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PREFACE

The story of Greek mathematics is the tale of one of

the most stupendous achievements in the history of

human thought. It is my hope that these selections,

which furnish a reasonably complete picture of the

rise of Greek mathematics from earliest days, will be
found useful alike by classical scholars, desiring easy

access to a most characteristic aspect of the Greek
genius, and by mathematicians, anxious to learn some-
thing about the origins of their science. In these

days of speciahzation the excellent custom which
formerly prevailed at Oxford and Cambridge whereby
men took honours both in classics and in mathematics
has gone by the board. It is now rare to find a

classical scholar with even an elementary knowledge
of mathematics, and the mathematician's knowledge
of Greek is usually confined to the letters of the

alphabet. By presenting the main Greek sources side

by side with an English translation, reasonably anno-
tated, I trust I have done something to bridge the gap.

For the classical scholar Greek mathematics is a

brilliant after-glow which lightened the sky long after

the sun of Hellas had set. Greek mathematics sprang
from the same impulse as Greek philosophy, but
Greek philosophy reached its maturity in the fourth

century before Christ, the century of Plato and
Aristotle, and thereafter never spoke with like con-
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PREFACE

viction until the voice of Plato became reincarnate in

the schools of Egypt. Yet such was the vitality of

Hellenic thought that the autumn flowering of Greek
philosophy in Aristotle was only the spring of Greek
mathematics. It was Euchd, following hard on the

heels of Aristotle in point of time, hut teaching in

distant Alexandria, who first transformed mathe-
matics from a number of uncoordinated and loosely-

proved theorems into an articulated and surely-

grounded science ; and in the succeeding hundred
years Archimedes and Apollonius raised mathematics
to heights not surpassed till the sixteenth century of

the Christian era.

To the mathematician his Greek predecessors are

deserving of study in that they laid the foundations

on which all subsequent mathematical science is

based. Names still in everyday use testify to this

origin—Euclidean geometry, Pythagoras 's theorem,
Archimedes' axiom, the quadratrix of Hippias or

Dinostratus, the cissoid of Diodes, the conchoid of

Nicomedes. I cannot help feeling that mathe-
maticians will welcome the opportunity of learning

the reasons for these names, and that the extracts

which follow will enable them to do so more easily

than is now possible. In perusing these extracts they
will doubtless be impressed by three features. The
first is the rigour Avith which the great Greek geo-

meters demonstrated what they set out to prove.

This is most noticeable in their treatment of the

indefinitely small, a subject whose pitfalls had been
pointed out by Zeno in four arguments of remarkable
acuteness. Archimedes, for example, carries out

operations equivalent to the integral calculus, but he
refuses to posit the existence of infinitesimal quanti-
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ties, and avoids logical errors which infected the

calculus until quite recent times. The second feature

of Greek mathematics which will impress the modern
student is the dominating position of geometry.
Early in the present century there was a

powerful movement for the " arithmetization " of

all mathematics. Among the Greeks there was a

similar impulse towards the " geometrization " of

all mathematics. Magnitudes were from earliest

times represented by straight lines, and the Pytha-
goreans developed a geometrical algebra performing
operations equivalent to the solution of equations of

the second degree. Later Archimedes evaluated by
purely geometrical means the area of a variety of

surfaces, and Apollonius developed his awe-inspiring

geometrical theory of the conic sections. The third

feature which cannot fail to impress a modern mathe-
matician is the perfection of form in the work of the

great Greek geometers. This perfection of form,

which is another expression of the same genius that

gave us the Parthenon and the plays of Sophocles, is

found equally in the proof of individual propositions

and in the ordering of those separate propositions

into books ; it reaches its height, perhaps, in the

Ehments of Euclid.

In making the selections which follow I have drawn
not only on the ancient mathematicians but on many
other writers who can throw light on the history of

Greek mathematics. Thanks largely to the labours

of a band of Continental scholars, admirable standard
texts of most Greek mathematical works exist,

and I have followed these texts, indicating only the

more important variants and emendations. In the
selection of the passages, in their arrangement and at

ix
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innumerable points in the translation and notes I owe
an irredeemable debt of gratitude to the works of

Sir Thomas Heath, who has been good enough, in

addition, to answer a number of queries on specific

points. These works, covering almost every aspect
of (ireek mathematics and astronomy, are some-
thing of which English scholarship may justly feel

proud. His Histori/ of Greek Mathematics is un-
excelled in any language. Yet there may still be
room for a work which vaW give the chief sources in

the original Greek together with a translation and
sufficient notes.

In a strictly logical arrangement the passages would,
no doubt, be grouped wholly by subjects or by
persons. But such an arrangement would not be
satisfactor)^ I imagine that the average reader

would like to see, for example, all the passages on
the squaring of the circle together, but would also

like to see the varied discoveries of Arcliimedes in

a single section. The arrangement here adopted is

a compromise for which I must ask the reader's

indulgence where he might himself have made a

different grouping. The contributions of the Greeks
to arithmetic, geometr}^, trigonometry, mensuration
and algebra are noticed as fully as possible, but
astronomy and music, though included by the Greeks
under the name mathematics, have had to be almost

wholly excluded.

I am greatly indebted to Messrs. R. and R. Clark

for the skill and care sho^vn in the difficult task of

making this book.

I. T.

A DELPHI, LoNDO¥
April 1939
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I. INTRODUCTORY

(a) Mathematics and its Divisions

(i.) Origin of the Name

Anatolius ap. Her. De/., ed. Heiberg 160. 8-162. 2* . . .

Se ;

01 -
re ^8 jLta^oyra,^ ', . ^ea^at

^--, ."
" Anatolius was bishop of Laodicea about a.d. 280. In

a letter by Michael Psellus he is said to have written a concise
treatis»^ on the Egyptian method of reckoning.

" i.e. singing or playing, as opposed to the mathematical
study of musical intervals.

• The word^ from, means in the first place
" that which is learnt." In Plato it is used in the general
sense for any subject of study or instruction, but with a tend-
ency to restrict it to the studies now called mathematics. By
the time of Aristotle this restriction had become established.

2



I. INTRODUCTORY

() Mathematics and its Divisions

(i.) Origin of the Name

Anatolius, cited by Heron, Definitions, ed. Heiberg
160. 8-162. 2

From the works of Anatolius "...

" Why is mathematics so named ?

** The Peripatetics say that rhetoric and poetry

and the whole of popular music ^ can be understood

without any course of instruction, but no one can

acquire knowledge of the subjects called by the

special name mathematics unless he has first gone
through a course of instruction in them ; and for

this reason the study of these subjects was called

mathematics.'^ The Pythagoreans are said to have

given the special name mathematics only to geometry
and arithmetic

;
previously each had been called by

its separate name, and there was no name common
to both."**

** The esoteric members of the Pythagorean school, who
had learnt the Pythagorean theory of knowledge in its

entirety, are said to have been called mathematicians (-), whereas the exoteric members, who merely knew
the Pj-thagorean rules of conduct, were called hearers {-). See lamblichus, Be Vita Pythag. 18. 81, ed.

Deubner 46. 24 ff.

3



GREEK MATHEMATICS

(ii.) TJte Pt/t/iaiTorcan (^luidriviuin

Archytas .. P()rj)hvr. in Ptol. Harm., ed. Wallis, Opera
Math. iii. '2M. 40 2:?7. 1 ; Diels, Vors. i^ 481. 26-432. 8\€ 8e ^ ^-

yopeiov, XeyeraL• Aeyet eV Wepl€€6€ .? ^ 7€ /^?^/€, € ,
CVTL, 7€ ?^ '/

(, ivTL, ^.
€ ) ? ;^? ^^ 3 €. ^]],
hoKovvTi€ ^."

" Archytas lived in the first half of the fourth century b.c.

at Taras ('larentum) in Magna Graccia. He is said to have
dissuaded Dionysius from putting Plato to death. For seven

years he commanded the forces of his city-state, though tiie

law forbade anyone to hold the post normally for more than
one year, and he was never defeated. He is said to have
been the first to write on mechanics, and to have invented a
mechanical dove which would fly. For such of his mathe-
matical discoveries as have survived, see pp. 1 12-115, 130-133,

284-289.
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(ii.) The Pythagorean Quadrivium

Archytas, cited by Porphyry in his Commentary on Ptohmy'e
Harmonics, ed. Wallis, Opfra Mathematica iii. 236. 40-
237. 1 ; Diels, Vors. i*. 431. 26-432. 8

Let us now cite the words of Archytas " the Pytha-
gorean, whose writings are said to be mainly au-

thentic. In his book On Mathematics right at the

beginning of the argument he writes thus :

" The mathematicians seem to me to have arrived

at true knowledge, and it is not surprising that they

rightly conceive the nature of each individual thing
;

for, having reached true knowledge about the nature

of the universe as a whole, they were bound to see in

its true light the nature of the parts as Avell. Thus
they have handed down to us clear knowledge about

the speed of the stars, and their risings and settings,

and about geometry, arithmetic and sphaeric, and,

not least, about music ; for these studies appear to

be sisters." ^

^ Sphaeric is clearly identical with astronomy, and is

aptly defined by Heath, H.G.M. i. 11 as "the geometry of

the sphere considered solelj' vith reference to the problem
of accounting for the motions of the heavenly bodies." The
same quadrivium is attributed to the Pythagoreans by Nico-
machus, Theon of Smyrna and Proclus, but in the order

arithmetic, music, geometry and sphaeric. The logic of this

order is that arithmetic and music are concerned with number
(), arithmetic with number in itself and music with
number in relation to sounds ; while geometry and sphaeric

are concerned with magnitude {), geometry with

magnitude at rest, sphaeric with magnitude in motion.
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(iii.) Pinto's Scheme

Plat. Rep. vii. 525 a-530 d

(a) Logistic and Arithmetic

re..
Se € ,*6 .

^.€, €€, €'^ € ?,
cfvat €€6^, ^€€€€. . . .

oiei, , et '
" ^0., €€,
€V €V € , €€ ,

€€ iv ; " oUi

;

€€, € -, * /-€€. . . .

Tt ; ^,
" The passage is taken from the section dealing with the

education of the Guardians. The speakers in the dialogue
are Socrates and Glaucon. It is made clear in Rep. 537 b-d
that the Guardians would receive their chief mathematical
training between the ages of twenty and thirty, after two or
three years spent in the study of music and gymnastic and
as a preliminary to five years' study of dialectic. Plato's
scheme, it will be noticed, is virtually identical with the
Pythagorean guadrivium except for the addition of stereo-

6
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(iii.) Plato's Scheme

Plato, Republic vii. 525 a-530 d •

(a) Logistic and Arithmetic

Now logistic and arithmetic treat of the whole of

number.
Yes.

And, apparently, they lead! us towards truth.

They do, indeed.

It would appear, therefore, that they must be
among the studies Ave seek ; for the soldier finds it

necessary to learn them in order to draw up his

troops, and the philosopher because he is bound to

rise out of Becoming and cling to Being on pain of

never becoming a reasoner. . .
.^

Now what would you expect, Glaucon, if someone
were to ask them :

" My good people, what kind of

numbers are you discussing ? What are these num-
bers such as you describe, every unit being equal,

each to each, without the smallest difference, and
containing within itself no part ?

" What answer
would you expect them to make ?

I should expect them to say that the numbers they

discuss are capable ofbeing conceived only in thought,

and can be dealt with in no other Avay. . . .

Again ; have you ever noticed that those who are

metry ; and the addition is more formal than real since

stereometrical problems were certainly investigated by the

Pvthagoreans—not least by Archytas—as part of geometry.
Plato also distinguishes logistic from arithmetic (for which
see the extract given below on pp. 16-19), and speaks of
harmonics {) not music {), thus avoiding
confusion with popular music ( ).

^ There is a play on the Greek word, which could mean
either " reasoner " or " calculator."

7



GI^KKK MATHKMATTCS

els € eiVetv^, , iv -^ , ^ ^-, € €;", ,., eycS/xat, ye, ^.. ,' .^, ' .
() Geometry,, • -

.; ,,;, ' .", , ,) . . . .

'' ],,
,. . . .

, ' , ,
8
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by nature apt at calculation are—not to make a short

matter long—naturally sharp at all studies, and that

the slower-M'itted, if they be trained and exercised

in this discipline, even supposing they derive no

other advantage from it, at any rate all progress so

far as to become sharper than they were before ?

Yes, that is true, he said.

And I am of opinion, also, that you would not easily

find many sciences which give the learner and the

student greater trouble than this.

No, indeed.

For all these reasons, then, this study must not be

rejected, but all the finest spirits must be educated

in it.«

I agree, he said.

() Geometry

Then let us consider this, I said, as one point settled.

In the second place let us examine whether the

science bordering on arithmetic concerns us.

What is that ? Do you mean geometry ? he said.

Exactly, I repUed.

So far as it bears on military matters, he said, it

obviously concerns us. . . .

But for these purposes, I observed, a trifling know-
ledge of geometry and calculations would suffice ;

what we have to consider is whether a more thorough
and advanced study of the subject tends to facilitate

contemplation of the Idea of the Good. . . . Well,

even those who are only slightly conversant wdth

geometry will not dispute us in saying that this

" Plato's final reason may strike contemporary educa-
tionists as somewhat odd.

9
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» «»€€ ev]
Aeyo/xevot? ,€€,€.

11; €.
Aeyouat /xeV ^ € '

re , evcKa /?? re€€€6€, ' eart'€ eVc/ca €^€6€ , , • •

() Stereometry

; ; ) hoKel;, . . . .' €€ ttj.; ^.^, * €, iv ^, ^̂, ." -, • , ,., , •
;^,, ,, 6 yv'^t,

• It is useful to know that these terms, which are regularly
found in Euclid, were already in technical use in Plato's day.

'' Lit. " increase of cubes," where the word " increase
"

is the same as that translated above by ** dimension."

10
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science holds a position the very opposite from that

implied in the language of those who practise it.

How so ? he asked.

They speak, I gather, in an exceedingly ridiculous

and poverty-stricken vay. For they fashion all their

arguments as though they were engaged in business

and had some practical end in , speaking of

squaring and producing and ac'ding" and so on,

whereas in reality, I fancy, the study is pursued
wholly for the sake of knoAvledge. . . .

(y) Stereometry

Again ; shall we put astronomy third, or do you
think otherwise ?

That suits me, he said. . . .

We were wrong just now in what Ave took as the

study next in order after geometry.

What did we take ? he asked.

After dealing with plane surfaces, I replied, we
proceeded to consider solids in motion before con-

sidering solids in themselves ; the correct procedure,

after the second dimension, is to consider the third

dimension. This brings us, I believe, to cubical

increase ^ and to figures partaking of depth.

Yes, he replied ; but these subjects, Socrates, do
not appear to have been yet investigated.

The reasons, I said, are twofold. In the first

place, no state holds them in honour and so, being

difficult, they are investigated only in desultory

manner. In the second place, the investigators lack

a director, and without such a person they \\dll make
no discoveries. Now to find such a person is a diffi-

There is probably a playful reference to the problem of

doubling the cube, for which see in/ray pp. 256-309.

11
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cTreira /cat €€•, ^,
TTepl . el•€ ,
€ re iv-€] - exei• eVet

Laeva €,
8e ' €6^

7],
av^aveTac, ovSev 3.

], ^', ye ^€
€xeL. ' ^€ eme ^ eee.
^ paaeav ye-

peTpiav eeL.
IN at, e^

* , €,,€ '., €, Sieeev-' €
eohov, OTL ] ''eL eoL exec,€

eepav eeov,.', €, eeL.

" These words { ) can be taken either with what
goes before or with what comes after. In the former case

Plato (or Socrates) will be referrinji: to a distinguished con-
temporary (such as Eudoxus or Archytas) who had already
made discove.vfs in solid gcoiiielry.

^ 'J his passage has Ix-cn thought to have some bearing on
the question whether the Socrates of the dialogue is meant
to be the Socrates of history or not. The condition of stereo-

metry, as described in the dialogue, certainly does not fit

12
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cult task, and even supposing one appeared on the

scene, as matters now stand,^ those Mho are investi-

gating these problems, being swollen vaih pride,

would pay no heed to him. But if a whole state were
to honour this study and constitute itself the director

thereof, they would pay heed, and the subject, being

continuously and earnestly investigated, would be
brought to light. For even now, neglected and cur-

tailed as it is, not only by the many but even by
professed students, who can suggest no use for it,

nevertheless in the face of all these obstacles it

makes progress on account of its elegance, and it

would not be astonishing if it were fully unravelled.

It is certainly an exceedingly fascinating subject,

he said. But pray tell me more clearly what you
were saying just now. I think you defined geometry
as the investigation of plane surfaces.

Yes, I said.

Then, he observed, you first placed astronomy
after it, but later dreV back.

The more I hasten to cover the ground, I said, the

more slowly I travel ; the study of solid bodies comes
next in order, but because of the absurd way in

which it is investigated I passed it over and spoke
of astronomy, which involves the motion of solid

bodies, as next after geometry.
You are quite right, he said.^

Plato's generation, when Archytas and Eudoxus were making
brilliant discoveries in solid geometry ; but, even during the
lifetime of Socrates, Democritus and Hippocrates had made
notable contributions to the same science. This passage
cannot help, therefore, towards the solution of that problem.
All that Plato meant, it would appear, was that stereometry
had not been made a formal element in the curriculum but
was treated as part of geometry.

13
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() Astronomy

TerapTOV, ' eyco,€, ^-
^, eav . . . .

€V , eVetVep €V, -, ^^
vhlv,

,
St) , * ';? , ., ,, '

-. . . . , ' ,, * ,
-. . . .

* There seems little doubt that in this passage Plato wished
astronomy to be regarded as the pure science of bodies in
motion, of which the heavenly bodies could at best afford
only one example. Burnet has made desperate efforts to
save Plato from himself. According to his contention, Plato
meant that astronomy should deal with the true, as opposed
to the apparent, motions of the heavenly bodies ; it is tempt-

14
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() Astronomy

Let us then put astronomy as the fourth study,

regarding that now passed over as vaiting only until

some state shall take it up. . . . Those broideries

yonder in the heaven, forasmuch as they are broidered

on a visible ground, are rightly held to be the most
beautiful and perfect of visible things, but they are

nevertheless far inferior to those that are true, far

inferior to those revolutions which absolute speed
and absolute slowness, in true number and in all true

forms, accomplish relatively to each other, carrying

their contents with them—which can indeed be
grasped by reason and intelligence, but not by sight.

Or do you think otherwise ?

No, indeed, he replied.

Therefore, I said, we should use the broideries

round the heaven as examples to help the study of

those true objects, just as we might use, if we met
with them, diagrams surpassingly well drawn and
elaborated by Daedalus or any other artist. . . .

Hence, I said, we shall approach astronomy, as we
do geometry, by means of problems, but we shall

leave the starry heavens alone, if we wish to obtain a

real grasp of astronomy, and by that means to make
useful, instead of useless, the natural intelligence of

the soul. . .
.<*

ing but difficult to reconcile this with the decisive language
of the text. Fortunately Plato's own pupils in the Academy,
notably Eudoxus and Heraclides of Pontus, adopted a dif-

ferent attitude, using mathematics to account for the actual
motion of the heavenly bodies ; and Plato himself does not
appear to have held consistently to the belief here expressed,
for he is said to have put to his pupils the question by what
combination of uniform circular revolutions the apparent
movements of the heavenly bodies can be explained.

15
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(e) Harmonics

\\Lvhvv€V€L, €,, ^ ,7^ €
eivat, re€ ,,€,

(iv.) Logistic

Scliol. in Plat. Charm. 165

cotl , 8e

,, ' ev, ,
etvat * '^*,**8 ,,, '• '',,' at,-

•* See the fragment from Archytas, supra, pp. 4-.5.

'' Socrates proceeds to censure the Pythagoreans for com-
mitting the same error as the astronomers : they investigate
the numerical ratios subsisting between audible concords,
but do not apply themselves to problems, in order to examine
what numbers are consonant and what not, and to find out
the reason for the difference{ rtVe?

rives , €€).
' In the cattle-problem Archimedes sets himself to find

the number of bulls and cows of each of four colours. The
problem, stripped of its trimmings, is to find eight unknown
16
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(e) Harmonics

It would appear, I said, that just as our eyes were
intended for astronomy, so our ears were intended

for harmonious movements, and that these are in a

mianner sister sciences," as the Pythagoreans assert

and as we, Glaucon, agree.

^

(iv.) Logistic

Scholium to Plato's Charmides 165

Logistic is the science that treats of numbered
objects, not of numbers ; it does not consider number
in the true sense, but it Avorks with 1 as unit and the

numbered object as number, e.g., it regards 3 as a

triad and 10 as a decad, and applies the theorems of

arithmetic to such cases. It is, then, logistic Avhich

treats on the one hand the problem called by Archi-

medes the cattle-problem,^ and on the other hand
melite and phialite numbers, the latter appertaining

to bowls, the former to flocks ^
; in other types of

problem too it has regard to the number of sensible

bodies, treating them as absolute. Its subject-

matter is everything that is numbered ; its branches

include the so-called Greek and Egyptian methods
in multipUcations and divisions, as well as the addi-

quantities connected by seven simple equations and subject

to two other conditions. It involves the solution of a
*' Pellian " equation in numbers of fantastic size, and it is

unlikely that Archimedes completed the solution. See vol. ii.

pp. 202 fF. ; T. L. Heath, The Works of Archimedes, pp. 319-

326, and for a complete discussion, A. Anithor, Zeitschrift

fur Math. u. Physik {Hist.-litt. Ahtheilung), xxv. (1880), pp.
153-171, supplementing an article by B. Krumbiegel (pp. 121-

136) on the authenticity of the problem.
** He should probably have said " apples ".
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(.) Later Classification

Anatolius ap. Her. Def., ed. Heiberg 164. 9-18

;

**

8, , 8
. ^^ ,, ycoiSat-,,,,.-88, ' -, , etot,

Se 8
^."

" i.e., that which deals with non-sensible objects.
'' Geminus, according to Proclus in Eucl. i. (ed. Friedlein

38. 8-12), gives the same classification, only in the order

18
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tion and splitting up of fractions, whereby it ex-

plores the secrets lurking in the subject-matter of

the problems by means of the theory of triangular

and polygonal numbers. Its aim is to provide a

common ground in the relations of life and to be use-

ful in making contracts, but it appears to regard

sensible objects as though they were absolute.

(v.) Later Classification

Anatolius, cited by Heron, Definitions^ ed. Heiberg
164. 9-18

** How many branches of mathematics are there ?

*' There are two main branches of the prime and
more honourable type of mathematics," arithmetic

and geometry ; and there are six branches of that

type of mathematics concerned vith sensible objects,

logistic, geodesy, optics, canonic, mechanics and
astronomy.^ That the so-called study of tactics and
architecture and popular music and the study of

[lunar] phases, '^ or even the mechanics so called

homonymously,'^ are not branches of mathematics,

as some think, we shall show clearly and methodically

as the argument proceeds."

arithmetic, geometry, mechanics, astronomy, optics, geo-
desy, canonic, logistic. Geodesy means the practical

measurement of surfaces and volumes ; canonic is the
theory of musical intervals ; logistic is the art of calculation,

as opposed to arithmetic, by which is meant what we should
call the theory of numbers. Geminus proceeds to give an
elaborate analysis of the various branches.

* According to Heiberg, this means " das Kalenderwesen.'*
^ Heiberg interprets this as " die praktische Mechanik,

die sich im Namen von der theoretischen nicht unter-

scheidet."
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(6) Mathematics in Greek Education

Iambi. De Vita Pythag. 18. 89, ed. Deubner 52. 8-11

KiyovoL 8e ol \€ ^^ yeco-€. rwa[[^ oe 7)€,€€[. ^ ]€€ .
Plat. Lfg. vii. 817 -820 d02 02. " TOLVVV iXev-€ eoTLV ^7, ^
ev,'' ^€,^^.€€ ?

Ttva? — ,€ '^ €'— ,, '-
paSiov. . . .

?, .? 8,
" Plato is thought to have redeenied this promise towards

the end of the Laws, where he describes the composition of
the Nocturnal Council, whose nieml)ers are required to have
considerable knowledjre of mathematics.

^ The Greek word is derived from the same root as the

20
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(6) Mathematics ix Greek Education

lamblichus, O71 the Pythagorean Life 18. 89, ed. Deubner
52. 8-11

The Pythagoreans say that geometry was divulged
in this manner. A certain Pythagorean lost his

fortune ; and when this befell him, he was permitted
to make money from geometry. But geometry was
called by Pythagoras " inquiry."

Plato, Laxrs vii. 817 e-830 d

Athenian Stranger. Then there are, of course,

still three subjects for the freeborn to study. Cal-

culations and the theory of numbers form one subject

;

the measurement of length and surface and depth
make a second ; and the third is the true relation of

the movement of the stars one to another. To pursue
all these studies thoroughly and with accuracy is a

task not for the masses but for a select few—who
these should be Ave shall say later towards the end
of our argument, Avhere it Avould be appropriate '^—
for the multitude it will be proper to learn so much
of these studies as is necessary and so much as it can
rightly be described a disgrace for the masses not to

knoAv, even though it would be hard, or altogether

impossible, to pursue with precision all of those

studies. . . .

Well then, the freeborn ouQ-ht to learn as much of

these things as a vast multitude of boys in Egypt
learn along with their letters. First there should be
calculations of a simple type devised for boys, which
they should learn with amusement^ and pleasure,

Greek word for " boy," and Plato is playing on the two
words.
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€ € -
-̂, e^eSpetas" re^€ ev. ] ,

€€, ?,
6€ , , -

? |•€? /^ctt

,-'
8 ,,

€, 79 .2. Srj ;
.* ,€

e^aujLtaaa,

ê?vat , '1)€-€ ,^.
" Heath {JI.G.M. i. 20 . 1) first satisfactorily explained

the construction of this sentence.
• The Athenian Stranger, generally taken to mean Plato
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such as distributions of apples and crowns wherein
the same numbers are divided among more or fewer,

or distributions of the competitors in boxing and
wrestling matches by the method of byes and draw-
ings, or by taking them in consecutive order, or in

any of the usual ways." Again, the boys should play
Avith bowls containing gold, bronze, silver and the

hke mixed together, or the bowls may be distributed

as wholes. For, as I was saying, to incorporate in

the pupils' play the elementary applications of

arithmetic will be of advantage to them later in the
disposition of armies, in marches and in campaigns,
as well as in household management, and will make
them altogether more useful to themselves and more
awake. After these things there should be measure-
ments of objects having length, breadth and depth,

whereby they Avould free themselves from that

ridiculous and shameful ignorance on all these topics

which is the natural condition of all men.
Cleinias. And in what, pray, does this ignorance

consist ?

Athenian Stranger. My dear Cleinias, when I

heard, somewhat belatedly, of our condition in this

matter,^ I also was astonished ; such ignorance

seemed to me worthy, not of human beings, but of

swinish creatures, and I felt ashamed, not for myself
alone, but for all the Greeks.

himself, proceeds to explain at length that he is referring to

the problem of incommensurability. The Greek() could mean that he had only lately heard either

oJF incommensurability itself or of the prevalent Greek ignor-
ance about incommensurability. A. E. Taylor comments
that in view of references to incommensurability in quite
early dialogues it seems better to take the words in the
latter sense.

23



GREEK MATHEMATICS

. nepL; * otl '{]£, co ^eVc.. Ae'ycu hr^• epwTow Sei^co.•^
;. Tt ] ;. ; ;. voJ.. otl ' €6,;. ? yap ;. '^Ajo' ) 8€ etvat€ ;. Nat.. € ,, elvai€€ €.. <^ ye.. Et ' /xrJTe 7]€ rjpepa

€vta, , , ^* '^^^

otet TT-pos" ^^;.^ .. Tt ' /cat??,
Acat ; *"^?,^

y;. .. Et * eoTtv ^^ 8,
', , '^'?^, - " "^ *,
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Clein. Why ? Please explain, sir, what you are

saying.

Ath. I will indeed do so ; or rather I will make it

plain to you by asking questions. Pray, ansAver me
one little thing

; you knoAV what is meant by line ?

Clein. Of course.

Ath. And again by surface ?

Clein. Certainly.

Ath. And you know that these are tVo distinct

things, and that volume is a third distinct from them ?

Clein. Even so.

Ath. Now does not it appear to you that they are

all commensurable one with another ?

Clein. Yes.

Ath. I mean, that line is in its nature measurable
by line, and surface by surface, and similarly with
volume.

Clein. Most assuredly.

Ath. But suppose this cannot be said of some of

them, neither with more assurance nor with less, but
is in some cases true, in others not, and suppose you
think it true in all cases ; >vhat you do think of your
state of mind in this matter ?

Clein. Clearly, that it is unsatisfactory.

Ath. Again, what of the relations of line and sur-

face to volume, or of surface and line one to another
;

do not all we Greeks imagine that they are com-
mensurable in some way or other }

Clein. We do indeed.

Ath. Then if this is absolutely impossible, though
all we Greeks, as I was saying, imagine it possible,

are we not bound to blush for them all as we say to

them, " Worthy Greeks, this is one of the things of
which Ave said that ignorance is a disgrace and that
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ycyoyeVai €, *
ovhev ;

"

. Wois * ;. Kat ye, iv .. ^);. € -, ^? act, -, ?.. "' \^ /xa^rJjLtaTa .
Isoc. Panathenaicus 26-28, 238 b-d," ,

* Plato is probably censuring a belief that if two squares
are commensurable, their sides are also commensurable ;

and if two cubes are commensurable, their surfaces and sides

are also commensurable. The discovery that this is not
necessarily so would arise in such problems as that pro-
pounded in Meno 82 —85 (doubling of a square) and in

the duplication of the cube (see infra, pp. 256-300). The
only difficulty is that commensurability is not always im-
possible(8 ). A belief that areas and
volumes can be expressed in linear measure would meet this

stipulation, but it seems too elementary to call for elaborate

refutation by Plato.
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to know such necessary matters is no great achieve-

ment "
?

<»

Clein. Certainly.

Ath. In addition to these, there are other related

points, vhich often give rise to errors akin to those

lately mentioned.
Clein. What kind of errors do you mean ?

Ath. The real nature of commensurables and in-

commensurables towards one another.* A man must
be able to distinguish them on examination, or must
be a very poor creature. We should continually put
such problems to each other—it would be a much
more elegant occupation for old people than
draughts—and give our love of victory an outlet in

pastimes worthy of us.

Clein. Perhaps so ; it would seem that draughts

and these studies are not so widely separated.

Isocrates, Panegyric of Athens 26-28, 238 b-d "

So far from despising the education handed down
by our ancestors, I even approve that established in

^ According to A. E. Taylor, this means that " behind the
more special problems of the commensurability of specific

areas and volumes there lies the problem of constructing a
general ' theory of incommensurables.' " He calls in the
evidence of Epinomis, 990 —991 , for which see m/ra,
pp. 400-405. For further references to the problem see

infra, pp. 110-111, 214-215.
" Isocrates began this last of his orations in his ninety-

fourth year and it was published in his ninety-eighth. He
expresses similar sentiments about mathematics in Antidosis

§§ 261-268; see also Xenophon, Memorabilia iv. 7. 2 if.

Heath's dry comment {H.G.M. i. 22) is : "It would appear
therefore that, notwithstanding the influence of Plato, the
attitude of cultivated people in general towards mathematics
was not diiferent in Plato's time from what it is to-day."
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€€€ , ^'€€ SeovTog, he€€?,
elvaL €€.*' € ,,, el ^

aya^oi',',^^ 6-' he^.̂
/Lia^rjjLiaat ^, -, ??? .

(c) Practical Calculation

(i.) Enumeration by Fingers

Aristot. Prob. xv. 3, 910 b 23-911 a 1,", 8,, , , , , eVava-^, , , ,-; . . .

/<:»?;
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our own times—I mean geometry, astronomy, and

the so-called eristic dialogues, in which our young
men delight more than they ought, though there is

not one of the older men who would pronounce them
tolerable.

Nevertheless I urge those who are inclined to these

disciplines to work hard and apply their mind to all

of them, saying that even if these studies can do no

other good, they at least keep the young out of many
other things that are harmful. Indeed, for those

who are at this age I maintain that no more helpful

or fitting occupations can be found ; but for those

who are older and those admitted to man's estate

I assert that these disciplines are no longer suitable.

For I notice that some of those who have become so

versed in these studies as to teach others fail to use

opportunely the sciences they know, vhile in the

other activities of life they are more unpractical than

their pupils—I shrink from saying than their servants.

(c) Practical Calculation

(i.) Enumeration by Fingers

Aristotle, Problems xv. 3, 910 b 23-911 a 1

Why do all men, both barbarians and Greeks, count

up to ten and not up to any other number, such as

2, 3, 4 or 5, whence they would start again, saying,

for example, one plus five, two plus five, just as they

say one plus ten, two plus ten ? "... Is it that all

men were born with ten fingers ? Having the

" The Greek words for 11 and 12 mean literally one-ten,

two-ten.
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OLKeiov,.
Nicolas Rhabdas, ed. Tannery, Notices et extraits des manu-

scrits de la Bibliotheque Nationale, vol. xxxii. pt. 1,

pp. 146-152"
8e € '

iv € \, det^^€, ttj ^4 ^,€€€ € ev - €€
iv ^.€€ ,, -/,, ttj ^ta-. ,,, ttj, Tjj^ ;^.

'
, -, ,

" The word 7€€ (" to five "), used by Homer
{Od. iv. 412) in the sense " to count," would appear to be a
relic of a quinary system of reckoning. The Greek €,
like the Latin manus, is used to denote " a number " of men,
e.g., Herodotus vii. 157, viii. 140 ; Thucydides iii. 96.

" Nicolas Artavasdas of Smyrna, called Rhabdas, lived

in the fourteenth century a.d. lie is the author of two letters

SO
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equivalent of pebbles to the number of their own
fingers, they came to use this number for counting

everything else as well."

Nicolas Rhabdas,'' ed. Tannery, Notices et extracts des manu-
scrits de la Bibliotheque NationaUy vol. xxxii. pt. 1,

pp. 146-132

Exposition of finger-notation *

This is how numbers are represented on the hands :

The left hand is always used for the units and tens,

and the right hand for the hundreds and thousands,

while beyond that some form of characters must be

used, for the hands are not sufficient.

Closing the first finger—the little one, called

myope—and keeping the other four stretched out

straight, you have on the left hand 1 and on the right

hand lOOO.'^

Again, closing this finger together Avith that next

after it—the second, called iiext the middle and epi-

hate—and keeping the remaining three fingers open,

as we said, you have on the left hand 2 and on the

right hand 2000.

Once more, closing the third finger—called spha-

kelos and middle—and keeping the other two as

edited by Tannery, of which the second can be dated to the

year 1341 by a calculation of Easter. He edited the arith-

metical manual of the monk Maximus Planudes.
* A similar system is explained by the Venerable Bede,

De temporum ratione, c. i., " De computo vel loquela digi-

torum." He implies that St. Jerome {ob. a.d. 420) was also

acquainted with the system.
** In the Greek the numerals are sometimes written in full,

sometimes in the alphabetic notation, for which see infraf

p. 43.
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€ hvo€€,€, elolv ttj,
y, ttj 8, /.
\\\ ,, ,, ,,

TTJ, , ttj ^, ^., ,

,

,^
(eV ttj )^ , ttj, ^., ^, ~(')'',
\ s~, \ ^^ ., ,

Tjj , _, , ,
] ], ^.8, ,

\
, ,, , -,

ttj ^ ], ttj^ /.$" ,
Svo, ^,, Tjj ^ ,

]] . , '-
* cV . . . add. Morel.
• add. Tannery.
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before, with the remaining two held out straight

—

I mean the forefinger'^ and thumb ^—you have on the

left hand 3 and on the right hand 3000.

Again, closing the two fingers called middle and
nei't the middle, that is, the second and third, and
keeping the others open—I mean the thumb and fore-

finger and that called myope, you have on the left

hand 4 and on the right hand 4000.

Again, closing the third finger—the middle—and
keeping the remaining four straight, the fingers will

represent on the left hand 5 and on the right hand
5000.

Closing, again, the epihate finger—the second

—

and keeping the remaining four open, you have on

the left hand 6 and on the other 6000.

Again, by extending the finger called myope—the

first—so as to touch the palm, and keeping the

others stretched out straight, you have 7 and on

the other hand 7000.

If the second finger—that called next the middle—
is extended in a similar manner and bent until it

nearly touches the hollow of the hand, while the re-

maining three fingers—the third, fourth and fifth

—

are stretched out straight as aforesaid, the resulting

figure will represent on the left hand 8 and on the

right hand 8000.

If the third finger also is bent in this manner, the

other two—the first and second—remaining as before,

the fingers \11 represent on the left hand 9 and on

the other 9000.

Again, if the thumb is kept open, not raised verti-

" The Greek word means literally the " licking " finger.

* The Greek word means literally " that which is opposite
"

sc. the four fingers.
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], € ,

he ^* ^, €,
€v € \ ^ 8e/ca,

€V Be TTJ heliq. p.

(ii.) The Ahacui

Herod, ii. 36. 4

V *•"
-, 8'

€7 TToUeiv,"^? € €*.
" It is perhaps unnecessary to follow this trifle to its end.

Rhabdas proceeds to show how the tens from 20 to 90, and
the hundreds from 200 to 900, can be represented in similar

manner. Details are given in Heath, H.G.M. ii. 552.

I have not found it possible to give a satisfactory rendering
of Rhabdas's names for the fingers. Possibly should
be translated spur (though this seems a more natural name
for the thumb than the first finger) and rider;{ in the Mss.) can mean spasms or con-
vulsions, and Mr. Colin Roberts tentatively suggests (to my
mind convincingly) that the middle finger is so called because
it is joined with the thumb in cracking the fingers.

* The only ancient abaci which have been preserved and
can definitely be identified as such are Roman. It is dis-

puted whether the famous Salaminian table, discovered by
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cally but86 aslant, and the forefinger is bent

until it touches the first joint of the thumb, so that

they resemble the letter , while the remaining three

fingers are kept open in their natural position and

not separated from each other but kept together, the

figure so formed mil signify on the left hand 10 and

on the right hand 100.«

(ii.) The Abacus^

Herodotus ii. 36. 4

In writing and in reckoning with pebbles the

Greeks move the hand from left to right, but the

Egyptians from right to leff^ ; in so doing they main-

tain that they move the hand to the right, and that

it is the Greeks who move to the left.

Rangabe and described by him in 1846 {Revue archeologique

iii.), is an abacus or a game-board ; the table now lies in the

Epigraphical Museum at Athens and is described and illus-

trated by Kubitschek {Wiener numismatische Zeitschrift^

xxxi., 1899, pp. 393-39S, with Plate xxiv.), Nagl {Ahhand-
lungen zur Geschichte der Mathematik^ ix., 1899, plate after

p. 357) and Heath, H.G.M. i. 49-51. The essence of the

Greek abacus, like the Roman, was an arrangement of the

columns to denote diiFerent denominations, e.g., in the case

of the decimal system units, tens, hundreds, and thousands.

The number of units in each denomination was shown by
pebbles. When the pebbles collected in one column became
sufficient to form one or more units of the next highest

denomination, they were withdra\vn and the proper number
of pebbles substituted in the higher column.

• This implies that the columns were vertical.
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Dio£r. r.aert. i. 59

"EAeye ^e

etvat ?- ? €1 -. ^-^, tjttw• -,.
Polyb. Ilistor. v. 26. 13" ?-', 8.
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Diogenes Laertius i. 59

He [Solon] used to say that men who surrounded
tyrants were Hke the pebbles used in calculations

;

for just as each pebble stood for more, now for

less, so the tyrants would treat each of their courtiers

now as great and famous, now as of no account.

Polybius, History v. 26. 13

These men are really like the pebbles on reckoning-

boards. For the pebbles, according to the will of

the reckoner, have the value now of an eighth of an
obol, and the next moment of a talent " ; while

courtiers, at the nod of the king, are now happy, and
the next moment lying piteously at his feet.

" In the Salaminian table (see supra, p. 34 n. b) the ex-

treme denominations on one side are actually the talent and
the (^ obol).
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II. ARITHMETICAL NOTATION AND THE
CHIEF ARITHMETICAL OPERATIONS

(a) English Notes and ExAaiPLES

From earliest times the Greeks folloved the decimal
system of enumeration. At first, no doubt, the
words for the different numbers were written out
in full, and many inscriptions bear witness to this

practice. But the development of trade and of

mathematical interests would soon have caused the
Greeks to search for some more convenient symbolic
method of representing numbers. The first system
of symbols devised for this purpose is sometimes
known as the Attic system, owing to the prevalence
of the signs in Attic inscriptions. In it I represents
the unit, and may be repeated up to four times.

There are only five other distinct symbols, each being
the first letter of the word representing a number.
They are

(the first letter of Treire) = 5

(€) = 10

(e /) = 100() = 1000{) =10000

Like , each of these signs may be repeated up to
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four times. Four other symbols are formed by com-

pounding two of the simple signs.

( and )= 50

( and )= 500

( and )= 5000

f^ ( and ) = 50000

By combinations of these signs it is possible to repre-

sent any number from 1 to 50000. For example,=6329.
Notwithstanding the opinion of Cantor," there is

very little to be said for this cumbrous notation. A
second system devised by the Greeks made use of the

letters of the alphabet, with three added letters, as

numerals. It is not certain when this system came
into use,** but it had completely superseded the older

system long before the time of the wTiters with whom
we shall be concerned, and for the purposes of this

book it is the only system which need be noticed. In

it an alphabet of 27 letters is used : the first nine

letters represent the units from 1 to 9» the second

nine represent the tens from 10 to 90, and the third

nine represent the hundreds from 100 to 900. To
show that a numeral is indicated, a horizontal stroke

• Vorlesungen Uher Geschichte der Mathematik, i', p. 129.
* For a full consideration of the date given by Larfeld (end

of eighth century b.c.) and that given by Keil (550-425 b.c),

see Heath, H.O.M. i. 33-34.
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is generally placed above the letter in cursive writing,

as in the following scheme "

"
1

€=5
=6

77=8
^=9

=100
=200
f =300
=400
f=500
=600
=700
=800

^=900
often omitted for con-

t =10
/7=20
=30

/I =40
V =50
=60
=70
=80
=90

The horizontal stroke is

venience in printed texts.

In this system there are three letters - (Stigma, a

form of the digamma), or 9 (Koppa) and "^ (Sampi)

uhich had been taken over by the Greeks from the

Phoenician alphabet but had dropped out of literary

use. As there is no record of this alphabet of 27

letters in this order being in use at any time, it seems
to have been deliberately framed by someone for the

purposes of mathematics.^ Though more concise

than the Attic system, it suffers from the disad-

vantage of gi\'ing no indication of place-value ; the

connexion between e, and , for example, does not

leap to the eye as in the Arabic notation 5, 50, 500.

" In some texts the method of indicating that a letter

stands for a numeral is an accent placed above the letter and
to the right, in the following manner :

a' = l, i' = 10, p' = 100.

A double accent is used to indicate submultiples, e.ff.^

/' = !, A" = 7V. " = 7^.
• Gow, A Short History of Greek Mathematics^ pp. 45-46.
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Opinions differ greatl}' on the facility with which it

could be used, but the balance of opinion is in favour

of the view that it was an obstacle to the develop-

ment of arithmetic by the Greeks.
By combination of these letters, it is possible to

represent any number from 1 to 999. Thus =153.
For the thousands from 1000 to 9000 the letters to ^

are used again with a distinguishing mark, generally

a stroke subscribed to the letter a little to the left,

in addition to the horizontal stroke above the letter.

Thus ,d = 1000, ,^=2000, . . . ,^= 9000.

For tens of thousands the sign is used, generally

>vith the number of myriads written above it.

Thus = 10000, = 20000, and so on (Eutocius).

Another method is to use the sign or for the

myriad and to put the number of myriads after it,

separated by a dot from the thousands.

Thus

/. ,7= 1048576 (Diophantus vi. 22, ed. Tannery
446. 11).

In a third method the symbol is not used, but the

symbol representing the number of myriads has two
dots placed over it.

Thus

^^^- = 18596 (Heron, Geometnca xvii. 33, ed.

Heiberg 348. 35).

Heron commonly wrote the word vpt€s in full.

To express still higher numbers, powers of myriads
were used. Apollonius and Archimedes invented
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systems of " tetrads " and " octads " respectively to

indicate powers of 10000 and 100000000.

There Avas no single Greek system for representing

fractions. With submultiples, the orthodox method
was to write the letter for the corresponding number
with an accent instead of a horizontal dash, e.g.,

S' = ^. There were special signs, Z.' and C', for |,

and u/' for §. The Greeks, Uke the Egyptians, tried

to express ordinary proper fractions as the sum of

two or more submultiples. Thus Z.' S' = ^ + ^= ^,^ i^' = i +^ = ff (Eutocius). There was a limit to

what could be done in this way, and the Greeks
devised several methods of representing ordinary

proper fractions. The most convenient is that used
by Diophantus, and occasionally by Heron. The
numerator is written underneath the denominator,
which is the reverse of our modern practice. Thus
^^'^ =6\• ^ method commonly used in Heron's

works was to write the denominator twice and with

an accent, e.g., ^ = ^i = V"• Sometimes the
word (" fractional parts ") was added, e.g.,. €= ||. There is no fixed order of

preference for numerator and denominator. In

Aristarchus of Samos we find ' /ze' for —^ and in

Archimedes i oa for \\, where only the context will

show that lOy^Y is not intended.

Several fragments illustrating elementary mathe-
matical operations have come to Ught among the
Egyptian papyri." The following tables (2nd cent.

A.D.) show hoAV fractions can be represented as sums of

submultiples. The Greek is set out in columns. Tlie

" I am indebted to Mr. Colin Roberts for drawing my
attention to them.
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first two columns ^'we the numerator of the fraction

to be split up. The denominator is not explicitly

announced in the table, but it is implicit in the first

line. Fractions are marked with signs like accents,

usually but not always over every letter. The sign

for J will be noted. Dots under letters indicate

doubtful readings.

Michigan Papyri^ No. 145, vol. iii. {Humanistic Series,

vol. xl.) p. 36
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Equivalent in Arabic Notation

12_1,1,1, 1
2"9 — 4 ^ 8 ^ 2" 9 + 2

"3
2"

1.3_1,1,1,1, \
2 9 — 7T + Tg + "2 9 + 8T + T3-S"14_1,1,1, 1 , 1

2¥ — 4 + " T" 58 + + T4 -
5 _ 1 , 1

16 _ 1 , 1 , 1

17_1,1, 1
2 9 — 2^ + TT + -S^4:S•

The Greeks had no sign corresponding to 0, and
never rose to the conception of as a number.*
Having no need of a sign to indicate decimal posi-

tion, they wrote such a number as 1007 in only two
letters— ^a^•

By means of these devices the Greeks had a
complete system of enumeration. Here are a few
examples of compHcated numbers taken from
Eutocius :

ti .ySn ^'' = 1373943^^V = 137394311.

*M ^ ^' ^•' = 54720901 3-V
= 5472090^9^.

With these symbols the Greeks conducted the chief

mathematical operations in much the same manner,
and with much the same facility, as we do. The
following is an example of multiplication from

<» In his sexagesimal notation, Ptolemy used the symbol
to stand for or ovBkv. The diverse

views which have been held on this symbol from the time of
Delambre are summed up by Loria {Le scienze esatte nelV
antica Qrecia^ p. 761) in the words :

" In base ai documenti
scoperti e decifrati sino ad oggi, siamo autorizzati a negare
che i Greci usassero lo zero nel senso e nel modo in cui lo

adoperiamo noi."
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Eutociiis's commentary on Archimedes' Measurement

of a Circle (Archim., cd. Heiberg iii. 24.2) :

l>vy

iirl
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circle, and with it the four right angles at the centre,

are divided into 360 equal parts by radial lines. Each
of these 360 degrees( or) is divided

into 60 equal parts called €^?;/<•, frequently-

represented as a'€, sixtieths or minutes.

In turn each of these parts is divided into 60 SevTepa, or ' ^^, second sixtieths or secojids.

By further subdivision we obtain ^, or

y', and so on. In similar manner the dia-

meter of the circle is divided into 120, seg-

ments, each of these into sixtieths, and so on. The
circular associations of the system tended to be
forgotten, and it offered a convenient method for

representing any number consisting of an integral

number of units with fractional parts. The denomi-

nations of the parts might be wTitten out in full

(e.g., "^ = 900 minutes, a.
' € = 200 minutes and 15 seconds), or a

number consisting of degrees, minutes and seconds

might be WTitten down in three sets of numerals
without any indication of the denominations other

than is pro\ided by the context {e.g., ^.
= 1515° 20' 15").

