c.d. of the elements of 
the first column. The elements of the first column below the first row 
can then be made O's by elementary transformations on the rows. If 
the element which now stands in the (1, 1 )-position divides every other 
element of the first row, these other elements can all be made O's by 
elementary transformations on the columns so as not to disturb the 
first column of O's. If they are not all divisible by this element an, 
then an can be replaced by the g. c. d. of the elements of the first row, 
and this g. c. d. will contain fewer prime factors than an' The process 
is now repeated until an element in the (1, 1)-position is obtained which 
divides every other element of the first row and every other element 
of the first column. Since every number of I,l3 is factorable into a finite 
number of primes, this stage is reached in a finite number of steps 3. 

By working with the last n - 1 rows and columns, then with the 
last n - 2 rows and columns etc., A can be reduced to an equivalent 
matrix 

II~ ~II' 
Now M = 0, for if one element of M were not 0, it could be shifted into 
the (e + 1, e + 1)-position, and A would have a non-vanishing minor 
determinant of order e + 1. 

I SYLVESTER, J. J.: Philos. Mag. Vol. 1 (1851) pp. 119-140. 
2 SMITH, H. J. S.: Philos. Trans. Roy. Soc. London Vol. 151 (1861-1862) 

p.314. 
3 VAN DER WAERDEN: Moderne Algebra Vol. II p. 124. Berlin: Julius Springer 

1931. 
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By adding column 2, column 3, ... , column e to column 1, D is 
made to assume the form 

hI 0 0 0 

h2 h2 0 0 

ha 0 ha 0 

he 0 0 he 

As in the proof of Theorem 22.1, there is a unimodular matrix U which, 
used as a left factor, replaces hI by the g.c.d. of hI' ... , he' The new 
matrix UD has every element a homogeneous linear combination of 
hI' ... , he' so each element of UD is divisible by the new hI' Again 
reduce to the diagonal form [hI, h2' ... , hi.,] where now hI divides 
h2 , ••• , he' Continue until hil hHl' i = 1,2, ... , e - 1. 

Now consider a matrix A with elements in a ring ~', with unit 
element and no divisors of zero, in which both left and right division 
transformations exist. That is, a stathm is defined for every number 
of ~' except 0, and for every pair of numbers a and b, b =F 0, there 
exist numbers q, q', r, r', such that 

a = bq + r, r = 0 or s(r) < s(b) , 
a=q'b+r', r'=O or s(r') <s(b). 

(Cf. § 20.) If~' is commutative, it is a euclidean principal ideal ring ~. 
If s(ab) =s(a)s(b),~' is proper. 

An elementary transformation is one of five types: 
1. The addition to the elements of any row of the products of any 

element k of ~' by the corresponding elements of another row, k being 
used as a left factor. 

2. The addition to the elements of any column of the products of 
any element k of ~' by the corresponding elements of another column, 
k being used as a right factor. 

3. The interchange of two rows or of two colums. 
4. The insertion of the same unit factor before each element of any row. 
5. The insertion of the same unit factor after each element of any 

column. 
Each of these elementary operations can be effected by multiplying 

the given matrix either on the left or on the right by a certain elementary 
matrix. A product of elementary matrices is called a unit matrix, in 
spite of the fact that the concept of determinant is not defined for 
matrices with elements in a non-commutative ring. 

J. H. M. WEDDERBURN I has proved that if A has elements in ~', 
there exist unit matrices P and Q such that 

PAQ = [hI' h2' ... , he' 0, ... , OJ, 

1 WEDDERBURN, J. H. M.: J. reine angew. Math. Vol. 167 (1931) pp. 129-141. 
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(! being defined as the rank of A, and if (f is proper, hi is both a right 
and a left divisor of hi+!.1 

This last result for (l;' proper had been given essentially by L. E. DrcK­
SON2• Since the resulting diagonal matrices are factorable into prime 
matrices in but one way apart from unit factors, the same is true for 
all matrices with elements in (f which are of rank n. 

27. Invariant factors and elementary divisors. Let A be a matrix 
with elements in a principal ideal ring ~, and let 

D = [hI' h2' ... , he' 0, ... , OJ 

be its equivalent normal form (Theorem 26.2). It has been seen (Theorem 
26.1) that the g. c. d. di of the i-rowed minor determinants of A is as­
sociated with the g. c. d. d( of the i-rowed minor determinants of D. 
Since hi [hi+!' it follows that 

Theorem 27.1. The g. c. d. di = hI h2 ... hi of the i-rowed minor 
determinants of A divides the g.c.d. di+! = h I h2 ... hi+! of the (i + 1)­
rowed minor determinants of A. 

The quotients hI = dl , h2 = d2/dl , ha = da/d2, ... are called the in­
variant factors of A. They are invariants under the relation of equiv­
alence, and are determined up to a unit factor. 

In a principal ideal ring every element neither 0 nor a unit can be 
factored uniquely (except for unit factors) into a product of powers 
of primes a• Suppose 

Since hi [hi+l' the exponents of each prime factor form a sequence 

(l.= 1,2, ... , k) 

Such of these powers pli I as are not units are called the elementary 
divisors of A [WEIERSTRASSJ. They are defined up to a unit factor. 

The elementary divisors are simple if each is a prime 4. 

Theorem 27.2. A E B if and only if A and B have the same elementary 
divisors (invariant factors). 

If A and B have the same invariant factors, they can be reduced 
to the same normal form and hence are equivalent. If they are equi­
valent, they have the same invariant factors, for these are invariants. 
The invariant factors determine the elementary divisors uniquely, and 
conversely. 

Corollary 27.2. Two matrices A and B with elements in a commutative 
field i5- are equivalent if and only if they have the same rank. 

1 See also VAN DER WAERDEN: 1. c. 
2 DICKSON, L. E.: Algebras and their Arithmetics. Univ. of Chicago Press 

1923 p. 174. 
3 VAN DER WAERDEN: Moderne Algebra Vol. I p.65. 
4 KRONECKER, L.: M.-B. preuB. Akad. Wiss. 1874. 
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For in this case every element of lY except 0 is a unit, and a normal 
form [1, ... ,1,0, ... , OJ may be chosen where the number of 1's is 
the rank e. 

The theory of elementary divisors is one of the oldest and most 
thoroughly exploited branches of matric theory. The literature is so 
extensive that the reader is referred to P. MUTH'S Theorie und An­
wendungen der Elementarteilerl for the early papers. The theory was 
initiated by K. WEIERSTRASS 2 for the polynomial domain of the complex 
field, by H. J. S. SMITH 3 and G. FROBENIUS 4 for matrices with rational 
integral elements, and by FROBENIUS 5 for matrices with elements in 
a modular field. FROBENIUS6 later gave a rational treatment of the 
WEIERSTRASS theory. 

A. CHATELET7 proved that if A and B have rational integral elements, 
and if D is their g.c.r.d. and M their l.c.l.m., then MAl and MBI 
have, respectively, the same invariant factors as BDI and ADI. 

28. Factorization of a matrix. Let A be a matrix of rank e with 
elements in a principal ideal ring ~. By Theorem 26.2, A is a product 
by unit matrices of a diagonal matrix 

D = [hI' h2 , ••• , h(!, 0, ... ,0]. 

By § 4, D is a product of matrices of the type 

[1,1, ""Pi, ... , 1], 

where Pi is an irreducible factor of hi' and a diagonal matrix 
[1,1, ... , 1,0, ... , OJ of rank e. The matrices [1, ... , Pi' ... , 1J have 
prime determinants and are therefore irreducible 8. 

L.KRONECKER 9 gave the following decomposition for a unimodular 
matrix with elements in a field for the case IX =l= 0: 

(~ -:/~) (~ ~1y (~ 1~~) (~ ~1) (~ P~~) = (; pr: 1) 
and another decomposition when ~ = O. 

H. LAURENTIO discussed the factorization of a matrix into elementary 
matrices. 

1 MUTH, P.: Teubner 1899. 
2 WEIERSTRASS, K.: M.-B. preuB. Akad. Wiss. 1868 pp. 310- 338. 
3 SMITH, H. J. S.: Proc. London Math. Soc. Vol. 4 (1873) pp.236-253. 
4 FROBENIUS, G.: J. reine angew. Math. Vol. 86 (1879) pp.146-208. 
5 FROBENIUS, G.: J. reine angew. Math. Vol. 88 (1880) PP.96-116. 
6 FROBENIUS, G.: S.-B. preuB. Akad. Wiss. 1894 pp. 31-44. 
7 CHATELET, A.: C. R. Acad. Sci., Paris Vol. 177 (1923) pp.729-731, 
8 DU PASQUIER. L. G.: Vjschr. naturforsch. Ges. Ziirich Vol. 51 (1906) pp. 55 

to 129. 
9 KRONECKER, L.: S.-B. preuB. Akad. Wiss. 1889 pp. 479- 505. 

10 LAURENT, H.: Nouv. Ann. Math. III Vol. 15 (1896) pp.345-365. 
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J. WELLSTEIN 1 showed that every matrix is a product of elementary 
matrices of three types: Eij (x) is obtained by replacing the 0 in row i 
and column j of the identity matrix by X. Ek (x) is obtained by replacing 
the 1 in row k and column k of the identity matrix by x. r is the 
identity matrix with the rows cyclicly permuted. 

C. CELLITTI 2 noted that every second order integral matrix is a 
product of powers of 

! 1 1) (0 1 ' 
29. Polynomial domains. An important instance of a principal ideal 

ring is the polynomial domain I,l3 (),) of all polynomials in A with coefficients 
in a commutative field (Y. The elements of \} (except 0) are the units 
of I,l3 (A). Moreover I,l3 (},) is euclidean, for if a and b T 0 are two numbers 
of the domain, there exist two other numbers q and r such that 

a=bq+r, 

where either r = 0 or else r is of lower degree in A than q. If lJ is 
algebraically closed 3 (e.g., the complex field), the primes in 1,l3(},) are 
the linear polynomials in J.. 

A matrix A = (arso + arsI ), + ... + arsk},k) with elements in I,l3 (A) 
can be written as a polynomial in I"~ 

A = (arso) + (arBl) }, + '" + (arsk) Ak , 

whose coefficients are matrices with elements in 0-. The matrix A 
is of degree k if (arsk) =1= O. It is proper if it is of degree k and 
d (arsk) o. 

Theorem 29.1. 11 A and B are matrices with elements in 1,l3(},), and 
il B is proper 01 degree l, then there exist matrices Q and R (Ql and R l ) 

such that A = BQ -+- R, A = QIB + R 1 , 

where either R = 0 (Rl = 0) or else R (Rl) is 01 degree < l. 
Let 

A = Ak},k + ... + Ao ' B = BIAl + ... + Bo ' l < k. 

Since d(Bz) =l= 0, the equation BzX = Ak has a solution X = Ck- l • 

Then A - B C k-l },k-Z is of degree k - 1 at most. Continue as in 
ordinary long division until a remainder is obtained of degree <l. 

Theorem 29.2. 11 A and B are proper of degrees k and l respectively, 
and il API = P 2B, there exists a matrix Q and two matrices RI and R 2 , 

01 degrees r 1 and r2 respectively, such that 

AR1 =R2 B, P1=QB+Rl , P 2 =AQ+R2 , r1<l, r2 <k.4 

1 WELLSTEIN, J.: Nachr. Ges. VViss. G6ttingen 1909 pp. 77-99. 
2 CELLITTI, C.: Atti Accad. naz. Lincei, Rend. V Vol. 23 II (1914) pp. 208-212. 
a VAN DER \VAERDEN: Modernc Algebra Vol. I p. 198. 
4 FROBENIUS, G.: S.-B.preuB.Akad.Wiss. 1910pp.3-15. 
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where RI is 0 or of degree < l, and R2 is 0 or of degree < k. Then 

The left member is either 0 or of degree <k+l while the right member 
is either 0 or of degree > k + l. Hence AR1 = R2B and, since A and B 
are non-singular, Q2 = QI' 

Theorem 29.3. Ii A and B are proper, of degree 1, and equivalent, 
then there exist non-singular matrices P and Q with elements in ~ such 
that A = PBQ. 

Since A and B are equivalent in \l5 (A), there exist non-singular 
matrices PI and P 2 whose determinants are in ~ such that 

API = P 2B. 

Since A and B are each of degree 1, the matrices RI and R2 of Theorem 
29.2 have elements in ~. It remains only to show that RI and R2 are 
non-singular. Let 

PI! = Q3 A + Ra , 

where R3 is either 0 or of degree r3 = o. Then 

1= plI PI = (Q3A + R3) (QB + RI ) 

= Q3 A QB + Q3 ARI + R3QB + R3R I' 

1- R3 RI = (Q3AQ + Q3R2 + R 3Q) B. 

The left member is either 0 or of degree 0 in A, while the right member 
is 0 or of degree >1 in } .. Hence each member is 0, R2Rl = I, d (RI) =F O. 
Similarly d(R2) =F O. Then A = PBQ, where P = R2 and Q = R/. 

J. A. DE SEGUIERI showed how to reduce AlA + A2fl to diagonal 
form directly by means of constant matrices P and Q. 

The characteristic matrix I A - A of the matrix A with elements 
in a commutative field ~ is an important instance of a matrix in \l5 (A) 
whose elements are linear. Let 

n - A E [hI (A) , h2 (A), ... , hn (A)], 

where the second member is the normal form of Theorem 26.2. 
Theorem 29.4. The minimum equation of A is hn (A) = O. 
This follows from Theorems 15.1 and 27.1-
Corollary 29.4. A matrix is not derogatory when and only when the 

elementary divisors of its characteristic matrix are powers of distinct 
primes. 

1 DE SEGUIER, J. A.: Bull. Soc. Math. France Vol. 36 (1908) pp.20-40. 
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A matrix of the form 

Al 0 0 

A= 
0 A2 0 

0 0 Ak II 

will be called the direct sum of the matrices AI' .1 2 " •. , A k , and will 
be written I 

Theorem 29.5. I}, - A is equivalent to the matrix 

E V.) = Bn (),) -~ Bn- di.) -+ ... -+ En-d},) , 

where [1, ... , 1, hn-d},), ... , hnV,)] is the SMITH normal form of n. - A, 
and Bd},) is any matrix whose invariant factors are all l' s but the last 
which is h;(},). 

Suppose P; B; (i,) Qi ,= [1, ... , 1, lz;(A)J. If 
. . . 

P = Pn + Pn - l + ... + Pn - k , Q = Qn + Qn-l+-'" T Qn-k, 

then a suitable permutation of the rows and columns of PBQ gives 
[1, ... , 1, hn._ ko •.. , hnJ. 

In particular B;(},) may be chosen to be 

I}, -1 0 0 

o }, -1 o 
'i' 

I hz hz- 1 hz .. ~ hI I 

where h;(},) =},l + hl ;,z-l + ... + hz. 
If hi (A) is completely reducible in IT, say 

hi (},) = (). - AI)Zil ... (}, - Ad'k, 

Bd},) may be chosen in the form J}, - I, where I is the JORDAN form 
discussed in § 14. (See Corollary 15.1.) 

If 'iY is an algebraically closed field (1, every hi V,) being completely 
reducible, the JORDAK normal form corresponding to each invariant 
factor is a direct sum of JORDAN forms each corresponding to an elemen­
tary divisor of 1 X - A. By a shifting of the rows and columns these 
forms can be arranged in any order. Thus B (},) can be chosen 

B(A) = I n (},) -+ II2(X) -+ ... -+ Ink (X) , 

where each Iii (},) is the JORDAN form corresponding to an elementary 
divisor (J, - AI)ZU. 

It will be seen that there are two types of invariant for the field (1, 

the distinct roots of the characteristic equation, Xl' ... , }'j, which may 

1 KREIS, H.: Contribution a la theorie des systems Iineaires. Ziirich 1906. 
KREIS attributes the notation to A. HURWITZ. 
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be called numerical invariants, and the exponents eil of the elementary 
divisors, which may be called invariants of structure 1. The exponents 
written in the array 

or [(en, e12 , ... ), (e 21 , e22 , ... ), ... J constitute the SEGRE characteristic 
of the matrix 2. 

30. Equivalent pairs of matrices. Two pairs of matrices AI' A2 
and Bl , B2 with elements in a commutative field ty are said to be equi­
valent if and only if there exist two non-singular matrices P and Q 
with elements in ty such that 

Al =PB1Q, A2=PB2Q· 

Theorem 30.1. If Al and Bl are non-singular, the pairs of matrices 
AI' A2 and Bl , B2 are equivalent if and only if the matrices AlA + A2 
and Bl A + B2 in the polynomial domain 1,]3 (I.) have the same invariant 
factors (or elementary divisors) 3. 

Let A1A+A 2 =A, BIA+B2=B. If Al = PB1Q and A 2=PB2Q, 
then evidently A = PBQ for every) .. In the domain I,]3(A), P and Q 
are unimodular since their determinants are non-zero numbers of ty, 
so by Theorem 27.2 the invariant factors of A and B coincide. 

If, conversely, A and B have the same invariant factors, there 
exist two matrices PI and Ql whose determinants are non-zero numbers 
of ty, but whose elements may involve A, such that A = PI BQI. Since 
A and B are proper, there exist by Theorem 29.3 two non-singular 
matrices P and Q with elements in ty such that 

All. + A2 = P(BIA + B2)Q 

for A indeterminate. Hence Al = PBlQ and A2 = PB2Q. 
In treating the case where both Al and A2 are singular, it is more 

convenient to use the symmetric linear combination Al A + A2f1 whose 
elements lie in the polynomial domain 1,]3 (A, f1) of homogeneous poly­
nomials with coefficients in ty. 1,]3 (J., f1) is isomorphic with 1,]3(1.). The 
invariant factors of All. + A2f1 will be called the invariant factors 
of the pair AI' A 2. The pair of matrices AI' A2 is said to be a non­
singular pair if d (AI A + A 2,u) is not zero in 1,]3 ()" f1). 

Lemma 30.2. IfA l'=Al p+A 2q, A2'=Alr+A2s, wherep,q,r,s 
and the elements of Al and A2 are in ty, and if ps - rq =1= 0, then the 
invariant factors of AI' A + A 2' f1 are obtained from those of Al u + A 2v 
by the substitution 

1 Cf. S. LATTES: Ann. Fac. Sci. Univ. Toulouse Vol. 28 (1914) pp. 1-84. 
2 SEGRE, C.: AttiAccad. naz. Lincei, Mem.III Vol. 19 (1884) pp.127-148. 
3 WEIERSTRASS: M.-B. preu13. Akad. Wiss. 1868 pp. 310-338. 
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This substitution, having an inverse, defines an automorphism of 
the domain ~ ()" fl) '" 1.13 (u, v) by which AI')· + A2' fl "'-' Al U + A2v. 

Theorem 30.2. Two non-singular pairs of matrices AI' A2 and BI , B2 
with elements in a field lI, are equivalent if and only if they have the same 
invariant factors. 

If they are equivalent, they have the same invariant factors. This 
follows as in the proof of Theorem 30.1. 

If AI, A2 is a non-singular pair, there exists a non-singular matrix 
AI' = AlP + A 2q· Choose rand s in any way so that ps - rq =F 0, 
and define A2' = Al r + A2s. Define BI', B2' cogrediently. Then by the 
lemma AI', A2' have the same invariant factors as B/, B2', since AI' .42 
have the same invariant factors asBI , B 2 • In this case the pairs AI', A 2' 

and Bl ', B2' are equivalent by Theorem :30.1. Then the pairs AI' A2 
and BI, B2 are equivalent. 

Corollary 30.21. If Al is non-singular, the pair AI' A2 with elements 
in ~ is equivalent to the canonical pair I, -B where 

B = Bn -+- Bn- 1 ~- ... -+- Bn-k> 

and Bi is the companion matrix of the i-th invariant factor of AI' A 2 • 

Corollary 30.22. If Al is non-singular the pair AI' A2 with elements 
in an algebraically closed field a; is equivalent to the canonical pair I, -I 
where 

I = In -+- In-l -+- ... -+- In-b 

and Ii is the JORDAN matrix of the i-th invariant factor of AI' A 2' 

The problem of the equivalence of singular pairs of matrices presents 
more difficulty. M. PASCH I and P. MUTH2 treated singular pairs of 
third order matrices. MUTH3 treated the general case. L. E. DICKSON 4 

proved that two singular pairs are equivalent by rational transformations 
if and only if they have the same invariant factors and the same minimal 
numbers M i , which he defines. TURNBULL and AITKEN 5 have an 
original treatment of the singular case. 

Since a polynomial in more than one variable is usually not factorable 
into linear factors, the WEIERSTRASS elementary divisor theory does 
not generalize so as to be applicab~e i" the problem of the equivalence 
of sets of more than two matrices. S. KANTOR 6 generalized the concept 
of elementary divisor by geometric methods to handle this problem. 

A new method in the equivalence of pairs of matrices was developed 
by R. G. D. RICHARDSON 7. First suppose that }'l' ... , An are the roots 

1 PASCH, M.: Math. Ann. Vol. 38 (1891) pp.24-49. 
2 MUTH, P.: Math. Ann. Vol. 42 (1893) pp.257-272. 
3 MUTH, P.: Theorie und Anwendungen der Elementarteiler. Teubner 1899. 
4 DICKSON, L. E.: Trans. Amer. Math. Soc. Vol. 29 (1927) pp.239-253. 
6 TURNBULL and AITKEN: Canonical matrices, Chap. IX. Glasgow 1932. 
6 KANTOR, S.: S.-B. Bayer. Akad. Wiss. Vol. 98 (1897) pp. 367-381-
7 RICHARDSON, R. G. D.: Trans. Amer. Math. Soc. Vol. 26 (1924) pp. 451-478. 
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of IA - ABI = 0 and are all distinct. Let A = (ars), B = (brs). There 
exist sets or poles (xu, ... , xnk), (Yll' ... , Yin), no one of which consists 
entirely of zeros, such that 

2: (aij - Akbij) Xjk = 0, (i, k = 1, 2, ... , n) 
j 

(1, l = 1, 2, ... , n) 

These poles may be normalized so that Ei,j Yki bij Xjk = 1. Since 

1: Yli aij Xj k = Ak 1: Yli bij Xj k = All: Yli bij Xj k> 
i, i i, j i, j 

it follows that if k =l= l, 

The matrices X = (xrs) and Y = (Yrs) are orthogonal relative to A and B. 
Then 

YBX = I, YAX = [AI' 1.2 , ••• , An]. 

In case the roots of IA - ABI = 0 are not all distinct, various 
cases arise. If Ak is multiple, the number of linearly independent poles 
(xlk. ... , x:1) may still be equal to the multiplicity. In this case the 
argument proceeds as before. The case when there are fewer linearly 
independent poles than the multiplicity p is called the irregular case. 
Then the solutions of the equations 

(h=2,···,P) 

are used to fill out the rows of X and Y. If Ak is a root of multiplicity 3, 
for instance, and if the number of linearly independent poles is 1, the 
normal form attained for A - AB is 

o o 
o Ak -A 1 

Ak -A 1 0 

31. Automorphic transformations. If P A Q = A, the elements of 
each matrix being in a commutative field ~, the matrices P and Q 
determine an automorphic transformation of A with respect to the 
relation of equivalence. 

Theorem 31.1. If d (A) =l= 0 and M is an arbitrary matrix such that 
d(A + M)d(A - M} ::j:: 0 then 

P = (A + M) (A - M)I, Q = (A + M)l (A - M) 

define an automorphic transformation of A. There are no others tor which 
d(I + P)d(I + Q) =l= 0.1 

1 CAYLEY, A.: Philos. Trans. Roy. Soc. London Vol. 148 (1856) pp.39-46. 
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Evidently 

(I + AIM) (I - AllVl) = (I - AIM) (I + AIM), 

(A + J1)AI(A - M) = (A - M)AI(A + J1). 

