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PREFA^R

Fluid mechanics is the study of all ttuYds under all possible condi-

tions of rest and motion. Its approaches analytical, rational, and

mathematical rather than empirical ;
it concerns itself with those basic

principles which lead to the solution of numerous diversified problems,

and it seeks results which are widely applicable to similar fluid sit-

uations and not limited to isolated special cases. Fluid mechanics

recognizes no arbitrary boundaries between fields of engineering knowl-

edge but attempts to solve all fluid problems, irrespective of their

occurrence or of the characteristics of the fluids involved.

This textbook is intended primarily for the beginner who knows

the principles of mathematics and mechanics but has had no previous

experience with fluid phenomena. The abilities of the average

beginner and the tremendous scope of fluid mechanics appear to be in

conflict, and the former obviously determine limits beyond which it is

not feasible to go; these practical limits represent the boundaries of

the subject which I have chosen to call elementary fluid mechanics.

The apparent conflict between scope of subject and beginner
f

s ability

is only along mathematical lines, however, and the physical ideas of

fluid mechanics are well within the reach of the beginner in the field.

Holding to the belief that physical concepts are the sine qua non of

mechanics, I have sacrificed mathematical rigor and detail in develop-

ing physical pictures and in many cases have stated general laws only

(without numerous exceptions and limitations) in order to convey basic

ideas; such oversimplification is necessary in introducing a new subject

to the beginner.

Like other courses in mechanics, fluid mechanics must include

disciplinary features as well as factual information the beginner must

follow theoretical developments, develop imagination in visualizing

physical phenomena, and be forced to think his way through problems

of theory and application. The text attempts to attain these objec-

tives in the following ways: omission of subsidiary conclusions is

designed to encourage the student to come to some conclusions by

himself; application of bare principles to specific problems should

develop ingenuity; illustrative problems are included to assist in

overcoming numerical difficulties; and many numerical problems for
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the student to solve are intended not only to develop ingenuity but to

show practical applications as well.

Presentation of the subject begins with a discussion of funda-

mentals, physical properties and fluid statics. Frictionless flow is

then discussed to bring out the applications of the principles of con-

servation of mass and energy, and of impulse-momentum law, to fluid

motion. The principles of similarity and dimensional analysis are

next taken up so that these principles may be used as tools in later

developments. Frictional processes are discussed in a semi-quanti-

tative fashion, and the text proceeds to pipe and open-channel flow.

A chapter is devoted to the principles and apparatus for fluid measure-

ments, and the text ends with an elementary treatment of flow about

immersed objects. Throughout the text, the foot-pound-second sys-

tem of dimensions has been used, and problems of conversion from the

metric system, which so frequently divert the beginner's attention

from the physical ideas, have been avoided; justifications for experi-

mental results and empirical formulas have been presented except
at points where the student should discover them for himself;

bibliographies have been included to guide the inquiring reader to

more exhaustive treatments of the subject.

For criticism of my Notes on Elementary Fluid Mechanics which

have been expanded into the present text, I wish to extend my appre-

ciation to many of my colleagues at New York University, Professor

Boris A. Bakhmeteff of Columbia University, and Professor William

Allan of the College of the City of New York.

I am deeply indebted to Mr. William H. Peters of the Curtiss-

Wright Corporation for carefully reviewing the first eight chapters of

the manuscript, and to Professor Frederick K. Teichmann of New
York University for critical comments on the last chapter. I also

wish to thank Mr. J. Charles Morgan for general comments and

assistance in reading proof and Miss Katherine Williams for her care

and patience in typing the manuscript.

JOHN K. VENNARD
NEW YORK, N.Y.

May, 1040
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ELEMENTARY FLUID MECHANICS

CHAPTER I

FUNDAMENTALS

1. Development of Fluid Mechanics. Man's desire for knowl-

edge of fluid phenomena began with his problems of water supply
and disposal and the use of water for obtaining power. With only a

rudimentary appreciation for the physics of fluid flow he dug wells,

operated crude water wheels and pumping devices, and, as his cities

increased in size, constructed ever larger aqueducts, which reached their

greatest size and grandeur in those of the City of Rome. However,
with the exception of the thoughts of Archimedes (250 B.C.) on the

principles of buoyancy little of the scant knowledge of the ancients

appears in modern fluid mechanics. After the fall of the Roman

Empire (A.D. 476) no progress was made in fluid mechanics until the

time of Leonardo Da Vinci (1452-1519). This great genius designed

and built the first chambered canal lock near Milan and ushered in a

new era in hydraulic engineering; he also studied the flight of birds and

developed some ideas on the origin of the forces which support them.

After the time of Da Vinci, the accumulation of hydraulic knowledge

rapidly gained momentum, the contributions of Galileo, Torricelli,

Newton, Pitot, D. Bernoulli, and D'Alembert to the fundamentals of

the science being outstanding. Although the theories proposed by
these scientists were in general confirmed by crude experiments, diver-

gences between theory and fact led D'Alembert to observe in 1744 that,

"The theory of fluids must necessarily be based upon experiment."

D'Alembert showed that there is no resistance to motion when a body
moves through an ideal (non-viscous) fluid, yet obviously this con-

clusion is not valid for bodies moving through real fluid. This dis-

crepancy between theory and practice is called the "D'Alembert

paradox" and serves to demonstrate the limitations of theory alone in

solving fluid problems.

Because of the conflict between theory and practice, two schools

of thought arose in the treatment of fluid problems, one dealing with
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the theoretical and the other with the practical aspects of fluid flow,

and in a sense these two schools of thought have persisted down to the

present day, resulting in the theoretical field of
"
hydrodynamics" and

the practical one of "hydraulics." Notable contributions to theo-

retical hydrodynamics have been made by Euler, La Grange, Helm-
hoi tz, Kirchhoff, Lord Rayleigh, Rankine, Lord Kelvin, and Lamb.
In a broad sense, experimental hydraulics became a study of the laws

of fluid resistance, mainly in pipes and open channels. Among the

many scientists who devoted their energies to this field were Brahms,

Bossut, Chezy, Dubuat, Fabre, Coulomb, Eytelwein, Belanger, Dupuit,

d'Aubisson, Hagen, and Poisseuille.

Toward the middle of the last century, Navier and Stokes succeeded

in modifying the general equations for ideal fluid motion to fit that

of a viscous fluid and in so doing showed the possibilities of adjusting
the differences between hydraulics and hydrodynamics. At about the

same time, theoretical and experimental work on vortex motion by
Helmholtz was aiding in explaining away many of the divergent results

of theory and practice.

Meanwhile, hydraulic research went on apace, and large quantities

of excellent data were collected or formulas proposed for fluid re-

sistance, notably by Darcy, Bazin, Weisbach, Fanning, Ganguillet,

Kutter, and Manning; among researchers on other hydraulic prob-
lems were Thomson, Fteley, Stearns, and H. Smith. Unfortunately,
researches led frequently to empirical formulas obtained by fitting

curves to experimental data or merely presenting the results in tabular

form, and in many cases the relationship between the physical facts

and the resulting formula was not apparent.

Toward the end of the last century, new industries arose which

demanded data on the flow of fluids other than water; this fact and

many significant advances in knowledge tended to arrest the increasing

empiricism of hydraulics. These advances were: (1) the theoretical

and experimental researches of Reynolds; (2) the development of di-

mensional analysis by Lord Rayleigh ; (3) the use of models by Froude,

Reynolds, Fargue, and Engels in the solution of fluid problems; and

(4) the rapid progress of theoretical and experimental aeronautics in

the work of Lanchester, Lilienthal, Kutta, Joukowski, and Prandtl.

These advances allowed new tools to be applied to the solution of

fluid problems and gave birth to modern fluid mechanics.

Since the beginning of the present century, empiricism has waned
and fluid problems have been solved by increasingly rational methods;

these methods have produced so many fruitful results and have aided
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so materially in increasing our knowledge of the details of fluid phenom-
ena that the trend appears likely to continue into the future. Among
the foremost contributors to modern fluid mechanics are Prandtl,

Blasius, Karman, Stanton, Nikuradse, Bakhmeteff, Koch, Bucking-

ham, Gibson, Rehbock, Durand, and Taylor.
2. Physical Characteristics of the Fluid State. Matter exists in

two states the solid and the fluid, the fluid state being commonly
divided into the liquid and gaseous states.

Solids differ from liquids and liquids from gases in the spacing and

latitude of motion of their molecules, these variables being large in a

gas, smaller in a liquid, and extremely small in a solid. It follows

that intermolecular cohesive forces are large in a solid, smaller in a

liquid, and extremely small in a gas^ These fundamental facts account

for the familiar compactness and rigidity of form possessed by solids,

the ability of liquid molecules to move freely within a liquid mass, and

the capacity of gases to fill com-

pletely the containers in which

they are placed.

A more fruitful and rigorous

mechanical definition of the solid

and fluid states may be made on

the basis of their actions under the

various types of stress. Applica- FIG. 1.

tion of tension7~c6rnpression ,
or

shear stresseVto a solid results first in elastic deformation, and later,

if these~stresses exceed the elastic limits, in permanent distortion

of the material. Fluids, however, possess elastic properties under

compression stress, but application of infinitesimal shear stress results

in continual and permanent distortion. This inability to resist shear

stress gives fluids their characteristic ability to
"
flow". Fluids

will support tension stress to the extent of the cohesive forces be-

tween their molecules. Since such forces are extremely small, it is

customary in engineering problems to assume that fluid can support

no tension stress.

Since shear stress applied to fluids always results in distortion or

"flow," it is evident that in fluids at rest no shear stresses can.exist

and compression stress, or "pressure/' becomes the only stress to be

considered.

Fluids being continuous media, it follows that pressures occurring

or imposed at a point in a fluid will ^transmitted undiminished to all

other points in the fluid (neglecting the weight of the fluid).

U UU H I i V
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Before examining the methods of dimensional analysis, recall that

there are two different systems by which the dimensions of physical

quantities may be expressed. These systems are the force-length-time

system and the mass-length-time system. The former system, gener-

ally preferred by engineers, becomes the familiar "foot-pound-second"

system when expressed in English dimensions; the latter system in

English dimensions becomes the "foot-slug-second" system. The
latter system is generally preferred in dimensional analysis, and, since

the student is familiar with the former system, the use of the latter

will serve to develop versatility in the use of dimensions.

A summary of the fundamental quantities of fluid mechanics and

their dimensions in the various systems is given in Table VI, the con-

ventional system of capital letters being followed to indicate the dimen-

sions of quantities. The basic relation between the force-length-time

and mass-length-time systems of dimensions is given by the Newtonian

law, force or weight = (Mass) X (Acceleration) and, therefore,

dimensionally,

p = yr .r m
^2

from which the dimensions of any quantity may be converted from

one system to the other.

To illustrate the mathematical steps in a simple dimensional prob-

lem, consider the familiar equation of fluid statics

p wh

but assume that the dimensions of w and h are known and those of p
unknown. The dimensions of p can be only some combination of

M, L, and T, and this combination may be discovered by writing the

equation dimensionally as

Unknown dimensions of p (Dimensions of w) X (Dimensions of h)

or

M*L bT* =
(jj^ X (L)

in which a, b, and c are unknowns. The principle of dimensional

homogeneity being applied, the exponents of each of the quantities is

the same on each side of the equation, giving

a =
1, b =~ 2 + 1 =- 1, c =- 2
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TABLE VI

DIMENSIONS OF FUNDAMENTAL QUANTITIES USED IN FLUID MECHANICS

whence

Dimensions of p ML 1 T 2
M

It is obvious, of course, that this result might have been obtained more

directly by cancellation of L on the right-hand side of the equation,

for this has been, and will continue to be, the usual method of obtain-

ing the unknown dimensions of a quantity, It is of utmost impor-

tance, however, to note the mathematical steps which lie unrevealed

in this hasty cancellation, if the basis of dimensional analysis is to be

understood.

The above methods may now be used in quite another and more

important way. To illustrate by another familiar example, suppose
that it is known that the power P, which can be derived from a hy-

draulic motor, is dependent upon the rate of flow through the motor

Q, the specific weight of the fluid flowing w, and the unit energy E
which is given up by every pound of fluid as it passes through the
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Since pressure ^cornyBr^sioruatress, the equilibrium of a mass of

fluid at rest occurs from pressure acting inward upon its boundary
surface as shown in Fig. 1. If this mass of fluid is reduced to infini-

tesimal size, it becomes evident that at a point in a fluid the pressure

is the same in all directions. Since fluids are unable to support tan-

gential (shear) stresses, no component of force can exist along the solid

boundary of Fig. 1, and thus pressure must be transmitted from a

fluid to a solid boundary normal to the boundary at every point.

PHYSICAL PROPERTIES OF FLUIDS

3. Density, Specific Weight, Specific Volume, and Specific Gravity.

Density
*

is the mass of fluid contained in a unit of volume
; specific

weight,
1 the weight of fluid contained in a unit of volume. Both these

terms are fundamentally measures of the number of molecules per

unit of volume. Since molecular activity and spacing increase with

temperature fewer molecules will exist in a given unit volume as tem-

perature rises, thus causing density and specific weight to decrease

with increasing temperature.
2 Since a larger number of molecules can

be forced into a given volume by application of pressure, it will be

found that density and specific weight will increase with increasing

pressure.

Density, p (rho), will be expressed in the mass-length-time system
of dimensions and will have the dimensions of mass units (slugs) per

cubic foot (slugs/ft
3
).

Specific weight, w, will be expressed in the force-length-time system
of dimensions and will have the dimensions of pounds per cubic

foot (lb/ft
8
).

Since a mass, M, is related to its weight, W, by the equation

M WM =
g

in which g is the acceleration due to gravity, density and specific

weight (the mass and weight of a unit volume of fluid) will be related

by a similar equation

p = or w = pg
g

1 In American engineering practice, specific weight is frequently termed
"
density

r '

and density
" mass density/'

2 A variation in temperature from 32Fto212F will decrease the specific weight
of water 4 per cent (Appendix II) and will decrease the density of gases 37 per cent

(assuming no pressure variation).
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Using the fact that physical equations are dimensionally homogeneous,
the foot-pound-second dimensions of p (which are equivalent to slugs

per cubic foot) may be calculated as follows :

Ib

_ . . f Dimensions of w ft
3

Ib sec
2

Dimensions of p =
:

= - =
4Dimensions of g ft ft

sec
2

This algebraic use of the dimensions of quantities in the equation ex-

pressing physical relationship will be employed extensively and will

prove to be an invaluable check on engineering calculations.3

The specific volume, v, defined as volume per unit of weight, will

have dimensions of cubic feet per pound (ft
3
/lb). This definition

identifies specific volume as the reciprocal of specific weight and intro-

duces the equations
1 1

i)
= or w = -
W V

Specific gravity, 5, is the ratio of specific weight or density of a sub-

stance to the specific weight or density of pure water. Since all these

items vary with temperature, temperatures must be quoted when spe-

cific gravity is used in precise calculations of specific weight or density.

Specific gravities of a few common liquids at 68 F. (except as noted),

are presented in Table I, from which the specific weights of liquids

TABLE I
*

SPECIFIC GRAVITIES, S, OF VARIOUS LIQUIDS AT 68 F f

(Referred to water at 39.2 F)

Ethyl alcohol 0. 789

Turpentine (d-pinene) . 862

Benzene 0.888

Linseed oil 0.934 (59.9 F)
Castor oil 0.960

Water 0.998

Glycerine 1 .264 (57 F)
Carbon tetrachloride 1 .594

Mercury 13 . 546

* Smithsonian Physical Tables, Eighth Ed., 1933, Smithsonian Institution.

t Except as noted.

3 A summary of quantities and their dimensions is given in Appendix I.
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may be readily calculated by

w = 5 X 62.45 lb/ft
3

The specific weight of gases may be calculated by means of Boyle's
law and Charles' law. Using the specific volume of a gas, Boyle's
law may be stated as 4

pv = Constant

which expresses the law of compression or expansion of a gas at con-

stant temperature. Charles' law, expressing the variation of pressure
with temperature in a constant volume of gas, is

4

= Constant

Obviously the only combination of variables which will satisfy both

Boyle's and Charles' laws simultaneously is

which is called the "equation of state" of the gas in which the constant,

JR, is called the "gas constant" and has dimensions of feet/degree

Fahrenheit absolute. Since w = l/v 9 the above equation may be

transformed into

, = --W
RT

from which specific weights of gases may be readily calculated.

Application of Avogadro's law, that "all gases at the same pressures

and temperatures have the same number of molecules per unit of

volume," allows the calculation of a "universal gas constant." Con-

sider two gases having constants R\ and R%, specific weights w\ and w^
and existing at the same pressure and temperature, p and T. Dividing
their equations of state

P _
w\T

4 p is the absolute pressure in pounds per square foot, T is the temperature in

degrees F absolute (degrees F -}- 459.6), and the above "constants" are constant if the

gas is
"
perfect." Common gases in the ordinary engineering range of pressures and

temperatures may be considered to be "perfect" for most engineering calculations.
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results in

'

but, according to Avogadro's principle, the specific weight of a gas must

be proportional to its molecular weight, giving w<2/Wi = w2/%i, in

which mi and ra2 are the respective molecular weights of the gases.

Combining this equation with the preceding one gives m^/mi
or

In other words, the product of molecular weight and gas constant is

the same 5 for all gases. This product mR is called the "universal

gas constant" and is preferred for general use by many engineers.

Values of these gas constants are given in Table II.

TABLE II

GAS CONSTANTS FOR COMMON GASES *

R, ft/F abs mR

Sulphur dioxide ..................... 23.6 1512

Carbon dioxide ........... .......... 34.9 1536

Oxygen ............................ 48.3 1546

Air ................................ 53.3 1545

Nitrogen ........................... 55.1 1543

Ammonia .......................... 89.5 1516

Hydrogen .......................... 767.0 1546

* O. W. Eshbach, Handbook of Engineering Fundamentals, p. 7-16, John Wiley & Sons, 1936.

ILLUSTRATIVE PROBLEM

Calculate the density of carbon dioxide at a temperature of 80 F and absolute

pressure of 100 lb/in.
2

, x
1536

m = 12 + 2(16) =44, R =- = 34.9
44

p 100 X 144 Ib
w __ _ __- __ n 703-

RT 34.9 X (80 + 460)
'

ft
3

0.793
/ ,

P - - 0.0246 slugs/ft
3

6 The constancy of mR is particularly true for the monatomic and diatomic gases.

Gases having more than two atoms per molecule tend to deviate from the law

mR Constant. See Table II.
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4. Compressibility, Elasticity. All fluids may be compressed with

consequent increase in density, the process of compression taking

place at the expense of the space between molecules. Therefore, as

fluids are compressed the molecular spacing is diminished and the

fluids become increasingly difficult to compress further. Fluids also

become more difficult to compress as temperature increases because

of increased molecular activity reducing the molecular spacing available

for compression. Owing to these facts, it is obviously an approxima-
tion to express elastic compression of fluids by Hooke's law

Stress
*-' ==

7^ ~.

Strain

because E is not a constant but increases with increased temperature
or pressure. Such an approximation, however, is justified for ordinary

engineering calculations since the range of pressure encountered in

engineering is comparatively small and the change in E over this pres-

sure range is usually negligible.
6 The above equation then becomes

V

the strain ( AF/F) being the decrease in volume (AF) per original

volume (F) obtained by an increment of pressure (A/>).

Compression of gases may take place according to various laws of

thermodynamics. The isothermal compression of a volume of perfect

gas, FI, existing at an absolute pressure, pi, to a volume Fg at a

pressure p2 will be accomplished according to Boyle's law.

P\V\ = p2^2 or pV = Constant

Using the specific volume, v, in this equation there results

P
pv = Constant or = Constant

w

Frequently expansion of gases occurs so rapidly that there is

no opportunity for flow of heat during the process. Such an expansion
follows the adiabatic law

t

PiVf = p2V2
k or pVk = Constant

8 E for water is commonly taken as a constant, 300,000 lb/in.
2
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which, written in terms of specific volume and specific weight, becomes

t P
pv

K = Constant or
^
= Constant

in which k, called the "adiabatic constant/' is the ratio of the two

specific heats of the gas, that at constant pressure, cp ,
to that at con-

stant volume, cv . Values of k for common gases are given in Table III.

TABLE III

ADIABATIC CONSTANTS, k
t
FOR COMMON GASES *

Sulphur dioxide 1.26

Carbon dioxide 1 . 30

Oxygen 1 . 40

Air 1.40

Nitrogen 1 . 40

Ammonia 1.32

Hydrogen 1 . 40

* O. W. Eshbach, Handbook of Engineering Fundamentals, p. 7-17, John Wiley & Sons, 1936.

Values of modulus of elasticity of gases, E, may be derived for

isothermal and adiabatic processes for use in subsequent developments.

Writing the law of elastic compression in differential form

V
For isothermal compression

pV = Constant

Differentiating this equation in respect to V results in

whence

dp_ __ p_

dV~ V

and substituting this in the first expression

E-p
for an isothermal process.
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By a similar analysis E for an adiabatic process may be shown to be

given by
E = kp

Imposed pressures or pressure disturbances are not transmitted

instantaneously from point to point in a fluid, but move in waves at

finite velocity. The velocity or celerity of propagation of such waves is

dependent upon the elastic properties of the fluid
;
fluids which are more

easily compressible (having low values of E) transmit pressures with

smaller velocity than those which are difficult to compress. A pressure

disturbance is transmitted in a fluid with a celerity, c, which is given by
the equation

7

in which c is frequently termed the "sonic" or "acoustic" velocity since

it is the velocity with which sound, a pressure disturbance, travels. In

a gas, sound moves by a series of adiabatic compressions and rarefac-

tions. Thus the sonic velocity in a gas may be calculated from

P

an equation which is accurately confirmed by experiment.

ILLUSTRATIVE PROBLEMS

Ten cubic feet of water exist at atmospheric pressure. When a pressure of

2000 lb/in.
2
is applied, what reduction in volume results?

A 2000
E = -

77P ^ 300,000 = - -

A V A V

~v To""

- AF = 0.0667 ft
8

Calculate the velocity with which sound travels in water.

300,000 X 144

-457 - 4720 ft/sec

32.2

7 For derivation see Appendix III.
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3J Viscosity. The property of viscosity, which is exhibited by all

fltFWns, is due fundamentally to the existence of cohesion and inter-

action between fluid molecules. As fluids flow these cohesions and

interactions result in tangential or

shear stresses between the moving
fluid layers. Consider the thin viscous

fluid layers shown in relative motion

in Fig. 2. Let them have a thickness,

dy, and areas of contact, A, the lower

layer moving with velocity, v, the

upper one with velocity v + dv. To maintain this velocity difference

a force F must be continually exerted on the upper layer as indicated,

which results in a shear or friction stress, r (tau), between the layers,

given by
F

fTTTfT
p

T

FIG. 2.

For viscous fluid motion the shear stress, r, has been found to be por-

portional to the rate of change of velocity along y or

r oc
dv

~dy

and the "coefficient of viscosity," M (mu),
8

is defined as the constant

of proportionality in the above equation, or

dv

dy

n Indicating

r, and thus the coemaenj^ofjdscosit^ independent
9 of pressure.

Viscosity varies ^widely with temperature, but temperature varia-

tion has an opposite effect upon the viscosities of liquids and gases due

to their fundamentally different intermolecular characteristics. In

gases, where intermolecular cohesion is negligible, the shear stress, r,

8 The dimensions of /* may be obtained by writing

Dimensions of r lb/ft
2

Dimensions of

Dimensions of
dy

dv ft/se

= Ib sec/ft
2

9
Viscosity actually increases slightly with pressure, but this variation is negligible

in most engineering problems. Oils manifest the greatest increase of viscosity with

pressure.
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between moving layers of fluid results from an exchange of momentum
between these layers brought about by molecular agitation normal to

.060

.050

.040

,030

.020

100 200 300 400
Temperature in Degrees T.

FIG. 3. Viscosities of Gases. 10

500 600

the general direction of motion. Since this molecular activity is known
to increase with temperature, the shear stress, and thus the viscosity

10 Data on viscosities from Smithsonian Physical Tables, Eighth Edition, 1933,

Smithsonian Institution. (For original data see Appendix IV.) Data on viscos-

ity of steam from Fluid Meters, Their Theory and Application, Fourth Edition,

1937, A.S.M.E.
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x-0 ive oil
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Carbon tetr chloride
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FIG. 4. Viscosities of Liquids.
10

200

Water

Turpentin

250

10 Data on viscosities from Smithsonian Physical Tables, Eighth Edition, 1933,

Smithsonian Institution. (For original data, see Appendix IV.) Data on viscos-

ity of steam from Fluid Meters, Their Theory and Application, Fourth Edition,

1937, A.S.M.E.
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of gases, will increase with temperature (Fig. 3). This reasoning is

borne out by tests and by considerations of the kinetic theory of gases

which indicate that gas viscosities vary directly with the square root
of

In a viscous liquid, momentum exchange due to molecular agitation

is small compared to the cohesive forces between the molecules, and

thus shear stress, r, and viscosity, jo,, are primarily dependent on the

magnitude of these cohesive forces. Since these forces decrease rapidly

with increases of temperature, liquid viscosities decrease as tempera-

ture increases (Fig. 4).

jj,

Owing to the continual appearance of the ratio - in subsequent
P

developments, this term has been defined by

z/(nu)
= -

P

in which v is called the
"
kinematic viscosity.

" The kinematic viscosity

embraces both the viscosity and density properties of a fluid. Dimen-

sional consideration of the above equation shows the dimensions of v

to be square feet per second, a combination of kinematic terms, which

explains the name "kinematic" viscosity.

ILLUSTRATIVE PROBLEM

Calculate the kinematic viscosity of glycerine at 80 F.

From Fig. 4, ju
= 0.0103 Ib sec/ft.

2

From Table I, S = 1.26

JLI
0.0103

v = - = -- - = 0.00423 ft
2
/sec

p 62.4 X 1.26

32.2

6. Surface Tension, Capillarity. The apparent tension effects,

which occur on the free surfaces of liquids, where the surfaces are in

contact with another fluid or a solid, depend fundamentally upon the

relative sizes of intermolecular cohesive and adhesive forces. On a

free liquid surface in contact with the atmosphere, surface tension

manifests itself as an apparent "skin" over the surface which will

support small loads. 11 The magnitude of surface tension, T, is the

force in the surface and normal to a line of unit length drawn in the

11 A small needle placed gently upon a water surface will not sink but will be

supported by the tension in the liquid surface.
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liquid surface
; thus it will have dimensions of pounds per foot. Since

surface tension is directly dependent upon intermolecular cohesive

forces, its magnitude will decrease as temperature increases. 12 Surface

tension is also dependent upon the gas in contact with the liquid surface,

thus surface tensions are usually quoted "in contact with air" as indi-

cated in Table IV.

TABLE IV

SURFACE TENSION, T, OF COMMON LIQUIDS
*

(At 68 F in contact with air)

Ib/ft

Ethyl alcohol 0.001527

Carbon tetrachloride 001832

Turpentine 0.001857

Benzene .001980

Olive oil 002295

Water 0.004985

Mercury 0.03562

* International Critical Tables, First Edition, 1926-1933, McGraw-Hill Book Company.

Surface tension in the surface of a droplet of liquid causes the pres-

sure inside of the droplet to be greater than that outside. The rela-

tion of this excess pressure to the surface tension can be found by a

simple mechanical analysis as follows. Consider the droplet of diam-

Tension in surface

V= T Ib. per ft.

FIG. 5.

eter d, indicated in Fig. 5. If the droplet is halved the forces on one

half are seen to be (1) the force due to surface tension, T, existing

around the circumference of the droplet and acting to the right, and

12 For example, the surface tension of water decreases from 0.00498 Ib/ft at 68 F
to 0,00421 Ib/ft at 212 F,
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(2) the force due to the excess pressure, p, acting to the left. These

forces are in equilibrium resulting in

Surface tension force Pressure force

or

vdT - p =
4

giving

thus relating excess pressure to surface tension and indicating that

these pressures increase as the size of droplet decreases.

The angle of contact made by a liquid on a horizontal surface illus-

trates another surface-tension phenomenon of more complex nature.

Consider the mercury and water on a glass surface illustrated by Fig. 6.

Glass Ta t * A-

surtac,v *
y-rxX"/S x

g/\ }
C _s?S y

Water Mercury

FIG. 6.

The familiar large angle of contact assumed by the mercury indicates

a comparatively large affinity of mercury molecules for each other

(cohesion) and small affinity of these molecules for those of the glass

(adhesion). The opposite effect is exhibited by the water. The
water is said to "wet" the glass since its angle of contact is less than

90 degrees. The stability of these liquids on a solid surface may be

characterized by the equilibrium of assumed surface tensions 18 at

their points of contact. Thus the following equation may be written

Tis + Ta i cos a = Ta8

Frequently equilibrium^does not exist between these tensions, and the

following inequality results

Ta8 > Ti8 + Ta i cos a

18 Tai
= surface tension between liquid and air.

Tis = surface tension between liquid arid solid.

Ta8 = surface tension between air and solid.
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causing the liquid to spread over the surface on which it is placed.

Such a condition exists when certain types of oil are placed on a water

surface.

Surface-tension effects like the above, existing when surfaces of

liquids come in contact with vertical solid surfaces, result in the

phenomenon known as "capillarity." Water and mercury in contact

with a vertical clean glass plate are illustrated in Fig. 7. Here again
are demonstrated the results

of attractions and repulsions,

cohesions and adhesions, be-

tween the molecules of liquid

and solid.

When a vertical tube is

Glass

surface -

Water

Glass

surface -

Mercury

by*

FIG. 7. FIG. 8.

placed.in a liquid as in Fig. 8, these surface phenomena form a "menis-

cus/' or curved surface, in the tube, and the liquid in the tube

stands above or below that outside, depending upon the size of the

angle of contact. The "capillary rise," h, in such a tube may be cal-

culated approximately by considering the equilibrium of the vertical

forces on the mass of fluid A BCD. Neglecting the fluid above the low

point of the meniscus the weight of ABCD is given by

which acts downward. The vertical component, FT, of the force due

to surface tension is given by

FT = irdT cos ft

which acts upward and is in equilibrium with the downward force, thus

,^
2

JTwh = irdl cos ft

4
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giving

42" cos ft
h = ~

wd

allowing the capillary rise to be calculated approximately and confirm-

ing the familiar fact that capillary rise becomes greater as tube diam-
eter is decreased.

Similarly it may be shown that the capillary rise between vertical

parallel plates is given by

_ 2Tcos/3

wd

where d is the distance between the plates.

ILLUSTRATIVE PROBLEM

Of what diameter must a droplet of water be to have the pressure within it

0.1 lb/in.
2
greater than that outside?

From Table IV, T = 0.004985 Ib/ft.

4T 4 X 0.004985
p t

d = = 0.001385 ft = 0.0166 in.
a 0.1 X 144

7. Vapor Pressure. All liquids possess a tendency to vaporize,

i.e., to change from the liquid state into the gaseous state. Such

vaporization occurs because molecules are continually projected

through the free liquid surface and lost from the body of liquid. Such

molecules, being gaseous, are capable of exerting a partial pressure, the
"
vapor pressure" of the liquid, and since this pressure is dependent

primarily upon molecular activity it will increase with increasing tem-

perature. The variation of the vapor pressure of water with tem-

perature is indicated in Fig. 9.

For boiling to occur a liquid's temperature must be raised sufficiently

for the vapor pressure to become equal to the pressure imposed on the

liquid. This means that the boiling point of a liquid is depehdent

upon its pressure as well as its temperature.
14

Table V offers a comparison of the vapor pressures of a few common

liquids at the same temperature. The low vapor pressure of mercury

along with its high density makes this liquid well suited for use in

barometers and other pressure-measuring devices.

14 For instance, water boils at 212 F when exposed to an atmospheric pressure of

14.7 Ib/sq in., but will boil at 200 F if the imposed pressure is reduced to 1 1.4 Ib/sq in.



VAPOR PRESSURE 19

Temperature in Degrees F.

FIG. 9. Vapor Pressure of Water.

TABLE V*

VAPOR PRESSURE, pv ,
OF COMMON LIQUIDS AT 68 F

lb/ft
2

lb/in.
2

Ether 1231. 8.55

Carbon tetrachloride 250 . 1 . 738

Benzene 208 . 1 .448

Ethyl alcohol 122 .4 .850

Water 48.9 0.339

Turpentine 1 . 115 .00773

Mercury .00362 .0000251

* Smithsonian Physical Tables, Eighth Edition, 1933, Smithsonian Institution.



20 FUNDAMENTALS

BIBLIOGRAPHY

HISTORICAL

W. F. DURAND, "The Development of Our Knowledge of the Laws of Fluid Me-

chanics," Science, Vol. 78, No. 2025, p. 343, October 20, 1933.

R. GIACOMELLI and E. PISTOLESI. Historical Sketch, Aerodynamic Theory, Vol. I,

p. 305, Julius Springer, Berlin, 1934.

C. E. BARDSLEY, "Historical Resume of the Development of the Science of Hydrau-

lics," Pub. 39, Engineering Experiment Station of Oklahoma Agricultural and

Mechanical College, April, 1939.

VISCOSITY

E. C. BINGHAM, Fluidity and Plasticity, McGraw-Hill Book Co., 1922.

E. HATSCHEK, The Viscosity of Liquids, Van Nostrand, 1928.

PROBLEMS

1. The two pistons A and B have respectively cross-sectional areas of 2 in.
2 and

50 in.
2 What force, F, must be applied to piston A to support a weight of 100 Ib

on B1
2. If 186 ft

3 of a certain oil weigh 9860 Ib, calculate the

specific weight, density, and specific gravity of this oil.

3. Calculate the specific weight and density of mercury
at 68 F.

4. Calculate the specific weight and density of glycerine

at57F.
5. The density of alcohol is 1.53 slugs/ft

3
. Calculate its specific weight, specific

gravity, and specific volume.

6. A cubic foot of air at 14,7 lb/in.
2 and 59 F weighs 0.0765 lb/ft

3
. What is

its specific volume?

7. Calculate the specific weight, specific volume, and density of air at 40 F and
50 lb/in.

2
absolute.

8. Calculate the density, specific weight, and specific volume of carbon dioxide

at 100 lb/in.
2 absolute and 200 F.

9. Calculate the density, specific weight, and specific volume of chlorine gas at

50 lb/in.
2 absolute and 100 F.

10. Calculate the density of carbon monoxide at 20 lb/in.
2 absolute and 50 F.

11. The specific volume of a certain perfect gas at 30 lb/in.
2 absolute and 100 F

is 10 ft,
3 Calculate its gas constant and molecular weight.

12. If h =
. what are the dimensions of h?

w
13. If V v2gh, calculate the dimensions of V,

14. If F = QwV/g, what are the dimensions of Fl

15. Twelve cubic feet of water are placed under a pressure of 1000 lb/in.
2

. Calcu-

late the volume at this pressure.

16. If the volume of a liquid is reduced 0.035 per cent by application of a pressure
of 100 lb/in.

2
, what is its modulus of elasticity?

17. What pressure must be applied to water to reduce its volume 1 per cent?

18. Ten cubic feet of air at 100 F and 50 lb/in.
2 absolute are compressed isother-
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mally to 2 cu ft. What is the pressure when the air is reduced to this volume? What
is the modulus of elasticity at the beginning and end of the compression?

19. If the air in the preceding problem is compressed adiabatically to 2 cu ft,

calculate the final pressure and temperature and the modulus of elasticity at beginning
and end of the compression.

20. Calculate the velocity of sound in air of standard conditions (32 F and
14.7 lb/in.

2
absolute).

21. Calculate the velocity of sound in fresh water.

22. Calculate the kinematic viscosity of turpentine at 68 F.

23. Calculate the kinematic viscosity of castor oil at 68 F.

24. Calculate the kinematic viscosity of nitrogen at 100 F and 80 lb/in.
2 absolute.

25. What is the ratio between the viscosities of air and water at 50 F? What is

the ratio between their kinematic viscosities at this temperature and standard baro-

metric pressure?

26. A space of 1-in. width between two large plane surfaces is filled with glycerine
at 68.5 F. What force is required to drag a very thin plate of 5 ft

2 area between the

surfaces at a speed of 0.5 ft/sec if this plate remains equidistant from the two sur-

faces? If it is at a distance of 0.25 in. from one of the surfaces?

27. Castor oil at 68 F fills the space between two concentric cylinders of 10-in.

height and 6-in. and 6.25-in. diameters. What torque is required to rotate the inner

cylinder at 12 rpm, the outer cylinder remaining stationary?

28. What force is necessary to overcome viscous action when removing the above

inner cylinder from the outer one at a speed of 1 ft/sec?

29. A circular disk of diameter d is rotated in a liquid of viscosity /x at a small

distance A/& from a fixed surface. Derive an expression for the torque T, necessary to

maintain an angular velocity co. Neglect centrifugal effects.

30. Calculate the excess pressure within a droplet of water at 68 F if the droplet

has a diameter of 0.01 in.

31. What excess pressure may be caused within a 0.20-in.-diameter cylindrical

jet of water by surface tension?

32. Calculate the capillary rise of water in a glass tube of 1-mm diameter at 68 F.

(ft
- 0.)
33. Calculate the capillary rise of water (68 F) between two vertical, clean glass

plates spaced 1 mm apart. (|3
= 0.)

34. Develop the equation for theoretical capillary rise between parallel plates.

35. Calculate the capillary depression of mercury in a glass tube of 1-mm diameter

at 68 F. (ft
= 140.)

36. A soap bubble 2 in. in diameter contains a pressure (in excess of atmospheric)

of 0.003 lb/in.
2 Calculate the surface tension of the soap film.

37. What force is necessary to lift a thin wire ring of 1-in. diameter from a water

surface at 68 F? Neglect weight of ring.

38. What is the minimum absolute pressure which may be maintained in the space

above the liquid, in a can of ether at 68 F?

39. To what value must the absolute pressure over carbon tetrachloride be re-

duced to make it boil at 68 F?

40. What reduction below standard atmospheric pressure must occur to cause

water to boil at 150 F?

41. A 6-in.-diameter cylinder containing a tight-fitting piston is completely filled

with water at 150 F. What force is necessary to withdraw the piston if atmospheric

pressure is 14.70 lb/in.
2?



CHAPTER II

FLUID STATICS

The subject of fluid statics involves fluid problems in which there

is no relative motion between fluid particles. If no relative motion

exists between particles of a fluid, viscosity can have no effect, and the

fluids involved may be treated as if they were completely devoid of

viscosity. With the effects of viscosity excluded from fluid statics

exact solutions of problems may be obtained by analytical methods

without the aid of experiment.
8. Pressure-Density-Height Relationships. The fundamental

equation of fluid statics is that relating pressure, density, and vertical

distance in a fluid. This equation may be derived readily by consider-

ing the vertical equilibrium of an element of fluid such as the small cube

of Fig. 10. Let this cube be differentially small and have dimensions

dx, dy, and dz, and assume that the density of the fluid in the cube is

uniform. If the pressure upward on the bottom face of this cube is p,

the force due to this pressure will be given by p dx dy. Assuming an

increase of pressure in the positive direction of z, the pressure down-

dp
ward on the top face of the cube will be p + dz, and the force due

dz

to this pressure will be
( p -\

--
dz) dx dy. The other vertical force

\ dz /

involved is the weight, dW, of the cube, given by

dW = w dxdy dz

The vertical equilibrium of the cube will be expressed by

/ dp \
[p + dzj dxdy + wdxdydz pdxdy =

gvng
dp =
dz

22
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the fundamental equation of fluid statics, which must be integrated for

the solution of engineering problems. Such integration may be

accomplished by transposing the terms w and dz, resulting in

dp

w

FIG. 10.

which may be integrated as follows :

r pi
dP r'

/
= -

/ dz = z2
-

J w J*i

giving
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in which pi is the greater pressure existing at the lower point 1, p2

the lesser pressure existing at the upper point 2, and h the vertical

distance between these points. The integration of the left-hand side

of the equation cannot be carried out until w =
f(p) is known. For

gases this relationship may be obtained from certain laws of thermo-

dynamics. For liquids the specific weight, w, is sensibly constant

allowing integration of the equation to

Pi
-

w
= h or pi

permitting ready calculation of the increase in pressure in a liquid

as depth is gained. It should be noted that equation 1 embodies

certain basic and familiar facts concerning fluids at rest. It shows

that, if h =
0, the pressure difference is zero and thus pressure is con-

stant over horizontal planes

a fluid. Conversely, if
Piezometer m
columns

T~
20.35 in.

of

mercury

Manometer

Mercury

Water

in

the pressure is constant over

a horizontal plane the height

23.ift of fluid above that plane is
of

i i

water constant, resulting in the

tendency of liquids to "seek

their own levels.
"

Equation 1 also indicates

the fact that pressure at a

point in a liquid of given

density is dependent solely

upon the height of the liquid

above the point, allowing

this vertical height, or
"
head," of liquid to be used as an indication

of pressure. Thus pressures maybe quoted in "inches of mercury,"
"
feet of water/' etc. The relation of pressure and head r

is illus-

trated numerically by the
"
manometer

"
and "piezometer columns"

of Fig. 11.

1 For use in problem solutions it is advisable to keep in mind certain pressure and

head equivalents for common liquids. The use of
"
conversion factors," whose physi-

cal significance is rapidly lost, may be avoided by remembering that standard atmos-

pheric pressure is 14.70 lb/in.
2

,
29.92 in. of mercury (32 F), or 33.9 ft of water (60 F).

10 Ib. per sq. in.

FlG. 11.
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ILLUSTRATIVE PROBLEMS

A closed tank is partially filled with carbon tetrachloride. The pressure on the

surface of the liquid is 10 lb/in.
2

. Calculate the pressure 15 ft below the surface.

w = 1.59 X 62.4 = 99.1 lb/ft
3

pl
-

pz wk, pi
- 10 X 144 - 99.1 X 15

pi = 2927 lb/ft
2 = 20.3 lb/in.

2

If the atmospheric pressure at the earth is 14.70 lb/in.
2 and the air tempera-

ture there 60 F, calculate the pressure 1000 ft above the earth, assuming that the

air temperature does not vary between the earth's surface and this elevation.

Isothermal condition, therefore, pi/wi = pz/wz = p/w.

i
w

14.70 X 144

53.3(60 + 460)

pi 14.70 X 144

0.0763

. r 1 ^ =
Jpz W

1000

1000

27,750
0.0361 i

pl
In

-- 0.0763 lb/ft
8

= 27,750ft

27,750

14.70
In-

14.70

log = 0.0361 X 2.303 = 0.083

Therefore

P2

14.70
=

1.21, 12.15 lb/in.
2

9. Absolute and Gage Pressures. Although

pressures are measured and quoted by two

different systems, one relative, the other

absolute, no confusion will result if the rela-

tion between these systems is completely FlG 12 .

understood.
"
Gage pressures

"
may be best understood by examination of the

common Bourdon pressure gage, a diagrammatic sketch of which is

shown in Fig. 12. A bent tube (^4) is held rigidly at B and its free

end connected to a pointer (C) by means of the link (D). When pres-

sure is admitted to the tube at -B, the tube tends to straighten, thus

actuating the lever system which moves the pointer over a graduated



26 FLUID STATICS

scale. When the gage is in proper adjustment the pointer rests at

zero on the scale when the gage is disconnected, and in this condi-

tion the pressure inside and outside of the tube will be the same, thus

giving the tube no tendency to deform. Since atmospheric pressure

usually exists outside of the tube, it is apparent that pressure gages
are actuated by the difference between the pressure inside and that

outside of the tube. Thus, in the gage, or relative, system^of pressure

measurement, the atmospheric pressure becomes the zero of pressure.

For pressure greater than atmospheric the pointer will move to the

right ;
for pressure less than atmospheric the tube will tend to contract,

moving the pointer to the left.

The reading in the first case is

positive and is called "gage pres-

sure" or simply "pressure,"
2 and

is usually measured in pounds

per square inch
;
the reading in

Gageo the second case is negative, is

designated as
"
vacuum," and is

usually measured in inches of

mercury.
The absolute zero of pressure

will exist only in a completely
Abs. o evacuated space (perfect vacu-

um). Atmospheric pressure as

measured by a barometer will

be seen to be pressure in excess of this absolute zero and is, there-

fore, an "absolute pressure."
2 The magnitudes of the atmospheric

pressure in both the absolute and gage system, being known, the

following equation may be written

datum

FIG. 13.

Absolute pressure = Atmospheric pressure
Vacuum

+ Gage pressure

which allows easy conversion from one system to the other. Possibly

a better picture of these relationships can be gained from a diagram
such as that of Fig. 13 in which are shown two typical pressures, A and

5, one above, the other below, atmospheric pressure, with all the rela-

tionships indicated graphically.

2 Throughout the remainder of the book "pressure" should be understood to mean

"gage pressure"; when "absolute pressure" is meant, it will be designated as such.
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ILLUSTRATIVE PROBLEM

A Bourdon gage registers a vacuum of 12.5 in. of mercury when the barometric

pressure is 14.50 lb/in.
2 Calculate the corresponding absolute pressure.

14.70
Vacuum = 12.5 X = 6.15 lb/in.

2

Absolute pressure = 14.50 - 6.15 = 8.35 lb/in.
2

10. Manometry. Bourdon pressure gages, owing to their inevi-

table mechanical limitations, are not in general satisfactory for precise

measurements of pressure; when greater precision is required, measure-

ments of the height of liquid columns of known density are commonly
used. Such measurements may be accomplished by means of "manom-
eters" like those of Fig. 14, pressures being obtained by the application

of the pressure-density-height relationships.

Consider the elementary manometer of Fig. 14a, consisting of a

glass tube connected to a reservoir of liquid. With both the reservoir

and the tube open to the atmosphere the liquid surfaces will stand on

the horizontal line 0-0. If the reservoir is now connected to a volume

of gas having an unknown pressure, px ,
the surface of the reservoir

liquid will drop to the line 1-1 and that in the tube will rise to the

point 2. Since pressures over horizontal planes in a fluid are constant,

the pressure px existing on the reservoir surface will also exist as in-

dicated in the tube. Applying equation 1

Px
-

p2 = *

and with the tube open to the atmosphere, p2
= and

px
= wh

thus px may be obtained by measurement of the distance h.

Figure 146 illustrates the measurement of a pressure less than

atmospheric with the same type of manometer. Here the reservoir-is

open to the atmosphere and the unknown pressure, pxt admitted to the

tube. Applying the same principles to the liquid column of height h,

pi
-

Px = wh

in which

Pi =0
giving

px = wh
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the negative sign indicating the pressure to be less than the atmos-

pheric pressure.

The familiar mercury barometer is shown in Fig. 14c. Such a

barometer is constructed by filling a glass tube, closed at one end, with

FIG. 14. Manometers.

mercury and inverting the tube, keeping its open end below the surface

of the mercury in a reservoir. The mercury column, hj will be sup-

ported by the atmospheric pressure, leaving an evacuated space, con-

taining only mercury vapor, in the top of the tube. Using the absolute
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system of pressures, equilibrium of the mercury column, h, will be

expressed by
P*tm. - Pv = Wh

in which pv for mercury has been seen to be negligible at ordinary

temperatures (Table V) resulting in

thus allowing atmospheric pressure to be easily obtained by measure-

ment of the height of the mercury column.

Calculation of the pressure, px ,
measured by the U-tube manometer

of Fig. 14J may be obtained easily by noting that

Pi - p2

and that

Pi = Px +

giving

px + wl =

resulting in

px = wih wl

allowing px to be calculated.3

U-tube manometers are frequently used to measure the difference

between two unknown pressures px and py ,
as in Fig. 14e. Here,

as before,

P* = Pd

and

p4 = Px +

p5 = py +
giving

Px + v>il
= Py +

and

Px Py = ^2^2 +

thus allowing direct calculation of the pressure difference, px py .

"
Differential manometers*' of the above type are frequently made with

the U-tube inverted, a liquid of small density existing in the top of the

inverted U; the pressure difference measured by manometers of this

3 The use of formulas for manometer solutions is not recommended until experi-

ence has been gained in their limitations.
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type may be readily calculated by application of the foregoing prin-

ciples.

When large pressures or pressure differences are to be measured a

number of U-tube manometers may be connected in series. Several

applications of the above principles will allow solution for the unknown

pressure or pressure difference.

There are many forms of precise manometers, two of the most

cpmmon of which are shown in Figs. 14/ and 14g. The former is the

"ordinary
"
draft gage" used in measuring the comparatively small

pressures in drafts of all types. Its equilibrium position is shown at

A, and when it is submitted to a pressure, px ,
a vertical deflection, h,

is obtained in which px = wh. In this case, however, the liquid is

forced down a gently inclined tube so that the manometer "
deflection,"

/, is much greater than h and, therefore, more accurately read. The
draft gage is usually calibrated to read directly in inches of water.

The principle of the sloping tube is also employed in the alcohol

'micromanometer of Fig. 14g, used in aeronautical research work. Here

the gently sloping glass tube is mounted on a carriage, C, which is

moved vertically by turning the dial, D, which actuates the screw, S.

When px is zero the carriage is adjusted so that the liquid in the tube

is brought to the hair line, X, and the reading on the dial recorded.

When the unknown pressure, px ,
is admitted to the reservoir the alcohol

runs upward in the tube toward B and the carriage is then raised until

the liquid surface in the tube rests again at the hair line, X. The
difference between the dial reading at this point and the original one

gives the vertical travel of the carriage, h, which is the head of alcohol

equivalent to the pressure px .

Along with the above principles of manometry the following prac-

tical considerations should be appreciated: (1) manometer liquids, in

changing their specific gravities with temperature, will induce errors

in pressure measurements if this factor is overlooked ; (2) errors due to

capillarity may usually be canceled by selecting manometer tubes of

uniform size; (3) although some liquids appear excellent (from density

considerations) for use in manometers, their surface-tension effects

may give poor menisci and thus inaccurate readings ; (4) fluctuations of

the manometer liquids will reduce accuracy of pressure measurement,
but these fluctuations may be reduced by a throttling device in the

manometer line, a short length of small tube proving excellent for this

purpose; (5) when fluctuations are negligible refined optical devices

and verniers may be used for extremely precise readings of the liquid

surfaces.
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ILLUSTRATIVE PROBLEM

This vertical pipe line with attached gage and manom-
eter contains oil and mercury as shown. The manometer
is open to the atmosphere. What will be the gage reading,

Since

Pi

Pr

Pi

Px

Px + (0.90 X 62.4)10

(13.55 X 62.4) yf
Oil (.90)

Mercury

(13.55)"

10'

505 lb/ft
2 =3.51 lb/in.

2

11. Forces on Submerged Plane Surfaces. The calculation of

the magnitude, direction, and location of the total forces on surfaces

submerged in a liquid is essential in the design of dams, bulkheads,

gates, tanks, etc.

For a submerged, plane, horizontal area the calculation of these

force properties is simple, because the pressure does not vary over the

FIG. 15.

area; for non-horizontal planes the problem is complicated by pressure

variation. Pressure in liquids, however, has been shown to vary

linearly with depth (equation 1), resulting in the typical pressure

diagrams and resultant forces of Fig. 15.

Now consider the general case 4 of a plane submerged area A B, such

as that of Fig. 16, located in any inclined plane X-X. Let the center of

4 A general solution for the magnitude, direction, and location of the resultant

force on this area will allow easy calculation of the forces on areas of more regular

shape.
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gravity of this area be located as shown, at a depth hg and at a distance

lg from the line of intersection, 0-0, of plane X-X and the liquid surface.

Calculating the force, dFy
on the small area, dA,

dF = pdA = whdA

but h = / sin a, and substituting this value for h

dF = wl sin a <L4

FIG. 16.

and the total force on the area AB will result from the integration of

this expression, giving

r A

F = w sin a / IdA (2)

C
A

but I IdA is recognized as the statical moment of the area AB,

about the line 0-0 which is also given by the product of the area, A,
and the perpendicular distance, /g ,

from 0-0 to the center of gravity of

the area. Thus

IdA = lgA
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and substituting this in equation 2

F = wAlg sin a
but kg

= lg sin a, giving

F = whgA (3)

indicating that the magnitude of the resultant force on a submerged

plane area may be calculated by multiplying the area, A, by the pres-

sure at its center of gravity, whg .

The magnitude of the resultant force having been calculated, its

direction and location must be considered. Its direction, because of

the inability of liquids to support shear stress, is necessarily normal to

the plane, and its point of application may be found if the moment of

the force can be calculated and divided by the magnitude of the force.

Referring again to Fig. 16, the moment, dM, of the force, dF, about

the line 0-0 is given by
dM = IdF

in which

dF = wl sin a dA

Therefore, by substitution,

dM = wl2 sin a dA

and integrating to obtain the total moment, M,

/
A

l
2dA

C
in which / l

2dA is the moment of inertia of the area A
, about the

^ A

/ PdA
line 0-0, thus

Io-o

M = wl

Designating the point of intersection of the resultant force and

the plane as the "center of pressure" and its distance from 0-0 as

lp, lp will be given by

i -^h ~
F

in which

M = w/o_osin a

and
F = wlgA sin a
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Substituting these values above gives

o~o

wLA sin

thus locating the resultant force in respect to the line 0-0, and com-

pleting the solution of the general problem.

The above equation may be made more usable by .placing it in

terms of the moment of inertia, /g ,
about an axis parallel to 0-0

through the center of gravity of the area. Using the equation for

transferring moment of inertia of an area from one axis to another,

/o-o =
I* + fa

and substituting in the equation for lp

, -~

which may be written as

or

k =

FIG. 17.

*g

LA (4)

allowing direct calculation of the dis-

tance along the X-X plane between

center of gravity and center of pres-

sure. This equation also indicates

that center of pressure is always below

center of gravity except for a hori-

zontal area, but that the distance

between center of pressure and center

of gravity diminishes as the depth of

submergence of the area is increased.6

The lateral location of the center

of pressure for regular plane areas,

such as that of Fig. 17, is readily cal-

culated by considering the area to be

composed of a large number of rec-

6 This fact allows the approximation made for small areas under great submer-

gence, or pressure, that the resultant force acts at their centers of gravity,
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tangles of differentially small height, dh. The center of gravity and

center of pressure of each of these small rectangles will be coincident

and at the center of the rectangle, and, therefore, all the forces on

these rectangles will act on the median line AB. The resultant of

these forces must also act on the median line. The vertical and

lateral location of the center of pressure of areas of more irregular

form may be obtained by dividing the area into regular areas, locat-

ing the forces on these, and finding the location of the resultant of

these forces by taking moments about any convenient axis. The point

where the line of action of the resultant force pierces the area is the

center of pressure of the whole area.

ILLUSTRATIVE PROBLEM

A circular gate 8 ft in diameter lies in a plane sloping 60 with the horizontal.

If water stands above the center of the gate to a depth of 10 ft, calculate the mag-

nitude, direction, and location of the total force exerted by water on gate.

Direction: normal to gate

Magnitude:

F = whgA
a

F = 62.4 X 10 X -
(8)

2 = 31,400 Ib
4

Location:

7* -
71W Mw ft

"

64

lg
=- = 11.55ft

0.866

A = -
(8)

2 = 50.3 ft
2

4

I* 647T

IP -Ig = = = 0.346 ft
lgA 11.55 X 50.3

Therefore force passes through a point (c.p.) located 0.346 ft below the center of

gravity measured down the plane.

12. Forces on Submerged Curved Surfaces. The total forces on

submerged curved areas cannot be calculated by the foregoing methods.

These forces may be readily obtained, however, by calculating the

horizontal and vertical components of the forces as indicated below.

The curved area, AB, of Fig. 18a is exposed to liquid pressure on

its upper and lower surfaces. Obviously, the vertical component of
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the pressure force is downward on the upper surface, upward on the

lower surface, and these two force components have the same line of

action and the same magnitude. If the liquid vertically above the

area AB is isolated by drawing the lines BC and AD, it becomes appa-
rent that no vertical force can be transmitted across these lines because

of the inability of the liquid to support shear stress. Hence, the

vertical component of force on the area AB is simply the weight of

liquid, A BCD, thus

FV = WABCD

and the line of action of this force will pass through the center of gravity

of ABCD.

(a)

Fv ~ WABCD
(c)

The horizontal component of force may be readily established by

considering the horizontal equilibrium of the mass of liquid ABE, EB
being the projection of AB on a vertical plane. If FH is the horizontal

component of force exerted by the area on the liquid ABE horizontal

equilibrium is expressed by
F'H = FED

in which the magnitude, direction, and location of FEE may be calcu-

lated by the methods of Art. 11. The horizontal component of force

exerted by the liquid on the area AB will have the direction, magnitude,

and line of action of FEE* and the resultant force, F, may be obtained

by composition of the horizontal and vertical components as indicated

in the two typical cases of Figs. 186 and 18c.
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ILLUSTRATIVE PROBLEM

Calculate magnitude, direction, and location of the total force exerted by the

water on the area AB which is a quarter of a circular cylinder and is 8 ft long

(normal to plane of paper).

Horizontal component, FH
Direction: Horizontal to right

Magnitude:

FH =

FH = 8 X 5 X 62.4 X 12.5 = 31,200 Ib

Location:

AA*B* = 8 X5 = 40ft2

8 X53

12

83.2

12.5 X 40

83.2 ft
4

= 0.166ft

Vertical component , Fv
Direction: Vertically downward

Magnitude:

Fy = WAODC + WAOB

Fv = 10 X 5 X 8 X 62.4 X 8 X 62.4 - 34,750 Ib

Location: e = distance, between FV and line DB, and taking moments about

point B
34,750 X e - 24,950 X 2.5 -f 9800 X 2.12

e - 2.40 ft.
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31,200
Total force F:

Direction: Downward to right

48 with horizontal

34,750

Magnitude: F = 1000 A/31.2
2 + 34.7S

2 = 46,600 Ib

Location: Through a point located 2.334 ft above B
and 2.40 ft to the right of B

13. Buoyancy and Flotation. The familiar principles of buoyancy
(Archimedes' principle) and flotation are usually stated Respectively:

(1) A body immersed in a fluid is buoyed up by a force equal to the

weight of fluid displaced by the body;
and (2) a floating body displaces its

own weight of the fluid in which it

floats. These principles may be easily

proved by the methods of Art. 12.

A body, ABCD, suspended in a

liquid of specific weight, w, is illustrated

on Fig. 19. After the vertical lines AE
and CF are drawn, it is obvious that

the force F\, acting vertically downward
on the upper surface A DC, is given by

Fl
= -^(Volume ADCFE)

and F2 ,
the force upward on the lower

surface ABC, by

F2
= ^(Volume ABCFE)

The net vertical force, F&, exerted by the liquid on the body is upward
and given by

FB =
7*2 FI

or

FB = ^(Volume ABCFE - Volume ADCFE)

Performing the indicated subtraction results in

FB = ^(Volume ABCD) = w(Volume of body)

thus "the buoyant force is equal to the weight of fluid displaced by the

body." The vertical equilibrium of the body is expressed by

F + FB - W =

For a floating body (Fig. 20) vertical equilibrium is expressed by

FB - W =
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and the vertical component of force on the immersed area, ABCD,
will (Art. 12) be given by

thus

FB = ^(Volume ABCD)

W = ^(Volume ABCD)

1W

of body

e.g. of body

and the body "displaces its own weight of the fluid in which it floats."

The above principles find many applications in engineering, such as

calculations: of the draft of sur-

face vessels; of the weight of a

ship's cargo from the increment

in depth of flotation; of the lift

of balloons; etc.
\F

The stability of submerged or P 20

floating bodies is dependent upon
the relative location of the buoyant force and the weight of the body.
The buoyant force acts upward through the center of gravity of the

displaced volume; the weight acts downward at the center of gravity

FIG. 21.

of the body. Stability or instability will be determined by whether

a righting or overturning moment is developed when the center of

gravity and center of buoyancy move out of vertical alignment. Obvi-

ously, for the submerged bodies, such as the balloon and submarine

of Fig. 21, stability requires the center of buoyancy to be above the
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center of gravity. In surface vessels, however, the center of gravity

is usually above the center of buoyancy, and stability exists because

of movement of the center of buoyancy to a position outboard of the

center of gravity as the ship "heels over," thus producing a righting

moment. An overturning moment, resulting in capsizing, occurs if

the center of gravity moves outboard of the center of buoyancy.

ILLUSTRATIVE PROBLEM

A ship has a cross-sectional area of 4000 ft
2 at the water line when the draft

is 10 ft. How many pounds of cargo will increase the draft 2 in.? Assume salt

water.

Since the ship floats, the weight of water displaced by the cargo equals the

weight of the cargo. Therefore

Weight of cargo = 4000 X A X 64.0 = 42,700 Ib

14. Stresses in Circular Pipes and Tanks. The circumferential

tension stresses in pipes and tanks under pressure may be readily

calculated if pressure variation is

neglected and if the thickness of

the pipe or tank is small com-

pared to the diameter.