After explaining the advantages of the notation

owing to the large number of factors of 60, and noting

the result of multiplying or dividing minutes by
degrees, minutes by minutes, and so on, Theon gives

an example of multiplication and then the two in-

teresting passages which are now to be reproduced
and translated

:

Diocletian (a.d. 284-305). His chief work was his

Synagoge or Collection, a handbook to Greek geometry
which is now one of our main sources for the subject and
will be extensively used in these pages.
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(6) Division

Theon Alex, in Ptol. Math. Syn. Covim. i. 10, ed. Rome,
Studi e Testi, Ixxii. (1936), 461. 1-462. 17" Se SoOevra €

€ Sevrepa.€ 6 SoOelg 6 ^€ ie* /cat€ ,

€vpeZv 6 € iv ^€ t€./ , eTretSr^Trep€€ -
€ € , € .

, ^•^? ?
'^

,• -
'

" We may exhibit Theon 's working as follows :

1st division 25° 12' 10"
[
1515° 20' 15"

25°.60'' = 1500°

15° =900'
20'
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(6) Division

Theon of Alexandria, Commentary on Ptolemy's Syntaxis^ i.

10, ed. Rome, &tudi e Testi, Ixxii. (1936), 461. 1-462. 17

Conversely, let it be required to divide a given

number by a number expressed in degrees, minutes
and seconds. Let the given number be 1515° 20'

15" ; and let it be required to divide this by 25°

12' 10", that is, to find how often 25° 12' 10" is

contained in 1515° 20' 15".°

We take 60° as the first quotient, for 61° is too

big ; and we subtract sixty times 25° and sixty

times 12' and also sixty times 10". Firstly, we
take away sixty times 25°, which is 1500°. In the

remainder, 15° 20' 15", Ave spht up the 15° into

minutes and add to them the 20' ; and from the

resulting 920' we subtract sixty times 12', that is,

720'. This leaves 200' 15", and we now subtract

2nd division
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, t. etra ^- ^ Sevrepa Zc€€
€, yiveraL 6 ' €7€

. €€ € -€^ €^
^ . eVetTa-€? et? SevTepa "^ -
6evT€s - te,

"^te, ,,, ,
,

.

. .
6 ,.

, ,
^.

^, ^^ ^
, ,

^ ^.^ € € i > ^
(c) Extraction of Square Root

Ibid. 469. 16-473. 8,
52
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sixty times 10"
; that is 600", or 10'. The remainder

is 190' 15", and, making a new start, we divide by

25°
; the quotient is 7', for 8' is too big. The number

resulting from this di\'ision is 175', which we subtract

from the 19O'. There is a remainder of 15', which

we spht up into 9OO" and to it add the 15"
; from

the resulting 915" we subtract seven times 12',

which is 84" on account of the seven being minutes

;

there is left a remainder 831". Similarly we sub-

tract seven times 10", which is 70'", or 1" 10'".

The remainder is 829" 50'". We divide this in turn

by 25°. The quotient is 33", and the number result-

ing from the division is 825", leaving a remainder of

4" 50'", or 290"'. Next we subtract thirty-three

times 12', which is 396'". Thus the quotient

obtained by dividing 1515° 20' 15" by 25° 12' 10" is

approximately 60° 7' 33", inasmuch as, ifve multiply

this quotient by 25° 12' 10", the result be

approximately 1515° 20' 15".

1515° 20' 15" 25° 12' 10" 60° 7' 33"

(c) Extraction of Square Root

Ibid. 469. 16-473. 8

After this demonstration the next step is to inquire

^ " Forme suspecte. Voir pourtant Hirt, Ilandbuch der

gr'iechischen Lout- und Formenlehre, 2^ ed., Heidelberg, 1912,

p. 506."—Rome.
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SoOevTO? € €€ -. -
hi]\ov , '

' ,-,
?).

, ,
,- , ,-

[]^ ? ,, ()^ []'
,, • '

, ^.
^ . Rome. ' add. Rome.

* om. Rome.

• The diagram will make the procedure clear. The square

p=100°

/c = 20°

= 20"

= 4°

54•
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in what manner, given the area of a square whose

side is irrational, we may make an approximation to

its side. In the case of a square with a rational side

the method is clear from the fourth theorem of the

second book of the Elements^ whose enunciation is as

follows : Ifa straight line be cut at random, the square on

the whole is equal to the squares on the segments, and

twice the rectangle contained hy the segments. For if the

given number is a square such as l^^, having a rational

side AB, we take the square 100, which is less than

144 and has 10 as its side, and make equal to 10.

Doubling it, because the rectangle contained by,
is taken twice, we get 20, and by this number

we divide the remainder 44, obtaining a remainder 4

as the square on , whose length will therefore

be 2. Now was 10, and therefore the whole AB

is 12, which was to be proved.**

is divided up into the squares EZ, BZ and the equal
rectangles AZ,.

Thus, square = square EZ + 2 rect. AZ + square BZ
or 144 = 10^+2.10.2+2^. Generally, if a given square
number A is equal to (a+x)^, where a^ is a first approxima-
tion, then

=2+2+»^
and we find the value of by dividing 2a into the remainder
when a^ is subtracted from A.

If A is not a square number, then this gives a method of
finding an approximation, + », to the square root.
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Sk i-ni rCov iv rfj€ /^-
yei'^rat )€ ^, -^ em ,^,

| V€., ,, 8eov

.
(i=er

,7^=4489"
= 268'

:55'

' = 2%' 16"

= 55'
,-^ -
3688" 40'

CO 3

-
.

" The method wliich Thcon proposes to use may be sum-
marized as follows. first approximation to the square root
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In order to show visually, for one of the numbers

in the Syntaxis, this extraction of the root by taking

away the parts, we shall construct the proof for

the number 4500°, whose side he [Ptolemy] made
67° 4' 55". Let be a square area, the square

alone being rational, and let its contents be 4500°,

and let it be required to calculate the side of a

square approximating to it.** Since the square

of 4500 is 67, for 672 = 44g()^ (Xhis suggests that Theon may
have had a table of squares before him.) Theon proposes to

find the square root of 4500 in the form ^^ +^ +^• That is,

^/4500= V67^Tn =67 +^^+-^,.

Q'Jx
It follows from Euclid ii. 4 that --.- must be less than 11,

bO

or X must be less than ^^;^. The nearest whole number
2.6/

obtained by dividing 2.67 into 660 is 4, and we try 4 for the

value of x. On trial it is found that 4 satisfies the conditions

of the problem, for (67 r^)^ is less than 4500, the remainder

being -^^' Theon proves this geometrically. If AE=67,

then the square AZ =4489 and the gnomon is therefore

1 1 , or ^. Putting =HK = ^, we have rect. = rect.

ZK =^^ =^. Their sum is~ and this we subtract from
60 oO 60

g^, getting -^^ or -^^. From this we subtract ^^, being

7424
the value of the square, and so get -w^ for the'remainmg

gnomon, as was stated above. This remainder now
serves as a basis to obtain the third term y of the quotient.

Since
{ (^ + gTj) +^j^s approximately 4500, we have by
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iarlv ,€€ , '
' 6 6

, ^€$• ctV., eV, ,
, . ,", .?
,,

" ,

, . BiVAA

,
^.* ,

ytvo/xeva, -
cyytara

7424,

60^
Euclid . 4 that 2 ^67 +^V^ + (^- is approximately

and we obtain a trial value for y by dividing 2(67 +) or
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which approximates to 4500° but has a rational side

and consists of a whole number of units is 4489° on a

side of 67°, let the square AZ, with area 4489° and
side 67°, be taken away from the square.
The remainder, the gnomon, therefore be
11°, vhich we reduce to 660' and set out. Then
we double EZ, because the rectangle on EZ has to

be taken twice, as though we regarded as on
the straight line EZ, di\dde the result 134° into 660',

and by the division get 4', which gives us each of, HK. Completing the parallelograms , ZK,
we have for their sum 536', or 268' each. Con-
tinuing, we reduce the remainder, 124', into 7440",

and subtract from it also the complement ZA, which
is 16", in order that by adding a gnomon to the

original square AZ we may have the square AA on
a side 67° 4' and consisting of 4497° 56' 16". The
remainder, the gnomon, consists of 2° 3' 44",

that is, 7424". Continuing the process, we double, as though AK were in a straight line with A
and equal to it, divide the product 134° 8' into 7424",

and the result is approximately 55", which gives

34 +^ j
into 7424, which yields y = 55. Putting ^^^ as the

value of,, we get the value^ +|^3 for each of the

7377 20
rects. ,, or -^^ + ^3 for their sum. Subtracting this

7424 46 40
from -^ we get

gQ2+go3'
^^^^ Theon notes will be ap-

proximately the value of the square , or (^) • As a

„ ^^ . . 46^40 2800 16800 ,., /55y 3025
matter offact,^ + g^3=-^=^g^while(^,) =W
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, ,}
" , ', -,, ,
cyytara.", , -. ?, -,, -,-.

(d) ExTRACTio^i OF Cube Root

Heron, Metr. iii. 20, ed. Sclnme 178. 3-16

? 8.
^ So the oldest »is. In others the numbers are worked

out to the equivalent forms," "\ ,'^ .'".

" In the Greek of the oldest ms. the numbers are given as
7370" 440'" and 3685" 220"'. in which form Thcon would first
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us an approximation to , . Completing the

parallelograms A,, we shall have for their joint

area 7377" 20'", or 3688" 40"' each.« The remainder

is 46" 40"', which approximates to the square

on a side of 55", and so we obtain for the side of

the square, consisting of 4500°, the approxi-

mation 67° 4' 55".

In general, if we seek the square root of any num-
ber, we take first the side of the nearest square

number, double it, divide the product into the re-

mainder reduced to minutes, and subtract the square

of the quotient ;
proceeding in this way we reduce

the remainder to seconds, divide it by twice the

quotient in degrees and minutes, and we shall have
the required approximation to the side of the square

area.'*

(d) Extraction of Cube Root

Heron, Metrics iii. 20, ed. Schone 178. 3-16

We shall now inquire into the method of extracting

the cube root of 100.

obtain them. In other mss. the numbers are worked out to

the form 7377" 20"', 3688" 40"'.

^ In his Table of Chords Ptolemy gives the approximation

which is equivalent to 1•732009 and is correct to six decimal
places. This formula could be obtained by a slight adapta-
tion of Theon's method.
Archimedes gives, without any explanation, the following

approximation :

^^^^ ^/3> ^^^
780~>^^>53•

The formula opens up a wide field of conjecture. See Heath,
The Works of Archimedes, pp. Ixxx-xcix.
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Aaj9e rov eyyterra rod re^"
eXXelnovra- eon € 6 J8.,^ €, -, ". /cat "•

- ' ytyverae . {
-.)^ ytyverai . ttj[] ,'

• eWat.
^ supplevit . Schone.

" If ^ and q^ are the two cube numbers between which
A Hes, and A=p^ -a = q^ +b, then Heron's formula can be
generaUzed as follows :

3. /-A_^. ^V^VA = g + -

A+b\/a

It is unlikely that Heron worked with this general formula ;

his method was probably empirical. The subject is discussed
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Take the nearest cube in excess of 100 and also

the nearest which is deficient ; they are 125 and 64.

The excess of the former is 25, the deficiency of

the latter S6. Now multiply 36 by 5 ; the result is

180 ; and adding 100 gives 280. Dividing 180 by 280
gives ^. Add this to the side of the lesser cube,

that is, to 4, and the result is 4y^^. This ^ is the
closest approximation to the cube root of 100.

by M. Curtze, Quadrat- und Kuhikiourzeln bet den Griechen
nach Herons neu aufgefundenen (Zeitschrift f.
Math. «. Phys. xlii., 1897, Hist.-lit. Abth., pp. 113-120),
G. Wertheim, Herons Ausziehung der irrationalen Kvhlk-
vmrzeln (ibid, xliv., 1899, Hist.-lit. Abth.^, pp. 1-3), and
G. Enestrom, Bibliotheca Mathematica, viii., 1907-1908, pp.
412-413. The actual value of {4,^\ is lOO^^^^^V•

There is no example in Greek mathematics of the extrac-
tion of a cube root fully worked out by means of the for-

mula (a + xf = a^ + 3a^x + 3ax^ + x^, corresponding to Theon's
method for square roots ; but by means of this formula Philon
of Byzantium {Mech. Synt. iv. 6-7, ed. R. Schone) appears to

have approximated to the cube roots of 1500, 2000, 3000,
5000 and 6000. Heron {Metrka iii. 22, ed. H. Schone 184.

1-2) gives without explanation 46 as the cube root of 97050.
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III. PYTHAGOREAN ARITHMETIC

(a) First Principles

Eucl. Elem. vii.

"OpoL

a . Movas" ioTLVy ^ € eV

Aeyerat

.

\^ Se €.
\ Mepos"€ 6, ^ .
". ^- , .
c'.$' ,.
'." 6 .
\? []8 .
'

. 6.
* The theory of numbers is treated by KucHd in Books

vii.-x. The definitions prefixed to Book vii. are wholly
Pythagorean in their outlook, though there are differences in
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(a) First Principles

Euclid, Elements vii.

DEFINITIONS "

1. A unit is that in virtue of which each of the things

that exist is called one.

2. A number is a multitude composed of units.

3. A number is a part of a number, the less of the

greater, when it measures the greater.

4. But parts, when it does not measure it.

5. The greater number is a multiple of the less when
it is measured by the less.

6. An even number is one that is divisible into two
equal parts.

7. An odd number is one that is not divisible into

two equal parts, or that diifers from an even number
by a unit.

8. An even-times even number^ is one that is measured
by an even number according to an even number.

detail. Heath's notes {The Thirteen Books of Euclid's Ele-
ments, vol. ii. pp. 279-295) are invaluable.

^ It is a consequence of this definition that an even-times
even number may also be even-times odd, as 24 is both 6x4
and 8x3 (c/. Euclid ix. 34, where it is proved that this must
be so for certain numbers). Three later writers, Nicomachus,
Theon of Smyrna and lamblichus, defined an even-times even
number differently, as a number of the form 2^.
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\* 8e€ iariv 6.
[l\ 6.^\ earty 6.\ -.\8] .
'. rtvt -.
te".

Ttv6 .
^ . . . . . Ileiberg.

" Instead of Euclid's term -?, Nico-
machus, Theon and lamblichus used the single word-
TTepiTTos. According to Niconiachus (Arith. Introd. i. 9) such
a number, when divided by 2, leaves an odd number as

the quotient, i.e., it is of the form 2{^n+ 1). In this later

subdivision an odd-even{^) number is one which
can be halved twice or more successively, but the final

quotient is always an odd number and not unity, i.e., a
number of the form 2^+^ (2/i+l). We thus have three

mutually exclusive classes of even numbers : (1) even-even, of

the form 2^; (2) even-odd, of the form 2(2/i + 1) ; and (8) odd-
even, of the form 2^+^ (2« + 1), where (1) and (3) are extremes
and (2) partakes of the nature of both. The odd-odd is not

defined by Nicomachus and Iaml)lichus, but according to a
curious usage in Theon it is one of the names applied to prime
numbers, for these have two odd factors, 1 and the number
itself.

'' According to this definition, any even-times odd number
would also be odd-times even. The definition appears to

have been known to laniblichus, but there can be little doubt
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9. An even-times-odd number "^ is one that is measured
by an even number according to an odd number.

[10. An odd-times even number is one that is measured
by an odd number according to an even number.]^

11. An odd.-times odd number is one that is measured
by an odd number according to an odd number.

12. A prime number is one that is measured by the
unit alone.

13. Numbers prime to one another are those which
are measured by a unit alone as a common measure.

14. A composite number is one that is measured by
some number.

15. Numbers composite to one another are those
which are measured by some number as a common
measure.*'

that it is an interpolation. If both definitions are genuine,
one is not only pointless but the enunciations of ix. 33 and
ix. 34 become difficult to understand, and vere, indeed, read
differently by lamblichus from wiiat we find in our mss. We
have to choose between accepting lamblichus's reading in all

three places and rejecting Def. 10 as interpolated. I agree
with Heiberg {Euklid- Stitdien, pp. 198 et seq.) that the defini-

tion was probably interpolated by someone who was unaware
of the difference between the Euclidean and the later Pytha-
gorean classifications, but noticed the absence of a definition

by Euclid of an odd-times even number and tried to supply
one.

'^ Euclid's definition of prime and composite numbers
differs greatly from the classification of Nicomachus {Arith.
hitrod. i. 1 1-13) and lamblichus. To match the three classes

of even numbers, they devised three classes of odd numbers :

(1) , prime and incomposite, which is

a prime number in the Euclidean sense ; (2) hcvrcpov, secondary and composite, which appears to be the
product of prime numbers ; and (3) ' eavro^ h^vrcpov, €, that which
is secondary and composite in itself, hut prime and incom-
posite in relation to another, vhere all the factors must
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ti"'. *6' Aeyerat,, elolv ev ^€,
avvredfj 67€ , .\" , 6 ^^ -,/\.\" , ,.\ 6

[] .
. \. [],

.^ ,
fj^.\" .\? ?,

be odd and prime. The classification is defective, as (2) in-

cludes (3). Another defect is that the term composite is

restricted to odd numbers instead of being given, as by Euclid,

its general signification. For an earlier and different use of
the terms by wSpeusippus, see iw/m, p. 78 n. a.

" For figured numbers, see infra, pp. 86-99.
* " *, though usually written in one word, is equi-

valent to , in proportion. It comes, however, in
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16. A number is said to multiply a number when
that which is multiplied is added to itself as many-
times as there are units in the other, and so some
number is produced.

17. And when two numbers have multiplied each
other so as to make some number, the resulting

number is called plane, and its sides are the numbers
which have multiplied each other. <*

18. And when three numbers have multiplied each
other so as to make some number, the resulting

number is solid, and its sides are the numbers which
have multiplied each other.

19. A square number is equal multiplied by equal,

or one that is contained by two equal numbers.
20. And a cube is equal multiplied by equal and

again by equal, or a number that is contained by
three equal numbers.

21. Numbers are proportional * when the first is the

same multiple, or the same part, or the same parts, of

the second as the third is of the fourth.

22. Similar plane and solid numbers are those which
have their sides proportional.

23. A perfect number '^ is one that is equal to [the

sum of] its owTi parts.

Greek mathematics to be used practically as an indeclinable

adjective. . . . Sometimes it is used adverbially " (Heath,
The Thirteen Books of Euclid's Elements, vol. ii. p. 129).

This definition, inasmuch as it depends on the notion of a
part of a number, is applicable only to commensurable magni-
tudes. A new definition, applicable to incommensurable as

well as commensurable magnitudes, and due in substance
though not necessarily in form to Eudoxus, is given by Euclid
in Elements v. Def. 5 (see infra, pp. 444-447).

* The term " perfect number " was apparently not used
in this sense before Euclid. The subject is treated infra^

pp. 74-87.
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(h) Cl.ASSirii' OF NrMHERS

Philolaus ap, Stob. h'rl. i. 21. 7c, vd. Wachsinulh ISS. 9-12;
Dicls ,-. i\ 108. 7-10

Tlepl , . •

ya €€ € ,^ , '€€' he e'iSeos, €."
Nicom. Arith. Intrnd. i. 7, cd. Hochc 13. 7-14. 12

} ovhv7] ) -€, €,€. ,' ^-, ^
/. 6 €^- -

^)/,, ,,
hvvo ,'.

" The " even-odd " would seem to mean here the product
of odd and even numbers. This agrees with Euclid's usage
in Ehm. vii. Def. 9. For the later specialized Pythagorean
meaning, see supra, p. 68 n. a.

" If an odd number is set out as 2n + 1 units in a straight

line, then it can be divided into two sections of units
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(b) Classification of Numbers

Philolaus, cited by Stobaeus, Extracts i. 21. 7c, ed.

Wachsmiith 188^9-12 ; DieLs, Vors. i\ 408. 7-10

From Philolaus's book On the Universe . . .

** Number is of tvro special kinds, odd and even, with

a third, even-odd,^ arising from a mixture of both ;

and of each kind there are many forms, which each

thing exhibits in itself."

Nicomachus, Introduction to Arithmetic i. 7, ed. Hoche
13. 7-14. 12

Number is a determinate multitude or collection of

units or flow of quantity made up of units, and the

first division of number is into the even and odd.

Now the even is that Avhich can be di\'ided into two
equal parts, without a unit inserting itself in the

middle, while the odd is that w^hich cannot be
divided into two equal parts o\^-ing to the unit

inserting itself as aforesaid.^ This is the definition

commonly accepted ; but according to the Pytha-
goreans an even number is that which is divided, by
one and the same operation, into the greatest and the

least parts, greatest in size but least in quantity ,*^ in

accordance Avith a natural reciprocity of the two
species, while an odd number cannot be so divided

but is only divisible into two unequal parts. There
is another ancient way of defining an even number

measured from either end, with a single unit left over in the
middle ; but an even number of 2n units can be divided into
two equal sections with no unit left over in the middle.

" i.e. into two halves, for there cannot be any part greater
than half nor fewer parts than two.
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€ , iv? ^, iv T^rivt

'^ , ^},
' 6^ ^, -. *

6^ * ,,* ,^ ^,
(c) Perfect Numbers

llambl.] TheoL Jrifh., ed. de Falco 82. 10-85. 23; Diels,

Vors. '. 400. 22-402. 11

"Ort ,, 6 )^?, 88 *,, ^,/
*• It is probable that we have here ^ trace of an original

conception according to which 2 (the dyad) was regarded as

being, not a number, but the principle or beginning of the
even, just as 1 was not regarded as a number, but the principle

or beginning of number ; for the qualification about the dyad
seems clearly to be a later addition to the original definition.

It must, however, have been pre-Platonic, for in Parm. 143 d
Plato speaks of 2 as even. Aristotle, who adds {Topics 2,

157 a 39) that 2 is the only even number which is prime, says
{Met. A 5, 986 a 19) the Pythagoreans regarded the One as
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according to which it can be divided both into two
equal parts and into two unequal parts, save in the

case of the fundamental dyad, which can be divided

only into two equal parts °
; but howsoever it be

divided, it must have its two parts of the same kind,''

without partaking of the other kind ; while the odd
is that which, howsoever it be divided, always yields

two unequal parts and so exhibits at one and the same
time both species of number, never independent of

one another but always together. ° To give a defini-

tion in terms one of another, the odd is that which
differs from even number by a unit in both directions,

that is, in the direction both of the greater and of the

lesser, while the even is that which differs by a unit

from odd number in either direction, that is, it is

greater by a unit and less by a unit.

(c) Perfect Numbers

[lamblichus], Theologumena Arithmetical, ed. de Falco
82. 10-85. 23; Diels, Vors. v>. 400. 22-402. 11

Speusippus, the son of Potone, sister of Plato, and
his successor in the Academy before Xenocrates, was
always full of zeal for the teachings of the Pytha-
goreans, and especially for the writings of Philolaus,

both odd and even. For this question, as well as many
others arising in Greek arithmetic, the student may profit-

ably consult Nicomachus of Gerasa : Introduction to Arith-
metic, translated by Martin Luther D'Ooge, with studies in
Greek arithmetic by Frank Egleston Robbins and Louis
Charles Karpinski.

" i.e. both odd or both even.
• i.e. an odd number can be divided only into an odd

number and an even number, never into two odd or two even
numbers.
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'7'?^- 77 ',

tcv , ', .,, -
'^• 6

^ <6> add. Dic-ls. - (nepl) add, de Falco.
" aiT Lan^ ; Ast, Tannery, Dicls.

* [to] om. Diels.
' add. Diels. ' 4€€€ Diels.

" For the iive cosmic or Platonic figures, see infra, pp.
216-225.
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and he compiled a neat little book which he entitled

On the Pythagorean Numbers. From the beginning up
to half way he deals most elegantly with linear and
polygonal numbers and with all the kinds of surfaces

and solids in numbers ; Avith the five figures which he
attributes to the cosmic elements,*^ both in respect

of their special properties and in respect of their

similarity one to another ; and ^\ith proportion and
reciprocity.^ After this he immediately devotes the
other half of the book to the decad, shoving it to

be the most natural and most initiative of realities,

inasmuch as it is in itself (and not because we have
made it so or by chance) an organizing idea of cosmic
events, being a foundation stone and lying before God
the Creator of the universe as a pattern complete in

all respects. He speaks about it to the following

effect.

" Ten is a perfect number, and it is both right and
according to Nature that we Greeks and all men
arrive at this number in all kinds of ways when we
count, though we make no effort to do so ; for it has
many special properties which a number thus perfect

ought to have, while there are many characteristics

which, while not special to it, are necessary to its

perfection.
" In the first place it must be even, in order that the

odds and evens in it may be equal and not disparate.

For since the odd is always prior to the even, unless

* If, with Ast, Tannery and Diels we read
for, the rendering is " proportion continuous
and discontinuous," but it is not easy to interpret this, though
Tannery makes a valiant effort to do so. His French trans-
lation, notes and comments should be studied {Pour Vhistoire
de la science hellene, 2nd ed., pp. 374 seq.^ 386 seq.^ and
Memoires scientifiques^ vol. i. pp. 281-289).
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^^,,
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"* , '
^ add. Lang.
* om. Diels.
' Set om. Diels. He points out that the original reading

may have been ', indicating the fourth property of the
decad.

• One of the most noteworthy features of this passage is

the early use of the terms- {prime and
incomposite), Bevrcpoi , {secondary and composite)^

for which see supra, p. 69 n. c. The use is different from
that of Nicomachus and lamblichus. It seems that prime
and incomposite numbers are prime numbers in the ordinary
sense, including 2, as is the case with Euclid and Aristotle

{Topics 2, 157 a 39). Secondary and composite numbers
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the even were joined with it the other would pre-

dominate.
" Next it is necessary that the prime and incom-

posite and the secondary and composite " should be

equal ; now they are equal in the case of 10, and in

the case of no other number which is less than 10 is

this true, though numbers greater than 10 having

this property (such as 12 and certain others ^) can

soon be found, but their base is 10. As the first

number ^\1th this property and the least of those

possessing it 10 has a certain perfection, and it is a

property peculiar to itself that it is the first number
in which the incomposite and the composite are equal.

" In addition to this property it has an equal number
of multiples and submultiples of those multiples ; for

it has as submultiples the numbers up to 5, while

those from 6 to 10 are multiples of them ; since 7 is

a multiple of no number, it has to be omitted, but

4 must also be dropped as a multiple of 2, and so this

brings about equality once more."
" Furthermore all the ratios are in 10, for the equal

and the greater and the less and the superparticular

are all composite numbers, the term not being limited to odd
numbers as with Nicomachus. There is no suggestion of a
third mixed class. The two equal classes according to

Speusippus are 1, 2, 3, 5, 7 and 4, 6, 8, 9, 10.
_
According

to the later terminology the prime and incomposite numbers
would be 3, 5, 7, while the only secondary and composite

number would be 9.

" Actually 10, 12 and 14 are the only numbers possessing

this property.
« In the series 1, 2 ... 10 the submultiples are 1, 2, 3, 5

and the multiples are 6, 8, 9, 10. It is curious that though 1

is counted as a submultiple, all the other numbers are not

counted as multiples of it ; to have admitted them as such

would have destroyed the scheme.
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^ add. Lang.
' <5> •€ Lang (in adn.), de Falco.

" Speusippus asserts that among the numbers 1, 2 ... 10

all the different kinds of ratio can be found. The super-

particular ratio is the ratio of the whole + an aliquot fraction,

1 w + 1
1 + - or , typified by the ratio known as emrpiro?, or J.

Tannery sees here an allusion to the ten kinds of proportion

outlined by Nicomachus (see infra, pp. 1 14-121), and a proof

of their ancient origin.
" i.e., 1, 2, 3, 4- form an arithmetical progression having

1 as the common diirerence and 10 as the sum.
" i.e., a pyramid has 4 angles (or 4 faces) and 6 sides, and

so exhibits the number 10.

•* The reasoning is not very clear. Taking first a line and
a point outside it, Speusippus notes that the line has 2 ex-

tremities and between the point and these 2 extremities are
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and the remaining varieties are in it," and so are the
hnear and plane and sohd numbers. For 1 is a point,

2 is a Hne, 3 is a triangle and 4 is a pyramid ; all these
are elements and principles of the figures like to them.
In these numbers is seen the first of the progressions,

that in which the terms exceed by an equal amount,
and they have 10 for their sum.^ In surfaces and
solids these are the elements—point, line, triangle,

pyramid. The number 10 exhibits them and possesses

perfection. For 4 is to be found in the angles or

faces of a pyramid, and 6 in the sides,*' so making 10 ;

again 4 is to be found in the intervals and extremities

of the point and line, while 6 is in the sides and angles

of a triangle,*^ so as again to make 10. This also

comes about in figures regarded from the point of

view of number.^ For the first triangle is the equi-

lateral, which has one side and angle ; I say one

2 intervals. This gives the number 4. A triangle has
3 sides and 3 angles, giving the number 6. Combining the
point, the line and the triangle we thus get 10.

* A very difficult passage follows, but Tannery seems
successfully to have unravelled its meaning. There seems to

be here, he notes, an ill-developed Pythagorean conception.
The point or monad is necessarily simple. The line is a dyad
with two species, straight and curved. The triangle is a
triad with three kinds. The pyramid is a tetrad with four
kinds. Clearly the three species of triangle are the equi-
lateral, the isosceles and the scalene, where the number of

different elements are respectively 1, 2, 3. Speusippus does
not consider isosceles and scalene triangles in general, but
takes particular cases, and it is worthy of note that the three

triangles he considers are used in the Timaeus of Plato.

By analogy, the pyramids can be divided into four kinds :

(1) all solid angles equal ; (2) three solid angles equal

;

(3) two solid angles equal ; (4) all solid angles unequal.
Here again Speusippus takes special cases, but he goes astray

by giving the second class a square base, and has to force the

analogy.
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, Slotl €€'
ael evoetScg hevrepov hk- €

iv • he-^, ^
€. € , ^-, ',^ ,^ ,,,- ,

/xta, ,• ,^ ,' ,', , ,."
^ Lanpr, de Falco; [] Diels ; Lang would like

to read Be.
^ em . . .. Only one manuscript has these words ;

many emendations have been offered.
* The manuscripts have, but

is required, as Tannery recognized.
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because they are equal ; for the equal is always

indivisible and uniform. The second triangle is the

half-square ; for \\ith one difference in the sides and
angles it corresponds to the dyad. The third is the

half-triangle, which is half of the equilateral triangle ;

for being completely unequal in every respect, its

elements number three. In the case of solids, you
would find this property also, but going up to four, so

that the decad is reached in this way also. For the

first pyramid, which is built upon an equilateral

triangle, is in some sense unity, since by reason of its

equality it has one side and one face ; the second

pyramid, vhich is raised upon a square, has the angles

at the base enclosed by three planes and that at the

vertex by four, so that from this difference it re-

sembles the dyad. The third resembles a triad, for it

is set upon a half-square ; together 'with the one

difference that we have seen in the half-square as a

plane figure it presents another corresponding to the

angle at the vertex ; there is therefore a resemblance

between the triad and this pyramid, whose vertex lies

on the perpendicular to the middle of the hypotenuse"

of the base. In the same way the fourth, rising upon

a half-triangle as base, resembles a tetrad, so that the

aforesaid figures find completion in the number 10.

The same result is seen in their generation. For the

first principle of magnitude is point, the second is line,

the third is surface, the fourth is solid." *

« Lit. " side."
* The abrupt end suggests that the passage went on in this

strain for some time ; but the historian of mathematics need

not feel much disappointment.
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Theon Sniyr., td. lliller 45. 9-1-6. 19
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« In other words, if S„ = 1 + 2 + 2^ ^ . . . + 2"-\ and S„ is

prime, then S» .
2"'^ is a perfect number. This is proved in
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Theon of Smyrna, ed. Hiller 45. 9-46. 19

Furthermore certain numbers are called perfect^

some over-perfect, others deficient. Perfect numbers
are those that are equal to their own parts, such as 6 ;

for its parts are the half 3, the third 2 and the sixth 1,

Avhich added together make 6. Perfect numbers are

produced in this manner. If we take successive

double numbers starting from the unit and add them
until a prime and incomposite number is found, and
then multiply the sum by the last of the added terms,

the resulting number \vill be perfect.*^ For example,
let the doubles be 1, 2, 4, 8, 16. We therefore add
together 1 and 2 ; the result is 3 ; and we multiply

3 by the last of the added terms, that is by 2 ; the

result is 6, which is the first perfect number. Again,
if we add together three doubles in order, 1 and 2

and 4, the result be 7 ; and we multiply this by
the last of the added terms, that is, we multiply

7 by 4 ; the result \\\\\ be 28, Avhich is the second
perfect number. It is composed out of its half 14,

its fourth part 7, its seventh part 4, its fourteenth

part 2 and its twenty-eighth part 1

.

Over-perfect numbers are those whose parts added
together are greater than the wholes, such as 12 ; for

the half of this number is 6, the third is 4, the fourth

is 3, the sixth is 2 and the twelfth 1, which added
together produce 16, and this is greater than the

original number, 12.

Deficient numbers are those whose parts added
together make a number less than the one originally

Euclid ix. 36. Even the algebraic proof is too long for re-

production here, but for such a proof the reader may be
referred to Heath, The Thirteen Books of Euclid's Elements^
vol. ii. pp. 424.-425.
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(d) Figured Numbers

(i.) General

Nicom. Arifh. Introd. ii. 7. 1-3, ed. Hoche 86. 9-87. 6" , -
, ' ,

" There were in use among the Greeks two ways of repre-

senting: numbers ireometrically. One, used by Euclid and
implied in Plato, Theaetetus 147 d— 148 (see infra, p. S80), is

to represent numbers by straight lines proportional in length

to the numbers they represent. If two such lines are made
adjacent sides of a rectangle, then the rectangle represents

their product; if three such lines are made sides of a
rectangular parallelepiped then the parallelepiped is the

product. The other way of representing numbers was by
dots or alphas for the units disposed along straight lines

so as to form geometrical patterns, a method greatly de-
veloped by the Pythagoreans. Any number could be re-

presented as a straight line, and prime numbers only as
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put forth, such as 8 ; for the half of this number is 4,

the fourth 2, the eighth 1. The same property is

shown by 10, vhich the Pythagoreans called perfect

for a different reason, and this we shall discuss in the
proper place. The number 3 is also called perfect,

since it is the first number which has a beginning and
middle and end. It is moreover both a line and a

surface, for it is an equilateral triangle in which each
side is units, and it is the first bond and power
of the solid ; for in three dimensions is the soHd
conceived.

(d) Figured Numbers *

(i.) General

Nicomachus, Introduction to Arithmetic ii. 7. 1-3,

ed. Roche 86. 9-87. 6

Point is therefore the principle of dimension, but is

not dimension, while it is also the principle of line,

straight lines, whence Thymaridas spoke of them as " recti-

linear |9ar excellence'' (Plato would have represented a prime
number such as 7 by 7 1, an oblong). The unit, being the
source of all number, can be taken as a triangle, a pentagon,
a hexagon, and so on. The first number after 1 which can
be represented as a triangle is 3, and the
sum of the first natural numbers can always

^

be represented as a triangle ; the adjoining ^ °'

figure, a famous Pji:hagorean symbol, shows
«

how this is done for 1+2 + 3 + 4 = 10.
a a a a

Square numbers can be represented in similar fashion, and
the square of side n+ 1 can be obtained from the square of
side by adding a gnomon of 2w + 1 dots round the side (the

term " gnomon " originally signified an upright stick which
cast shadows on a plane or hemispherical surface, and so
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could be used for te

J
inor the time ; it was later used of an

instrument for drawinj^ right angles).

Tiie first number after 1 which can be represented as a
pentagon is 5. If it be represented as ABCDE, then we can
form another pentagon AB'C'D'Pj, equivalent to 10, by add-

ing the " gnomon of the pentagon," a row of an extra 7 dots

arranged round three of the sides of the original pentagon.

The gnomons to be added to form the successive pentagonal

numbers 1, 5, 12, 22 . . . are respectively l-, 7, 10 . . ., or

the successive terms of an arithmetical progression having

3 as the common difference. In the case of the hexagon the

successive gnomonic numbers differ by 4, and in general, if

is the number of sides in the polygon, the successive

gnomonic numbers differ by w- 2.
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but is not line ; and line is the principle of surface,

but is not surface, and is the principle of the two-

dimensional, but is not tAvo-dimensional. Naturally

also surface is the principle of body, but is not body,

while it is the principle of the three-dimensional, but

is not three-dimensional. Similarly among numbers

the unit is the principle of every number set out by

units in one dimension, Avhile linear number is the

principle of plane number broadened out in another

dimension in the manner of a surface, and plane

number is the principle of solid number, Avhich

acquires a certain depth in a third dimension [at

So much for plane numbers. There are similar varieties

of solid numbers (cubes, pyramids, truncated pyramids,

etc.). The curious reader v/ill find the whole subject treated

exhaustively by Nicomachus {Arith. Introd. ii. 7-20), Theon
of Smyrna (ed. Hiller 26-4:?) and lamblichus {in Nicom.

Arith. Introd., ed. PistelJi 58. 7 et seq.). It is of importance

for the student of Greek mysticism, but has little interest

for the modern mathematician.
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(.) Triangular Numbers

Luc. Vit. auct. 4•

02. ' »22. ,. ;. *, ,,..* ; ,,
Procl. in Eucl, i., ed. Friedlein 428. 7-429.,

• This celebrated Pythagorean symbol was known as the
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right angles] to the dimensions of the surface. For
example, by subdivision linear numbers are all

numbers without exception beginning from tvo and
proceeding by the addition of a unit in one and the

same dimension, Avhile plane numbers begin from
three as their fundamental root and advance through
an orderly series of numbers, taking their designation

according to their order. For first come triangles,

then after them are squares, then after these are

pentagons, then succeeding these are hexagons and
heptagons and so on to infinity.

(ii.) Triangular Numbers

Lucian, Auction of Souls 4i

Pythagoras. After this you must count.

Agorastes. Oh, I knoAV how to do that already.

Pyth. How do you count ?

Ago. One, two, three, four.

Pyth. Do you see ? What you think is four is ten,

a perfect triangle and our oath."

Proclus, on Euclid i., ed. Friedlein 428. 7-429. 8

There have been handed down certain methods for

the discovery of such triangles,'' of which one is€. It was alternatively called the ,
" principle of health " (Lucian, De Lapsu
in Salutando 5). The sum of any number • •

of successive terms (beginning with the first)

of the series of natural numbers 1+2 + 3+ • • •

. . . +w is therefore a triangular number,
and the general formula for a triangular • • • •

number is ln{n+ 1).

* i.e., triangles having the square on one side equal to the

sum of the squares on the other two. Proclus is commenting
on Euclid i. 47, for which see in/ray pp. 178-185.
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" i.e., if is the given odd niiniber, the sides of the triangle

are

**» 2 » 2

and the formula is an assertion that
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referred to Plato and one to Pythagoras. The Pytha-
gorean method starts from the odd numbers. For it

sets the given odd number as the lesser of the sides

about the right angle, takes its square and subtracts

a unit therefrom, and sets half the result as the

greater of the sides about the right angle. Adding
a unit to this it makes the resulting number the

hypotenuse." For example, starting from 3 and
squaring, the method obtains 9 ; a unit is subtracted,

making 8, and the half of 8 is taken, making 4 ; to

this a unit is added, giving 5, and in this way there

is found a right-angled triangle having as its re-

spective sides 3, 4 and 5.

The Platonic method starts from the even
numbers. For taking the given even number it sets

it as one of the sides about the right angle, divides

Heath {H.G.M. i. 80) shows
how Pythagoras probably arrived

at this 'formula by a system of dots

forming a square. Starting with

a square of side m, the square
of side m+\ can be formed by
adding a gnomon-like array of

2m +1 dots round two sides. To
obtain his formula, Pythagoras
would only have to assume that

2in+ 1 (necessarily an odd number)
is a square.

Let 2/n+l=w2

then n^
m =

m + \ -

md the array of dots shows that

n2 + C^7=C^)•
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(iii.) Oblong and Square Numbers

Aristot. Phys. 4, 203 a 13-15

6€ ,
.

(iv.) Polygonal Numbers

Nicom. Arith. Introd. ii. 12. 2-4, ed. Hoche 96. 11-97. 17

^ 8, , -
i.e., if 2 is the given even number, the sides of the

triangle are 2w, n-+ 1, w^- 1, and the formula asserts that

(2n)2 + (n2-l)2 = (n2+l)2.

Heath {H.G.M. i. 81) shows how this formula, like that of
Pythagoras, could have been obtained from gnomons of

dots. Both formulae can be deduced from Euclid ii. 5, a
Pythagorean proposition (see infra, p. 194 n. a). A more
general fornmla, including both the Pythagorean and
Platonic methods, is given in the lenmia to Euclid x. 28,

which is equivalent to the assertion

m'n yq2+(^^!}IiPlzJ!H^y^(^.««2r»2^2
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this in two and squares the half, adds a unit to the

square so as to make the hypotenuse and subtracts a

unit from the square so as to make the other side

about the right angle." For example, taking 4 and
squaring the half, 2, it makes 4 again. Subtracting

a unit it obtains 3, and adding one it makes 5, and
yields the same triangle as that furnished by the

other method. For the triangle constructed by this

method is equal to that from 3 and from 4.

(ill.) Obhng and Square Numbers

Aristotle, Physics 4, 203 a 13-15

For when gnomons are placed round 1 the resulting

figures are in one case always different, in the other

they preserve one form.^

(iv.) Polygonal Numbers

Nicomachus, Introduction to Arithmetic ii. 12. 2-4,

ed. Hoche96. 11-97. 17

By taking any two successive triangular numbers

* As was indicated on p. 86 n. a,

when gnomons consisting of an odd
number of dots are placed round 1

the result is always a square. When
gnomons consisting of an even num-
ber of dots are placed round 2 the
result is an oblong, and the successive

oblongs are always different in form.
This is probably what Aristotle refers

to, but he does not indicate that the
starting-point is in one case 1 and in

the other 2 ; and the interpretation is

modern, Themistius and Simplicius
having other (and less attractive) ex-

planations. The subject is fully dis-

cussed by W. D. Ross in his notes ad
loc, {Aristotle's Physics, pp. 542-544).
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" In other words i{n- l))i +
ln(n+ l) = /i^, as may easily be seen

from an array of dots. Here the

square, of side w, is spHt up into

two triangular numbers of side

?/- 1, 71 whose values are therefore

• l()i-l)n, ln{n+\). Theon of

Smyrna (ed. Hillcr 41. 3-8) gives

• • • • • llie same theorem.

* 'J I.e -ciicral lunnula for an a-gonal number of side is

n+i«(rt- l)(a-2),
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3-0U please and adding them one to another you wall

make the whole into a square, and whatsoever square

you split up you be able to make two triangles

from it.« Again, a triangle joined to any square figure

makes a pentagon ; for example, when the triangle 1

is added to the square 4 it makes the pentagon 5, and

when the next triangle in order, which is plainly 3, is

joined to 9, the next square, it makes 12, while 6, the

next successive triangle, added to 16, the next suc-

cessive square, will yield 22, the next successive

pentagon, and 10 added to 25 will make 35, and so on

without limit. In the same way if the triangles are

added to the corresponding pentagons, they will

produce the hexagons in an orderly series, and the

triangles linked with them in turn will give the

heptagons in order, and after them the octagons, and

so on to infinity.^ To help the memory let the

various polygonal numbers be MTitten out in parallel

rows, the first consisting of triangles, the next of

squares, the next after these of pentagons, then of

hexagons, then of heptagons, then, if it is so desired,

of the other polygonal numbers in order.

as is proved below, p. 98 n. a, and Xicomachus's assertion

is equivalent to saying

n + ^n(n- ])(a- 2)=n + hiin- l)(a- 2) + ^{~ 1).
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(e) Some Properties of Numbers

(i.) The " Sieve " of Eratosthenes

Nioom. Arith. Jntrod. i. 13. 2-4, ed. Hoche 29. 17-32. 18^ -, €€ €-
6'€ €. ]

€€€^ €, '
ISla -, ?, ? .'? ,, riVa? to?, ?,, ,, 8,' yap• ' * ^

• Nicomachus has been discussing the different species of
odd numbers, which are explained above on p. 69 n. c.

*• That is, Eratosthenes, for whom see p. 156 n. a, set out
the odd numbers bef^inning with 3 in a column. For con-
venience we will set them out horizontally as follows :

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35.
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(e) Some Properties of Numbers

(i.) The " Sieve " of Eratosthenes

Kicomachiis, Introduction to Arithmetic i. 13. 2-4,

ed. Hoche29. 17-33. 18

The method of obtaining these ^ is called by
Eratosthenes a sieve, since we take the odd numbers
mixed together and indiscriminate, and out of them
by this method, as though by some instrument or

sieve, we separate the prime and incomposite by
themselves, and the secondary and composite by
themselves, and also find those that are mixed. The
nature of the sieve is as follows : I set forth in as long

a column as possible all the odd numbers, beginning
with three, and, starting with the first, I examine
which numbers in the series it \11 measure, and I find

it will measure the numbers obtained by passing over

two intermediate numbers, so far as we care to pro-

ceed, not measuring them at random and by hap-
hazard, but it will measure the number first found by
this process, that is, the one obtained by passing over

two intermediate numbers, according to the magni-
tude of the number lying at the head of the column,
that is, according to the magnitude of itself ; for it

will measure it thrice.^ It will measure the number

We now strike out from this list the multiples of 3, because
they will not be prime numbers, and this is done by passing
over two numbers at a time and striking out the next. That
is, we pass over 5 and 7 and strike out 9, we pass over 1 1 and
13 and strike out 15, and so on without limit. As Nico-
machus notes in a rather cumbrous way, the numbers struck
out, 3, 9, 15, 21, 27 , . ., when divided by 3 gives us in order
the numbers in the original column 3, 5, 7, 9 ... . There
is here the foundation for a logical theory of the infinite, but
it was left for Russell and Whitehead to develop it.
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(.) Divisibility of Squares

Theon Smyr., ed. Hiller 35. 17-36. 2? -€ ^, -•€
• The numbers obtained by passing over four numbers are

15, 25, 35 . . .

and can all be divided by 5, leaving

3, 5, 7 . . .

which is the original series of odd numbers.
Nicomachus proceeds to pass over six numbers at a time,

beginning from 7, but we need not follow him. Clearly in

this way he will eventually be able to remove from the series

of odd numbers all that are not prime. The general formula
is that we obtain all multiples of a prime number by skip-
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obtained by passing over two from that one according

to the magnitude of the second number in order ; for

it will measure it five times. The number obtained

by passing over two numbers yet again it will measure
according to the magnitude of the third number in

order ; for it will measure it seven times. The
number that lies yet two places beyond it will measure
according to the magnitude of the fourth number in

order ; for it will measure it nine times ; and we may
proceed without limit in this manner. After this I

make a fresh start with the second number in the

series and examine which numbers it will measure,
and I find it will measure all the numbers obtained

by passing over four,'* and will measure the first

number so obtained according to the magnitude of

the first number in the column ; for it will measure it

thrice. It will measure the second according to the

magnitude of the second, that is, five times ; the

third according to the magnitude of the third, that is,

seven times : and so on in order for ever.

(ii.) Divisibility of Squares

Theon of Smyrna, ed. Hiller 35. 17-36. 3

It is a property of squares to be divisible by three,

or to become so divisible after subtraction of a unit

;

likewise they are divisible by four, or become so

divisible after subtraction of a unit ; even squares

that after subtraction of a unit are divisible by three

ping - 1 terms at a time. But to make sure that any odd
number 2n+ I left in the series is prime we should have to

try to divide it by all the prime numbers up to •\/2 + 1, and
the method is not a practicable way of ascertaining whether
any large number is prime.
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(iii.) Theorem about Cube Numbers

Nicom. Arith. Introd. ii. 20. 5, ed. Hoche 119. 12-18' eV, 6, -,, -,
^

, . . om. Bullialdus, Hiller.

* Any number may be written as 3/?, 3n±l or Sn ± 2, and
its square takes the form

9n^ 9^±6+ 1 or 9n^± 12n + 4.

In the first case, the square is divisible by three ; in the

second and third cases it becomes so divisible after subtraction

of a unit.
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can be divided by four, such as 4 itself ; those that

after subtraction of a unit are di\'isible by four can be
divided by three, such as 9 ; while there are yet again

squares divisible both by three and by four, such as

26 ; and others that are di\isible neither by three nor

by four but can be divided, after subtraction of a

unit, by both three and four, such as 25."

(iii.) A Theorem about Cube Numbers

Nicomachus, Introduction to Arithmetic ii. 20. 5,

ed. Roche 119. 12-18

When the odd numbers beginning with one are set

out in succession ad infinitum this property can be
noticed, that the first makes a cube, the sum of the

next two after it makes the second cube, the next
three folloving them make the third cube, the next
four succeeding these make the fourth cube, the

next five in order after these makes the fifth cube,

As for division by four, the square of an even number 2w is

necessarily divisible by 4. The square of an odd number
2n±l may be written 4n^ ± 4n + 1 and becomes divisible by
four after subtraction of a unit. Karpinski observes (JVico-

machus of Gerasa, by . L•. D'Ooge, p. 58) :
" Apparently

Theon desired to divide all square numbers into four classes,

viz., those divisible by three and not by four; by four and not
by three ; by three and four ; and by neither three nor four.