By taking the inverse of each member it follows that 

(A - 21:1)1 A (A + JI)I = (A + ~V1)1 A (A - JIll, 

(A + JI) (A - JIY A (A + MY (A - M) = A . 

51 

Hence if P and Q both exist, both are non-singular, and they define 
an automorph of A. 

Solving the equations defining P and Q yields, respectively, 

;.vl= (P+I)I(P-I)A, Jl=A(I-Q)(Q+l)I. 

If PAQ=A, 
(P - I)A(Q + I) =, (P + I)A(I - Q), 

and the two values for ;11 are equal. Hence for every P and Q such 
that PA Q = A, and (P + 1)1 and (Q + 1)1 exist, there is an "'1 in 
terms of which P and Q may be defined as in the statement of the 
theorem. 

The restriction that P + I and Q + 1 be non-singular is a serious 
one, however, and is not easily avoided. 

FIWBENIUS1 noted that if PA Q = B, d (Q) :=i=: 0, then f(P)A [/ (QI)JI = B, 
where f is any rational function such that j (QI) is non-singular. He 
also proved that a necessary and sufficient condition in order that P 
and Q be capable of transforming a non-singular matrix into itself is 
that it be possible so to order the elementary divisors of I). - P and 
I}. - Q that corresponding elementary divisors are of the same degree 
and vanish for reciprocal values of } .. 

v. Congruence. 
32. Matrices with elements in a principal ideal ring. If A = pTBP 

where each matrix has elements in a principal ideal ring W, and if P 
is unimodular, then A is congruent with B, written A S B. Congruence 
is an instance of equivalence, and is determinative, reflexive, sym­
metric, and transitive. (Cf. § 22.) 

If a bilinear form 2' bijXiYj of matrix B be transformed by cogre­
dient transformations of matrix P into a form of matrix A, then 
A = p T B P. It is the purpose of the writer to present the subject as 
pure matric theory free from the notion of bilinear form, but the 
reader will have no difficulty in translating the results into the no­
tation of form theory if he so desires. Thus Theorem )4.1 states that 

1 FROBENJUS: J. reinc angew. Math. Vol. 84 (1878) pp. 1 -()3. 

403} V. Congruence. 

Evidently 

(I + AIM) (I - AllVl) = (I - AIM) (I + AIM), 

(A + J1)AI(A - M) = (A - M)AI(A + J1). 

By taking the inverse of each member it follows that 

(A - 21:1)1 A (A + JI)I = (A + ~V1)1 A (A - JIll, 

(A + JI) (A - JIY A (A + MY (A - M) = A . 

51 

Hence if P and Q both exist, both are non-singular, and they define 
an automorph of A. 

Solving the equations defining P and Q yields, respectively, 

;.vl= (P+I)I(P-I)A, Jl=A(I-Q)(Q+l)I. 

If PAQ=A, 
(P - I)A(Q + I) =, (P + I)A(I - Q), 

and the two values for ;11 are equal. Hence for every P and Q such 
that PA Q = A, and (P + 1)1 and (Q + 1)1 exist, there is an "'1 in 
terms of which P and Q may be defined as in the statement of the 
theorem. 

The restriction that P + I and Q + 1 be non-singular is a serious 
one, however, and is not easily avoided. 

FIWBENIUS1 noted that if PA Q = B, d (Q) :=i=: 0, then f(P)A [/ (QI)JI = B, 
where f is any rational function such that j (QI) is non-singular. He 
also proved that a necessary and sufficient condition in order that P 
and Q be capable of transforming a non-singular matrix into itself is 
that it be possible so to order the elementary divisors of I). - P and 
I}. - Q that corresponding elementary divisors are of the same degree 
and vanish for reciprocal values of } .. 

v. Congruence. 
32. Matrices with elements in a principal ideal ring. If A = pTBP 

where each matrix has elements in a principal ideal ring W, and if P 
is unimodular, then A is congruent with B, written A S B. Congruence 
is an instance of equivalence, and is determinative, reflexive, sym­
metric, and transitive. (Cf. § 22.) 

If a bilinear form 2' bijXiYj of matrix B be transformed by cogre­
dient transformations of matrix P into a form of matrix A, then 
A = p T B P. It is the purpose of the writer to present the subject as 
pure matric theory free from the notion of bilinear form, but the 
reader will have no difficulty in translating the results into the no­
tation of form theory if he so desires. Thus Theorem )4.1 states that 

1 FROBENJUS: J. reinc angew. Math. Vol. 84 (1878) pp. 1 -()3. 



52 V. Congruence. [404 

the normal form for a quadratic form is glX12 + g2x22 + ... + goxo2, and 
Theorem 32.2 states that the alternating form can be redu~ed to 
hI (X1Y2 - X2Y1) + h2 (x3Y4 - X4Y3) + .... 

Theorem 32.1. If 5 is symmetric and 51 c 5, then 51 is symmetric. 
If Q is skew and Q1 c Q, then Q1 is skew. 

For if 51 = p T 5P, then 5/ = p T 5T p. If 5T = 5, then 5/ = 51' 
Similarly for Q. 

A matrix A with elements in '-1S cannot as a rule be written as a sum 
of a symmetric matrix and a skew matrix (Theorem 5.3) but 2A can 
always be so expressed. 

Corollary 32.11. If 5 + Q c 51 + Q1 where 5 and 51 are symmetric 
and Q and Ql are skew, then 5 c 51 and Q C Ql' 

For by Theorem 5.3 the expression of a matrix as a sum of a sym­
metric matrix and a skew matrix is unique. 

Corollary 32.12. Ij A = 5 + Q, the invariants oj 5 and Q are in­
variants oj A. 

KRONECKER1 noted that b - c is a cogredience invariant of 

Its square is the determinant of the skew component of 2M. 
Theorem 32.2. Every skew matrix Q oj rank e = 2ft is congruent 

with a direct sum 

( 0 hI) + ( 0 h2) + ... + ( 0 hI') + (0 00) + ... , 
\-hl 0 -h2 0-hI' 0 0 

where hl [h2 [ •• • [hf'.2 
If every element of the first column of 

o q12 q13 

Q= 

is 0, the columns and corresponding rows may be permuted until this 
is not so. Let 

k12 = b2q12 + b3q13 + ... + bnqln 

be a g. c. d. of the elements of the first row. Choose 

I 1 0 0 

0 b2 * P= 
0 b3 * "'1 .. Ii 

1 KRONECKER: Abh. preuE. Akad. Wiss. 1883 II pp. 1-60. 
2 CAHEN, E.: Theorie des nombres Vol. I p. 282. Paris 1914. 
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unimodular with elements in ~ (Theorem 21.1). Then PTQP is of the 
form Q with the further property that q12 =F 0 and divides every other 
element of the first row. By elementary transformations these other 
elements can be made O's. The process may be continued until a matrix 

0 k12 0 0 

i -k12 0 k23 0 

K=! 0 -k23 0 k34 
I 
I 0 0 -k34 0 

is reached. 
Either kI2 divides every other element of K, or another congruent 

matrix of the same type can be obtained in which the element in the 
(1,2)-position has fewer prime factors than kI2 . By adding row 2, 
row 3, ... , row n to row 1, and then adding columns similarly, a new 
congruent matrix is obtained whose first row consists of 

ll1 = 0, 

Every g.c.d. of (k I2 , ... , kll-I,n) is a g.c.d. of (lI2'" ., lIn) and con­
versely. As in the first part of this proof, a congruent matrix can be 
obtained similar in form to K but with the element in the (1, 2)-position 
a g.c.d. of (k12 , ••• , kll - 1 • .,). Unless kI2Iki-I,i for every i. this g.c.d. 
will have fewer prime factors than k12 • 

Thus in a finite number of steps a matrix K can be reached in 
which k12 divides every element. By proceeding similarly with the last 
n - 1 rows and columns. a matrix K is obtained in which 

kI21 k2Slks41···1 k!.'-I.!." 

Now by adding a proper multiple of row 1 to row 3, k2S can be made o. 
Every ki, i+l with i even can be made 0 in succession. This proves the 
theorem. 

It is again evident that Q is singular if n is odd (Theorem 8.6). Let 
e = 2ft· 

Theorem 32.3. The numbers hI' hI' h2' h2' ... , hI-" hI-' of the canonical 
form of Q are the invariant factors of Q. 

The non-vanishing minor determinants are ±hk1 hk, ... hki' where 
each SUbscript is an integer of the set 1, 2, ... , ft no integer of which 
can appear more than twice. It is evident then that the g. c. d. of the 
i-rowed minor determinants is di = hI hI h2h2hs ... to i factors. Thus 
d1 = hI' d2/dl = hI' ds/d2 = h2,"', which proves the theoreml . 

Corollary 32.31. The skew canonical form is unique except that the 
elements may be replaced by associates. 

For the invariant factors are invariants (§ 27). 

1 CAHEN: 1. c. 
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kI21 k2Slks41···1 k!.'-I.!." 
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1 CAHEN: 1. c. 
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Corollary 32.32. Two skew matrices with elements in ~ are congruent 
if and only if they have the same invariant factors. 

Corollary 32.33. If two skew matrices with elements in ~ are equivalent, 
they are congruent!. 

Corollary 32.34. In a skew matrix the 2i-th invariant factor is equal 
to the (2i - 1)-th 2• 

Corollary 32.35. The g. c. d. of the minors of the same even order of 
a skew matrix is a perfect square 3. 

Matrices congruent with each other constitute a class. 
Corollary 32.36. There is but a finite number of classes of non-s.ingular 

skew matrices with a given determinant. 
Since factorization into primes in a principal ideal ring is unique 

except for unit factors, there is but a finite number of choices for each 
invariant factor. 

The theory of congruent symmetric matrices is by no means as 
simple as that of skew matrices. This theory occurs in the literature 
principally in connection with quadratic forms. The relation A = pTBP 
was first given by A. EISENSTEIN 4, who noted that if a quadratic form 
of matrix B be transformed by a transformation of matrix P, the new 
quadratic form is of matrix A. 

Theorem 32.4. Every symmetric matrix S of rank e with elements 
m a principal ideal ring ~ is congruent with a matrix of the form 

Sll S12 0 

S12 S22 S23 

o S23 S33 

where si-l,i = sii = 0 if i> e. 
The proof is practically identical with that of the first part of the 

proof of Theorem 32.2. 
This reduced form is not unique, and indeed the problem of finding 

a unique symmetric canonical form is one of extreme difficulty if it 
is not actually impossible. It has not been attained even for two-rowed 
matrices whose elements are rational integers, as will appear in the next 
section; 

33. Matrices with rational integral elements. This topic, which 
constitutes a large and important chapter in the theory of numbers, 
can only be touched upon here. Complete references up to the date 
of their publication are given in articles by K. T. VAHLEN5, and 

1 FROBENIUS: J. reine angew. Math. Vol. 86 (1879) pp.146-208. 
2 FROBENIUS: l. c. 3 FROBENIUS: l. c. 
4 EISENSTEIN, A.: J. reine angew. Math. Vol. 35 (1847) pp.117-136. 
fi VAHLEN, K. T.: Enzykl. math. Wiss. I Vol. 2C2 (1904) pp.582-638. 
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L. E. DICKSON!. The treatises by P. BACHMANN 2 and DICKSON 3 cover 
the field quite thoroughly. 

The following fundamental theorem was stated by C. HERMITE 4 and 
proved much later by STOUFF 5• 

Theorem 33.1. There is but a finite number of classes oj symmetric 
matrices with rational integral elements oj given non-zero determinant. 
(Cf. Corollary 32-36.) 

The proof is too long for inclusion here. 
Let 

A=II: I, d(A) > 0, 
c 

Such a matrix is positive dejinite. If 

-a < 2b <:: a, c > a, 

a>O. 

with b > 0 if c = a, the matrix A is called reduced. Every positive 
definite symmetric matrix of order 2 is congruent with one and only 
one reduced matrix 6. 

If d (A) < 0, A is called indefinite. If j is that root of 

a x2 + 2 b x + c= 0 

which involves the positive radical, and s is the other root, then A is 
reduced if I j I < 1, I s I > 1, js < O. Here again there is at least one 
reduced form in every class, and usually more than one, but never 
more than a finite number. By a method of GAUSS these can be ar­
ranged into chains of reduced forms so that each chain corresponds 
to one and only one class. 

These results are sufficient to indicate the general situation. Can­
onical forms have been defined in various ways so that every class 
shall be represented at least once and at most a finite number of times. 
The goal of defining a unique canonical form has been attained only in 
special instances. 

Theorem 33.2. Ij B = (brs), where bra is the positive g. c. d. oj rand s, 
then c 

B ~ [qJ(1), qJ(2), ... , qJ(n)], 

where qJ (i) is the EULER qJ-junction oj i. 7 

Let qJ (m) be the number of integers in a reduced set of residues 
modulo m. Then m = ~ rp (d) summed over all divisors d of m. Let 

1 DICKSON, L. E.: History of the theory of numbers Vol. III pp.284-288. 
Washington 1923. 

2 BACHMANN, P.: Die Arithmetik der quadratischen Formen. Teubner 1923. 
3 DICKSON: Studies in the theory of numbers. Univ. of Chicago Press 1930. 
4 HERMITE, C.: J. reine angew. Math. Vol. 47 (1854) p. 336. 
5 STOUFF: Ann. Ecole norm. III Vol. 19 (1902) pp.89-118. 
6 KRONECKER: Abh. prcull. Akad. Wiss. 1883 II pp. 1 - 60. 
7 SMITH, H. J. S.: Proc. London Math. Soc. VII 1876 pp.208-212. 
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Pij = 1 if i I j, otherwise Pij = 0. Since Pii = 1 and Pij = ° for j < i, 
d (Prs) = 1. Let P = (Prs)' if> = [IP (1), IP (2), ... , IP (m)J, B = (brs) = pTif> P. 
Then ~. ~ 

brs =,,;;;.. Pirrp(t) Pi. =,,;;;.. cp(drs ) 

summed over all common divisors drs of rand s. Hence br• is the positive 
g.c.d. of rand S.l 

34. Matrices with elements in a field. Theorem 34.1. Every sym­
metric matrix of rank e with elements in a field ~ not of characteristic 2 
is congruent in ~ with a diagonal matrix [gl' g2"'" go> 0, ... , OJ, gi =f= 0.2 

Consider 

A= ::: II 

... 11' 
II •• II 

Assume the minor of order (! in principal position (upper left corner) 
to be non-singular. If all = 0, some au =f= 0. After adding row k to 
row 1 and column k to column 1, the new element in the (1, 1 )-position 
is 2 au =f= 0, so we assume all =i= 0. Add - aul all times the first row 
to the k-th row, and similarly for columns, thus reducing all elements 
of the first row and column to ° except the first. Now proceed similarly 
with the lower right minor of order n - 1, and so on until the diagonal 
form is reached. 

Corollary 34.1. If Ai is the principal minor of order i in the upper 
left corner of the symmetric matrix A, and if Pi = d (Ai) =f= 0, then gi 
can be determined as a rational function of the elements of Ai alone. 

For in this case none of the first i rows and columns need be inter­
changed with any of the last n - i rows and columns. 

A commutative field ~ is called ordered if for every element a of 
the field one and only one of the relations 

a = 0, a>O, -a>O 

holds, and if further a> ° and b> ° imply a + b> ° and ab > 0.3 

Theorem 34.2. If ~ is an ordered field, and if G = [gl' ... , gil' 0, .. " oJ 
is congruent with H = [hI' ... , he' 0, ... , OJ, then the number of g's which 
are> ° is exactly equal to the number of h's which are> 0. 

This theorem is SYLVESTERS'S4 "Law of inertia". It was rediscovered 
by JACOEI 5. 

1 Proof by FROBENIUS: J. reine angew. Math. Vol. 86 (1879) pp. 146-208. 
Z For differential forms by LAGRANGE: Misc. Taur. Vol. I (1759) p.18. -

For the general field by L. E. DICKSON: Trans. Amer. Math. Soc. Vol. 7 (1906) 
pp.275-292. 

3 VAN DER WAERDEN: Moderne Algebra Vol. I, p.209. 
4 SYLVESTER: Philos. Mag. IV 1852 pp. 138-142. 
5 JACOBI: J. reine angew. Math. Vol. 53 (1857) pp.265-270. 
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Let A and B be any two congruent matrices and suppose that 
A = pTBP or 

Let Xl' ... , Xn be at present undetermined. Then 

~ Xr ars Xs = I (~ Pir Xr) bij (~ pj8 X8) . 
T,8 l,) r 8 

Denote ~PirXr by Yi' If in particular A = Hand B = G, 

~ hr xr2 = 2: giYi2. 
r i 

Now suppose hI> 0, ... , h" > 0, h><+! < 0, ... , ho < 0, gi > 0, ... , 
g;. > 0, gA+l < 0, ... , g!! < 0, }, < x. Then ' 

hl x12 + ... + h"x,,2 - gA+IY;'~l - ... - geYi 

= gly!2 + ... + g;.y;.2 - h><+1x}H - ... - h!!x(}. 

Choose x><+ 1 = ... = xn = ° and Xl' ... , X" not all zero so that the 
i. < x linear forms )'1"'" Y;. are all zero. Since this implies 
hl xl2 + ... + h"x,,2 = ° for the x's not all 0, a contradiction is reached, 
and it must be true that ;. > x. Since the relationship between Hand 
G is mutual, J. = x. 

The number 2x - (! = (] is called the signature of H, and is the 
number of positive terms diminished by the number of negative terms 
in the normal forml. The two invariants (! and (] determine the number 
of positive and the number of negative terms in the canonical form. 

Corollary 34.21. Two symmetric matrices in the real field are congruent 
if and only if they have the same rank (! and the same signature (]. 

For every positive hi can be reduced to 1, and every negative hi 
to -1, by an elementary transformation in the real field. 

Corollary 34.22. Two symmetric matrices in an algebraically closed 
field ~ are congruent if and only if they have the same rank (!. 

For in this case each hi can be reduced to 1. 
A symmetric matrix A in an ordered field is called positive definite 

if (! = (] = n, and negative definite if (! = -(] = n. It is semi-definite 
if (! = (] or (! = - (] . 

If A is symmetric and Xl"'" xn indeterminate, f =2: aijxixj is 
called a quadratic form. If B = p T AP, then f =2: bijYiYj where 
Xi =2: PijYj' If A is positive definite (or negative definite), then f> 0 
(or f < 0) except for Xl = X2 = ... = xn = 0. If A is positive (or nega­
tive) semi-definite, then f;::=: ° (f ~ 0) except for Xl = X 2 = ... = Xn = 0. 
These properties of f characterize A. 

A symmetric matrix A of rank (! is regularly arranged if no two 
consecutive principal minor determinants PI = all' P2 = I an a221, 

1 FROBENIUS: S.-B. preuB. Akad. Wiss. 1894 I pp.241-256 and 407-431. 
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1 FROBENIUS: S.-B. preuB. Akad. Wiss. 1894 I pp.241-256 and 407-431. 
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Pa = lalla22 aaal,··· are zero. Such an arrangement is always possible, 
and if Pi = 0, then Pi-l PHl < 0.1 

Theorem 34.3. If A is regularly arranged, the signature (! of A is 
equal to the number of permanences minus the number of variations of 
sign in the sequence 

where either sign may be attributed to a P which vanishes 2. 

It was remarked in Corollary 34.1 that it is possible to reduce A 
to diagonal form in such a way that [g1"'" gi] is obtained from 
Ai = II an ... aii II by elementary transformations in case the latter 
is non-singular. That is, [g1"'" gi] =K/AiKi' Hence glg2'" gi has 
the same sign as Pi = d (Ai) in case the latter is not 0, and gi < ° if 
and only if Pi-l and Pi have opposite signs. In case Pi = 0, then Pi-l 
and PHl have opposite signs, so one permanence and one variation is 
obtained whether Pi is counted positive or negative. Also gl' .. gi-l 
and g] ... gi+1 have opposite signs, so one of gi' gi+l is positive and 
the other negative. Since (J is invariant, the result is true independently 
of the method of reduction to normal form. 

Corollary 34.3. If A is any matrix, AT A is positive semi-definite. 
For 

H. MINKOWSKl a proved that two non-singular symmetric matrices 
with rational elements are congruent in the rational field if and only 
if three invariants J, A, B coincide. Here J is the number of negative 
elements in the diagonal form, A is (-1V times the product of the 
primes occuring in the determinant to an odd exponent, and B is a 
certain product of odd primes. This theory was extended to singular 
matrices by H. HAssE 4• 

L. E. DICKSON5 proved that in the rational field a non-singular 
symmetric matrix can be reduced to the diagonal form 

[a, b, c, 1, ... ,1, -1, ... , -1], 

where the -1's are absent unless a, band c are all negative. 
Theorem 34.4. Every skew matrix of rank (! = 2", with elements in 

a field ~ is congruent with a matrix of the form 6 

( ° al2). ( ° aa4)' . (0 al-'-l,l-') . (0 0) . + + ... + + + .... 
-a12 ° -aa4 ° -al-'-l, I-' ° ° ° 

1 GUNDELFINGER, S.: J. reine angew. Math. Vol. 91 (1881) pp.221-237. 
2 DARBOUX, G.: J. Math. pures appl. II Vol. 19 (1874) pp.347-396. 

GUNDELFINGER: 1. c. 
3 MINKOWSKI, H.: J. reine angew. Math. Vol. 106 (1890) pp. 5-29. 
4 HASSE, H.: J. reine angew. Math. Vol. 152 (1923) pp.205-224. 
5 DICKSON, L. E.: Trans. Amer. Math. Soc. Vol. 7 (1906) pp.275-292. 
6 MUTH, P.: J. reine angew. Math. Vol. 122 (1900) pp.89-96. 
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a field ~ is congruent with a matrix of the form 6 

( ° al2). ( ° aa4)' . (0 al-'-l,l-') . (0 0) . + + ... + + + .... 
-a12 ° -aa4 ° -al-'-l, I-' ° ° ° 

1 GUNDELFINGER, S.: J. reine angew. Math. Vol. 91 (1881) pp.221-237. 
2 DARBOUX, G.: J. Math. pures appl. II Vol. 19 (1874) pp.347-396. 

GUNDELFINGER: 1. c. 
3 MINKOWSKI, H.: J. reine angew. Math. Vol. 106 (1890) pp. 5-29. 
4 HASSE, H.: J. reine angew. Math. Vol. 152 (1923) pp.205-224. 
5 DICKSON, L. E.: Trans. Amer. Math. Soc. Vol. 7 (1906) pp.275-292. 
6 MUTH, P.: J. reine angew. Math. Vol. 122 (1900) pp.89-96. 
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This is a special case of Theorem 32.2. 
O. VEBLEN and P. FRANKLIN! stated that the analogous form for 

symmetric matrices does not hold for all fields, but does hold for modular 
fields. 

Corollary 34.4. In the real field every skew matrix of rank (! = 2/1 
is congruent with 

1). . (. ° 1) . (0 + ... + + 
° -1 ° ° 

0). . (0 0) + ... + , 
o 0 O. 

where just fl blocks are not zero 2. 

Theorem 34.5. If ~ is a field not of characteristic 2, there exist two 
n-th order symmetric matrices A and E, d (E) =f= 0, with elements in iY 
such that A + i,E has as invariant factors any prescribed polynomials 

PI' P2 , ••• , Pk 

with coefficients in ~ such that Pi I Pi+1 and such that the sum 0/ the 
degrees of the P's is n.3 

Let P i (2) = i,1n + b1 A"'-1 + b2 Am - 2 + ... + bm • 

Let h be the greatest integer in ! (m + 1), and form the matrix 

0 0 0 0 2' Cn Cl2 - il 
C12 C22 C23 0 0 -2 1 ., 

C= 0 C23 C33 C34 -2 1 0 

0 -I. 1 0 0 0 0 

ii -2 1 0 0 0 0 0,: 

of m rows and columns, where the last c is Chh, the c's being for the 
moment undefined. For m odd, the element in position (h, h) is Chh - I., 
while for m even it is Chh. 

