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INTRODUCTION

This 1s an attempt to give a convenient,
systematic, and natural treatment of some of the
fundamentals of topology--the fundamentals of a
topology which will be a tool of general applica-
tion to other branches of mathematics as well as
an interesting and satisfactory theory.

In this treatment we show that, theoreti-
cally and practically, convergence 1s a notion of
central importance in topology.

The results set forth here are not all
new; there are old results with old proofs, new
results with old proofs, o0ld results with new
proofs, and new results with new proofs.

In large part this material is drawn from
my doctor's thesis (Princeton University, 1939).
I take this oppostunity to thank the many friends
who have discussed various related questions with
me. In particular, A. H, Stone, B. McMillan and
B. Tuckerman have read the manuscript and made
many helpful suggestions.
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GENERAL USAGE OF THE ALPHABETS

Small Latin Letters: a, b, c, *++, are used
for individuals (indices, elements, points, etec.).

Latin capitals: A, B, C, -+, are used for
sets, collections, etc.

German capitals: 8, §, ¢, ®, %, 1, 8, B,
are used for collectlons of sets, in particular for
coverings.

Script capitals: G, B, C, -<-, are used
for ordered systems. Except in Chapter I, these
ordered systems are assumed to be directed.

Small Greek letters: «, B, y, &, €,
+++ v, are used for f}?i&f sets. 9 and y are
used for functions.

Greek capitals: I', A, ..., are used for
collections of finite sets, when these finite sets
are denoted by small Greek letters.

Dashed small Greek letters: %, B, Y, 8,
»++, are used for sets which are regarded as elements
and which need not be finite.

Dashed Greek capitals: T, 4, ***, are used
for collections of sets denoted by the corresponding
dashed small letter.

(An exception to the last four rules occurs
in Chapter VIII.)
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SPECIAL USAGE OF THE ALPHABETS

Corresponding letters in different alphabets
are used for related objects.

D 1is frequently used to denote 2X  consid-
ered as a set rather than as a set of sets,

The indices 1, J, k, 1, m, and n usually
run thru the positive integers.

N 1s used frequently in two distinct senses;
as the set of all positive integers, or as a nbd of
the point being considered.

U, V, and W are open sets.
1, 8, and 8 are open coverings,

These conventions are usually independent of
indices,

Examples.

a; 1is usually an element of A . Y' 1s usu-
ally a finite subset of C . & belongs to 4 (or
perhaps to 4, < 4),

viii



USAGE OF GENERAL SYMBOLS

e denotes class-membership,
c &and o denote set-theoretical inclusion.

n and v denote set-theoretical intersec-
tion and union.

<, >, a~ and v denote the corresponding
lattice operations.

i are used to form sets. Thus, {U} 1s
the family of all U's, é}gg {x't 1s often the
set made up of x' alone.

| 1s used to indicate domains, etc. It can
usually be read '"where" or "running thru". Thus
f(x]X) 1s a function defined for x in X , and
{f(x)|xeX} , often written {f(x)|X} 1s the set of
its functicnal values.

# denotes the empty set.

Propositions whose proof is left to the
reader are designated by "#***" pather than by the
words "Lemma" or "Theorem".
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Chapter |

ORDERING

l. Introduction

2. Set Theory

3. Orderings

4. Functions

5. Products

6. Zorn's Lemma

7. Cardinal Numbers

1. Introduction. In this chapter we concern ourselves chiefly
with definitions and notation for sets, functions, and ordered
systems. We assume familiarity only with the most elementary

facts about sets and functions.

Definitions and notation must represent a compromise be-
tween theory and practice. We tend to use weaker definitions
and more precise notation than some authors. In places we fol-
low the definitions and notation used by N. Bourbaki and his
collaborators.

Certain conventions of notation, which allow the nota-
tion to carry implicit information, and which are used consis-
tently thruout, are laid down in this chapter.

We begin with our definitions and notation for set
theory (§2), ordered systems (§3), and functions (§4). These
are applied to products of ordered systems (§5) and Zorn's Lemma
(§6). We conclude with a modicum of the theory of cardinal num-
bers (§7).

2. Set Theory. We assume that the reader is familiar with the
elements of set theory, and concern ourselves with notation.

The set of elements x which have property P 1is
x|P . This is often further abbreviated in obvious ways, as
UglA for UglasA .

This last abbreviation is an example of an important
convention. We use small letters, a, b, ¢, =+« for
points belonging to sets denoted by the corresponding capital
letters, A, B, C, <+« , For example, 1f B 1s a subset
of & set A of real numbers, then "For every a and some b ,
b Yya " means "For eﬁery element a of A and for some ele-
melt b of B (which may depend on a , otherwise we would
say "for some b and everya ") b >a ".
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We often use the letters 1, §, kx, 1, m, n,
for integers and N for the set of all positive integers.

We consider a set, its points, and its subsets, If the
point a belongs to the set A we write aeA or Asa . (We
have no hesitation in inverting any relation symbol.) If every
point of A Dbelongs to B we write AcB or BoA and say that
A is a subset of B . The empty set is g (pronounced as the
phonetic symbol and Scandinavian vowel). We make no formal dis-
tinction between the empty subsets of different sets. The
points belonging to elther A or B or both form the union
AvB of A and B . (We have adopted n , v , "intersection"
and "union" rather than the older +, +, £ , 0, "prod-
uct" , and "sum" to avold confusion when the sets belong to an
algebraic entity (group, linear space, etc.). The points common
to A and B form the intersection AnB of A and B .

The union of a collection of sets Ap|H 1s denoted
variously as UnAn , U{Anl|H} , and UnAnlH . The inter-
section of AplH 1s treated similarly. Two particular cases
are U{Anlg} =@ and N{Ap|f) = X, where X 1is the set,
with whose subsets we are operating.

The points in A but not in B form the set A-B
(This notation is not very satisfactory). The set of all sub-
sets of C 1s 2C,

If AnB# @ wve say that A meets B ; if AaB =@
we say that A and B are disjoint. A collection of sets is
disjoint 1f each pair of them 1s disjoint.

We will often use alternative terms for '"point" ,
"set" , and "subset" , 1in an effort to avoid confusion. Ele-
ments, indices, objects, etc., may belong to or be contained in
families, classes, systems, aggregates, or collections. The
prefix sub is used in the same sense when applied to all these
terms. A typlcal usage is, "The system of all families of sub-
sets of A ."

If, on the other hand, we apply the prefix sub to a
word meaning a set with an attached "structure" of some sort,
e.g., "space" , '"ordered system" , '"group" , we imply that
the set concerned is a subset with the "structure" induced by
the "structure" of the object of which it is a subset.

3. Orderings. We consider a set A and & binary relation >
defined on the set (more precisely, perhaps, defined on the
product of the set by itself). That i1s, for each ordered pair
a' , a" of elements of A, one of the incompatible formulas
at > a" or a' ¥ a" 1is accepted. (We denote negation by can-
cellation with / ). If the relation is transitive, that is,
if we have
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3.1 a' > a" and a" > a* imply a' > a* ,

then we say that @ = (A,>) is an ordered system. (We use
"element" and "system" when discussing sets with an ordering
relation.)

An ordered system may have several important properties.
It is linear if elther a' > a" or a' < a" or both, for every
n

pair of distinct elements a' , a” . It is properly ordered
if a' >a" and a' < a" imply a' =a" (that is, a' and a"

are the same). It is reflexive 1f a > a tfor all a . It is
irreflexive if a Y a for all a . It is symmetric if a' > a"
implies a" > a' . It is trivially ordered if a' > a" for all
a' and a" . It is vacuously ordered if a' ¥ a" for all

a' and a" .

If B 1s a subset of A, and > 1s defined on A ,
then it is defined on B ; 1f > 1s transitive on A , then 1t
is transitive on B . Hence, if G = (A,>) 1s an ordered sys-
tem, then B = (B,>) 1s an ordered system. We call B a sub-
system of G , implying thereby that the ordering relation of
B can be obtained from that of G in this way.

Two ordered systems are isomorphic if there is a one-to-
one correspondance between them which carries their order rela-
tions into each other. We write (G = B for this relation. It
1s clear that all the notions discussed in this § are invari-
ant under passage to an isomorphic system.

Associated with each set there are two ordered systems:
the vacuously ordered system made up of the points of the set,
and the system of all subsets of the set ordered by o .

There 1s a logical distinction between a set and a vacuously
ordered system, but we shall have no occasion to 1nsist upon it.

The second ordered system and its subsystems are of ex-
treme importance. If we speak of a gystem of subsets of some
set, we will assume, unless we specifically indicate the con-
trary, that the system 1s ordered by o> .

We denote a subset of € by Y and a collection of
Y's by I' . (T is usually not the collection of all subsets
of C, for which we have already introduced the notation 2C ).
A set containing a finite (or zero) number of points 1s a finite
set. (@ 1s a finite set.) A finite subset of C will be
denoted by Yy , and the collection of all finite subsets of C
will be denoted by I' . We apply this correspondance between
the different alphabets to other letters.

We note that every system of subsets is reflexive and
properly ordered.

3.2 Lemma. Every reflexive and properly ordered system Is Iso-
morphic to a system of subsets of some set.
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Proof. Let C = (c,>) be a reflexive and properly ordered sys-
tem. To c' we let correspond 7 (c¢') = fcle < e¢'} . The
reader may easily show that this 1s a one-to-one correspondance
between C and a collection I of subsets of C (here T
will never consist of all the subsets of C ), and that this
correspondance takes > into > and > into > .

It is well known that an equivalence relation (that is,
one which generates a reflexive, transitive and symmetric
ordered system) divide the set on which it 1s defined into
mutually exclusive equivalence classes. If we denote the
equivalence relation by ~ and the equivalence class containing
a by [a], then b € [a] if and only if b ~a&a . We remark
that every ordered system has a natural equivalence relation de-
fined by

3:3 a' ~ a" |f elther a' = a" or both a' > a" and a" ¢ a'.

We may define an ordering relation on the system of
equivalence classes by letting [a] > [b] if a > b . The
reader can easily show that this definition is independent of
the particular representatives a and b of the classes [a]
and [b] .

3.4 ****, Such an ordered system of equivalence classes Is
properly ordered.

We use [G] for the properly ordered system derived
from G in this way.

3.5 ****, If G 1is reflexive, then so Is [G] , and conversely.

So far, except far systems of subsets and equivalence
relations, we have used > as the symbol of the ordering rela-
tion in which we were interested. There is, of course, no
necessity for this, and we will use several other symbols for
particular relations. However, the usage of terms we are about
to discuss 1is usually restricted to ordered systems whose order-
ing relation 1s written > or > .

If a>b forall be B, then a 1s an upper bound
of B . We define lower bound similarly. Any of the upper
bounds of B which 1s a lower bound of the class of all upper
bounds of B 1s a supremum (sometimes called "least upper
bound" or "join" ) of B . A given B may have no supremum,
one supremum, or several suprema. When we say " a 1is a
supremum of B " , we should, to be precise, say " a is a
supremum in @ of B " , but it will usually be clear what or-
dered system 1s meant. If G 4is properly ordered, then:  Bc @
has at most one supremum. An infimum ( "greatest lower bound" °
or "meet" ) is defined similarly and is subject to simular re-
marks. We use the symbols v and a for suprema and infima.
Thus, a'va" 1s a supremum of a' and a" ). In particular
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cases (for an example see V-2), where the system is not proper-
1y ordered, we may use some definite way to define a'va" as a
particular supremum of a' and a" . We denote the supremum
of {btIT} variously as: Vibt ,  V{btIT} , Ve {b¢|T} . We
use A for the infimum in a simlilar way. We depart from these
notations if the elements are real numbers and the relation is
"greater than or equal to" in 1its elementary sense, when we

use "Sup" and "Inf" instead of V and A .

If each pair of elements (not necessarily distinet) has
at least one supremum and at least one infimum (the pair a ,
2 need have a neither as a supremum nor as an infimum), the
ordered system is a trellis. If every subsystem has at least
one supremum and one infimum, then the trellils 1s a complete
trellis. The reader famillar with the definition of a lattice
will see that a lattice 1s a reflexive and properly ordered
trellis. Hence (3.5) the ordered system of the equivalence
classes of a reflexive trellis 1s a lattice.

We suggest the consideration of the following ordered
systems (and, possibly, some of their naturally arising sub-
systems); they should serve to make the meaning of these defini-
tions clear.

1) The elements are the positive integers, or the posi-
tive and negative integers, with one of the relations: >
(definitely greater than), > (greater than or equal to), \
(divides), = (mod p) (congruent modulo p).

2) The elements are all finite sets of real numbers
with one of the following relations: >' meaning "contains
more points than" , >" meaning "contains at least as many
points as" , >'" meaning "contalns exactly as many points
as" .

3) The elements are all measurable subsets of the
closed interval [0,1] , or of the line (-w=,4=) , with
A > B meaning meas(B-A) = O .

4) The elements are a , b, and c¢c , and the rela-
tion holds in the following cases only: a >a , b > a,
c>a, ¢>b, ¢c>c.

5) Query: Is any trivially ordered system a trellis?

4, Functions. We have no occasion to deal with functions which
are not single-valued. Hence "function" will be understood

to mean "single-valued function" . We shall indicate the
domain of definition of a function in the notation for the
function. A function defined on the points of X 1s, for exam-
ple, . f(xIX) . f(x) 1s the value of f at X ; we never use
f(x) to refer to a function. With certain exceptions, such as
f as a function defined on X and having values in Y , the
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letter denoting the function is often associated with the set
in which its values lie. Thus a(b|B) 1s a function defined
for b 1n B, and 1s likely to have i1ts values in A , or
perhaps in A" or Ag .

We remind the reader of a few simple facts about such
functions. If f 1s defined for x 1in X and has values in
Y , then there 1s a function defined for H in 2X and having
its values in 27Y , which 1s also denoted by f and i1s defined
by

£(H) = {yly = £(x), xeH} .

This process can be, and is, continued to define a function
from 22% to 22Y , and so on. The function £-1 from 2Y to
2% 15 defined by

£-YK) = {xlf'(x)el{] .

Again, we ma.xy repeat this process to define a function from
22% to 22%, and so on. We make this transfer from point-
function to set-function or collection-function freely at all
times. We have f(f-1(H)) = H, but only f-1(f(H))>H .

f(ala) 1s an extension of g(bl|B) :{g BcA and
f(b) = g(b) for each beB .

The notation distinguishes between f(g(x|X)) and
f(g(x)|X) . When we write f(g(x|X)) we imply that g 1is a
function defined on X , and that, as a point, g(xIX) belongs
to the domain of definition of f , whose value at g(xI|X) 1s
f(g(x|X)) . When we write f£(g(X)|X) we imply that g is a
function defined (at least) on X , and that g(X) 1is a part
of the domain of definition of f ; in these circumstances,
f(g(X)IX) 1is a function defined on X , whose value at x 1s
r(g(x)) .

5. Products. The formulation of the product of ordered sets
that we now give may seem strange at first, but I feel that it
is the natural and convenient one. The product of two simple
sequences is usually described as the set of pairs (m',m")
where m' and m" are positive integers and (m',m") > (n',n")
if both m' > n' and m" > n" . We prefer to regard the ele-
ments 'of the product as functions defined for the points 1 and
2 with functional values in a simple sequence. This is the
notion that we are going to generalize.

If, for each ceC , G° = (A°,>°) is an ordered sys-
tem, and 1f I 1is a system of subsets of C , then we consider
all the functions a(cly) , where Ye¢I and a(c)tA® for all
cey . We define > by: a'(cly') > a"(cly") 4if for each cey"
we have ceY' (hence y' o y" ) and a'(c) >¢ a"(¢) . The re-
sulting ordered system of functions 1is called the Broduct_: of the
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ac vy , and 1s written (F@°IC). The systems GF are factors of
(F,a¢]Cc). 1If there is no§eflsuch that ce¥ then G 1is an inessen-
tlal factor.

In the example above, C = {1,2}, I consists of a single
subset of C , namely C 1itself, and G' and G* are each the
sequence of positive integers in their natural order. If [
consists of C alone, then we write P.G¢ P{C°|C} , or P_I{°|G}
for (F,&°|C). We call such a product the product of the G .
This is, of course, the classical case. Thus the example above
is the product of two simple sequences.

A product of ordered systems is ordered. A product is
properly ordered, vacuously ordered, reflexive, or irreflexive,
if all its essential factors have the corresponding property.

If [A°|C} 1is a collection of sets, then we may regard
the sets as vacuously ordered systems and form P{&°|C} . This
product is a vacuously ordered system and may be considered a
set. This set is called the product of the sets A .

There is a slight further generalization of this notion
of product, which we shall not need, and which we shall omit.

6. Zorn's Lemma. We take an important and convenient lemma due
to Max Zorn as an axiom. It is equivalent to the axiom of
choice, and is a more convenient and powerful tool than trans-
finite induction. It also has the advantage that it can be
easily stated in elementary terms.

An element a' of the ordered system (A,>) 1s meximal
if ada' implies a'>a . (This coincides with the usual defini-
tion for a properly and linearly ordered system.)

6.1 Zorn's Lemma (First Form). An ordered system, each of
whose linear subsystems has an upper bound, contains a maximal
element.

6.2 Zorn's Lemma (Second Form). Every ordered system contains
a linear subsystem B, such that every upper bound of B (if any
exist) belongs to B.

A property of sets 1is of finite character, if a set has
the property when and only when all its finite subsets have the
property.

6.3 Zorn's Lemma (Third Form). Given a set and a property of
finite character, there exists a maximal subset having the
property.

A condition on a function is a finite restriction, if,
as a property of the graph of the function, it i1s of finite char-
acter. This means that 1t 1s the logical sum of conditions each
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of which depends on the functional values at a finite number of
points. Some examples of finite restrictions are: that the
function--
1) be a constant.
2) vanish on a certain set.
3) be additive (if defined on a group, linear space,
ete.)
4) be bounded in absolute value by a particular func-
tion.

6.4 Zorn's Lemma (Fourth Form). The class of those functions
defined on subsets of a given set and satisfying a given family
of finite restrictions, contains a function no one of whose
extentions belongs to the class.

We suggest some results and methods of proof; the reader
is advised to complete the proofs.

1) 6.1 implies that, if A and B are sets, there is
elther a one-to-one mapping of A onto & subset of B or a
one-to-one mapping of B onto a subset of A . (That is, the
cardinal numbers of A and B are comparable.) For the rela-
tion of extension orders the system of all one-to-one mappings
of a subset of A onto a subset of B .

2) 6.3 implies that any set of numbers contains a maxi-
mal set algebraically independent over a given field. For the
property of being algebraically independent over a given field
is of finite character.

3) 6.4 implies the Hahn-Banach theorem (Banach 1932,
pp. 28-29). For the properties of being additive, homogeneous,
and bounded by p , are finite restrictions.

4) 6.1 implies 6.2. For the system of all linear sub-
systems of a given system, when ordered by inclusion, satisfies
the hypothesis of 6.1.

5) 6.1 implies 6.3. For the system of subsets of the
given set having the given property of finite character, when
ordered by inclusion, satisfies the hypothesis of 6.1.

6) 6.2 implies 6.1. For an upper bound for the linear:
subsystem of 6.2 1s clearly maximal.

7) 6.3 implies 6.2. For the property of being a linear
subsystem is a property of finite character.

8) 6.3 implies 6.4, For consider the graphs of the
functions.

9) 6.4 implies 6.3. For the property of being a char-
acteristic function is a finite restriction, and a property of
finite character for subsets is a finite restriction for the
corresponding characteristic functions.
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7. Cardinal Numbers. We need a very little of the theory of
cardinal numbers, which we now recall. Two sets have the same
cardinal number (or potency), if there exists a one-to-one cor-
respondence between them. (Compare 1) above.) The cardinal
number of A 1s denoted by Al . We write IA) < IBl if there
1s a one-to-one mapping of A on a subset of B .

A set 1s countably infinite i1f i1t has the same cardinal
number (¥, ) as the set of positive integers. A set 1s count-
able 1f it 1s finite or countably infinite. The union of a
countable family of countable sets 1s countable. The product of
a finite collection of countable sets 1s countable. Any subset
of a countable set 1is countable.




Chapter 11
DIRECTION

i.‘lntroductlon.

2. Directed Systems.
3. An Ordering.

4, Systems of Subsets.
5. Stacks.

6. The Countable Case.
7. The General Case.

1. Introduction. In this chapter we are concerned with the
theory of directed systems for its topological applications. We
discuss, therefore, only a part of the theory; a fuller account
will appear soon in another place.

2. Directed Systems. A directed system is a non-empty ordered
system, @ = (A.>) , in which we have

2.1 For every a' and a", and some a*, a®>a', a*>a".

‘This property was originally called "the composition property"
(Moore and Smith 1922). We note that 2.1 may hold for (A,>)
and not for (A,<). In this and the following chapters, when we
write (. we assume, unless the contrary is specified, that

G = (A,>) and that G 1s directed. The same convention ap-
plies to @ = (A',>) , B = (B,>) , etc. We often use @
where A should strictly be used. as ae @ for aecA.

Three characteristic examples of directed systems are:
1° Any linearly ordered set.
2% A system of subsets of some set, directed by >; for example,
the system of all finite subsets of a set.
3° The neighborhoods of a given point in a space, which are
directed bycC.

There are two important classes of subsystems of a di-
rected system; the cofinal subsystems and the residual subsys-
tems. A subsystem B of a directed system G 1is cofinal in
a 1if

2.2 For each a, and some b, b>a.

B 1s residusl in G 1if
10
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2.3 For some a', and all a>a', aesB.
These concepts are related by

2.4 ****. D jis cofinal inG if and only ifG-B is not residual
-inG. Hence ® and G-T cannot both fail to be cofinal in G.

2.5 ****, Every residual subsystem of G is cofinal inG.