In modern mathematical phraseology all square numbers are
termed congruent to or 1, modulus 3, and congruent to

or 1, modulus 4. This is written :

n^=l (mod. 3),

«2^0 (mod. 3),

n^=0 or 1 (mod. 4).

" This is the first appearance of any work on congruence
which is fundamental in the modern theory of numbers."
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(iv.) A Property of the Pythmen

Iambi, in Nicom. Arith. Introd., ed. Pistelli 103. 10-104. 13

8e i^abos €€, icmv* ovhev 8,€6€ ? ^? -,^
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€$,
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aet /?, etV -' ^,

« That is to say, 1 = , 3 + 5 = 2^, 7 + 9+11=3',
13+15+17+19=43, 21 + 23 + 25 + 27 + 29=53, 31 + 33 + 35
+ 37 + 39 + 41 =6', and so on to infinity, the general formula
being

{7i(n- l)+l} + {n(n- l) + 3}+ ... + {{- l) + 2n- 1}=
By putting n = l, 2, 3 . . . r in this formula and adding the

results it is easily shown that

l» + 23 + 3»+ ... +r' = {ir(r+l)}2.

a formula which was known to the Roman agrimensores and
probably to Nicomachus. Heath {II.G.M. i. 109-110) shows
how it was proved by the Arabian algebraist Alkarkhi in a
book Al-Fakhrl written in the tenth or eleventh century.

The proof depends on Nicomachus's theorem.
" lamblichus has been considering various groups of

three, numbers which can be formed from the series of natural

numbers, by passing over a specified number of terms, so as

to become polygonal numbers. Thus 1+2 + 3 = 6 (triangle),

1 + 3 + 5=9 (square), 3 + 4+5 = 12 (pentagon), 1 + 4 + 7 = 12

(pentagon), 1 +5 + 9 = 15 (hexagon).
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the next six in order make the sixth cube, and so

on for ever.*^

(iv.) A Property of the Pythmen

lamblichus, On Nicomachus's Introduction to ArithmetiOf
ed. Pistelli 103. 10-104. 13

Since the first group, ^ starting from the unit and
omitting no term, is productive of the hexad, the first

group, 1, 2, 3, will be a model of those that succeed it,

the groups having no common term and leaving none
on one side, but 1, 2, 3 being followed by 4, 5, 6, then
by 7, 8, 9> and so on in order.'' For all these will

become hexads when the unit takes the place of the
decad in all cases, so reducing it to a unit. For after

this manner we said 10 was called the unit of the
second course ^ among the Pythagoreans, while 100

• In other words, lamblichus asks us to consider any
group of three consecutive numbers, the greatest of which is

divisible by 3. We may represent such a group generally
as3;?+l, 3;9 + 2, 3p+.3.

"* As lamblichus had previously explained {in Nicom.,
ed. Pistelli 75. 25—77. 4), the Pythagoreans looked upon a
square number n^ as a race course () formed of suc-
cessive numbers from 1 (as the start,) up to (the
turning point, -) and back again through (n - 1),

(n- 2), and so on to 1 (as the goal, ), in this way

:

1 + 2 + 3+ .... +(n-l)
+

+
1 + 2 + 3+ .... (w- 1)

As an example we have

1 + 2 + 3+ . . . 10 + 9 + 8+ . . . 3 + 2+1 = 102

and thence
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10 + 20 + 80+ . . . 100 + 90+80+ . . . 30 + 20+10 = 10»

100 f 200 + 300 + ... 1000 + 900 + 800 + ... 300 + 200 + 100
= 10^

and so on. It was in virtue of those relations that the Pytha-
goreans spoke of 10 as the iinit of the second course (Seurepo-), 100 as the iDiit of the third course(84•) and so on.

° The truth of lanibHehus's proposition is proved generally

by Loria {Le scienze esatte nell" ant'ica Urecia, pp. 84.1-842)

in the following manner.

Let N=7?o+ 10/?!+ 102»,+ ^^^
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was called the unit of the third course and 1000 the
unit of the fourth course. Now 4, 5, 6 make the

number 15. Reducing the 10 to a unit, and adding
it to the 5 we get 6. Again, 7, 8, 9 when added
together make the number 24, in which I reduce the

20 to two units, add them to the 4 and so again

have 6. Once more, adding 10, 11, 12, 1 make 33, in

which the 30 yields 3, and adding this to the 3 units

I likewise have 6. with a similar result in all cases.

The first 6 does not suffer a change of the 10 into a

monad, being a kind of image and element of those

that succeed it. The second has a change of one
monad, the third of two, the fourth of three, the fifth

of four and so on in order. The number of 10 s that

have to be changed is also the number of 9 s that

have to be taken away from the \vhole sum in order

that the result may likevise be 6. In the case of 15,

where there is one 10 to be changed, if I take away
one 9 the remainder will be 6. In the case of 24,

where there are two 10 s to be changed, if I take
away two 9 s the remainder will again be 6, and
this will happen in all cases.

^

be a number written in the decimal system. Let S(N) be
the sum of its digits, S>2'(N) the sum of the digits of S(N), and
so on.

Now N- S(N)=9(wi+lln2+ 111^3+ .. .)

whence 8() (mod. 9).

Similarly S(N)^S(2)N(mod. 9)

and so on.

Let S(*-i'(N) S' * N(mod. 9)

be the last possible relation of this kind ; S'^^'N will be a
number N'^9.
Adding all the congruences M'e get' (mod. 9), where N'^9.
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(J) Irratioxalitv of the Square Root of 2

Aristot. Anal. Pr. i. 23, 41 a 26-27? ol TrepaLVovres€ 0€?, ' € '? ^€€ SeLKvvovGLV, aSvvarov ),
Sua . ' -, *
etvat -, 8 , .

(g) The Theory of Proportiox and Means

(i.) Arithmetic, Geometric and Harmonic Means

Iambi, in Nicom. Arith. Jntrod., ed. Tistelli 100. 19-25

Movat hk TO

,-
Now, if is the sum of three consecutive numbers of which
the greatest is divisible by 3, we can write

=(3p + 1) + (3/3 + 2) + (3/) -f- 3),

and the above congruence becomes

9jo + 6 = X'(mod. 9)

so that N' = 6(mod. 9), with the condition N'^9. But the

only number ^9 which is divisible by 6 is 6 itself.

Therefore N' = G.

" It is generally believed that the Pythagoreans were

aware of the irrationality of v2 (Theodorus, for example,

when proving the irrationality of numbers began with-\/3),

and that Aristotle has indicated the method by which they
proved it. The proof, interpolated in the text of Euclid as
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(J) Irrationality of the Square Root of 2

Aristotle, Prior Analytics i. 23, 41 a 26-27

For all who argue per impossihile infer by syllogism

a false conclusion, and prove the original conclusion

hypothetically when something impossible follows

from a contradictory assumption, as, for example,
that the diagonal [of a square] is incommensurable
[\nth the side] because odd numbers are equal to

even if it is assumed to be commensurate. It is

inferred by syllogism that odd numbers are equal to

even, and proved hypothetically that the diagonal is

incommensurate, since a false conclusion follows from
the contradictory assumption.**

(g) The Theory of Proportion and Means

(i.) Arithmetic, Geometric and Harmonic Means

lamblichus, On Nicomachus^s Introduction to Arithmetic^

ed. Pistelli 100. 19-25

In ancient days in the time of Pythagoras and the

mathematicians of his school there were only three

X. 117 (Eucl., ed. Heiberg-Menge iii. 408-410), is roughly aa

follows. Suppose AC, the diagonal of a square, to be com-
mensurable with its side AB, and let their ratio in its smallest

terms be : 6.

xNow AC2:AB2=a2:62
and AC2=2AB2, a2=26a.

Hence a^, and therefore a, is even.

Since : is in its lowest terms it follows that h is odd.

Let a=2c. Then Ac'^ = 2b^, or O2=2c2, so that ^, and
therefore 6 is even.
But h was shown to be odd, and is therefore odd and even,

which is impossible. Therefore AC cannot be commensur-
able with AB.
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Arclntas. Porph. in Ptol. Harm., ed. Wallis, Opera Math.

iii. '21. 39-268. 9 ; Dicls, Vors. i^ 485. 18-4.86. 13

"**
" 8 ci^t , -,8 , *,. ,, -,, . ,

6 ,
6 , ., ,(' (Ly 6, 6 -

^ add. Diels.

• i.e., b is the arithmetic mean between a and c if

a- b=b- c.

* The word (interval) is here used in the musical
s^nse ; mathematically it must be understood as the ratio
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means, the arithmetic and the geometric and a third

in order which was then called subcontrary, but
which was renamed harmonic by the circle of Archytas
and Hippasus, because it seemed to furnish har-

monious and tuneful ratios.

Archytas, cited by Porphyry in his Commentary on
Ptolemy"s Harnionirs, ed. Wallis, Opera Mathematica
iii. 267. 39-268. 9 ; Diels, To»•. i\ 435. 18-436. 13

Archytas, in his discussion of means, writes thus :

" Now there are three means in music : first the

arithmetic, secondly the geometric, and thirdly the

subcontrary, the so-called harmonic. The arithmetic

is that in which three terms are in proportion in virtue

of some difference : the first exceeds the second by
the same amount as the second exceeds the third.**

And in this proportion it happens that the interval ^

between the greater terms is the lesser, while that

betAveen the lesser terms is the greater. The geo-

metric mean is that in which the first term is to the

second as the second is to the third. Here the

greater terms make the same interval as the lesser.''

The subcontrary mean, which we call harmonic, is

such that by whatever part of itself the first term
exceeds the second, the middle term exceeds the

between the two terms, not their arithmetical difference.

Archytas asserts that

b

* i.e., b is the geometric mean between a and c if

a_b
b~c'

and what Archytas says about the interval is contained in the

definition.
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(.) Seven Other Means

Nicom. Arith. Introd. ii. 28. 3-11, ed. Hoche 141. 4-144. 19

\ -
6,

),
, €, ,

• i.e.t h is the harmonic mean between and c if

a- 6_-

which can be written - - = r ~ -»
c 6 6

60 that -, 1,
-

form an arithmetical progression, and Archj^tas goes on to

assert that
ah

* It is easily seen how the Pythagoreans would have
observed the three means in their musical studies (see A. E.
Taylor, A Commentary on Plato's Thnaeus, p. 95). They
would first have noticed that when they took three vibrating

strings, of which the first gave out a note an octave below the

second, wliile the second gave out a note an octave below the

third, the lengths of the strings would be proportional to

4, 2, 1. Here the is in each case an octave. The
Pythagoreans would then have noticed that if they took three
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third by the same part of the third." In this pro-

portion the interval between the greater terms is

the greater, that between the lesser terms is the

lesser."*

(ii.) Seven Other Means

Nicomachus, Introduction to Arithmetic ii. 28. 3-11,

ed. Hoche 141. 4-144. 19

The fourth mean, which is also called subcontrary

by reason of its being reciprocal and antithetical to

the harmonic, comes about when of three terms the

greatest bears the same ratio to the least as the

difference of the lesser terms bears to the difference

of the greater,*' as in the case of

S, 5, 6,

strings sounding a given note, its major fourth and its upper
octave, the lengths of the strings would be proportional to

12, 8, 6, Avliich are in harmonic progression. Finally they
would ha\'e observed that if they took three strings sounding
a note, its major fifth and its upper octave, the lengths of the

strings would be proportional to 12, 9, 6, which are terms in

arithmetical progression. But the fact that the means are

consistently given in the order arithmetic, geometric, har-

monic, and that the name " harmonic " was substituted by
Archytas for the older name " subcontrary " suggests that

these means had already been arithmetically defined before

they were seen to be exemplified in the fundamental intervals

of the octave.
• i.e., b be the subcontrary mean to a, c, if

c

_

b- a

a~c- b'

In this and the succeeding examples, following the practice

of Nicomachus, it is assumed that a, b, c are in ascending
order of magnitude.
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" An elaborate classification of ratios is given by Nicom.
Arith. Introd. 1. 17-23. They are given in a convenient form
for reference by Heath, H.G.M. i. 101-104., with the Latin
names used by Boethius in his De Institutione Arithmetical
which is virtually a translation of Nicomaclius's work.

* i.e.y in the harmonic mean

c _ c- b

a~ b- a

and in the subcontrary mean
c _ 6- a

a c- b'

* This property happens to be true of the particular
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for the ratios formed are both seen to be the double.*"

It is clear in what way this mean is contrary to the

harmonic ; for whereas they both have the same ex-

tremes, standing in the double ratio, in the case of the

former mean this Avas also the ratio of the difference

of the greater terms towards that of the lesser, while

in the case of the present mean it is the ratio of the

difference of the lesser terms to that of the greater.^

This property peculiar to the present mean deserves

to be known, that the product of the greater and
middle terms is double the product of the middle
and least terms, for dx times five is double five times

three.^

The next two means, the fifth and sixth, were
both fashioned after the geometric, and differ from
each other in this v>ay. The fifth exists when of

three terms the middle bears to the least the same
ratio as their difference bears to the difference be-

tveen the greatest and the middle terms,'^ as in the
case of

2, 4, 5 ;

for 4 is double 2, that is, the middle term is double
the least, and 2 is double 1, that is, the difference of

the least terms is double the difference of the greatest.

numbers Nicomachus has chosen, but is not in general true

of the subcontrary mean. What is universally true is that if

c_ c -6 _
b -a '

then abT =ab ><.- = bc,
a

* i.e.t b is the fifth mean of o, c, if

b^b-a
a c-h'
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" i.e.f if b is the geometric mean between and c,

b _c _c-

h

a b b- a*

while if 6 is the fifth mean between and o,

b _b- a

a~ c-b'
The property which Nicomachus notes about this mean needs
ffenerahzing as in the case of his similar remark about the
fourth mean, i.e.^ if

b _b-a _

then acT =ac -=bc.
a
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What makes it subcontrary to the geometric mean is

this property, that in the case of the geometric mean
the middle term bears to the lesser the same ratio as

the excess of the greater term over the middle bears

to that of the middle term over the lesser, \vhile in

the case of this mean a contrary relation holds. It

is a peculiar property of this mean that the product
of the greatest and middle terms is double the pro-

duct of the greatest and least, for five times four is

double of five times two.**

The sixth mean comes about when of three terms
the greatest bears the same ratio to the middle term
as the excess of the middle term over the least bears

to the excess of the greatest term over the middle,^

as in the case of

1, 4, 6,

for in each case the ratio is the sesquialter (3 : 2).

No doubt, it is called subcontrary to the geometric

mean because the ratios are reversed, as in the case

of the fifth mean.*^

These are then what are commonly called the six

means, three prototypes which came down to Plato

• i.e.t b is the sixth mean between a and b if

c

_

b- a

b~c-b
* i.e., if b is the geometric mean between a and <?,

c _c-- b

b^b-a*

while if 6 is the sixth mean between a and o,

c _b-a
b~c-b'
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<» lamblichus says {in Nicom.^ ed. Pistelli 101. 1-5) that
the school of Eudoxus discovered these means, but in other
places (ibid. 116. 1-4, 113. 16-18) he gives the credit, in part
at least, to Archytas and Hippasus.
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and Aristotle from Pythagoras, and three others sub-

contrary to these which came into use with later

writers and partisans." By playing about with the

terms and their differences certain men discovered

four other means Avhich do not find a place in the

writings of the ancients, but Avhich must neverthe-

less be treated briefly in some fashion, although they

are superfluous refinements, in order not to appear

ignorant.

The first of these, or the seventh in the complete

list, exists when the greatest term bears the same
relation to the least as their difference bears to the

difference of the lesser terms, ^ as in the case of

6, 8, 9,

for the ratio of each is seen by compounding the

terms to be the sesquialter.

The eighth mean, or the second of these, comes
about Avhen the greatest term bears to the least the

same ratio as the difference of the extremes bears to

the difference of the greater terms," as in the case of

6, 7, 9

;

for here the two ratios are the sesquialter.

The ninth mean in the complete series, and the

third in the number ofthose more recently discovered,

comes about when there are three terms and the

* i.e., b is the seventh mean between a and c if

c _c- a

a h- a

* i.e., b is the eighth mean betveen and c if

c __c-^
a~c- b'
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* i.e., b is the ninth mean between and c if

b

_

c- a

a~b- a
• ., b Is the tenth mean between and if

b

_

c- a
a~c - b'

' Pappus (iii. 18, ed. Hultsch 84. 12-86. 14) gives a similar

Hst, but in a different order after the sixth mean. Nos. 8,

9, 10 in Nicomachus's list are respectively Nos. 9, 10, 7

in that of Pappus. Moreover Pappus omits No. 7 in the

list of Nicomachus and gives as No. 8 an additional mean

equivalent to the formula ^7-1=1. The two lists thus give

five means additional to the first six.

122



PYTHAGOREAN ARITHMETIC

middle bears to the least the same ratio as the differ-

ence between the extremes bears to the difference

between the least terms,** as

4, 6, 7.

Finally, the tenth in the complete series, and the

fourth in the list set out by the moderns, is seen when
in three terms the middle term bears to the least the

same ratio as the difference between the extremes

bears to the difference of the greater terms,^ as in

the case of

3, 5, 8 ;

for the ratio in each couple is the superbipartient

(5 : 3).

To sum up, then, let the terms of the ten propor-

tions be set out in one figure so as to be taken in at

a glance.*'

a<b<c
b — a a b c

c — b a b c

b — a b a
^-^= - = j;geometno

b — a a

c -b~ c

b-a c

c- b~

a

b-a 6

c- b a

b-a c

12$

First

Second

1, 2, 3

2, 4

Third S, 4>, 6

Fourth 3, 5, 6

Fifth

Sixth

4, 5

1, 4, 6

arithmetic

harmonic

subcontrary

to harmonic

subcontrary

; to

geometric
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(iii.) Pappus's Equations bet?reen Means

Papp. Coll. iii. 18. 48, ed. Hultsch 88. 5-18
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Seventh 6, 8, 9

Eighth 6, 7, 9

Ninth 4, 6, 7

Tenth 3, 5, 8

c-
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+, = + and = ; and therefore , E,

are in [geometric] proportion.**

Ihid. iii. 23. 57, ed. Hultsch 102

Means
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(.) Theorem of Archytas

Arclu'tas ap. Boeth. Oe Inst. Mas. iii. 11,

cd. Friedlcin 2S3-2SU

Denionstratio Archytae superparticularem in aequa
dividi non posse.

Superparticularis proportio scindi in aequa medio
proportionaliter interposito numero non potest. Id

vero posterius firmiter demonstrabitur. Quam
enim demonstrationem ponit Archytas, nimium fluxa

est. Haec vero est huiusmodi. Sit, inquit, super-

particularis proportio ', sumo in eadem propor-

tione minimos CDE-. Quoniam igitur sunt minimi

in eadem proportione -C-DE• et sunt superparticu-

lares, -DE' numerus numerum parte una sua

eiusque transcendit. Sit haec D•. Dico, quoniam
'D' non erit numerus, sed unitas. Si enim est nu-

* In other words, one mean is sufficient to connect in

continuous proportion two square numbers, but two are

required to connect cube numbers. Plato's remarks are

equivalent to saying that

a^ : ah=ah '. b^

and a^ : a^b=a^b : ab^ = ab^ :b'.

^ The superparticularis ratio {( ) is the

ratio in which one number contains the other and an aliquot

part of it, i.e., is the ratio

<^ That is, a geometric mean. Archytas's proof as pre-

served by Boethius is substantially identical with that given

by Euclid in his Sectio Canonis, prop. 3 {Euclid^ ed. Heiberg-
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sufficed to bind together both itself and its fellow-

terms ; but now it is otherwise—for it behoved it to

be solid in shape, and what brings solids into harmony
is never one mean, but always two.^

(v.) A Theorem of Archytas

Archytas as quoted bv Boethius, On Music ill. 11,

ed. Friedlein 285-286

Archytas 's proof that a superparticular ratio can-

not be divided into equal parts.

A superparticular ratio ^ cannot be divided into

equal parts by a mean proportional ^ placed between.
That will later be more conclusively proved. For
the proof which Archytas gives is very loose. It is

after this manner. Let there be, he says, a super-

particular ratio A : B.^ I take C, D + E the least

numbers in the same ratio. ^ Therefore, since C,

D + E, are the least numbers in the same ratio and
are superparticulars, the number D + E exceeds the
number C by an aliquot part of itself and of C.

Let the excess be D/ I say that D is not a number
but a unit. For, if D is a number and an aliquot

Menge viii. 162. 7-26). It is subsequently used by Euclid
(prop. 16), to show that the musical tone, whose numeri-
cal value is 9 : 8, cannot be divided into two or more equal
parts.

"^ Archytas writes the smaller number first instead of
second, as Euclid does.

* In Archytas's proofD + £" is represented by DE. Euclid,
following his usual practice, takes a straight line divided
into two parts. To find C, +, presupposes Euclid vii.

33.
^ i.e.t is supposed equal to C.
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merus 'D' et pars est eius, qui est -DE- metitur D'
numerus -DE- numerum

;
quocirca et - numerum

metietur, quo fit, ut C• quoque metiatur. Utrumque
iiritur -C- et -DE- numeros metietur -D- numerus,
tiuod est impossibilc. Qui enim sunt minimi in

eadem proportione quibuslibet aliis numeris, hi jirimi

ad se inviccm sunt, et solam difFerentiam retinent

unitatem. Unitas igitur est -D-. Igitur -DE- nu-

merus 'C' numerum unitate transcendit. Quocirca
nullus incidit medius numerus, qui eam proportionem
aequaliter scindat. Quo fit, ut nee inter eos, qui ean-

dem his proportionem tenent, medius possit nume-
rus collocari, qui eandem proportionem aequaliter

scindat.

(A) Algebraic Equations

(i.) Side- and Diameter-numbers

Theon Smyr., ed. Hiller 42. 10-44. 17

"CloTTep€ ., .,, ^, ^,^, ,
" This presupposes Euclid vii. 22.
^ This is an inference from Euclid vii. 20. Heath (

II.O.M.
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part of D + E, the number D measures the number
D + E; therefore it measures the number E, that

is, the number D measures C also. The number D
therefore measures both C and D + E, which is im-

possible. For the least numbers which are in the

same ratio as any other numbers whatsoever are

prime to one another," and the only difference they

retain is unity. Therefore D is a unit. Therefore

the number D + E exceeds the number C by a unit.

Hence there is no number Avhich is a mean between
the two numbers. For this reason no mean can be
placed between the numbers in the same proportion

so as to divide that proportion equally.''

(h) Algebraic Equations

(i.) Side- and Diameter-numbers

Theon of Smyrna, ed. Killer 42. 10-41. 17

Even as numbers are invested with power to make
triangles, squares, pentagons and the other figures,

so also we find side and diameter '^ ratios appearing

in numbers in accordance \\'ith the generative prin-

ciples ; for it is these which give harmony to the

figures. Therefore since the unit, according to the

supreme generative principle, is the starting-point of

all the figures, so also in the unit "wdll be found the

ratio of the diameter to the side. To make this clear,

let two units be taken, of which we set one to be a

diameter and the other a side, since the unit, as the

i. 90) considers that this proposition implies the existence, at

least as early as the date of Archytas (about 430-365 B.C.), of

an Elements of arithmetic in the form which we call Euclidean.
* Or " diagonal."
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beginning of all things, must have it in its capacity

to be both side and diameter. Now let there be

added to the side a diameter and to the diameter

two sides, for as often as the square on the diameter

is taken once, so often is the square on the side taken

t%\'ice. The diameter will therefore become the

greater and the side will become the less. in

the case of the first side and diameter the square on

the unit diameter \\\\ be less by a unit than twice

the square on the unit side ; for units are equal,

and 1 is less by a unit than twice 1. Let us add to

the side a diameter, that is, to the unit let us add a

unit ; therefore the [second] side will be two units.

To the diameter let us now add two sides, that is, to

the unit let us add two units ; the [second] diameter

will therefore be three units. Now the square on

the side of two units will be 4, while the square on

the diameter of three units will be 9 ; and 9 is

greater by a unit than twice the square on the side 2.

Again, let us add to the side 2 the diameter 3 ; the

[third] side will be 5. To the diameter 3 let us add

two sides, that is, twice 2 ; the third diameter will

be 7. Now the square from the side 5 will be 25,

while that from the diameter 7 will be 49 ; and 49 is

less by a unit than twice 25. Again, add to the side

5 the diameter 7 ; the result will be 12. And to the
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Procl. in Plat. Remp., ed. Kroll ii. 27. 1 1-22

ol .
" In algebraical notation, a pair of side- and diameter-

nunibers, „, dn are such that

(7„2-2a„2=±l,

and the law for the formation of any pair of such numbers
from the preceding pair is

dn=2an.i + d„.i

an= On-l+dn-l.

The general proof of the property of these numbers is not

given by 'I'hcon (doubtless as being well known). It can be
exhibited algebraically as follows :

dn^ - 2a„2 = (2„. + dn-iY - 2(- + dn-i)*
= 2a„_i2-if„.i2
= -(/„-2„-2)

by similar reasoning, and so on. Starting with a, = 1, rfj = 1

as the first pair of side and diameter numbers, we have

and therefore by the above equation we have

2^-2,2= + 1,

d,'-2a,^=-l,

and so on, the positive and negative signs alternating. I'he
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diameter 7 add twice the side 5 ; the result will be
17. And the square of 17 is greater by a unit than
U\ice the square of 12. Proceeding in this way in

order, there will be the same alternating proportion
;

the square on the diameter will be now greater by a

unit, now less by a unit, than tvice the square on
the side ; and such sides and diameters are both
rational."

Proclus, Commentary on Plato's Republic^ ed. Kroll

ii. 27. 11-22

The Pythagoreans proposed this elegant theorem

values of the first few pairs in the series are, as Theon correctly

indicates,

(1, 1), (2. 3), (5, 7), (12, 17).

the last giving, for example, the equation

172-2.122=289-288 = + l.

It is clear that the successive side- and diameter-numbers
are rational approximations to the sides and hypotenuses of

increasing isosceles right-angled triangles (hence the name),
and therefore that the successive pairs give closer approxima-

tions to \/2, namely
l,hh H, etc.,

and this suggests one reason why the early Greek mathe-
maticians were so interested in them.
The series was clearly kno^"i-n before Plato's time, for in the

famous passage about the geometrical number {Eepuhlic
5\ c) he distinguishes between the rational and the irra-

tional " diameter of five." In a square of side 5, the diagonal

or diameter is V^O, and this is the " irrational diameter of
five "

; the " rational diameter " was the integral approxi-

mation \/50- 1 =7, which we have seen above to be the third

diameter number.
In fact, since the publication of Kroll's edition of Prochis's

commentary, the belief that these approximations are Pytha-
gorean has been fully confirmed, as the next passage \s ill

show.
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(.) The " Bloom " of Thymaridas

Iambi, in Nicom. Arith. Introd., ed. Pistelli 62. 18-63. 2^^ •
" This is Euclid ii. 10, which asserts that if is bisected

at

and produced to , then2 +*=22 + 2«.
If AB =x, TA=y, this gives

{2x + yf + y^= 2x^ + 2{ + y)'

or (2a; + y)»-2(a; + y)»=2.c2-ya,

Therefore, if (ic, y) are a pair of numbers satisfying one of the
equations 2x^- y^= ±1,

then {x + y), {2x + y) are another pair of numbers satisfying
the other equation.

Prochis is not quoting exactly the Euclidean enunciation,
for which see lluclid, ed. Heib<*rg-Menge i. 146. 15-22.

" Thymaridas was apparently an early Pythagorean, not
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about the diameters and sides, that when the dia-

meter receives the side of Avhich it is diameter it

becomes a side, while the side, added to itself and
receiving its diameter, becomes a diameter. And
this is proved graphically in the second book of the

Elemerits by him [sc. Euclid]. If a straight line be
bisected and a straight line be added to it, the square

on the whole line including the added straight line

and the square on the latter by itself are together

double of the square on the half and of the square on
the straight line made up of the half and the added
straight line.**

(ii.) The " Bloom " of Thymaridas *

lamblichus. On Nicomachus"s Introduction to Arithmetic^

ed. Pistelli 62. 18-63. 2

The method of the " bloom " of Thymaridas was

later than the time of Plato, who lived at Faros. The name€ (flower OF bloom) given to his method shows that it

must have been widely known in antiquity, though the term
is not confined to this particular proposition. It is presum-
ably used to give a sense of distinction, much as we say
" flower of the army." The Greek is unfortunately most
obscure, but the meaning was successfully extracted by
Nesselman (Die Algebra der Griechen, pp. 232-236), who
is followed by Gow {History of Greek Mathematics, p. 97),

Cantor {Vorlesungen i^. 158-159), Loria {Le scienze esatte

nelV antica Grecia, pp. 807-809), and Heath (H.G.M., i.

94-96, Diophantus of Alexandria, 2nd ed., pp. 114-116).

The " bloom " is a rule for solving simultaneous equations
connecting unknown quantities, and states in effect

:

(1) if a; + iCi + iCa = S,

while a; -I- iCi = «1, x + x.^ — s.^t

then x=s^ + S2- S ;

139



GREEK MATIIEAIATICS, rj^^^€^, eV

eVt €̂ -* ^€ -€€, €€ TreVre eVt e^ aei'"•,^ -
€ .

(2) if x + a\ + X2 + X3=S,

while +-, x + X2=S2, x + 3 = «'3•

. , Si + S2 + S3-S
then = ^ ^ ^ ^ ,

(S) while generally, if + .^ + .Tj + . . + Xn i=S,

while X+Xi=Si, X + X2=S2 . . . X + Xn-l=Sn-U

then ^=.'l±•'?JL•^^ + f^i-_S.
n- 2

lamblichus goes on to show how other equations can be
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thence taken." When any determined or undefined
quantities amount to a given sum, and the sum of

one of them plus every other [in pairs] is given, the

sum of these pairs minus the first given sum is, if

there be three quantities, equal to the quantity which
was added to all the rest [in the pairs] ; if there be
four quantities, one-half is so equal ; if there be five

quantities, one-third ; if there be six quantities, one-

fourth, and so on continually, there being always a

difference of 2 between the number of quantities to

be divided and the denomination of the part.

reduced to this form, so that the rule " does not leave us in

the lurch " ( TrapeA/cei) in these cases.

One of the most interesting features in this passage is the
distinction between the 4, or known quantity, and
the, or unknown. This anticipates the phrase, " an undefined number of units,"
by which Diophantus was later to describe his unknown
quantity. Indeed, Thymaridas was already bordering on
that indeterminate analysis which Diophantus was so brill-

iantly to develop ; he has passed beyond the realm of strict

arithmetic.
•^ This passage immediately follows the section describing

how gnomons of polygonal numbers are formed ; see pp. 86-89
n. a, where it is shown that if is the number of sides in

the polygon, the successive gnomonic numbers differ by - 2.
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Procl. in End. i., ed. Friedlein 64•. 16-70. 18

*E7ret he /cat ,, otl*
tow ,.

ai^ay/cata avoSov

NetAou ? -
° The course of Greek geometry from the earliest days to

the time of Euclid is reviewed in tlie few pages from Prochis's

Commentary on Euclid, Book i., which are here reproduced.
This " Summary " of Proclus has often been caHed the
" Eudemian summary," on the assumption that it is extracted

from the lost History of Geometry by Eudemus, the pupil of

Aristotle. But the latter part dealing with Euclid cannot
have been written by Eudemus, who preceded Euclid, nor is

there any stylistic reason for attributing the earlier and later

portions to different hands. Heath {The Thirteen Books of
Euclid's Elements, i., pp. 37, 38, and IJ.G.M. i. 119, 120)

gives arguments for believing that the author cannot have
been Proclus himself, and suggests that the body of the

summary was taken by Proclus from a compendium by son\e

writer later than Eudemus, though the earlier portion was
based, directly or indirectly, on Eudemus's History. The
summary was written primarily for an understanding of the

way in which the elements of geometry had come into being.

The more advanced discoveries are therefore omitted or

mentioned only in passing. Proclus himself lived from a.d.

410 to 485. On the death of Syrianus he became head of the
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Proclus, On Evclid i., ed. Friedlein 64. 16-70. 18

Since it behoves us to examine the beginnings both

of the arts and of the sciences with reference to the

present cycle [of the universe], we say that according

to most accounts geometry was first discovered among
the Egyptians,^ taking its origin from the measure-
ment of areas. For they found it necessary by
reason of the rising of the Nile, which wiped out

Neo-Platonic school at Athens, and his Commentary on
Euclid, Book i., seems to be a revised edition of his lectures to

beginners in mathematics (Heath, The Thirteen Books of
Euclid's Elements, i., p. 31). This commentary is one of the

two main sources for the history of Greek geometry, the

other being the Collection of Pappus.
" The Egyptian origin of geometry is taught by Herodotus,

ii. 109, where it is asserted that Sesostris (Ramses II, c. 1300

B.C.) divided the land among the Egyptians in equal rect-

angular plots, on which an annual tax was levied ; when
therefore the river swept away a portion of a plot, the owner
applied for a reduction of tax, and surveyors had to be sent

down to report. In this he saw the origin of geometry, and
this story may be the source of Proclus's account, as also of

the similar accounts in Heron, Geometrica 2, ed. Heiberg
176. 1-13, Diodorus Siculus i. 69, 81 and Strabo xvii. c. 3.

Aristotle also finds the origin of mathematics among the

Egyptians, but in the existence of a leisured class of priests,

not in a practical need (Metaphysica A 1, 981 b 23). The
subject is fully dealt with in H.G.M. i. 121, 122, and an
account of Egyptian geometry is given in succeeding pages.
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1 Friedloin, following a correction in the

oldest MS.

« Thales (c. 624-547 b.c), one of the " Seven Wise Men "

of ancient Greece, is universally acknowledged as the founc'er

of Greek geometry, astronomy and philosophy. His greatest

fame in antiquity rested on his prediction of the total eclipNe

of the sun of May 28, 56J n.c, which led to the cessation of

hostilities between the Medes and Lydians and a lasting
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everybody's proper boundaries. Nor is there any-

thing surprising in that the discovery both of this and
of the other sciences should have its origin in a

practical need, since everything which is in process of

becoming progresses from the imperfect to the per-

fect. Thus the transition from perception to reason-

ing and from reasoning to understanding is natural.

Just as exact knowledge of numbers received its

origin among the Phoenicians by reason of trade and
contracts, even so geometry was discovered among
the Egyptians for the aforesaid reason.

Thales ^ was the first to go to Egypt and bring back
to Greece this study ; he himself discovered many
propositions, and disclosed the underlying principles

of many others to his successors, in some cases his

method being more general, in others more empirical.

After him Ameristus,^ the brother of the poet

Stesichorus, is mentioned as having touched the study

peace (Herodotus i. 74) ; what Thales probably did was to

predict the year in which the eclipse would take place, an
achievement by no means beyond the astronomical powers
of the age. Thales was noted for his political sense. He
urged the separate states of Ionia, threatened by the en-

croachment of the Lydians, to form a federation with a
capital at Teos ; and his successful dissuasion of his fellow-

Milesians from accepting the overtures of Croesus, king of

the Lydians, may have had an influence on the favourable

terms later granted to Miletus by Cyrus, king of the Persians,

though the main reason for this preferential treatment was
probably commercial. In philosophy Thales taught that the

all is water. For his mathematical discoveries, see infra^

pp. 164-169.
" The name is uncertain. Friedlein, in suggesting

Mamercus, observes that Suidas gives a brother of Stesi-

chorus as Mamertinus, which could easily arise out of

Mamercus. Another reading is Mamertius. Nothing more
is known about him. Stesichorus, the lyric poet, flourished

c. 611 B.C.
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/Ltoveuerat, 6 'HAeto?-€€^ .
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, /cat am^ -. ^-
6.

6 ?, -^,
/^^/.

^ coni. Dicls ; ^' Friedlein.

" The well-known Sophist, born about 460 b.c, whose
various accoinpHshments are described in Plato's Hippian
Minor. He claimed to have gone once to the Olympic
Games with everything that he wore made by himself, as

well as all kinds of works in prose and verse of his own
composition. His system of mnemonics enabled him to

remember any string of fifty names which he had heard once.

The unmathematical Spartans, however, could not appreciate

his genius, and from them he could get no fees. His chief

mathematical discovery was the curve known as the quad-
ratrix, which could be used for trisecting an angle or squaring
the circle (see infra, pp. 3S6-3t7).

** The life of Pythagoras is siirouded in mystery. He was
probably born in Samos about 582 n.c. and migrated about
529 H.c. to Crotona, the Dorian colony in southern Italy,

where a semi-religious brotherhood sprang up round him.
This brotherhood was sulijected to severe persecution in the

fifth century b.c, and the Pythagoreans then took their
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of geometry, and Hippias of Elis " spoke of him as

having acquired a reputation for geometry. After

these Pythagoras ^ transformed this study into the

form of a hberal education, examining its principles

from the beginning and tracking down the theorems
immaterially and intellectually ; he it 38 who dis-

covered the theory of proportionals ^ and the construc-

tion of the cosmic figures. After him Anaxagoras
of Clazomenae ^ touched many questions affecting

geometry, and so did Oenopides of Chios, ^ being a

little younger than Anaxagoras, both of Avhom Plato

mentioned in the Rivals ^ as having acquired a reputa-

tion for mathematics,

doctrines into Greece proper. Apart from important mathe-
matical discoveries, noticed in a separate chapter, the Pytha-
goreans discovered the numerical ratios of the notes in the
octave, and in astronomy conceived of the earth as a globe
moving with the other planets about a central luminary.

" Friedlein's reading is , " irrationals," but
there is grave difficulty in believing that Pythagoras could
have developed a theory of irrationals ; in fact, a Pytha-
gorean is said to have been drowned at sea for his impiety in

disclosing the existence of irrationals. There is an alter-

native reading , and the true reading could
easily be , or , " proportionals."

^ c. 500-428 B.C. Clazomenae was a town near Smyrna.
All we know about the mathematics of Anaxagoras is that he
wrote on the squaring of the circle while in prison {infra, p.

308) and may have written a book on perspective (Vitruvius,

De architectura vii. praef. 11).
' Oenopides was primarily an astronomer, and Eudemus is

believed to have credited him with the discovery of the
obliquity of the ecliptic and the period of the Great Year
(Theon of Smyrna, ed. Hiller 198. 14-16). In mathematics
Proclus attributed to him the discovery of Eucl. i. 12 and i. 23.

^ Plat. Erastae 132 a, b. Socrates finds two lads in the
school of Dionysius disputing about Anaxagoras or Oeno-
pides ; they seemed to be drawing circles and indicating
certain inclinations by placing their hands at an angle.
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" Hippocrates was in Athens from about 450 to 430 b.c.

For his mathomatical achievements, see infra, pp. 231-253.
** Our chief knowledge of Theodorus comes from the

Theaetetns of Plato, whose mathematical teacher he is said

to have been (Diog. Laert. ii. 103) ; see infra, pp. 380-383.
' Proclus {in EucL i., ed. Friedlein 72 seq.) explains that

the elements in geometry are leading theorems having to

those which follow the relation of an all-pervading principle ;

he compares them w ith the letters of the alphabet in relation
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After them Hippocrates of Chios ,*^ who discovered

the quadrature of the lune, and Theodorus of Cyrene^
became distinguished in geometry. For Hippocrates
is the first of those mentioned as having compiled
elemeyits.^ Plato,^ ^vho came after them, made the
other branches of mathematics as \vell as geometry-

take a very great step forward by his zeal for them

;

and it is obvious how he filled his writings >vith

mathematical arguments and everywhere stirred up
admiration for mathematics in those Avho took up
philosophy. At this time also Hved Leodamas of

Thasos ^ and Archytas of Taras ^ and Theaetetus of

Athens,^ by whom the theorems were increased and
an advance was made towards a more scientific

grouping.

Younger than Leodamas were Neoclides and his

pupil Leon, vho added many things to those known
before them, so that Leon was able to make a collec-

tion of the elements in which he was more careful in

respect both of the number and of the utility of the

things proved ; he also discovered diorismi, showing
when the problem investigated can be solved and
when not.^ Eudoxus of Cnidos, a Uttle younger than
Leon and an associate of Plato's school, was the first

to language; and they have, indeed, the same name in

Greek. ** See infra, pp. 386-405.
* All we know about him is that Plato is said to have

explained or communicated to him the method of analysis

(Diog. Laert. iii. 24-, Procl. in Euch i., ed. Friedlein 211.
19-23).

' For Arch5i;as, see supra, p. 4 n. a.

" See infra, pp. 378-383.
'* We have no further knowledge of Neoclides and Leon.

A good example of a diori^rnos is given in Plato, Meno
86 —87 {infra, pp. 394-397), which incidentally shows that

Leon was not the first in this field.
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" For Eudoxus, one of the great mathematicians of all

time, see infra, pp. 408-415. He lived c. 408-335 b.c. ^^'hat

the " so-called general theorems " may be is uncertain ;

Heath {II.G.M. i. 3x?3) suggests theorems which are " true of

everything falling under the conception of magnitude, as are

the definitions and theorems forming part of Eudoxus's own
theory of proportion." The three means which Eudoxus is

said to have added to those already known arc the three sub-

contrary means (supra, pp. 114-121). lamblichus (in Nicom.^
101. 1-5) also attributes them to Eudoxus, but in other

places (113. 16-18, 116". 1-4) he assigns them to Archytas
and Hippasus. It is disputed whether the " section " to

which Eudoxus devoted his attention means sections of solids
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to increase the number of the so-called general

theorems ; to the three proportions he added another
three, and increased the number of theorems about
the section, which had their origin with Plato, apply-

ing the method of analysis to them.^ Amyclas of

Heraclea,^ one of the friends of Plato, and Men-
aechmus," a pupil of Eudoxus Avho had associated

with Plato, and his brother Dinostratus ^ made the

whole of geometry still more perfect. Theudius ^ of

Magnesia seemed to excel both in mathematics and
in the rest of philosophy ; for he made an admirable
arrangement of elements and made many particular

propositions more general. Again, Athenaeus * of

Cyzicus, who lived about those times, became famous
in other branches of mathematics but mostly in

geometry. They spent their time together in the

Academy, conducting their investigations in common.
Hermotimus ^ of Colophon advanced farther the in-

vestigations begun by Eudoxus and Theaetetus ; he

by planes, which8 the older view and that favoured by
Tannery {La geometrie grecque, p. 76), or the " golden sec-

tion " (division of a line in extreme and mean ratio, Eucl. ii.

11), a view put forward by Bretschneider in 1870 {Die Geo-
metrie unci die Geometer vor Eukleides, pp. 167-169), For
discussions of this interesting question see Loria, Le scienze

esatte nelV antica Grecia^ pp. 139-142, Heath, H.G.M. i.

324-325.
* The correct spelling appears to be Amyntas, though

Diogenes Laertius (iii. 46) speaks of Amyclas of Heraclea as

a pupil of Plato and in another place (ix. 40) says that a
certain Pythagorean Amyclas dissuaded Plato from burning
the works of Democritus. Heraclea was in Pontus,

" He discovered the conic sections, see infra, p. 288 n. a.
<* He applied the quadratrix (probably discovered by

Hippias) to the squaring of the circle.

• No more is known of Theudius, Athenaeus or Her-
motimus.
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" Almost certainly the same as Philippus of Opus, who is

said to have revised and published the Laws of Plato and
(wrongly) to have written the Epinomis. Suidas notes a

number of astronomical and mathematical works by him.
'' Not much more is known al)out the life of Euclid than

is contained in this passage (see Heath, The Thirteen Books of
EuclkVs Elements, vol. i^, pp. 1-6 and H.G.M.u 354-357).

The summary of Euclid's achievement in the Elements is a

very fair one, agreeing with the considered judgement of

Heath {... i. 217): "There is therefore probably little

15
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discovered many propositions in the elevients and
compiled some portion of the theory of loci. Philippus

of \iedma,'^ a disciple of Plato and by him diverted to

mathematics, not only made his investigations accord-

ing to Plato's directions but set himself to do such
things as he thought would fit in with the philosophy
of Plato.

Those who have compiled histories carry the
development of this science up to this point. Not
much younger than these is Euclid, who put together
the elements, arranging in order many of Eudoxus's
theorems, perfecting many of Theaetetus's, and also

bringing to irrefutable demonstration the things
which had been only loosely proved by his predeces-
sors. This man lived in the time of the first Ptolemy

;

for Archimedes, who came immediately after the first

Ptolemy, makes mention of Euclid ; and further they
say that Ptolemy once asked him if there was in

geometry a way shorter than that of the elements
;

he replied that there was no royal road to geometry.^
He is therefore younger than the pupils of Plato, but

in the whole compass of the Elements of Euclid, except
the new theory of proportion due to Eudoxus and its conse-
quences, which was not in substance included in the recog-
nized content of geometry and arithmetic by Plato's time,
although the form and arrangement of the subject-matter
and the method employed in particular cases were different
from what ve find in Euclid " (c/. H.G.M. i. 357). As Plato
died in 347 b.c, and Archimedes was born in 287 b.c,
Euclid must have flourished about 300 b.c. ; Ptolemy I

reigned from 306 to 283 b.c. Had not the confusion been
common in the Middle Ages, it would scarcely be necessary
to point out that this Euclid is to be distinguished from
Euclid of Megara, the philosopher, who lived about 400 b.c.

A story about there being no royal road to geometry is also
told of Menaechmus and Alexander (Stobaeus, Eel. ii. 31,
ed. VVachsmuth 115).
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" Eratosthenes was born about 284 b.c. His ability in

many branches of knowledge, but failure to achieve the

highest place in any, won for him the nicknames " Beta " and
" Pentathlos." He became tutor to Philopator, son of Ptolemy
Eucrgetes (see infra, pp. 256-257) and librarian at Alexandria.

He wrote a book Platonicus and another On Means (both

lost). For his sieve for finding successive prime numbers, see

supra, pp. 100-103 and for his solution of the problem of

doubling the cube, infra, pp. 290-297. I lis greatest achieve-

ment was his measurement of the circumference of the earth

to a surprising degree of exactitude (see Heath, H.G.M. i.

106-108, Greek Astronomy, pp. 109-112).
'' It is true that the final book of the Elements, as written

by Euclid, dealt with the construction of the cosmic, or
Platonic, figures, but the whole work was certainly not

designed with a view to their construction. Euclid, however,
may quite well have been a Platonist.

' Euclid's Optics survives and is available in the Teu))ner

text in two recensions, one probably Euclid's own, the other
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older than Eratosthenes and Archimedes. For these

men were contemporaries, as Eratosthenes'* some-
where says. In his aim he was a Platonist, being in

sympathy with this philosophy, whence it comes that

he made the end of the whole Elements the construc-

tion of the so-called Platonic figures.^ There are

many other mathematical writings by this man,
Monderful in their accuracy and replete with scientific

investigations. Such are the Optics and Catoptrics,

and the Eleme?its of Music, and again the book Ofi

Divisions.'^ He deserves admiration pre-eminently in

the compilation of his Elements of Geometry on account

of the order and of the selection both of the theorems
and of the problems made with a view to the elements.