A section of pipe of length /,

having an internal diameter d, is

shown in Fig. 22. This pipe con-

tains a fluid whose pressure is p;

the circumferential tension stress

in the walls is st . Pass a vertical

plane through the center of the pipe and consider the horizontal

equilibrium of the forces acting on the section of pipe to the right of

this plane. This equilibrium is expressed by

2T -
pdl =

in which T is the total tension force in the wall of length / and thick-

ness t due to the stress s^ and therefore is given by

T = s ttl

Substituting this in the equation above

2s ttl
= pdl

\pd
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thus allowing the wall stress to be calculated when the internal pres-

sure and the dimensions of the pipe or tank are known. The final

equation also indicates that the stress caused by a given pressure may
be reduced by decreasing the diameter d, or increasing the wall thick-

ness t. Since increasing the wall thickness increases the cost it be-

comes evident why small-bore tubing is in general use in high-pressure
work.

A mechanical analysis similar to the above may be applied in the

design of wooden tanks or pipes where the tension is carried by external

circumferential hoops, and in the design of concrete structures of this

type where the tension stress is carried by circumferential reinforcing

rods. t

15. Fluid Masses Subjected
to Acceleration. Fluid masses

may be subjected to various

types of acceleration without

relative motion occurring be-

tween fluid particles or between

fluid particles and boundaries.

Such fluid masses will be found

to conform to the laws of fluid statics, modified to account for the

inevitable inertia forces which exist when acceleration occurs.

An open container of liquid subjected to a vertical upward accelera-

tion, a (Fig. 23), will contain greater pressures than if the liquid is

at rest, owing to the forces of inertia which act in the opposite direction

to that of acceleration. The general relationships for this type of

accelerated motion may be obtained by considering the vertical

equilibrium of a cylinder of fluid, of height A, cross-sectional area A,
and having its upper base in the liquid surface.

The force F, upward on the bottom of the cylinder due to pressure,

will balance the forces of inertia Fj and weight W, acting downward.

Therefore, __

in which ,-, . ,

r = pA

W = Mg

FI = Ma

in which M, the mass of the liquid cylinder, is expressed by

^Static pressure pwk
FlG. 23.

M = phA =
g
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and substituting these values in the first equation

and solving for p

w w
pA = - hAg + - hAa

g g

p = wh

indicating that pressure variation with depth is linear and that the

pressure at any point will be given by the product of (
-

) and the

static pressure, wh, at the point. These facts are indicated graphically

in Fig. 23.

Similarly it may be shown that, for a fluid mass undergoing a ver-

tical downward acceleration a, pressure p, at a depth h, will be given by

p =

If a = g in this equation, the pressure becomes zero, showing that a

freely falling unconfined fluid mass exerts no pressure, a fact which

will have many applications in subsequent problems.
Horizontal acceleration of a liquid mass in an open container is

indicated in Fig. 24, acceler-

ation of this kind causing the

liquid surface to drop at the

front of the tank and to

rise at the rear. The forces

which a liquid particle at

the surface will exert on its

neighboring particles will be

its weight, W, acting down-

ward, and its inertia force,

Fj, acting horizontally and

in a direction opposite to

that of acceleration. How-

ever, for a liquid surface to be stable the resultant of these forces

must act normal to the liquid surface; thus, referring to Fig. 24, the

liquid surface will stand at an angle, 0, with the horizontal, and

FIG. 24.

Ma a
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proving that the liquid surface and other lines of constant pressure

are straight lines having a slope a/g.

A fruitful means of examining this problem further is to imagine
the magnitude and direction of the acceleration due to gravity, g, to

be changed to those of g
f
. When this is done the pressure-variation

problem may be analyzed as one of simple fluid statics in which the

relation of pressure, p, to depth, /, along the direction of g
f
will be

given by
p = w'l

in which w' is the apparent specific weight of the liquid in a system
where acceleration due to gravity is g' instead of g. The density of the

liquid, p, is the same in both systems and, therefore,

w wf

from which

/

Substituting above

p = (^)wl (5)

but from similar triangles

and substitution of this relation in equation 5 gives the familiar

equation

p = wh

The fact that this equation applies to fluid masses while they are being
accelerated horizontally means that the total forces on vertical areas,

such as the ends of the container of Fig. 24, may be calculated by the

principles of Art. 11. These forces are indicated as F and F%, and if

the mass of fluid in the container is designated by M, it will be found

that

FI - F2
= Ma

the unbalanced force, FI F2j being equal to the product of mass and

acceleration, thus checking the Newtonian relationship, F = Ma.
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ILLUSTRATIVE PROBLEM

A rectangular tank 15 ft long, 5 ft high, and 8 ft wide is filled with water and

accelerated along the direction of its length, at 6 ft/sec
2

. Calculate the volume of

water spilled, and check the equal-

y ity of force to accelerate the final

I mass and the force exerted by

liquid on the ends of the tank.

15'

a=6 Ft. per sec.
2 32.2

X 15 = 2.80 ft

Volume spilled
= J X 2.80 X 15 X 8 = 168 ft

3

Force, F, for accelerat ion = Ma
s
62.4

F = (5 X 15 X 8 - 168) X 6
o L ,L

5020 Ib

Fl
= 5 X 8 X 2.5 X 62.4 = 6230 Ib

2.2
F2

= X 2.2 X 8 X 62.4 = 1210 Ib

pl
_ F2 = 6230 - 1210 = 5020 Ib (Check)

Fluid masses subjected to rotation at constant angular velocity
will contain pressure variations unlike those in fluids at rest, because

of the centrifugal forces exerted by fluid particles. The centrifugal

force exerted by a mass M, rotating about an axis with circumferential

velocity V, at a radius r, is given by

(6)^ '

in which V2
/r is termed the "centrifugal acceleration."

The simple case of fluid rotation about a vertical axis is indicated

FIG. 25.

in Fig. 25 where the forces on a small element of fluid are considered.

Let this element have dimensions dx, dy, and dz and rotate with the

circumferential velocity, v, at a distance x from the axis of rotation Z.
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Since the mass of fluid does not move in the radial direction an equi-
librium of forces exists in this direction which may be stated as

Centrifugal force == Centripetal force

in which the centripetal force can result only from pressure variation

along x. Taking the pressure on the inner vertical face of the element

to be p and assuming the pressure to increase with x, the pressure on

the outer face will be

dp
p + dp or p + ~dx

dx

thus

Centripetal force = ( p H dx
) dy dz p dy dz

\ dx /

= dx dy dz
dx

The centrifugal force may be calculated from equation 6 in which,
for the fluid element,

wM = p dx dy dz = dx dy dz
g

V = v cox

r = x

co being the angular velocity of rotation. Therefore

Centrifugal force dx dy dz
g x

Equating centrifugal and centripetal forces,

dp . ,
,

w (ux)
2

dx dy dz dx dy dz
dx g x

results in

dp w
2- = o> x

dx g

a differential equation expressing the variation of pressure in the radial

direction for fluid masses subjected to constant angular velocity. Since

dp/dx is a positive quantity it may be concluded directly that pressure

will increase as radius increases. This equation may be integrated for

practical use between the eixis of rotation where x = and p = pc
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and any point, x, where a pressure, p, exists. Separating the variables

and integrating,

{***= f
X
"

J<PC
w Jo g

gives

w w (7)

the physical meaning of which is given on Fig. 26.

Figure 26a shows an open cylindrical container being rotated

about a central vertical axis. The terms p/w and pc/w are recognized

*L
w

\

^

(a)

FIG. 26.

as the "heads" of liquid corresponding respectively to the pressures p
and pc . The equation

y =
w
~
w

is obvious from the figure and hence equation 7 becomes

_ 2
y -Yg

x

indicating the liquid surface to be of paraboloidal form. Since no

acceleration exists in a vertical direction the variation of pressure with

depth (as for horizontal linear acceleration) will follow the static law

p -^ wh

which is indicated on the figure.
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Figure 26b illustrates a closed container filled with liquid having
an initial pressure before rotation begins. This initial pressure, p$, at

some point in the liquid is represented by the corresponding head of

liquid PQ/W. Since there is no velocity on the axis of rotation, no

increase in pressure will exist here and the parabolic curve of pressure

variation becomes as indicated on the figure.

The foregoing analysis indicates that pressure

may be created by the rotation of a fluid mass.

This principle is utilized in centrifugal pumps
and blowers to create pressure in order to cause

fluids to flow.

ILLUSTRATIVE PROBLEM

A vertical cylindrical tank 5 ft high and 3 ft in

diameter is filled with water to a depth of 4 ft. The

tank is then closed and the pressure in the space above

the water surface raised to 10 lb/in.
2 What pressure

will exist at the intersection of wall and tank bottom

when the tank is rotated about a central vertical axis

at 150 rpm?
Since no liquid escapes, space above liquid remains

same.

Volume of this space = - X (3)
2 X 1 7.08 ft

3

7.08

but

Therefore

in which

Solving,

7.08

2?r

co = 150 X = 15.7 rad./sec.
ou

xi = 1.044ft, yi = 4.16ft

15/7
2 X D?

y2
= = 8.60 ft

p = (8.60 + 0.84) 62.4 + 10 X 144 = 2029 lb/ft
2

2029
P- = 14.11b/in

?

144
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PROBLEMS

42. Calculate the pressure in an open tank of benzene at a point 8 ft below the

surface.

43. If the pressure 10 ft below the free surface of a liquid is 20 lb/in.
2

,
calculate its

specific weight and specific gravity.

44. If the pressure at a point in the ocean is 200 lb/in.
2

,
what is the pressure 100 ft

below this point? Specific weight of salt water is 64.0 lb/ft
3

.

45. An open vessel contains carbon tetrachloride to a depth of 6 ft and water on

the CCU to a depth of 5 ft. What is the pressure at the bottom of the vessel?

46. How many inches of mercury are equivalent to a pressure of 20 lb/in.
2
?

How many feet of water?

47. One foot of air at 60 F and 14.7 lb/in.
2
is equivalent to how many pounds per

square inch? inches of mercury? feet of water?

48. The barometric pressure at sea level is 30.00 in. of mercury when that on a

mountain top is 29.00 in. If the air temperature is constant at 60 F and the specific

weight of air is assumed constant at 0.075 lb/ft
3

,
calculate the elevation of the moun-

tain top.

49. If atmospheric pressure at the ground is 14.7 lb/in.
2 and temperature is 60 F,

calculate the pressure 10,000 ft above the ground, assuming (a) no density variation;

(b) an isothermal variation of density with pressure; (c) an adiabatic variation of

density with pressure.

50. Prove that the depth of an assumed isothermal atmosphere is infinitely great.

51. Calculate the depth of an adiabatic atmosphere if temperature and pressure

at the ground are respectively 60 F and 14.7 lb/in.
2

52. With atmospheric pressure at 14.5 Ib/in.
2

,
what absolute pressure corresponds

to a gage pressure of 20 lb/in.
2
?

53. When the barometer reads 30 in. of mercury, what absolute pressure corre-

sponds to a vacuum of 12 in. of mercury?
54. If a certain absolute pressure is 12.35 lb/in.

2
, what is the corresponding

vacuum if atmospheric pressure is 29.92 in. of mercury?
55. A Bourdon pressure gage attached to a closed tank of air reads 20.47 lb/in.

2

with the barometer at 30.50 in. of mercury. If barometric pressure drops to 29.18 in.

of mercury, what will the gage read?

56. The compartments of these tanks are closed

and filled with air. Gage A reads 30 lb/in.
2

Gage B
registers a vacuum of 10 in. of mercury. What will

gage C read if it is connected to compartment 1 but

inside of compartment 2? Barometric pressure is 14.6

lb/in.
2

57. Assuming the liquid in Fig. 14a to be mercury and h to be 16 in., calculate

the pressure px .

58. Calculate the pressure px in Fig. 146 if the liquid is carbon tetrachloride and

h is 8.0 feet.

59. If the barometer of Fig. Uc is filled with ether (S = 0.94) at 68 F, calculate

h if the barometric pressure is 14.7 lb/in.
2

60. Calculate the height of the column of a water barometer for an atmospheric

pressure of 14.5P lb/in.
2

if the water is at 50 F (w = 62.42 lb/ft
8
); at 150 F (w

61.15 lb/ft
3

;
j
at 212 F (w = 59.83 lb/ft

8
).

61. Barometric pressure is 29.43 in. of mercury. Calculate h.
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62. Calculate the pressure px in Fig. 14d if / =30 in., h = 20 in.; liquid w is water

and w\ mercury.
63. With the manometer reading as shown, calculate px .

Oi

9.52" Mercury
vacuum

PROBLEM 61. PROBLEM 63.

Mercury."*

PROBLEM 64.

64. The specific gravity of the liquid in the left side of this open U-tube is un-

known. Calculate it.

65. In Fig. 140, h = 50 in., h = 20 in., lz
= 30 in., liquid w\ is water, wz benzene,

W3 mercury. Calculate px py .

r
65"

Oil (S=.90)

10"

.Water -

-Wate

PROBLEM 66.

^Mercury'

PROBLEM 67.

66. Calculate px py for this inverted U-tube manometer.

67. Two manometers as shown are connected in series. Calculate px

Mercury Mercury

PROBLEM 69. PROBLEM 70.

68. An inclined gage having a tube of 1/8-in. bore laid on a slope of 1 : 20, and

reservoir of 1-in. diameter, contains linseed oil. What distance will the oil move

along the tube when a pressure of 1 in. of water is connected to the gage?
69. Calculate the gage reading.

70. Calculate the gage reading. Specific gravity of oil is 0.85. Barometric pres-

sure is 29.75 in. mercury.
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71. A rectangular gate 6 ft long and 4 ft high lies in a vertical plane with its center

7 ft below a water surface. Calculate magnitude, direction, and location of the total

force on the gate.

72. A circular gate 10 ft in diameter has its center 8 ft below a water surface and

lies in a plane sloping at 60. Calculate magnitude, direction, and location of total

force on this gate.

73. A triangular area of 6-ft base and 5-ft altitude has its base horizontal and lies

in a 45 plane with its apex 9 ft below a water surface. Calculate magnitude, direc-

tion, and location of total force on this area.

74. A square 9 ft by 9 ft lies in a vertical plane. Calculate the distance between

Water

_i \
PROBLEM 75. PROBLEM 76.

8'

PROBLEM 77.

the center of pressure and the center of gravity, and the total force on the square,
when its upper edge is (a) in the water surface and (b) 50 ft below the water surface.

75. Calculate the vertical and lateral location of the center of pressure of this

triangle, which is located in a vertical plane.

76. Calculate magnitude and location of the total force on this vertical plane area.

77. Calculate magnitude and location of the total force on this vertical plane area.

78. An 8 ft square gate lies in a vertical plane. If one diagonal of this gate is

vertical and its center is 10 ft below a water surface, calculate magnitude, direction,

and location of the total force on the gate.

Hinge

Sill

PROBLEM 80.

_20' -J

PROBLEM 82.

79. A vertical rectangular gate 10 ft high and 6 ft wide has a depth of water on
its upper edge of 15 ft. What is the location of a horizontal line which divides this

area (a) so that the forces on the upper and lower portions are the same; (&) so that
the moments of these forces about the line are the same?

80. This rectangular gate is hinged at the upper edge and is 4 ft wide. Calculate
the total force on the sill, neglecting weight of the gate.

81. The center of pressure of an isosceles triangle of 9-ft altitude and 6-ft base,

lying in a vertical plane, is at a depth of 12 ft. Calculate the depth of water over the

apex of the triangle.
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82. Is this concrete dam (w = 150 lb/ft
8
) safe against overturning? Neglect

uplift.

83. Water will rise behind a 10-ft concrete wall of rectangular cross section to a

depth of 6 ft. How thick must the wall be to prevent overturning? w for concrete
= 150 lb/ft

3
.

84. A sliding gate 10 ft wide and 5 ft high situated in a vertical plane has a coeffi-

cient of friction between itself and guides of 0.20. If the gate weighs 2 tons and if

its upper edge is at a depth of 30 ft, what vertical force is required to raise it? Neglect

buoyancy of the gate.

85. A butterfly valve, consisting essentially of a circular area pivoted on a hori-

zontal axis through its center, is 7 ft in diameter and lies in a 60 plane with its center

10 ft below a water surface. What torque must be exerted on the valve's axis to

just open it?

86. A rectangular tank 5 ft wide, 6 ft high, and 10 ft long contains water to a depth
of 3 ft and oil (S 0.85) on the water to a depth of 2 ft. Calculate magnitude and
location of the force on one end of this tank.

PROBLEM 87. PROBLEM PROBLEM 89.

87. This 6 ft by 6 ft square gate is hinged at the upper edge. Calculate the total

force on the sill.

88. This wicket dam is 15 ft high and 4 ft wide and is pivoted at its center.

Assume a hydrostatic pressure distribution, and calculate the vertical and horizontal

reactions at the two sills. Neglect weight of the dam and consider all joints to be

pin connected.

PROBLEM 91. PROBLEM 92. PROBLEM 93.

89. The flashboards on a spillway crest are 4 ft high and supported on steel posts

spaced 2 ft on centers. The posts are designed to fail under a bending moment of

5000 ft-lb. What depth over the flashboards will cause the posts to fail? Assume

hydrostatic pressure distribution.

90. Calculate the horizontal and vertical components of the force on a gate 4 ft

square, located in a 60 plane, and having its upper edge 10 ft below a water surface.
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91. Using force components, calculate the load in the strut AB, if these struts

have 5-ft spacing along the small dam A C. Consider all joints to be pin connected.

92. Calculate the magnitude, direction, and location of the total foice on the up-
stream face of a section of this dam 1 ft wide. What is the moment of this force

about 0?

93. This tainter gate is pivoted at and is 30 ft long. Calculate the horizontal

and vertical components of force on the face of the gate.

94. A concrete pedestal having the shape of the frustum of a right pyramid of

lower base 4 ft square, upper base 2 ft square, and height 3 ft, is to be poured. Taking
the specific weight of concrete as 150 lb/ft

3
,
calculate the vertical force of uplift on the

forms.

95. A hemispherical shell 4 ft in diameter is connected to the vertical wall of a

tank containing water. If the center of the shell is 6 ft below the water surface,

what are the vertical and horizontal force components on the shell?

96. This half conical buttress is used to support a half

cylindrical tower on the upstream face of a dam. Calculate

the vertical and horizontal components of force exerted by the

water on the buttress.

Water

5'R.-

50'

PROBLEM 96. PROBLEM 97.

40' \

PROBLEM 103.

97. This rectangular tank 10 ft wide has a quarter cylinder AB joining its end and

bottom. Calculate the magnitude, direction, and location of the total force on AB.
98. A 12-in.-diameter hole in a vertical wall between two water tanks is closed

by an 18-in.-diameter sphere in the tank of higher water surface elevation. The dif-

ference in the water surface elevations in the two tanks is 5 ft. Calculate the force

exerted by the water on the sphere. Neglect buoyancy.
99. A stone weighs 60 Ib in air and 40 Ib in water. Calculate its volume and

specific gravity.

100. If the specific gravity of ice is 0.90, what percentage of the volume of an

iceberg will remain above sea water (S = 1.025)?

101. Six cubic inches of lead (S 11.4) arc attached to the apex of a conical can,

having an altitude of 12 in. and a base of 6-in. diameter, and weighing 1 Ib. When
placed in water, to what depth will the can be immersed?

102. A cylindrical can 3 in. in diameter and 7 in. high weighing 4 oz contains

water to a depth of 3 in. When this can is placed in water, how deep will it sink?

103. The barge shown weighs 40 tons and carries a cargo of 40 tons. Calculate its

draft in fresh water.

104. A barge having water line area of 2000 ft
2 sinks 2 in. when a certain load is

added. Calculate the load.

105. A balloon having a total weight of 800 Ib contains 15,000 ft
3 of hydrogen.

How many pounds of ballast are necessary to keep the balloon on the ground? Baro-

metric pressure = 14.7 lb/in.
2

Temperature of air and hydrogen, 60 F. Pressure

of the hydrogen is the same as that of the atmosphere.
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106. A concrete (w - 150 lb/ft
8
) slab 2 ft thick and 10 ft square is dragged on

rollers up a 30 incline under water, by a force exerted parallel to the incline. Calcu-

late this force if the coefficient of friction between slab and incline may be taken as

0.05.

107. Calculate the tension stress in the \-in. wall of a 24-in. steel pipe containing
fluid under a pressure of 100 lb/in.

2

108. What is the minimum thickness allowable for a 5-ft-diameter steel pipe line

to carry a fluid at a pressure of 150 lb/in.
2
? Take allowable tension stress for steel to

be 16,000 lb/in.
2

109. This wood stave pipe line is to withstand a pressure of

50 lb/in.
2 Calculate the stress developed in the steel hoops.

110. A 5-ft-diameter wood stave pipe line is to carry water

under a 60-ft head. If allowable steel stress is taken as 16,000

lb/in.
2

,
what spacing of f-in.-diameter steel hoops will be

necessary?

111. A concrete water tank 60 ft high and 20 ft in diam-

eter is reinforced with 1 -in.-diameter steel hoops spaced 3 in.

on centers. When the tank contains water 50 ft deep, what ^% *
Dia. steel hoops

is the stress in the hoops, assuming that the concrete takes
centers

no tension?

112. An open cylindrical container containing 1.0 cu ft of water at a depth of

2 ft is accelerated vertically upward at 20 ft/sec.
2 Calculate the pressure and total

force on the bottom of the container. Calculate this total force by application of

Newton's law.

113. The container of the preceding problem is accelerated vertically downward

Y ,, ,

/ at 20 ft/sec.
2 Calculate pressure and total force on the

] / bottom of the container.
4' Water / 60 o 114. Calculate the total forces on the ends and
1

p
*- bottom of this container when at rest and when being^

p
... accelerated upward at 10 ft/sec.

2 Container is 5 ft

wide.

115. A closed tank 10 ft high is filled with water, and the pressure at the top of

the tank raised to 30 lb/in.
2 Calculate the pressure at top and bottom of this tank

when accelerated vertically downward at 15 ft/sec.
2

116. An open conical container 6 ft high is filled with water and moves vertically

downward with a deceleration of 10 ft/sec.
2 Calculate the pressure at the bottom of

the container.

117. A rectangular tank 5 ft wide, 10 ft long, and 6 ft deep contains water to a

depth of 4 ft. When it is accelerated horizontally at 10 ft/sec.
2
in the direction of its

length, calculate the depth of water at each end of the tank and the total force on

each end of the tank. Check the difference between these forces by calculating the

inertia force of the accelerated mass.

118. When the tank of the preceding problem is accelerated at 15 ft/sec
2 how

much water is spilled? Calculate the forces on the ends of the tank, and check as

indicated above.

119. The above tank is accelerated at 20 ft/sec
2

. Calculate the water spilled and

the forces on the ends, and check as indicated above.

120. The tank of problem 117 contains water to a depth of 2.0 ft and is accelerated

horizontally to the right at 15 ft/sec
2

. Calculate the depth at the left end of the tank.
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121. A closed rectangular tank 4 ft high, 8 ft long, and 5 ft wide is filled with

water, and the pressure at the top raised to 20 lb/in.
2 Calculate the pressures in the

corners of this tank when it is accelerated horizontally along the direction of its length

at 15 ft/sec
2

. Calculate the forces on the ends of the tank, and check their difference

by Newton's law.

122. The tank of the preceding problem is f full of water, and the pressure in the

air space above the water is 20 lb/in.
2 Calculate the pressures and forces, and check

as indicated above for the same acceleration.

123. An open container of liquid accelerates down a 30 inclined plane at 15

ft/sec
2

. What is the slope of its free surface?

124. An open container of liquid accelerates up a 30 inclined plane at 10 ft/sec
2

.

What is the slope of its free surface?

125. When this U-tube containing water is accelerated hori-

zontally to the right at 10 ft/sec
2

,
what are the pressures at A, B,

and C?

126. An open cylindrical tank 3 ft in diameter and 5 ft deep is

filled with water and rotated about its axis at 100 rpm. How
much liquid is spilled? What are the pressures at the center of

the bottom of the tank and at a point on the bottom 1 ft from the

center?

127. The above tank contains water to a depth of 3 ft. What
will be the depth at the wall of the tank when rotated at 60 rpm?

128. The above tank contains water to a depth of 4 ft and is rotated at 100 rpm.
How much water is spilled?

129. The above tank contains water to a depth of 1 ft. At what speed must it

be rotated to uncover a bottom area 1 ft in diameter?

130. The above tank is filled with water and closed, the pressure at its top is

raised to 20 lb/in.
2

,
and the tank is rotated at 200 rpm. Calculate the pressure on the

axis and at the wall on the top and bottom of the tank. If the tank is of steel (allow-

able tension stress 16,000 lb/in.
2
) how thick must its walls be?

131. A tube 2 in. in diameter and 4 ft long is filled with water and closed. It is

then rotated at 150 rpm in a horizontal plane about one end as a pivot. Calculate

the pressure on the outer end of the tube using the equation in the text, and check by
calculating the centrifugal force of the rotating mass.

132. The pressure at a point 12 in. from the axis of rotation in a closed filled vessel

of mercury is 100 lb/in.
2 before rotation starts. What will this pressure become

when the vessel is rotated at 500 rpm?
133. The impeller of a closed filled centrifugal water pump is rotated at 1750 rpm.

If the impeller is 2 ft in diameter, what pressure is developed by rotation?

134. When the U-tube of problem 125 is rotated at 200 rpm about its central axis,

what are the pressures at A, B, and C?



CHAPTER III

THE FLOW OF AN IDEAL FLUID

An insight into the basic laws of fluid flow can best be obtained

from a study of the flow of a hypothetical ''ideal fluid." An ideal or

"perfect" fluid is a fluid assumed to have no viscosity. In such a fluid,

therefore, there can be no frictional effects between moving fluid layers

or between these layers and boundary walls, and, thus, no cause for

eddy formation or energy loss due to friction and turbulence. The

assumption of an ideal fluid allows a fluid to be treated as an aggrega-

tion of small spheres which will support pressure forces normal to their

surfaces, but will slide over one another without resistance. Thus,
the motion of these ideal fluid particles becomes analogous to the

motion of a solid body on a resistanceless plane, and leads to the

FIG. 27.

conclusion that unbalanced forces existing on particles of an ideal

fluid will result in the acceleration of these particles according to

Newton's law.

By assuming an ideal fluid, simple equations can be derived based

on familiar physical concepts. Later these equations must be modified

to suit the flow of real fluids after an understanding of the mechanics

of fluid friction is obtained.

16. Definitions. Fluid flow may be steady or unsteady. Steady
flow occurs in a system when none of the variables involved changes
with time; if any variable changes with time, the condition of un-

steady flow exists. In the pipe of Fig. 27, leading from a large

reservoir of fixed surface elevation, unsteady flow exists while the valve

55
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A is being adjusted; with the valve opening fixed, steady flow occurs.

The problems of steady flow are more elementary than those of un-

steady flow and have more general engineering application ; therefore,

the latter will be omitted from subsequent treatment, with the excep-

tion of certain simple principles and examples.
If the paths of ideal fluid particles in steady flow are traced

,
the

result is a series of smooth curves, called "streamlines," and the sketch-

ing of such streamlines results in a "streamline picture." In an un-

steady flow the picture changes from instant to instant, but smooth
curves may be drawn in the flow indicating the instantaneous directions

(a) Instantaneous Streamlines

(Unsteady Flow),

Streamlines in a Passage

(Steady Flow).

(c) Streamlines About

an Object.

(d) "Absolute" Streamlines

About a Moving Object

FIG. 28.

of fluid particles; such curves are called "instantaneous streamlines"

(Fig; 28a).

Streamlines may be relative or absolute, depending upon the

motion of the observer. Figures 2Sb and c illustrate relative stream-

lines in a steady flow through a passage and about an object as seen

by an observer fixed to the passage or object. Such a streamline pic-

ture will remain the same to the observer (1) if the fluid flows through
the passage (or about the object) or (2) the passage or object moves in

the opposite direction through fluid at rest. Fixed at a point in the

fluid as the object passes, the observer sees an unsteady flow picture

on which he may note the paths of individual fluid particles. How-
ever, an instantaneous observation of fluid motion as the object passes
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Streamlines

results in the streamline picture of Fig. 2Sd. The lines occurring

thereon are sometimes termed ''absolute" streamlines, and move with

the moving object.

Generally, streamline pictures are of more qualitative than quan-

titative value to the engineer ; they allow him to

visualize fluid flows and (as will be seen directly)

to locate regions of high and low velocity, and of

high and low pressure.

When streamlines are drawn through a closed

curve in a steady flow, these streamlines form

boundaries across which the fluid particles cannot

pass. Thus, the space between streamlines be-

comes a tube, called a "streamtube," and such

a tube may be treated as if isolated from the

remaining fluid (Fig. 29).

The velocity of a particle moving along a streamline in a fluid

flow may be expressed by
dl

FIG. 29.

in which (Fig. 30) dl is the distance covered by the particle in time dt.

If the velocity changes as the particle covers the distance dl, an

acceleration, a, exists which is expressed by

dv dl dv dv

for steady motion. In unsteady flow,

however, a change of velocity with re-

spect to time occurs, not only because

FIG. 30. the particle moves from one point to

another, but also because the whole flow

picture is changing and at any point a change of velocity occurs with

time. If this latter change of velocity with respect to time is desig-

nated by dv/dt, the total acceleration is given by

(8)

in which the first term is called "conyective" acceleration, and the

second "lorql" arr^W^tinn Obviously, local acceleration is a term

peculiar to unsteady flow and vanishes from the above equation when
it is applied to steady flow.
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17. Equation of Continuity. The application of the principle of

conservation of mass to fluid flow in a streamtube results in the

"equation of continuity/' expressing the continuity of the flow from

point to point along the streamtube.

If the cross-sectional areas and

average velocities at sections 1 and

2 in the streamtube of Fig. 31 are

designated by AI, A 2 , Vi and F2 ,

respectively, the .quantity of fluid

passing section 1 per unit of time

will be expressed by AI FI, and the

mass of fluid passing section 1 per

unit of time will be AI Vip\. Simi-

larly, the mass of fluid passing sec-

tion 2 will be A 2 V2p2 , Obviously,
no fluid mass is being created or destroyed between sections 1 and 2,

and therefore

= A 2 V2
^
2

FIG. 31.

Thus the mass of fluid passing any point in a streamtube per unit of

time is the same.

If this equation is multiplied by g, the acceleration due to gravity,

there results

= A 2 V2w2
= G

giving the equation of continuity in terms of weight. The product,

G, will be found to have dimensions of pounds per second and is termed

the "weight rate of flow" or "weight flow." Its calculation will be

necessary to express concisely the rate of flow of gases, whose densities

may vary during the flow process.

For liquids, and for gases when pressure and temperature changes
are negligible, w\ w2 , resulting in

A l Vl
= A 2V2

= Q

indicating that for fluids of constant- density the product of cross-

sectional area and velocity at any point in a streamtube will be the

same. This product Q, is designated as the "rate of flow" or "flow"

and will have dimensions of cubic feet per second.

The fact that the product A V remains constant along a streamtube

allows partial interpretation of the streamline picture. As the distance
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between streamlines (^4) increases, the velocity must decrease, hence

the conclusion: Streamlines widely spaced indicate regions of low

velocity; streamlines closely spaced indicate regions of high velocity.

ILLUSTRATIVE PROBLEM

Twelve pounds per minute of air flow through a 6-in. diameter pipe line. If

the gage pressure in the line is 30 lb/in.
2 and the temperature 100 F, calculate the

average velocity in the line if the barometric pressure is 15.0 lb/in.
2

G = if = 0.20 Ib/sec

(30 4- 15) 144
= 0.2171b/ft

3

53.3(100 + 460)

A -^Y-O-^ft*
4\12/

G = 0.20 = AwV = 0.196 X 0.217 X V

V =4.70 ft/sec

18. Euler's Equation. By applying Newton's law to the motion
of fluid masses, Leonhard Euler (1750) laid the groundwork for the

study of the dynamics of ideal fluids. Although Kuler's original

equations were entirely general and

written in terms of the components of

force and acceleration along the three

axes, the mathematics may be sim-

plified considerably by writing the

equation in the direction of motion,

that is, along a streamtube.

Consider a differentially small sec-

tion of streamtube having the dimen-

sions shown in Fig. 32. The forces

tending to accelerate the fluid mass

contained therein are: (1) the component of weight in the direction

of motion, and (2) the forces on the ends of the element in the

direction of motion due to pressure. Assuming that motion is in

an upward direction and that pressure and velocity increase in this

direction, the force dFw in the direction of motion due to the weight of

the element is given by
dz

dFw =
pg dl dA cos a = pgdldA

dl
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The force dFp, in the direction of motion, due to the pressure on the

ends of the element, is

dFP = pdA -
\ al J dl

The mass dM of fluid being accelerated is

dM = pdldA

and the total acceleration a (equation 8) is

dv dv
ft as y --j

--
dl dt

Substituting the above values in the Newtonian equation,

dFw + dFP = (dM)a
there results

~pg dl dA -~ - dl dA = r .
,

a/ dl \ dl dt

dl

Dividing by p-~dA gives
dl

dp dv
+ vdv + gdz + dl = (9)

p dt

which is Euler's differential equation for unsteady fluid motion in a

streamtube. For steady motion dv/dt = and the Eulerian equation

simplifies to

dp + vdv + gdz =
(10)

P

the fundamental equation of steady fluid motion. By dividing this

equation by g an alternate form of the equation is obtained

dp vdv
+ + dz =

(10)w g

19. Bernoulli's Equation. Euler's equation may be integrated

along the streamtube with the following result

h / vdv + I gdz = Constant
P J . J

and if the fluid is a liquid, or a gas flowing with negligible change of

density, the integrations may be carried out giving

p V2

- + + gz = Constant
P 2



or, multiplying by p,

or, dividing by w,

BERNOULLI'S EQUATION

F2

p + P + pgz = Constant

p V2

r-
~ h z = Constant

w 2g

61

(ID

(12)

The existence of these equations was first recognized by Bernoulli,

and they were first presented in

his Ilydrodynamica (1738), a few

years before the development of

Euler's equations.

The Bernoulli equations
impose another mathematical

condition upon flow in a stream-

tube. It has already been shown

that (for an incompressible fluid)

the product of area and velocity

is everywhere constant along
a streamtube. Now from the

Bernoulli equation it becomes

evident that the sum of three

terms involving pressure, veloc-

ity, and vertical elevation will

also be a constant at every point

along the streamtube.

Writing equation 12 between two points on the typical streamtube

of Fig. 33

FIG. 33.

w 2g w 2g
(12a)

it becomes evident that the terms involved are linear distances, allowing
a simple graphical interpretation of the equation. The terms pi/w and

p2/w are the familiar
"
pressure heads" of fluid statics and may be rep-

resented by the piezometer columns; the terms z\ and z^ the
"
potential

heads," are the vertical heights of sections 1 and 2 above a horizon-

tal datum plane; the terms V\/2g and Fl/2g, the "velocity heads,"

represent the head due to motion of the fluid. The sum of these terms

is the same at all points in the streamtube and is equal to the vertical

distance between the upper and lower parallel lines. The Bernoulli

terms in equation 12 thus are seen to have the dimensions of feet, or,
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more rigorously, "feet of the fluid flowing," since w, the specific weight
of the flowing fluid, appears in one of the terms. The Bernoulli terms

in equation 11 will have the dimensions of pressure (pounds per square

foot) and are designated respectively as
"
pressure" or

"
static pres-

sure,"
"
velocity pressure," and "

potential pressure."

Bernoulli's equation gives further aid in the interpretation of

streamline pictures, equations 11 and 12 indicating that, when velocity

increases, the sum of pressure and potential head must decrease. In

the usual streamline picture, the potential head varies little, allowing
the general statement : where velocity is high pressure is low. Regions
of closely spaced streamlines have been shown to indicate regions of

high velocity, and now from the Bernoulli equation these are seen

also to be regions of low pressure.

ILLUSTRATIVE PROBLEM

Ten cubic feet of water flow per second downward through this pipe line.

When the upper pressure gage reads 10 lb/in.
2

,
calculate the reading of the lower

gage and the height to which water will rise in the open piezometer tubes.

10.0
= 12.7 ft/sec, F2

- - 37.5 ft/sec

Taking datum plane at section 2 and using

Bernoulli equation,

72 t T ^2

-i
Pi- + 4-
w 2g

,.
'

1 r- 22
w 2g

62.4 2g

23.1 + 2.5 + 14

14 .
w

^ = 17.8ft,
w

to +
w

17.8 X 62.4

144

2g

21.8 40

= 7.70 lb/in.
2

Height of column 1 = 23.1 ft

Height of column 2 = 17.8 ft

At this point it should be noted that with increase of velocity or

potential head the pressure within a flowing fluid can drop no farther

than to the absolute zero of pressure, thus placing a restriction upon
the Bernoulli equation. Such a condition is not possible in gases,

however, owing to their expansion with reduction in pressure, but
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frequently assumes great importance in the flow of liquids. In liquids

the absolute pressure can drop only to the vapor pressure of the liquid,

whereupon vaporization takes place and "cavitation" 1 may occur,

with accompanying vibration, destructive action, and other deleterious

effects.

Before the time of Bernoulli, Torricelli (1643) discovered that the

velocity of efflux, F, of a fluid from an orifice under a head h was given

theoretically by

V = V2gh

the velocity being equal to that attained by a solid body falling from

rest through a height h. Torri-

celli 's theorem is now recognized

as a special case of Bernoulli's

theorem involving certain assump-
tions and conditions which con-

tinually appear in engineering

problems. The above equation

may be derived from Bernoulli's

equation by considering steady flow

through the reservoir and orifice of

Fig. 34. Taking section 1 at the FIG. 34.

free reservoir surface, section 2 in

the jet immedieitely outside of the orifice, and the datum plane at the

center of the orifice, Bernoulli's equation may be written as

Horizontal

datum plane

Pi

W
F?

2g

P2

w
vl

2g

But, since the tank is very large compared to the orifice, V\ will be

very small and when squared usually becomes negligible. The pressure
on the reservoir surface, pi, is atmospheric and may be taken as zero.

Atmospheric pressure surrounds the free jet, and thus the pressure in

the jet at section 2 will be zero. Obviously, zi
= IIandz2 = 0; there-

fore, the Bernoulli equation becomes

Vl

giving

F2
= V2gh

as demonstrated by Torricelli.

1 For a description of the cavitation phenomenon see Appendix V,
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Another useful special application of the Bernoulli principle is to

the streamtube which approaches and remains adjacent to a solid

body placed in a flowing fluid (Fig. 35). Let this streamtube have an

infinitesimal cross section and be represented by the streamline AB.
Because of the interference of the body, the fluid particles moving on
the streamline AB will decelerate as they approach the body and will

FIG. 35.

temporarily come to rest at the point S, called the stagnation point;

they then will move around the contour of the body with a variation

in velocity approximately as shown on the figure. From Bernoulli's

equation 11 the pressure variation with these velocity changes will be

about as shown, and the pressure at the stagnation point, the
"
stag-

nation pressure," ps , may be calculated from

po and V being respectively the pressure and velocity in the undis-

turbed fluid ahead of the solid body. In this equation V8
= 0;

therefore

P.-P. + IP Vt (13)
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allowing the pressure developed on the front of objects in a flowing
fluid to be readily calculated.

ILLUSTRATIVE PROBLEM

A submarine moves through salt water at a depth of 50 ft and at a speed of

15 mph. Calculate the pressure on the nose of the submarine.

pa ~ po + %pV
rt

164.0/15 X 5280\ 2

pa
= 50 X 64.0 + 1 )

2 32.2 \ 3600 /

pa 3200 + 480 = 3680 lb/ft
2 = 25.6 lb/in.

2

2

Energy 1

Internal

Pressure

Velocity

Potential
Heat
energy
added

Mechanical

energy

added

Datum plane

FIG. 36.

20. Energy Relationships. The principles of dynamics and of

conservation of mass having been applied to fluid flow in a strearntube,

application of the principle of energy conservation is in order.

Figure 36 illustrates, in a qualitative manner, the various types of

energy involved in fluid flow and allows the following general energy

equation to be written

f Energy in )

j
fluid at

section 1

f Energy added to
j

-f-
|
fluid between sec-

[

I tions 1 and 2

f Energy in
|=

j
fluid at

[
section 2

j

The energy which a flowing fluid possesses is composed of four types :

internal energy, due to molecular agitation and manifested by tem-
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perature; and the energies due to the pressure, velocity, and height
of the fluid above datum. Heat energy may be added to or subtracted

from a flowing fluid through the walls of the tube, or mechanical

energy may be added to or subtracted from the fluid by a pump or

turbine. Thus the above equation may be written

Internal energy

+ Pressure energy

+Velocity energy

+ Potential energy-

Heat energy

and/or
Mechanical

energy added

Internal energy

-j- Pressure energy

-f-Velocity energy

+ Potential energy

all the energies of which must now be obtained in terms of the variables

involved in the flow process. It is most advantageous to write this

equation, not in terms of the total energies supplied to or existing in

the flowing fluid, but rather in terms of the energies existing in or

supplied to a single typical pound of the fluid. Thus, the energies of

the equation will have the dimensions

of foot-pounds per pound (ft-lb/lb) of

the fluid flowing.

Let the internal energy contained in

a pound of fluid be I ft-lb. The kinetic

energy of a pound of fluid moving with

velocity V may be calculated from

MV2
/2, in which M =

1/g, indicating the kinetic energy to be

V2
/2g ft-lb/lb. The potential energy of a weight, W, at a height, 2,

above a plane is given by Wz\ therefore, the potential energy of 1 Ib

of fluid, z ft above the datum, will be z ft-lb.

The pressure energy contained in a pound of fluid may be calculated

from the work that may be done by this pressure. If a quantity of

fluid at a pressure p is admitted to the cylinder of Fig. 37, the force

exerted on the piston is pA ;
the work done as the piston moves a

distance / is pAl\ and the weight of fluid which does this work is wAL
Therefore, the pressure energy of, or work done by, a pound of fluid is

wwAl

If the heat energy, in British thermal units, added to a pound of

fluid is designated by //, its equivalent in foot-pounds will be 778 E#,
since 778 ft-lb are equivalent to 1 Btu. Finally, the mechanical energy
added to a pound of fluid being designated by EM ft-lb/lb, the general

energy equation becomes

^
EM = /2 + - + ^ + *2 - (14)

2g 2g
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Since this general energy equation is the basis for the solution of the

majority of engineering problems on fluid flow, its application to certain

important special cases must be examined.

If the temperature of the fluid is nearly equal to that of the sur-

roundings, the heat added to or given off by the fluid is usually negli-

gible. With negligible changes in temperature and density there is

negligible change in internal energy. If the fluid passes through no

pump or motor, EM will vanish from the equation. For these special

conditions, then, TI = 72 , EH =
0, EM =

0, Wi = w2
= w, the general

energy equation reduces to the familiar Bernoulli equation,

fc + *
f!w 2g w 2g

Thus, this form of the Bernoulli equation is seen to be an equation of

energy as well as an equation of linear distances, a fact which is further

confirmed by the equivalence of the dimensions of the unit energy,

foot-pounds per pound, and of length, feet.

When a gas or vappr is the fluid flowing, the general energy equation
is written

F? 7?
7787/1 + ~ + zi + 778 H + EM = 778//2 +

-^
- + z2

in which

778/A = 7i +
Wi

778//2 = 72 +
1V2

the term 77 being called the "total heat content" or the "enthalpy" of

the gas or vapor. In problems of gas or vapor flow the difference

zi z2 is usually negligible compared to the other terms of the general

energy equation. Frequently the flow process is an adiabatic one,

occurring so rapidly that no heat energy, EH, is lost or gained. With
no pump or motor involved in the problem, the equation for the adia-

batic flow of gases and vapors becomes

a familiar flow equation of thermodynamics. In vapor-flow problems

7/1 and 7/2 are obtained in Btu/lb from tables or diagrams, and since
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the equation applies to an adiabatic process conditions 1 and 2 must
have the same entropy.

For a perfect gas, thermodynamics shows that

i

778(7*!
- Ha )

=
k ~ i k-i~i

,"
- p2

k
J

K '

thus for the adiabatic flow of a perfect gas equation 15 Becomes
i

This equation may also be obtained directly from Euler's equation

dp
+ vdv + dZ =

(10)w

by the assumption of an adiabatic process in Fig. 32. Neglecting the

third term of the equation and integrating

w
gives

vl v\

and the right-hand side of the equation may be evaluated by the

insertion of the adiabatic relation of p and w

A = A
wk

wi
k

The result is i

as before.

The calculation of the power P of a machine which supplies a unit

energy EM to a flowing fluid is an important engineering problem and

may be accomplished readily as follows: The number of pounds of

fluid flowing per second will be given by G or Qw, and the energy in

foot-pounds given to every pound of the flowing fluid is EM- Obvi-

ously then

P = GEM = QwEM (17)
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therefore

Horsepower of machine
GEM

550 550 550
(18)

ILLUSTRATIVE PROBLEM

How many horsepower must theoretically

be supplied to this pump to maintain a flow

of 2.0 cfs under the given pressure conditions?

Consider flow from point 1 to point 2, taking

datum plane through point 1.

PI = - X 14.7 X 144 = - 425 lb/ft
2

29.92
(6"

Vacuum

2.0

7T

4

0,

5.72 ft/sec

43 ft, p2
=

0, F2
=

_ Pi ,
V{ 425 (5.72)

2

1_
-

-t- zi
-

-1
-

w 2g 62.4 2g
+ = -6-3 ft

40

2
= - - + + 22 = + + 43 = 43.0 ft
w 2g

EP = E2
- Ei -

Pump horsepower

43 - (-6.3) = 49.3 ft (ft-lb/lb)

QwEp 2.0 X 62.4 X 49.3~~
550 550

= 11.2 hp

21. Flow of an Incompressible Fluid. A constriction in a stream-

tube or pipe line is frequently used

as a device for metering fluid flow.

Simultaneous application of the con-

tinuity and Bernoulli principles to

such a constriction will allow direct

calculation of the rate of flow when
certain variables are measured. To
develop these relationships for an

incompressible fluid, consider the

general type of constriction illus-

trated in Fig. 38 and write the

continuity and Bernoulli equations

between sections 1 and 2. For an incompressible fluid, temperature

FIG. 38.
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and density will not vary appreciably as the pressure changes from

Pi to p2- Thus the simultaneous equations become

Q = A 1 V1
= A 2 V2

i- \ rl fio V O
*-

| |

* ^
I f |

r "I r 1
== r

~
~r #2

which may be solved for Q by substituting

Vi = and F2
=

-7-
^AI ^2

in the second equation, resulting in

^2
~^

Q
w

Thus is becomes evident that the quantity of flow through a constric-

tion in a streamtube (1) is dependent upon the

20 Lb er
difference of the sums of pressure and potentialw sq. in. heads at points 1 and 2 and (2) varies with the

/ t \ square root of this difference.

-12"

ILLUSTRATIVE PROBLEM

=/7\40Lb. per Calculate rate of flow of water through this pipe
sq ' ln>

line when the gages read as shown.

IT /6V
- X

(
I

4 \12/ 40 X
14_4

20 X 144

62.4 62.4

Q = 10.6 cfs

22. Flow of a Compressible
Fluid. When a compressible fluid,

such as a vapor or gas, flows

through a constriction (Fig. 39)

in a streamtube, large changes in

density and temperature may WlTl

occur as flow takes place. When
the constriction is used as a metering device, it is usually short and
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thus the expansion from pressure p\ to pressure p2 occurs rapidly

enough to prevent loss or gain of heat by the fluid, and, therefore,

the adiabatic flow equations 15 and 16 may be applied. The simul-

taneous equations (in which the pressures are absolute) become for

a perfect gas
G = AiViWi = A 2 V2w2

fc-ii

2
J

and when Vi = G/
'

A\w\ and V2
= G/A 2w2 ,

from the first equation, are

substituted in the second there results

This equation may be improved for practical use, and for further

analysis by the elimination of w% by substituting

1 1

k

and
./>i>

derived from the adiabatic equation, giving

an equation first derived by St. Venant (1839). The equation indicates

that rate of flow of a compressible fluid is dependent upon pressure
ratios and not upon pressure differences, as was the case for the incom-

pressible fluid. It shows also that the rate of flow cannot be calcu-

lated from pressure measurements only, but that the temperature of

the fluid at section 1 must be measured to obtain w\. In most engineer-

ing applications of this equation A 2 is small compared to A\ and thus

the term

'-v*
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may be taken to be unity and the simplified equation becomes

A 2 k-! P^L\Pl
(21)

Further investigation of this equation leads to an interesting and

significant paradox: If p% = 0, it seems reasonable to expect flow to

occur from section 1 to section 2,

yet if p2 is placed in the equa-
tion the weight flow, G, becomes

zero also! This inconsistency means

that some new factor has entered

the problem ; this new factor must
now be examined.

If equation 21 is plotted the

curve of Fig. 40 results, indicating

G be zero where the pressure ratio

p2/Pi is either zero or unity, and

having a maximum value, Gmax ., at

a certain "critical pressure ratio,"

(p2/Pi)c- The properties of this

maximum point on the curve may be obtained by differentiating

equation 21 in respect to p2/pi and equating the result to zero. How-

ever, differentiation of the whole equation is unnecessary, since the

only variables involved are

*+i-
i

LW \Pi'

and the properties of the maximum point may be obtained from

i.o

FIG. 40.

which, when differentiated and solved for p2/Pi, now (p%/pi) c > gives

fe).\pJc\pl

showing that the critical pressure ratio is dependent only upon the

adiabatic constant, k.
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An equation for Gmax, may now be obtained by substituting this

expression in equation 21 and multiplying by Wz/^/w&Uz, giving

2gk p l w l \(
2 y-i (

2 V" 1

Gmax, = W2A 2 \ 7 7 I TT~; /
~

V Z~T~1 J* & 1 W2 W2 L\& + I/ \fe + I/ J

but from the adiabatic relation between pressure, p, and specific weight,

w, at critical pressure conditions

__2_

m, = /
2_y^i

which may be substituted in the above equation, reducing it to

(22)

From the equation of continuity

and by comparison of these two equations

V -
V2 max.

P2

or, in other words, when maximum flow takes place the velocity of

flow at the constricted section equals the acoustic velocity (Art. 4), the

velocity with which a pressure disturbance, such as sound, will travel

in the fluid.

The significance of the fluid attaining the acoustic velocity at the

constricted section and an explanation of the paradox mentioned

above can best be obtained from a study of the flow under various

pressure conditions through a constriction formed by a smooth nozzle

(Fig. 41) installed in a pipe line. With p% = pi(A),p2/pi = 1.0,

p2 =
Pz> and no flow will occur. With p2 less than p\(B), but with

1.0 > p2/Pi > (p2/Pi)c, p2 =
p2> and flow will take place according

to equation 21. As the maximum flow condition is reached, (C)

p2/Pi = (p2/Pi)c and p2 p2 and the velocity of flow from the nozzle

equals the acoustic velocity as derived above. If now the pressure p^
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surrounding the jet of fluid at the nozzle exit, is further lowered, (D) no
further reduction in p2 ,

the pressure in the jet, occurs. A discon-

tinuity of pressure then exists between the surrounding fluid and the

interior of the jet a discontinuity which is established and main-
tained by the acoustic velocity; the outside pressure tends to enter the

jet with the velocity of sound, but since the fluid itself is moving with
this velocity, the surrounding pressure cannot penetrate the jet. The

1.0

FIG. 41.

pressure in the jet is, therefore, fixed by conditions upstream from the

constriction and remains equal to the critical pressure regardless of the

magnitude of the surrounding pressure, p2 . With the pressure p'2

remaining constant no change in the flow will occur and thus the

maximum flow will exist for all pressure ratios below the critical. These
facts are shown graphically on Fig. 41, and may be summarized as

follows. With

< ( ) ,

pi \pi/c
' < Pcyp2 =Pc,~ =

. ^
^1 \l

In engineering practice it is customary to simplify calculations by
designing constrictions so that flow will occur with pressure ratios

below the critical. Equation 22 is not convenient for the calculation
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of Gmax. since the temperature at section 2 is not in general measured.

This equation may be transformed into

fe+1

x*^)*""

1

(23)

by the substitution of

2

Since Wi = p\/RTi, equation 23 becomes

Cmax. ^2

a simple equation for calculating flow under maximum conditions after

pressure and temperature, pi and 7\, are measured. The equation

may be further simplified, by collecting the constants, to

^ \ 7, I 1/ ^ /T- (24)

or

x~i r-r
* ~* 6r 1.

^max. ^ /~~T-

in which

and is obviously a characteristic constant of the gas, dependent only

upon its physical constants, R and &, and upon acceleration due to

gravity, g.

When a vapor flows through a constriction in a streamtube its

behavior is similar to that of a perfect gas, the expansion being adia-

batic if rapid and each vapor having a critical pressure ratio below
which the conditions of maximum flow will be maintained. Unlike

that of perfect gases the critical pressure ratio of a vapor will depend

upon its thermodynamic conditions, steam, for example, having a

critical pressure ratio of 0.58 when saturated and 0.55 when highly

superheated.
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The flow of a vapor under adiabatic conditions has been character-

ized by equation 15 and by the equation of continuity, thus

Vl V\_.--J. 778(ffl _^

which may be solved simultaneously for G, giving

which simplifies to

G = 223.84 2 4

if AZ

!
- H2 (25)

AI is small, which it usually is in engineering practice.

In applying equation 25 to the flow of a vapor through a nozzle

installed in a pipe line (Fig. 42) a temperature-entropy or total heat-

entropy diagram is used to find the values of II\ arid H'2 . With the

Super-heat Region

Lines of

constant

pressure

Super -heat

Region

Dry saturation line

8

FIG. 42.

thermodynamic properties (pressure, temperature, quality) of the

vapor known for section 1 of the streamtube, point 1 may be located

on either diagram. Since the process is adiabatic a line of con-

stant entropy (vertical) must be followed to a pressure, p'2 , on the

diagram, corresponding to section 2 of the streamtube. If the pressure
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ratio is above the critical, p'2 = pz\ but if below the critical, p'<2

(P'2/Pi)cpi- With point 2' established on either diagram the enthalpy,

11*2, and the specific volume, v>2 , may be obtained, allowing calculation

of G, the weight flow.

ILLUSTRATIVE PROBLEM

Calculate the rate of flow of carbon dioxide through this 1 -in.-diameter oiifice

installed in a 6-in. pipe line when the downstream pressure gage reads (<z) 80 lb/in.
2

,

(b) 30 lb/in.
2 Barometric pressure is 15.0 lb/in.

2

1 30

. \ / VLM^l 100 Lb per
(a) 80 Lb. per sq. in.

El
| = [ ]

_ C4f SQ- >n- ^ 30 Lb< Per sq> in>

>iA~\i.3o + i/

~
'

15
;
F-

Wl =

e -*Jft>~[&
G =

"

X - \ (115 X 144)0.783 [(0.825)
1 '64 -

(0.825)
1

4 \12/ \ 1.30 - 1

= 1.89 Ib/sec

(&)
^ = J*L_15_ = 0.391
pi 100 -f- 15

- - 115 X 144

V,

^ \Tfii7
"~ '

I I
1JLO A A^^

32. 2 X 1.3 / 2 V'
67

4 \12/ n ^ .

( )

\ . 2.36 Ib/sec
34.9 \1.3 + I/ V460 + 150

23. Impulse-Momentum Relationships. The impulse-momentum
law provides another useful tool for the solution of fluid flow problems.
Its application to complex fluid flow processes sometimes allows circum-

vention of the complexities and gives a simple answer to problems
which cannot be solved by the use of foregoing principles or more

advanced energy considerations.
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The impulse-momentum law applied to a particle (Fig. 43) is

usually stated.

FAt = A(MF)

in which the product F&t is called the

"impulse," the right-hand side of the

equation being recognized as the change
of momentum. Fora particle whose mass,

M
,
remains constant, the above equation

may be written

FM = MAFFIG. 43.

and the impulse-momentum law may be stated: An external force, F,

acting on a moving particle of mass M, for a time A/, will change its

velocity by an amount AF. Examination of the equation discloses the

fact that A2 and M are scalar quantities, and F and A V are vector quan-

vi Force and components
exerted by the fluid

Force and components

acting on the fluid

FIG. 44.

tities. Since these vector quantities are related by a simple algebraic

equation their directions must be the same. Thus if the direction of

AFcan be obtained the direction of the force becomes established also.

Applying the above principles to the stream of moving fluid of



IMPULSE-MOMENTUM RELATIONSHIPS 79

Fig. 44, the force, F, necessary to change the velocity of the mass M
from FI to 2 is given by

F&t = M&V
in which

AF = (F2 - FO

the > indicating a vectorial subtraction carried out as indicated in the

vector diagram. The distance A/ is covered by the mass M in time

A/, giving

A/ = FiA/
and

M = pA A/ = p<4 Ft A/ =

substitution of these values in the fundamental equation above results

in

F = Qp(V2 -> Fx )
= ^ (F2 -> Fi) (26)

an equation which may be used for the calculation of force components
Fx and Fy as well as the total force, F. Since the direction of F is the

same as that of (F2 FI)

from the similar force and velocity triangles, and, therefore,

Ow
>Vl)x (27)

and

Fy = ^(V2 ^V1 ) y (28)

from which the component of force in a given direction necessary to

accomplish a component of momentum change in this direction may
be calculated.

In the above equations 26, 27, and 28, the forces involved are

external forces exerted on the fluid in order to accomplish a certain

change of velocity. In certain engineering problems, however, the

forces exerted by the fluid on its surroundings (equal and opposite to
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the above forces) are of more immediate practical value. Designating

these forces by ( F), ( Fx), and ( Fv), the above equations become

(-F)-
o

The great advantage of the impulse-momentum law is evident

from the fundamental equa-
tions: the forces are seen to

be dependent only upon initial

and final velocity conditions

and are entirely independent
of the flow complexities occur-

ring between these conditions.

The physical meaning of

the impulse-momentum law

can best be illustrated by its

application to a number of

specific engineering problems.

The forces on a fixed

blade, or deflector, as a fluid

stream passes over it may
be readily calculated. From

Fig. 45,

(Vi-+ V2)x = Vi - V2 cosa

= F2 sin a

Therefore

Qw
_/y = ^-(F!- F2 cosa)

V(Vi - V2 cos a)
2 + (F2 sin a)

2

g
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ILLUSTRATIVE PROBLEM

A jet of water having 2-in. diameter strikes a fixed blade and is deflected 120

from its original direction. Calculate magnitude and direction of the total force

on the blade if velocity of jet is 100 ft/sec.

100 - X X 62.4

32.2
X 173.2 = 733 Ib

F,-100Ft.\
per sec v x

per sec.

i ^^ ^r,_
Vl

- 100

The computation of the force exerted by a fluid stream on a moving
blade forms the basis for elementary calculations on impulse turbines.

Let the single moving blade of Fig. 46 have a velocity, v, in the same

direction as the fluid stream.

Since the work done on the

blade will be derived from the

component of force ( Fx ) in

the direction of motion, this

component only will be calcu-

lated. The velocity of fluid

relative to the blade, u\, at its

entrance will be given by

u\ = Vi v

and if the blade is assumed

frictionless the velocity relative

to the blade at exit, u2 ,
will be

the same

v FIG. 46.

The absolute velocity of the fluid stream as it leaves the blade, V%,

will be a composition of its velocity along the blade and the velocity

of the blade itself and may be calculated as indicated on the vector

diagrams; therefore

> V2)x =Vl -(v+ (Vi
-

v) cos a)
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or

-cos a)

For a single blade, however, the quantity of flow being deflected

per unit of time is not equal to the quantity of flow in the jet since the

blade is moving away from the jet. The deflected rate of flow, Q
f

,

will be given by

Q' =

allowing the force component, ( Fx), exerted on the single blade to

be calculated as

<--=. -cos

In a closely spaced series of moving blades of the above type such

as occurs in an impulse water turbine (Fig. 47) all the fluid flowing is

Vj

2

vl

FIG. 47.

deflected by the blades and Q =
(/. Thus the force exerted on the

blades in the direction of motion may be calculated from

(-Fx)
=

g
-tO(l -

and since the power transferred from jet to blade is given by

P = (~FJv

p =(F!
g

allowing the theoretical power developed by the turbine to be calcu-

lated. For a given quantity of flow and size of jet, the theoretical
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power developed will depend only upon the peripheral speed of the

wheel, v, and will be zero when v is zero and when v is equal to the jet

velocity V\. Confirmation of these facts is given by the plot of the

above equation in Fig. 47, which also exhibits a point of maximum

power at which the turbine should be operated for best efficiency.

The properties of the maximum point on this curve may be obtained

by the usual differentiation

~
(Vi -w)(l - cosa)J =

dvL g J

resulting in v V\/2 for maximum theoretical power from which the

maximum power, Pmax. may be calculated by substitution in the

general expression, giving

=
(1

- cos a)
g 4

which becomes

ylW
2g

if a = 180. The power available in the jet according to equation 17 is

the same expression as given above. Therefore, all the jet power may
be theoretically transferred to the turbine (1) if the speed of operation

is correct and (2) if the blades are designed with an angle a = ISO .

The force on a reducer, enlargement, or bend in a pipe line may be

determined from the Bernoulli equation by tedious calculations and

graphical integrations, but this force may be obtained directly and

easily by use of the impulse-momentum law.

