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PREFACE

THE purpose of this volume is to furnish a text in Practical

Astronomy especially adapted to the needs of civil-engineering

students who can devote but little time to the subject, and who

are not likely to take up advanced study of Astronomy. The

text deals chiefly with the class of observations which can be

made with surveying t instruments, the methods applicable to

astronomical and geodetic instruments being treated b$t briefly.

It has been the author's intention to produce a book%hich is

intermediate between the text-book written for the student of

Astronomy or Geodesy and the short chapter on the subject

generally given in text-books on Surveying. The subject has

therefore been treated from the standpoint of the engineer, who

is interested chiefly in obtaining results, and those refinements

have been omitted which are beyond the requirements of the

work which can be performed with the engineer's transit. This

has led to the introduction of some rather crude mathematical

processes, but it is hoped that these are presented in such a way
as to aid the student in gaining a clearer conception of the prob-

lem without conveying wrong notions as to when such short-cut

methods can properly be applied. The elementary principles

have been treated rather elaborately but with a view to making
these principles clear rather than to the introduction of refiner

ments. Much space has been devoted to the Measurement of

Time because this subject seems to cause the student more

difficulty thar \y other branch of Practical Astronomy. The

attempt has I
v{ J made to arrange the text so that it will be a

convenient reference book for the engineer who is doing field

work.

For convenience in arranging a shorter course those subjects

ill
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which are most elementary are printed in large type. The mat-

ter printed in smaller type may be included in a longer course

and will be found convenient for reference in field practice, par-

ticularly that contained in Chapters X to XIII.

The author desires to acknowledge his indebtedness to those

who have assisted in the preparation of this book, especially to

Professor A. G. Robbins and Mr. J. W. Howard of the Massa-

chusetts Institute of Technology and to Mr. F. C. Starr of the

George Washington University for valuable suggestions and crit-

icisms of the manuscript.

G. L. H.

BOSTON, June, 1910.

PREFACE TO THE THIRD EDITION

THE adoption of Civil Time in the American Ephemeris and

Nautical Almanac in place of Astronomical Time (in effect in

1925) necessitated a complete revision of this book. Advantage
has been taken of this opportunity to introduce several improve-

ments, among which may be mentioned: the change of the no-

tation to agree with that now in use in the principal textbooks

and government publications, a revision of the chapter on the

different kinds of time, simpler proofs of the refraction and

parallax formulae, the extension of the article on interpolation

to include two and three variables, the discussion of errors by
means of differentiation of the trigonometric formulae, the in-

troduction of valuable material from Serial 166, U. S. Coast

and Geodetic Survey, a table of convergence of the meridians,

and several new illustrations. In the chapter on Nautical As-

tronomy, which has been re-written, tfee method bf Marcq Saint-

Hilaire and the new tables (H. O. 201 and 203) for laying down
Sumner lines are briefly explained. An appendix on Spherical

Trigonometry is added for convenience of reference. The size
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of the book has been reduced to make it convenient for field use.

This has been done without reducing the size of the type.

In this book an attempt has been made to emphasize the

great importance to the engineer of using the true meridian and

true azimuth as the basis for all kinds of surveys; the chapter

on Observations for Azimuth is therefore the most important

one from the engineering standpoint. In this new edition the

chapter has been enlarged by the addition of tables, illustrative

examples and methods of observing.

Thanks are due to Messrs. C. L. Berger & Sons for the use

of electrotypes, and to Professor Owen B. French of George

Washington University (formerly of the U. S. Coast and Geo-

detic Survey) for valuable suggestions and criticisms. The

author desires to thank those who have sent notices of errors

discovered in the book and asks their continued cooperation.

G. L. H.

CAMBRIDGE, MASS., June, 1924.
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PRACTICAL ASTRONOMY

CHAPTER I

THE CELESTIAL SPHERE REAL AND APPARENT
MOTIONS

i* Practical Astronomy.

Practical Astronomy treats of the theory and use of astro-

nomical instruments and the methods of computing the results

obtained by observation. The part of the subject which is of

especial importance to the surveyor is that which deals with the

methods of locating points on the earth's surface and of ori-

enting the lines of a survey, and includes the determination of

(i) latitude, (2) time, (3) longitude, and (4) azimuth. In solving

these problems the observer makes measurements of the direc-

tions of the sun, moon, stars, and other heavenly bodies; he is

not concerned with the distances of these objects, with their

actual motions in space, nor with their physical characteristics,

but simply regards them as a number of visible objects of known

positions from which he can make his measurements.

2. The Celestial Sphere.

Since it is only the directions of these objects that are required

in practical astronomy, it is found convenient to regard all

heavenly bodies as being situated on the surface of a sphere

whose radius is infinite and whose centre is at the eye of the

observer. The apparent position of any object on the sphere is

found by imagining a line drawn from the eye to the object, and

prolonging it until it pierces the sphere. For example, the

apparent position of Si on the sphere (Fig. i) is at Si, which is

supposed to be at an infinite distance from C; the position of

82 is S%, etc. By means of this imaginary sphere all problems
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involving the angular distances between points, and angles

between planes through the centre of the sphere, may readily be

solved by applying the formulae of spherical trigonometry.

This device is not only convenient for mathematical purposes,

but it is perfectly consistent with what we see, because all celestial

objects are so far away that they appear to the eye to be at the

same distance, and consequently on the surface of a great sphere.

FIG. i. APPARENT POSITIONS ON THE SPHERE

From the definition it will be apparent that each observer sees

a different celestial sphere, but this causes no actual inconve-

nience, for distances between points on the earth's surface are so

short when compared with astronomical distances that they are

practically zero except for the nearer bodies in the solar system.

This may be better understood from the statement that if the

entire solar system be represented as occupying a field one mile

in diameter the nearest star would be about 5000 miles away on

the same scale; furthermore the earth's diameter is but a minute

fraction of the distance across the solar system, the ratio being

about 8000 miles to 5,600,000,000 miles,* or one 7oo,oooth part

of this distance.

* The diameter of Neptune's orbit.
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Since the radius of the celestial sphere is infinite, all of the

lines in a system of parallels will pierce the sphere in the same

point, and parallel planes at any finite distance apart will cut

the sphere in the same great circle. This must be kept constantly

in mind when representing the sphere by means of a sketch, in

which minute errors will necessarily appear to be very large.

The student should become accustomed to thinking of the

appearance of the sphere both from the inside and from an out-

side point of view. It is usually easier to understand the spheri-

cal problems by studying a small globe, but when celestial

objects are actually observed they are necessarily seen from a

point inside the sphere.

3. Apparent Motion of the Celestial Sphere.

*If a person watches the stars for several hours he 'will see that

they appear to rise in the east and to set in the west, and that

their paths are arcs of circles. By facing to the north (in the

northern hemisphere) it will be found that the circles are smaller

and all appear to be concentric about a certain point in the sky
called the pole ;

if a star were exactly at this point it would have

no apparent motion. In other words, the whole celestial sphere

appears to be rotating about an axis. This apparent rotation

is found to be due simply to the actual rotation of the earth

about its axis (from west to east) in the opposite direction to

that in which the stars appear to move.*

4. Motions of the Planets.

If an observer were to view the solar system from a point far

outside, looking from the north toward the south, he would see

that all of the planets (including the earth) revolve about the

sun in elliptical orbits which are nearly circular, the direction

of the motion being counter-clockwise or left-handed rotation.

* This apparent rotation may be easily demonstrated by taking a photo-

graph of the stars near the pole, exposing the plate for several hours. The
result is a series of concentric arcs all subtending the same angle. If the

camera is pointed southward and high enough to photograph stars near the

equator the star trails appear as straight lines.
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He would also See that the earth rotates on its axis, once

per day, in a counter-clockwise direction. The* moon revolves

around the earth in an orbit which is not so nearly circular,

but the motion is in the game (left-handed) direction, The

FIG. 2. DIAGRAM OF THE SOLAR SYSTEM WITHIN THE ORBIT OP SATURN

apparent motions resulting from these actual ^motions are as

follows: The whole celestial sphere, carrying with it all the

-

stars, sun, moon, and planets, appears to rotate about the earth's

axis once per day in a clockwise (right-handed) direction. The

stars change their positions so slowly that they appear to be fixed

in position on the sphere, whereas all objects within the solar

system rapidly change their apparent positions among the stars.

For this reason tie stars are called fixed stars to distinguish them

from the planetsj^t^ closely resembling the stars



THE CELESTIAL SPHERE 5

in appearance, are really of an entirely different character. The
sun appears to move slowly eastward among the stars at the rate

of about i per day, and to make one revolution around the earth

FIG. 3a. SUN'S APPARENT POSITION AT GREENWICH NOON ON MAY 22, 23,
AND 24, 1910

10

Y IV III

FIG. 3b. MOON'S APPARENT POSITION AT 14^ ON FEB. 15, 16, AND 17, 1910

in just one year. The moon also travels eastward among the

stars, but at a much faster rate; it moves an amount equal to

its own diameter in about an hour, and completes one revolu-
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tion in a lunar month. Figs. 3a and 3b show the daily motions

of the sun and moon respectively, as indicated by their plotted

positions when passing through the constellation Taurus. It

should be observed that the motion of the moon eastward among
the stars is an actual motion, not merely an apparent one like

that of the sun. The planets all move eastward among the

stars, but since we ourselves are on a moving object the motion

we see is a combination of the real motions of the planets around

JX1U XII

FIG. 4. APPARENT PATH or JUPITER FROM OCT., 1909 TO OCT., 1910.

the sun and an apparent motion caused by the earth's revolution

around the sun; the planets consequently appear at certain

times to move westward (i.e., backward), or to retrograde.

Fig. 4 shows the loop in the apparent path of the planet Jupiter

caused by the earth's motion around the sun. It will be seen

that the apparent motion of the planet was direct except from

January to June, 1910, when it had a retrograde motion,

5. Meaning of Terms East and West.

In astronomy the ^erms
"
east

" and " west
"
cannot be taken

tiO mean the saixie^tjjey do when dealing with directions in one
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plane. In plane surveying
"
east

" and " west "
may be con-

sidered to mean the directions perpendicular to the meridian

plane. If a person at Greenwich

(England) and another person at

the 180 meridian should both

point due east, they would actu-

ally be pointing to opposite points

of the sky. In Fig. 5 all four of

f
the arrows are pointing east at the

places shown. It will be seen from

this figure that the terms
"
east

"

and "
west

" must therefore be

taken to mean directions of ro-

tation.

6. The Earth's Orbital Motion. The Seasons.

The earth moves eastward around the sun once a year in an

orbit which lies (very nearly) in one plane and whose form is that

FIG. 5. ARROWS ALL POINT

EASTWARD

FIG. 6. THE EARTH'S ORBITAL MOTION

of an ellipse, the sun being at one of the foci. Since the earth is

maintained in its position by the force of gravitation, it moves, as

a consequence, at such a speed in each part of its path that the
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line joining the earth and sun moves over equal areas in equal

times. In Fig. 6 all of the shaded areas are equal and the arcs

aa', W, cc
f

represent the distances passed over in the same num-
ber of days,*

The axis of rotation of the earth is inclined to the plane of the

orbit at an angle of about 66f ,
that is, the plane of the earth's

equator is inclined at an angle of about 23^ to the plane of the

orbit. This latter angle is known as the obliquity of the ecliptic.

(See Chapter II.) The direction of the earth's axis of rotation

is nearly constant and it therefore points nearly to the same

place in the sky year after year.

The changes in the seasons are a direct result of the inclination

of the axis and of the fact that the axis remains nearly parallel

Vernal Equinox

Summer Solstice

(June )

Autumnal Equinox
(Sept. **)

FIG. 7. THE SEASONS

to itself. When the earth is in that part of the orbit where the

northern end of the axis is pointed away from the sun (Fig. 7)

it is winter in the northern hemisphere. The sun appears to be

* The eccentricity of the ellipse shown in Fig. 6 is exaggerated for the sake

of clearness ; the earth's orbit is in reality much more nearly circular, the

variation in the earth's distance from the sun being only about three per cent.
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farthest south about Dec. 21, and at this time the days are

shortest and the nights are longest. When the earth is in this

position, a plane through the axis and perpendicular to the plane

of the orbit will pass through the sun. About ten days later the

earth passes the end of the major axis of the ellipse and is at its

point of nearest approach to the sun, or perihelion. Although
the earth is really nearer to the sun in winter than in summer,
this has but a small effect upon the seasons; the chief reasons

why it is colder in winter are that the day is shorter and the

rays of sunlight strike the surface of the ground more obliquely.

The sun appears to be farthest north about June 22, at which

time summer begins in the northern hemisphere and the days are

longest and the nights shortest. When the earth passes the

other end of the major axis of the ellipse it is farthest from the

sun, or at aphelion. On March 21 the sun is in the plane of

the earth's equator and day and night are of equal length at all

places on the earth (Fig. 7). On Sept. 22 the sun is again in

the plane of the equator and day and night are everywhere

equal. These two times are called the equinoxes (vernal and

autumnal), and the points in the sky where the sun's centre ap-

pears to be at these two dates are called the equinoctial points,

or more commonly the equinoxes.

7. The Sun's Apparent Position at Different Seasons.

The apparent positions of the sun on the celestial sphere

corresponding to these different positions of the earth are shown

in Fig. 8. As a result of the sun's apparent eastward motion

from day to day along a path which is inclined to the equator,

the angular distance of the sun from the equator is continually

changing. Half of the year it is north of the equator and half of

the year it is south. On June 22 the sun is in its most northerly

position and is visible more than half the day to a person in the

northern hemisphere (/, Fig. 8). On Dec. 21 it is farthest south

of the equator and is visible less than half the day (D, Fig. 8).

In between these two extremes it moves back and forth across

the equator, passing it about March 21 and Sept. 22 each year.
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The apparent motion of the sun is therefore a helical motion

about the axis, that is, the sun, instead of following the path
which would be followed by a fixed star, gradually increases or

decreases its angular distance from the pole at the same time

that it revolves once a day around the earth. The sun's motion

eastward on the celestial sphere, due to the earth's orbital motion,

E

FIG. 8. SUN'S APPARENT POSITION AT DIFFERENT SEASONS

is not noticed until the sun's position is carefully observed with

reference to the stars. If a record is kept for a year showing
which constellations are visible in the east soon after sunset,

it will be found that these change from month to month, and at

the end of a year the one first seen will again appear in the east,

showing that the sun has apparently made the circuit of the

heavens in an eastward direction

8. Precession and Nutation.

While the direction of the earth's rotation axis is so nearly
constant that no change is observed during short periods of

time, there is in reality a very slow progressive change in its

direction. This change is due to the fact that the earth is not

quite spherical in form but is spheroidal, and there is in conse-

quence a ring of matter around the equator upon which the

sun and the moon exert a force of attraction which tends to pull

the plane of the equator into coincidence with the plane of the

orbit.
iif$y$ fince the earth is rotating with a high velocity and
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resists this attraction, the actual effect is not to change per-

manently the inclination of the equator to the orbit, but first to

cause the earth's axis to describe a cone about an axis per-

pendicular to the drbit, and second to cause the inclination of

the axis to go through certain periodic changes (see Fig. 9). The

movement of the axis in a conical surface causes the line of

intersection of the equator and the plane of the orbit to revolve

slowly westward, the pole itself always moving directly toward

the vernal equinox. This causes the vernal equinox, F, to move

westward in the sky, and hence the sun crosses the equator each

spring earlier than it would otherwise; this is known as the

-Plcme-of-EariWTrOrbit-

FIG. 9. PRECESSION OF THE EQUINOXES

precession of the equinoxes. In Fig. 9 the pole occupies,, suc-

cessively the positions /, 2 and J, which causes the point V to

occupy points i, 2 and.?. This motion is but 50". 2 per year,

and it therefore requires about 25,800 years for the pole to make

one complete revolution. The force causing the precession is

not quite constant, and the motion of the equinoctial points is

therefore not perfectly uniform but has a small periodic varia-

tion. In addition to this periodic change in the rate of the

precession there is also a slight periodic change in the obliquity,
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called Nutation. The maximum value of the nutation is about

9"; the period is about 19 years. The phenomenon of preces-

sion is clearly illustrated by means of the apparatus called the

gyroscope. As a result of the precessional movement of the

axis all of tfte stars gradually change their positions with refer-

ence to the plane of the equator and the position of the equinox.

The stars themselves have but a very slight angular motion,

this apparent change fn position being due almost entirely to the

change in the positions of the circles of reference.

9. Aberration of Light.

Another apparent displacement of the stars, due to the earth's

motion, is that known as aberration. On account of the

rapid motion of the earth through space, the direction in which

a star is seen by an observer is a result of the combined velocities

of the observer and of light from the star. The star always

appears to be slightly displaced in the direction in which the

observer is actually moving. In Fig. 10, if light moves from C
to B in the same length of time that the observer moves from

A to J5, then C would appear to be in the direction AC. This

FIG. 10 FIG. ii

may be more clearly understood by using the familiar illustra-

tion of the falling raindrop. If a raindrop is falling vertically,

.CJ3, Fig. n, and while it is fal^ng a person moves from A to B,
"

then, considering only the two motions, it appears to the person

that the raindrop has moved toward him in the direction CA.

If a t;ube is to ,be held in such a way that the raindrop shall pass

it without touching the sides, it must be held at the
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inclination of AC. The apparent displacement of a star due

to the observer's motion is similar to the change in the apparent
direction of the raindrop.

There are two kinds of aberration, annual and diurnal.

Annual aberration is that produced by the earth's motion in its

orbit and is the same for all observers. Diurnal aberration is

due to the earth's daily rotation about its axis, and is different

in different latitudes, because the speed of a point on the earth's

surface is greatest at the equator and diminishes toward the pole.

If v represents the velocity of the earth in its orbit and V the

velocity of light, then when CB is at right angles to AB the

displacement is a maximum and

^
tan <XQ

= ~
,

where is the angular displacement and is called the "constant

of aberration." Its value is about 20.^5 . If CB is not per-

pendicular to AB) then
v . A

sin a. = ~ sin A

or approximately

where a is the angular displacement and B is the angle ABC.

tan a = sin a. = sin B,



CHAPTER II

DEFINITIONS POINTS AND CIRCLES OF REFERENCE

10. The following astronomical terms are in common use and

are necessary in defining the positions of celestial objects on the

sphere by means of spherical coordinates.

Vertical Line.

A vertical line at any point on the earth's surface is the direc

tion of gravity at that point, arid is shown by the plumb lin

or indirectly by means of the spirit level (OZ, Fig. 12).

Zenith Nadir,

If the vertical at any point be prolonged upward it will pier

the sphere at a point called the Zenith (Z, Fig. 12). This poi]

is of great importance because it is the point on the sphere whi

indicates the position of the observer on the earth's surface

The point where the vertical prolonged downward pierces th

sphere is called the Nadir (N', Fig. 12).

Horizon.

The horizon is the great circle on the celestial sphere cut by
a plane through the centre of the earth perpendicular to the

vertical (NESW, Fig. 12). The horizon is everywhere 90 from

the zenith and the nadir. It is evident that a plane through the

observer perpendicular to the vertical cuts the sphere in this

same great circle. The visible horizon is the circle where the

sea and sky seem to meet. Projected onto the sphere it is a

small circle below the true horizon and parallel to it. Its dis-

tance below the true horizon depends upon the height of the

observer's eye above the surface of the water.

Vertical Circles.

Vertical Circles are great circles passing through the zenith

and nadir. They all cut the horizon at right angles (HZJ,

14
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Almucantars.

Parallels of altitude, or almucantars, are small circles parallel

to the horizon (DFG, Fig. 12).

Poles.

If the earth's axis of rotation be produced indefinitely it will

pierce the sphere in two points called the celestial poles (PP'

Fig. 12).

Equator.

The celestial equator is a great circle of the celestial sphere

Ut by a plane through the centre of the earth perpendicular to

FIG. 12. THE CELESTIAL SPHERE

the axis of rotation (QWRE, Fig. 12). It is everywhere 90
from the poles. A parallel plane through the observer cuts the

sphere in the same circle.
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Hour Circles.

Hour Circles are great circles passing through the north and

south celestial poles (PVP', Fig. 12).

The 6-hour circle is the hour circle whose plane is perpendicu-

lar to that of the meridian.

Parallels of Declination.

Small circles parallel to the plane of the equator are called

parallels of declination (BKC, Fig. 12).

Meridian.

The meridian is the great circle passing through the zenith and

the poles (SZPL, Fig. 12). It is at once an hour circle and a

FIG. 12. THE CELESTIAL SPHERE

vertical circle, It is evident that different observers will in

general Jjave different meridians. The meridian cuts the horizon

in the norland south points (N, 5, Fig. 12). The intersection
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of the plane of the meridian with the horizontal plane through
the observer is the meridian line used in plane surveying.

Prime Vertical.

The prime vertical is the vertical circle whose plane is per-

pendicular to the plane of the meridian (EZW, Fig. 12). It

cuts the horizon in the east and west points (E, W, Fig. 12).

Ecliptic.

The ecliptic is the great circle on the celestial sphere which
v

'the sun's centre appears to describe during one year (AMVL,
Fig. 12). Its plane is the plane of the earth's orbit; it is inclined

to the plane of the equator at an angle of about 23 27', called the

obliquity of the ecliptic.

Equinoxes.

The points of intersection of the ecliptic and the equator are

called the equinoctial points or simply the equinoxes. That

intersection at which the sun appears to cross the equator when

going from the south side to the north side is called the Vernal

Equinox, or sometimes the First Point of Aries (F, Fig. 12).

The sun reaches this point about March 21. The other inter-

section is called the Autumnal Equinox (A, Fig. 12).

Solstices.

The points on the ecliptic midway between the equinoxes are

called the winter and summer solstices.

Questions

1. What imaginary circles on the earth's surface correspond to hour circles?

To parallels of declination? To vertical circles?

2. What are the widths of the torrid, temperate and arctic zones and how are
*

they determined?



CHAPTER III

SYSTEMS OF COORDINATES ON THE SPHERE

n. Spherical Coordinates.

The direction of a point in space may be defined by means

of two spherical coordinates, that is, by two angular distances

measured on a sphere along arcs of two great circles which

cut each other at right angles. Suppose that it is desired to

locate C (Fig. 13) with reference to the plane OAB and the line

FIG. 13. SpflERiCAL COORDINATES

OA, being the origin of coordinates. Pass a plane OBC
through OC perpendicular to OAB; these planes will intersect

in the line OB. The two angles which fix the position of C, or

the spherical coordinates, are BOC and AOB. These may be

regarded as the angles at the centre of the sphere or as the arcs

BC and AB. In every system of spherical coordinates the two

codrdinates are measured, one on a great circle called the primary,

and the other on one of a system of great circles at right angles

to the primary called secondaries. There are an infinite number
rf secondaries, each passing through the two poles of the primary,

Fhe coordinate measured from the primary is an arc of a
T*
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secoftdary circle; the coordinate measured between the secondary

circles is an arc of the primary.

12. Horizon System.

In this system the primary circle is the horizon and the sec-

ondaries are vertical circles, or circles passing through the zenith

and nadir. The first coordinate of a point is its angular distance

above the horizon, measured on a vertical circle; this is called

the Altitude. The complement of the altitude is called the

Zenith distance. The second coordinate is the angular distance

on the horizon between the meridian and the vertical circle

through the point; this is called the Azimuth. Azimuth may be

reckoned either from the north or the south point and in either

direction, like bearings in surveying, but the custom is to reckon

it from the south point right-handed from o to 360 except for

stars near the pole, in which case it is more convenient to reckon

W- Azimuth

FIG. 14. THE HORIZON SYSTEM

from the north, and either to the east or to the west. In Fig. 14

the altitude of the star A is BA\ its azimuth is SB.

13. The Equator Systems.

The circles of reference in this system are the equator and

great circles through the poles, or hour circles. The first coor-

dinate of a point is its angular distance north or south of the
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equator, measured on an hour circle; it is called the Declination.

Declinations are considered positive when north of the equator,

negative when south. The complement of the declination is

called the Polar Distance. The second coordinate of the point

is the arc of the equator between the vernal equinox and the foot

of the hour circle through the point; it is called Right Ascension.

Right ascension is measured from the equinox eastward to the

hour circle through the point in question; it may be measured in

degrees, minutes, and seconds of arc, or in hours, minutes, and
,

FIG. 15. THE EQUATOR SYSTEM

seconds of time. In Fig. 15 the declination of the star S is -45;

the right ascension is VA.

Instead of locating a point by means of declination and right

ascension it is sometimes more convenient to use declination

and Hour Angle. The hour angle of a point is the arc of the
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equator between the observer's meridian and the hour circle

through the point. It is measured from the meridian westward

(clockwise) from oh to 24^ or from o to 360. In Fig. 16 the

declination of the star S is AS (negative); the hour angle is

FIG. 16. HOUR ANGLE AND DECLINATION

MA. For the measurement of time the hour angle may be

counted from the upper or the lower branch of the meridian.

These three systems are shown in the following table.
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14. There is another system which is employed in some

branches of astronomy but will not be used in this book. The

coordinates are called celestial latitude and celestial longitude;

the primary circle is the ecliptic. Celestial latitude is measured

from the ecliptic just as declination is measured from the equator.

Celestial longitude is measured eastward along the ecliptic from

the equinox, just as right ascension is measured eastward along

the equator. The student should be careful not to confuse celes-

tial latitude and longitude with terrestrial latitude and longitude.

The latter are the ones used in the problems discussed in this book.

15. Coordinates of the Observer.

The observer's position is located by means of his latitude and

longitude. The latitude, which on the earth's surface is the

angular distance of the observer north or south of the equator,

may be defined astronomically as the declination of the ob-

server's zenith. In Fig. 17, the terrestrial latitude is the arc EO,

FIG. 17. THE OBSERVER'S LATITUDE

EQ being the equator and the observer. The point Z is the

observer's zenith, so that the latitude on the sphere is the arc

E'Z, which evidently will contain the same number of degrees

as EO. The complement of the latitude is called the Co-latitude.
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The terrestrial longitude of the observer is the arc of the equator

between the primary meridian (usually that of Greenwich) and

the meridian of the observer. On the celestial sphere the longi-

tude would be the arc of the celestial equator contained between

two hour circles whose planes are the planes of the two terrestrial

meridians.

1 6. Relation between the Two Systems of Coordinates.

In studying the relation between different points and circles

on the sphere it may be convenient to imagine that the celestial

sphere consists of two spherical shells, one within the other.

FIG. 1 8. THE SPHERE SEEN FROM THE OUTSIDE

The outer one carries upon its surface the ecliptic, equinoxes,

poles, equator, hour circles and all of the stars, the sun, the moon

and the planets. On the inner sphere are the fcenith, horizon,

vertical circles, poles, equator, hour circles, and the meridian.

The earth's daily rotation causes the inner sphere to revolve,
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while the outer sphere is motionless, or, regarding only

apparent motion, the outer sphere revolves once*per dayman Its

axis, while the inner sphere appears to be motionless. It is

evident that the coordinates of a fixed star in the first equatorial

system (Declination and Right Ascension) are practically always
the same, whereas the coordinates in the horizon system are

continually changing. It will also be seen that in the first

equatorial system the coordinates are independent of the ob-

server's position, but in the horizon system they are entirely,

dependent upon his position. In the second equatorial system
one co5rdinate is independent of the observer, while the other

(hour angle) is not. In making up catalogues of the positions

of the stars it is necessary to use right ascensions and declina-

tions in defining these positions. When making observations

FIG. 19. PORTION OF THE SPHERE SEEN FROM THE EARTH (LOOKING SOUTH)

with instruments it is usually simpler to measure coordinates

in the horizon system. Therefore it is necessary to be able to

cbmpute the coordinates of one system from those of another.

The mathematical relations between the spherical coordinates

are discussed in Cha IV. *
;
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Figs. 18, 19, and 20 show three different views of the celestial

sphere with which the student should be familiar. Fig. 18 is

the sphere as seen from the outside and is the view best adapted
to showing problems in spherical trigonometry. The star S has

the altitude RS, azimuth S'R, hour angle Mm, right ascension

Vm, and declination mS\ the meridian is ZMS'. Fig. 19 shows

a portion of the sphere as seen by an observer looking southward;

the points are indicated by the same letters as in Fig. 18. Fig. 20

FIG. 20. THE SPHERE PROJECTED ONTO THE PLANE OF THE EQUATOR

shows the same points projected on the plane of the equator.

In this view of the sphere the angles at the pole (i.e., the

angles between hour circles) are shown their true size, and

it is therefore a convenient diagram to use when dealing with

right ascension and hour angles.
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Questions and Problems

1. What coordinates on the sphere correspond to latitude and longitude on the

earth's surface?

2. Make a sketch of the sphere and plot the position of a star having an altitude

of 20 and an azimuth of 250. Locate a star whose hour angle is i6h and whose

decimation is ~io. Locate a star whose right ascension is g
h and whose declina-

tion is N. 30.

3. If a star is on the equator and also on the horizon, what is its azimuth? Its

altitude? Its hour angle? Its declination?

4. What changes take place in the azimuth and altitude of a star during

twenty-four hours ?

5. What changes take place in the right ascension and declination of the ob-

server's zenith during a day ?

6. A person in latitude 40 N. observes a star, in the west, whose declination is

5 N. In what order will the star pass the following three circles; (a) the 6^ circle,

(b) the horizon, (c) the prime vertical ?



CHAPTER IV

RELATION BETWEEN COORDINATES

17. Relation between Altitude of Pole and Latitude of Ob-
server.

In Fig. 21, SZN represents the observer's meridian; let P be

the celestial pole, Z the zenith,

E the point of intersection

of the meridian and the equa-

tor, and N and S the north

and south points of the ho-

rizon. By the definitions, CZ
(vertical) is perpendicular to

SN (horizon) and CP (axis)

is perpendicular to EC (equator). Therefore the arc PN =

arc EZ. By the defini-

tions EZ is the declina-

tion of the zenith, or

the latitude, and PN is

the altitude of the ce-

lestial pole. Hence the

altitude of the pole is

always equal to the lati-

tude of the observer. The
same relation may be

seen from Fig. 22, in

which NP is the north

pole of the earth, OH is

the plane of the hori-

zon, the observer being

FIG. 22 at O, EQ is the equator,

andOP' is a line parallel

to C-NP and consequently points to the celestial pole. It may
readily be shown that ECO, the observer's latitude, equals
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HOP', the altitude of the celestial pole. A person at the equator

would see the north celestial pole in the north point of his horizon

and the south celestial pole in the south point of his horizon. If

he travelled northward the north pole would appear to rise, its

altitude being always equal to his latitude, while the south pole

would immediately go below his horizon. When the traveller

reached the north pole of the earth the north celestial pole

would be vertically over his head.

To a person at the equator all stars would appear to move

vertically at the times of rising and setting, ^nd all stars would

be above the horizon i2
h and below i2h during o* - revolution

(S.Pole) S N (N.Pole)

PIG. 2$. THE RIGHT SPHERE

Appearance of Sphere to Observer at Earth's Equator.

of the sphere. All stars in both hemispheres would be above

the horizon at some time every day. (Fig. 23.)

If a person were at the earth's pole the celestial equator would

coincide with his horizon, and all stars in the northern hemi-

sphere would appear to travel around in circles parallel to the

horizon; they would be visible for 24* a day, and their altitudes

would not change. The stars in the southern hemisphere would

never be visible. The word north would cease to have its usual
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meaning, and south might mean any horizontal direction. The

longitude of a point on the earth and its azimuth from the

Greenwich meridian would then be the same. (Fig. 24.)

At all points between these two extreme latitudes the equator
cuts the horizon obliquely., } A star on the equator will be above

FIG. 24. THE PARALLEL SPHERE

Appearance of Sphere to Observer at Earth's Pole

the horizon half the time and below half the time. A star north

of the equator will (to a person in the northern hemisphere) be

above the horizon more than half of the day; a star south of the

equator will be above the horizon less than half of the day. If

the north polar distance of a star is less than the observer's north

latitude, the whole of the star's diurnal circle is above the hori-

zon, and the star will therefore remain above the horizon all

of the time. It is called in this case a circumpolar star (Fig.

25). The south circumpolar stars are those whose south polar

distances are less than the latitude; they are never visible tfc an
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observer in the northern hemisphere. If the observer travels

jiorth until he is beyond the arctic circle, latitude" 66 33' north,

then the sun becomes a circumpolar at the time of the summer

solstice. At noon the sun would be at its maximum altitude;

at midnight it would be at its minimum altitude but would still

be above the horizon. This is called the
"
midnight sun."

Circumpolars
(Never Rise)

FIG. 25. CtRcuMPOtAR STARS

18. Relation between Latitude of Observer, and the Declina-

tion and Altitude of a Point on the Meridian.

The relation between the latitude of the observer and the

declination and altitude of a point on the observer's meridian

may be seen by referring to Fig. 26. Let A be any point on the

meridian, such as a star or the centre of the sun, moon, or a

planet, located south of the zenith but north of the equator; then

EZ =
4>, the latitude*

EA =
5, the declination

SA =
A, the meridian altitude

ZA = f ,
the meridian zenith distance.

* The Greek alphabet is given oft p. 242.
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From the figure it is evident that

If A is south of the equator 6 becomes negative, but the same

equation applies in this case provided the quantities are given

FIG. 26. STAR ON THE MERIDIAN

their proper signs. If A is north of the zenith we should have
= 8 f [2]; but if we regard f as negative when north of

the zenith and positive when south of the zenith, then equation

[i] covers all cases. When the point is below the pole the same

formula might be employed by counting the declination beyond

90. In such cases it is usually simpler to employ the polar

distance, p, instead of the declination.

If the star is north of the zenith but above the pole, as at B,

then since p = 90 6,

<t>
= h-p. [3]

If B were below the pole we should have

t = h + p. [4]

19. The Astronomical Triangle.

By joining the pole, zenith, and any star 5 on the sphere by
arcs of great circles we obtain a triangle from which the relation

existing among the spherical coordinates may be obtained. This

triangle is so frequently employed in astronomy and navigation

that it is called the
"
astronomical triangle

"
or the

" PZS

triangle." In Fig. 27 the arc PZ is the complement of the
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latitude, or co-latitude; arc ZS is the zenith distance or com-

plement of the altitude; arc PS is the polar distance or com-

plement of the declination; the angle at P is the hour angle of

the star if S is west of the meridian, or 360 minus the hour angle

if S is east of the meridian; and Z is the azimuth of 5 (from

the north point), or 360 minus the azimuth, according as S is

west or east of the meridian. The angle at S is called the paral-

lactic angle. If any three parts of this triangle are known the

other three may be calculated. The fundamental formulae of,

spherical trigonometry are (see p, 257)

cos a = cos b cos c + sin b sin c cos A, [5]

sin a cos B = cos b sin c sin b cos c cos A, [6]

sin a sin B = sin b sin A. [7]

[f we put A =
/, B = S, C = Z, a = 90

-
h, b = 90

-
*,

r = Q 5, then these three equations become

sin h = sin < sin 5 + cos
<t>

cos 5 cos / [8]

cos h cos 5 = sin < cos 8 cos < sin 5 cos / [9]

cos h sin 5 = cos </> sin /. [10]

[f A =
/, S = Z, C = 5, a = 90

-
A, b = 90

-
5, c = 90

-
0,

then the [6] and [7] become

cos h cos Z = sin 6 cos cos 5 sin </> cos / [n]

cos h sin Z = cos 6 sin /. [12]

[f A = Z, J3 = 5, C =
/, a = 90

-
5, b = 90

-
0, c = 90

-
A,

then

sin 5 = sin < sin A + cos < cos A cos Z [13]

cos 5 cos 5 = sin < cos A cos < sin A cos Z [14]

cos 5 sin S = cos < sin Z. [15]

[f ,4 = Z, B =
J, C = 5, a = 90

-
5, b = 90

-
A, c = 90

-
0,

then

cos 5 cos / = sin h cos < cos h sin cos Z. [16]
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Other forms may be derived, but those given above will suf-

fice for all cases occurring in the following chapters.

The problems arising most commonly in the practice of sur-

veying and navigation are:

1. Given the declination, latitude, and altitude, to find the

azimuth and the hour angle.

2. Given the declination, latitude, and hour angle, to find the

azimuth and the altitude.

FIG. 27. THE ASTRONOMICAL TRIANGLE

In following formulae let

/ = hour angle

Z = azimuth*

h = altitude

* The trigonometric formulae give the interior angle of the triangle, and con-

sequently the azimuth from the north point, unless the form of the equation is

changed so as to give the exterior angle.
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f = zenith distance

d declination

p =
polar distance

<t>
= latitude

and 5 = H0 + h + p).

For computing / any of the following formulae may be used.

sin ^ = V
"* * Sm ~

}

[i7l-w
cos sin p

cos
cos ('

- sn ('

tan

* cos </> sin p

__
* / cos ^ sin (s

i

cos / =

-
7
-^ / ^\cos (5
-

p) sm (5
-

<t>)

sin A sin sin 5
----

COS <t> COS d

r T

[2oJ .

cos / -- tan
<t>
tan d [200]

cos cos 5

cos (0 5) sin A r
-,

vers / =-~ -~ --
[21]

cos <t> cos 5

For computing the azimuth, Z, froni the north point either

toward the east or the west, we have

s
.

n
-

*) sn (j

COS COS

1 ^ A /COS ^ COS (3 p) r !
COS * Z= V cosos/ [23]

tan * Z = i
. - sn ,-

{

cos s cos (s />)

sin 6 sin <t> sin h r ,

COS Z =-- 21..-
[25]

COS < COS A
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cos Z =-r tan 6 tan h [2 za]
cos <j> cos h

cos (<}> h) sin 5 r rl
vers Z =- --

:
-

[26]
cos <t>

cos /&

Only slight changes are necessary to adapt these to the direct

computation of Zs from the south point of the horizon. For

example, formulae [24], [25] and [26] would take the forms

cot t z, = I
-

f jv cos s cos (s
-

p)
'

~ sin sin h sin 5 r Ol
cos Z, = ----

[28]
cos cos h

cos (0 + h) + sin 5
r 1vers Z, =-^ ! ^ ---
29

cos cos h

While any of these formulae may be used to determine the

angle sought, the choice of formulae should depend somewhat

upon the precision with which the angle is defined by the func-

tion. If the angle is quite small it is more accurately found

through its sine than through its cosine; for an angle near 90
the reverse is true. The tangent, however, on account of its

rapid variation, always gives the angle more precisely than either

the sine or the cosine. It will be observed that some of the for-

mulae require the use of both logarithmic and natural functions.

This causes no particular inconvenience in ordinary 5-place

computations because engineer's field and office tables almost

invariably contain both logarithmic and natural functions. If

7-place logarithmic tables are being used the other formulae

will be preferred.

The altitude of an object may be found from the formulae

sin h = cos (<t> 5) 2 cos <t> cos 5 sin2 1 / [30]

or sin h = cos (<t> 5) cos <t> cos 5 vers /, [300]

which may be derived from Equa. [8].
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If the declination, hour angle, and altitude ajre given, the

azimuth is found by

sin Z = sin t cos 5 sec h. [31]

For computing the azimuth of a star near the pole when the

hour angle is known the following formula is frequently used:

r, sin t r -,

tan Z =
: [32!

cos 4> tan 8 sin cos t

This equation may be derived by dividing [12] by [n] and then"

dividing by cos 8.

Body on the Horizon.

Given the latitude and declination, find the hour angle and

azimuth when the object is on the horizon. If in Equa. [8]

and [13] we put h =
o, we have

cos / = tan d tan < [33]

and cosZ = sin 5 sec <. [34]

These formulae may be used to compute the time of sunrise or

sunset, and the sun's bearing at these times.

Greatest Elongation.

A special case of the PZS triangle which is of great practical

importance occurs when a star which culminates north of the

zenith is at its greatest elongation. When in this position the

azimuth of the star is a maximum and its diurnal circle is tan-

gent to the vertical circle through the star; the triangle is there-

fore right-angled at the point S (Fig. 28). The formulae for the

hour angle?and azimuth are

cos / = tan < cot 5 [35]

and sinZ = sin p sec <, [36]

from which the time of elongation and the bearing of the star

may be found. (See Art. 97.)

20. Relation between Right Ascension and Hour Angle.

In order to understand the relation between the right ascen-

sion and the hour angle of a point, we may think of the equa-
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E

FIG. 28. STAR AT GREATEST ELONGATION (EAST).

FIG. 29. RIGHT ASCENSION AND HOUR ANGUS
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tor on the outer sphere as graduated into hour% minutes and

seconds of right ascension, zero being at the equinox and the

numbers increasing toward the east. The equator on the inner

sphere is graduated for hour angles, the zero being at the ob-

server's meridian and the numbers increasing toward the west.

(See Fig. 29.) As the outer sphere turns, the hour marks on

the right ascension scale will pass the meridian in the order of the

numbers. The number opposite the meridian at any instant

FIG. 30

shows how far the sphere has turned since the equinox was on

the meridian. If we read the hour angle scale opposite the

equinox, we obtain exactly the same number of hours. This

number of hours (or angle) may be considered as either the right

ascension of the meridian or the hour angle of the equinox.

In Fig. 30 the star S has an hour angle equal to AB and a right

ascension CB. The sum of these two angles is AC, or the hour

angle of the equinox. The same relation will be found to jbold
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true for all positions of S. The general relation existing between

these coordinates is, then,

Hour angle of Equinox = Hour angle of Star + Right Ascen-

sion of Star.

Questions and Problems

1. What is the greatest north declination a star may have and pass the meridian

to the south of the zenith?

2. What angle does the plane of the equator make with the horizon?

3. In what latitudes can the sun be overhead?

, 4. What is the altitude of the sun at noon in Boston (42 21' N.) on December

22?

5. What are the greatest and least angles made by the ecliptic with the hori-

zon at Boston?

6. In what latitudes is Vega (Decl. = 38 42' N.) a circumpolar star?

7. Make a sketch of the celestial sphere like Fig. 12 corresponding to a lati-

tude of 20 south and the instant when the vernal equinox is on the eastern horizon.

8. Derive formula [36].

9. Compute the hour angle of Vega when it is rising in latitude 40 North.

10. Compute the time of sunrise on June 22, in latitude 40 N.



CHAPTER V

MEASUREMENT OF TIME

21. The Earth's Rotation.

The measurement of intervals of time is made to depend upon
the period of the earth's rotation on its axis. Although the

period of rotation is not absolutely invariable, yet the variation?

are exceedingly small, and the rotation is assumed to be uniform.

The most natural unit of time for ordinary purposes is the solar

day, or the time corresponding to one rotation of the earth with

respect to the sun's direction. On*account of the motion of

the earth around the sun once a year the direction of this refer-

ence line is continually changing with reference to the direc-

tions of fixed stars, and the length of the solar day is not the

true time of one rotation of the earth. In some kinds of as-

tronomical work it is more convenient to employ a unit of time

based upon this true time of one rotation, namely, sidereal time

(or star time).

22. Transit or Culmination.

Every point on the celestial sphere crosses the plane of the

meridian of an observer twice during one revolution of the

sphere. The instant when any point on the celestial sphere is

on the meridian of an observer is called the time of transit, or

culmination, of that point over that meridian. When it is on

that half of the meridian containing the zenith, it is called the

upper transit; when it is on the other half it is called the lower

transit. Except in the case of stars near the elevated pole the

upper transit is the only one visible to the observer; hence when
the transit of a star is mentioned the upper transit will be under-

stood unless the contrary is stated.

23. Sidereal Day.
The sidereal day is the interval of time between two suc-

cessive upper transits of the vernal equinox over the same

40
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meridian. If the equinox were fixed in position the sidereal day
as thus defined would be the true rotation period with reference

to the fixed stars, but since the equinox has a slow (and variable)

westward motion caused by the precessional movement of the

axis (see Art. 8) the actual interval between two transits of the

equinox differs about os
.oi of time from the true time of one

rotation. The sidereal day actually used in practice, however,

is the one previously defined and not the true rotation period.

sflThis causes no inconvenience because sidereal days are not used

for reckoning long periods of time, dates always being givfcn in

solar days, so this error never becomes large. The sidereal day
is divided into 24 hours and each hour is subdivided into 60

minutes, and each minute into 60 seconds. When the vernal

equinox is at upper transit it is oft

,
or the beginning of the side-

real day. This may be called
"

sidereal noon/'

24. Sidereal Time.

The sidereal time at a given meridian at any specified instant

is equal to the hour angle of the vernal equinox measured from the

upper half of that meridian. It is therefore a measure of the

angle through which the earth has rotated since the equinox
was on the meridian, and shows at once the position of the sphere

at this instant with respect to the observer's meridian.