For he included not everything which he could have
said, but only such things as he could set dovn as

elements. And he used all the various forms of

syllogisms, some getting their plausibility from the

by Theon of Alexandria. It is possible that Proclus has
attributed to Euclid a treatise on Catoptrics {Mirrors) which
was really Theon's ; a treatise by Euclid on this subject is

not otherwise known. Two musical treatises attributed to

Euclid are extant, the Sectio Canonis() and
the Introductio Harmonica(^') ; the latter,

however, is definitely by Cleonides, a pupil of Aristoxenus,
and it is not certain that the former is Euclid's own. The
book On Divisions {of Figures) has survived in an Arabic
text discovered by Woepcke at Paris and published in 1851 ;

see R. C. Archibald, Euclid's Book on Division ofFigures with
a restoration based on Woepcke^s text and the Practica Geo-
metriae of Leonardo Pisaao (Cambridge 1915). A Latin
translation (probably by Gherard of Cremona, 1114-1187)
from the Arabic was known in the Middle Ages, but the
Arabic cannot have been a direct translation from Euclid's
Greek. The general character of the treatise is indicated by
Procl. in Eucl. i., ed. Friedlein 144. 22-26, as the division of

figures into like and unlike figures.
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• Lit. " causes," but clearly means the same here
as, as often in Aristotle, cf. Met. 1, 1013 a 16,

6e airta XeyeraL• .
^ Geometrical conversion is to be distinguished from

logical conversion, as described by Aristotle, Cat. xii. 6 and
elsewhere. An analysis of the conversion of geometrical
propositions is given by Proclus {in Eucl. i., ed. Friedlein,

^52. 5 et seq.). In the leading form of conversion { npo-', also called conversion par excellence^) the conversion is simple, the hypo-
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first principles," some setting out from demonstrative

proofs, all being irrefutable and accurate and in

harmony with science. In addition to these he used
all the dialectical methods, the divisional in the dis-

covery of figures, the definitive in the existential

arguments, the demonstrative in the passages from
first principles to the things sought, and the analytic

in the converse process from the things sought to the

first principles. And the various species of conver-

sions,^ both of the simpler (propositions) and of the

more complex, are in this treatise accurately set forth

and skilfully investigated, what wholes can be con-

verted with wholes, what wholes M'ith parts and
conversely, and what as parts with parts. Again,
mention must be made of the continuity of the proofs,

the disposition and arrangement of the things which
precede and those which follow, and the power with

which he treats each detail. Have you, adding or

subtracting accidentally, fallen avay unawares from
science, carried into the opposite error and into

ignorance ? Since many things seem to conform
with the truth and to follow from scientific principles,

but lead away from the principles into error and

thesis and conclusion of one theorem becoming the conclusion
and hypothesis of the converse theorem. The other form of
conversion is more complex, being that where several hypo-
theses are combined into a single enunciation so as to lead to

a single conclusion. In the converse proposition the con-
clusion of the original proposition is combined with the

hypotheses of the original proposition, less one, so as to lead

to the omitted hypothesis as the new conclusion. An example
of the first species of conversion is Euclid i. 6, which is the

converse of Euclid i. 5, and Heath's notes thereon are most
valuable {The TJiirteen Books of Euclid''s Elements, vol. i.

pp. 256-257) ; an example of partial conversion is given by
Euclid i. 8, which is a converse to i. 4.
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deceive the more superficial, he has handed down
methods for the clear-sighted understanding of these

matters also, and with these methods in our posses-

sion we can train beginners in the discovery of para-

logisms and avoid being misled. The treatise in

which he gave this machinery to us he entitled

[the book] of Pseiiclaria,^ enumerating in order their

various kinds, exercising our intelligence in each

case by theorems of all sorts, setting the true side

by side with the false, and combining the refutation

of the error vith practical illustration. This book
is therefore purgative and disciplinary, while the

Elements contains an irrefutable and complete guide
to the actual scientific investigation of geometrical

matters.

" This book is lost. It clearly belonged to elementary
geometry.
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The circle is bisected by its diameter

Procl. in Eucl. i., ed. Friedlein 157. 10-13

To 8€ ^,.
The angles at the base of an isosceles tnangle are equal

Ibid. 250. 22-251. 2

Aeyerat,
yojvtat , ?

.

" The word " demonstrate " (^) must not be
taken too literally. Even Euclid

did not demonstrate this property

of the circle, but stated it as the

17th definition of his first book.
Thalcs probably was the first to

point out this property. Cantor
{Gesch. d. Math, i^., pp. 109, 140)

and Heath (II.O.M. i. 131) sug-
gest that his attention may have
been drawn to it by figures of circles

divided into equal sectors by a
number of diameters. Such figures

are found on Egyptian monuments
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The circle is bisected by its diameter

Proclus, 011 Euclid i., ed. Friedkin 157. 10-13

They say that Thales was the first to demonstrate "

that the circle is bisected by the diameter, the cause

of the bisection being the unimpeded passage of the

straight hne through the centre.

The angles at the base of an isosceles triangle are equal

Ibid. 250. 22-251. 2

[Thales] is said to have been the first to have
known and to have enunciated [the theorem] that the

angles at the base of any isosceles triangle are equal,

though in the more archaic manner he described the

equal angles as similar.^

and vessels brought by Asiatic tributary kings in the time
of the eighteenth dynasty.

^ This theorem is Eucl. i. 5, the famous pons asinorum.
Heath notes {H.G.M. i. 131) : "It has been suggested that
the use of the word ' similar ' to describe the equal angles
of an isosceles triangle indicates that Thales did not yet
conceive of an angle as a magnitude, but as a figure having
a certain shape, a view which would agree closely vith
the idea of the Egyptian se-qet, ' that which makes the
nature,' in the sense of determining a similar or the same
inclination in the faces of pyramids."
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The vertical and opposite angles are equal

Ihin. 20i). !-,•>

Touro heiKwaiv, otl hvo^? yoj-, , ^,, -.
Equality of Triangles

Ibid. 352. 14-18^ 5e(^ ,] * ~.
The angle in a semicircle is a right-angle

Diop. Laert. i. 24-25

*» It is Eucl. i. 15.
* The method by which Thales used the theorem referred

to, Eucl. i. 26, to find the distance of a ship from the shore,

has given rise to many conjectures. The most attractive is

that of Heath {The Thirteen Elements of Euclid's Elements^

i., p. 305, H.G.M. i. 133). He supposes that the observer
had a rough instrument made of a straight stick and a cross-

piece fastened to it so as to be capable of turning about the
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The vertical and opposite angles are equal

Ibid. 299. 1-5

This theorem, that when two straight lines cut one

another the vertical and opposite angles are equal,

was first discovered, as Eudemus says, by Thales,

though the scientific demonstration was improved
by the ^^iter of the Elements/'a

Equality of Triangles

Rid. 352. 14-18

Eudemus in his History of Geometry attributes this

theorem to Thales. For he says that the method
by which Thales showed how to find the distance of

ships at sea necessarily involves this method.^

The angle in a semicircle is a right-angle

Diogenes Laertius i. 24-25

Pamphila says that, having learnt geometry from
the Egyptians, he was the first to inscribe in a circle

fastening in such a manner so that it could form any angle
with the stick and would remain where it vras put. The obser-

ver, standing on the top of a tower or some other eminence on
the shore, would fix the stick in the upright position and direct

the cross-piece towards the ship. Leaving the cross-piece at

this angle, he would turn the stick round, keeping it vertical,

until the cross-piece pointed to some object on the land,

which would be noted. The distance between the foot of the
tower and this object would, by Eucl. i. 26, be equal to the
distance of the ship. Apparently this method is found in

many practical geometries during the first century of printing.
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•• Pamphila was a female writer who lived in the rei^rn of

Nero and won much repute by her historical commonplace
book(, ). She may
have been right in ascribiiii•: to Thales the discovery that the

anpric in a semicircle is a ri^rht anjrle, but the passajre bristles

with difficvilties. The reference to the sacrifice of an ox is

suspiciously like the better-attested story that Pythaproras

sacrificed oxen when he discovered a certain theorem. This
story is told in a distich by Apollodorus reproduced below

(p. 176). In reproducing• that distich Plutarch says it is un-
certain whether the theorem was that about the square on
the hypotenuse of a right-angled triangle or that about the

application of areas ; he does not mention the theorem about

the angle in a semicircle. Diogenes Laertius probably made
a mistake in bringing in Apollodorus ; the reference to the

sacrifice of an ox made him think of Apollodorus's distich
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a right-angled triangle, whereupon he sacrificed an
ox. Others say it vas Pythagoras, among them
being Apollodorus the calculator."

about Pythagoras, forgetting that they referred to a different

proposition.

There are also difficulties on the way of believing that

Thales could have discovered the theorem that the angle in

a semicircle is a right angle. EucHd (iii. 31) proves this

theorem by means of i. 32, that the sum of the angles of any
triangle is two right-angles. Now Eudemus, as will be found
below, pp. 176-179, attributed to the Pythagoreans the dis-

covery of the theorem that in any triangle the sum of the
angles is equal to two right-angles. The authority of
Eudemus compels us to believe that Thales did not know
this theorem. Could he have proved that the angle in a
semicircle is a right angle without previously knowing that
the sum of the angles of any triangle is tvo right-angles ?

Heath {H.G. M. i. 136-137) shows how he could have done so

;

and so Pamphila, for all her late date, may have preserved a
correct tradition.
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{a) Geneiial

Apollon. Mirab. 6 ; Dicls, Vors. i^. OS. 59-31

\\6^ /xer
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Aristot. Met. A 5, 985 b 23-26€€ ^, €6€ iv

etvat.
Diog. Laert. viii. 24-25
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(a) General

Apollonius Paradoxographus, On Marvels 6 ; Diels, Vors.

i\ 98. 29-31 «

Pythagoras, the son of Mnesarchus, first worked at

mathematics and numbers, and later at one time did

not hold himself aloof from the Vv'onder-working of

Pherecydes.

Aristotle, Metaphysics A 5, 985 b 23-26

In the time of these men [Leucippus and Demo-
critus] and before them the so-called Pythagoreans
applied themselves to mathematics and were the first

to advance that science ; and because they had been
brought up in it they thought that its principles must
be the principles of all existing things.

Diogenes Laertius viii. 24-25

Alexander in The Successions of Philosophers says

that he found in the Pythagorean memoirs these

beUefs also. The principle of all things is the monad

;

arising from the monad, the undetermined dyad acts

as matter to the monad, which is cause ; from the

monad and the undetermined dyad arise numbers ;

from numbers, points ; from these, lines, out of which

" Apollonius is quoting Aristotle's book On the Pytha-
goreans^ now lost.
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arise plane figures ; from planes, solid figures ; from
these, sensible bodies, whose elements are four

—

fire, water, earth, air ; these elements interchange

and turn into one another completely, and out of

them arises a world which is animate, intelligent,

spherical, and having as its centre the earth, which

also is spherical and is inhabited round about.

Diogenes Laertius viii. 11-12

He [Pythagoras] it was who brought geometry to

perfection, after Moeris had first discovered the be-

ginnings of the elements of that science, as Anti-

cleides says in the second book of his History of
Alexander. He adds that Pythagoras specially applied

himself to the arithmetical aspect of geometry and
he discovered the musical intervals on the mono-
chord ; nor did he neglect even medicine. Apollo-

dorus the calculator says that he sacrificed a hecatomb
on finding that the square on the hypotenuse of the

right-angled triangle is equal to the squares on the

sides containing the right angle. And there is an
epigram as follows :

As when Pythagoras the famous figure found.
For which a sacrifice renowned he brought.

Proclus, on Euclid i., ed. Friedlein 84. 13-23

Whatsoever offers a more profitable field ofresearch

and contributes to the whole of philosophy, we shall

make the starting-point of further inquiry, therein

imitating the Pythagoreans, among whom there was
prevalent this motto, " A figure and a platform, not a

figure and sixpence," by which they implied that the

geometry deserving study is that which, at each
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theorem, sets up a platform for further ascent and
lifts the soul on high, instead of allowing it to descend
among sensible objects and so fulfil the common needs
of mortal men and in this lower aim neglect con-

version to things above.

Plutarch, The Epicurean Life 11, 1094

Pythagoras sacrificed an ox in virtue of his pro-

position, as Apollodorus says

—

As when Pythagoras the famous figure found
For which the noble sacrifice he brought "

—

whether it was the theorem that the square on the

hypotenuse is equa- to the squares on the sides con-

taining the right angle, or the problem about the

application of the area.

Plutarch, Convivial Questions viii. 2. 4, 720 a

Among the most geometrical theorems, or rather

problems, is this—given two figures, to apply a third

equal to the one and similar to the other ; it was
in virtue of this discovery they say Pythagoras
sacrificed. This is unquestionably more subtle and
elegant than the theorem which he proved that the

square on the hypotenuse is equal to the squares on
the sides about the right angle.

(6) Sum of the Angles of a Triangle

Proclus, on Euclid i., ed. Friedlein 379. 2-16

Eudemus the Peripatetic ascribes to the Pytha-
goreans the discovery of this theorem, that any
triangle has its internal angles equal to two right

* See supra, p. 168 n. a, and p. 174,
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angles. He says they proved the theorem in question

E

after this fashion. Let be a triangle, and
through A let be drawn parallel to . Now
since , are parallel, and the alternate angles

are equal, the angle is equal to the angle,
and is equal to. Let be added to

both. Then the angles,,, that is, the

angles, BAE, that is, two right angles, are equal

to the three angles of the triangle. Therefore the

three angles of the triangle are equal to two right

angles.

(c) " Pythagoras 's Theorem "

Euclid, Elements i. 47

In right-angled triangles the square on the side sub-

tejiding the right angle is equal to the squares on the sides

containing the right angle.

Let be a right-angled triangle having the

angle right ; I say that the square on is

equal to the squares on BA,.
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For let there be described on the square,
and on BA, the squares HB, [Eucl. i. 46], and
through A let AA be drawn parallel to either or, and let, be joined." Then, since each of

" In this famous "windmill" figure, the lines AA, BK,
meet in a point. Euclid has no need to mention this fact,

but it was proved by Heron ; see infra^ p. 185 n. b.

If, the perpendicular from
A, meets in M, as in the de-
tached portion of the figure here
reproduced, the triangles,

are similar to the triangle

and to one another. It

follows from Eucl. Elem. vi. 4
and 17 (which do not depend on
L 47) that

BA2 = BM.,
and 2 =..

Therefore BA^ +^ = (BM +)
=2.

The theory of proportion developed in Euclid's sixth book
therefore offers a simple m.ethod of proving " Pjiihagoras's
Theorem." This proof, moreover, is of the same tj-pe as
Eucl. Elem. i. 47 inasmuch as it is based on the equality of
the square on to the sum of two rectangles. This has
suggested that Pythagoras proved the theorem by means of
his inadequate theory of proportion, Avhich applied only to

commensurable magnitudes. \Mien the incommensurable
was discovered, it became necessary to find a new proof
independent of proportions. Euclid therefore recast Pytha-
goras's invalidated proof in the form here given so as to get
it into the first book in accordance vith his general plan of
the Elements.
For other methods by which the theorem can be proved,

the complete evidence bearing on its reputed discovery by
Pythagoras, and the history of the theorem in Egypt,
Babylonia, and India, see Heath, The Thirteen Books of
Euclid's Elements, i., pp. 351-366, A Manual of Greek
Mathem^atics, pp. 95-100.
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the angles, BAH is right, it follows that \vith a

straight line A and at the point A on it, two straight

lines, AH, not lying on the same side, make the
adjacent angles equal to two right angles ; therefore
A is in a straight line wdth AH [Eucl. i. 14]. For

the same reasons BA is also in a straight line with.
And since the angle is equal to the angle,
for each is right, let the angle be added to each

;

the whole angle is therefore equal to the whole
angle. And since is equal to, and ZB to

BA, the two [sides] , BA are equal to the two
[sides] , ZB respectively ; and the angle is

equal to the angle. The base is therefore

equal to the base, and the triangle is equal to

the triangle [Eucl. i. 4•]. Now the parallelogram

A is double the triangle, for they have the
same base and are in the same parallels, AA
[Eucl. i. 41]. And the square HB is double the tri-

angle, for they have the same base ZB and are

in the same parallels ZB,. Therefore the paral-

lelogram A is equal to the square HB. Similarly, if

AE, BK are joined, it can also be proved that the

parallelogram is equal to the square. There-
fore the whole square is equal to the two
squares HB,. And the square is described

on , while the squares HB, are described on
BA, . Therefore the square on the side is

equal to the squares on the sides BA,.
Therefore in right-angled triangles the square on

^ om. Heiberg. The words are equivalent to Common
Notion 5, Avhich must also be an interpolation as it is covered
by Common Notion 2, iav ^], iarlv, " if equals are added to equals the wholes are equal."
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^ By ol TTtpi" Proolus doubtless means, in

accordance with his practice elsewhere, 1 leron and Pappus
themselves. Pappus, in Coll. iv. 1, ed. Hultsch 176-178,
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the side subtending the right angle is equal to the

squares on the sides containing the right angle

;

which was to be proved.

Proclus, on Euclid 1., ed. Friedlein 426. 6-14

If we listen to those who ^^'ish to relate ancient

history, we find some ofthem attributing this theorem
to Pythagoras and saying that he sacrificed an ox
upon the discovery. For my part, while I admire
those who first became acquainted vrvth. the truth of

this theorem, I marvel more at the ^^Titer of the

Elemejits, not only because he established it by a

most lucid demonstration, but because he insisted

on the more general theorem by the irrefutable

arguments of science in the sixth book.**

Ibid. 429. 9-15

The proof by the WTiter of the Elements being

clear, I think that it is unnecessary to add anything

further, and that we may be content with what has

been \itten, since, in fact, those who have added
anything more, such as Heron and Pappus, were
compelled to make use of what is proved in the

sixth book, with no real object.^

generalized " Pythagoras's Theorem " by proving that if/
triangle is taken (not necessarily right-angled), and any
paraUelograms are described on two of the sides, their sum
is equal to a third paraHelogram. Proclus's words can,

however, hardly refer to this elegant theorem. Heron is

known from the Arabic commentary of an-NairizI on Euclid's

Elements (ed. Besthorn-Heiberg 170-185) to have proved
that in Euclid's figure, BK, meet in a point. Heron
used three lemmas proved on the principles of Book i. alone,

but they would more easily be proved from Book vi. It is

quite likely that Proclus refers to this proof.
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(d) The Application of Areas

One of the greatest of Pythajrorean discoveries was
the method known as the appHcation of areas, which
became a powerful enirine in the hands of successive

Greek geometers. The geometer is said io (ipp[y

(7.•) an area to a given straight line when a

rectangle or parallelogram equal to the area is con-

structed on that straigiit line exactly ; the area is said

io fall short or be deficient (eAAttVeii) when the rect-

angle or parallelogram is constructed on a portion of

the straight line ; and to exceed{) when
the rectangle or parallelogram is constructed on the

straight line produced. The method is developed in

the following propositions of Euclid's Elements :

i. 44, 45 ; ii. 5, 6, 11 ; vi. 27, 28, 29. These proposi-

Procl. in Eurl. i., ed. Friedlein 419. 15-i?0. \9"€, rrepl 8,
ev ,

re. Se €,, 8e , Be
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tions are equivalent to the solution of quadratic

equations, not only in particular cases but in the most
general form. The application of areas() is therefore a vital part of the " geometrical

algebra " of the Greeks, dealt in figures as

familiarly as we do in symbols. This method is the

foundation of Euclid's theory of irrationals and
Apollonius's treatment of the conic sections. The
subject will be introduced by Proclus's comment on
Eucl. i. 44, and then the relevant propositions of

Euclid will be given, with their equivalents in modern
algebraical notation. Though the precise form of the

later propositions cannot be due to Pythagoras, de-

pending as they do on a theory of proportion invented

bv Eudoxus, there can be no doubt, as Eudemus said,

that the method goes back to the Pythagorean
school, and most probably to the master himself.

Proclus, on Euclid i., ed. Friedlein 419. 15-420. 19

These things are ancient, says Eudemus, being

discoveries of the Muse of the Pythagoreans,

I mean the application of areas, their exceeding

and their falling short. From these men the

more recent geometers took the names that

they gave to the so-called conic lines, calling one

of these the parabola^ one the hyperbola and one
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the ellipse, inasmuch as those god-Uke men of old saw
the things signified by these names in the construc-

tionjin a plane, of areas upon a finite straight line. For
when a straight line is set out and you lay the given
area exactly alongside the whole of the straight line,

they say that you apply that area ; but when you
make the length of the area greater than the straight

line, then it is said to exceed, and \^6 you make it

less, so that when the area is draAvn a portion of the

straight line extends beyond it, it is said to fall short.

In the sixth book Euclid speaks in this way both of

exceeding and of falling short, but here he needed
only the application, as he sought to apply to the

given straight line an area equal to the given triangle,

in order that we might have not only the construction

of a parallelogram equal to the given triangle, but
also its application to a finite straight line.

Euclid, Elements i. 44

To a given straight line to apply in a given rectilineal

angle a parallelogram equal to a given triangle.

Let AB be the given straight Hne, the given

triangle and the given rectilineal angle ; then it is

required to apply to the given straight line AB, in an
angle equal to the angle , a parallelogram equal to

the given triangle .
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Let the parallelogram BEZH be constructed, equal

to the triangle , in the angle EBH which is equal

to [i. 42] ; and let it be placed so that BE is in a

straight line with AB, and let ZH be produced to ,
and through A let be drawn parallel to either

BH or EZ [i. 31], and let be joined. Then,
since the straight line falls upon the parallels, EZ, the angles, are equal to two right

angles [i. 29]. Therefore the angles, HZE are

less than two right angles. Now the straight lines

produced indefinitely from angles less than two right

angles will meet. Therefore , ZE, if produced,

will meet. Let them be produced and let them
meet at K, and through the point let KA be drawn
parallel to either A or [i. 31], and let , HB
be produced to the points A, M. Then is a

parallelogram, is its diameter, and AH, ME are

parallelograms, AB, BZ the so-called complements,
about . Therefore AB is equal to BZ [i. 43].

But BZ is equal to the triangle , and therefore AB
is equal to [Common Notion l]. And since the

angle HBE is equal to the angle ABM [i. 15], while

the angle HBE is equal to , therefore the angle

ABM is also equal to .
Therefore the parallelogram AB, equal to the given

triangle , has been applied to the given straight

line AB in the angle ABM which is equal to ; which
was to be done."

cv rfj ^ (to

construct^ in a f/iven rectilineal angle, a parallelogram equal
to a given rectilineal figure). The method is obvious and will

not here be repeated. Proclus {in Eucl. i., ed. Friedlein

422. 24-423. 5, cited infra, p. 316) observes that it was in

consequence of this problem that ancient geometers were
led to investigate the squaring of the circle.

191



gui:kk mathkmatics

laiol. Elfin, ii. 5' - ' ,' oXy-jg €€6€
-.̂

, Se •,, '.
*, BE, /cat, ,,

KM,, . ',•., '•', *'., '
" , it. " between the seetions."
'' The gnomon is indicated in the figure of the mss. by the

three points M, N, and a dotted curve ; there are thus in

the figure two points which should not be confused. In

the next proposition a similar gnomon is described as,
and perhaps tliis is what KucUd here wrote.
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Euclid, Elements ii. 5

Ifa straight line he cut into equal and u?iequal segments,

the rectangle contained hy the imequal segments of the

whole together nith the square on the line between the

poijits of section ^ is equal to the square on the half
For let a straight line AB be cut into equal seg-

ments at r, and into unequal segments at ; I say
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<» If the unequal segments are , q, then tliis theorem is

equivalent to the algebraical proposition

{-m-
This gives a ready means of obtaining tlie two rules, respect-

ively attributed {o the Pythagoreans and Plato (see i'<//»ra,

pp. 90-95) for finding integral square numbers vhich are the
sum of two other integral square numbers. Putting p=n^
q = l, we have

pq.

In order that the first two squares may be integers, must
be odd. This is the Pythagorean rule.

Putting p=2n', q=2,

we have (w^ +1^- (n^ - 1)^= 4n^.

This is Plato's rule, starting from an even number 2n.

The theorem can be made to yield a result of even greater

interest, namely, the geometrical solution of the quadratic
equation

ajc - x^ = 6*,

as is shown by Heath {The Thirteen Books of Euclid'a El»•
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angle, ; for is equal to ; and therefore

the gnomon is equal to the rectangle,.
Let AH, which is equal to the square on, be added
to each ; therefore the gnomon ]\INH and AH are

equal to the rectangle contained by, and the

square on. But the gnomon and AH are

the whole square, which is described on
;

therefore the rectangle contained by , to-

gether with the square on is equal to the square.
Therefore, etc."

mentSt vol. i. p. 384, and H.G.M. i. 151, 152), following
Simson ; see also Loria, Le scienze esatte nelV antica
Grecia, pp. 42-45.

If AB=a, =?,
then the theorem shows that

{a- x).x = the rectangle = the gnomon IVINH.

If the area of the gnomon is given ( =b^), then we have

To solve this equation
geometrically is to find

the point , and in Pyth-
agorean language this is

to apply to a given
straight line (a) a rect-

angle which shall be equal
to a given square (b^j and
shall fall short by a
square figure, that is, to

construct the rectangle

or the gnomon.
Draw 0 perpendicu-

lar to AB and equal to 6.

With centre and radius equal to ( =|) describe a circle.

Provided that b is greater than ^a, this circle will cut AB in

two points. One of these is the required point , =a;, and
the rectangle A can be constructed.
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Euclid, Elements ii. 6

If a straight line he bisected, and a straight line he

added to it in a straight line, the rectangle contained hy
the 71'hole with the added straight li?ie and the added
straight line, together nith the square on the half, is equal
to the square on the straight line made up of the half and
the added straight line.

For let a straight line AB be bisected at the point ,
and let a straight line be added to it in a straight

Une ; I say that the rectangle contained by,
with the square on is equal to the square on ."
Euclid for that matter, used this proposition to solve geo-
metrically the quadratic equation ax-x^ — Ir, But, as will be
shown below, the Pj-thagoreans must have solved a similar
equation corresponding to ii. 11, and it may fairly safely be
assumed that they solved the equations ax-x^ — h"^ corre-
sponding to ii. 5 and the equations-^= b^ and x^ - ax = 6'

corresponding to ii. 6.

" The proof is on the lines of that in the preceding proposi-
tion, the rectangle being shown equal to the gnomon, and can easily be supplied by the reader. If AB=a,
BA=a', and the gnomon have a given value (=6'),
then (a + x) . x = b'^

or ax + x^ =62.

To solve this equation geometrically is fo apply to a given

straight line (aj a rectangle equal to a gicen nquare (b^) and
exceeding by a square figure, in short, to find the point .
Continued on pp. 198-199.] \ Q7
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Euclid, Elements ii. 1

1

To cut the give?i straight line so that the rectangle con-

taiiied by the whole and one of the segments is equal to the

square on the remaining segment.

Let AB be the given straight Une ; then it is

required to cut A so that the rectangle contained by
the whole and one of the segments is equal to the
square on the remaining segment.

radius let a circle be drawn cutting AB produced in .
Then is the required point.

For by the proposition (ii. 6) just proved,

. +2 =2
= TPh
=2 +«. =BP2

i.e. ax + x^ — 6^.

Because the circle cuts AB produced in two points there
are two real solutions, and as the circle always cuts AB pro-
duced there is always a real solution. This bears out the
algebraical proof that the equation

always has two real roots, which are equal when =^.
When we come to deal with Hippocrates' quadrature of

lunes we shall come across the problem : To find a;, vhen is

given by the equation

y/\ax^ X' =a^.

This could have been solved theoretically by the above
methods, and the solution was certainly not beyond the
powers of Hippocrates. It seems more probable, however,
from the wording of Eudemus's account, that he used an
approximate mechanical solution for his purpose.

This same construction can be used to give a geometrical
solution of the equation x^ - ax=b^. In the figure it has only
to be supposed that AB=a and (instead of )=.
Then the theorem tells us that x{x - a) = the gnomon = 6^.
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Let the square be described on AB, and

let be bisected at the point E, and let BE be

joined, and let be produced to Z, and let EZ
be made equal to BE, and let the square be

described on AZ, and let be produced to ;

I say that AB has been so cut at as to make the

rectangle contained by AB, equal to the square

on.
For, since the straight line has been bisected

at E, and ZA is added to it, therefore the rectangle

contained by, ZA together with the square on AE
is equal to the square on EZ [ii. 6]. But EZ is equal

to EB ; therefore the rectangle contained by, ZA
together \^th the square on AE is equal to the square

on EB. But the squares on BA, AE are equal to the

square on EB, for the angle at A is right [i. 47] ;

therefore the rectangle contained by, ZA together

with the square on AE is equal to the squares on
BA, AE. Let the square on AE be taken away from
each ; therefore the rectangle contained by, ZA
which remains is equal to the square on AB. Now
the rectangle , ZA is ZK, for AZ is equal to ZH ;

and the square on AB is ; therefore ZK is equal

to . Let A be taken away from each ; there-

fore the remainder is equal to. Now is

the rectangle AB,, for AB is equal to ; and
is the square on ; therefore the rectangle con-

tained by AB, is equal to the square on.
Therefore, etc."

In other words, the proposition gives a geometrical solution

of the equation x^ + ax=a^
for it enables us to find or x.

This equation is a particular case of the more general
proposition x^ + ax = b^

which, as was explained in the note on p. 197 n. a, can be solved
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Eucl. Klem. vi. 27
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by a method based on ii. 6. There is good reason to believe,

as will be shown below, pp. 222-225, that the Pythagoreans
knew liow to construct a regular pentagon ABCDE, and it is

probable that this theorem was used in the construction, as

can be shown if CE is allowed to cut AD in F.

For the Pythagoreans, knowing that the sum of the angles

of any triangle is two right angles, would immediately have
deduced that the sum of the internal angles of a regular

pentagon is six right angles, and that each of the internal

angles is therefore ^ths of a right angle. It easily follows

that the angles CAD, ADC, DCA are respectively gths, ^ths

and fths of a right angle, while the angles FCD, CDF, DFC
are also resj)cctively ;-;ths, ^ths and |ths of a right angle.

]>om this it follows that the triangles ACD, CDF are similar,

while AF = 1'C = CD.
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Euclid, Elements vi. 27

Of all the parallelograms applied to the same straight

line and dejicient hy parallelogrammicfigures similar and

similarly situated to that described on the half of the

straight line, that parallelogram is greatest which is

applied to the half of the straight line and is similar to

the defect.^

Let AB be a straight line and let it be bisected

Therefore
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at , and let there be applied to the straight line

AB the parallelogram A deficient by the parallelo-

grammic figure described on the half of AB,

that is, . I say that, of all the parallelograms

applied to AB and deficient by figures similar and

similarly situated to, is the greatest. For let

there be applied to the straight line AB the parallelo-

gram AZ deficient by the parallelogrammic figure

ZB similar and similarly situated to. I say that

is greater than AZ.

For since the parallelogram is similar to the

parallelogram ZB, they are about the same diameter.

Let their diameter be drawn and let the figure be

described.

Then, since is equal to ZE, and ZB is common,

the whole is equal to the whole KE. But

is equal to , since is equal to . And
therefore is equal to EK. Let be added to

each. Then the whole AZ is equal to the gnomon
AMN, so that the parallelogram , that is, , is

greater than the parallelogram AZ.

Therefore of all the parallelograms applied to this

straight line and deficient by parallelogrammic figures

similar and similarly situated to that described on the

half of the straight line the greatest is that applied

from the half; which was to be proved.

Euclid, Elements vi. 28

To the give?i straight line to apply a parallelogram
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equal to the given reciiUneal figure and deficient hy a

parallelogrammic figure similar to the given one ; thus

the given rectilineal figure must he not greater than the

[parallelogram] described on the half [of the straight

line'] and similar to the defect.

Let AB be the given straight hne, the given

rt^ctiUneal figure, to vrhich the figure to be apphcd

to AB is required to be equal, being not greater than

the [parallelogram] described on the half [of the

straight line] and similar to the defect, and the

[parallelogram] to which the defect is required to be

similar ; then it is required to apply to the given

straight line AB a parallelogram equal to the given

rectilineal figure and deficient by a parallelo-

grammic form similar to .
Let AB be bisected at the point E, and on let

EBZH be described similar and similarly situated to

[vi. 18], and let the parallelogram AH be completed.

If then AH is equal to , that which was enjoined

will have been done ; for there has been apphed to

the given straight line AB a parallelogram AH equal

to the given rectilineal figure and deficient by a

parallelogrammic figure HB similar to . But if not,
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let be greater than . Now is equal to

and therefore is greater than . Let be

constructed at once equal to the excess by which

is greater than and similar and similarly situated

to [vi. 25]. But is similar to HB ; therefore KM
is also similar to HB [vi. 21]. Let correspond to

HE, AM to HZ. Now, since HB is equal to +,
HB is therefore greater than KM. Therefore HE is

greater than KA, and HZ than AM. Let be

made equal to KA, and HO equal to AM, and let the

parallelogram be completed. Therefore it is

equal and similar to KM. Therefore is also

similar to HB. Therefore is about the same

diameter as HB [vi. 26]. Let be their diameter,

and let the figure be described.

Then since BH is equal to + KM, and in these

is equal to KM, therefore the remainder, the gnomon, is equal to . And since OP is equal to ,
let be added to each. Therefore the whole of

OB is equal to the whole of. But HB is equal to

TE, since the side AE is also equal to the side EB
[i. 36]. Therefore TE is also equal to OB. Let

be added to both. Therefore the whole of is equal

to the whole of the gnomon. But the gnomon
was proved equal to . Therefore is also

equal to .
Therefore to the given straight Une AB there has

been applied the parallelogram equal to the given

rectilineal figure and deficient by a parallelo-
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irep TO 11 eoTLVj' onep eSei.
Kiicl. IJ}em. vi. 29^ evOetav hoOevTL €-€ vnep-

ei'Set hodevTL." ^ hoOeZoa evOela - , Se hoOev, Bet' ^,
" If =, = a•, while the sides of tlie given parallelo-

gram are in the ratio 6 : r, and the angle of is a, then

= -r, and
c

(the parallelogram 'l^)=(the parallelogram TB)
- (the parallelogram)

b

If the area of the given rectilineal figure is S, the }>roposi-

tion tells us that

^ 2 • Cax sin —x^ sm = 5.
c

To construct the parallelogram is therefore equivalent to

solving geometrically the equation

b , S
ax x^ — .

c sm
Heath (The Thirteen Books of Euclid' Element*, vol. ii
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grammic form similar to ; which was to be
done.**

Euclid, Elements vi. 29

To the given straight line to apply a parallelogram

equal to the given rectilineal figure and exceeding hy a

parallelograjnmicfigure similar to the given one.

Let AB be the given straight line, the given

:

rectilineal figure to which the figure to be applied to

pp. 263-264), shows how the geometrical method is precisely

equivalent to the algebraical method of completing the
square on the left-hand side, and he demonstrates how the two
solutions can be obtained geometrically, though Euclid, con-
sistently with his practice, gives one only.

For a real solution it is necessary, as every schoolboy
knows, tliat

S c a^

sm 6 4

i.e. S>(^
I)

(^'" ") (I)

i.e. S > HE sin . EB
i.e. S> parallelogram HB.

This is precisely the result obtained in vi. 27.
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AB is required to be equal, and that to which the

excess is required to be similar ; then it is required to

apply to the straight line AB a parallelogram equal

to the rectilineal figure and exceeding by a paral-

lelogrammic figure similar to .
Let AB be bisected at E, and let there be described

on EB the parallelogram BZ similar and similarly

situated to , and let be constructed at once

equal to the sum of BZ, and similar and similarly

situated to . Let correspond to ZA and KH to

ZE. Now since is greater than ZB, is there-

fore greater than ZA, and than ZE. Let ZA, ZE
be produced, and let ZAM be equal to, and ZEN
equal to KH, and let MN be completed ; therefore

MN is both equal to and similar. But is

similar to EA ; therefore MN is similar to EA [vi. 21] ;

and therefore EA is about the same diameter with

MN [vi, 26]. Let their diameter be drawn, and

let the figure be described.

Since is equal to +, while is equal to

MN, therefore MN is also equal to EA +. Let EA be

taken away from each ; therefore the remainder, the

gnomon, is equal to . And since AE is equal

to EB, AN is also equal to NB [i. 36], that is, to

AG [i. 43]. Let be added to each ; therefore the

whole of is equal to the gnomon. But the

gnomon is equal to ; therefore AH is also

equal to .
Therefore to the given straight Hne AB there has

been applied a parallelogram equal to the given

rectilineal figure and exceeding by a parallelo-
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, eVet

ioTLV ' oirep eSet.
{e) The Irrational

Schol. i. in Kucl. Elem. \., Eucl. ed. Heiberg
V. 415. 7-417. 14^ ^. inl €^

€ .
€

evpelv ^,*. '€ €^€,
'' -, elvaL, * ',, oJ ,,.

" U the angle of is and its sides are in the ratio 6 : c,

while AB =a and 0 =x, then

(parallelogram) = (parallelogram) + (parallelo-

gram)
b

= ax im a+ .x sm o.
c
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grammic form 0 similar to , since 0 is similar

to ; which was to be done.**

(e) The Irratioxal ^

Euclid, Elements x., Scholium i., Eucl. ed. Heiberg
V. 415. 7-417. 14

The Pythagoreans were the first to make inquiry

into coramensurability, having first discovered it as

a result of their observation of numbers ; for though
the unit is a common measure of all numbers they
could not find a common measure of all magnitudes.
The reason is that all numbers, of whatsoever kind,

howsoever they be divided leave some least part

which will not suffer further di\asion ; but all magni-
tudes are divisible ad infinitum and do not leave some
part which, being the least possible, will not admit of

further division, but that remainder can be divided

ad infinitum so as to give an infinite number of parts,

of which each can be divided ad infinitum ; and, in

sum, magnitude partakes in division of the principle

of the infinite, but in its entirety of the principle of

the finite, while number in division partakes of the

But by the proposition, if S is the area of
(parallelogram AE)=S,

h , S
c sm

To construct the parallelogram is therefore equivalent
to solving geometrically this quadratic equation. There is

always a real solution, and so no is necessary as
in the case of the preceding proposition. Heath [The Thir-
teen Books of Euclid's Elements, vol. ii. pp. 266-267) again
shows how the procedure is equivalent to the algebraic
method of completing the square. Euclid's solution corre-
sponds to the root with the positive sign.

' For further notices see supra^ pp. 110-111, p. 149 n. c.
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aneipov . . .€
ctV -
(y) The Five Regular Solids

Phil. ap. Stob. Eel. 1, proem. 3, ed. Wachsmuth 18. 5 ;

Diels, Vors. i\ 41i. 15-4•13. 2

Kat ? / €€,
€v {/cat) /cat ,

6 ,^.
Aet. Plac. ii. 6. 5 ; Dkls, Vors. i^. 403. 8-12

rrevTe €€,, €, €, € ,, 888.
^ : coniecit Wilamowitz.

" A regular solid is one having all its faces equal polygons
and all its solid angles equal. The term is usually restricted

to those regular solids in which the centre is singly enclosed.

There are five, and only five, such figures—the pyramid,
cube, octahedron, dodecahedron and icosahedron. They
can all be inscribed in a sphere. Owing to the use made of
them in Plato's Timaeus for the construction of the universe

they were often called by the Greeks the cosmic or Platonio
figures. As noted above (p. 148), Proclus attributes the
construction of the cosmic figures to Pythagoras, but Suidas
(infra, p. 378) says Theaetetus was the first to write on them.
The theoretical construction of the regular solids and the
calculation of their sides in terms of the radius of the circum-
scribed sphere occupies Book xiii. of Euclid's Eleinents. It
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finite, but in its entirety of the infinite. . . . There
is a legend that the first of the Pythagoreans who
made pubHc the investigation of these matters
perished in a shipwreck.

{J')
The Five Regular Solids"

Philolaus, cited by Stobaeus, Extracts 1, proem. 3, ed.

Wachsmuth 18. 5 ; Diels, Vors. v'. 412. 15-413. 2

There are five bodies pertaining to the sphere—the
fire, water, earth and air in the sphere, and the vessel

of the sphere itself as the fifth.

^

Aetius, Placita ii. 6. 5 ; Diels, Vors. i^. 403. 8-12

Pythagoras, seeing that there are five solid figures,

which are also called the mathematical figures, says

that the earth arose from the cube, fire from the

pyramid, air from the octahedron, water from the

icosahedron, and the sphere of the universe from
the dodecahedron. '^

calls for mathematical knowledge which the Pythagoreans
did not possess ; but there is no reason why the Pythagoreans
should not have constructed them practically in the manner
of Plato by putting together triangles, squares or pentagons.
The passages here given almost compel that conclusion.

The subject is fully treated in DiefunfPlatonischen Korper^
by Eva Sachs {Philologische Untersuchungen, 21es Heft,

1917). Archim.edes, according to Pappus, Coll. v., ed.

Hultsch 332-358, discovered thirteen semi-regular solids,

whose faces are all regular polygons, but not all of the same
kind.

* In place of Wilamowitz suggests^ which is

derived from and could be translated " envelope." This
fragment, it will be noted, does not identify the regular splids

with the elements in the sphere, but it is consistent with that

identification, for which the earliest definite evidence is

Plato's Timaens.
" Aetius's authority is probably Theophrastus.
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Plat. Tim. 53 c-o5 c

]\ Srj ^ on
€,^ . he? €€. Se

eVtTreSov .^ €€€., ,
hk' ',

8 . . . ,

8, , -,. -, '
*

, , e^^. . . .

hk 8,. Srj 8
* -̂' 8 8-,

° This passage is put into tlie mouth of Timaeus of I>ocri,

a Pvthajiorean leader, and in it Plato is generally held to he
reproducing Pythagorean ideas.

" i.e.y the rectangular isosceles triangle and the rectangular
scalene triangle.
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Plato, Thnaeits 53 c-55 c "

In the first place, then, it is clear to everyone, I

think, that fire and earth and water and air are

bodies. Now in every case the form of a body has

depth. Further, it is absolutely necessary that depth

should be bounded by a plane surface ; and the

rectiUnear plane is composed of triangles. Now all

triangles have their origin in two triangles, each

having one right angle and the others acute ; and

one of these triangles has on each side half a right

angle marked off by equal sides, while the other has

the right angle divided into unequal parts by unequal

sides. ^ . . .

Of the two triangles, the isosceles has one nature

only, but the scalene has an infinite number ; and of

these infinite natures the fairest must be chosen, if

we would make a suitable beginning. If, then, any-

one can claim that he has a fairer one for the con-

struction of these bodies, he is no foe but shall prevail

as a friend ; but we shall pass over all the rest and

lay do^vn as the fairest of the many triangles that

from which the equilateral triangle arises as a third

when two are conjoined. . .
.*'

In the next place ve have to describe the form in

which each kind has come into existence and from

what numbers it is compounded. A beginning must
be made vith that kind which is primary and has the

smallest components, and its element is the triangle

whose hypotenuse is twice as long as the lesser side.

When a pair of these triangles are joined diagonally

and this is done three times, by drawing the hypo-

" i.e., the " fairest " of rectangular scalene triangles is half

of an equilateral triangle, the sides being in the proportion

1, Vs. 2.
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Kevrpov€€, . ,
, 8

8e,,.
8e ,

8 , -. 8,, ,€ .
° As in the accompanvinir diagram, the triangles AOF,

' COD, , BOD, COE, BOF
are joined together so as to form
the equilateral triangle ABC. As
Plato has already observed, an
equilateral triangle can also be
made out of two such triangles.

A. E. Taylor (A Commentary
on Plato's TimaeuK, pp. 374-375),
first pointed out the correct mean-
ing of €, " diagon-
ally." Previously, following
Boeckh, editors had supposed that

it meant " so that their hypotenuses coincide," e.c^., triangle
AOF is placed 8€ with triangle ; Plato almost
certainly meant that triangles AOF, COD are 8€.
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tenuses and shorter sides to a common centre, from

those triangles, six in number, there is produced one

equilateral triangle."

Now when four equilateral triangles are put to-

gether so that the three plane angles meet in a point,

they make one solid angle, which comes next in order

to the most obtuse of the plane angles ^
; and when

four such angles are formed, the first solid figure ^ is

constructed, dividing the whole of the circumscribed

sphere into equal and similar parts. The second

solid ^ is foraried from the same triangles, but is con-

structed out of eight equilateral triangles, which

make one solid angle from four planes ; when six

such solid angles have been produced, the second

body is in turn completed. The third solid * is made
up of twice sixty of the elemental triangles and of

twelve soUd angles, each solid angle being comprised

by five plane equilateral triangles, and the manner
of its formation gives it twenty equilateral triangular

bases.

Now the first ofthe elemental triangles was dropped

* The three plane angles together make tv. right angles,

which is " the most obtuse of the plane angles."
" i.e., the regular tetrahedron or pyramid, which has four

faces, each an equilateral triangle, and four solid angles, each
formed by three of the equilateral triangles ; Plato later

makes it the element of fire.

** i.e., the regular octahedron, which has eight faces, each
an equilateral triangle, and six solid angles, each formed by
four of the equilateral triangles ; Plato later makes it the

element of air.

* i.e., the icosahedron, which has twenty faces, each an
equilateral triangle (and is therefore made up of 120 elemental
rectangular scalene triangles, inasmuch as six such triangles

are put together to form one equilateral triangle), and twelve
solid angles, each formed by five of the equilateral triangles ;

Plato later made it the element of water.
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yem'-fjoav, loouKeXeg cyeWa
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€v -, )', -, 6 -.

Iambi. De Vita Pythag. 18. 88, ed. Deubner 52. 2-8

' *\,,) ^ ,^, '
As in tlie accoinpanving figure, the four isosceles scalene

triangles AOB, DOC, BOC, DOA
yilaced about the common vertex

form the square ABCD. The
fourth figure is the cube, which

has six faces, each a square (and

is therefore made up of twenty-

four of the elemental rectangular

isosceles triangles), and eight solid

angles, each formed by three of

the squares ; Plato later makes it

the element of earth,

i.e., the regular dodecahedron. This requires, however,
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when it had produced these three soUds, the nature

of the fourth being produced by the isosceles triangle.

When four such triangles are joined together, with

their right angles drawn towards the centre, they
form one equilateral quadrangle " ; and six such

quadrangles, put together, made eight solid angles,

each composed of three plane right angles ; and the

shape of the body thus constructed was cubic, having
six plane equilateral quadrangular bases. As there

still remained one compound figure, the fifth, ^ God
used it for the whole, broidering it with designs/

lamblichus, On the Pythagorean Life 18. 88,

ed. Deubner 52. 2-8

It is related of Hippasus that he was a Pythagorean,
and that, owing to his being the first to pubUsh and
describe the sphere from the tvelve pentagons, he
perished at sea for his impiety, but he received credit

for the discovery, though really it all belonged to

a new element, the regular pentagon. It has twelve faces,

each a regular pentagon, and twenty solid angles, each
formed by three pentagons. The folloving passages give

evidence that the Pythagoreans may have known the pro-

perties of the dodecahedron and pentagon. A number of
objects of dodecahedral form have survived from pre-Pytha-
gorean days.

« This has often been held, following Plutarch, to refer lo

the twelve signs of the Zodiac, but A. E. Taylor {A Com-
mentary on Plato's Timaeus, p. 377) rightly points out that

the dodecagon, not the dodecahedron, would be the appropri-

ate symbol for the Zodiac. He finds a clue to the meaning
in Timaeus Locrvs 98 e, where it is pointed out that of the

five regular sohds inscribable in the same sphere the dode-
cahedron has the maximum volume and " comes nearest

"

to the sphere. Burnet finds the real allusion to the mapping
of the apparently spherical heavens into twelve pentagonal
regions.
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Luc. Pro Lapsu inter Salut. 5, cd. Jacobitz i. 330. 11-14

Kat TO ye , hi

7), ,, ^.
" lamblichus tells the same story, almost word for

word, in De communi Mafheniafica Scienfia c. 25 (ed.

Festa 77. 18-2i) ; the only substantial difierence is the

substitution of the word for€, which
is a slip. The story recalls the passage given above

(p. 216) about the Pythagorean who perished at sea for re-

vealing the irrational. He may very well have been the

same person as Hippasus, for the irrational would quickly

come to light in a study of the regular solids.
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HIM (for in this way they refer to Pythagoras, and
they do not call him by his name)."

Lucian, On Slips in Greetings 5, ed. Jacobitz i. 330. 11-14

The triple interlaced triangle, the pentagram,
which they (the Pythagoreans) used as a passAvord

among members of the same school, was called by
them Health.^

* Cf. the scholium to Aristo-

phanes, Clouds 609. The penta-

gram is the star-pentagon, as in the

adjoining diagram. The fact that

this was a familiar symbol among
them lends some plausibility to the

belief that they know how to con-

struct the dodecahedron out of twelve

pentagons.
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Plut. De Comm. Not it. 39. 3, 1079" TOLVVV €^,
hiaTTopovvTL• €, et -, ^€,

;
-,- ',,

6,, .

Archim. Meth., Archim. ed. Heiberg ii. 430. 1-9, '^?8,, 6

«» Plutarch tells this on the authority of Chrysippus.

Democritus came from Abdera. He was born about the

same time as Socrates, and lived to a great age. Plato

ignored him in his dialogues, and is said to have wished to

burn all his works. The two passages here given contain all

that is definitely known of his mathematics, but we are

informed that he wrote a book On the Contact of a Circle and
a Sphere ; another on Geometry ; a third entitled Oeometrica ;

a fourth on Numbers ; a fifth On Irrational Lines and Solids;

and a sixth called, which would deal with the
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Plutarch, On the Common Notions 39. 3, 1079

Consider further in what manner it occurred to

Democritus," in his happy inquiries in natural science,

to ask if a cone vere cut by a plane parallel to the

base,^ what must we think of the surfaces forming
the sections, whether they are equal or unequal ?

