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Preface.

Matric algebra is a mathematical abstraction underlying many
seemingly diverse theories. Thus bilinear and quadratic forms, linear
associative algebra (hypercomplex systems), linear homogeneous trans-
formations and linear vector functions are various manifestations of
matric algebra. Other branches of mathematics as number theory,
differential and integral equations, continued fractions, projective
geometry etc. make use of certain portions of this subject. Indeed,
many of the fundamental properties of matrices were first discovered
in the notation of a particular application, and not until much later re-
cognized in their generality.

It was not possible within the scope of this book to give a completely
detailed account of matric theory, nor is it intended to make it an
authoritative history of the subject. It has been the desire of the writer
to point out the various directions in which the theory leads so that the
reader may in a general way see its extent. While some attempt has
been made to unify certain parts of the theory, in general the material
has been taken as it was found in the literature, the topics discussed
in detail being those in which extensive research has taken place.

For most of the important theorems a brief and elegant proof has
sooner or later been found. It is hoped that most of these have been
incorporated in the text, and that the reader will derive as much plea-
sure from reading them as did the writer.

Acknowledgment is due Dr. Laurens EARLE Busa for a critical
reading of the manuscript.

Cyrus CoLTON MACDUFFEE.
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I. Matrices, Arrays and Determinants.

1. Linear algebra. A linear algebra % of order # over a field ¥ is
composed of two or more numbers «, #,y,... and three operations,
addition (-+), multiplication (-) and scalar multiplication such that
x4 f, «&-f, xa, anx are uniquely defined numbers of U, where a is
in §. It is further assumed that addition is commutative and asso-
ciative, and that multiplication is distributive with respect to addi-
tion. If a and b are in § it is assumed that

ax =oaa, a(ba)=(ab)x, ) (Bp) = (ab) (xp).
(@ +ba=ax-+bdx, aoc+ﬁ):aoc+aﬁ.

Finally it is assumed that ¥ contains a finite number of numbers
&, €s, - . ., &, such that every number of U is of the form

418+ dg€y + -+ Anén,

where the a’s are in 1.
2. Representation by ordered sets. If

& = a1&; T 38 + - 1 ay8,
is a number of U, and if the ordered set
(41, a9, - - -, 4y)

of numbers of §§ be made to correspond to «, addition, multiplication
and scalar multiplication for such sets can be so defined that theyv
give a representation of . Thus if

“N‘[alrazx"'ran]’ ﬂN[b PEERIIRS] n‘l

then by definition

x+foolay+ by, ag+ by, ..., a,+ b, ax~[aa,, aa,, ..., aa,].
If
€t & = Cij1 &+ Cija &+ o0+ Ciynta,
then

& f=2ag- 2 big;=>(a;by) - (&;8) = X a;bcijpe;
OC-ﬂN[Zaibjcijl, Zaibjci]-._,, ey Zaibicijn]~

For every choice of the #® numbers ¢;;; of § an algebra over ¥ is ob-
tained?2.

so that

1 DicksoN, I.. E.: Algebren und ihre Zahlentheorie, p. 23. Zirich 1927.
2 Hamirton, W. R.: Elements of (Quaternions.
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If in particular the algebra is associative, then

(ei-&) - en =128 (¢-¢). (6,1, k=1,2,...,n)
This means that the #3 numbers c;;; are subject to the #* conditions
(2.1) 2y Cikr Csk = 2% Cigk Chsr - (Z,7,7,s=1,2,...,m)
If R; denotes the ordered set of numbers
Ciir G221 -+ Cim1
R = (cisy) = Ci1z  Ciz2 Cin2
|Citn  Cizn -+ Cinn

and if multiplication and scalar multiplication of such sets are defined by

RiRj = (Cisr) (str) = (2% Cirr Cisk) »
aR; = (acis,),
then (2.1) may be written?!
RiR; = Zyci Ry

Thus the sets R; combine under multiplication in the same manner
as the basis numbers ¢; of A. If the sets R; are not linearly independent
with respect to %, the sets R; obtained by bordering R; above with a
row of 0’s and on the left with d,; (KRONECKER's d), are linearly inde-
pendent and are isomorphic with the e; under multiplication?.

If, finally, addition of sets is defined by the identity

R; + Rj = (cisr + cjsr) ,
it is evident that these sets give a representation of the algebra3.

It is interesting that in the same year that POINCARE’s note was
published, SyrLvESTER wrote: “The PEIRCES (subsequently to 1858)
had prefigured the universalization of HamirToN’s theory, and had
emitted an opinion to the effect that probably all systems of algebraical
symbols subject to the associative law of multiplication would be even-
tually found to be identical with linear transformations of schemata
susceptible of matricular representation. ...That such must be the
case it would be rash to assert, but it is very difficult to conceive how
the contrary can be true4.”

3. Total matric algebra. The considerations of §2 suggest that
a linear algebra of order #? over ¥ can be so defined that every algebra
of order # over § will be isomorphic with one of its proper sub-algebras®.

1 ScHUR, I.: Uber eine Klasse von Matrizen, p. 59. Berlin 1901.

2 DicksonN: Algebren und ihre Zahlentheorie, p. 35.

3 Poincarg, H.: C. R. Acad. Sci., Paris Vol. 99 (1884) pp. 740—742. —
WEYR, E.: S.-B. bohm. Ges. Wiss. Prague (1887) pp. 616—618. — Stubpy, E.:
Enc. math. Wiss. T A Vol. 4 (1904). § 10.

4 SYLVESTER: Amer. J. Math. Vol. 6 (1884) pp. 270—286.

5 vaN DER WAERDEN: Moderne Algebra Vol. I p. 37. Berlin 1930.
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More generally we define the total matric algebra Ik of order »? over
a ring M to consist of the sets of #2 number each of the type

Ly .. gy |
! i
Ay Ay Aan | _
4= = (arg)
Ant Apz - - Qpp 1

subject to the following operations and postulates:

Two sets A = (a,;) and B = (b,,) are equal if and only if a,; = 0,,
for every » and s.

The operation of addition is defined by

A+ B = (a,s + bs) .

Evidently the sets form an abelian group with respect to addition,
since the same is true of the elements of the ring :. The identity set,
whose elements are all 0, will be denoted by O.

The operation of multiplication is defined by

AB = (Zia, i bis)

that is, by “row by column’’ multiplication of the sets. The product
is evidently unique, and 04 = A0 = O for every A.

Multiplication in % is associative, since multiplication in R is as-
soclative. (AB)C = (21.‘](“”. biy) ¢ )

= (& arilbij ;) = A(BC).
Multiplication in 9 is distributive with respect to addition, for the
same is true in %.
(A + B) C= (Ei(ari =+ brz) Cis)
(Zi(aricis + bricis)) = AC -+ BC.
Similarly C(4 4+ B) = C4 4 Ch.

Theovem 3.1. The total matric algebra of order n® over a ring N is
itself a ring.

Nothing is gained in this connection by specializing %, for multi-
plication in M remains usually non-commutative even when 3 is a com-
mutative ring, and the inverse as to multiplication of 4 = O does not
always exist even for a ring without divisors of zero. If, however,
N is a ring with the unit element 1, then the matrix I = (6,,) (Krox-
ECKER’s delta) is such that A7 = IA4 = A for every 4, and Wt is a ring
with unit element 1.

We define a matrix over R to be a number of a total matric algebra
over N.

Suppose A = (a,,), B = (b,,), AB = C = (c,,) to be n-rowed matri-
ces. Let 4 and B be separated into blocks:
Ay A B - i‘ By By ‘r

‘) - 1) C ! .
C Ay Ay | | By By | Oy Cy

U Al ~
ol Cn Gy

A:
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where A,; has 4 rows and § columns, B;; has § rows and % columns,
and Cy; has ¢ rows and & columns. It is readily verified that

Crs:‘ZiAriBiS! (1’, S,i:'l, 2)

where the rectangular blocks 4;;, B;; are multiplied “row by column”.
This holds for all separations of the matrices into blocks, provided the
rows of B are separated in the same ways as the columns of 4.

We shall use the word array to mean an ordered set of & elements
such that two arrays are equal if and only if each consists of the same
number of elements and if corresponding elements are equal. If
k = mn, the array can be arranged in the form of a rectangle. Under
certain circumstances the sum or product of two arrays may have
meaning, for instance when they are matrices or as in the last paragraph
when they are blocks cut from matrices, but no such operations are
implicit in the definition of array.

A matrix is an instance of an array of #? elements, but it is much
more than that, for it is a member of a total matric algebra for which
the operations of addition and multiplication are defined. The importance
of the matric theory derives from the rules of combination of matrices,
while the fact that they may be represented by square arrays is in-
cidental.

Sir THOMAS MUIR recently remarked: “One of the first of such ex-
tensions of usage was entirely uncalled for, especially in England,
namely to make it (the word matrix) take the place already satisfactorily
occupied by the word array. How satisfactory this was will be readily
seen on looking through textbooks of determinants like ScoTT’s:. A
capable historian... would certainly add further to his credit if in
the course of his work he made manifest by precept and example an
irreproachable mode of using in each other’s company the terms array,
determinant, matrix®.”’

Writers are far from agreed on a consistent terminology. The word
“matrix” was first used by SYLVESTER3 to denote a rectangular array
from which determinants can be formed. The concept of a matrix as
a hypercomplex number is due in essence to HAMILTON but more directly
to CAYLEY?. CHATELET, among others, uses “‘matrix” for a rectangular
array and “tableau” for a member of a matric algebra®. But the es-
sential point, to which CHATELET agrees, is to differentiate the concepts.

1 Scott, R. F.: A treatise on the theory of determinants. Cambridge 1880.

2 Muir, Tuomas: Trans. Roy. Soc. S. Africa Vol. 18 ITI (1929) pp. 219—227.

3 SyrLvEsTER: Philos. Mag. Vol. 37 (1850) pp. 363—370 — Coll. Works Vol. I
p- 145.

4 CavrLeY: Trans. London Phil. Soc. Vol. 148 (1858) pp. 17—37 — Coll. Works
Vol. IT pp. 475—496.

5 CHATELET: Les groupes abéliens finis. Paris 1924.
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4. Diagonal and scalar matrices. A matrix of the type

i’kl 0 0 0"
0 kO 0 ;
DiHO 0 4k 0 i*[kpkz’ , k]
b |
0 0 0 Ry |

is called diagonal. From the definitions of addition and multiplication
of matrices it follows that

[klv kz) R kn] + Ulvl2' .. ')ln] = [kl + llr kz + lzr ) kn T ['u}'
By, koo R Loy L] = (Rl Roly, oo R

A diagonal matrix all of whose diagonal elements are equal is called
scalar'.

If S; denotes [k, k,... k], then S, 4+ S,=5S,.,, SipSi= S;/,
Se=0.

Thus

Theovem 4.1. The scalar matrices of WM constitute a subring of M is0-
morphic with R.

It is customary to write % for S; and 24 for S;4. If R is a ring with
unit element 1, then S; = I.

Theovem 4.2. If N is a commutative ving with unit element, and if
AX = XA jor every X in W, then A is scalar.

For if x;,, in
N T
2, Api Xis = Zxri Ais
is replaced by 0y, 0;,, there results

- -y . ¢
Zariaipasq :;izéry)éiqais» arpasqzérpaqs- (V,S,P,q:L 2,”-,%)

For ¢ = s and #» +- p this gives a,, = 0, while for ¢ =5 and » = p
it gives a,, = a,.

5. Transpose. Symmetric and skew matrices. The matrix A = (a,,)
obtained from 4 = (a,,) by changing rows to columns is called the
transpose? of A. A matrix S such that ST =S is called symmetric,

a matrix Q such that QT = —(Q is called skew? (skew-symmetric, or
alternating).
1 SyLvesTtER: Amer. J. Math. Vol. 6 (1884) pp.270—286 — Coll. Works

Vol. IV pp. 208—224.

2 Or conjugate. Many different notations for the transpose have been used,
as A7, A4, /I, A*, Ay, 4. The present notation is in keeping with a systematic
notation which, it is hoped, may find favor.

3 CAYLEY: J. reine angew. Math. Vol. 32 (1846) pp. 119—123 -— Coll. Works
Vol. I pp. 332 -336. lL.LAGUERRE: J. Tieole polytechn. Vol. 25 (1867) pp. 215 to
264 — Euvres Vol. 1 pp. 228—233.
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Theovem 6.1.
A+B+- -+ K)T=A4T+ BT ... + K"
Theorem 5.2. If R is a commutative ring (AB ... K)T=K"...BTA".
For (AB)T = (2 a,;b;)T = (2 b;,a,;) = BTA". The general theorem
follows by 1nduct10n1
Theorem 5.3. If R is a ring m which 2x = a is solvable for every a,

every matrix of M over R is uniquely expressible as a sum of a symmetric
and a skew matrix®.

Assume =S40, ST=S, QT=-9.
Then AT =ST 4+ (QT—S—0Q sothat S—24Ft4" o_4

Conversely for every A it is possible to form a symmetric matrix S and
a skew matrix @ in the above manner.

6. Determinants. Let I be an algebra of #-rowed matrices with
elements in a field §. It is desirable to have associated with every
matrix 4 of I a number §(A4) of F which would serve the purpose of
an absolute value. This end would be attained by finding a scalar
function 6(A4) of the elements a,, of a general matrix 4 such that.

1. For every A, 6#(4) is a non-constant rational integral function
of the a,, of lowest degree such that

2. 6(4B) = 6(4) 6(B).

It follows directly from (2) by taking B = I that §(4) = 6(4)8(I),
and since #(d4) is not constant, §(I) =1. If B =0, (2) glves 6(0)
= 6(4)6(0). Again because 0(A4) is not constant, §(0) =

When # = 3, for instance, let

— AT

0 1 0] 1‘1 0 of 1.0 01
V=1 0 0], Wey=l0 1 t|, T@#H=|0 t 0.
0 0 1] 00 1) 1o o 1]

Vi=1I, W@HOW(—)=I, TOTUR) =1.
Since (W (t)) 6(W (—1?)) =1, it follows that (W (¢)) is independent
of ¢, otherwise the left member of the above equation would be of

degree >0 in ¢{. Hence (W (f)) has for every value of ¢ the same
value that it has for ¢ = 0, namely

OW@H) =1.
Consider
‘010 t 0 0 010‘1001
4100’010 1.0 0)/=|0 ¢ 0
oo 1] Jo o 1 0011;0011

! Cavrey: Philos. Trans. Roy. Soc. London Vol. 148 (1858) pp. 17—37 —
Coll. Works Vol. II pp. 475-496.
2 FROBENIUS: J. reine angew. Math. Vol. 84 (1878) pp. 1—63. — CaYLEY: L. c.



359] I. Matrices, Arrays and Determinants. 7

or VI,VW=T,. Since (V) =41, 0(T,) = 0(T,). Since 8(T'(t)) 6(T (1/t))
=1 and (T (#)) is of the same degree 1in ¢ that §(T(1/t)) is in 1/¢, it
follows that 6(7 (f)) must be a monomial a,#* in ¢. Since § (T (1)) = 1,
a; = 1. We now invoke the minimum principle (1) and assume that
A = 1. This is justified by actually obtaining under this restriction a
function satisfying the given requirements. Then

O(T) =1t.
Consider
100 110 100 |01 o0 1 0 0]
1 1 0 0 1 0 |—1 1 0 11 o 0 =0 —1 0],
001 Eooqhﬁooﬁ} 001, 0 o0 1
or W\Wy,W,V = T(—1). Hence
O(V) = —1.

If A is a general matrix, #(7T4) = t60(A) so that

1’. The function #(4) is a polynomial in the elements a;; which
is homogeneous and linear in the elements of each row.

Since §(VA) = —0(4), it follows that

2'. 0(A4) merely changes sign when two rows are permuted.

3. 0) =1

The three properties just stated were called by WEIERSTRASS the
characteristic properties of a determinant. By 1'.

n

(9(1‘1): Z Ehvhy o by B1h A2py - - - Apy, -
Byhsyeooyhin=1

Permute rows 1 and 2 and add, whence by 2/,
-
D (Chihaehw Tt Ehaby o h) @1hy A2y - - Appy = O
Hence in general &,; 5, is 0 if two subscripts coincide, while if

the #’s and k’s are all distinct, &, ,, 4, = 4-%,1....1, according as

‘n

the substitution (hl By hn>

Riky o Ry,
is even or odd. Since (/) = 1, it follows that & , ,=1. Hence
in general
(6.1) 0(A) == 2 ehhe... b @11, 2ty - - - Any >
where the summation is over all permutations (%, ks, ..., A, of
(1,2,...,%), and &, . 4, is 1 or —1 according as the permutation

is even or odd?2,

1 This treatment is due to K. HENSEL: J. reine angew. Math. Vol. 159 (1928)
pp. 246 —254.

2 WEIERSTRASS-GUNTHER: Zur Determinantentheorie. 1886—1887 — Werke
Vol. III pp. 271—286. — KRONECKER: Vorlesungen uber die Theorie der Deter-
minanten Vol. 1 p. 291 et. seq. Teubner 1903.
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That this function 6(A4) satisfies the demands of HENSEL will follow
from Corollary (7.9).

It is possible to develop the entire theory of determinants from the
characteristic properties of WEIERSTRASS.

7. Properties of determinants. As CAYLEY remarked, “the idea
of matrix (or square array) precedes that of determinant’’2, A determin-
ant is a number associated in a precise way with an array of #? ordered
numbers. This point of view seems to have been clear to CAucHY who
gave the first systematic treatment of determinants, a treatment which
can scarcely be improved upon today3. Unfortunately the word “‘deter-
minant” is often used today to mean both an array and a number
associated with that array. (Note the remarks of MUIR in §3, and
BENNETT’s criticism of BOCHER?. For a very clear statement of the
ordinary determinant theorems from the present point of view, see
Hasse, Hohere Algebra I, de Gruyter 1926.)

There is no room in the present tract for an extended treatment
of determinant theory. A practically complete bibliography is given
in Muir’s “Theory of determinants in the historical order of develop-
ment”, 4 v., Macmillan 1906—23. The early history is attractively
presented by KRONECKER, “Vorlesungen iiber die Theorie der Deter-
minanten”, Teubner 1903, p.1—9. An excellent reference book is
G. KowaLEwsKI's “Einfiihrung in die Determinantentheorie”, Leipzig
1909.

Let A be a square array with elements in a field ¥ and let d(4) or
| 4| be its determinant. A few important theorems are listed for future
reference.

Theorem 7.1. d(AY) = d(A).

. Theorem 7.2. If B is obtained from A by the interchange of two rows
or of two columms, d(B) = —d(4).

Theorem 7.3. If two rows or two columns of A are identical, d (4) = 0.

The usual proof of this result, namely in noting that the hypothesis
gives 2d(A4) = 0 and hence d(4) = 0, fails when & has the character-
istic 2. The proof can be modified to include this case5 or the result
can be proved otherwise.

Theovem 7.4. If B is obtained from A by wmultiplying any row or
any column of A by k, then d(B) = kd(4).

Theorem 7.5. If A is a square array each element of whose kth row
s a sum

dks]+dks2+"'+dksm (321,2:---’”’)

1 Iriovici: Rev. Math. spéc. Vol. 37 (1927) pp. 433—436 and 457—458.
2 CAYLEY: ]. reine angew. Math. Vol. 50 (1855) pp. 282—285.

8 CaucHy: J. Ecole polytechn. Vol. 10 (1815) pp. 51—112.

4 BENNETT, A. A.: Amer. Math. Monthly Vol. 32 (1925) pp. 182—185.
5 Rvcurig, K.: J. reine angew. Math. Vol. 167 (1932) p. 197.
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then
d(A) = d(Al) + d(AZ) + - d(Am) )
where Ay, is the array oblained by replacing the elements of the kth vow
by dyin, Gpons -« s Agpp- Stmilarly for columns.
Theoremn 7.6. If B is obtained from A by adding to any row (or column)
a lineay combination of the other vows (columns), then d4(B) = d(A4).
If 4 is a square array of »n rows,

| |

‘ Arisy  Arisy -+ oo Apgy
i

Arl E o Arys, Ary s, Ay spc
. sk !

’ Arrsi rpsy - oo Ay

is called an 7-rowed minor arvay of A. A2 [* is a principal minor array.
.

Theovem 7.7.

d(d) = X wd (A w) d(Afy ),
where the summation is over the ( ) ways of selecting the k numbers iy, ..., 1
from among the numbers 1, ..., n without regard to order, and the sign
is + or — according as the substitution
M, 2, ...k, kE+1, ..., n)
(7’1,72, e YE, Thads , T

1S even or oddl.
In particular d (4}) = a,,. Let 4,, denote -d (47" {10
the sign being + or — arcording as
(7, 1, ..., v—1,r+1, ..., n
s, 1, ..., s—1,s+1, ..., n

is even or odd. Call 4,, the cofactor of a,; in 4.
Theorem 7.8.

3 n
Ziﬂpifiqi :.ZiaipAiq — (Spqd(fl) ,
1= =

where 0,, ts KRONECKER's delta.

Theorem 7.9. Let A and B be n-vowed matrices with elements in a
field 5. Let M ’,'” be an m-rowed minor matrvix of the product AB.
Then

(Z(,WL"' m) Zd(Akl" Lm) (le.. l::/’

where the summation is over all ( ) selections of 1y, . . ., i, from 1, ,H

without vegard to ovder?.
Covollary 7.9. d(AB) = d(4)d(B).

1 LAPLACE: Mém. Acad. Sci. Paris 1772.
* Dickson: Modern algebraic theories, p. 49. Chicago 1926.
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8. Rank and nullity. If A is an m-# array with elements in a
field §§, the rank g of A is the order of a minor square array of 4 of
maximum order whose determinant is not zerol. If A is square of
order #, then # — g is called the nullity of A.2

Theovem 8.1. If A is a square arvay of order n, with clements in a
freld ¥, of nullity % and rank ¢ = n — x, there exist exactly » linearly
independent linear relations among the rows (columns) of A, and con-
versely.

Rearrange the columns of 4 so that the first » are linearly independent
while each remaining column is linearly dependent upon these. Call
the resulting matrix B. Then evidently 9(4) = ¢(B). There are
exactly # — 7 independent relations

Bribes + Rusbps 4 -+ + ko by = b
k=12, ...,m h=r+1,..., n)
among the columns of B. By Theorems 7.5 and 7.4 every (r-+1)-
rowed minor of 4 has a determinant which can be written as a linear
combination of determinants each having at least two equal columns,
and hence vanishes. Thus ¢ < 7.
Now suppose that

by b, ‘ b bio bin|
........ ‘ :p 0 [ ‘ 0
’ bo1 ... by E be1 boo ben|
by bro  bra

for every 4 and k. By Theorem 7.8
bp1 B + bpa By + - + b,y B + b, B% =0
for every p and k. But the cofactors B are independent of %, so there
is a relation
bpl Clh + bp2 C2h + -+ bpgcgh -+ bphchh =0

for every p and k. Moreover for & > g, C; == 0 since B is of rank g.
Thus the number # — 7 of linearly independent linear relations among
the columns of B is at least » — g, so r <. Hence o =7,n —7 = z.

Corollary 8.2. If BC =0, ¢(B) + 0(C) =n. For every B there
exists a C such that o(B) + 0(C) = n.

A solution X of the equation 4X = O of rank # — p(4) is called
a complete solution. Denote by (x) the vector or one-column array
(%1, %3, . . ., %;). Then (y) = A (x) can be written for

2% = v;. (#,71=1,2,...,n).

1 FROBENIUS: J. reine angew. Math. Vol. 86 (1879) pp. 1—19. The concept
of rank seems to be implicit, however, in a paper by I. HEGER: Denkschr. Akad.
Wiss. Wien Vol. 14 (1858) pt. 2 pp. 1—121.

* SyLVESTER: Johns Hopkins Univ. Circulars Vol. ITI (1884) pp. 9—12 —
Coll. Works Vol. IV pp. 133 —145.
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If B is a complete solution of the equation AB = 0, and if (x) is an
arbitrary vector, then (y) = B(x) is the most general solution of the
equation A (y) = 0.

Lemna 8.3. If the vector (2) ranges over the solutions of the equation
AB(2) = 0, then B(2) represents exactly o(B) — ¢(AB) linearly in-
dependent vectors.

For among the T = #» — ¢ (A B) independent solutions of the equation
AB (z) = 0 belong the o =n — o(B) solutions ('), (z”), ..., (2”) of the
equation B (z) =0. If these are extended by the solutions (z*9), ..., (2)
to a complete system of 7 solutions, the 7 — o= ¢(B) —0(4B)
vectors B (z°FD), ..., B(z'Y) are independent. For a relation

CG+IB(Z(G+1)) 4o+ CB(z9) = B(Ca+l(z(a+1)) Joeen - Cl(z(f))) =0
would imply
Coi1 (D) 4 v 4 Co(2) = Cy(2) + -+ + Co(2),

and hence C; =-.-=C,=0.

Theovem 8.3. If A, B, C are three matrices of order n with elements

m ¥,
e(4B) 4 0(BC) =¢(B) + ¢(4BC).

In the lemma replace B by BC. Then 1= o(BC) — ¢(4BC) is
the number of vectors (y'), ("), ... for which ABC(y) == 0 and the
vectors BC(y'), BC(y"”), ... are independent. Then (2) = C(y’),
(z"y = C(y"), ... satisfy the equation AB(z) =0, and the vectors
B(z') = BC(y'), B(z'") = BC(y"), . .. are independent. But since there
are not more than o (B) — g(4B) such vectors! (¢), (z'), ...,

h=¢(B) — ¢(4B).

Corollary 8.3. The nullity of the product of two wmatrices is at least
as great as the nullity of either factor, and at most as great as the sum of
the nullities of the factors2.

For when C == 0, FroBENIUS' theorem gives o (4B) = ¢(B); when
A =0 it gives o(BC) = p(B); and when B =1, it gives

o(4) + ¢(C)=n + o(4C).

If A is an n-rowed square matrix with elements in a domain of
integrity ® containing the field ¥ as a sub-variety, the column-nullity
of A with respect to § is the number of linearly independent linear
relations among the columns of 4 with coefficients in %. The column-
nullity may not equal the row-nullity?.

1 FroBeENIUS: S.-B. preuB. Akad. Wiss. 1911 pp. 20—29.

2 SyLVESTER’s “Law of nullity”’. Johns Hopkins Univ. Circulars Vol. 3 (1884)
pp. 9—12 — Coll. Works Vol. 1V pp. 133—145.

3 MacDurreg, C. C.: Ann. of Math. II Vol. 27 (1925) pp. 133—139.

Ergebnisse der Mathematik. II/5. MacDuifee. 2
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Theorem 8.4. If A is a matrix of rank @, and d(A;""i") 1s denoted

g een j@
by b;; (i, i=1,2,...,m;m= (g)), then the m-rowed square matrix
B = (b,,) is of rank 1.1
Suppose the rows and columns of 4 arranged so that b,; == 0. The
last # — o rows are linear combinations of the first g rows, so if suitable
linear combinations of the first ¢ rows are added to each of the last
n — o rows, these latter may be made to consist exclusively of 0’s.
This process does not alter the rank of 4 or the rank of B. Now b,, = 0
except when 7 = 1, so the ratio
biy 1 big:eee by
is independent of 7. In other words,
b,sz krbis’ bn:§:0.
Theorem 8.5. In a symmetric matrix of vank @ there is at least one non-~
singular principal minor of order p.2
Suppose A symmetric of rank p. By Theorem 8.4 set
bij=mi;bj=bji:mj;bi, (i='1,2,...,m)
where some p;, say p;, is not 0. Set &;;/p,2 = m. Then b;; = mp;p;.
If m were 0, 4 would be of rank <<p. Hence b, == 0.

Theorem 8.6. The rank of a skew matrix is even3,
Suppose 4 of odd rank ¢ and b,, = —b,,. Set

by = mipy, bji=mypi=—mp;, pp=0.
For m = —by,/p;* this implies
bis = mpip; = —mp;pi.

Hence every &;; = 0, contrary to the assumption that the rank of A
was g.4

9. Identities among minors. Theorem 9.1. Among the minors of
order m of a symmetric matrix A of order n there exists the relations

;ars} = Zh’aikl

r=1,2,...,m; s=m-+4+1,m+2,...,2m;, h=m-+1, ..., 2m;
1=1,2,...,m—1, h; k=m+1, ..., b—1,m, h4+1, ..., 2m.

Let A have independent elements. Let |4,,|=a. The operation

2m m
5| 2 A
% da,, 4 Im Sam
j=m =1

1 KowaLewskl: Einfithrung in die Determinantentheorie, p. 124.

2 KRONECKER: ]. reine angew. Math. Vol. 72 (1870) pp. 152—175.

3 Jacosi: ]. reine angew. Math. Vol. 2 (1827) pp. 347—357.

4 The last three proofs are by G. A. Briss: Ann. of Math. IT Vol. 16 (1914)
Pp. 43—44.

5 KRONECKER: S.-B. preuB. Akad. Wiss. 1882 II pp. 821—844 — Werke
Vol. IT pp. 389—397.
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first replaces the elements of column % by elements with the same first
subscript but with the second subscript #, and then replaces the elements
of the last row of the new determinant by elements with the same second
subscript but with the first subscript h. Consequently

> Sl Z Gy = 2 9

h=m+1 j=m
The left member is equal to

Pa 2z 0
a
3 Sa[Sustnlr Sanin.
h=m+1 j=m+1 h=m+1 P
a

. da g _
Since Ba = 0, {#m in the second summation. For =7, Famrdan =0.

Now consider 4 to be symmetric. The coefficient of a;;, & 5 7, is
m
&%a %a
Zdlm(%—;ﬂj Oay, + Ol (M“)'
=1
Since the interchange of columns % and 7 does not alter this expression,
it vanishes. Hence the entire left member reduces to?!
St
m h da i
h=m+1

A formal proof of KRONECKER’s identities was given by 1. SCHEN-
DEL2, H. S, WHITE? proved them from known identities in algebraic
invariant theory. R. MEHMKE* stated that they are implied in Grass-
MANN’s “‘Linealen Ausdehnungslehre” 1862, p. 131.

C. RunGe’ proved that all linear relations among the minors of a
symmetric matrix are linearly dependent upon those of KRONECKER,
and found linearly independent systems. He also proved that no such
relations exist for skew matrices. His results are significant in con-
nection with the generalizations of KRONECKER’s identities by MUIrS,
and HELEN BARTON?.

MEeTzLER® gave some complicated identities among the minors of
a matrix which include KRONECKER’s in the symmetric case. A very
complete account of the identities among the minors of a matrix was
recently given by R. A. BEAVER®.

StourrFER, E. B.: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp. 63—64.
SCHENDEL, L.: Z. Math. Physik Vol. 32 (1887) pp. 119—120.

Waite, H. S.: Bull. Amer. Math. Soc. IT Vol. 2 (1896) pp. 136138
MenMke, R.: Math. Ann Vol. 26 (1886) pp. 209—210.

Runge, C.: J.reine angew. Math. Vol. 93 (1882) pp. 319—327.

Muir: Philos. Mag. Vol. 3 (1902) pp. 410—416.

Barton, HELEN: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp. 393—396.
MEeTzLER: Trans. Amer. Math. Soc. Vol. 2 (1901) pp. 395—403.

BeAVER, R. A.: Amer. Math. Monthly Vol. 39 (1932) pp. 266—276.

2%
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MacManon?, and Muir? showed that there are just #%®—mn + 1
independent principal minors of a matrix. STOUFFER? showed that (4;),
(4;;), (4,4, constitute such a system, the subscripts indicating deleted
rows and columns. STOUFFER? gave a method for expressing the deter-
minant of a matrix of any order in terms of not more than 14 of its
principal minors of lower order, and later® showed that the determinant
of a matrix of order # is a function of four minors of order # —1 and one
of order #» — 2. A general theorem on the expression of a determinant
in terms of its subdeterminants was proved by W. W. FLEXNERS.

10. Reducibility. Theorem 10.1. If A s either a general matrix or
a general symmetric matrix, there is no identity

a(4) = f(ai)) g (aij) ,
where | and g are polynomials in the elements of A neither of which s
a constant.

Suppose the elements of 4 independent and 4(4) =f-.-g. Since
d(4) is linear in every element, if 4;; occurs in f it does not occur in g.
No term of 4(A4) contains 4,,4,;, hence g is of degree 0 in every a,.
Since no term of 4(4) contains a,,a,,, g is of degree 0 in every a,; and
is therefore constant. Only a slight modification is required to extend
the proof to the general symmetric matrix”.

This is a special case of the theorem that the determinant of an
irreducible group matrix is an irreducible function of the variables®.

Theorem 10.2. The determinant of the general skew matrix of even
order is the square of a rational function of s elements.

The theorem is obvious for # = 2, and the proof follows by induction.
A} 77l is skew of odd order and hence its rank is # — 2 at most.
(Theorem 8.6.) Let AY) be the cofactor of a;; in Ay 'n7i. As
in the proof of Theorem 8.5,

AZL) =mpip;,
where p; is a rational function of the elements of 4. By assumption
Aj} is the square of a rational function of the a;;, so the same must
be true of m, which may be taken as 1. By the LapLacE development
2(4) = Zi,jAg;‘) AinAjn = (Zi P @in)? -

The following more general theorem was proved by E. ZyLINSKI®.