25. Solar Day.

A solar day is the interval of time between two successive

lower transits of the sun's centre over the same meridian. The

lower transit is chosen in order that the date may change at

midnight. The solar day is divided into 24 hours, and each hour

is divided into 60 minutes, and each minute into 60 seconds.

When the centre of the sun is on the upper side of the meridian

(uppey transit) it is noon. When it is on the lower side it is

midnight. The instant of midnight is taken as o*, or the begin-

ning of the civil day.

26. Solar Time.

The solar time at any instant is equal to the hour angle of the

sun's centre plus 180 or 12 hours; in other words it is the hour
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angle counted from the lower transit. It is the.angle through

which the earth has rotated, with respect to the sun's direc-

tion, since midnight, and measures the time interval that has

elapsed.

Since the earth revolves around the sun in an elliptical orbit

in accordance with the law of gravitation, the apparent angular

motion of the sun is not uniform, and the days are therefore of

different length at different seasons. In former times when sun

dials were considered sufficiently accurate for measuring time,

this lack of uniformity was unimportant. Under modern con-

ditions, which demand accurate measurement of time by the

use of clocks and chronometers, an invariable unit of time is

essential. The time ordinarily employed is that kept by a

fictitious point called the
" mean sun/' which is imagined to

move at a uniform rate along the equator,* its rate of motion

being such that it makes one apparent revolution around the

earth in the same time as the actual sun, that is, in one year.

The fictitious sun is so placed that on the whole it precedes the

true sun as much as it follows it. The time indicated by the

position of the mean sun is called mean solar time. The. time

indicated by the position of the real sun is called apparent solar

time and is the time shown by a sun dial, or the time obtained

by direct instrumental observation of the sun's position. Mean
time cannot, of course, be observed directly, but must be derived

by computation.

27. Equation of Time.

The difference between mean time and apparent time at any
instant is called the equation of time and depends upon how much

the real sun is ahead of or behind its average position. It is given

in ordinary almanacs as
" sun fast

"
or

" sun slow." The

amount of this difference varies from about i^m to +i6m.

* This statement is true in a general way, but the motion is not strictly uniform

because the motion of the equinox itself is variable. The angle from the equinox

to the
" mean sun

"
at any instant is the sun's

" mean longitude
"

(along the

ecliotic) plus small periodic terms.
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The exact interval is "given in the American Ephemeris and in

the (small) Nautical Almanac for specified times each day.

This difference between the two kinds of time is due to several

causes, the chief of which are (i) the inequality of the earth's

angular motion in its orbit, and (2) the fact that the real sun

moves in the plane of the ecliptic and the mean sun in the plane

of the equator, and equal arcs on the ecliptic do not correspond

to equal arcs in the equator, or equal angles at the pole.
fa In the winter, when the earth is nearest the sun, the rate of

angular motion about the sun is greater than in the summer

(see Art. 6). The sun will then appear to move eastward in the

sky at a faster rate than in summer, and its daily revolution about

the earth will therefore be slower. This delays the instant of

apparent noon, making the solar day longer than the average,

and therefore a sun dial will
"

lose time." About April i the

sun is moving at its average rate and the sun dial ceases to lose

time; from this date until about July i the sun dial gains on

mean time, making up what it lost between Jan. i and April i.

During the other half of the year the process is reversed; the

sun dial gains from July i to Oct. i and loses from Oct. i to

Jan. i. The maximum difference due to this cause alone is
*

*

about 8 minutes, either + or .

The second cause of the equation of time is illustrated in Fig.

31, Assume that point S' (sometimes called the
"

first mean
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sun ") moves uniformly along the ecliptic at the
%average rate of

the actual sun; the time as indicated by this point will evidently

not be affected by the eccentricity of the orbit. If the mean

sun, S (also called the
"
second mean sun "), starts at F, the

vernal equinox, at the same instant that 5" starts, then the arcs

TABLE A. EQUATION OF TIME FOR 1910.

fr6n*ara! Mnrch

\
\

K
FIG. 32, CORRECTION TO MEAN TIME (TO GET APPARENT TIME)

VS and VSf
are equal, since both points are moving at the same

rate. By drawing hour circles through these two points it will

be seen that these^ hour circles do not coincide unless the points

S and S' happeri to be at the equinoxes or at the solstices. Since

S and 5' are not, in general, on the same hour circle they will not

cross the meridian at the same instant, the difference in time
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being represented by the arc aS. The maximum length of aS
is about 10 minutes of time, and may be either + or . The
combined effect of these two causes, or the equation of time,

is shown in Table A and (graphically) in Fig. 32.

28. Conversion of Mean Time into Apparent Time and vice

versa.

Mean time may be converted into apparent time by adding

algebraically the equation of time for the instant. The value

i the equation of time is given in the American Ephemeris for

o* civil time (midnight) at Greenwich each day, together with

the proper algebraic sign. For any other time it must be found

by adding or subtracting the amount by which the equation has

increased or diminished since midnight. This correction is

obtained by multiplying the hours of the Greenwich Civil Time

by the variation per hour.

Example. Find the apparent time at Greenwich when the mean time (Civil)

is 14^ 30 on Oct. 28, 1925. The equation of time at o& Greenwich Civil Time is

-fi6m 053.00; the variation per hour is -fo.2i8. (The values are numerically in-

creasing.) The corrected equation of time at 14^ 30 is therefore +i6w 05*^00

+ i4*.S X o*.2i8 = +i6 o^.oo + 3*.i6 = i6 o8*.i6. The Greenwich Appar-
ent Time is 14* 30 -f- i6 o8*.i6 = 14* 46"* o8*.i6.

When converting apparent time into mean time we may pro-

ceed in either of two ways. Since apparent time is given and

the equation is tabulated for mean time it is first necessary to

find the mean time with sufficient accuracy to enable us to take

out the correct equation of time.

Example. The Gr. Apparent Time is 14* 46^ 08*. 16 on Oct. 28, 1925; find the

Gr. Civil Time. Subtracting the approximate equation (-|-i6
TO

05^.00) we obtain

14* 30 03* for the approximate Gr. Civil Time. The corrected equation is there-

fore -fi6 053.00 -f o*.2i8X 14^.5 - -fi6 o8*.i6 and the Gr. Civil Time is

14* 3o> oo.oo.

If preferred the Ephemeris of the sun for the meridian of

Washington (following the star lists) may be used. The equation
!

for Washington Apparent noon Oct. 28, 1925, is i6m 08*49;

varia. per hour =
~o*.i96. Since the longitude of Washing-

ton is 5* o8
w

1 5*.78 west, the Washington Apparent Time corre-
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spending to Greenwich Apparent Time 14^46^08^16 is 9* 38*

52*.38. The equation for this instant is i6m 08*49 + 0-196 X
2^.35

= _^ o8*.o3. This fails to check the equation derived

above (+i6
w o8s

.i6) because the method of interpolation is im-

perfect. If a more accurate interpolation formula is used the

results check to hundredths.

29. Astronomical Time Civil Time.

Previous to 1925 the time used in the Ephemens was As-

tronomical Time, in which oh occurred at the instant of noon,~

the hours being counted continuously up to 24*. In this system
the date changed at noon, so that in the afternoon the Astro-

nomical and Civil dates agreed but in the forenoon they differed

one day. For example: f P.M. of Jan. 3 would be 7* Jan. 3

in astronomical time; but 3* A.M. of May n would be 15*, May
10, when expressed in astronomical time.

Beginning with the issue for 1925 the time used in the Ephem-
eris is designated as Civil Time, the hours being counted from"

midnight to midnight. The dates therefore change at mid-

night, as in ordinary civil time, the only difference being that

in the 24-hour system the afternoon hours are greater than 12.

For ordinary purposes we prefer to divide the day into halves

and to count from two zero points; from midnight to 'noon is

called A.M. (ante meridiem), and from noon to midnight is called

P.M. (post meridiem). When consulting the Ephemeris or the

Nautical Almanac it
isjiecessary

to add i2
h
to the P.M. hours

before looking up corresponding quantities. The data found

opposite 3* are for 3* A.M.; those opposite 15* are for 3* P.M.

30. Relation between Longitude and Time.

The hour angle of the sun, counted from the lower meridian

of any place, is the solar time at that meridian, and will be

apparent or mean according to which sun is being considered.

The hour angle of the sun from the (lower) meridian of Green-

. wich is the corresponding Greenwich solar time. The difference

between the two times, or hour angles, is the longitude of the

place east or west of Greenwich, and expressed either in degrees
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or in hours according as the hour angles are in degrees or in hours.

Similarly, the difference between the local solar times of any
two places at a given instant is their difference in longitude in

hours, minutes, and seconds. In Fig. 33, A'AC is the Green-

wich solar time or the hour angle of the sun from A'\ B'BC is

the time at P or the hour angle of the sun from B f
. The differ-

ence A 'J3', or AB, is the longitude of P west of Greenwich.

Pole

*,wich

FIG. 33

It should be observed that the reasoning is exactly the same

whether C represents the true sun or the fictitious sun. The same

result would be found if C were to represent the vernal equinox.

[n this case the arc AC would be the hour angle of the equinox,

3r the Greenwich Sidereal Time. BC would be the Local Sidereal

Time at P and AB would be the difference in longitude. The

measurement of longitude differences is therefore independent of

the kind of time used, provided the times compared are of the

mme kind.

The truth of the preceding may be more readily seen by no-

ticing that the difference in the two sidereal times, at meridian

A and meridian B, is the interval of sidereal time during which
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a star would appear to travel from A to B. Since the star re-

quires 24 sidereal hours to travel from A to A again, the time

interval AB bears the same relation to 24 sidereal hours that the

longitude difference bears to 360. The difference in the mean

solar times at A and B is the number of solar hours that the

mean sun would require to travel from A to 5; but since the

sun requires 24 solar hours to go from A to A again, the time

interval from A to B bears the same ratio to 24 solar hours that

the longitude difference bears to 360. The difference in longi-,

tude is correctly given when either time is used, provided the

same kind of time is used for both places.

To Change from Greenwich Time to Local Time or from Local

Time to Greenwich Time.

The method of changing from Greenwich to local time (and

the reverse) is illustrated by the following examples. Remem-
ber that the more easterly place will have the later time.

Example i. The Greenwich Civil Time is 19* 40*" lo^.o. Required the civil

time at a meridian 4^ 50 2is .o West.

Gr. Civ. T. = igft 40 io*.o

Long. West = 4ft
50*** 21^.0

Loc. Civ. T. = 14^ 49W 49^.0

P.M.

Example 2. The Greenwich Civil Time is 3^ oom. Required the local civil

time at a place whose longitude is 8* 00 West. In this instance the time at the

place is 8& earlier than 3^, that is it is 5^ before midnight of the preceding day, or

19^. This may also be obtained by adding 24* to the given 3* before subtracting

the longitude difference.

Gr. Civ. T. = 27* oo

Long. West = Sfi_
Loc. Civ. T. = 19* oom

=
fit oom P.M.

Example 3. The Greenwich Civil Time is 20^ oo. What is the time at a place

3
ft east of Greenwich?

Gr. Civ. T. = so* oo>

Long. East = 3^ oo"*

Loc. Civ. T.
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31. Relation between Hours and Degrees.

Since a circle may be divided either into 24* or into 360, the

relation between these two units is constant.

Since 24* = 360,

we have i
h = 15,

i
m = IS

7

,

i
s =

is".

(Dividing the second equation by 15 we have

Am _ ,o.
4 i

,

also 4*
= i'.

By means of these two sets of equivalents, hours may be con-

verted into degrees, and degrees into hours without writing

down the intermediate steps. If it is desired to state the process

as a rule it may be done as follows: To convert degrees into hours,

divide the degrees by 15 and call the result hours; multiply the

remainder by 4 and call the result minutes; divide the minutes

(of an angle) by 15 and call the result minutes (of time); mul-

tiply the remainder by 4 and call it seconds; divide the seconds

(of angle) by 15 and call the result seconds (of time).

Example. Convert 47 if 35" into hours, minutes and seconds.

47 =45+ 2= 3*o8

if =
i$

f

-f 2
' = oi^oS*

35" - 30" + 5" -
Q2*.33

Result = 3* ogm 10^.33

To convert hours into degrees, reverse this process.

Example. Convert 6* 35 51* into degrees, minutes, and seconds.

6* - 90

35m = 32" + 3
ro - 8 45'

51*
= 48* + 3*

- 1 2' 45"

Result = 98 57' 45"

One should be careful to use m and 5 for the minutes and sec-

onds corresponding to hours, and ',

"
for the minutes and sec-

onds corresponding to degrees.
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It should be observed that the relation 15
== i

h
is quite in-

dependent of the length of time which has elapsed. A star

requires one sidereal hour to increase its hour angle 15; the

sun requires one solar hour to increase its hour angle 15. In

the sense in which the term is used here i
fl means primarily an

angle, not an absolute interval of time. It becomes an absolute

interval of time only when a particular kind of time is specified.

32. Standard Time.

From the definition of mean solar time it will be seen that at
^

any given instant the solar times at two places will differ by an

amount equal to their difference in longitude expressed in hours,

minutes, and seconds. Before 1883 it was customary in this

country for each large city or town to use the mean solar time of

a meridian passing through that place, and for the smaller towns

in that vicinity to adopt the same time. Before railroad travel

became extensive this change of time from one place to another

caused no great difficulty, but with the increased amount of

railroad and telegraph business these frequent and irregular

changes of time became so inconvenient and confusing that in

1883 a uniform system of time was adopted. The country is

divided into time belts, each one theoretically 15 wide. These

are known as the Eastern, Central, Mountain, and Pacific time

belts. All places within these belts use the mean local time of

the 75, 90, 105, and 120 meridians respectively. The time

of the 60 meridian is called Atlantic time and is used in the

Eastern part of Canada. The actual positions of the dividing

lines between these time belts depend partly upon the location

of the large cities and the points at which the railway companies

change their time. The lines shown in Fig. 34 are in accordance

with the decisions of the Interstate Commerce Commission in

1918. Wherever the change of time occurs the amount of the

change is always exactly one hour. The minutes and seconds

of all clocks are the same as those of the Greenwich clock. When
it is noon at Greenwich it is f A.M. Eastern time, 6* A.M. Central

time, $
h
A.M. Mountain time, and 4* A.M. Pacific time.
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Standard time is now in use in the principal countries of the

world; in most cases the systems of standard time are based on

the meridian of Greenwich.

Daylight Saving time for any locality is the time of a belt that

lies one hour to the east of the place in question. If, for ex-

ample, in the Eastern States the clocks are set to agree with those

of the Atlantic time belt (60 meridian west) this is designated

as daylight saving time in the Eastern time belt.

To Change from Local to Standard Time or the Contrary.

The change from local to standard time, or the contrary, is

made by expressing the difference in longitude between the given

meridian and the standard meridian in units of time and adding
or subtracting this correction, remembering that the farther

west a place is the earlier it is in the day at the given instant of

time.

Example i. Find the standard time at a place 71 West of Greenwich when the

local time is 4* 20 oo* P.M. In longitude 71 the standard time would be that of

the 75 meridian. The difference in longitude is 4 = i6m . Since the standard

meridian is west of the 71 meridian the time there is i6TO earlier than the local time.

The standard time is therefore 4^ 04 oo* P.M.

Example 2. Find the local time at a place 91 West of Greenwich when the

Central Standard time is pft oow oo A.M. The difference in longitude is i = 4.
Since the place is west of the 90 meridian the local time is earlier. The local time

is therefore 8* 56 oos A.M.

33. Relation between Sidereal Time, Right Ascension, and

Hour Angle of any Point at a Given Instant.

In Fig. 35 the hour angle of the equinox, or local sidereal time,

at the meridian of P, is the arc A V. The hour angle of the

star S at the meridian of P is the arc AB. The right ascension

of the star 5 is the arc VB. It is evident from the figure that

AV = VB + AB
or 5 = a + t [37]

where 5 = the sidereal time at P, a = the right ascension and'

/ = the hour angle of the star. This relation is a general one

will be founcl to hold true for all positions, except that it



MEASUREMENT OF TIME S3

will be necessary to add 24* to the actual sidereal time when the

sum of a and t exceed 24*. For instance, if the hour angle is

10* and the right ascension is 20* the sum is 30*, so that the

actual sidereal time is 6*. When the sidereal time and the right

ascension are given and the hour angle is required we must first

add 24* (if necessary) to the sidereal time (24* + 6* =
30*) be-

fore subtracting the 2oh right ascension, to obtain the hour angle

10* . If, however, it is preferred to compute the hour angle in a

direct manner the result is the same. When the right ascension

Pole

FIG. 35

is 20* the angle from V westward to the point must be 24* 20 =

4*. This 4* added to the 6* sidereal time gives 10* for the hour

angle as before.

34. Star on the Meridian.

When a star is on any meridian the hour angle of the star at

that meridian becomes o*. The sidereal time at the place then

becomes numerically equal to the right ascension of the star.

This is of great practical importance because one of the best

methods of determining the time is by observing transits of

stars over the plane of the meridian. The sidereal time thus
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becomes known at once when a star of known, right ascension

is on the meridian.

35. Mean Solar and Sidereal Intervals of Time.

It has already been stated that on account of the earth's

orbital motion the sun has an apparent eastward motion among
the stars of nearly i per day. This eastward motion of the sun

makes the intervals between the sun's transits greater by nearly

FIG. 36

4
m than the interval between the transits of the equinox, that is,

the solar day is nearly 4 longer than the sidereal day. In

Fig. 36, let C and C" represent the positions of the earth on two

consecutive days. When the observer is at it is noon at his

meridian. After the earth makes one complete rotation (with

reference to a fixed star) the observer will be at 0', and the side-

real time will be exactly the same as it was the day before when
he was at O. But the sun's direction is How CO", so the earth

must turn through an additional degree (nearly) until the sun is

again on this observer's meridian. This will require nearly 4*
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additional time. Since each kind of day is subdivided into

hours, minutes and seconds, all of these units in solar time will

be proportionally larger than the corresponding units of si-

dereal time. If two clocks, one regulated to mean solar time

and the other to sidereal time, were started at the same instant,

both reading OA
,
the sidereal clock would immediately begin to

gain on the solar clock, the gain being exactly proportional to

the time elapsed, that is, about io5

per hour, or more nearly

3
m

56^ per day.

In Jig. 36 C and C may be taken to represent the earth's

position at the date of the equinox and any subsequent date.

The angle CSC will then represent that angle through which

the earth has revolved in the interval since March 22, and the

angle SC'X (always equal to CSC') represents the accumulated

difference between solar and sidereal time since March 22.

This angle is, of course, equal to the sun's right ascension.

The angle SC'X becomes 24* or 360 when the angle CSC
becomes 360; in other words, at the end of one year the sidereal

clock has gained exactly one day.

This fact enables us to establish the exact relation between

the two time units. It is known that the tropical year (equi-

nox to equinox) contains 365.2422 mean solar days. Since the

number of sidereal days is one greater we have

366.2422 sidereal days == 365.2422 solar days,

or i sidereal day = 0.99726957 solar days, [38]

and i solar day = 1.00273791 sidereal days. [39]!

Equations [38] and [39] may be written -

24* sidereal time = (24* 3 SS'.gog) mean solar time.
[40)

24* medn solar time = (24* + 3 56^.555) sidereal time.
[4]

These equations may be put into more convenient form for

putation by expressing the difference in time as a correction

be applied to any interval of time to change it from one unit
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the other. If Im is a mean solar interval and /,4:he correspond-

ing number of sidereal units, then

Is
= Im + 0.00273791 X Im [42]

and lm = Is
-

0.00273043 X Is , [43]

These give +9
s

.8s65 and g
s

.&2<)6 as the corresponding cor-

rections for one hour of solar and sidereal time respectively.

Tables II and III (pp. 227-8) were constructed by multiplying

different values of Im and Is by the constants in Equa. [42] and *

[43]. More extended tables (II and III) will be found in the
1

Ephemeris.

Example i. Assuming that a sidereal chronometer and a solar clock start

together at a zero reading, what will be the reading of the solar clock when the

sidereal chronometer reads 9^ 23 5i
5.o? From Table II, opposite 9^, is the cor-

rection im 28*466; opposite 23 and in the 4th column is 3*. 768, and opposite

51* and in the last column is 0^139. The sum of these three partial corrections is

xw 32^373; 9ft
23"* 51*. 1 32^.373 = 9^ 22 185.627, the reading of the solar

clock.

Example 2. Reduce 7^ iom in solar time units to the corresponding interval in

sidereal time units. In Table III the correction for 7** is +iw 085.995; for lo"1 it

is -l-i
s
-643. The sum, i"> 103.638, added to 7** iom gives 7* n 108.638 of sidereal

time.

It should be remembered that the conversion of time dis-

cussed above concerns the change of a short interval of time from

one kind of unit to another, and is like changing a distance from

yards to metres. When changing a long interval of time such,

for example, as finding the local sidereal time on Aug. i, when the

local solar time is ioft

A.M., we make use of the total accumulated

difference between the two times since March 22, which is the

same thing as the right ascension of the mean sun.

36. Approximate Corrections.

Since both corrections are nearly equal to 10* per hpur, or 4

per day, we may use these as rough approximations. For a still

closer correction we may allow 10* per hour and then deduct

i* for each 6* in the interval. The correction for 6* would then

be 6 X 10* i* = 59*. The error of this correction is but
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0^.023 per hour for solar time and 0^.004 per hour for sidereal

time.

37. Relation between Sidereal Time and Mean Solar Time at

any Instant.

If in Fig. 35, Art. 37, the point B is taken to represent the

mean sun, then equation [37] becomes

S = <xs + ts [44]

in which as and ts are the right ascension and hour angle of the

mean sun at the instant considered. If the civil time is repre-

sented by T then ts
= T + 12", and

S = as + T + i2 ft

[45]

which enables us to find sidereal time when civil time is given

and vice versa. If the equation is written

5 - T = as + I2
h

, [46]

then, since the value of as does not depend upon the time at

any place but only upon the absolute instant of time considered,

it is evident that the difference between sidereal time and civil

time at any instant is the same for all places on the earth. The
values of S and T will be different at different meridians, but

the difference, S T, is the same for all places at the given

instant.

In order that Equa. [45] shall hold true it is essential that as

and T shall refer to the same position of the sun, that is, to the

same absolute instant of time. The right ascension of the mean
sun obtained from the Ephemeris is its value of o* of Greenwich

Civil Time. To reduce this right ascension to its value at the

desired instant it is necessary to increase it by a correction equal

to the product of the hourly increase in the right ascension

times the number of hours elapsed since midnight, that is, by
the number of hours in the Greenwich Civil Time (T). The

hourly increase in the right ascension of the mean sun is constant

and equal to +9^.8565 per solar hour. This is the same quantity

that was tabulated as the
"
reduction from solar to sidereal
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units of time
" and is given in Table III. The difference be-

tween solar and sidereal time is due to the fact that the sun's

right ascension increases, hence the two are numerically the

same. It is not necessary in practice to multiply the above

constant by the hours of the civil time, but the correction may
be looked up at once in Table III. Similarly, Table II furnishes

at once the correction to the right ascension for any number of

sidereal hours. Equation [45] will not hold true, therefore,

until the above correction to as has been made, and this cor-

rection may be regarded either as the increase in the right ascen-

sion or as the change from solar to sidereal time, or the contrary.

Suppose that the sun S (Fig. 37) and a star 5' passed the

meridian opposite M at the same instant, and that at the civil

time T it is desired to compute the corresponding sidereal time.

Since the sun is apparently moving at a slower rate than the

star, it will describe the arc M'MS (
= T) while the star describes

the arc M'MS'. The arc SS' represents the gain of sidereal

time on mean time during the mean time interval T. , But S'
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is the position of the sun at oh and FS" is the right ascension

(as) at o". The required,right ascension is VS (or as at time J)
so as at o

h must be increased by the amount SS', or the correction

from Table III corresponding to T hours.

The right ascension of the mean sun is given in the Ephemeris
as

"
sidereal time of o* G. C. T." or

"
right ascension of the

mean sun + 12*." For convenience we may write Equa. [45]

in the form

S =
(as + i2) + T

[4Sa]

in which it is understood that a correction (Table III) is to be

added to reduce the interval T to sidereal units.

If the student has difficulty in understanding the process

indicated by Equa. [450] it may be helpful to remember that

all the quantities represented are really angles, and may be ex-

pressed in degrees, minutes, and seconds. If all three parts,

the sun's right ascension + 12", the hour angle of the mean sun

from the lower meridian (T), and the increase in the sun's right

ascension since midnight (Table III), are expressed as angles

then it is not difficult to see that the hour angle of the equinox
is the sum of these three parts.

Another view of it is that the actual sidereal time interval

from the transit of the equinox over the upper meridian to the

transit of the
" mean sun

"
over the lower meridian (midnight)

is as + i2
h

;
to obtain the sidereal time (since the upper transit

of the equinox) we must add to this the sidereal time interval

since midnight, which is the mean time interval since mid-

night plus the correction in Table III.

Example i. To find the Greenwich Sidereal Time corresponding to the Green-

wich Civil Time 9* oo" oo* on Jan. 7, 1925. The "
right ascension of the mean sun

-f 12*
"

for Jan. 7, 1925, is 7^ 04 090.74. The correction in Table III for o* is

4-i" 28^.71. The sidereal time is then found as follows:

(as 4- 12*) at o* = 7* 04m 09*.74

T = 9 oo oo

Table III = i 28 .71

5 = 16* os
m
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If it is desired to find the civil time T when the sidereal time

S is given, the equation is

T = S -
(as + 12 ,. [456]

In this instance it is not possible to correct the right ascension

at once for the change since oh
,
for that is not yet known. It is

possible, however, to find the number of sidereal hours since

midnight, for this results directly from the subtraction of the

tabulated value of (as + i2
h
) from S. T is therefore found by

subtracting from this last result the corresponding correction

in Table II.

Example 2. If the Greenwich sidereal time i6> 05"* 38*45 had been given, to

find the civil time, we should first subtract from S the tabulated value of <xs + 12^,

obtaining the sidereal interval of time since midnight. This interval less the

correction in Table II is the civil time, T.

S = i6^os> 38*45

(as + i2) at o = 7 04 09 .74

Sidereal interval = 9*01 28^71

From Table II we find

for 9* - im 28*466

for Iaa .164

for 28*. 7 1
= .078

total corr. = im 28^.708

Subtracting this from the above sidereal interval we have

T =
9> oo> oo*.

Example 3. If the time given is that for a meridian other than that of Green-

wich the corresponding Greenwich time may be found at once (Art. 30) and the

problem solved as before. Suppose that the civil time is n ft at a place 60 (- 4*)

west of Greenwich and the date is May i, 1925. The right ascension

33" 36X86. Then,

Local Civil Time = u^ oo oo*

Add Longitude W. = 4 oo oo

Gr. Civil Time = 15^ oo oo*

(as H- i2) at o = 14 33 36 .86

Table III = 2 27 .85

Gr. Sid. Time -
29^ 36 04*. 71

Subtract Long. W. =
j

Loc. Sid. Time 2536o4*.7i

.71
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Example 4. If the local sidereal time had been given, to find the local civil

time the computation would be as follows:

Local Sidereal Time == ih 36 04*. 71

Add Longitude W. =
4.

Greenwich Sidereal Time = 5* 36 043.71 (add 24^)

(as + I2>) at o> = 14 33 36 .86

. Sidereal Interval = i$h 02 27^.85

Table II = 2 27.85

Greenwich Civil Time =
1$** oom oo*

Subtract Longitude W. =
_4

Local Civil Time = n^ oom 00*

Example 5. Alternative method. The same result may be obtained by apply-

ing to the tabulated as + 12^ a correction to reduce it to its value at o^ of local

civil time. The time interval between o& at Greenwich and oft at the given place

is equal to the number of hours in the longitude, in this case 4 solar hours. In

Table III we find for 4h the correction +393.426. The value of (as + 12^) at o&

local time is 14** 33 36*.86 + 39M3 = 14^ 34W 163.29. (If the longitude is east this

correction is subtractive). The remainder of the computation is as follows:

Local Civil Time = 1 1* oom oo3

(as -f- i zh) at o^ (local)
= 14 34 16 .29

Table III == i 48 .42

Local Sidereal Time = 25^ 36 043.71
= i& 36"* 043.71

Conversely,

Local Sidereal Time = ih 36*** 043.71 (add 24*)

(as + 1 2*) at o7*
(local) = 14 34 16 .29

Sidereal interval = n 7* oim 483.42

Table II = 01 48 .42

Local Civil Time = nft oom oo*.oo

38. The Date Line.

If a person were to start at Greenwich at the instant of noon

and travel westward at the rate of about 600 miles per hour, i.e.,

rapidly enough to keep the sun always on his own meridian, he

would arrive at Greenwich 24 hours later, but his own (local)

time would not have changed at all; it would have remained

noon all the time. His date would therefore not agree with that

kept at Greenwich but would be a day behind it. When travel-

ling westward at a slower rate the same thing happens except

that it takes place in a longer interval of time. The traveller
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has to set his watch back a little every day in prder to keep it

regulated to the meridian at which his noon occurs. As a con-

sequence, after he has circumnavigated the globe, his watch has

recorded one day less than it has actually run, and his calendar

is one day behind that of a person who remained at Greenwich.

If the traveller goes east he has to set his watch .ahead every day,

and, after circumnavigating the globe, his calendar is one day
ahead of what it should be. In order to avoid these discrepancies

in dates it has been agreed to change the date when crossing the

180 meridian from Greenwich. Whenever a ship crosses the

180 meridian, going westward, a day is omitted from the cal-

endar; when going eastward, a day is repeated. As a matter

of practice the change is made at the midnight occurring

nearest the 180 meridian. For example, a steamer leaving

Yokohama July i6th at noon passed the 180 meridian about

4 P.M. of the 22d. At midnight, when the date was to be

changed, the calendar was set back one day. Her log there-

fore shows two days dated Monday, July 22. She arrived

at San Francisco on Aug. i at noon, having taken 17 days for

the trip.

The international date line actually used does not follow the

180 meridian in all places, but deviates so as to avoid separating

the Aleutian Islands, and in the South Pacific Ocean it passes

east of several groups of islands so as not to change the date

formerly used in these islands.

39. The Calendar.

Previous to the time of Julius Caesar the calendar was based

upon the lunar month, and, as this resulted in a continual change

in the dates at which the seasons occurred, the calendar was

frequently changed in an arbitrary manner in order to keep the

seasons in their places. This resulted in extreme confusion in

the dates. In the year 45 B.C., Julius Caesar reformed the

calendar and introduced one based on a year of 365! days, since

called the Julian Calendar. The J day was provided for by

making the ordinary year contain 365" days, but every fourth
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year, called leap year, was given 366 days. The extra day was

added to February in such years as were divisible by 4.

Since the year actually contains 365^ 5* 48 46*, this differ-

ence of nm
14* caused a gradual change in the dates at which

the seasons occurred. After many centuries the difference had

accumulated to about 10 days. In order to rectify this error

Pope Gregory XIII, in 1582, ordered that the calendar should

be corrected by dropping ten days and that future dates should

be computed by omitting the 366th day in those leap years

which occurred in century years not divisible by 400; that is,

such years as 1700, 1800, 1900 should not be counted as leap

years.

This change was at once adopted by the Catholic nations.

In England it was not adopted until 1752, at which time the

error had accumulated to n days. Up to that time the legal

year had begun on March 25, and the dates were reckoned ac-

cording to the Julian Calendar. When consulting records re-

ferring to dates previous to 1752 it is necessary to determine

whether they are dated according to
" Old Style

"
or

" New

Style." The date March 5, 1740, would now be written March

16, 1741. "Double dating/
7

such as 1740-1, is frequently

used to avoid ambiguity.

Questions and Problems

1. If a sun dial shows the time to be g7* A.M. on May i, 1025, at a place in longi-

tude 71 West what is the corresponding Eastern Standard Time? The corrected

equation of time is + 2 56*.

2. When it is apparent noon on Oct. i, 1925, at a place in longitude 76 West

what is the Eastern Standard Time? The corrected equation of time is -f 10"* 17*.

3. Make a design for a horizontal sun dial for a place whose latitude is 42 21' N.

The gnomon ad (Fig. 38), or line which casts the shadow on the horizontal plane,

must be parallel to the earth's rotation axis; the angle which the gnomon makes

with the horizontal plane therefore equals the latitude. The shadow lines for the

hours (X, XI, XII, I, II, etc.) are found by passing planes through the gnomon
and finding where they cut the horizontal plane of the dial. The vertical plane
adb coincides with the meridian and therefore is the noon (XII*) line. The other

planes make, with the vertical plane, angles equal to some multiple of 15. In

finding the trace dc of one of these planes on the dial it should be observed that the
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foot of the gnomon, d
}
is a point common to all such traces. In order to find an-

other point c on any trace, or shadow line, pass a plane abc through some point a on

the gnomon and perpendicular to it. This plane (the plane of the equator) will cut

an east and west line ce on the dial. If a line be drawn in this plane making an

angle of n X 15 with the meridian plane, it will cut ce at a point c which is on the

shadow line. Joining c with the foot of the gnomon gives the required line.

In making a design for a sun dial it must be remembered that the west edge of

the gnomon casts the shadow in the forenoon and the east edge in the afternoon;

there will be of course two noon lines, and the two halves of the diagram will be

symmetrical and separated from each other by the thickness of the gnomon. The

d

FIG. 38

dial may be placed in position by levelling the horizontal surface and then com-

puting the watch time of apparent noon and turning the dial so that the shadow is

on the XII* line at the calculated time.

Prove that the horizontal angle bdc is given by the relation

tan bdc = tan t sin <,

in which / is the sun's hour angle and < is the latitude.

4. Prove that the difference in longitude of two points is independent of the

kind of time used, by selecting two points at which the solar time differs by say
3*, and then converting the solar time at each place into sidereal time.

5. On Jan. 20, 1925, the Eastern Standard Time at a certain instant is 7^30"*
P.M. (Civ. T. 19* 3o). What is the local sidereal time at this instant at a place
in longitude 72 10' West? (Right ascension of Mean Sun + i2 at o* G. C. T. =
7
h
55
m

25
s
-o.)

6. At a place in longitude 87 30' West the local sidereal time is found to be

19* 13** ios.5 on Sept. 30, 1925. What is the Central Standard Time at this in-

stant? (The right ascension of Mean Sun -f 12* at o* G. C. T. = 0*32^ S3*.2.)

7. If a vessel leaves San Francisco on July 16 and makes the trip in 17 days,
on what date will she arrive at Yokohama?



CHAPTER VI

THE AMERICAN EPHEMERIS AND NAUTICAL
ALMANAC STAR CATALOGUES INTERPOLATION

40. The Ephemeris.
In discussing the problems of the previous chapters it has

been assumed that the right ascensions and declinations of the

celestial objects and the various other data mentioned are known
to the computer. These data consist of results calculated from

observations made with large instruments at the astronomical

observatories, and are published by the Government (Navy

Dept.) in the American Ephemeris and Nautical Almanac.

This may be obtained a year or two in advance from the Super-

intendent of Documents, Washington, D.C., price one dollar,

It contains the coordinates of the sun, moon, planets, and stars,

as well as the semidiameters, parallaxes, the equation of time,

and other necessary data.

It should be observed that the quantities given in the Almanac

vary with the time and are therefore computed for equidistant

intervals of solar time at some assumed meridian, usually that

of the Greenwich (England) Observatory.

The Ephemeris is divided into three principal parts. Part

I contains the data for the sun, moon, and planets, at stated

hours of Greenwich Civil Time, usually at o* (midnight), or the

beginning of the Civil Day. (Previous to 1925 such data were

given for Greenwich Mean Noon.) Part II contains the lists

of star places, the data being referred to the meridian of the

U. S. Naval Observatory at Washington (5*08 1 5^.78 west of

Greenwich); the instant being that of transit. Part III con-

* Similar publications by other governments are: The Nautical Almanac (Great

Britain), Berliner Astronomisches Jahrbuch (Germany), Connaissance des Temps

(France), and Almanaque Nautico (Spain).

65



66 PRACTICAL ASTRONOMY

tains data needed for the prediction of eclipses, occupations,

etc. At the end of the volume will be found a "series of tables

of particular value to the surveyor.

There is also published a smaller volume entitled The American

Nautical Almanac* which contains data for the sun, moon,

and stars referred to the meridian of Greenwich. The arrange-

ment of the tables is somewhat different from that given in the

Ephemeris. This almanac is intended primarily for the use of

navigators.

Whenever the value of a coordinate, or other quantity, is

given in the Ephemeris, it is stated for a particular instant of

Greenwich (or Washington) time, and the rate of change, or

variation per hour, of the quantity is given for the same instant.

These rates of change are the differential coefficients of the

tabulated functions. If the value of the quantity is desired for

any other instant it is essential that the Greenwich time for that

instant be known. The accuracy with which this time must

be known will depend upon how rapidly the coordinate is vary-

ing. If the time given is local time it must be converted into

Greenwich time as explained in Chapter V.

On p. 67 is a sample page taken from the Ephemeris for

1925. On p. 69 are given portions of the table of
" mean

places
"

of stars, both circumpolars and others. On pp. 70

and 71 are extracts from the tables of
"
apparent places

"
in

which the coordinates are given for every day for close circum-

polars and for every 10 days for other stars. The precession of

the equinoxes causes the right ascension of close circumpolar

stars to vary much more rapidly and more irregularly than for

stars nearer the equator; the coordinates are therefore given

at more frequent intervals. On p. 72 are extracts from the

Nautical Almanac and The Washington Tables of the Ephemeris
for 1925.

In ?art II of the Ephemeris will be found a table entitled

* Sold %y the Superintendent of Documents, Washington, D. C., for 15

cents.
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SUN, 1925

FOR o& GREENWICH CIVIL TIME

NOTE. o* Greenwich Civil Time is twelve hours before Greenwich Mean Noooof the same
date.
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" Moon Culminations." This table gives the data required

in determining longitude by observing meridian* transits of the

moon. (See Art. 94.)

The tables at the end of the Ephemeris, already referred to,

include :

Table I. For finding the Latitude by an observed Altitude of

Polaris.

Table II. Sidereal into Mean Solar Time.

Table III. Mean Solar into Sidereal Time.

Table IV. Azimuth of Polaris at All Hour Angles.

Table V. Azimuth of Polaris at Elongation.

Table Va. For reducing to Elongation observations made near

Elongation.

Table VI. For finding, by observation, when Polaris passes the

Meridian.

Table VII. Time of Upper Culmination, Elongation, etc., and

other tables.

41. Star Catalogues.

Whenever it becomes necessary to observe stars which are not

included in the list given in the Ephemeris, their positions must

be taken from one of the star catalogues. These catalogues

give the mean place of each star at some epoch, such as the be-

ginning of the year 1890, or 1900, together with the necessary

data for reducing it to the mean place for any other year. The

mean place of a star is that obtained by referring it to the mean

equinox at the beginning of the year, that is, the position it

would occupy if its place were not affected by the small periodic

terms of the precession.

The year employed in such reductions is that known as the

Besselian fictitious year. It begins when the sun's mean longi-

tude (arc of the ecliptic) is 280, that is when the right ascension

of the mean sun is iSh 40**, which occurs about January i. After

the catalogued position of the star has been brought up to the

mean place at the beginning of the. given ye'ar, it must still be

reduced to its
"
apparent place/' for the exact date of the ob-
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MEAN PLACES OF TEN-DAY STARS, 1925

FOR JANUARY 0^.654, WASHINGTON CIVIL TIME

13 Ceti, dup., , o".3- a Cassiop., var. irreg., 2W.2, 2m,8.

MEAN PLACES OF CIRCUMPOLAR STARS, 1925

FOR JANUARY 0^.654, WASHINGTON CIVIL TIME

43 H. Cephei
a Ursae Mm.

(Polaris) t
4 G. Octantis
Groombridge 750
Groombridge 944

31 G. Mensae
f Mensae
51 H. Cephei
7 G. Octantis

25 H. Camelopar-
dalis

Groombridge 1119
f Octantis
i H. Draconis
t Chamaeleontis. .

30 H. Camelopar-
dalis

77 Octantis
Bradley 1672

t Octantis
32 H. Camelop. segj
K Octantis

4-5

2.1

5.6
6-7
6.4

6.2

5.6
5-3
6.4

7-0
5-4
4-6
5.2

6.3
6-3
5-4
5 3
5-6

Ko

F8
Ko
F8
Ko

Ao
Aa
Ma

Mb

Ao

K
3
o

B3

Ao
Fo
Ko
A2
A2

o 58 11.014 + 7.7785 +-0737 +85 51 20.58 +19.398 -0.004

I 34 13 .

I 41 32.636
4 12 24
5 37 43-075

588 +31.1184V -
3.6690 .

065 +17.7589 +
+18.8025

'

5 44 41.365
6 46 18 940
7 5 56.472
7 13 37-284

8 23 37.298 +57
9 7 52.155
9 26 31.760
9 36 8.988

10 22 5.096 + 7-4985

10 59 52.260
12 14 31.648 +
12 46 55-237
2 48 34-024

13 28 28.100

II. 6
- 4-9. .

+28.9317
-20.4769

7 15 24.635 +12.7709 +.0131

. 3310
8.2911
8.7249
1.6820

0.4296
+ 6.0474
+ 0.4586
+ 9-2533

+ .1528

+ .0086

.0132
+ .0130

.0118

.0035

.0582

-.0145

-.0376
-.1153
-.0059

.0121

.0460

-.0578
.0702

+ .0368- 0183
-.0770

+88 54 u. 12

-85 8 56.44
+85 21 23.96
+85 9 46.65

-84 49 36.02
-80 44 9-91
+87 10 10.26
-86 54 58-20

+82 33 38.50

+88 51 28.64
-85 21 54-58
+8l 39 35-81
80 36 16.52

+82 56 28.35

-84 II 25.52
+88 6 56.51
-84 42 59-21
+83 49 13-82
-85 24 II. 14

+18.376
+18 137
+ 9-III
+ 1-942

+ 1-425- 3-941- 5-722
6.323

- 6.524

-11.738
-14.608
-15-743
-16.205

-18.234

-19.363
-19.946
-19.602
-19.580
-18.594

+0.001
+0.028
+0.042
0.004

+0.087
+0.082
-0.034
+0.000

-
0.047

+0.018
+0.044
0.027

+0.019

+0.009

0.005
+0.058
+0.024
+0.016
0.024

a Ursae Min., star 9
m

, 18" s. pr, 32 H. Camelop., star 5
W

.8, 21",6 n. pr,
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APPARENT PLACES OP STARS,

CIRCUMPOLAR STARS

For the Upper Transit at Washington

NOTE. o^ Washington Civil Time is twelve hours before Washington Mean Noon of the same
date.
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APPARENT PLACES OF STARS, 1925

FOR THE UPPER TRANSIT AT WASHINGTON

Washington
Civil Time

33 Piscium
Mag. 4-7

Right
Ascension

Declina-
tion

a Andromeda;
(Alpheratz)

Mag. 2 2

Right
Ascension

Declina-
tion

j8 Cassiopeiae
Mag. 2.4

Right
Ascension

Declina-
tion

e Phoanicis

Mag. 3-9

Right
Ascension

Declina-
tion

.Jan.

Feb.

Mar.

Apr.

May

June

July

Aug.

Sept.

Oct.

Nov.

Dec.

7

10.7
20 7

30.6
96

19.6

1 6

ii 5

21.5
31 5

10.5
20 4
30
10 4
20.3

30 3

9 3
19 3
29 2

9 2

19 2

29.2
8.1
18 i

28.1

7 o

17.0
27 o

7
16 9

269
5-9
15-9
25 8

5.8

15.8
25 7

35 7

h m
o i

28.841

28 532
28 454

28.399

28 367 T

28 368 *|

28 402
J4

28 473
jjjl

28.583 '

28 733 *j>
28 921

188

29 145

29 398

- 6 7

45 99 6
46 bo ;

47 13
,j

47-49 2'
47 71

2
;

3247 73
47 59
47 20

46 58
45 75

]

44 64 IV,
43-31

^
41 79

o 4

29-734
29 586
29 444
29 314
29 204

29.118
29 063

29 046-
29 070
29 139 !^

%
2M *

29 625
20

;

29 871
24

30.151 ts

29 678
-29 977
30 285
30 596
30 901

31 192 ,

31.463 ;

31 707 :

31 919 :

32.093 :

32.231
32 327
32 388

32 410-
32 402

32.362
32.302
32 220

32 127
32 021 i

31.908 .

31 795 :

31-684
'

sl=
30 12
"

24
174

26.51

s

i'326

21.21
20 96

20.94-
21 16

21.59

22.17
22 83
23 60

24 40
25.22

26 01

74
27-39

+28 40

38.63 .