For m odd, add 2 times column h to column h - 1, A times row h 
to row h - 1, A times column h - 1 to column h - 2, A times row h - 1 
to row h - 2, etc. For m even, start with column h + 1 and proceed 
as before. The result in either case is 

f (2) c~ c{" 0 o I~ 
C{2 C22 c{" ° 1 I: 

C1 = • Ii 
c/" cJ/t c,:" 

Ii' o Ii 

~ II 0 1 0 

1 VEBLEN, 0., and P. FRANKLIN: Ann. of Math. II Vol. 23 (1921) pp.1-15. 
2 BRIOSCHl, F.: J. reine angew. Math. Vol. 52 (1856) pp. 133 -141-
3 DICKSON: Modern algebraic theories, p.126. Chicago 1926. 

Ergebnisse tier Mathematik. 11/5. MacDuffee. 
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where h h 

±d(CI ) = ±f(J.) = 1m - L. Cjj }.2j-2 - 2 L. cj_1,j121 - 3 • 
j=1 j=2 

For m odd, ± f (A) may be identified with Pi (A) by choosing 

In case m = 2h, the coefficient of Am - 1 in ±f(}.) is o. But if PdA) 
be written 

its coefficients may be identified with those of ± f (I.) similarly. 
Define Ai to be C with the -}:s replaced by O's for m odd and by 

l's for m even. Define Bi to have -1 's in the secondary diagonal and 
0' s elsewhere. Then 

d(Ai + lB i ) = Pi (A) , d(Bi) =F o. 
Since the cofactor of an in A + }.B is ± 1, the invariant factors 

of A + AB are 1,1, ... , PdA). 
Now define 

A = Al -+- ... -+- Ak> B = B1 + ... + Bk . 

Then d(B) = ±1, and A + AB has the prescribed invariant factors. 
35. Matrices in an algebraically closed field. The results of this 

section are restricted to matrices with elements in an algebraically 
closed field Q:,I due principally to the fact that the following theorem 
is not valid for a general field, although its analogue for skew matrices 
(Corollary 32.33) holds for a principal ideal ring. 

Theorem 35.1. If A and B are symmetric matrices with elements in Q:, 
and if A E B, then A -~ B in Q:. 

By Corollary 27.2 A E B if and only if they have the same rank. 
By Corollary 34.3 A c B if and only if they have the same rank. 

Corollary 35.1. Every non-singular symmetric matrix A with elements 
in Q: can be written A = RT R . 

For if A is non-singular, A -~ I by Corollary 34.3, and A = RTIR. 
Theorem 35.1 is not, however, sufficiently explicit to be useful. 

The following more explicit theorem is due to FRoBENIUs 2• 

Lemma 35.21.3 If f(},) is a polynomial of degree n> 0, with coef­
ficients in Q:, whose constant term is not 0, there exists a polynomial g (A) 
of degree <n such that 

[g (1)J2 == A, mod f (),) . 
Lemma 35.22. If A is non-singular with elements in Q:, there exists 

a non-singular matrix X = f (A) with elements in Q: such that X2 = A. 

1 VAN DER WAERDEN: Moderne Algebra Vol. I p. 198. 
2 FROBENIUS: S.-B. preuB. Akad. Wiss. 1896 pp. 7-16. 
3 Proofs are given in B6cHER: Introduction to higher algebra, p.297. 

DICKSON: Modern algebraic theories, p. 120. 
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Let f (I,) be the characteristic function of A, and let g (i.) be determined 
as in Lemma 35.21. Let g(A) = X. 

Theorem 35.2. Ii A = PBQ where A and B are both symmetric or 
both skew and P and Q non-s£ngular, then there exists a non-singular 
matrix R wh£ch depends upon P and Q but not upon A and B such that 
A = RTBR. 

If A = PBQ where A and B are both symmetric or both skew, 
then A = QTBpT, and 

PBQ = QT B pT, QIT PB = BPTQI. 

If U is defined as QITp, then 

U B = B UT , I (U) B = B f ( [TT) 

for every polynomial j. Let I(c) = X, where X2 = [: (Lemma 35.22). 
Then 

RT BR = QTX BXTQ = QT X2BQ == QTQITp BQ = P BQ. 

Corollary 35.2. If PAQ = A} and PBQ = B} where A and A}, 
also Band B}, are both symmetr£c or both skew, there exists a non-s£ngular 
matrix R such that 

RTAR = A l , RTBR = B}. 

Theorem 35.3. Ii d (A) c-c 0, a necessary and sufficient condition 
that A 5. B in the I£eld (f; is that %A + /cAT and %H + i.BT have the 
same invar£ant factors l . 

If ACe B, then A = RT B R, and At = RTBTR. Hence 

%.4 +- /,AT = RT (%B + lBT) R 

for % and}. indeterminate, and %A + I.AT has the same invariant 
factors as %B + }.BT (Theorem 27.2). 

If, conversely, %A -+- ;.AT has the same invariant factors as %B + i.BT , 

then by Theorem 30.1, 

A = P B Q , AT= P BT Q . 
Then 

A + AT = P (B + BT) Q , 

But A + AT and B + BT are symmetric, while A - AT and B - BT 
are skew. Hence there exists a non-singular matrix R such that 

A + AT = RT(B + B'l)R, 

by Corollary 35.2. Hence, adding 2, 

A = RTBR. 

This theorem is valid also for the case d (A) = 0, but the proof is 
too long for inclusion here 3 • 

1 KRONECKER: M.-13. prcul3 .. \kad. \Viss. 1874 pp. 397 447. 
2 Proof by FROBENIUS: S.-B. preun. Akad. \\,iss. 189(, p. 14. 
3 l\lUTH, 1'.: Theoric unci .\ll\\'('lldung dcr Elcmcntartcilcr, p.143. Teubner 1S')<). 
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Theorem 35.4. Two pairs ot matrices (A, B) and (AI' B I ), where 
all are symmetric, or all are skew, or A, Al are symmetric and B, Bl are 
skew, are congruent it and only it they are equivalent. 

This follows directly from Corollary 35.2. 
P. MUTH I proved that two congruent pairs of real symmetric 

matrices A, B and AI' BI such that "A + AB has only imaginary 
elementary divisors, are congruent with r~spect to the real field. If 
"A + },B -<:.. "AI + AB1 , and if Band Bl are semi-definite of the same 
sign, the pencils are congruent with respect to the real field if they 
have no linear elementary divisors with basis,,; otherwise if and only 
if A and Al have the same signature. 

L. E. DICKSON 2 gave necessary and sufficient conditions for the 
congruence of pairs of symmetric matrices, both singular and non­
singular, with respect to the real field. Als0 3 he gave conditions for 
the congruence of pairs of two-rowed symmetric matrices in any field. 

36. Hermitian matrices. This theory is an abstraction of the theory of 
hermitian forms 1: aiixJ'i (aii = aii) under conjunctive transformations, 
and the theorems may be so interpreted. Let lY be any field, and k any 
number of lY which is not a square in lY. The field lY (~I) = ~ obtained by 
adjoining to lY a root ~l of the equation ~2 = k is identical with its conjug­
ate field lY(~2) obtained by adjoining to lY the other root ~2' Thus the 
substitution of ~2 for ~I defines an automorphism of the field~. If h is 
a number of ~, we shall denote by h the number of ~ to which h cor­
responds under this automorphism. Evidently It = h if and only if 
h is in lY. 

Let A = (ars ) be any matrix with elements in H. The conjugate 
of A is by definition 

AC = (ars). 

If AT = AC, A is called hermitian 4. The diagonal elements of an 
hermitian matrix are in lY. 

If AT = _Ac, A is called skew hermitian. (Cf. § 18.) The diagonal 
elements of a skew hermitian matrix are multiples of ~l by a number 
of lY. 

Some properties of the characteristic roots of an hermitian matrix 
when ~ is the complex field were developed in § 18. 

Two matrices A and B are conjunctive or congruent in the hermitian 
sense (written A R B) if and only if there exists a non-singular matrix P 
with elements in ~ such that 

A = PTBPc. 

1 MUTH, P.: ]. reine angew. Math. Vol. 128 (1905) pp.302-321. 
2 DICKSON, L. E.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp.347-360. 
3 DICKSON, L. E.: Amer.]. Math. Vol. 31 (1909) pp.103-108. 
4 See C. HERMITE: C. R. Acad. Sci., Paris Vol. 41 (1855) p.181. 

62 V. Congruence. [414 

Theorem 35.4. Two pairs ot matrices (A, B) and (AI' B I ), where 
all are symmetric, or all are skew, or A, Al are symmetric and B, Bl are 
skew, are congruent it and only it they are equivalent. 

This follows directly from Corollary 35.2. 
P. MUTH I proved that two congruent pairs of real symmetric 

matrices A, B and AI' BI such that "A + AB has only imaginary 
elementary divisors, are congruent with r~spect to the real field. If 
"A + },B -<:.. "AI + AB1 , and if Band Bl are semi-definite of the same 
sign, the pencils are congruent with respect to the real field if they 
have no linear elementary divisors with basis,,; otherwise if and only 
if A and Al have the same signature. 

L. E. DICKSON 2 gave necessary and sufficient conditions for the 
congruence of pairs of symmetric matrices, both singular and non­
singular, with respect to the real field. Als0 3 he gave conditions for 
the congruence of pairs of two-rowed symmetric matrices in any field. 

36. Hermitian matrices. This theory is an abstraction of the theory of 
hermitian forms 1: aiixJ'i (aii = aii) under conjunctive transformations, 
and the theorems may be so interpreted. Let lY be any field, and k any 
number of lY which is not a square in lY. The field lY (~I) = ~ obtained by 
adjoining to lY a root ~l of the equation ~2 = k is identical with its conjug­
ate field lY(~2) obtained by adjoining to lY the other root ~2' Thus the 
substitution of ~2 for ~I defines an automorphism of the field~. If h is 
a number of ~, we shall denote by h the number of ~ to which h cor­
responds under this automorphism. Evidently It = h if and only if 
h is in lY. 

Let A = (ars ) be any matrix with elements in H. The conjugate 
of A is by definition 

AC = (ars). 

If AT = AC, A is called hermitian 4. The diagonal elements of an 
hermitian matrix are in lY. 

If AT = _Ac, A is called skew hermitian. (Cf. § 18.) The diagonal 
elements of a skew hermitian matrix are multiples of ~l by a number 
of lY. 

Some properties of the characteristic roots of an hermitian matrix 
when ~ is the complex field were developed in § 18. 

Two matrices A and B are conjunctive or congruent in the hermitian 
sense (written A R B) if and only if there exists a non-singular matrix P 
with elements in ~ such that 

A = PTBPc. 

1 MUTH, P.: ]. reine angew. Math. Vol. 128 (1905) pp.302-321. 
2 DICKSON, L. E.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp.347-360. 
3 DICKSON, L. E.: Amer.]. Math. Vol. 31 (1909) pp.103-108. 
4 See C. HERMITE: C. R. Acad. Sci., Paris Vol. 41 (1855) p.181. 



415J V. Congruence. 63 

This relationship is determinative, reflexive, symmetric and transitive. 
If A, Band P have elements in iY, A B B becomes A ~ B. 

Theorem 36.1. If A is hermitian (skew hermitian) and B " A, then B 
is hermitian (skew hermitian). 

For B = pTApc implies 

PTApC=B, 

and similarly for the skew hermitian case. 
There is a marked parallelism between the properties of hermitian 

matrices under conjunctive transformations and symmetric matrices 
under cogredient transformations. The proofs also are parallel and 
will be omitted. 

Theorem 36.2. Every hermitian matrix of rank (] with elements in 
a field SJ without characteristic 2 is conjunctive in SJ with a diagonal 
matrix [gl' g2' ... , g!" 0, ... , OJ, gi in iY and =1= 0. 

The proof is similar to that of Theorem 34.1. 

Theorem 36.3. If iY is an ordered field and ~2 < 0, and if 
G = [gl' ... , gil' 0, ... , OJ is conjunctive with H = [hI' ... , hI!' 0, ... , OJ 
in the field SJ = iY (~), then the number of g's which are > ° is exactly 
eqttal to the number of h's which are >0. 

For if ~2 < 0, xx ~ 0, and xx = ° if and only if x = 0. The proof 
proceeds as in the proof of Theorem 34.2 with xr2 replaced by XrXr ' etc. 

If iY is the real field so that SJ is the complex field, then each element 
of the diagonal form can be reduced to +1 or -1. Hence 

Theorem 36.4. Two hermitian matrices are conjunctive in the complex 
field (£ if and only if they have the same rank and the same signature. 

Theorem 36.5. A necessary and sufficient condition in order that two 
pairs of hermitian matrices A, B and AI' Bl , A and Al non-singular, 
be conjunctive in (£ is that i.A + Band },A l + Bl have the same invariant 
factors. 

Theorem 36.6. There exist pairs of hermitian matrices of order n, 
one of which is non-singular, having any given admissible elementary 
divisors. 

Only minor changes in the proofs of the corresponding theorems for 
symmetric matrices is necessary to obtain proofs of the above theorems 1. 

In fact symmetric and hermitian matrices are considered simultaneously 
by L. E. DICKSON 2. 

If A is a characteristic root of A = (ars ), there exist n numbers 
(Xl' .. " xn) in the field of the elements of A such that 

~ (aij - H ij ) Xj = 0. (i = 1, 2, ... , n) 
j 

1 LOGSDON, M.I.: Amer. J. Math. Vol. 44 (1922) pp.254-260. 
2 DICKSON, L. E.: Modern algebraic theories, Chap. IV. Chicago 1926. 
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These numbers Xl' .• " Xn constitute a pole of A corresponding to the 
characteristic root A. They are defined only up to a non-zero factor. 
If Ei Xi Xi = d2, then (x1/d, x2/d, ... , xn/d) is a normalized pole. If X 
is a matrix whose i-th row is a normalized pole of A corresponding to 
the characteristic root Ai, then X is a polar matrix of A. 

Theorem 36.7. 1/ A is hermitian (symmetric) with distinct characteristic 
roots AI, }'2' ... , )'n' its polar matrix is unitary (orthogonal)1. 

Let Xl' ... , Xn' Yl' ... , Yn be any numbers of S) and define 

If A is hermitian, 

~ ~iYi = ~ aijXjYi = ~ ajiYiXj =~ijjXj. 

If in particular (Xl"'" Xn) = (x1P ' ••• , xnp) is a normalized pole cor­
responding to Ap and (Yl"'" Yn) = (x1q , ••• , Xnq) is a normalized pole 
corresponding to Aq , 

~i = Ap Xip , . r}i = }.q Xiq , 

~ },p Xip Xiq = 2: Aq Xjq Xjq 
i j 

smce the A's are real. Then 

If Ap =+= Aq, EiXip Xiq = 0, and if p = q, Ei xip Xiq = 1. Hence X is 
unitary, and if it is real, it is orthogonal 2• 

Corollary 36.7. 1/ A is hermitian with distinct characteristic roots }'i' 

and it X is its polar matrix, then 

XT A X = D = [AI' .1.2 ' ••• , An] . 
For 

may be written AX = XD. Then 

XTAX = XTXD = D 
since X is unitary. 

Theorem 36.8. The elementary divisors 0/ the characteristic matrix 
0/ every hermitian matrix are simple 3. 

This follows immediately from Theorem 18.6. 
If a matrix is of order n and signature a, its characteristic IS 

q = i(n -Iail. [LOEWY.] 

1 LAURENT, H.: Nouy. Ann. III Vol. 16 (1897) pp.149-168. 
2 BUCHHEIM, A.: Mess. Math. Vol. 14 (1885) pp.143-144. 
3 CHRISTOFFEL. E. B.: J. reine angew. Math. Vol. 63 (1864) pp. 255-272. 

AUTONNE, L.: Bull. Soc. Math. France Vol. 31 (1903) pp. 268-271. --., BAKER, H. F.: 
Proc.London Math. Soc. Vol. 35 (1903) pp.379-384. 
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Theorem 36.9. Ii Hand K are hermitian with d (H) =l= 0, and if 
q is the characteristic of K, then 

q~s+~ '2 +~ -2' [ h] lhl - 1] 

where 2s is the sum of the exponents of the elementary divisors of eH - K 
which vanish for imaginary values of e, h varies over the exponents of 
those elementary divisors which vanish for real non-zero values of e, and 
h' varies over those which vanish for e = o. ~kJ signifies the greatest integer 
in k.1 

The proof is too long for inclusion here. T. J. I'A. BROMWICH2 

gave a proof for the real case, and extended the theorem to include 
the cases d (H) = 0 and d (eH - K) == O. 

Corollary 36.91. If Hand K are hermitian, H non-singular of signature 
(J, then d (eH - K) = 0 has at least I (J I real roots 3 • 

For LOEWY'S inequality gives n - I (J I >2s or n - 2s ~ I (J I· 
Corollary 36.92. If Hand K are hermitian, H positive definite, then 

d (eH - K) = 0 has only real roots 4. 

This is a special case of KLEIN'S theorem. Corollary 18.}1 is in turn 
a special case of the last corollary. 

It had been shown by SYLVESTER 5 that the number of real roots 
of d (eH - K) = 0 was ~ the signature of every matrix of the family, 
Hand K symmetric. 

37. Automorphs. If pcr AP = A, then P is a conjunctive automorph 
of A. A unitary matrix may be considered as an automorph of I. If 
p T AP = A, P is a cogredient automorph of A. If A = I, P is orthogonal. 

L. AUTONNE6 called lorenzian any real automorph of a non-singular 
real symmetric matrix A. Previously LAUE 7 and A. BRILL8 had called 
a matrix lorenzian if it was a cogredient automorph of the diagonal 
matrix [1,1,1, -1J. 

Theorem 37.1. If A is symmetric and non-singular with elements 
in a field is', and if Q is an arbitrary skew matrix such that d (A + Q) (A -Q) 
=l= 0, then 

P = (A + Q)! (A - Q) 

1 LOEWY, A.: J. reine angew. Math. Vol. 122 (1900) pp. 53-72 - Nachr. 
Ges. Wiss. G6ttingen 1900 pp. 298 - 302. 

Z BROMWICH, T. J. I'A.: Proc. London Math. Soc. I Vol. 32 (1900) pp. 321 to 
352. 

3 KLEIN, F.: Dissertation. Bonn 1868 - Math. Ann Vol. 23 (1884) pp. 539 
to 578. 

4 CHRISTOFFEL, E. B.: J. reine angew. Math. Vol. 63 (1864) pp.255-272. 
5 SYLVESTER: Philos. Mag. Vol. 6 (1853) pp.214-216. 
6 AUTONNE, L.: C. R. Acad. Sci., Paris Vol. 156 (1913) pp. 858-86\1 - Ann. 

Univ. Lyon II Vol. 38 (1')15) pp.1-77-
7 LAUE: Das Relativitatsprinzip. Vieweg 1911. 
8 BRILL, A.: Das Re\ativiUltsprinzip. Teubner 1912. 
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is a cogredient automorph of A.1 It d (I + P) =1= 0, there are no 
others 2. 

For pT = (A - Q)T (A + Q)1T 
= (AT _ QT) (AT + QT)1 

= (A + Q) (A _ Q)1. 

That pT A P = A now follows from Theorem 31.1. 
If the equation defining P be solved for Q, there results 

I-P 
Q=A 1 + P ' 

This expression exists if d (I + P) =1= 0, and is well-defined by Theorem 
15.6. It remains to be shown that Q is skew if pTAP = A. 

T _ (I - P)T T _ 1- pT 
Q - I+P A - I+Pl,A 

I - A pI A I I _ pI 
= I + A pI A I A = A 1+ pI 

P-I 
=Ap+I=-Q· 

Many attempts have been made to remove the restriction 
d (I + P) =1= 0, which is not trivial. H. TABER 3 showed that such an 
automorph can be represented as the product of two automorphs of 
the CAYLEY type. 

A. VOSS4 extended the above theorem to a non-singular A not 
necessarily symmetric as follows: Every P such that pTA P = A for 
which d(P + 'YjI) =1= 0, 'Yj = ±1, can be uniquely expressed in the form 

P = 'Yj(I - BA) (I + BA)l, 

where BA + BT AT = 0. He also found the number of linearly in­
dependent solutions B of this latter equation, and proved that the 
number of parameters in P for A non-singular is m - fl where m is 
the number of linearly independent matrices C such that ACT = CA. 
He showed later 5 that m - ,u = !n(n - 1) - !(n - e) (n - e - 1) 
where A is of order n and rank e. 

A. LOEWy6 showed that if d (P + 'YjI) = 0, two transformations of 
the type given by Voss will generate P. 

J. H. M. WEDDERBURN 7 used the exponential function of a matrix 
to obtain the general solution X of XTpX = P for P non-singular, 
the parameters entering transcendentally. 

1 CAYLEY: Philos. Trans. Roy. Soc. London Vol. 148 (1856) pp.39-46. 
2 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) pp. 1-63. 
3 TABER, H.: Math. Ann. Vol. 46 (1895) pp. 561- 583. 
4 Voss, A: Abh. bayer. Akad. Wiss. II Vol. 17 (1892) pp.235-356. 
5 Voss, A.: Abh. bayer. Akad. Wiss. Vol. 26 (1896) pp. 1-23. 
6 LOEWY, A.: Math. Ann. Vol. 48 (1897) pp.97-110. 
7 WEDDERBURN, J. H. M.: Ann. of Math. II Vol. 23 (1921) pp.122-134. 
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HERMITE! proved that if A is symmetric and non-singular with 
rational integral elements, every automorph P with rational integral 
elements is of the form 

where k is finite and the P's commutative, and the exponents are 
positive or negative integers or zero. 

H. POINCARE 2 stated without proof that if A has rational integral 
elements and ASAT = 5 where 5 is the skew normal form of BRIOSCHI 

(Corollary 34.4), then A is a product of elementary matrices of two 
simple types. This was proved by H. R. BRAHANA 3 and extended to 
the case where 5 is not in normal form. 

Theorem 37.2. In the complex field a necessary and sufficient condition 
that a matrix P be a congruent automorph of some non-singular matrix 
is that P = AB where A and Bare involutory 4. 

It will first be shown that there exists a non-singular matrix H 
such that PHP = H if and only if P == AB where A and B are in­
volutory. Evidently 

PAP = ABA2B = AB2 = A 

so the condition is sufficient. If PH P = H, then PH PH P = H2 P 
andPH2 = H2P,soH2iscommutativewithP. ThenPf(H2) = f(H2)P 
for every rational function f. Choose f so that f (H2) = K (Lemma 35.22) 
where K2 = H2. Define A = HKI. Since KI is a polynomial in H, 
A = KI H. Then A 2 = H2H-2 = I so that A is involutory. Define 
B = AP = Alp so that P = AB. Then B2 = APAIp = KWPHIKP 
= KI pI K P = KI pI P K = I, so B also is involutory. 

It will be shown, secondly, that there exists a non-singular matrix L 
such that P LpT = L if and only if there exists a non-singular H such 
that PH P = H. Since for any M, M - AI and MT - U have the same 
invariant factors, the pairs (M, MI) and (I, I) are equivalent (Theorem 
30.2). Thus there exist matrices Rand 5 such that 

RMS = NF, RIS = I. 

Hence RM RI = MT. Take M = pIT so that 

HIPH = pI = RPITRI, 

RI HI PH R = pIT, 

P(HR)PT = HR. 

The converse of this step follows similarly 5. 