Let A be a matrix obtained from 4 = (a,,) by replacing a certain

1 MacManon: Philos. Trans. Roy. Soc. London Vol. 185 (1893) pp. 111—160.
2 Muir: Philos. Mag. V Vol. 38 (1894) pp. 537—541.

3 StourrER: Trans. Amer. Math. Soc. Vol. 26 (1924) pp. 356— 368.

¢ STOUFFER: Amer. Math. Monthly Vol. 35 (1928) pp. 18—21.

5 STOUFFER: Amer. Math. Monthly Vol. 39 (1932) pp. 165—166.

¢ FLEXNER, W. W.: Ann. of Math. II Vol. 29 (1927) pp. 373—376.

? BOcHER: Introduction to higher algebra, p. 177. Macmillan 1907.

8 DicksoN: Modern algebraic theories, p. 259. Chicago 1926.

9 Zvrinski, E.: Bull. int. Acad. Polon. Sci. 1921 pp. 101—104.
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number of elements by 0. Let 4* be a matrix obtained from 4 by
replacing by 0’s those of the elements which do not actually figure
in the development of d(A4). A necessary and sufficient condition for
the irreducibility of d(4%) is as follows: Starting from one element
a,, of A*, one can reach each of the other elements (not 0) by a closed
polygon each side of which is limited by two elements @, belonging
to the same row or to the same column of A*.

L. GEGENBAUER? proved that if the rows of a matrix are cyclic
permutations of the first, in the field of the roots of unity the deter-
minant is a product of linear factors. W. BURNSIDE? generalized this
to the case where the successive rows proceed from the first by the
permutations of an abelian group of order #.

FroBEN1US3 proved that if the elements of the matrix X are in-
dependent variables, and those of the matrix Y linear functions of
these variables, and if d(X) = cd(Y),c %= 0, then either Y = AXB
or Y = AX'B where A and B are constant matrices. For #» > 1 only
one of these relations can hold; 4 and B are unique up to scalar factors.

I. Scuur? generalized the above theorem as follows: Let X be an
array of m rows and # columns whose m# elements are independent
variables. Let Y be an array of the same type whose m# elements y,,
are linear homogeneous functions of the elements x,, of X. If for a
fixed 7, 2<% =m, 2 =7 = #n, it is known that the N = (T) (:f) minors
of order 7 of Y are linearly independent linear homogeneous functions
of the N minors of X, then for m == # the array Y is of the form AXB
where A and B are non-singular constant square arrays of orders m
and n respectively. If m = n, either Y = AXB or Y = AX'B.

11. Arrays and determinants of higher dimension. The notion of
extending the theory of determinants to cubic arrays and arrays of
»n dimensions has occurred to many writers, beginning with CAYLEY®.
L. GEGeNBAUER, M. LEcaT and L. H. RICE, among others, have written
extensively in that field. LEcAT® gave a chronological list of 50 papers,
and in 1926 brought the list up to date?. An excellent exposition was
recently given by Rice8. The subject seems to lie much closer to tensor

1 GEGENBAUER, L.: S.-B. Akad. Wiss. Wien (I, 2) Vol. 82 (1830—81) pp. 938
to 942.

2 BurNSIDE, W.: Mess. Math. IT Vol. 23 (1894) pp. 112—114.

3 FrOBENIUS: S.-B. preufl. Akad. Wiss. 1897 pp. 994—-1015.

4 ScHUR, I.: S.-B. preuBl. Akad. Wiss. 1925 pp. 454 —463.

5 CavLey: Trans. Cambr. Philos. Soc. Vol. § (1843) pp. 1—16 — Coll. Works
Vol. T pp. 75—79.

6 Lecar, M.: Abrége de la théorie des déterminants & » dimensions. Gand.
Hoste 1911.

7 LecaT, M.: Ann. Soc. Sci. Bruxelles Vol. 46 (1926) pp. 1—309.

8 Rick: J].Math. Physics, Massachusetts Inst. Technol. Vol. 9 (1930} pp. 47
to 71.
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analysis than to the theory of matrices, as was clearly shown by
C. M. CRAMLET!.

A matrix is often considered as a linear vector function. J. D. BAr-
TER? investigated homogeneous vector functions of degree p. He states
that no analogue for characteristic root exists for the generalized matrix.

No success has as yet been attained in extending to higher dimensions
the concept of matrix in the sense of hypercomplex number in which
it is used in this book. Since every associative system can be represented
in terms of two-dimensional matrices, this lack of success is not sur-
prising. But #-dimensional arrays have received some attention in
connection with multilinear forms and tensor analysis. Their impor-
tance lies in the various generalizations of rank which can be applied
to them?3.

12. Matrices in non-commutative systems. Determinants of ma-
trices whose elements are quaternions were discussed by HaMILTON4.
J. M. P1ercE® defined a determinant of a matrix of quaternions by
writing the elements of each term in the order of their column indices.
J- BriLL ¢ represented biquaternions and triquaternions as matrices with
quaternion elements. E. STupy? gave a brief discussion of matrices
of quaternions.

Matrices whose elements belong to a division algebra or non-com-
mutative field attain considerable importance from the theorem of
J. H. M. WEDDERBURN® that every simple algebra can be represented
as a total matric algebra whose elements belong to a division algebra®.

Determinants of matrices over a division algebra in connection
with the solution of systems of linear equations were considered by
A.R. RicaarpsoN 10, A, HEYTING L, and O. Ore12, The latter defines
the right-hand determinant by

|@rs]| = a1 A,V + a9, 4@ 4 -+ 4 4,1 4,
where the 4,9 are a set of solutions of the homogeneous left-hand

system " . .
¥ Zlai,-Al(f)zo. (=2,...,m)
=

1 CraMmLET, C. M.: Amer. J. Math. Vol. 49 (1927) pp. 89—96.

2 BARTER, ]. D.: Univ. California Publ. Math. Vol. 1 (1920) pp. 321—343.

3 HrrcHcock, F.L.: J.Math. Physics, Massachusetts Inst. Technol. Vol. 7
(1927) pp. 39—85. — Rice, L. H.: Ibid. 1928 pp. 93—96.

4 Hamirton: Elements of quaternions (Appendix). London 1889.

5 P1ERCE, ]J.M.: Bull. Amer. Math. Soc. II Vol. 5 (1899) pp. 335—337.

6 Brirr, J.: Proc. London Math. Soc. IT Vol. 4 (1906) pp. 124—130.

7 Stupy, E.: Acta math. Vol. 42 (1920) pp. 1—61.

8 WEDDERBURN, J.H.M.: Proc. London Math. Soc. II Vol. 6 (1908) p. 99.

9 See Dickson: Algebren und ihre Zahlentheorie, p. 120. Ziirich 1927.

10 RicHARDSON, A. R.: Mess. Math. Vol. 55 (1926) pp. 145—152 — Proc.
London Math. Soc. IT Vol. 28 (1928) pp. 395—420.

11 HEYTING, A.: Math. Ann. Vol. 98 (1927) pp. 465—490.

12 Org, O.: Ann. of Math. IT Vol. 32 (1931) pp. 463—477.
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Two matrices are said to be right-equivalent if their right determinants
vanish together. Two matrices A and B are right-equivalent if they
differ by the interchange of two rows or of two columns; or if A4 is
obtained from B by multiplying the elements of a column on the left,
or the elements of a row on the right, with £ 5= 0; or if 4 is obtained
from B by adding one row to another row or one column to another
column.

II. The characteristic equation.

13. The minimum equation. If 4 is a matrix of order » over a
field &, the matrices I, A, A%, ..., A™ constitute #2 -+ 1 sets of #n2
numbers each, and hence are linearly dependent in . Thus A satisfies
some equation

m@A) =1 +m A=t ... +m, =0
with coefficients in § of minimum degree . We shall call u the index
of A. The index of a scalar matrix is 1. Every matrix except O has
an index.

Theorem 13.1. If {(A) =0, m(A)|f(A).1

Write f(4) = g(4) m(2) + r(4) where 7(4) =0 or else #(4) is of
degree <<u. Since f(A) =m(4)=0, r(4)=0. Since u was minimal,
7(4) = 0.

Corollary 13.1. The minimum equation m(L) = O is unique.

The constant term of the minimum equation will be called the norm
of A, written #n(4).

14. The characteristic equation. The matrix obtained from 4 = (a,,)
by replacing every a,, by the cofactor 4,, of a,, is called the adjoint
of A, written A

= (Asr) .

If 4(4) ¥ 0, the matrix A4/d(A4) is called the mverse of A, written
A' or A=Y By Theorem 7.8,
Theorem 14.1
ArA = AA4 = 1d(4),
A'A = AAY =1.
Theorem 14.2. If A satisfies an equation
pll) = Coft + Cy i1 4 .. 4 Cu =0,
A and the C’s being n-th order matrices with elements in a field ¥, then 4
satisfies the equation dp(A) = O whose coefficients are in .
Evidently (1) can be considered as an »-th order matrix whose
elements are polynomials in 4 of degree =k. Its adjoint

?A(l) :Dolk(n—l)_{_Dlzk(n-l)—l_i_ +Dk(n-1)

1 FROBENIUS: ].reine angew. Math. Vol. 84 (1878) p. 1—63.
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has polynomial elements of degree =%(# — 1). Then
ap () = pod" + p "1+ o+ Pra
has coefficients in . Since

prA)-p() =dp@) I,

k(=1 Lk o kn

2 Diny- i 2 Co i ¥ =2 praa i,
=0 7=0 =0
k(n—1) k

SN
D Dyn-ny-i 2 Coog K =2 prun 1.
6 =0 foeery

This holds for 2 indeterminate. By equating coefficients of the powers
of A, kn -+ 1 equations are obtained. If the A-th equation is multiplied
on the right by A% and the results added, the sum may be written

kn lc(n;l) k ) .
hZO:Pkn—h A I‘Z(,) Dyn-1y-s {%Ck—j A’] A4'=0,
< e 7~

or dp(4) = 0.
This is a special case of a theorem of H. B. PriLLIPS! who proved
that if 4,, ..., 4; are n-th order matrices, and By, . . ., B;, are matrices

commutative in pairs such that
A4,B;+ -+ 4By =0,

and if p(By, ..., B) = d(41Py + -+ + A, By) where By, ..., B are in-
determinates of ¥, then
p(By, ..., Br) =0.

The proof which we have given is similar to FrRoBENIUS'2 proof for
the linear case. FROBENIUS attributes the idea to PaAscHu3.

Corollary 14.21. Every matrix satisfies its characteristic equation
ad(lI — A) = 0.

This is the famous HAMILTON-CAYLEY theorem, established for
quaternions by W. R. Hamirton?, and proved for » = 2, 3 by A. Cay-
LEY® who stated the theorem in the general case with the comment
that it was not necessary to undertake its proof. Many proofs, more
or less satisfactory, have been given®. A.R.ForsyTH? applied difference
equations to the proof. A. BucHHEIM made the proof essentially in
the manner of FROBENIUSS, stating that it was taken in concept from
Tarr’s Quaternions, p. 81.

1 Pgrrires, H. B.: Amer. J. Math. Vol. 41 (1919) pp. 266—278.

2 FROBENIUS: S.-B. preuB. Akad. Wiss. 1896 p. 606.

3 PascH: Math. Ann. Vol. 38 (1891) pp. 24—49.

4 HamiLToN, W. R.: Lectures on quaternions, p. 566. Dublin 1853.

5 CavLEY, A.: Philos. Trans. Roy. Soc. London Vol. 148 (1858) pp. 17—37.

6 LAGUERRE, E.: J. Ecole polytechn. Vol. 25 (1867) pp. 215—264 — Euvres
Vol. T pp. 228—233.

7 ForsyTH, A. R.: Mess. Math. Vol. 13 (1884) pp. 139—142.

8 FroBENIUS: Mess, Math. Vol. 13 (1884) pp. 62—66.
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In connection with Theorem 14.2, it should be noted that Bucu-
HEIM! stated that the roots of the equation |2 — A|= 0 are roots
of [p(h)] = 0.

Corollary 14.22. The index p of A is <n.

The name characteristic equation of 4 for the equation |1 — A| =0
is due to CaucHY2 The left member is called the characteristic function
of 4.

Theorem 14.3. If

Ly R L R A

1s the characteristic equation of A, then t; is the sum of all the principal
i-rowed minors of A.

For the coefficient of A*~%in |A] — A | == 0 is the sum of the deter-
minants of all minors obtained by suppressing # — ¢ rows of —A4
and the corresponding columns.

The first coefficient ¢, = £(4) = ay; -+ + - + + a,, is called the frace
of A. Itisascalar function of 4 second only in importance to 4-1, =4 (4).

Theorem 14.4. Every equation of degree wn with coefficients in ¥ is
the characteristic equation of some wmatyix of order m with elements in .

Let the given equation be

FU) =Tk o e by =0,

The matrix
I 0 0 |
B— 0 1 0 l
[ —bn bn—l _bn 2 _bl H

has f (1) = 0 as its characteristic equation. For if in the matrix Al — B
one multiplies the last column by 4 and adds to the (» — 1)-th, multiplies
the (# — 1)-th column of the new matrix by 1 and adds to the (» — 2)-th
and so on, there results

lo =1 0 o
0o 0 —1 0]

By the Laprace development, the determinant of this matrix is seen
to be 4-f(4).3

1 BucauEmM: Proc. London Math. Soc. Vol. 16 (1884) pp. 63—82.

2 Caucnuy: Exercises d’analyse et de physique mathématique Vol. 1 (1840)
p.- 53 — Euvres IT Vol. 11 pp. 75—133.

3 GUNTHER, S.: Z.Math. Vol. 21 (1876) pp. 178—191. — Larsant, C. A.:
Bull. Soc. Math. France Vol. 17 (1889) pp. 104—107. — Rapos, G.: Math. Ann.
Vol. 48 (1897) pp. 417—424.
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A. Loewy? called B (or its negative) a “Begleitmatrix’”’. We shall
take the liberty of calling it the companion matrix of the equation
f() =o.

If f(4) is completely reducible in ¥, say

FA) = (G —4)h... (2 — L),
where the 4; are distinct, let
Ji 0 ... 0

10 a0

0 0 ... i

where L 1.0 ... 0

0 1 ... 0
=0 &

0 0 0 ... X
is of order I;. It is evident that d(AI — J) = f(4). This matrix J will
be called a JORDAN matrix?. '

15. Determination of the minimum equation. Theorem 15.1. Let
f(4) = 0 be the characteristic equation of A, and let h(A) be the greatest
common divisor of the (n — 1)-rowed minors of Al — A. Then

g) =1A)[h(2) =
s the manimum equation of A3
Let I — A =C(4). Then CA(A) = k(A ) (4) where the elements
of K(4) are relatively prime. Since f(A)I = C(4)CA(%),
gEMRAT =C@A)h(2) K@),
and, since A(4) = 0,
(15.1) g I =C()K(@).
Since C(4) =0, g(4) = 0 and m(4) |g(4) where m (1) =0 is the mini-
mum equation of 4.
From m() —m(u) = (A — ) k(4, p), we obtain
m@A)I —m(A)y=m@I) —m(4)=CQA) k(I A).
But m(4) = 0. Hence
CAA)m(A) =f(A) k(AL A),
h(2) K(2) m(A) = h(A) g(A) kAL, A).
Since %(4) = 0, it may be canceled. Since g(4) divides every element
of K (4)m (), and the elements of K (4) are relatively prime4, g (2) |m (4).

1 Loewy, A.: S.-B. Heidelberg. Akad. Wiss. Vol. 5 (1918) p.3 — Math. Z.
Vol. 7 (1920) pp. 58—125. ;

2 JorpaN, C.: Traité des Substitutions et des Equations Algébriques, Livre 2
pp. 88—249. Paris 1870.

3 FroBENIUS: J.reine angew. Math. Vol. 84 (1878) pp. 1—63.

¢ Proof by O. PERrRON: Math. Ann. Vol. 64 (1906) pp. 248—263.
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Corollary 15.1. If B 1s the companion matrix (or ] the JORDAN matrix)
of f(4) =0, then f(2) = 0 is the minimum equation of B (or J).

Since B,; = 1, the minimum equation of B is likewise its char-
acteristic equation.

By crosing out of 41 - J the first column and last row of A, — J;,
a minor of order # — 1 is obtained whose determinant is free of 1 — 1,.
Hence the g.c.d. of the (n — 1)-rowed minor determinants of 21 — J is
1, and the minimum equation of J is likewise its characteristic equation.

Theorem 15.2. The distinct factors of the characteristic function f(4)
of A which ave trreducible in 5 coincide with the distinct irveducible factors
of the minimum function m(1).

As in the proof of Theorem 15.1,

F) = m@ ().

Hence every root of m (1) = 0 is a root of {(4) = 0, so every irreducible
factor of m (1) divides f(4). From (15.1)

CUHKQ) =mA)I.
() dK(4) = [m(2)]".

Hence every root of f(4) = 0 is a root of m (4) = 0, and every irreducible
factor of f(4) divides m(4).1

Corollary 15.2. 1} either d(A) or n(A) vanishes, both vawish.

Hence a matrix A4 is singular or non-singular according as #(4) = 0
or n(4) # 0.

A matrix is called derogatory? if its index p is less than #.

Theorem 15.3. If A is non-singular of ovder n and index u, A' is
a polynomial in A of degree u—1.3

Let the minimum equation of 4 be

m@A) = +mit 4 oo +m, A4 n(d) =0.

Set B = — (4“7 4 m A* 2 4o - m,_ I)[n(4).

Then AB=BA =1. But AA'= A'4A =1, so AB = AA},
A'MB = A'4A"Y, B = AL

Theovem 15.4. If A is singular of orvder n and index p, there exists
a matrix B expressible as a polynomial in A of degree p— 1 such that
AB = B4 = 0.

Forif B=—(A* 1 4-m A% 4. 4-m,_4I), AB=BA =n(4)]=0.

Corollary 15.4. Every matrix is either non-singular or a divisor of zero.

Theorem 15.5. If m(l) =0 is the minimum equation of A, then
df(A) =0 if and only if m() and f(1) have a common facior of
degree =1.4

Taking determinants,

1 See L. E. DicksoN: Algebren und ihre Zahlentheorie, p.21. Zirich 1927.
2 SyrvesTER: C. R. Acad. Sci., Paris Vol. 98 I (1884) pp. 471--475.

3 LaGUERRE: J. Ecole polytechn. Vol. 25 (1867) pp. 215—264.

4 HenseL, K.: J. reine angew. Math. Vol. 127 (1904) pp. 116—166.
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Suppose m (A)=h(A)k(A), f(A)=h(%) I(2), h(A) of degree =1. Then
k(1) is of degree <<u and %(4) &= O. Then
m(d) =0 = h(4) k(4),
and %(A) is singular. Then /f(4) is also singular.
Let #(4) be a g.c.d. of m(4) and f(4) so that

R(2) = p(A)m(2) + q(2) F(2) .
Then h(4) = q(4) [(4).

If f(A) is singular, %#(4) is also singular, and % (1) is not a constant.

Theorem 15.6. Let v(x,y,2,...) = %%—j——; be a rational
function of the scalar indeterminates x,v, z, . . ., where p and q are poly-
nomials. Let A of index 4, B of index p, C of index v, . . . be commutative

matrices such that g(A, B, C, .. .) is non-singular. Thenv(4,B,C,...)
is uniquely defined, and can be represented as a polynomial of degree
<Xin A, of degree <p in B, of degree <v in C,...

A polynomial in 4, B, C, ... is built up by the operations of ad-
dition, multiplication and scalar multiplication. Since 4,B,C,. ..
are commutative, the result at each step is unique. Since¢(4, B, C, ...}
is non-singular, ¢' exists and is a polynomial in ¢, and therefore in
A,B,C,... Hence p¢' = ¢'p, and 7 is uniquely defined. By using
the minimum equations of 4, B, C, ..., the degree of » may be reduced
as stated.

16. Characteristic roots. Let 4 be a matrix of order # with elements
in a field §, and let f() = |A] — A| be its characteristic function.
Let ¥’ be an extension of & in which f(1) = 0 is completely reducible.
The % roots in § of f(4) = 0 are called the characteristic rootst.

Theovem 16.1. Let A, B, C, ... be commuiative matrices, and let
f(x,v,2 ...) be any rational function. The characteristic voots a, . .., a, of
A, by, ..., b, of B etc. can be so ovdered that the characteristic voots of

f(4,B,C,...) ave f(ay, by, ¢y, ...), .o, [y, by, Cp,...). This order-
mg 1S the same for every fumction f.2

Let 2 “ »
a@=I(w—a), [o)=Iw=b), r=I(o—-c)),
i=1 =1 k=1
be the minimum equations of A, B, C, ... respectively. Write

fay 2z, ..) — flag, b, cp, . ..) = [f(x, 8, ¢, .-.) — lai, by, €y -22)]
+U(x: Vv, Chy oo ') - f(xr bjr Cry o ')] + v = (x - ai) fijk... + (y - bj)gijk...
+ (2 — ¢g) hijy.... Therefore

Iixyz...)—Ha, b,o .. ) ] =Kax) + LEY) + My () + -,

©ik, ... .
t=1,...,4, J=A1,..,u, k=1,...,v, ...

1 Or latent roots, SYLVESTER.
2 FROBENIUS: S.-B. preuB. Akad. Wiss. 1896 I pp. 601—614.
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Since 4, B, C, ... are commutative, these two polynomials give equal
matrices when x = A,y =B,2=C,... Hence
H I:(U —f(ai, b], Cpy - - ):] =0
Gk .

is satisfied by the matrix f(4, B, C,...). Therefore the minimum
function of f(4, B, C,...), of degree 0 =< n, is equal to a product of
o linear factors

o — fa, b, ¢y .. 0) .

By Theorem 15.2 these include all the distinct factors of the characteristic
equation. The roots of 4,B,C, ... are ordered by calling the i-th
root of |wI —f|=0 f(a; b;, ;.. .).

The above process can be carried through when f is a polynomial
in x of degree 4 — 1, in y of degree w — 1, in z of degree 1 — 1, ...
with indeterminate coefficients, and an ordering of the roots of
A,B,C,... so obtained. By Theorem 15.6 every rational function
of A,B,C,... can be obtained by specializing the coefficients of
this f. Hence the ordering is the same for all rational functions®.

C. W. BorcHARDT? proved that the characteristic roots of 4" are
the #-th powers of the characteristic roots of 4. The special case for 4
symmetric was rediscovered by J. J. SYLVESTER®. W. SPOTTISWOODE 4
knew that the roots of A® are the reciprocals of the roots of 4. G. Fro-
BENIUS® proved Theorem 16.1 first for a single matrix and later in the
form above®. SYLVESTER rediscovered SPOTTISWOODE'’s? result and
FroBeNIUS’® theorem of 1878.

T. J. A, BromwicH? noted that FROBENIUS' theorem need not
hold when f is not a rational function.

Theorem 16.2. The characteristic roots of AB ave the same as those
of BA .0

By Theorems 14.3 and 7.9 the coefficient of ++4"~% in the character-
istic equation of AB is

ty= 2 Ape R B,

1 Proof by I. ScrUR: S.-B. preuB. Akad. Wiss. 1902 I pp. 120—125.

2 BorcuHARDT, C. W.: J. reine angew. Math. Vol. 30 (1846) pp.38—46 —
J. Math. pures appl. I Vol. 12 (1847) pp. 50—67.

3 SYLVESTER, J.J.: Nouv. Ann. math. Vol. 11 (1852) pp. 439—440.

4 SpoTTISWOODE, W.: J. reine angew. Math. Vol. 51 (1856) pp. 209—271 and
328—381.

5 FroBENIUS, G.: J.reine angew. Math. Vol. 84 (1878) pp. 1—63.

6 FroBENIUS, G.: 1. c.

7 SporriswooDE: C. R. Acad. Sci., Paris Vol. 94 (1882) pp. 55—59.

8 FroBENIUS, G.: Philos. Mag. V Vol. 16 (1883) pp. 267 —2609.

% BromwicH, T. J.T’A.: Proc. Cambridge Philos. Soc. Vol. 11 (1901) pp. 75
to 89.

10 SyrLvesTeR: Philos. Mag. V Vol. 16 (1883) pp. 267 —269.
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where both (ry,...,7) and (A, ..., A;) range over all (’Z) selections

of 7 distinct numbers of the set 1, 2,...,» without regard for order.
The theorem follows upon interchanging the summation indices.

SYLVESTER stated the theorem without proof. A proof based upon
considerations of continuity was given by H.S. THURsTON!. A proof
is sketched by H. W. TurnBULL and A. C. AITKEN2,

A. CHATELET? noted that the theorem of FroBENIus affords an
easy method of applying a TSCHIRNHAUSEN transformation. Let it
be required to find the equation whose roots are the rational function ¢
of the roots of f(¥) = 0. Let B be the companion matrix of f(x) = 0.
Then |yI — @(B)| = 0 is the required equation.

If () = 0 has algebraic integral roots, the elements of B are rational
integers. If @ is a polynomial with rational integral coefficients, ¢ (B)
has rational integral elements, so that the roots of |yI — @(B)| =0
are algebraic integers. This is a short proof that a polynomial function
with rational integral coefficients of an integral algebraic number is
integral.

A* = I if and only if the characteristic roots of 4 are roots of unity2.

If in the series A, A%, A3, ... the same matrix appears more than
~once, then the system contains I. If » is the minimum integer for which

A” == I, then the only different matrices in the setare I, 4, ..., 4*71.5

A. Ranum® gave a method for expressing all the powers of 4 as
linear combinations of I, 4,..., AL

If for some » N” == 0, then d(N 4+ A) = d(4).?

17. Conjugate sets. If the characteristic equation of the #-th order
matrix A, is f(4) = 0, a set of matrices 4,,..., 4, form with 4, a
complete set of comjugates if

1. They have the same characteristic equation,

2. They are commutative,

3. The elementary symmetric functions of these matrices are mul-
tiples of I by the corresponding elementary symmetric functions of
the algebraic roots of f(1)=0.8 If the elementary divisors of 17 — 4,
are linear, the conjugates always exist.

The product of the conjugates 4,45...4, is 4,*. A. A. BENNETT?

1 TaurstoN, H. S.: Amer. Math. Monthly Vol. 38 (1931) pp. 322—324.

2 TurnBULL, H. W., and A.C. AITKEN: An introduction to the theory of
canonical matrices, p. 181. London 1932.

3 CHATELET, A.: Ann. Ecole norm. III Vol. 28 (1911) pp. 105—202.

¢ LipscHITZ, R.: Acta math. Vol. 10 (1887) pp. 137—144.

5 KRONECKER, L.: S.-B. preul. Akad. Wiss. 1890 pp. 1081 —1088.

6 Ranum, A.: Bull. Amer. Math. Soc. IT Vol. 17 (1911) pp. 457 —461.

7 FROBENIUS: S.-B. preuB3. Akad. Wiss. 1896 I pp. 601 —614.

8 TABER, H.: Amer. J. Math. Vol. 13 (1891) pp. 159—172.

9 BENNETT, A. A.: Ann. of Math. IT Vol. 23 (1923) pp. 91—96.
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called 4, + -+ -+ 4, the adjoint-trace of A,, since its sum with A4,
is t{4q)1.

P. FRANKLIN! modified the definition of conjugate set by the omis-
sion of the first condition, and showed that forevery 4, a set of generalized
conjugate matrices exists, not always uniquely, however. Later? he gave
a systematic method for finding all sets of conjugates for a given matrix.

J. WirLiamson?® noted a particular matrix B such that «'B form
a complete set of conjugate matrices in the sense of TABER, where w
is a primitive #n-th root of unity.

T. A. P1ErCE? proved that the field generated by the roots of any
cyclic equation is isomorphic with the field generated by the matric
roots of this equation.

18. Limits for the characteristic roots. In this paragraph { is
the complex field. Let A® denote (a’®), obtained from A by replacing
every element by its conjugate complex number.

The matrix H is hermitian if H=H"T.5 A real hermitian matrix
is symmetric.

The matrix K is skew-hermitian if K = —KCT.6 A real skew-
hermitian matrix is skew.

The matrix U is wnttary if U' = UT.7 A real unitary matrix is
orthogonal.

A matrix V is inwolutory if VI =7V, i.e., if V2 =18

Theorem 18.1. If a matrix has two of the thrvee properties in a set,
it has all three.

1. Real, orthogonal, unitary.

2. Symmetric, ovthogonal, involutory.

3. Hermitian, unitary, involutory.

The first of these is due to AUTONNE?®, the last two to H. HiLTon1°,

Theorem 18.2. Every malrix is uniquely expressible A = H 4+ K
where H s hermitian and K is skew-hermitian.

The proof is like that of theorem 5.3.

Theorem 18.3. If A = H + K where H is hermitian and K is skew-
hermitian, and if a, h, k, are the maxima of the absolule values of the

1 FRANKLIN, P.: Ann. of Math. IT Vol. 23 (1923) pp. 97— 100.

2 FRANKLIN, P.: J. Math. Physics, Massachusetts Inst. Technol. Vol. 10 (1932)
pp. 289—314.

3 WILLIAMSON, J.: Amer. Math. Monthly Vol. 39 (1932) pp. 280—285.

4 PiERCE, T. A.: Bull. Amer. Math. Soc. Vol. 36 (1930) pp. 262—264.

5 Herwmitg, C.: C. R. Acad. Sci., Paris Vol. 41 (1855) pp. 181—183.

6 Loewy, A.: J. reine angew. Math. Vol. 122 (1900) pp. 53— 72.

7 AutonNE, L.: Rend. Circ. mat. Palermo Vol. 16 (1902) pp. 104—128.

8 Voss, A.: Math. Ann. Vol. 13 (1878) pp. 320—374. — PrymM, F.: Abh. Ges.
Wiss. Gottingen Vol. 38 (1892) pp. 1—42.

9 AUTONNE: Bull. Soc. Math. France Vol. 30 (1902) pp. 121—134.

10 HirtoN, H.: Homogeneous linear substitutions. Oxford 1914.
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elements of A, H, K, respectively, and if ¢ == o - B is a characteristic
root of A, then
lo|=na, |a|l=nh, |B|=nk.
Since 4 — ol is singular, there exists a vector (x) = (%y,...,%,)
whose codrdinates are not all 0 such that (4 — 61) (x) = 0. Hence
ox =2y %;. (ti1=1,2,...,n)
It then follows that
O'Zix,;xi = Zi,j a,/jﬁ_é,;x]',
BZichi = Zi,j &jﬂ_ﬂ' Xj.

Hence, adding and subtracting,

(18.1) & D'ni% :Z““sz“f-"@x,-,
[

i

@

%)

Now
lO'|2xi.9_C,; éZlﬂUl . [xi
oY
From the inequality

(18.3) oy + -+ Ep)2=m(k24+ - + kD,
it follows that

Pl = aZlal- ] = a] ]

2P =nZxr, |ol<na.

o 1
Similarly || < nh, 18| = nk.

Corollary 18.31. The characteristic roots of an hermitian matrix are
all real.

For if A is hermitian, K =0, %k =0, and every |f| = 0.

The first proof that the roots of a real symmetric matrix are all
real is due to A.CaucHy? Many later proofs have been given by
Jacosi, SyYLVESTER, BUCHHEIM etc. The extension to matrices such
that AT = A® was made by HErMITE? and resulted in such matrices
being named for him.

Corollary 18.32. The characteristic voots of a skew-hermitian matrix
are all pure imaginaries*.

For in this case A =0, [x| = 0.

This theorem was proved for skew matrices by A. CLEBscH5 and
later by WEIERSTRASS®.

1 Theorem and proof by A. HirscH: Acta math. Vol. 25 (1901) pp. 367—370.

2 CaucHy, A.: Anciens Exercises. 1829—1830 — Coll. Works IT Vol. 9 pp. 174
to 195.

3 HerMmiTE: C. R. Acad. Sci., Paris Vol. 41 (1855) pp. 181—183.

4 Scorza, G.: Corpi numerici e Algebre pp. 133—179. Messina 1921.

5 CLEBSCH, A.: J. reine angew. Math. Vol. 62 (1863) pp. 232—245.

6 WEIERSTRASS: S.-B. preuB3. Akad. Wiss. 1879.
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Theovem 18.4. If H in the last theovem s real, then

18] = |/ =0,
From (18.2},

ﬁZM 2{”’_“””’”’7’“ .
Iﬂ|2x%<k2x’ il

A
Since (x;%; — %;%;)[¢ are all real, the inequality (18.3) may be applied

to give - B

=M D[ S - S S < S,

Hence |f| < /n(n )k 1

The case when A is real was proved by I. BENDixsoN2, and the
paper of BENDIXSON seems to have inspired the work of HirscHh.

Theorem 18.5. Let 0 = « + 15 be a characteristicrootof A = H + K.
Then m =o =DM where m is the least and M the greatest of the char-
acteristic roots of H.