2iS
36 42

86 33

55

J7
24

34-99
41

24.81
20

2395
24 09

$3*330
30 78S
31-120
31 457
31 75

-54
26.82
28 43
3 ' 31

32.096 288 34-72" 'K *

!"! 37 I3

32 802

33-044 :

241
2A7

^4
46 87

33348
33 371-
33 358

33 315
33 244
33.150 .

33-036 ;

32.908 J-

32.770
32.625

JJ

43

7156
9457
[I4 58

5835-^8

58 17

57 69
56.90

h m
o 5

9-620

8 436 g
8$ '42

8 015
-

8 017
2

10.056
543

1 O4I
1 S$

370
421

Ufia;

487
498

3 827
;

:4 OI9
4 149
4 215

'4 l62
112

4.050
3 888

3 68

3 " 432
3-152

248

12.846
2 525
2.198

+5843

8185 8

77 96
79

.55

ss

70.24 ".

73-53 :

76.89 8
80.27

338

83 61
86 .-82

89.83 :

-91

10055
ioo 6s
100 20 ^

h m
o 5

s

35 oio

34-8II
*

34.628
3

34 467
1Ui

34 333

34-232

34.169

34 147"
34-173
34 248 .

34 374
I?8

7^ 3l8
J '4

354

35 728
}

ii

39 124
I31

39 255 r\
39.328 Jg

39 346
3U g

39 228

39-I06J
22

38 950 J|

S:SS?

S.ig~
37-958

-46 9

61-39
61.07

3-

60 28 ,
7S

5906
J

2
^

57 43 ^
55 43

23,
53- 12 -_/j

44-79

41 72
38. '_

35-58

295
307

257

21 43
20.32

19 67

19 80

i

194
155

190
216

35

42.38
42.80

42-74

Mean Place

Sec a, Tan d

29.826

i. 006

37-68

0.107

30.419

1.140

35-02

+0.547
9 934

I 927

70.16

+1-647

36 485 40-94

I 444 -1.041

+0.061

+0.40

+0.007

+0.01

+0.061 0.036

+0.40 +0.02

+0.062 o.no

+0.40 +0.02

+0.060

+0.40

+0.069

+0.03

NOTE, o" Washington Civil Time is twelve hours before Washington. Mean Noon of the same
date.
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SUN, JANUARY 1925

NOTE. The Equation of Time is to be applied to the G. C. T. in accordance with the sign as

given,

oft Greenwich Civil Time is twelve hours before Greenwich Mean Noon of the same date.

SUN, 1925

FOR WASHINGTON APPAPENT NOON

NOTE. For mean time interval of semidiameter passing meridian, subtract os.i9 from the
Sidereal interval.

c^ Washington CM Time is twelve hours before Washington Mean Noon of the same date.
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servation, by employing formulae and tables given for the pur-

pose in Part II of the Ephemeris.
There are many star catalogues, some containing the positions

of a very large number of stars, but determined with rather in-

ferior accuracy; others contain a relatively small number of

stars, but whose places are determined with the greatest accu-

racy. Among the best of these latter may be mentioned the

Greenwich ten-year (and other) catalogues, and Boss' Catalogue
. of 6188 stars for the epoch 1900. (Washington, 1910,)

For time and longitude observations, the list given in the

Ephemeris is sufficient, but for special kinds of work where the

observer has but a limited choice of positions, such as finding

latitude by Talcott's method, many other stars must be ob-

served.

42. Interpolation.

When taking data from the Ephemeris corresponding to any

given instant of Greenwich Civil Time, it will generally be neces-

sary to interpolate between the tabulated values of the function.

The usual method of interpolating, in trigonometric tables, for

instance, consists in assuming that the function varies uniformly

between two successive values in the table, and, if applied to the

Ephemeris, consists in giving the next preceding tabulated value

an increase (or decrease) directly proportional to the time elapsed

since the tabulated Greenwich time. If the function is repre-

sented graphically, it will be seen that this process places the

computed point on a chord of the function curve.

Since, however, the
"
variation per hour/' or differential co-

efficient of the function, is given opposite each value of the func-

tion it is simpler to employ this quantity as the rate of change of

the function and to multiply it by the time elapsed. An in-

spection of the diagram (Fig. 39) will show that this is also a

more accurate method than the former, provided we always

work from the nearer tabulated value; when the differential

coefficient is used the computed point lies on the tangent line,

and the curve is nearer to the tangent than to the chord for any
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distance which is less than half the interval between tabulated

values.

To illustrate these methods of interpolating let it be assumed

that it is required to compute the sun's declination at 2i
h Green-

wich Civil Time, Feb. i, 1925. The tabulated values for o*

(midnight) on Feb. i, and Feb. 2, are as follows:

Sun's declination Variation per hour

Feb. i, o* -
17 18' o3 ".9 + 42"-i5

Feb. 2, o* 17 01 03 .2 + 42 .90

17 18*03'.'9

Greenwich Civil Time

FIG. 39

Feb,2

The given time, 21*, is nearer to midnight of Feb. 2 than it is

to midnight of Feb. i, so we must correct the value 17 01'

03". 2 by subtracting (algebraically) a correction equal to +42".9o

multiplied by 3", giving 17 03' ii
ff

.g. If we work from

the value for o*, Feb. i, we obtain 17 18' 03".9 42". 15 X
21 =

17 03' i8".7. For the sake of comparison let us inter-

polate directly between the two tabulated values. This gives

-I7oi'o3".2 + A X i7'oo".7 = -i7o3'io".8. These

three values are shown on the tangents and chord respectively

in Fig. 39. It is clear that the first method gives a point nearer

to the function curve than either of the others'.
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Whenever these methods are insufficient, as might be the

case when the tabular intervals are long, or the variations in

the
"
varia. per hour "

are rapid, it is possible to make a closer

approximation by interpolating between the given values of the

differential coefficients to obtain a more accurate value of the

rate of change for the particular interval employed. If we

imagine a parabola (Fig. 40) with its axis vertical and so placed

that it passes through the two given points, C and C', of the

^function curve and has the same slope at these points, then it is

FIG. 40. PARABOLA ky

obvious that this parabola must lie very close to the true curve

at all points between the tabulated values. By the following

process we may find a point 'exactly on the parabola and conse-

quently close to the true value. The second differential coeffi-

cient of the equation of the parabola is constant, and the slope

(dy/dx) may therefore be found for any desired point by simple

interpolation between the given values of dy/dx. If we deter-

mine the value of dy/dx for a point whose abscissa is half way
between the tabulated time and the required time we obtain the

slope of a tangent line, rj
1

', which is also the slope of a chord of
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the parabola extending from the point representing the tabulated

value to the point representing the desired value
;% for it may be

proved that for this particular parabola such a chord is exactly

parallel to the tangent (slope) so found. By finding the value

of the
"
varia. per hour

"
corresponding to the middle of the

time interval over which we are interpolating, and employing
this in place of the given

"
varia. per hour

" we place our point

exactly on the parabola, which must therefore be close to the

true point on the function curve. In the preceding example this

interpolation would be carried out as follows:

From o* Feb. 2 back to 21* Feb. i is 3* and the time at the

middle of this interval is 22* 30. Interpolating between

+42
/;

.90 and +42". 15 we find that the rate of change for 22*

30
ra

is +42".9o - X o".75
= +42".86.

The declination is therefore

-I7oi'o3".2 -
3 X 42".86 =

17 03' n".8.

This is the most accurate of the four values obtained.

As another example let it be required to find the right ascen-

sion of the moon at 9^ 40"* on May 18, 1925. The Ephemeris

gives the following data.

Green. Civ. Time Rt. Asc. Var. per Min.

9* o 29
m

59^.56 2.0548

10* O 32 02 .80 2.0531

The Gr. Civ. Time at the middle of the interval from 9* to

9* 40 is 9* 20W
,
or one-third the way from the first to the sec-

ond tabulated value. The interpolated
"
variation per minute "

for this instant is 2.0542, one-third the way from 2.0548 to 2.0531.

The correction to the right ascension at 9* is 40 X 2^.0542
=

82*. 168 and the corrected right ascension is therefore 0^31

2i*.73. If we interpolate from the right ascension at ioh using

a "
var. per min." which is one-sixth the way from 2.0531

to 2.054$ we obtain the same result.
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43. Double Interpolation.

When the tabulated quantity is a function of two or more

variables the interpolation presents greater difficulties. If

the tabular intervals are not large, and they never are in a well-

planned table, the interpolation may be carried out as follows.

Starting from the nearest tabulated value, determine the change
in the function produced by each variable separately and apply

these corrections to the tabulated value. For example in Table

F, p. 203, we find the following:

p sin t

Suppose that we require the value of p sin t for the year 1927

and for the hour angle i
h

53^.5. We may consider that the

value 30'.9 is increased because the hour angle increases and is

decreased by the change of 2 years in the date, and that these

two changes are independent. The increase due to the i
m
.5

increase in hour angle is X i'.o = o
f

.^S. The decrease due
4.0
2

to the change in date is - X o'.y
= o'.28. The corrected value

is 30'.9 + o'.38 o'.28 =
3i'.o.

In a similar manner the tabulated quantity may be corrected

for three variations.

Example. Suppose that it is desired to take from the tables of the sun's azi-

muth (H. O. No. 71) the azimuth corresponding to declination 4-n30/ and hour

angle (apparent time from noon) 3^ 02^, the latitude being 42 20' N. From the

page for latitude 42 we find

Declination
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and from page for latitude 43 we find

Decimation

Selecting 114 56' as the value from which to start, we correct for the three varia-

tions as follows:

For latitude 42, decrease in iom time = 2 17'; decrease for 2 time = 27'.4.

For latitude 42, decrease for 1 of decimation = 55'; decrease for 30' of decli-

nation = 27 '.5. For 3^00"* increase for i of latitude =
45'; increase for 20' of

latitude =15'.
The corrected value is

114 56' 27'.4 27'. 5 + 15' = 114 i6'.i

For more general interpolation formulae the student is re-

ferred to Chauvenet's Spherical and Practical Astronomy, Doo-

little's Practical Astronomy, Hayford's Geodetic Astronomy,

and Rice's Theory and Practice of Interpolation.

Questions and Problems

1. Compute the sun's apparent declination when the local civil time is 15'*

(3* P.M.) Jan. 15, 1925, at a place 82 10' West of Greenwich (see p. 67).

2. Compute the right ascension of the mean sun +12^ at local o^ Jan. 10, 1925,

at a place 96 10' West of Greenwich (see p. 67).

3. Compute the equation of time for local apparent noon Jan. 30, 1925, at a

place 71 06' West of Greenwich.

4. Compute the apparent right ascensioji of the sun at G. C. T. i6> on Jan.

10, 1925, by the four different methods explained in Art. 42.

5. In Table F, p. 203, find by double interpolation the value of p
f

sin t for / =

8* 42^.5 and for 1926.



CHAPTER VII

THE EARTH'S FIGURE CORRECTIONS TO
OBSERVED ALTITUDES

44. The Earth's Figure.

The form of the earth's surface is approximately that of an

ellipsoid of revolution whose shortest axis is the axis of revolu-

tion. The actual figure departs slightly from that of the ellip-

soid but this difference is relatively small and may be neglected
in astronomical observations of the character considered in this

book. Each meridian may therefore be regarded as an ellipse,

and the equator and the parallels of latitude as perfect circles.

En fact the earth may, without appreciable error, be regarded
is a sphere in such problems as arise in navigation and in field

astronomy with small instruments. The semi-major axis of

the meridian ellipse, or radius of the equator on the Clarke

(1866) Spheroid, used as the datum for Geodetic Surveys in

the United States, is 3963.27 statute miles, and the semi-minor

(polar) axis is 3949.83 miles in length. This difference of about

13 miles, or about one three-hundredth part, would only be

noticeable in precise work. The length of i of latitude at the

equator is 68.703 miles; at the pole it is 69.407 miles. The

length of i of the equator is 69.172 miles. The radius of a

sphere having the same volume as the ellipsoid is about 3958.9
miles. On the Hayford (1909) spheroid the semi-major axis

is 3963.34 miles and the semi-minor is 3949.99 miles.

In locating points on the earth's surface by means of spherical

coordinates there are three kinds of latitude to be considered.

The latitude as found by direct astronomical observation is

dependent upon the direction of gravity as indicated by the

spirit levels of the instrument; this is distinguished as the

astronomical latitude. It is the angle which the vertical or

70
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plumb line makes with the plane of the equator. The geodetic

latitude is that shown by the direction of the normal to the sur-

face of the spheroid, or ellipsoid. It differs at each place from

the astronomical latitude by a small amount which, on the aver-

age, is about 3", but occasionally is as great as 30". This

discrepancy is known as the
"
local deflection of the plumb line/'

or the
"
station error "; it is a direct measure of the departure

of the actual surface from that of an ellipsoid. Evidently the

geodetic latitude cannot be observed directly but must be de-

rived by calculation. If a line is drawn from any point on the

surface to the center of the earth the angle which this line makes

with the plane of the equator is called the geocentric latitude.

In Fig. 41 AD is normal to the surface of the spheroid, and the

angle ABE is the geodetic latitude. The plumb line, or line

of gravity, at this place would coincide closely with AB, say

AB', and the angle it makes (AB'E) with the equator is the

astronomical latitude of A. The angle ACE is the geocentric

latitude. The difference between the geocentric and geodetic

latitudes is the angle BA C, called the angle of the vertical, or the
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reduction of latitude. The geocentric latitude is always less than

the geodetic by an amount which varies from o n' 30" in

latitude 45 to o at the equator and at the poles. Whenever

observations are made at any point on the earth's surface it

becomes necessary to reduce' the measured values to the corre-

sponding values at the earth's centre before they can be com-

bined with other data referred to the centre. In making this

reduction the geocentric latitude must be employed if great

exactness in the results is demanded. For the observations of

the character treated in the following chapters it will be suffi-

ciently accurate to regard the earth as a sphere when making
such reductions.

45. The Parallax Correction.

The coordinates of celestial objects as given in the Ephemeris
are referred to the centre of the earth, whereas the coordinates

obtained by direct observation are necessarily measured from a

point on the surface and hence must be reduced to the centre.

The case of most frequent occurrence in practice is that in which

the altitude (or the zenith distance) of an object is observed

and the geocentric altitude (or zenith distance) is desired. For

all objects except the moon the distance from the earth is so

great that it is sufficiently accurate to regard the earth as a

sphere, and even for the moon the error involved is not large

when compared with the errors of measurement with small

instruments.

In Fig. 42 the angle ZOS is the observed zenith distance, and

SiOS is the observed altitude; ZCS is the true (geocentric)

zenith distance, and ECS is the true altitude. The object

therefore appears to be lower in the sky when seen from O than

it does when seen from C. This apparent displacement of the

object on the celestial sphere is called parallax. The effect of

parallax is to decrease the altitude of the object. If the effect

of the spheroidal form of the earth is considered it is seen that

the azimuth of the body is also affected, but this small error

will not be considered here. In the figure it is seen that the
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difference in the directions of the lines OS and CS is equal to

the small angle OSC, the parallax correction. When the object is

vertically overhead points C, and S are in a straight line and

the angle is zero; when S is on the horizon (at Si) the angle OSiC

has its maximum value, and is known as the horizontal parallax.

FIG. 42

In the triangle OCS, the angle at may be considered j

known, since either the altitude or the zenith distance has been

observed. The distance OC is the semidiameter of the earth

(about 3959 statute miles), and CS is the distance from the

centre of the earth to the centre of the object and is known for

bodies in the solar system. To obtain S we solve this triangle

by the law of sines, obtaining
OC

sin S = sin ZOS X
CS

From the right triangle OSiC we see that

OC
=

C5i'
sn [48]
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The angle Si, or horizontal parallax, is given in the Ephemeris
for each object; we may therefore write,

sin S = sin Si sin ZOS [49]

or sin S = sin Si cos h. [50]

At this point it is to be observed that S and Si are very small

angles, about 9" for the sun and only i for the moon. We
may therefore make a substitution of the angles themselves

(in radians) for their sines, since these are very nearly the same.*

This gives
S (rad) = Si (rad) X cos h. [51]

To convert these angles expressed in radians into angles ex-

pressed in seconds f we substitute

S (rad) = S" X .000004848 . . .

and Si (rad) = S/' X .000004848 . . .
,

the result being S" = S/' cos h, [52]

that is

parallax correction = horizontal parallax X cos h. [53]

* To show the error involved in this assumption express the sine as a series,

x3
. x*

sm x x . . .

3 5

Since we have assumed that sin x = x the error is approximately equal to the next

term, For x = i the series is

sin i = 0.0174533 0.0000009 + o.ooooooo.

The error is therefore 9 in the seventh place of decimals and corresponds to about

o".i8. For angles less than i the error would be much smaller than this since

the term varies as the cube of the angle.

If, as is frequently done, the cosine of a small angle is replaced by i, the error

is that of the small terms of the series

*2
,

x*
COS X = I 1 . . . .

2 4
For i this series becomes

cos i = i 0.00015234-.

The error therefore corresponds to an angle of 31".42, much larger than for the

first series.

t To reduce radians to seconds we may divide by arc i" (
= 0.000004848137)

pr multiply by 206264.8,
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As an example of the application of Equa. [53] let us compute
the parallax correction of the sun on May i, 1925, when at an

apparent altitude of 50. From the Ephemeris the horizontal

parallax is found to be 8". 73. The correction is therefore

8".73 X cos 50 =
s".6i

and the true altitude is 50 oo' O5".6i.

Table IV (A) gives approximate values of this correction for

the sun.

46. The Refraction Correction.

Astronomical refraction is the apparent displacement of a

celestial object due to the bending of the rays of light from the

object as they pass through the atmosphere. The angular

amount of this displacement is the refraction correction. On
account of the greater density of the atmosphere in the lower

portion the ray is bent into a curve, which is convex upward, and

FIG. 43

more sharply curved in the lower portion. In Fig. 43 the light

from the star S is curved from a down to 0, and the observer at

O sees the light apparently coming from S', along the line bO.

The star seems to him to be higher in the sky than it really is.

The difference between the direction of S and the direction of
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S' is the correction which must be applied either to the apparent
zenith distance or to the apparent altitude to obtain the true

zenith distance or the true altitude. A complete formula for

the refraction correction for any altitude, any temperature, and

any pressure, is rather complicated. For observations with a

small transit a simple formula will

answer provided its limitations are

understood. The simplest method

of deriving such a formula is to con-

sider that the refraction takes place

at the upper limit of the atmosphere

just as it would at the upper surface

of a plate of glass. This does not

represent the facts but its use may
be justified on the ground that the

total amount of refraction is the FIG. 44

same as though it did happen this

way. In Fig. 44 light from the star S is bent at 0' so that it

assumes the direction O'O and the observer sees the star appar-

ently at 5". ZO'S (= f') is the true zenith distance, ZO'S'

(= f) is the apparent zenith distance, and SO fSr

(= r) is the

refraction correction; then, from the figure,

r
' = r + r. [54]

Whenever a ray of light passes from a rare to a dense medium (in

this case from vacuum into air) the bending takes place according

to the law
sin f

' = n sin f, [55]

where n is the index of refraction. For air this may be taken

as 1.00029. Substituting [54] in [55]

sin (f + r)
= n sin f . [56]

Expanding the first member,

sin f cos r + cos f sin r = n sin f . [57]
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Since r is a small angle, never greater than about o 34', we may
write with small error (see note, p. 83).

sin r = r

and cos r = i

whence
sin f + r cos f

= n sin f [58]

from which r = (n i) tan f [59]

being in radians.

To reduce r to minutes we divide by arc i'(
= 0.0002909 . . .).

The final value of r is therefore approximately

r-ZSS&tot [6o]
(min) .00029

= tan [61]

= cot h. [62]

This formula is simple and convenient but must not be regarded

as showing the true law of refraction. The correction varies

nearly as the tangent of f from the zenith down to about f = 80

(h
= 10), beyond which the formula is quite inaccurate. The

extent to which the formula departs from the true refraction

may be judged by a comparison with Table I, which gives the

values as calculated by a more accurate formula for a tempera-

ture of 50 F. and pressure 29.5 inches.

As an example of the use of this formula [62] and Table I

suppose that the lower edge of the sun has a (measured) altitude

of 31 30'. By formula [62] the value of r is i'.63, or i' 38".

The corrected altitude is therefore 31 28' 22". By Table I

the correction is i' 33", and the true altitude is 31 28' 27".

This difference of 5" is not very important in observations made

with an engineer's transit. Table I, or any good refraction

table, should be used when possible; the formula may be used

when a table of tangents is available and no refraction table is

at hand. For altitudes lower than 10 the formula should not

be considered reliable. More accurate refraction tables may be
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found in any of the text books on Astronomy to which reference

has been made (p. 78). Table VIII, p. 233, gives the refraction

and parallax corrections for the sun.

As an aid in remembering the approximate amount of the

refraction it may be noted that at the zenith the refraction is

o; at 45 it is i'; at the horizon it is about o 34', or a little

larger than the sun's angular diameter. As a consequence
of the fact that the horizontal refraction is 34' while the sun's

diameter is 32', the entire disc of the sun is still visible (apparently

above the horizon) after it has actually set.

47. Semidiameters.

The discs of the sun and the moon are sensibly circular, and

their angular semidiameters are given for each day in the Ephem-
eris. Since a measurement may be taken more accurately

to the edge, or limb, of the disc than to the centre, the altitude

of the centre is usually obtained by measuring the altitude of

the upper or lower edge and applying a correction equal to the

angular semidiameter. The angular semidiameter as seen by
the observer may differ from the tabulated value for two reasons.

When the object is above the horizon it is nearer to the observer

than it is to the centre of the earth, and the angular semidiameter

is therefore larger than that stated in the Ephemeris. When
the object is in the zenith it is about 4000 miles nearer the

observer than when it is in the horizon. The moon is about

240,000 miles distant from the earth, so that its apparent semi-

diameter is increased by about one sixtieth part or about 16".

Refraction is greater for a lower altitude than for a higher

altitude; the lower edge of the sun (or the moon) is always

apparently lifted more than the upper edge. This causes an

apparent contraction of the vertical diameter. This is most

noticeable when the sun or the moon is on the horizon, at which

time it appears elliptical in form. This contraction of the ver-

tical diameter has no effect on an observed altitude, however,

because the refraction correction applied is that corresponding

to the altitude of the edge observed; but the contraction must be
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allowed for when the angular distance is measured (with the

sextant) between the moon's limb and the sun, a star, or a planet.

The approximate angular semidiameter of the sun on the first

day of each month is given in

Table IV (B).

48. Dip of the Sea Horizon.

If altitudes are measured above

the sea horizon, as when observing

on board ship with a sextant, the

measured altitude must be dimin-

ished by the angular dip of the sea

horizon below the true horizon.

In Fig. 45 suppose the observer to

be4
at

;
the true horizon is OB

and the sea horizon is OH. Let

OP =
h, the height of the ob-

server's eye above the water sur-

face, expressed in feet; PC = R, the radius of the earth, regarded

as a sphere; and D, the angle of dip. Then from the triangle

OCH, n
D = '

163]

FIG. 45

and neglectingReplacing cos D by its series i \- .

terms in powers higher than the second, we have,

D2 h

7"
=
R + h'

Since h is small compared with R this may be written

^! = A
2 R _
D-\/p.(rad)

T /C

Replacing U by its value in feet (20,884,000) and dividing by
arc i' (

= .0002000), to reduce D to minutes,
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x VI
4 R
V-2
R

,- X arc i'
2

= 1.064 Vh. [64]

This shows the amount of the dip with no allowance for refrac-

tion. But the horizon itself is apparently lifted by refraction

and the dip which affects an observed altitude is therefore less

*than that given by [64]. If the coefficient 1.064 is arbitrarily

taken as unity the formula is much nearer the truth and is very

simple, although the dip is still somewhat too large. It then

becomes

D f = VhJt. [65]

that is, tlie dip in minutes equals the square root of the height

in feet. Table IV (C), based upon a more accurate formula,

> will be seen to give smaller values.

49. Sequence of Corrections.

Strictly speaking, the corrections to the observed altitude

must be made in the following order: (i) Instrumental cor-

rections; (2) dip (if made at sea); (3) refraction; (4) semidi-

ameter; (5) parallax. In practice, however, it is seldom neces-

sary to follow this order exactly. The parallax correction for

the sun will not be appreciably different for the altitude of the

centre than it will for the altitude of the upper or lower edge;

if the altitude is low, however, it is important to employ the

'refraction correction corresponding to the edge observed, be-

cause .this may be sensibly different from that for the centre.

In navigation it is customary to combine all the corrections,

except the first, into a single correction given in a table whose

arguments are the
"
height of eye," and " observed altitude."

(See Bowditch, American Practical Navigator, Table 46.)

Problems

i. Compute the sun's mean horizontal parallax. The sun's mean distance is

92,900,000 miles; for the earth's radius see Art. 44. Compute the sun's parallax

at an altitude of 60
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2. Compute the moon's mean horizontal parallax. The moon's mean distance

is 238,800 miles; for the earth's radius see Art. 44. Compute the moon's parallax

at an altitude of 45.

3. If the altitude of the sun's centre is 21 10' what is the parallax correction?

the corrected altitude?

4. If the observed altitude of a star is 15 30' what is the refraction correction?

the corrected altitude?

5. If the observed altitude of the lower edge of the sun is 27 41' on May ist

what is the true central altitude, corrected for refraction, parallax, and semidiameter?

6. The altitude of the sun's lower limb is observed at sea, Dec. i, and found

to be 18 24' 20". The index correction of the sextant is -f-i' 20". The height,

of eye is 30 feet. Compute the true altitude of the centre.



CHAPTER VIII

DESCRIPTION OF INSTRUMENTS

50, The Engineer's Transit.

The engineer's transit is an instrument for measuring hori-

zontal and vertical angles. For the purpose of discussing the

theory of the instrument it may be regarded as a telescopic line

of sight having motion about two axes at right angles to each

other, one vertical, the other horizontal. The line of sight is

determined by the optical centre of the object glass and the

intersection of two cross hairs* placed in its principal focus.

The vertical axis of the instrument coincides with the axes of

two spindles, one inside the other, each of which is attached to a

horizontal circular plate. The lower plate carries a graduated
circle for measuring horizontal angles; the upper plate has two

verniers, on opposite sides, for reading angles on the circle.

On the top of the upper plate are two uprights, or standards,

supporting the horizontal axis to which the telescope is attached

and about which it rotates. At one end of the horizontal axis

is a vertical arc, or a circle, and on the standard is a vernier, in

contact with the circle, for reading the angles. The plates and

the horizontal axis are provided with clamps and slow-motion

screws to control the motion. On the upper plate are two spirit

levels for levelling the instrument, or, in other words, for making
the vertical axis coincide with the direction of gravity.

The whole instrument may be made to turn in a horizontal

plane by a motion about the vertical axis, and the telescope may
be made to move in a vertical plane by a motion about the

tiorizontal axis. By means of a combination of these two

* Also called wires or threads; they are either made of spider threads, or plati-

mm wires, or are lines ruled upon glass.
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motions, vertical and horizontal, the line of sight may be made

to point in any desired direction. The motion of the line of

sight in a horizontal plane is measured by the angle passed over
)

by the index of the vernier along the graduated horizontal

circle. The angular motion in a vertical plane is measured by
the angle on the vertical arc indicated by the vernier attached

to the standard. The direction of the horizon is defined by
means of a long spirit level attached to the telescope. When
the bubble is central the line of sight should lie in the plane of

the horizon. To be in perfect adjustment, (i) the axis of each

spirit level
* should be in a plane at right angles to the vertical

axis; (2) the horizontal axis should be at right angles to the

vertical axis; (3) the line of sight should be at right angles to the

horizontal axis; (4) the axis of the telescope level should be

parallel to the line of sight, and (5) the vernier of the vertical

arc should read zero when the bubble is in the centre of the level

tube attached to the telescope. When the plate levels are-

brought to the centres of their tubes, and the lower plate is so

turned that the vernier reads o when the telescope points south,

then the vernier readings of the horizontal plate and the vertical

arc for any position of the telescope are coordinates of the

horizon system (Art. 12). If the horizontal circles are clamped
in any position and the telescope is moved through a complete

revolution, the line of sight describes a vertical circle on the

celestial sphere. If the telescope is clamped at any altitude and

the instrument turned about the vertical axis, the line of sight

describes a cone and traces out on the sphere a parallel of alti-*

tude.

51. Elimination of Errors.

It is usually more difficult to measure an altitude accurately

with the transit than to measure a horizontal angle. While the

precision of horizontal angles may be increased by means of

repetitions, in measuring altitudes the precision cannot be<

* The axis of a level may be defined as a line tangent to the curve of the glass

tube at the point on the scale taken as the zero point, or at the centre of the tube.



DESCRIPTION OF INSTRUMENTS 93

increased by repeating the angles, owing to the construction of

the instrument. The vertical arc usually has but one vernier,

so that the eccentricity cannot be eliminated, and this vernier

often does not read as closely as the horizontal vernier. One

of the errors, which is likely to be large, but which may be elimi-

nated readily, is that known as the index error. The measured

altitude of an object may differ from the true reading for two

reasons: first, the zero of the vernier may not coincide with the

zero of the circle when the telescope bubble is in the centre of

its tube; second, the line of sight may not be horizontal when

the bubble is in the centre of the tube. The first part of this

error can be corrected by simply noting the vernier reading when

the bubble is central, and applying this as a correction to the

measured altitude. To eliminate the second part of the error

the altitude may be measured twice, once from the point on the

horizon directly beneath the object observed, and again from

the opposite point of the horizon. In other words, the instru-

ment may be reversed (180) about its vertical axis and the

vertical circle read in each position while the horizontal cross

hair of the telescope is sighting the object. The mean of the

two readings is free from the error in the sight line. Evidently

this method is practicable only with an instrument having a

complete vertical circle. If the reversal is made in this manner

the error due to non-adjustment of the vernier is eliminated at

the same time, so that it is unnecessary to make a special deter-

mination of it as described above. If the circle is graduated

in one direction, it will be necessary to subtract the second

reading from 180 and then take the mean between this result

and the first altitude. In the preceding description it is assumed

that the plate levels remain central during the reversal of the

instrument, indicating that the vertical axis is truly vertical.

If this is not the case, the instrument should be relevelled before

the second altitude is measured, the difference in the two altitude

readings in this case including all three errors. If it is not de-

sirable to relevel, the error of inclination of the vertical axis may
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still be eliminated by reading the vernier of the vertical circle

in each of the two positions when the telescope bubble is central,

and applying these corrections separately. With an instru-

ment provided with a vertical arc only, it is essential that the axis

of the telescope bubble be made parallel to the line of sight, and

that the vertical axis be made truly vertical. To make the axis

vertical without adjusting the levels themselves, bring both

bubbles to the centres of their tubes, turn the instrument 180

in azimuth, and then bring each bubble half way back to the

centre by means of the levelling screws. When the axis is truly

vertical, each bubble should remain in the same part of its tube

in all azimuths. The axis may always be made vertical by
means of the long bubble on the telescope; this is done by set-

ting it over one pair of levelling screws and centring it by means

of the tangent screw on the standard; the telescope is then

turned 180 about the vertical axis, and if the bubble moves from

the centre of its tube it is brought half way back by means of

the tangent screw, and then centred by means of the levelling

screws. This process should be repeated to test the accuracy

of the levelling; the telescope is then turned at .right angles

to the first position and the whole process repeated. This

method should always be used when the greatest precision is

desired, because the telescope bubble is much more sensitive

than the plate bubbles.

If the line of sight is not at right angles to the horizontal axis,

or if the horizontal axis is not perpendicular to the vertical axis,

the errors due to these two causes may be eliminated by com-

bining two sets of measurements, one in each position of the

instrument. If a horizontal angle is measured with the vertical

circle on the observer's right, and the same angle again observed

with the circle on his left, the mean of these two angles is free

from both these errors, because the two positions of the horizontal

axis are placed symmetrically about a true horizontal line,* and

*
Strictly speaking, they are placed symmetrically about a perpendicular to

the vertical axis.
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the two 'directions of the sight line are situated symmetrically
about a true perpendicular to the rotation axis of the telescope.

If the horizontal axis is not perpendicular to the vertical axis the

line of sight describes a plane which is inclined to the true vertical

plane. In this case the sight line will not pass through the zenith,

and both horizontal and vertical angles will be in error. In

instruments intended for precise work a striding level is provided,

which may be set on the pivots of the horizontal axis. This

^enables the observer to level the axis or to measure its inclina-

tion without reference to the plate bubbles. The striding level

should be used in both the direct and the reversed position and

the mean of the two results used in order to eliminate the errors

of adjustment of the striding level itself. If the line of sight is

not perpendicular to the horizontal axis it will describe a cone

whose axis is the horizontal axis of the instrument. The line

of sight will in general not pass through the zenith, even though
"the horizontal axis be in perfect adjustment. The instrument

must either be used in two positions, or else the cross hairs must

be adjusted. Except in large transits it is not usually practicable

to determine the amount of the error and allow for it.

52. Attachments to the Engineer's Transit. Reflector.

When making star observations with the transit it is necessary

to make some arrangement for illuminating the field of view.

Some transits are provided with a special shade tube into which

is fitted a mirror set at an angle of 45 and with the central

portion removed. By means of a lantern or a flash light held

at one side of the telescope light is reflected down the tube.

The cross hairs appear as dark lines against the bright field.

The stars can be seen through the opening in the centre of the

mirror. If no special shade tube is provided, it is a simple mat-

ter to make a substitute, either from a piece of bright tin or by

fastening^, piece of tracing cloth or oiled paper over the objec-

tive. A hole about f inch in diameter should be cut out, so

that the light from the star may enter the lens. If cloth or

paper is used, the flash light must be held so that the light is
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diffused in such a way as to make the cross hairs visible, but so

as not to shine into the observer's eyes.

53. Prismatic Eyepiece.

When altitudes greater than about 55 to 60 are to be meas-

ured, it is necessary to attach to the eyepiece a totally reflecting

prism which reflects the rays at right angles to the sight line.

By means of this attachment altitudes as great as 75 can be

measured. In making observations on the sun it must be

remembered that the prism inverts the image, so that with
a^

transit having an erecting eyepiece with the prism attached the

apparent lower limb is the true upper limb; the positions of the

right and left limbs are not affected by the prism.

54. Sun Glass.

In making observations on the sun it is necessary to cover the

eyepiece with a piece of dark glass to protect the eye from the

sunlight while observing. The sun glass should not be placed

in front of the objective. If no shade is provided with the*

instrument, sun observations may be made by holding a piece

of paper behind the eyepiece so that the sun's image is thrown

upon it. By drawing out the eyepiece tube and varying the

distance at which the paper is held, the images of the sun and

the cross hairs may be sharply focussed. By means of this

device an observation may be quite accurately made after a

little practice.

55. The Portable Astronomical Transit.

The astronomical transit differs from the surveyor's transit chiefly in size and

the manner of support. The diameter of the object glass may be from 2 to 4 inches,
fc

and the focal length from 24 to 48 inches. The instrument is mounted on a brick

or a concrete pier and may be approximately levelled by means of foot screws.

The older instruments were provided with several vertical threads (usually 5 or n)
in order to increase the number of observations that could be made on one star.

These were spaced about J' to i' apart, so that an equatorial star would require

from 2* to 4s to move from one thread to the next. The more recent transits are

provided with the "
transit micrometer "; in this pattern there is but a single

vertical thread, which the observer sets on the moving star as it enters the field of

view, and keeps it on the star continuously by turning the micrometer screw,

until it has passed beyond the range of observation. The passage of the thread

across certain fixed points in the field is recorded electrically. This is equivalent
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FIG. 46. PORTABLE ASTRONOMICAL TRANSIT

From the catalogue of C. L. Berger & Sons
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to observations on 20 vertical threads. The field is illuminated by electric lights

which are placed near the ends of the axis. The axis is perforated and a mirror

placed at the centre to reflect the light toward the eyepiece. *The motion of the

telescope in altitude is controlled by means of a cJamp and a tangent screw. The

azimuth motion is usually very small, just sufficient to permit of adjustment into

the plane of the meridian. The axis is levelled or its inclination is measured by
means of a sensitive striding level applied to the pivots. The larger transits are

provided with a reversing apparatus.

The transit is used chiefly in the plane of the meridian for the direct determina-

tion of sidereal time by star transits. It may, however, be used in any vertical

plane, and for either time or latitude observations. The principal part of the

work consists in the determination of the instrumental errors and in calculating*

the corrections. The transit is in adjustment when the central thread is in a plane

through the optical centre perpendicular to the horizontal axis, and the vertical

threads are parallel to this plane. For observations of meridian transits this

plane must coincide with the plane of the meridian and the horizontal axis must

be truly horizontal.

The chief errors to be determined and allowed for are (i) the azimuth, or devia-

tion of the plane of collimation from the true meridian plane; (2) the inclination

of the horizontal axis to the horizon; and (3) collimation error, or error in the sight

line. Corrections are also applied for diurnal aberration of light, for the rate of the

timepiece, and for the inequality of the pivots. The corrections to reduce an ob-

served time to the true time of transit over the meridian are given by formulae

[66], [67], and [68]. These corrections would apply equally well to observations

made with an engineer's transit, and are of value to the surveyor chiefly in showing

him the relative magnitudes of the errors in different positions of the objects

observed. This may aid him in selecting stars even though no corrections are

actually applied for these errors.

The expressions for the corrections to any star are

Azimuth correction = a cos h sec 5 [66]

Level correction = b sin h sec 5 [67]

Collimation correction = c sec 5 [68]

in which a, b, and c are the constant errors in azimuth, level, and collimation, ^

respectively, expressed in seconds of time, and h is the altitude and B the declination

of the star. If the zenith distance is used instead of the altitude cos h and sin h

should be replaced by sin f and cos f respectively. These formulae may be easily

derived from spherical triangles. Formula [66] shows that for a star near the

zenith the azimuth correction will be small, even if a is large, because cos h is nearly

zero. Formula [67] shows that the level correction for a zenith star will be larger

than for a low star because sin h for the former is nearly unity. The azimuth error

a is found by comparing the results obtained from stars which culminate north of

the zenith with those obtained from south stars; if the plane of the instrument

lies to the east of south; stars south of the zenith will transit too early and those

north of the zenith will transit too late. From the observed times the angle may
be computed. The level error b is measured directly with the striding level, making
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readings of both ends of the bubble, first in the direct, then in the reversed positions,

the angular value of one level division being known. The collimation error, c,

is found by comparing the results obtained with the axis in the direct position with

the results obtained with the axis in the reversed (end-for-end) position.

TABLE B. ERROR IN OBSERVED TIME OF TRANSIT (IN
SECONDS OF TIME) WHERE a, b OR c = i'.

Note. Use the bottom line for the collimation error.

From the preceding equations Table B has been computed. It is assumed

that the collimation plane is r', or 4*, out of the meridian (a = 4*); that the axis

is inclined i', or 4*, to the horizon (b 4*); and that the sight line is i', or 4*, to

the right or left of its true position (c = 4*). An examination of the table will

show that for low stars the azimuth corrections are large and the level corrections

are small, while for high stars the reverse is true. As an illustration of the use of

this table, suppose that the latitude is 42, and the star's declination is +30;
and that a = i' (4*) and b = 2' (8*). The altitude of the star = 90

-
(42 30)

78. The azimuth correction is therefore i s .o and the level correction is 2 X
4*.6

= 9s . 2. If the line of sight were }' (or i*) in error the (collimation) correction

would be i*. 2. This shows that with a transit set closely in the meridian but with

a large possible error in the inclination of the axis, low stars will give better results

than high stars. This is likely to be the case with a surveyor's transit. If, how-

ever, the inclination of the axis can be accurately measured but the adjustment
into the plane of the meridian is difficult, then the high stars will be preferable.

This is the condition more likely to prevail with the larger astronomical transits.

For the complete theory of the transit see Chauvenet's Spherical and Practical

Astronomy, Vol. II; the methods employed by the U. S. Coast and Geodetic

Survey are given in Special Publication; No. 14.
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56. The Sextant.

The sextant is an instrument for measuring the angular dis-

tance between two objects, the angle always lying in the plane

through the two objects and the eye of the observer. It is

particularly useful at sea because it does not require a steady

support like the transit. It consists of a frame carrying a

graduated arc, AB, Fig. 47, about 60 long, and two mirrors 7

and H, the first one movable, the second one fixed. At the

centre of the arc, /, is a pivot on which swings an arm IV,

6 to 8 inches long. This arm carries a vernier V for reading the

angles on the arc AB. Upon this arm is placed the index glass

/. At H is the horizon glass. Both of these mirrors are set

so that their planes are perpendicular to the plane of the arc

AB, and so that when the vernier reads o the mirrors are parallel.

The half of the mirror H which is farthest from the frame is

unsilvered, so that objects may be viewed directly through the

glass. In the silvered portion other objects may be seen by
reflection from the mirror 7 to the mirror H and thence to
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point 0. At a point near (on the line 110) is a telescope of
|

low power for viewing the objects. Between the two mirrors

and also to the left of // are colored shade glasses to be used when

making observations on the sun. The principle of the instru-

ment is as follows : A ray of light coming from an object at

C is reflected by the mirror I to H, where it is again reflected

to O. The observer sees the image of C in apparent coincidence

with the object at D. The arc is so graduated that the reading

FIG. 48. SEXTANT

of the vernier gives directly the angle between OC and OD.

Drawing the perpendiculars FE and HE to the planes of the

two mirrors, it is seen that the angle between the mirrors is

a. j8. Prolonging CI and DH to meet at 0, it is seen that the

angle between the two objects is 2 a 2 0. The angle between

the mirrors is therefore half the angle between the objects that

appear to coincide. In order that the true angle may be read

directly from the arc each half degree is numbered as though it

were a degree. It will be seen that the position of the vertex

is variable, but since all objects observed are at great distances
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the errors caused by changes in the position of O are always

negligible in astronomical observations.

The sextant is in adjustment when, (i) both mirrors are per-

pendicular to the plane of the arc; (2) the line of sight of the

telescope is parallel to the plane of the arc; and (3) the vernier

reads o when the mirrors are parallel to each other. If the

vernier does not read o when the double reflected image of a

point coincides with the object as seen directly, the index cor-

rection may be determined and applied as follows. Set the

vernier to read about 30' and place the shades in position for

sun observations. When the sun is sighted through the tele-

scope two images will be seen with their edges nearly in contact.

This contact should be made as nearly perfect as possible and

the vernier reading recorded. This should be repeated several

times to increase the accuracy. Then set the vernier about 30'

on the opposite side of the zero point and repeat the whole

operation, the reflected image of the sun now being on the op-

posite side of the direct image. If the shade glasses are of

different colors the contacts can be more precisely made. Half

the difference of the two (average) readings is the index correc-

tion. If the reading off the arc was the greater, the correction

is to be added to all readings of the vernier; if the greater reading

was on the arc, the correction must be subtracted.

In measuring an altitude of the sun above the sea horizon the

observer directs the telescope to the point on the horizon ver-

tically under the sun and then moves the index arm until the

reflected image of the sun comes into view. The sea horizon

can be seen through the plain glass and the sun is seen in the

mirror. The sun's lower limb is then set in contact with the

horizon line. In order to be certain that the angle is measured

to the point vertically beneath the sun, the instrument is tipped

slowly right and left, causing the sun's image to describe an arc.

This arc should be just tangent to the horizon. If at any point

the sun's limb goes below the horizon the altitude measured is too

great. The vernier reading corrected for index error and dip is

the apparent altitude of the lower limb above the true horizon.
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57. Artificial Horizon.

When altitudes are to be measured on land the visible horizon

cannot be used, and the artificial horizon must be used instead.

The surface of any heavy liquid, like mercury, molasses, or

heavy oil, may be used for this purpose. When the liquid is

placed in a basin and allowed to come to rest, the surface is

perfectly level, and in this surface the reflected image of the sun

may be seen, the image appearing as far below the horizon as

t

the sun is above it. Another convenient form of horizon con-

sists of a piece of black glass, with plane surfaces, mounted on a

frame supported by levelling screws. This horizon is brought

-Sextant

FIG. 49. ARTIFICIAL HORIZON

into position by placing a spirit level on the glass surface and

levelling alternately in two positions at right angles to each

other. This form of horizon is not so accurate as the mercury
surface but is often more convenient. The principle of the

artificial horizon may be seen from Fig. 49. Since the image
seen in the horizon is as far below the true horizon as the sun is

above it, the angle between the two is 2 h. In measuring this

angle the observer points his telescope toward the artificial

horizon and then brings the reflected sun down into the field of

view by means of the index arm. By placing the apparent
lower limb of the reflected sun in contact with the apparent

upper limb of the image seen in the mercury surface, the angle
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measured is twice the altitude of the sun's lower limb. The two

points in contact are really images of the same point. If the

telescope inverts the image, this statement applies to the upper
limb. The index correction must be applied before the angle is

divided by 2 to obtain the altitude. In using the mercury hori-

zon care must be taken to protect it from the wind; otherwise

small, waves on the mercury surface will blur and distort the

image. The horizon is usually provided with a roof-shaped
cover having glass windows, but unless the glass has parallel

faces this introduces an error into the result. A good substitute

for the glass cover is one made of fine mosquito netting. This

will break the force of the wind if it is not blowing hard, and

does not introduce errors into the measurement.