It i1s important that we have

2.6 ****_ 1f G is a directed system and ® is cofinal inG, then
Bis a directed systenm.

We observe that a subsystem of a directed system, which
surely 1s ordered, need not be directed. Clearly,

2.7 ****, 1fC is cofinal inm and B is cofinal inG, then C is
cofinal inG.

2.8 ****, |f B'>B", andB" is cofinal inG, then B' is cofinal
inG.

A most important notion is that of cofinal similarity.
G and B are cofinally similar if there exist @', n',
C' so that

2.9 G2@', Q' and B' are both cof 'nal in C', B'™W,

If this 1is so, we write GQ~B

2.10 Lemma. If C is cofinal in both @ and B, and anlssc..then we
may define > on D=AuB so that both G and ® are cofinal in®.

Proof. 1Initially, d4' > d" 1is defined (to hold or not
to hold) if d' and 4" either both belong to G or both be-
long to B . We extend the definition of > by defining

a>b, if, for some ¢, a >c > b ;
b >a, 1f, for some ¢, b >c >a.

We leave to the reader the verification that > now
orders and directs B and that @ and ® are cofinal in 0

2.11 Theorem.~ is an equivalence relation.

Proof. It 1s clear that ~ 1s reflexive and symmetric;

we need only show that it is transitive. Let G~ B~ C
then there exist &', w' , 8' , B", 8", " so that

G =2 G', @ and W' are both cofinal infH' , BB = B",

B" and C° are both cofinal in »H°, "« ¢ . Clearly,
by changing some of the primed directed systems to isomorphic
systems, we may, without disturbing these relations, obtain

B =n" and D'nD" = B' = B" . We may then (2.10) direct

E = D'wD" so that O and H" are cofinal in & ; hence
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(2.7) G and C" are both cofinal in & . Since GG’
and C"=(C , we have G~ C and the transitivity is proved.

As an equivalence relation, ~ divides the family of
directed systems into classes called cbfinal types.

3. An ordering. We say that G > B 1if there exist functions
a(b|B) and b(alA) such that

3.1 a»a(b) implies b(a)>b.
We have

3.2 ****, G>B and B>C impliesG>C; hence > orders any family of
directed systems.

3.3 **** G>B and B>Q& if and only if there exist functions
a(blB) and b(alA) such that, a>a(b) implies b(a)>b, and b>b{a)
implies a(b)>b.

The reader interested in the meaning of 3.1 1is advised
to consider the following examples of directed systems and de-
cide which ordered pairs satisfy 3.1.

1° The integers in their natural order.

2° The system of all finite sets of integers.

3° The system of all finite sets of real numbers.
4% The system of all countable sets of integers.

5° The system of all countable sets of real numbers.

3.4 Theorem.G>MB and B>G if and only if G0,

Proof. Suppose G~M , then, for some G' , B’ and
C' , we have G=Q@' , both G and B are cofinal in C',
B'em" . It 1s clear that G>Q' , ase , nH>n
B>B . If a'eQl' , then, since ®' 1s cofinal in C' ,
we may choose b'e B' so that b' > a' . Hence we may choose
b'(a'|A’') so that b'(a') > a' for each a' ; similarly we
may choose a'(b'|B') so that a'(b') > b' for each b' ,
Hence (3.3) G nw and n>a , so that (3.2) G >®B
and B>aG .

Suppose G >B and B>G . We assume that AnB =@ ,
which can be obtained by considering a system isomorphic to M .
There exist (3.3) a(blB) and b(alA) such that, a > a(b)
implies b(a) > b, and b > b(a) implies a(b) >a . We now
extend the definition of > to D = AuB Dby setting

a>b, if a > a(b) ;
b>a, if b > b(a) .

It 1s clear that £ 1s directed by > and that G and B
are cofinel in & . Hence G~M.

3.5 ****_ G~B if and only if there exist functions a(b|B) and
b&alk) such that, a>a(b) implies b(a)>b, and b>b(a) implies

a(b)>a.
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The interested reader might prove

3.6 ****. If C is finite, then P{A°|C} is a supremum of {A*|C}.

While we shall not need this result, 1t has consideraole intrin-
sic interest, since it shows that > directs the class of "all"
directed systems.

4, Systems of Subsets. We shall see that each cofinal type con-
tains at least one system of subsets. We use the methods of
I-3.

4.1 Lemma. If G is directed, then so is [&] , and these two
systems are cofinally similar.

Proof. We apply 3.5, where (setting B = [G&]) a(b)
is some representative of b = [a] , and b(a) = [a] . We
leave the detalls to the reader.

4.2 Lemma. IfG=(A,>) is directed and if G'=(A,2), where a'*a"
if either a'>a" or a'sa"; then G' is directed, and G and G' are
cofinally similar

a , let

Proof. Let a'(a]A) be such that a'(a) >
= a'(a) , where

B =@ , and let b(a) = a'(a) and a(b)
a =b ; then the lemma follows from 3.5.

4.3 ****, Two isomorphic directed systems are cofinally similar.
From 4.1, 4.2, 4.3, I-3.2 and I-3.5 we see immediately that

4.4 ****, Each cofinal type contains at least one system of
subsets.

For many interesting problems, which lie outside the
scope of the present discussion, we could restrict ourselves to
those systems of subsets which are ideals in the ring of all
subsets of a set.

5. Stacks. A stack (this term is due to M. M. Day) 1s the sys-
tem of all finite subsets of some set, called the base of the.
stack. We recall that I denotes the stack with base C , ete.

The topological importance of stacks is related to
5.1 Theorem. For any directed systemd, we havea>s.

Proof. Let 8<A , then since 8 1s finite, there exists a.
d(8)e O, such that d(8) > d for all deb. If we let

§(d) = a4 (the set made up of d alone), then &58(d) means
de § which implies d(8) > d . Hence 3.1 holds, and A>D.

6. The Countable Case. Those directed systems which have at
most a countable number of elements are of interest. Clearly,
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every directed system containing & maximal element 1s cofinally
similar to every other such system. If Q@ 1s a directed system
without maximal element containing at most a countable number of
elements, then we may suppose that {a,INl 1s an enumeration of
the system. Set b, = a,, and choose b so that by > ap
and by > by, . The subsystem B 1is obviously cofinal in QG .
If, for some n' , we had by < by for all n > n' , then
b,r would be & maximal element of W and hence of @ , con-
trary to hypothesis. 8ince this cannot happen, we can choose a
subsystem C ={cy = by |K} of ® , such that cx > ck.

and ckx £ ck-2 for all k . It is clear that C 1is cofinal
in B and hence in @ and it is also clear that C 18 iso-
morphic to the system of positive integers in their natural
order, that C 1s, in fact, a simple sequence. Hence we have
proved

6.1 Theorem. A directed system with a countable number of
elements contains either a maximal (that is, cofinal) element
or a cofinal simple sequence. 1In particular, every such system
belongs to one of two cofinal types, the one containing the
finite directed system or the one containing the simple
sequence.

7. The General Case. The simplicity of the countable case 1is
absent in the general case. Tho there remain many unsolved prob-
lems, we can give some idea of the situation. We shall omit all
semblance of proof.

There 1s a family of easily accesible cofinal types. The
structure of the lower part of this family with regard to > 1is

>3
L Ok
Lty 2
"02\\ “13
L.Ol;\ l‘124; L
00 11 22

Here the indicated relations generate all those which exist by
transitivity (thus 02 > 12 > 11 implies that 02 > 11 ; and
it is not true that 01 > 22). All these cofinal types are >
the type containing all finite directed systems.

The types 00, 01, 02, etc. contain stacks. The
types 11, 22, 33, etc. contain transfinite sequences. We
see that "transfinite sequence > stack" never occurs. The co-
final similarity between simple sequence and stack on a count-
able base is purely the result of countability and does not
generalize.
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From this family we can generate a complete lattice of
cofinal types. However it 1s not known whether the system of
all cofinal types (suitably restricted to avoild paradoxes) 1s a
complete lattice or not. Neither 1s it known whether each pair
of cofinal types has an infimum or not.



Chapter 111
CONVERGENCE

I. Introduction.

2. Convergence and Phalanxes,
3. The Bill of Rights.

4., Effectiveness.

S. Relativization.

6. Open Sets and T-spaces.

7. Continuity,

8. Separation Axioms.

9. Historical Remarks.

1. Introduction. The aim of this chapter is twofold: to estab-
1lish convergence as & basic concept equivalent, in a very wide
class of spaces, to closure and neighborhoods; and to make con-
vergence available as a tool in spaces where the basic concept
13 closure or neighborhoods. We have also collected here some
other topological results of an elementary nature which we will
need later,

In §2 we discuss the applicability of the term "conver-
gence" and point out the phalanx as particularly useful. In§3
we establish the equivalence of closure, convergence and neigh-
borhoods under very general conditions. In &4 we discuss the
effectiveness of the various directed systems as carriers of
convergence. In §85 and 6 we discuss relativization and open
sets. In §§7 and 8 we deal briefly with continuity and the
separation axioms. In §9 we make some historical remarks.

The results of this chapter may be summarized as follows:
The term "convergent" concerns functions defined on directed
systems. Convergence is equivalent to closure and neighborhoods
in all reasonable spaces. When we use convergence in a general
problem we need consider only phalanxes.

2. Convergence and Phalanxes. While the notion of convergence
can be further generalized (cp. Garrett Birkhoff 1939), I feel
that, for the main purposes of topology, the convenient class of
objects, whose "convergence" is to be considered, is the class
of functions defined on a directed system and taking values in

a space. All the further generalizations that I know which

16
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preserve uniqueness of limit in the classical spaces can be re-

duced to this notion. This was the attitude taken by Moore and

Smith in 1922 when they discussed the convergence of real-valued
objects.

Classically, one consldered sequences; a sequence 1s pre-
cisely a function on the directed system of the integers.

Stacks (I1I-5) play a special role in the theory of di-
rected systems; functions defined on stacks play a speclal role
in problems of convergence. We call such a function a phalanx.
The base of the stack 1s the base of the phalanx. A phalanx
with base A 1is an A-phalanx.

We shall modify our functional notation when it 1is con-
venient. A function on the directed system G will be denoted
by x(a]|G) as well as x(a|A) 1in order to refer to the order-
ing relation of G . If G 1is the stack I , we write x(y|C)
rather than x(y|r).

One reason for the importance of the phalanx is 1its ease
of manipulation. A phalanx x(alA) is inflated to a phalanx
X, (@up |AuB) by defining x,(auf) = x(a). (Here A and B are
disjoint.) This essentially introduces dummy elements and 1is
important for results about the selection of suitable subphalanx-
es. Two phalanxes x(«|A) and y(P|B) are meshed to a phalanx
z(¥|C) , where C = AuB, when

x(a]A), 1f |y| 1s odd,
z(y) =
y(BIB), if |p| is even.
3. The Bill of Rights. We now set forth the relations between
closure, convergence and neighborhoods in very general spaces.
We are dealing with a certain set X , 1ts subsets and points.

ﬁ closure operator assigns to each subset H of X a closure
H . We shall usually assume

3.1 §-9, Hok=Huk,

of which an easy consequence 1is

3.1a HcK implies HcK

(but we shall not assume, for the present, more special rela-
tions, such as H =H, H = H). A notion of convergence deter-
termines, for each function x(a]@) from a directed system to
X , whether x(a|G) converges to x or not. The statement

" x(al@) converges to x " 1s also written x(a)—g*x, or
merely x(a) —+x ; another expression of this statement is
" x 13 a 1imit of x(al@) ". Similarly, " x(y]C) converges to
x " 1s also written x(y)-7;>x , or merely x(y)—sx . We usu-

ally assume
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3.2 If x(a]@) converges to x, and B is cofinal inQ&, then x(biB)
also converges to x.

A neighborhood system (usually abbreviated nbd system) assigns
to each point x of X a non-empty family of subsets of X
called the neighborhoods (nbds) of x . We usually assume

3.3 If N, and N, are nbds of x, then some N,culnl, is a nbd
of x. (Tﬁe nbds of x are directed by =)

These notions are often connected by
3.4 x(al@) converges to x <> whenever @' is cofinal ind
__Xexia's.
3.5 N is a nbd of xe=>x X-N.

8.6 N is a nbd of xe=whenever x(a|@) converges to x,
"Ox(a)f¢o

3.7 xeHe==for some & and x(ald), x(alC) converges to x and
x(R)=H.,

3.8 xe=lie—=for each nbd N of x. NnHf 4.
3.9 x(a|G) converges to xe=—=for each nbd N of x, and some
a'e=Q, a>a' implies x(a)eN.
These may be modified to
3.6p N is a nbd of x &> whenever (for any C) x(ylC) converges
to x, Nnx(I)#p.

3.7p xe=Héammd for some C and some x(ylC) converging to x,
x(M)e=H.
Further modification yields, where D = 2X ,

3.6pp N is a nbd of xe>whenever x(8]|D) converges to x,
“n‘(A)#‘l

3.7pp xe=Hée&=>some x(8{D) converges to x, with x(a)=H.

3.10 i'ﬂ. “—Ui-ﬁui.

3.11 x(al@) converges to xe==>for each Q' cofinal in @ and
some x'(810) converging to x,
x'(a)e=x(a').

3.12 If M=N, and N is a nbd of x, then M is a nbd of x. If N,

N, are nbds of x, then N nl  is & nbd of x.

We have,

3.18 ****, 8.10 implies 3.1; 8.11 implies 3.2; 8.12 implies 3.3,

In view of this result, we call 3.1, 3.2 and 3.3 the
weak conditions and 3.10, 3.11, and 3.12 the strong conditions.
One notion is derivable from another if the proper one of 3.4
thru 3.9 holds. Thus, 1f 3.7 holds, the closure 1is derivable
from the convergence. Several notions are mutually derivable 1if
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each 1s derivable from each other. We have,

3.1% Theorem. The notions of closure, convergence and nbds are
equal in that

1) If a notion satisfies a weak condition, then the two
notions derivable from it satisfy the strong conditions and are
mutually derivable.

2) If a notion satisfies the strong condition, then the
two notions derivable from it satisfy the strong conditions,
and all three notions are mutually derivable.

Furthermore, if the convergence satisfies the strong
condition, then we may replace 3.6 by 3.6p or 3.6pp and 3.7 by
3.7p or 3.7pp in the definition of derivability.

Proof. The proof of this theorem naturally falls into several
parts.

t°, 3.1, 3.4 and 3.5 imply 3.12, 3.1, 3.6, 3.6p, 3.6pp, and 3.9,

We start with a closure satisfying 3.1. If MoN and N is a

nbd of x , then (3.5) x¢X-N.. Since X-McX-N , we have (3.1a)

X-McX-N ; hence x¢X-M , and (3.5) M is a nbd of x . If N,

and N, are nbds of x , then (3.5) x¢X-N, , x¢X-N, . Since

- (NynN5) = (X-N,)u(X-Nz) , we have (3.1) X-(N;nNy)

X-N,uX-N, ; hence x€X-(N;nN,) , and (3.5) N,nN, 1is & nbd of
Hence 3.12 holds.

Now if x(a|G) converges to x , then (3.4) , if @'
is cofinal in QG we have xex(@') . Let H = X-x(a@') ; then
(3.5) H is not a nbd of x , and, in fact, (3.12) H contains
no nbd of x . Let deA, then 8 1s a finite collection of
subsets of X . Some of these sets may be nbds of x ; 1let
these be [} . Now (3.12) NiK} 1s a nbd of x , hence is
not contained in H . Hence we may choose x,(8§)en{K} , so
that x,(6)¢H . (If K} is empty, as surely will happen when
=g, then (I-2) NK} 1s X , and no difficulty arises.)
Now x ,(8)¢H means x,(8)ex(&'). If x,(8) 1s chosen in this
way for all deeA , and 4A' 1s cofinal in A, then I say that
x,(a)AN#Z @ . For N is an element of D, and if SeA' 1s such
that Ned, then x,(8)e=N. Now xex,(4) ; for if xex,(A')
= X (X-x,( &' , then (3.5) X-x,(A') would be & nbd of x ,
whence x;( 4 )n(X-x,(a')) # # which is a contradiction. Hence
(3.4) =xi(8ID) converges to x , and since each x,(8)ex(@')
we have xl(A):marn , and the first part of 3.11 is proved.

4

o

Now suppose that x(al@) and x are given, and that,
for each @' cofinal in G there is an x'(6|D) converging
to x with x'(A)ex(G'). Now A 1is cofinal in A , hence

(3.4) =xex(a) , end, since (3.la) x'(&)ex(&') , we have



20 CONVERGENCE

xex(G')., Hence (3.4) x(a]@) converges to x , and the re-
mainder of 3.11 is proved.

If N is a nbd of x , and x(a|@) converges to x ,
then (3.4) =xex(G) ; hence (as above) X-x(G) contains no nbd
of x . Therefore X-x(G)sN , that is, Nnx(Q) # @ . Thus one
half of 3.6, 3.6p and 3.6pp is proved. The remainder of 3.6,
3.6p and 3.6pp follows from the argument used in proving the
first half of 3.11.

Let x(a]|G) converge to x , and 1let N be a nbd of
x . Let W= {alx(a)eN} , then (II-2.4) either B 1is cofinal
in G or G-» 1is residual in G, If B were cofinal in Q ,
then (3.4) =xex I ) . But x(B)c=X-N ; hence, since (3.la)
x(B)=X-N , xeX-N this contradicts (3.5) the hypothesis that
N is anbd of x . Hence @G-v 1s residual in & ; that is,
there exists an a' such that a > a' implies aeB, which
means x(a)eN . One half of 3.9 is proved.

Suppose that 1f N 1s a nbd of x there exists an a'
such that a > a' 1implies x(a)eN. Let QG'—G be such that
xex(G') . Then (3.5) X-x(@') 41s a nbd of x and, for some
a', a > a' implies x(a)eX-x(A') . Hence G' 1s not cofinal
in @ ., Hence if Q' 1is cofinel in @ we have xex(G') and
(3.4) x(al@) converges tc x . The remainder of 3.9 1s
proved.

2°, 3.2. 3.6 and 3.7 imply 3.10, 3.12, 3.5 and 3.8.

We hegin with a convergence satisrying 3.2. Clearly
x(A)cP_ 1s impossible; hence (3.7) xef 1s impossible. There-
fore =@ . If xeH , then (3.7) some x(a|G) converges to
x , where x(@)cHcHuUK ; hence (3.7) xeHuK . Therefore
AuKcHUK . If xefluK , then (3 7) some x(alG) converges to
x and x(G)cHUK . Let Q' = {a|x(a)eH] , Q" = {a|x(a)eKi;
then @'w@" =@ and (II-2) either @' or @", K 1s cofinal in
G. If @' 1s cofinal in G, then (3.2) x(al®@) converges to
x and (3.7) xef . If G" 1s cofinal in @ , we may show in
a similar way that xeK . Hence HuKcHuUK . Hence HuK = HuK,
and 3.10 is proved.

If N is a nbd of x , then (3.6) Nux(Q) # 8 , when-
ever x(al@) converges to x . If MoN , then surely
Mnx(G) # # , vhenever x(a|@) converges to x . Hence (3.6) M
jsanbd of x . If N' and N" are such that N'aN"ax(Q) = ¢ ,
where x(al@) converges to x , then, as above, either @' or
G" 1s cofinal in G, where Q' = {alx(a)eN'l , and
¢" = {a|x(a)eN"} . If @' 48 cofinal in @, then (3.2)
x(a|@') converges to x ; hence (3.6) , since N'nx(Q') = g,
N' 1is not a nbd of x ., Similarly, if Q" is cofiral in ,
K" 1s not a nbd of x . Hence, 1f N' and N" are nbds of
x , then N'nN"ax(@) # # , whenever x(al@) converges to x .
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Hence (3.6) N'aN" 1s a nbd of x . So 3.12 holds.

If N 1s a nbd of x , then (3.6) Nnx(G) # 8 , when-
ever x(alG) converges to x . Hence we cannot have both _
x(G)<X-N and x(a|G) converging to x ; hence (3.7) xe&X-N .
The remainder of 3.5 follows by reversing this argument.

If xeB , then (3.7) some =x(alG) converges to x with
x(G)cH . If N 1s a nbd of x , then (3.6) NnHoNAx(G) # ¢4 .
Conversely, if HnN # # for all nbds of x , then, since
Hn(X-H) = § , X-H 4is not a nbd of x ,. and (3.5) xeX-(X-H)
= H . Hence 3.8 holds.

3°, 3.3, 3.8 and 3.9 imply 3.10, 3.11, 3.4, 3.7, 8.7p and 3.7pp.

We begin with a nbd system satisfying 3.3. Any x has
some nbd N ; @nN = @8 ; hence (3.8) x¢f . Hence § =g .
If xef , then (3.8) , for each nbd N of x , (HuK)aNsHnN
A8 . Hence (3.8) =xeHuK . 8o we have HuKcHuK . If xe¢HuK ,
then (3.8) for some nbds N' and N" of x, HnN' =g = KnN" .
Let N*cN'aN" ©be a nbd of x ; then
(HuK)aN*c(HuK)Aa(N'aN" )c(HAN' )u(KnN") = # . Hence (3.8) x¢HUK .
Hence HuRcHUR . Hence HuK = HoRK . Thus 3.10 is proved.

Let x(2|G) converge to x . Let §=A be a finite
collection of subsets of x . Some of these, {N} , are nbds of
x ; then (3.9) there are ay so that a > ay implies
x(a)eN . Since G 1is directed we may choose aeay for this
finite collection of ap's . Let x'(6) = x(a) . Then, if Neb
is a nbd of x , Ne6b implies x'(6)eN . Hence (3.9) x'(81D)
converges to x . Now 3.2 is an immediate consequence of 3.9.
Hence we can apply the argument above to x(alG') , where Q'
is cofinal in G . Thus one half of 3.11 is proved.