Let the elements of the hermitian matrix H be denoted by #4,,
By (18.1) « is a value of the ratio

x) = Z hij %; 5‘;’/2 % %,
7 [

where the #,, ..., x, are independent complex variables. The greatest
and least values which /(x) assumes are characteristic roots of H, for
upon setting x; == u; + iv;, the conditions

xix - xlxj

H/\

of _ of __ _
c@;—%—~ (]—1,2, :”)
lead to the equation
2 Py xid — f 2 %% = 0.
’L,} K]

Hence m is the minimum value which f(x) assumes and M is the maxi-
mum value. Then m <x=<=M23

BromwicH? found an explicit expression for « and g from which
HirscH’s inequalities may be derived.

I. Scnur® derived the inequalities by another method.

1 This theorem and proof are by A. HirscH: L c.

? BENDIXSON, L.: Acta math. Vol. 25 (1901) pp. 359—365.

3 The real case by BENDIXSON, the complex case by HirscH: L c.
4 BromwicH: Acta math. Vol. 30 (1906) pp. 295— 304.

5 Scuur, I.: Math. Ann. Vol. 66 (1909) pp. 488—510.

[¥3]

Ergebnisse der Mathemaltik. II/s5. MacDuffee.
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E. T. BRowNE! proved that if 4 is a characteristic root of 4 and if m
is the least and M the greatest characteristic root of the hermitian
matrix AACT, then m=11=M.

FroBENTUS? proved that if the elements of 4 are all real and positive,
it has a characteristic root which is real, positive, simple, and greater
in absolute value than any other characteristic root.

Theorem 18.6. The roots of the mintmum equation of an hermitian
matrix are distinct.

If the hermitian matrix H has the minimum equation

m(3) = (2 — 2)*h(d),
where £ >'1, define
my(A) = (A — A)* 1R (2).
Then m () | [m,(2)]% The matrix H, = (h,;) = m, (H) is hermitian, and
H;2 =0 so that ¢(H,%) = 0. But
t(Hy?) :Zhijhji =i2; hijhij ’

¥
so that H; = O and m,(H) = 0. But m, (%) is of lower degree than
m(4). Hence the assumption %> 1 leads to a contradiction3.

19. Characteristic roots of unitary matrices. Theorem 19.1. The
characteristic voots of a umitary matrix ave of absolute value unity.

If x is a characteristic root of the unitary matrix U, x 4+ 1/x is a
root of the hermitian matrix U 4 U' = U + U°Y, and % — 1/x is
a root of the skew-hermitian matrix U — U' = U — U®T by Theorem
16.1. Hence by Corollaries 18.31 and 18.32,

x+1x=2v, x—1/x=2is,
where # and s are real. That is,

x=7r-+1s, 1/x =v —1is,
whence 72 4+ s? = 1.4

Another short proof was given by R. BrRAUERS. If U = (u,,) is
unitary, 2;u,;4,; = 1, so the elements of U are bounded in absolute
value. The same is therefore true of the coefficients of the characteristic
equation of U, and of its roots. But U! and U* are likewise unitary,
and the characteristic roots of U! are the reciprocals of those of U,
the characteristic roots of U* are the k-th powers of those of U.¢ Unless
each characteristic root of U were of absolute value unity, some positive
or negative power of it could be made arbitrarily large, thus leading to
a contradiction.

1 BrowNE, E. T.: Bull. Amer. Math. Soc. Vol. 34 (1928) pp. 363—368.
? FROBENIUS: S.-B. preuB.-Akad. Wiss. 1908 pp. 471—476.

3 WEDDERBURN, J.H.M.: Ann. of Math. IT Vol. 27 (1926) pp. 245—248.
¢ ArRaMATA, H.: Téhoku Math. J. Vol. 28 (1927) p. 281.

5 BRAUER, R.: T6hoku Math. J. Vol. 30 (1928) p. 72.

6 Theorem 16.1.



3817 III. Associated Integral Matrices. 29

If U is unitary, and if VV*T=V¢TV andif gisaroot of |U — oV |=0,
then |t;|=1/lo|= [t,| where ¢, is the greatest in absolute value and
t, the least in absolute value of the characteristic roots of V. Each
characteristic root of a principal minor of a unitary matrix is =1 in
absolute valuel.

Corollary 19.1. The complex charactevistic rools of am orthogonal
matvix occur in reciprocal pairs?.

Since the characteristic equation of an orthogonal matrix has real
coefficients, the complex roots occur in conjugate pairs, which by
Theorem 19.1 are reciprocal pairs.

Other proofs of this theorem have been given by A. E. RAHUSEN?
and A. CoLucci4. In connection with this latter paper see also G. VITALIS,

P. BurcaTTI® proved that if |4 + xI[ = 0 has reciprocal roots, 4
is either orthogonal or involutory.

L. Toscano? proved that if the coefficients equidistant from the
ends of the characteristic equation of A are equal, |4 + A* + xI i =90
has all real roots, while8 if these coefficients occur in pairs with opposite
signs, |4 — A* 4 x1| = 0 has all real roots.

III. Associated Integral Matrices.

20. Matrices with elements in a principal ideal ring. A commutative
ring without divisors of zero is called a domain of integrity. A domain
of integrity with unit element 1 in which every pair of elements not
both 0 has a greatest common divisor representable linearly in terms
of the elements is called a principal ideal ring®.

In a principal ideal ring ¥, a number which divides 1 is called a
unit. The relation a = ub where % is a unit is reciprocal, and two
numbers a and b so related are called assoctates. A set of numbers of
R no two of which are associated but such that every number of ‘|
is associated with one of them is called a complete set of non-associates
in P. Thus the positive integers and 0 constitute a complete set of non-
assoctates in the ring of rational integers.

A number a of R neither 0 nor a unit is prime or composite according
as a = bc implies or does not imply that & or ¢ is a unit.

1 LoEwy, A., and R. Brauger: Téhoku Math. J. Vol. 32 (1929) pp. 44—49.

2 BrioscHi, F.: J. Math. pures appl. Vol. 19 (1854) pp. 253—256.

3 RaHUSEN, A. E.: Wiskundige Opgaven Vol. 5 (1893) pp. 392—394.

4 CoLucct, A.: Boll. Un. Mat. Ttal Vol. 6 (1927) pp. 258 —260.

5 Vitarr, G.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp. 1—7.

6 BURGATTI, P.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp. 65—69.

? Toscano, L.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp. 664 —669.

8 Toscano, L.: Téhoku Math. J. Vol. 32 (1929) pp. 27—31.

9 vAN DER WAERDEN: Moderne Algebra Vol. I pp. 39 and 60. Berlin: Julius
Springer 1930.
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An important instance of a principal ideal ring is a euclidean ring
defined by the following properties:

1. Associated with every element a (except possibly 0) of the ring,
there is a positive or 0 integer s(a) called the stathm of a.

2. For every pair of numbers a and b, b 3= 0, there exist two numbers
7 and ¢ such that a = bg + 7, and either » =0 or else s() < s(b).

Thus for the GAUSSIAN complex numbers a -+ 45, a stathm is
a® -+ b2 For the polynomial domain $(x) of a commutative field ¥,
the degree of the polynomial serves as a stathm. For the trivial instance
of a field, s(a) may be taken as 1 for every a. A euclidean greatest
common divisor process exists in every euclidean ring.

The euclidean ring € is proper if it is not a field and if a stathm
can be determined such that s(ab) = s(a) s(b) for every a and &. Since
s(0-b) = s(0) s(b), either s(b) = 1 for every b so that division is always
possible and € is a field, or else s(0) = 0. Conversely let s(a) = 0.
Either a = 0 or else for every b, b = ga, and § is again a field.

Since s(1-58) =s(1) s(b), either s(b) =0 (and € is a field) or
s(1) = 1. Let # be a unit, and uv = 1. Then s(#)s(v) =1 so that
s(u) = 1. Conversely if s(a) =1, 4 is a unit, for the stathm of the
remainder upon dividing any number by 4 must be <1 and hence be 0.
Thus in a proper euclidean ring s(a) = 0 if and only if a = 0, s(u) =1
if and only if u is a unit, and s(a) = s(b) if and only if a and b are as-
sociated?.

Let I constitute the set of all #-th order matrices whose elements
belong to a principal ideal ring B subject to the operations of addition
and multiplication as in § 3. I is a ring but not a principal ideal ring.

A matrix U of I is called unimodular or a unit matrix if and only
if there exists a matrix U’ of M such that UU’ = I.

Theorem 20.1. U is a unit matrix if and only if d(U) is a unit of R.

For UU’ = I implies d(U) d(U’) = 1 so that d(U) is a unit of P.
Conversely if U is in I and 4 (U) is a unit of P, then U' is in M and
serves as the U’ of the definition.

Theorem 20.2. A matrix A of WM is a divisor of zero if and only if
d(4) = 0.

For if 4 is in I, the matrix B of Theorem 15.4 (such that AB
= BA = 0) is also in M.

A matrix A4 neither a divisor of zero nor a unit is called prime if
every relation 4 = BC implies that either B or C is a unit. Matrices
neither divisors of zero nor units nor primes are called composite.

Theorem 20.3. A composite matrix can be expressed as a product of
at most a finite number of primes.

For A=A 4,4, ...,

! See J. H. M. WEDDERBURN: J. reine angew. Math. Vol. 167 (1931) pp. 129
to 141.



383] III. Associated Integral Matrices. 31

where no 4, is a unit matrix implies
d(d) = d(4,)d(dy) d(4) . ..,
where no d(4;) is 0 or a unit. That is, each element in the sequence
d(A)d Ay d(ds) ..., d(dy)d(dy) ..., d(dy) ...

is a proper divisor of the preceding. Such a sequence can contain but
a finite number of elements?.

21. Construction of unimodular matrices. Theorem 21.1. Let
ay, Ag, - - ., &, be numbers of a principal ideal ving B with greatest com-
mon divisor d,,. There exists a matrix of determinant d,, having a,, a,, ..., a,
as its first row?.

The theorem is evidently true for » = 2. Suppose it true for n — 1,
and let D,_; be a matrix which has a,, 4, ..., 4,_; as its first row, and
whose determinant is the g.c.d. d,_, of 4, a5, .. ., 4,_;. Determine p
and ¢ so that pd,_, —qa, = d,. Consider the matrix D, obtained by
bordering D,_; on the right by a4,,0,...,0,0 and then below by
0q[dy1,a59/dy—1, .. ., 419/, p. Then d(D,) =d,?

Other proofs have been given by K. WEIHRAUCH4, Biancai®, and
H. Hancocks.

HerMITE? proved more generally that a matrix can be found with
a given last row a,,{, 4,9, ..., 4,, and a determinant %ya,; + k@, 5+ -
+ k,a,, where the %’s are arbitrary.

The theorem has been generalized as follows. A p.# array of rational
integersis given, p << n, and the g. c.d. of the p-rowed minor determinants
is 4. It is always possible to add # —p rows of integers to this array so
that the resulting square array shall be of determinant 4. H. J. S. Smitus®
and T. J. STIELTJES? proved this theorem and determined all possible
borders. Brocu® gave a short proof by induction.

22. Associated matrices. Two matrices 4 and B are called Ileft
associates if there exists a unit matrix U such that 4 = UB. The
notation 4 = B will be used to express this relationship, which possesses
the prerequisites for an equality relationship, namely0:

1 vAN DER WAERDEN : Moderne Algebra Vol. I p. 64. Berlin: Julius Springer 1930.

2 For rational integers, » =3, G. EISENSTEIN: J.reine angew. Math. Vol. 28
(1844) pp.289—374. For any =, C.HERMITE: J.Math. pures appl. I Vol. 14
(1849) pp. 21—30.

3 BrocH, A.: Bull. Soc. Math. France Vol. 50 (1922) p. 100—110.

4 WEIHRAUCH, K.: Z. Math. Physik Vol. 21 (1876) pp. 134—137.

5 BiancHI: Lezioni sulla Teoria dei Numeri Algebrici, pp. 1—7.

6 Hancock, H.: Amer. Math. Monthly Vol. 31 (1924) pp. 161 —162.

7 HERMITE: ].reine angew. Math. Vol. 40 (1850) pp. 261 —278.

8 Smita, H. J. S.: Philos. Trans. Roy. Soc. London Vol. 151 (1861—1862)
pp. 293 —326.

9 StiertjEs, T. J.: Ann. Fac. Sci. Univ. Toulouse Vol. 4 (1890) pp. 1—103.

10 OrEg, O.: Bull. Amer. Math. Soc. Vol. 37 (1931) p. 538.
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1. Determination. Either 4 =B or 4 = B.

2. Reflexivity. 4 X 4.

3. Symmetry. A X B implies B L 4.

4. Transitivity. If 42 B and BZC, then 4 L C.

A similar theory holds for the relation 4 2 B, or 4 = BU.

The following elementary operations upon the rows of a matrix can
be accomplished by multiplying the matrix on the left by an elementary
matrix, namely the matrix obtained by performing the elementary
operation under consideration upon the identity matrix I.

1. The interchange of any two rows.

2. The multiplication of the elements of a row by a unit # of B.

3. The addition to the elements of any row of £ times the cor-
responding elements of any other row, where % is in .

Every elementary matrix is a unit matrix whose inverse is an
elementary matrix of the same type. If B is obtainable from 4 by a
finite number of elementary transformations, B L 4.1

Theorem 22.1. Every matvix A with elements in B is the left associate
of a matrix having O’s above the main diagonal, each diagonal element
lying in a prescribed system of non-associates, and each element below the
main diagonal lying in a prescribed rvesidue system wmodulo the diagonal
element above il.

A matrix of this type will be said to be in HERMITE’s normal form.

Let 4 = (a,,) have elements in P. Either every element of the
last column is O or there is at least one non-zero element which by a
permutation of the rows can be put into the (#, #)-position. Let d, be
a g.c.d. of the elements of the last column, and suppose that

biayn + byagy + -+ + bnann = dy.
By Theorem 21.1 there exists a unimodular matrix U having &,, b,, .. ., b,
as its last row. Then A, = U4 X A has d,, in the (#, n)-position, where
4, divides every a;,. By subtracting a proper multiple of the last row
from each of the other rows, a matrix 4, is obtained whose last column
has only 0’s above the main diagonal.

In the (» — 1)-th column either every element of the first » — 1
rows is 0, or by a permutation of the first # — 1 rows a non-zero element
can be put into the (# — 1, » — 1)-position. Let d,_; be a g.c.d. of

@1 p—1r A2 p—1s - - - Ay—1,n—1 and let
biay,no1+ bet n1 o+ Oy 1yt 1 =g
Let 1 Uy Upp Uy,n-1 O
U= by by boor O
o o o 1

1 See L. KRONECKER: M.-B. preufl. Akad. Wiss. 1866 pp. 597—612.
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be unimodular. Then U,4, has 0’s above the main diagonal in the last
column, d,_; in the (# — 1, # — 1)-position, and each element above
d,_, divisible by d,,_;, so that these can be made equal to 0 by elementary
transformations. The process is continued until a matrix is obtained
which has only 0’s above the main diagonal.

In order to make a;; lie in any prescribed system of non-associates,
it is at most necessary to multiply it by a unit. This is accomplished
by an elementary transformation of the second type.

By subtracting a multiple of the (# — 1)-th row from the #»-th
oW, 4, ,_1 can be made to lie in any prescribed residue system modulo
Ay_1 g1 Similarly every element can be reduced modulo the diagonal
element above it. It is understood that « =6 mod0 if and only if
a="a.

Theorem 22.2. If d(A) &= 0, the normal form of HERMITE is unique.

The proof will be made for » = 3, but the process is general. Suppose

[y b b “ a; 0 0 | by 0 0O |
| | ‘i 1‘
‘ Ly lag I Aoy Aoy O |=1 by by O |

g lag lsg| | as @5 ag by by byg |

where both 4 = (a,,) and B = (b,,) are in normal form and L = (/,))
is unimodular. by — Lz =0,  byg = lygags = 0.
Since d(A) F 0, ag; = 0 and /gy = lyy = 0. Similarly every element
of L above the main diagonal is 0.

Since d(L) is a unit of B, Ly, lys, I33 are all units of P. Then
I;;a;; = b;;, and since a;; and b;; belong to the same system of non-asso-

ciates, I;; = 1. Then by = lgg gy ~+ Agp .

Since by, and ag, lie in the same residue system modulo ay,, /3, = 0.

Then by, = gy ayy + a3

and similarly /5 = 0. Thus L =1I.

Covollary 22.2. Every non-singular wmatrix whose elements arve
vational integers is the left associale of a matrix whose diagonal elements
a;; are positive, a,; = 0 for v <1, and 0= a,; << ay; for r > 1. This
form is uniquel.

Theorem 22.3. If A has elements in a euclidean ring €, the reduction
to normal form can be accomplished by elementary transformations.

Let 4 = (a,,) have elements in €. Either every element of the last
column is 0 or there is at least one non-zero element with minimum
positive stathm which by an interchange of the rows can be put into
the (», n)-position. If a,, does not divide some g;,, set

Ain = qapy + 7. (5(7) < S(dn"))

1 Herwmitg, C.: J. reine angew. Math. Vol. 41 (1851) pp. 191—216.
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Then by an elementary transformation of the third type, a;, can be
replaced by ». Again interchange rows if necessary so that the element
in the (#, #)-position is of minimum stathm and proceed as before.
Eventually 4,, will divide every 4;,. The proof now proceeds as in
Theorem 22.1.

Theorem 22.4. Every umimodular matrix with elements in a euclidean
ring € is a product of a finite number of elementary matrices.

Let U be unimodular. By Theorem 22.3 there exist elementary
matrices E; such that

E\E,...E,U=UT,
where U’ is unimodular and reduced. Since d(U’) is a unit of €, each
diagonal element of U’ is a unit of €, and may be taken to be 1. Since 0
constitutes a complete system of residues modulo 1, U’ = I. Then
U=E!EL,...E'E],
where each E;! is an clementary matrix.

Corollary 22.4. Every unimodular matrix with elements in a euclidean
ving having but a finite number of units is a product of a finite number
of matrices of a certain finite set.

This was proved for rational integers by KRONECKER!.

Theorem 22.5. Every unimodular matrix with elements in a euclidean
ring € is a product of matrices of the types

00 ... 01 01 ... 0 0
10 ... 00 10 ... 0
U1= ........ sy U2= ........ -l
00 ... 00 00 ... 10
0 0 10 0 0 0 1

1 k 0 0 0 0 0
01 ... 0 01 ...
UgB) =+« v e e v , o U= .
00 ... 10 00 ... 10
00 ... 01 00 ... 01

The effect of U, is to permute the rows cyclicly. The effect of U,
is to interchange the first two rows. By repeated use of these two
operations any two rows of a matrix can be brought into positions
one and two. Then by use of U, or U; or U, the desired elementary
operation can be performed, and the rows then restored to their original
positions.

This theorem is essentially that of A. KrRazEr? who proved that

1 KRONECKER: M.-B. preuB. Akad. Wiss. 1866 pp. 597 —612.
2 KRAZER, A.: Ann. Mat. pura appl. IT Vol. 12 (1884) pp. 283~ 300.
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every matrix with rational integral elements and of determinant 1 is
a product of just three, namely

1 ... 0“ 0 —1 ... o‘; 00 ... 0 (—=1)"
| | }

o1 ... 0] l1 0 0| 0 0 1
! il \i’ Il
. . fee [ R Coe H
‘00 ... 1 1o o ... 1;J 00 ... 1 0 |

23. Greatest common divisors. If three matrices with elements
in a principal ideal ring ¢ are in the relation 4 = CD, then D is called
a right divisor of 4, and 4 is called a left multiple of D. A greatest com-
mon right divisor (g.c.r.d.) D of two matrices 4 and B is a common
right divisor which is a left multiple of every common right divisor of 4
and B. A least common left multiple (1.c.1.m.) of two matrices 4 and B
is a common left multiple which is a right divisor of every common
left multiple of 4 and B.

Theovem 23.1. Every pair of matrices A and B with elements in R
have a g.c.r.d. D expressible in the form

D=PA+(QB.
Consider the matrix 4 0O
F = ‘ ”
B o]

of order 2. As in the proof of Theorem 22.1, a unimodular matrix U
of order 2# can be found such that the g.c.d. of the elements of the
n-th column of F is in the (n, n)-position in UF. Then elementary
transformations will reduce to 0 every element of this column below a,,,,.
This process may be continued to obtain an equation
@5 Xy Xu| 14 0| _[D 0]

. “Xm Xzz” B 01 lo oV
where the first factor X is unimodular. Thus

Xpnd +X,B=D

so that every common right divisor of 4 and B is a right divisor of D.
Since X is unimodular, there exists a matrix Y = X" with elements in B

such that 1 A 0 ‘w‘ 1 Yll le ! ‘ D O
| B 01_‘Y21 Yoo | ;0 o]
whence A=Y, D, B=YyD.

Hence D is a g.c.r.d. of 4 and B.

Corollary 23.11. If the 2n - n array (g) s of vank n, the matrices 4
and B have a non-singular g.c.r.d.

Corollary 23.12. If A and B have a non-singular g.c.rv.d. D, every
g.c.v.d. of A and B is of the form UD where U is unimodular.

For if D, is another g.c.r.d,,

D=7PD,, D,=QD, D=PQD, PQ=I.
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Theorem 23.2. Every pair of non-singular matrices A and B with
elements in P have a l.c.l.m. M uwique up to a unit left factor.

The relation Xy A+ XpB=0

follows from (23.1). Therefore
M=X,A=—X,B
is a common left multiple of 4 and B. If M, is another c.l. m. their
g.c.r.d. M, = PM + QM,
is a c¢.l.m., so there exists a c.1.m. M, such that M = HM,. Suppose
M,=KA=LB.
Then X,A=HKA, —X,B=HLB,
and since 4 and B are non-singular,
Xp=HK, X,=—HL.

But ] = Xy, Yo+ XypY, = H[KY,, — LY,], so H is a unit matrix,
and M is a right divisor of M, .1

Lemma 23.3. Let A denote an n-th order matrix with elements in a
proper euclidean ring &. For every element m of € there exist matrices
and R such that either (1) A = mQ or else (2) A = mQ + R where

0 < s[A(R)] < s (m").

By multiplying 4 on the left by a unimodular matrix, it can be
put into HERMITE’s normal form. Determine Q = (¢,,), R = (r,,) such
that ay; = MGy + iz,
where 0 = s(#;;) <<s(m) for ¢ >4, while 0 <s(7;;) =s(m) for i =7.

Unless every s(ry) = s(m),

S[@(R)] = s[ry a2 - -+ Tun) = $(111) $(720) - - - S(Tpn) <[s(m)]" = s(m"),

and ALmQ+ R
is in form (2).

If every s(r;;) = s(m) and every other element of R is 0, R = mE
where F is diagonal, and

AZm(Q +E)

is in form (1).

If every s (r;;) = s(m) and some element of R below the main diagonal
is not 0, e.g.,

733 0 74

1 The proofs of the last two theorems are due in essence to E. CAHEN: Théorie
des nombres Vol. I. Paris 1914, and in the form here presented to A. CHATELET:
Groupes abéliens finis. Paris 1924.
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it is always possible to obtain form (2). Let the last column having a
non-zero element below the main diagonal be the ¢-th, and let 7;; be
the first such element in that column. Add row & to row ¢. Then
UR = R, 4+ mE, where s[d(R,)] < s(m").

If AL mQ,+ R,, then 4 =mUQ, 4 UR, where s[d(UR,)] <s(m").

Theorem 23.3. If A and B are matrices with elements in a proper
euclidean ving €, and if, d(B) = 0, there exist matrices Q and C such
that A = QB + C and either C = 0 or else 0 << s[d(C)] < s[d(B)].

By the lemma there exist matrices 0 and R such that

ABA=bQ0+ R, b=4d(B),
and either R =0 or else 0 << s[d(R)] <s(). If R=0, 4 = QB and
the theorem holds with C =0. If R4=0, R=AB* —b6Q =AB* -QBB*
= (4 — QB) BA = CBA. Then

ABA*=bQ 4 CBA4,
A=09B+C.

But s[d(R)] = s[d(C)] s[d(B*)] = s[d(C)] s[6"~"] = s[d(C)] [s (B)]" "
Therefore

0<<s[d(0)] <s(b) =s[d(B)].

The lemma and theorem were proved for rational integers by L. G. pu
PasqQuier!, who proceeded by this means to establish the existence of
the g.c.r.d.

24. Linear form moduls. Let £ be a linear form modul of order
#n with respect to a ring :. That is, & consists of all numbers of the
form

a8 + a8+ - Anty,
where the a’s range independently over R, and the &’s are linearly
independent with respect to :t. The &’s are called a basis of .
The basis is not unique, for any other set
8/:2%@78;, (t,7=1,2,...,n)
where U = (u,,) is unimodular with elements in % is also a basis for &;
for every linear combination of the &’s is a linear combination of the
£”s, and vice versa. Conversely, every two bases of a linear form modul
are related by such a transformation. The following discussion is relative
to a fixed basis &, ¢, ..., ¢, of &.

Let &, be a linear form submodul of order # of €,2 and let &, have

the basis 4, 4;,...,4,. Then

b= 28, (G, 1=12,...,n)

! pu PasqQuieR, L. G.: Vjschr. naturforsch. Ges. Ziirich Vol. 51 (1906) pp. 55
to 129.

2 If R is a principal ideal ring, every submodul of & is a lincar form modul.
VAN DER WAERDEN: Moderne Algebra Vol. IT p. 121. Berlin: Julius Springer 1931.
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where G; = (g,,) is a non-singular matrix with elements in ®. We
shall say that the matrix G, is associated with the basis 4, 4, ..., 4,
of & Every non-singular matrix G, determines in this way a basis
of a linear form submodul of .

If &, with basis u,, s, ..., i, is a linear form submodul of order
n of &, every number of &, is in &, and

M :Zcij}‘j =Zcijgjk6k-

The matrix G, associated with the basis g, iy, ..., g, of & is CG,,
where C is a non-singular matrix with elements in ®. This proves

Theorem 24.1. &, contains &, if and only if G, is a right divisor
of G,.

Corollary 24.1. Two moduls &, and L, are equal if and only if
G, LG,

For if G, = C,G; and G, = C,G,, then C,C, = I so that C; and C,
are both unimodular.

We shall say that the matrix G, corresponds to the modul &, (G, ~ &,),
understanding that G, is determined only up to a unit left factor.

Now specialize ® to a principal ideal ring B. The set of numbers
common to two moduls & and £, constitute a modul ; called the
greatest common submodul (or logical product) of the two moduls &,
and &,. It may also be defined as that submodul of &; and &, which
contains every common submodul of &, and &,.

The set of all numbers contained in either §; or &, or both, to-
gether with their sums and differences, constitutes a modul g,, called
the least common supermodul (or logical sum) of &, and &,. It may also
be defined as that modul containing g, and &, which is contained in
every modul containing &, and &,.

Theorem 24.2. Let Gyoo &y, Gyoo 8y, Gy 84, Gy oo 8. Then Gy
1§ the g.c.r.d. of Gy and Gy, and G, is the l.c.l.m. of G, and G,.

It is proper to speak of the g.c.r.d. and 1. c.1. m. for each is determined
up to a unit left factor, the same latitude of definition as that of G,
and G,,. The proof follows directly from Theorem 24.1.

The application of matrices with rational integral elements to the
theory of moduls is in large part due to A. CuATeLeTrl. His work is
summarized in two books, Lecons sur la théorie des nombres, Paris
1913, and Groupes abéliens finis, Paris 1924.

25. Ideals. Let R be a ring with unit element, and let & be a linear
form modul with respect to f which is also a ring, and whose elements
are commutative with those of R. Aninstance of such a systemisa domain
of integrity of a linear associative algebra in the sense of DICKSON2.

1 CHATELET, A.: e.g., Ann. Ecole norm. III Vol. 28 (1911) pp. 105—202 —
C. R. Acad. Sci., Paris Vol. 154 (1912) p. 502.
2 Dickson, L. E.: Algebren und ihre Zahlentheorie, p. 154. Ziirich 1927.
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As in §1 let the constants of multiplication of & be ¢;;;, and define
Ri = (Cisr) .
A submodul of & which is closed under multiplication on the left
by numbers of & is called a lefr ideal’. Similarly there may be defined
right ideals and two-sided ideals.

Theorem 25.1. A modul & of & s a left ideal tf and only if its cor-
responding matvix G satisfies the conditions

GRiT:DiG, (Z:'I,Z,,n)

where the D; ave matrices with elements in R.
Assume that 1,, 1,, ..., 4, constitute a basis for a left ideal §, where

Ti= 208y
Every number £ of § is of the form
k :Zkili :Zkigijgf’
while every number s of € is of the form
s =2'sg.
Since sk is in J for every s; and &;, there exist numbers d, of % such
that
sk :Zsl ki g cijnen :Zdré’w?z-
Since the &’s are linearly independent,
Zsl kigijCijn = Zdr Erh -

In particular there exist values d,,, of 4, when s,=9d,, and k;=J;,.
For these values

qujcm'h :dewgfh’
GR,"=D,G, D,= (dyy)- p=12,...,n

or

Conversely, the condition is sufficient. Let d
of N satisfying the above conditions. Define

Zi:Zgij8j~

The set of numbers % = > k;1; is evidently a modul. Let s be any number
of &. Then

»qr and g,; be numbers

sk :Zslkigij Cijr Er :Zslkidlisls

is again in the modul, which is therefore a left ideal?
CHATELET?® set up a correspondence between ideals in an algebraic

field and matrices with rational integral elements. If 1;,4,,..., 4,
1 vAN DER WAERDEN: Moderne Algebra Vol. I p- 53.

% MacDvurFreg, C. C.: Trans. Amer. Math. Soc. Vol. 31 (1929) pp. 71—90.

3 CHATELET: Ann. Ecole norm. IIT Vol. 28 (1911) pp. 105—202.
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are the conjugates of 4 in §(4), and E = [, 4, ..., 4,] is a diagonal
matrix, he proved that a necessary and sufficient condition that AEA!
be integral is that 4, apart from a diagonal matrix as a factor, corre-
spond to a basis of an ideal.

Now specialize R to a principal ideal ring . If two left ideals
and 3, of © have bases 4,,..., 4, and u,, ..., u, respectively, the set

of numbers
2> dighipy,

where d;; range over P is evidently a modul. Since % is a principal
ideal ring, it is a linear form modul. It is readily seen to be closed under
multiplication on the left by a number of &, so it is a left ideal. The
ideal so defined is called the product of the ideals §; and J, in that order.

H. PoiNCcARE? set up a correspondence between matrices and quad-
ratic ideals which is an instance of the correspondence of this paragraph,
and called the matrix corresponding to the ideal product the second
product or commutative product of the matrices corresponding to the
factors. He noted the isomorphism of ideal multiplication with com-
position of quadratic forms.

The matrix corresponding to the product of the two left ideals J,;
and §, is the g.c.r.d. of the matrices

G, RT™ (1), (i=1,2,...,n)
where G, corresponds to J,, and 4;, 4y, ..., 4, is a basis of I,.2
If &, ..., & are numbers of an algebraic field of order #, a minimal
basis of the ideal (o, . .., &) is readily determined from its associated
matrix 4, which is a g.c.r.d. of
R(&xy), R(xy), ..., R(xz).?

IV. Equivalence.

26. Equivalent matrices. Let 4 = PB(Q, where each matrix has
its elements in a principal ideal ring ®. Then 4 is a multiple of B.*

Theorem 26.1. If A is a multiple of B, the g.c.d. d; of the i-rowed
minor determinants of B divides the g.c.d. d{ of the i-rowed minor deter-
minants of A.

This follows immediately from Theorem 7.9.

Two matrices A and B with elements in B are equivalen: (A = B)
if there exist two unimodular matrices U and V such that 4 = UBV.

1 Pomncart, H.: J. Ecole polytechn. Cah. 47 (1880) pp. 177-—245.

2 SHOVER, GRACE, and C.C.MacDurree: Bull. Amer. Math. Soc. Vol. 37
(1931) pp. 434—438.

8 MacDurreg, C. C.: Math. Ann. Vol. 105 (1931) pp. 663—665.

4 Hewnser, K.: J.reine angew. Math. Vol. 114 (1894) pp. 109—115.
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The relation of equivalence is determinative, reflexive, symmetric and
transitive. (Cf. § 22.) The present chapter has to do with those properties
of matrices which are invariant under this relationship.

Corollary 26.1. If AL B, every g.c.d. d; of the i-rowed minor deter-
minants of B is associated with every g.c.d. d; of the i-rowed minor deter-
minants of A.

Elementary operations on the rows of a matrix are defined as in § 22,
each being accomplished by multiplying the matrix on the left by a
unimodular matrix. Elementary operations on the columns are defined
in an analogous manner, each being accomplished by multiplying the
matrix on the right by a unimodular matrix. The inverse of an elemen-
tary operation is an elementary operation of the same type.

Theorem 26.2 Every matvix A of rank o with elements in R is equiv-
alent to a diagonal matrix [hy, hy, ... hy, 0, ..., 0] where h;|hyyq .2

This diagonal form will be called SMITH's normal form.