58. Chronometer.

The chronometer is simply an accurately constructed watch

with a special form of escapement. Chronometers may be

regulated for either sidereal or mean time. The beat is usually

a half second. Those designed to register the time on chrono-

graphs are arranged to break an electric circuit at the end of

every second or every two seconds. The 6oth second is dis-

tinguished either by the omission of the break at the previous

second, or by an extra break, according to the construction of the

chronometer. Chronometers are usually hung in gimbals to

keep them level at all times; this is invariably done when they
are taken to sea. It is important that the temperature of the

chronometer should be kept as nearly uniform as possible, be-

cause fluctuation in temperature is the greatest source of error.

Two chronometers of the same kind cannot be directly com-

pared with great accuracy, os
.i or os

.2 being about as close as

the difference can be estimated. But a sidereal and a solar chro-

nometer can easily be compared within a few hundredths of a

second. On account of the gain of the sidereal on the solar

chronometer, the beats of the two will coincide once in about

every 3 03*. If the two are compared at the instant when the

beats are apparently coincident, then it is only necessary to

note the seconds and half seconds, as there are no fractions to
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be estimated. By making several comparisons and reducing

them to some common instant of time it is readily seen that

the comparison is correct within a few hundredths of a second.

The accuracy of the comparison depends upon the fact that the

ear can detect a much smaller interval between the two beats

than can possibly be estimated when comparing two chronome-

ters whose beats do not coincide.

59. Chronograph.
The chronograph is an instrument for recording the time kept by a chronometer

and also any observations the times of which it is desired to determine. The paper
on which the record is made is wrapped around a cylinder which is revolved by a

clock mechanism at a uniform rate, usually once per minute. The pen which makes

the record is placed on the armature of an electromagnet which is mounted on a

carriage drawn horizontally by a long screw turned by the same mechanism. The

mark made by the pen runs spirally around the drum, which results in a series of

straight parallel lines when the paper is laid flat. The chronometer is connected

electrically with the electromagnet and records the seconds by making notches in

the line corresponding to the breaks in the circuit, one centimeter being equivalent

, to one second. Observations are recorded by the observer by pressing a telegraph

key, which also breaks (or makes) the chronograph circuit and makes a mark on

the record sheet. If the transit micrometer is used the passage of the vertical

thread over fixed points in the field is automatically recorded on the chronograph.
The circuit with which the transit micrometer is connected operates on the

" make "

instead of the
" break "

circuit. When the paper is laid flat the time appears as

a linear distance on the sheet and may be scaled off directly with a scale graduated

to fit the spacing of the minutes and seconds of the chronograph.

60. The Zenith Telescope.

The Zenith Telescope is an instrument designed for making observations for

latitude by a special method known as the Harrebow-Taicott method. The in-

strument consists of a telescope attached to one end of a short horizontal axis

which is mounted on the top of a vertical axis. About these two axes the telescope

has motions in the vertical and horizontal planes like a transit. A counterpoise

is placed at the other end of the horizontal axis to balance the instrument. The

essential parts of the instrument are (i) a micrometer placed in the focal plane of

the eyepiece for measuring small angles in the vertical plane, and (2) a sensitive

spirit level attached to the vernier arm of a small vertical circle on the telescope

tube for measuring small. changes in the inclination of the telescope. The tele-

scope is ordinarily used in the plane of the meridian, but may be used in any ver-

tical plane.

The zenith telescope is put in adjustment by placing the line of sight in a plane

perpendicular to the horizontal axis, the micrometer thread horizontal, the hori-

zontal axis perpendicular to the vertical axis, and the base levels in planes per-

pendicular to the vertical axis. For placing the line of sight in the plane of the

meridian there are two adjustable stops which must be so placed and clamped
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that the telescope may be quickly turned about the vertical axis from the north

to the south meridian, or vice versa, and clamped in the plane of the meridian.

The observations consist in measuring with

the micrometer the difference in zenith dis-

tance of two stars, one north of the zenith,

one south of it, which culminate within a few

minutes of each other, and in reading the scale

readings of the ends of the bubble on the lati-

tude level. The two stars must have zenith

distances such that they pass the meridian

within the range of the micrometer.

A diagram of the instrument in the two*

positions is shown in Fig. 50. The inclination

of the telescope to the latitude level is not

changed during the observation. Any change

in the inclination of the telescope to the ver-

tical is measured by the latitude level and

may be allowed for in the calculation. The

principle involved in this method may be seen

from Fig. 51. From the zenith distance of

the star Ss the latitude would be
FIG. 50. THE ZENITH TELESCOPE

and from the star S*

The mean of the two gives

4-
[69]

showing that the latitude is the mean of the two decimations corrected by a small

angle equal to half the difference of the zenith distances. The declinations are

furnished by the star catalogues,

and the difference of zenith dis-

tance is measured accurately

with the micrometer. The com-

plete formula would include a

term for the level correction and

one for the small differential re-

fraction. This method gives

the most precise latitudes that

can be determined with a field

instrument.

It is possible for the surveyor

to employ this same principle if his transit is provided with a gradienter screw and
an accurate level. The gradienter screw takes the place of the micrometer. A
level may be attached to the end of the horizontal axis and made to do the work
of a latitude level.

FIG. 51
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ui. Suggestions about Observing with Small Instruments.

The instrument used for making such observations as are

described in this book will usually be either the engineer's transit

or the sextant. In using the transit care must be taken to give

the tripod a firm support. If the ground is shaky three pegs

may be driven and the points of the tripods set in depressions

in the top of the pegs. It is well to set the transit in position

some time before the observations are to be begun; this allows

the instrument to assume the temperature of the air and the

tripod legs to come to a firm bearing on the ground. The

observer should handle the instrument with great care, par-

ticularly during night observations, when the instrument is

likely to be accidentally disturbed. In reading angles at night

it is important to hold the light in such a position that the

graduations on the circle are plainly visible and may be viewed

along the lines of graduation, not obliquely. By changing the

position of the flash light and the position of the eye it will be

found that the reading varies by larger amounts than would be

expected when reading in the daylight. Care should be taken

not to touch the graduated silver circles, as they soon become

tarnished. If a lantern is used it should be held so as to heat the

instrument as little as possible, and so as not to shine into the

observer's eyes. Time may be saved and mistakes avoided if

the program of observations is laid out beforehand, so that the

observer knows just what is to be done and the proper order of

the different steps. The observations should be arranged so as

to eliminate instrumental errors by reversing the instrument;

but if this is not practicable, then the instrument must be put in

good adjustment. The index correction should be determined

and applied, unless it can be eliminated by the method of ob-

serving.

In observations for time it will often be necessary to use an

ordinary watch. If there are two observers, one can read the

time while the other makes the observations. If a chronometer

is used, one observer may easily do the work of both, and at the

same time increase the accuracy. In making observations by



io8 PRACTICAL ASTRONOMY

this method (called the
"
eye and ear method ") the observer

looks at the chronometer, notes the reading at some instant, say
at the beginning of some minute, and, listening to the half-second

beats, carries along the count mentally and without looking at

the chronometer. In this way he can note the second and

estimate the fraction without taking his attention from the star

and cross hair. After making his observation he may check his

count by again looking at the chronometer to see if the two

agree. After a little practice this method can be used easily

and accurately. In using a watch it is possible for one observer

to make the observations and also note the time, but it cannot

be done with any such precision as with the chronometer, be-

cause on account of the rapidity of the ticks (5 per second),

the observer cannot count the seconds mentally. The observer

must in this case look quickly at his watch and make an allow-

ance, if it appears necessary, for the time lost in looking up and

taking the reading.

62. Errors in Horizontal Angles.

When measuring horizontal angles with a transit, such, for

example, as in determining the azimuth of a line from the pole-

star, any error in the po-

sition of the sight line,

or any inclination of the

horizontal axis will be

found to produce a large

error in the result, on

account of the high alti-

tude of the star. In

ordinary surveying these

errors are so small that

they are neglected, but

in astronomical work

they must either be eliminated or determined and allowed for

in the calculations.

In Fig. 52 ZH is the circle traced out by the true collimation

axis, and the dotted circle is that traced by the actual line of

H

FIG. 52. LINE OF SIGHT IN ERROR
(CROSS-HAIR OUT)
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tan 4

FIG, 53. PLATE LEVELS ADJUSTED
BUBBLES NOT CENTRED

sight, which is in error by the small angle c. The effect of this

on the direction of a star S is the angle SZH.

In -Fig. 53 the vertical

axis is not truly vertical,

but is inclined by the

angle i owing to poor

levelling. This produces

an error in the direction

of point P which is equal

to the angle HZ'P. If

the vertical axis is truly

vertical but the horizon-

tal axis is inclined to the

horizon by the angle i,

owing to lack of adjustment, the error in the direction of the

point (S) is the same in amount and equal to the angle

HiZ// 2 in Fig. 54.

Problems

1. Show that if the sight

line makes an angle c with the

perpendicular to the horizontal

axis (Fig. 52) the horizontal

angle between two points is in

error by the angle

c sec h
f

c sec /?",

where h
r

and h" are the alti-

tudes of the two points.

2. Show that if the hori-

zontal axis is inclined to the

horizon by the angle i (Figs. 53

and 54) the effect upon the azimuth of the sight line is i tan h
y
and that an

angle is in error by
i (tan V - tan h"),

where h' and h" are the altitudes of the points.

FIG. 54. PLATE LEVELS CORRECT HORIZONTAL
Axis OUT OF ADJUSTMENT



CHAPTER IX

THE CONSTELLATIONS

63. The Constellations.

A study of the constellations is not really a part of the subject ,

of Practical Astronomy, and in much of the routine work of'

observing it would be of comparatively little value, since the

stars used can be identified by means of their coordinates and a

knowledge of their positions in the constellations is not essential.

If an observer has placed his transit in the meridian and knows

approximately his latitude and the local time, he can identify

stars crossing the meridian by means of the times and the alti-

tudes at which they culminate. But in making occasional

observations with small instruments, and where much of the

astronomical data is not known to the observer at the time, some

knowledge of the stars is necessary. When a surveyor is be-

ginning a series of observations in a new place and has no accu-

rate knowledge of his position nor the position of the celestial

sphere at the moment, he must be able to identify certain stars

in order to make approximate determinations of the quantities

sought.

64. Method of Naming Stars.

The whole sky is divided in an arbitrary manner into irregular

areas, all of the stars in any one area being called a constellation

and given a special name. The individual stars in any constel-

lation are usually distinguished by a name, a Greek letter,* or

a number. The letters are usually assigned in the order of

brightness of the stars, a being the brightest, ft the next, and so

on. A star is named by stating first its letter and then the name
of the constellation in the (Latin) genitive form. For instance,

* The Greek alphabet is given on p. 190. %

no
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in the constellation Ursa Minor the star a is called a Ursa

Minoris; the star Vega in the constellation Lyra is called

a Lyra. When two stars are very close together and have

been given the same letter, they are often distinguished by the

numbers i, 2, etc., written above the letter, as, for example,
o? Capricorni, meaning that the star passes the meridian after

a1
Capricorni.

65. Magnitudes.

The brightness of stars is shown on a numerical scale by their

magnitudes. A star having a magnitude i is brighter than one

having a magnitude 2. On the scale of magnitudes in use a few

of the brightest stars have fractional or negative magnitudes.

Stars of the fifth magnitude are visible to the naked eye only

under favorable conditions. Below the fifth magnitude a tele-

scope is usually necessary to render the star visible.

66. Constellations Near the Pole.

The stars of the greatest importance to the surveyor are those

near the pole. In the northern hemisphere the pole is marked

by a second-magnitude star, called the polestar, Polaris, or

a Ursa Minoris, which is about i 06' distant from the pole

at the present time (1925). This distance is now decreasing

at the rate of about one-third of a minute per year, so that for

several centuries this star will be close to the celestial north pole.

On the same side of the pole as Polaris, but much farther from

it, is a constellation called Cassiopeia, the five brightest stars

%of which form a rather unsymmetrical letter W (Fig. 55). The

lower left-hand star of this constellation, the one at the bottom

of the first stroke of the W, is called b, and is of importance to

the surveyor because it is very nearly on the hour circle passing

through Polaris and the pole; in other words its right ascension

is nearly the same as that of Polaris. On the opposite side of

the pole from Cassiopeia is Ursa Major, or the great dipper, a

rather conspicuous constellation. The star f, which is at the

bend in the dipper handle, is also nearly on the same hour circle

as Polaris and 8 Cassiopeia. If a line be drawn on the sphere
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between d Cassiopeia and f Ursa Majoris, it wilj pass nearly

through Polaris and the pole, and will show at once the position

of Polaris in its diurnal circle. The two stars in the bowl of
,

the great dipper on the side farthest from the handle are in a

line which, if prolonged, would pass near to Polaris. These

stars are therefore called the pointers and may be used to find

the polestar. There is no other star near Polaris which is

likely to be confused with it. Another star which should be

remembered is ft Cassiopeia, the one at the upper right-hand*

corner of the W. Its right ascension is very nearly oh and

therefore the hour circle through it passes nearly through the

equinox. It is possible then, by simply glancing at ft Cassiopeia

and the polestar, to estimate approximately the local sidereal

time. When ft Cassiopeia is vertically above the polestar it

is nearly oh sidereal time; when the star is below the polestar

it is i2
h
sidereal time; half way between these positions, left and

right, it is 6
h and i8

h
, respectively. In intermediate positions

1

the hour angle of the star (
= sidereal time) may be roughly

estimated.

67. Constellations Near the Equator.

The principal constellations within 45 of the equator are

shown in Figs. 56 to 58. Hour circles are drawn for each hour

of R. A. and parallels for each 10 of declination. The approxi-

mate declination and right ascension of a star may be obtained

by scaling the coordinates from the chart. The position of the

ecliptic, or sun's path in the sky, is shown as a curved line. The,

moon and the planets are always found near this circle because

the planes of their orbits have only a small inclination to the

earth's orbit. A belt extending about 8 each side of the ecliptic

is called the Zodiac, and all the members of the solar system
will always be found within this belt. The constellations along

this belt, and which have given the names to the twelve "
signs

of the Zodiac/
7

are Aries, Taurus, Gemini, Cancer, Leo, Virgo,

Libra, Scorpio, Sagittarius, Capricornus, Aquarius, and Pisces.

These constellations were named many centuries ago, and the
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names have been retained, both for the constellations themselves

and also for the positions in the ecliptic which they occupied at

that time. But on account of the continuous westward motion

of the equinox, the
"
signs

" no longer correspond to the con-

stellations of the same name. For example, the sign of Aries

extends from the equinoctial point to a point on the ecliptic

30 eastward, but the constellation actually occupying this

space at present is Pisces. In Figs. 56 to 58 the constellations
' are shown as seen by an observer on the earth, not as they would

appear on a celestial globe. On account of the form of pro-

jection used in these maps there is some distortion, but if the

observer faces south and holds the page up at an altitude equal

to his co-latitude, the map represents the constellations very

nearly as they will appear to him. The portion of the map to be

used in any month is that marked with the name of the month

at the top; for example, the stars under the word "
February

"

are those passing the meridian in the middle of February at

about 9 P.M. For other hours in the evening the stars on the

meridian will be those at a corresponding distance right or left,

according as the time is earlier or later than 9 P.M. The approxi-

mate right ascension of a point on the meridian may be found at

any time as follows: First compute the R. A. of the sun by

allowing 2
h

per month, or more nearly 4 per day for every;

day since March 23, remembering that the R. A. of the sun is

always increasing. Add this R. A. + 12* to the local civil time

and the result is the sidereal time or right ascension of a star

on the meridian.

Example. On October 10 the R. A. of the sun is 6 X 2
h + 17 X

4
m = 13*08. The R. A. of sun + i2Ms 25* o8m

,
or i* o8w.

At 9* P.M. the local civil time is 21*. i
h oSm + 21* = 22* 08**.

A star having a R. A. of 22* o8m would therefore be close to the

meridian at 9 P.M.

Fig. 59 shows the stars about the south celestial pole. There,

is no bright star near the south pole, so that the convenient

methods of determining the meridian by observations on the

polestar are not practicable in the southern hemisphere.
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68. The Planets.

In using the star maps, the student should be on the lookout

for planets. These cannot be placed on the maps because their

positions are rapidly changing. If a bright star is seen near the

ecliptic, and its position does not correspond to that of a star

on the map, it is a planet. The planet Venus is very bright and

is never very far east or west of the sun; it will therefore be

seen a little before sunrise or a little after sunset. Mars, Jupi-

ter, and Saturn move in orbits which are outside of that of the

earth and therefore appear to us to make a complete circuit of

the heavens. Mars makes one revolution around the sun in

i year 10 months, Jupiter in about 12 years, and Saturn in

29! years. Jupiter is the brightest, and when looked at through
a small telescope shows a disc like that of the full moon; four

satellites can usually be seen lying nearly in a straight line.

Saturn is not as large as Jupiter, but in a telescope of moderate

power its rings can be distinguished; in a low-power telescope

the planet appears to be elliptical in form. Mars is reddish in

color and shows a disc.



CHAPTER X

OBSERVATIONS FOR LATITUDE

IN this chapter and the three immediately following are given
the more common methods of determining latitude, time, longi-

tude, and azimuth with small instruments. Those which are

simple and direct are printed in large type, and may be used for

a short course in the subject. Following these are given, in

smaller type, several methods which, although less simple, are very
useful to the engineer; these methods require a knowledge of

other data which the engineer must obtain by observation, and

are therefore better adapted to a more extended course of study.

69. Latitude by a Circumpolar Star at Culmination.

This method may be used with any circumpolar star, but

Polaris is the best one to use, when it is practicable to do so,

because it is of the second magnitude, while all of the other

close circumpolars are quite faint. The observation consists

in measuring the altitude of the star when it is a maximum or a

minimum, or, in other words, when it is on the observer's me-

ridian. This altitude may be obtained by trial, and it is not

necessary to know the exact instant when the star is on the

meridian. The approximate time when the star is at culmina-

tion may be obtained from Table V or by Art. 34 and Equa. [45].

It is not necessary to know the time with accuracy, but it will

save unnecessary waiting if the time is known approximately.

In the absence of any definite knowledge of the time of culmina-

tion, the position of the pole star with respect to the meridian may
be estimated by noting the positions of the constellations. When
& Cassiopeia is directly above or below Polaris the latter is at

upper or lower culmination. The observation should be begun
some time before one of these positions is reached. The hori-

"5
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zontal cross hair of the transit should be set on the star* and the

motion of the star followed by means of the tangent screw of the

horizontal axis. When the desired maximum or minimum is

reached the vertical arc is read. The index correction should

then be determined. If the instrument has a complete vertical

circle and the time of culmination is known approximately, it

will be well to eliminate instrumental errors by taking a second

altitude with the instrument reversed, provided that neither

observation is made more than 4 or 5
m from the time of culmi-

nation. If the star is a faint one, and therefore difficult to find,

it may be necessary to compute its approximate altitude (using

the best known value for the latitude) and set off this altitude

on the vertical arc. The star may be found by moving the

telescope slowly right and left until the star comes into the field

of view. Polaris can usually be found in this manner some time

before dark, when it cannot be seen with the unaided eye. It

is especially important to focus the telescope carefully before

attempting to find the star, for the slightest error of focus may
render the star invisible. The focus may be adjusted by look-

ing at a distant terrestrial object or, better still, by sighting .at

the moon or at a planet if one is visible. If observations are to

be made frequently with a surveyor's transit, it is well to have

a reference mark scratched on the telescope tube, so that the

objective may be set at once at the proper focus.

The latitude is computed from Equa. [3] or [4], p. 31. The
true altitude h is derived from the reading of the vertical circle

by applying the index correction with proper sign and then

subtracting the refraction correction (Table I). The polar

distance is found by taking from the Ephemeris (Table of

Circumpolar Stars) the apparent declination of the star and

subtracting this from 90.

* The image of a star would be practically a point of light in a perfect telescope,

but, owing to the imperfections in the corrections for spherical and chromatic

aberration, the image is irregular in shape and has an appreciable width. The

image of the star should be bisected with the horizontal cross hair,
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Example i.

Observed altitude of Polaris at upper culmination = 43 37';

index correction = +30"; declination = +88 44' 35".

Vertical circle = 43 37' oo"
Index correction = +30
Observed altitude = 43 37 30
Refraction correction =_

i oo

True altitude = 43 36 30
Polar distance =

__
i 15 _2^

Latitude =~42~2i'~os"

Since the vertical circle reads only to i' the resulting value for the

latitude must be considered as reliable only to the nearest i'.

Example 2.

Observed altitude of 51 Cephei at lower culmination = 39

33' 30"; index correction = o"; declination = + 87 n' 25".

Observed altitude = 39 33' 30"
Refraction correction = i 09

True altitude 39 3 2 2I

Polar distance ==
2^48 35^

Latitude == 4~2~2o' 56"

70. Latitude by Altitude of Sun at Noon.

The altitude of the sun at noon (meridian passage) may be

determined by placing the line of sight of the transit in the plane

of the meridian and observing the altitude of the upper or lower

limb of the sun when it is on the vertical cross hair. The watch

time at which the sun will pass the meridian may be computed

by converting i2
h

local apparent time into Standard or local

mean time (whichever is used) as shown in Arts. 28 and 32.

Usually the direction of the meridian is not known, so the maxi-

mum altitude of the sun is observed and assumed to be the same

as the meridian altitude. On account of the sun's changing

declination the maximum altitude is not quite the same as the

meridian altitude; the difference is quite small, however, usually

a fraction of a second, and may be entirely neglected for obser-

vations made with the engineer's transit or the sextant. The

maximum altitude of the upper or lower limb is found by trial,
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the horizontal cross hair being kept tangent to the limb as long

as it continues to rise. When the observed limb begins to drop
below the cross hair the altitude is read from the vertical arc

and the index correction is determined. The true altitude of

the centre of the sun is then found by applying the corrections for

index error, refraction, semidiameter, and parallax. In order

to compute the latitude it is necessary to know the sun's declina-

tion at the instant the altitude was taken. If the longitude of

the place is known the sun's declination may be corrected as

follows: If the Greenwich Time or the Standard Time is noted

at the instant of the observation the number of hours since

o* Gr. Civ. Time is known at once. If the time has not been

observed it may be derived from the known longitude of the

place. Since the sun is on the meridian the local apparent time

is 12*. Adding the longitude we obtain the Gr. App. Time.

This is converted into Gr. Civil Time by subtracting the equa-
tion of time. The declination is then corrected by an amount

equal to the
"
variation per hour "

multiplied by the hours of

the Gr. Civ. Time. The time need not be computed with great

accuracy since an error of i
m

will never cause an error greater

than i" in the computed declination. The latitude is com-

puted by applying equation [i] or its equivalent.

Example i. Observed maximum altitude of the sun's lower limb, Jan. 15, 1925,
= 26 15' (sun south of zenith); index correction, -f-i'; longitude 7io6'W.;
sun's declination Jan. 15 at o^ Greenwich Civil Time = 21 15' ig

/f
.4, variation

per hour, -|~26".89; Jan. 16, 21 04' 2i".g; variation per hour, + 27".9o; equa-
tion of time, ~gm 17

s
; semidiameter, 16' if'.53.

Observed altitude = 26 15' Loc. App. Time = 12*

Index correction -f-i' Longitude = 4h 44m 24s

26 1 6' Gr. App. Time = 16^44 24*

Refraction ~i-9 Equa. Time = 9 17

7 Gr. Civ. Time = 16" 53 41*
Semidiameter

Parallax -f-.i Decl. at o = -21 04' 21^.9

263o'.s -f-27".9o X 7
h-i = 3 18 *

Declination 21 07.7 Corrected Decl. = 21 of 4o".o

Co-latitude 47 38'.2

Latitude 42 ai',8

Example 2. Observed maximum altitude of sun's lower limb June i, 1925 =
44 48' 30" bearing north; index correction = o"; Gr. Civil Time = 14* 50"* 12*,
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declination of sun at o>, G. C. T., = +21 57' 13". 7; variation per hour, +21".n;
semidiameter, 15' 48^.05 .

Observed altitude 44 48' 30"
Refraction 57

Decl. at o* = +21 57' 13".?
+ 2i".u X i4*-84 = +5 13 -3

Corrected Decl. +22 02' 27^.0

71. By the Meridian Altitude of a Southern* Star.

The latitude may be found from the observed maximum alti-

tude of a star which culminates south of the zenith, by the

method of the preceding article, except that the parallax and

* The observer is assumed to be in the northern hemisphere.
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semidiameter corrections become zero, and that it is not neces-

sary to note the time of the observation, since the declination of

the star changes so slowly! In measuring the altitude the star's

image is bisected with the horizontal cross hair, and the maxi-

mum found by trial as when observing on the sun. For the

method of finding the time at which a star will pass the me-

ridian see Art. 76.

Example. Observed meridian altitude of 9 Serpentis = 51 45'; index cor-

rection =
o; decimation of star = +4 05' n".

Observed altitude of Serpentis = 51 45' oo"
Refraction correction = 45

51 44' 15"
Declination of star = + 4 05 n
Co-latitude = 47 39' 04"
Latitude = 42 20 56

Constant errors in the measured altitudes may be eliminated

by combining the results obtained from circumpolar stars with

those from southern stars. An error which makes the latitude

too great in one case will make it too small by the same amount
in the other case.

72. Altitudes Near the Meridian.

If altitudes of the sun or a star are taken near the meridian they may be reduced

to the meridian altitude provided the latitude and the times are known with suffi-

cient accuracy. To derive the formula for making the reduction to the meridian

we employ Equa. [8], p. 32.

sin h = sin < sin 8 + cos <f>
cos 5 cos /. [8]

This is equivalent to

sin h = cos (< 6) cos <f> cos 6 vers t [70]
or

sin h cos (< 5) cos 4> cos 5 2 sin2 -
[71]

Denoting by km the meridian altitude, 90 (<f> 6), the equations become

sin hm sin h -f cos # cos 5 vers t [72]

sin hm = sin h -j- cos </> cos 8 2 sin2 - . [73]

If the time is noted when the altitude is measured the value of t may be computed,
provided the error of the timepiece is known. With an approximate value of <j>

the second term may be computed and the meridian altitude hm found through its

sine. If the latitude computed from hm differs much from the preliminary value

a second computation should be made, using the new value for the latitude. These

equations are exact in form and may be used even when t is large. The method

may be employed when the meridian observation cannot be obtained.

Example. Observed double altitude of sun's lower limb Jan, 28, 1910, with

sextant and artificial horizon.
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Mean
I.C.

Double Altitude

56 44' 40"
49 oo

52 4Q

Watch

25*
16

17

22

10

Refr. and par.

56 48' 47"
+3Q

2) 56 49
'

17"

28 24
'

38"
i 38

Semidiameter
28 23' oo"

+ 16 16

Watch corr.

E. S. T. of observ.
E. S. T. of app. noon

Hour angle =
/ =

19*

19

nh 1 7

ii 57

39W 43s

9 55' 45"

log cos <f>

log cos 5

log vers t

log corr.

corr.

nat. sin h

nat. sin km

h = 28 39' 16"

= 9.86763
= 9-97745
= 8.17546
= 8.02054
= .01048
= -47953
= .49001

hm = 29 20' 29"
^ = 60 39 31
5 = 18 18 20

<t>
= 422l'll"N.

Note: A recomputation of the latitude, using this value, changes the result to

42 21' 04" N.

When the observations are taken within a few minutes of meridian passage the

following method, taken from Serial No. 166, U. S. Coast and Geodetic Survey,

may be employed for reducing the observations to the meridian. This method
makes it possible to utilize all of the observations taken during a period of 20 min-

utes and gives a more accurate result than would be obtained from a single meridian

altitude.

From Equa. [73]

sin hm sin h = 2 cos <j> cos 5 sin2 -
[74]

By trigonometry,

sin hm ~ sin h = 2 cos ^ (hm + h) sin \(hm h)

therefore

(hm ti) cos cos d sin2 - sec \ (hm + h)
2

(75}

since hm h is small, we may replace sin J (hm h) by \ (hm h} sin i"; and also

replace i (hm + h) by h = 90 $* .

Then [75] becomes

hm h = cos cos
" cosec f

or

h + cos ^ cos $ cosec f

2 sin2 -
2

sin j" [76]
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Placing A = cos <j> cos 5 cosec f

and m

Then km

The latitude is then found by

[771

Values of m will be found in Table X and values of A in Table IX. The errors

involved in this method become appreciable when the value of / is more than 10

minutes of time.

The observations should be begun about 10 minutes before local apparent
noon (or meridian passage, if a star is being observed) and continued until about

10 minutes after noon. The chronometer time or watch time of noon should be

computed beforehand by the methods as explained in Chapter V. In the example

given on p. 123 the chronometer was known to be 27^ 2om slow of local civil time,

and the equation of time was $
m

53*. The chronometer time of noon was there-

fore 12** H- 5
m

53* 27 20* = ii* 38"* 33*.

The values of / are found by subtracting the chronometer time of noon from the

observed times. The value of m is taken from Table X for each value of t. A is

taken from Table IX for approximate values of
<f>,

d and |". The values of the

correction Am are added to the corresponding observed altitudes. The mean of

all of the reduced altitudes, corrected for refraction and parallax, is the true meri-

dian altitude of the centre.

73. Latitude by Altitude of Polaris when the Time is Known.
The latitude may be found conveniently from an observed altitude of Polaris

taken at any time provided the error of the timepiece is approximately known.
Polaris is but a little more than a degree from the pole and small errors in the time

have a relatively small effect upon the

result. It is advisable to take several

altitudes in quick succession and note

the time at each pointing on the star.

Unless the observations extend over a

long period, say more than 10 minutes

of time, it will be sufficiently accurate

to take the mean of the altitudes and
the mean of the times and treat this as

the result of a single observation. If

the transit has a complete vertical cir-

cle, half the altitudes may be taken

with the telescope in the direct posi-

tion, half in the reversed position.

The index correction should be care-

fully determined.

The hour angle (/) of the star must
be computed for the instant of the

FIG. 60 observation. This is done according
to the methods given in Chapter V.

In the following example the watch is set to Eastern Standard Time. This is first

converted into local civil time (from the known longitude) and then into local

A
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Example.

OBSERVATIONS OP SUN FOR LATITUDE
Station, Smyrna Mills, Me.
Theodolite of mag'r No. 20.

Chronometer No. 245.

Date, Friday, August 5, 1910
Observer, H. E. McComb

Temperature, 24 C.

COMPUTATION OF LATITUDE FROM CIRCUMMERIDIAN
ALTITUDES OF SUN

Station, Smyrna Mills, Me. Date, August 5, 1910.

Chron. correction on L. M. T. H-27m 20*

Local mean time of app. noon 12 05 53
Chron. time of apparent noon ii 38 33
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sidereal time (see Art. 37). The hour angle, /, is the difference between the sidereal

time and the star's right ascension.

The latitude is computed by the formula

<i>
= h - p cos / 4- 2- p* sin2 / tan h sin i" [78]

the polar distance, p, being in seconds. For the derivation of this formula see

Chauvenet, Spherical and Practical Astronomy, Vol. I, p. 253.

In Fig. 60 P is the pole, 5 the star, MS the hour angle, and PDA the parallel

of altitude through the pole. The point D is therefore at the same altitude as

the pole. The term p cos t is approximately the distance from S to E, a point on

the 6-hour circle PB. The distance desired is SD, the diffeernce between the alti-

tude of S and the altitude of the pole. The last term of the formula represents

very nearly this distance DR. When 5 is above the pole DE diminishes SE;
when S is below the pole it increases it.

Example i.

Observed altitudes of Polaris, Jan. 9, 1907

Watch Altitudes

649" 26* 43 28' 30"
5 1 45 28 30
54 14 28 oo

56 45 28 oo

Mean 6h 53 02^.5 Mean 43 28' 15"

Index correction, i' oo"; p = i n' 09" = 4269"; t is found from the observed

watch times to be 13 50'. 7.*

log p = 3-63033 log const. = 4-3845

log cos t = 9.98719 log p
2 = 7.2607

i / L j\ ~~~s loe sin2
/

ft?,
008 '}

:
0.3798

last term = H-2".4

Observed alt. = 43 28' 15"
Index corr. = i oo
Refraction = i oo

43 26' 15"
ist and 2nd terms i 09 03

Latitude 42 if 12" N.

This computation may be greatly shortened by the use of Table I of the Epheme-
ris, or Table I of the Nautical Almanac. In the Ephemeris the total correction to

the altitude is tabulated for every 3 of hour angle and for every 10" of declination.

In the Almanac the correction is given for every iom of local sidereal time.

Example 2.

The observed altitude of Polaris on March 10, 1925 = 42 20'; Watch time =
8* 49 30* P.M.; watch 30* slow of E. S. T. Long. 71 10' W. Index correction,
-fi

r
. Declination of Polaris, +88 54' 18"; right ascension, i* 33 35*.6

* If the error of the watch is known the sidereal time may be found by the
methods explained in Chap, V. For methods of finding the sidereal time by direct

observation see Chap. XI.
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Watch 8* 49 30* Observed alt. 42 20'

Error 30 I. C. +i
E. S. T. 8* 50"* oo P.M. Refr. -i .0

Civ. Time = 20 50 oo h 42 20'.o
Dif. Long. 15 20 Corr., Table I +13 .0

Loc. Civ. Time = 21*05 2oS Latitude 42 33^.0
Table III = 3 27 .9

Sun's R. A. -f- 1 2ft = ii 08 36.1 Note: From the Almanac the correc-
Table III (Long.) 46_.8 tion for Loc. Sid. Time 8^ i8 io.8

32^ iSm 10s .8 is H-IS'.O. From the Ephemeris

24
the correction for hour angle 6*

Loc. Sid. Time = "8* 18" io*.8 "? ;.?
and

Declination
+88

Rt.Asc.Star = 133 35.6 & l8 * +13' ". The latter

T , f .
^ 2 is more accurate.

Hour Angle of Polaris 6h 44 35^.2

Example 3. Observed altitude of Polaris May 5, 1925 = 41 10' at Gr. Civ.
Time 23^ 50"*. Longitude 5^ West.

Gr. Civ. Time 23^ 50 oo*.

Table III 3 54.91
R. A. -J-i2* 14 49 23 .08

38^43^17^.99
24

Greenwich Sidereal Time 14^43^* I 7
s
-99

_5
Loc. Sid. Time 9^43 i7*.99
R. A. Polaris i 33 30 .68

Hour Angle, t, 8h ogm 47^.31

Observed Altitude 41 10' oo"
Refraction - i 05

41 08' 55"
Correction, Table I (Eph.) +35 58
Correction, Table la (Eph.) 5

Latitude 4i44 /

48"N.

74. Precise Latitudes Harrebow-Talcott Method.
The most precise method of determining latitude is that known as the " Har-

rebow-Talcott
"
Method, in which the zenith telescope is employed. Two stars

are selected, one of which will culminate north of the observer's zenith, the other

pouth, and whose zenith distances differ by only a few minutes of angle. For
convenience the right ascensions should differ by only a few minutes of time,

say 5 to iom . The approximate latitude must be known in advance, that is,

within i' or 2', in order that the stars may be selected. This may be determined

with the zenith telescope, using the method of Art. 71. It will usually be neces-

sary to consult the star catalogues in order to find a sufficient number of pairs
which fulfill the necessary conditions as to difference of zenith distance and differ-

ence of right ascension.

If the first star is to culminate south of the zenith the telescope is turned until

the stop indicates that it is in the plane of the meridian, on the south side, and then

clamped in this position. The mean of the two zenith distances is then set on the

finder circle and the telescope tipped until the bubble of the latitude level is in the

centre of its tube. When the star appears in the field it is bisected with the mi-

crometer wire; at the instant of passing the vertical wire, that is, at culmination,

the bisection is perfected. The scale readings of the ends of the bubble of the lati-
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tude level are read immediately, then the micrometer is read and the readir

recorded. The chronometer should also be read at the instant of culminatior

order to verify the setting of the instrument in the meridian.

The telescope is then turned to the north side of the meridian (as indicated by
the stop) and the observations repeated on the other star. Great care should be

taken not to disturb the relation between the telescope and the latitude level.

The tangent screw should not be touched during observation on a pair.

When the observations have been completed the latitude may be computed by the

formula

4>
= J(fc + 8n) + %(ms - mn) X R + Hfe + + l(r,

- rn) [79]

in which ms t mn, are the micrometer readings, R the value of i division of the

micrometer, ls , /, the level corrections, positive when the north reading is tl

larger, and r$ , rn, the refraction corrections. Another correction would be require

in case the observation is taken when the star is not exactly on the meridian.

In order to determine the latitude with the precision required IP geodetic opt

ations it is necessary to observe as many pairs as is possible during one night (say

10 to 20 pairs). In some cases observations are made on more than one night in

order to secure the necessary accuracy. By this method the latitude may readily

be determined within o".io (or less) of the true latitude, that is, with an error

of 10 feet or less on the earth's surface.

Questions and Problems

1. Observed maximum altitude of the sun's lower limb, April 27, 1925 = 61 28',

bearing South. Index correction = 4-30". The Eastern Standard Time is

ii* 42 A.M. The sun's declination April 27 at o>* Gr. Civ. T. = +13 35' 51".3;

the varia. per hour is -|-48".i9; April 28, +13 55' oi".o; varia. per hour, 4-47^.62;

the semidiameter is 15' 55^.03 . Compute the latitude.

2. Observed maximum altitude of the sun's lower limb Dec. 5, 1925 = 30 10'.

bearing South. Longitude = 73 W. Equation of time = 4-9 22*. Sun's decli-

nation Dec. 5 at cfi Gr. Civ. T. = 22 16' 54".o; varia. per hour 19^.85;

Dec. 6, 22 24'37".s; varia. per hour, 18".77; semidiameter, 16' is
//

.84.

Compute the latitude.

3. The noon altitude of the sun's lower limb, observed at sea Oct. i, 1925 =
40 30' 20", bearing South. Height of eye, 30 feet. The longitude is 35 10' W.
Equation of time = -f-io 03*.56. Sun's declination Oct. i at oft Gr. Civ. T. =

2 53' 38". 2; varia. per hour = -58". 28; on Oct. 2, 3 16' 56".!; varia. per

hour, 58". 20; semidiameter = i6'oo".57. Compute the latitude.
rj

4

4. The observed meridian altitude of 8 Crateris = 33 24', bearing South;
index correction, +30"; declination of star = 14 17' 37". Compute the lati-

tude.

5. Observed (ex. meridian) altitude of a Celt at 3^ o8" 49$ local sidereal tim
SB 51 21'; index correction = i'; the right ascension of a. Ceti = 2^ 57 24^.0

declination = +3 43' 22". Compute the latitude.

6. Observed altitude of Polaris, 41 41' 30"; chronometer time, o* 44 385.5

(local sidereal); chronometer correction =*
34*. The right ascension of Polaris

i 25 42*; the declination == -{-88 49' 29". Compute the latitude.

7. Show by a sketch the following three points: i. Polaris at greatest elonga-

tion; 2. Polaris on the 6-hour circle; 3. Polaris at the same altitude as the pole.

(See Art. 73, p. 122, and Fig. 28, p. 37.)

8. Draw a sketch (like Fig. 19) showing why the sun's maximum altitude is

not the same as the meridian altitude.



CHAPTER XI

OBSERVATIONS FOR DETERMINING THE TIME

75. Observation for Local Time.

Observations for determining the local time at any place at

y instant usually consist in finding the error of a timepiece

the kind of time which it is supposed to keep. To find the

Jiar time it is necessary to determine the hour angle of the sun's

entre. To find the sidereal time the hour angle of the vernal

^quinox must be measured. In some cases these quantities

cannot be measured directly, so it is often necessary to measure

other coordinates and to calculate the desired hour angle from

these measurements. The chronometer correction or watch

correction is the amount to be added algebraically to the read-

ing of the timepiece to give the true time at the instant. It is

positive when the chronometer is slow, negative when it is fast.

The rate is the amount the timepiece gains or loses per day;

it is positive when it is losing, negative when it is gaining.

76. Time by Transit of a Star.

The most direct and simple means of determining time is by,

observing transits of stars across the meridian. If the line of

sight of a transit be placed so as to revolve in the plane of the

meridian, and the instant observed when some known star

passes the vertical cross hair, then the local sidereal time at this

instant is the same as the right ascension of the star given in

t^v* Ephemeris for the date. The difference between the ob-

. irved chronometer time T and the right ascension a is the

chronometer correction AT,

>r AT - a - T. [So]

If the chronometer keeps mean solar time it is only necessary

to convert the true sidereal time a into mean solar time by
127
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Equa. [45], and the difference between the observed and com-

puted times is the chronometer correction.

The transit should be set up and the vertical cross hair sighted

on a meridian mark previously established. If the instrument

is in adjustment the sight line will then swing in the plane of

the meridian. It is important that the horizontal axis should

be accurately levelled; the plate level which is parallel to this

axis should be adjusted and centred carefully, or else a striding

level should be used. Any errors in the adjustment will bejl

eliminated if the instrument is used in both the direct and re-

versed positions, provided the altitudes of the stars observed

in the two positions are equal. It is usually possible to select

stars whose altitudes are so nearly equal that the elimination

of errors will be nearly complete.

In order to find the star which is to be observed, its approxi-

mate altitude should be computed beforehand and set off on

the vertical arc. (See Equa. [i].) In making this computation
the refraction correction may be omitted, since it is not usually

necessary to know the altitude closer than 5 or 10 minutes.

It is also convenient to know beforehand the approximate time

at which the star will culminate, in order to be prepared for the

observation. If the approximate error of the watch is already

known, then the watch time of transit may be computed (Equa.

[45]) and the appearance of the star in the field looked for a

little in advance of this time. If the data from the Ephemeris t

are not at hand the computation may be made, with sufficient*

accuracy for finding the star, by the following method: Com-

pute the sun's R. A. by multiplying 4 by the number of days
since March 22. Take the star's R. A. from any list of stars

or a star map. The star's R. A. minus the (sun's R. A.

+ 12*) will be the mean local time within perhaps 2
m or

3**. This may be reduced to Standard Time by the method

explained in Art. 32. In the surveyor's transit the field of view

is usually about i, so the star will be seen about 2
m

before it

reaches the vertical cross hair. Near culmination the star's
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path is so nearly horizontal that it will appear to coincide with

the horizontal cross hair from one side of the field to the other.

When the star passes the vertical cross hair the time should be

noted as accurately as possible. A stop watch will sometimes

be found convenient in field observations with the surveyor's

transit. When a chronometer is used the
"
eye and ear method "

is the best. (See Art. 61.) If it is desired to determine the

latitude from this same star, the observer has only to set the

horizontal cross hair on the star immediately after making the

time observation, and the reading of the vertical arc will give

the star's apparent altitude at culmination. (See Art. 71.)

The computation of the watch correction consists in finding

the true time at which the star should transit and comparing
it with the observed watch time. If a sidereal watch or chro-

nometer is used the error may be found at once since the star's

right ascension is the local sidereal time. If civil time is desired,

the true sidereal time must be converted into local civil time, or

into Standard Time, whichever is desired.

Transit observations for the determination of time can be

much more accurately made in low than in high latitudes.

Near the pole the conditions are very unfavorable.

Example.
Observed the transit of a Hydra on April 5, 1925, in longitude

5
71 2om west. Observed watch time (approx. Eastern Standard

Time) = 8* 48 24* P.M. or 20* 48 24* Civil Time. The right

ascension of a Hydra for this date is g
h
23 54^.84; the R. A.

of the mean sun +12* is 12* 5 i
m
06*48 at oh Gr. Civ! T. From

Table III the correction for 5* 20 is + 52^.57.

Rt. Asc. of Hydra +24* =
33** 23 54^.84

Corrected R. A. sun -f- 1 2* = 12 51 59 .05

Sid. int. since MVt. = 26^ 31 55^.79
Table II = -3 21 .82

Local Civil Time = 20^ 28"* 33^.97
Red. to 75 merid. = 20 oo .00

Eastern (Civ.) Time = 20* 48 33^.97
Watch = 20 48 24

Watch correction = +9^.97 (slow)
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77. Observations with Astronomical Transit.