If x(a|&) does not converge to x ; then (3.9) for
some N and every a there is an a' > a such that x(a')eN .
That 1s, Q&' = {a|x(a)eN} 1s cofinal in @G. It 1s clear from
this and 3.9 that the other half of 3.11 holds.

We proceed to the proof of 3.4, If x(al@) converges
to x, and @' 1s cofinal in @, then (3.11, 3.13) x(a|@')
converges to x . Whence (3.9) =x(G )nN £ @, and (3.8)
xex(Q') . To prove the converse of this result we proceed as in
the proof of the latter half of 3.11, applying 3.8 as well as
3.9. This complétes the proof of 3.4.

If xcH, and 1f N} 1s a finite collection of nbds
of 'x , then (3.3) , for some nbd N' of x , NeiNj implies
N'eN , and hence (3.8) HnAN' # g . If d=A , and if (N}
consists of those nbds of x which belong to 6 , then we may
choose x'(d)eH so that x'(S)eniN} . Hence, as in the proof
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of 3.11, x'(8|D) converges to x . Thus one half of 3.7,

3.7P and 3.7pp is proved. If =x(a|@) converges to x , and if
x(G)cH , then (3.9), for each nbd N of x , HaN>x(G)N £ & ;
hence (3.8) xel . This completes the proof of 3.7, 3.7p and
3.7pp.

4°, 3.10 and 3.4 imply 3.7, 3.7p and 3.7pp.

Let xeH . Let . [K| be the class of subsets of H
such that xeH-K . If K' and K" belong to ({K{ , then, since
(3.10) E-(K'nK") = {H-K' )u(H-K") = H-K'UH-K" , xeH-(K' K")
and 80 K'nK"=[K} . Thus an intersection of a finite number of
K's isa K. Since xeH = H-f, feK . Let de=a ; 1let K;
be the intersection of the K's belonging to 6 ; anfl choose
x'(6)eX; . Then, 1f KeK eand Keb, x'(§)eK . I say that
x'(8]D) converges to x . For if A'cA 1s such that
xex'(4') , then H-x'(A') 1s a K and no 6 containing this
K can belong to A' . Hence A' 1s not cofinal in A . Hence,
is 4A' 1s cofinal in A , then xex'IA'$ . Conversely, let
x(al@) converge to x and x(@)cH . Now @G 1s cofinel in Q,
hence (3.4) =xex(@JeH . Hence 3.7, 3.7p and 3.7pp hold.

5%, 3.10 and 3.5 imply 3.8.

If xeH , and 1f N 1s a nbd of x ; then (3.5)
x¢H-N ; hence H¢X-N ; hence (3.10) HeX-N , that is NrH £ @ .
Conversely, if, for all nbds, N, of x, HnN ¥ @ , then,
since Hn(X-H) = ¢, X-H 1s not a nbd of x . Hence (3.5)
xeX-(X-H) = H . So we have proved 3.8.

6°. 3.11 and 3.6 iﬂp" 3.9.

Let x(al@) converge to x , and let N be a nbd of
x . Let @' =lalx(a)¢N} . If @' were cofinal in @ , then
(3.2) x(a]@') would converge to x , which is impossible
(3.6) since x(@')aN = g . Hence (II-2.4) AQ-@& 1s residual
in G ; that is, there i1s an a' such that a > a' 1implies
a€®@ , that is, x(a)eN . Conversely, suppose that, for each
nbd, N, of x , there is an a' such that a > a' implies
x(a)eN . Let @' be cofinal in G&. If X-x(@') were a nbd of
x ; then, for some a' , a > a' would imply x(a)eX-x@ ).
Since @' 4is cofinal in @&, this is impossible and X-x(a&')
is not a nbd of x . Hence (3.6) there 1s an x"(b|®) such
that (X-x(@'))nx"(B) =g, and =x"(b|B) converges to x ,
Hence x"(B)cx'(G') and (3.11), since B 1s cofinal in B ,
some x'(8|D) converges to x with x'(a)ex"(B)cx(Q') . Since
@' was any cofinal subsystem of @, we have (3.11) x(a|Q)
converging to x . 8o we have proved 3.9.

7°. 3.11 and 3.7 imply 3.1%,

Let x(al@) converge to x , and let @' be cofinal
in @ . Then (3.2) x(al®@') converges to x ; hence (3.7)
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xexiﬁ's . Conversely, suppose that for every &' cofinal in
@ xex(G') . Then (3.7) some x'(b/B) converges to x ,
where x'(B)cx(@') . The argument proceeds precisely as in the
last part of 6° , and we have x(a|@) converging to x . So
3.4 1s proved. .

8°, 3.12 and 3.8 imply 3.5.

If N 1s a nbd of x , then (3.8) , since Nn(X-N) = g,
x¢X-N . Conversely, if x¢X-N , then (3.8), for some nbd N'
of x, (X-N)aN' =@ . That 1s, NoN' ; hence (3.12) N is a
nbd of x . 8o we have proved 3.5.

9°, 3,12 and 3.9 imply 3.6, 3.6p and 3.6pp.

If N is anbd of x , and 1f x(a|@) converges to
x ; then (3.9) =x(@)nN # @ . Conversely, if H 1s not a nbd
of x , then (3.12) H contains no nbd of x . If é=A , and
{N} 1is the collection of nbds of x belonging to & , then
the intersection of these N 1is a nbd of x, say Ng, and
1s not contained in H . Choose x'(8) so that 1t belongs to
N, but not to H . Therefore, NeiNi 1implies x'(8)eN . Now
x'(8|D) converges to x , and Hnx'(A) = § . So we have proved
3.6, 3.6p and 3.6pp.

These nine parts, together with 3.13 prove the various
statements of the theorem.

3.15 Remarks. a) This theorem shows that at the stage of
generality represented by the strong conditions the three no-
tions of closure operator, convergence, and nbd system stand on
an equal footing. From a theoretical standpoint they serve
equally well as the initlal concept.

b) One might remark that 3.1 and 3.10 are the
same, and that this is a sort of dissymmetry. This could be
easily avolded by changing some of 3.4 to 3.9, after which we
could use B = g , HuKcHuK 1n place of 3.1. However, it does
not seem worth while to complicate 3.4 to 3.9 to obtain apparent
symmetry. For in the best behaved (Euclidean) spaces, 3.4 to
3.9, as they stand, are the simplest relations between closure,
convergence and nbds.

c) I do not say that, in practice, convergence
1s always as convenlent and useful as closure and nbds. This 1is
not true. But two things are true; first, there are spaces of
Interest to the analyst where convergence is the natural initial
concept; second, convergence is a valuable tool, even in the
most general space, whose neglect is wasteful in many problems.

d) The statement that 3.6 and 3.7 can be re-
placed by 3.6p or 3.6pp and 3.7p or 3.7pp respectively is freely
expressed as
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The convergence of phalanxes is sufficient to describe
the topology of a space satisfying the strong conditions.

e) One result of this theorem is that, if one
notion satisfies the strong condition, then we may define the
other two notions so that 3.1 thru 3.12 hold. This level of
generality seem a very natural one, so we make the following
definition.

3,16 Definition. A topology for a set consists of a closure
operator, notion of convergence and nbd system satisfying 3.1
thru 3.12. A space 1s a set and a topology for that set. The
points of the space are the points of the set.

It 1s clear that either a closure operator satisfying
3.10 or a notion of convergence satisfying 3.11 or a nbd system
satisfying 3.12 defines a unique topology.

A collection, {Ng|Al , of nbds of x , 1s a nbd basis
at x , 1f for everynbd N of x and some a , NegcN . A
collection, ([Ng|Al , of nbds of x 18 a nbd sub-basis at x ,
if for each nbd N of x and some a , N{Ng |aealcN . We
have,

3.17 ****, If N |A}l is a nbd basis at x, then N, 18§ is a nbd
basis at x if and only if, both for each a and some b, N =N,
and for each b and some a, N =N, .

3$.18 ****, If the old nbds satisfy 3.3, and If the new nbds
are derivable from {either and hence both) the convergence and
the closure derivable from the old nbds, then the old nbds of x
are a nbd basis at x with respect to the new nbds.

Results similar to 3.18 dealing with closures satisfying
3.1 and convergences satisfying 3.2 can easily be stated and
proved.

If a set has two topologies (which we indicate by in-
dices 1 and 2), then topology, 1is finer than topology, if any
(and hence all) of the following equivalent conditions hold,

3.21 ¥ <H2) for all M.
3.22 x(alQ) converges, to x implies x(alG) converges, to x.
3.23 N is a nbd, of x implies N is a nbd, of x.

4, Effectiveness., We now inquire about the effectiveness of dif-
ferent directed systems as carriers of convergent objects. We
consider convergence in spaces (3.16) , where, since convergence
i1s derivable from nbds all directed systems are equally favored.
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4,1 Definition. A directed system G 1s sald to be as effec-
tive-for convergence as a directed system B , 1f, whenever
x(blB) converges to x , there exists an -x'(al@) converging
to x, with x'(Q)ex(B) .

%.2 Theorem. G is as efrective as B if and only if G>na(in the
sense of [1-3).

Proof. If G >NB , there exist functions a(b|B) and b(alQ)
such that a > a(b) implies b(a) > b . If x(blB) converges
to X, then we set x'(a) = x(b(a)) , thus defining x'(alQ) .
If N 1s a nbd of x , then (3.9), for some b' , b > b!
implies x(b)eN . But if a > a(b') , we have b(a) > b' ,
hence x'(a)eN ; hence (3.9) x(a]@) converges to x .

If G 1s as effective as B , then we consider the
following space; X = Bulioo}, whereooekB , and H 1is a nbd of
oo if, for some b' , b > b' 1mplies beH . The other points
of X are assigned nbds in any way satisfying 3.12. The identi-
cal functicn (b*(b) = b) converges to e ; hence (4.1) some
b"(a]G) converges to e , Now B(b) ={b'|b' > b} 1is a nbd of
co; hence (3.9) there is an a(b) such that a > a(b) implies
b"(a)eB(b) ., Hence G>B .

4,3 Remarks. a) This theorem provides additional support for
the use of > as a central relation 1n the theory of directed
systems.

b) There is (II-5.1) a stack as effective as any
particular directed system. Together with 4.2 this explains why
phalanxes are sufficlent for general topological purposes.

c¢) In the countable case (II-6) any directed
system without last element 1s as effective as any other. This
explains the usefulness of the simple sequence in the countable
case.

d) If x(n]N) 1s & simple sequence, and if we
set x'(») = x(]v|) , then x'(¥|N) is a phalanx which con-
verges to those points and only those points to which x(n|N)
converges. The sequence and the phalanx have similar properties
with regard to other notions (as "cluster point" IV-3) of a
convergence nature.

If x"(vIN) 1s a phalanx on a countable base (which we
may as well take to be the set of the positive integers), and if
ve set vp=In'|n' £ n{ and x*(n) = x"(v,) , then x*(n|N)
converges to all the 1limits of x"(v|N) , but the converse
need not be true.

e) The similarity of sequence and phalanx where
all is countable does not (II-7) continue when we replace 8 by
any uncountable cardinal number,
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5. Relativization. If X 1s a space, and YcX then the

topology of X 4induces a topology in Y . This occurs thru the
relations,

5.1 The closure in Y, of HY, K'Y, is equal to HnY.

5.2 x(al@), where x(@)c=Yconverges in Y to xeY if and only If
x(a|@) converges to x in X.

5.3 The nbds of xe=Y are all sets of the form YnN where N is a
nbd of x in X.

We have,

5.4 Theorem. If X is a space (3.16), then 5.1, 5.2 and 5.3
induce a topology in Y, making Y a space.

Proof. We leave the proof to the interested reader.

Under the circumstances described in 5.4 we say that Y

is a subspace of X , and that X 1s a superspace of Y . We
shall have occasion to use,

5.5 ****, If xe=H and N is a nbd of x, then xe=fink.

6. Open sets and T-spaces. We begin with

6.1 ****, The following conditions on a subset U of a space X

-are equivalent;

6.2 X-Uc=X-U.

6.3 If x(alG) converges to xeU, then x(G)nUsd.

6.3p If x(yIC) converges to xexU, then x(MnUsf.

6.3pp If x(8|D), where D=2", converges to xe=U, then x(A)nUdd.
6.4 U is a nbd of all its points.

A set satisfying these equivalent conditions is open.
From 6.4 we may easily prove, since every point has a nbd, that

6.5 ****. In a space X open sets satisfy;
6.6 § and X are open.

6.7 The intersection of a finite number of open sets is -an
open set.

6.8 Any union of open sets Is an opeh set.

We shall be really interested in open sets only when
there are "enough" of them. The conditions for this are stated
in

6.9 Lemma. For a space X, the following conditions are equiva-
lent; :

6.10 The open sets containing x form a nbd basis at x.
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6.11 HoMH and H=H.

Proof. Assume 6.10. Consider a mapping of a directed system
having one element onto x . Since (6.10) every nbd of x con-
tains x , this mapping converges to x ; hence xeH 1implies
xell ; hence HoH . If xeH , then X-H 1s a nbd of x ;
hence (6.10) there is an open set U , such that xeUcX-H .

Now HcX-U , so that (3.1a, 6.2) HcX-U = H-U, hence xeéfl .
Thus HcH , and applylng the first relation to H , H-R ;
hence H =H , and 6.11 is proved.

Assume 6.11. Let N be a nbd of x , then =xeX-NoX-N,
30 that xeN . Now x¢X-N = ¥"N, so that U = X-X-N 1is a
nbd of x . Now (6.2) U 41s open, and, since X-NoX-N ,
UcX-(X-N) = N . Thus 6.10 holds.

A space satisfying these conditions 1s a T-space. The
open sets containing x are open nbds of x . An alternate ex-
pression of 6.10 is

6.12 N is a nbd of x if and only if xeUc=N where U is open.

We shall restrict the use of U, V, and W, to open
sets, and the use of U, - B, and I to collections of open
sets.

The reader may easily show that

6.13 ****, |If a family of sets satisfy 6.6, 6.7 and 6.8, and if
we call them "open” and use 6.12 to define nbds, then we will
obtain a T-space, in which the original family of sets is the
family of open sets.

A set, H, 1s closed if H=H ; that is (6.2), if
its complement X-H 1s open. From 6.10, we see that

6.1 ****_ |n a T-space H is a closed set.

We shall often be interested in subcollections of the
collection of all open set of a T-space. A subcollection is a
basis (for X , for the open sets of X , etc.) 1f every open
set 1s a union of sets belonging to the subcollection. . A sub-
collection 1s a sub-basis (for X , etc.) 1if every open set
1s a union of sets which are themselves each intersections of a
finite number of sets of the subcollection.

It is easy to see that,
6.15 ****, If {UJAl is a basis for X, then, for all x,
lUJacsA, x=U 1 is a nbd basis at x.

6.16 ****, If {U]A] is a sub-basis for X, then, for all x,
{vjacsA, xell.! is a nbd sub-basis at x.
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8.17 ****, If {NJA} is a nbd basis at x, and {U|B] Is a collec~
tion of open nbds of x such that, for each a and some b, UcN;
then [U|B} is a nbd basis at x.

6,08 ****. If [UjC} is a sub-basis for X, then the topology of
X is described by the convergence of C-phalanxes. That is,

6.19 xeelHe==for some x(y1C) converging to x, x(r)c=H.

6.20 N Is a nbd of xee=1if x( IC) converges to x, then
l(l')nl*‘.

From 4.3 ¢), 4.3 d) and 6.18 we ses that

6.21 ****, The topology of a T-space with a countable sub=basis
is determined by the convergence of simple sequences.

A space 1is discrete i1f every subset i1s both open and
closed., Clearly,

6.22 ****, A discrete space is a T-space.

7. Continuity. We have,

7.1 Theorea., If f is a function defined on the space X and
taking values in the space Y, the following are equivalent,

7.2 £(W)=F(H), for all He=X.

7.3 l(l)1r$! inplies f(x(a))—g+f(x).

7.3pp x(8)sx, where D=2, implies f(x(8))pf(x).
7.% If N is a nbd of f(x), then f*(N) is a nbd of x.

Proof, 7.2 implies 7.3, for let x(a)-y+x . Then (3.4), 1f
@' 1s cofinal in & , xex(G') ; hence (7.2)
£(x)ef{x(A"))cf(xA') ; hence (3.4) f(x(a))—i-pf(x) .

7.3 obvious implies 7.3pp.

7.3pp implies 7.4, for let N be a nbd of f£(x) .
Then (3.6pp), whenever y(8)—sf(x) , Nny(a) #8 . If
x(§)—>x , then (7.3pp) f(x(8))—f(x) ; hence
Naf(x(a)) # P8 , whence £ (N)nx(a) # 8 . Hence (3.6pp)
£-1(N) 1s a nbd of x .

7.4 implies 7.2, for let f(x)ef(H) . Therefore (3.8)
every nbd of x meets H . Now let N be a nbd of f£(x) ; then
(7.%) f£-1(N) 4is a nbd of x ; hence it meets H ; hence
£(£-1(N) = N meets f(H) . Hence (3.8) f(x)ef(H) , and this
proves f£(H)cf(H) .

The function f 1is continuous if it satisfles these
conditions. The usual properties of continuous functions can be
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easily derived from these conditions. Some noteworthy proper-
ties are

7.5 ****, Every constant is continuous.

7.6 ****, A continuous function of a continuous function is a
continuous function.

7.7 ****. The identity is a continuous function (here Y=X).
From 6.4 we easily see that

7.8 ****,. I1f f is continuous, then

7.9 If V is open-in Y, then f (V) is open-in X.
1f Y is a T-space, and if 7.9 holds, then f is continuous.

If f and £f-! are both single-valued and continuous,
then they are homeomorphisms. If f 1s a homeomorphism, and
f(X) =Y ; then X and Y are homeomorphic. Regarded as
spaces, any two homeomorphic spaces are abstractly identical.

8. Separation Axioms. We mention two separation axioms briefly.
8o| l‘t‘.

If X is a T-space, the following are equivalent;
8.2 Every point of X is closed.
8.3 For each x, x N{N|N}a nbd of x}.

8.4 There is a basis {U|Al for X such that, if x'eU, implies
x"eU , then x'=x",

A T-space satisfying these conditions 1is a T,-space.

A space satisfying

8.5 If F' and F" are disjoint closed sets, then there are
disjoint open -sets U' and U", such that F'—U"' and F'cU".

1s normal. We need the following result later

8.6 ****, If {U] is a basis for the normal T-space X, and |if
xe=V, where V is open, then there are sets U* and U** in [U}
such that xeU* U  cU** U V. -

Proof. x 18 closed (8.2) and X-V 1s closed, hence (8.5)
there are disjoint U' and U" such that =xeU' &and U"<X-V .
Now (6.15) we may choose U**elUl , so that xeU**cU'<X-U" .
Hence (3.1a) TU**cX-U" = X-U"cV , so that xeU**cU¥*cV . Ap-
plying the same argument to xeU** 1instead of xeV , we com-
plete the proof of the lemma.
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9. Historical Remarks., The theorem about effectiveness of
phalanxes should be regarded as a monument to E. H. Moore, and
to his faculty of grasping fundamentals., He introduced the
"o-1imit" in 1915, which was essentially the convergence of
phalanxes, It 1s true that he always restricted himself to
numerically valued functions, but the basic idea was there. In
1922 Moore and Smith extracted (from the notions of sequential
1imit and "o-1imit") the notion of convergence of real valued
functions on a directed system.

The extension to topological spaces was made by Garrett
Birkhoff in 1937, who introduced the term "directed set" for a
function on a directed system and who showed that convergence
was adequate to topologize T,-spaces.

It 1s unfortunate that the work of Moore and Smith was
neglected by topologists for so many years., If it had not been
neglected, the cumbersome and messy machinery of transfinite
sequences and complete limit .points would never have been used.



Chapter |V
COMPACTNESS

l. Introduction,

2, Special phalanxes.

3. Ultraphalanxes and topophalanxes.
4, Compactness.

5. Compact Spaces.

6. Compactification.

7. Historical Remarks.

1. Introduction. In this chapter we apply convergence ideas to
obtain a notion of "compactness" for general spaces. This no-
tion reduces to the "bicompactness" of Alexandroff and Urysohn
for T-spaces. The important notion of an ultraphalanx is intro-
duced.

82 1s devoted to certaln set-theoretical existence
theorems. In §3 we define "cluster point," "ultraphalanx" (and
"topophalanx”) and derive some simple properties of these con-
cepts. In 8% we show the equivalence of many conditions and use
these conditions to define "compactness." §5 contalns certain
results about compact spaces. In §6 we imbed spaces in compact
spaces, making use of the fact that compactness may be regarded
as a completeness property. We close with some historical re-
marks.

2. Special phalanxes. We begin with some set-theoretical con-
siderations. These will lead to existence theorems for certain
types of phalanxes.

A covering of X is a collection {Hg|A} of subsets of X
such that U{HalA} =X . A covering is a partition if its sets
are disjoint. A covering is binary or finite if it consists of
two or a finite number of sets, respectively. A subcollection
{Ha|A" , which 1is itself a covering 1s a subcovering of
{Ha[a}

The fundamental existence lemma 1s
2.1 Lemma. I1f B is a collection of sets satisfying
2.2 X¢®
31
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2.3 B'c 8 and B3 imply B'e® B

2.4 B'e® and B'eB imply B'wB"e® .

and If {6,]A} Is a collection of finite coverings, then there
exists a function q>~(a|A) such that, for each a , ¢(a) is a
set belonging to G, and, for each a, Nip(a)lacalegB

Proof. We consider the class of functions {@l each of which
1s' ; 10 defined on a subset A' of A , and such that, for
acA' , ¢(a) 1s a set of 6, ; 2° such that acA' implies
Nigp(a)laca}¢B.  This class is not empty, for it contains
(2.1) the function whose domain of definition is @cA . Since
1° and 2° are finite restrictions, there exists (I-6.4) a maxi-
mal function, which we will denote by ¢ , in {y}

Suppose that ¢ 1s not defined for a'eA . Since ¢
i1s maximal, a.ny extension of its definition to a' conflicts
with 1° or 2°. Hence if Gy= (Py,:++,By), where
nip, 1<%} = X , there must exist finite sets - AEERIN
such that

Pi(N{q(a)laca;l)eB, 1 =1,
If we set a=n{og| 1€1<m} , then (2 3),

1"‘("‘?(3)|&Ea})650 1 =1;:-,m
And (2.4)

Nig(a)laeat = (U{Py|1%<n)n(0{ @ (a)l scale®B.