The pipe reducer shown in Fig. 48 represents a typical problem
of this type. As flow takes place certain forces act on the fluid within

the reducer and continually change the momentum of the fluid con-

tained therein. The forces acting on the fluid within the reducer are

due to pressure exerted at the ends by the adjacent fluid and at the
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sides by the boundary walls. The forces at the ends Fi and F% are

given by
Fl

= plA l

On the side walls a pressure variation about as shown will exist accord-

ing to the Bernoulli principle. This results in a force indicated sche-

matically by T7
,
whose horizontal component is Fx

impulse-momentum law.

Ow
Fi -F2 -FX = *-

o

Applying the

allowing Fx to be calculated. 2 The force exerted by the fluid on the

reducer will, of course, be equal to Fx but opposite in direction.

The force on a reducing pipe bend may be calculated (Fig. 49) by
applying the same principles. With notation similar to that above,

(F2

Ow
Fv

- F2 sin = ^- (F2 - Vi)v
o

2 Note that a net force exerted in a given direction accomplishes a change of

momentum in this direction. In this case, the direction of the net force (Fi F%

Fx) is obviously to the right and vectorial considerations indicate the vectorial

difference of velocities ( V% > FI) to be to the right also.
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from which Fx and Fy may be calculated, the total force, F, exerted

by the bend on the fluid being given by

F = V Fl + Fl

and the force exerted by the fluid on the bend is, as before, equal to

F but opposite in direction.

FIG. 49.

ILLUSTRATIVE PROBLEM

When 10 cfs of water flow upward through this conical enlargement, the pressure

gage reads 15 lb/in.
2 Calculate magnitude and direction of the total force exerted

by liquid on enlargement.

Vi = 12.72 ft per sec, F2
= 3,18 ft per sec, p2 = 14.72 lb/in.

2

Isolate liquid between sections 1 and 2. F
The velocity of the liquid is being decreased I

by a net force acting on the liquid opposed
to motion. The net force is (Fi -f- W
F FI) in which F is the force exerted on

^

sq. in

Pef
the liquid by the enlargement. The de-

crease of momentum per unit time is

(Qw/g)(Vz > FI).

Equating these,

F2 + W - F - FI = Q^
(F2 -> Fi)

g

F2 = 14.72 X - X (24)
2 = 6660 Ib,

4
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F1
= 15.0 X- X (12)

2 = 1700 Ib
4

6600 + 343 - F - 1700 = X 62 '4
(3.18

-
12.72) = 185

32.2

F = 5118 Ib

Thus the force exerted by liquid on enlargement has a magnitude of 5118 Ib and

acts vertically downward.

When fluid discharges from an orifice in a large container, the jet

of fluid will cause a reactive force on the container which may be calcu-

lated easily by the impulse-momentum law. From Fig. 50 it is obvious

that the force exerted on the container will be due to the reduction in

pressure on the side of the container which contains the orifice, but

this pressure reduction cannot in general be calculated without assump-

tions or experimental data. Isolating a mass of fluid ABCD from

which the jet issues, the horizontal force, F\, exerted on AD by the

Q-

FIG. 50.

vertical wall, may be calculated assuming the fluid to be at rest and

using the laws of fluid statics. On the wall BC the pressure distribu-

tion will not be static because a pressure reduction will occur, accord-

ing to the Bernoulli principle, as flow takes place toward the orifice.

The force F% exerted on BC by the wall will occur from a pressure

distribution about as shown and obviously will be less than F\. Now,

applying the impulse-momentum law, F, the net force exerted by the

container on the fluid, is given by

F = Fl
- F2

= -^-

g
v,)

in which V\, the velocity within the tank, is negligible. Thus

QwF = F1
- F2

=
g
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allowing the net force, F, to he calculated and the reactive force

exerted by the fluid on the container will be equal to F in magnitude
but opposite in direction.

A different expression for F may be obtained by applying Torri-

celli's theorem and the continuity principle,

V2
= 2gh and Q = A 2

and substituting these values in the above equation for F,

F -
A

or, in other words, the reactive force exerted on the container by the

moving fluid is just twice the force exerted on an area the size of the

orifice submerged at a depth, h, below the liquid surface.

FIG. 51.

Another application of the impulse-momentum law may be made
to ship or airplane propellers which obtain their thrusts by changing
the momentum of a mass of fluid. A screw propeller with its slip-

stream is shown in Fig. 51 and may be considered to be (1) moving to
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the left with a velocity Vi through still fluid, or (2) stationary in a

flow of fluid from left to right with velocity Vi ; the relative motion in

both cases is the same. For such a propeller operating in an uncon-

fined fluid, the pressures pi and p, at some distance ahead of and

behind the propeller, are obviously the same.

The thrust, F, of the propeller on the fluid results in a change in

the velocity of the fluid from Vi to F4 and therefore

g

The useful power output P and thrust developed by a propeller

moving at a velocity Vi is P = FV\. To obtain this output it is

necessary to supply energy enough to create an increase of velocity

from FI to F4 . From equation 17 the power input, P;, to create this

velocity difference is given by

which may be written

Thus

and the propeller efficiency, ?, may be calculated from

Po

**

(Vi~2
denominator; then

indicating that the efficiency of a propeller operating in an ideal fluid

cannot be 100 per cent 8 since there must always be a sizable velocity

3 Ship and airplane propellers may have efficiencies of about 80 per cent.



IMPULSE-MOMENTUM RELATIONSHIPS 89

difference (V FI), making the denominator of the above expression

always greater than the numerator.

Further information on the screw propeller may be obtained by
means of the Bernoulli principle. Bernoulli's equation written

between sections 1 and 2 is

Pi

and between sections 3 and 4

=ps

in which V is the velocity through the plane of the propeller. Since

Pi = Pi, subtraction of the first equation from the second results in

~
F?)

but another equation for the thrust Fcan be obtained from the pressure

difference (p% p%) acting on the area A, which is

F = (Pa
- Pz)A

and substituting the equivalent of (p% p%) from the above equation

F = A\P (V\ -
V\)

This expression may be equated to the impulse-momentum expression

for thrust, giving

Qw
___ _

g

T (j) )

'*
/Jf

Since Q = A V and p = w/g, this equa-
tion reduces to

vl)

showing that the velocity through the

plane of a propeller operating in an ideal

fluid is the numerical average of the

velocities at some distance ahead of and FIG. 52.

behind the propeller.

The impulse-momentum law, when applied to the rotation of a

particle about an axis, is stated as

in which (Fig. 52) T is the torque which must act on the particle for
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time A/ in order to accomplish the change in angular momentum

A(Af Vtr), M being the mass of the particle, Vt ,
its tangential compo-

nent of velocity, and r the distance between the particle and axis of

rotation. Since the mass of the particle is constant, the equation may
be written

which, for application in fluid problems (as in equation 26), becomes

or

r = ^-(F,/2
-

F^n) (29)
g

an equation which forms the basis of reaction turbine and centrifugal

pump design.

To illustrate the use of this equation consider its application to a

simplified hydraulic reaction turbine, sections through which are shown

in Fig. 53. Water flows inward through the fixed guide vanes 0-1,

acquiring a "whirl," and thus possesses a tangential component of

velocity, V^ as it leaves them. It then passes through the blades 1-2

of the rotating element or "runner," and discharges downward as

shown.

As the water leaves the guide vanes at point 1
,
it will have an abso-

lute velocity FI, having tangential and radial components, V^ and
F

ri , given by
V

tl FI cos ai

V
ri
= FI sin ai

The radial component, Fn ,
is dependent on the rate of flow through

the turbine, Q, and may be calculated by applying the continuity

principle, giving

Q = 7
ri2*Ti/

For best operating conditions the water in leaving the guide vanes

must pass smoothly into the moving runner at point 1. To accom-

plish this the tangential velocity of the runner, co^, at this point must

be such that the component of relative velocity, u, is tangential to



IMPULSE-MOMENTUM RELATIONSHIPS 91

the blade as is indicated on the vector diagram. From this vector

diagram the following equation for V
tl may be written:

V
tl

= wr ! + V
Tl

cot ft

FIG. 53.

At the exit of the runner, the relative velocity, u%, will be tan-

gential to the blade. The peripheral velocity of the blade, co^, is

fixed by the speed of rotation and by the radius at exit, and the

component of velocity in a radial direction is determined by the

continuity equation

Q = V
r2
27rr2l

The vector diagram at the runner exit then becomes as shown and

Vti
= wr2 + V

rz
COt ftj
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The torque equation 29 allows calculation of the torque exerted by

the runner on the fluid. The torque exerted by the fluid on the runner

will be equal and opposite to this and given by

~
o

(30)

To obtain a more detailed expression for the theoretical torque

exerted on a hydraulic turbine runner when operating under ideal

conditions the quantities derived above may be substituted in equation

30; the horse power developed may be calculated from

hp =
550

24. Flow Curvatures, Types of Vortices, Circulation. Many fore-

going examples have demonstrated the fact that pressure distributions

across fluid flows may be calculated from

the laws of fluid statics when fluid par-

ticles move in straight parallel paths.

Since curvilinear fluid motion occurs so

frequently in practice it is important to

understand the properties of pressure

distribution in this type of flow.

In the streamline picture of Fig. 54, a

differentially small fluid mass moves along
a curved streamline of radius r with a

velocity V. If a pressure p exists on the

inner face, that on the outer face will be

p + dp, assuming an increase in pressure

with increase in radius. Since the mass
of fluid is in equilibrium in a radial direction, the centrifugal force

must be balanced by the centripetal force due to pressure. These

forces are

V2 V2

Centrifugal force = dM = pdrdldn
r r

Centripetal force = (p + dp)dldn pdldn = dpdldn

which, when equated, give

FIG. 54.

dpdldn = pdrdldn
V2
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or

V2

dp = pdr
r

(31)

indicating that pressure will increase with radius in curved flow, or,

more generally, pressure at the outside of a curvilinear flow will be

greater than that toward the center of curvature.

These facts will explain some of the details of flow through a sharp-

edged orifice, a problem which will be

treated more exhaustively in a later

chapter. Owing to inertia, particles

of fluid issuing from the vertical

sharp-edged orifice of Fig. 55 will

not move horizontally, but rather in

smooth curves as shown, the curves

resulting in the contraction of the jet

to a diameter less than that of

the orifice. At the point where the

streamlines become parallel at the

contracted section of the jet, the pres-

sure in the jet is zero and the velocity

is given from Torricelli's theorem

(Art. 19) by

V2 FIG. 55.

Upstream from point 2, centers of curvature of the jet streamlines are

outside of the jet. This means that in moving away from the center

of curvature the jet is penetrated, and from equation 31 it may be con-

cluded that the pressure within the curved region of the jet is greater

than that outside. This pressure variation is indicated in the figure.

To appreciate more fully the significance of equation 31, let it be

applied to two specific types of rotational motion, one of which has

been discussed previously (Art. 15).

Certain facts and equations have been brought out concerning
the fluid motion obtained by rotating a container of fluid about a

vertical axis (Art. 15). After equilibrium sets in, the motion of the

fluid at any point in the container is like that of a solid body, possessing

a circumferential velocity, V, at a radius, r, given by

V car
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in which co is the angular velocity of rotation. If this relation between

velocity and radius is substituted in equation 31 the result is

coV
dp = pdr

or

dp
w

c
2
rdr

g

FIG. 56.

the same equation as developed in Art. 15. The
streamline picture in this type of rotational mo-
tion is shown in Fig. 56, and a particle moving
on a streamline is indicated. Inspection of the

motion of this particle shows that it will occupy
successive positions 1-2-3-4, and as the container

makes one revolution the particle rotates once on

its own axis. Hence it may be concluded that

in this type of fluid motion all the fluid particles

rotate about their own axes. Such fluid motion

is designated as "rotational," and the specific

motion indicated in Fig. 56 is sometimes called a "rotational vortex"

or "forced vortex."

Introducing now a new term, F (gamma), the "circulation," which

will prove useful later, F is defined by the equation,

F = (Dvds

in which
<p

should be read, "the line integral around a closed curve

of - ." The meaning of circulation may be

obtained from the closed curve drawn in the

flow picture of Fig. 57. A differential amount

of circulation, dT, is defined as the compon-

ent, v, of velocity along ds, multiplied by ds,

thus

dT = vds

and the circulation along the entire closed

curve is given by the integration of this expression along the curve.

Therefore, /

F =
(p

vds
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Now the circulation around the forced vortex of Fig. 56 may be

calculated by taking for simplicity a circle of radius r as the closed

curve. The velocity along such a curve is V = ur, the length of curve

is 2wr, and since V does not vary along the curve no integration is

necessary. Circulation, F, therefore, becomes

T =
(o;r)27rr

= 2irur
2

and the circulation is seen to vary with the size and location of the

closed curve, another charac-

teristic of "rotational" fluid

motion.

Another type of fluid mo-

tion is obtained when the sum
of the Bernoulli terms for every

streamline is the same. Such

motion may exist when all the

streamlines originate in the

same field of energy, such as

in the reservoir and pipe bend

of Fig. 58. The characteristics

of the curved flow in this bend

may be obtained from the fact

that

P+ ipl

Elevation

Plan

FIG. 58.

= Constant

at any point on a horizontal plane in the flow. Therefore, by differ-

entiation

dp + pVdV =

giving a relation between p and V which may be placed in equation 31.

The result is

V2

-pVdV = pdr

or

^r_
V r

Integrating,
InV + In r = C

and eliminating logarithms
Vr = Ci
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v=rConstant

showing that in this case of curved fluid motion the velocities will be

least at great distances from the centers of curvature and greatest

near these centers.

If flow of this type occurs about a vertical axis a so-called free

vortex is formed, such as develops when a container is drained through
an opening in the bottom. The streamline picture and hyperbolic

velocity variation with radius for such a vortex are shown in, the plan

view of Fig. 59. The profile of the liquid surface in the vortex may be

obtained by neglecting any
radial velocity and applying
the Bernoulli equation. Over

the surface the pressure is

zero, and, therefore, this

equation becomes

V2--h z = Constant
2g

the constant being the dis-

tance between datum plane

and liquid surface at a great

distance from the axis of

rotation. Thus the surface

profile within the vortex

may be readily calculated.

To investigate the rota-

tional properties of particles

in this fluid flow, let a typical

fluid particle be designated

as before (Fig. 59). As flow

occurs it will be noticed that the particle exhibits no rotation about

its own axis as it occupies the successive positions 1-2-3-4. Since

none of the particles rotate about their own axes the motion is described

as "irrotational" and the free vortex motion described above is termed

an "irrotational vortex/'

The circulation, F, about a free vortex may now be obtained and

some useful conclusions drawn from the result. For simplicity select

a circular closed curve of radius r, whose center is the center of the

vortex. The velocity along such a curve is constant and given by

FIG. 59.
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or

Therefore, the circulation F becomes

F = 2vr = 2wCi

showing that the circulation F is independent of the size of curve

selected for the calculation of the circulation and that the circulation

around the center of a free vortex is constant.

By a more rigorous and generalized treat-

ment it may be shown that this constant

circulation is independent of the shape of the

closed curve, provided that the vortex center

is included within its boundaries.

In order to obtain more general conclu-

sions concerning the properties of circulation

in irrotational motion, the circulation around

a closed curve that excludes the center of the

vortex may be calculated. A simple curve, ABCD, of this type is

shown in Fig. 60
;

= TAB + TBC + TCD + TDA

FIG. 60.

and may be evaluated from the above principles with the following

results

TABCD =
6i i+ - 2*r + =

It may be concluded that there is no circulation in irrotational motion

around a closed curve which excludes

the vortex center. Such a vortex

center is called in mathematics a

"singular point," and is denned as a

point where velocity becomes in-

finite a physical impossibility.

The circulation about a vortex

center is a constant of the vortex

FIG . 6i.
and a measure of its strength. A
vortex may, therefore, be designated

by F **> to indicate its strength and direction of rotation. Spine other
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I

useful conclusions which may be obtained from further investigation of

vortex properties are summarized graphically in Fig. 61.

A combination of the "forced" and "free" vortices, called the "com-

pound" vortex, frequently occurs on the surface of a liquid when the

surface is disturbed by a blunt

object, such as an oar or paddle,

moving through it. The familiar

shape of the compound vortex is

shown in Fig. 62. In the regions

at a distance from the axis of

rotation the surface profile of the

free vortex appears, but in the

center, where the free vortex would require a great drop in the liquid

surface, a core of liquid is rotated by the motion of the free vortex.

On this core of liquid forms the characteristic paraboloidal surface

curve of the forced vortex.

forced vortex-

- Free vortex

Rotating core

of liquid

FIG. 62.
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PROBLEMS

135. The flow in this pipe line is reduced linearly from 10 ft
8
/sec

to zero in 30 sec by a valve at the end of the line. Calculate the

local, convective, and total accelerations at points A, B, and C,

after 10 sec of valve closure.

136. The velocity of water in a 4-in. pipe line is 7 ft/sec. Cal-

culate the rate of flow in cubic feet per second, gallons per minute,

pounds per second, and slugs per second.

137. One hundred pounds of water per minute flow through a

6-in. pipe line. Calculate the velocity.

138. One hundred gallons per minute of glycerine flow in a 3-in.

pipe line. Calculate the velocity.

139. Air flows in a 6-in. pipe at a pressure of 20 lb/in.
2 and a temperature of

100 F. If barometric pressure is 14.7 lb/in
2

. and velocity of flow is 12 ft/sec,

calculate the weight flow in pounds per second.
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140. Water flows in a pipe line composed of 3-in. and 6-in. pipe. Calculate the

velocity in the 3-in. pipe when that in the 6-in. pipe is 8 ft/sec. What is its ratio to

the velocity in the 6-in. pipe?

141. A smooth nozzle with tip diameter 2 in. terminates a 6-in. water line. Calcu-

late the velocity of efflux from the nozzle when the velocity in the line is 10 ft/sec.

142. Air discharges from a 12-in. duct through a 4-in. nozzle into the atmosphere.
The pressure in the duct is 10 lb/in.

2
,
and that in the nozzle stream is atmospheric.

The temperature in the duct is 100 F, and that in the nozzle stream 23 F. The
barometric pressure is 14.7 lb/in.

2
, and the velocity in the duct is 73.5 ft/sec. Calcu-

late the velocity of the nozzle stream.

143. Air flows with a velocity of 15 ft/sec in a 3-in. pipe line at a point where the

pressure is 30 lb/in.
2 and temperature 60 F. At a point downstream the pressure

is 20 lb/in.
2 and temperature 80 F. Calculate the velocity at this point. Barometric

pressure is 14.7 lb/in.
2

144. At a point in a two-dimensional fluid flow, two streamlines are parallel and

3 in. apart. At another point these streamlines are parallel but only 1 in. apart.

If the velocity at the first point is 10 ft/sec, calculate the velocity at the second.

145. Water flows in a pipe line. At a point in the line where the diameter is 7 in.,

the velocity is 12 ft/sec and the pressure is 50 lb/in.
2 At a point 40 ft away, the

diameter reduces to 3 in. Calculate the pressure here when the pipe is (a) horizontal,

(6) vertical with flow downward.

146. A horizontal 6-in. pipe in which 1000 gpm of carbon tetrachloricle is flowing

contains a pressure of 30 lb/in.
2

If this pipe reduces to 4-in. diameter, calculate the

pressure in the 4-in. pipe.

147. In a pipe 1 ft in diameter, 10 cfs of water are pumped up a hill. On the hill-

top (elevation 160) the line reduces to 8-in. diameter. If the pump maintains a

pressure of 100 lb/in.
2 at elevation 70, calculate the pressure in the pipe on the hilltop.

148. In a 3-in. horizontal pipe line containing a pressure of 8 lb/in.
2 100 gpm of

water flow. If the pipe line reduces to 1-in. diameter, calculate the pressure in the

1-in. section.

149. If benzene flows through this pipe

line and its velocity at A is 8 ft/sec, where is

the benzene level in the open tube C?

150. Water flows through a 1-in. con-

striction in a horizontal 3-in. pipe line. If

the water temperature is 150 F (w = 61.2

Elev.

500g"
12'Dia.

Elev.

400

PROBLEM 149. PROBLEM 151.

lb/ft
3
) and the pressure in the line is maintained at 40 lb/in.

2
,
what is the maxi-

mum rate of flow which may occur? Barometric pressure is 14.7 lb/in.
2

151. If 8 cfs of water flow through this pipe line, calculate the pressure at point A.

152. When the head of water on a 2-in. diameter smooth orifice is 10 ft, calculate

the rate of flow therefrom.
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153. Five gallons of water flow out of a vertical 1-in. pipe per minute. Calculate

the diameter of the stream 2 ft below the end of the pipe.

154. A 3-in. horizontal pipe is connected to a water tank 15 ft below the surface.

The pipe terminates in a 1-in. diameter smooth nozzle. Calculate the pressure in

the line.

155. Calculate the rate of flow through this pipe

line and the pressures at A
, B, C, and D.

156. A smooth nozzle 2 in. in diameter is con-

nected to a water tank. Connected to the tank at

the same elevation is an open U-tube manometer

containing mercury and registering a deflection of

25 in. The lower mercury surface is 20 in. below

the tank connection. What flow will be obtained

from the nozzle?

157. A 3-in. horizontal pipe is connected to a

tank of water 5 ft below the water surface. The

pipe is gradually enlarged to 3.5-in. diameter and

discharges freely into the atmosphere. Calculate rate of flow and pressure in the

3-in. pipe.

158. A siphon consisting of a 1-in. hose is used to drain water from a tank. The
outlet end of the hose is 8 ft below the water surface, and the bend in the hose 3 ft

above the water surface. Calculate the rate of flow and pressure in the bend.

159. A 1-in. nozzle on a horizontal 3-in. pipe discharges a stream of water with

a velocity of 60 ft/sec. Calculate the pressure in the pipe and the velocity of the

nozzle stream at a point 20 ft below the nozzle. (Neglect air friction.)

160. A smooth 2-in. nozzle terminates a 6-in. pipe and discharges water vertically

upward. If a pressure gage in the pipe 4 ft below the nozzle tip reads 50 lb/in.
2

,

calculate the velocity at the nozzle tip and rate of flow. What is the velocity of the

stream at a point 30 ft above the nozzle tip?

161. Water flows through a 3-in. constriction in a horizontal 6-in. pipe. If the

pressure in the 6-in. section is 40 lb/in.
2 and that in the constriction 20 lb/in.

2
,
calcu-

late the velocity in the constriction and the rate of flow.

162. Water discharges from a tank of water through a 2-in. nozzle into a tank of

gasoline (sp. gr. 0.72). The nozzle is 10 ft below the water surface and 11 ft below

the surface of the gasoline. Calculate the rate of flow.

163. Water discharges through a 1-in. nozzle under a 20-ft head, into a tank of air

in which a vacuum of 10 in. of mercury is maintained. Calculate the rate of flow.

164. A closed tank contains water with air above it. The air is maintained at

a pressure of 15 lb/in.
2

,
and 10 ft below the water surface an orifice discharges into

the atmosphere. At what velocity will water emerge from the orifice?

165. A pump draws water from a reservoir through a 12-in. pipe. When 12 cfs

are being pumped, what is the pressure in the pipe at a point 8 ft above the reservoir

surface: (a) in pounds per square inch; (b) in feet of water?

166. The pressure in the testing section of a wind tunnel is 1.07 in. of water

when the velocity is 60 mph. Calculate the pressure on the nose of an object when

placed in the testing section of this tunnel. Assume w for air = 0.0763 lb/ft
3

.

167. The pressure in a 4-in. pipe line carrying 1000 gpm of perfect fluid weighing
70 lb/ft

8
is 20 lb/in.

2 Calculate the pressure on the upstream end of a small object

placed in this pipe line.
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168. An airship flies through still air at 50 mph. What is the pressure on the nose

of the ship if the air temperature is 40 F and pressure 13.0 lb/in.
2
?

169. A submarine moves at 10 knots/hr through salt water (S 1.025) at a depth
of 50 ft. Calculate the pressure on the bow of the submarine. (1 knot = 6080 ft.)

170. Benzene discharges from an orifice in a tank under a 10-ft head. What pres-

sure will exist on the nose of a small object placed in the jet close to the orifice, in

pounds per square inch, in feet of benzene?

171. A circular cylinder 6 in. in diameter is placed in a wind tunnel where the

velocity is 80 mph, the air density 0.0763 lb/ft
3

. The cylinder is placed with its axis

normal to the flow. Calculate the pressure on the front of the cylinder and the pres-

sure at a point on the cylinder's surface 90 from the front where the velocity is

160 mph.
172. The pressure on the front of an object in a stream of water is 8 in. of water

above the static pressure in the stream. Calculate the velocity of the stream.

173. A horizontal 6-in. water line contains a flow of 5 cfs and a pressure of 25

lb/in.
2

Taking a datum 5 ft below the pipe's centerline, calculate the energy avail-

able in the flow.

174. A 2-in. nozzle discharges 1 cfs of water vertically upward. Calculate the

energy in the jet (a) at the tip of the nozzle; (b) 20 ft above the nozzle tip, taking

a datum plane at the nozzle tip; (c) the energy of flow in the pipe (4-in.) 3 ft below

the nozzle tip, taking datum plane at the nozzle tip.

175. In a perfectly-insulated section of horizontal 12-in. pipe, 8 cfs of water flow

at a pressure of 40 lb/in.
2 and temperature of 50 F. The pipe bends vertically

upward, is reduced to 6-in. diameter, and becomes horizontal again 10 ft above the

12-in section. A heating coil in the vertical section delivers 1000 Btu/sec to the

flow. Calculate temperature and pressure in the 6-in. horizontal section assuming
that no heat is lost through the pipe walls.

176. Six pounds per second of superheated steam flow upward in a 12-in. pipe

line. At elevation 100 the pressure and temperature are 150 lb/in.
2 and 396 F,

and at elevation 200, 138 lb/in.
2 and 390 F. The barometer reads 15.0 lb/in.

2

Calculate the heat lost through the pipe walls between the above two points, using

the following data from the steam tables:

wm = 0.345 lb/ft
3

w2()0
= 0.322 lb/ft

3

Hm = 1213.6 Btu/lb

7/200
= 1212.0 Btu/lb

177. A tank containing superheated steam at 10 lb/in.
2 and 314.5 F discharges

adiabatically through a small orifice into the atmosphere. Calculate the velocity of

the steam jet if steam tables indicate that H in the tank is 1196.1 Btu/lb and in the

jet 1155.4 Btu/lb. The barometer reads 15 lb/in.
2

178. A tank containing air at 10 lb/in.
2 and 314. 5 F. discharges adiabatically

through a small orifice into the atmosphere. Calculate the velocity and temperature
of the air jet. The barometer reads 15.0 lb/in.

2

179. A pump takes 1000 gpm of benzene from an open tank through an 8-in. pipe.

It discharges this flow through a 6-in. pipe, and at a point on this pipe 10 ft above the

liquid surface (in the tank) a pressure gage reads 35 lb/in.
2 What horsepower is

being supplied by the pump?
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180. A pump having 4-in. suction pipe and 3-in. discharge pipe pumps 500 gpm
of water. At a point on the suction pipe a vacuum gage reads 6 in. of mercury;
on the discharge pipe 12 ft above this point, a pressure gage reads 48 lb/in.

2 Calcu-

late the horsepower suplied by the pump.
181. What horsepower pump is theoretically required to raise 200 gpm of water

from a reservoir of surface elevation 100 to one of surface elevation 250?

182. Through a 4-in. pipe, 1.0 cfs of water enters a small hydraulic motor and

discharges through a 6-in. pipe. The inlet pipe is lower than the discharge pipe, and

at a point on the former a pressure gage reads 60 lb/in.
2

;
14 ft above this on the dis-

charge pipe a pressure gage reads 30 lb/in.
2 What horsepower is developed by the

motor?

183. If 12 cfs of water are pumped over a hill through an 18-in. pipe line, and the

hilltop is 200 ft above the surface of the reservoir from which the water is being taken,

calculate the pump horsepower required to maintain a pressure of 25 lb/in.
2 on the

hilltop.

184. A hydraulic turbine in a power plant takes 100 cfs of water from a reservoir

of surface elevation 235 and discharges it into a river of surface elevation 70. What
theoretical horsepower is available in this flow?

185. A pump takes water from a tank and discharges it into the atmosphere

through a horizontal 2-in. nozzle. The nozzle is 15 ft above the water surface and is

connected to the pump's 4-in. discharge pipe. What horsepower pump is required

to maintain a pressure of 40 lb/in.
2
just behind the nozzle?

186. Water flows through a 4-in. constriction in a horizontal 6-in. pipe. The

pressure in the pipe is 40 lb/in.
2 and in the constriction 25 lb/in.

2 Calculate the flow.

187. Water flows upward through a 6-in. constriction in a vertical 12 -in. pipe.

In the constriction there is a vacuum of 8 in. of mercury, and at a point on the pipe

5 ft below the constriction a pressure gage reads 30 lb/in.
2 Calculate the flow.

188. Carbon tetrachloride flows downward through a 2-in. constriction in a 3-in.

vertical pipe line. If a differential manometer conteiining mercury is connected to the

constriction and to a point in the pipe 4 ft above the constriction and this manometer
reads 14 in., calculate the rate of flow. (CCU fills manometer tubes to mercury
surfaces.)

189. A l|-in. smooth nozzle is connected to the end of a 6-in. water line. The

pressure in the pipe behind the nozzle is 40 lb/in.
2 Calculate the rate of flow.

190. A smooth 2-in. nozzle terminates a 4-in. pipe line and discharges water

vertically upward. If a pressure gage on the pipe 6 ft below the nozzle tip reads

50 lb/in.
2

,
calculate the discharge.

191. Air flows through a 3-in. constriction in a 6~in. pipe. Pressure gages con-

nected to pipe and constriction read respectively 50 lb/in.
2 and 35 lb/in.

2 The tem-

perature in the pipe is 200 F, and the barometric pressure 14.7 lb/in.
2 Calculate the

(weight) rate of flow.

192. Solve the preceding problem when the pressure gage reading at the con-

.sttiction is maintained at (a) 15 lb/in.
2

, (b) 5 lb/in.
2

193. Carbon dioxide discharges from a 6-in. pipe through a 2-in. nozzle into the

atmosphere. If the gage pressure in the pipe is 10 lb/in.
2

,
the temperature 100 F,

and the barometric pressure 30.5 in. mercury, calculate the weight of CO2 discharged

per second. Calculate the pressure and temperature within the jet.

194. Solve the preceding problem when the pressure gage reads 20 lb/in.
2

195. Superheated steam at 5 lb/in.
2 and 328 F. (H = 1203.5 Btu/lb) dis-
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charges from a 6-in. pipe through a 2-in. nozzle into the atmosphere. Calculate the

rate of flow. The barometer reads 15.0 lb/in.
2 In the steam jetH = 1179.7 Btu/lb,

w = 0.0347 lb/ft
3

.

196. If in the preceding problem discharge takes place into a tank where the

pressure is 8 lb/in.
2
abs, calculate the rate of flow and pressure in the steam jet.

Critical pressure ratio is 0.55 (in jet, H = 1155.8 Btu/lb, w = 0.0274 lb/ft
3
).

197. A 250-gpm horizontal jet of water 1-in. in diameter strikes a stationary blade

which deflects it 60 from its original direction. Calculate the vertical and horizontal

components of force exerted by the liquid on the blade. Find the magnitude and

direction of the total force on the blade.

198. Solve the preceding problem with a deflection of 150.

199. A 2-in. jet of water moving at 120 ft/sec has its direction reversed by a

smooth stationary deflector. Calculate the magnitude
and direction of the force on the deflector.

200. The jet of the preceding problem strikes a

stationary flat plate whose surface is normal to the jet.

Calculate the magnitude and direction of the force on the

plate.

201. This 2-in. diameter jet moving at 100 ft /sec is

45

divided in half by a "splitter" on the stationary flat plate. Calculate the magnitude
and direction of the force on the plate.

202. Calculate the magnitude and direction of the vertical and horizontal com-

ponents and the total force exerted on this

stationary blade by a 2-in. jet of water mov-

ing at 50 ft/sec.

203. Calculate the magnitude and direc-

tion of the force required to move this single

blade horizontally against the direction of the

jet at a velocity of 50 ft/sec. What horse-

power is required to accomplish this motion?

204. What force is exerted on a single flat plate moving at 20 ft/sec by a jet of

1-in. diameter having a velocity of 50 ft/sec, if they both move in the same direction

and the surface of the plate is normal to the jet?

205. A 6-in. pipe line equipped with a 2-in. nozzle supplies water to an impulse

turbine 6 ft in diameter having blade angles of 165. Plot a curve of theoretical

horsepower vs. rpm when the pressure behind the nozzle is 100 lb/in.
2 What is the

force on the blades when the maximum horsepower is being developed?

206. A horizontal 6-in. pipe in which 2.2 cfs of water are flowing contracts to

3-in. diameter. If the pressure in the 6-in. pipe is 40 lb/in.
2

,
calculate the magnitude

and direction of the horizontal force exerted on the contraction.
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207. A horizontal 2-in. pipe in which 400 gpm of water are flowing enlarges to a

4-in. diameter. If the pressure in the smaller pipe is 20 lb/in.
2

,
calculate magnitude

and direction of the horizontal force on the enlargement.
208. A conical enlargement in a vertical pipe line is 5 ft long and enlarges the pipe

from 12-in. to 24-in. in diameter. Calculate the magnitude and direction of the verti-

cal force on this enlargement when 10 cfs of water flow upward through the line and

the pressure at the smaller end of the enlargement is 30 lb/in.
2

209. A 2-in. nozzle terminates a 6-in. horizontal water line. The pressure behind

the nozzle is 60 lb/in.
2 Calculate the magnitude and direction of the force on the

nozzle.

210. A 90 bend occurs in a 12-in. horizontal pipe in which the pressure is 40 lb/in.
2

Calculate the magnitude and direction of the force on the bend when 10 cfs of water

flow therein.

211. A 6-in. horizontal pipe line bends through 90 and while bending changes its

diameter to 3 in. The pressure in the 6-in. pipe is 30 lb/in.
2

,
and the direction of flow

is from larger to smaller. Calculate the magnitude and direction of the total force

on the bend when 2.0 cfs of water flow therein.

212. Solve the preceding problem if the bend is 120.

213. A 2-in. smooth nozzle discharges horizontally from a tank under a 30-ft head

of water. Calculate the force exerted on the tank.

214. A 3-in. vertical pipe line discharges 50 gpm of water into a tank of water

whose free surface is 10 ft below the end of the pipe. What force is exerted on the

tank?

215. An airplane flies at 120 mph through still air (w = 0.0763 lb/ft
8
). The pro-

peller is 6 ft in diameter, and its slipstream has a velocity of 200 mph relative to the

fuselage. Calculate (a) the propeller efficiency, (6) the velocity through the plane of

the propeller, (c) the horsepower input, (d) the horsepower output, (e) the thrust of

the propeller, (f) the pressure difference across the propeller plane.

216. A ship moves up a river at 20 mph (relative to shore). The river current

has a velocity of 5 mph. The velocity of water a short distance behind the propellers

is 40 mph relative to the ship. If the velocity of 100 cfs of water is changed by the

propeller, calculate the thrust.

217. This stationary blade is pivoted
at point 0. Calculate the torque exerted

thereon when a 2-in. water jet moving at

100 ft/sec passes over it as shown.

218. A radial reaction turbine has

ri = 3 ft, f2 = 2 ft, and its flow cross section is 1 ft high. The guide vanes are set

so that ai = 30. When 100 cfs of water flow through this turbine the angle exg is

found to be 60. Calculate the torque exerted on the turbine runner. If the angle

02 is 150, calculate the speed of rotation of the turbine runner and the angle ft
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necessary for smooth flow into the runner. Calculate the horsepower developed by
the turbine at the above speed.

219. A centrifugal pump impeller having dimensions and angles as shown rotates

at 500 rpm. Assuming a radial direction of velocity at the blade entrance, calculate

the rate of flow, the pressure difference between inlet and outlet of blades, and the

torque and horsepower required to meet these conditions.

220. An open cylindrical tank 5 ft in diameter and 10 ft high containing water

to a depth of 6 ft is rotated about its vertical axis at 75 rpm. Calculate the Bernoulli

constants taking the datum at the bottom of the tank for the two streamlines lying in

a horizontal plane 1 ft above the bottom of the tank and having radii of 1 ft and 2 ft.

Calculate also the circulation along these streamlines.

221. In a free vortex the velocity 0.5 ft from the center of rotation is 10 ft/sec.

Calculate the Bernoulli constants for the two streamlines lying in a horizontal plane

5 ft below the water surface and having radii of 1 ft and 2 ft. Calculate also the

cirrulation,along these streamlines.



CHAPTER IV

THE FLOW OF A REAL FLUID

The flow of a real fluid is vastly more complex than that of an ideal

one owing to phenomena caused by the existence of viscosity. Vis-

cosity introduces a resistance to motion by causing shear or friction

forces to exist between fluid particles. For flow to take place work

must be done to overcome these resistance forces, and in the process

energy is lost in heat. The study of real fluid flow is essentially one

of the relation of viscosity and other variables to these resistance forces

and lost energies.

25. Laminar and Turbulent Flow. The effects of viscosity cause

the flow of a real fluid to occur under two very different conditions,

or regimes: that of "laminar" flow and that of "turbulent" flow. The
characteristics of these regimes were first demonstrated by Reynolds,

1

with an apparatus similar to that of Fig. 63. Water flows from a glass

Dye ^c

FIG. 63.

tank through a bell-mouthed glass pipe, the flow being controlled by
the valve A. A thin tube, B, leading from a reservoir of dye, C,

has its opening within the entrance of the glass pipe. Reynolds dis-

covered that, for low velocities of flow in the glass pipe, a thin filament

of dye issuing from the tube did not diffuse, but was maintained intact

1 O. Reynolds,
" An experimental investigation of the circumstances which deter-

mine whether the motion of water shall be direct or sinuous and of the law of resistance

in parallel channels," Philosophical Transactions of the Royal Society, Vol. 174,

Part III, p. 935, 1883.

106
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throughout the pipe, forming a thin straight line parallel to the axis

of the pipe. As the valve was opened, however, and greater velocities

obtained, the dye filament wavered and broke, diffusing through the

flowing water in the pipe. Reynolds found that the velocity at which

the filament of dye diffused was dependent upon the degree of quiet-

ness of the water in the tank, higher velocities being obtainable with

increased quiescence. He also discovered that if the dye filament had

once diffused it became necessary to decrease the velocity in order to

restore it, but the restoration always occurred at approximately the

same velocity in the pipe.

Since intermingling of fluid particles during flow would cause dif-

fusion of the dye filament, Reynolds deduced from his experiments
that at low velocities this intermingling was entirely absent and that

the fluid particles moved in parallel layers, or laminae, sliding over

particles in adjacent laminae, but not mixing with them; this is the

regime of ''laminar flow." Since at higher velocities the dye filament

diffused through the pipe, it was obvious that some intermingling of

fluid particles was occurring, or, in other words, the flow was "
tur-

bulent." Laminar flow broke down into turbulent flow at some

critical velocity above that at which turbulent flow was restored to

the laminar condition; the former velocity is called the upper critical

velocity, and the latter, the lower critical velocity.

Reynolds was able to generalize his conclusions from these and

other experiments by the introduction of a dimensionless term, NR,
called the Reynolds number, and defined by

in which V is the average velocity in the pipe, d the diameter of the

pipe, and p and ju the density and viscosity of the fluid flowing therein.

Reynolds found that certain critical values of the Reynolds number,

(NR)CI defined the upper and lower critical velocities for all fluids

flowing in all sizes of pipes, thus deducing the fact that a single number

defines the limits of laminar and turbulent pipe flow for all fluids.

The upper limit of laminar flow was found by Reynolds to corre-

spond to a Reynolds number of 12,000 to 14,000, but unfortunately this

upper critical Reynolds number is indefinite, being dependent upon
several incidental conditions such as: (1) initial quietness of the fluid,

2

2 Ekman, working in 1910 with Reynolds' original apparatus, was able to obtain

laminar flow up to a Reynolds number of 50,000 by quieting the water for days before

running his tests.
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(2) shape of pipe entrance, and (3) roughness of pipe. However,
these high values of the upper critical Reynolds number are of only
academic interest and the engineer may take the upper limit of laminar

flow to be defined by (NR ) C
= 2700 to 4000.

The lower limit of turbulent flow, defined by the lower critical

Reynolds number, is of greater engineering importance; it defines a

condition below which all turbulence entering the flow from any
source will eventually be damped out by viscosity. This lower critical

Reynolds number thus sets a limit below which laminar flow will

always occur; many experiments have indicated the lower critical

Reynolds number to have a value of 2100.

Between Reynolds numbers of 2100 and 4000 a region of uncer-

tainty exists and the engineer must make conservative selection in

this region of the variables which are dependent upon the Reynolds
number.

In laminar flow, agitation of

fluid particles is of a molecular

nature only, and these particles

are restrained to motion in

FlG 64 parallel paths by the action of

viscosity. The shearing stress

between adjacent moving layers is determined in laminar flow by the

viscosity and is completely defined by the differential equation

(Art. 5) ,

dv

the stress being the product of viscosity and velocity gradient (Fig. 64).

In turbulent flow, fluid particles are not retained in layers by viscous

action, but move in heterogeneous fashion through the flow, sliding

past some fluid particles, and colliding with others in an entirely hap-
hazard manner, causing a complete mixing of the fluid as flow takes

place. These fluid particles, moving in all directions through the flow,

cause at any point a rapid and irregular pulsation in velocity along the

general direction of motion and across this direction as well. If the

components in the direction of motion of the instantaneous velocities

.
at a point could be measured, a variation of high frequency and small

magnitude would be obtained and the time average of all these velocity

components would be the velocity which is taken to exist at the point.

Across the general direction of motion, rapid variation would be found

to exist also, and the time average of these variations would obviously
be zero.



LAMINAR AND TURBULENT FLOW 109

Since turbulence is an entirely chaotic motion of individual fluid

particles through short distances in every direction as flow takes place,

the motion of individual fluid particles is impossible to trace and
characterize mathematically, but mathematical relationships may be

obtained by considering the average motion of aggregations of fluid

particles.

The shear stress between two fluid layers in highly turbulent flow

is not due to viscosity, but rather to the momentum exchanges occur-

ring as fluid particles move from one of these layers to the other as the

result of the turbulent mixing process. Taking the velocities of fluid

particles due to turbulence as vy and vx , respectively normal to and

along the direction of general motion, it is evident that if homogeneous
turbulence is assumed

VX = Vy

Using this assumption, Reynolds
3 showed that the shear stress

between moving fluid layers in turbulent flow is given by

r = p vxvy

in which vxvy is the time average of the product of vx and vy . Prandtl 4

succeeded in relating the above velocities of turbulence to the general

flow characteristics by proposing that fluid particles are transported by
turbulence a certain average distance, /, from regions of one velocity to

A ,/

Fluid layer

Fluid layer

- y
dy

FIG. 65.

regions of another and in so doing suffer changes in their general

velocities of motion. Prandtl termed the distance / the "mixing

length" and suggested that the change in velocity, Av, incurred by a

fluid particle moving through the distance / was proportional to vx and
to vy . From Fig. 65,

At, = /

8 O. Reynolds,
" On the dynamical theory of incompressible viscous fluids and the

determination of the criterion," Philosophical Transactions of the Royal Society, Al,
Vol. 186, p. 123, 1895.

4 L. Prandtl,
"
Ueber die ausgebildete Turbulenz," Proceedings Second Inter-

national Congress Applied Mechanics, Zurich, 1926, p. 62.
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and, from the foregoing statement and substitution of this equation
in the Reynolds expression for shear stress, there results

thus indicating the variables which determine the shear stress in tur-

bulent flow.

ILLUSTRATIVE PROBLEM

Water flows in a 6-in. pipe line at a velocity of 12 ft/sec and at a temperature
of 50 F. Is the flow laminar or turbulent?

V = 0.0000273 Ib sec/ft
2

NR _ *

0.0000273

Since 355,000 > 2100, flow is turbulent.

= 355,000

26. Fluid Flow Past Solid Boundaries. A knowledge of flow

phenomena near a solid boundary is of great value in engineering prob-
lems because in actuality flow is never encountered which is not affected

by the solid boundaries over which it passes.

The classic aeronautical problem is the flow

of fluid over the surfaces of an object such

as a wing or fuselage, and in other branches

of engineering the problem of flow between

solid boundaries, such as in pipes and

channels, is of paramount importance.
One experimentally determined fact

concerning fluid flow over smooth solid

boundaries is that no motion of fluid par-

ticles, relative to the boundary, exists

adjacent to the boundary. This means that

a diagram of velocity distribution must

always indicate a velocity of zero at the

boundary. The physical explanation of

this phenomenon is that a very thin layer of fluid, possibly having a

thickness of but a few molecules, adheres to the solid boundary and

motion takes place relative to this layer.

Laminar flow occurring over smooth or rough boundaries possesses

the same properties (Fig. 66), the velocity being zero at the bound -

(&) Rough Boundary.

FIG. 66.
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ary, and the shear stress between moving layers at any distance,

y, being given by

--

r

'/////////y.

(a) Smooth Boundary.

dy/

Thus, in laminar flow, surface roughness has no effect on the flow

properties.

In turbulent flow, however, the rough-
ness of the boundary surface will affect the

physical properties of fluid motion. When
turbulent flow occurs over smooth solid

boundaries it is always separated from the

boundary by a film of laminar flow (Fig.

67). This laminar film has been observed

experimentally, and its existence may be

justified theoretically by the following sim-

ple reasoning : The presence of a boundary
in a turbulent flow will curtail the freedom

of the turbulent mixing process by reduc-

ing the available mixing length, and, in a

region very close to the boundary, the

available mixing length is reduced to zero, resulting in a film of

laminar flow over the boundary.
In the laminar film the shear stress, r, is given by

(b) Rough Boundary.

FlG. 67.

r = dv
l

Ty

and at a distance from the boundary where turbulence is completely

developed

r oc
Y*\w

Between the latter region and the laminar film lies a transition region

in which shear stress results from a complex combination of turbulent

and viscous action, turbulent mixing being restricted by the viscous

effects due to the proximity of the wall. The fact that there is a

transition from fully developed turbulence to no turbulence at the

boundary surface shows that the laminar film, although given an

arbitrary thickness, <5, in Fig. 67, possesses no real line of demarcation

Between the laminar and turbulent regions.
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The roughness of boundary surfaces will affect the physical proper-

ties of turbulent flow, and the effect of this roughness is dependent

upon the thickness of the laminar film. A boundary surface is said

to be "smooth" if its projections or protuberances are so completely

submerged in the laminar film (Fig. 67a) that they have no effect on

the turbulent mixing process. However, when the height of the

roughness projections is equal to or greater than the thickness of the

laminar film (shown schematically in Fig. 676), the projections serve

to augment the turbulence and, if roughness is excessive, even to pre-

vent the existence of such a film. Since the thickness of the laminar

film, which is a variable quantity, is a criterion of effective roughness,

it is possible for the same boundary surface to behave as a smooth one

or a rough one, depending upon the thickness of the laminar film which

covers it.

Since surface roughness serves to increase the turbulence in a

flowing fluid and thus decrease the effect of viscous action some pre-

diction may be made as to the effect of roughness on energy losses.

In turbulent flow over rough surfaces energy is consumed by the work

done in the continual generation of turbulence by the roughness

protuberances. The energy involved in this turbulence is composed
of the kinetic energy of fluid masses, which is known to be proportional

to the squares of their velocities. Since these velocities are in turn

proportional to the velocities of general motion it may be concluded

that energy losses caused by rough surfaces vary with the squares of

velocities.

As turbulent flow takes place over smooth surfaces, work is done

at the expense of available fluid energy against the shear stress due to

viscous action in the laminar film. No predictions will be made as

to the relation of energy losses and velocities in this case where a com-

bination of turbulent and viscous action exists, but many experiments
have indicated that for turbulent flow over smooth surfaces energy
losses will vary with the 1.75 to 1.85 power of velocities.

In laminar flow over boundary surfaces, energy losses will sub-

sequently be shown theoretically and experimentally to be directly

proportional to velocities.

The velocity profiles of Fig. 67 indicate a small velocity gradient
in the turbulent region at a comparatively small distance from the

boundary. In other words, flow with a uniform velocity, undisturbed

by the presence of the boundary, is taking place in close proximity
to it, and this flow, although turbulent, possesses the velocity and

pressure characteristics of an ideal fluid flow. The suggestions
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(1) that the viscous action of a real fluid on a solid surface is confined

to a thin region close to the boundary, and (2) that outside of this

region fluid can be treated as an ideal one were made by Prandtl 5

and served to revolutionize the treatment of the subject. The sug-

gestions justified the use of the ideal fluid in determining the velocities,

pressures, and shapes of the streamlines about an object in a real fluid

flow.

27. Fluid Flow between Parallel Plates. To develop some of the

fundamental mechanical relationships of fluid flow in passages, con-

sider an incompressible fluid flowing in a section between two vertical

parallel plates of infinite extent.

FIG. 68.

Figure 68 represents two such vertical plates with spacing, 2y ,

between which flow through a section of height b is to be analyzed.

From the continuity principle the average velocities of flow, Vi and F2 ,

through any two sections, 1 and 2, are the same, and thus any mass of

fluid, ABCD, of width 2y, which is isolated in the flow, moves with

constant velocity. Constant-velocity motion requires that the net

force acting on this fluid mass be zero. Since the force FT ,
due to the

shear stress r, opposes motion, the pressure force Fp, which balances

this force, must act in the direction of motion, requiring that pi > p%,

and showing that a pressure drop occurs in the direction of flow. If

sections 1 and 2 are separated by a distance /, and the pressures over

6
Proceedings Third International Mathematics Congress, Heidelberg, 1904.
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these sections are uniform, the shear force, FT ,
and pressure force,

may be calculated directly as

Fr
= 26/r

and

FP = 2by(pi
-

p2)

which may be equated
2blr = 2by(pi

- p2)

giving the fundamental result

and proving that r varies linearly with y, being zero midway between

the two plates and possessing a maximum value, TO ,
at the walls of the

passage.

The lost power, PL, consumed by the total flow through the section

of height b in overcoming the shear force F
To on its boundary surface

may be readily calculated from

PL = F
TO
V

in which

F
TO
= r 2bl = (pl

- p2)2y b

giving

PL =
(Pi

-
p2)2y bV

but lost power may also be calculated from

PL = QwEL

in which EL is the lost energy per pound of fluid flowing. Equating
these two expressions for lost power in which

Q = b2y V

(Pi
-

p2)lyobV = 2y bwEL
whence

Pl P2EL =
w

or the energy consumed per pound of fluid between two sections is

simply the loss in pressure head between the two sections. The same
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result may be obtained directly from the following energy balance by
the Bernoulli equation

Pi
,
Vl P2.VI--r = --r

-
h ELw 2g w 2g

and since V\ = V%

w

The foregoing developments are perfectly general, applying to

both laminar and turbulent flow. Now for mathematical simplicity

assume that laminar flow exists between the two parallel plates to

illustrate the application of the shear stress equations. In laminar

flow the shear stress, r, is given by
6

dv
r == ~~ M T~

dy
and between parallel plates by

For laminar flow between parallel plates both these equations must be

satisfied; therefore

~ M^
=
v r~) y

the variables of which may be separated as follows :

The left-hand side of this equation may be integrated between the

center velocity, Vc ,
and the variable velocity, v, at a distance, y, from

the center; the right-hand side may be integrated between the cor-

responding limits, zero and y. Integrating

vc v

'
(32)

6 The minus sign appears since y in the above problem is taken in a direction

opposite to that assumed in previous problems; here v decreases with increasing y,
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showing that for laminar flow between parallel plates the velocity

distribution is a parabolic curve having a maximum value midway
between the plates, as illustrated in Fig. 68.

28. Flow About Immersed Objects.
7 As real fluid flows in turbu-

lent condition over the surface of a solid object placed in the flow,

the effects of viscosity will create velocity conditions at the surface

similar to those described above. However, the laminar film which

forms over the surface of the object in general is not of constant thick-

ness since it must begin from no thickness at the front of the object

where the fluid first contacts it, and increase along the surface of the

object in the direction of motion
; this type of laminar film is termed a

"laminar boundary layer." Under certain conditions this layer may
change into a "turbulent boundary layer" which possesses a thin

laminar film beneath it and adjacent to the object. These phenomena
are illustrated in Fig. 69 for a simple type of object, a smooth flat

plate, the thicknesses of the various layers and films being greatly ex-

aggerated. Although the bound-

ary layer occupies an extremely

small and usually invisible part
of the flow picture it is, neverthe-

less, of great importance since it is

the essential reason for the exis-

tence of a frictional "drag" force

exerted by the fluid on the object.

The boundary layer in adhering to, or separating from, the object

on which it forms brings about different flow phenomena and different

effects upon the drag force. On a streamlined object (Fig. 70a and b)

the boundary layer will adhere to the surface of the object and the

flow picture appears to be identical with that of an ideal fluid. On a

blunt object, however, the boundary layer will cause the flow to

separate from the object, resulting in a flow picture (Fig. 70d) vastly

different from that of an ideal fluid (Fig. 70c). The phenomenon of

separation thus becomes an important factor in determining the

characteristics of fluid flow about objects; its mechanism and proper-

ties must now be investigated.

To discover the fundamental properties of separation, compare
ideal fluid flow and real fluid flow about a blunt object such as a circular

cylinder (Fig. 71). Let the cylinder be placed in an ideal flow possess-

ing a pressure p and velocity V - A symmetrical streamline picture

layer layer

FiG. 69.

7 See Chapter IX for a more complete treatment of this subject.
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and pressure distribution will result, and, of course, no energy will be

lost as flow takes place about the object. For a real fluid having the

(a) Ideal Fluid. (c) Ideal Fluid.

(6) Real Fluid. <d) Real Fluid.

FIG. 70.

same velocity and pressure, energy will be consumed in overcoming
resistance caused by the shear stresses in the boundary layer as flow

Pressure Variation

Ideal fluid

Real fluid

Surface of discontinuity

FIG. 71.

passes over the surface of the object. The result is that real fluid

particles possess less energy when they arrive at point X than ideal
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fluid particles, although these particles started with the same energy
content. The fluid particles, in moving from point X to Sf

along the

surface of the object, are moving into a region of high pressure and must

possess enough energy to accomplish this motion against the pressure

gradient. The ideal fluid particles can do this because of their satis-

factory energy content, but the real fluid particles are unable to do

the same since some of their energy has been dissipated. The result

is that these particles are unable to move beyond a point Y on the

rear surface of the cylinder; here they come to rest, accumulate, and
are given a rotary motion by the surrounding flow. An eddy of in-

creasing size is then developed at point Y, and the momentum of this

eddy becomes so great that the eddy cannot be retained by the

cylinder but must break away from it, allowing another one to

form and the process to repeat itself.

The result of separation and eddy formation is the formation behind
solid objects of a turbulent wake, the turbulence of which is of an

"eddying" nature in contrast

to the "normal" turbulence

discussed in Art. 25. In the

^ OOOO creation of the eddies of the

turbulent wake, fluid energy- has been stored in the eddies

FIG. 72. and, therefore, made unavail-

able. As these eddies die out

owing to the influence of viscosity, their energy is converted into heat

and lost from the fluid flow. The turbulent wake thus becomes
another fluid mechanism in which energy may be lost.

The turbulent wake behind a blunt object is separated from the

"live" flow by a "surface of discontinuity" on each side of which

pressures may be the same, but velocities differ greatly. Such a sur-

face of discontinuity is indicated schematically on Fig. 71. Actually
this surface does not possess the symmetry, uniformity, and stability

implied by the sketch, but wavers in a transverse direction as the

eddies form; besides this property the discontinuity surface itself

has an inherent tendency to break up into eddies. To illustrate this

tendency, consider a simple type of a discontinuity surface which may
be created between adjacent fluid streams moving with different veloc-

ities (Fig. 72). If an observer moves in the direction of the streams

with a velocity equal to the numerical average of those of the streams,
he sees the relative velocity profile shown at the right from which the

tendency for eddy creation is immediately evident.
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To return now to the problem of drag forces on objects in a fluid

flow, the effects of boundary layers, separation, and wakes may be

observed. Fundamentally, drag is caused by the components of the

normal and tangential forces

transmitted from the fluid to

the surface elements of the
gin

solid object. These normal

forces are those of pressure,

which in general may be

calculated by applying the

Bernoulli principle to the
IG *

strearntube adjacent to the object. The tangential forces are those

of shear at the surface of the object arising from viscous effects in the

boundary layer. From Fig. 73, the total drag force, J9, may be ex-

pressed mathematically as

r 8 r s

D = I pdA sin a + I TodA cos a (33)

r
s

in which / designates ''integral over the surface of the object."

The drag resulting from the pressure variation over the surface of the

object is called the "form" or "profile" drag, Dp ,
since its magnitude

will be found to depend primarily on the "form" or "profile" of the

object. The drag force, Df ,
incurred by the shear stresses over the

surface of the object due to frictional effects is termed the "frictional"

or "skin friction drag." Hence the relations:

r s

Profile drag, Dp
= I pdA sin a (34)

r s

Frictional drag, D/ = / r dA cos a. (35)

and from equation (33)

D = Dp + Df (36)

The approximate relative magnitudes of these drag forces occurring
on various objects when placed in a turbulent flow and the effect of

the turbulent wake upon them may be obtained from a study of objects

having different shapes but the same cross section, placed in the same
fluid flow. Three such objects are: the thin circular disk, sphere, and
streamlined form of Fig. 74.

For the disk, the streamline picture indicates a stagnation point
at the center of the upstream side and a greatly reduced pressure at
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the edges. This reduced pressure, being adjacent to the turbulent

wake, is transmitted into it, causing the downstream side of the disk

to be exposed to reduced pressure which will contribute to the profile

drag force. Designating the pressure reduction below that in the

FIG. 74.

undisturbed flow by vectors directed away from the surface of the disk

(and that in excess of the pressure in the undisturbed flow by vectors

toward the surface), a pressure diagram results whose net area is the

profile drag. Thus the profile drag is given by

Dp
= 2(ABC + BFGH - FCE)

and the frictional drag, Df, will then be zero since none of the shear

stresses on the surface of the disk have components in the direction of

motion.

For the sphere, the turbulent wake is smaller than that of the disk

and, from examination of the streamline picture, will possess a some-

what higher pressure. To obtain the profile drag graphically the dia-

gram of the pressure components is necessary. Here

Dp
= 2(ABC + EFG - CDE)

which is seen to be much smaller than that of the disk, a fact which is

confirmed by many experiments indicating the profile drag of the

sphere to be roughly one-third that of the disk. The frictional drag
of the sphere is a finite quantity since the shear stresses at its surface

have components in the direction of motion; however, shear-stress

variations are extremely difficult to calculate and their small magni-
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tudes will result in a frictional drag which is negligible compared to

the profile drag of the sphere.

For the streamlined form the turbulent wake is extremely small and
the pressure surrounding it and within it is comparatively large since

the gentle contour of the body has allowed deceleration of the flow and

consequent regain of pressure, without incurring separation. The

pressure diagrams lead directly to the conclusion that the profile drag
of the streamlined form is very small, and experimental results indicate

it to be about 1/40 that of the disk. The frictional drag for objects

of this shape is much greater than that for the sphere since streamlining
has brought more surface area into contact with the flow. For well-

streamlined objects frictional drag assumes a magnitude comparable to

that of profile drag.

The foregoing examples illustrate the fact that the viscosity prop-

erty of a fluid is the root of the drag problem. Viscosity has been seen

to cause drag either by frictional effects on the surface of an object or

through profile drag by causing separation and the creation of a low-

pressure region behind the object. By streamlining an object the

size of its low-pressure turbulent wake is decreased and a reduction in

profile drag is accomplished, but in general an increase in frictional

drag is incurred.

For an ideal fluid in which there is no viscosity and thus no cause

for frictional effects or formation of a turbulent wake, regardless of

the shape of the object about which flow is occurring, it is evident that

the drag of the object is zero. Two centuries ago, D'Alembert's dis-

covery that all objects in an ideal fluid exhibit no drag was a funda-

mental and disturbing paradox ; today this fact is a logical consequence
of the fundamental reasoning presented above.

29. Stability Secondary Flows. The flow phenomena about a

symmetrical body, such as the sphere, suggests the existence of a

general law of fluid motion which will prove to be widely applicable.

On the front half of the sphere the flow picture has been seen to be

practically identical with that of the ideal fluid, but on the rear half,

where a turbulent wake forms, the flow picture bears no resemblance to

that of the ideal fluid. On the front half of the sphere the flow is

being accelerated and pressure head (or energy) is being converted

into velocity head. For ideal flow to occur behind the sphere, decelera-

tion equivalent to the above acceleration must occur and velocity head

must be reconverted into pressure head. Owing to boundary layer

phenomena this deceleration of the fluid flow is not accomplished
without the formation of .a turbulent wake, the eddies of which serve



122 THE FLOW OF A REAL FLUID

to consume fluid energy. This single example illustrates the following

general law of fluid motion: Acceleration of a moving fluid, identified

by convergent streamlines and a decrease in pressure in the direction of

motion, is an efficient and stable fluid process, accompanied by no

eddy formation and small energy losses; on the other hand, decelera-

tion of fluid flow is an inefficient process, accompanied by instability,

eddy formation, and large energy losses.