If A is of rank g, the rows and columns can be shifted by elementary
transformations so that the minor determinant of order ¢ in the upper
left corner is == 0. Then as in the proof of Theorem 22.1, the element
in the (1, 1)-position can be made =0 and a g.c.d. of the elements of
the first column. The elements of the first column below the first row
can then be made 0’s by elementary transformations on the rows. If
the element which now stands in the (1, 1)-position divides every other
element of the first row, these other elements can all be made 0’s by
elementary transformations on the columns so as not to disturb the
first column of 0’s. If they are not all divisible by this element a;,,
then a;, can be replaced by the g.c.d. of the elements of the first row,
and this g.c.d. will contain fewer prime factors than a;;. The process
is now repeated until an element in the (1, 1)-position is obtained which
divides every other element of the first row and every other element
of the first column. Since every number of R is factorable into a finite
number of primes, this stage is reached in a finite number of steps®.

By working with the last # — 1 rows and columns, then with the
last # — 2 rows and columns etc., A can be reduced to an equivalent

matrix
D O
” , D=1, by, ..., B}, Hh+0.

@

0O M

Now M = 0, for if one element of M were not 0, it could be shifted into
the (o +1, @ -+ 1)-position, and 4 would have a non-vanishing minor
determinant of order o + 1.

1 SYLVESTER, J. J.: Philos. Mag. Vol. 1 (1851) pp. 119—140.
2 Smite, H.J.S.: Philos. Trans. Roy. Soc. London Vol. 151 (1861—1862)

p- 314.
3 vAN DER WAERDEN: Moderne Algebra Vol. II p. 124. Berlin: Julius Springer

1931.
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By adding column 2, column 3, ..., column g to column 1, D is
made to assume the form
hh 0 O 0 l‘,
hy hy O 0 ‘
hy O Iy 0.
he O O ... k)

As in the proof of Theorem 22.1, there is a unimodular matrix U which,
used as a left factor, replaces %, by the g.c.d. of %;,..., 4,. The new
matrix UD has every element a homogeneous linear combination of
hy, ..., hy, so each element of UD is divisible by the new %,. Again
reduce to the diagonal form (A, 4, ..., h,] where now #k, divides
hy, ..., h,. Continue until &;| Ay, 1=1,2,...,0— 1.

Now consider a matrix 4 with elements in a ring €', with unit
element and no divisors of zero, in which both left and right division
transformations exist. That is, a stathm is defined for every number
of € except 0, and for every pair of numbers a and b, b == 0, there
exist numbers ¢, ¢’, 7, 7', such that

a="bqg +7r, r =0 or s <s(),
a=qgb+7, ¥ =0 or s{r)<<s(b).
(Cf. §20.) If €' is commutative, it is a euclidean principal ideal ring €.
If s(ad) = s(a) s(b), € is proper.

An elementary transformation is one of five types:

1. The addition to the elements of any row of the products of any
element % of € by the corresponding elements of another row, & being
used as a left factor.

2. The addition to the elements of any column of the products of
any element %2 of € by the corresponding elements of another column,
% being used as a right factor.

3. The interchange of two rows or of two colums.

4. The insertion of the same unit factor before each element of any row.

5. The insertion of the same unit factor after each element of any
column.

Each of these elementary operations can be effected by multiplying
the given matrix either on the left or on the right by a certain elementary
matrix. A product of elementary matrices is called a unit matrix, in
spite of the fact that the concept of determinant is not defined for
matrices with elements in a non-commutative ring.

J. H. M. WEDDERBURN! has proved that if 4 has elements in €,
there exist unit matrices P and Q such that

PAQ =T[hy, hg, ..., 1y, O, ..., 0],
1 WEDDERBURN, J. H. M.: J. reine angew. Math. Vol. 167 (1931) pp. 129—141.
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o being defined as the rank of 4, and if €' is proper, %, is both a right
and a left divisor of %;. ;.1

This last result for € proper had been given essentially by L. E. Dick-
son%. Since the resulting diagonal matrices are factorable into prime
matrices in but one way apart from unit factors, the same is true for
all matrices with elements in ¢ which are of rank #.

27. Invariant factors and elementary divisors. Let 4 be a matrix

with elements in a principal ideal ring ‘B, and let

D =Tl b, .. 0,0, ... 0]

&

be its equivalent normal form (Theorem 26.2). It has been seen (Theorem
26.1) that the g.c.d. d; of the i-rowed minor determinants of 4 is as-
sociated with the g.c.d. d;’ of the i-rowed minor determinants of D.
Since h;|h;,q, it follows that

Theorem 27.1. The gc.d. dy="hyhy...h; of the i-rowed wminor
determinants of A divides the g.c.d. dy .y = hhy ... hiq of the (i 4 1)-
rowed minor determinanis of A .

The quotients 4; = dy, hy = dy/d,, hy = dyfd,, - - - are called the -
variant factors of A. They are invariants under the relation of equiv-
alence, and are determined up to a unit factor.

In a principal ideal ring every element neither 0 nor a unit can be
factored uniquely (except for unit factors) into a product of powers
of primes?®. Suppose

hy = ?llu, lem’ e, i)klik'
Since 7;|h; 1, the exponents of each prime factor form a sequence
enl;;:en_lyl;/'z...gell. (l‘:1,2,...,k)

Such of these powers /! as are not units are called the elementary
divisors of 4 [WEIERSTRASS]. They are defined up to a unit factor.

The elementary divisors are simple if each is a prime?

Theovem 27.2. A 2 B if and only if A and B have the same elementary
divisors (imvariant factors).

If A and B have the same invariant factors, they can be reduced
to the same normal form and hence are equivalent. If they are equi-
valent, they have the same invariant factors, for these are invariants.
The invariant factors determine the elementary divisors uniquely, and
conversely.

Corollary 27.2. Two matrices A and B with elements tn a commutative
field & ave equivalent if and only if they have the same vank.

1 See also VAN DER WAERDEN: L. c.

2 DicksoN, L. E.: Algebras and their Arithmetics. Univ. of Chicago Press
1923 p. 174.

3 vAN DER WAERDEN: Moderne Algebra Vol. I p. 65.

4 KRONECKER, L.: M.-B. preul. Akad. Wiss. 1874.

Ergebnisse der Mathematik. I1/5. MacDuffee. 4
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For in this case every element of § except 0 is a unit, and a normal
form [1,...,1,0,...,0] may be chosen where the number of 1’s is
the rank p.

The theory of elementary divisors is one of the oldest and most
thoroughly exploited branches of matric theory. The literature is so
extensive that the reader is referred to P. MutH’s Theorie und An-
wendungen der Elementarteiler’ for the early papers. The theory was
initiated by K. WEIERSTRASS? for the polynomial domain of the complex
field, by H. J. S. SMiTH?® and G. FROBENIUS* for matrices with rational
integral elements, and by FROBENIUS® for matrices with elements in
a modular field. FROBENIUS® later gave a rational treatment of the
WEIERSTRASS theory.

A. CHATELET? proved that if 4 and B have rational integral elements,
and if D is their g.c.r.d. and M their Lc.l.m., then MA! and MB!
have, respectively, the same invariant factors as BD' and AD.

28. Factorization of a matrix. Let 4 be a matrix of rank ¢ with
elements in a principal ideal ring B. By Theorem 26.2, 4 is a product
by unit matrices of a diagonal matrix

D=1[hy, by, ..., 0y, 0, ..., 0].
By §4, D is a product of matrices of the type

(M, 1, ooy pir o A1,
where p; is an irreducible factor of %;, and a diagonal matrix
[1,1,...,1,0,...,0] of rank ¢. The matrices [1,...,$;,..., 1] have

prime determinants and are therefore irreduciblest.
L. KrRONECKER? gave the following decomposition for a unimodular
matrix with elements in a field for the case x + 0:

(1 —y[x\ (0 —1V [x 0\ (0 —1\ (1 fl&\ (¥ B
0 1)(1 0) (0 1/oc><1 0)(0 1>—yﬁ_ﬁ’aii

and another decomposition when « = 0.
H. LAUurReNT0 discussed the factorization of a matrix into elementary
matrices.

! MurtH, P.: Teubner 1899.

2 WEIERSTRASS, K.: M.-B. preul. Akad. Wiss. 1868 pp. 310—338.

8 SmitH, H. J. S.: Proc. London Math. Soc. Vol. 4 (1873) pp. 236—253.

4 FroBENIUS, G.: ].reine angew. Math. Vol. 86 (1879) Pp. 146—208.

5 FrOBENIUS, G.: J.reine angew. Math. Vol. 88 (1880) pp. 96—~ 116.

6 FrOBENIUS, G.: S.-B. preuB. Akad. Wiss. 1894 pp. 31—44.

7 CHATELET, A.: C. R. Acad. Sci., Paris Vol. 177 (1923) Pp. 729—731.

8 puU Pasquisr, L. G.: Vjschr. naturforsch. Ges. Ztirich Vol. 51 (1906) pp. 55
to 129.

® KRONECKER, L.: S.-B. preuB. Akad. Wiss. 1889 pp. 479— 505.

10 LAUrReNT, H.: Nouv. Ann. Math. III Vol. 15 (1896) pp. 345—365.
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J. WELLSTEINT showed that every matrix is a product of elementary
matrices of three types: E;;(x) is obtained by replacing the 0 in row ¢
and column j of the identity matrix by x. Ej(x) is obtained by replacing
the 1 in row % and column % of the identity matrix by x. [ is the
identity matrix with the rows cyclicly permuted.

C. CELLITTI? noted that every second order integral matrix is a

product of powers of
(1 1 10 a 0)
o 1)’ 1 1)’ o 1)

29. Polynomial domains. An important instance of a principal ideal
ring is the polynomial domain P () of all polynomials in 4 with coefficients
in a commutative field §. The elements of 5§ (except 0) are the units
of B(4). Moreover B (2) is euclidean, for if a and b 5= 0 are two numbers
of the domain, there exist two other numbers ¢ and » such that

a=>bg+vr,
where either » = 0 or else 7 is of lower degree in A than ¢. If ¥ is
algebraically closed?® (e.g., the complex field), the primes in R(4) are
the linear polynomials in 4.

A matrix 4 = (4,59 + 514 + - -+ + a,,;7%) with elements in (4)
can be written as a polynomial in 4,

A= (arso) -+ (drsl) A4+ (drsk) i,

whose coefficients are matrices with elements in §. The matrix A4
is of degree k if (a,,;) + O. It is proper if it is of degree & and
d’(arsk) # 0.

Theorem 29.1. 1f A and B are matrices with elements in R (4), and
tf B is proper of degree I, then there exist matrices Q and R(Q, and R,)
such that A4 = BQ +- R, A = QlB + Rl’
where either R = O (Ry = 0) or else R(R,) is of degree <I.

Let

A=A+ ... +4,, B=Bl+. ...+ B, I<k.

Since d(B;) = 0, the equation B;X = 4; has a solution X = C,_,.
Then A4 — BCy_, 4% % is of degree & — 1 at most. Continue as in
ordinary long division until a remainder is obtained of degree <.

Theorem 29.2. If A and B are proper of degrees k and [ vespectively,
and if AP, = P,B, there exists a matrix ) and two matrices R, and R,,
of degrees vy and vy vespectively, such that

AR, =R,B, P,=QB+R,, Py=AQ+R,, n<l, #r<kl

1 WELLSTEIN, J.: Nachr. Ges. Wiss. Gottingen 1909 pp. 77—99.

2 Cerrrrry, C.: Atti Accad. naz. Lincei, Rend. V Vol. 23 IT (1914) pp. 208 —212.
3 vaN DER WAERDEN: Moderne Algebra Vol. I p. 198.

¢ Frosenius, G.: S.-B. preufi. Akad. Wiss. 1910 pp. 3—15.

4%
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Determine Q;, O, R, R, so that
P,=AQ, 4+ R,, P,=0,B+ R,
where R, is O or of degree <</, and R, is O or of degree <_k. Then
AR, — R,B=A(Q, — Q,) B.

The left member is either O or of degree <% --1 while the right member
is either O or of degree =% + /. Hence AR, = R,B and, since 4 and B
are non-singular, Q, = Q;.

Theorem 29.3. If A and B are proper, of degree 1, and equivalent,
then there exist non-singular matvices P and Q with elements in § such
that A = PBQ.

Since 4 and B are equivalent in P (4), there exist non-singular
matrices P; and P, whose determinants are in § such that

AP, = P,B.

Since 4 and B are each of degree 1, the matrices R; and R, of Theorem
29.2 have elements in . It remains only to show that R, and R, are

non-singular. Let
Pl— QA+ R,

where R, is either O or of degree 7, = 0. Then

I= P11P1: (QaA + R3) (QB +R1)
= Q?,AQB -+ Q3AR1 + R3QB + R3R1’
I— Rs Rl = (QaAQ + QaRz + RaQ)B~

The left member is either O or of degree 0 in 4, while the right member
is O or of degree =1 in 1. Hence each member isO, R,R, =1, d(R;) % 0.
Similarly d(R,) &= 0. Then 4 = PB(Q, where P =R, and Q = R,..

J. A. pE SEGUIER! showed how to reduce 4,1 + A,p to diagonal
form directly by means of constant matrices P and Q.

The characteristic matrix 72 — A of the matrix 4 with elements
in a commutative field ¢ is an important instance of a matrix in g (4)
whose elements are linear. Let

Ih— AZ kA, (D), ..., ka(D)],

where the second member is the normal form of Theorem 26.2.

Theorem 29.4. The minimum equation of A is h,()) = 0.

This follows from Theorems 15.1 and 27.1.

Corollary 29.4. A matrix is not devogatory when and only when the
elementary divisors of s characteristic wmatrix ave powers of distinct
primes.

1 DE SEGUIER, J. A.: Bull. Soc. Math. France Vol. 36 (1908) pp. 20—40.
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A matrix of the form

4, O 0
i
A= 0 dp ... 0
10 0 ... 4,
will be called the direct sum of the matrices A,, A,, ..., Ay, and will

be written?! . . .
A=A, 4+ Ay + -+ + Ag.

Theovem 29.5. I — A is equivalent to the matrix

B() = By(#) + Buos (@) -+ -+ Bui (i)
wheve [, .. 4, by 1 (B), . ., By (A)] is the SMITH normal form of I4 — A,
and B;(A) is any matrix whose invariant factors ave all 1’s bul the last
which is h;(4).
Suppose P;B;(4) Q;==1[1,..., 1, h(A)]. If
P=Pyf Pyt Py Q=0ut Qoo Quos
then a suitable permutation of the rows and columns of PBQ gives

K P B S N
In particular B;(4) may be chosen to be

i — 0 ... 0|
/ |
10 Ao—1 0

........... b
;: hl hl—l hl»") hl‘

where h;(}) = X + b A7+ oo F Iy
If 7;(%) is completely reducible in ¥, say
Bl = (2 — At - (3~ de),
B; () may be chosen in the form I1— J, where J is the JorDAN form
discussed in §14. (See Corollary 15.1.)

If § is an algebraically closed field €, every %;(4) being completely
reducible, the JorpAN normal form corresponding to each invariant
factor is a direct sum of JORDAN forms each corresponding to an elemen-
tary divisor of IZ — 4. By a shifting of the rows and columns these
forms can be arranged in any order. Thus B(4) can be chosen

B() = ]11(/1) + ]12(;‘) 4 +]nk(;“) »
where each [;;(4) is the JorpaN form corresponding to an elementary
divisor (2 — 4,k
It will be seen that there are two types of invariant for the field €,
the distinct roots of the characteristic equation, 2y, ..., 4;, which may

1 Krers, H.: Contribution a4 la théorie des systéms linéaires. Ziirich 1906.
KREIS attributes the notation to A. HurwiTz.
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be called numerical invariants, and the exponents e;; of the elementary
divisors, which may be called invariants of structurel. The exponents
written in the array

€11 €1 .- ejl
€19 €29 ... 3;'2
or [(ey, €12, - - -}, (a1, €as, . . .), . . .] constitute the SEGRE characteristic

of the matrix?2

30. Equivalent pairs of matrices. Two pairs of matrices 4,, 4,
and B;, B, with elements in a commutative field ¥ are said to be equi-
valent if and only if there exist two non-singular matrices P and Q
with elements in ¥ such that

A4, =PB,Q, A,=PB,Q.

Theorem 30.1. If A, and B, are non-singular, the pairs of matrices
Ay, Ay and By, B, are equivalent if and only if the matrices A1 + A,
and ByA + B, in the polynomial domain B(2) have the same invariant
factors (ov elementary divisors)3.

Let A,A+Ay,=A, BjA+B,=B. If 4, = PB,Q and 4,= PB,0,
then evidently 4 = PB(Q for every 4. In the domain (), P and Q
are unimodular since their determinants are non-zero numbers of §,
so by Theorem 27.2 the invariant factors of 4 and B coincide.

If, conversely, 4 and B have the same invariant factors, there
exist two matrices P, and ; whose determinants are non-zero numbers
of §, but whose elements may involve 4, such that 4 = P, BQ,. Since
A and B are proper, there exist by Theorem 29.3 two non-singular
matrices P and @ with elements in § such that

Ay 4+ Ay = P(BJ' + By) @
for 1 indeterminate. Hence 4, = PB,Q and A, = PB,(.

In treating the case where both A4, and A, are singular, it is more
convenient to use the symmetric linear combination 4;4 + A, whose
elements lie in the polynomial domain (4, #) of homogeneous poly-
nomials with coefficients in . P®(4, @) is isomorphic with R (4). The
invariant factors of A;1 + A,u will be called the invariant factors
of the pair A,, 4,. The pair of matrices 4,, 4, is said to be a non-
singular pasy if d(A,1 + A,p) is not zero in B (4, u).

Lemma 30.2. If Ay = A,p + Agq, Ay =Ayv + Ays, where p, q, 7, s
and the elements of A, and A, are in F, and if ps —rq &= 0, then the
wmvariant factors of A,"A 4+ A, u are obtained from those of Ayu -+ Ayv
by the substitution

u=plt+ru, v=ql-+tsu.

1 Cf. S. LatTks: Ann. Fac. Sci. Univ. Toulouse Vol. 28 (1914) pp. 1—84.
2 SuGRE, C.: Atti Accad. naz. Lincei, Mem. III Vol. 19 (1884) pp. 127—148.
3 WEIERSTRASS: M.-B. preuB. Akad. Wiss. 1868 pp. 310—338.
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This substitution, having an inverse, defines an automorphism of
the domain R (4, y) ~ BV(x, v) by which A2+ A,/ u~ A,u -+ A,v.

Theorem 30.2. Two non-singular pairs of matrices A,, A, and B, B,
with elements 1n a field T ave equivalent if and only if they have the same
invariant factors.

If they are equivalent, they have the same invariant factors. This
follows as in the proof of Theorem 30.1.

If A;, A, is a non-singular pair, there exists a non-singular matrix
Ay = A;p + Ayg. Choose 7 and s in any way so that ps — rqg == 0,
and define 4, = A,7 + A,s. Define B,’, By’ cogrediently. Then by the
lemma 4,’, 4," have the same invariant factors as B,’, B/, since 4,, 1,
have the same invariant factors as B;, B,. In this case the pairs A4,’, 4,
and B;’, B, are equivalent by Theorem 30.1. Then the pairs 4,, 4,
and B;, B, are equivalent.

Corollary 30.21. I} 4, ts non-singular, the pair A,, A, with elements

m § is equivalent to the canowical paiy I, —B where

B :Bn + Bn—l 4. +Bn—lm
and By is the companion wmatrix of the i-th tnvariant factor of 4, 4,.
Corollary 30.22. If A, is non-singular the pair Ay, A, with elements
i an algebraically closed field € 1s equivalent to the canonical paiv I, — ]

where J=Jo+ Jocst+ o+ Jocks
and J; is the JORDAN wmatrix of the i-th invariant factor of A,, 4,.

The problem of the equivalence of singular pairs of matrices presents
more difficulty. M. Pascu! and P. MuTtu? treated singular pairs of
third order matrices. MUTH? treated the general case. L. E. Dickson?
proved that two singular pairs are equivalent by rational transformations
if and only if they have the same invariant factors and the same minimal
numbers M;, which he defines. TurNBULL and AITKEN? have an
original treatment of the singular case.

Since a polynomial in more than one variable is usually not factorable
into linear factors, the WEIERSTRASS elementary divisor theory does
not generalize so as to be applicabie 1o the problem of the equivalence
of sets of more than two matrices. S. KANTOR® generalized the concept
of elementary divisor by geometric methods to handle this problem.

A new method in the equivalence of pairs of matrices was developed
by R. G. D. RicHARDsSON?. First suppose that 4, .. ., 4, are the roots

1 Pascu, M.: Math. Ann. Vol. 38 (1891) pp. 24—49.

2 Muts, P.: Math. Ann. Vol. 42 (1893) pp. 257—272.

3 MutH, P.: Theorie und Anwendungen der Elementarteiler. Teubner 1899.
4 Dickson, L. E.: Trans. Amer. Math. Soc. Vol. 29 (1927) pp. 239—253.

5 TurNBULL and AITKEN: Canonical matrices, Chap. IX. Glasgow 1932.

6 KANTOR, S.: S.-B. Bayer. Akad. Wiss. Vol. 98 (1897) pp. 367 —381.

7 RICHARDSON, R. ;. D.: Trans. Amer. Math. Soc. Vol. 26 (1924) pp. 451 —478.
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of |4 — AB| =0 and are all distinct. Let 4 = (a,,), B = (b,;). There
exist sets or poles (%13, - -+, %ux)> V115 - -+ Yin), DO one of which consists
entirely of zeros, such that

Z(di,-_lkb,-,-)xjk———o, (i,k=1,2,...,n)

7

2@y — Lbiy) v =0. (g, =1,2,...,m)

k)

These poles may be normalized so that 2 ;yy; b;;%;; = 1. Since

;;ymlw %p =k gyu big %k = ll‘izjy” bij %k,
it follows th;lt if k1,
%:ynﬂzjxjkz 0, ;ylibijxjk: 0.
The matrices X :’ (x,,) and Y = (v,,) are orthogonal relative to 4 and B.

Then
YBX =1, YAX =12, ..., 4,].

In case the roots of |4 — AB|=0 are not all distinct, various
cases arise. If 1 is multiple, the number of linearly independent poles
(%%, ..., %) may still be equal to the multiplicity. In this case the
argument proceeds as before. The case when there are fewer linearly
independent poles than the multiplicity p is called the irregular case.

Then the solutions of the equations

dr-1g; dr-2 g,
2(“@'1—1”:';)71?#:2%# (h=2,...,9)
j 7
are used to fill out the rows of X and Y. If 4; is a root of multiplicity 3,
for instance, and if the number of linearly independent poles is 1, the
normal form attained for 4 — AB is

[

i o 0 Ay — 4|
o =2 1.
h—A 1 o |

31. Automorphic transformations. If PAQ = A4, the elements of
each matrix being in a commutative field {§, the matrices P and Q
determine an aufomorphic transformation of A with respect to the
relation of equivalence.

Theovem 31.1. If d(A) &= 0 and M 1is an arbitrary matrix such that
d(A + M)d(A — M) = 0 then

P=(A+M)(A-M), Q=4+ M (4-M)

define an automorphic transformation of A. Theve are no others for which
d(I+ P)d(I+Q) F o0

1 CavLEY, A.: Philos. Trans. Roy. Soc. London Vol. 148 (1856) pp. 39—~46.
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Evidently
I+ AM)(I —AM) =1 —AM) I+ A'M),
A+ M)A A —M)=Ad— M)A A+ M).
By taking the inverse of each member it follows that
(A —MPIAA+ M) = (4 + M)TAA - M),
(A+MA-—-MMAA+ M4 -M)=4.

Hence if P and Q both exist, both are non-singular, and they define
an automorph of 4.
Solving the equations defining P and @ yields, respectively,

M={P+DP—-DA4, M=AI—-0Q)Q+I).
If PAQ =4,
(P=—DAQ+ 1) =P+ 1NAI—-0Q),

and the two values for M are equal. Hence for every P and @ such
that PAQ = A, and (P + I)! and (Q + I)! exist, there is an M in
terms of which P and Q may be defined as in the statement of the
theorem.

The restriction that P -+ I and Q + I be non-singular is a serious
one, however, and is not easily avoided.

FroBENTUS! noted that if PAQ = B, d(Q) =0, then {(P)A [/ (Q")]'= B,
where / is any rational function such that f(Q") is non-singular. He
also proved that a necessary and sufficient condition in order that P
and Q be capable of transforming a non-singular matrix into itself is
that it be possible so to order the elementary divisors of /4 — P and
I’ — Q that corresponding elementary divisors are of the same degree
and vanish for reciprocal values of 4.

V. Congruence.

32. Matrices with elements in a principal ideal ring. If A =P*BP
where each matrix has elements in a principal ideal ring B, and if P
is unimodular, then A is congruent with B, written 4 < B. Congruence
is an instance of equivalence, and is determinative, reflexive, sym-
metric, and transitive. (Cf. §22))

If a bilinear form Zbi]-xiyj of matrix B be transformed by cogre-
dient transformations of matrix P into a form of matrix A, then
A =PTBP. It is the purpose of the writer to present the subject as
pure matric theory free from the notion of bilinear form, but the
reader will have no difficulty in translating the results into the no-
tation of form theory if he so desires. Thus Theorem 34.1 states that

1 FrOBENIUS: J. reine angew. Math. Vol. 84 (1878) pp. 1— 03.
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the normal form for a quadratic form is g %,® + g #,* 4+ - + g, %,2, and
Theorem 32.2 states that the alternating form can be reduced to
by (%095 — %591) + ho(a¥y — %, ¥5) + -+ -

Theorem 32.1. If S is symmetric and S; <~ S, then S, is symmetric.
If Q is skew and Q, < Q, then Q, is skew.

For if S;=PTSP, then 5;T=PISTP. If ST=S, then S,T=S,.
Similarly for Q.

A matrix 4 with elements in B cannot as a rule be written as a sum
of a symmetric matrix and a skew matrix (Theorem 5.3) but 24 can
always be so expressed.

Corollary 32.11. If S + Q£ S, + Q, where S and S, are symmetric
and Q and Q, arve skew, then S S, and Q £(,.

For by Theorem 5.3 the expression of a matrix as a sum of a sym-
metric matrix and a skew matrix is unique.

Corollary 32.12. If A =S 4 Q, the invariants of S and Q ave in-
variants of A.

KRONECKER?! noted that b — ¢ is a cogredience invariant of

M= .
c d
Its square is the determinant of the skew component of 2M.

Theorem 32.2. Every skew matrix Q of rank o = 2p is congruent
with a dirvect sum

[0 hl>+( 0 h2>+ +< 0 h, +(0 0)+
(—hl 0 —hy 0 —h, 0) 00 ’

where hy|hy|. .. |h, 2
If every element of the first column of

“ 0 G2 T3
0= "“ —G12 0 g
| —s —@gss O

is 0, the columns and corresponding rows may be permuted until this

is not so. Let
Fip =021+ 315+ -+ + bugun
be a g.c.d. of the elements of the first row. Choose

1 0 0
p_|0 B *
0 by *

1 KRONECKER: Abh. preuB. Akad. Wiss. 1883 II pp. 1—60.
2 CaumeN, E.: Théorie des nombres Vol. I p. 282. Paris 1914.
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unimodular with elements in ® (Theorem 21.1). Then PTQP is of the
form Q with the further propertv that ¢, = 0 and divides every other
element of the first row. By elementary transformations these other
elements can be made 0’s. The process mav be continued until a matrix

0 ko 0 0 ..
—kiy O Ry O L.
K= 0 —ky 0 &y -
0 0 —ky 0 ...

is reached.

Either #,, divides every other element of K, or another congruent
matrix of the same type can be obtained in which the element in the
(1, 2)-position has fewer prime factors than k,,. By adding row 2,

row 3, ..., row # to row 1, and then adding columns similarly, a new
congruent matrix is obtained whose first row consists of
Iy =0, o = Ris — kyy., hy=hy — ks, ooy Lin=hoot,n-

Every g.c.d. of (ky, ..., ky_y,) is a g.c.d. of (/fy,..., 1, and con-
versely. As in the first part of this proof, a congruent matrix can be
obtained similar in form to K but with the element in the (1, 2)-position
a g.c.d. of (R, ..., R,y ,). Unless ky,|k;_; ; for every 7, this g.c.d.
will have fewer prime factors than #,.

Thus in a finite number of steps a matrix K can be reached in
which k&, divides every element. By proceeding similarly with the last
n — 1 rows and columns, a matrix K is obtained in which

k12!k23!k34|~--{k9—1y0-

Now by adding a proper multiple of row 1 to row 3, &y, can be made 0.
Every &; ;.1 with 7 even can be made 0 in succession. This proves the
theorem.

It is again evident that Q is singular if # is odd (Theorem 8.6). Let

0 =2u.

Theorem 32.3. The wumbers hy, hy, hy, hy, . . ., by, h, of the canonical
form of Q arve the invariant [actors of Q.

The non-vanishing minor determinants are -/, /7y ... %, where
each subscript is an integer of the set 1, 2, ..., # no integer of which
can appear more than twice. It is evident then that the g.c.d. of the
i-rowed minor determinants is d; = h by hohghs . .. to i factors. Thus

d, = hy, dy/d, = By, dgfdy = hy, - - -, which proves the theorem?®.
Corollary 32.31. The skew canonical form is unique except that the
elements may be veplaced by associates.
For the invariant factors are invariants (§27).

1 CaHEN: L c.
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Corollary 32.32. Two skew matrices with elements in B are congruent
if and only if they have the same invariant factors.

Corollary 32.33. If two skew matvices with elements in B are equivalent,
they are congruentl.

Corollary 32.34. In a skew matrix the 2i-th invariant factor is equal
to the (21 — I)-th®.

Corollary 32.35. The g.c.d. of the minors of the same even order of
a skew matrix is a perfect square.

Matrices congruent with each other constitute a class.

Corollary 32.36. There is but a finite number of classes of non-singular
skew matrices with a given determinant.

Since factorization into primes in a principal ideal ring is unique
except for unit factors, there is but a finite number of choices for each
invariant factor.

The theory of congruent symmetric matrices is by no means as
simple as that of skew matrices. This theory occurs in the literature
principally in connection with quadratic forms. The relation 4 = PTBP
was first given by A. EI1SENSTEIN?, who noted that if a quadratic form
of matrix B be transformed by a transformation of matrix P, the new
quadratic form is of matrix A.

Theorem 32.4. Every symmetrvic matvix S of rank ¢ with elements
m a principal ideal ring P is congruent with a matrix of the form

Sy Sz O ‘

S12 Spa Sz ...
O Sz S3 |

where $;_y ;= s;; =0 if 1> p.

The proof is practically identical with that of the first part of the
proof of Theorem 32.2.

This reduced form is not unique, and indeed the problem of finding
a unique symmetric canonical form is one of extreme difficulty if it
is not actually impossible. It has not been attained even for two-rowed
matrices whose elements are rational integers, as will appear in the next
section.

33. Matrices with rational integral elements. This topic, which
constitutes a large and important chapter in the theory of numbers,
can only be touched upon here. Complete references up to the date
of their publication are given in articles by K. T.VaHLEN®, and

1 FROBENIUS: J.reine angew. Math. Vol. 86 (1879) pp. 146—208.

2 FrROBENIUS: L. c. 3 FROBENIUS: 1. c.

4 EISENSTEIN, A.: J.reine angew. Math. Vol. 35 (1847) pp. 117—136.
5 VanreN, K. T.: Enzykl. math. Wiss. I Vol. 2C2 (1904) pp. 582—638.
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L. E. Dickson!. The treatises by P. Bacamaxn? and Dickson3 cover
the field quite thoroughly.

The following fundamental theorem was stated by C. HErRMITE# and
proved much later by STOUFF?.

Theovem 33.1. There is but a finite number of classes of symmetric
matrices with vational integral elements of given mom-zero determinant.
(Cf. Corollary 32.36.)

The proof is too long for inclusion here.

Let ‘

la b
A= , a(d)>o, a>0.
16 ¢,
Such a matrix is positive definite. If

—a<2b=Za, ¢

v
2

with =0 if ¢ = a, the matrix 4 is called reduced. Every positive
definite symmetric matrix of order 2 is congruent with one and only
one reduced matrix®.

If d(4) <0, A is called indefinite. 1f f is that root of

ax*4+2bx +c=0

which involves the positive radical, and s is the other root, then A4 is
reduced if |f| <1, [s|>1,fs < 0. Here again there is at least one
reduced form in every class, and usually more than one, but never
more than a finite number. By a method of Gauss these can be ar-
ranged into chains of reduced forms so that each chain corresponds
to one and only one class.

These results are sufficient to indicate the general situation. Can-
onical forms have been defined in various ways so that every class
shall be represented at least once and at most a finite number of times.
The goal of defining a unique canonical form has been attained only in
special instances.