The last relation contradicts 2° ; hence P must have been de-
fined for all aeA , and the lema 1s proved.

A function on a directed system, x(al@) , is ultimate-
1y in H 4f, for some a' and all aja' , x(a)eH . If
x(al@l) 1s ultimately in H , 41t decides for H . If x(al@)
is ultimately in X-H , 1t decides against H . 1In either case
it decides about H . Since G 1is directed, we have

2.5 ****, If x(al&) declides for H' and for H"
decides for - H'n H" .

x(alo.) 1s decided about a covering if it decides for
at least one set of the éovering. This set 1is unique if the
covering is a partition. If the covering is not a partitioen,
then some x(a|G) decides for at least two different sets of
the covering. If x(a|&) 18 decided about every set of M,
and 1f M has a finite subcovering, then x(al&) 1s decided
about M . If M lacks a finite subcovering, then some x(ala)
decides against each of its sets, and therefore is not decided
about M.

We may rephrase III-3.9 as,
2.6 ****, «x(al&) converges to x |If and only If It decldes
for every nbd of x .

, then It



Iv-2.7 ... Iv-3.2 33

We have,

2.7 Theorem. If B satisfies 2.2, 2.3, and 2.4, and If {G,|A}
is a collection of finite coverings, then there exists an A-
phalanx, x(alA) , decided about each &, . If each G, s
a partition, then, if ¢(a) 1Is the unique set of G, for which
x(x|A) decides, we have, for each «, Nip(a)lacaleB.

Proof. If @e=B, we consider B* =PBuv{f} ; clearly 2.2, 2.3
and 2.4 st1ll hold. Let ¢(alA) be the function whose exis-
tence is asserted in 2.1, and let x(a)eN{®(a)l aeA} , this in-
tersection is not @ , since it does not belong to B* . Then
x(xlA) decides for ¢f(a) , and the theorem follows.

3. Ultraphalanxes and topophalanxes. We are now in a position
to introduce some entirely new notions.

We are interested in phalanxes which have certain prop-
erties of decision, and we beglin with a purely set-theoretical
property. A phalanx, x(«lA) , 1s an ultraphalanx (in X) if it
decldes about every subset of X .

We may say that an ultraphalanx is trivial if it is
ultimately constant. It 1s clear that every ultraphalanx on a
finite set is trivial. The effective (in the sense of Sierpin-
ski) construction of a non-trivial ultraphalanx on the integers
(or any other effectively enumerable set) would imply (H. E.
Robbins, unpublished) the effective construction of a non-
measurable (Lebesgue) set in [0,1] . From the present stand-
point of mathematics, the ultraphalanx is a very nonconstruc-
tive tool, but a very useful one.

An Ilmportant and simple property is,

3.1 Theorem. Any image of an ultraphalanx is an ultraphalanx.

Proof. Suppose that x(«]A) 1s an ultraphalanx in X , and
that f 1s a (single-valued) function mapping X into Y .
Then f(x(aﬂ A) is an ultraphalanx, for it makes the same de-
cision about 8 as x(xlA) does about £ 1(S) .

A weaker requirement, depending on the topology of the
space 1s also of interest. A phalanx is a topophalanx if, for
every HcX , it decides about H . In a T-space we may use the
simpler definition; a topophalanx is a phalanx decided about
each open set.

We shall apply the existence theorems of the last to
these definitions. We agree that D = X
3.2 Theorem. If X 1|is a space, its topology is described by
the convergence of D-ultraphalanxes. That is, we have,
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3.3 x€ H |If and only If some ultraphalanx x(8|D) converges
to x , with x(A)  H .

3.4 N 1Is a nbd of x If and only If Nax(a) & § for every
ultraphalanx x(6]D) converging to x .

3.5 x(ala) converges to x If and only if, whenever &' s
cofinal in Q, there Is an ultraphalanx x'(&|D) converging
to x , with x'(8) < x(a')

3.6 A function f from X to Y |s continuous If and only If,
whenever x(&|D) |Is an ultraphalanx converging to x ,

f(x(6)ID) converges to f(x) .

Proof. We prove only 3.3; the other results follow easily from
this by the methods of III-3 and III-7. To deal with 3.3, we
consider the subspace (III-5) Y = Huix} . If xcB , then we
apply 2.7 to H, B = {K|K<H, x¢K} , and the partitions
{G,ID}, where G;= (HnL, H-HaL) and L = deD = 2%, From
I11-3.10, we see that B satisfies 2.2, 2.3 and 2.4. Hence,
there exists a phalanx x(&ID) which clearly is decided about
every set L = deD , and which 1s therefore an ultraphalanx.
Let N _bea nbd of x in Y , then (III-3.5)

x¢Y-NoH-N ; hence H-Ne®B, and x(8/D) decides for N. Hence
(2.6) x(6|D) converges to x in Y ; hence (III-5.2) it
converges to x 1in X . Half of 3.3 1s proved, the remainder
follows from III-3.T.

In a similar way we may prove,

3.7 ****, 1f {u,/ A} are the open sets of the T-space X ,
then the topology of X |Is described by the convergence of
A-topophalanxes,

3.8 Remark. It 1s of interest to compare 1II-6.9 with 3.2 and

3.7. In the case of a separable metric space they assert that

the topology is described by the convergence of phalanxes on a

base of cardinal number ¥, , topophalanxes on a base of cardi-

n;k number 2' , ultraphalanxes on a base of cardinal number

2

We now define the important notion of cluster point.
x 1s a cluster point of x(ala) 1if, for each a'eC and each
nbd N of x , there 1s an ada' such that =x(a)eN . 1In-
tuitively this means that x(altt) 41s not ultimately "away" from
x .

3.6 **** |t x(ala) converges to x , then x s a cluster
point of x(a|Ct) .

3.10 ****, A topophalanx or ultraphalanx converges to any
cluster point(s) it possesses.

3.11 ****, x 1Is a cluster point of x(alCx) If and only If
x(al&x) decides against no nbd of x .
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3.12 Lemma. x is a cluster point of «x(ylC) if and only if
x € B, for each 4 , where H, = {x(y')ly'Dvy .

Proof. If x 1s a cluster point of x(¢y|C) , then, since
x(ylC) decides for Hy, we see (3.11) that X-H, 1is not a nbd
of x . Hence (III-3.5) xeHy . Conversely, if xeHy for all
4, and if N 1s a nbd of x , then NaHy # § for all vy

and N , which i1s preclsely the conditlon that x 1s a cluster
point of x(ylC) .

3.13 ****, |f x s a cluster point of x(axlA) , and if
x(x|A) Is inflated, then x s a cluster point of the Inflated
phalanx. Conversely, a cluster point of the inflated phalanx is
a cluster point of the original phalanx.

3,04 "***, 1f x 1is a cluster point of x(alC) and x(alC)
decides for H , then x  H .

3.15 Theorem. 1f x(alA) is given, there exists an ultra-
phalanx x'(8|D) each of whose cluster points (if any exist)
is a cluster point of x(alC) .

Proof. Set B ={Klx(alGl) decides against K} ; then (2.5)
B satisfies 2.2, 2.3 and 2.4, We apply 2.7 to B and all
binary partitions of X and obtain an ultraphalanx x'(§|D) .
If x 1s a cluster point of x'(6§ID) , then (3.10,2.7)

x'(8|D) decides for every nbd of x ; hence none of these be-
long to B; hence (3.11) x- is a cluster point of x(alCt) .

Similarly, we see that,

3.16 ****, 1f {U/)C} are the open sets of the T-space X ,
and x(ala) 1Is given, there exists a topophalanx x'(¢IC)
each of whose cluster points (if any exist) is a cluster point
of x(all) .

4. Compactness. We begin by generalizing the notion of "subse-
quence." Before doing this we modify it from the classical
form (both N and K are the set of positive 1ntegers),

" x(n(k)]K) 1is a subsequence of x(n|N) 1if and only if

n(1) <n(2) <n(3) < --- ." to " x(n(k)IK) 1s a subsequence
of x(n|N) if and only if n(k) 2 k." This change of defini-
tion changes none of the classical results dealing with sequenc-
es rather than with series.

We say that x(a'(a)|lA) 1s a subphalanx of x(«lA)
if a'(a)Da for each a. It is clear that, if x(a|A) de-
cides for or against H , then every subphalanx of x(@|A) de-
cldes likewlse. Hence, from 3.11 we have,
4.0 ****, If x is a cluster point or a subphalanx of
x(@lA) , then it is a cluster point of x(alA) .
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We are now prenared for
4.1 Theorem. The foilowing conditions on a space X are equiva-

lent, where D = 2%

4.2 Every function x(alt) on a directed system to X has a
cluster point,

4.3 Every phalanx in X has a cluster point in X .
4.4 Every topophalanx in X 1s convergent In X .
4.5 Every D-topophalanx In X 1[s convergent in X .
4.6 Every ultraphalanx in X Is convergent in X ,
4,7 Every D-ultraphalanx In X |Is convergent in X .

4.8 If 1Al IDl , every A-phalanx in X contains a subphalanx
converging in X .

4.9 Every phalanx 'in X can be Inflated to a phalanx containing
a subphalanx converging in X. .

4.10.1f {HlC} has the property that, for all ~ c¢C,
N{HJcey} +9¢ . then nffi,lce C}4 4.

Proof. 4in view or 3.9 and 3.10, 4.2 implies 4.3, 4.4, 4.5, 4.6,
and 4.7.. Clearly, 4.2 or 4.3 or 4.4 or 4.5 or 4.6 implies 4.7.
Thus to prove all these conditions equivalent we need only show
that 4.7 implies 4.2, which follows immediately from 3.15 and
3.10.,

We now show that 4.3 and 4.10 are equivalent. Assume
4.3, and take x(y)eR{H cey}; then (4.3) x(yIC) must have
a cluster point x . Now, for ce<y, x(y)eH, ; hence (3.12)
xeH; and we have proved 4.10. Assume 4.10, and let x(yIC)
be any phalanx. Let B =I', and let Hp = Hy = {x(y')lvy'57},
where b =9. If «(B) =uU{yly = bef}, then
x(y(B))en{Hy| bep}. Hence, for all p, N{iHylbep}# &;
hence (4.10) N{H,lveB} # g . 1If xeN{H,|B} = n{H,|yel},
then (3.12) x 1s a cluster point of x(prB)

It remains to be shown that 4.3, 4.8 and 4.9 are equiva-
lent. Clearly 4.8 implies 4.9; and (3.13,3.9,4.0) we see that
4.9 implies 4.3. Assume 4.3, and let x(a|A) be an A-phalanx,
vhere IA| 2 |D| ; then (4.3) =x(alA) has a cluster point x .
Let BcD consist of the nbds of x ; then, since
1Bl £|Dl € [Al , there 1s a 1-1 correspondance a = f(b) be-
tween B and a subset of A . For each @, f ' (a) 1s finite,
and we may choose a'(a)>a so that x(a'(a))an{NIN
= aef~Y(a)} (for this intersection 1s a nbd of a cluster point
of x(alAa) ). Then x(a'(a)lA) 1s a subphalanx of x(ala) ,
and this subphalanx obviously converges to x . Thus 4.8 is
proved, and the proof of the equivalence is complete.
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4.1) Definition. We call a space satisfying 4.2 thru 4.10

compact.

By the same methods we may prove,

.12 ****, In a T-space, 4.2 thru 4.10 are equivalent to

4.13 Each open (that is, made up of open sets) covering of X
possesses a finite subcovering.

4,14 If {U,|A} are the open sets of X , then every A-topo-
phalanx in X s convergent in X .

4.15 1f {u,c} is a sub-basis for X , then every E-phalanx,
where 1Bl >~ |€] , has a convergent subphalanx.

4.16 Remarks. a) The important conditions are 4.3, 4.6, 4.10
and in T-spaces 4.13. Condition 4.8 contains (see b) below) as
a special case a well-known result, but 4.6 i1s more useful in
applications.

b) Suppose that we have a T-space with a countable
basis, and that B 1s a countable set. Then we know that the
space 1s compact 1f and only if every B-phalanx has a convergent
subphalanx. Proceeding as in III-4.3, we easily see that this
1s equivalent to the classical condition that every sequence
should have a convergent subsequence.

¢) We stress the fact that 4.6 exhibits compactness as
a completeness property. It 1s reasonable to say that compact-
ness is the ultimate completeness property of a topological na-
‘ture.

d) We note again that what we call "compactness" re-
duces in T-spaces to what Alexandroff and Urysohn called "bi-
compactness."

From 4.6 and I1I-3.22 we easily see that,

Y.97 ****, If X is a space in topology, and in topology,, if
topology, is finer than topology,, and if X s compact in
topology,; ther X is compact in topology,.

5. Compact Spaces. A space Y 1s a continuous image of a
space X if there 1s a continuous function f such that
f(X) =Y . From 4.6, 3.1 and 3.6 we have

5.1 ****, A continuous image of a compact space is compact.

5.2 Remark. This result is distinct from the classical one in
which "compact" or "bicompact" has a different meaning. The
content of the classical theorem follows from this theorem and



38 COMPACTNESS

the fact that a continuous image of a T-space i1s a T-space.
From 4.3, 3.14, 3.3 and 4.6 we easily see that

5.3 ****, A subspace Y of a compact space X s compact |f
and only If Y 1is a closed subset of X .

We conclude this section with an interesting description
of the topology of a compact space. Let us begin with a set X.
Let Q consist of all the 2xhu1traphalanxes in X . Let P
consist of the equlvalence classes generated in Q by the re-
lation ~ . Here qo~ q' if there is a chain qgu, Qi, *** ,
Qn = q' such that, for each k , either qy.; is a epub-
phalanx of qyx or qx 1s a subphalanx of qy.; .

If X were a space, then (III-3.2, 3.9) if one qep'
converges to x then all q'ep' also converge to x .. So we
may define f(p)e2X as the set of x to which any (and hence
all) qep converge. It is clear (3.2) that f(p!P) describes
the topology of X .

We state the following without proof.
5.4 If X 1Is finite, then every function from P to 2T de-
termines the topology of a space whose points are the point of
x .

5.5 If X 1is neither finite or countably infinite, then not
every function from P to 2! determines a space.

5.6 If f on P to 2% determines.a- space, then the space
Is compact iIf and only if § is not a value of f .

Some readers may be interested in proving these state-
ments and in proving that starting from a set containing a
finite number, n , of distinguishable points we may construct
the following numbers of spaces with the following properties.

spaces, an2 |
compact spaces, orf-n R
spaces in which limits are unique, (n¥1) 0,

compact spaces in which limits are unique, n@® ,

T, -spaces, 1 (this space is
normal and com-
pact).

6. Compactification. We have pointed out (4.16¢) that compact-
ness is a completeness property. It is natural, therefore, to
try to compactify spaces by "completing" them. It is true that
' we may do this trivially, for example, let us prove

6.1 Lemma. Every space X may be imbedded in a compact space.
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Proof. Let Y = Xufy% , and let Y be the only nbd of y!'

. It 1s easy to see (3.12, III-3.16) that Y 1s a space. Then
every ultraphalanx in Y converges to y' , and (4.6) Y is
therefore compact.

However, less trivial completion procedures lead to more
interesting completions with special properties.

Suppose that X 1s a space. Let 2Z consist of all D-
ultraphalanxes in X . Let Y = XuZ . We define a mapping,
H—H* , of 2% on 2Y by
6.2 H* ={x|x & Hluf{z|z 1Is ultimately Iin H3.

Clearly,

6.3 H*nX =H ,

and

6.4 p* =9, and H < K implies H* < K™ .

Now (2.5) we see that
6.5 (HAnK)* = H*n K™ .
Since every ultraphalanx 1s decided about the binary
partition (H,X-H) , we have
6.6 (X-H)* = Y-H® = X*=H" .
Combining 6.5 and 6.6, we have
6.7 (HukK)* = H*uK* ,
and
6.8 (H-K)* = H*-K* .

Now we define the nbds in Y . The nbds of x are all
sets SCY , with xeNCS , where N 1s a nbd of x in X .
The nbds of 2z are all sets S(Y , where, for some H ,
zeH*CS .

It will be easy for the reader to show that III-3.12
and III-5.3 hold, so that Y 1s a subspace of X . We now
prove,

6.9 Lemma. Y is compact.

Proof. Let y(vIC) be an ultraphalanx in Y , and define
{T31D} , where D = 2%, by

) H, if IC decides for H*
6.10 T, —{' yvie) ° ’

X-H, If y(ylC) decides against H* ,
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Now y(yIC) decides for T4* and hence (6.5, 2.5) for
N{Tq*ldedl= (n{Tylded})* . Hence (6.4) n{Tazlded}# 4,
and we may choose x(8)eN{T;|6}. Now z' = x(6eD)ez , and
y(yIC) converges to z' . For let S be a nbd of z! ,

then, for some H , BS)H*»z' . Let d =H ; then Tq =H , for
otherwise z'e(X-H)* = Y-H* . Hence y(y|C) decides for

H*S , and (4.6) the lemma is proved.

We now have,

6.11 Theorem. Any space X |Is an open subset of a compact
space Y .,

Proof. Y 1is compact (6.9) and we see that X 4s a nbd in Y
of each of its points; hence (III-6.4) the theorem follows.

In a certain sense, Y 1s a universal compactification
of X , for we have,

6.12 Theorem. If W is a superspace of X In which limits are
unique (thus, limits in X must be unique), iIf W =X, and if
W Is compact, then W 1Is a continuous image of Y by a func-
tion which is the identity on X .

Proof. We define f as follows; f(x) =x; 1f z = x(éID) ,
then f(z) 4is the unique 1imit of x(6|ID) 4in W . f£(Y¥)
covers W , since each weW-X 1s the limit in W of an ultra-
phalanx =x(éID) .

Suppose that y('ylc) is an ultraphalanx converging to
y . If yeX , then, since X is anbd of Y , y(yIC) 1s
ultimately in X ; hence f(y) = y and ultimately £(y(y))
= y(y) . It is clear that, in this case, f(y(y)IC) converges
to f(y) . If yeZ , then define {T4lD} and x(&ID) as in
the proof of 6.9. Let N be anbd in Y of ye2 ; then, for
some H , yeH*CN . Since y(v¥IC) converges to y , 1t is
ultimately in H* . Hence x(8|D) 1s ultimately in HCH* , so
that x(8ID) eonverges to y 1in the space Y and hence to
£(y) 4in the space W . Let N be a nbd of f(y) in W . Then
x(6]1D) 1s ultimately in N , and so is y(y!C) which is ulti-
mately equal to f£(y(y)IC) . Hence f(y(y)|C) converges to
f(y) . Hence (3.6) f 1s continuous and the theorem is proved.

This method of embedding X in a compact space is not
only interesting, but is useful in proving
6.13 Theorem. If X 1is a T-space, then there exists a compact
T-space YO X and a one to one mapping of the open sets of X
on a basis for the open sets of Y which preserves inclusion,
finite intersection and finite union, and whose Inverse is the
natural mapping from a space to a subspace,
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Proof. Let X be a T-space, we proceed as above, but we intro-
duce a different topology in Y . If {UalA} are the open sets
of X , then we define {Ugq*|/A} as a basis for the open sets
of Y . It is easy to see (III-3.23) that the old topology of
Y 1s finer than the present topology of Y ; hence (4.17, 6.9)
Y 1is compact in the present topology. The remainder of the
theorem follows from 6.3 thru 6.8.

We may modify Y 1n another way; we define ~ on 2
by z'wz" 1f z'eH* implies z"eH* . We see (6.6) that this
1s an equivalence relation. Let R be the set of equivalence
classes. Let P = XvR . Then, if we take nbds in P 1in the
way we first did in Y , we see that P 1s a contlinuous image
of Y , and hence compact. If we examlne R , we see that
{H*aR|H(X} 1s a basis for its open sets and that it is a T, -
space. Thus we have

6.14 ***~, |If X is a space, then it is open in a compact
superspace P , where R =P-X 1Is a T,space.

A simple and intuiltively interesting corollary of 6.1
1s,

6.15 Theorem. A space X is compact If and only if

6.16 Whenever Y is a superspace of X , and a phalanx x(alA)
converges to a point in Y , then it has a cluster point in X .

Proof. The condition is necessary by 4.3 Since (6.1) X can
be embedded in a space in which every ultraphalanx is convergent,
6.16 implies that every ultraphalanx in X has a cluster point
in X ; hence converges in X ; hence (4.3) X 1is compact.

7. Historical Remarks. The term "compact” was introduced by
Fréchet in his important paper of 1906, The motivation of the
definition is explained in his book of 1928 (p. 69) as follows.
"I1 faut encore compléter cet énoncé primitif pour obtenir une
propriété caractéristique des ensembles 1lindaires bornés. . .
.. On voit immédiatement qu'il est naturel d'essayer de
tirer de cet énoncé la definition cherchée des ensembles com-
pacts." These remarks apply equally well to a) Fréchet's
original definition (every infinite set has a nonvoid deriva-
tive), b) Alexandroff and Urysohn's definition of "bicompact-
ness" (Our 4.13 and other equivalent forms), c) our definition
of "compactness."