These principles may be seen to apply to flow through passages

such as the convergent-divergent tube or the nozzle of Fig. 75, where

smooth, stable flow exists in the convergent passages but separation

and eddying turbulence occur as the flow is decelerated.

Acceleration Deceleration

Acceleration Deceleration

> Surface of discontinuity

FIG. 75.

Another engineering application of these principles occurs in a

comparison of the efficiencies of hydraulic turbines and centrifugal

pumps. In the turbine the flow passages are convergent, causing

continual acceleration of the fluid through the machine. In the pump,
which creates pressure head by dynamic means, the passages are diver-

gent. Hydraulic turbine efficiencies have been obtained up to 94 per

cent but maximum centrifugal pump efficiencies range around 87

per cent, and the difference between these efficiencies may be attributed

to the inherent efficiency and inefficiency of the acceleration and

deceleration processes.

Another consequence of the boundary layer is the creation of a

flow within a flow, a "secondary flow" superimposed upon the main,

or "primary," flow. A classical and useful example of the creation of

an eddy motion and dissipation of energy by a secondary flow occurs

when fluid flows through a smooth bend in a circular pipe (Fig. 76).
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For an ideal fluid flowing under these conditions it has been shown

(Art. 24) that a pressure gradient develops across the bend due to the

centrifugal forces of fluid particles as they move through the bend.

Stability occurs in the ideal fluid when this pressure gradient brings

about a balance between the centrifugal and centripetal forces on the

fluid particles. In a real fluid this stability is disrupted by the velocity

being reduced to zero at the walls owing to the existence of the laminar

film. The reduction of velocity at the outer part (A) of the bend

reduces the centrifugal force of the particles moving near the wall,

causing the pressure at the wall to be below that which would be main-

tained in an ideal fluid. However, the velocities of fluid particles

-Laminar film

FlG. 76.

toward the center of the bend are about the same as those of the ideal

fluid, and the pressure gradient .developed by their centrifugal forces

is about the same. The "
weakening" of the pressure gradient at the

outer wall will cause a flow to be set up from the center of the pipe

toward the wall which will develop into the twin eddy motion shown,

and this secondary motion added to the main flow will cause a double

spiral motion, the energy of which will be dissipated in heat as the

motion is destroyed by viscosity. The energy of the secondary motion

has been derived from the available fluid energy, and as viscosity

causes this energy to be dissipated, fluid energy is lost in much the same

way as it is lost by eddies in a turbulent wake,
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PROBLEMS

222. If 30 gpm of water flow in a 3-in. pipe line at 70 F, is the flow laminar or

turbulent?

223. Glycerine flows in a 1-in. pipe at a velocity of 1 ft/sec and temperature of

80 F. Is the flow laminar or turbulent?

224. Superheated steam at 400 F and absolute pressure 100 lb/in.
2
(w - 0.202

lb/ft
3
) flows in a 1-in. pipe at a velocity of 5 ft/sec. Is the flow laminar or turbulent?

225. Linseed oil flows at 80 F in a |-in. pipe at 2 ft/sec. Is the flow laminar or

turbulent?

226. Carbon dioxide flows in a 2-in. pipe at a velocity of 5 ft/sec, temperature of

150 F, and pressure 40 lb/in.
2 The barometer reads 15.0 lb/in.

2
Is the flow

laminar or turbulent?

227. What is the maximum flow of water which may occur in a 6-in. pipe at 80 F
at laminar condition?

228. What is the maximum flow of air that may occur at laminar condition in a

4-in. pipe at 30 lb/in.
2 abs and 100 F.?

229. What is the largest diameter pipe line that may be used to carry 100 gpm
of Unseed oil at 80 F if the flow is to be laminar?

230. A fluid flows in a 3-in. pipe line which discharges into a 6-in. line. Calculate

the Reynolds number in the 6-in. pipe if that in the 3-in. pipe is 20,000.

231. The loss of energy in a certain pipe line flow is 3 ft-lb/lb of fluid flowing.

What loss of energy will occur when the flow is doubled, assuming (a) laminar flow,

(b) turbulent flow and smooth pipe, (c) turbulent flow and rough pipe?

232. Water flows horizontally between vertical parallel plates spaced 2 ft apart.

If the pressure drop in the direction of flow is 4 lb/in.
2
per 100 ft, calculate the shear

stress in the flow at the surfaces of the plates, 3 in., 6 in., and 9 in. from them, and

at the midpoint between them.

233. A liquid flows in laminar condition between two parallel plates 2 ft apart.

If the velocity at the midpoint between the plates is 4 ft/sec, calculate the velocities

at the plates and at distances of 3 in., 6 in., and 9 in. from them. If the viscosity of

this liquid is 0.1 Ib sec/ft
2 and its density 1.8 slugs/ft

3
,
calculate the loss of pressure

and loss of head in a distance of 100 ft along the flow. What is the rate of flow

through a section having b 3 ft? (See Fig, 68.)



CHAPTER V

SIMILARITY AND DIMENSIONAL ANALYSIS

30. Similarity and Models. Near the latter part of the last cen-

tury, models began to be used to study flow phenomena which could
not be solved by mathematical methods or by means of available

experimental results. At the present time the use of models is increas-

ing: the aeronautical engineer obtains data and checks his designs by
model tests in wind tunnels; the ship designer tests ship models in

towing basins; the mechanical engineer tests models of turbines and
pumps and predicts the performance of the full-scale machines from
these tests; the civil engineer works with models of hydraulic structures
and rivers to obtain more reliable solutions to his design problems.
The justification for the use of models is an economic one a model,
being small, costs little compared to the "prototype" from which it is

built, and its results may lead to savings of many times its cost; a
model also adds a certainty to design which can never be obtained
from calculations alone.

Similarity of flow phenomena not only occurs between a prototype
and its model but also may exist between various natural phenomena
if certain laws of similarity are satisfied. Similarity thus becomes a
means of correlating the apparently divergent results obtained from
similar fluid phenomena and as such becomes a valuable tool of modern
fluid mechanics

; the application of the laws of similarity will be found
to lead to more comprehensive solutions and thus to a better under-

standing of fluid phenomena in general.
There are many types of similarity, all of which must be obtained

if complete similarity is to exist between fluid phenomena. The first

and simplest of these is the familiar geometrical similarity which states
that the flow pictures of model and prototype have the same shape,
and, therefore, that the ratios between corresponding lengths in model
and prototype are the same. In the model and prototype of Fig. 77,
for example,

125
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Corollaries of geometric similarity are that areas vary with the

squares of lengths, thus

= (AY = (L\
2

\dj \lj

and that volumes vary with the cubes of lengths.- 1

Prototype Model

FIG. 77.

If the two similar objects of Fig. 77 are placed in the similar fluid

flows of Fig. 78, another type of similarity, kinematic similarity, exists

if motion of the fluid about the objects is the same. Such similarity of

motion is characterized by ratios of corresponding velocities and accel-

erations being the same throughout the flow picture; for example,

FIG. 78.

In order to maintain geometric and kinematic similarity between

flow pictures there must be forces acting on corresponding fluid masses

which are related by ratios similar to those above, and this similarity,

governed by the existence of such force ratios, is called "dynamic
similarity/' Without defining the nature of the forces, dynamic
similarity may be indicated schematically (Fig. 78) by
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or

(*) =
(Is]

\F!/ model V^l/pprototype

But these force ratios must be maintained for all the corresponding
fluid masses throughout the flow pictures, and thus it is evident that

they can be governed only by relations between dynamic and kinematic

properties of the flow and the physical properties of the fluids involved.

The forces which may act on fluid masses in a fluid flow are those

of pressure, Fp; inertia, F/; gravity, FQ\ viscosity, Fy\ elasticity, FE\
and surface tension, FT- Since these forces are taken to be those on

any fluid mass, they may be generalized by the following fundamental

relationships:

FP = pA =
pi

2

Fj = Ma =
p/

3

^-
= PF2

/
2

/

FQ = Mg = pl
3
g

FV = ^A = M^?
dy I

FE = EA = El2

FT = Tl

To obtain dynamic similarity between two flow pictures when all

these forces act, all independent force ratios which can be written

must be the same in model and prototype; thus dynamic similarity

between two flow pictures when all possible forces are acting is

expressed by the following five simultaneous equations :

,Fi/P \Fi/m \pV
2
/P \pFVm

FI\ ( FT\ ( F/p\ / F/p\ _ /Reynolds\ _/Reynolds\

J*r/p ~\Fv/ \~M~A
""

\^T/W
""

\ number JP\ number )m

FI\ / Fi\ / F2 \ / F2 \ __ / Froude \ f Froude \

WP \7fc/*
=
\lg)p

~
\ !g/

~
\ number /P

"
\ number )m

JF^s/p \~FJs)m
""

\"E"/P \~/m
""

\ number /p ""\ number )m

Fi\ /Fi\ fplV
2\ (plV*\ t Weber \ f Weber \

JT/P ~\FT/'* \~/p~\T~/~ \ number )p \ number )m
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in which the quantities, , V, and / may be any pressure, velocity,

and length, provided that the quantities used are the corresponding

ones in model and prototype ; the force ratios are named for the experi-

menters who first derived and used them.

Fortunately, in most engineering problems the above five equa-
tions are not necessary since some of the forces stated above (1) may
not act, (2) may be of negligible magnitude, or (3) may be related by
certain known laws and, therefore, are not independent. In each new

problem of similarity a good understanding of fluid phenomena is

necessary to determine how the problem may be satisfactorily simpli-

fied by the elimination of irrelevant or negligible forces. The reason-

ing involved in such an analysis is best illustrated by citing certain

simple and recurring engineering examples.

In the classical aeronautical problem where a model of a wing is to

be built and tested (Fig. 79), the model must first have the same

shape as its prototype and be placed in the flow at the same "angle of

attack/
1

a. After these requirements are met, dynamic/ kinematic,

and geometric similarity of the flow pictures will be obtained if all the

relevant force ratios are made equal in model and prototype.

Certain forces, however, may be eliminated immediately: Surface

tension forces are negligible; if the fluids are taken to be incom-

pressible, the elasticity forces drop out; the gravity forces, although

acting on all fluid particles, do not affect the flow picture and, there-

fore, may be omitted. Thus, in this problem there exist only the

forces of pressure, inertia, and viscosity which must be related by
some physical equation. Since all corresponding forces in model and

prototype have the same ratio only one ratio is necessary to character-

ize complete dynamic similarity. This ratio is

and from this equation it is evident that complete dynamic similarity

fixes no theoretical restrictions as to the fluid which may be used in
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the testing of a model ; any fluid may be used provided that the Rey-
nolds number of the model can be made equal to the Reynolds number
of the prototype.

The above reasoning may be applied without change to the tur-

bulent flow of fluids in circular pipes (Fig. 80). Here geometric simi-

larity requires that the roughness pattern of the pipe surfaces be

similar, and complete dynamic similarity is

obtained when f pl J

(AJ ,
,

,

*

( ^ *
(NR )i

= (NR) 2

Here, again, it is immaterial which fluids are ^
-

)

involved; complete dynamic similarity is ob-
'-

;p
-- ^

tained when the Reynolds numbers of the two FIG. 80.

flows are the same. 1

It has been shown (Art. 25) that the laminar flow regime is defined

by low values of the Reynolds number and that low Reynolds numbers
indicate that inertia forces are small compared to those of viscosity.

For laminar flow, pressure forces are relatively large, but, owing to

large resistance, fluid motion is slow and inertia forces may be neg-

lected. Complete dynamic similarity is defined in laminar flow by

Fv/P \FV/m \fjLVjP

an equation whose shape is confirmed by equation 32, one of the laws

of laminar motion between parallel plates.

The laws of ship-model testing were first developed and used by
William Froude in England about 1870. In this specialized field of

engineering the problems of similarity are different from those pre-

sented above, but the fluid phenomena and reasoning involved will

find many other useful engineering applications. In this problem the

fluids suffer inappreciable compression during flow, and the elasticity

forces may be neglected. If the models for testing are not extremely

small the forces of surface tension are entirely negligible, leaving the

forces of pressure, inertia, viscosity, and gravity to be considered.

As a ship moves through the free surface of a liquid it encounters

resistance due to skin friction and to pressure variation, like a sub-

1 The significance of this simple statement should be fully appreciated. Complete

dynamic similarity implies similarity of the complex turbulent flow processes in the

two pipes.
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merged object (Art. 28). For a surface vessel the pressures over the

hull are determined by the Bernoulli equation applied to the stream-

tubes adjacent to the hull. This pressure variation, however, is mani-

fested by a rise or depression of the liquid surface since the pressure

at a point below the surface is related to its depth by the static law

dm t*m ''/m

FIG. 81.

p = wh. The shape of the water surface adjacent to a surface vessel

becomes that of Fig. 81, and, from the static law, the forces of pres-

sure (p) become equivalent to those of gravity (wh). Therefore, pres-

sure forces are eliminated from the problem and complete dynamic

similarity is defined by the simultaneous equations

VIPFA /FA (Vlp\ (
~T)

= VvJ =
V
-

)
=

VFV/P \FV/ \ M /P \

Solution of these equations results in

^G")
1

vm ^m'

indicating that a relation between the kinematic viscosities of the

fluids involved is determined when the model scale is selected. This

means (1) that a fluid for the towing basin must be found whose kine-

matic viscosity is a certain proportion of that of water, or (2) that if

water is used in the towing basin the model scale must be unity, result-

ing in a full-scale model ! This fact proves an unsurmountable obstacle

to complete dynamic similarity for ship models and necessitates a
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compromise between the Reynolds and Froude laws. This com-

promise is effected by obtaining ''incomplete dynamic similarity" by
making the Froude numbers in model and prototype the same and cor-

recting the test results .by experimental data dependent upon the

Reynolds law. This method of treatment is justified since the flow

conditions resulting from viscosity are small compared to those result-

ing from the wave pattern which is an inertia-gravity phenomenon.

ILLUSTRATIVE PROBLEMS

Water flows at 86 F in a 3-in. pipe line at a velocity of 5 ft/sec. With what

velocity must linseed oil flow in a 1-in. pipe line at the same temperature for the

two flows to be dynamically similar?

The Reynolds numbers for the two flows are the same.

.

12 32 " 2 3
. y =37.2 ft/sec

0.00001667 0.000692

A surface vessel of 500-ft length is to be tested by a model 10 ft long. If the

vessel travels at 25 mph, at what speed must the model move in order to have

approximate similarity between model and prototype?

For incomplete similarity the Froude numbers are the same in model and

prototype.

5280\ 2

36007 V2

500 X 32.2 10 X 32.2
518 ft/sec

31. Dimensional Analysis. Another useful tool of modern fluid

mechanics and a necessary adjunct to the principle of similarity is that

field of mathematics known as
'

'dimensional analysis," the mathe-

matics of the dimensions of quantities.

The methods of dimensional analysis are built up on the principle

of dimensional homogeneity which states that an equation expressing a

physical relationship between quantities must be dirnensionally homo-

geneous; i.e., the dimensions of each side of the equation must be the

same. This principle has already been utilized in Chapter I in obtain-

ing the dimensions of mass density and kinematic viscosity, and it has

been recommended as a valuable means of checking engineering calcu-

lations. Now, further investigation of the principle will reveal that it

affords a means of constructing physical equations from a knowledge
of the variables involved and their dimensions.
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Before examining the methods of dimensional analysis, recall that

there are two different systems by which the dimensions of physical

quantities may be expressed. These systems are the force-length-time

system and the mass-length-time system. The former system, gener-

ally preferred by engineers, becomes the familiar
'

'foot-pound-second"

system when expressed in English dimensions; the latter system in

English dimensions becomes the "foot-slug-second" systern. The
latter system is generally preferred in dimensional analysis, and, since

the student is familiar with the former system, the use of the latter

will serve to develop versatility in the use of dimensions.

A summary of the fundamental quantities of fluid mechanics and

their dimensions in the various systems is given in Table VI, the con-

ventional system of capital letters being followed to indicate the dimen-

sions of quantities. The basic relation between the force-length-time

and mass-length-time systems of dimensions is given by the Newtonian

law, force or weight = (Mass) X (Acceleration) and, therefore,

dimensionally,

AF ~ MY2

from which the dimensions of any quantity may be converted from

one system to the other.

To illustrate the mathematical steps in a simple dimensional prob-

lem, consider the familiar equation of fluid statics

p = wh

but assume that the dimensions of w and h are known and those of p
unknown. The dimensions of p can be only some combination of

M, L, and T, and this combination may be discovered by writing the

equation dimensionally as

Unknown dimensions of p = (Dimensions of w) X (Dimensions of K)

or

M LbT c *
(jrlf*)

X (L)

in which a, 6, and c are unknowns. The principle of dimensional

homogeneity being applied, the exponents of each of the quantities is

the same on each side of the equation, giving

a =
1, jrs2 + 1* 1, =~2
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TABLE VI

DIMENSIONS OF FUNDAMENTAL QUANTITIES USED IN FLUID MECHANICS

whence

Dimensions of p = ML M
LT*

It is obvious, of course, that this result might have been obtained more

directly by cancellation of L on the right-hand side of the equation,

for this has been, and will continue to be, the usual method of obtain-

ing the unknown dimensions of a quantity. It is of utmost impor-

tance, however, to note the mathematical steps which lie unrevealed

in this hasty cancellation, if the basis of dimensional analysis is to be

understood.

The above methods may now be used in quite another and more

important way. To illustrate by another familiar example, suppose

that it is known that the power P, which can be derived from a hy-

draulic motor, is dependent upon the rate of flow through the motor

Q, the specific weight of the fluid flowing w, and the unit energy E
which is given up by every pound of fluid as it passes through the
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machine. Suppose that the relation between these four variables is

unknown but it is known that these are the only variables involved in

the problem.
2 With this meager knowledge the following mathe-

matical statement may be made :

P~f(Q,w,E)

From the principle of dimensional homogeneity it is obvious^ that the

quantities involved cannot be added or subtracted since their dimen-

sions are different. This principle limits the equation to a combina-

tion of products and quotients of powers and roots of the quantities

involved, which may be expressed in the general form

P = CQawbEc

in which Cis a dimensionless constant which may exist in the equation
but cannot, of course, be obtained by dimensional methods. Writing
the equation dimensionally

ML2

_ /ZA8

(_M_\
b

T 3 ~\T/ \L2T 2
)

( >

equations are obtained in the exponents of the dimensions as follows :

M : 1 = b

L : 2 = 3a - 2b - c

T : -3 =- a - 2b

whence
a =

1, 6 =
1, c = 1

and resubstitution of these values in the above equation gives

P CQwE

The shape of the equation (confirmed by equation 17) has, therefore,

been derived without physical analysis solely from consideration of the

dimensions of the quantities which were known to enter the problem.
The magnitude of C may be obtained either (1) from a physical analy-

sis of the problem, or (2) from experimental measurements of P, <2,

w, and E.

From the above problem it appears that in dimensional analysis

only three equations can be written since there are only three funda-

2 Note that experience and analytical ability in determining the relevant variables

are necessary before the methods of dimensional analysis can be successfully applied.
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mental dimensions: M, L, and T. This fact limits the completeness
with which a problem with more than three unknowns may be solved,

but does not limit the utility of dimensional analysis in obtaining the

shape of the equation. This point may be illustrated by considering a

more complex problem of fluid mechanics, that of the calculation of

the drag of a surface vessel, and in this problem it may also be observed

how the similarity principle may be utilized in interpreting the results.

Considering the surface vessel of Fig. 81, having a certain shape and

draft d, the force 3 D
y necessary to tow or propel the ship will depend

upon the size of the ship (characterized by its length, /) the viscosity

Vj and density p of the fluid in which the ship moves, the velocity of

motion V, and the acceleration due to gravity g, since it has been

shown in Art. 30 that the wave pattern is a gravity phenomenon.

Thus, with no further knowledge than the variables involved in the

problem, an equation may be written

which for dimensional reasons must have the shape

D = CPPyVd
g'

and the equation of the dimensions of the terms is

M = (L]

resulting in the three equations of the exponents of M, L, and T

M : 1 = b + c

L:l = a - 3b c + d + e

T : -2 =- c - d - 2e

whence
b = 1 c, d = 2 - c - 2e, a = 2 + e c

and substituting these values in the second equation

and by collecting terms

8 The force, D, is the equal and opposite of the total drag of the ship.



136 SIMILARITY AND DIMENSIONAL ANALYSIS

But
F2

VlpNF = and NR =
lg M

allowing the equation to be written in the more general form

D = f(NF,NR)pl
2 V2

The drag of objects moving through a fluid is usually expressed by

in which CD is a dimensionless "drag coefficient,
"
the magnitude and

properties of which are usually determined by experiment. Com-

parison of the last two equations reveals that

CD = 2f(NFNR ) =f'(NPtNB)

showing without experiment, but from dimensional analysis alone,

that the drag coefficient depends upon the Froude and Reynolds
numbers.

The principles of dynamic similarity have demonstrated that the

flow picture about a surface vessel is completely similar to the flow

picture about its model if

(ftp) prototype
= (-^F) model

and

(NR) prototype
=

(^Vfl)model

but since

CD = f'(NPtNR )

it is evident that one of the results of obtaining complete dynamic

similarity between a model and prototye is the equality of the drag
coefficients in the model and prototype. Thus the fundamental reason

for obtaining dynamic similarity between a model and its prototype is

to cause their dimensionless coefficients to be the same, allowing them
to be measured in the model and used for the prototype.

BIBLIOGRAPHY

SIMILARITY

A. H. Gibson, "The Principle of Dynamic Similarity with Special Reference to Model

Experiments," Engineering, Vol. 117, 1924, pp. 325, 357 r 391, 422.

A. C. CHICK, "The Principle of Similitude," Hydraulic Laboratory Practice, p. 796,

A.S.M.E. 1929.



PROBLEMS 137

K. C. REYNOLDS, "Notes on the Laws of Hydraulic Similitude as Applied to Experi-

ments with Models," Hydraulic Laboratory Practice, p. 759, A.S.M.E., 1929.

O. G. TIETJENS, "Use of Models in Aerodynamics and Hydrodynamics," Trans.

A.S.M.E., Vol. 54, 1932, p. 225.

DIMENSIONAL ANALYSIS

J. R. FREEMAN, "Introduction," p. 775, Hydraulic Laboratory Practice, A.S.M.E.,
1929.

A. C. CHICK, "Dimensional Analysis," p. 782, Hydraulic Laboratory Practice,

A.S.M.E., 1929.

E. BUCKINGHAM, "Model Experiments and the Forms of Empirical Equations,"
Trans. A.S.M.E., Vol. 37, 1915, p. 263.

P. W. BRIDGMAN, Dimensional Analysis, Yale University Press, 1922.

PROBLEMS

234. An airplane wing of chord length 10 ft moves through still air at 60 F and
14.7 lb/in.

2 at a speed of 200 mph. A 1 : 20 scale model of this wing is placed in a

wind tunnel, and dynamic similarity between model and prototype is desired,

(a) What velocity is necessary in a tunnel where the air has the same pressure and

temperature as that in flight? (b) What velocity is necessary in a variable-density

wind tunnel where pressure is 200 lb/in.
2 abs and temperature 60 F? (c) At what

speed must the model move through water (60 F) for dynamic similarity?

235. An airship 600 ft long is to be tested by a 1 : 100 scale model. If the ship

moves at 80 mph and the wind-tunnel velocity is 60 mph, calculate model and flight

Reynolds numbers, assuming that both tunnel and flight air is the same (14.7 lb/in.
2

,

60 F).

236. A submerged submarine moves at 10 mph. At what theoretical speed must

a 1 : 20 model be towed for dynamic similarity between model and prototype,

assuming sea water and towing-tank water the same?

237. It is desired to obtain dynamic similarity between 2 cfs of water at 50 F
flowing in a 6-in. pipe and linseed oil flowing at a velocity of 30 ft/sec at 90 F.

What size of pipe is necessary for the linseed oil?

238. The flow of air in a 2-in. pipe at 10 lb/in.
2 and 60 F is to be similar to the

water flow of the preceding problem. If barometer is standard, what air velocity is

required?
230. Water flows at 60 F in a 3-in. pipe at 5 ft/sec. What velocity must water

of the same temperature have in a 6-in. pipe for the two pipe flows to be dynamically
similar?

240. Water (60 F) flows in a 2-in. pipe at 3 ft/sec. What velocity must glyc-

erine at 80 F have in a 6-in. pipe for the two flows to be dynamically similar?

241. When castor oil flows at 60 F in a 2-in. horizontal pipe line at 10 ft/sec, a

pressure drop of 320 lb/in.
2 occurs in 200 ft of pipe. Calculate the pressure drop in

the same length of 1-in. pipe when linseed oil at 100 F flows therein at a velocity of

1 ft/sec.

242. A ship 200 ft long is to be tested by a 1 : 50 scale model. If the ship is to

travel at 30 mph, at what speed must the model be towed to obtain incomplete

dynamic similarity with its prototype?
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243. A ship model 3 ft in length is tested in a towing basin at a speed of 3 ft/sec.

To what ship velocity does this speed correspond if the ship has a length of (a) 200 ft,

(b) 400 ft?

244. The discharge of a perfect fluid through an orifice under a static head is an

inertia-gravity phenomenon and one to which the Froude law may be applied.

Using such an orifice and a geometrically similar model of the same, derive ratios

between the following quantities in model and prototype (in terms of the head):

velocity, rate of flow, horsepower of jet.

245. By dimensional analysis prove that: Kinetic energy = constant X MV^.
246. By dimensional analysis prove that: Centrifugal force = constant X MV2

/r.

247. By dimensional analysis prove that: G constant X AwV.
248. Prove by dimensional analysis that a body of mass M and radius of gyration

r, rotating at angular velocity co, possesses kinetic energy given by

Kinetic energy ~ constant X Mr2
co
2

249. Prove by dimensional analysis that: w p/RT.
250. By dimensional analysis, prove that the force F necessary to accomplish a

change A F in the velocity of a mass M in time t is given by

F constant X
t

251. By dimensional analysis, prove that: Pressure drop = constant X
laminar flow. (See equation 32 and Art. 30.)



CHAPTER VI

FLUID FLOW IN PIPES

The problems of fluid flow in pipe lines the prediction of rate of

flow through pipes of given characteristics, the calculation of energy
losses therein, etc. have wide application in engineering practice;

they afford an opportunity of applying many of the foregoing principles

to fluid flows of a comparatively simple and controlled nature.

32. Energy Relationships. The flow of a real fluid differs from

that of a perfect fluid in that energy in the real fluid is continually
converted into heat through the processes of turbulence and friction,

brought about by the existence of viscosity. Therefore the energy

equations of Art. 20 must be modified for application to the real fluid

by the introduction of a lost energy term. This being designated as

EL (foot-pounds per pound), or as the "lost head," HL (feet), it is ob-

vious from previous reasoning that

EL = hL

Introducing the lost energy to the various energy equations, the

general energy equation 14

1 V\ fa Vl
/i+ +^+zl + 778EH +EM = I2 +^ + ~*-+z2 (14)

Wi 2g w2 2g

remains unchanged. This results from the fact that the heat energy

generated by the turbulence and frictional processes is merely an

exchange of energy between the terms of the equation and hence does

not appear therein as a separate term. If we assume that no machine

exists between the sections 1 and 2 of the streamtube EM = 0, and
write the above equation in differential form

= dl + d + d ~

substituting for w its equivalent l/v, the equation becomes

(V2
\

77SdEH = dl + d (pv) + d() + dz

139
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or

77SdEff = dl + pdv + vdp + d[ ) + dz
\2g /

Considering now the thermodynamic aspects of the problem, the

total amount of heat added to every pound of flowing fluid will be the

sum of that added from external sources and that generated by fric-

tional processes; thus the total heat added to the fluid becomes"

77SdEH + dhL

which goes into changing internal energy and doing work upon the

flowing fluid. Thus
77SdEH + dhL = dl + pdv

Solving this equation simultaneously with the above general energy

equation yields

>2>

which is the differential form of the Bernoulli equation for the flow

of all fluids.

For compressible fluids, the equation becomes, upon substitution

of l/w for v and integration,

^ + lf + Zl==
Zl + 22 + ^ (37)

in which the evaluation of the integral term is dependent upon the

variation of density with pressure.

For fluids which may be treated as incompressible there is no

variation of density with pressure, and the integration may be carried

out, giving
O TT2

n-\ V 1 Do V o
I

*
\ ___ x <a

|
*>

| |
7 /'JQN

w 2g
l w 2g

2

the familiar Bernoulli equation, modified to include the lost energy

term, HL.

33. General Mechanics of Fluid Flow in Pipe Lines. The meaning
of lost head and energy in pipe flow can best be obtained from a study

of the mechanics of fluid motion in circular pipes, similar to that of

Art. 27. Figure 82 represents a section of a long, straight, uniform,
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sloping circular pipe in which laminar or turbulent flow of an incom-

pressible fluid is fully established. 1 Flow being assumed from section 1

to section 2, the Bernoulli equation (38) modified for lost head may be

described graphically as indicated, and it is observed: (1) that the

"pressure (hydraulic) grade line" must always slope downward in the

direction of flow, and (2) that the vertical drop in this grade line

between any two points must represent the lost head in the pipe
between these two points.

FIG. 82.

Since the pipe is of uniform size, the continuity principle requires

motion in the pipe to take place at constant velocity, and constant-

velocity motion in turn requires that the net force acting on any mov-

ing fluid mass be zero. The forces acting along the axis of the pipe
on the fluid mass of length / and radius r are those of pressure on the

ends, shear on the sides, and the component of weight in the direction

of motion. The equation involving these forces may be seen from the

figure to be

piirr
2

p2irr
2 + W sin a - r2wrl =

or

(Pi Pz)Trr
2 + wr

2wlsin a r2irrl =

1 That is, the section considered is a good distance from the pipe entrance or other

source of eddying turbulence.
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<2>1
~~

2>o

in which sin a = ---
Substituting this value and canceling TIT,

and dividing by
2lr

w
But from the figure

, fpi P2
,

\
hL =

I
----h zi

- z2 1w w /

giving

/w/fciA
r = (-)r (39)

which shows that here, as between parallel plates (Art. 27), the distri-

bution of shear stress in both flow regimes is linear, shear stress being

maximum at the pipe wall and zero at the pipe center. At the wall the

shear stress is designated by T O ,
and from the above general equation

2 4

The lost power PL accompanying the lost head fa may be calcu-

lated directly from

PL = QwhL

but more fruitfully from the work done by the moving fluid against

the shear stress, TO . Here

PL = (r irdt)V

but

wdfa

which when substituted above results in

_ 2 \
PL ---- =

^ VJ
whL = QwhL

as before.
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ILLUSTRATIVE PROBLEM

Water flows through a section of a 12-in. pipe line 1000 ft long, running from

elevation 300 to elevation 150. A pressure gage at elevation 300 reads 40 lb/in.
2
,

and one at elevation 150 reads 90 lb/in.
2 Calculate loss of head, direction of flow,

and shear stress at the wall of the pipe.

92.3

150'

M _ 40 >< 144 _ 92 s ftI I yi,O 1L

\w/m 62.4

90 X 144 = 208.0 ft

'150 62.4

hL = 300 + 92.3 - 150 - 208.0 = 34.3 ft

Direction of flow: downward

wdhL 62.4 X 1 X 34.3

4 X 1000
= 0.535 lb/ft

2

34. Laminar Flow. For laminar flow the relation between shear

stress and velocity gradient,

dv
T =

JJ,

dy

allows a simple theoretical derivation of the relationships between the

other variables involved, the results of which are confirmed by
experiment.

The general equation for the shear stress, r, has been shown to be

but in laminar flow r is also given by
5

dv
'

dr

2 See footnote 6, page 115.
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Equating these two expressions for r,

dv

"^dr* 21

the variables of which may be separated

whL
rdr

and the relation between velocity and radius obtained by integrating
the equation between the center of the pipe, where r = and v = Vcy

and the variable radius, where r = r and v = v. Integrating

/
VC

7

, whLdv=
~-w (40)

showing that for laminar flow in circular pipes the velocity profile is

a parabolic curve (Fig. 83) having a maximum velocity at the center

of the pipe and reducing to zero at the walls.

FIG. 83.

From the fact that, when v = 0, r = R, the fundamental equation of

laminar flow may be obtained from equation 40

_y c

The relation between the average velocity and center velocity may
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be derived by equating two expressions for the rate of flow, Q.

Obviously,
Q =

in which V is the average velocity. But

/A.

s+R

vdA = / v2vrdr

in which the variable velocity, v, may be shown from equation 40 to be

given by

Substituting this value for v and integrating,

and equating the two expressions for Q

(42)

proving that the average velocity is always one-half of the center

velocity for laminar flow in circular pipes.

Equation 41 may now be obtained in terms of the average velocity,

V, by substituting Vc
= 2 V, giving

a more practical version of the basic laminar flow equation. Trans-

position of equation 43 allows calculation of lost head occurring in

laminar flow from
,, 7Tr
32fj.IV

hL =~^ (44)

and indicates that the head lost in laminar flow varies directly with the

velocity of flow. By multiplying the right-hand side of equation 44 by
2 V/2 V and substituting pg for w, equation 44 may be transformed for

use in subsequent developments to

32/1/7 27 64 \ I V2 64 / V2

Pgd
2 2V ~[ Vdpd 2g

"
NR d2g~
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Another statement of the equation for laminar flow may be derived

in terms of the rate of flow, Q, by substituting for V in equation 43

the relation

4

which gives

>rrd
4whL

Q = -
(46)

This equation shows that in laminar flow the rate of flow, Q, which will

occur in a circular pipe varies directly with the lost head and with the

fourth power of the diameter but inversely with the length of pipe and

viscosity of the fluid flowing. These facts of laminar flow were estab-

lished experimentally, independently, and almost simultaneously by
Hagen (1839) and Poiseuille (1840), and thus the law of laminar flow

expressed by the above equations is termed the
"
Hagen-Poiseuille

law."

The experimental verification, by Hagen, Poiseuille, and later

investigators, of the above theoretical derivations serves to confirm

the assumptions (1) that there is no velocity adjacent to a solid

boundary and (2) that in laminar flow the shear stress is given by

dv
T = M

ay

which were taken for granted in the above derivations.

ILLUSTRATIVE PROBLEM

One hundred gallons of oil (S = 0.90 and /x
= 0.0012 Ib sec/ft

2
) flow per minute

through a 3-in. pipe line. Calculate the center velocity, the lost head in 1000 ft.

of this pipe, and the shear stress and velocity at a point 1 in. from the center line.

100 1

=4.53 ft/sec
60 X 7,

Vdp 4.53 X A X (0.90 X 1.935) ,_
iv R =* = '

- - = 1645
M 0.0012
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Therefore laminar flow exists and Fc = 2 X 4.53 = 9.06 ft/sec

64 / F2 64 1000 (4.53)
2

X
NR d2g 1645

v = Vc [ 1 - )
= 9.06

|
1 -

.
, MX -------- = 49.6 ft of oil

2g

(l

- - 5.03 ft/sec

2/

"

= 0.116 Ib/ft*
2 X 1000 12

35. Dimensional Analysis of the Pipe-Friction Problem. Although
Prandtl and von Karman have met with some success in a theoretical

treatment of turbulent flow in pipes, the advanced mathematics

involved places their analysis of the subject beyond the scope of an

elementary textbook.

However, a good understanding of turbulent pipe flow may be

attained from a study of experimental results, interpreted by the

methods of dimensional analysis and similarity. A general investiga-

FIG. 84.

tion of pipe flow by these methods will, of course, lead to results which

are equally applicable to laminar and turbulent flow and, therefore,

will allow the inclusion not only of experimental results of tests in

turbulent flow, but also of the relationships of laminar flow which were

derived in Art. 34.

For a dimensional analysis of the lost head due to pipe friction,

consider a rough pipe (Fig. 84), of diameter d, in which a fluid of

viscosity M and density p is flowing with an average velocity V. In a
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length of this pipe, /, a lost head, HL, is caused by pipe friction, and

the loss of pressure PL equivalent to this head loss is given by

PL W}IL

Assume that the roughness of the pipe has a definite pattern and that

the average height of the roughness protuberances is e. Making a selec-

tion of the variables upon which the lost pressure, pi,, depends,

and by the methods of dimensional analysis,

pL = ClaVbdc x
p
ye

z

Before writing the equations involving the dimensions of these quanti-

ties it may be predicted that

a = 1

or, in other words, the loss of head may be expected to vary directly

with the length of pipe. The dimensional equation thus becomes

M
LT2

~ w>

from which the equations of exponents are

M: 1 = x + y

L: -1 = 1 +& + -#
nr* , _____

f\ ___ _____
"L

____ _,

Solving in terms of x and z

b = 2 x

c=l x z

y = 1 x

which, when substituted above, give

PL = <

or by arrangement of terms and insertion of 2/2

d~7\Vdp) W
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but since

PL =

wd

But w/p =
g, Vdp/fjL

= NR, and since x and z are unknown the equa-
tion may be written in the general form

d^ (47)

The equation used by Darcy (1857), Weisbach, and others for the

calculation of lost head due to pipe friction was obtained experi-

mentally from numerous tests on the flow of water in pipes. This

so-called
"
Darcy equation" is the basis of pipe-friction calculations

today and is

I V2

/*=/-- (48)

in which/ is called the ''friction factor." The early hydraulic experi-

menters discovered that the friction factor was apparently dependent

upon the pipe diameter d, the average velocity of flow V, and the

roughness of the pipe, but with the use of dimensional analysis these

facts and more may be safely predicted today without the aid of experi-

ment, as may be seen from a comparison of the last two equations,

which gives

Dimensional analysis has thus allowed isolation of all the variables

upon which the friction factor depends and has shown that these

variables exist in two dimensionless combinations, Vdp/n, the Rey-
nolds number; and e/d, the "relative roughness"

3 of the pipe.

Dimensional analysis has indicated furthermore a single general solu-

tion of the pipe-friction problem which is applicable to all fluids.

The physical significance of equation 49 may be stated briefly:

The friction factors of pipes will be the same if their Reynolds numbers,

roughness patterns, and relative roughnesses are the same. This state-

ment being interpreted by the principle of similarity, it becomes

8 "
Relative

"
roughness since e/d expresses the size of the roughness protuberances

relative to the diameter of the pipe.
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evident that its basic meaning is : The friction factors of pipes are the

same if their flow pictures are in every detail geometrically and dynami-

cally similar.

Dimensional analysis cannot, of course, give the exact mathematical

relationship between /, NR, and e/d but indicates only that there is a

relationship between these variables which may be found by a theo-

retical or experimental analysis. The former has been used in the

case of laminar flow, resulting in equation 45

which shows that

NR d 2g

(50)

and that in laminar flow the friction factor / is independent of the

surface roughness, bearing out the fact (Art. 26) that surface roughness
can have no effect upon laminar flow.

For turbulent flow the following review of experimental results is

necessary to obtain the relationship of/, NR, and e/d.

36. Results of Pipe-Friction Experiments. The results of recent

tests by Nikuradse 4 demonstrate perfectly the relationship of /, NR,
and e/d for both laminar and turbulent flow. In these tests geometrical

FIG. 85. Relation of friction factor, Reynolds number, and relative roughness for

similar pipes.

similarity of the roughness patterns was obtained artificially by fixing

a coating of uniform sand grains to the pipe wall. The results of the

tests, plotted logarithmically on Fig. 85, illustrate the following

important fundamentals.

4
J. Nikuradse,

"
Stromungsgesetze in rauhen Rohren," V. D. I. Forschungsheft,

361, 1933.



RESULTS OF PIPE-FRICTION EXPERIMENTS 151

1. The physical difference of the laminar and turbulent flow regimes

is indicated by the change in the relationship of / to NR at the critical

Reynolds number of 2100.

2. The laminar regime is characterized by a single curve, given by
the equation / = 64=/Nn for all surface roughness and thus shows that

lost head in laminar flow is independent of surface roughness.

3. In turbulent flow a curve of / vs. NR exists for every relative

roughness, e/d, and from the shape of the curves it may be concluded

that for rough pipes the roughness is more important than the Reynolds
number in determining the magnitude of the friction factor.

4. At high Reynolds numbers, the friction factors of rough pipes

become constant dependent wholly upon the roughness of the pipe and

thus independent of the Reynolds number. Thus, for highly turbu-

lent flow over rough surfaces the Darcy equation becomes

/ V2

}IL
= (Constant)

- -

d 2g

showing that

HL a V2
(51)

for turbulent flow over rough surfaces.

5. In turbulent flow a single curve expresses the relationship of /
and NR for all pipes which are hydraulically smooth, showing that

surface roughness, when submerged in the laminar film, can have no

effect on the friction factor and thus that lost head in smooth pipes is

caused by viscosity effects alone. Using, for simplicity, the equation

developed by Blasius,
5
expressing the relation between / and NR for

turbulent flow in smooth pipes,

(52)

(AW

and substituting this in the Darcy equation

0.3164 I V2

it is evident that

hL a V1 - 75
(53)

5 H. Blasius, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 131,

1913.
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indicating approximately how head loss varies with velocity for turbu-

lent flow over smooth surfaces.

6. The series of curves for the rough pipes diverge from the smooth

pipe curve as the Reynolds number increases. In other words, pipes

which are smooth at low values of NR become rough at high values of

NR. This may be explained by the thickness of the laminar film

decreasing (Art. 38) as the Reynolds number increases, thus exposing
smaller roughness protuberances to the turbulent region and causing

the pipe to exhibit the properties of a rough pipe.

Unfortunately the excellent results of Nikuradse cannot be applied

directly to engineering problems since the roughness patterns of com-

mercial pipe are entirely different and much more variable than the

artificial roughnesses used by Nikuradse. At present, because of this

lack of uniformity, the surface roughnesses encountered in engineering

practice cannot be classified practically by anything more than a

descriptive statement. This fact gives an inevitable uncertainty to

the selection of the friction factor in engineering problems, an uncer-

tainty which may be overcome only by practical experience.

A practical summary of the friction factors for pipes of commercial

roughness has been developed by Pigott.
6 A portion of this summary

and the Blasius and Nikuradse curves for smooth pipes are presented
in Fig. 86 and may be used in the solution of problems.

The accuracy of pipe-friction calculations is necessarily lessened by
the unpredictable change in the roughness and friction factor due to

the accumulation of dirt and rust on the pipe walls. This accumulation

not only increases surface roughness but also reduces the effective pipe

diameter as well, and may lead to an extremely large increase in the

friction factor after the pipe has been given a long period of service.

ILLUSTRATIVE PROBLEM

If 90 gpm of water at 68 F flow through a smooth 3-in. pipe line, calculate the

loss of head in 3000 ft of the pipe.

90 1

X -r-^ = 4.08 ft/sec
60 X 7.48

4.08 XAX 1.935

0.000021

6 R. J. S. Pigott, "The flow of fluids in closed conduits," Mechanical Engineering,
Vol. 55, No. 8, p. 497, August, 1933.
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From the Plot of Fig. 86,

/ = 0.0181

kL =/ . 0.0181
d 2g fV 2g

- 56.1 ft

37. Velocity Distribution in Circular Pipes The Pipe Coefficient.

For laminar flow in circular pipes it has been shown theoretically

(Art. 34) and may be proved experimentally that the variation of

velocity along a diameter follows a parabolic curve, and one of the

characteristics of a parabolic velocity distribution in a circular pipe

has been seen to be the fixed relationship

Vc
= 2V

between the center velocity and average velocity. This equation may
be written

_F _ 1

Vc

"
2

in which V/VC ,
the ratio of average to center velocity, is frequently

called the
"
pipe coefficient

"
or

"
pipe factor."

FIG. 87. Velocity distributions in circular pipes.
7

In turbulent flow the curve of velocity distribution is not deter-

mined by viscous shear between moving layers, but depends upon the

strength and extent of the turbulent mixing process. Turbulent mix-

7 H. Rouse,
" Modern Conceptions of the Mechanics of Fluid Turbulence,"

Trans. A.S.C.E., Vol. 102, 1937, p. 463.
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ing of fluid particles tends to cause them to move at the same velocity

and thus the velocity distribution curve becomes increasingly flattened

as the Reynolds number increases, as shown by the curves of Fig. 87,

which are drawn for the same average velocity, V. A glance at these

curves indicates that the pipe coefficient, V/VC ,
increases with the

Reynolds number and suggests a practical method of describing veloc-

ity distribution properties by the single curve (1) of Fig. 88. A sup-

plementary curve (2) of pipe coefficient vs. Vjlp/ii is useful in obtain-

.50

FIG. 88. Relation of pipe coefficient and Reynolds number. 8

ing direct solutions of problems in which the center velocity is known

and the pipe coefficient is to be found.

A relationship between pipe coefficient and friction factor may be

obtained from the equation

Vc
- V = 4.07 \P

which was proposed by Prandtl 9 from the results of Nikuradse'sexperi-

8 Data from T. E. Stanton and J. R. Pannell, "Similarity of Motion in Relation

to the Surface Friction of Fluids," Philosophical Transactions of the Royal Society,

A 214, 1914, p. 199.

9 L. Prandtl, "Neuere Ergebnisse der Turbulenzforschung," V. d. I. Zeit., Vol. 77,

No. 5, Feb. 4, 1933.
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ments. A more useful expression for TO may be calculated from the

general equation

ivdhi,

since it is now known that HL is given by

, . / v2

hL = /-7T-
d 2g

Substituting this in the expression for TO

*-3'%-i'
or

in which \/^o/j> is termed the
"

friction velocity." When this expres-

sion for -\/~r /P is substituted in Prand til's equation above

Vc-V Vc__ = __ 1=4 . c

giving

&
(ss)

""
i + i

thus relating pipe coefficient and friction factor.

In deriving the Bernoulli equation from the principle of energy
conservation for the perfect fluid (Art. 20), it was seen that the kinetic

energy per pound of fluid flowing was given by V2
/2g. For the perfect

fluid all fluid particles will pass a point in a circular pipe with the same

velocity, causing the distribution of velocity to be uniform, as shown
in Fig. 89. For the real fluid, however, the existence of a velocity dis-

tribution curve having a maximum velocity at the center of the pipe

and no velocity at the wall will cause the term V2
/2g to be an erroneous

expression for the kinetic energy of the flow.

To demonstrate this fact, consider laminar flow in a circular pipe
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(Fig. 89), where the velocity distribution curve is given by the simple

equation

The power due to the kinetic energy of fluid passing with velocity v

through the differential area dA is given by

v
2

v
2

P = dQw = v2irrdrw
2 2

which must be integrated to obtain the total kinetic energy of the flow.

Real Fluid - Laminar flow

Perfect Fluid

FIG. 89.

Substituting the above expression for v and integrating,

results in

P = vR VcW

But

giving

Vc
= 2V

v2 v2

P = (wR
2V)w~ = Qw
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Thus for laminar flow the kinetic energy term is not V 2
/2g but V 2

/g,

and, because of the existence of velocity variation across the pipe in

real fluid flow, a correction term, a, must be introduced to the Bernoulli

equation, giving

in which a = 2 for laminar flow. In turbulent flow the flattening of

the velocity distribution curve is an approach to the straight-line veloc-

ity distribution of the perfect fluid, and hence in turbulent flow the

correction term a. has a value close to unity, a magnitude of 1.05 being
a satisfactory average value for ordinary turbulent flows.

The erfect of the term a in many engineering calculations is entirely

negligible since the magnitude of the V 2
/2g terms are frequently very

small compared to the other terms of the Bernoulli equation and a

slight change in the velocity-head terms will have no effect upon the

final results. The use of the term a is, of course, not justified unless

the other Bernoulli terms are known precisely and unless flow cross

sections are chosen where known velocity distributions will exist.

38. Approximate Thickness of the Laminar Film. The approxi-

mate thickness of the laminar film may be established by the following

simple analysis and approxima-
te * tions. Assume for simplicity

that the film has a precise

thickness, d (Fig. 90), and that

within the film the flow is

wholly laminar. Let the veloc-

ity at the outer boundary of

the film be designated by Vw .

At the wall the shear stress is

given byFIG. 90.

r = dv

"Ty

But since 6 is very small the velocity distribution within the film may
be assumed linear. Thus

dv Vw

and
_

TO M
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But r is also given (Art. 37) by
J T72r.-
S
p7

Equating the two expressions for r and solving for 6

which, by insertion of d/d, may be written

5 =
/ ~v WP

d

and therefore

d
=

/ ~F ~VdP
(5

The ratio VW/V may be found from the relationship of von
Karman 10

T7

= = 11.6

p

for smooth pipes. But (Art. 37)

Thus

which may be substituted in equation 56, giving

5 32.8
(57)

allowing the approximate thickness of the laminar film to be calculated

and showing that the thickness of the film relative to the pipe diameter

is dependent upon both friction factor and Reynolds number and

decreases in thickness with increasing Reynolds number.

10 Th. von Karman, "Turbulence and Skin Friction," J. Aero. Sciences, Vol. I,

No. 1, p. 1, January, 1934.
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39. Pipe Friction for Compressible Fluids. The calculation of

pressure loss due to pipe friction when gases and vapors flow in insu-

lated pipe lines is, in general, a rather complex process and therefore

will not be treated exhaustively here. The complications will be

evident upon examination of the flow of a gas in a perfectly insu-

lated pipe. Although through the insulation no heat is added to or

abstracted from the fluid flowing between sections 1 and 2, the expan-
sion from pressure pi to pressure p2 is not a reversible adiabatic process

since heat is generated by fluid friction and is added to the flowing

fluid. The expansion thus becomes a polytropic process, the nature

of which depends upon the lost pressure, which is unknown. The
solution of such a problem can be obtained only by a tedious trial-and-

error procedure, applied to short lengths of the pipe.

However, a direct solution for the pipe-friction loss may be

obtained for a perfect gas flowing isothermally in a pipe line. Iso-

thermal fluid flow can occur only when the transfer of heat through
the pipe walls and the addition of heat to the fluid from the pipe

friction process are adjusted in such a manner that the temperature
of the fluid remains constant. Such an adjustment of heat transfers

is approximated naturally in uninsulated pipes where velocities are

small and where temperatures inside and outside of the pipe are

about the same; frequently the flow of gases in long pipe lines may
be treated isothermally.

Gas flow in a uniform pipe line is characterized by the fact that

the velocity does not remain constant but continually increases in

the direction of flow, the drop in pressure along the line, caused by

pipe friction, bringing about a continuous reduction in density in the

direction of flow. From the continuity equation

G = AwV

it is evident that a decrease in specific weight must cause an increase

in velocity since the weight flow G and the area A are both constant.

The continual change of pressure, velocity, and specific weight as

flow takes place necessitates writing the Bernoulli equation in differen-

tial form and subsequently integrating to obtain practical results.

Neglecting the difference in the h terms, equation 37 may be written

in differential form as

dp VdV J7
H h dhL =

w g
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and applied to the differentially small element of fluid shown in Fig. 91.

Substituting the Darcy equation for the lost head term, this equation
becomes

dp VdV
f
dl V2

d 2g

Dividing by V2
/2g

FIG. 91.

But from the continuity principle V = G/Aw, which, when substituted

in the first term, gives

dV f+ 2+-dl-0

The specific weight, w, is given by the equation of state of the gas

w = p/RT, in which, for an isothermal process, T is constant. Sub-

stituting this expression for w in the first term, the equation becomes

which may be integrated between the indicated limits, giving

2 2 G2RT
\

Pi p2 -
-772 (58)

and allowing the pressure p% to be calculated when the other variables

are known. Theoretically the solution of the equation must be accom-

plished by trial since V% cannot be calculated until p2 is known, but
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usually the term 2ln(V<2,/V\) is so small in comparison to fl/d that it

may be neglected, reducing the equation to

thus making possible a direct solution.

The Reynolds number is, of course, necessary to obtain the friction

factor, /. Although the velocity and density of the fluid change con-

tinually throughout the pipe, the Reynolds number of the flow remains

constant and may be calculated as follows:

Vdp Vdw
jyR - -_-

M Mg

but V = G/wA which, when substituted above, gives

GdNR = -
vgA

in which all the terms are constant for isothermal flow in a uniform

pipe.

Compressible fluids may be frequently treated as incompressible

in pipe-friction calculations if the pressure and density changes are

not large; the lost head or pressure may be calculated from the

Darcy equation

which, under the above conditions, may be written

Pi -P* f
l Vi

~^T =fdTg
The limits of application of equation 60 may be seen by comparing

equation 60 with equation 59. To accomplish this, substitute in

equation 59 the following relations :

Pi ~pl =
(Pi -p2)(Pi +Pz)

%-Vlwl
which give

(Pi
-

d 2g
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Rearranging and inserting 2/2 on the right-hand side of the equation,

^1

Substituting pi/RT for w\, this equation becomes

Pi
~

P2 _

or

Pi
~

P2
(61)

Comparison of equations 60 and 61 shows that equation 60 can be

multiplied by a correction factor dependent upon the pressure ratio,

p2/Pi> to obtain the result given by equation 59. For a pressure

ratio p2/Pi = 0.96, the magnitude of the correction factor is 1.02,

indicating that an error of 2 per cent is incurred if density change is

neglected and pressure drop calculated from equation 60. An allow-

able error of 2 per cent being assumed, it is apparent that equation 59

must be used when p2/Pi < 0.96 but that equation 60 will give satis-

factory results when p2/pi > 0.96.

ILLUSTRATIVE PROBLEM

If 40 Ib/min of air flow isothermally through a horizontal, smooth 3-in. pipe

line at a temperature of 100 F, and the pressure at a point in this line is 50 lb/in.
2
,

abs, calculate the pressure in the line 2000 ft downstream from this point.

*8x --*
0.000000402 X 32.2

From the plot of Fig. 86,

/ = 0.0145

2 _ 2 = G2RT I

&A 2 d

,.ft v , A^ J (m 2 X 53.3 X (100 + 460) 2000
(50 X 144)

- p2
=

r /,\,i -0145
-^7

51,900,000
-

pi = 19,860,000

/>2
= 5660 lb/ft

2 = 39.3 lb/in.
2 ab
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40. Pipe Friction in Non-Circular Pipes. Although the majority

of pipes used in engineering practice are of circular cross section,

occasions arise when calculations must be carried out on friction loss

in rectangular passages and other conduits of non-circular form. The

foregoing equations for circular pipes may be adapted to these special

problems by the means of a new term, called the "hydraulic radius/'

The hydraulic radius is defined as the area of flow cross section

divided by the wetted perimeter. In a circular pipe of diameter"^,

4 d
Hydraulic radius R = - = -

7T0 4

or

d = 4

for a pipe of circular cross section.

This value may be substituted in the Darcy equation for lost head

and into the expression for the Reynolds number with the following

results :

and

NR =
(63)

M

from which the lost head in conduits of any form may be calculated

with the aid of the plot of Fig. 86.

The calculation of lost head in non-circular conduits involves the

calculation of the hydraulic radius, R, of the flow cross section and

using the friction factor obtained on an "equivalent" circular pipe

having a diameter d given by

d = 4R

In view of the complexities of laminar films, turbulence, roughness,
shear stress, etc., it seems surprising at first that a circular pipe

"equivalent" to a non-circular conduit may be obtained so easily,

and it would, therefore, be expected that the method might be subject
to certain limitations. The method gives satisfactory results when the

problem is one of turbulent flow over rough surfaces, but if used for

laminar flow large errors are introduced.
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The foregoing facts may be justified theoretically by examining
further the structure of the Darcy equation

h - flv*

4*^
in which obviously

From the definition of the hydraulic radius, its reciprocal is the "wetted

perimeter per unit of flow cross section" and is, therefore, an index of

the extent of the rough surface in contact with the flowing fluid.

The hydraulic radius may be safely used in the above equation when
resistance to flow and head loss are primarily dependent upon the

extent of the rough boundary surface, as for turbulent flow in which

pipe friction phenomena are confined to a thin region adjacent to the

boundary surface and thus vary with the size of this surface. In

laminar flow, however, friction phenomena result from the viscosity

properties of the fluid and are independent of surface roughness.

The magnitude of the boundary surface plays a secondary role in

these phenomena, and so in laminar flow the use of the hydraulic radius

to obtain a circular pipe equivalent to a non-circular one is not possible.

ILLUSTRATIVE PROBLEM

Calculate the loss of head and pressure drop when air at standard conditions

(14.7 lb/in.
2
,
60 F) flows through 200 ft of 18 in. by 12 in. smooth rectangular

duct with an average velocity of 10 ft/sec. Sp. wt. of standard air = 0.0763

lb/ft.
3

18 X 12
p =- = 3.6 in. = 0.30 ft.

2 X 18 + 2 X 12

.0763
10 X 4 X .30 X-

75,900
/* 0.000000375

From the plot of Fig. 86,

/ = 0.019

HL - / - 0.019 X
200

X = 49.2 ft of air

R2g 4 X .30 2g

pL = whL = 0.0763 X 49.2 - 5.82 lb/ft
2 - 0.0405 lb/in

2
.
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41. Pipe-Friction Calculations by the Hazen-Williams Method.

In order to circumvent the difficulties encountered because surface

roughness is a relative quantity, causing friction factors to be different

in pipes having the same roughness but having different diameters,

Hazen and Williams 11
proposed a formula in which the friction factor

was a function of surface roughness only. The formula was originally

proposed for the solution of hydraulic problems but should give correct

results for the flow of any fluid provided that flow occurs at high

Reynolds numbers. Although the formula is empirical and thus does

not possess dimensional homogeneity it gives good results and is in

general use by American engineers.

The shape of the Hazen-Williams formula compares favorably
with that of the "Chezy equation," which may be derived from the

Darcy equation as follows. The Darcy equation states

which may be solved for F, giving

in which VSg/f = C, the
"
Chezy coefficient," and hL /l

= 5, the lost

head per foot of pipe; substitution of these values results in

V = CV~RS = CR - roS- 5
(64)

as proposed by Chezy (1775).

Hazen and Williams found that experimental results were best

satisfied by the formula

V = 1.318C*W #- 63S- 54
(65)

Values of the coefficient Chw are given in Table VII; it is obvious

that here again experience is necessary in the selection of coefficients

if reliable results are to be obtained.

The advantages and disadvantages of the Hazen-Williams method
are evident from the formula and foregoing discussion. Among the

advantages are: (1) the coefficient depends only upon roughness,

(2) the effect of roughness and the other variables upon the velocity of

11 A. Hazen and G. S. Williams, Hydraulic Tables, Third edition, 1920, John Wiley
&Sons.
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TABLE VII

HAZEN-WILLIAMS COEFFICIENT, Chw

Pipes extremely straight and smooth 140

Pipes very smooth 130

Smooth wood, smooth masonry 120

New riveted steel, vitrified clay 110

Old cast iron, ordinary brick 100

Old riveted steel 95

Old iron in bad condition 60-80

flow and capacity of pipe are given directly by the formula. Its*dis-

advantages are: (1) its lack of dimensional homogeneity, and (2) the

impossibility of applying it to the flow of all fluids under all conditions.

Although the formula appears cumbersome with its fractional expon-

ents, this disadvantage is overcome in engineering practice by the use

of tables and diagrams in its solution.

ILLUSTRATIVE PROBLEM

If 90 gpm of water flow through a smooth 3-in. pipe line, calculate the loss of

head in 3000 ft of this pipe.

90 1

4.08 ft/sec.
60 X 7.48 TT / 3

R = - ^"' = 0.0625 ft.

From Table VII,

Chw = 140

4.08 = 1.318 X 140 X (0.0625)-
68
S'

54

S = 0.0218 = - =
,

hL = 65.3 ft

/ 3000

Compare results with the illustrative problem of Art. 36.

42. Minor Losses in Pipe Lines. Into the category of minor

losses in pipe lines fall those losses incurred by change of section,

bends, elbows, valves, and fittings of all types. Although in long pipe

lines these are distinctly "minor" losses and can often be neglected
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without serious error, in shorter pipe lines an accurate knowledge of

their effects must be known for correct engineering calculations.