Theorem 33.2. I} B=(b,,), where b,, is the positive g.c.d. of v and s,

then B < (1), (2), ..., p(1)],

where @ (1) is the EULER ¢@-function of ¢.7
Let @ (m) be the number of integers in a reduced set of residues
modulo m. Then m =2 ¢(d) summed over all divisors d of m. Let

1 Dickson, L. E.: History of the theory of numbers Vol. IIT pp. 284 —288.
Washington 1923.

2 BaceMaNN, P.: Die Arithmetik der quadratischen Formen. Teubner 1923.

3 Dickson: Studies in the theory of numbers. Univ. of Chicago Press 1930.

4 HerMITE, C.: J.reine angew. Math. Vol. 47 (1854) p. 336.

5 STourF: Ann. Ecole norm. ITT Vol. 19 (1902) pp. 89—118.

¢ KRONECKER: Abh. preul. Akad. Wiss. 1883 IT pp. 1—00.

7 Smith, H. J. S.: Proc. London Math. Soc. VIT 1876 pp. 208 —212.
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pi; =1 if 7]j, otherwise p;; = 0. Since p;; =1 and pi; =0 for § <1,
d(?rs) =1. Let P = (p,,), QZ[Q/}“)’ ®(2),..., @ (m)], B= (brs) = PIOP.

Then bre = 2 pir @ (1) i = 2 9 (dy)

summed over all common divisors d,, of » and s. Hence ,, is the positive
g.c.d. of » and s.?

34. Matrices with elements in a field. Theorem 34.1. Every sym-
metric matrix of rank o with elements in a field § not of characteristic 2
is congruent in § with a diagonal matrix [g,,8,, ..., £,,0,...,0], g+ 0.2

Consider \ ‘
‘ Ay ty Az .-

\
|

i

A —1| %2 Gu dy .
|-

I

Assume the minor of order ¢ in principal position (upper left corner)
to be non-singular. If a;; = 0, some ay; == 0. After adding row & to
row 1 and column £ to column 1, the new element in the (1, 1)-position
is 2a;; 4 0, so we assume a;; #+ 0. Add —ay,/a,; times the first row
to the %-th row, and similarly for columns, thus reducing all elements
of the first row and column to 0 except the first. Now proceed similarly
with the lower right minor of order # — 1, and so on until the diagonal
form is reached.

Corollary 34.1. If A; is the principal minor of order i in the upper
left corner of the symmetric matrix A, and if p; = d(4;) = 0, then g;
can be determined as a rational function of the elements of A; alome.

For in this case none of the first ¢ rows and columns need be inter-
changed with any of the last # — ¢ rows and columns.

A commutative field § is called ordered if for every element a of
the field one and only one of the relations

a=20, a>0, —a>0

holds, and if further @ > 0 and 4 > 0 imply @ - 5> 0 and ab > 0.3
Theorem 34.2. 1} 55 is an ordered field, and if G = [g;, .. ., &,,0,..., 0]
1s congruent with H=1[h,, . . ., hy, 0, . .., 0], then the number of g’s which
are >0 is exactly equal to the number of W's which are > 0.
This theorem is SYLVESTERS's? “Law of inertia”. It was rediscovered
by Jacosi®.

1 Proof by FROBENTUS: J. reine angew. Math. Vol. 86 (1879) pp. 146—208.

2 For differential forms by LaGraNGE: Misc. Taur. Vol. I (1759) p. 18. —
For the general field by L. E. Dickson: Trans. Amer. Math. Soc. Vol. 7 (1906)
Pp. 275—292.

3 vAN DER WAERDEN: Moderne Algebra Vol. I, p. 209.

4 SYLVESTER: Philos. Mag. IV 1852 pp. 138—142.

8 Jacomr: J. reine angew. Math. Vol. 53 (1857) pp. 265—270.
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Let 4 and B be any two congruent matrices and suppose that
A = P'BP or ‘
Ars = ZPZT bij Pis-
Y
Let x,, ..., x, be at present undetermined. Then
Z Xy Qps Xg = 2 (Z pir xr) bl](z Zﬁ,is xs) .
r, s (3%} r 8
Denote >'p;,x, by y;. If in particular 4 = H and B = G,
r — N
Z hr X2 = 2, 8 ,\'i:z-
r [
Now suppose 72, >0,...,/%,>0, h.1<<0,...,h, <0, §>0,...,
£>0,84+1<0,...,¢ <0, <. Then

By 4 b R = g Vi — e~ Be VS
=gyl TGV — Bhqg = h, %}
Choose #,,1=::-=2x,=0 and x,,...,4, not all zero so that the

4 < x% linear forms y,,...,v, are all zero. Since this implies
hyxy® -« =+ h,x,2 =0 for the x’s not all 0, a contradiction is reached,
and it must be true that /= x%. Since the relationship between H and
G is mutual, 2 = x.

The number 2% — p = ¢ is called the signature of H, and is the
number of positive terms diminished by the number of negative terms
in the normal form!. The two invariants ¢ and ¢ determine the number
of positive and the number of negative terms in the canonical form.

Corollary 34.21. Two symmetyic matrices in the veal field are congruent
if and only if they have the same rank o and the same signature .

For every positive /; can be reduced to 1, and every negative #;
to —1, by an elementary transformation in the real field.

Corollary 34.22. Two symmetric matrices in an algebraically closed
freld © ave congruent if and only if they have the same rank 0.

For in this case each %; can be reduced to 1.

A symmetric matrix 4 in an ordered field is called positive definite
if p =0 = n, and negative definite if p = —0c = n. It is semi-definite
if p=0or p=—o0.

If A4 is symmetric and #, ..., %, indeterminate, /= >"a;;x;%; is
called a quadratic form. If B=PTAP, then f=b;y;y; where
%; =" p;;v;. If A is positive definite (or negative definite), then />0
(or f<C 0} except for 2y =%, =--+=x,=0. If 4 is positive (or nega-
tive) semi-definite, then /== 0 (f =< 0) except for 4, =%, =... =%, = 0.
These propertics of f characterize 4.

A symmetric matrix 4 of rank g is regularly arrvanged if no two
consecutive principal minor determinants p; = ay;, Py = |y, G},

! FrROBENIUS: S5.-B. preufl. Akad. Wiss. 1894 1 pp. 241—256 and 407—431.
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p3 = | @11 99453, . . . are zero. Such an arrangement is always possible,
and if p; =0, then p; , p;,,, < 0.2

Theorem 34.3. If A is regularly arranged, the signature o of A is
equal to the number of permanences manus the number of variations of
sign in the sequence

Loy Doy o oos Pos

where either sign may be attributed to a p which vanishes?.

It was remarked in Corollary 34.1 that it is possible to reduce 4
to diagonal form in such a way that [gy,..., g] is obtained from
A; =||ay; - .. a;;|] by elementary transformations in case the latter
is non-singular. That is, [g,, ..., g] = K,"4,K;. Hence g,g,...g; has
the same sign as p; = d(4;) in case the latter is not 0, and g; < 0 if
and only if $; ; and p; have opposite signs. In case p; = 0, then p;
and p;., have opposite signs, so one permanence and one variation is
obtained whether $; is counted positive or negative. Also g;...g;—1
and g, ...g;y; have opposite signs, so one of g, g;.1 is positive and
the other negative. Since o is invariant, the result is true independently
of the method of reduction to normal form.

Corollary 34.3. If A is any matrix, ATA is positive semi-definite.

ot pi=2 (40P =0.

H. Minkowskr® proved that two non-singular symmetric matrices
with rational elements are congruent in the rational field if and only
if three invariants J, 4, B coincide. Here J is the number of negative
elements in the diagonal form, 4 is (—1)7 times the product of the
primes occuring in the determinant to an odd exponent, and B is a
certain product of odd primes. This theory was extended to singular
matrices by H. Hassg4

L. E. DicksoN® proved that in the rational field a non-singular
symmetric matrix can be reduced to the diagonal form

[a,b,¢,1,...,4, —1, ..., —1],

where the —1’s are absent unless @, b and ¢ are all negative.
Theorem 34.4. Every skew matrix of rank o = 2p with elements in
a field ¥ is congruent with a matrix of the form$

0 ap)\ - 0 ag) - . 0 Au_1,u\ - (O O\ .
("“12 0 >+(_“34 0 >+-H+(—aﬂ—1:‘“ 0 )+<O O>+”“

1 GUNDELFINGER, S.: J. reine angew. Math. Vol. 91 (1881) pp. 221—237.

2 DarBoux, G.: J.Math. pures appl. II Vol. 19 (1874) pp. 347—396. —
GUNDELFINGER: 1. c.

3 MinkowskI, H.: J.reine angew. Math. Vol. 106 (1890) pp. 5—29.

¢ Hasse, H.: J.reine angew. Math. Vol. 152 (1923) pp. 205—224.

5 Dickson, L. E.: Trans. Amer. Math. Soc. Vol. 7 (1906) pp. 275—292.

5 Muts, P.: J.reine angew. Math. Vol. 122 (1900) pp. 89—96.
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This is a special case of Theorem 32.2.
O. VeBLeN and P. FrRaNKLIN? stated that the analogous form for
symmetric matrices does not hold for all fields, but does hold for modular

fields.
Corollary 34.4. In the real field every skew matrixz of rank o = 2y

s congruent with

01\). j.L'01)+00)J.r 4/00)
—1 0/,+”' (—1 o)/ "\o o " (0 ol

where just u blocks are not zero®.

Theovem 34.5. If & is a field not of chavacteristic 2, theve exist two
n-th order symmetric matrices A and B, d(B) %= 0, with elements in 3§
such that A -+ AB has as invariant factors any prescribed polynomials

P, P, ..., P
with coefficients in & such that P;| Py, and such that the sum of the
degrees of the P's is n.®

Let PL(Z) — m + blzm—] + b211m—2 4 ... + bm'

Let 2 be the greatest integer in 4 (m + 1), and form the matrix

oy 6 O 0 ... 0 0 —4 |

‘j Clp Cap Ca3 O e 0 —4 1
C = 0 €y Cg3 Cy ... —4 1 0

| e

Il o—2 1 0 .. 0 0 ©

i—4 1 0 O ... 0 0 0,

of m rows and columns, where the last ¢ is ¢;;, the ¢’s being for the
moment undefined. For m odd, the element in position (&, %) is ¢;; — 4,
while for m even it is ¢;,.

For m odd, add 7 times column % to column # — 1, A times row #
torow 4 — 1, A times column 4 — 1 to column 4 — 2, 4 times row 2 — 1
to row & — 2, etc. For m even, start with column % -+ 1 and proceed
as before. The result in either case is

i f(A) Cin 0

|

| |

)] Cy  Ch Cap

|

e S

Ci=, , ol

I ¢y Cay Cn !

i “

| ' |

"0 1 ... 0 - 0|

1 VEBLEN, O, and P. FRANKLIN: Ann. of Math. IT Vol. 23 (1921) pp. 1—15.
2 Brioscui, F.: ].reine angew. Math. Vol. 52 (1856) pp. 133 —141.
3 Dickson: Modern algebraic theories, p. 126. Chicago 1920.

Ergebnisse der Mathematik. 11/5. MacDuffee. 5
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where

h h
+A(C) = 2I@) = 2" = ey 72 =2 X6y B0
j= =

For m odd, 4-f(4) may be identified with P;(1) by choosfng
cw=—by, Ch1,n=—1}by,
In case m = 24, the coefficient of 7~% in 4 f(4) is 0. But if P;(1)

Pe WIS pa) = (L — B (= I b

its coefficients may be identified with those of -f(4) similarly.

Define A; to be C with the —2’s replaced by 0’s for m odd and by
I's for m even. Define B; to have —1’s in the secondary diagonal and
0’s elsewhere. Then

d(4; + 2B) = P;(4), d(B;)=0.

Since the cofactor of a;; in A 4 1B is 41, the invariant factors
of A+ AB are 1,1, ..., P;(4).
Now define

Then d(B) = 41, and 4 4 2B has the prescribed invariant factors.

35. Matrices in an algebraically closed field. The results of this
section are restricted to matrices with elements in an algebraically
closed field €,* due principally to the fact that the following theorem
is not valid for a general field, although its analogue for skew matrices
(Corollary 32.33) holds for a principal ideal ring.

Theorvem 35.1. If A and B are symmeiric matrices with elements in €,
and if AEB, then A< B in €.

By Corollary 27.2 A £ B if and only if they have the same rank.
By Corollary 34.3 4 £ B if and only if they have the same rank.

Corollary 35.1. Every non-singular symmeiric mairix A with elements
in § can be written A = R'R.

For if A is non-singular, 4 < I by Corollary 34.3, and 4 = R*IR.

Theorem 35.1 is not, however, sufficiently explicit to be useful.
The following more explicit theorem is due to FROBENIUSZ

Lemma 352138 If (%) is a polynomial of degree n > 0, with coef-
ficients in ©, whose constant term is not O, there exists a polynomial g ()
of degree <<m such that

lgM=4, modj().

Lemma 35.22. If A is non-singular with elements in €, there exists
a non-singular matrix X = [(A) with elements in § such that X* = A.

1 vaNn DER WAERDEN: Moderne Algebra Vol. I p. 198.

2 FrOBENIUs: S.-B. preull. Akad. Wiss. 1896 pp. 7—16.

3 Proofs are given in BOcHER: Introduction to higher algebra, p. 297. —
Dickson: Modern algebraic theories, p. 120.
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Let /(4) be the characteristic function of 4, and let g (4) be determined
as in Lemma 35.21. Let g(4) = X.

Theorem 35.2. If A = PBQ where A and B are both symmetric or
both skew and P and Q non-singular, then there exists a mnon-singular
matrix R which depends upon P and Q but not upon A and B such that
4 = R'BR.

If A = PBQ where 4 and B are both symmetric or both skew,
then 4 = Q'BPT, and

PBQ = Q'BP", Q'"PB = BPTQ.
If U is defined as Q'* P, then
UB==BU", F(U)B = Bj(UT)
for every polynomial /. Let /(U) = X, where X2 = U (Lemma 35.22).
Then
RTBR = QT XBX'Q = QTX®BQ == Q*Q'"PBQ = PB(.

Corollary 35.2. I} PAQ = A, and PBQ = B, where 4 and A,
also B and By, are both symmelric or both skew, there exists a non-singular
matrix R such that

RT4AR =4, R*BR = B,.

Theorem 35.3. If d(4) = 0, a necessary and sufficient condition
that A & B in the field € is that x4 + AAT and B - AB' have the
same invariant factors?.

If A< B, then 4 = R'BR, and 4' = RT'BTR. Hence

#d + AT = R'(xB + IBY)R
for % and A indeterminate, and ».4 + 247 has the same invariant
factors as ®xB - ABT (Theorem 27.2).

If, conversely, %4 4 A" has the same invariant factors as » B+ AB",

then by Theorem 30.1,
4 = PBQ, AV = PBT(Q.

Then ) )

44+ 4T= PB+BYHQ, A — A" = P(B — BY)(Q.
But 4 + AT and B + B are symmetric, while 4 — 4" and B — Bf
are skew. Hence there exists a non-singular matrix R such that

A4+ AT = RY(B + BYR, A— AT"=RY(B - BH)R
by Corollary 35.2. Hence, adding?,

A= RTBR.

This theorem is valid also for the case d(4) = 0, but the proof is
too long for inclusion here3.

1 KronNecker: M.-B. preull. Akad. Wiss. 1874 pp. 397 447.
2 Proof by FroBENIUS: S.-B. preull. Akad. Wiss. 1896 p. 14,
3 MutH, .: Theoric und Auwendung der Elementarteiler, p. 143. Teubner 1899.

g*
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Theorem 35.4. Two pairs of matrices (A, B) and (A,, B,), where
all are symmetric, or all are skew, or A, A, are symmetric and B, B, are
skew, are congruent if and only if they arve equivalent.

This follows directly from Corollary 35.2.

P.Mute! proved that two congruent pairs of real symmetric
matrices 4, B and 4,, B; such that x4 4 1B has only imaginary
elementary divisors, are congruent with respect to the real field. If
%4 + AB £ xA, + AB,, and if B and B, are semi-definite of the same
sign, the pencils are congruent with respect to the real field if they
have no linear elementary divisors with basis %; otherwise if and only
if 4 and A; have the same signature.

L. E. Dickson? gave necessary and sufficient conditions for the
congruence of pairs of symmetric matrices, both singular and non-
singular, with respect to the real field. Also3 he gave conditions for
the congruence of pairs of two-rowed symmetric matrices in any field.

36. Hermitian matrices. This theory is an abstraction of the theory of
hermitian forms »'a;;%;%; (4;; = a;;) under conjunctive transformations,
and the theorems may be so interpreted. Let $ be any field, and % any
number of § which is not a squarein §. The field (&) = § obtained by
adjoining to ¥ a root &, of the equation &%= £ is identical with its conjug-
ate field ¥ (£,) obtained by adjoining to §§ the other root &,. Thus the
substitution of &, for &, defines an automorphism of the field §. If % is
a number of §, we shall denote by % the number of § to which % cor-
responds under this automorphism. Evidently 4 = A if and only if
his in .

Let A4 = (a,;) be any matrix with elements in H. The conjugate
of 4 is by definition

A = (a,4).

If AT = A A is called hermitian®. The diagonal elements of an
hermitian matrix are in §.

If A"= —A4C A4 is called skew hermitian. (Cf. §18.) The diagonal
elements of a skew hermitian matrix are multiples of & by a number
of &.

Some properties of the characteristic roots of an hermitian matrix
when $ is the complex field were developed in §18.

Two matrices 4 and B are conjunctive or congruent in the hermitian
sense (written A & B) if and only if there exists a non-singular matrix P
with elements in § such that

A4 = PTBPC,

1 MurtH, P.: J. reine angew. Math. Vol. 128 (1905) pp. 302—321.

2 Dickson, L. E.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp. 347 —360.
3 Dickson, L. E.: Amer. J. Math. Vol. 31 (1909) pp. 103—108.

4 See C. HerMmITE: C. R. Acad. Sci., Paris Vol. 41 (1855) p. 181.
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This relationship is determinative, reflexive, symmetric and transitive.
If A,B and P have elements in &, A £ B becomes A < B,
Theorem 36.1. If A is hermitian (skew hermitian) and B~ A, then B
is hermitian (skew hermitian).
For B = PTAP® implies

BC = PCTACP, BCT = PT4CT pC PTAPC = B,

and similarly for the skew hermitian case.

There is a marked parallelism between the properties of hermitian
matrices under conjunctive transformations and symmetric matrices
under cogredient transformations. The proofs also are parallel and
will be omitted.

Theorem 36.2. Every hermatian matvix of vank o with clements in
a field © without charvacteristic 2 is comjunctive in © with a diagonal
matrix gy, €, .- 8,, 0,...,0], g in F and = 0.

The proof is similar to that of Theorem 34.1.

Theorem 36.3. If § is an ordered field and &% <0, and if
G=I[g, - 80,...,0] s conjunctive with H=1[hy, ..., h,,0,...,0]
in the field = F(E), then the number of ¢'s which are >0 1s exactly
equal to the number of I’s which are >0.

For if £2 < 0, 2% 220, and xx = 0 if and only if x = 0. The proof
proceeds as in the proof of Theorem 34.2 with x,2 replaced by x,%,, etc.

If 3§ is the real field so that § is the complex field, then cach element
of the diagonal form can be reduced to +1 or —1. Hence

Theorem 36.4. Two hermitian matrices are conjunctive in the complex
jreld © if and only if they have the same vank and the same signature.

Theorem 36.5. A necessary and sufficient condition in ovder that two
pairs of hermitian matvices A, B and Ay, B,, 4 and A, non-singular,
be conjunctive in § is that 74 + B and A4, + B, have the same invariant
Jactors.

Theorem 36.6. There exist pairs of hermitian matvices of order n,
one of which is non-singular, having any given admissible elementary
divisors.

Only minor changes in the proofs of the corresponding theorems for
symmetric matrices is necessary to obtain proofs of the above theorems?.
In fact symmetric and hermitian matrices are considered simultaneously
by L. E. DicKkson2.

If 2 is a characteristic root of 4 = (a,,), there exist » numbers
(%4, ..., %,) in the field of the elements of A4 such that

D (ay; — A40;) %, = 0. (t=1,2,..., %)

7

1 LogspoN, M. I.: Amer. J. Math. Vol. 44 (1922) pp. 254—200.
2 DicksoN, L. E.: Modern algebraic theories, Chap. IV. Chicago 1926.



64 V. Congruence. [416

These numbers %4, ..., %, constitute a pole of A corresponding to the
characteristic root . They are defined only up to a non-zero factor.
If 2, x;x;,=d? then (x,/d, x,/d, ..., x,/d) is a normalized pole. If X
is a matrix whose ¢-th row is a normalized pole of 4 corresponding to
the characteristic root 4;, then X is a polar matrix of A.

Theorem 36.7. If A is hermitian (symmeiric) with distinct characteristic
7008s Ay, Ay, . . ., Ay, its polar matrix is unitary (orthogonal)l.

Let %y, ..., %, %1, ..., %,; be any numbers of § and define

é:i :Zaijxj, ”)]i :Zaijyj'
If A is hermitian,
2 &Y =2 4%y =2 a5 Vi Xy =0 %
If in particular (xy,...,%,) = (%1, . - ., ¥,,) 15 a normalized pole cor-
responding to 4, and (v,,...,¥,) = (¥4, ..., %,,) is a normalized pole
corresponding to 1,
E:':}“pxipy . nizl}quiq:

Zillp Xip %ig :Z Ay %4 %iq
7
since the A’s are real. Then
(Ap — 4 in,,?ciq =0.
(3

If A, + 2, 2i%,%,=0, and if p =¢, Z;x;,%;, = 1. Hence X is
unitary, and if it is real, it is orthogonal2

Corollary 36.7. If A is hermitian with distinct characteristic roots A;,
and if X s its polar matvix, then

XTAX =D =[ly, Ay -, Al

D @iy — I biy) %5, =0

7

may be written AX = XD. Then
X"AX =XTXD=D

For

since X is unitary.

Theovem 36.8. The elementary divisors of the characteristic matrix
of every hermitian matrix are simples.

This follows immediately from Theorem 18.6.

If a matrix is of order » and signature o, its characteristic is
g=14%@mn—|o|). [LoEwY.]

1 Laurent, H.: Nouv. Ann. III Vol. 16 (1897) pp. 149—168.

2 BUCHHEIM, A.: Mess. Math. Vol. 14 (1885) pp. 143 —144.

3 CHRISTOFFEL, E. B.: J. reine angew. Math. Vol. 63 (1864) pp. 255—272. —
AuToNNE, L.: Bull. Soc. Math. France Vol. 31 (1903) pp. 268 —271. — BAKER, H. F.:
Proc. London Math. Soc. Vol. 35 (1903) pp. 379—384.
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Theovem 36.9. Ij H and K are hermitian with d(H) =0, and if
q s the characteristic of K, then

o=s+ 3+ 25

where 2s 1s the sum of the exponents of the elementary divisors of pH — K
which vanmish for imaginary values of o, h varies over the exponenis of
those elementary divisors which vanish for veal non-zero values of o, and
W' varies over those which vanish for 0 = 0. (R] signifies the greatest integer
m k.1

The proof is too long for inclusion here. T. J. I’A. BRoMWICH?
gave a proof for the real case, and extended the theorem to include
the cases d(H) =0 and d(oH — K) = 0.

Corollary 36.91. If H and K ave hermitian, H non-singular of signature
o, then d(oH — K) = 0 has at least |a| real roots®.

For Loewy’s inequality gives n — |o|=2s or # — 25 == |d|.

Corollary 36.92. If H and K are hermitian, H positive definite, then
d(oH — K) = 0 has only real roots*.

This is a special case of KLEIN’s theorem. Corollary 18.31 is in turn
a special case of the last corollary.

It had been shown by SYLVESTER® that the number of real roots
of d(oH — K) = 0 was = the signature of every matrix of the family,
H and K symmetric.

37. Automorphs. If P*TAP = A, then P is a conjunctive automorph
of A. A unitary matrix may be considered as an automorph of [. If
PTAP = A, Pisa cogredient automorphof A. If A = I, Pis orthogonal.

L. AuToNNES called lorenzian any real automorph of a non-singular
real symmetric matrix 4. Previously LAUE? and A. BrRILL® had called
a matrix lorenzian if it was a cogredient automorph of the diagonal
matrix [1,1,1, —1].

Theorem 37.1. 1} A ts symmetric and non-singular with elements
in a field , and if Q is an arbitrary skew malyrix such that d(A + Q) (4 —Q)

= 0, then P=A4+0H4 -0

1 Loewy, A.: J. reine angew. Math. Vol. 122 (1900) pp. 53—72 — Nachr.
Ges. Wiss. Gottingen 1900 pp. 298 —302.

2 BroMwicH, T. J. I’A.: Proc. London Math. Soc. I Vol. 32 (1900) pp. 321 to
352.

3 KvrEIN, F.: Dissertation. Bonn 1868 — Math. Ann Vol. 23 (1884} pp. 539
to 578.

4 CHrisTOFFEL, E. B.: J. reine angew. Math. Vol. 63 (1864) pp. 255 —272.

5 SyLvESTER: Philos. Mag. Vol. 6 (1853) pp. 214—216.

6 Autonng, L.: C. R. Acad. Sci., Paris Vol. 156 (1913) pp. 858— 860 — Ann.
Univ. Lyon IT Vol. 38 (1915) pp. 1--77.

7 Lave: Das Relativitatsprinzip. Vieweg 1911.

8 BriLL, A.: Das Relativititsprinzip. Teubner 1912.
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is a cogredient automorph of AL If d(I+ P)=+0, there are no
others2.
For Pl=A-0Q)T(4d+ Q)
= (4T — Q) (4" + Q)
=d+0 -0
That PTAP = A now follows from Theorem 31.1.
If the equation defining P be solved for @, there results
I-—-P
O=4515-
This expression exists if (I -+ P) = 0, and is well-defined by Theorem
15.6. It remains to be shown that Q is skew if PTAP = A4.

N LEd U EE Y

I

I+P T I+ Pt
I-4pPA _AI——PI
T I+ APATT T TP

pP-1

AP+1_ Q

Many attempts have been made to remove the restriction
d(I + P) %= 0, which is not trivial. H. TABER? showed that such an
automorph can be represented as the product of two automorphs of
the CAYLEY type.

A.Vosst extended the above theorem to a non-singular A4 not
necessarily symmetric as follows: Every P such that PTAP =4 for
which d (P + nI) == 0, = -1, can be uniquely expressed in the form

P=y(I —B4) (I + B4y,

where BA -+ BYAT = 0. He also found the number of linearly in-
dependent solutions B of this latter equation, and proved that the
number of parameters in P for 4 non-singular is m — u where m is
the number of linearly independent matrices C such that ACT = C4.
He showed later® that m — u=4n#n —1) —4(n — o) # — o — 1)
where A is of order # and rank p.

A. Loewy® showed that if d(P + %I) = 0, two transformations of
the type given by Voss will generate P.

J. H. M. WEDDERBURN? used the exponential function of a matrix
to obtain the general solution X of X*PX = P for P non-singular,
the parameters entering transcendentally.

1 CaviLEY: Philos. Trans. Roy. Soc. London Vol. 148 (1856) pp. 39—46.

2 FROBENIUS: J.reine angew. Math. Vol. 84 (1878) pp. 1—63.

3 TABER, H.: Math. Ann. Vol. 46 (1895) pp. 561—583.

4 Voss, A : Abh. bayer. Akad. Wiss. IT Vol. 17 (1892) pp. 235—356.

5 Voss, A.: Abh. bayer. Akad. Wiss. Vol. 26 (1896) pp. 1—23.

6 Loewy, A.: Math. Ann. Vol. 48 (1897) pp. 97—110.

? WEDDERBURN, J.H.M.: Ann. of Math. IT Vol. 23 (1921) pp. 122—134.
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HERMITE! proved that if A is symmetric and non-singular with
rational integral elements, every automorph P with rational integral

elements is of the form
p]_elpze2 e Pkek,

where % is finite and the P’s commutative, and the exponents are
positive or negative integers or zero.

H. PoiNcaRrE? stated without proof that if 4 has rational integral
elements and ASAT = S where S is the skew normal form of BRIOSCHI
(Corollary 34.4), then 4 is a product of elementary matrices of two
simple types. This was proved by H. R. BRaHANA3 and extended to
the case where S is not in normal form.

Theorem 37.2. In the complex field a necessary and sufficient condition
that a matvix P be a congruent automorph of some non-singular matrix
is that P = AB wheve A and B are involutory?®.

It will first be shown that there exists a non-singular matrix H
such that PHP = H if and only if P = AB where 4 and B are in-

volutory. Evidently
PAP = ABA’B = AB>= 4

so the condition is sufficient. If PHP —= H, then PHPHP = H?P
and PH? = H?P, so H?is commutative with P. Then Pf(H?) = [(H*)P
for every rational function f. Choose f so that j(H? = K (Lemma 35.22)
where K2 = H2 Define 4 = HK'. Since K' is a polynomial in H,
4 =K'H. Then A% = H2H ?=1 so that 4 is involutory. Define
B = AP = A'P so that P = AB. Then B2 = APA'P = K'HPH'KP
= K'P'KP = K'P'PK = I, so B also is involutory.

It will be shown, secondly, that there exists a non-singular matrix L
such that PLPT = L if and only if there exists a non-singular H such
that PHP = H. Since for any M, M — A1 and M' — /[ have the same
invariant factors, the pairs (M, M') and (I, I) are equivalent (Theorem
30.2). Thus there exist matrices R and S such that

RMS =MT, RIS=1I.
Hence RMR! = MY, Take M = P'T so that
H'PH = P! = RP'TRY,
R'HIPHR = P'T,
P(HR)PT = HR.

The converse of this step follows similarly?®.
1 HERMITE: J. reine angew. Math. Vol. 47 (1854) pp. 307—368.
2 Poincarg, H.: Rend. Circ. mat. Palermo Vol. 18 (1904) pp. 45— 110.
3 Branana, H. R.: Ann. of Math. IT Vol. 24 (1923) pp. 265—270.
4 Jackson, D.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp. 479— 484.
5 Proof by I'roBENIUS: S.-B. preull. Akad. Wiss. 1910 T pp. 3 -15.



68 V1. Similarity. [420

P. F. Smrtu! had previously shown that a cogredient automorph
is a product of not more than # involutory matrices.

H. Hirton? called quasi-unitary a conjunctive automorph of a non-
definite canonical hermitian matrix.

L. AUTONNE gave a systematic treatment of lorenzian matrices?.
A necessary and sufficient condition that A be lorenzian is that it be
an automorph of a diagonal matrix whose diagonal elements are --1
or —1. The most general lorenzian is of the form

K=LFM, F=1I, ,+K+I, u,,
where L and M are direct sums of orthogonal matrices, and

T H
HT

a

?], o=,

T and H being canonical hermitians. For #» = 4 he obtained BRILL’s
canonical form?:

1 0 0 of
01 0 O
F:’ ’1 0 —n2 =1,
0 0 0 7|
0 0 7 6J1

where § =k, 0 =kq, k=1[J1 — ¢~

VI. Similarity.

38. Similar matrices. Two matrices 4 and B with elements in a
principal ideal ring P are called similar (written 4 — B) if there exists
a unimodular matrix P such that 4 = P'BP.S5 Similarity is an in-
stance of equivalence, and is determinative, reflexive, symmetric and
transitive (§ 22). More than this, every unimodular matrix P determines
an automorphism of the ring of matrices with elements in 9§, for if

A, = P'B,P, A,= P'B,P,
then
A, + 4, = P'(B, + B,) P, A;4,= PY(B,B,)P.

A matrix may be interpreted as a linear homogeneous transformation
in vector space. From this point of view similar matrices represent
the same transformation referred to different bases. All the theorems
of this chapter may be interpreted from this standpoint.

1 SmitH, P. F.: Trans. Amer. Math. Soc. Vol. 6 (1905) pp. 1—16.
2 HirtoN, H.: Ann. of Math. IT Vol. 15 (1914) pp. 195—201.

3 AUTONNE, L.: Ann. Univ. Lyon II Vol. 38 (1915) pp. 1—77.

¢ BriLL: L c. p. 31.

5 FROBENIUS: ].reine angew. Math. Vol. 84 (1878) p. 21.
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Theorem 38.1. The coefficients of the characteristic equation of a
matrix A ave similarity invariantst,

For if 4 = PBP, then 4 — 2 = PY(B — 2I)P, and d(4 — A1)
=d(B — 11I).

Corollary 38.1. Ij A =B in an algebraically closed field, the char-
acteristic voots of A coincide with those of B, and each has the same multi-
plicity for A as for B.

The number theory of similar matrices has received relatively little
attention as compared with the number theory of congruent matrices.
What has been done has been mainly concerned with linear trans-
formations and groups.

C. Jorpax? defined a canonical form using integral algebraic
numbers, and gave a necessarv and sufficient condition that two such
matrices be commutative.

L. E. Dickson3 generalized to Garois fields the canonical form of
Jorpan. He also gave? an explicit form of all m-ary linear homogeneous
substitutions in GF (p") commutative with a particular one.

39. Matrices with elements in a field. Theorem 39.1. A necessary
and sufficient condition that two matrices A and B with elements in a field
X be similar is that, in the polynomial domain F(%), [4 — A and 14 — B
have the same invariant factors.

If A= P'BP, then evidently I2 — 4 = PY(I1 — B)P, so that
I1— A and I) — B have the same invariant factors (Theorem 27.2).