For, if they are unequal, they will make the cone

irregular, as having many indentations, like steps,

and unevennesses ; but if they are equal, the sections

will be equal, and the cone \111 appear to have the

property of the cylinder, and to be made up of equal,

not unequal, circles, which is very absurd. '^

Archimedes, Method, Archim. ed. Heiberg
ii. 430. 1-9

This is a reason why, in the case of those theorems
concerning the cone and pyramid of which Eudoxus
first discovered the proof, the theorems that the cone

projection of the armillary sphere on a plane. As his mathe-
matical abilities were obviously great, it is unfortunate that

our information is so meagre.
* A plane indefinitely near to the base is clearly indicated

by what follows.
*• This bold inquiry first brought the conception of the

indefinitely small into Greek mathematics. The story har-
monizes with Archimedes' statement that Democritus gave
expressions for the volume of the cone and pyramid.
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is a third part of the cylinder, and the pyramid of the

prism, having the same base and equal height, no

small share of the credit should be given to Demo-
critus, who was the first to make the assertion with

regard to the said figure," though without proof.

• So the Greek. Perhaps " type of figure."
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VIII. HIPPOCRATES OF CHIOS

(a) General

Philop. in Phye. A 2 (Aristot. 185 a 16), cd. Vitclli

31. 3-9' \6 €, XrjaTpiKfj€€ , "^ *A^rjvai€6€ ?, cV

*A^7jvais• , €€ €, € ^
-^, €€ -. , £^.

(b) Quadrature Lunes

Simpl. in Phyi. A 2 (Aristot. 185 a 14), ed. Dieh
60. 22-68. 32

*0 > ^.^* ,
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VIII. HIPPOCRATES OF CHIOS

(a) General

Philoponus, Commentary on Aristotle's Physics A 2
(185 a 16), ed. Vitelli 31. 3-9

Hippocrates of Chios was a merchant who fell in

with a pirate ship and lost all his possessions. He
came to Athens to prosecute the pirates and, staying

a long time in Athens by reason of the indictment,

consorted with philosophers, and reached such pro-

ficiency in geometry that he tried to effect the quad-
rature of the circle. He did not discover this, but
having squared the lune he falsely thought from this

that he could square the circle also. For he thought
that from the quadrature of the lune the quadrature
of the circle also could be calculated.*

(6) Quadrature of Lunes

Simplicius, Commentary on Aristotle's Physics A 9
(185 a 14), ed. Diels 60. 22-68. 32

Eudemus, however, in his History of Geometry says

that Hippocrates did not demonstrate the quadrature

A lune (meniscus) is the figure included between two
intersecting arcs of circles. It is unlikely that Hippocrates
himself thought he had squared the circle, but for a discus-
sion of this point see infra, p. 310 n. 6.
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^ € add. Usener.

" As Alexander asserted. Alexander, as quoted by
Simpiicius in Phy.t. (ed. Diels 5. 1-57. 24•), attributes two
quadratures to Hippocrates.

In the first, AB is the diameter of a circle, , are
sides of a square inscribed in it, and is a semicircle

described on. Alexander shows that

lune= triangle.
In the second, AB is the diameter of semicircle and on,
equal to twice AB, a semicircle is described. , EZ,
are sides of a rciiular hexagon, and,, are
semicircles described on, EZ,. Alexander shows that
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of the lune on the side of a square " but generally, as

one might say. For every lune has an outer circum-

ference equal to a semicircle or greater or less, and
if Hippocrates squared the lune having an outer

circumference equal to a semicircle and greater

and less, the quadrature would appear to be proved
generally. I shall set out what Eudemus wrote w^rd
for vord, adding only for the sake of clearness a few
things taken from Euclid's Elements on account of the

summary style of Eudemus, who set out his proofs

in abridged form in conformity with the ancient

practice. He writes thus in the second book of the

History of Geometry.^

lune + lune + lune + semicircle AB =
trapezium.

The proofs are easy. Alexander goes on to say that if the
rectilineal figure equal to the three lunes (" for a rectilineal

figure was proved equal to a lune ") is subtracted, the circle

will be squared. The fallacy is obvious and Hippocrates
could hardly have committed it. This throws some doubt on
the whole of Alexander's account, and Simplicius himself
observes that Eudemus's account is to be preferred as he was
" nearer to the times " of Hippocrates.

^ It is not always easy to distinguish what Eudemus wrote
and what Simplicius has added. The task was first

attempted by Allman (Hermathena iv., pp. 180-228 ; Greek
Geometry from Thales to Euclid^ pp. 64-75). Diels, in his

edition of Simplicius published in 1882, with the help of
Usener, printed in spaced type what they attributed to

Eudemus. In 1883 Tannery {Memoires scientifiqiies i., pp.
339-370) edited what he tiiought the Eudemian passages.

Heiberg {Philologus xliii., pp. 336-344) gave his views in 1884.

Rudio discussed the question exhaustively in 1907 {Der
Bericht des Simplicius uber die Quadraturen des Antiphon
und Hippokrates), but unfortunately his judgement is not
always trustworthy. Heath {H.G.M. i. 183-200) has an
excellent analysis. In the following pages I have given only
such passages as can safely be attributed to Eudemus and
omitted the rest.
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** Tlie quadratures of lunes, which seemed to belong

to an uncommon class of propositions by reason of the

close relationship to the circle, were first investigated

by Hippocrates, and seemed to be set out in correct

form ; therefore we shall deal with them at length and

go through them. He made his starting-point, and

set out as the first of the theorems useful to his pur-

pose, that similar segments of circles have the same

ratios as the squares on their bases.** And this he

proved by showing that the squares on the diameters

have the same ratios as the circles.^

" Having first shown this he described in what way
it was possible to square a lune whose outer circum-

ference was a semicircle. He did this by circum-

scribing about a right-angled isosceles triangle a

semicircle and about the base a segment of a circle

similar to those cut off by the sides.* Since the

segment about the base is equal to the sum of

those about the sides, it follows that when the part

of the triangle above the segment about the base is

added to both the lune will be equal to the triangle.

Therefore the lune, having been proved equal to

the triangle, can be squared. In this way, taking

• Lit. *' as the bases in square."
• This is Eucl. xii. 2 (see infra, pp. 458-465). Euclid proves

it by a method of exhaustion, based on a lemma or its equi-
valent which, on the evidence of Archimedes himself, can
safely be attributed to Eudoxus. We are not told how
Hippocrates effected the proof.

• As Simplicius notes, this is the problem of Eucl. iii. 33
and involves the knowledge that similar segments contain
equal angles.
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|i semicircle as the outer circumference of the. lune,

Hippocrates readily squared the lune.

" Next in order he assumes [an outer circumference]

greater than a semicircle [obtainedby]. constructing a

trapezium having three sides equal to one another

while one, the greater of the parallel sides, is such that

the square on it is three times the square on each of

those sides, and then comprehending the trapezium

in a circle and circumscribing about " its greatest side

a segment similar to those cut off from the circle by

the three equal sides. ^ That the said segment " is

greater than a semicircle is clear if a diagonal is

.4iraw^..in the trapezium. For this diagonal, sub-

tending two sides of the trapezium, must be such that

the square on it is greater than double the square on

• .. " describing on."

* Simplicius here inserts a proof that a circle can be de-

scribed about the trapezium.

'^ i.e.., the segment bounded by the outer circunrference.

Eudemus is going to show that the angle in 'it "is acute and

therefore the segment is greater than a semicircle," , •.
;m
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one of the remaining sides. Therefore the square on
is greater than double the square on either BA,, and therefore also on ." Therefore the square

on , the greatest of the sides of the trapezium,

must be less than the sum of the squares on the

diagonal and that one of the other sides which is

subtended by the said [greatest] side together Avith

the diagonal.^ For the squares on, are greater

than three times, and the square on is equal to

three times, the square on. Therefore the angle

standing on the greatest side of the trapezium '^ is

acute. Therefore the segment in which it is is greater

than a semicircle. And this segment is the outer

circumference of the lune.*^

" If [the outer circumference] were less than a

semicircle, Hippocrates solved * this also, using the

following preliminary construction. Let there be a

circle with diameter AB and centre K. Let bisect

BK at right angles ; and let the straight line EZ be
placed between this and the circumference verging

towards so that the square on it is one-and-a-half

so that the angle is acute, and therefore the angle
is obtuse.

' i>. 2<2+2.
• i.e. the angle.
' Simplicius notes that Eudemus has omitted the actual

squaring of the lune, presumably as being obvious. Since2=32
(segment on) =3 (segment on A)

= sum of segments on BA,,.
Adding to each side of the equation the portion of the tra-

pezium included by the sides BA, and and the circum-
ference of the segment on, we get

trapezium AB=lune bounded by the two circumferences

and so the lune is " squared."
• Lit. " constructed."

S4S
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. . .. In the text of Simplicius this

sentence precedes the one above and Simplicius's comments
thereon. It is here restored to the place which it must have
occupied in Eudemus's History.

** This is the first example we have had to record of the
type of construction known to the Greeks as veiiaei?, inclina-
tions or vergings. The general problem is to place a straight
line so as to verge towards (pass through) a given point and
so that a given length is intercepted on it by other lines. In
this case the problem amounts to finding a length such that,

if be taken on so that BZ=x and BZ be produced to

24)4
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times the square on one of the radii." Let EH be
parallel to AB, and from let [straight lines]

be drawn joining and Z. Let the straight line

[KZ] joined to and produced meet EH at H, and
again let [straight lines] be drawn from joining

and H. It is then manifest that EZ produced will

pass through —for by hypothesis EZ verges towards

B—and will be equal to EK.
** This being so, I say that the trapezium EKBH

can be comprehended in a circle.

" Next let a segment of a circle be circumscribed

about the triangle EZH ; then clearly each of the

segments on EZ, ZH will be similar to the segments
on EK, KB, BH.

" This being so, the lune so formed, whose outer

circumference is EKBH, will be equal to the recti-

lineal %ure composed of the three triangles BZH,
BZK, EKZ. For the segments cut off from the

rectiUneal figure, inside the lune, by the straight lines

EZ, ZH are (together) equal to the segments outside

meet the circumference in E, then EZ^ = ^AK^, or EZ = \/^
AK. If this is done, EB . BZ = AB . = AK^

or (+/^ a) .x = a^t -where AK = a.

In other words, the problem amounts to solving the quadatric

equation x^ + -y/^ax = a^.

This would be recognized by the Greeks as the problem of
" applying to a straight line of length \/| . a, a rectangle

exceeding by a square figure and equal in area to a^," and
could have been solved theoretically by the Pythagorean
method preserved in Eucl. ii. 6. Was this the method used
by Hippocrates ? Though it may have been, the authorities

prefer to believe he used mechanical means {H.G.M. i. 196,

Rudio, loc cit., p. 59, Zeuthen, Geschichte d. Math., p._80).

He could have marked on a ruler a length equal to v^f AK
and moved it about until it was in the required position.
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^ must be understood after , as Bret-

schneider first pointed out, but Diels and Rudio think that
Simplicius probably omitted it as obvious, here and in his

own comments.
' inel . . . ioTLv. Eudemus purports to give the proof in

Hippocrates' own words. Unfortunately Simplicius's ver-

sion is too confused to be worth reproducing. The proof is

here given as reconstructed by Rudio. That it is suDStanti-
ally the proof given by Hippocrates is clear.
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the rectilineal figure cut off by EK, KB, BH. For
each of the inner segments is one-and-a-half times

each of the outer, because, by hypothesis, the square
on EZ is one-and-a-half times the square on the radius,

that is, the square on EK or KB or BH. Inasmuch
then as the lune is made up of the three segments
and the rectilineal figure left the two segments—the

rectilineal figure including the two segments but not

the three—while the sum of the two segments is equal

to the sum of the three, it follows that the lune is

equal to the rectilineal figure.
" That this lune has its outer circumference less

than a semicircle, he proves by means of the angle

EKH in the outer segment being obtuse. And that

the angle EKH is obtuse, he proves thus.

Since EZ2 = |EK>

and» KB2>2BZ2,

it is manifest that EK2> sKZ».

Therefore EZ2> EK^ + KZ«.

The angle at is therefore obtuse, so that the seg-

ment in which it is is less than a semicircle.
" Thus Hippocrates squared every lune, seeing that

[he squared] not only the lune which has for its outer

circumference a semicircle, but also the lune in which

• This is assumed. Heath {H.G.M. i. 195) supplies the
following proof

:

By hypothesis, EZ2 = |KB».

Also, since A, E, Z, are concyclic,. =.="
or . +•=:«=|•.
It follows that EZ>ZB and that KB«>2BZ•.
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the outer circumference is greater, and that in which
it is less, than a semicircle.

" But he also squared a lune and a circle together
in the^ manner. Let there be two circles

with as centre, such that the square on the diameter
of the outer is six times the square on the diameter
of the inner. Let a [regular] hexagon be
inscribed in the inner circle, and let KA, KB, be
joined from the centre and produced as far as the
circumference of the outer circle, and let , ,
HI be joined. Then it is clear that, are sides

of a [regular] hexagon inscribed in the outer circle.

About HI let a segment be circumscribed similar to

the segment cut off by. Since then2 =32
(for the square on the line subtended by two sides of

the hexagon, together with the square on one other
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' cm. Bretschneider.

• If be a side of the hexagon, then is a diameter
and the angle is right. Therefore » +• =•.
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side, is equal, since they form a right angle in the
semicircle, to the square on the diameter, and the
square on the diameter is four times the side of the
hexagon, the diameter being twice the side in length
and so four times as great in square **), and^ =
6 AB2, it is manifest that the segment circumscribed
about HI is equal to the segments cut off from the
outer circle by, , together with the segments
cut off from the inner circle by all the sides of the
hexagon.'' For HP = 3 ^, and =^, while*
and 02 are each equal to the sum of the squares
on the six sides of the inner hexagonal, since, by
hypothesis, the diameter of the outer circle is six times
that of the inner. Therefore the lune is smaller
than the triangle by the segments taken away
from the inner circle by the sides of the hexagon. For
the segment on HI is equal to the sum of the segments
on , and those taken away by the hexagon.
Therefore the segments [on], are less than the
segment about HI by the segments taken away by
the hexagon. If to both sides there is added the part
of the triangle which is above the segment about HI,*
out of this and the segment about HI will be formed
the triangle, while out of the latter and the segments
[on], will be formed the lune. Therefore the
lune will be less than the triangle by the segments
taken away by the hexagon. For the lune and the

and so HP+2==42 (since =2). Conse-
quently =:3*.

* For (segment on HI) =3 (segment on)
= 2 (segment on ) + 6 (segment

on AB)
= (segments on , 0I) + (all seg-
ments of inner circle).

• f.#., the figure bounded by, and the arc IH.
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" What Hippocrates showed was that if " = -f» then
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segments taken away by the hexagon are equal to

the triangle. When the hexagon is added to both

sides, this triangle and the hexagon will be equal to

the aforesaid lune and to the inner circle. If then

the aforementioned rectilineal figures can be squared,

so also can the circle with the lune."

(c) Two Mean Proportionals

Proclus, on Euclid i., ed. Friedlein 212. 24-213. 11

Reduction is a transition from one problem or

theorem to another, whose solution or construction

makes manifest also that which is propounded, as

when those who sought to double the cube transferred

the investigation to another [problem] which it

follows, the discovery of the tvo means, and from that

time forward inquired ho\v between two given straight

lines two mean proportionals could be found. They
say the first to effect the reduction of the difficult

constructions w^as Hippocrates of Chios, who also

squared a lune and discovered many other things in

geometry, being unrivalled in the cleverness of his

constructions.**

-a = T, so that if 6= 2a, a cube of side is twice the size of
x^

a cube of side a. For a fuller discussion, see infra^ p. 258 n. b.

It has been supposed from this passage that Hippocrates dis-

covered the method of geometrical reduction, but this is

unUkely.
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IX. SPECIAL PROBLEMS

1. DUPLICATION OF THE CUBE

(a) General

Theon Smyr., ed. Hiller 2. 3-12^ iv

otl,

€7, .-, re. , -
6 8, Se '-, -.

Eutoc. Comm. in Archim. de Sphaera et Cyl. ii., Archim.
ed. Heiberg iii. 88. 4-90. 13^.-,

<» Wilamowitz {GUtt. Nachr., 1894) shows that the letter is

a forgery, but there is no reason to doubt the story it relates,

which is indeed amply confirmed ; and the author must be
thanked for having included in his letter a proof and an
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1. DUPLICATION OF THE CUBE

(a) General

Theon of Smyrna, ed. Hiller 2. 3-12

In his work entitled Platonicus Eratosthenes says

that, when the god announced to the Dehans by
oracle that to get rid of a plague they must con-

struct an altar double of the existing one, their

craftsmen fell into great perplexity in trying to

find how a solid could be made double of another
solid, and they Avent to ask Plato about it. He
told them that the god had given this oracle, not
because he wanted an altar of double the size, but
because he wished, in setting this task before them,
to reproach the Greeks for their neglect of mathe-
matics and their contempt for geometry.

Eutocius, Commentary on Archimedes^ Sphere and Cylinder
ii., Archim. ed. Heiberg iii. 88. 4-90. 13

To King Ptolemy Eratosthenes sends greeting."

They say that one of the ancient tragic poets

represented Minos as preparing a tomb for Glaucus,

epigram, taken from a votive monument, which are the
genuine work of Eratosthenes {infra, pp. 294-297). The
monarch addressed is Ptolemy Euergetes, to whose son,
Philopator, Eratosthenes was tutor.
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" Valckenaer attributed these lines to Euripides, but

Wilaniowitz has shown that they cannot be from any play by
Aeschylus, Sophocles or Euripides and must be the work of

some minor poet.
'' For if X, y are mean proportionals between a, 6,

then -=-~L*
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and as declaring, when he learnt it was a hundred feet

each way :
" Small indeed is the tomb thou hast

chosen for a royal burial. Let it be double, and thou
shalt not miss that fair form if thou quickly doublest

each side of the tomb."" He seems to have made a

mistake. For vhen the sides are doubled, the surface

becomes four times as great and the solid eight times.

It became a subject of inquiry among geometers in

what manner one might double the given solid, while

it remained the same shape, and this problem was
called the duplication of the cube ; for, given a cube,

they sought to double it. When all were for a long

time at a loss, Hippocrates of Chios first conceived

that, if two mean proportionals could be found in

continued proportion between two straight lines, of

which the greater was double the lesser, the cube
would be doubled,^ so that the puzzle was by him
turned into no less a puzzle. After a time, it is

related, certain Delians, when attempting to double

a certain altar in accordance with an oracle, fell into

the same quandary, and sent over to ask the geo-

meters who were with Plato in the Academy to

find what they sought. When these men applied

themselves diligently and sought to find two mean
proportionals between given straight lines,

Therefore y=— =—
^ a X

and, eliminating y^ x^=a^h

so that ^=^.

This property is stated in Eucl. Elem. v. Def. 10.

If =2a, then is the side of a cube double a cube of side a.

Once this was discovered by Hippocrates, the problem was
always so treated.
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(6) Solutions given by Eutocius

Eutoc. Comm. in Archim. de Sphaera et Cyl. ii., Archim.
ed. Heiberg iii. 54. 26-56. 12

Et? '

€ *, -' -' ".** ',
,^ , ,,, ^

*• " Given a cone or cylinder, to find a sphere equal to the

cone or cyUnder " (Archim. ed. Heiberg i. 170-174•).

^ 'i'his is a great misfortune, as we may be sure Eudoxus
would have treated the subject in his usual brilliant fashion.
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Archytas of Taras is said to have found them by the
half-cyhnders, and Eudoxus by the so-called curved
lines ; but it turned out that all their solutions were
theoretical, and they could not give a practical con-

struction and turn it to use, except to a certain small

extent Menaechmus, and that with difficulty. An easy
mechanical solution was, however, found by me, and
by means of it I will find, not only two means to the

given straight lines, but as many as may be enjoined.

(b) Solutions given by Eutocius

Eutocius, Commentary on Archimedes'' Sphere and Cylinder
ii., Archim. ed. Heiberg iii. 54. 26-56. 12

On the Synthesis of Prop. 1 °

With this assumption the problem became for him
one of analysis, and vhen the analysis resolved itself

into the discovery of two mean proportionals in con-

tinuous proportion betveen two given straight lines

he says in the synthesis :
" Let them be found."

they were found we nowhere find described by
him, but we have come across wTitings of many
famous men dealing with this problem. Among
them is Eudoxus of Cnidos, but we have omitted his

account,^ since he says in the preface that he made
his discovery by means of curved Unes, but in the
demonstration itself not only did he not use curved

Tannery (Memoires scientifiques, vol. i. pp. 53-61) suggests
that Eudoxus's construction was a modified form of that by
Archji:as, for which see infra^ pp. 284-289, the modification
being virtually projection on the plane. Heath (H.G.M. i.

249-251) considers Tannery's suggestion ingenious and
attractive, but too close an adaptation of Archytas's ideas
to be the work or so original a mathematician as Eudoxus.

261



GREEK MATHEMATICS

]€ € €€'€ , Aeyco€^,
7€ Trepl -€€. Srj clg

avhpojv evvoia , 6

€€€ .
Ibid. 5Q. 13-58. 14

$•^€ € eupetv.

e^ ^" at at

" The compute list of solutions given by Eutocius is

:

Plato, Heron, Philon, Apollonius, Diodes, Pappus, Sjiorus,

Menaechmus (two solutions), Archytas, Eratosthenes,

Nicomedes.
* It is virtually certain that this solution is wrongly attri-

buted to Plato. I'^utocius alone mentions it, and if it had
been known to Eratosthenes he could hardly have failed to
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lines but he used as continuous a discrete proportion

\vhich he found. That Avould be a fooHsh thing to

imagine, not only of Eudoxus, but of any one moder-

ately versed in geometry. In order that the ideas

of those men who have come down to us may be made
manifest, the manner in which each made his

discovery will be described here also.*»

Ihid. 56. 13-58. 14

(i.) The Solution of Plato ^

Given two straight lines, tofind two mean proportionals

in continuous proportion.

A

Let the tvo given straight lines be AB,, per-

cite it along with those of Archytas, Menaechmus and
Eudoxus, Furthermore, Plato told the Delians, according to

Plutarch's account, that Eudoxus or Helicon of Cyzicus
would solve the problem for them : he did not apparently
propose to tackle it himself. And Plutarch twice says that

Plato objected to mechanical solutions as destroying the

good of geometry, a statement which is consistent with his

known attitude toAvards mathematics.
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pendicular to each other, between which it is required

to find two mean proportionals. Let them be pro-

duced in a straight line to , E, let the right-angle

be constructed, and in one leg, say ZH, let the

ruler A be moved in a kind of groove in H, in such

a way that it remains parallel to. This will come

about if another ruler be conceived fixed to, but

parallel to ZH, such as. If the upper surfaces of

ZH, are grooved with axe-like grooves,<^ and there

are notches on KA fitting into the aforementioned

grooves, the motion of KA will always be parallel to. When this instrument is constructed, let one leg

of the angle, say, be placed so as to touch , and

let the angle and the ruler KA be turned about until

the point falls upon the straight line, vhile the

leg touches , and the ruler A touches the

straight line BE at K, and in the other part touches A,

so that it comes about, as in the figure, that the right

angle takes up the position of the angle, while

• The grooves are presumably after the manner of the

Lnj
accompanying diagram, or, as we should say, the notches
and the grooves are dove-tailed.
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ing diagram in which the instrument is indicated in its final
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the ruler takes up the position EA.« WTien this

is done, what was enjoined will be brought about.

For since the angles at , are right, :«=
: BE = EB : BA. [Eucl. vi. 8, coroll.]

Ibid. 58. 15-16

(ii.) The Sohdinn of Heron in his '* Meehanies ** and
" Construction of Engines of War " ^

Pappus, Collert'ion iii. 9. iH. ed. Hultsch m. 26-64-. 18 ;

Heron, Mechanics i. 11, cd. Schmidt 268. 3-270. 15

Let the two given straight Hnes between which it

is required to find tvo mean proportionals be AB,

lying at right angles one to another.

position by dotted lines. is made to pass through and
the instrument is turned until the point lies on AB pro-

duced. The ruler is then moved until its edge passes

through A. If does not then lie on produced, the

instrument has to be manipulated again until all conditions

are fulfilled : (1) passes through ; (2) lies on AB
produced ; (3) passes through A ; (4) lies on
produced. It may not be easy to do this, but it is possible.

* Heron's own words have been most closely preserved by
Pappus, whose version is here given in preference to Eutocius's,

which includes some additions by the commentator. Schmidt
also prefers Pappus's version in his edition of the Greek frag-

ments of Heron's Mechanics in the Teubner edition of Heron's
works (vol. ii., fasc. 1). The proof in the Belopoeica (edited

by Wescher, Poliorcetique des Grecs, pp. 116-119) is extant.

Philon of Byzantium and Apollonius gave substantially

identical proofs.
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" The full proof requires to be drawn perpendicular to

so that bisects.
Then . ZA +^ =\ [EucL ii. 6

Add H02 to each side.

Then . ZA + AIP = HZ». [Eucl. 1. 47
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Let the parallelogram be completed, and

let, A be produced and let , A be joined,

and let a ruler be placed at and moved about

until the sections , AZ cut off [from ,
produced] are such that the straight line drawn
from to the section is equal to the straight

Une drawn from to the section AZ. Let this

be done, and let the position of the ruler be EBZ,

so that EH, HZ are equal. I say that AZ, are

mean proportionals between AB,.
For since the parallelogram is right-angled,

the four straight lines, HA, HB, are equal

one to another. Since is equal to AH, and HZ
has been drawn (from the vertex of the isosceles

triangle to the base), therefore <*. +2 =2.
For the same reasons.+2 =2.
But HE, HZ are equal.
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HZ. € .
eorlv .€ .

, . Se ? , €? ,, ' € /cat ij

. , ^ eiOLV, .]

Eutoc. Coi/n/i. In .Irrhitn. I>f Spha^ra et Ci/I. ii., Archiin.

ed. HeilHTg iii. . 8-70. 5

*. iv Wepi

at , , bvo €€ ]-
€</>* at , ,

\ , /cat eV-^ . Aeyo», OTt ,
amAoyoy etVtv at, ." t ]

" Another fragiMent from the Uepl of Diodes is

preserved by Eutocius (pp. 160 et seq.). It contains a solu-

tion by means of conies of tlie problem of dividing a sphere

by a plane in such a way tiiat the volumes of the resulting

segments shall be in a given ratio, and refers both to Archi-
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Therefore
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will therefore be equal to ZH, and to ;

this will be clear if straight lines are drawn joining

to E, ; for the angles, are equal,

and the angles at K, are right ; and therefore,

since =, all things will be equal to all ; and
therefore the remaining element is equal to.
Now since : =:,
but : =; (for EK is a

mean proportional between, ),
therefore : KE = EK : = :.
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rf\, rrj * ? }

HZa, 7/30? 7^ . eav brj
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And =, KE = ZH, =
;

therefore : HZ = ZH : = :.
If then on either side of there be cut off equal arcs

MB, BN, and be draAvn through parallel to AB,

and be joined,,, will again be mean pro-

portionals between , HO. If in this way more

parallels are drawn continually between B, , and

arcs equal to the arcs cut off between them and are

marked off from in the direction of , and straight

lines are drawn from to the points so obtained,

such as ,, the parallels between and will

be cut in certain points, such as 0, in the accom-

panying figure. Joining these points with straight

lines by applying a ruler we shall describe in the
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€' iv , * ^?] *] rrj, earat -€ /
€^?

iv.
at -

" Lit. " line." It is noteworthy that Diodes, or Eutocius,
conceived the curve as made up of an indefinite number of

small straight lines, a typical Greek conception which has
all the power of a theory of infinitesimals while avoiding its

logical fallacies. The Greeks were never so modern as in

this conception.
The curve described by Diodes has two branches, sym-
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circle a certain curve,•* and if on this any point be
taken at random, and through it a straight Hne be
drawn parallel to , the line so drawn and the

portion of the diameter cut off by it in the direction

of will be mean proportionals between the portion

of the diameter cut off by it in the direction of the

point and the part of the parallel itself between the

point on the curve and the diameter.
With this preliminary construction, let the two
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Svo eui^etat, tou Set Svo

evp€LV, A, , €, iv hvo -€ , ,€ iv ', , , ^
, 1 , -

, , -
AM*, at lilA, .

/cat eVet, ? ,
, ? ^ ^ ,

, eav eV Aoyoj - ,,,
, , ,

, ,
at , • 8.

Ibid. 78. 13-80. 24

? 6;)^?" at , •
7 , ., , ,, tJ ,, Acat, .

, , ,
, '

metrical alx)ut the diameter CI) in the accompanying• figure,

and proceeding to infinity. There is a cusp at C and the

tangent to the circle at D is an asymptote. If OC is the axis

of X, and OA the axis of y, while the radius of the circle is

a, then by definition the Cartesian equation of the curve is
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given straight lines, between which it is required to

find two mean proportionals, be A, B, and let there be
a circle in which, EZ are two diameters at right

angles to each other, and let there be drawn in it

through the successive points a curve, in the

aforesaid manner, and let A : = : HK, and let

, be joined, and let the straight Hne joining them
be produced so as to cut the line in , and through
let AM be drawn parallel to EZ ; therefore by what
has been written previously MA, A are mean pro-

portionals between ,. And since : =
: HK and : HK = A : B, if between A, we

place means X, in the same ratio as, AM,,
,** then N, ^ be mean proportionals between
A, ; which was to be found.

Ibid. 78. 13-80. 24

(iv.) The Solutions of Menaechmus

Let the two given straight lines be A, ; it is re-

quired to find two mean proportionals between A, E.

Assume it done, and let the means be B, , and let

there be placed in position a straight line, \ith an
end point , and at let be placed equal to ,
and let be draAvn at right angles and let be
equal to B. Since the three straight lines A, B, are

in proportion, A. = B^ ; therefore the rectangle com-

a + x a-x 2 r , \ / ^l
- -„ —

„

= or y^ (a + x) =(a- x)^.

The curv^e was called by the Greeks the cissoid{) because the portion w ithin the circle reminded them
of a leaf of ivy {).

" i.e., if we take : AM= A : N, AM := : and: =:.
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prehended by the given straight hne A and the

straight hne , that is,, is equal to the square on

A

, that is, to the square on . Therefore is on
a parabola drawn through . Let the parallels,

be drawn. Then since the rectangle . is given
—for it is equal to the rectangle A . —the rectangle

. is given. The point is therefore on a
hyperbola with asymptotes , . Therefore
is given ; and so also is Z.

Let the synthesis be made in this manner. Let the
given straight lines be A, E, let be a straight line

given in position with an end point at , and let

2S1
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, , * "^ at
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, • 6 .
, at , .

, ,, , ? ., , ,
€(TTLV, TiQ, .
' , ? *

, /cat •

. ^ ) ,
toT] ij . , ,
? } * . at , , ,
€ cIglv ISet.
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there be drawn through a parabola whose axis is, and laius rectum A, and let the squares of the

ordinates drawn at right angles to AH be equal to

the areas applied to A having as their sides the

straight Hnes cut oiF by them towards . Let it be
drawn, and let it be, and let be perpendicular

[to ], and in the asymptotes , let there

be drawTi a hyperbola, such that the straight lines

drawn parallel to, will make an area equal

to the rectangle comprehended by A, E. It will

then cut the parabola. Let it cut at , and let, be dra\vn perpendicular. Since then
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Ibid. 84. 12-88. 2

*H*, ^ taropcl" at 8€ , •
Srj , evpeiv.€ 7€

6, TTJ €-^,€ €€)
,

analytical expression of the solution given above, where
E=a and A = 6. Menaechmus gave a second solution,

reproduced by Eutocius, determining x, y as the intersection

of the parabolas x^=ay, y^ = hx.

This is the earliest known use of conic sections in the
history of Greek mathematics, and Menacciimus is accord-
ingly credited with their discovery. But the names parabola
and hyperbola were not used by him ; they are due to

Apollonius ; Menaechmus would have called them, with
Archimedes, sections of a right-angled and obtuse-angled
cone.
From the equations given above it follows that

x^ + y^- hx- ay =

is a circle passing through the points common to the parabolas

x^ = ay, y* = hx.

It follows that x, y may be determined by the intersection

of this circle with the hyperbola ay=ab.
This is, in effect, the proof given by Heron, Philon and

Apollonius. For, in the figure on p. 269, if, are the
co-ordinate axes, AB=a, = 6, then x^ + y^-hx-ay=0 is

the circle passing through A, B, , and xy=ah is the hyper-
bola having, as asymptotes and passing through B.
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Ihid. 81.. 12-88. 2

(v.) The Solution of Archytas, according to Eudemus

Let the two given straight Unes be, ; it is

required to find two mean proportionals between, .
Let the circle be described about the greater

straight line, and let A be inserted equal to and
let it be produced so as to meet at the tangent to

the circle at . Let BEZ be drawn parallel to,
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BEZ, -^, tt^S"

iv -^ K€L-

) ?
eVt rijs

,
, 1,, hrj] , 8

^,,
,, , -

^. ,
,

, , ,.' , ^,
Koivij ^-

^ . , -
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and let a right half-cylinder be conceived upon the

semicircle, and on a right semicircle lying

in the parallelogram of the half-cylinder. When this

semicircle is moved about from A to B, the end point

A of the diameter remaining fixed, it will cut the

cylindrical surface in its motion and describe in it

a certain curve. Again, if be kept stationary and
the triangle be moved about "VN-ith an opposite

motion to that of the semicircle, it will make a conic

surface by means of the straight line, which in its

motion will meet the curve on the cyhnder in a certain

point ; at the same time describe a semicircle

on the surface of the cone. Corresponding to the

point in which the curves meet let the moving semi-

circle take up a position ','^ and the triangle

moved in the opposite direction a position AAA
;

let the point of the aforesaid meeting be K, and let

BMZ be the semicircle described through B, and let

BZ be the section common J^o it and the circle,
and let there be drawn from a perpendicular upon
the plane of the semicircle ; it will fall upon
the circumference of the circle because the cylinder

is right. Let it fall, and let it be KI, and let the

straight Hne joining I to A meet BZ in ; let AA
meet the semicircle BMZ in M, and let, MI,

be joined. Therefore since each of the semicircles', BMZ is at right angles to the underlying

plane, their common section is also at right angles

to the plane of the circle ; so that is also at right

angles to BZ. Therefore the rectangle contained by

" In the text and figrure of the mss. the same letter is used
to indicate the initial and tinal positions of ; for con-

venience they are distinguished in the figure and translation

as , '. It would make the figure easier to grasp if A could

be written ' (for is the final position of ).
287



GREEK MATHEMATICS

Tcart TO 1, eVrt *
€ €€ ,, ) . €otlv

]. €lglv at , ,, ,
, AM, ?)!^. €€ ,

, , AM ^ eloiv. ioTLV

AM , eVet * /3 SoOeLocov

, ,
.

_

<• The above solution is a remarkable achievement when it

is remembered that Archytas flourished in the first half of

the fourth century b.c, at which time Greek geometry vas
still in its infancy. It is quite easy, however, for us to repre-

sent the solution analytically. If is taken as the axis

of a?, the perpendicular to at A in the plane of the paper

as the axis of y, and the perpendicular to these lines as the

axis of 2, and if =, = 6, then the point is determined

as the intersection of the following three curves :

(1) The cylinder x^ + y^=axt

(2) the curve formed by the motion of the half-circle about A
(a tore of inner diameter nil)

x^ + y^ + z^=/^ + y\

(3) the cone x"• ^y^ + z''^ '^.]•«.
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,, which is the same as the rectangle contained

by, , is equal to the square on MB ; therefore

the triangle AMI is similar to each of the triangles

]\1,, and the angle IMA is right. The angle' is als© right. Therefore ', MI are parallel,

and owing to the similarity of the triangles the

following proportion holds :

: AK = KA ; AI = IA : AM.

Therefore the four straight Unes , AK, AI, AM
are in continuous proportion. And AM is equal to ,
since it is equal to AB ; therefore to the two given

straight lines , , two mean proportionals, AK,
AI, have been found."

Since is the point of intersection,

AK = V*»' + 2/' + 2'. AI = V^^y^'
From (2) it follows directly that

AK2=a.AI
_a__AK

*•^•' ~
From (1) and (3) it follows that

I.e., ^^ =~
AK AI

°•• Af-T
. q _AK_AI
•• AK~AI b*

and AK, AI are mean proportionals between a and b.

VOL.1 L 289
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Ibid. 88. 3-96. 27 •

(vi.) The Solution of Eratosthenes , , •

Let there be given two unequal straight lines AE,

between which it is required to find two mean

proportionals in continued proportion, and let AE be

placed at right angles to the straight line, and upon

let there be erected three successive parallelo-

grams * AZ, ZI,, and let the diagonals AZ, AH,

be drawn therein ; these will be parallel. While the

middle parallelogram ZI remains stationary, let the

other two approach each other, AZ above the middle

one, 1 beloV it, as in the second figure,^ until A, B,

, lie along a straight line, and let a straight line be

drawn through the points A, B, , A, and let it meet

produced in ; it will follow that in the parallels

AE, ZB

AK :KB = EK : KZ

" This is the letter falsely purporting to be by Eratosthenes of
which the beginning has already been cited, supra, pp. 256-26 1

.

The extract here given(^ . . .) starts in Heiberg's
text at 90. 30. Eratosthenes' solution is given, with varia-

tions, by Pappus, Collection iii. 7, ed. Hultsch 56. 18-58. 22.
* Pappus says triangles in his account ; it makes no

difference.
« See p. 294.

291



GREEK MATHEMATICS
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and in the parallels AZ, BH
AK :KB = ZK :KH.

Therefore AK : KB = EK : KZ = KZ : KH.

Again, since in the parallels BZ,

BK: = : KH
and in the parallels BH,

BK: = :,
therefore BK : = : KH = HK : .

But ZK : KH = EK : KZ, and therefore

EK : KZ=ZK : KH =HK :.
But EK : KZ = AE : BZ, ZK : KH = BZ :,

HK: = :.
Therefore AE : BZ = BZ : = :.

Therefore between AE, two means, BZ,,
have been found.

Such is the demonstration on geometrical sur-

faces ; and in order that we may find the two means
mechanically, a board of wood or ivory or bronze

is pierced through, having on it three equal tablets,

as smooth as possible, of Avhich the midmost is fixed

and the two outside run in grooves, their sizes and
proportions being a matter of individual choice—for

the proof is accomplished in the same manner ; in

order that the lines may be found Avith the greatest

accuracy, the instrument must be skilfully made, so

that when the tablets are moved everything remains

parallel, smoothly fitting A\ithout a gap.

In the votive gift the instrument is of bronze and is

fastened on with lead close under the croAvn of the

pillar, and beneath it is a shortened form of the proof
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and the figure, and along with this is an epigram.

These also shall be Avritten below for you, in order that

you may have what is on the votive gift. Of the two

figures, the second is that which is inscribed on the

pillar."

" Between two given straight lines to find two

means in continuous proportion. Let AE, be the

given straight lines. Then I move the tables in the

instrument until the points A, B, , are in the same

straight line. Let this be pictured as in the second

figure. Then AK : KB is equal, in the parallels AE,

BZ, to EK : KZ, and in the parallels AZ, BH to

ZK : KH ; therefore EK : KZ = KZ ; KH. Now this

is also the ratio AE : BZ and BZ :. Similarly we
shall show that ZB := : ; AE, BZ, ,

are therefore proportional. BetAveen the tAVO

given straight lines two means have therefore been

found.
" If the given straight lines are not equal to AE,, by making AE, proportional to them and

taking the means between these and then going back

to the original lines, we shall do what was enjoined.

If it is required to find more means, we shall con-

tinually insert more tables in the instrument accord-

ing to the number of means to be taken ; and the

proof is the same.

* The short proof and epigram which follow are presum-
ably the genuine work of Eratosthenes, being taken from
the votive gift. The reference to the second figure cannot,
however, be genuine as there was only one figure on the votive

oflFering ; perhaps h^vr^pov should be omitted.
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Et e^ ^, €, €€
areperjv '

€v, rohe rot, €^-
) " ^ evpv
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,

Ibid. 98. 1-7

? iv

\^^ , ^
6 ,,^

" Or " with a small effort," Heibcrpr.
* Perhaps so called because there are three conic sections

—of an acute-angled, right-angled and obtuse-angled cone
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**
If, good friend, thou thinkest to produce from a

small [cube] <* one double thereof, or duly to change
any solid figure into another nature, this is in thy
power, and thou canst measure a byre or corn-pit or

the broad basin of a hollow well by this method, when
thou takest bet\veen two rulers means converging

with their extreme ends. Do not seek to do the

difficult business of the cyhnders of Archytas, or to

cut the cone in the triads ^ of Menaechmus, or to

produce any such curved form in Unes as is described

by the divine Eudoxus. Indeed, on these tablets thou
couldst easily find a thousand means, beginning from
a small base. Happy art thou, Ptolemy, a father

who Hves his son's life in all things, in that thou hast

given him such things as are dear to the Muses and
kings ; and in the future, heavenly Zeus, may
he also receive the sceptre from thy hands. May
this prayer be fulfilled, and may anyone seeing this

votive offering say : This is the gift of Eratosthenes

of Cyrene."

Ibid. 98. 1-7

(vii.) The Solution of Nicomedes in his Book
" On Conchoidal Lines " "

Nicomedes also describes, in the book written by
him On Conchoids, the construction of an instrument
fulfilUng the same purpose, upon which it appears
he prided himself exceedingly, greatly deriding the

(ellipse, parabola and hyperbola). If so, this proves that
Menaechmus discovered the ellipse as well as the other two.

* It follows from this extract that Nicomedes was later

than Eratosthenes ; and as Apollonius called a certain curve
" sister of the cochloid " {infra^ p. 334), he must have been
younger than Apollonius. He was therefore born about
270 B.C.
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€ / €)€ e^eco?€€€.
Papp. Coll. iv. 26. 39-28. 43, ed. Hultsch 2t2. I3-2oO. 25

'\ Et? '^^ ^ e^ec].̂€ , avrfj, tl

,

. *
, eartv auras', , -/^ €

etvat •,
, 77 ttJ()^'

. ?
* €€ add. Hultsch.

" Eutocius proceeds to describe Nicomedes' solution ; we
shall give an alternative account by Pappus.
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discoveries of Eratosthenes as impracticable and

lacking in geometrical sense.*

Pappus, Collection iv. 26. 39-28. 43, ed. Hultsch
242. 13-250. 25

26. For the duplication of the cube a certain line

is drawn by Nicomedes and generated in this way.

Let there be a straight line AB,^\'ith at right

angles to it, and on let there be taken a certain
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" ex proximis inepte hue trans-

lata" del. Ilultsch.

" Let a be the interval or constant intercept between the

curve and the base, and b the distance from the pole to the

base (). If is any point on the curve, and =,
L=, then the fundamental equation of the curve is

= 6 sec + a.

If is measured backwards from the base tOvads the pole,

then another conchoiilal figure is obtained on the same side

of the base as the pole, having for its fundamental equation

= 6 sec - a.

This takes three forms according as is greater than,

300



SPECIAL PROBLEMS

Similarly, if any other straight line drawn from the

point falls upon the curve, the portion cut off by the

curve and the straight line AB will make a straight

line equal to. Now, says he, let the straight line

AB be called the ruler, the point [E] the pole, the

interval, since the straight lines falling upon the line

are equal to it, and let the curve itself be
called the first cochloidal line (since there are second
and third and fourth cochloids which are useful for

other theorems).*

27. Nicomedes himself proved that the curve can
be described mechanically, and that it continually

approaches closer to the ruler—which is equivalent

to saying that of all the perpendiculars drawn from
points on the line to the straight line AB the
greatest is the perpendicular, while the perpen-
dicular drawn nearer to is always greater than
the more remote ; he also proved that any straight

line in the space between the ruler and the cochloid

will be cut, when produced, by the cochloid ; and we
used the aforesaid line in the commentary on the
Analemma * of Diodorus when we sought to trisect an
angle.

equal to, or less than h. These three forms are probably
the " second, third and fourth cochloids," but we have no
direct information. When a is greater than 6, the curve has
a loop at the pole ; when a equals 6, there is a cusp at the
pole ; when is less than 6, there is no double point.

The original name of the curve would appear to be the
cochloid{), as it is called by Pappus, from
a supposed resemblance to a shell-fish(). Later it was
called the co72c/iOiV/(K:oyxoet8T7?ypa/MjLi7^), the "mussel-like" curve.

** Diodorus of Alexandria lived in the time of Caesar and
is commemorated in the Anthology (xiv. 139) as a maker of
gnomons. Ptolemy also wrote an Analemma, whose object
is a graphic representation on a plane of parts of the heavenly
sphere.
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Now by what has been said it is clear that if there

is an angle, such as HAB, and a point outside the

angle, it is possible so to draw as to make

between the line and AB equal to a given straight

line.

Let be drawn from the point perpendicular to

AB and produced to so that is equal to the

given straight Hne, and with for pole, the given

straight Une, that is , for interval, and AB for

ruler let the first cochloid be drawn ; then by

what has been said above it will meet AH ; let it meet

it in H, and let be joined ; KH will therefore be

equal to the given straight line.

28. Some people, following [a more convenient]

usage, apply a ruler to and move it until by trial

the portion between the straight line AB and the Hne

becomes equal to the given straight Hne ; and

when this is done the problem which was posed at the

outset is solved (I mean a cube which is double of

a cube is found). But first twO means in continuous

proportion are taken betAveen two given straight lines

;

Nicomedes explained only the construction necessary
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" The proof is given by Eutocius with very few variations

(pp. 104-106) and also in another place by Pappus himself

(iii. 8, ed. Hultsch58. 23-62. 13, with several ditFerences). In

iii. 8 the straight lines are called , , whereas here

and in the passage from Eutocius the mss. have , .
Wherever we have here, it is reasonably certain that

Pappus wrote , and vice versa.
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for doing this, but we have suppHed a proof to the

construction in this manner.
Let*^ there be given two straight Unes, at

right angles to each other between which it is required

to find two means in continuous proportion, and let

the parallelogram be completed, and let each

of the straight lines AB, be bisected at the points
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€ €€ rfj-^) W, rfj he, ^ \ ,^ avTrj,€ 8 ZG)K
TTJ (

€8€ ) , eVt-€€, * €, ,.
^ €76 ;^^ 97 ,6 . /coivov• ,, ,., ' , ^ ,? , ? ?, } ? . /cat/6 tJ , ttJs* } •

/cat ? , .* , ??^? ? , ' /cat, ^ ?. to^, eVet^ ^^* ^ /cat ^ *. /cat eWt
taov ,

^ tVfi . . . . Hultsch thinks these words are inter-

polated ; they appear in both other versions.
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, respectively, and let be joined and produced,

and let it meet produced in H, and let EZ be
drawn at right angles to in such a way that is

equal to, and let ZH be joined and parallel to it let

be dra^Ti, and, since the angle is given, from
the given point let be so dra\^Ti as to make
equal to A or to (that this is possible is proved by
the cochloidal line), and let be joined and pro-

duced, and let it meet AB produced in ; I say that

: = : MA = MA : AA.

Since is bisected at and lies in

produced, therefore

BK . +2= EK2. [Eucl. ii. 6

Let EZ2 be added to both sides.

Therefore BK . +2 +2 =2 +2,
that is BK . +2= KZ2. [Eucl. i. 47

And since MA : AB =MA : AK
and : =:,
therefore MA : = :.
And = lAB, =2.
Therefore MA : = :.
But on account of HZ, being parallels,: = :.
Therefore, compounding,: =:.
But by hypothesis =, since-;

therefore =
;

therefore 2 =2.
And 2 = BM . MA +2 [Eucl. ii. 6
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€^€ € ^
, (tcn^€ ] )** MB ,6 . * , ^• ? tJ , 7^ AM.€ € MB? , ?*

/cat Trpos , ? AM,
AM ? .

2. SQUARING OF THE CIRCLE

(a) General

Plut. De Exit. 17, 607e,^ * oi)8et?€ -,€ * ovSe. *
'Ava^aydpa? /Ltev eV ^€.

Aristoph. Aves 100 1-100. Hpoa^et? €,^^—; 202... *€ ,
6 .

" Tliis reference shows the popularity of the problem of
squaring the circle in 414 b.c, when the Birds was first

produced. Meton, who is here burlesqued, is the great
astronomer who about eighteen years earlier had found that
after any period of 6940 days (a little over nineteen solar
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and it was proved that2 =. +2,
and here 2 =2 (for by hypothesis =) ;

therefore BM . MA = BK . ;

therefore MB : = : MA. [Eucl. vi. 16

But BM: = : ;

therefore : = : AM.

And MB :BK = MA : AA ;

and therefore : = : AM =AM :.
2. SQUARING OF THE CIRCLE

{a) General

Plutarch, On Exile 17, 607e,

There is no place that can take away the happi-

ness of a man, nor yet his virtue or wisdom.
Anaxagoras, indeed, wrote on the squaring of the

circle while in the prison.