1 HERMITE: J. reine angew. Math. Vol. 47 (1854) pp.307-368. 
2 POINCARE, H.: Rend. Circ. mat. Palermo Vol. 18 (1904) pp.45-110. 
3 I3RAHANA, H. R: Ann. of Math. II Vol. 24 (1923) pp.265-270. 
4 JACKSON, P.: Trans. Amer. Math. Soc. Vol. 10 (1!)09) pp.479-484. 
5 Proof by FROBENIUS: S.-B. preuJ3. Akad. Wiss. 1 ')1U I pp. 3 --15. 
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P. F. SMITHI had previously shown that a cogredient automorph 
is a product of not more than n involutory matrices. 

H. HILTON 2 called quasi-unitary a conjunctive automorph of a non­
definite canonical hermitian matrix. 

L. AUTONNE gave a systematic treatment of lorenzian matrices 3. 

A necessary and sufficient condition that A be lorenzian is that it be 
an automorph of a diagonal matrix whose diagonal elements are + 1 
or -1. The most general lorenzian is of the form 

K = LFM, F = Iu_v+K +In- u- v , 

where Land M are direct sums of orthogonal matrices, and 

T and H being canonical hermitians. For n = 4 he obtained BRILL'S 
canonical form 4: 

II 1 0 0 0 

F=llo 1 0 0 
f)2 - 1')2 = 1, 

II ~ 
0 f) 1') 

0 1') f) 

where f) = k, 1') = kq, k = 1fl11 - q2. 

VI. Similarity. 
38. Similar matrices. Two matrices A and B with elements in a 

principal ideal ring 1{5 are called similar (written A = B) if there exists 
a unimodular matrix P such that A = pIBP.5 Similarity is an in­
stance of equivalence, and is determinative, reflexive, symmetric and 
transitive (§ 22). More than this, every unimodular matrix P determines 
an automorphism of the ring of matrices with elements in 1{5, for if 

then 
Al = PIBIP, A2 = PIB2 P, 

A matrix may be interpreted as a linear homogeneous transformation 
in vector space. From this point of view similar matrices represent 
the same transformation referred to different bases. All the theorems 
of this chapter may be interpreted from this standpoint. 

1 SMITH, P. F.: Trans. Amer. Math. Soc. Vol. 6 (1905) pp.1-16. 
2 HILTON, H.: Ann. of Math. II VaLiS (1914) pp.195-201. 
3 AUTONNE, L.: Ann. Univ. Lyon II Vol. 38 (1915) PP.1-77. 
4 BRILL: 1. c. p.31. 
5 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) p.21. 
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Theorem 38.1. The coefficients of the characteristic equation of a 
matrix A are similarity invariants!. 

For if A = pIBP, then A - H = PI(B - H)P, and d(A - H) 
= d(B - AI). 

Corollary 38.1. ItA .-S.. B in an algebraically closed field, the char­
acteristic roots of A coincide with those oj B, and each has the same multi­
plicity for A as for B. 

The number theory of similar matrices has received relatively little 
attention as compared with the number theory of congruent matrices. 
What has been done has been mainly concerned with linear trans­
formations and groups. 

C. JORDAN 2 defined a canonical form using integral algebraic 
numbers, and gave a necessary and sufficient condition that two such 
matrices be commutative. 

L. E. DICKSON 3 generalized to GALOIS fields the canonical form of 
JORDAN. He also gave 4 an explicit form of all m-ary linear homogeneous 
substitutions in G F (pn) commutative with a particular one. 

39. Matrices with elements in a field. Theorem 39.1. A necessarv 
and sufficient condition that two matrices A and B with elements in a field 
~ be similar is that, in the polynomial domain ~ (I.), I.Ie - A and I Ie - B 
have the same invariant factors. 

If A = pIBP, then evidently n. - A = PI(JA - B)P, so that 
I.Ie - A and I.Ie - B have the same invariant factors (Theorem 27.2). 

If, conversely, I.Ie - A and I}. - B have the same invariant factors, 
there exist two non-singular matrices Q and P whose elements arc 
independent of .Ie such that 

IA - A = Q(IA - B) P 

by Theorem 30.1. Hence 

I=QP, Q = pI, A = PIBP. 

Corollary 39.11. In an algebraically closed field, 
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1 l'UCHS, L.: J. Tl'ine Hngl'w. Math. Vol. (j(j (IRr,r,) pp.121-1(,1"I 
2 JORDAN, C.: Trait6 des substitutions et des equations algebriqucs, p. 12S. 

Paris 1870. 
3 DICKSON, L. E.: Amer. J. Math. Vol. 22 (1900) pp.121-137. 
4 DICKSON, L. E.: Pmc. London Math. Soc. Vol. 32 (1900) pp.loS·171)' 
5 JORDAN, C.: Trait" dl'S substitutions et des equations alg('bri(]llCs, p. 11-l. 

Paris 187(). 
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Corollary 39.12. In any field, 
s . . . 

A = B = Bn + Bn- 1 + ... + B,,_k> 

where Bi is the companion matrix oj the i-th invariant factor of A. 
Cf. Corollary 30.21. 
WEIERSTRASS l noted that A can be reduced to diagonal form if 

and only if its elementary divisors are simple. 
Various methods of reduction to the JORDAN form have been given 

by E. NETT0 2, H. HILTON 3, and G. VOGHERA4. 
The second form B was introduced by FROBENIUS 5 for the complex 

field. Derivations of the normal form (which, however, introduce ir­
rationalities in the derivation) were given by G. LANDSBERG6, W. BURN­
SIDE 7, and H. HILTONs. 

A number of writers have given a priori proofs of Corollary 39.12 
and have used this as a starting point in the development of the entire 
theory of matrices. The first complete proof valid for a general field, 
but restricted to non-singular matrices, was given by S. LATTES9. The 
method is partly geometric, having been suggested, the author states, 
by a paper of C. SEGRE IO and a book by E. BERTINIll. If A = (a,s) is 
non-derogatory, it has a finite number of poles, and Xl' X 2 , ••. , Xn 

are so chosen that the hyperplane 

Yl = Xl Xl + X 2 X 2 + ... + Xn Xn = 0 

does not contain a pole of A. Let (/llil) = Ai and set P = E. X. /I{r-l1 
f-'rs t tP~s • 

Then 

PIAP= o o 1 
o I[ 
o I 

. II" 

o 1 o 

-an -al il 
If A has an infinite number of poles-i. e., is derogatory-the rows 
of P are not independent. If the first m rows are independent, A can 
be reduced to the form 

liZ ~II' 
01 o 

1 WEIERSTRASS: M.-B. preuB. Akad. Wiss. 1868 pp. 310-338. 
2 NETTO, E.: Acta math. Vol. 17 (1893) pp.265-280. 
3 HILTON, H.: Mess. of Math. Vol. 39 (1909) pp.24-26. 
4 VOGHERA, G.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp.32-34. 
5 FROBENIUS: J. reine angew. Math. Vol. 86 (1879) pp.146-208. 
6 LANDSBERG, G.: J. reine angew. Math. Vol. 116 (1896) pp.331-349. 
7 BURNSIDE, W.: Proc. London Math. Soc. Vol. 30 (1898) pp.180-194. 
8 HILTON, H.: Homogeneous linear substitutions. Oxford 1914. 
9 LATTES, S.: Ann. Fac. Sci. Univ. Toulouse Vol. 28 (1914) pp. 1-84. 

10 SEGRE, C.: Atti Accad. naz. Lincei, Mem., III Vol. 19 (1884) pp.127-148. 
11 BERTINI, E. : Introduzione aHa geometra proiettiva degli iparspazi. Pisa 1907. 

70 VI. Similarity. [422 

Corollary 39.12. In any field, 
s . . . 

A = B = Bn + Bn- 1 + ... + B,,_k> 

where Bi is the companion matrix oj the i-th invariant factor of A. 
Cf. Corollary 30.21. 
WEIERSTRASS l noted that A can be reduced to diagonal form if 

and only if its elementary divisors are simple. 
Various methods of reduction to the JORDAN form have been given 

by E. NETT0 2, H. HILTON 3, and G. VOGHERA4. 
The second form B was introduced by FROBENIUS 5 for the complex 

field. Derivations of the normal form (which, however, introduce ir­
rationalities in the derivation) were given by G. LANDSBERG6, W. BURN­
SIDE 7, and H. HILTONs. 

A number of writers have given a priori proofs of Corollary 39.12 
and have used this as a starting point in the development of the entire 
theory of matrices. The first complete proof valid for a general field, 
but restricted to non-singular matrices, was given by S. LATTES9. The 
method is partly geometric, having been suggested, the author states, 
by a paper of C. SEGRE IO and a book by E. BERTINIll. If A = (a,s) is 
non-derogatory, it has a finite number of poles, and Xl' X 2 , ••. , Xn 

are so chosen that the hyperplane 

Yl = Xl Xl + X 2 X 2 + ... + Xn Xn = 0 

does not contain a pole of A. Let (/llil) = Ai and set P = E. X. /I{r-l1 
f-'rs t tP~s • 

Then 

PIAP= o o 1 
o I[ 
o I 

. II" 

o 1 o 

-an -al il 
If A has an infinite number of poles-i. e., is derogatory-the rows 
of P are not independent. If the first m rows are independent, A can 
be reduced to the form 

liZ ~II' 
01 o 

1 WEIERSTRASS: M.-B. preuB. Akad. Wiss. 1868 pp. 310-338. 
2 NETTO, E.: Acta math. Vol. 17 (1893) pp.265-280. 
3 HILTON, H.: Mess. of Math. Vol. 39 (1909) pp.24-26. 
4 VOGHERA, G.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp.32-34. 
5 FROBENIUS: J. reine angew. Math. Vol. 86 (1879) pp.146-208. 
6 LANDSBERG, G.: J. reine angew. Math. Vol. 116 (1896) pp.331-349. 
7 BURNSIDE, W.: Proc. London Math. Soc. Vol. 30 (1898) pp.180-194. 
8 HILTON, H.: Homogeneous linear substitutions. Oxford 1914. 
9 LATTES, S.: Ann. Fac. Sci. Univ. Toulouse Vol. 28 (1914) pp. 1-84. 

10 SEGRE, C.: Atti Accad. naz. Lincei, Mem., III Vol. 19 (1884) pp.127-148. 
11 BERTINI, E. : Introduzione aHa geometra proiettiva degli iparspazi. Pisa 1907. 



423J VI. Similarity. 71 

Then by a proper choice of the ex's C can be made 0, and the reduction 
continued until 

each B being of the form of B above, and such that 1 Bi - AI I divides 
1 BH 1 - AI I. The form is shown to be unique. 

G. KOWALEWSKI 1 sketched an alternative treatment of the same 
problem, stating that the investigation had been prompted by a remark 
of SOPHUS LIE that such a reduction would be desirable. Let the point 
(Xl' X2 , ••• , xn) be denoted by (x), and write 

, ",' l 
Xi =..:.... ijXj, L -- (l ) -- r8 

in the notation (x') = (x) L. If f (OJ) is a polynomial of degree 111, denote 

(x) f (L) = (y) = ko (x) + ki (x) L + ... + km (x) Lm. 

Let (~) be a definite point. Let ex be such that (~), (~) L, (~) P, ... , 
(~) L IX-I are linearly independent, while 

(~) La = ao(~) + al(~)L + ... + ac<_d~)U'-I. 
Choose (~) so that ex is as large as possible. Then 

A (OJ) = ao + a l w + ... + alX -1 OJ,,-1 - OJIX 

is called the first characteristic polynomial of L. In case IX < n, take 
(Yj) a point not dependent upon (~), (~) L, ... , (~) La-l and choose f3 
so that 

(rj)L/3 = bo(lj) + bl(Ij)L + ... + b/i-drj) Vi-I + (~)P(L) 
for some polynomial P, while no such relation holds for a smaller f3. 
Take ('Y)) so that f3 is maximal. If 

B(w) == bo + blOJ + ... + b/1- 1 OJ/3-1 - OJ/I, 
then 

(I))B(L) + (~) P(L) = o. 

Call B a second characteristic polynomial. If ex + f3 < n, continue and get 

(C)C(L) + (r))R(L) + (~)Q(L) = O. 

Continue until ex + f3 + y + ... = n. It is now possible to take new 
points 

so that 

(rj') = (Ij) + m cp(L) , 

(C') = (C) + (I)) VJ(L) + (~) X(L) , etc. 

(~)A(L) = (r/)B(L) = (C')C(L) = .. , = o. 

Then B lA, C I B, . .. Now transform 

m, (~)L, ... , (~)LIX-l, (1/), (1/)L, ... , (Ij') Vi-I , 

1 KOWALEWSKI, G.: Der. Verh. sachs. Akad. Leipzig Vol. 68 (1916) pp·325 

to 335. 
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into (1,0, ... ,0), (0,1, ... , 0), ... respectively. Then the transform 
of L is a direct sum of blocks of the type 

o 0 0 ao 

1 0 0 at 

Another treatment of the same problem was given by W. KRULLl 
at the suggestion of A. LOEWY. An arbitrary matrix A is similar to 
one of the form 

where At * is the companion matrix of the mmlmum equation of A. 
The above matrix is shown to be similar to 

III At* 0 II 
i 0 A2 ' 

The process is continued with A2 until it is shown that 
s . . . 

A = At * + A2 * + ... + Am * , 
where I I A - Ai* I = 0 is the minimum equation of Ai* + ... + At!. 
The form is shown to be unique. 

L. E. DICKSON 2 gave an independent development which is com­
paratively brief. Instead of the planes used by LATTEs, he used poly­
nomial chains, and the restriction d (A) =F 0 is removed. 

A. A. BENNETT 3 discussed the computational aspects of the methods 
of LATTEs, KOWALEWSKI and DICKSON. 

A clear presentation and refinement of the method of KOWALEWSKI 
was given by H. W. TURNBULL and A. C. AITKEN 4• 

A very short derivation of this normal form using ideals and group 
theory was given by VAN DER WAERDEN5. 

Other derivations of the normal form have been given by 
W. O. MENGE6, J. H. M. WEDDERBURN7, O. SCHREIER and E. SPER­
NERB, and M. H. INGRAHAM 9• 

1 KRULL, W.: Uber Begleitmatrizen und Elementarteilertheorie. Freiburg 1921-
2 DICKSON, L. E.: Modern algebraic theories, Chap. V. Chicago 1926. 
3 BENNETT, A. A.: Amer. Math. Monthly II Vol. 38 (1931) pp.377-383. 
4 TURNBULL, H. W., and A. C. AITKEN: An introduction to the theory of 

canonical matrices, Chap. V. London 1932. 
5 VAN DER WAERDEN: Moderne Algebra Vol. II p. 13,5. Berlin 1931-
6 MENGE, W. 0.: Construction of canonical forms for a linear transformation. 

Univ. of Michigan dissertation 1931. 
7 WEDDERBURN, J. H.M.: Notes on the theory of matrices. Princeton Univ. 1931-
8 SCHREIER, 0., and E. SPERNER: Vorlesungen iiberMatrizen, p. 91. Leipzig 1932. 
9 INGRAHAM, M. H.: Abstr. Bull. Amer. Math. Soc. Vol. 38 (1932) p.814. 
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The relation between the rational and irrational canonical forms 
in the case of a matrix having distinct characteristic roots was clearly 
indicated by 1. SCHUR 1. If A has the distinct characteristic roots 
91,92' ... , 9n and the characteristic equation 

and if 
cp(x) = xn - [lX,,-l - c2xn-~ - '" - en = 0, 

C1 c2 C,,_l C ' n'l U1 0 

R= 1 0 0 0 I p= 0 (,)2 , 

0 0 0 0 0 

then P = QIRQ where 
Ih,,-l (,)2n- 1 Qnn-l 

o 1/ " ~ o n-2 o n- 2 

Q= ,,1 ~2 "n 

" 1 1 

o 
o 
• I 

Cn Ii 

The transforming matrix which corresponds to Q when A is general 
was given explicitly by TURNBULL and AITKD;2. 

40. WEYR'S characteristic. Let A be a matrix with elements in 
an algebraically closed field iI" and having the characteristic roots 
AI' }'2' ... , ;'k' If Ai is of multiplicity lXi, let 

lXil + . " + {XiI' = IX, 

be the nullities (§ 8) of the succesive powers 

A - },J, (A - AJ)2 , (A - AJ)P 

respectively, where p is the first integer giving the maximum nullity lXi' 

The set of numbers lXil' ... , lXi (> is called the WEYR characteristic of A 
relative to ;'i.3 -

If the elementary divisors of A are (}.,- li)t" (i ==1, ... , k), then A 
is similar to a direct sum of matrices 

;'i 0 0 

liZ = 
0 I..i 0 

0 0 0 }'i 

(Corollary 39.11) where liZ is of order l. Write lit = ;.;11 + Nl where 
II = (ors) and Xl = (0.,.-:-1,s)' Then 

Iz~ = I z, IINI = NzII = N z, 

Nz~ = (.Et or+],t Ot+l,s) = (Or+2,8) 

1 SCHUR, 1.: Trans. Amcr.I\Iath. Soc. Vol. 10 (1909) pp. 159- 175. 
2 TUR",BULL and AITKEN: Canonical matrices, Chap. VI. London 1932. 
3 WEYR, E.: C. R. Acad. Sci .. Paris V,,!. 1011 (1885) Pl'- i)h() 'J('<) - Mh. l\1ath. 

Phys. Vol. 1 (1 :-:')0) pp. 1 (,1- 23(, 
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which is of nullity v (NI2) = 2. And in general 

V(Nlk) = h. (h= 1,2, ... , l) 

One may call II the idempotent and Nl the nilpotent matrix corresponding 
to the elementary divisor (A- Ai)eil.l 

Theorem 40.1. The WEYR characteristic and the SEGRE characteristic 
(§ 29) ot A relative to the characteristic root Ai ot multiplicity iXi are con­
jugate partitions ot iXi.2 

Suppose the SEGRE characteristic of A relative to Ai to be written 
as the rows of a FERRERS diagram 3• 

For instance if (eil' ei2' ei3, ei4) = (5,4,2,2,) we write 

The drop in rank (or increase in nullity) in the successive powers of 
A - AJ is evidently the number of dots in the successive columns 
of the diagram, for every block corresponding to an elementary divisor 
drops one in rank with successively increasing exponents until 0 is 
reached, after which no change occurs. 

Corollary 40.1. The WEYR characteristics ot a matrix A constitute 
a complete set ot invariants ot structure. (Cf. § 29.) 

In other words, two matrices are similar if and only if they have 
the same characteristic roots and the same WEYR characteristic'. 

Expositions of WEYR'S theory have been given by W. H. METzLER5, 
K. HENSEL6, and J. WELLSTEIN7. 

W. O. MENGE 8 proved that if hi (A) of degree dt is the i-th invariant 
factor of U - A, then hi (A) has the minimum rank of all matrices 
t(A) where t(A) is a polynomial in A of degree <di . 

L. AUTONNE9 proved that a necessary and sufficient condition in 
order that AB s BA is that Ai and Bi have the same ranks for i = 1, 
2, ... ,n. 

W. KRULL10 extended WEYR'S theory to a general field. 

1 WEDDERBURN, J. H. M.: Ann. of Math. II Vol. 23 (1921) p. 123. 
2 TURNBULL and AITKEN: Canonical matrices, p. 80. London 1932. 
3 MACMAHON, P. A.: Combinatory analysis Vol. II p. 3. Cambridge Univ. 

Press 1915. 
4 WEYR, E.: 1. c. 
5 METZLER, W. H.: Amer. J. Math. Vol. 14 (1892) pp.326-377-
6 HENSEL, K.: J. reine angew. Math. Vol. 127 (1904) pp.116-166. 
7 WELLSTEIN, J.: J. reine angew. Math. Vol. 163 (1930) pp. 166-182. 
8 MENGE, W. 0.: Bull. Amer. Math. Soc. Vol. 38 (1932) pp.88-94. 
9 AUTONNE, L.: Nouv. Ann. Math. IV Vol. 12 (1912) pp.118-127. 

10 KRULL, W.: Uber Begleitmatrizen und Elementarteilertheorie. Freiburg 1921. 
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1 WEDDERBURN, J. H. M.: Ann. of Math. II Vol. 23 (1921) p. 123. 
2 TURNBULL and AITKEN: Canonical matrices, p. 80. London 1932. 
3 MACMAHON, P. A.: Combinatory analysis Vol. II p. 3. Cambridge Univ. 

Press 1915. 
4 WEYR, E.: 1. c. 
5 METZLER, W. H.: Amer. J. Math. Vol. 14 (1892) pp.326-377-
6 HENSEL, K.: J. reine angew. Math. Vol. 127 (1904) pp.116-166. 
7 WELLSTEIN, J.: J. reine angew. Math. Vol. 163 (1930) pp. 166-182. 
8 MENGE, W. 0.: Bull. Amer. Math. Soc. Vol. 38 (1932) pp.88-94. 
9 AUTONNE, L.: Nouv. Ann. Math. IV Vol. 12 (1912) pp.118-127. 

10 KRULL, W.: Uber Begleitmatrizen und Elementarteilertheorie. Freiburg 1921. 
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41. Unitary and orthogonal equivalence. If there exists a unitary 
matrix (§18) U such that 

A = UCTBU, 

then A is both conjunctive with and similar to B. We shall write 
A U B to mean that A is conjunctive with B by a unitary transformation. 
If all the matrices are real so that U is an orthogonal matrix, we say 
that A is congruent with B by an orthogonal transformation, and write 
A 0 B. Many properties of the relation _0 are implied by the cor­
responding properties of the relation u. 

Theorem 41.1. If A and B are hermitian in the complex field [, 
a necessary and sufficient condition in order that A U B 2S that 
AI-A E U-B. 

By Theorem 36.5 the condition AI - A E U - B implies the 
existence of a non-singular matrix P such that 

PCTIP=I, PCTBP = A. 

The first equation indicates that P is unitary. Then, from the second, 
A U B. 

Conversely, if A ~,B, there exists a unitary matrix U (UCT I U = I) 
such that UCTBU = A. Then by Theorem 36.5, AI - A E AI - B. 

Corollary 41.1. If A and B are orthogonal in the real field ffi, a neces­
sary and sufficient condition in order that A 0 B is that AI - A J;; AI - B. 

Theorem 41.2. If H is hermitian, 
U 

H· [AI' A2 , ••• , "n], 

where AI' }'2' ... , "n are the characteristic roots of H. 
By Theorem 36.8 the elementary divisors of H are simple, so the 

cogredient normal form is the diagonal matrix [AI' }'2' .•. , "n). 
Direct proofs of this theorem for H real and symmetric and U 

orthogonal were given by L. STICKELBURGER1 and, using infinitesimal 
transformations, by J. J. SVLVESTER 2• 

Theorem 41.3. If A is any matrix with complex elements, then A U B, 
where 3 

Al 0 0 0 

b21 A2 0 0 

B= b31 b32 A3 0 

bnl bn~ bn3 A i, n ., 

Let Al be a characteristic root of A, and (q1' q2' ... , qn) the cor-
responding pole, so that n 

LaiiQi=A1qj. (j=1,2, ... ,n) 
i=1 

1 STICKELBURGER, L.: Progr. der eidgen. polyt. Schule. Ziirich 1877. 
2 SYLVESTER, J. J.: Mess. of Math. Vol. 19 (1890) pp. 1- 5. 
3 SCHUR, I.: Math. Ann. Vol. 00 (1909) pp.488--510. 
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76 VI. Similarity. 

The sum 1: qj qj = q2 is positive. Set qjl = qj!q. Then 

1: aij qil = Al qjl , 1: go qil = 1 . 

[428 

It is possible to determine qi2,"" qin so that Q = (qr.) IS unitary. 
Then QT A QC is of the form 

Continue with the last n - 1 rows and columns. Since the product 
of unitary matrices is unitary, we have the theorem. 