If, conversely, I2 — A and I — B have the same invariant factors,
there exist two non-singular matrices () and P whose elements are
independent of 2 such that

I/ —A=QUIi—-B)P
by Theorem 30.1. Hence
I=QP, (Q=P, A= PBP.
Corollary 39.11. In an algebraically closed [ield,
A% ] =Jud Jooi oo Jas,

where [, is the JORDAN matrix of the i-th wnvaviant factor of 4.5
Cf. Corollary 30.22.

1 TFucns, 1.t J. reine angew. Math. Vol. 66 (1866) pp. 121 —160

2 JorpaN, C.: Traité des substitutions ct des équations algébriques, p. 125.
Paris 1870.

3 Dickson, L. E.: Amer. J. Math. Vol. 22 (1900) pp. 121—137.

1 Dickson, L. E.: Proc. London Math. Soc. Vol. 32 (1900) pp. 165 170.

5 Jorpan, C.: Traité des substitutions et des équations algtbriques, p. 114,
Paris 1870.
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Corollary 39.12. In any field,
AiB :Bn"i_Bn—l + "'"i’Bn—kr

where B; is the companion matvix of the i-th invariant factor of A.

Cf. Corollary 30.21.

WEIERSTRASS! noted that 4 can be reduced to diagonal form if
and only if its elementary divisors are simple.

Various methods of reduction to the JorRDAN form have been given
by E. Netto?2, H. Hrrton3, and G. VOGHERA%

The second form B was introduced by FROBENIUS? for the complex
field. Derivations of the normal form (which, however, introduce ir-
rationalities in the derivation) were given by G. LANDSBERG®, W, BURN-
sipE?, and H. HirtonS3.

A number of writers have given a priori proofs of Corollary 39.12
and have used this as a starting point in the development of the entire
theory of matrices. The first complete proof valid for a general field,
but restricted to non-singular matrices, was given by S. Lattis?. The
method is partly geometric, having been suggested, the author states,
by a paper of C. SEGRE! and a book by E. BERTINIL. If 4 = (a,,) is
non-derogatory, it has a finite number of poles, and &, &,, ..., &,
are so chosen that the hyperplane

V1= 0%+ QX+ oo X2, =0
does not contain a pole of 4. Let (8/) = A% and set P =2, «; B,7°".

8

Then 0 1 0O ... 0
piyp— 0 0 T ... 0
............... I
—a, —~au_1 —Ap-2 —a !l

If 4 has an infinite number of poles—i.e., is derogatory—the rows
of P are not independent. If the first m rows are independent, 4 can
be reduced to the form

B 0O
iC D

|
i

|»
|

[ —ay Ay -1 e _ﬂli

‘WEIERSTRASS: M.-B. preul. Akad. Wiss. 1868 pp. 310—338.

NetTo, E.: Acta math. Vol. 17 (1893) pp. 265—280.

HirTon, H.: Mess. of Math. Vol. 39 (1909) pp. 24—26.

VoGHERA, G.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp. 32— 34.

FroBEN1US: J. reine angew. Math. Vol. 86 (1879) pp. 146—208.
LaNDSBERG, G.: J.reine angew. Math. Vol. 116 (1896) pp. 331— 349.
Burnsinpg, W.: Proc. London Math. Soc. Vol. 30 (1898) pp. 180—194.
Hiiton, H.: Homogeneous linear substitutions. Oxford 1914.

Lattis, S.: Ann. Fac. Sci. Univ. Toulouse Vol. 28 (1914) pp. 1—84.

10 SeGrE, C.: Atti Accad. naz. Lincei, Mem., IIT Vol. 19 (1884) pp. 127 —148.
11 BerTiNg, E.: Introduzione alla geometra proiettiva degli iparspazi. Pisa 1907.
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Then by a proper choice of the «’s C can be made O, and the reduction

continued until s . . .
AiiiBl+B2+ ...+Bp7

each B being of the form of B above, and such that |B; — 41| divides
|Bir1 — AI|. The form is shown to be unique.

G. KowaALEwskI! sketched an alternative treatment of the same
problem, stating that the investigation had been prompted by a remark
of Sopuus LIE that such a reduction would be desirable. Let the point
(%4, %g, . . ., %,) be denoted by (x), and write

xil - Zlij X5 L= (er)
in the notation (x") = (x) L. If f(w) is a polynomial of degree m, denote
() F(L) = () = ko (0) + Ay () L + -+« + k() L™

Let (&) be a definite point. Let « be such that (£), (§)L, (§) L2, ...
(§) L>=1 are linearly independent, while

(&) L% = ag(§) + ay(§) L + - + ax—1 (§) L>L.
Choose (&) so that « is as large as possible. Then
Alw)=ay+ a0+ -+ a, 10" — 0

is called the first charactevistic polynomial of L. In case o <, take
(n) a point not dependent upon (&), (§)L, ..., (§)L* ! and choose f
so that

(7) LF = bo () + by () L + -+ + by—y () LI~ + (&) P(L)

for some polynomial P, while no such relation holds for a smaller j.
Take (1) so that § is maximal. If

Bw)=by+ b o+ - + by 0f 1 — f,
(M B(L) + (§) P(L) = 0.
Call B a second characteristic polynomial. If x4+ f<<n, continue and get
Q)C(L) + (P R(L) + (5 QL) = 0.
Continue until & + g + y + -+ - = n. It is now possible to take new

then

potnts o) = () + (&) (L),
(&) =@+ mwl) + & xL), etc
so that
(EYA(L) = (of)B(L) = () C(L) = --- = 0.
Then B|4,C|B,... Now transform
&, &L, ..., LY, ), L, ..., @)L,

1 KowarLEwskI, G.: Ber. Verh. sichs. Akad. Leipzig Vol. 68 (1916) pp. 325
to 335.
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into (1,0,...,0),(0,1,...,0),... respectively. Then the transform
of L is a direct sum of blocks of the type

[0 0 ... 0 a

1.0 ... 0 g4

|-

000 ... 1 a

Another treatment of the same problem was given by W. Krurr?!
at the suggestion of A. LoEwY. An arbitrary matrix 4 is similar to
one of the form | 4* O |

B4
where A4,* is the companion matrix of the minimum equation of 4.
The above matrix is shown to be similar to

| A* 0
L0 A4,

|
il

>

|
|
|

k
The process is continued with A4, until it is shown that
ASAF F A4F 4 4,x,

where |I1— A;*| =0 is the minimum equation of A;*-...-]- 4%
The form is shown to be unique.

L. E. DicksoN? gave an independent development which is com-
paratively brief. Instead of the planes used by LATTES, he used poly-
nomial chains, and the restriction d(4) == 0 is removed.

A. A. BENNETT? discussed the computational aspects of the methods
of LaTTES, KOWALEWSKI and DICKSON.

A clear presentation and refinement of the method of KowALEWSKI
was given by H. W. TURNBULL and A. C. AITKEN%

A very short derivation of this normal form using ideals and group
theory was given by VAN DER WAERDEN®.

Other derivations of the normal form have been given by
W. O. MexGeS, J. H. M. WEDDERBURN?, . SCcHREIER and E. SPER-
NERS, and M. H. INGRAHAM®.

1 Krurr, W.: Uber Begleitmatrizen und Elementarteilertheorie. Freiburg 1921.

2 DicksoN, L. E.: Modern algebraic theories, Chap. V. Chicago 1926.

3 BENNETT, A. A.: Amer. Math. Monthly IT Vol. 38 (1931) pp. 377—383.

4 TurnBurLL, H. W,, and A.C. AITKEN: An introduction to the theory of
canonical matrices, Chap. V. London 1932.

5 vAN DER WAERDEN: Moderne Algebra Vol. IT p. 135. Berlin 1931.

6 MENGE, W. O.: Construction of canonical forms for a linear transformation.
Univ. of Michigan dissertation 1931.

7 WEDDERBURN, J.H.M.: Notes on the theory of matrices. Princeton Univ. 1931.

8 SCHREIER, O., and E. SPERNER: Vorlesungen iiber Matrizen, p. 91. Leipzig 1932.

9 INGraAHAM, M. H.: Abstr. Bull. Amer. Math. Soc. Vol. 38 (1932) p. 814.
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The relation between the rational and irrational canonical forms
in the case of a matrix having distinct characteristic roots was clearly
indicated by I.Scuurl. If A has the distinct characteristic roots
0y, 0y, . - ., 0, and the characteristic equation

d i P =ttt = =0,
E[ € Co -+ Chet On \ h01 O ... 0§
R:‘M 0 ... 0 0| p_0 g ... 0
Lo o oo o .. L |
i i
then P = Q'R(Q where
co" Tt et o7t
g o T e
" 1 1

The transforming matrix which corresponds to () when A is general
was given explicitly by TURNBULL and AITRENZ

40. Wevr’s characteristic. Let 4 be a matrix with elements in
an algebraically closed field 3§, and having the characteristic roots
Iy hgy o Ay I Z; is of multiplicity o, let

®i1, g1 Oga, Oy b Bga T Xgg, o, g e B Ky =y
be the nullities (§8) of the succesive powers

A—LI, (A—iD?, ..., (A—=iI)y

respectively, where p is the first integer giving the maximum nullity «;.
The set of numbers &4, . . ., &;, is called the WEYR characteristic of A
relative to 4,3

If the elementary divisors of 4 are (A -— 2)%¢ (i =1, ..., k), then 4
is similar to a direct sum of matrices

i 1 0 ... 0.

0 4 1 0
Ja= '

000 0 ... A

(Corollary 39.11) where J;; is of order /. Write [;; = 4,1, + N; where
I, = (4,,) and N;= (0,1 ;). Then

Il:::]ly IZZ\‘YI'—?NZIZLNl,
) B ;Vlz = (Zt 6r+1,t6t+l,s) - ((Sr+2,s)
ScHUR, 1.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp. 159—175.
Tur~BULL and AITKEN: Canonical matrices, Chap. VI. London 1932.

WEvVR, E.: C. R. Acad. Sci., Paris Vol. 100 (1885) pp. 966 969 — Mh. Math.
Phys. Vol. 1 (1890) pp. 163~ 2306.

w o |
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which is of nullity »(V,;2) = 2. And in general
(NP = h. (h=1,2,...,1)

One may call I; the idempotent and N, the nilpotent matrix corresponding
to the elementary divisor (4 — 4;)%%.1

Theorem 40.1. The WEYR characterisiic and the SEGRE charactevistic
(§29) of A relative to the characteristic voot X; of multiplicity ; are con-
jugate partitions of o;.2

Suppose the SEGRE characteristic of A4 relative to 4; to be written
as the rows of a FERRERs diagram3.

For instance if (¢;1, €2, €3, €:4) = (5, 4, 2, 2,) we write

The drop in rank (or increase in nullity) in the successive powers of
A — 4,1 is evidently the number of dots in the successive columns
of the diagram, for every block corresponding to an elementary divisor
drops one in rank with successively increasing exponents until 0 is
reached, after which no change occurs.

Corollary 40.1. The WEYR characteristics of a matrix A constitute
a complete set of imvariants of structure. (Cf. §29.)

In other words, two matrices are similar if and only if they have
the same characteristic roots and the same WEYR characteristic®.

Expositions of WEYR’s theory have been given by W. H. METZLER?,
K. HENSELS, and J. WELLSTEIN?.

W. O. MENGE® proved that if %;(1) of degree d; is the i-th invariant
factor of A — A4, then %;(4) has the minimum rank of all matrices
7(4) where f(4) is a polynomial in 1 of degree =d,.

L. AuTtoNNE?® proved that a necessary and sufficient condition in
order that AB -5 B4 is that 4¢ and B® have the same ranks for 7 = 1,
2,...,n.

W. KruLL1® extended WEYR’s theory to a general field.

1 WEDDERBURN, J. H. M.: Ann. of Math. IT Vol. 23 (1921) p. 123.

2 TurNBULL and AITKEN: Canonical matrices, p. 80. London 1932.

3 MacmaHON, P. A.: Combinatory analysis Vol.II p.3. Cambridge Univ.
Press 1915.

4 WEYR, E.: L. c.

5 MeTzLER, W. H.: Amer. J. Math. Vol. 14 (1892) pp. 326—377.

¢ Henser, K.: J.reine angew. Math. Vol. 127 (1904) pp. 116—166.

7 WELLSTEIN, J.: J. reine angew. Math. Vol. 163 (1930) pp. 166—182.

8 MENGE, W. O.: Bull. Amer. Math. Soc. Vol. 38 (1932) pp. 88—94.

9 Aurtonng, L.: Nouv. Ann, Math. IV Vol. 12 (1912) pp. 118—127.

10 Krurt, W.: Uber Begleitmatrizen und Elementarteilertheorie. Freiburg 1921.
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41. Unitary and orthogonal equivalence. If there exists a unitary

matrix (§18) U such that A4 = USTBU,

then A4 is both conjunctive with and similar to B. We shall write
A Y B to mean that 4 is conjunctive with B by a unitary transformation.
If all the matrices are real so that U is an orthogonal matrix, we say
that A s congruent with B by an ovthogonal transformation, and write
A 2 B. Many properties of the relation © are implied by the cor-
responding properties of the relation 2.

Theorem 41.1. If A and B ave hermitian in the complex field €,
a wnecessary and sufficient condition in order that A X B is that
Al —AEJI - B.

By Theorem 36.5 the condition 21 — A4 £ 11 — B implies the
existence of a non-singular matrix P such that

pPeTip =1, P'BP=A.

The first equation indicates that P is unitary. Then, from the second,
ALY B,
Conversely, if A U B, there exists a unitary matrix U (U‘TIU =)
such that U‘TBU = A. Then by Theorem 36.5, 4] — A £ il — B.
Corollary 41.1. I} A and B are orthogonal in the veal field R, a neces-
sary and sufficient condition in order that A °- B isthat A1 — A ® 11 — B.
Theorem 41.2. If H s hermitian,

HY [y, hyy oon, Al
where Ay, by, . .., A, are the characteristic roots of H.
By Theorem 36.8 the elementary divisors of H are simple, so the
cogredient normal form is the diagonal matrix [4;, 4y, ..., 4,].

Direct proofs of this theorem for H real and symmetric and U
orthogonal were given by L. STICKELBURGER! and, using infinitesimal
transformations, by J. J. SYLVESTERZ.

Theovem 41.3. If A 1s any malvix with complex elements, then A YL B,

where? ko000
by Ay O 0 };
B = t by by Ay 0 N
:‘ ............ ‘
} bnl bn'_’ bna ln :
Let 4, be a characteristic root of 4, and (qy, ¢s, - - -, ¢,) the cor-
responding pole, so that
Z{'auqi:llqj. (1=1,2,...,n)
1=

1 STICKELBURGER, l..: Progr. der eidgen. polyt. Schule. Zirich 1877.
2 SYLVESTER, J. J.: Mess. of Math. Vol. 19 (1890) pp. 1—5.
3 Scrur, I.: Math. Ann. Vol. 66 (1909) pp. 488--510.

Ergebnisse der Mathematik. 1i/5. MacDuffee. 6
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The sum >'g;q; = ¢? is positive. Set g¢;; = ¢;/g. Then
2@ =hgn,  2Giign=1.

It is possible to determine g5, ..., ¢;, so that Q = (g,,) is unitary.
Then QTAQC is of the form

h 0 0 0 |

621 b22 b23 b?n

Continue with the last # — 1 rows and columns. Since the product
of unitary matrices is unitary, we have the theorem.

Theorem 41.1 also appears as a corollary to this theorem. For if A
is hermitian, so is B, so that B is diagonal.

A matrix A4 is called normal if A°TA = AA®T2

Evidently 4 is normal if AT is equal to a rational function of 4,
so normal matrices include hermitian, skew hermitian, unitary, ortho-
gonal, symmetric and skew matrices as special instances.

Theovem 41.4. A mecessary and sufficient condition in order that
A X D where D is diagonal is that A be normal?.

The property of being normal is a unitary invariant, for if A=U“TBU,

then AACT — UCTBBCTU,  ACTA — UCTRCTR.

If BB‘T = B*TB, then 4AT = A°T4.
By Theorem 41.3 we may take

I, o o .|
B_lbtu 2 0
|

b31 b32 }‘3

The element in the (1, 1)-position in BB®T is 4,2, the corresponding
element in B“TB is 4,2+ by by 40y b5y -+ - - - Hence byy = by =+ - - =0.
Comparison of elements in the (2, 2)-position now shows that by, = b,
= ... =0, etc. Hence if 4 is normal, it can be reduced to diagonal
form. Since two diagonal matrices are commutative, the converse is
obvious.

Theovem 41.4. If A is positive semi-definite hermitian, and m 1is
awy positive integer, there exists a unique positive semi-definite hermitian
matrix B such that B® = A, It is of the same rank as A.3

By Theorem 41.4 there exists a unitary matrix U such that

USTAU =[hy, Ay ., A =L, 4=0.

1 ToerriTz, O.: Math. Z. Vol. 2 (1918) pp. 187—197.

2 Toerritz, O.: 1. C.

3 AuToNNE: Rend. Circ. mat. Palermo Vol. 16 {1902) pp. 104—128 — Bull.
Soc. Math. France Vol. 31 (1903) pp. 140—155.
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Let
M =1{uy, g, - o fal > wt =1, W= 0.
Set P = UMU®Y. Then P" = 4.

Suppose that @ is another semi-definite hermitian matrix such
that Q™ = A. Then N" = L where N = UQU®". By Theorem 16.1
the characteristic roots of L are the m-th powers of the roots of N, and
since the latter are all -0, they are the u’s. Hence by Theorem 41.2
there exists a unitary matrix V' such that

N=VTMV.

Since VN™ — M™V, V is commutative with L. Suppose that the 2’
are grouped into sets of distinct roots so that

PR I T TURR S W
It follows from VL = LV that v;; = 0 if 4; = /;, so that
V:V1+V2++VL:

where V, is of order «, V, of order f, etc. Evidently each V; is unitary.
e N YT Iy Ve g Vo e = M
Hence Q = UTNU = U“'™MU = P, and P is unique.

Corollary 41.4. If A is positive semi-definite hermitian, there exists
a unique positive semi-definite hermitian matrix P of the same rank as A
such that A = P¢TpP.1

Theorem 41.5. Every non-singular matrix is uniquely expressible
as a product of a unitary matrix by a positive definite hermilian matrix®.

For ASTA is positive definite hermitian and hence by Corollary 41.4
equals BCTB, where B is positive definite hermitian. Then AB'=U
is unitary, since USTU = I, and 4 = UB. If 4 = VC where V is
unitary, then A°T4 = C¢*C. 1f C is positive definite hermitian, € = B
by Corollary 41.4.

Every normal matrix can be represented as a product of a semi-
definite symmetric matrix P and an orthogonal matrix, and conversely,
every such product is normal?,

R. WEITZENBOCK? gave two methods for solving the equation
XXT = A for A symmetric and non-singular.

1 AutoNNE, L.: Bull. Soc. Math. France Vol. 31 (1903) pp. 140—155.

2 AutoNNg, L.: Bull. Soc. Math. France Vol. 30 (1902) pp. 121—134. —
WINTNER, A., and F. D. MURNAGHAN: Proc. Nat. Acad. Sci. U.S.A. Vol. 17 (1931)
pp. 676—678.

3 MurNAGHAN, F. D., and A. WINTNER: Proc. Nat. Acad. Sci. U.S.A. Vol. 17
(1931) pp. 417 —420.

1 WeizENBOCK, R.: Akad. Wetensch. Amsterdam, Proc. Vol. 35 (1932)
PP- 328—330.

[
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Theorem 41.6. 1} A is non-singular, there exist two unitary matrices U
and V such that
UAV = [py, plas -+ -5 Hal,

where by, Uy, . - ., by are the positive square roots of the characteristic
roots of AACT.1

Since 4°*4 is positive semi-definite hermitian, there exists a unitary
matrix V such that

VETACTAV =L =, Ay, ..., 4], 4 =0.
Set AV = K so that K°"K = L. Set
[uiz—}—]//i—i, Rrs = wpops, K=WM,
where M = [u,, yg,* + -, #,). Then
Z Wiy Wis = Z iy kis/,ur Hs == Opg ,

so that W is unitary. Let U = W. Then UAV = M.

This theorem was first proved for the real case, U and V being
orthogonal, by E. BELTRAMI? and C. JorDAN3. It was treated again
by J. J. SYLVESTER4

Corollary 41.6. If U and V are unitary matrices such that UAV = M
is diagonal and veal, then

VCTACTAV — M2 — UAACT UCT.S
M = MCT — VCT 4CT [JCT |
M2 = VCTACTUCTUAY = VETACT 47,

For

and

ScHLAFLI® discussed the reduction of an orthogonal matrix by a
similarity transformation.

H. Hirton? showed that an orthogonal matrix can be transformed
by orthogonal matrices into a direct sum of orthogonal matrices each
of which has a characteristic matrix with elementary divisors (1) (1 — a)”
and (A —1/a)", a=50, or (2) (A—1)" or (A+1)",  odd, or (3) (A+1)"
and (4 + 1), » even.

42. The structure of unitary and orthogonal matrices. A unitary
matrix is both a conjunctive automorph and a similarity automorph
of the identity matrix I. An orthogonal matrix is a real unitary matrix.

1 AutonnE, L.: Ann, Univ. Lyon II Vol. 38 (1915) pp.- 1—77.

2 BertraMmi, E.: Giorn. Mat. Battaglini Vol. 11 (1873) pp. 98—106.

8 Jorpaw, C.: J. Math. pures appl. IT Vol. 19 (1874) pp. 35— 54.

4 SyLvEsTER, J.J.: C. R. Acad. Sci., Paris Vol. 108 (1889) pp. 651—653 —
Mess. of Math. Vol. 19 (1890) pp. 42—46.

5 CosserRAT, E.: Ann. Fac. Sci. Univ. Toulouse Vol. 3 (1889) M. 1—12.

8 ScHLAFLI: J. reine angew. Math. Vol. 65 (1866) pp. 185—187.

7 HiLtoN, H.: Mess. of Math. Vol. 41 (1912) pp. 146—154.
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The literature of orthogonal matrices and their determinants is
extensive. Rather complete bibliographies are given by E. Pascar?

and T. MUIR?2,
Theovem 42.1. Ij K is a skew-hermitian matrix, then

U=+ K — K)

is unitary. There are no other unitary matrices U having d(I + U) = 0.3

This is a special case of Theorem 37.1. The hypothesis of the latter
that d(I + K) & 0 and d(I — K) = 0 is automatically fulfilled, since
(Corollary 18.32) the skew-hermitian K has only purely imaginary
characteristic roots.

The exceptional case d(I + U) = 0 makes considerable difficulty,
and as the characteristic roots of a unitary matrix have absolute value
unity, it is not very exceptional. Since CAYLEY* first proved the above
theorem for orthogonal matrices of order 4 by long calculation, many
ways of avoiding the difficulty have been suggested®.

L. Loewy® showed that every unitary matrix is of the form

U=0(+K'I—K),

where K is skew-hermitian and § is a root of unity.

The representation of an orthogonal matrix as a product of orthogonal
matrices of simple type was discussed geometrically by A. Voss? and
E. Goursars, and algebraically by L. KRONECKER®.

Defining an inversion to be a real orthogonal matrix S such that
dS) = —1, dAI —S)= (A —1)""1(A4+1), L.AuvtonNel® proved
that every real orthogonal matrix is a product of inversions.

G. ViTaLi®! showed that a real orthogonal matrix is a product of
rotations in a space of # — 2 dimensions, and a reflection if its deter-

minant is —1.

1 Pascar, E.: Die Determinanten, pp. 157—175. Teubner 1900.

2 Muir, T.: Proc. Roy. Soc. Edinburgh Vol. 47 (1926—1927) pp. 252—282.

3 Loewy, A.: C.R.Acad.Sci.,, Paris Vol. 123 (1896) pp. 168—-171. —
AvuTtonNE, L.: Rend. Circ. mat. Palermo Vol. 16 (1902) pp. 104—128.

4 CAVLEY: ].reine angew. Math. Vol. 32 (1846) pp. 119—123.

5 METZLER, W. H.: Amer. J. Math. Vol. 15 (1892) pp. 274—282. — Prywm, F.:
Abh. Ges. Wiss. Gottingen Vol. 38 (1892) pp. 1—42. -— TaABER, H.: Proc. London
Math. Soc. Vol. 24 (1892) pp. 200—306 — Proc. Amer. Acad. Arts Sci. Vol. 28
(1892—1893) pp. 212—221 — Amer. J. Math. Vol. 16 (1893) pp. 123-- 130.

6 LoEwy, L.: Nova Acta. Abh. der Kaiserl. Leop.-Carol. Akad. Vol. 71 No. 8
pp. 379—446 — Nachr. Ges. Wiss. Gottingen Vol. 3 (1900) pp. 298--303.

7 Voss, A.: Math. Ann. Vol. 13 (1878) pp. 320— 374.

8 GoursaT, E.: Ann. Ecole norm. ITI Vol. 6 (1889) pp. 1--102.

9 KrRONECKER, L.: S.-B.preuB. Akad. Wiss. 1890 pp. 525 541, 0601—607,
691 —699, 873—885, and 1063 —1080.

10 AyronNg, L.: C.R. Acad. Sci., Paris Vol. 136 (1903) pp. 1185 -1186 —
Ann. Univ. Lyon IT Vol. 12 (1903} pp. 1—124.

11 Vitari, G.: Boll. Un. Mat. 1tal. Vol. 7 (1928) pp. 1—7.
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T. J. StiELTJES! showed that if 4 and B are third order orthogonal
matrices of determinant +1, then 4 4 B is never of rank 2. E. NETTO?
extended this to show that if 4 = (a,,) and B = (b,,) are orthogonal,
g, can be chosen +1 or —1 so that d{a,; + ¢.b,,) vanishes for # even
only if every element is 0, and for # odd only if all minors of order 2
vanish.

A.LoEwy?® showed that STIELTJES’ theorem is a consequence of
the following theorem of FROBENIUS?: The elementary divisors of the
characteristic matrix of an orthogonal matrix vanish for reciprocal
values except that 4 — 1 and 2+ 1 may occur with odd exponents.

L. Toscano?® established for involutory matrices a theorem analogous
to that of STiELTJES for orthogonal matrices.

A. Voss® proved that every non-singular matrix may be represented
as a product of two symmetric matrices in infinitely many ways.
FRrRoOBENIUS? proved that every matrix may be represented as a product
of two symmetric matrices, one of which is non-singular.

H. Hirton® proved the above theorem of FROBENIUS, and also
proved that a matrix can be represented as a product of two skew
matrices if and only if the elementary divisors of its characteristic matrix
occur in pairs (4 — 4)7, (4 — 4)"; and as a product of a symmetric matrix
and a skew matrix if and only if the elementary divisors occur in pairs
(A — a)", (A+ a)". This same conclusion was reached by H. STENZEL®.

O. ToepLiTZ! proved that, if H is hermitian, there exists a matrix P
with 0’s above the main diagonal such that H = PP‘T,

E. ScumipT™ showed that for every A there is a K with 0’s above
the main diagonal such that K4 is unitary. This is equivalent to
ToEepLITZ’ theorem.

FroOBENIUS!? defined the span (Spannung) of A to be s(4) =¢(4A4Y).
If U is unitary, s(UA4) = s(4) = s(4AU), and s(4 — U) = s(I — U'A4).

J. Rapon1® determined the maximum number ¥ (#) of matrices such
that x4, + - - 4x,4, is orthogonal for all x's. If n = 2¢*tEy' o'
odd, 8 =0,1, 2,3, this value is » = 2% + 8«.

1 Stierties, T. J.: Acta math. Vol. 6 (1885) pp. 319—320.
2 Net10, E.: Acta math. Vol. 9 (1887) pp. 295—300.
3 Loewy, A.: E. Pascal’s Repertorium der héheren Mathematik Vol. I Chap. II.
Teubner 1910:
4 FrOBENIUS: ].reine angew. Math. Vol. 84 (1878) p. 48.
ToscaNo, L.: Rend. Roy. Inst. Lombardo ITa Vol. 61 (1928) pp. 187—195.
Voss, A.: Math. Ann. Vol. 13 (1878) pp. 320—374.
FroBeN1US: S.-B. preufl. Akad. Wiss. 1910 pp. 3—15.
Hirron, H.: Homogeneous linear substitutions. Oxford 1914.
StENzEL, H.: Math. Z. Vol. 15 (1922) pp. 1—25.
10 ToerLitz, O.: Nachr. Ges. Wiss. Géttingen 1907 pp. 101—109.
11 Scamipt, E.: Math. Ann. Vol. 63 (1907) pp. 433—476.
12 FrROBENIUS: S.-B. preuf3. Akad. Wiss. 1911 pp. 241 —248.
13 Rapow, J.: Abh. math. Semin. Hamburg. Univ. Vol. 1 (1921) pp. 1—14.
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F. D. MUrRNAGHAN! found that a matrix of order » has 2n+ (n —1)*
independent functions of its elements which are invariant under unitary

transformation.

VII. Composition of matrices.

43. Direct sum and direct product. The present chapter is con-
cerned with the set of all matrices of finite order with elements in a
ring or field. The operations of addition and multiplication can be
applied only to matrices of the same order, but other operations will
be defined according to which matrices of different orders may be
combined. Also tnvariant matric functions T (A) will be defined, where
T (A) is not necessarily of the same order as A4, which have the property
that T(4B) = T(4) T (B).

A brief treatment of this topic with many references to original
sources is given by A.LoEWY in PASCAL's Reperiorium der hiheren
Mathematik Vol. I pp. 138—153. Teubner 1910.

Let A = (a,,) of order & and B = (b,,) of order f§ be two matrices
with elements in a ring . The direct sum (cf. §29) of A and B is defined

to be 14 O

It is of order x + f.
Theorem 43.1. The following identities hold:

A+B+C=4+B+0),

) (4 + 4 + By 4 By) = (41 + By) + (4; + By,

c) (4 + B,) (4, + Bz) =A,4; + B, By,

) (4 BT =4T | BT,
(4} B)t= 4t 4 B,

f) d(d+B)=d(4)dB),

g) A+ B)=1(4) +¢B).

The proofs follow directly from the definition of direct sum. Of

course (e) holds only when A' and B! exist.
The left divect product is defined as

| Abyy ... Abgi
A.XBZJ!...... Ch
| Abyy ... Abyy

The right divect product A - B is defined similarly and has similar

properties. The order of each direct product is af. Evidently 4 - B
— B - A if A and B have elements in a commutative ring.

1 MURNAGHAN, F. D.: Proc. Nat. Acad. Sci. U.S.A. Vol. 18 (1932) pp. 185—189.
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The concept of direct product of matrices arises naturally from the
concept of direct product in group theoryl.
Theorem 43.2. The following identities hold:

(a) (4-XB)XC=4-X(B-XC(),

(b) (A1+A2)'><B:A1’><B+A2'XB,
() (4-XB)T=A4T-XBT,

(d) ¢(A-XB)=1t(A)B).

These are all evident from the definition of direct product.
Theorem 43.3. If A is of order « and B is of ovder B, and if A X B
= C = (¢,,), then

Crs = Qp,s, brz.s2 ,
where

r—1=ua@,—1)+nrn—1, 0=rn—1<«,
s—1=oa(s—1)+s5—1, 0=s5—1<w.
This also follows directly from the definition.
Theovem 43.4. If R is commutative?,
A1A2 X B1 B, = (Al -X By) (Az X Bz) .
For by Theorem 43.3
(4, X By) (43 X By) = (11,5, bir,s,) (@21,5, D2r,s,)
= (% @1r.my O1rshy A21ys, D2yss)
= (&4, @1r,h, B2hys, 2y O1ryhy D2ys,)
=A4,4,-XB; By,
where it is understood that
h—1=ouhy,—1)+h—1, 0=h —1<oc.
Corollary 43.4. If A of order &« and B of ovder f have elements in a
field, then
(a) A-XB = (A-XIp-XB),
(b) d(4-XB)=d(4)fd(B)*,
(c) (4-XB)t=A'-xB,
where 1, 1s the identity matrix of order o.

Property (b) was proved by K. Henser®, E. NErr0o4, and R. D.
VON STERNECK®.

1 HOLDER, O.: Math. Ann. Vol. 43 (1893) p. 305. — BURNSIDE, W.: Theory
of groups of finite order, p. 40. Cambridge 1911.

2 StirHANOS, C.: J. Math. pures appl. V Vol. 6 (1900) pp. 73—128. — AIr-
KEN, A.C.: Proc. Edinburgh Math. Soc. IT Vol. 1 (1927) pp. 135—138.

3 Henser, K.: Acta math. Vol. 14 (1891) pp. 317—319.

4 NeTTO, E.: Acta math. Vol. 17 (1893) pp. 199—204.

5 STErRNECK, R.D.von: Mh. Math. Phys. Vol. 6 (1895) pp. 205-—207.
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Property (c), originally given by STEPHANOS?, was proved in tensor
notation by L. H. RICEZ,

Theorem 43.5. 1If PAP, = A,, and QBQ, = B,, where each matrix
has elements tn a commutative ving, then

(a) (P+Q)(4+ B)(P,+ Q) =4, + By,

(b) (PXQ)(A-XB)(P+xXQy) = Ay By.