Aristophanes, Birds 1001-1005 "

Meton. So then applying here my flexible rod, and
there my compass— you understand ? Peisthe-
TAiROS. I don't.

Meton. With the straight rod I measure so that
the circle may become a square for you.

years) the sun and moon occupy the same relative positions
as at the beginning, and had just built a water-clock worked
by water from a neighbouring spring on the Colonus in

the Athenian Agora. Actually, Aleton made no contribu-
tion to squaring the circle ; all he seems to be represented as
doing is to divide the circle into four quadrants by two
diameters at right angles.
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(b) Approximation by Polygons

(i.) Aniipkon

Aristot. Phys. A 2, 185 a 14-17

*A/Lta * ovSe Xv€LV €,*
€ eVtSet/crus• ipevh^rai, 8e ,, €6€€, he -.

Them, in Phys. A 2 (Aristot. 185 a 14), ed. Schenkl
3. 30-4. 7^ /xev? ,

^;)( ?,,
<• Antiphon was an Athenian sophist contemporary with

Socrates.
* The comments of Themistius, Pliiloponus and Simplicius

on this passage are of great importance in the history of
Greek geometry. All three agree (Simplicius witli a re-

serv^ation) that " the quadrature by means of segments " is

to be ascribed to Hippocrates of Chios. Simplicius's repro-

duction of the passage in Eudemus's History of Geometry
which tells us of certain areas squared by Hippocrates has
already been given {supra, pp. 231-253). The four quadra-
tures there given contain no fallacy. What then is the

fallacy with which Aristotle and the commentators charge
Hippocrates ? It is most probably an alleged assumption
by liippocrates that because he had squared a particular

lune in each of three kinds, he had squared all tj'pes of

lunes; and, as he had also squared a figure consisting of a
lune and a circle, that he had squared the circle. In fact,

the last-mentioned lune was not of a kind which he had
previously squared, and so he had not really squared the

circle. But did Hippocrates think that he had squared the

circle ? There is no reason to suppose that he so thought, and
it is extremely unlikely that a mathematician of his calibre
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(6) Approximation by Polygons

(i.) Antipkon **

Aristotle, Physics A 2, 185 a 14-17

At the same time it is not convenient to refute

everything, but only false demonstrations starting

from the fundamental principles, and otherwise not
;

thus it is the business of the geometer to refute the

quadrature by means of segments, but it is not the

business of the geometer to refute that of Antiphon.^

Themistius, Commentary on Aristotle's Physics A 9
(185 a 14), ed. Schenkl 3. 30-4. 7

For such false arguments as preserve the geo-
metrical hypotheses are to be refuted by geometry,
but such as conflict with them are to be left alone.

could be so deluded. Heiberg (Philol. xliii. 336-344) thinks
that in the then state of logic he may have thought he had
squared the circle. Bjornbo (in Pauly-Wissowa, Real-
Encyclopddie, xvi. 1787-]799) thinks he knew perfectly well

what he had done, but used language calculated to give the
impression that he had squared the circle. Both suggestions
are highly improbable. Heath (H.G.M. i. 197) prefers to

think that Hippocrates was trying to put what he had dis-

covered in the most favourable light. Ross {Aristotle's

Physics, p. 466) is of opinion that Hippocrates simply proved
his quadratures of lunes and the sum of a lune and circle, no
doubt in the hope of ultimately squaring the circle, but
without any claim to have done so. This appears the
best view. Aristotle has misunderstood what Hippocrates
claimed to have done.

means " segments," and is not properly used
of " lunes," but mathematical terminology was fluid in

Aristotle's time, and may have been used to denote
any portion cut out of a circle. In Oe Caelo ii. 8, 290 a 4,

Aristotle uses it to denote a " sector."
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TLveg €€€^^^ re Xtos" 6,., €€€ € -
etV ,^ 8e €^,

6, -^

.
Simpl. in Phys. A 2 CAristot. 185 a 14), ed. Diels

54. 20-55. 24

hk^. hk. . . . ^
6

* , " kv 6 -
^^ , 6 * ."

6 , ' -.
^ ...«?: a lacuna in the text is satisfactorily

filled, as wSchenkl notes, if these words are supplied from
Simplicius.

Accounts differ about Antiphon's procedure, but it

makes no difference to the result, which is to get a regular
polygon approaching the circle as its limit. Themistius was
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Examples are given by two men who tried to square

the circle, Hippocrates of Chios and Antiphon. The
attempt of Hippocrates is to be refuted. For, while

preserving the principles, he commits a paralogism

by squaring only that lune which is described about

the side of the square inscribed in the circle, though
including every lune that can be squared in the proof.

But the geometer could have nothing to say against

Antiphon, who inscribed an equilateral triangle in

the circle," and on each of the sides set up another

triangle, an isosceles triangle with its vertex on the

circumference of the circle, and continued this pro-

cess, thinking that at some time he would make the

side of the last triangle, although a straight line,

coincide with the circumference.

Simplicius, Commentary on Aristotle's Physics A 2
(185 a 14), ed. Diels 54. 20-55. 24

Antiphon described a circle and inscribed some one
of the (regular) polygons that can be inscribed

therein. Suppose, for example, that the inscribed

polvgon is a square. ... It is clear that the breach

^^it'h the principles of geometry comes about not, as

Alexander says, " because the geometer lays doAvn as

a hypothesis that a circle touches a straight line in one
point [only], vhile Antiphon violates this." For the

geometer does not lay this down as a hypothesis, but
it is proved in the third book of the Elements.^ It

the earliest of the commentators, and Heath considers his

account " the authentic version." Philoponus makes
Antiphon begin by inscribing a square, then an octagon and
so on. Simplicius, as will be seen below, allows him to

begin with any one of the regular polygons, but starts with
the square as an example.

* Eucl. Elem. iii. 16.
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etvat^, ' -( , Soo,, /lerafu -̂,̂ *^. , -
eV-

efvat , 6^̂.
(.) Bryson

Aiex. Aphr. in Soph. El. 1 1 (Aristot. 171 b 7), ed.

Wallies 90. 10-21

*'
eVrt ,

Tcov ',
« Heath {... \. 222-223) comments: "The objection

to Antiphon's statement is really no more than verbal;
Euclid uses exactly the same construction in xii. 2, only he
expresses the conclusion in a different way, saying that, if

the process be continued far enough, the small segments left

over will be together less than any assigned area. Antiphon
in effect said the same thing, which again we express by
saying that the circle is the limit of such an inscribed polygon
when the number of its sides is indefinitely increased.

Antiphon therefore deserves an honourable place in the

history of geometry as having originated th(> idea of px-

h(visting an area by means of inscribed regular polygons
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would be better therefore to say that the principle is

that a straight line cannot coincide with the circum-
ference, a straight line draAvn from outside the circle

touching it in one point only, a straight line drawn
from inside cutting it in two points and not more, and
tangential contact being in one point only. Now
continual division of the space betveen the straight

line and the circumference of the circle will never
exhaust it nor ever reach the circumference of the
circle, if the space is really divisible without limit.

For if the circumference could be reached, the
geometrical principle that magnitudes are divisible

without limit would be violated. This vas the prin-

ciple which Eudemus says was violated by Antiphon.*»*

(ii.) Bryson ^

Alexander, Commentary on Aristotle''s Sophistic

Refutations 11 (171 b 7), ed. Wallies 90. 10-21

But Bryson 's quadrature of the circle is eristic and
sophistical, because he proceeds not from principles

pecuHar to geometry but from ^dder principles. For
to circumscribe a square about the circle and to

with an ever-increasing number of sides, an idea upon which
Eudoxus founded his epoch-making method of exhaustion.

The practical value of Antiphon's construction is illustrated

by Archimedes' treatise on the Measuremeiit of a Circle

[reproduced below] . . . The same construction starting

from a square was likewise the basis of Vieta's expression

for - , namely,

2 TT -rr

- = cos J . cos Q . cos T^ . . .
4 8 Id

* Bryson was a pupil either of Socrates or of Euclid of
Megara.
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Xdyeiv on 6 jLterafi) ,€ 8€ ,', 6, ^, ,
,^

, /ca ,
(iii.) Archimedes

Procl. in Evcl. I, ed. roll 423. 21-423. 5

/c

TraAatot. -), ,, 6*8 ^,,
^ta ,.

Archim. Dim. Circ, Archim. ed. Heiberg i. 232-242,
" i^ryson marks a step beyond Antiplion because he con-

ceived the circle as intermediate in area between an inscribed
and an escribed polygon, an idea which was powerfully
developed by Archimedes. The manner in which he took
a square intermediate between the inscribed and escribed
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inscribe another " within and between the two
squares to take another square, and then to say that

the circle is intermediate between the two squares,

and similarly that the square between the two squares

is less than the outside square but greater than the in-

side and that, since things which are greater and less

than the same things are equal, therefore the circle

and the square are equal, is to proceed from wider
principles (than those of geometry) and false ones

;

wider, because the argument would apply to numbers
and times and spaces and other entities, false, be-

cause eight and nine are respectively less and greater
than ten and seven and nevertheless are not equal.

(iii.) Archimedes

Proclus, On Euclid i., ed. Kroll 422. 24-423. 5

I think it was in consequence of this problem ^ that

the ancient geometers were led to investigate the
squaring of the circle. For if a parallelogram is

found equal to any rectilineal figure, it is worth
inquiring whether it be not also possible to prove
rectilineal figures equal to circular. Archimedes
in fact proved that any circle is equal to a right-

angled triangle wherein one of the sides about the
right-angle is equal to the radius and the base to the
perimeter.

Archimedes, Measurement of a Circle^ Archim.
ed. Heiberg i. 232-242

Prop. 1

Any circle is equal to a right-angled triangle in which

squares is unknown. Some have assumed that it was the
arithmetic mean, others the geometric (see Heath, H.G.M.
i. 223, 224).

* Eucl. i. 45. " To construct, in a given rectilineal angle,
a parallelogram equal to a given rectilineal figure."
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rj € ,
he ].

, ?•, .

Et , 6,,
8,, fj

6-,
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one of the sides about the right angle is equal to the radius,

and the base is equal to the circumference.

Let the circle have to the triangle the

stated relation ; I say that it is equal.

For, if possible, let the circle be greater, and let the

square be inscribed, and let the arcs be divided

into equal parts [and let BZ, ZA, AM,, etc., be

drawn] ,'^ and let the segments be less than the excess

by which the circle exceeds the triangle.*' The

rectilineal figure is therefore greater than the triangle.

" Heiberg's note is :
" Tale aliquid Archimedes sine dubio

addiderat: Omnino in toto hoc opusculo genus dicendi et

exponendi brevitate tarn negligent! laborat, ut manum
excerptorLs potius quam Archimedis agnoscas."

'' That this can be done is shown in Eucl. Eleni. xii. 2,

depending on x. 1. The latter theorem was probably dis-

covered by Eudoxus, but is commonly known as the " Axiom
of Archimedes " from his repeated use of it.
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•
7€. -,-' ." , ,, ,

at ^,
. MP•

AM ,, ^ •,,, 6 ,
'?̂ ,^.

" .^., the space between the arc ZA of the circle and the

sides Zll, of the escribed polygon. The name give to

this figure,, is more properly used of a sector of a
circle, and Heiberg notes: "/xet Archimedes non scripsit

pro .''^ The process, it is not quite clearly stated
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Let be the centre, and NH perpendicular [to

ZA] ; is then less than the side of the triangle.

But the perimeter of the rectilineal figure is also less

than the other side, since it is less than the perimeter

of the circle. The rectilineal figure is therefore less

than the triangle ; which is absurd.

Let the circle be, if possible, less than the triangle

E, and let the square be circumscribed, and let the

arcs be divided into equal parts, and through the

points [of division] let tangents be dra\vn ; the angle

OAF is therefore right. Therefore OP is greater

than MP ; for PM is equal to PA ; and the triangle

is greater than half the figure OZAM. Let
the spaces left between the circle and the circum-

scribed polygon, such as the figure " , be
less than the excess by which exceeds the circle. Therefore the circumscribed rectilineal

figure is now less than ; which is absurd ; for it is

greater, because NA is equal to the perpendicular of

the triangle, while the perimeter is greater than the

base of the triangle. The circle is therefore equal to

the triangle E.

Prop. 3 ^

The circumference of any circle is greater than three

tiines the diameter and exceeds it hy a quantity less than

the seve?iih part of the diameter but greater than ten

seventy-frst parts.

in the Greek, is to be continued until the escribed polygon
is such that the spaces left between it and the circle are less

than the excess of over the circle. That this can be

done follows from the " Axiom of Archimedes," Eucl. Elem.

X. 1.

^ The order of the propositions in the manuscripts is

manifestly wrong. Props. 2 and 3 nmst be interchanged.
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, [] ,.- ^
]•,, ,[ ]. -, , *?.

j3, ^^ ^yw^• ,
" As Eutocius explains in his commentary on this passage

(Archim. ed. Heiberg iii. 234), if EZ is represented by
306 and by 133, then by Pvthagoras's theorem 2 =
306^-153^ = 70^-27. Since '265- = 70225, is therefore 265
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Let there be a circle with diameter and centre

E, and let be a tangent and the angle one-

third of a right angle. Then

:[ ='3 : 1]>265 : 153« . . (1)

and :[ = 2:1] =306:153 . . (2)

Now let be bisected by EH. It follows that

ZE: =ZH : [Eiicl. vi. 3

so that [ZE + : = ZH + :

=: , or]

+: =:.
Therefore : [ = + ZE :

> 265 + 306 : 153,

by (1) and (2)]

>571 : 153 . . (3)

Hence ^ : 2 [ =2 +2 :2
> 5712 +1532 : 1532]

> 349450 : 23409,

and a " minute and imperceptible fraction "{). As the sides of the triangle arejn the

ratio 1, 3, 2, this is equivalent to saying thatv3>f5i.
In the second part of the proof Archimedes assumes that

\/3< VW• The \vay in which he makes these assumptions,
without explanation of any kind, shows that they were
common in his day, and much ingenuity has been spent in

devising processes by which they may have been reached.
V. Heath, The Wo7-ks of Archimedes, Ixxx-lxxxiv, xc-xcix.

Eutocius fully explains the arithmetical working, where
Archimedes merely sets down the results. In the translation

the necessary working, where not given by Archimedes, is

shovn in square brackets. In the Greek text as we have it

a few equalities are given where the argument requires

inequalities. The translation reproduces what Archimedes
must have written.
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^^ ^ . ^ *
€€
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€.€ ,, ^ . CTt
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so that EH : > 591 J : 153 . . (4)

A^ain, let be bisected by ; then by the

same reasoning

that

[HE :+
or +

Therefore] :

[Hence 2 :2

so that :

= : [1. vi.3=+:
= : ,
= : .[=+ :

>571+591|: 153,

by (3) and (4),]

>1162i:153 . (5)

=2 +2 :2
> 116212 + 1532 : 1532

>1350534ff + 23409 :

23409

> 1373943ff : 23409,]

> 11721: 153 . (6)

Again, let be bisected by EK.

Then

so that

[Hence

[ :

+

:

EK2 :2

=: .[Eucl.vi.3= +:
= :, or]

[ = + :
> 11621+ 11721 : 153,

by (5) and (6),]

>2S34l:153 . . (7)

=2 +2:2
> 233412 + 1532 . 1532

> 5472132 1^ : 23409,]
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rfj• 7^ €• [€]
€€ ^8 .' . eVet€€, ioTi .

' *
ioTL Kh'' evOela€ -

Qr. ^
^' ,^ ,

AM, K-at ^S'-
^^ ^'

. . ,
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so that EK : > 2339i : 153 . . (8)

Again, let be bisected by AE.

Then

so that
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fore =. And the right angle is

common. Therefore the third angle is equal to

the third angle. The triangle is therefore

equiangular with the triangle ; therefore

AH : = : = :.
But
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. €TL^ rfj*^ [] e^et ^
^* €€ €€ '•

[] ^ 5"' ". ert ^
ttJ• ] []
€€ " '? ^, tJ ^^^

) ^ ' ? fr. '^€€ 8-€ €^
',€ '

'• ^'-

'' 6

\
*
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Further, let be bisected by KA.

Then AK : [ = + :

<1838j^ + 1823 : 24,

by (3a) and (4a),

<3661^ : 240]

<1J. 3661^:^^.240
<1007: 66 . . . . (5a)

[Hence 2 :2 =2 +2:2
< 10072 + 662 : 662

<1018405 : 4356.]

Therefore : <1009i : 66 . • • • (6«)

Further, let be bisected by AA.

Then AA : = + AK :
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earl ^ ^ €€,' be .
'

*0 /€ €-
€€, .", ? " , -, ^,^ . CTret

Aoyov e^et, ? ,
Be Aoyov e;)(et, ?

, , ? :^? .' -,'[ ij Tjj €, /
' ' 6 -,
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three times the diameter, exceeding by a quantity-

less than the seventh part but greater than ten

seventy-first parts.**

Prop. 2

The circle hears to the square on the diameter the ratio

11 : 14.

Let there be a circle with diameter AB, and let the

square be circumscribed, and let =2,
=|. Then, since : = 21 : 7, while: = 7:1 [Euclid vi. 1], it follows that

: = 22 : .^ But the square = 4,
while the triangle is equal to the circle AB

;

therefore the circle bears to the square the ratio

11 : 14.

« We know from Heron, Metrica i. 26 (ed. Schftne 66.

13-17), that Archimedes made a still closer approximation

to IT. The figures in the Greek text are unfortunately

corrupt, but a plausible correction by Heiben {Nordisk

Tiddskrift for Filologiy 3^ Ser. xx. Fasc. 1-2) would give

the approximation

3-141697 . . . > > 3-141495 . . .

Ptolemy, Syntaxis vi. 7 (ed. Heiberg 513. 1-5), gives the
8 30 •

value of win sexagesimal fractions as 3 + ^+^ or 3-1416.

" For AEZ : = 1:7, and :
=

21:7, and therefore : =(AEZ +) :

=22:7. But the same result could be obtained

immediately from Eucl. vi. 1.

^ " Hie locus eVcl . . .^^ mire confusus transcrip-

tori tribuendus, qui eum addidit, postquam prop. 2 et 3
permutavit ; neque enim Archimedes hanc propositionem

ante prop. 3, qua nititur, posuit " (Heiberg).
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(c) Solutions by Higher Curves

(i.) Gejieral

Simpl. in Cat. 7, ed. Kalhfleisch 103. 15-25" €6, -
eivTL ^.
Se * /xeV, €0€, €€,

8e [€ */-, "

^^, ^^^ ,
,,^ ^^^ Sia ?-^, ^-, ^^,,, -," ^.

^ No meaning can he extracted from, which
is an otherwise unknown word. The correct reading ia

probably, " spiral-shaped."
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(c) Solutions by Higher Curves

(i.) Ge7ieral

Simplicius, Commentary on Aristotle's Categories 7,
ed. Kalbfleisch 192. 15-25

The circle is squared when we construct a square
equal to the given circle. Aristotle, it would
appear, did not know hoAV to do this, but lam-
blichus says it was discovered by the Pythagoreans,
" as is plain from the proofs of Sextus the Pytha-
gorean,° who received the method of the proof from
early tradition. And later (lie says), Archimedes
effected it by means of the spiral-shaped curve,

^

Nicomedes by means of the curve known by the
special name quadrairix, Apollonius by means of a

certain curve which he himself calls sister of the

cochloid, but which is the same as Nicomedes' curve,"

Carpus by means of a certain curve which he simply
calls that arising from a double motion,'^ and many
others constructed a solution of this problem in

divers ways," as lamblichus relates.

" Sextus (more properly Sextius) lived in the reign of
Augustus (or Tiberius) and there is no valid reason for

believing the early Pythagoreans solved the problem.
^ Archimedes himself in his book On Spirals, which will

be noticed when we come to him, merely uses the spiral to

rectify the circle (Prop. 19). But the quadrature follows
from Measurement of a Circle, Prop. 1.

« Nothing further is known of Apollonius's " sister of the
cochloid,'" but Heath {H.G.3L i. 232) points out that
Apollonius wrote a treatise on the cochlias, or cylindrical
helix, that the subtangent to this curve can be used to square
the circular section of the cylinder, and that the name is

sufficiently akin to justify Apollonius in speaking of it as
the " sister of the cochloidy

^ Tannery thought this was the cycloid, but there is no
evidence.
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(ii.) The Quadratrix

Papp. Coll. iv. 30. 45-33. 50, cd. HuUsch 250. 33-258. 19

Construction of the Curve

X . EtV €'6
? ^- - -^ .^ ,

Brc-==^r

-, 8e ttj^ -, re
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(ii.) The Quadratrix

Pappus, Collection iv. 30. 45-32. 50, ed. Hultsch
250. 33-258. 19

Construction of the Curve

SO. For the squaring of the circle a certain line was

used by Dinostratus and Nicomedes and certain other

more recent geometers, and it takes its name from

its special property ; for it is called by them the

quadratrix,** and it is generated in this way.

Let be a square, and with centre A let the

arc be described, and let AB be so moved that

the point A remains fixed while is carried along the

arc ; furthermore let , while always remain-

ing parallel to , follow the point in its motion

along BA, and in equal times let AB, moving uni-

Heath {TLG.M. i. 225-226) shows that the quadratrix
was discovered by Hippias and that he may himself have
used it (though this is not absolutely certain) to rectify, and
so to square, the circle.

* iv in the aiss. was corrected by Torelli.
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formly, pass through the angle (that is, the

point pass along the arc ), and pass by the

straight line BA (that is, let the point traverse

the length of BA). Plainly then both AB and
will coincide simultaneously with the straight line. While the motion is in progress the straight

lines , BA will cut one another in their movement
at a certain point which continually changes place

with them, and by this point there is described in

the space between the straight lines BA, and the

arc a concave curve, such as BZH, which appears

to be ser\'iceable for the discovery of a square equal

to the given circle. Its principal property is this.

If any straight line, such as AZE, be drawn to the

circumference, the ratio of the whole arc to will

be the same as the rat'o of the straight line BA to

; for this is clear from the manner in which the

line was generated.**

Sporus's Criticisms ^

31. With this Sporus is rightly displeased for these

reasons. In the first place, the end for which the

construction seems to be useful is assumed in the

hypothesis. For how is it possible, with two points

« If AZ=p, = 0, =, then the equation of the

curve is

sin

or sin —2.
* These acute criticisms of the quadratrix as a practical

method of squaring the circle appear to be well founded.
Sporus, who was not much older than Pappus himself,

lived towards the end of the third century a.d. He compiled
a work called giving extracts on the quadrature of the

circle and duplication of the cube.
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beginning to move from B, to make one of them move
along a straight hne to A and the other along a

circumference to in equal time unless first the ratio

of the straight line AB to the circumference is

known ? For it is necessary that the speeds of the

moving points should be in this ratio. And how then

could one, using unadjusted speeds, make the motions

end together, unless this should sometimes happen by
chance ? But hoAV could this fail to be irrational ?

Again, the extremity of the curve which they use for

the squaring of the circle, that is, the point in which

the curve cuts the straight Hne , is not found.

Let the construction be conceived as aforesaid.

When the straight lines , BA move so as to end

their motion together, they will coincide with

and will no longer cut each other. In fact, the inter-

section ceases before the coincidence with, yet it

was this intersection which was the extremity of the

curve where it met the straight line . Unless,

indeed, anyone should say the curve is conceived as

produced, in the same way that we produce straight

lines, as far as. But this does not follow from the

assumptions made ; the point can be found only by
assuming the ratio of the circumference to the straight

line. So unless this ratio is given, we must beware

lest, in following the authority of those men who
discovered the Hne, we admit its construction, which

is more a matter of mechanics. But first let us deal

with that problem which we have said can be proved

by means of it.
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Application of Quadratrix to Squaring of Circle

If is a square and the arc of a circle

with centre , while is a quadratrix generated
in the aforesaid manner, it is proved that the ratio of

the arc toAvards the straight line is the same
as that of towards the straight hne. For if it

is not, the ratio of the arc towards the straight

line will be the same as that of towards either

a straight Hne greater than or a straight line less

than.
Let it be the former, if possible, towards a greater

straight line, and with centre let the arc ZHK
be drawn cutting the curve at H, and let the perpen-
dicular be drawn, and let be joined and pro-

duced to . Since therefore the ratio of the arc

towards the straight line is the same as the
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ratio of, that is, towards, and the ratio of

towards is the same as that of the arc

towards the arc ZHK (for the arcs of circles are in the

same ratio as their diameters), it is clear that the arc

ZHK is equal to the straight line, And since by

the property of the curve the ratio of the arc

towards is the same as the ratio of towards

, therefore the ratio of ZHK towards the arc

is the same as the ratio of the straight Une

towards. And the arc ZHK was proved equal

to the straight line ; therefore the arc is

also equal to the straight line HA, which is absurd.

Therefore the ratio of the arc tovards the

straight line is not the same as the ratio of

towards a straight line greater than.
82. I say that neither is it equal to the ratio of

towards a straight line less than . For, if it is

possible, let the ratio be towards, and with centre
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SPECIAL PROBLEMS

let the arc ZMK be described, and let KH at right

angles to cut the quadratrix at H, and let be
joined and produced to E. In similar manner to what
has been \\Titten above, we shall prove also that the

arc ZMK is equal to the straight line, and that the

ratio of the arc towards, that is, the ratio of

ZMK tovards MK, is the same as that of the straight

line towards HK. From this it is clear that the

arc ^IK is equal to the straight line KH, which is

absurd. The ratio of the arc toAvards the

straight line is therefore not the same as the ratio

of toAvards a straight line less than . More-
over it was proved not the same as the ratio of

towards a straight hne greater than ; therefore it

is the same as the ratio of towards itself.

This also is clear, that if a straight line is taken as

a third proportional to the straight lines , it

will be equal to the arc, and four times this

straight line will be equal to the circumference of the

whole circle. A straight line equal to the circum-

ference of the circle having been found, a square can
easily be constructed equal to the circle itself. For
the rectangle contained by the perimeter of the circle

and the radius is double of the circle, as Archimedes
demonstrated. **

3. TRISECTION OF AN ANGLE
(a) Types of Geometrical Problems

Pappus, Colhrtion iv. 36. 57-59, ed. Hultsch 270. 1-273. 14

36. WTien the ancient geometers sought to divide

a given rectilineal angle into three equal parts they

were at a loss for this reason. We say that there

See supra, pp. 316-321.
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helix) is a moot point. Euclid wrote two books under the

title.
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are three kinds of problems in geometry, some being
called plane, some solid, some linear. Those which
can be solved by means of a straight line and a cir-

cumference of a circle are properly called plane ; for

the lines by which such problems are solved have
their origin in a plane. Such problems, however, as

are solved by using for their discovery one or more of

the sections of the cone are called solid ; for in the

construction it is necessary to use surfaces of solid

figures, I mean the conic surfaces. There remains a

third kind of problem called linear ; for other lines

besides those mentioned are used for their construc-

tion, having a more complicated and less natural

origin as they are generated from more irregular

surfaces and intricate movements. Among such
lines are those found in the so-called surface-loa,'^ and
many others more complicated than these were dis-

covered by Demetrius of Alexandria in his Linear

Considerations and Philon of Tyana ^ as a result of

interweaving plektoids and other surfaces of all

kinds, and they exhibit many wonderful properties.

Some of these curves were investigated more fully by
more recent geometers, and among them in the line

called paradoxical by Menelaus." Other lines of

* Nothing further is known of these writers, unless
Demetrius be the Cynic, mentioned by Diogenes Laertius,

who Hved about 300 b.c, or the philosopher who flourished

in the time of Seneca.
• Menelaus flourished c. a.d. 100 and his name is pre-

served in a famous theorem in spherical trigonometry.
Tannery {Memoires scientifiques ii. p. 17) has suggested that
the curve called paradoxical was Viviani's curve of double
curvature, defined as the intersection of a sphere with a
cylinder touching it internally and having for its diameter
the radius of the sphere. It is a particular case of Eudoxus's
hippopede (see infra, p. 414), and the portion lying outside
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the curve of the surface of the hemisphere on wliich it lies

is equal to the square on the diameter of the sphere ; the

fact that this area can be squared is thought to justify the

name paradoxical. An Arabian tradition that Menelaus
reproduced in his Elements of Geometry Archytas's solution

of the problem of duplicating the cube (involving the inter-

section of a tore, cylinder and cone) lends a certain plausi-

bility to the suggestion (v. Heath, H.G.M. ii. 261, Loria,

Le scienze esatte, pp. 518-520).
" Heath identifies this (Apollonkis of Perga cxxvii-cxxix)

as Conks v. 58, where Apollonius finds the feet of the

normals to a parabola passing through a given point by
constructing a rectangular hyperbola whose intersections

with the parabola give the required points. The feet of the

normals could be found in the case of the parabola (though
not of the ellipse or hyperbola) by the intersection of the
parabola with a certain circle.

'' The assumption made by Archimedes (ITcpl

8, 9) is to the following effect, the relevant portion of his

figure being detached :

if A, KM are two chords of a circle, meeting at right

angles at , so that>, then it is possible to draw
another chord KN meeting in I such that =
(or, as Archimedes expresses the matter, it is possible to

place the straiyht line IN equal to and verging towards K).
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this kind are spirals and quadratices and cochloids

and cissoids. It appears to be no small error for

geometers when a plane problem is solved by conies

or other curved lines, and in general Avhen any pro-

blem is solved by an inappropriate kind, as in the
problem concerning the parabola in the fifth book of

the Conies of Apollonius " and the verging of a solid

character with respect to a circle assumed by Archi-

medes in his book on the spiral ^
; for it is possible

In general, the line KN is determined by the intersection
of a hyperbola and a parabola, as Pappus himself shows in

another place (iv. 52-53, ed. Hultsch 298-302). The particular
case where is a diameter bisecting the chord KjNI in

can be solved by plane methods, namely, by the " application
of areas "

; the solution for the case where IN is to be made
equal to \/f (radius of the circle) is assumed by Hippocrates
in the fragment from Eudemus preserved by Simplicius
(see supra, p. 244 n. a).

Archimedes gives no indication of the solution he had in
mind, but all he requires for his purpose is its possibility ;

and its possibility can be demonstrated without any use of
conies. For this reason Heath {The Works of Archimedes
civ) thinks that Archimedes is to be excused from Pappus's
censure that he had solved a plane problem by solid methods.
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without using anything solid to find the theorem

stated by him, I mean the theorem proving that the

circumference of the circle in the first turn is equal to

the straight line drawn at right angles to the initial

line to meet the tangent to the spiral." Since

problems differ in this way, the earlier geometers

were not able to solve the aforementioned problem

about the angle, when they sought to do so by means
of planes, because it is by nature soHd ; for they

were not yet familiar -with the sections of the cone,

and for this reason were at a loss. Later, however,

they trisected the angle by means of the conies,

using in the solution the verging described below.

(6) Solution by Means of a Verging

Jbld. iv. 36. 60, ed. Hultsch 212. 15-274. 2

Given a right-angled ^ parallelogram, with

produced, let it be required to draw AE so as to

make the straight Hne EZ equal to the given straight

line.

Suppose it done, and let, HZ be drawn parallel

" Archimedes' enunciation (Ilepl 18) is: E?
iv ^^ evBela

inLipavrj irepas ?, , eWtv
eXiKOS,' ] tc? ? €.,€ ^ /€^€ $ ? lAt/coj €€

Trept^epeia.

^ It is not, in fact, necessary that the parallelogram
should be right-angled.
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to EZ, . Since ZE is given and is equal to ,
therefore is also given. And A is given

;

therefore is on the circumference of a circle given

in position. And since the rectangle contained by

, is given and is equal to the rectangle con-

tained by BZ, [Eucl. i. 43], therefore the rectangle

contained by BZ, is given, that is, the rectangle

contained by BZ, is given ; therefore lies on a

hyperbola. But it is also on the circumference of a

circle given in position ; therefore is given.**

Ibid. iv. 38. 62, ed. Hultsch. 274. 18-276. 14

38. With this proved, the given rectilineal angle is

trisected in the following manner.

First let be an acute angle, and from any

point [of the straight Une AB] let the perpendicular

be drawn, and let the parallelogram be com-

pleted, and let ZA be produced to E, and inasmuch as

is a right-angled parallelogram let the straight

line be placed between A, so as to verge

towards and be equal to twice AB—that this is

possible has been proved above ; I say that is a

third part of the given angle.
• The formal synthesis then follows as Pappus iv. 37.
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(c) Direct Solutions by Means of Conics

Ibid. iv. 43. 67-44. 6S, cd. Hultsch 280. 20-284. 20

'. ? €€€
« We may easily show with Heath {H.G.M. i. 237-238) how

the solution of the veCots is equivalent to the sohition of a
cubic equation. If in the accompanying figure ZE, ZB are

the axes of a•, y respectively, and ZA =a, ZB =6, the point
giving is determined as the intersection of the circle

(;-)2 + (2/-)«=4(«+«)

and the hyperbola xy = ab.

By eliminating from these equations we may obtain

{y +^W - 3^3/" - Sa^y + «) =.
One of the points of intersection of the circle and hyperbola
is therefore given by y = - 6, a; = - a.

The other three are determined by the equation

y*-Sby^-3a^y + a^b=0.
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For let be bisected at H, and let AH be joined;

the three straight lines , HA, HE are therefore

equal ; therefore is double of AH. But it is also

double of AB ; therefore BA is equal to AH, and the

angle ABA is equal to. Now is double
of, that is, of ; and therefore is

double of. And if we bisect, the angle

will be trisected.*»

If

and

then

(c) Direct Solutions by Means of Conics

Ibid. iv. 43. 67-44. 69., ed. Hultsch 280. 20-284. 20

43. Another way of cutting off the third part of a

b

whence

and

lABT = 9, so that tan ^ =

T = tan, so that 2/=,
V - Soa^T» - Sa^r + a^b =

A
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" For by the equality of the triangles,, we have
==2^ {ex hypothesi). But =

+.
Therefore. =^, and so BE=AE.
» i.e. since =^ and =|, by subtraction,-=- ), or =^.
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given arc is furnished, without the use of a verging,

by this sohd locus.

Let the straight hne through A, be given in

position, and from the given points A, upon it let

be inflected, making the angle double of

; I say that lies on a hyperbola.

For let be drawn perpendicular [to] and let

be cut off equal to ; when BE is joined it will

therefore be equal to AE.<* And let EZ be placed

equal to ; therefore =3. Now let be
placed equal to^ ; therefore the point will be
given, and the remainder ^ AZ will equal 3.
Now since « BE2 - EZ2 =^,
and 2-2 = . AZ,

therefore . AZ =BA2,

that is 3. =2;
therefore lies on a hyperbola with transverse axis

• The reasoning here is much abbreviated, and in full

may be written as follows :

BE»- EZ2 =BE2-2 (since EZ= ex hypothesi)
=2 (Eucl. i. 47)

Now BE2-EZ2=AE2-EZ2 (since BE was proved equal
to AE)

=AA . AZ (Eucl. ii. 6).=23 . =^ (since AZ was proved equal to3)
.•.2:. = 3: 1

^3AH2
AH2

.•. lies on &._ hyperbola with transverse axis AH and
conjugate axis \/3AH.
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AH and conjugate axis 'y/SAH. And it is clear that

the point cuts off at the vertex of the [conic]

section a straight line which is one-half of the

transverse axis AH.
And the synthesis is clear ; for it will be required

so to cut that AH is double of, and about AH
as axis to describe through a hyperbola with con-

jugate axis -y/SAH, and to prove that it makes the

aforementioned double ratio of the angles. And that

the hyperbola described in this manner cuts off the

third part of the arc of the given circle is easily

understood if the points A, are the end points of

the arc.**

44. Some set out differently the analysis of the

problem of trisecting an angle or arc ^thout a

verging. Let the ratio be upon an arc ; it makes no
difference whether an angle or an arc is to be divided.

Let it be done, and let, the third part of the arc, be cut off, and let AB,, be joined ; then

• For let be the centre of a circle of which is an
arc. Let be di-

B ,
vided at so that AH
=2. Let the hyper-
bola be constructed
which has AH for

transverse axis and

\/3 AH for conjugate
axis, and let this hyper-
bola cut the arc of the
circle in B. Then by
Pappus's proposition,^=2.

Therefore their doubles are equal,

or z.B0A= 2z-B0r,

and so OB trisects the angle and the arc AB.
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« The relation =2 tells us that lies on a hyperbola

with foci A, , directrix BZ and eccentricity 2. Pappus
proceeds to turn this into the axial form EZ^ : BZ^ +^
= 1:4 which was more commonly used by the Greeks. In
fact, there are only two other extant passages in which the

focus-directrix property is used. One of them is also given

by Pappus (vii., ed. Hultsch 1004-1014), who there proved
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=2. Let be bisected by ,
and let , ZB be draAvn perpendicular ; therefore

is equal to, so that AE is also equal to ;

therefore is given.

Now because : = : [Eucl. vi. 5
= AE :EZ,

therefore alternately : = : EZ.

But = 2AE ; and therefore = 2EZ ; there-

fore 2 =42, that is, 2 +2 =42. Now,
since the two points E, are given, and BZ is

drawTi at right angles, and the ratio EZ^ : BZ2 +2
is given, lies on a hyperbola. But it also lies on an
arc given in position ; therefore is given. And the
synthesis is clear.**

generally that " if the distance of a point from a fixed point
is in a given ratio to its distance from a fixed line, the locus
of the point is a conic section which is an elHpse, a parabola
or a hyperbola according as the given ratio is less than,
equal to, or greater than, unity." The proof is among a
number of lemmas to the Surface Loci of Euclid, so pre-
sumably the focus-directrix property was already well

known when Euclid wrote.
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Aristot. Phys. 9, 239 b 5-240 a 18' el aei, ,€€ ^ rj ,€
' act , iv , -

elvai. * eVrt ^-
6 € ,

ovh^ ^.
' }-,
^, 8 iv.̂

Zeller would bracket Kivelrai, and he is followed by
Ross, but not, it seems to me, with sufficient reason. Diels,

followed by Lee, has the unnecessary addition of ovSev be

KLvc'irai after these words. The passage as it stands is

satisfactorily explained by Brochard {Etudes de philosoph'ie

ancienne et de ph'dosophie moderne, p. 6) and by Heath
{H.G.M. i. 276).

" Zeno of Elea, who is represented by Plato {Parm. 127 b)

as " about forty " when Socrates ^8 a " very young man "

(say in 450 u.c), was a disciple of Parmenides. The object

of his four arguments on motion, here reproduced from
Aristotle, was to show that the rejection of Parmenides'
doctrine of the unity of being led to self-contradictory results.
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Aristotle, Physics 9, 239 b 5-240 a 18

Zeno's argument is fallacious ; for, he says, if

everything is either at rest or in motion when it

occupies a space equal to itself, while the object

moved is always in the instant, the moving arrow is

unmoved. But this is false ; for time is not made up
of indi\asible instants, any more than is any other

magnitude.
Zeno has four arguments about motion which

present difficulties to those who try to resolve them.

The first is that Avhich says there is no motion because

the object moved must arrive at the middle before

it arrives at the end,^ concerning which we have

already treated.

A vast literature has grown round these arguments, but the

student will find most help in W. D. Ross, Aristotle's Physics,

pp. 655-666, H. D. P. Lee, Zeno of Elea, and Heath, H.G.M.
i. 271-283.

^ Not only has it to pass through the half-way point, but
through half of the remaining half, and so on to infinity.

If a is the length of the course measured from the goal,

then the moving object before it reaches its goal has to pass

through the points -, ^, 53 . . . and so on through an infinite

series which cannot be enumerated. Aristotle's answer is

that the moving object has indeed to pass through an infinite

number of positions, but in a finite time it has an infinite

number of instants in which to do so.
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* The passage between the asterisks, to which Aristotle

refers the reader, is Phys. 2, 233 a 21-31 and is reproduced
here for convenience.

' Aristotle's argument is correct. The Achilles is a more
general form of the Dichotomy. If the speed of Achilles is

times that of the tortoise (we learn from Themistius
and Simplicius that the tortoise was the object pursued),
and the tortoise starts a unit ahead, then when Achilles

has reached the point where the tortoise started the
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* Zeno's argument makes a false assumption in

not allowing the possibility of passing through or

touching an infinite number of positions one by-

one in a limited time. For there are two senses

in which length and time, and, generally, any con-

tinuum, are said to be infinite, either in respect of

division or of extension. So where the infinite is

infinite in respect of quantity, it is not possible to

make in a limited time an infinite number of contacts,

but it is possible where the infinite is infinite in

respect of division ; for the time also is infinite in this

respect. And so it is possible to pass through an
infinite number of positions in a time which is in this

sense infinite, but not in a time which is finite, and
to make an infinite number of contacts because its

moments are infinite, not finite.*"

The second argument is the so-called Achilles ; this

asserts that the slowest will never be overtaken by the

quickest ; for that which is pursuing must first reach

the point from which the fleeing object started, so

that the slower must necessarily always be some
distance ahead. This is the same reasoning as that

of the Dichotomy, the only difference being that when
the magnitude which is successively added is divided

it is not necessarily bisected.^ The argument leads

to the conclusion that the slower will never be over-

taken, and it is for the same reason as in the Dichotomy
(for in both by dividing the distance in some way it is

tortoise is ahead; when Achilles has reached this point

the tortoise is —j ahead ; and so on to infinity. Putting

= 2 we get the special conditions of the Dichotomy. Both
arguments emphasize that to traverse a finite distance means
passing through an infinite number of positions.
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ovSe ^^),, *, ^' ,' ' , -
8te^teVat ., *, .

€8 6

.

* -* ,
* ,, ' civat. € *

" Achilles overtakes the tortoise when he has travelled a

distance 1 + -+-:+ ... ad inf.
n^ •'

This is a convergent series whose sum is -. The ancients
n— 1

did not know how to sum an infinite series, but they knew
that Achilles would catch the tortoise and that the problem
solv'dur ambulando.

*• Lachelier (Revue de metaphysiqve et de morale, xviii., pp.
346-347) and Ross explain that means from
the turning point in the double course or ?. The race

was from the to the and back again to the 4.
On this interpretation it is possible to translate easily and
naturally. Gaye, the Oxford translators and Lee, who do
not accept this interpretation, but believe ^ to refer
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concluded that the goal Mill not be reached ; but in

this a dramatic effect is produced by saying that not

even the swiftest will be successful in its pursuit of

the slowest) and so the solution must necessarily be

the same. The claim that the one in front is not

overtaken is false ; for when in front he is not indeed

overtaken, but he will nevertheless be overtaken if he
give his pursuer a finite distance to go through."

These are two of the arguments, and the third is

the one just mentioned, that the flying arrow is at

rest. This conclusion follows from the assumption

that time is composed of instants ; for if this is not

granted the reasoning does not follow.

The fourth is that about the two rows ofequal bodies

moving past each other in the stadium with equal

velocities in opposite directions, the one row starting

from the end of the stadium, the other from the

middle.^ This, he thinks, leads to the conclusion

that half a given time is equal to its double. The

to the middle of the A s, are forced to paraphrase :
" The

one row originally stretching from the goal to the middle-

point of the stadium, the other from the middle-point to

the starting-post." Ross has to admit that is

apparently not used elsewhere of the middle-point of the?, but he rightly emphasizes the unnaturalness of
any other interpretation.
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iv TO € € Se*'€€€€ * € €8.€ ^ €</>* ,
* 6^* ,

ovreg €€, *

€^* ,€ ,
. / €
€? , " ,

[ ]^-, € ' *
1 del. Ross.

• There seems little doubt that initially the rows of bodies
were symmetrically arrang^ed in the following way (we will

assume half a dozen of each for convenience)

:

As I i I I \ I

Bs

rs
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fallacy lies in assuming that a body takes an equal
time to pass with equal speed a body in motion and a

body of equal size at rest ; but this is untrue. For
example, let AA be stationary bodies of equal size,

let 15 be the bodies equal in number and size that

start from the middle, and let be the bodies equal

in number and size that start from the end, having
a speed equal to that of the Bs.** In consequence,
the first and the first move past each other and
come simultaneously to the end.^ It follows that

has passed all the bodies it is moving past, though
has passed only half the bodies it is moving past,"

so that has taken half the time [taken by ] ; for

and that the final position they take up is :

As

Bs

Fs

But there are great difficulties in the text. Ross's inter-

pretation seems to me to do least violence to the Greek.
^ i.e. the first is under the right-hand A at the same

time that the first is under the left-hand A.
" Ross explains, to my mind judiciously, that the s are

thought of primarily as moving past the As and only
secondarily as moving past the s, while the s are thought
of primarily as moving past the s and only secondarily
past the A s. Zeno wishes to point out that the first has
moved past only three A s while the first has moved past
six s. On the ground that to move past six s requires
tivice the time needed to move past three A s, coupled with
the knowledge that the time taken is in fact the same in
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€. / he W• €
/cat eVt€, [ '€€ , ],^ ^€ . 6

ioTLv,^.
both cases, he gets his paradox, that half a given time is

equal to the whole. He neglects the fact that the relative

motion of to is twice as great as the relative motion of
to A. If this is borne in mind, the paradox disappears.

In order to support his interpretation Ross omits from
the text : there is a rival reading A and Ross suggests,
with reason, that they are both glosses.

374



ZENO OF ELEA

each takes an equal time in passing each body. And
it follows that at the same moment the first has

passed all the s : for the first and the first will be

simultaneously at opposite ends [of the As], since

both take an equal time in passing the A s. Such is

his argument, and it comes about from the afore-

mentioned fallacy.

^ The vulgate has , but it would be incorrect to say
all the s have passed all the s. One manuscript has

, which would be a correct way of writing ,
and Ross accordingly adopts this.

2
. . .. These vords will not stand interpretation

and Ross omits them as a gloss in the margin on€€ ecrnv ' which found its way into the

text at the wrong place.
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XI. THEAETETUS

(a) General

Suidas, s.v., ^,,,
/^/? ,, ^ eV 'HpaK'Aeta.

nevTC ,.
(6) Five Regular Solids

Schol. i. in Eucl. Elem. xiii., Eucl. ed. Heiberg v. 654) , ',,, ^, 6^^, ^..
<• Theaetetus lived about 415-369 B.C. He is the subject of

a dissertation De Theaeteto Athenienii by Eva Sachs (Berlin,

1914).
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(a) General

Suidas, s.v. Theaetetus

Theaetetus, an Athenian, astronomer, philosopher,

a pupil of Socrates, taught in Heraclea. He was the

first to describe ^ the five solids so-called. He lived

after the Peloponnesian wars.

(6) The Five Regular Solids

Euclid, Elements xiii.. Scholium i., Eucl.

ed. Heiberg v. 65i!

In this book, that is, the thirteenth, are described

the five Platonic figures, which are however not his,

three of the aforesaid five figures being due to the

Pythagoreans,^ namely, the cube, the pyramid and
the dodecahedron, while the octahedron and icosa-

hedron are due to Theaetetus. They received the

name Platonic because he discourses in the Timaetis

about them.

* Possibly " construct."
• For the relation of the Pythagoreans to the five regular

solids, see supra, pp. 216-225. Theaetetus was probably the

first to construct all five theoretically ; the Pythagoreans
could not have done that. For a full discussion, see Eva
Sachs, Die fiinf Platonischen Korper.
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(c) The Irrational

Schol. Ixii. in Eucl. Elem. x., Eucl. ed. Heiberg
V. 450. 16-18

To ianv,
jue/xn^rat 6 eV ©eaiTTJro), *

€€€€,€ €y/C€tTat, cvrau^a 8c.
Plat. Theaet. 147 i>-148

02. Uepl€ ?
oSc €€, € Trevrc-?[ ttj, -€ ^^^ "T^S €€' iv 8e)€€.

,

€€8 ,
,.

* secl. Burnet.

* The enunciation is : The squares on straight lines

commensurable in length have to one another the ratio which a
square number has to a square number ; and squares which
have to one another the ratio which a square number has to a
square number will also have their sides commensurable in

length. But the squares on straight lines incommensurable
in length have not to one another the ratio which a square
number has to a square number ; and squares which have not

to one another the ratio which a square number has to a square
number will not have their sides commensurable in length

either.
* Theodorus of Cyrene, claimed by lamblichus (Vit.

Pythag. 36) as a Pythagorean and said to have been Plato's

teacher in mathematics (Diog. Laert. ii. 103).
* Several conjectures have been put forward to explain
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(c) The Irrational

Euclid, Elements x., Scholium Ixii., ed. Heiberg
V. 450. 16-18

This theorem [Eucl. Elem. x. 9] ° is the discovery of

Theaetetus, and Plato recalls it in the Theaetetus,

but there it arises in a particular case, here it is

treated generally.