We note Fréchet's remarks (1921, p. 350) on another
change of definition. "Ces changements peuvent amener une con-
fusion momentanée, mals correspondent & un progrés de la
théorie."
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The term "bicompact" was introduced by Alexandroff and
Urysohn in 1923 for three equivalent properties of a T-space;
our 4.3, a special form of 4.10, and a condition concerning
transfinite sequences and complete limit points. This notion
has been of great service to topology. We recall that "compact"
in Fréchet's sense and "bicompact" in the sense of Alexandroff
and Urysohn are equivalent for metrizable spaces.

In the last few years, the younger French school of
mathematicians have been using "compact" in the sense of Alex-
androff and Urysohn's "bicompact."

I have chosen the term "compact" for the general notion
get forth in §4, since this seems to be the important notion.
I suggest the following additional terminology. "sequentially
compact” = every sequence contains a convergent subsequence.
"countably compact" = Fréchet's "compact" = every infinite set
has a non-empty derivative. (the term "countably" is justified
by the fact that we may clearly restrict ourselves to countably
infinite sets).
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. Introduction,

2. Calculus of Coverings.

3. Sequences of Coverings.

%, Normal Spaces.

5. Star-finiteness.

6. Typical Refinement.

7. Special pseudo-écarts and psewdo-metrics.
8. Metrization.

9. Continuous Real Valued Functions.

10. Historical Remarks.

1. Introduction. 1In this chapter we develop relations between
pairs and sequences of open coverings of a space. We then apply
these relations to the existence of pseudo-metrics, metrics, and
certain other types of continuous real-valued functions (Gen-
eralizations of Urysohn's Lemma).

In §2 we develop the formal calculus of coverings. In
§3 we define normal sequences of coverings and normal coverings.
In §4% we connect the notions of normal covering and normal
space. In §§5-6 we obtain some results about star-finite cov-
erings. In §7 we discuss pseudo-metrics, in §8 metrics, and in
§9 continuous real-valued functions. In §10 we close with some
historical remarks.

2. Calculus of Coverings. We shall develop some of the more
formal properties of coverings. We recall that a collection,
M = {M,|A} of subsets of X 1s a covering (of X ) 1if
X=1U {MaIA}. A covering ™M 1s a refinement of a covering § ,
written M<C , 1f each set M of M is contained in some set
L of £ . This is clearly a transitive relation ordering the
class of all coverings.

We introduce two important operations on classes of
coverings, A and V . A{M,|A} , sometimes abbreviated
A, or A, M, , consists of all sets N {M,|A}, where
MaeMR,. ViIMJIA} , sometimes abbrevwiated VM, or V,M, R
consists of all sets M , where Me9R, for some a . Clearly
V and A preserve the property of being a covering. We
(somewhat improperly) call A and V intersection and union
respectively.

43
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We clearly have,
2.0 SR UM VI 1AL S .In particular M<HIR,
2.2 ““.m.d: for all acA implies V(IR 1A}<C.
2.3 ***0 MM 1Al s in particular i<,
2.% $eer L <M for all acA implies L<MR 1A},

We observe that these relations imply that the coverings
of X and the relation of refinement make up a complete trellis
in the sense of I-3.

If M<L<M, we write L ~I% and say that £ and M are
equivalent.

Associated with M= { My A} there are the binary cov-
erings {M,,| Al , where M,, consists of the two sets M,
and U{Mgila' # a} . We see that

2.5 **°°, M is equivalent toA{M wiAly the intersection of its
associated binary coverings.

We now introduce the notion of the star S(H,”®) of a
set H 1in a covering M, which is the union of all the sets of
M meeting H . Clearly,

2.6 "***, HcK implies S(H M)=8(K,M).
2.7 ****, M<N japlies S(H,M) =S (H,%).
2.8 ****. $(H,A{m, 1A})=0{S(H, 2 )1A}.
2.9 ****. S(Hvim, 1A})=U(S(H, 7 )IA}.

We write 38(x,®) for 8S({x}J) and we constantly make
use of the equivalence of

a) x and y are in a single set of M,
b) xe= S(y,Mm , :
e) ye s(xm .

We define iterated stars by
2.10 S (H,M)=8 (S n M), M),

We now define two important operations on coverings.
Mm* consists of the sets S(M,%) , where MeM.
M® consists of the sets S(x,7) , where x = X . We see
easily that we have

2.11 ****, M<n inplies both M'<N* and Mien4
2,12 ****, M *<n for each ach implies  (A{MR 1A})® <A(R, 1A} .
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2.13 ****, s(s(n,m),m)=s2(h,Mm)=5(n,Mm9).
2.1 T M-8 (x M) Ixe X .
2.15 ****, Mma- - -8 tan2 """’={s’"(x.‘ﬂ?,)lxex}.

We now have the important
2.16 Lemma. M <M*<Me",

Proof. Each x' belongs to some M'e M : hence (2.6)
S(x' M) = S(M',®) . We have shown that Mm&m*.

Let M*=Mm* ; then M* = S(M',) for some M'eM.
Let x'e& M' ; then M'c S(x'®) . Now (2.6, 2.7)
M* = S(M', %) = S(S(x',m) M) = s2(x',M) , which belongs to M**
Hence Mm*<m®®

We define the important relations * and 4 by
M %§ Iif M*x <L , and Maf 1f M*<L . Where no confusion
can arise we write m¥(g . If Mg , then M is a star-
refinement of £ . If "M4af , then M 1s a g-refinement of
g .

The restriction HoM of M to H 1s a covering of X
consisting of the set S(X-H ) , and those sets of M in-
cluded in H . We clearly have

2.17 *7*. Mc<cHoM<(H,S(X-H,M)).
2.18 ****, If M<C and H> K, then HoM<KofL.
2.19 Lemma. M%<, then HM"<HoL .

Proof. Let M'e HoeMm. If M' = S3(X-H,”) , then (2.13, 2.16)
S(M',Hom) = 3(S(X-Hm),® < S(X-H,f) , which belongs to Hef.
If M'e"™ and meets S(X-H,M) , then S(M',Hom)

= 3(M',m) v S(X-Hm) . Further, we see that S(M',m) , which

c L'ef , meets X-H ; so that S(M',m)v S(X-H,m) < S(X-H,L),
which belongs to Hef{ . Finally, if M'eMm and does not meet
S(X-H,m) , then S(M',Hem) = 3(M',M) which surely 1is contained
in a set of £ , and hence of Hef . Thus the lemma 1is proved.

Another sort of operation which must be carefully dis-
tinguished from the last 1s that of intersecting with H . The
result HnaM 1s the covering of H (not of X ) made up of the
sets HnM , where MeM . Clearly,

2,20 ****, M<f implies HnM<Hng.
2.21 ****, M%L jmplies HaM*<HAL .
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A covering 1s finite if it consists of a finite number
of sets. A covering is star-finite if each of its sets meets a
finite (but not necessarily bounded) number of its other sets.

2.22 ****, I1fMm Is star-finite, then.so are W', M**, *°* .

A collection of coverings is star-finite if the union
of each pair of these covering 1s star-finite.

2.23 ****. The union of any finite number of coverings of a
star-finite collection of coverings is star-finite.

2.2% ****, A sequence {”Mm,} of coverings is star-finite If and
only ifm vm is star-finite for each n.

We extend the notion of equivalence to classes of cov-
erings. {M/(A} 1s equivalent to {f,|B} 4if both for each a
and some b f,b<'m., and for each b and some a M<g,.

We shall have occasion to consider the inverse images
of coverings. We easily see that

2.26 ****, 1f f Is single valued, then m<C implies £ (Mp<t (L),

2.26 ****, If f |s single valued, then M%L luplies
) X2 (L).

3. Sequences of Coverings. For the remainder of this chapter
and in the succeeding chapters we consider only open coverings
(that is, coverings made up of open sets). These we will refer
to merely as "coverings." The reader may easily verify that

A (of a finite number of ccverings), v , *,4, 1o,
and Hn aro operations taking open coverings into open cover-
ings.

A sequence {u,} 1s a normal sequence, if Wu,,%u,
for each n . A covering U 1s normal if a normal sequence
{U,} exists with Ue<U .

3.1 Lemma., Every covering in-a normal sequence is normal, The
intersection of a finite number. of normal coverings is normal.

Proof. Let {B,} be a normal sequence and consider By . Let
Up =B, ;5 then {U,} 1s a normal sequence, and
%, =8,4<B, ; hence %, 1s normal.

Let {1} Vbe a finite collection of normal coverings.
U, 1is normal, so there is a normal sequence {&,,} with
Ug<¥, . Now (2.12, 2.3, 2.4), if ®, =A{y,,la e A},
then B.<B, and B<<A{U,| A} . Hence {%,} 1s a normal
sequence, and A {U,! A} 1is normal.
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We easily see (2.16) that

3.2 ****. 1f U _<U,, then {{,} is a normal sequence.

3.3 Lemma. If {yu, satisfy

3.8 xes(_y,u:‘l) and zes(y, U}, ) imply xes(z,1),
then

3.5 s{x,uz )<s(x,u),

and each U’ is-a normal covering.

Proof. Let ze 8(x,Uh, ) ; then, for some 7y ,

3(y, Upy) E Una contains both x and z . Hence (3.4%)

x e S(z,Uy) and 3.5 is proved. Since 8(x,u,)e Ui

ve see that Mp,< W, . Hence (3.2) {W, IN} 1s a normal
sequence, and since 11;,%31: N 11: is normal.

From 2.25, 2.26, and III-7.8 we easily see that

3.6 ****, If f is.continuous on X to Y, and if {u,} is a normal
sequence in Y, then if'(U )i is a normal sequence in.X.

3.7 ****, If f is continuous on X to Y and lfil-h-nornl iny,
then f2(U) is normal-in X.

4, Normal Spaces. We have

%.1 Theorem. The following conditions on a space X are ejuiva-
lent:

‘%.2 Every binary (open) covering of X has a {(finite and open)
<J-refinement.

4.3 Every flnite (open) covering.of X has a (finite and open)
< -refinement.

%.% Every finite (open) covering of X is normal.
%.5 X is - a normal . space.

Proof. Any finite open covering is equivalent to a finite in-
tersection of binary coverings (2.5), each of these binary cov-
erings has a finite q-refinement (4.2); the intersection of
these finite coverings is a dJd-refinement of the given finite
covering (2.11). Thus 4.2 implies %.3.

Let ® be a finite covering of X ; by successive
applications of 4.3 we obtain finite coverings, 8,
n=2,3% .-+, such that B, ,9®, ; hence (3.2) %8}
is a normal sequence and, since ®,<%® 5 B, 1s normal.
Thus 4.3 implies 4.4.
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Clearly 4.4 implies 4.2; hence 4.2, 4.3, and 4.4 are
equivalent.

If X 1s a normal space (I1I-8.5), and if {U',U"
is a covering of X , then X-U' and X-U" are disjoint and
closed, so that V' and V" exist with X-U'c V', X-U"c=V",
V'an V" =g . Then {V',V",U'a U"} 1s a finite covering, which
is a q-refinement of {U',U"} . Thus 4.2 holds.

If 4.2 holds, and if H and K are disjoint closed
sets, then {X-H,X-K} 1s a binary open covering. If U 1is a
q-refinement of {X-H,X-K} , then for no x does 3(x,1) meet
both H and K, so that S(H,1) and 3(X,!U) are disjoint
open sets, containing H and K respectively. Thus X 1is
normal.

Hence 4.2 and 4.5 are equivalent and the theorem is
proved.

4.6 Lemma. If F' and F" are disjoint closed -sets in-a normal
space, then there exists a finite normal covering B such that
F' and S(F",B) are disjoint sets.

Proof. If Ba{X-F',X-F"} the reader may show that F'n S(F",B)

= o

If {U} 1s a particular basis for X , then a covering
{U',X-U"} 1s a basic binary covering of X if U' and U"
belong to {U} .

%.7 Lemma, If X is a normal T-space, and {U} Is a given -basis
for X, then, for all x, {S(x,1)I a basic binary covering} is
a nbd basis at x.

If the given-basis-is-countable, then there are a
.countable number of baslic binary coverings.

Proof. If xeU , then (III-8.6) there exist sets U' and U"
of the given basis, with xeU"cU"cU'cU'cU . Now
o = {U',X-U"} 1is a basic binary covering, and S(x,1) = U'cU.

There are a countable set of pairs (U',U") of basic
open sets; a fortiori there are a countable set of basic binary
coverings.

5. Star-finiteness. If A 1s infinite, then A, |A} need
not be an open covering. However, we have,

5.1 Lenma. If {V.IA}‘h-c star-finite open covering, and if
esach u.~h open, then R={(% 1A}, where R,=V e ls-an open
covering.
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Proof. Let xeR = A R, vhere R,&R and each R, e R
Then, for some a' , xe Vgt ; 1let a contain all a for
vhich VoaVy # 8 . If a & o, the only set of R = Vol
meeting Vgr 1is S(X-Vg,U,) ; hence, for ada,

Rg = S(X-Va,lUy) D Vgr . Now (II1-6.7) W = Vain(N {Rylaesa)
is open, and xeWc R . Hence R 1s a nbd of each of 1its
points, and (III-6.4) open. This proves the lemma.

5.2 Lemma. |If {Vgll} is-a star-finite open-covering, and if
each 1, is-normal, then Mv.ou.lA} is normal.

Proof. Since 11. 1s normal, there exists a normal sequence
{4,,} with <% . Now (2.19) Verllgpa * Vpell,
hence (2.12) {Vge g | A} % /\{Vaouul A} . Since all these
coverings are open (5.1), we see that A{Vgellzu | A 13 a
normal sequence. Since A{Vgo Wyl A} < {V,eU,lA , the lemma
is proved.

5.3 Theorem. A star-finite covering 1l is normal if and only if
each of its associated binary coverings is normal.

Proof. Let 1 = {UalA} ; then W<, Ffor each a . If u
1s normal, then each )Jm 1s normal.

Suppose that each 1, 1s normal. Let V, = S(U,1U) ;
then Ugn S(X-V,,1) = § , whence Vyolly, ~Uy, Hence (2.5,
2.3, 2.4) U~ MU, A ~ A{Vaoll,, | A}. Now (2.22)
U* = {Va[A} 1s star-finite, so that (5.2) A{Vao U,,lA} 1s
normal. Hence 1l is normal.

5.9 Theorem. A space is normal if and only if every star-finite
(open) covering is normal.

Proof. Normality of the space implies (4.3, 5.3) that every
star-finite (open) covering is normal. Since every binary cov-
ering 1s star-finite, the remainder of the theorem follows from
4.3,

6. Typical Refinement.

6.1 Theorem. 1If1 is a star-finite normal covering, then it
-has-a star-finite and normal star refinement L', such that Uvu’
is star-finite.

Proof. Let um and V, Dbe the same as in the proof of 5.3.
Then (5.3) each U, has a normal star refinement 1, ,
vwhich (4.2, 2.16) may be taken to be a finite covering. As in
the proof of 5.2, we see that ' =A { VaoUygy} 1s a star-
refinement of I and that U' 1s normal. Fix a' , then,
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since B = 1u* 18 star-finite, there is a finite set a of a
such that V, meets W . Let R = A{Rs/A} be a set of

U' which meets Ugr , where Rg&Vgqollgy . If ad a, then
Van Ve =@, 80 that RueVaell,y must be S(X-Va'lg, ) .
Hence the different R's meeting Ug: differ only in the Ra's
for a¢a . Since Vaell,, 1s finite for each a , 1t fol-
lows that Ugr meets only & finite number of sets of 1U' ,

and, since 1'«<1 , the theorem follows.

6.2 ****. Every star-finite normal covering is-the first membder
of a normal sequence which is a star-finite collection of
-coverings.

7. Special pseudo-écarts and pseudo-metrics. A real valued
function of two points in X is a special pseudo-écart or _s_gé
ifr

1° f(x,x) =0,

2°  f(x,y) = f(y,x) 20 .

30 for every e >0, f(x,y) <e and f(y,z) ¢ e
imply f(x,z) ¢ 2e ,

40 for every xe=X and e >0 , ({yIf(x,y) ¢ o}
1s an open set.

The next lemma is a trivial generalization of a simple
and important lemma due to Frink; the reader is referred to
Frink 1937 (p. 134) for the simple proof.

7.1 Lemma. - If f ls-a spé, and If x;,x,'**,x, are any n+2 points
of X, then

'f(‘gvh)ﬁzf('opﬂ)"f (ﬂlox,) +r0r +Uf ‘&.p‘,.)"‘Zf (x,,oﬂ,.,_) .
‘in particular,

f (‘o' ‘ml)é'.g f ('r ’ xn).) ¢

If we replace 3° by the stronger condition

3* fx,z) £ £(x,y)+£(y,2)
then a function satisfying 1°, 2°, 3%, and 4° 1s a pseudo-
metric.
7.2 ****, A psewdo-metric is continuous in both variables
together. (That -is, given-x', x" and e>0, there are open sets
U's x' and U"s x" such that, if x*=U' and x**=U", then
1F(x?,x")=f(x*,x**)|<e).
7.3 Leama. (Frink 1937). If £ is a spé, then-there is-a
psevdometric r such that '

f(x,y)er(x,y)sf(x,y).
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Proof. Let r(x,y) = inf{ i f(xp,Xry1)} , Where xg = x ,

Xn+l =Y &and the infimum is taken over all n 2 0 and sets
X1,'°*yXpn of points of X . The reader may easlly verify that
r 1s a pseudo-metric, and that (7.1) it has the desired rela-
tion to f .

If f 1s a spé, then we may use it to define a sequence
of (open) coverings. The covering 1, consists of the sets
{ylf(x,y) < ¥} , where xe= X . This sequence of coverings
and any equivalent sequence 1s said to be associated with f .

7.4 Theorem. Every normal sequence of coverings is associated
with a psevdo-metric, and any sequence of open coverings associated
associated with a pseudo-metric consists of normal coverings

and contains a normal subsequence.

Proof. Let 'lJ.n be a normal sequence of coverings. Set
f(x,y) =0 1if xe3(y,1,) for all n ; set f(x,y) =1

if xe8(y,1) ; eand set f(x,y) =27 if xe=8(y,U,) and
x e 3(y, Up) - Then f 1is clearly a spé, and {lI;} 1s as-
sociated both with f and with the pseudo-metric connected
with £ By 7.3. We observe that

7.5 XES(y,lI”) implies r(x,y)>2-'"2",
The proof of the remainder of the theorem is left to
the reader.

8. Metrization. A metric is a pseudo-metric satisfying

1* f(x,y) = 0 1s equivalent to x =7 ,
and

5° f(xp,x)—0 1implies x,—x . We remark that the
continuity of f (7.2) implies the converse of 5° .

The sphere of radius e (in the particular metric f )
ahout x 1s defined by

8.1 S(x,e)=fx'|f(x,x')<el.

The spherical covering of radius e 1s defined by
8.2 Uu(e)={8(x,e)|xeX}.

We clearly have (3*)
8.8 ****, s(x,e)c=8(x,U(e))=38(x,2¢).

.We easily see that

8.8 ****, A spé satisfles 5° if and only if -one of its asso-
clated sequences, n,, satisfies

8.5 For all x, {S{x,U )ineN} is a nbd basis at x.
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Now we have,

8.6 Theorem. In a T-space the following conditions are equiva-
lent,

8.7 X is metrizable.

8.8 There exists a countable collection {ll} of normal cover-
ings satisfying 8.5.

8.9 There exists a normal sequence {1, of coverings satisfy-
ing 8.5,

8.10 There exists a sequence {iI} of coverings satisfyjng 8.4
and 8.5

All these conditions are implied by

8.11 X is s normal space with a countable basis.

Proof. If 8.7 holds, then (7.4) the metric is associated with
a normal sequence, which (8.4) satisfies 8.5; hence 8.9 holds.
Conversely, if 8.9 holds, then (7.4) there is an associated
pseudo-metric, which (8.4) satisfies 5°; hence 8.7 holds.

If 8.8 holds, then there exist normal coverings 8,
so that 8,4 *<yam,, for B, , U, and therefore B,au,
are normal., It is clear that {8y 1s a normal sequence, and
(I11-6.17) satisfies 8.5; hence 8.9 holds. Clearly 8.9 implies
8.8.

Now 8.9 clearly implies 8.10. If 8.10 holds, then
(3.3) {uU{} are normal and (III-6.17, 3.5) satisfy 8.5; hence
8.9 holds.

If 8.11 holds, then (4.7) the countable collection of
basic binary coverings satisfies (8.5), so that 8.8 holds.

8.12 Theorem. Every (open) covering of a metrizable space Is
normal.

Proof. Let X be the metrizable space, and let f be some
metric for X . Let 1= {UalA} be an open covering of X .
Now (8.2) for each x , some e >0 , and some a ,

xe S(x,e) = Uy . We choose e(x|X) and a(x|X) so that

0 <e(x) <« 1; 8(x,be(x)) cUa(x) .

Then B = {Vx])X} , where Vy = 8(x,e(x)), 1s an open covering
of X . We shall prove that %al

Fix x' , and consider H = {x|lx'e %} . (x'e H,
so that H # #) . We may choose x*e< H , so that
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e(x*) >
Then, 1f xe H

Vy = S(x,e(x)) = s(x',2e(x)) < s(x',3e(x*))
< S(x*,lhe(x*))

-;— supf{e(x)|x = H} .

This holds for any x such that x' e Vy ; hence
S(x',B) < S(x*,4e(x*) ) < Ug(xx)
Since =x' was arbitrary, we have shown Bal

If U, 1is any open covering of X we have just proved
that we can find successively coverings 11, so that U <1,
Hence (3.3) {ll,,} 1s a normal sequence; and, since <1, ,
U, 1s normel.

An immediate consequence of this theorem is

8.13 ****, Every metrizable space is normal.

We shall say that a space is fully normal if every open
covering is normal. We may rephrase 8.12 as

8.14 ****, Every metrizable space is fully normal.