The proof of (a) follows from Theorem 43.1 ¢, and that of (b) follows
from Theorem 43.4.

Corollary 43.5. In a principal ideal ving

o(4+ B) = o(4) + o(B),
e(d X B) =o(4)e(B),
where (A} denotes the rank of A.
For, by Theorem 26.2, 4; and B; may be chosen in the form
thy, .. h,,0,...,00
Theovem 43.6. Ij A and B are symmetric with elements in an ordered
field with characteristic = 2,

o(4 4 B) = 6(4) + o(B),
6(4-<B) = 6(4)a(B),

where o(A) denotes the signature of A.
For it may be assumed that 4 and B are in diagonal form with p;
and p, positive elements, and #, and #, negative elements, respectively.

Then U(A+B):751+752""1_”2:O(A)+O(B)

Since A4 -X B is diagonal, and since its diagonal elements are the xf
products of the diagonal elements of A by those of B,

0(A X B) = (py by + nyy) — (P1#g + pai)
== (py — M) (pp — ny) = o(d) o(B).

In the rest of this section we shall understand that all matrices
have elements in an algebraically closed field €.

Theorem 43.7. The characteristic voots of A 4 B are the characteristic
roots of A together with those of B.

This is obvious from the definition of direct sum.

Let @(&,7) = S¢;; &7/ be a polynomial in & and 7, and define

p(A; B) = ZC%’J AP B,

Theovem 43.8. The characteristic roots of ¢ (A; B) are the x 8 functions
¢ (a,, b)) where the a’s are the characteristic yvoots of A and the U's are those
of B3

1 STEPHANOS: I c.

2 Ricg, L. H.: ]. Math. Physics, Massachusctts Inst. Technol. Vol. 5 (1925)

pp- 55—064.
3 SrpHANOS, C.: J. Math. pures appl. V. Vol 6 (1900) pp. 73—128.
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Determine P and Q so that PAP' = 4, and QBQ' = B; have 0’s
above the main diagonal (Corollary 39.1) and their characteristic roots
in the main diagonal. This form is maintained under addition, multi-
plication, scalar multiplication, and direct multiplication. If the char-
acteristic roots of 4, are 4, . . ., a, and those of B, are by, . . ., bs, those
of Xe¢;; AL X Bl are X c¢;;a,' b7 Since

4;-X By = (P-XQ)(4-XB)(P-XQ),
the characteristic roots of A . B are the same as those of 4, -X B;.

Corollary 43.81. The characteristic roots of A -)X B are the & 8 products
a;b; of a characteristic root of A by one of B.

The above corollary was applied by StEpranos! to find the equation
whose «f roots are the «f values of the function ¢ (x, y) where x and y
are determined by

fx)=x*+a; 21+ Fa,=0,
gy) =y + byt - by = 0.

Let A have the characteristic equation f(¥) = 0, and B the characteristic
equation g(y) = 0. The solution of the problem is the equation

|(p(A;B) ~;tI,x,31 =0.

This theorem yields a proof of the theorem that every polynomial
with rational coefficients in two algebraic numbers is itself a algebraic
number. If @ has rational integral coefficients, and if x and y are integral
algebraic numbers (so that 4 and B have rational integral elements),
then ¢(x,v) is integral.

Corollary 43.82. The resultant of f(x) = 0 and g(x) =0 is

|4-XIg—I,-XB|=0,

where f(x) = 0 is the chavacteristic equation of A and g(x) = 0 is the
characteristic equation of B.

This is the special case of Theorem 43.8 where @ (§,7) =& — 7.

Another method of composing two matrices was given by SYLVESTER?
and StipuANOS3, and called by the latter bialternate composition. Let
A and B be each of order %, and let (r, 7,) be the 7-th pair of integers
in the sequence

1,2), 1,3), ..., (1,m), (2,3), ..., 2,m), (m—2,n—10), ..., (n—1n)

and (s;, s,) the s-th pair. Then by definition the bialternate product
of 4 and B is

where

A-B=C=(c,)

— 1 —_ —
073 - 2 (aﬁ 81 b?’z 82 a?‘l 82 sz 81 ﬂ“ 81 le 82 + a?‘z §2 b?’l 31) .

1 SrtpHANOS: 1 c.
2 SYLVESTER: J.reine angew. Math. Vol. 88 (1880) pp. 49—67.
3 STEPHANOS: L. C.
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It was shown by STEPHANOS that
A-B=B.A, (A,+4)-B=A4,-B+ 4,-B,
and, if A+ A be written Aé, that
(A4 B)? = A*+24-B + B,
Bialternate composition cannot be associative, for 4 - B is of order
$n(n — 1), and composition is defined only for matrices of the same
order.

44. Product-matrices and power-matrices. If A and B, of orders «
and f respectively, are the matrices of the transformations

wo=ayx, v =2 by,
and if the x’s and v’s are independent variables, the products

1V Xe Y1 oo XaVis X1 Vas ovh Xalyy ooy XaVp
are the variables of a transformation whose matrix is A< B, called
the product transformation of the two given transformations.
By Theorem 43.2a,

Do(d)=A-X A ... 4

to m factors is well-defined, and is called the m-th product-matrix of 4.

Theovem 44.1.
Dy (AB) = Dyy(A) Dy (B).

This follows from Theorem 43.4.
Now let the two transformations be identical, and consider the
} o (o + 1) distinct products

2
Xy, KXy, oo, X X%, XD, HpXg, ..., Xa.

They define a transformation whose matrix P,(4) is called the second
power-matrix of A. That is, x{% x]x;, ... are linear homogenecous
functions of x,2, x; x5, ... whose coefficients are polynomials in the
elements of A. Such a system x;2,... of polynomials was called a
transformable system by J. DERUyTs!. The m-th power-matrix P, (A4)
is similarly defined.
Theorem 44.2.
Pm(AB) = Pm(A) Pm(B)

Consider the corresponding transformable system

X=Xl xd b i, =

Let A be the matrix by which the #”"’s are given in terms of the x'’s,
and B the matrix by which the x’s are given in terms of the x’s. Then
AB is the matrix by which the x'"’s are given in terms of the x’s. The
matrix by which the X’’s are given in terms of the X"’s is P, (4),

1 DeruUvYTS, J.@ Bull. Acad. Sci. Belgique IIT Vol. 32 (1896) p. 82.
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and the matrix by which the X'’s are given in terms of the X’s is P, (B).
The matrix by which the X'"’s are given in terms of the X’s may be
obtained as P, (4)P, (B) by eliminating the X'’s from the induced
transformations, or as P, (AB) by calculating the transformation in-
duced on the X’s by the product transformation AB.

Theovem 44.3. If A 1is of order «x,

APy (4) =d(a), k=("T%" ’) .

Let the elements of A be indeterminates. The power transformation
has an inverse if and only if d(4) & 0. Hence dP,,(4) vanishes when
and only when d(A4) = 0, and since d(4) is irreducible (Theorem 10.1),
dP,, (A) = cd(A)¥, where ¢ 3= 0. When 4 = I, the power transformation
becomes the identity, so ¢ = 1. If A is of order «, then P, (4) is of

order “"’":ﬂ" - 1), and each element is of degree m in the elements

of A. Hence k is the product of this order by m/x.

This theorem was given for & =4 and m = 2 by E. HuNnvapyL
The fact that dP,,(4) is some power of d(A) was proved by B. IGEL2.
The theorem as stated was proved by G. voN ESCHERICH®.

Theorem 44.4. The characteristic voots of P,,(A) are the ("‘ + fx” - 1)

products of the m-th degree of the characteristic roots of A.A

By Theorem 44.3 it is possible to determine a unitary matrix U
such that U“TAU = B has 0’s above the main diagonal and its char-
acteristic roots in the main diagonal. By Theorem 44.2,

Since the elements x,% ... xf* of the transformable system corresponding
to P, (B) are arranged in the lexacographic order, P, (B) also has 0’s
above the main diagonal. If the conjugate-transpose of the trans-
formation on the #’s is equal to the inverse, the same is true of the trans-
formation induced on the products x/t...xj*. Hence

Pm(UCT) = Pm(U)CT = Pm(U)I .

Thus the characteristic roots of P,,(A4) are the same as those of P, (B),
namely the products afr. .. als.
45. Adjugates. Let A be a matrix of order #, and let its r-rowed

minor determinants be represented by a-:-%. The matrix of order

m = (f) whose elements are the numbers aj '

-7 in the lexacographic

1 Hunvapy, E.: J.reine angew. Math. Vol. 89 (1880) pp. 47—69.

2 IgeL, B.: Mh. Math. Phys. Vol. 3 (1892) pp. 55—67.

3 EscrericH, G. vonN: Mh. Math. Phys. Vol. 3 (1892) pp. 68—80.

4 FRANKLIN, F.: Amer. J. Math. Vol. 16 (1894) pp. 205—206. — SCHUR, 1.:
Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen,
p- 17. Dissertation. Berlin 1901.
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order is called the 7-th adjugate C,(A) of A. The first adjugate of 4
is A itself. The (n — 1)-th adjugate differs from 4* only by a permutation
of the rows and columns. The #-th adjugate of 4 is d(4).

Theorem 45.1.
AC, () =d(4)}, k=(""1)a
Theovem 45.2.

C,(AB) = C,(A)C,(B).

The proofs of these theorems can be made similarly to those of
Theorems 44.3 and 44.2 by using as the transformable system the
r-rowed minor determinants of the matrix

@) (72

i (o]
l‘ Xn Xy

whose columns are # independent sets of variables which are trans-
formed cogrediently by the transformation?

x,;(kw — Z a’ij x}(;v) A = (6{7.3) .

In fact, Theorem 45.2 is but a restatement of Theorem 7.9.

Theorem 45.3. The characteristic roots of C,(A) are the (f) products
of the characteristic voots of A taken v at a time3. '

The proof can be made similarly to that of Theorem 44.4.

O. N1ccoLETTI* proved that if 4 is of rank ¢ == 7, then C,(4) is

of rank (g) .

W. BURNSIDE® gave another proof of Theorem 45.3.

J. WiLLiAMsON ¢ proved that if A has the characteristic roots ¢, . ., 4,,
and if C is a matrix composed of m? blocks f,,(4), then the characteristic
roots of C are the mo characteristic roots of the & m-rowed matrices
‘(frs(ak)) :

The following comments were made by K. HENSgEL?: “There are
associated with the ring R[4, B, .. .] of all #-th order matrices, »# derived

TGS RC,(4), C,(B),...], RIC,(A), Cy(B), .., ...

which are isomorphic with $ under multiplication, and of which the
last is identical with the determinants of the matrices 4, B, ... All

1 FrankE, E.: ]. rcine angew. Math. Vol. 61 (1863) pp. 350—3506.

2 ScHUR, I.: L c¢. Chap. 1L

3 METZLER, W. H.: Amer. J. Math. Vol. 16 (1893) pp. 131—150. — Rapos, G.:
Math. Ann. Vol. 48 (1897) pp. 417—424.

4 NiccorLeTTI, O.: Atti Accad. Sci. Torino Vol. 37 (1901—1902) pp. 655 659.

5 BurnsipeE, W.: Quart. J. Math. Vol. 33 (1902) pp. 80— 84.

¢ WiLLiaMsoN, J.: Bull. Amer. Math. Soc. Vol. 37 (1931) pp. 585~~590.

7 HENseL, K.: J.reine angew. Math. Vol. 150 (1928) pp. 246~ 254.
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properties of the matrices of R[4, B, ...] in so far as they relate only
to their combination and decomposition by multiplication ... have
unique counterparts in each of the derived rings. Thus if 4 is a divisor
of zero, so are Cy(4), C4(A), ... If A is a divisor of one, so are C,(4),
Cs(A4), ... To every equivalence relation under multiplication, and to
every division into classes in R based on such a relation, correspond
the same equivalence relation and the same class division in each derived
ring. ...In order to find the complete system of invariant classes for
a class division in R(4, B, ...), it is sufficient in very many cases
to seek out the most trivial invariants for the same class division for
all derived rings. For these taken together furnish the complete system
of invariants for R.”

J. WiLLiamson?® defined RE1ss’s matrix to be a matrix of order (f)

whose elements in any row are the determinants of the matrices ob-
tained by replacing all sets of # columns of X* by a definite set of »
columns of Y7, and whose elements in any column are the determinants
of the matrices obtained by replacing one set of 7 columns of XT by the

(f) sets of 7 columns of YT in turn. He investigated the characteristic
roots of this matrix.

I. ScHUR? made an exhaustive investigation of invarjant matrices.
If 4 and B have independent elements, and if the elements of T (4)
are rational integral functions of the elements of 4, and if T'(4) T (B)
= T(AB), then T (4) is an invariant matric function of 4. Product-
matrices (Theorem 44.1), power-matrices (Theorem 44.2), and adjugates
(Theorem 45.2) are instances of invariant matric functions. SCHUR
called a matrix srreducible if it is not similar to a direct sum of matrices
of lower order, and proved that every invariant matric function T(4)
can be uniquely expressed similar to a direct sum of irreducible invariant
matric functions each of which is homogeneous in the elements of 4.
Two invariant matrices 7, (4) and T,(A4) are similar if and only if
they have equal traces. If 7(4) is of degree m in the elements of 4,
the characteristic roots of 7'(4) are the products m at a time of the
characteristic roots of A. If A has linear elementary divisors, the same
is true of T(4).

The theory of invariant matrices has had considerable development
in connection with the theory of group characteristics, where it is of
prime importance?.

1 WiLrL1aMsoN, J.: Proc. Edinburgh Math. Soc. II Vol. 2 (1929) pp. 240
to 251.

2 Scuur, I.: Dissertation. Berlin 1901.

3 WevL, H.: Gruppentheorie und Quantenmechanik, p. 100. Leipzig 1928.
See also the forthcoming number of this Ergebnisse entitled ,,Gruppentheorie®
by B.L.VvAN DER WAERDEN.
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VIII. Matric equations.

46.The general linear equation. If 4,, 4,, ..., 4;, B{, By, ..., B, C
are matrices of order # with elements in a field %, the general linear
equation is of the form

(46.1) A, XB, + A,XBy + -+ + 4,XB, = C,

where X is a matrix of order #, with elements in §§, to be found. By
replacing C by O we obtain the corresponding auxiliary equation. It
is evident that if X, and X, are solutions of (46.1), their difference is
a solution of the auxiliary equation. Hence the sum of a particular
solution of (46.1) and the general solution of the corresponding auxiliary
equation gives the general solution of (46.1).

Equation (46.1) may be considered as a system of n2 equations for
the n? elements x,, of X. The matrix of this system of equations, if
the x,, are arranged in the proper order, is

(46.2) A X By A+ Ay X By 4 A, - X By

The theory of systems of linear equations now gives

Theorem 46.1. A necessary and sufficient condition in order that
(46.1) have a solution X is that the vank o of (46.2) be the same as the
rank of the n®x (n2+1) array obtained by bordering (46.2) with the elements
of C. The general solution of (46.1) is then of the form

X=Xg+mX;+ -+ +/un2—an2—9:

where (X, . . ., X,2_,) 15 a fundamental system of solutions of the auxiliary
equation, and W, ... vary independently over .

This equation was first studied by SyivesTERY. The matrix (46.2)
was called by him the nivellatenr, although he did not recognize it as
a sum of direct products.

J. H. M. WEDDERBURN 2 gave a method of solution by infinite series.
F. L. Hrrcacock® applied GiBBs’ dyadics to obtain the coefficients of
the characteristic equation of (46.2), and thus to solve (46.1).

In the special case

(46.3) AX =B

there is the unique solution A'B if d(4)==0. Since (46.3) is equivalent
to the »# systems of » linear equations each

Zarixis:brs» (7’,5:1,2,...,%)

1 SvyrvesTER: C. R. Acad. Sci., Paris Vol. 99 (1884) pp. 117—118, 409—412,
432—436 and 527—7529.

2 WEDDERBURN, ].H. M.: Proc. Edinburgh Math. Soc. Vol. 22 (1904) pp. 49
to 53.

3 Hrrcucock, F.L.: Proc. Nat. Acad. Sci. U.S.A. Vol. 8 (1922) pp. 78—383.
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it has a solution if and only if the n X 2% array (4, B) has the same
rank as 4.1

A necessary condition that AX = B and XC = D have a common
solution is that AD = BC, for AXC = BC = AD. 1If either A or B
is non-singular, the condition is also sufficient?.

The equation

(46.4) AX = XB

was first discussed (merely for quaternions) by CAYLEY3. A necessary
and sufficient condition that it have a non-singular solution is that
AI — A and AI — B have the same invariant factors (Theorem 39.1).
On the other hand, X = 0 is always a solution. By Theorem 46.1 the
nivellateur is |A-xI—I.xB

’

whose determinant is, by Corollary 43.82, the resultant of the characteris-
tic equations of A and B. Thus:

Theorem 46.2. The equation AX = XB has a non-zero solution if
and only 1f A and B have a characteristic root in common?.

The following important theorem, which generalizes the preceding
theorem and gives a complete solution of (46.4), seems to have been
discovered independently by Cecioni® and Froseniusé, The following
proof is adapted from that of FROBENIUS.

Theorem 46.3. The number of linearly independent solutions of the
equation AX = XB is D'e;; where e;; is the degree of the greatest common
divisor of the wnvariant factor a; of AI — A and the invariant factor b;
of AI — B.

Let M—B=B,, A —A=B,.

Let L,, L,, M,, M, be unimodular matrices, at present undetermined.
Let LBM=A,, L,B,M}—4,.

Let P and Q be any two matrices whose elements are polynomials in 2
such that
(46.5) P4, = 4,0.
Then . .
P(L,B; M,") = (L,B,M,")Q,

(L21PL1)B1 = Bz(leoMl) .

! FROBENIUS: J.reine angew. Math. Vol. 84 (1878) p. 8. — AvUTONNE, L.:
Ann. Univ. Lyon II Vol. 25 (1909) pp. 1—79.

2 Cecioni, F.: Ann. Scuola norm. super. Pisa Vol. 11 (1909) pp. 1—140.

3 CAvLEY: Mess. Math. Vol. 14 (1885) pp. 108—112.

4 SyLvEsTER: C. R. Acad. Sci., Paris Vol. 99 (1884) pp. 67— 71 and 115—116.
— CecioNt: Ann. Scuola norm. super. Pisa Vol. 11 (1909) pp. 1—40.

5 Cecroni: Atti Accad. naz. Lincei, Rend. V Vol. 18 (1909) pp. 566—571.

¢ FrROBENIUS: S.-B. preuB. Akad. Wiss. 1910 pp. 3—15.
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Since the coefficients of the highest powers of 1 in B, and B, are non-
singular, we can by Theorem 29.1 determine unique matrices U,, U,,

R,, R, such that . :
LYPL, =B,U, + R,,

MJQM, = U,B, + R,,
where R, and R, have elements free from Z. Then
(ByUs + Ry) By = B, (U B; + Ry,
By(Uy — Uy) By = ByR; — Ry B, .
If U, — U, were not O, the left side would be of at least the second

degree in 4 and the right side of at most the first degree. Hence U, = U,

d
an (1] — A)R, = R,(1I — B).

Since 4, B, R,, R, are independent of 2,
R,=R,=R, AR==RB.

From every pair of matrices P and Q which satisfy (46.5) there arise,
if L and M are fixed, a unique constant matrix R satisfying (46.4).

If, conversely, R is any matrix such that AR = RB, then RB; =B, R.
Let U be an arbitrary matrix whose elements are polynomials in 1,

d set

anc se P—L,(B,U + R)L1,

or Q:Mz(UBl‘i‘R)MlI’
L'PL,—B,U+ R, MJQM,=UB,+R.

Then

(LZIPLI)BI = Bz(M2IQM1):
P (LB M,") = (LB, M,")Q,

and hence P4, = 4,0.

To the matrix R correspond infinitely many pairs P, Q. If P,Q
is a definite pair obtained by means of the matrix U, and if P — Py,
Q — Q, are any others obtained by means of U — U,, then

LIP,L, = B,Uy= (L 4, M,) Uy,
M, Q,M,=U,B, = Uy (L} 4,M)),
or if we set M,U,L,'=T,
Py=A4,T, Q,=T4,.
If therefore T is an arbitrary matrix,
P—A4,T, Q—T4,

is the most general pair of matrices which corresponds to the constant
matrix R such that RB; = B,R.

Ergebnisse der Mathematik. II'5. MacDuffee.

~1
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Now let 4, = (ay,,), Ay = (ay,,) be the normal forms of B, and B,
respectively. Then a,,=6,,b,, s,, = 6,4, where a, and b, are the
invariant factors of 4 and B respectively (§27). The condition
PA, = 4,0 gives

Prsbs = a, qys, P=(tg, Q=1(q)

Prs = %: rs -
The elements of P — 4,7 and Q — T4, are therefore

Drs — Ay lps = & (Grs — bstrs), T = (t).
b,

By a suitable choice of ¢,,, the degree of ¢,,~ b,t,, can be made less
than the degree of 4,. Then ¢, and ¢,,— b,¢,, are uniquely determined.
Let ¢,, be the degree of the greatest common divisor d,, of 4, and b,.
In order to obtain the most general p,, — a,t,, which is a polynomial,
it is necessary and sufficient that g, —b,¢,, be the product of 5,/d,,
by an arbitrary polynomial of degree ¢,;, —1 — that is, a polynomial
with e, arbitrary coefficients. Hence there are exactly e, , linearly
independent matrices P (and for each P a unique @), each of which
corresponds to a unique R. Hence the number of linearly independent
matrices R satisfying (46.4) is De,,.

The solution of the equation AX = XB has been discussed by
G. LaNDSBERGY, R. WiLson 2, and H. W. TURNBULL and A. C. AITKENS3.

Corollary 46.31. In a field § containing the elements of A, B and C,

the equation AX +XB=C

has no solution unless the rank of A -X B is the same as the vank of this
matrix augmented with the elements of C. If these ranks ave the same, every

solution s of the form X, + S X,

where X is a particular solution of the given equation, the X; are >e,,
linearly independent solutions of the auxiliary equation AX + XB = O,
the 2; arve arbitrary in 55, and e, is the degree of the g.c.d. of the invariant
factor a, of AI — A and the invariant factor b, of 1I — B.

This equation has been discussed by Cecioni4, D. E. RUTHERFORD?,
and R. WEITZENBOCK®.

or

! LANDSBERG, G.: J.reine angew. Math. Vol. 116 (1896) pp. 331—349.

2 WiLson, R.: Proc. London Math. Soc. IT Vol. 30 (1930) pp. 359—366; Vol. 33
(1932) pp. 517—524.

3 TURNBULL,H.W.,andA.C.AITKEN:Canonicalmatrices,Chap.X. London 1932,

4 CecioNI: Ann. Scuola norm. super. Pisa Vol. 11 (1909) pp. 1—40.

5 RUTHERFORD, D. E.: Akad. Wetensch. Amsterdam, Proc. Vol. 35 (1932)
Pp. 54—59.

6 WEITZENBOCK, R.: Akad. Wetensch. Amsterdam, Proc. Vol. 35 (1932) pp. 60
to 61.
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Corollary 46.32. The number of linearly independent solutions of the
equation AX = XA is
not2(my 4 e ),

where my 1S the degree of the g.c.d. d; of the i-rowed minor determinanis
of Al — A.

Let ¢, be the degree of the invariant factor a, of A — 4. Let ¢,
be the degree of the g.c.d. of a, and 4,. Then

Crr = Cp, brs = bgp = €, 7>,
Hence

Zers:51+ez+"‘+3n+2[31+(61+62)+(51+62+53)+"'
+ (61+82+gn~1)1
e 2m e om

by Theorem 27.1.

This theorem was stated by FrRoBENIUS! and proved by MAURERZ,
A.Voss3, G. LanDsBERG?, K. HENSEL?, F. Cecioni®, and U. AMALDI?.

W. K. CLirForD® attempted to prove that every matrix commutative
with A4 is a polynomial in 4. SYLVESTER? showed that this is not so.

H. LAURENT!® gave a false proof that if AB=BA, then both A4
and B are polynomials in the same matrix. An example to show that
this is not always so was given by H. B. Prirripsii

A. Voss!2 proved that if AP=0QA, where P=P,+ P,, Q=0,+0,,
P, and @, of the same order, then 4 = 4; - 4, where 4, is of the
same order as P,.

J. PLEMEL]®8 proved that if certain matrices A4; are commutative
in pairs, a matrix T exists such that 7'4; T are simultaneously equal
to a direct sum of matrices having equal characteristic roots.

H.TABER wrote out explicitly the most general matrix commutative
with A in terms of its characteristic roots, and later®® “proved the

1 FrROBENIUS: J.reine angew. Math. Vol. 84 (1878) pp. 1—63.

2 MAURER: Zur Theorie der linearen Substitutionen. Dissertation. Stral-
burg 1887.

3 Voss, A.: S.-B. Bayer. Akad. Wiss. Vol. 19 (1889) pp. 283—300.

4 LANDSBERG, G.: J.reine angew. Math. Vol. 116 (1896) pp. 331 349.

5 Henser, K.: J.reine angew. Math. Vol. 127 (1904) pp. 116 —1606.

¢ Cecroni, F.: Ann. Scuola norm. super. Pisa Vol. 11 (1909) pp. 1—140.

7 Amarpi, U.: Ist. Lombardo, Rend. IT Vol. 45 (1912) pp. 433—445.

8 Crirrorp, W. K.: Fragment on matrices. Collected Papers, p. 337. 1875.

% SyrveSTER: John Hopkins Circ. Vol. 3 (1884) pp. 33, 34, 57.

10 LaureNt, H.: J. Math. pures appl. V Vol. 4 (1898) pp. 75— 119.

11 Paiciies, H. B.: Amer. J. Math. Vol. 41 (1919) pp. 256—278.

12 Voss, A.: S.-B. Bayer. Akad. Wiss. IT Vol. 17 (1892) pp. 235—3560.

13 PLEMELJ, J.: Mh. Math. Phys. Vol. 12 (1901) pp. 82— 96.

1 TaBER, H.: Proc. Amer. Acad. Arts Sci. Vol. 26 (1890—1891) pp. 64— 606.

15 TaBeR, H.: Proc. Amer. Acad. Arts Sci. Vol 27 (1891 —1892) pp. 46--56.
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surmise of SYLVESTER?! that if 4 is not derogatory (§15) the only
matrices commutative with 4 are polynomial functions of A”. An
equivalent theorem had, however, been previously given by FROBENIUS?,
namely that if the first minors of the characteristic determinant of 4
are relatively prime, the only matrices commutative with 4 are poly-
nomials in A. (See Theorem 15.1.)

Explicit solutions of AX = XB were given by H.Kgrgris3? and
L. AutonNE4 Numerical examples of commutative matrices were given
by H. HirToNS5.

M. KrawTcHOUK ® found the number of linearly independent matrices
in a commutative group of matrices.

I. ScHUR? proved that the order of a commutative group of n-th
order matrices is = [#%/4 4 1].

A.Raxum?® found necessary and sufficient conditions that a singular
matrix belong to a group.

47. Scalar equations. Let
(47.1) P(X) = poX™ + p X" 1 4o + Pl =0
be an equation of degree m with coefficients in a field §, where X is
an #-th order matrix to be determined. If X, is a solution with elements
in §, so is X, = P'X, P where P is an arbitrary non-singular matrix
with elements in §&. Hence all solutions are determined by those in
canonical form.

If X satisfies p (1) = 0, the minimum equation of X divides p(4)
and conversely (Theorem 13.1). Equation (47.1) is completely solved,
then, by finding the factors of (1) which are irreducible in §, and
setting up those matrices X;, X,, ..., X; in canonical form (Corollary
39.12) whose minimum equations divide p(4). The number of dissimilar
solutions is finite.

SyLVESTER? discussed the equations X™ = I and X™ = (0. There
exists an integer m such that 4™ = I if and only if the characteristic
roots of 4 are roots of unity!?, in which event the elementary divisors
of A are simple (§26)11.

A necessary and sufficient condition that there exist an integer
m > 1 such that 4™ = 4, whether A be singular or not, is that the

Syrvester: C. R. Acad. Sci., Paris Vol. 98 (1884) p. 471.

FRrOBENIUS: J.reine angew. Math. Vol. 84 (1878) pp. 1—63 Theorem XIII.
KrEe1s, H.: Contribution & la théorie des systémes linéaires. Ziirich 1906.
Avutonng, L.: J. Ecole polytechn. Vol. 14 (1910) pp. 83—131.

Hirton, H.: Mess. Math. Vol. 41 (1911) pp. 110—118.

KrawrcHOUK, M.: Rend. Circ. mat. Palermo Vol. 51 (1927) pp. 126—130.
ScHUR, I.: J.reine angew. Math. Vol. 130 (1905) pp. 66— 76.

RaNuM, A.: Amer. J. Math. Vol. 31 (1909) pp. 18—41.

SyLVESTER: C. R. Acad. Sci., Paris Vol. 94 (1882) pp. 396—399.
LipscuiTz: Acta math. Vol. 10 (1887) pp. 137—144.

BakEer, H. F.: Proc. London Math. Soc. Vol. 35 (1903) pp. 379—384.
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characteristic roots of 4 be 0 or roots of unity, and that the elementary
divisors of 4 be simplel
H. W. Tur~NsULL? found that if

Xps = (_ 1)1“8 (:L:_ f)r
then X3 = (x,,)% =
R.VaIDyaNATHASWAMY 3 proved that if » = 2™p % . .. p/+ where the
P’s are distinct odd primes, a necessary and sufficient condition for

the existence of an integral matrix of order # and period 7 is that
(p(2m)+(p(i)lel)++(p< fl);;n’ m=>1,
@)+ @) =,

where ¢ is the totient.
48. The unilateral equation. We now consider the equation

(481) F(X)=A,X"+ 4, X" 14 ... + 4, X +4,=0,
where the A; are #-th order matrices with elements in . Let F(4)
denote the matrix

A();Lm + Allmbl + + Am—ll + Am;
where 1 is indeterminate. Then by the theorem of PHiLLIPS (Theorem
14.2), X satisfies the scalar equation

m=0,1,

(48.2) fA) =dF(A) =0
which, unless it vanish identically, is of degree <nm.
Let Y,,Y,,..., Y, be the solutions of (48.2) determined as in

§47. Then every solution of (48.1) is of the form X; = P;Y;P;! where
P; must be non-singular. With this substitution (48.1) becomes

T
AP Y™ + A P Y™ A s Ay PiY o+ Ay P =0,

which is a linear equation of the form (46.1) with C = O for the matrix P;.

In case f(4) == 0, there are more than a finite number of dissimilar
solutions4.

CaYLEY first discussed the equation X% = A4 for matrices of orders 2
and 3.5 SYLVESTER showed® that every characteristic root of a solution
X of PX2 4 QX + R = O, where all matrices are of the second order,
is a root of |P2%24 QA+ R|=0. He made several attempts to
determine the number of solutions of the equation (48.1) for special cases?.

1 RaNUM, A.: Amer. J. Math. Vol. 31 (1909) pp. 18—41.

2 TurnsBuLL, H. W.: J. London Math. Soc. Vol. 2 (1927) pp. 242—244.

3 VaipyanatHaswamy, R.: J. London Math. Soc. Vol. 3 (1928) pp. 268--272.

¢ Roru, W. E.: Trans. Amer. Math. Soc. Vol. 32 (1929) pp. 61—80.

5 CavrLey: Philos. Trans. Roy. Soc. London Vol. 148 (1858) pp. 39 —46.

6 SyrvesteRr: C. R. Acad. Sci., Paris Vol. 99 (1884) pp. 555558 and 621 —631.
SyLvESTER: Johns Hopkins Circ. Vol. 3 (1884) p. 122 - Philos. Mag. Vol. 18
(1884) pp. 454—458 - Quart. J. Math. Vol. 20 (1885) pp. 305—-312 - C. R.
Acad. Sci., Paris Vol. 99 (18384) pp. 13—15.

-
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A. BucHHEIM?! proved in general that if X satisfies (48.1), each of
its characteristic roots satisfies (48.2).

Froeenius? found all solutions of X2 = A4 in the complex field,
when d(4) = 0, which are expressible as polynomials in 4 (see Lemma
35.22). The same method was extended by H. F. BAker3 and L. E. Dick-
soN? to find all solutions of X™ = 4 in the complex field which are
polynomials in 4.

H. KrE1s5 treated the equation p (X) = 4 where $ (4) is a polynomial
with complex coefficients, 4 (4) == 0, and obtained solutions which are
polynomials in 4. Later® he found necessary and sufficient conditions
for the solvability of this equation when 4(4) = 0.

W. E. RotH? proved that a necessary and sufficient condition that
the equation p (X) = A have a solution in the complex field expressible
as a polynomial in 4 is that the equation p(x) = 4; have at least one
simple root for each characteristic root of 4 corresponding to a non-
linear elementary divisor. The number of distinct solutions of $(X) = 4
which are expressible as polynomials in A4 is Z§=1,uj where s is the
number of distinct roots of the minimum equation m (1) =0 of 4,
and p; is the number of distinct roots of p(4) — a; = 0 when 4; is a
simple root of m (1) = 0, and is the number of simple roots of p(4) — a;
= 0 when a; is a multiple root of m (1) = 0.