Theorem 41.1 also appears as a corollary to this theorem. For if A 
is hermitian, so is B, so that B is diagonal. 

A matrix A is called normal if ACTA = AAcT.1 
Evidently A is normal if ACT is equal to a rational function of A, 

so normal matrices include hermitian, skew hermitian, unitary, ortho­
gonal, symmetric and skew matrices as special instances. 

Theorem 41.4. A necessary and sufficient condition in order that 
A U D where D is diagonal is that A be normal 2• 

The property of being normal is a unitary invariant, for if A=UCTBU, 

then AAcT = UCT BBCT U, ACTA = UCT BCT BU. 

If BBcT = BCTB, then AAcT = ACTA. 
By Theorem 41.3 we may take 

The element in the (1, i)-position in BBcT is .1.12, the corresponding 
element in BC T B is Al2 + b2l b21 + b3l b31 +. . . Hence b21 = b31 = ... = 0. 
Comparison of elements in the (2, 2)-position now shows that b32 = b42 

= ... = 0, etc. Hence if A is normal, it can be reduced to diagonal 
form. Since two diagonal matrices are commutative, the converse is 
obvious. 

Theorem 41.4. If A is positive semi-definite hermitian, and m is 
any positive integer, there exists a unique positive semi-definite hermitian 
matrix B such that Bm = A. It is of the same rank as A.3 

By Theorem 41.4 there exists a unitary matrix U such that 

UCTAU=[A1'}'2' ... ,An]=L, Ai>O. 

1 TOEPLITZ, 0.: Math. Z. Vol. 2 (1918) pp.187-197. 
2 TOEPLlTZ, 0.: I. c. 
3 AUTONNE: Rend. Circ. mat. Palermo Vol. 16 (1902) pp.104-128 - Bull. 

Soc. Math. France Vol. 31 (1903) pp.140-155. 
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Let 
M = [.ul' .u2' ... , .un] , 

Set P = UMUCT. Then pm = A. 

77 

.ui ~ o. 

Suppose that Q is another semi-definite hermitian matrix such 
that Qm = A. Then Nil! = L where N = UQUCT. By Theorem 16.1 
the characteristic roots of L are the m-th powers of the roots of N, and 
since the latter are all ~:' 0, they are the .u's. Hence by Theorem 41.2 
there exists a unitary matrix V such that 

S=VcTMV. 

Since VNm = Mmv, V is commutative with L. Suppose that the }:s 
are grouped into sets of distinct roots so that 

It follows from VL = LV that vii = 0 if Ai + }'j' so that 

V = VI -+- V2 -+- ... -+- Vk , 

where VI is of order iX, V2 of order fJ, etc. Evidently each Vi is unitary. 
Then 

Hence Q = UCTNU = UCTMU = P, and P is unique. 
Corollary 41.4. Ii A is positive semi-definite hermitian, there exists 

a unique positive semi-definite hermitian matrix P of the same rank as A 
such that A = pCTp.1 

Theorem 41.5. Every non-singular matrix is uniquely expressible 
as a product of a unitary matrix by a positive definite hermitian matrix 2• 

For ACTA is positive definite hermitian and hence by Corollary 41.4 
equals BCTB, where B is positive definite hermitian. Then ABI = U 
is unitary, since UCTU = I, and A = UB. If A = VC where V is 
unitary, then ACTA = CCTC. If C is positive definite hermitian, C = B 
by Corollary 41.4. 

Every normal matrix can be represented as a product of a semi­
definite symmetric matrix P and an orthogonal matrix, and conversely, 
every such product is normal 3. 

R. WEITZENBOCK 4 gave two methods for solving the equation 
xxT = A for A symmetric and non-singular. 

1 AUTONNE, L.: Bull. Soc. Math. France Vol. 31 (1903) pp. 140-155. 
2 AUTONNE, L.: Bull. Soc. Math. France Vol. 30 (1902) pp.121-134. 

WINTNER, A., and F. D. MURNAGHAN: Proc. Nat. Acad. Sci. U.S.A. Vol. 17 (1931) 
pp. 676-678. 

3 MURNAGHAN, F. D., and A. WINTNER: Proc. Nat. Acad. Sci. U.S.A. Vol. 17 
(1931) pp.417-420. 

4 WEITZENBOCK, R: Akad. Wetcnsch. Amsterdam, Proc. Vol. 35 (1932) 
pp.328-330. 
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Theorem 41.6. 1/ A is non-singular, there exist two unitary matrices U 
and V such that 

U A V = LUI' fi2' ... , fin] , 

where fiI' fi2' ••• , fin are the positive square roots of the characteristic 
roots of AAcT.1 

Since ACT A is positive semi-definite hermitian, there exists a unitary 
matrix V such that 

VCTACTAV= L = [AI' A2, ... , An], 

Set AV = K so that KCTK = L. Set 

krs = Wrs fi. , K=WM, 

where M = [fiI' fi2' •• " fin]' Then 

1: WiT Wi' = 1: kiT k is/ fiT fi8 = (Jrs, 

so that W is unitary. Let U = WI. Then UAV = M. 
This theorem was first proved for the real case, U and V being 

orthogonal, by E. BELTRAMI2 and C. JORDAN 3 . It was treated again 
by J. J. SYLVESTER 4• 

Corollary 41.6. It U and V are unitary matrices such that U A V = M 
is diagonal and real, then 

VCTAcT AV = M2 = UAAcT VCT.5 
For 

M= MCT= VCTAcTUCT, 
and 

M2 = VCTACT UCT UAV = VCTACTAV. 

SCHLAFLI6 discussed the reduction of an orthogonal matrix by a 
similarity transformation. 

H. HILTON7 showed that an orthogonal matrix can be transformed 
by orthogonal matrices into a direct fum of orthogonal matrices each 
of which has a characteristic matrix with elementary divisors (1) (J. - a)' 
and (A -1/a)" a =l= 0, or (2) (J. -1)' or (). + 1)', r odd, or (3) (J. + 1)' 
and (J. + 1)', r even. 

42. The structure of unitary and orthogonal matrices. A unitary 
matrix is both a conjunctive automorph and a similarity automorph 
of the identity matrix I. An orthogonal matrix is a real unitary matrix. 

1 AUTONNE, L.: Ann. Univ. Lyon II Vol. 38 (1915) pp.1-77. 
2 BELTRAMI, E.: Giorn. Mat. Battaglini Vol. 11 (1873) pp.98-106. 
3 JORDAN, C.: J.Math.puresappl.II Vol. 19 (1874) pp.35-54. 
4 SYLVESTER, J. J.: C. R. Acad. Sci., Paris Vol. 108 (1889) pp.651-653 

Mess. of Math. Vol. 19 (1890) pp.42-46. 
5 COSSERAT, E.: Ann. Fac. Sci. Univ. Toulouse Vol. 3 (1889) M.1-12. 
6 SCHLAFLI: J. reine angew. Math. Vol. 65 (1866) pp.185-187. 
7 HILTON, H.: Mess. of Math. Vol. 41 (1912) pp.146-154. 
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The literature of orthogonal matrices and their determinants is 
extensive. Rather complete bibliographies are given by E. PASCALI 
and T. MUIR2. 

Theorem 42.1. If K is a skew-hermitian matrix, then 

U = (1 + K)I (1 - K) 

is unitary. There are no other unitary matrices U having d (1 + U) =f= 0. 3 

This is a special case of Theorem 37.1. The hypothesis of the latter 
that d (1 + K) =f= 0 and d (1 - K) -;- 0 is automatically fulfilled, since 
(Corollary 18.32) the skew-hermitian K has only purely imaginary 
characteristic roots. 

The exceptional case d (1 + U) = 0 makes considerable difficulty, 
and as the characteristic roots of a unitary matrix have absolute value 
unity, it is not very exceptional. Since CAYLEy 4 first proved the above 
theorem for orthogonal matrices of order 4 by long calculation, many 
ways of a voiding the difficulty have been suggested 5. 

L. LOEWy 6 showed that every unitary matrix is of the form 

U = ()(1 + K)I(1-- K), 

where K is skew-hermitian and () is a root of unity. 
The representation of an orthogonal matrix as a product of orthogonal 

matrices of simple type was discussed geometrically by A. VOSS7 and 
E. GOURSAT 8 , and algebraically by L. KRONECKER9. 

Defining an inversion to be a real orthogonal matrix 5; such that 
drS) = -1, d(H - S) = (I. - 1)n-l (I. + 1), L. AUTONNE IO proved 
that every real orthogonal matrix is a product of inversions. 

G. VITALI ll showed that a real orthogonal matrix is a product of 
rotations in a space of n - 2 dimensions, and a reflection if its deter­
minant is -1. 

1 PASCAL, E.: Die Determinanten, pp. 157-175. Teubner 190(). 
2 MUIR, T.: Proc. Roy. Soc. Edinburgh Vol. 47 (1926- 1927) pp.252-282. 
3 LOEWY, A.: C.R.Acad.Sci., Paris Vol. 123 (11196) pp.168--171. 

AUTONNE, L.: Rend. Cire. mat. Palermo Vol. 16 (1902) pp. 104-" 12K" 

4 CAYLEY: J. reine angew" ::Vlath. Vol. 32 (1846) pp. 119-123. 
5 ::vlETZLER, \"" H": ,'\mcr. J. JVIath. Vol. 15 (11192) pp. 274-282" - PRYM. F": 

Abh" Gcs. Wiss. Gbttingen Vol. 38 (1892) pp" 1 - 42. -- TABER. H.: Froc London 
Math" Soc" Vol. 24 (1892) pp.2')U--3()C, Froc" Amer. Acad" Arts Sci" Vol. 28 
(1892-1893) pp" 212-221 Amer. ]. JVIath" Vol. 16 (1893) pp.123 130" 

6 LOEWY, L: Nova Acta. Abh" der Kaiserl. Leop.-Carol. Akad" VoL 71 No.8 
pp" 37')-446 - Nachr. Gcs. \\iss" Gbttingen VoL 3 (19uO) pp" 298- 3113 

7 Voss, A": }Iath. Anll" Vol. 13 (11178) pp" 320-374" 
8 GOURSAT, E.: Ann" Ecole norm" III Vol. 6 (188')) pp. 1- 102" 
9 KRONECKER, L.: S"-R preuG" Akad. Wiss. 1890 pp" 525 - 541, C>ol- 607, 

691-699, 873-885, and WC,3-W80. 
10 AUTONNE, L: C R AcacL Sci", Paris Vol. 136 (1903) pp" 11::;511::;6 

Ann. Univ" Lyon II VoL 12 (19U3) pp" 1-124. 
11 VITALI, G": Boll. l:n" :\Jat" Hal. Vol. 7 (19211) pp.I-7" 

431} VI. Similarity. 79 

The literature of orthogonal matrices and their determinants is 
extensive. Rather complete bibliographies are given by E. PASCALI 
and T. MUIR2. 

Theorem 42.1. If K is a skew-hermitian matrix, then 

U = (1 + K)I (1 - K) 

is unitary. There are no other unitary matrices U having d (1 + U) =f= 0. 3 

This is a special case of Theorem 37.1. The hypothesis of the latter 
that d (1 + K) =f= 0 and d (1 - K) -;- 0 is automatically fulfilled, since 
(Corollary 18.32) the skew-hermitian K has only purely imaginary 
characteristic roots. 

The exceptional case d (1 + U) = 0 makes considerable difficulty, 
and as the characteristic roots of a unitary matrix have absolute value 
unity, it is not very exceptional. Since CAYLEy 4 first proved the above 
theorem for orthogonal matrices of order 4 by long calculation, many 
ways of a voiding the difficulty have been suggested 5. 

L. LOEWy 6 showed that every unitary matrix is of the form 

U = ()(1 + K)I(1-- K), 

where K is skew-hermitian and () is a root of unity. 
The representation of an orthogonal matrix as a product of orthogonal 

matrices of simple type was discussed geometrically by A. VOSS7 and 
E. GOURSAT 8 , and algebraically by L. KRONECKER9. 

Defining an inversion to be a real orthogonal matrix 5; such that 
drS) = -1, d(H - S) = (I. - 1)n-l (I. + 1), L. AUTONNE IO proved 
that every real orthogonal matrix is a product of inversions. 

G. VITALI ll showed that a real orthogonal matrix is a product of 
rotations in a space of n - 2 dimensions, and a reflection if its deter­
minant is -1. 

1 PASCAL, E.: Die Determinanten, pp. 157-175. Teubner 190(). 
2 MUIR, T.: Proc. Roy. Soc. Edinburgh Vol. 47 (1926- 1927) pp.252-282. 
3 LOEWY, A.: C.R.Acad.Sci., Paris Vol. 123 (11196) pp.168--171. 

AUTONNE, L.: Rend. Cire. mat. Palermo Vol. 16 (1902) pp. 104-" 12K" 

4 CAYLEY: J. reine angew" ::Vlath. Vol. 32 (1846) pp. 119-123. 
5 ::vlETZLER, \"" H": ,'\mcr. J. JVIath. Vol. 15 (11192) pp. 274-282" - PRYM. F": 

Abh" Gcs. Wiss. Gbttingen Vol. 38 (1892) pp" 1 - 42. -- TABER. H.: Froc London 
Math" Soc" Vol. 24 (1892) pp.2')U--3()C, Froc" Amer. Acad" Arts Sci" Vol. 28 
(1892-1893) pp" 212-221 Amer. ]. JVIath" Vol. 16 (1893) pp.123 130" 

6 LOEWY, L: Nova Acta. Abh" der Kaiserl. Leop.-Carol. Akad" VoL 71 No.8 
pp" 37')-446 - Nachr. Gcs. \\iss" Gbttingen VoL 3 (19uO) pp" 298- 3113 

7 Voss, A": }Iath. Anll" Vol. 13 (11178) pp" 320-374" 
8 GOURSAT, E.: Ann" Ecole norm" III Vol. 6 (188')) pp. 1- 102" 
9 KRONECKER, L.: S"-R preuG" Akad. Wiss. 1890 pp" 525 - 541, C>ol- 607, 

691-699, 873-885, and WC,3-W80. 
10 AUTONNE, L: C R AcacL Sci", Paris Vol. 136 (1903) pp" 11::;511::;6 

Ann. Univ" Lyon II VoL 12 (19U3) pp" 1-124. 
11 VITALI, G": Boll. l:n" :\Jat" Hal. Vol. 7 (19211) pp.I-7" 
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T. J. STIELTJESI showed that if A and B are third order orthogonal 
matrices of determinant +1, then A + B is never of rank 2. E. NETT02 
extended this to show that if A = (ars) and B = (brs) are orthogonal, 
cr can be chosen +1 or -1 so that d(ars+crbrs) vanishes for n even 
only if every element is 0, and for n odd only if all minors of order 2 
vanish. 

A. LOEWy3 showed that STIELTJES' theorem is a consequence of 
the following theorem of FROBENIUS 4 : The elementary divisors of the 
characteristic matrix of an orthogonal matrix vanish for reciprocal 
values except that 2 - 1 and 2 + 1 may occur with odd exponents. 

L. ToscANo 5 established for involutory matrices a theorem analogous 
to that of STIELTJES for orthogonal matrices. 

A. Voss 6 proved that every non-singular matrix may be represented 
as a product of two symmetric matrices in infinitely many ways. 
FROBENIUS7 proved that every matrix may be represented as a product 
of two symmetric matrices, one of which is non-singular. 

H. HILTONs proved the above theorem of FROBENIUS, and also 
proved that a matrix can be represented as a product of two skew 
matrices if and only if the elementary divisors of its characteristic matrix 
occur in pairs (2 - at, (2 - a)T; and as a product of a symmetric matrix 
and a skew matrix if and only if the elementary divisors occur in pairs 
(2 - at, (2 + at. This same conclusion was reached by H. STENZEL 9. 

O. TOEPLITZlo proved that, if H is hermitian, there exists a matrix P 
with O's above the main diagonal such that H = PpCT. 

E. SCHMIDTll showed that for every A there is a K with O's above 
the main diagonal such that KA is unitary. This is equivalent to 
TOEPLITz' theorem. 

FROBENIUS12 defined the span (Spannung) of A to be s (A) = t (AACT). 
IfUisunitary,s(UA) =s(A) =s(AU),ands(A - U) =s(I- U1A). 

J. RADON 13 determined the maximum number v(n) of matrices such 
that x1A 1 + ... +xpAp is orthogonal for all x's. If n = 24<>:+fI n', n' 
odd, {J = 0, 1, 2, 3, this value is v = 2f1 + 8iX. 

1 STIELT}ES, T. J.: Acta math. Vol. 6 (1885) pp.319-320. 
2 NETTO, E.: Acta math. Vol. 9 (1887) pp.295-300. 
3 LOEWY, A. : E. Pascal's Repertorium der hoheren Mathematik Vol. I Chap. II. 

Teubner 1910, 
4 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) p.48. 
5 TOSCANO, L.: Rend. Roy. lnst. Lombardo lIa Vol. 61 (1928) pp.187-195. 
6 Voss, A.: Math. Ann. Vol. 13 (1878) pp.320-374. 
7 FROBENIUS: S.-B. preuB. Akad. Wiss. 1910 pp. 3-15. 
8 HILTON, H.: Homogeneous linear substitutions. Oxford 1914. 
9 STENZEL, H.: Math. Z. Vol. 15 (1922) pp. 1-25. 

10 TOEPLITZ, 0.: Nachr. Ges. \Viss. Gottingen 1907 pp. 101-109. 
11 SCHMIDT, E.: Math. Ann. Vol. 63 (1907) pp.433-476. 
12 FROBENIUS: S.-B. preuB. Akad. Wiss. 1911 pp. 241-248. 
13 RADON, J.: Abh. math. Semin. Hamburg. Univ. Vol. 1 (1921) pp.1-14. 
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F. D. MURNAGHAN! found that a matrix of order n has 2n+ (n-1)2 
independent functions of its elements which are invariant under unitary 
transformation. 

VII. Composition of matrices. 
43. Direct sum and direct product. The present chapter is con­

cerned with the set of all matrices of finite order with elements in a 
ring or field. The operations of addition and multiplication can be 
applied only to matrices of the same order, but other operations will 
be defined according to which matrices of different orders may be 
combined. Also invariant matric functions T (A) will be defined, where 
T (A) is not necessarily of the same order as A, which have the property 
that T(AB) = T(A)T(B). 

A brief treatment of this topic with many references to original 
sources is given by A. LOEWY in PASCAL'S Repertorium der hOheren 
Mathematik Vol. I pp.138-153. Teubner 1910. 

Let A = (ars ) of order ex and B = (brs) of order ~ be two matrices 
with elements in a ring m. The direct sum (d. § 29) of A and B is defined 
to be 

It is of order x + ~. 
. I! A 0 

A+B= I ... o B' I , 

Theorem 43.1. The following identities hold: 

(a) (A -+- B) -+- C = A -+ (B -+- C) , 

(b) (AI + A2) -+- (B l + B 2) = (AI -+- Bl ) + (A2 -+- B2 ) , 

(c) (AI -+- Bl ) (A2 -+- B2) = AlA2 -+- B l B 2 , 

(d) (A -+- B)T = AT -+- BT, 

(e) (A -+- B)I = AI ~- BI, 

(f) d(A + B) = d(A) d(B) , 

(g) t(A -+- B) = t(A) + t(B). 

The proofs follow directly from the definition of direct sum. Of 
course (e) holds only when A I and BI exist. 

The left direct product is defined as 

A bIl A b1p 

A bill A bpI! ,i 

The right direct product A X' B is defined similarly and has similar 
properties. The order of each direct product is x ~. Evidently A . X n 
= 13 X' A if A and 13 have elements in a commutative ring. 

1 MURNAGHAN, F. D.: Proc. ~at. Acad. Sci. U.S.A. Vol. 18 (1932) pp. lS5-18'). 
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The concept of direct product of matrices arises naturally from the 
concept of direct product in group theory1. 

Theorem 43.2. The following identities hold: 

(a) (A·XB)·XC=A·X(B·XC), 
(b) (A 1+A2)'XB=A1'XB+A2 'XB, 
(c) (A 'XB)T = AT 'XBT, 
(d) t(A 'XB) = t(A) t(B). 

These are all evident from the definition of direct product. 
Theorem 43.3. If A is of order iX and B is of order f3, and if A . X B 

= C = (Crs) , then 

where 
r - 1 = iX(r2 - 1) + r1 - 1 , 0 <r1 - 1 < iX, 

S - 1 = iX (S2 - 1) + S1 - 1 , 0 < Sl - 1 < iX • 

This also follows directly from the definition. 
Theorem 43.4. If ffi is commutative 2, 

AIA2 'XB1 B2 = (A 1 'XB1) (A2 ·XB2). 

For by Theorem 43.3 

(AI' X B 1 ) (A2 • X B1 ) = (alr,S, bIr,s,) (a2r,81 b2r,8,) 

= (Ehalr,h, bIr,h, a2h,8, b2h,s,) 

where it is understood that 

= (Eh1 alr,h, a2h,8, E h, b1r,h, b2h,s,) 

= A1A2 'XB1B2 , 

h - 1 = iX(h2 - 1) + hI - 1, 0 <hI - 1 < iX. 

Corollary 43.4. 1/ A of order iX and B of order f3 have elements in a 
field, then 

(a) A 'XB = (A ·XIp)(I,,·X B), 
(b) d(A 'XB) = d(A)P d(B)", 
(c) (A·XB)I=AI·XBI, 

where I IX is the identity matrix of order iX. 

Property (b) was proved by K. HENSEL3, E. NETT04, and R. D. 
VON STERNECK 5. 

1 HOLDER, 0.: Math. Ann. Vo!. 43 (1893) p. 305. - BURNSIDE, W.: Theory 
of groups of finite order, p. 40. Cambridge 1911. 

2 STEPHANOS, C.: J. Math. pures app!. V Vo!. 6 (1900) PP.73-128. - AIT-
KEN, A.C.: Proc.EdinburghMath.Soc.II Vo!'1 (1927) pp.135-138. 

3 HENSEL, K.: Acta math. Vo!. 14 (1891) pp.317-319. 
4 NETTO, E.: Acta math. Vo!' 17 (1893) Pp.199-204. 
5 STERNECK, R. D. VON: Mh. Math. Phys. Vol. 6 (1895) pp.205-207. 
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Property (c), originally given by STEPHANOSl, was proved in tensor 
notation by L. H. RrcE2. 

Theorem 43.5. If PAPI = AI' and QBQI = B1 , where each matrix 
has elements in a commutative ring, then 

(a) (P -+ Q) (A -+ B) (p] -+ QI) = Al -+ BI . 

(b) (P'XQ) (A ·~<B) (P1·XQI) = A]·XBI . 

The proof of (a) follows from Theorem 41.1 c, and that of (b) follows 
from Theorem 43-4. 

Corollary 43.5. In a principal ideal ring 

g(A + B) = g(A) + Q(B), 
Q(A .\( B) = e(A) g(B), 

where Q (A) denotes the rank of A. 
For, by Theorem 26.2, Al and BI may be chosen in the form 

[h], ... , hg, 0 .... , OJ. 
Theorem 43.6. Ii A and B are symmetric with elements in an ordered 

field with characteristic '-TC 2. 

a(A + B) = a(A) + a(B) , 

alA .>< B) = o(A) o(B) , 

where a (A) denotes the signature of A. 
For it may be assumed that A and B are in diagonal form with PI 

and P2 positive elements, and ni and n2 negative elements. respectively. 
Then 

o(A + B) = PI + P2 - ni - n2 = a(A) + o(B) . 