Plato, Theaetetus 147 d-148

Theaetetus. Theodorus ^ was proving to us a

certain thing about square roots, I mean the square

roots of three square feet and five square feet, namely,

that these roots are not commensurable in length

"wdth the foot-length, and he proceeded in this way,
taking each case in turn up to the root of seventeen

square feet ; at this point for some reason he stopped. '^

Now it occurred to us, since the number of square

roots appeared to be unHmited, to try to gather them
into one class, by which we could henceforth describe

all the roots.

how Theodorus proved that /S, \/5 ... \/l''' ^" in-

commensurable. They are summarized by Heath {H.G.M.
1. 204-208). One theory is that Theodorus adapted the tradi-

tional proof (5U2)ra, p. 1 10) of the incommensurability of^/gl
Another, put forward by Zeuthen (" Sur la constitution des
livres arithmetiques des Elements d'Euclide et leur rapport
a la question de Tirrationalite " in Oversigt over det kgl.

Danske videnskabernes Selskabs Forhandlinger^ 1915, pp. 422
if.), depends on the process of finding the greatest common
measure as stated in Eucl. x. 2. If two magnitudes are such
that the process of finding their G.C.M. never comes to an
end, the two magnitudes are incommensurable. The method
is simple in theory, but the geometrical application is fairly

complicated, though douutless not beyond the capabilities of
Theodorus.
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22. ^H rjxjpere rt;. "E/xotye^€ be .
2. Aeye.. 8 /3/6/•8€ -) .
2. Kat .. /Ltera^u, ', ' ), 8, -.
2., ;." , -, ,, -, '^, .
" It is not possible to give the full force of the Greek ashw^ whicn literally means " powers," has to be trans-
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Socrates. And did you find such a class ?

Theaet. I think we did ; but see if you agree.

Soc. Speak on.

Theaet. We divided all numbers into two classes.

The one, consisting of numbers which can be repre-

sented as the product of equal factors, ve likened in

shape to the square and called them square and equi-

lateral numbers.

Soc. And properly so.

Theaet. The numbers between these, among which

are three and five and all that cannot be represented

as the product of equal factors, but only as the product

of a greater by a less or a less by a greater, and are

therefore contained by greater and less sides, we
likened to oblong shape and called oblong numbers.

Soc. Excellent. And vhat after this ?

Theaet. Such lines as form the sides of equilateral

plane numbers we called lengths, and such as form the

oblong numbers we called roots, because they are not

commensurable with the others in length, but only

with the plane areas which they have the power to

form.** And similarly in the case of soHds.

lated " roots " to conform with mathematical usage.€^ it will be noticed, are here limited to the square

roots of oblong numbers, and are therefore always in-

commensurable.
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XII. PLATO

() General

Tzetzes, Chil. viii. 972-973

'€
" Mo^SctS"€€9 ^,"

Plut. Quaes. Com\ viii. 2. 1

: , 6 -
"€\" e?7rev, " eVet,, iv , -

TtVa

; Stj ,." *^), .
6^ "' ,",,, ', , -

• For Proclus's notice of Plato, see supra^ p. 150, and for
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(a) General

Tzetzes, Book of Histories viii. 972-973

Over his front doors Plato wrote :
" Let no one

unversed in geometry come under my roof." ^

Plutarch, Convivial Questions viii. 2. 1

Diogenianus broke the silence vhich followed this

discussion by saying :
" Since our discourse is about

the gods, shall we make Plato share in it, especially as

it is his birthday, and inquire what he meant when
he said that God is for ever playing the geometer

—

if this saying is really Plato's ?
" I said that this

saying is not plainly %\Titten in any of his works, but

it is a credible saying and is of a Platonic character.

Thereupon Tyndares took up the discussion and
said :

" Do you think, Diogenianus, that this saying

implies some subtle and recondite speculations, and

not Avhat he has so often mentioned, when he praises

the pseudo-Platonic instrument for finding twO mean pro-

portionals, supra, pp. 262-267. The mathematics in Plato is

the subject of dissertations by C. Blass (De Platone mathe-

matico, Bonn, 1861) and Seth Demel {Platons Verhdltnis

zur Malliematiky Leipzig, 1929).
^ Johannes Tzetzes, the Byzantine pedant who lived in

the twelfth century a. d., is not the best of authorities, so this

charming story must be accepted with caution. The doors

are presumably those of the Academy.
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rrj 7]€
alSiov,

"^ ;
. . . ?^ * ^ -, -

hC , fj,̂,^ ^^-,."
Aristox. Harm. ii. ad. init., ed. Macran 122. 3-16' ,̂

ohov
fj
^ pahiov ^

€ , -
*

-) )̂ -

(xya^ov , ^
" I'he play on the words, cannot be repro-

duced in F.nglish, but we may (Ompcns.ite ourselves by
playing on the words " means," " mean proportionals."
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geometry as a science that takes men away from
sensible objects and turns them towards the intelli-

gible and eternal, whose contemplation is the end of

philosophy Hke the final grade of initiation into the

mysteries ? . . . Therefore Plato himself censured

Eudoxus and Archytas and Menaechmus for en-

deavouring to solve the doubling of the cube by instru-

ments and mechanical constructions, thus trying by
irrational means to find tMo mean proportionals ,** so

far as that is allowable : for in this way Avhat is good
in geometry would be corrupted and destroyed, fall-

ing back again into sensible objects and not rising

upwards and laying hold of immaterial and eternal

images, among which God has his being and remains

for ever God."

Aristoxenus, Elements of Harmony ii. ad init^

ed. Macran 122. 3-16

It is perhaps well to go through in advance the

nature of our inquiry, so that, knowing beforehand
the road along which ve have to travel, we may have
an easier journey, because we ^y[\ know at what
stage we are in, nor shall we harbour to ourselves a

false conception of our subject. Such vas the con-

dition, as Aristotle often used to tell, of most of the

audience who attended Plato's lecture on the Good.
Every one went there expecting that he would be put
in the way of getting one or other of the things

accounted good in human life, such as riches or health

or strength or, in fine, any extraordinary gift of

fortune. But when they found that Plato's arguments
were of mathematics and numbers and geometry
and astronomy and that in the end he declared the

One to be the Good, they Avere altogether taken by
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€€' ef^* ol

.

(b) Philosophy of Mathematics

Plat. Eep. vi. 510 c-e

Otfiat € elSevai on ol TTCpl

re ,
re^ ^ ^, ,, '

^^ -.,, . -,,',
auTTJs", *, ,,' ,,8 iboi .

Plat.. . 342 -343" , ', , ' ^—
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surprise. The result was that some of them scoffed

at the thing, while others found great fault with it.

(6) Philosophy of Mathematics

Plato, Republic vi. 510 c-e

I think you know that those who deal with geo-

metries and calculations and such matters take for

granted the odd and the even, figures, three kinds of

angles and other things cognate to these in each field

of inquiry ; assuming these things to be known, they

make them hypotheses, and henceforth regard it as

unnecessary to give any explanation of them either

to themselves or to others, treating them as if they

were manifest to all ; setting out from these hypo-

theses, they go at once through the remainder of the

argument until they arrive A\ith perfect consistency

at the goal to which their inquiry was directed.

Yes, he said, I am aware of that.

Therefore I think you also know that although

they use visible figures and argue about them, they

are not thinking about these figures but of those

things which the figures represent ; thus it is the

square in itself and the diameter in itself vhich are

the matter of their arguments, not that \vhich they

drd^ ; similarly, when they model or draw objects,

which may themselves have images in shadows or in

water, they use them in turn as images, endeavouring

to see those absolute objects which cannot be seen

otherwise than by thought.

Plato, Epistle vii. 342 a-343

For everything that exists there are three things

through which knowledge about it must come ; the
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knowledge itself is a fourth ; and as a fifth we must
posit the actual object of knowledge vhich is the true

reality. We have, then :—first, a name ; second, a

description ; third, an image ; fourth, knowledge of

the object. Take a particular case if you want to

understand what I have just said, and then apply the

theory to all objects in the same way. There is, for

example, something called a circle, whose name is the

very Avord I just now uttered. In the second place

there is a description of it, made up of nouns and
verbs. The description of the object whose name is

round and circumference and circle would be : that

which has everyAvhere the same distance between the

extremities and the middle. In the third place there

is the object which is draAvn and erased and turned

on the lathe and destroyed—processes which the real

circle, in relation to which these other circles exist,

can in no wise suffer, being different from them. In

the fourth place there are knowledge and under-

standing and correct opinion about them—all of

which must be posited as one thing more, inasmuch
as it is found not in sounds nor in the shapes of bodies

but in souls, whereby it manifestly differs in nature

both from the real circle and from the aforesaid three.

Of these understanding approaches nearest to the

fifth in kinship and likeness, while the others are

more distant. . . . Every circle drawn or turned on
a lathe in practice abounds in the opposite to the

fifth—for it everyAvhere touches the straight, while

the real circle, we maintain, contains in itself neither

more nor less of the opposite nature. The name, we
maintain, is in no case stable ; there is nothing to

prevent the things now called round from being

called straight, and the straight round ; and those
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ovSev tJttov e^eLV ^
ivavTLWs.

Aristot. Met. A 5, 987 b 14-18

* /cat € '
elvai , Sta'

/xev
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etvai *? iv€,

(c) The " DiORisMos " in the " Meno **

Plat. Meno 86 e-87

he cf^^, €-, ineiSdv €, Trepl, et €
ToSe ,€

Tt? " € icrri ,*€ € €€
ToidvSe. el €, 8€,

fj,
-
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who transpose them and use them in the opposite

way will find them no less stable than they are now.

Aristotle, Metaphysics A 5, 987 b 14-18

Again, he [Plato] said that besides perceptible

objects and forms there are the objects of mathe-

matics, which occupy an intermediate position ; they

differ from perceptible objects in being eternal and

unchangeable, and from forms in that there are many
alike, while the form itself is in each case unique.

(c) The ** DiORiSMOs " in the ** Mend "

Plato, Meno 86 e-87

I mean " by way of hypothesis ** what the geo-

meters often envisage when they are asked, for

example, as regards a given area, whether this area

can be inscribed in the form of a triangle in a given

circle. The answer might be, ** I do not know
whether this is so, but I think I have, if I may so put

it, a useful hypothesis. If this area is such that

when applied [as a rectangle] to the given straight

hne " in the circle it is deficient by a figure [rectangle]

similar to that which is applied, then one result seems

to me to follow, while another result follows if what

I have described is not possible. Accordingly, by
laying down a hypothesis I am willing to tell you

• " The given straight line " can only be the diameter.
The " application " of areas so as to be " deficient " in a given
way is explained above, pp. 186-187.
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TO nepl ivrdoews et?, etre aSvvarov etVe •"

" If AB is the diameter of a circle of centre O, and is

a point on the circumference, and the rectangles ACEF,



PLATO

what is the conclusion about the inscribing of the area

in the circle, whether it is impossible or not." **

triangle equal to a given area X we have to find a point

on the circumference of the circle such that if EF be dropped

perpendicular to A

the rectangle AF . FE = the given area X.

Clearly lies on a rectangular hyperbola of which AB, AC
are asymptotes. If b^ is equal to the given area, the equation

of the hyperbola referred to its asymptotes as axes is xy = h-.

For a real solution it is necessary that ^ should not be greater

than the equilateral triangle inscribed in the circle, i.e., not

— o^
greater than 3\/3 . -7 , where a is the radius of the circle. If

4

h^ is equal to this area, the hyperbola touches the circle and

there is only one solution. If h^ is greater than this area,

the hyperbola does not touch, and there is no solution. If

b^ is less than this area, the hyperbola cuts the circle in two

points E, E', giving two solutions. It is to these facts that

Plato refers.

The passage is an example of a giving the con-

ditions for the possibility of the solution of a problem.

Proclus is therefore in error when he says that Leon, the

pupil of Neoclides, who was younger than Plato, " invented" (supra, p. 150).

The above interpretation was first given by E. F. August

in 1829. It was independently discovered by S. H. Butcher

in Journal of Philology, xvii., pp. 219-225 and is accepted

by Heath (H.G.M. i. 298-303), whose exposition I have

closely followed. Many other explanations have been

oiFered, the best known being that of Adolph Benecke

{Ueber die geometrische Hypothesis in Platons Menon).
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(d) The Nuptial Number

Plat. Rep. viii. 546 b-d." /xev ^7€€ riXeios, he iv€ /xevat re ,, -
€, ,̂, , he

, ,,, ,.
" The passage is included here because of several interest-

ing points for the history of Greek mathematics. Plato's

language is so fancifully phrased that a completely satis-

factory solution is difficult to get. The literature which has
grown round this " nuptial number " is vast, but the most
satisfying discussions are those by Adam, The Republic of
Plato .,. 204-208, 264-312, and A. G. Laird,/' Geo-

metrical Number and the Connnent of Proclus.
" Suvaoreuo/xevai is a €, and its meaning is

uncertain. A straight line is said (" to be capable
of") an area when the square on it is equal to the area.

Hence€> should mean the side of a square, as it does
in Eucl. X. Def. 4. 8€ is a kind of passive of, meaning presumably that of which the

is capable, and so could mean the square itself. It is
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(d) The Nuptial Number

Plato, Republic viii. 546 b-d •

The divine race has a cycle comprehended by a
perfect number, but the number of the human race's

cycle is the first in vhich root and square increases,^

forming three intervals and four terms of elements
that make like and unlike and wax and wane, show
all things agreeable and rational towards one another.

The base of these things, the four-three joined with
five, when thrice increased furnishes t\vo harmonies,
the one a square, so many times a hundred, the other

a rectangle, one of its sides being a hundred of the
numbers from the rational diameters of five, each
diminished by one (or a hundred of the numbers from
the irrational diameters of five, each diminished by
two), the other side being a hundred of the cubes of

three.''

temerarious to try and get a precise meaning out of€5> re 8€€, and perhaps we should
not inquire too closely into what is more mystical than
mathematical. Laird thinks it means " if a square is equal
to a rectangle."

* The chief mathematical interest of the passage lies in

the part most easy to decipher, that about the two " har-
monies." The " irrational diameter of five " is the diagonal

of a side of square 3, i.e. \/50. The " rational diameter "

of five is the nearest integer to the " irrational diameter,'*

i.e. \/50- I. The "number" from the "rational" or
" irrational " diameter is the square. A " hundred of the
numbers from the rational diameter of five, each diminished
by one" is therefore 100 (49- 1)=4800; and the same
number is expressed as " a hundred of the numbers from the
irrational diameter of five, each diminished by two," for

this is 100 X (50- 2) =4800. This number gives one side of
the oblong and the other is " a hundred of the cubes of
three," or 100x27=2700. The rectangle of which these
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(e) Generation of Numbers

Plut.Epin. 990C-991) Seov €' Se, *, ,. /^
eVrtv, 7^5"' ^/. 8

are sides is therefore 4800x2700 = 1:3,960,000, and this is

3600^, which is the other " harmony."
These "rational" and "irrational" diameters are a clear

reference to the " side- " and " diameter- numbers " of the
Pytliagoreans, for which see supra, pp. 132-139.

There is fairly widespread agreement that the geometrical
number is 12,960,000 = 36002 = 4800x2700, but on the
method by which this number is reached the widest diver-

gence exists. Hultsch and Adam suppose that two numbers
are obtained, one in the hrst sentence down to, the
other (12,960,000) in the remainder of the passage. Both
agree that the first number is 216, but Hultsch obtains it as
2» x33 and Adam as 33 + 4^ + 5^ Hultsch then takes " the
four-three joined with a five " to mean 4 + 3 + 5 = 12, which
is then multiplied by three {rpU ), giving 36, and
as this has to be taken " so many times a hundred " we get
3600as the side of the square which is one of the '* harmonies,"
and therefore the final number is 3600^. Adam takes " the
four-three joined with a five "to be 3 4 5 = 60, and€ to mean multiplied by itself three times (i.e. raised

to the fourth power, which gives us immediately 60* =3600^).
Laird, on the otiicr hand, believes there is only one number
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(e) Generation of Numbers

Plato, Epinomis 990 c-991

There will therefore be need of studies " : the
first and most important is of numbers in themselves,

not of corporeal numbers, but of the whole genesis of

the odd and even, and the greatness of their influence

on the nature of things. When the student has

learnt these matters there comes next in order after

them what they call by the very ridiculous name of

geometry, though it proves to be an evident likening,

with reference to planes, of numbers not like one
another by nature ^

; and that this is a marvel not of

hum.an but of divine origin will be clear to him who
is able to understand. And after this the numbers

indicated (which he agrees in thinking to be 3600^ = 4800 x
2700). He maintains, with the help of Proclus, that the first

sentence gives a general method of forming " harmonies
"

which is then applied to the triangle of sides 3, 4 and 5 to

give the geometrical number. The application gives the
series 27, 36, 48, 64 (with four terms and three intervals),

and the first three numbers multiplied by 100 give the

elements of the geometrical number, 3600^=2700x4800.
Each solution has merits, but each raises problems which it

is impossible to discuss here. However, we may be fairly

confident that the final number obtained is 12,960,000.

"In Plato the word is used generally of anv
study, but the particular subjects here mentioned are all

mathematical, and the word was already getting the special

significance which it attained in Aristotle's time.
* The most likely explanation of " numbers not like one

another by nature " is " numbers incommensurable with
each other "

; drawn as two lines in a plane, e.g. as the side

and diagonal of a square, they are made like to one another
by the geometer's art, in that there is no outward difference

between them as there is between an integer and an irrational

number.
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• These are probably cubes of integers.
* These will be numbers with irrational cube roots.
« What has been said about lines in the plane applies also

to lines in three dimensions. Numbers incommensurable

with each other, such as 1 and 3\/2, are made like when one
is represented as the side of a unit cube and the other as the

side of a cube twice as great. "We know that this problem
of doubling the cube was brought to Plato's notice [supra^

pp. 258-259). The past tense suggests that Plato had in

mind certain definite who coined the word
; the Pythagoreans, Theaetetus, Democritus

and Kudoxus had all advanced the science.
•* What follows cannot be translated literally, and it is

more than likely that the text is corrupt, or that it has
reached us unrevised from Plato's first draft. But the

general sense is clear. Successive multiplication of 1 by 2
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thrice increased and like to the solid nature," and
those again which have been made unlike,^ he Hkens
by another art, namely, that which its adepts called

stereometry "
; and a divine and marvellous thing it

is to those who contemplate it and reflect how the

whole of nature is impressed with species and kind

according to each proportion as power and its con-

verse continually turn about the double.'* First the

double operates on the number 1 by simple multiphca-

tion so as to give 2, and a second double yields the

square ; by further doubling we reach the soUd and
tangible, the process having gone from 1 to 8. Then
comes the appUcation of the double to give the mean
which is as much greater than the less as it is less than

the greater, and the other mean is that which exceeds

and is exceeded by the same part of the extremes ;

between 6 and 12 come both the sesquialter [9] and
the sesquitertius [8] ; turning betAveen these two, to

gives the series I, 2, 4, 8, which represent a point, a line, a
square and a cube. This is a series in geometric progression,

2 being a geometrical mean between 1 and 4, and 4 a geo-
metrical mean between 2 and S. Two other means were
known to the Pythagoreans (swjjra, pp. 110-115)—and the

whole passage is thoroughly Pythagorean—the arithmetic

and the harmonic. The arithmetic mean is equidistant

between the two terms ; the harmonic exceeds one term,
and is exceeded by the other, by the same fraction of each

term. Thus the arithmetic mean between 1 and 2 is ^ and
2

4
the harmonic mean is ^ ; clearing of fractions, the arithmetic

mean between 6 and 12 is 9 and the harmonic mean 8.

" Power and its converse "

—

4 ivavrias

TavTQ—I take to mean " number and its reciprocal "
; we

have to multiply by 2 to get the series 1, 2, 4, 8 and then

take g of 6 + 12 to get the arithmetic mean.
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* The reference to the choir of the Muses makes it clear,

ill my opinion, that the numl^cr 9 is referred to, th()ii.;,^h the

construction of the sentence does not necessarily involve it.

So W. R. M. Lamb in the Loeb version of the Epinamis,
p. 482.

^ The whole passage should be compared with Timaeus,

35 —36 (see R. G. 13ury's notes in the Loeb version, pp. 66-

71, or A. E. Taylor, A Commentary 07i Plato's Timaeus,

pp. 136-137). There Plato writes down the series 1, 2, 4, 8 and
1, 3, 9, 27, and then fills up the intervals between these
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one side or the other, this power [9] ° furnished men
with concord and symmetry for the purpose of rhythm
and harmony in their pastimes, and has been given
to the blessed dance of the Muses.

^

numbers with arithmetic and harmonic means so as to get
a series of 34 terms, 1, |, |i, |, |, U, {U, 2 . . . 27, which
is intended to represent the notes of a musical scale having
a compass of four octaves and a major "sixth."
Much prominence is given to this passage from the

Epinomis by A. E. Taylor, Mind^ xxxv., pp. 419-440, 1926,
ibid, xxxvi., pp. 12-33, 1927, and DArcy Wentworth
Thompson, ibid, xxxviii., pp. 43-55, 1929.

For a further discussion of this side of Plato's philosophy
see Julius Stenzel, Zahl und Gestalt bei Platon und Aristoteles
(Leipzig, 1924).
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XIII. EUDOXUS OF CNIDOS

(a) Theory of Proportion

Schol. i. in Eucl. Elem. v., Eucl. ed. Heiberg v. 280. 1-9

-. . . . he ^ Tivks eu/aeatv€ ? hihaa.
(6) Volume of Cone and Pyramid

Archini. De Sphaera et Cyl. i., Pref., Archim. ed. Heiberg
i. 4. 2-13
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XIII. EUDOXUS OF CNIDOS «

(a) Theory of Proportion

Euclid, Elements v., Scholium i., Eucl. ed. Heiberg
V. 280. 1-9

The aim of the fifth [book of the Elements] is the

treatment of proportionals. . , . Some say that the

book is the discovery of Eudoxus, the pupil of Plato.

(6) Volume of Cone and Pyramid

Archimedes, On the Sphere and Cylinder^ Preface to

Book i., Archim. ed. Heiberg i. 4. 2-13

For this reason I cannot feel any hesitation in

setting these [theorems] side by side both \dth the

investigations of other geometers and with those of

the theorems of Eudoxus on solids which seem to

stand out pre-eminently, namely, that any pyramid is

a third part of the prism having the same base as the

pyramid and equal height, and that any cone is a

third part of the cyUnder having the same base as the

cone and equal height ; for though these properties

were naturally inherent in these figures all along, yet

" Eudoxus lived from about 408 to 355 b.c. For Proclus*s
notice of him, see supra, pp. 150-153.
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() Theory of Concentric Spheres

Aristot. Met. A 8, 1073 b 17-32

€
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• In his preface to the Methoa (see svpra, p. 230) Archimedes
says that Democritus enunciated these theorems, but without
proof. It may safel}»^ be inferred from Archimedes' preface
to the Quadrature of the Parabola (Archim. ed. Heiber^ ii.

264. 9-22) that Eudoxus used for the proof a lemma equiva-
lent to Euclid X. 1 {infra, pp. 452-455), and that the credit

belongs to him for having made the exhaustion of an area
by means of inscribed polygons a regular method in Greek
geometry; to some extent he had been preceded by Antiphon
and Hippocrates.

* We are told by Simplicius, on the authority of Eudemus,
that Plato set astronomers the problem of finding what are

the uniform and ordered movements which will " save the

phenomena" of the planetary motions, and that Eudoxus
was the first of the Greeks to concern himself with hypotheses
of this sort. Eudoxus believed that the motion of the sun,

moon and planets could be accounted for by a combination
of circular movements, a view which remained unchallenged
till Kepler. To account for the motion of the sun and
moon he needed to use only three concentric spheres, but the

motion of the planets required in each case four concentric

spheres, the common centre being the centre of the earth.

The spheres were of different sizes, one enclosing the other.

Each planet was attached to a point on the equator of the

innermost sphere, so that by the motion of this sphere alone

the planet would describe a circle. But the poles of this
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they were in fact unknown to the many competent
geometers who lived before Eudoxus and had not

been noticed by anyone.**

(c) Theory of Concentric Spheres

Aristotle, Metaphysics A 8, 1073 b 17-32

Eudoxus assumed that the motion both of the sun
and of the moon takes place on three spheres,^ of

which the first is that of the fixed stars, the second
moves about the circle which passes through the middle
of the signs of the zodiac, and the third moves about

sphere were not fixed, themselves moving on a larger sphere
rotating about two diiferent poles. The poles of this second
sphere similarly lay on a third larger sphere moving about
a different set of poles, and the poles of the third sphere on
yet a fourth, moving about another set of poles. Each
sphere rotated uniformly, but its speed was peculiar to

itself. For the sun and moon only three spheres were
needed, the two largest being the same as for the planets
The outermost circle (which comes first in the description

by Aristotle and Simplicius), moving from east to west in

twenty-four hours, reproduces the daily motion of the fixed

stars. The second moves from west to east about an axis
perpendicular to the plane of the zodiac circle (ecliptic), its

equator accordingly revolving in the plane of the zodiac.

The subject belongs as much to Greek astronomy as to
Greek mathematics, and for fuller information the reader is

referred to the classic paper of Schiaparelli, Le sfere

omocentriche di Eudosso,di Callijypo e di Aristotele (Milan,
1875), to the works of Sir Thomas Heath {Aristarchus of
Samos, pp. 193-224, Greek Astronomy, pp. 65-70, H.G.M. i.

829-335), and to W. D. Ross, Aristotle's Metaphysics, vol. ii.,

pp. 384-394. But Eudoxus's system of concentric rotating
spheres is a geometrical tour de force of the highest order,

and must find some notice here. In all the history of
science there are few hypotheses that bear so unmistakably
the stamp of genius.
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Simpl. in Be caelo ii. 12 (Aristot. 293 a 4), ed. Heiberg

496. 23-497. 5 -^
' '

()^^* '
^ Heiberg.

• i.e. the equator of the third sphere.
'' i.e. Venus and Mercury.
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a circle latitudinally inclined to the zodiac circle (the

circle in which the moon moves having a greater

latitudinal inclination than that of the sun). The
motion of the planets he assumed to take place in

each case on four spheres ; of these the first and
second are the same as for the sun and moon (the first

being the sphere of the fixed stars which carries all

the spheres with it, and the second, next in order to

it, being the sphere about the circle through the

middle of the signs of the zodiac vhich is common to

all the planets) ; the third is, in all cases, a sphere

with its poles on the circle through the middle of the

signs of the zodiac ; and the fourth moves about a

circle incHned to the middle circle ** of the third

sphere ; the poles of the third sphere are diiferent

for all the planets except Aphrodite and Hermes,^
but for these the poles are the same.

Simplicius, Commentary on Aristotle's De caelo ii. 12

(293 a -i), ed. Heiberg 496. 23-497. 5

The third sphere, which has its poles on the great

circle of the second sphere passing through the middle
of the signs of the zodiac, and which turns from south

to north and from north to south, will carry round
with it the fourth sphere, which has the planet

attached to it, and will moreover be the cause of the

planet's latitudinal movement. But not the third

sphere only ; for, in so far as it vas on this sphere
only, the planet would have reached the poles of the

zodiac circle, and would have drawn near to the poles

of the universe ; but as matters are, the fourth sphere,

which turns about the poles of the inclined circle

carrying the planet and rotates in a sense opposite to

the third, that is, from east to west, but in the same
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rrjv re tVt rrXiov-^^,,, 6 ^, .
** i.e. by the planet.
* i.e. " horse fetter."
• Schiaparelli works out in detail the motion of a planet

subject only to the rotations of the third and fourth spheres.
The problem in its simplest expression, he says, is this :

sphere rotates uniformly about the fixed diameter AB.
P, P' are opposite poles on this sphere, and a second sphere
concentric with the first rotates uniformly about PP' in the

same time as the former sphere takes to turn about AB, but
in the o})})()sit<' direction. is a point on the second sphere
equidistant from the poles P, P' (that is to say, is a point

on the eijuator of the second sphere). It is required to find

the path of M." Schiaparelli found a solution by means of

seven geometrical propositions which Eudoxus could have
known, and he proved that the path described by was
like a figure-of-eight on the surface of the sphere (see

second figure). This curve, which Schiaparelli called a
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period, will prevent any excessive deviation ° from
the circle through the middle of the signs of the

zodiac, and \11 constrain the planet to describe

about the same zodiac circle the curve called by
Eudoxus the hippopede,^ so that the breadth of this

curve measures the apparent latitudinal motion of

the planet, a view for which Eudoxus has been
attacked.''

" spherical lemniscate," agrees with Eudoxus's description

of it as a hippopede (horse-fetter). It is the intersection of
the sphere with a certain cylinder touching it internally at

the double point O, namely, a cylinder with diameter equal
to AS, the sagitta of the diameter of the small circle of the

sphere on which revolves.

For the proof of these statements the reader must be
referred to Schiaparelli's paper. An analytical expression

is given by Norbert Herz in Geschichte der Bahnbestimmung
von Planeten und Kometen, Part i., pp. 20, 21, and reproduced
by Heath, Aristarchus of Samos, pp. 204-205, with further

details.

Summing up. Heath says (Aristarchus of Samos, p. 211)

:

" For the sun and moon the hypothesis of Eudoxus sufficed

to explain adequately enough the principal phenomena,
except the irregularities due to the eccentricities, which were
either unknown to Eudoxus or neglected by him. For
Jupiter and Saturn, and to some extent for Mercury also,

the system was capable of giving on the whole a satisfactory

explanation of their motion in longitude, their stationary

points and their retrograde motions ; for Venus it was
unsatisfactory, and it failed altogether in the case of Mars.
The limits of motion in latitude represented by the various
hippopedes were in tolerable agreement with observed facts,

although the periods of their deviations and their places

in the cycle were quite wrong. But, notwithstanding the

imperfections of the system of honiocentric spheres, we
cannot but recognize in it a speculative achievement which
was worthy of the great reputation of Eudoxus and all the

more deserving of admiration because it was the first attempt
at a scientific explanation of the apparent irregularities of
the motions of the planeta."
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XIV. ARISTOTLE

(a) First Principles

Aristot. Anal. Post. i. 10, 76 a 30-77 a 2

' ev yeVet ?, as ,€ ivhexerac 8et^at. €
e/c,'

* ecTTt, Tas , *^,
cfvat € ,

* ^." * ?88 8k, ^, €." TOiavSi,, 8 ,, '' ,
" Aristotle interspersed his writings with ilhistrations from

mathematics, and as he Hved just before KiicHd he throws

valuable light on the transformation which Kuclid effected.

A large number of the mathematical passages in Aristotle's

works are translated, with valuable notes, in Sir Thomas
Heath's posthumous bot)k Matl.fmdtks Aristotle.
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(a) First Prixciples

Aristotle, Posterior Analytics i. 10, 76 a 30-77 a 2

I MEAN by the first principles in every genus those

elements whose existence cannot be proved. The
meaning both of these primary elements and of those

deduced from them is assumed ; in the case of first

principles, their existence is also assumed, but in

the case of the others deduced from them it has to

be proved. Examples are given by the unit, the
straight and triangular ; for we must assume the

existence of the unit and magnitude, but in the case

of the others it has to be proved.

Of the first principles used in the demonstrative
sciences some are pecuHar to each science, and some
are common, but common only by analogy, inasmuch
as they are useful only in so far as they fall within the

genus coming under the science in question.

Examples of peculiar first principles are given by
the definitions of the Une and the straight ; common
first principles are such as that, when equals are

taken from equals, the remainders are equal. Only
so much of these common first principles is needed as

falls within the genus in question ; for such a first

principle have the same force even though not
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" Euclid docs not define^ " to be inflected," or

veveiv, " to ver^e." For an exanii)le of " inflection," see

supra, pp. 358-359, and of " verging," supra pp. 242-245.
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applied generally but only to magnitudes, or by the

arithmetician only to numbers.
Also peculiar to a science are the first principles

Avhose existence it assumes and whose essential

attributes it investigates, for example, in arithmetic

units, in geometry points and hnes. Both their

existence and their meaning are assumed. But of

their essential attributes, only the meaning is as-

sumed. For example, arithmetic assumes the mean-
ing of odd and even, square and cube, geometry that

of irrational or inflection or verging," but their

existence is proved from the common first principles

and propositions already demonstrated. Astronomy
proceeds in the same way. For indeed every

demonstrative science has three elements : (1) that

which it posits (the genus whose essential attributes

it examines)
; (2) the so-called common axioms,

which are the primary premisses in its demonstra-
tions

; (3) the essential attributes, whose meaning it

assumes. There is nothing to prevent some sciences

passing over some of these elements ; for example,
the genus may not be posited if it is obvious (the

existence of number, for instance, and the existence

of hot and cold are not similarly evident) ; or the

meaning of the essential attributes might be omitted
if that were clear. In the case of the common
axioms, the meaning of taking equals from equals

is not expressly assumed, being well. Never-
theless in the nature of the case there are these

three elements, that about which the demonstration
takes place, that vhich is demonstrated and those

premisses by which the demonstration is made.
That which necessarily exists from its very nature

and which we must necessarily believe is neither
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hypothesis nor postulate. For demonstration is a
matter not of external discourse but of meditation

within the soul, since syllogism is such a matter.

And objection can always be raised to external dis-

course but not to inward meditation. That which is

capable of proof but assumed by the teacher without

proof is, if the pupil believes and accepts it, hypothesis

^

though it is not hypothesis absolutely but only in

relation to the pupil ; if the pupil has no opinion on
it or holds a contrary opinion, the same assumption
is a postulate. In this lies the distinction betveen
hypothesis and postulate ; for a postulate is contrary

to the pupil's opinion, demonstrable, but assumed and
used without demonstration.

The definitions are not hypotheses (for they do not

assert either existence or non-existence), but it is

in the premisses of a science that h}'potheses He.

Definitions need only to be understood ; and this is

not hypothesis, unless it be contended that the

pupil's hearing is also a hypothesis. But hypotheses
lay down facts on whose existence depends the

existence of the fact inferred. Nor are the geo-

meter's hypotheses false, as some have maintained,

urging that falsehood must not be used, and that the

geometer is speaking falsely in saying that the Une
which he draws is a foot long or straight when it is

neither a foot long nor straight. The geometer draws
no conclusion from the existence of the particular line

of which he speaks, but from what his diagrams
represent. Furthermore, all hypotheses and postu-

lates are either universal or particular, but a definition

is neither.
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(6) The Infinite

Arislot. Phys. 6, 206 a 9-18

"On * et ] eanv aneipov ,^, ^. re

earai , €€, €€
et? €€, earai,

he^^ ^€€
€^6€, Set, Si]Xov €
eoTLV * . AeyeTat etyai8€ ivreXexeta, ',^ ,,

''.
Ibid. 6, 206 b 3-12)• fj

-,). -) -,
, ^ -

*

** After criticizing the beliefs of the Pji:hagoreans and
Plato's school, Aristotle has just shown that there cannot be
an infinite sensible body.

" The doctrine of " indi\-isible lines " is attributed to

Plato by Arislot. Met. 91)2 a 20-23 and to Xenocrates, who
succeeded Speusippus as head of the Academy, by Proclus
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(6) The Infinite **

Aristotle, Physics 6, 206 a 9-18

But it is clear that the complete denial of an infinite

leads to many impossibilities. Time vaW have a

beginning and an end, there ^vill be magnitudes not

di\asible into magnitudes, and number will not be
infinite. Since neither of these opposing views can
be accepted, there is need of an arbitrator, and clearly

each view must be in some sense true, in some sense

untrue. Now " to be " is used in the sense either to

exist actually or to exist potentially, while what is

infinite is infinite either by addition or by division.

It has already been stated that spatial extension is not
infinite in actuality, but it is so by di\ision ; for it is

not difficult to refute the belief in indivisible lines ^
;

therefore it follows that the spatially infinite exists

potentially.

Ibid. 6, 206 b 3-12

The infinite in respect of addition is in a sense the
same as the infinite in respect of division, the process

of addition in a finite magnitude taking place con-

versely to that of division ; but where division is seen
to go on ad infinitum, the converse process of addition

tends to a definite limit. For if in a finite magnitude
you take a determinate part and add to it in the same
ratio, provided the successive added terms are not of

the same magnitude, you will not come to the end
of the finite magnitude ; but if the ratio is increased

so that the terms added are always of the same

in Tim. 36 b, ed. Diehl ii. 246. and in Eucl. i., ed. Friedlein
279. 5, as well as by the commentators on Aristotle. The
pseudo-Aristotelian tract De lineis insecabilibus seems
directed against Xenocrates.
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TO avTO€€, ^,^ .
Ibid. 6, 206 b 27-207 a 7
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* From a finite magnitude ' a " determinate part
"(/ieVov) AB is cut off. BA' is then divided at C, CA' at

BCD
. H^iH >

D and so on, in such a manner that the fractions diminish
in the same ratio, i.e., AB, BC, CD . . . form a geometrical
progression. If the fractions diminish in this way, then
AA will never be exhausted by this process, which will

proceed ad infinitum. We may then look on AA' as

divided into an infinite number of parts, giving an infinite

by division, or we may look on AB as having added to it

an infinite number of parts, giving an infinite by addition.

But if the successive added fractions are equal to each other,

i.e. AB = BC = CD= . . ., then AA' will be exhausted in a
finite number of steps. This statement is equivalent to the
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magnitude, you -will come to the end, since any finite

magnitude is exhausted by continually subtracting

from it any definite fraction whatsoever.*

Ibid, 6, 206 b 2T-207 a 7

Plato posited two infinites ^ for this reason, that it

is possible to proceed without limit both by way of

increase and by Avay of diminution. But although

he posits two infinites he does not use them ; for

in numbers there is for him no infinite by way
of diminution (for the unit is a minimum), nor by way
of increase (for he makes number go up to ten)."

So it comes about that the infinite is the opposite of

what it is usually said to be. Not that beyond which
there is nothing, but that of which there is always

something beyond, is infinite. An illustration is given

by the rincrs not having: a bezel which are called end-

less, because there is always something beyond any

Axiom of Archimedes, already used by Eudoxus (see supra,

p. 319 n. b).

* The reference is evidently to the famous " undetermined
dyad of the great and small." A. E. Taylor (Mind^ xxxv.,

pp. 419-440, 1936, and xxxvi., pp. 12-33, 1927) puts forward
an ingenious theory of the nature of the " undetermined
dj'ad." He sees a reference to the process of approximating
more and more closely to a number by approximations
alternately greater and less ; D'Arcy Wentworth Thompson
(Mindf xxxviii., pp. 43-55, 1929) adds the further refinement
that the method is approximation by continued fractions.

Though such conceptions were doubtless not beyond the
mathematical capacity of Plato's Academy, they must
remain guesses ; and there is nothing to force us to believe
that there is anything more profound in the concept of the
undetermined dyad than Aristotle here indicates, viz., it is

possible to proceed in an infinite series either by way of
increase or by way of diminution.

Aristotle has probably misunderstood some obiter dictum
of Plato's.
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^ 4 riva, /xeWoi• Set €€ ^€' eV 8e ^, ' alel €€ cTepov.

Ibid. 7, 207 b 27-34

' -,€ etvat

(̂ ), etvat -
, ^
8€ etvat iv .
() Proof differing from Euclid's

Aristot. Anal. Pr. i. 24, 41 b 5-22

ytVcrat ,' at .
T^y^eVat at . et

" Aristotle had been arguing that in any syllogism one
of the propositions must be affirmative and universal.

** Lit. " drawn."
* For this method of expressing the sum of two angles

by the juxtaposition of the letters representing them, see

Archytas's method of representing the sum of two numbers
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point on them, but they are so called only after a

certain resemblance, and not strictly ; for this ought
to be an essential attribute, and the same point should

never do duty again ; but in the circle this is not so,

but the same point is used over and over.

Ibid. 7, 207 b 27-34

But the argument does not deprive mathematicians
of their study, although it denies that the infinite

exists in the sense of actual existence as something
increased to such an extent that it cannot be gone
through ; for even as it is they do not need the

infinite (or use it), but only require that the finite

straight line shall be as long as they please. Now
any other magnitude may be divided in the same ratio

as the largest magnitude. Hence it make no
difference to them, for the purpose of demonstration,

whether there is actually an infinite among existing

magnitudes.

(c) Proof differing from Euclid's

Aristotle, Prior Analytics i. 24, 41 b 5-22

This ^ is made clearer by geometrical theorems, such

as that the angles at the base of an isosceles triangle

are equal [Eucl. i. 5]. For let A, be joined^ to

the centre. If then we assumed that the angle

[i.e. A -t- ] ^ is equal to the angle [i.e. +]
svpra, p. 130. The angles A, are the angles OAB, OBA,
and are the same as those later described, in a confusing
manner, as E, Z. The angles , are the smaller angles
between A and the arc of the circle. There is other evi-

dence that such " mixed " angles played a big part in pre-

Euclidean geometry, but Euclid himself scarcely uses them.
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(d) Mechanics

(i.) Principle of ike Lever

[Aristot.] Mech. 3, 850 a-b

8e €
€ , Se, ,,8 , ,. Se, ,»

8 , -
" Euclid proves this theorem by producing the equal

sides AB, AC of an isosceles triangle to F, G where AF is

equal to AG. He shows that the triangle AFC is congruent
with the triangle AGB, hence that the triangle BFC is

congruent with the triangle CGB, and so finally that the
anjrle ABC is equal to the angle ACB.

* The Mechanics is not by Aristotle, but must have been
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without asserting jrenerally that the angles of semi-

circles are equal, and
again that the angle is

equal to the angle with-

out assuming generally

that the tMO angles of all

segments are equal, and
if we further inferred

that, since the whole
angles are equal, and
equal angles have been
subtracted from them,
the remaining angles

E, are equal, we should commit a petitio principii

unless we assumed generally that if equals are sub-

tracted from equals the remainders are equal.**

(d) Mechanics

(i.) Principle of the Lever

[Aristotle], Mechanics 3, 850 a-b *

Since the greater radius is moved more quickly

than the less by an equal weight, and there are three

elements in the lever, the fulcrum, that is the cord*'

or centre, and two weights, that which moves and
that which is moved, therefore the ratio of the weight

moved to the moving weight is the inverse ratio of

their distances from the fulcrum. It is always true

that the farther the moving weight is away from the

fulcrum, the more easily will it move. The reason is

written by someone under his influence at a not much later

date ; it may be taken as reflecting Aristotle's own ideas.

" The author has compared the fulcrum supporting a lever

to the cord by which the beam of a balance is suspended.
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(.) Parallelogram of Velocities

[Aristot.] Mech. 1, 848 b

iv , in* cu^eta?, -
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Se , Se *
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. 8et.;^/?7^aeTat -^ • atet -, ^.

" i.e. has two linear movements in a constant ratio to each

other.
'' i.e. parallelogram.
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that already stated, that the point which is farther

from the centre describes the greater circle. As a
result, if the pover applied is the same, that which
moves the system will have a greater effect the
farther it is from the fulcrmn.

(ii.) Parallelogram of Velocities

[Aristotle], Mechanics 1, 848 b

When a body is moved in a certain ratio,^ it must
move in a straight line, and this straight hne is the
diagonal of the figure ^ formed from the two straight

lines which have the given ratio.

For let the ratio according to Avhich the body moves
be that of AB to ; let be moved towards
while AB be moved
towards ; and
let A travel to ,
while AB travels to

a position marked
by E. If the rati»)

of the movement ib

that of AB to ,
then must needs

have the same ratio

to AE, Therefore

the small quadri-

lateral is similar to the larger, so that they have the

same diagonal, and A will be at Z. It may be shown
that it will behave in the same manner wherever the

motion be interrupted ; it will be always on the

diagonal. Therefore it is also manifest that a body
travelling along the diagonal with two movements
will travel according to the ratio of the sides.
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() General

Stob. Ed. ii. 31. 114, ed. Wachsmuth ii. 228. 25-29

/)* ^] € yeoj/xerpetv, ws, per
" hi /la^oj/Tt; " 6]? " ?, ' ^> "., €€ i^ ^
Kephalveiv,"

() The Elements

(i.) Foundations

Eucl. Elem. L

"OpoL

a\€ ioTLV, ,
\ Se .
\ €.
" Hardly anytliing is known of the life of Euclid beyond

what has already been stated in the passage quoted from
Proclus {supra, p. 154•). From Pappus vii. 35, ed. Hultsch ii.

678. 10-12, infra, p. 489, we infer the additional detail that

he taugl^t at Alexandria and founded a school there. Arabian
references are summarized by Heath, The Thirteen Books of
Euclid's Elements, 2nd edn., 1926, vol. i. pp. 4-6. Euclid must
have flourished c. 300 b.c.
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(a) General

Stobaeus, Extracts ii. 31. 114, ed. Wachsmuth ii. 228.
25-29

Someone who had begun to read geometry with
Euclid, when he had learnt the first theorem asked
Euclid, ** But what advantage shall I get by learning

these things ?
" EucHd called his slave and said,

" Give him threepence, since he must needs make
profit out of M'hat he learns."

(b) The Elements *

(i.) Foundations

Euclid, Elements i,

definitions ^

1. A point is that which has no part.

2. A line is length without breadth.

3. The extremities of a Une are points.

* For the meaning of elements, see supra, p. 150 n. e.

" For a full discussion of the many problems raised by
Euclid's definitions, postulates and common notions the

reader is referred to Heath, The Thirteen Books of Euclid's

Elements^ vol. i. pp. 155-240.
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" Plato (Parmenides 137 ) defines a straight line as " that
of which the middle covers the ends." Euclid appears to
be trying to say the same kind of thing in more geometrical
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4. A straight line is a line which Hes evenly with the
points on itself.**

5. A surface is that which has length and breadth
only.

6. The extremities of a surface are lines.

7. A pla7ie surface is a surface which lies evenly
vith the straight lines on itself.

8. A plajie angle is the inclination towards one
another of two lines in a plane which meet one
another and do not lie in a straight line.

9. And when the lines containing the angle are

straight, the angle is called rectilineal.

10. When a straight line set up on a straight line

makes the adjacent angles equal one to another, each
of the equal angles is right, and the straight line

standing on the other is called a perpendicular to that

on which it stands.

1 1

.

An obtuse angle is an angle greater than a right

angle.

12. An acute angle is an angle less than a right

angle.

13. A boundary is that which is the extremity of

anything.

14. A figure is that which is contained by any
boundary or boundaries.

15. A circle is a plane figure contained by one line

such that all the straight lines falling on it from one
point among those lying within the figure are equal

one to another.

16. And the point is called the centre of the circle.

17. A diameter of the circle is any straight line

drawn through the centre and terminated in both

language. Neither statement is satisfactory as a difinition

(c/. Def. 7).
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" Heath classifies modern definitions of parallel straight
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directions by the circumference of the circle, and such
a straight Une bisects the circle.

18. A semicircle is the figure contained by the

diameter and the circumference cut off by it. And
the centre of the semicircle is the same as that of

the circle.

19. Rectilinealfigures are those contained by straight

lines, trilateral figures being those contained by three,

quadnlateral those contained by four, and multilateral

those contained by more than four straight hnes.

20. Of trilateral figures an equilateral triangle is that

which has its three sides equal, an isosceles triangle

that which has only two of its sides equal, and a
scalene triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled

tnaiigle is that which has a right angle, an obtuse-

angled triangle is that which has an obtuse angle, and
an acute-angled triangle is that which has its three
angles acute.

22. Of quadrilateral figures, a square is that which is

both equilateral and right-angled ; an oblong is that

which is right-angled but not equilateral ; a rhombus
is that which is equilateral but not right-angled ; and
a rhomboid is that Avhich has its opposite sides and
angles equal one to another but is neither equilateral

nor right-angled ; and let quadrilaterals other than
these be called trapezia.

23. Parallel straight lines are straight hnes which,
being in the same plane and produced indefinitely in

both directions, do not meet one another in either

direction.**

lines into three main groups : (1) Parallel straight lines have
no point comrnon, under which general conception the
following varieties of statement are included : (a) they do
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not cut one another, (b) they meet at infinity, (c) they have a
common point at infinity', (2) parallel straight lines have
the same, or like, direction or directions ; (3) parallel

straight lines have the distance betxoeen them constant.

Euclid's definition belongs to 1 (a), and he avoids many fallacies

latrnt in the other definitions, showing himself superior not

only to many ancient, but to many modern, geometers.
" The chief purpose of these first three postulates is perhaps

not to lay down that straight lines and circles can be drawn,
but to delineate the nature of Euclidean space. They imply
that si^ace is continuous (not discrete) and infinite (not

limited).
' This gives a determinate magnitude by which angles
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POSTULATES

1. Let the following be postulated : to draw a

straight line from any point to any point.

2. To produce a finite straight line continuously in

a straight line.

3. To describe a circle vdih any centre and dia-

meter.