A method for finding the solutions of $(X) = 4 which are not
polynomials in A was given by P. FRANKLINS,

D. E. RUTHERFORD® gave a more explicit form of solution. Let
U,= (0, ~1) be a matrix of order #. Let ay,a,,... be the char-
acteristic roots of 4. Then 4 =N, | N, | ... |- N, where

Ny = Ce,(an) o, = anle, + ngh-

If for any arrangement of the N’s there is for every % a @,-fold repeated
root &, of p(1) = a,, then a solution

Y = CeB) & ook Ceylly)

of p(X) = A exists. Comparing this with RoTH’s result indicates that
the solution is a polynomial in 4 if and only if 8, = 1.

! BucHHEIM, A.: Proc. London Math. Soc. Vol. 16 (1884) pp. 63—82.

? FroBENiUS: S.-B. preul. Akad. Wiss. 1896 pp. 7—16.

8 Baker, H. F.: Proc. Cambridge Philos. Soc. Vol. 23 (1925) pp. 22—27.

¢ Dickson, L. E.: Modern algebraic theories, p. 120. Chicago 1926.

5 Kreis, H.: Contribution & la théorie des systémes linéaires. Ziirich 1906.

8 Krets, H.: Vjschr. naturforsch. Ges. Ziirich Vol. 53 (1908) pp. 366—376.

? Rorr, W. E.: Trans. Amer. Math. Soc. Vol. 30 (1928) pp. 579—596.

8 FrankLIN, P.: J. Math. Physics, Massachusetts Inst. Technol. Vol. 10 (1932)
Pp- 289—314.

9 RuTHERFORD, D. E.: Proc. Edinburgh Math. Soc. IT Vol. 3 (1932) pp. 135
to 143.
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R. WEITZENBGOCK! showed that the method of FROBENIUS may be
extended so as to yield all solutions of X™ = A.

W. E. Rotu? considered the general unilateral equation (48.1) where
the A; are mX# arrays and X an # X # matrix with elements in the
complex field. Necessary conditions for a solution are given, and it
1s indicated how a solution, if it exists, can be computed. Several
examples are given, as well as a quite complete bibliography.

A. Hurwitz? found the most general system of p matrices, each
of order », which satisfy the conditions

B/?:I, Bth:—‘Bth, h:{:k’

and the number of dissimilar systems.
A.S. EppingToN?® proved that if B, B,,..., B
matrices such that

B;;'):~I, Bth:—Bth, kq;h,

then p =< 5. If the elements of each matrix are all real or all imaginary,
then there are 2 real and 3 imaginary matrices in every set of 3.
M. H. A. NEwmaN® generalized EDDINGTON’s result and simplified
the proof. If By, B,, ..., B, are a set of n-rowed matrices, n = 27,
v odd, and if
B;?:—I, BhBL:—Bth, k:%:h,

then p =<2¢ 4+ 1; and the maximum is attained. If in a maximal
set there are ¢ with real elements and the remaining ¢ with purely
imaginary elements, then ¢ — 6 =—1 or 7. He extended these con-

siderations to hermitian matrices.

» are four-rowed

IX. Functions of Matrices.

49. Power series in matrices. Let P(i) => a;X* be an ordinary
i=0
power series with complex coefficients in the complex variable 4. If

for a matrix 4 of order » with complex elements every element of
m
P, (4)= D a4
=0
approaches a finite limit as m — oo, the matrix
P4)y= D a; A
=0

1 WEITZENBOCK, R.: Akad. Wetensch. Amsterdam, Proc. Vol. 35 (1932) pp. 157
to 161.

2 Rote, W. E.: Trans. Amer. Math. Soc. Vol. 32 (1930) pp. 61 —80.

3 Hurwitz, A.: Math. Ann. Vol. 88 (1923) pp. 1—25.

4 EppiNGgTON, A. S.: J. London Math. Soc. Vol. 7 (1932) pp. 58 —68.

5 NEwMaN, M. H. A.: J. London Math. Soc. Vol. 7 (1932) pp. 93— 99.
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is said to exist and to be equal to the matrix of these limiting
values.

Theorem 49. The power series P(A) comverges if and only if every
characteristic root of A lies inside or on the circle of convergence of P(2),
and for every v-fold charactevistic root ; which lies on the circle of con-
vergence, the (v — 1)-th derivative P® =1 (1) converges.

This theorem and proof are due to K. Hensgrl. E. WEYR2 had
previously proved the theorem for the case where no characteristic
root lies on the circle of convergence.

Let us write S . . .
AS A, Ay | ... L Ay,

where
i 1 0 ... 0
A= |0 A1 ... 0
100 0 ... &

is of order v; (Corollary 39.11). Then
P(4) 2 P(4,) L P(4y) L ... L P(4s),

so that P(4) converges if and only if every P(4;) converges.
Write » for »;, and let

Ai~liI: U, UV—I:’:O’ UVZO.

Then for m=v

P,.(4) = Zm' a; (3,1 + Uy
7=0
= 3o (1o
7=0 h=0
NP PHER
h=0 i=h
v—1
= Dl P U
Hence hv=_01
P(d)= D' PO Uy,
h=0

where P® denotes the A-th derivative.

1 HenseL, K.: J. reine angew. Math. Vol. 155 (1926) pp. 107 —110.
? WEvg, E.: Bull. Sci. math. IT Vol. 11 (1887) pp. 205—215.
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Evidently P(4;) converges if and only if
Py), P(%), ..., Po=0()

all converge. If 4; is outside the circle of convergence of P (%), P(4;)
diverges, while if Z; is inside this circle, all derivatives converge. If
4; is on the circle, all these derivatives converge if and only if P*~1(4,)
converges.

G. PEano! and E. CarvarrLo? discussed the function e4, and the
former discussed the TAYLOR series in matrices.

H. TABER?® defined trigonometric functions of a matrix. He also
proved? that every real proper orthogonal matrix can be represented
in the form e4 where A4 is skew.

W. H. METZLER® considered transcendental functions of a matrix.

The following results are due to H. B. Pairrirs®, If 4, B, ..., P are
commutative matrices whose characteristic roots a;, b;, ... p; are
ordered as in Theorem 16.1, and if f(a, b, ..., p} is an infinite series,

then f(4, B, ..., P) converges if the series f(a;, b;, ..., ;) and their

partial derivatives of proper orders converge. The TAVLOR series
J2) = HA) + 1A (2 = A) o+ o o) 200

is valid for a matrix Z commutative with 4 if each characteristic root

of Z lies within a circle with center at the corresponding root of 4 in

which f(z) is analytic, z being an ordinary complex variable.

50. Functions of matrices. That the definition of analytic function
of a matrix as a power series in that matrix with scalar coefficients is
too restrictive can be seen at once from the example

b2 —1!
A= ,  Ar=1.
3 =2
Surely 4 is an analytic function of I, yet every power series in I is
scalar.

The first attempt to define an analytic function of a matrix 4
having distinct characteristic roots was made by SYLVESTER? by means
of the “interpolation formula”

- (A — 7, ) (A —1g1) ... (4 —1,I)
= 2 g

. (;‘l - '{n)

1 Peano, G.: Math. Ann. Vol. 32 (1888) pp. 450 —456.

2 Carvarro, E.: Mh. Math. Phys. Vol. 2 (1891) pp. 177—216, 225—266 and
311-—330.

3 TABER, H.: Amer. J. Math. Vol. 12 (1890) pp. 337 -396; Vol. 13 (1891)
PP 159—172.

4 TaBER, H.: Proc. Amer. Acad. Arts Sci. Vol. 27 (1891 —1892) pp. 163 - 165.

5 METzLER, W. H.: Amer. J. Math. Vol. 14 (1892) pp. 326—377.

§ PaiLires, H. B.: Amer. J. Math. Vol. 41 (1919) pp. 266--278.

7 SYLVESTER: Philos. Mag. Vol. 16 (1883) pp. 267 —269.
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summed over all characteristic roots. The case where the roots are not
distinct was considered by A. BucHHEIM!. Evidently this definition
yields only polynomials in A.

P. A. M. Dirac? proposed to define as an analytic function of 4
any matrix which is commutative with all matrices which are commu-
tative with A. This again yields only polynomials in 4.3

L. FanTapPi£4 suggested that a satisfactory definition of analytic
function of a matrix must satisfy the following conditions. If f(x) and
g (x) are functions of a function field (real or complex) and if /(4) and
g(A) are analytic functions of a matrix 4, there must exist a corre-
spondance ~ such that, if f(4) e f(x) and g(4) ~ g(x), then

1. 1(4) + g(d) ~ () + g (x),

2. f(A)g(d) = f(x)g (),

3. f(#) =kookl and f(x) =x~ A4,

4. If f(x) is analytic in a parameter ¢, and if f(x, #) ~ f(4, {), then
the elements of f(4,#) depend analytically upon ¢.

He then proved that the elements f,, of f(4) are the sums of the

residues of —%’((f)) f(#) at the characteristic roots of 4. Here D,,(f)
is the cofactor of f,,, and D(f) = d(4). If 4 is a characteristic root
of A of multiplicity »;, the elements f,, of f(4) may be expressed as
linear combinations of the values at the points ¥ = Z; of the function
f(x) and its derivatives up to order v; — 1 at most. The coefficients
depend only upon 4.

G. GI0RGI® suggested the following definition. If

A=P' (4 } ... L4)P,

where
hotoo.. lf(zo 1@y 5t @
A0 E 1 , 7(4y) =| 0 f(4) (&)
0 0 A ‘ I 0 0 ()
then |

f(4) = Pf(4) + ... +1(A)]P.
He also stated that the definition

1 f(x)I
HA) = 5] 77 —4

had been suggested to him in a letter by CarTaN. The formula means
that the element in the (7, s)-position in f(4) is the integral around a

dx

1 BucHHEIM, A.: Philos. Mag. V Vol. 22 (1886) pp. 173—174.

2 Dirac, P. A. M.: Proc. Cambridge Philos. Soc. Vol. 23 (1926) pp. 412—418.
3 TurNBULL and AITKEN: Canonical matrices, p. 150. London 1932.

4 Fantarrif, L.: C. R. Acad. Sci., Paris Vol. 186 (1928) pp. 619—621.

5 GiorGi, G.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp. 3—8.
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small closed path of the element in the (v, s)-position in the matrix
() (eI — A)"

Neither of these definitions takes care of the example given at the
beginning of this section.

What seems to be the most satisfactory definition so far proposed
for a multiple-valued analytic function of a matrix is the one given
by M. Ciporral. Tt is an extension of the definition of Giorai, and
differs from it only in the respect that different determinations for f
may be used in the matrices /(4,), ..., /(4;), and P must range over
all matrices such that 4 = P'(4; 4 ...)P holds. If the same deter-
mination for / is used throughout, a principal value of f(4) results.
This definition and this only is sufficiently broad to include as functions
of I all solutions of the matric equation X2 = 1.

Explicit results in certain special cases have been obtained. Thus
M. Botasso? found A™ explicitly when the minimum equation of A
is quadratic.

S. MarTIs-BipDAU? gave an explicit form of A" where A is of the
second order according to FANTAPPIE’s definition of function. Later?
she treated ¢4 for A of the second order by Giorc’s definition, and?
the function 4™ where A is of the third order.

E. Porcu-TorTRINI® gave f(A4) explicitly for 4 of the second order
according to GIorGI's definition of function.

S. AMANTE? used FANTAPPIE'’s results to solve f(X) = O where /(2)
is a complex function.

51. Matrices whose elements are functions of complex variables.
To consider this topic in detail would take us into the theory of diffe-
rential equations. Only a few results of interest in pure matric theory
will be given.

J. H. M. WEDDERBURN® considered matric functions—i.e., matrices
whose elements are analytic functions of a single complex variable.
His principal result (the analog of Theorem 26.2) is that if 4 (4) is such
a matric function of rank » which is holomorphic in a region R, there

1 CrrorLra, M.: Rend. Circ. mat. Palermo Vol. 56 (1932) pp. 144 —154.

2 Botasso, M.: Rend. Circ. mat. Palermo Vol. 35 (1913) pp. 1—46.

3 MarTis-Bippavu, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp. 130
to 133.

4 MarTIs-BipDAU, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 8 (1928) pp. 276
to 280.

5 MarTIS-BipDAU, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 9 (1929) pp. 206
to 213.

8 Porcu-TorTriNI, E.: Atti Accad. naz. Lincei, Rend. VI Vol. 7 (1928) pp. 206
to 208.

7 AMANTE, S.: Atti Accad. naz. Lincei, Rend. VI Vol. 12 (1930) p. 290.

8 WEDDERBURN, J.H.M.: Trans. Amer. Math. Soc. Vol. 16 (1915) pp. 328
to 332.
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exist two matrix functions P (4) and Q(4), which are holomorphic and
non-singular in R, and are such that

PMADQR) =E,(A) + E;(W+ - +E ()40,

where E,(4), ..., E,(}) are functions of 2 which are holomorphic in R
and are such that E; is a factor of E, when s < ¢.

G. D. BIRKHOFF! gave the following theorem. Let L = || (%) || be
a matrix of functions which are single-valued and analytic for x| = R
(but not necessarily at x = oc), and such that d(L) == 0 for |x| = R.
Then there is a matrix 4 = ||a,,(x)|| of functions analytic at x = oo
reducing to I at x = oo, and a matrix E = ||¢,,(%) || of entire functions
of determinant nowhere 0in the finite plane such that L =4 - || ¢, (x) #* ||
where the %’s are integers.

BirkHOFF? considered infinite products of analytic matrices. If
every element of 4 (x) and B (x) are analytic near ¥ = x, but perhaps
not at x = x,, and if M (x) has elements analytic at x = x,, and if
A(x) = M(x) B(x), then A4(x) is left-equivalent to B(x) at x = x,.
The relation of left-equivalence is determinative, reflexive, symmetric
and transitive. A matrix U;(x) is elementary if it is the identity matrix
with the -th column replaced by ¢, ¢,, ..., 6,1, % — %, Cjuq, - -+, Gy
The following equivalence problem is considered. Given polynomial
matrices, each having its only finite singular point at x; (these being
assumed distinct), to construct a polynomial matrix P(x) equivalent
to these matrices at x; and having no other finite singular point. The
most general solution is

Py(x) Uy (%) Uy (x) ... Up(x),

where U;(x) is an elementary matrix with a singular point at x = %;,
and Py(x) is any polynomial matrix of order 0.

The absolute value of a matrix whose elements are complex numbers.
or functions was defined by J. H. M. WEDDERBURN?3 to be

A1 = (2 ap, 2,0t A= (a,).
The following inequalities were obtained, 1 being scalar.

4+ Bl=|41+ (B, [l=#%|1],
[A4] = |2][4], |4B1=|41B].

52. Derivatives and integrals of matrices. These concepts were
first considered by V. VOLTERRAL Let S(x) be a matrix of order # whose

1 BirkHOFF, G. D.: Math. Ann Vol. 74 (1913) pp. 122—133.

2 BIrRkHOFF: Trans. Amer. Math. Soc. Vol. 17 (1916) pp. 386—404.

3 WEDDERBURN, J. H. M.: Bull. Amer. Math. Soc. Vol. 31 (1925) pp. 304
to 308.

4 VOLTERRA, V.: Atti Accad. naz. Lincei, Rend. IV Vol. 3! (1887) pp. 393— 396.
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elements are finite continuous functions of the real or complex variable x.
Assume 4S(x) = 0. If the two limits
L ; —
o SUS r + dx) — 1
dw

S(x+dx)SY(x) — I
ST

lim

Az—>0

)
dz—>0

exist, they are called the right and left derivatives of S(x), respectively.

It is to be noted, however, that since I = S'(x) S(x) = S (x) S'(x),
the right and left derivatives are merely S'(x) SP(x) and SP(x) S'(x),
respectively, where SP(x) is obtained from S(x) by replacing each
element by its derivative.

Let T (x) be a matrix of order # whose elements are finite continuous
functions of the real variable x on the range a == x < 0. Let the interval
of definition be divided into » segments 4, Ay, .. ., k,, and consider
the matrices 75, 1,, ..., T,, each T, corresponding to a value of x
contained in the interval %;. Set R; = 4, T; + I. Then if the limits

lim RR,...R,, lm R,R,.,...R
norm ki >0 norm hi >0
exist, they are called the right and left RIEMANN integrals, respectively,
of T(x).

VoLTERRA further showed that if differentiation and integration are
both right, or both left, u
;%/ T(x)dx — T (u),

(12

and that if M is non-singular with elements free from x, then
S(x) = M'T (x) M implies

LS = [dix :r(x)] M, _[5 (0)dx = M U T (x) de' M.
The constant of integration is multiplicative instead of additive. That
is, if differentiation is on the right,

2esm= 5@, dc+o
where C is a matrix with constant elements; and if, conversely,
5T = 15S5w,

then there exists a non-singular constant matrix C such that
T(x)=C S(x). If differentiation is on the left, the constant matrix
C is a right factor.

VOLTERRA! generalized the theorem of CAucCHY to matrices by
proving that if s is a closed path inside which each element of 7'(z)
is holomorphic, then / T@dz=1.

$

He extended this theorem to RIEMANN surfaces.

! VorLtERRA: Rend. Circ. mat. Palermo Vol. 2 (1888) pp. 69—75.
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L. ScHLESINGER? defined the integral

z q
I(a,s) :/‘(arsdx + 6,5
4 4

so that every row satisfies the system of differential equations

n
d r
7;/; =2 @ (%) s -

i=1

Later? he used WEDDERBURN’s definition of absolute value (§51) to
define an L-integrable matrix. He showed that the L-integral of A
has a derivative almost everywhere, and that this coincides almost
everywhere with 4.

H. W. Tur~BULL? investigated the properties of the operator
applied to matrices whose elements are functions of the x,,.

A.LoEwy* defined a new relation between two matrices whose

5.,

ox,,

dx
Then we may write 42 B (4 is similar to B in the sense of LOEWY)

if there exists a matrix P whose elements are functions of ¥ and whose
determinant does not vanish identically such that

B = —PPP! + PAP.
It may be shown that this relationship is determinative, reflexive,
symmetric and transitive. The author uses it in the factorization theory
of differential expressions.

elements are functions of a variable x. Let P = (p,,), PP =<

X. Matrices of infinite order.

53. Infinite determinants. The concept of infinite determinant was
introduced by G. W.HIL1% in connection with the solution of differential

equations. If | ay @ g

is a doubly infinite array, and if

|
A, — [ %2

Ay =ay, 2 = , Ay =|ay Gy ay|,...,

‘A 1 Qg

then if lim A4, exists, it is called the determinant d(4).

n >0

1 SCHLESINGER, L.: J.reine angew. Math. Vol. 128 (1904} pp. 263—297.

2 SCHLESINGER, L.: Math. Z. Vol. 33 (1931) pp. 33—61.

3 Tur~nsuULL, H. W.: Proc. Edinburgh Math. Soc. II Vol. 1 (1927) pp. 111—128.

4 LoEwy, A.: Math. Ann. Vol. 78 (1918) pp. 1—51, 343—358 and 359—368 —
Nachr. Ges. Wiss. Gottingen 1917 pp. 255—263.

5 HiLr, G. W.: Acta math. Vol. 8 (1886) pp. 1—36.



457] X. Matrices of infinite order. 105

The procedure of HiLL was placed upon a rigorous foundation by
PoincaArEL, who considered only arrays whose diagonal elements are
1’s. He proved the existence of HiLL’s limit under the assumption

that ' |a,,| converges.
p,q=1
H.von Kocu? gave an extended and systematic treatment of

infinite determinants. If A, is of order #, set B, = (b,;) = 4, — 1.
Then (Theorem 14.3)

< O | bii b |
!‘4n‘:1+gbii+2 by bjj‘!—l—"'-

Gi=1

<7

A determinant of infinite order is said to be absolutely convergent if |4,,|
and each of the terms in the above expansion converge as # — oo.
St. BOBR3 proved that a necessary and sufficient condition that |4 |

be absolutely convergent is that J7 |a;,| converge absolutely, and that
i=1

there exist an integer ) = 2 such that
1
i [S? (i ? "
=1
converges. A simplified proof of this theorem was given by L. W. COHEN*.
Systems of linear equations in infinitely many variables have been
discussed by several writers since Hirr, for example, E.ScHMIDT?,
ToepLITZ®, WINTNER? and L. W. CoHENZ
Application of infinite determinants in the theory of continued
fractions was made by T. J. STIELTJES® and by von Kocu®.
Summaries of results up to the date of publication are given by
E.Pascarl®, KowaLEwskil!, F.Riesz'2, and HELLINGER and TogPLITZ®,
The latter has practically complete references to the literature.

, ik

1 PoincarE: Bull. Soc. Math. France Vol. 14 (1886) pp. 77— 90.
2 KocH, H. voN: Acta math. Vol. 15 (1891) pp. 53—63; Vol. 16 (1892—1893)
pp- 217—295 — C. R. Acad. Sci., Paris Vol. 116 (1893) pp. 91—93 — Rend. Circ.
mat. Palermo Vol. 28 (1909) pp. 255—2066.

3 B6BR, ST.: Math. Z. Vol. 10 (1921) pp. 1—11

1 CoHEN, L. W.: Bull. Amer. Math. Soc. Vol. 36 (1930) pp. 563—572.

5 ScamIpT, E.: Rend. Circ. mat. Palermo Vol. 25 (1908) pp. 53—77.

6 TogpLITZ: Rend. Circ. mat. Palermo Vol. 28 (1909) pp. 88 —96.

7 WINTNER: Math. Z. Vol. 24 (1923) p. 266.

8 StieLTIES, T. J.: Ann. Fac. Sci. Univ. Toulouse Vol. 8 (1894) J1--]J122.

9 voN Kocu: C. R. Acad. Sci., Paris Vol. 120 (1895) pp. 144 147.

10 Pascar, E.: Die Determinanten, trans. by Leitzmann. Teubner 1900.

11 KowaLEWsKI: Einfithrung in dic Determinantentheorie, Chap. 17. Leipzig
1909.

12 Riesz, F.: Les systémes d’equations lindaires a une infinité d’inconnues.
Paris 1913.
13 HELLINGER and Torprritz: Enzykl. der math. Wiss. II C 13 §17 (1927).
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More recent papers on infinite determinants are by D.C.GILLESPIE?
and A. A. SHAW?Z,

54. Infinite matrices. The modern theory of matrices of infinite
order is almost entirely an out-growth of the theory of integral equations.
This theory had its inception in a series of six papers by DAvip HILBERT3
published in the Gottinger Nachrichten under the title “Grundziige
einer allgemeinen Theorie der linearen Integralgleichungen”. This was
later issued in book form4. Subsequent papers by HiLBERT, FREDHOLM,
HELLINGER, ToEPLITZ, E. ScHMIDT, WINTNER, VON NEUMANN and
others have greatly extended the theory.

In spite of the extent and importance of this theory, it will be very
briefly treated here because it belongs so fundamentally to the theory
of integral equations, and also because it has been so thoroughly ex-
pounded in recent years by HELLINGER and ToEPLITZ5 and by A. WINT-
NER®. Both books have extended references to the literature.

The purpose of our brief remarks on the subject of infinite matrices
is to point out a few analogies with the theory of matrices of finite
order, and also a few ways in which they are fundamentally different.

55. A matric algebra of infinite order. If §§ is the real or complex
field, denote by A4, an array (a,,) of » rows and columns, and by A4
an array with a denumerable infinity of rows and columns. If multi-
plication of arrays is defined according to the identity

n
AB = (hm Zaribis) f
n—>oo ¢=1
it is at once evident that closure is not usually obtained. Hence it is
not possible to define the total matric algebra of order # over § for
# infinite as was done for » finite.
We shall call a matric algebra of infinite ovder a system of arrays,
with elements in a field ¥, which satisfies the following postulates?:
1. The system is closed under addition.
2. For every two arrays A = (a,,), B = (B,,), the infinite series

(541) Z“ribis

=1

1 GirLrespIE, D. C.: Bull. Amer. Math. Soc. Vol. 33 (1927) pp. 654—655, ab-
stract only. )

2 SHAW, A. A.: Amer. Math. Monthly Vol. 38 (1931) pp. 188—194.

3 HiLBeRrT, DAviD: Nachr. Ges. Wiss. Gottingen 1904 pp. 49—91, 213—259;
1905 pp. 307—338; 1906 pp. 157—227, 439—480; 1910 355—417.

4 HiLBerT, DAvID: Leipzig 1912.

5 HELLINGER and ToEerritz: Enzykl. der math. Wiss. II; Vol. 9 (1927).

6 WINTNER, A.: Spektraltheorie der unendlichen Matrizen. Leipzig: Hirzel
1929.

7 HELLINGER and ToEpriTz: Nachr. Ges. Wiss. Gottingen 1906 pp. 351—355.
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converges absolutely, and the product matrix AB = (Da,;0;,) is in

the system.
For some purposes it is convenient to add
3. The system is maximal.
We shall define a matrix of infinite order as a member of a matric

algebra of infinite order.
There can be more than one maximal system.
Theovem 55.1. Multiplication is associative, and distributive with

respect to addition.
Both of these results follow from the assumption that the scries

(55.1) is absolutely convergent, and hence
Z ari(ébijcjs> = Z (Z Arg L/) Cis»

Z bzs + Czs) :,

Theorem 55.2. If A has both a vight and a left inverse, they are cqual

'[VS I

il
—_

szs +Z Api Cis -

and unique.
Then Y=Y(AX)=(YAHX =X.

For a matrix of finite order the existence of a left inverse implics
the existence of a right inverse and vice versa. That this is not neces-
sarily so for matrices of infinite order may be seen from the following

.. |
Lo oo A

These matrices belong to a matric algebra of infinite order to be defined
in the next paragraph. Evidently AX = I, while for everv Y, Y4
has only 0’s in its first column. It is to be noted that the right inverse
of A is not unique, for the «’s are arbitrary.

Theovem 55.3. If A has a unigque right inverse, this right inverse is
also a left inverse?.

Suppose AX = I. Then

AXA =4, AX+AXA-A=1,
AX +X4-1)=1L
If the right inverse is unique,
X4+ XA-T=X, XA=1

examplel:
IO 1 0 0 N Xy He Xy Xy ...
‘ | |
40 0 10 H x_It ¢ 0 0 ..
0 0 0 1 t o 1 0 0 ...|

I HeLLINGER and Torrritz: Math. Ann. Vol. 69 (1910) pp. 289— 330.
2 HELLINGER and ToeprLiTZ: l. C.

Lrgebnisse der Mathematik. 1I/5. MacDuffee. 8
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A matrix of infinite order is said to be non-singular if it has both
a left and a right inverse, i.e., if it has a unique inverse.

The failure for infinite matrices of the fundamental theorem of the
first chapter (Corollary 7.9), namely that the determinant of the product
of two matrices is equal to the product of their determinants, is parti-
cularly to be noted. In the example given above with each x equal to
zero, we have AX = I, while by the definition of determinant due to

Hiy, dd)=0, dX)=o0, dl)=1.

By von KocH’s definition, d(X) does not exist.

56. Bounded matrices. Let § be the real field, and consider all
matrices A = (a,,) of infinite order such that there exists a positive
number m independent of # so that for

x12+x22+"'+xn2§1’ y12+y22+"'+yn2§1’
it is true that l n
‘pZ ApgXpYq | =M.

Such matrices are called bounded!.

HiLBERT proved that the product of two bounded matrices exists
and is bounded, and that the associative law holds for bounded matrices.
Bounded matrices constitute a matric algebra of infinite order2.

Let Zcizi be a power series convergent for |z| << 0. We may consider

i=0
1, z,2% ... to constitute a basis for an algebra of infinite order, the
constants of multiplication being ¢;;; = 6;3,;. (Cf. §2) Hence
S,,: = (674_1;’8). That iS,

‘1 0 0 u ‘010 | boo1

| |
50:;(’10 s, |0 0t S, |0 00
i 000 000

\‘001

The matrix corresponding to > ¢;2* is

G ¢ G

; 0 ¢ ¢
Z’CiSz: 0 1
0 0 ¢

oo

As in § 2, these matrices of infinite order are isomorphic under addition
and multiplication with the series to which they correspond. Hence
the set of all such matrices corresponding to series convergent for

! HiBERT: Nachr. Ges. Wiss. Géttingen 1906 pp. 157—227.
% HELLINGER and ToEeprLiTz: Nachr. Ges. Wiss. Gottingen 1906 pp. 351 —355.
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|z| < o constitute a matric algebra, and are commutative, associative
and distributive.

In fact, if the radius of convergence is ¢ > 1, these matrices arc
bounded L.

The theory of bounded matrices constitutes the major portion of
the known theory of infinite matrices. In particular, all unitary infinite
matrices are bounded.

Many of the theorems for bilinear and quadratic forms carry over
to forms of infinite order with the understanding that a non-singular
matrix is one with a unique inverse?

ToerLITZ® gave a method for reducing a bounded quadratic form
to canonical form.

H. Haun4 gave a necessary and sufficient condition that two bounded
quadratic forms in infinitely many variables be equivalent by orthogonal
transformations. F. H. MurRraY® gave a method for reducing such a
form to canonical form by orthogonal transformations.

J. HysLoP® gave an extension of WEIERSTRASS’ theorem on pairs
of quadratic forms.

I. ScHur? proved that if H is bounded semi-definitc hermitian,
there exists a P with 0’s above the main diagonal such that H = PP"".

A. WinTNERS proved that if 4 is non-singular and bounded, there
exists exactly one positive definite matrix P and exactly one unitary
matrix U such that 4 = PU.

The theory of infinite orthogonal matrices was developed by
M. H. MARTIN®.

(=]
Even if Zafi converges, A need not be bounded. T. CARLEMAN 10
=1

showed how the study of such matrices may be brought under the
theory of bounded matrices.
J. voN NEUMANNI considered matrices which are not bounded.
Suppose that Q is a given matrix, and that there exists a matrix P
such that QP — PQ = I. This condition is never satisfied by matrices

1 ToepriTz: Math. Ann. Vol. 70 (1910) pp. 351—376.

2 HerLingEr and ToepriTz: Math. Ann. Vol. 69 (1910) pp. 289--330.

3 Toepritz: Nachr. Ges. Wiss. Géttingen 1907 pp. 101 —109.

4 Haun, H.: Mh. Math. Phys. Vol. 23 (1912) pp. 161—224.

5 Murray, F. H.: Ann. of Math. Vol. 29 (1928) pp. 133—139.

6§ HysrLop, J.: Proc. London Math. Soc. IT Vol. 24 (1926) pp. 264 —304.

? ScyuUR, I.: Math. Z. Vol. 1 (1918) pp. 184—207.

8 WINTNER, A.: Amer. J. Math. Vol. 54 (1932) pp. 145—149.

9 MARTIN, M. H.: Amer. J. Math. Vol. 54 (1932) pp. 579—631.

10 CArRLEMAN, T.: Sur les équations intégrales singuliéres & noyau réel et
symétrique. Uppsala 1923.

11 NEUMANN, J. voN: ]. reine angew. Math. Vol. 161 (1929) pp. 208236 —
Math. Ann. Vol. 102 (1929) pp. 49—131.

]
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by an important class of infinite matrices used in quantum mechanics.
If R is another matrix, then RP — PR = R’ is called the derivative
dR[dQ of R with respect to Q. From this definition the more important
properties of the derivative may be shown to hold for R’.?

57. Matrices with a non-denumerable number of rows and colums.
Each element a@,, of A may be considered as a function of the two
variables # and s. From this point of view, every function of two
independent variables is a matrix®

A matric algebra of non-denumerably infinite order is, then, com-
posed of a set of functions 4 =a(x,y),B="0(x,y),... which is
closed under addition, and under “multiplication”, or composition of
the type b

AB ———fa(x, 1)b(t,y)de .3
a
It is readily seen that multiplication is associative and distributive,
but usually not commutative?.

Application of such matrices to physics was made by P. A. M. DIrRAcS®.

A. D. MicHALS considered the equivalence of “quadratic forms” of
the type

bb b
[[glx, )y () y(Bdxdp + [[y(x)]Pda
under FREDHOLM transformations

b
y(t) = y() + [K(x, 1) y(x) dox

of non-vanishing FREDHOLM determinant. It is here assumed that y («)
and K (x, B) are continuous real functions of « and § over the interval
(a, b), and that RiEMANN integration is used.

1 Dirac, P. A. M.: Proc. Cambridge Phil. Soc. Vol. 23 (1926) pp. 412—418.

2 Moorg, E. H.: Hermitian Matrices of Positive Type. Lectures at the Uni-
versity of Chicago 1920.

3 VOLTERRA, V.: Atti Accad. naz. Lincei, Rend. V Vol. 19 (1910) pp. 169—180.

4 See HELLINGER and ToErpritz: Enzykl.der math. Wiss. II C 13 p. 1487.

5 Dirac, P. A. M.: Proc. Roy. Soc. London A Vol. 113 (1926 —1927) pp. 621
to 641.

6 Micuar, A.D.: Amer. J. Math. Vol. 50 (1928) pp. 473—517.

Druck der Spamer A.-G. in Leipzig.
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