Since A 'X B is diagonal, and since its diagonal elements are the exf3 
products of the diagonal elements of A bv those of B, 

alA 'X B) = (PI P2 + n 1 n 2) - (PI n 2 + P2 n1 ) 

== (PI - n 1 ) (P2 - n 2 ) = a(A) a(B) . 

In the rest of this section we shall understand that all matrices 
have elements in an algebraically closed field Q:. 

Theorem 43.7. The characteristic roots of A + B are the characteristic 
roots of A together with those of B. 

This is obvious from the definition of direct sum. 
Let cp(~, r,) = ;Z:Cii ~i r/ be a polynomial in ~ and J). and define 

cp(A; B) =;Z: cij Ai .>< Hi. 

Theorem 43.8. The characteristic roots of cp (A; B) are the ex f3 functions 
({'(a p , bq) where the a's are the characteristic roots of A and the //s are those 
of B.3 

1 STEPHAN OS: I. c. 
2 RICE, L. H.: J. Math. Physics, Massachusetts lnst. Tl'chnol. Vol. 5 (1925) 

pp.55-64. 
3 ST}:PHANOS, C.: ]. ;Vlath. purl'S appl. V Vol. () (1 ')UO) pp. 73-128. 
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Determine P and Q so that PApI = Al and QBQI = BI have O's 
above the main diagonal (Corollary 39.1) and their characteristic roots 
in the main diagonal. This form is maintained under addition, multi­
plication, scalar multiplication, and direct multiplication. If the char­
acteristic roots of Al are aI' ... , arx and those of BI are bl , ... , bp, those 
of 1: Cij Ai. X Bj are 1: Cij api b/. Since 

AI'XBI = (P'XQ) (A 'XB) (P'XQ)I, 

the characteristic roots of A . X B are the same as those of A I • X B I' 
Corollary 43.81. The characteristic roots ot A . X B are the ()(, {J products 

aibj ot a characteristic root ot A by one ot B. 
The above corollary was applied by STEPHAN os I to find the equation 

whose ()(,{J roots are the ()(,{J values of the function rp (x, y) where x and y 
are determined by 

t(x) = XX + aIx",-l + ... + a", = 0, 

g(y) = yP + bl yP-l + ... + bp = 0. 

Let A have the characteristic equation t (x) = 0, and B the characteristic 
equation g (y) = 0. The solution of the problem is the equation 

jrp(A;B) -AIrxpi =0. 

This theorem yields a proof of the theorem that every polynomial 
with rational coefficients in two algebraic numbers is itself a algebraic 
number. If rp has rational integral coefficients, and if x and yare integral 
algebraic numbers (so that A and B have rational integral elements), 
then rp (x, y) is integral. 

Corollary 43.82. The resultant ot t (x) = ° and g (x) = ° is 

jA'Xlp-I"'XBj=o, 

where t (x) = ° is the characteristic equation ot A and g (x) = ° is the 
characteristic equation ot B. 

This is the special case of Theorem 43.8 where rp (~, 'f)) = ~ - 'f). 

Another method of composing two matrices was given by SYLVESTER 2 

and STEPHANOS 3, and called by the latter bialternate composition. Let 
A and B be each of order n, and let h, r 2) be the r-th pair of integers 
in the sequence 

(1,2), (1,3), ... , (1,n), (2,3), ... , (2,n), (n-2,n-l), ... , (n-l,n) 

and (S1' S2) the s-th pair. Then by definition the bialternate product 
of A and B is 

where 
A . B = C = (crs ) 

1 STEPHAN os : 1. c. 
2 SYLVESTER: J. reine angew. Math. Vol. 88 (1880) pp.49-67. 
3 STEPHANOS: 1. c. 
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acteristic roots of Al are aI' ... , arx and those of BI are bl , ... , bp, those 
of 1: Cij Ai. X Bj are 1: Cij api b/. Since 

AI'XBI = (P'XQ) (A 'XB) (P'XQ)I, 
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Corollary 43.81. The characteristic roots ot A . X B are the ()(, {J products 
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Another method of composing two matrices was given by SYLVESTER 2 
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A and B be each of order n, and let h, r 2) be the r-th pair of integers 
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and (S1' S2) the s-th pair. Then by definition the bialternate product 
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where 
A . B = C = (crs ) 

1 STEPHAN os : 1. c. 
2 SYLVESTER: J. reine angew. Math. Vol. 88 (1880) pp.49-67. 
3 STEPHANOS: 1. c. 
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It was shown by STEPHANOS that 

A·B=B·A, 

and, if A . A be written A 2, that 

(A + B)2 = A2 + 2A . B + B2 . 

Bialternate composition cannot be associative, for A . B is of order 
!n(n - 1), and composition is defined only for matrices of the same 
order. 

44. Product-matrices and power-matrices. If A and B, of orders." 
and (3 respectively, are the matrices of the transformations 

x/ = 2: au Xj , Y/ = 2: bij Yj , 

and if the x's and :v's are independent variables, the products 

are the variables of a transformation whose matrix is A·X B, called 
the product transformation of the two given transformations. 

By Theorem 4}.2a, 

Dm(A) = A·X A ·X ... 'X A 

to m factors is well-defined, and is called the m-th product-matrix of A. 
Theorem 44.1. 

This follows from Theorem 43.4. 
Now let the two transformations be identical, and consider the 

! iX (iX + 1) distinct products 

They define a transformation whose matrix P 2 (A) is called the second 
power-matrix of A. That is, X~2, x~ x;, ... are linear homogeneous 
functions of X12, Xl x2 , ••• whose coefficients are polynomials in the 
elements of A. Such a system X 12, ••. of polynomials was called a 
transformable system by J. DERUYTS I . The m-th power-matrix Pm (A) 
IS similarly defined. 

Theorem 44.2. 

Consider the corresponding transformable system 

Let 11 be the matrix by which the x" 's are given in terms of th(' x' ';;, 
and B the matrix by which the x"s are given in terms of the ,'1"5. Then 
AB is the matrix by which the x'''s are given in terms of the x's. The 
matrix by which the X'''s are given in terms of the X' 's i~ Pm (A), 

1 DERUYTS, J.: Bull. Acad. Sci. Belgique III Vol. 32 (1 S')(I) p. :-\2. 
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and the matrix by which the X"s are given in terms of the X's is Pm (B). 
The matrix by which the X'''s are given in terms of the X's may be 
obtained as Pm(A)Pm(B) by eliminating the X"s from the induced 
transformations, or as Pm (AB) by calculating the transformation in­
duced on the X's by the product transformation AB. 

Theorem 44.3. If A is of order ex, 

Let the elements of A be indeterminates. The power transformation 
has an inverse if and only if d (A) =+= o. Hence dP m (A) vanishes when 
and only when d(A) = 0, and since d(A) is irreducible (Theorem 10.1), 
dP m (A) = cd (A)k, where c =+= O. When A = 1, the power transformation 
becomes the identity, so c = 1. If A is of order ex, then Pm (A) is of 

order (ex + :: - 1), and each element is of degree m in the elements 

of A. Hence k is the product of this order by mjex. 
This theorem was given for ex = 4 and m = 2 by E. HUNYADy1• 

The fact that dPm(A) is some power of d(A) was proved by B. IGEL2. 

The theorem as stated was proved by G. VON ESCHERICH 3. 

Theorem 44.4. The characteristic roots of Pm (A) are the (ex + : - 1 ) 

products of the m-th degree of the characteristic roots of A.4 
By Theorem 41.3 it is possible to determine a unitary matrix U 

such that VCT A V = B has O's above the main diagonal and its char­
acteristic roots in the main diagonal. By Theorem 44.2, 

Pm (UCT) Pm(A) Pm(U) = Pm (B) . 

Since the elements X;il ••. x~" of the transformable system corresponding 
to Pm (B) are arranged in the lexacographic order, Pm (B) also has o's 
above the main diagonal. If the conjugate-transpose of the trans­
formation on the x's is equal to the inverse, the same is true of the trans­
formation induced on the products Xlil ••• x~"'. Hence 

Pm (VCT) = Pm (U)CT = Pm(V)I. 

Thus the characteristic roots of Pm (A) are the same as those of Pm (B) , 
namely the products alil ••• a:"'. 

45. Adjugates. Let A be a matrix of order n, and let its r-rowed 
minor determinants be represented by a~l'" ~r • The matrix of order 

11 •• . lr 

m = (~) whose elements are the numbers a}::::}; in the lexacographic 

1 HUNYADY, E.: J. reine angew. Math. Vol. 89 (1880) pp.47-69. 
2 IGEL, B.: Mh. Math. Phys. Vol. 3 (1892) pp.55-67. 
3 ESCHERICH, G. VON: Mh. Math. Phys. Vol. 3 (1892) pp.68-80. 
4 FRANKLIN, F.: Amer. J. Math. Vol. 16 (1894) pp. 205-206. - SCHUR, 1.: 

Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, 
p. 17. Dissertation. Berlin 1901. 

86 VII. Composition of matrices. [438 

and the matrix by which the X"s are given in terms of the X's is Pm (B). 
The matrix by which the X'''s are given in terms of the X's may be 
obtained as Pm(A)Pm(B) by eliminating the X"s from the induced 
transformations, or as Pm (AB) by calculating the transformation in­
duced on the X's by the product transformation AB. 

Theorem 44.3. If A is of order ex, 

Let the elements of A be indeterminates. The power transformation 
has an inverse if and only if d (A) =+= o. Hence dP m (A) vanishes when 
and only when d(A) = 0, and since d(A) is irreducible (Theorem 10.1), 
dP m (A) = cd (A)k, where c =+= O. When A = 1, the power transformation 
becomes the identity, so c = 1. If A is of order ex, then Pm (A) is of 

order (ex + :: - 1), and each element is of degree m in the elements 

of A. Hence k is the product of this order by mjex. 
This theorem was given for ex = 4 and m = 2 by E. HUNYADy1• 

The fact that dPm(A) is some power of d(A) was proved by B. IGEL2. 

The theorem as stated was proved by G. VON ESCHERICH 3. 

Theorem 44.4. The characteristic roots of Pm (A) are the (ex + : - 1 ) 

products of the m-th degree of the characteristic roots of A.4 
By Theorem 41.3 it is possible to determine a unitary matrix U 

such that VCT A V = B has O's above the main diagonal and its char­
acteristic roots in the main diagonal. By Theorem 44.2, 

Pm (UCT) Pm(A) Pm(U) = Pm (B) . 

Since the elements X;il ••. x~" of the transformable system corresponding 
to Pm (B) are arranged in the lexacographic order, Pm (B) also has o's 
above the main diagonal. If the conjugate-transpose of the trans­
formation on the x's is equal to the inverse, the same is true of the trans­
formation induced on the products Xlil ••• x~"'. Hence 

Pm (VCT) = Pm (U)CT = Pm(V)I. 

Thus the characteristic roots of Pm (A) are the same as those of Pm (B) , 
namely the products alil ••• a:"'. 

45. Adjugates. Let A be a matrix of order n, and let its r-rowed 
minor determinants be represented by a~l'" ~r • The matrix of order 

11 •• . lr 

m = (~) whose elements are the numbers a}::::}; in the lexacographic 

1 HUNYADY, E.: J. reine angew. Math. Vol. 89 (1880) pp.47-69. 
2 IGEL, B.: Mh. Math. Phys. Vol. 3 (1892) pp.55-67. 
3 ESCHERICH, G. VON: Mh. Math. Phys. Vol. 3 (1892) pp.68-80. 
4 FRANKLIN, F.: Amer. J. Math. Vol. 16 (1894) pp. 205-206. - SCHUR, 1.: 

Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, 
p. 17. Dissertation. Berlin 1901. 