The general aspects of minor losses in pipe lines may be obtained
from a study of the flow phenomena about an abrupt obstruction

placed in a pipe line (Fig. 92), which creates flow conditions typical
of those which consume energy and cause minor losses. Minor losses

generally result from changes of velocity, velocity increases causing
small losses but decreases of velocity causing large losses because of

the creation of eddying turbulence. In Fig, 92, energy is consumed

FIG. 92.

in the creation of eddies as the fluid decelerates between sections 2 and

3, and this energy is dissipated in heat as the eddies decay between

sections 3 and 4. Minor losses in pipe flow are, therefore, accom-

plished in the pipe downstream from the source of the eddies, and the

pipe friction processes in this length of pipe are hopelessly complicated

by the superposition of eddying turbulence upon the normal turbulence

pattern. To make minor loss calculations possible it is necessary to

assume separate action of the normal turbulence and eddying tur-

bulence although in reality a complex combination and interaction

of the two processes exists. Assuming the processes separate allows
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calculation of the losses due to normal pipe friction AL^ and h^ 4 ,

and also permits the loss, HL, due to the obstruction alone, to be

assumed concentrated at section 2. This is a great convenience for

engineering calculations since the total lost head in a pipe line may be

obtained by a simple addition of pipe friction and minor losses without

considering the above complications.
In order that they may be inserted readily into the Bernoulli

equation, minor losses are expressed by

V2

in which KL is a coefficient usually determined by experiment. A
dimensional analysis of the flow past an obstruction of a given shape

(Fig. 92) leads to the conclusion that

vdp e

or if the shape is changed and the conclusion made more general,

fvdp \
KL = /I , roughness, shape )

The effect of surface roughness upon minor losses is generally very
small since the obstruction is usually short and has little contact with

the flowing fluid; however the large irregularities of the obstruction

act in similar fashion to the roughness protuberances of a very rough

pipe, and Nikuradse's tests (Fig. 85) show that for turbulent flow the

friction factors of such pipes are practically independent of the Rey-
nolds number of the flow. From these two statements it may be

concluded that for turbulent flow the experimental coefficients,

KL, for most minor losses are dependent primarily upon the shape of

the obstruction and are practically independent of roughness and

Reynolds number. This conclusion is borne out by experiment and

is useful in the interpretation of the following experimental results

which were obtained by hydraulic tests; since the hydraulic tests

were all made at high Reynolds numbers it may be concluded that

these results are adaptable to other fluids at high Reynolds numbers

as well.

When a sudden enlargement of section (Fig. 93) occurs in a pipe

line, a rapid deceleration in flow takes place accompanied by the

characteristic eddying turbulence, which may persist in the larger pipe



170 FLUID FLOW IN PIPES

for a distance of 50 pipe diameters before dying out and allowing

restoration of normal turbulence pattern.

In Fig. 92, the distance between the two pressure grade lines at

section 2 proved to be the loss of head due to the obstruction. For the

FIG. 93. Sudden Enlargement.

sudden enlargement, however, this does not hold because a change oi

velocity occurs and brings about a change of pressure according to the

Bernoulli principle. The distance between the two grade lines at

section 2 may be obtained readily by writing the Bernoulli equation

between sections 1 and 3.

-rw 2g

whence

(66)
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in which the left-hand side of the equation is obviously the vertical

distance between the grade lines as shown in Fig. 93.

Application of the impulse-momentum law to the sudden enlarge-
ment (Fig. 94) allows theoretical calculation of the lost head HL, and

2 3

FIG. 94. Sudden Enlargement.

the theoretical analysis gives results which are confirmed closely by
experiment. The fluid between sections 2 and 3 experiences a reduc-

tion in momentum caused by the difference of pressure p% p\.

Neglecting pipe friction

Pi = p2

and the impulse-momentum law gives

which may be written (since A% = A 2)

Ps -Pi = Q Vi -
V*

A 3

~ F3)

- F3)

w g g

Neglecting pipe friction, equation 66 becomes

p3
~

Pi vl - vl

w
-hL

giving another expression for Equating these two expres-w
sions

2V3(V1
- 78 ) V\ -

-hi

from which
- F3)

2

(67)

thus allowing calculation of the lost head for any sudden enlargement
where the pipe sizes are known. This loss of head due to sudden
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enlargement is frequently termed the
"
Borda-Carnot loss" after the

men who made its original development.' It may be expressed

rigorously as

in which the coefficient KL has been found experimentally to be close

to unity and may be assumed
so for most engineering calcu-

lations. Empirical formulas are

available if greater precision is

desired.

A special case of a sudden

enlargement exists when a pipe

discharges into a large tank or

reservoir (Fig. 95). Here the

velocity downstream from the

enlargement may be taken to be

zero, and the lost head, called
FIG. 95. Pipe Exit.

the "exit loss," may be calculated from

(V,
-

O)
2

V\

which simply states that when a pipe discharges into a large volume
of fluid the velocity energy of the flow is lost. This agrees with the

result that would be expected from a non-mathematical analysis as

indicated in Fig. 95.

The loss of head due to gradual enlargement is, of course, dependent

upon the shape of the enlargement. Tests have been carried out by
Gibson on the losses in conical enlargements, or "diffusor tubes,"

and the results expressed as a proportion of the loss occurring in a

sudden enlargement by

2g

in which KL is primarily dependent upon the cone angle, but is also a

function of the area ratio, as shown in Fig. 96. Because of the large

surface of the conical enlargement which contacts the fluid, the coeffi-

cient KL embodies the effects of friction as well as those of eddying
turbulence. In an enlargement of small central angle, KL will result
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almost wholly from surface friction; but as the angle increases and
the enlargement becomes more abrupt, the surfaces are reduced, and
here the energy consumed in eddies determines the magnitude of KL.

1.3

160

FIG. 96. Loss Coefficients for Conical Enlargements.
12

From the plot it may be observed that: (1) there is an optimum cone

angle of 7 where the combination of the effects of surface friction and

eddying turbulence is a minimum; (2) it is better to use a sudden

enlargement than one of cone angle around 60, since KL is smaller

for the former.

ILLUSTRATIVE PROBLEM

A 12-in.-diameter horizontal water line enlarges to a 24-in. line through a 20

conical enlargement. When 10 cfs flow through this line the pressure in the

smaller pipe is 20 lb/in.
2 Calculate the pressure in the larger pipe, neglecting pipe

friction.

12.7 ft/sec, F24 = 3.18 ft/sec

From the plot of Fig. 96,

KL = 0.43

Pu .

+ () +0.43
3.18)

220 X 144 (12.7)
2

j _j_ Q _
62.4 2g w

= 47.93 ft p 20.7 lb/in.
2

IV

12 A. H. Gibson, Hydraulics and Its Applications, Fourth edition, 1930, p. 93,

D. Van Nostrand Co.



174 FLUID FLOW IN PIPES

The physical properties of flow through a sudden contraction are

shown in Fig. 97. Inertia prevents the fluid from following the solid

boundary, and the
"
live

"
stream of fluid contracts at section 3 to a

FIG. 97. Sudden Contraction.

diameter less than d. From section 3 to section 4 eddying turbulence

similar to that of the sudden enlargement accounts for most of the

energy which is consumed by the contraction.

Writing Bernoulli's equation between sections 1 and 4

w
whence

2g

which is shown in the figure to be the distance between the two
theoretical pressure grade lines.
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The loss of head, hi, in a sudden contraction is expressed by

hL -KL^
in which 4 is the velocity in the smaller pipe. The coefficient KL
depends primarily upon the diameter ratio d4 /di, which determines

the shape of the sudden contraction
;
the relation of KL to d/di and

velocity is shown on Fig. 98.

0.5

0.4

0.3

0.2

0.1

F4 -40tt. per sec.-

1.0

FIG. 98. Loss Coefficients for Sudden Contractions. 13

A sharp-edged pipe entrance from a large body of fluid is given by
the condition d/d\ = in Fig. 98, and it should be noted that the loss

coefficient KL for such an entrance is close to 0.5 for ordinary velocities.

The values of KL for this and other pipe entrances are shown in Fig. 99,

and here again it may be observed that the magnitude of KL depends

primarily upon the amount of deceleration and consequent eddying
turbulence caused by the entrance.

Because of smooth acceleration of the fluid in gradual contractions

the losses are usually so small that they may be neglected in most

engineering calculations.

13 Data from H. W. King and C. O. Wisler, Hydraulics, Third edition, 1933,

page 182, John Wiley & Sons.
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Smooth pipe bends will cause losses of head due to the energy con-

sumed by the twin eddy motion set up by secondary flows (Art. 29).
The nature and magnitude of bend losses are shown in Fig. 100;

they are comparable to those of Fig. 92. The loss of head in a bend
is expressed by

V2

in which V is the average velocity in the pipe. The loss coefficient

KL has been shown experimentally by Hofmann M to be a function of

shape, roughness, and Reynolds
I number. Figure 101 gives a par-
' - tial summary of his results for

90 circular bends, the shape of

which may be defined by the

l~ .8 simple ratio r/d. The tests were

carried out on polished brass

bends to obtain the "smooth "

curve ; the bends were then arti-

ficially roughened by applying a

mixture of sand and paint, result-

ing in the
"
rough

"
curve. The

curves thus give the extremes of

roughness variation and illus-

trate the dependency of KL upon
roughness. Hofmann's tests

were made at Reynolds numbers
between 60,000 and 225,000, but

the curves of Fig. 101 give an

approximate summary of his

results for Reynolds numbersr 'M
from 100,000 to 225,000 in which

FIG. 99. Pipe Entrances. range the values of KL became

practically constant 15 and thus

independent of the Reynolds number. Because of the constancy
of loss coefficients at high Reynolds numbers, it is probable that

14 Trans, of the Hydraulic Institute of the Munich Technical University, Bulletin 3,

p. 29, 1935, A.S.M.E.
15 This constancy of KL is more true of the rough bends than of the smooth ones.

Compare this with the friction factors for smooth and rough pipe, Figs. 85 and 86.
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turbulence

FlG. 100.

0.5

0,4

0.3

0.2

.Rough

0.1

Smooth

10

FIG. 101. Loss Coefficients for 90 Circular Bends.
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Hofmann's results may be applied beyond the Reynolds numbers

attained in his experiments.

The losses of head caused by commercial pipe fittings occur because

of their rough and irregular shapes which cause excessive turbulence

to be created. The shapes of commercial pipe fittings are determined

more by structural properties, ease in handling, and production
methods than by head-loss considerations, and it is, therefore, not

feasible or economically justifiable to build pipe fittings having com-

pletely streamlined interiors in order to minimize head loss. The loss

of head in commercial pipe fittings is usually expressed by a loss

coefficient, K^ and the velocity head in the pipe, as

72
hL = KL -~

in which KL is a constant (at high Reynolds numbers), the magnitude
of which depends upon the shape of the fitting. Values of KL for

various common fittings, compiled by the Crane Co.,
16 are presented

in Table VIII.

TABLE VIII

Loss COEFFICIENT, KL, FOR COMMERCIAL PIPE FITTINGS

Globe valve, wide open ............................... 10 .0

Angle valve, wide open ............................... 5.0

Gate valve, wide open ......... . ....................... 19

f open .......................................... 1.15

f open .......................................... 5.6

Jopen .......................................... 24.0

Return bend ......................................... 2.2

Standard tee ......................................... 1.8

90 elbow ............................................ 90

45 elbow ............................................ 42

It is generally recognized that when fittings are placed in close

proximity the total loss obtained through them is less than their

numerical sum obtained by the foregoing methods. Systematic tests

have not been made on this subject because a simple numerical sum
of the losses gives a result in excess of the actual losses and thus pro-

duces an error on the conservative side when predictions of pressures

and rates of flow are to be made.

18
Engineering Data on Flow of Fluids in Pipes and Heat Transmission, 1935,
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43. The Pressure Grade Line and Its Use. The utility of plotting
above the center line of a pipe the pressure head therein has been

apparent in many of the foregoing examples. The result is the

hydraulic or pressure grade line which may be used to give a graphical

significance to the equations of pipe flow.

Some of the properties of the pressure grade line which have been
noted in the preceding problems are (1) its characteristic downward

slope in the direction of flow due to pipe friction, (2) the increase of

this slope with velocity, and (3) the rather abrupt rises and drops
in the grade line when minor losses are incurred.

Pressure (hydraulic)

grade line (exact)

FIG. 102.

Several illustrations of the meaning of the pressure grade line and

its relation to the Bernoulli equation are given in the following exam-

ples. Frequently, in long pipe lines where velocities are small and
minor losses of little significance, an approximate grade line may be

sketched which will allow useful engineering conclusions to be drawn

directly.

In a long pipe line between two reservoirs (Fig. 102) the exact

and approximate hydraulic grade lines are as shown. A drop in the

exact grade line occurs as the fluid enters the pipe, caused by (1) the

increases of velocity at the expense of pressure and (2) the head lost
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at the pipe entrance. Considering minor losses and velocity heads

and writing Bernoulli's equation between the two reservoir surfaces

V2
I V2 V2

+ + h = + + + . 5_+/- +
2g d 2g 2g

From the exact pressure grade line of Fig. 102

V2 V2
I V2

the same result as obtained from the Bernoulli equation but of more

significance because all the terms may be visualized graphically.

The minor losses and velocity heads being neglected, the Bernoulli

equation becomes

d 2g

and similarly from the approximate pressure grade line

ILLUSTRATIVE PROBLEM

A 6-in. pipe line 2000 ft long connects two reservoirs, one of surface elevation

300, the other of surface elevation 200. Assuming that / =
0.024, calculate the

rate of flow through the line (a) including and (b) neglecting minor losses.

.300

F2 2000 F2 F2

(a) + + 300 - + + 200 + 0.5 + 0.024-r +
2g A 2g 2g

V - 8.13 ft/sec Q - 1.595 cfs

2000 F2

(b) + + 300 = + + 200 + 0.024
T 2g

V - 8.20 ft/sec Q = 1.61 cfs

Consider now a pipe line of more complicated nature (Fig. 103)

consisting of three pipes of different sizes, with enlargement, contrac-
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FIG. 103.

tion, entrance, and exit losses. The Bernoulli equation may be
written as before

2g di 2g

From the exact pressure grade line

V! VI
~T~ + T"
2g 2g
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which is identical with the result obtained from the Bernoulli

equation.

Neglecting minor losses and pressure variation incurred by velocity

changes, the Bernoulli equation gives

+ + *- o + o + 04^ -+/,' +/,

and from the approximate pressure grade line the same result

7 T/ 2
7 T/ 2 7V 2

h = flT^+/2J-^+f3J-^
di 2g d2 2g d% 2g

is obtained.

The above examples serve to illustrate the properties of the exact

and approximate pressure grade lines and the use of these lines in

lending a significance to pipe flow problems which cannot be obtained

from equations alone.

FIG. 104.

When a pump or motor is present in a pipe line the pressure grade
line assumes a special shape as a result of the fluid energy which is

given to or taken from the fluid by the machine. The approximate

grade line for a pipe in which a pump is installed is shown in Fig. 104.

Here as the flow takes place from A to B the pump must supply
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sufficient energy (1) to raise the fluid through a height h, and (2) to

overcome the friction loss in the line. This is seen clearly from the

pressure grade line, which gives

Ep
= h + fi

- ~

2g
/2

d2 2g

The same result may, of course, be obtained by writing the Bernoulli

equation between the reservoir surfaces; here

+ + + Ep
2g d2 2g

At points in a pipe line where the velocity is high or where the

elevation of the pipe is well above the datum plane, the pressure grade
line may be below the pipe (Fig. 105). According to the method of

plotting the grade line, the pressure in a pipe which lies above the

grade line must have a negative value and thus be less than the

atmospheric pressure. Regions of negative pressure in pipe lines are

frequently a source of trouble in pipe-line operation since gases dis-

solved in the flowing fluid tend to come out of solution and collect

^Pressure grade line

(approximate)

FIG. 105.

in the line, thus reducing the capacity of the line; negative pressures

within the line also give an opportunity for air to leak into the line,

increase the pressure, and reduce the flow. Regions of negative pres-

sure are avoided as much as possible in the design of pipe lines, but

where they exist a source of vacuum is required to draw off collections

of gas. Gases which collect at high points in a pipe line when the

pipe is below the hydraulic grade line may be vented by opening a

cock at the highest point in the pipe and allowing the pressure of the

fluid to force the gases out.
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If the curves in the elevational view of a pipe line are abrupt,

they are frequently loosely termed "siphons," although the only

resemblance to siphonic action occurs in a pipe which is convex upward
and runs above the hydraulic grade line. Pipe-line curves which are

convex upward are called
"
siphons" whether they are above or below

the hydraulic grade line; curves which are convex downwards are

termed "inverted siphons," an obvious misnomer. This confused

situation may be somewhat clarified by the study of the action of the

"true siphon" of Fig. 106 and by comparison of true siphonic action

with that occurring in the vertical curves of a pipe line. The distinc-

FIG. 106.

tive characteristic of the true siphon is that practically its entire

length lies above the hydraulic grade line. The factor which deter-

mines its successful operation is the maximum negative pressure,

which exists at the crown of the siphon. The magnitude of this

negative pressure is, of course, limited by the barometric height and

vapor pressure of the liquid,
17 but it should not be concluded that

such a negative pressure may be obtained in practice; actually dis-

ruption of the flow occurs at negative pressures well below the maxi-

mum, due to the liberation of entrained gases. Obviously, then, the

factors which change the negative pressure at the crown of the siphon

17 See Appendix V.
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are the factors which are fundamental to its successful operation.

From the approximate pressure grade line it may be concluded directly

that (1) raising the crown of the siphon and (2) lowering the free end

of the pipe both increase this negative pressure and that these, there-

fore, are the fundamental variables which determine the success or

failure of siphon operation. Although these conclusions might have

been reached by several applications of the Bernoulli principle the

utility of the hydraulic grade line has been shown again in discovering
the fundamental factors of a problem quickly and efficiently.

44. Branching Pipes. Some of the more complicated problems
of pipe-line design involve the flow of fluids in pipes which intersect.

FIG. 107.

The principles involved in problems of this type may be obtained by
a study of pipes which (1) divide and rejoin and (2) lead from regions

of different pressure and meet at a common point.

In pipe-line practice, "looping" or laying a line, B, parallel to an

existing pipe line, A, and connected with it (Fig. 107), is a standard

method of increasing the capacity of the line. Here there is an

interesting analogy between fluid flow and the characteristics of a

parallel electric circuit, if head lost is compared with drop in potential

and rate of flow with electric current.

Obviously as flow takes place from point 1 to point 2 through either

pipe A or pipe B the same lost head, &L, is accomplished and from the

continuity principle the sum of the flows in pipes A and B must be the
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total flow in the single pipe line. Neglecting minor losses, these two

facts allow the writing of the equations

2g

which may be placed in terms of Q for simultaneous solution by
inserting the relations

VA = -^ and VB = -~f

giving

2gdA \ird 2gdB

which would allow calculation of the division of a flow, (?, into two

flows, QA and QB, when the sizes and friction factors of the pipes are

known.

ILLUSTRATIVE PROBLEM

A 12-in. water line, in which 12 cfs flow, branches into a 6-in. line 1000 ft long

and an 8-in. line 2000 ft long which rejoin and continue as a 12-in. line. Calculate

the flow through the two branch lines assuming that/ = 0.022 for both of these.

2000' -8"

Q12c.f.s. <?-12c.f,s. F8 -
1000' -6'

= 5.1

2.87^8

Solving

but

T2"

Q = @8 + Q6
= 12

6
- 4.89 Cfs 8 7.11 cfs

0.022XX^2!)!

Another engineering example of branching pipes is that typified

by the
"
three-reservoir problem" of Fig. 108 which may be solved

advantageously by application of hydraulic grade line principles.
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Here flow may take place. (1) from reservoir A into reservoirs B and C,

or (2) from reservoir A to C without inflow or outflow from reservoir B,
or (3) from reservoirs A and B into reservoir C. The approximate

hydraulic grade lines representing these conditions are indicated on

FIG. 108.

the figure, and it is obvious that the slopes of these lines and the above

flow conditions are determined by the magnitude of the pressure head

at the junction, 0. Assuming flow to take place from reservoirs A
and B into C, the following equations may be written directly from

inspection of the hydraulic grade lines.

. .

ZA = z H---h /Aw dA

_+*+, hi
(&)'w as <g \ira,B/

and from the continuity principle

Qc

These four simultaneous equations may be solved readily by trial

(if pipe sizes, friction factors, and elevations are known), by assuming a

value of po/w and solving the first three equations for QA, QB, and Qc-
The solution of the problem is completed when these values of QA, QB-
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and Qc satisfy the fourth equation, thus allowing prediction of the

rates of flow for a given or existing pipe system.

The above type of solution is not that encountered in design prob-

lems where the desired rates of flow are known, the pipe-line elevations

fixed by topography and other considerations, and the problem is to

build the most economical pipe system to transmit these flows. In

this case the assumption of a value of po/w immediately fixes the

diameters and, therefore, the initial and operation costs of the pipes.

Various assumptions of p /w may be made and the resulting total

costs plotted agains po/iv. The value of p /w resulting in the mini-

mum total cost will determine all the pipe sizes for the most economical

design.
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PROBLEMS

252. When 10 cfs of water flow through a 6-in. constriction in a 12-in. hori-

zontal pipe line, the pressure at a point in the pipe is 50 lb/in.
2

, and the head lost

between this point and the constriction is 10 ft. Calculate the pressure in the con-

striction.

253. A 2-in. nozzle terminates a vertical 6-in. pipe line in which water flows down-

ward. At a point on the pipe line a pressure gage reads 40 lb/in.
2

If this point is

12 ft above the nozzle tip and the head lost between point and tip is 5 ft, calculate

the rate of flow.

254. A 12-in. pipe leaves a reservoir of surface elevation 300 at elevation 250 and

drops to elevation 150, where it terminates in a 3-in. nozzle. If the head lost through
line and nozzle is 30 ft, calculate the rate of flow.

255. An 18-in. pipe line runs from a reservoir of surface elevation 350 and dis-

charges into the atmosphere at elevation 250. If the loss of head in this pipe line

is 90 ft, what flow can be expected?
256. A vertical 6-in. pipe leaves a water tank of surface elevation 80. Between

the tank and elevation 40 on the line, 8 ft of head is lost when 2 cfs flow through the

line. If an open piezometer tube is attached to the pipe at elevation 40, what will

be the elevation of the water surface in this tube?

257. What horsepower pump is required to pump 20 cfs of water from a reservoir

of surface elevation 100 to one of surface elevation 250, if in the pump and pipe line

40 ft of head are lost?

258. Through a hydraulic turbine flow 100 cfs of water. On the 42-in. inlet pipe
at elevation 145, a pressure gage reads 50 lb/in.

2 On the 60-in. discharge pipe at
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elevation 130 a vacuum gage reads 6 in. of mercury. If the total head lost through

pipes and turbine between elevations 145 and 130 is 30 ft, what horsepower may be

expected from the machine?

259. In a 9-in. pipe line 5 cfs of water are pumped from a reservoir of surface

elevation 100 over a hill of elevation 165. What horsepower pump is required to

maintain a pressure of 50 lb/in.
2 on the hilltop if the head lost between reservoir

and hilltop is 20 ft?

260. Water flows downward through a 1000-ft section of 12-in. pipe line running
from elevation 200 to elevation 100. The pressure at elevation 200 is 40 lb/in.

2
,
and

the velocity in the line is 10 ft/sec. The head lost in this section is 5 ft. Calculate: (a)

the total energy at elevations 200 and 100, taking datum at sea level; (6) the pressure

at elevation 100; (c) the shear stress at the wall of the pipe, 3 in. from the center

and on the centerline; (d) the lost horsepower in the 1000-ft section for this flow.

261. When a liquid flows in a horizontal 6-in. pipe, the shear stress at the walls is

1.3 lb/ft.
2 Calculate the pressure drop in 100 ft of this pipe line.

262. If 2 cfs of glycerine at 50 F flow in a 6-in. pipe, calculate: (a) the velocity

at the center of the pipe; (6) the loss of head in 100 ft of the pipe by equations 44

and 45
; (c) the velocity 2 in. from the centerline; (d) the shear stress at the wall; (e) the

shear stress 2 in. from the centerline.

263. Oil of viscosity 0.01 Ib sec/ft
2 and specific gravity 0.90 flows with an average

velocity of 5 ft/sec in a 12-in. pipe line. Calculate the shear stress at the wall and

3 in. from the center line.

264. In a section of 2-in. pipe line 500 ft long running from elevation 130 to eleva-

tion 90 flow 30 gpm of linseed oil at 80 F. If flow is downward and pressure at

elevation 130 is 30 lb/in.
2

, calculate the pressure at elevation

90. Check for laminar flow before calculating this pressure.

265. If 0.25 gpm of oil of specific gravity 0.92 flow in

laminar condition through this vertical 1-in. pipe line, calcu-

late the viscosity of the oil if the manometer deflection is

10 in.

266. Water flows at 50 F from a reservoir through a 1-in.

pipe line 2000 ft long which discharges into the atmosphere
at a point 1 ft below the reservoir surface. Calculate the

flow, assuming it to be laminar and neglecting the velocity

head in the pipe line. Check the assumption of laminar

flow.

267. Glycerine flows through a 2-in. horizontal pipe line,

leading from a tank and discharging into the atmosphere.
If the pipe line leaves the tank 20 ft below the liquid surface

and is 100 ft long, calculate the flow when the glycerine has a temperature of

(a) 50 F, (b) 70 F.

268. What horsepower pump is required to pump 50 gpm of linseed oil from a

tank of surface elevation 46 to one of elevation 60 through 1500 ft of 3-in. pipe, if the

011 is at (a) 80 F, (b) 100 F?

269. If 180 gpm of water at 70 F flow in a 6-in. pipe line having roughness pro-
tuberances of average height 0.030 in. and if similar roughness having height 0.015 in.

exists in a 3-in. pipe, what flow of linseed oil (100 F) must take place therein for the

friction factors of the two pipes to be the same?

270. In a 12-in. pipe line, 15 cfs of water flow upward. At a point on the line at
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elevation 100, a pressure gage reads 130 lb/in.
2 Calculate the pressure at elevation

150, 2000 ft up the line, assuming the friction factor to be 0.02.

271. Given that 250 gpm of carbon tetrachloride flow downward through 200 ft

of 3-in. pipe, from elevation 100 to elevation 40; the pressure at the former point is

30 lb/in.
2

,
and that at the latter 50 lb/in.

2 Calculate the friction factor.

272. Calculate the loss of head in 1000 ft of 3-in. brass pipe when water at 80 F
flows therein at an average velocity of 10 ft/sec.

273. In. a 2-in. pipe line, 25 gpm of glycerine flow at 70 F. Calculate the loss

of head in 200 ft of this pipe.

274. If 100 Ib/min of air flow in a 3-in. horizontal clean steel pipe line at t75 lb/in.
2

ab and 80 F, calculate the loss of head and pressure drop in 300 ft of this pipe.

275. If 2 cfs of water flow at 50 F in a clean 6-in. cast-iron pipe line, calculate

the loss of head per 100 ft of line.

276. If 12 cfs of water flow in a 1 2-in. spiral riveted pipe at 70 F, calculate the

loss of head in 500 ft of this pipe.

277. Castor oil flows in a 1-in. pipe line at 50 F at a velocity of 2 ft/sec. Calcu-

late the loss of head in 100 ft of this pipe.

278. A 3-in. brass pipe line 100 ft long carries 100 gpm of linseed oil. Calculate

the head loss when the oil is at (a) 80 F, (b) 110 F.

279. Solve the preceding problem when the liquid is castor oil.

280. In a laboratory test 490 Ib/min of water at 60 F flow through a section of

2-in. brass pipe 30 ft long. A differential manometer connected to the ends of this

section shows a reading of 14.2 in. If the fluid in the bottom of the manometer has

a specific gravity of 3.20, calculate the friction factor and the Reynolds number.

281. Water flows from a tank through 200 ft of horizontal 2-in. brass pipe and

discharges into the atmosphere. If the water surface in the tank is 4 ft above the

pipe, calculate the rate of flow, considering losses due to pipe friction only, when the

water temperature is (a) 50 F, (b) 100 F. (Trial and error solution or by Blasius'

equation for /.)

282. A 1-in. clean galvanized pipe 400 ft long leaves a water tank at elevation 30

and discharges into the atmosphere at elevation 27. If the water surface in the tank

has elevation 35 and the water is at 70 F, calculate the rate of flow considering losses

due to pipe friction only. (Trial and error solution.)

283. In a horizontal 8-in. clean steel pipe line, 5.0 Ib/sec of superheated steam

flow at an absolute pressure of 250 lb/in.
2

If the steam is superheated 100 F, calcu-

late loss of head and loss of pressure in 500 ft of this pipe.

284. Carbon dioxide flows in a 4-in. horizontal clean steel pipe line at a velocity

of 10 ft/sec. At a point in the line a pressure gage reads 100 lb/in.
2 and the tem-

perature is 100 F. What pressure is lost due to friction in 100 ft of this pipe? Baro-

metric pressure 14.7 lb/in.
2

285. What loss of head occurs in 100 ft of a |-in. galvanized pipe when water flows

therein at 60 F and 30 ft/sec?

286. If 2.5 cfs of water flow in an 18-in. clean steel pipe line at 40 F, calculate

(a) the shear stress at the pipe walls and (b) the velocity on the pipe centerline from

Fig. 88 and equation 55.

287. Water flows in a 6-in. pipe line at 60 F. If the velocity on the pipe's center-

line is 3 ft/sec, what is the rate of flow?

288. Linseed oil flows in an 8-in. pipe line at 80 F. The center velocity is

6 ft/sec, Calculate the rate of flow.
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289. Glycerine flows in a 2-in. pipe at 50 F and with a center velocity of 8 ft/sec.

Calculate the rate of flow through the line.

290. Carbon dioxide flows in a 3-in. pipe at 50 lb/in.
2 ab and 50 F. If the center

velocity is 2 ft/sec, calculate the weight rate of flow.

291. If 250 gpm of water flow at 40 F in a 6-in. smooth pipe line, calculate the

approximate thickness of the laminar film, the center velocity, and the velocity Vw .

292. Prove that, for smooth pipes having Reynolds numbers below 100,000,

5 58.3

provided that 5 is small.

293. Air flows isothermally in a 3-in. pipe line at a velocity of 10 ft/sec, an

absolute pressure of 40 lb/in.
2

,
and temperature of 50 F. If pressure is lost by

friction, calculate the velocity where the pressure is 30 lb/in.
2
abs.

294. Through a horizontal 6-in. clean cast-iron pipe line 1000 ft long in which

the temperature is 60 F, 200 Ib/min. of air flow isothermally. If the pressure at the

upstream end of this pipe length is 30 lb/in.
2
abs, calculate the pressure at the down-

stream end and the velocities at these two points.

295. Carbon dioxide flows isothermally in a 2-in. horizontal clean steel pipe line

and at a certain point the velocity is 60 ft/sec, pressure 60 lb/in.
2
abs, and tempera-

ture 80 F. Calculate the pressure and velocity 500 ft down stream from this point.

296. Air at 14.7 lb/in.
2 abs and 60 F flows in a 12 in. by 3 in. horizontal clean

galvanized duct at a velocity of 15 ft/sec. Calculate the loss of head and loss of

pressure per foot of duct.

297. Air at 14.7 lb/in.
2 abs and 60 F flows in a horizontal triangular clean gal-

vanized duct having 8-in. sides, at a velocity of 12 ft/sec. Calculate the head and

pressure lost per foot of duct.

298. Ten cubic feet of water flow per second in a smooth 9-in. square duct at

50 F. Calculate the head lost in 100 ft of this duct.

299. A brick conduit of cross-sectional area 10 ft
2 and wetted perimeter 12 ft

carries water at 50 F at a velocity of 8 ft/sec. Calculate the head lost in 200 ft of

this conduit.

300. A semicircular good brick conduit 5 ft in diameter carries water at 70 F
at a velocity of 10 ft/sec. Calculate the loss of head per foot of conduit.

301. A reservoir has surface elevation 200. A 24-in. old cast-iron pipe line 2 miles

long leaves the reservoir at elevation 180 and discharges freely at elevation 100.

Calculate the flow through the line.

302. A new riveted steel 12-in. pipe line 1 mile long runs from elevation 350 to

elevation 325. If the pressure at both of these points is 50 lb/in.
2

, calculate the

rate of flow.

303. A new riveted steel 18-in. pipe line 1000 ft long runs from elevation 150 to

elevation 200. If the pressure at the former point is 100 lb/in.
2 and at the latter

72 lb/in.
2

,
what rate of flow can be expected through the line?

304. A 3 -ft square smooth masonry conduit is 3 miles long and connects two

reservoirs having a difference in their surface elevations of 60 ft. What flow can be

expected through the conduit?

305. If 200 cfs of water are to be carried through a smooth wooden pipe line

which leaves a reservoir (surface elevation 290) at elevation 250 and runs 3 miles
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to elevation 200, where a pressure of 30 lb/in.
2

is to be maintained, what size pipe

line is required?

306. If 60 cfs of water are to be pumped from a reservoir of surface elevation 150

to one of surface elevation 200 through 2 miles of 30-in. old cast-iron pipe, what horse-

power pump is required?

307. What diameter smooth masonry pipe is necessary to carry 50 cfs between

two reservoirs of surface elevations 250 and 100 if the pipe line is to be 2 miles long?

308. An extremely smooth 12-in pipe line leaves a reservoir of surface elevation

500 at elevation 460. A pressure gage is located on this line at elevation 400 and

1000 feet from the reservoir (measured along the line). Calculate the gage reading

when 10 cfs flow in the line, using: (a) the Hazen-Williams formula, (b) Fig. 86.

(Temperature 68 F.)

309. Calculate, by the Hazen-Williams method, the head lost in the brick conduit

of Problem 299.

310. If 5 cfs of water flow through a 6-in. horizontal pipe which suddenly enlarges

to 12-in. diameter, and if the pressure in the smaller pipe is 20 lb/in.
2

, calculate that

in the 12-in. pipe, neglecting pipe friction.

311. Estimate the rate of flow of benzene through this

sudden enlargement if the upper gage reads 20 lb/in.
2 and the

lower one 23 lb/in.
2

312. Calculate the manometer reading when 8 cfs of

water flow through this enlargement.

J

10'

313. Solve Problem 312 assuming conical enlargements of 70 and 7.

314. A 4-in. pipe suddenly contracts to a 2-in. pipe in which the velocity is

10 ft/sec. Calculate the loss of head through the contraction if water is flowing.

315. The velocity of water in a 6-in hori-

zontal pipe is 3 ft/sec. Calculate the loss ofrhead through a sudden contraction to 2-in.

diameter. If the pressure in the 6-in. pipe is 50

lb/in.
2

,
what is the pressure in the 2-in. pipe,

neglecting pipe friction?

316. Calculate the height to which water will

rise in the downstream piezometer tube when 1.0

cfs flows through this contraction.

317. Water flows at 10 ft/sec in a 6-in. pipe
line which contracts abruptly to a 3-in. pipe.

Calculate the velocity and diameter of the live stream at the contracted section (3,

Fig. 97).

318* If 2 cfs of water leave a reservoir in a 6-in. pipe line, calculate the lost head



PROBLEMS 193

caused by the pipe entrance assuming it to be the "re-entrant," "sharp," and
"rounded" entrances of Fig. 99.

319. A 90 smooth bend in a 12-in. pipe line has a radius of 4 ft. Calculate the
loss of head when 15 cfs of fluid flow through this bend.

320. A horizontal 2-in. pipe line leaves a water tank 20 ft below the water sur-
face. If this line has a sharp entrance and discharges into the atmosphere, calculate
the rate of flow neglecting and considering the entrance loss, if the pipe length is

(a) 15 ft, (b) 150 ft. Assume /to be 0.025.

321. A 15-in. pipe line connects two reservoirs having surface elevations 150 and
90. If the line is 1 mile long and has a sharp entrance, calculate the rate of flow

including and neglecting minor losses. Assume that/ = 0.020.

322. A 12-in. horizontal pipe 1000 ft long leaves a reservoir of surface elevation
200 at elevation 180. This line connects to a 6-in. pipe 1000 ft long running to eleva-
tion 100, where it enters a reservoir of surface elevation 130. Assuming that/ = 0.02,
and neglecting minor losses, calculate the flow through the line and sketch the approx-
imate hydraulic grade line, showing its elevation at the contraction.

323. At the rate of 50 gpm, linseed oil is to be pumped through 1000 ft of 2-in.

brass pipe line between two tanks having difference of surface elvation 10 ft. Neglect-
ing minor losses, what pump horsepower is required if the oil temperature is (a) 80 F
(b) 120 F?

324. A horizontal 2-in. brass pipe line leaves (sharp entrance) a water tank 10 ft

below its free surface. At 50 ft from the tank, it suddenly enlarges to a 4-in. pipe
which runs 100 ft horizontally to another tank entering it 2 ft below its surface.
Calculate the flow through the line when the water temperature is 68 F, neglecting
no losses. (Trial and error solution.)

325. A pipe line running between two reservoirs having surface elevations of
500 and 300 consists of 1000 ft oMO-in, 8-in., and 6-in. pipe in that order downstream,
connected by sudden contractions. Assuming that/ = 0.023 for all pipes, calculate
the rate of flow and sketch the hydraulic grade line showing all important elevations

(a) including and (b) neglecting the minor losses. Assume that the line has a sharp
entrance.

326. Calculate the rate of flow from this water tank
if the 6-in. pipe line has / = 0.02 and is 50 ft long.

327. A 12-in. pipe line 1500 ft long leaves a reservoir

of surface elevation 500 at elevation 460 and runs to

elevation 390, where it discharges into the atmosphere.
Calculate the flow and sketch accurately the hydraulic

grade line (assuming that / = 0.022) : (a) for the con-

ditions above, and (b) when a 3-in. nozzle is attached

to the end of the line, assuming the lost head in the

nozzle to be 5 ft.

328. A 6-in. horizontal pipe line 1000 ft long leaves a

reservoir of surface elevation 300 at elevation 250. The
line terminates in a1

2-in. nozzle. Calculate the discharge from the nozzle and the

horsepower available in the nozzle stream, and sketch the hydraulic grade line.

Assume that/ = O.025 and neglect entrance and nozzle loss.

329. A pump close to a reservoir of surface elevation 100 pumps water through
a 6-in. pipe line 1500 ft long and discharges it at elevation 200 through a 2-in. nozzle.

Calculate the pump horsepower necessary to maintain a pressure of 50 lb/in.
2 behind

Elev. 200

-'Elev. 150
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the nozzle, and sketch accurately the hydraulic grade line, neglecting loss in the

nozzle and taking/ = 0.02.

330. A 24-in. pipe line 3000 ft long leaves (sharp entrance) a reservoir of surface

elevation 500 at elevation 450 and runs to a turbine at elevation 200. Water flows

from the turbine through a 36-in. vertical pipe ("draft tube") 20 ft long to tailwater

of surface elevation 185. When 30 cfs flow through pipe and turbine, what horse-

power is developed? What are the pressures at the entrance and exit of the turbine?

Take/ = 0.02; include exit loss; neglect other minor losses and those within the

turbine.

331. The siphon of Fig. 106 consists of a 2-in. hose having/ = 0.025. The crown

of the siphon is 10 ft above and the free end 15 ft below the water level in the tank.

If the hose is 60 ft long and the bend is at its third point, calculate the flow and the

pressure at the crown.

332. What is the maximum flow which may be obtained theoretically in problem
322 when the 6-in. and 12-in. pipes are interchanged?

333. The horizontal 8-in. suction pipe of a pump is 500 ft long and is connected

to a reservoir of surface elevation 300, 10 ft below the water surface. From the pump,
the 6-in. discharge pipe runs 2000 ft to a reservoir of surface elevation 420, which

it enters 30 ft below the water surface. Taking/ to be 0.02 for both pipes, calculate

the pump horsepower required to pump 3.0 cfs from the lower reservoir. Sketch

accurately the approximate hydraulic grade line. What is the maximum theoretical

flow which may be pumped through this system: (a) with the 8-in. suction pipe,

(b) with a 6-in. suction pipe?

334. A 12-in. pipe line 2 miles long runs on an even grade between reservoirs of

surface elevations 500 and 400, entering the reservoirs 30 ft below their surfaces.

The flow through the line is inadequate, and a pump is installed at elevation 420 to

increase the capacity of the line. Assuming / as 0.02, what pump horsepower is

required to pump 6.0 cfs downhill through the line? Sketch accurately the approx-

imate hydraulic grade line before and after the pump is installed. What is the

maximum theoretical flow which may be obtained through the line?

335. A 24-in. pipe line branches into a 12-in. and an 18-in. pipe, each of which is

1 mile long and rejoin to form a 24-in. pipe. If 30 cfs flow in the main pipe, how will

the flow divide? Assume that/ = 0.018 for both branches.

336. A 24-in. pipe line carrying 30 cfs divides into 6-in., 8-in., and 12-in. branches,

all of which are the same length and enter the same reservoir below its surface.

Assuming that / = 0.020 for all pipes, how will the flow divide?

337. An 18-in. pipe divides into 12-in. and 6-in. branches which rejoin. If the

6-in. branch is 1 mile long, how long must the 12-in. branch be for the flow to divide

equally when 10 cfs flow in the 18-in. pipe? Assume that/ = 0.019 throughout.

338. A 36-in. pipe divides into three 18-in. pipes at elevation 400. The 18-in.

pipes run to reservoirs which have surface elevations of 300, 200, and 100, these

pipes having respective lengths of 2, 3, and 4 miles. When 42 cfs flow in the 36-in.

line, how will the flow divide? Assume that/ = .017 for all pipes.

339. Reservoirs A, B, and C have surface elevations of 500, 400, and 300, respec-

tively. A 12-in. pipe 1 mile long leaves reservoir A and runs to point at elevation

450. Here the pipe divides and an 8-in. pipe 1 mile long runs from to B and a 6-in.

pipe l| miles long runs from to C. Assuming that/ = 0.02, calculate the flows in

the lines.
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340. A straight 12-in. pipe line 3 miles long is laid between two reservoirs of sur-

face elevations 500 and 350 entering these reservoirs 30 ft beneath their free surfaces.

To increase the capicity of the line a 12-in. line 1.5 miles long is laid from the original

line's midpoint to the lower reservoir. What increase in flow is gained by installing

the new line? Assume that / = 0.02 for all pipes.

341. Three pipes join at a common point at elevation 350. One, a 12-in. line

2000 ft long, goes to a reservoir of surface elevation 400; another, a 6-in. line 3000 ft

long, goes to a reservoir of surface elevation 500; the third (6-in.) runs 1000 ft to

elevation 250, where it discharges into the atmosphere. Assuming that / = 0.02,

calculate the flow in each line.



CHAPTER VII

FLUID FLOW IN OPEN CHANNELS

Open-channel flow embraces that variety of problems which arise

when water flows in natural water courses, regular canals, irrigation

ditches, sewer lines, flumes, etc. a province of paramount importance
to the civil engineer. Although open-channel problems practically

always involve the flow of water, and although the experimental results

used in these problems were obtained by hydraulic tests, modern fluid

mechanics indicates the extent to which these results may be applied

to the flow of other fluids in open channels.

45. Fundamentals. In the problems of pipe lines, as may be seen

from the hydraulic grade line, the pressures in the pipe may vary along
the pipe and depend upon energy losses and the conditions imposed

upon the ends of the line. Open flow, however, is characterized by

FIG: 109.

the fact that pressure conditions are determined by the constant

pressure, usually atmospheric, existing on the entire surface of the

flowing liquid. In general, pressure variations within a liquid flowing
in an open channel are determined by the principles of fluid statics

(Art. 8) unless the flow is sharply divergent, convergent, or curved;
the latter conditions are accompanied by vertical accelerations or

196
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decelerations which disrupt the laws of static pressure distribution

(Art. 15). Therefore, with the foregoing exceptions, the pressure head

equivalent to the pressure at a point in open-channel flow is exactly

equal to the depth of submergence of the point (Fig. 109). This leads

to the conclusion that the hydraulic grade lines for all the streamtubes

which compose open-channel flow lie in the liquid surface.

FIG. 110.

Open-channel flow may be laminar or turbulent, steady or un-

steady, "uniform" or "varied," "tranquil" or "rapid." The laminar

flow of liquids in open channels has few practical engineering applica-

tions, and the problem of unsteady flow in open channels is an exceed-

ingly complex one; the following discussion will therefore be confined

to steady turbulent flow. The definitions of tranquil and rapid flow

will be presented subsequently, but the significance, causes, and limits
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of uniform and varied flow must now be examined. The meaning of

these terms and the fundamentals of open-channel flow may be seen

from a comparison of perfect fluid flow and real fluid flow in similar

channels of unchanging shape leading from reservoirs of the same

surface elevation (Fig. HO).
1 No resistance will be encountered by

the perfect fluid as it flows down the channel, and because of this lack

of resistance it will continually accelerate under the influence of grav-

ity. Thus, the velocity of flow in the channel continually increases,

and with this velocity increase, a reduction in flow cross section is

required by the continuity principle. Reduction in flow cross section

is characterized by a decrease in depth of flow ; since the depth of flow

continually "varies" when the forces acting on fluid particles are

unbalanced, this type of fluid motion is termed varied flow.

When real fluid flows in the same channel, motion encounters

resistance forces due to fluid viscosity and channel roughness. Analysis

of the resistance forces originating from these same properties in pipes

has shown the forces to depend upon the velocity of flow (equation 54).

Thus, in the upper end of the channel where motion is slow, resistance

forces are small but the components of gravity forces in the direction

of motion are the same as for the ideal fluid. The resulting unbalanced

forces in the direction of motion bring about acceleration and varied

flow in the upper reaches of the channels. However, with an increase

of velocity, the forces of resistance increase until they finally balance

those caused by gravity. Upon the occurrence of this force balance,

constant-velocity motion is attained, which is characterized by no

change of flow cross section and thus no change in the depth of flow

the depth of flow remains constant, hence the term uniform flow.

Toward the lower end of the channel, pressure forces exceed resistance

forces and varied flow again results.

Obviously, an inequality of the above forces is more probable than

a balance of these forces, and hence varied flow occurs in practice to

a far greater extent than uniform flow. In short channels, for exam-

ple, uniform-flow conditions may never be attained because of the

long reach of channel necessary for the establishment of uniform flow.

However, in many problems a rigorous treatment of varied flow is not

necessary, and approximate calculations of varied flow may be carried

out with the equations of uniform flow. Solution of the uniform-flow

problem forms the basis of open-channel-flow calculations.

1 The channel slopes in most of the illustrations in this chapter have been exag-

gerated to emphasize their existence. In open-channel practice, slopes are very
seldom encountered which are greater than 1 ft in 100 ft, or 0.01.
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46. Uniform Flow The Chezy Equation. The fundamental

equation for uniform open-channel flow may be derived readily by
equating the equal and opposite forces due to gravity and resistance

and applying some of the fundamental notions of fluid mechanics

obtaiiied in the analysis of pipe flow. Consider the uniform flow of

a liquid between sections 1 and 2 of the open channel of Fig. 111.

Horizontal

FIG. 111.

The forces acting upon the mass of fluid, ABCD, contained between

sections 1 and 2 are: (1) the forces of static pressure FI and F%, acting

on the ends of the mass ; (2) the component of weight in the direction

of motion, T^sin a; and (3) the force of resistance, FT , resulting from

the shear stresses, TO ,
on the bottom and sides of the channel. A

summation of these forces gives

But obviously

and therefore

Fl -h Wsin a - F2
- FT

=

FT
= W sin a

But W = Awl, sin a = HL /I, and tan a = 5, in which S is the slope of

the channel bed and of the liquid surface as well. For the small slopes

encountered in open-channel practice

tan a. = sin a = S

Taking TO to be the average shear stress on the sides and bottom

of the channel the resistance force, FT , may be expressed by
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Substituting these relationships in the above force equation

T pl = AwlS
or

A
TO = W O

p

in which A/p is recognized as the hydraulic radius, R. Therefore

r = wRS (68)

In pipe flow, TO was shown to be given (equation 54) by

in which/, the friction factor, was dependent upon surface roughness
and the Reynolds number, but more dependent upon the magnitude
of the former for highly turbulent flow. The mechanism of real fluid

motion is similar in pipes and open channels, and hence as an approxi-

mation it may be concluded that for turbulent flow in open channels

TO = KV2
(69)

in which K is a coefficient depending primarily upon the roughness
of the channel lining. Substituting this expression in equation 68

KV2 = wRS
and thus

v = ~ VRS

or, if C =

V=CV~RS (70)

called the "Chezy equation
" 2 after the French hydraulician who

established this relationship experimentally in 1775. By applying
the continuity principle, the equation may be placed in terms of Q as

<2
- CAVRS (71)

the fundamental equation of uniform flow in open channels.

47. The Chezy Coefficient. Many experiments have been carried

out to determine the magnitude of the Chezy coefficient, C, and its

dependence upon other variables. A theoretical basis for these experi-

2 Compare the above derivation of the Chezy equation with that of Art. 41.
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mental results may be obtained by the application of some of the

fundamental notions of fluid mechanics in the following manner:

From equation 69

and substituting this expression in the equation for C above,

With g a constant, the Chezy coefficient, C, is thus dependent upon
the friction factor, /, of the channel. Expressing this in a more general

fashion

But from a study of flow in circular pipes which all have the same

shape,

/ = F2 ( , roughness

In open-channel flow the frictional processes are the same as those in

pipes, but the shapes of open channels are quite different and this

variation in shape must affect the friction factor. Hence, for open
channels

/ = F3 I
, roughness, shape J

Designating roughness by n, and recalling (Art. 40) that the hydraulic

radius, R, characterizes the shape of the section as regards frictional

effects in turbulent flow, this equation may be written

or more generally

/ = F4(F, v, n, R)

and, since

C = F6(V,v,n,R)

For water flowing in open channels within the usual range of tempera-
ture the kinematic viscosity, v, varies little ; taking v as a constant

C - Ft(V, n, R)
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From the Chezy equation

V = F7 (C, U, S)

Substituting this relationship in the one above,

C = Fs (n, R, 5)

Theoretical reasoning thus leads to the conclusion that for the turbu-

lent flow of water in open channels the Chezy coefficient is dependent

upon the roughness, hydraulic radius, and slope of the channel.

This conclusion is confirmed by the formula for C proposed by

Ganguillet and Kutter, 8 two Swiss engineers, in 1869. Their formula

was derived from experimental results obtained from hydraulic tests

on artificial and natural channels of all descriptions, ranging in size

from small laboratory channels up to large rivers. The formula has

come to be used widely in this country and abroad, although recently

its accuracy has been criticized because of errors in some of the tests

on which the formula is based. The formula is

in which 5 has no dimensions, R is in feet, and n may be obtained from

the partial list of values of Table IX. Tables and diagrams are avail-

able in the hydraulic literature for the solution of the formula. A
graphical method of solution is indicated on Fig. 112.

TABLE IX

VALUES OF THE ROUGHNESS COEFFICIENT, n

Smooth cement, planed timber 0.010

Rough timber, canvas .012

Good ashlar masonry or brickwork .013

Vitrified clay .015

Rubble masonry .017

Firm gravel 0.020

Canals and rivers in good condition 0.025

Canals and rivers in bad condition . 035

8 General Formula for the Uniform Flow of Water in Rivers and Other Channels,

translated by R. Hering and J. C. Trautwine, Jr., Second edition, 1893, John Wiley
& Sons.
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Another expression for the Chezy coefficient may be derived from

an analysis by Manning4
resulting in the formula

for uniform open channel flow. Comparing the Manning and Chezy
formulas,

C = KR1

in which K is dependent upon roughness and is given by 1.486/w.

Thus, Manning's proposal leads to

r - L486
/?*C JK.

n

which, because of simplicity and satisfactory accuracy, is increasingly

preferred over the more cumbersome Kutter formula.

3.50

0.75

0.50
.3 .4 .5 1 2345

Hydraulic Radius in Feet

FIG. 112.

20 30 40 50 100

The results of the Kutter and Manning formulas may be easily

compared and presented for practical use by plotting the product
(C X n) against the hydraulic radius, R (Fig. 112). On such a plot,

4 Trans. Inst. Civil Engineers of Ireland, Vol. 20, 1890, p. 161.
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the Manning formula appears as a single line and the Kutter formula

as a series of curves whose location depends upon slope and roughness.

Another advantage of the Manning formula is that its simplicity

allows it to be inserted into the Chezy equation,

n - L486
xQ- -x

giving

Q = AR S (72)
n

and allowing calculations to be carried out without the necessity for

tables or diagrams of C. The equation also shows clearly that an

error in the selection of the roughness coefficient, n, causes an error

of the same magnitude in the calculated quantity of flow, Q. It is

evident from Table IX that experience is essential to the selection of n

and the accurate prediction of rates of flow.

ILLUSTRATIVE PROBLEM

A rectangular channel lined with rubble masonry is 20 ft wide and laid on a

slope of 0.0001. Calculate the depth of uniform flow in this channel when 400 cfs

flow therein

n = 0.017, A = 2Qd, R
20 + 2d

Using the Manning equation

0.017

whence

<20

Solving by trial, d = 8.34 ft

48. Best Hydraulic Cross Section. It is obvious from

Q CAVRS

that for a given area of flow cross section, -4, and for a given slope, 5,

the rate of flow, Q, through a channel of given roughness will be maxi-

mum when the hydraulic radius, -R, is maximum. It becomes impor-

tant, therefore, for best engineering design to proportion the dimensions
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of the channel cross section to give an hydraulic radius which is as

large as is practically possible. From the definition of hydraulic radius

it is obvious that a cross section of maximum hydraulic radius is a

cross section of minimum wetted perimeter, p. Minimum wetted

perimeter means a minimum of lining material, grading, and general
construction work. Hence, a channel cross section having maximum
hydraulic radius not only results in the _.
best hydraulic design but tends toward

a section of minimum cost as well. It,

therefore, becomes of practical interest to

investigate certain channel shapes to dis-

cover how they may be proportioned in

order to have maximum hydraulic radii.

For a rectangular cross section of

width b and depth d, having a fixed cross-sectional area A, Fig. 113,

the dimensions for the conditions of maximum hydraulic radius may
be calculated by writing a general expression for the hydraulic radius

and obtaining its maximum by differentiating and equating to zero.

From Fig. 113,

FIG. 113.

and

giving

R-

b -

R =

b + 2d

A
d

J
Ad

A +2d2

Differentiating in respect to d and equating to zero

(A + 2d 2
)A - Ad(0dR

dd

gives

But since A is also given by

(A + 2d 2
)
2

A = 2d 2

A =bd
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comparison of these expressions shows that

b = 2d

or, in other words, the breadth of a rectangular channel must be twice

the depth for a condition of maximum hydraulic radius. The magni-
tude of the hydraulic radius when maximum may be calculated by

substituting the above expressions in the general equation for hydraulic

radius as follows:

A 2d 2 d
R

2d 2d + 2d 2

Thus, when the hydraulic radius is maximum for a rectangular channel

it is equal to one-half of the depth of flow.

For the trapezoidal
5 section of Fig. 114, the cross-sectional area

is given by

b = - d cot
'//////////////////////////////// d

~t3fe
d cotoe

FlG 114 and the wetted perimeter by

p = b + 2d esc a

Substituting the above expression for b

A
p = - d cot a + 2d esc a

d

Thus the hydraulic radius may be stated

p A
d cot a + 2d esc a

d

Differentiating in respect to d and equating to zero, the conditions for

maximum hydraulic radius are obtained, given by

A = d 2
(2 esc a cot a)

6 The angle of side slope, a, is generally limited in an earth canal by the angle
of repose of the soil. If the canal is lined a may have any value.
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Substituting this in the general expression for R,

as was obtained in the rectangular channel for conditions of maximum
hydraulic radius.

ILLUSTRATIVE PROBLEM

What are the best dimensions for a rectangular channel which is to carry

400 cfs if the channel is lined with rubble masonry and is laid on a slope of 0.0001 ?

d
n = 0.017, A =

2d*, R = -

0.017

whence

rfi = 364, d = 9.15 ft

I = 2d = 18.30 ft

400 _ 115$ (H) (-W- (0 .0001)
i

0.017 \b + 2d/

d bd

2 b + 2d

and solving these equations simultaneously

b = 18.30ft d = 9.15 ft

49. Variation of Velocity and Rate of Flow with Depth in Closed

Conduits. Frequently in civil engineering practice, particularly in

sewer problems, closed conduits that do not flow full are used to convey

liquids. Conduits of this type, in which flow does not occur under

pressure, satisfy the definition of open channels and must be con-

sidered as such. Open-channel flow in closed conduits possesses

certain special features because of the convergence of the side walls

at the top of the conduit. For sewer design it is essential to have

available the relations of velocity and rate of flow to depth for con-

duits of various shapes ; the depth at which the maximum quantity of

flow will occur must be known for capacity calculations, and the

variation of velocity with depth must also be understood since certain

velocities must be maintained in order to transport suspended solid

matter.
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A simple analysis of these features may be carried out by using the

Manning form of the Chezy equation for rate of flow and velocity

~ 1.486

V =

n

1.486

n

For a conduit of a certain roughness, n, laid on a given slope, *S, it is

obvious that

Q cc AR1

V oc Rl

and that A and R are both functions of the depth d. Hence Q and V
may be plotted against the depth by assuming various values of d, and

calculating the corresponding velocities and rates of flow. By dividing
these velocities and flow rates by those obtained when the conduit

flows full a more generally useful diagram is obtained in which the

velocities and rates of flow are both unity when the conduit flows full.

FIG. 115.

A diagram of this type is shown for a circular conduit in Fig. 115;
it gives, for any depth, the ratio of rate of flow and velocity at that

depth to those when the conduit flows full; with rate of flow and
velocity for the full conduit easily obtainable from the Chezy equation,
rates of flow and velocities for a partially full conduit are readily found
with the aid of the diagram.
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The depths at which maximum flow and maximum velocity occur

may be obtained directly from the diagram; they are seen to be

0.94D and 0.80J9, respectively, for the conduit of circular cross section.

These depths may be obtained more accurately by stating AR* and

R* in terms of d, differentiating the expressions in respect to d, equat-

ing the results to zero, and solving the resulting equations for d.

50. Specific Energy. Many modern problems in open-channel flow

are solved by means of energy calculations. The "specific energy'
1

and its diagram, which were introduced by Bakhmeteff in 1911, have

proved fruitful in the explanation of new and old problems of open-

channel flow. Today a knowledge of specific energy fundamentals is

absolutely necessary in coping with the advanced problems of open

FIG. 116.

flow
; these fundamentals and a few of their applications are developed

in the succeeding paragraphs.
Consider the uniform flow shown in Fig. 116. Here, for a given

slope, roughness, shape, and rate of flow, the depth may be calculated

from the Chezy equation. Assuming a uniform velocity distribution,

the Bernoulli equation may be written for a typical streamtube as

Vl

w 2g w Ig
*

which indicates that energy is lost as flow occurs. However, if the

sloping channel bottom is taken as a datum plane the energy becomes

b V2

77 *i ' I& y ~r T" -
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which is the same at sections 1 and 2. The term E is called the
"
specific energy"; from the figure,

y + - =d
w

and the definition of specific energy may be simplified to

_ , F2

= d ~T~ 1 (73)

showing that specific energy in open-channel flow is simply the sum of

the depth and the velocity head in the channel.

ILLUSTRATIVE PROBLEM

In a trapezoidal channel having a bottom width of 10 ft, 1000 cfs flow at a

depth of 6 ft. If the side slopes of the channel

are 1 on 3, calculate the specific energy.

A = 10 X 6 + 6 X 18 = 168 ft
2

V = ^2? . 5.95 ft/sec
168

*= 6 6.55 ft

Jfl

^^

In uniform open-channel flow Bernoulli energy is lost as flow takes

place but specific energy remains constant. In varied flow Bernoulli

energy is continually lost, but it will

be seen later that specific energy may
be lost or gained as varied flow occurs.

It is convenient at this point to

deal with flow in a channel of rectangu-
lar cross section, whose simple geo-

metrical form will allow the use of

simple equations to illustrate the fun-

damentals. The principles involved may
be applied to channels of other shape,
but the resulting equations are larger and more difficult to handle.

If a uniform velocity distribution is assumed in the rectangular
channel of Fig. 117, the unit rate of flow, q, through a vertical strip of

1-ft width will be given by

2= Vd

FIG. 117.
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which will eliminate the width of channel, b, from subsequent equa-
tions. Obviously q is related to the total rate of flow, Q, by

Q =
bq

From the foregoing equation for g, V =
q/d, which may be substi-

tuted in the equation for specific energy giving

a more useful expression for specific energy, and relating this quantity
with depth and rate of flow. A thorough understanding of this equa-
tion and its physical meaning may be obtained most easily by:
(1) assuming q constant and studying the relation of E and d, and

(2) taking E constant and examining the relation of q and d.

In the flow of a certain quantity of liquid in open channels of

various slopes, it is evident that steep slopes will tend toward high
velocities and small depths, and mild slopes toward low velocities and

large depths. The slopes thus determine the depths, but the depths
in turn determine the specific energy since q is constant in

Plotting of this equation gives the "specific energy diagram'* of

Fig. 118 and introduces some new concepts to open-channel flow.

Region of tranquil flow

and mild slopes

*
Specific Energy, E -*

FIG. 118. The Specific Energy Diagram.

The specific-energy curve possesses a point of minimum energy at

which the depth is termed the "critical depth." For every specific

energy, E, there are two "alternate" depths at which flow may take
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place, one greater and one less than the critical depth. If the depth of

flow is greater than the critical the flow is said to be "tranquil" and

the slopes which bring about such flows are designated as "mild"

slopes. The flow is said to be
"
rapid" if its depth is less than the

critical depth ; rapid flows are caused by "steep" slopes. Uniform flow

at the critical depth will occur when the channel has a "critical slope,"

sc .

Certain general characteristics of open-channel flow may be

deduced from the specific-energy curve. In the region of flow near

the critical depth, the depth may change for practically constant

specific energy. Physically this means that, since many depths may
occur for approximately the same specific energy content, flow near

the critical depth will possess a certain instability (which frequently

manifests itself by undulations in the liquid surface). It is also evident

from the curve that a loss of specific energy will be accompanied by
a reduction in depth in tranquil flow, but in rapid flow an increase of

depth is associated with a loss of specific energy.