9. Continuous Real Vaiues Functions. If we have a pseudo-metric
r , we define a corresponding function of subsets by

r(x,K) inf{r(x,k)|x € K}

and
I'(H )K)

9.1 ***r,

inf{r(h,K)|h € H}
r(x,H) is continucus in x.

9.2 Theorem. {(f 1 is a normal covering and H is any set, then
there exists 8 real-valued continuous function h so that

_J0, xesH,
""‘)'{l, xe8(H,1).

Proof. Let {1,} be a normal sequence, where U,<U ; 1let r
be the associated pseudo-metric determined in 7.5. If
x ¢ S(H,1) , then (7.6) r(x,H) 2 1/4 . So we may take
h(x) = min{1, 4r(x,H)} ,
and thus prove the theorem.

We now generalize Urysohn's Lemma.

9.3 Theorem. The binary covering {U',U"} is normal if and only
if there exists a continuous real valued function h such that

_[o, x¢u!
h(x)-{ 1, x¢b”
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Proof. If such an h exists, |h(x)-h(y)] 1s a pseudo-metric
associated (7.4) with a normal sequence U, . Since

U, <{u',0"} for some k , it follows that {U',U"} 1is nor-
mal.

If = {U',U"} 1s normal, then, since S(X-U',lI) = U",
we may apply 9.2 to X-U' and U .

10. Historical remarks. The notions of *¢ , q , and the re-
lated ideas appear (in an incompletely formalized state) in
topology since Urysohn's earliest work on the metrization prob-
lem. How much further back they may be traced I do not know.
However, I belleve that this is the first attempt at their sys-
tematic exploitation.




Chapter Vi
STRUCTS

1. Introduction.

2. Uniformities.

3. Agreement.

§. Structs.,

5. Uniform Continuity.
6. The Metric Case.

7. Analogy.

8. Completeness.

9. Completion.

10. Historical Remarks.

1. Introduction. In this chapter we are concerned with structs.
A struct 1s a space in which there is a sultable notion of uni-
formity. (The connection between the notion of a struct and
some of the similar notions recently considered is discussed in
§10). We develop only the fundamentals of the theory.

In §2 we deflne uniformity, and in § 3 we discuss the
agreement of uniformity and topology. In §l4 we discuss structs,
and in §5 uniform continuity. In §6 we discuss the special case
of metric spaces, and in §7 we note some interesting analogiles
between the transitions from set to space and from space to
struct. In §8 we define and discuss completeness, and in §9
we carry thru the completion of a struct.

2. Uniformities. A uniformity in a space X 1s a collection
fI} of (open) coverings of X satisfying

2.1 If U<u' and Ueim), then e {1).
and

2.2 Ifu,u"e{yy » then, for some U"'eqy , U"' ¥ UuU°*,
ul' ¥ .

55
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A subcollection {B) < ) 1s a basis for the uni-
formity wun 1if

2.3 {ul={nl”<’l’3§‘mn

We say that {8} induces the uniformity {} . A collection
1s a basis for some uniformity if and only if 1t satisfies 2.2.

A subcollection (m‘IAic{m 1s a sub-basis for the
uniformity {U} 1if

2.5 = WU, ach}.
We easily see that
2.6 ****. a) A collection {18 |A} is a sub-basis for some
uniformity if and only if it satisfies
2.7 1f p<im), then, for some W= (W), " < W',

b) A collection (B} is a basis -for some uniforamity
if and only if it satisfles

2.8 If B', 3"<{B}, then, for some B"'e (B}, B"'<B'AB",
and
2.8 If B'={m , then, for some B"={B} , B"a B,

We also see that

2,10 ****, Two collections of coverings, at least one of which
is a basis of some uniformity, are bases of the same uniformity
if and only If they are equivalent (Vv-2),

We shall often have occasion to use

2,11 ****, 1f (3, ]A} is a basis for a unifermity to whieh I

belongs, and If n is any integer, then, for some-a A, we have
i} Seee®tn times) ¢ u,

" (x,%)|x}%<u,
and, for all Hc X,
s*(n,u,)es(n,u).

There 1s a notable connection between normality and
uniformity, for we have,

2.12 Theorem. Every covering appearing in a uniformity ls
normal.

The collection of all the nmormal coverings (of any T-
space) is a unifurmity.
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Proof. Let {m) be a uniformity, and let A, e {u} . Then
(2.2) we may choose U, e{i} so that U u*<1U,. is a
normal sequence, and U,<1f; , hence U, 1s normel.

The second statement follows from the definition of
normality and V-3.1.

If {I} and {8} are uniformities of X , then we
say that (U} 1is finer than (@} , 1f {W}>{B} .

We easily see (2.6 b), V-4) that the finite normal cov-
erings of X form a basis for a uniformity of X . We denote
this uniformity by fX . We denote the uniformity made up of
all normal coverings by aX . If the enumerable normal cover-
ings are a basis for a uniformity, then we denote the uniformity
by eX . It is important to observe that these uniformities are
topological invariants of X .

We may restate the last part of 2.12 as
.2.13 ****, aX is the finest uniformity of X.

5. Agreement. We begin with

3.1 Lemma. If {il} is a uniformity of which {U_[A} is a basis
and {11, |8} is a sub-basis; then the following conditions are
equivalent.

3.2 For all x, {3(x,u)]us{m} = {U|xesU, U is open}.
3.3 For all x, {S(x,U )fA} is a nbd basis at x.
3.4 For all x, {s(x,1 )8} is a nbd sub-basis at x.

Proof. Assume 3.2, and let N be a nbd of x . Then
xeUc N, and, for some Ue{ll} , U =S(x,U) . Let U, < U
then 8(x,U,) = 8(x,U1) = N ; hence 3.3 holds. Let g8 be such
that AU, <X . Then (V-2.25) Qs(x,u,,) — S8(x,I) = N, so
that 3.& holds. The converse arguments are the same, with the
addition of the fact that, if S(x,X) < U and ' =1 {0} ,
then S(x,u') =T .

If these equivalent conditions are satisfied, then we
say that the uniformity agrees with the topology. It 1is clear
that 1f {lI} agrees with the topology of X , then so does
every finer uniformity. Not every T-space possess a uniformity
agreeing with the topology. In fact we have,

3.5 Theorem. The following conditions on a T-space are
equivalent:



58 STRUCTS

3.6 If x'eU' and U' is open, then there is a continuous real-
valued function h with

0, x=x',
h(x)={" xd ',

3.7 If x'eU' and U' is open, then {X-{x" ,uS is a normal
covering.

3.8 Some uniformity gX of X agrees with the topology of X.
3.9 The uniformity aX agrees with the topology of X.
3,10 The uniformity fX agrees with the topology of X.

Proof: We know (V-9.3) that 3.6 and 3.7 are equivalent, since
x' 1s closed, as a point of a T,-space. Assume 3.7, and let

U be anbd of x . Then (3.7) {X-{x),U} 1s normal and be-
longs to fX . 8ince the star of x 1in this covering is U ,
3.10 holds. 3.10 clearly implies 3.8. 3.8 implies 3.9, since
(2.13) aX 41s finer than gX . We need now only prove that
3.9 implies 3.7. Assume 3.9, and let x' e U' . Then, for
some NeaX , S8(x',M) < U' . This means that

U< {X-&x",0% , and so {X-{x",U"? 4s normal and 3.7 holds.

A T;-space satisfying these equivalent conditions is a
completely regular space (Tychonoff). We may derive several
consequences from 3.5. We begin with

3.1) Lesma, Every normal T-space is completely regular.
Proof. {X-ix},U}l 1s a binary open covering and hence normal.

3.12 Remark. For T,-spaces we may regard 3.7 as a natural di-
lution of the requirement of normality (when this requirement

is expressed as "every binary open covering is normal.")

3.13 Lemma., |If a T-space X satisfies any of 3.6 through 3.10

then so do its subspaces. .

Proof. This is clear (III-5.2, III-7.3) for 3.6, hence (3.5)

it is true for all.

For the remainder of this chapter we will consider only
completely regular spaces. Hence we will use "space" to mean
“"completely regular space.”

3.1% Definition. A struct is a (completely regular) space and
a uniformity of that space which agrees with the topology of
the space.

We refer to the struct, loosely, in the same way that
we refer to the uniformity. Thus aX 1s a struct as well as a
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uniformity. We use gX , hX , ... for general structs over
the space X .

4. Structs. A basis [sub-basis] for the uniformity of a struct
is a basis [sub-basis] for the struct. A basis consisting of
finite coverings is an f-basis.

The coverings belonging to the uniformity of a struct
gX are sald to be large in gX .

If Y 1is a subspace of X , and gX 1s a struct over
X , then we may define a struct gY by

.1 %W is large in gY if W=y, where Il is large in gX.

We call gY a substruct of gX if 4.1 holds. It 1s important
to notice that 1if Y 1s a subspace of X 1t need not be true
that &Y 1s a substruct of aX , or that fY 1s a substruct
of fX . And it may happen that Y 1s a subspace of X and
gY 1s a struct, but there 1s no struct hX of which gY¥Y 1is a
substruct. !

We often deal with a struct gX and a fixed basis
{u(a)|A} of gX . Under these conditions, we often abbreviate
S(H,u(a)) to 8(H,a) . If gY 1s a substruct of gX , and if
il (a)|{A} 1s a basis of gX , then {Yall(a)]A} 1s a basis of
gy .

We see that we have,

4.2 *™**. A necessary and sufficient condition for x(g|B) to
converge to x, is the existence of an integer n and sets {g.ll}
such that pop, implies x(p)es"(x,a). (Here (a)lA} is a
basis for gXJ)

A result of considerable importance is

4.3 Lemma, If X is compact, if gX is a struct over X with basis
{2(a)[A3, and if B is any (open) covering of X; then, for some
s, U(a)a®,

Proof. We choose a(«JA) so that U(a(e)) <i(a) for all a
in a . If the lemma were false, then, for each a and some
x(a) , 8(x(«x),a(a)) would fail to lie on a single set of B
X 1s compact, so (IV-4.3) x(«lA) has a cluster point x' ,

which must be in an open set V'e B . Now (3.3), for some
a', 8(x',a') = V' . And (2.11) we may choose a" so that
8%(x',a" < 8(x',a') . Take a' 80 that «' > a" and

x(a') = 8(x',a'). Then S(x(a'),a(a')) = 3(x(a'),a")
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< 8¥%x',a") = 8(x',a') &= V' , which is a contradiction.

From this lemma we derive

4.4 Theores. If X is compact (and completely regular), then It
has one and only one uniformity agreeing with its topology, and
this uniformity is made up of all (open) coverings.

On a compact (and completely regular space) there is one.
and only one struct.

Every (open) covering of a compact completely.regular
space is normal.

Proof. Some gX 1s (3.8) a struct over X and (4.3) every
(open) covering of X is large in gX . Hence gX = aX for
all gX . Furthermore, all (open) coverings belong to aX .

An easy consequence of this result is

¥.5 ****, Every compact (completely regular) space is fully
normal.

We call the unique struct over a compact space a com-
act struct, and often refer to it by X alone.

From V-4.6 we easily see that

4.6 ****. If {ll(a)|A} is a basis for the compact struct X, and
If F' and F" are closed disjoint sets in X, then, for some a,
F'nS(F",a)=§ :

We say that gX 1s largely compact if it has an f-basls,
Clearly every compact struct is largely compact. The name 1is
Justified by

4.7 Lemma. A struct gX Is largely compact If and only if every
large covering has a finite subcovering.

Proof. Lpt gX be largely compact, let P be large in gX ,
and let {l(a)]A) be an f-basis for gX . For some a ,
U(a)<®B . Now NY(a) = Uy, -*,U, , and there are Via B
with Uy < Vy for each 1 ., Let ®' = {V,,***,Val; since
U{vy} Du{uy} =X , %' 1s the desired finite covering.

Conversely, if every large covering has a finite sub-
covering, these finite subcoverings form an f-basis for gX .

5. Uniform Continuity. We have

6.1 Lemma. If ¢ is a continuows function on gX to hY, whose

bases are {il(a)|A} and {B(b)|B}; then the follewing conditions
are sguivalent.
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5.2 1f®% is large, then ¢ (%B) is large.

5.3 There is a function a(b|B), such that x'e3(x",a(b))
implies g(x')e=s(p(x"),b).

5.9 @ '(B(b)) is large for all b.

Proof. Assume 5.4, then @*(8(b)) 1is large, so that, for
some a = g(b) ,» B(e)< @1 (8(b)) . This clearly implies 5.3.

Assume 5.3, and let P Dbe large. For some b y
B(b) < B; hence @?(B(b))< @2 (B) . Choose b' so that
B(b*)*< B(b) , and choose a' so that W(a')*< U(a(b')) ;
1f we prove U(a')< ¢! (B(b)) , we will have proved 5.2.
Let Ue U (a') and x'e U . Then U < 38(x',a') , and
9(0) = ¢(8(x',a')) = 8(x'),b') = V, vwhere Ve %(b) .
Therefore U e ¢ (V) and 5.2 holds.

Clearly 5.2 implies 5.4.

If ¢ satisfies these conditions, we say that it 1is
uniformly continuous.

The following result is interesting and useful.

5.5 Theorem. A continuous function on an f-struct fX to a
largely compact struct gY is uniformly continuous.

A continuous function on an a-struct aX to a struct gy
is uniformly continuous.

Proof. These results follow immediately from V-3.7 and 5.4.
Combining this result with 4.6 we have

6.6 ****. Every continuous function on a compact struct is
uniferaly-continuaus.

A one-to-one correspondence between two structs, which
is uniformly continuous in both senses, is a unimorphism. From
the point of view of the theory of structs, two unimorphic
structs are abstractly the same.

6. The Metric Case. The intuitive nature of the machinery
which we have set up may perhaps be clarified by considering
the speclal case of metric spaces. We begin with

8.1 Theorem. A space is metrizable If and only If it is the
space of a struct with a countable basis.
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Proof. This is essentially a rewording of part of V-8.6, for
v-8.8 holds in a struct with a countable basis, and V-8.9 im-
plies the existence of a struct with a countable basis (the
normal sequence).

If we have a metric space, that 1s, a metrizable space
with a particular metric; then on that space we can erect a
struct in a natural way. We shall use the notation of V-8,
The coverings, 1, , by e-spheres are a basis for the struct.
That is, a covering is large if, for some e > O and all x ,
the set 38(x,e) 1s in a single set of the covering. 1In the
case of a compact metric space, the greatest such e 1s called
the Lebesgue constant of the open covering. 4.3 is a general-
ization of the classical result that any open covering of a
compact metric space has a positive Lebesgue constant. From
4.6 we can derive the corresponding result for closed coverings.

We see that our definition of uniform continuity re-
duces in the case of a metric space to the classical one of
analysis

The notion of "largely compact" corresponds to that of
"total-boundedness," and 3.10 is related to the classical re-
sult that every separable metrizable space can be meterized so
that it is totally bounded.

How much of the individuality of the metric are we us-
ing? It is easy to see that two metrics yield the same struct
1f and only if they uniformly continuous functions of each
other.

T. Analogy. There i1s an interesting and unexplained analogy
between structs and T,-spaces. We give parallel definitions
and theorems in parallel columns.

A set. A completely regular space.
A T -space. A struct.

A subset. A normal covering.

An open subset. A large covering.

A discrete space (every An a-struct (every normal
subset 18 open). covering 1is large).

Every function on a Every continuous function on
discrete space is an a-struct is uniformly
continuous. continuous.

A finite set. A compact space.

A finite set has only one A compact space has only one
topology (as a T,-space). uniformity (as a struect).

8. Completeness. One important property of metric spaces which
we have not considered for structs is completeness.

We begin with the notion of Cauchy mapping. A mapping
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x(b|B) of a directed system B into a struct gX 1is a
Cauchy mapping if it satisfles

8.1 If is large, then, for some x', x{(b|B) is ultimately in
s{x"u).

It 1s clearly sufficient that 8.1 hold when 1I runs
thru a basis of gX . This is easily seen to generalize the
usual notion of a Cauchy sequence in a metric space. We shall
most frequently be concerned with Cauchy phalanxes.

We see immediately (Most of the proofs left to the
reader in this £ require frequent use of 2.11) that

8.2 ****, Every convergent phalanx is a Cauchy phalanx.

8.3 ****, A cluster point of a Cauchy phalanx is a limit. of
the phalanx.

8.4 ****, The uniformly continuous image of a Cauchy phalanx
is a Cauchy phalanx.

8.6 ****, If gX is a substruct of gY, and if x(F)cX, then
x(qlc) is Cauchy in gX if and only if it is Cauchy in gY.

Two Cauchy phalanxes are a Cauchy pair if the result of
meshing them (III-2) is a Cauchy phalanx.

8.6 ****. If i _|A} Iis a basis for gX, then

a) x'(R|B) and x"(yIC) are a Cauchy pair- if there exists
an integer n and points {x_|A}, so that both x'(p[B) and x"(v|C)
are sltimately in $"(x_,a), for each a.

b) 1f x'(gIB) and x"(y|C) are a Cauchy pair, there
exist points {x _|A} so that x'(g|B) and x"(y|C) are both
vitimately in S(x_,a) for each a.

8.7 ****. The uniformly continuous image of a Cavchy pair is a
Cauchy pair.

8.8 ****, If gX Is a substruct of gY, and x'(p|8) and x"(v]¢)
are in X, then they are a Cauchy pair in gX if and only if they
are a Cauchy pair In gY.

8.9 ****. The relation of being a Cavchy pair is anm equivalence
relation.

8.10 ****, If x'(B|B) and x"(v|C) are a Cavchy pair, and If
x'(B|B) converges to x', then so does x"(7|C). Conversely, any
pair of phalanxes converging to x is a Cauchy pair.



64 STRUCTS

A struct gX 1s complete if every Cauchy phalanx is
convergent. From 8.4 we easily see that

8.11 ****. A unimorphic image of a complete struct is a
complete struct.

From 8.2 we see that

8.12 ****. If gX is complete and gY is a substruct of gX; then
gY is complete If and only If Y is closed in X.

8.13 Lemma. In a largely compact struct esch ultraphalanx iIs a
Cauchy phalanx.

Proof. An ultraphalanx is decided about any finite covering.
Since X has an f-basis, we see that every ultraphalanx in
gX 1s a Cauchy phalanx.

8.14 Theorem. A largely compact struct is complete If and onlTy
If it is compact.
A compact struct is complete

Proof. If gX 1s compact, tnen every Cauchy phalanx has a
cluster point, which is (8.3) a limit. Hence gX 13 complete.

If gX 1is complete and largely compact, then every
ultraphalanx, being (8.13) a Cauchy phalanx, is convergent.
HBence gX 18 compact.

We say that hY is a completion of gX , if there is
a unimorphism ¢ , such that ¢(gX) 1s a substruct of hY ,
and ¢(gX) = by .

8.15 Lemma., If gX Is a substruct of gy, and @ s a unifornly
continuous function on gX with values in a complete struct hZ;
then there is-a unique extension y of ¢ to gX and has values in
hZ.

Proof. Let ¥y & X , then (8.2) there is a Cauchy phalanx
x(71C) converging to y , with x(I') = X . Now (8.4, 8.5)
¢(x(9)]C) 1s a Cauchy phalanx in hZ , and hence has a limit
2 in hZ . If ¢y 4is a continuous extension of ¢ , then
(111-7.3) @(y) = 2 . We see that this process leads to a,
unique 2z for each y . For if two different phalanxes con-
verge to y , they are (8.10) a Cauchy pair, and (8.7, 8.8)
their images are also a Cauchy pair and (8.10) converge to the
same 2 . Thus the only ptssible continuous extension 4 of
@ 1s determined by this process. We must show that 1t is uni-
formly continuous.
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Let {U(a)] A} be a basis for gX , and let {B(b)|B}
be a basis for he(X) . Then {Xall(a)|A} is a basis for gX .
Since ¢ 1s uniformly contlnuous, there is (5.3) a function
a(b|B) such that x'e 3(x",a(b)) implies o(x') & S(e(x",b) .
Choose b'(bIB) so that B(b'(b))*¢ B(b) , and let
a'(b) = a(b'(b)) . Suppose that y' and y" belong to X
and that y'e S(y",a'(b)) . This means that there is an open
set Ue U(a'(b)) , vith y' , y"= U . Now (III-5.5)
y' , " & XaU , so there are (8.15) phalanxes x'(4IC) con-
verging to y' and x"(y/C) converging to y" , with
x' () @ XaU > x"(r) . Since x'(y) & 8(x'(g),a'(v)) and
x"(y) & s(x'(#),a'(b)) for all v , we see that, for all
v, both ¢(x'(y)) eand @(x"(y)) belong to S(g(x'(#),v'(v)) ,
which is contained in some set V of %B(b) . Since, for all v
¢(x'(y)) and o(x"(y)) belong to V , so do the limits o (y')
and @(y") of these phelanxes. Thus ¢(3y') & S(e(y"),b) .
We have proved (5.3) that ¢ 1s uniformly continuous.

We may prove in the same way that

8.16 ****, if:- gX is a substruct of gY, hY is a substruct of
hZ, X=Y, V=Z, gY and hZ are complete, and gX and hY are unimor-
phic; then gY and hZ are unimerphic

And from this we see ilmmediately that
8,17 **** Any two completions of a struct are unimorphic.

9. Completion. We are going to construct a completion of an
arbitrary struct gX . Although the result, as we know (8.17)
1s essentially unique, we find it convenlient to use a fixed
basis (of a special sort) in its construction.

9.1 Lemma. gX has a basis {)[(a)|A}, where a'>4a" inplies

U(at)<wW(a").

Proof. Let {ll(a)lA} be any basis for gX , and let
U(a) = Af{uu(a)la} ; then {ll(a)|A} 1is such a basis.