°

4. All right angles are equal one to another.^

5. If a straight Une falling on two straight Hnes
make the interior angles on the same side less than
tAvo right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles

less than two right angles.*'

can be measured, but it does far more. To prove this

statement it would be necessary to assume the invarlahility

of figures. Euclid preferred to postulate the equality of
right anprles, which amounts to an assumption of the in-

variability offigures or the homogeneity of space.
" Heath says that this postulate " must ever be regarded

as among the most epoch-making achievements in the

domain of geometry," and observ^es :
" When we consider

the countless successive attempts made through more than
twenty centuries to prove the postulate, many of them by
geometers of ability, we cannot but admire the genius of
the man who concluded that such a hypothesis, which he
found necessary to the validity of his whole system of
geometry, was really indemonstrable."
The postulate was frequently attacked in antiquity and

many attempts have been made to prove it—by Ptolemy
and Proclus in ancient days, by Wallis, Saccheri, Lambert
and Legendre in modern times. All have failed. By
omitting this postulate, Lobachewsky, Bolyai and Ptiemann
developed "non-Euclidean "systems ofgeometry. Saccheri,

in his book Euclides ah omni naevo vlndicatus (1733), saw
the possibility of alternative h>T3otheses, and worked out
the consequences of several ; but his faith in Euclidean
geometry as the sole possible geometry was so strong that

he failed to realize the full implications of his work.
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COMMON NOTIONS

1. Things which are equal to the same thing are

equal one to another.

2. If equals are added to equals, the wholes are

equal.

3. If equals are subtracted from equals, the re-

mainders are equal.

7. Things which coincide with one another are

equal one to another.

8. The whole is greater than the part.*

(ii.) Theory of Proportion

Euclid, Elements v.

DEFINITIONS

1. A magnitude is apart of a magnitude, the less of

the greater, when it measures the greater.

2. The greater is a multiple of the less when it is

measured by the less.

3. A ratio is a sort of relation in respect of size

between two magnitudes of the same kind.

4. Magnitudes are said to have a ratio one to

another vhich are capable, \vhen multiplied, of ex-

ceeding one another.

5. Magnitudes are said to be in the same ratio, the

first to the second and the third to the fourth, when,

*» The MS3. have four other Common Notions, but they
are unnecessary, and their genuineness was suspected even
in antiquity. They are : 4. If equals are added to unequals,
the wholes are unequal ; 5. Things which are double of the

same thing are equal one to another ; 6. Things which are
halves of the same thing are equal one to another ; 9. Two
straight lines do not enclose a space.
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" In the translation of this remarkable definition I cannot

improve on Heath. Literal translation is difficult because
the Nrords ' Come only once
in the Greek but refer both to ... -
in the nominative and . . . in the
genitive.

The definition, which avoids all mention of a part of a
magnitude (unlike Elements vii. Def. 21), is applicable to all

magnitudes, commensurable and incommensurable. It must
be due, in substance at least, to Eudoxus (see supra, p. 408).

The definition has often been assailed through misunder-
standing, but has been brilliantly defended by such great
mathematicians as Barrow and De Morgan, and was adopted
by Weierstrass for his definition of equal numbers.
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if any equimultiples whatever be taken of the first

and third, and any equimultiples whatever of the

second and fourth, the former equimultiples alike

exceed, are aUke equal to, or aUke fall short of, the

latter equimultiples respectively taken in correspond-

ing order."

6. Let magnitudes which have the same ratio be
called proportional.

7. When, of the equimultiples, the multiple of the

first magnitude exceeds the multiple of the second,

but the multiple of the third does not exceed the

multiple of the fourth, then the first is said to have a

greater ratio to the second than the third has to the
fourth.

8. A proportion in three terms is the least possible.

9. When three magnitudes are proportional, the

first is said to have to the third the duplicate ratio of

that which it has to the second.^

Max Simon {Euclid und die sechs planimeirischen Biicher^

p. 110) thinks it is clear from this definition that the Greeks
possessed a notion of number as general as modern mathe-
maticians. Heath{ Thirteen Books of^ Elements^
ii., pp. 124-126) shows how Euclid's definition divides all

rational numbers into two coextensive classes, and so defines

equal ratios in a manner exactly corresp ii;ding to Dedekind's
theory of the irrational.

De Morgan gives the following modern equivalent of the
definition. " Four magnitudes, A and of one kind, and
C and D of the same or another kind, are proportional
when all the multiples of A can be distributed among the
multiples of in the same intervals as the corresponding
multiples of C among those of D." That is to say, 7n,

being any numbers whatsoever, if mA lies bet%\ een wB and
(71+ 1)B, mC lies between nD and {n+ 1)D.

^ If-=-r, then = -^, and a has to h the duplicate Sitio

of to X.
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" The magnitudes must be in continuous proportion. If

CL (X/ 1/ O/ (Z^
- = -= 7, then =^ -5» and a has to b the triplicate ratio of

a to X. Alternatively, a cube with side a has the same
ratio to a cube with side a; as to 6 (see supra, p. 258 n. 0).
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10. When four magnitudes are proportional ° the

first is said to have to the fourth the triplicate ratio of

that which it has to the second, and so on continually,

whatever the proportion.

11. The term correspondi?ig inagnitudes is used of

antecedents in relation to antecedents and of con-

sequents in relation to consequents.^

12. Alternate ratio means taking the antecedent in

relation to the antecedent, and the consequent in

relation to the consequent."

13. Liverse ratio means taking the consequent as

antecedent in relation to the antecedent as conse-

quent.**

14. Composition of a ratio means taking the ante-

cedent together with the consequent as one in

relation to the consequent by itself.^

15. Separation of a ratio means taking the excess by
which the antecedent exceeds the consequent in

relation to the consequent by itself/

16. Conversion of a ratio means taking the ante-

cedent in relation to the excess by which the ante-

cedent exceeds the consequent. i'

17. A ratio ex aequali arises when, there being
several magnitudes and another set equal to them in

multitude which taken two by two are in the same
proportion, as the first is to the last in the first set of

magnitudes, so is the first to the last in the second

* " Antecedents " are literally " leading terms," " con-
sequents " the " following terms," In the ratio a : b, a is

the antecedent, b the consequent.
« If : 6 : : A : B, then : A : : 6 : B.
* If : : : A : B, then 6 : : : : A.
* i.e. the transformation of the ratio : b into a + b : b.

f i.e. the transformation of the ratio : b into a- b : b.

» i.e. the transformation of the ratio a : b into : - 6.
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" ' must mean " at an equal distance," i.e., after an
equal number of terms. If a, 0, c . . . wj, is one set of

nuigrnitudts and A, B, C . . . M, the other, and : 6 =
A : B, and so on, up to m : « = : , then : = A : .
This is proved in v. 22. The definition merely serves to

gave a name to the inference.
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set of magnitudes ; in other words, a taking of the
extremes by removal of the intermediate terms. **

18. A perturbed proportion arises when, there being
three magnitudes and another set equal to them in

multitude, as antecedent is to consequent in the first

magnitudes, so is antecedent to consequent in the
second magnitudes, while as the consequent is to the
other term in the first magnitudes, so is the other
term to the antecedent in the second magnitudes.^

(iii.) Theory of Incommensurahles

Euclid, Elements x.

DEFIXITIONS

1. Those magnitudes are said to be commensurable
which are measured by the same common measure,
and those incommensurable which cannot have any
common measure.

2. Straight lines are commensurable in square , when
the squares on them are measured by the same area,

and incommensurable in square w^hen the squares on
them cannot have any area as a common measure.

3. With these hypotheses, it is proved that there
exist straight lines infinite in multitude which are

commensurable and incommensurable respectively,

some in length only, and others in square also, wdth
an assigned straight line. Let then the assigned

straight line be called rational, and those straight lines

which are commensurable with it, whether in length

* If a, 6, c and A, B, C are the two sets of magnitudes,
and a:6 = B:C, b : c =A : the proportion is said to be
perturbed. It follows that : c =A : C. This is a particular

case of the inference and is proved in v. 23.
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and in square or in square only, be called rational, but

those which are incommensurable with it be called

irrational.

4. And let the square on the assigned straight line

be called rational, and those areas which are com-
mensurable with it rational, but those which are

incommensurable with it irrational, and the straight

lines which produce them irrational, that is, if the

areas are squares, the sides themselves, but if the

areas are any other rectilineal figures, the straight

lines on which are described squares equal to them.

Prop. 1

Two unequal magnitudes being set out, if from the

greater there he subtracted a magnitude greater than the

half, and from the remainder a magnitude greater than

its half, and so on contimially , there nill be left some

magnitude rvhich ?vill be less than the lesser magnitude set

out.

Let AB, be the two unequal magnitudes, of which
AB is the greater ; I say that, if from AB there be

A

—

1

subtracted a magnitude greater than its half, and
from the remainder a magnitude greater than its half,

and so on continually, there will be left some magni-
tude which will be less than the magnitude .

For , if multipUed, will at some time be greater
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than AB [see v. Def. 4]. Let it he multiplied, and let

be a multiple of , greater than AB, and let

be divided into the parts , ZH, HE equal to ,
and from AB let there be subtracted greater

than its half, and from let there be subtracted

greater than its half, and so on continually, until the

di\'isions in AB are equal in multitude to the divisions

inAE.
Let, then, AK, , be divisions equal in

multitude with , ZH, HE ; now since is

greater than AB, and from there has been sub-

tracted EH less than its half, and from AB there has

been subtracted greater than its half, therefore

the remainder HA'is greater than the remainder.
And since is greater than, and from there

has been subtracted the half, HZ, and from there

has been subtracted greater than its half, therefore

the remainder is greater than the remainder AK.
Now is equal to ; and therefore is greater

than AK. Therefore AK is less than .
There is therefore left of the magnitude AB the

magnitude AK which is less than the lesser magnitude
set out, namely, ; which was to be proved—and
this can be similarly proved even if the parts to be
subtracted be halves.'*

" This important theorem is often known as the Axiom
of Archimedes because of the use to which he puts it, or a
similar lemma :

" The excess by which the greater of two
unequal areas exceeds the lesser can, by being continually
added to itself, be made to exceed any given finite area."
Archimedes makes no claim to have discovered this lemma,
which is doubtless due to Eudoxus. The chief use of the

"axiom " by Euclid is to prove Elements xii. 2, that circles

are to one another as the squares on their diameters.
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* Much of Eucl. Elem. . is devoted to an elaborate classi-

fication of irrational straight lines. Zeuthcn {Gesrhkhte der
Mathematik im AJtertinn vnd J\iittelalfer, p. 56) suggests
that, inasmuch as one straight line looks very much like

another, the Greeks could not perceive by simple inspection

that difference among irrational quantities which our system
of algebraic symbols enables us to see ; consequently they
were led to classify irrational straight, lines in the manner of

Eucl. Elem. x., and we know from an Arabic commentary
on this book discovered by Woepcke {Memoires presentes a
VAcademie des Sciences^ xiv., 1856, pp. 658-720) that Theae-
tetus had to some extent preceded Euclid. In this system
irrational straight lines are classified according to the areas

they produce when "applied" {v. supra, pp. 186-187) to

other straight lines. For full details the reader must be
referred to Loria, Le sc'ienze esatte nelV antica Grfcia, pp.
225-231, Heath's notes in The Thirteen Books of Euclid's

Elements^ vol. iii., and Il.G.M. i. 404-411, but it may be useful

to give here, in Heath's notation, the modern algebraic

equivalents of Euclid's irrational straight lines. A medial

line is of the form ^, i.e., the positive solution of the equation

x^- py/k.p = 0. The other twelve irrational lines are com-
pound, and may best be arranged in pairs as follows i

1. Binomial

\

,,-

Apotomej P + Vk.p,

being the positive roots of the equation

X* - 2(1 + k)p^ . a;" + (1 - Jfc)V =0.

2. First bimedial }
Jfcl + If

First apotome of a medial I
^ " ^*

being the positive roots of the equation

X*- 2\^k{l + A)p2 .
•2 + -(1 - A)V =0.
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Prop. Ill, corollary

The apoiome and the irrational straight linesfollomng
it are the same neither with the medial straight line nor

nith one another.^ . , ,

Since the apotome has been proved not to be the
same as the binomial straight Hne [x. Ill], and, if

3. Second bimedial \ , . X^p

Second apotome of a medial) ^Ic^'

being the positive roots of the equation

as* - 2—j^p^ . x^ + -—~ p* =0.

4, Major\ _p_ // k \ /( k
Minor) ^C2\/ l'"^Vi+TV VsV V Vf+P

being the positive roots of the equation

6. Side of a rational plus a
medial area

Producing with a rational

area a medial whole

V2(l + A^2)

^ —=£=.JW 1 + A2 - k\

being the positive roots of the equation

6. Side of the sum of two
medial areas

Producing with a med-
ial area a medial
whole

pXi / f
k \

,P>i A: \

being the positive roots of the equation
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ei'OL at€€ rfj rd^eL rfj ^,€ e/c €
ttj Ta^eL, crepat elalv

at€ erepat at€ €8, etrat rafet ,,: ho

,

: ho ,' ^ hevTepav,,*6 ,,*,
MeoT^S" ,
Meo^S" ^,^, .,

(.) Method of Exhaustion

Eucl. Elem. xii. 2

Ot ^^." ,,
at,•, 6, .

* Eudeimis attributed the dii,covery of this important
theorem to Hippocrates (see supra, p. 238). Unfortunately
we do not know how Hippocrates proved it.
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applied to a rational straight line, the straight lines

follo\nng the apotome produce, as breadths, apo-

tomes according to their order, and those follo\ving

the binomial straight line produce, as breadths,

binomials according to their order, therefore the

straight lines following the apotome are different,

and the straight lines following the binomial straight

line are different, so that in all there are, in order,

thirteen straight lines,

Medial,

Binomial,

First bimedial.

Second bimedial,

Major,

Side of a rational plus a medial area,

Side of the sum of two medial areas,

Apotome,
First apotome of a medial straight line,

Second apotome of a medial straight hne,

Minor,

Producing with a rational area a medial whole,

Producing with a medial area a medial \vhole.

(iv.) Method of Exhaustion

Euclid, Elements xii. 2 <*

Circles are to one another as the squares on the

diameters.

Let, be circles, and , their

diameters ; I say that, as the circle is to the
circle, so is the square on to the square on.
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For if the circle is not to the circle as

the square on to the square on , then the
square on will be to the square on as the circle

is to some area either less than the circle

or greater. Let it first be in that ratio to a

lesser area . And let the square be inscribed

in the circle ; then the inscribed square is

greater than the half of the circle, inasmuch
as, if through the points E, Z, H, we draw tangents
to the circle, the square is half the square
circumscribed about the circle, and the circle is less

than the circumscribed square ; so that the inscribed

square is greater than the half of the circle. Let the circumferences EZ, ZH,, be
bisected at the points K, A, M, N, and let EK, KZ,
ZA, AH, HM, , , NE be joined ; therefore

each of the triangles EKZ, ZAH,, is

greater than the half of the segment of the circle

about it, inasmuch as, if through the points K, A, M,
we draw tangents to the circle and complete the

parallelograms on the straight lines EZ, ZH,,,
each of the triangles EKZ, ZAH,, will be
half of the parallelogram about it, vhile the segment
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about it is less than the parallelogram ; so that each

of the triangles EKZ,,, is greater

than the half of the segment of the circle about it.

Thus, by bisecting the remaining circumferences and

joining straight lines, and doing this continually, we
shall leave some segments of the circle which will

be less than the excess by which the circle

exceeds the area . For it was proved in the first

theorem of the tenth book that,, if two unequal

magnitudes be set out, and if from the greater there

be subtracted a magnitude greater than its half, and

from the remainder a magnitude greater than its half,

and so on continually, there wall be left some magni-

tude which is less than the lesser magnitude set out.

Let such segments be then left, and let the segments

of the circle on EK, KZ,,, HM,,, NE be less than the excess by which the circle

exceeds the area. Therefore the remainder,

the polygon, is greater than the area .
Let there be inscribed, also, in the circle

the polygon similar to the polygon

; therefore as the square on is to

the square on , so is the polygon to

the polygon [xii. 1]. But as the square

on is to the square on, so is the circle

to the area ; therefore also as the circle is

to the area , so is the polygon to the

polygon [v. 11] ; therefore, alternately,

as the circle is to the polygon in it, so is the

area to the polygon. Now the circle
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is greater than the polygon in it ; therefore

the area also is greater than the polygon. But it is also less ; which is im-

possible. Therefore it is not true that, as is the

square on to the square on , so is the circle

to some area less than the circle .
Similarly we shall prove that neither is it true that, as

the square on is to the square on , so is the

circle to some area less than the circle.
I say now that neither is the circle towards

some area greater than the circle as the square

on is to the square on.
For, if possible, let it be in that ratio to some greater

area . Therefore, inversely, as the square on is

to the square on , so is the area to the circle. But as the area is to the circle, so

is the circle to some area less than the circle

; therefore also, as the square on is to the

square on, so is the circle to some area less

than the circle [v. 11] ; which was proved

impossible. Therefore it is not true that, as the

square on is to the square on, so is the circle

to some area greater than the circle.
And it was proved not to be in that relation to a less

area ; therefore as the square on is to the square

on, so is the circle to the circle.
Therefore circles are to one another as the squares

on the diameters ; which was to be proved.
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(v.) Regular Solids

Eucl. Elem. xiii. 18

? Trevre?^.̂^ €, € elvai

ttJ , Se

elvai ,, ,
at , , -

at, , . \ inel]
, ..

; ^^ ? ,? *•.
Kat

" For the earlier history of the rc^riilar, cosmic or Platonic
figures, V. supra, pp. '216-225, 878-379.

" This proposition cannot be fully understood without the
previous propositions in tiie book which it assumes, but it will

give an insight into the thoroughness and comprehensiveness
of Euclid's methods.
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(v.) Regular Solids °

Euclid, Elements xiii. 18 *

To set out the sides of the five figures and to compare

them one with another.

Let AB, the diameter of the given sphere, be set

out, and let it be cut at so that is equal to,
and at so that is double of ; and on AB
let the semicircle AEB be drawn, and from , let, be drawn at right angles to AB, and let AZ,
ZB, EB be joined. Then since =2, there-

fore =3. Convertendo, therefore = •1.
But BA : =2 : AZ2 [v. Def. 9], for the triangle

AZB is equiangular with the triangle [vi. 8J ;

A
therefore BA2=3\22.
meter of the sphere is also one-and-a-half times the
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square on the side of the pyramid [xiii. 13]. And
AB is the diameter of the sphere ; therefore AZ is

equal to the side of the pyramid.

Again, since =2, therefore =3. But

AB : =2 : BZ2 [vi. 8, v. Def. 9] ; therefore AB^

= 3BZ2. But the square on the diameter of the

sphere is also three times the square on the side of

the cube [xiii. 15]. And AB is the diameter of the

sphere ; therefore BZ is the side of the cube.

And since =, therefore =2. But: =2:2 [vi. 8, v. Def. 9]. Therefore

AB2 = 2BE2. But the square on the diameter of the

sphere is also double of the square on the side of

the octahedron [xiii. 14]. And A is the diameter

of the given sphere ; therefore BE is the side of the

octahedron.

Now let AH be drawn from the point A at right

angles to the straight line AB, and let AH be made

equal to AB, and let be joined, and from let

be dra\vn pei-pendicular to AB. Then since

=2 (for HA = AB), and: =:
[\-i. 4], therefore =2. Therefore2 =42^
Therefore 2+2 =52 =2 [i. 47]. But

=; therefore 2 =52. And since AB =

2, and in them =2, therefore the remainder
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I^V. eoTt -8€ /xet €, * eiKooaeSpov -. ioTLV -- €, ^ ^•, -^ -,, ,, , 8, *^. /ca-, *
€OTt , ' *

* Euclid's procedure, in constructing the icosahedron
Inscribable in a given spliere, is first to construct a circle with
radius r such that r- = ],d^, where d is the diameter of the

sphere. In this he inscribes a regular decagon, and from its
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is double of the remainder . Therefore
=3; therefore2 =92. But 2 =52;

therefore 2> 2. Therefore>. Let
be made equal to , and from let be drawn
at right angles to AB, and let MB be joined. Then
since 2 =52, and =2, =2, there-

fore AB2 = 5KA2. But the square on the dia-

meter of the sphere is also five times the square
on the radius of the circle from vhich the icosahedron
has been described [xiii. 16, coroll.].^ And A is the

diameter of the sphere ; therefore KA is the radius

of the circle from which the icosahedron has been
described ; therefore KA is a side of the hexagon in

the said circle [iv. 15, coroll.]. And since the diameter
of the sphere is made up of the side of the hexagon
and two of the sides of the decagon inscribed in the

same circle [xiii. 16, coroll.], and AB is the diameter
of the sphere, while KA is the side of the hexagon,
and AK = AB, therefore each of the straight lines

AK, AB is a side of the decagon inscribed in the circle

from w^hich the icosahedron has been described. And
since A belongs to a decagon and MA to a hexagon
(for MA is equal to A since it is also equal to ,
angular points draws straight lines perpendicular to the
plane of the circle and equal in length to r ; this determines
the angular points of another decagon inscribed in an equal
parallel circle. By joining alternate angular points of one
decagon, he oljtains a pentagon, and then does the same
with the other decagon, but in such a manner that the angular
points are not opposite one another. Joining the angular
points of one pentagon to the nearest angular points of the
other, he obtains ten equilateral triangles, which are faces of
the icosahedron. He completes the procedure by finding the
common vertices of the five equilateral triangles standing on
each of the pentagons, which form the remaining faces of the
icosahedron.
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being the same distance from the centre, and each
of the straight Unes, is double of ), there-

fore MB belongs to a pentagon [xiii. 10, i. 47]. But
the side of the pentagon is the side of the icosa-

hedron [xiii. 16] ; therefore MB is a side of the icosa

hedron.

Now, since ZB is a side of the cube, let it be cut

in extreme and mean ratio at X, and let be the

greater segment ; therefore XB is a side of the dode-
cahedron [xiii. 17, coroU.].^

And, since the square on the diameter of the sphere

was proved to be one-and-a-half times the square on
the side AZ of the pyramid, double of the square

on the side BE of the octahedron, and triple of the

square on the side ZB of the cube, therefore, of parts

of M-hich the square on the diameter of the sphere

contains six, the square on the side of the pyramid
contains four, the square on the side of the octa-

hedron contains three, and the square on the side of

the cube contains tvo. Therefore the square on the

side of the pyramid is four-thirds of the square on
the side of the octahedron, and double of the square

on the side of the cube ; vhile the square on the side

of the octahedron is one-and-a-half times the square

on the side of the cube. The said sides of the three

figures, I mean the pyramid, the octahedron and the

cube, are therefore in rational ratios one to another.

But the remaining two, I mean the side of the icosa-

hedron and the side of the dodecahedron, are not in

rational ratios either to one another or to the afore-

* To construct the dodecahedron inscribable in a given
sphere Euclid begins with the cube inscribed in the same
sphere, and draws pentagons having the edges of the cube as

diagonals.
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AM \
^ eVei . . . Sevrepas. " Miramur, cur haec definitio hoc

loco omnibus verbis citetur, praesertim forma parum Euclidea,
cum tamen antea in hac ipsa propositione toties tacite sit

usurpata. itaque puto, verba eVet . . . Bevripas subditiva

esse.
'
'—Heiberg.

* If r be the radius of the sphere circumscribing the five

regular solids,
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said sides ; for they are irrational, the one being
minor [xiii. 16], the other an apotome [xiii. 17]."

That the side MB of the icosahedron is greater than
the side NB of the dodecahedron we shall prove thus.

For since the triangle is equiangular vith the

triangle ZAB [vi. 8], the proportion arises, : BZ =
BZ ; BA [vi. 4]. And since the three straight lines

are in proportion, as the first is to the third, so is

the square on the first to the square on the second
[v. Def. 9]; therefore: =2:2; there-

fore, inversely, AB : = ZB2 : 2. But A =
3; therefore 2 =32. But 2 =42, for

=2 ; therefore2>2 ; therefore> ZB
;

therefore AA is by far greater than ZB. And, when
AA is cut in extreme and mean ratio, KA is the

greater segment, since AK belongs to a hexagon,
and KA to a decagon [xiii. 9] ; and when ZB is cut

in extreme and mean ratio, NB is the greater seg-

ment ; therefore KA is greater than NB. But
KA =AM; therefore AM> NB. Therefore MB,

side of pyramid = §V^ •
''

side of octahedron = \j'2 . r

side of cube = § ^/3 . r

side of icosahedron =t^^^{^ \'5)
5

. _
side of dodecahedron = 5( ;^15 - ^/S).

In the sense of the term irrational as used by Euclid's pre-

decessors and by modern mathematicians, all these expres-

sions are irrational ; but in the special sense of Eucl. Elem.
X. Def. 3, the first three are rational, because their squares are

commensurable one with another. The fourth and fifth

expressions are irrational even in Euclid's sense, belonging
to two species of irrational lines investigated in Book x.
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which is a side of the icosahedron, is much greater

than NB, Avhich is a side of the dodecahedron ; which
was to be proved.

I say now that no other figure, besides the said five

figures, can he consiriicted so as to be contained by equi-

lateral and equiangular figures equal one to another.

For a soUd angle cannot be constructed out of two
triangles, or, generally, planes. With three triangles

there is constructed the angle of the pyramid, with

four the angle of the octahedron, with five the angle

of the icosahedron ; but no soHd angle can be formed
by placing together at one point six equilateral and
equiangular triangles ; for inasmuch as the angle of

the equilateral triangle is two-thirds of a right angle,

the six vaW be equal to four right angles ; which is

impossible, for any solid angle is contained by angles

less than four right angles [xi. 21]. For the same
reasons no solid angle can be constructed out of more
than six plane angles.

By three squares the angle of the cube is contained

;

but it is impossible for a solid angle to be contained

by four squares ; for they will again be four right

angles [xi. 21].

By three equilateral and equiangular pentagons
the angle of the dodecahedron is contained ; but by
four it is impossible for a solid angle to be contained

;

for inasmuch as the angle of the equilateral pentagon
is a right angle and a fifth, the four angles Mill be
greater than four right angles ; which is impossible

[xi. 21].

Nor will a solid angle be contained by any other

polygonal figures by reason of the same absurdity.

Therefore no other figure, besides the said five
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(d) The Porisms

Procl. in Eucl. i., ed Friedlein 301. 21-302. IS; Eucl.,

ed. Heiberg-Menge viii. 237. 9-27

"Kv Ti eartr, 8 a^y^atVet tro^'*

" Euclid's Data (AeSo/MeVa) is his only work in pure geo-
metry to have survived in Greek apart from the Elements.

(His book On Divisions of Fiijures has survived in Arabic,

V. svpra, p. 156 n. r.) It is closely connected with Hooks
i.-vi. of the Elements^ and its general character will be suffi-
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figures, can be constructed so as to be contained by
equilateral and equiangular figures ; which was to

be proved.

(c) The Data»
EucL, ed. Heiberg-Menge vi. 2. 1-15

Definitions

1. Areas, lines and angles are said to be given in

magnitude when we can make others equal to them.
2. A ratio is said to be given when we can make

another equal to it.

3. Rectilineal figures are said to be given in species

when their angles are severally given and the ratios

of the sides one towards another are also given.

4. Points, lines and angles are said to be given in

position when they always occupy the same place.

5. A circle is said to be given in magnitude when
the radius is given in magnitude.

6. A circle is said to be given in position and in

magnitude when the centre is given in position and
the radius in magnitude.

(d) The Porisms

Proclus, On Euclid i., ed. Friedlein 301. 21-302. 13;
EucL, ed. Heiberg-Menge viii. 237. 9-27

Porism is one of the terms used in geometry. It

has a twofold meaning. For porisms are in the first

ciently indicated by these first few definitions. The object

of a proposition called a datum is to prove that, if in a figure

certain properties are given, other properties are also given, in

one or other of the senses defined in the definitions. Pappus
included the book in his ^ {Treasury of
Analysis). *
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ed. Heiberg-Menge viii. 238. 10-243. 5^8, -
. • .

* Heiberg, codd.
* Heiberg, codd.

* porism in this sense is commonly called a corollary.
* Euclid's Porisms has unfortunately not survived, which

is a great misfortune as it appears to have been the most
original and advanced of all his works. Our knowledge
of its contents comes solely from Pappus.

* Pappus is describing the books comprised in his?6€ {Treasury of Analysis). He proceeds to give an
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place such theorems as can be estabUshed by means of

the proofs of other theorems, being a kind of windfall

or bonus in the investigation °
; and in the second

place porisms are things which are sought, but need
some finding, being neither brought into existence

simply nor yet investigated by theory alone. For
to prove that the angles at the base of an isosceles

triangle are equal is a matter for theoretic inquiry

only, and such knowledge is of certain things already

in existence. But to bisect an angle or to construct a

triangle, to cut off or to add—all these things require

the making of something ; and to find the centre of a

given circle, or to find the greatest common measure
of two given commensurable magnitudes, and so on,

is in some way intermediate between problems and
theorems. For in these cases there is no bringing

into existence of the things sought, but a finding of

them ; nor is the inquiry pure theory. For it is

necessary to bring what is sought into view and to

exhibit it before the eyes. To this class belong
the porisms which Euclid wrote and arranged in his

three books of Porisms.^

Pappus, Collection vii., ed. Hultsch 648. 18-660. 16 ;

Eucl. ed. Heiberg-Menge viii. 238. 10-243. 5

After the Contacts (of Apollonius) come, in three

books, the Porisms of Euclid, a collection most skil-

fully framed, in the opinion of many, for the analysis

of the more weighty problems ^
. . .

explanation of the term porism as used by Euclid with which
Proolus's account is in substantial agreement. In addition,

he gave another definition by " more recent geometers "(
€€), viz., " a porism is that which falls short of a

locus-theorem in respect of its hypothesis "{ eWtv to€ €£).
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^ € Heiberg, cod. (sequente lacuna) del.

Hultsch.
' - HeiberfT, cod.,^ Hultsch.
*

. . . interpolator! trib. Hultsch.

• The four straight lines are described in the Greek as (the

sides) , i.e., as the sides of supine and
hyper-suplne quadrilaterals. Robert Sinison {Opera quae-

dam reli(/n<i, p. 34•8) explains a• as being of the
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Now to comprehend many propositions in one
enunciation is far from easy in these porisms, because
Euclid himself has not given many of each species,

but out of a great number he has selected one or a
few by way of example. But at the beginning of the

first book he has given certain allied propositions, ten

in number, from that more abundant species con-

sisting of loci. Finding that these can be compre-
hended in one enunciation, we have therefore written

it out in this manner : If, in a system offour straight

lines which cut one another two and two, the three points

\of intersection] on one straight line be given, while the

rest except one lie on different straight lines given in posi-

tion, the remaining point also will he on a straight line

given in position."' This has been enunciated in the

case of four straight lines only, of which not more
than two pass through the same point, and it is not

nature of (1) in the accompanying diagrams, while (2) and
(3) are . He also explained

F

the correct

meaning of the rather loo^e proviso, evos^ . Applied tO these figures,

the enunciation states that if A, B, F are given, while the loci

of C and D are straight lines, then the locus of is also a
straight line.

VOL. I R2 483



GREEK MATHEMATICS

€€. € Acyo-' eav eu^etat ,^ ,€ ^^ , € €€€ deaei^, '•, ,/' ,

^^, ,̂ ,JTOv ,
* . . . ." /5t^Ata '/ , .

* Sc. a trian<i:le having; as its sides three of the given straight

lines.

" The meaning of this enunciation was discovered by
Simson, and is given by Loria {Le scienze esatte nelV antica

Grecia, p. 256 n. 3) as follows :
" If a complete w-lateral be

deformed so that its sides respectively turn about points on
a straight line, and (w- 1) of its \n {n- 1) vertices move each

on a straight line, the remaining ^(n- l)(n- 2) of its vertices

likewise move on straight lines ; provided that it is not possible

to form with the (n- 1) vertices any triangle having for sides

the sides of the polygon." We may sympathize with the

frank confession of Edmond Ilalley {ApoUonii Pergaei De
sectione rationis, p. xxxvii) that he could make no sense out

of this passage.
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generally known that it is true of any assigned

number of straight lines when thus enunciated : If
any number of straight lines cut one another, not more

than two passing through the same point, and all the

points \of intersection'] on one of them he given, and if
each of those which are on another lie on a straight line

given in position—or still more generally in this

manner : If any number of straight lines cut one

another, not more than t?vo passing through the same
point, and all the points [of intersection'] on one of them

he given, rvkile of the remaining points of intersection, in

multitude equal to a triangular number, a number corre-

sponding to the side of this triangular number lie respect-

ively on straight lines given in position, provided that of
these latter points no three are at the vertices of a triangle,'^

each of the remaining points will lie on a straight line

given in position.^ The writer of the Elements was
probably not unaware of this, but he merely laid

down the principle.'' . . .

The three books of the Porisms involve 38 lem-

mas ^ ; of the theorems themselves there are 171.^

* Pappus proceeds to state in order 28 propositions from
Euclid's work.

* Pappus gives these lemmas to the Porisms (Pappus,
ed. Hultsch 866. 1-918. 20 ; Eucl. ed. Heiberg-Menge viii.

243. 10-274. 10).
* The reconstruction of the Porisms has been one of the

most fascinating inquiries pursued by students of Greek
mathematics, and thereby Chasles was led to the idea of
Enharmonic ratios. Further details will be found in Loria,
loc. cit., pp. 252,-260, Heath, H.G.M. i. 431-438, and I am
greatly indebted to the translations and notes in these works.
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{e) The Conics

Papp. Coll. vii. 80-36, ed. Hultsch 672. 18-678. 24

^

erepa ^ rj€. ^, he, ^€ € ^)
€€ , eVaAei [ *-€, ,. . . . Se [sc.?]
iv € -/», ' *?? *̂

ye -
^€^>€ ^ * -^,,. ^
^ ^ ^ ^, -,-,

h, ,,^
^ ' del. Hultsch.' . . . del. Hultsch.

Euclid's Conies has not survived, but an idea of its con-
tents can be obtained from Archimedes' references to pro-

positions proved in the Elements of Conics (ev
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(e) The Conics «

Pappus, Collection vii. 30-36, ed. Hultsch 672. 18-678. 24

Apollonius, who completed the four books of

Euclid's Conies and added another four, gave us eight

books of Conies. Aristaeus, Avho wrote the still extant *

five books of Solid Loei supplementary to the Conies,

called the three conies sections of an acute-angled,

right-angled and obtuse-angled cone respectively.

. . . Apollonius says in his third book that the
" locus with respect to three or four hues " had not

been fully worked out by Euchd, and in fact neither

Apollonius himself nor anyone else could have added
anything to what Euclid wrote, using only those

properties of conies which had been proved up to

EucHd's time ; as Apollonius himself bears witness

when he says that the locus could not be fully in-

vestigated \\ithout the propositions that he had been
compelled to work out for himself. Now Euchd
regarded Aristaeus as deserving credit for his con-

tributions to conies, and did not try to anticipate him
or to overthrow his system ; for he showed scrupulous

fairness and exemplary kindness towards all who
were able in any degree to advance mathematics, and
was never offensive, but aimed at accuracy, and did

not boast like the other. Accordingly he wTote so

much about the locus as vas possible by means of

€?), a term which would cover the treatises both of

Aristaeus and of Euclid. The Surface-Loci and the Porisms
of Euclid appear to have contained further developments in

the theory of conies.
'' This has been taken to imply that Euclid's Conies was

already lost when Pappus wTote. Nothing more is known
of this Aristaeus, unless he is identical with the Aristaeus said

by Hypsicles (Eucl. ed. Heiberg-Menge v. 6. 22-23) to have
written a book called Comparison of the Five Regular Solids.
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. . .
" scholiastae cuidam

historiae qiiidem veterum mathematicorum non imperito, sed

qui dicendi genere languido et inconcinno usus sit " tribuit

Hultsch.
^ del. Hultsch.

• The three-line locus is, of course, a particular example of
the four-line locus. It seems clear that Apollonius himself
did not have a complete solution of the four-line locus, but
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the Conies of Aristaeus, but did not claim finality for

his proofs. If he had done so, we should have been
obliged to censure him, but as things are he is in

no wise to blame, seeing that Apollonius himself is

not called to account, though he left the most part

of his Conies incomplete. Moreover Apollonius was
able to add the lacking portion of the theory of the

locus through having become familiar beforehand

with what had been written about it by Euclid, and
through ha\ing spent much time mth Euclid's pupils

at Alexandria, whence he derived his scientific habit

of mind.
Now this " locus with respect to three and four

lines," the theory of vhich he is so proud of having

expanded—though he ought rather to acknowledge
his debt to the original author—is of this kind. If

three straight lines be given in position, and from
one and the same point straight lines be drawn to

meet the three straight lines at given angles, and if

the ratio of the rectangle contained by two of the

straight lines towards the square on the remaining

straight line be given, then the point \\\ Ue on a

solid locus given in position, that is on one of the

three conic sections. And if straight lines be drawn
to meet at given angles four straight lines given in

position, and the ratio of the rectangle contained by
two of the straight lines so drawn towards the rect-

angle contained by the remaining two be given, then
in the same way the point will lie on a conic section

given in position.**

his Conies iii. 53-56 [Props. 74-76] amounts to a demonstra-
tion of the converse of the three-line locus, viz., if from any
point of a conic there he drawn three straight lines in fixed
directions to meet respectively two fixed tangents to the conic

and their chord of contact, the ratio of the rectangle contained
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Eucl. Phaen. Praef., Eucl. ed. Heiberg-Menge viii. 6. 5-7

KvXtvSpos-,
-, tJtls .

(/) The Surface-Loci

Papp. Coll. vii., ed. Hultsch 636. 33-24^ .

Prod, in Eucl. i., ed. Friedlein 394. 16-395. 2

,, -, -, .,
— ,, , ,,

by the first two lines so drawn to the square on the third line is

constant. For a solution and full discussion of the four-line

locus, reference should be made to Zeuthen, Die Lehre von
den Kegelschnitten im Altertum, pp. 126 IF., or Heath, Apol-
lonius of Perga^ pp. cxxxviii-cl.

" Euclid's Phenomena is an astronomical work largely based
on two treatises by Autolycus of Pitane (c. 315-240 b.c.)

which are also extant.
* Menaechmus is believed to have discovered the conic

sections as sections of a right-angled, acute-angled and
obtuse-angled cone respectively by a plane perpendicular
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Euclid, Preface to Phenomena.,'^ Eucl. ed. Heiberg-Menge
viii. 6. 5-7

If a cone or cylinder be cut by a plane not parallel

to the base, the resulting section is a section of an
acute-angled cone which is similar to a shield.^

(J) The Surface-Loci

Pappus, Collection vii., ed. Hultsch 636. 23-24

EucUd's two books of Surface-Loa.'^

Proclus, On Euclid i., ed. Friedlein 394. 16-395. 2

I call locus-theorems those which deal with the
same property throughout the whole of a locus, and
a locus I call a position of a Hne or surface which has
throughout one and the same property. Some locus-

theorems are constructed on Hnes and others on
surfaces. Furthermore, since lines may be plane
or solid—plane being those which are simply gener-

ated in a plane, like the straight line, and solid those

which are generated from some section of a sohd
figure, like the cylindrical helix or the conic sections

to a generating line. This passage shows that Euclid, at

least, was also aware that an ellipse could be obtained as a
section of a right cylinder by a plane not parallel to the base,
and the fact may well have been known before his time

;

Heiberg {Literdrgeschichtliche Studien iiber Euklid, p. 88)
thinks that Menaechmus probably used as the name
for the ellipse.

" This entry is taken from the list of books in Pappus's
ToTTos•€ {Treasury of Analysis). The work is

lost, but we can conjecture what surface-loci were from
remarks by Proclus and Pappus himself, and we can get some
idea of the contents of Euclid's treatise from two lemmas
given to it by Pappus.
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—it would appear that line-loci may be plane loci

or solid loci.'*

Pappus, Collection vii. 312-316, ed. Hultsch 1004. 16-
1010. 15 : Eucl. ed. Heiberg-Menge viii. 274. 18-278. 15

Lemmas to the Surface-Loci

1. If AB be a straight line and be parallel to

a straight line given in position, and if the ratio

. :2 be given, the point lies on a conic

section. If AB be no longer given in position and
A, be no longer given but lie on straight lines

AE, given in position, the point raised above
[the plane containing AE, EB] is on a surface given

in position. And this was proved.^

2. If AB be a straight line given in position, and

^ The Greek text and the figure in it (given on the left-hand
page) are unsatisfactory, but Tannery pointed out that by
reading evdeiaLs instead of evdela a satisfactory meaning can
be obtained {Bulletin des sciences mathematiquesy 2® sorie,

vi. 149-150). He also indicated the correct figure, which
was first printed by Zeuthen {Die Lehre von den Kegel-
schnitten im Altertum, pp. 423-430). The Works of Archi-
medes^ by T. L. Heath, pp. Ixii-lxiv, should also be consulted.
The first sentence states one of the fundamental properties

of conic sections. A literal translation of the opejiing words
in the second sentence Avould run :

" If AB be deprived of
its position, and the points A, be deprived of their character
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eV TO) imneSo), ^] ,^] ,
fj ,

^ • heiKreov^ ,{4€ ). ^ 8€€*.
\ ^ , K-at

Aoyo? ciTro ,. '-, OTL , €
fj

6'.." '.' ' ? , ,' . '. ^ *
^ ? c)p^a? Hultsch, deoiL Cod.

'^ hiiKriov Hultsch in adn., heiKvinai cod.
• € add. Gerhardt, Hultsch.

* " imnio " Hultsch.

of being given ..." The text leaves it uncertain whether,
when A is no longer given in position, it remains constant
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the point be given in the same plane, and be
di'awn, and be drawn perpendicular [to the given

straight line AB], and if the ratio : be given,

the point will lie on a conic section.° But it

must be shown that part of the curve forms the

locus. This will be proved as follows by means of

this lemma.
3. Given ^ the two points A, and the perpen-

dicular, let the ratio^ :2 +2 be given. I

say that the point lies on a conic section, whether
the ratio be of equal to equal, or greater to less, or less

to greater.

For in the first place let the ratio be of equal to

equal. Since 2 =2+2, let be made
equal to .
Then [BA . AE +2 = AA^- [Eucl. ii. 6

=2+2 [ex. hyp.,

and so] BA.AE =2.
in length or varies. Zeuthen conjectures that two cases were
considered by Euclid : (1) AB remains of constant length,
while AE, EB are parallel instead of meeting in a point ; and
(2) AE, EB meet in a point and AB always moves parallel
to itself, so varying in length. In the former case lies on
the surface described by a conic section moving bodily, in the
latter case the surface is a cone.

" This is the definition of a conic in terms of its focus and
directrix, AB being the directrix, the focus, any point
on the curve, and the ratio : AE the eccentricity of the
conic. Since Pappus proves this property for all three conies
by transforming it to the more familiar axial form, it must
have been assumed by Euclid without proof, and was pre-
sumably first demonstrated by Aristaeus. This is all the
more remarkable as the focus-directrix property is nowhere
mentioned by Apollonius, and, indeed, is found in only two
other places in the whole of the Greek mathematical writings,
V. supra, p. 362 n. a.

* Diagram on p. 496.
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Let AB be bisected at ; the point is therefore
given.

And AE [= AB-EB
=2-2]
=2.

Therefore . AE = 2BA .,
[and so 2BA . =2].
Now 2BA is given ; therefore the rectangle contained
by a given straight Hne and is equal to the square
on . Therefore the point lies on a parabola
passing through Z.

4. The synthesis of the locus is accomplished in this

way.**

Let the given points be A, B, let the ratio be of

equal to equal, let AB be bisected at Z, let be double
of AB ; and since ZB with an end point is a straight

line given in position, and is given in magnitude,
with ZB as axis, let there be drawn [Apoll. Conies i. 52]

the parabola HZ, such that, if any point be taken
upon it, and the perpendicular be drawn, the

rectangle contained by P, is equal to the square
on ; and let the perpendicular be drawn.
I say that is a part of the parabola [forming the
locus].

For let the perpendicular be drawn, and let

be made equal to . Then since AB = 2BZ,
=2, therefore AE [ =-] =2 ;

therefore BA . AE = 2AB .

=2. [by construction

Diagram on p. 498.

^ eoTLv ; we should expect Trotet .
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Let the equals ^,^ be added to either side ;

then [BA. + £2 =2 + •2

and so] 2 =2 +2. [Eucl. 11. 6

Therefore the curve forms the locus.

5. Again, let the two given points be A, B, and let

be a perpendicular straight line, and let the ratio2:2+2 be In the first case the ratio of a

greater to a less, and in the second case of a less to

a greater. I say, that the point lies on a conic

section, vhich is in the first case an ellipse and in the

second case a hyperbola.''

Since the given ratio is 2:2+2, let [E

be taken on AB so that] 2 :2 be in the same

* The Greek text from this point onwards is unsatisfactory,

and contains mathematical errors which Commandinus and
Hultsch corrected. The demonstration also leaves many-
gaps which I have filled, again following those com-
mentators.

^ €€ re ly Heiberg ; ,
Commandinus, Hultsch ; €€ cod.

* Hultsch,4- cod.
* Hultsch, cod.
* Hultsch. cod.
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ratio ; then in the first case is less than, while

in the second case is greater than . Let
be made equal to . Since the given ratio is2 :2 +2, and2 :2 is equal to it, the ratio

[2 -2 :2 +2 -2,
that is, by Eucl. ii. 6,]

ZA . AE :2
is given. Now since the ratio [2 :2 is given,

therefore] : is given, therefore [ : is

given. Accordingly, in the first case : BZ, and
therefore BZ :, is given ; in the second case, be-

cause : or inversely : is given, there-

fore : BZ or inversely] BZ : is given. Let
[H be taken on AB produced so that] AB : BH =
BZ :. Then [in the first case AB +BZ : BH +,
in the second case AB - BZ : BH -, that is in

either case] AZ : is given. Let [ be taken on
AB such that] : = :. Then the ratio

AB : is given. And [because by construction

: = : , componendo + : =
+ :, or AB : = EB :. Therefore

AB - : -, that is,] AE : is given. [Now
AZ : was given ;] therefore AE . AZ : .

is given. But ZA . AE :2 was given ; therefore

the ratio . :2 is given. [But the point

is given, and by construction the points E, are

given ; and because AB : BH = BZ : and also

* Koi . . . del. Hultsch.
* Hultsch, AB cod.

• BoOev del. Hultsch.
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Eucl. Optic. 8, Eucl. ed. Heiberg-Menge vii. 14. 1-16. 5
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*» Pappus proceeds to make the formal synthesis, as in the

case of the parabola, and then formally proves his original
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also given. [Therefore in the first case is the

diameter of an elHpse, in the second it is the diameter

of a hyperbola ; and] therefore the point Ues in

the first case on an ellipse, in the second on a hyper-

bola.»

(g) The Optics ^

Euclid, Optics 8, Eucl. ed. Heiberg-Menge vii. 14. 1-16. 5

The apparent sizes of equal and parallel magnitudes

at unequal distances from the eye are not proportional to

those distances.

Let AB, be the two magnitudes at unequal

distances from the eye, E. I say that the ratio of

the apparent size of to the apparent size of AB
is not equal to the ratio of BE to. For let the

rays AE, fall,^ and with centre and radius EZ
let the arc of a circle,, be drawn. Then since

the triangle is greater than the sector EZH,
while the triangle is less than the sector,
therefore

proposition in the case where the locus is a parabola ; the
proof where the locus is an ellipse or hj^erbola has been lost,

but can easily be supplied.
^ Euclid's Optics exists in two recensions, both contained

in vol. vii. of the Heiberg-Menge edition of Euclid's works.
One is the recension of Theon, but Heiberg discovered in

\'iennese and Florentine mss. an earlier and markedly different

recension, and there is every reason to believe it is Euclid's

own work ; it is from this earlier text that the proposition

here quoted is given. The Optics is an elementary treatise

on perspective. It is based on some false physical hJotheses,
but has some interesting mathematical theorems.

" Euclid, like Plato, believed [Optics, Def. 1 ] that rays of

light proceed from the eye to the object, and not from the

object to the eye.
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EZH € €€,
€€ 6,

6- , ',. TTJ ',, BE . BE
6, 8e,. BE

. */cat, ..
• This is equivalent, of course, to saying that

tan angle

tan angle'
a well-known theorem in trigonometry ; the full expression
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triangle '.sector EZH> triangle : sector.
Invertendo,

triangle -.triangle> sector EZH: sector,
and c07nponendo,

triangle : triangle EZA> sector : sector.
But triangle : triangle = :.
Now =, and AB : = :.
Therefore BE :> sector : sector.
Now
sector : sector = angle : angle.
Therefore

BE :> angle : angle .»
And is seen in the angle, while AB is seen

in the angle. Therefore ^ the apparent sizes

of equal magnitudes are not proportional to their

distances.

of the theorem is : If a, j5 are two angles such that a<< ^ir^

then
tan

tan'^^^*

* By Def. 4, which asserts :
" Things seen under a greater

angle appear greater, and those seen under a lesser angle
appear less, while things seen under equal angles appear
equal."
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