The method previously described for the small transit is the same in principle

as that used with the larger astronomical transits for determining sidereal time-

The chief difference is in the precision with which the observations are made and

the corrections which have to be applied to allow for instrumental errors. The

number of observations on each star is increased by using several vertical threads

or by employing the transit micrometer. These are recorded on the electric chrono-

graph and the times may be scaled off with great accuracy.

When the transit is to be used for time determination it is set on a concrete or

brick pier, levelled approximately, and turned into the plane of the meridian as

nearly as this is known. The collimation is tested by sighting the middle thread

at a fixed point, then reversing the axis, end for end, and noting whether the thread -

is still on the point. The diaphragm should be moved until the object is sighted

in both positions. The threads may be made vertical by moving the telescope

slowly up and down and noting whether a fixed point remains on the middle thread.

The adjustment is made by rotating the diaphragm. To adjust the line of sight

(middle thread) into the meridian plane the axis is first levelled by means of the

striding level, and an observation taken on a star crossing the meridian near the

zenith. This star will cross the middle thread at nearly the correct time even if

the instrument is not closely in the meridian. From this observation the error of

the chronometer may be obtained within perhaps 2 or 3 seconds. The chronometer

time of transit of a circumpolar star is then computed. When this time is indicated

by the chronometer the instrument is turned (by the azimuth adjustment screw)

until the middle thread is on the circumpolar star. To test the adjustment this

process is repeated, the result being a closer value of the chronometer error and a

closer setting of the transit into the plane of the meridian. Before observations

are begun the axis is re-levelled carefully.

The usual list of stars for time observations of great accuracy would include

twelve stars, preferably near the zenith, six to be observed with the
"
Clamp east,"

six with
"
Clamp west." This division into two groups is for the purpose of de-

termining the collimation constant, c. In each group of six stars, three should be

north of the zenith and three south. From the discrepancies between the results

of these two groups the constant a may be found for each half set. Sometimes a

is found by including one slow (circumpolar) star in each half set, its observed time

being compared with that of the
" time stars," that is those near the zenith. The

inclination of the horizontal axis, b, is found by means of the striding level. The

observed times are scaled from the chronograph sheet for all observations, and the

mean of all threads taken for each star. This mean is then corrected for azimuth

error by adding the quantity

a sin f sec 5.
[66]

The error resulting from the inclination of the axis to the horizon is corrected by

adding
b cos sec 8 [67]

and finally the collimation error is allowed for by adding

c sec 5. [68]
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Small corrections for the changing error of the chronometer and for the effect of

diurnal aberration of light are also added. The final corrected time of transit is

subtracted from the right ascension of the star, the result being the chronometer

correction on local sidereal time. The mean of all of the results will usually give

the time within a few hundredths of a second.

78. Selecting Stars for Transit Observations.

Before the observations are begun the observer should pre-

pare a list of stars suitable for transit observations. This

list should include the name or number of the star, its magni-

tude, the approximate time of culmination, and its meridian

altitude or its zenith distance. The right ascensions of consec-

utive stars in the list should differ by sufficient intervals to give

the observer time to make and record an observation and pre-

pare for the next one. The stars used for determining time

should be those which have a rapid diurnal motion, that is,

stars near the equator; slowly moving stars are not suitable

for time determinations. Very faint stars should not be selected

unless the telescope is of high power and good definition; those

smaller than the fifth magnitude are rather difficult to observe

with a small transit, especially as it is difficult to reduce the

amount of light used for illuminating the field of view. The

selection of stars will also be governed somewhat by a consider-

ation of the effect of the different instrumental errors. An in-

spection of Table B, p. 99, will show that for stars near the

zenith the azimuth error is zero, while the inclination error is

a maximum; for stars near the horizon the azimuth error is a

maximum and the inclination error is zero. If the azimuth of

the instrument is uncertain and the inclination can be accurately

determined, then stars having high altitudes should be preferred.

On the other hand, if the level parallel to the axis is not a sensi-

tive one and is in poor adjustment, and if the sight line can be

placed accurately in the meridian, which is usually the case

with a surveyor's transit, then low stars will give the more accu-

rate results. With the surveyor's transit the choice of stars is

somewhat limited, however, because it is not practicable to

>ight the telescope at much greater altitudes than about 70
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with the use of the prismatic eyepiece and 55 or 60 without

this attachment.

Following is a sample list of stars selected for observations

in a place whose latitude is 42 22' N., longitude, 7io6'W.,
date, May 5, 1925; the hours, between 8* and g

h
P.M., Eastern

Standard Time. The limiting altitudes chosen are 10 and 65.
The "

sidereal time of o* Greenwich Civil Time/
7

or
"
Right

ascension of the mean sun +i2h
," is 14* 49 23^.08. The local

civil time corresponding to 2oh E. S. T. is 20^15^36*. The

local sidereal time is therefore 20* 15** 36* + 14^ 49 23* + a cor-

rection from Table III (which may be neglected for the present

purpose) giving about 11^05^ for the right ascension of a star

on the meridian at 8^ P.M. Eastern time.

The co-latitude is 47 38', the meridian altitude of a star on

the equator. For altitudes of 10 and 65 this gives for the

limiting declinations +17 22' and 37 38' respectively.

In the table of
" Mean places

"
of Ten-Day Stars (1925) the

following stars will be found. The complete list contains some

800 stars. In the following list many stars between those given

have been intentionally omitted, as indicated by the dotted lines.
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In this list there are three stars, ft Crateris, Hydra, and

f Crateris, whose decimations and right ascensions fall within the

required limits. There are 13 others which could be observed

but were omitted in the above list to save space. After select-

ing the stars to be observed the approximate watch time of

transit of the first star should be computed. The times of the

other stars may be estimated with sufficient accuracy by means

of the differences in the right ascension. The watch times

will differ by almost exactly the difference of right ascension.

The altitudes (or the zenith distances) should be computed
to the nearest minute. This partial list would then appear as

follows:

In searching for stars the right ascension should be examined

first. As the stars are arranged in the list in the order of in-

creasing right ascension it is only necessary to find the right

ascension for the time of beginning the observations and then

follow down the list. Next check off those stars whose decli-

nations fall within the limits that have been fixed. Finally

, note the magnitudes and see if any are so small as to make the

star an undesirable one to observe.

When the stars have been selected, look in the table of
"
Ap-

parent Places of stars
"

to obtain the right ascension and decli-

nation for the date. These may be obtained by simple inter-

polation between the values given for every 10 days. The

mean places given in the preceding table may be in error for any

particular date by several seconds. With the correct right

ascensions the exact time of transit may be calculated as pre-

viously explained.
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79. Time by Transit of Sun,

The apparent solar time may be determined directly by ob-

serving the watch times when the west and the east limbs of the

sun cross the meridian. The mean of the two readings is the

watch time of the instant of Local Apparent Noon, or 12* ap-

parent time. This i2
h

is to be converted into Local Civil Time

and then into Standard Time. If only one edge of the sun's

disc can be observed the time of transit of the centre may be

found by adding or subtracting the
"
time of semidiameter

passing the meridian." This is given in the Ephemeris for

Washington Apparent Noon. The tabulated values are in

sidereal time, but may be reduced to mean time by subtracting

o*.i8 or o*.i9 as indicated in a footnote.

Example.
The time of transit of the sun over the meridian 71 06' W. is to be observed

March 2, 1925.

Local Apparent Time =12'* oom oo8 G. C. T. = 16^.95

Equation of Time = 12 19 .93

Local Civil Time = 12'* 12 ig
s

.93 Equa. of Time at o^ = i2m i6*.29

Longitude diff.> 15 36 . 0^.517 X 7^.05
=

3 .64

Eastern Standard Time = nh 56 43^93 Corrected Equa. of T. = i2m 10^.93

The observed time of the west and east limbs are n^ 55 47* and nh
57 56* re-

spectively. The mean of these is n^ 56^ 51^.5; the watch is therefore 7*.6 fast.

The time of the semidiameter passing the meridian is iw o5*.i6. If the second

observation had been lost the watch time of transit of the centre would be n* 55"*

47* H- io5*.i6 = nh 56 5 2s . 1 6, and the resulting watch correction would be

-8.2.

80. Time by an Altitude of the Sun.

The apparent solar time may be determined by measuring
the altitude of the sun when it is not near the meridian, and then

solving the PZS triangle for the angle at the pole, which is

the hour angle of the sun east or west of the meridian. The
west hour angle of the sun is the local apparent time. The
observation is made by measuring several altitudes in quick
succession and noting the corresponding instants of time. The
mean of the observed altitudes is assumed to correspond to the

mean of the observed times, that is, the curvature of the path
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of the sun is neglected. The error caused by neglecting the

correction for curvature is very small provided the sun is not

near the meridian and the series of observations extends over

but a few minutes' time, say iom . The measurement of alti-

tude must of course be made to the upper or the lower limb

and a correction applied for the semidiameter. The observa-

tions may be made in two sets, half the altitudes being taken

on the upper limb and half on the lower limb, in which case no

'semidiameter correction is required. The telescope should be

reversed between the two sets if the instrument has a complete

vertical circle. The mean of the altitudes must be corrected

for index error, refraction, and parallax, and for semidiameter

if but one limb is observed. The declination at oh Gr. Civ.

Time is to be corrected by adding the
"
variation per hour "

multiplied by the number of hours in the Greenwich civil time.

If the watch used is keeping Standard time the Greenwich time

is found at once (see Art. 32). If the watch is not more than

2
m
or 3

m
in error the resulting error in the declination will not

exceed 2" or 3", which is usually negligible in observations with

small instruments. If the Standard time is not known but the

longitude is known then the Greenwich time could be com-

puted if the local time were known. Since the local time is the

quantity sought the only way of obtaining it is first to compute

the hour angle (/) using an approximate value of the declination.

From this result an approximate value of the Greenwich civil

time may be computed. The declination may now be computed

more accurately. A re-computation of the hour angle (/),

using this new value of the declination, may be considered

final unless the declination used the first time was very much in

s
error.

In order to compute the hour angle the latitude of the place

must be known. This may be obtained from a reliable map or

may be observed by the methods of Chapter X. The precision

with which the latitude must be known depends upon how pre-

cisely the altitudes are to be read and also upon the time at
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which the observation is made. When the sun is near the prime
vertical the effect of an error in the latitude is small.

The value of the hour angle is computed by applying any of

the formulae for / in Art. 19. This hour angle is converted into

hours, minutes and seconds; if the sun is west of the meridian

this is the local apparent time P.M., but if the sun is east of the

meridian this time interval is to be subtracted from i2
h
to obtain

the local apparent time. This apparent time is then converted

into mean (civil) time by subtracting the (corrected) equation

of time. The local time is then converted into Standard time

by means of the longitude difference. The difference between

the computed time and the time read on the watch is the watch

correction. This observation is often combined with the ob-

servation on the sun for azimuth, the watch readings and alti-

tude readings being common to both.

Example.

Nov. 28, 1925.

Lower limb

(Tel. dir.)

Upper limb

(Tel. rev;)

Mean
Refraction and parallax

is

15 55
16 08

15 26'.o

3 -3

iS22
/

. 7

Lat. 42 22'; Long. 71 06'.

Watch (E. S. T.)

Sh 39W 42* A.M.

8 42 19

8 45 34
8 47 34

8" 43 47*. 2 E. S. T. (Approx.)
5

4>
= 42 22'

h - 15 22 .7

p = III 17 .2

25= 169 Ol'.9

s 84 30^.9 log cos 8.98039
s h = 69 08 .2 log sin 9.97055
^ <

SB 42 08 .9 log csc 0.17324
s _ p = _. 26 46 .3 log sec 0.04924

2)0.17342

13* 43
m 47s - 2 Gr. Civ. T. (Approx.)

Decl. at <# = - 21 10' 58".8

-27".i4 X i3*-7
= -6 ii .8

5= -2ii7 /
io".6

p = in, 17 10 .6

Eq. of t. at

o*.828 X i3*

Eq. of t.

14*.56
ii .34

-fi2o3*.22

log tan - '

9 58671

o ^A>
= 21 06' 43

42 13' 26"

: 2 48* 53^.7
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L. A. T. = 9*11 06X3
Eq. of t. = +12 03 .2

Loc. Civ. T. = 8* 59 03*. i

Long, cliff. == 15 36 .

Eastern Standard Time = 8h 43"* 275.1

Watch = 8 43 47 .2

Watch fast 20*. i

The most favorable conditions for an accurate determination

of time by this method are when the sun is on the prime vertical

land the observer is on the equator. When the sun is east or

west it is rising or falling at its most rapid rate and an error in the

altitude produces less error in the calculated houf angle than the

same error would produce if the sun were near the meridian. The

nearer the observer is to the equator the greater is the inclina-

tion of the sun's path to the horizon, and consequently the

greater its rise or fall per second of time. If the observer were

at the equator and the declination zero the sun would rise or

fall i
'
in 4

s
of time. In the preceding example the rise is i' in

about &
s
of time. 'When the observer is near the pole the method

is practically useless.

Observations on the sun when it is very close to the horizon

should be avoided, however, even when the sun is near the prime

vertical, because the errors in the tabulated refraction correc-

tion due to variations in temperature and pressure of the air

are likely to be large. Observations should not be made when

the altitude is less than 10 if it can be avoided.

81. Time by the Altitude of a Star.

The method of the preceding article may be applied equally

well to an observation on a star. In this case the parallax and

semidiameter corrections are zero. If the star is west of the me-

ridian the computed hour angle is the star's true hour angle;

if the star is east of the meridian the computed hour angle must
be subtracted from 24*. The sidereal time is then found by

adding the right ascension of the star to its hour angle. If

mean time is desired the sidereal time thus found is to be con-

verted into mean solar time by Art. 37. Since it is easy to select
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stars in almost any position it is desirable to eliminate errors in

the measured altitudes by taking two observations, one on a

star which is nearly due east, the other on one about due west.

The mean of these two results will be nearly free from instru-

mental errors, and also from errors in the assumed value of the

observer's latitude. If a planet is used it will be necessary to

know the Gr. Civ. Time with sufficient accuracy for correcting

the right ascension and declination.

Example.
Observed altitude of a Bo'otis (Arcturus) on Apr. 15, 1925 = 40 10' (east).

Watch, 8* 54 20* P.M. Latitude = 42 18' N., Long. =
71 18' W. Rt. Asc. a

Bodtis, 14* i2m 15^.6; decl. -f *934' 14"- Rt. Asc. Mean Sun +12* = i3^3O>

32*.OI.

Obs. alt. 40 10'

Refr. -i .1

h 40 o8'.9

= 42 iS'.o log sec 0.13098
h = 40 08 .9

p = 70 25 .8 log esc 0.02584

2)152 52 .7

s = 76 26'.3 log cos 9-37OI3
s h ~ 36 17 .4 log sin 9.77223

log sin - = 9.64959

-'= 26 30' 15"

/ = 53 oo' 30" (east)

=
3/ 32^02* (east)

Rt. Asc. of star = 14* 12^* 153.6

Loc. Sid. T. = io^4oi3*.6
Long. W. = 4 45 12 .

Gr. Sid. T.
*

15* 25"* 25^.6
R. A. Sun 4-i2 ft = 13 30 32 .o

i* 54m 53*-6
Table II 18 .8

Gr. Civil T. = i* 54^ 34^.8

J_
Eastern. Stand. Time 20* 54"* 34*.8

= 8 54 34.8P.M.
Watch 8 54 20 P.M.

Watch i4*.8 slow
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82. Effect of Errors in Altitude and Latitude.

In order to determine the exact effect upon i of any error in

the altitude h let us differentiate equation [8] with respect

to h, the quantities <t> and 5 being regarded as constant.

sin h sin
<t>

sin d + cos < cos 8 cos t. [8]

Differentiating,
dt

cos h = o cos 6 cos 5 sm /

ah
dt cos h

dh cos < cos 6 sin

= V-^ by Equa. [12]. [81]
cos sin Z J M

An inspection of this equation shows that when Z = 90 or 270

sin Z is a maximum and a minimum for any given value of <.
(trl

It also shows that the smaller the latitude, the greater is its

cosine and consequently the smaller the value of . The most
an

favorable position of the body is therefore on the prime vertical.

The negative sign shows that the hour angle decreases as the

altitude increases. When Z is zero (body on meridian) the value

of is infinite and t cannot be found from the observed altitude.
dh

The effect of an error in the latitude may be found by differ-

entiating [8] with respect to <. The result is

o = cos </> sin d + cos 6 ( cos sin t~ cos / sin <)
a</>

. dt
cos <t> cos d sin / cos sm 6 sm

<l> cos d cos /

a<t>

= cos/? cosZ by [n]

.
dt^ _ cos h cos Z
d(l> cos <t>

cos d sin t

cosZ_ . by I I2 |

sin Z cos ^
J l J
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= !___. i82 i

cos <t> tan Z '

This shows that when Z = 90 or 270 an error in < has no effect

on /, since = o. In other words, the most favorable position

of the object is on the prime vertical. It also shows that the

method is most accurate when the observer is on the equator.

83. Time by Transit of Star over Vertical Circle through Polaris.*

In making observations by this method the line of sight of the telescope is set

in the vertical plane through Polaris at any (observed) instant of time, and the

time of transit of some southern star across this plane is observed immediately

afterward; the correction for reducing the star's right ascension to the true sidereal

time of the observation is then computed and added to the right ascension. The

advantages of the method are that the direction of the meridian does not have to

be established before time observations can be begun, and that the interval which

must elapse between the two observed times is so small that errors due to the

instability of the instrument are reduced to a minimum.

The method of making the observation is as follows : Set up the instrument and

level carefully; sight the vertical cross hair on Polaris (and clamp) and note and

record the watch reading; then revolve the telescope about the horizontal axis,

being careful not to disturb its azimuth; set off on the vertical arc the altitude of

some southern star (called the time-star) which will transit about 4m or $
m

later;

note the instant when this star passes the vertical cross hair. It will be of as-

sistance in making the calculations if the altitude of each star is measured im-

mediately after the time has been observed. The altitude of the time-star at

the instant of observation will be so nearly equal to its meridian altitude that

no special computation is necessary beyond what is required for ordinary transit

observations. If the times of meridian transit are calculated beforehand the

actual times of transit may be estimated with sufficient accuracy by noting the

position of Polaris with respect to the meridian. If Polaris is near its elongation

then the azimuth of the sight line will be a maximum. In latitude 40 the-^

azimuth of Polaris for 1925 is about i 26'; a star on the equator would then

pass the vertical cross hair nearly 4 later than the computed time if Polaris is

at eastern elongation (see Table B, p. 99). If Polaris is near western elongation

the star will transit earlier by this amount. In order to eliminate errors in the

adjustment of the instrument, observations should be made in the erect and in-

verted positions of the telescope and the two results combined. A new setting

should be made on Polaris just before each observation on a time-star.

* For a complete discussion of this method see a paper by Professor George

O. James, in the Jour. Assoc. Eng. Soc., Vol. XXXVII, No. 2; also Popular As-

tronomy, No. 1 7 2. A method applicable to larger instruments is given by Professor

Frederick H." Seats, in Bulletin No. 5, Laws Observatory, University of Missouri.
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In order to deduce an expression for the difference in time between the meridian

transit and the observed transit let a and <x be the right ascensions of the stars,

S and So the sidereal times of transit over the cross hair, i and to the hour angles
of the stars, the subscripts referring to Polaris. Then by Equa. 37, p. 52,

t = S - a.

and to
= So <XQ.

Subtracting, h - / = (
~

o)
-

(S
-

So). [83]

The quantity 5 So is the observed interval of time between the two observa-

tions expressed in sidereal units. If a mean time chronometer or watch is used the

interval must be increased by the amount of the correction in Table III. Equa.

[83] may then be written

j
-

t = (a
-

)
- (T - To)

- C [84]

where T and To are the actual

watch readings and C is the

correction from Table III to

convert this interval into side-

real time.

In Fig. 61 let PQ be the

position of Polaris when it

is observed; P, the celestial

north pole; Z, the zenith of

the observer; and S, the time

star in the position in which

it is observed. It should be

noticed that when S is passing

the cross hair, Polaris is not

in the position Po, but has

moved westward (about P) by
an angle equal to the (sidereal)

interval between the two ob-

servations. Let PQ be the polar

distance of Polaris ;
and

,
v

the zenith distances of the

two stars; and h and ho their altitudes.

Then in the triangle PoPS,
sin S _ sin po

sinS

In triangle PZSy

or

sin P PS sin PoS

sin P PS sin po cosec ( + f )

= sin (to t) sin po cosec (h -f- ho).

sin (/) _ sin f

sin S
~~

cos <f>

sin ( /)
= sin S cos h sec <.

[85]

[86]
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Substituting the value of sin S in Equa. [85],

sin ( /)
= sin po sin (/ t) cosec (h + ho) cos h sec <. [87]

Since / and po are small the angles may be substituted for their sines, and

/ = po sin (to t) cosec (h -f ho) cos h sec <. [88]

If the altitudes h and ho have not been measured the factor cos h may be replaced

by sin (<
-r- 6) and cosec (/5 + //o) may be replaced by sec (5 c) with an error

of only a few hundredths of a second, 5 being the declination of the time star and c

the correction in Table I in the Ephemeris or the Almanac.

In this method the latitude <f>
is supposed to be known. If it is not known, then

the altitudes of the stars must be measured and $ computed. It will usually be

accurate enough to assume that the observed altitude of the time star is the same

as the meridian altitude, and apply Equa. [i]; otherwise a correction may be

made by formula [77]. The latitude may also be found from the altitude of the

polestar, using the method of Art. 73.

After the value of / (in seconds of time*) has been computed it is added to the

right ascension of the time star to obtain the local sidereal time of the observation

on this star. This sidereal time may then be converted into local civil time and

then into standard time and the watch correction obtained.

If it is desired to find the azimuth of the line of sight this may be done by com-

puting a in the formula
a t sec h cos 6. [89]

The above method is applicable to transit observations made with small instru-

ments. For the large astronomical transit a more refined method of making the

reductions should be used.

Example.
Observation of o Virginia over Vertical Circle through Polaris; latitude, 42 21'

N.; longitude 4^ 44 18^.3 W.; date, May 8, 1906.

Observed time on Polaris &h 35 58*
Observed time on o Virginis 8 39 43

a I2i*oom 26s .3 Diff. 3
m

45*
o I 24 35 .4 _ o /

Table III 0.6 <t>
~ * = 33 06'

05^.3 p = yi.gs
= i58oi'.3

logo =1.8564 5 = +9 15'

log sin (to t)
= 9.5732 c = +i 06.5

log sec (5
-

c)
= 0.0044 D - c = 8 oS'.s

log sin (0 5)
= 9.7373

log sec <
= 0.1313

log 4 SB 0.6021

log / = 1.9047
/ = -808.30
= 1 20^.3

* The factor 4 has been introduced in the following example in order to reduce

minutes of angle to seconds of time.
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The true sidereal time may now be found by subtracting im 2o*.3 from the right

ascension of o Virginis, the result being as follows:

a = 12" oo^ 26^.3

/ = I 20 .3

S as Hft 59n 06X0

The local civil time corresponding to this instant of sidereal time for the date is

20& 55* i4*.5. t
The corresponding Eastern Standard time is 20* 39 32^.8, or 8* 39OT

32^.8 P.M. The difference between this and the watch time, 8* 39 43*, shows that

the watch was lo*^ fast.

84. Time by Equal Altitudes of a Star.

If the altitude of a star is observed when it is east of the meridian at a certain

altitude, and the same altitude of the same star again observed when the star is

west of the meridian, then the mean of the two observed times is the watch reading

for the instant of transit of the star. It is not necessary to know the actual value

of the altitude employed, but it is essential that the two altitudes should be equal.

The disadvantage of the method is that the interval between the two observations

is inconveniently long.

85. Time by Two Stars at Equal Altitudes.

In this method the sidereal time is determined by observing when two stars

have equal altitudes, one star being east of the meridian and the other west. If

the two stars have the same- declination then the mean of the two right ascensions

is the sidereal time at the instant the two stars have the same altitude. As it is

not practicable to find pairs of stars having exactly the same declination it is neces-

sary to choose pairs whose declinations differ as little as possible and to introduce

a correction for the effect of this difference upon the sidereal time. It is not

possible to observe both stars directly with a transit at the instant when their

altitudes are equal; it is necessary, therefore, to observe first one star at a certain

altitude and to note the time, and then to observe the other star at the same alti-

tude and again note the time. The advantage of this method is that the actual

value of the altitude is not used in the computations; any errors in the altitude

due either to lack of adjustment of the transit or to abnormal refraction are there-

fore eliminated from the result, provided the two altitudes are made equal. In

preparing to make the observations it is well to compute beforehand the approxi-

mate time of equal altitudes and to observe the first star two or three minutes

before the computed time. In this way the interval between the observations

may be kept conveniently small. It is immaterial whether the east star is observed

first or the west star first, provided the proper change is made in the computation.
If one star is faint it is well to observe the bright one first; the faint star may then

be more easily found by knowing the time at which it should pass the horizontal

cross hair. The interval by which the second observation follows the time of

equal altitudes is nearly the same as the interval between the first observation

and the time of equal altitudes. It is evident that in the application of this method
the observer must be able to identify the stars he is to observe. A star map is

of great assistance in making these observations.
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The observation is made by setting the horizontal cross hair a little above the

easterly star 2"* or 3 before the time of equal altitudes, and noting the instant

when the star passes the horizontal cross hair. Before the star crosses the hair

the clamp to the horizontal axis should be set firmly, and the plate bubble which

is perpendicular to the horizontal axis should be centred. When the first obser-

vation has been made and recorded the telescope is then turned toward the westerly

star, care being taken not to alter the inclination of the telescope, and the time

when the star passes the horizontal cross hair is observed and recorded. It is

well to note the altitude, but this is not ordinarily used in making the reduction.

If the time of equal altitudes is not known, then both stars should be bright ones

that are easily found in the telescope. The observer may measure an approxi-

mate altitude of first one and then the other, until they are at so nearly the same <

altitude that both can be brought into the field without changing the inclination

of the telescope. The altitude of the east star may then be observed at once and

the observation on the west star will follow by only a few minutes. If it is desired

to observe the west star first, it must be observed at an altitude which is greater

than when the east star is observed first. In this case the cross hair is set a little

below the star.

In Fig. 62 let nesw represent the horizon, Z the zenith, P the pole, Se the easterly

star, and Sw the westerly star.

Let te and tw be the hour

angle of Se and Sw, and let

HSeSw be an almucantar, or

circle of equal altitudes.

From Equa. [37], for the

two stars Se and Sw ,
the

sidereal time is

te
*

Taking the mean value of

s,

, M
from which it is seen that

the true sidereal time equals

the mean right ascension cor-

rected by half the difference

FIG. 62 in the hour angles. To de-

rive the equation for correct-

ing the mean right ascension so as to obtain the true sidereal time let the funda-

mental equation

sin h = sin 5 sin <j> -f- cos 5 cos <f> cos / [8]

te is here taken as the actual value of the hour angle east of the meridian.
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be differentiated regarding d and t as the only variables, then there results

o sin < cos 8 cos 5 cos
<f> sin t j- cos 4> cos t sin 6,

from which may be obtained

dt
== tan<fr __

tang

dS
~

sin*

If the difference in the decimation is small, dd may be replaced by J (dw
in which case <ft will be the resulting change in the hour angle, or i (tw fc).

The equation for the sidereal time then becomes

c _~~ 4- _ tan 61

tan / J [92]Lsin/

in which (8W 8e} must be expressed in seconds of time. 5 may be taken as the

mean of 8e and fa- The value of t would be the mean of te and tw if the two stars

were observed at the same instant, but since there is an appreciable interval be-

tween the two times / must be found by

, ,

[93]

and Te being the actual watch readings.

LIST FOR OBSERVING BY EQUAL ALTITUDES

Lat., 42 21' N. Long., 4^ 44"* 18* W. Date, Apr. 30, 1912.
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If the west star is observed first, then the last term becomes a negative quantity.

Strictly speaking this last term should be converted into sidereal units, but the

effect upon the result is usually very small. In regard to the sign of the correction

to the mean right ascension it should be observed that if the west star has the

greater declination the time of equal altitudes is later than that indicated by the

mean right ascension. In selecting stars for the observation the members of a

pair should differ in right ascension by 6 to 8 hours, or more, according to the

declinations. Stars above the equator should have a longer interval between

them than those below the equator. On account of the approximations made in

deriving the formula the decimations should differ as little as possible. If the

declinations do not differ by more than about 5, however, the result will usually

be close enough for observations made with the engineer's transit. From the

extensive star list now given in the American Ephemeris it is not difficult to select

a sufficient number of pairs at any time for making an accurate determination

of the local time. On page 141 is a short list taken from the American Ephemeris
and arranged for making an observation on April 30, 1912.

Following is an example of an observation for time by the method of equal alti-

tudes.

Example.

Lat, 42 21' N. Long,, 4* 44 i8 W. Date, Dec. 14, 1905.

57 36' 3i"-5

Decl.

+3 43' 69".!
+ 2 55 44 .o

+3 19' 56".6
2) o 48 25 .1

=
24' i2".6

= -"96X84

Te

Watch.

i8m oo*

22 13

^ 20"* 06X5
04 13

Mean R. A. = 23^ 09*" 02*.8

Corn = 01 41 .o

Sid. Time =
23^ 07"* 2i*.8

The local civil time corre-

sponding to this is

17 35
m 43sA

Long. diff. 15 42 .o

Eastern time 17* 20 01*4
=

5 20 01 .4 P.M.

Watch reading 5 20 06 .5 Corr.

Watch fast 5*.i

IQI'.O = i
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86. Formula [91] may be made practically exact by means of the following device.

Applying Equa. [8] to each star separately and subtracting one result from the

other we obtain the equation*

tan (ft tanAS tan 5 tan A5 tan d tan A6
sin AJ ;

sin/ tan/ tan/

.

,

vers A/
}

TABLE C. CORRECTIONS TO BE ADDED TO A3 AND A/.

(Equa. [94], Art. 86.)

TABLE D. CORRECTION TO BE ADDED TO A/t

(Equa. [94], Art. 86)

f The algebraic sign of this term is always opposite to that of the second term.

Chauvenet, Spherical and Practical Astronomy, Vol. I, p. 199.
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where A5 is half the difference in the declinations and AJ is the correction to the

mean right ascension. If sin A/ and tan A 5 are replaced by their arcs and the

third term dropped, this reduces to Equa. [91], except that A3 and At are finite

differences instead of infinitesimals. In order to compensate for the errors thus

produced let A 6 be increased by a quantity equal to the difference between the

arc and the tangent (Table C) ;
and let a correction be added to the sum of the first

two terms to allow for the difference between the arc and sine of A/ (Table C).

With the approximate value of A/ thus obtained the third term of the series may be

taken from Table D. By this means the precision of the computed result may be

increased, and the limits of A 5 may therefore be extended without increasing the

errors arising from the approximations.

Example.

Compute the time of equal altitudes of a Bootis and i Geminorum on Jan. i,

1912, in latitude 42 21'. R. A. a Bootis = 14'* nm 37^98; decl. = +19 38' i5".2.

R. A. i Geminorum =
7" 20 i6.8s; decl. = +27 58' 3o".8.

14* n 37^.98

7 20 16 .85

2) 6* 51"* 213.13

3/ 25"* 403.56
t = 51 25' o8".4

log AS = 3.000993

log tan <j>
- 9.959769

log esc/ 0.106945

3.067707

ist term = n68*.7i
2d term = 352 .76

A/ (approx.)

Corr., Table C = +
Corr., Table D =

A/ = +8i7*.o6

27 58' 3o".8
19 38 15 .2

2) 8 20' i5".6

A5 = 4 10' 07".8
=

1000^.52

Corr., Table C i .77

A5 = ioo2*.29

log A5 = 3.00099
log tan 5 = 9.64462
log cot/ = 9.90187

2.54748

2d term = 352.76

Mean R. A. = 10 45 57 .42

Sid. Time of Equal Alt. = 10* 59"* 34*48

For refined observations the inclination of the vertical axis should be measured

with a spirit level and a correction applied to the observed time. With the engi-

neer's transit the only practicable way of doing this is by means of the plate-level

which is parallel to the plane of motion of the telescope. If both ends of this

level are read at each observation, denoting the reading of the object end and E
the eye end of the bubble, then the change in the inclination is expressed by

i = - E) - (V -
'))

X ~>
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where d is the angular value of one scale division in seconds of arc. The correction

to the mean watch reading is

Corr.
30 sin S cos 5 30 cos < sin Z

in which S may be taken from the Azimuth* tables or Z may be found from the

measured horizontal angle between the stars. If the west star is observed at a

higher altitude than the east star (bubble nearer objective), the correction must

be added
%
to the mean watch reading. If it is applied to the mean of the right

ascensions the algebraic sign must be reversed.

87. The correction to the mean right ascension of the two stars may be con-

veniently found by the following method, provided the calculation of the paral-

lactic angle, S in the PZS triangle, can be avoided by the use of tables. Publica-

tion No. 120 of the U. S. Hydrographic Office gives values of the azimuth angle

for every whole degree of latitude and declination and for every iom of hour angle.

The parallactic angle may be obtained from these tables (by interpolation) by

interchanging the latitude and the declination, that is, by looking up the decli-

nation at the head of the page and the latitude in the line marked "
Declination/'

For latitudes under 23 it will be necessary to use Publication No. 71

In taking out the angle the table should be entered with the next less whole

degree of latitude and of declination and the next less iom of hour angle, and the

corresponding tabular angle written down; the proportional parts for minutes

of latitude, of declination, and of hour angle are then taken out and added alge-

braically to the first angle. The result may be made more accurate by working
from the nearest tabular numbers instead of the next less. The instructions given

in Pub. 1 20 for taking out the angle when the latitude and declination are of

opposite sign should be modified as follows. Enter the table with the supplement

of the hour angle, the latitude and declination being interchanged as before, and

the tabular angle is the value of S sought.

Suppose that two stars have equal declinations and that at a certain instant

thek altitudes are equal, A being east of the meridian and B west of the meridian.

If the declination of B is increased so that the star occupies the position C, then

the star must increase its hour angle by a certain amount x in order to be again

on the almucantar through B. Half of the angle x is the desired correction. In

Fig. 63 BC is the increase in declination; BD is the almucantar through A, B
and D-

t
and CD is the arc of the parallel of declination through which the star

must move in order to reach BD. The arcs BD and CD are not arcs of great

circles, and the triangle BCD is not strictly a spherical triangle, but it may be

shown that the error is usually negligible in observations made with the engi-

neer's transit if BCD is computed as a spherical triangle or even as a plane triangle.

The angle ZBP is the angle 5 and DBC is 90 - 5. The length of the arc CD
is then BC cot S, or (fa - $<?) cot 5. The angle at f is the same as the arc CD'
and equals CD sec 5. If (dw 8e) is expressed in minutes of arc and the cor-

*
See Arts, 87 and 122 for the method of using these tables.
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rection is to be in seconds of time, then, remembering that the correction is half

the angle xy

Correction = 2 (dw de) cotS sec 5.
%

[95]

5 should be taken as the mean of the two declinations, and the hour angle, used

in finding 5, is half the difference in right ascension corrected for half the watch

interval.

The trigonometric formula for determining the correction for equal altitudes is

tan = sin cot i (Si + Sz) sec i (to + to). [96]
2 2

By substituting arcs for the sine and tangent this reduces to the equation given

above, except that the mean of Si and 52 is not exactly the same as the value of S
obtained by using the mean of the hour angles.

Z

FIG. 63

The example on p. 146 worked by this method is as follows. From the azimuth

tables, using a declination of 42, latitude 3, and hour angle 3
h
50"*, the approxi-

mate value of S is 44 05'. Then from the tabular differences,

Correction for 21' decl. = 22'

Correction for 20' lat. = +07
Correction for 26* h. a. = +02

The corrected value of S is therefore 43 52'.

2(5W 8e)
= 96'.84log

-
1.9861 (n)

log cot S 0.0172

log sec 5 0.0007

log corr. 2.0040 (n)

log corr. = 1008.9

This solution is sufficiently accurate for observations made with the engineer's

transit, provided the difference in the declinations of the two stars is not greater

than about 5 and the other conditions are favorable. For larger instruments

and for refined work this formula is not sufficiently exact.

The equal-altitude method, like all of the preceding methods, gives more precise

results in low than in high latitudes.
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88. Rating a Watch by Transit of a Star over a Range.

If the time of transit of a fixed* star across some well-defined

range can be observed, the rate of a watch may be quite accu-

rately determined without knowing its actual error. The.

disappearance of the star behind a building or other object

when the eye is placed at some definite point will serve the pur-

pose. The star will pass the range at the same instant of sidereal

time every day. If the watch keeps sidereal time, then its

reading should be the same each day at the time of the star's

transit over the range. If the watch keeps mean time it will

lose 3
m

55^.91 per sidereal day, so that the readings on successive

days will be less by this amount. If, then, the passage of the

star be observed on a certain night, the time of transit on any

subsequent night is computed by multiplying 3 55^.91 by the

number of days intervening and subtracting this correction

from the observed time. The difference between the observed

and computed times divided by the number of days is the

daily gain or loss. After a few weeks the star will cross the

range in daylight, and it will be necessary before this occurs

to transfer to another star which transits later in the same

evening. In this way the observations may be carried on

indefinitely.

89. Time Service.

The Standard Time used in the United States is determined

by means of star transits at the U. S. Naval Observatory (George-

town Heights) and is sent out to all parts of the country east of

the Rocky Mountains by means of electric signals transmitted

over the lines of the telegraph companies and is relayed from

the Arlington and Annapolis radio stations. For the territory

west of the Rocky Mountains the time is determined at the

Mare Island Navy Yard.

The error of the standard (sidereal) clock is determined about

15 times per month by transits of 6 to 12 stars over the meridian.

Two instruments are employed as a check, one a large (6 inch)

* A planet should not be used for this observation.
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transit, the other a small one which may be reversed in the

middle of a set of observations on a star.

When signals are to be sent out the sending clocks are com-

pared with the sidereal clock by means of a chronograph, the

two clocks recording simultaneously. After the error of the

sending clock is determined the clock is
"

set
"
correct by means

of an automatic device which accelerates or retards its rate for

a short time until a chronographic comparison shows that it is

correct. The sending clock makes the signals through a relay

directly onto the wires both for the wire and the wireless signals

from Arlington and Annapolis.

In order to test and keep record of the errors in these signals

they are received and recorded on a chronograph at the ob-

servatory. Thus the error of the sending clock and the error

of the signal are on record and may be obtained for use in ac-

curate work. The error of the time signal is rarely as much as

a tenth of a second.

The " noon "
signal is sent out each day at 12* Eastern Stand-

ard Time, the series of signals beginning at n* 55^ and ending

at 12*. This signal may be heard on the sounder at any tele-

graph office or railroad station. The sounder gives a click once

per second. The end of each minute is shown by the omission

of the 55th to 5Qth seconds inclusive, except for the noon signal,

which is preceded by a silent interval of 10 seconds. A similar

signal is sent out at ioh P.M. Eastern Standard Time and is usu-

ally relayed by radio stations so that it may be heard on an

ordinary receiving set.

Questions and Problems

1. Compute the Eastern Standard time of the transit of Regulus (a Leonis)

over the meridian 7io6'.o west of Greenwich on March 3, 1925. The right

ascension of the star is 10* 04 235.8. The right ascension of the mean sun + 12* =
10* 41 00^.26 at o of March 3, G. C. T.

2. At what time (E. S. T.) will the centre of the sun be on the meridian on

Apr. i, 1925 in longitude 7io6'.oW.? Equa. of time at o* G. C. T. Apr. i =

4 i2*.47; varia. per hour = -f0^.755 .

3. Compute the error of the watch from the data given in prob. 5, p. 207.
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4. Compute the error of the watch from the data given in prob. 6, p. 208.

5. Compute the sidereal time of transit of d Capricorni over the vertical circle

through Polaris on Oct. 26, 1906. Latitude = 42 i8'-5; longitude = 4^ 45"* 07*.

'Observed watch time of transit of Polaris = j
h 10 20s

;
of 5 Capricorni j

h
i^
m

28s , Eastern Time. The declination of Polaris = +88 48' 3i".s; right ascen-

sion = ih 26 37s .9; declination of 5 Capricorni = i633'o2".8; right ascension

== 21^41^*53^.3. c = 39'.3. [Right ascension of mean sun -\-i2
h at time of

observation 2h 17 48*.3.] Compute the error of the watch.

6. Time observation on May 3, 1907, in latitude 42 21'.o N., longitude 4h 44

i8s .o W. Observed transit of Polaris at 7* i6w 17^.0; of AI Hydras at 7** i8m 50*. 5.

^Declination of Polaris +88 48' 28".3; right ascension = i^ 24^ 50^.2. Decli-

nation of fj.Hydr& = 16 21' 53". 2; right ascension = io& 21 36*. i. c = -f SO'.L

[Right ascension of mean sun + 12* at time of observation = 14^ 42"* 585.O3.]

Compute the sidereal time of transit of ^ Hydros over the vertical circle through
Polaris and also the error of the watch in Standard time.

7. Observation for time by equal altitudes, Dec. 8, 1904.

Right Ascension Declination Watch
a Tauri (E) 4^30^ 293.01 +16 18' 59^.9 7*34^56*
aPegasi(W) 22 59 61.12 +14 4i 43 -7 7 39 45

Lat. = 42 28'.o N.; long.
= 4h 44 i$

s .o. [Right ascension of mean sun -f-i2&

at instant of observation = 5^48w 44s
.4i.] Compute the sidereal time and the

error of the watch.

8. Observation for time by equal altitudes, Oct. 13, 1906.

Right Ascension Declination Watch
v Ophinchi (W) i7^53w 52

s
.i5 ~945 /

34"-6 7^i34o
i Ceti (E) o 14 40 .99 9 20 25 .7 7 28 25

Lat. = 42 iS'.o; long. = 4^45 06s .8 W. [Right ascension of mean sun -fi2ft

at instant of observation = ia 26m 34.29.] Compute the sidereal time and the

error of the watch.



CHAPTER XII

OBSERVATIONS FOR LONGITUDE

90. Method of Measuring Longitude.

The measurement of the difference in longitude of two places^

depends upon a comparison of the local times of the places at

the same absolute instant of time. One important method

is that in which the timepiece is carried from one station to

the other and its error on local time determined in each place.

The most precise method, however, and the one chiefly used

in geodetic work, is the telegraphic method, in which the local

times are compared by means of electric signals sent through a

telegraph line. Other methods, most of them of inferior accu-

racy, are those which depend upon a determination of the moon's

position (moon culminations, eclipses, occultations) and upon

eclipses of Jupiter's satellites, and those in which terrestrial

signals are employed.

91. Longitude by Transportation of Timepiece.
In this method the error of the watch or chronometer with

reference to the first meridian is found by observing the local

time at the first station. The rate of the timepiece should be

determined by making another observation at the same place *

at a later date. The timepiece is then carried to the second

station and its error determined with reference to this meridian.

If the watch runs perfectly the two watch corrections will

differ by just the difference in longitude. Assume that the first

observation is made at the easterly station and the second at

the westerly station. To correct for rate, let r be the daily

rate in seconds, + when losing when gaining, c the watch

correction at the east station, c
f
the watch correction at the

west station, d the number of days between the observations,

154
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and T the watch reading at the second observation. Then the

difference in the longitude is found as follows :

Local time at W. station = T + c'

Local time at E. station = T + c + dr

Diff. in time = Diff. in Long. = c + dr c' . [97]

The same result will be obtained if the stations are occupied

in the reverse order.

^ If the error of a mean-time chronometer or watch is found

iby star observations, it is necessary to know the longitudes

accurately enough to correct the sun's right ascension. If a

sidereal chronometer is used and its error found on local sidereal

time this correction is rendered unnecessary.

In order to obtain a check on the rate of the timepiece the

observer should, if possible, return to the first station and again

determine the local time. If the rate is uniform the error in

Jits determination will be eliminated by taking the mean of the

results. This method is not as accurate as the telegraphic

method, but if several chronometers are used and several round

trips between stations are made it will give good results. It is

useful at sea and in exploration surveys.

Example.
Observations for local mean time at meridian A indicate

that the watch is 15"* 40* slow. At a point B, west of A, the

watch is found to be 14** 10* slow on local mean time. The

watch is known to be gaining 8* per day. The second obser-

vation is made 48 hours after the first. The difference in longi-

:ude is therefore

+ iS
m
40*

- 2 X 8* - i4
m

10* = i
m

14*.

The meridian B is therefore i
m

14* or 18' 30" west of meridian A.