We shall constantly use such a basis for gX and
abbreviate S(H,U(a)) as 8(H,x) . An A-phalanx is of rank n
irf

9.2 a'sSa and a"sa imply x(a')es"(x(a"),2).
Obviously,
9.8 ****, Every phalanx of finite rank is a Cawchy phalanx.
The importance of phalanxes of finite rank 1s a conse-
quence of

9.% Theorem. If x'(B|B) is a Cauchy phalanx in gX, then there
exists a phalanx of rank 2, x(xlA), which forms a Cauchy pair
with x'(gIB).
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Proof. By 8.1, there exist points x(a|A) 8o that, for each
a, x'(pIB) 1s ultimately on S(x(a),2) . If a'sa

and a">a , then (9.1) x'(plB) 1s ultimately on both
8(x(a'),a) and 8(x(a"),a) ; hence (IV-2.5) these sets meet,
and x(a') & 82(x(a"),a) . Therefore x(ax|A) 1s of rank 2,
and (8.6) x(«|A) and x'(PIB) are a Cauchy pair.

From 8.10 and 9.4 we see that

9.6 ****. gX is complete If and only If each phalanx of ramk 2
is convergent.

From 8.2, 8.10 and 9.4 we see that

9.6 ****. The topology of X is described by the convergence of
phalanxes of rank 2.

We need,

9.7 Lemma. If x(a|A) is of rank r, and if, for some n and all

# x'(alA) Is ultimately in $"(x(a),a); then x(x|a) and x'(a]a)
are a Cauchy pair.

Proof. x'(a|A) 1s ultimately in S"(x(a),a) = 87 (x(a),a) .
x(afA) 1s ultimately (9.2) in ST(x(a),a) = 8 ™ (x(a),a) .
Hence (8.6) x'(a|/A) and x(ajA) are a Cauchy pair.

9.8 Lemma. If x(a]A) is of rank r, and if x!'(a)es8"(x{a),a),

then x'(ajA) is of rank 2n r, and x(a)A) and x'(a|A) are a Cauchy
pair.

Proof. If a">a and a">a , then

x'(a') & s*(x(a'),') = 8%x('),a) , x(a') & S8T(x(a"),a) ,
x"(a") & 8% (x(a"),2") = 8™ x(a"),a) ; hence

x"(a') & 82T (x(a"),a") . Thus x'(a]A) 1s of rank 2n+r ,
and the remainder of the lemma follows from 9.7.

We are now prepared to proceed with the definition of
the completion of gX .

We consider the equivalence classes of phalanxes of
finite rank with respect to the relation (8.6) of being a
Cauchy pair; they make up a set X* . We define a mapping
H—H* of 2% into 2% by

9.9 H'={x*|x(a|A)ex* inplies that x(x|A) decides for H .
It is clear that

9.10 HcK Implies H'c K",
and

9.11  (HaK)™ H*n K*.
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We define {U*|U open in.X} as a basis for the open
sets of X* . It is clear (9.11) that X* 1s a T-space.

We define U*(a) by U*(a) = {U*|U e U(a) ; and we
have

9.12 Lemea. 1i*(a) is a covering of X*,

Proof. Let x(aJA) & x* . Choose (2.11) «' so that
{33%x,a')} < U(a) . Since =x(x]A) 1s Cauchy, it is ultimately
on S(x',a') for some x' . If x'(a|]A) & x* , then
x'(«|A) and x(a|A) are a Cauchy pair, and (8.6) there is an
x" so that they are both ultimately on S(x",a') . Clearly
S{x",a') meets S(x',a') , so that x'(a|A) 1s ultimately on
some U > S83(x',a') > S(x",a') , where U e Ula) . Hence
x* e U* and the lemma 1is proved.

Now from 9.11 it 1s clear that

9.13 a'>a" implies Y*(a' I (a").
We now have

9.14 Lemma., If x(a|A)e x* and has rank n, then
x*c S(x*,x)e (™x(a),x))*.

Proof. Let x'(a]A) & x'* & S8(x*,a) ; then there is a set
Ue U(a) such that x'* and x* both belong to TU*
x(x|A) 1is ultimately in both U and 3% x(a),a) , so that
U c $™Yx(a),a) . Since x'(«jA) 1s ultimately in
U c 8™ x(a),a) , we have x'* e (3™ (x(a),a))* .

8.15 Lemma. If x(x|A)ex*=U*, and n is & given integer; then,
for some «, $"(x(a),a)cv.

Proof. If the lemma were false, then, for all a« ,

8M(x(a),a) & U . 8o we might choose x'(a) so that

x'(a) & 8"(x(a),a) and x'(a) & U . Let x(a|A) have rank
r ; then (9.8) =x'(a) has rank 2n+r , while =x(a|A) and
x'(a|A) are a Cauchy pair; hence x'(a|A) & x* . Since each
x'(ax) & U, x* & U* This contradiction proves the lemma.

9.16 Lemma. {I1*(x)|A} satisfies 2.8, 2.9 and 3.3.

Proof. Fix &, and take (2.11) &' so that

{8%(x,a')|X}< U (a) . Choose x(a|A) & x* of rank 2; then
(9.14, 9.10) 8(x*,a') = (8%(x(a'),a'))* = U* , where

U= U{a) . Hence U*(a')q 1U*(a) , and 2.9 holds. 2.8 is an
easy consequence of 9.13.

Let x* & U* , and let x(a|A) & x* be of rank n ;
then (9.15) there is an & such that 8™(x(a),a) — U . Now
(9.14) 8(x*,x) = (8™1(x(a),a))* = U* ; hence 3.3 holds.
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9.17 Lemma. X* is a T-space.

Proof. Suppose that x'* & U* implies x"* & U* . Let
x'(xjA) &€ x'* be of rank 2, and let x"(«]A) & x"* . Let-
Ux = 8%(x'(a),) . Then (9.12) x'* & Uy* ; hence

x"*e U,* ; hence x"(alA) 41is ultimately in U,. Hence (9.7)
x'(afA) and x"(a)A) are a Cauchy pair. Hence x'* = x"# ,
and (III-8.4) X* 1s a Ti-space.

We now let {lI*(a)|A} be a basis for a struct gX* .
We know (9.16, 9.17) that gX* by

9.18 P(x)={all phalanxes of finite rank converging to.x1}.
Further, we clearly have

9.19 ****, @(x)eU® if and only if xel.

This implies that gX— q(gX) 1s a unimorphism of gX
on a substruct of gX* ., From 9.19 we have

9.20 ****. (s$"(x,a))*cs8"(p(x),a).
We use this in

9.21 Lemma. A phalanx, x(«|A), of rank n, belongs to x* If and
only if p(x(a)|A) converges to x*.

Proof. Let o¢(x(x)|A) converge to x* , and let $9.4)
x'(ajA) & x* be of rank 2. Then (9.14) x* = (8%(x'(a),a))* ;
hence @(x(a)lA) 1s ultimately in (S3(x'(a),a))* ; hence
(9.17) =x(alA) 1s ultimately in 8%(x'(a),a) . Hence (9.7)

x(aja) and =x'(ajA) are a Cauchy pair and x(alA) e x* .

Let x(alA)ex* ; then (9.14 x* e (8™ (x(a),a))* .
Therefore x(alA) 1s ultimately in 8™ (x(a),a) ; hence
(9.19, 9.20) @(x(ex)|A) 1s ultimately in
(s ™(x(a),a))* = 8™ (q(x(a)),a) . Now x* also belongs to
this set, so that ¢(x(a)lA) 1s ultimately in 8S2n2 (x#,a) .
Hence (2.11) @(x(a){A) converges to x* ,

From 8.2, 9.4 and 9.21 we have

9.22 ***°, szs=x'.
We now show that

9.23 Lemma. gX* is complete.

Proof. Let x*(a]JA) be of rank 2 (in. gX* , with regard to
(*(a)| A}) . Since @(X) = X* , we may choose x'(a) so that
P(x'(2)) & S(x*(a),a) . Then (9.8) o(x'(a)lA) 1is of rank 4,
and x*(a]A) and @(x'(a)lA) are a Cauchy pair. Hence
x'(«lA) 1s of rank 4 and belongs to some x'#* . Hence (9.21,
8.10) x*(«|A) converges to x'* , and (9.5) gX* 1s complete
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We collect all these results (including 8.17) as

9.24 ineorem. Every struct may be "completed." That is to say,
every struct gX has a unimorphic image ¢(gX) in a com-
plete struct gX* , where gX* = 9(gX). Such a completion
is essentially unique, in the sense that any two are uni-
morphic.

9.25 Remarks. a) The relative shortness of the corresponding
proof for the metric case is due to the use, in that case, of
the precise distance, which allows the lmmediate verification
of results corresponding to those which must here be treated
separately.

b) The dependence of our completion on a particu-
lar basis is convenient, as we shall see below. If the reader
wishes a more symmetric treatment, he has only to observe that
the process of 9.1 can be applied to the basls for gX consist-
ing of all the large coverings of gX .

Some interesting results follow from the correspondance
between a basis for gX and a basis for its completion. We
obviously have

9.26 ****, The completion of a struct with a coantable basis is
a struct with a countable basis.

8.27 ****. The completion of a largely compact struct is a
largely compact struct.

And from these we easily deduce
9:28 ****, The completion of a metric space is a metric space.

9.29 ****. The completion of a largely compact struct is a
compact struct.

9.30 ****. A struct is largely compact if and only If its
completion is compact.

There are many interesting and unsolved problems con-
cerning the connection between a struct and its completion. Is,
for instance, the completion of an a-struct an a-struct?

10. Historical Remarks. The notion of "uniformity" has been
investigated recently by several mathematicians (Cohen 1937,
Cohen 1939, Graves 1937, Weil 1936, Weil 1937). The most com-
plete treatment 1s that of Weil. This 1s the only one we will
discuss, except to observe that Cohen uses a local uniformity
rather than a uniformity in the large.

To discuss the relation between Weil's methods and our
own, we use the familiar terminology of the metric case. Weil's
central entities are the e-spheres of center x ; ours are the
coverings by sets of diameter less than e . Well considers
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the topology derived from the metric; we consider those metrics
which agree with the topology. In both cases we must consider
entities outside the space itself. Weil uses "neighborhoods"
of the dlagonal of the product of the space by itself; we use
open coverings of the space.

The two treatments, Weil's and our own, come necessari-
ly to the same results. The majority of the results considered
here are originally due to Weil, although the methods of proof
and the fundamental notions are often different.

I prefer the use of coverings, for they are important
in other branches of topology. Coverings and convergence are
two concepts in the main stream of general topology, and there-
fore are especially suited to the discussion of uniformity. I
hope, in the near future, to apply these methods to a~satiefac-
tory dimension theory of structs, using the ideas of Cech.

In conclusion, we should observe that all the domains
of the analyst and the algebraist which-have "adequate" topolo-
gles are structs.
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FUNCTION-SPACES

1. Introduction.

2. Spaces.

3., Structs.

4. Compactness.

5. Parallelotopes and Embedding.

6. Characteristic Functions and Set Spaces.

1. Introduction. 1In this chapter we consider certain spaces of
functions which have topological significance. One important
example of such a function space 1is the topological (or Cartesi-
an) product of several spaces.

In §2 we examine these function spaces as spaces, in §3
we examine them as structs. In §4% we consider their compact-
ness. In §5 we consider parallelotopes and prove Tychonoff's
embedding theorem as generalized to largely compact structs. In
86 we consider the spaces made up of characteristic functions
and of subsets.

2. Spaces. We shall consider only two sorts of function-spaces,
one in which convergence means pointwise convergence, and one
in which convergence means uniform convergence.

If, for each a & A, X% 1s a set, then (I-5) P {X2|A}
is a set whose elements are all the functions x(alA) for which
x® = x(a) & X% for all a . We call x2 = x(a) the ath co-
ordinate of x . The function p* defined by p*(x) = x 1s
called the projection on the ath coordinate.

If each X? 1s a space, then we proceed to make
P{X®|A} a space. Fix x; = {x}|A} ; for some a choose a
nbd N? of xI in X* , and consider N = {x|x®* = N%} . We
call this set a hyperslice with base N% . If we let N* run
thru all a sub-basic set of nbds of x2 , and then let a run
thru A , we obtain a collection of sets which we define to be
a sub-basic set of nbds of x; , By the methods of III-3 we
may easily see that

2.1 ****. 1f x(b|®) iz a mapping of a directed system: into
X=P{Xx*|A}, then x(b|m) converges (in X) to x if-and only if
x*(b|B) converges (in X*) to x* for each a.
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2.2 ****, If f=f(y|Y) is a function from the space Y to
X=P{X*|A}, then it Is continuous if and only If the functions
fo=fi(y|Y)=p*(f(y)|Y) from Y to X* are continuous for each a.

awe call {X®/A} the topological or pointwise product of
the X .

If all the X® are T-spaces, then {X*|A} 1s also a
T-space. A sub-basis for its open sets 1s formed by the hyper-
slices with open bases.

If all X® =X, we write (X'*l)y, for {(x%la} . 1f
|Al = IBl , then clearly (X lAl)p i1s homeomorphic to (X lBl)p.
By writing (X 'A')p we imply that we use A as the set of in-
dices in forming the product.

In simple cases this product is very familiar; 1f I is
a segment, then (I®)p 1s a cube.

We note that a product of discrete spaces is discrete if
and only if there are a finite number of factors.

We now consider a different type of function space, one
where convergence means uniform convergence. 1f gX 1s a
struct and A 1s a set (discrete space) , then the points of
(gx 'Al)y are those of (X 'Al), =P {X®|A} , where X® =X .
That is, the points of (gX 1A u &are all the functions from A
into gX (if we consider A as a discrete struct, then these
functions are all the uniformly continuous functions from the
discrete struct into gX) . If @,% e (gXx M), , and 1f
1(b) 1s a large covering in gX , then weU%(q)) if, for all
a, v(a) & s(p(a),d) . If {U(b)|B} 13 a basis for gX ,
then we define {U%(q:&‘lb B, p= (g'“)u} as a basis for
the open sets of (gX )u . It is clear that two such bases
obtained from different bases of gX are equivalent. We as-
serted that convergence in (gX IA!)u means uniform convergence.
This follows from

2.3 ****, If y(d|9) is a mapping of a directed system: into
Y=(gx'*), , where y(d)=x,(alA), and y=y(alA), then y(d|9) converges
to y If and only If, for each large covering 1l of gX there is a
d' such that d>d' implies x, (a)eS(x(a),U) for all a.

2.4 ****, A function ¢ from Z to Y=(gx'*') |is continvous if and
only if it is equicontinuous In a. That Is, If and only If,
setting @(z)=x (a|a), for each z'e Z and each large covering i
of gX there exists an open set V> 2z', such that zeV implies

x (a)es(x,(a) ) for all a.
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If A 1is finite, and'Aif X 1is a n?\r"mal T, -space, then
we see that (fX A1), , (ax"™), and (x'"™)_ = are homeomorph-

P
ic.

If hY 1s another struct, then gX® 1s defined as the
subspace of (gX b Ju made up of uniformly continuous functions.

2.5 Theorem. gX"" Is closed in (gx'"'),. That is, a uniform limit
of uniformly continuous functions is uniformly continuous.

Proof. Let {lU(a)|A} be a basis for gX and let {%(b)|B}
be a basis for hY . Let z(§|D) converge to z , where
z(A) = X ™ . Let 2z(8) = zé(ylY) and z = z(ylY) . Let a
be fixed, and choose a' so that (VI-2.11) 83(H,a') — S(H,a)
for all H < X . Then (2.3) we may fix §' so that

zp (y) & 8(z(y),a') for all y . Since zg = z(§') is uni-
formly continuous, there exists (VI-5.3) a b such that

v' e 8(y",b) 1implies z4 (y') = 8(z45 (y"),a') . Combining
this with the results above, we see that y' « S(y",b) implies

z(y') & 8(z(y"),a) . Hence we have shown that 2z 1s uniformly
continuous.

For aX¥ we write simp1¥ M for gx®¥  we write
ng , and for ax®  we write X Since every continuous
function on an a-struct is uniformly continuous, ng consists
of all continuous functions on Y to X , where convergence
means uniform convergence in gX . If X and Y are both
compact, then gX = aX and hY = aY so that thY =x¥.

3. Structs. We wish to attach a uniformity to P{gX®lA} . 1If
u® 1s large in gX® , we naturally consider the covering 11
whose open sets are the hyperslices based on the sets of u?

The class of coverings obtainable in this way is defined to be
a sub-basis for the large coverings of P {gX®|A} . We see im-
mediately (VI-3.4) that this uniformity agrees with the topology
of P{gX®/A} which is that of {X®lA} . Hence we have

3.1 ****. If each gX* is-a struct, then PigX*|A} is a struct.
We may easily see .that

3.2 ****. A phalanx in P{gX*|A} is Cauchy if and only if each
of its at" projections is a Cauchy phalanx in the corresponding
gXx*.

Hence (2.1) we have

3.3 ****., gX is complete if and only If each gX* is complete.
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We see directly, that

3.4 ****, gX is largely compact if and only If each gX'is
largely compact.

Combining these results (VI-8.14), we obtain a special
case of an important result of the next § .

3.5 "7, gX is compact if and only if each gX* is compact.

If a1l gx® = gX , we write (gX'''), for P@X’|A} .

We now return to (gX Al Ju and SRG notation of the
last §. We define U'(b) by 1b) = { (@)l = (ex 2y} .
If {I(b)|B} 1s a basis for gX , then we define {UAb)|B}
to be a basis for (gX!Al), . It is easy to see that any two
such bases are equivalent and that the uniformity so defined
agrees with the topology. Hence (gX/Al), 1s a struct.

We have
3.6 Thaorem. If gX is complete, then (gx'') Is complete.

Proof. Let {U(B)|B} be a basis of gX satisfying VI-9.1.
Then {U4p)IB} 1s a similar basis for (gxl!Al), . 1If

z(ylC) , where z(y) = {x®(y)|A} , 1s of rank 2 in (gx '), ,
then (VI-9.2) x2(v') e 8%(x%(«"),y) whenever ' =+~ and
Yo g . Therefore, for each a , x%(7IC) 1is of rank 2 in
the complete struct gX and hence has a limit x2 . Since
x%q|C) 1s ultimately in S2(x2(y),y) , and ultimately in
8(x%,7) , these sets meet, and 38%(x%(y),y) = 8%x%,7) .
Therefore, for each a , 'S implies x2(4') e 85%(x%,v) .
Hence (2.3, VI-2.11) =2(qIC) converges to =z = {x2[A} .

Hence (VI-8.14) (gXx!A'), 1is complete.

We regard gx“ as a substruct of (5X'Y‘ Ju . From
2.5 and 3.6 we have (VI-8.17)

3.7 ****, If gXx is complete, then gX"" Iis complete.
The converses of 3.6 and 3.7 are trivial.

We close this section by asserting certain unimorphisms.
It is easy -to show, in each case, that the obvious correspond-
ence is a unimorphism.

3.8 ****. We have.
a) If gX is unimorphic to hY and fAl 1BI, then (gx"‘)'
is unimorphic to (hY"'), and (gx*'), s unimorphic to (hy's'),.
b) If gXx is unimorphic to hY and JV is unimorphic to
kZ, then gx)¥ Is unimerphic to hY'L

4. Compactness. We begin with



VII-4.1 ... VII-5.2 75

4.1 Theorem. X=P{X"]A} is compact if and only if each X* is
compact.

Proof. Suppose each X* compact. Let x(y|C) be an ultra-
phalanx in X . Since each projection is single-valued, each
x2(qlc) 1s (IV-3.1) an ultraphalanx, which converges (IV-1.6),
say to x® . Then (2.1) =x(qlC) converges to x = {x®|A} .
Hence (IV-%.6) X 1s compact. The converse is left to the
reader.

1 The analogous result about hX&¥ 1s false. Consider
I, where I 1s the closed interval [0,1] . Define
x(a) = £,(t]I) by

0,, t=0,
£, (t) = el =1 t = 1-lal (where lei 1s the cardinal
1, t =1. number of the set o .)

and meking f,(t|I) 1linear elsewhere. In (I lII) , the
phalanx x(a|A) has the unique 1limit x' = f'(tlis , where

0, t <1,
rr(t) =

1’ t'—‘l.

Now in (I'I'), , which has a finer topology than (I'I/ )p »
this phalanx fails to converge to this limit and fails to have
x' as a cluster point. Since x' 1is the only cluster point
of this phelanx in the coarser topology, it follows that the
phalanx has no cluster point in the finer topology. This is al-
so true in I1 , 8o that this struct also fails to be compact.

5. Parallotopes and Embedding. A parallelotope is a pointwise
power (IRl )p of the closed interval [0,1] . It is well known
(Heine-Borel theorem and IV-4.13) that I 1s compact; hence
each parallelotope is compact.

We shall need certaln bases and sub-bases for a paral-
lelotope. Ug(x,) consists of all x e (I'A'), for which
1x8-x8l < e for ae a . (Here, of course, e 1s a positive
real number.) We have

5.1 ****, {Ui(x)|ashr, e>0} is a nbd basis at x.
{*(x)|jacsh, e>0} is a nbd sub-basis at x.

II] concists of all U%(x); we abbreviate $(x,1) as
s$(x,x,e).

5.2 ****. (yilasA, e>0} is a basis for the struct (1'').
(uilas A, >0} is a sub-basis for the struct (1'"').



76 FUNCTION-SPACES

We have

5.3 Theorem. Every compact struct is unimorphic to a substruct
of a parallelotope.

Proof. If gX is compact, then (VI-4) X 4is a normal T,-space.
If {Up|B} 1s a basis for gX, and if {u.IA} are the basic
binary coverings belonging to this basis (V-4.7), then the real-
valued continuous functions (VI-9.3) ¢*x|X) , where

0, xe= ﬁ; ’
Plx) = {
l, xe= X"Ubl ’

and where = {Upr ,X-B»} , map X 1into (I'Al) .
Since each @* 1s continuous, it follows (2.2) that = {¢'IA}
is continuous and hence (VI-5.5) uniformly continuous.