The relation between depth and rate of flow for constant specific

energy may be obtained by solving equation 74 for q 1 resulting in

q = V2gd
2E -

2gd* (75)

From this equation may be plotted the "g-curve"
6

of Fig. 119. The

physical meaning of such a curve may be determined by assuming a

Since V-
Bmh- Constant

FIG. 119. Theg-Curve.

reservoir of a constant surface elevation which discharges into an

open channel with movable gates at each end. If the velocity in the

6
Originally suggested by Koch. For a summary of his work see A. Koch and

M. Carstanjen, Bewegung des Wassers, 1926.
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reservoir is neglected the specific energy here will be constant and

equal to the height h throughout manipulation of the gates. If it is

assumed that no energy is lost as flow passes the first gate the fluid

flowing in the channel will possess the constant specific energy h.

By adjusting the gates the depth of liquid in the channel may be varied

between zero and h without changing the specific energy, and during
this variation the relation between rate of flow and depth is given by
the "g-curve" point A occurs when gate 1 is completely closed,

point B when gate 1 is open but gate 2 completely closed, and point C
when both gates are removed and unobstructed flow takes place.

The last condition brings about a maximum rate of flow which occurs

at the critical depth since the point of maximum flow for a given

specific energy content is the same as that of minimum energy for a

given rate of flow. Hence the regions of rapid and tranquil flow may be

indicated on the g-curve as shown.

51. Critical-Depth Relationships. The calculation of critical depth
is necessary to the identification of tranquil and rapid flow, and the

derivation of the equations of critical flow lends a further significance

to the critical depth.

Since critical depth occurs when specific energy is minimum for

a given rate of flow the equations of critical flow may be obtained by
differentiating equation 74 and equating the result to zero. Perform-

ing this operation,

dE d

in which d has become d c after differentiation. From this equation

there results

<Z

2 = gd* (76)

which when substituted in the general specific-energy equation gives

E c
= d c + 72

= - d c (77)
lgd c 2

Other important critical-flow equations may be readily derived from

equation 76, and these are

q = Vgd*
'

(78)

or
0/3

(79)
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or since Tr ,

q = Vc d c

Vc
= V~& c (80)

Since these equations may also be obtained by the differentiation of

equation 75, the maximum point of the g-curve must correspond to

the minimum point of the specific-energy curve, indicating that the

former point occurs at the critical depth as stated above.

The foregoing equations demonstrate and suggest certain points

concerning critical flow. Equation 79 shows that critical depth

depends only upon the rate of flow in the channel. It is a characteristic

parameter of the flow which may be determined as soon as q is known.

Equation 78 suggests utilizing critical flow as a means of metering

open-channel flow. If critical flow may be caused to exist in a channel

its depth may be measured and the rate of flow calculated.

Equation 80 is the same as another equation of fluid mechanics

which gives the velocity of propagation of a small wave on the surface

of a body of liquid of depth d. The similarity of these equations offers

a rough means of identifying rapid, tranquil, and critical flows in the

field. Since critical flow takes place at a velocity exactly equal to the

velocity of propagation of a small surface wave, such a wave which is

created on the surface of a critical flow cannot progress upstream but

will remain stationary because of the equality of velocities. In tran-

quil and rapid flows, velocities are respectively less than and more than

Vgd; thus in tranquil flow small surface waves will progress upstream,
but in rapid flow such waves will be swept downstream. 7

ILLUSTRATIVE PROBLEM

When 400 cfs flow at a depth of 4 ft in a rectangular channel 20 ft wide, is the

flow tranquil or rapid? ~
3/CW) 2

= xr^- = 2.32 ft

\ 32.2

Since 4 > 2.32 ft, flow is tranquil.

52. Occurrence of Critical Depth. The critical depth will occur

in open-channel flow when a change in channel slope brings about

7 The similarity between wave velocity phenomena in open flow and acoustic

velocity phenomena in gas flow (Art. 22) should be noted.
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a change from tranquil to rapid flow or from rapid to tranquil flow.

Two occurrences of critical depth are shown in Fig. 120, where a change
from a mild slope to a steep slope causes the flow to pass through the

critical depth in its smooth transition from tranquil to rapid flow.

An abrupt change from rapid to tranquil flow, the "hydraulic jump;"

Hydraulic

FlG. 120.

occurs when the slope of the channel is changed again to a mild slope ;

here again the flow passes through the critical depth.
At free outfall from a channel of mild slope (Fig. 121), the critical

depth will occur a short distance upstream from the brink. The reason

for this is apparent from the specific-energy diagram (Fig. 118). With
no obstruction to maintain the depth, the

depth may fall from the normal depth of

tranquil flow (existing at a great distance

up the channel) to the critical depth but

may fall no more since further reduction in

depth necessitates a gain in specific energy
and there is no energy supply from which

an energy increase may be drawn. The

fact that the brink depth, d
,
is less than the critical is no violation

of this principle; here the flow curvatures induce accelerations which

upset the simple laws of specific energy. Rouse 8 has found that for

very mild slopes the brink depth is a fixed proportion of the critical

depth given by

~ = 0.715 or d c
= lAd

d c

FIG. 121. Free Overfall.

8 H. Rouse, "Discharge Characteristics of the Free Overfall," Civil Engineering^
Vol. 6, No. 4, p. 257, April, 1936.
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He proposes using the brink depth as a means of calculating the rate

of flow with the aid of equation 78,

Substituting the above relation in this expression

q - Vg(1.4O
3 = 1.66V7**.*

Q = l.66bV^d
'

or

(81)

thus allowing rate of flow to be calculated from measurement of the

brink depth.

Flow at critical depth occurs on the crest of a broad-crested weir

(Fig. 122), owing to circumstances similar to those of the free outfall.

Here, as before,

but, friction losses and velocity in the

reservoir above the weir being neglected,

the specific energy, E c ,
of the critical flow,

is given by
Ec

= H
Y/SSSSS///S//////////S///S//S///*

FJG. 122. Broad-Crested Weir.
But from equation 77

d c =\
and therefore

Substituting above this expression for dc

q =

which may be written for comparison with later weir equations

Q = 0.578 X l (82)

Neglecting friction loss causes this equation to be somewhat in error,

and tests on broad-crested weirs indicate the coefficient to be from
0.50 to 0.57 (depending upon the weir shape) instead of the above-

derived 0.578.

Critical depth is obtained for purposes of flow measurement by
contracting the sides of a channel to form a "venturi flume" or by
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raising the channel bottom sufficiently (Fig. 123). The latter problem
is essentially one of a submerged broad-crested weir but it presents
a means of measuring open-channel flow without the necessity of an

inconvenient and costly drop in the channel. Difficulties involved in

this method of flow measurement

are due to the critical depth loca-

tion changing as the flow picture

changes with varying rates of

flow.

As flow passes through the pIG
critical depth in its transition

from tranquil to rapid flow in the foregoing examples, a
"
control" is

formed. At a
"
control" in an open channel the depth of flow is de-

termined by the unique relation between depth and rate of flow

(equation 79), and depths upstream from this point are
"
controlled"

by the critical depth since occurrences downstream from this point

cannot alter the flow above the control. Thus ''controls" in an open
channel are points where the depths may be calculated directly; depths
above and below such controls may be established by the principles

of varied flow.

53. Varied Flow. Calculations on varied flow are based on the

assumption that the loss of energy in a short reach of channel is the

same for varied flow as for a uniform flow having a velocity and

hydraulic radius equal to the numerical averages of the velocities and

hydraulic radii of the sections at the ends of the reach. This assump-
tion has never been confirmed by experiment, but errors arising from it

are likely to be small compared to those incurred in the selection of

roughness coefficients. The assumption is undoubtedly more true of

varied flow in which the velocity increases than that in which the

velocity decreases since in the former energy loss is caused by fric-

tional effects only whereas in the latter the losses due to eddying
turbulence are added to those of friction.

Considering the varied flow of Fig. 124, in which the changes of

depth and velocity are assumed small,

i

Obviously

i
= SJ

and
HL = SI
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in which S is the slope of the
"
energy line/' which may be assumed

to be a straight line over short reaches of channel, /. Substituting

these values in the first equation

S l
v\

and solving for /

5 - S (83)

FIG. 124. Varied Flow.

Using now the basic assumption mentioned above, 5 may be calculated

from the Chezy equation for a uniform flow of average velocity and

hydraulic radius. Using the Manning coefficient

whence

in which

and

v -
V av.

s =

n

1.486tfav
f

'1 + V2

2
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The general method of making varied-flow calculations is to start

at a point in the channel where depth and velocity (say d2 and F2) are

known, assume a depth, d\, slightly different from </2 > calculate FI
and S, and solve equation 83 for the length of reach, /. A fairly accu-

rate profile of the liquid surface in the channel may be obtained by
this method if the difference between the known and assumed depths
is taken small.

ILLUSTRATIVE PROBLEM

Four hundred cubic feet per second flow in a rectangular channel 20 ft wide,

lined with rubble masonry and laid on a

slope of 0.0001. The channel ends in a free

outfall, and at a point in the channel the

depth is 6.00 ft. How far upstream from this

point will the depth be 6.30 ft?

400

6.30 X 20

400

6.00 X 20

3. 18 ft/sec

3.33 ft/sec

El = = 6.46 ft

= 6.00 6.17 ft

Fay. = 3.255 ft/sec

3.77 + 3.75
R&v.

= * 3.81 ft

/ =

1.486 X (3.81)'

6.46 - 6.17

0.000233 - 0.0001

- 0.000233

2180ft

54. The Hydraulic Jump. When a transition of flow occurs from

the rapid state to the tranquil state a varied-flow phenomenon results

known as the "hydraulic jump" in which the elevation of the liquid

surface increases rather abruptly in the direction of flow. Until the

last few decades the hydraulic jump was considered by many to be a

mysterious and complex phenomenon, but at the present time a com-



220 FLUID FLOW IN OPEN CHANNELS

plete theoretical solution of the problem involves only a simple applica-
tion of the laws of fluid statics, impulse-momentum, and specific

energy; the results obtained from such a theoretical analysis exhibit

close conformity with the results of experimental observations.

An hydraulic jump in a channel of small slope is shown in Fig. 125.

It is characterized by an increase of depth,
9 a surface roller, eddying

turbulence, and an undulating liquid surface downstream from the

jump. Since the jump can occur only as a change from rapid to tran-

quil flow the depth in changing must pass through the critical depth.
In engineering practice the hydraulic jump frequently occurs below
a spillway or sluice gate where velocities are high. From Fig. 125

it is obvious that in passing the jump the fluid loses velocity, and the

FIG. 125. Hydraulic Jump

jump is often used in this capacity as a dissipator of the kinetic energy
of an open flow in order to prevent scour of channel lining.

Between sections 1 and 2 of Fig. 125 there occurs a decrease of

velocity from Vi to V2 and consequent decrease in the momentum
of the flowing liquid which, according to the impulse-momentum law,

must be caused by forces continually acting on the liquid mass between

these sections. Since the decrease in velocity is in a horizontal direc-

tion, the imposed forces are horizontal also and arise (1) from pressure

on the ends of the liquid mass and (2) from frictional effects at the

sides and bottom of the mass. The pressure forces being designated

as FI and /^ ,
and the friction force as FT , the impulse-momentum law

gives

Fi + Fr-Fi - (Fi- V2)

9 The jump is not as steep as shown in the figure; the length of jump, /, is usually

4 to 5 times its height, dj.
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in which FT , resulting from frictional effects over the short distance, /,

is safely negligible. The equation, therefore, reduces to

J7 1? 5- / T/ T7 \
r% "i \ v i v 2)

g

By the principles of fluid statics (Art. 11),

FI = A lwhgl

F2
= A 2whg2

Substituting these relationships and FI = Q/Ai and F2
= Q/A 2 in

the above equation,

62 '
~ *

!

(84)

which is the basic general equation for the hydraulic jump in channels

of any shape.

Assuming, now, a rectangular channel in order to demonstrate

principles and methods with a minimum of mathematical complexity,
the above equation reduces through substitution of the following

relationships

A i
= bdi A 2

= bd2

hgi
==

~^~
^st

~
~^~

to

2

~
2
"

g \dr

~~

d2

which may be written

--- + Y
=
-y + y (85)

which allows the vertical dimensions of the hydraulic jump to be

obtained since if the rate of flow and one depth are known, the other

depth may be calculated.



222 FLUID FLOW IN OPEN CHANNELS

ILLUSTRATIVE PROBLEM

If 400 cfs flow in a rectangular channel 20 ft wide at a depth of 1.00 ft, what

depth will exist after an hydraulic jump has occurred from this flow?

400 ft
3
/sec

q
= 20 -

*
20 ft

;[- 32.2 X (1)

=450ft

Although special expressions for <L\ and d2 may be obtained 10 from

equation 85, it proves more fruitful to solve the equation by graphical

methods. Taking

it is obvious (1) that, for a given rate of flow, M is a function of d only,

and (2) that solution of the equation is given by

MI = M2

FIG. 126. Hydraulic Jump and Jkf-curve.

The curve obtained (Fig. 126) from plotting M against d possesses

a minimum value of M at the critical depth and is similar in shape to

the specific-energy diagram. After construction of this curve and with

one depth known, the corresponding, or
"
conjugate," depth may be

10 Solution of equation 85 gives

* *[ i*- r |^-i.
or
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found by passing a vertical line through the point of known depth.
Since a vertical line is a line of constant M, the intersection of this

line and the other portion of the curve gives a point where MI is equal

FIG. 127.

to M2 ,
and allows the conjugate depth and height of jump, dj, to be

taken directly from the plot.

By plotting the M-curve and specific-energy curve on the same

s>sc

FIG. 128.

diagram, the loss of energy in the jump may be obtained graphically

by the methods of Fig. 127, and from the lost energy the horsepower
consumed in the jump may be calculated by the usual methods.

A simple problem in locating a hydraulic jump is shown in Fig. 128.
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Here a channel of steep slope in which uniform flow is established dis-

charges into a channel of mild slope of sufficient length to contain

uniform flow. For a certain rate of flow the depths d and d2 may be

calculated from the Chezy equation. From d2 > d\ may be obtained

from the M-curve or by solution of equation 85. Flow in the reach of

channel of length / is of a gradually varied nature, and this length may
be obtained by solutions of equation 83; the larger the difference

between d\ and d, the greater the number of solutions necessary for

an accurate value of /.
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PROBLEMS

342. Water flows uniformly at a depth of 4 ft in a rectangular flume 10 ft wide,

laid on a slope of 1 ft per 1000 ft. What is the average shear stress at the sides and

bottom of the flume?

343. Calculate the average shear stress over the wetted perimeter of a circular

sewer 10 ft in diameter in which the depth of flow is 3 ft and whose slope is 0.0001.

344. What is the average shear stress over the wetted perimeter of a triangular

flume 8 ft deep and 10 ft wide at the top, when the depth of water flow is 6 ft? The

slope of the flume is 1 in 200.

345. Calculate the friction factor/equivalent to a Chezy coefficient of 120.

346. Calculate the Chezy coefficient which corresponds to a friction factor

/ of 0.030.

347. For an open channel of hydraulic radius 40 ft, value of n 0.017, and slope

0.0001, check the values of (C X n) given in Fig. 112.

348. For an open channel of hydraulic radius 0.8 ft, value of n 0.017, and slope

0.001, check the values of (C X n) given in Fig. 112.

349. What uniform flow will occur in a rectangular planed timber flume 5 ft wide

and having a slope of 0.001 when the depth therein is 3 ft: Using: (a) Manning C\

(6) Kutter C.

350. Calculate the uniform flow in an earth-lined (n 0.020) trapezoidal canal

having bottom width 10 ft, sides sloping 1 on 2, laid on a slope of 0.0001, and having
a depth of 6 ft, using: (a) Manning C\ (b) Kutter C.

351. What uniform flow exists in a circular brick conduit 5 ft in diameter when
the depth of flow is 2 ft, if it is laid on a slope of 0.0005, using: (a) Manning C;

(b) Kutter C.

352. What uniform flow occurs in a river of flow cross section 10,000 ft, wetted

perimeter 550 ft, if its slope is 1 in 5000, using: (a) Manning C\ (b) Kutter C?

n is 0.025.
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353. A rough timber flume in the form of an equilateral triangle (apex dowti) of

4-ft sides is laid on a slope of 0.01. Calculate the uniform flow which occurs at a

depth of 3 ft, using: (a) Manning C\ (b) Kutter C.

354. What uniform flow will occur in this cross section, if it is laid on a slope of 1

in 2000 and has n - 0.017, using (a): Manning C, (b) Kutter C?

looti on i

355. What uniform flow will occur in this open channel if it is laid on a slope of

0.0002 and has a value of n of 0.015, using: (a) Manning C; (b) Kutter C?

356. A flume of planed timber has its cross section an isosceles triangle (apex

down) of 8-ft base and 6-ft altitude. At what depth will 180 cfs flow uniformly in

this flume if it is laid on a slope of 0.01? Use Chezy-Manning equation 72.

357. At what depth will 150 cfs flow uniformly in a rectangular channel 12 ft wide

lined with rubble masonry and^laid on a slope of 1 in 4000? Chezy-Manning equa-
tion 72.

358. At what depth will 400 cfs flow uniformly in an earth-lined (n = 0.025)

trapezoidal canal of base width 15 ft having side slopes 1 on 3, if the canal is laid

on a slope of 1 in 10,000? Chezy-Manning equation 72.

359. Calculate the depth at which 25 cfs will flow* uniformly in a smooth cement-

lined circular conduit 6 ft in diameter, laid on a slope of 1 in 7000. Chezy-Manning
equation 72.

360. An earth-lined (n = 0.020) trapezoidal canal of base width 10 ft and side

slopes 1 on 3 is to carry 100 cfs uniformly at a maximum velocity of 2 ft/sec. What
is the maximum slope that it may have?

361. What slope is necessary to carry 400 cfs uniformly at a depth of 5 ft in a

rectangular channel 12 ft wide, having n = 0.017?

362. A trapezoidal canal of side slopes 1 on 2 and having n = 0.017 is to carry
1300 cfs on a slope of 0.005 at a depth of 5 ft. What base width is required?

363. Rectangular channels of flow cross section 50 ft
2 have dimensions (width

X depth) of (a) 25 ft by 2 ft; (b) 12.5 ft by 4 ft; (c) 10 ft by 5 ft; (d) 5 ft by 10 ft.

Calculate the hydraulic radii of these sections.

364. What are the best dimensions for a rectangular channel having a flow cross

section of 100 ft
2
?

365. What are the best dimensions of a trapezoidal channel having a flow cross

section of 150 ft
2 and sides sloping at 30?

366. What are the best dimensions for a rectangular rough timber channel to

carry 120 cfs on a slope of 1 in 8000?

367. What are the best dimensions for a trapezoidal canal having side slopes

1 on 3 if it is to carry 1400 cfs on a slope of 0.009? (n = 0.020.)

368. What is the minimum slope at which 200 cfs may be carried uniformly in a

rectangular channel (having a value of n of 0.014) at a velocity of 3 ft/sec?

369. What is the minimum slope at which 1000 cfs may be carried at a velocity

of 2 ft/sec in a trapezoidal canal having n = 0,025 and sides sloping 1 on 4?
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370. Prove that the best form for a V-shaped open-channel section is one of

vertex angle 90

^ 371. What rate of uniform flow occurs at a depth of 3 in. in a vitrified clay sewer

line of 12-in. diameter laid on a slope of 0.003? What is the velocity of this flow?

372. What rate of uniform flow occurs in a 5-ft circular brick conduit laid on a

slope of 0.001 when the depth of flow is 3.5 ft? What is the velocity of this flow?

373. At what depth will 800 cfs flow in a circular ashlar masonry conduit 10 ft

in diameter, laid on a slope of 0.006? What is the velocity of flow?

374. Solve problem 359 using the plot of Fig. 115. What is the velocity of flow?

375. Plot curves similar to those of Fig. 115 for an isosceles triangle (apex

up) whose base is equal to its altitude. Find the maximum points of the curves

mathematically.

376. Plot curves similar to those of Fig. 115 for an equilateral triangle (apex

up). Find the maximum points of the curves mathematically.

377. Plot curves similar to those of Fig. 115 for a square laid with diagonal verti-

cal. Find the maximum points of the curves mathematically.

378. Calculate the specific energy when 225 cfs flow in a 10-ft rectangular channel

at depths of (a) 1.5ft; (b) 3ft; (c) 6ft.

379. Calculate the specific energy when 300 cfs flow at a depth of 4 ft in a trape-

zoidal channel having base width 8 ft and sides sloping at 45.

380. What is the specific energy when 60 cfs flow at a depth of 5 ft in a circular

channel 6 ft in diameter?

381. Calculate the specific energy when 100 cfs flow at a depth of 3 ft in a triang-

ular (apex down) flume, if the width at the water surface is 4 ft.

382. At what depths may 30 cfs flow in a rectangular channel 6 ft wide if the speci-

fic energy is 4 ft?

383. At what depths may 800 cfs flow in a trapezoidal channel of base width

12 ft and sides slopes 1 on 3 if the specific energy is 7 ft?

384. Eight hundred cubic feet per second flow in a rectangular channel of 20 ft

width having n = 0.017. Plot accurately the specific-energy diagram for depths

from to 10 ft, using the same scales for d and E. Determine from the diagram:

(a) the critical depth; (b) the minimum specific energy; (c) the specific energy
when the depth of flow is 7 ft

; (d) the depths when the specific energy is 8 ft. What

type of flow exists when the depth is (e) 2 ft, (/) 6 ft, and what are the channel slopes

necessary to maintain these depths? What type of slopes are these, and (g) what is

the critical slope?

385. Flow occurs in a rectangular channel of 20-ft width and has a specific energy
of 10 ft. Plot accurately the g-curve. Determine from the curve: (a) the critical

depth; (b) the maximum rate of flow; (c) the flow at a depth of 8 ft
; (d) the depths

at which a flow of 1000 cfs may exist and the flow condition at these depths.

386. Five hundred cubic feet per second flow in a rectangular channel 15 ft wide

at a depth of 4 ft. Is the flow rapid or tranquil?

387. If 300 cfs flow in a rectangular channel 12 ft wide having n = 0.015 and

laid on a slope of 0.005, is the flow tranquil or rapid?

388. If 400 cfs flow in a rectangular channel 18 ft wide with a velocity of 5 ft/sec,

is the flow tranquil or rapid?

389. Calculate and check the critical depths of problems 384 and 385.

390. What is the maximum flow which may occur in a rectangular channel 8 ft

wide for a specific energy of 5 ft?
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391. An open rectangular channel 5 ft wide and laid on a mild slope ends in a free

outfall. If the brink depth is measured as 0.865 ft, what flow exists in the channel?

392. Calculate the critical depth for 50 cfs flowing in a rectangular channel 8 ft

wide. If this channel is laid on a mild slope and ends in a free outfall, what is the

depth at the brink?

393. What theoretical flow will occur over a broad-crested weir 30 ft long when
the head thereon is 2 ft?

394. The elevation of the crest of a broad-crested weir is 100.00 ft. If the length
of this weir is 12 ft and the flow over it 200 cfs, what is the elevation of the water

surface upstream from the weir?

395. The critical depth is maintained at a point in a rectangular channel 6 ft wide

by building a gentle hump in the bottom of the channel. When the depth over the

hump is 2.20 ft, calculate the flow. Sketch the energy line and water surface showing
all possible vertical dimensions.

396. If 150 cfs flow in a rectangular channel 10 ft wide, laid on a slope of 0.0004

and having n 0.014, what is the minimum height of hump that may be built across

this channel to create critical depth over the hump? Sketch the energy line and water

surface, showing all vertical dimensions. Neglect energy losses.

397. A rectangular channel 12 ft wide is narrowed to 6-ft width to cause critical

flow in the contracted section. If the depth in this section is 3 ft, calculate the flow

and the depth in the 12-ft section, neglecting energy losses in the transition. Sketch

energy line and water surface, showing all pertinent vertical dimensions.

398. One hundred and fifty cubic feet per second flow in a rectangular channel

10 ft wide having n = 0.014, and laid on a slope of 0.0004. This channel is to be

narrowed to cause critical flow in the contracted section. What is the maximum
width of contracted section which will accomplish this? Neglect energy losses, and

sketch the energy line and water surface, showing vertical dimensions.

399. If 543 cfs flow in a rectangular channel 12 ft wide having n 0.017 laid

on a slope of 0.00228 and ending in a free outfall, calculate and plot the water-

surface profile from the brink upstream to the region of uniform flow, taking incre-

ments of depth of 0.2 ft. How far from the brink does a depth of 5.0 ft occur?

400. The channel of the preceding problem discharges into a channel of the same

width and roughness, but having a slope of 0.0293. Calculate and plot the water-

surface profile downstream to the region of uniform flow, taking decrements of depth
of 0.2 ft. How far fVom the point of slope change does a depth of 3.0 ft exist?

401. In a rectangular channel 12 ft wide having n = 0.017 and laid on a slope of

0.0293, 543 cfs flow uniformly. This channel discharges into one of the same width

and roughness laid on a slope of 0.00228. Calculate and plot the water-surface profile

downstream until a depth of 3.00 ft is reached, using depth increments of 0.2 ft.

How far from the point of slope change does a depth of 2.6 ft exist?

402. Eight hundred cubic feet per second flow in a rectangular channel of 20-ft

width. Plot the M curve of hydraulic jumps on the specific-energy diagram of

problem 384. From these curves determine: (a) the depth after a hydraulic jump
has taken place from a depth of 1.5 ft; (b) the height of this jump; (c) the specific

energy before the jump; (d) the specific energy after the jump; (e) the loss of

energy in the jump; (/) the total horsepower lost in the jump.

403. A flow of 200 cfs takes place in a rectangular channel 15 ft wide at a depth
of 0.5 ft. Calculate the depth after a hydraulic jump has taken place from this flow.
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Calculate FI, FZ, and the change of momentum per second, and check the relation-

ship between these terms.

404. If 543 cfs flow in a rectangular channel 12 ft wide having n 0.017 and
laid on a slope of 0.00228, what depth of flow must exist in this channel for a jump
to occur resulting in uniform flow? How far downstream from the point of change of

slope of problem 401 will such a jump be located?



CHAPTER VIII

FLUID MEASUREMENTS

In engineering and industrial practice one of the fluid problems
most frequently encountered by the engineer is the measurement of

many of the fluid characteristics discussed in the foregoing chapters.
Efficient and accurate measurements are also absolutely essential for

correct conclusions in the various fields of fluid research. Whether the

necessity for precise measurements is economic or scientific, the

engineer of today must be well equipped with a knowledge of the

fundamentals and existing methods of measuring various fluid prop-
erties and phenomena. It is the purpose of this chapter to indicate

only the basic principles of fluid measurements; the reader will find

available in the engineering literature l the details of installation and

operation of the various measuring devices. Although many of the

following devices frequently appear in engineering practice as appur-
tenances in various designs where they are not used for measuring

purposes, a study of them as measuring devices will make obvious their

applications in other capacities.

55. Measurement of Fluid Properties. Of the fluid properties:

density, viscosity, elasticity, surface tension, and vapor pressure,

the engineer is usually called upon to measure only the first two.

Since measurements of elasticity, surface tension, and vapor pressure

are normally made by physicists and chemists, the various experi-

mental techniques for measuring these properties will not be discussed

here.

The density of liquids may be determined by the following methods,

listed in approximate order of their accuracy: (1) weighing a known
volume of liquid; (2) hydrostatic weighing; (3) Westphal balance,

(4) hydrometer, and (5) U-tube.

To weigh accurately a known volume of liquid a device called

a "pycnometer" is used. This is usually a glass vessel whose weight,

volume, and variation of volume with temperature have been accur-

ately determined. If the weight of the empty pycnometer is W\, and

the weight of the pycnometer, when containing a volume V of liquid

1 See bibliography at end of chapter.

229



230 FLUID MEASUREMENTS

at temperature t is TF2 ,
the specific weight of the liquid, wt , at this

temperature may be calculated directly from

w,

t

V

Density determination by hydrostatic weighing
consists essentially of weighing a plummet of known
volume (1) in air and (2) in the liquid whosadensity
is to be determined (Fig. 129). If the weight of

the plummet in air is Wa ,
its volume, F, and its

weight when suspended in the liquid, Wi, the

equilibrium of vertical forces on the plummet gives

- Wa
=

FIG. 129. and results in

Wa
-

V

allowing the specific weight, w^ at the temperature / to be calculated

directly.

f Knife edge

FIG. 130. Westphal Balance.

Like the above method of hydrostatic weighing, the Westphal
balance (Fig. 130) utilizes the buoyant force on a plummet as a measure

of specific gravity. Balancing the scale beam with special riders placed
at special points allows direct and precise reading of specific gravity.
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Probably the most common means of obtaining liquid densities is

with the hydrometer (Fig. 131), whose operation is governed by the

fact that a weighted tube will float with different immersions in liquids

of different densities. To create a great variation of immersion for

small density variation and, thus, to give a sensitive instrument,

changes in the immersion of the hydrometer occur along a slender tube,

FIG. 131. Hydrometer. FIG. 132.

which is graduated to read the specific gravity of the liquid at the

point where the liquid surface intersects the tube.

The unknown density of a liquid 1 may be obtained approximately
from the known density of a liquid 2 (if the liquids are not miscible)

by placing them in an open U-tube and measuring the lengths of

liquid columns, l\ and /2 (Fig. 132). From manometer principles,

and thus

This method is not a precise one because the various menisci prevent
accurate measurement of the lengths of the liquid columns.

Viscosity measurements are made with devices known as "viscosi-

meters" or "viscometers," which may be classified as "rotational,"

"falling-sphere," or "tube" devices according to their construction

or operation. The operation of all these viscometers depends upon
the existence of laminar flow under certain controlled conditions.
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In general, however, these conditions involve too many complexities

to allow the constants of the viscometer to be calculated theoretically ;

and they are, therefore, usually obtained by calibration with a liquid

of known viscosity. Because of the variation of viscosity with tem-

perature all viscometers must be immersed in constant-temperature
baths and provided with thermometers for taking the temperatures
at which the viscosity measurements are made.

Two viscometers of the rotational type are the MacMichael and

Stormer viscometers, whose essentials are shown diagrammatically in

Fig. 133. Both consist of concentric cylinders, the space between

which contains the liquid whose viscosity is to be measured. In the

Rotating

V

Fixed

MacMichael Stormer

FIG. 133. Rotational Viscometers (Schematic).

MacMichael type, the outer cylinder is rotated at constant speed and

the rotational deflection of the inner cylinder (accomplished against

a spring) becomes a measure of the liquid viscosity. In the Stormer

instrument, the inner cylinder is rotated by a falling-weight mechan-

ism, and the time necessary for a fixed number of revolutions becomes

a measure of the liquid viscosity.

The measurement of viscosity by the above variables may be

justified by a simplified mechanical analysis, using the dimensions of

Fig. 133. Assuming Ar small, and the peripheral velocity of the

moving cylinder to be V, the torque, !T, is given (neglecting shear

stress on the bottom of the cylinder) by

T =
(r2irrh)r

= M
~ ^r 2h
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in which

dv = V and dr = Ar

therefore

T =
/A 27rr

2A
Ar

But if 2V = revolutionary speed in revolutions per second, V = 2wrN,
thus

or

in which J is a constant whose magnitude depends on the size, pro-

portions, and depth of filling of the viscometer. This equation may
be written

T
it =-M KN

and since the torsional deflection, 0, of the spring is proportional to

the torque, the equation becomes for the MacMichael viscometer

6

M-Xi-

showing that liquid viscosity, M, may be measured by the torsional

deflection 6 obtained at a speed N. In the Stormer viscometer the

torque, T, is maintained constant by the weight mechanism, and thus

KN

If / is the time necessary for a fixed number of revolutions, obviously

and this time becomes a measure of liquid viscosity.

The falling-sphere type of viscometer is shown in Fig. 134. In this

type of viscometer the time t required for a small sphere to fall at

constant velocity through a distance I in a liquid becomes a direct

measure of the liquid's viscosity. Here again an approximate analysis
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justifies the above. From Stokes' law (Art. 77) the drag D of a sphere

of diameter d, moving under laminar conditions at a velocity V,

through a fluid of infinite extent, is given by

D =

If the proximity of the boundary walls is neglected, this equation may
be applied for an approximate analysis of the viscometer. This drag

force acts upward on the sphere and

acting in the same direction is the

buoyant force, FB, given by

r

#
Bath

FB ~: d wi
6

w
Acting downward on the sphere is

its own weight, W, given by

W = -d*w.
6

D
For constant-velocity motion the

net force on the moving sphere is

zero, giving

D - W + FB =
FIG. 134. Falling-Sphere Viscometer.

Solving for

K(w8

or

K(w8 w{)t

Thus viscosity in this instrument is measured by time of fall but density

of sphere and liquid must be known before viscosity can be calculated.

Two typical tube-type viscometers are the Ostwald and Saybolt
instruments of Fig. 135. Similar to the Ostwald is the Bingham type,

and similar to the Saybolt are the Redwood and Engler viscometers.

All these instruments involve the unsteady laminar flow of a fixed

quantity of liquid through a small tube under fixed head conditions.

The time for the quantity of liquid to pass through the tube becomes

a measure of the kinematic viscosity of the liquid.
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The Ostwald viscometer is filled to level A, and the meniscus of

the liquid in the right-hand tube is then drawn up to a point above B.

The time for the meniscus to fall from B to C becomes a measure of the

kinematic viscosity. In the Saybolt viscometer the outlet is plugged
and the reservoir filled to level A, the plug is then removed and the

time required to collect a fixed

quantity of liquid in the vessel

B is measured. This time then

becomes a direct measure of the

kinematic viscosity of the liquid.

The relation between time

and kinematic viscosity for the

tube type of viscometer may be

indicated approximately by ap-

plying the Hagen-Poiseuille law

for laminar flow in a circular tube

(Art. 34). The approximation
involves the application of a law

of steady established laminar

motion to a condition of un-

steady flow in a tube which is

too short for established laminar

flow to exist and therefore can-

not give a complete or perfect

relationship betweenj efflux time

and kinematic viscosity; it will

serve, however, to indicate ele-

mentary principles. From equa-
tion 46

Saybolt

ostwaid

128ju/
FIG. 135. Tube Viscometers (Schematic)

for steady laminar flow in a

circular tube. But Q = V/t (approximately), in which Vis the vol-

ume of liquid collected in time t. Thus,

V
t

and solving for p

128/J

mvi
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The lost head, HL, however, is nearly constant since it is nearly equal

to the imposed head which varies between fixed limits. Since d and /

are constants of the instrument the equation reduces to

fj, Kwt
or

/*
= Kpgt = Kipt

thus

- = v = K\t (approximately)
P

The correct empirical equation relating v and t for the Saybolt Uni-

versal viscometer is

001935
v in ft

2
/sec = 0.000002365* - -

(for 100 >/> 32)

in which t is the time in seconds (called
"
Saybolt seconds"), and in

which the negative term appears as a correction embodying the

neglected factors of the above simplified analysis.

Of the tube viscometers the Saybolt, Engler, and Redwood are

built of metal to rigid specifications and hence may be used without

calibration. Since the dimensions of the glass viscometers such as the

Bingham and Ostwald cannot be perfectly controlled, these instru-

ments must be calibrated before viscosity measurements can be made.

56. Measurement of Static Pressure. The accurate measurement

of pressure in a fluid at rest may be accomplished with comparative

FIG. 136. FIG. 137.

ease since it depends only upon the accuracy of the gage or manometer
used to record this pressure and is independent of the details of the

connection between fluid and recording device. To measure the static
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FIG. 138. Static Tube.

pressure within a moving fluid with perfect accuracy is quite another

matter, however, and depends upon painstaking attention to the

details of the connection between flowing fluid and measuring device.

To measure the static pres-

sure in the curved flow of Fig. ^
136, for example, a device must >

be introduced which fits the

streamline picture perfectly and

thus does not disturb theflow at all,

and such a device must contain

a small smooth hole, called a

"piezometer opening," whose

axis is normal to the direction of

motion at the point where the static pressure is to be measured; to

this opening may be connected a manometer or pressure gage to

register the pressure transmitted into the opening. Although meet-

ing these requirements perfectly is a virtual impossibility, the attempt
nevertheless illustrates tfie problem involved in the measurement of

static pressure. The above

/fpH^ J device is a practical one for

/
**

l\ use in rectilinear flows (Fig.

137), where the difficulties of

alignment with the flowing
fluid are not so great. In

both cases it is apparent that

the insertion of a solid device

of this type is certain to dis-

turb the fluid flow to some

extent, and hence it should be

observed that such devices

should be made as small as

FIG. 139. possible.

A "static tube" (Fig. 138)

may be used for measurement of the static pressure in a flowing fluid.

Such a tube is merely a smooth cylinder carefully aligned with the

flow and having a smooth upstream end. In the side of the cylinder
are piezometer holes drilled radially, or a circumferential slot, through
which pressure is transmitted to a recording device. Since the

introduction of the static tube disturbs the flow and causes the

velocity along its surface to be greater than that in the undisturbed

flow, the pressure transmitted through the piezometer openings must,

I
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according to the Bernoulli principle, be less than the true static

pressure in the undisturbed flow. This error, of course, may be mini-

mized by making the tube as small as possible and is usually safely

negligible for most engineering considerations.

The static pressure in the fluid passing over an existing solid surface

(such as a pipe wall or the surface of an object in the

flow, Fig. 139) may be measured by small smooth

piezometer holes drilled normal to the solid surface,

since the surface for each of these conditions "fits"

the flow perfectly, being a streamline of the flow.

Such piezometer openings measure only the local

static pressures at their locations on the solid sur-

face and cannot, in general, measure the pressures at

a distance from this surface since such pressures are

obviously different from those at the surface because

of flow curvatures and accelerations. Where no flow

curvatures exist, as in a straight pipe, a wall piezom-
eter opening will measure the pressure throughout

FIG. 140. the cross section of pipe in which the piezometer is

Piezometer Ring, located.

Frequently in pipe-line practice a large number of

piezometer openings are drilled in the pipe wall at the same cross

section and led into a "piezometer ring" (Fig. 140), whence the pres-

sure is transferred to a recording device. The pressure taken from the

piezometer ring is considered more reliable than that obtained from

a single piezometer opening, since probability dictates that the errors

Correct Incorrect

FIG. 141. Measurement of Surface Elevation by Piezometer Columns.

incurred by the inevitable imperfections of single openings will tend to

cancel if numerous openings are used and the results averaged; the

piezometer ring automatically approximates such an average.

57. Measurement of Surface Elevation. The elevation of the sur-

face of a liquid at rest may be determined by manometer, piezometer

column, or pressure-gage readings (Art. 10).
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The same methods may be applied to flowing liquids if the above

precautions in the construction of piezometer openings are followed

and if the piezometer method is used only where the streamlines of the

flow are straight and parallel. Correct and incorrect measurements
of a liquid surface by piezometer openings are illustrated in Fig. 141.

For direct measurements to a liquid surface the hook gage and point

gage (Fig. 142) are common. The hook gage is generally used in a

stilling well connected to the liquid at the point where its surface

elevation is to be measured but may be used directly on the liquid

surface if velocities are not large. To set the point of the hook in the

Hook gage Point gage

CD
Counter-

weight

FIG. 142. Gages for Measure-

ment of Surface Elevation.

FIG. 143. Float for

Measurement of Surface

Elevation. (Schematic.)

liquid surface, it is first placed below the surface and then raised until

a small pimple appears on the surface at this condition the point of

the hook is above the liquid surface. When the hook is lowered until

the pimple just disappears, its point is accurately at the same elevation

as the liquid surface. From a graduated scale and vernier on the hook

gage shaft, the surface elevation of the liquid may be read precisely.

A point gage is suitable for swiftly flowing liquids in which the

presence of a hook below the liquid surface would cause local disturb-

ances. In measuring, the point gage is lowered until it just contacts

the liquid surface (noted by slight disturbances of the surface) and then

read by scale and vernier located on the gage shaft.
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, Plate

Floats are often used in connection with chronographic water-level

recorders for measuring liquid-surface elevations. The arrangement
of such floats is indicated schematically in Fig. 143.

As the liquid level varies, the motion of the cable

is measured on a scale or plotted automatically on a

chronographic record sheet.

An electrical method of liquid surface measure-

^ ment has recently been somewhat successful. It

FIG. 144.
consists of using a small fixed metal plate, and the

liquid surface as a condenser (Fig. 144). Variation of

liquid-surface elevation varies the capacitance of the condenser, which

may be measured electrically, and after calibration of the device

Stagnation

points -v

^E

FlG. 145,

electrical measurements become a measure of surface elevation.

Staff gages give comparatively crude but direct measurements of

liquid-surface elevation. From casual _
observation, the reader is familiar with

their use as tide gages, in the measure-

ment of reservoir levels and in registering

the draft of ships.

58. Measurement of Stagnation Pres-

sure. The stagnation,
2
or total, pressure,

Po + \pV
2

> may be measured accurately

by placing in the flow a small solid object

having a small piezometer hole at the

stagnation point. The piezometer open-

ing may be easily located at the stagna-
tion point if the hole is drilled along the

axis of a symmetrical object such as a cylinder, cone, or sphere (Fig.

145). When the axis of the object is aligned with the direction of

* See Art. 19,

FIG. 146. Pitot Tube.
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flow the piezometer opening is automatically located at the stagna-

tion point and the pressure there may be transferred through the

piezometer opening to a recording device. Theoretically, the upstream
end of solid objects for the above purpose may be of any shape since

the shape of the object does not affect the magnitude of the stagna-

tion pressure; in practice, however, the upstream end should be made

convergent (conical or hemispherical) in order to fix the location of

the stagnation point and to cause its location to be insensitive to

small variations in alignment.
A small bent tube, with open end facing upstream, provides an

excellent and simple means of measuring stagnation pressure. Tubes

of this type are called Pitot tubes after Henri Pitot, who found (1732)

that, when they were placed in an open flow at a point where the veloc-

ity was V (Fig. 146), the liquid in the tube rose above the free surface

of the liquid a distance V*/2g. Obviously, Pitot's results agree with

those obtained by applying the foregoing reasoning on the magnitude
of stagnation pressure.

MEASUREMENT OF VELOCITY

$9. The Pitot (Pitot-Static) Tube. From the stagnation pressure

equation

P. =Po + %pV*
or

\- (p.
-V = \- (p.
-

Po)

it is evident that fluid velocities may be obtained by the measurement

of stagnation pressure, pa ,
and static pressure, p . It has been shown

that stagnation pressure may be measured easily and accurately by a

Pitot tube and static pressure by various methods, such as tubes, flat

plates, and wall piezometers. Any combination of stagnation- and

static-pressure-measuring devices is called loosely a
"
Pitot tube

"
in

most fields of engineering, although Pitot's original device was designed

to measure stagnation pressure only. Aeronautical practice takes

cognizance of this fact by terming a device which measures both

stagnation and static pressures a
"
Pitot-static tube."

Pitot tubes may be divided into two classes: (1) those in which

static and stagnation pressure connections are "separate," and

(2) those having "combined" stagnation- and static-pressure-me^sur-

ing devices,
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"Separate" types of Pitot tubes are shown in Fig. 147 as used in

obtaining the velocity profile in a pipe or as an air-speed indicator in

aeronautical practice. Such tubes are simple in construction, but

they cause inconvenience in pipe lines because of the necessity of two

FIG. 147. Pitot Tubes. (Separate.)

pipe connections and the difficulties of obtaining correct static pressure

by a single piezometer opening.

Modern practice favors the "combined" type of Pitot tube, two

types of which (for general and aircraft use) are illustrated in Fig. 148.

Here the static tube jackets the stagnation pressure tube, resulting

PS

FIG. 148. Pitot Tubes. (Combined.)

in a compact, efficient velocity-measuring device. When connected

to a differential manometer which records the pressure difference,

PS
~~

Pot the manometer reading becomes a direct measure of the

velocity, as may be seen from the Pitot tube equation

V -
(Ps

-
Po)

P

A static tube has been shown to record a pressure slightly less than

the true static pressure, owing to the increase in velocity along the
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tube (Art. 58). This means that the above equation must be modified

by an experimental coefficient, Cj, called the coefficient of the instru-

ment, to

in which p' is the pressure measured by the static tube. Since p is

less than p it is obvious that Cj will always be less than unity. How-

ever, for most engineering problems the value of Cj may be taken as

1.00 for the conventional types of Pitot tubes (Fig. 149), since the

FIG. 149. Pitot Tubes (to Scale).

differences between p and p are very small.
Prandti^has designed a

Pitot tube in which the difference between p and p is completely

eliminated by ingenious location of the static-pressure opening. The

opening is so located (Fig. 150) that the underpressure caused by the

tube is exactly compensated by the overpressure due to the stagnation

point on the leading edge of the stem, thus giving the true static

pressure at the piezometer opening.

There are many variations on the Pitot-tube idea resulting in

devices of various shapes and coefficients. Probably the most popular

of these is the Cole Pitometer, a
"
reversed

"
type of Pitot tube.
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The Pitometer consists of two similar Pitot tubes, one facing upstream,
the other downstream (Fig. 151). The tube facing upstream measures

the stagnation pressure properly, but the one facing downstream

FIG. 150. Prandtl's Pitot Tube.

measures the pressure in the turbulent wake behind itself, which is

less (Art. 28) than the true static pressure, p . The coefficient of the

Pitometer is, therefore, much less than unity; experiments have shown
it to have values between 0.84 and 0.87.

The advantages of the Pitometer are its

ruggedness and a compactness which

allows it to be slipped easily through a

cock in the wall of a pipe line.

A consideration of velocity-measur-

ing devices is their sensitivity to obli-

quity or angle of yaw (Fig. 152). Since

it is always difficult to secure perfect

alignment of tube with flow, it is obviously advantageous to have
a Pitot tube which gives the smallest possible error when perfect

alignment does not exist. The Prandtl-Pitot tube, designed to be

/Angle of yaw

FIG. 151. Cole Pitometer.

FIG. 152.

insensitive to small angles of yaw, gives a variation of only 1 per cent
in its coefficient at an angle of yaw of 19. For the same percentage
variation in coefficient the American Society of Heating and Ventilat-
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Ing Engineers' Pitot tube may have an angle of yaw of 12, and that

of the National Physical Laboratory only 7. 8

ILLUSTRATIVE PROBLEM

A Pitot tube having a coefficient of 0.98 is placed at the center of a pipe line in

which benzene is flowing. A manometer attached to the Pitot tube contains

mercury and registers a deflection of 3 in. Calculate the velocity at the centerline

of the pipe.

PB
-

Po = A X 62.4 X 13.55 - A X 62.4 X 0.89 - 197 lb/ft
2

0.98\/64.4[ )
14.8 ft/sec

\ \0.89 X 62.4/

60. The Venturi Tube. A convergent-divergent tube called a

"Venturi tube" has had some success in aeronautical practice as an

air-speed-measuring device. A Ven-

turi tube is shown in Fig. 153, and

from the familiar Bernoulli principle

it is evident that the pressure differ-

ence p p2 created by flow through

FIG. 153. Venturi Tube. the tube is a measure of the velocity

V > Neglecting the losses which

occur in the short distance between sections and 2 of the streamtube

which passes through the Venturi tube, the Bernoulli equation is

and assuming an incompressible fluid

V A
Therefore

or

3 Data from K. G. Merriam and E. R. Spaulding, N.A.C.A. Technical Note 546,

1935.
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in which A is unknown but dependent upon the area A\ and the shape

of the tube. Introducing an experimental coefficient to express the

ratio of A to A i

C = -r or A =

Introducing this relationship in the above equation and solving for V

v o= i ,.,
= V~ (Po

~
p2)

in which Cmust be found by calibration of the tube in an air stream of

known velocity. After calibration the Venturi tube, like the Pitot tube,

offers a means of measuring a pressure difference and calculating the

FIG. 154. Double Venturi.

velocity which has created it. Venturi tubes have been generally

abandoned as air-speed indicators for aircraft, because of their sensitiv-

ity to yaw and their susceptibility

^ to icing difficulties. However,

they are still used in engineering

practice as a source of low pres-

sure and frequently appear as

such in the form of the "double-

Venturi" of Fig. 154, one of the

flow elements of the standard

carburetor.

61. The Pitot-Venturi. The
Pitot tube and Venturi principles

are combined in a velocity-measuring device called the
"
Pitot-Venturi"

(Fig. 155), which for the same velocity gives a pressure difference

1
FIG. 155. Pitot-Venturi.
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(ps p2) larger than that of Pitot or Venturi alone. Here as in the

foregoing examples

Ps
-

Po = IpVl

Adding these equations gives

and solving for V

Here again an experimentally determined value of C is essential to

velocity measurements with the Pitot-Venturi.

62. Anemometers and Current Meters. Mechanical devices of

similar characteristics are utilized in the measurement of velocity in

air and water flow. Those for air are called "anemometers"; those for

water,
"
current meters." These devices consist essentially of a rotat-

ing element whose speed of rotation varies with the velocity of flow and

for which the relation between these variables must be found by cali-

bration. Anemometers and current meters fall into two main classes,

depending upon the design of the rotating elements, which may be of

the cup type or vane (propeller) type, as illustrated in Fig. 156.

Anemometers and current meters differ slightly in shape, rugged-

ness, and appurtenances because of the different conditions under

which they are used. The cup-type anemometer for the measurement

of wind velocity is usually mounted on a rigid shaft; the vane-type
anemometer is held in the hand while readings are taken. The current

meters are usually suspended in a river or canal by a cable, and hence

must have empennages and weights to hold them in fixed positions in

the flow.

Another type of anemometer which has been very successful in the

field of aeronautical research is the hot-wire anemometer, one type of

which is shown diagrammatically in Fig. 157. The device consists of

a fine platinum wire exposed to the velocity V which is to be meas-

ured. The fact that various velocities will have various cooling effects

upon the hot wire, which will change its resistance, allows relating by
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Cup Type N. Y. U.

Anemometers

Vane Type . Y. U.

Cup Type
N. Y. U.

Current Meters

FIG. 156.

Vane Type
A.S.M.E.

calibration the velocity V and certain electrical measurements.

The hot-wire anemometer of Fig. 157 is of the constant-voltage type,
4

and during its operation the voltage

across its terminals is maintained con-

stant. Variation of velocity will change
the resistance of the wire and, thus,

the ammeter reading; the ammeter

reading thus becomes, after calibration,

a measure of the velocity. The ad-

vantage of the hot-wire anemometer
lies in the fact that it may be built in

Platinum wire extremely small sizes and so may be

FIG. 157. Hot-Wire Anemometer, employed in obtaining the velocity pro-

files in boundary layers, etc., where a

Pitot tube cannot be used. It must always be calibrated before use,

and calibration is generally made against Pitot-tube measurements

of velocity.

4 Constant-current and constant-resistance types are also used.
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/Thermometer

Liquid

seal-

=

MEASUREMENT OF RATE OF FLOW

63. Total-Quantity Methods. Rate of fluid flow (Q or G) may be

obtained by measurement of the total quantity of fluid collected in

a measured time. Such collections may be made by weight or volume

and are the primary means of measuring fluid flow, but usually such

measurements can be employed for only comparatively small flows

under laboratory conditions.

Measurement of rate of flow by weighing consists of collecting the

flowing liquid in a container placed on a scales and measuring the

weight of liquid accumulated in a

certain time. There are, of course,

many commercial variations of

this method and many automatic

devices are applied to it, but the

principle remains the very simple

one indicated above.

Volumetric measurements of

rate of flow are carried out by

allowing the liquid to collect in a

container whose internal dimen-

sions have been accurately deter-

mined. By noting the rise in the

liquid surface in a measured time,

or by noting the number of fillings

of the container in a measured

time, the rate of flow may be easily

calculated. The accuracy of volu- FIG. 158. Gasometer,

metric measurements is not in

general so high as that of weighing methods because of the larger

number of variables to be measured.

Gases may be measured volumetrically with a
"
gasometer"

(Fig. 158), a device in which constant pressure and temperature are

maintained while a volume of gas is collected. With pressure and

temperature constant, the rate of rise of the movable top becomes a

measure of the rate of flow into the gasometer, and after pressure and

temperature are noted the rate of flow may easily be calculated.

A correction or automatic compensation must be made for the variable

buoyant force acting on the top due to varying immersion.

\ 64. Venturi Meters. A constriction in a streamtube has been

ekn5 to cause a pressure variation which is directly related to the rate

6 Articles 21 and 22.
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of flow, and thus is an excellent fluid meter in which rate of flow may be

calculated from pressure measurements. Such constrictions used as

fluid meters are obtained by Venturi meters, nozzles, and orifices.

A Venturi meter is shown in Fig. 159. It consists of a smooth

entrance cone of angle about 20, a short cylindrical section having

diameter J to | of the pipe diameter, and a diffusor cone having a 5 to

7 total angle in order to minimize energy losses. 6 For satisfactory

1 2

10 3 2 106 25 10* 2 5

Reynolds Number, -~~-

FIG. 159. Venturi Meter. 7

operation of the meter, the flow should possess
" normal" turbulence

as it passes section 1. To insure this it should be installed after a sec-

tion of straight and uniform pipe, free from fittings and other sources of

eddying turbulence, and having a length of at least 30 pipe diameters.

Straightening vanes may also be placed upstream from the meter for

elimination of excessive turbulence of an eddying nature.

See Art. 42.

7 Data from Fluid Meters, Their Theory and Application, Third Edition, A.S.M.E.,

1930. More comprehensive data are available in the Fourth Edition of this

publication.
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The pressures at the base of the meter (section 1) and at the throat

or constriction (section 2) are obtained by piezometer rings, and the

pressure difference between these points is usually measured by a

differential manometer. An accurate measurement of pressure and

temperature at section 1 will be seen to be necessary in the metering of

gases and vapors, but for liquids the pressure difference between base

and throat of the meter will allow calculation of the rate of flow.

Utilizing now the equations for flow of a perfect fluid through a

constriction in a horizontal streamtube (Arts. 21 and 22):

For incompressible fluids

Q =

For compressible fluids

^2^2 / 2gk

/ . \ o / , \ y

(A^V (P2\~W W
But since F2

= Q/A 2 and F2
= G/-4 2^2 the equation for velocity

may be written:

For incompressible fluids

F2
=

For compressible fluids

1 / o^t jjcr *-i *-ii
1 iV^^-^v-

, gVi-^-r^^i -*

(h\'(ptf~
\Ai) \PJ

These velocities will not be obtained with real fluids because of fric-

tional resistance and energy losses occurring between sections 1 and 2,

and the above expressions must be corrected by an experimental

coefficient, CV) the
"
coefficient of velocity," to bring them into con-
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formity with reality. When this coefficient is inserted the original

expressions become

CvA* . , ltri ^z ,

(g6)

for the real incompressible fluid, and

2gk pi

(%Y /M~w w
or

(87)

for the real compressible fluid.

The significance of the coefficient of velocity Cv and its relation

to head losses may be better understood if the derivation of equation 86

is considered. For a horizontal pipe and constriction the Bernoulli

equation is

.+!!, fe + Z! + faw 2g w 2g

and the equation of continuity

Simultaneous solution of these equations to give equation 86 can

result only when
'

1 .. vl

is inserted in the first equation. In the above equation, K is the minor

loss coefficient for the passage between sections 1 and 2, and it is noted

that K is related to Cv by
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Thus, the lower the value of Cv (the greater the difference between

real and perfect fluids), the greater will be the magnitude of K and

the energy loss. Since the energy loss characterized by K results from

frictional effects rather than from eddying turbulence, it may be con-

cluded that the variation of K with the Reynolds number will be

similar to that exhibited by the friction factor, /, which decreases as

the Reynolds number increases. Therefore, the variation of Cv with

the Reynolds number may be expected to follow a trend opposite to

those of K and /, and increase with increasing Reynolds number, a

fact which is borne out by the experimental results of Fig. 159.

The form of equation 87 makes it too unwieldy for engineering

practice and too difficult of rapid solution, but these inconveniences

may be overcome by the application of the following graphical meth-

ods. Equation 87 for the compressible fluid may be placed in the form

of equation 86 if a correction factor, F,
8
is applied. The equation for

compressible fluid flow may therefore be written

YCv

and used conveniently after an expression for Y has been found.

This may be done by equating the above equation 'to

and solving for Y, with the result that

k-l

1 -

,Aj \pv
i-hr (T Pi

Although this calculation seems at first to complicate the problem,

closer inspection indicates that Y is dependent on only three variables :

8 Since the term Y accounts only for the expansion of the gas as it passes from

section 1 to section 2 of the constriction, it is called the "expansion factor."
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the pressure ratio p2/Pi, the area ratio A%/Ai, and the adiabatic con-

stant k. This means that Y may be calculated for various values of

these variables once for all, plotted, and thus made readily usable for

engineering calculations. A plot of the expansion factor, F, is given
in Fig. 160 for the solution of problems.

i

= 1.4

1.2-
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.86

FIG. 160. The Expansion Factor, F.

From the above facts it is observed that the one equation,

YCvA^wl

Cr =
(89)

will allow calculation of fluid flow through a pipe-line constriction such

as a Venturi meter, whether the fluid is perfect, real, compressible, or

incompressible.

ILLUSTRATED PROBLEM

Air flows through a 6 in. by 3 in. Venturi meter having a coefficient Cv of 0.98.

The gage pressure is 20 lb/in.
2 and the temperature 60 F at the base of the meter,
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and the differential manometer registers a deflection of 6 in. of mercury. The

barometric pressure is 14.7 lb/in.
2 Calculate the flow.

k =
1.40,

^ = x
.

U ' 7 '
. = 0.915

29.92 - 6

* /20 + 14.7\

V 14-7 /

.
,

= 0.25 wi = v r "m = 0.180lb/ft
3

^4i V6/ 53.3(100 + 460)

From the plot of Fig. 160,

Y - 0.95.

0.95 X 0.98 X - X (

Vl -
(0.25)

2

G = 3.3 lib/sec

65. Nozzles. Nozzles are used in engineering practice for the

creation of jets and streams for all purposes as well as for fluid metering ;

when placed in or at the end of a pipe line as metering devices they are

generally termed "flow nozzles." Since a thorough study of flow

nozzles will develop certain general principles which may be applied

to other special problems, the flow nozzle only will be treated here.

Flow nozzles are illustrated in Figs. 161 and 162. They are designed

to be clamped between the flanges of a pipe, generally possess rather

abrupt curvatures of the converging surfaces, terminate in short

cylindrical tips, and are essentially Venturi meters with the diffusor

cone omitted. Since the diffusor cone exists primarily to minimize

the energy losses caused by the meter, it is obvious at once that larger

energy losses will result from flow nozzles than occur in Venturi meters

and that herein lies a disadvantage of the flow nozzle; this disadvan-

tage is somewhat offset, however, by the lower initial cost of the flow

nozzle.

Extensive research on flow nozzles, recently sponsored by the

American Society of Mechanical Engineers and the International

Standards Association, has resulted in the accumulation of a large

amount of reliable data on nozzle installation, specifications, and,
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experimental coefficients. Only the barest outline of these results can

be presented here ;
the reader is referred to the original papers of these

societies for more detailed information.

The A.S.M.E. "long-radius" flow nozzle is shown in Fig. 161.

Section 1 is taken one pipe diameter upstream from the nozzle and

section 2 at the nozzle tip. It has been found that the pressure at the

latter point may be measured successfully by a wall piezometer con-

1 Ellipsev. ^_-U_ 2

.25

FIG. 161. A.S.M.E. Long-Radius Flow Nozzle. 9

nection opposite the nozzle tip which leads fortunately to the simplifi-

cation of the nozzle installation since a wall piezometer is easier to

construct than a direct connection to the tip of the nozzle.

The equation derived for the Venturi meter may be applied directly

to the nozzle. This is

YCvA 2wl
I

for compressible fluids and reduces to

Q -

C"A *

9 Fluid Meters, Their Tlieory and Application, Fourth Edition, A.S.M.E., 1937.
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iVvVVvvs

1.20

1.10

1.00

90
1 .2 .3 .4 5 .6 .7

A*

FIG. 162. I.S.A. (German Standard) Flow Nozzle. 10

for incompressible ones. Values of Y may be obtained from Fig. 160,

and values of Cv (over the limited range of tests to date) may be taken

from the plot of Fig. 161.

The I.S.A. (German Standard) nozzle shown to scale in Fig. 162

10 Data from Regelnfur die Durchflussmessung mil genormten Diisen und Blenden,
V.d.I. Verlag, 1935.
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differs from the A.S.M.E. nozzle in shape and in the location of the

piezometer connections, which are made by holes or slots adjacent to

the faces of the nozzle. This method of pressure connection is con-

venient in that the nozzle, complete with pressure connections, may be

built as a unit and installed between the flanges of a pipe line without

the necessity of drilling piezometer holes in the pipe.