439J VII. Composition of matrices. 87 
~~~~~~~. 

order is called the r-th adjugate Cr (A) of A. The first adjugate of A 
is A itself. The (n - 1 )-th adjugate differs from A A only by a permutation 
of the rows and columns. The n-th adjugate of A is d (A) . 

Theorem 45.1. 

Theorem 45.2. 

The proofs of these theorems can be made similarly to those of 
Theorems 44.3 and 44.2 by using as the transformable system the 
r-rowed minor determinants of the matrix 

X ill 
11 

X (111 
n 

whose columns are n independent sets of variables which are trans­
formed cogrediently by the transformation 2 

Ikl' - ~' (k) A ( ) Xi -..:.. aij Xi ,= a rs . 

In fact, Theorem 45.2 is but a restatement of Theorem 7.9. 

Theorem 45.3. The characteristic roots of C, (A) are the (;) products 
,of the characteristic roots of A taken r at a time 3• 

The proof can be made similarly to that of Theorem 44.4. 
O. NICCOLETTI4 proved that if A is of rank e ~'; r, then Cr(A) IS 

of rank (~). 
W. BURNSIDE 5 gave another proof of Theorem 45.3. 
J. WILLIAMSON 6 proved that if A has the characteristic roots a) , .. , ax, 

and if C is a matrix composed of m 2 blocks fr8(A), then the characteristic 
roots of C are the mIX characteristic roots of the IX m-rowed matrices 
(trs(ak)) . 

The following comments were made by K. HENSEL 7: "There are 
associated with the ring ffiiA, B, ... J of all n-th order matrices, n derived 
rings 

which are isomorphic with ffi under multiplication, and of which the 
last is identical with the determinants of the matrices A, R. . .. All 

1 FRANKE, E.: J. reinc angcw. Math. Vol. ()1 (1/;63) pp.35() 35(1. 
2 SCHUR, 1.: 1. c. Chap. II. 
3 METZLER, W. H.: Amer. J. Math. Vol. 16 (1893) pp. 131-150.- RADOS, G.: 

Math. Ann. Vol. 48 (1897) pp.417-424. 
4 NrCCOLETTI, 0.: Atti Accad. Sci. Torino Vol. 37 (1901-1902) pp. (,55 65'.!. 
5 BURNSIDE, W.: Quart. J. Math. Vol. 33 (1902) pp.80-84. 
6 WILLIAMSON, J.: Bull. Amer. Math. Soc. Vol. 37 (1031) pp. 5R5- S(lil. 
7 HENSEL, K.: J. reine angcw. Math. Vol. 1S') (1928) pp.24(,--254. 
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properties of the matrices of ffi[A, B, ... J in so far as they relate only 
to their combination and decomposition by multiplication ... have 
unique counterparts in each of the derived rings. Thus if A is a divisor 
of zero, so are C2 (A), C3 (A), ... If A is a divisor of one, so are C2 (A), 
C3 (A), ... To every equivalence relation under multiplication, and to 
every division into classes in ffi based on such a relation, correspond 
the same equivalence relation and the same class division in each derived 
ring. . .. In order to find the complete system of invariant classes for 
a class division in ffi (A , B, ... ), it is sufficient in very many cases 
to seek out the most trivial invariants for the same class division for 
all derived rings. For these taken together furnish the complete system 
of invariants for ffi." 

J. WILLIAMSON l defined REISS'S matrix to be a matrix of order (;) 

whose elements in any row are the determinants of the matrices ob­
tained by replacing all sets of r columns of XT by a definite set of r 
columns of yT, and whose elements in any column are the determinants 
of the matrices obtained by replacing one set of r columns of XT by the 

(;) sets of r columns of yT in turn. He investigated the characteristic 

roots of this matrix. 

1. SCHUR 2 made an exhaustive investigation of invariant matrices. 
If A and B have independent elements, and if the elements of T(A) 
are rational integral functions of the elements of A, and if T (A) T (B) 
= T(AB), then T(A) is an invariant matric function of A. Product­
matrices (Theorem 44.1), power-matrices (Theorem 44.2), and adjugates 
(Theorem 45.2) are instances of invariant matric functions. SCHUR 

called a matrix irreducible if it is not similar to a direct sum of matrices 
of lower order, and proved that every invariant matric function T (A) 
can be uniquely expressed similar to a direct sum of irreducible invariant 
matric functions each of which is homogeneous in the elements of A. 
Two invariant matrices T 1 (A) and T 2 (A) are similar if and only if 
they have equal traces. If T (A) is of degree m in the elements of A, 
the characteristic roots of T (A) are the products m at a time of the 
characteristic roots of A. If A has linear elementary divisors, the same 
is true of T(A). 

The theory of invariant matrices has had considerable development 
in connection with the theory of group characteristics, where it is of 
prime importance3. 

1 WILLIAMSON, J.: Proc. Edinburgh Math. Soc. II Vol. 2 (1929) pp. 240 
to 251. 

2 SCHUR, I.: Dissertation. Berlin 1901. 
3 WEYL, H.: Grnppentheorie und Quantenmechanik, p. 100. Leipzig 1928. 

See also the forthcoming number of this Ergebnisse entitled "Gruppentheorie" 
by B. L. VAN DER WAERDEN. 
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VIII. Matric equations. 
46.The general linear equation. If AI' A 2 , ••• , A k , B I , B2 , • •• , B k , C 

are matrices of order n with elements in a field ~, the general linear 
equation is of the form 

(46.1) 

where X is a matrix of order n, with elements in ~, to be found. By 
replacing C by 0 we obtain the corresponding auxiliary equation. It 
is evident that if Xl and X 2 are solutions of (46.1), their difference is 
a solution of the auxiliary equation. Hence the sum of a particular 
solution of (46.1) and the general solution of the corresponding auxiliary 
equation gives the general solution of (46.1). 

Equation (46.1) may be considered as a system of n 2 equations for 
the n 2 elements xrs of X. The matrix of this system of equations, if 
the xrs are arranged in the proper order, is 

(46.2) 

The theory of systems of linear equations now gives 
Theorem 46.1. A necessary and sufficient condition in order that 

(46.1) have a solution Xo is that the rank e of (46.2) be the same as the 
rank of the n 2 X (n 2 + 1) array obtained by bordering (46.2) with the elements 
of C. The general solution of (46.1) is then of the form 

X = Xo + /hI Xl + ... + /hn'-e X n'-I} , 

where (Xl' ... , X n'_I}) is a fundamental system of solutions of the auxiliary 
equation, and /hI' . . . vary independently over ~. 

This equation was first studied by SYLVESTERI . The matrix (46.2) 
was called by him the nivellateur, although he did not recognize it as 
a sum of direct products. 

J. H. M. WEDDERBURN 2 gave-a method of solution by infinite series. 
F. L. HITCHCOCK 3 applied GIBBS' dyadics to obtain the coefficients of 
the characteristic equation of (46.2), and thus to solve (46.1). 

In the special case 

(46.3) AX = B 

there is the unique solution AlB if d(A) +0. Since (46.3) is equivalent 
to the n systems of n linear equations each 

(r, s = 1,2, ... , n) 

1 SYLVESTER: C.R.Acad.Sci., Paris Vol. 99 (1884) pp.117-118, 409-412, 
432-436 and 527-529. 

2 WEDDERBURN, J. H. M.: Froc. Edinburgh Math. Soc. Vol. 22 (1904) pp.49 
to 53. 

3 HITCHCOCK, F. L.: Froc. Nat. Acad. Sci. U.S.A. Vol. 8 (1922) PP·78-83. 
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3 HITCHCOCK, F. L.: Froc. Nat. Acad. Sci. U.S.A. Vol. 8 (1922) PP·78-83. 
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it has a solution if and only if the n X 2n array (A, B) has the same 
rank as A.I 

A necessary condition that AX = B and XC = D have a common 
solution is that AD = BC, for AXC = BC = AD. If either A or B 
is non-singular, the condition is also sufficient 2. 

The equation 

(46.4) AX = X B 

was first discussed (merely for quaternions) by CAYLEY 3. A necessary 
and sufficient condition that it have a non-singular solution is that 
U - A and U - B have the same invariant factors (Theorem 39.1). 
On the other hand, X = 0 is always a solution. By Theorem 46.1 the 
nivellateur is 

whose determinant is, by Corollary 43.82, the resultant of the characteris­
tic equations of A and B. Thus: 

Theorem 46.2. The equation AX = XB has a non-zero solution if 
and only if A and B have a characteristic root in common 4. 

The following important theorem, which generalizes the preceding 
theorem and gives a complete solution of (46.4), seems to have been 
discovered independently by CECIONI 5 and FROBENIUS 6• The following 
proof is adapted from that of FROBENIUS. 

Theorem 46.3. The number of linearly independent solutions of the 
equation AX = XB is ~ eij where eij is the degree of the greatest common 
divisor of the invariant factor ai of U - A and the invariant factor bj 

of U - B. 
Let 

Let L I , L 2, M I , M2 be unimodular matrices, at present undetermined. 
Let 

Let P and Q be any two matrices whose elements are polynomials in .Ie 

such that 

(46.5) 
Then 

PAl = A2Q. 

P(LIBIMII) = (L2B2M2I)Q, 

(L2IPLI )BI = B2 (M21 QMI ) • 

1 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) p.8. - AUTONNE, L.: 
Ann. Univ. Lyon II Vol. 25 (1909) pp. 1-79. 

2 CECIONI, F.: Ann. SeuoIa norm. super. Pisa Vol. 11 (1909) pp. 1-140. 
3 CAYLEY: Mess. Math. Vol. 14 (1885) pp.108-112. 
4 SYLVESTER: C. R. Aead. Sci., Paris Vol. 99 (1884) pp. 67-71 and 115-116. 
CECIONI: Ann. SeuoIa norm. super. Pisa Vol. 11 (1909) pp.1-40. 
5 CECIONI: Atti Aeead. naz. Lineei, Rend. V Vol. 181 (1909) pp. 566-571. 
6 FROBENIUS: S.-B. preuB. Akad. Wiss. 1910 pp. 3-15. 
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Since the coefficients of the highest powers of }. in B1 and B2 are non­
singular, we can by Theorem 29.1 determine unique matrices U1 , U 2 , 

RI , R2 such that 
L/PL1 = B 2 U 2 + R2 , 

M2IQMI =: UIBI + RI , 

where R2 and R] have elements free from I .. Then 

(B2U2 + R 2)B1 = B 2 (UI B1 + R I ), 

B2(U2 - UI)BI = B2R1 -- R2BI · 

If U2 - UI were not 0, the left side would be of at least the second 
degree in }, and the right side of at most the first degree. Hence U 2 = UI 

and 

Since A, B, R I , R2 are independent of }., 

AR == RB. 

From every pair of matrices P and Q which satisfy (46.5) there arise, 
if Land M are fixed, a unique constant matrix R satisfying (46.4). 

If, conversely, R is any matrix such that AR = RB, then RBI = B2R. 
Let U be an arbitrary matrix whose elements are polynomials in A, 
and set 

or 

Then 

P = L 2(B 2 U + R)Lll, 

Q = M 2(UBI + R)M/, 

(L/ P L I ) Bl = B2 (M/Q M I ), 

P(LI B I M 1l) = (L2B2M21)Q, 

and hence PAl = A 2Q. 
To the matrix R correspond infinitely many pairs P, Q. If P, Q 

is a definite pair obtained by means of the matrix U, and if P - Po, 
Q - Qo are any others obtained by means of U - U 0' then 

L21 POLl = B2 Uo = (L21 A2M 2) UO' 

M21 QOMI = UOBI = Uo (Lll Al M I ) , 

or if we set M 2 UoL/ = T, 

If therefore T is an arbitrary matrix, 

is the most general pair of matrices which corresponds to the constant 
matrix R such that RBI = B2R. 

Ergebnisse cter Mathematik. II. ,. Maclluffee. 
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Now let Al = (aIrs), A2 = (a2rs) be the normal forms of BI and B2 
respectively. Then aIrs = ~rs br, a2rs = ~rsar where ar and br are the 
invariant factors of A and B respectively (§ 27). The condition 
PAl = A2Q gives 

PTS b. = aT qr. , 
or 

P ar 
r. = b qr.· 

8 

The elements of P - A2T and Q - TAl are therefore 

Pro - ar ir• = ~r (qr. - b. iT') , T = (irs) . 
s 

By a suitable choice of ir., the degree of qr. - bsirs can be made less 
than the degree of bs. Then irs and qrs - br irs are uniquely determined. 
Let ers be the degree of the greatest common divisor drs of ar and bs' 
In order to obtain the most general PTS - ar irs which is a polynomial, 
it is necessary and sufficient that qrs - bs irs be the product of bsldrs 
by an arbitrary polynomial of degree er • - 1 - that is, a polynomial 
with er• arbitrary coefficients. Hence there are exactly ,2; ers linearly 
independent matrices P (and for each P a unique Q), each of which 
corresponds to a unique R. Hence the number of linearly independent 
matrices R satisfying (46.4) is ~ ers . 

The solution of the equation AX = XB has been discussed by 
G. LANDSBERG!, R. WILSON 2, and H. W. TURNBULL and A. C. AITKEN 3. 

Corollary 46.31. In a field 0 containing the elements of A, Band C, 
the equation 

AX+XB=C 

has no solution unless the rank of A . X B is the same as the rank of this 
matrix augmented with the elements of C. If these ranks are the same, every 
solution is of the form 

where Xois a particular solution of the given equation, the Xi are ~er8 
linearly independent solutions of the auxiliary equation AX + XB = 0, 
the Ai are arbitrary in 0, and er• is the degree of the g. c. d. of the invariant 
factor ar of AI - A and the invariant factor b. of AI - B. 

This equation has been discussed by CECIONI 4, D. E. RUTHERFORD 5, 

and R. WEITZENBOCK6. 

1 LANDSBERG, G.: J. reine angew. Math. Vol. 116 (1896) pp.331-349. 
2 WILSON, R: Froe. London Math. Soc. II Vol. 30 (1930) pp. 359-366; Vol. 33 

(1932) pp. 517-524. 
3 TURNBULL, H.vV., andA. C. AITKEN: Canoniealmatrices, Chap. X. London 1932. 
4 CECIONI: Ann. Scuola norm. super. Fisa Vol. 11 (1909) pp.1-40. 
5 RUTHERFORD, D. E.: Akad. Wetenseh. Amsterdam, Froc. Vol. 35 (1932) 

pp.54-59. 
6 VVEITZENBOCK, R: Akad. vVetensch. Amsterdam, Proc. Vol. 35 (1932) pp. 60 

to 61. 
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Corollary 46.32. The number of linearly independent solutions of the 
equation AX = X A is 

n + 2 (ml + ... + mn ) , 

where mi is the degree of the g. c. d. di of the i-rowed minor determinants 
of AI - A. 

Let er be the degree of the invariant factor ar of ').1 - A. Let erg 
be the degree of the g. c. d. of ar and a.. Then 

err = e" era = e.r = es , r> s. 
Hence 

~ era = e1 + e2 + ... + en + 2 [e1 + (e1 + e2) + (e1 + e2 + e3) + 
+ (e1 + e2 + en-I)] 

= n + 2(ml + ... + mn) 

by Theorem 27.1. 
This theorem was stated by FROBENIUS 1 and proved by MAURER 2, 

A. VOSS 3, G. LANDSBERG 4, K. HENSEL 5, F. CECIONI 6, and U. AMALDI7. 
W. K. CLIFFORD 8 attempted to prove that every matrix commutative 

with A is a polynomial in A. SYLVESTER9 showed that this is not so. 
H. LAURENTI0 gave a false proof that if AB = BA, then both A 

and B are polynomials in the same matrix. An example to show that 
this is not always so was given by H. B. PHILLIPSll. 

A. VossI2 provedthatifAP=QA, where P=P1 +P2 , Q=Ql+Q2' 
PI and Ql of the same order, then A = Al + A2 where Al is of the 
same order as PI' 

J. PLEMELJ13 proved that if certain matrices Ai are commutative 
in pairs, a matrix T exists such that T1Ai T are simultaneously equal 
to a direct sum of matrices having equal characteristic roots. 

H. TABER14 wrote out explicitly the most general matrix commutative 
with A in terms of its characteristic roots, and later15 "proved the 

1 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) pp.1-63. 
2 MAURER: Zur Theorie der linearen Substitutionen. Dissertation. Straf3-

burg 1887. 
3 Voss, A.: S.-B. Bayer. Akad. Wiss. Vol. 19 (1889) pp.283-300. 
4 LANDSBERG, G.: J.reineangew.Math. Vol. 116 (1896) pp. 331-349. 
5 HENSEL, K.: J. reine angew. Math. Vol. 127 (1904) pp.116-166. 
6 CECIONI, F.: Ann. Scuola norm. super. Pisa Vol. 11 (1909) pp. 1-140. 
7 AMALDI, U.: Ist.Lombardo, Rend. II Vol. 45 (1912) pp.433-445. 
8 CLIFFORD, W. K.: Fragment on matrices. Collected Papers, p. 337. 1875. 
9 SYLVESTER: John Hopkins Circ. Vol. 3 (1884) pp. 33, 34, 57· 

10 LAURENT, H.: J. Math. pures appl. V Vol. 4 (1898) pp·75-119. 
n PHILLIPS, H. B.: Amer. J. Math. Vol. 41 (1919) pp.256-278. 
12 VOSS, A.: S.-B. Bayer. Akad. Wiss. II Vol. 17 (1892) pp.235-356. 
13 PLEMEL], J.: Mh. Math. Phys. Vol. 12 (1901) pp.82-96. 
14 TABER, H.: Proc. Amer. Acad. Arts Sci. Vol. 26 (1890-18<)1) pp.64--66. 
15 TABER, H.: Proc. Amer. Acad. Arts Sci. Vol. 27 (11191-111')2) pp.4IJ--56. 
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surmise of SYLVESTER I that if A is not derogatory (§ 15) the only 
matrices commutative with A are polynomial functions of A". An 
equivalent theorem had, however, been previously given by FROBENIUS 2, 

namely that if the first minors of the characteristic determinant of A 
are relatively prime, the only matrices commutative with A are poly­
nomials in A. (See Theorem 15.1.) 

Explicit solutions of AX = XB were given by H. KREIS3 and 
L. AUTONNE4. Numerical examples of commutative matrices were given 
by H. HILTONS. 

M. KRAWTCHOUK 6 found the number of linearly independent matrices 
in a commutative group of matrices. 

1. SCHUR 7 proved that the order of a commutative group of n-th 
order matrices is < [n2/4 + 1J. 

A. RANUM 8 found necessary and sufficient conditions that a singular 
matrix belong to a group. 

47. Scalar equations. Let 

(47.1) P(X) = poxm + Plxm-l + ... + PmI = 0 

be an equation of degree m with coefficients in a field ty, where X is 
an n-th order matrix to be determined. If Xl is a solution with elements 
in ty, so is X 2 =pI X I P where P is an arbitrary non-singular matrix 
with elements in ty. Hence all solutions are determined by those in 
canonical form. 

If X satisfies P (l) = 0, the minimum equation of X divides P (l) 
and conversely (Theorem 13.1). Equation (47.1) is completely solved, 
then, by finding the factors of P (l) which are irreducible in ty, and 
setting up those matrices Xl' X 2 , ••• , X k in canonical form (Corollary 
39.12) whose minimum equations divide P(l)' The number of dissimilar 
solutions is finite. 

SYLVESTER 9 discussed the equations xm = I and xm = O. There 
exists an integer m such that Am = I if and only if the characteristic 
roots of A are roots of unitylO, in which event the elementary divisors 
of A are simple (§ 26)11. 

A necessary and sufficient condition that there exist an integer 
m> 1 such that Am = A, whether A be singular or not, is that the 

1 SYLVESTER: C. R. Acad. Sci., Paris Vol. 98 (1884) p.471-
2 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) pp. 1-63 Theorem XIII. 
3 KREIS, H.: Contribution a la tMorie des systemes lineaires. Zurich 1906. 
4 AUTONNE, L.: J. Ecole polytechn. Vol. 14 (1910) pp.83-131-
5 HILTON, H.: Mess. Math. Vol. 41 (1911) pp.110-118. 
6 KRAWTCHOUK, M.: Rend. Circ. mat. Palermo Vol. 51 (1927) pp.126-130. 
7 SCHUR, L: J. reine angew. Math. Vol. 130 (1905) pp.66-76. 
8 RANUM, A.: Amer. J. Math. Vol. 31 (1909) pp.18-41-
9 SYLVESTER: C. R. Acad. Sci., Paris Vol. 94 (1882) pp.396-399. 

10 LIPSCHITZ: Acta math. VoL 10 (1887) pp.137-144. 
11 BAKER, H. F.: Proc. London Math. Soc. Vol. 35 (1903) pp.379-384. 
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characteristic roots of A be 0 or roots of unity, and that the elementary 
divisors of A be simple 1. 

H. W. TURNBULL2 found that if 

xrs = (-1)" 
then X3 = (Xrs )3 = 1. 

-8 (n -- S), 
r - 1 

R. VAIDYANATHASWAMy 3 proved that if r = 2m p1e, ..• PI!· where the 
p's are distinct odd primes, a necessary and sufficient condition for 
the existence of an integral matrix of order n and period r is that 

tp (2m) + tp (P{') + ... + tp (Pt·) ~ n, m> 1, 

tp (PIe,) + ... + tp (PP) ~: n, m = 0,1, 

where tp is the totient. 
48. The unilateral equation. We now consider the equation 

(48.1) F(X) = Aoxm + Al X m- 1 + ... + Am_lX + Am = 0, 

where the Ai are n-th order matrices with elements in ~. Let F (A) 
denote the matrix 

AoAm + A1 Am- 1 + ... + A",_I.4 + Am, 

where A is indeterminate. Then by the theorem of PHILLIPS (Theorem 
14.2), X satisfies the scalar equation 

(48.2) t (A) = dF (A) = 0 

which, unless it vanish identically, is of degree snm. 
Let Y1 , Y2 , ••• , Y k be the solutions of (48.2) determined as in 

§47. Then every solution of (48.1) is of the form Xi= PiYiP/ where 
Pi must be non-singular. With this substitution (48.1) becomes 

AoPiyr + AlPi yr- 1 + ... + A",-lPiY; + AmP; =,0, 

which is a linear equation of the form (46.1) with C = 0 for the matrix Pi' 
In case t (A) ..•. ~. 0, there are more than a finite number of dissimilar 

solutions 4. 

CAYLEY first discussed the equation X2 = A for matrices of orders 2 
and 3.5 SYLVESTER showed 6 that every characteristic root of a solution 
X of PX2 + QX + R = 0, where all matrices are of the second order, 
is a root of I P 1. 2 + Q}. + R I = O. He made several attempts to 
determine the number of solutions of the equation (48.1) for special cases 7• 

1 RANUM, A.: Arner. J. Math. Vol. 31 (1909) pp. 18-41. 
2 TURNBULL, H. W.: J. London Math. Soc. Vol. 2 (1927) pp. 242- 244. 
" VAIDYANATHASWAMY, R: J. London Math. Soc. Vol. 3 (1928) pp. 268 - 272. 
4 ROTH, W. E.: Trans. Arner. :Math. Soc. Vol. 32 (1929) pp.61-8Il. 
5 CAYLEY: Philos. Trans. Roy. Soc. London Vol. 148 (1858) pp. 3') -46. 
6 SYLVESTER: C. R. Acad. Sci., Paris Vol. 99 (1884) pp. 555- 558 and 621-631. 
7 SYLVESTER: Johns Hopkins Circ. Vol. 3 (1884) p. 122 - Philos. }lag. Vol. 18 

(1884) pp. 454--458- Quart.]. 11ath. Vol. 20 (1885) pp. 305- 312 C.1<. 
Acad. Sci., Paris Vol. 99 (18S4) pp. 13- 1 S· 
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A. BUCHHEIM I proved in general that if X satisfies (48.1), each of 
its characteristic roots satisfies (48.2). 

FROBENIUS2 found all solutions of X2 = A in the complex field, 
when d(A) =} 0, which are expressible as polynomials inA (see Lemma 
35.22). The same method was extended by H. F. BAKER 3 and L. E. DICK­
SON 4 to find all solutions of xm = A in the complex field which are 
polynomials in A. 

H. KREIS5 treated the equation p (X) = A where p (A) is a polynomial 
with complex coefficients, d (A) =1= 0, and obtained solutions which are 
polynomials in A. Later 6 he found necessary and sufficient conditions 
for the solvability of this equation when d (A) = 0. 

W. E. ROTH 7 proved that a necessary and sufficient condition that 
the equation p (X) = A have a solution in the complex field expressible 
as a polynomial in A is that the equation p (x) = ai have at least one 
simple root for each characteristic root of A corresponding to a non­
linear elementary divisor. The number of distinct solutions of p (X) = A 
which are expressible as polynomials in A is 2:j~Iflj where s is the 
number of distinct roots of the minimum equation m (}.) = ° of A, 
and flj is the number of distinct roots of p ().) - aj = ° when aj is a 
simple root of m (A) = 0, and is the number of simple roots of p (A) - aj 

= ° when aj is a multiple root of m (A) = 0. 
A method for finding the solutions of p (X) = A which are not 

polynomials in A was given by P. FRANKLIN 8 . 

D. E. RUTHERFORD 9 gave a more explicit form of solution. Let 
Un = (Or,8-1) be a matrix of order n. Let aI' a2, ... be the char­
acteristic roots of A. Then A~ NI -+- N2 -+- ... -+- Ne where 

Nh = C~h(ah){h == ahIl;h + UI;~h. 
If for any arrangement of the N's there is for every h a Oh-fold repeated 
root bh of p (A) = ah' then a solution 

Y = CI;, (bI ) -+- ... -+- el;I} (be) 

of p (X) = A exists. Comparing this with ROTH's result indicates that 
the solution is a polynomial in A if and only if Oh = 1. 

1 BUCHHEIM, A.: Proc. London Math. Soc. Vol. 16 (1884) pp.63-82. 
2 FROBENIUS: S.-B. preuB. Akad. Wiss. 1896 pp. 7-16. 
3 BAKER, H.F.: Proc.Cambridge Philos.Soc. Vol. 23 (1925) pp.22-27. 
4 DICKSON, L. E.: Modern algebraic theories, p. 120. Chicago 1926. 
5 KREIS, H.: Contribution a la theorie des systemes lineaires. Zurich 1906. 
6 KREIS, H.: Vjschr. naturforsch. Ges. Zurich Vol. 53 (1908) pp.366-376. 
7 ROTH, W. E.: Trans. Amer. Math. Soc. Vol. 30 (1928) pp. 579- 596. 
8 FRANKLIN, P.: J. Math. Physics, Massachusetts lnst. Technol. Vol. 10 (1932) 

pp.289-314. 
9 RUTHERFORD, D. E.: Froc. Edinburgh Math. Soc. II Vol. 3 (1932) pp. 135 

to 143. 
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R. WEITZENBOCK 1 showed that the method of FROBENIUS may be 
extended so as to yield all solutions of xm = A . 

W. E. ROTH 2 considered the general unilateral equation (48.1) where 
the Ai are m X n arrays and X an n X n matrix with elements in the 
complex field. Necessary conditions for a solution are given, and it 
is indicated how a solution, if it exists, can be computed. Several 
examples are given, as well as a quite complete bibliography. 

A. HURWITz 3 found the most general system of p matrices, each 
of order n, which satisfy the conditions 

BI? = I, BhBk = -BkBh' h =l= k, 

and the number of dissimilar systems. 
A. S. EDDINGTON 4 proved that if B 1 , B 2 , •• " Bp are four-rowed 

matrices such that 

BI? = -I, 
then p < 5. If the elements of each matrix are all real or all imaginary, 
then there are 2 real and 3 imaginary matrices in every set of 5. 

M. H. A. NEwMAN5 generalized EDDINGTON'S result and simplified 
the proof. If B1 , B2 , ••• , Bp are a set of n-rowed matrices, n = 2" r, 
r odd, and if 

Bh2 = -I, BhBk = -BkBh' k =l= h, 

then p < 2q + 1; and the maximum is attained. If in a maximal 
set there are e with real elements and the remaining (J with purely 
imaginary elements, then e - (J = -1 or 7. He extended these con­
siderations to hermitian matrices. 

IX. Functions of Matrices. 
49. Power series in matrices. Let P(A) =1: aiAi be an ordinary 

;'=0 

power series with complex coefficients in the complex variable }.. If 
for a matrix A of order n with complex elements every element of 

m 
Pm (A) = L ai Ai 

;'=0 

approaches a finite limit as m -+ 00, the matrix 
00 

P(A) = L ai Ai 
i=O 

1 WEITZENBOCK, R: Akad. Wetensch. Amsterdam, Proc. Vol. 35 (1932) pp. 157 
to 161. 

2 ROTH, W. E.: Trans. Amer. Math. Soc. Vol. 32 (1930) pp.61-80. 
3 HURWITZ, A.: Math. Ann. Vol. 88 (1923) pp.1-25. 
4 EDDINGTON, A. S.: J. London Math. Soc. Vol. 7 (1932) pp. 58-68. 
5 NEWMAN, M. H. A.: J. London Math. Soc. Vol. 7 (1932) pp.93-99. 
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is said to exist and to be equal to the matrix of these limiting 
values. 

Theorem 49. The power series P (A) converges if and only if every 
characteristic root of A lies inside or on the circle of convergence of P (A) , 
and for every 'II-fold characteristic root Ai which lies on the circle of con­
vergence, the ('II - 1 )-th derivative P(v -1) (Ai) converges. 

This theorem and proof are due to K. HENSEL!. E. WEYR z had 
previously proved the theorem for the case where no characteristic 
root lies on the circle of convergence. 

Let us write 

where 
Ai 1 0 0 

A;= 0 Ai 1 0 

1 0 0 0 Ai 

is of order vi (Corollary 39.11). Then 

P(A) s P(A1) -+- P(Az) -+- ... -+- P(A k ) , 

so that P(A) converges if and only if every P(Ai) converges. 
Write'll for Vi, and let 

Ai -Ail = U, 

Then for m >'11 
m 

Uv-l =f= 0, 

Pm (Ai) = ~ aj ().J + U)i 
j~O 

m i 

Uv =0. 

= ~ aj ~ ( ~ )A/ -hUh 