92. Longitude by the Electric Telegraph.

In the telegraphic method the local sidereal time is accurately determined by

^star transits observed at each of the stations. The observations are made with

large portable transits and are recorded on chronographs which are connected

with break-circuit chronometers. The stars observed are selected in such a man-

ner as to permit determining the instrumental errors so that the effect of these

errors may be eliminated from the results. The stars are divided into two groups.
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Half the number are observed with the axis in one position and the other half with

the axis reversed. This determines the error of the sight lii\e. In each half set

some of the stars are north of the zenith and some south. The differences in times

of transit of these two groups measures the azimuth error. The inclination error

is measured with the striding level. (See Arts. 55 and 77.)

After the corrections to the two chronometers have been accurately determined

the two chronographs are switched into the main-line circuit and signals sent either

by making or breaking the circuit a number of times by the use of a telegraph key.

These signals are recorded on both chronographs. In order to eliminate the error

due to the time of transmission of the signal,* the signals are sent first in the di-

rection E to W and then in the direction W to E. The mean of the two results is!

free from the error provided it is constant during the interval. The personal errors

of the observers are now nearly eliminated by the use of the impersonal transit

micrometer, instead of by exchange of observers, as was formerly done. After all

of the observations have been corrected for azimuth, collimation and level, and the

error of the chronometer on local sidereal time is known, each signal sent over the

main line will be found to correspond to a certain instant of sidereal time at the

east station and a different instant of sidereal time at the west station. The diff-

erence between the two is the difference in longitude expressed in time units.

In the more recent work (since 1922) the longitude of a station is determined with

reference to Washington by receiving the time signal by radio. This cuts the cost

of the work in half since there is but one station to be occupied.

By the telegraph method a longitude difference may be determined with an error

of about QS.OI or about 10 feet on the earth's surface.

93. Longitude by Time Signals.

If it is desired to obtain an approximate longitude for any purpose this may be

done in a simple manner provided the observer is able to obtain the standard time

at some telegraph office or railroad station, or by radio, as given by the noon signal

or the 10^ P.M. signal. He may determine his local mean time by any of the pre-

ceding methods (Chapter XI). The difference between the local time and the

standard time by telegraph or radio is the correction to be applied to the longitude

of the standard meridian to obtain the longitude of the observer.

Example.
Altitude of sun, 27 44' 35"; latitude, 42 22' N.; declination, ^oc/oo," N.,

equation of time, -f-3
m 48s

.8; watch reading, 4^ i8m 13*. 8. From these data the

local mean time is found to be 4* 33 43^.9, making the watch 15*" 30*. i slow. By
comparison with the telegraph signal at noon the watch is found to be 6* fast of

Eastern Standard Time. The longitude is then computed as follows:

Correction to L. M. T. = +i5w 30*.!
Correction to E. S. T. = -oo 06.0

Difference in Longitude = i$
m

36*. i
= 354'oi". 5

Longitude = 75
-

3 54'.
= 71 o6'.o West

* In a test made in 1905 it was found that the time signal sent from Washington

reached Lick Observatory, Mt. Hamilton, CaL, in
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94. Longitude by Transit of the Moon.

A method which is adapted to use with the surveyor's transit and which, although

not precise, may be useful on exploration surveys, is that of determining the moon's

, right ascension by observing its transit over the meridian. The right ascension

of the moon's centre is tabulated in the Ephemeris for every hour of Greenwich

Civil Time; hence if the right ascension can be determined, the Greenwich Civil

Time becomes known. A comparison of this with local time gives the longitude.

The observation consists in placing the instrument in the plane of the meridian

and noting the time of transit of the moon's bright limb and also of several stars

whose declinations are nearly the same as that of the moon. The table of
" Moon

i Culminations
"

in the Ephemeris shows which limb (I or II) may be observed.

k (See note on p. 159.) The observed interval of time between the moon's transit

and a star's transit (reduced to sidereal time if necessary) added to or subtracted

from the star's right ascension gives the right ascension of the moon's limb. A
value of the right ascension is obtained from each star and the mean value used.

To obtain the right ascension of the centre of the moon it is necessary to apply to

the right ascension of the edge a correction, taken from the Ephemeris, called
"
sidereal time of semidiameter passing meridian." In computing this correction

the increase in right ascension during this short interval has been allowed for, so

the result is not the right ascension of the centre at the instant of transit of the

limb, but at the instant of transit of the centre. If the west limb was observed

this correction must be added; if the east limb, it must be subtracted. The result

is the right ascension of the centre at the instant of transit, which is also the local

sidereal time at that instant. Then the Greenwich Civil Time corresponding to

this instant is found by interpolation in the table giving the moon's right ascension

for every hour. To obtain the Greenwich Civil Time by simple interpolation find

the next less right ascension in the table and the
"
varia. per min." on the same

line; subtract the tabular right ascension from the given right ascension (obtained

from the observation) and divide this difference by the
"
varia. per min." The

result is the number of minutes (and decimals of minutes) to be added to the tab-

ulated hour of Greenwich Civil Time. If the
"
varia. per min." is varying rapidly

it will be more accurate to interpolate as follows: Interpolate between the two

values of the
"
varia. per min." to obtain a "varia. per min." which corresponds

>to the middle of the interval over which the interpolation is carried. In observa-

tions made with a surveyor's transit this refinement is seldom necessary.

In order to compare the Greenwich time with the local time it is necessary to

convert the Greenwich Civil Time into the corresponding instant of Greenwich

Sidereal Time. The difference between this and the local sidereal time is the

longitude from Greenwich.

In preparing for observations of the moon's transit the Ephemeris should be

consulted (Table of Moon Culminations) to see whether an observation can be

made and to find the approximate time of transit. The time of transit may be

obtained either from the Washington civil time of transit or from the Greenwich

civil time in the first part of the Ephemeris. The tabular time must be corrected

for longitude. The apparent altitude of the moon should be computed and allow-
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ance made for parallax. The moon's parallax is so large that the moon would not

be in the field of view if this correction were neglected. The horizontal parallax

multiplied by the cosine of the altitude is the required correction. The moon will

appear lower than it would if seen from the centre of the earth. The correction is

therefore subtractive.

Since the moon increases its right ascension about 2* in every im of time it is

evident that any error in determining the right ascension will produce an error

about thirty times as great in the longitude, so that this method cannot be made to

give very precise results. It has, however, one great advantage. If for any reason,

such as an accident to the timepiece, a knowledge of the Greenwich time is com*

pletely lost, it is still possible by this method to recover the Greenwich time with

a fair degree of accuracy.

Following is an example of an observation for longitude by the method of moon
culminations made with an engineer's transit.

Example.
Observed transit of moon's west limb July 30, 1925, for longitude. Watch time

of transit moon's west limb, 7^ 27** 14*; transit of <r Scorpii, 7* 29^ 20s .

43^.56 = local sidereal time

From Ephemeris

July 31 Gr. Civ. T. Rt. Asc. Moon Varia. per Min.
o* 16* i4 375.54 2.3986
i 16 17 01 .64 2.4049

2m 245.10 63

.

i o6.02 = 66X02 log 1.81968 .33-0 x 63 = 14
Interpolated varia. per min. = 2.4000 log 0.38021 144.1

= 27 3o*.s

G. C. T. = o 27 3o.so
as + i2& = 20 32 23 .49
Table III 04.52

Gr. Sid. T. 20* 59 s8*.5i
Loc. Sid. T. 16 15 43-56

Longitude 4* 44W i4*-95 W. = 71 03' 45
7/ W:
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NOTE. It has already been stated that the moon moves eastward on the celes-

tial sphere at the rate of about 13 per day; as a result of this motion the time of

meridian passage occurs about 51"* later (on the average) each day. On account

of the eccentricity of its orbit, however, the actual retardation may vary consid-

erably from the mean. The moon's orbit is inclined at an angle of about 5 08'

to the plane of the earth's orbit. The line of intersection of these two planes ro-

tates in a similar manner to that described under the precession of the equinoxes,

except that its period is only 19 years. The moon's maximum declination, there-

fore, varies from 23 27' -f 5 08' to 23 27'
-

5 08', that is, from 28 35' to 18 19',

First Quarter Last Quarter

c

o
Full Moon

FIG. 64. THE MOON'S PHASES

according to the relative position of the plane of the moon's orbit and the plane of

the equator. The rapid changes in the relative position of the sun, moon, and earth,

and the consequent changes in the amount of the moon's surface that is visible

from the earth, cause the moon to present the different aspects known as the

moon's phases. Fig. 64 shows the relative positions of the three bodies at several

different times in the month. The appearance of the moon as seen from the earth

is shown by the figures around the outside of the diagram.

It may easily be seen from the diagram that at the time of first quarter the

moon will cross the meridian at about 6 P.M.; at full moon it will transit at mid-



160 PRACTICAL ASTRONOMY

night; and at last quarter it will transit at about 6 A.M. Although the part of the

illuminated hemisphere which can be seen from the earth is continually changing,

the part of the moon's surface that is turned toward the earth & always the same,

because the moon makes but one rotation on its axis in one lunar month. Nearly

half of the moon's surface is never seen from the earth.

Questions and Problems

1. Compute the longitude from the following observed transits: (0 Aquarii,

5& i6m 04 P.M.; TT Aquarii, 5* 24 40$; moon's west limb, 5^ 32 27*; X Aquarii,

5* 5i
m 47s . Right ascensions; Aquarii, 22h nm 27^.6; TT Aquarii, 22h 2om 04*.6;

X Aquarii, 22h 47 i8.3. The sidereal time of semi-diameter passing meridian

= 60*.3. At Gr. Civ. T. 22h the moon's right ascension was 22^ 27"* 53^.3. The

varia. per min. = is.98oo. The right ascension of the mean sun +12^ = 4^ 36

29*. 7.

2. Which limb of the moon can be observed for longitude by meridian transit

if the observation is taken in the morning?

3. At about what time (local civil) will the moon transit when it is at first

quarter?

4. The sun's corrected altitude is 57 15' 36"; latitude, 42 22' N.; corrected

decimation, 18 58'.6 N,; corrected equation of time, 4-3 49s .o; watch reading,

ih 2Qm o8s
,
P.M. Error of watch on Eastern Standard time by noon signal is lo5

(fast). Compute the'longitude.

5. On April 2, 1925 the transit of Hydrce is observed; watch reading 7* 52 31^

P.M. At IO& P.M. E. S. T. the radio signal shows that the watch is 3* fast. The

right ascension of the sun -f-i2* at cfl G. C. T. April 2, 19^5, is 12^39 i65.82j

on April 3, it is 12^ 43 i3
s
,38. Compute the longitude.



CHAPTER XIII

OBSERVATIONS FOR AZIMUTH

95. Determination of Azimuth.

^

The determination of the azimuth of a line or of the direction

l of the true meridian is of frequent occurrence in the practice of

the surveyor and is probably the most important to him of all

the astronomical observations. In geodetic surveys, in which

triangulation stations are located by means of their latitudes

and longitudes, the precise determination of astronomical po-
sition is of as great importance as the orientation; but in general

engineering practice, in topographical work, etc., the azimuth

observation is the one that is most frequently required.

Too much stress cannot be laid on the desirability of employ-

ing the true meridian and true azimuths for all kinds of surveys.

The use of the magnetic meridian or of an arbitrary reference

line may save a little trouble at the time but is likely to lay up
trouble for the future. As surveys are extended and connected

and as lines are re-surveyed the importance of using the true

meridian becomes greater and greater.

96. Azimuth Mark.

When an observation is made at night it is frequently incon-

venient or impossible to sight directly at the object whose azimuth

is to be determined; it is necessary in such cases to determine

the azimuth of a special azimuth mark, which can be seen both

at night and in the day, and then to measure the angle between

this mark and the first object during the day. The azimuth

mark usually consists of a lamp or a lantern placed inside a box

having a small hole cut in the side through which the light may
be seen. The size of the opening will vary with the distance,

power of telescope, etc.; for accurate work it should subtend

an angle not much greater than o".s to i".o. If possible the

161
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mark should be placed so far away that the focus of the tele-

scope will not have to be altered when changing from the star

to the mark. For a large telescope of high power the distance

should be a mile or so, but for surveyor's transits it may be

much less; and in fact the topography around the station may
be such that it is impossible to place the mark as far away as is

desirable.

97. Azimuth of Polaris at Greatest Elongation.

The 1

simplest method of determining the direction of the

meridian with accuracy is by means of an observation of the

FIG. 65. CONSTELLATIONS NEAR THE NORTH POLE. POLARIS AT

WESTERN ELONGATION

polestar, or any other close circumpolar, when it is at its greatest

elongation. (See Art. 19, p. 36.) The appearance of the

constellations at the time of this observation on Polaris may be

seen by referring to the star map (Fig. 55) and Fig. 65. When
the polestar is west of the pole the Great Dipper is on the right

and Cassiopeia on the left. The exact time of elongation may
be found by computing the sidereal time when the star is at

elongation and changing this into local civil time and then into

standard time, by the methods of Arts. 37 and 32.

To find the sidereal time of elongation first compute the

hour angle (te) by Equa. [35] and express it in hours, minutes and

seconds. If western elongation is desired, te is the hour angle;
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Zenith

Eastern Elongation

if eastern elongation is desired, 24* te is the hour angle. The

sidereal time is then found by adding the hour angle to the

right ascension. An average

value for te for Polaris for

latitudes between 30 and

50 is about s* 56 of sidereal

time, or 5" 55 of mean time;

this is sufficiently accurate

for a rough estimate of the

time of elongation, and as

it changes but little from

year to year and in differ- We8tecnEiongatio j

ent latitudes, it may be used

instead of the exact value for

many purposes. Approxi-

mate values of the times of

elongation of Polaris may be

taken from Table V.

Example. Find the East-

ern Standard time of western

elongation of Polaris on April

25, 1925, in latitude 42 22'

N.
, longitude 7 1 06' W. The

right ascension of Polaris is

i*33
m
27

s

.i5; the declination is +88 54' 04".54. The right

ascension of the mean sun +12" at o* G. C. T. =
14" 09 57*. 54;

corrected for longitude it is 14* iow 44*. 26.

log tan <
= 9.96002 te = 5* S5

m
57*-45 S =

7* 29** 22*.6o

log tan 5 = 1.71717 a = i 33 27 .15 as + 12* = 14 10 44 .26

log cos te = 8.24285 S 7
h
2g
m 22s

.60 Sid. int. =17* i8w 38^.34
te = 88 59' 5i".7 Table II = 2 50.16
=

5 55*55*45 Loc. Civ. T. = 17* 15* 48*.i8

Long. diff. = 15 36 .00

E. S. T. (civil) ==17* oo I2*.i8

The transit should be set in position half an hour or so before

elongation. The star should be bisected with the vertical cross

FIG. 66
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hair and, as it moves out toward its greatest elongation, its

motion followed by means of the tangent screw of the upper or

lower plate. Near the time of elongation the star will appear
to move almost vertically, so that no motion in azimuth can be

detected for five minutes or so before or after elongation. About

5
W before elongation, centre the plate levels, set the vertical hair

carefully on the star, lower the telescope without disturbing its

azimuth, and set a mark carefully in line at a distance of several

hundred feet north of the transit. Reverse the telescope, re-

centre the levels if necessary, bisect the star again, and set an-

other point beside the first one. If there are errors of adjust-

ment (line of collimation and horizontal axis) the two points

will not coincide; the mean of the two results is the true point.

The angle between the meridian and the line to the stake (star's

azimuth) is found by the equation

sin Zn sin p sec $ [36]

where Zn is the azimuth from the north (toward the east or the

west); p, the polar distance of the star; and 0, the latitude of

the place. The polar distance may be obtained by taking the

declination from the Ephemeris and subtracting it from 90;
or, it may be taken from Table E if an error of 30" is permissible

The latitude (0) may be taken from a map or found by obser-

vation. (Chap. X.) The latitude does not have to be known

with great precision; a differentiation of [36] will show that an

error of i' in causes an error of only about

for latitudes within the United States.

"
in Zn for Polaris

TABLE E

MEAN POLAR DISTANCE OF POLARIS
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The above method is general and may be applied to any

circumpolar star. For Polaris, whose polar distance in 1925

is about io6', it is usually accurate enough to use the ap-

proximate formula

Zw
" = p" sec * [98]

in which Zw
"
and p" are expressed in seconds of arc.

This computed angle (ZJ may be laid off in the proper direc-

tion by means of a transit (preferably by daylight), using the

method of repetitions, or with a tape, by measuring a perpen-

dicular offset calculated from the measured distance to the stake

and the star's azimuth. The result will be the true north-

and-south line.

It is often desirable to measure the horizontal angle between

the star at elongation and some fixed point, instead of marking
the meridian itself. On account of the slow change in the azi-

muth there is ample time to measure several repetitions before

the error in azimuth amounts to more than i" or 2". In lati-

tude 40 the azimuth changes about i' in half an hour before

or after elongation; the change in azimuth varies nearly as the

square of the time interval from elongation. The errors of

adjustment of the transit will be eliminated if half the angles

are taken with the telescope erect, and half with the telescope

inverted. The plate levels should be re-centred for each po-

sition of the instrument before the measurements are begun and

while the telescope is pointing toward the star.

Example.

Compute the azimuth of Polaris at greatest elongation on

April 25, 1925, in latitude 42 22' N. The declination of Polaris

is +88 54' 04".54. Polar distance, p, is i 05' 55".46 3955"-46.

By formula [36] By formula [98]

log sin p - 8.28272 log p" = 3.59720
log sec <p

= 0.13145 log sec <
= 0.13145

log sinZfi ~ 8.41417 logZw
" = 3.72865

Zn - i 29' i3"-6 Z" = 5353"-6
- x* 29' i3".6
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If the mark set in line with the star is 630.0 feet away from the

transit the perpendicular offset to the meridian is "calculated as

follows:

log 630.00 =
2.79934

log tan Zn = 8.41432

Jog offset = 1.21366
offset = 16.355 ft-

98. Observations Near Elongation.

If observations are made on a close circumpolar star within

a few minutes of elongation the azimuth of the star at the

instant of pointing may be reduced to its value at elongation if

the time of the observation is known. The formula for com-

puting the correction is

C =
112.5 X 3600 X sin i" X tanZ, X (T - Tey [99]

in which Ze is the azimuth at greatest elongation, T is the ob-

served time and Te the time of elongation. T Te must be

expressed in sidereal minutes. The correction is in seconds of

angle. Values of this correction are given in Table Va in the

Ephemeris for each minute up to 25, or in Table VI of this book.

Example.
The horizontal angle from a mark to the right to Polaris is 2 37' 30", the watch

reading 6^ 28 00s when the star was sighted. The watch time of western elonga-

tion is o7* 04 00s
. The azimuth of Polaris at elongation is i 37' 48". The cor-

rection corresponding to a 24"* mean time interval, or a 24"* 04* sidereal interval,

is 32". The horizontal angle from the mark to the elongation position of the star

is 2 37' 30" 32" = 2 36' 58". The bearing of the mark is the sum of this and

the azimuth at elongation, or 2 36' 58" + i 37' 48" = 4 14' 46". The bearing
is therefore N. 4 14' 46" W.

99. Azimuth by Elongations in the Southern Hemisphere.
The method described in the preceding article may be applied

to stars near the south pole, but since there are no bright stars

within about 20 of the pole the observation is not quite so

simple and the results are somewhat less accurate. As the polar

distance increases the altitude of the star at elongation increases

and the diurnal motion becomes more rapid. The increase in

altitude causes greater inconvenience in making the pointings

and also magnifies the effect of instrumental errors. On account
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of the rapid motion of the star it is important to know before-

hand both the time at which elongation will occur and the

altitude of the star at this instant.

The time of elongation is computed as explained for Polaris

in Art. 91. The altitude may be found by the formula

.
,

sin .
,sm h = -72- = sm <j> sec p.sm 5

There is usually time enough to reverse the transit and make

one observation in each position of the axis, without serious

error, if the first is taken when the star is 10' to 15' below eastern

elongation, or the same amount above western elongation.

Example.
Mean observed horizontal angle between mark and a. Triang. Austr. at Eastern

elongation May 31, 1920 = 35 10' 30". (Mark E. of star.) Decl. a Triang.

Austr. = -6853'n"; right ascension = i6> 40 18^.5. Lat. = -3435
/

(S.)j

Long. = 58 25' W.
The time and altitude are computed as follows:

log tan <f>
= 9.83849 log sin = 9.75405

log tan 5 = 0.41326 log sin 5 = 9.96982

log cos te 9.42523 log sin h = 9.78423

36o
-

te
= 74 33'-6 h = 37 28'.;

24^ te 4^ 58 14*.4
te
= 19 01 45 .6

a 16 40 18 .5

S = 1 1^42 04*. i

The local civil time corresponding to nh 42 04*. i is 19^ 05 3 2s . 5.

For the azimuth of the star and the resulting bearing of the mark we have

log cos 5 = 9-55657

log cos <f>
- 9.91556

log sin Z = 9.64101
Z * 25 56'.8 (East of South)

Measured angle = 35 10 .5

Bearing of mark S 61 O7'.3 E

ioo. Azimuth by an Altitude of the Sun.

In order to determine the azimuth of a line by means of an

observation on the sun the instrument should be set up over

one of the points marking the line and carefully levelled. The

plate vernier is first set at o and the vertical cross hair sighted

on the other point marking the line. The colored shade glass
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is then screwed on to the eyepiece, the upper clamp loosened,

and the telescope turned toward the sun. The sun's disc should

be sharply focussed before beginning the

observations. In making the pointings

on the sun great care should be taken

not to mistake one of the stadia hairs

for the middle hair. If the observation

is to be made, say, in the forenoon (in
,

the northern hemisphere), first set the

FIG. 67. POSITION OF
cross hairs so that the vertical hair is

SUN'S Disc A FEW SECONDS tangent to the right edge of the sun and
BEFORE OBSERVATION , , , i i a n

(A.M. observation in Northern the horizontal hair cuts off a small seg-
Hemisphere.)

(Fig. 67.)* The arrow in the figure shows the direction of the

sun's apparent motion. Since the sun is now rising it will

in a few seconds be tangent to the horizontal hair. It is only

necessary to follow the right edge by
means of the upper plate tangent screw

until both cross hairs are tangent. At

this instant, stop following the sun's

motion and note the time. If it is de-

sired to determine the time accurately,

so that the watch correction may be

found from this same observation, it can FlG 68 posmON OF

be read more closely by a second ob- SUN'S Disc A FEW SECONDS
_ . . , . -

,
. BEFORE OBSERVATION

server. Both the horizontal and the (A .M . observation in Northern *

vertical circles are read, and both angles
Hemisphere.)

and the time are recorded. The same observation may be re-

peated three or four times to increase the accuracy. The instru-

ment should then be reversed and the set of observations repeated,

except that the horizontal cross hair is set tangent to the upper

edge of the sun and the vertical cross hair cuts a segment from

the left edge (Fig. 68). The same number of pointings should

* Tn the diagram only a portion of the sun's disc is visible; in a telescope of low

power the entire disc can be seen.
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be taken in each position of the instrument. After the pointings

on the sun are completed the telescope should be turned to the

FIG. 69. POSITIONS OF SUN'S Disc A FEW SECONDS BEFORE OBSERVATION
(P.M. Observation in Northern Hemisphere.)

mark again and the vernier reading checked. If the transit

has a vertical arc only, the telescope cannot be used in the re-

versed position and the index correction must therefore be
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determined. If the observation is to be made in the afternoon

the positions will be those indicated in Fig. 69.**

In computing the azimuth it is customary to neglect the cur-

vature of the sun's path during the short interval between the

first and last pointings, unless the series extends over a longer

period than is usually required to make such observations.

If the observation is taken near noon the curvature is greater

than when it is taken near the prime vertical. The mean of.

the altitudes and the mean of the horizontal angles are assumed

to correspond to the position of the sun's centre at the instant

shown by the mean watch reading. The mean altitude read-

ing corrected for refraction and parallax is the true altitude of

the sun's centre. The azimuth is then computed by any one

of the formulae [22] to [29]. The resulting azimuth combined

with the mean horizontal circle reading gives the azimuth of

the mark. Five-place logarithmic tables will give the azimuth

within 5" to 10", which is as great a degree of precision as can

be expected in this method.

Example.
Observation on Sun for Azimuth and Time. Lat., 42 29'^ N. ; long., 71 07'.$ W.

Date, May 25, 1925.

* It should be kept in mind that if the instrument has an inverting eyepiece
the direction of the sun's apparent motion is reversed. If a prism is attached to

the eyepiece, the upper and lower limbs of the sun are apparently interchanged,
but the right and left limbs are not.
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Sun's decl. at o* = +20 48' 55^,8
-j-27".6o x 20&.02 = +9 12 .6

6 = -f-2o58'o8".4

N

If it is desired to compute the time

from the same observation it may be

found by formula [12], by [19], or by
those derived on p. 174. The resulting
Eastern standard time is 3^ 000*42*. 7,

making the watch 27^.6 fast. (The equa-
tion of time at 20^ Gr. Civ. T. is -j-3

1*

FIG. 70

If for any reason only one limb of the sun has been observed,
the azimuth observed may be reduced to the centre of the sun

by applying the correction s sec h, where s is the semidiameter
and h is the altitude of the centre.

The following examples and explanations are taken from Serial

166, U. S. Coast and Geodetic Survey, and illustrate the method
of observing for azimuth and longitude with a small theod-

olite as practised on magnetic surveys.

Having leveled and adjusted the theodolite and selected a
suitable azimuth mark, a well-defined object nearly in the

horizon and more than 100 yards distant, the azimuth ob-

servations are made in the following order, as shown in the

sample set given on pages 172 and 173.

Point on the mark with vertical circle to the right of the

telescope (V.C.R.) and read the horizontal circle, verniers A
and B. Reverse the circle, invert the telescope and point on
the mark again, this time with vertical circle left (V.C.L.).
Place the colored glass in position on the eyepiece and point on
the sun with vertical circle left, bringing the horizontal and
vertical cross wires tangent to the sun's disc. At the moment
when both cross wires are tangent note the time by the chro-
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nometer. If an appreciable interval is required to look from the

eyepiece to the face of the chronometer, the observer should

count the half-seconds which elapse and deduct the amount

from the actual chronometer reading. The horizontal and

vertical circles are then read and recorded. A second point-

ing on the sun follows, using the" same limbs as before. The

alidade is then turned 180 and the telescope inverted and

two more pointings are made, but with the cross wires tangent

to the limbs of the sun opposite to those used before reversal, \

This completes a set of observations. A second set usually fol-

lows immediately, but with the order of the pointings reversed,

ending up with two pointings on the mark. Between the two

sets the instrument should be releveled if necessary.

Form 266

OBSERVATIONS OF SUN FOR AZIMUTH AND TIME*

Station, Smyrna Mills, Me.
Theodolite of mag'r No. 20.

Mark, Flagpole on school building.
Chronometer, 245.

Date, Friday, August 5, 1910.
Observer, H. E. McComb.
Temperature, 20 C.

From U. S. Coast and Geodetic Survey Serial 166.
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The chronometer and circle readings for the four pointings of a

set are combined to get mean values for the subsequent compu-
tation. When the vertical circle is graduated from zero to 360,
the readings with vertical circle right give the apparent altitude

of one limb of the sun, while those with vertical circle left must
be subtracted from 180 to get the apparent altitude of the other

limb. The mean of the four pointings gives the apparent alti-

tude of the sun's center. This must be corrected for refraction

'and parallax to get the true altitude.

Form 266

OBSERVATIONS OF SUN FOR AZIMUTH AND TIME*

Station, Smyrna Mills, Me.
Theodolite of mag'r No. 20.

Mark, Flagpole on school building.
Chronometer, 245.

Date, Friday, August 5, 1910.
Observer, H. E. McComb.
Temperature, 21 C.

* From U. S. Coast and Geodetic Survey Serial 166.

It is important to test the accuracy of the observations as

soon as they have been completed, so that additional sets may
be made if necessary. This may be done by comparing the
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mean of the first and fourth pointings of a set with the mean of

the second and third, or by comparing the rate of change in the

altitude and azimuth of the sun between the first and second

pointings, the third and fourth, fourth and fifth, fifth and sixth,

and seventh and eighth. For the period of 15 or 20 minutes

required for two sets of observations the rate of motion of the

sun does not change much.

COMPUTATION

From formula [24] we have

Z
cot2 = sec 5 sec (s p) sin (s </>) sin (s h)

2

and from [19],

tan - = i/( cos 5 sin (s h) esc (s <t>) sec (s p)
j

// cos s cos (s p) sin2
(s K)\"

V \sin (s
-

</>) sin (s
-

h)

'

cos2
(s
- p))

Z= tan - sin (s h) sec (s p).
2

The angle Zs is the azimuth of the sun from the south point,

east if in the morning, west if in the afternoon.

The form of computation is shown in the following example,

for the sets of observations at Smyrna Mills, Me., given above.

The different steps of the computation are most conveniently

made in the following order: .

Enter the corrected altitude, mean readings of the horizontal

circle for the pointings on the sun and on the mark, and the

chronometer time for each set of observations in their proper

places. Enter the value of latitude obtained from the latitude

observations or other source. Compute the chronometer cor-

rection on standard time for the time of each set of observations

from the comparisons with telegraphic time signals. Unless

the chronometer has a large rate its correction may be taken the

same for two contiguous sets of observations. Compute the

Greenwich time of observation for each set, and find from the
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Form 269

COMPUTATION OF AZIMUTH AND LONGITUDE*

Station, Smyrna Mills, Me.

* From U. S. Coast and Geodetic Survey Serial 166,
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American Ephemeris, or the Nautical Almanac, the sun's polar

distance and the equation of time for that time" as previously

explained. The succeeding steps require little explanation.

As the horizontal circles of theodolites are with few exceptions

graduated clockwise, and as the sun is east of south in the

morning and west of south in the afternoon, it follows that in

order to find the horizontal circle reading of the south point,

the azimuth of the sun must be added to the circle reading of

the sun for the morning observations and subtracted from it'

for the afternoon observations. The horizontal circle reading

of the south point subtracted from the mark reading gives the

azimuth of the mark, counted from south around by west from

o to 360.
For the computation of /, the logarithms of sec (s p) and

sin (s h) are found in the azimuth computation and their

sum can be written down in its proper place. From that must

be subtracted log ctn ^ Zs to find log tan \ /. The correspond-

ing value of i is the time before or after apparent noon. If in

the case of the morning observations ctn \ ti be substituted for

tan 4 /, /i will be counted from midnight. The difference be-

tween the chronometer correction on local mean time and the

correction on standard time is the difference in longitude be-

tween the standard meridian and the place of observation.

101. Observations in the Southern Hemisphere.
In making observations on the sun for azimuth in the southern

hemisphere (latitude greater than declination) the pointings would

be made on the left and lower limbs and on the right and upper
limbs in the forenoon, and on the right and lower and on the

left and upper limbs in the afternoon, as indicated in Fig. 71.

If the instrument has no vertical and horizontal hairs but has

cross hairs of the X pattern the sun's image may be placed in

any two symmetrical positions instead of those indicated above.

The same formulae used for the northern hemisphere may be

adapted to the southern hemisphere either by considering the

latitude < as negative and employing the regular forms, or by
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taking as positive, and using the south polar distance instead

of the north polar distance when employing Equa. [24]; the

resulting azimuth in this case will be that measured from the

south point of the meridian.

As an illustration of an observation made in the southern

hemisphere the following observation is worked out by two

methods. On April 24, 1901 (P.M.), the mean altitude of the

sun is 22 12' 30"; the corrected declination is 12 40' 30" N.;

[latitude,
o 41' 52" S.; mean horizontal angle from mark, toward

P.M. NORTH

FIG. 71

the left, to sun =
75 53' 30".

computation is as follows:

Employing formula [24] the

-oVsa"
22 12 30
77 19 30

98 50' 08"

49 25 04
50 06 56

27 12 34

s- p-2i 54 26

2 S

S

S (f>

s-h

log sec o.i8673
log sin 9.88498

log sin 9.66615
log sec 0.05369

2)9-78555

log tan \ Z - 9.89278
\Z= 37 59' 53"
Z = N 75 59 46 W

Hor. angle = 75 53 30

True bearing of mark = N o 06' r6" W
If in formula [24] we had used the south polar distance,

102 40' 30", and considered the latitude as positive the result

would have been the azimuth of the sun from the south point or

Sio4 oo'i4"W.
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If formula [25] is employed we may take <t> positive, reverse

the sign of 6 and obtain the bearing of the sun from the south.

nat sin 5 == 0.21942
log sin = 8.08558

log sink = 9-57746
sum = 7.66304

nat sin <f> sin h 0.00460
numerator = 0.22402

log numerator = 9.35029 n

log sec <f>
= 0.00003

log sec h = 0.03348

log cos Zs
~

9.38380 n
Zs = S 104 oo' 15" W

Measured angle] 75 53 30

True Bearing of Mark = S 179 53' 45" W
or N o 06' 15" W

In this case it would have been quite as simple to solve [25]

in its original form, obtaining the bearing from the north point.

If the south latitude is greater than the sun's declination (say,

lat. 40 S., decl. 20 S.) then the method used in the example
would be preferable.

102. Most Favorable Conditions for Accuracy.

From an inspection of the spherical triangle Pole Zenith

Sun, it may be inferred that the nearer the sun (or other observed

body) is to the observer's meridian the less favorable are the

conditions for an accurate determination of azimuth from a

measured altitude. At the. instant of noon the azimuth becomes

indeterminate. Also, as the observer approaches the pole the

accuracy diminishes, and when he is at the pole the azimuth is

indeterminate.

To find from the equations the error in Z due to an error in h

differentiate Equa. [13], regarding h as the independent variable;

the result is

(A7 \
cos h sin Z cosZ sin h

)
dh /

= sin < cos h cos c

= cos 5 cos S by [14]

or, cos <t> cos h sin Z = sin < cos h cos cos Z sin h
tin
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. dZ cos 8 cos S
dh cos cos h sin Z

cos S

,
which by [15]

sin 5 cos h
'

= I
[102]

cos h tan S

If the declination of the body is greater than the latitude (and
1 in the same hemisphere) there will be an elongation, and at this

point the angle 5 (at the sun or star) will be 90; the error dZ

will therefore be zero. For objects whose declinations are such

that an elongation is possible it is clear that this is the most

favorable position for an accurate determination of azimuth

since an error in altitude has no effect upon Z.

If the declination is less than the latitude, or is in the opposite

hemisphere, the most favorable position will depend partly

upon 5, partly upon h. From Equa. [15] it is seen that the maxi-

mum value of 5 occurs simultaneously with the maximum value

of Z, that is, when the body is on the prime vertical (Z = 90

or 270). To determine the influence of h suppose that there

are two positions of the object, one north of the prime vertical

and one south of it, such that the angle S is the same for the two.

The minimum error (dZ) will then occur where cos h is greatest;

this corresponds to the value of h which is least, and therefore,

on the side of the prime vertical toward the pole. The exact

position of the body for greatest accuracy could be found for

'any particular case by differentiating the above expression and

placing it equal to zero.

To find the error in the azimuth due to an error in latitude

differentiate [13] with respect to d$. This gives

(jrr
V

cos<sinZ- cosZsin<H
d<t> )

= sin h cos < cos k c<

= cos S cos t by [16]

or cos h cos q> sinZ = sin h cos < cos h cos Z sin
a<t>
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d? __ COS d COS /

d<t> cos h cos 4> sin Z

= sin Z cos t

sin / cos < sin Z
, r ,

tan

From this equation it is evident that the least error in Z due ]

to an error in <j> will occur when the object is on the 6-hour circle

=
90).^

Combining the two results it is clear that observations on

an object which is in the region between the 6-hour circle

and the prime vertical will give results slightly better than

elsewhere; observations on the body when on the other side

of the prime vertical will, however, be almost as accurate.

The most important matter so far as the spherical triangle

is concerned is to avoid observations when the body is near

the meridian.

The above discussion refers to the trigonometric conditions

only. Another condition of great importance is the atmospheric

refraction near the horizon. An altitude observed when the

body is within 10 of the horizon is subject to large uncertainties

in the refraction correction, because this correction varies with

temperature and pressure and the observer often does not know

what the actual conditions are. This error may be greater

than the error of the spherical triangle. When the two require-

ments are in conflict it will often be better to observe the sun

nearer to the meridian than would ordinarily be advisable,

rather than to take the observation when the sun is too low for

good observing. In winter in high latitudes the interval of

time during which an observation may be made is rather limited

so that it is not possible to observe very near the prime vertical.

The only remedy is to obtain the altitude and the latitude with

greater accuracy if this is possible.
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103. Azimuth by an Altitude of a Star near the Prime Vertical.

The method described in the preceding article applies equally

^well to an observation on a star, except that the star's image
is bisected with both cross hairs and the parallax and semi-

diameter corrections become zero. The declinatioh of the star

changes so little during one day that it may be regarded as

constant, and consequently the time of the observation is not

required. Errors in the altitude and the latitude may be par-

tially eliminated by combining two observations, one on a star

about due east and the other on one about due west.

Example.
Mean altitude of Regulus (bearing east) on Feb. n, 1908, is 17 36'.8. Latitude^

42 21' N. The right ascension is ioft 03 293.1 and the declination is -j-i2 24' 57".

Compute the azimuth and the hour angle.

= 42 21' log sec = 0.13133
^ = *7 33 -8 log sec = 0.02073

cos .90788 <j> h 24 47'. 2

sm - 2I 502 6 = 4-12 25 .o

c s .69286 log
= 9.84065

log vers Zn = 9.99271
Zn = 89 oa'.S

The star's bearing is therefore N 89 02'.8 E.

To obtain the time we may employ formula [12],

log sin Zn = 9-99994
log cos h = 9.97927
log sec 5 = 0.01028

log sin t = 9.98949
t = -77 26'.7
=

5* 09 46*. 7 (east)

Right ascension 10 03 29 .1

Sidereal time = 4^ 53 42*4

104. Azimuth Observation on a Circumpolar Star at any Hour Angle.

The most precise determination of azimuth may be made by measuring the

horizontal angle between a circumpolar star and an azimuth mark, the hour angle

of the star at each pointing being known. If the sidereal time is determined

accurately, by any of the methods given in Chapter XI, the hour angle of the star

may be found at once by Equa. [37] and the azimuth of the star at the instant

may be computed. Since the close circumpolar stars move very slowly and

errors in the observed times will have a small effect upon the computed azimuth,
it is evident that only such stars should be used if precise results are sought. The

advantage of observing the star at any hour angle, rather than at elongation, is
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that the number of observations may be increased indefinitely and greater accuracy

thereby secured.

The angles may be measured either with a repeating instrument (like the en-

gineer's transit) or with a direction instrument in which the circles are read with

great precision by means of micrometer microscopes. For refined work the instru-

ment should be provided with a sensitive striding level. If there is no striding

level provided with the instrument* the plate level which is parallel to the hori-

zontal axis should be a sensitive one and should be kept well adjusted. At all

places in the United States the celestial pole is at such high altitudes that errors

in the adjustment of the horizontal axis and of the sight line have a comparatively

large effect upon the results. 1

The star chosen for this observation should be one of the close circumpolar stars

given in the circumpolar list in the Ephemeris. (See Fig. 72.) Polaris is the only

bright star in this group and should be used in preference to the others when it is

practicable to do so. If the time is uncertain and Polaris is near the meridian,

in which case the computed azimuth would be uncertain, it is better to use 51

CepheiJ because this star would then be near its elongation and comparatively

large errors in the time would have but little effect upon the computed azimuth.

If a repeating theodolite or an ordinary transit is used the observations consist

in repeating the angle between the star and the mark a certain number of times

and then reversing the instrument and making another set containing the same

number of repetitions. Since the star is continually changing its azimuth it

is necessary to read and record the time of each pointing on the star with the

vertical cross hair. The altitude of the star should be measured just before and

again just after each half-set so that its altitude for any desired instant may be

obtained by simple interpolation. If the instrument has no striding level the

cross-level on the plate should be recentred before the second half-set is begun.

If a striding level is used the inclination of the axis may be measured, while the

telescope is pointing toward the star, by reading both ends of the bubble, with the

level first in the direct position and then in the reversed position.

In computing the results the azimuth of the star might be computed for each

of the observed times and the mean of these azimuths combined with the mean

* The error due to inclination of the axis may be eliminated by taking half of

the observations direct and half on the image of the star reflected in a basin of

mercury.

t 51 Cephei may be found by first pointing on Polaris and then changing the

altitude and the azimuth by an amount which will bring 51 Cephei into the field.

The difference in altitude and in azimuth may be obtained with sui'cient accuracy

by holding Fig. 72 so that Polaris is in its true position with reference to the me-

ridian (as indicated by the position of 8 Cassiopeice) and then estimating the dif-

ference in altitude and the difference in azimuth. It should be remembered that

the distance of 51 Cephei east or west of Polaris has nearly the same ratio to the

difference in azimuth that the polar distance of Polaris has to its azimuth at elon-

gation, i.e., i to sec #.
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of the measured horizontal angles. The labor involved in this process is so great,

however, that the common practice is first to compute the azimuth corresponding

to the mean of the observed times, and then to correct this result for the effect of

the curvature of the star's path, i.e., by the difference between the mean azimuth

and the azimuth at the mean of the times.

XVIII*

51 Cephei

XII

FIG. 72

For a precise computation of the azimuth of the star formula [32] may be used,

~ _ sin/ , ,

n
cos </> tan d sin cos t

the azimuth being counted from the north toward the east.

A second form may be obtained by dividing the numerator and denominator

by cos < tan 5, giving

tanZ* = - cot 5 sec <f> sin /

i cot 6 tan <f> cos t

If cot 5 tan tf> cos / is denoted by a, then

tan Zn = cot 5 sec <f> sin t -

If values of log- are tabulated for different values of log a the use of this
i a

third form will be found more rapid than the others. Such tables will be found in

Special Publication No. 14, U. S. Coast and Geodetic Survey.*

For a less precise value of the azimuth the following formula will be found con-

venient;
Z = p sin / sec h [106]

* Sold by the Superintendent of Documents, Washington, D. C., for 35 cents.
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in which Z and p are both in seconds or both in minutes of angle. The error due

to substituting the arcs for sines is very small. The precision of the computed
azimuth depends largely upon the precision with which h can be measured. If the

vertical arc of the transit cannot be relied upon it will be better to use formula

[32]-

105. The Curvature Correction.

If the azimuth of the star corresponding to the mean of the observed times has

been computed it is necessary to apply a curvature correction to this result to ob-

tain the mean of all the azimuths corresponding to the separate hour angles. The
curvature correction may be computed by the formula

in which n is the number of pointings on the star in the set and r for each obser-

vation is the difference (in sidereal time) between the observed time and the mean
of the times for the set. The interval r is tabulated as a time interval for con-

venience, but is taken as an angle when computing the tabular number. The

sign of this correction always decreases the angle between the star and pole.

. r
2 sin2 -

Values of -: 77 are given in Table X.
sin i

'

The curvature correction may also be computed by the formula

-tan Z [0.2930] S (T - To)
2

[1070]

in which the quantity in brackets is a logarithm; 2(T To)
2 is the sum of the

squares of the time intervals in (sidereal) minutes. This correction should be sub-

tracted from the azimuth Z calculated for the mean of the observed times. If it

is preferred to express the time interval in seconds the logarithm becomes [6.73672].

The curvature correction is very small when the star is near the meridian; near

elongation it is a maximum.

106. The Level Correction.

The inclination of the horizontal axis should be measured by the striding level,

wand e being the readings of the west and east ends of the bubble in one position

of the level, and w' and e' the readings after reversal of the level. The level cor-

rection is then

= -
| (w + w'}

-
(e + e'} \

tan h , [108]
4 I J

if the graduations are numbered in both directions from the middle, or

= -
( (w - w') + (e + e'} \

tan h [109]
4 I J

if the graduations are numbered continuously in one direction. In this formula

the primed letters refer to the readings taken when the level
"
zero

"
is west. In
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both formulae d is the angular value of a level division and h is the altitude of the

star.

If the azimuth mark is not in the horizon a similar correction must be applied

to the readings on the mark. Ordinarily this correction is negligible.

When applying this correction it should be observed that when the west end of

the axis is too high the instrument has to be turned too far west (left) when pointing

at the star. The correction must therefore be added to the measured angle if the

mark is west of the star; in other words the reading on a circle numbered clockwise

must be increased. If the correction is applied to the computed azimuth of the

mark the sign must be reversed.