Now from V-4.7 we see that qi* i1s single-valued. Let
xe Uc X, vwhere U 1s open, then (VI-4.7), there is a
basic binary covering {U',X-U"} where x e U" = U'c— U ,
hence @%x) =0, and if ¢@*(x) <1, then x e U' = U .
Since Q(X)n{x)qﬁ(x) <1} = (¢2)?(U) 1s a nbd of @(x) in
®(X) , we see that ¢? 1s continuous. As a continuous image
(1v-5.1) of X, @(X) 1s compact, hence (VI-5.5) o 1is
uniformly continuous.

Since every largely compact struct .s unimorphic to a
substruct of a compact struct (its completion), we have

5.4 ****, Every largeiy compact struct Is unimorphic to a sub-
struct of a parallelotope.

Conversely, every struct unimorphic:to a substruct of
a parallelotope is largely compact.

Since an f-struct can be erected on any completely
regular space, we have

§.5 ****, (Tychonoff's Theorem) Every completely -regular space
is-homeomorphic to a subspace of a paralleletops.
Conversely, every space homeomorphic-to a subspace of

a parallelotope is completely regular.

6. Characteristic Functions and Set Spaces. Consider (T A )p.
where T. 1s the discrete space consisting of the two points
0Oand 1 . The points of (T /Al )p are functions on A taking
the values 0 and 1 . Such a function is usually called the
characteristic function of the set on which it takes the value

1 . This defines a one-to-one correspondence between the points
of (T 'M), and those of 2 'A! . We are naturally led to intro-
duce the topology in 2 Al yhich makes this a homeomorphism.
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If we do this, then we have

6.1 ****. A mapping C(b|B) of a directed system into 2'*' con-
verges in 2'"' to C—A if and only if, for all x=C, C(b|B)

ultimately contains x, and for all xé&C, C(b|B) ultimately fails
to contain x. That is, if and only if

6.2 c=ufn{c(b)lb>b'}|b'eB} =nfuic(b)[b>b "} b=},

We may easily recognize 6.2 as a natural generalization
of a well-known condition for the convergence of sequences of
sets.

Since T was a compact struct, we have
6.3 ****, 2" j3 a compact struct.

We need the following result later,

6.4 ****. 1f c(n+1)>C(n) for all n, then C(n|N) converges to

u{c(n) |N}.

We may regard 2 'l as a ring, defining the "sum" of
B and C to be (BuC)-(BaC) , and the "product" of B and
C tobe BC . It is easy to see that these operations are
continuous in the topology we have introduced. Thus 2 'Al 13 a
topological ring.




Chapter VIII
EXAMPLES

I+ Introduction.

2. Some Non-normal Spaces.

3. Some Simple Structs.

4., Some Mildly Comples Structs.

1. Introduction. We collect here a few examples of interest
from a rather general point of view.

I.1 In this chapter we remove the restriction that 4 is a finite
subset of C. We use y for any subset of C, and I' for any collec-
tion of q's.

2. Some non-normal spaces. We use a simple modification of an
idea of Cech to exhibit some examples of spaces which are com-
pletely regular but not normal.

Let C be any uncountable set (e.g., the real numbers),
and consider I =2 I | yith the topology discussed in
VII-6. Let T, ={qiq 1s countable} ; then I, 1s a subspace
of I, . We now consider the product P(T,,I,) . We shall
write 1ts elements as ordered pairs. We consider two subsets
of the product,

D = {(7,Y)lvek}
E = {(C,7)lyeT;} , (C does belong to T, !).

1 say that these sets are both closed. D 1s closed, for if
(y(alA) ,y(1A)) converges to (v',y") 1t 1s clear (VII-6.2)
that ' =" . E 1is closed, for the point C 1is closed in
I, . Let U and V be open sets withD <« U and E <= V.
Let 4(1)eT, . Let ¢(q) =+ , then @(y1C) converges to
C , and hence (p(y/C),y(1)) converges to (C,y(1)) & V .

Hence there is an q(2) > (1) for which (9(2),y(1)) & Vv .

We repeat this argument to obtain a simple sequence
{y(n)I N} , so that (y(n+l),y(n)) & Vv, and
H(n+l) > 9 (n) . Let ' = Ufy(n)|N} ; then (VII-6.4) both
9(n) and 7(n+l) converge to ' as n-—» o . Hence
(7(n+1) yy(n)) converges to (7y',4') as n —oce. But
(7',7') e Dc U, hence, for some n , (y(n+l),y(n)) e=1 ;
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hence UnV # @ . Thus P(I,,T,) 4is not normal.

Now (VII-3, VII-6) T, =2 €' 45 a struct in a natural
way, and so 1s P (T,,Q ) ; hence the product is a completely
regular space. 8o we have

2.1 P(r,,r,) is completely regular but not normal.

If we regard I, as a ring, thenm I, 1s a sub-ring,
and we make P(T,,I;) & ring in the natural way. Hence

2.2 ****, There exist non-normal topological rings.

By replacing T (T IC' yas homeomorphic to 2 ot
(VIII-6)) by, 1) the group of the real numbers modulo 1 (the
circle group), or 2) the group of all real numbers, it may be
shown that

2.3 ****, There oxist connected, completable, non-normal topolo-
gical groups.

2.4 ****, There exist non-normal linear topolegical spaces.

3. Some simple structs. We assume that the topology of the
closed interval of real numbers [0,1] 1s known. We shall be
interested 1n two of 1ts simpler subspaces. Let X consist of
the points 1/n, where n 1s a positive integer. Then X 1is
discrete and fully normal; hence every finite covering of X

is open and normal. Let Y consist of the points of X and
the point O . Each open covering of Y contains an open set
containing O , and hence containing all points 1/n for n
greater than some n'

Suppose that gY 1s a struct, and that gX 1s a sub-

struct of gY . Then each large covering of gX contains a
set containing all the points 1/n for n greater than some
n' . fX 1lacks this property; hence fX 1s a substruct of no
gy .

4., Some mildly complex structs. We start with any uncountable
set C , and the famlly r, of 1ts countable subsets (1.1).
Zorn's Lemma asserts that there exists a maximal linearly
ordered (by > , of course) subfamily of I, . Let one suc. be
' We shall need

.l If el for esch n, then Uiy [N} .

To prove this, let ' = U{y,|/N} , and let ~yer . If,

for some n, qc-y, , then yc~' . If, for &1l n,
Yn<Y » then ~4'c . We see that T' = Tuig'l is
linearly ordered. 8Since I' was maximal, we have TI' =T and
7e T . Thus 4.1 is proved. Similarly, we have

.2 If rcr and if Uly'lv'e T} is a countable set, then this
set belongs toTl.
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We now introduce what might be called a "lower topology"
into I . If mel and «# @, then a basis for the nbds
of ; 1s made up of the sets N, (m) , where ny'cey, and

Ny () = {q'l9'cqcy » V#9'} .

A basis for the nbds of F 1s {{#)}} . This topology clearly
makes I’ a space, in which we have

4.3 If Icr, and if Uiylyer} belongs to I', then It belongs
to Fl'
8.8 If 7,,, D7, then {~ IN} converges to Uiy IN}.

We now show that

4.5 I is completely normal.,

. Let I, and I, ©be subsets of T for which
Lo =g~ P: nh o If nely » then we consider
Y ={y"I7"e« L} , q"<qy, , we see (4.2, 4.3) that
7el, ; hence «' #v, and N, (v,) 1s an open set which
does not meet I, . We proceed in the same way for each
hel and in the corresponding way for each v, &I .
Then I', = {N ('71)"715 I;} and r4= U{N'y'( "Yz)WzEI'z
are open sets, such that I =Ty yar, , and
Onl, = g = IpnTs . Now from the linearity of I' and the
construction of Iy, and I, we see that I3 and I, are dis-
joint. Hence I' 1is completely normal.

For each el , we define S, = {qllq'>7,y' #7 ,
4eT . Then we have

4.6 If 1L Is an open covering of ', then some s,, is Included In
some Ve A"

If not, for each  and some 4 ()24, Ya(v) € 8(9,U)

Let «, be arbitrary, and put  VYna=7a(¥Ya) . Let

7' =U{ yn| N} , which (4.1) belongs to I' . Let ' e Ues UL .
Since (4.4) fmIN} converges to ' , there is an n' , such
that €U, for n>n' . Hence

Yna = Yal yu) & S(yp, W) ; which is a contradiction. Thus
4.6 18 proved, and we have at once

4.7 Every normal covering of I' contains -a set-including an 3,
We now see that

4.8 al Is not complete.

Let D=T , then for &&«a (We still use 6 for finite
subsets of D) let Y(6) =U {y|y=ded}. I say that

4(6|D) 18 a Cauchy phalanx. For clearly <(3|D) decides for
each S, , and hence (4.7) v(8ID) 4s Cauchy. But, for the
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same reason, <(81D) cannot converge to any element of T ,
since X-Sy 1s & nbd of ¥y

This example is due, in a slightly different form, to
Dieudonné 1939,



Chapter IX
DISCUSSION

1. What Is Topology?

2, The Role of Denumerablility.

3. Which Separation Axioms are Important?
%, No Transfinite Numbers Wanted.

5. The Subsequence and Its Generalizations.
6. Phalanxes vs. Filters.

1. What is topology? This heading is inaccurate; the meaningful
question and the one we discuss is "What should we mean by
topology?" . We must begin by making it clear that we do not
(in this discussion) include algebraic or combinatorial topology.
We return to this point later.

Classically, topology was sometimes defined as "the
geometry whose group is the group of all bicontinuous transforma-
tions." I feel that this definition is both too wide and too
restricted: 41t uses the word "geometry," and it insists on in-
variance under all bicontinuous transformations. Thus it would
include combinatorial topology and exclude any discussion of
uniformity (as a part of topology).

Topology should be an analog of modern algebra. Modern
algebra 1s concerned with suitably restricted finite cperations
and relations. Topology should be concerned with suitably re-
stricted infinite operations and relations. (In both cases, we
may expect "suitably restricted" to have a force diminishing
with increasing time.) Prominent examples of such infinite op-
erations are convergence and closure. While these can be re-
garded as finite operations, this point of view usually serves
only to hide their true nature, as this nature is revealed in
their applications. From this point of view, uniform converg-
ence, uniform continuity, and their related ideas, are a very
proper part of topology.

When we include uniformity in topology, we must be
careful to exclude metric notions. The notion of pairs of equi-
distant points is surely not a topological one; it belongs to a
discipline of more detail and less generality,

82
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Since topology is abstract and general (even for mathe-
matics), we may expect its ideas and results to be useful tools
in many distinct branches of mathematics. The need, in several
of these branches, notably analysis and topological algebra, for
a sulitable treatment of uniformity proves an additional reason
for making uniformity a part of topology.

According to this view, algebraic topology and topologi-
cal algebra are the results of combining algebra and topology.
In the first, algebra is applied to topological objects; in the
second, topology is applied to algebraic objects.

2. The role of denumerability. The unusual, and seemingly un-
necessary, position of denumerability in topology has caused
comment (Weil 1937). There seems to be no a priorl reason why
this should be so. Yet metrization (the possibility of a struct
with a countable basis, VI-6.1), a countable basis, the first
countability axiom, and other references to denumerability ap-
pear in the hypotheses of many topological theorems. In some of
these theorems (a regular space with a countable basis is nor-
mal, a complete metric space 1s never of the first category in
itself, -+-) the hypothesis of denumerability cannot be re-
placed by an essentially more general one without destroying the
theorenm.

After considering the role of directed systems in these
arguments, one finds that denumerability is essential only to
ensure the equivalence of sSequence and phalanx, the conjunction
of monotonicity and finiteness. A set 1s countable if and only
i1f 1t can be "reached" ("swelled to") by a monotone family of
its finite subsets. The countable is important because it 1s so

nearly finite.

There is no other infinite cardinal showing similar
special properties in topology. This has been experimentally
true in the past and can confidently be expected to hold in
future.

3. Which separation axioms are important? What classes of ob-
jects are important for topological study? We have examples of
spaces that are T- but not To-, To- but not T,-, T,- but not
Hausdorff, Hausdorff but not regular, regular but not completely
regular, completely regular but not normal, normal but nor com-
pletely normal, completely normal but not perfectly normal, per-
fectly normal but not metrizable, and so on. Are all these
categories important? 8Shall we divide our energies among them
all? To me 1t seems that only a few are important} this can be
verified only after more experience; but I feel that one can now
see dimly which are the ones that matter.
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The most general class of object that I would suggest
for topological study at present is what is defined in III-3.16
as a space. We require, for example, of the closure operator
only that it commute with union and preserve the empty set. I
am not prepared to assert that this 1s ultimate generality, but
rather that this 1s a natural class of sufficient. generality for
present purposes.

It may be true that T-spaces form an important class;
I am inclined to doubt this.

The next important class i1s that of completely regular
spaces, which contains all algebraic objects with an adequate
topology. The importance of this class comes from the fact that
on them we may erect structs. Since we may bulld two topologi-
cally invariant structs (which coincide in the compact case) on
every completely regular space, it is not unreasonable to say
that 1f a space 1s completely regular we should usually regard
it as a struct.

I do not think that normality is important. The intro-
duction (V-3) of the notion of a normal covering should allow
many of the important results about normal spaces to be extended
to completely regular spaces. And on the other hand, there
exist examples (VIII-2) of various kinds of algebraic objects
which fail to be normal. I believe that no algebraic condition
(not involving or implying finiteness or countability) can ensure
normality.

Full normality remains to be investigated; it may be
that 1t has importance in dimension theory and related topics.

Metrizability is of uncertain importance; a large part
of its present position may come from its implication of full
normality.

We have yet to discuss the requirements that a T-space
be To-, T,-, Hausdorff, or regular. I allot to these a very
minor role. They are convenient if another hypothesis allows
one to pass from them to complete regularity (as in the theorem
that every T, -topological group is completely regular). They
may perhaps be useful in certain special places. To one who has
seen "Hausdorff space" so many, many times this may seem rather
harsh treatment; but if he examines a few examples I believe
that he will eventually agree with this position.

I close this discussion by pointing out the need for a
shorter and more suitable term than "completely regular space,"
and proposing the term "Tychonoff space."

4. No transfinite numbers wanted. I believe that transfinite
numbers, particularly ordinals, haves a8 proper place only in
descriptive theories, such as: the successive derivatives of a
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set, the Borel classes of sets and the Balre classes of func-
tions, and some of the less pleasing parts of the theory of di-
rected systems. We have succeeded in eliminating all infinite
ordinals from the treatment of the subjects dealt with here.

The only transfinite cardinal to make an essential appearance is
8,, and we have already seen that denumerability does play an
important and distinctive role.

Zorn's Lemma serves to eliminate arguments by transfin-
ite induction. The other stronghold of the transfinite in
topology has been the construction of counterexamples. In
VIII-2 and VIII-4 we see two ways of adapting examples, original-
1y constructed with transt'inite ordinals, to examples construct-
ed with sets.

5. The subsequence and its generallizations. The stumbling block
in the effort to generalize satisfactorily the convergence of
sequences was the subsequence. We may define a subsequence in
several ways, and, if we try to generalize the wrong one, the
results may be unfortunate.

We may look on a subsequence &8s a cofinal part of a
sequence, as a part that goes beyond any given point. If we
realize that linear order is lnessentlal, then we are led to
the ideas of Moore and Smith and to a satisfactory theory of
convergence.

We may look on the statement "every sequence contains a
convergent subsequence" as a way of stating that there are one
or more points from which the sequence "cannot tear itself
away." If we adopt this view, we are led to cluster points and
a satisfactory theory of compactness.

We may look on the statement "every sequence contains a
convergent subsequence" as being in the form we wish to general-
ize. If we do, we find that it will not generalize satisfac-
torily.

We may look on a sequence as a "point-set" having the
same cardinal number as the "point-set" corresponding to the
whole sequence. If we do, we are led to the notion of "complete
limit-point” and the complications of infinite cardinal arith-
metic. This leads to a complicated and non-perspicuous theory
of compactness.

This last point of view was encouraged by two details.
First, the analyst's habit of saying "for infinitely many n,"
when he meant "for a subsequence of n." As long as one is
solely concerned with sequences, this i1s a simple and suitable
method of expression. From a general point of view, however,
this expression emphasizes the wrong property. Second, in talk-
ing about a sequence, in topélogy but not in analysils, there was
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a tendency to neglect the ordering; to regard a sequence as a
"point-set" rather than as a function defined on the positive
integers. This attitude is exemplified by the capeful (some-
times!) distinction between a "Punktfolge" and a Zahlfolge."

It is my firm conviction that this last point of view
is not a good one, as judged by its results; for I feel that
cardinal arithmetic of the complicated sort ("regular alephs,"
"accessible alephs," etc.) should be kept as far from general
topology as possible. This is the ordinal part of the theory
of cardinal numbers, and is essentially descriptive. It is not
the task of general topology to describe objects in terms of
ordinal numbers.

6. Phalanxes vs. Filters. The notion of a filter, introduced
by H. Cartan in 1937, has been used by N. Bourbaki and his col-
laborators as a generalization of a sequence. That 1s, they
consider the "convergence" of filters.

Given a sequence, they consider the filter of all sets
which contain the image of a "residuse" of the integers. The
filter converges to a point if it contains every nbd of the
point. Thus for filters derived from sequences we have the
classical convergence condition.

This notion has the disadvantage that, in the case of
sequential convergence, it concerns itself with the unintuitive
family of sets, rather than the rather intuitive sequence.

Thus, to obtain generality, we must abandon the intuitively
satisfactory treatment of the sequential case. It may seem un-
fortunate, to one interested in generalities, that the sequence
has a special place in topology. It seems, however, to be true.
(We may always replace the sequence by a phalanx on a countable
base, but in a few places this seems artificial).

Phalanxes, on the other hand, form a part of a theory
of convergence (of functions on direc¢ted systems) which includes
sequences. We obtain generality without discarding the intui-
tive treatment of special cases.

In closing, it should be noted that the idea of an
ultraphalanx stems from the idea of an ultrafilter, and that
they are essentially equivalent. The equivalence is between a
single ultrafilter and a class of ultraphalanxes. Ultrafilters
have the advantage of uniqueness. Ultraphalanxes have the ad-
vantages of occasional simplicity and inclusion in a simple
theory of convergence.
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ath coordinate, projection on
the ath coordinate, 71

assoclated sequence of cover-
ings, 51

base of a stack, I3

basis, 27; for a struct, 59;
for a uniformity, 56

binary covering, 3I

bounds: upper, lower, 4

cardinal number, 9

Cauchy mapping, 62

Cauchy phalanxes, pair (of
phalanxes), 63

closed set, 27

cluster point, 34

cofinal, 10; cofinal types, 12

cofinally similar, 11|

compact, 37; compact struct, 60

complete struct, 64

complete trellis, 5

completely regular, 58

completion of a struct, 64

continuous, 28; uniformly con
tinuous, 61

continuous Image, 37

covering, 31; associated sequence
of coverings, 5|; basic binary,
48; blnary, 3|; equivalent, Hy;
finer than, 67; finite, 46;
intersection of, 43; large, 59;
normal, normal sequence of, 46;
refinement, 43; star-finite,
star-finite collection of, u6;
union of, 43

decided about, 32

decides about, against, for, 32
discrete, 28

disjoint, 2

equivalent coverings, H4

factor, inessential factor, 7

finer than (of coverings), 57;
(of topologles), 24

finite, finite character, 7;
covering, 46; restriction, 7;
set, 3

fully normal, 53

homeomorphic, homeomorphism, 29
hyperslice, 71

inessential factor, 7
Infimum, 4

inflated phalanx, 17
intersection, 2
Irreflexive, 3
isomorphic, 3
Iterated star, 44

large covering, 59
largely compact, 60
linear ordered system, 3
lower bound, 4

mapp ing (Cauchy), 62
maximal, 7

meets, 2

meshed base of a phalanx, 7
metric, 5|

nbd: basis, sub-basis, 24; open, 27

normal covering, normal sequence of
coverings, 46
normal space, 29

open nbds, 27
open set, 26

ordered system, irreflexive, |somor-

phic, linear, properly ordered,
reflexive, symmetric, trivially
ordered, vacuously ordered, 3

parallelotope, 75
partition, 31
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phalanx, 17; Cauchy, Cauchy pair of,
63; base of a, inflated, meshed,
17: of rank n, 65

pointwise product, 72

product, 6; the product, 7; topo-
loglcal or pointwise, 72

projection on the ath coordinate, 71

properly ordered, 3

pseudo-metric, 50

refinement, 43
reflexive, 3
residual, 10
restricting, 45

space, 24; discrete, 28; normal, 29

special pseudo-écart, or spé, .60

stack, base of a stack, I3

star, [terated star, U4; star-finite
covering, star-finite collection
of coverings, 46; star-refinement,
45

struct, 58; basis for a, 59; com-
pact, largely compact, 60; com-
plete, completion of a, 64

sub-, 2

sub-basis, 27; for a uniformity, 56

subspace, 26
substruct, 69
subsystem, 3
superspace, 28
supremum, 4
symmetric, 3

system of subsets, 3

Ty-space, 29

topological product, 72
topology, 24
topophalanx, 33

transitive, 2

trellls, complete trellis, 5
trivially ordered, 3

uvitimately, 32

ultraphalanx, 32

uniformity, 65; basls for a, Induces
a, sub-basis for a, 56

uniformly continuous, 6i

unimorphism, 61

union, 2; of coverings, 43

upper bound, 4

vacuously ordered, 3

subcovering, 3| Zorn, 7
subphalanx, 35
SYMBOLS
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