Hence 

j~O h~O 

m m 

= ~ Uh[L: aj(OA/-h] 
h~O j~h 

v-I 

= L: ~T PrAM (Ai) Uh. 
h~O 

v-I 

P(Ai) = L: ~! P(h) (Ai) Uh, 
h~O 

where p(h) denotes the h-th derivative. 

1 HENSEL, K.: J. reine angew. Math. Vol. 155 (1926) PP.107-110. 
2 WEYR, E.: Bull. Sci. math. II Vol. 11 (1887) pp.205-215. 
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Evidently P (Ai) converges if and only if 

P (Ai), pI (Ai), ... , P(v-l) (J'i) 

all converge. If Ai is outside the circle of convergence of P (},l , P (Ai) 
diverges, while if Ai is inside this circle, all derivatives converge. If 
}'i is on the circle, all these derivatives converge if and only if pv-l (}'i) 
converges. 

G. PEAN01 and E. CARVALL0 2 discussed the function eA , and the 
former discussed the TAYLOR series in matrices. 

H. TABER 3 defined trigonometric functions of a matrix. He also 
proved 4 that every real proper orthogonal matrix can be represented 
III the form eA where A is skew. 

W. H. METZLER 5 considered transcendental functions of a matrix. 
The following results are due to H. B. PHILLIPS6. If A, B, ... , Pare 

commutative matrices whose characteristic roots ai, bi , ... Pi are 
ordered as in Theorem 16.1, and if I(a, b, . .. , P) is an infinite series, 
then I (A, B, .. " P) converges if the series I (ai, bi , ... , Pi) and their 
partial derivatives of proper orders converge. The T\ YLOR series 

I' 'm (Z-A)'" I (Z) = I (A) + t (A) (Z - A) + ... + j( ) (A) - in! - + .,. 
is valid for a matrix Z commutative with A if each characteristic root 
of Z lies within a circle with center at the corresponding root of A in 
which I (z) is analytic, z being an ordinary complex variable, 

50. Functions of matrices. That the definition of analytic function 
of a matrix as a power series in that matrix with scalar coefficients is 
too restrictive can be seen at once from the example 

2 -1' 

3 -2 
I 
! , A= 

Surely A is an analytic function of I, yet every power series in I is 
scalar. 

The first attempt to define an analytic function of a matrix A 
having distinct characteristic roots was made by SYLVESTER 7 by means 
of the "interpolation formula" 

I(A) = .~ - (A :-- ;'2I)(~=A~!L·--,'J/l----:)-,,-!l_ j (Aj) 
~ (1'1- }'2) (AI - }.3) ... (AI - An) 

1 PEANO, G.: Math. Ann. Vol. 32 (1888) pp.4:;0-456. 
2 CARVALLO, E.: Mh. ::YIath. Phys. Vol. 2 (1891) pp. 177-216, 225- 26C, and 

311- 330. 
3 TABER, H.: Amer. J.l\Iath. Vol. 12 (1890) pp.337-396; Vol. 13 (1891) 

pp.159-172. 
4 TABER, H.: Proc. Amer. Acad. Arts Sci. Vol. 27 (1891-1892) pp. lC,) 165. 
" METZLER, W. H.: Amer. J. }fath. Vol. 14 (1892) pp.326-377. 
6 PHILLIPS, H. K.: AmeLJ.Math, Vol. 41 (1919) pp.26(,- 27S 
7 SVLVESTEH: Philos. Mag Vol. 16 (1883) pp. 2()7-- 269. 
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summed over all characteristic roots. The case where the roots are not 
distinct was considered by A. BUCHHEIMI. Evidently this definition 
yields only polynomials in A. 

P. A. M. DIRAC 2 proposed to define as an analytic function of A 
any matrix which is commutative with all matrices which are commu­
tative with A. This again yields only polynomials in A.3 

L. F ANTAPPIE4 suggested that a satisfactory definition of analytic 
function of a matrix must satisfy the following conditions. If I (x) and 
g (x) are functions of a function field (real or complex) and if I (A) and 
g (A) are analytic functions of a matrix A, there must exist a corre­
spondance "'" such that, if I(A) "'" I (x) and g(A) "'" g(x), then 

1. I(A) + g(A) "'" I (x) + g(x), 
2. I(A)g(A) "'" I (x) g (x), 
3. I(x) =k"",kI and I(x) =x"",A, 
4. If I (x) is analytic in a parameter t, and if I (x, t) "'" I (A , t), then 

the elements of I (A , t) depend analytically upon t. 
He then proved that the elements Irs of I(A) are the sums of the 

residues of - ~r(~~) I(t) at the characteristic roots of A. Here Dsr(t) 

is the cofactor of 1m and D (t) = d (A). If Ai is a characteristic root 
of A of multiplicity Vi, the elements Irs of I (A) may be expressed as 
linear combinations of the values at the points x = Ai of the function 
I (x) and its derivatives up to order Vi - 1 at most. The coefficients 
depend only upon A. 

G. GIORGI 5 suggested the following definition. If 

where 
A = pI (AI + ... + A k) p , 

Ai 1 0 I(~) t' (i.i) :, f' (Ai) 

Ai= 
0 1i 1 

I (Ai) = 0 I (Ai) t' (li) 
0 0 Ai 0 0 I(Ai) 
..... 

then 
I (A) = pI [f(AI) + ... +/(Ak)]P. 

He also stated that the definition 

I(A) = ~f t(x)I dx 
2nt xI-A 

had been suggested to him in a letter by CARTAN. The formula means 
that the element in the (r, s)-position in I(A) is the integral around a 

1 BUCHHEIM, A.: Philos. Mag. V Vol. 22 (1886) pp.173-174. 
S DIRAC, P. A. M.: Proc. Cambridge Philos. Soc. Vol. 23 (1926) pp.412-418. 
3 TURNBULL and AITKEN: Canonical matrices, p. 150. London 1932. 
4 FANTAPPIE, L.: C. R. Acad. Sci., Paris Vol. 186 (1928) pp.619-621-
5 GIORGI, G.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp.3-8. 
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small closed path of the element in the (1', s)-position m the matrix 
f(x) (xl - A)I. 

Neither of these definitions takes care of the example given at the 
beginning of this section. 

What seems to be the most satisfactory definition so far proposed 
for a multiple-valued analytic function of a matrix is the one given 
by M. CIPOLU1 . It is an extension of the definition of GIORGI, and 
differs from it only in the respect that different determinations for I 
may be used in the matrices I(A 1), ••. , I(AkL and P must range over 
all matrices such that A = pI (AI + ... ) P holds. If the same deter­
mination for 1 is used throughout, a principal value of i (A) results. 
This definition and this only is sufficiently broad to include as functions 
of I all solutions of the matric equation X 2 = I. 

Explicit results in certain special cases have been obtained. Thus 
M. BOTASS0 2 found An explicitly when the minimum equation of A 
is quadratic. 

S. MARTIS-BIDDAU 3 gave an explicit form of An where A is of the 
second order according to FANTAPPIE'S definition of function. Later 4 

she treated etA for A of the second order by GIORGI'S definition, and 5 

the function A n where A is of the third order. 
E. PORcu-ToRTRI:\I6 gave I(A) explicitly for A of the second order 

according to GIORGI'S definition of function. 
S. AMANTE7 used FAKTAPFIE'S results to solve I(X) = 0 where I(z) 

is a complex function. 
51. Matrices whose elements are functions of complex variables. 

To consider this topic in detail would take us into the theory of diffe­
rential equations. Only a few results of interest in pure matric theory 
will be given. 

J. H. M. WEDDERBURN 8 considered matric functions-i.e., matrices 
whose elements are analytic functions of a single complex variable. 
His principal result (the analog of Theorem 26.2) is that if A (X) is such 
a matric function of rank l' which is holomorphic in a region ~, there 

1 CIPOLLA, M.: Rend. Circ. mat. Palermo Vol. 56 (1932) pp. 144-154. 
2 BOTASSO, M.: Rend. Circ. mat. Palermo Vol. 35 (1913) pp.I-46. 
3 MARTIS-BIDDAU, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp. 130 

to 133. 
4 MARTIS-BIDDAU, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp.276 

to 280. 
5 MARTIS-BIDDAU, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 9 (1929) pp. 206 

to 213. 
6 PORcu-ToRTRINI, E.: Atti Accad. naz. Lincei, Rend. VI Vol. 7 (1928) pp. 206 

to 208. 
7 AMANTE, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 12 (1930) p. 290. 
8 "WEDDERBURN, J. H. M.: Trans. Amer. Math. Soc. Vol. Hi (1915) pp. 328 

to 332. 
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exist two matrix functions P(A) and Q(A), which are holomorphic and 
non-singular in m, and are such that 

P (A) A (A) Q (A) = E1 (A) + E2 (A) + ... + E, (A) + 0 , 

where E1 (A), ... , E.(A) are functions of A which are holomorphic in m 
and are such that Es is a factor of Et when s < t. 

G. D. BIRKHOFF1 gave the following theorem. Let L = 111.s(x) II be' 
a matrix of functions which are single-valued and analytic for I x I >- R 
(but not necessarily at x = (0), and such that d(L) * 0 for Ixl >- R. 
Then there is a matrix A = II arB (x) II of functions analytic at x = 00' 

reducing to I at x = 00, and a matrix E = Ile.s(x) II of entire functions 
of determinant nowhere 0 in the finite plane such that L = A . II e. s (x)xk'il' 
where the k's are integers. 

BIRKHOFF 2 considered infinite products of analytic matrices. If 
every element of A (x) and B (x) are analytic near x = Xo but perhaps 
not at x = xo, and if M (x) has elements analytic at x = xo, and if 
A (x) = M (x) B (x), then A (x) is left-equivalent to B (x) at x = xo. 
The relation of left-equivalence is determinative, reflexive, symmetric 
and transitive. A matrix Ui (x) is elementary if it is the identity matrix 
with the i-th column replaced by C1 , C2 , ••• , Ci-l, X - xo, CHI' .•• , Cn.· 
The following equivalence problem is considered. Given polynomial 
matrices, each having its only finite singular point at Xi (these being 
assumed distinct), to construct a polynomial matrix P(x) equivalent 
to these matrices at Xi and having no other finite singular point. The' 
most general solution is 

Po (x) U1 (x) U2 (x) ... Un (x) , 

where Ui (x) is an elementary matrix with a singular point at x = xi" 
and Po (x) is any polynomial matrix of order O. 

The absolute value of a matrix whose elements are complex numbers. 
or functions was defined by J. H. M. WEDDERBURN 3 to be 

lAl = (1: apq apq)t A = (arB) . 

The following inequalities were obtained, A being scalar. 

LA + Bl < LAl + LBl, Lll = n! Ill, 
L1Al = III LA1, LABl < LA1LB1. 

52. Derivatives and integrals of matrices. These concepts were' 
first considered by V. VOLTERRA'. Let 5 (x) be a matrix of order n whose 

1 BIRKHOFF, G. D.: Math. Ann Vol. 74 (1913) pp.122-133. 
2 BIRKHOFF: Trans. Amer. Math. Soc. Vol. 17 (1916) pp.386-404. 
3 WEDDERBURN, J. H. M.: Bull. Amer. Math. Soc. Vol. 31 (1925) pp.304 

to 308. 
4 VOLTERRA, V.: Atti Accad. naz. Lincei, Rend. IV Vol. 31 (1887) pp. 393-396 .. 
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·elements are finite continuous functions of the real or complex variable x. 
Assume d5 (x) =1= O. If the two limits 

1. SI (x) S (x + Llx) - I 
1m , 

.1"' ..... 0 .J x 

exist, they are called the right and left derivatives of 5 (x), respectively. 
It is to be noted, however, that since I = 51 (x) 5 (x) = 5 (x) 51 (x), 

the right and left derivatives are merely 51 (x) 5D (x) and 5D (x) 51 (x) , 
respectively, where 5D (x) is obtained from 5 (x) by replacing each 
element by its derivative. 

Let T (x) be a matrix of order n whose elements are finite continuous 
functions of the real variable x on the range a ;~ x <. b. Let the interval 
of definition be divided into n segments hI' h2 , ••• , hn' and consider 
the matrices T 1 , T 2 , ••• , Tn' each Ti corresponding to a value of x 
-contained in the interval hi' Set Ri = hi Ti + I. Then if the limits 

lim R I R 2 ••• Rn, lim RnRn- 1 ••• Rl 
normhi ..... O norm hi"'" 0 

exist, they are called the right and left RIEMANN integrals, respectively, 
of T(x). 

VOLTERRA further showed that if differentiation and integration are 
both right, or both left, u 

d • 
dU) T(x) dx = T(u), 

a 

and that if M is non-singular with elements free from x, then 
S (x) = MIT (x) M implies 

:x 5 (x) = MI [:x T(x)] M, I5 (x) dx = MI [/ T(x) dX] M. 

The constant of integration is multiplicative instead of additive. That 
is, if differentiation is on the right, 

d d 
dxC5(x)=dx5(x), dC=I=O 

where C is a matrix with constant elements; and if, conversely, 
d d 

dx T(x) = dx 5 (x), 

then there exists a non-singular constant matrix C such that 
T (x) = C 5 (x). If differentiation is on the left, the constant matrix 
C is a right factor. 

VOLTERRAl generalized the theorem of CAUCHY to matrices by 
proving that if s is a closed path inside which each element of T (z) 
is holomorphic, then f T (z) dz = I. 

8 

He extended this theorem to RIEMANN surfaces. 

1 VOLTERRA: Rend. eire. mat. Palermo Vol. 2 (1888) pp.69-75. 
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L. SCHLESINGER! defined the integral 
x q 

I (ars) = I (arsdx + <5rs) 
P p 

so that every row satisfies the system of differential equations 
n 

~f; = ~ air(X)Yi' 
i=l 

Later2 he used WEDDERBURN'S definition of absolute value (§ 51) to 
define an L-integrable matrix. He showed that the L-integral of A 
has a derivative almost everywhere, and that this coincides almost 
everywhere with A. 

H. W. TURNBULL3 investigated the properties of the operator 1 f-I 
applied to matrices whose elements are functions of the xrs ' XU 

A. LOEWy 4 defined a new relation between two matrices whose 

elements are functions of a variable x. Let P = (Prs) , p D = (dl;·). 
Then we may write A L~ B (A is similar to B in the sense of LOEWY) 
if there exists a matrix P whose elements are functions of x and whose 
determinant does not vanish identically such that 

B = _PDP! + PAp!. 

It may be shown that this relationship is determinative, reflexive, 
symmetric and transitive. The author uses it in the factorization theory 
of differential expressions. 

x. Matrices of infinite order. 
53. Infinite determinants. The concept of infinite determinant was 

introduced by G. W. HILL5 in connection with the solution of differential 
equations. If 

A= 
a21 a22 a23 

a31 a32 a33 

is a doubly infinite array, and if 

Ian al2i, 
all al2 al3 

AI=an , A 2 = Aa = a21 a22 a23 
a21 a22 

a31 a32 a33 

then if lim An exists, it is called the determinant d (A). 
n-+oo 

1 SCHLESINGER, L.: J. reine angew. Math. Vol. 128 (1904) pp.263-297. 
2 SCHLESINGER, L.: Math. Z. Vol. 33 (1931) pp.33-61. 
3 TURNBULL, H. W.: Proc. Edinburgh Math. Soc. II Vol. 1 (1927) pp. 111-128. 
4 LOEWY, A.: Math. Ann. Vol. 78 (1918) pp. 1-51, 343-358 and 359-368 -

~achr. Ges. Wiss. Gottingen 1917 pp. 255-263. 
5 HILL, G. W.: Acta math. Vol. 8 (1886) pp.1-36. 
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The procedure of HILL was placed upon a rigorous foundation by 
POINCAR1P, who considered only arrays whose diagonal elements are 
1 'so He proved the existence of HILL'S limit under the assumption 

00 

that 2: i apq I converges. 
p,q=l 

H. VON KOCH 2 gave an extended and systematic treatment of 
infinite determinants. If An is of order n, set En = (brs ) = An - In­
Then (Theorem 14.3) 

~ ~ibii 
I An I = 1 + 6' bii + i7::1 I bji 

i<1" 

A determinant of infinite order is said to be absolutely convergent if IAnl 
and each of the terms in the above expansion converge as n ~ <Xl. 

ST. B6BR 3 proved that a necessary and sufficient condition that I A I 
00 

be absolutely convergent is that n I aii I converge absolutely, and that 
i=1 

there exist an integer p;:>.2 such that 
1 

2: [1: : aik IpIP~i-, 
i=1 k=1 

converges. A simplified proof of this theorem was given by L. W. COHEN 4. 

Systems of linear equations in infinitely many variables have been 
discussed by several writers since HILL, for example, E. SCHMIDT", 
TOEPLITZ 6, WINTNER 7 and L. 'Y. COHEN 4 • 

Application of infinite determinants in the theory of continued 
fractions was made by T. J. STIELTJES 8 and by vox KOCH9. 

Summaries of results up to the date of publication are given by' 
E. PASCAL 10, KOWALEWSKIll , F. RlESZ 12, and HELLINGER and TOEPLITZ 13 . 

The latter has practically complete references to the literature. 

1 POINCARE: Bull. Soc. ~Iath. France Vol. 14 (1886) pp. 77-90. 
2 KOCH, H. VON: Acta math. Vol. 15 (1891) pp. 53-63; Vol. 16 (1892-1893) 

pp. 217-295 - c. R. Acad. Sci., Paris Vol. 116 (1893) pp. 91-93 - Rend. Cire. 
mat. Palermo Vol. 28 (1909) pp 255--266. 

3 B6BH, ST.: Math. Z. Vol. HI (1921) pp. 1-11 
4 COHEN, L. VV.: Bull. Amer. Math. Soc. Vol. 36 (1930) pp. 563-572. 
5 SCHMIDT, E.: Rend. Circ. mat. Palermo Vol. 2S (1908) pp.53-77. 
6 TOEPLITZ: Rend. Circ. mat. Palermo Vol. 28 (1909) pp. 88 -- 96. 
7 \VINTNER: :\1ath. Z. Vol. 24 (1925) p. 266 
8 STIELTJES, T. J.: Ann. Fac. Sci. Univ. Toulouse Vol. 8 (1894) J 1-- J 122. 
~ VON KOCH: C. K Acad. Sci., Paris Vol. 12U (18'!5) pp. 14+- 1+7 

10 PASCAL, E.: Die Determinanten, trans. by Leitzmann. Teubner 19UO. 
11 KOWALEWSKI: Einfuhrung in die Determinantcntheorie, Chap. 17. Leipzig 

1909. 
12 RIESZ, F.: Les systcmes d'equations lin,\aires it nne infinite d'inconnucs. 

Paris 1913. 
1:l HELLINGER and TOEPLlTz: E11zyl<1. der math. \Yiss. II C 13 § 17 (1927). 
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More recent papers on infinite determinants are by D.C.GILLESPIE1 
and A. A. SHAW 2• 

54. Infinite matrices. The modern theory of matrices of infinite 
order is almost entirely an out-growth of the theory of integral equations. 
This theory had its inception in a series of six papers by DAVID HILBERT 3 

published in the Gottinger Nachrichten under the title "Grundziige 
einer allgemeinen Theorie der linearen Integralgleichungen". This was 
later issued in book form 4• Subsequent papers by HILBERT, FREDHOLM, 
HELLINGER, TOEPLITZ, E. SCHMIDT, WINTNER, VON NEUMANN and 
others have greatly extended the theory. 

In spite of the extent and importance of this theory, it will be very 
briefly treated here because it belongs so fundamentally to the theory 
of integral equations, and also because it has been so thoroughly ex­
pounded in recent years by HELLINGER and TOEPLITZ 5 and by A. WINT­
NER6. Both books have extended references to the literature. 

The purpose of our brief remarks on the subject of infinite matrices 
is to point out a few analogies with the theory of matrices of finite 
order, and also a few ways in which they are fundamentally different. 

55. A matrie algebra of infinite order. If lY is the real or complex 
field, denote by An an array (ars) of n rows and columns, and by A 
an array with a denumerable infinity of rows and columns. If multi­
plication of arrays is defined according to the identity 

AB = (lim ± aribis) , 
n-->-oo <=1 

it is at once evident that closure is not usually obtained. Hence it is 
not possible to define the total matric algebra of order n over lY for 
n infinite as was done for n finite. 

We shall call a matric algebra of infinite order a system of arrays, 
with elements in a field lY, which satisfies the following postulates 7: 

1. The system is closed under addition. 
2. For every two arrays A = (ars)' B = (Brs)' the infinite series 

(54.1) 

1 GILLESPIE, D. C.: Bull. Amer. Math. Soc. Vol. 33 (1927) pp.654-655, ab­
stract only. 

2 SHAW, A. A.: Amer. Math. Monthly Vol. 38 (1931) pp.188-194. 
a HILBERT, DAVID: Nachr. Ges. Wiss. Gottingen 1904 pp.49-91, 213-259; 

1905 pp. 307-338; 1906 pp. 157-227, 439-480; 1910 355-417· 
4 HILBERT, DAVID: Leipzig 1912. 
5 HELLINGER and TOEPLITZ: Enzykl. der math. Wiss. lIa Vol. 9 (1927). 
6 WINTNER, A.: Spektraltheorie der unendlichen Matrizen. Leipzig: Hirzel 

1929. 
7 HELLINGER and TOEPLITZ: Nachr. Ges. Wiss. Gottingen 1906 pp. 351-355. 
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converges absolutely, and the product matrix AB = (~arJ)i.J is in 
the system. 

For some purposes it is convenient to add 
3. The system is maximal. 
We shall define a matrix of infinite order as a member of a ll1atric 

algebra of infinite order. 
There can be more than one maximal system. 
Theorem 55.1. Multiplication is associative, and distributive with 

respect to addition. 
Both of these results follow from the assumption that the series 

(55.1) is absolutely convergent, and hence 

i~ ari C~ bij CjS) = i~ C~ aribij) Cjs, 

00 = = 
2' ari (bis + Cis) = 1: aribis + :f: ari Cis' 
i=l 'i~l i=l 

Theorem 55.2. If A has both a right and a left inverse, they are equal 
and unique. 

Let AX = I, YA = I. 

Then Y = Y (AX) = (Y A) X = X. 

For a matrix of finite order the existence of a left inverse implies 
the existence of a right inverse and vice versa. That this is not neces­
sarily so for matrices of infinite order may be seen from the following 
example1 : 

0 1 0 0 Xl .172 .173 .174 
.. ·11 

A= 0 0 0 X= 
1 0 0 0 ••• !i 

I~ 
0 0 0 0 0 

. 'I 

These matrices belong to a matric algebra of infinite order to be defined 
in the next paragraph. Evidently AX = I, while for every Y, Y A 
has only O's in its first column. It is to be noted that the right inverse 
of A is not unique, for the x's are arbitrary. 

Theorem 55.3. If A has a unique right inverse, this right inverse is 
also a left inverse 2. 

Suppose A X = I. Then 

AXA = A, AX + AXA - A = I, 

A (X + XA - I) = I. 

If the right l11verse IS umque, 

X+XA-I=X, XA =1. 

1 HELLINGER and TOEPLITZ; Math. Ann. Vol. 6') (1910) pp. 28,)-~33U. 
2 HELLINGER and TOEPLITZ; I. c. 

Ergebnisse tIer Mathematik. Il/S. Macl>uffee. 8 
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A matrix of infinite order is said to be non-singular if it has both 
a left and a right inverse, i. e., if it has a unique inverse. 

The failure for infinite matrices of the fundamental theorem of the 
first chapter (Corollary 7.9), namely that the determinant of the product 
of two matrices is equal to the product of their determinants, is parti­
cularly to be noted. In the example given above with each x equal to 
zero, we have AX = I, while by the definition of determinant due to 
HILL, d(A) = 0, d(X) = 0, d(J) = 1. 

By VON KOCH'S definition, d (X) does not exist. 
56. Bounded matrices. Let ~ be the real field, and consider all 

matrices A = (ars) of infinite order such that there exists a positive 
number m independent of n so that for 

X 12 + X 22 + + xn2 < 1, Y1 2 + Y22 + ... + Yn2 <:: 1, 

it is true that 

Such matrices are called bounded 1. 

HILBERT proved that the product of two bounded matrices exists 
and is bounded, and that the associative law holds for bounded matrices. 
Bounded matrices constitute a matric algebra of infinite order 2. 

00 

Let 2:Cizi be a power series convergent for I z I < (J. We may consider 
i=O 

1, Z, Z2, ••• to constitute a basis for an algebra of infinite order, the 
constants of multiplication being Cijk = ~i+j,k' (Cf. § 2.) Hence 
5i = (~r+i,s). That is, 

1 0 0 0 1 0 0 0 1 

50 = 0 1 0 
51 = 0 0 1 

5 2 = 0 0 0 , , 
0 0 1 0 0 0 0 0 0 

The matrix corresponding to 1: CiZi is 

Co c1 c2 

1: ci 5i = 
0 Co C1 

0 0 Co 

As in § 2, these matrices of infinite order are isomorphic under addition 
and multiplication with the series to which they correspond. Hence 
the set of all such matrices corresponding to series convergent for 

1 HILBERT: Nachr. Ges. Wiss. G6ttingen 1906 pp. 157-227. 
2 HELLINGER and TOEPLlTZ: Nachr. Ges. Wiss. G6ttingen 1906 pp. 351-355. 
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I z I < (J constitute a matric algebra, and are commutative, associative 
and distributive. 

In fact, if the radius of convergence is (J > 1, these matrices are 
bounded l . 

The theory of bounded matrices constitutes the major portion of 
the known theory of infinite matrices. In particular, all unitary infinite 
matrices are bounded. 

Many of the theorems for bilinear and quadratic forms carryover 
to forms of infinite order with the understanding that a non-singular 
matrix is one with a unique inverse 2. 

TOEPLITz 3 gave a method for reducing a bounded quadratic form 
to canonical form. 

H. HAHN 4 gave a necessary and sufficient condition that two bounded 
quadratic forms in infinitely many variables be equivalent by orthogonal 
transformations. F. H. MURRAy 5 gave a method for reducing such a 
form to canonical form by orthogonal transformations. 

J. HYSLOP 6 gave an extension of WEIERSTRASS' theorem on pairs 
of quadratic forms. 

1. SCHUR? proved that if H is bounded semi-definite hermitian, 
there exists a P with o's above the main diagonal such that H = P pCT. 

A. WINTNER 8 proved that if A is non-singular and bounded, there 
exists exactly one positive definite matrix P and exactly one unitary 
matrix U such that A = PU. 

The theory of infinite orthogonal matrices was developed by 
M. H. MARTIN 9. 

Even if 1: ar~ converges, A need not be bounded. T. CARLEMAN 10 

i=I 
showed how the study of such matrices may be brought under the 
theory of bounded matrices. 

]. VON NEUMANN ll considered matrices which are not bounded. 
Suppose that Q is a given matrix, and that there exists a matrix P 

such that Q P - PQ = I. This condition is never satisfied by matrices 
of finite order (since the trace of the left member is 0), but is satisfied 

1 TOEPLITZ: Math. Ann. Vol. 70 (1910) pp.351-376. 
2 HELLINGER and TOEPLITZ: Math. Ann. Vol. 69 (1910) pp. 28')--330. 
3 TOEPLITZ: Nachr. Ges. Wiss. Gottingen 1907 pp. 101-109. 
4 HAHN, H.: Mh. Math. Phys. Vol. 23 (1912) pp.161-224. 
5 MURRAY, F. H.: Ann. of Math. Vol. 29 (1928) pp.133-139. 
6 HysLOP, J.: Proc.London Math. Soc. II Vol. 24 (1926) pp.264-304. 
7 SCHUR, 1.: Math. Z. Vol. 1 (1918) pp.184-207. 
8 WINTNER, A.: Amer. J. Math. Vol. 54 (1932) pp. 145-149. 
9 MARTIN, M. II.: Amer. J. Math. Vol. 54 (1932) pp. 579-631. 

10 CARLEMAN, T.: Sur Ics equations integrales singulieres a noyau reel et 
symetrique. Uppsala 1923. 

11 NEUMANN, J. VON: J. reine angcw. l\Iath. Vol. 161 (1929) pp. 208-236 -
Math. Ann. Vol. 102 (1929) pp. 49-131. 
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by an important class of infinite matrices used in quantum mechanics. 
If R is another matrix, then RP - PR = R' is called the derivative 
dRfdQ of R with respect to Q. From this definition the more important 
properties of the derivative may be shown to hold for R'.l 

57. Matrices with a non-denumerable number of rows and colums. 
Each element ars of A may be considered as a function of the two 
variables rand s. From this point of view, every function of two 
independent variables is a matrix 2. 

A mat ric algebra of non-denumerably infinite order is, then, com­
posed of a set of functions A = a (x, y), B = b (x, y), ... which is 
closed under addition, and under "multiplication", or composition of 
the type b 

AB = ja(x, t) b(t, y) dt.3 
a 

It is readily seen that multiplication is associative and distributive, 
but usually not commutative 4. 

Application of such matrices to physics was made by P. A. M. DIRAC 5• 

A. D. MICHAL 6 considered the equivalence of "quadratic forms" of 
the type b b b 

j j g ({X, fJ) Y ({X) y (fJ) d {X d fJ + j [y ({X)]2 d (X 

a a a 

under FREDHOLM transformations 
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