107. Diurnal Aberration.

If a precise azimuth is required a correction should be applied for the effect of

diurnal aberration, or the apparent displacement of the star due to the earth's

rotation. The observer is being carried directly toward the east point of the hori-

zon with a velocity depending upon his latitude. The displacement will therefore

be in a plane through the observer, the east point, and the star. The amount of

the correction is given by

o".32 cos <f> cos Zn sec h [no]

The product of cos < and sec h is always nearly unity for a close circumpolar and

cos Z is also nearly unity. The correction therefore varies but little from ".32.

Since the star is displaced toward the east the correction to the star's azimuth is

positive.

1 08. Observations and Computations.

In the examples which follow, the first illustrates a method appropriate for

small surveyor's transits. The time is determined by the altitude of a star near

the prime vertical and the azimuth of Polaris is computed by formula [106]. Cor-

rections for curvature, inclination and aberration are omitted.

In the second example the time was determined somewhat more precisely and a

larger number of repetitions was used. The instrument was an 8-inch repeater

reading to 10".

The third and fourth examples are taken from the U. S. Coast and Geodetic

Survey Spec. Publ. No. 14, and illustrates the methods used by that Survey where

the most precise results are required for geodetic purposes.

Example i

Observed altitudes of Regulus (east), Feb. n, 1908, in lat. 42 21'.

Altitude Watch

17 05' 7^ 12"* 1 6s

17 3i 14 3i

17 49 16 07
18 02 17 20

The right ascension of Regulus is io&o3TO
29*. i; the declination is 4-12 24' 57".

From these data the sidereal time corresponding to the mean watch reading (7*15^

03^.5) is found to be 4* 53 423.7.
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Observed horizontal angles from azimuth mark to Polaris.

(Mark east of north.)

Telescope Direct Time of pointing on Polaris

Mark o oo' 7 20 38*

23 oo
Third repetition 201 48' 23 56

Mean = 67 i6
/
.o ?

h 22 31*.3

Telescope Reversed

Mark = o oo' 7* 27 09*
28 17

Third Repetition 201 54' 29 21

Mean = 67 iS'.o 7* 28"*

Altitude of Polaris at 7* 2O 38* = 43 03'

Altitude of Polaris at 7 29 21 = 43 01

Mean watch reading for Polaris 7
h

25 23^.5

Corresponding sidereal time = 5 04 04 .4

Right Ascension of Polaris = i 25 32 .3

Hour-angle of Polaris = 3 38 32 .1

t = 54 38'

P = 4251
log/> = 3-62849

log sin / = 9.91141

log sec h 0.13611

log azimuth = 3.67601
azimuth = 4743"

= i i9'.o
Mean angle = 67 17 .o

Mark East of North = 65 58' o

Example 2.

RECORD OF TIME OBSERVATIONS

Polaris: Chronometer, i2h 09 31^.5; alt., 41 15' 4"
c Com: Chronometer, 12 13 37 . 5; alt, 25 34 oo

Polaris: R.A. = i* 25 si.i; decl. = +88 49' 24"-8 ,

eCorvi: R.A. = 12* 5"* 30* -5J ded. = - 22 07' 21". o

Chronometer R. A. Decl.

a Serpentis (E) 12* 24 153.7 15* 39W Si
8

- 6 +6 42' 20".;

* Hydra: (W) 12 18 32 .o 8 42 00.5 + 6 44 5 -9

(Lat. = 42 21' oo" N.; Long. & 44*1 X8 . o W.)

From these observations the chronometer is found to be io* 22*.! fast.
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Example 2 (continued)

RECORD OF AZIMUTH OBSERVATIONS

Instrument (B. & B. No. 3441) at South Meridian Mark. Boston, May 16, 1910.

(One division of level ==
i5

//

.o.)

* Passed 360.
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Example 2 (continued)

COMPUTATION OF AZIMUTH
Mean of Observed times = n* 37"* 25*. 6

Chronometer correction = 10 22.1

Sidereal time = n 27 03 .5

R. A. of Polaris = i 25 51 .1

Hour Angle of Polaris =1001 12. 4

t =150 18' 06"

log cos < = 9.868670

log tan 5 = 1.687490

log cos <f> tan 5 = 1.556160

cos tan 8 = 35.9882

log sin </>
= 9.82844

log cos t = 9.93884

log sin cos t = 9.76728

sin cos / = .5852

denominator =36.5734

log sin t = 9.694985

log denom. = 1.563165

log tan Z = 8. 131820
Z o 46' 34^2

Curvature correction = 2. i

Azimuth of star o 46 32.1

Measured angle, first half = 66 35' 35". o

Level correction = 12.5
Corrected angle = 66 35 22.5

Measured angle, second half = 66 28 59 . 2

Level correction = +16 .5

Corrected angle = 66 29 15.7

Mark east of star = 66 32 19 . T

Mark east of North = 65 45' 47", o

109. Meridian by Polaris at Culmination.

The following method is given in Lalande's Astronomy and
was practiced by Andrew Ellicott, in 1785, on the Ohio and

Pennsylvania boundary survey. The direction of the meridian

is determined by noting the instant when Polaris and some
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Example 3

RECORD AZIMUTH BY REPETITIONS.
[Station, Kahatchee A. State, Alabama. Date, June 6, 1898. Observer,

O. B. F. Instrument, lo-inch Gambey No. 63. Star, Polaris.]

[One division striding level = 2. "67.]
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COMPUTATION AZIMUTH BY REPETITIONS
[Kahatchee, Ala. = 33 13' 4o".33-]

To the mean result from the above computation must be applied corrections for diurnal aberra-
tion and eccentricity (if any) of Mark. Carry times and angles to tenths of seconds only.* Minus if west of north.
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Example 4

HORIZONTAL DIRECTIONS

[Station, Sears, Tex. (Triangulation Station). Observer, W. Bowie. In-

strument, Theodolite 168. Date, Dec. 22, 1908.]
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COMPUTATION OF AZIMUTH, DIRECTION METHOD.
[Station, Sears, Tex. Chronometer, sidereal 1769. - 32 33' 31'

Instrument, theodolite 168. Observer, W. Bowie.]

. To the mean result from the above computation must be applied corrections for diurnal aberra-
tion and eccentricity 'if any) of Mark.

Carry times and angles to tenths of seconds only.
* Minus, if west of north.

t The values shown in this line are actually lour times the inclination of the horizontal axis
in terms of level divisions.
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other star are in the same vertical plane, and then waiting a

certain interval of time, depending upon the date and the star

^served, when Polaris will be in the meridian. At this instant

Polaris is sighted and its direction then marked on the ground

by means of stakes. The stars selected for this observation

should be near the hour circle through the polestar; that is,

their right ascensions should be nearly equal to that

of the polestar, or else nearly i2
h
greater. The stars

best adapted for this purpose at the present time are

d Cassiopeia and f Ursa Majoris.

The interval of time between the instant when

the star is vertically above or beneath Polaris and

the instant when the latter is in the meridian is

computed as follows : In Fig. 73 P is the pole, P' is

Polaris, S is the other star (6 Cassiopeia) and Z is

the zenith. At the time when S is vertically under

P', ZP'S is a vertical circle. The angle desired is

ZPP', the hour angle of Polaris. PP' and PS, the

polar distances of the stars, are known quantities;

P'PS is the difference in right ascension, and may
be obtained from the Ephemeris. The triangle P'PS

may therefore be solved for the angle at P'. Sub-
a

tracting this from 180 gives the angle ZP'P\ PP'
IG ' 7

is known, and PZ is the colatitude of the observer.

The triangle ZP
fP may then be solved for ZPP', the desired

togle. Subtracting ZPP
f
from 180 or i2

h
gives the sidereal

interval of time which must elapse between the two

observations. The angle SPPr and the side PP' are so

small that the usual formulae may be simplified, by replacing

sines by arcs, without appreciably diminishing the accuracy

of the result. A similar solution may be made for the upper

culmination of & Cassiopeia or for the two positions of the

star f Ursa Majoris, which is on the opposite side of the

pole from Polaris. The above solution, using the right ascen-

sions and declinations for the date, gives the exact interval
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required; but for many purposes it is sufficient to use a time

interval calculated from the mean places of the stars and for a

mean latitude of the United States. The time ititerval for the

star 6 Cassiopeia for the year 1910 is 6
m
.i and for 1920 it is about

i2
m
.3. For the star f Ursa Majoris the time interval for the

year 1910 is approximately 6^.7, while for 1920 it is 11^.3. Be-

ginning with the issue for 1910 the American Ephemeris and

Nautical Almanac gives values of these intervals, at the end

of the volume, for different latitudes and for different dates.

Within the limits of the United States it will generally be nec-

essary to observe on b Cassiopeia when Polaris is at lower

culmination and on f Ursce Majoris when Polaris is at upper
culmination.

The determination of the instant when the two stars are in

the same vertical plane is necessarily approximate, since there is

some delay in changing the telescope from one star to the other.

The motion of Polaris is so slow, however, that a very fair

degree of accuracy may be obtained by first sighting on Polaris,

then pointing the telescope to the altitude of the other star (say

8 Cassiopeia) and waiting until it appears in the field; when

d Cassiopeia is seen, sight again at Polaris to allow for its

motion since the first pointing, turn the telescope again to

8 Cassiopeia and observe the instant when it crosses the verti-

cal hair. The motion of the polestar during this short interval

may safely be neglected. The tabular interval of time corrected

to date must be added to the watch reading. When this com-

puted time arrives, the cross hair is to be set accurately on

Polaris and then the telescope lowered in this vertical plane and

a mark set in line with the cross hairs. The change in the

azimuth of Polaris in i
m of time is not far from half a minute

of angle, so that an error of a few seconds in the time of sighting

at Polaris has but little effect upon the result. It is evident that

the actual error of the watch on local time has no effect what-

ever upon the result, because the only requirement is that the

interval should be correctlv measured.
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no. Azimuth by Equal Altitudes of a Star.

The meridian may be found in a very simple manner by means of two equal

altitudes of a star, one east of the meridian and one west. This method has the

^advantage that the coordinates of the star are not required, so that the Almanac

or other table is not necessary The method is inconvenient because it requires

two observations at night several hours apart. It is of special value to surveyors

*'n the southern hemisphere, where there is no bright star near the pole. The star

to be used should be approaching the meridian (in the evening) and about 3^ or

4^ from it. The altitude should be a convenient one for measuring with the tran-

,
and the star should be one that can be identified with certainty 6^ or & later.

* r^ould be taken to use a star which will reach the same altitude on the oppo-

Jte side ot the meridian before daylight interferes with the observation. In the

-RM.

northern hemisphere one of the stars in Cassiopeia might be used. The position

at the first (evening) observation would then be at A in Fig. 74 . The star should

be bisected with both cross hairs and the altitude read and recorded. A note or

a sketch should be made showing which star is used. The direction of the star

should be marked on the ground, or else the horizontal angle measured from some

reference mark to the position of the star at the time of the observation. When
the star is approaching the same altitude on the opposite side of the meridian

,(at B) the telescope should be set at exactly the same altitude as was read at the

ferst observation. When trie star comes into the field it is bisected with the ver-

tical cross hair and followed in azimuth until it reaches the horizontal hair. The

motion in azimuth should be stopped at this instant. Another point is then set

on the ground (at same distance from the transit as the first) or else another angle
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is turned to the same reference mark. The bisector of the angle between the two

directions is the meridian line through the transit. It will usually be found more

practicable to turn angles from a fixed mark to the star than to set stakes. The

accuracy of the result may be increased by observing the star at several different

altitudes and using the mean value of the horizontal angles. In this method ti
t

index correction (or that part of it due to non-adjustment) is eliminated, since it

is the same for both observations. The refraction error is also eliminated, pro-

vided it is the same at the two observations. Error in the adjustment of the hori-

zontal axis and the line of sight will be eliminated if the first half of the set is taken

with the telescope direct and the second half with the telescope reversed. With

a transit provided with a vertical arc (180) this cannot be done. Care should bej

taken to re-level the plates just before the observation is begun; the levelling should)*

not, of course, be done between the pointing on the mark and the pointing on the

star, but may be done whenever the lower clamp is loose.

in. Observation for Meridian by Equal Altitudes of the Sun in the Forenoon

and in the Afternoon.

This observation consists in measuring the horizontal angle between the mark

and the sun when it has a certain altitude in the forenoon and measuring the

angle again to the sun when it has an equal altitude in the afternoon. Since the

sun's declination will change during the interval, the mean of the two angles will

not be the true angle between the meridian and the mark, but will require a small

correction. The angle between the south point of the meridian and the point
"

midway between the two directions of the sun is given by the equation

Correction =
cos

<f>
sin t

in which d is the hourly change in declination multiplied by the number of hours

elapsed between the two observations, < is the latitude, and / is the hour angle

of the sun, or approximately half the elapsed interval of time. The correction

depends upon the change in the declination, not upon its absolute value, so that

the hourly change may be taken with sufficient accuracy from the Almanac for

any year for the corresponding date.

VARIATION PER HOUR IN SUN'S DECLINATION

(1925)
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In making the observation the instrument is set up at one end of the line whose

azimuth is to be determined, and the plate vernier set at o. The vertical cross

hair is set on the mark and the lower clamp tightened. The sun glass is then put

iri position, the upper clamp loosened, and the telescope pointed at the sun. It

P, not necessary to observe on both edges of the sun, but is sufficient to sight,

say, the lower limb at both observations, and to sight the vertical cross hair on

the opposite limb in the afternoon from that used in the forenoon. The hori-

zontal hair is therefore set on the lower limb and the vertical cross hair on the left

limb. When the instrument is in this position the time should be noted as accu-

rately as possible. The altitude and the horizontal angle are both read. In the

afternoon the instrument is set up at the same point, and the same observation is

made, except that the vertical hair is now sighted on the right limb; the horizontal

hair is set on the lower limb as before. A few minutes before the sun reaches an

altitude equal to that observed in the morning the vertical arc is set to read exactly

the same altitude as was read at the first observation. As the sun's altitude de-

creases the vertical hair is kept tangent to the right limb until the lower edge

of the sun is in contact with the horizontal hair. At this instant the time is again

noted accurately; the horizontal angle is then read. The mean of the two circle

readings, corrected for the effect of change in declination, is the angle from the

mark to the south point of the horizon. The algebraic sign of the correction is

determined from the fact that if the un is going north the mean of the two ver^

nier readings lies to the west of the south point, and vice versa. The precision

of the result may be increased by taking several forenoon observations in suc-

cession and corresponding observations in the afternoon.

Example.

Lat. 42 18' N. Apr. 19, 1906.

A.M. Observations. P.M. Observations.

Reading on Mark, o oo' oo" Reading on Mark, o oo' oo"

Alt., 24 58' f Alt., 24 58'
U&L limbs Hor. Angle, 357 14' 15" U & R limbs Hor. Angle, 162 28' oo"

Time, 7^ igm 30* [ Time, 4** i2 15*

\ elapsed time = 4h 26- 22**

t = 66 35' 30" Incr. in decl. = + 52" X 4^.44'

log sin/ = 9.96270 = -f 230^.9

log cos = 9.86902

9.83172 Mean Circle Reading =
79 51' 08"

log 230^.9 = 2.36342 Correction = 5 40

2.53170 True Angle S 79 45' 28" E.
Corr. = 340". 2 Azimuth ~ 280 14' 32"

112. Azimuth of Sun near Noon.

The azimuth of the sun near noon may be determined by means of Equa. [30],

provided the local apparent time is known or can be computed. If the longitude

and the watch correction on Standard Time are known within one or two seconds

the local apparent time may be readily calculated. This method may be useful
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when it is desired to obtain a meridian during the middle of the day, because the

other methods are not then applicable.

If, for example, an observation has been made in the forenoon from which a

reliable watch correction may be computed, then this correction may be used in

the azimuth computation for the observation near noon; or if the Standard Timel

can be obtained accurately by the noon signal and the longitude can be

obtained from a map within about 500 feet, the local apparent time may be

found with sufficient accuracy. This method is not usually convenient in mid-

summer, on account of the high altitude of the sun, but if the altitude is not greater

than about 50 the method may be used without difficulty. The observations

are made exactly as in Art. 93, except that the time of each pointing is determined'

more precisely; the accuracy of the result depends very largely upon the accuracy]
with which the hour angle of the sun can be computed, and great care must there-

fore be used in determining the time. The observed watch reading is corrected

for the known error of the watch, and is then converted into local apparent time.

The local apparent time converted into degrees is the angle at the pole, t. The

azimuth is then found by the formula

sin Z = sin / sec h cos 5. [12]

Errors in the time and the longitude produce large errors in Z$ so this method

should not be used unless both can be determined with certainty. A

Example.
Observation on the sun for azimuth.

Lat. 42 21'. Long. 4* 44 18* W. Date, Feb. 5, 1910.

Hor. Circle

Mark, o oo'

app. L & L limbs, 29 or

app. U & R limbs, 28 39

Mean, 28 50'

Vert. Circle.

3i 49'

31 16

Refr.,

h =
1.6

Watch.

(30* fast)
- -V 22*

i I 44 20

5 = -l602 /

32.2
//

Eq. t.

Watch corr.

E. S. T.

L. M. T.

Eq. t.

L. A. T.

log sin t

log cos 5

log sec h

log sin Z
Z

Hor. Circle

Azimuth

-30
= n* 43^ 21*

15 42

= 1 1* 59 03*

14 09 .1

15 06 .1

" 346'.5

= 8.81847
: 9-98275
= 0.06930

8.87052
s 4i5'-4
: 28 50

.

326 S4'.6



OBSERVATIONS FOR AZIMUTH 199

113. Meridian by the Sun at the Instant of Noon.
3"

If the error of the watch can be determined within about one second, and the

sun's decimation is such that the noon altitude is not too high for convenient ob-

serving and accurate results, the following method of determining the meridian

will often prove useful. Before beginning the observation the watch time of local

apparent noon should be computed and carefully checked. If the centre of the

sun can be sighted accurately with the vertical hair at this time the line of sight

will be in the meridian, pointing to the south if the observer is in the northern

hemisphere. As this is not usually practicable the vernier reading for the south

point of the horizon may be found as follows: Set the " A "
vernier to read o,

sight on a reference mark (such as a point on the line whose bearing is to be found)

|and clamp the lower motion. Loosen the upper clamp and, about iom before noon,

set the vernier so that the vertical hair is a little in advance of the west edge of

the sun's disc. Read the watch as each limb passes the vertical hair and note the

vernier reading. Then set the vernier so that the line of sight is nearly in the

meridian and repeat the observation. It is best to make a third set as soon as

possible after the second to be used as a check.

The mean of the two watch readings in each observation is the reading for the

centre of the sun. This may be checked roughly by reading also the time when

the sun's disc appears to be bisected. From the first and second vernier readings

dad the corresponding watch times compute the motion of the sun in azimuth per

second of time. Then from the second watch reading and the watch time of ap-

parent noon, the difference of which is the interval before or after noon, compute
the correction to the second vernier reading to give the reading for the meridian.

The third set of observations may be used in conjunction with the first to check the

preceding computations, by computing the second vernier reading from the ob-

served time and comparing with the actual reading. The reading for the south

point may also be computed by using the first and third or the second and third

observations.

The accuracy of the results depends upon the accuracy with which the error of

the watch may be obtained, upon the reliability of the watch, and the accuracy of

the longitude, obtained from a map or by observation. When the sun is high the

, sights are more difficult to take and the sun's motion in azimuth is rapid so that an

terror in the watch time of noon produces a larger error in the result than when it

has a low altitude at noon. The method is therefore more likely to prove satis-

factory in winter than in summer. In winter the conditions for a determination

of meridian from a morning or afternoon altitude of the sun are not favorable, so

that this method may be used as a substitute. The method is more likely to give

satisfactory results when the observer is able to obtain daily comparisons of

his watch with the time signal so that the reliability of the watch time may be

judged.

?

* The method described in this article was given by Mr. T. P. Perkins,

Engineering Dept, Boston & Maine R. R., in the Engineering News, March 31,

1904.
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Example.
On Jan. i, 1925, in latitude 42 22' N., longitude 71 os'.6 W., the

" A "
vernier

is set at o and cross hair sighted at mark; the vernier is then set to read 42 40'

(to the right). The observed times of transit of the west and east edges of the sun

over the vertical hair are nh 36^ 39* and n* 39 ois
. The vernier is then set at

45 04'.$; the times of transit are n* 460*10* and n* 48^31*. As a check the

vernier is set on 45 35', the times of transit being n>48m o8s and n ft 50^31*.

The watch is 13* slow of Eastern time. Find the true bearing of the mark from

the transit.

Local Apparent Time = 12* oo"* oo*

Equation of Time = 3 40 .8

Local Civil Time =12* 03 40^.8

Longitude difference = 15 37 .6

Eastern Standard Time nh 48 03^.2
Watch slow 13

Watch time of apparent noon = n* 47 50^.2

Interval, ist obs. to 2nd obs. =
g
m

30^.5
= 570^.5

Interval, 2nd obs. to noon = 295.7
Diff. in vernier readings = 2 24^5 = 144'. 5

The correction (x) to the 2nd reading (45 04'. 5) is found by the proportion

x : 144-5 = 29.7 : 570.5

The vernier reading for the meridian is therefore 45 04^.5 + 7'.$
= 45 12' making

the bearing of the mark S 45 12' E.

114. Approximate Azimuth of Polaris when the Time is Known.

If the error of the watch is known within half a minute or so, the azimuth of

Polaris may be computed to the nearest minute, that is, with sufficient precision

for the purpose of checking the angles of a traverse. The horizontal angle between

Polaris and a reference mark should be measured and the watch time of the point-

ing on the star noted. It is desirable to measure also the altitude of Polaris at

the instant, although this is not absolutely necessary. A convenient time to make^

this observation is just before dark, when both the star and the cross hairs can be

seen without using artificial light. The program of observation would be: i.

Set on o and sight the mark, clamping the lower clamp. 2. Set both the vertical

and the horizontal cross hairs on the star and note the time. 3. Read the hori-

zontal and the vertical angles. 4. Record all three readings. The method of

repetition may be employed if desired.

If the American Ephemeris is at hand the azimuth of Polaris may be taken out

at once from Table IV when its hour angle and the latitude are known. The watch

time of the observation should be converted into local sidereal time and the hour

angle of the star computed. The azimuth may be found by double interpolation
in TnKlA TV nTnliAm ^\
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Example.
On May 18, 1925, the angle from a reference mark (clockwise) to Polaris was

36 10' 30"; watch time &h 10"* 20* P.M.; wat^h slow 10s
;
altitude 41 21'.5; lat-

itude 42'

Fig. 75-)

22'N.; longitude 7io6'W. Find the azimuth of the mark. (See

First Solution

Watch reading 8> iow 20* P.M.

Watch correction

Eastern Time

Local Time
Loc. Civ. T.
Table III

Table III (Long.)

+ 10

iom 30* P.M.

15 36

Loc. Sid. T.

a, Polaris

t, Polaris

From Table IV, Ephemeris, azimuth
Measured horizontal angle

^ Bearing of mark

North
Polaris

Mark

8h 26 06* P.M.

20 26 06

3 21 .4

46.7
15 40 38.3

36^ iom 525.4
12 10 52 .4

i 33 38.6

o 3o'.9 West
36 10.5

West

West East

South

FIG. 75

East

Polaris

If the Ephemeris is not at hand the azimuth may be found from the tables on

pp. 203 and 204 of this volume. The watch time of the observation is corrected

for the known error of the watch and then converted into local time. From Table

V the local civil time of the upper culmination of Polaris may be found. The

difference between the two is the star's hour angle in mean solar units. This

should be converted into sidereal units by adding 10s for each hour in the interval.

(Fig. 76.) It should be observed that if the time of upper culmination is less than
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the observed time the difference is the hour angle measured toward the west, and

the star is therefore west of the meridian if this hour angle, is less than 12*. If

the time of upper culmination is greater than the observed time the difference

is the hour angle measured toward the east (or 24^ the true hour angle) and the

star is therefore east of the meridian if this angle is less than 12^.

To obtain the azimuth from Tables F and G we use the formula

Z' =
p' sin t sec h. 106]

Table F gives values of p' sin t for the years 1925, 1930, and 1935, and for every

4m (or i) of hour angle. To multiply by sec h, enter Table G with the value of

p' sin I at the top and the altitude (h) at the side. The number in the table is to be^

added to p' sin
t,

to obtain the azimuth Z'.

It is evident that the result might be obtained conveniently by using the time

of lower culmination when the hour angle (from U. C.) is nearer to 12** than

too*.

If the altitude of the star has not been measured it may be estimated from the

known latitude by inspecting Figs. 65 and 72 and estimating how much Polaris is

above or below the pole at the time of the observation. This correction to the

altitude may also be obtained from Table I in the Ephemeris if the hour angle of

the star is known.

As an illustration of the use of these tables we will work out the example given

on p. 201.

Second Solution

Observed time

Watch correction

Eastern time

Local time

Loc. Civ. T.

Upper culmin.

10* X i<A6

Hour angle

8 low 20* P.M.

+10

8* iom 30* P.M.

15 36

8 26 06* P.M.

20 26 .1

Q 50 .7

i .8

10^ 37^.2

Table V, U. C., May 15, io O2.i
Corr. for 3 days n .8

May 18
'

9^ 50^.3
Corr. for 1925 -fo .2

Corr. for long. -fo .2-
Upper culmin. o& 50^.7

From Table F, p' sin / = o 23'. 2

From Table G^corr. 7 .7

Azimuth = o 3o'.p
Measured horizontal angle = 36 10 .5

Bearing of mark N. 36 41'.4 W.

Since the observation just described does not have to be made at any particular

time it is usually possible to arrange to sight Polaris during twilight when terres-

trial objects may still be seen distinctly and no illumination of the field of the

telescope is necessary. In order to find the star quickly before dark the telescope

should be focussed upon a very distant object and then elevated at an angle equal

to the star's altitude as nearly as this can be judged. It will be of assistance in
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TABLE F

Values of p sin / for Polaris (in minutes)



204 PRACTICAL ASTRONOMY

TABLE G.- CORRECTION FOR ALTITUDE
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finding the horizontal direction of the star if its magnetic bearing is estimated

and the telescope turned until the compass needle indicates this bearing. If

there is so much light that the star proves difficult to find it is well to move

k the telescope very slowly right and left. The star may often be seen when it

is in apparent motion, while it might remain unnoticed if the telescope were

motionless.

115. Azimuth from Horizontal Angle between Polaris and /9 "Ursa Minoris.*

In order to avoid the necessity for determining the time, which is often the chief

difficulty with the preceding methods, the azimuth of Polaris may be derived from

the measured horizontal angle between it and some other star, such as Ursa

\Minoris. If the horizontal angle between the two stars is measured and the lati-

Hude is known the azimuths of the stars may be calculated.

The observation consists in sighting at a mark with the vernier reading o,
then sighting Polaris and reading the vernier, and finally sighting at /3 Ursa Minoris

and reading the vernier. The difference between the two vernier readings is the

difference in azimuth of the stars (neglecting the slight change in the azimuth of

Polaris during the interval). From an inspection of the table the correspond-

ing azimuth of Polaris may be found. This azimuth combined with the vernier

reading for Polaris is the azimuth of the mark.

The following example is taken from the publication f referred to:

FIELD RECORD
Simultaneous Observations on a and /3 Ursa Minoris for Azimuth

(a. observed first)

Date: Friday, Nov. 9, 1923, P.M.

Telescope Direct

Latitude 37 57' 15" N.

* This method and the necessary tables were published by C. E. Bardsley,

Rolla, Mo., 1924.

t School of Mines and Metallurgy, University of Missouri; Technical Bulletin,

Vol. 7, No. 2.
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COMPUTATION RECORD
Selected Values for Interpolation from Table I

Interpolated Azimuth of Polaris Table I = o4i
/

.5i
=

Correction for declination =
Correction for right ascension =

Polaris East of North =

Angle Polaris to Mark =

Mark West of North ="

o"4i

+05
+ 25

13

42 or

56 30

13

1 80

14

00
29"

00

Azimuth of Mark from South = 166 45' 31"

The time interval should ordinarily be kept within one minute, so that the

observations are as nearly simultaneous as possible. If, however, the order of the

pointings is reversed in the second half set the error due to this time interval is

nearly eliminated. Double pointings might be made on /3 Ursa Minoris, one

before and one after that on Polaris, from which the simultaneous reading might
be interpolated.

116. Convergence of the Meridians.

Whenever observations for azimuth are made at two different points of a survey
for the purpose of verifying the angular measurements, the convergence of the

meridians at the two places will be appreciable if the difference of their longitudes

is large. At the equator the two meridians are parallel, regardless of their differ-

ence of longitude; at the pole the convergence is the same as the difference ini

longitude. It may easily be shown that the convergence always equals the differ-

ence in longitude multiplied by the sine of the latitude. If the two places are in

different latitudes the middle latitude should be used. Table VII was computed
according to this formula, the angular convergence in seconds of angle being

giyen for each degree of latitude and for each 1000 feet of distance along the parallel

of latitude.

Whenever it is desired to check the measured angles of a traverse between two
stations at which azimuths have been observed the latitude differences and depar-
ture differences should be computed for each line and the total difference in de-

parture of the two azimuth stations obtained. Then in the column containing the

number of thousands of feet in (his departure and on a line with the latitude will

be found the angular convergence of the meridians. The convergence for num-
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bers not in the table may be found by combining those that are given. For in-

stance, that for 66,500 feet, in lat. 40, may be found by adding together 10 times

the angle for 6000, the angle for 6000, and one-tenth the angle for 5000. The result

is 549".3, the correction to be applied to the second observed azimuth to refer the

line to the first meridian.

Example.
Assume that at Station i (lat. 40) the azimuth of the line i to 2 is found to be

82 15' 20", and the survey proceeds in a general southwesterly direction to station

21, at which point the azimuth of 21 to 20 is found by observation to be 269 10'

,00". The calculation of the survey shows that 21 is 3100 feet south and 15,690

^feet
west of i. From the table the convergence (by parts) for 15,690 feet is 2'

^09". 7. Therefore if the direction of 21 20 is to be referred to the meridian at i

this correction should be added to the observed azimuth, giving 269 12' 09". 7.

The difference between the observed azimuth at i and the corrected azimuth at 21

(-180) is 6 56' 49". 7, the total deflection, or change in azimuth, that should be

shown by the measured angles if there were no error in the field work.

Problems

1. Compute the approximate Eastern Standard Time of the eastern elongation
of Polaris on Sept. 10. The right ascension of the star is i^ 35 32*4. For the

approximate right ascension of the mean sun at any date and the hour angle of

Polaris at elongation see Arts. 76 and 97.

2. Compute the exact Eastern Standard Time of the eastern elongation of

Polaris on March 7, 1925. The right ascension of the star is i^ 33"* 38^.00; the

declination is +88 54' i9".i8; the latitude of the place is 42 2i'.5 N. The

right ascension of the mean sun +12* on March 7, at & Gr. Civ. T. is io& 56

46*47.

3. Compute the azimuth of Polaris at elongation from the data of Prob-

lem 2.

4. Compute the local time of eastern elongation of a2 Centauri on April i, 1925,
in latitude 20 South. Compute the altitude and azimuth of the star at elongation.
The right ascension of the star is 14* 34** 32^.65; its declination is 60 31' 26". 12.

The right ascension of the mean sun + 12^ at o& G. C. T. is 12^ 35"* 20*. 27.

5. Compute the azimuth of the mark from the following observations on the

sun, May 25, 1925.

Ver. A. Alt. Watch (E. S. T.)

Mark o

O 7i 01
'

40 46' 3* i3n 33* P.M.

7i 16 40 33 3 i4 So
7i 28 40 22 3 15 50

(telescope reversed)

72 21' 40 42' 3*i65o*
~ 72 32 40 32 3 i7 48U

, ,
72 41 40 23 3 18 36

Mark o
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Lat. = 42 29'.s N.; long.
-

71 o;'.s W. I. C. = o". Declination at G. C. T.

eft = +20 48' 55".8; varia. per hour = -f-27".6o. Equa. of time = +3m 19*48;
varia. per hour = 0^.230.

6. Compute the azimuth of the mark from the following observations on the

sun, May 25, 1925.

Ver. A. Alt. Watch (E. S. T.)

Mark o

O 76 25' 35 28' 3*4237*p.M.
76 39 35 13 3 43 57
76 49 35 02 3 44 55

(telescope reversed)

O
77 37 35 25' 3* 45m 5&
77 49 35 12 3 46 55

78 oo 35 oo 3 47 58

Lat. = 42 29'.s N.; long.
=

71 07'.$ W. I. C. = o'. Declination at G. C. T.

o = -j-2o48' 55". 8; varia. per hour = -f-27".6o. Equa. of time = +3 19*48;

varia. per hour =
03.230.

7. On March 2, 1925, in latitude 42 01' N., longitude 71 07' W., the hori-

zontal angle is turned clockwise from a mark to the sun with the following results:

Left and lower limbs; hor. circle, 53 56'; altitude, 40 31'; watch, n^ 58"* 50*.

Right and upper limbs; hor. circle, 55 09'; altitude, 41 02'; watch i2h 00** 20s
.

Watch is 3* fast of E. S. T. The declination of the sun at o& G. C. T. = -7 28'

4o".8; varia. per hour, +57^.06. Equa. of time, 12"* 28*45; varia. per hour

4-0*496. Compute the azimuth of the mark.

8. On March 2, 1925 vernier A is set at o and telescope pointed at a mark.

Vernier A is then set to read (clockwise) 50 01'; west edge of sun passed at n*

44 43* and east edge at 11^46 53*, by watch. Vernier is next set at 53 18';

west edge of sun passed at nh S4m 44* and east edge at nh
56 55*. Watch is 3*

fast of Eastern Standard Time. The latitude is 42 01' N., longitude is 71 07'

west. The equation of time at o7* G. C. T, March 2, 1925 is i2m 28*45; varia.

per hour, +0*496. Compute the azimuth of the mark.

9. The transit is at sta. B; vernier reads o when sighting on sta. A. At

8& oom P.M. (E. S. T.) Polaris is sighted; alt. = 41 25'. Horizontal angle 113 30'
*

(clockwise) to star. Date, May 8, 1926. Compute the bearing of B. A.

10. Prove tnat the horizontal angle between the centre of the sun and the right

or left limb is s sec k where s is the apparent angular semidiameter and h is the

apparent altitude.

11. Prove that the level correction (Art. 106, p. 184) is i tan h where i is the

inclination as given by the level.

12. Why could not Equa. [106], p. 183, be used in place of Equa. [31], p. 36,

in the method of Art. 112?

13. If there is an error of 4* in the assumed value of the watch correction and

an azimuth is determined by the method of Art. 112, (near noon) what would be the
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relative effect of this error when the sun is on the equator and when it is 23 south?

Assume that the latitude is45N. (See Table B, p. 99.)

14. At station A on Aug. 5, 1925, about 5* P.M. a sun observation is made to

^obtain the bearing of AB. The corrected altitude is 22 29', the latitude is

42 29' N., the corrected declination is 16 56' N., and the hori-

zontal angle from J5, clockwise, to the sun is 102 42'.

After running southward to station E an observation is made

on Polaris, the watch time being 8>* 50"* P.M. (E. S. T.). The

altitude is 42 05' and the horizontal angle from sta. D toward

,the left to Polaris is 2 09'. The longitude is approximately

Kso'w.
Find the error in the angles of the survey.

15. May 8, 1925, in lat. 42 22' N., long. 71 06' W, transit at

sta. i, o on sta. 2. Horizontal angle clockwise to sun, L and

L limbs, 183 52', alt. 45 21', watch 3* 35 oo5
;
horizontal angle

to sun, U and R limbs, 183 25', alt. 44
6
37', watch 3^ 36^ 15*.

Index correction 0^.5. Corrected declination, +16 59^.0 (N).

May 8, 1925, transit at sta. 2, o on sta. i. Horizontal angle

(clockwise) to Polaris 113 30'; alt. 41 25'; watch 8> oo E. S. T.

Compute the bearing of i 2 from each observation.

16. With the transit at station 21, on June 7, 1924, in latitude

42 29^.5 N., longitude, 71 07'. 5 W., the following sights are taken on the sun, the

reference mark being station 22;

Vert. Arc.

42 03'

41 52

42 ii

42 02

Watch (E. S. T.)

3^ I4m 20s P.M.

3 15 27

3 16 30

3 17 22

Index correction -f-i'. Sun's declination (corrected)
= +2247 /

>3.

The deflection angle at sta. 22 is 5 26' Rj at 23 it is 7 36' L; at 24 it is

t2n'R.
At sta. 24 an observation is taken on Polaris', o on sta. 25; first angle, at 7^ 02^

05* E. S. T., 252 44' (clockwise); second repetition, at 7^04^ 25*, 145 29'; third

repetition, at 7" o6* 40*, 38 14'. The altitude is 41 27'. Station 24 is 2800

feet east of station 21.

Compute the error in the traverse angles between stations 21 and 25, assuming

that there is no error in the observations on the sun and Polaris.

17. Differentiate the formula

sin Z = sin p sec </>

it7 f!7
to obtain -r- and 3- and from these compute the error hi Z produced by an error

a<f> dp ,

of i' in or an error of i" in 5.



210 PRACTICAL ASTRONOMY

18. Observation on sun Oct. 21, 1925, for azimuth.

Watch (E. S. T.)

7* I0* 30* A.M.

7 II 22'

7 12 30

7 13 32

Index correction to altitude = + *'

Decimation at o*, G. C. T., Oct. 21 = 10 26' 02^.5 ; varia. per hour =

53"-78. Latitude = 42 29'.$; longitude = 71 07^.5 W. Equa. of time a

o -fi5* ii*.2i; varia. per hour, +.417. Compute the azimuth of the marl



CHAPTER XIV

NAUTICAL ASTRONOMY

117. Observations at Sea.

The problems of determining a ship's position at sea and the

bearing of a celestial object at any time are based upon exactly

the same principles as the surveyor's problems of determining
his position on land and the azimuth of a line of a survey. The
method of making the observations, however, is different,

since the use of instruments requiring a stable support, such as

the transit and the artificial horizon, is not practicable at sea.

The sextant does not require a stable support and is well adapted
to making observations at sea. Since the sextant can be used

only to measure the angle between two visible points, it is

necessary to measure all altitudes from the sea-horizon and to

make the proper correction for dip.

Determination of Latitude at Sea

118. Latitude by Noon Altitude of Sun.

The determination of latitude by measuring the maximum
altitude of the sun's lower limb at noon is made in exactly the

same way as described in Art. 70. The observation should be

begun a little before local apparent noon and altitudes measured

in quick succession until the maximum is reached. In measur-

ing an altitude above the sea-horizon the observer should bring

the sun's image down until the lower limb appears to be in

contact with the horizon line. The sextant should then be

tipped by rotating right and left about the axis of the telescope

so as to make the sun's image describe an arc; if the lower limb

of the sun drops below the horizon at any point, the measured

altitude is too great, and the index arm should be moved until

the sun's image is just tangent to the horizon when at the lowest
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point of the arc. (Fig. 77.)

following example.

This method is illustrated by the

Example.

Observed altitude of sun's lower limb 69 21' 30", bearing north. Index cor-

rection = i' 10"; height of eye = 18 feet; corrected sun's decimation =

+9oo /
26" (N). The approximate latitude and longitude are n3o/

S, 15 oo'

W. The corrections for dip, refraction, parallax and semidiameter may be taken

out separately; in practice the whole correction is taken from Bowditch, American

Practical Navigation, Table 46. The latitude is computed by formula [i]. Ifi

the sun is bearing N the zenith distance is marked S, and vice versa. The zenith

distance and the declination are then added if both are N or both are S, but sub-

tracted if one is N and one is S; the latitude will have the same name (N or S) as

the greater of the two.

Observed alt.

Correction

69 21' 30"

+ 10 18

Tab. 46

I.C.

True altitude 69 31' 48"

Zenith distance 20 28 1 2 S

Declination 9 oo 26 N
Latitude 11 27' 46" S

-t-ll' 28"

+ 1 10

+10' 18"

o
Sea

FIG. 77

Horizon

119. Latitude by Ex-Meridian Altitude.

If for any reason the altitude is not taken precisely at noon the latitude may be

found from an altitude taken near noon provided the time is known. If the in-

terval from noon is not over 25 minutes the correction may be taken from Tables

26 and 27, Bowditch. For a longer interval of time formula [300] should be used.

When using Table 26, look up the declination at the top of the page and the latitude

at the side; the tabular number (a) is the variation of the altitude in one minute

from meridian passage. To use Table 27, find this number (a) at the side and the

number of minutes (/) before or after noon at the top; the tabular number is the

required correction, at2.

Example i.

The observed altitude of the sun's lower limb Jan. i, 1925 is 26 10' 30" bearing

south; chronometer time, 15^ 3o io; chronometer 15* fast. Height of eye 18

feet; I. C. = o". The decimation is - 23 oo'.S; equa. of time is 339.3. Lat.

by dead reckoning, 40 40' N; long, by dead reckoning, 50 02' 30".
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Chron. 15* 3o* io Table 46, H-IO' 19" Obs. alt. = 26 10' 30"
Corr. 15 I. C. oo Corr. = ~}-io ig

G. C. T. 15* 29^ 55* Corr. -fio' 19" True Alt. = 26 20' 49"
E(lua - ~3 39 -3 aP = 54

G. A. T. i$ 26"* i5.7 Table 26, h = 26 21' 43"
Lon&- 3 20 10 Lat. 41 1 a j" 5

Zenith Dist. = 63 38 17 N
L.A.T. 12^06^05^.7

Dec-- 23J
'

Declination 23 oo 48 S

Table 27 ^
Latitude = 40 37' 29" N

54"i"5
6w.!

j

Example 2.

Observed altitude of sun's lower limb Jan. 20, 1910, = 20 05' (south); T. C. =

o'; G. A. T. i* 3S 28*; lat. by D. R. = 49 20' N.; long, by D. R. 16 19' W.;

height of eye, 16 feet; corrected decimation, 20 14' 27" S. Find the latitude.

If this is solved by Equa. [300] the resulting latitude is 49 11' N.

Determination of Longitude at Sea

120. By the Greenwich Time and the Sun's Altitude.

The longitude of the ship may be found by measuring the sun's

altitude, calculating the local time, and comparing this with the

Greenwich time as shown by the chronometer. The error of the

chronometer on Greenwich Civil Time and its rate of gain or

loss must be known. The error of the chronometer may be

checked at sea by the radio time signals. In solving the triangle

for the sun's hour angle the latitude of the ship and the declina-

tion of the sun are required, as well as the observed altitude.

The latitude used is that obtained from the last preceding ob-

servation brought up to the time of the present observation by

allowing for the run of the ship during the interval. This is the

latitude
"
by dead reckoning." On account of the uncertainty

of this (D. R.) latitude it is important to make the observation

when the sun is near the prime vertical. The formula usually

employed is a modified form of Equa. [17] (see also p. 259).

The same method may be applied to a star or a planet. In

this case the longitude is obtained from the sidereal time. As

the observation is ordinarily computed the Gr. Civ. T. is con-

verted into Gr. Sid. T. and the hour angle of the star at Green-

wich then computed. The solution of the pole zenith star
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triangle gives directly the hour angle of the star at the ship's

meridian. The difference between the two hour angles is the

longitude.

Example.
Observed altitude of sun's lower limb on Aug. 8, 1925 (P.M.),

= 32o6
/

3o
//

;

chronometer 20* 37^*40*; chronometer correction, i^^o*; index correction,

-fi' oo". Height of eye 12 feet. Lat. by D. R., 44 47' N. Sun's decimation at

20s, G. C. T,, +16 07^.9; H. D., o'.7. Equa. of time at 20*, 5
w

33*.i;

H. D. -hos.,3.

Chron. 20* 37^ 40* Decl. 20* -fi6o7
/

.9

C - C -i 30 -0.7 X 0.6 -.4

G. C. T. 20* 36^ io Decl. + 16 o/.$
Eq. 5 32.9

G. A. T. 20& 30"* 37*.! Eq. t. 20 h $m 33*.!

+0.3 X 0.6 +.2

Lat. 44 47' log sec 0.14888 Eq. t. -<
Alt. 32 18 30" log esc 0.01743

pol. dist. 73 5 2 3 log cos 9.39909 Obs. alt. 3 2 06' 30"

2)iso_58__ log sin 9.83520 a 46 +"ii
half sum 75 29 log hav 1 9.40060 ^^ 32 l8

'

3O
"

half sum alt. 43 10 30 t 4* oo* 48*. 7 (Bowditch, Table 45)
L. A. T. 16 oo 48 .7

G. A. T. 20 30 37 .1

Long. = 4^ 29 48^.4

= 67 27^.1 W.

Determination of Azimuth at Sea

121. Azimuth of the Sun at a Given Time.

For determining the error of the compass and for other pur-

poses it is frequently necessary to know the sun's azimuth at an

observed instant of time. The azimuth may be computed by

any formula giving the value of Z when /, <f> and d are known.