Although the pressure connections for this nozzle are not made in

the conventional way at pipe and constriction, the flow equations

G _ jrc^,Wl Lfr-p*

and

may be applied if it is kept in mind that a nozzle is essentially a means
of securing a regular pressure variation which, with other factors, is

related to the rate of flow. A change in piezometer location, however,

alters the values of Y and necessitates the calculation of a special plot

for this variable (Fig. 162). Another difference between A.S.M.E. and

I.S.A. nozzles is in the definition of the coefficient of the latter as

C =

thus reducing the flow equations to

G = YCA 2wi

and

Obviously the coefficient C depends upon the area ratio and, through
the coefficient of velocity CVJ upon the Reynolds number as well.

The variation of C with these variables is given in the plots of Fig. 162.

The constancy of C at high Reynolds numbers and the characteristic

decrease of C with decreasing Reynolds numbers should be noted*
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ILLUSTRATIVE PROBLEM

An A.S.M.E. long-radius flow nozzle of 3-in. diameter is installed in a 6-in.

water line. The attached differential manometer contains mercury and registers

a deflection of 6 in. Calculate the rate of flow and the loss of head caused by the

nozzle.

From the plot of Fig. 161, Cv
= 0.991.

0.991 X - X {

4 -
1])

Q = 1.01 cfs

Loss of head is composed of frictional effects between sections 1 and 2

and loss due to turbulence downstream from the nozzle (/fL2 _ 3)

j_ 2)

1.01 = 20.55 ft/sec

(4,
-

\Cl 2g

= o.uft

Calculating HLZ _ Z
as a sudden enlargement,

_ .

(F, - F3)
2

,_ (20.55
-

5.14) _
rl>LA _ o

~~ __ ^J . / \J J. L

2 <7 2^

AL =
fe!_ 2 + fe2_ 8

= 0.11 + 3.70 - 3.81 ft

66. Orifices. Like nozzles, orifices serve

many purposes in engineering practice

other than the metering of fluid flow, but

the study of the orifice as a metering
device will allow the application of princi-

ples to other problems, some of which will

be treated subsequently.

The conventional orifice for use as a

metering device in a pipe line consists of a

concentric square-edged circular hole in a
FIG. 163. Sharp-Edged Orifice.

thin plate which is clamped between the flanges of the pipe line (Figs.

163 and 164). The orifice differs from the nozzle as to flow character-

istics in that the constricted section of flow occurs not within the orifice

but downstream from it owing to the non-axial direction of fluid



260 FLUID MEASUREMENTS

particles as they approach the orifice. This seems to complicate the

problem since, in the flow equations between pipe and constriction,

YCyAw I

CVA

A% is unknown. At this point another experimental coefficient Cc ,

the
"
coefficient of contraction,'* may be advantageously introduced,

Cc being defined by

It is simply the ratio between the unknown area A 2 and the known
area of the orifice A. When this relationship is introduced in the

flow equations, they become

YCvCcAwl

" ~~

-(0
and

in which the
"

orifice coefficient," C, is denned by

CeC,

This reduces the above equations to

and
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which differ from the equations for the I.S.A. nozzle only in that A 2

has been replaced by A.

The International Standards Association and the American Society

.98 .96 .94 .92 .90 .88 .86 .84 .82

10 4 5 10
5 2

Reynolds Number,

10 6

FIG. 164. I.S.A. (German Standard) Orifice. 10

of Mechanical Engineers have Undertaken the standardization of

orifices, approaching the problem in two different ways. The A.S.M.E.

has made available data on orifices for various locations of piezometer

10 See footnote on p. 257.
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connections, but lack of space prevents inclusion of this material here. 11

The International Standards Association proposes the I.S.A.

(German Standard) orifice with only one possible pair of piezometer

connections located as for the I.S.A. nozzle adjacent to the orifice

plate, resulting in the concise presentation of data given in Fig. 164.

The variation of C with the Reynolds number is of some, interest

since it exhibits a trend opposite to that of the nozzle and Venturi

meter. This may be explained from the equation for C

CVCC

C =

and must result from an increase of Cc with decreasing Reynolds
number. Since the size of the area

A 2 would be expected to increase

as the flow assumed a more viscous

character (lower Reynolds number),
the coefficient C (which varies

directly with Cc) would be expected
to increase also.

Rounded (bell-mouthed) orifices

(which are really short nozzles) are

frequently used in the metering of

gases and vapors. Such an orifice

is shown in Fig. 165, and, for gas
flow with pressure ratio below the

critical, equation 24, Art. 22, modified by a coefficient of velocity,

Cv , may be applied directly, giving

G =

FIG. 165. Rounded Orifice.

VY,
in which the value of Cv will be close to unity, 0.995 being a reasonable

coefficient to select if calibration of the orifice is not possible.

In using the orifice of Fig. 165 in metering the flow of a vapor the

methods of Fig. 42, Art. 22, should be followed and a coefficient Cv

introduced in equation 25, giving for vapor flow

G = 223.8CU a 4 - / 2

"See Fluid Meters Their Theory and Application, A.S.M.E., Fourth Edition,
1937.
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The value of Cv is probably close to 0.995, but unless other measure-

ments are very precise its inclusion in the equation is usually not

justified.

The orifice is frequently encountered in engineering practice oper-

ating under a static head where it may not be used as a metering device

but rather as a special feature in an hydraulic design.
12

The general features of an orifice of the above type may be deter-

mined from the study of the submerged orifice of Fig. 166, operating

FIG. 166. Submerged Orifice. FIG. 167. Orifice Discharging Freely.

under steady-flow conditions. Assuming a perfect fluid and applying
the Bernoulli equation between sections 1 and 2

V\+ + hi = *2 +V +

or

V2
= - A2 )

for the perfect fluid. For the real fluid, frictional effects will prevent
the attainment of this velocity and the coefficient of velocity Cv must
be introduced, resulting in

V2

and the rate of flow through the orifice becomes

Q = A 2 V2
= CVA 2 V2g(hl

-

12 For example, as a sluice gate in a dam, Fig. 169.
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As in the pipe-line orifice the area A% is unknown but must have a

special relation to the orifice area A, depending upon the shape of the

orifice, velocity of flow, etc. This relation is expressed by the
"
co-

efficient of contraction
" Cct defined (as before) by

Cc
= or A 2

= CCA
A.

which when substituted above gives

Q = CVCCA -
ha)

Orifices and their Coefficients

cv

Sharp

edged

.61

.62

98

Rounded

98

1.00

.98

Short tube

'///f/////A

~ 75

100

Borda

.51

.52

98

FIG. 168.

in which the two coefficients are combined into the
"
coefficient of

discharge," C, defined by

The above equation may now be written

Q = CA

allowing prediction of the rate of flow for a given difference in surface

elevation, after the coefficient C has been experimentally determined.

When the orifice discharges freely into the atmosphere (Fig. 167),

the head h2 becomes zero and the equation reduces to 13

Q = CA
18 See Art. 20.
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Above these limits of head and

The dependency of the various orifice coefficients upon shape of

orifice is illustrated by Fig. 168. The coefficients given are approxi-

mate values for large orifices (d > 1 in.) operating under compara-

tively large heads of water (h > 4 ft).

size various experiments have shown

that the coefficients become sub-

stantially constant. Experimental
determinations of orifice coefficients

at low heads and for small orifices

indicate that the coefficients vary
with head and orifice size, but the

results of reliable experiments are

so divergent that little can be stated

as to the best values of orifice co-

efficients in this range. If orifices

are to be small or to be operated

under low heads and great accuracy
is required they should be calibrated

in place.

A special problem of orifice flow is that of the sluice gate of Fig. 169,

in which contraction can take place on only one side of the jet. Assum-

ing a perfect fluid and applying Bernoulli's equation to the typical

streamtube between the liquid surface and contracted section, taking
the base of the structure as datum,

P V\
+ o + A = ^ + 2 + s

w 2g

since the pressure distribution at the contracted section 2, where no

flow curvatures exist, is a static one. Obviously,

FIG. 169. Sluice Gate.

-
w

and therefore

which gives

h = d
vl

V2 = V2g(h -
d)

for the perfect fluid. For a real fluid

V2
- C9 V2g(h -

d)
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and

or
Q A 2CV

-
d)

Q = CCACV V2g(& -
d)

or, introducing the coefficient of discharge, C = CVCC

Time

Q = CA \/ 2g(h - d)

for the sluice gate. Since the coefficient C will depend upon the head

h, and the gate opening ^4, the relation between these variables must

be determined experimentally before the sluice-gate problem can be

treated completely.

Another problem of orifice flow

which frequently arises in engi-

neering practice is that of dis-

charge from an orifice under

falling head a problem of un-

steady flow. With no inflow to

the container of Fig. 170, the free

surface will fall as flow takes place

through the orifice. Thus the head

on the orifice h, and the rate of

flow Q, will vary with time, and

the flow becomes an unsteady
14

one. The time necessary for the
FIG. 170.

Orifice Discharging under Falling Head. liquid surface to fall from eleva-

tion 1 to elevation 2 may be cal-

culated by writing the equations of flow for a differential time dt. At
time /, the head on the orifice is h and the rate of flow is therefore

Q = Ca V2&
In time dt the differential volume of fluid, dV, passing from the con-

tainer is given by the two expressions

and

dV = Qdt

dV =- Adh

which may be equated to give

Qdt = - Adh

"See Art. 16.
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or by substituting the equation for Q

Ca V2gh dt = - Adh

Solving for dt

dt =-
Ca

Integrating between the corresponding limits of t and H

pdt = _
Jt,

h'^dh

gives the elapsed time, tz t\, as

The form of this equation may be simplified by multiplying and

dividing by (h'{ + h^). This gives

"~ h
Ca + Ca

or since V, the total volume discharged

in time /2
~~

^i> is given by Q-

FIG. 171. Flow Bend.

for a container of uniform horizontal

cross-sectional area.

67. Flow Bends. The orifice, noz-

zle, and Venturi meter as applied in the

measurement of pipe line flow have been seen to be fundamentally
methods of producing a regular and reproducible pressure difference

which is related to rate of flow. For this reason they are sometimes

called "pressure-difference meters*' or
u
head meters." Another type

of pressure-difference meter is the "flow bend" which utilizes the

difference between the pressures at the inside and outside of a pipe

bend (Fig. 171) created by centrifugal force as fluid flows through
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the bend. Lansford w has recently obtained the experimental

coefficients of a variety of standard 90 flanged elbows which allows

their use as a successful and economical type of fluid meter. He pro-

poses the equation

Po
-

Pi
__ CJ^w 2g

with coefficient Ck ranging between 1.3 and 3.2, the magnitudes

depending upon the size and shape of the flow bend. This equation

may be solved for V

and leads to the flow equation of the familiar form

or, if

C = -7=
,

in which C will have values between 0.56 and 0.88.

68. Pitot-Tube Methods. The rate of flow in pipe lines is fre-

quently measured by means of the Pitot tube and Pitometer. These

devices have been seen to be primarily velocity-measuring instruments

which may be employed in pipe lines to establish the distribution of

velocity; their use in measuring rate of flow is essentially an integra-

tion of the product of velocity and area through which the velocity

exists.

One method of obtaining rate of flow from velocity measurements

is to divide the pipe cross section into a number of equal annular areas

(J5, C, D y Fig. 172) and to measure the average velocities through these

areas by placing the velocity-measuring device at points where these

average velocities are assumed to exist. These points are taken to be

at the midpoints of the areas, i.e., at points where circles divide these

areas in half. This is really assuming the velocity to vary linearly

over the areas considered which (in turbulent flow) is obviously more

18 W. M. Lansford, "The Use of an Elbow in a Pipe Line for Determining the

Flow in the Pipe," Bulletin 289, Eng. Exp. Station, Univ. of Illinois, 1936.
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true near the center of the pipe than near the walls; this assumption
does not cause serious errors, however, if a large number of annular

areas are taken. In general, the velocity distribution is not symmetri-

K W
V6 J
Vt*S

FIG. 172.

cal about the pipe centerline, and the average velocity through an

annular area is taken to be the numerical average of the two velocities

measured in this area. Thus (Fig. 172)

Va +V*\A V4\A
3

but the rate of flow, <3, in the line is given by

or by substitution of the above values,

i + V2 + F3 + F4 +
Q

This means that the average velocity in the pipe line is given by

a simple numerical average of the velocities existing at certain special

points on the diameter of the pipe line.

Another method of obtaining rate of flow from velocity distribution

is by graphical integration. From Fig. 173, it is obvious that

vdA

or since dA = 2wr dr

= r>

Jo
v2rdr
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but

thus

2rdr = d(r
2
)

/ vd(r
2
)

This equation suggests plotting velocity against the square of the

radius at which the velocity occurs. The area under the resulting

/R*vd(r
2
) and may be obtained

by planimeter or other means. The rate of flow, <2, thus becomes

Q = TT (Area under v vs. r
2
curve)

V

Ve

r-> R 2

FIG. 173.

The numerical average method is the faster way of obtaining rate

of flow in a pipe line by Pitot tube or Pitometer, and although the

graphical method is theoretically the more accurate in all probability
the two methods will give about the same accuracy in most of their

applications in actual practice.

69. Dilution and Thermal Methods. Dilution methods for measur-

ing rate of flow consist essentially of introducing at a steady rate a

concentrated foreign substance to the flow, measuring the concentra-

tion of the substance after thorough mixing has taken place, and

calculating from the dilution of the substance the rate of flow which
has brought about this dilution.
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A concentrated salt solution has been used in Europe in applying
this method to the calculation of flow in small mountain streams and
in this country to the calculation of the flow through the turbines of

hydroelectric power plants. If the rate of flow of salt solution into the

unknown flow is Qs ,
and the concentration of salt in this solution C\

lb/ft
3

,
the number of pounds per second of salt added to the unknown

flow is given by Q s C\. If the concentration of salt in the unknown
flow after mixing has occurred is C%, the number of pounds of salt

flowmg in the stream per second is also given by (Q + Q 8)C2- There-

fore,

Q.CI = 02 + <2,)C2

or

Q s C2

Since <2s is extremely small compared to Q, it may be eliminated from

the numerator of the expression, giving

Hence by controlling and measuring Q s and obtaining C\ and C% by
titration methods, the unknown rate of flow Q may be found.

Analogous to the above dilution method is the "thermal" method

of flow measurement wherein heat is added at a constant rate to a

flowing fluid and the rate of flow deduced from the temperature rise

caused by this addition of heat. This method, illustrated diagram-

matically in Fig. 174, has been applied successfully in measuring the

FIG. 174.

flow of gases in pipe lines. It consists essentially of a resistance coil,

R, and two thermometers, one upstream from the coil, the other at

a point downstream, where turbulent mixing has produced a uniform

temperature across the pipe. If / is the current through the coil in

amperes, and R the resistance of the coil in ohms, the heat added to the

flowing fluid is expressed by 1 2R watts. The heat added to the flow

in British thermal units per second is, therefore, given by I 2
R/W55.



272 FLUID MEASUREMENTS

If the specific heat of the fluid is c Btu/lb/F, the heat received by
the flow may be expressed as Gc (/2 *i) Equating the expressions

for heat supplied and heat received

1055
Gc(t2

-

and solving for G, the weight flow

G = I2R
1055 c(t2

-

Thus by taking measurements of temperature difference and electric

current and knowing the specific heat of the gas and the resistance of

the coil, the rate of flow may be calculated.

70. Salt-Velocity Method. An ingenious method of flow measure-

ment which has met with success in the measurement of rate of flow

to hydroelectric power plants is the salt-velocity method developed by
Allen and Taylor.

16 In this method a quantity of concentrated salt

solution is introduced suddenly to the flow and the average velocity is

Salt

solution

at high

pressure -s

FIG. 175.

obtained by measuring the velocity of the salt solution as it moves

with the flow.

The essential feature of the method (illustrated in simplified form

in Fig. 175) consists essentially of a device for introducing suddenly
the salt solution, and two similar electrodes and circuits. The passage
of the salt charge between the plates of an electrode may be recorded

by a momentary increase in the ammeter reading due to the greater

conductivity of the salt solution. By noting the time t between the

deflections of the two ammeter needles, and knowing the distance /

18 C. M. Allen and E. A. Taylor, "The Salt Velocity Method of Water Measure-

ment," Trans A.S.M.E., Vol. 45, 1923, p. 285.
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between electrodes, the average velocity in the pipe may be calculated

from

H
and the rate of flow by

Q = AV
The details involved in the salt-velocity method are far more complex
than the above statement of principles implies, owing primarily to the

use of a chronographic device to record automatically (1) the variation

of electrical current with the passage of the salt charge and (2) the time

of passage of the charge between electrodes.

71. Weirs. For measuring large and small open flows in field and

laboratory, the weir finds wide application. A weir may be defined in

a general way as "any regular obstruction in open flow over which

Plan

Rectangular contracted weir

'Mil
Rectangular suppressed weir

Elevation

FIG. 176. Sharp-Crested Weirs.

flow takes place." Thus, for example, the spillway of a dam is a special

type of weir and may be utilized for flow measurement. However,
weirs for measuring purposes are usually of more simple and repro-

ducible form, consisting of smooth, vertical, flat plates with upper

edges sharpened. Such weirs, called sharp-crested weirs, appear in

a variety of forms, the most popular of which is the rectangular weir

which has a straight, horizontal crest. Rectangular weirs appeared

originally as notches in a more or less uniform and thin vertical wall

and as such developed contraction of the overfalling sheet (nappe) of
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liquid (Fig. 176), similar to the contraction of the jet from a sharp-

edged orifice; because of these nappe contractions at the ends of the

weir, rectangular notches are also called contracted weirs. Obviously
when rectangular weirs extend from wall to wall of an open channel

these contractions are eliminated or suppressed, and for this reason

this type of weir is termed a suppressed weir. Measuring weirs appear
in many shapes other than rectangular, the triangular (V-notch) and

trapezoidal weir being the more popular of these other types.

The flow of liquid over a weir is at its best an exceedingly complex

problem and one difficult of rigorous theoretical solution. An apprecia-

tion for the complexities, however, is necessary to an understanding of

experimental results and the deficiencies of simplified weir formulas.

These complexities may be discovered by considering the flow over the

sharp-crested suppressed weir shown in Fig. 177. Although it is obvi-

Stilling

device Nappe

Atmospheric pressure
beneath nappe
maintained by

adequate ventilation

Roller'

FIG. 177. Weir Flow (Actual).

ous at once that the head H on the weir is the primary factor causing

the flow Q to occur, no simple relationship between these two variables

can be derived for two fundamental reasons: (1) the geometrical form

and (2) the effect of turbulence and frictional processes cannot be

calculated. The more important factors which affect the shape of weir

flow are the head on the weir JEf, the weir height P, and the extent of

ventilation beneath the nappe. Although the effect of these factors

may be found experimentally, there is no simple method of predicting

the flow picture from values of H, P, and pressure beneath the nappe.

The effects of turbulence and friction not only cannot be predicted but

cannot even be isolated for experimental measurement. It may be

noted, however, that frictional resistance at the side walls will affect

the rate of flow to an increasing extent as the channel becomes nar-

rower and the weir length, 6, smaller. Fluid turbulence and frictional

processes at the sides and bottom of the approach channel contribute
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to the velocity distribution in an unknown way. The effects of velocity
distribution on weir flow have been shown by Schoder and Turner 17

to be appreciable, and an effort should be made in all weir installations

to provide a good length of approach channel, with stilling devices

such as racks and screens for the even distribution of turbulence and
the prevention of abnormal velocity distribution. Another influence of

frictional processes is the creation of a periodic, helical secondary flow

immediately upstream from the weir plate, resulting in a vortex

(Fig. 177), which influences the flow in an unknown and unpredictable

way. The free liquid surfaces of weir flow also bring surface-tension

forces into the problem, and these forces, although small, affect the

flow picture appreciably, particularly at low heads and small flows.

r

FIG. 178. Weir Flow (Simplified.)

To derive a simple weir equation in the light of the above complexi-

ties will obviously require a vast and artificial simplification of the

problem. Such simplification will lead to an approximate result which

must be corrected by the introduction of experimental coefficients.

To derive a simple weir equation, let it be assumed that (1) velocity

distribution is uniform, (2) that all fluid particles move horizontally

as they pass the weir crest, (3) that the pressure in the nappe is zero,

and (4) that the influence of viscosity, turbulence, secondary flows,

and surface tension may be neglected. These assumptions produce
the flow picture of Fig. 178. Taking section 1 in the approach channel

well upstream from the weir and section 2 slightly downstream from

17 E. W. Schoder and K. B. Turner, "Precise Weir Measurements/
1

Trans.,

A.S.C.E., Vol. 93, 1929, p. 999.
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the weir crest, Bernoulli's equation may be applied to a typical stream-

line to find the velocity v2 . Taking the streamline 1-2 as a typical one

which gives

and shows that v2 depends upon h. Because of the dependence of v2

upon h> V2 can be considered to be the average velocity through an area

of only differential height dh, and the flow, dq, through this area may
be written as

dq = v2bdh =

Integration of this equation between the indicated limits

/
leads to

g an approximate relationship between Q and H for rectangul

s. If V\ is negligible (as it frequently is), this equation reduces t

the basic flow equation for rectangular weirs.

Into the above equation must be inserted an experimental coeffi-

cient C which not only embraces the effects of the various phenomena
which have been disregarded in the above analysis, but may be made

to include the effect of velocity of approach as well. Therefore, real

weir flow may be characterized by the equation

(90)

The coefficient C is essentially a factor which transforms the assumed

weir flow of Fig. 178 into the real weir flow of Fig. 177, and its magni-

tude is thus fixed by the most important difference between these

flows, which is obviously the shape of the flow picture. Thus the

coefficient C is in a sense primarily a coefficient of contraction which

expresses the extent of contraction of the true nappe below that
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assumed in the theoretical analysis. Since the size of the weir coeffi-

cient depends primarily on the shape of the flow picture, the effect of

other fluid properties and phenomena may usually be discovered by
examining their influence upon the shape of the flow picture.

Although a dimensional analysis of the weir problem must neces-

sarily be incomplete because of the impossibility of including all the

pertinent factors it will provide a rational basis for a graphical com-

parison of the weir coefficients proposed by various experimenters.

Neglecting the effect of surface tension, the expressible variables

entering the weir problem may be stated as

Q - F(b, P, H, v, g)

which leads by the methods of dimensional analysis to

and shows by comparison with equation 90 that

P

in which the first ratio is one of linear dimensions and indicates the

general shape of the flow picture. The second ratio is recognized as

a Reynolds number which for water flow is determined primarily

by the size of H since the other terms are substantially constant;

therefore

C = F2 \H'

The dependence of the weir coefficient on head and weir height has

been noted by many experimenters, who have proposed the following

empirical equations for the coefficients of sharp-crested suppressed

weirs

Bazin: 18 C

Frese :
lg C =

18 H. Bazin, Annales des ponts et chausstes, 1888-1898. Summarized by G. W.
Rafter in "On the Flow of Water Over Dams," Trans. A.S.C.E., Vol. 44, p. 220, 1900.

19 F. Frese,
" Versuche iiber den Abfluss des Wassers bei vollkommenden Uber-

fallen," Zeitschrift des V. d. /., Dec. 20, 1890, Vol. 34, No. 51, p. 1337.
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Swiss Society of Engineers and Architects :
w

Rehbock: 21 C
TT

).6035 + 0.0813 0.0036iy

These equations are difficult to analyze, but dimensional analysis has

suggested plotting C against H for various constant values of P/H,
which allows ready comparison of the equations. This has been done

in Fig. 179, which may be used to avoid solution of the equations and

.90

.85

.80

C.75

.70

.65

.60

.1 .2 .3 .4 .5 .6.7.8.91.0 2.0 3.0 4.0 5.06.07.08.0

Head in Feet

FIG. 179. Coefficients for Sharp-Crested Rectangular Weirs.

to draw some general conclusions on weir coefficients. From this plot

it is immediately evident that: (1) the coefficient tends to increase

with decreasing head and weir height; (2) in spite of precise experi-

mental measurements very different weir coefficients are found by
different experimenters; and (3) the divergence of results is small at

20 Code for Measuring Water, Swiss Ingenieur and Architeckten Verein, 1924.

81 Th. Rehbock, "Wassermessung mit scharfkantigen Uberfallwehren," Zeit-

schrift des V. d. /., June 15, 1929, Vol. 73, No. 24.

\
Weir Coefficients

Rehbock

Frese -

Swiss Soc.

Bazin -
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high heads but increases rapidly as low heads are attained. The
Rehbock formula is generally considered the most reliable for the

selection of the coefficients of a weir which cannot be calibrated

in place.

ILLUSTRATIVE PROBLEM

Calculate the rate of flow and velocity of approach when a head of 6 in. exists

on a sharp-crested rectangular suppressed weir 4 ft long and 3 ft high.

'--I.
H 0.5

From the plot of Fig. 179, C (according to Rehbock) =*
0.62, approximately.

From formula, C (according to Rehbock) = 0.623.

Q = 0.623 X f X 4 VTg (A-)* = 4.73 cfs

4.70

(3 + A)4
= 0.338 ft/sec

H

FIG. 180. Rectangular Contracted Weir.

The rectangular contracted weir (Fig. 180) may be treated by the

method suggested by Francis,
22 who found experimentally that the

end contraction varied directly with the head on the weir and was

equal to one-tenth of the head. He reasoned that the end contrac-

22
J. B. Francis, Lowell Hydraulic Experiments, Fourth Edition, 1883, Van

Nostrand.
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tions reduced the effective weir length from b to (b 2JEf/10), and

proposed the equation
o / orA

(91)

for rectangular contracted weirs having negligible velocity of approach.

Complete contraction of the nappe is dependent upon sufficient dis-

tance between ends of weir and channel walls and will exist if the

dimensions of Fig. 180 are main-

tained. If the contracted weir of

Fig. 180 cannot be calibrated, the

selection of a coefficient of 0.62

seems reasonable in the light of

suppressed weir experiments ; such

a weir must be calibrated in place

if great accuracy is desired.

Triangular or V-notch weirs

(Fig. 181) prove advantageous for

measuring small rates of flow. A simplified analysis of the triangular

weir gives the relationship between head and rate of flow

Q = ^ tan a VYg #*

if velocity of approach is negligible, as it practically always is for weirs

of this type. Introducing the experimental coefficient results in

FIG. 181. Triangular Weir.

Q = (92)

Early experiments by Thomson 23 on a weir of notch angle (2a) of

90 indicated C to have an average value of 0.593. Experiments by
Barr 24 on the same type of weir made of polished brass led him to

propose

Q 2.48H2 -48

which is equivalent to stating that the coefficient is given by

r _ 0.580
^ ~"

rrO.02

23
J. Thomson, "Experiments on Triangular Weirs," British Assoc. Repts., 1861.

24
J. Barr, "Experiments upon the Flow of Water over Triangular Notches,"

Engineering, April 8, IS, 1910.
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Later King,
25 after experiments on the same type of weir constructed

of rough steel plate, suggested

Q = 2.52H2 -47

as a flow equation for the 90 triangular weir. King's equation leads

to a coefficient given by
0.589

H.03

A comparison of the results of Thomson, Barr, and King, presented

graphically in Fig. 182, gives striking confirmation of the effects of

details upon weir flow. Roughness or minor obstructions on the weir

.8 1.0 1.2 1.4 1.6 1.8 2.0
H in Feet

.2 .4 .6

FIG. 182. Coefficients for Triangular Weirs.

plate affect the coefficient of the weir appreciably, by reducing veloci-

ties adjacent to the plate, thus reducing the nappe contraction and

increasing the coefficient of the weir.

A trapezoidal weir of ingenious design was proposed by Cipoletti
26

in order to compensate automatically for the end contractions of

a rectangular notch. Cipoletti expanded the contracted weir formula

(91) of Francis to

25 H. W. King, Handbook of Hydraulics, Second Edition, p. 93, McGraw-Hill

Book Co., 1929.

28 The results of Cipoletti's weir investigations are summarized in Engineering

Record, Vol. 26, No. 11, p. 168, Aug. 13, 1892.
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and considered the negative part as a loss of flow due to the existence

of contraction. He proposed compensating for this loss by cutting

back the corners of the rectangular contracted weir, in effect adding a

half triangular weir at each end. For the proper value of a, the flow

which would be lost by contraction is supplied by the triangular weir

and thus

whence

tan a =

if the two coefficients are assumed equal. Thus to this type of trape-

zoidal weir (Fig. 183), the rectangular suppressed-weir equation

Q =

FIG. 183. Trapezoidal Weir.

may be applied in which C, determined by Cipoletti, may be taken

as 0.63.

One of the characteristics of

rectangular weirs has been seen

to be the variation of Q with

H 2
> whereas for the triangular

weir Q has been seen to vary

with H*. This leads to the

conclusion that the geometri-
cal shape of the weir determines

^e magnitude of the exponent
an(^ suggests the possibility of

designing a weir in which Q
FIG. 184. Proportional Weir. varies linearly with H. Such a

weir, termed a
"
proportional

"

or
"
Sutro

"
weir, finds wide application in water-level control where

a simple relationship between head and rate of flow is desired.
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Rettger
27 has shown that a proportional weir (Fig. 184) having hori-

zontal crest and sides formed of hyperbolas given by the equation

K

results in a theoretical flow equation

and a linear relation between Q and H. Introducing the experimental
weir coefficient, C, the practical equation for the proportional weir

becomes

Q-CK^VTgH

Broad-crested weirs and spillways occur as overflow devices in

hydraulic structures and are seldom used for measuring purposes;

they are, however, rectangular weirs of special form to which the

v//////////////////////

FIG. 185. Broad-Crested Weir.

foregoing rectangular weir equations may be applied. The broad-

crested weir (Fig. 185) operates on the critical-depth principle modified

for friction and flow curvatures and has been treated briefly in Art. 52.

The rectangular-weir equation

may be applied in which C ranges from 0.50 to 0.57, depending pri-

marily upon the shape of the weir.

27 E. W. Rettger,
" A Proportional Flow Weir," Engineering News, Vol. 71, No. 26,

June 25, 1914.
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The "ogee" type of spillway is shown in Fig. 186. Major con-

siderations in the design of such a spillway are structural stability

against hydrostatic pressure and other loads and prevention of reduced

FIG. 186. Ogee Spillway.

pressures on the downstream face due to separation of the sheet of

water from this surface. The rectangular-weir equation may be

applied to the ogee spillway, the coefficient C ranging from 0.60 to

0.75. The relatively high value

of C may be explained by a com-

parison of a sharp-crested weir

(Fig. 187) and an ogee spillway

designed exactly to fit the cur-

vature of the lower side of the

nappe of this weir. Obviously,
with a fixed reservoir surface the

flow over the two structures will

be approximately the same, but
the heads for each structure will

be measured from their respec-
tive crests and will, therefore, be

different, the head on the weir being greater than the head on the

spillway. If the coefficient of the weir is CWt the spillway coefficient,
Ca , is seen to be the larger if the rates of flow are equated

FIG. 187.
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giving

72. Current-Meter Measurements. The construction of a weir
for measuring the flow in large canals, streams, or rivers is impractical
for many obvious reasons; but existing spillways whose coefficients

are known may frequently serve as measuring devices. However, the

standard method of river-flow measurement is to measure the velocity

by means of a current meter '(Art. 62) and integrate the results as for

Pitot-tube measurements in a pipe line (Art. 68).

.05-.25d

FIG. 188. Average Velocity Distribution in a Vertical in Open Flow.

Fundamental to the use of a current meter is a knowledge of the

properties of velocity distribution in open flow. As in pipes, the

velocities are reduced at the banks and bed of the channel, but it must
be realized that in open flow the roughnesses and turbulences are of such

great and irregular magnitudes that the velocity-distribution problem
cannot be placed on the precise basis which it enjoys in pipe flow.

However, from long experience and thousands of measurements, the

United States Geological Survey has established certain average
characteristics of velocity distribution in streams and rivers which
serve as a basis for current-meter measurements. These characteristics

of velocity distribution in a vertical are shown in Fig. 188 and may be
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amplified by the following statements: (1) the curve may be assumed

parabolic; (2) the location of the maximum velocity is from 0.05 d

to 0.25 d below the water surface; (3) the average velocity occurs at

approximately 0.6 d below the water surface; (4) the average velocity

is approximately 85 per cent of the surface velocity; (5) a more

accurate and reliable means of obtaining the average velocity is by
taking a numerical mean of the velocities at 0.2 d and 0.8 d below the

water surface. The above average values will naturally not apply

perfectly to a particular stream or river, but numerous measurements

with the current meter will tend toward accurate results since devia-

tions from the above average values will tend to compensate, thus

giving a greater accuracy than can be obtained in individual measure-

ments.

Numerous current-meter measurements, always required in the

calculation of the flow in a stream or river, are usually taken in the

following manner. A reach of river is selected having a fairly regular

FIG. 189. Division of River Cross Section for Current Meter Measurements.

cross section. This cross section is measured accurately by soundings.

It is then divided into vertical strips of equal width (Fig. 189), the

current meter is suspended, and velocities are measured at the two-

tenths and eight-tenths points in each vertical (1, 2, 3, etc., Fig. 189).

From these measurements the average velocities (Fi, F, FS, etc.) in

each vertical may be calculated. The average velocity through
each vertical strip is taken as the mean of the average velocities in the

two verticals which bound the strip, and thus the rates of flow (Q\

(?2-3 etc.) through the strips may be calculated from
2>

and the total flow in the stream may be calculated by totaling the

rates of flow through the various strips.
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73. Float Measurements. The velocities of surface floats may
sometimes be used under satisfactory flow conditions to obtain rough
measurements of river flow, but floats of this type are subject to the

vagaries of winds and to local surface currents which may drive them
far off their courses. The reach of river selected for float measure-

ments should be straight and uniform and should have a minimum of

surface disturbances; measurements should be taken on a windless

day. The time for the floats to travel a certain distance may be

measured easily, and from this the surface velocities may be computed
and the average velocities approximated by using the relationships of

Fig. 188. It should not be inferred, however, that even under ideal

conditions the accuracy of float measurements is high. This is due to

the above-mentioned general difficulties and to the fact that the ratio

of mean velocity to surface velocity, although having an average value

of 0.85, may be as low as 0.80 or as high as 0.95 and quite unpredictable
for a given reach of river.
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PROBLEMS

405. A pycnorneter weighs 100 grams when empty and 420 grams when filled

with liquid. If its volume is 200 cc, calculate the specific gravity of the liquid.

406. A plummet weighs 400 grams in air and 300 grams in a liquid. If the

volume of liquid displaced by the plummet is 120 cc, what is the specific gravity of

the liquid?

407. A crude hydrometer consists of a cylinder of f-in. diameter and 2-in. length

surmounted by a cylindrical tube ^-in. in diameter and 8 in. long. Lead shot in the

cylinder brings the hydrometer's total weight to 0.3 oz. What range of specific

gravities may be measured with this hydrometer?
408. To what depth will the bottom of the hydrometer of the preceding problem

sink in a liquid of specific gravity 1.10?

409. Mercury is placed in an open U-tube and liquid is poured into one of the

legs. A liquid column 10-in. high balances a mercury column 1.5-in. high. What is

the specific gravity of the liquid?

410. Water is placed in an open U-tube and oil (sp. gr. < 1) is poured into each

leg. The water column is 6-in. high, one oil column 3-in., and the other 10-in. What
is the specific gravity of the oil?

411. A Stormer type viscometer consists of two cylinders, one of 3.0-in. outside

diameter, the other of 3.1 -in. inside diameter, both 10-in. high. A 1-lb weight falls

5 ft in 10 sec, its supporting wire unwinding from a spool of 2-in. diameter on the

main shaft of the viscometer. If the space between the cylinders is filled with oil

to a depth of 8 in., calculate the viscosity of the oil, neglecting the force on the

bottom of the cylinder.

412. Using the result of problem 29, recalculate problem 411 including the torque
on the bottom of the cylinder, assuming a clearance of 0.05 in. between cylinder

bottoms.

413. A steel sphere (5 = 7.8) \ in. in diameter falls at a constant velocity of

0.3 ft/sec through an oil (S = 0.90). Calculate the viscosity of the oil.

414. What constant speed will be attained by a lead (S = 11.4) sphere 1 in. in

diameter falling freely through an oil of kinematic viscosity, 0.12 ft
2
/sec and specific

gravity 0.95?

415. A Saybolt universal viscometer has tube diameter and length of 0.0693 in.

and 0.482 in., respectively. The internal diameter of the cylindrical reservoir is

1.17 in., and the height from tube outlet to rim of reservoir is 4.92 in. Assuming as

a rough approximation that the loss of head may be taken as the average of the total

heads on the tube outlet at the beginning and end of the run, calculate the relation-

ship between v (ft
2
/sec) and t (Saybolt seconds), and compare with the correct

equation relating these quantities.
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416. It takes 80 sec for 60 cc of an oil of specific gravity 0.95 to escape from
a Saybolt viscometer during a routine viscosity test. What is the viscosity of this

oil?

417. The disk of Fig. 137 and a Pitot tube are placed in an air stream aligned

properly with the flow and connected to a U-tube containing water. If the difference

of water elevation in the legs of the manometer is 4 in., calculate the air velocity,

assuming w = 0.0763 lb/ft
3

.

418. A Pitot-static tube on an airplane is connected to a differential manometer
which reads 3 in. of water when flight occurs through still air (14.7 lb/in.

2 and 60 F).

Calculate the speed of the airplane in miles per hour.

419. If the Pitot tube of the preceding problem is connected to a sensitive differ-

ential-pressure gage which reads 0.08 lb/in.
2

,
calculate the speed of the airplane.

420. An airplane is designed to have a top speed of 250 mph when flying through
still air of specific weight 0.0763 lb/ft

3
. What will be the largest pressure difference

recorded between the stagnation and static pressure openings of its Pitot tube?

421. A ij-in. smooth nozzle is connected to a horizontal 3-in. pipe in which the

pressure is 60 lb/in.
2 Calculate the stagnation pressure in the pipe and in the nozzle

stream.

422. A Pitometer (Ci - 0.85) is placed at a point in a water line. If the attached

differential manometer containing mercury and water shows a reading of 5 in., what is

the velocity at the point?

423. A Pitot tube is placed at the center of a 6-in. pipe in which carbon tetra-

chloride flows at 68 F. The attached differential manometer containing mercury
and carbon tetrachloride shows a difference of 3 in. What flow exists in the line?

424. The pipe-line Pitot tube of Fig. 147 is installed on the center of a 12-in.water

line and connected to one end of a U-tube manometer containing carbon tetrachloride.

The other end of the manometer is connected to the pipe wall. If water fills the

manqmeter tubes above the CCU and the manometer reads 10 in., what is the

velocity at the center of the pipe?

425. A Venturi tube of d\ = \\ in., d% = f in., and C = 0.95 is installed on the

airplane of problem 420. Calculate the pressure difference PQ fa. Calculate the

pressure difference pa pz created by a Pitot-Venturi installed on this airplane.

Compare answers.

426. A Venturi tube having C = 0.95 and Ai/A% = 3 has an open-ended water

manometer connected to section 2. If the manometer reads 12 in. and the open end

is at atmospheric pressure, what is the velocity of the tube through still air of specific

weight 0.0763 lb/ft
3
?

427. The gasometer of Fig. 158 is used to measure the flow of hydrogen at 65 F.

The internal diameter of the cover is 5 ft, and it rises 1.87 ft in 34.6 sec. The manom-

eter reads 16 in. of water, and the barometric pressure is 14.66 lb/in.
2 Calculate

the weight rate of flow. If the counterweight weighs 600 Ib, what is the weight of

the cover?

428. A 12 in. by 6 in. Venturi meter is installed in a horizontal water line. The

pressure gages read 30 lb/in.
2 and 10 lb/in.

2 Calculate the flow, assuming Cv = 0.97.

Calculate the loss of head between base and throat of the meter.

429. If the meter of the preceding problem is in a vertical pipe line with throat

2 ft below the base, calculate the rate of flow.

430. Oil (5 = 0.90) flows through a 12 in. by 6 in. horizontal Venturi meter.

The attached differential manometer contains mercury (and oil to the mercury
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surfaces) and shows a difference of 10 in. Calculate the rate of flow if Cv = 0.97.

Calculate the loss of head between base and throat of meter. If the cone angle of

the diffusor tube is 7, calculate the total lost head through the meter.

431. If the meter of the preceding problem is in a vertical pipe line with throat

2 ft below the base, calculate the rate of flow.

432. Linseed oil flows through a horizontal 6 in. by 3 in. Venturi meter. What is

the difference in pressure head between base and throat of the meter when 120 gpm
flow at (a) 80 F, (b) 120 F? What is the head loss for these two cases?

433. The maximum flow expected through an 18 in. by 9 in. Ventun meter

installed in an 18-in. line is 15 cfs of water at 80 F. How long a manometer is

necessary for this installation if the manometer is to contain mercury?

434. Calculate the weight flow of air through a 4 in. by 2 in. Venturi meter when

the gage pressures at base and throat of meter are 40 lb/in.
2 and 30 lb/in.

2 The
barometer reads 29.5 in. of mercury, the temperature of the air as it enters the meter

is 100 F, and Cv 0.985.

435. Carbon dioxide flows through a 6 in. by 2 in. Venturi meter. Gages at base

and throat read 20 lb/in.
2 and 14 lb/in.

2
,
and temperature at the base of the meter

is 80 F. Calculate the weight flow, assuming standard barometer and Cv = 0.99.

436. Calculate the weight flow in the preceding problem when the throat pressure

gage reads (a) 10 lb/in.
2

, (b) 2 lb/in.
2

437. A 3-in. A.S.M.E. long-radius flow nozzle is installed in a 6-in. water line.

The attached manometer contains mercury and registers a difference of 15 in. Calcu-

late the flow through the nozzle. Calculate the head lost by the nozzle installation.

438. A 2-in. A.S.M.E. long-radius flow nozzle is installed in a 5-in. pipe line

where linseed oil is flowing. The attached differential manometer, containing mer-

cury, registers a difference of 8 in. Calculate the flow through the nozzle and the

lost head caused by the nozzle installation.

439. If air flows through the pipe and nozzle of the preceding problem, open

mercury manometers at points 1 and 2 show positive gage pressures of 30 in. and

20 in., and the temperature at point 1 is 60 F, calculate the weight rate of flow,

assuming standard barometric pressure.

440. A 1-in. fire nozzle has Cv
= 0.98 and Cc

= 1.00, and is attached to a 3-in.

hose. What flow will occur through the nozzle when the pressure in the hose is

60 lb/in.
2 What is the velocity of the nozzle, stream? What head is lost through

the nozzle? To what height will this stream go, neglecting air friction?

441. Assuming an I.S.A. flow nozzle, calculate the rates of flow in: (a) problem

437; (b) problem 438; (c) problem 439.

442. A 2-in. nozzle having Cv
= 0.98 and Cc

= 0.90 is attached to a 6-in. pipe
line and delivers water to an impulse turbine. The pipe line is 1000 ft long, leaving
a reservoir of surface elevation 450 at elevation 420. The nozzle is at elevation 25.

Assuming a sharp pipe entrance and a friction factor of 0.02, calculate: (a) the flow

through the pipe and nozzle ; (b) the horsepower of the nozzle stream; (c) the horse-

power lost in line and nozzle.

443. Calculate the flow through a 3-in. I.S.A. orifice installed in a 6-in. water line

when the attached manometer containing mercury shows a difference of 12 in.

444. Air flows through a 2-in. I.S.A. orifice installed in a 6-in. pipe line. A pressure

gage upstream from the orifice reads 30 lb/in.
2

, and a differential manometer con-

nected between points 1 and 2 shows a difference of 15 in. of mercury. If the tem-
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perature of the air upstream from the orifice is 70 F and the barometer reads 14.3

lb/in.
2

,
calculate the weight rate of flow.

445. Air flows through a i-in. rounded orifice (Cv = 0.99) installed in a 6-in. pipe
line. Pressure gages upstream and downstream from the orifice read 70 and 20 lb/in.

2

Calculate the weight flow if the barometer is 14.3 lb/in.
2 and temperature upstream

from the orifice is 100 F.

446. Steam flows through a ^-in. rounded orifice, having Cv
= 0.99, installed

in a 3-in. pip^ line, the barometer is 14.5 lb/in.
2

,
and the temperature upstream from

the orifice is 400 F. Pressure gages above and below the orifice read 60 and 20 lb/in.
2

Calculate the weight rate of flow, taking (p2/pi) c
= 0.55.

447. Water discharges into the atmosphere from a 1.5-in. sharp-edged orifice

under a 5 -ft head. Calculate the rate of flow, diameter of tfie jet at the contracted

section, and velocity at this point.

448. Under a 4.42 ft head, 0.056 cfs of water discharges from a 1-in. sharp-edged
orifice in a vertical* plane ;

3.30 ft outward horizontally from the contracted section

the jet has dropped 0.65 ft below the centerline of the orifice. Calculate C, CVt and Cc .

449. Water flows from one tank to an adjacent one through a 3-in.-diameter

sharp-edged orifice. The head of water on one side of the orifice is 6 ft and on the

other 2 ft. Taking Cc
= 0.62 and Cy

= 0.95, calculate the rate of flow.

450. A 3-in. sharp-edged orifice discharges vertically upward. At a point 10 ft

above the contracted section, the diameter of the jet is 3 in. Under what head is the

orifice discharging?

451. A Pitot tube is placed in the contracted section of a jet from a 2-in. orifice

operating under a 6-ft head. The Pitot tube is connected to a piezometer column

in which water stands at a level 1.50 in. below that in the tank. Calculate Cv for

the orifice.

452. A sluice gate 4 ft wide is open 3 ft and discharges onto^a horizontal surface.

If the coefficient of contraction is 0.80 and the coefficient of velocity 0.90, calculate

the rate of flow if the upstream water surface is 15 ft above the top of the gate opening.

453. Calculate the rate of flow in the preceding problem if tailwater stands 10 ft

deep over the top of the gate opening.

454. An open vertical cylindrical tank 20 ft high and 5 ft in diameter contains

a valve in the bottom which is connected to a short piece of vertical 3-in. pipe which

discharges into the atmosphere at a point 4 ft below the bottom of the tank. If the

tank is full of water and the valve opened, how much time is required to reduce the

water depth to 8 ft? Treat the pipe and valve as a 3-in. orifice having Cc
*= 1.00

and Cv = 0.65.

455. A cylindrical tank contains a 1-in. orifice 4 in. above the bottom. If the taf|k

is 2 ft in diameter and it requires 65 sec for the water depth to drop from 4 ft td 3 ft,

calculate the discharge coefficient of the orifice.

456. How much time is required to drain a full conical water tank (apex down)
10 ft high and having a base diameter of 4 ft through a 2-in. orifice (Cc

= 0.80 and

Cv
= 0.98) in the apex?

457. Solve the preceding problem assuming a square pyramid with base having

4-ft sides.

458. A V-shaped tank is 10 ft long, 5 ft deep, and 4 ft wide at the top. A slot at

the point of the V is 1 in. wide and runs the full length of the tank. How much time

is required to drain the tank from the full condition, assuming that Cc 0.85 and

Cv 0.98 for the slot.
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459. A flow bend consisting of a 4-in. flanged elbow has a coefficient Ck of 1.50.

What flow of water occurs through this bend when the attached manometer (Fig. 171)

contains mercury and shows a difference of 10 in.?

460. A Pitometer (C/ = 0.85) is installed in a 6-in. water line. A manometer

containing CCU and water, connected to the Pitometer, shows the following readings

when the tip of the instrument is placed at the points specified for the numerical

average method for calculating rate of flow.

Pitometer location... 1 2 3 C 4 5 6

Manometer readings,

In 1.20 2.04 2.83 3.03 2.89 2.10 1.26

Calculate the rate of flow, pipe coefficient, and the distance from pipe centerline to

station 2.

461. A Pitot tube is placed at various points along a diameter: of a 20-in. pipe in

which water is flowing. The pressure difference is measured on a manometer con-

taining mercury and water. If the following manometer readings are taken, calculate

the rate of flow and pipe coefficient by the graphical method.

Distance from Pitot

tube location to pipe

centerline, in 2 4 6 8 9 9.5

Manometer reading, in. 6 5.95 5.64 5.07 4.12 3.25 2.45

462. The apparatus of Fig. 174 is installed in an insulated 6-in. pipe line in which

air is flowing. A potential of 110 volts is maintained across the 30-ohm resistance,

and the thermometers read 100 and 105 F. The gage pressure in the pipe is 50 lb/in.
2

If the specific heat of the air is 0.24 Btu/lb/ F, what weight flow exists in the line?

463. The flow in a brook is measured by the salt-dilution method; 0.20 gpm of

salt solution having a concentration of 20 Ib salt/gal are introduced and mix with

the flow. A sample extracted below the mixing point shows a concentration of

0.00008 Ib/gal. Calculate the flow in the brook.

464. The salt-velocity method is to be used on a 24-in. pipe line, and electrodes

are installed 100 ft apart. The time between deflection of the ammeter needles is

12.0 sec. Calculate the flow in the line.

465. Calculate the flow over a rectangular sharp-crested suppressed weir 4 ft long
and 3 ft high when the head thereon is 4 in., using the coefficients of (a) Bazin,

(b) Rehbock, (c) Swiss Society, (d) Frese. What is the velocity of approach in (a)?

(Use P/H = oo in finding C.)

466. If the weir of the preceding problem is only 4 in. high, calculate the flows

and velocity of approach.
467. What depth of water must exist behind a rectangular sharp-crested sup-

pressed weir 5 ft long and 4 ft high when a flow of 10 cfs passes over it? What is the

velocity of approach? Use Rehbock C.

468. A rectangular channel 18 ft wide carries a flow of 50 cfs. A rectangular

suppressed weir is to be installed near the end of the channel to create a depth of

3 ft upstream from the weir. Taking C - 0.62, calculate the necessary weir
height.

469. A sharp-crested rectangular contracted weir 6 ft long measures the

outflow from a small pond. If C = 0.623, what is the flow over the weir when the

head is 0.816 ft?
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470. A rectangular contracted weir is to be used to maintain a depth of 4 ft in

a channel 15 ft wide where the flow is 12 cfs. Taking a coefficient of 0.62, what

length and height of weir crest are required?

471. Derive the theoretical flow equation for the triangular weir.

472. Calculate the flow over a smooth sharp-crested triangular weir of 90 notch

angle when operating under a head of 7 in. according to (a) Thomson, (b) Barr.

473. A triangular weir of 90 notch angle is to be used for measuring flows up to

1.5 cfs. What is the minimum depth of notch which will pass this flow?

474. A triangular weir has a 60 notch angle. What is the flow over this weir

under a 9-in. head if the coefficient is 0.57?

475. What length of Cipoletti weir is required for a flow up to 20 cfs if the maxi-

mum head is limited to 8 in.?

476. Calculate the flow over a Cipoletti weir 12 ft long when the head thereon

is 0.783 ft.

477. If a proportional weir is to be designed for a maximum flow of 5 cfs under

a head of 3 ft, what is the width of its notch 1.5 ft above the crest, taking C = 0.60?

478. A proportional weir is 3 in. wide at a height of 2 ft above the crest. What
rate of flow will occur under a head of 4 ft if C is taken as 0.62?

479. What flow will occur over a spillway of 500-ft length when the head thereon

is 4 ft if the coefficient of the spillway is 0.72?

480. A spillway 1000 ft long is found by model experiments to have a coefficient

of 0.68. It has a crest elevation of 100.00. When a flood flow of 50,000 cfs passes

over the spillway what is the elevation of the water surface just upstream from the

crest?

481. A broad-crested weir has a flat crest and a coefficient of 0.55. If this weir

is 20 ft long and the head on it is 1.5 ft, what flow will occur over it? What is the

maximum flow that could be expected if flow were frictionless?

482. A rectangular channel 20 ft wide carries 100 cfs at a- depth of 3 ft. What

height of broad-crested suppressed weir must be installed to double the depth?
C - 0.56.

483. The following data are collected in a current-meter measurement at the

river cross section of Fig. 189 which is 60 ft wide at the water surface. Assume
V = 2.22 X (rps), and calculate the flow in the river.

Station.... 0123456789 10 It 12

Depth, ft.. 0.0 3.0 3.2 3.5 3.6 3.7 3.9 4.0 4.4 4.4 4.2 3.5 0.0

Rpm of rotating element

0.2 d 40.0 53.5 58.6 63.0 66.7 61.5 56.3 54.0 52.6 50.0 45.0 ....

0.8 d 30.7 42.8 50.0 54.2 58.8 53.3 49.4 46.5 43.2 40.1 32.5 ....



CHAPTER IX

FLOW ABOUT IMMERSED OBJECTS

Problems involving the forces exerted on a solid body when fluid

flows by it no longer belong exclusively to the aeronautical engineer.

In the design of ship hulls, automobile bodies, and trains, minimizing
fluid resistance or drag has become ofincreasing importance; in the

design of ship propellers, turbines, and centrifugal pumps, the princi-

ples of lift are being applied with increasing success. As these princi-

ples find increasingly wide application, it becomes necessary for all

engineers to be familiar with the fundamental mechanics of these

principles. The origins of drag have been discussed briefly in Art. 28,

and it is the purpose of this chapter to expand the treatment of the

subject and to outline the elementary principles of lift as well.

74. Fundamentals and Definitions. In general when fluid flow

occurs about an object which is either unsymmetrical or whose axis

is not aligned with the flow, the velocities on either side of the object

have different magnitudes. From the streamline picture about the

foil of Fig. 190a, it is obvious at once that the velocity is higher on

the upper side of the foil than on the lower, and hence from the Ber-

noulli principle the pressure on the upper side is less than on the lower

side. Further examination of the flow picture indicates the pressure

on the upper side of the foil to be less than, and that on the lower side

greater than, the pressure, p ,
in the undisturbed fluid stream; in

other words, there is a pressure reduction, or
*

'suction/* on the upper
side of the foil and in increase of pressure on the lower side. Desig-

nating the suction by arrows drawn away from the foil and pressure

increase by arrows drawn toward the foil, the distribution of pressure

over the surface of the foil becomes as shown in Fig. 1906. 1

Along with these pressures which are exerted everywhere normal

to the surface of the foil, there are, of course, tangential shear stresses

T as well, acting on the foil in a downstream direction and resulting

1 Note that the larger pressure diagram on the top of the foil indicates that the

larger part of the force on the foil is contributed by pressure reduction on the upper
side.

294
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from the frictional effects which exist when fluids flow over solid

boundaries (Art. 26),

The resultant force, F, exerted by fluid on foil by the normal

(pressure) and tangential (frictional) stresses will have a direction as

shown in Fig. 19(k and may be resolved into components parallel and

perpendicular to the direction of the undisturbed velocity,
2 V. The

former component, A is termed the "drag" (force) and the latter

one, L, the "lift" (force) on the foil. Obviously, both these force

components embody the effects of both normal and tangential stresses

exerted by fluid on foil. The effect of normal and tangential stresses

on drag has been discussed in Art. 28 and resulted in the definition of

"profile" and "frictiona!" drag. The effect of tangential stresses

upon the lift force may, however, be safely neglected because the

2
Or, stating this in another way, parallel and perpendicular to the direction of

motion of the foil through still fluid.
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tangential stresses r not only are small but also act in a direction

roughly normal to that of the lift force and thus contribute little to it;

thus the lift force exerted on the foil may be safely considered to result

from pressure variation alone.

The width of the foil, ,
is called the "chord;" its length, 6, per-

pendicular to the plane of the paper, the "span;" and the angle a

between chord and direction of the undisturbed velocity, V, the

"angle of attack."

The lift and drag are calculated by

L = CLA ^~ (93)

and

D = CDA
P~

(94)

in which CL and CD are the (dimensionless) lift coefficient and drag
coefficient of the foil, and A the area of the projection of the airfoil on

the plane of the chord.8 The coefficients of lift and drag may be found

experimentally by wind-tunnel or flight tests; their magnitudes

obviously depend upon the shape of the foil and (among other vari-

ables) upon the angle of attack.

ILLUSTRATIVE PROBLEM

The lift and drag coefficients of a rectangular airfoil of 50-ft span and 7-ft chord

are 0.6 and 0.05, respectively, when at an angle of attack of 7. Calculate the

horsepower required to drive this airfoil through still air (w - 0.0763 lb/ft
3
) at

150 mph. What lift is obtained when this horsepower is expended?

'0763
0.00237 slugs/ft*

32.2

150 X 5280

3600
= 220 ft/sec

D = CDA . o.05 X (50 X 7)
- 1006 Ib

L t

1006 X 220 _
550

8 If the plan form of the foil is rectangular, A = b X c.
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75. Dimensional Analysis of the Drag Problem. The general

aspects of fluid resistance on immersed bodies and the properties of

the drag coefficient may be examined to advantage by dimensional

analysis, before considering the physical details of the problem.

Fluid properties />, ft,
E

FIG. 191.

The smooth body of Fig. 191, having area 4 A, moves through a

fluid of density p, viscosity ju> and modulus of elasticity E, with a

velocity V. If the drag on the body is D,

and because of dimensional homogeneity,

D = CA a
p
b
n
c VdE*

Writing the equations dimensionally

ML _ V (M\
b

(M\ (LJ^~ (L) \L 3) \LT) \T

the equations of exponents of M, L
y
and T becomes

M: 1 = b + c + e

L: l = 2a 3b -- c + d e

T: -2 =- c - d - 2e

Solving for 6, d, and a in terms of c and e,

b = 1 c e

d ~ 2 - c - 2e

4 Any convenient significant area may be used.
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Resubstituting these above

and rearranging

D = CA 2
p

l -c"e

But, referring to Art. 30,

A*pV V2
p= NR and = NC

n E
but (Art. 4)

- = 2

P

Therefore Nc
= V 2

/c
2

,
in which V/c is known as NM, the Mach

number. Substituting these values above, the drag equation may be

written

ApV2

and by comparison with equation 94

CD =f(NR,NM) (95)

This equation indicates: (1) that bodies of the same shape and having
the same alignment with the flow possess the same drag coefficients

if their Reynolds numbers and Mach numbers are the same
;
or (2) that

the drag coefficient of bodies of given shape and alignment depend upon
their Reynolds and Mach numbers. Thus, dimensional analysis has,

as in previous problems (ship resistance and pipe friction), opened the

way to a comprehensive treatment of the resistance of immersed bodies

by indicating the dimensionless combinations of variables upon which

the drag coefficient depends.

Although the drag coefficient is theoretically dependent upon both

the Reynolds and Mach numbers simultaneously, this is seldom true

in actual practice because the Reynolds number (containing the effect

of viscosity) affects the size of the drag coefficient only at relatively low

speeds where the Mach number is small and compression of fluid by
body usually negligible; on the other hand, when velocities approach
or exceed that of sound (NM approaching or greater than unity),

compression of fluid by body contributes the major part of the drag
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force whereas here the contribution of viscosity is very small. This

reasoning divides the study of drag force into two separate physical

problems, one involving velocities well below the acoustic velocity,

and the other velocities near to or exceeding this velocity. In the first,

the variation in fluid density may be neglected and laminar or turbulent

flow conditions and drag coefficients are governed by the Reynolds

number; this is the field of present-day aerodynamics where the

velocities involved are usually well below the acoustic velocity. The
second case embraces the field of high-velocity motion in which flow

is highly turbulent, but in which the Mach number governs flow

patterns and drag coefficients since these result primarily from fluid

compression and not from viscous action. The motion of bullets and

projectiles through air and the motion of airplane propeller tips at

high speeds are governed by compressibility and the Mach number.

A complete treatment of drag includes "drag at low velocities" and

"drag at high velocities." For the first, frictional and pressure forces

must both be considered; they have been seen to result in frictional

drag and profile drag respectively. For drag at high velocities, fric-

tional forces are neglected and a study of the topic is one of pressure

effects, which leaves only profile drag to be considered. These three

subjects will be treated in detail in the above order in the succeeding
articles.

ILLUSTRATIVE PROBLEM

An airfoil of 6-ft chord moves at 300 mph through still air (14.7 lb/in.
2 abs and

60 F). Calculate the Reynolds and Mach numbers.

Tr 300 X 5280 . .

y =- = 440 ft/sec
3600

p = = 0.00237 slugs/ft
3

32.2

fji
= 0.000000375 Ib sec/ft

2

= 440 X 6 X 0.00237 =
0.000000375

Ikp llm */- = */
\ \p 0.00237

- 0.393
1120

A X 14.7 X 144
= 1120 ft/sec
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76. Frictional Drag.
5 To discover the essential properties of

frictional drag, consider the drag force exerted on one side of a smooth
flat plate aligned with the flow

;
such a surface eliminates geometrical

complexities and possesses no profile drag.

As fluid flow occurs over the flat plate of Fig. 192, the viscosity

causes the velocity to be zero at every point on the surface of the plate

whereas the velocity at a very small distance d from this surface is the

undisturbed velocity V. Thus, a very thin layer of fluid, the boundary
layer, containing a velocity gradient, forms over the surface of the

plate; since shear stress in fluids depends upon the existence of a

velocity gradient, it is immediately apparent that resistance effects

are confined to the boundary layer and must, therefore, be dependent

upon the characteristics of this layer.

Turbulent

FIG. 192. Boundary Layers on a Flat Plate.

The layer must start from no thickness at the leading edge of the

plate where viscous action begins and must increase its thickness in

a downstream direction as the increasing viscous action exerted by
increasing plate area extends into the flow and reduces the velocity of

more and more fluid. Near the leading edge of the plate where the

boundary layer is thin and contains small quantities of fluid subject
to high viscous influence, the flow within the layer will be laminar,

but, as the layer becomes thicker and includes more fluid mass, insta-

bility results and flow within the layer becomes turbulent. The change
from a laminar to a turbulent boundary layer is not, however, an

abrupt one, but occurs through a transition region in which both
viscous and turbulent action are present; viscosity effects in the

transition region are finally replaced by those of turbulence, and
a wholly turbulent boundary layer results (Fig. 192).

6 The student should restudy Art. 28.
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Now consider, for simplicity, the laminar boundary layer (Fig. 193)
having a thickness 6 at a distance x from the leading edge of a plate of

unit width, and apply the impulse-momentum law to an element of

this layer of length, dx. The net applied (drag) force, dD, is given by

dD = rodoc

The flow dQ drawn into the boundary layer in distance dx is of the
order Vd5, and the reduction AFof its velocity is proportional to V.

Thus
JClan

AF~ VddpV

or

dQw AF = aVddpV

in which a is the factor necessary to make an equality of the above

approximate relations and will be a constant if the velocity profiles

JL i

B+dS

FIG. 193. Laminar Boundary Layer.

throughout the laminar boundary layer are of similar shape. Equating
net force dD and change of momentum per unit time,

and substituting the above values

apV
2dd (96)



302 FLOW ABOUT IMMERSED OBJECTS

Now, since the flow is laminar, the shear stress TO is given by

(dv\r **
**(T)

Wy/Burface

But if the velocity profiles are all of similar shape (dv/dy) Burt&ce will be

a fixed proportion, /3, of a linear velocity gradient V/d. Therefore,

TO = fti T-
d

which may be substituted in equation 96 to give

y
/3p, dx = apV2d8

o

/So
which may be rearranged and integrated

X -- s+&

dx = / ddd

giving the relation between x and 5

>IA
2

(97)

thus showing the contour of the laminar boundary layer to be para-

bolic in shape. This equation may be rearranged and put in dimen-

sionless form by solving it for S/#, giving

(98)

and indicating this ratio to be inversely proportional to the Reynolds
number (Nn) 5 calculated with 8 as the length parameter. Blasius 6

has shown theoretically and experimentally that 2/3/a = 27.0, and
thus the above equation becomes

6 27.0

8 H. Blasius, "Grenzschichten in Fliissigkeiten mit kleiner Reibung," Zeit. f.

Math. w. Physik, Vol. 56, 1908, p. 1.
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However, this equation is obviously not convenient for calculation of

6 for a certain numerical value of x, because 5 occurs on both sides of

the equation; it may be placed in more usable form by substituting
for 6, in the Reynolds number, its value obtained in terms of x from

equation 97. This is

a

and substituting in equation 98

20

6 a

*
%L J^ZE Vxf>

^
(X pV (JL M

and since

> VXD^ = V27.0 = 5.20, and letting
- = NR

Gi (A

d 5.20

which shows that the shape of the laminar boundary layer an inertia

viscosity phenomenon is dependent, as might have been expected,

only on a Reynolds number.

The drag coefficient and total drag of this flat plate now remain

to be calculated. Expressing the differential drag force dD on the

element of plate of length dx in the conventional way (equation 94),

pV2

r dx = dD =
Cf dx

L

giving

-$ (100)

in which c/ is the (frictional) drag coefficient for the element of plate dx.

Since r can be shown to decrease with increasing x, Cf varies with x in

the same way. However, a drag coefficient which differs for every
element of plate is obviously inconvenient, so a more practical average
frictional drag coefficient Cf will be derived for the plate length x, so

that the total drag D for the length x will be given by
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But total drag for the plate length x is also given by

C C" pV2

D = I dD = Cfdx^-
JQ JO ^

Equating the above two expressions for D

r
I Cfdx (101)

' Jo

and with this equation C/ may be easily derived after an expression

for / is found. If

r =
ft* 7

is substituted in equation 100

and substituting

apV

gives

in which V 2a^3 has been shown by Blasius to have the value 0.664.

Thus
0.664

cf
=

and substituting this expression in equation 101

'*
0.664 J

. dx

V~ 1.328 1.328

'
""

* IVxp
^
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This equation allows the frictional drag on flat plates of length x to be
calculated when the plates are placed in a flow of velocity V, density p,

and viscosity /x, provided that the boundary layer remains in laminar

condition. It should be noted that the results of the above physical
treatment of drag confirm and amplify those of dimensional analysis

which showed that drag coefficients of smooth bodies at low velocities

depend only upon Reynolds numbers (equation 95).

A flat plate with a turbulent boundary layer may be analyzed

physically by methods similar to those above, but the concepts and

mathematics involved are too advanced for inclusion in an elementary
textbook. Prandtl 7 has shown that the equation

0.455
'

(logAW
2 -68

gives the relation between C/ and NR for a flat plate with turbulent

boundary layer and has also shown that the approximate thickness of

such a turbulent layer is given by

d 0.37

A plot of Cf against NR for smooth flat plates (Fig. 194) with

laminar and turbulent boundary layers bears a striking resemblance

to that of friction factor against Reynolds number for circular pipes

(Fig. 86). However, the critical Reynolds number at which the

laminar boundary layer changes to a turbulent one is not so well

defined as its counterpart in pipe flow, because of flow conditions

which are not so well controlled. With increased initial turbulence

in the approaching fluid flow, earlier breakdown of the laminar bound-

ary layer occurs, thus reducing the critical Reynolds number; rough-

ening the leading edge of the plate has also been found to decrease the

critical Reynolds number by decreasing the flow stability and causing

earlier breakdown of the laminar layer. A typical equation which

satisfies experimental results in the transition region and which deter-

mines the critical Reynolds number is that suggested by Prandtl from

Gebers' tests on a smooth flat plate. This equation is

0.455 1700
2.58'

(log NR )

7 L. Prandtl, Ergebnisse der aerodynamischen Ver$uch$o,nstalt zu Gottingen, IV,

1932, p. 27, R. Qldenbourg.
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giving a critical Reynolds number of 530,000. This figure, however,
should be taken only as a typical value ; the range of experimentally
determined critical Reynolds numbers is approximately from 100,000
to 1,000,000.

From the above statements, and from the plot of Fig. 194, there is

obviously great uncertainty in the selection of values of Cf for Rey-
nolds numbers of less than 10,000,000. Above this figure there is

ample experimental confirmation of Prandtrs equation.

5 109

FIG. 194. Drag Coefficients for Smooth Flat Plates.

ILLUSTRATIVE PROBLEM

A smooth rectangular plate 3 ft wide and 100 ft long moves in the direction of

its length through water (68 F) at 30 ft/sec. Calculate the drag force on the

plate and the thickness of the boundary layer at the trailing edge of the plate.

Vxp 30 X 100 X 1.935NR = =B _- _- 23

/* 0.000021

0.455

(log 276,500,000)
2 - 68

pF2

- 0.00186

Total drag (2 sides of plate) - 2CfA

D - 2 X 0.00186 X (100 X 3)

5 0.37

1.935 X 30
2

972 Ib

100 (276,5QO,000)-
2 0.0076, d - 0.76 ft
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77. Profile Drag.
8 Profile drag has been shown to be that part of

total drag resulting from pressures over the surface of an object and
to be dependent on the formation of a wake behind the object. In

general, when wakes are large profile drag is large, and when wakes
are reduced by streamlining profile drag is reduced also.

Separation point

FIG. 195. Flow about a Sphere at Various Reynolds Numbers.

The properties of profile drag can best be obtained by examining
the details of flow about a blunt object such as a sphere which has an

appreciable and variable wake width, but on which the frictional drag

may be neglected because of the small surface area on which frictional

effects can act.

8 The student should restudy Art. 28.
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Even for a blunt object, however, profile drag is not always pre-
dominant or frictional drag negligible since flow at very low Reynolds
numbers about a blunt object will close behind the object and no wake
will form (Fig. 195a). Under these conditions total drag is composed
primarily of frictional drag. Stokes 9 has shown that, in laminar flow

at very low Reynolds numbers, where inertia forces may be neglected
and those of viscosity alone considered, the drag of a sphere otdiameter

d, moving at a velocity V through a fluid of viscosity M> is given theo-

retically by
D

and this equation has been confirmed by many experiments. The

drag coefficient CD for the sphere under these conditions may be found

by equating the above expression to equation 94

r 4 pV2
* nLj)A =
OTTJU Va

Taking A as the cross-sectional area of the sphere at the center,

A =
4

and substituting this above,

whence

CD ~T ^~
^

3-717*Fd

c = = -D
Vdp NR

Thus the drag coefficients of spheres at low velocities are dependent

only on the Reynolds number, again confirming the results of the

dimensional analysis of Art. 75.

As the Reynolds number increases, the drag coefficients of spheres

continue to depend only upon the size of this number, and a plot of

experimental results over a large range of Reynolds numbers for

spheres of many sizes, tested in many fluids, gives the single curve of

Fig. 196.

9 G. G. Stokes, Mathematical and Physical Papers, Vol. Ill, p. 55, Cambridge
University Press, 1901.
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Up to a Reynolds number of unity, the Stokes equation holds and

the drag coefficient results from frictional effects. As the Reynolds
number is increased to about 1, separation and weak eddies begin to

form, enlarging into a fully developed wake near a Reynolds number

of 1000; in this range the drag coefficient results from a combination

of profile and frictional drag, the latter being of negligible size as a

Reynolds number of 1000 is reached. Above this figure the effects of

friction may be neglected and the drag problem becomes one of profile

drag alone.

100

CD 1.0

.01

0,1 2 4 6 1.0 2 4 6 10 2 4 6 10* 2 4 6 103 2 4 6 104 2 4 6 10* 2 46 106

Reynolds Number, NR - %&.

FIG. 196. Drag Coefficients for Sphere, Disk, and Streamlined Body.
10

The profile-drag coefficient of the sphere is roughly constant from

NR ~ 1000 to NR ~ 250,000 at which point it suddenly drops about

50 per cent and stays practically constant for further increase in the

Reynolds number. In the above range of Reynolds numbers, experi-

ments have shown the separation point to be upstream from the mid-

point of the sphere, resulting in a relatively wide turbulent wake; the

boundary layer on the surface of the sphere from stagnation point to

separation point has been found to be laminar up to NR ~ 250,000.

At this point, the boundary layer becomes turbulent and the separa-

10 Data from L. Prandtl, "Ergebnisse der aerodynamischen Versuchsanstalt zu

Gottingen," Vol. II, R. Oldenbourg, 1923, p. 29, and G. J. Higgins, "Tests of the

N. P. L. Airship Models in the Variable Density Wind Tunnel," N.A.C.A. Tech.

Note No. 264, 1927.
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tion point moves to a point downstream from the center of the sphere,

causing a decrease in the width of the wake and consequently a decrease

in the drag coefficient.

The sudden shift of the separation point and decrease in the profile-

drag coefficient as the boundary layer changes from laminar to turbu-

lent are characteristic of all blunt bodies and may be explained by
examination of the energy properties of the laminar and -turbulent

boundary layers of Fig. 197. For comparison let these layers be of

the same thickness and have the same undisturbed velocity V. It is

evident from the velocity profiles that the turbulent layer possesses

greater kinetic energy than the laminar one ;
this kinetic energy allows

the flow to continue further around the sphere before friction destroys

this energy, bringing the fluid to rest and causing separation. The
increased energy of the turbulent boundary layer thus brings about the

v ^

Laminar Turbulent

FIG. 197. Velocity Profiles in Boundary Layers.

shift in separation point, the decrease in the width of the wake, and

consequent decrease in drag coefficient.

The change from laminar to turbulent boundary layer on a flat

plate has been seen (Art. 76) to occur at a critical Reynolds number

dependent upon the turbulence of the approaching fluid. This also

occurs with a sphere, and with increased turbulence in the approaching
flow the sudden drop in the drag coefficient curve occurs at a lower

Reynolds number. Thus, a sphere may be used as a relative measure

of turbulence by noting the Reynolds number at which a drag coeffi-

cient of 0.30 (see Fig. 196) is obtained.

The change from laminar to turbulent boundary layer has also

been seen (Art. 76) to occur (for the same initial turbulence) at a fixed

distance from the leading edge of a flat plate (or after a fixed length of

boundary layer) for given flow conditions (V, p, and M) Applying
this fact in a qualitative way to elongated bodies (e.g., ellipsoids with

the major axes in the direction of flow), it may be concluded that

breakdown of the laminar boundary layer will occur at a lower Rey-
nolds number than 300,000, and conversely that ellipsoids with the

major axis normal to the flow will have breakdown of the laminar layer
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and decrease of the drag coefficient at Reynolds numbers greater than

300,000. This trend is borne out by experiments but cannot be

carried to extremes. The limit of ellipsoids with major axis normal

to the flow is one of zero minor axis, i.e., a thin circular disk. The drag
coefficient of such a disk shows practically no variation with the

Reynolds number since the separation point is fixed at the edge of the

disk and cannot shift from this point, regardless of the condition of the

boundary layer. Thus, the width of the wake remains constant, as

does the drag coefficient also. This thought may be usefully gen-

eralized and applied to all brusque or very rough objects in a fluid

flow; experiment indicates that such objects have drag coefficients

which vary little with the Reynolds number. 11

10 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 4 6 10 5 2 46 10*

FIG. 198. Drag Coefficients for Circular Cylinders, Flat Plates, and Streamlined

Struts of Infinite Length.
12

The drag coefficients of circular cylinders placed normal to the flow

show characteristics similar to those of spheres. The coefficients

shown in Fig. 198 are for infinitely long cylinders. The drag coeffi-

cients of streamlined struts 13 and flat plates of infinite length are also

shown for comparison. The total drags of the flat plate and cylinder

contain negligible frictional drag at ordinary velocities, whereas the

streamlined strut, because of its small turbulent wake, possesses little

11 Cf. relation of friction factor, /, and NR for rough pipes, Fig. 85, and the fact

that the minor loss coefficients of pipe flow show little variation with the Reynolds
number.

12 Data from L. Prandtl, "Ergebnisse der aerodynamischen Versuchsanstalt zu

Gottingen," Vol. II, R. Oldenbourg, 1923, p. 24, and B. A. Bakhmeteff, "Mechanics

of Fluids," Part II, Columbia University Press, 1933, p. 44.

18 The area to be used in the drag equation is the projection of the body on a

plane normal to the direction of flow.
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profile drag. The curves are typical of those resulting from tests of

brusque, blunt, and streamlined objects.

ILLUSTRATIVE PROBLEM

What is the drag force on a 6-in.-diameter smooth sphere when placed in an

airstream (60 F, 14.7 Ib in.
2
) having a velocity of 30 mph?

T7
30 X 5280 __.,,y _ - 36.65 ft/sec

3600

36.65 X A X 0.00237 <__

From the plot of Fig. 196,

CD = 0.49

D = 0.49 X

0.000000375

X = 0.153 Ib

78. Drag at High Velocities. As objects move at increasing speeds

through compressible fluid the assumption of constant density is less

valid, since higher velocities bring about greater variations of pressure

over the object, these pressures in turn causing changes in the density
of the fluid. At points of low and high

pressure on the surface of the object the

fluid is respectively rarefied and com-

pressed. At the stagnation point on the

nose of the object, the increased pressure

compresses the fluid, creating a zone of

dense fluid ahead of the object; the nose

of the body thus moves through a fluid of

increased density and, of course, encoun-

ters increased resistance because of this.

An understanding of the effect of high velocity on pressure variation

may be gained by calculating the stagnation pressure on the nose of

an object placed in a high-velocity flow of compressible fluid (Fig. 199).

Applying the Euler equation

FIG. 199.

dp + VdV -

and integrating between point in the undisturbed flow and the stag-

nation point, S.

/" p* Jjt /*Vo

VdV
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At the stagnation point there is no velocity and V8
= 0; and if adia-

batic compression of the fluid is assumed

P Po
'**

P Po

Substituting these values above,

1

F
(

-<0

VdV
PO^PO .f

Jo
P

and integrating,

P ^
\[P.*\

k
1 1

^

Solving for p8 ,

+
L

but (Art. 4)

Po

and therefore
k

p.-*[i +
-?

Expanding this expression by the binomial theorem and substituting

c for vkpo/po gives (using the first three terms)

which indicates that the stagnation pressure is always greater than

that of an incompressible fluid and depends not only upon p , V ,
and

Po but also upon the ratio of undisturbed velocity to acoustic velocity,

the Mach number, NM. Thus

and once again the importance of the Mach number in compressible
fluid flow calculations is observed.

The increase hi stagnation pressure due to compression of the fluid

leads directly to one of the principles of minimizing drag at high
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ForK<c

For V>c

FIG. 200.

velocities. Obviously, increased pressure on the nose of the object
contributes directly to profile drag, and to minimize this contribution

the area on which such high pressures act must be reduced to a mini-

mum, resulting in pointed rather than blunt noses for high-speed
bodies. At low velocities it has been seen that the shape of the tail

of the body, in determining the

size of the wake, was of primary

importance in determining pro-

file drag, whereas the shape of

the nose had little effect. At

-higher velocities, where wakes

are fully developed, drag de-

pends little upon the tail of the

body and much upon the shape
of the nose. The shapes of the

airship form and projectile of

Fig. 200 are striking examples
of the application of these

principles.

The effect of shape upon the drag coefficients of various projectiles

at high velocities is shown on Fig. 201. In this velocity range,

viscosity has little effect on drag and coefficients will vary primarily

with Mach number as was indicated by the dimensional analysis of

Art. 75. On the plot may be clearly seen (1) the increased effect of

shape of nose on the drag coefficient as the Mach number increases,

and (2) the abrupt increase in the coefficient near NM =
1, where the

velocity equals the acoustic velocity. Here the effects of compressi-

bility become pronounced and the nature of the flow changes radically.

For a typical air foil, used as a wing or propeller blade element, the

sudden increase of drag coefficient occurs before NM =1; i.e., the

effects of compressibility are felt before the foil reaches the acoustic

velocity. This condition arises from the fact that local velocities at

certain points on an airfoil are always greater than the velocity of the

foil, and acoustic velocities and serious compressibility effects occur at

these points before the foil itself attains the acoustic velocity.

When bodies travel through a fluid at supersonic (V > c) speeds a

new physical condition arises, which completely changes the nature of

the flow. To investigate this condition briefly, consider the projectile

of Fig. 202, moving at a supersonic speed, V, and let it occupy the

positions 1, 2, 3, and 4, at times t\, t%, 3, and t. At time t\ the nose

of the projectile disturbs the fluid at point 1, and this disturbance
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progresses through the fluid as a spherical wave with a celerity of

propagation, c. After a time (t t\) has elapsed, the radius of the

spherical wave is c(/4 /i). In this same time, however, the projec-

tile has moved to point 4; therefore

k

Mach Number, NM ~-

FiG. 201. Drag Coefficients for Artillery Projectiles.
14

and the radius of the sphere (by substitution) is cli/V. Similarly the

disturbances which started at points 2 and 3 have (when the projectile

reaches point 4) radii of cl2/ V and cli/V, respectively. Obviously a

14 F. R. W. Hunt, in The Mechanical Properties of Fluids, p. 341, Blackie and

Sons, 1925.
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C. Cranz

FIG. 203. Small Bore Bullet in Flight.
16

18 From C. Cranz, Lehrbuch der Ballistik, Vol. I, B. G. Teubner, Leipzig, 1917.
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surface tangent to these spherical waves is a conical one with its apex
at the nose of the projectile, and such a surface represents the line of

advance of the aggregation of pressure disturbances; it is a wave

front, or a
"
shock wave." The " Mach angle," a, may be seen from

the figure to be given by

a = sin""
1

Since this angle depends only on c and F, the velocity of projectiles

may be obtained from photographs of the wave front by measuring
the Mach angle. A typical photograph of the wave front caused by
a rifle bullet is shown in Fig. 203.

79. Lift by Change of Momentum. The lift force on an unsym-
metrical body has been seen to arise from pressure differences caused

by velocity variations over the surface of the body, but this force may
also be associated with the change of fluid momentum caused by the

body. If about the foil of Fig. 204 a rectangle is drawn in such a way

FIG. 204.

that the velocity, FI, entering the left-hand side of the rectangle is

horizontal and the upper and lower boundaries are streamlines, it is

evident at once that the flow Q which enters the rectangle horizontally

at the left is deflected downward, leaving the rectangle with an average

velocity V%. Since there is a continual change in the vertical momen-

tum of the fluid within the rectangle, a force must be continually
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exerted vertically downward upon this fluid to bring about this change.
This force cannot come from the pressure difference between top and

bottom of the rectangle since this difference is canceled by the dif-

ference in elevation of these boundaries. The force must, therefore,

be that exerted vertically downward by the foil on the fluid, the equal

and opposite of the lift force. From the impulse-momentum law

-L = (AT),

or

thus giving a physical picture of the relation of momentum change to

lift force.

Such an equation is of some interest in the light of previous applica-

tions of the impulse-momentum law and may serve as an exposition of

principles, but to use it for lift calculations is obviously impossible;

the size of the rectangle is unknown, thus preventing the calculation of

Q, and, with unknown magnitudes and directions of velocities at sec-

tion 2, AFis also incalculable.

80. Circulation Theory of Lift. Although the foregoing studies of

pressure variation and momentum change have contributed to an

understanding of lift phenomena, a more comprehensive knowledge

may be had by applying the principles of circulation. 16 This was first

done by Kutta (1902) and Joukowski (1906), whose equations were

written for the forces on a body of any shape and whose results were,

therefore, entirely general. Because of the mathematical ability

required to follow their analysis it will not be included here, but the

physical significance of the (Kutta-Joukowski) theorem may be seen

by a simple application suggested by Professor Bakhmeteff. 17

The foil of Fig. 205 is a flat plate of chord c and infinite length
from which a section of 1-ft length is to be considered. When the plate

is placed in a rectilinear flow (Fig. 205a) of velocity V with its axis

aligned with the flow, there is obviously no lift force since the velocities

and pressures are the same on both sides of the plate.

16 The student should restudy Art. 24.
17 B. A. Bakhmeteff, Mechanics of Fluids, Part II, p. 70, Columbia University

Press, 1933.
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Now about the plate assume a clockwise circulatory flow (Fig. 205&)

having a circulation T given by
2cv

Traversing a closed curve adjacent to the plate in a clockwise direction,

the length of curve is 2c so that the average velocity along the curve

must be v, if the product of these quantities is to give the above circula-

tion. This means that with the circulatory flow there is a velocity v

to the right along the top of the plate and the same velocity v to the

(a)

(c)

FIG. 205.

left along the bottom. Since there is no velocity difference there can

be no pressure difference, and hence no lift force is exerted on the plate.

Now, superpose the two flows, and the flow picture of Fig. 205c

results. The circulatory flow has bent the rectilinear flow upward
at the leading edge of the plate and downward at the trailing edge,

yet the effect on the rectilinear flow at a distance from the plate is

negligible because of the small velocities induced by a vortex at

great distances from its center. The circulatory motion has the same

direction as the rectilinear motion on the top of the plate, but opposes

it along the bottom. Thus, when the two flows are superposed the
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average velocity along the top of the plate becomes (V + v) and that

along the bottom (V v). Now, applying the Bernoulli equation

along streamtube 1-1 between O and the top of the plate and along

streamtube 2-2 between and the bottom of the plate, letting pT and

ps be the average pressures over the top and bottom respectively.

Po + %PV
2 - pT

Equating these,

PB-PT =

Simplifying,

ps
- PT =

But the lift, L t on a section of 1-ft length is given by

L = (pB -
PT) o

Therefore

L = %p(Vv)c - (2vc)pV

But
r - 2vc

and therefore

L (per foot of span) = FpF

which is the Kutta-Jojikowski result in its simplest form and indicates

clearly that the combination of velocity and circulation is essential to the

existence of a lift force if either one of these terms is zero there can

be no lift.

Although the foregoing proof is not rigorous owing to the use

of certain average velocities and pressures it nevertheless indicates the

physical essence of the problem ; and in view of the Kutta-Joukowski

general treatment it may be applied to airfoils, cylinders, spheres, or

bodies of any shape. The result serves to explain certain familiar

phenomena in which bodies rotating in a viscous fluid create their own
circulation and when exposed to a rectilinear flow are acted upon by
a transverse force. Some examples are the force exerted on the rotating

cylinders of a "rotorship" and the transverse force which causes a

pitched baseball to curve.

81. Origin of Circulation. Although it is not difficult to imagine
a rotating body in a viscous fluid inducing its own circulation, to

explain the origin of circulation about an airfoil, or an element of a

propeller or turbine blade requires knowledge of other principles.
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Consider the flow conditions about a typical airfoil as it starts to

move. Before motion begins the circulation about the foil is obviously
zero (Fig. 206a). As motion occurs, the circulation about the foil

tends to remain zero and the "potential" flow of Fig. 2066 tends to be

r-o

v-o

(a) No Motion.

<b) Potential Motion.

(c) Real FlUijJ Flow.

Starting,

fl

FIG. 206. Development of Circulation about an Airfoil.

set up, but such a flow, which includes a stagnation point near the rear

of the foil and flow around its sharp trailing edge, cannot be maintained

in a real fluid, because of separation caused by viscosity. This poten-

tial flow gives way immediately to the flow of Fig. 206c, and in the

process a circulation, F, develops about the foil, and a vortex, the
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"starting vortex" (Fig. 206d), is shed from the foil. During the

creation of this vortex, however, the circulation around a closed curve

including and at some distance from the foil is not changed and must
remain zero; thus, from the properties of circulation, the circulation

about, or the strength of, the starting vortex must be equal and

opposite to that about the foil. The, existence of circulation about a

foil is, therefore, dependent upon the creation of the starting vortex;

since the vortex in turn is dependent upon separation and the viscosity

of the fluid it may be observed that circulation and, therefore, lift result

from the existence of fluid viscosity.

View A- A

FIG. 207. Airfoil of Finite Length.

82. Foils of Finite Length. When fluid flows about foils of finite

length, flow phenomena result which affect both lift and drag of the

foil ; these phenomena may be understood by further investigation and

application of the foregoing circulation theory of lift.

Since pressure on the bottom of an airfoil is greater than that on

the top, flow will escape from below the foil at the end and flow toward

the top, thus distorting the general flow about the foil, causing fluid to

move inward over the top of the foil and outward over the bottom

(Fig. 207). As the fluid merges at the trailing edge of the wing, a sur-

face of discontinuity is set up, and flows above and below this surface

have components of velocity inward and outward as shown. The

tendency for vortices to form from these velocity components is

obvious and in fact this surface of discontinuity is a
"
sheet of vortices.

"
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However, such a vortex sheet is unstable and the rotary motions con-

tained therein combine to form two large vortices trailing from the tips

of the foil (Fig. 207) ; these are called tip vortices and are often visible

when an airfoil passes through dust-laden air.

Since the pressure difference between top and bottom of an airfoil

must reduce to zero at the tips, it is evident that the lift per unit

length of span varies over the span (Fig. 208), being maximum at the

center and reducing to zero at the tips. The total lift of the foil is,

of course, the total force resulting from this lift diagram. Since lift

per unit length of span varies directly with circulation (L = FpF),
a diagram showing distribution of circulation over the span has the

same shape as that of a diagram of lift distribution. The variation of

AZ,

Actual Assumed

FIG. 208. Distribution of Lift and Circulation over an Airfoil of Finite Length.

lift and circulation over the span of an airfoil cannot, of course, be

disregarded in a rigorous treatment of the subject, but such treatment

leads to mathematical and physical complexities which are beyond
the scope of this volume. A simple physical picture may be obtained,

however, from the following analysis in which lift and circulation will

be assumed to be distributed uniformly over the span (Fig. 208).

One of the properties of vortices is that their axes can end only

at solid boundaries. Since there is no solid boundary at the end of the

airfoil, the circulation T cannot stop here, but must continue to exist

about the axes of the tip vortices (Fig. 209). The axes of the tip

vortices extend rearward to the axis of the starting vortex; thus,

according to the theory, the axis of the vortex having circulation T

does not end, but is a closed curve composed of the axes of the airfoil,

tip vortices, and starting vortex. In the real fluid the circulation
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persists only about the foil and portions of the tip vortices close to the

foil ; the starting vortex and remainder of the tip vortices are quickly

extinguished by viscosity.

The circulations about the tip vortices induce a downward motion

in the fluid passing over a foil of finite length and in so doing affect

*p
*\- ^ Axis of

r l
starting vortex

FIG. 209. Circulation about an Airfoil of Finite Length.

both lift and drag by changing the effective angle of attack. The

strength of this induced motion will obviously depend upon the

proximity of the tip vortices and thus upon the span of the foil or upon
the ratio of span to chord, b/c, called the aspect ratio of the foil.

An airfoil of finite span is shown at angle of attack a in the hori-

zontal flow of Fig. 210. The downward (downwash) velocity induced

FIG. 210.

near the wing by the tip vortices decreases the angle of attack by a

small angle of downwash, , making the effective angle of attack

(a c). This effective angle of attack is that for no induced down-

ward velocity or, in other words, it is the angle of attack which would

be obtained if the foil had infinite span and aspect ratio. Calling this

angle of attack ,

- /*\6
<

= a 6 (102)
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Now treating the foil as one of infinite span at an angle of attack a# ,

the lift LOO exerted on such a foil is by definition normal to the direction

of flow in which it is placed ; therefore L*, is normal to the effective

velocity Foo, and at an angle e with the vertical. The lift, L, on the

foil of finite span is normal to the approaching horizontal velocity V
and is the vertical component of L^. But Loo also has a component
in the direction of the original velocity F, a drag force, >*, called the

induced drag because its existence depends upon the downward veloc-

ity induced by the tip vortices. Thus, an additional drag force, D^
must be added to profile and frictional drag in computing the total

drag of a body of finite length about which a circulation exists. Calling

the sum of frictional and profile drag ><, since it is the drag of a foil of

infinite span Cvyhich has no induced drag), the total drag D of a foil of

finite length is given by
D = L>oo + Di (103)

which, by dividing by ApV 2
/2, may be expressed in terms of dimen-

sionless drag coefficients as

CD = CDao + CDi (104)

Thus the drag coefficient, CD, of a body of finite length with circulation

is the sum of the profile-frictional drag coefficient CD^ and the induced

drag coefficient, CD^
From the foregoing statements and Fig. 210, it is evident that

induced drag Di is related to lift L, angle a, and aspect ratio b/c\ the

equations relating these variables are of great practical importance.

Since is small

If the distribution of lift over a wing of finite span is taken 18 to be a

half ellipse (see Fig. 208), it may be shown that

CL
(105)

and substituting this value and L = Ci4(pF
2
/2) in the equation

for Di

.

(106)

18 An assumption which gives minimum induced drag and conforms well with fact.
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Now, expressing Di in terms of the induced drag coefficient

Di - CDiA
tj-

and substituting this value in equation 106 there results

which relates lift and induced drag through their dimensionless coeffi-

cients and shows that induced drag is inversely proportional to aspect

ratio, becoming zero at infinite aspect ratio (infinite span) and increas-

ing as aspect ratio and span decrease thus offering mathematical

proof of the foregoing statements on the effect of span, aspect ratio,

and proximity of tip vortices on induced downward velocity and
induced drag.

When the foregoing expressions for and CD; are substituted in

equations 102 and 104, respectively, there result

(108)

vy
and

CD = CD. + 7- (109)

With these equations airfoil data obtained at one aspect ratio may be

converted into corresponding conditions at infinite aspect ratio, and

these data in turn reconverted to foils of any aspect ratio; thus,

extensive testing of the same airfoil at various aspect ratios becomes

unnecessary.

ILLUSTRATED PROBLEM

A rectangular airfoil of 6-ft chord and 36-ft span has a drag coefficient of 0.0543

and lift coefficient of 0.960 at an angle of attack of 7.2. What are the correspond-

ing lift and drag coefficients and angle of attack for a similar wing of aspect ratio 8?

For aspect ratio 8: CL =* 0.960 (No change in lift coefficient.)

Assuming semi-elliptical lift distribution,

0.0543 - 0.0489 - 0.0054
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For aspect ratio 8:

CD = 0.0054 +
> - 0.0421

TT X 8

' = 0.0509 radian = 2.9

For aspect ratio 8:

7.2 - 2.9 = 4.3

4.3 +-^(
7T X 8 \ 27T

83. Lift and Drag Diagrams. The, relation between lift and
induced drag coefficients suggests plotting lift coefficient against drag

Point of zero lift and
minimum drag

( Not always the

same point)

FIG. 211. Polar Diagram for a Typical Airfoil.

coefficient and gives the so-called polar diagram of Fig. 211, which is

used extensively in airplane design. On this diagram equation 107

is a parabola passing through the origin and symmetrical about the
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CD axis, the slope of the parabola depending on the aspect ratio.

Since the two curves are for foils of the same aspect ratio, the hori-

zontal distance between them is the profile-frictional drag coefficient,

1.6

-0.2

.25

FIG. 212. Polar Diagram for 48 ft by 8 ft Clark-Y Airfoil. 19
(N/j ^ 6,000,000.)

*',
in this way, the polar diagram gives graphical significance to

equation 109. But the diagram does much more than this alone:

"A. Silverstein, "Scale Effect on Clark-Y Airfoil Characteristics from N.A.C.A.
Full-Scale Wind-tunnel Tests," N.A.C.A. Report 502, 1934.
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The important ratio of lift to drag is the slope of a straight line drawn

between origin and the point for which this ratio is to be found ; the

maximum value of this ratio is the slope of a straight line tangent to

i.e n

1.4 -

1.2 -

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

4 8

Angle of Attack, a, Degrees

12 16
-0.2 -

32

.28

.24

.20

16

.12

.08

.04

FIG. 213. Lift and Drag Coefficients and L/D Ratio for 48 ft by 8 ft Clark-Y

Airfoil. 19 (N*~ 6,000,000).

the curve and passing through the origin ;
on the diagram are easily

seen also the points of zero lift, minimum drag, and the point ol

maximum lift or "stall," which determines "stalling angle'
' above

which lift no longer continues to increase with angle of attack; the end

19 See footnote on p. 328.
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of the upper solid portion of the curve is the point at which the flow

separates from the upper side of the wing, forming a turbulent wake
which increases the profile drag and therefore the drag coefficient,

accompanied by a large drop in lift and lift coefficient because of

increased pressure on the upper side of the wing.

A polar diagram for a Clark-Y airfoil obtained in the N.A.C.A.

full-scale wind tunnel is shown in Fig. 212, and anoth'er way of

presenting the same data in Fig. 213. Because of the assumption of

semi-elliptical lift distribution made in deriving equations 108 and 109

it is to be expected that these equations must be modified for use in

actual practice.

These equations are now written

a =
< +

cP'
+ '

:

CD = Cn + -r^- (1 + (7)

and

in which the r and cr are correction factors. Since lift distribution

varies increasingly from the semi-elliptical one with increasing aspect
ratio these correction factors vary with aspect ratio and increase with

this ratio. Some typical values for r and cr for the Clark-Y airfoil are 19

The data of Figs. 212 and 213 were obtained at a Reynolds number
of about 6,000,000, and from many foregoing statements it should be

expected that the data will change with changing Reynolds number.

The following trends, which are confirmed by experiment, are of some
interest in the light of foregoing principles. With increasing Reynolds
number the drag coefficient at zero lift decreases

;
here the drag coeffi-

cient contains predominantly frictional effects and its variation with

Reynolds number is similar to that of the flat plate (Fig. 194). With
increased turbulence, due either to increased initial turbulence or

19 See footnote on p. 328.
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increased Reynolds number, the maximum lift coefficient increases;

in other words, higher angles of attack can be attained without causing

separation. Here the energy of the turbulent boundary layer (Fig. 197)

delays separation, allowing high-velocity flow to cling to the upper
side of the foil, causing lower pressures and greater lift.
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PROBLEMS

484. A rectangular airfoil of 40-ft span and 6-ft chord has lift and drag coefficients

of 0.5 and 0.04, respectively, when at an angle of attack of 6. Calculate the drag
and horsepower necessary to drive this airfoil at 50, 100, and 150 mph through still

air (40 F and 13.5 lb/in.
2
abs). What lifts are obtained at these speeds?

485. A rectangular airfoil of 30-ft span and 6-ft chord moves at a certain angle
of attack through still air at 150 mph. Calculate the lift and drag, and the horse-

power necessary to drive the airfoil at this speed through air of (a) 14.7 lb/in.
2 and

60 F and (b) 11.5 lb/in.
2 and F. CD = 0.035, CL = 0.46.

486. Calculate the speed and horsepower required for condition (6) of the previous

problem to obtain the lift of condition (a).

487. The drag coefficient of a circular disk when placed normal to the flow is 1.12.

Calculate the force and horsepower necessary to drive a 12-in. disk through (a) air

(w = 0.0763 lb/ft
3
) and (b) water at 30 mph.

488. The drag coefficient of an airship is 0.04 when the area used in the drag for-

mula is the power of the volume. Calculate the drag of an airship of this type

having a volume of 500,000 ft
3 when moving at 60 mph through still air (w 0.0763

lb/ft
3
).

489. A wing model of 5-in. chord and 2.5-ft span is tested at a certain angle of

attack in a wind tunnel at 60 mph using air at 14.5 lb/in.
2 abs and 70 F. The lift

and drag are found to be 6.0 Ib and 0.4 Ib, respectively. Calculate the lift and

drag coefficient for the wing at this angle of attack.

490. An airplane and an artillery projectile move through still air (14.0 lb/in .

2
,

40 F), the former at 350 mph, the latter at 1500 ft/sec. Calculate their Mach
numbers.
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491. A cylindrical body of 6-in. diameter moves through still air (14.7 lb/in.
2 abs

and 60 F) at 500 mph. At what velocity must a geometrically similar body move

through still air (13.0 lb/in.
2 and F) if the two flows are to be completely similar

dynamically? What must be the diameter of this body?
492. A smooth plate 10 ft long and 3 ft wide moves through still air (60 F,

14.7 lb/in.
2
abs) at 5 ft/sec. Assuming the boundary layer to be laminar, calculate

(a) the thickness of the layer at 2, 4, 6, 8, and 10 ft from the leading edge of the plate;

(b) the constants a and /3; (c) the stress, T O at the above points; (d) the*coefficient

/ at the above points; (e) the total drag force on one side of the plate.

493. What is the drag on one side of the plate of the preceding problem if the

boundary layer is turbulent?

494. A flat-bottomed scow having a 150 ft by 20 ft bottom is towed through still

water (60 F) at 10 mph. What is the frictional drag force exerted by the water

on the bottom of the scow? How long is the laminar portion of the boundary layer,

using the critical NR of Fig. 194? What is the thickness of this layer at the point

at which it becomes turbulent? What is the thickness of the boundary layer at the

rear end of the bottom of the scow?

495. A streamlined train 400 ft long is to travel at 90 mph. Treating the sides

and top of the train as a smooth flat plate 30 ft wide, calculate the total drag on these

surfaces when the train moves through air at 60 F and 14.7 lb/in.
2

Calculate the

length of the laminar boundary layer and the thickness of this layer where it becomes

turbulent. What is the thickness of the boundary layer at the rear end of the train?

What horsepower must be expended to overcome this resistance?

496. Calculate the drag of a smooth sphere of 12-in. diameter in a stream of

standard air at Reynolds numbers of 1, 10, 100, and 1000.

497. Calculate the drag of a smooth sphere of 20-in. diameter when placed in an

airstream (60 F, 14.7 lb/in.
2
abs) if the velocity is (a) 20 ft/sec, (b) 28 ft/sec.

498. At what velocity will the sphere of the preceding problem attain the same

drag which it had at a velocity of 20 ft/sec?

499. Estimate the drag on a model of an N.P.L. airship hull of 6-in. diameter

which is to be tested in a wind tunnel (14.7 lb/in.
2

, 60 F) at 60 mph.
500. A sphere of 10-in. diameter is tested in a wind tunnel (14.7 lb/in.

2
, 60 F)

at 80 mph. At what speed must a 2-in. sphere be towed in water (68 F) for these

spheres to have the same drag coefficients? What are the drag forces on these two

spheres?

501. A sphere 1 ft in diameter is towed through water (68 F) at 5 mph. What
size sphere has the same drag coefficient in an airstream (60 F, 14.7 lb/in.

2
) having

a velocity of 60 mph? Calculate the drags of these spheres.

502. What is the stagnation (gage) pressure of an air stream (14.70 lb/in.
2
abs,

60 F) of velocity 200, 400, and 600 mph considering and neglecting compressibility?

503. At what velocity of air (14.7 lb/in.
2

,
60 F) will an error of 1 per cent be

caused in the dynamic pressure by neglecting compressibility?

504. If the pointed artillery projectile of Fig. 201 is 12 in. in diameter and is to

travel at 2000 ft/sec through air (60 F, 14.7 Ib/in.
2
), what force is necessary to

propel it?

505. What is the drag of the blunt-nosed projectile of Fig. 201 (if its diameter is

3 in.) when it travels at (a) 700 mph, (b) 800 mph through air at 60 F and 14.7

lb/in.
2
?
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506. Calculate the Mach angle for a bullet moving at 2000 ft/sec through air of

14.5 lb/in.
2 and 100 F.

507. If the Mach angle of the photograph of Fig. 203 is 30 and the bullet is mov-

ing through air at 14.0 lb/in.
2 and 50 F, calculate the speed of the bullet.

508. An airfoil of 5-ft chord and 30-ft span develops a lift of 3000 Ib when moving
through air of specific weight 0.0763 lb/ft

3 at a velocity of 100 mph. What is the

average circulation about the wing?
509. The circulation about a wing of 40-ft span and 6-ft chord when moving at

150 mph is 700 ft
2
/sec. Calculate the lift on the wing if it moves through still air

at 14.7 lb/in.
2 and 60 F.

510. Derive a general expression for lift coefficient in terms of circulation.

511. If F is the average circulation about a wing per foot of span, calculate the

circulation about the wing at midpoint and quarter-points of the span, assuming
a semi-elliptical lift distribution.

512. A model wing of 5-in. chord and 3-ft span is tested in a wind tunnel (60 F,

14.5 lb/in.
2
) at 60 mph, and the lift and drag are found to be 9.00 and 0.460 Ib,

respectively, at an angle of attack of 6.7. Assuming a semi-elliptical lift distribu-

tion, calculate: (a) the lift and drag coefficients ; (b) CD^ (c) CD^] (d) the corres-

ponding angle of attack for an airfoil of infinite span ; (e) the corresponding angle of

attack for a foil of this type with aspect ratio 5
; (/) the lift and drag coefficients at

this aspect ratio.

513. An airfoil of infinite span has lift and drag coefficients of 1.31 and 0.062,

respectively, at an angle of attack of 7.3. Assuming semi-elliptical lift distribution,

what will be the corresponding coefficients for a foil of the same cross section but

aspect ratio 6? What will be the corresponding angle of attack?

514. From Fig. 212, calculate the lift and drag coefficients for a Clark-Y airfoil

of aspect ratio 8, and plot the polar diagram for this airfoil. ,

515. The Clark-Y airfoil of Figs. 212 and 213 is to move at 180 mph through air

at 60 F and 14.7 lb/in.
2 Determine the minimum drag, drag at optimum L/D, and

drag at point of maximum lift. Calculate the lift at these points and the horsepower

that must be expended to obtain these lifts.





APPENDIX I

DESCRIPTION AND DIMENSIONS OF SYMBOLS

SYMBOL

A, a

a

b

C, Cc, CD, C/, C/, C

C
c

c

A DPt Df ,

d

dc

E
E
EH
e

F
f
G
g
H
H
h

I
I

K
KL
k

L
I

M
M

m
N

FT-LB-SEC
DESCRIPTION DIMENSIONS

Area ft
2

Linear acceleration ft/sec
2

Breadths; lengths normal to flow; span
of an airfoil; length of weir; width of

open channel, etc. ft

Various dimensionless coefficients

Chezy coefficient ftVsec
Acoustic velocity ft/sec

Chord of an airfoil ft

Drag forces lb

Diameter ; depth of flow in open channels ft

Critical depth ft

Modulus of elasticity lb/ft
2

Various unit energies ft Ib/lb

Unit heat energy Btu/lb

Height of roughness ft

Force lb

Darcy friction factor

Weight (rate of) flow Ib/sec

Acceleration due to gravity ft/sec
2

Enthalpy Btu/lb
Head on weirs ft

Vertical distance, head ft

Lost head ft

Moment of inertia ft
4

Unit internal energy ft Ib/lb

Various dimensional coefficients

Various dimensionless loss coefficients

Adiabatic constant

Lift force lb

Length; distance along flow; mixing

length ft

Mass lb sec2/ft

Expression for graphical solution of

hydraulic jump ft
2

Molecular weight

Revolutionary speed rps
335
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DESCRIPTION AND DIMENSIONS OF SYMBOLS Continued

SYMBOL DESCRIPTION

FT-LB-SEC

DIMENSIONS

NF> NM* Afjv*. NR> NW Various dimensionless numbers (force

ratios)

n Distance normal to direction of flow It

P Power ft Ib/sec

P Weir height ft

p Intensity of pressure lb/ft
2

Q Rate of flow ft
3
/sec

q Rate of flow per foot width (in rectangu-
lar channels) ft

2
/sec

R Engineering gas constant ft/ F. abs

R Pipe radius; hydraulic radius ft

r Radius ft

S Specific gravity

5 Slope

st Tension stress lb/ft
2

r Absolute temperature F. abs

r Surface tension lb/ft

T Torque ft Ib

/ Time sec

t Thickness ft

/ Temperature F.

u Velocity relative to a moving body ft/sec

V Volume ft
8

V Average velocity, Q/A ft/sec

v Specific volume ft
3
/lb

v Velocity ft/sec

W Weight Ib

w Specific weight; weight density lb/ft
3

Y Expansion factor

Z A gas constant (equation 24) (F. abs)Vsec
z Height above datum ft

a Angle of attack of an airfoil; various

other angles radians

r Circulation ft
2
/sec

6 Thickness of laminar film; thickness of

boundary layer ft

il Efficiency radians

H Coefficient of viscosity Ib sec/ft
2

v Kinematic viscosity ft
2
/sec

p Mass density Ib sec2/ft
4

r Shear stress lb/ft
2

w Angular velocity radians/sec
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SPECIFIC WEIGHT AND DENSITY OF WATER*

1 Handbook of Engineering Fundamentals.
* Taking acceleration due to gravity to be 32.174 ft/sec

2
.
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APPENDIX III

VELOCITY OF A PRESSURE WAVE
THROUGH A FLUID

Consider fluid at rest in a rigid pipe fitted with a piston at one end

(Fig. 214). This piston is suddenly advanced at a velocity v for a time

dt and sends a pressure disturbance along the pipe at a velocity c.

~fc~L-j !fe
FIG. 214.

While the piston moves a distance vdt the pressure wave will cover a

distance cdt. Through any time dt, since no mass has been destroyed,

the fluid displaced by the piston must be equal to the gain in the mass

of fluid between sections 1 and 2 due to increased density. Therefore

whence
Apvdt so cdtAdp

(i)

But, according to the law of impulse and momentum, the force

exerted on the mass multiplied by the time the force acts is equal to

the change of momentum accomplished :

thus

Force

Time

Mass

' Adp

dt

cdtAp

Velocity change = v

Adpdt as cdtApv
338
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or

c = (2)
PP

Multiplying equations 1 and 2,

<
a

-?dp
But

Therefore

^ = E
dp p

and substituting in equation 3 and solving for c,
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VISCOSITY OF LIQUIDS

(M X 105 Ib sec/ft
2
)

1 All physical data from Smithsonian Physical Tables, Eighth Edition, Smith-

sonian Insitution, 1933.

340
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VISCOSITY OF GASES2

(M X 105 in Ib sec/ft
2
)

2 Calculated from Sutherland's formula.

^273

in which \J.Q
= viscosity at C.

T = absolute temperature C.

C = a constant.
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CAVITATION

The phenomenon of cavitation has assumed increased importance
in the design and operation of high-speed hydraulic machinery such

as turbines, pumps, and ship propellers. Briefly, it is characterized

by local reduction of pressure to the vapor pressure, formation of a

cavity within the flowing fluid, rapid pitting, and destruction of the

Absolute zero,/'
of pressure

FIG. 215.

parts of the machine in contact with the flowing fluid, losses in the

efficiency of the machine, and serious vibration problems.
The fundamentals of cavitation may be easily observed by a study

of flow through a constriction in the pipe line of Fig. 215. With the
valve partially open, the variation of pressure head through pipe and

342
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constriction is given by curve A , the point of lowest pressure occurring

at the point of minimum area, where the velocity is highest. Increased

valve opening produces a condition B, at which the pressure at the

constriction has fallen to the vapor pressure of the liquid. Further

opening of the valve leads to a pressure-head variation C, lowering the

Pitting of surface

FIG. 216.

pressure downstream from the constriction but not changing the

pressure within the constriction. Thus the increased valve opening
cannot increase the velocity and rate of flow through the pipe since at

two points in the flow (in the reservoir and in the constriction) the

pressures are fixed. For pressure variation C a considerable region

downstream from the constriction possesses only the vapor pressure
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of the liquid. Here a cavity forms as shown, the live stream no longer

following the boundary walls of the passage. The cavity contains

a swirling mass of droplets and vapor and, although appearing steady
to the naked eye, actually forms and reforms many times a second.

The formation and disappearance of a single cavity are shown schemat-

ically in Fig. 216, and the disappearance of the cavity is the clue to

the destructive action caused by cavitation. The low-pressure* cavity
is swept swiftly downstream into a region of high pressure where it

collapses suddenly, the surrounding liquid rushing in to fill the void.

At the point of disappearance of the cavity the inrushing liquid comes

together, momentarily raising the pressure at a point within the liquid

M. I. T.

Before. After

FIG. 217. Pitting of Brass Plate after 5 Hours' Exposure to Cavitation

(Magnification 10 X).

to a very high value. If the point of collapse of the cavity is in contact
with the boundary wall, the wall receives a blow (Fig. 217) as from
a tiny hammer and its surface is stressed locally beyond its elastic

limit, resulting eventually in fatigue and destruction of the wall
material.

The guiding principles of cavitation prevention obviously are to
maintain pressures relatively high and to provide surfaces having
curvatures gentle enough to prevent separation of the live stream from
them. However, to apply such principles, particularly the latter one,
to problems of design inevitably involves uncertainties because of the

generally complex nature of the flows.
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INDEX

Absolute pressure, 25-26

Absolute temperature, 6

Acceleration, centrifugal, 44

convective, 57

horizontal linear, 42

local, 57

total, 57

vertical linear, 41

Acoustic velocity, 10, 73-74, 298, 312-

316, 338

Adiabatic constant, 9

for various gases, 9

Adiabatic process, 8

Alternate depths, 211

Anemometer, cup type, 247

hot-wire, 248

vane type, 247

Angle of attack, 296

effective, 324

Archimedes' principle, 38

Aspect ratio of a foil, 325

Atmospheric pressure, 24, 26

Barometer, 28

Bernoulli's equation, 60

for compressible fluids, 68

for incompressible fluids, 61

Best hydraulic cross section, 204

Borda orifice, 264

Boundaries, 111

flow over, 110-111

Boundary layer, 116, 300

kinetic energy of, 3 10

on flat plates

laminar, 301-304

turbulent, 305

Bourdon pressure gage, 25

Boyle's Law, 6, 8

Branching pipes, 185-188

Buoyancy, 38

Capillarity, 17, 30

Cauchy number, 127

Cavitation, 63, 184, 342

pitting due to, 63, 344

Center of buoyancy, 39

Center of pressure, 32-36

Charles' law, 6

Chezy coefficient, 200-203

Chezy equation, 199

Chord of a foil, 296

Circulation, 94

about a foil, 324

origin of, 320

theory of lift, 318

Coefficient of discharge, for nozzles, 258

for orifices under static head, 264

for pipe-line orifices, 260

Cole Pitometer, 243, 268

Compressibility, 8

Compressible fluid, flow about immersed

objects, 312-316

flow through a constriction in a stream-

tube, 70-75
'

flow through nozzles, 257-258

flow through orifices, 260-262

flow through Venturis, 253-254
flow with friction in pipes, 160163
stagnation pressure in, 313

Conjugate depths, 222

Continuity, equation of, 58

Contraction, coefficient of, 260, 264

Controls, 217

Critical depth, 211-213

occurrence of, 214-217

Critical pressure ratio, 72

Critical Reynolds number, 108

Current meter, 247

measurement of river flow with, 285

Curvilinear flow, 92

Cylinders, drag coefficients of, 311

D'Alembert paradox, 1, 121

Density, 4

measurement of, 229-231
of water, 337

347
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Dilution methods of flow measurement
270

Dimensional analysis, 131-137

of drag of floating objects, 136

of drag of immersed objects, 297

of pipe friction, 147

Dimensions of symbols, 133, 335-336

Discontinuity, surface of, 117, 122, 168,

307

Disks, drag coefficients of, 309

Drag, 116

at high velocities, 299, 312-317

fractional, 119, 295, 300

induced, 325

profile, 119, 295, 307

Dynamic similarity, see Similarity

Eddy formation, 117-118

Eddying turbulence, 118, 122, 168

Elasticity, 8

force, 127

modulus of, 8

Energy, heat, 66

internal, 66

kinetic, 66

loss, see Loss of head

mechanical, 66

potential, 66

pressure, 66

Energy equations, 65, 139

Energy line, 61, 141, 209, 218

Enthalpy, 67

Euler's equation, 59

Expansion factor, 254

Float gage, 239

Float measurements, 287

Floating objects, 38

dimensional analysis of drag of, 136

similarity applied to drag of, 130

Flow bends, 267

Fluid mechanics, development of, 1

Fluid properties, 4-19

measurement of, 229-236

Fluid state, characteristics of, 3

Foils, angle of attack of, 296, 324

aspect ratio of, 325

chord of, 296

circulation about, 318

Foils, drag on, 324-331

lift on, 317-331

span of, 296

Free overfall, 215

Free surface, measurement of, 238-240
Friction factor, 149

in laminar flow, 150

in turbulent flow, 151

plotted against Reynolds number,
150, 153.

Frictional drag, see Drag
Froude number, 127

relation to drag of floating objects, 130,

136

Gage pressure, 26

Gases, equation of state of, 6

gas constants for, 6-7

modulus of elasticity for, 9-10

Gasometer, 249

Gravity force, 127

Hagen-Poiseuille law, 146

Hazen-Williams formula, 166-167

Head loss, see Loss of head

Heat energy, 66

Hook gage, 239

Hooke's law, 8

Horsepower of fluid machines, 69

Hydraulic grade line, 141, 179-184

Hydraulic jump, 219-224

location of, 223

solution by M-curve, 222

Hydraulic radius, 164, 200

Hydraulics, 2

Hydrodynamics, 2

Hydrometer, 229, 231

Ideal fluid, 55

Immersed objects, flow about, 116-121,

128, 294-331

Impulse-momentum law, 77-80

Impulse turbine, 82

Induced drag, see Drag
[nertia force, 127

[nternal energy, 66

isothermal process, 8

Jet, 63
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Kinematic viscosity, 14

Kinetic energy, 66

Kutta-Joukowski theorem, 320

Laminar film, 111, 152, 158

Laminar flow, 106

about spheres, 308

between parallel plates, 115

in boundary layers, 116, 301-304

in pipes, 107, 143-146

similarity for, 129

Lift, 295, 317-331

by change of momentum, 317

by circulation theory, 318

coefficient of, 296

Loss of head, 139, 141

in circular pipes due to pipe friction,

for compressible fluids, 160-163

for incompressible fluids, 141-153,

166

in constrictions, 252

in hydraulic jump, 223

in non-circular pipes, 164-167

in nozzles, 259

in open channels, 199, 209, 218

in pipes, due to bends, 177

due to contractions, 174-175

due to enlargements, 170-173

due to entrances, 175-176

due to exits, 172

due to pipe fittings, 178

Mach angle, 317

Mach number, 298, 313-315

Manometers, 27-30

Mechanical energy, 66

Mild slope, 211

Minor losses in pipes, 167-178

See also Loss of head

Models, see Similarity

Modulus of elasticity, 8

Momentum, 77-80

lift by change of, 317

Nozzles, 255-259

Open-channel flow, 196-224

Chezy coefficient, 200-203

Chezy equation. 199

Open-channel flow, critical depth, 211,

213-217

hydraulic jump in, 219-224

rapid flow, 211, 212, 215,223

specific energy, 209-211

tranquil flow, 211, 212, 215

uniform flow, 199-208

varied flow, 197, 217-219

velocity distribution, 209, 285

Orifices, coefficients for, 264

in pipe lines, 259-262

loss of head at, 252

under falling head, 266

under static head, 63, 263-265

Perfect fluid, 55

Piezometer, 24

opening, 237

ring, 238

Pipe coefficient, 154

relation to friction factor, 156

Pipes, branching, 185-188

flow of compressible fluids in, 160-163

head losses in (see Loss of head)
laminar film in, 158-159

laminar flow in 106-108, 143-146

non-circular, 164-167

pressure grade line for, 179-188

Reynolds number for fluid flow in, 107

stress in walls, 40

turbulent flow in, 106-108, 150-154

Pitometer, 243, 268

Pitot (Pitot-static) tube, 241-245, 268

Pitot-Venturi, 246

Plates, drag of, 300-306, 311

flow between, 113-115

Point gage, 239

Polar diagram, 327

Potential energy, 66

Potential head, 61

Potential pressure, 62

Pressure, measurement of, by gage, 25-27

by manometer, 27-31

by piezometer column, 24

in a flowing fluid, 236

Pressure energy, 66

Pressure force, 127

on submerged curved areas, 35-38

on submerged plane areas, 31-35
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Pressure grade line, 141, 179-184

Pressure head, 24, 61

Pressure wave, velocity of propagation

of, 333-339

Profile drag, see Drag

Projectiles, drag coefficients of, 315

Propeller, 88

Pycnometer, 229

Rapid flow, 211

Reaction turbine, 90

Resistance of immersed objects, see Drag

Reynolds' experiment, 106

Reynolds number, 107, 127-129, 130,

136

Roughness, 112

in open channels, 200-204

in pipes, 150-153

relative, 149

Salt-velocity method, 272

Secondary flows, 121

Separation, 116-117, 122, 307

Sewer diagram, 208

Shearing stress, 11, 115

in kiminar flow, 108, 146

in pipe flow, 141

in turbulent flow, 109-110

on immersed objects, 119, 294

Short tube, 264

Similarity, applied to, drag of floating

objects, 130

drag of immersed objects, 128, 298

pipe flow, 129, 150

dynamic, 126

geometric, 125

kinematic, 126

Siphon, 184

Skin friction, see Drag
Sluice gate, 265

Span of a foil, 296

Specific energy, 209

Specific gravity, 4

of various liquids, 5

Specific voluhie, 4

Specific weight, 4

of water, 337

Spheres, drag of, 307-309

Spillway, 284

Stagnation point, 64, 307

Stagnation pressure, in compressible

fluids, 313

in incompressible fluids, 64, 240

Static tube, 237

Steady flow, 55

Steep slope, 211

Streamline, 56

absolute, 57

instantaneous, 56

picture, 56

Streamlined form, 120-121

Streamtube, 57

Struts, drag coefficients of, 311

Submerged areas, forces on, 31-38

Surface tension, 14

force, 127

Tanks, stress in walls, 40

Torricelli's theorem, 63

Total heat content, 67

Tranquil flow, 211

Transition from laminar to turbulent

flow, about spheres, 309

in boundary layers, 116, 300

in pipes, 106-108

Turbulence, eddying, 118

normal, 107, 118

Turbulent flow, 106-110

in boundary layers, 116, 305-306

in open channels, 197

in pipes, 107, 150-154

Uniform flow, 198-199

Unsteady flow, 55

orifice under falling head, 266

Vacuum, 26

Vapor flow, 67

through an orifice, 262

through constriction in a Streamtube,

76

Vapor pressure, 18

effect on cavitation, 342

effect on siphon, 184

in barometer tubes, 29

in various liquids, 19

of water, 19

Varied flow, 198, 217
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Velocity, coefficient of, 251-252

energy, 66

gradient, 108

head, 61

pressure, 62

Velocity distribution, effect on velocity

head, 157

in boundary layers, 116, 300-301

in open flow, 285

in pipes, 154

pipe coefficient, 154

Venturi meter, 249

Venturi tube, 245

double venturi, 246

Viscometers, Bingham, Ostwald, 234

Engler, Redwood, Saybolt, 234

Falling sphere, 234

MacMichael, Stormer, 232

Viscosity, absolute, 11

force, 127

Viscosity, kinematic, 14

measurement of, 231-236
of gases, 12, 341

of liquids, 13, 340

Vortex, compound, 98

forced, 94

free, 96

starting, 321

tip, 323

Wake, formation of, 116-117, 307
Weber number, 127

Weir, broad-crested, 216-283

sharp-crested, proportional, 282

rectangular contracted, 279

rectangular suppressed, 273-278

trapezoidal, 281

triangular, 280

spillway, 284

Westphal balance, 229-230


