In practice it is not usually necessary to calculate Z, but its

value may be taken from tables. Publication No. 71 of the U. S.

Hydrographic Office gives azimuths of the sun for every i

of latitude and of declination and every iom of hour angle. Burd-

wood's and Davis's tables may be used for the same purpose.

For finding the azimuth of a star or any object whose declination

is greater than 23 Publication No. 120 may be used.
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Example.

As an illustration of the method of using No. 71 suppose that we require the sun's

azimuth in latitude 42 01' N, declination 22 47' S, and hour angle, or local ap-

parent time, ,9* 25** 20s A.M. Under lat. 42 N and declination 22 S, hour angle

tf* 2o> we find the azimuth N 141 40' E. The corresponding azimuth for lat.

4.3 is 141 50', that is 10' greater. The azimuth for lat. 42, decl. 23 and hour

ingle op 2ois 142 n', or 31' greater. For lat. 42, decl. 22, and hour angle 9* 30"*

the azimuth is 143 47', or 2 07' greater. The first azimuth, 141 40' must be

increased by a proportional part of each one of these variations. The desired

izimuth is therefore

141 40' + ~ X 10' + i* X 31' +^ X 127 = 143 I2'.

Go oo 10

The azimuth is N 143 12' E or S 36 48' E.

If at the time stated (gh 25 i8) the compass bearing of the sun were S 17 E,
the total error of the compass would be 19 48', the north end of the compass being

west of true north. If the
"
variation of the compass

"
per chart is 24 W, the

deviation of the compass is 24 19 48' = 4 12' E.

Determination of Position by Means of Stunner Lines

122. Stunner's Method of Determining a Ship's Position.*

If the declination of the sun and the Greenwich Apparent
Time are known at any instant, these two coordinates are the

latitude and longitude respectively of a point on the earth's

surface which is vertically under the sun's centre and which

may be called the
"
sub-solar

"
point. If an observer were at

the sub-solar point he would have the sun in his zenith. If

he were located i from this point, in any direction, the sun's

zenith distance would be i; if he were 2 away, the zenith

distance would be 2. It is evident, then, that if an observer

measures an altitude of the sun he locates himself on the cir-

cumference of a circle whose centre is the sub-solar point and

whose radius (in degrees) is the zenith distance of the sun.

This circle could be drawn on a globe by first plotting the posi-

tion of the sub-solar point by means of its coordinates, and

*
This method was first described by Captain Sumner in 1843.
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then setting a pair of dividers to subtend an arc equal to the

zenith distance (by means of a graduated circle on the globe)

and describing a circle about the sub-solar point as a ceutreT-

The observer is somewhere on this circle because all positions

on the earth where the sun has this measured altitude are located

on this same circle. This is called a circle of position, and any

portion of it a line of position or a Sumner Une.

FIG. 78

Suppose that at Greenwich Apparent Time i
h

the sun is

observed to have a zenith distance of 20, the declination being
20 N. The sub-solar point is then at A

, Fig. 78, and the observer

is somewhere on the circle described about A with a radius 20.

If he waits until the G*. A. T. is 4* and again observes the sun,

obtaining 30 for his zenith distance, he locates himself on the

circle whose centre is J?, the coordinates being 4
A and (say)

20 02' N, and the radius of which is 30. If the ship's position
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has not changed between the observations it is either at S or

at T, in practice there is no difficulty in deciding which is the

correct point, on account of their great distance apart. A
knowledge of the sun's bearing also shows which portion of the

circle contains the point. If, however, the ship has changed its

position since the first observation, it is necessary to allow for

its
"
run "

as follows. Assuming that the ship has sailed

directly away from the sun, say a distance of 60 miles or i,

then, if the first observation had been made while the ship was

in the second position, the point A would be the same, but the

radius of the circle would be 21, locating the ship on the dotted

:ircle. The true position of the ship at the second observation

is, therefore, at the intersection S'. If the vessel does not actu-

ally sail directly away from or directly toward the sun it is a

simple matter to calculate the increase or decrease in radius

due to the change in the observer's zenith.

This is in principle Sumner's method of locating a ship.

[n practice the circles would seldom have as short radii as those

in Fig. 78; small circles were chosen only for convenience in

illustrating the method. On account of the long radius of the

circle of position only a small portion of this circle can be shown

on an ordinary chart; in fact, the portion which it is necessary

to use is generally so short that the curvature is negligible and

the line of position appears on the chart as a straight line. In

order to plot a Sumner line on the chart, two latitudes may be

assumed between which the actual latitude is supposed to lie;

and from these, the known declination, the observed altitude,

and the chronometer reading, two longitudes may be computed

(Art. 120), one for each of the assumed latitudes. This gives

the coordinates of two points on the line of position by means

of which it may be plotted on the chart. Another observation

may be made a few hours later and the new line plotted in a

similar manner. In order to allow for the change in the radius

of the circle due to the ship's run between observations, it is

only necessary to move the first position line parallel to itseli
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in the direction of the ship's course and a distance equal to the

ship's run. In Fig. 79, AB is a line obtained* from a 9 A.M

observation on the sun and by assuming the latitudes 42 and;

43. A second observation is made at 2 P.M.; between 9* and

2
h
the ship has sailed S 75 W, 67'.* Plotting this run on the

chart so as to move any point on AB, such as x, in the direction

S 75 W and a distance of 67', the new position line for the first

FIG. 79

observation is A f
B'. The P.M. line of position is located by

assuming the same latitudes, 42 and 43, the result being the

line CD. The point of intersection 5 is the position of the ship

at the time of the second observation. Since the bearing of

the Sumner line is always at right angles to the bearing of the

sun, it is evident that the line might be plotted from one latitude

and one longitude instead of two. If the assumed latitude and

the calculated longitude are plotted and a line drawn through
the point at right angles to the direction of the sun (as shown by

* The nautical mile (6080.20 feet) is assumed to be equal to an arc of i' of a

Great Circle on anypart of the earth's surface.
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the azimuth tables) the result is the Sumner line; the ship is

somewhere on this line. The two-point method of laying down

.the line really gives a point on the chord and the one-point
rJnethod gives a point on the tangent to the circle of position.

The second method is the one usually employed for the plotting

the lines of position.

One of the great advantages of this method is that even if

one observation can be taken it may be utilized to locate

ship along a (nearly) straight line; and this is often of great

value. For example, if the first position line is found to pass

directly through some point of danger, then the navigator knows

the bearing of the point, although he does not know his distance

from it; but with the single observation he is able to avoid the

danger. In case it is a point which it is desired to reach, the

true course which the ship should steer is at once known.

123. Position by Computation.

The latitude and longitude of the point of intersection of the position lines may
be calculated more precisely than they can be taken from the chart. When the first

altitude is taken a latitude is assumed which is near to the true latitude (usually

the D. R. lat.), and a longitude is calculated. The azimuth of the sun is taken out

of the table for the same lat. and hour angle. From the run of the ship between

the first and second observations the change in lat. and change in long, are cal-

culated, usually by the traverse tables. (Tables i and 2, Bowditch). These

differences are applied as corrections to the assumed lat. and calculated long. This

places the ship on the corrected Sumner line (corresponding to A'B', Fig. 79).

When the second observation is made this corrected latitude is used in computing
the new longitude. The result of two such observations is shown in Fig. 80.

jk
Point A is the first position; A' is the position of A after correcting for the run

^'the ship; B is the position obtained from the second observation using the lati-

tude of A'. The distance A'B is therefore the discrepancy in the longitudes,

\ owing to the fact that a wrong latitude has been chosen, and is the base of a triangle

the vertex of which is C, the true position of the ship. The base angles A' and B

jLiQ
the same as the azimuths of the sun at the times of the two observations. If

we drop a perpendicular from C to A'B, forming two r|ght triangles, then

Bd = OJcotZ2

A'd^CdcotZ,.
>or

A/>2
= A< cot Za

Api A<cotZi

where A0 is the error in latitude and Ap the difference in departure. In order to
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express Bd and A'd as differences in longitude (AX) it is necessary to introduce the

factor sec <, giving,
AX2

= A< sec cot Z2 1 , ,

AXi = A< sec <#> cot Zl \
U 7J

These coefficients of A0 are called
"
longitude factors

" and may fre taken' from

Bowditch, Table 47. These formulae may also be obtained by differentiation.

To find A<, the correction to the latitude, the distance A'B AXi + AX2 is

known, the factors sec <f> cot Z are calculated or taken from the table, and then A<

is found by

A<**
=

sec <j> cot Zi -f- sec <f> cot Z2

*

\

Having found A</>, the corrections AXi, AX2,
are cpmputed from [107].

FIG. 80

If one of the observations is taken in the forenoon and one in the afternoon the

denominator of [108] is the sum of the factors; if both are on the same side of the

meridian the denominator is the difference between the factors. The difference

between- the two azimuths should not be less than 30 for good results. When the

angle is small the position will be more accurately found by computation than by

plotting. If two objects can be observed at the same time and their bearings differ

by 30 or more the position is found at once, because there is no run of the ship to

be allowed for. This observation might be made on the sun and the moon, or on

two bright stars or planets. It should be observed that the accuracy of the result-

ing longitude depends entirely upon the accuracy of the chronometer, just as in

the method of Art. 1 20.
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Example.
Location of Ship by Sumner's Method.

On Jan. 4, 1910 at Greenwich Civil Time 13* 1 20*33* the observed altitude of the

L is 15 53' 30"; index correction = o"; height of eye, 36 feet; lat. by D. R.

[fc oo
; N.

At Gr. Civ.*T. 18* 05** 31* the observed altitude of the sun is 17 33' 30"; index

correction o"; height of eye, 36 feet. The run between the observations was N 89

W, 45 miles.

First Observation

G. C. T. 13* i2 33* Observed alt. 15 53' 30" Declination 22 47' 04"
112 47' 04"

-4W Si'-a

Long. 3* 42"* 22*

- 55 35' 30" W.

Lat. 42 oo' N Long. 55 35 '.S W.
run o .8 N run i oo .7 W.

Cor'd. Lat. 42 oo'.S N Cor'd. Long. s6 36'.2W.

Second Observation

G. C. T. 18* 05 31* Observed alt. 17 33' 30" Declination -22 45' 50"
Equa. 4 56 .8 Table 46 +7 31 p. d. 112 45 50

G. A. T. 18* oo 355.2 true alt. 17 41' 01" Equa. t. -4 56.8

alt. i74i'.o
lat. 42 oo .8 sec 0.12902

p. d. 112 45 .8 esc 0.03522

2)172 27 .6

half sum 86 i3'.8 cos 8.81790
remainder 6832'.8 sin 9.96882

log hav. i . 8.95096

Sun's Az. A 33 30' W t 2* 19** 07*
Az. factor 2.03 L. A. T. 14 19 07

G. A. T. 18 oo 35

Long. 3* 41* 28*
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Cor'dLong. 56 36'. 2 i9'.4 X 1.80 = 34'$,9, corr. to ist Long.
2d Long. = 55 22 ig',4 X 2.03

* 39 . -^corr. to 2d Long.

Diff. i i4'.2
=

74'.2

ist Long. 56 36'.2 2d L Ong., 55 22'

74'- 2 , A rr frtlaf
Corr. 34-9 corr. * 39 -3

;

= 19 .4. COrr. to lat. -75 ; ,
rz :

1.80+2.03
V ^' 56i.3 e 56 oi'.3

.

'

. Lat. = 42 2o'.2 N .

'

. Long. = 56 01^,3 W.
nc

124. Method of Marcq St. Hilaire.

Instead of solving the triangle for the angle at the pole, as explained in thc ^ pre-

ceding article, we may assume a latitude and a longitude, near to the true position

and calculate the altitude of the observed body. If the assumed position does note

happen to lie on the Sumner line the computed altitude will not be the same as

the observed altitude. The difference in minutes between the two altitudes is

the distance in miles from the assumed position to the Sumner line. If the observed

altitude is the greater then the assumed point should be moved toward the sun by
the amount of the altitude difference. A line through this point perpendicular

to the sun's direction is the true position line. It is now customary to work

up all observation by this method except those taken when the sun is exactly on the

meridian or close to the prime vertical. The former may be worked up for latitude

as explained in Art. 118. The latter may be advantageously worked as a
"
time

sight
"
or

"
chronometer sight

"
as in Art. 120.

The formula for calculating the altitude is

Hav. zen. dist. = hav. (Lat. ~ Decl.) -f cos Lat. cos Decl. hav. (hour angle)

in which (Lat. Decl.) is the difference between Lat. and Decl. when they have

the same sign, but their sum if they have different signs. The altitude is 90

minus the zenith distance. To illustrate this method the first observation on

p. 221 will be worked out. If we assume Lat. = 42oo'N, and Long. = 56

30' W, the hour angle (t) is computed as follows:
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From the point in lat. 42 oo' N, long. 56 30' W, draw a line in direction S 36 48' E.

On this line lay off 24.4 miles (i' of lat. i naut. mile) toward the sun. Through
this last point draw a line in direction S 53 12' W. This is the required position

line.

125. Altitdde and Azimuth Tables Plotting Charts.

To facilitate the graphical determination of position the Hydrographic Office

publishes two sets of tables containing solutions of triangles, and a series of charts

designed especially for rapid plotting of lines of position.

The table designated as H. O. 201 gives simultaneous altitudes and azimuths of

the sun (or any body whose declination is less than 24) for each whole degree of

platitude and declination and each iow of hour angle. Since it is immaterial what

fepoint is assumed for the purpose of calculation, provided it is not too far from the

true position, interpolation for latitude and hour angle may be avoided by taking

the nearest whole degree for the latitude, and a longitude which corresponds to an

hour angle that is in the table, that is, some even io*. By interpolating for the

minutes of the declination the altitude and azimuth are readily taken from the

table. The difference between the altitude from the table (calculated h) and the

observed altitude is the altitude difference to be laid off from the assumed position,

toward the sun if the observed altitude is the greater. To work out the example
of Art. 124 by this table we should enter with lat. = 42, hour angle 2^40"* and

decl. 23. Interpolating for the 13' difference in declination, the corresponding

altitude is 15 24'. 7 and the azimuth is N 142. i E. The longitude corresponding

to an hour angle of 2h 40 (g
h 40 L. A. T.) is 3* 47 42* or 56 55^5 W. If we plot

this point (42 N, 56 55'. 5 W) and then lay off 36'.o toward the sun (N 142.1 E)
we should find a position on the same Sumner line as that obtained in Art. 124.

Small variations in the azimuth will occur when the assumed position is changed.

The different portions of the Sumner line will not coincide exactly in direction be-

cause they are tangents to a circle.

The table designated as H. O. 203 gives the hour angle and the azimuth for

every whole degree of latitude, altitude, and declination. In this table the decli-

nations extend to 27. When using this table we assume an altitude which is a

whole degree but not far from the observed altitude. It is necessary to interpo-

late, as before, for the minutes of declination; this is easily done by the use of the

*utes of change per minute which are tabulated with the hour angle and the azi-

muth. In working out the preceding example by the use of H. 0. 203 we might
use lat. 42 N, alt. 16, decl. 22 47'.! S. The resulting hour angle is 2h 34"* 50^.6

(or L. A. T. 9^ 25^ 09^.4) and the azimuth is 143.!. The longitude corresponding

to this hour angle is 55 38' W. Plotting this position (42N., 55 38' W) and

laying off o'. 7 (the difference between the observed alt. i6oo'.7 and the tabular

alt. 16) toward the sun we obtain another point on the same position line.

The charts designed for plotting these lines show each whole degree of latitude

and longitude.* The longitude degrees are 4 inches wide and the latitude degrees

* No. 3000, sheet 7, extends from 35 N to 40 N; sheet 8 extends from 40 N
t04sN; etc.
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proportionally greater. On certain meridians and parallels are scales of minutes

for each degree. The minutes on the latitude scale serve also*as a scale of nautical

miles for laying off the altitude differences. A compass circle is provided for lay-

ing off the azimuths. A pair of dividers, a parallel ruler and a pencil are all the

instruments needed for plotting the lines.



TABLES
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TABLE I. MEAN REFRACTION.

Barometer, 29.5 inches. Thermometer, 50 F.
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TABLE II. FOR CONVERTING SIDEREAL INTO MEAN SOLAR
. TIME.

*

(Increase in Sun's Right Ascension for Sidereal h. m. s.)

Mean Time == Sidereal Time C.
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TABLE III. FOR CONVERTING MEAN SOLAR INTO SIDEREAL
TIME.

(Increase in Sun's Right Ascension for Solar h. m. s.)

Sidereal Time = Mean Time + C.
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TABLE IV.

PARALLAX SEMIDIAMETER DIP.

229
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TABLE V
LOCAL CIVIL TIME OF THE CULMINATIONS AND ELONGATIONS OF POLARIS IN

THE YEAR 1922

(Latitude, 40 N.; longitude, 90 or 6* west of Greenwich)
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B. To refer to any calendar day other than the first and fifteenth of each month
SUBTRACT the quantities belowfrom the tabular quantityfor the PRECEDING DATE.

C. To refer the table to Standard Time:
*

(a) ADD to the tabular quantities four minutes for every degree of longi-
cude the place is west of the Standard meridian and SUBTRACT when the

place is east of the Standard meridian.

(b) Times given in the table are A.M., if less than 12^; those greater than
12* are P.M.

D. To refer to any other than the tabular latitude between the limits of 10 and

50 north: ADD to the time of west elongation o^.io for every degree south
of 40 and SUBTRACT from the time of west elongation ow .i6 for every degree
north of 40. Reverse these operations for correcting times' of east elon-

gation.
- E. To refer to any other than the tabular longitude: ADD o"*.i6 for each 15
east of the ninetieth meridian and SUBTRACT o*.i6 for each 15 west of the

ninetieth meridian.

TABLE VI
FOR REDUCING TO ELONGATION OBSERVATIONS MADE NEAR ELONGATION

Sidereal time from elongation.
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TABLE VII

CONVERGENCE IN SECONDS FOR EACH 1000 FEET ON THi
PARALLEL
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TABLE VIII

CORRECTION FOR PARALLAX AND REFRACTION TO BE SUBTRACTED FROM
OBSERVED ALTITUDE OF THE SUN
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TABLE IX

LATITUDE FROM CIRCUM-MERIDIAN ALTITUDES OF THE SUN

[A = cos 5 cos
<f> cosec ]
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TABLE IX (Continued)

LATITUDE FROM CIRCUM-MERIDIAN ALTITUDES OF THE SUN
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TABLE CX (Continued)

LATITUDE FROM CIRCUM-MERIDIAN ALTITUDES OF THE SUN
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^ TABLE IX (Continued)

LATITUDE FROM CIRCUM-MERIDIAN ALTITUDES OF THE SUN
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TABLE X
Values of m
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TABLE X (Continued)

239
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Lat.

OBSERVATION ON SUN FOR AZIMUTH
*

of line from to

Long Date 192

nat sin 5

log sin <j>

log sin h

sin <t> sin h

sin 8 sin <f> sin h

log numerator

log sec <j>

log sec h

log cos Z

7

Hor. angle

Azimuth of line

logs. Decl. at o G. C. T.

corr.,

COS Z
sin 8 sin $ sin h---^r-

cos ^ cos h
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OBSERVATION ON SUN FOR AZIMUTH

of Line from to

Alt. G. C. T.

Lat log sec .

Alt log sec .

Nat. Cos Sum

Nat. Sin Decl

Sum. log.

log vers 7jS .

Z, =

Hor. Ang. =

Azimuth to.
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GREEK ALPHABET
Letters.

A, a,

A,*,

5,?,

*,*,
A,X,

Name.

Alpha
Beta

Gamma
Delta

Epsilon
Zeta

Eta

Theta
Iota

Kappa
Lambda
Mu

Letters.

2, o-, 5,

X

Name.

Nu
Xi
Omicron
Pi

Rho

Sigma
Tau

Upsilon
Phi

Chi

Psi

Omega
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ABBREVIATIONS USED IN THIS BOOK

T or V = vernal equinox

R. A. or a = right ascension

d = declination

p = polar distance

h = altitude

f = zenith distance

Az. or Z = azimuth

/ = hour angle
= latitude

X = longitude

Sid. or S = sidereal time

Eq. T. = equation of time

G. C. T. = Greenwich Civil Time

U. C. = upper culmination

L. C. = lower culmination

/. C. = index correction

ref . or r = refraction

par. or p = parallax

s. d. or s = semidiameter
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THE TIDES
The Tides.

The engineer may occasionally be called upon to determine

the height of mean sea level or of mean low water as a datum
for levelling or for soundings. The exact determination of these

heights requires a long series of observations, but an approxi-

mate determination, sufficiently accurate for many purposes,

may be made by means of a few observations. In order to

make these observations in such a way as to secure the best

results the engineer should understand the general theory of

the tides.

Definitions.

The periodic rise and fall of the surface of the ocean, caused

by the moon's and the sun's attraction, is called the tide. The
word

"
tide

"
is sometimes applied to the horizontal movement

of the water (tidal currents), but in the following discussion

it will be used only to designate the vertical movement. When
the water is rising it is called flood tide; when it is falling it is

called ebb tide. The maximum height is called high water; the

minimum is called low water. The difference between the two

is called the range of tide.

Cause of the Tides.

The principal cause of the tide is the difference in the force

of attraction exerted by the moon upon different parts of the

earth. Since the force of attraction varies inversely as the

square of the distance, the portion of the earth's surface nearest

the moon is attracted with a greater force than the central

portion, and the latter is attracted more powerfully than the

portion farthest from the moon. If the earth and rnoon were

at rest the surface of the water beneath the moon would be

244
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elevated as shown* in Fig. 81 at A. And since the attraction

at B is the least, the water surface will also be elevated at this

point. The same forces which tend to elevate the surface at

*% and JB'tend to depress it at C and D. If the earth were

set rotating, an observer at any point O, Fig. 72, would be

carried through two high and two low tides each day, the approx-

imate interval between the high and the low tides being about

6J hours. This explanation shows what would happen if

,/the tide were developed while the two bodies were at rest; but,

owing to the high velocity of the earth's rotation, the shallow-

ness of the water, and the interference of continents, the actual

Moon

FlG. 81

tide is very complex. If the earth's surface were covered with

water, and the earth were at rest, the water surface at high

^tide
would be about two feet above the surface at low tide.

The interference of continents, however, sometimes forces the

tidal wave into a narrow, or shallow, channel, producing a

range of tide of fifty feet or more, as in the Bay of Fundy.
The sun's attraction also produces a tide like the moon's,

but considerably smaller. The sun's mass is much greater

thaii the moon's but on account of its greater distance the ratio

of the tide-producing forces is only about 2 to 5. The tide

actually observed, then, is a combination of the sun's and the

moon's tides.
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Effect of the Moon's Phase.

When the moon and the sun are acting along the same line, at

new or full moon, the -tides are higher than usual and are called

spring tides. When the moon is at quadrature (first orlast quai

ter), the sun's and the moon's tides partially neutralize each other

and the range of tide is less than usual; these are called neap tides.

Effect of Change in Moon's Decimation.

When the moon is on the equator the two successive high

tides are of nearly the same height. When the moon is north

FIG. 82

or south of the equator the two differ in height, as is shown in

Fig. 82. At point B under the moon it is high water, and the

depth is greater than the average. At B', where it will again

be high water about 12* later, the depth is less than the average.

This is known as the diurnal inequality. At the points E and Q,

on the equator, the two tides are equal.

Effect of the Moon's Change in Distance.

On account of the large eccentricity of the moon's orbit

the tide-raising force varies considerably during the month.

The actual distance of the moon varies about 13 per cent, and

as a result the tides are about 20 per cent greater when the moon
is nearest the earth, at perigee, than they are when the moon

is farthest, at aooeee.
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Priming and L'agging of the Tides.

On the days of new and full moon the high tide at any place
follows the moon's meridian passage by a certain interval of

/time, depending upon the place, which is called the establish-

ment of the port. For a few days after new or full moon the

crest of the combined tidal wave is west of the moon's tide and

high water occurs earlier than usual. This is called the priming

of the tide. For a few days before new or full moon the crest

is east of the moon's tide and the time of high water is delayed.
;This is called lagging of the tide.

All of these variations are shown in Fig. 83, which was con-

structed by plotting the predicted times and heights from the U. S.

Coast Survey Tide Tables and joining these points by straight

lines. It will be seen that at the time of new and full moon the

range of tide is greater than at the first and last quartets; at the

>oints where the moon is farthest north or south of the equator

(shown by N, S,) the diurnal inequality is quite marked,

whereas at the points where the moon is on the equator ()
there is no inequality; at perigee (JP) the range is much greater

than at apogee (A).

Effect of Wind and Atmospheric Pressure.

The actual height and time of a high tide may difier consider-

ably from the normal values at any place, owing to the weather

conditions. If the barometric pressure is great the surface is

depressed, and vice versa. When the wind blows steadily into

>
a bay or harbor the water is piled up and the height of the tide

is increased. The time of high water is delayed because the

water continues to flow in after the true time of high water has

passed; the maximum does not occur until the ebb and the effect

of wind are balanced.

Observatio'n of the Tides.

In order to determine the elevation of mean sea level, or,

more properly speaking, of mean half-tide, it is only necessary

to observe, by means of a graduated staff, the height of high

and low water for a number of days, the number depending upon
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the accuracy desired, and to take the mean of the gauge read-

ings. If the height of the zero point of the scale is referred to

some bench mark, by means of a line of levels, the height of the

bench macrk above mean sea level may be computed. In order

to take into account all of the small variations in the tides

it would be necessary to carry on the observations for a series

of years; a very fair approximation may be obtained, however,

in one lunar month, and a rough result, close enough for many
purposes, may be obtained in a few days.

Tide Gauges.

If an elaborate series of observations is to be made, the self-

registering tide gauge is the best one to use. This consists of

a float, which is enclosed in a vertical wooden box and which

rises and falls with the tide. A cord is attached to the float

and is connected by means of a reducing mechanism with the

;
en of a recording apparatus. The record sheet is wrapped

about a cylinder, which is revolved by means of clockwork.

As the tide rises and falls the float rises and falls in the box

and the pen traces out the tide curve on a reduced scale. The

scale of heights is found by taking occasional readings on a

staff gauge which is set up near the float box and referred to a

permanent bench mark. The time scale is found by means of

reference marks made on the sheet at known times.

When only a few observations are to be made the staff gauge
is the simplest to construct and to use. It consists of a vertical

.graduated staff fastened securely in place, and at such a height

that the elevation of the water surface may be read on the

graduated scale at any time. Where the water is compara-

tively still the height may be read directly on the scale; but

where there are currents or wayes the construction must be

modified. If a current is running rapidly by the gauge but

the surface does not fluctuate rapidly, the ripple caused by the

water striking the gauge may be avoided by fastening wooden

strips on the sides so as to deflect the current at a slight

angle. The horizontal cross section of such a gauge is shown in
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FIG. 84

Fig. 84. If there are waves on the surface of J;he water the height

will vary so rapidly that accurate readings cannot be made. In

order to avoid this difficulty a

glass tube about f inch in di-

ameter is placed between two

wooden strips (Fig. 85), one of

which is used for the graduated
scale. The water enters the glass tube and stands at the height

of the water surface outside. In order to check sudden varia-

tions in height the water is allowed to enter this tube only

through a very small tube (i
mm inside diameter) placed in a

cork or rubber stopper at the lower end

of the large tube. The water can rise

in the tube rapidly enough to show the

general level of the water surface, but

small waves have practically no effect

upon the reading. For convenience the

gauge is made in sections about three

feet long. These may be placed end to

end and the large tubes connected by
means of the smaller ones passing

through the stoppers. In order to read

the gauge at a distance it is convenient

to have a narrow strip of red painted

on the back of the tube or else blown

into the glass.* Above the water surface

this strip shows its true size, but below

the surface, owing to the refraction of

light by the water, the strip appears
several times its true width, making
it easy to distinguish the dividing line.

FIG. 85

Such a gauge may be read from a considerable distance by
means of a transit telescope or field glasses.

* Tubes of this sort are manufactured for use in water gauges of steam boilers.
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Location of Gauge.
The spot chosen for setting up the gauge should be near the

(pen sea, where the true range of tide will be obtained. It

should be somewhat sheltered, if possible, against heavy seas.

The depth of the water and the position of the gauge should be

such that even at extremely low or extremely high tides the

water will stand at some height on the scale.

Making the Observations.

\ The maximum and minimum scale readings at the times of

high and low tides should be observed, together with the times

at which they occur. The observations of scale readings should

be begun some thirty minutes before the predicted time of high

or low water, and continued, at intervals of about 5, until a

little while after the maximum or minimum is reached. The

Height of the water surface sometimes fluctuates at the time

high or low tide, so that the first maximum or minimum
reached may not be the true time of high or low water. In

order to determine whether the tides are normal the force and

direction of the wind and the barometric pressure may be

noted.

Reducing the Observations.

If the gauge readings vary so that it is difficult to determine

by inspection where the maximum or minimum occurred, the

observations may be plotted, taking the times as abscissae and

gauge readings as ordinates. A smooth curve drawn through
:the points so as to eliminate accidental errors will show the posi-

tion of the maximum or minimum point. (Figs. 86a and 86b.)

When all of the observations have been worked up in this way
the mean of all of the high-water and low-water readings may
be taken as the scale reading for mean half-tide. There should

of course be as many high-water readings as low-water readings.

^If
the mean half-tide must be determined from a very limited

number of observations, these should be combined in pairs

in such a way that the diurnal inequality does not introduce

an error. In Fig. 87 it will be seen that the mean of a and 6,
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or the mean of c and d, or e and/, will give nearly the mean half-

tide; but if b and c, or d and e, are combined, the mean is in

HIGH WATER
MACHIAS BAY, ME.

JUNE 8, 1905.

14.S "fete

Eastern Time

FIG. 80a

Eastern Time

LOW WATER
MACHIAS BAY, ME.
JUNE 10, 1905.

1.80

FIG. 86b

one case too small and in the other case too great. The propei

selection of tides may be made by examining the predicted

heights and times given in the tables issued by the U. S. Coast
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and Geodetic Survey. By examining the predicted heights the

exact relation may be found between mean sea level and the

jnean half-tide as computed from the predicted heights corre-

sponding 'to those tides actually observed. The difference be-

tween these two may be applied as a correction to the mean
of the observed tides to obtain mean sea level. For example,

suppose that the predicted heights at a port near the place of

observation indicate that the mean of a, 6, c, d, e, and /is 0.2 ft.

FIG. 87

below mean sea level. Then if these six tides are observed and

the results averaged, a correction of 0.2 ft. should be added to

the mean of the six heights in order to obtain mean sea level.

Prediction of Tides*

Since the local conditions have such a great influence in

^determining
the tides at any one place, the prediction of the

times and heights of high and low water for that place must be

based upon a long series of observations made at the same point.

Tide Tables giving predicted tides for one year are published
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annually by the United States Coast ancl Geodetic Survey;

these tables give the times and heights of high and low water

for the principal ports of the United States, and also for many
foreign ports. The method of using these tables is explained

in a note at the foot of each page. A brief statement of the

theory of tides is given in the Introduction.

The approximate time of high water at any place may be

computed from the time of the moon's meridian passage, pro-

vided we know the average interval between the moon's transit

and the following high water, i.e., the
"
establishment of the

port." The mean time of the moon's transit over the meridian

of Greenwich is given in the Nautical Almanac for each day,

together with the change per hour of longitude. The local

time of transit is computed by adding to the tabular time the

hourly change multiplied by the number of hours in the west,

longitude; this result, added to the establishment of the port,

gives the approximate time of high water. The result is nearly

correct at the times of new and full moon, but at other times

is subject to a few minutes variation.
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SPHERICAL TRIGONOMETRY

The formulae derived in the following pages are those most

frequently used in engineering field practice and in navigation.

Many of the usual formulae of spherical trigonometry are pur-

posely omitted. It is not intended that this appendix shall

serve as a general text book on spherical trigonometry, but merely
that it should supplement that part of the preceding text which

deals with spherical astronomy.
A spherical triangle is a triangle formed by arcs of great

circles. If from the vertices of the triangle straight lines are

drawn to the centre of the sphere there is formed at this point a

triedral angle (solid angle) the three face angles of which are

measured by the corresponding sides of the spherical triangle,

and the three diedral angles (edge angles) of which are equal to

the corresponding spherical angles. For any triedral angle a

spherical triangle may be formed, by assuming that the center

of the sphere is at the vertex of the angle, and assigning any

arbitrary value to the radius. The three faces (planes) cut

>out arcs of great circles which form the sides of the triangle.

The solution of the spherical triangle is really at the same time

the solution of the solid angle since the six parts of one equal
the six corresponding parts of the other. Any three lines pass-

ing through a common point define a triedral angle. For example,
the earth's axis of rotation, the plumb line at any place on the

surface of the earth, and a line in the direction of the sun's

centre, may be conceived to intersect at the earth's centre.

The relation among the three face angles and the three edge

angles of this triedral angle may be calculated by the formulae

255
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of spherical trigonometry. The sphere employed, however, is

merely an imaginary one.

The fundamental formulae mentioned on p. 32 may be derived

by applying the principles of analytic geometry to the
1

spherical

triangle. In Fig. 88 the radius of the sphere is assumed to be

unity. If a perpendicular CP be dropped from C to the XY
plane, and a line CP' be drawn from C perpendicular to OX

FIG. 88

then x and y may be expressed in terms of the parts of the

spherical triangle as follows:

#= cos a

y = sin a cos B
z = sin a sin B.
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P'

If we change to a new axis OX', CM being drawn perpendicular

to OX', then we have (/ being negative in this figure)

x
f = cos b

y'
= sin b cos A

z' = sin b sin A .

From Fig. 89, the formulae for trans-

formation are

x x' cos c y
f

sin c

y = x' sin c + y' cos c

z = z. FIG. 89

By substitution,

cos a = cos 6 cos c + sin b sin c cos A (i)

sin a cos B = cos 6 sin c sin & cos c cos ,4 (2)

sin asm B = sin & sin A (3)

Corresponding formulae may be written for angles B and C.

By employing the principle of the polar triangle, namely, that

the angle of a triangle and the opposite side of its polar triangle

are supplements, we may write three sets of formulae like (i),

(2) and (3) in which each small letter is replaced by a large letter

and each large letter replaced by a small letter. For example, the

first two equations would be

cos A = cos B cos C + sin B sin C cos a (a)

sin A cos b = cos B sin C sin B cos C cos a. (b)

^There will also be two other sets of equations for the angles B
and C.

Equation (i) may be regarded as the fundamental formula

of spherical trigonometry because all of the others may be de-

rived from it. All problems may be solved by means of (i),

although not always so conveniently as with other special forms.

Solving for A, Equa. (i) may be written

cos a cos b cos c
cos A

sin 6 sin c
(la)



258 PRACTICAL ASTRONOMY

in which form it may be used to find any angle A when the three

sides are known. See Equa. [20] and [2oa],*and [25] and [250],

pp. 34 and 35. If each side of the equation is subtracted from

unity we have

cos b cos c + sin b sin c cos a
cos A =

sin b sin c

A cos (b c) cos a
,

,

or vers A =-^ -.
-

(2)
sin b sin. c

or
2 sn

2 sn sn

^4

Dividing (3) by 2 and denoting sin2 by
"
hav." the

"
haver-

2

sine," or half versed-sine, we may write

hav. A = sin * (g + b ~ C^ sin * (a
"" b + C^

(4)
sin 6 sin c

From (2) we may derive [21] and [26] by substituting A =
/,

J = 90 5, c = 90 0, and a = 90 h\ or A = Z, b 90

A, c = 90 </>, and a = 90 d.

By putting 5' = | (a + 6 + c), (3) becomes

.4 4 / sin (s
f

6) sin (/ c) ,
,sm- = W -^- '

.
-

(5)
2 v sin b sm c

If we add each member of (ia) to unity we may derive by a

similar process

A 4 /sin s
f

sin ($' a) ^cos- = U-r-rA--
(6)

2 v sin b sin c

Dividing (5) by (6) we have

sm s
f sm (/

- a)

Formulae [17], [22], [18], [23], [19] and [24] may be derived

from (5), (6), (7) respectively or, more readily, from the inter-

mediate forms, like (3), by putting s = | (<t> + h + p) and



APPENDIX B 259

A = i or Z. For example, if in (3) we put A =
/, a = 90 A,

b = 90 <, and =
p, then

-2! = ?in^ (go
6 -

/? + 90
-

<fr

-
ft) sin | (90

- /?- 90

2
~~

cos sin ft

__ sin | (180
- Q + A + ft) sin H<fr

- ^ + P)

cos < sin ft

Us =
%(<!> + k + p) then

2! = cos 5 sin (s /Q

2 cos <t> sin

from which we have [17].

Formula (4) or [17] may be written

hav . , =
cos * sin (s

-
h)

cos </> sin p

the usual form (in navigation) for the calculation of the hour

angle from an observed altitude of an object.

For the purpose of calculating the great-circle distance be-

tween two points on the earth's surface formula (i) may be put
in the form

hav. (dist.)
= hav. (j>A <fo) + cos <f>A cos <fo hav. AX (9)

in which 0^, <f>B are the latitudes of two points on the earth's

surface and AX their difference in longitude. <t>A
~

<t>B means the

difference between the latitudes if they are both N or both S;

the sum if they are in opposite hemispheres.

Formula (9) is derived by substituting the co-latitudes for

b and c and AX for A in (i) which gives

cos (dist.)
= cos (90 <f>A ) cos (90 <fo)

+ sin (90 $A ) sin (90 <t>B) cos AX.

If we add and subtract cos $A cos <t>B in the right-hand member
we obtain,
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cos (dist.)
= sin $A sin

<t>s + cos <f>A cos fa cos <f>A cos #5

+ cos 4>A cos <fo cos AX

= cos (<f>A
~

<B) cos #4 cos < 5 (i cos AX)

= cos (04 0#) cos 04 cos 0B vers AX.

Subtracting both members from unity

i cos (dist.)
== i cos (<t>A 5) + cos <$>A cos B vers AX

or vers (dist.)
= vers ($A

~
<t>B) + cos <t>A cos <t>B vers AX.

Dividing by 2

hav. (dist.)
= hav. ($4 0#) + cos ^ cos <j>B hav. AX. (9)

Note: A table of natural and logarithmic haversines may be

found in Bowditch, American Practical Navigator. (Table 45.)

The same formula may be applied to the calculation of the

zenith distance of an object. In this case it is written

Hav. f = hav. (< 8) + cos < cos <t> hav. t.

'

(10)

This is the formula usually employed in the method of Marcq
Saint Hilaire.

Right Triangles

By writing formulae (i), (2), (3), (a) and (&) in terms of the

three parts and placing C - 90, we may obtain the following

ten right triangle formulae.

cos c = cos a cos b

. A sin a . D sini
sin A = -: sin B = -;

sin c sin c

A tan b D tan a
cos A =- cos B =-

tan c tan c

tan a . tan b (n)
tan A = -sr tan B =

-r-r-
sin sin

k
a

. cos B . cos ^4
sin A =-r- sm B

cos 6 cos

cos c = cot A cot 5.
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These are readily remembered from their similarity to the

corresponding formulae of plane triangles.

To solve a right triangle select the three formulae which involve

the two given parts and one of the three parts to be found. To
check the results select the formula involving the three parts

just computed. The computed values should satisfy this

equation.

Radians Degrees, Minutes, and Seconds.

If the length of an arc is divided by the radius it expresses

the central angle in radians. The number obtained is the cor-

responding length of arc on a circle whose radius is unity. The

unit of measurement of angles in this system is the radius of

the circle, that is, an angle of i is an angle whose arc equals

the radius, and therefore contains about 57-3.

Since the ratio of the semi-circumference to the radius is ?r,

there are TT radians in 180 of the circumference.* The conversion

of angles from degrees into radians (or -w measure, or arc-measure)

is effected by multiplying by the ratio of these two.

no
Angle in degrees = angle in radians X

7T

and
'

angle in radians = angle in degrees X -

iSo

To convert an angle in radians into minutes multiply by
7T

11

i
( T-

3437'-77; or divided by = .0002909. This latter
IoO X OO

number, the arc i', is nearly equal to sin i' or tan i'.

To convert an angle expressed in radians into seconds multiply

by = 206264.8; or, divide by the reciprocal,

.00000,48481,36811, the arc i"; this number is identical with

sin i" or tan i" for 16 decimal places.
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Area of a Spherical Triangle.

In text books on geometry it is shown tfiat
"
the area of a

spherical triangle equals its spherical excess times the area of

the tri-rectangular triangle/' the right angle being the unit of

angles. If A represents the area of any spherical triangle, whose

angles are A, B, and C, then

A + B + C ~ 180 4X

or A =

9o
' x

8

(A + B + C - 180)

180'

180

,
if e is the spherical excess in degrees

_ e"irR2 if e" is the spherical excess in sec-
""

180 X 60' X 60"
?

onds. (12)

Spherical Excess.

If Equa. (12) is solved for e" we have

_ A 1 80 X 60 X 60
e __ x -

A v> , , the constant being the number of sec-= - X 206264.8, , .

&
..

R~ onds in one radian

A , x

R* arc i"

Note: Arc i" = .00000,48481,36811; it is the reciprocal of

the above constant, and is the length of the arc 'which subtends

an angle of i" when the radius is unity.

Solid Angles.

Any solid angle* may be measured by an area on the surface

of the sphere in the same manner that plane angles are measured

by arcs on the circumference of a circle. The extent of the

opening between the planes of a triedral angle is proportional to

* A solid angle is one formed by the intersection of any number of planes in a

common point. The triedral angle is a special case of the solid angle.
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the area ot the corresponding spherical triangle, or in other words

proportional to the spherical excess of that triangle. This is

true not only of triangles, but also of spherical polygons and

spherical* areas formed by circles (sectors). The unit of

measurement of the solid angle is the steradian. A unit (plane)

angle is one whose arc is equal in length to the radius of the circle;

that is, it intercepts an arc whose length is R. The steradian is a

solid angle which intercepts on the surface of the sphere an area

equal to Jf?
2

;
or it intercepts on the sphere of unit radius an area

equal to unity. Just as the plane angle (in radians) when mul-

tiplied by the radius gives the length of arc, so the solid angle or

the spherical excess (in radians) when multiplied by R2
gives

the area of the spherical triangle. To obtain a more definite

idea of the size of this angle we may compute the length of arc

from the centre to the circumference of a small circle having an

area equal to R2
(or i on a sphere of unit radius). This comes

out about 32 46'+ . The spherical area enclosed by the paral-

lel of latitude 57 14' corresponds to one steradian in the angle

of the cone whose apex is at the centre of the globe.

Functions of Angles near o or 90.
When obtaining from tables the values of sines or tangents of

small angles (or angles near to 180) and cosines or cotangents of

angles near to 90 there is some difficulty encountered in the

interpolation, on account of the rapid rate of change of the

logarithms. In practice these values are often found by ap-

proximate methods which enable us to avoid the use of second

differences in the interpolation. There are two assumptions

which may be made, which result in two methods of obtaining

the log functions.

For sines/we may assume that

sin x = x" X sin i"

or log sin x = log x" + log sin i".

The log sin i" = 4.685 5749.
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This method is accurate for very small angles; the limiting

value of the angle for which the sine may be so computed

depends entirely upon the accuracy demanded, that is, upon the

number of places required.

Example. Find the value of log sin o 10' 25" from a 5-place table.

log sin i" = 4-68557
log 625" = 2.79588

log sin x = 7.48145

The result is correct to five figures.

A similar assumption may be made for tangents of small

angles or for cosines and cotangents of angles near 90.
For angles slightly larger than those for which the preceding

method would be employed, we may assume that

sin (A + a") sin A
A + a"

sin A
The ratio of changes slowly and is therefore very nearly

A.

the same for both members of the -equation. We may there-

fore compute the log sin (A + a") by the equation,

log sin (A + a!'}
= log (A" + a") + log

8

-^
in which A 11

signifies that the angle must be reduced to seconds.

The latter logarithm is given in many tables in the margin
of the page. It may be computed for any number which is

stated in the table. This method is more accurate than the

former.

Example.

Find the value of log sin 2 01' 30" in a five-place table.

2 01' 30" = 7290". In the marginal table is found opposite
" S "

the log-

arithm 4.68548 which is the difference between log sin A and log A. If this

is not given it may be computed by taking from the table the nearest log sin,

say log sin 2 01' = 8.54642 and subtracting from it the log of 7260" 3.86004*

The result is 4.68548.
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Then

log^- 4.68548

log 7290" - 3-86273

log sin x ~ 8.54821

This result is correct to five figures.
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